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Abstract

Implied volatility is an important element in risk management and option pricing.
Black-Scholes model assumes a constant volatility, however, the evidence from financial
market shows that the volatility is not constant but change with strike and time to
maturity. In this paper, the time to maturity is fixed and we will construct the implied
volatility function of strike or moneyness. We can use regression method for estimation,
but the data from financial market contains some noise and we need to apply smoothing
techniques to estimate this implied volatility function. The standard non- and semi-
parametric regression methods don’t guarantee the resulting IV functions are arbitrage
free, so we will insert our estimation result to Black and Scholes model and calculate
the state price density (SPD). In a Black-Scholes model it is lognormal distribution
with constant volatility parameter. In practice as volatility changes the distribution
deviates from log-normality. We estimate volatilities and SPDs using EUREX option
data on the DAX index by using different smoothing techniques. Our estimation
will be carried out through the strike direction and moneyness direction. We will
briefly introduce Local polynomials as one method. The most important smoothing
techniques we will applied in this paper is B-splines, with the usage of roughness
penalty, which allows a flexible choice on the degree of smoothness, and is promising
for future research work on the arbitrage free constraint of implied volatility.

Keywords: implied volatility, state price density, B-splines, roughness penalty, linear
differential operator
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1 Introduction

A derivative (derivative security or contingent claim) is a financial instrument whose
value depends on the value of others, more basic underlying variables, see Franke,
Härdle and Hafner (2003). In modern financial theory, the pricing of different financial
derivatives based on these underlying varibales is always the most focal topic. The
research of Black and Scholes (1973) sets up a milestone for this topic. Their well-
known contribution, Black-Scholes option pricing model, gives the framework for the
pricing of European style financial derivatives based on a set of assumptions. In B-
S formula, the price of a financial derivative is determined by six parameters: the
current underlying asset price St, the strike price K, the time to maturity τ , the
riskless interest rate r, the dividend yield δ, and a constant volatility σ.

CBS(St, t,K, T, σ, r, δ) = e−δτStΦ(d1)− e−rτKΦ(d2) (1.1)

d1 =
ln(St

K ) + (r − δ + 1
2σ2)τ

σ
√

τ

d2 = d1 − σ
√

τ

Φ(d) is the cumulative standard normal density function with upper integral limit d.

The first five parameters St,K, τ, r, δ can be observed from the financial market di-
rectly, while volatility can not. It can be recovered from B-S formula given other
five parameters and option price. The most straightforward method suggested is to
estimate volatility from financial market data, and insert this empirical volatility into
(1.1) to calculate option price. However, the study of different financial markets (SP
500, FTSE, DAX and others) yields almost the same result: volatility is not constant.
It displays a functional structure with respect to strike and time to maturity. As
shown in figure 1.1, this is a contradiction to the constant volatility assumption of
Black-Scholes formula, and volatility is rather a implicit function dependent on both
strike and maturity. Implied volatility is defined as the parameter σ that when
inserted into the B-S formula can actually yield the observed price of a particular
option. That is ”makes the B-S formula fit market prices of options”. If we plot the



1 Introduction

implied volatility with respect to strikes and time to maturity, it exhibits a surface
like a smile across strikes and time to maturity. This surface is so called implied
volatility surface.

A large variety of applications on implied volatility have been introduced and practiced
in financial market: it is an essential argument in smile consistent option pricing, it
serves as a necessary tool in risk management, it is incorporated into market models
for portfolio hedging, and volatility trading is a common practice on trading floor. At
the same time, the idea of IV enlightens a lot of related researches which have extended
the basic BS theory to a much wider range in many aspects.

The implied volatilities attained from financial market are contaminated by noise(caused
by the microstructure of financial market), so we need to use some smoothing tech-
niques to construct the IV smile. Quite a few researches have been made on modeling
IV smile. The modelling can be classified into two large groups by different methods:
parametric methods and non- and semi-parametric methods. Shimko (1993), Tomp-
kins (1999) and Ané and German (1999) are among the first group. Non- and semi-
parametric methods are thought to be a superior candidate than parametric methods
since they allow high functional flexibility and parsimonious modeling. In an attempt
to allow more flexibility, Hafner and Wallmeier (2001) fit quadratic splines to the smile
function. Aı̈t-Sahalia and Luo (1998), Rosenberg (2000), Cont, Fonseca and Durrle-
man (2002) and Fengler (2004) employed a Nadaraya-Watson estimator as the IVS,
and higher order local polynomial smoothing of the IVS is used in Rookey (1997).
Fengler (2004) introduced a least squares kernel estimator to smooth the IVS in the
space of option prices.

The aim of this paper is to estimate IV smile with techniques known as functional
data analysis. The technique that we will apply to the estimation is the so called
”penalized B-splines”. This method employs a linear differential operator as
roughness penalty operator, which allows more flexibility in smoothing function. We
will explain this method in more detail in later chapters. As the estimation doesn’t
assume that the IV function is arbitrage free, the smoothed IV smile will be inserted
into B-S model and compute the State Price Density(SPD). We will also compare
the B-splines with other smoothing techniques such as Nadaraya-Watson or higher
order local polynomial estimators.

In chapter 2, we will introduce some general idea that will be employed in the following
chapters. First, we will give some statistical property of IV. Next, we will introduce
the method of calculating IV from financial market data. Then, we will explain the
concept of SPD and how to estimate it from IV smile. In the last section of this
chapter, we will discuss some arbitrage free constraint on IV smile estimation.

The Nadaraya-Watson and higher order local polynomial estimators will be presented
and applied to IV and SPD estimation in chapter 3 .

12
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IV Surface
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Figure 1.1: DAX option on 2003-02-25, Implied volatility with respect to strike and
maturity iv3d.xpl

Chapter 4 is devoted to the penalized B-splines technique. We will define the functional
data in the first section, next the definition of B-splines will be interpreted. The
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1 Introduction

roughness penalty approach will be introduced in the last section of this chapter.

In chapter 5 we will apply different smoothing techniques to the data from finan-
cial market. We will implement penalized B-splines on the same data set. First,
the penalty operator and smoothing parameters will be changed to see their impact
on the estimation. To overcome the problem of multiple observations, the data will
be preprocessed in the next section. The chapter concludes with a summary of the
comparison of different smoothing techniques.

Chapter 6 summarizes and gives an outlook for ongoing work. An appendix contains
the XploRe quantlets and the proofs.

14



2 The Implied Volatility and SPD

2.1 Statistical Properties of Implied Volatility

Quite a few empirical researches have been worked on Implied Volatility, they mainly
focus on three following aspects: profile across strike level (smile patters), profile across
maturity (term structure) and time series behavior of implied volatility. The studies
on the behavior of implied volatility of traded option by using different market indices
(SP 500, FTSE, DAX and others) give some statistical properties that seem to be
common to these markets. Most striking feature of IV is that at a given date, the IV
surface has a non-flat shape and exhibits both strike and term structure.

We use the dataset of DAX options on 25th February 2003 to illustrate the IV changes
with strike and maturity, table 2.1 is a sample of the data:

Asset price strike Interest rate maturity option price option type
2464.69 1200.00 0.02654 0.14167 1.00 0
2464.19 1200.00 0.02654 0.14167 1.00 0
2468.18 1200.00 0.02654 0.14167 1.10 0
2469.68 1200.00 0.02654 0.14167 1.10 0
2472.18 1200.00 0.02654 0.14167 1.10 0
2473.18 1200.00 0.02654 0.14167 1.10 0
2466.69 1400.00 0.02654 0.14167 3.00 0
2471.18 1600.00 0.02654 0.14167 7.00 0
2472.18 1600.00 0.02654 0.14167 7.00 0
2484.16 1600.00 0.02654 0.14167 6.80 0

Table 2.1: DAX option on 25th Feb, 2003

For convenience, we employ time to maturity τ
def
= T − t, and the so called future

moneyness: κf
def
= K/Ft, where Ft = e(r−δ)τSt, is the forward price of stock at time

t. We call the options with κ = 1 At The Money(ATM) option. Options close to
ATM are usually traded with high frequency. The ATM options are most liquid and
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therefore are most available for empirical research.

Fengler (2004) concludes some static stylized facts of IVS observed on different capital
market.

(1) The smile is very pronounced for short time to maturity and becomes more and
more shallow for longer time to maturities.

(2) The smile function achieves its minimum in the neighborhood of ATM to near
OTM call (κ > 1) option.

(3) OTM put (κ < 1) regions display higher levels of IV than OTM call region.

(4) The volatility of IV is biggest for short maturity options and monotonically decline
with time to maturity.

2.2 Calculation of the Implied Volatility

Regardless of the invalid constant volatility assumption of the Black-Scholes model, in
practice, the implied volatility can be obtained by inverting the Black-Scholes formula
given the market price of the option.

In light of Black-Scholes European call option formula 1.1, we can get

σ̂ : CBS(St, t, K, T, σ̂)− C̃t = 0

As we have already observed the evidently curvature shape of the IV σ across the
strike K and not so evidently across maturity, it can be described as a function of
time, strike prices and expiry days to R+, and if the fixed data t is given, we have :

σ̂ : (t,K, T ) → σ̂t(K, T )

And this function of the IV σ is called implied volatility surface.

Using moneyness κf
def
= K/Ft, the function of IV σ on given date t can be transformed

as:
σ̂t(K, T ) → σ̂t(κ, τ)

We use a European call as the example to get the volatility σ. and the implied volatility
of a European put on same underlying with same strike and maturity can be deduced
from the ”put-call parity”:

Ct − Pt = St −Ke−rτ

16



2 The Implied Volatility and SPD

The implied Black-Scholes volatility can be determined uniquely from traded option
prices because of the monotonicity of the Black-Scholes formula in the volatility para-
meter:

∂St

∂σt
> 0

The Newton-Raphson algorithm provides a numerical way to invert the Black-Scholes
formula in order to recover σ from the market prices of the option. XploRe provides a
quantlet for this calculation (Härdle, Kleinow and Stahl (2002)), the usage of XploRe
see Härdle, Klinke and Müller (2000)

y = ImplVola(x {, IVmethod})
calculates the implied volatility using either the method of bisections
or the default Newton-Raphson method, the default method is Newton-
Raphson method

Table 2.2 provides the IV calculated by the quantlet. The data is from DAX options in
25th February 2003. Figure 2.1 plots volatility with strike and moneyness respectively.

asset price strike interst rate maturity option price option type IV
2464.69 1200.00 0.02654 0.14167 1.00 0 0.78135
2464.19 1200.00 0.02654 0.14167 1.00 0 0.77006
2468.18 1200.00 0.02654 0.14167 1.10 0 0.77988
2469.68 1200.00 0.02654 0.14167 1.10 0 0.78171
2472.18 1200.00 0.02654 0.14167 1.10 0 0.78043
2473.18 1200.00 0.02654 0.14167 1.10 0 0.76987
2466.69 1400.00 0.02654 0.14167 3.00 0 0.71348
2471.18 1600.00 0.02654 0.14167 7.00 0 0.64949
2472.18 1600.00 0.02654 0.14167 7.00 0 0.65397
2484.16 1600.00 0.02654 0.14167 6.80 0 0.65165

Table 2.2: IV of DAX option on 022503 ivsmile.xpl

2.3 State Price Density

State price density(SPD) is a fundamental concept in arbitrage pricing theory. The
state price density can be understood as the probability density function of underlying

17
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Figure 2.1: DAX option on 25th Feb, 2003, τ = 0.14167. Top panel: IV VS strike;
bottom: IV vs moneyness ivsmile.xpl

asset price, under which the current price of each security is equal to the present value
of the discounted expected value of its future payoffs given a risk-free interest rate.

