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Chapter 1

Introduction

This thesis focuses on two kinds of discrete structures: planar structures, such as
planar graphs and subclasses of them, and random graphs, particularly graphs
generated by random processes.

A planar graph is a graph which can be embedded in the plane without cross-
ing edges. Kuratowski’s theorem states that planar graphs can be characterized
in terms of forbidden minors, namely K3 3 and K5 (see e.g., [54]). Planar struc-
tures, in particular planar graphs, have been extensively studied during the last
few decades, including the proofs of the famous four colour theorem [5, 6, 123].
Random planar structures, however, have been investigated only during the last
few years [13, 48, 69, 70, 71, 99, 112]. In this thesis we study the following
aspects of (random) planar structures:

e How many of them are there (exactly or asymptotically)?

e How can we efficiently sample a random instance uniformly at
random?

e What properties does a random planar structure have?
E.g., what is the probability of connectedness? How many edges
are there in average? What is the chromatic number?

Random graphs were first introduced by Erdés and Rényi [59, 60] and studied
extensively since (see e.g., the monographs [33, 82]).

Classical random graph models include a uniform random graph, a binomial
random graph, and a random graph process. In a uniform random graph model,
a graph G(n,m) is chosen uniformly at random among all graphs with n vertices
and m edges. In a binomial random graph model, each of the possible pairs
of vertices is adjacent in a graph G(n,p) independently with probability p. A
random graph process (Go, G1, -, g(g)) is an algorithmic version of the uniform

random graph model G(n, M), where the graph generation proceeds as follows:
Starting with n isolated vertices Gy, a new graph Gp;41 is obtained from a
current graph G); by adding a new random edge in each step. The dynamical
viewpoint of the random graph process provides a picture of how the random
graph process evolves or how a structural property changes as the graph evolves
from empty to full. Random graph processes with degree restrictions recently
attracted a lot attention [73, 74, 121, 122, 124, 125]. In the thesis, we study
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random graph processes where the minimum degree grows quite quickly with
the following questions in mind:

e How does the connectedness of a graph generated by a random
graph process change as the number of edges increases?

e How does the structure of its components evolve?

e When does the phase transition occur?

e How big is the largest component?

1.1 Classes, models, and methods

In this section we specify the type of planar structures and the models of random
graph processes with degree restrictions studied in this thesis, and the methods
employed to study them.

Graph classes. Planar structures studied in this thesis are

o forests,

e outerplanar graphs,

e cubic planar graphs, and
e planar graphs.

We study labeled planar structures and unlabeled planar structures separately,
since the latter requires more techniques. One of the most well-studied sub-
classes of planar graphs are forests, i.e., graphs without cycles. In the thesis
forests are discussed for the illustration of the methods that we will use for
other classes of graphs. Another interesting subclass of planar graphs are outer-
planar graphs, i.e., graphs that can be embedded in the plane in such a way that
there is a face containing all the vertices. In terms of forbidden minors, forests
are the graphs without K3 minors, and outerplanar graphs are the graphs with-
out Ky 3 and Ky minors. A cubic planar graph is a planar graph where each
vertex has exactly three neighbors, i.e., a 3-regular planar graph.

Graph process models. Random graph processes of interest in this thesis
are

e the minimum degree random multigraph process and
e the min-min random graph process.

The minimum degree random multigraph process (Gmin(n,0), Gmin(n,1),--+) is
defined by the rule that Guyin(n, M + 1) is obtained from Gpin(n, M) by first
choosing uniformly at random a vertex of minimum degree and then connecting
it with another vertex chosen uniformly at random among all the remaining
vertices. The min-min random graph process (Go,G1,---) is defined by the
rule that G471 is obtained from G by choosing a pair {v, w} of distinct non-
adjacent vertices of Gy of minimum degree uniformly at random among all
such pairs and adding a new edge {v,w}. (If it impossible to continue this way,
we restart the process from the empty graph.)
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Methods. The main tools to investigate planar structures are the recursive
method, the singularity analysis, and the probabilistic method, based on the
decomposition of planar structures along the connectivity (see Figure 1.1).

For exact enumeration and uniform sampling of planar structures we use the
recursive method:

e Decompose the planar structures along the connectivity, yielding
a decomposition tree.

e Derive recursive counting formulas according to the decomposi-
tion tree.

e Sample a graph as a reversed procedure of decomposition accord-
ing to the probabilities computed by recursive counting formulas.

For asymptotic enumeration we use the singularity analysis of generating
functions:

e Interpret the decomposition of labeled structures directly in terms
of exponential generating functions. In case of wunlabeled struc-
tures we interpret the decomposition of them in terms of cycle
indices, from which we derive ordinary generating functions.

e Determine the dominant singularities of generating functions and
their singularity types.

e Derive the asymptotic numbers.

Finally, using the probabilistic method we derive typical properties of a ran-
dom planar structure.

Decomposition

/\

Recursive Counting Formulas Equations of Generating Functions
Singularity Analysis ——»

-«—— Recursive Method .
Asymptotic Number

Uniform Generation Probabilistic Analysis —

Typical Properties
Figure 1.1: Decomposition of a planar structure

To investigate the random graph processes we use the probabilistic method,
Wormald’s differential equation method, multi-type branching processes, and
the singularity analysis:
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o Wormald’s differential equation method describes the average
change of a certain random variable when a new edge is added
in the random graph process as a differential equation.

o Multi-type branching processes approximate random graph pro-
cesses with several types of vertices involved in the evolution, and
can be applied to study the phase transition of the random graph
process via the branching process.

e The dominant singularity of a probability generating function de-
scribing the evolution of the random graph process determines the
order of the largest component.

1.2 Summary of results

In this section we present the main results of this thesis, which answer the
typical questions about the considered graph classes and graph process models.

Planar structures. The main results on planar structures are about their
asymptotic numbers, typical properties, and efficient uniform sampling algo-
rithms.

First, using the singularity analysis we determine that the number g, of
labeled planar structures of certain classes on n vertices is asymptotically of the
form (1+0(1)) cn=® g™ nl, for suitable constants ¢, o, and 3, while the number
of unlabeled planar structures is asymptotically of the form (1+0(1)) ¢ n=% ™.
The constant « is called the critical exponent and 3 the growth constant. We
compute the values of o and § for (labeled and unlabeled) outerplanar graphs
and labeled cubic planar graphs (see Table 1.1).

Curiously, the critical exponents « for labeled outerplanar graphs and for
labeled cubic planar graphs differ by one: a is 5/2 for outerplanar graphs and 7/2
for cubic planar graphs. These critical exponents are directly computed from
the singular expansions of the generating functions g(z) = > gn/n!z" with
singular type (1 — 82)3/2 for outerplanar graphs (see (5.2.3)) and with singular
type (1 — (2)%/? for cubic planar graphs (see (6.4.9) and (6.4.10)). However,
we do not know what structural properties of planar structures determine the
singular type.

Next, we investigate asymptotic properties of a random planar structure.
The expected number of edges in a random planar structure on n vertices is of
the form (14 0(1)) p n for a positive constant p. A random planar structure on
n vertices is connected with probability tending to a constant p.o, as n — oo,
and the chromatic number of a random planar structure on n vertices is three
with probability tending to a constant p, as n — co. We compute the values of
i, Deon and p,, for outerplanar graphs and cubic planar graphs (see Table 1.1).

For example, we prove that the chromatic number of a random cubic planar
graph on n vertices is three with probability tending to 0.999 as n — oo, while
the chromatic number of a random connected cubic planar graph on n vertices
is three with probability tending to one as n — oo. To this end, we show
that the number of isolated K,’s in a random cubic planar graph on n vertices
has asymptotically Poisson distribution and that a random cubic planar graph
contains linearly many triangles with probability tending to one as n — oc.
As a consequence, together with Brooks’ theorem, we obtain the result on the
chromatic number of a random cubic planar graph.
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Table 1.1 provides the values of «, 3, i, Pcon, and p,, for trees, outerplanar
graphs, cubic planar graphs, and planar graphs. Note that every cubic planar
graph on n vertices has ezactly 3n/2 edges (provided that n is even), and that
every tree on n vertices has n — 1 edges and is connected, and its chromatic
number is two (n > 2). The values for trees (see [63]) and for planar graphs
(see [71]) are included in the table for comparison.

Classes « I) I Peon Dy
Labeled trees 5/2 | 2.71 1 1
Unlabeled trees 5/2 | 2.95 1 1
Labeled outerplanar graphs 5/2 | 7.32 | 1.56 0.861 1
Unlabeled outerplanar graphs || 5/2 | 7.50 | 1.54 0.845 1
Labeled cubic planar graphs 7/2 | 3.13 | 1.50 | > 0.998 | 0.999
Labeled planar graphs 7/2 | 27.2 | 2.21 0.963

Table 1.1: The (first few digits of the) values of the critical exponent «, the
growth constant 3, the edge density u, the probability pcon of connectedness,
and the probability p, of the chromatic number being three.

Furthermore, using the recursive method we design the first polynomial time
algorithms that sample an outerplanar graph, a cubic planar graph, and a pla-
nar graph on n vertices, uniformly at random, with running time and memory
requirement presented in Table 1.2.

Classes Running time | Memory
labeled or unlabeled trees O(n%) O(n?)
unlabeled trees O(n*) O(n?)
Labeled outerplanar graphs O(n*) O(n?)
Unlabeled outerplanar graphs o(n") O(n?)
Labeled cubic planar graphs O(n%) O(n?)
Labeled planar graphs Oo(n") O(n*)

Table 1.2: Running time and memory requirement of uniform samplers.

Finally, we provide a complete proof of the (labeled and unlabeled) map
enumeration obtained from the Gaussian matrix integral. We also apply the
method of the Gaussian matrix integral to other problems, e.g., we show that
the enumeration of the graphs embeddable on a given 2-dimensional surface,
particularly planar graphs with a given degree sequence, can also be formulated
by the Gaussian matrix integral.

Random graph processes. The main results on the random graph processes
with degree restrictions concern the connectedness, the phase transition, and the
giant component.

First, we show that the graph G, (tn) generated by the minimum degree
random multigraph process and the graph Gy, generated by the min-min ran-
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dom graph process become connected as soon as the minimum degree reaches
three, with probability tending to one as n — oo.

Next, we prove that there is a constant h., such that G, (tn) enjoys the
phase transition when ¢t = h¢,. That is, Guin(tn) consists of small components
of order O(logn) when t < he,, while it consists of one giant component of order
O(n) and small components of order O(logn) when t > he,, with probability
tending to one as n — oo.

Finally, using Fourier transforms we determine the asymptotic distribution
of the order of the giant component in G¢,. More precisely, we show that for a
constant 0 < ¢t < 1/2 and for any positive integer [, the giant component in Gy,

is of order n — 2] with probability tending to 2exp(2t(t — 1)) t(lﬂ_lt) (1 —2t)%
as n — oo.

1.3 Overview of the chapters

The details of the main results stated above can be found in the relevant chap-
ters. In this section we overview the thesis and present the main theorems in
each chapter.

The thesis consists of four parts. In the rest of Part I we recall concepts
and facts on planar structures, random graphs, and some other fields relevant
to or necessary for the thesis. In Parts II and III we present the enumeration
results, uniform sampling algorithms, and properties of labeled and unlabeled
planar structures. Finally, in Part IV we discuss the minimum degree random
multigraph process and the min-min random graph process.

Notations for asymptotics. Before stating the results, we introduce some
notations.

The expression asymptotically almost surely, abbreviated by a.a.s., means
with probability tending to one as n — co.

For two sequences {a,}n>0 and {b,},>0 and two numbers a,b, we write
ap, ~ by, if lim,, o a, /b, =1 and a = b if a is numerically approximated by b.
Given a real number x up to the first [ digits (in decimal expansion) we write
a = z if the first [ digits of a equal x. For example, a = 1.23 if the first three
digits of a equal 1.23. Furthermore the notation O(-) denotes the growth up to
logarithmic factors.

Part I. Basics. In Chapters 2 and 3 we provide backgrounds on planar
structures and random graphs.

In Chapter 2 we first dicuss the current state of the art in the study of
planar structures from the aspects of enumeration and uniform sampling. We
then explain how to count labeled planar structures using the recursive method
and exponential generating functions. We also illustrate how to count unlabeled
planar structures using cycle indices and ordinary generating functions. Next we
show how to determine the asymptotic numbers from the generating functions.
To this end, we have to determine the dominant singularities and the singular
types of the generating functions. Finally, we discuss techniques for uniform
sampling, such as Markov chain Monte Carlo method, Boltzmann sampler, and
the recursive method.
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In Chapter 3 we first review well-known results on classical random graphs,
such as evolution, the phase transition, planarity, and connectedness. We then
move to random regular graphs and random graphs with a given degree se-
quence. We discuss also recent development of random graph processes with
degree constraints. Finally, we present several probability distributions, basic
inequalities, and facts from Wormald’s differential equation method and multi-
type branching processes.

Part II. Labeled planar structures. In Part II, from Chapter 4 to Chap-
ter 7, we study labeled planar structures, such as forests, outerplanar graphs,
cubic planar graphs, and planar graphs.

In Chapter 4 we study labeled forests and labeled trees. We present counting
formulas and a uniform sampling algorithm based on the recursive method (see
Figure 4.2). Note, however, that for the uniform generation of labeled trees, a
linear-time algorithm was already known [4]. The main purpose of this chapter
is to illustrate how to use the generating functions and the recursive method for
labeled structures.

Theorem 4.4.1. Labeled trees on n vertices can be sampled uniformly at ran-
dom in deterministic time O(n*) with space O(n®logn). This can also be done
in deterministic time O(n?) if we apply a precomputation step.

In Chapter 5 we study labeled outerplanar graphs. Outerplanar graphs are
relatively simple compared to planar graphs, but rich enough so that we have
to understand the properties of outerplanar graphs when we want to decom-
pose them into smaller parts and apply the recursive method. The property
that every 2-connected outerplanar graph contains a unique Hamiltonian cycle
yields that the decomposition can be interpreted in terms of a simple generating
function of square root type (see (5.1.1)).

From a complete set of decompositions of labeled outerplanar graphs along
the connectivity, we derive the equations of generating functions. Using the
singularity analysis of generating functions (see (5.2.2) and (5.2.3)) we determine
the asymptotic number of labeled outerplanar graphs, and investigate typical
properties of a random outerplanar graph. Furthermore, using the recursive
method we derive the counting formulas for labeled outerplanar graphs with
various connectivity and derive an algorithm that samples a random outerplanar
graph in polynomial time.

Theorem 5.2.1. The number of labeled outerplanar graphs on n wvertices is
asymptotically
(14 0(1))ern™"24"nl,

where ¢; = 0.008095 and v = 7.32098.

Let G(n) denote a random outerplanar graph chosen uniformly at random
among all the labeled outerplanar graphs on vertices 1,...,n.

Theorem 5.3.2. A random outerplanar graph G(n) satisfies that

lim Pr(G(n) is connected) = 0.861666,

n—oo

whereas lim,,_,, Pr(G(n) is 2-connected) = 0.
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Theorem 5.3.3. Let Y,, be the number of edges in G(n). Then
E[Y,] ~ 1.56251n, Var(Y;,) ~ 0.223992n.

Theorem 5.4.1. A labeled outerplanar graph on n wvertices can be sampled
uniformly at random in deterministic time O(n*) with space O(n®logn). This
can be done in deterministic time O(nz) if we allow a precomputation step to
evaluate the numbers from the counting formulas.

In Chapter 6 we study labeled cubic planar graphs. The restriction on the
degree, i.e., the 3-regularity of graphs yields a nice characterization of cubic
graphs with one distinguished vertex, called rooted cubic graphs. At the last step
of the decomposition of rooted cubic graphs, the 3-regularity further involves
a well-studied class of planar graphs, triangulations, as the dual of rooted 3-
connected cubic planar graphs.

Using the characterization of rooted cubic planar graphs and triangulations
we derive the equations of generating functions. We then determine the singular
types of the generating functions of rooted cubic planar graphs (see (6.4.8)) and
cubic planar graphs (see (6.4.9) and (6.4.10)). Using the singularity analysis we
determine the asymptotic number of labeled cubic planar graphs, and investigate
typical properties of a random cubic planar graph. Using the recursive method
we also derive the counting formulas and a uniform sampling algorithm.

Theorem 6.4.1. The number of labeled cubic planar graphs on n vertices is
asymptotically
(14 0(1))ean™"2p7"n),

or a constant co > 0 and p~' = 3.132595.
P

For k£ =0,1,2,3 let G%k) denote a random cubic planar graph chosen uni-
formly at random among all the k-vertex-connected cubic planar graphs on
vertices 1,...,n for even n.

Theorem 6.5.1. For a constant {(p) satisfying 0.998 < ((p) < 1,

lim Pr(G) is connected) = ((p),

n—oo

whereas 1lim,,_, oo Pr(GglO) is 2-connected) = 0.

Lemma 6.5.2. Let v = p*/4! = 0.000432. Let X,, be the number of components
of G%O) isomorphic to K4 for even n. Then X,, has asymptotically the Poisson
distribution with mean v. That s, for k=0,1,2,...

k

Pr(X, =k) — e_”% as n — oo.

In particular, the probability that Gﬁ{” has at least one component isomorphic
to K4 tends to1 —e™" as n — oo with n even.

Lemma 6.5.6. Let Yn(k) be the number of triangles in GS{“) for k=10,1,2,3.
Then for even n there exists § > 0 such that

Pr(Y,®) > on) =1 — e ),
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Theorem 6.5.7. Let v be as in Lemma 6.5.2, and let X(G%k)) denote the chro-
matic number of G£f). Then we have

lim Pr(x(G®)=4) = 1-¢77,
lim Pr(x(G)=3) = e =0.999568,

n—oo
and for k =1,2,3 we have lim,,_, Pr(x(GSLk)) =3)=1.

Theorem 6.6.1. A labeled cubic planar graph can be sampled uniformly at
random in deterministic time O(n®log®n) and in O(n?) with pre-computation,
which requires O(n3logn) space.

In Chapter 7 we study labeled planar graphs. The main idea is to decompose
graphs into smaller parts involving graphs with higher connectivity. In partic-
ular, for the decomposition of 2-connected graphs we use the characterization
of 2-connected graphs with one distinguished oriented edge, called networks,
due to Trakhtenbrot [136]. From the decomposition along the connectivity we
derive the recursive counting formulas for labeled planar graphs with various
connectivity and derive an algorithm that samples a random planar graph in
polynomial time.

Theorem 7.7.1. A labeled planar graph on n vertices and m edges can be sam-
pled uniformly at random in deterministic time O(n") with space O(n* logn). If
we apply a preprocessing step, this can also be done in deterministic time O(n?).

Part III. Unlabeled planar structures. In Part III, from Chapter 9 to
Chapter 11, we study unlabeled planar structures (i.e., isomorphism classes
of planar structures), such as forests, outerplanar graphs, 2-connected planar
graphs, and maps and planar graphs with a given degree sequence.

Note that unlabeled structures are much more difficult to handle due to sym-
metry, and that the problem of determining the asymptotic number of unlabeled
planar graphs is still open. One way of enumerating unlabeled structures uses
cycle indices introduced by Pélya [118]: The symmetry of a graph is closely
related to the orbits of the automorphism group of the graph, and Burnside’s
lemma can be used to express the number of orbits in terms of the number
of objects fixed by the automorphism group. Cycle indices, which is a formal
power series encoding the cycle decompositions of the automorphism group of
a graph, is further translated as the number of unlabeled graphs.

In Chapter 8 we study unlabeled trees and present counting formulas and a
uniform sampling algorithm.

Theorem 8.4.1. Unlabeled trees on n vertices can be sampled uniformly at
random in deterministic time O(n*) with space O(n?).

In Chapter 9 we study unlabeled outerplanar graphs. We derive the asymp-
totic number of unlabeled outerplanar graphs, using cycle indices and the sin-
gularity analysis of generating functions. This is an important new step toward
the enumeration of unlabeled planar graphs. We also study typical properties
of a random unlabeled outerplanar graph. Furthermore, using the recursive
method we derive the counting formulas for unlabeled outerplanar graphs and
derive an algorithm that samples a random unlabeled connected outerplanar
graph in expected polynomial time.
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Theorem 9.3.4. The number of unlabeled outerplanar graphs on n vertices is
asymptotically
(14 0(1))esn ™2~ "n,

where cg =~ 0.021504 and n~! ~ 7.503597.

Theorem 9.4.1. The probability that a random unlabeled outerplanar graph is
connected is asymptotically ~ 0.845721.

Theorem 9.4.7. The distribution of the number of edges in a random unlabeled
outerplanar graph on n vertices is asymptotically Gaussian with mean pn and
variance o*n, where

o 1.54894, o2 ~ 0.227504.

The same holds for a random connected outerplanar graph.

Theorem 9.4.8. Let x(G),) denote the chromatic number of a random unlabeled
outerplanar graph G,, on n vertices. Then we have
lim Pr(x(Gn) =3) =1.

Theorem 9.5.1. An unlabeled outerplanar graph on n vertices can be sampled
uniformly at random in expected time O(n”) with space O(n3logn).

In Chapter 10, we study unlabeled 2-connected planar graphs. We derive
the counting formulas and a uniform sampling algorithm, using the recursive
method. The main step is to control the symmetry of the graphs and find
bijections between symmetric graphs and certain type of graphs called coloured
networks that we can further decompose.

Theorem 10.6.1. An unlabeled 2-connected planar graph with m edges can
be sampled uniformly at random, in expected O(m?®) time. If the algorithm
has direct access to the values of appropriately chosen counting formulas, the
algorithm can generate such an object in expected cubic time.

In Chapter 11, we study maps and planar graphs with a given degree se-
quence. A technique of theoretical physics called Wick’s theorem (see Theo-
rem 11.1.1) interprets the Gaussian matrix integral of the product of the traces
of powers of Hermitian matrices as the number of maps with a given degree se-
quence, while it is common in combinatorics to use the decomposition of maps
yielding the equations of generating functions.

We first complete a proof of the map enumeration obtained from the Gaus-
sian matrix integral. We then show that the number of planar graphs with
a given degree sequence can be expressed as the Gaussian matrix integral.
To be more precise, let M = (M;;) be an N x N Hermitian matrix and
dM = [];dM;; [];-;d Re(M;;)d Im(M;;) denote the standard Haar measure,
where Re(M;;) and Im(M;;) denote the real part and the imaginary part of
M;;. Then the Gaussian Hermitian matrix integral of an arbitrary function f
is defined as

2
cpe N rana
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where the integration is over all N x N Hermitian matrices. Let A(rs,...,rg)
denote the set of all subsets of edges which have a decomposition into r; cycles of
lengthi (i = 3,. .., k) and define a function g,, .. (M) = ECE.A(Tg,..‘,rk) [Toce Me.

Theorem 11.6.6. For every z; with |z;| € (0,¢&;) with suitable €; > 0 we have

Jm ¥ 3 <0n 00> [T = SIS

T3 ra,e. [ i

where T" is a 2-vertex-connected 3-edge-connected planar fat graph with r; vertices
of degree i, i >0, and [ - |* is the isomorphism equivalence class of T*, the dual
of .

Note that the coefficient of [[, 2;*/r;! in the right hand side of the power
series in Theorem 11.6.7 is the same as the number of unlabeled planar graphs
with r; faces of length i, whose dual is 2-connected and 3-edge-connected.

Part IV. Random graph processes. In Part IV, from Chapter 12 and
Chapter 13, we study random graph processes with degree constraints, such
as the minimum degree random multigraph process and the min-min random
graph process.

In Chapter 12 we study the minimum degree random multigraph process.
This graph process makes the minimum degree of a graph generated by the
process grow very fast, and makes components merge together quickly, creating
the giant component quicker than in the classical random graph model. Fur-
thermore, each of the possible small components outside the giant component is
in some sense forced to be attached to the giant component, resulting in a single
connected component with relatively small number of edges ((1 + 0(1))1.73n),
compared to the number of edges required in the classical random graph model
(14 o(1))nlogn/2).

Using Wormald’s differential equation method (Lemma 3.4.5) we determine
the number of vertices of small degrees in the graph Gin(n, M) generated by
the minimum degree random multigraph process at time M. We investigate
also the component structure and the connectedness of Guin(n, M).

Furthermore, we show that the minimum degree random multigraph process
enjoys the phase transition around a constant he, = 0.8607, using a multi-
type branching process and the singularity analysis of probability generating
functions. To study the phase transition of the classical random graph process
G(n,M) it is common to approximate the random graph process by a usual
branching process (with a single type): Starting with a single vertex v we create
the component containing v by exposing the neighbourhood of v first and then
exposing the neighbourhood of a neighbour of v, and so on. This is possible,
since each edge is present independently in G(n, M). However, in Gpin(n, M) it
is not the case. To overcome this problem we distinguish the types of vertices in
Gmin(n, M) and approximate the process using a multi-type branching process.

Theorem 12.1.1. Let Xi(M) be the number of vertices of degree k in the
minimum degree process Gin(n, M) and Hy := min{M : 6(Gunin(n, M)) > k}.
Then a.a.s. Guin(n, M) is such that for every M >0 and for k =0,1,2,

| X5 (M) = nog(M/n)| = o(n)
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and for k=1,2,3,
Hy =nhy +o(n),

where ay(t)’s are deterministically given functions and hy’s are constants, in
particular h; = 0.6931, ho = 1.2197 and hsy = 1.7316.

Theorem 12.3.1. Let § > 0. Then with probability 1 —O(1/n) each component
of Gmin(n, (1 + 8)n) smaller than n/2 has at most (2/0) logn vertices and con-
tains at most one cycle. Moreover, for every function w = w(n) — 0o, a.a.s. the
number of all vertices contained in unicyclic components of Gin(n, (14 0)n) is
smaller than w.

Theorem 12.4.1. Let p,,(t) denote the probability that Gmin(n,tn) is connected.
Then, for every constant t # hs, the limit

p(t) = lim p, (1)

exists and p(t) = 0 for t < hg while p(t) =1 for t > hs. Ift € (ha,hs), then
0 < p(t) < 1, where

= i li =1.
pr=1m p(t)>0 and ,m_ p(t)

Theorem 12.7.1. Let
16log2 — 2
3log2 —1+1log2 /27 — 16log 2

(1) If t < her, then a.a.s. every component in Guin(n,tn) has O(logn) ver-
tices.

her = log < ) = 0.8607.

(2) If t = her, and w(n) — oo, then Gmin(n,tn) a.a.s. contains no component
of order greater than n2/3w(n), and at least one component of order greater
than n?/3Jw(n).

(8) If t > hey, then a.a.s. the largest component in Gin(n,tn) has ©(n) ver-
tices and every other component, if any, has O(logn) vertices.

In Chapter 13 we study the min-min random graph process. A uniformly
distributed random graph with degree constraints is a natural model to study,
however there is no obvious way to define the corresponding graph process
model. The min-min random graph process is relevant to a random graph with
a given degree sequence, though a graph generated by this process may not be
uniformly distributed.

We study the connectedness of the graph Gj; generated by the min-min
random graph process at time M. Using Fourier transforms and the singularity
analysis of probability generating functions we investigate the order of the giant
component of Gps. For that, let X = X (M) be the number of vertices outside
of the giant component of Gj;. Then we can precisely determine the limiting
distribution of X as n — oo. Finally, we investigate the distribution of tX if
t =1t(n) tends to 0 as n — 0.

Theorem 13.4.1. Let M = n + tn.

(1) If M < n, then a.a.s. Gy is disconnected.
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(2) Suppose that 0 < t < 1/2 remains fized as n — oco. Then Gy a.a.s. has
a largest component consisting of at least 5 wvertices. Furthermore, the

number Y of components of order at most 4 is asymptotically Poisson
with mean py = 3(—(1 —2t)2 — In(4(t — t2))). That is,

lim Pr[Y = k| = pf exp(—ps)/k!  for any k.

n—oo

In particular, letting

U(t) = exp(—pus) = 2 V't — 12 exp((2t — 1)?/2),
we have lim,, oo Pr(Gasr is connected) = lim,, oo Pr(Y = 0) = ¥(¢).
(3) Ift > 1/2, then a.a.s. Gy is connected.

Theorem 13.5.1. Let M = n + tn for a constant 0 < t < 1/2. Then as
n — 00, X converges in distribution to the distribution given by the probability
generating function

Zqzz —exp[l(l—%) (1—22)} W '

As a consequence, for any positive integer [,

lim Pr(X =2l) =gy

— 1+ 0(1/1)) 2exp(2t(t — 1)) t(; D (1 - 2ny2

while lim,, o, Pr(X = 20 — 1) = goy—1 = 0. Furthermore, a.a.s. all components
on at most 5 vertices are cycles of even lengths.

Theorem 13.5.2. Suppose that M = n + tn, where t = t(n) with n='In*n <
t =o(1). Then tX converges in distribution to Gamma distribution with both
shape and scale parameter equal to % That is,

1 [ exp(—s)
lim Pr(tX <b) = ———ds.
s Vile s
As a consequence, for any x > 0,
. exp( Qx - 2m -m
lim Pr(tX >z) = Z m(2m — 1)N27
n— 00 2mrx 0

= (1+0(1/z) (2rz)”? exp(—22),

where (2m — 1)!! = [I%, (2m — 2i + 1).
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Chapter 2

Planar Structures

In this chapter we recall some known facts on planar graphs. First, we briefly
survey the current state of research on planar structures from the viewpoint of
enumeration and uniform sampling (Section 2.1). Next, we study the enumer-
ation methods for labeled and unlabeled planar structures. In particular we
review the recursive counting methods through decomposition, the exponential
generating functions for labeled structures (Section 2.2), the cycle indices and
the ordinary generating functions for unlabeled structures as well as Bernside’s
lemma, Pélya’s theorems (Section 2.3), and the singularity analysis to determine
the asymptotics (Section 2.4). Finally, we discuss the techniques for uniform
sampling, such as Markov chain Monte Carlo method, Boltzmann sampler and
the recursive method (Section 2.5).

2.1 Planar graphs and subclasses

We know fairly well about labeled planar graphs from the viewpoint of the
enumeration, the uniform sampling and typical properties, due to recent research
on this field, some of which we list below.

Denise, Vasconcellos, and Welsh [48] were the first to investigate the number
of labeled planar graphs and typical properties of a random planar graph, i.e., a
graph that is chosen uniformly at random among all the labeled planar graphs
on n vertices. They proved that the number of labeled planar graphs on n
vertices is at most 75.8"1t°(™n! for large n, based on a Markov chain whose
stationary distribution is the uniform distribution on all labeled planar graphs.
They showed also that a random planar graph is connected with asymptotic
probability bounded away from zero, and that the expected number of edges is
at least 3n/2.

Further investigating this Markov chain, Gerke and McDiarmid [69] proved
that the limit of the expected edge density u of a random planar graph is at least
13/6 = 1.86, and McDiarmid, Steger, and Welsh [99] proved that the quantity
(g(n)/n))}/™ where g(n) denotes the number of labeled planar graphs on n
vertices, converges to a limit -, which is called the growth constant, as n — oo
and that the asymptotic fraction p.o,, of labeled connected planar graphs is
between 1/e and 1. Gerke, McDiarmid, Steger, and Weifl [70] proved that the
quantity (g(n, gn)/n!)'/", where g(n, gn) denotes the number of labeled planar

17
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graphs on n vertices with gn edges for 1 < ¢ < 3, converges to a limit -, as
n — oo.

Using the triangulations and probabilistic methods, Osthus, Promel, and
Taraz [112] improved the upper bound of g(n) to 37.3"+°(")n!. Bender, Gao and
Wormald [13] showed that the number of labeled 2-connected planar graphs on
n vertices is asymptotically 26.1"T°(") ! which is a lower bound of g(n), using
the singularity analysis of generating functions arising from the decomposition
of graphs along connectivity. Further analysing the singularities and singular
types of the generating functions in [13], Giménez and Noy [71] determined the
asymptotic number of labeled planar graphs on n vertices to be ¢ n=7/2 27.2" n!
for some constant ¢ > 0, the asymptotic fraction of connected graphs to be
Peon = 0.963, and the limit of the expected edge density to be p = 2.21.

Bodirsky, Gropl, Johannsen, and Kang [28] determined the asymptotic num-
ber of labeled 3-connected planar graphs to be 21.049"t°("n! which was origi-
nally derived by Bender and Richmond [16]. In Chapter 6 (see [30]) we deter-
mine the asymptotic number of labeled cubic planar graphs on n vertices to be
¢ n~7/2 3.13" n! for some constant ¢ > 0, and show that the chromatic num-
ber of a random connected cubic planar graph is asymptotically almost surely
three. Furthermore, in Chapter 5 ([24, 31]) we show that the number of labeled
outerplanar graphs on n vertices is asymptotically ¢ n=%/2 7.32" n! for some
constant ¢ > 0, and a random outerplanar graph has 1.56n edges in average and
is connected with probability tending to 0.86.

For the uniform sampling of labeled planar graphs, the Markov chain sug-
gested by Denise, Vasconcellos, and Welsh [48] is a good candidate. However,
its mixing time is unknown, and even if it were rapidly mixing, it would only
approximate the uniform distribution. In Chapter 7 ([22, 29]) we develop the
first polynomial time algorithm to sample labeled planar graphs uniformly at
random, based on the recursive method. In Chapters 5 ([21]) and 6 ([30]) we
also design the first polynomial time algorithms for sampling labeled outerplanar
graphs and labeled cubic planar graphs. The best known sampling algorithm for
labeled planar graphs is due to Fusy [66], who developed a Boltzmann sampler
that samples a labeled planar graph of an approximate size in linear time and
an exact size in quadratic time. Bodirsky, Gropl, Johannsen, and Kang [28]
presented a polynomial time algorithm for sampling labeled 3-connected planar
graphs.

Unlabeled planar structures, i.e., isomorphism classes of planar graphs, is
considered more difficult to study than the labeled ones, due to symmetry.
Though the picture of unlabeled planar structures is far from being completeted,
there are recent progress on subclasses of them.

Otter [113] first applied the cycle indices introduced by Pélya to estimate the
asymptotic number of unlabeled trees, i.e., unlabeled acyclic connected graphs.
In Chapter 9 ([26]) we make a new step toward the enumeration of unlabeled
planar graphs. Using cycle indices we show that the number of unlabeled out-
erplanar graphs on n vertices is asymptotically ¢ n=°/2 7.5" for some constant
¢ > 0, and that a random unlabeled outerplanar graph has 1.54n edges in aver-
age and is connected with probability tending to 0.84.

Most of the known uniform sampling algorithms for unlabeled planar struc-
tures use the recursive method. In Chapter 9 ([21]) we design an expected poly-
nomial time algorithm to sample unlabeled connected outerplanar graphs, and
in Chapter 10 ([23]) to sample unlabeled 2-connected planar graphs. Bodirsky,
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Gropl, and Kang [25] developed an expected polynomial time algorithm to sam-
ple unlabeled connected cubic planar graphs. Instead of relying on the recursive
method, which requires sometimes expensive pre-computation time, Bodirsky,
Fusy, Kang, and Vigerske [27] coined a new concept of cycle-pointing to count
and sample unlabeled structures including trees, outerplanar graphs, cactus
graphs, and planar maps in an unbiased way, which yields generating functions
for a Boltzmann sampler that runs in linear time.

While the combinatorial methods for enumeration employ the generating
functions, a technique of theoretical physics called Wick’s theorem interprets
the Gaussian matrix integral of the product of the trace of powers of Hermi-
tian matrices as the number of maps with a given degree sequence [51], which
yields the map enumeration results analogous to those obtained by combinato-
rial methods [14]. In Chapter 11 ([85]) we show that the enumeration of the
graphs embeddable on a given 2-dimensional surface, say the plane, can also be
formulated as a Gaussian matrix integral.

2.2 Enumeration of labeled planar structures

To determine the number of labeled (not necessarily planar) graphs we can
employ two methods. One is recursive counting, based on the decomposition
of graphs into smaller graphs. The other is to use an exponential generating
function, which is a formal power series whose coefficients are the counting
sequences of the number of graphs.

Recursive counting. Let g(n), ¢(n), and b(n) denote the number of labeled
graphs, the number of labeled connected graphs, and the number of labeled
2-connected graphs on vertex set [n] := {1,2,--- ,n} for a nonnegative integer
n, respectively.

As a convention we let g(0) = 1 and ¢(0) = 0. Further we let g.(n) be
the number of labeled graphs consisting of ¢ connected components. Clearly
g1(n) = ¢(n). We start with a very simple observation that a graph consists of
at least one labeled connected graph but at most n labeled connected graphs.
Thus g.(n) = 0for c =0o0rc >n > 1and g(n) = Y., ge(n) for n > 1.
We observe also that a labeled graph with one distinguished vertex (e.g., the
vertex 1) as a root can be decomposed into the split-off-graph that is the labeled
connected graph containing the second smallest vertex, and the labeled graph
with the remaining parts. Summing over all the possible number of vertices
in the split-off-graph, which is counted by g1 (i) = ¢(¢), we obtain that g.(n) =

Z;:f“ (?:f)gl(i)gc_l(n —1) for 2 < ¢ < n. Putting these altogether we obtain

1 forn=20
= 2.2.1
9(n) {22—1 ge(n) forn>1, ( )
0 forn=0,¢c=0o0rc>n>1
ge(n) = c(n) forc=1<n (2.2.2)

Z?:_fﬂ (?:f)gl (i)ge—1(n —i) for2<c<n.

These formulas will later be used for labeled forests, labeled outerplanar graphs,
and labeled planar graphs. For each of such graphs, we will derive appropriate
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recursive counting formulas for ¢(n), which may involve other counting formulas
for 2-connected graphs and 3-connected graphs if necessary.

To compute these numbers efficiently, we use a well-known technique dy-
namic programming, i.e., we store all of their values in a table to avoid recom-
putation. Note that the number of labeled planar structures that we will con-
sider, say gy, is known to be “small”, in the sense that the quantity (g, /n!)'/™
converges to a limit v (see [99]). Thus the values in the table can be stored with
O(nlogn) many bits. Assuming an O(nlognloglogn) multiplication algorithm
(see e.g., [44]), the number of computation steps needed to fill the table is in

O(poly(n)).

Exponential generating functions. Let G(x),C(z), and B(x) be the ex-
ponential generating functions corresponding to the numbers of labeled graphs,
labeled connected graphs, and labeled 2-connected graphs, defined by

n

n>0 ’ n>0 ’ n>0

Let C'(x) = dC(z)/dx and B'(xz) = dB(z)/dx denote the formal derivatives.
Between these generating functions the following relation, due to the block de-
composition, holds (see [63, 76, 144]).

Proposition 2.2.1. Let G(z),C(z), B(z) be as above. Then
G(z) = exp(C(x)), (2.2.3)
xC'(x) = zexp(B'(zC'(2))) . (2.2.4)

The best way to see these relations is through a proof, which we sketch below
(see [76] for the details).

Proof. (Sketch) The first relation (2.2.3) holds because a graph is a collection
of connected graphs.

The idea for (2.2.4) is to use the block-decomposition of a graph. The blocks
of a graph are either the maximal 2-connected subgraphs, the edges of the graph
that are not contained in such a subgraph, or isolated vertices. The blocks and
cut-vertices of a graph form a forest on two types of vertices: the blocks and
the cutvertices of the graph (see Figure 2.1). A block and a cutvertex are said
to be adjacent in the forest if the block contains the vertex.

We consider a rooted graph, which is a graph with one distinguished vertex
as a root. Since there are n choices to select the root, the numbers of labeled
rooted connected and 2-connected graphs on n vertices are nc, and nb,,, respec-
tively, and hence their exponential generating functions are 2C’(z) and xB’(z).
By using an auxiliary counting formula depending on the number of blocks in-
cident to a root and a counting formula which enumerates the possible ways
of composing a block and rooted connected graphs in such a way that these
rooted connected graphs are incident to non-root vertices of the block, one can
derive (2.2.4). O

These identities hold for arbitrary classes of labeled graphs, in particular,
labeled outerplanar graphs, labeled cubic planar graphs, and labeled planar
graphs. To complete the relation between exponential generating functions we
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AN

Figure 2.1: The block structure of a graph.

may further need counting formulas for 2-connected graphs and 3-connected
graphs. Having complete set of such identities we can determine the exact
numbers using Taylor series expansions at x = 0. To determine the asymptotic
number we think of the generating functions as complex valued functions and
apply singularity analysis presented in Section 2.4.

2.3 Enumeration of unlabeled planar structures

In the enumeration of unlabeled graphs cycle index sums introduced by Pdlya
and Burnside’s lemma play essential roles [76, 118]. To determine the number
of unlabeled graphs, the problem is reformulated, so that the answer can be
obtained by finding the number of orbits of the appropriate permutation group.
Burnside’s lemma can then be used to express the number of orbits in terms of
the number of objects fixed by permutations in the group. Pélya’s enumeration
theorem incorporates Burnside’s lemma in terms of an appropriate cycle index
and a polynomial called figure counting series. The results in this section are
based on the book by Harary and Palmer [76].

Cycle index of a permutation group. Let A be a group of permutations
on object set X = {1,--- ,n}. Note that each permutation o € A can be written
uniquely as a product of disjoint cycles. For each integer k from 1 to n let i, (o)
denote the number of cycles of length k in the disjoint cycle decomposition of
o. The cycle index Z (A) of A is a polynomial in the formal variables sq,- - , s,
defined by

1 z ik (0
Z(A) 1:Z(A;51,"',Sn) ::mznskk( )

oc€A k=1

For example the cycle index of all the symmetric group is

3" Z(5,) = exp Z% . (2.3.1)

n>0 k>1

For convenience we take Z(Sp) = 1.
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Burnside’s lemma. Before stating Burnside’s lemma let us recall facts on
a permutation group. Let A be a permutation group on object set X =
{1,2,---,n}. We say that z and y in X are similar if there is a permuta-
tion o € A such that ox = y. This is an equivalent relation and the equivalent
classes are called the orbits of A. For each x € X the set A(z) = {0 € Alox =z}
is called a stabilizer of x. If x and y in X are similar, then |A(z)| = |A(y)|.
Further for any element y of an orbit Y of A, |A| = |A(y)||Y].

Lemma 2.3.1 (Burnside’s lemma). The number N(A) of orbits of A satisfies

|A\ 2 i

occA

Consider the graph G in Figure 2.2 and denote by I'(G) its automorphism
group. Then I'(GQ) consists of the following four permutations

o1 (1)(2)(3)(4)(5)(6)
oy = (1)(23)(4)(5)(6)
o3 = (1)(2)(3)(4)(56)
o4 (1)(23)(4)(56),

and il (01) = 6, il (02) = 4, ’il (03) = 4, and ’il (0'4) = 2. Thus

1 ) 1
@) > in(0)=7(6+4+4+2) =4
ocel'(G)

Obviously there are four orbits of T'(G): {1}, {2,3},{4}, and {5, 6}.

Figure 2.2: A graph with two fixed points and four orbits.

We may sometimes restrict A to a subset Y of X, where Y is a union of orbits
of A. We denote by A|Y the set of permutations on Y obtained by restricting
those of A to Y. For each o € A, we denote by i; (0]Y") the number of elements
in Y fixed by . Then we obtain a restricted form of Burnside’s lemma saying
that the number N(A|Y") of orbits of A restricted to Y satisfies

N(AlY) = |A‘ > iy (alY). (2.3.2)

occA
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Pélya’s theorems. Let A be a permutation group on object set X = [n]
and let I be an identity group on a countable object set Y with at least two
elements. The power group I is the collection YX of functions from X into
Y as its object sets. The permutations of I consist of all ordered pairs (o, id)
of 0 € A and id € I. The image of any function f in YX under (o,id) is
given by (o,id)f(x) = f(ox) for each x € X, considering that I* acts on Y.
Let w: Y — {0,1,---,} be a weight function such that w=1(k) < oo for all
k=0,1,--- and let c; = |w™!(k)| be the number of figures with weight k. The
formal power seires in the variable x, defined by

c(z) = Z cpx”,

k>0

enumerates the elements of Y by weight and is called figure counting series.
The weight of a function in YX is defined by

w(f) = w(f(@)). (2.3.3)

reX

Thus functions in the same orbit of the power group I have the same weight.
Let Cx be the number of orbits of weight k. The formal power series C(z) =
Y k>0 Cra® is called the configuration counting series or the ordinary gener-
ating function with counting sequence {Cy}r. The following Pélya’s theorem
expresses C(x) in terms of Z(A) and c(x).

Theorem 2.3.1. The configuration counting series is obtained by replacing each
variable sy in Z(A) by the figure counting series c(x*), which we denote by

C(z) = Z(A, e(x)) == Z(A; e(x), e(2®), -+, e(a™)).

For illustration let us count the number of unlabeled pentagon whose vertices
are coloured either red or blue. Let X = {1,2,--- ,5} and Y = {red, blue}. Each
function f from X to Y corresponds to a labeled pentagon with coloured vertices
where the vertex labeled with z has colour f(x). Thus the pentagon represented
by f has f~!(red) vertices coloured red and f~!(blue) vertices coloured blue.
We now consider the identity group I acting on Y. To determine the number
of unlabeled pentagons whose vertices are coloured either red or blue we should
identify the pentagons when one differs from the other only by a rotation or re-
flection of the pentagon, that is, we should equip the pentagon with the dihedral
group of degree 5, denoted by Ds. To remove the labels we should identify two
labeled pentagons with coloured vertices whenever their corresponding functions
are in the same orbit of I”5. We define the weight function w : Y — {0,1} by
w(red) = 0 and w(blue) = 1. Then 1+ « is the figure counting series for Y and
a function of weight k represents a pentagon with 5 — k red vertices and k& blue
vertices. Hence the configuration counting series C(z) = >, 5, Cra" counts
the number of unlabeled pentagons, where the coefficient Cj, is the number of
unlabeled pentagons with k& blue vertices. From Theorem 2.3.1 we have that

C(z) = Z(Ds,1+ x).
But it is known that

s2 + 4s 5182
Z(D5): 110 5+ 122,
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and therefore the ordinary generating function for the counting sequence of the
number of unlabeled pentagon whose vertices are coloured either red or blue is

(1+2)°+4(1+2%)  (1+2)(1+2%)?
+
10 2
= 1+4z+22%+22° +2* +2°,

C(z) =Z(Ds,1+4x)

as we can see in Figure 2.3.
1 1 1 1
SQZ SQZ SQZ SQ |
4 3 4 3 4 3 4 3
1 1 1 1
SQ 2 SQ 2 SQ 2 5Q2
4 3 4 3 4 3 4 3

Figure 2.3: Pentagon coloured with two colours.

Next let us consider the composition of two permutation groups. Let A
and B be permutation groups with objects sets X = {z1,22, - ,2,} and
Y = {y1,¥2,- - ,ym}. The composition of A with B, denoted by A[B], has
object set X x Y and is defined as follows. For each o € A and each sequence
51,02, -+, B of k permutations in B, there is a permutation in A[B], denoted
by [o; 51,82, , Bk, such that for every ordered pair (z;,y,;) € X x Y,

(0581, B2, -+, Brl(xs,y5) = (oxi, By;).

The following Pélya’s composition theorem shows that the cycle index of the
composition of A with B is obtained by substituting the cycle index of B into
the cycle index of A.

Theorem 2.3.2. The cycle index Z(A[B]) of the composition of A with B is
the polynomial obtained from Z(A) by replacing each variable sy in Z(A) by
Z(B; Sk, Sok, S3k, * -+ ), which is denoted by Z(A)[Z(B)].

Cycle index for a graph. For a graph G on n vertices with the automor-
phism group I'(G), we write Z (G) := Z (I'(G)), and for a set of graphs C, we
write Z (C) for the cycle index sum for C defined by

Z(C):=Z(Cis1, -+ 8n) =Y Z(Gis1,-++ ,5n). (2.3.4)

GeC

As shown in [18], if C is the set of graphs of C equipped with distinct labels,

then
EOSED DI |

n>0 GeC, o€l'(G) k=1
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which coincides with (2.3.4) and shows the close relationship of cycle index sums
to exponential generating functions in labeled counting.

The composition of graphs corresponds to the composition of the associated
cycle indices. Consider an object set X = {1,---,n} and a permutation group
A on X. A composition of n graphs from C is a function f : X — C. Two
compositions f and g are similar, f ~ g, if there exists a permutation o € A
with foo =g.

Theorem 2.3.3. We write G for the set of equivalence classes of compositions
of n graphs from C (with respect to the equivalence relation ~). Then

ZG)=ZA)[Z(C):=Z(A;Z(C;s1,82,--+),Z(C;82,84,-), ), (2.3.5)
that is, Z(G) is obtained from Z(A) by replacing each s; by

Z(C;SiaSQia"'): ZZ(G75’L73217)
GecC

Hence, (2.3.5) makes it possible to derive the cycle index sum for a class
of graphs by decomposing the graphs into simpler structures with known cycle
index sum.

In many cases, such a decomposition is only possible when, for example, one
vertex is distinguished from the others in the graphs. A graph with a distin-
guished vertex is called a vertez-rooted graph. The automorphism group of a
vertex-rooted graph comnsists of all permutations of the group of the unrooted
graph that fix the root vertex. Hence, one can expect a close relation between
the cycle indices of unrooted graphs and the cycle indices of their rooted coun-
terparts. As shown in [76], if G is an unlabeled set of graphs and G is the set of
graphs in G rooted at a vertex, then

4 0
Z(G)=s1=—2(G). (2.3.6)
881
This relationship can be inverted to express the cycle index sum for the unrooted
graphs in terms of the cycle index sum for the rooted graphs,
S1

Z(g) = / " L 26+ 2(6) e (2.3.7)

Observe that permutations without fixed points are not counted by the cycle
indices of the rooted graphs, so that their cycle indices are added as a boundary
term to Z (G).

Ordinary generating functions. Once the cycle index sum Z(G) for a class
G of graphs of interest is known, the corresponding ordinary generating function
can be derived by replacing the formal variables s; in the cycle index sums by
z*. For we know that for a graph G

Z (G; x, %, - ) =zl (2.3.8)

Thus letting g, be the number of graphs G € G of given size n, the ordinary
generating function for G defined by

G(x) := Zgnm" = Z /Gl (2.3.9)

n<0 Geg
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is obtained from the cycle index sum by

G(z)=> Z(Gmza® ). (2.3.10)
Geg

More generally, for a group A and an ordinary generating function f(z) we
define

Z(A; f(2) = Z (4 f(x), f(2?), f(2?),- )

as the ordinary generating function obtained by substituting each s; in Z (A)
by f(z%),i> 1.

Once we have ordinary generating functions for graphs we can compute the
exact numbers using Taylor series expansions at x = 0 and the asymptotic
number using singularity analysis.

2.4 Singularity analysis

To determine the asymptotics of the coefficients of a generating function we
use singularity analysis. The results in this section are based on the book by
Flajolet and Sedgewick [63].

The fundamental observation is that the exponential growth of the coeffi-
cients of a generating function f(x) that is analytic at the origin is determined
by the radius of convergence R of the coefficients of f, i.e.,

[z"]f(z) = 0(n)R™", with  limsup |0(n)|"/" =1,

where [z"]f(x) denotes f, (resp. f,/n!) for the ordinary generating func-
tion f(z) = > ,~0 fnx™ (resp. the exponential generating function f(z) =
Y om0 fnz™/nl). Such a function f necessarily has a singularity on the bound-
ary of its disc of convergence |z| = R, which is called a dominant singularity.
If in addition f has non-negative Taylor coefficients, then the point z = R
is a dominant singularity of f (Pringsheim’s Theorem; see e.g., Theorem IV.3
in [63]).

It will turn out that a generating function f(z) determinded implicitly by
the equation of the type

f(x) = 2o (f(x)) (2.4.1)

for an appropriate generating function ¢(u) plays an important role.

To determine the exact coefficient of the generating function f(z) defined by
(2.4.1), we may apply the following Lagrange Inversion Theorem (see Appendix
A in [63)).

Theorem 2.4.1. The coefficients of all the powers of f(z) satisfy

2" @) = S M), (242)

for any positive integer k.
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Dominant singularity and asymptotics. A closer look at the type of the
dominant singularity, for example, the order of the pole, enables us to compute
subexponential factors as well. The following lemma describes the singular
expansion for a common case [63, Thm. VI.1].

Lemma 2.4.2. Let f(x) = (1—x) ° with o ¢ {0,—1,-2,...}. Then the
coefficients [x™]f(x) have a full asymptotic development in descending powers

of n,
[2"] f(z) = (n o= 1) ~ ;la(;) <1 + kz::l ekn(:)>

n

where T (o) is the Gamma-Function, T () := [J* e~'t"~'dt where o is a com-
plex number with o ¢ {0,—1,—2,...}, and ey (o) is a polynomial in o of degree
2k.

Due to the rescaling rule
[@")(1 = /20)"/2 = a5 "["](1 — 2)'/2, (2.4.3)

we can directly apply Lemma 2.4.2, once we have determined the singular ex-
pansion of a generating function near the dominant singularity.

To determine the asymptotic estimate of the coefficients of the generating
function f(x) defined by (2.4.1) we can apply the following lemma, which is a
combination of Theorem IV.3, Theorem VI.1, Proposition VI.1, and Theorem
VL4 in [63]. A generating function ¢ is called periodic, if ¢(u) = u¢h(u?) for
some power series h and some integer d > 2, and aperiodic otherwise.

Lemma 2.4.1. Let ¢(u) be analytic at the origin with non-negative Taylor coef-
ficients satisfying $(0) # 0 and aperiodic, and let v be its radius of convergence.
Then the functional inverse of ¥(u) = u/P(u), say f(x), exists and is analytic
at the origin. Moreover, if there exists ug € (0,7) such that ¢¥'(ug) = 0 and
" (ug) # 0, then f(x) has a dominant singularity at xo = P(ug) = uo/P(ug)
and its coefficients satisfy

[z"]f(z) = (1 + O(nfl))\/% ;%5 n=3 2, (2.4.4)

Proof. (Sketch) The Taylor expansion of = 1 (u) at u = uy (where ¥’ (ug) = 0)
is of the form

1
"/}(u) = w(uo) + 51/)//(160)(11, — u0)2 4o
which implies a locally quadratic dependency between x and u:

2 2
2
U—ug)* ~——(r—x9) = ————(x0 — ).
( ) w//(uo)( ) w//(uo)( )
Since ¢(u) is analytic at the origin with non-negative Taylor coefficients sat-
isfying ¢(0) # 0, f(x) has non-negative Taylor coefficients, and hence it is in
particular increasing along the positive real axis. Therefore we obtain

x) — f(xg) =u —ug ~ — 7Lx7x1/2:7
f(z) = f(zo) 0 z/},,(uo)(o )

2¢(uo)

—x/z0)"/2.
(ug) )

(2.4.5)
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Lemma 2.4.2 implies that

n—3/2
@)1 =)' = (1+0ln™)) g = (1 + O(nfl))%ﬁn*/? (2.4.6)

Using (2.4.5), (2.4.6), and the rescaling rule (2.4.3), we get (2.4.4). O

In some of our calculations, it will appear that a generating function f(x)
is given only implicitly by an equation H(z, f(x)) = 0, for a bivariate function
H(z,y). Theorem VIL.3 in [63] describes how to derive a full singular expansion
of f(z) in this case. We state it here in a slightly modified version.

