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1 Introduction

“...as well as being one of the most ubiquitous concepts in modern finance
and insurance, correlation is also one of the most misunderstood
concepts. Some of the confusion may arise from the literary use of
the word to cover any notion of dependence. To a mathematician
correlation is only one particular measure of stochastic dependence
among many. It is the canonical measure in the world of multivariate
normal distribution functions, and more generally for spherical and
elliptical distributions. However, empirical research in finance and
insurance shows that the distributions of the real world are seldom in
this class.”

Embrechts, Mc Neil and Straumann, 1999

In this chapter we will consider a concept of dependence. As we already know, the
cumulative distribution function (cdf) of a 2-dimensional vector (X1, X2) is given by

F (x1, x2) = P (X1 ≤ x1, Y1 ≤ y1) (1.1)

For the case that X1 and X2 are independent, their joint cumulative distribution
function F (x1, x2) can be written as a product of their 1-dimensional marginals:

F (x1, x2) = FX1 (x1) FX2 (x2) = P (X1 ≤ x1) P (X2 ≤ x2) (1.2)

But how can we represent F (x1, x2) without having an information concerning the
dependence of X1 and X2? How can we model the relationship between them?
Most people would model this by means of linear correlation. Several authors (e.g.
Embrechts, Mc Neil and Straumann, 1999) show therefore that the correlation is
an appropriate measure of dependence only when the random variables have an
eliptical or spherical distribution, which include the normal multivariate distribution.
Although the terms “correlation” and “dependency” are often used interchangeably,
correlation is actually a rather imperfect measure of dependency, and there are many
circumstances where correlation should not be used. We therefore need an alternative
dependency measure that is reliable when correlation is not - and the answer is to
use copulae.

Copulae represent an elegant concept of connecting marginals with joint cummulative
distribution functions. Copulae are functions that join or “couple” multivariate
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1 Introduction

distribution functions to their 1-dimensional marginal distribution functions. Let
us consider a d-dimensional vector X = (X1, ..., Xd). Using copulae, the marginal
distribution functions FXi

(i = 1, ..., d) can be separately modelled from their depen-
dence structure and then coupled together to form the multivariate distribution FX .

Copula functions have a long history in probability theory and statistics since they
date back to (Sklar, 1959). Their application in finance is very recent: the idea first
appears in (Embrechts, Mc Neil and Straumann, 1999) in connection with correlation
as a measure of dependence. Copulae constitute an essential part in quantitative
finance (Härdle, Kleinow and Stahl, 2002) and are recognized as an important tool in
Value-at-Risk (VaR) calculations. VaR is a measure that characterizes the riskiness
of a portfolio; it keeps the probability of a negative outcome (portfolio losses) below
some level λ.

DEFINITION 1.1. For a financial position X, we define its VaR at level λ as

V aRλ(X) = inf {m|P [X + m < 0] ≤ λ} (1.3)

In other terms, VaR is a quantile at level λ of the distribution of X:

V aRλ(X) = F−1
λ (X) (1.4)

To be able to model the VaR of a portfolio, we have to know as well the distri-
bution of losses associated with the risk factors as a dependence structure within
the portfolio. Formerly, there were two main approaches for modelling dependence
structure: multivariate normality or independence. In both cases, risk aggregation is
straightforward but often too far away from realistic models, since risk factors are
seldom independent and can even have a dependence structure. To overcome this
problem, we separate the study of the univariate behaviour of each variable from the
study of dependence structure. The dependence structure of the random variables is
known as a copula. The combination of a copula with specific univariate distributions
then allows to construct a multivariate distribution, so-called copula-based models,
which allow to calculate VaR more efficiently.

In this study we perform the copulae estimations using adaptive and non-adaptive
techniques. This thesis can be seen as a preliminary study to risk management with
adaptive copulae because it is the accurate basis for VaR calculations.

The thesis is organized as follows: chapter 1 and 2 are devoted to the introduction of
basic definitions, and later to the definition and basic properties of a copula. Chapter
2 refers to the modelling dependence with copulae. Some examples of bivariate
copulae and their extension to the multivariate case are represented in chapter 4 and
chapter 5, respectively. Chapter 6 and 7 are devoted to the time-varying copulae.
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1 Introduction

Full maximum likelihood (FML) estimation and Inference for margins (IFM) methods
are performed in the 6th chapter. Adaptive copula estimation, based on Local change
point analysis(LCPD) (Mercurio, Spokoiny, 2004) is represented in chapter 7. The
change point test on the copula dependence parameter θ can improve substantially
the dependence modelling. We illustrate the method considering some simulated
examples (chapter 8) and then apply it to the 2-, 4- and 6-dimensional data sets
from the Dax Index.

First let us concentrate on the 2-dimensional case, then we will extend this concept
to the d-dimensional case, for a random variable in Rd with d ≥ 1.

To be able to define a copula function, first we need to represent a concept of the
volume of a rectangle, a 2-increading function and a grounded function.
Let U1 and U2 be two sets in R = R ∪ {+∞} ∪ {−∞} and consider the function
F : U1 × U2 −→ R.

DEFINITION 1.2. The F -volume of a rectangle B = [x1, x2]× [y1, y2] ⊂ U1 ×U2

is defined as:

VF (B) = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) (1.5)

DEFINITION 1.3. F is said to be a 2-increasing function if for every B =
[x1, x2]× [y1, y2] ⊂ U1 × U2,

VF (B) ≥ 0 (1.6)

REMARK 1.1. Note, that “to be 2-increasing function” neither implies nor is
implied by “to be increasing in each argument”.

The following lemmas (Nelsen, 1999) will be very useful later for establishing the
continuity of copulae.

LEMMA 1.1. Let U1 and U2 be nonempty sets in R and let F : U1 × U2 −→ R be
a two-increasing function. Let x1, x2 be in U1 with x1 ≤ x2, and y1, y2 be in U2 with
y1 ≤ y2. Then the function t 7→ F (t, y2)− F (t, y1) is nondecreasing on U1 and the
function t 7→ F (x2, t)− F (x1, t) is nondecreasing on U2.

DEFINITION 1.4. If U1 and U2 have a smallest element min U1 and min U2

respectively, then we say, that a function F : U1 × U2 −→ R is grounded if :

for all x ∈ U1 : F (x, min U2) = 0 and (1.7)
for all y ∈ U2 : F (min U1, y) = 0 (1.8)

In the following, we will refer to this definition of a distribution function :
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1 Introduction

DEFINITION 1.5. A distribution function is a function from R2 7→ [0, 1] which:

• is grounded

• is 2-increasing

• satisfies F (∞,∞) = 1

LEMMA 1.2. Let U1 and U2 be nonempty sets in R and let F : U1 × U2 −→ R be
a grounded two-increasing function. Then F is nondecreasing in each argument.

Proof:

Set x1 = min U1 and y1 = min U2 in Lemma 1.1.

DEFINITION 1.6. If U1 and U2 have a greatest element max U1 and max U2

respectively, then we say, that a function F : U1 × U2 −→ R has margins and that
the margins of F are given by:

F (x) = F (x, max U2) for all x ∈ U1 (1.9)
F (y) = F (max U1, y) for all y ∈ U2 (1.10)

LEMMA 1.3. Let U1 and U2 be nonempty sets in R and let F : U1 × U2 −→ R
be a grounded two-increasing function which has margins. Let (x1, y1), (x2, y2) ∈
S1 × S2. Then

|F (x2, y2)− F (x1, y1)| ≤ |F (x2)− F (x1)|+ |F (y2)− F (y1)| (1.11)

Proof:

From the triangle inequality we have:

|F (x2, y2)− F (x1, y1)| ≤ |F (x2, y2)− F (x1, y2)|+ |F (x1, y2)− F (x1, y1)| (1.12)

Let us assume that x1 ≤ x2. Since F is grounded, 2-increasing and has margins, it
follows from Lemma 1.1 and 1.2 that:

0 ≤ F (x2, y2)− F (x1, y2) ≤ F (x2)− F (x1) (1.13)

A similar inequality holds in the case x2 ≤ x1. Thus we have that for any x1, x2 ∈
S1 holds:

|F (x2, y2)− F (x1, y2)| ≤ |F (x2)− F (x1)| (1.14)

An analogous inequality holds for any y1, y2 ∈ S1:

|F (x1, y2)− F (x1, y1)| ≤ |F (y2)− F (y1)| (1.15)

which completes the proof.
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2 Copulae. Definition and some
Properties

One can easily verify, that F1(X) and F2(Y ), where F1 and F2 are the marginal
distributions of X and Y respectively, are two uniform variables if F1 and F2 are
continuous. Hence, if the marginals F1 and F2 of the bivariate distribution F are
continuous, there exists a unique copula, which is a cumulative distribution function,
with its marginals being uniform.

DEFINITION 2.1. Formally a function C : [0, 1]2 → [0, 1] such that

F (x, y) = C {F1(x), F2(y)} (2.1)

is a copula. On the other hand, if C(u, v) and F1 and F2 are given, then there exists
an F such that:

F
{
F−1

1 (u), F−1
2 (v)

}
= C(u, v) (2.2)

In fact, the above defenition is just an implication of the theorem below, known as
Sklar’s theorem.