Recall that the Black-Scholes European call option formula is:

CBS(St, t, K, T, σ, r, δ) = e−δτStΦ(d1)− e−rτKΦ(d2), (2.1)

18
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2 The Implied Volatility and SPD

where St is the price of underlying asset at time t, δ is the expected dividends paid
over the option’s life, K is the option’s strike price, τ is the time to maturity, r is the
risk-free interest rate,

d1 =
ln(St

K ) + (r − δ + 1
2σ2)τ

σ
√

τ

d2 = d1 − σ
√

τ

The price of a european call is the present value of the discounted expected value of
its future payoffs given the pdf of underlying asset price f(St). It can be described as:

Ct(K, T ) = e−r(τ)

∫ ∞

0

(St −K)+f(St)d(St) (2.2)

From the definition of SPD, the pdf of underlying asset price f(St) is just SPD. Re-
define it as φ(K, T |St, t), deduced from 2.2, SPD is the discounted second derivative
of call option price with respect to the strike price:

φ(K, T |St, t) = er(τ) ∂
2Ct(K, t)

∂K2
(2.3)

The probability that the stock arrived at level K ∈ [K1,K2] at date T, given that the
stock is at level St in t, is computed by:

Q(ST ∈ [K1,K2]) =
∫ K2

K1

φ(K, T |St, t)dK. (2.4)

The formula of the second derivative of call option price with respect to the strike
price is:

∂2Ct(K, t)
∂K2

=
e−r(τ)ϕ(d2)

σ
√

τK
=

e−δ(τ)Stϕ(d1)
σ
√

τK2
(2.5)

which yields the specific B-S transition density as:

φ(K, T |St, t) =
ϕ(d2)
σ
√

τK
(2.6)

which is a log-normal pdf in K. It is proved that this log-normal pdf can be written
as:

lnST ∼ N(lnSt + (r − δ − 1
2
σ2)τ, σ2τ) (2.7)

Where σ is a constant. The proof can be seen in Fengler (2004).

19



2 The Implied Volatility and SPD

2.4 SPD estimation based on IV smile

The motivation for calculating the SPD given IV smile is to insert the IV as a function
of strike or moneyness into the B-S call option price formula, and calculate the second
derivative of call oprion price with respect to the strike price. Two different method
will be introduced here, one is to estimate IV as a function of strike, the other is
calculated in moneyness.

Recall that the SPD is the discounted second derivative of call oprion price with respect
to the strike price:

φ(K, T |St, t) = er(τ) ∂
2Ct(K, t)

∂K2
(2.8)

When strike is an explicit function of volatility, the approach to calculate the SPD is
discussed in Drescher (2003). It can be derived as below.

First, we need to prove that following relationship always holds:

Ftϕ(d1) = Kϕ(d2) (2.9)

The right hand side can be presented in an alternative way:

Kϕ(d2) = Kϕ(d1 − σ
√

τ)

=
K√
2π

exp[− (d1 − σ
√

τ)2

2
]

=
K√
2π

exp[− (d2
1 − 2d1σ

√
τ + σ2τ)

2
]

=
K√
2π

exp[−d2
1

2
] exp[d1σ

√
τ − σ2τ

2
]

= Kϕ(d1) exp[d1σ
√

τ − σ2τ

2
] (2.10)

The exponential part of the right hand side is given as:

d1σ
√

τ − σ2τ

2
=

ln St

K + (r + σ2

2 )τ
σ
√

τ
σ
√

τ − σ2τ

2

= ln
St

K
+ (r +

σ2

2
)τ − σ2τ

2

= ln
St

K
+ rτ (2.11)
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Substitute this equation in to the exponent and get:

Kϕ(d2) = Kϕ(d1) exp[ln
St

K
+ rτ ]

= Ste
rτϕ(d1)

= Ftϕ(d1)

Based on this equation, the Black-Scholes formula for European call option can be
rewritten as:

Ct(K, t) = e−rτ [FtΦ(d1)−KΦ(d1 − σ
√

τ)] (2.12)

Under the assumption that the volatility is a function of K, the first derivative of the
call option price with respect to strike is:

∂Ct(K, t)
∂K

= e−rτ [Ftϕ(d1)
∂d1

∂K
− Φ(d1 − σ

√
τ)−Kϕ(d1 − σ

√
τ)(

∂d1

∂K
− ∂σ

∂K

√
τ)]

= e−rτ [Ftϕ(d1)
∂d1

∂K
− Φ(d2)−Kϕ(d2)

∂d1

∂K
+ Kϕ(d2)

∂σ

∂K

√
τ ]

= e−rτ [
∂d1

∂K
{Ftϕ(d1)−Kϕ(d2)} − Φ(d2) + Kϕ(d2)

∂σ

∂K

√
τ ]

= e−rτ [−Φ(d2) + Kϕ(d2)
∂σ

∂K

√
τ ] (2.13)

Differentiate the equation 2.13 again with respecct to strike K:

∂2Ct(K, t)
∂K2

erτ = −ϕ(d2)
∂d2

∂K
+
√

τ [{ϕ(d2) + K
∂ϕ(d2)

∂d2

∂d2

∂K
} ∂σ

∂K
+ Kϕ(d2)

∂2σ

∂K2
]

= ϕ(d2)[−
∂d2

∂K
+
√

τ
∂σ

∂K
−
√

τKd2
∂σ

∂K

∂d2

∂K
+
√

τK
∂2σ

∂K2
] (2.14)

where followng relationship is used:

∂ϕ(d2)
∂d2

=
∂

∂d2
(

1√
2π

exp[−d2
2

2
])

= −d2ϕ(d2) (2.15)

And further ∂d2
∂K can be substituted as:

∂d2

∂K
=

∂

∂K
(
lnSt − lnK + rτ − σ2τ

2

σ
√

τ
]

=
σ
√

τ [− 1
K − τσ ∂σ

∂K ]−
√

τ ∂σ
∂K [lnSt − lnK + rτ − σ2τ

2 ]
σ2τ

= − 1
Kσ

√
τ
−
√

τ
∂σ

∂K
− d2

σ

σ

K
(2.16)
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Reorder and combine the above terms together we can achieve the result:

∂2Ct(K, t)
∂K2

= e−rτϕ(d2)[
1

Kσ
√

τ
+ (

2d1

σ
)
∂σ

∂K
+ (

d1d2K
√

τ

σ
)(

∂σ

∂K
)2 + (K

√
τ)

∂2σ

∂K2
](2.17)

with:
σ = σ(K)

SPD can be calculated with:

φ(K, T |St, t) = ϕ(d2)[
1

Kσ
√

τ
+ (

2d1

σ
)
∂σ

∂K
+ (

d1d2K
√

τ

σ
)(

∂σ

∂K
)2 + (K

√
τ)

∂2σ

∂K2
](2.18)

From equation 2.18 we can get the spd equation with the measure of monyness. We
always have Ft = e(r−δ)(τ)St, κf = K/Ft

∂σ(K)
∂K

=
∂σ(κf )

κf

1
Ft

(2.19)

∂2σ(K)
∂K2

=
∂2σ(κf )

κ2
f

1
F 2

t

(2.20)

Insert 2.19 and 2.20 into 2.18, SPD can be computed with:

φ(κf , T |St, t) = ϕ(d2)[
1

κfFtσ
√

τ
+ (

2d1

σ
)

∂σ

∂κf

1
Ft

+ (
d1d2κfFt

√
τ

σ
)(

∂σ

∂κf
)2

1
F 2

t

+ (κfFt

√
τ)

∂2σ

∂κ2
f

1
F 2

t

] (2.21)

with:
σ = σ(κf )

The accompanied quantlet spdcal and spdcalm is introduced in the next subsection.
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2 The Implied Volatility and SPD

2.5 The Quantlet spdcal and spdcalm

fstar= spdcal(k, sig, sig1, sig2, s, r, tau)
Calculate the empirical state-price density

The quantlet spdcal uses function 2.18 to compute the SPD. The analytic formula
uses an estimate of the volatility smile and its first and second derivative to calculate
the State price density, This method can only be applied to European options (due to
the assumptions).

The quantlet spdcal has the following input parameters.

k- N × 1 vector of strike prices

sig- N × 1 vector of points of the estimated volatility

sig1 - N×1 vector of points of the first derivative of the volatility smile (with respect
to strike price)

sig2 - N × 1 vector of points of the second derivative of the volatility smile (with
respect to strike price)

s - N × 1vector, underlying spot price corrected for dividends

r - N × 1 vector, risk-free interest rate

tau - N × 1 vector, time to maturity

Output Parameter

fstar- N × 1 vector of state-price density

fstar= spdcalm(m, sig, sig1, sig2, s, r, tau)
Calculate the empirical state-price density with moneyness measure

The quantlet uses function 2.21 to compute the SPD. The analytic formula uses an
estimate of the volatility smile with respect to moneyness and its first two derivatives
to calculate the SPD, This method can only be applied to European options (due to
the assumptions).

The quantlet spdcal has the following input parameters.

m- N × 1 vector of moneyness
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2 The Implied Volatility and SPD

sig- N × 1 vector of points of the estimated volatility

sig1 - N×1 vector of points of the first derivative of the volatility smile (with respect
to strike price)

sig2 - N × 1 vector of points of the second derivative of the volatility smile (with
respect to strike price)

s - N × 1vector, underlying spot price corrected for dividends

r - N × 1 vector, risk-free interest rate

tau - N × 1 vector, time to maturity

Output Parameter

fstar- N × 1 vector of state-price density

2.6 Arbitrage Free Constraint

A lot of recent researches have contributed to estimation of no-arbitrage SPD. The
practical way to estimate SPD might be roughly classified into 2 groups. One is the
direct approach based on the observation of option price, to fit the observations of
option price to the theoretical option prices, and derive the prespecified SPD from the
second derivatives of option price with respect to strike. Härdle and Hlávka (2005)
have used non parametric method to estimate SPD from DAX option price data with
this direct approach. The other is the indirect approach based on volatility smile. First
recover volatility smile into the call price and then get SPD. This indirect method have
been discussed in section 2.4, it was first introduced by Shimko (1993).

No matter what method has been employed, the difficulty of estimation is the impo-
sition of arbitrage-free constraint. The call price function, according to Härdle and
Hlávka (2005), has following no-arbitrage constraint:

1. it is positive

2. it is decreasing in K

3. it is convex

4. its second derivative exists and it is a density (i.e.,nonnegative and it integrates
to one)

The constraint 1 and 2 is obvious, the constraint 4 is derived from general property
of density function. The constraint 3 is deduced from arbitrage free condition require-
ments, see 7.2.1.
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2 The Implied Volatility and SPD

The shape constraint of European call price can be ”translated” to the shape constraint
of volatility smile. But this translation process is easy to explain in theory but bitter
in practice. Below we list some general shape constraint for volatility smile through
the strike direction (not restricted to no-arbitrage constraint ).

