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Abstract

In this master thesis a mechanism to test mononicity of empirical pricing
kernels (EPK) is presented. By testing monotonicity of pricing kernel we
can determine whether utility function is concave or not. Strictly decreasing
pricing kernel corresponds to concave utility function while non-decreasing
EPK means that utility function contains some non-concave regions. Risk
averse behavior is usually described by concave utility function and consid-
ered to be a cornerstone of classical behavioral finance. Agents prefer a
fixed profit over insecure choice with the same expected value. Some of the
EPKs, obtained from DAX German market, were found to be non-monotone
decreasing. These findings show that agents have not always risk averse
behavior.

The first part of the thesis describes construction of the test. Pyke’s the-
orem of order statistics is used to reduce the problem to exponential model.
On the basis of this model likelihood ratio test is constructed for a fixed
interval. Furthemore it is expanded to a test independent from intervals
using intersection of test for different intervals. In the second part test per-
formance is evaluated for simulated and observed data. Different cases of
data are simulated to estimate power of the test, first and second type er-
rors. Then EPKs, obtained from DAX data in years 2000, 2002 and 2004 are
tested for monotonicity.

Keywords: Risk Aversion, Pricing Kernel, Monotonicity
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Chapter 1

Introduction

Behavior of market agents has always been in the focus in economic literature.
In the framework von Neumann and Morgenstern (1944) averse behavior
is described by concave utility function. Agents prefer a fixed profit over
insecure choice with the same expected value. But lately there have been
a lot of discussions about the eligibility of this approach. Recent empirical
studies by Jackwerth, J. C. (2002) and others showed that overall behavior
of agents is risk averse, but there is a reference point near the inital wealth
where market utility functions are convex. Detlefsen, et al (2007) raised
the same question by recovering utility function through empiricial pricing
kernels for different time periods. They observed a bump in empirical pricing
kernels which correspond to non-concave utility functions.

On left figure 1.1 there is classical concave utility function obtained from
Black Scholes model. On the right side of the figure utility function ob-
tained from empirical pricing kernel on 30th July 2000 is presented. This
comparison shows that utility function obtained from pricing kernel is not
strictly concave. In this master thesis we construct a test that can verify if
pricing kernel is monotone decreasing. Strictly decreasing EPK corresponds
to concave utility function and is consistent with classical theory of risk
averse behavior, while rejection of monotone decreasing EPK would mean
non-concave utility function and as a result non-averse patterns on one or
more intervals of the utility function.

The test provides a mechanism to check monotonicity of a function not
only as a whole but also indicates on which interval or intervals monotonicity
of EPK was rejected. This setup is consistent with the main goal to test with
a certain significance level if there is a bump in a pricing kernel around a
reference point. Cox, et al (1985) showed that the empirical pricing kernel
is defined as a ratio of risk neutral density q and historical (subjective) den-
sity p. Risk neutral density is derived from stochastic volatility model which
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Figure 1.1: Classical utility function produced from Black Scholes model
(upper) and market utility function estimated from empirical pricing kernel
on 06/30/2000 (lower)

is widely used in industry, see Heston, S. (1993). Due to large number of
observations in derivative option market, q can be precisely estimated and
considered to be known. Estimation of historical density p is complicated by
model specification and data scarcity and therefore is considered to be unde-
fined. Thus we would like to test monotonicity of pricing kernel constructed
as a ratio of estimated q and unknown p.

The test is constructed as follows: first the spacing method is used to re-
duce the problem to exponential model. On the basis of this model likelihood
ratio test is applied for a fixed interval. Using test intersection method it is
expanded to the test that does not depend on intervals. Finally, test statis-
tics, calculated on observed data, is compared to simulated critical values
and final decision about monotonicity is taken.