THEOREM 2.1. Sklar’s Theorem:
If the marginals F1, F2 of a 2-dimensional distribution function F are continuous,
there exists a unique copula C : [0, 1]2 → [0, 1] such that

F (x1, x2) = C {FX1(x1), FX2(x2)} (2.3)

Conversely, if C is a copula and FX1 , FX2 are distribution functions then F defined
by 2.3 is a 2-dimensional distribution function with marginals FX1 , FX2.

If the density f(., .) of F (., .) exists, one can derive the relationship between the
density f of F and c of C:

f(x, y) = c {F1(x), F2(y)} f1(x)f2(y) (2.4)

with a copula density

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

(2.5)

where f1(x) and f2(y) are the marginal densities of F .
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2 Copulae. Definition and some Properties

2.1 Elementary properties

For every 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 holds:

C(u, 1) = P (U ≤ u, V ≤ 1) = P (U ≤ u) = u (2.6)

and similary
C(1, v) = P (U ≤ 1, V ≤ v) = P (V ≤ v) = v (2.7)

Also

C(u, 0) = P (U ≤ u, V ≤ 0) = 0 (2.8)

C(0, v) = P (U ≤ 0, V ≤ v) = 0 (2.9)

It follows from 2.8 and 2.9 that C is grounded.

2.2 Rectangular inequality

Since C(u, v) is a distribution function, it satisfies for all 0 ≤ u1 < u2 ≤ 1 and
0 ≤ v1 < v2 ≤ 1

P (u1 < U ≤ u2, v1 < V ≤ v2)

= C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) > 0 (2.10)

i.e. C is 2-increasing. When C(u, v) has a density c(u, v), this inequality becomes
c(u, v) > 0.

Given these two properties one can state the equivalent definition of copulae.

DEFINITION 2.2. A two-dimensional copula is a function C defined on the unit
square I2 = I × I with I the unit interval (I = [0, 1]) such that

• for every u ∈ I holds: C(u, 0) = C(0, v) = 0, i.e. C is grounded.

• for every u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2 holds:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0, (2.11)

i.e. C is 2-increasing.

• for every u ∈ I holds C(u, 1) = u and C(1, v) = v.

Informally, a copula is a joint distribution function defined on the unit square [0, 1]2

which has uniform marginals. That means that if FX1(x1) and FX2(x2) are univariate
distribution functions, then C {FX1(x1), FX2(x2)} is a 2-dimensional distribution
function with uniform marginals FX1(x1) and FX2(x2).
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2 Copulae. Definition and some Properties

2.3 Continuity

A copula is continuous in u and v; actually it satisfies the stronger Lipschitz condition:

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| (2.12)

The inequation follows directly from Lemma 1.3 by setting F (x1) = u1, F (x2) = u2,
F (y1) = v1, F (y2) = v2 in inequation 1.11. From 2.12 it follows that every copula C
is uniformly continuous on its domain.

Another important property of copulae concerns the partial derivatives of a copula
with respect to its variables.

2.4 Differentiability

Since C(u, v) is increasing and continuous in the two variables, it is differentiable
almost everywhere and we see that

0 ≤ ∂

∂u
C(u, v) ≤ 1 (2.13)

and
0 ≤ ∂

∂v
C(u, v) ≤ 1 (2.14)

Moreover, the functions

u 7→ Cv(u) = ∂C(u, v)/∂v and

v 7→ Cu(v) = ∂C(u, v)/∂u

are defined and nonincreasing almost everywhere on I = [0, 1].

2.5 Invariance under strictly monotone
transformations

Copulae are invariant under strictly monotone transformations of the random vari-
ables.

THEOREM 2.2. If (X1, X2) have a copula C and set g1, g2 two continuous
increasing functions, then {g1(X1), g2(X2)} have a copula C, too.
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2 Copulae. Definition and some Properties

Proof:

Let F1, F2 denote the distribution functions of X1, X2, and G1, G2 denote the distri-
bution functions of g1(X1), g2(X2) respectively. Let (X1, X2) have a copula C and
{g1(X1), g2(X2)} have a copula Cg. Then

Cg {G1(x1), G2(x2)} = P {g1(X1) ≤ x1, g2(X2) ≤ x2}
= P

{
X1 ≤ g−1

1 (x1), X2 ≤ g−1
2 (x2)

}
= C

[
F1

{
g−1
1 (x1)

}
, F2

{
g−1
2 (x2)

}]
= C {G1(x1), G2(x2)}

2.6 The survival function of copulae

Using 2.6 and 2.7 one can define the survival function C corresponding to C(u, v):

C(u, v) = 1− u− v + C(u, v) (2.15)

From 2.6 and 2.7 we have

C(u, 1) = 0 (2.16)

and considering 2.8 and 2.9 we obtain

C(u, 0) = 1− u (2.17)

Starting from the pair (1-U,1-V) one can define another copula C
′
(u, v) whose survival

function is connected with C. Namely, given

C
′
(u, v) = P (1− U ≤ u, 1− V ≤ v) (2.18)

= C(1− u, 1− v) = u + v − 1 + C(1− u, 1− v)

we then obtain the survival function C ′ corresponding to C
′
(u, v):

C ′(u, v) = C(1− u, 1− v) (2.19)

2.7 The Fréchet bounds for copulae

Each copula function is bounded by the minimum and maximum one

C−(u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = C+(u, v) (2.20)

The functions max(u + v − 1, 0) and min(u, v) can be easily checked to be copula
functions. They are called the minimum and the maximum copula, respectively. The
minimum and the maximum copulae are assumed to be an upper Fréchet bound and
a lower Fréchet bound for copulae, respectively.
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2 Copulae. Definition and some Properties

2.8 Convex combination of copulae

A linear convex combination of copulae is a copula. For example if 0 ≤ α ≤ 1, then
the function

C(u, v) = αC+(u, v) + (1− α)C−(u, v) (2.21)

is a copula function.

18



3 Modelling dependence with
copulae

Dependence relations between random variables are one of the most widely studied
topics in probability theory and statistics. Copulae are a very important part in the
study of dependence between two variables, since they allow to separate the effect
of dependence from effects of the marginal distributions. As we have already seen,
all copula properties are invariant under strictly increasing transformations of the
underlying random variables.

3.1 The Bravais-Pearson correlation coefficient

The Bravais-Pearson correlation coefficient (or simple linear correlation) is the most
frequently used measure of dependence. Let X, Y be two random variables with
V ar(X) < ∞, V ar(X) 6= 0 and V ar(Y ) < ∞, V ar(Y ) 6= 0. The Bravais-Pearson
correlation coefficient for X, Y is defined as

ρ(X, Y ) =
Cov(X, Y )√

V ar(X)
√

V ar(Y )
(3.1)

The Bravais-Pearson correlation coefficient is a measure of linear dependence. In
the case of perfect linear dependence we have |ρ(X, Y )| = 1, otherwise it holds
−1 < ρ(X, Y ) < 1. Linear correlation is invariant under strictly increasing linear
transformations, i.e. for a, b ∈ R\0 and c, d ∈ R it holds:

ρ(aX + c, bY + d) = sgn(ab)ρ(X, Y ) (3.2)

As it was already mentioned, linear correlation is a rather imperfect measure of
dependence. In (Embrechts, Lindskog and McNeil, 2001) is shown, that linear
correlation fails in the case if the underlying variables are not jointly elliptically
distributed (such as multivariate normal or multivariate t-distribution).
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3 Modelling dependence with copulae

3.2 Perfect dependence with copulae

As we have already seen, each copula function is bounded by the minimum and
maximum one

C−(u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = C+(u, v) (3.3)

and the functions C−(u, v) and C+(u, v), known as Fréchet bounds, are also copula
functions. In (Embrechts, Lindskog and McNeil, 2001) is shown, that in the 2-
dimensional case C−(u, v) and C+(u, v) are the bivariate distributions functions
of the random vectors (U, 1 − U)T and (U,U)T respectively, where U ∼ U [0, 1]
(i.e. uniformly distributed on the unit interval [0, 1]). In this case one says that
C−(u, v) describes perfect negative dependence and C+(u, v) describes perfect positive
dependence.

3.3 Lower and upper tail dependence

The concept of lower and upper tail dependence refers to the study of dependence
between extreme values. In the case of copulae, where (U, V ) is a pair of uniform
variables on the unit square [0, 1]2, the upper tail dependence is defined as

δ = lim
u→1−

P (U > u|V > v) (3.4)

or equivalent definition, using survival function of a copula:

δ = lim
u→1−

C(u, u)

1− u
> 0 (3.5)

If the coefficient of upper tail dependence δ ∈ (0, 1], U and V are said to be
asymptotically dependent in the upper tail; if δ = 0, U and V are said to be
asymptotically independent in the upper tail. Similary, lower tail dependence holds
if C(u,u)

u
has a limit different from 0 when u tends to 0:

γ = lim
u→0+

C(u, u)

u
> 0 (3.6)

or equivalent
γ = lim

u→0+
P (U ≤ u|V ≤ v) (3.7)

If γ = 0, U and V are said to be asymptotically independent in the lower tail.
There is a connection between the tail dependence of C and of the copula C

′
(u, v) =

C(1− u, 1− v). The lower tail dependence of C is the upper tail dependence of C
′
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3 Modelling dependence with copulae

and vice-versa:

lim
u→1−

C(u, u)

1− u
= lim

u→0

C(1− u, 1− u)

u

= lim
u→0

C
′
(u, u)

u
(3.8)

The examples of the lower and upper tail dependence are discussed in the next
chapter.
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4 Examples

EXAMPLE 4.1. The independent or product copula is a copula associated with a
pair (U,V) of independent variables.