1. Estimated volatility should be positive.

σ̂ ≥ 0 (2.22)

2. There exists the lower bound and upper bound of the first derivative of volatility
with respect to strike K. This can be expressed as:

− Φ(−d1)√
τKϕ(d1)

≤ ∂σ̂

∂κf
≤ Φ(−d2)√

τKϕ(d2)
(2.23)

Using Ft = e(r−δ)(τ)St, κf = K/Ft, this can be expressed in terms of moneyness
measure:

− Φ(−d1)√
τκfϕ(d1)

≤ ∂σ̂

∂κf
≤ Φ(−d2)√

τκfϕ(d2)
(2.24)

3. the right hand side of 2.18 is nonnegative and integrates to one, we can obtain

1
Kσ

√
τ

+
(

2d1

σ

)
∂σ

∂K
+ (

d1d2K
√

τ

σ
)(

∂σ

∂K
)2 + (K

√
τ)

∂2σ

∂K2
≥ 0 (2.25)

∫
K

Φ(K, T |St, t)dK = 1 (2.26)

When K is on the limit interval [Kl,Kh]∫ Kh

Kl

Φ(K, T |St, t)dK ≤ 1 (2.27)

Constraint 2 can be proved, see Appendix 7.2.2. Constraint 3 is translated from the
constraint 4 of call price function.
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3 Nadaraya-Watson and Local
Polynomial Estimator

There are several studies fitted parametric volatility functions to observed implied
volatilities. Shimko (1993), Tompkins (1999), Ané and German (1999) and Ané and
German (1999) are among this group. They usually employ quadratic specifications
to model the IV function along the strike profile. These parametric approaches are
not able to capture the prominent feature of IVS patterns, and hence the estimates
maybe biased. Others are focus on non-and semiparametric smoothing approaches to
estimate IVS. Aı̈t-Sahalia and Luo (1998), Rosenberg (2000), Cont et al. (2002) and
Fengler (2004) applied a Nadaraya-Watson estimator to the IVS, and higher order
local polynomial smoothing of the IVS is used in Rookey (1997). Below we’ll give a
short introduction to this non-parametric method.

For simplicity, consider the univariate model

Y = m(X) + ε (3.1)

with the unknown regression function m. The explanatory variable X and the response
variable Y take values in R, have the joint pdf f(x, y) and are independent of ε. The
error ε has the properties E(ε|x) = 0 and E(ε2|x) = σ2(x).

Taking the conditionalexpectation of 3.1 yields

E(Y |X = x) = m(x) (3.2)

which says that the unknown regression function is the conditional expectation function
of Y given X = x. Using the definition of the conditional expectation 3.2 can be written
as:

m(x) = E(Y |X = x) =
∫

yf(x, y)dy

fx(x)
, (3.3)

where fx(x) denotes the marginal pdf. Representation 3.3 shows that the regression
function m can be estimated via the kernel density estimates of the joint and the
marginal density.



3 Nadaraya-Watson and Local Polynomial Estimator

In the book of Härdle, Müller, Sperlich and Werwatz (2004) the Nadaraya-Watson
estimator is introduced:

m̂(x) =
n−1

∑n
i=1 Kh(x− xi)yi

n−1
∑n

i=1 Kh(x− xi)
(3.4)

Rewriting above formula as

m̂(x) =
1
n

n∑
i=1

Kh(x− xi)
n−1

∑n
j=1 Kh(x− xj)

yi =
1
n

n∑
i=1

ωi,n(x)yi (3.5)

This formula indicates that the Nadaraya-Watson estimator can be seen as a weighted
(local) average of the response variables with weights:

ωi,n(x)
def
=

Kh(x− xi)
n−1

∑n
j=1 Kh(x− xj)

(3.6)

Here Kh(•) denotes univariate Kernel function, Quartic kernel or Gaussian kernel are
the most widely used kernels:

Quartic(Biweight)kernel

Ku =
15
16

(1− u2)2I(|u| ≤ 1) (3.7)

Gaussian kernel

Ku =
1√
2π

exp(−1
2
u2) (3.8)

The Nadaraya-Watson estimator can be seen as a special case of a larger family of
Local smoothing estimators. One generalization is Local PolynomialRegression.

minβ

n∑
i=1

{(Yi − β0 − β1(Xi − x)− ...− βp(Xi − x)p)}2Kh(x−Xi) (3.9)

where β denotes the coefficients vectorβ = (β0, β1, ..., βp)>

we can compute β by using weighted least squares estimator with weights Kh(xi−x),
it has been studied extensively by Fan and Gijbels (1996).

We introduce the following matrix notation:

X =


1 x− x1 (x− x1)2 . . . (x− x1)p

1 x− x2 (x− x2)2 . . . (x− x2)p

...
...

...
. . .

...
1 x− xn (x− xn)2 . . . (x− xn)p

 , (3.10)
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3 Nadaraya-Watson and Local Polynomial Estimator

and Y = (y1, ..., yn)>, and the weight matrix:

X =


Kh(x− x1) 0 . . . 0

0 Kh(x− x2) . . . 0
...

...
. . .

...
0 0 . . . Kh(x− xn)

 , (3.11)

Then we can write the solution of 3.9 in the usual LSE formulation as:

β̂x = (X>WX)−1X>WY (3.12)

For p = 0, β̂ reduces to β0, we get Nadaraya-Watson estimator. And the order p
is usually taken to be one (local linear) or three (local cubic regression). Nadaraya-
Watson regression corresponds to a local constant least squares fit.

We plot IV smile by using Nadaraya-Watson regression figure 3.1, 3.2 and second
order local polynomial regression figure 3.3, 3.4. In Nadaraya-Watson case, when the
bandwidth is small, the estimator failed to generate a continuous function; if we enlarge
the bandwidth, the large bias appears and the curve can’t fit to the data, especially in
the region where the observations are sparse. The local polynomial regression approach
has at least 2 superiorities over Nadaraya-Watson estimator. The first is that local
linear estimator improved the estimates in boundary regions. When we use Nadaraya-
Watson approach, possibly some of the points are used more than ones to estimate the
curve near the boundary. This problem is improved since Local polynomial imposes a
higher degree polynomial here. The second is that if we use local polynomial approach,
it will be easier to estimate the derivatives of function m(•). This advantage is very
useful in estimating IV based state price density, since the estimation of SPD requires
the estimation of IV and it’s first two derivatives. We also plot the estimated SPD in
figure 3.3, 3.4.
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IV smile with Strike,h=150
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IV smile with Strike,h=250
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Figure 3.1: IV smile with strike, DAX call option,02-25-03, τ = 0.14167. Upper panel:
Bandwidth=150, lower panel: Bandwidth=250. Nadaraya-Watson estima-
tor is used. spdcalnw.xpl
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IV smile with Moneyness, h=0.05
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IV smile with Moneyness, h=0.1
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Figure 3.2: IV smile with moneyness, DAX call option,02-25-03, τ = 0.14167. Upper
panel: Bandwidth=0.05, lower panel: Bandwidth=0.1. Nadaraya-Watson
estimator is used. spdcalnwm.xpl
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3 Nadaraya-Watson and Local Polynomial Estimator

IV smile with Strike,02-25-2003 tau=0.14167
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Figure 3.3: DAX call option,02-25-03, τ = 0.14167. Upper panel: IV smile with strike,
right panel: SPD. Bandwidth h = 700, the second order local polynomials
is used. spdcallp.xpl

31

http://www.quantlet.org/mdstat/codes/fda/spdcallp.html
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IV smile with Moneyness,02-25-2003 tau=0.14167
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Figure 3.4: DAX call option,02-25-03, τ = 0.14167. Upper panel: IV smile with strike,
right panel: SPD. bandwidth h = 0.4, the second order local polynomials
is used. spdcallpm.xpl
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4 Smoothing IV With Functional Data
Approach

4.1 Basic Setup

In every working day, options are traded frequently in financial market. For each
transaction, we can calculate one implied volatility. If we collect the data time by
time and day by day, we can recover implied volatility to a function of strike K
and maturity τ . Due to this attribute we may understand IV as functional data in
that each observation is a real function of underlying variables. We can find some
other examples of functional data in many fields, such as human growth, which is
a function of time or age; weather data is another example since its dependence on
other observations such as temperature and humidity. The basis function approach for
representing functional data as smooth functions, provides us more flexible smoothing
techniques for estimation out of discretely observed data.

Formally, a sample of multivariate data X = {X1, ..., Xn} is described as (n × p)
matrix containing n observations of p-dimensional row vectors of p (one dimensional)
random variables (2 ≤ p < ∞). It is the measurable mapping (Ω,A,P) → (Rp,B),
where (Ω,A,P) is a probability space, Ω is the set of all elementary events, A is a
sigma algebra of subsets of Ω, and P is a probability measure defined on A. Rp is a
p-dimensional vector space, B is a sigma algebra on Rp.

In the case of functional data, X consists of random functions, we denote the ith
observations as Xi(t), i = 1, ..., n of some argument t. It is the measurable mapping
(Ω,A,P) → (H,BH), where H is the space of functions.

We denote the i-th observation as Xi(t), i = 1, ..., n of some argument t. It will be
assumed that the functions are observed on a finite interval J = [tL, tU ] ∈ R, where tl
and tU denotes the lower and upper bound, respectively. Ramsay and Dalzell (1991)
introduce the name functional data analysis (FDA) and give the following definition:

Functional data:



4 Smoothing IV With Functional Data Approach

A sample X = {X1, ..., Xn} is called functional data where the i-th observation is a
real function Xi(t), t ∈ J, i = 1, ..., n, and hence, each Xi(t) is a point in some function
space H.

A single functional observation, which means a single observed function, is called a
replication. Functional data in turn is a random sample of replications. In this paper,
we will use one-day data, fix the maturity and focus on estimating IV function of strike
by smoothing techniques from functional data analysis. In our case, we have only one
replication. More advanced method for functional data can be found in Ramsay and
Silverman (1997)

4.2 The Basis Function Approach

We want to present functional data as smooth functions of some continuous parame-
ters. Generally we have no idea in advance how these curves look like, how complex
they will be and what certain characteristics they may have, typically we will assume
just some degree of smoothness. For this reason flexibility is the key issue we demand
for estimation. To solve this problem we need some mathematical ”machinery”, with
which we can do any computation that is needed to fit the data quickly and flexibility.

The core idea is to replace the vector of inputs t with additional variables, which are
transformations of t, and then use linear models in this new space of derived input
features. See Hastie, Tibshirani and Jerome (2001).

For simplicity, consider the following univariate model:

Y = X(t) + ε (4.1)

Our approach is to minimize the penalized residual sum of squares

minX∈HK
[{Y −X(t)}>{Y −X(t)}+ λPEN(X(t))] (4.2)

where HK is the Hilbert space of real function K. λ is a smoothing parameter,
PEN(X(t)) is the penalty operator. We will discuss the penalized regression in more
detail in Section 4.4.

According to Wahba (1990), the solution to 4.2 and even to a more general class of
penalized regression problems has the form of finite-dimensional linear combination

X̂(t) =
K∑

k=1

ckφk(t), ck ∈ R;K < ∞ (4.3)

where φk(t) is a real-valued function and following Hastie et al. (2001), it is referred
to as basis function. This approach can be seen as a particular linear regression model
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4 Smoothing IV With Functional Data Approach

with each variables being some basis functions. Once these functions φk(t) have been
defined, we can fit them to classical linear model as before. And this approach in
estimation X(t) with 4.3 is called ”Basis function Approach”.

4.3 B-spline Bases

A wide range of basis function φ(t) can be applied in this approach, the most popular
are Fourier Bases, Polynomial bases and B-spline bases. B-spline will be introduced
here since its flexibility in representing X(t). If there exists a space of piecewise
polynomials, B-spline is a basis of certain subspace of that space .

