Nonstandard Cutoff Effects in O(/N') Nonlinear
Sigma Models

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom Physiker
(Dipl.-Phys.)

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultat 1
Humboldt-Universitat zu Berlin

von

Bjorn Leder
geboren am 22.10.1978 in Altenburg

Prasident der Humboldt-Universitat zu Berlin:
Prof. Dr. Jiirgen Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakultat I:
Prof. Dr. Michael Linscheid
Gutachter:

1. Prof. Dr. Ulrich Wolff
2. Prof. Dr. Michael Miiller-Preussker

eingereicht am: 10. Oktober 2003
Tag der miindlichen Priifung: 30. Oktober 2001



Zusammenfassung

Die Regularisierung mit Hilfe eines Raum-Zeit-Gitters ist eine mathema-
tisch wohl definierte, nicht stérungstheoretische Formulierung einer Quan-
tenfeldtheorie. Theoretische Physiker auf dem Gebiet der Gitter-QCD wid-
men grofle Mengen Rechenleistung der Frage, ob die QCD die Physik der
leichten Hadronen bei kleinen Energien beschreibt. Da die Diskretisierung
der Raum-Zeit systematische Fehler mit sich bringt, mufl ein Kontinuums-
grenzwert bestimmt werden.

Aufgrund seiner Ahnlichkeit zu den physikalisch relevanteren vierdimen-
sionalen Eichtheorien wird das nichtlineare O(IN)-Sigma-Modell benutzt, um
storungstheoretische Vorhersagen zu testen. Im nichtlinearen O(3)-Sigma-
Modell wurden nicht der Erwartung entsprechende Diskretisierungseffekte
gefunden.

Das Verhalten der Diskretisierungseffekte wird fiir kleine und mittlere
N bis hin zu N gegen unendlich untersucht. Fiir N gegen unendlich ist das
nichtlineare Sigma-Modell exakt 16sbar. Das Verhalten der Diskretisierungs-
effekte wird im O(4)- und O(8)-Modell mit Hilfe von Monte-Carlo-Methoden
bestimmt. Die Gitter-Artefakte werden mit verschiedenen Anséitzen vergli-
chen. Neuen theoretische Vorhersagen fiir den Kontinuumswert der Step-
Scaling-Funktion werden MC-Daten gegeniibergestellt.

Fiir die Simulationen wurde ein effizienter Cluster-Algorithmus und eine
varianzreduzierende Schéatzfunktion implementiert.

Auch im nichtlinearen O(4)- und O(8)-Sigma-Modell werden nicht der
Erwartung entsprechende Diskretisierungseffekte beobachtet. Aber die Gitter-
Artefakte sind kleiner und die Abweichung ist nicht so deutlich wie im nicht-
linearen O(3)-Sigma-Modell.

Schlagworter:
Gitter-QFT, nichtlineares Sigma-Modell, Monte-Carlo-Simulation, Gitter-
Artefakte



Abstract

Lattice regularization is a mathematically well defined, nonperturbative ap-
proach to quantum field theory. The lattice QCD community dedicates a
huge amount of computing power to verify that the QCD Lagrangian de-
scribes physics of light hadrons at low energy. But the discretization of
space-time involves systematical errors. Thus a continuum limit should be
taken.

Because of its similarity to the physically more relevant four dimensional
gauge theories, the two dimensional nonlinear O(N) sigma model is used as
a testing ground for perturbation theory predictions. In the nonlinear O(3)
sigma model nonstandard cutoff effects were found.

The behavior of the cutoff effects is analyzed as N changes from small
over intermediate values towards the large N limit, where the model is ex-
actly solvable. The cutoff dependence in the O(4) and O(8) model is deter-
mined using Monte Carlo methods. The lattice artifacts are fitted to several
forms. Recently presented theoretical predictions for the continuum value
of the step scaling function are confronted with the MC data.

For the simulations an efficient cluster algorithm and an improved esti-
mator are implemented.

Nonstandard cutoff effects are observed in the nonlinear O(4) and O(8)
sigma model too, but the lattice artifacts are smaller and the discrepancy is
not as distinct as in the O(3) sigma model.

Keywords:
lattice QFT, nonlinear sigma model, Monte Carlo simulation, lattice arti-
facts
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Introduction



2 CHAPTER 1. INTRODUCTION

In the Standard Model of the known fundamental interactions of elemen-
tary particles quantum chromodynamics (QCD) is supposed to describe the
phenomena of strong interactions. Whether this is really the case has to be
verified by comparing theoretical predictions to experiments. But obtaining
such predictions turns out to be rather difficult. Perturbative QCD is only
applicable at high energy (> 1 GeV) hadronic processes. This is due to the
renormalization group behavior of the running coupling of QCD: it becomes
large at low energies (100 MeV - 1 GeV) and small at high energy. The
property of a vanishing running coupling at high energy (short distances) is
called asymptotic freedom.

At the other end of the scale, at low energy, QCD is nonperturbative
since the expansion parameter is not small. Also, noninteracting quarks
(zeroth order of PT) are not a good approximation to explain the com-
posite states which make up the spectrum of light hadrons. Consequently
nonperturbative methods are needed to verify that the QCD Lagrangian de-
scribes physics of hadrons at low energy (mass spectrum, decay constants,
low energy scattering).

The lattice regularization of a quantum field theory yields a formulation
which is mathematically well defined, also at the nonperturbative level. It
provides a momentum cutoff inversely proportional to the lattice spacing
a. But it involves systematical errors due to discretization of space-time.
Thus the regulator has to be removed before results are compared to the
real world. This actually means a continuum limit should be taken.

In lattice QCD quantitative results are almost exclusively obtained using
numerical simulations. In the course of this approach the continuum limit
is taken by computing the quantities of interest for several values of a and
extrapolating the results to a = 0. Since simulation programs slow down
proportionally to at least a~7 for QCD, one cannot go to arbitrarily small
lattice spacings. Therefore one usually fits a set of few data points and
strongly relies on the theoretically expected behavior of the lattice artifacts.

To obtain meaningful results from a lattice regularized quantum field
theory like lattice QCD, a detailed theoretical understanding of the approach
to the continuum limit is required and extensive numerical studies are needed
to confirm (or disprove) the expected behavior.

In this thesis the continuum limit of the lattice regularized nonlinear
sigma model in two dimensions is investigated. The theory consists of N-
component vectors that are constrained to the (N — 1) - sphere. The global
O(N) symmetry restricts the possible terms in the Lagrangian to a product
of two derivatives. Although the theory looks very simple the nonlinear
constraint leads to complex interactions and a rich phenomenology. The
theory’s two dimensional version shares with four dimensional gauge theories
(like SU(3)-Yang-Mills of QCD) the property of being asymptotically free,
at least in the weak coupling perturbative expansion. There is no mass term
in the Lagrangian, but a mass gap is dynamically generated and determines



the large distance behavior of the two-point function.

Because of its similarity to the physically more relevant four dimensional
gauge theories the O(N) sigma model is used as a testing ground for per-
turbation theory predictions and for developing new methods. The O(N)
vector models can be simulated on the lattice very efficiently and for very
small lattice spacings due to collective Monte Carlo updating methods [1]
and improved estimators [2].

The continuum limit of the O(3) model has been investigated for a long
time. Thereby nonstandard (in the meaning of: not as expected from PT)
cutoff effects have been discovered. The standard assumption for a scalar
field theory are O (a?) [3] lattice artifacts. In [4] Liischer, Weisz and Wolff
fitted their data to such an form, but the sign of the artifacts was opposite to
the prediction. Later, in [5] and [6], the quadratic fit had to be rejected. The
data is better fitted, when the artifacts are assumed to decay only linearly.
At this point it was not clear whether this is a specialty to the O(3) model
or a general feature of the nonlinear sigma model.

For large N the O(N) sigma model can be solved exactly and the lattice
artifacts can be studied analytically [7],[8],[9]. Such analysis suggests a cutoff
dependence similar to PT. Both predict leading lattice artifacts proportional
to a? [10],[11].

Starting from the numerical evidence for N = 3, which seems to be
contradictory to PT and N — oo, the aim of this thesis is to measure the
cutoff effects for N = 4,8. The main interest is, how the behavior of the
lattice artifacts transfers from small N over intermediate towards the large
N limit.

Recently presented theoretical predictions for the low energy spectrum of
the continuum O(3) and O(4) model yield continuum values for the measured
step scaling function [12]. These prediction will be compared to the MC data
and used to increase the significance when fitting the lattice artifacts.

In Chapter 2 a brief overview of lattice quantum field theory is given.
First the functional integral quantization of field theories is introduced, con-
centrating on its application in the lattice regularization. Then the impor-
tant transfer matrix formalism is outlined in the context of the nonlinear
sigma model. Finally the correspondence between quantum field theory and
statistical mechanics is pointed out.

The cutoff effects generated by the discretization in lattice simulations
are discussed in Chapter 3. A summary of the situation in the nonlinear
sigma model is given and the strategy to determine the lattice artifacts is
explained.

The numerical methods used to implement this strategy are presented
in Chapter 4. It is explained in detail how the step scaling function is
measured on the lattice and how its approach to the continuum is computed.
Furthermore the improved estimator, used to reduce the variance of the
primary observable, is discussed.
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In Chapter 5 the large 1/N expansion of the nonlinear sigma model on
the lattice is introduced. The leading order is used to compute the step
scaling function in the large N limit and to examine the cutoff effects in this
limit.

Finally, in Chapter 6, the results of the Monte Carlo simulations are pre-
sented and analyzed. The lattice artifacts for N = 3,4, 8, 00 are compared
and the data is fitted to different forms.

In this thesis the undefined expression N = oo always refers to N — oo.
Furthermore the Einstein summation convention and h = ¢ = 1 are used if
not stated otherwise. Against the common habit of setting a = 1, in this
thesis the dependence on the lattice spacing a is mostly made explicit.



Chapter 2

Lattice Quantum Field
Theory



6 CHAPTER 2. LATTICE QUANTUM FIELD THEORY

2.1 Functional Integral Quantization

2.1.1 Path Integral in Quantum Mechanics

The objects of quantum mechanics are transition amplitudes or, equivalent,
probability amplitudes. For example the probability amplitudes for a parti-
cle to move from a to b within the time ¢ is

(ble~ 7 |a), (2.1)

where H is the Hamiltonian of the particle

}52
H=—+V(2). 2.2
v (2.2)
If the particle moves in a potential V(z) # 0 the amplitude can in general
not be calculated explicitly. But for the amplitude (2.1) a so called path
integral representation exists that does not need such difficult concepts as
non-commuting operators:

<b[e_%Htla> = /Dac enSkl (2.3)
where .
Sla] :/0 dt’ [%xz —V(x)} . 2(0)=a, z(t) =b, (2.4)

is the action of the particle moving along the path z(t) and [ Dz means “in-
tegral over all possible paths”. This is of course no mathematical definition
and therefore eq. (2.3) has to be regularized, i.e. to give it a mathematically
well defined meaning.

Since all paths occurring in eq. (2.3) are weighted by an exponential
function with imaginary phase, oscillations and interference will occur. In
the classical limit A~ — 0 the transition amplitude (2.1) should get contri-
butions only from the classical path (defined by 65 = 0). How can one see
this? The phase ¢ of the exponent is

S

cp:%:%m - o= (2.5)

Thus the behavior of the phase depends on the ratio S/h:

S > h:

The exponential factor strongly oscillates with S. Since a small change
of S (a small change of the path) causes a An > 1 the phase ¢ changes
about several periods. Therefore these paths will give no contribution
to the total amplitude. Only the classical path x.(t) satisfying 65 = 0
and paths in a narrow tube around it will survive.
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S =~ h:

A lot of paths with 65 # 0 also contribute to the amplitude because
An < 1, ¢ does not change over a period and there will be no destruc-
tive interference for them.

The path integral representation of quantum mechanics leads to the same
results as the canonical representation [13],[14]. Because of this equivalence
one also speaks of the path integral quantization. This concept can be ex-
tended to field theories.

2.1.2 Quantization of Field Theories

The path integral formula eq. (2.3) holds for any quantum system, so it
should be applicable in the case of quantum fields as well. The formalism
is also called functional integral, for one is integrating over a set (or even
space) of functions. But because of the fact that the integral is complex
and strongly oscillating it is difficult to give it a satisfactory mathematical
meaning. By introducing imaginary time this problem can be overcome. If
the time coordinate is purely imaginary

R * € R, (2.6)
the Minkowski space-time metric for the coordinates z°, ..., 2% can be re-
placed by an Euclidean one using the coordinates z!,...,z* Then one

speaks of Fuclidean quantum field theory. The Euclidean formulation is the
starting point of lattice field theory and that is the framework for the con-
siderations in this thesis. For in quantum field theories all information is
contained in the n-point correlation functions, one has to assure that they
can be analytically extended to imaginary time [14].

For a real scalar field theory in d dimensions and field amplitudes ¢(z)
the classical action reads

Sale) = [t 2.7
with the Lagrangian density
L= 10u0-0% Vo). 2.5)
In Euclidean space-time the action becomes
Slé] = /dd:c [ou0- 96+ V(0)}. (2.9)

Then the n-point correlation functions of the Euclidean quantum field theory
can be expressed as the moments of a measure

wmw¢mm=/wmmmw%% (2.10)
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where du is formally written as
_ L sl
dp e le do(z), (2.11)

with the Euclidean action in the weight factor. The normalization factor Z
is called (in analogy to statistical systems) partition function

Z = /qub(:z:) eSlol, (2.12)

The concept of functional integrals together with the concept of functional
derivatives are important tools in modern quantum field theory.

The equations above have to be understood as formal expressions, for
they consist of infinite dimensional integrals over an infinite number of de-
grees of freedom. In the majority of cases they have to be regularized before
evaluating physical quantities, for example by thinking of the functional in-
tegral in eq. (2.12) as the limit of a well defined integral over a finite and
discretized Euclidean space-time.

2.1.3 Lattice Regularization

Consider a quantum field theory living on a d dimensional finite Euclidean
lattice A with lattice spacing a and extensions L,

A={z|z,/a€Z, x, < L.}, p=1,....d. (2.13)

Then a discretized version of the action eq. (2.9) has to be used:
Slo] = a*>_ {Alo(w) - Afo(@) + V(e)} . (2.14)

For details of the lattice notation, e.g. the definition of the forward derivative
A,]i, the reader is referred to Appendix A. Then the product in eq. (2.12)
is discrete and finite. But now two limits have to be considered: towards
infinite volume and towards the continuum. The infinite volume limit is
rather trivial and sometimes it is not even taken, but the finite size effects
are rather used to study aspects of the theory (finite size scaling). One has
to be more concerned about the continuum limit. The discretization eq.
(2.14) is just one possible choice and if other versions are used, it has to be
verified whether they reproduce the continuum action correctly.

2.1.4 The Nonlinear Sigma Model

In this section a scalar field theory in two dimensions will be studied. In
d = 2 a scalar field is dimensionless; thus the Lagrangian has a dimensionless
coupling and is renormalizable. The nonlinear O (V) sigma model is made up
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by a scalar N-component vector field s = s(x) = (s1(x), ..., sy(x)) subject
to the constraint

N

s*=s(x) s(z) = (siz))* =1. (2.15)

=1

Then the most general (up to a multiplicative constant) O(N) symmetric
Lagrangian with at most two derivatives is

L=0us-0's. (2.16)

Therefore the action of the nonlinear sigma model is written as follows:

S = 21f /d2x Ous(x) - 0's(x), (2.17)

where f is called the bare coupling. The lattice version of this action is
derived in Appendix A. Using the model’s symmetry and the constraint one
ends up with

Srat = =B s(x)s(z +aj), (2.18)

where § = 1/f is introduced in analogy to the inverse temperature in sta-
tistical systems and is referred to as bare coupling, too.

2.2 The Transfer Matrix Formalism

In quantum mechanics one also can introduce imaginary times, define an
Fuclidean path integral and discretize the time interval. Then the time
evolution operator that shifts the states by one spacing in time is called
transfer matriz. This concept leads to a very appealing description of the
path integral (see e.g. [14]).