The thesis is organized as follows. In section 2 we introduce important
notations and problem setup and the problem is reduced to exponential model
using spacing method. In section 3 we formulate the hypotheses, construct

2



likelihood test for a fixed interval [I, J ] and then expand it to independent
test using multiple testing technique. We also describe how to simulate
critical values using Monte-Carlo method. Section 4 contains performance
of the test for simulated data and section 5 - results on DAX data in 2000,
2002 and 2004.
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Chapter 2

Conception of the Test

2.1 Problem Setup
Suppose we have at our disposal an i.i.d. sample X1, . . . , Xn with an unknown
historical probability density p(x), x ∈ R. Suppose also that we are given a
risk neutral probability density q(x), x ∈ R which is assumed to be known.
Let

K(x) =
q(x)

p(x)

We want to check the monotonicity of K(x), x ∈ R. More precisely we would
like to check if there exists an interval [a, b], where K(x) is not monotone
decreasing. Denote by X(1), . . . X(n) the order statistics related to X1, . . . , Xn

i.e.
X(1) ≤ X(2), . . . ,≤ X(n)

With these notations we can rephrase our problem as follows: find (if possi-
ble) integers I, J such that the sequence

Kk = K(X(k)) =
q(X(k))

p(X(k))
, I ≤ k ≤ J

is not monotone decreasing. The principal difficulty in this problem is related
to the fact that p is unknown. To overcome this difficulty we will use three
basic ingredients:

• spacing method to reduce the problem to a simple exponential model

• maximum likelihood test to test monotonicity of Kk for given I and J

• multiple-testing procedure to find I and J on the basis of the data at
hand.
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2.2 The Spacing Method
Our method is based on the Pyke’s theorem about the distribution of order
statistics, see Pyke, R. (1965). Consider U1, . . . , Un be i.i.d with a uniform
distribution on [0, 1]. For the order statistics

U(1) ≤ U(2), . . . ,≤ U(n)

define uniform spacings Sk as

Sk = U(k+1) − U(k) and Sn = U(n)

Theorem 2.2.1. Let U1, . . . , Un be i.i.d. uniformly distributed on [0, 1] and
e1, . . . , en be i.i.d. standard exponentially distributed random variables. Then

L{Sk, 1 ≤ k ≤ n} = L
{

ek∑n
i=1 ek

, 1 ≤ k ≤ n
}

Using the fact that E[ek] = 1 we obtain the following result:

n
{
U(k+1) − U(k)

}
= n · Sk ≈ ek. (2.1)

Let P (x) =
∫ x

−∞ p(u) du be the probability distribution function associated
with p(x). Using U(k) = P (X(k)) and first order Taylor approximation

P (X(k+1)) = P (X(k)) + P ′(X(k)) · (X(k+1) −X(k))

we derive

U(k+1) − U(k) = P (X(k+1))− P (X(k)) ≈ p(X(k)) ·
(
X(k+1) −X(k)

)
(2.2)

Combining equations (2.2) with (2.1) we obtain

n
{
X(k+1) −X(k)

}
q(X(k)) ≈

q(X(k))

p(X(k))
ek = Kk · ek.

Thus our problem is reduced to the following one: check monotonicity of
K(X(k)) = Kk using

Zk = Kk · ek, I ≤ k ≤ J (2.3)
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Chapter 3

Construction of the Test

3.1 ML test for given I, J

Let A(I, J) be the set of all possible decreasing sequences on a given interval
[I, J ]:

A(I, J) =
{

ak ≥ ak+1, I ≤ k < J
}

Let us defing the following hypotheses:
Hypothesis H0: K ⊂ A(I, J) and pricing kernel K is a monotone decreas-
ing function
Hypothesis H1: K is any kind of function.
A nested model of monotone decreasing function under H0 is compared to a
general class of all possible functions under H1 by calculating maximum of
likelihood function for each of the models. If function K is non-monotone in
accordance with H1, maximum likelihood of two models should significantly
differ from each other. On the other hand when we remove restriction on
monotonicity and it does not bring significant improvement in likelihood,
restricted model H0 should be accepted.
The likelihood ratio monotonicity test is defined by the function

φ(Z) = 1

{
maxK⊂A(I,J) {p(Z,K)}

maxK {p(Z,K)} −Hα(I, J) ≥ 0

}

In other words, if φ(Z) = 1 we accept the null hypothesis H0 : K ∈ A(I, J),
otherwise the alternative is accepted. This setup can be simplified with the
following monotone transformation:

φ(Z) = 1

{
log

maxK⊂A(I,J) {p(Z,K)}
maxK {p(Z,K)} − hα(I, J) ≥ 0

}
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For a given probability of the first kind error α, the critical value hα(I, J) =
log Hα(I, J) is defined as root of the equation:

P0

{
log

maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
− hα(I, J) ≤ 0

}
= α,

where P0 is the probability measure generated by the observations from 2.3
with Kk ≡ 1, I ≤ k < J .
Computation of maxK log {p(Z,K)} is straightforward. Using the results
from equation 2.3 that Zk = Kk · ek we derive log-likelihood function

log {p(Z,K)} = −
J∑

k=I

Zk

Kk

−
J∑

k=I

log(Kk) (3.1)

which gives us analytical result for maxK log {p(Z,K)} at Kk = Zk:

maxK log {p(Z,K)} = −(J − I)−∑J
k=I log(Zk)

Computation of maxK⊂A(I,J) log {p(Z,K)} is performed with Newton-Raphson
method with the projection on decreasing sequence A(I, J). The
main idea of this approach is to find the maximum likelihood over all possi-
ble monotone decreasing sequences by interative optimization via the New-
ton Raphson algorithm. The result of decreasing sequences that maximizes
log-likelihood function is achieved through isotonic regression combined with
Newton-Raphson opimization algorithm.
Isotonic regression performs the least square estimation subject to mono-
tonicity contraint with strictly decreasing trend. For a given vectors x, y of
size n the following minimization problem is fulfilled:

min
fiso

n∑
i=1

{yi − fiso(xi)}2 s.t. fiso(xi) ≤ fiso(xj) where i > j

where fiso is isotonic regression. In practice isotonic regression represents a
downward stepwise function, see figure 3.1.1. This procedure is unfortunately
very time-consuming. It can be also shown that maxK⊂A(I,J) log {p(Z,K)} is
obtained at isotonic regression over Zk parameters since Zk gives us maxK log {p(Z,K)}.
Thus Newton-Raphson algorithm can be omitted, instead isotonic regression
fiso(Zk) is applied to known Zk.

maxK⊂A(I,J) log {p(Z,K)} = −∑J
k=I

Zk

fiso(Zk)
−∑J

k=I log(fiso(Zk))

7
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Figure 3.2.2: Multiple testing on intervals I, J

3.2 Multiple-testing
The principal idea in the multiple testing is to construct a test that does not
depend on I and J . This problem is typically solved with the help of tests
intersection, see Berger (1982). The hypothesis H0 of monotone decreasing
function is rejected if it is rejected at least on one of the interval [I, J ], see
figure 3.2. It means that we are looking for a minimal critical surface h(I, J)
such that:

P0

{
min
I,J

{
log

maxK∈A(I,J) p(Z, r)

maxK p(Z,K)
− hα(I, J)

}
≤ 0

}
= α.

Unfortunately the exact solution of this problem is extremely difficult and
unknown. Therefore we use the Monte-Carlo simulations to find a reasonable
critical surface. We generate “the worst”non-increasing case of the sequence
K(k) as a constant:
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K(1) = K(2) = . . . = K(n) = 1

Then using the result that Zk = Kk · ek we generate Zk ≈ exp(1) as an iid
standard exponential random variable.
Let us define ξ(I, J) as a test statistics over simulated Zk:

ξ(I, J) = log
maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
= max

K∈A(I,J)
log {p(Z,K)}−max

K
log {p(Z,K)}

(3.2)
Here ξ is a matrix of dimensions I, J with non-positive values. Maximum of
value 0 is reached at any monotone decreasing interval I, J .
Define mean M(I, J) and variance V 2(I, J) of test statistics ξ(I, J):

M(I, J) = E0ξ(I, J)
V 2(I, J) = E0 {ξ2(I, J)− E0ξ(I, J)}2

Parameters M(I, J) and V (I, J) are calculated by Monte-Carlo simulations
of Zk as specified above.
Critical value tα, where α is a significance level, is calculated as a root of:

P0

{
min
I,J
{ξ(I, J)−M(I, J) + tαV (I, J)} ≤ 0

}
= α (3.3)

Equation 3.3 gives us a corresponding critical surface hα(I, J)

hα(I, J) = M(I, J)− tα · V (I, J)

In figure 3.2 the calculation algorithm of critical values tα is displayed.
Over all Monte-Carlo simulations of Zk should violate α-threshold surfaces
M(I, J)− tα · V (I, J) in α percent cases.