Theorem 2.4.3. Let H (z,y) := an hnma™y™ be a bivariate function that
is analytic in a complex domain |z| < R, |y| < S and satisfies H(0,0) = 0,
S%H (0,0) = —1, and whose coefficients hy, satisfy the following positivity
conditions: They are nonnegative except for hg1 = —1 (because B%H (0,0) =
—1) and hy, > 0 for at least one pair (m,n) with n > 2. Assume that there
are two numbers r € (0, R) and s € (0,S) such that

0

H (r,s) =0, a—yH (r,s) =0, (2.4.7)

%H (r,s) # 0 and (%H(r,s) # 0. Assume further that H (z,Y(z)) = 0
admits a solution Y (x) that is analytic at 0, has non-negative coefficients, and

is aperiodic. Then r is the unique dominant singularity of Y (x) and Y (x)
converges at x = r, where it has the singular expansion

Y(z)= s—i—iZZlYi (1 _ %)im

27'%1‘1(7',8)

2
#H(T’,S)

™Y (2) = —N%r*” (1 +0 (;)) .

The formulas that express the coefficients Y; in terms of partial derivatives
of H (x,y) at (r,s) can be found in [117].

with Y, = — % 0 and computable constants Yo,Y3,---. Hence,

Asymptotic properties of random structures. When a parameter & of
a combinatorial structure is studied, the generating function f (x) has to be
extended to a bivariate generating function f(z,y) = >, fo,m2"y™ where
the second variable y marks the parameter £&. We can determine the asymptotic
distribution of ¢ from f (z,y) by varying y in some neighbourhood of 1. The
following theorem follows from the so-called quasi-powers theorem [63, Thm.
IX.7].

Theorem 2.4.4. Let f(x,y) be a bivariate generating function of a family of
objects F, where the power in y corresponds to a parameter & on F, i.e.,

[z"y™ ) f (2, y) = {f € F = |fl =n,6(f) =m}].
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Assume that, in a fized complex neighbourhood of y =1, f (x,y) has a singular
expansion of the form

N
P =¥ e (1- 255) (2.48)

k>0 o (y)

where g (y) is the dominant singularity of x — f (x,y). Furthermore, assume
that there is an odd kg € N such that for all y in the neighbourhood of 1,
o (W) £ 0 and fir (y) =0 for 0 < k < ko odd. Assume that xo (y) and fr, (y)
are analytic at y =1, and that xq (y) satisfies the variance condition,

2 (1) (1) + ah (1) 20 (1) — 2 (1)° # 0.

Let X,, be the restriction of & onto all objects in F of size n. Under these condi-
tions, the distribution of X, is asymptotically Gaussian with mean E(X,,) ~ un
and variance Var(X,,) ~ on, where

2.5 Uniform sampling

There are several fields of applications of efficient algorithms that sample ran-
dom combinatorial structures. We can use such a generation procedure as an
experimental tool to investigate properties of combinatorial structures that hold
almost always. It can also be used to produce test instances for other algorithms
on these structures. We can then measure the average running time of these
algorithms on random instances.

In this thesis we will focus on the generation of random planar structures
according to their uniform distribution, i.e., for a planar structure G each object
G € G of size n is drawn with probability Pr(G) = g%’ where g, is the number
of all the objects in G of size n.

The well known techniques for uniform sampling are Markov chain Monte
Carlo method, Boltzmann sampler and the recursive method. All the uniform
sampling algorithms for planar structures presented in this thesis use recursive
method. Nevertheless we first discuss briefly Markov chain Monte Carlo method
and Boltzmann sampler.

Markov chain Monte Carlo method. A Markov chain defined on combi-
natorial objects gives a Monte Carlo method of estimating the size of the set
or generating a random element according to a given probability distribution.
Its efficiency depends on how fast it converges to its stationary distribution,
which is called mixzing time. Several techniques based on spectral properties,
group representations, conductance and couplings are developed to obtain the
upper bound of a mixing time (see [43, 52, 53, 56, 84, 109] and references
therein). They have been successfully applied for many applications, such as
card shuffling [3, 52], approximate volume estimations [57, 89], random genera-
tions of spanning trees [2, 114], matching [132], Hamiltonian cycles and colour-
ings [56, 84].
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Boltzmann sampler. Boltzmann sampler introduced by Duchon, Flajolet,
Louchard, and Schaeffer [55], is a uniform sampler that fits well with exponential
(resp. ordinary) generating functions G(x) = >, 5o gn2"/n! (resp. G(z) =

> n>0gn") for a labeled (resp. unlabeled) class of graphs G (resp. G). It
draws each object G,, € G (resp. G, € é}v) of size n with probability
z" "

Pr(G,) = m, resp. Pr(én) = é(x)’

for a fixed real value x within the radius p of convergence of G(z) (resp. G(z)).
To evaluate the probabilities the analytic expressions for generating functions
are essential. A random object generated by a Boltzmann sampler has a fluc-
tuating size, but objects with the same size are generated with the same prob-
ability, whereas other uniform samplers generate objects of a fixed size. Once a
Boltzmann sampler can be derived for any fixed real value z with 0 < x < p, we
can tune the real parameter x so that given a target-size n and a tolerance ratio
¢ > 0, the random generator outputs objects of size in [n(1 —€),n(1 + ¢)] with
high probability. If the coefficients g, of G(z) have the asymptotic behaviour
gn ~ cp~"n~3/2 for some constant ¢, then & = p is a good choice. This sampler
outputs objects of G of size in [n(1 — ¢€),n(1 + ¢)], with uniform distribution
on each size k € [n(1 — ¢),n(1 + ¢)], and with average complexity bounded
by cn/e for some constant c¢. Hence the complexity is linear in the size, once
the tolerance ratio is fixed. If an exact size is required, the rejection process
yields an uniform sampler for objects of size n with quadratic expected time. In
summary a Boltzmann sampler generates an object with an approximate size in
linear time and a fixed size in quadratic time.

Recursive method. The recursive method, which was introduced by Nijen-
huis and Wilf [108] and further developed by Flajolet, Zimmerman, and Van
Cutsem [64], provides a powerful technique for sampling procedure for any class
of graphs that admits a recursive decomposition. In general the graphs are
decomposed uniquely along their connectivity structure [141], producing a de-
composition tree. Along the decomposition we derive recursive formulas. As a
reverse procedure of decomposition a uniform sampling algorithm is obtained,
where each generation procedure branches into subroutines with the right prob-
abilities evaluated using the counting sequences involved in recursive counting
formulas. This is illustrated in Section 4.4, particularly in Figure 4.2.

One advantage of this approach is that the sampled objects via this method
are exactly uniformly distributed, while those via the Markov chain Montel Carlo
method are approzrimately uniformly distributed. Second the counting formulas
are interesting in their own right. Finally, the running time for the generation
improves considerably if one allows precomputation. However, the huge pre-
computation times may be involved when we deal with a class of graphs which
does not have simple decomposition procedure, in particular unlabeled graph
classes since in this case we should decompose the graphs along the symmetry
as well as the connectivity.



Chapter 3

Random Graphs

In this chapter we recall facts on classical random graphs, such as evolution, the
phase transition, planarity, and connectedness (Section 3.1). Further we discuss
several random graph processes with degree restrictions (Section 3.2). We also
present basic inequalities and facts that we will need for Chapters 12 and 13,
such as Chernoff bounds, the convergence of characteristic functions, Wormald’s
differential equation method, and multi-type branching processes (Section 3.4).

3.1 Classical random graph models

Random graphs were first introduced by Erdés and Rényi [59, 60]. Classical
models include a uniform random graph, a binomial random graph, and a ran-
dom graph process (see e.g., [33, 82]).

Let n,m, M be positive integers satisfying 0 < m, M < (Z), and p a real
number satisfying 0 < p < 1.

A uniform random graph G(n,m) is a probability space over the set of all
labeled graphs G on vertex set [n] := {1,...,n} with m edges determined by

Pr(G(n,m) = G) = ((g)) 71.

m

The parameter m is usually a function m = m(n) of n.
A binomial random graph G(n,p) is a probability space over the set of all
labeled graphs G on vertex set [n] determined by

Pr(G(n,p) = G) = p (1 —p)(2)=<e

where e denotes the number of edges in G. It can be viewed that each of the
pairs (2) of vertices is adjacent independently with probability p. The edge
probability p is taken not only as a constant but also as a function p = p(n) of
n.

Two models are asymptotically equivalent when the number of edges M of
G(n,m) is about the same as the expected number of edges of G(n, p), namely,
m o~ (g) p. It is often the case that a binomial random graph is easy to handle

since the edge occurrences are independent from each other.

31
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A random graph process (Gar) o<, <(2) is an algorithmic version of the uni-

2
form random graph model G(n, M), which can be seen as a stochastic process,
or more precisely, a Markov chain, whose state space is the set of all graphs on n
vertices: The initial state Gy is just an empty graph. Further, Gp;41 is obtained
from Gjp; by adding one edge chosen uniformly at random among the (g) - M
possible edges not present in Gy;. Then G(n, M) occurs as the M-th state Gy
of the Markov chain. Therefore, we can think of G(n, M) as a “living organism”
that evolves over time where the time parameter is 0 < M < (}). This dynam-
ical viewpoint of the random graph process makes it natural to study how the
structural properties change as the graph evolves from empty to full.

Related to a binomial random graph G(n,p), there is a continuous time
random graph process (G(n,p))o<p<1, where each potential edge is equipped
with a random variable, called a birthtime, which is uniformly distributed over
the interval [0, 1], and the edges appeared in G(n, p) are those whose birthtime is
at most p. However, in the thesis we will only consider random graphs processes

of type (gM)MZ().

Evolution. At the beginning of the random graph process the picture of evo-
lution is quite simple: until M < n a.a.s. G(n, M) is a forest which contains
copies of all trees of order o(logn). But at M = O(n) the evolution changes in
a quite interesting way. Let M = ¢n/2 for a positive constant. Until ¢ < 1 a.a.s.
G(n, M) still contains only trees and unicyclic components of order O(logn),
and the order of components increases smoothly as new edges are added. But
at some point the largest components become so large that a new edge might
connect two of them, resulting in changing the order of a new component signifi-
cantly. This speeds up connecting two of such new components of similar order,
and merging all the largest one into a unique largest component, called a giant
component. In fact the giant component emerges at M = n/2 + O(n?/3), called
the critical phase. When M — n/2 < —n?/3, called the subcritical phase, a.a.s.
G(n, M) has no component larger than O(logn) but when M — n/2 > n?/3,
called the supercritical phase, the giant component of G(n, M) is of order O(n).

As the random graph G(n, M) evolves with more edges, the giant component
grows by being connected by other components, from larger ones to smaller ones.
When M = % (logn+0O(1)), at the moment when the last isolated vertex disap-
pears, the graph becomes connected. At the same time a perfect matching can
be found. As the random graph further evolves with more edges, the minimum
degree and connectivity increase. When M = 4 (logn+ (k—1)loglogn+0O(1)),
for fixed k > 2, the last vertex of degree k — 1 disappears and at the the same
time a.a.s. G(n, M) becomes k-connected. Especially, when G(n, M) becomes
2-connected, it has a Hamiltonian cycle and furthermore it contains cycles of all
lengths. As a graph G(n, M) becomes denser and denser, its diameter decreases
and the largest complete subgraph grows and finally G(n, M) becomes complete
when M reaches (7).

Phase transition. FErdés and Rényi [59, 60] determined the period of the
random graph evolution when the order of the largest component of G(n, M)
rapidly grows from ©(logn) to ©(n?/3) and then to ©(n).

Theorem 3.1.1. Let M = cn/2.
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(i) If 0 < ¢ < 1, then the largest component of G(n, M) has O(logn) vertices
and all components are a.a.s. isolated trees or unicycles.

(i) If ¢ = 1, then the largest component has ©(n?/3) vertices.

(iii) If ¢ > 1, then there is a giant component on an + o(n) vertices where
0 < a <1 is the unique solution of the equation

e =1—q,
and all other components are of order O(logn) and are still trees and
unicycles.

Bollobés [35], Luczak [96], Luczak, Pittel, and Wierman [98], Janson, Knuth,
Luczak, and Pittel [81], and Janson [80] found that the giant component emerges
at M =n/2 + O(n*/?), and described very precisely the overall features of the
phase transition of the random graph at the critical phase. In order to describe
the internal structure of the graphs we measure the difference, called excess,
between the number of edges and the number of vertices. An isolated tree has
an excess —1 and a unicyclic component has an excess 0. All other component,
said to be complex, have more edges than vertices, in other words, they contain
at least two cycles.

Theorem 3.1.2. Let M =n/2 — s, s = s(n) — oco.

(i) The probability that G(n, M) contains a complex component is at least
%. It implies that for s > n?/® a.a.s. G(n,M) contains no complex
component and thus it is planar.

(ii) For n?/3 <« s < n and a fized constant r a.a.s. the r-th largest components
of G(n, M) are all trees of order (1/2 + 0(1))2—5 log 2—32

Theorem 3.1.3. Let M =n/2+ s, s = s(n) — oo.

(i) Forn?/® < s < n and a fived constant r a.a.s. the r-th largest component
among all trees and unicyclic components of G(n, M) is a tree of order

2 3
(1/2 4+ 0(1)) 25 log 5.
(ii) For s> n?/3 a.a.s. G(n, M) contains exactly one complex component.

(iii) For n?/® < s < n a.a.s. the largest component of G(n, M) is of order
(44 0(1))s and has (16/3 + o(1))s® /n? excess.

Theorem 3.1.3 (i) says that for n?/® < s < n the evolution of the graph
G(n,n/2+s), which is obtained from G(n,n/2+s) by deleting all vertices of the
largest component, is quite the same as that of G(n,n/2—s) in the reverse order
in the sense of the order of components. As the random graph evolves the larger
components which have appeared later in the subcritical phase are merged into
the giant component faster than the smaller ones which have appeared earlier
in the subcritical phase. More precisely speaking, for n?/3 < s < n the number
of vertices and the number of edges in the giant component of G(n,n/2 + s)
grow roughly four times as its time. Thus for n’ =n—(4+0(1))s = (14+0(1))n
and M’ =n/2+s—(4+0(1))s =n'/2—(14+0(1))s, G(n', M') behaves roughly
the same as G(n, M), which is called the symmetry rule.
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Theorem 3.1.3 (ii) and Theorem 3.1.3 (iii) say that in the supercritical phase
the giant component is the only complex component and the total number of
excess of complex components is a.a.s. (16/3 + 0(1))s®/n?, which again implies
that the number of complex components is bounded in probability and all are
of order ©(n?/3). Janson, Knuth, Fuczak, and Pittel [81] showed that the prob-
ability that G(n, M) has never more than one complex component throughout
its evolution tends to 5m/18 ~ 0.8727 as n — oc.

Planarity. Until the subcritical phase M = n/2—s, s > n?/? a.a.s. G(n, M)
contains no complex component and so it is planar. In the critical phase a
topological copy of K33 appears and thus G(n, M) becomes non-planar. The
following is proven by Erdés and Rényi [60] and later by FLuczak, Pittel, and
Wierman [98], and Janson, Knuth, Luczak, and Pittel [81].

Theorem 3.1.4. If M = n/2 + ¢,n*/3, then

1 if ¢, — —00
lim Pr(G(n, M) is planar ) = < p(c) if e, — ¢
n—oo

0 if ¢, — 00,

where 0 < p(c) < 1 and in particular

0.987074 < p(0) < 0.999771.

Connectedness As the random graph further evolves with more edges, the
number of vertices, which are not in the giant component, decreases exponen-
tially in such a way that the components are swallowed up by the giant compo-
nent. Erdés and Rényi [61], and Bollobas and Thomason [37, 36] proved that
when M = n(logn + ¢,)/2 with ¢, — oo, a.a.s. G(n, M) is connected. Indeed,
at this time the last isolated vertex vanishes and the graph contains a perfect
matching.

Theorem 3.1.5. If M =n(logn + ¢,)/2, then

0 if cp — —00
lim Pr(G(n, M) is connected) =< 1—e=¢ " ifec, —c
1 if ¢, — 00.

Bender, Canfield, and McKay [17] computed the asymptotic probability
that G(n, M) is connected for any ratio M/n using enumerative methods, and
Behrisch, Coja-Oghlan and Kang [11, 12] for M/n = 14+Q(1) using probabilistic
approaches.

3.2 Random graphs with degree constraints
Among well-studied random graph models with degree constraints are a uni-

formly distributed random regular graph and a uniformly distributed random
graph with a given degree sequence.
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The random r-regular graph G() (M) is chosen uniformly at random among
all r-regular graphs with vertex set [n], where we assume that rn is even. In
fact, the structure of G(") (M) differs significantly from G(n, M), M = rn/2. For
instance, a.a.s. G (M) is connected if r > 3, while G(n, M) remains discon-
nected until the average degree 2M /n exceeds (1 — o(1)) logn (Theorem 3.1.5).
Furthermore, G(T)(M ) provides an example of a sparse graph with excellent
expansion properties. See [147] for more details on G(")(M).

The random graph with a given degree sequence is defined as follows. For
a given integer valued sequence D = {dy(n),d1(n),...} satisfying d;(n) = 0 for
i >mn,and ), ,di(n) =n, called the asymptotic degree sequence, let D,, be the
degree sequence {a1,as,...,a,}, where a; > a1 forevery j =1,...,n—1, and
[{jla; = i}| = di(n). The value d;(n) denotes the number of vertices of degree ¢
in a graph of order n. Let Q(D,,) be the set of graphs on n vertices with degree
sequence D,,, and let G(D) be a random graph chosen from the set Q(D,,)
uniformly at random. For i > 0, let A\;(n) = d;(n)/n. Furthermore, D is said to
be well-behaved if D is such that (i) Q(D,,) # 0 for all n > 1, (ii) A\;(n) converges
to a constant A as n — oo for every ¢ > 0, and (iii) for a polynomialf (i) in ¢
with degree at most 3, the sequence f(i)\;(n) tends uniformly to f(i)Af, and
the sum > ;. f(¢)Ai(n) approaches a limit uniformly as n — oco. Consider the
function Q(D) defined by

QD) = (i — 2)\;.

i>1

Molloy and Reed [102, 103] showed that if D is well-behaved, then the phase
transition occurs when Q(D) = 0. If Q(D) < 0, then a.a.s. G(D) consists of
many small components, whereas if Q(D) > 0, then there is a.a.s. a unique
component of order ©(n), while all other components are small.

Kang and Seierstad [87] further studied how the order of the largest com-
ponent changes when Q(D) = 0. Let 7, be the solution of @, (7,) = 0 where
Qn(z) = Y ;5 i(i — 2)A\i(n)z’ is a generating function in variable . If D is
well-behaved and d;(n) = 0 whenever i > n'/4~¢ for some £ > 0, they showed
that if (1 — 7,,)n*/3 — —oo, then a.a.s. all components in G(D) are of order
o(n?/3), and that there is a constant ¢ such that if (1 — 7,,)n/3 > clogn, then
a.a.s. G(D) has a single component of order > n?/3, while all other components
are of order o(n?/?).

Further Luczak [97] and Chung and Lu [45] studied the component structure
of a random graph with a given degree sequence, and Newman, Strogatz, and
Watts [107] the phase transition using generating functions.

3.3 Random graph processes with degree con-
straints.

There is no obvious way to define a graph process such that adding a single
or a few edges in each step we could achieve a uniformly distributed random
regular graph or a uniformly distributed random graph with a given degree
sequence, as a final graph or at some point. There are, however, several random
graph processes relevant to them, though a graph generated by such a process
is usually not uniformly distributed.
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The d-process (G*(M))o<nri<|dn/2) is defined as follows. The initial state
G4(0) is an empty graph with vertex set [n], and G¢(M + 1) is obtained from
G?(M) by adding an edge e chosen uniformly at random among all edges
e ¢ GYM) such that the graph GY(M) + e has maximum degree at most
d. If there is no such edge e, then G¢(M + 1) = G4(M). Ruciniski and
Wormald [125, 124] showed that a.a.s. the final state G4(dn/2) of the process is
a d-regular graph and is connected when d > 3, provided that dn is even. Ad-
ditionally, Greenhill, Rucinski, and Wormald [74] investigated a generalization
of this process to hypergraphs.

In the star d-process suggested by Robalewska [121] several edges may be
added at each step. Starting with an empty graph G¢(0) on n vertices, we obtain
G4(M +1) from G¢(M) by first choosing a random vertex v of minimum degree
d, and then connecting v with d— 9§ other vertices of degree < d chosen uniformly
at random. If there are less than d—¢ such vertices left, the process stops, and we
let G¢ be the final graph of the process. Robalewska and Wormald [122] proved
that a.a.s. G is d-regular. Furthermore, Greenhill, Rucinski, and Wormald [73]
showed that G¢ is connected a.a.s. if d > 3. Moreover, they proved that a.a.s.
G? is d-connected if d > dy for a certain constant dy > 0.

A different kind of random graph processes with degree restriction is the
minimum degree multigraph process, in which the minimum degree increases
quickly. The M-th state Guin (M) of this process has precisely M edges, and
Gumin(M + 1) is obtained from Guyin(M) by connecting a random vertex v of
minimum degree with a further vertex w # v chosen uniformly at random from
[n] \ {v}. Note that the process may produce multiple edges, and that the
maximum degree of Guin (M) is not restricted.

In Chapter 12 (see also [86, 88]) we show that if M = ¢n then a.a.s. Gpin (M)
becomes connected as soon as the minimum degree reaches three, which happens
at t ~ hg = 1.7316. Moreover, for t # ho = 1.2197 the probability that G, (M)
is connected tends to a certain function p(t) as n — oo. The function p(t) is
continuous for all ¢ # hsy such that p(t) = 0 for t < hg, p(t) = 1 for t > hs, and
0 < p(t) < 1fort € (hg,hs). Furthermore, we prove that there is a constant
her = 0.8607 such that for M = tn, a.a.s. Guyin (M) consists of small components
on O(logn) vertices if ¢ < h¢r, whereas it consists of one giant component on
O(n) vertices and small components on O(logn) vertices if ¢ > he,.

Jaworski and FLuczak [83] considered a directed version (B(M )o<M<n(n—1)
of the minimum degree process. They proved that the multigraph D(M) ob-
tained from B(M ) by “forgetting” the directions of the edges is connected a.a.s.
it M > (2—o0(1))n. Furthermore, if M = (1 +¢)n for a constant ¢ > 0, then the
probability that D(M) is connected lies strictly between 0 and 1. In addition,
Jaworski and Fuczak considered the distribution of the largest component of
D(M). If M = (1+ o(1))n, then the number of vertices outside the largest
component has a Gamma distribution. Moreover, for M = (1 + ¢)n with ¢ > 0
fixed all components of D(M) except for the largest one are unicyclic, and the
limiting distribution of the number of vertices outside the largest component is
known precisely.

In Chapter 13 ([46]) we study the min-min random graph process (Gar)m>o0
that “interpolates” between the random regular graphs G"(M), r > 1. The
process starts with an empty graph Gy on n vertices, where n is even. Fur-
thermore, in each step Gjr41 is obtained from Gj; by first choosing a pair
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{v,w} of two non-adjacent distinct vertices of Gps such that both v,w are of
minimum degree uniformly at random among all such pairs, and then adding
the edge {v,w} to Gjs to obtain Gpr4q (if it impossible to continue this way,
which happens with probability tending to zero as n — oo, we restart the pro-
cess from the empty graph). Letting M = (1 + t)n, we show that a.a.s. Gy
is connected if ¢ > 1/2 and is disconnected if ¢ < 0, and that the probability
that Gy is connected converges to 2 v/t —t2 exp((2t — 1)?/2) if 1 <t < 1/2.
Furthermore, we prove that for a constant ¢ satisfying 1 < ¢ < 1/2 and for
a positive integer [ the order of the giant component is n — 2] with probabil-
ity tending to 2exp(2t(t — 1))\/t(1 —t)/ml(1 —2t)?' as n — oo, and that for
t =1t(n) = o(1) and for any x > 0 it is at most n — z/t with probability tending
to (14 O(1/x)) (271'50)_1/2 exp(—2x) as n — o0.

3.4 Preliminaries

Notations and asymptotics. For a real number x and an integer r > 0 we
let

r—1

(m)r = H(-T—j)

J=0

If r = 0, then (z), = 1. Further, if v is even, then

v/2
(v—1)! Hz/72j+1

denotes the number of perfect matching of a complete graph on v vertices. We
define (v — 1)!! =1 for v = 0. Moreover, we need Stirling’s formula

m! = (1+0(1/m))V2rm(m/e)™ (m — o), (3.4.1)
which implies that

m!
(m—-DII = W

V2 (%)mﬁ (1+0(m™") (m — oo even). (3.4.2)

Finally, we let i denote the imaginary unit /—1.

Probability distributions. A discrete random variable X is said to have
Poisson distribution with mean A > 0 if
e M NF

Pr(X =k) = EEE for k=0,1,2,---

Its mean and variance are E(X) = A and Var(X) = A. Moreover, its character-

istic function is . .
E(exp(itY)) = exp(A(exp(it) — 1)). (3.4.3)

Let (X1m,---, Xmn)n>1 be a family of random variables such that each of
the random variables X ,,,..., X, are defined on the same probability space
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for each n. Let A1,..., A\ > 0. Then (X1 p,..., Xmn)n>1 is called a family of

asymptotically independent Poisson variables if for all kq,...,k, > 0 we have
m Ak)_]
HmPﬂ&m:kﬂM~Aan:hA:II4Lam—M) (3.4.4)
n—oo o kJ'
i=

To show that (3.4.4) holds, the following theorem is useful. Its proof can be
found, e.g., in [33, p. 26].

Theorem 3.4.1. Suppose that for any sequence (r1,...,rm) of integers > 0,

m

Jm = T | =T

j=1

Then (X1, s Xmn)n>1 @ a family of asymptotically independent Poisson
variables.

A discrete random variable X is said to have geometric distribution with
success probability 0 < p < 1 if

Pr(X =k)=p(1—p)*, for k=0,1,2---.

Its mean and variance are E(X) = (1 — p)/p and Var(X) = (1 — p)/p?.
A continuous random variable Y is said to have Gaussian distribution with
mean j and variance o2 if

b 2
1 _
Pr(a<Y <b) = / exp (— (@ 5) ) dx,
o 20

ovV2m

A continuous random variable Y is said to have Gamma distribution T'(k, 0)
with shape parameter k& and scale parameter 6 if

b 2 Lexp(—z
HWSY§®=/Fé%ﬂm

where T'(k) = [;° 4" exp(—y)dy. Its mean and variance are E(Y) = k6 and
Var(Y) = k6%, Moreover, its characteristic function is

dx,

E(exp(itY)) = (1 — ith)~*. (3.4.5)

Recall that a sequence (X,,)m>1 of real-valued random variables converges
to X in distribution if lim,,— . Pr[X,, <z] = Pr[X < z] for all  where the
function x — Pr[X < z] is continuous. In order to prove convergence in distri-
bution, we will use the following theorem (see [62, Vol. 2, p. 508]).

Theorem 3.4.2. The characteristic functions R — C, y — E(exp(iyX,)),
m > 1, converge pointwise to y — E(exp(iyX)) if and only if (Xn)m>1 con-
verges to X in distribution.

Furthermore, the following lemma is helpful to analyse characteristic func-
tions.
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Lemma 3.4.3. Let z € R\ {0}, and let 0 < 7,0 < 1. Suppose that X,Y are
random variables such that Pr{|X —Y| > o/|z|| < 7. Then

IE(exp(izX)) — E(exp(izY))| < 20 + 7.
Proof. If [X — Y| < o/|z|, then lexp(iz(X —Y)) — exp(alz]) = 1 < 20,

1] <
so that |exp(izX) — exp(izY)| < 20. Hence, |E(exp(izX)) — E(exp(izY))| <
20 +Pr[|X —Y| > 0/z] <20 + 7, as claimed. O

Basic inequalities. Recall Markov’s inequality and Chebyshev’s inequality:
for a non-negative random variable X and any A > 0

Prx >y < S0
Pr(X -E(X)[ > < VX

We will use the following Chernoff bounds on the tails of a binomially dis-
tributed random variable X with mean u (see [82, pages 26-28]). If s > 0,
then

Pr(X >pu+s) < exp(—wf)s/g)),

Pr(X <p—-s) < exp (—252) . (3.4.6)

We need also the following generalized Chernoff bound.

Lemma 3.4.4. Let X1, Xs, ... be non-negative, integral, mutually independent,
and identically distributed random variables with mean p, and let X =Y _| X;.
For any § > 0 and a > 0, there is a ¢ > 0 such that if r > clogn, then

Pr(X >r(p+9)] = o(n ), (3.4.7)
Pr(X <r(u—29)] = o(n™?).

Proof. For any u > 0,
Pr [X > r(,u + 5)] - Pr {euX > eur(qué)} < E [euX] efur(u+6)

(E [euXi] e—u(u+6))r

Let f(u) = E [e*X1] e7#(+9) and g(u) = E [e**i]. To prove (3.4.7), it is
sufficient to show that there is a w > 0 such that f(u) < 1. Since f(0) =1, we
only have to show that the derivative of f(u) at u = 0 is negative.

Differentiating g(u), we get

Z ke"* Pr(X; = k],

k>0

so we have ¢'(0) = >, o kPr[X; = k] = p, and f'(0) = ¢'(0) — g(0)(u + 0) =
w—p—0=—0<0.
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To prove (3.4.8), we fix an m, and define random variables Y; such that

Y, — m — Xi if Xz S m,
710 otherwise.

Let p/ =E[Y;]. For every n > 0 we can choose m large enough so that

Zk‘Pr kK> p—n.

Hence we can choose m so large that

> kPr[Y; = k]

k>0

Ms

t\
I
=

=
I

(m—k)Pr[X; = K]

=

[}

I
3
]
o
=

I
3
Ms

EPr(X; =kl <m—p+n.

>
Il

<]
>

=0

Let Y = Y7_, Y;, and note that Y > rm—X, and that m—p < p/ < p/+mn.
We set n = ¢/2. Then

PriX<r(u—9)] = Prirm—X>rm—r(u—79)]
Pr[Y > r(m — p+9)]

<
< Pr[Y = r(d +9/2)],

by choosing m sufficiently large. By (3.4.7) this probability can be well enough
bounded, by choosing a large c. O

Wormald’s differential equation method. Our argument in Chapter 12 is
based on the following general result proved by Wormald [145, 148]. We use a
version of Wormald’s theorem, which can be found in Theorem 5.1 in [145]. The
note following that theorem covers the case that k is a function of n satisfying
k = O(logn).

Lemma 3.4.5. Let {Gpltm>o be a random graph process whose states are
graphs on n wvertices. For k = 1,2,... ko, with kg = O(logn), let Xy (T) be
a random variable defined on the process up to time T, {G’M}ﬂzo, for each
T > 0. Suppose also that | X (T)| < Cn for some constant C, and that for some
functions m = m(n), and fi : R**! — R the following conditions (i), (ii) and
(iii) hold.

(i) There is a constant C’' such that

< !
 Jax | Xp(T+1) - Xp(T)| < C

for all T < m.
(i) Fork=1,2,... ko,
E [Xk(T +1) = Xp(T) | {Grr}s—i]
= fe(T/n, X2(T)/m, ..., Xk, (T) /1) + 0(1)

uniformly over all T < m.
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(i) For each k = 1,2,... ko, the function fy is continuous and satisfies a
Lipschitz condition on D, where D is some bounded connected open set
containing the intersection of {(s,z1,...,2k,) : 8 > 0} with some neigh-

bourhood of {(0,z1,...,2k,) : Pr[Xk(0) = zxn,1 <k < ko] #0}.
Then,
(a) for (T,21,...,2%k,) € D, the system of differential equations

dzk
E:fk(S,Zh...,Zko), k:172,...7k0,

has a unique solution in D for zx : R — R passing through
2k(0) =2, k=1,2,... ko,
and which extends to points arbitrarily close to the boundary of D, and
(b) for each k=1,2,..., kg, a.a.s.
Xi(T) = nzi(T/n) + o(n)

uniformly for 0 < T < min{on,m}, where z,(T) is the solution in (a)
with 2, = X, (0)/n, and o = o(n) is the supremum of those s to which the
solution can be extended.

Multi-type branching process. In a multi-type branching process there is
a finite number of types of particles. A particle generates a number of new
particles according to a probability distribution which depends only on the type
of the particle. For a multi-type branching process with s types of particles,
let p(j1,...,js), for i = 1... s, be the probability that a particle of type i
produces j;s particles of type i’ for ¢/ =1,...,s. We let

FO (... xs) = Z PP, ... 7js)33313 ot
J1,3s 20
be the probability generating function associated with particles of type i for
t=1,...,s.
We let A = {a;;} be the s x s matrix where a;; is the expected number
of particles of type j generated from a single vertex of type i. A is called the
transition matriz of the branching process. Then the following holds.

Theorem 3.4.6. Assume that A is positive reqular and nonsingular, and let A\

be the largest eigenvalue of A. If Ay < 1, then (except in certain trivial cases)

the branching process dies out after a finite number of steps with probability one.

If \y > 1, then the branching process continues forever with positive probability.
Furthermore, in the latter case, the set of equations

y = f(l)(yla"',ys)
— f(
Ys = f (yla"'7ys)
has a unique solution satisfying 0 < y; < 1 fori = 1,...,s. Then y; is the

probability that a branching process starting with a single particle of type i dies
out after a finite number of steps.

For multi-type branching processes and relevant inhomogeneous random
graphs, see [8] and [38], respectively.
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Labeled Planar Structures
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Chapter 4

Labeled Forests

In this chapter we present the well-known results on forests based on [63, 76], to
illustrate the method that we will use for other planar structures. For labeled
forests and trees, see e.g., [1, 120, 134, 144].

In Section 4.1 we derive the exponential generating functions for labeled
forests and labeled trees. In Section 4.2 we determine the asymptotic numbers
of labeled forests and labeled trees, e.g., the asymptotic number of labeled trees
[n] := {1,2,--- ,n} is ¢ n=5/2 " n! for a suitable constant ¢ > 0 and the base
of the natural logarithm e = 2.71828. In Section 4.3 we compute the exact
numbers of labeled forests and labeled trees. In Section 4.4 we present how the
recursive method works. In particular, we derive a uniform sampling algorithm
for labeled trees running in O(n*) with space O(n®logn).

4.1 Exponential generating functions

To obtain a well-known relation between labeled forests and labeled trees it is
customary to consider labeled rooted forests and labeled rooted trees. A labeled
rooted tree is a labeled tree with one distinguished vertex called the root, and
a labeled rooted forest is a labeled forest, each of whose connected components
is a labeled rooted tree.

Let f(n) and t(n) denote the number of labeled forests and the number of
labeled trees on vertex set [n] for a nonnegative integer n and f(n),#(n) the
rooted counterparts. As a convention we set f(0) = £(0) = 1 and #(0) = £(0) =
0. Let

T n

F(z)=>" f(n)n—? and T(z)=» t(n)
n>0 n>0

x
n!

be the exponential generating functions of f(n) and t(n). And F(z) and T'(x)
are defined analogously.

Note that a labeled rooted forest is a non-ordered collection of labeled rooted
trees, and thus we get

Pa)=>" @) _ e (4.1.1)

k!

45
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On the other hand, f(n) and #(n) satisfy
in+1)=(n+1)f(n). (4.1.2)

To see this we consider a labeled rooted forest with vertex set [n]. We introduce
a new vertex and assign to it an arbitrary label from [n + 1], say ¢ with 1 <4 <
n+ 1. We relabel the given forest with the vertex set [n+ 1]\ {¢} preserving the
relative order of the original labels. We connect the new vertex ¢ with the rest
of the vertices to obtain a labeled rooted tree on [n 4 1]. Thus exactly (n + 1)
labeled rooted trees with vertex set [n+1] are constructed from a labeled rooted
forest with vertex set [n]. This construction can be reversed.
From (4.1.2) we can see that

N

Py =Y jm % =y ot et Tle) (4.13)

| |
>0 n! o n+1 n! x
Combining (4.1.1) and (4.1.3) we have
T(z) = zel@. (4.1.4)

4.2 Singularity analysis

Applying Lemma 2.4.1 to (4.1.4) with ¢(u) = ue™ and ¢(u) = e*, we see that
P (ug) = 0,9 (ug) # 0 at up = 1 and hence T'(x) has a dominant singularity at
2o = (ug) = e~ . Further the singular expansion of 7'(z) is of the square root

type

T(x)=14c¢1(1— :10/960)1/2 +O0((1 —z/x0)),

and its coefficients satisfy

" () ~ \/%n*/?en, (4.2.1)

which implies that

! 1
t(n) = ~ —=n""2e"nl, e =2.71828.
n 2m

Furthermore (4.1.3) implies that

ﬁ'(aj) = el+01(1—$/$0)1/2+O((1—x/x0))

~ eteci(1—x/z0)? +0O((1 — x/x0),
and thus we obtain the asymptotic number of labeled rooted forests on n vertices

(2" F(x) ~ _C pm32em,

Ver
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4.3 Exact number of labeled trees and forests

Taking ¢(u) = e* and f(z) = T'(x) in Lagrange Inversion Theorem 2.4.1 we
obtain

(2.4.2)

[o"]1 () [ ()"

un)® n
[unfl}eun — l[unfl] Z( kl) = T (431)

1
n
1
n

ko
V
o

which, together with Stirling’s formula (3.4.1), yields also (4.2.1). Further we
have that the number of labeled rooted trees and the number of labeled trees
on n vertices satisfy

t(n) = ——==n""2 (4.3.2)

the latter of which is known as Cayley’s formula. See [1] for four different proofs
of it.
Let f, (n) be the number of labeled rooted forests on n vertices consisting of
c labeled rooted trees and Fe.(z) =3, -, fc(n)fl—, be its exponential generating
function. Then -
. T(x)°
Fo(z) = L@

c!

Thus f.(n) can be obtained by Lagrange Inversion Theorem 2.4.1

ni g 1 nid c S le n—c n nn—c—l
"F(e) = Gl CE el = e
and thus
R R n! nn—c—l n o1
fe(n) =nl[z"]F.(x) = o= (0) cn . (4.3.3)

Further we have
- AN 433) ="\ et — <n - 1> e
n)= E c(n = E cn = E n .
f( ) p— f ( ) = <c) i C — 1

Since we may choose ¢ roots in ('CL) possible ways, the number of labeled rooted
forests on n vertices consisting of ¢ labeled rooted trees, where the vertices
{1,2,--- ,c} appear in different trees, can be obtained by (4.3.3) and it is

en™~¢~1, which is also known as Cayley’s formula.
Using the following identities
F(z) = eT(®)
n—2 z"
T(x) = Z Tty

we can obtain the first few terms of the number of trees and forests. Table 4.1
shows the exact numbers ¢, and f,, of labeled trees and labeled forests on n
vertices, up to n = 15 (see also [133, A000272, A001858]).
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n tn fn
1 1 1
2 1 2
3 3 7
4 16 38
5 125 291
6 1296 2932
7 16807 36961
8 262144 561948
9 4782969 10026505
10 100000000 205608536
11 2357947691 4767440679
12 61917364224 123373203208
13 1792160394037 3525630110107
14 56693912375296 110284283006640
15 1946195068359375 3748357699560961

Table 4.1: The exact numbers t,,, f, of labeled trees and forests on n vertices,
up ton = 15.

4.4 Recursive counting and uniform sampling

In this section we explain how we decompose labeled forests and labeled trees
recursively and obtain recursive counting formulas. We illustrate also how one
can use recursive counting formulas, in order to generate a random structure
uniformly at random.

As before, let f(n) and ¢(n) denote the number of forests and the number
of trees on vertex set [n] for a nonnegative integer n. Further let f.(n) be the
number of forests consisting of ¢ connected components. Of course, a connected
component in a forest is a tree and thus fi(n) = ¢(n). It is clear that a forest
consists of at least one tree but at most n trees. The formulas (2.2.1) and (2.2.2)

holds with g(n) = f(n), ge(n) = fe(n) and ¢(n) = t(n).

Figure 4.1: Pulling off the split subtree.

To count trees on vertex set [n] we let tg(n) be the number of trees where
the vertex 1 has degree d. It is clear that ty(n) =0ford=0o0rd > n > 1,
except that we define t1(1) = 1, and t(n) = 22;11 ta(n) for n > 2. Let T be a
tree on [n] for n > 2. If the vertex 1 of T has degree one, we split off the vertex
1 from T and obtain a remaining tree with n—1 vertices, hence ¢1(n) = t(n—1).
If the vertex 1 of T has degree d > 2, we decompose T' into two subtrees: One
is the subtree containing the vertex 2, which is called the split subtree and the
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other one is the rest of the tree together with the vertex 1, which is called the
root subtree (see Fig. 4.1). If the split subtree consists of i vertices, then there
are (7;:12) ways to select the vertex set of the split tree, since the vertex 2 is
already designated to the split tree and the vertex 1 to the root subtree. Thus

tatn) = S0 (D)@t (n — i) for d > 2, n > 2.

i—1
Overall we have
0 forn=20
t(n) = . (4.4.1)
gy ta(n) formn>1,

0 forn=0
1 ford=n=1

ta(n) = ora=n (4.4.2)
t(n—1) ford=1andn >2

S ()it g1 (n —i)  ford>2and n > 2.

Once the exact recursive counting formulas with appropriate parameters
are known, it is easy to derive a generation procedure. See Figure 4.2, where
Generate(n) corresponds to (4.4.1) and Generate(n,d) to (4.4.2).

Generate(n): returns random tree on [n].
if n = 0 then return ()

else
choose the degree d of vertex 1 with probability t4(n)/t(n)

return Generate(n,d)

Generate(n,d): returns tree on [n] with vertex 1 of degree d
if n =0 then return ()
ifn=1
if d =1 then return {1}

else return 0
else
if d =1 then let T = Generate(n—1);

relabel vertex j in T to j + 1;
return TU {1} U {(1,2)}

else
choose the size i of the split subtree with probability

(") t(i)ta—1(n—i)/ta(n)

let w; =2

choose random subset {ws,...,w;} C{3,...,n}
T, = Generate(7); relabel vertex j in Ty to w;
T, = Generate(n —i,d — 1)

return T3 UT, U {1} U {(1,w1)}

Figure 4.2: Generating labeled trees uniformly at random.

To compute the numbers t(n) and t4(n) efficiently, we store all of their
values in a table to avoid recomputation, which is a technique called dynamic
programming.
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The algorithm has to compute sums of a linear number of products for the
entries of a two-dimensional table. Since the number of labeled trees on n
vertices grows with n"~2 (See (4.3.2)), the entries of the table have to store
O(nlogn) many bits. Assuming an O(nlogn loglogn) multiplication algorithm
(see e.g., [44]), the number of computation steps needed to fill the quadratic
size table is therefore in O(n*), where O(-) denotes growth up to logarithmic
factors.

If we want to generate several random trees, we have to compute this table
only once, and it makes sense to analyse the computation of the table separately
as the precomputation step. The actual generation of a random tree can then
be done much faster: We have to make a linear number of random decisions,
each involving a random number with linearly many bits. This gives a quadratic
running time.

We obtain the deterministic polynomial time algorithm to generate a labeled
tree uniformly at random.

Theorem 4.4.1.  Labeled trees on n wvertices can be sampled uniformly at
random in deterministic time O(n*) with space O(n®logn). This can also be
done in deterministic time O(n?) if we apply a precomputation step.

To increase the efficiency of the algorithm one can use floating point numbers
instead of arbitrary precision integer arithmetic. Since the algorithm can base
its decisions on O(logn) bits in most cases, it might even be possible to get
an exact uniform generator if we use certified floating-point arithmetics, see
e.g., [47].



Chapter 5

Labeled Outerplanar
Graphs

A graph G is outerplanar, if there is an embedding of G in the plane that has a
face containing all the vertices of G. We will always draw this face as the outer
face.

Many computational problems hard in general cases become tractable for
outerplanar graphs [94, 110]. But still, their structure is rich enough so that
many computational tasks remain challenging when the input is restricted to
outerplanar graphs [32, 72]. Outerplanar graphs also attract increasing interest
in graph drawing [7, 20, 93].

Mitchell [100] gave a linear time algorithm to recognize outerplanar and max-
imal outerplanar graphs. A maximal outerplanar graph has a simple structure.
It can be seen as a triangulation of a convex polygon and its dual graph forms
a binary tree structure. Thus maximal outerplanar graphs can be counted by
the Catalan number, and can be efficiently generated [49, 58].

It is well known that two-connected outerplanar graphs can be seen as dis-
sections of a convex polygon: For a two-connected outerplanar graph with at
least three vertices has a unique Hamiltonian cycle [94] and can therefore be
embedded uniquely in the plane so that this Hamiltonian cycle lies on the outer
face. This unique embedding is thus a dissection of a convex polygon. It is also
well known that the number of dissections of a convex polygon can be counted
by the Schroder number [129, 133], also called the bracketing number. There
are, however, no such simple formulas known for general outerplanar graphs.

In this chapter we determine that the number of labeled outerplanar graphs
on n vertices is asymptotically ¢ n=%/2 4™ nl, for a suitable positive constant
c and v = 7.32098. We also study typical properties of a random outerplanar
graph chosen uniformly at random among all the labeled outerplanar graphs
on n vertices. We show that the isolated vertex conjecture (see [99]) is true
for a random outerplanar graph. The expected number of edges in a random
outerplanar graph is asymptotically 1.56n and the probability that a random
outerplanar graph is connected tends to 0.861 as n goes to co. Furthermore,
the chromatic number of a random outerplanar graph is three with probability
tending to one as n goes to co. Finally, we derive the first polynomial time algo-
rithm that samples a random outerplanar graph uniformly at random running

51
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in O(n*) and with space O(n®logn), using the recursive method.

The rest of the chapter is organized as follows: In Sections 5.1 and 5.2 we de-
rive the equations for generating functions for labeled outerplanar graphs with
various connectivity. We also derive the asymptotics by studying the singular-
ities of generating functions. In Section 5.3 we study the asymptotics of the
probability of a random outerplanar graph being connected and the number of
edges in a random outerplanar graph. In Section 5.4 we show how to decompose
labeled outerplanar graphs based on connectivity and derive recurve counting
formulas along the decomposition. Furthermore, we design a uniform sampling
algorithm to generate a random labeled outerplanar graph.

5.1 Exponential generating functions

Let gn,cn, and b, be the numbers of labeled outerplanar, connected outerpla-
nar, and two-connected outerplanar graphs on n vertices, respectively, and let
G(z),C(x), and B(x) be their exponential generating functions:

" " "
G(z) == Zgnﬁ, C(z) == chﬁ, B(x) := anﬁ.
n>0 ’ n>0 ' n=>0 ’
Then G(z),C(z), and B(z) satisfies Proposition 2.2.1 and the following.

Proposition 5.1.1. Let B(z) be as above. Then

—\/1 =

B'(x)

Proof. As we have seen in the introduction, the task of counting two-connected
outerplanar graphs coincides with the task of counting dissections of a convex
polygon. Let us assume that the vertices of the Hamiltonian cycle of a two-
connected outerplanar graph with n vertices are labeled in clockwise order, and
form a convex n-gon K. A two-connected outerplanar graph then corresponds
to a dissection of K. Let d,, denote the number of dissections of K and D(z) :=
Y n>0 dna™ be its ordinary generating function. Since for n > 2, a dissection of
K is an edge or a sequence of k (k > 2) dissections (along the face containing
an edge incident to the two smallest vertices) where k — 1 pairs of vertices are
identified, we get

z)* z)?
D(z) =2 + Z Lxl(c_)l =22+ x?(D)(x) .
k>2

The only meaningful solution of D(x) for this equation is

D(x):z(l+x—\/41—6x+:r2).

Since by, = d,, = 0 for n < 1, by = dy = 1 and b, = @51 d,, for n > 3, we get

D(z)/x+x 145z —+1—06x+ 22
2 B 8 '

B'(x) =
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So we are done.

On the other hand, we can derive the same result using the well-known fact
that the number of dissections of a convex n-gon equals the Schréoder number
Sn—1. Thus for n > 3, the number b,, of two-connected outerplanar graph on n

vertices is
—1)!
b, = 7 . ) Sn1, (5.1.2)

and by = by = 0,bp = 1. The numbers s,, satisfy the recursion: sy = 0,s7 =
so =1, and

Sn = ((6n—9)sp—1 — (n — 3)S$p—2)/n.

It is easy to see that the corresponding ordinary generating function S(x) =
Y om0 Snx™ satisfies

The meaningful solution for S(x) is

S(x) = 1(1+:Jc—\/1—6x+902) (5.1.3)

4
= x+22+323 +112* +452° + . ...

Therefore B (z) = (S(x)+x)/2, which, together with (5.1.3), implies (5.1.1). O

5.2 Asymptotics

In this section we present the result on the asymptotic number of labeled out-
erplanar, connected outerplanar, and two-connected outerplanar graphs. The
proof is based on a singularity analysis of the corresponding generating func-
tions.

Theorem 5.2.1. Let g,,c,, and b, be as above. Then

—5/2 . n
gn ~ Qo N /7 n!?

. =
cnwalnd/zfy"n!,

by ~ g n %2 §" nl,

where the constants v, 0, ag, a1 and ag have explicit descriptions by radicals and
can be computed efficiently with arbitrary precision. In particular, the first few
digits of v and 6 are v = 7.32098 and § = 5.828427.

The proof of Theorem 5.2.1 is based on singularity analysis (see Section 2.4).
The generating functions G(x),C(x) are related by the equations (2.2.3) and
(2.2.4), and B'(z) is defined by (5.1.1).

We will analyse the singularities of the generating functions, first for la-
beled two-connected outerplanar graphs, next for labeled connected outerplanar
graphs, and finally for labeled outerplanar graphs.
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Two-connected outerplanar graphs. We now perform the singularity anal-
ysis of the exponential generating function for labeled two-connected outerpla-
nar graphs. The radius of convergence of B(z) (5.1.1) is 3 — 21/2. Because
B(x) and B’(x) have the same radius of convergence, we obtain

[2"]B(x) = 0(n)é"

where § = 3 + 2v/2, and limsup|f(n)|'/" = 1. To determine 6(n) using
Lemma 2.4.1, we rewrite (5.1.1) as

where
—1+5u—+V1—4u+u?
olu) = —2+8u '

We observe that ¢(u) is analytic at the origin with non-negative Taylor
coefficients satisfying ¢(0) # 0, and its radius of convergence is 1/4. Because
¢d(u) —ug’(u) = 0 has a solution ug = (8 — 5[)/4 =0.232233 € (0,1/4), B'(x)
has a dominant singularity at 2o = ug/¢(ug) = 3 — 2v/2, and we get

[2"]B'(z) = (1 +O0(n™") m ¢,, n= 2"

=(1+0Mn1)azn 3/26”
where § := 07! = 5.828427 and ay = ﬁ b (up)/9" (up) = 0.025665, which
can be computed efficiently with arbitrary precision. Lemma 2.4.1 also yields

% = [.’En]B(l') = %[Ibn*l]B/(x) _ (1 + O(nil))agn*5/25" '

Connected outerplanar graphs. We apply the singularity analysis to the
exponential generating function for labeled connected outerplanar graphs, which
is defined by the implicit equation (2.2.4):

xC'(x) = zexp(B'(zC'(2))).
If we define F(z) := xC’(z), then it becomes
F(z) = zexp(B'(F(x))) -

It can be reformulated as
F(z) = 2@(F(z)),

®(u) := exp((1 + 5u — V1 —6u+u?)/8).

The function ®(u) satisfies the conditions in Lemma 2.4.1, and its radius of
convergence is 3 —21/2 = 0.171573. Note that ®(u) —u®d’(u) = 0 has a solution
up = 0.170765 € (0,3 — 2v/2). It follows that F(z) has a dominant singularity

at
r1 = u1/®(u1) = us exp((—1 — dug + /1 — 6uy +u?)/8) = 0.136593,

where
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and satisfies

F(z) ~ F(z1) + ap(l —z/z,)Y?. (5.2.1)
The constant ap = — _2\‘1,11,(,?;3) can be computed according to Lemma 2.4.1.

Clearly, F'(z) and C(z) have the same radius of convergence R = x;. Theo-
rem VI.6 in [63] states that the singular expansion of C(z) can be obtained from
F(z) through a term-by-term integration, and we obtain

C(z) ~ C(R) + ac(1 —z/R)>/? (5.2.2)

where ac = —2/3ap = 2/3 72;’,(,7(‘;3) To compute C(R) we integrate C'(z) =
Iy @dt by part and obtain

C(R) = uylog R — uy loguy +uy + B(uy) = 0.148886 .

From (5.2.1) and (2.4.2) we obtain

V(@) = (14 0 ) [,

( +O< )aln 3/2 n)

where v := z7 ' = 7.32098 and a; := \/% D (uy)/P"(uy) = 0.006976, which
can be computed with arbitrary precision and

& 2"C() = (14 O™ Y))ain 24",

n!

Outerplanar graphs. In this section we discuss general, i.e., not necessarily
connected labeled outerplanar graphs. By Proposition 2.2.1 the corresponding
exponential generating function is related to the exponential generating function
for labeled connected outerplanar graphs by (2.2.3):

G(z) = exp(C(x))

Clearly, both generating functions G(z) and C(z) have the same radius of con-
vergence R = y~!. Using the asymptotic expansion (5.2.2) of C(x) near the
singularity, we have the asymptotic expansion of G(z):

G(r) = exp(C(x)) = eXp(C(R)) exp(ac(l —z/R)3? +...)
= CON(C(R) + ac(1 —2/R)*? +...)'/il

>0
~ P (1 +ac(l-z/R)*?)

= OB 4 0SB (1 — z/R)3/2. (5.2.3)

Thus we get

% = [2"]G(z) = (1 + O(n™"))agn™ /24",

where o = a1e€® = 0.008095.
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5.3 Random outerplanar graphs

In this section we study typical properties of a random outerplanar graph G,,
that is chosen uniformly at random among all labeled outerplanar graphs on
n vertices. We determine the probability of a random outerplanar graph be-
ing connected, the chromatic number of a random outerplanar graph, and the
distribution of the number of edges in a random outerplanar graph.