The transfer matrix for field theories will be introduced within the con-
text of the nonlinear sigma model. Let the theory be defined on a 141 dimensional
lattice A with lattice spacing a. The starting point is the partition function

Z = /Dse_s[s], (2.19)

where
Ds = H dVs(x) (2.20)
€A

S=-0 Z [s(x1,x2) s(x1, 22 + a) + s(x1,x2) s(x1 + a,x2)] . (2.21)
r=(x1,x2)EA
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To make the expressions more readable one defines the time slice field s;
through

st = {s(z1,22) : 29 =1}, si(y) = s(y,t). (2.22)

The action can be rewritten such that it is symmetric in adjacent time slices
s¢ and Sgyq

S==B> Llsita s, (2.23)
with
Llsiyarsi] = > [st(xl) Stral(®1) + (2.24)

1 1
+gse(z) sz +a) + 5

5 St+a(21) St+a(z1 + @)

Now the transfer matrix II is defined by its matrix elements

(St+a|ll|st) = exp(—p L[St+taq, St]) - (2.25)

The lattice Hamiltonian of the field theory is tightly connected to the trans-
fer matrix, for the transfer matrix is the Euclidean time evolution operator,
which shifts the state |s;) by one a-unit

II=exp(—aH). (2.26)

Using the transfer matrix, the partition function becomes
Z = /Ds [ (sevaltlse). (2.27)
t

The states |s;) form a complete basis of the theory’s Hilbert space

/Ds]st st|—/Hds y,t) :cg—t>< (z ),wgzt‘ =1 (2.28)

and therefore eq. (2.27) reduces to

Z = lim trII™. (2.29)
Ni—o00
Here N; = T'/a the number of the lattice sites in time direction. For finite
time sites N; the partition function is that of a theory with finite time
extension T and periodic boundary conditions in time direction.
In order to compute the two-point correlation function, the multiplicative
operator §, is introduced

sl = [ TTsto:) b)) = (00 5. (2.30)



2.3. FIELD THEORY AND STATISTICAL MECHANICS 11

The functional integral formula for the two-point function

(s()s(w) = [ Dse s(@)s(o) (2.31)
then can be written in terms of the transfer matrix

(@) = [ Dss(a)stu) [Jlsesaltllsr)

t
(s, )
N¢—o0 tr ]._.[Nt ’

(2.32)

where 9 — y9 = 7 > 0 is assumed.

It is now assumed, that the lattice Hamiltonian H, defined in eq. (2.26),
has a discrete spectrum with a non degenerate ground state |0) belonging to
the eigenvalue Fy. Then the transfer matrix has a spectral decomposition

I = Ze—aEi i) (i (2.33)

and since Ey < E;, Vi > 0 the operator II"V* becomes a projector on the
ground state as N goes to infinity

N¢—00
~

Ve e~ o Nt 10)(0) . (2.34)
This can be used to study the large distance behavior of the two-point
function. For the sake of simplicity, let in eq. (2.32) the spatial coordinates
coincide: 1 = y; = 0. Then, plugging in the asymptotic behavior of ITV¢
yields

(s(x)s(y)) = Z [(0]30]0)[* e~ FimFo)T (2.35)

Consequently the two-point function decays exponentially for large distances
7 like

(s(2)s(y)) ~ e~ A=) T (2.36)
The correlation length &, determining the decay rate, is defined through
1
= — M = Fy — F 2.
5 a M ) 1 (V) ( 37)

as the inverse of the mass gap.

2.3 Field Theory and Statistical Mechanics

The expression eq. (2.19) reminds one of a statistical mechanics problem’s
partition function. The integrand e~ corresponds to the Boltzmann factor
e P and the action S corresponds to SH, where H can be interpreted
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as the classical Hamiltonian of a 2 dimensional spin system. The inverse
temperature of the spin system ( corresponds to the bare coupling in eq.
(2.21). For example the O(2) nonlinear sigma model corresponds to the
XY-model, the O(3) model to the Heisenberg model and so on.

The relation between field theory and statistical mechanics can be ex-
tended to many other quantities [15],[13]. For example the vacuum expecta-
tion value of the field corresponds to the mean magnetization per site and the
two-point function corresponds to the spin-spin correlation function. From
eq. (2.37) one sees that if the theory has a finite mass in the continuum
limit then it should be possible to approach a limit where a goes to zero and
m stays finite by simply tuning the inverse temperature of the underlying
spin system (bare coupling of the field theory). In this limit the correlation
length has to diverge. In statistical mechanics a point in the phase diagram
where the correlation length diverges is called critical point and the system
undergoes a second order phase transition when passing this point.
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3.1 Cutoff Effects in Lattice Simulations

3.1.1 Lattice Regularization and Continuum Limit

The lattice regularization of quantum field theory is a mathematically well
defined formulation. The measure in the partition function becomes a dis-
crete product and for a finite lattice it becomes a finite product. The theory
then has a finite number of degrees of freedom. The lattice also provides a
momentum cutoff inversely proportional to the lattice spacing a.

But the discretization involves systematical errors. In general, all quan-
tities may now depend on the lattice spacing and, if the lattice is finite, on
the lattice size. Thus a continuum limit should be taken before the results
are compared with the real world or continuum regularization schemes.

Quantitative results in the lattice regularization are obtained using nu-
merical simulation techniques like Monte Carlo. Only discrete changes of
the lattice spacing are possible in this simulations. In practice, the contin-
uum limit is taken by computing the quantities of interest for several values
of a and extrapolating the results to a = 0. Since the simulation programs
slow down proportionally to at least a~(¢+%) where d is the dimension of
the lattice and z is a theory dependent constant (for QCD d = 4, z = 3),
one cannot go to arbitrarily small lattice spacings.

Therefore a detailed theoretical understanding of the approach to the
continuum limit is required. This understanding is crucial when extrapolat-
ing a few measurements at small lattices to the continuum: the continuum
value strongly depends on the form of the fit. Every theoretical prediction
for the so called lattice artifacts has to be checked and extensive numerical
studies are needed to confirm (or disprove) the expected behavior.

3.1.2 Perturbative Understanding of Lattice Artifacts

Almost 25 years ago Symanzik has done a seminal work studying the cutoff
effects in perturbation theory [3]. His idea was to describe the lattice the-
ory through an effective continuum theory: the cutoff dependence is made
explicit through additional terms in the continuum Lagrangian proportional
to a®, k > 1. Thereby the lattice is assumed as a substructure that is
only visible at energies ~ 1/a. In a sense, the continuum theory with the
added terms is then a low energy effective theory of some underlying more
complete theory.

The possible combinations of operators entering the additional terms
are determined by the symmetries of the lattice theory and by dimensional
considerations. For scalar field theories this analysis reveals that the leading
lattice corrections vanish like a? (Ina)’. In the case of fermionic theories like
QCD the leading term is proportional to a (Ina)!, where [ is the loop order
in perturbation theory.
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FIGURE 3.1: The plot shows continuum extrapolations of a step scaling function in
quenched lattice QCD for different parameter values. The extrapolations were done ex-
cluding the point of smallest lattice at L/a = 6. Since the action used in the simulations
is O (a) improved the leading artifacts are ~ a®. See [17] for details.

These statements hold in every order of perturbation theory. Later
Symanzik extended his concept and proposed a method to accelerate the
approach to the continuum, which is today known as the Symanzik im-
provement programme [16]. The idea is to add irrelevant operators to the
lattice action that cancel the leading lattice artifacts (O (a) improvement in
lattice QCD).

The results of Symanzik are assumed to hold beyond perturbation the-
ory and extrapolations are done accordingly. In QCD extrapolations pro-
portional to a? (for the improved action) seem to work well. See for example
Fig. 3.1 taken from [17]. However, one has to care about the limitations of
these predictions. Firstly, the stated lattice artifacts are the leading order of
an asymptotic expansion: it is not clear what lattice spacing is “sufficiently
small”. Secondly, there could be nonperturbative terms in addition to the
cutoff effects.
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The plot is taken from[19].

3.2 Cutoff Effects in the Nonlinear Sigma Models

3.2.1 XY Model in 2d - A Pathological Case

The nonlinear sigma model with two components per vector at each lattice
site corresponds to the XY model of statistical mechanics. This model is
some sort of outstanding and differs a lot from the models with N > 3.
The symmetry group is the abelian O(2). Furthermore the theory is not
asymptotically free in the conventional sense and rather undergoes a special
phase transition at finite temperature. There exist exact theoretical predic-
tions not only for the continuum value of the finite volume mass gap, but
also for the lattice artifacts [18]. These theoretical predictions have recently
been compared to numerical results by Tomasz Korzec in his diploma thesis
[19], [20]. The Monte Carlo data is in good agreement with the analytical
results. The theoretical considerations lead to an expansion for the cutoff
effects in the inverse logarithm of the infinite volume correlation length [18]
rather then the usual powers of the lattice spacing. If the data is fitted
by power-like lattice artifacts the extrapolation misses the exact continuum
value, see Fig. 3.2 and Fig. 3.3.

Since the O(N) nonlinear sigma model with NV = 2 is a special case in
this family of models, this result does not have direct consequences for the
models with V > 3. It is not asymptotically free in the conventional sense
and has an abelian symmetry. Nevertheless this example teaches us to be
very careful about extrapolations to the continuum: they may be misleading.
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3.2.2 Numerical Results for N = 3

In the late 80s, early 90s collective Monte Carlo updating algorithms were
proposed with reduced or eliminated critical slowing down (see Appendix
B). The so called cluster algorithms made MC simulation of spin systems
deep inside the critical region (at small lattice spacing) possible. Since the
O(N) models are equivalent to spin systems the efficient algorithms can be
used to simulate these models as well. Thereby a detailed investigation of
the continuum limit is possible and perturbative predictions can be tested.
The outcome of such studies in the O(3) model was surprising.

In 1991 Lischer, Weisz and Wolff proposed a finite size scaling technique
to numerically compute the LWW running coupling g(L) in a finite volume
from large volumes (nonperturbative) down to very small scales (pertur-
bative) [4]. They measured the so called step scaling function at different
lattice spacings and extrapolated their data to the continuum. The data’s
relative error is of O (10*3). For the form of the lattice artifacts they used
the expected a? term and found no disagreement. But the sign of the lattice
artifacts they observed at g?(L) = O (1) is opposite to that obtained in PT.

Then, in 2000 Hasenfratz and Niedermayer studied the behavior of asymp-
totically free spin and gauge models when their continuous symmetry is re-
placed by discrete subgroups [5]. They measured another running coupling,
the renormalized zero momentum 4-point coupling gr, with a relative error
of O (10_4). The higher precision revealed nonstandard cutoff effects. A fit
to different forms suggests O (a) lattice artifacts rather then the Symanzik
0 (aQ).

Finally, in 2001 Hasenbusch, Hasenfratz, Niedermayer, Seefeld and Wolff
did high precision measurements of the renormalized zero momentum 4-
point coupling gr and of the LWW running coupling g?(L) in order to
examine this unexpected behavior [6]. Their data confirms the anomalous
linear behavior of the lattice artifacts.

3.2.3 Large N Predictions

The O(N) nonlinear sigma model can be solved exactly in the limit N — oo
and a systematical 1/N expansion can be derived (see [9] for a review of
the topic). Caracciolo et. al. analytically studied the corrections to finite
size scaling in the lattice model for N = oo [10], [11]. For the step scaling
function they found artifacts decaying like

(a/L)? (In(a/L))™7,  q¢=-1,0,1,2,.... (3.1)

They point out that the negative powers are unexpected from the point of
view of perturbation theory.

In the first section of Chapter 5 the derivation of the leading order of
the 1/N expansion in the lattice model is presented. Then in Section 5.2.2



18 CHAPTER 3. NONSTANDARD CUTOFF EFFECTS

the exact equations for N = oo are used to numerically compute the step
scaling function of the running coupling in the continuum and for finite
lattice spacings. In order to extract the leading lattice artifacts, first a
weak coupling expansion is implemented and then asymptotic expansions
of the momentum sums involved are used. This calculation tightly follows
unpublished notes by Peter Weisz [21]. The approach to the continuum is
found to be from below for small couplings and from above for couplings of
O (1). The artifacts seem to decrease like (a/L)? In(a/L) for small a/L.

3.2.4 Summary of the Situation for N > 3

Summarizing the last sections the following can be said about the leading
lattice artifacts suggested by different methods tackling the problem in the
nonlinear sigma model:

Perturbation theory ~ (a/L)? In(a/L)
MC data for N=3 ~ (a/L)
Large N limit ~ (a/L)? In(a/L)

It would be interesting to see how the behavior of the lattice artifacts
transfers from small NV over intermediate towards the N = oo limit.

3.3 Testing Predictions

The nonlinear sigma model is a scalar N-component vector field subject to a
nonlinear constraint (see Section 2.1.4). Its two dimensional version shares
with four dimensional gauge theories the property of being asymptotically
free, at least in the weak coupling perturbative expansion. With the efficient
cluster algorithms introduced in Appendix B.2 and B.3 it is possible to
perform MC simulations of large statistics close to the continuum limit. Also
an improved estimator used to reduce the variance of observables, hence to
reduce the numerical costs for the envisaged relative error is presented.

Therefore the nonlinear sigma model in 2d is a perfect testing ground
for PT predictions. High precision determination of the approach to the
continuum limit is possible. In the following sections the quantity for which
the approach to the continuum is studied, will be discussed. First an in-
troduction to finite volume effects is given. Then the step scaling function
is defined in the continuum theory and finally the effects of finite lattice
spacing are considered.

3.3.1 Field Theory in a Finite Volume

Suppose a field theory in compact space, i.e living in a periodic box with
finite spatial size L and infinite extent in time direction. The natural exter-
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nal scale in such a world is the box size L. Large L correspond to the low
energies and small L correspond to high energies. Therefore one may define
a coupling running with the box size.

The two dimensional O(N) nonlinear sigma model will be studied in
such an environment. The continuum action is

1
S = 37 /d2m Ous(z) - 0"s(x) (3.2)

and the vectors s(z) are subject to the constraint s(x)? = 1. Since the space
is compact the energy spectrum is discrete. Liischer pioneered in computing
the low-lying states in perturbation theory to one-loop order [22]. The
ground state is found to be unique and the lowest excited states make up
an O(N) vector multiplet. Their energy is

N -1

M(L) = T{fMS-FOéfquJrO(ffas)} ; (3.3)
with the coefficient
a2 [Inp?L? —Indr —T'(1)] , (3.4)
47

where fyrg is the renormalized coupling constant in the dimensional regular-
ization scheme with minimal subtraction (MS) and g is the normalization
mass. In leading order fys coincides with the bare coupling f. Today the
mass gap is known on the 3-loop level [23].

The mass gap eq. (3.3) is in leading order proportional to fyig and there-
fore Liischer, Weisz, Wolff [4] defined a running coupling through

—2
Ly=—M(L)L 3.5
P = M) L, (35)
called LWW running coupling.

3.3.2 Step Scaling Function

The Callan-Symanzik 3-function for the running coupling g?(L) is defined
by
9>
—2
=1 . .
o) = 1% (3.

In perturbation theory it can be expanded in powers of the coupling
o0
Blu) ~ —u”> but. (3.7)
1=0

The B-function describes the variation of g2 when the external scale (the box
size L) is changed infinitesimally. The first two coefficients are independent
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of the regularization scheme and of the definition of the running coupling,
i.e. are universal
N -2 N -2

TRt o=t (3.8)

The next two coefficients are also known for the MS scheme [23]. Since by is
positive, g2 vanishes logarithmically as L goes to zero, i.e. for high energies

by =

—L— = —bou?
oL ot
du o, dL
w2 L
- 1
- g = (3.9)

boIn(c/L) "

A theory with a running coupling that vanishes for high energies is called
asymptotically free.

The (-function was introduced to describe infinitesimal changes of the
box size L. Now the step scaling function o(s,u) describes the effect of a
finite change of the external scale

a(s,9°(L) = g°(sL), (3.10)
where s is the positive number by which the box size L is scaled L' = sL,

e.g. s = 2. The step scaling function can be regarded as an integrated

version of the S-function
o(s,u) dv
Ins = / . 3.11
. B (310

Using this relation and eq. (3.7) an expansion of o(s,u) can be derived

o(s,u) = u+ oo(s)u® + o1 (s)u® + oo (s)u + ... | (3.12)

with coeflicients

oo(s) = bplns, (3.13)

o1(s) = bi(Ins)?>+by Ins, (3.14)
)

oo(s) = b3 (Ins)3 + 5 boba (In 8)2 +by Ins. (3.15)

In [4] the step scaling function was proposed and defined in order to
relate the coupling at small scales L (perturbative) to the coupling in large
volumes (nonperturbative).

The step scaling function can easily be measured on the lattice. One
has to tune the bare coupling until the renormalized coupling g*(L) = u is
measured at lattice size L/a. Then L is scaled by a factor, say s = 2, while
the bare coupling is kept fixed. Now g?(2L) is measured and the result is
equal to o(2,u) up to lattice artifacts.
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3.3.3 Lattice Effects

The step scaling function o(2,u) is defined in the continuum theory. When
measured on the lattice one expects lattice artifacts. One defines a lattice
step scaling function to care about such effects. This means on the lattice
one does not measure o(2,u) but rather

¥(s,5%(L),a/L) = g*(sL). (3.16)

It is expected, of course, that the lattice step scaling function X(s,u,a/L)
approximates o(2,u) well, if a/L is small enough. In perturbation theory
one expects an expansion in analogy to eq. (3.12)

Y(s,u,a/L) = u+ Xo(s,a/L)u? + 21(s,a/L)u + ..., (3.17)

but here the coefficients will additionally depend on the lattice spacing.
From the analysis of Symanzik (Section 3.1.2) one expects

Si(s,a/L) — oy(s) = O <a2(ln a)l“) . (3.18)
Thus the lattice artifacts of ¥ (s, u,a/L) decay roughly like a?.

3.3.4 Strategy

In Section 3.2.4 it was pointed out that in the O(N > 3) models the behavior
of the lattice artifacts is inconsistent. There are predictions available from
PT and the large IV limit. They are compatible at leading order. But the MC
data for the N = 3 model does not follow these predictions. Since the two
dimensional nonlinear sigma model has crucial properties in common with
the physically more important four dimensional Yang-Mills theories (like
asymptotic freedom, nonabelian symmetry) it is of general interest where
these inconsistencies come from or how the different behavior fits together.