3.3 Multiple testing on blocks
Suppose initial set of Zk can be divided in m blocks of size b and the remainder
n− b ·m, see figure 3.3.
The idea to introduce blocks is motivated by the variance reduction. Initially
we imply that the alternative hypothesis H1 is a set of all possible functions.
By introducing blocks we allow the function to be monotone decreasing on
interval of size b and thus we decrease the variance of the distribution. Blocks
can be considered as a trade off between the variance reduction and shift
parameter. For small size block distribution is shifted, but variance is also
big. For large blocks the distribution function is less shifted but at the same
time associated with smaller variance.
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Figure 3.3.4: Multiple testing on blocks

On the upper figure 3.3.5 distribuction functions of test statistics without
block (blue) and after introduction of block (red) are depicted. First data
are generated as linear trend with slope b, constant a and iid exponential
errors ei as xi = (a + b i) · ei. Test statistics is obtained from equation 3.2
then ordered. Shift of distribution function is caused by increase of linear
slope b from 0 trend to 0.05. This idea is an underlying principle of the
test, non-monotone data shifts the ditribution to the left that should be
determined by the test. Lower figure shows the influence of block parameter
on variance and shift of cdfs. At best we would like to maximize the shift
and minimize the variance, with an increase of block size m both shift and
variance of cdf are smaller. The idea of blocks is to test monotonicity not
only on each interval I, J but also for all possible block sizes b.
Test statistics ξ(I, J, b) is obtained as a difference between maxK∈A(I,J) log {p(Z,K)}
and maxK log {p(Z,K)} but this time we assume that under H1 function is
monotone decreasing on each of m blocks of size b. Instead of taking each
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Figure 3.3.5: Multiple testing on blocks

value, average for each block is taken:

max
K

log {p(Z,K)} = −m−
m∑

j=1

log

(∑j·b
k=j·b−b+1 Zk

b

)

The same procedure is performed for calculation of maxK∈A(I,J) log {p(Z,K)}
but instead of Zk best monotone decreasing approximation is taken as an
isotnic regression fiso(Zk).
Finally we can formulate hypotheses: H0 hypothesis about monotonic de-
creasing function is rejected when monotonicity is rejected at least on one of
the intervals I, J with any block size b:

min
(I,J,b)

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≤ 0 (3.4)
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Critical value tα,b is different for each value of b and obtained from the equa-
tion

P0

{
min
I,J,b

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≥ 0

}
= α (3.5)

Now we are ready to summarize the monotonicity test:

1. Compute Z(X(k)) = n · q(X(k)) ·
{
X(k+1) −X(k)

}
2. Compute test statistics

ξ(I, J, b) = log
maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
=

maxK∈A(I,J) log {p(Z,K)} −maxK log {p(Z,K)}

3. Take decision: if

min
I,J,b

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≤ 0

then K(·) is a non-monotone decreasing function
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Chapter 4

Simulations and Applications

4.1 Simulated Data
In this section the performance of monotonicity test for artifically simulated
data is evaluated. We investigate the behavior of the test for different cases:
monotone decreasing data, positive linear trend and sudden jumps. Simu-
lated data are generated in accordance with one of the cases multiplied by
standard exponential errors ei. By simulating different errors we can ob-
tain distribution function and then, basing on true function, calculate error
probability and evaluate the power of the test.
Before we apply the test to simulated and observed data, important param-
eters have to be set. The decision about monotonicity is taken basing on
sequence of surfaces ξ(I, J, b) −M(I, J, b) + tα,b · V (I, J, b), one surface for
each block size b. If at least one surface crosses zero level H0 hypothesis
about monotone decreasing funcion is rejected. If surface is located under
zero level it means that calculated test statistics is to the left of threshold
value M(I, J, b) − tα,b · V (I, J, b), see figure 3.2. First we set the minimum
interval of 10 observations between J and I. This parameter is introduced
to approximate test statistics ξ with Gaussian distribution and improve the
correlation betweeb statistics ξ(I1, J1) and ξ(I2, J2). Gaussian approximation
is possible due to central limit theorem, the bigger the interval is, the better
approximation. Obviously if the approximation is good, critical values tα
should be close to Gaussian critical values. Final goal of this parameter is to
improve the power of the test.
The importance of b parameter has been discussed in section 3.3. Large b
reduces variance but at the same time decreases shift of the distribution.
We start with value b = 1 which corresponds to no block until b = 0.5 · n
which means the dataset is divided into exactly two blocks. Values more