We divide the interval J = [tL, tU ] into several continuous intervals and represent X(t)
by separate polynomial in each interval. X(t) is a piecewise polynomial function.

Follow the definition of de Boor (1978), the piecewise polynomial can be described as
below:

Definition 1 (piecewise polynomial) Divide the interval J = [tL, tU ] into m subin-
tervals by a strictly increasing sequence of points tL = ξ1 < ξ2 < ... < ξm < ξm+1 = tU .
The points ξi are called breakpoints. Let K be a positive integer. Then the correspond-
ing piecewise polynomial function X(t) of order K is defined by

X(t)
def
= p(t) =

K−1∑
j=0

cjt
jI{x ∈ [ξi, ξi + 1]}, i = 1, ...,m (4.4)

If we restrict that the piecewise function, some times their higher order derivatives
to be continuous in each breakpoint, we will obtain the polynomial splines. de Boor
(1978)also define the polynomial splines as below:

Definition 2(polynomial spline) Let K > 0 be an integer indicating the order
of piecewise polynomials, ξ = ξi

m+1
i=1 be a given breakpoint sequence with tL = ξ1 <

ξ2 < ... < ξm < ξm+1 = tU , the vector ν = {νi}m
i=2 counts the number of continuity

conditions at each interior breakpoint. If νi = K − 1 for all i = 2, ...,m then the
piecewise polynomial function Xi(t) is called polynomial spline of order K.

B-splines has been defined as a divided difference of the truncated power basis. And
it is formally defined as:

Definition 3(B-splines)

θl(t) = Bl,K(t), l = 1, . . . ,m + k − 2 (4.5)

where Bl,K is l-th B-Spline of order K, for the non-decreasing sequence of knots {τi}m
i=1
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defined by following recursion scheme:

Bi,1(t) =
{

1, for t ∈ [τi, τi+1]
0, otherwise

Bi,k(t) =
t− τi

τi+k−1 − τi
Bi,k−1(t) +

τi+k − t

τi+k − τi+1
Bi+1,k−1(t)

for i = 1, . . . ,m + k, k = 0, . . . ,K.

The number of the basis function will uniquely be defined by the B-spline order and
the number of knots, while nbasis = nknots+norder−2. Flexibility is one advantage
of the B-spline basis and its also relatively easy to evaluate the basis functions and
their derivatives. XploRe quantlet Bsplineevalgd can be used for this approach.

4.4 Estimation of Coefficients

Consider the basis function approach

f(x) =
K∑

k=0

ckφk(x) (4.6)

Estimate ck by the observed data (xj , yj), j = 1, ..., n

Y = ΦC + ε (4.7)

where Y = (y1, ...yn)>, {Φ}k = φk(x), C = (c1, ..., cK)>, ε = (ε1, ...εn)>.

The Generalized Least Squares (GLS) estimation of coefficient c is:

Ĉ = (Φ>Φ)−1Φ>Y (4.8)

Using 4.7 we leave the degree of smothness just by the order of B-spline. It is merely
interpolating the data, without exploiting some structure noises might present in the
data. We may use some additional information of function f(x), and add a roughness
penalty to ’penalize’ the non smoothness.

Due to the insight of Ramsay (1997), it is the smoothness of the process generating
functional data that differentiates this type of data from more classical multivariate
observations. This smoothness ensures that the information in the derivatives of func-
tions can be used in a reasonable way. We can make use of the fact that the curvature
of the curve f(x) increases with ||f ′′(x)||, and get the total curvature as measure of
roughness penalty

PEN2(f) =
∫

J

{D2f(s)}2ds = ||D2f ||2 (4.9)
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4 Smoothing IV With Functional Data Approach

When using basis expansion f(X) = ΦC, the penalty term can be written as

PEN2(f) = C>RC (4.10)

where {R}ij =
∫

J
{D2φi(s)}{D2φj(s)}ds = 〈D2φi, D

2φj〉

Now we can match the observation with the smooth function by solving the minimiza-
tion of penalized residual sum of squares function:

f̂λ = argminfPENSSEλ(f |y) (4.11)

PENSSEλ(f |y) = (Y − ΦC)>(Y − ΦC) + λC>RC (4.12)

The parameter λ controls the weight given to the stabilizer in the minimization. The
higher the λ is, the more weight is given to ||f ′′(x)||, and the smoother is the estimator.
λ can be chosen by Cross validation method.

The linear differential operator (LDO) can be used as a more generalized roughness
Penalty.

Lf(x) = ω0(x) + ω1(x)Df(x) + ... + ωm−1D
m−1f(x) + Dmf(x) (4.13)

The Generalized penalized residual sum of squares function:

PENSSEλ(X|y) = (Y − ΦC)>(Y − ΦC) + λ||Lf ||2 (4.14)

where ||Lf ||2 = C>RC, with {R}ij =
∫

J
{Dmφi(s)}{Dmφj(s)}ds = 〈Dmφi, D

mφj〉

In practice, since many models are based on scientifical or phisical models, there is
a general idea of the order and coefficients of LDO. Sometimes, we may be able to
surmise the shape of smoothed curve, thus we can be motivated to choose special LDOs
to incorporate this shape speculation. There are links between some linear differential
operator and bases for the corresponding parameter families. Heckman and Ramsay
(2000) provides table 4.1 for some examples of differential operators and the bases for
the corresponding parametric families

4.5 Choice of the Smoothing Parameter

Technically, two possible approaches can be applied to choose the smoothing parameter
λ. As discussed by Green and Silverman (1994). The first approach is to choose the
smoothing parameter λ subjectively. With different λ, different features of the data
that arise from different ”scales” can be explored, and the one parameter value which
”looks best” might be chosen. The second approach is to choose λ automatically
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4 Smoothing IV With Functional Data Approach

Operator L Parametric family for the kernel of L

D2 {1, t}
D4 {1, t, t2, t3}
D2 + γD, γ 6= 0 {1, exp(−γt)}
D4 + ω2D2 {1, t, cos(ωt), sin(ωt)}
(D2 − γD)(D2 + ω2D2), γ, ω 6= 0 {1, exp(γt), cos(ωt), sin(ωt)}
D − ω(•)I, ω(t) 6= 0 {exp[

∫
ω(u)du]}

D2 − ω(•)D,ω(t) 6= 0 {1,
∫

exp[
∫

ω(v)dv]du}

Table 4.1: Examples of differential operators and the bases for the corresponding para-
metric families.

based on the data set its self, one popular method of which is cross validation. In
many cases these two approaches can be combined, and an automatic choice can be
used as a starting point for subsequent subjective adjustment.

Cross-validation seems to be the most frequently used methods for choosing the smooth-
ing parameter. The main idea of this method is to split the data set into two parts,
the ”learning ” sample and the ”validation” sample. First, fit the data to the model by
using learning sample then assess the fit to the validation sample, and finally choose
the λ value by minimizing some error criterion. We can split the data by the ” leave-
one-out” rule. This method is to leave i-th observation out , and the function Xi(t) is
predicted from other functions in the data set.

Following Ramsay and Silverman (2002), let m−i
λ (ti) denote the smoothed sample

mean calculated with smoothing parameter λ from all observations except ti. As a
measure of global discrepancy compute the integrated squared error(ISE)

ISE{m−i
λ (ti)} =

∫
J

{m−i
λ (ti)− yi}2dt, (4.15)

to see how well m−i
λ (ti) predicts m−i

λ (ti). The cross-validation score CV (λ) is com-
puted by summing up the square errors over all n observations.

CV (λ) =
n∑

i=1

{m−i
λ (ti)− yi}2dt. (4.16)

The smaller the value of CV (λ), the better the performance of λ as measured by
cross-validation score. Hence, minimizing 4.16 with respect to λ gives the optimal
smoothing parameter.
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4 Smoothing IV With Functional Data Approach

Since cross-validation is very time consuming, and leads to under-smoothing the data
so often, the generalized cross-validation criterion has been introduced by Eubank
(1988). Here, the value of λ is chosen to minimize

GCV (λ) =
nSSE(λ)
(n− dfλ)2

=
n

n− dfλ
σ̂2(λ) (4.17)

where SSE(λ) = {Y − Φ(t)Ĉ}>W{Y − Φ(t)Ĉ} and σ̂2(λ) = SSE(λ)/(n − dfλ). W
is the weight matrix. dfλ is the effective number of parameters of degrees of freedom
that X̂(t) = Φ(t)Ĉ uses in estimating X(t). Heckman and Ramsay (2000) define:

dfλ = tr(SΦ,λ) + number of estimated parameters (4.18)

where SΦ,λ is the smoothing matrix as defined in the last section. Usually, the numera-
tor of GCV is small (i.e.,Φ(t)Ĉ is close to interpolating the data) when the denominator
is small (when dfλ is close to n). Thus minimizing GCV means fitting the data well
with few parameters, see Heckman and Ramsay (2000).

The XploRe quantlet bfacv and bfagcv will be introduced in the section 4.6. These
quantlets are used to calculate the CV or GCV of different smoothing parameter λ.

4.6 The Quantlet Bfacv and Bfagcv

cvl,L= bfagcv(y,argval,fdbasis{,Lfd{,W{,lambda}}})
Calculate the generalized cross-validation score for smoothing parameter
lambda

This quantlet uses 4.16 to compute the GCV score. The syntax of the quantlet is:

cvl,L= bfagcv(y,argval,fdbasis{,Lfd{,W{,lambda}}})

with input parameters:

y - a vector of (observed) functional values used to compute the functional data object.

argvals - vector matrix of argument values.

basisfd - an fdbasis object

Lfd - Identifies the penalty term. This can be a scalar (≥ 1) containing the order of
derivative to penalize, or an LDO object if an LDO with variable coefficients. When
applying an LDO with constant coefficients, Lfd is a (r × 2) matrix, where the first
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4 Smoothing IV With Functional Data Approach

column contains the coefficients, the second one the orders of derivatives. The default
value is Lfd = 2.

W - Weight matrix. The default value is the identity matrix.

lambda - Parameter for roughness penalty smoothing. If lambda is not specified it
will be estimated by the data.

When lambda is not given, it will be calculated by

λ = 10−4 tr{φ(t)>Φ(t)}
trR

(4.19)

Lambda will also be returned as the output parameter L.

gcv,L= bfagcv(y,argval,fdbasis{,Lfd{,W{,lambda}}})
Calculate the generalized cross-validation score for smoothing parameter
lambda

This quantlet uses 4.17 to compute the GCV score. The syntax of the quantlet is:

gcv,L= bfagcv(y,argval,fdbasis{,Lfd{,W{,lambda}}})

with input parameters:

y - p1× p2× p3 array of (observed) functional values used to compute the functional
data object. p1 is the number of observed values per replication, p2 is the number of
replications, p3 is the number of variables.

argvals - (n ×m) matrix of argument values, where m = 1 or m = p2, respectively.
If m = 1 the same arguments are applied to all replications and variables. Otherwise
it must hold that m = p2, then each replication is applied to a certain vector of
arguments.

basisfd - an fdbasis object

Lfd - Identifies the penalty term. This can be a scalar (≥ 1) containing the order of
derivative to penalize, or an LDO object if an LDO with variable coefficients. When
applying an LDO with constant coefficients, Lfd is a (r × 2) matrix, where the first
column contains the coefficients, the second one the orders of derivatives. The default
value is Lfd = 2.