The aim of this thesis is to investigate the cutoff dependence for inter-
mediate N, for example N = 4,8. The question is whether the nonstandard
linear behavior in the O(3) model is also found for higher N or if this is a
singularity and a specialty of O(3).

Since the cutoff effects are studied as IV changes the measured quantities
will also depend on N. So from now on this dependence will be explicitly
indicated, i.e. the lattice step scaling function reads

Y(s,u,N,a/L). (3.19)

This quantity will be measured at a fixed value of the renormalized cou-
pling for different lattice spacings, i.e. for different lattice sizes (size in the
computer memory, the physical size is kept fixed) and different N. To fix
the renormalized coupling one has to tune the bare coupling till the desired
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value is measured. The result will be plotted over a/L and fits to several
forms will be tested.

The analysis will also profit from a very recently published result con-
cerning an analytical approach to the mass gap, and thus the step scaling
function, in the O(3) and O(4) model [12]. The continuum value will be
used to constrain the fits and increase the y? values.
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4.1 Computation of the Step Scaling Function

The continuum limit of the step scaling function in the nonlinear O(N)
invariant sigma model for intermediate N is to be studied using MC simu-
lation. In the last chapter the step scaling function was introduced in the
context of the LWW coupling (Section 3.3.2). Since the definition of this
coupling
2
—2
Ly=—M(L)L 4.1

PL) = ML) L, (4.1)
is not suited for a large N expansion (which is considered in Chapter 5), it
is substituted by the renormalization group invariant variable

»=M(L)L. (4.2)

The coupling g2(L) could have been made well defined in the limit N — oo
by rescaling the bare coupling f — N/ f. But using the variable z the results
for different N are easier to compare. Note that for N = 3 z equals g2 by
coincidence.

Now, the lattice step scaling function for the variable z is defined through

2.(2,u,N,a/L) = M(2L)2L,  u= M(L)L, (4.3)

where the scale factor s is set to two. This is also the value used in the MC
simulations. Eq. (4.3) means one has to measure the finite volume mass gap
M two times in order to determine ¥, at a certain value M (L) L = ug. First
one has to tune the bare coupling till © = ug is measured on the “small”
lattice with L/a spatial sites. Then one goes to the “large” lattice (2L/a
spatial sites) and measures M (2L)2L using the bare coupling determined
before. This is repeated for several values of L/a, say L/a = 8,10,12, 16, .. .,
giving ¥, at z = ug for different lattice spacing a/L. In Section 4.1.3 it is
explained how the mentioned tuning is done and how the involved statistical
and systematical errors are treated.

Until now it was not mentioned how the finite volume mass gap is mea-
sured. This topic is postponed to the following sections. First some general
characteristics of the MC runs are stated:

Lattice geometry The simulations were carried out on simple square lattices
LxT, T=5L, (4.4)

where L/a and T'/a are the number of lattice sites in the spatial and temporal
direction respectively. This strip geometry is dictated by the determination
of the mass gap, which is defined through the large distance behavior of the
time slice correlation function (see Section 4.1.1).
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Action The action used is the standard nearest-neighbor action (see Ap-
pendix A.2)

:—ﬂz s(z +aft), p=12. (4.5)

MC wupdating For the O(N) vector model very efficient cluster algorithms
are known, that reduce or even eliminate critical slowing down (see Appendix
B for details). Throughout the simulations the single cluster algorithm pro-
posed by Wolff [1] is used.

Improved estimator The concept of improved estimators is illuminated in
Section 4.2. There an estimator proposed by Hasenbusch [2] is presented and
a detailed explanation how the ideas are implemented is given. Furthermore
the efficiency and the accuracy of the improved estimator is tested.

The above-mentioned improved estimator is derived for the time slice
correlation function. This is the primary observable in the MC simulations.
Now this quantity will be defined and then in Section 4.1.2 follows an ex-
planation how the mass gap is extracted from this correlator.

4.1.1 Time Slice Correlation Function

In Section 2.2 the mass gap was introduced as the difference between the
ground state and the first excited state. It was found to govern the large
distance behavior of the two-point function eq. (2.36). There the effect of
non vanishing momenta was treated a little bit sloppy. Therefore the space
averaged multiplicative field operators are now considered:

=4, (4.6)
Yy

where 5, was defined as (recall eq. (2.30))
Sy|se) = /Hds Y, 1) |sg) (splse) = s(y,t)|se) - (4.7)

Now the zero momentum (nothing else means space averaged) or time slice
(because $ is some sort of time slice spin) correlation function can be defined

C(7) = (38)r = Y (s(2)s(y))sa—yomr - (4.8)
z1,Y1
whose large distance behavior is now studied a bit more seriously. Using the
transfer matrix formalism the vacuum expectation value in eq. (4.8) can be
written as (see eq. (2.32), zo — yo = 7 > 0)
tr (HNt—QCQ/a SII7 /e §Hy2/a)
C = 1. .
(T) NtILnOO tr ]._.[Nt

(4.9)
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For a finite number of sites in time direction Ny = T'/a this equation holds
only if periodic boundary conditions (pbc) are imposed. Taking the trace
then means summing over all eigenstates |n) of the transfer matrix, i.e. of
the theory’s Hamiltonian (eq. (2.26))

1

C(Mpbe = > (n|TNemmR/a g TIT/e g1/ ) (4.10)

n

Since the theory is O(N) invariant the Hamiltonian commutes with the
Casimir operator of the Lie algebra of O(N) and the eigenstates can be
characterized by a spin quantum number. The ground state |0) is not de-
generate and has spin 0 [24]. Let us assume the ground state energy to
vanish: Ep = 0. Then all excited O(N) invariant states have energies of
at least 47 /L, apart from the lowest excited state. The mass gap, like all
other excited states, has in leading order PT an energy of O (1/5L). In the
sum in eq. (4.10) all these states occur. To use the asymptotic behavior eq.
(2.34) of II” and thus to single out the mass gap one would have to go to
very large lattices (in time direction) and would still fight with a very noisy
signal.

Therefore one rather considers free boundary conditions (fbc) in time
direction. Then the two-point function reads

C(T)me = lim  — (p| IINe72/0 GT17/0 5T1¥2/% | ¢) . (4.11)

1
Ny—oo J
Free boundary conditions mean constant fields ¢ and ¢ at t = 0 and t =
T — a. Constant fields have a constant wave function, are O(N) invariant
and spin 0. Plugging in the spectral decomposition eq. (2.33) of II one gets

1

Clrme = Jim =37 () (klg) e (o Nemmn)=F
ik

x (i| §TI7/% § |k) . (4.12)

For (p|n) = 0 if ¢ and n have different spin only those states |i) contribute
that have spin 0. Since the excited states with spin 0 have energies of
at least 4w /L they are exponentially suppressed. So for large N; and y2/a,
while 7 = x9 —y9 is kept fixed, only the ground state will survive (remember
Ey=0)

C(7)me o (0] 8T/ 5 0) . (4.13)

Using again the spectral decomposition of the transfer matrix this reduces
to

C(T)ppe x e Bi™ Z 10| 3 ]3)|* . (4.14)
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The operators §,, and so 3, are spin 1 operators. Therefore only spin 1 states
contribute in eq. (4.14). The lowest excited state, giving the mass gap M,
has spin 1 and M is of O (1/25L). All other excited O(N) invariant states
have energies of at least 4w/L. So, for 7 > L, they are exponentially sup-
pressed. Hence the finite volume mass gap may be evaluated from (omitting
the subscript fbc from now on)

M(L) = — lim 2 o). (4.15)

T—00 OT

In the calculations above the normalization factor 1/Z was dropped at some
point. The partition function Z can be defined imposing free boundary
conditions along similar steps as for the time slice correlation function. At
the end it is a constant factor that can be omitted.

Also the calculations were performed under the tacit assumption of trans-
lation invariance in time direction (e.g. in the step from eq. (4.12) to eq.
(4.13)). Clearly, this assumption is not satisfied at the boundaries. But far
away from the boundaries, where the boundary fields have already decayed
to the ground state, there should be a region of approximately valid trans-
lation invariance. The invariance is used in the MC simulations to improve
the variance of C'(7) by scanning x9 over this region. Thus

to—T 2
a
D(t) = ——— (r1,x , T2 + T))MC, 4.16
= e X 7 L B stnm e, (410

is measured, where it is indicated that the expectation value now refers to
the average over a set of configurations produced by a MC algorithm. The
first sum is over the region were translation invariance is assumed

Tiny =t2 —11. (4.17)

However, it depends on 7 how much of Tj,, can be used to average over
(note the upper limit of the sum). Since the excited states in the boundary
fields decay with a rate of O (47/L) a sensible choice would be (remember
T =5L)

ti=L, to=T—-L — Tw=3L. (4.18)

In order to verify these assumptions the time slice correlation function C(7)
is measured for a constant time separation 7 but varying position zo of the
first time slice

C(r,z2) = L2 Z s(x1,22) s(y1, x2 + 7))mc, (4.19)

1,91

Thus a profile of the whole time extension is drawn. In Fig. 4.1 this is done
for a 10 x 50 lattice. From the plot one concludes that “boundary effects”
decay rapidly and that in the region [L,T — L] translation invariance is a
justified assumption. Thus it is justified to use eq. (4.16) to determine the
time slice correlation function.
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time slice correlation function, N=3
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FIGURE 4.1: The time slice correlation function measured in the O(3) model at 8 = 1.5699,
M(L) L = 1.292(2) on a 10x 50 lattice. The separation of the time slices is a and the whole
time extension T'/a = 50 of the lattice is scanned. In the interval [L,T — L] translation
invariance can be assumed: Tin. = 3L.

4.1.2 Finite Volume Mass Gap

Now eq. (4.15) is to be applied in order to evaluate the mass gap from the
measurements eq. (4.16). A typical set of data is plotted in Fig. 4.2. Since
the higher states are suppressed by a factor of exp(—4ma/L) they should
have vanished for 7 ~ L and the mass gap should govern the exponential
decay of D(7), i.e.
r—r 1 D(r)
M(L) = aln {D(T—i—@)] . (4.20)
If the L.h.s. is plotted (Fig. 4.3), it may be called the decay rate of D(7), a
plateau is observed starting from somewhere at 7 = L/2.
Since the relative error does not increase with the time separation (this
is due to the use of the improved estimator discussed in Section 4.2) one
could use the plateau and average the mass gap

1 L D(r
M(L) = y Ry th In [D(T(Jr)a)] . (4.21)

The time separation ¢, where this plateau average can start is defined
through the claim, that the contribution from higher states is beneath the
envisaged error of the mass gap. To calculate t,, suppose the exponential
decay of the time slice correlation function as a superposition of two terms:

Dit)mare ™™ fage ™ =ay e M7 (1 + @e_AmT> , (4.22)
a
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FIGURE 4.2: Time slice correlation func-  FIGURE 4.3: The decay rate of the time
tion measured for time separations ranging  slice correlation function shown in Fig. 4.2
from 1 to 32. The errors are too small to  has a plateau. There one can read off the
be displayed on this scale. (O(8) model at  mass gap. The higher states have died out.
B = 6.8070 on a 32 x 160 lattice)

the mass gap M and one higher state m; (Am = m; — M > 0). Then,
assuming exp(—Am 7) < 1, the mass gap is

1 D(7) Lay A A —2A
M~—-In|—"— - = mT (1 — 2™ O mTy . 4.23
a H[D(T+a)]+aale ( ¢ )+ (e ) ( )

If the expected error of M is of O (§M), then the contribution from higher
states is smaller for

1 1— —a Am
TZ>t= ln[ ¢ ag]

—= 4.24
Am adM o ( )

The improvement coming from the plateau average will not be immense,
because the data (one is averaging) is strongly correlated. This is because
successive points in the plateau have one measurement of the time slice
correlation function in common. So, one has to care about autocorrelation
and use techniques like jackknife [25] and/or directly analyze the autocor-
relation [26]. In practice, in order to evaluate the parameters, the measured
time slice correlation function is fitted to the form eq. (4.22) using jackknife.
Then the start of the plateau is determined through eq. (4.24). Finally the
plateau average of the mass gap eq. (4.21) and its error are computed using
the method proposed in [26].

In the case of the data presented in Fig. 4.2 and Fig. 4.3 the plateau
average was started at ¢, = 15 and the error could be reduced by 25%
compared to an arbitrary point in the plateau.

In practice it turned out that the value of ¢,/L depends on L. So,
to be safe, D(7) is always measured for 7/a = 1,2,...,L/a and M (L) is
determined like discussed.
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4.1.3 Step Scaling Function and Continuum Limit

Now the computation of the step scaling function is considered. As described
in the beginning of Section 4.1, to determine X,(2,u, N,a/L) for a certain
value z = wug one has to tune the bare coupling (3 till one measures M (L) L =
ug on the small lattice. Since MC simulation is a statistical process, one
never gets to this point. One rather stops when the measured u = M (L) L
is in the vicinity of ug. With the so fixed 8 one then measures the mass
gap M (2L)2L on the large lattice. Finally PT is used to extrapolate the
measured X,(2,u, N,a/L) to the wanted X,(2,ug, N,a/L)

¥.(2,u0, N,a/L) = ¥,(2,u, N,a/L) + % (uo —u) + O ((up — u)?) .

ou |,

(4.25)
For the gradient 03, /0u it is sufficient to compute the perturbative expan-
sion eq. (3.12) up to two-loop order. The third order term can be used
to control the systematical error, i.e. to assure that it is smaller than the
statistical one. In this way the error of u = M (L) L propagates into that of

¥.(2,up,N,a/L)
ox
0 __ 2 o z
5x0 = \/(5zz) + ( =

The explained procedure is repeated for different sizes L of the small
lattice giving the step scaling function for a range of lattice spacings a/L.

2
) (6u)2. (4.26)
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4.2 Improved Estimator
for 2d O(N) Invariant Vector Models

First the basic ideas behind improved estimators will be sketched. Then
the case of two dimensional O(N) invariant vector models (Section 4.2.2),
especially the estimator of time-slice correlation functions in these models
(Section 4.2.3), will be considered. Constructing an improved estimator for
these observables will lead to an integral over the rotation group SO(N). In
Section 4.2.4 the properties of this integral will be explored and a few hints
towards implementation will be given. of an algorithm solving the problem
by MC integration. The statements in Sections 4.2.1 - 4.2.3 follow more or
less the original paper (Chapter 2 in [2]) and Section 4.2.4 is inspired by an
existing code of Martin Hasenbusch. The discussion ends with numerical
tests of the estimator and compare it to the standard estimator.

4.2.1 General Remarks

Consider a scalar quantum field theory with action S[¢]. The fields ¢;(x)
label the degrees of freedom and take values from minus to plus infinity.
The expectation value of an observable A is then

4y _ I Doesp(—SIEDAQ)
[Déexp(=Sld])

(4.27)

where ¢ denotes a field configuration. Now split ¢ into two parts ¢ = (x, ¥)
such that the integral over ¢ can be done exactly for fixed y. This simply
means explicitly integrating out some degrees of freedom. The improved
estimator is then defined as

Asp(3) = (Abeona = Dwfl i 8 iﬁ;ﬁ?iﬁ”"” eSS

The denominator is called conditional partition function because it still de-
pends on some degrees of freedom, namely x. The expectation value of this
quantity is then

1 _
(Aimp> = Z/Dwa Aimp(X) e Shev]

- L DxDv e—S[x,d)}fDTﬂlA(X,wl)e*S[Xﬂ/)ﬂ
fDﬂJge*S[XﬂlQ]

Z
= (4,
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where in the last step the term in front of the fraction has been canceled by
the denominator. Proceeding with the variance one yields

2y - 1 /DXD”L/J s (walAes)2

imp

IN
\
—

O
=<

O
<

)

(fPvaes)
= (4%,

where the Schwarz inequality

| [t < ( [1rPas)( [1oPar)

was used. Hence the variance of the improved estimator Ajn;, is reduced
compared to that of A

(4%) = (A)? = (Af,p) — (Aimp)®. (4.29)

4.2.2 O(N) Vector Models

The action for an O(N) invariant vector model on a 2d lattice with time
extension 7', spatial extension L and lattice spacing a = 1 reads (A.28)

L T
S==8> " (s,t) s(x+ 1L,t) + s(x,t) s(z,t + 1)), (4.30)

z=1 t=1

where s(z,t) = (s1,...,sn) denotes the O(NN) vector attached to the lattice
site (z,t). Assuming periodic boundary conditions in space and free b.c. in
time direction implies s(x,T 4+ 1) = 0 Vz and s(L + 1,¢) = s(1,t) Vt in eq.
(4.30). Think of the lattice as being built up of time-slices, i.e. embedded 1d
models. For every given configuration of such a time-slice at ¢ multiplication
of all spins in this slice with the same O(N) matrix R(t) yields a new valid
configuration. By integrating over all possible O(N) rotations one gains
the desired improved estimator. To show this one starts with the partition
function of action (4.30)

7= /Ds o5kl = /Hds(x,t) e~ Skl (4.31)
x,t

A transformation of variables

s(z,t) — &'(x,t) = R(t) ts(x,t) (4.32)
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leaves Z invariant because the measure is invariant (det(R(t)) = 1)

d(R(t)*l( 1) = ds'(a,1) = ds(x,1)

/Hd s(z,t)) e SIS /Hdsxt sl (4.33)

Hence Z does not depend on R(t) and one could integrate over the group
introducing the normalized Haar measure dR(t) of O(N)

/ H dR(t /H ds(z,t) e SRS (4.34)
O(N) 7 @t

The order of the integrations can be interchanged and the group integral will
give the conditional partition function. But first consider the transformed
action. Since the rotations do not affect the spatial bonds the action can be
split up into a R(t)- dependent and a R(t)-independent part

S = —BZ{ ). R(t) 's(z +1,1)

FR() s(x, ) - R(E+ 1) s(a, t + 1)}
= —52{ s(z+1,t) + R(t) ™ (x,t)-R(tH)*ls(x,tﬂ)}

= Sspatlal + Stemp(R> .