5.3.1 Connectedness

First, we show that the isolated vertex conjecture is true for outerplanar graphs
(which was conjectured for planar graphs in [99]): Let X,, be the number of
isolated vertices in GG,,. Then

Gt 1\ %21
lim E(X,) = lim n*"— = lim (1 - > ~— =571

Next, we can show the following theorem on the asymptotic probability of
connectedness of G,:

Theorem 5.3.1. Let v be as in Theorem 5.2.1. Then

et < lim Pr(G, is connected ) < e /7,

n—oo

where e~! = 0.367879, and e~ /7 = 0.872325.

Proof. We can get a lower bound for the probability that a random outerplanar
graph is connected using the following fact from [99]. Let G be a non-empty
set of graphs such that (i) a graph G is in G if and only if each component of
G is in G, and (ii) for each graph G in G, and for u,v chosen from two distinct
components of G, the graph obtained from G by adding an edge connecting u
and v is also in G. Such a graph class is said to be addable. Outerplanar graphs
are an example of an addable class. Then for a graph G chosen uniformly at
random from the graphs with n vertices in G,

Pr(G is connected) > e~ = 0.367879 .

Some theorems in [99] were stated under the assumption of the isolated
vertex conjecture for planar graphs. A moment of thought shows that these
theorems hold for outerplanar graphs as well. In fact, most of the arguments
in [99] directly apply to outerplanar graphs. In particular, we can see that if
H is a fixed outerplanar graph, then G,, contains linearly many vertex disjoint
copies of H with probability tending to 1 as n goes to oo, and that

lim Pr(G, contains an isolated vertex) =1 —e™1/7

n—oo

which gives an upper bound of the probability that a random outerplanar graph
G, is connected:

lim Pr(G, is connected) < e~ /7 = 0.872325.

n—0o0
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Indeed we can say more about the connectivity probability using the asymp-
totic results in Theorem 5.2.1:

b n
lim Pr(G, is two-connected ) = lim — = lim @2 (5> =0,

n—oo n— 00 gn n— o0 0[0 ’y

lim Pr(G,, is two-connected |G, is connected) = lim —

n— oo n— oo Cn

= lim a2<5> =0.
n—oo a1 \7Y

In addition we can precisely compute the asymptotic probability that G, is
connected:

lim Pr(G,, is connected) = lim En 2 QL _ o=CR) = .861666 .

n— o0 n—oo gy Qo

Theorem 5.3.2. Fork =0,1 let GSZ“) denote a random graph chosen uniformly
at random among all the labeled k-connected outerplanar graphs on wvertices
1,...,n. Asn — oo,

Pr(G©) is connected) — e~ = (.861666,

whereas Pr(G%O) is 2-connected) — 0, and Pr(Gg) is 2-connected) — 0.

5.3.2 Number of edges

Let gn,m,cn,m and by, ,, be the numbers of labeled outerplanar, connected out-
erplanar, and two-connected outerplanar graphs on n vertices and m edges,
respectively, and let G(z,y), C(z,y) and B(z,y) be their exponential bivariate
generating functions, for example, G(x,y) :== 3", | < gnm@"y™ /nl.

For any bivariate function H(z,y) we denote the partial derivatives as fol-
lows.

OH oH 0 OH

Two-connected outerplanar graphs. Let K be a convex n-gon where the
vertices {1,,...,n} are labeled in clockwise order. Let d,, ., be the number of
dissections of K with m edges and D(z,y) := Zn’m>0 dp,mx™y™ be its ordinary
generating function. As we have seen in the proof of Proposition 5.1.1, for n > 2,
a dissection of K is either an edge or a sequence of k (k > 2) dissections along
the face containing the edge {1,2} where k — 1 pairs of vertices are identified.
Hence,

yD?

x—D’

D(z,y)*
D(z,y) :yx2+y2% =y2’ +
k>2

where the factor y marks the edge {1,2}. The only meaningful solution of
D(z,y) for this equation is

1+ yx — /1 —2(1 + 2y)yz + y2a2

Plew) =z 2T +)
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Since by ;m = dp,m = 0 for n <1, and by, = do, = 1 if m =1 and by, =
(n—1)!

d2,m = 0 otherwise, and since by, = ~—5—dn,m for n > 3, we get

By(z,y) = (D(z,y)/x + yx)/2
L+ (3 +2y)yz — /1 —2(1 + 2y)yzx + y222
4(1+4vy) )

(5.3.1)

This can be rewritten as

By (2, y) = 2¢(Bz(z,y),y)

where

—y+ 3y + 2y%)u — V2 — 2(1 + y)y?u + y?u?

Pl y) = 2141+ y)u

Since there is ug(y) > 0 within the radius of convergence satisfying

P(uo(y),y) — uo(y)duluo(y),y) =0,

B, (z,y) has a dominant singularity at xo = ug(y)/¢(uo(y),y). Theorem 2.4.3
implies that

" Ba(3) = 7)1+ O ) | LIy )

and it follows that

[y B ) = B 0) = 70+ O sy ()"

where Ozg(y) = \/%\/¢(u0(y)7y)/¢uu(u0(y)vy) and 042(1) = Q3.

Connected outerplanar graphs. Since the number of edges is an inherited
parameter, we also have a bivariate version of Proposition 2.2.1:

G(.’IJ, y) = eXp(C(l’, y)) (532)

Cy (377 y) = eXp(Bau (xcl ($, y)v Z/)) : (533)

Define v := F(z,y) := xCy(z,y), and combine Equation (5.3.3) and (5.3.1) as
follows.

u=x®(u,y)

14 (34 2y)yu — /1 —2(1 1 2 573
where ®(u,y) 2=exp< + (3 + 2y)yu i{1+y)( + 2y)yu + yu >

We can find u1(y) > 0 within the radius of convergence satisfying

Q(ui(y),y) — w1 (y)Pulur(y),y) =0.
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Moreover, F(x,y) has a dominant singularity at z1(y) = u1(y)/®(u1(y),y), and

"y ) = 70+ O ) Oz )

It follows

[y IC e, y) = ey () = [0+ O as(y)n eal) "

where a1(y) := 5= /@(w1(y),y)/Puu(ui(y), y) and e (1) = a1

Not necessarily connected outerplanar graphs. Similarly we obtain
G(x,y) ~ eC@ W) 4o (3)eC @Y (1 — g /aq ()32,
where z1(1) = R, C(2z1(1),1) = C(R) and ay(1) = 3. This yields
2"y ]G (2, y) = [y™ (1 + o(1))ac(y)n >z (y) ™", (5.3.4)
for a function ag(y) = a1 (y)e€ @1 WY with ag(1) = aeC),
The expected number of edges. Let Y,, be the number of edges in a random

outerplanar graph on n vertices and P, (y) be the probability generating function
of Yy, i.e.,

Pa(y) =Y Pr(Y, =m)y™. (5.3.5)

m>0

Then the expectation and variance of Y,, is

E(Y,) = P.(1), (5.3.6)
Var(Y,) = P/(1)+P.(1)— (P.(1)). (5.3.7)

Define G, (y) := [2"]G(z,y). From Definition (5.3.5) and (5.3.4), we get

Puly) = gn;lmym _Guly) _ a +0(1))ao(y) (x1(1))n.

20 VTG oo(1) ()
From (5.3.6) and (5.3.7) we obtain
.
E(Y,)/ D) = 15021
/(1) 24 (1) i (1)\2 .
Var(Y,)/n ~ —xi(l) - xi(l) (x1(1)> = 0.223992.

The same holds for a random connected outerplanar graph. For random two-
connected outerplanar graphs, we analogously compute

A
zo(1)
Var(Y,,)/n ~ —iz((B - ;28; + (igg;)z = 0.176776.

Indeed Theorem 2.4.4 implies the following.

E(Y,)/n = 1707106,
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Theorem 5.3.3. Let Y,, be the number of edges in a random outerplanar graph
on n vertices. Then the distribution of Yy, is asymptotically Gaussian with mean
E(Y,,) ~ pn and variance Var(Y,) ~ o*n, where

p=1.56251, o% = 0.223992.

This also holds for random connected outerplanar graphs with the same p and
o? and for random two-connected outerplanar graphs with p = 1.707106 and
0% = 0.176776.

5.3.3 Chromatic number

It is easy to see that every outerplanar graphs is three colourable. Indeed more
is true.

Theorem 5.3.4. Let x(G,,) denote the chromatic number of a random outer-
planar graph G,, on n vertices. Then we have
lim Pr(x(Gn)=3)=1.
n—0o0
This follows from the fact that the number of labeled bipartite outerplanar

graphs on n vertices is asymptotically ¢ 4.40364™ n! for a constant ¢ > 0, which
was proven by Loffler [95].

5.4 Recursive counting and uniform sampling

Observe that the block structure of an outerplanar graph is a forest. Thus
we can count and generate outerplanar graphs similarly as demonstrated for
forests in Section 4.4. The decomposition from a (not-necessarily connected)
outerplanar graphs to connected outerplanar graphs is followed by formulas
(2.2.1) and (2.2.2). Thus we restrict our attention to connected outerplanar
graphs.

In order to decompose a labeled connected outerplanar graph, we consider
two cases. The vertex labeled with the smallest label is either a cutvertex and
hence it is contained in more than one block, or it is not a cutvertex and hence
it is contained in a unique block. Depending on these two cases, we apply a
degree-reduction strategy as in the case of labeled trees (see Figure 5.1).

Let ¢(n) be the number of all labeled connected outerplanar graphs with n
vertices {1,--- ,n} and c4(n) the number of all labeled connected outerplanar
graphs with n vertices, where the vertex 1 is adjacent to d blocks. Then, for
n > 2,

Note that 23;21 cqa(n) counts all labeled connected outerplanar graphs with
n vertices where the vertex 1 is a cutvertex, and c¢;(n) all labeled connected
outerplanar graphs with n vertices where the vertex 1 is not a cutvertex.

Let G be a labeled connected outerplanar graph with n vertices where the
vertex 1 is a cutvertex and is adjacent to d blocks, d > 2; see the upper part
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Figure 5.1: Pulling off the petals from the flower.

of Figure 5.1. At the vertex 1 we split off the connected component containing
the vertex 2 from G. In the remaining graph the vertex 1 is adjacent to d — 1
blocks. If the split subgraph has i vertices, then there are (7;__22) ways to choose
a vertex set of the split subgraph since the two vertices 1 and 2 are already

contained in the split subgraph. It follows that for d > 2, n > 3,

n—d+1 .
ci(n) = Z (TZ 22> c1(d)eg—1(n—i+1).

=2

We consider the case that the vertex 1 is not a cutvertex and hence it is
contained in a unique block, which we call the root block; see the lower part
of Figure 5.1. Let g.(n) be the number of all labeled connected outerplanar
graphs with n vertices, where the smallest ¢ vertices of the root block are not
cutvertices. Then clearly ¢1(n) = gi1(n).

From such a graph we split off a subgraph attached at the (c+1)-th smallest
vertex, which might be any kind of outerplanar graph. Then in the remaining
graph the (¢ + 1)-th smallest vertex of the root block is not a cutvertex. Thus
forc>1,n>3,

o = S (” ) 1)c<i>qc+1<n —it1).

; i—1
=1

If none of the vertices in the root block of an outerplanar graph with n
vertices are not cutvertices, the graph is two-connected and thus g, (n) = b,.

We have a complete set of recursive formulas that count outerplanar graphs.
Table 5.1 shows the exact numbers b,, ¢,, and g, of labeled two-connected
outerplanar graphs, connected outerplanar graphs, and outerplanar graphs, on
n vertices up to n = 16.
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n bn Cn gn
1 0 1 1
2 1 1 2
3 1 4 8
4 9 37 63
5 132 602 893
6 2700 14436 19714
7 70920 458062 597510
8 2275560 18029992 22903403
9 86264640 845360028 1056115331
10 3772681920 4593606320 56744710974
11 186972105600 2836966508216 3475626211316
13 633892275878400 15008752290350656 18183183610029003
14 42495895579737600 1258841795197091392 1519020289266947462
15 3096545573029708800 114838947237881287800 138117136134012654182
16 243680880958010496000 | 11319937495659268412416 | 13576724206357958780409

Table 5.1: The exact numbers b,, ¢,, g, of labeled two-connected outerplanar
graphs, connected outerplanar graphs, outerplanar graphs on n vertices, up to
n = 16.

Uniform sampling. The decomposition and counting formulas presented
above give rise to an efficient uniform random generation procedure.

Our sampling procedure first determines the number of components, and
how many vertices they shall contain. Each connected component is gener-
ated independently from the others, but having the chosen numbers of vertices.
To generate a connected component with given numbers of vertices, we decide
for a decomposition into 2-connected subgraphs and how the vertices shall be
distributed among its parts. For the generation of two-connected outerplanar
graphs we use the tree structure of its dual.

Theorem 5.4.1. Labeled outerplanar graphs on n vertices can be sampled uni-
formly at random in deterministic time O(n*) and space O(n®log n). If we
apply a preprocessing step, this can also be done in deterministic time O(n?).

Brute-force algorithms to generate random outerplanar graphs uniformly at
random require exponential time, and Markov chain Monte Carlo methods have
unknown mixing times and only approximate the uniform distribution. We
have developed a polynomial time generation algorithm for outerplanar graphs,
which can be adapted to generate and count labeled outerplanar graphs, con-
nected outerplanar graphs and two-connected outerplanar graphs, uniformly at
random. In all these cases, it is also easy to modify the counting formulas and
the uniform sampling algorithm for outerplanar graphs with a given number
of vertices and a given number of edges and also for outerplanar multigraphs.
The recursive counting formulas and the uniform sampling algorithm are imple-
mented by LofHler [95].



Chapter 6

Labeled Cubic Planar
Graphs

In this chapter we decompose labeled cubic planar graphs along the connectivity
structure, and derive the asymptotic number by interpreting the decomposition
in terms of generating functions and then by applying the singularity analysis.

For the decomposition, we make use of a rooted cubic graph with one dis-
tinguished oriented edge, and decompose rooted connected cubic graphs into
smaller parts up to rooted 3-connected cubic graphs. To complete the counting
and generation procedure, it suffices to consider 3-connected cubic graphs, be-
cause no cubic graph is 4-connected. For 3-connected cubic graphs, we can use
their dual, i.e., triangulations.

Based on the decomposition, we derive the equations of generating functions
and apply the resultant method suggested by Flajolet and Sedgewick [63]. We
show that the number of labeled cubic planar graphs on n vertices is asymptot-
ically ¢ n=7/2 p=" n!, for a suitable positive constant ¢ and p~! = 3.132595.

Using the asymptotic number, we also study the typical properties of a
random cubic planar graph that holds when the number of vertices converges to
infinity, e.g., the chromatic number. To this end, we first show that the number
of isolated K,’s in a random cubic planar graph has asymptotically Poisson
distribution with mean p*/4! and that a random cubic planar graph contains
linearly many triangles with probability tending to one. As a consequence,
together with Brooks’ theorem, we can see that the chromatic number of a
random cubic planar graph is four with probability bounded away from zero
and one, and that the chromatic number of every connected component with
more than four vertices in a random cubic planar graph is three with probability
tending to one.

Using a complete set of recursive counting formulas, we derive a deterministic
uniform generation of cubic planar graphs from the general principle. Further-
more, we can compute the exact numbers of cubic planar graphs according to
the connectivity computed from the recursive enumeration.

The rest of the chapter is organized as follows: In Section 6.1, we introduce
necessary terminologies and the decomposition theorem for rooted cubic planar
graphs. In Section 6.2, we interpret the decomposition in terms of generating
functions. In Section 6.3, we provide the relation between 3-connected cubic pla-

63
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nar graphs and triangulations and derive counting formulas for triangulations.
In Sections 6.4 and 6.5, we derive the equations of generating functions, get the
asymptotic number of labeled cubic planar graphs, and study some properties of
a random cubic planar graph. In Section 6.6, we derive recursive counting for-
mulas based on the decomposition theorem, and discuss the uniform generation
algorithm.

6.1 Rooted cubic planar graphs

To count labeled cubic planar (simple) graphs, we introduce ‘rooted’ cubic
graphs. We will present a decomposition scheme for such graphs, which can
then be used to count (unrooted) cubic planar (simple) graphs.

A rooted cubic graph G = (V, E, st) consists of a connected cubic multigraph
G = (V,E) and an ordered pair of adjacent vertices s and ¢ such that the
underlying graph G~ obtained by deleting an edge between s and t is simple.
Thus in G, if s and ¢ are distinct there may be either one or two edges between
them, and if s = t there is a loop at this vertex, and otherwise there are no
loops or parallel edges. The oriented edge st is called the root of G, and s and
t the poles. Thus G~ is obtained from G by deleting the root edge. Note that
a rooted cubic graph must have at least 4 vertices: we may not have a ‘triple

edge’.
t t t
| t
s=t S
s s s
b—graph  d—graph s—graph p—graph h—graph

Figure 6.1: The five types of rooted cubic graphs.

The following lemma is easily checked.

Lemma 6.1.1. A rooted cubic graph G = (V, E,st) has exactly one of the
following types.

e b: the root is a loop.
e d: G~ is disconnected.
o s: G~ is connected but there is a cut edge in G~ that separates s and t.

e p: G~ is connected, there is no cut edge in G~ separating s and t, and
either st is an edge of G= or G\{s,t} is disconnected.

e h: G~ 1is connected, there is no cut-edge in G~ separating s and t, G is
simple and G\{s,t} is connected.
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We will make use of a replacement operation for rooted cubic graphs. We
are often interested in rooted cubic graphs which are not d-graphs, i.e., b-,
s-, p- or h-graphs: let us call these c-graphs. Let G = (Vg, Eg, sgtag) be a
rooted cubic graph, let ugvg be obtained by orienting an edge in G, and let
H = (Vyg,En,suty) be a c-graph. The rooted cubic graph G’ obtained from
G by the replacement of ugvg by H has vertex set the disjoint union of Vg and
Vi, edge set the disjoint union of Fg — {ugvg} and Ey — {sgty} together
with the edges ugsy and vaty, and the same root as G. When we perform a
replacement by H we always insist that H is a c-graph. The following result may
be compared with network decomposition results of Trakhtenbrot [136, 141].

Theorem 6.1.2. (a) Let H be a 3-connected simple rooted cubic graph, let F
be a set of oriented edges of H™, and for each wv € F let Hy, be a c-graph. Let
G be obtained by replacing the edges wv € F by Hy,. Then G is an h-graph.
Further, if H is planar and each Hy, is planar then so is G.

(b) Let G = (V, E, st) be an h-graph. Then there is a unique 3-connected
rooted cubic graph H (called the core of G) such that we can obtain G by re-
placing some oriented edges e of H~ by c-graphs H.. Further H is simple, and
if G is planar then so is H and each H..

Proof. (a) Note that H is an h-graph; and if G’ is an h-graph and we replace an
oriented edge by a c-graph then we obtain another h-graph (which is planar if
both the initial and the replacing graph are). Thus part (a) follows by induction
on the number of edges replaced.

(b) The main step is to identify the core H. Let W be the set of vertices
v € V\{s,t} such that there is a set of three pairwise internally vertex-disjoint
(or equivalently, edge-disjoint) paths between v and {s,t}. Then W is non-
empty. For, let P; and P> be internally vertex-disjoint paths between s and ¢
in G~. There must be a path @Q between an internal vertex of P; and an
internal vertex of Py (since neither Py nor P is just a single edge, and G\{s,t}
is connected), and we can insist that @ be internally vertex-disjoint from P;
and P,. Now the terminal vertices of () must both be in W.

Let H be the graph with vertex set Vi = W U {s,t}, where for distinct
vertices u and v in Vg we join u and v in H if there is a u — v path in G using
no other vertices in V. Thus in particular if vertices u,v € Vi are adjacent in
G then they are adjacent also in H.

It is easy to check that H is 3-connected, and thus also is simple.

Let X be the set of vertices of G not in H. If X = () then G = H and we
are done: suppose then that X is non-empty. Consider a component C' of the
subgraph of G induced by X. We claim that there are distinct vertices u and
v in Vg which are adjacent in H but not in G, vertices z and y in C' (possibly
x = y) and edges ux and vy in G which are the only edges between C and V.
Let H,, be the rooted cubic graph obtained from C by adding the root edge
zy. Now it is clear that we may obtain G by starting with H and replacing any
edge uv of H not in G by the corresponding H,,.

We have now seen that the rooted cubic graph H is simple and 3-connected,
and we may obtain G by starting with H and replacing some edges e of H™ by
c-graphs H,. Finally it is easy to see that H is unique. For if H' also has these
properties, then we immediately see that Vg = Vpy/, and it follows easily that
the graphs are the same. O
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We are interested here only in planar graphs. However, all results in Sec-
tions 6.1 and 6.6 can be formulated more generally for subclasses of connected
cubic graphs that are closed under replacements.

6.2 Exponential generating functions

We let b, dn, Sn, Pn, hn, and ¢, be the number of b-, d-, s-, p-, h-, and c-
graphs on n vertices, respectively. Thus ¢, = b, + sp + pn + h,. Further we
let B(z),D(x),S(x), P(x), H(xz), and C(z) be the corresponding exponential
generating functions. For instance, B(x) is defined by

B(z) := Z %x"

n>0

Note that b, = d,, = s, = pn, = hy, = ¢, = 0 for all odd n, due to cubicity, also
for n = 0 by convention, and for n = 2. Thus, for instance, B(z) is of the form

ban .21
Donze e

b-graphs. The structure of a b-graph is restricted by 3-regularity, and the
shaded area in Figure 6.2 below together with an oriented edge between u and v
is a d-, s-, p-, or h-graph. Therefore, B(z) = x?/2 (D(x)+S(x)+ P(z)+ H(z)),
where the factor 1/2 is due to the orientation of the edge between u and v. This
can be rewritten as B(z) = 2% (D(z) + C(z) — B(z)) /2.

d—, s—, p—, h—graph

Figure 6.2: Decomposition of a b-graph.

d-graphs. A d-graph can be decomposed uniquely into two b-graphs as shown
in Figure 6.3. We therefore have D(z) = B(z)? /2.

s-graphs. For a given s-graph G, the graph G~ has a cut-edge that separates
s and ¢t and that is closest to s as in Figure 6.4. (Note that the cut edge could be
a second copy of st.) We obtain S(z) = (S(z)+ P(z) + H(x) + B(z)) (P(z) +
H(x) + B(z)) = C(z)? — C(2)S(x).
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—_—
S b—graph

Figure 6.3: Decomposition of a d-graph.

t=v

s=, p—, h-graph ---~*

t
|
t=v | i
--= p~ h-graph . oy T |
S

N
\
S N

\

Figure 6.4: Decomposition of an s-graph.

p-graphs. For a given p-graph, we distinguish whether or not s and ¢ are

adjacent in G~. Both situations are depicted in Figure 6.5. We obtain P(z) =
22 (S(z)+P(z)+H(z)+B(x))+22/2(S(z)+ P(z)+ H(z)+ B(x))? = 22C(z)+

22C(x)? / 2, where the factor 1/2 in the latter term is there because two c-graphs
are not ordered.

h-graphs. From Theorem 6.1.2 we know that an h-graph is built from a rooted

three-connected cubic planar graph by replacing some edges, except the root
edge, by b-, s-, p-, or h-graphs, i.e., c-graphs, see Figure 6.6. Let m,,; be the

number of labeled rooted 3-connected cubic planar graphs on n vertices and [
edges and let

Mn,l
M(z,y):= ) z"y

n!
n,>0

67
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o0 ST, pT, h_s h_graph

Figure 6.5: Decomposition of a p-graph.

be its exponential generating function. Clearly m,,; = 0 for odd n, n = 0,2 or
I # 3n/2 since a cubic planar graph on n vertices has 3n/2 edges. Hence

™TMan,3n
M(x’y) = Z (2n)' .,L,Qny3n’
n>2

which we will determine in Section 6.3 (see Equation (6.3.2)).

Note that the variable y in M (z,y) marks the edges in rooted 3-connected
cubic graphs. Thus in order to derive the exponential generating function for
h-graphs, we replace the variable y in M (x,y) by C(z)+ 1, (where the constant
term 1 is because there is no change in a rooted 3-connected cubic graph when
an edge is replaced by an edge itself,) and divide this by C(z) + 1, because we
do not replace the root edge of a rooted 3-connected cubic planar graph. Thus
we get

M(z,(C(z) +1))

HE) = =am T (6.2.1)

s—, p—, h—, b—graph

Figure 6.6: Decomposing of an h-graph along its core.

Cubic planar graphs. For £ = 0,1,2,3 let g,(Lk) be the number of k-vertex
connected cubic planar (simple) graphs on n vertices and G*)(z) be the corre-
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sponding exponential generating functions. Note that gy(lk) = 0 for odd n and
also for n = 0, 2 except that we set géo) = 1 by convention.

If we select an arbitrary edge in a connected cubic planar (simple) graph and
orient this edge, we obtain a rooted cubic graph G = (V, E, st) that is neither a
b-graph, nor an s- or p-graph where s and ¢ are adjacent in the underlying graph
G, see Figure 6.7. Note that the number of connected cubic planar (simple)
graphs with one distinguished oriented edge is counted by 3x %, and the
number of s- (resp. p-)graphs G = (V, E, st) where s and t are adjacent in G~
as depicted in the middle (resp. right) picture in Figure 6.7 is counted by B(x)?

(resp. 22 C(z)). Therefore we get

)
9 dGY) (z)

e D(z)+ S(z) + P(z) + H(z) — B(z)* —2*C(x).  (6.2.2)

@
O = |

Figure 6.7: Types of rooted cubic graphs that are not simple.

As we have seen in (2.2.3), the exponential generating function for connected
cubic planar graphs and that for not necessarily connected ones are related as
follows.

GO (z) = exp(GY(z)). (6.2.3)

6.3 Three-connected cubic planar graphs

The number of labeled three-connected cubic planar graphs is closely related
to that of rooted triangulations. A rooted triangulation is an edge-maximal
plane graph with a distinguished directed edge on the outer face, called the
root edge. Tutte [137] derived exact and asymptotic formulas for the number
of such objects up to isomorphisms that preserve the outer face and the root
edge. Since such graphs do not have non-trivial automorphisms that fix the root
edge, we can obtain the number of labeled objects from the number of unlabeled
objects. Labeled three-connected planar graphs with at least four vertices have
exactly two non-equivalent embeddings in the plane. Using plane duality, we
can compute the number of rooted three-connected cubic planar graphs from
the number of rooted triangulations.

Let t,, be the number of unlabeled rooted triangulations on n + 2 vertices.
From the formulas Tutte computed for unlabeled rooted triangulations on n+ 3
vertices, it follows that the ordinary generating function T'(z) for t,, i.e., T'(z) =
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> n>1tn 2", satisfies the following.

T(z) =u (1 —2u) (6.3.1)
z=u(l—u)’.

The first terms of T'(z) are z+ 22 + 323 + 1324 4+ 6825 + 39926 + . ... Further,
T(z) has a dominant singularity at & = 27/256 and the asymptotic growth of ¢,
is agn~%/2¢~" n!, where a4 is a constant. Let T'(z,) be the corresponding ordi-
nary generating function, but where x marks two times the number of faces and
y marks three times the number of edges. By Euler’s formula, a triangulation on
n + 2 vertices has 2n faces and 3n edges. Therefore, T'(z,y) := > oq tnx? Yy
can be computed by T'(z,y) = T(zy?).

We now determine the exponential generating function M (z,y) for the num-
ber of labeled rooted 3-connected cubic graphs, which was needed in the decom-
position of h-graphs in Section 6.1. Since the dual of a 3-connected cubic map
on 2n vertices is a triangulation on n + 2 vertices (and hence with 2n faces and
3n edges), we have ma, 3, = (2n)!¢t,, /2 for n > 2. We therefore obtain

(T(z*y®) — 2*y°).

(6.3.2)

N | =

M2n3n on 3n 1 =
n>2

Thus M(z,y) = (x9S + 325y° + 1328y'2 + 6820y1° + 399212918 + .. .)/2.
Furthermore the dominant s1ngular1ty of M(x) = M(x,1) = 1/2(T(x?) — 2?) is
the square-root of the dominant singularity of T'(z) and the asymptotic growth
of m,, with n even is azn=5/20""n!, where 6 = 3\/5/16 and a3 is a constant.

6.4 Singularity analysis

We summarize the equations derived so far.

B(z) = 2*(D(x) + C(z) — B(x))/2 (6.4.1)
C(x) = S(z) + P(xz) + H(z) + B(x) (6.4.2)
D(x) = B(x)?/x? (6.4.3)
S(x) = C(x)* - C(x)S(x) (6.4.4)
P(z) = 2°C(x) + 2°C(x)? /2. (6.4.5)

We can also describe the substitution in Equation (6.2.1) for H(x) algebraically,
using Equations (6.3.1) and (6.3.2).

2(C(z) + D H(x) = u(l — 2u) — u(l —u)? (6.4.6)
22(O(x) + 1) = u(l —u)®.

Using algorithms for computing resultants and factorizations (these are stan-
dard procedures in e.g., Maple or Mathematica), we can obtain a single alge-
braic equation Q(C(z),z) = 0 from equations (6.4.1) — (6.4.7) that describes the
generating function C'(z) uniquely, given sufficiently many initial terms of ¢,,.
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This is in principle also possible for all other generating functions involved in
the above equations; however, the computations turn out to be more tedious,
whereas the computations to compute the algebraic equation for C(x) are man-
ageable.

From this equation, following the discussion in Section VII.4 in [63], one
can obtain the two dominant singularities p and —p of C(z), where p is an
analytic constant and the first digits are p = 0.319224. We can also compute
the expansion at the dominant singularity p. Changing the variables Y = C(z)—
C(p) and X =z — p in Q(C(z),z) = 0, one can symbolically verify that the
equation Q(C(x),z) = 0 can be written in the form

(aY +bX)? =pY? + ¢XY? +7rX?Y + sX3 + higher order terms,

where a,b,p,q,r, s are constants that are given analytically. This implies the
following expansion of C'(z) near the dominant singularity p.

C(x) = C(p) + bpfa (1 —x/p) + Bi(1 — 2/p)*2 + O((1 —a/p)?),  (6.4.8)

where 3y := p3/2/a \/p(b/a)3 — q(b/a)? + r(b/a) — s is a positive constant. For
large n, the coefficient ¢ of 2™ on the right hand side satisfies

+

5/2 —n
Cn

~ Ban” P ’ﬂ!,

where 2 = (1/T(3/2) = 261 /+/7. Similarly we get the expansion at the domi-
nant singularity —p

C(x) = C(p) +bp/a (1+/p) + Bi(1+/p)** + O((1 + /p)*),
and for large n, the coefficient ¢, of " on the right hand side satisfies

e o~ Pan? (=p)" nl.

Following Theorem V1.8 [63], the asymptotic number ¢, is then the summation
of these two contributions ¢, and c,,, and thus for large even n

en ~ 202 0% pT ol

whereas ¢,, = 0 for odd n.

Since the generating functions for B(z), D(x), S(x), P(x), H(z) are related
with C'(x) by algebraic equations, they all have the same dominant singulari-
ties p and —p. The singular expansion of G")(z) can be obtained from Equa-
tion (6.2.2) through a term-by-term integration, and thus we obtain the singular
expansions at p and —p

D () =GN (p) + (1 —a/p)* + fs(1 — 2/p)"2 + O((1 = x/p)),  (6.4.9)

GO () = GO () + (1 +2/p)* + Bs(1 +2/p)/2 + O((1 + 2/p)), (6.4.10)
where ¢ and (3 are analytically given constants. Thus for an analytically given
constant «; and for large even n we get

7/2 —n

gV ~ ap nTT2 pTmopl,

whereas 97(3) = 0 for odd n.
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Because of Equation (6.2.3), the generating functions G(*)(z) and G (z)
have the same dominant singularities p and —p, and indeed we may see that
gr(Ll) / géo) — e~ where A = G()(p). Based on the above decomposition it is also
easy to derive equations for the exponential generating function G(?) (z) for the
number of biconnected cubic planar graphs, which has a slightly larger radius
of convergence n (whose first digits are 0.319521).

We finally obtain the following.

Theorem 6.4.1. The asymptotic number of labeled cubic planar graphs, labeled
connected cubic planar graphs, labeled 2-connected cubic planar graphs, and la-
beled 3-connected cubic planar graphs is given by the following. For large even
n

7/2 pfn n

7/2 p—n n!

7/2 nfn n!

¥ ~agnT2 07l

QT(LO) ~agn
97(11) ~apn

91(12) ~agn

All constants are analytically given. Also ay/ag = e where A\ = G (p).
Further p~! = 3.132595 , n~! = 3.129684, and 6~! = 3.079201.

6.5 Random cubic planar graphs

In this section, we use Theorem 6.4.1 to investigate the connectedness, compo-
nents and the chromatic number of a random cubic planar graph. Throughout

the section, for £ = 0,1, 2,3 let GS{“) denote a random graph chosen uniformly
at random among all the k-vertex-connected cubic planar graphs on vertices
1,...,n for even n.

6.5.1 Connectedness

We use Theorem 6.4.1 to investigate the connectivity and the chromatic number
of a random cubic planar graph. Along the way we consider components and
subgraphs. Let ag and oy be as in Theorem 6.4.1.
Theorem 6.5.1. Let A= G (p). Asn — oo with n even,

Pr(GY) is connected) — e,
whereas Pr(G%O) is 2-connected) — 0, Pr(Gg) is 2-connected)) — 0
and Pr(Gg) is 8-connected) — 0.

Proof. From Theorem 6.4.1, we see that as n — oo with n even

Pr(G) is connected) = g\M /g0 — oy /ag = ™.
Also,
Pr(G® is 2-connected) = g2 /¢ ~ ay/ap(n/p)™" — 0,
with a similar proof in the other cases. O

Using the numbers in Table 6.2 we compute the probability that G%O) is
connected, for even n from 10 to 20, in the following Table.
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n_|
9 /g% \

| 10 | 12 | 14 | 16 | 18 | 20
| 0997837 | 0.997982 | 0.998117 | 0.998249 | 0.998368 | 0.998472

Table 6.1: The probability that a random cubic planar graph on n vertices is
connected, from n = 10 to n = 20.

6.5.2 Components

In order to discuss colouring later we need to find the limiting probability that
G%O) has a component isomorphic to K4. Here we consider a more general
problem.

Lemma 6.5.2. Let H be a given connected cubic planar graph, and let A\ =
#(HH), where p is as in Theorem 6.4.1, vy denotes the number of vertices in

H (and hence even), and Aut(H) denotes the size of its automorphism group.

Let the random variable Xy = Xg(n) be the number of components of G%O) 150-
morphic to H for even n. Then Xy has asymptotically the Poisson distribution
Po(Ap) with mean Mg ; that is, for k=0,1,2,...

k

Pr(Xg(n)=k) — eiAH);C—I'{ asn — oo.

In particular, the probability that GS’) has at least one component isomorphic
to H tends to 1 —e™ ™ asn — oo with n even.

Proof. Note first that the number of different labelings of H is counted by
vg!/Aut(H). Correspondingly, the number of ways to construct exactly k com-
ponents isomorphic to H on kvy vertices is equal to

(k’UH)!

k'Aut(H)* (65.1)

The exponential generating function for the connected cubic planar graphs
that are not isomorphic to H is given by

xVH

G () — i)

Thus the number of cubic planar graphs on n — kvy vertices that do not contain
a component isomorphic to H equals

[z~ F0H ] exp <G(1)(”) - z%x:(HH)) .

As n — oo with n even this goes to

— oxp < ASE:H)) RGO ()

~ _ va _ —7/2 —nt+kvg _ | 9
exp( Aut(H))aO(n kvg) p (n — kvg)!. (6.5.2)
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Putting (6.5.1) and (6.5.2) together, we obtain that for k¥ = 0,1,2,... the

probability that the number of components isomorphic to H in GSIO) is exactly
k is asymptotically

PI‘(XH = k‘)

n (kvp)! pUH
~ (ka> kI Aut(H)F P <_ Aut(H)>
" ao(n — kvg )72 pTtRvE (n — ko))
[z7]GO) (x)

n! (kvg)! prH
™ ko) (n — kog)! kiAus(H)F P ( Aut(H))

ao(n — kvg )~ 72 pm ks (n — Rugy)!

agn=7/2p=nn)

p’L)H pk}’UH
TP <_Aut(H)) Kl Aut(H)E
/\k
—An H
e ﬂ.
L]

An alternative proof of the last result can follow the lines of the proof of
Theorem 5.6 of [99]. Both proofs generalise to yield the following extension of
that result.

Lemma 6.5.3. Let Hq,...,H,, be given pairwise non-isomorphic connected
cubic planar graphs; and as before let Ag, = p¥"i /Aut(H;) and let the random

variable Xp, = Xy, (n) be the number of components of G%O) isomorphic to H;,
where n is even. Then Xg,,...,Xu,, are asymptotically jointly distributed like
independent random variables Po(Am, ), ..., Po(Ag,, ), and so the total number
of components isomorphic to some H; is asymptotically Po(>, m,).

Let us observe here that if Hy, Ho, ... is an enumeration of all the pairwise
non-isomorphic connected cubic planar graphs, then >, Asr, = G (p). For

1 n! 1
M N, e 1
G (p) zﬂ:gn = D] oA

n g, =n
POt
= = AH, . 0.
2 Aty 2 oo

Next we want to show that GSLO) usually has a giant component.

Lemma 6.5.4. For any € > 0 there exists t such that the probability is less
than € that each component in GSP) has order at most n — t.

Proof. Let C(n) denote the set of labeled cubic planar (simple) graphs on the

vertices 1,...,n and so [C(n)| = g,(LO). By Theorem 6.4.1, there are constants

a > 0 and § > 1 such that

g,(lo) ~an PpTnl
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as n — oo with n even. Thus there is an ng such that for all even n > ng

1
ian_ﬂp_"n! < gflo) < 2an_ﬁp_"n!.

Let t be a positive integer at least ng sufficiently large that

t—1)-(B-1
The reason for this choice will of course emerge shortly. Let D(n) be the set of
graphs G € C(n) such that each component has order at most n — ¢t. Then for
even n > 3t,

n/2
0) (0
Pl < 35 (7)aa,
j=t
n/2
< 4a?p” n'Zj (n—3j4)"
n/2
< 4a?p"™n ( ) Zfﬂ
n/2
< 8a gl 2‘323
But )
n/2 n/2 —(B-1)
.3 _ﬂ (t — 1)
j </ de < ————
Z t—1 p—1
Thus our choice of ¢ yields |D(n)|/ g\ < ¢ as required. O

Theorem 6.5.5. The number of components ofG%O) is asymptotically 14+Po(N),
where A = GW(p).

Observe that this theorem shows again (as in Theorem 4) that the probability
that G%O) is connected tends to e as n — oo.

Proof. We may use Lemmas 6.5.3 and 6.5.4, together with (15), and follow the
lines of the proof of Theorem 5.5 of [99]. O

6.5.3 Triangles

In order to discuss colouring later we also need to know about triangles, in

particular the unsurprising result that G%k) usually contains at least one triangle.
In fact far more is true.

Lemma 6.5.6. Let Yn(k) be the number of triangles in ch). Then for even n
there exists 6 > 0 such that

Pr(Y,®) > gn) =1 — e ),
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Proof. Let us consider nyo): the other cases are very similar. Let § > 0 be
sufficiently small that

2
pr=49) 2.
4ed -

By Theorem 6.4.1 there exist constants o > 0, 5 > 1, and ng > 2/6 such that
for all even n > ny

1
iom_ﬁp_"n! < g9 < 2an"Fp7"nl. (6.5.4)

Assume for a contradiction that for some even n > ng
Pr(Y, 9 < én) > e, (6.5.5)

We shall avoid using round-down |z and round-up [z] in order to keep our
formulae readable. Consider the following construction of cubic planar graphs
on vertices 1,--- ,n+ 2dn :

e pick an ordered list of 2dn special vertices, say s1, 82, , Sasy,; there are

26n)! ,
w choices

e take a cubic planar graph G on the remaining n vertices with at most
on triangles; there are at least e“s”g,(LO) > e_‘snéom—ﬁp_”n! choices, by
(6.5.4) and (6.5.5)

e pick a set of dn vertices in G that form an independent set and list them
in increasing order, say vi,vs, - - - , Usn; the number of choices is at least

nin—4)---(n—40n+4) _ n(1 —48)" _ [1—46\""
on)! = on)! >< 5)

 construct a cubic graph G’ in such a way that for each v; we select its two
largest neighbors, say m and [, and insert sg;—; on the edge (v;,m) and
s9; on (v;,1) together with an edge (s2;—1, $2i), see Figure 6.8.

Figure 6.8: Creating a new triangle.

For a given set of dn triangles in G’, there is at most one construction as
above yielding G’ with these as the new triangles (see Figure 6.8 and note that
we can identify v; in the triangle as the vertex adjacent to s). But G’ has at most
20n triangles. Hence the same graph G’ is constructed at most (2557?) < 20m
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times. But of course gfg)_Q sn, is at least the number of graphs constructed in this

way. Thus
(0)

gn+26n
26m)! 1 1—46\°"
> (Tl +n' TL) . e—énian—ﬂp—nn! . ( ) . 2—26n

1 250 a5n_—sn (L=40\""
> §a(n—|—25n)!(n+26n)_ﬁp_"_ "p "e‘"() 4=°n

1)
2 o on
> }g(o) (P (1 45))

4 n+26n 4ed
(0)
> gn+26n’
a contradiction. O

6.5.4 Chromatic number

Finally we can give a full story about the chromatic number X(G%k)).

Theorem 6.5.7. Let v = p*/4! = 0.000432. Then as n — oo

) — l—e"

Pr(x(GY) =
0 ) — e ¥ =0.999568.

Pr(x(Gy)

4
3
For k =1,2,3 we have Pr(x(G;,k)) =3)—>1asn— .

Proof. By Brooks’ theorem (see, e.g., [54]), for a cubic graph G with at least
one triangle, x(G) = 3 unless there is a component K, in which case x(G) = 4.

Thus the theorem follows from Lemmas 6.5.2 and 6.5.6.
O

6.6 Recursive counting and uniform sampling

Let g%l) and g;, be the number of labeled connected cubic planar graphs and
rooted connected cubic planar simple graphs on n vertices, respectively. Since
there are 3n ways to select an arbitrary edge and orient this edge, we get

3ngH) = gr. (6.6.1)

Moreover, a rooted connected simple graph G” is neither a b-graph, nor an
s- or p-graph where st are connected in the underlying graph G. Let s, and
pl, be the number of s- and p-graphs on n vertices without multiple root-edge.
Then we get

g;:dn'i_s;z"_p;z"’_hn»
which together with (6.6.1) implies

3nglt) = dn + s, + i, + - (6.6.2)
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b-graphs. A b-graph’s structure is restricted by 3-regularity, and the for which
the undetermined part can be a d-, s-, p-, or h-graph (See Fig. 6.2).

n
bn = (2> (dn72 + Sp—2 + Pn—2 + hn72)-
d-graphs. The d-graph is easily decomposed into two b-graphs as shown in
Figure 6.3. Since the root and its adjacent vertex of such b-graphs should be
selected as s, t, considering all partitions of vertices, we obtain

1 n-+2
S TTE = 1Dl (Y LAe

i

s-graphs. From definition s-graphs should have a cut-edge separating s and
t in the corresponding unrooted graph. We choose the one that is nearest to
vertex s for a unique decomposition. Note that the case w = s or/and v =t is
allowed. Figure 6.4 illustrates all these cases.

If we delete the cut-edge (u, v), the unrooted s-graph falls into two separated
parts, one of which containing s can be p-, h- or b-graph (due to the selection
of (u,v), and the other one can be any s-, p-, h- or b-graph. Thus we have

n
DY <Z> (pi + hi +bi) (Sn—i + Pp—i + h—i + bp—i)

%

3 <Z‘> (i — 8i) Cni-

%

The number, s/, of simple s-graphs satisfies

an = Sp — Z (7’;) bZ bn,i.

i

p-graphs. For p-graphs, we distinguish whether s and t are connected or not.
Both situations are depicted in Figure 6.5.

n(n—1) n—2
pn = n(n—1)cp 2+ 5 Z ( ; ) Ci Cn—i—2
and

,  n(n—1) n—2
b = D) Z ( i Ci Ch—i—2

i

h-graphs. First we recall that an h-graph is built up from a core by replacing
(see Section 6.1 for the definition) some edges of the core by s-, p-, h-, or b-
graphs, i.e., c-graphs. We decompose an h-graph as an inverse operation of
replacement.

To decompose and compute the number of h-graphs, we order the edges of
cores in lexicographical order attained by the labels of the vertices of the cores.
We do not count the root-edge, since the root-edge is replaced by nothing but
an edge. Let h,, , be the number of h-graphs G” whose first r non-root edges of
the cores are also edges in G". Thus h,, = hy, 0.
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To find a recursion formula for h, , in terms of A, ,11, we think of an h-
graph, say G", whose first r non-root edges of its core are also edges in G". Then
either its (r 4+ 1)-th non-root edge of the core is an edge, which case is counted
by hyr41, or it can be replaced by a c-graph, say H", with i > 4 vertices,
resulting a new h-graph G’ (in other words, G’ is decomposed into G" and H",
see Figure 6.6). We sum over all possible configurations and obtain

1 n
honr = hor —_ )¢ Pn—irt1 6.6.3
: ,+1+n(n1)z<l>c 41 ( )

K3

The recursion ends if all the edges of the core are replaced by edges. This
means Ay, 3, /2—1 is equal to the number of cores on n vertices with 3n/2—1 edges
(excluding the root-edge), which is again equal to the number of edge-rooted
3-connected cubic planar graphs on n vertices including the root-edge.

Triangulations. The dual of a 3-connected cubic planar map is a triangula-
tion. If the 3-connected cubic planar graph is face-rooted, the triangulation is
as well face-rooted, and vice versa: the root-face (incident to the root-edge) be-
comes the s-pole and the other face incident to the root-edge becomes the t-pole
in the dual. In our drawings, the root-face incident to the root will always be
the outer face.

To derive a recursion, we generalize the notion of a triangulation, as Tutte
did [137]: We consider face-rooted 3-connected planar graphs where all the faces
except the outer face are triangles, i.e., we do not require that the outer face is
a triangle, but still assume that the graph does not contain a 2-cut. Then we
distinguish between external and internal vertices and edges, where the external
vertices and edges are defined to be the vertices and edges on the outer face. We
call such objects near-triangulations. By 3-connectivity, in a near-triangulation
there is no internal edge connecting two external vertices.

If a 3-connected face-rooted cubic planar graph has n vertices in total and
k vertices on the outer face, the face-rooted triangulation has § + 2 vertices in
total (due to Euler’s formula) and its s-pole has degree k. To count the number
of such triangulations, we use the function ¢ ;(n) which denotes the number of
rooted near-triangulations with n vertices, where the s-pole has degree k and
there are [ vertices on the outer face. When the unique internal vertex adjacent
to the two poles, say u, has no internal edge connecting it to an external vertex
except the poles, we remove the pole edge and move the t-pole to the unique
internal vertex adjacent to the two former poles.

Otherwise we remove the edge between the poles and decompose such tri-
angulations along the edge, say uv, connecting to the first such external vertex,
say v, according to a traversal of the outer face starting from the s-pole ending
at the t-pole. Then one of the two split triangulations has the new t¢-pole at the
vertex u, and the other one has the new s-pole at v (see Figure 6.9, left) except
that it has the new s-pole at u when the number of edges on the outer face is 3
(see Figure 6.9, right). All these cases can be computed inductively using the
value of t5;(n) for lexicographically smaller arguments.

Initially, t23(3) = 1 and ¢4 (n) = 0if k = 2and ! > 3 or n > 3, or if
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Figure 6.9: Decomposition of a rooted near-triangulation.

[72]

I+k—2 > n.
tra(n) = thorii(n) + Y b1t s(n—i+2)
E'41,i>3
+ Y thora—va (i)t (n—it2) (6.6.4)
k1 i>3

The number t(n) of face-rooted triangulations on n vertices is then t(n) =
ZkZQ tk,S(n)‘
(0) 1) (2

Table 6.2 shows the exact numbers g, ', gn’, gn , and gff’) of labeled cubic
planar graphs, labeled connected cubic planar graphs, labeled 2-connected cubic
planar graphs, and labeled 3-connected cubic planar graphs on n vertices, up to
n = 24. The recursive counting formulas are implemented by Loffler [95].

Uniform sampling. The decomposition and recursive counting formulas pre-
sented above yield an algorithm that samples a random cubic planar graph
uniformly at random.

Theorem 6.6.1. A labeled cubic planar graph can be sampled uniformly at
random in deterministic time O(n%log®n) and in O(n?) with pre-computation,
which requires O(n>logn) space.

The used memory space is dominated by the tables for ¢,,; (see (6.6.4)). The
number of entries in all tables is O(n?). Since each entry is bounded above by the
number of all cubic planar graphs, which is ¢ n® 3.127" n! by Theorem 6.4.1, the
binary encoding of each entry is O(nlogn). Hence the total space requirement
is O(n3logn).

The calculation of each entry involves a summation over O(n?) terms and a
multiplication. All together a pre-computation of all values needs O(n* log® n)
time, which dominates the running time. Using a fast multiplication algorithm,
theoretically the running time can be improved to O(n*log(loglogn)).

The actual generation of a cubic planar graph can be done in quadratic
time. The decomposition tree is of linear size and computing the probabilistic
decisions at each branching step takes at most linear time, if we assume that
we have access to the values in the table and their sums.
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n g o
4 1 1
6 60 60
8 13475 13440

10 5826240 5813640

12 4124741775 4116420000

14 4379810575140 4371563196000

16 6541927990422825 6530471307360000

18 13108477865022540000 13087079865123264000

20 33981214383613597525425 33929276115192441984000

22 110756611007620355671393500 110597261709952237540320000

24 443569991469578293034487447675 44296629833106694924289280000

- ©) ®

gn 9n
4 1 1
6 60 60
8 13440 10920

10 5700240 4112640
12 3996669600 2654467200
14 4217639025600 2625727104000
16 6272314592544000 3697449275520000
18 12526155233399808000 7034785952882688000

20 3238150060454 7878784000 17394357294393311232000

22 105285497159317356161280000 54240553998925840485920000

24 420720000937073203028382720000 208264583630934430033674240000

Table 6.2: The exact number gﬁf) of c-vertex-connected labeled cubic planar

graphs on n vertices, up to n =24, for c =0, 1,2, 3.
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Chapter 7

Labeled Planar Graphs

In this chapter we derive the recursive counting formulas for labeled planar
graph and design an algorithm to generate a labeled planar graph uniformly at
random in deterministic time O(n”) with space O(n*).

A planar graph has in general many embeddings that are non-isomorphic as
maps (i.e., graphs embedded in the plane), but some graphs have a unique em-
bedding. A classical theorem of Whitney (see e.g., [54]) asserts that 3-connected
planar graphs are rigid in the sense that all embeddings in the sphere are com-
binatorially equivalent. As rooting destroys any further symmetries, rooted 3-
connected planar maps are closely related to labeled 3-connected planar graphs.
Moreover, the ‘degrees of freedom’ of the embedding of a planar graph are gov-
erned by its connectivity structure. We exploit this fact by composing a planar
graph out of 1-; 2-, and 3-connected components.

Trakhtenbrot [136] showed that every 2-connected graph with one distin-
guished directed edge is uniquely composed of special graphs (called networks)
of three kinds. Such networks can be combined in series, in parallel, or using
a 3-connected graph as a core (see Theorem 7.1.1 below). Using this composi-
tion we can then employ known results about counting and random sampling
of 3-connected planar maps.

The concept of rooting plays an important role for the enumeration of planar
maps. A face-rooted map is one with a distinguished edge which lies on the outer
face and to which a direction is assigned. The rooting forces isomorphisms to
map the outer face to the outer face, to keep the root edge incident to the outer
face, and to preserve its direction. The enumeration of 3-connected face-rooted
unlabeled maps with given numbers of vertices and faces, also called c-nets, was
achieved by Mullin and Schellenberg [106]. We invoke their closed formulas in
order to count 3-connected labeled planar graphs with given numbers of vertices
and edges. For the generation of 3-connected labeled planar graphs with given
numbers of vertices and edges we employ a recent deterministic polynomial
time algorithm [28]. Alternatively, we can use a sampling procedure that runs
in expected linear time that was recently presented in [67]; in this case we obtain
an expected polynomial time sampler.

When we apply the various sampling subroutines along the stages of the
connectivity decomposition, we must branch with the correct probabilities. To
compute those probabilities we use recurrence formulas that can be evaluated
in polynomial time using dynamic programming. Then the decomposition can

83
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be translated immediately into a sampling procedure.

In the next section we give the graph theoretic background for the decom-
position of planar graphs. In the following three sections we derive the counting
formulas for planar graphs. In the last section we analyse the running time
and memory requirements of the corresponding sampling procedure and discuss
results from an implementation of the counting part.

7.1 Decomposition

Let us recall and fix some terminology [140, 141, 142]. A graph will be assumed
unoriented and simple, i.e., having no loops or multiple (also called parallel)
edges; if multiple edges are allowed, the term multigraph will be used. We
consider labeled graphs whose vertex sets are initial segments of N = {1,2,--- }.

A network N is a multigraph with two distinguished vertices 1 and 2, called
its poles, such that the multigraph N* obtained from N by adding an edge
between its poles is 2-connected. The new edge is not considered a part of the
network N. We can replace an edge uv of a network M with another network
X by identifying u and v with the poles 1 and 2 of X,,,,, and iterate the process
for all edges of M. Then the resulting graph G is said to have a decomposition
with core M and components X., e € E(M).

Every network can be decomposed into (or composed out of) networks of
three special types. A chain is a network consisting of two or more edges
connected in series with the poles as its terminal vertices. A bond is a net-
work consisting of two or more edges connected in parallel. A pseudo-brick is
a network N with no edge between its poles such that N* is 3-connected. (3-
connected subgraphs are sometimes called bricks.) A network N is called an
h-network (respectively, a p-network, or an s-network) if it has a decomposition
whose core is a pseudo-brick (respectively, a bond, or a chain). See Figure 7.1.
Trakhtenbrot [136] (here cited from [141]) formulated a canonical decomposition
theorem for networks.