W - Weight matrix. The default value is the identity matrix.

lambda - Parameter for roughness penalty smoothing. If lambda is not specified it
will be estimated by the data for each replication separately.
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4 Smoothing IV With Functional Data Approach

As this quantlet will use data2fd (see Ulbricht (2004))to estimate the coefficients, the
syntax of it is in consistency with data2fd. The difference is that it does not return an
fd object, but the GCV score with respect to smoothing parameter lambda. lambda
will also be returned as the output parameter L. When lambda is not given, it will be
calculated by 4.19 by using the input parameters y and argvals. If necessary, lambda
is computed individually for each replication. If lambda should be zero, then this must
be given as input parameter. Note, if the number of basis functions is greater than the
number of observations of a single replication, lambda will be estimated by the above
formula in any case, even if the corresponding input parameter is set equal to zero.
Otherwise (4.17) could not be used because the outer product of the basis matrices in
singular in this case. And the value of the estimated lambda will be output, too.

The input parameter y can be a vector, matrix or three-dimensional array, respectively.
The missing value problem is processed with the same method as in data2fd. When
some observations at some arguments are missing just insert NaNs. This is also the
case when the number of observations vary between the replications. The algorithm
filters out the NaNs. The input parameter argvals cannot contain NaNs, otherwise
the getbasismatrix quantlet need to be readjusted in order to handle NaNs. If a
functional value is missing for a certain argument, then just give an arbitrary value to
the argument. The algorithm will filter out the pair of values in any case. It takes more
computation time when NaNs are included in the functional data input because the
compiler need to calculate the coefficients for each replication separately, see Ulbricht
(2004).

We will use some minimization method such as Brent’s method or Golden section
search, to choose optimal λ.
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5 The Implementation of Penalized
B-splines on Financial Market Data

5.1 Construction of Model

In this chapter, we will compare the estimation results for different value of smoothing
parameters, and choose smoothing parameter λ by cross validation or generalized cross
validation. The algorithm of smoothing IV-Strike function includes following steps:

• Define a sequence of non-decreasing knots. When dealing with strike, we use
distinct strike prices as the break points. When using moneyness as argument,
we set non-decreasing knots every 5 points of sorted moneyness.

• generate basis matrix Φ on the vector of knots;

• Define the penalty operator;

• Choosing the smoothing parameter;

As we have obtained the smoothing function, now we will use it to get SPD. The
algorithm is presented as follow:

• Generate a grid on the range of strike price.

• Using the grid points generated from last step as argument values and insert it
into the IV smile function. calculate the estimated volatilities and first deriva-
tives as well as second derivatives.

• Using median of stock price as St, insert the estimated volatilities, first deriva-
tives, second derivatives into 2.18, and calculate SPD.
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5.2 Volatility Smile as Function of Strike

In this section, we will use B-spline smoothing method with constant coefficients LDO
to smooth the implied volatility function with respect to strike level. With this function
we can get the estimated IV, its first and second derivatives with respect to strike.
Insert these data into the SPD calculation function 2.18, using the quantlet spdcal,
we can finally get the SPD curve.

The data set in table 2.1 with the maturity of τ = 0.14167 (51 days) will be used.
Our sample contains 368 observations, as the strike price is set by every 50 euro,
observations are concentrating on several distinct strike values ranged from 1900 to
3400. Firstly, we’ll place a knot on each strike price. The sequence of non-decreasing
knots is (1900, 2000, 2300, 2400, 2450, 2500, 2550, 2600, 2700, 2750, 2800, 2850, 2900,
2950, 3000, 3050, 3100, 3150, 3200, 3300, 3400). We will compare the effect of choosing
different order of B-spline.

In figure 5.1, we compare the 4th order and 6th order B-spline. We use L = D2 as
penalty operator, smoothing paramter is set to its default value calculated by 4.19.
We select 10 observations with different strike prices. The range of strike is from 1900
to 2750.

In figure 5.1, we can observe that the SPD estimated by 6th order B-spline looks
smoother, this is reasonable in the sense that the cubic spline function with first and
second derivatives at each breakpoints, is claimed to be the lowest-order splines for
which the discontinuity in each breakpoints is not visible to the human eye. When we
need the 2nd derivatives to calculate SPD, we demand higher order B-splines to permit
continuity in breakpoints for higher order derivatives . Because 6-th order B-splines
demand relatively more observations, we will use 6th order B-splines to get better
look of SPD curve when we have enough observations. When number of observations
are small, we will use 4-th order B-splines. Since we don’t impose enough penalty
on roghness, the estimation is close to just interpolating the data. We can observe
sharp drops in all SPD plots, because the IV-strike curve is not smooth enough, which
will lead to large difference in estimated first and second derivatives. In next step, by
varying the smoothing parameter λ, we will put different weights on curve smoothing,
and different IV-strike curves and SPD curves will be plotted accordingly.

Figure 5.2, 5.2, 5.2 use the classical roughness penalty, L = D2. When λ = 107, we
can’t obtain the enough smoothness, when λ = 109, volatility smile is over smooth and
biased, this behavior is explainable in that the trade off between bias and variance.

The penalty on the second derivative of the function tends to force the curve to a
straight line, but the iv smile is not a straight line. Based on this argument, it is
suggested to use L = D3 as a substitution. Next we do the experiment with the 3rd
order LDO, L = D3 on the same data set. We have to use extremely large value of λ
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IV smile, 4th order B-spline
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IV smile, 6th order B-spline
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Figure 5.1: IV-Strike, DAX call option on 02-25-03, tau=0.14167, Top: IV smile. Bot-
tom: SPD, red horizon line represents 0. Left: 4th order b-spline, right:
6th order B-spline test46.xpl

to smooth the curve. The larger the λ is, the smoother the SPD is.
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IV smile-lambda=10^7

2000 2500 3000

Strike Prices

0.
4

0.
45

0.
5

0.
55

Im
pl

ie
d 

V
ol

at
ili

ty

spd,Lambda=10^7

2000 2500 3000

stock price

0
5

10

de
ns

ity
*E

-4

Figure 5.2: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 107, The blue dashed
horizontal line represents 0. spd2.xpl
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IV smile-lambda=10^8
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Figure 5.3: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 108, The blue dashed
horizontal line represents 0. spd2.xpl
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IV smile-lambda=10^9
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Figure 5.4: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 109, The blue dashed
horizontal line represents 0. spd2.xpl
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IV smile: lambda=10^14
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Figure 5.5: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 1014, The blue
dashed horizontal line represents 0. spd3.xpl
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IV smile: lambda=10^16
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Figure 5.6: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 1016, The blue
dashed horizontal line represents 0. spd3.xpl
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IV smile: lambda=5*10^20
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Figure 5.7: DAX call option, 02-25-03, τ = 0.14167, L = D2, λ = 5 × 1020, The blue
dashed horizontal line represents 0. spd3.xpl
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After the subjective method on choosing λ, we will choose λ based on the data set, as
the method introduced in 4.5. The cross-validation will be very time consuming since
our sample contains 368 observations. We will use GCV to make this choice. GCV
score of different smoothing parameter λ is computed, and the selection will be made
based on this criterion again. Table 5.1 provides the GCV score according to each λ
with respect to different linear differential operator.

L = D2 L = D3

λ GCV λ GCV
107 0.0015045 1014 0.0014791
108 0.0014863 1016 0.001478
109 0.0014931 5× 1019 0.001478

Table 5.1: GCV score comparison testgcv23.xpl
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Figure 5.8: GCV score with respect to smoothing parameter λ, left panel: L = D2,
right panel: L = D3. testgcv.xpl

From table 5.1 we can also speculate that for L = D2, the λ that minimize GCV
function 4.17 can be located in [107, 109] . Using (107, 108, 109) as a bracket, we can
find this best value by using brent’s method or golden section search. XploRe quantlet
nmbrent or nmgoldencan be applied for minimization.

Below is the result returned by using nmbrent:

Contents of lmin.xmin[1,] 2.3216e+08
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Contents of lmin.fmin.gcv[1,] 0.001484
minil.xpl

By set λ = 2.3216 × 108 we get figure 5.9. The upper left figure is IV-Strike curve,
and the upper right figure is the estimated SPD, it’s well above the 0 level. We also
display the log-normal distribution simultaneously for comparison. The mean and
variance of log-normal distribution is equal to function 2.7, with volatility and stock
price calculated by mean. The bottom left figure is the first derivative of volatility
respect to strike, and the bottom right figure displays the first derivative together with
its no arbitrage bounds, refer to 2.6. We also calculate the integral of the SPD. Since
we don’t have an explicit function for the estimated SPD curve, the integral can’t be
carried out directly. We can only do it in an approximate manner. The substitutional
method is: divide the strike price line into several small equal intervals, denote h as
the width of each interval, then we have n = max(K)−min(K)

h intervals. Denote xi as
the start point of each interval, and f(xi) is the estimated density value of xi. The
approximate integral can be calculated analytically as:∫ max(K)

min(K)

f(x)dx ≈
n∑

i=1

xif(xi) (5.1)

The more the number of interval is, the more precisely is the approximation result.
for SPD curve of 5.9. We have a stock price range of [1900, 3400], divide it into
1500 intervals with each bin width as 1, and calculate the approximated integral with
quantlet spdgcv2. The result is 0.89325 .

The IV smile we get from 5.9 is biased. This is because the usage of D = L2 tends to
force the curve to a straight line. We also choose the best smoothing parameter when
L = D3 by minimizing the GCV score. λ = 9.1356× 1017, GCV score= 0.001478 , the
integral is 0.8958. We also plot the second derivative of IV with respect to strike, as in
the bottom left panel. In Bottom right panel, we plot first derivative together with its
no arbitrage bounds. As figure 5.10 shows, when using L = D3, the IV smile matches
the data better than using L = D2, especially in the initial part where there is sparse
observation. The first derivative of IV lies just within the arbitrage free bounds.
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IV smile with Strike,02-25-2003 tau=0.14167

2000 2500 3000

Strike Prices

0.
4

0.
45

0.
5

0.
55

Im
pl

ie
d 

V
ol

at
ili

ty

first derivative

2000 2500 3000

Strike Prices

-1
0

-5

-5
e-

05
+

Y
*E

-5

SPD:02-25-2003 tau=0.14167

2000 2500 3000

stock price

0
5

10

de
ns

ity
*E

-4

first derivative and no arbitrage bound

2000 2500 3000

Strike Prices

-1
5

-1
0

-5
0

5

Y
*E

-3

Figure 5.9: DAX call option, 02-25-03, τ = 0.14167, L = D2. Upper left panel: IV
smile with strike. Upper right panel: SPD (black thick line), log-normal
distribution (blue thin line), red horizon line represents 0. Bottom left
panel: first derivative of volatility with respect to strike. Bottom right
panel: the first derivative (black line) and its no arbitrage bounds (red
dashed line).

spdgcv2.xpl
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IV smile with Strike,02-25-2003 tau=0.14167
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Figure 5.10: DAX call option, 02-25-03, τ = 0.14167, L = D3. Upper left panel: IV
smile with strike. Upper right panel: SPD (black thick line), log-normal
distribution (blue thin line), red horizon line represents 0. Bottom left
panel: second derivative. Bottom right panel: first derivative (black line)
and its no arbitrage bounds (red dashed line).
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5.3 Multiple Observations

As we have mentioned previously, due to the 50 euro interval of strike, our data set are
consist of multiple observations of volatilities at a finite vector of strike prices, range
from 1900 to 3400. This problem can be solved by using moneyness as a measure, or
modify our set-up to incorporate this characteristic.