C0(u, v) = uv (4.1)

EXAMPLE 4.2. Let (X, Y ) be a pair of bivariate normal distributed random
varibles: (X, Y ) ∼ N((0, 0), Σ) with Σ =

(
1ρ
ρ1

)
. Let φ and Φ be the density and

the cdf, respectively, of the N(0, 1) and φρ the density of the Bivariate Normal
Distribution (BVN) distribution. Let U = Φ(X) and U = Φ(Y ) be two uniform
variables with densities c and cumulative distribution function C. Then

CGauss
ρ (u, v) = Φρ

{
Φ−1(u), Φ−1(v)

}
(4.2)

is a copula associated with the Bivariate Normal Distribution or, in another term, a
Gaussian copula. The density of the Gaussian copula is given by:

c(u, v) =
∂2C(u, v)

∂u∂v
=

φρ {Φ−1(u), Φ−1(v)}
φ {Φ−1(u)}φ {Φ−1(v)}

(4.3)

= (1/
√

1− ρ2) · exp

[
− ρ2

2(1− ρ2)

{
Φ−1(u)

}2
+
{
Φ−1(v)

}2
+ ρΦ−1(u)Φ−1(v)

]
The copula dependence parameter θ is the collection of all the unknown correlation
coefficients in Σ. If θ = 0 (ρ = 0), i.e. vanishing correlation, the Gaussian copula
reduces to the product copula:

CGauss
0 (u, v) =

∫ φ−1
1 (u)

−∞
f(x1)dx1

∫ φ−1
2 (v)

−∞
f(x2)dx2

= uv (4.4)
= Π(u, v) if ρ = 0

If θ 6= 0, then the corresponding Gaussian copula generates joint symmetric de-
pendence, but no tail dependence (i.e., there are no joint extreme events). In the
figure 4.1 and figure 4.2 the density function of a Gaussian copula and the density of
F (x1, x2) with ρ = 0 are represented.
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4 Examples

Figure 4.1. Density of a Gaussian copula with ρ = 0.5.
ga.xpl

Figure 4.2. Density function of F (x1, x2) with ρ = 0.
gapdf.xpl
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4 Examples

Figure 4.3. Contour plot of the Gaussian copula, ρ = 0.
gauscont.xpl

A simple, but useful way to represent the shape of a copula is the contour diagram,
that is, graphs of its level sets - the sets in I2 = [0, 1]2 given by C(u, v) = const , for
selected constants in I = [0, 1]. In the figure 4.3 we present the countour diagrams
of the Gaussian copula in the case of independence, ρ = 0.

EXAMPLE 4.3. One can easily verify that the function

CGH
θ (u, v) = exp

[
−
{

(− ln u)θ + (− ln v)θ
}1/θ

]
(4.5)

is a copula function, a so called Gumbel-Hougaard copula. The parameter θ may take
values in the interval [1,∞). This copula allows to generate upper tail dependence.
Indeed,

δ = lim
u→1−

C(u, u)

1− u
= lim

u→1−

1− 2u + C(u, u)

1− u

= lim
u→1−

1− 2u + exp(21/θ ln u)

1− u
= lim

u→1−

1− 2u + u21/θ

1− u
(4.6)

= 2− lim
u→1−

21/θu21/θ−1 = 2− 21/θ

Thus, for θ > 1, the Gumbel-Hougaard copula has an upper tail dependence. For
θ = 1, the Gumbel-Hougaard copula reduces to the product copula, i.e.

C1(u, v) = Π(u, v) = uv (4.7)

For θ →∞, one finds for the Gumbel-Hougaard copula:

Cθ(u, v) −→ min(u, v) = C+(u, v) (4.8)

Figure 4.4 represents a density of a Gumbel-Hougaard copula with θ = 2.5.
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4 Examples

Figure 4.4. Density of a Gumbel-Hougaard copula with θ = 2.5.
gh.xpl

EXAMPLE 4.4. The copula

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ (4.9)

with parameter θ > 0 is assumed to be the Clayton copula. The density function of
the Clayton copula is given by

cθ(u, v) = (1 + θ)u−(θ+1)v−(θ+1)(u−θ + v−θ − 1)−(1/θ+2) (4.10)

As the parameter θ tends to infinity, dependence becomes maximal and as θ tends to
zero, the pair (U, V ) becomes independent. As θ → 1, the distribution tends to the
lower Fréchet bound. Unlike the Gaussian copula, the Clayton copula can generate
asymmetric dependence and lower tail dependence, but no upper tail dependence that
is the limit δ = limu→1−

C(u,u)
1−u

= 0. The density of a Clayton copula for the case of
θ = 1.5 is represented by the figure 4.5.

Figure 4.6 represents the countour diagrams of the Gumbel-Hougaard and Clayton
copulae with parameter θ = 1.5.

Recall that the Gumbel-Hougaard copula generates an upper tail dependence and
the Clayton copula is able to model a lower tail dependence. Figure 4.7 represents
an example of Gumbel-Hougaard and Clayton copulae sampling with fixed marginal
parameters σ1 = 1, σ2 = 1 and θ = 1.5.
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Figure 4.5. Density of a Clayton copula with θ = 1.5
clayton.xpl

Figure 4.6. Contour plots of the Gumbel-Hougaard and Clayton copulae, θ = 1.5
ghccont.xpl
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Figure 4.7. 10000-sample output with fixed σ1 = 1, σ2 = 1 of the Gumbel-Hougaard
and Clayton copulae, θ = 1.5

ghcsampleout.xpl

EXAMPLE 4.5. The function

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
(4.11)

represents the Ali-Mikhail-Haq family of copulae, |θ| ≤ 1. If θ = 0, then we have an
independence: Cθ(u, v) = C0. This family does not contain the Fréchet bounds. The
density of an AMH copula with θ = 0.8 is represented by figure 4.8.

EXAMPLE 4.6. The Frank copula with dependence parameter 0 < θ ≤ ∞ is
represented by the function:

Cθ(u, v) = −1

θ
log

{
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

}
(4.12)

The dependence becomes maximal when θ tends to infinity and independence is
achieved when θ = 0. The density of a Frank copula for the case of θ = 5.0 is given
by figure 4.9.

Figure 4.10 represents the countour diagrams of the Ali-Mikhail-Haq copula with
parameter θ = 0.8 and of the Frank copula with parameter θ = 5.0.

Figure 4.11 represents an example of Ali-Mikhail-Haq and Frank copulae sampling
with fixed marginal parameters σ1 = 1, σ2 = 1 and copulae dependence parameters
of θ = 0.8 and θ = 5.0 respectively.
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Figure 4.8. Density of a AMH copula with θ = 0.8
amh.xpl

Figure 4.9. Density of a Frank copula with θ = 5.0
frank.xpl
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Figure 4.10. Contour plots of the AMH copula with θ = 0.8 and Frank copula with
θ = 5.0

amhfcont.xpl

Figure 4.11. 10000-sample output with fixed σ1 = 1, σ2 = 1 of the AMH copula,
θ = 0.8 and Frank copula, θ = 5.0

amhfsampleout.xpl
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4 Examples

Until now, we have considered copulae only in a 2-dimensional setting. Let us now
extend this concept to the d-dimensional case, for a random variable in Rd with
d ≥ 1.
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5 Multivariate copulae

Let U1, U2, ..., Ud be nonempty sets in R and consider the function F : U1 × U2 ×
...× Ud −→ R. For a = (a1, a2, ..., ad) and b = (b1, b2, ..., bd) with a ≤ b (i.e. ak ≤ bk

for all k) let B = [a, b] = [a1, b1]× [a2, b2]× ...× [an, bn] be the d-box with vertices
c = (c1, c2, ..., cd). It is obvious, that each ck is either equal to ak or to bk.

DEFINITION 5.1. The F -volume of a d-box B = [a, b] = [a1, b1]× [a2, b2]× ...×
[ad, bd] ⊂ U1 × U2 × ...× Ud is defined as follows:

VF (B) =
d∑

k=1

sgn(ck)F (ck) (5.1)

where sgn(ck) = 1, if ck = ak for even k and sgn(ck) = −1, if ck = ak for odd k.

EXAMPLE 5.1. For the case of d = 3, the F -volume of a 3-box B = [a, b] =
[x1, x2]× [y1, y2]× [z1, z2] is defined as:

VF (B) = F (x2, y2, z2)− F (x2, y2, z1)− F (x2, y1, z2)− F (x1, y2, z2)

+F (x2, y1, z1) + F (x1, y2, z1) + F (x1, y1, z2)− F (x1, y1, z1)

DEFINITION 5.2. F is said to be a d-increasing function if for all d-boxes B
with vertices in U1 × U2 × ...× Ud holds:

VF (B) ≥ 0 (5.2)

DEFINITION 5.3. If U1, U2, ..., Ud have a smallest element min U1, min U2,...,
min Ud, respectively, then we say, that a function F : U1 × U2 × ... × Ud −→ R is
grounded if :

F (x) = 0 for all x ∈ U1 × U2 × ...× Ud (5.3)

such that xk = min Uk for at least one k.