13



than 50% of observations would correspond to only one block and remainder
and therefore do not make sense.
Calculation of critical values is described in section 3.2. This procedure is
very time consuming that is why we use dichotomic method in order to find
the root of equation 3.3. This is a method of iterative splitting of intervals
into halfs until required precision of solution is found.
First we generate a monotone decreasing sequence and check the performance
of the test on this dataset. The “worst”monotone sequence is a constant
therefore we simulate x1 = x2 = · · · = xi = 1. On the upper figure 4.1.1
generated sequence x, Z and corresponding isotonic regression over Zi are
displayed. Having fixed b = 3 we calculated critical values tα,3 from equation
3.3 and corresponding testing surface M(I, J, 3)− tα,3 · V (I, J, 3)− ξ(I, J, 3)
which are depicted on the lower figure.
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Figure 4.1.1: Simulated monotone data and resulting testing surface, b = 3
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The entire surface is located above zero level and therefore H0 hypothesis
of monotone decreasing function can not be rejected at 5% sifnificance level.
The depicted above surface is a single result of generated errors ei and fixed
parameter b and therefore can not reflect overall performance of the test. In
order to demonstrate overall behavior of the test we estimate error probability
by generating different errors ei. In figure 4.1.2 distribution of first type error
for different parameter b is plotted, i.e. probability to accept H1 although
data are distributed under H0. As it can be seen b parameters does not
improve the first type error.
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Figure 4.1.2: First type error distribution for different block parameter b

In the next case data are generated with a positive linear trend xi = (a+0.05·
i)·e, where a is a constant and i is an index from 1 to n. Simulated parameters
M(I, J, b) and V (I, J, b) do no depend on data but only on parameters b
and number of observations n and therefore can be taken from previously
simulated example. For fixed b = 3 generated data, rejection intervals and
resulting surface ξ(I, J, 3) −M(I, J, 3) + tα,3 · V (I, J, 3) are given in figures
4.1.3. Rejection invervals show such I and J where testing surface crossed
the zero level and H0 was rejected.
In order to calculate the error probability we calculate number of cases when
test failed to identify non-monone structure of the data, i.e. second type
error. On figure 4.1.4 there is a distribution of second type erros for different
b, starting from no block (b = 1) to exactly two intervals b = 0.5·n = 25. This
figure shows that introduction of block significantly improves the performance
of the test: error probability decreases from 75% for no block to almost 10%
for b = 15.
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Figure 4.1.3: Simulated increasing data and resulting rejection intervals and
testing surface
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Figure 4.1.4: Second type error distribution for different block parameter b

In next example we simulate an artificial bump, see left figure 4.1.5. Ability
of the test to identify jumps or bumps in pricing kernel function is especially
important since observed data do not usually have an obvious positive trend.
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Instead EPK has various fluctuations, bumps and jumps. Significant bump
would correspond to non-concave utility function and contradict to classical
theory about risk-averse agents. On middle and right figures 4.1.5 testing
surface ξ(I, J)−M(I, J) + tα · V (I, J) and rejection invervals I, J are given
for fixed block size b = 3.
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Figure 4.1.5: Simulated data with a bump and resulting rejection intervals
and testing surface

Distribution of second type erros for different b is given on figure 4.1.6. We
can see that there exists an optimal block size b which corresponds to a trade
off between shift and variance of distribution, see section 3.3. Optimal b is
different for each dataset and therefore we consider a sequence of surfaces
ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b) for each block size b. H0 hypothesis of
monotonic decreasing function is rejected when at least one of these surfaces
crosses zero level.
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Figure 4.1.6: Second type error distribution for different block parameter b