Therefore the spatial bonds factor out and in analogy with eq. (4.28) the
conditional partition function and the improved estimator of an observable
A may be defined as

AOM (5 = 1 / DR o Semv(®) A(R) (4.35)
Zcond O(N)
Zcond = Zcond(s) = / DR eistemp(R) . (436)
O(N)

So far it could be shown that integration over all possible rotations of all
vectors in a time slice of a given configuration yields an improved estimator
for O(N) models. But the structure of expression (4.36) has to be further
investigated. To this end a componentwise description of the temporal part
of the action is introduced

Stemp(R) = —522 < t)sj(z,t) ) (Rik(t + V)sp(z, t + 1))

zt 0,5,k

= =B ) Rij(t)Rip(t + 1)s;(x, t)sp(x,t + 1)

zt 0,5,k

= fZZ et t+1) Q(t,t+1)
t

— —Ztr (t,t+1) QT (¢t +1)), (4.37)
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where the relative rotations X and coupling matrices of adjacent time-slices
Q are defined by

Xjp(t,t+1) = ZRij(t)Rik(t+l):(R_l(t)R(t—i—l))jk (4.38)
Qij(t,t+1) = B si(x,t)sj(x,t+1). (4.39)

The relative rotation X (¢,¢+ 1) has the property
R(t) = R()X(1,2)...X(t—2,t —DX(t—1,¢), t>1  (4.40)

(Note: Periodic boundary conditions would imply [[, X(¢,t+1) =1).
The conditional partition function can be rewritten in terms of the rel-
ative rotations

Zeond = / HdR o~ Stemp (R(2))

O(N) ;=1
T—1
_ / dR(1) / T dX(t, 2 + 1) o Stemp(X (640
O(N) O(N) 1

In the last line properties of the Haar measure were used. The integral over
R(1) is one since the measure is normalized. From eq. (4.37) one easily sees
that the conditional partition function factorizes in partition functions of
adjacent time-slices

Zeond = H (t,t+1 (4.41)

2(tt+1) = / dX exp (tr (X Q7)) . (4.42)
This is the final result for an observable A. The concept is now applied to
the special case of time-slice correlation functions. From now on the name of
the group at the integral sign is omitted, whenever it is clear what is meant.

4.2.3 Time Slice Correlation Function

In Section 4.2.2 all the ingredients were gathered to construct an improved
estimator for time-slice correlation functions defined by

Z Si(t)S;(t +7) (4.43)

where S;(t) are the space averaged time-slice vector components

Si(t) = si(x,t). (4.44)

xT
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Introducing the transformation of variables (4.32) one can immediately write
down the improved estimator

G (5:7) = (D RS (ORa(t +7)Sk(t 4 7))

.9,k

= Z <S-(t)Xjk(t E+7)Sk(t+ 7))

cond

cond

- E:S < Mtt+r»mm&@+7% (4.45)

where
1

Zcond

(A)cond = / DX e Semn(X) 4(X) (4.46)
o)

and

X(t,t+7) = RIHR(t+71)

- ( (1)X(1,2)... Xt~ 1,1))
R(H)X(1,2)...X(t+7—1,t+T)
= X(t,t+1).. X@+T—1t+7) (4.47)

-1

The conditional expectation value in eq. (4.45) can be further evaluated
using properties (4.41), (4.42) and (4.47)

1
(X(tt+ Dt = 5 [ DX &Sm0
Zcond
X X(t,t+1)... X(t+7—-1,t+71)
T-1

Ht/ z(t '+ 1)
X X(t,t+1).. X(t+17—1,t+71)
= <X(t t+ 1)>cond <X(t t+7—)>c0nd

I S or(XQ7)
U/lldxu¢+&)

So one is left with one integral to be computed

[dX exp(tr (XQT)) X
J dX exp(tr (XQT))

<X(t t+ 1)>Cond (448)

4.2.4 Monte Carlo Algorithm

For N = 2 the integral (4.48) can be solved analytically [2]. For N = 3 [2]
suggests a parameterization of SO(3) in terms of the Euler angles. Then
one of three integrals can be performed analytically whereas the other two
have to be solved numerically.
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Since it seems impossible to solve the integral analytically for arbitrary
N, a numerical access to (4.48) valid for N > 2 is needed. First the integra-
tion is also restricted to the SO(N) subgroup of O(N)

_ 1 or(XQ7)
(X) =~ /S oo dx X. (4.49)

Recall the Singular Value Decomposition of a matrix
A=UsWyVy, (4.50)

where U and V are orthogonal and W is diagonal and positive. This de-
composition always exists [27]. The measure of SO(N) is invariant under
left-right multiplications

/de(X) = /de(UXV). (4.51)

Using this property and the SVD of Q7 = VT@U T the divisor in eq. (4.48)
can be transformed like

/ dx er(UXVer) - / dx er(x¥ Q). (4.52)

Since @ is diagonal @ij = @i(sij only diagonal elements contribute to the
sum in the exponent

Z = /5 oo dX exp ( Z XiQi)) . (4.53)

With the substitutions
QT =vTQUT and Y =UTxVT
the expectation value eq. (4.48) finally reads

1 ~
(X)=U{Y)V=U (Z /SO(N) dYexp(zi:YiiQi)) Y) V. (4.54)

It is the structure of the average (Y') what will be investigated in the fol-
lowing.

Structure of (V)

Since the Haar measure has the property

dy Y =dy (4.55)
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and the trace is invariant under transposition one easily sees that (Y') has to
be symmetric. The aim is to show that furthermore all off-diagonal elements
vanish.

Consider first the case where sz =q, Vi

Y) = % /5 o dy e ")y (4.56)

Then (Y') is invariant under left-right-multiplication with an arbitrary ele-
ment O of SO(N)

oyyo! = L dy e 1Y) oy o1
Z Jso)
Y — Y/ = OYOfl JR— l dY/ e qtr(Y’) Y/
Z Jso)
= (Y),

where the cyclic properties of the trace were used. Therefore (Y') must be a
multiple of the unity (diagonal with all diagonal elements equal).

Now, assume only two elements of Q coincide: Q, = Qp = ¢ (a#b). In
order to be able to use again the cyclic properties of the trace, the rotation
O has to be restricted to a one parameter subgroup of SO(N), i.e. an SO(2)
rotation affecting only the rows and columns a and b (see eq. (4.59) as an
example of a = 1, b = 2). The so constructed matrix O commutes with @
and due to the same argument as above the off-diagonal elements in the rows
and columns a and b have to vanish and the diagonal elements (Y)aq = (Y )
are equal.

One might tend to say not much is gained from the arguments above
for the condition @a = @b is rather strict. But at the end of the following
calculation its consequences will become very useful.

The general case of arbitrary @ is tackled by introducing again a rotation
R(0) of the subgroup SO(2) using the invariance of the measure

)=~ . ay e"(VROQ) y R(g) . (4.57)

Since (Y') does not depend on 6, integration over it gives just a factor of 27
(this is just the explicit version of the Haar measure for SO(2))

R (Y R(0)Q)
V) = g @0 /S o V¢ YR(6)

1 2 -
- ay / 46 e (YROQ) y R(g) 4.58
277 Jsom, ; (9) (4.58)
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where in the second line the order of the integrations was interchanged.
Without loss of generality, suppose R(6) affects columns 1 and 2

cos(f) sin(f) 0O
—sin(f) cos(d) 0O

R(9) = 0 0 1: (4.59)

y11cos(0) — y128in(0) yi1sin(f) + yi2 cos(0)  yi3
Y R(0) = Y21 €08(0) — Yoo sin(f)  yo1 sin(f) + ya2 cos(f) o3
| ys1cos(0) —ys2sin(f) ys1sin(f) + ys2cos(f) ys3

Grouping all constant (i.e. independent of ) factors in the weight in eq.
(4.58) gives the following expression for the first off-diagonal element in
column 1

(V)1 = ;/SO(N) dY exp (Z(?Ju@z)) In (4.60)

i>2
2m ~ ~
Iy, = / 46 Q1 (Y11 cos(0)—yi2sin(0)) ,Q2(y21 sin(0)+y22 cos(9))
0
x {21 cos(f) — yaz sin(6) }

27 - -
_ / do Q1 (11 cos(0)—yi2sin(0)) i 9 (eQ2(y21 sin(0)+y22 C08(9)))
0

Q290
10 /5 . 5 ;
:_/dw,(@Mmmmmmgmmemm
0 Q, 99

A 2m - ~
_ % / 40 o1 (w11 cos(0)—y12 sin(0)) (Q2(y21 sin(0)+y22 cos(0))

Q2 Jo

X {y11sin(0) + y12 cos(f) }
= %Ilg .

Q2

where in the second step a partial integration was performed. This result
means ~
_@
Q2
and thus, for @1 =+ @2, that these off-diagonal elements must vanish since
it was shown earlier that (Y) has to be symmetric (eq. (4.55)). But for
@1 = @2 it was also already shown that these matrix elements must vanish.
Since the matrix R(6) could have affected any two columns or rows, this
argument is valid for all off-diagonal elements. So (Y') is truly a diagonal
matrix and this can be used when solving eq. (4.54) by MC integration.

(Y)o1 (Y)o1 (4.61)
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MC Algorithm for (Y)

The key point in a MC integration of an expectation value like eq. (4.54)
is how to derive a sample of “configurations” (here SO(N) matrices) dis-
tributed like the weight in the integrand. This procedure has to obey two
demands: ergodicity and detailed balance. Ergodicity means the algorithm
must assure that every element of SO(N) is reachable from every other
element in a finite number of steps.

Ergodicity A natural way to get a new group element Y’ from an old group
element Y is to multiply it by an arbitrary element R

Y =Y =YR.

By general arguments R can be represented as a product of n = N(N —1)/2
elements of SO(2)-subgroups of SO(N)

R=RiRy...R,.

So the whole transition ¥ — Y’ can be split up into n SO(2)-rotations
with angles 6; € [, 7|, and it is mutually assured that the whole group is
covered.

Detailed balance Assume a sequence of Metropolis steps. For this kind of
algorithm, detailed balance can be shown [28]. A SO(N)-rotation is achieved
by n Metropolis steps of independent SO(2)-rotations. To be concrete,
consider again rotation eq. (4.59)

Y - Y' =YR().

The acceptance probability for such a transition would read [28]

A(Y',Y) = min {1, exp (Zm; - m@) } , (4.62)

(2

where only two terms in the sum survive, say i = a,b (in the case of rotation
eq. (4.59) it would be i = 1,2). From this expression one derives a first guess
for a reasonable range of the angle 6 by taking the values where A(Y')Y)
has decreased to 1/e as limits, thus solving

(Voa — Yaa)Qa + (Wi — Yop)Qp = —1. (4.63)

Since YY7 = 1 the mean amplitude of Y’s diagonal elements should be
1/ VN (neglecting the off-diagonal elements). For this simplification one
gets

2N — =L
Sinf = 45| —— Lat@ (4.64)
Q1+ Q2
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FIGURE 4.4: The acceptance of the Metropolis algorithm proposed in the text. The three
curves belong to different ratios between diagonal and off-diagonal elements (see text).

In Fig. 4.4 the acceptance eq. (4.62) is plotted in this range. The three
curves belong to different ratios between diagonal and off-diagonal elements.
Vanishing off-diagonal elements or ), = @ lead to a symmetric acceptance
in the interval (solid line). Non-vanishing off-diagonal elements shift the
maximum of the acceptance towards positive or negative rotations depend-
ing on the ratio Q,/Qp (dotted and dashed lines). In the case of the plotted
curves the integrated acceptance is about 75%. For Q, < Qp (or Q4 > Q)
the acceptance becomes a step function in the vicinity of sinf = 0 and
thus the smallest integrated acceptance is 50%. The same is true when the
off-diagonal elements are much larger than the diagonal elements.

Equilibration By taking Xo = 1 as starting value in the MC algorithm one
does not have to equilibrate. This is because X = 1 could be obtained from
an equilibrated configuration. Just keeping X = 1 would give the standard
estimator. In terms of Y this means (see eq. (4.54))

Yo=UTvT.

Note that if Yy = 1 one would have to equilibrate first.

Over-relazation Since (Y) has to be symmetric, i.e (Y)? = (Y), an over-
relaxation step would be replacing Y by its transpose. But one does not have
to do this in reality. Remembering that (Y) is a diagonal matrix one can
simply throw away all off-diagonal elements after the Metropolis updates.
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Nevertheless the transpose of Y can be used for a very simple and effec-
tive estimator. Simply taking

1 1
(V) = 5 (% +Yy) = S (UTVE +VU)

gives a reasonable improvement (see below). In terms of (X) this means

(X)= 20+ V).

Thus no Metropolis steps are needed, two matrix multiplications will do.

Whether the proposed improved estimators are really able to reduce the
variance of observables, it has to be verified by implementing them in MC
simulations. Furthermore, for the estimator including a small MC integra-
tion, it may be called Metropolis improved estimator, the dependence on the
number of updates has to be investigated. For the algorithm proposed in the
last paragraph, it may be called simple improved estimator, it is interesting
to see how much improvement it already brings.

4.2.5 Testing the Estimator
Bias and Large Distance Behavior

First the primary observable, the time slice correlation function, measured
with the standard is compared to measurements with the improved estima-
tors. For the number of updates in the Metropolis improved estimator the
ad hoc value of M = 10 is used. In Fig. 4.5 the result of simulations in the
O(3) model at 5 = 1.6982 on a 20 x 100 lattice is presented (Table C.1).
The joint plot of the correlation functions from the standard and the im-
proved estimators shows no bias. This supports the correctness of the new
estimators.

Before turning to the estimator’s costs, attention should be drawn to
the behavior of the error when increasing the time separation of the time
slices. For the standard estimator the error of the mass grows already on
the scale where it will be measured, i.e. at ¢ < L/2 where the higher
states are expected to be exponentially suppressed. In Fig. 4.6 and Fig.
4.7 the relative error of the time slice correlation function and the mass is
plotted. For all three estimators and for both quantities the relative error
grows exponentially. But in the case of the improved estimators the increase
happens on a much smaller scale. For the finite volume mass it is even almost
constant for ¢ € [0, L] (Fig. 4.7). This feature of the new estimators is used
in the computation of the step scaling function (Section 4.1). It will allow
to average the mass over a plateau region in order to reduce the final error.
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FIGURE 4.5: The improved estimators seem unbiased. The errors are too small to be

plotted on this scale.
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FIGURE 4.6: The relative error of time
slice correlation function grows exponen-
tially with the time separation of the slices.
The scale of this behavior is much smaller
in the case of the simple and the Metropolis
improved estimators.
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FIGURE 4.7: The relative error of the mass
grows exponentially as well. For the im-
proved estimators this happens to be a very
small effect.
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N =4, L = 20, z = 1.30887(23)
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FIGURE 4.8: The Metropolis improved estimator reduces the costs by a factor of 12 and
shows almost no dependence on the number of updates. The simple improved estimator
already reduces the costs by a factor of 7.

Numerical Costs and Optimal Number of Metropolis Updates

Measurements in the O(4) model for § = 2.4765 on a 20 x 100 lattice
(z = 1.30887(23)) were done in order to determine the new estimator’s effi-
ciency and how much the variance of the observable is reduced. Runs with
N,, = 10000 measurements of the time slice correlation function were done:
with the standard estimator, the Metropolis improved estimator including
M = 2,4,...,20] updates and the simple improved estimator (Table C.2).
These runs were repeated 10 times to get a reasonable statistic. The quan-
tity determined for each estimator are the numerical costs

2
Mc - Trun : (Axx) 3 (465)

the product of the runtime and the squared relative error. The runtime
consists of two terms

Trun :Nm (fup |:<g>:| 'tup+tm> 5

where t,, and t,, are the times for one single cluster update and for one
measurement respectively. The expression [x] means greatest integer < z
and V/(C) is the ratio of lattice volume to mean cluster size in the single
cluster algorithm (Section B.3) used for updating the system. In Fig. 4.8
the costs are plotted vs. the number of Metropolis updates. The Metropolis
improved estimator reduces the costs by a factor of 12 and shows almost
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FIGURE 4.9: The time spent in the im- FIGURE 4.10: The relative error of the

proved routine measuring the time slice cor-  mass, calculated from the time slice cor-
relation function ¢, grows linear with the  relation function is proportional to /1/M
number of updates. (M: number of Metropolis updates).

no dependence on the number of updates. The simple improved estimator
already reduces the costs by a factor of 7. This is a great enhancement of
efficiency in both cases. Since the Metropolis improved estimator cuts down
the costs by a factor of 2 compared to the simple one, it should be preferred.