One possible solution for multiple observations is using just ”closing prices” for each
strike. That is to mean, for each strike, we select the option that traded at the latest
moment of the day. It is convincible since the closing price contains more information
and is thus more reliable. This procedure will largely decrease the sample size and
may cause the estimation less accurate and complete.

We will use the same data set as in table 2.1, the DAX call option with the maturity of
τ = 0.14167. The 9th column of the data set contains the trade time, it is the seconds
from midnight. After modification, we have a sample contains 21 observations, each
strike will be used as a distinct knot. Since we have very few observations now, we
will use 4th order B-splines, and the smoothing parameter will be chosen by cross-
validation this time. Figure 5.11 plots CV score with respect to different smoothing
parameters.
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Figure 5.11: CV score with respect to smoothing parameter λ, left panel: L = D2,
right panel: L = D3. testcv.xpl

Figure 5.12 and 5.13 are plotted with penalty operator L = D2 and L = D3 respec-
tively. Smoothing parameter is chosen by CV. λ chosen by cross-validation oversmooth
the IV function when L = D2 is employed. The IV smile fits the observation quite
better by employing L = D3.
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L = D2 L = D3

λ 6.4279× 109 1.6521× 1012

CV 0.064276 0.064635
Integral 0.89382 0.89335

Table 5.2: Parameters, Closing Day Data minilcd.xpl

IV smile with Strike,02-25-2003 tau=0.14167

2000 2500 3000

Strike Prices

0.
4

0.
45

0.
5

0.
55

Im
pl

ie
d 

V
ol

at
ili

ty

first derivative

2000 2500 3000

Strike Prices

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5

-0
.0

00
12

55
+

Y
*E

-7

SPD:02-25-2003 tau=0.14167

2000 2500 3000

stock price

0
5

10

de
ns

ity
*E

-4

first derivative and no arbitrage bound

2000 2500 3000

Strike Prices

-2
5

-2
0

-1
5

-1
0

-5
0

5

Y
*E

-3

Figure 5.12: DAX call option, L = D2. Upper left panel: IV smile. Upper right
panel: SPD (black thick line), log-normal distribution (blue thin line), red
horizon line represents 0. Bottom left panel: first derivative of volatility.
Bottom right panel: the first derivative (black line) and its no arbitrage
bounds (red dashed line).
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IV smile with Strike,02-25-2003 tau=0.14167

2000 2500 3000

Strike Prices

0.
4

0.
45

0.
5

0.
55

Im
pl

ie
d 

V
ol

at
ili

ty

second derivative

2000 2500 3000

Strike Prices

5
10

15
20

5e
-0

8+
Y

*E
-8

SPD:02-25-2003 tau=0.14167

2000 2500 3000

stock price

0
5

10

de
ns

ity
*E

-4

first derivative and no arbitrage bound

2000 2500 3000

Strike Prices

-1
0

-5
0

5

Y
*E

-3

Figure 5.13: DAX call option, L = D3. Upper left panel: IV smile. Upper right
panel: SPD (black thick line), log-normal distribution (blue thin line), red
horizon line represents 0. Bottom left panel: second derivatives. Bottom
right panel: the first derivative (black line) and its no arbitrage bounds
(red dashed line).
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5.4 Volatility Smile as Function of Moneyness I

In this section, we will use IV smile with moneyness to estimate SPD. The usage of
moneyness can avoid the problem of multiple observations. We use 6-th order B-spline
and place a knot for every 10 grids fo moneyness. From figure 5.14, 5.15, we can
find another advantage of using moneyness as argument is that we need not impose
huge weight on roughness penalty to balance the bias and variance. The smoothing
parameter λ is chosen by GCV. There is no big difference with two penalty operators,
L = D2 and L = D3 in shaping SPD, and both of them work well in smoothing
the IV function when there are dense observations. When L = D2, the IV smile
curve is biased at the initial part where there are sparse observations. L = D3 has
a superiority in matching data in the area with sparse observations. Table 5.3 offers
smoothing parameters chosen by GCV and GCV scores.

L = D2 L = D3

λ 0.0074169 0.1155
GCV 0.00061656 0.00061233

Table 5.3: Parameters minilm.xpl
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IV smile with moneyness,02-25-2003 tau=0.14167
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Figure 5.14: DAX call option,02-25-03, τ = 0.14167, L = D2. Upper left panel: IV
smile with moneyness. Upper right panel: SPD (black thick line), log-
normal distribution (blue thin line), red horizon line represents 0. Bottom
left panel: first derivative. Bottom right panel: first derivative (black line)
and its no arbitrage bounds (red dashed line).
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IV smile with moneyness,02-25-2003 tau=0.14167
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Figure 5.15: DAX call option,02-25-03, τ = 0.14167, L = D3. Upper left panel: IV
smile with moneyness. Upper right panel: SPD (black thick line), log-
normal distribution (blue thin line), red horizon line represents 0. Bottom
left panel: second derivative. Bottom right panel: first derivative (black
line) and its no arbitrage bounds (red dashed line).
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5.5 Volatility Smile as Function of Moneyness II

In all last section, we make the estimation with original data from financial market.
Multiple observations is one problem when using strike as measure. Moneyness could
be a good substitution, but observations also inevitablely concentrate on neighborhood
area of several values. See IV smile plot in figure 5.14 and 5.15, the right tail part is
crowded by dense observations. And we also want to take strike and transaction time
into consideration even using moneyness as a measure.

Denote the i-th observations of the strike price by Ki, the corresponding volatility σi =
σ(Ki, t) and corresponding moneyness κi = κ(Ki, t), here t denotes transaction time,
its the seconds from midnight. In practice, volatilities and moneynesses are repeated
for a small number of distinct strike prices. σ = (σ1, ..., σn)> and κ = (κ1, ..., κn)> are
the vector of volatility and moneyness respectively. The corresponding vector of the
strike prices has the following structure:

K =


K1

K2

...
Kn

 =


k11n1

k21n2

...
kn1np

 (5.2)

where k1 < k2 < ... < kp, nj =
∑n

i=1 I(Ki = kj) with I(.) denoting the indicator
function and 1n a vector of ones of length n.

Now we will construct the model by following way:

• Divide the sample data into p groups by different strikes

• Set every 30 minutes (1800 seconds) as a interval, in each group, divide the data
again by this time interval.

• Now calculate the median of moneyness and volatility for each sub-group

• Use medians of moneyness and volatility as a new data set and apply smoothing
techniques to this new data set

Run this procedure on XploRe. We get fugure 5.16 and 5.17. We use 6-th order B-
spline and place a knot for every 5 grids fo moneyness. smoothing parameter is chosen
by GCV. Table 5.3 offers smoothing parameters chosen by GCV and GCV scores.
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L = D2 L = D3

λ 0.0014915 2.8473
GCV 0.00010385 0.00010362

Table 5.4: Parameters minilmo.xpl
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Figure 5.16: DAX call option,02-25-03, τ = 0.14167, L = D2. Upper left panel: IV
smile with moneyness. Upper right panel: SPD (black thick line), log-
normal distribution (blue thin line), red horizon line represents 0. Bottom
left panel: first derivative. Bottom right panel: first derivative (black line)
and its no arbitrage bounds (red dashed line).
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IV smile with moneyness,02-25-2003 tau=0.14167
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Figure 5.17: DAX call option,02-25-03, τ = 0.14167, L = D3. Upper left panel: IV
smile with moneyness. Upper right panel: SPD (black thick line), log-
normal distribution (blue thin line), red horizon line represents 0. Bottom
left panel: second derivative. Bottom right panel: first derivative (black
line) and its no arbitrage bounds (red dashed line).
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5.6 Conclusions

In this chapter, we use penalized B-splines to smooth the IV function. We compared
the estimation using two parameterizations: the penalty operator and the smoothing
parameters. Our estimations are carried out through two lines: strike and moneyness.
First, when strike is used as argument, the major problems are repeated observations
on discrete strike value. To avoid this repeated observations problem, we estimated
the model using closing prices. This approach is also flawed due to the small sample
size. The application of moneyness as IV function argument can solve the problem of
multiple observations. Meanwhile, we need not to impose huge weight on roughness
penalty to force the curve smooth enough. The last estimation method combines
strike and moneyness together with transaction time. The data is grouped by strike
and transaction time, and the group median forms a new data set, finally we use this
reconstructed model to smooth IV smile and calculate SPD.

When L = D2 is used as roughness penalty, the IV smile function is biased in the
wings. This is due to the unequal distribution of IV. This becomes more obvious for
the extremely large smoothing parameter. When L = D3 is used as penalty operator,
this effect is less present, even for larger smoothing parameters the bias remains small.

We use cross-validation or GCV to choose smoothing parameter. When the second
derivative of function is penalized, the smoothing parameters chosen by CV or GCV
tends to yield visible bias in the wings of smile function, but they can yield good
visual effect of IV smile when L = D3. The heavy penalty on third derivatives will
force the first derivative of function to a straight line, which makes IV smile resemble
a quadratic parabola. This effect deviates from the empirical observation. The over
smoothing effect remains.

All of the discussed models are successful to produce non negative and smooth SPD.
The first derivatives of IV smile function are exactly located within their no-arbitrage
bounds.
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6 Summary and Outlooks

The aim of this paper is to implement different smoothing techniques on IV smile func-
tion and compute the state price density. The Nadaraya-Watson and Local polynomial
estimator are briefly introduced. Nadaraya-Watson estimator is not recommended here
because of its limitation on fitting unequally distributed data and the inability of esti-
mating derivatives directly. Higher order local polynomials avoid those problems and
is more adaptive for our goal.

The emphasis of this paper is put on the application of penalized B-splines to IV smile.
The imposing of roughness penalty on derivatives differentiates this method from other
smoothing techniques. By the choice of penalty operator, the shape of the curve can be
controlled; and the smoothing parameter can be adjusted to balance the smoothness
of the curve and the fitness of the curve to data. These two instruments make this
method more flexible and fruitful in fitting IV smile function with some degree of
smoothness. We have used L = D2 and L = D3 as roughness penalty operator.
L = D3 has better performance in wings of IV smile function where the observations
are sparse. Like higher order local polynomials, we can estimate derivatives from the
B-splines directly. This advantage is notable in calculating SPD.

The implied volatility smile should be under certain constraints, as introduced in 2.6.
The penalized B-splines can be extended to fulfill those constraints. The application
of special designed LDO may yield other interesting results in IV smoothing and the
calculation of SPD, and it might be another aspect for further extension.