Theorem 7.1.1 (Trakhtenbrot). Any network with at least 2 edges belongs to
exactly one of the 8 classes: h-networks, p-networks, s-networks. An h-network
has a unique decomposition and a p-network (respectively, an s-network) can
be uniquely decomposed into components which are not themselves p-networks
(s-networks), where uniqueness is up to orientation of the edges of the core, and
also up to their order if the core is a bond.

A network N is simple if N* is a simple graph. Let N(n, m) be the number of
simple planar networks on n vertices and m edges. In view of Theorem 7.1.1 we
introduce the functions H(n,m), P(n,m), and S(n,m) that count the number
of simple planar h-, p-, and s-networks on n vertices and m edges. Note that
the components of simple networks are simple networks (or just edges). For
example, K3 (the complete graph on three vertices) is a (non-simple) p-network
composed of an edge and a path of length two, which in turn is a simple s-
network composed of two edges. The graph K, — {1,2} is a simple h-network,
and all its components are simple edges.

Let G(®)(n,m) denote the number of c-connected planar graphs with n ver-
tices and m edges. For ¢ =0, 1,2 let us define compose operations for the three
stages of the connectivity decomposition. Informally, for ¢ = 0 the composition
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s—network p—network h—network
Figure 7.1: The three types of networks.

equals the disjoint union. For ¢ = 1 we join the parts at a single vertex. For
¢ = 2 we replace one edge of the first part by the second part. A formal defini-
tion is as follows: Assume that M and X are graphs on the vertex sets [1 .. k]
and [1 .. 7] and we want to compose them by identifying the vertices j of X with
the vertices v; of M, for j = 1,...,¢, such that the resulting graph will have
n := k + i — ¢ vertices. (No vertices are identified for ¢ = 0.) Moreover, let S
be a set of i — ¢ vertices from [c+ 1 .. n] which are designated for the remaining
part of X. Let M’ be the graph obtained by mapping the vertices of M to the
set [1 .. n] \ S, retaining their relative order. Let X’ be the graph obtained by
mapping the vertices [c+1 .. 7] of X to the set S, retaining their relative order,
and mapping j to the image of v; in M’ for j = 1,...,c. Then the result of the
compose operation for the arguments M, (vq,...,v.), X, and S is the graph
with vertex set [1 .. n] and edge set E(M') U E(X’). If ¢ = 2 and M contains
an edge {v1,va} it is deleted.

7.2 Planar graphs

We show how to count and generate labeled planar graphs with a given number
of vertices and edges in three steps. A first simple recursive formula reduces the
problem to the case of connected graphs. In the next section, we will use the
block structure to reduce the problem to the 2-connected case. This may serve
as an introduction to the method before we go into the more involved arguments
of Section 7.4.

Let Fy(n, m) denote the number of planar graphs with n vertices and m edges

having k connected components. Obviously we have F;(n,m) = G (n,m) and
GO (n,m) =3_, Fr(n,m). Moreover,

Fr(n,m) = 0 for m+k<n.

We count Fy(n,m) by induction on k. Every graph with & > 2 connected
components can be decomposed into the connected component containing the
vertex 1 and the remaining part, using the inverse of the compose operation for
¢ = 0 as defined in Section 7.1. If the split-off part has ¢ vertices, then there are
(7;__11) ways to choose its vertex set, as the vertex 1 is always contained in it.
The remaining part has k — 1 connected components. We obtain the recursive
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formula
n—1 m
-1
Fi(n,m) = Z Z (TZ 1>G(1)(i,j)Fk1(n —i,m—j) for k>2.
i=1 j=0

Thus it suffices to count connected graphs. The counting recurrence also has an
analogue for generation: Assume that we want to generate a planar graph G with
n vertices and m edges uniformly at random. First, we choose k € [1 .. n] with
probability proportional to Fi(n,m). Then we choose the number of vertices i
of the component containing the vertex 1 and its number of edges j with a joint
probability proportional to (?:f)G(l)(i,j)Fk,l(n —4,m — j). We also pick an
(i — 1)-element subset S’ C [2 .. n] uniformly at random and set S := S’ U {1}.
Then we compose G (as explained in Section 7.1) out of a random connected
planar graph with parameters ¢ and j, which is being mapped to the vertex
set S, and a random planar graph with parameters n —i and m — j having k — 1
connected components, which is generated in the same manner.

7.3 Connected planar graphs

In this section we reduce the counting and generation of connected labeled planar
graphs to the 2-connected case. Let M;(n, m) denote the number of connected
labeled planar graphs in which the vertex 1 is contained in d blocks. Here we
will call them mg-planars. An m;-planar is a connected planar graph in which
the vertex 1 is not a cutvertex. Clearly, G (n,m) = 3;11 My(n,m) and

Mg(n,m) = 0 for n<d or m<d.

In order to count mg-planars by induction on d (for d > 2), we split off the
largest connected subgraph containing the vertex 2 in which the vertex 1 is not
a cutvertex. This is done by performing the inverse of the compose operation
for ¢ = 1 as defined in Section 7.1. If the split off m;-planar has 7 vertices, then
there are (7;:22) possible choices for its vertex set, as the vertices 1 and 2 are
always contained in it. The remaining part is an my_i-planar. Thus

n—d+1m—1

-2
My(n,m) = Y (T;Q)Ml(i,j)Mdl(n—i-i—l,m—j) for d>2,
i=2 j=1

and this immediately translates into a generation procedure.

Next we consider mj-planars. The root block is the unique block containing
the vertex 1. A recurrence for mj-planars arises from splitting off the subgraphs
attached to the root block at its cutvertices one at a time. Thus we consider m;-
planars such that the b least labeled vertices in the root block are not cutvertices.
Let us call them [,-planars and denote the number of l,-planars with n vertices
and m edges by Ly(n,m). The initial cases (b = n) of the recurrence are
connected graphs without cutvertices. We have

G®(n,m) for n>3
1 for ne{1,2} and m=n—1.

L,(n,m) = {

We calculate Ly(n,m) forb=n—1,...,1, and eventually M;(n,m) = Li(n,m),
recursively as follows: To count L, using Ly41, we split off the subgraph attached
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to the b-th least labeled vertex in the root block, if it is a cutvertex. This can
be any connected planar graph. The remaining part is an ly,q-planar. If the
split off subgraph has i vertices, then there are (7:11) ways to choose them, as
the vertex 1 of the subgraph will be replaced with the cutvertex. We obtain the
recursive formula

n—1m-—1 n 1
Ly(n,m) = ; jz:(:) <z B 1>G (4, ) Lp1(n—i+1,m—j) for m>b>1.

The values GV (4,7) are known since i < n, j < m. Again, the generation
procedure is straightforward.

7.4 Two-connected planar graphs

In this section we show how to count and generate 2-connected planar graphs.
If we take an arbitrary simple planar network with n vertices and m — 1 edges,
add an edge between the poles, then choose a pair 1 < 2 < y < n, and exchange
the vertex labels (1,2) with (z,y), then we obtain every 2-connected labeled
planar graph with n vertices and m edges in m ways. Thus

G(2)(n,m) _ %N(n,m—l) for n>3,m>3

0 otherwise.

Now we derive recurrence formulas for the number IV of simple planar networks.
Trakhtenbrot’s decomposition theorem implies

N(n,m) = {P(n,m) + S(n,m)+ H(n,m) for n Z 3,m>2
0 otherwise .

p-Networks. Let us call a p-network with a core consisting of k parallel edges
a pr-network, and let Py(n, m) be the number of pg-networks having n vertices
and m edges. Clearly, P(n,m) = ", Pi(n,m). In order to count py-networks
by induction on k, we split off the component containing the vertex labeled 3
by performing the inverse of the compose operation for ¢ = 2 as defined in
Section 7.1. Technically, it is convenient to consider the split off component
as a pi-network. But note that according to the canonical decomposition, a
pi-network is either an h- or an s-network. Assume that it has 7 vertices and
j edges. Then

Py(i, 5) H(i,j)+ S(i,5) fori>3,j>2
i, =
13 J 0 otherwise .

The remaining part is a pg_i-network (even if k = 2). For k > 2 we have
Pir(n,m) = 0 if n<2 or m<k.

There are (?:g’) ways how the vertex labels [1 .. n] can be distributed among

both sides, as the labels 1, 2, and 3 are fixed. We obtain the recurrence formula

n—1lm-—1

-3
Pi(n,m) = ZZ (7;_3)P1(i,j)Pk1(n—z’+2,m—j) for k>2.

i=3 j=2
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s-Networks. Let us call an s-network whose core is a path of k edges an
si-network, and denote the number of sg-networks which have n vertices and
m edges by Si(n,m). Then S(n,m) = Y ;—, Sk(n,m). We use induction on
k again, but for sg-networks we split-off the component containing the vertex
labeled 1. Again it can be considered as an s;-network, and it is either an h- or
a p-network, according to the canonical decomposition. Thus

H(i,j)+ P(i,j) fori>3,j>2
S1(i,7) = <1 fort=2,7=1
0 otherwise .

The remaining part is an s;_1-network (even if k = 2). For k > 2 we have
Sg(n,m) = 0 if n<k+1 or m<k.

Concerning the number of ways how the labels can be distributed among both
parts, note that the labels 1 and 2 are fixed, hence the new 1-root for the
remaining part can be one out of n — 2 vertices, and then the number of choices
for the internal vertices of the split off si-network is (?:5’) We obtain the
recurrence formula

n—1m-—1
Sk(n,m) = (n—2)z (?_;3)51(2',]')3;61(n—i+1,m—j) for £>2.

h-Networks. The core of an h-network is a pseudo-brick. We can order the
edges of the core lexicographically using the vertex numbers. A recurrence
formula similar to the p- and s-network case arises from replacing the edges
of the core with components one at a time and in lexicographic order. To
give names to the intermediate stages, let us call an h-network such that the
components corresponding to the first k edges of the core are simple edges an
hi-network, and denote the number of hg-networks with n vertices and m edges
by Hy(n,m). For k > m, all components must be simple edges. H,,(n,m) is
the number of pseudo-bricks with n vertices and m edges, the initial case of our
recursion. We have
— 2
H,,(n,m) = wQ(n,m +1),

where Q(n,m) denotes the number of c-nets, i.e., rooted 3-connected simple
maps, with n vertices and m edges (see the next section): If we take an arbitrary
c-net, assign the labels 1 and 2 to the root vertex and the other vertex of the
root edge, delete the root edge, and number the remaining vertices arbitrarily,
we obtain each pseudo-brick in two ways (namely, one for each face routing).

Next we derive a recurrence formula to calculate Hy(n,m) for k = m —
1,...,0, and eventually H(n,m) = Hy(n,m). To count Hj using Hyy1, we
split off the k-th component of an hg-network, i.e., the component replacing the
k-th edge of the core. This can be a simple network of any of the three kinds
or such a simple network together with an edge between its poles. Assume that
it has 7 vertices and j edges. Then the number of choices for the component
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network is

N(i,j)+ N@G,j—1) fori>3,j>2
H'(i,j) = {1 fori=2,57=1
0 otherwise .

The remaining part is an hyyi-network. There are (’7_2

172) ways to choose the
vertices of the component, as the vertices 1 and 2 are merged with the endpoints
of the k-th edge of the core, respecting their relative order. We obtain the

recurrence formula

n—2m—=k+1

n—2 L. . .
Hnm) = 3 S (122G =i+ 2m =+ ),
i=2  j=1
form >k > 0.
7.5 C-nets

In the preceding sections, we have shown how to count and sample random
planar graphs assuming that we can do so for c-nets, i.e., 3-connected simple
rooted planar maps. For this we use a formula for their number Q(n,m) derived
by Mullin and Schellenberg in [106]. Using Euler’s formula, it asserts that

Q(n,m)=0 for n<4 or m<n+2

and otherwise

Q(n,m) = —ani(—1>”j_"(i+é_n> @

i=2 j=n

y 2m —2n+2\ (2n — 2 4 2m —2n+1 2n — 3
n—1 m—j n—i—1 m—j—1/|"

This concludes the counting task.

The first sampling algorithm for c-nets with given numbers of vertices run-
ning in ezpected polynomial time algorithm is due to Schaeffer et al. [9, 127, 128].
For our sampling algorithm we also need to control the number of edges. A sam-
pling procedure with this additional requirement has been described in [67]. It
runs in expected time O(n?) for a fixed edge density ratio o € ]3,3[ , where
 — «, and in expected time O(n?) for triangulations (where 2 — 3), which
is also the worst case [67].

For a deterministic polynomial running time, we use an extended version of
the algorithm presented in [28] with an additional parameter for the number of
edges, as explained in the conclusion of [28]. The resulting algorithm runs in
deterministic O(n”) time and O(n*) space, or, if a pre-computation is allowed,
O(n?) time and O(n”) space.

7.6 Planar multigraphs

We have seen how to count and generate random planar graphs on a given num-
ber of vertices and edges using a recursive decomposition along the connectivity
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structure. A by-product of our result is that we can also generate connected
and 2-connected labeled planar graphs uniformly at random. Moreover, it is
easy to see that we can count and generate random planar multigraphs by only
changing the initial values for planar networks as follows:

N(n,m) = P(n,m) for n=2,m >2
Py(n,m) = 1 for n=2,m=k,k>1.

7.7 Uniform sampling and exact numbers

In this section we establish a polynomial upper bound on the running time
and the memory requirement of our sampling algorithm. We also report on
computational results from an implementation of the counting formulas.

Uniform sampling. Since our algorithm for sampling random labeled planar
graphs is an application of the well-known ‘recursive method’ for sampling [47,
64, 108], we outline the essentials only.

The algorithm pre-calculates a number of dynamic programming arrays con-
taining the values of F, M, L, N, P, S, H, (), and GG, before the actual random
generation starts. Altogether these tables have O(n?®) entries, and all entries
are bounded by the number of planar graphs ¢ n~7/2 27.2" n! (see Section 2.1).
Therefore the encoding length is O(nlogn) [48, 112] and the total space require-
ment is in O(n*log n) bits. The computation of each entry involves a summation
over O(n?) terms. Using a fast multiplication algorithm (see e.g., [44]), the ta-
bles can be filled in O(n) time.

The values in the dynamic programming tables are used during the proba-
bilistic decisions in a recursive construction of the labeled planar graph, which
is essentially the inversion of the presented decomposition. For each entry, we
scan over all the entries from which it was computed (there are at most nm of
them) and store the partial sums in a balanced binary tree, where each inter-
nal node contains the maximum of its left-hand siblings. The total size of the
resulting data structure is O(n®) and it can be initialized in O(n%) time.

We assume that we can obtain random bits at unit cost. When given a
random number between 1 and the sum over all leaves, we can find the corre-
sponding table entry in one pass through the tree of partial sums, while reading
each bit of the random number only a constant number of times, and hence in
O(nlogn) time. Then the procedure calls itself recursively for both factors of
the product. Note that the sum of the bit lengths of both factors is linear in the
bit length of the entry. It follows that the total running time for traversing the
decomposition tree and creating the output is in O(nQ), and hence dominated
by the generation of c-nets.

It is not necessary to create the binary trees for each entry of the tables.
Instead, one can simply recompute some of the values from the preprocessing
step and stop if the partial sum exceeds the random number. In this way,
the recursive decomposition uses O(n%) time and O(n*logn) space. Now the
following theorem follows by combining the results of this and the preceding
section.

Theorem 7.7.1.  Labeled planar graphs on n vertices and m edges can be
sampled uniformly at random in deterministic time O(n") and space O(n*logn).
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If we apply a preprocessing step, this can also be done in deterministic time
O(n®) and space O(n").

To increase the efficiency of the algorithm one might want to apply a tech-
nique where the generated combinatorial objects only have approximately the
correct size; this can then be turned into an exact generation procedure by re-
jection sampling. A general framework to tune and analyse such procedures
has been developed in [9, 55] and applied to structures derived by e.g., disjoint
unions, products, sequences and sets. To deal with planar graphs it needs to be
extended to the compose operation used in this chapter. Fusy [66] developed a
Boltzmann sampler that sample a labeled planar graph of an exact size and runs
in quadratic time, based on the general frame work of Boltzmann sampler [55],
a bijection between trees and c-nets [67], and analytic expressions of generating
functions for planar graphs with various connectivity [71].

Exact numbers. Table 7.1 shows the exact numbers 97(10)7 gg), gy(f)7 and gy(lg)

of labeled planar graphs, labeled connected planar graphs, labeled 2-connected
planar graphs, and labeled 3-connected planar graphs on n vertices, up to n =
18, which are computed from the recursive counting formulas.

Using the computed numbers we can study several basic questions about a
random labeled planar graph.

Denise, Vasconcellos, and Welsh [48] introduced a Markov chain whose sta-
tionary distribution is the uniform distribution on all labeled planar graphs.
However, its mixing time is unknown and seems hard to analyse, and is per-
haps not polynomial. Moreover, the corresponding sampling algorithm only
approximates the uniform distribution.

Denise, Vasconcellos and Welsh [48] proved that g < ni75.87+0() | Ben-
der, Gao, and Wormald [13] proved that gfio) < nl26.1"T°(™) which is the num-
ber of labeled 2-connected planar graph. Furthermore, Osthus, Promel, and
Taraz [112] improved the upperbound to be ggo) < n!37.37*°()  McDiarmid,
Steger, and Welsh [99] proved that the quantity ( g /n!)Y/™ converges to a limit
7, the labeled planar graph growth constant [99], as n — oo, and Gerke, McDi-
armid, Steger, and WeiBl [70] proved that the quantity (G(©)(n,m)/n!))'/™ with
m = gqn (1 < ¢ < 3) converges to a limit v, as n — oo.

To see the speed of convergence, we compute the value of g{& /(n - ) |) for

n—1
various connectivity ¢, e.g., gég) /(50- gflg)) = 25.2. We compute also the value of

97(16) / gr(Lo) for several ranges of the connectivity ¢, in particular géé) / gég) = 0.96.

Gerke and McDiarmid [69] proved that the limit u of the expected edge
density of general (no connectivity requirement) labeled planar graphs is at
least 13/6 = 1.86, and Bonichon, Gavoille and Hanusse [39] proved that p is
smaller than 2.54. Our computation shows that this value for n = 50 is 2.12.
Giménez and Noy [71] determined the labeled planar graph growth constant
v = 27.2, the asymptotic fraction of connected graphs p.on = 0.96, and the
limit of expected edge density p = 2.21.
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" i 0

1 1 1
2 2 1
3 8 4
4 64 38
5 1023 727
6 32071 26013
7 1823707 1597690
8 163947848 149248656
9 20402420291 18919743219
10 3209997749284 3005354096360
11 604611323732576 569226803220234
12 131861300077834966 124594074249852576
13 32577569614176693919 30861014504270954737
14 8977083127683999891824 8520443838646833231236
15 2726955513946123452637877 2592150684565935977152860
16 904755724004585279250537376 861079753184429687852978432
17 32540398865729308081379067064 1 310008316267496041749182487881
18 126073204858661604803062210068760 | 120210565158574034465039064701904
n e O

n n

1 1 0
2 1 0
3 3 0
4 28 1
5 490 25
6 15306 1227
7 822766 84672
8 70546120 7635120
9 8646554043 850626360
10 1374022343240 112876089480
11 304206135619160 17381709797760
12 65030138045062272 3046480841900160
13 15659855107404275280 598731545755324800
14 4191800375194003211360 130389773403373545600
15 1234179902360142341550240 31163616486434838067200
16 396280329098426228719121280 8109213009296586130944000
17 137779269467538258010671193472 2282014010657773764160588800
18 51559968835767582034693055042976 690521215428258768326957184000

Table 7.1: The exact number gy,

(e)

of c-vertex connected labeled planar graphs

on n vertices, up to n =18, for ¢ =0, 1,2, 3.
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Chapter 8

Unlabeled Trees

In this chapter we recall enumeration results on unlabeled trees, based on the
results by Otter [76, 113], to illustrate how to use the cycle index sums to
compute the number of unlabeled structures.

First we determine that the number of unlabeled trees is asymptotically
e n~%2 & nl for constants ¢ = 0.5349485 and £ ~ 2.95577. Then we derive
the recursive counting formulas for rooted trees, which yield a uniform sampling
algorithm for unrooted trees running in deterministic time O(n4) with space

O(n?).

In Sections 8.1 and 8.2 we derive the cycle index sum and the ordinary
generating function for unlabeled rooted trees. We also derive the identity
relating the ordinary generating function for unlabeled rooted trees and that for
unlabeled unrooted trees. In Section 8.3 we determine the asymptotic numbers
of unlabeled (rooted and unrooted) trees. In Section 8.4 we present the recursive
counting formulas, which can be turned into a uniform sampling algorithm that
samples an unlabeled unrooted tree.

8.1 Unlabeled rooted trees

We will begin with enumerating unlabeled rooted trees and then apply the dis-
similarity characteristic theorem to enumerate unlabeled unrooted trees.
Let £(n) be the number of unlabeled rooted trees on n vertices and let

n>0

be its corresponding ordinary generating function. Pélya showed that

Aok
T(z) = zexp Z % . (8.1.1)

k>1

To see this, we consider the number #4(n) of the unlabeled rooted trees where
the root has degree d. As we have seen in Section 4.4, given such a tree, deleting
the root and the edges adjacent to the root yields a collection of d unlabeled
rooted trees. Conversely, given a collection of d unlabeled rooted trees, a new

95
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unlabeled rooted tree is constructed by adding one new vertex and connecting
it with each of the roots of d given rooted trees.

To compute fd(n) we consider the power group I°¢ with object set YX where
X ={1,2,---,d}, Y is the set of all unlabeled rooted trees, Sy is the symmetry
group on X, and I is the identity group on Y. We define the weight of each
unlabeled rooted tree in Y to be the number of vertices in the tree, that is,
w:Y —{0,1,---,} is defined by w(y) = k for |y| = k. Then T'(z) enumerates
the elements of Y by weight, i.e., it is the figure counting seires for Y. Thus
the weight of each function f in YX defined by (2.3.3) is the total number of
vertices in the d rooted trees to which the function f corresponds.

Since Sy consists of all permutations of X, the orbits of the power group
I correspond precisely to rooted trees whose root has degree d. The weight
of each orbit is one less than the total number of vertices in the rooted tree to
which the orbit corresponds due to its root vertex.

From Pdlya’s enumeration theorem (Theorem 2.3.1) with A = Sy and ¢(z) =
T'(z) we know that Z(Sy, T'(z)) is the function counting series and the coefficient
of 2" in Z(Sg, T'(x)) is the number of rooted trees on n + 1 vertices, whose root
have degree d. Thus the coefficient of " in 2Z(Sg,T(z)) is the number of
rooted trees on m vertices, whose root have degree d. Thus summing over all
possible values of d we obtain T(x), that is,

T(z) = xZwZ(Sd,T(x)) = .’L‘ZSL’Z(Sd;T<$),T($2),T($3),-~-)
d>0 n>0
2.3.1 [(z*
G20 e [T T(k )
k>1

The following identity enables us to determine the coefficient of 7'(z) recursively:
If ano Apx™ = exp(X:nZO anx™), then a, = A, — % ( Z;ll kakAn_k) . The
first few terms computed by Riordan [120] are

A

T(:U):x+z2+2x3+4x4+99§5+20:1:6+48x7+115x8+..._

8.2 Unlabeled trees

The dissimilarity characteristic theorem (see e.g., Theorem 8.2.1) expresses the
number of dissimilar vertices of a graph in terms of the numbers of dissimilar
blocks and the number of dissimilar vertices of each block in the graph [76]. In
the case of trees, the blocks of the graph are the edges.

For any tree T, let v* be the number of dissimilar vertices, that is, the number
of orbits of vertices determined by the automorphism group I'(T"). Further I'(T')
determines the similarity classes of edges. An edge is said to be symmetry if its
end vertices are similar. Let e* the number of dissimilar edges and s the number
of symmetry edges. Note first that s equals 0 or 1. In particular, s = 1 if and
only if the tree has two central points that are similar. Furthermore we have the
following identity, known as the dissimilarity characteristic theorem for trees.

Theorem 8.2.1. Let v*, e* and s be as above. Then

1=v"—e"+s. (8.2.1)
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Proof. We prove this by induction on the number of classes of dissimilar edges.
If T has just one class of dissimilar edges, then clearly v* = 2,¢* = 1,5 = 0.
Thus (8.2.1) holds. Otherwise, consider a dissimilar edge e of T, one of whose
end vertices is a leaf, and delete all the leaves in the same class as e from T'.
Then the resulting graph 7" has v* — 1 dissimilar vertices, and e* — 1 dissimilar
edges and s symmetry edges. Applying the induction hyperthesis to 7", we have
1=@"=-1)—(e*—1)+s=v*"—e*+s. O

Let t(n) be the number of unlabeled (unrooted) trees on n vertices and let
T(x) = > ,>ot(n)z™ be its corresponding ordinary generating function. The
identity (8.2.1) can be used to derive T'(z) from the generating function for trees
rooted at a vertex T'(x). Summing (8.2.1) over all unlabeled (unrooted) trees
on n vertices we obtain

D= v =) (e —s). (8.2.2)
Ty Tn

T’V‘L

Note that » . 1 =t(n) and >, v* = t(n). Furthermore >, (e" — s) counts
the number of unlabeled trees on n vertices rooted at an asymmetric edge. Such
a tree is determined by any two different trees rooted at a vertex by joining two
roots by a distinguished edge. Thus }_ . (e* —s) = (T(z))? = T'(x2))/2. From
(8.2.2) we have the following identity.

Theorem 8.2.2. Let T(x) and T'(z) be as above. Then

T(z) = T(x) - - ((TA(:I:))2 - T(a:2)) . (8.2.3)

8.3 Asymptotics

From (8.1.1) one can show that 7'(z) has a singular expansion of the form
T(x)=1+a(l —z/OY?2+b(1 —x/&)+c(1 —2/6)>? + ..,

for some nonzero constants £, a,b,c. Applying Lemma 2.4.2 and the rescaling
rule (2.4.3) we obtain

tAn ~ én73/2§-7n7
where é = 0.5349485 and £ ~ 2.95577.
From Theorem 8.2.2 we may get T'(z) = d + e(1 — 2/6)Y? + f(1 — x/&) +

g(1 —x/€)?/? 4 ... | for some constants d,e, f,g. However by differentiating
(8.2.3) we get

T'(z) = T'(x) (1 - T(x)) PP,

which implies that e = 0. Moreover one can show that g # 0 using the second
derivative of T'(z). Thus T'(z) has a singular expansion of the form

T(z)=d+ f(1—x/&)+g(1—a/e)?+.-,

for some nonzero constants d, f, g. Again applying Lemma 2.4.2 and the rescal-
ing rule (2.4.3) we obtain

tn ~ Cn_5/2§_n7

where ¢ = 0.5349485 and & ~ 2.95577.
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8.4 Recursive counting and uniform sampling

In this section we derive the recursive counting formulas for unlabeled but rooted
trees by the decomposition strategy, and then derive the formula for the unla-
beled (unrooted) trees using (8.2.3).

As before let £(n) be the number of all unlabeled rooted trees with n vertices.
Let £;(n) be the number of all trees with n vertices where all the rooted subtrees
have size < [. Clearly #;(n) = 1 (which counts a so-called star graph). Then
summing over the number k of rooted subtrees of size | we get, for n > 2 and
1<i<n—-1,

tn) = t,_1(n),
=D/ 7 -

ti(n) = > <t(l)+kk 1)51—1(71—]?1)-
k=0

From (8.2.3) we get that for n even,

. S 1.
tn=1(n)— Y (i)i(n—i)+ 5in/2),
=0

and for n odd,
tn = t(n) — Z i(i)f(n —i) — %f(n/2)2.

All the counting numbers can be computed in polynomial time and their values
can be stored in linear space. We have a complete set of counting formulas
for unrooted trees, which yields a polynomial time algorithm that samples an
unrooted tree uniformly at random.

Theorem 8.4.1. Unlabeled trees on n vertices can be sampled uniformly at
random in deterministic time O(n*) with space O(n?).

There are known algorithms that sample a random (unrooted) tree uniformly
at random. To name a few, [143] uses the centroid of trees and [27] uses a
Boltzmann sampler that runs in linear time with no pre-processing.



Chapter 9

Unlabeled Outerplanar
Graphs

In this chapter we determine the asymptotic number of unlabeled outerplanar
graphs using cycle indices, and derive recursive counting formulas and a uniform
sampling algorithm.

We have seen in Chapter 5 that outerplanar graphs can be decomposed ac-
cording to the degree of connectivity. An outerplanar graph is a set of connected
outerplanar graphs, and a connected outerplanar graph can be decomposed into
two-connected outerplanar graphs. In the labeled case this decomposition yields
the equations that link the exponential generating functions of two-connected,
connected, and general outerplanar graphs.

For unlabeled outerplanar graphs we use cycle index sums to obtain exact
and asymptotic results. Using the cycle index sums we obtain implicit informa-
tion about the ordinary generating functions of unlabeled outerplanar graphs.
The difficulty is that the generating function for unlabeled connected outerpla-
nar graphs is defined implicitly by a multiset of connected outerplanar graphs.
However, we overcome this by applying the singular implicit function theorem.

We show that the number of unlabeled outerplanar graphs on n vertices is
asymptotically ¢ n=5/2 n=™ n!, for a suitable positive constant ¢ and n~! ~
7.503597. We also study typical properties of a random unlabeled outerplanar
graph chosen uniformly at random among all the unlabeled outerplanar graphs
on n vertices. The expected number of edges in a random unlabeled outerplanar
graph is asymptotically 1.54894n and the probability that a random unlabeled
outerplanar graph is connected tends to 0.845721 as n goes to oco. Furthermore,
the chromatic number of a random unlabeled outerplanar graph is three with
probability tending to one as n goes to co.

Using the decomposition along the connectivity we derive recursive counting
formulas for unlabeled rooted connected outerplanar graphs, and present a uni-
form generation procedure for unlabeled unrooted connected outerplanar graphs
running in expected time O(n7) with space O(n?), using rejection sampling.

The rest of the chapter is organized as follows. In Section 9.1 we derive
cycle indices for unlabeled two-connected, connected, and general outerplanar
graphs. In Section 9.3 we estimate the asymptotic numbers for unlabeled out-
erplanar graphs with various connectivity. In Section 9.4 we investigate typical
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properties of a random outerplanar graph on n vertices, such as the probability
of connectedness, the expected number of components, the expected number of
isolated vertices, the chromatic number, and the number of edges. In Section 9.5
we present recursive counting formulas and the uniform sampling algorithm.

9.1 Cycle indices

In this section we discuss the cycle indices of unlabeled two-connected, con-
nected, and general outerplanar graphs.

Two-connected outerplanar graphs. The generating functions for unla-
beled two-connected outerplanar graphs were derived in [26, 119, 139] as follows.

Theorem 9.1.1. The cycle index sum for unlabeled two-connected outerplanar
graphs (i.e., dissections) is given by

1 v (d) 3 1 L/ Sy + 87 —ds) — 2
d>1
2 2
81 — 35782 + 25159 3—81\/27
—6 1
* 1652 LT A
1 S% 281
—— |1+ =5+—]4 2-6 1.
16( +Sg+ 5 55 S2 +

Using Formula (2.3.6) and Theorem 9.1.1 we derive the cycle index sum for
vertex rooted dissections, which we will need later.

Corollary 9.1.2. The cycle index sum for vertex rooted dissections is given by

Z(V;Sl,SQ)2<1+51\/S%681+1) (911)
51 /
+72(81+82) 1—3s9 — 8%—682+1 .
855

Connected outerplanar graphs. We denote the set of unrooted connected
outerplanar graphs by C, and the set of vertex rooted connected outerplanar
graphs by C. All rooted graphs considered in this section are rooted at a vertex.
Consider the corresponding generating functions C (z) = 3, ¢,z" and C (z) =
Do Cna™.

The cycle index sum for rooted connected outerplanar graphs is derived
by decomposing the graphs into rooted two-connected outerplanar graphs, i.e.,
vertex rooted dissections.

Lemma 9.1.3. The cycle index sum for vertex rooted connected outerplanar
graphs is implicitly determined by the equation

Z(V; Z(C; sp, So1s -+ ), Z(Cs 80, Sapy )
kZ(C: sk, Sk, )

Z(C) = s1 exp Z

k>1

(9.1.2)



9.1. CYCLE INDICES 101

Proof. Graphs in C rooted at a vertex that is not a cut-vertex can be constructed
by taking a rooted dissection and attaching a rooted connected outerplanar
graph at each vertex of the dissection other than the root vertex. By (2.3.5) we

obtain that
51 (Z(V)) [Z(é)} (9.1.3)

S1

is the cycle index sum for connected outerplanar graphs rooted at a non-cut-
vertex. The division (resp. multiplication) by s; is due to the removal (resp.
addition) of the root vertex before (resp. after) application of (2.3.5).

The cycle index sum for rooted connected outerplanar graphs where the
root vertex is incident to exactly n blocks, n > 2, can be obtained by another
application of the composition theorem. We join n connected outerplanar graphs
that are rooted at a vertex other than a cut-vertex at their root vertex. Applying
(2.3.5) with the symmetric group S, and (9.1.3) (divided by s1) for the cycle
index sum for non-cut-vertex rooted connected outerplanar graphs (excluding

the root) yields w205 [(ZON 15601
12(5,) (222 [0

Summing over n > 0, we get (Z (Sp) :=1)

2(C) =51y Z(S,) KZ;V)) [Z(é)H .

With the well-known formula (2.3.1), the statement follows. O

Theorem 9.1.4. The cycle index sum for connected outerplanar graphs is given
by

Z(C)=2C)+ Z(B; Z(C)) — Z(V; Z(C)). (9.1.4)
Proof. To derive the cycle index sum for unrooted connected outerplanar graphs,
one can use (2.3.7). We obtain

Z(C) = /O N iZ(CA)dsl +2(C) om0 - (9.1.5)

A

The term Z (C) |s,—0 can be further replaced by Z (B) |s,—0 [Z(C)] because each
fixed-point free permutation in a connected graph G has a unique block whose
vertices are setwise fixed by the automorphisms of G. Using the special structure

(9.1.2) of Z(C), a closed solution for the integral in (9.1.5) can be found [139].
We put these facts together and obtain (9.1.4). O

Outerplanar graphs. We denote the set of outerplanar graphs by G, its
ordinary generating function by G (x) and the number of outerplanar graphs
with n vertices by ¢,. As an outerplanar graph is a collection of connected
outerplanar graphs, it is now easy to obtain the cycle index sum for outerplanar
graphs. An application of the composition formula (2.3.5) with the symmetric
group S; and object set C yields that Z (S;)[Z (C)] is the cycle index sum for
outerplanar graphs with [ connected components. Thus, by summation over all
I > 0 (we include here also the empty graph into G for convenience), we obtain
the following theorem.
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Theorem 9.1.5. The cycle index sum for outerplanar graphs is given by

1
Z(G) = exp ZEZ(C;S’“’S%"”)

k>1

9.2 Ordinary generating functions and exact num-
bers

As discussed in Section 2.3, the ordinary generating functions can be derived
from their cycle index sums by replacing the formal variables s; by z*. Exact
numbers can then be computed from the ordinary generating functions by Taylor
series expansion around z = 0.

Ordinary generating functions. Replacing s; by x, sy by 22, ... we ob-
tain the generating functions, V(z) and B(z) of vertex rooted dissections and
dissections:

1
V(@) =55 (142 — 32 — 22° +2%) (9.2.1)
778;;2 ((1+x)\/x4—6x2+1—:c3\/x2—6:c+1),
1 ¢ (d) 1 d
B(x):—Zlog( 3— 2%+ /22 — 629 + 1 (9.2.2)
2464 d 4( )

21 5 1 1 3-
S R e

8 47 16 8z ' 16a2 16

1+2 2
4 %ta? e
xr

The coefficients of B(z), counting unlabeled dissections, can be extracted in
polynomial time,

B(z) = 22 + 2% + 22" + 32° + 925 4 2027 4 752° 4+ 2622° + . . .,
matching the values computed by Read, see [133, A001004].

Replacing s; by z? in Z (é), we obtain that the generating function C’(x)
counting vertex rooted connected outerplanar graphs satisfies

, (9.2.3)

from which the coefficients C,, counting vertex rooted connected outerplanar
graphs can be extracted in polynomial time:

C(z) =z + 2% + 32 + 102 + 402° 4 1812 + 91827 + . . ..

See [135, 139] for more entries. The numbers in [135] verify the correctness of
our result and were computed by the polynomial algorithm proposed in [21].
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In addition, it follows from (9.1.4) that the generating function C(z) count-
ing connected outerplanar graphs satisfies:

C(zx)=C(x)+ Z(B;C (x) — Z(V; C (), (9.2.4)

from which the coefficients ¢, counting connected outerplanar graphs can be
extracted in polynomial time:

C(z) = o + 2% 4+ 22 + 5z* + 132° + 4625 + 17227 + .. ..

See [133, A111563] for more entries.
The generating functions G(z) and C(z) of outerplanar and connected out-
erplanar graphs are related by

G () = exp Z %C ($k) . (9.2.5)

k>1

From this, we can extract in polynomial time the coefficients counting outerpla-
nar graphs,

G(x) =1+ + 22% + 42% + 102* + 252° + 802° + 27727 + .. ..
See [133, A111564] for more entries.

Exact numbers. We compute the exact numbers using Taylor series expan-
sion, around x = 0, of the ordinary generating functions presented above. We
can also derive recursion formulas to compute the exact numbers for vertex
rooted unlabeled outerplanar graphs in polynomial time (see Section 9.5). All
computations necessary to compute b,, c¢,, and g, can be executed in polyno-
mial time. Table 9.1 shows the exact numbers that are computed in this way
and implemented by Vigerske [139]. The exact numbers é, for vertex rooted
unlabeled outerplanar graphs were verified by Tomii [135] using the counting
formulas in Section 9.5.

9.3 Asymptotics

To determine the asymptotic number of unlabeled two-connected, connected,
and general outerplanar graphs, we use singularity analysis introduced in Sec-
tion 2.4. To compute the growth constants and subexponential factors we ex-
pand the generating functions for outerplanar graphs around their dominant
singularities. For unlabeled two-connected outerplanar graphs we present an
analytic expression of the growth constant. For the connected and the general
case we give numerical approximations of the growth constants.

Two-connected outerplanar graphs. We first derive the asymptotic num-
ber of unlabeled two-connected outerplanar graphs.

Theorem 9.3.1. Let b, be the number of unlabeled two-connected outerplanar
graphs on n vertices. Then .
by ~bn~ 267"

with growth rate 571 =34 2v2 ~ 5.82843 and constant b = 0.00596026.
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n bn Cn gn
1 0 1 1
2 1 1 2
3 1 2 4
5 3 13 25
6 9 46 80
7 20 172 277
8 75 it 1150
9 262 3783 5291
10 1117 20074 26918
13 102249 3846640 4872771
14 489077 23410035 29395784
15 2370142 144965988 180857382
16 11654465 910898943 1130700488
17 57916324 5794179218 7163245811
18 290693391 37248630398 45895629266
20 7504177738 1580880366039 1937625709854
21 38532692207 10416314047854 12739784808937
22 199076194985 69080674190341 84331837321404
23 1034236705992 460841447382976 561647630439975
24 5400337050086 3090747326749823 3761221057579892
25 28329240333758 | 20829976038652612 | 25314597326376883

Table 9.1: The exact numbers b,,, ¢,, g, of unlabeled two-connected outerplanar
graphs, connected outerplanar graphs and outerplanar graphs on n vertices, up
to n = 25.

Proof. Let § be the smallest root of 22 — 6z + 1, § = 3 — 2v/2. Equation (9.2.2)
implies that B(z) can be written as

1 Va2 —6x+1 3—1‘\/27
B(x)——ilog 1- pop— + TR —6z+1+A(z),

where A () is analytic at 0 with radius of convergence > §. Since the logarithmic
term is analytic for |z| < §, we can expand it and collect ascending powers of

Va? —6x+1in B(z). Thus,

where A (z) is again analytic at 0 with radius of convergence > §. Finally, using
Va2 —6x+1 = /1 —2/5v/1—dx for x < § and applying Lemma 2.4.2 we
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obtain

3 n75/267n
= (16(51—3)+6(513)3>( 1=8) < T <”O<rlz)>
(3\/5_4)3/2 —5/2
svar

~

(3+2\/§)n. 0

Connected outerplanar graphs. We now turn to the problem of asymp-
totic enumeration of connected outerplanar graphs. First we have to establish
the singular development of the generating function for vertex rooted connected
outerplanar graphs C (z). Let 1 be the radius of convergence of C' (). Observe
that the coefficients ¢, are bounded from below by the number of unlabeled
vertex rooted dissections v,,, which has exponential growth > 1. Furthermore,
these coefficients are bounded from above by the number of embedded outer-
planar graphs with a root edge,which also has exponential growth > 1 (this
follows from classical enumerative results on planar maps; see [138]). Hence n
is in (0,1).

To apply Theorem 2.4.3 for rooted connected outerplanar graphs, we con-
sider the function

H (z,y) := zexp

Z(Vsy,C (%)) Y Z(;C(a*), C(a™)) .

y = kC(ak)

Observe that (9.2.3) implies that H(z,C(z)) = 0. The difficulty in the
application of the singular implicit functions theorem (Thm. 2.4.3) is the ver-
ification of the requirements of this theorem. Hence, to apply Theorem 2.4.3,
we have to check that the dominant singularity of the generating functions for
the connected components is determined by its implicit definition (like (9.2.3))
and not by a singularity of H(x,y). This analysis is the main purpose of the
next proposition. Observe that it can also be easily generalized to other classes
of connected unlabeled graphs with known blocks.

Lemma 9.3.2. The generating function C’(x) satisfies the conditions of The-
orem 2.4.3 with the function H (x,y) from (9.3) and (r,s) = (n,7), where n is
the dominant singularity of C(x) and T := lim,, - C(x).

As a consequence, Theorem 2.4.3 ensures that C’(x) has a singular expansion

Clx) =) CpX*, (9.3.1)

k>0

where
22-H (n,7)

x A A
X = ].—*, C():T, 01:_ 9
n 2 H (1,7)

and constants C’k, k > 2, are computable from the derivatives of H (x,y) at
(n,7).

Proof. The conditions H(0,0) = 0 and a%H(O’ 0) = —1 can easily be verified.
The positivity conditions on the coefficients of H(x,y) follow from the positivity
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of the coefficients of Z (V). The analyticity domain of H(x,y) is determined by
the dominant singularities of Z A(V); that is, H (z,y) is analytic for z and y such
that |y| < 0 and |z!| < n and |C (2') | < § for each [ > 2. Since C (x) is strictly

increasing for positive z and since < 1, we have |C (2] < |C (2%) | foralll > 2

and |z| < 7. Therefore, H (z,y) is analytic for |z| < R := min(\/7,/C~1 ()
and |y| < S :=9.

We show next that 7 < R and 7 < S. Let H(z,y) := H(z,y) +y. H(z,y)
satisfies H(z,C(z)) = C(z) and has the same domain of analyticity as H(x,v).
Assume 7 > 0. Then there exists zop < 7 such that C (zo) = . Observe
that, if |z| < zo then |C(2?)| < |C(x)| < C(xg) = 6. Thus (x,C(x)) is in
the analyticity domain of H(x,y), so that H(z,C(z)) = C(z). By continuity
we obtain H(xo,C(x)) = C(z). We have now the contradiction that C/(x)
is analytic at xo since 2o < 7, whereas H(z,C(z)) is singular at zo because
C(x0) = 8. Hence 7 < S = 4. Since we know that 7 < 8, i.e., n < C~1(9), we
get R =,/ > n. Now it remains to prove that 7 < 4. Assume 7 = §. Observe
from (9.1.1) and (9.2.3) that

~ A~

C(x) = zexp(¥(C(z)) + A(x))

where ¥U(y) = 1/8(1+y—+/1 — 6y + y?) has a dominant singularity at y = §, and
where A(z) is a generating function analytic for |z| < 7 and having nonnegative
coefficients. (This follows from the fact that 2A(z) is the generating function
for reflective vertex rooted dissections [139].) Hence, for 0 < z <,

A

C'(2) = C'"(2)¥'(C(x)C(a),

so that U/(C(x)) < 1/C(z). Thus, ¥'(C(x)) is bounded when # — 7™, which
contradicts the fact that lim,_,s- ¥'(y) = +o0.

Thus, H(x,y) is analytic at (n, 7) and H(n,7) = 0 is satisfied. As pointed out
before, the dominant singularity n of C (z) is determined either by a singularity
in a component of (9.2.3), or by a non-uniqueness in the definition of C'(z) by
(9.2.3). The relation 7 < ¢ excludes the first case, so that the singularity is
caused by a non-uniqueness of the inversion. Hence, the derivative of H(x,y)
with respect to y has to vanish at (z,y) = (n,7), since otherwise the implicit
function theorem ensures a (unique) analytic continuation of C(x) at = = 7.
Therefore, the equations from (2.4.7) are satisfied for (r,s) = (n, 7).

Furthermore, one can see that

d? 1 9% Z(V;s1,C(n?))

2 H(x, 2 Y 2oLl )

8y2 (x y) (z,y)=(n,7) T 88% S1 s1=T

1,7
T (r2-67+ 1)3/2
and
d 1 3 ZW;r,C(x?))
—H(x, = -+
ox ( y) (z,y)=(n,7) T (77 ox T
. A2k
koo kC(xF) a=n
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From 0 < 7 < § and the fact that the derivative in a%H (n,7) is a derivative
of a formal power series with positive coefficients evaluated at 1 > 0, it follows
that both derivatives are strictly positive and hence do not vanish.

Finally, the aperiodicity of C’(w) follows from the fact that ¢; # 0 and

és #£ 0. O

Theorem 9.3.3. The function C () has a singular expansion of the form

Cx)=Cm+) CpX*  X:= 1—%, (9.3.2)
k>2

with constants Cy, k > 2, which can be computed from the constants C’k, and
with n as in Lemma 9.3.2. Hence,

303 —-5/2 ,—n
4ﬁ n 17 )

where Cs =~ 0.017972 and n~' ~ 7.503597.

Cp ~~

Proof. Recall (9.2.4) for the ordinary generating function for connected outer-
planar graphs,

A~

C(z)=C(2)+ Z(B;C(x)) — Z(V; C(x)).

Since 7 < 4§, it is clear that the dominant singularity of C (z) is the same as

C (z) [63, Chap. VI.6]. The singular expansion of C'(x) around 7 can then be
obtained by injecting the singular expansion of C (z) into (9.2.4):

C(x) =) CpX* (9.3.3)
k>0
+2(B;Y  CuXFCP (1= X?)%),Cn°(1— X?)%),--+)
k>0
~Z(Vi)y GXM COP (1= X)), CP (1 - X2)%), ).
k>0

Developing in terms of X (around X = 0) gives a singular expansion

k>0
It remains to check that C; = 0 and C5 # 0. From (9.3.3) it is clear that

—é1 iz(]})

A A~ 0
Ci=C1+C1 —Z (B
1 1+ 18 (B) 951

S1

(s1,82)=(1,C(n?)) (s1,82)=(1,C(n?))

From (2.3.6) we know s; aile (B) =Z (V), so that

C, =0y (1 + zZv) _ 82(1}))

S1 881

(s1,82)=(1,C(n?))
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On the other hand, (9.3) implies that

B
2 H -1
a9 (z,y) +

<H«am+w»(;;;ZOAMOu%>—;;ZWuhé@%Q.(9&@

By (2.4.7) and Lemma 9.3.2,

0 0 1

(s1,82)=(7,C(n?))

Thus, C7 = 0. Assume C3 = 0. Then the expansion (9.3.2) yields
Cp ~ O(n*k/zfl)n*”

for some odd number k > 5. This contradicts ne,, > é, ~ 76’1/ (24/7) n=3/2p—n
(by Lemma 9.3.2).

Next, we approximate the value of the dominant singularity n. As far as
we know, the computation of analytic expressions for growth constants has not
been possible for some classes of unlabeled structures that are even simpler
than outerplanar graphs, for example, for trees, see [63, Sec. VII.2.3] and [113].
Nevertheless, we can simplify the problem by reducing it to one variable, and
provide numerical estimates of the growth constants.

With (9.3.4) for C%H (n,7) and the explicit formula for Z (V) from Corollary

9.1.2 the equation %H (n,7) = 0 becomes

VT 6r1
= 8C (11?)*. (9.3.5)

(n)2(r — N ~
7G+mﬁ@w>@““(” WMWMWHQ

With algebraic elimination [63, App. B.1], (9.3.5) can be reformulated as a
system of polynomial equations, regarding C (772) as a fixed value. We obtain
a polynomial equation of degree 8 in 7 with coefficients p; () (depending on

0(772))7@:0, 787

po(n) +p1(n) 7+ p2 () 7+ p3 (n) 7° + pa () 7*

+p5 (M) 70 +ps (0) 7% + pr () 77 + ps () T8
— 0. (9.3.6)

The solutions of (9.3.6) do not need to satisfy (9.3.5), but every 7 that is a
solution of (9.3.5) is also a solution of (9.3.6). We denote the solutions of (9.3.6)
by 71 (), -+, 78 (). It remains to solve the equations

H(naTi(n))ZO’ izla"'78a

and to pick the correct solution 7. Since H (z,y) depends on C (z), which we
do not know explicitly, and since it includes also an infinite sum that we were
not able to simplify, we can only approximate the solutions of H (n,7; ()) = 0

by truncating the infinite sum in H (z,y) at some index m and replacing C' ()
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with CI™l (z) := S ¢,2" for known coefficients &, ---, é,. That is, we
search for roots of the functions

Z(V;7i(n), Cm(n IS Z(V; Clm k), Clml (k)
7i(n) kz k Clml(nk) )

R

-7 (n),

it = 1,---,8, in the interval (0,1). We solve the equation I{T[m]( ) = 0 for
m = 25 numerlcally, select the correct root, and obtain the estimates

n ~0.1332694 and 7 =~ 0.1707560.

The residuals in the equations Ffi[m] (n,7) = 0 and a%fli[m] (n,7) = 0 have an
order of 1078,
O

Outerplanar graphs. The singular expansion and the asymptotic number of
outerplanar graphs are as follows.

Theorem 9.3.4. The function G (z) has a singular expansion of the form

)

Ga)=Gm+Y GpXF — X:=,[1-

k>2

3|8

where 1 is as in Lemma 9.3.2, and where the constants Gy, k > 2, can be
computed from the constants C, in particular Gz = G (n) Cs. Furthermore, g,

satisfies
n+k— n
gn = E ( n >G2k+177 ;

and in pC” ticul(”
3G3 5/2
—QF N /

In ™ 4w ’
where G3 ~ 0.021504 and n~' ~ 7.503597.

Proof. Recall (9.2.5) for the ordinary generating function for outerplanar graphs,

x) = exp Z %C’ (azk

E>1

As the exponential function exp(-) is regular, the dominant singularity of G (x)
is the same as C (z). Replacing C (x) by its singular expansion (9.3.2) and z*

bynk(l—Xg)kforkZQ,weget
G (z) = exp +Zcxk+z CiP(1—x2k |,
k>2 k>2

from which the singular expansion of G (z) can be computed. Then, by Lemma
2.4.2 we derive the asymptotic estimate of g,. O
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Bipartite outerplanar graphs. Finally, using the same techniques as for the
general case, we can compute the asymptotic estimate of bipartite outerplanar
graphs.

Theorem 9.3.5. Let (g),, be the number of bipartite outerplanar graphs on n
vertices. Then

(gv),, ~bn=2 g,

with "717_1 ~~ 4.57717.

9.4 Random outerplanar graphs

This section investigates typical properties of a random (unlabeled) outerplanar
graph chosen uniformly at random among all the unlabeled outerplanar graph
on n vertices. We first discuss the probability of a random outerplanar graph
being connected, and the number and type of components, and then proceed
with the distribution of the number of edges.

9.4.1 Connectedness

We start with the probability that a random outerplanar graph is connected.

Theorem 9.4.1. The probability that a random outerplanar graph is connected
is asymptotically ¢/g ~ 0.845721.

Proof. The probability that a random outerplanar graph on n vertices is con-
nected is exactly ¢,/g,. The asymptotic estimates for ¢, and g, from Theo-
rem 9.3.3 and Theorem 9.3.4 yield ¢, /g, ~ C3/G3 = 0.845721. O

9.4.2 Components

The number of components can be studied by considering a bivariate generat-
ing function for outerplanar graphs with a variable that counts the number of
components.

Theorem 9.4.2. The expected number of components in a random outerplanar
graph is asymptotically equal to a constant ~ 1.17847.

Proof. Let k,, denote the number of components in a random outerplanar graph
on n vertices and let

G (z,u) :=exp Z %ukC (z%)
k>1

be the generating function for outerplanar graphs, where the additional variable
u marks the number of components. Thus, the probability that an outerplanar
graph has k& components is

Pr(k, =k) = [x”uk] G (z,u) /gn,
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and the expected number of components is

1 0
f— e n 1
S k)G = - 5G )
" E>1
1
= —[z"]G(x) Z C (2%)
In k=1
By asymptotic expansion around x = 1, we obtain
L 75/2 —-n
x)ZC’(aj)N n) Cs( 1+ZC 3/2>
E>1 r>1
which together with Theorem 9.3.4, more precisely
gn ~ G (7) Gy /2y
yields
E(kn) ~ 14> C(n") = 1.17847. O

r>1

Given a family A of unlabeled connected outerplanar graphs, we can make
the following statements about the probability that a random outerplanar graph
has exactly & components in A. Denote the number of graphs in A that have
exactly n vertices by a,, and let A (z) := 3" ana™.

Theorem 9.4.3. Given an unlabeled outerplanar graph G with n vertices, let
K2 be the number of connected components of G belonging to A. If the radius
of convergence o of A (x) is strictly larger than n, that is, a, is exponentially
smaller than c,, then the probability that a random outerplanar graph with n
vertices has exactly k > 0 components belonging to A converges to a discrete
law:

Pr(nf: ) (Sk7 exp Z A )

7‘>1

and the expected number of components belonging to A in a random outerplanar
graph with n vertices is
A
)~ AWM

r>1

Proof. Let G*(z,u) be the bivariate generating function for unlabeled outerpla-
nar graphs, where the additional variable u marks the number of components
belonging to A,

G ) = e | 05 (A @)+ (C () - A ()

k>1

uk —1 &
= G (x)exp Z 3 A ()

k>1
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Then we have
Pr(st =k) = [w”uk] G4 (2, 1) /gn.
Since A () is analytic at 1, the dominant singularity of G (z,u) for fixed u is

determined by G (). Thus we get

ufF—1
k

1" GA ()~ [uFlexp | 30 AW | 271G (),

k>1

ie.,

k
A _ w [k u” —1 k
Pr(xk; =k) . [u*] exp kél ’ A(n®)

= Z(S Al exp |~ 1A ()

k>1
For the expectation of x4 we again use
E(ed) = - 1" 264 (2,1) = - 076 () 3 A (%)
" 9n ou ’ In .