While the lemmas, which we have presented for the 2-dimensional case, have analogous
multivariate versions (Nelsen, 1999), we will leave them out here.

DEFINITION 5.4. A d-dimensional copula (or d-copula) is a function C defined
on the unit d-cube Id = I × I × ...× I such that
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5 Multivariate copulae

• for every u ∈ Id holds: C(u) = 0, if at least one coordinate of u is equal to 0;
i.e. C is grounded.

• for every a, b ∈ Id with a ≤ b holds:

VC([a, b]) ≥ 0; (5.4)

i.e. C is d-increasing.

• for every u ∈ Id holds: C(u) = uk, if all coordinates of u are 1 except uk.

Analogously to the 2-dimensional setting, let us state Sklar’s theorem for the d-
dimensional case.

THEOREM 5.1. Sklar’s Theorem:
If the marginals F1, ...Fd of the multiveriate distribution function F are continuous,
there exists a unique copula C : [0, 1]d → [0, 1] such that

F (x1, ..., xd) = C {FX1(x1), ..., FXd
(xd)} (5.5)

Conversely, if C is a copula and FX1 , FX2 , ..., FXd
are distribution functions then F de-

fined by 5.5 is a d-dimensional distribution function with marginals FX1 , FX2 , ..., FXd
.

If the density f of F exists, one can derive the relationship between the density f of
F and c of C:

f(x1, ..., xd) = c {FX1(x1), ..., FXd
(xd)}

d∏
j=1

fj(xj) (5.6)

where the copula density is

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud

(5.7)

and uj = FXj
(xj), fj(xj) = F

′
Xj

(xj).

In order to illustrate the d-copulae we present the following examples:

EXAMPLE 5.2. Let Φ denote the univariate standard normal distribution function
and ΦΣ,d the d-dimensional standard normal distribution function with correlation
matrix Σ. Then a function

CGauss(u1, ..., ud, Σ) = ΦΣ,d

{
Φ−1(u1), ..., Φ

−1(ud)
}

=

∫ φ−1
1 (ud)

−∞
...

∫ φ−1
2 (u1)

−∞
fΣ(x1, ..., xn)dx1...dxd (5.8)
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5 Multivariate copulae

is a d-dim Gaussian copula. The density of the d-dim Gaussian copula is given by

f(u1, ..., ud, Σ) =
∂dC(u1, ..., ud)

∂u1, ..., ∂ud

=
1√

det(Σ)
×

(5.9)

× exp

{
−(Φ−1(u1), ..., Φ

−1(ud))
′
(Σ−1 − Id)(Φ

−1(u1), ..., Φ
−1(ud)

2

}
EXAMPLE 5.3. A d-dim Gumbel-Hougaard copula with dependence parameter θ
from the interval [1,∞) is a function:

CGH
θ (u1, ..., ud) = exp

−{ d∑
j=1

(− log uj)
θ

}1/θ
 (5.10)

If θ = 1, Gumbel-Hougaard copula reduces to the d-dimensional product copula, i.e.

C1(u1, ..., ud) =
d∏

j=1

uj = Πd(u) (5.11)

EXAMPLE 5.4. A d-dim Frank copula with parameter θ > 0 is given by

Cθ (u1, ..., ud) = −(1/θ) log

{
1 +

∏d
i=1(e

−θui − 1)

(e−θ − 1
)d−1

}
(5.12)

EXAMPLE 5.5. A d-dim Ali-Mikhail-Haq copula with −1 ≤ θ < 1 is defined by

Cθ (u1, ..., ud) =

∏d
i=1 ui

1− θ
{∏d

i=1(1− ui)
} (5.13)

EXAMPLE 5.6. A d-dim Clayton copula with copula dependence parameter θ > 0
is given by

Cθ (u1, ..., ud) = (u−θ
1 + ... + u−θ

d − d + 1)−1/θ (5.14)

and its density function is

cθ (u1, ..., ud) =
d∏

j=1

{1 + (j − 1)θ}
d∏

j=1

u
−(θ+1)
j

{
d∑

j=1

u−θ
j − d + 1

}−(1/θ+d)

(5.15)
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6 Copulae estimation

Consider a vector of random variables: X = (X1, ..., Xd)
T . Let FX1(x1, δ1),...,

FXd
(xd, δd) denote the distribution functions of X1, ..., Xd. Recall from Sklar’s

theorem, that we can write the following copula-based model for the distribution of
the vector X:

F (x1, ..., xd; δ1, ..., δd; θ) = C {FX1(x1, δ1), ..., FX2(x2, δ2); θ} (6.1)

Suppose we want to estimate this model, i.e. we want to estimate the copula
dependence parameter θ and the parameters from the marginals δ1, ..., δd.
Assume that the density of the copula C is given by c:

c(u1, ..., ud; θ) =
∂dC(u1, ..., ud; θ)

∂u1...∂ud

(6.2)

If the density f of F exists, one can derive the following relationship between the
density f of F and c of C:

f(x1, ..., xd; δ1, ..., δd; θ) = c {FX1(x1, δ1), ..., FXd
(xd, δd); θ}

d∏
j=1

fj(xj ; δj) (6.3)

Suppose that we have n i.i.d. d-dimensional vectors of observations (x1, ..., xn), i.e.
{xi}n

i=1 with (x1,i, ..., xd,i)
T . The “full” likelihood function for {xi}n

i=1 is then given
by

L(x1, ..., xd; δ1, ..., δd; θ) =
n∏

i=1

f(x1,i, ..., xd,i; δ1, ..., δd; θ) (6.4)

and the corresponding “full” log-likelihood function is given by

l(x1, ..., xd; δ1, ..., δd; θ)

=
n∑

i=1

[
log c {FX1(x1,i, δ1), ..., FXd

(xd,i, δd); θ}+
d∑

j=1

log fj(xj,i; δj)

]
(6.5)

=
n∑

i=1

log c {FX1(x1,i, δ1), ..., FXd
(xd,i, δd); θ}+

n∑
i=1

d∑
j=1

log fj(xj,i; δj)

Our objective is to maximize this log-likelihood numerically.
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6 Copulae estimation

6.1 Full maximum likelihood estimation

In the full maximum likelihood (FML) procedure the marginal parameters δ1, ..., δd

and the copula dependence parameter θ are estimated simultaneously. The estimates

vector
(
δ̂1, ..., δ̂d, θ̂

)T

is a solution of(
∂l

∂δ1

, ...,
∂l

∂δd

,
∂l

∂θ

)
= 0 (6.6)

The drawback of the FLM estimation is that with an increasing scale of the problem,
the algorithm becomes too burdensome computationally.

6.2 The inference for margins method

In the inference for margins (IFM) method, the marginal parameters δ1, ..., δd are
estimated in the first step. The estimator of the copula dependence parameter
is obtained in the second step by substituting δ̂1, ..., δ̂d in the “full” log-likelihood
function and by numerical maximisation with respect to θ.

1. The estimates vector (δ̂1, ..., δ̂d) is obtained by maximising the log-likelihood
function for each marginal:

lj(δj) =
n∑

i=1

fj(xj,i; δj) for j = 1, ..., d, (6.7)

i.e. for j = 1, ..., d the estimates are given by

δ̂j = arg max
δ

lj(δj) (6.8)

2. Substitute these marginal estimates in the “full” log-likelihood and maximize

l(δ̂1, ..., δ̂d; θ) =
n∑

i=1

ln c
{

FX1(x1, δ̂1), ..., FXd
(xd, δ̂d); θ

}
(6.9)

with respect to θ, i.e. the estimator of the copula dependence parameter θ is
given by

θ̂ = arg max
θ

l(δ̂1, ..., δ̂d; θ) (6.10)
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6 Copulae estimation

Figure 6.1. Dax and Dow Jones log-returns for the period January 1, 1997 to March
20, 2004 (1573 observations).

daxdowlogreturns.xpl

6.3 Application of the IFM procedure

The IFM procedure is applied to daily observations of a portfolio consisting of the
Dax and the Dow Jones for the period January 1, 1997 to March 20, 2004 (1823
observations). The log-returns are shown the picture 6.1. We consider a moving
time window with n = 250 observations, i.e. the parameter estimates at each point
are obtained from the last 250 observations. The univariate margins (log-returns)
are assumed to be normally distibuted Xj,i ∼ N(0, σ2

j ), j = 1, 2 with parameters
δj = σ2

j estimated from the data. Figure 6.2 and 6.3 represent the density of the Dax
and Dow Jones respectively, estimated nonparametrically using Quartic kernel with
ĥ = 1.06σ̂n−

1
5 .