Why is the dependence of the Metropolis improved estimator on the
number of updates M so weak? Now, two quantities enter M., which depend
on M: the time spent in the measuring routine t,, and the relative error
of the observable. The first one should grow linear with M and that is
observed in Fig. 4.9. The relative error of the derived quantities depend on
the variance of the primary observables. This variance should be reduced
due to the improved estimator eq. (4.29). For the largest possible reduction
one has to solve the integral eq. (4.54) exactly. In an MC integration the
error is inversely proportional to the square root of the number of samples.
This means the relative error in eq. (4.65) is proportional to \/1/M and
exactly that is observed in the data displayed in Fig. 4.10. Therefore the
two dependencies cancel and M, is expected to be independent of M; at
least for M > 10. This is because one needs the central limit theorem to
derive the stated behavior of the error in MC integration. In Fig. 4.8 one
observes that for M > 10 the costs begin to rise. This probably due to other
effects, e.g. autocorrelation. Hence for the simulations quoted in this thesis
M =10 is used.
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5.1 1/N Expansion of the O(N) Model

More variables, thus greater complexity - an obvious statement one might
think. But there exist families of field theories with symmetry group SO(N)
that become simpler as N becomes lager [13],[29].

The 1/N expansion of the model described in Section 2.1.4 will be stud-
ied. The discussion starts in the continuum theory and a brief overview
is given of the steps included. The technical details are explained in the
context of the lattice regularization of the theory (Section 5.1.2).

5.1.1 1/N Expansion in the Continuum

In the path integral description of the model the 1/N expandability becomes
evident when solving the constraint (2.15) by a Lagrange multiplier field
a(z). This is done by substituting in the naive first version of the path
integral

/ Ds 1;[5(32(33) ~1) exp [—21 2z ((9“3(33))2] , (5.1)

the product of delta functions by an integral representation
i

[ DsDaexn |- 5 [ @@ - 5

2F d%z a(z)(s*(x) — 1)] . (5.2)

Since
0=(0%)5"=0,(0us s+5 0u8) =20,(3,8) s +20,5 s (5.3)

which leads to
(0u8) = —s- 0%s, (5.4)

the s integration is Gaussian and can easily be performed. One obtains the
effective action for the « field

Seft = g {Tr In(—9% +ia(x)) — ]\;f d%z a(x)} . (5.5)

In the limit N — oo and simultaneously keeping the product NV f fixed, the
path integral is dominated by the function a(z) that minimizes the exponent
and thus Seg
0 iN
———Seff = — —0* +i “Hr)y - — 5 =0. 5.6
S = {2+ o) M) - 5 (5:6)

The matrix element must be constant and real. Thus, one should look for a
solution in which «a(x) is translation invariant and purely imaginary

ar) = —im3, (5.7)
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where myg is defined by the so called gap equation (momentum space version
of (5.6))

5.8
N Nf / 27)? k2 + mé (58)
A 1/N expansion then means taking into account the fluctuations around
this saddle point.

5.1.2 1/N Expansion on the Lattice

In order to introduce a lattice regularization of the path integral (5.1) one
has to choose a lattice counterpart of the action (2.17). The simplest ver-
sion includes only nearest-neighbor interaction and no terms higher than
quadratic in the fields (standard n.n. action). The matrix notation of (A.24)
is already in a suitable form in order to perform the integration over the s
fields. Setting a = 1 it reads

S = 21f ;s(x) Oay s(y) - (5.9)

A well defined path integral can be written down

-~/ TTa"ste!) () = 1) exp [—;f 2 5(2) Dy s(v)

The factor 1/Zy is determined by the normalization condition. Again the
constraint (2.15) is solved using an auxiliary field a(x) and the integral
representation of the delta function

(@) - 1) = 57 /““d;m 0 [~ ral@(@@ -] . G

Substituting this into (5.10) and grouping terms including products of the
fields s together the exponent becomes

(5.10)

1 1
— =) s(@) May s(y) + o5 > alz), (5.12)
2f £ - 2f 4
where the matrix
Myy = Oay + () 05y, (5.13)

has been introduced. Now rescaling s; — +/fs; results in a version of the
path integral where the integrations over the s fields is Gaussian

1 N (! 1% daf(a’)
N Z(,)/l;ld S(x)/ioo 2mi .

X exp [—; Z s(x) Myy s(y) + 21f ; a(z)| . (5.14)

x?y
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Any constant factors have been absorbed into Zj. The result of such an
integration is well known

[ doexp{(0.40)) = (22 (det )2, (5.15)
where (¢, Ap) =5, ; ¢idij¢; and A is areal, symmetric and positive matrix.

Hence the s integrations can easily be performed resulting in an effective
action for the « field

Seff = % {TrlnM - ]\}f Za(w)} . (5.16)

To arrive at the last equation one also needs the relation between the trace
and the determinant of a matrix A with eigenvalues a;

detA:Haz- = exp

Zln ai] =exp[Trin A] . (5.17)

At this point the model’s dependence on N becomes apparent. In the
limit N — oo while keeping v = Nf fixed the path integral (remaining
factors again absorbed into Z)

1
Z=—- [ Dae % (5.18)
ZO
+i00 dOz(:L'/)
/Da:/' HTm (5.19)

—1100 x!

can be approximated by a saddle point method. Writing the exponent as
11
—Sg=N- %:F(a(:v)) = N; 3 {704(33) - an\/[m} , (5.20)

Z obviously is a product of contour integrals in the complex plane. Let us
concentrate on one such integral

I:A%eNF(a>. (5.21)

If the contour C' can be altered such that there is at some point ag a maxi-
mum of Re F' and simultaneously Im F' is constant in a neighborhood of aq
the main contribution to the integral would come from the maximum. And
the value of I could be approximated by expanding F' around «qg. The point
ag is called saddle point. In the present case this leads to the large N ex-
pansion of the nonlinear o-model. A first approximation would include just
this saddle point and corrections can be obtained from fluctuations around
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ap. A maximum of all F(«a(z)) compares to a minimum of Seg. It can be
found by differentiation with respect to «(z)

_ % {(M_l)m _ i} —0. (5.22)

aSeff
da(x)

a(z)=ap(x)

Thus the matrix element must be constant and real. Hence the configuration
ap(z) = ap obeying this condition is real and constant. For translation
invariant o the matrix elements M, are functions of x —y only and one can
write down the effective action in momentum space

N 1 . 2D
Seff = Eﬁz {ln [;4811122“ + «

p

1
- 7oé} . (5.23)

A solution to (5.22) would be
g =mi, (5.24)

where m2 is implicitly defined by the gap equation

1 1 1 1 1

- = - = — - . (5.25)

v LT;Zuélsmsz“—i—m% LT;;ﬂ—i—m%

The following standard notations are used
. N A~ . D
P2 = Zpi . Pu =2sin ?” . (5.26)
n
Introducing an external source J(z) = (J1(z), ..., Jn(z)) coupled to the

spin field s the path integral (5.10) becomes the generating functional for
correlation functions (Z = Z[J = 0])

Z[J) = /Ds exp

1
o S s Tays(y) + Y @) s | (5.27)
f
z,Y x
where the measure is abbreviated by:

Ds = %Hst(az') 5(s2(x') — 1). (5.28)

The n-point correlation functions are obtained by differentiating Z|[.J]

o 0
<S(.’L‘1) . S(xn» = 8J($1) e 8J(a:n)

zl| . (5.29)
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Solving the constraint in (5.27) as before one gets a similar expression as in
(5.14) but with an extra term ) J(z) s(z) linear in the s fields. Therefore
the Gaussian integration is performed slightly different [14] and the result is

Z[J] = ;/Da exp [—];[ (;JM1J+TrlnM+r1yZa(x)>] .

x
(5.30)
The ~ factor in front of the first term is due to the rescaling of the s fields
(si — v/fs;). In the leading order 1/N expansion the two-point function is
then given by [7],[8]

(s(2)s(y)) = v (M )ay + O (1/N) (5.31)
and this can be rewritten using the Fourier transform of M
eip-(z—y)

(s(z)s(y)) = LlT > FE R + O (1/N) . (5.32)
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5.2 Step Scaling Function in the Large N Limit

The step scaling function can also be studied in the context of the 1/N expansion
of the nonlinear sigma model. In the following sections the leading order

of that expansion is derived using the lattice-regularized model in order to
examine the cutoff effects. These sections follow unpublished notes by Peter
Weisz [21]. All steps in these notes are verified and the derived expansions
are extended in most cases.

Let us start with a finite square lattice of extension L; X L. For sim-
plicity, to ensure translation invariance, periodic boundary conditions are
imposed. The two-point function in the leading order 1/N expansion was
derived in the last section

(s(x)s(y)) = Y Gp) e L0 (1/N), (5.33)

LiLo

Gp) =~ (p*+m2) ™", (5.34)

where the sum over momenta p runs over the first Brillouin zone eq. (A.4)
and myg is given as solution to the gap equation

1o > - L (5.35)

v Ll 5 P2+ m3

The step scaling function is to be studied in a finite volume, i.e. finite
space and infinite time extension. Therefore the limit Ly = T — oo should
be taken in the equations above. Calling L1 = L and p; = pg eq. (5.35) then
becomes

L/a 1

+7/a d 1
~ T Z / po 2 apo 2 arn 2" (536)
_ 2 a— (4sin +4sin® 97) +mj

The po integral can be evaluated explicitly [30]

= t , 5.37
b2 4+ 2sinex ebb2 F 2 arctan b ( )

and one ends up with

/ dz 1 Vb2 + c2 tan ex

a L/a—1 1
=% n;) 5o (5.38)
with abbreviations
e(n) = \/w(n) : (1 + wi”)) (5.39)
w(n) = 4 sin® UL a’m?. (5.40)
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Equation (5.38) is still an implicit expression defining the solution mg of
the saddle point condition eq. (5.22). But in the definition of the LWW
coupling eq. (3.5) the physical mass in a finite volume M (L) is needed. But
the physical mass M is defined as the first pole on the imaginary axis of the
two-point function at zero spatial momentum. So from eq. (5.34) one gains
an expression relating mg and M:

G(p1 = 0,ps =iM) =0, (5.41)

which leads to M
a®m2 = 4 sinh? “7 . (5.42)

This can be inverted

2,2 4,4
aM:i1n<a;n0+1i\/a4m0+a2m%> (5.43)

and expanded for small mg

2,,2
a~mg

24

aM = my <1 - + O(a4m3)) : (5.44)

Finally the dimensionless variable [22]
2=M(L)-L (5.45)

is defined and a function F'(z,a/L) describing the scaling of M (L) and

deviation due to lattice artifacts:
M
—— =F(z,a/L), (5.46)
Ayis

where Agpg is the A-parameter in the minimal subtraction scheme [22]. Tak-
ing the continuum limit (a — 0) of eq. (5.46) would mean sending the lattice
size L/a to infinity while keeping z fixed.

5.2.1 The Small z Expansion

In [22] Liischer gives a small z expansion of the r.h.s of eq. (5.46) in the
continuum and for arbitrary N:

M ©
M _ o/ (N-1)/(N-2) | 2
— — K(N)-ze (1+V§:1 ay (2W> ) , (5.47)

K(N) = (4m) " exp [-T'()] - (v LV = 2)/(N = 1)) (5.48)

The coefficients a, can be computed using an expansion of M (L) in the
renormalized coupling constant defined in the dimensional regularization
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scheme with minimal subtraction (MS). This expansion is also given in [22]
(eq. (6)). Furthermore the author states an analytic expression for the case
N = o0, equivalent to a continuum limit of eq. (5.46)

iig(l) F(z,a/L) = f(z) =) (5.49)
> dt >
H(z) = /0 - exp(—t2z?) ;exp(k‘z /4t) (5.50)

determined from the large-N saddle point condition. H(z) also has a small
z expansion

P
z 47

(5.51)

H(z) =T finz - /(1) — Indr + i(—l)v (i”) (20 + 1) (i)zy ,
v=1

where (r denotes the Riemann zeta function.

In the continuum the coefficients in eq. (5.47) are pure numbers inde-
pendent of any scale, e.g L. However, on the lattice there will be corrections
due to the cutoff. Hence in the limit N — oo on the lattice one expects an
expansion of the form

M k(ajL)- 2o <1 +3 au(a/L) (2’;)”> , (5.52)

Am v=1

where the function K (a/L) is different from the function K (V) in eq. (5.47)
(in the following it is exclusively referred to the first one). Comparing the
last expression to eq. (5.49) and eq. (5.51) one obtains the function K and
the coefficients @, in the continuum limit (a/L — 0):

K(0) = exp[-TI'(1) —In4n], (5.53)
a0 = 0 , v=odd, (5.54)
az(0) = —1/2¢r(3), (5.55)

(0) (5.56)

= 1/8[3Cr(5) + Cr(3)?],

In his letter Liischer points out that the series eq. (5.47) and eq. (5.51) are
absolutely convergent for |z| < 2.

But the expansion eq. (5.52) is wanted for finite a/L. So one proceeds
solving the gap equation for mg. First one expands in power series of the
bare coupling ~y

a®mi = w1 - (1 4+ 7Ty + 7 Ws +..), (5.57)
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and then compares to the gap equation eq. (5.38) order by order to determine

the coefficients. Yielding

a
w = —=
1 4L2 y
L/a—1
_ a _
wy = Z R(n) 1/27
n=1
_ 1 3_
w3 = _Zwl + ng,
_ 1
wy = —§w1w2 + §w2
L/a—1
a anmn
—w1 E R(n)_3/2 . (1 + 2Sin2 %) s

n=1

where

R(n) = 4sin? ? . [1 + sin? @] .

L

(5.58)
(5.59)

(5.60)

(5.61)

(5.62)

In order to get an expansion for z this result has first to be inserted in eq.
(5.44) and then multiplied by L. Using eqgs. (5.58) - (5.61) the physical

aM = Jwiy - (1+moy+mzy2+...),

mass is
with
1_
my = —W
2 5 2
1 5 1
m3 = —W,— —W
3 4 2 6 1,
1_5 1 _
ms = —W5— —wWiW
4 sW2 3 1W2
L/a—1

a
—wy o nZ:l

Since \/wi = a/2L:

R(n)™3/2 . (1-+-2sin? 9;;3) .

1
2=y -(1+mey+mazy’+...).

2

(5.63)

(5.64)
(5.65)

(5.66)

(5.67)

Inverting the last line finally yields an expansion for the bare coupling v in

the dimensionless, renormalization

y=2z-(1+7vz

group invariant variable z

+at s+,

4(2m§ —ms),

with
Y2 = — 2 ma,
3=
Y4 =

—8(5m§—5m2m3+m4).

(5.68)

(5.69)
(5.70)
(5.71)
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This can be used to express the A-parameter on the Lh.s. of eq. (5.52) in
terms of z. To this end one needs the lattice A-parameter for N — oo [22]

Ao = =27 [1+0.7)], (572

and the relation between the A-parameters

ALat 1

=—. 5.73
M V32 57
For small z one can use eq. (5.68) to rewrite eq. (5.72)
Apai = 1 oz (2 2473 22 4yg 28470 , (5.74)
a
1 =
= - e ze?. [1 + 72 (3 —73) (5.75)

+22 ({va — 2723 + 5} + 72 /2{vs — 5 }°) + .. } :

Using eq. (5.75) and egs. (5.63) - (5.66) the Lh.s. of eq. (5.52) may be written
as a power series in z. Then, by comparing equal powers, one obtains the
coefficients of the r.h.s.

a

K(a/L) = \/1?729,”@2 I (5.76)
w2 a2
a(a/L) = - (Z) , (5.77)
ira/L) = gin(a/L) (5.78)
a 3L/a71 amn
—273 (Z) ngl R(n)_3/2- (1 + 2sin? T) )

The lattice sums appearing in these expressions are too complicated to reveal
the a/L dependence. Therefore an asymptotic expansion of these sums is
derived using the Euler-Maclaurin formula [31]. The function K(a/L) can
be approximated by

7.[.2
K(a/L) = K(0) - {1 + 35 (a/L)?+0 ((a/L)4)} : (5.79)

whereas the coefficient ag(a/L) converges slower due to logarithmic terms
(see also Fig. 5.1)

w2 1
asz(a/L) = d2(0)+Z (a/L)?- (21n(a/L) +2Inm—In2— 2) +.... (5.80)

The relative deviation of the asymptotic expansions from the exact value at
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1.15 =
- X
1.1 &y(a/L)/&,(0)
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0 0.002 0.004 0.006 0.008 0.01

(a/L)?