E>1

The statement follows from the analyticity of A (z) at n and Theorem 9.3.4. O

9.4.3 Isolated vertices

The asymptotic distribution of the number of isolated vertices in a random
outerplanar graph can now be easily computed.

Theorem 9.4.4. The number of isolated vertices in a random outerplanar graph
has asymptotically geometric law with parameter n. In particular, the expected
number of isolated vertices in a random outerplanar graph is asymptotically
n/ (1 —n) ~ 0.153761.

Proof. Let A be the family consisting of the graph that is a single vertex, i.e.,
A (x) = . By Theorem 9.4.3, we have

Pr(r; = k) ~ 1"/ (1 1),
since Z (Sk; A(n)) = n* and 3, 2A(n") = log(1 —n). In other words, the
distribution of the number of isolated vertices ;! is asymptotically a geometric
law with parameter 7. O

Other consequences of Theorem 9.4.3 concern the number of two-connected
components and the number of bipartite components in a random outerplanar
graph.

Corollary 9.4.5. In a random outerplanar graph, the expected number of con-
nected components that are two-connected is asymptotically >, -, B (77’“) R~
0.175054. B
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Proof. Let A := B be the family of dissections, A(xz) = B (z). The radius
of convergence of B(x) is § > n (Lemma 9.3.2). Hence, by Theorem 9.4.3,

E(kB) = 2@1 B (nk) : =

Corollary 9.4.6. In a random outerplanar graph, the expected number of con-
nected components that are bipartite is asymptotically

> Cy (n*) = 0.175427,
E>1

where Cy (x) denotes the generating function for bipartite connected outerplanar
graphs.

Proof. We apply Theorem 9.4.3 with A = C,,. O

9.4.4 Number of edges

In this section, we analyse the distribution of the number of edges in a random
outerplanar graph. To do this, we add a variable y whose power (in the cycle
index sums and generating functions) indicates the number of edges. For a
graph G on n vertices and m edges, and with the automorphism group T (G)
(acting on the vertices), we define

1 b a
Z(G;s1,82, - 3y) = Z (L (G);51,82, ;) = ym\F(G)I 2 Hsﬁ( )'
@€T(G) k=1

Taking the number of edges into account we can derive the cycle index sums
for all encountered families of outerplanar graphs with the additional parameter
marking the edges.

20 = sie [ 3 1 Z(V; Z(C: 5w, 5213 9%), Z(Cs sms sa1:9°%), - 39%)
k>1 k Z(C; sk, s21; y*)

Z(C) = Z(C) + Z(B; Z(C)) — Z(V: Z(C)),

7 (C: ook
2@ =exp |3 (C’S’“’Sfj’ v)

k>1

Similarly as in Section 9.2, the coefficients counting outerplanar graphs with
respect to the number of vertices and the number of edges can be extracted in
polynomial time from the expressions of the cycle index sums.

With the help of Theorem 2.4.4, we can study the limit distributions of the
number of edges in a random dissection and in a random outerplanar graph,
respectively.

Theorem 9.4.7. The distribution of the number of edges in a random outerpla-
nar graph on n vertices is asymptotically Gaussian with mean un and variance
o?n, where

A 1.54894, o2 ~ 0.227504.

The same holds for random connected outerplanar graphs with the same mean
and variance.
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Proof. We first determine the distribution of the number of edges in a rooted
connected outerplanar graph. The generating function C (z,y) is implicitly
defined by
2 Ca*, y* )i y¥)

kC(x%, yk)

C o) =ven |3

E>1

In order to apply the singular implicit functions theorem 2.4.3 for the function
x +— C (z,y) with a fixed y close to 1, we define

H(z,y,2) =
(V- 2. Cl(22.42): Ok kY 02k o 2kY. )k
T exp (V,Z,C(l’,y )ay)+zz(vvc(xayA)vc(x )Y )ay) 2.
o k>2 k C(xk, y*)
We search for a solution (x,z) = (n(y), 7 (y)) of the system
0
H (z,y,2) =0, —H (z,y,2) =0, (9.4.1)

0z

such that (9 (y),7 (y)) is in the analyticity domain of (z, z) — H(z,y, 2).

For y = 1, the solution is at * = 7, z = 7 by Lemma 9.3.2. Then the
classical implicit functions theorem, applied to the system (9.4.1), ensures that
the solution (7,1, 7) can be extended into solutions (n(y),y, 7(y)) for y close to
1, where the functions n(y) and 7(y) are analytic in a neighbourhood of 1. To
apply the classical implicit function theorem on system (9.4.1), it remains to
check that the determinant of the Jacobian of system (9.4.1), with respect to x
and z,

0 0

%H(Ly,z) &H (iC,y,Z)

a 0 0 0 ’
%gH(%y’Z) 5&1&[(1’7%2)

does not vanish at (z,y,z) = (n(1),1,7(1)). This is clear, since from Lemma
9.3.2 we have

> H (1), 1,7 (1)) =0,

- H (77 (1) ’ 177—(1)) 7& 07
2
SEH (1), 1,7 (1) 0.

Hence, there exist analytic functions 7 (y) and 7 (y) such that

Hn(y),y,7 () =0, %H(n ¥) 4,7 (y)) =0, (9.4.2)
HO) W) A0 5 H ()7 () #0

for y close to one. In addition, these solutions are in the analyticity domain of
(x,z) — H(x,y,z) for y close to 1, by analyticity of (z,y,z) — H(x,y,z) at
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(n,1,7). Next, the singular implicit functions theorem 2.4.3 yields a singular

expansion
Cla,y)=> Cely) (V1—2/ny)*

k>0

with coefficients Cy, (y) analytic at y = 1 and verifying C; (y) # 0 for y close to
1.

To find 7' (1) and 1" (1) we compute the first and second derivatives of the
equations in (9.4.2) with respect to y, and express 1’ (y) and 7" (y) in terms of
n (y), 7 (y), and the partial derivatives of H (x,y,2) at (x,2) = (n(y),7 (v)).
Using the approximated values we obtain

1 (1) ~ —0.206426,
" (1) ~ 0.495849,
0t @ (n’(l)

n@) 1) " \n(@)

Theorem 2.4.4 implies that the distribution of the number of edges in a random
rooted connected outerplanar graph with n vertices asymptotically follows a

2
> ~ 0.227504 # 0.

Gaussian law with mean un and variance o®n, where p = —% ~ 1.54894 and
02 ~ 0.227504. The same holds for unrooted connected outerplanar graphs and
for outerplanar graphs, since their generating functions have the same dominant

singularity. O

9.4.5 Chromatic number

Using Theorems 9.3.4 and 9.3.5 we prove that the chromatic number of a random
outerplanar graph is asymptotically almost surely 3.

Theorem 9.4.8. Let G,, be a random outerplanar graph on n vertices. Then

lim Pr[x(G,)=3]=1.

n—oo
Proof. Tt is easy to see that x(G,) < 3 for all outerplanar graphs on n vertices.
Hence, it remains to show that Pr[x(G,) < 2] — 0 for n — oo, that is, we have
to show that almost all outerplanar graphs are not bipartite. Since 1, > 7, we
obtain that for some positive constant ¢

Prx(Gn) <2| = (ggb)” ~ Czbf -0 (n — c0). O

9.5 Recursive counting and uniform sampling

The exact number of unlabeled but rooted connected outerplanar graphs can be
found by the same decomposition strategy.

Let p(n) be the number of all unlabeled connected rooted outerplanar graphs
with n vertices. We distinguish two cases: The case where the root is a cutver-
tex, and the case with a unique root block. In the first case, the graph without
the root has several connected components. Let p;(n) be the number of all
unlabeled connected rooted outerplanar graphs with n vertices where all these
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components have size < [; thus clearly p;(n) = 1 (which counts a so-called star
graph). Let ¢(n) be the number of all unlabeled connected outerplanar graphs
with n vertices and a unique root block. Then summing over the number k of
components of size [ we get, forn >2and 1 <[l <n-—1,

[(n=1)/1] B
p(n) =pu—i(n),  pn) = > <Q(l+1)+k 1

i >pl_1(n kl).

k=0

In the second case, where the outerplanar graph has a unique root block, it
is not so easy to avoid double counting. The number of unlabeled connected
outerplanar graphs where the root block consists of a single edge is p(n — 1).
But otherwise we have to distinguish between two cases: The outerplanar graph
might or might not have a symmetry, in other words, it might or might not have
a nontrivial automorphism that fixes the root vertex, and exchanges the two
vertices on the unique Hamiltonian cycle of the root block that have the same
distance to the root. According to that, let a(n) denote the number of unlabeled
connected asymmetric outerplanar graphs with n vertices. Correspondingly b(n)
denotes the number of unlabeled connected symmetric such graphs. Then for
n >3,

q(n) = p(n=1) + a(n) +b(n).

To compute the symmetric (resp. asymmetric) outerplanar graphs with a
unique root block let b;(n) (resp. a;(n)) be the number of unlabeled connected
symmetric (resp. asymmetric) outerplanar graphs with n vertices that do not
have a cutvertex at distance <[ from the root on the unique Hamiltonian cycle
of the root block. For n > 3,

bi(n) = pli+1)bip1 (n—2i).

i=1

An outerplanar graph with a unique root block can be asymmetric for three
disjoint reasons: either the graph formed by deleting a graph attached to the
cut vertex with distance [ to the root is already asymmetric, or two graphs of
different size are attached to the cutvertices with distance [ to the root, or the
two graphs attached to the cutvertices with distance [ to the root are distinct
for another reason.

ay(n) =Y pli+1)p(j+1)ar1(n—i—j)

1,7=0
+ Z p(i+1)p(j+1)byy1(n—i—j7) + Z (p(gl))blﬂ(n—%).
i#5>0 i=0

It remains to clarify the initial cases for a;(n) and b;(n), where [ = n. In the
sense of above, we also distinguish between symmetric and asymmetric (with
respect to the root vertex) biconnected outerplanar graphs. So, let ¢(n) be the
number of unlabeled connected symmetric biconnected graphs with n vertices.
Clearly b,(n) = c¢(n) and an(n) = (s(n — 1) — ¢(n))/2, where s(n) is the n-
th Schréoder number that was already mentioned in Section 5.4. Using s(n)
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we can also calculate c¢(n) as follows: ¢(1) = ¢(2) = ¢(3) = 1 and for n > 2,
0<1<[n/2],

n

c(2n) =c(2n+1) = c(2n—1)+2>  s(i)e(2n+1 - 2i).

i=2
Thus we complete the exact counting formulas for unlabeled connected rooted
outerplanar graphs. It is easy to see that the number of unlabeled connected
outerplanar graphs only grows exponentially, and thus the values of this section
can be stored in linear space. To compute the numbers using dynamical pro-
gramming, we use at most two-dimensional table, each of whose entry involves
the summation running over at most two parameters and a multiplication with
large numbers. Thus the running time for the computation of the values is
within O(n®) with space O(n®logn).

The decomposition and the recursive counting formulas derived in this sec-
tion can be used to generate an unlabeled rooted connected outerplanar graph
uniformly at random, with one exception: We did not decompose asymmet-
ric biconnected outerplanar graphs, and counted them by counting all bicon-
nected outerplanar graphs and subtracting the symmetric objects. To generate
a random asymmetric biconnected outerplanar graph, we use rejection sampling:
First we generate an arbitrary biconnected rooted outerplanar graph, and accept
it only in the case that it is asymmetric. Otherwise we restart the procedure.
It is easy to see that the graph will be asymmetric with high probability, and
therefore we obtain an expected polynomial time sampling procedure.

Using the uniform generation procedure for unlabeled rooted connected out-
erplanar graph derived above we can derive a uniform generation procedure for
unlabeled wunrooted connected outerplanar graphs, again using rejection sam-
pling. The algorithm first generates a random rooted connected outerplanar
graph. Then it outputs the graph with probability %, where o is the number of
orbits in the automorphism group of the unrooted connected outerplanar graph.
Otherwise we say that the graph is rejected, and the algorithm is restarted. Since
the probability that the graph is rejected is at most 1 — %, the expected number

of restarts is at most
] i—1
1 1
S (1 _ ) Lo,
n n

i=1

It is easy to compute the orbit of the root using an efficient linear time
procedure for isomorphism testing of outerplanar graphs (one could even use the
linear time isomorphism testing algorithm for planar graphs [78, 79], checking
for each position of the root in the graph whether there is an automorphism
that maps the vertex of the root to this vertex).

Theorem 9.5.1. An unlabeled outerplanar graph on n vertices can be sampled
uniformly at random in expected time O(n") with space O(n®logn).

Using generating functions for outerplanar graphs derived in Section 9.2 one
can derive a Boltzmann sampler. Note however that the derived generating func-
tions involve subtraction, which requires an extra cost for rejection sampling.
To overcome this problem a new operator, called cycle-pointing, is introduced
in [27], which yields generating functions for a Boltzmann sampler that runs in
linear time.
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Chapter 10

Unlabeled 2-connected
Planar Graphs

One of the challenging open problems concerning planar structures is the enu-
meration and uniform sampling of unlabeled planar graphs. As a step toward
this task we study unlabeled two-connected planar graphs and present an algo-
rithm that generates unlabeled two-connected planar graphs on m edges uni-
formly at random in expected time O(m?).

Unlabeled planar graphs have in general many automorphisms and also
might have many embeddings on the sphere. A standard way to destroy such
an automorphism is to mark a vertex, an edge, or a face of a graph. To count
and sample unlabeled 2-connected planar graphs, we first root them by marking
a directed edge. Then rooted unlabeled 2-connected planar graphs are counted
up to isomorphisms that map the root of one graph to the root of the other
graph. We also call such a rooted 2-connected planar graph a (planar) network.

We decompose networks along their connectivity structure and apply the
recursive method for uniform generation. Clearly, generating a random rooted
2-connected planar graph and then simply ignoring the root edge does not yield
the uniform distribution, since unlabeled graphs might correspond to different
numbers of rooted graphs. But this imbalance can be compensated by rejection
sampling, i.e., the sampling procedure is restarted with a probability that is
inverse proportional to the size of the orbit of the root. In this way we can sample
unlabeled 2-connected planar graphs in expected polynomial time, uniformly at
random.

In principle, our approach here is similar to the one described for labeled
planar graphs, but for unlabeled structures several new techniques are necessary.
A classical theorem of Whitney (see e.g., [54]) says that a rooted 3-connected
planar graph, i.e., 3-connected networks, can have either one or two embeddings
in the plane where the root edge is embedded on the outer face. Such embedded
three-connected networks are called c-nets. In the case that both embeddings
of the 3-connected graph are isomorphic, we say that it has a sense-reversing
automorphism or it is symmetric.

In order to count symmetric c-nets we prove a new bijective correspondence
to coloured networks (defined below), and a decomposition of these objects. We
also need to consider rooted graphs with an automorphism that reverts the

119
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networks
3—connected networks pole—symmetric networks
c—nets symmetric c—nets pole—symmetric 3—con. networks
l pole—symmetric c—nets
coloured networks with sense—reversing automorphism

#

pole—symmetric coloured networks

Figure 10.1: Dependencies of the concepts.

direction of the root. We say that such a graph is pole-symmetric. We present
a decomposition of pole-symmetric networks, and finally also a decomposition
of pole-symmetric c-nets with a sense-reversing automorphism. It will be useful
to note that the dual of a pole-symmetric c-net is a c-net with a sense-reversing
automorphism.

As a final step we use a deterministic polynomial time generation algorithm
for c-nets of [28]. Note that the generation algorithm of [9] for such objects has
expected polynomial running time. We need the algorithm for c-nets of [28], since
it can easily be adapted to generate c-nets with a certain specified number of
edges on the outer face, which we need in the generation algorithm for unlabeled
2-connected planar graphs.

The rest of the chapter is organized as follows. In Section 10.1 we decompose
networks and derive recurrence formulas. In Sections 10.2 and 10.3 we prove a
bijection between symmetry 3-connected planar graphs and coloured networks,
and derive recurrences formulas of coloured networks. In Section 10.4 we decom-
pose pole-symmetric networks and derive recurrence formulas. In Section 10.5
we compute the number of pole-symmetric networks with a sense-reversing au-
tomorphism, using coloured networks with a pole-exchanging automorphism.
In Section 10.6 we derive a uniform sampling algorithm for unlabeled unrooted
2-connected planar graphs.

10.1 Enumeration of networks

In this section we present a decomposition of networks and derive recurrence
formulas to count them. Let n(m) be the number of networks with m edges.
According to Theorem 7.1.1 we have n(m) = s(m) + p(m) + h(m), where the
functions s(m), p(m), and h(m) count the number of s-, p-, and h-networks with
m edges, respectively.
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s-networks. Note that each s-network has a unique cut vertex v that is closest
to the pole s (here, closest is meant with respect to the length of the shortest
connecting path).

s(m) = Y _(p(j) + h(G))n(m = j) .

j=1

p-networks. Let p;(m) denote the number of p-networks where the number
of edges of the largest network that replaces an edge of the core is bounded by
. The index k in the formula below denotes the number of networks of order [
that replace an edge in the core.

p(m) = pm(m)

m /1) B
5 (s(l) + h(;) +k 1>pl_1(m .

pi(m)
k=0

h-networks. Let N be an h-network. Theorem 7.1.1 asserts that there is a
unique rooted 3-connected network H, such that we can derive N from H by
replacing edges of H with subnetworks. We call H the core of N and denote
H = core(N). We call N symmetric if it has a sense-reversing automorphism o,
i.e., ¢ £id, but p(s) = s and p(t) = t, and asymmetric otherwise.

If H = core(N) is asymmetric, one can uniquely order its edges. The idea
is to label the vertices of the core according to their occurrence in a depth
first search traversal of the core, beginning with the root edge and visiting the
neighbors of a vertex in clockwise order with respect to one of the (at most
two) possible embeddings of the core. The edges are then labeled by the vertex
labels obtained from the depth first search traversal. Then we lexicographically
compare the sequence of these edge labels in the order they were visited by the
depth first search. If the core is asymmetric, one of the sequences is smaller
than the other; We can distinguish between the two embeddings. If the network
has a symmetric core, both edge sequences are the same unless we have inserted
two different subnetworks into a pair of core edges.

If H = core(N) is symmetric, we order its edges in the following way. We
start with the edges uv where u = ¢(u) and v = p(v) according to the traversal;
We colour such edges blue. Then we list the edges uv where u = ¢(v) and
v = @(u) according to the traversal; We colour such edges red. We continue
with the edges that are not fixed by the nontrivial automorphism ¢, and order
them according to the above traversal. Edges and their images, which we call
corresponding edges, are ordered arbitrarily.

To count the number of symmetric and asymmetric h-networks we repeat-
edly replace subnetworks in the above order. Let by, ;(m) be the number of
symmetric h-networks B with m edges where core(B) has b blue and r red
edges, and the first | edges of core(B) are also edges of B. To generate such a
symmetric h-network, we have to start from a symmetric core. The [+1-st edge
of core(B), say €41, is either blue (for I+ 1 < b), or red (for b <l+1 <b+7r),
or uncoloured (for I + 1 > b+ r). Note that ¢;11 might be either an edge of B
or might be replaced by a certain network H as follows. If it is blue, we could
replace H by an arbitrary network: if it is red, we could replace H by a network
with a pole-exchanging automorphism (counted by 7, see Section 10.4): if it is



122 CHAPTER 10. UNLABELED 2-CONNECTED PLANAR GRAPHS

uncoloured, we could replace the corresponding uncoloured [+1-st and [42-nd
edges in pairs by the same copy of a network. When [ equals the number of
edges of B, we have a symmetric 3-connected h-network, which will be counted
in Section 10.2.

ijo n(j)bprit1(m—yj) forl+1<b
bori(m) = 2 5507(0)0bra41(m —37)  forb<l+1<b+r
ijo n(§)bprir2(m —25) forl+1>b+r.

Let a;(m) count the number of asymmetric h-networks A with m edges,
where the first [ edges of core(A) are also edges of A. To generate an asymmetric
h-network we could first take an asymmetric h-network and replace the [+1-st
core edge by an arbitrary network. Or we could take a symmetric h-network and
replace either the [41-st core edge (which is red for b < [4+1 < b+r) by a network
with no pole-exchanging automorphism, or the corresponding [+1-st and [+2-
nd edges (which are uncoloured for [ + 1 > b+ r) by two different subnetworks.
When [ is equal to the number of the edges of A, we have to count the number of
asymmetric 3-connected h-networks, which we consider in Section 10.2. For the
enumeration of networks with and without a pole-exchanging automorphism we
refer to Section 10.4.

a(m) =Y n(jlai(m—j) + > _(n(j) — 1)) bprig1 (m—3)
I

720

+ > ((@)n(G)bbrir2(m—i—j) = n(§)byri42(m—25))/2
II

where I stands for the indices b, r, j satisfying 0 < b <1, max{0,l} < b+r,j >0
and I the indices b, r, 1, j satisfying 0 < b+r < [,7,j > 0. With these numbers
we can compute h(m) = ao(m) + >, .50.0<pir Obor0(M).

We finally end up with the problems (i) to count and sample networks with
a pole-exchanging automorphism — see Section 10.4, (ii) to count and sam-
ple 3-connected symmetric networks — see Section 10.2, and (iii) to sample
3-connected asymmetric networks.

For the last task, we apply rejection sampling. That is, we first generate an
arbitrary 3-connected network. We then check whether it has such a symmetry,
which can be done in linear time [78, 79]. If yes, we restart the algorithm. If
no, we output the asymmetric network. Since almost all 3-connected networks
do not have a sense-reversing automorphism (see [146] for a much stronger
result), the expected number of restarts is constant, and we obtain an expected
polynomial time algorithm.

10.2 Symmetric c-nets and coloured networks

This section contains one of the main ideas to deal with symmetries when count-
ing unlabeled planar graphs. We want to count 3-connected planar networks
with a distinguished directed edge, up to isomorphisms that fix this edge. There
might be one or two embeddings where the root lies at the outer face.

As mentioned in the introduction, embedded 3-connected networks are called
c-nets and counting formulas and sampling procedures for c-nets are known. If
a network has a nontrivial automorphism that fixes the root edge, we call this
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automorphism sense-reversing, and say that the network is symmetric. In this
case we only have one corresponding c-net. Hence, if we can compute the number
of symmetric 3-connected networks, then we can also compute the number of
asymmetric 3-connected networks.

Let H be a symmetric 3-connected planar network, and ¢ its nontrivial
sense-reversing automorphism. A vertex v of H is coloured blue if ¢(v) = v,
and red if v is connected to p(v) by an edge. The edge vp(v) is also coloured
red. An edge uv of a coloured network is blue if both v and v are blue. (Red
and blue edges were already defined in Section 10.1.) Thus a vertex or an edge
is either blue, red, or uncoloured, and the poles and the root are blue.

We can think of H as being embedded in the plane in such a way that ¢ corre-
sponds to a reflection, the blue vertices being aligned on the reflection axis, and
the red vertices having an edge crossing this axis perpendicularly (see Fig. 10.2,
left part). Our arguments, however, do not rely on such a representation.

H* H1 H2

Figure 10.2: Decomposition of a symmetric rooted 3-connected graph.

If we remove from H the blue vertices and their incident edges, and also
remove the red edges (that is, we cut H along the symmetry axis), then the
resulting graph has exactly two connected components (see Fig. 10.2). The
graphs induced by these components and the blue vertices are isomorphic and
will be called H; and Ha. We claim that Hj is 2-connected, and hence H; is
a network rooted at s and ¢: Suppose there is a cut-vertex in Hy. Then this
cut-vertex together with the corresponding cut-vertex in H3 is a 2-cut in H*,
contradicting the 3-connectivity of H*.

Now we extract some more properties of the graphs H; and Hs and define
coloured networks. They are defined in such a way that we can recursively
decompose them, and that we can establish a bijection between symmetric h-
networks and certain coloured networks.

Definition 10.2.1. A coloured network is a network N, where some vertices
are coloured red and blue, satisfying:

(P1) N* has an embedding such that all coloured vertices and the poles lie on
the outer face.

(P2) N and every proper subnetwork of N contain at least one coloured vertex.
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(P3) No subnetwork of N has two blue poles.
Then the bijection to symmetric 3-connected networks is as follows.

Theorem 10.2.2. For all m,b,r there is a bijection between the following two
sets of objects:

(i) coloured networks with (m +b—r)/2 edges and blue poles, where b is the
number of blue edges and r the number of red vertices, and

(i) 3-connected networks with m edges having a nontrivial automorphism that
fixes b+ 1 edges, and point-wise fixes the root and b other edges.

Proof. Given a symmetric 3-connected network H we first check that both H;
and Hs, constructed as described above, are networks and satisfy properties
(P1) — (P3). First, H; and Hs are 2-connected: if there were a cut-vertex in
H,, we also would have a cut-vertex in Hs, and together they would form a 2-cut
in H*, contradicting the assumption that H is 3-connected. (P1) is immediate
from the definition of Hy and Hs. (P2): Every subnetwork contains a coloured
vertex, since otherwise its poles would be a 2-cut in H*. (P3): No subnetwork
has two blue pole vertices, since these blue pole vertices would be a 2-cut in H*.

Conversely, we construct for every coloured network H; with blue poles a
corresponding symmetric 3-connected network H. First make an isomorphic
copy Hs of Hy. Identify corresponding blue vertices in H; and Hs, and add
edges between corresponding red vertices in H; and Hs. The constructed graph
H is clearly a symmetric and by (P1) a planar network. We finally prove that
it is also 3-connected. Suppose for contradiction that H* was not 3-connected.
Then there is a split pair {k1,k2} in H* that determines at least two proper
subnetworks N7 and No. We distinguish four cases:

(1) Both of ky, ko are blue. This is impossible because then H; or Hy would
contain a subnetwork with two blue poles kq, ko contradicting (P3).

(2) Exactly one of ki, ko is blue. Wlog. ko is blue and k; is in H; — Hs. Let
N{ and N be those (non-empty) parts of Ny and N» that also lie in Hj.
By (P2) there are coloured vertices v; € Ny and vy € Nj. Since Hp is 2-
connected, there is a path from v, to ve passing through Hs and avoiding

ks (and k1), which contradicts the assumption that ki, ko is a split pair in
H.

(3) None of ki, k2 is blue, and either both lie in H; or both lie in Hy. Suppose
wlog. both vertices lie in Hy. Then k; and k5 define a nontrivial subnet-
work in H;. But since every such subnetwork contains a coloured vertex,
this contradicts that ki, ko is a 2-cut in H*.

(4) Again none of kq, ko is blue, but this time k; is in H; — Ha, and ko is in
H> — Hy. It can not be that H; contains vertices from both N; and N»,
because of 2-connectivity; the same for Hy. Thus H; either equals N; or
No, which is impossible by (P2), because H; contains a coloured vertex.

O

By Theorem 10.2.2 we can express the number of symmetric 3-connected
networks as b, m—1(m) = nj, .((m+b—1)/2).
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10.3 Counting coloured networks

To derive recurrences of the number of coloured networks we observe that by
Theorem 7.1.1 they are either s-, p-, or h-networks. To count s-, p-, or h-
networks with m edges, b blue edges and r red vertices we introduce the corre-
sponding functions ¥s; ,(m), Ypy.(m), and YAy .(m), where x and y are subsets
of {b,r,u} and specify the possible colours for the poles s and ¢, respectively.
For example, if z = {b} and y = {b,r,u} then the s-pole has to be blue,
whereas we do not impose any constraint on the t-pole — it might be blue, red,
or uncoloured.

The recurrences then follow very much the decomposition that we had in
Section 10.1, but we have to control the possible colours of the poles. Another
difficulty is that in the recursive decomposition we might or might not have a
blue cut vertex in the coloured network without the root edge. However, we can
handle this with the help of appropriately chosen counting functions. Define
functions Yny ,.(m), sy .(m), ¥p;, .(m), and Yh; .(m) to count the number of
coloured networks, s-, p-, or h-networks with m edges, b blue edges and r red
vertices that have no blue cutvertex, respectively. It is clear that coloured net-
works with blue poles can have no blue cutvertex. Otherwise the blue cutvertex

and a blue pole form a 2-cut of a network. Thus %Einb,r(m) = ‘{{E%nzr(m)
Moreover ¥py(m) = Ypy,.(m), %hy,(m) = %hy, . (m) since coloured p-, or

h-networks do not have any blue (in deed any) cutvertex. For convenience let
Yphpr(m) =4 por(m) + Yhe,(m).

Coloured s-networks. A coloured s-network S has either blue poles, one
blue and one non-blue poles, or non-blue poles. Let u be the cutvertex in S

which is closest to s. If at least one of the poles s,t is blue S can not have any
Tb} {b}

blue cutvertex (in particular  is not blue). Thus {bru}5b r(m) = {bru}sb ~(m)
and %b}}sby,. (m) = g‘;}sg ~(m). The cutvertex u induces a split coloured p- or

h-network with poles s,u (counted by ;m phy ), and a remaining part with
poles u,t, which is an arbitrary coloured network that has no blue cut-vertex
(counted by {z?} 1.). If S has non-blue poles u might be blue. If w is blue the
remaining coioured network has no blue cutvertex. If u is not blue the remaining

coloured network might have blue cutvertex.

br r br .
s o(m) = > 5 phy () 000l (m = ),
j’b/’,,‘/
ru b . ru
Eru{sbr( ) = }rl};}phb’ﬂ“’(]) %b}}ng b r—r/ (m ])
j,bl ’
+ Zgﬁphb' (J gz%nb—b',r—r'(m—j)-
jb/ r/

Coloured p-networks. Due to property (P1 — P2) all the coloured vertices
of a coloured p-network must lie in one of its parts, whereas the rest part must
be a single edge. If at least one of the poles is blue the coloured part has no
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blue cutvertex. If not the coloured part might have blue cutvertex.
b b
oy Por(m) = (phnp (m—1)
oo (m) = (g, (m = 1)

e a(m) = Ty (m —1).

Coloured h-networks. There is a unique embedding of the core of a coloured
h-network H into the plane where the root edge and the core edges replaced by
coloured networks lie on the outer face. We can again find a recurrence if we
use the function Yhs ;(m) counting the number of coloured h-networks where
we additionally require that the [ closest core edges (on the outer face) to vertex
s are also edges in H.

We look at the [+1-st closest edge uv on the outer face of the core. It might
also be an edge in H. If not, uv is a split pair in H and determines a subnetwork
S. Due to property (P3) it is not possible that both u,v are blue. If either u or
v is blue {u, v} induces a coloured network with no blue cutvertex. If neither u
nor v is blue {u, v} induces a coloured network that might have blue cutvertex.
It might be the case that all coloured vertices lie in S. Then the remaining
network after the replacement of S is 3-connected with at least 41 vertices on
the outer face. Let ¢;(m) denote the number of such c-nets. These numbers are
computed in [28].

Hoea} 0 (m)
ru b ru .
Z(}b}} () Ik g G) e () Y en(m—j+1)
k>1+1
b .
+ Z H’?}ng, }ri} n;)/ - (7)
7,0,

ru -\ {bru .
+ %ru%nb/ /(]))ibru%hbfb’,rfr',l+1(m—j—f—l) .

10.4 Pole-symmetric networks

We saw in Section 10.1 that in a symmetric h-network with a sense-reversing
automorphism ¢ a red edge uv of the core (i.e., p(u) = v and p(v) = u) can
only be replaced by a pole-symmetric subnetwork, that is, a subnetwork with an
automorphism v that exchanges s and ¢. Such networks are further decomposed
in this section.

Let 7(m) be the number of pole-symmetric networks with m edges. Accord-
ing to Theorem 7.1.1 we have 7(m) = (m) 4 p(m) + h(m), where the functions
5(m),p(m), h(m) count the number of pole-symmetric s-, p-, and h-networks
with m edges, respectively.

Pole-symmetric s-networks. Here we split off the same p- or h-network
at both poles simultaneously. The remaining is either again a pole-symmetric
network, or an edge, or a vertex.

3(m) = Y (p(5) + h(i))ilm — 25) + 2p(| 5 )) + 2h( ) -

J
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Pole-symmetric p-networks. Given a pole-symmetric p-network, s and ¢
might or might not be adjacent, and there might be several pole-symmetric s-
or h-networks between s and t. Similar to the enumeration of p-networks in
Section 10.1 we use the function p;(m) to count the number of pole symmetric
p-networks where the number of edges of the largest subnetwork is bounded by
l.

p(m) = pm(m)

A
pm) = (5(” Thl) k- 1>ﬁl_1(m —Kl).

k
k=0

Pole-symmetric h-networks. Here we want to control the number of pole-
symmetric h-networks with and without a sense-reversing automorphism ¢ sat-
isfying ¢(s) = s and ¢(t) = t. In the case where we do not have a sense-reversing
automorphism, we order the edges of the core of H in such a way that blue edges
wv where 1 (u) = u and ¥ (v) = v come first, followed by the red edges uv where
¥(u) = v and 9 (v) = u. Finally we have the uncoloured edges, ordered in such
a way that corresponding uncoloured edges with respect to the pole-symmetry
are consecutive — but we do not care about their order.

In the case that we have a sense-reversing automorphism ¢, we order the
edges of the core in such a way that we start with the blue edges with respect
to ¢, and then the blue edges with respect to 1. Next we list the red edges
with respect to ¢ and then the red edges with respect to . Finally we list
corresponding edges with respect to ¢ consecutively, which are followed by the
two corresponding edges with respect to v, respectively.

Let Bb’g’r’f’l(m) be the number of pole symmetric networks B with a sense-

reversing automorphism ¢ with m edges, where core(B) has b,b blue and r, 7
red edges with respect to ¢ and 1, respectively, and the first [ edges of core(B)
are also edges of B. Analogously we introduce aj ;. ,(m) for the number of pole-
symmetric networks A without a sense-reversing automorphism. Similarly as in
Section 10.1 it is now possible to formulate recurrences for these functions.

To produce B, we take a network with both a sense-reversing automorphism
¢ and a pole-exchanging automorphism . The [+1-st edge of core(B) might be
an edge of B. If not, we could replace corresponding blue (with respect to ¢ and
) I+1 and [4+2 edges by an arbitrary network (for I +1 < b+ b), or we could
replace corresponding red (with respect to ¢ and %) [4+1 and [4+2 edges by a
network with a pole-exchanging automorphism (for b4+b<l+1<bt+b+r +7).
Finally we could replace corresponding uncoloured edges (41 till [4+4 by the
same network (for I +1 > b+ b+ r + 7). The initial case is that all edges
of core(B) are also edges of B, where we have a pole-symmetric 3-connected
network, i.e., a pole-symmetric c-net, with a sense-reversing automorphism -
see Section 10.5.

by briasa(m=—27), I+1< b+b
By (M) = & 505 ()8 g0 (M=27) ;b4 < IH+1 < bbr+7
> ()b gy iapa(m=47), I+1 > btbtr+7.

s T

To produce A, we could take either a pole-symmetric network with no sense-
reversing automorphism or a network with both a pole-exchanging and a sense-
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reversing automorphism. In the first case we might replace the [+1st edge of
core(A) by a network. In the second case, we could take a network with both a
pole-exchanging automorphism ) and a sense-reversing automorphism ¢, whose
core has additional b blue and r red edges with respect to ¢. Then we might
replace two corresponding blue (with respect to ¢) I+1st and I+2-nd edges by
two different network (for b < [+1 < b—i—E), or two corresponding red edges with
respect to ¢ by a network without a pole-symmetry (for b+b<i+1< b—l—B—&—r),
and then red edges with respect to 1 by two different pole-symmetric networks
(for b+b+7r <l+1<b+b+r+7): If there is no red nor blue edge left (for
l+1>b+b+r+ 7), we could replace the [4+1st and [+3-rd core edges with a
different network than the (+2-nd and [+4-th core edge.

The initial case is that all edges of core(A) are also edges of A, which is
counted by pole-symmetric c-nets with no sense-reversing automorphism. Such
graphs can be counted by subtracting the number of pole-symmetric c-nets
with a sense-reversing automorphism from the number of all pole-symmetric
c-nets. But to sample asymmetric pole-symmetric c-nets, we need another re-
jection sampling step. This works analogously as at the end of Section 10.1. To
show that we have only a linear number of expected restarts of the rejection
sampling procedure, it suffices to show that there are more asymmetric and
pole-symmetric c-nets than symmetric pole-symmetric, which can be done.

Z(n(i)n(j)gb,ﬁ,r,r‘,lJrzl(m_2i_2j) - n(j)i)b,ﬁ,r,f‘,l+4(m_4j))/2
v

where I stands for the indices b, r, i, j satisfying [—b < b < 1,0 < b+r,i,j > 0,
IT the indices b,r, j satisfying 0 < b < I—b, max{0,l1—b} < b+r,j > 0, III the
indices b, 7,1, j satisfying max{0,l—b — 7} < b+r < 1-b,i,5 > 0, and IV the
indices b, 7,4, j satisfying 0 < b+r < I-b— 7, 1,5 > 0.

With these numbers we can compute

h(m) = Z 5 7 0(m) + bb,B,r,f,o(m)-
b,b,r,7>0,0< b41,b+7

10.5 Pole-symmetric coloured networks

To compute the number of pole-symmetric networks with a sense-reversing auto-
morphism, we again use coloured networks, but impose the additional constraint
that the coloured network has a pole-exchanging automorphism. Along the lines
of Theorem 10.2.2 we have a bijection between these pole-symmetric coloured
networks and pole-symmetric networks with a sense-reversing automorphism.
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The decomposition of pole-symmetric coloured networks is a straightforward
combination of the ideas in Section 10.2 and 10.4.

Pole-symmetric coloured s-networks. Given a pole-symmetric coloured
s-network, we split off a p-, or h- graph at both poles simultaneously and count
the remaining graphs, which are pole-symmetric coloured s-, p-, or h-graphs.

S (m) =Y (0h 2 () + hiy o (1)), (m = 25).

J

Pole-symmetric coloured p-networks. Because we have a coloured net-
work, one of the two components induced by the poles is a single edge.

pg,r(m) = ﬁg,r(m - 3) .

Pole-symmetric coloured h-networks. Let ﬁg’nl(m) be the number of
coloured h-networks such that the [ closest core edges (on the outer face) to
vertex s are also edges in H.

brl Zpbr ' Z tr(m — 27)

>0 k>111
+ Z P o () Moty 141 (0 — 257) .
b, i>0

When we remove the last coloured subnetwork in a pole-symmetric coloured
h-network, we have an embedded 3-connected pole-symmetric network with [
edges on the outer face. The dual of such an object is an embedded 3-connected
network with a sense-reversing automorphism where the s-pole has degree [
(Blue edges correspond to red edges and vice versa). It is possible to modify the
decomposition of coloured networks in Section 10.2 to control also this param-
eter. Finally for coloured h-networks we have to use c-nets where the degree of
the s-pole is specified; it is also possible, as we will see in the next section.

Due to Theorem 10.2.2 we have

brrm 1 Z br[r/2'\((m+b )/2)

To count pole-symmetric-nets we its dual, i.e., c-nets with sense-reversing au-
tomorphism and obtain ¢&(m) =), & ,(m) and

Grm) = > mxl(m+b-1)/2).

b k>[1/2]

10.6 Uniform sampling

The decomposition together with the counting formulas immediately gives a
polynomial time generation procedure for planar networks. Using rejection-
sampling we obtain the main result:
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Theorem 10.6.1. There is an algorithm that samples an unlabeled 2-connected
planar graph with m edges uniformly at random, in expected time O(m?®). If
the algorithm has direct access to the values of appropriately chosen counting
formulas, the algorithm can generate such an object in expected cubic time.

Proof. The algorithm first generates a planar network N with m edges, using
the above decomposition and the values of the counting formulas that can be
computed efficiently using dynamic programming. Note that the representation
size of all the numbers is linear, since we deal with unlabeled structures. We
use at most six-dimensional tables (in Section 10.4). The summation there runs
over one parameter, and within the sum we have to perform a multiplication
with large numbers, which can be done in quadratic time. Hence, the overall
running time for the computation of the values is within O(m?).

Using these values we can make the correct probabilistic decisions in a re-
cursive construction of a planar network according to the presented decompo-
sition — this method is standard and known as the recursive method for sam-
pling [47, 64, 108]. Then the algorithm computes the size o of the orbit of the
root in the automorphism group of the graph of N, which can be done in linear
time using e.g. well-known correspondingly adapted graph isomorphism algo-
rithms for planar graphs [78, 79], and outputs the graph of N with probability
1/0. Since the number of edges in a planar graph is linear, the expected number
of restarts is also linear. Thus the overall expected running time is in O(m?).

If we do not charge for the costs for computing the values in the table and
the partial sums of the formulas, e.g. because we performed a precomputation
step, the generation can be done in cubic time. O

The counting formulas resulting from the ideas presented here can easily
be extended to count objects where also the number of vertices is specified. It
is also easy to allow parallel edges, and count multigraphs. In principle, the
decomposition and the recursive formulas have a form that allows to formulate
equations between the corresponding generating functions. It is sometimes pos-
sible to solve these equations and obtain closed formulas or asymptotic estimates
from the solutions. However, due to the large number of parameters needed in
the decomposition, it will not be easy to handle these equations.

Combining the methods in this chapter and Chapter 6 a uniform sampling
algorithm for unlabeled cubic planar graphs was developed in [23].



Chapter 11

Gaussian matrix integral
method

A seminal technique of theoretical physics called Wick’s theorem interprets the
Gauss-ian matrix integral of the product of the traces of powers of Hermitian
matrices as the number of labeled maps with a given degree sequence, sorted
by their Euler characteristics (these maps are the Feynman diagrams for the
matrix integral). This approach leads to the formulas for the numbers of labeled
maps with a given degree sequence and the genus, which are analogous to the
formulas obtained by combinatorial methods [14]. Furthermore, the method has
been successfully used in enumeration of combinatorial structures and in other
fields of mathematics (see e.g., [19, 40, 41, 42, 50, 51, 77, 91, 92, 104, 105, 111,
115, 116, 149]).

In this chapter we first provide a complete proof of the map enumeration
obtained from the Gaussian matrix integral. We then apply the method of the
Gaussian matrix integral to other problems. We show that the enumeration of
the graphs embeddable on a given 2-dimensional surface, in particular of planar
graphs with a given degree sequence, can also be formulated by the Gaussian
matrix integral.

In Section 11.1 we recall the definition of Gaussian matrix integral and
Wick’s theorem. In Section 11.2 we discuss the pictorial interpretation of the
Gaussian matrix integral. In Section 11.3 we prove that the number of maps
with a given degree sequence can be formulated as a Gaussian matrix integral of
powers of the traces of Hermitian matrices. In Sections 11.4 and 11.6 we replace
the trace by a flow defined on a directed graph induced by a Hermitian matrix,
and show that the number of planar graphs with a given degree sequence can
be formulated as the Gaussian matrix integral.

11.1 Gaussian matrix integral

Let M = (M;;) be an N x N Hermitian matrix, i.e., M;; = Mj; for every
1 <i,j < N, where Mj; denotes the complex conjugate of Mj;. Let f(M) =
>orar H(ij)el M;; be a polynomial in its entries, where I ranges over a finite
system of multisets of elements of N x N and aj’s are complex numbers. We
start with the following definition (we will see later in this section how Wick’s
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theorem, Theorem 11.1.1, yields this definition).

Definition 11.1.1. We let

<f>7ZaI< H MU>*Z‘”Z H < M,M, >,

(ig)el P (p,q)eP

where P ranges over all partitions of I into pairs, and for p = (p1,p2),q =
(q1, g2) we have < MyM, > is non-zero only if p1 = q2 and p2 = q1 and in that
case < MyM, >= 1/N.

Next we recall Gaussian integral and Gaussian matrix integral.

Gaussian integral. We first consider the case N = 1. For an arbitrary real
function f, the standard Gaussian integral is defined as

1 g2

<f>=— e 7 f(z)dx, (11.1.1)

where we abuse notation by a multiple use of the symbol <>. Note that <1 >
= 1. We are in particular interested in a function of the form f(z) = 2?7,
where n is an integer. In order to compute < 22" >, we introduce the so- called
source integral < e*® > for a given real s. The source integral can be computed
as follows.

2
<> = — e T e dx
\/27‘[‘/—
_ (== 5>2+s =
= — T
\/27r
(w—3)2
= 62 - )dx
V2T
— 7. (11.1.2)

On the other hand, taking the k-th derivatives of < e*® > with respect to s and
taking s = 0, we get

8k

< e >

_ - =2 s d
8Sk s=0 V2 / ’ 88k s=0 v

F/ e F
<ak >, (11.1.3)

where the first equality is due to the Leibniz integral rule. To interpret < z¥ >,
we use (11.1.3) and (11.1.2) to get

11.1.3) OF 1.12) 9F .2
By U9 2 ey | (1Y T

<z = —e .
sk s=0 Osk s=0

(11.1.4)

As a consequence, we obtain < 2% > = 0 for odd k, and < 2% >= (k—1)!! =
Hk/ %(k—2i+1) for even k, which is the same as the number of ways to partition
k elements into k/2 pairs.
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Gaussian matrix integral. Let M = (M;;) be an N x N Hermitian matrix
and let

dM = ] dM;; [ [ d Re(M;;)d Tm(M;;)

i<j

denote the standard Haar measure, where Re(M;;) and Im(M;;) denote the real
part and the imaginary part of M;;.

The Gaussian (Hermitian) matrix integral of an arbitrary function f is de-
fined as

_ 1 ~N Te(M2)
<f> = m/e NI (M) dM, (11.1.5)

where the integration is over N x N Hermitian matrices, and Zy(N) is the

2
normalization factor making < 1 > =1, i.e., Zo(N) = [e N T(*5)dM.,
As before we are particularly interested in a function of the form

Fan) =3 "ar [ My,

1 (ij)el

where I ranges over a finite system of multisets of elements of N x N. We
introduce also the source integral < e™(MS) > for a given N x N Hermitian
matrix S, where Tr(MS) denotes the trace of the matrix MS. It can easily be
computed by

1 M2

Tr(MS) _ / —N Tr(22) Tr(MS)

<e > = e e dM
ZO(I v )

e
— e 3 ~N) Je 2N dM
Zo(N)

Tr(S2)

= e v, (11.1.6)

since the trace is linear and Tr(MS) = Tr(SM), and thus we get

2
NT: %_MS—&-SM
2 2N

N (; (31~ ;)2) LT

On the other hands, for any 1 <i,5 < N we get

~NTr (T) + Tr(MS)

9 1v(ms) ‘
5=0

0
Te(M Tr(MS)
8Sj'e ( ( S)) € ‘S:O

GSji

0 v
- (85‘” Z Mm”S”m> M) ’S:O

I m,n

= M”
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Thus the derivatives of the source integral becomes

9 0 Tr(MS)
GS]-Z- aslk <¢ > S=0
1 N2y O 0 Tr(MS)
_ : dM
Zo(N) / ¢ 88,08, ¢ 5=0
1

— —NTr(M)M..M e dM
ZO(N)/e i R

= < MZ]MM >, (1117)

where the first equality is due to the Leibniz integral rule. Using (11.1.7) and
(11.1.6), we obtain

(ari7y 0 0 Te(MS) ‘
M;: My -+ = ... r
< MigMee-e > 95,05, ¢ ;e
arie) 0 0 Tr(s?)
= _— 11.1.8
6Sji 6Slk e S=0 ( )
and in particular
0 0 ms?H
M;; M = ——e 2N
< gokL > aSji aSlke - S=0
B 0 d Tr(S?) el
B 8Sj,’ 8Slk 2N S=0
0 0 Zm.n SrnSnm Tr(s?%)
— ’ 2N
85;; \ S 2N c 5=0
_ 0 Su —Tﬁ"
B 8Sji N S=0
0310k
= —. 11.1.
d (11.1.9)

Further, the derivatives in (11.1.8) and (11.1.9) must be taken in pairs (e.g., Sj;
and Sy, with [ = ¢ and k = j) to get a non-zero contribution. This yields the
following result known as Wick’s theorem or the matrix Wick Theorem.

Theorem 11.1.1 (Wick’s theorem). Let M = (M;;) € CN*N be Hermitian
and I be a finite multiset of index pairs. Then

< H Mij > = Z H < Miijl >

(ij)el pairings,PCI? ((ij),(kl))€P

DN I

pairings,PCI? ((ij),(kl))eP

11.2 Pictorial interpretation

In this section we will show how to interpret the Gaussian matrix integral using
concepts of graph theory.
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Fat graphs. A map is a graph together with a fixed cyclic ordering of the
incident edges of each vertex. It defines an embedding of the graph on an
orientable 2-dimensional surface (see [101]). A map is also called a fat graph.
We prefer this term since it corresponds to a helpful pictorial representation.
In a fat graph F' the vertices are made into discs (islands) and connected by
fattened edges (bridges) prescribed by the cyclic orders. This defines a two-
dimensional orientable surface with boundary which we also denote by F. Each
component of the boundary of F' will be called a face of F. Each face is an
embedded circle (see e.g., [101]). We will denote by G(F') the underlying graph
of F. We denote by e(F),v(F),p(F),c(F), g(F) the number of edges, vertices,
faces, connected components, and the genus of F. We recall that 2¢g(F) =
2¢(F) + e(F) —v(F) — p(F).

In the next sections we will count fat graphs and their relatives. To avoid
confusion we assume that a fat graph has labeled vertices, i.e., two fat graphs
are equal if they are equal as sets. We speak about unlabeled fat graphs if the
equality is up to isomorphism.

Definition 11.2.1. A fat graph is pointed if for each vertex, one fat edge
incident to it is specified as its initial fat edge.

Observation 11.2.2. Let F be a pointed fat graph. Then there is a unique
orientation of the faces of F defined in each component as follows: let v be a
vertex and let e be its incident fat edge. Orient the first (clockwise) shore of e
from v, and the second shore of e to v.

Proof. We need to observe that the described process consistently orients each
face of F', and that is simple. O

Pictorial interpretation. Here we will interprete the non-zero contributions
to < f >, where f(M) =3 ;ar H(ij)el M;;, pictorially as follows. We represent
M;; as a half- fat edge consisting of two end points and two parallel lines with
opposite orientation such that ¢ is associated with the outgoing line and j the
incoming line:

i e——
Mij .
] &—<—

Further (11.1.9) saying < M;; My, >= 0;;0;%/N can be interpreted as that
two half- fat edges M;; and Mj,; construct a fat edge with oppositely oriented
shores and with weight 1/N if and only if ¢ = [ and j = k:

<M. M. = 1 i e—=—e | |5
ij "kl N j e—<—ek ki

A fat edge with oppositely oriented shores will be called a decorated fat edge.
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Example 11.1. Let us consider Tr(M™), the trace of the nth power of the
matrix M. By definition of the trace we get

213 777 Minir

Te(M") = > M;, 5, M;

1<in,i2, ,in <N

Following the above pictorial interpretation we represent Tr(M™) as a star fat
diagram with n decorated half- fat edges arranged in a clockwise pointed order,
such that for each half- fat edge, its first shore (clockwise along the centre) is
oriented from the centre, as in Figure 11.1.

M;; Mj; - Mii <*— ;i“il i2i34
172 273 o

Figure 11.1: Tr(M™) and its pictorial interpretation as a star fat diagram.

Moreover, using Wick’s Theorem we can compute

<Tr(M")> = < > Miyi, Migig - Mi iy >
1<iy iz, in <N

Z H < Mikik+1M’ilil+1 >

1<y i, ,in <N pairing

] o

ipik41 Y0001
_— 11.2.1
> I =% (11.2.1)

1<iy,i2, - ,in, <N pairing

Note that n should be even in order to get a non-zero contribution to (11.2.1) and
thus set n = 2m. Further, observe that only a fraction of the (2m — 1)!! possible
pairings have non-zero contribution to (11.2.1); equivalently such pairings form
decorated fat edges. In other words, we can think of a pairing with non-zero
contribution to (11.2.1) as a pointed fat graph with one island, whose faces are
oriented as in Observation 11.2.2. It indeed defines uniquely an embedding on
a surface (see Figure 11.2).

Let F be a contributing pointed fat graph. Certainly it has n/2 = m edges.
Since each edge contributes 1/N to (11.2.1), each pairing gets 1/N™ from all its
edges. However, we should count the contributions due to the summations over
1 <'y,i9, -+ ,i, < N. Notice that each (oriented) face attains independently
any index from 1 to N and thus the faces contribute N?(F) to (11.2.1). In
summary each pointed fat graph F with one island and m faces contribute
NPF)=m  Thys pointed fat graphs with genus zero contribute the leading term
in N as N tends to co. Such a pointed fat graph with genus zero is called a
planar fat graph (or a plane graph or plane map among graph theorists). The
first two fat graphs in Figure 11.2 are planar fat graphs.
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Figure 11.2: All possible fat graphs with one island and n = 4.

In [51] the term a planar graph was used to mean a planar fat graph or a
plane graph. However we will distinguish these, as this is more common among
graph theorists: a planar graph is a graph embeddable on a sphere without
crossing edges, whereas a plane graph is a graph embedded on a sphere without
crossing edges.

Now we count the planar fat graphs interpreted from < Tr(M™) >. Let C),
denote the set and c¢,, the number of the planar pointed fat graphs with one
vertex and with m = n/2 fat edges. Note that the half- fat edge M;,,;, would
be paired by one of the half- fat edges Mj,s,, My is, -+ s Miy,i05 587 Miyying s
forming a fat edge. We can interpret each element of C,, as being composed of
an element of Cj_1 and an element of C,,,_p.

It implies the following recursion

m
Cm = E Ck—1Cm—k, Co=¢1 =1,
k=1

which yields a well-known Catalan number

1 2
Cm = (m) for m > 1.

m+1\m

As a consequence we can compute the limit of Gaussian matrix integral of
Te(M™):

N—o00 N

. < Tr(M™) > cm  ifn=2m
h]ll _— =
0 otherwise .