To make procedure running, we have to specify the copula function. Selected copula
belongs to the Gumbel-Hougaard family of copulae:

CGH
θ (u, v) = exp

[
−
{

(− log u)θ + (− log v)θ
}1/θ

]
(6.11)

Recall, that for this copula parameter θ may take values in the interval [1,∞).
Independence is achieved if θ = 1.
According to the IFM procedure, we estimate at first parameters from the marginal
distributions. Figure 6.4 represents estimates of parameters δ1 from the Dax and
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6 Copulae estimation

Figure 6.2. Density of the Dax log-returns (red) and normal density (black), estimated
nonparametrically using Quartic kernel with ĥ = 1.06σ̂n−

1
5 .

kernelest.xpl

Figure 6.3. Density of the Dow Jones log-returns (blue) and normal density (black),
estimated nonparametrically using Quartic kernel with ĥ = 1.06σ̂n−

1
5 .

kernelest.xpl
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6 Copulae estimation

min max mean median std error
δ̂1 0.013345 0.029246 0.018396 0.017827 0.0042519

δ̂2 0.008681 0.016996 0.012817 0.012586 0.0017591

θ̂ 1 1.12866 1.033 0.0195815 0.034162

Table 6.1. Descriptive statistics for δ̂1, δ̂2, θ̂

δ2 from the Dow Jones log-returns (upper respectively middle panel) and copula
dependence parameter θ between Dax and Dow Jones log-returns (lower panel).
Descriptive statistics for δ̂1, δ̂2 and θ̂ are given by the table 6.1.

Estimates of the copula dependence parameter θ reaches its minimum equal to
1, which indicates independence for the Gumbel-Hougaard copula, at the time
point corresponding to November 30, 2000. The maximum is reached at the time
point corresponding to March 11, 2004. Figures 6.5 and 6.6 represent the last
250 realizations of the Dax and Dow Jones log returns, corresponding to minimal
(November 30, 2000) and maximal (March 11, 2004) dependence.
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6 Copulae estimation

Figure 6.4. Parameters δ̂1 and δ̂2 estimated from normal marginals of the Dax and
Dow Jones log-returns (upper respectively middle panel) and estimated
copula dependence parameter θ̂ (lower panel). The resultes are obtained
using IFM method with moving time window n = 250.

delta12thetaIFM.xpl
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6 Copulae estimation

Figure 6.5. Dax and Dow Jones log-returns at minimal dependence (November 30,
2000).

maxmindep.xpl

Figure 6.6. Dax and Dow Jones log-returns at maximal dependence (March 11, 2004).
maxmindep.xpl
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7 Adaptive copulae estimation

In this part we discuss a new procedure for estimating the copula dependence
parameter θ using adaptive techniques. The approached, called local change point
analysis(LCPD) (Mercurio, Spokoiny, 2004), is based on the assumption of local
time homogeneity, i.e. for every moment n there is exists a historic time interval
[n−m, n[, in which the copula parameter θ is nearly constant. Our main objective is
therefore to describe the interval of homogeneity and to estimate copula dependence
parameter θn from this interval.

7.1 Choice of the interval of homogeneity

The approach is based on the adaptive choice of the interval of homogeneity for
the endpoint n. This choice is done by using local change point detection (LCPD)
algorithm. One defines a family of intervals of the form I = {Ik, k = 0, 1, ...} such
that Ik = [n−mk, n] with mk: m0 < m1 < m2 < ... ≤ n. Thus, the intervals Ik are
ordered by their length mk.

The LCPD procedure is made up by the following parts:

1. start from the smallest interval I0

2. test the hypothesis of homogeneity within I0

3. if the hypothesis is not rejected, take the next larger interval

4. continue the procedure until change point ν̂ is detected or the largest possible
interval [0, n[ is reached

5. if the hypothesis of homogeneity within some Ik is rejected, the estimated
interval of homogeneity is given by Î = [ν̂, n[, otherwise we take Î = [0, n[

6. estimate the copula dependence parameter θ from observation St for t ∈ Î,
assuming the homogeneous model within Î, i.e. define θ̂n = θ̃bI

To make the procedure running, we have to perform the homogeneity test.
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7 Adaptive copulae estimation

7.2 Test of homogeneity against a change point
alternative

Let I = [n −m, n[ be an interval candidate. The null hypothesis means that the
observations St for t ∈ I follow the model with dependence parameter θ. The alterna-
tive hypothesis claims that the parameter θ changes spontaneously in some internal
point τ of the interval I. Let TI be a set of internal points within I. Therefore we test:

H0: θ = const ∀τ ∈ TI against
H1: ∃τ ∈ TI : θt = θ for t ∈ J = [τ, n[ and θt = θ

′
( 6= θ) for t ∈ J c = I\J = [n−m, τ [

H0 corresponds to the log-likelihood function lI(θ) and H1 leads to the following
log-likelihood: lJ(θ) + lJc(θ

′
). The likelihood ratio test statistics for the change point

alternative with the change point location at the point τ is then can be written as:

TI,τ = max
θ,θ′

{
lJ(θ) + lJ ′ (θ

′
)
}
−max

θ
lI(θ)

= lJ(θ̃J) + lJc(θ̃Jc)− lI(θ̃I) = l̂J + l̂Jc − l̂I (7.1)

The change point test for the interval I is defined as a maximum of such a test
statistics over the internal points τ ∈ TI :

TI = max
τ∈TI

TI,τ (7.2)

The change point test compares this test statistics with a critical value λI which
may depend on the interval I and the nominal first kind error probability α. The
way of choosing the critical value is described below. One rejects the hypothesis
of homogeneity if TI > λI . The estimator of the change point is then defined as
ν̂ = arg maxτ∈TI TI,τ .

7.3 Parameters of the LCPD procedure

To start the procedure running, we have to specify some parameters. This includes:

• Selection of interval candidates I and setting the internal points TI for each of
this intervals.

• Choice of the critical values λI , which may depend on the interval I and the
nominal first kind error probability α.
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7 Adaptive copulae estimation

7.3.1 Selection of I

It is usefull to take the set I of interval candidates in form of an arithmetic or a
geometric grid. We fix the length of the first interval to m0, that is, for the end point
n we define the first interval as I0 = [n −m0, n[. At every iteration this length is
increased by adding or by multiplying with some fixed step c > 0. For our simulated
examples, which are discussed below, we set I in form of a geometric grid, the family
of tested intervals has then the following form:

Ik = [n−mk, n[ where mk = [m0c
k] for k = 0, 1, 2, ... (7.3)

Here [x] means the integer part of x.

7.3.2 Setting of TI

For every interval I ∈ I, I = [n−m, n[, one defines TI as the set of all internal points
of I separated away form the end point. That is, we fix some parameters ρ1 ≤ 1/3
and ρ2 ≤ 1/3 and set TI = {t : n−m + ρ1m ≤ t ≤ n− ρ2m}. A reasonable choice
of ρ2 is one third of the interval length and of ρ1 the decimal place of c, i.e. if we
set c = 1.1, than ρ = 0.1. The right choice of the parameters ρ1 and ρ2 is very
important. On the one side, the behavior of the log-likelihood test statistics TI,τ

becomes quite irregular when τ approaches the end-points of the interval I. This
is the case if ρ1 or ρ2 is too small. On the other side, if we set ρ1 or ρ2 large, the
change points which are close to the end-points of the interval could not be detected.
In order to illustrate this problem, we consider the following example.
A set of 200 observations was simulated from the Gumbel-Hougaard copula with
parameter θ = 1 for the first 100 observations and θ = 3 for the second half. The
test statistics TI,τ corresponding to this case (length of the interval I is fixed and
equal to 200) is given by the upper panel of the figure 7.1. The maximum of the
test statistics TI,τ is equal to 40.902 and reached at τ = 101. Since the values of ρ1

and ρ2 will never exceed one third of the interval length, there are no obstacles in
detecting the change point in the middle of the interval, that is, one rejects H0 very
significantly.
Let us now consider another example. We simulate again 200 observations from the
Gumbel-Hougaard copula. Now however, we set θ = 1 for the first 30 observations
and θ = 3 for the last 170 observations. The test statistics TI,τ corresponding to
this case is given by the lower panel of the figure 7.1. The maximum of the test
statistics TI,τ is equal to 15.744 and is reached at τ = 28. In this case a choice of ρ1

constitutes a problem: by setting mρ1 = 40 (that is ρ1 = 0.2), which corresponds to
one fifth of the interval length, a change point at τ = 30 will either not be detected
at all, or will be detected at a wrong place (dependent of the critical value λI), since
all the points τ < 40 will not be taken into account by searching the maximum of
TI,τ over all τ ∈ TI .
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7 Adaptive copulae estimation

Figure 7.1. Test statistics TI,τ for one fixed interval I plotted against τ . Jump at
the middle point (τ = 100) and not at the middle point (τ = 30) are
represented by the upper and lower panel, respectively.

testChangePoint.xpl

7.3.3 Choice of the critical values λI

The standard approach for choosing the critical values is to provide a prescribed first
kind error probability α (e.g. α = 0.05 or α = 0.1), that is the number of rejections of
the test statistics, obtained from Monte Carlo simulations for the homogeneous case
should not exceed the given level α. We define for every I a value βI using Bonferonni
method: we set βI in such a way that

∑
I∈I βI = α. A reasonable proposal is to set

βIk
= αm−1

k

(
∞∑
l=0

m−1
l

)−1

≈ α(1− c−1)

ck
(7.4)

and accordingly the value αIk
:

αIk
≈ α(1− c−(k+1)) (7.5)

Then the critical values λIk
are selected by Monte Carlo in order to provide a

prescribed first kind error probability αIk
for every interval Ik, that is, it holds:

P
(
maxk′≤kTI

′
k

> λI
′
k

)
= αIk

(7.6)
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8 Some simulated examples

EXAMPLE 8.1. In this example a set of 160 observations was simulated from a
bivariate Clayton copula

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ

with parameter:

θt =



1 if 1 ≤ t ≤ 40

5 if 41 ≤ t ≤ 80

10 if 81 ≤ t ≤ 120

3 if 121 ≤ t ≤ 160

Figure 8.1 represents one simulation of the copula parameter θ, estimated by LCPD
algorithm using parameters α = 0.05, m0 = 20, c = 1.1 and ρ1 = 0.1, ρ2 = 0.3.