FIGURE 5.1: The function K(a/L) (circles) and the coefficient az(a/L) (crosses) normal-
ized by their continuum value together with the corresponding asymptotic expansions eq.
(5.79) and eq. (5.80) (dotted lines). az(a/L) converges slower due to logarithmic terms.

L/a =10 (100) is ~ 107° (107?) for K(a/L) and ~ 10~* (107) for dz(a/L)
(see Table C.3). These asymptotic expansions will be used to get an idea
of the step scaling function’s leading lattice artifacts in the large N limit.
Taking into account eq. (5.79) and eq. (5.80) one expects O ((a/L)?) and
O ((a/L)* In(a/L)) terms.

5.2.2 Step Scaling Function

Now, the series derived in the last section will be used to calculate the step
scaling function for the variable z on the lattice and in the continuum. The
variable z is related to the LWW coupling as

2 2
2
L)=——M(L)L = . .81
PL) = s ML) L= 2 (581)
In the continuum the step scaling function for z may be defined as
os(s,u,N) = M(sL)sL, (5.82)

where the arguments are the number s > 0 by which the box size L is scaled,
u = M(L) L the value of z at the scale L and, of course, N. The step scaling
function can be understood as an integrated form of the g-function and a
perturbative expansion can be derived (see Section 3.3.2). The step scaling
function is to be studied in the limit N — oo. To this end one uses eq.
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T T T T T T T T T T T T T T

series including terms
Foooee upto d, -
--- upto d,

FIGURE 5.2: The continuum step scaling function in the limit N — oco. For the straight
line eq. (5.83) was solved numerically. The dotted and the dashed line are obtained from
the series eq. (5.98) in the limit a/L — 0 including coefficients up to ds and d7 respectively.

(5.49) to write the ratio u/o, as

L (Ol (5.83)
O'Z(S,U,OO) f(az)
This is an implicit equation for o, that is accessible to numerical evaluation.
In such a calculation the sum in the integral of the exponent in eq. (5.50)
has to be done only up to k£ = 100 (see Fig. 5.2).
On the lattice, however, one expects cutoff effects, and the lattice step

scaling function will in general also depend on the lattice spacing;:

Y.(s,u,N,a/L) = M(sL) sL, (5.84)

where M is measured on the lattice by extracting it from an appropriate
correlator. Again one is interested in the special case of large N. The lattice
equivalent of eq. (5.83) is
u _ F(u,a/L)
Y. (s,u,00,a/L) 5T F(X.,a/L)
and this will be the starting point of a small u (i.e. z) expansion of 3.
First the following abbreviations are introduced

L' =sL and r=Ins. (5.86)

(5.85)

Then, just plugging in the ansatz eq. (5.52), one gets
o K@D (145 6 (/D) (3)')
K(a/L') - em/%= . (1 + >0 ay(a/L’) (g—) )

: (5.87)
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and by reorganizing the terms

(1+ai(a/L) u/2m+ ..

“Uxaa/L) - 2n+ )

(5.88)

Since o, is normalized such that in PT the leading order term is equal to u
eq. (3.12), a reasonable ansatz for 1/%, would be

1 1
NG coa/) oD rale/lu ..., (5.89)

where the first coefficient can easily be read off eq. (5.88). And since eval-
uating the succeeding coefficients become more and more involved at finite
a/L only the next two are given here

co(a/L) = —% [r+ln%], (5.90)
ci(a/L) = 2%2 [1(a/L) — an(a/L)] | (5.91)
co(a/L) = —8%[511((1/[/)2—dl(a/L')2—47rd1(a/L') co(a/L)

—2 (ag(a/L) — az(a/L"))]. (5.92)

This will be enough to see how the cutoff effects behave for u < 1 in the large
N limit. To reach a satisfying accuracy for the continuum value it will be
sufficient to evaluate the higher order coefficients for a/L — 0 (a; = a;(0))

[
c3(0) = —5.1 702, (5.93)

3,
cs(0) = —15 A, (5.94)

1 2~ 1 ~ ~2
c5(0) = 7 {r as + 3 (2a4 — a2):| , (5.95)
c6(0) = . 1(2&2—1—57"2&2) +3(2a4—a2) (5.96)
0 P P 16 2 '
(5.97)
Now inverting the series eq. (5.89) one has

Y.(s,u,00,a/L) = u- (1 +do(a/L) u+di(a/L) u* + ...), (5.98)

with (¢; = ¢;(0))

do(a/L) = —cola/L), (5.99)
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di(a/L) = ¢o(a/L)* —ci(a/L), (5.100)
do(a/L) = —co(a/L)® +2co(a/L)ci(a/L) — ca(a/L), (5.101)
ds(0) = ¢§—cs, (5.102)
di(0) = —cj+2cocs—ca, (5.103)
ds(0) = §—3cics+2cocs—cs, (5.104)
ds(0) = —ch+4cies—3ckca+2cocs—cs, (5.105)

Again from the third coefficient on the continuum values are used (a/L = 0).
One has to check whether this is a good approximation. The MC data in
this thesis is gained by doubling the lattice size, i.e. s = 2. Then, plugging
in the asymptotic expansions eq. (5.79) and eq. (5.80), the final result reads

do(a/L) = 0.2206356 — 0.0654499 (a/L)* + O ((a/L)*) ,(5.106)
di(a/L) = 0.0486801 + 0.0961189 (a/L)* + O ((a/L)*) ,(5.107)
do(a/L) = 0.0107406 + 0.0131547 (a/L)* +
+0.0298416 (a/L)? In(a/L) + ..., (5.108)
d3(0) = 0.0002313, (5.109)
ds(0) = —0.0011285, (5.110)
ds(0) = —0.0006473, (5.111)
ds(0) = —0.0002288, (5.112)
d7(0) = —0.0000445, (5.113)

5.2.3 Checking the Expansion

The series eq. (5.89) together with the coefficients (5.106) - (5.113) is trun-
cated in three ways. The first step was to expanded in z including terms
up to d; 212 with [ < 7. Furthermore only the first three coefficients have
been calculated at finite lattice spacing. The remaining ones are continuum
values. This is the second step. Finally, for the lattice sums in the lower or-
der coefficients, representing the cutoff dependence, asymptotic expansions
in a/L including quadratic terms and logarithms have been derived. One
has to check every step and answer the question whether they lead to an
easy to handle but still meaningful approximation for the parameter region
of interest. At the end it should provide us with a clue to the leading lattice
artifacts.

Small z expansion As mentioned before it is possible to numerically solve
the implicit relation eq. (5.83) for the continuum step scaling function. By
setting a/L = 0 one can compare the series to the exact value in the contin-
uum, see Fig. 5.2 and Table C.4. The series including terms up to ds and
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up to dy has been evaluated. From the plot and the numbers one concludes
that the expansion can be trusted for v < 1 and for u < 1.5 respectively. It
is understood that this, so far, counts only for a/L = 0.

Coefficients at finite lattice spacing Looking at the factors belonging to
the O ((a/L)?) terms in (5.106) - (5.108) one recognizes that they have
different signs. Therefore the approach to the continuum should change
from monotonic increasing to monotonic decreasing as u goes from zero to
one. To see whether this is not only a feature of the expansion but also
true for the real approach one needs to know the exact lattice step scaling
function. To this end one reapplies the gap equation

L/a—1
1 a 1
S=1 nzo 2eln) = S(L/a, M), (5.114)

where €(n) is defined in eq. (5.39) and one should recall the relation between
the expectation value m% of the auxiliary field « and the finite volume mass
M(L) eq. (5.43). Since a point of the step scaling function X, (2, u, 00, a/L)
is understood as the value of the quantity z when L is doubled but the bare
coupling is kept fixed one can use eq. (5.114) to write

S(L/a, M (L)) = §(2L/a, M(2L)). (5.115)

So by fixing L and w = M (L) L the only unknown quantity is M (2L). The
equation can be treated with numerical root finding methods giving the
exact value of the lattice step scaling function for arbitrary lattice spacings.
Thus the approach to the continuum can be studied for u € [0,1] and the
expected picture really shows up. In Fig. 5.3 the exact values for L/a =
10, 11, ..., 500 and the series are plotted for three values of u covering the
region where the change in the behavior of the lattice artifacts occurs. The
approach to the continuum is from below for v < 0.4 and from above for u 2
0.53. In-between these values lies a transition region where the approach’s
slope changes sign at finite lattice spacing. Coming back to the question of
the series’ reliability, one has to admit that only for the smallest u value
the series looks quite good also at coarser lattices. Already at u = 0.47 the
series quantitatively only reproduces the continuum value. Nevertheless, at
finite lattice spacing, the series seems to show the right qualitative behavior.
This supports the assumption of quadratic and logarithmic terms for the
leading lattice artifacts in the large N limit. One could probably reduce the
deviation for larger u by evaluating more coefficients at finite lattice spacing.
But a clue to the cutoff dependence is already gained.

Asymptotic expansion To check if such a combination of terms is not only
able to reproduce the lattice artifacts correctly but is also better than other
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FI1GURE 5.3: The approach to the continuum of lattice step scaling function in the limit
N — oo normalized by its continuum value. The three couples of points with curve corre-
spond to u = 0.4, 0.47, 0.53 covering the region where the approach changes qualitatively.
The points are obtained by solving the gap equation numerically (see text). The dotted
lines are obtained from the series eq. (5.98) including coefficients up to dr.

obvious choices; the exact values for u = 1.0595 have been tried to fit to
several forms

ko + k1 (a/L)?, (5.116)
ko + k1 (a/L)* | (5.117)
ko + k1 (a/L) + k2 (a/L)?, (5.118)
ko + k1 (a/L)? + kg (a/L)? In(a/L). ( )

g aQw»

The fits were done by minimizing the normalized quadratic deviations

Y- Eﬁt 2

ko b kel £t ¥2

(5.120)

and included the points in Table 5.1. The x? values in the last column of
Table 5.2 suggest that the cutoff dependence is really of the kind B or D
rather than purely quadratic or linear and quadratic.
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L/a X,(2,u,00,a/L)

100
150
200
250
300
350
400
450
500

1.3759882
1.3759742
1.3759689
1.3759664
1.3759649
1.3759641
1.3759635
1.3759631
1.3759628

CHAPTER 5. LARGE N EXPANSION

]{?0 kl k2 X2

1.3759619627  0.2653 - 10713
1.3759613293 0.1201 1.8248 1076
1.3759608340  0.0005 0.2246 1017
1.3759613805 -0.0478 0.0483 102!

O Qw >

TABLE 5.1: Points included in

the fits at © = 1.0595.

TABLE 5.2: Fits of the forms (5.116) - (5.119). Exact
continuum value: o, = 1.3759613806.
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6.1 Comparison of the Cutoff Effects: N = 3,4,8, o0

In this Section the results of the MC simulations in the nonlinear O(4) and
O(8) sigma model will be presented. The MC data will be compared to
former results in the O(3) model and to the exact large N limit.

The O(3) data is taken from [6], wherein Seefeld et. al. study the
cutoff effects measuring the lattice step scaling function ¥, (s,u, N,a/L) at
u = 1.0595. They confirmed the nonstandard cutoff effects (see Section
3.2.2). The value of u = M (L) L is some sort of “canonical” and appears in
many papers. I decided to continue this tradition. This makes it possible to
directly compare my own results for V = 4,8 to the N = 3 case. In the limit
N — oo the step scaling function can be computed by numerically solving
analytical expressions in virtually no time on a modern PC for any value of
u (see Section 5.2.3). So, there is data for four values of N available (Table
6.1).

The standard assumption for the lattice artifacts, originating from the
pertubative analysis by Symanzik (Section 3.1.2), would be a leading term
quadratic in the lattice spacing. Therefore all data is firstly plotted against
(a/L)%. On the next pages the lattice step scaling function at u = 1.0595
for N = 3,4, 8, 0o is display Fig. 6.1 - Fig. 6.4. The smallest lattice included
in the plots has L/a = 10. The x-axis are the same in all four plots and
the y-axis are equally scaled. Also the continuum values are marked where
available.

By comparing the amplitude of the lattice artifacts the first observation
is that the cutoff effects are weaker for larger N. Looking at the values at
the smallest lattice, the deviation from the continuum value for N = 4 is
roughly half of that for N = 3. The same can be said comparing N = 4 and
N = 8. The latter seems to be already similar to N = co.

From the plot in Fig. 6.1 one can immediately tell that these points
cannot be linearly fitted to (a/L)?: the dependence rather looks like a square
root. For N =4 and N = 8 the cutoff dependence is to weak and it is not
visible to the naked eye whether the leading term is quadratic or something
else.

In the next section fits to several forms are compared in order to see
what kind of dependence is able to reproduce the data best.
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L/la N=3 N=4 N=38 N =00
5 1.29379(8) - -

6 - 1.31256(47) 1.35065(40) 1.37949129
; 1.31068(43) 1.34891(35) 1.37821466
10 1.27994(9) 1.30825(39) 1.34835(34) 1.37752387
12 1.27668(9) 1.30608(37) 1.34721(32) 1.37711185
16 1.27228(12) 1.30477(34) 1.34725(30) 1.37666489
24 1.26817(9) 1.30379(32) 1.34649(28) 1.37630852
32 1.26591(9) 1.30263(31) 1.34635(27) 1.37606266
64 1.26306(16) 1.30225(32) 1.34570(25) 1.37602171
96 - 1.30138(33) 1.34577(24) 1.37599030
128 - 1.30149(34) 1.34563(24) 1.37597848

TABLE 6.1: Monte Carlo data and large N values for the lattice step scaling function

¥.(2,u,N,a/L). The N = 3 data is taken from [6].
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FIGURE 6.1: Lattice artifacts of the step scaling function in the O(3) model. The MC
data is taken from [6]. The continuum value (star) is published in [12].

N =4
132 - ! ! ]
—~1.315 -
— L i
~N
N i 1
$ i 1
: i 1
R .
z i T ]
C\i L .
= i i i
“'1.305 1 -
i : ]
L5 1 ]
| & |
13 7} 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 17
0  0.002 0004 0.006 0008 0.01
(a/L)?

FIGURE 6.2: Lattice artifacts of the step scaling function in the O(4) model. The plot
contains the MC data and the continuum value (star) provided by Balog on the base of
[12].
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FIGURE 6.3: Lattice artifacts of the step scaling function in the O(8) model. The plot
contains the MC data. So far, an analytically computed continuum value is not available.
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FIGURE 6.4: Lattice artifacts of the step scaling function in the large N limit. The crosses
are computed as described in Section 5.2.3.
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6.2 Fit of the Lattice Artifacts

In Fig. 6.1 and Fig. 6.2 continuum values are marked. These values are
provided by an analytical approach to compute the mass gap in the O(3)
and O(4) model [12]. The derivation is not rigorous and the numbers are
therefore predictions that have to be compared to other approaches. Since
the value for N = 3 seems to be consistent with MC data [12],[6] the value
for N = 4 is assumed to be correct as well. Accordingly, in the following
sections the continuum values are used to constrain the fits and increase the
significance.

6.2.1 Simple Linear or Quadratic

Considering the discussion of Section 3.2.4 the simplest and most obvious
forms to fit to are just a linear or a quadratic term

A:  cy+ci(a/L), (6.1)
B: ¢o+ei(a/L)?. (6.2)

The quadratic fit corresponds to the PT prediction and the linear fit corre-
sponds to the nonstandard behavior in the O(3) model. The two forms are
fitted in two ways: with ¢y as free parameter, referred to as unconstrained
fit, and with ¢y fixed by the analytical predictions [12]

0,(2,1.0595, N =3) = 1.261208(1), (6.3)
0,(2,1.0595,N =4) = 1.3012876(1), (6.4)

referred to as constrained fit. The smallest lattice included in the fits is
L/a = 10. In Fig. 6.5(a), Fig. 6.6(a) and Fig. 6.7 the results of the uncon-
strained fits are displayed for N = 3,4,8. For N = 3,4 the continuum value
is marked.

In the case of the unconstrained fits the deviation of the extrapolation
from the analytic prediction normalized by the error of the extrapolation
can be evaluated

‘U — CQ‘/(SCO . (6.5)

This quantity should takes values between 1 and 2 for a fit of statistical data;
if the analytic prediction is assumed to be true. Another value characterizing
the fits is “chi-squared per degrees of freedom” x?/dof. This means the sum
of the squared deviations of the fit from the data normalized by the squared
errors of the data. This value should be roughly 1 for a fit of statistical
data. One can rate the quality of a fit by asking for the probability to find
a x2/dof larger than present one. This should be larger than 10% [32].
Both quantities have been calculated for the linear and the quadratic fits
of the O(3) and O(4) model. Furthermore the dependence on the smaller
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N Fit ¢ c1 x2/dof |0 — col|/bco
1.250675(96) 0.2030(14)  5.0/4  15.9
A 0.18220(61)  256/5 i
3 1.264845(66) 1.593(11) 515/4 55.5
B - 2.0891(71) 3597/5 -
1.30082(20)  0.0681(39)  17.6/6 2.4
A 0.0607(23)  13.2/7 -
4 1.30102(15)  0.645(37)  13.1/6 4.2
B 0.743(29)  30.4/7 ;
o A L3I582(015)  00266(32)  33/6 ]

B 1.34583(12)  0.253(31) 6.7/7 -

TABLE 6.2: Fits to the forms eq. (6.1) and eq. (6.2) for Lmin/a = 10. For N = 3,4 results
of unconstrained (first line) and constrained (second lined) fit are listed.

lattices was investigated by successively omitting these. The resulting curves
are plotted in Fig. 6.5(b,c) and Fig. 6.6(b,c) respectively. The points in these
plots correspond to fits including lattices with L > Lyy.