Example 11.2. Our next example is Tr(M3)* Tr(M?)3. As before we rewrite
it as

< Tr(M3)* Tr(M?)? >
4 3
= < > My, My, My, > MM, | >
1<iy iz, i3 <N 1<j1,j2<N
Analogously to the previous example, this equals ) . NPUE)=e(F) - where the
sum is over all pointed fat graphs F' consisting of four fat vertices of degree 3,
and three fat vertices of degree 2 (see Figure 11.3).
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Figure 11.3: A planar fat graph interpreted from < Tr(M?)* Tr(M?)3

In summary, if f(M) is a product of the traces of powers of M then < f >
is equal to the number of pointed fat graphs F' with the degree sequence given
by the powers, and weighted by NP(F)—e(F),

11.3 Planar fat graphs

In this section we derive the formula for the number of planar fat graphs with
a given degree sequence using Wick’s theorem. For this we first recall some
necessary concepts from complex analysis [126]. For every complex number z
the exponential function exp(z), or e* for short, is defined by the formula

2 3 24

>, z z
F=) p=ltat gttt
o n! 3!

Fix a region (i.e., a nonempty connected open subset of complex plane)
such that exp(Q2) = B(1,1), where B(e,r) = {2z : |z — ¢| < r} for ¢ complex
and r > 0 real. The natural logarithm function log(z) may be defined as its
inverse function, that is, it satisfies w = log(z) and e* = z for z € B(1,1). It
is holomorphic, i.e., infinitely often complex differentiable in B(1,1)\ {z € R:
z < 1} and thus it can be described by its Taylor series

e nl
log(z) = Z - (z=1"
_ (2_1)_(z—1>2+<z—1>3_<z—1>4

2 3 4

The definition of the exponential function given above can be extended for
every Banach algebra. For each i > 1 let z; be a non-zero complex variable with
|zi] € (0,e;) where ¢; > 0 will be chosen later. Let I be the group consisting
of all non-negative integer vectors with only a finite number of non-zero entries
a = (ny,na, ), n; € N equipped with a linear order, which then forms a
linearly ordered Abelian group. The ring R[[Z]] of formal power series over R
in variable Z = (21, 22, , 24, - ), ¢ € N with a linearly ordered Abelian group
I as the index set is a Banach algebra. Thus we can extend the definition of
the exponential function for the ring R[[Z]]. In particular, for X € R[[Z]] with
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X = 2121 Cizi, ¢; ER,

= X" (cizi)
X _ _ X2
X =Y = > H (11.3.1)
n=0 acl i<k
a=(ni, - ,nk)
— lim > M= CZZZ , (11.3.2)
e a<a i<k
a=(ni, - ,nk)
where instead of a = (nq,na,---) we write a = (ny,--- ,ng) for short if n; =0

fori > k+1.
Now we consider a function f which maps each Hermitian matrix M to

F(M) = N D Z"Tr(%i)7

and investigate the relation between the Gaussian matrix integral of f and the
asymptotic number of planar fat graphs.

Observe first that for each i > 1, Tr(M?) = Zf;l A (M)" where \j(M)’s
are the eigenvalues of M, which are all real since M is a Hermitian matrix, and
hence Tr(ATf) = Z;V 1 A\ (M) € R. Thus N} 5, zTr (M ) € R[[Z]] and we
can use (11.3.2) and get

f(M) = ah_)ngo Z l—IN,zz [ (]\fz)}m

a<a i<k
a=(ni, - ,nk)
. sz i\ i
- alggo z<: Q iming! Mz)]
a a T
a=(ni, - ,ng)
We let
N 1n1 i\ T
won = Y [T mar)
a<a i<k v
a=(ny, - ,ngK)
. N i) " i\ i
oo = Jim S TS o)
a<a i<k v
af(nl,S , M)

We first claim the following;:

Claim 11.3.1. For each z; with |z;| € (0,¢;), we have

< esz‘ZlZiTr(MTl) > = a]LH;O < Z H ];12 ' TI‘ MZ)]
a<a i<k

a=(ny, - ,nk)

That is,

<n(M)>= lim <ng(M)>.

a— 00
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To prove it we use the following lemma, which is reformulated from Theorem
4 and Lemma 2 in Section 2, Chap. II in [131]:

Lemma 11.3.2. Let {n,}n>1 be a sequence of random variables. If {n,}n>1
satisfies
(i) E(|nn]) is uniformly bounded, i.e., sup,, E(|n,|) < oo,

(i) E(|nn|la) is uniformly absolutely continuous, i.e., for any € > 0 there
exists § = §(e) > 0 such that if E(I4) < J, then sup,, E(|n.|1a) < €, and

(i55) limy,— 00 N = 1,
then
E(n) = lim E(n,).
We set E(F) = < F(M) > for any integrable function F. Let \; = \;(M),

1 < i < N, be the eigenvalues of M and let A = \(M) = maxi<i<n |A;(M)].
Then the following holds.

Lemma 11.3.3. For any non-negative integer k, E(A\F) < cc.

Proof of Lemma 11.3.83. We will show that for fixed 1 < 4 < N the function
A¥ is measurable (with respect to the Haar measure dM), and so E(A\F) < co.
It follows then that for fixed 1 < i < N the absolute function |\;|* and the
maximum function A¥ = max;<;<n |);|* are also measurable, and so E(A\*) < oo
(see e.g.,[126]).

Let U = U(M) be the unitary matrix that diagonalize M,

M =UAU"

where U* is the conjugate transpose of U, i.e., (U*);; = Uj; and A = A(M)
is a diagonal matrix defined by A;; = \;d;;. Since Tr(M?) = Tr(A?) and the
Jacobian of the transformation M +— M = UAU™ is

J= JI =x)2

1<i<j<N

we get dM = JdAy - - - dAy. Further we obtain

2
Zo(N) = /e—NT“%)dM

/e—N Tr(30%) 7\, - - d\w,

1 M2
Tr(AS) _ —N Tr(42) Tr(AS)
<e > = e 2 e dM
Zy(N) /
Tr(s?) 1 7NT(l(A7§ 2)
= t JdAy -+ dA
e 2N ZO(N) /6 2 N 1 N
Tr(S2)
= e 2N

Thus, similarly to (11.1.7) and (11.1.8) we get

k 2
Tr(S2)

< ¢Tr(AS) o ‘ _ ie s

5=0

<Ak > =

aSk =0

B 0 if k is odd
N BV 4f  is even.
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Thus E\F) = < M > =< Ak > < .

Proof of Claim 11.3.1. We observe first that [Tr(M?)]" = [Ejvzl A (M) <
(NA(M)")"

Now we will show that E(|nz|) is uniformly bounded. We let a = (ny, - - , 1)
be given and we select ;(a) > 0 so that for every z; with |z;| € (0,e;(a)) we
have

(N2 |z)"
&a = H i, 0.
a<a i<k
a=(ni, - ,nk)
Let
g; = infe;(a) > 0. (11.3.3)

From Lemma 11.3.3 we know that A = E(/\(M)Zik ml) < oo. It follows that

< T
a=(n1, , M)

(N |zi]) n;
< E NAXM)*
P> L5 e

a—(nl,_ ,NE) B
N2 n; "
- B | [T aon e
e<a <k 17N
a=(ng, ng)
N2 i ng
- X O%Es(anZe)
imin;!
a<a 1<k
a=(ni, - ,nk)
= 665\ < 0

Thus sup, E(|na]) < oo.

Second we will show that E(|ng|l4) is uniformly absolutely continuous. We
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let £ = sup, &5 < 00, § = £/(26\). Then if E(I4) < §, then

NZz SN
Blmll) = E|| X ]S )" | L
a<a i<k
a=(ni, - ,nk)
(N Jzi])"™ n;
< > B0 enT"
a<a i<k v
a=(ny,- - ,ng)
< i<
D D | e ] CLL
a<a i<k
a=(ni,- mi)
< 6N <e.

Thus sup; E(|na|la) < € for E(I4) < 6.
As a consequence Claim 11.3.1 follows immediately from Lemma 11.3.2. O

From Claim 11.3.1 and Example 11.2 we have that

<f(M)> = lim < Z H (V)" M’)]

a— 00 <a i<k Zn“fl !
a=(ni, - ,ng)
= lim 3 H (v z)" < [1 Imeariy)™ >
a—00 nin,!
a § a i<k i<k
a=(ny, - ,ng)
= lim NeD+pT)=e() (11.3.4)
a = (nl, . ,nk)

where the second sum is over all pointed fat graphs I' with n; vertices of degree
i.
Note that

the number of pointed (labeled) fat graphs (11.3.5)
iin,!

= the number of unlabeled fat graphs x H Aut(T)]
u

Hence

<fM)> = lim > >

a<a I" unlabeled
a=(ny, - ,ng)

N D) —er)

i<k

Next we observe in (11.3.4) that v(I") + p(I') — e(I') = —2¢(T") + 2¢(T") is
additive for the operation of the disjoint union. Taking the logarithm of <
f(M) > we get the following formula for the connected pointed fat graphs.
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Proposition 11.3.4. For every z; with |z;| € (0,&;) where £; > 0 satisfying
(11.8.8) we have

log < f(M) >
ng
— i v(I)+p(I)—e(T) Zi
o ZzlLH;o Z Z N H annzl
a<a I'pointed connected i<k
a=(ni, - ,ng)
— 3 2g(F )+-2]
B alinolo Z Z H z’“n |
a<a T'pointed connected i<k
a=(ni, - ,ng)
Again due to (11.3.6) we have
N~2log < f(M) >
2g(F
— 3 n;
= Zﬁ b |Au |HZ (11.3.7)
a<a I" unlabeled connected
a=(ni, - ,nk)

Now we are ready to state the formula for the asymptotic number of un-
labeled connected planar fat graphs. For the proof we need Fatou’s lemma
(Theorem 2 (c) in Section 2, Chap. II in [131]):

Lemma 11.3.5. Let {&,} be a sequence of random variables. If &, < n for
every n > 1 and E(n) < oo, then

E(liminf¢,) < liminf F(&,) < limsupE(§,) < E(limsupé,).
Theorem 11.3.6. For every z with |z| € (0,g;) where ¢; > 0 satisfying
(11.3.3) and (11.8.8) we have

lim N~2log < f(M) >
N—o0

. 1 o
= Jmo Y 2 Ty L

a<a I' unlabeled connected planar
a=(ni,--,ng)
where I' has n; vertices of degree i, 1 > 0.
Proof. From (11.3.7) we know that

lim N~ ?log < f(M) >
N —oo

. 1 .
= Jmo D 2 ey L7

u
a<a I' unlabeled connected planar i<k
a=(n1, - ,ng)
N—29(D) _
+  lim lim H z
o dim 2 2 TAw(D)]
a<a I" unlabeled connected non-planar i<k
a=(ni, - ,nk)
It is enough to show that
N—29() ‘
lim lim E E —_ H z" = 0.
N—o00 G—00 |Aut(I‘)| -
a<a I" unlabeled connected non-planar i<k

a=(ny, - ,nk)
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For a given sequence n = {n(a)}q.er, where I is a linearly ordered Abelian
group introduced above, we can think of the series

R VR

a<a
a=(ni,--,m)

as the expectation over I equipped with measure p such that u(a) =1iff a € I.
That is,

dim > n(a) =Eu(n).
a<a
a=(n1 - k)

We define a sequence n = {n(a)}tqcr by, for each a = (nq,--- ,ng),

n(a) = Z H |2

Tpp i<k

n;
)

where the sum is over all unlabeled connected non-planar fat graphs I',, with
n; vertices of degree i. We select ¢;’s so that for all z; with |2;| € (0,¢;)

E.(n) = lim > S Izl < oo, (11.3.8)
a<a Dpp i<k
a=(ni, - ,ni)

where the second sum is over all unlabeled connected non-planar fat graphs I'y,;,
with n; vertices of degree 1.

We consider a sequence £y = {En(a)}qaer defined for each a = (nq,-- -, ng)
by,
N_Qg(rnp)
Env@a) =) a—=— 11"
A

where the sum is over all unlabeled connected non-planar fat graphs I',, with
n; vertices of degree i. Note that we have

Eu(En) = lim > &n(a),
a<a
a=(ny, - ,nkK)
and |{n(a)| < n(a) for every N > 1 since ¢g(I',,,) > 0. In addition the sequence
limpy oo En = {limy_ o0 En(a) acr satisfies

N*QQ(an)

lim {y(a) = lim — | | 2"
N—o0 N—o00 Tor |Aut(an)\ gc

ST g Y
Z' lim —————
T N—oco |Aut(Ipp)|

np i<k

= O7

because ¢(I';,;,) > 0 for non-planar fat graphs I',,,,. Thus we obtain

Bfm e) = Jm 3D jim vl =0,
a<a

a=(ni, - ,nk)



11.4. DIRECTED GRAPHS 145

By Fatou’s lemma we have that

liminfE,({n) = limsupE,({x) = 0.
N —oo N—oo

It follows then that

. N—29(Tnp) n
0= ngnoo E.(6n) = lgnoo Jim. ; Z Aut(Ty)] H.@Zi ;
a=(ny,-- ,nk) B

where the second sum is over all unlabeled connected non-planar fat graphs
Iy, with n; vertices of degree i. O

11.4 Directed graphs

In this section we move from matrices to directed graphs. Let M be an N x N
matrix and let D = D(M) = (N, N x N) be a directed graph with weights on
directed edges given by M.

Pointed closed walks. Now Tr(M") may be interpreted as »: [[.c, Me,
where the sum is over all pointed (i.e., with a prescribed beginning) closed
walks in D of length n. Similarly, Tr(M3)*Tr(M?)? may be interpreted as

OC T Mo* O T Me)?

pP1 e€p1 P2 e€p2

where the first sum is over all pointed closed walks p; in D of length 3, and the
second sum is over all pointed closed walks py in D of length 2.
Hence if f(M) = Tr(M3)¥Tr(M?)? we get:

<rf>= > > 1l

4=q192...q7 P {e,e’}eP

where the second sum is over all proper pairings P of the directed edges of the
disjoint union ¢ = q1¢> . . . g7 of 7 pointed closed walks, from which 4 have length
3 and remaining 3 have length 2. Two directed edges form a proper pairing if
one is reversed the other. We also say that pair (¢, P), P proper, contributes to
< f>.

Flows and even sets of directed edges. Toward the enumeration of planar
graphs with a given degree sequence, the starting idea is to replace pointed closed
walks by flows. A non-negative integer function on the directed edges of D is
flow if for each vertex v of D, the sum of f(e) over the incoming edges is the
same as over the outgoing edges. It turns out that a restrictive subset of the set
of all flows consisting of 0,1 flows is already interesting. These flows naturally
lead to even subsets of edges defined below.

Definition 11.4.1. A subset A C E(D) of directed edges is even if A can be
written as a union of edge-disjoint cycles of length bigger than two.
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We further denote by A(rs, ..., ry) the set of all even sets of edges which can
be decomposed into r; cycles of length i (i = 3,...,k) and by A’(r3,...,rs) the
set of all even sets of edges with a fized decomposition into r; cycles of length
i (i=3,...,k). Welet A(r) = Upergt. r Alrs, .. .,1), A = UpsoA(r), and
A (1) = Upepgt e A (r3y .oy 18), A= Ups0 A (7).

A proper pairing of an even set A is a partition of A into pairs (ij), (ji) of
oppositely directed edges.

Cycle double cover conjectures. It is not true that a set of directed edges,
which induces the same indegree and outdegree at each vertex, is a union of
disjoint directed cycles of length bigger than 2. This is closely related to the
cycle double cover conjectures.

Definition 11.4.2. Let G be an undirected graph. A collection of its cycles
is called a cycle double cover (CDC) if each edge belongs to exactly two of the
cycles. Moreover it is called a directed cycle double cover (DCDC) if it is
possible to orient the cycles so that they go oppositely on each edge.

Some of the most puzzling conjectures of discrete mathematics are centred
around this notion. A graph is bridgeless if it cannot be disconnected by deletion
of a single edge. Clearly a graph with a bridge does not have a CDC. On the
other hand, there are

e Cycle double cover conjecture: Is it true that each bridgeless graph has a

CDC?

e Directed cycle double cover conjecture: Is it true that each bridgeless graph
has a DCDC?

The following observation is straightforward.

Observation 11.4.3. Let ¢ € A'(rs,...,rx) come with a fized decomposition
into r; cycles Ciq,...,Cip, of lengthi (i =3,...,k). Let P be a proper pairing
of q. Then the cycles form a DCDC of the simple graph with vertices {1,..., N}
and the edges given by the pairings.

Definition 11.4.4. Let M be a matriz. We let

gr(M) = Z HMea

ceA(r) ecc
g;(M) = Z HM€7
ce A (r) ecc

and we define g, 9', gr,

We call [],.. M. the weight of the cycle c.
Next definition and proposition are crucial.

o (M), g;&wrk (M) analogously.

.....

Definition 11.4.5. Let G be a finite simple undirected graph with at most N
vertices and with a DCDC. Then let ¢(G) be the set of all pairs (q, P) so that
there is a colouring d of the vertices of G by colours {1,..., N}, where each
vertex gets a different color, ¢ = {(d(x),d(y)), (d(y),d(x)); {z,y} € E(G)}, and
P consists of all the pairs ([(d(z),d(y)), (d(y),d(x))]; {z,y} € E(GQ)).
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We remark that each such ¢ is an even subset of directed edges of D =
(N, N x N) since G has a DCDC, and |¢(G)| = N(N—-1)...(N—=|V(G)|+1).

Proposition 11.4.6. A term (g, P) contributes to < gry, .. r, (M) > if and only
if there is a simple graph G with a DCDC consisting of r; cycles of length i
(i=3,...,k) such that (q, P) € ¢(G).

Proof. If (¢, P) € ¢(G), then any DCDC provides a partition of ¢ into its cycles
and hence (¢, P) contributes to < gp,.... r. (M) >. On the other hand if (¢, P)
contributes to < gr,,..». (M) >, then letting G be the graph with the vertices
from {1,..., N} and the edges given by P we get that G is simple since ¢ consists
of edge-disjoint directed cycles, it has a DCDC consisting of r; cycles of length
i (i=3,...,k), and (¢, P) € ¢(G). O

Proposition 11.4.7. If¢(G)Nc(G') # 0, then G is isomorphic to G'. Moreover,
if G is isomorphic to G', then ¢(G) = ¢(G").

Proof. If (¢, P) € ¢(G) N¢(G'), then the construction of ¢ induces a function
between the sets of vertices of G and G’, and P gives the edges of both G,G".
Hence they are isomorphic. The second part is true since the definition of ¢(G)
does not depend on 'names’ of the vertices. O

As a consequence we have

Theorem 11.4.8.

<o (M) > =3 NN -1).. -]\(ffe\(fG: V(&) +1)
(G]

where the sum is over all isomorphism classes of simple graphs with at most
N wertices that have a DCDC consisting of r; cycles of length i (1 =3,...,k).
Moreover

N(N—-1)...(N—-|V(G)|+1
<g()>= YN _,ée@‘ (@l +1).
(&)

where the sum is over all isomorphism classes of simple graphs with at most
N wertices and with a specified DCDC consisting of r; cycles of length i (i =
3,..., k).

Analogous statements hold for g.,q.,9,9 .

11.5 Calculations

The integral < ¢'(M) > counts all the directed cycle double covers of graphs
on at most N vertices and hence its calculation is an attractive task which need
not be hopeless. We show next a curious formula for ¢’(M) which identifies it
with an Thara-Selberg-type function (see Theorem 11.5.3). Let us recall that

gy = Y [ (11.5.1)
ceA’ e€c

is the generating function (with variables M.’s) of the collections of edge-disjoint
directed cycles of length at least three, in the directed graph D = D(M) =
(N,N x N).
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Construction of digraph D’ We first construct a directed graph D’ with
the weights on the transitions between the edges. First we split each vertex of
D, i.e., we replace each vertex v by new edge e(v) and we let all the edges of D
entering v enter the initial vertex of e(v), and all the edges of D leaving v leave
the terminal vertex of e(v). If edge g enters v in D then we define the weight
of the transition w(g, e(v)) = M,. We let all the remaining transition be equal
to one (see Figure 11.4, the first two parts).

Finally, for each pair g1,g> of oppositely directed edges of D, say g1 =
(uv), g2 = (vu) we introduce new vertex vy and we let both g1, g2 pass through
it; equivalently, we subdivide both g1, go by one vertex and identify this pair of
vertices into unique vertex called v, (and thus we have new edges (uvy), (vgv)
from g1 = (uv), and new edges (vvy), (vgu) from go = (vu)) (see Figure 11.4,
the last two parts).

We let the weights of the transitions at vertex v, between g, and go (i.e.,
between (uvy) and (vgu) and between (vvy) and (vgv)) be equal to zero, the
transitions along g1 and g2 (i.e., between (uvy) and (vgv) and between (vvg)
and (vgu)) be equal to one, and the transitions between (v4v) and e(v) be
equal to M, and between (v u) and e(u) be equal to M,,. See an example in
Figure 11.5.

u u He(u) u u \‘<e7(U) ol
> o £ /<
v [ ) o> —_—

v e(v) v v e(v) vy

Figure 11.4: Construction of e(v) and v,

{1.3})

2@3 ! v(

Figure 11.5: An example of the construction of digraph D’

In what follows, the directed closed walk is considered not pointed. We
let the weight of the directed closed walk be the product of the weights of its
transitions.

Observation 11.5.1. There is a weight preserving bijection between the set of
the directed cycles of D of length at least three and the set of the closed directed
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walks of D' of a non-zero weight which go through each directed edge and through
each vertex vy at most once.

Proof. This follows directly from the construction of D’. O

Definition 11.5.2. We define the rotation number for each closed walk w of
D’ with a non-zero weight by induction as follows: first order the directed edges
of D', say as ai,...,am, so that the edges e(v),v € V(D) form the terminal
segment. Then

(1) If w is a directed cycle, then we let r(w) = —1.

(2) Let w go at least twice through o directed edge. Let a be the first such
edge in the fized ordering. Hence w is a concatenation of two shorter
closed walks wy,wsq, both containing a. If a # e(v) for some v then we let
r(w) = r(wy)r(ws). If a =e(v), then we let r(w) = 0.

(8) If none of 1.,2. applies, w must go through a verter vy (introduced in the
definition of D') at least twice. Then we again let r(w) = 0.

Theorem 11.5.3. Let ¢'(M) be defined as (11.5.1). Then

g(M) =] =rp)wp),

P

where the product is over all aperiodic closed directed walks p in D' and w(p)
denotes the weight of p.

To prove Theorem 11.5.3 we will need a curious lemma on coin arrangements
stated below. It has been introduced by Sherman [130] in the study of 2-
dimensional Ising problem.

Lemma 11.5.4 (A lemma on coin arrangements.). Suppose we have a fived
collection of N objects of which my are of one kind, mo are of second kind,
-+, and my,, are of n-th kind. Let by be the number of erhaustive unordered
arrangements of these symbols into k disjoint, nonempty, circularly ordered sets
such that no two circular orders are the same and none are periodic. For example
let us have 10 coins of which 8 are pennies, 4 are nickles and 3 are quarters.
Then {(p,n), (n,p), (p,n,n,4q,q,q)} is not a correct arrangement since (p,n) and
(n,p) represent the same circular order. If N > 1 then Z?}:l(—l)”lbi =0.

Proof of Lemma 11.5.4. The lemma follows immediately if we expand the LHS
of the following Witt Identity and collect terms where the sums of the exponents
of the z;’s are the same.

Witt Identity (see [75]): Let z1, ..., zx be commuting variables. Then

H (1 — 2 ) M) — ) gy — = 2y,
mi,...,mg >0

where M (myq,....,my) is the number of different nonperiodic sequences of z;’s
taken with respect to circular order. O
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Proof of Theorem 11.5.3. We first show that the coefficients corresponding to
the products of variables where at least one M,,e # e(v), appears with the
exponent greater than one, are all equal to zero.

Let us denote W (p) = —r(p)w(p). Let A; be the set of all non-periodic closed
walks p such that a; appears in p. Each p € A; has a unique factorization into
words (W1, ..., W) each of which starts with a; and has no other appearance of
aj.

Let S be a monomial summand in the expansion of ]|
S is a product of finitely many W (p),p € A;.

Each p € A; has a unique factorization into words defined above. Each word
may appear several times in the factorization of p and also in the factorization
of different non-periodic closed walks. Let B(D’) be the set-system of all the
words (with repetition) appearing in the factorizations of the aperiodic closed
walks of D'.

It directly follows from Lemma 11.5.4, the lemma on coin arrangements, that
the sum of all monomial summands S in the expansion of [[ ., (1 + W(p)),
which have the same ’coins’ B(D') of more than one element is zero. Hence the
monomial summands S which survive in the expansion of [[ ., (1+ W(p) all
have B(D’) consisting of exactly one word. Hence they cannot have a; with
exponent bigger than one. Now we can repeat the same consideration for the
other edges different from e(v),v € V.

Hence the only terms of the expansion of the infinite product that survive
have all M,,e # e(v), with the exponent at most one.

We know from Observation 11.5.1 that the collections of the edge-disjoint
directed cycles of length at least three in D’ correspond to the collections of the
directed closed aperiodic walks of D’ where each edge e # e(v) of D’ appears
at most once; by above, these exactly have chance to survive.

Each term of ¢'(M) may be expressed several times as a product of aperiodic
closed walks of D’, but only one such expression survives in the infinite product
since if a closed walk goes through an edge e(v) or through a vertex v, more
than once, its rotation is defined to be zero. Hence ¢'(M) is counted correctly
in the infinite product. O

pea, (1+W(p)). Hence

Remark. Let us write r(p) = ¢°t®) where ¢ = —1. Without the zero values
of r(p), function rot(p) is additive when we ’smoothen’ p into directed cycles.
The integer lattice generated by the directed cycles has a basis which may be
constructed e.g., from the ear-decomposition [68]; the function rot(p) may be
split into contributions of the edge-transitions for the basis, and since it is a
basis, it may be split also for all the directed cycles. Hence if the additivity
property holds, rot(p) may be split into the contributions rot(¢) of the edge-
transitions ¢ for the aperiodic closed walks. Hence

[1a —r@ywm) =10 - TID Pw ().

p p tep

This formula transforms the infinite product into the Ihara-Selberg function. It
was studied by Bass in [10] who proved that it is equal to a determinant. A
combinatorial proof was given by Foata and Zeilberger in [65].

Due to the zero values of r(p) it is not clear how to split the rotation
into individual edge-transitions. A determinant-type formula, perhaps non-
commutative, may however exist. Moreover the Thara-Selberg function and its



11.6. PLANAR GRAPHS WITH GIVEN DEGREE SEQUENCE 151

inverse appear frequently in theoretical physics and so the matrix integral of
¢’ (M) may have, via the formula of Theorem 11.5.3, an interesting physics in-
terpretation.

11.6 Planar graphs with given degree sequence

Back to fat graphs. Loopless fat graph F is called cyclic if each face of F'is a
cycle of G(F). For cyclic F we define its dual F* as the fat graph whose islands
are the discs bounded by the faces of F', and whose bridges may be identified
with the bridges of F'. Note that F™* is again loopless and thus we have:

Observation 11.6.1. A fat graph F is cyclic if and only if it is a dual of a
cyclic fat graph; in particular F** = F'.

Definition 11.6.2. A fat graph F' is called relevant if it is cyclic and F* is a
simple fat graph.

By definition a loopless fat graph is relevant if each face is a cycle of G(F),
and each pair of faces of F' shares at most one bridge. (G(F*) does not have
multiple edges). Moreover, if W* is simple then W does not have vertices of
degree at most two.

A compressed fat graph is a pair (F, P) where F is a fat graph and P is a
partition of the set of its vertices. We denote by Gp(F') the (abstract) graph
which is obtained by the identification of the vertices of each class of P in G(F).

Next definition is more technical.

Definition 11.6.3. A pair (W, Q) where W is a relevant fat graph and Q is a
partition of the set of its faces is called relevant if W is relevant and Ggo(W™)
is a simple graph.

When @ partitions of faces into themselves, we denote it by 0.

Proposition 11.6.4. There is a natural bijection between the set of the relevant
pairs (W, Q) such that W has exactly r; vertices of degree i (i > 3) and the set
of the simple graphs G with a specified DCDC consisting of r; cycles of length
i. The bijection sends (W, Q) to Go(W™).

Proof. We realize each cycle from the DCDC as a disc and glue the discs together
along the pairs of corresponding oppositely oriented edges. We get a surface
where some vertices are identified. When we split the identified vertices, we get
an honest compact 2-dimensional orientable surface with a graph G’ embedded
on it. We change the embedding of G’ into the fat graph F’; it is cyclic since
its faces are exactly the cycles of the DCDC we started with.

Graph G’ is obtained from G by splitting off some vertices. This defines a
partition @ of the set of vertices of G'.

This produces a relevant pair (F'*, Q).

Moreover, it is not difficult to observe that this construction may be reversed
and thus we get a bijection. O

This implies the following.
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.....

B N(N—=1)...(N —a+1)
..... e (M) > Z Ne(Ga (W) ’

(W,Q)]

where (W, Q) is a relevant pair such that W has exactly r; vertices of degree i
(i > 3), and partition Q of its faces into « < N parts; [-] denotes the isomor-
phism equivalence class of Go(W™).

Extracting planar graphs. We are grateful to Bojan Mohar for the following
characterization of relevant planar fat graphs.

Proposition 11.6.6. A planar fat graph is relevant iff each of its connected
components is 2-vertex connected and 3-edge-connected.

Proof. A planar graph is 2-connected iff its dual is 2-connected iff each face is
a cycle; here parallel edges in the dual are allowed, but no loops. The parallel
edges are eliminated by the 3-edge-connectivity. O

A theorem analogous to Theorem 11.3.6 holds.
Theorem 11.6.7. For every z; with |z;| € (0,¢;) we have

Jim N7%log ) <gr3,...(M)>H(N%!)m = 2> Z'

T3, [ 7‘3,...[1_‘]* i

where I' is a 2-connected and 3-edge-connected planar fat graph with r; vertices
of degree i, i > 0, and [|* is the isomorphism equivalence class of T*.

Note that the coefficient of ], z;*/r;! in the right hand side of the power
series in Theorem 11.6.7 is the same as the number of unlabelled planar graphs
with r; faces of length 7, whose dual is 2-connected and 3-edge-connected.

Proof. From Corollary 11.6.5 we get

. —2 (NZZ)rl
Jim Nog 3 < gr,, (M) > [T
T3y 7
= Jim N7lg YT Y NN 1) (V -t ) [ 2
o o [(W,Q)) s
= Jlim N72log Y~ Y= NvW)=e)+p(W)
o Fa [(WoQ)]
1—— | NoPWTT = 11.6.1
: 1<i1<_£71 ( N> 1:[ 7! ( )

where (W, Q) is a relevant pair such that W has exactly r; vertices of degree
i (¢ > 3), and partition @Q of its faces into & < N parts, and [-] denotes the
isomorphism equivalence class, as in Corollary 11.6.5.

As in Proposition 11.3.4, it is natural to express (11.6.1) in terms of connected
W. As before v(W) — e(W) + p(W) = —2g(W) + 2¢(W) is additive for the
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operation of the disjoint union, but the rest is only submultiplicative. Hence we
proceed in two steps, bounding (11.6.1) from above and from below.

First, we upper bound the LHS of (11.6.1): using a partition Q of faces of
W into @ < N parts, each of whose partition classes lies in the same connected
component of W, we obtain

S NI W) 1:[ (1 - ]i[) NP WTT %l

(W,Q)] 1<i ;

(W)—e(W)-+p(W) b —p(W) 1 z

S S G b (1 N) N o) T4
(W,Q)] 1<i<a-1 ;

for large N. Thus we can upper bound Equation (11.6.1) by

I 9 v(W)—e(W)+p(W)
T35 [(W,Q)]

T4

< II <1—fv> N"‘p(w)(lJrO(N‘l))l:[Z!, (11.6.2)

1<i<a-—1

which is equal to

lim N~2log(1+O(N™"))+ lim N%log Y Y  NvWImeW)tp(¥)

N—oo N—o00 pl
T35 [(W,Q)]
) z
< 11 (1_> NP TT
1<i<a—1 N i ;!
_ -2 (W) —e(W)+p(W)
= lim N log > Z N
T3 [(W,Q)]
< I (1—;[) NC‘*MW)H%. (11.6.3)
1<i<a—1 i Y

Further using the relation between the logarithm of the generating function with
respect to [(W, Q)] and the generating function w.r.t. [(We, Q)] = [(We, Q)]
where W denotes connected W, Equation (11.6.3) becomes

1\}LmooN 2 Z Z Nv(We)—e(We)+p(We) H (1 o Jif) NO&*p(Wc)H%

73,.-. [(We,Q)] 1<i<a-—1
_ 1 g(We) _ a—p(We) Zi
Jm ST ST e I (1o g v I
r3,... [(We,Q)] 1<i<a-—1 i
= 1li —g9(We) _ i a—p(We) ’il
LD SN SR ) | BN (R Rl |
73,... [(We,Q)], We non-planar 1<i<a-—1 i

oy ) 11 (1 - _;i;) Ne-p(We) 1:[ %'

r3,... [(We,Q)], We planar 1<i<a—1
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which, due to Fatou’s lemma as in Theorem 11.3.6, becomes
T

) T lim N-90%) T 1<1_> Na- P(WO)H%

N—o0

75,0+ [(We,Q)l, We non-planar 1<i<a— i
: 2 ye-pWo) TT %
SIS SIS | BN CEE A RESid
3, [(We,Q)], We planar 1<i<a-1 i
_ - L\ yempWe) TT %
- Y 0y g I ()T
r3,... [(We,Q)], We planar 1<i<a-—1 7

-Y > IOE

r3,... [(We,0)], We planar @

where the last equality follows from the fact that for a relevant pair We, Q)
with @ 7& (Z), limpy_ oo ngigafl (1 — ﬁ) Nae—pr(We) — 0, since a < p(W) On

the other hand,
i i a—p(We) _
A}lm | I (1 ) N 1

1<i<a—1

for a relevant pair (W¢, Q) with Q = 0, since o = p(W). This together with
Proposition 11.6.6 implies that

N
lim N~?log Z < Gy, (M) > H (N>

N—o0
T3,...

< X 2 14 - S0

r3,... [(We, 0)], We relevant planar ¢ r3,... [[]* 4

where IT" is 2-connected and 3-edge connected planar with r; vertices of degree i
for ¢ > 3 and []* is the isomorphism equivalence class of I'*.
Finally, we lower bound the LHS of (11.6.1):

lim N~2log Z < Gry,...(M) H (V)"

N—oo 7"'
T3,..
msn 2 o(We)—e(We) 4 p(We) i z
= A}EHOON Z Z N H 1_N Hm!
r3,... [(We,0)] 1<i<a-—1 i
_ : (We) AN § A
= gm Y S e I (- )10
[(We, 0)] 1<i<a-—1 i

- = )3 I

r3,..- [(We, 0)],We, relavant planar @

where the last equality follows from Fatou’s lemma, similarly as for the upper
bound.
Since the two bounds are equal, the theorem follows.
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Random Graph Processes
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Chapter 12

Mininum Degree Random
Multigraph Process

In this chapter we study how the minimum degree random multigraph process
evolves as the number of edges increases. The minimum degree random multi-
graph process (Gmin(n, M))am>o is a Markov chain, whose state space is the set
of graphs with vertex set [n] := {1,2,--- ,n}. It starts with an empty graph on
n vertices, and for M > 0, Gyin(n, M 4 1) is obtained from Gin(n, M) by first
choosing a vertex of minimum degree in Guin(n, M) uniformly at random, and
then connecting it by a new edge to another vertex chosen uniformly at random
among all the remaining vertices in Gpin(n, M).

We show that a typical Guin(n, M) becomes connected quite quickly. In
particular, when the minimum degree of Gyin(n, M) reaches three it is a.a.s.
connected. To this end, we investigate how the number of vertices of a given
degree and the number of isolated edges change during the process. We prove
that Gin(n, M) consists of one giant component with (1 — o(1))n vertices and
possibly a number of small isolated cycles when the minimum degree is two.
Then, we show that the probability that Guyin(n,tn) is connected for t # hy =
1.2197 tends to a certain constant p(t). The function p(t) is continuous for all

t # ho.

We study also the phase transition of the minimum degree process. We
prove that for a constant h., = 0.8607, a.a.s. Guin(n, M) consists of small
components on O(logn) vertices when M < h¢.n, and the largest component is
of order roughly n?/3 when M = hen, whereas the graph consists of one giant
component on O(n) vertices and small components on O(logn) vertices when
M > hen.

The rest of the chapter is organized as follows. In Sections 12.1 and 12.2 we
study the number of vertices of small degrees and the number of isolated edges.
In Sections 12.3 and 12.4 we investigate the structure of components when
the number of edges is larger than the number of vertices, and study how the
probability of the graph being connected changes. In Section 12.6 we model the
minimum degree random multigraph process by a multi-type branching process.
In Section 12.7 we study the phase transition.

157



158 CHAPTER 12. MINIMUM DEGREE PROCESS

12.1 Vertices of small degree

Let Xy = Xk(n, M) denote the number of vertices of degree k in Gpin(n, M),
and let Hy = Hy(n) denote the hitting time for the property that Gun(n, M)
has minimum degree k, i.e., Hy = H(n) is a random variable defined by

H;, = min {M 2 0(Gmin(n, M)) > k‘}

Thus, Hy = 0 and Hy > kn/2. We will investigate the limit behaviour of
Xi(n, M), for i =0,1,2, and H;(n), for j =1,2,3, when n — 0.
Let us define constants
hy =1In2=10.6931,
he =In2+1In(1 +1n2) =1.2197, (12.1.1)
hs =1In((In2)? + 2(1 +In2)(1 + In(1 + In2))) = 1.7316,

and functions

aolt) = {2et ~1  for 0<t<h (121.2)
0 for ¢t > hq,
2tet for 0<t<h;

Ozl(t) = et — 1 for hy <t < hs (1213)
0 for t > ho,
t2et for 0<t<mh

ag(t) _ tehe—t — hl(hl + 2>€_t for hy <t < hsy (1214)
efs=t — 1 for ho <t < hs
0 for t> hs.

We will show that, typically, the value of random variable Hy/n is close

to hy and the random variable Xy (n, M)/n can be uniformly approximated by
ap(M/n).

Theorem 12.1.1. A.a.s. the process (Gmin(n, M)) >0 is such that for every
M>0andk=0,1,2,

| X% (n, M) — nag(M/n)| = o(n),

and for k=1,2,3,
|Hy — nhg| = o(n).

For M < (1—¢)hin, € > 0, this theorem was proved by Wormald [148], with
much better estimates for the error terms. He also described how his result can
be extended to cover all values of M. Thus, here we only outline his argument.

Proof. We check first that the random variables X) = X (n, M) satisfy the
assumptions of Lemma 3.4.5.

Since Xg(n, M) denotes the number of vertices of degree k in the random
graph Gmin(n, M), we have | Xy (n, M)| < n. Furthermore, adding an edge can
only change the degree of its ends, so

| X(n, M +1) — Xp(n, M)| < 2.
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Hence, the condition (i) of Lemma 3.4.5 holds.

Now we compute the expected change of the number of vertices of degree k,
k=0,1,2, when a new edge is added to Gin(n, M).

Suppose first that M < H;. Then, when we add a new edge, we lose an

isolated vertex as the first end of the edge and lose another isolated vertex as
Xo(’ﬂ M)

the second end of the edge with probability ——. Hence
X M
E[Xo(n, M + 1) — Xo(n, M)|Gmin(n, M) = -1 — 0(+) +o(1).

Meanwhile, we gain a vertex of degree one as the first end of the new edge and

one another if an isolated vertex is chosen as the second end, which happens
with probability M
On the other hand we can destroy a vertex of degree one if it is chosen as

the second end of the edge, which can occur with probability M Thus

E[X:(n, M +1) — X1(n, M)|Guin(n, M)]
Xo(n,M)  Xi(n,M)

+o(1).

Finally, the probability that a vertex of degree one is chosen as the second end

M and the probability that a vertex of degree two is

XQ(’!L M)

of the new edge is

chosen as the second end of this edge is . Consequently,

Xl(n,M) . XQ(R,M)

n n

E[X2(n, M +1) — X3(n, M)|Gin(n, M)] = +o(1).

If Hy < M < Ha, then clearly Xo(n, M) = 0. When a new edge is added, a

vertex of degree one should be chosen as the first end of the edge. As the second
X1 (n,M)—1

end of the edge, a vertex of degree one is chosen with probability === and
a vertex of degree two with probability MlM) Thus, we have

X M

E[Xi(n,M +1) — X1(n, M)|Gmin(n, M)] = =1 — % + o(1),
and
E[X2(n, M + 1) — Xo(n, M)|Gmin(n, M)] =
X M X M
gy Xl M) Xam M) gy

n n
In a similar way, for Hy < M < Hs, we have Xy(n, M) =0, X;(n, M) =0, and

E[X2(n,M +1) — Xo(n, M)|Gmin(n, M)] = -1 — M +o(1),

while for M > Hs, X(n,M) =0 for k=0,1,2.
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Thus, let

fo,o(t, ap, a1, a2) = —1 — ayp,
fr0(t, ap, a1,020) =14 ap — ar,

)=

)=
fa0(t, a0, 01, 00) = 1 — g,

)

o)

)

fra(t, on, a2
foa(t,a1,a2) =14 aq — a9,

—1- aq,

fgg(t Q9 ) = -1 — Q9.

Note that all these functions are linear and so they satisfy the Lipschitz
condition on, say,

D ={(t,ag,1,00) : 0<t <3, 0<; <1, fori=0,1,2}.

Thus, the only obstacle to apply Lemma 3.4.5 is that, say, the value of
E[X2(n,M + 1) — Xo(n, M)|Gmin(n, M)] is given by either foo, fo1, or foo
depending on the value of M; furthermore, the intervals of M in which we are
supposed to use one of these three functions are determined by the values of
random variables H;.

However, there is a simple way to overcome this problem. Let m(n) =
(1 —€)hin, where € > 0 is a small constant. Then, Lemma 3.4.5 implies that for
M < m(n) random variables X (n, M)/n, k = 0,1, 2, are well approximated by
the solutions of the differential equations

%:fko(tval);alvoﬂ)v k:031727
dt ’
with initial conditions ap(0) = 1, a1(0) = 0, and a2(0) = 0. It is easy to
check that the solutions of these equations are given by (12.1.2)—(12.1.4), where
t € (0,(1 — e)hy). Furthermore, one can easily verify that ag(t) > 0 for ¢ €
(0,(1 —€)h1), so a.a.s. Hy > (1 —o(1))hin.

Note also that each edge added to Gin(n, M) for M < Hy, decreases the
number Xg(n, M) of isolated vertices by at least one and at most two. Hence,
for every M < H;

Xo(?’L,M)/2§H1 7M§X0(H7M),

and so a.a.s. for any € > 0

Oéo((l — €)h1)
2

X()(Tl,(l 7€)h1n) H1
2n ~n
Xo(n, (1 —¢e)hin)

< - < ap((1—¢e)hy) +o(1).

—o(1) —(1—-e)hy

Thus, since lim, - ap(t) =0, a.a.s. Hy = (14 o(1))hin. Note also that, since
adding an edge can only affect degrees of two vertices of Guin(n, M) and Hy =
(14 o(1))hin, a.a.s. we have Xi(n, H1) = (1 + o(1))ai(h1)n and Xo(n, Hy) =
(1+ o(1))as (1 )n.

Now let us consider the behaviour of Xy(n, M), k = 1,2, for (1 +e)hin <
M < (1 —¢€)hgn. Note that we can consider this part of the process as a ‘new’
process G! .. (n, M) which starts with a graph Gun(n, Hy) which, as we know

min (
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from the part of theorem we have just proved, a.a.s. contains roughly ay(h1)n

vertices of degree k, for k = 1,2. Then, using Lemma 3.4.5, one can approximate

uniformly the random variables Xy (n, M)/n with the solutions of the equations
dOék

Wz,fm(t,al,az), k=1,2,

in the interval ¢ € (hy, (1 — £)hs), with boundary conditions

Oél(h1) = thr}?* Ozl(t) =1In2
—hy

and

as(hy) = tlir}?_ as(t) = (In2)?/2.

The solutions of the above system for t € (hy, (1 — €)hz) are given by (12.1.3),
(12.1.4). Then, again, we can approximate the value of Hy by hon, where
hg is the minimum ¢ > 0 for which «4(t) = 0, and find an approximation of
Xa(n, M)/n in the interval (hg, hs) solving the differential equation

dOZQ

o fa,2(t, a2)

with boundary condition ag(hg) = limt_)h; ao(t). Finally, solving the equation
az(t) = 0 one can find hs so that a.a.s. Hy = (1 + o(1))hgn. O

12.2 Number of isolated edges

Let Y (n, M) count the number of isolated edges in Gyin(n, M). Then, one can
use Lemma 3.4.5 to prove the following result.

Theorem 12.2.1. A.a.s. for every M >0

Y (n, M) = np(M/n)| = o(n),

where
2¢7t — 37 — 1 Jor 0<t<mh
Bt) = { gz (et —1)° for hy <t < hy (12.2.1)
0 for t > ho.

Proof. The argument is analogous to the one we used in the proof of Theo-
rem 12.1.1, so we only sketch it here. For 0 < M < H;, when an edge is added,
an isolated vertex is chosen as the first end of the new edge. If another isolated
vertex is chosen as the second end, then we gain an isolated edge. This case
happens with probability Xo(n,M)—1 However, if a vertex of an isolated edge is

n—1
2Y (n,M)

——1—, the number

chosen as the second end, which happens with probability
of isolated edges will decrease by one. Hence
Xo(n,M) 2Y(n,M)

EY(n,M +1) — Y (n, M)|Gunin(n, M)] = - — - +o(1).

For H; < M < H,, when an edge is added, a vertex of degree one is chosen
as the first end of the new edge. If this vertex belongs to an isolated edge,
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which happens with probability i{i%ﬂ\%?

vertex of another path on two vertices is chosen as the other end of the edge,
which can occur with probability %
Consequently,

we lose a path on two vertices. If a

, one more isolated edge is destroyed.

2Y (n, M) 2Y(n,M)

E[Y (n, M +1) = ¥ (n, M)|Gun(n, M)] = =500 n

+o(1).

Finally, for M > Hs, clearly Y (n, M) = 0.
Using Theorem 12.1.1 to approximate Xy(n,tn)/n by ay(t) for k = 0,1, we
arrive at

s J2et—1-24, for t € (0,hq)
dt —W—Qﬁ, fOI'tE(hl,hQ),

with the boundary condition $(0) = 0. One can verify that the solution to
the above system is given by (12.2.1) and so, arguing as in the proof of Theo-
rem 12.1.1, one can use Lemma 3.4.5 to infer that Y (n,tn) can be well approx-
imated by nf3(t) in the intervals ¢t € (0,h1) and t € (hq, ho). O

12.3 Component structure

In this section we will show that when the number of edges in Guin(n, M) is
larger than the number of vertices, a.a.s. there is only one largest component
with more than a half of the vertices, and all other possible components are
small, i.e., of at most logarithmic order, and are unicyclic.

Theorem 12.3.1. Let § > 0. Then with probability 1 —O(1/n) each component
of Gmin(n, (1 4 0)n) smaller than n/2 has at most (2/5) logn vertices and con-
tains at most one cycle. Moreover, for every function w = w(n) — 0o, a.a.s. the
number of all vertices contained in unicyclic components of Gin(n, (14 0)n) is
smaller than w.

Proof. We first note that the probability that, for some k, (2/d)logn < k <n/2,
a graph Guin(n, (1+0)n) contains a component with & vertices (and hence with
at least k — 1 edges) is bounded from above by

SOV ME AN ma

k=[(2/6)logn] i=k—1

where the first factor counts all possible choices of the vertex set S of a compo-
nent of k vertices, the second one bounds the probability that every edge with
one end in S has the other end in S too, and the last factor is the probability
that every vertex outside S has chosen the other end outside S. Note also, that

n < n"
k) = kk(n—k)r—k’

and so, for 1 <k < n/2, we have

() Gog) (i) e
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Hence, for large enough n, one can bound (12.3.1) from above by

n/2 (14+8)n—k k1 s n/2
Z Z (ﬁ) 675}C S (2 + 5)7’11 Z 6751C
k=[(2/0)logn] s=—1 " k=[(2/8) log n] (12.3.2)
(2 + 5) —2logn __ 1
< ne P =o(1).

Note that any component with at least two cycles has more edges than
vertices. Hence the probability that a component of Guyin(n, (1 4 d)n) smaller
than [(2/0)logn] contains at least two cycles is, for n large enough, bounded
by

(2/%1:0gn (1+§3L—k n (k _ 1)k+s (n k- 1>(1+6)n—k—s
k)\n—1 n—1
k=2 s=1

(2/6)logn

k—1 N\ _
<2 kZQ (m)e ok (12.3.3)

=

<Akt s it
n (1—e9)2

Hence, from (12.3.2) and (12.3.3) it follows that the probability that a com-
ponent of Guin(n, (1 + d)n) smaller than n/2 contains at least two cycles is

o(1/n).
Finally, let w = w(n) — oo, and let Uy be the number of unicyclic compo-
nents of k vertices in Gin(n ( + 0)n). Note that a unicyclic component has
the same number of vertices and edges and thus

Sowan< 3k (3) (o) (T

< ko ©
= Zke S —e)2

k=2

)(1+5)n—k

Thus, the probability that at least w vertices of G(n, (14+§)n) belong to unicyclic
components is, by Markov’s inequality, bounded above by O(1/w) = o(1). O

Theorems 12.2.1 and 12.3.1 imply that the giant component must have ap-
peared when the number of edges is between hin and n with h; = 0.6931. We
will show in Section 12.7 that it happens, in fact, when the number of edges
becomes h..n with he, = 0.8607.

12.4 Connectedness
In this section we study how the probability that Guyin(n, M) is connected

changes as M grows. The main result of this section determines this proba-
bility quite precisely for most of the stages of the process Guin(n, M).



164 CHAPTER 12. MINIMUM DEGREE PROCESS

Theorem 12.4.1. Let constants ha, hs be defined as in (12.1.1) and let p,(t)
denote the probability that Gumin(n,tn) is connected. Then, for every constant
t # ha, the limit

p(t) = Tim pu (1)

n—oo

exists and p(t) = 0 for t < hg while p(t) =1 for t > hs. Ift € (ha,hs), then
0 < p(t) < 1, where

+ : —
pr = t_l}}lllzl+ p(t)>0 and t_l}}ILISI_ p(t)=1.
Proof of Theorem 12.4.1. For each t < ha, Theorem 12.2.1 implies Gin(n, tn)
a.a.s. contains many isolated edges and so it is a.a.s. disconnected; hence p(t) = 0
for t < ho.

If t > ho then, by Theorems 12.1.1 and 12.3.1, a.a.s. Giin(n,tn) consists of
one large component and, perhaps, some short isolated cycles.

In particular, if ¢ > hg, then Theorem 12.1.1 implies a.a.s. §(Gmin(n,tn)) > 3
and thus Guin(n,tn) contains no isolated cycles. Consequently, for t > hj a.a.s.
Gmin(n,tn) is connected and p(t) = 1.

It is enough to consider the case t € (hg, h3]. Let us fix t € (hg, hg). Note
that from Theorem 12.1.1 it follows that for some function w = w(n) — oo with
probability 1 — O(w™2) for the process {Gmin(n, M)} the following holds:

(i) [Ha — han| < n/w?;
(ii) for M = H,, we have | Xa(n, M) — az(ho)n| < n/w?;
(iii) |X2(n,tn) — as(t)n| < n/wd.

In our further argument we shall often condition on the event B that (i)—(iii)
hold for (Gumin(n, M))ar>o. Note that, since Pr(B) = 1 — O(w™2), for any event
A we have

Pr(A) — O(w™?)

PH(AIB) = =55

=0 ) +(1-0w?)Pr(4). (12.4.1)

Let Zy = Zg(n,tn), k = 2,3,..., denote the number of isolated cycles
of length k in Guin(n,tn). We first estimate the expectation of Zj in the
conditional probability space, when we condition on B. In Gpuin(n,tn) there
exist (Z) candidates for the set of vertices of an isolated cycle of length k. Let
us fix one such subset S. Note that if Ginin(n, tn) contains an isolated cycle with
vertex set S, then all of its edges appear in Gpin(n, M) already at the moment
Hsy, when the minimum degree of a graph reaches two. If at this moment a cycle
is isolated, then each time we chose the first end of an edge outside S we had
to pick as the second end of an edge a vertex outside S as well. By (12.4.1) the
probability of that event is given by

— _ n—k—1\1+0w ?)han—k
O™ + 1+ 0w ) (" =17)

= 0w ) + (1 + O(kw™2 + k%/n))e N2k,

(12.4.2)

If Gin(n, M) contains an isolated cycle on vertex set S, it means that until
this moment each time we have picked up one end of an edge in S the second
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end has been chosen also in S, in such a way that it created with edges which
had already been selected a forest which consisted of paths, and, eventually, a
cycle of length k. Thus, the probability that in G(n, Hy) the subset S spans a
cycle is equal to

1Nk
( : 1) Pr(Guun(k, k) is a cycle) . (12.4.3)
Hence the probability that, conditioned on B, there exists an isolated cycle on
S in G(n, Hs) is given by a product of (12.4.2) and (12.4.3).

The probability that a cycle on the set .S which is isolated at the moment
M = Hj remains isolated also in Gy (n, tn) is the probability that each vertex
of the cycle has degree two also in Gyin(n, tn). It is easy to see that if by W5 and
Ws(t) we denote the sets of vertices of degree two in Gin(n, M) at the moments
M = H, and M = tn respectively, then each subset of Wy of [W5(¢)| elements is
equally likely to become Wh(t) later in the process. Hence the probability that
Wo(t) contains a given subset of S C W of k elements is equal to

Gt _ (s :
(1 of ).

Consequently, the probability that, conditioned on B, an isolated cycle on S
present in Guin(n, M) for M = Hs remains isolated also in Guin(n,tn) is given
by

OW™2)+(1+0w2+ kQ/n))(ao;z(SQ)))k.

Thus,

EZ, = 0w ) + (1 + 0w + ko™ + k2/n))(2) (: = 1)k

k
« 67}121@( az(t) ) Pr(Guin(k, k) is a cycle)

ea(ha) (12.4.4)
-2 -2 -3 2 (k — 1)k
= 0(w™) + (140wt kw ™ + K n)) ==
6h37t -1 k .
x (m) Pr(Guin(k, k) is a cycle) .