EXAMPLE 8.2. In this example a set of 240 observations was simulated from a
bivariate Gumbel-Hougaard copula

Cθ(u, v) = exp

[
−
{

(− ln u)θ + (− ln v)θ
}1/θ

]
with parameter:

θt =


1 if 1 ≤ t ≤ 80

3 or 2 if 81 ≤ t ≤ 160

1 if 161 ≤ t ≤ 240

We assume at first that all the data comes from the homogeneous model following a
Gumbel-Hougaarg copula. We assume the marginals beeing normal with variance 1.
Based on the assumption of homogeneity, that is, setting a constant parameter θ (in
our simulated example we use θ=1) for all 240 data points, we simulate by Monte-
Carlo sequentially growing series of observations. The series length corresponds to
the length of the interval Ik. The number of simulations performed in our example
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8 Some simulated examples

Figure 8.1. One simulation of the copula parameter θ: real (red) and estimated
(blue). The results are obtained with parameters α = 0.05, m0 = 20,
c = 1.1, ρ1 = 0.1, ρ2 = 0.3

claytononesim.xpl

is 1000. Using this simulated data, we calculate 1000 test statistics for each interval
Ik. Starting from the smallest interval I0, we define a critical value λI0 for I0 as a
(1−αI0)-quantile of the test statistics TI0 . A setting of αIk

(prescribed first kind error
probability for each interval Ik) was discussed in chapter 7.3.3. After computing λI

k
′

for all k
′
< k, every following λIk

for the interval Ik is computed in a way that the
interval Ik is accepted with a frequency 1− αIk

. Critical values, computed in such a
way, are in fact empirical quantiles of the test statistics under the null hypothesis
of homogeneity. Figure 8.2 plots critical values, computed by 1000 Monte-Carlo
simulations using the following parameters of the procedure: initial length m0 = 20;
parameter ρ2 = 0.3; α = 0.05 (solid line) and α = 0.1 (dashed line); c = 1.1 and
ρ1 = 0.1 (black line); c = 1.2, ρ1 = 0.2 (red line); c = 1.25, ρ1 = 0.25 (blue line).

A choice of α controls a trade off between type-1-error and type-2-error. Parameter
c is responsible for the speed with which the length of the intervals Ik grows: a large
c results in a rapid growth of the interval length. The problem can occur if at some
iteration a tested interval Ik contains more than one change point: the change point
detection procedure may simply break down. To overcome this problem, one can set
c sufficiently small. However, with decreasing c, critical values λIk

become larger,
which results in less sensitivity of the procedure.
For our simulated example we compare the results for different settings of parameters:
first, we set c = 1.1, then c = 1.2 and c = 1.25, which corresponds to the choice
of ρ1 = 0.1, ρ1 = 0.2 and ρ1 = 0.25, respectively. We also vary a jump size: the
left panel of figure 8.3 and figure 8.4 represent a pointwise mean and a pointwise
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8 Some simulated examples

Figure 8.2. Critical values for α = 0.05 (solid line) and α = 0.1 (dashed line),
computed by simulations using Gumbel-Hougaard copula with parameters
m0 = 20, ρ2 = 0.3 and c = 1.1, ρ1 = 0.1 (black line), c = 1.2, ρ1 = 0.2
(red line), c = 1.25, ρ1 = 0.25 (blue line).

critplot.xpl

median of the estimated parameter θ respectively, based on 200 simulations of the
data, simulated with a jump size of 2. The right panel of these figures describes the
same for the data, simulated with a jump size of 1.

Small jumps seem to be more difficult to recognize, that is, the detection speed
decreases with a decreasing jump size. In order to prove this, we have a look on the
descriptive statistics for detection speeds to sudden jumps of the parameter θ. Table
8.1 and table 8.2 introduce a percentage rule which tells after how many steps a
sudden jump in parameter θ was detected at 40%, 50% and 60% level of a jump size
of 2 and a jump size of 1, respectively. For example, for the data simulated from
the Gumbel-Hougaard copula with jump size of 2, the first jump (occurring at the
81st point), was detected on average after 9.6 steps at the 40% level. The number
increases to 10.2 for the 60% rule. The detection speed for downward jumps is faster,
that is, for example only 6.4, respectively 7.8, time steps are on average necessary
to detect the second jump (occurring at the 161st point) at the 40% respectively at
the 60% level of a jump size. Additionally, we consider the data simulated from the
Gumbel-Hougaard copula with a jump size of 1. The detection speeds decrease, that
is, the average number of time points necessary to detect the jump at the 40%, 50%
or 60% level of a jump size of 1 is larger than those for the jump size of 2.
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8 Some simulated examples

Figure 8.3. Pointwise mean (blue line) based on 200 simulations of the data, simulated
from the Gumbel-Hougaard copula and real parameter (dashed lines).
The left panel represents a jump size equal to 2, the right panel represents
a jump size equal to 1. The results are obtained with parameters m0 = 20,
ρ2 = 0.3 and c = 1.1, ρ1 = 0.1 (upper panel); c = 1.2, ρ1 = 0.2 (middle
panel); c = 1.25, ρ1 = 0.25 (lower panel).

thetaplotmean.xpl
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8 Some simulated examples

Figure 8.4. Pointwise median (red line) and quartiles (dashed lines) for the estimates
of the copula parameter θt, based on 200 simulations of the data, simulated
from the Gumbel-Hougaard copula. The left panel represents a jump size
equal to 2, the right panel represents a jump size equal to 1. The results
are obtained with parameters m0 = 20, ρ2 = 0.3 and c = 1.1, ρ1 = 0.1
(upper panel); c = 1.2, ρ1 = 0.2 (middle panel); c = 1.25, ρ1 = 0.25
(lower panel).

thetaplot.xpl
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8 Some simulated examples

Detection decays with parameters m0 = 20, c = 1.1, ρ1 = 0.1, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 9.595 3.722 24 1
50% rule 9.930 3.903 25 1
60% rule 10.165 4.043 26 2

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 6.390 3.410 20 1
50% rule 7.080 3.418 20 1
60% rule 7.795 3.774 21 2

Detection decays with parameters m0 = 20, c = 1.2, ρ1 = 0.2, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 9.465 3.567 22 1
50% rule 9.780 3.774 24 1
60% rule 10.010 3.832 28 2

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 6.140 3.365 20 1
50% rule 6.965 3.400 20 1
60% rule 7.650 3.644 21 2

Detection decays with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 9.215 3.596 21 1
50% rule 9.475 3.697 21 2
60% rule 9.740 3.860 24 2

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 6.175 3.158 15 1
50% rule 6.890 3.216 17 1
60% rule 7.605 3.634 21 2

Table 8.1. Descriptive statistics for the detection speeds to sudden jumps of the
Gumbel-Hougaard copula dependence parameter with a jump size of 2.
The results are obtained with parameters α = 0.05, m0 = 20, ρ2 = 0.3
and different parameters c and ρ1. Statistics are based on 200 simulations.
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Detection decays with parameters m0 = 20, c = 1.1, ρ1 = 0.1, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 11.115 6.256 30 1
50% rule 12.400 6.552 31 1
60% rule 13.890 7.324 37 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 9.835 6.396 28 1
50% rule 11.395 6.887 41 1
60% rule 12.700 7.903 53 1

Detection decays with parameters m0 = 20, c = 1.2, ρ1 = 0.2, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.585 5.997 30 1
50% rule 11.905 6.175 31 1
60% rule 13.345 6.678 37 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 9.085 6.114 32 1
50% rule 10.510 6.324 41 1
60% rule 12.385 7.681 60 1

Detection decays with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.210 5.829 28 1
50% rule 11.535 6.150 29 1
60% rule 13.030 6.801 37 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 8.885 5.428 28 1
50% rule 10.075 5.719 32 1
60% rule 11.800 7.880 61 1

Table 8.2. Descriptive statistics for the detection speeds to sudden jumps of the
Gumbel-Hougaard copula dependence parameter with a jump size of 1.
The results are obtained with parameters α = 0.05, m0 = 20, ρ2 = 0.3
and different parameters c and ρ1. Statistics are based on 200 simulations.
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EXAMPLE 8.3. In this example a set of 240 observations was simulated from a
bivariate Clayton copula

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ

with parameter:

θt =


1 if 1 ≤ t ≤ 80

3 or 2 if 81 ≤ t ≤ 160

1 if 161 ≤ t ≤ 240

Figure 8.5 represents critical values, computed by simulations using Clayton copula.
Computation is done in the same way as for the data simulated from the Gumbel-
Hougaard copula. Pointwise mean and pointwise median are represented by figure
8.6 and 8.7, respectively. Descriptive statistics for the detection speeds are given by
table 8.3 for a the jump size of 2 and table 8.4 for a jump size of 1.
As well as in the case of a Gumbel-Hougaard copula, a decreasing jump size results
in a decrease of the detection speed. Although, the detection speed for downward
jumps is faster, some cases have occured, when the second jump at the 161st point
was not detected at all. For the data simulated with a jump size of 2, the number of
such a failure amounts to 1 for 40%, 50% or 60% rule, i.e. for one simulation the
jump in θ was not detected already at the 40% level of a jump size. For the data
simulated with a jump size of 1, this number amounts to 2 failures for the 40% rule
and increases to 6 for the 60% rule, i.e. for 2 out of 200 simulations the jump at θ
was not detected already at the 40% level and for 6 out of 200 simulations at the
60% level.