7 Appendix

7.1 XploRe quantlet lists

7.1.1 Statistical Tools

Bfacv

1 proc (cvl ,L) =bfacv(y, argvals , basisfd , Lfd ,W,lambda)

2 ; ----------------------------------------------------------

3 ; Library fda

4 ; ----------------------------------------------------------

5 ; See_also data2fd , createfdbasis , evalfd , getbasismatrix , bfagcv

6 ; ----------------------------------------------------------

7 ; Macro bfacv

8 ; ----------------------------------------------------------

9 ; Description: calculate CV score

10 ; ----------------------------------------------------------

11 library("fda")

12 if (exist (Lfd) == 0)

13 Lfd = 2

14 endif

15

16 if (exist (lambda) == 0)

17 lambda = 0

18 boollambda = 0

19 else boollambda = 1

20 endif

21

22 if (exist (W) == 0)

23 W = diag (matrix (rows (y)))

24 endif

25

26 if (dim (#(W)) == 1)

27 W = W .* diag (matrix (rows (y)))

28 endif

29

30

31 error (sum (!#( argvals <= Inf)) != 0, "ARGVALS cannot contain NaNs or

INFs")
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32 error (rows (dim (lambda)) != 1 || rows (lambda) != 1, "LAMBDA must be

a scalar")

33 error (rows (dim (y)) != 1, "y must be a vector")

34 error (lambda <0, "LAMBDA must be non negative")

35

36 if (boollambda == 1 && lambda == 0)

37 inprodmat = unit (basisfd.nbasis)

38 else

39 inprodmat = inprod (basisfd , basisfd , Lfd , Lfd)

40 if (basisfd.nbasis >= rows (y))

41 ; add a very small multiple of the identity to inprodmat:

42 inprodmat = inprodmat + 1e-10 * max (#( inprodmat)) * unit (rows (

inprodmat))

43 endif

44 endif

45

46 xx=rows(y)

47 basismat = getbasismatrix (argvals , basisfd , 0)

48 se=matrix(xx)

49 cvl=matrix(xx)

50 mi=matrix(xx)

51 n=rows(argvals)

52 i = 1

53 while (i <= xx)

54 ; begin: boollambda

55 if (boollambda == 0 || (boollambda == 1 && lambda == 0 && rows (y)

< basisfd.nbasis))

56 lambda = 0.0001 * spur (basismat ’ * basismat) / spur (inprodmat)

57 fdo=data2fd(y, argvals , basisfd , Lfd , W) ;lambda is set to equal to

the default value of lambda in data2fd

58 else

59 fdo=data2fd(y, argvals , basisfd , Lfd , W,lambda)

60 endif

61

62 eva=evalfd(argvals ,fdo ,0)

63 mi[i]=( cumsum(eva)[n-1]-eva[i])/(n-1)

64 se[i]=(mi[i]-y[i])^2

65 cvl=cumsum(se)[n-1]

66 i=i+1

67 endo

68 L=lambda

69 endp

Bfagcv

1 proc (gcv ,L) =bfagcv(y, argvals , basisfd , Lfd , W,lambda)

2 ; ----------------------------------------------------------

3 ; Library fda

4 ; ----------------------------------------------------------

5 ; See_also data2fd , createfdbasis , evalfd , getbasismatrix , bfacv

6 ; ----------------------------------------------------------

7 ; Macro bfagcv
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8 ; ----------------------------------------------------------

9 ; Description calculate GCV score

10 ; ----------------------------------------------------------

11 library("fda")

12 if (rows (dim (y)) == 3)

13 xx = dim (y)[3]

14 else xx = 1

15 endif

16

17 if (exist (Lfd) == 0)

18 Lfd = 2

19 endif

20

21 if (exist (lambda) == 0)

22 lambda = 0

23 boollambda = 0

24 else boollambda = 1

25 endif

26

27 if (exist (W) == 0)

28 W = diag (matrix (rows (y)))

29 endif

30

31 if (dim (#(W)) == 1)

32 W = W .* diag (matrix (rows (y)))

33 endif

34

35 error (dim (W) != dim(y)[1], "W must be quadratic with dimension

equal to the rows of Y")

36 error (sum (!#( argvals <= Inf)) != 0, "ARGVALS cannot contain NaNs or

INFs")

37 error (rows (dim (lambda)) != 1 || rows (lambda) != 1, "LAMBDA must be

a scalar")

38 error (lambda <0, "LAMBDA must be non negative")

39

40 if (boollambda == 1 && lambda == 0)

41 inprodmat = unit (basisfd.nbasis)

42 else

43 inprodmat = inprod (basisfd , basisfd , Lfd , Lfd)

44 if (basisfd.nbasis >= rows (y))

45 ; add a very small multiple of the identity to inprodmat:

46 inprodmat = inprodmat + 1e-10 * max (#( inprodmat)) * unit (rows (

inprodmat))

47 endif

48 endif

49

50

51 basismat = getbasismatrix (argvals , basisfd , 0)

52 SSE=matrix(cols (y), xx)

53 df=matrix(cols (y), xx)

54 gcv=matrix(cols (y), xx)

55 n=rows(argvals)
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56

57

58 if (sum (!#(y <= Inf)) == 0) ; case: functional data is a vector or

matrix , no missing values !!!

59

60

61 i = 1

62 while(i<=cols(y))

63 j = 1

64 while (j <= xx)

65 ; begin: boollambda

66 if (boollambda == 0 || (boollambda == 1 && lambda == 0 && rows (y)

< basisfd.nbasis))

67 lambda = 0.0001 * spur (basismat[,,,i]’ * basismat[,,,i]) / spur

(inprodmat)

68 fdo=data2fd(y, argvals , basisfd , Lfd , W) ;lambda is set to equal to

the default value of lambda in data2fd

69 else

70 fdo=data2fd(y, argvals , basisfd , Lfd , W,lambda)

71 endif

72

73 coef = fdo.coef

74 n1= fdo.basisfd.nbasis

75

76 SSE[i,j] = (y[,i,j]-basismat[,,,i] * coef[,i,j])’ * W *(y[,i,j]-

basismat[,,,i] * coef[,i,j])

77 smoothmat = basismat[,,,i]* inv (basismat[,,,i]’ * W * basismat[,,,i

] + lambda * inprodmat) * basismat[,,,i]’ * W

78 df[i,j]=spur(smoothmat)+n1

79 gcv[i,j]=n*SSE[i,j]/(n-df[i,j])^2

80 j = j + 1

81 endo

82 i=i+1

83 endo

84

85 else ;case: functional data is vector or matrix , including missing

values

86 j = 1

87 while (j <= xx)

88 i = 1

89 while (i <= cols (y))

90 kk = 1 : rows (y)

91 kk = paf (kk , y[kk ,i,j] <= Inf)

92 yy = y[kk ,i,j]

93 ; reformulate lambda:

94 if (boollambda == 0 || (boollambda == 1 && lambda == 0 &&

rows (yy) < basisfd.nbasis))

95 lambda = 0.0001 * spur (basismat[kk ,,,i]’ * basismat[kk ,,,i

]) / spur (inprodmat)

96 fdo=data2fd(y, argvals , basisfd , Lfd , W) ;lambda is set to equal to

the default value of lambda in data2fd

97 else
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98 fdo=data2fd(y, argvals , basisfd , Lfd , W,lambda)

99 endif

100

101 coef = fdo.coef

102 n1= fdo.basisfd.nbasis

103

104 SSE[i,j]=(yy -basismat[kk ,,,i] * coef[,i,j])’* W[kk ,kk]*(yy -

basismat[kk ,,,i] * coef[,i,j])

105 smoothmat = basismat[kk ,,,i]* inv (basismat[kk ,,,i]’ * W[kk ,

kk] * basismat[kk ,,,i] + lambda * inprodmat) * basismat[kk

,,,i]’ * W[kk ,kk]

106 df[i,j]=spur(smoothmat)+n1

107 gcv[i,j]=n*SSE[i,j]/(n-df[i,j])^2

108 i = i + 1

109 endo

110 j = j + 1

111 endo

112 endif

113 L=lambda

114 endp

spdcal

1 proc(fstar)=spdcal(k, sig , sig1 , sig2 , s, r, tau)

2 ; ----------------------------------------------------------

3 ; Library finance

4 ; ----------------------------------------------------------

5 ; See_also spdcalm

6 ; ----------------------------------------------------------

7 ; Macro spdcal

8 ; ----------------------------------------------------------

9 ; Description calculate the spd by strike and implied volatility

10 ; ----------------------------------------------------------

11 error ((sum(sum(sig <0)’) >=1), "spdcal: Watch out: Some of your

volatilities are negative !!")

12 rk=rows(k)

13 st=sqrt(tau)

14 ert=exp(r*tau)

15 rt=r.*tau

16

17 d1=(log(s/k)+tau .*(r.+0.5.*( sig .^2)))./( sig.*st)

18 d2=d1 -sig.*st

19

20 fstar =(pdfn(d2)./ert).*( (1/( sig.*k.*st))+(2*d1./sig).*sig1)+(pdfn(d2)

./ert).*(d1.*d2.*k.*st.*sig1 .^2./ sig+ k.*st.*sig2)

21 fstar=fstar .*ert

22

23 endp

spdcalm
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1 proc(fstar)=spdcalm(m, sig , sig1 , sig2 , s, r, tau)

2 ; ----------------------------------------------------------

3 ; Library finance

4 ; ----------------------------------------------------------

5 ; See_also spdcal

6 ; ----------------------------------------------------------

7 ; Macro spdcalm

8 ; ----------------------------------------------------------

9 ; Description calculate the spd by moneyness and implied volatility

10 ; ----------------------------------------------------------

11

12 error ((sum(sum(sig <0)’) >=1), "spdcal: Watch out: Some of your

volatilities are negative !!")

13

14 st=sqrt(tau)

15 ert=exp(r*tau)

16 rt=r.*tau

17 ft=s.*ert

18

19 d1=(log(s./(m.*ft))+tau .*(r.+0.5.*( sig .^2)))./( sig.*st)

20 d2=d1 -sig.*st

21

22 fstar=pdfn(d2).*( 1/( sig .*(m.*ft).*st)+(2*d1./sig).*sig1./ft)+pdfn(d2)

.*(d1.*d2.*(m.*ft).*st.*( sig1 .^2) ./(ft.^2)./sig+ (m.*ft).*st.*sig2 ./(

ft.^2))

23

24 endp

7.1.2 Implemention Examples

I have written a lot of quantlet to compare different results from different parameters,
but they are mainly implemented in a similiar way. So I won’t list all of them here,
but only list some examples to illustrate the procedure and method. The sample data
is DAX European opion on 25th, February, 2003, as listed in table 2.1

testgcv

Calculate GCV score of smoothing parameter. Plot the GCV score with respect to
different smoothing parameters.

1 library("finance")

2 library("fda")

3

4 proc(gcv)=fdagcvv(y, argvals , bspl , lfd , W, lam)

5 error (rows (dim (lam)) != 1, "lam must be a vector")

6 r=rows(lam)

7 gcv=matrix(r)

8 i=1

9 while (i<=rows(lam))
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10 gcv[i] =bfagcv(y,argvals , bspl ,lfd ,W,lam[i])

11 i=i+1

12 endo

13 endp

14

15 x=read("rawdata030225.DAT") ; read the data

16 x=x[ ,1:6]

17 x=paf(x,x[ ,6]==1)

18 x=paf(x,x[ ,4] >0.14&& x[ ,4] <0.15)

19 tau=x[,4]

20 s=x[,1]

21 r=x[,3]

22 k=x[,2]

23 y=ImplVola(x) ; calculate ImplVola

24 smile=k~y

25 smile=sort(smile)

26 smile=smile [1:15|17: rows(smile)] ;delete the outlier

27 tvec =#(1900 , 2000, 2300, 2400, 2450, 2500, 2550, 2600, 2700, 2750,

2800, 2850, 2900, 2950, 3000, 3050, 3100, 3150, 3200, 3300, 3400)

28 ; generate a non decreasing sequence of knots , the number of knot is

decided by the dense of strike parice

29 bspl = createfdbasis ("bspline", #(1900 , 3400) , 25, tvec)

30 c=grid (10^7, 5*10^7 , 21)

31 cgcv=fdagcvv(smile[,2],smile[,1],bspl ,2,1,c)

32 cgcv=c~cgcv

33 cgcv=setmask(cgcv ,"line")

34 setsize (400 ,400)

35 pic=createdisplay (1,1)

36 show(pic ,1,1,cgcv)

37 setgopt(pic ,1,1,"yvalue" ,0|1,"xlim" ,10^7|10^9 ,"xorigin", 10^7, "title",

"GCV score , L=D^2", "xlabel","smoothing parameter","ylabel","GCV","

border" ,0)

38

39 c1=grid (10^17 , 5*10^17 , 21)

40 cgcv1=fdagcvv(smile[,2],smile[,1],bspl ,3,1,c1)

41 cgcv1=c1~cgcv1

42 cgcv1=setmask(cgcv1 ,"line")

43 setsize (400 ,400)

44 pic1=createdisplay (1,1)

45 show(pic1 ,1,1,cgcv1)

46 setgopt(pic1 ,1,1,"yvalue" ,0|1,"xlim" ,10^17|10^19 ,"xorigin", 10^17, "

title","GCV score , L=D^3", "xlabel","smoothing parameter","ylabel","

GCV","border" ,0)

tempminicd

Find the smoothing parameter by cross-validation.