For N = 3 one sees, just by the scale of the plot, that the quadratic
form must be rejected, even if only the three largest lattices are left. The
constrained linear fit has a much too large x2/dof and is therefore eliminated
as well. The unconstrained linear fit has a acceptable x?/dof, but it has to
be refused if the continuum value eq. (6.3) is assumed to be correct.

Since the ratio: amplitude of lattice artifacts to error of the data, is
worser for N = 4, the information from a similar analysis is not so distinct.
If only enough small lattices are dropped, then all fits become acceptable.
But, comparing linear and quadratic fit, one has to admit that the linear fit
is already good for Ly, /a = 10, whereas the quadratic fit becomes tolerable
not until Ly, /a > 16.

The situation becomes even worse for N = 8. The lattice artifacts,
compared to the error of the data, are to small to eliminate one of the two
forms or to at least prefer one. Also, no analytical prediction is available
so far. So the analysis of the small lattice dependence is omitted for O(8).
The parameters of the fits in Fig. 6.7 are listed in Table 6.2.

Neither the quadratic nor the linear form is able to reproduce the lattice
artifacts correctly in the O(3) model. For N = 4 the quadratic artifacts seem
to be unlikely, at least for Lyi,/a = 10. There is no preferred dependence
for N =8.
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(a) Linear (dotted) and quadratic (dashed) unconstrained fit. The insert shows a close up
of the extrapolation to the continuum. The star marks the continuum value. The linear
fit includes lattices L/a > 10 and the quadratic fit includes only the three largest lattices
(L/a = 24,32,64). Clearly, a quadratic fit of all data points can be refused by the naked
eye.
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FIGURE 6.5: Simple linear and quadratic fit of former O(3) MC data. Fig. (b) and (c)
show the behavior of the fits when the smaller lattices are successively omitted: Lmin/a
is the smallest lattice included. The last point in these two plots refers to a fit including
L/a = 24,32,64.
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(a) Linear (dotted) and quadratic (dashed) unconstrained fit including lattices L/a > 10.
The insert shows a close up of the extrapolation to the continuum. The star marks the
continuum value.
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FIGURE 6.6: Simple linear and quadratic fit of the O(4) MC data. Since the lattice
artifacts are smaller than in the N = 3 case, the plots are not so predictive.

N ¢ c1 Qopt xX2/dof |0 — co|/dco
1.259914(95) 0.2120(15)  1.02(4 46/3 13.7
. 0.27337(91) 1.16(2)  19.4/4 -
1.30130(18)  0.1275(73) 1.20(22)  5.8/5 0.09
; 0.1251(48)  1.28(12)  5.8/6 :

8 1.34546(15) 0.0204(35) 1.05(44)  3.3/5 -

—_— —

TABLE 6.3: Fits to the form eq. (6.6) for Lmin/a = 10. For N = 3,4 results of uncon-
strained (first line) and constrained (second lined) fit are listed.
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FIGURE 6.7: Linear (dotted) and quadratic (dashed) unconstrained fit including lattices
L/a > 10. The insert shows a close up of the extrapolation to the continuum. The lattice
artifacts are too small to rule out the quadratic or the linear fit.
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6.2.2 Rational Exponent

In Fig. 6.5(a) one observes that the quadratic form overestimates the con-
tinuum value, whereas the linear form underestimates it. Therefore an ex-
ponent between 1 and 2 may meet this point, i.e. a fit to the form

co + c1(a/L)”, (6.6)

with the exponent « as a free parameter. This is an ad hoc ansatz, which has
no theoretical motivation. But one can consider it as a formal possibility.
For the O(3) data this was also done in [6].

Fitting a form like eq. (6.6) is a nonlinear problem. It is solved by
minimizing the x? of a linear fit problem when « ia fixed. For a given « the
fit of eq. (6.6) is solved by linear algebra yielding x?(c). Then this function
is minimized with respect to c. This technique is called least squares method
[32].

The error of the so determined optimal exponent cpt is approximated
by the amount dc, by which app can be changed so that x? increases by 1

!

X2(a0pt +da) — X2(a0pt) =1. (6.7)

Since the function y?(a) is found to be symmetric in the vicinity of Qlopt
only the positive solution to eq. (6.7) is stated.

Again, for N = 3,4, the continuum values eq. (6.3) and eq. (6.4) are
assumed to be valid and used to constrain the fits. For the O(3) MC data
(Fig. 6.8) the unconstrained fit says aopy =~ 1. But already in the last
section it was observed that this is not compatible with the continuum value.
Therefore it is not surprising to see that the constrained fit leads to a very
different optimal exponent. By dropping the small lattices, it seems to
stabilize at agpy ~ 1.2. Note that the fit for Lyin/a = 10 must be refused,
because of the large chi-squared per d.o.f. (Fig. 6.8(c) and Table 6.3).

In contrast to N = 3, the unconstrained and the constrained fit for
N = 4 lead to the same optimal exponent, though with a different error
(Fig. 6.9). Its value fluctuates between 1 and 1.5, but for Ly, /a = 24 even
the constrained fit cannot exclude an o = 2.

Unfortunately the lattice artifacts are such small for NV = 8, that, with
now three free parameters, the fit contains virtually no information about
the form (Fig. 6.10). Only a continuum extrapolation can be obtained.

The fit to the ad hoc ansatz eq. (6.6) is very unlikely for N = 3 when
considering the continuum value eq. (6.3) as correct. For N = 4 the tendency
is again more towards linear then towards quadratic artifacts, but neither
can be refused.
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FIGURE 6.8: Rational exponent fit of former O(3) MC data. Fig. (b) and (c) show the
behavior of the fits when the smaller lattices are successively omitted. The plots include
aopt and the chi-squared per d.o.f.. Note that the two quantities belong to differently
scaled y-axis.
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per d.o.f. as function of the exponent a. The star marks the continuum value. Both fits
lead to the same aopt, but with a different error.

N = 4, unconstrained N = 4, constrained

R 12 R 12
r } G B r { oo R
: o x2/dof | 10 : o x2/dof | 10
1.5 —18 1.5 —18
[ ) xm [ ) xm
3 [ —_48D 3 [ —_48D
5 = g 5 = 1 g
1= —14 1+ —14
I ok I ok
L . R @y L [ SRR R B R . S -0 al
Py Y A TR N RN R BRI IR B 05 Ll il bl L]y
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
(a/Ly)? (a/Lonia)?

(b) (c)

FIGURE 6.9: Rational exponent fit of the O(4) MC data. By constraining the fit the error
of the optimal exponent becomes much smaller. For Lpyin/a = 24 an a = 2 cannot be
excluded even in the constrained fit.
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FIGURE 6.10: Rational exponent fit of the O(8) MC data. The lattice artifacts are too
small and the error too large, no information here, besides the continuum extrapolation.
The form is not important, all results are compatible.
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N TFit ¢ cl cy x2/dof |o — col|/bco
1.25976(23) 0.1996(88) 0.028(70)  4.8/3 6.2
¢ 0.1472(25) 0.423(29)  43.0/4 :
3 1.26208(14) -1.846(32) -2.47(18) 11/3 6.2
b 12.297(39) -3.436(93)  49.5/4 ;
1.30117(31)  0.045(16)  0.23(15) 5.3/5 2.4
C 0.0396(79) 0.274(98)  3.5/6 ;
1 L L30155(22) 046(19) -043(44)  70/5 1.2

- -0.62(13)  -0.77(32)  8.4/6 -

TABLE 6.4: Fits to the forms eq. (6.9) and eq. (6.10) for Lmin/a = 10. For N = 3,4
results of unconstrained (first line) and constrained (second lined) fit are listed.

6.2.3 More Than One Term

Both, Symanzik’s perturbative analysis and the large N limit suggest lattice
artifacts that are quadratic in a up to logarithms:

a?(Ina)', (6.8)

where for PT [ > 0 is the loop order and for large N the exponent is
l =1,0,—1,-2,... (see Sections 3.1.2 and 3.2.3). The two leading terms
coincide and therefore a fit to a form containing these two terms, referred
to as PT fit, will be tested. Also a polynomial fit of order two is presented:

C: co+eci(a/L) +co(a/L)?, (6.9)
D: c¢o+ci(a/L)?+co(a/L)? In(a/L). (6.10)

Because of the additional term the number of free parameters is three
again. For N = 8 one expects no new information, because the lattice
artifacts are too small. Therefore only N = 3,4 are fitted to the forms
above.

In the case N = 3 and Lyin/a = 10 both fits have to be refused (Fig.
6.11). At Lyin/a = 16 the polynomial is still quite unlikely, it had to be
refused on the 4% level. The PT fit becomes better for smaller Ly, /a and
is perfect for Ly, /a = 16.

Both fits are absolutely acceptable for N = 4 already at small Ly, /a.
Therefore one cannot obtain information about the cutoff dependency, be-
sides that these two forms are not rejected at this precision.
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(a) Polynomial (dotted) and PT (dashed) unconstrained fit including lattices L/a > 10..
The insert shows a close up of the extrapolation to the continuum. The star marks the
continuum value. Both fits miss the continuum value by 6 standard deviations.
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FIGURE 6.11: Polynomial and PT fit of former O(3) MC data. Fig. (b) and (c) show the
behavior of the fits when the smaller lattices are successively omitted. For Lmin/a = 10
both fits have to be refused. The polynomial fit is also for Lmin/a = 16 (one degree of
freedom) quite unlikely, whereas the PT fit is perfect.
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6.3 Fit of the 1/N Expansion

If the continuum values eq. (6.3) and eq. (6.4) are considered to be correct,
then, together with the exactly known continuum for N = oo, a prediction
for the N = 8 continuum value can be gained. The three points are simply
fitted to a second order polynomial in 1/N.

co+c1 (1/N) + ¢z (1/N)?, (6.11)

This ansatz is based on the fact, that the nonlinear sigma model can be
expanded in 1/N (Section 5.1). The continuum value in the large N limit
for z = 1.0595 is

0(2,1.0595,00) = 1.37596138... . (6.12)

The computation of the continuum step scaling function is explained in
Section 5.2.2.

Since the points that are fitted are exact values and do not have an
statistical error, the parameter will not have an error neither. An estimate
for the error of an interpolation to N = 8 would be the next order in 1/N.
It should be of O (1/N3). So the result is shown in Fig. 6.13. The parameter
are

co = 1.375961 c1 = —0.16193 co = —0.54794 (6.13)
and for the interpolation one gets
oft(2,1.0595,8) = 1.347158 + O (2-107%) . (6.14)

The error is one order of magnitude larger then the error of the extrapolation
of the MC data (see e.g. Table 6.2). When compared to these values, the
deviation is really found to be ~ 2 - 1073, Therefore one cannot use this
value to constrain the fits, like in the case of N = 3,4.

Another approach would be to mutually fit all available data to an ansatz
with form independent lattice artifacts, but the coefficient expanded in 1/N:

eV + e (1/N) - fla/L), (6.15)
with
c1(1/N)=bg+by-(1/N)+by- (1/N)* + b3 - (1/N)>. (6.16)

This assumes, of course, that the functional form of, at least the leading
order, cutoff effects is the same for every order of 1/N.

For every lattice spacing ¢ = a/L there will be a parameter f; = f(a/L).
The parameter by is fixed by the exact values for N = oo

1

b= /L

(Ez(2, 1.0595, 00, a/L;) — 0(2,1.0595, oo)> (6.17)
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Y 1.34570(14) | fr0 2.598(12)
b 0.0148(33) | fi2 2.165(12)
by  -0.160(26) | fig 1.568(16)
(13)
(13)
(24)

bs 0.525(49) fos  1.002(13
x%/dof 1.04 fa2 0.696(13
fea 0.275(24

fos  0.04(17)

fias  0.07(18)

TABLE 6.5: Fit to the forms eq. (6.15) for L/a = 10.

and the c(()N) are likewise known through the exact continuum values for

N = 3,4,00. The fit will yield an estimate for the continuum value c(()g).
Then, counting the lattice spacings with L;/a > 10 in Table 6.1, there are
12 free parameters

¢ by by bs, fi, i=10,12,16,24, 32, 64,96, 128 (6.18)

and 22 sets of data, i.e. 10 degrees of freedom.

The fit can be split up in a linear and a nonlinear part, where the nonlin-
ear part is solved by the least squares method. The result is listed in Table
6.5.

The two estimates for the continuum value can be plotted together with
the MC data and other fits, in order to compare the results. In Fig. 6.14
one sees the large discrepancy of the continuum value obtained by a sec-
ond order polynomial fit. The next order term cannot be neglected. The
form independent fit takes this into account and yields a continuum value
compatible to the MC data. Unfortunately the error is not improved.
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FIGURE 6.13: Second order polynomial fit of the continuum values at N = 3,4,00 in 1/N.
The interpolation for N = 8 (star) looks good, but is not compatible to MC data.
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6.4 Conclusion

In the case N = 3 all proposed forms have to be rejected if one includes
lattices L/a > 10 and assumes the theoretical predicted continuum value as
correct. Of course, if one excludes enough of the small lattices, all forms
become tolerable at some point. The other way round, one could say, that
the theoretical prediction is not correctly, because the data cannot be fitted
with this constraint.

Due to the smaller lattice artifacts at comparable statistical errors, the
information from the same analysis, but for the N = 4,8 MC data, is not
so distinct. Since a linear fit is preferred for NV = 4, there may be similar
nonstandard cutoff effects as for N = 3. The fits nicely reproduce the
theoretical prediction.

For N = 8 the lattice artifacts are even smaller. There is almost no in-
formation about the cutoff dependence. But one can determine a continuum
extrapolation.

It remains unclear whether the O(3) model is a specialty in this family
of models. The lattice artifacts for N = 4 show a tendency similar to N = 3.
It may be interesting to measure the step scaling function with a modified
action, which has larger lattice artifacts. Then a form independent fit due
to universality would be possible.

Also the next to leading order in the 1/N expansion could yield useful
information about the approach to the continuum.
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A.1 Basic Definitions

All functions in a d-dimensional Euclidean space-time box are defined on a
lattice A. The extension of the box in the d — 1 spatial directions is labeled
by Li,...,Lgq_1 and in temporal direction by Ly = T. The lattice spacing
is a. Then sites of the lattice are defined as

A={z|z,/a€Z, x, < L.}, p=1,....d. (A.1)

For simplicity assume the extension in all spatial directions equal L, then
the total number of sites is

Q:iv-T:%Ld*-T. (A2)

ad

The space-time integral now is a sum over all lattice sites

[ate— 'y (A.3)

TEA

Imposing periodic boundary conditions the allowed lattice momenta are
those of the first Brillouin zone B defined by

—ny , n,=0,....,L,/a—1 (A.4)

and for finite lattices momentum integrals become summations, too,

d4 1
/(2;))11 - e (A.5)
peEB

whereas in the limit Lq,..., Ly — oo this sum becomes an integral over the
Brillouin zone y
1 /Jrﬂ' a ddp
— — ) (A.6)
adq) pezﬁ —7/a (27T)d

The symbol fﬂs is used to cover both cases and to indicate that in any explicit
computation (A.5) or (A.6) has to be substituted.