In order to compare the results obtained from the data simulated with a Gumbel-
Hougaard and with a Clayton copula, we introduce a concept of the Kullback-
Leibler divergence. In general, the Kullback-Leibler divergence (or Kullback-Leibler
information number) for two probability densities p(y, θ) and p(y, θ

′
) is defined as

K(θ, θ
′
) = Eθ log

(
p(y, θ)/p(y, θ

′
)
)

=

∫
log

p(y, θ)

p(y, θ′)
p(y, θ)dy (8.1)

The Kullback-Leibler divergence number aims to measure the similarity between two
probability densities. It fulfills

K(θ, θ
′
) ≥ 0 (8.2)

and
K(θ, θ

′
) = 0 ⇔ p(y, θ

′
) = p(y, θ

′
) (8.3)

In the case of a copula, we are interested in the change of the information connected
with a jump of a copula parameter θ; first for the upward jump, and then for
the downward jump. Thus, for varying parameter θ2 and fixed θ1 = 1, we denote
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Detection decays with parameters m0 = 20, c = 1.1, ρ1 = 0.1, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 11.725 6.966 34 1
50% rule 13.585 7.916 38 1
60% rule 15.125 9.052 48 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 10.874 7.992 54 1
50% rule 11.945 8.336 54 1
60% rule 12.975 8.554 54 1

Detection decays with parameters m0 = 20, c = 1.2, ρ1 = 0.2, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 11.065 6.234 33 1
50% rule 12.730 7.322 37 1
60% rule 13.655 7.654 41 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 9.814 6.996 36 1
50% rule 10.919 7.913 54 1
60% rule 11.925 8.230 54 1

Detection decays with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.940 6.519 32 1
50% rule 12.440 7.326 39 1
60% rule 13.410 7.708 39 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 9.688 6.716 36 1
50% rule 10.764 7.416 53 1
60% rule 12.352 8.109 53 1

Table 8.3. Descriptive statistics for the detection speeds to sudden jumps of the
Clayton copula dependence parameter with a jump size of 2. The results
are obtained with parameters α = 0.05, m0 = 20, ρ2 = 0.3 and different
parameters c and ρ1. Statistics are based on 200 simulations.
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Detection decays with parameters m0 = 20, c = 1.1, ρ1 = 0.1, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.650 10.183 52 1
50% rule 13.215 11.766 53 1
60% rule 15.545 12.697 62 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 14.364 14.128 78 1
50% rule 16.700 15.204 78 1
60% rule 18.660 16.238 78 1

Detection decays with parameters m0 = 20, c = 1.2, ρ1 = 0.2, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.100 9.755 48 1
50% rule 12.045 10.576 51 1
60% rule 14.030 11.454 60 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 17.565 15.578 79 1
50% rule 20.000 17.192 79 1
60% rule 21.772 17.682 79 1

Detection decays with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3

to the first
jump at t = 80 mean standard deviation maximum minimum

40% rule 10.100 10.051 60 1
50% rule 11.745 10.918 60 1
60% rule 13.870 11.912 60 1

to the second
jump at t = 160 mean standard deviation maximum minimum

40% rule 16.626 14.837 74 1
50% rule 19.843 17.547 75 1
60% rule 21.727 18.064 79 1

Table 8.4. Descriptive statistics for the detection speeds to sudden jumps of the
Clayton copula dependence parameter with a jump size of 1. The results
are obtained with parameters α = 0.05, m0 = 20, ρ2 = 0.3 and different
parameters c and ρ1. Statistics are based on 200 simulations.
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8 Some simulated examples

Figure 8.5. Critical values for α = 0.05 (solid line) and α = 0.1 (dashed line),
computed by simulations using Clayton copula with parameters m0 = 20,
ρ2 = 0.3 and c = 1.1, ρ1 = 0.1 (black line), c = 1.2, ρ1 = 0.2 (red line),
c = 1.25, ρ1 = 0.25 (blue line).

critplot.xpl

K(1, 2) K(1, 3) K(2, 1) K(3, 1)
Gumbel-Hougaard 123.01 339.36 79.377 158.08

Clayton 24.938 84.439 18.096 48.803

Table 8.5. Kullback-Leibler information number K(θ1, θ2) and K(θ2, θ1) for fixed
θ1 = 1 and parameter θ2 = 2.0, 3.0; for the Gumbel-Hougaard and the
Clayton copula.

by K(θ1, θ2) the Kullback-Leibler information number for the upward jump, from
θ1 = 1.0 to θ2 = 1.0, 1.1, 1.2, ..., 10.9. K(θ2, θ1) denotes then the Kullback-Leibler
information number for the downward jump, from θ2 = 1.0, 1.1, 1.2, ..., 10.9 to
θ1 = 1.0. The upper and lower panel of figure 8.8 plot K(θ1, θ2) and K(θ2, θ1) against
θ2 for fixed θ1 = 1.0. The blue line refers to the Gumbel-Hougaard copula and the
red line to the Clayton copula. Table 8.5 represents the Kullback-Leibler information
number for θ2 = 2.0, 3.0 that corresponds to the jump size in our simulated examples.

Comparing the results for the Gumbel-Hougaard and the Clayton copula, it is easy
to see, that a decreasing Kullback-Leibler information number results in increasing
detection decays.
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8 Some simulated examples

Figure 8.6. Pointwise mean (blue line) based on 200 simulations of the data, simulated
from the Clayton copula and real parameter (dashed line). The left panel
represents a jump size equal to 2, the right panel represents a jump size
equal to 1. The results are obtained with parameters m0 = 20, ρ2 = 0.3
and c = 1.1, ρ1 = 0.1 (upper panel); c = 1.2, ρ1 = 0.2 (middle panel);
c = 1.25, ρ1 = 0.25 (lower panel).

thetaplotmean.xpl
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8 Some simulated examples

Figure 8.7. Pointwise median (red line) and quartiles (dashed lines) for the estimates
of the copula parameter θt, based on 200 simulations of the data, simulated
from the Clayton copula. The left panel represents a jump size equal
to 2, the right panel represents a jump size equal to 1. The results are
obtained with parameters m0 = 20, ρ2 = 0.3 and c = 1.1, ρ1 = 0.1 (upper
panel); c = 1.2, ρ1 = 0.2 (middle panel); c = 1.25, ρ1 = 0.25 (lower
panel).

thetaplot.xpl
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8 Some simulated examples

Figure 8.8. Kullback-Leibler information number K(θ1, θ2) (upper panel) and
K(θ2, θ1) (lower panel) plotted against θ2 for fixed θ1 = 1. The blue line
refers to the Gumbel-Hougaard copula and the red line to the Clayton
copula.

KullbackLeibler.xpl
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9 Applications to real data

9.1 Bivariate case

In this chapter the performance of the LCPD procedure is illustarted by means
of the different data sets from the Dax Index (the data is available under http:
//sfb649.wiwi.hu-berlin.de/fedc). The data sets represent closing prices of the
following stocks: DaimlerChrysler (DCX) and Volkswagen (VW) in the first example;
Allianz (ALV) and Münchener Rückversicherung (MUV2) in the second example;
Bayer (BAY) and BASF (BAS) in the third example. The period under consideration
goes from January 1st, 2000 to December 31rd, 2004. Each time series consists of
1270 observations.
Figures 9.1, 9.4 and 9.7 represent parameters estimated from the marginals (log
returns) for DCX and VW; ALV and MUV2; BAY and BAS. The estimation is
done by using exponential smoothing techniques. At every time point t, marginal
parameters δ̂t,j = σ̂2

t,j, j = 1, 2 are estimated from observations of the previous period
using the exponential weighting scheme:

δ̂t,j = σ̂2
t,j = (eλ − 1)

∑
s<t

e−λ(t−s)X2
s,j (9.1)

where Xs,j denotes log returns of DCX and VW; ALV and MUV2; or BAY and BAS
at time s and 0 ≤ λ ≤ 1 is a smoothing parameter (we set λ = 1/20).
In the next step, we standardize the data by the estimated parameters from the
marginals. A new data is then used for the estimation of the copula dependence
parameter θ. The chosen copula belongs to the Gumbel-Hougaard family of copulae:

Cθ(u, v) = exp

[
−
{

(− ln u)θ + (− ln v)θ
}1/θ

]
Racall that for the Gumbel-Hougaard θ = 1 indicates independence.
To start the LCPD procedure running, we specify the parameters of the procedure.
We set the nominal first kind error probability α = 0.05; initial interval length
m0 = 20; the parameter controlling the growth rate of the tested intervals c = 1.25
and correspondingly ρ1 = 0.25; parameter ρ2 = 0.3.
Figures 9.2, 9.5 and 9.8 display a stock price process (upper panel), log returns
(middle panel) and esdimated dependence parameter θ (lower panel) between DCX
and VW; ALV and MUV2; or BAY and BAS. Figures 9.3, 9.6 and 9.9 represent
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9 Applications to real data

as well parameter θ with its mean (upper panel) as estimated intervals of time
homogeneity Î (lower panel).