1 library("finance")

2 library("fda")

3 library("nummath")

4
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5 proc(ct)=count(x)

6 ;count number of different groups divided by different strike

7 ;and generate a new vector with each element being the group number

8 error(cols(x) >1, "x must be a vector")

9 i=1

10 ct=matrix(rows(x))

11 while (i< rows(x))

12 if ( x[i]== x[i+1])

13 ct[i+1]=ct[i]

14 else

15 ct[i+1]=ct[i]+1

16 endif

17 i=i+1

18 endo

19 endp

20

21 proc(subm)=submax(x,n)

22 ;1. divide x by different groups by different values of first colum of x

23 ;2. find out the maximum of n-th colum of x in each group.

24 ;3. select the according observations and constitute a new matrix

25 ct=max(x[,1]) ;count the number of different values in first column of

x

26 subm=matrix(ct ,cols(x)) ;matrix of submax

27 i=1

28 k=1

29 while (i<=max(x[,1]) )

30 xx=paf(x,x[ ,1]==i)

31 mm=max(xx[,n])

32 subm[k]=paf(xx ,xx[,n]==mm)

33 i=i+1

34 k=k+1

35 endo

36 endp

37

38 proc(cvl)=minil(lam)

39 x=read("rawdata030225.DAT") ; read the data

40 t=x[,9]

41 x=x[ ,1:6]

42 x=x~t

43 x=paf(x,x[ ,6]==1)

44 x=paf(x,x[ ,4] >0.14&& x[ ,4] <0.15)

45 t=x[,7]

46 tau=x[,4]

47 s=x[,1]

48 r=x[,3]

49 k=x[,2]

50 y=ImplVola(x[ ,1:6])

51 x1=k~t~y

52 x1=x1 [1:7|9: rows(x1)] ;delete outlier

53 x2=count(x1[,1])~x1 ; the new matrix with the first column being the

group number

54 smile=submax(x2 ,3) ; the 3rd column is the time
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55 smile=smile [,2]~ smile [,4]

56 smile=sort(smile)

57

58 bspl = createfdbasis ("bspline", #(min(smile [,1]), max(smile [,1])),rows

(smile)+2,smile [,1])

59

60 cvl = bfacv(smile[,2], smile[,1], bspl ,2,1,lam)

61 endp

62

63 lmin= nmbrent("minil" ,10^9 ,10^10 ,10^11 )

64 lmin

spdmmo2

Preprocess the data, group the IV and moneyness by strike and time, as is introdunced
in 5.5. Plot the IV smile, the first derivative of the estimated volatility with respect
to strike together with its no-arbitrage bound, and SPD curve. λ is chosen by GCV.

1 library("fda")

2 library("finance")

3 x=read("rawdata030225.DAT") ; read the data

4 t=x[,9]

5 x=x[ ,1:6]

6 x=x~t

7 x=paf(x,x[ ,6]==1)

8 x=paf(x,x[ ,4] >0.14&& x[ ,4] <0.15)

9 t=x[,7]

10 tau=x[,4]

11 s=x[,1]

12 r=x[,3]

13 k=x[,2]

14 f=s.*exp(r.*tau)

15 m=k./f ; moneyness

16 y=ImplVola(x[ ,1:6])

17 x1=k~t~m~y

18 x1=x1 [1:7|9: rows(x1)] ;delete outlier

19 int=round(x1 [ ,2]./1800) ; create the index of time interval for every

30 minutes

20 x1=x1[,1]~int~x1[ ,3:4]

21 proc(ct)=count(x)

22 ;count number of different groups divided by different strike and time

index

23 i=1

24 ct=matrix(rows(x))

25 while (i< rows(x))

26 if ( x[i ,1]== x[i+1,1] && x[i ,2]== x[i+1 ,2])

27 ct[i+1]=ct[i]

28 else

29 ct[i+1]=ct[i]+1

30 endif

31 i=i+1

32 endo
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33 endp

34 x2=count(x1)~x1[ ,3:4]

35 proc(subm)=submedian(x)

36 ;claculate the submedian of x with respect to first column of x.

37 ct=max(x[,1]) ;count the number of different values in first column of

x

38 subm=matrix(ct ,2) ;matrix of submedian

39 i=1

40 k=1

41 while (i<=max(x[,1]) )

42 xx=paf(x,x[ ,1]==i)

43 subm[k,1]= median(xx[,2])

44 subm[k,2]= median(xx[,3])

45 i=i+1

46 k=k+1

47 endo

48 endp

49 smile=submedian(x2)

50 smile=sort(smile)

51 ix=grid (1,5,24)

52 ix=ix|rows(smile)

53 m2=index(smile[,1],ix)

54 bspl = createfdbasis ("bspline", #(min(m2), max(m2)), 29, m2)

55 fdo = data2fd (smile[,2], smile[,1], bspl , 2 , 1, 0.0014915 )

56 p=grfd(fdo)

57 eva = evalfd ( smile[,1], fdo , 0)

58 eva1 = evalfd ( smile[,1], fdo ,1) ; the first derivative of the

volatility

59 eva2 = evalfd ( smile[,1], fdo , 2) ; the second derivative of the

volatility

60 lpspd=spdcalm(smile[,1], eva , eva1 , eva2 , median(s) , median(r), median

(tau))

61 spd=( smile [ ,1].* median(f))~lpspd

62 li=grid(0,0,rows(spd))

63 li=spd[,1]~li

64 li=setmask(li , "line","red","dashed")

65 der1=smile [,1]~ eva1

66 st=sqrt(mean(tau))

67 ert=exp(mean(r)*mean(tau))

68 rt=mean(r)*mean(tau)

69 d1=(log (1./( smile [ ,1].* ert))+mean(tau)*(mean(r)+0.5.*( eva .^2)))./( eva

.*st)

70 d2=d1 -eva.*st

71 lb=-cdfn(-d1)./ (st*smile [ ,1].* pdfn(d1)) ;lower bound of first

derivative

72 ub=cdfn(d2)./ (st*smile [ ,1].* pdfn(d2));upper bound of first

derivative

73 lb=smile [,1]~lb

74 ub=smile [,1]~ub

75

76 ;log -normal

77 mu=mean(log(s))+(mean(r)-mean(y)^2./2) .*mean(tau)
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78 s2=mean(y)^2.* mean(tau)

79 logn=spd [ ,1]~(exp(-(log(spd[,1])-mu)^2./(2.* s2))./( sqrt (2.*pi.*s2).*spd

[,1]))

80 logn=setmask(logn ,"line", "blue","thin")

81 setsize (600, 600)

82 pic=createdisplay (2,2)

83 setmaskp(smile ,4,8,5)

84 p=setmask(p,"line")

85 show(pic ,1,1,smile ,p)

86 setgopt(pic ,1,1,"xvalue" ,0|1,"yvalue" ,0|1,"title","IV smile with

moneyness ,02 -25 -2003 tau =0.14167","xlabel","moneyness","ylabel","

Implied Volatility")

87 res1 = setmask(spd , "line","thick")

88 show(pic ,1,2,res1 ,li ,logn)

89 title="SPD :02 -25 -2003 tau =0.14167"

90 xlabel="stock price"

91 ylabel="density"

92 setgopt(pic ,1,2,"title",title ,"xlabel",xlabel ,"ylabel",ylabel)

93 setgopt(pic ,1,2, "xvalue" ,0|1)

94 der1= setmask(der1 , "line")

95 lb=setmask(lb ,"line","red","dashed")

96 ub=setmask(ub ,"line","red","dashed")

97 show(pic ,2,2,der1 ,lb ,ub)

98 show(pic ,2,1,der1)

99 setgopt(pic ,2,2,"xvalue" ,0|1,"title","first derivative and no arbitrage

bound","xlabel","moneyness")

100 setgopt(pic ,2,1,"xvalue" ,0|1,"title","first derivative","xlabel","

moneyness")

101 setgopt(pic ,1,1, "border" ,0)

102 setgopt(pic ,2,1, "border" ,0)

103 setgopt(pic ,1,2, "border" ,0)

104 setgopt(pic ,2,2, "border" ,0)

7.2 Proofs

7.2.1 Convexity of Call Price Function

Proof: See Franke et al. (2003)

[for call option]

Let λ ∈ [0, 1] and K1 < K0. We construct following portfolios A and B at time t:

B 1 a long position in λ calls with exercise price K1

B 2 a long position in 1− λ calls with exercise price K0

A a short position in 1 call with exercise price Kλ := λK1 + (1− λ)K0
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value at time t′

position St′ ≤ K1 K1 ≤ St′ ≤ Kλ Kλ ≤ St′ ≤ K0 K0 ≤ St′

B1 0 λ(St′ −K1) λ(St′ −K1) λ(St′ −K1)
B2 0 0 0 (1− λ)(St′ −K0)
A 0 0 −St′ −Kλ −St′ −Kλ

sum 0 λ(St′ −K1) (1− λ)(K0 − St′) 0

Thus we can conclude that λ(ST −K1) ≥ 0 and (1− λ)(K0 − ST ) ≥ 0

Hence, the difference of the portfolio values B and A in t has to be non negative,
implying:

λCK1,T (St, τ) + (1− λ)CK0,T (St, τ)− CKλ,T (St, τ) ≥ 0

7.2.2 No Arbitrage Bounds of IV Smile

Proof: See Fengler (2004)

If K1 < K2 for any expiray date T , we have

Ct(K1, T ) ≥ Ct(K2, T ), Pt(K1, T ) ≤ Pt(K2, T ) (7.1)

This can be improved to:

Ct(K1, T ) ≥ Ct(K2, T ),
Pt(K1, T )

K1
≤ Pt(K2, T )

K2
(7.2)

With the assumption that volatility is a function of strikes, we obtain by differentiating:

∂Ct

∂K
=

∂CBS
t

∂K
+

∂CBS
t

∂σ̂

∂σ̂

∂K
≤ 0 (7.3)

which implies

∂σ̂

∂K
≤ ∂CBS

t /∂K

∂CBS
t /∂σ̂

(7.4)

Differentiating PBS
t /K with respect to K, yields for the lower bound:

∂σ̂

∂K
≥ PBS

t /K − ∂PBS
t /∂K

∂PBS
t /∂σ̂

(7.5)

Finally, insert the analytica expression of the option derivatives and the put price and
make use of the relationship:

e−rτKϕ(d2) = e−δτStϕ(d1) (7.6)

we can obtain 2.23 and 2.24
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Härdle, W. and Hlávka, Z. (2005). Dynamics of state price density, SFB 649 discussion
paper 2005-021.



Bibliography
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