Derivatives: There is an infinite number of possible definitions of lattice
derivatives. Here the standard nearest neighbor ones are used (/i is the unit
vector of direction pu):

e forward derivative

A F@) = ~(f( +ai) — f(x) (A7)
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e backward derivative
ALF @) = ~(f(@) — f(x — ap) (A3)

These operators possess the useful properties

dZ<Aff ) ——ade ( ) (A.9)
S " ALf(z) ALf (@ ——ade ) (LAl >_ade
T,

(A.10)
where the symbol [J refers to the negative Laplace operator (sometimes
called lattice d’Alembert operator) defined as

— b —
O=-> AlAf=-A (A.11)

—QQsz fa+ai) - flx—ap)).  (A12)

Matriz notation: For some computations a matrix notation of the deriva-
tives and the other operators is desirable. Forward and backward derivative
can be written as

1

A;]: Ty a(ax,yfaﬂ - (5m,y) (A.13)
1

Az,xy E(éx,y - 5m,y+aﬂ) . (A.14)

Now the property (A.9) becomes

Al = —(Ah)* (A.15)

and the Laplace operator has the matrix notation

1
— Dy =0y = = Z(Zém, — Sryrap — Ozy—ap) - (A.16)
n

Fourier transformations: On a finite lattice the Fourier transformations
read

= % > et F(p) (A.17)

pEB

=> e P F(z) (A.18)
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and instead of delta functions one has Kronecker symbols

1 st

ﬁgk(ﬂﬂz%ﬂ (A.19)

1 , /

5 Z ezp(x—ﬂﬂ ) — 535’36/ (AQO)
peEB

The matrix element of the Laplace operator (A.16) is only a function of
x — 3. Thus Fourier transformation into momentum space can be done

D(p) = Z eiip(xiy)ljxy
z—y
1 I -
= = Z(g — eTiaph _ giapiy
@
1
= 2 22(1 —cosapy)
o

1
= 5 dsin® % . (A.21)
m

A.2 The 2d Nonlinear Sigma Model

There are many ways of writing down a lattice version of the continuum
action

1
S = 37 /d2x Ous(x) - Oys(x), (A.22)

that has the proper naive continuum limit (Einstein summing conventions
are used). Here only the standard nearest-neighbor action is used. That is,
the above mentioned versions of the forward and backward derivatives are
used to write:

1 a®
37 / d*z Oys(z) - Oys(z) — 27 Z Azs(a:) A/]:s(;v) . (A.23)
In matrix notation the lattice action then reads
a? a?
Stat = 27 s-Os = 27 ny: s(x)0zys(y) (A.24)
For the nonlinear sigma model this simplifies due to the symmetry
2
a
Srtat = 37 Z s(x) Ozys(y) (A.25)
x7y
1
= 37 > s(x) (2s(z) — s(x + aft) — s(z — afr))  (A.26)
T,
1
= 7 Z s(x) s(x + aft) + const. , (A.27)

THp
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where s%(z) = 1 and the translation invariance of the lattice sum was used.
The expression in the last line is especially useful for lattice simulations. The
constant term is irrelevant for the path integral. In analogy to the inverse
temperature in thermodynamics the bare coupling f is often replaced by
B =1/f. Finally the standard n.n. lattice action is

Spat = =B s(z)s(z +afi). (A.28)
N



Appendix B

Monte Carlo

92



B.1.

CRITICAL SLOWING DOWN 93

B.1 Critical Slowing Down

dynamical evolution of the system in MC time slows down considerably
also occurs in real systems

evolution is characterized by the autocorrelation time, i.e. the num-
ber of MC steps needed to generate a statistically independent new
configuration

autocorrelation (A; is the value of an observable A at a given MC time

t):
Ca(t) = (AsAgiy) — (A)?

for large t autocorrelation decays exponentially, C4(t) ~ exp(—t/Tezp.a),
where 7..p 4, the exponential autocorrelation time, corresponds to the
slowest mode in the MC dynamics

statistical error in MC:
usually (A) is estimated from the average of n subsequent measure-

ments, A = % > iy A, and its statistical error is given by (n >> Tipnt,4)

§A = AV 2Tint,A : 5Anative

where

1
Tint,A = 5 > Ca(t)/Ca(0)

t=—o00

is the integrated autocorrelation time and
- 1
5Anative = *CA(O)
n
this means that in order to reach a given accuracy one has to spend
computer time ~ T,

autocorrelation time depends on the actual MC algorithm

in general, near critical point (§ > 1) the autocorrelation time diverges
as
T~ ct”

where z is the dynamical critical exponent

Metropolis algorithm: z =~ 2, over-relaxation algorithm: down to z ~ 1

collective, i.e. non-local updates: optimal cases z ~ 0, i.e. 7 indepen-
dent of &
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B.2 Multi Cluster Algorithm

This section is inspired by [33], an excellent review of cluster algorithms for
classical and quantum spin systems.

The considerations below are restricted to the still quite general case
of lattice actions containing interactions between variables ¢, belonging to
only two different sites n,n’. These two sites are connected by a link [. For a
nearest-neighbor interaction [ would label all nearest neighbors. This means
models with a partition function

Z = /D¢ e Sl (B.1)
are considered, where the lattice version of the action reads

Slel =Y Silel = Silgn €1]. (B.2)
l l

Global symmetry Suppose the interaction term S;[¢] of the system is glob-
ally invariant to the symmetry group G

Silgon € 1] = Si[pn € 1], geG. (B.3)

Building the clusters From the point of view of critical slowing down, an
algorithm allowing to update large domains of the system in one step is
desired. But with an a priori shape of such clusters (sites that are simulta-
neously updated) one introduces a bias and does not in general get the right
weight function. Therefore the cluster are built dynamically activating some
of the links. The probability p;[¢] for a “bond” between sites belonging to
a link [ is assumed to be globally invariant as well

plgtn €l =plon€l], gegG. (B.4)

The probability for a configuration of bonds B given a configuration of the
system ¢ on a lattice A is then

w(B|p) = (prop. of bonds in A) x (prob. of ‘anti’-bonds in A)
= [[wle [T —mig)- (B.5)

leB 1¢B

Now a cluster is called a set of sites in A which can be visited by going
through bonds. So the whole lattice A will split up in N¢ clusters of different
shape and size and in the interspace, i.e. sites belonging to no cluster. This
terminology is known from percolation theory [25].
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Updating the configuration - Ergodicity Variables within the clusters are
transformed simultaneously by stochastically chosen g; € G, i =1,..., N¢.
The probability for the g;’s should be independent of the cluster distribution
and for detailed balance it should be symmetric under inversion

p(g:) = p(g; ). (B.6)

Note that no further constraint is necessary at this point. Particularly p(g;)
has not to be flat. But one important property is essential. Namely the
transformations g; € G have to assure the ergodicity of the algorithm. This
means that every configuration ¢’ must be in principal reachable from any
other configuration ¢ in a finite number of steps, i.e successive building of
clusters and updating with sets of transformation {g;}.

Detailed balance Let w(¢ — ¢') be the probability to reach configuration
¢' from ¢ by one update. Then detailed balance means

wo—¢) _ wBlo) Plia}) 1 e (B.7)

w(¢' = ¢)  w(B|¢)- P({g;'}) e
The probabilities for the set of transformation P({g;}) = [, p(gi) cancel
because of eq. (B.6). And because of the global symmetry of eqs. (B.3) and
(B.4) all contributions from a link [ that is a bond, i.e all sites belong to
the same cluster (same transformation), cancel. Then using eq. (B.5) the
detailed balance condition eq. (B.?) becomes

H _pm/ = [ e Silel-siD (B.8)

1¢B 1¢B

But still more factors cancel. Only those links survive which connect differ-
ent domains of the lattice A, i.e. connecting different clusters or a cluster
and the interspace of the clusters. Summarized, only those links give non-
canceling contributions that are on the “surface” {JC} of the clusters. This
is because sites of a link lying completely inside the interspace of the clus-
ters or completely in a cluster are equally transformed during the update
¢ — ¢'. There is no interaction within the clusters anymore. The original
system has been mapped onto a system of No “sites” represented by the
clusters surfaces

1 —pilo (Silel-Sil#")
e B.9
zegc*} L=p W legc*} ()

In order to arrive at a condition for the bond-probabilities p;[¢] the following
parameterization is assumed

pilg] =1 — e (@LI=SID - p6] € [0,1) — Qil¢] > Si[¢].  (B.10)
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Note that for Q;[¢] = Si[¢] (pi[¢] = 0) each site becomes a cluster and local
MC updating is recovered. Inserting eq. (B.10) in eq. (B.9) leads to

H e~ Qo] — H e~ Q'] (B.11)

1e{aC} le{ocCty

The choice of Q; Clearly, the structure of Q;[¢] is not arbitrary. In order to
provide a meaningful and efficient algorithm it should obey some conditions:

e eq. (B.4) and eq. (B.10) demand Q; to be globally invariant
e from eq. (B.11) detailed balance is valid for Q;[¢] = Q;[¢], | € {0C}

e (J; should be sensitive to the bare coupling and the structure of the
action

e (J;—5; should not be too large, otherwise the bond probability becomes
too large as well and the largest cluster will usually occupy almost
the whole lattice: but applying a global transformation on the whole
lattice does not change anything

Now a possible choice of @); is presented. The transformations g; for
the update are restricted to a subgroup H C G. Then Q[¢] is defined
as the maximum of the action term Sj[¢] when all elements g € H are
independently applied to the sites of [

Ql(¢nv¢n’) = max Sl(gn(énagn’(z)n’)a HCG. (B.12)
In:g, €EH

For this choice @); is independent of arbitrary transformations at different
sites belonging to [. This is because Q(gnPn, gn'On’) = Qi(¢n, ¢n) for any
In, gnr € H due to group properties. Thus detailed balance is valid. Updat-
ing the clusters this way automatically reproduces the wanted weights for
the configurations. The clusters are built dynamically, i.e they are sensitive
to the interaction and to the configuration.

B.3 Single Cluster Algorithm

The idea of cluster algorithms is to update large domains of the system in one
step. With an a priori shape of such clusters (sites that are simultaneously
updated) one introduces a bias and does not in general get the right weight
function. Therefore the cluster are built dynamically activating some of the
links {.

With the multi cluster algorithm in Section B.2 one is still updating small
clusters too often compared to large ones. By growing only one cluster from
a randomly chosen “seed” one enhances the probability of updating large
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clusters since a cluster of size |C| in a “bond” distribution of a multi cluster
algorithm is hit with the probability |C|/V .

Like in Section B.2 a model with a global symmetry G and an action
containing interactions over one link [ is considered (see egs. (B.1)-(B.3)).

Growing the cluster First one initial site is randomly chosen and added to
the cluster. Then all links originating form this site are activated with a
probability p;[¢]. All sites reached by the activated links, i.e. “bonds”, are
added to the cluster as well. All links originating from the new sites are
activated through the same procedure. This is repeated until no new sites
are added to the cluster, i.e. all links originating from sites in the cluster
were probed.

Thus the probability for a cluster C with surface 0C' given a configuration
of the system ¢ is then

w(C|¢) = (prop. of bonds in C) x (prob. of ‘anti’-bonds in 9C)
= [Iwlel IT @ —mile)). (B.13)

leC leoC

Updating C - Ergodicity Variables within the cluster are transformed si-
multaneously by stochastically chosen g € G. The probability for g should
be symmetric under inversion (detailed balance)

p(g) =plg™"). (B.14)

Note that no further constraint is necessary at this point. Particularly p(g)
has not to be flat. Again the transformations g € G have to assure the
ergodicity of the algorithm (see Section B.2).

Detailed balance Repeating the steps in Section B.2 one again ends up with
a condition for the @;’s in the parameterization of the bond-probability p;[¢]

eq. (B.10)
H o~ Qe — H e~ Q¢ (B.15)
ledC leac

The choice of QQ; For the single cluster algorithm a rather simple choice in
line with the conditions at the end of Section B.2 is possible. Suppose the
cluster is to be updated by a transformation g and one has to probe whether
the link [ should be activated. Without loss of generality let | = (n1,n2)
and ny € C, ng ¢ C, then define

Ql[¢] = Ql(¢n1v¢n2) = Si(g- Py ¢n2) : (B'16)
With this the bond-probability eq. (B.10) becomes
I [d)] =1 e*(sl(g'¢n17¢n2)*sl(¢n1 sPng) . (Bl?)
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Sites connected by the link [ being in a state where they are invariant under
g € G are therefore preferably put together in a cluster. Now, again without
loss of generality, let this link remain inactivated and hence show up in eq.
(B.15). Thus for the inverse transition ¢/ — ¢ one gets (remember ny € C,
ny ¢ C)

QY = Qulg™" - @y Bh) = Q(bnrs d) (B.18)

and detailed balance is achieved.

B.3.1 Single Cluster Algorithm for Nonlinear Sigma Models

In the Ising model with its simple Z(2) symmetry the only possible trans-
formation is the spin-flip. There, an implementation of the single cluster
algorithm described above would be straightforward. Maintaining the idea
of spin-flip when moving to an O(NN) symmetry requires a generalization. In
[1] this is achieved by embedding an Ising model into the N-vector model.
One randomly chooses a direction that defines a N — 1 dimensional hyper-
plane dividing the N — 1 sphere into two hemispheres. Vectors lying in the
one hemisphere are regarded as spin up and the others as spin down. A
spin-flip is then a reflection with respect to the hyperplane.

To make the calculation explicit the variables at each lattice site are
O(N)-vectors § and the action consists of nearest-neighbor products

S=-B> 535 (B.19)
(zy)

The set of reflections with respect to a hyperplane orthogonal to a unit
vector 77 € Sy_1 is a subgroup of O(N) containing all rotations by an angle
7. The axis of this rotation is defined by the projection of the vector to be
reflected into the hyperplane. Ergodicity is guaranteed since there is always
a reflection connecting any two O(N)-vectors. The reflections are defined as

R(A)5=5-2(5-7)7,  RF?*=1. (B.20)
Summarizing everything the algorithm finally reads [1]:

1. Choose a random reflection 7 € Sy_1 and a random lattice site x as
the starting point of the cluster C

2. Grow the cluster C' as described above; the bond-probability is
Qzy) = —BR(T) 5 - 5y = — 35, - R(T) 5, (B.21)
—  Dlay) = 1 —exp{min(0, 38, - [1 — R(7)] 5,)} (B.22)

3. Reflect all vectors in C
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How has one to choose the random vector 7 € Sy_1 in order to guarantee
ergodicity and detailed balance? Since the reflections R(7) are idempotent
the restriction (B.14) is not important here (p(R~!) = p(R)). The only
requirement is ergodicity, well, and efficiency. One can intuitively say that
a uniformly over Sy_1 distributed 7 is the best choice. But it would not de-
stroy the validity of the algorithm if the distribution were not uniform. The
main thing is that it covers the whole Sx_; in order to achieve ergodicity.
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TABLE C.2: Numerical costs M., time spent in the measuring routine t¢,, and error of
the running coupling Az (z = m(L) L) measured in the O(4) model for 8 = 2.4765 on
a 20 x 100 lattice (z = 1.30887(23)) for the Metropolis improved estimator with different

APPENDIX C. TABLES

number of updates, the simple improved estimator and the standard one.

M M, in msec t,n in msec Az
2 0.1775(11) 1.5734(94) 2.872(93)
4 0.1444(21) 1.808(34) 2.525(77)
6 0.1429(17) 2.124(28) 2.407(74)
8 0.1430(22) 2.454(48) 2.329(71)
10 0.1550(14) 2.765(26) 2.325(71)
12 0.1484(32) 2.852(85) 2.295(70)
15 0.1608(90) 3.523(10) 2.203(67)
20 0.1740(29) 4.169(89) 2.180(70)
simple 0.2588(69) 1.124(35) 3.77(12)
standard 1.858(47) 0.0490(31) 12.35(29)




TABLE C.3: Functions K (a/L) and az(a/L)

. K(a/L) i(a/L)

exact expansion exact expansion
10 0.14212817 0.14212181 -0.68713606 -0.68760605
15 0.14190715 0.14190594 -0.64823196 -0.64840023
20 0.14183076 0.14183038 -0.63113786 -0.63122422
25 0.14179557 0.14179541 -0.62206283 -0.62211562
30 0.14177649 0.14177641 -0.61663629 -0.61667201
35 0.14176500 0.14176496 -0.61311684 -0.61314266
40 0.14175755 0.14175753 -0.61069568 -0.61071524
45 0.14175244 0.14175243 -0.60895390 -0.60896924
50 0.14174879 0.14174878 -0.60765610 -0.60766847
55 0.14174609 0.14174608 -0.60666137 -0.60667155
60 0.14174404 0.14174403 -0.60588097 -0.60588950
65 0.14174244 0.14174244 -0.60525665 -0.60526390
70 0.14174117 0.14174117 -0.60474884 -0.60475508
75 0.14174015 0.14174015 -0.60432986 -0.60433529
80 0.14173931 0.14173931 -0.60397985 -0.60398461
85 0.14173862 0.14173862 -0.60368425 -0.60368847
90 0.14173804 0.14173804 -0.60343218 -0.60343594
95 0.14173755 0.14173755 -0.60321538 -0.60321876
100 0.14173713 0.14173712 -0.60302747 -0.60303052
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TABLE C.4: Continuum step scaling function

0:(2,u,00)

Y exact up to ds up to dr
0.1 0.10225611 0.10225611 0.10225611
0.2 0.20923204 0.20923212 0.20923204
0.3 0.32125815 0.32125913 0.32125815
04 0.43868870 0.43869454 0.43868870
0.5 0.56189877 0.56192242 0.56189875
0.6 0.69127872 0.69135368 0.69127861
0.7 0.82722591 0.82742640 0.82722534
0.8 0.97013262 0.97060612 0.97013018
0.9 1.12036990 1.12138609 1.12036101
1.0 1.27826684 1.28028757 1.27823842
1.1 1.44408573 1.44786007 1.44400396
1.2 1.61799409 1.62468169 1.61777894
1.3 1.80003619 1.81135933 1.79951171
1.4 1.99010722 2.00852901 1.98891136
1.5 2.18793492 2.21685614 2.18536532
1.6 2.39307281 2.43703579 2.38783805
1.7 2.60490853 2.66979297 2.59474792
1.8 2.82268795 2.91588290 2.80381875
1.9 3.04555307 3.17609133 3.01190246
2.0 3.27258847 3.45123474 3.21476857
2.1 3.50286978 3.74216069 3.40685643
2.2 3.73550781 4.04974807 3.58098500
2.3 3.96968350 4.37490736 3.72801537
2.4 4.20467159 4.71858093 3.83646004
2.5 4.43985275 5.08174335 3.89203314
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