9.2 Multivariate case

In this section we apply the LCPD procedure to the same data, but in the multivari-
ate setting. In the first example, we consider 4-dimensional data: DaimlerChrysler,
Volkswagen, Bayer and BASF; in the second example 6-dimesional data: Daimler-
Chrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung. As
well as in the bivariate case, the period under consideration is from January 1st,
2000 to December 31rd, 2004 (1270 observations). A Clayton copula is chosen:

Cθ (u1, ..., ud) = (u−θ
1 + ... + u−θ

d − d + 1)−1/θ (9.2)

with copula density

cθ (u1, ..., ud) =
d∏

j=1

{1 + (j − 1)θ}
d∏

j=1

u
−(θ+1)
j

{
d∑

j=1

u−θ
j − d + 1

}−(1/θ+d)

(9.3)

Recall that θ → 0 indicates independence for the Clayton copula. We estimate pa-
rameters from the marginals in the same way as before, using exponential smoothing:

δ̂t,j = σ̂2
t,j = (eλ − 1)

∑
s<t

e−λ(t−s)X2
s,j (9.4)

Here Xs,j, j = 1, ..., 6 denotes log returns of DCX, VW, ALV, MUV, BAY and
BAS at time point s. The data standardized by the estimated parameters from
the marginals is used for the estimation of parameter θ. Parameters of the LCPD
procedure are chosen as before: α = 0.05, m0 = 20, c = 1.25 and ρ1 = 0.25, ρ2 = 0.3.
For the 4-dimensional case (DCX, VW, BAY, BAS) we represent parameter θ and its
mean in the upper panel of figure 9.10 and estimated intervals of time homogeneity in
the lower panel. Equivalently, figure 9.11 dislays θ, its mean and the intervals of time
homogeneity for the 6-dimensional data (DCX, VW, BAY, BAS, ALV, MUV2). As
expected, the length of the intervals of time homogeneity decreases with increasing
dimensions of the data. Since the esimates of the copula dependence parameter θ is
now obtained from shorter interval lengths, it is becoming more volatile.
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9 Applications to real data

Figure 9.1. Marginal parameters for DaimlerChrysler (upper panel) and Volkswagen
(lower panel) estimated by exponential smoothing with parameter λ =
1/20.

testrealdata.xpl
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9 Applications to real data

Figure 9.2. Stock price process (upper panel), log returns (middle panel) and cop-
ula dependence parameter θ (lower panel) for DaimlerChrysler (black
line) and Volkswagen (red line). The estimates of θ are obtained with
parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

plot.xpl
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9 Applications to real data

Figure 9.3. Upper panel: estimated copula dependence parameter θ for Daimler-
Chrysler and Volkswagen (blue line) and its mean (red line). Lower panel:
estimated intervals of time homogeneity. The results are obtained with
parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

realthetahomlength.xpl
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9 Applications to real data

Figure 9.4. Marginal parameters for Allianz (upper panel) and Münchener Rück-
versicherung (lower panel) estimated by exponential smoothing with
parameter λ = 1/20.

testrealdata.xpl
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9 Applications to real data

Figure 9.5. Stock price process (upper panel), log returns (middle panel) and cop-
ula dependence parameter θ (lower panel) for Allianz (black line) and
Münchener Rückversicherung (red line). The estimates of θ are obtained
with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

plot.xpl
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9 Applications to real data

Figure 9.6. Upper panel: estimated copula dependence parameter θ for Allianz and
Münchener Rückversicherung (blue line) and its mean (red line). Lower
panel: estimated intervals of time homogeneity. The results are obtained
with parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

realthetahomlength.xpl
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9 Applications to real data

Figure 9.7. Marginal parameters for Bayer (upper panel) and BASF (lower panel)
estimated by exponential smoothing with parameter λ = 1/20.

testrealdata.xpl
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9 Applications to real data

Figure 9.8. Stock price process (upper panel), log returns (middle panel) and copula
dependence parameter θ (lower panel) for Bayer (black line) and BASF
(red line). The estimates of θ are obtained with parameters m0 = 20,
c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.
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9 Applications to real data

Figure 9.9. Upper panel: estimated copula dependence parameter θ for Bayer and
BASF (blue line) and its mean (red line). Lower panel: estimated
intervals of time homogeneity. The results are obtained with parameters
m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

realthetahomlength.xpl
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9 Applications to real data

Figure 9.10. Upper panel: estimated copula dependence parameter θ for 4-dim data:
DaimlerChrysler, Volkswagen, Bayer and BASF (blue line) and its mean
(red line). Lower panel: estimated intervals of time homogeneity. The
results are obtained with parameters m0 = 20, c = 1.25, ρ1 = 0.25,
ρ2 = 0.3 and α = 0.05.

realthetahomlength.xpl
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9 Applications to real data

Figure 9.11. Upper panel: estimated copula dependence parameter θ for 6-dim data:
DaimlerChrysler, Volkswagen, Bayer, BASF, Allianz and Münchener
Rückversicherung (blue line) and its mean (red line). Lower panel:
estimated intervals of time homogeneity. The results are obtained with
parameters m0 = 20, c = 1.25, ρ1 = 0.25, ρ2 = 0.3 and α = 0.05.

realthetahomlength.xpl

71

file:realthetahomlength.html


10 References

Chen, X. and Fan, Y. (2004). Estimation and Model Selection of Semiparametric
Copula-Based Multivariate Dynamic Models Under Copula Misspecification, working
paper.

Chen, X. and Fan, Y. (2004). Estimation of Copula-Based Semiparametric Time
Series Models, working paper.

Chen, X., Fan, Y. and Tsyrennikov, V. (2004). Efficient Estimation of Semiparamet-
ric Multivariate Copula Models, working paper.

Dias, A. and Embrechts, P. (2004) Dynamic Copula Models for Multivariate High-
Frequency Data in Finance, working paper.

Dias, A. (2004) Copula Inference for Finance and Insurance, dissertation, ETHZ.

Embrechts, P., Lindskog, F. and McNeil, A. (2001). Modelling Dependence with
Copulas and Application to Risk Management, working paper.

Embrechts, P., McNeil, A. and Straumann, D. (2001). Correlation and Dependence
in Risk Management: Properties and Pitfalls, working paper.

Franke, J., Härdle, W. and Hafner, C. (2004). Statistics of Financial Markets,
Springer-Verlag, Heidelberg.

Giacomini, E., Härdle, W. (2005). Value-at-Risk Calculations with Time Varying
Copulae, Bulletin of the International Statistical Institute, Vol.55.

Härdle, W., Kleinow, T. and Stahl, G. (2002). Applied Quantitative Finance, Springer-
Verlag, Heidelberg.

Mercurio, D. and Spokoiny, V. (2000). Statistical inference for time-inhomogeneous

72



10 References

volatility models, working paper.

Mercurio, D. and Spokoiny, V. (2004). Estimation of time dependent volatility via
local change point analysis with applications to Value-at-Risk, working paper.

Nelsen, R. (1998). An Introduction to Copulas, Springer-Verlag, New York.

Spokoiny, V. (2006). Local parametric methods in nonparametric estimation, Springer-
Verlag, Berlin, Heidelberg, NY.

73


	List of Figures
	List of Tables
	Introduction
	Copulae. Definition and some Properties
	Elementary properties
	Rectangular inequality
	Continuity
	Differentiability
	Invariance under strictly monotone transformations
	The survival function of copulae
	The Fréchet bounds for copulae
	Convex combination of copulae
	Modelling dependence with copulae
	The Bravais-Pearson correlation coefficient
	Perfect dependence with copulae
	Lower and upper tail dependence

	Examples
	Multivariate copulae

	Copulae estimation
	Full maximum likelihood estimation
	The inference for margins method
	Application of the IFM procedure

	Adaptive copulae estimation
	Choice of the interval of homogeneity
	Test of homogeneity against a change point alternative
	Parameters of the LCPD procedure
	Selection of I
	Setting of TI
	Choice of the critical values I



	Some simulated examples

	Applications to real data
	Bivariate case
	Multivariate case

	References