Now let Z(n,tn) = > ;_o Zg(n,tn). Since a.a.s. Gumin(n,tn) contains no
cycles longer than w, a.a.s. Z(n,tn) is equal to the number of all isolated cycles
of Gmin(n,tn). From (12.4.4) we infer that

EZ(n,tn) = (1 4+ o(1))A(?), (12.4.5)
where
> (f— 1)k ehs—t _
A(t) = Z (k k!l) (ehS — ehi>k Pr(Gumin(k, k) is a cycle ). (12.4.6)

k=2
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Furthermore, for the ith factorial moment of Z(n,tn), i = 2,3,..., we get

E;Z(t,tn) = EZ(t,tn)(Z(n,tn) — 1) --- (Z(n,tn) —i + 1)

=E Z Zkl(n,tn)E Z Zk2(n - kl,tn - ]411)

ki1=2 ko=2
w i—1 i—1
12.4.7
CEY Zun- Y ket -3 k) T
k=2 s=1 s=1

=1+ o) [E Y Zulrntm)] = (1+ 01N (D).
k=2

Hence, Z(t,nt) has asymptotically Poisson distribution Po(A(t)), i.e., for every
s=0,1,...,

Pr(Z(n,tn) =s) = (1 + 0(1)))\%(!1&)6_’\“) .

In particular, Theorem 12.3.1 implies that

Pr(Gmin(n,tn) is connected) = (1 + o(1)) Pr(Z(n,tn) = 0)

12.4.8
= (1+o0(1))e ( )

where A(¢) is given by (12.4.6).
Observe that if ¢ — hg then A(t) — A(hg2) > 0. Hence

lim p(t) = e 2 > 0.
tﬂh;

Note also that A(t) — 0 for ¢t — hs, so limtﬂh; p(t) = 1. Finally, since for every

n the probability that Guin(n,nt) is connected is a non-decreasing function of
t, we have p(hs) = 1. O

Observe that the limit behaviour of the minimum degree multigraph pro-
cess (Gmin(n, M))as is very different from the classical random graph process
(G(n, M))pr mentioned in Section 3.1, in which a.a.s. G(n, M) becomes con-
nected for M = Z(logn + w(n)) with w(n) — oco. However, it is worthwhile
to compare Theorem 12.4.1 with analogous results for two other random graph
process models in which the minimum degree grows quickly with the number of
edges.

The first one is the uniform graph process (U(n, M))as, in which the Mth
edge of U(n, M) has one end at vertex M — | M /n| while its other end is chosen
uniformly at random from all n — 1 possibilities (the vertex set of U(n, M) is
{0,1,...,n — 1}). Jaworski and Luczak [83] proved that for every ¢t > 0 the
probability that U(n,tn) is connected tends to a limit f(¢) as n — oo, where
f(t) is an explicit continuous function such that f(¢t) =0 for ¢t <1, f(¢t) =1 for
t>2and for 1 <t <2 wehave 0 < f(t) < 1.

The second random graph process is the random d-process (G%(n, M ))]L\ji/ozJ .
In this process G%(n, M) is obtained from G¢(n, M — 1) by adding to it an edge
chosen uniformly at random among all pairs of vertices e such that the graph

G?(n, M — 1) Ue has the maximum degree at most d. It was shown by Rucinski
and Wormald [124] that if 0 < ¢ < d/2 then a.a.s. G%(n,tn) is disconnected.
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On the other hand, they proved that the final stage of the process, the graph
G(n, |nd/2]), is a.a.s. connected, provided d > 3. Hence, the limit probability
that G%(n,tn) is connected has a ‘degenerate’ discontinuity at ¢t = d/2, where
it jumps from 0 to 1. We also remark that for ¢ € (hg, hs) the structure of
Gmin(n,tn) is somewhat similar to that of the random graph considered by
Karonski and Pittel in [90].

12.5 Two phases

In this section we study Gpin(n, M) through two phases, as it will turn out
to be useful when we study the phase transition by approximating the graph
process by a branching process in Section 12.7. The first phase is when the
minimum degree is zero, and the other is when the minimum degree is one. We
will represent the phases by colouring the edges in the following way: When
an edge is chosen to be added, we colour it red if the minimum degree of the
graph (before the addition of the edge) is zero, and blue if the minimum degree
is one. Other edges are uncoloured. In this chapter we will only consider the
stages of the process where all the edges are a.a.s. either red or blue, namely
when ¢t < hy. We let the red phase be the part of the process where the graph
still contains isolated vertices. The blue phase is the phase where the minimum
degree is one. In the red phase Guin(n, M) is a red forest; in the blue phase
Guin(n, M) is a union of a red and a blue forest.

Red trees. We will first determine how many red trees there are of different
order in Gin(n, tn), by using the differential equation method, due to Wormald
(see Lemma 3.4.5).

Let Ry (n, M) be the number of components of order k in Gpin(n, M), when
we are still in the red phase. Note that all components are trees in this phase.
We will say that a component or tree is trivial if it contains only a single vertex,
and thus no edges. First we will show that there are no components of larger
than logarithmic order.

Lemma 12.5.1. The largest red tree in Guin(n, H1) has a.a.s. O(logn) vertices.

Proof. We have to prove that there is a positive constant ¢, such that there
a.a.s. is no red tree of order clogn or greater.

When an edge (v, w) is added to the graph, we can think of it the way that
we first choose a vertex v of minimum degree, and then let v choose the vertex w
randomly. Then v is the choosing vertex, while w is the chosen vertex. Consider
the graph Gin(n, Hy), which is the state of the process at the precise moment
when the minimum degree becomes 1, or in other words, at the end of the red
phase. Set k = [clogn] — 1, and suppose that there is a component of order at
least k + 1. Let E be the set of edges in Guin(n, H1). Then there is a set of
edges, ' = {ey,...,e;} C F, with the following property:

Fori=1,...,k, let e, = (v;, w;), where v; is the choosing vertex of the edge.
Then for every i = 2,..., k, w; € {v1,v9,...,0;—1,w1 }.

Let E” C E be any subset of E with |E”| = k. The probability that
E" satisfies the above property is at most (k — 1)!/(n — 1)*=2. Since |E| =

nhy + o(n) a.a.s., there are about ("I’C“) ways to choose a set of k edges from
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E. Hence the probability that there is a set £’ as described above, is bounded
from above by

0.7n k! 0.7m)* K o b
< =n"0.7
( k ) (n—1F2=" kI (n—1k2 " ’
which tends to 0 for sufficiently large c. O

Lemma 12.5.2. Ift < hy, then the number of components with exractly k
vertices in Guin(n,tn) is a.a.s.

%(1 — e (k4 1)t = Dn + o(n). (12.5.1)

Proof. Let Ry(n, M) be the number of components with k vertices in Gin (1, tn)
for k > 0. In particular, Ry(n, M) = 0 and R;(n, M) is the number of isolated
vertices. By Lemma 12.5.1, all components have order O(logn) a.a.s., so we only
have to consider Ry(n, M) with k = O(logn). Then we can use Lemma 3.4.5 to
determine the asymptotic values for Ry (n, M).

We now find an expression for the expected amount of change in Ry(n, M)
through the addition of a single edge to the graph, and then use Lemma 3.4.5
to find functions pg(t) such that a.a.s., Rx(n,tn) = pr(t)n+ o(n) for t < hy. It
is clear that

|Rip(n,M)| <n, and |Rg(n,M +1)— Ri(n,M)|<2.

When an edge is added to the graph, the first end of the edge is in a com-
ponent of order 1, and we therefore always lose one such component. If the
other end is in a component of order k, we lose one component of order k, and
if it is in a component of order k — 1, we gain one component of order k. The

kR’:l(fl’M) and (k_l)i’fll(mM), respectively.

probabilities of these two events are
Hence for k > 1,

E[Ry(n, M + 1) — Ry(n, M) | Gunin(n, M)]
_ kJRk(n,M) + (k — 1)R;€_1(’I’L,M)

= —01k +o(1), (12.5.2)
where d;; is the Kronecker delta.
By Lemma 3.4.5 the functions p(t) satisfy the differential equation

d

%Pk(t) = =01 — kpi(t) + (k — 1)pr—1(1), (12.5.3)

with po(t) = 0 for all ¢£. Since this equation is linear, it satisfies a Lipschitz
condition in a suitable domain D. Since all components consist of one vertex
when M = 0, we have the boundary conditions p;(0) = 1 and pg(0) = 0
for k > 2. Solving the differential equation (12.5.3) and using the boundary
condition, we get

pi(t) = 2e7"—1,
pe(t) = % (1—e D ((k+1)et=1),

which satisfies the condition 3 in Lemma 3.4.5 in a suitable domain D. O
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Corollary 12.5.3. When the red phase is finished, the number of red trees with
exactly k vertices is a.a.s.

—aE o(n). (12.5.4)
Proof. When t > hq, there are a.a.s. no more isolated vertices in the graph. We

therefore get the number of red trees with k vertices by setting ¢t = hy = log 2
in (12.5.1). O

For a vertex v we let Cicq(v) be the red tree containing v. From Corol-
lary 12.5.3 we get
k-1

ok

We say that a tree is a (k,p)-tree if it consists of k vertices, exactly p of
which are leaves, and we let ey, be the probability that a red tree on k vertices
contains exactly p leaves. Note that leaves correspond to light vertices, and non-
leaves to heavy vertices. When ¢ = hy, there are a.a.s. nlog2 + o(n) vertices of
degree 1. Thus, when ¢ > hy there are a.a.s. nlog2 + o(n) vertices incident to
precisely one red edge. From this and (12.5.5) it follows that

Pr[|Crea(v)| = k] =

+o(1). (12.5.5)

Pr[Creqa(v) is a (k,p)-tree| deg,(v) = 1]

- mek,p +o(1), (12.5.6)
Pr[Creq(v) is a (k, p)-tree| deg,.(v) > 1]
(k—p)(k—1)

+o(1), (12.5.7)

(1 — log 2)ka2k "7

where deg,.(v) denotes the number of red edges incident to v and is called the
red degree of v.
To study the distribution of ey, we define, for p > 2,

Ey(z) = Z erpz"

k>p
to be the probability generating function for ey . Let E}(2) := dE;Z(Z).
Lemma 12.5.4.
E,(2) Ly R ) (12.5.8)
Z)= ——— —— (7 — 1z+p—1). 5.
P plp—1) = (p—i)l?

Proof. 1t is easy to see that er; = O for all £ > 2, ey, = 0 for all £ > 2
and eg2 = 1. Suppose that kK > 2 and 2 < p < k. A (k,p)-tree can either be
constructed from a (k—1, p)-tree by attaching vy to a leaf, or from a (k—1,p—1)-
tree by attaching vy to a non-leaf. Hence ey, ) satisfies the recursion

k—p p
Ckp = mek—l,p—l + mek—l,p-

Then (12.5.8) follows by induction on p. O
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Blue trees. Now we will assume that we are somewhere in the blue phase,
that is, h; <t < hy. We say that a vertex is light if it is incident to precisely
one red edge, and heavy otherwise. Every non-trivial blue tree begins as an
edge, and then possibly continues to grow one vertex at a time. When a non-
trivial blue tree is first created, at most one of the two vertices in the tree can
be heavy. Every subsequent vertex added to the tree must be light. Hence
a blue tree cannot contain more than one heavy vertex. We say that a blue
tree in Gpin(n, M) is simple if every vertex in the tree is light, and non-simple
otherwise. From the above explanation, a non-simple tree must contain precisely
one heavy vertex.

If a vertex is not incident to any blue edges, we consider it a blue tree of
order 1. If this vertex is light, we consider it a simple tree, and if it is heavy,
we consider it a non-simple tree. Hence every vertex is part of both a red and
a blue tree.

We will now determine how many simple and non-simple blue trees there
are in Guin(n,tn). In order to simplify the formulas, we define

u=u(t) :=2e".

Lemma 12.5.5. The number of simple blue trees with exactly k wvertices in
Guin(n,tn) is a.a.s.

%(1 —u)* Y (u + kulog2 — 1)n + o(n). (12.5.9)

The number of non-simple blue trees with exactly k vertices in Guin(n,tn) is
a.a.s.
(1 —log2)u(l —u)k~1n + o(n). (12.5.10)

Proof. Let Sk (n, M) be the number of simple blue trees with exactly k vertices,
and Ti(n, M) be the number of non-simple blue trees with exactly k vertices.
Lemma 12.5.1 can be adapted to blue trees as well as red, so we can assume
that k = O(logn).

Consider a blue tree of order k£ > 2. The probability that this tree grows with
one vertex when an edge is added to Gmin(n, M), is the same as the probability
that a red tree of order k grows with one vertex in the red phase. Hence
(12.5.2) holds for blue trees as well, with Ry(n, M) exchanged with Si(n, M)
and Ty (n, M), respectively. Hence oy (t) and 74(t) both satisfy the recursion
(12.5.3). The behaviour of the blue trees deviates from the red trees when
k = 1. Every edge added causes a simple blue tree of order one to disappear.
The expected amount of change of Si(n, M) and Tj(n,M) are given by the
equations

E [S1(n, M + 1) = S1(n, M)|Guuin(n, M)] = —1— 51(7;’ M) 4 o),
E[Ti(n,M +1) — Ty (n, M)|Gunin(n, M)] = —M + o(1).
Hence the differential equations
ial(t) =—-1—01(t) and iﬁ(t) = —7(t), (12.5.11)

dt dt



12.6. BRANCHING PROCESS. 171

are satisfied. As mentioned earlier, when t = hy = log 2, there are a.a.s. nlog 2+
o(n) vertices of degree 1 in Gpin(n, tn). Hence we have the boundary conditions
o1(log2) =log 2 and 7 (log 2) = 1—log 2. Furthermore o (log2) = 71 (log2) =0
for k > 2. Solving the differential equation (12.5.11), and using the boundary
conditions just given, we get

o1(t) =2(1 +log2)e ™ —1 and 7(t) =2(1 —log2)e "

It follows by induction that

1
op(t) = E(l —u)* Y (u+ kulog2 — 1)
m(t) = (1—log2)u(l —u)k 1.
By Lemma 3.4.5, this implies the theorem. O

For each vertex v, we let Cpjye(v) be the blue tree containing v. Recall that
the number of vertices of red degree one when ¢ > hy is a.a.s. nlog2 + o(n).
Then Lemma 12.5.5 implies the following:

P1 [|Chiue (v)| = k| deg,.(v) > 1] = u(1 — u)* ! 4 o(1), (12.5.12)
Pr [Cpiue(v) is simple and |C(v)| = k| deg,.(v) = 1]

= lo;2(1 —u)*Y(u+ kulog2 — 1) +o(1), (12.5.13)
Pr [Cpiue(v) is non-simple and |C'(v)| = k| deg,.(v) = 1]

= (1022 — 1) (k—Du(l —uw)* 1 +o(1). (12.5.14)

12.6 Branching process.

In this section we model Gpin(n, M) by a multi-type branching process (see
Section 3.4). In a usual branching process, in particular the one for a standard
random graph process G(n, M), starting with a vertex v we build up the com-
ponent containing v starting first with the immediate neighbourhood of v, and
then continuing as new vertices are added to the component. Note however that
in Guin(n, M), given two incident edges, the probability that one of them is in
Gmin(n, M) is not independent of the other. We will overcome this problem by
looking at Gmin(n,tn) through two phases and also by distinguishing vertices
between light and heavy vertices.

Suppose that we are in the blue phase, and consider a vertex v. This vertex
is incident to at least one red edge, and possibly one or more blue edges. If it
is not incident to any blue edges, we consider it a blue tree of order 1. Thus it
is part of a red tree, T;., of order at least 2, and a blue tree, T}, of order at least
1. As in Section 12.5 we call v a light vertex if it is incident to precisely one red
edge, and a heavy vertex if it is incident to more than one red edge.

The crucial observation is that if we are given the information about whether
v is light or heavy conditioned on the structure of the red forest, then the order
of T, and the order of T}, are two random variables which are independent of
each other. The reason for this is that, when we add a new blue edge, the way
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we choose the two vertices which will be joined does not depend on the order of
the component which they are part of, but only on the degrees of the vertices.

In the branching process we build up the component containing v by al-
ternatingly adding red and blue trees. As ¢ grows, the branching process will
produce larger components, and the value h given in Theorem 12.7.1 corre-
sponds to the critical point: When ¢ < h,,, the branching process dies out after
a finite number of steps with probability 1, while when t > h., it continues for-
ever with probability strictly greater than 0. This corresponds to the existence
of a giant component in Gy (1, tn).

The branching process we will use has four different types. A vertex is either
light or heavy, and it is either an r-vertex or a b-vertex. Furthermore, we will
distinguish between saturated and unsaturated vertices. (These types are defined
below.)

Let A be the event that the number of red trees in Gpin(n,tn) is given
by (12.5.4), that the number of simple blue trees is given by (12.5.9), and
that the number of non-simple blue trees is given by (12.5.10). According to
Corollary 12.5.3 and Lemma 12.5.5, A holds with probability tending to 1.
Thus, if we want to show that some event holds a.a.s., it is sufficient to show
that it holds a.a.s., when conditioned on A. From now on we therefore assume
that the event A holds.

In the first step of the branching process a red tree is created. The order of
the tree is given by the probability distribution (12.5.5). All the vertices created
in this step are unsaturated r-vertices. If the tree has order k, we let p of the
vertices be light and k — p heavy, with probability ey ).

In subsequent steps, the branching process evolves as follows: We choose an
unsaturated vertex v at random. If v is an r-vertex, then we create a blue tree
incident to v. If v is heavy, then the order of the tree is chosen randomly with
probabilities given by (12.5.12). If v is light, then the order of the tree, and
whether it is simple or non-simple, is determined according to the probabilities
in (12.5.13) and (12.5.14). All the vertices created are unsaturated b-vertices.
Note that it is possible that the tree created has order 1. In this case no new
vertices are created. If v is a heavy vertex, then all the newly generated vertices
in the blue tree are light. If v is light, and the blue tree is simple, all the new
vertices are also light, and if the blue tree is non-simple, exactly one of the new
vertices is heavy, while the others are light.

If v is a b-vertex, then we create a red tree incident to v. The probability
that the red tree has order k, and contains exactly p light vertices, is given by
the probability distribution (12.5.6) (resp. (12.5.7)) if v is a light (resp. heavy)
vertex. All the newly created vertices are unsaturated r-vertices. After the new
red or blue tree has been created, we end the step by marking v as saturated.

Thus a vertex is an r-vertex if it was generated through the creation of a red
tree, and a b-vertex otherwise.

This branching process approximates the way we might proceed if we want
to find all the vertices in the component in Gyin(n, M) which contains a given
vertex v. First we find the red tree containing v. Then at every vertex w of
this red tree, we find the blue tree which contains w. Note that the order of
the blue tree does not depend on the order of the red tree of which w is a part,
only on the information about whether w is incident to one or more than one
red edge. Then we continue exploring alternatingly red and blue trees, until
it stops. Some care must be taken, because the graph process will generally
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contain cycles, which the branching process does not. We will consider this
problem more closely in Section 12.7.

We will now calculate the generating functions for the number of vertices
created in one step of the branching process. By one step it is meant that from
a given vertex we create a (red or blue) tree and then count the number of
vertices which have been created. In subscripts we will often use the letters r,
R, b and B. In general r and b refer to light r- and b-vertices, whereas R and
B refer to heavy r- and b-vertices.

Using (12.5.12),(12.5.13) and (12.5.14) we get

fr(@,y)
= Z Pr[a light r-vertex generates ¢ light and j heavy b-vertices] xiyl
¥

= Z (Pr [Chrue (v) is simple and |C'(v)| = k + 1| deg, (v) = 1] z*
k

+ Pr [Chiue(v) is not simple and |C(v)| = k + 2| deg,.(v) = 1] ijy)

(ylog2 —y+ z)u? + ((1 —log2)y + 1 +log2 — 2z)u — 1 + =
(—zu+ 2 —1)2log 2 ’

fr(z,y)
= Z Pr [a heavy r-vertex generates ¢ light and j heavy b-vertices] ziy’

J
= ZPF[ |Chiue(v)| = k + 1] deg,.(v) > 1]
k

1—(1—wu)x’

In order to shorten the formulas and make them more readable, we set
v

a=(@-2)(z-y), A=@-2)(y—z), and 7256%'

We will occasionally write z = . Using (12.5.6), (12.5.7) and (12.5.8), we get

fb (ZL', y)
= Z Pr[a light b-vertex generates i light and j heavy r-vertices] z'y
4,J
k
=3 > Pr[Crea(v) is a (k, p)-tree| deg, (v) = 1] 2P~y P
k>2 p=2

1 x +—4’y+4’yz+a'y?+l y—x
— oo J T
zlog2 \y —x 401 —7)? Sya—v))



174 CHAPTER 12. MINIMUM DEGREE PROCESS

fB(xvy)

= Z Pr[a heavy b-vertex generates i light and j heavy r-vertices] z'y
i,

k
= Z ZPr [Crea(v) is a (k, p)-tree| deg,.(v) > 1] aPyF P!
k>2 p=2
1 Yy x By? — 4y + 4y
=" log(1 — .
] G R T e L

log
y—z -y
We let T = T(t) be the transition matrix associated with the branching
process. It can be written as

0 0 ¢13(t) ¢1a(t)

| 0 0 ¢23(t) ¢24(1)
P31 Y32 0 0
Va1 Ya2 0 0

Here the first row and the first column correspond to light r-vertices; the second
row and the second column to heavy r-vertices; the third row and the third
column to light b-vertices; and the fourth row and the fourth column to heavy
b-vertices. The entries denote the expected number of vertices we get of the
required type when we start with a light vertex.

The zeros in the matrix are there, because we will always go from an r-vertex
to a b-vertex, and vice versa. The ¢’s describe the expected number of vertices
generated by the creation of a blue tree at an r-vertex, so they depend on ¢.
The ’s, on the other hand, describe how many vertices are generated by the
creation of a red tree at a b-vertex, and do not depend on ¢, since we are after
the red phase in the graph process, and no more red edges are added.

The ¢’s can be calculated by differentiating the corresponding generating
functions and evaluating them at (x,y) = (1,1). It is slightly more difficult to
calculate the v’s, since x — y occurs in the denominator of the expressions of
fo(z,y) and fp(z,y). This is, however, a removable pole, and we can calculate
the ’s by taking limits at (1,1).

Thus we have expressions for all the entries in 7. Since T is not positive
regular, we cannot apply Theorem 3.4.6 to it. Instead we consider the 2 x 2-
submatrix A = A(t) of T? consisting of the first and second rows and columns.
This matrix is the transition matrix when we consider the branching process in
two steps at a time: From an r-vertex we first generate a blue tree, and then
we generate a red tree for each of the new vertices we get. We have that

| o130+ dra(t)an b1.3(E) 30 + 1.4 ()
4= P2.3(t) 31 Ba.5(t) 3.0 . (12.6.1)

Let A1(t) be the largest eigenvalue of A. Then A;(¢) is an increasing and
continuous function of ¢, and we define he, to be the value for which Ay (h¢,) = 1.
According to Theorem 3.4.6, the branching process dies out with probability 1
when t < h¢, and it continues forever with positive probability when ¢ > h.,.

The largest eigenvalue of A is

3¢ — P+ /272 —16¢  3log2—1+1log2,/27 — 161log2
T 8¢ — (2 - 8log2 — 1 ’

~
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where ¢ = %. Since u = 2e~t, we get

lo,
16log2 — 2
3log2 —1+1log2- /27— 16log?2

Thus we have located the critical moment of the branching process, when the
largest eigenvalue of the transition matrix becomes 1.

Let P(t) be the extinction probability of the branching process. When ¢ <
her, we have that P(t) = 1. Suppose now that ¢ > he,. We let g,(z,y) and
gr(x,y) be the generating functions for the number of light and heavy r-vertices
generated in two steps (first generating a blue tree and then red trees afterwards)
starting with one light r-vertex and one heavy r-vertex, respectively. We have

gr(x’y) = fr(fb(x,y)’f3($7y))7
gr(x.y) = [fr(fe(2,9), fB(2,9)).

Let ¢-(z,y) be the generating function counting the following: Take a vertex
v, which is a light r-vertex, and start by generating a blue tree, and then continue
the branching process until it dies out. Then we count the number of r-vertices
throughout the process, including the vertex v. The coefficient of 2%y is then the
probability that precisely ¢ light r-vertices and j heavy r-vertices were created
throughout the process. We define gqr(x,y) similarly (when we start with a
heavy vertex).

Suppose we start with a light vertex v. The generating function for the total
number of vertices in the process, including v, conditioned on the event that s
light and S heavy vertices are created in the first step, is zq,(z,y)*qr(z,v)".
Let

2
her = log — = log

) = 0.8607.
Ut

Ps,s
= Pr[a light r-vertex generates s light and S heavy r-vertices in one step] .

Hence

a(zy) = Y pesea (@) r(z,y)® =z (g (2,y), qr(z,1)).
s,S

Similarly we have
qr(x,y) = y9r(@-(x,v), qr(z,y)).

If y, and yr are the extinction probabilities, when starting with a light and
heavy r-vertex, respectively, we get

Y = Z Pr [a total of s light and S heavy r-vertices are generated|
5,8
q-(1,1),

yr = qr(1,1).

Thus ¥, and yg satisfy the equations

Yr = 9 (YrYr)s YR = 9rRYr,YR)- (12.6.2)

When ¢ > h,, there is, according to Theorem 3.4.6, a unique solution (y,,yr)
of (12.6.2) satisfying 0 < y,,yr < 1.



176 CHAPTER 12. MINIMUM DEGREE PROCESS

The very first step in the branching process consists of creating a red tree.
We call this tree Cy(v). The probability of the process dying out is

Pit) = ZPr [C1(v) is a (k,p)-tree] yPy5 *
k,p

k-1 L
= > o kYR
k,p
yTyR(yr - yR)2e(?/R—yr)/2
4 (yTe(yR—yr)/Q — yR)

12.7 Phase transition

In this section we will prove the following phase transition, using the eigenvectors
of the transition matrix of the branching process defined in the previous section.

Theorem 12.7.1. Let
16log2 — 2
3log2 —1+log2-+/27 —16log?2

(1) If t < hep, then a.a.s. every component in Gumin(n,tn) has O(logn) ver-
tices.

her = log ( ) = 0.8607.

(2) If t = hep, and w(n) — oo, then Guin(n,tn) a.a.s. contains no component
of order greater than n?/3w(n), and at least one component of order greater

than n?/Jw(n).

(8) If t > hepr, then a.as. the largest component in Gmin(n,tn) has O(n)
vertices and every other component, if any, has O(logn) vertices.

Proof. We first prove part (1). Assume that ¢ < he. Let v be a vertex in
Gmin(n,tn), and let C(v) be the component containing v. We will bound the
probability that C'(v) has more than O(logn) vertices, by using the branching
process of the previous section.

Since every vertex in Guin(n,tn) is incident to at least one red edge, every
b-vertex in the branching process gives rise to at least one r-vertex. Thus it is
sufficient to count the number of r-vertices, since the total number of vertices
is at most twice the number of r-vertices.

Let A be as (12.6.1), and let A\ = A\ () be its largest eigenvalue. Since
t < he, we have that Ay = 1 — ¢ for some ¢ > 0. For a fixed k, we let
[v1v2] be the left eigenvector of A, corresponding to the eigenvalue A, such that
v, + ve = k.

Imagine that we start with u; light r-vertices and us heavy r-vertices. From
each of these vertices we first generate a blue tree, and from each of the new
vertices we then generate a red tree. Let V; be the number of newly generated
light r-vertices, and V5 be the same for heavy r-vertices. We define

P(x1,22) =Pr[Vi > vy or Vo > vglug = a1, up = 2] .

The probability that C'(v) has at least 2k vertices is bounded from above by
the probability that the branching process generates at least k r-vertices. This
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probability is again bounded from above by

max  P(x1,22) = P(v1,v2).
z1<v1,w2<v2
Set u; = v and ug = ve. Since [v1vg] is an eigenvector, E[V;] = (1 — ¢)v; and
E [VQ] = (1 - 6)’[)2.

Let W,_, denote the random variable counting the number of light -
vertices generated from one light r-vertex. Similarly define W,._ g, Wgk_.,. and
Wg—r. Then Vi = >0 Wi+ >02, Wrepi and Vo = 370, W, +

v
>ici WroR.i-

Thus both V; and V5, are the sum of two random variables, each of which
is a sum of a number of non-negative, integral, mutually independent, and
identically distributed random variables. Hence we can use Lemma 3.4.4 to
show that if we set k = clogn, we can always choose ¢ so large that

Pr(V; > v = o(n™1),

for i = 1,2, and so P(vy,ve) = o(n™1).

It follows that the expected number of vertices in components of size greater
than 2k is n - o(n~!) = o(1), which finishes the proof of part (1).

We prove part (2) the case t = he, i.e., when A\;(¢) = 1. This is called the
critical phase. It turns out that the largest component in this case has order
roughly n?/3.

It will be convenient to consider the branching process in Section 12.6 as
a single-type, rather than a multi-type branching process. We still distinguish
between light and heavy vertices and between r-vertices and b-vertices, but we
only count one type, say the light r-vertices. A step in the branching process
consists of taking a light r-vertex and generating a blue tree incident to it, and
then generating a red tree for each of the newly generated b-vertices. However,
instead of stopping here as we did in the previous section, if there are now heavy
r-vertices, we continue generating trees from these vertices, until we only have
light r-vertices.

We let p; be the probability that one light r-vertex generates precisely i new
light r-vertices in this process. We let p(z) = Zpopizi be the corresponding
generating function. Since we are at the critical moment of the branching pro-
cess, i.e., when A1 (t) = 1, according to Theorem 3.4.6, the process dies out with
probability 1. Hence the number of vertices created throughout the process is
finite with probability 1, and so p(1) = 1.

We let h(z) be the generating function for the number of light r-vertices that
are created when starting with one heavy r-vertex. Then

p(z) = 9:(2h(2), Wz)=gr(z h(z))

Now we let g; be the probability that the branching process starting from one
light r-vertex dies out after having produced precisely ¢ light r-vertices, including
the vertex we started with. Then

q(z) = zp(q(2)).

We will use Lemma 2.4.1 with f(z) = ¢(z) and ¢(u) = p(u). As explained
above, p(1) = 1. The expected number of light r-vertices produced by a light
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r-vertex is given by p’(1). The value p’(1) is in fact an increasing function of
t, which is continuous. If p/(1) > 1, the process continues forever with positive
probability. Since this is not the case when t = h.,, we must have p/(1) < 1. But
for any ¢t > h.;, the process does continue forever with positive probability, so
in this case p’(1) > 1. Because of continuity, we must therefore have p’(1) =1
when ¢t = hg;.

Hence, by Lemma 2.4.1, the dominant singularity of ¢(z) is p = 1. To apply
Lemma 2.4.1, we only have to show that p”(1) # 0. This holds, since

p'(1) = i(i—1)p; > 0.

i>2

Thus from Formula (2.4.4) we obtain

o

(12.7.1)

qi ~ci 2.

Given a vertex v, we can build up the component C(v), as explained earlier,
by starting with a red tree, and then adding blue and red trees alternatingly. The
vertices in C'(v) are then labelled light and heavy, and r-vertices and b-vertices.
Let Ay be the event that for some vertex v in Gpin(n, hen), C(v) contains a
component with at least k light r-vertices, and let X} be the number of light
r-vertices contained in such components. Clearly Pr[Ag] = Pr[Xy > k]. Let
Q. be the probability that a branching process starting with one light r-vertex
lasts until at least k light r-vertices have been created. Then

Qi = qu ~ Zcf% ~ c/ 7 3dr = 2k 2.
k

i>k i>k

The branching process is only an approximation to the process of exposing
the components. In the branching process the probability that we choose a red
or blue tree of order k remains fixed throughout, but in the graph, every time
we choose a tree of some order, the number of such trees in the graph is reduced
by one, so the probability that we choose such a tree again later on is changed
slightly. Every time a tree of order k is chosen, the number of vertices in such
trees is reduced by k. Therefore the number of vertices in large trees is reduced
at a greater rate than the number of vertices in smaller trees, so the expected
growth of the component exposure process is bounded by the expected growth
of the branching process.

It follows that the probability that C(v) is in a component with at least k
light r-vertices is bounded above by Q. Hence E [Xj] < nQy, and by Markov’s
inequality,

E [X]
k

Pr[A] = Pr[X, > k] < ~ 2enk”3.

Let w(n) — oo. If k = n?/3w(n), then
2c
PriAg] < — .
r[Ag] < () —0

Hence, a.a.s. Gpin(n, hepn) is such that no matter which vertex v we start with,
if we build up C(v), we will encounter fewer than n?/3w(n) light r-vertices, for
any function w(n) — oo.
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By duplicating what we have done so far, but considering heavy r-vertices,
rather than light r-vertices, we can show that the same is true for them. It
follows that a.a.s., for every vertex v, C(v) will contain less than n*/3w(n) r-
vertices. In Section 12.7 it was explained that the total number of vertices in
C(v) is at most twice the number of r-vertices. Hence we conclude that a.a.s.,
for every vertex v, C'(v) contains at most n?/3w(n) vertices.

Now we consider the lower bound on the order of the largest component.
We will prove that for any function w(n) — oo, there is at least one component
C(v) which contains n2/3 Jw(n) light r-vertices.

Let p'(n, k) be the probability that a given vertex v in Guin(n, heyn) is in a
component of order at least k. As mentioned above the probability p/(n, k) is
bounded above by Q. To find a lower bound for p'(n, k) we define a modified
branching process, as in the previous section: Whenever a new vertex is gener-
ated, we discard it with probability n='/3w’(n), for some function w’(n) — oco.

When we build the component C(v), a newly “generated” vertex w may
coincide with an already generated, but unsaturated vertex w’. In this case we
cannot generate new trees from both w and from w’ - we solve this by disregard-
ing both the vertex w and the vertex w’. The probability that a vertex has to
be disregarded in this manner is bounded above by n?/3w/(n)/n = n=1/3w'(n),
since we have already proved that there are no components of order larger than
n?/3W' (n).

Furthermore, as mentioned above, the probability that we choose a red or
blue tree of some order [, changes slightly throughout the process. Let for
instance r; be the probability that a given vertex is in a red tree of order I, at
the beginning of the exposure. Thus the graph contains mn vertices in such
trees. After we have exposed en?/3 vertices, the expected number of vertices
exposed which are in red trees of order [ is rl/nz/ 3, for some constant r]. If we
now choose a vertex at random from the non-exposed vertices, the probability
that this vertex is in a red tree of order k is therefore

rin — rin2/3
e = O
Similar calculations hold if we instead consider the probability that a red (resp.
blue) tree of order [ is generated from a light or heavy b-vertex (resp. r-vertex).
Thus, the probability that the branching process in one step chooses a tree of
“wrong” order is smaller than n~1/3w/(n).

By discarding a newly generated vertex with probability n~/3w/(n), the
order of the components generated by the modified branching process therefore
gives us a lower bound on the order of the components in the graph process.

Now let w(n) — oo and k = n?/3w(n), and choose w’(n) such that w'(n)? =
o(w(n)). If we let p_(z) be the generating function for the number of light
r-vertices which are generated in one step from one light r-vertex, we have

p-(2) = Y pil(l—n"P )z + 0 Pw(n)
i>0
= (1= 0V )z + B ().
Defining ¢_(z) analogously to q(z), we get q_(z) = zp((1 —n~Y3w'(n))q_(2) +

n~1/3w'(n)). Let p_ be the dominant singularity of ¢_(2), as in Lemma 2.4.1.
By studying the functions p_(z) and ¢_(z) close to z = 1, one can show that
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2 Sy — ’
logp_ =¢ (n_l/?’w’(n)) for some constant ¢’. Hence, p_* = e=¢'kn M m)? =

e=°M) | 50 the dominant singularity of ¢_(z) approaches 1. The constant in
(12.7.1) depends only on the derivatives of p(z), so when n — oo, we get
[21]q_(2) ~ [¢']q(2). Tt follows that p'(n, k) is asymptotically bounded below by
Qr, and hence that p'(n, k) ~ Qr and E [X] ~ nQy.

According to the above argument there is a.a.s. no component with more
than k' = n?/3W/(n) vertices. We want to prove that there is at least one
component with at least k vertices. We let X be as above, such that

E[X)] ~ nQy = 2enk™2 = 2en?/3 w(n).

Let v be a vertex in a component with at least k vertices. A.a.s C(v)
contains at most k’ vertices. Hence the expected number of pairs of vertices in
components of order at least k, which include v, is bounded above by k' +E [X}].
Thus

E[Xp(Xk —1)] < E[Xg] (K +E[Xy])
~ 20?3\ /w(n)(n?3W (n) + 2en?/3\/w(n))
= E[XE (14 o),

so again by Chebyshev’s inequality, we get that a.a.s. Xy ~ E [Xg]. In particular
there is a.a.s. a component in Guin(n, heynt) of order at least k.

Now we prove part (3). Assume that ¢ > he. In the branching process
we distinguish between saturated and unsaturated vertices as in Section 12.6.
Saturated vertices are those from which we already have added a red or a blue
tree, while unsaturated vertices are those which have been generated, but from
which we have not yet generated a new tree.

One problem appears when we try to use the branching process to model the
graph process: In the branching process, newly generated vertices will always
be distinct from earlier generated vertices. In the graph process it may happen
that a newly generated vertex is the same as one of the unsaturated vertices. If
the number of vertices we already have in the component is k, then the proba-
bility that a given newly generated vertex is one of the unsaturated vertices, is
bounded above by % Aslong as k < n, for any & > 0 this value is smaller than
¢’ for large n. We therefore introduce a modified branching process: Whenever
a new vertex is generated, we discard this vertex with probability ¢’ > 0. Since
t > her, and the eigenvalue function is continuous, we can always find an &’
small enough, so that the largest eigenvalue remains strictly greater than one.
We will from now on assume that we are using this modified branching process.
A1 = 1+ ¢ will be the largest eigenvalue, and € > 0.

We will now prove that there exist constants ¢ > 0 and § > 0, such that for
any 1 with 0 < 1 < 3, the following is true. Let k_ = clogn and ky = n'=".
The probability that there is a vertex v such that for some k with k_ < k < k.,
the branching process starting with v has less than Jk unsaturated vertices after
k steps, given that the branching process has not died out before k_ steps, is
o(1).

To prove this, we fix k, with k_ < k < k4, and assume that the branch-
ing process has not died out after k_ steps. The expected number of vertices
generated from k vertices is k(1 + ¢). Let 0 be a constant with 0 < § < e.
Lemma 3.4.4 implies that the ¢ which k_ depends on can be chosen so large
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that the probability that the branching process after k steps (with & > k_) has
fewer than k(14 0) vertices is o (n~2). Thus the number of unsaturated vertices
is at least k(1 4 &) — k = dk. The probability that for some vertex v and some
k with k_ < k < k4 the number of unsaturated vertices is less than Jk is then
bounded from above by

k=k_

In other words, there is a.a.s. no component with between k_ and k. vertices.

Now we want to show that there is no more than one component with more
than k4 vertices. Let v and w be two vertices belonging to components with
at least ky vertices. Now we run the branching processes starting with v and
w. According to what we showed above, when we have reached k4 vertices in
each of the branching processes, each of them has §k; unsaturated vertices.
By Lemma 3.4.4, the dk; unsaturated vertices in the component containing v
generate at least d’ky vertices for some §’ > 0. The probability that none of
these vertices is one of the unsaturated vertices in w’s component is bounded
from above by

. 5lk+ ;) 1— , 1l
(n 5k+> = (1 — 5717’7)(S e e (nfz) .

n =

So a.a.s., if v and w are in components with more than k; vertices, then v and
w are in the same component.

We call a component small if it has less than k_ vertices and large if it
has more than k. vertices. We let p(n,t) be the probability that a vertex v in
Gmin(n, tn) is in a small component. In Section 12.6 we proved that when ¢ > he,
the probability that the branching process dies out is P(¢) with 0 < P(t) < 1.
Thus p(n, t) is bounded from below by P(¢)4o0(1). We let P/ (t) be the extinction
probability of the modified branching process defined earlier in the proof, where
a newly created vertex is discarded with probability &’. As long as ¢’ > 0, P (t)
is an upper bound for the probability that C'(v) is small. As & — 0, P.(t)
converges to P(t), so p(n,t) — P(t) as n — oo.

Letting Y be the number of vertices in small components, we get that E[Y] =
(P(t) 4+ o(1)) n. Furthermore,

EY(Y - 1)] < np(n, t)(k- + np(n — O(k_),t) = (1 + o(1)E[Y]?,

so by Chebyshev’s inequality, a.a.s. Y = (P(t) + o(1)) n. Hence the number of
vertices in the largest component is (1 — P(t) + o(1)) n. O
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Chapter 13

Min-min Random Graph
Process

In this chapter we investigate the evolution of the min-min random graph process
(Gam)o<m<n- The process starts with an empty graph Gy with vertex set
V := [n], where n is even. Furthermore, in each step Gpry; is obtained from
G by first choosing a pair {v, w} of distinct non-adjacent vertices of Gy of
minimum degree uniformly at random among all such pairs and adding a new
edge {v,w} to G-

Note that it may happen that at a certain step of the min-min random
graph process, G, say, we cannot anymore select a pair {v, w} of distinct non-
adjacent vertices in Gp; where both v, w are of minimum degree in G, which
happens with probability tending to zero as n — oo. In this case we restart the
process from the empty graph. Let B be an event that the min-min random
graph process continues at least until M = rn/2 for a fixed r > 3. This happens
with probability tending to one as n — co. Hence it is sufficient to show that
a certain event holds a.a.s. conditioned on B, if we want to show that a.a.s. it
holds. Thus we assume that the event B holds below.

Note that the maximum and the minimum degree of GG j; differ by at most one
for all M. More precisely, if we let (M) = |2M/n] and v(M) = (r+1)n—2M,
then Gp has exactly v(M) vertices of degree r(M) and n — v(M) vertices of
degree (M) + 1. Hence, if M = rn/2, then G is r-regular, although, e.g., in
the case r = 2 GGy is not a uniformly distributed r-regular graph.

Let M =n+tn for —1 <t < 1/2. At the beginning of the min-min random
graph process the evolution is quite simple: If —1 < ¢ < —1/2, then G, will
have less than n/2 edges. The minimum degree equals 0 and the maximum
degree of Gjs equals one. Thus Gj; simply consists of isolated vertices and
isolated edges. When ¢ = —1/2, the minimum degree of Gs reaches one, and
Gu = Gz is a perfect matching of the vertex set V. In fact, Gy is a uniformly
distributed random perfect matching of V', because the distribution of Gy is
invariant under permutations of the vertex set.

In the range —1/2 <t < 0, Gps41 is obtained from G by connecting two
randomly chosen vertices of degree one by a new edge, and Gps41 consists of
isolated paths and isolated even cycles.

When t = 0, the minimum degree of G, increases to two, and Gy = G,

183
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Figure 13.1: An &-cycle.

consists of isolated even cycles, that is, it is a random bipartite 2-regular graph.
However, G, is not uniformly distributed. We will study the distribution of G,
in Sections 13.1.

In the range t > 0, the cycles of G, glue together to form a large component
of order Q(n) in Gy, and indeed a.a.s. the random graph G consists of a giant
component on (1 — o(1))n vertices and a number of small isolated even cycles
as we will see in Section 13.3.

When ¢ = 1/2, the minimum degree of G, increases to three, and Gy =
G'3p/2 is a random 3-regular graph. However, we do not know if Gy, /2 is uni-
formly distributed or is contiguous to the uniformly distributed 3-regular graph
G’g). Moreover, all the isolated cycles appeared before have joined into the
giant component and thus G,/ is a.a.s.connected.

In the rest of the chapter we study further typical properties of Gj; when
0 <t < 1/2. In Section 13.1 we study the configuration model to determine
the distribution of G,,. In Sections 13.2 and 13.3 we investigate the distribution
of isolated cycles and the structure of components of Gj;. In Sections 13.4
and 13.5 we study the probability that Gj; is connected and determine the
asymptotic distribution of the order of the largest component of Gj;. To this
end, we combine “classical” probabilistic methods with the singularity analysis
and the analysis of characteristic functions (i.e., Fourier transforms).

13.1 Configuration model

To study the distribution of G,,, we make a little detour via the well-known
concept of configuration.

The configuration model was invented by Bender and Canfield [15] and by
Bollobéas [34] to study random regular graphs. We will use a result on the
number of cycles in the configuration model to investigate the min-min random
graph process.

Let v > 2 be an even integer, and let W = {1,...,v}. Let £ = {e1,...,e,/2}
be a set of pairwise disjoint subsets e; C V' of cardinality 2. For an even integer
k > 2 we call a sequence C = (vy,...,v;) of pairwise distinct elements of W
an E-cycle of length k when {v;_1,v;} € & for even j with 2 < j < k (see
Figure 13.1).
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Moreover, let p : V' — V be a perfect matching; that is, pop = id and p(v) # v
for all v € W. Then we say that the E-cycle C' occurs in p if p(vj) = vj4q for
2 < j < k even, and p(vy) = v;.

The number of £-cycle satisfies the following property. A proof of it can be
found in [33, Sec. 2.4].

Proposition 13.1.1. Let K be an arbitrarily large even number that remains
fixed as n — oo. Furthermore, let Yy, be the number of E-cycles of length k
occurring in a perfect matching p, where p is chosen uniformly at random among
all (v — 1)!! possible perfect matchings. Let A, = k=%, Then (Yi)2<k<k, even
are asymptotically independent Poisson variables with means (Ag)2<k<K, even aS
vV — 00.

We call a perfect matching p an &€-configuration if {v, p(v)} € € for allv € V.

Corollary 13.1.2. The number of £-configurations is (1+0(1)) exp(—1/2)(v —
DY as v — oco.

Proof. A random perfect matching p is an E-configuration iff Y5 = 0, and by
Proposition 13.1.1 we have Pr[Yz = 0] ~ exp(—A2) = exp(—1/2). O

Let £ denote the set of all sequences (ey, . .., €,/2) of pairwise disjoint subsets
of V of cardinality 2. Moreover, fix any perfect matching G, of V, and let £(G.)
signify the set of all (ey,...,e,/2) € € such that e; ¢ E(G.) for all i. Then each
G -configuration p corresponds to (n/2)! elements of £(G.), which specify the
order in that the edges {v, p(v)} are added. We shall first work with the tuples
(€1,...,en/2) € E(G,) rather than with the configurations p € K(G.).

Lemma 13.1.3. We have |£(G.)| > 3|&|.

Proof. Let (e1,...,e,/2) € € be chosen uniformly at random. Then the expected

number of indices 4 such that e; € E(G.) equals 3 - EZ:?;:: < % Therefore, the

assertion follows from Markov’s inequality. O

For an index 1 <m < § and a tuple (e1,...,e,/2) € € we let Z,,, = Z,,,(E)
be the number of isolated edges of G, + {e1,...,em}.

Lemma 13.1.4. Let E = (e1,...,e,/2) € € be chosen uniformly at random.

(i) If1<m <3 —n3/100 then

Pr ||Z,, — g(l —2m/n)?| > n®/100(1 — 2m/n)} < exp(—nl/100).

14 ith probability > 1 —n~ we have Z,, =0 for allm > 5 —n .
With probabil 1 910 we have Zn, =0 I 1 p3/100

Proof. The set S of all vertices v € V such that v € e; for some 1 <7 < m is
a uniformly distributed subset of V' of cardinality 2m. In addition, consider a
random subset W of V' obtained by including every vertex v € V with probabil-
ity p = 2m/n independently of all others. Then |W| is binomially distributed
with mean 2m, so that

Pr[|W| = 2m] = Q(n~/?). (13.1.1)
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Furthermore, given that |W| = 2m, W is uniformly distributed. Thus, letting
Z!, denote the number of edges e € E(G,) such that e C V'\ W, the conditional
distribution of Z/, given that |W| = 2m coincides with the distribution of Z,,.

Suppose that 1 < m < % — n3/190  As 7! is binomially distributed with
mean % (1 —p)?, the Chernoff bound (3.4.6) entails that

Pr [|Z;n - g(l — 2m/n)?| > n?/100(1 — 2m/n)} < exp [—nl/ﬂ . (13.1.2)

Combining (13.1.1) and (13.1.2), we conclude that

n om ) 2 99 2m
Za-5 (1-50) 12 (12 57) "W':Qm]

< O(\/ﬁ) eXp(_n1/50) < eXp(_nl/mO)7

thereby proving the first assertion.
Now, let m > 2 — n3/1%0. Since S is uniformly distributed, for any edge
e € E(G.) we have

Prien s =0] = <”_2><”)1§(12m/n)2.

2m 2m

In effect, the expected number of edges ¢ € E(G.) such that enN S = 0 is

< 2(1—2m/n)? < n=910 Hence, the second assertion follows from Markov’s

inequality. O
Let £(G4) denote the set of all E € £(G.) such that
| Zm(E) — %(1 — 2m/n)?| < n/100(1 — 2m/n)
foralll1<m <% — n3/1%0 and Z,,(E) = 0 for all m > 2 — n3/100  Ag a direct
consequence of Lemmas 13.1.3 and 13.1.4 we have the following result.

Corollary 13.1.5. If F € £(G.) is chosen uniformly at random, then
Pr[E € &(G.)] >1—n~5.

For £ = (e1,...,¢e,/2) € E(G,) we set
. n
p(E,G*) =Pr [G%+j+1 = G%+]‘ + €41 for 0 S 1< §|Gn/2 = G* .

Lemma 13.1.6. (i) We have p(E,G.) ~ |E(G.)|™! uniformly for all E €
Eo(Gy).

(i) For any element E € £(G,) we have p(E,G,) < n?/°|E(G,)|".

Proof. For E = (e1,...,en/2) € E(G«) we let F, = Fp(E£) denote the event
that E(Gzm)\ E(Gz) = {e1,...,en}. In addition, Fo signifies the event that
G2 = Gy, and py, = pm(E) = Pr[Fp,|F; for 0 <4 < m]. Furthermore, we let
T, = ("_sz) — Z,m be the number of possible edges that can be added to G,
in order to obtain G,,+1; thus, the probability that any specific pair {v,w} of
distinet non-adjacent vertices of minimum degree of G, is chosen is T}, .
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To prove the first assertion, assume that E € &/(G.). Then given that F;
occurs for 0 <7 < m we have

_92 9 )
Tm_{ (") = (=224 A, ifm < B — 0B/

2 n
_9 .
"M, otherwise,

where |A,,| < n%/190(1 — 2y Therefore, letting

=" 22 ”

n _ 3/100 _ (n—2my~1 n _ ,.3/100 n
forogmgi—n/ andqu—( 5 ) fori—n/ <m < 3, we have

2

Ay : 3/100
qm-+1 :{ 1—‘!_(71—2771)_%(1_2%)27 lfmfg—n/ )

Pm+1 1, otherwise.
Consequently,
H0§m<% dm+1 Gm+1
p(E,Gy) 0<m<n Pm+1
99
nioo (1 —2m/n
< H (1 + (n—2m) f ﬂ(l _ ém)/n)2>
ogmgg—n% 2 2
< exp |O(n~1/100) Z !
- , N —2m
0<m< % —nT00
= 14 o(1), (13.1.3)
and similarly
H m< Qerl
055—2 = Imtl 51— o(1). (13.1.4)
p( ) *) 0<m<2 Pm+1

Since the quantity []y<,,.n gm+1 does not depend on F, the first assertion
> 2
follows from (13.1.3) and (13.1.4).
In order to establish the second assertion, consider any F € £(G.). As we

have
n—2m 1 n—2m
—Z(n-— <T, <
( 5 ) 2(n 2m)Tm( 5 )

forall0 <m < %,We get

1 n—2m\ " n
1<p;1+1< ) <1 (0<m< - -1),
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and p, /5 = 1. Therefore,

-1

n—2m 1
1Zp(E,G*)H<2)=H(n_2m)
0<m<2-1 o<me<z—1 Pmt1 2
1
> 1+
- H ( n—2m—1)
0<m< 5 -1
1
> exp |— Z (j71+j72) > exp {annO(l)}
3<j<n, odd
> n730, (13.1.5)

2
assertion. O

Since H0§m<%_1 ("_27”)71 does not depend on E, (13.1.5) implies the second

Distribution of G,,. To describe the distribution of GG,,, note first that the
edge set E(G),/2) of Gy, /2 is a partition of V' into n/2 pairwise disjoint subsets of
cardinality 2, so that we can use the notion of £(G,, /2)-configurations; for brevity
just write “G), jo-configuration”. Moreover, we let K(G'z) be the set of all Gz-
configurations equipped with the uniform distribution. Then to each p € K(G'z)
we can associate a 2-regular graph Gn +p =Gz + {{v,p(v)} : v € V'}.

Proposition 13.1.7. For any perfect matching G of V' there is a set M(G,) C
K(G,) that enjoys the following properties.

(i) If p € K(G.) is chosen uniformly at random, then Prp € M(G,)] =
1—o0(1).

(ii) Given that G, /o = G, with probability 1 — o(1) there is a configuration
p € M(G.) such that G, = G2 + p.

(iii) We have Pr[G,, = G2 + p|Gpjo = G| ~ |K(G.)|™! uniformly for all
peM(G,).

Proposition 13.1.7 sets up a connection between the distribution of G,, and
the graph G, /2 + p, where p € K(G,,/2) is chosen uniformly at random. More
precisely, we define a probability space (2, Praq) as follows: let Qx4 be the
set of all pairs (p,G), where G = (GM)OSMg( ) is a min-min process, and

H
p € K(G,,/2). Moreover, let

Pr[g‘Gn = Gn/2 + P]

(K(Gry2)l '
In addition, if Z is a random variable that assigns to a min-min process G a real
Z(G), then we can extend Z to Qaq by letting Z(p,G) = Z(G). We let Epq(Z)

signify the expectation of Z with respect to Pry.
By Proposition 13.1.7 for any set A of min-min processes we have

|Prag [(p, G) satisfies G € A] — Pr[A]| = o(1).

Furthermore, we can describe the distribution of GG,, with respect to the measure
Prp as follows: first, choose a perfect matching G,, /o uniformly at random;
then, choose p € K(G,,/2) uniformly at random and set G, = Gy, /2 + p.

PrM(ﬂv g) =
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Proof of Proposition 13.1.7. For p € K(G.) let £(p) be the set of all sequences
(€1,...,en/2) € E(G) such that {e; : 1 < i < n/2} = {{v,p(v)} : v € V}.

Furthermore, we let
M(G) = {p € K(G.) : [E(p) \ E0(G)| <™ OIE ()]}
Then Corollary 13.1.5 implies that
MG = (1 =0~ IOK(GL)],
whence the first assertion follows. Moreover, Lemma 13.1.6 entails that
Pr[Gn = Gpjo+plGrjo = Gi] ~Pr[Gn = Grjo+p/|Gnyz = G.]

uniformly for all p, p’ € M(G,), so that the third assertion follows. Finally,
invoking Corollary 13.1.5 and Lemma 13.1.6 once more, we observe that

> Pr[G, = G,y + p|Gryjo = G
PER(G)\M(G-)

(n/2)/|K(G.) \ M(G.)]
) (L= ol1)IE(G) " Ees(c*z)\so(c*)p(E ¢

< (1+ 0(1))7171/10 +n 0 = o(1),

thereby proving the second assertion. O

13.2 Isolated cycles

In this section we will study the isolated cycles in Gy with M = n + tn when
0<t<1/2

As G, is bipartite and 2-regular, it consists of isolated even cycles. Using
Proposition 13.1.7, we will first prove the following statement, which yields the
joint distribution of the number of cycles of bounded length in G,,.

Proposition 13.2.1. Let Cy be the number of cycles of length k in G, for
even k. Then for every even constant ko (Ci)r=a6,. k, are asymptotically in-
dependent Poisson variables with means (1/k)g=a, .k, Moreover, a.a.s. G,
consists of at most (1 + o(1))Inn connected components.

Proof. Let G, be any perfect matching of V. Moreover, let Cj be the num-
ber of cycles of length k& in G, + p, where p € K(G,) is chosen uniformly at
random. Then Proposition 13.1.1 entails that (C}.)a<k<ko, even are asymptoti-
cally independent Poisson variables with means (k™!)4<p<j,. Finally, due to
Proposition 13.1.7 this implies that (Ck)i<k<k, are asymptotically independent
Poisson variables with means (k™1)s<k<k, as well.

In order to bound the number of components of G, + p (where p € K(G,) is
uniformly distributed) we adapt an argument for counting cycles in a random
permutation [62, p. 258]. For each vertex v we let v’ denote the neighbour of v in
Gz. Then we construct a uniformly distributed random G z-configuration p as
follows. Initially, we let the first vertex v; =1 € V' choose its image vy = p(v1)
uniformly at random from V' \ {v1,v]}; we also set p(vy) = vy. Clearly, there



190 CHAPTER 13. MIN-MIN PROCESS

are n— 2 ways to choose ve. Now, v} chooses a random image v3 = p(v}), where
vy € V \ {v1,v2,v5}; thus there are n — 3 ways to choose vs. Set p(vs) = vh.
If vz # v}, then we choose a further vertex vy € V' \ {v1,vq, v, v3, 04}, ete.
We proceed in this way until we eventually choose v, = v}, thereby closing
the cycle (v1,va,v5,v3,05, ..., Uk_1,V}_y, Vs = v}). Since in the 2 < k-th step
there are n — 2k + 1 vertices to choose from, the probability that vy, = v} equals
pe = (n—2k+ 1)1 If vy = v}, we let vgr1 € V = {1,...,n} be the smallest
vertex that has not yet been assigned an image p(vg41) and repeat the same
procedure to determine the second cycle, etc.

Now, to count the cycles occurring in G, + p, we define a random variable
Z; as follows: we let Z; = 1 if the j-th step of the construction of p closes a

cycle, and 0 otherwise. Then Z = Z;Li 21 Z; equals the total number of cycles
and thus the number of components of Gz + p.

However, we cannot characterize the distribution of Z directly, because the
random variables Z; are not independent; for Z; = 1 implies Z;; = 0. There-
fore, we consider the following family of slightly modified random variables: we
set Z; = Z; if Z;_1 # 1 and j > 1. Moreover, in the case Z;_; =1 or j = 1,
we let Z; = 1 with probability p; = (n —2j + 1)7!, and Z; = 0 with proba-
bility 1 — p; independently of the construction of p and the values assigned to
all other Z;’s. Then Pr[Z; =1] = p; for all j = 1,...,n/2, and Z;,..., 2,/
are mutually independent. Furthermore, Z = Z;‘i 21 Z; > Z bounds the num-
ber of components of Gz + p from above. Thus, we just need to estimate
Pr[Z < (3 +o0(1))Inn]. Since the Z;’s are Bernoulli with mean p;, we have

n/2 n/2

1 1
E(zZ) = ;Pj = 2;2]7_1 ~ 5lnn,
n/2
Var(2) = > p;(1-p;) <E(2).
j=1

Therefore, Chebyshev’s inequality implies that Z < (3 + o(1))Inn a.a.s., ie.,
G, + p has at most (% +0(1)) Inn components a.a.s. Finally, Proposition 13.1.7
implies that the same is true for G,,. O

In the range t > 0 the cycles of G, glue together to form a large component
of order Q(n). To study this process in detail, the next proposition is crucial.

Proposition 13.2.2. Let G, be a bipartite 2-reqular graph. Suppose that n~' <
t <1/2—§ for an arbitrarily small § > 0 that does not depend on n. Fiz a set
S of s vertices, where s = o(y/n/t). Let F = E(Gp) \ E(Gy,). Then

PrienS =0 for alle € F|G, = G| ~ (1 —2t)°.

Proof. Let G, be a bipartite 2-regular graph, and let S C V be a set of vertices
of order s = o(y/n/t). Consider a min-min process G = (Go,...,G3,/2) such
that G,, = G, where G, is obtained from G; by adding an edge e;. Let
0 <k =tn < 1(1-0)n for an arbitrarily small but fixed § > 0. Further, let X
be the number of edges joining two vertices of degree 2 in G,4; (0 < j < k).
Moreover, let X ]’ denote the number of edges joining two vertices v, w of degree
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2 in G4, such that v,w € V'\ S. Finally, let £; be the event that the edge e;
added in the (n + j)-th step satisfies e; NS = 0.
Our goal is to show that

Pr(&; for all 0 < j < k] ~ (1 —2k)°.
To this end, we consider the quantity

(YT -X, (m—2k—s)y 1-X(F)T

pj = (n—22j) - X; - (n — 2k)s 1— X, (n722k)*1 .

(13.2.1)

Then p; equals the probability that £; occurs given the values of X; and X ]’
and given that all vertices in S have degree 2. For the denominator in (13.2.1)
equals the total number of possible edges e;, because there are n — 25 vertices
of degree 2 in G,,1;. Moreover, since there are n — 25 — s vertices of degree 2
outside of S, the numerator in (13.2.1) equals the number of possible edges e;
such that e,; NS = 0.

To compute Pr [€; for all 0 < j < k], we estimate p; uniformly for all possible
values of X; and X}. By our assumption that n — 2k > én and s = o(n), we

have X} /("% ), Xi/("5%) = O(1/n). Therefore,

X; X; X\
1-— S~ = ex —n_igj—i-O n—iéj
(57) D << : >>
= exp|— jf;‘j +0(1/n)‘|, (13.2.2)
L ("5
PR, S . +o< X )
) T U\
S
= exp —nQ;S—I—o(l/n)]. (13.2.3)
L ()

Since s = o(n) and the maximum degree of G,; is < 3, § is incident with at
most 3s = o(n) edges. Consequently, X; — X} = o(n). Hence, plugging (13.2.2)
and (13.2.3) into (13.2.1), we obtain

L m=2ime)y XX o(L/m
ki = (n—29)2 p[(ng2j) (n—22j—s) +o(1/ )1 (13.2.4)

R

Furthermore,

n—25\(n—2j—s -1 s 5
= (1+— )V (14 -2
( 2 )( 2 > (+n2js) (+n2ksl)

+o(1/n)] .
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Combining (13.2.4) and (13.2.5), we obtain

T N PO o o B s BN
b= (n—29)9 p[Xﬂ T (7Y +o(1/ )]

B (n —25)s (n52j) +o(1/ )]

- W'GXP(O(U”)) (13.2.6)

Finally, since the right hand side of (13.2.6) does not depend on X; and XJ/», we
obtain that

(n—2j5—8)2

Pr [5j|50/\"'/\5j_1} = (n—2j)2

-exp(o(1/n)). (13.2.7)

As a consequence, recalling that k = tn, we get

Pr[&; forall 0 <j < k] = H Pri&l€o A AEj—1]
0<j<k

- I (i xtotn))

R TR T IR TE)

(”(;);)jtn _ <”2t_ns> <27Zn> - (13.2.8)

Further, estimating the right hand side of (13.2.8) via Stirling’s formula (3.4.1)
and letting y = s/n, we get

Pr[&; for all 0 < j < k]
n—s 2tn n—s n—s—2tn 2n, 2tn n— 2tn n—2tn
2tn n—s—2n n n

s\ n—s s (1-2t)n—s
(-2 (1-7) '(”azt)ns)
=(1-2)’expln(1—y)In(l—y)+(1-2t—y)In(l+y/(1—-2t—y))].

(13.2.9)
Now, Taylor expanding, we obtain
— (1— _ 9 _ _ v
ky) = 1—y)h(l-y)+(1—-2t—y)ln [1+ 1—2t—y]
= 1 (1—2t)F"1 -1\ ,
= . 13.2.10
D k(k — 1) < 1—_anr1 )Y ( )

=2

Moreover, Taylor series of (1 — 2t)*~! together with the Lagrange remainder
gives
(1 =2tk =1 —2(k — 1)t + t?n, (13.2.11)
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where |n| < 2(k—1)(k—2). Since 1 —2t > ¢ is bounded away from 0, y = o(1),
and ty? = o(1/n), plugging (13.2.11) into (13.2.10), we conclude that

Y2 2ty 2(k—1)(k —2)
lk(y)] < 2 ST < P k(k—1) 2t2>
< 1067y ) (%)k =o(1/n).
k>0

Therefore (13.2.9) yields
Pr[&; for all 0 < j < k] ~ (1 —2t)° exp(nk(y)) ~ (1 — 2t)*,
as desired. O

Combining Propositions 13.2.1 and 13.2.2, we can estimate the number
Y. (M) of isolated cycles of length k in Gpy with M = n +tn for t > 0 (k
even): each such isolated cycle results from an isolated cycle of G,, that re-
mained untouched during steps n +1,n+2,..., M.

Corollary 13.2.3. Let 0 < t < 1/2, and let Yp(M) denote the number of
isolated cycles of length k in Gpp with M = n+1tn for even k. For an arbitrarily
large but constant ko the random variables (Yi)g=a.... ko, even are asymptotically
independent Poisson with means ((1 — 2t)k/k)k:4,wk0, even- Furthermore, for

any even 4 < k = o(\/n/t) we have Ep(Cy) ~ (1 — 2t)% /.

Proof. To prove that (Y)a<k<ko, even are asymptotically independent Poisson
variables, we will show that

lim E II oo, | - I (“_k%)k)k—o; (13.2.12)

n—oo
4<k<kp, even 4<k<kg, even

then the assertion follows from Theorem 3.4.1. To establish (13.2.12), we need
to expand the factorial moment. Let r» = r4 + r¢ + -+ + rg,. Moreover, for
k=1,...,r welet ¢, =2max{l > 1: 22227"21' < k}+2. Then

p=E I[I ).,

4<k<kgo, even

is the expected number of tuples (Si,...,S,) of distinct isolated cycles in Gy
such that the k-th cycle Sy has length ;. Thus, we let S be the set of all tuples
(S1,...,S;) of pairwise disjoint subsets of V' such that |Sg| = (. Further, we
say that (S1,...,S,) in S is valid in Gy if each Sy, is an isolated cycle of length
Cr in Gpr. Then

p= > Pr[(Si,...,S)is valid in Gp]. (13.2.13)
(Sl,...,ST)ES

Now, (S1,...,5,) € S is valid in Gy iff (Sy, ..., Sy ) was valid in G,, and none
of the additional edges E(G )\ E(G,,) is incident with a vertex in S = J,_; Sk-
Therefore, Proposition 13.2.2 implies in combination with (13.2.13) that

p= > Pr[(Si,...,S)isvalid in G,] - (1 —2t)51+o(1). (13.2.14)
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Furthermore, as Y4(G,),...,Ys, (G,) are asymptotically independent Poisson
by Proposition 13.2.1,

> Pr[(Sh,...,S,) is valid in Gy
(S1,...,8,)€S

4<k<kg, even

=o()+ [ & (13.2.15)

4<k<kq, even

Combining (13.2.14) and (13.2.15) and observing that [S| =3, <1 even KTk
we obtain (13.2.12). T

To compute Exq(Yi(n)) for even 4 < k = o(y/n/t), we consider G =
G j2+p, where pis a G, jo-configuration chosen uniformly at random (cf. Propo-
sition 13.1.7). Then every cycle C of length k in G corresponds to precisely k
sequences (v1,...,vx) in V¥ such that {v;,v;_1} € E(G,2) for even 2 <i < k
(because there are exactly k ways to choose the first vertex vy € C). Further,
in total there are H?ﬁ;l(n — 2j) such sequences (v1,...,v;), because for even
2 <4 < k the vertex v; is determined by v;—1 (and G,,/2). Thus, the set C of
all possible cycles of length k has cardinality &+ Hfé 2071(71 —2j). Moreover, for
each C' € C;, we have

Pr[C occurs in p] ~ (n —k — 1)!I/(n — 1)L

For given that C' occurs in p, by Corollary 13.1.2 there are (1+0(1)) exp(—3)(n—
k—1)!I' ways to choose a configuration on V' —C, while the total number of G, /-
configurations is (1 + o(1)) exp(—3)(n — 1)!l. Hence, if ¢ = 0, then

(n—k— D! TT5 (0 — 29)

~ kL 13.2.1
k-(n—1)N (13.2.16)

Enm(Yr(n)) ~

Finally, if 0 < t < %, then each isolated cycle C' in Gj; was already a cycle in
G, and remained isolated until step M. Hence, (13.2.16) implies in combination
with Proposition 13.2.2 that E (Y3 (M)) = (1 + o(1))k~1(1 — 2t)*.

O

13.3 Component structure

When ¢ > 0 the random graph Gj; with M = n + tn consists of one giant
component on (1 — o(1))n vertices and a number of “short” isolated cycles.
More precisely the following holds.

Proposition 13.3.1. Suppose that n~'In*n < t < % — 0 for an arbitrarily

small but constant § > 0. Then G); consists of precisely one component of
order (1 — o(1))n and isolated cycles of length O(t~!Inn) a.a.s.

To prove Proposition 13.3.1, we need an alternative description of the ran-
dom graph Gp; for M > n. An M-configuration is a set R C V of cardinality
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|R| = 2(M — n) together with a map p : R — R such that p(v) # v for all
v € R and pop =id. In other words, p is a perfect matching of R. Moreover,
given a state GG,, of a min-min process at step n, we say that an M-configuration
(R, p) is a (Gpn, M)-configuration if {v, p(v)} € E(Gy,) for all v € R. Hence, the
matching p describes a set of edges that can be added to G,, in order to obtain
the state G s at step M.

Let G, be a 2-regular bipartite graph. If (R, p) is a (G, M)-configuration,
then let P(G., R, p) denote the probability that E(Gar) \ E(Gp) = {{v, p(v)} :
v € R} given that G, = G.. The following lemma establishes a connection
between the uniform distribution on the set of all (G, M)-configurations and
the distribution given by P(G., R, p).

Lemma 13.3.2. Let G, be a 2-regular bipartite graph, and let (R, p), (R',p')
be two (G, M)-configurations. Then there are constants 0 < ¢y < ¢co such that

c1P(G.,R,p) < P(R',p') < coP(G., R, p).

Note that M-configurations are considerably more convenient to work with
than (G, M)-configurations. So the following lemma will be useful.

Lemma 13.3.3. Suppose that M = (1 + t)n, where 0 <t < % Let Gy be any
2-regular bipartite graph, and let R C V, 4 < r = |R| = 2(M —n). Let p be
a random perfect matching of R. Then there is a constant € > 0 such that the
probability that (R, p) is a (G«, M)-configuration is > ¢.

Proof of Proposition 13.3.1. Suppose that n='In*n <t < % — § for some con-
stant & > 0, and let M = (1 + ¢)n. While our goal is to show that a.a.s.
the components of Gy on < & vertices are cycles of length O(t~!'Inn), Lem-
mas 13.3.2 and 13.3.3 imply that we just need to prove that this statement
holds a.a.s. for G, + p, where (R, p) is an M-configuration chosen uniformly at
random and G,, + p = {{v,p(v)} : v € R}.

We shall first prove that G, + p has no component of order bigger than
ct~!Inn and smaller than 5 a.a.s., where ¢ > 0 is a sufficiently large constant.
Thus, let S be a set of components of G,,, let S be the set of all vertices that
belong to components in S, and suppose that ¢t~ *Inn < s = [S| < Z. We are
to bound the probability that p melts the components S into a single component
of G,, + p.

Let p; s, be the probability that precisely [ edges of p connect two vertices
of S, while the tn — [ remaining edges of p connect two vertices of V' \ S. Then

(1) (2tn — 1)1l ,

Pt,s,l = (1331)

for the total number of M-configurations (R, p) equals (,7 )(2tn —1)!!, as there
are (,; ) ways to choose the set R, and then (2tn — 1)!! ways to choose the
perfect matching p. Similarly, the number of pairs (R’, p") (resp. (R”,p")) such
that R* C S, |R'| =2l (resp. R” C V\ S, |R"| = 2(tn — 1)) and p’ is a perfect

matching of R (resp. p” of R”) equals (5,)(21—1)!! (resp. (2(727:;9[)) (2(tn—=0)—1)).



196 CHAPTER 13. MIN-MIN PROCESS

Applying (3.4.2) to (13.3.1), we get

(2tn)! ()u(n — 8)a(in—1
(20)!1(2tn — 21)! (n)atn

o(1) - (2;") (%)21 (1 - %)Q(M_l) (;)l (1 - ;)ml .(13.3.2)

Furthermore, by the Chernoff bounds (3.4.6)

> (5)C) (- cen-awn. asas)

l:|l—st|> 5 st

DPt,s,l

In addition, if v = [ — st has absolute value < 1—10575, then our assumption s < n/2

entails that
(Z>l _ (3+7/t>l < (g)sm < exp(=Q(st)). (13.3.4)

tn n
Hence, plugging (13.3.3) and (13.3.4) into (13.3.2), we conclude that
Prsi < exp(—Q(st)) <n”

for all [ and s, provided that st > cIlnn for a large enough constant ¢ > 0.
Therefore, we get

tn
Pr[S is a component of G, + p] < Zpt,s,l <n 2. (13.3.5)
1=0

Finally, by Proposition 13.2.1 G, has at most K < Inn components a.a.s. Thus,
there are at most 2K < n ways to choose a set S such that ¢t~ 'lnn < s = |S] <
5. Consequently, due to the union bound (13.3.5) implies that G\, + p has no
component of order ¢t 'Inn < s < % a.a.s.

To show that a.a.s. all components of G (i), are cycles, let 7 > 2 be an
integer. Let S1,..., S, be components of G,, that contain s < c¢t~! Inn vertices
in total. Then our assumption ¢ > n~" In®n entails in combination with (13.3.2)

that
l r—1
l r—1
B — —_— , (13.3.6
§ Dt,s,l E : (tn) < <1n3n> ( )

r—1<I<tn/2 r—1<I<tn/2

A

2tn s\ 2! s\ 2(tn—1)
< Z - 3.
Z Pt,sid o Z ( 21 ) (n) (1 n) (13.3.7)
I>tn/2 I>tn/2
(3.4.6) .
< exp(—Q(tn)) < exp(—1n®n). (13.3.8)

Let K be the total number of components of GG,,. Then K < Inn a.a.s. by
Proposition 13.2.1, so that there are at most K" < (Inn)” ways to choose the
components Sy, ...,S,. Hence, (13.3.6) and (13.3.8) imply that the probability
that Gp; has a component of order < c¢t~!Inn that consists of several cycles is
at most

Pr[K > Inn]+ Z (Inn)" <<7’31> ) + exp(—In® n)) =o(1).

2<r<Inn In"n
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Furthermore, since in the previous paragraph we showed that G, + p has no
component of order ct~tnn < s < % a.a.s., we conclude that all components
of order < % are cycles a.a.s.

Finally, since a.a.s. G, + p has no component of order ct~'Inn < s < 5, and
since the total number of components is K < Inn a.a.s. by Proposition 13.2.1, at
most ¢t~ Inn-K = o(n) vertices belong to components of order < 5. Therefore,
a.a.s. there is a component of order (1 — o(1))n. O

Proof of Lemma 13.3.2. Let G, be a bipartite 2-regular graph, and let m =
M — n. Remember that we are assuming that m < (% — 0)n for a fixed § > 0.
If (R, p) is a (G, M)-configuration, then we let E(R, p) = {{v, p(v)} : v € R}.

To prove Lemma 13.3.2, we derive upper and lower bounds on P(G,, R, p)
that hold uniformly for all (G, M)-configurations (R, p). Let o : {1,...,m} —
E(R, p) be a bijection. Moreover, let £;(0) denote the event that E(G,4;) \
E(G,) ={o(1),...,0(5)} (1 <j <m), and let & (o) be the event that G,, =
G.. In addition, let p;(R, p,0) = Pr[&;(0)|&(o) for 0 < i < j].

Suppose that 0 < j < m. Let X; be the number of edges connecting two
vertices of degree 2 in G4, and let T; = (”;2j) — X, denote the number of
possible edges that can be added to G, ; in order to obtain G, ;1. Let us call
an edge e = {v,w} G4 -admissible if e ¢ E(Gp+;) and v, w are distinct vertices
of degree 2 in G,4j. Then the probability that a specific G, ;-admissible edge
e is chosen to obtain G441 from G4  equals 171. Furthermore, since G+ ;
has exactly n — 2j vertices of degree 2, T} can be bounded uniformly as follows:

(”223) —m < T < ("22‘7) (13.3.9)

Now, given that the events £(0), 0 < ¢ < j, occur, the edge o(j) is Gpj-
admissible. Therefore, (13.3.9) entails that

(") smaman<[("Y) ] san

Further, with respect to the probability p(R, p,o) = H;%:1 pj(R, p,o) that in

each step 1 < j < m the edge o(j) is added to G,+;_1 given that G,, = G, the
estimate (13.3.10) yields

E[l (n_22j>_1 <p(R p,0) < 175[1 [(n _22j> - 2n]_1. (13.3.11)

Since m < (1—6)n, a straightforward computation shows that there is a constant

c3 > 0 such that []7", ("HT) (") = 2n) < c3. Hence, letting

m . —1
n—27+2
=I("YT)

J=1

due to (13.3.11) we get

g <p(R,p,0) < c3q for all triples (R, p, o). (13.3.12)
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Finally, since P(G., R,p) =Y, p(R, p,o), where the sum ranges over all maps
o:{1,...,m} — E(R,p), (13.3.12) implies

(m/2)lq < p(G«, R, p) < c3(m/2)q.

As the neither the upper nor the lower bound depends on (R, p), we have es-
tablished Lemma 13.3.2.
O

Proof of Lemma 13.3.3. Let e be the number of edges {v,w} of G, such that
v,w € R, and let Z be the number of edges {v, p(v)} € E(G,). Then (R, p) is
a (G., M)-configuration iff Z = 0. If r < 10, then clearly Pr[Z = 0] > ¢; for
a certain constant €; > 0. Thus, assume that r > 12. Then by inclusion and
exclusion

Pr(Z=0]>1-E(Z)+ %E(Z(Z 1)) éE(Z(Z _1)(Z-2). (13.3.13)

Furthermore,

(13.3.14)

Plugging (13.3.14) into (13.3.13) and setting e = r to its maximum value, we
conclude that

r 7‘3

Pl =021 s T a6 - - O

because r > 12. Hence, letting ¢ = min{0.01,¢;}, we obtain the desired result.
O

13.4 Connectedness

In this section we will show that G,; is connected with positive probability
as soon as M = (1 + t)n for an arbitrarily small but fixed ¢ > 0. In fact,
Pr[Gys is connected] lies strictly between 0 and 1 if 0 < ¢t < % More precisely,
the following holds.

Theorem 13.4.1. Let M = (1 +t)n.
(i) If =1 <t <0, then Gy is disconnected a.a.s.

(i) Suppose that 0 < t < 1/2 remains fized as n — oco. Then Gy a.a.s. has
a giant component consisting of > 5 wertices. Furthermore, the number
Y of components of order < 5 is asymptotically Poisson with mean p; =
1(—(1—2t)> —In(4(t — t?))). That is,

lim Pr[Y = k] = uf exp(—u)/k!  for any k.

n—oo
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In particular, letting

U(t) = exp(—p) =2 Vi — 2 exp((2t — 1)2/2), (13.4.1)
we have lim,,_, Pr(Gpr is  connected) = lim,,_,, Pr(Y = 0) = ¥(¢).
(iii) If t > 1/2, then Gy is connected a.a.s.

Proof. As we have seen in the introduction, G ; simply consists of isolated ver-
tices and edges when —1 < ¢t < —1/2, and it consists of isolated paths and of iso-
lated cycles of even length when —1/2 < ¢ < 0. Thus Gy is a.a.s.disconnected
when —1 < ¢ < 0.

Proposition 13.2.1 implies that lim, ., Pr[G,, is connected] = 0. Indeed,
given € > 0, choose kg so large that 2:0:1(2]‘3)71 > —In(e/2). Then by Propo-
sition 13.2.1

Pr[G, is connected] < Pr[Co =0for k=1,..., ko]

ko
< (1+o(1))exp [— 3 ;,{] <(1+o(1)5 <e

k=1
for all sufficiently large n. Hence, for all t < 0 we have

lim Pr[Gj is connected] = 0.
n—oo

Let 0 <t < % be constant, and let € > 0 be an arbitrarily small constant.
Then there is a number ko such that » 3, (1 — 2t)¥ /k < ¢, so that by Corol-
lary 13.2.3 and Markov’s inequality the probability py, that Gj; contains an
isolated cycle of length > kg is < e. Furthermore, by Corollary 13.2.3 the total
number Y of cycles of length 4 < k < ko (k even) is asymptotically Poisson
with mean

(1 —2t)* (1 —2t)*
R
4<k<kp, even 4<k, even
(13.5.5) 1

5 -1 =26 —In(=4(#” —1))] .

Conversely, since Y-, (1 — 2t)¥/k < e, we have

E(Y) > = [—(1—26)% — In(—4(2 = 1))] —e.

N |

Therefore,

exp [-E(Y)]

2exp (5(1— 20)2) [t(1 - 1))/ <exp(e) <142, (13.4.2)

provided that € is small enough. As Y is asymptotically Poisson, we have
Pr[Y = 0] ~ exp(—E(Y)), so that (13.4.2) yields

|Pr[Y =0] — ¥(¢)| <2+ o0(1),
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where ¥ denotes the function defined in (13.4.1). Hence, Proposition 13.3.1
implies that

|Pr [G s is connected] — U(t)| < |Pr[Y = 0] — ¥(¢)| 4+ pr, + 0(1) < 3+ o(1).

Thus, Pr[Gs is connected] converges to ¥(t) as n — oo.
Finally, the probability that G,s is connected is an increasing function of ¢.
Hence, as limtﬂé U(t) = 1, we conclude that Gy is connected a.a.s. if t > % O

13.5 Giant component

Let X = X (M) be the number of vertices outside of the largest component of
Gy with M = n+tn for t > 0. Then Theorem 13.4.1 shows that Pr[X = 0] > 0
if ¢ > 0. The following theorem gives a much more precise result: we can
determine the limiting distribution of X as n — oo precisely.

Theorem 13.5.1. Let M = n+tn for a constant 0 <t < 1/2. Then asn — oo,
X = X (M) converges in distribution to the distribution given by the probability
generating function

IR Lo o2 2 1—(1-2¢)>
q(z) = ;qlz = exp [2(1 20)%(1 — 2%) T2t
As a consequence, for any positive integer |
lim Pr(X =2I) =gy
_ - L=26)7 0 o 2m\ (="
= 2y/t(1 —t)exp [ 5 (1—2t) m ) TR ]
0<m<l
t(1—1) 2
= (14+0(1/1) 2exp(2t(t — 1)) - (1 -2t (13.5.1)

while lim,, oo Pr(X =21 — 1) = goy—1 = 0. Furthermore, a.a.s. all components
on < g wvertices are cycles of even lengths.

Theorem 13.5.1 states the limiting distribution of X (M) for M = (1 + t)n
with ¢ > 0 bounded away from 0. Our next goal is to investigate the number of
vertices outside of the largest component if ¢ = ¢(n) = o(1) tends to 0 as n — oo.
Note that G,, is 2-regular and thus consists of isolated cycles. If M = (1 4 t)n
for 0 < t = o(1), then some of these cycles melt together to form a component
consisting of n — ©(t!) vertices. Thus, we will have X = X (M) = O(t™!)
a.a.s. In fact, the following theorem gives the precise limiting distribution of ¢t X
as n — oo in the case that t > In*(n)n ="' is “not too small”,

Theorem 13.5.2. Suppose that M = (1+t)n, where t = t(n) with n~'In*n <
t =0(1). Then tX converges in distribution to a gamma distribution with both
shape and scale parameter equal to % That 1is,

1 [ exp(—s)
lim Pr(tX <b) = — ———=ds. (13.5.2)
S il s
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As a consequence, for any x > 0,

Jim Pr(tX >x) = @(p(ﬂ—m i (—1)™(2m — 12 ~2my= ™
™ m=0
= (14 0(1/2)) (2mz) "2 exp(—2z). (13.5.3)

Note that a.a.s. all components of Gj; except for component are isolated
cycles, by Proposition 13.3.1. Therefore, in order to analyse the number X of
vertices outside of the largest component we consider the number Y} of isolated
cycles of length k in Gy (4 < k < n, even). In addition, let v = y(n) = ct " !1lnn
for a sufficiently large constant ¢ > 0; then v = o(y/n/t), provided that ¢ >
n~'In%n. Moreover, setting Y = Z4§k,§% oven BY%, a.a.s. we have X =Y by
Proposition 13.3.1.

To investigate Y, let (Zx)k=a6,.. be a family of mutually independent Pois-
son variables with means E(Z;) = A\ = (1 — 2t)*/k. Then the characteristic
function of Zj, is

E(exp(iyZi)) “2¥ exp (Ak(exp(z’y) - 1)) . (13.5.4)

Weset Z =315y cven 2k and A =35, on Ax = ®(1—2t), where @ denotes
the power series -

Sk

D(z) = Z - = —% (z2 +1In(1 — 22)) ; (13.5.5)

4<k even

the second equality sign follows by just plugging in the Taylor expansion of
z— In(l+x).

In order to prove Theorems 13.5.1 and 13.5.2 we need the following results
on the characteristic function of X and ¢X, which we will prove in Section 13.6.

Proposition 13.5.3. If0 <t < 1 is independent of n, then the characteristic
function y — E(exp(iyX)) of X converges pointwise to the function y — 1(y) =
exp(®((1—2t) exp(iy)) — (1 —2t)), where O is the function defined in (13.5.5).

Proposition 13.5.4. Suppose that n™'In*n <t = o(1). Then the characteris-
tic function y — E(exp(iytX)) of tX converges pointwise toy — (1 —iy/2)~1/2.

Proof of Theorem 13.5.1. Let q(z) be the probability generating function given
by

q(2)

exp(®((1 — 2t)z) — B(1 — 2¢))

2 2 2 1—(1-—2t)>
= exp((1—-2t)%/2—(1—2t)“2%/2) (=202
By Proposition 13.5.3, the characteristic function of X converges pointwise to
the characteristic function y — 1(y) = q(exp(iy)) of the probability distribu-
tion described by ¢(z). Therefore, Theorem 3.4.2 implies that the asymptotic
probability distribution of X is given by ¢(z). That is, letting ¢(z) = >~ q2t
be the power series expansion of ¢(z), we have lim,, ., Pr[X =[] = ¢, for all [.
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To analyse the coefficients ¢, let c¢(t) = 24/t(1 — t) exp( % 1 —2t)?). Then
we can rewrite ¢(z) as
—(1—2t)%22/2)

_ exp(—(
q(2) = () 0

Since (1—2)"Y2 =3, 0+ (*")z* and exp(—2/2) = >0 %zl, we have

1/2 2 )
(1_2)—/ exp(—z/2) = Z Z (m)glim(l)_ﬂl)l S

1>0 \0<m<l

Thus, we obtain

m _1\l—m
o) = -2 3 <2m)2l+(m(11)_m)! 2

1>0 0<m<lI

As a consequence,

m _1\l—m
lim Pr(X =20) = qu=c()(1-20)"| (2m>21+(mzl) ’

n—o0 —m)!
0<m<l

while lim, o, Pr(X = 2l + 1) = ¢g9141 = 0 for all I. Thus, we have estab-
lished (13.5.1).
O

Proof of Theorem 13.5.2. Proposition 13.5.4 implies in combination with (3.4.5)
and Theorem 3.4.2 that the asymptotic probability distribution of tX is a
gamma distribution:

b 571/2 exp(—2s)
1/2)(1/2)1/2

- \/>/ exp(=25) (13.5.6)

Thus, we have established (13.5.2). Furthermore, (13.5.6) implies that for any
real z > 0

—25s)
lim Pr(tX > z) A= / exp ) ——ds = \/7/ exp(—s?/2)ds
n— o0 Vazx

Integrating by parts repeatedly, we get

lim Pr(a <tX <b) = / ds
a

n—oo

oo

/Ooexp(—sz/Q)ds _ exp(— 2/2 z me nn

m=0

2 oo
lim Pr(tX >z) = 4/ 7/ exp(—s2/2)ds
n—oo 4{1}

exp —2x) i ™(2m — )N

22mxm

and hence

=0
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In particular, we conclude that

lim Pr(tX > z) = (14 O(1/x))exp(—2x)/V2mx,

n—oo

thereby proving (13.5.3). O

13.6 Characteristic functions

In this section we will prove Propositions 13.5.3 and 13.5.4 on characteristic
functions.

Proof of Proposition 13.5.3. Suppose that 0 < t < % is independent of n. Let
yo € R\ {0} be arbitrary but fixed, and « > 0 be arbitrarily small but fixed.
Then our goal is to show that there exists an ng = ng(a, yo) such that

|E(exp(iyo X)) — ¥ (yo)| < 3o if n > ny. (13.6.1)
Since the characteristic function of Z is

E(exp(iyZ)) = E |exp Z ikyZy,

4<k, even

I1 E {exp (fkka)}

4<k even

(13.5.4) H exp [Ak (exp(?k:y) - 1”

4<k even

= exp | —A+ Z A exp(iky)

k>4, even

= Y®),
(13.6.1) is equivalent to
IE(exp(iyo X)) — E(exp(iyoZ))| < 3o (13.6.2)

To establish (13.6.2), we choose a number K = K(«,yo) such that

o= > -2k <a/ (13.6.3)

k>K, even k>K, even

such a number K exists because 0 < ¢t < % is constant. Set

Y= Y kY 2= ) kZ.

4<k<K, even 4<k<K, even

Since by Corollary 13.2.3 (Y )a<k<k, even are asymptotically independent Pois-
son variables with means (Ag)i<k<k, even, Y’ converges to Z’ in distribution.
Therefore, Theorem 3.4.2 entails that the characteristic function of Y’, i.e.,
y — E(exp(iyY’)), converges pointwise to that of Z', i.e., y — E(exp(iyZ’)).
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In addition, we shall derive from (13.6.3) that Z’ is a good approximation of
Z, and from Corollary 13.2.3 and (13.6.3) that Y’ approximates Y and hence X
well. Due to (13.6.3), Pr(Z # Z'] <37 r¢ cven P [Zk > 01 < 3000k cven Mk <
a. Because of Proposition 13.1.7, Corollary 13.2.3, and (13.6.3), we have

Pr[Y #Y| <Pru(Y #Y)+0(1) < o)+ Y kPra(Yi >0)

k>K, even

< o(l)+ Z Ak < 2a0/3,

k>K, even

provided that n is sufficiently large. Further, Proposition 13.3.1 entails that
X =Y aas,sothat PriX #Y'| <Pr[Y #Y'|+ Pr[X #Y] < «if n is large
enough.

Finally, applying Lemma 3.4.3, we conclude that

IE [exp(fy()X)} —-E [exp(fon’)} |F

< [E [exp(iyoX) — exp(@yoY)|| + [E [exp(iyoY”)| — E [exp(ine2')||
+|E [eXp(fyOZ) — eXp(fyOZ')} |
< 3a,
thereby establishing (13.6.2). O

In order to study g9y = Pr(X = 2I) for large I, we apply the principles of
singularity analysis [63] to 7(2) = (1 — 2)"1/2 exp(—2/2). Let 7(2) = 3 ;50712
be the power series expansion of r(z). Then the asymptotics of r; result from
a dominant singularity of r(z). Since exp(—z/2) has no singularity, whereas
(1- z)_l/ 2 has a dominant singularity at z = 1, the asymptotic expansion of
r(z) near z = 1 is obtained by the analytic expansion of exp(—z/2) at z = 1,
namely

! (1 - Z)iv

exp(—2/2) = exp(=1/2) ) _ o

i>0

multiplied by (1 — z)~'/2, that is,

exp(~1/2) Y (1 212

i>0

= exp(~1/2)(1 - 2) " 1 O((1 - 2)/?),

r(2)

Using the following expansions
1 /20\ 2 (21-2\ ,
—-1/2 __ 7 1/2 __ 7
(1—2)712 = 241<Z>z and  (1—2)Y _ZW(i—1>Z’
120 i>1
we obtain

- exp(1/2)411<il)(1+0(1/1))(3”‘1’exp(1/2)\/17?1(1+0(1/z)).
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Therefore, we conclude that
lim Pr(X =2l) = ¢(1 — 2t (1 + 0(1/1))
n—00 exp(1/2)Vxl

t—t2
7l

= 2exp(2t(t—1)) (1—2t)*(1+0(1/1)),

thereby proving (13.5.1).

Proof of Proposition 13.5.4. Suppose that n™ ' In*n <t = o(1). Let yo € R\{0}
and a > 0 be given. Our aim is to show that

(1 —7yo/2) Y% — E(exp(ityoX))| < 8a (13.6.4)

if n > ng for a large enough ng = no(a, yo). In order to establish (13.6.4), we

first prove that E(exp(ityoZ)) is close to (1 — %%)71/2 if n > ny is large enough.

Then, we shall compare E(exp(ityoZ)) and E(exp(ityoX)).
We have

E {exp(fton)} = H E {exp(ftyoka)}
4<k, even

= exp |-\ + Z Ak exp(iktyo)

4<k, even

— exp :<I>((1 — 2t) exp(ityo)) — (1 — 2t)}

i i /2
= ex La—anpe — exp(2i 1- (120"
= exp|5(1-20) (1~ exp(2 tyo))_ (1 . 2t)2exp(25ty0)> (13.6.5)

Furthermore, since t = o(1) as n — oo, we have that

exp B(l — 2t)? (1 - exp(QZtyo)ﬂ exp B(l — 26)2(2atyo + O(t2))}

= exp(o(1)) ~ 1, (13.6.6)
and that
1—(1-2t)2 _ 4t — O(t?)
1— (1 — 2t)2 exp(2ityo) 4t — 2ityo + O(t2)
2
~ —. (13.6.7)
2 —iyo

Plugging (13.6.6) and (13.6.7) into (13.6.5), we get that if n > ng for a suffi-
ciently large ng > 0, then

- i
|E(exp(ityoZ)) — (1 — §y0) 12| < a (13.6.8)

In order to compare E(exp(ityoZ)) and E(exp(ityoX)), we shall approximate
the random variable X by the number of vertices on isolated cycles of certain
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lengths. If k > w/t for some large but fixed w, then by Corollary 13.2.3 the ex-
pected number of vertices on isolated cycles of lengths k > w/t is approximately

> kx < > -2t
k>w/t, even k>w/t, even
< Z exp(—2tk)
k>w/t, even
2
< n exp(—w). (13.6.9)

Hence, cycles of length > w/t contribute little to tX if w is large. Furthermore,
once more due to Corollary 13.2.3 the expected number of vertices on isolated
cycles of lengths k < £/t is about

Yook ) (-2t <

k<e/t, even k<e/t, even

(13.6.10)

~+1m

Thus, also the contribution of cycles of lengths < €/t to tX becomes negligible
as € > 0 gets small. More specifically, choosing ¢ = ¢(yo, &) small enough and
w = w(yo, @) large enough such that

32[yo|(e + exp(—w)) < o?, (13.6.11)

we will approximate X by Y = Za/t§k<w/t, oven FYk, i.e., in terms of the
number of vertices on isolated cycles of lengths €/t < k < w/t.

While in the proof of Proposition 13.5.3 we used the fact that the number
of isolated cycles of constant length is asymptotically Poisson, we now need
to deal with cycles of lengths e/t < k < w/t; that is, k grows as a functions
of n. In effect, the mean A\ of Y3 tends to 0 as n — oo, whence the state-
ment that Yj is asymptotically Poisson is void (though true). Nonetheless,
to compare E(exp(iyX)) and E(exp(iyZ)), we would like to approxmate X in
terms of asymptotically independent Poisson variables. Therefore, we partition
the interval [t~ ,wt™1) into K pieces I; = [£;,n;) of equal length §t~1; here
K = K(yo, «) is chosen large enough so that 6 = (w — ¢)/K satisfies

16]yold(Inw — In¢e) < a?. (13.6.12)

Now, we let J; be the set of all even integers in I;, and we define X; = Zker Y;
to be the number of cycles of G whose length lies in J;. In addition, set
Aj =3 e 7, Ak. At the end of this section we will prove the following proposi-
tion, which shows that the random variables X1, ..., Xk can indeed be used to
approximate Y (and thus X) by mutually independent Poisson variables.

Proposition 13.6.1. (X;)i<j<k are asymptotically independent Poisson vari-
ables with means (A;)1<j<k-

Set Z; = Zke}j Z for 1 < j < K. Then Zi,..., 2k are mutually inde-
pendent Poisson variables with means (Aj)i<j<k. In addition to X,Y,Z, we
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consider

K
Yo=Y 64,
j=1

K
y" = > KYe =) > kY,

e/t<k<w/t, even j=1keJ;

K
7' =Y &z,
j=1
K

z" = Z kZ, = Z Z kZy.

e/t<k<w/t, even k=2kecJ;

Let us first compare Z' and Z”. Let W = Zs/tgkgw/t, oven Zk- Since k—§; <
0/t for all k € Jj,

Z"' -7 <= W. (13.6.13)

| >

Furthermore, as

2. M 2. K

e/t<k<w/t, even e/t<k<w/t, even

< In(w/t) —In(e/t) < In(w) —In(e), (13.6.14)

IA

we get E(W) =3__ i <p<w/t, even M < In(w) —In(e). Therefore, due to Markov’s
inequality,
Pr[W > (In(w) — In(e))/a] < a.

Consequently,
(13.6.12) 1 1
Pr Z// _ Z/ > a S Pr Z// _ Z/ > 5( n(w) 1'1(5))
4t|yol ta
(13.6.13) 1 _1
< pr {W > M} <a. (13.6.15)

Furthermore, (13.6.9), (13.6.10), and (13.6.11) entail that
2
E(Z-2") = < &
( )= > kw+ Y kn < o

b
k<e/t, even k>w/t, even 0‘

so that Markov’s inequality yields

Pr [Z — 7" > 4;;0'} <a. (13.6.16)

Finally, (13.6.15) and (13.6.16) imply that

Prit |yl |2 — Z| > a] < 2. (13.6.17)
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Now, we compare Y/ and Y. Let U = Zs/t§k<w/t, oven Y% be the number

of cycles of length between et~! and wt™!. Since k — &; < 6/t for all k € J;, we
have Y/ - Y’ < % - U. Moreover, by Corollary 13.2.3

Em[U] < (1+0(1)) Z )\k(13g14)2(1n(w) —In(e)),

e/t<k<w/t, even

so that Markov’s inequality yields Prag [U > 4(In(w) — In(e))/a] < «/2. Hence,

Prly’ -y > -2 } Pr {Y”—Y’> a }4—01
4t[yo M 4ty @)

asg, [Y,, v 45(1n(wt); ln(s))]
B A CEEIC] o
< (13.6.18)

As a next step, we shall compare Y and Y” < Y. By Corollary 13.2.3 we
have

Em(Y-Y") = > kEmM)+ D KEm(Y:)

k<e/t, even k>w/t, even

<(A+o1) | Y A-2F+ > a-w)F

k<e/t, even k>w/t, even
(13.6.9),(13.6.10),(13.6.11) a?
- 8t[yol

Hence, by Markov’s inequality

Pr||lY —Y"| > a] < Prpy [Y -Y" > +o(1) <a. (13.6.19)

il

— 4tfyol 4t|yol
Finally, by Proposition 13.3.1 Pr[X # Y] = o(1) as n — oo, so that

PriX #Y] <« (13.6.20)

if n > ng for a large enough ng. Thus, (13.6.18), (13.6.19), and (13.6.20) imply
that

Prit- |yl |X —Y'| > qa] < 3a. (13.6.21)

Proposition 13.6.1 entails that tyoZ’ converges to tyoY’ in distribution.
Therefore, Theorem 3.4.2 yields that the characteristic function of Y”, i.e.,
T ]E(exp(ftyY’ )), converges pointwise to the characteristic function of Z’,
ie., y — E(exp(ityZ)). That is,

|E(exp(ityoZ')) — E(exp(ityoY"))| < av. (13.6.22)
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Finally, (13.6.17), (13.6.21), and (13.6.22) in combination with Lemma 3.4.3
imply that

|E [exp(ftpo )} -E [exp(fton)}l < [E [exp(ftpo ) — exp(fton’)]\
+|E [exp(fton')} -E [exp(z?ton’)h

+|E [exp(ftyOZ) - exp(ftyOZ')h < 7a.

Hence, invoking (13.6.8), we conclude that [E [exp(ftpo)] —(1—iyo/2)" 12 <

8av if n > ng for a large enough ng, thereby completing the proof of (13.6.4).
O

Proof of Proposition 13.6.1. By Proposition 13.1.7 it suffices to show that the
random variables X7, ..., Xk are asymptotically independent Poisson variables
with respect to the measure Praq. Moreover, if we fix a perfect matching G.
of V.={1,...,n}, then the Pra-distribution of &}, ..., Xk coincides with the
conditional Prpy-distribution of X1, ..., Xk given that G, /o = G.. Therefore,
letting A; = Eaq(AX;) = Epmq(Ai]|Gry2 = Gy), we shall prove that for any fixed
numbers rq,...,rg

K K K
p=Exy H(xi)”] =Eum lH(Xi)TJGn/Q =G.| ~A=]]A7; (13.6.23)
i=1 i=1 i=1
then the assertion follows from Theorem 3.4.1. If Cy,...,C}) are cycles on the
vertex set V, then we let
p({C1,...,Ck})

=Pry [Ch,...,C) occur as isolated cycles in Gar|Gyyo = G, ] .

To show (13.6.23), we employ the following lemma.

Lemma 13.6.2. Let C1,...,C) be cycles of lengths e/t < {y,..., 4 < w/t such
that p({C4,...,Ci}) > 0. Then

p({Cr....a1Y) Tl T1/2 (0 — 2k — 1)
IT-, p(C)) 2l n—2k—1)

Next we use the linearity of the expectation to expand p into a sum over
Zfil r;-tuples of cycles. More precisely, we will order the terms of this sum
according to the lengths of the cycles. Thus, let £ signify the set of all tuples
L = (Ly,..., Lk), where cach L; is a tuple L; = (LY)1<j<,, € J'. Then
each L € L corresponds to one possibility to specify the cycle lengths in an
ZiK:l r;-tuple of cycles.

In addition, let @ denote the set of all cycles on the vertex set V' that can

occur in G, given that G,,/2 = G«. Then for each L € £ we let D(L) be the set
of all tuples D = (Dy,...,Dk), where each D; is a tuple (D,Ej))lgjgm of cycles
in @ such that the length of Dﬁj ) equals LY ); here we do not require that the

?

cycles ij) are distinct. Let p(D) = p({DEJ) 11 <i<K,1<j5<r;}) be the
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probability that all cycles ij ) occur as isolated cycles in Gpy. Finally, let C(L)
be the set of all C'= (Cy,...,Cx) € D(L) with C; = (CZ-(j))j: r; such that the
cycles (Ci(j ))1§i§ K,1<j<r; are pairwise vertex disjoint.

Now, p equals the expected number of tuples C € J;.,C(L) such that
the cycles in C occur as isolated cycles in Gj;. Therefore, the linearity of the

expectation yields
p=> > p (13.6.24)
LeL CeC(L)

1

Moreover, expanding A using the linearity of the expectation, we obtain that

K r;
A=>" 3 [T @ (13.6.25)

LeL DeD(L)i=1j=1

To compare (13.6.24) and (13.6.25), we shall compare each of the contribu-

tions
BL = E p(C), A= E mp for L €L,
cec(L) DeD(L)

where 77, = HZ 1 H] 111)(D1(j)). Since p(DZ(j)) depends only on the length ng)
of the cycle, 7;, depends only on L but not on the choice of D € D(L). Similarly,
7r = p(C) is the same for all C € C(L). Hence,

pr =, -|C(L)], and Ay = 7, - |D(L)], (13.6.26)

Let £ =Y Y7 LY = o(n).
To compare |C( )| and |D(L)|, we let L = (L(j))1<Z<K 1<j<r, € L, and set

v JAixt>hlx) >
(=K, i Li ) Then we can construct an element C' = (CY)); <<k 1<j<r,
in C(L) as follows We choose a tuple (v1,...,ve) of vertices in V as follows. If
k is odd, then vy is chosen arbitrarily from V' \ {v1,...,vg_1}; thus, there are
n —k+ 1 ways to choose vi. Furthermore, if k is even, then vy is the neighbour

of vi_1 in G4, so that vy is uniquely determined by vi_1. Let 7 denote the

set of all tuples (vy,...,vy) that can be obtained by this construction. Then
£/2-1 .
7] =155 (n = 2)).
Moreover, given the tuple (vq,...,v), we can construct the Efil r; cycles of

a tuple C' € C(L) as follows. We turn the first 251:1 ng) vertices in (vq,...,vp)

into cycles of lengths ng ) in the natural way: the first cycle starts at vy, its last

vertex is V), and its last edge is {vy, UL(1)}; then, the second cycle contains
1 1

the vertices v UL @ etc. We construct the remaining cycles in C
1 1

Lgl)Jr17 ..
similarly, so that we obtain a map (vi,...,ve) — C from 7 onto C(L).
However, this map is not one to one. Indeed, for each cycle CZ-(J ) of length

LG of Cz-(j) such
that {wgs 1, Wospin Gy for 1 < s < L( 7). Therefore, each C € C(L) has precisely

r=T115, [TZ L LY inverse images in 7. Consequently,

ng ) there are precisely ng ) ways to list the vertices wy,...,w

7] 2/2—1
|C(L)\_ | H (n — 2k). (13.6.27)
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A similar counting argument shows that

" L(])/Q 1
-1 H 1T H n — 2k). (13.6.28)
1=175=1 k=0
Combining (13.6.27) and (13.6.28), we obtain
(L) W20 (n—2k)
~ . (13.6.29)
ID(L)]

[T, TE T (0 — 2k)

Finally, combining Lemma 13.6.2 with (13.6.26) and (13.6.29), we conclude
that

@)2 1
pe _ompelew) N n—2k n 2 SRl nogi-3
AL 7TL-|D(L)|_I£IO HUHl 1;[
£/2—1 r L9221 )
N ,I[()<1+”_2k—1> 1_[11_[1 H <1_n—2k)
h Pl -

— exp[O(¢/n)] ~ 1

whence pur, ~ Ag for all L € L. Therefore, (13.6.24) and (13.6.25) yield

p~ > pp~ Y Ap=A

LeLl LeL

so that we have established (13.6.23).

Proof of Lemma 18.6.2. Assume that p(Cy,...,C;) > 0. Let

q(Cq,...,C)) Prayq [Cl, .., Cy ocecur in Gn\Gn/ng*],
q(Cy) Pryq [CJ occurs in Gy, |G, e = G*] .

Moreover, let £; = O(1/t) = o(y/n/t) denote the length of C;. Then by Propo-
sition 13.2.2 p(C ) ~ (1 —2t)% - q(C;). Therefore,

l l

[Irc) ~@a—-20-T]a(C (13.6.30)
j=1 j=1
Similarly, as £ = Zé‘:l ¢; <lwt™! = o(y/n/t), Proposition 13.2.2 implies
p(Ch,...,C) ~ (1 =2t) - q(Cy,...,C0). (13.6.31)

It is enough to show that

aCro @) T IS -2k - 1)
ITj—1 a(Cy) f;/jol( ~2%—1)

(13.6.32)
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For combining it with (13.6.30) and (13.6.31), we can conclude that

l

p(C1, . '701) ~ Hp(cj)7

j=1

as desired.

To prove (13.6.32) we let p € K(G,) denote a uniformly distributed G.-
configuration, which is defined in Section 13.1. Given that G, /o = G, Gy is
distributed as G + p (with respect to the measure Prpq). Moreover, the cycles
Cy,...,Cy are present in G,, if and only if there occur corresponding E(G.)-
cycles p1,...,p; of lengths ¢1,...,¢; in p (cf. Section 13.1 for the definition).
Therefore (13.6.32) is equivalent to

! /21
Pr[p1,...,p occur in p) N szlnk]:/() (n—2k—1) (13.6.33)
H;:l Pr[p; occurs in p) i/jo_l(n —2k—-1)

Let S C V be such that for each s € S there is a vertex t € S such that
{s,t} € E(G). Then a (G, S)-configuration is a map o : S — S that satisfies
coo =1id and {s,0(s)} & E(G,) for all s € S. To prove (13.6.33), we observe
that by Corollary 13.1.2 the number of (G, S)-configurations is

(exp(—=1/2) + o(1))(]S] — 1) as | S| — oc. (13.6.34)

Due to (13.6.34), we can estimate Pr[p; occurs in p| as follows. Let ¢; be
the length of the cycle C;. Then the set S; of vertices outside of C; has
cardinality n — ¢; = Q(n), so that there are (exp(—1/2) + o(1))(]S;| — D!
(S;, Gx)-configurations. Hence, the number of configurations p in that p; oc-
curs is (exp(—1/2) + o(1))(]S;| — 1)!!, while the total number of configurations
is (exp(—1/2) + o(1))(n — )!. Thus,

(exp(—1/2) + (1) (1S;] — 1)1
(exp(—1/2) +o(1))(n — 1)!!

(15; =" (n—£; — 1)
n—"  (m-1U

Pr[p; occurs in p] =

(13.6.35)

Similarly, letting S = ﬂé.:l S; and £ = 2321 ¢;, we have

(exp(=1/2) + o(1))(IS| - D! (n—£—1)!

(exp(—1/2) + o(1))(n — 1! (n—1)N
(13.6.36)

Prp1,...,p occur in p| =

Finally, (13.6.33) follows immediately from (13.6.35) and (13.6.36).
O
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