4.2 Monotonicity of DAX Empirical Pricing
Kernel

Final goal of this work is to test empirical pricing kernel obtained from ob-
served data. For the analysis we take data used in Detlefsen, et al (2007)
where the pricing kernels and the risk aversion are analyzed in summer 2000,
summer 2002 and summer 2004 in order to consider different market regimes.
According to our test design the decision about monotonicity of pricing ker-
nel is made on the basis of generated Zk = n · (X(k+1)−X(k)) · q(X(k)) where
X are DAX returns and q is risk neutral density. DAX returns are calculated
on half year basis Xi = Xi−Xi−126

Xi−126
and then ordered to X(k). Corresponding

ordered returns differences X(k+1) − X(k) for years 2000, 2002 and 2004 are
displayed in figure 4.2.1.
Risk neutral density q (see figure 4.2.2) is estimated using Heston model
(1993) calibrated on observed implied volatility surfaces with half year matu-
rity. Fore more details on estimation of risk neutral density refer to Detlefsen,
et al (2007).
Resulting Zk values are displayed in figure 4.2.3. For each set of Zk an iso-
tonic regression was constructed which represents maxK⊂A(I,J) log {p(Z,K)}
in equation 3.2. Numerous simulations showed that in order to compute max-
imum likelihood for restricted model maxK⊂A(I,J) log {p(Z,K)} we have to
take isotonic regression over optimal parameters which maximize log {p(Z,K)}
for all possible K. maxK log {p(Z,K)} is reached at Kk = Zk and equal
to −n −∑n

k=1 log(Zk), so isotonic regression over observed Zk maximizes
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Figure 4.2.1: Half year ordered returns differences X(k+1) − X(k) for years
2000, 2002 and 2004

maxK⊂A(I,J) log {p(Z,K)}.
In order to take a final decision about the motonocity sequence of surfaces
M(I, I, b) and V (I, J, b) has to be computed. M and V 2 are mean and vari-
ance parameters of test statistics ξ obtained via Monte Carlo simulations of
Zk as iid standard exponential random variable. Each value of the matrixes
M and V represent correspondingly mean and standard error of ξ for a fixed
parameter b and interval I, J and calculated as maxK⊂A(I,J) log {p(Z(I, J), K)}−
maxK log {p(Z(I, J), K)}. Matrix M has non-positive values with maximum
at 0, V is non-negative. Both matrixes exist only for J > I, see section 3.2
for details. Since surfaces M and V do not depend on observed data but
only on the number of observations n and block size b they are computed
once for all years. In figure 4.2.4 corresponding surfaces M(I, J) and V (I, J)
are plotted for b = 1, M is linear increasing in I, J ; V is increasing in I, J at
square root speed.
Next important step is to calculate critical values tα,b which are defined as
a root to equation 3.5. This procedure is time consuming, but at the same
time does not rely on data and has to be simulated once for a fixed number of
observation n and block size b. We use dichotomic method of iterative split-
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Figure 4.2.2: Estimated risk neutral densities q for years 2000, 2002 and 2004

ting intervals. In our analysis we start with intervals [0.0, 20.0] then calculate
correponding α for the mean of the interval. Depending on calculated α one
of two resulting intervals [0.0, 10.0] and [10.0, 20.0] is chosen. This procedure
is repeated for selected interval until solution of required precision is found.
Resulting critical values are presented in figure 4.2.5. It can be seen that
critical values are changing for different parameter b.

Finally testing surfaces ξ(I, J, b)−M(I, J, b) + t0.05,b · V (I, J, b) for years
2000, 2002 and 2004 are produced. For fixed b = 50 corresponding surfaces
are presented in figure 4.2.6. They show the differences between simulated 5%
threshold surface M − t0.05,50 ·V calculated via Monte Carlo simulations and
test statistics ξ obtained from observed data in years 2000, 2002 and 2004.
Hypothesis H0 of motononic descreasing EPK is rejected at 5% significance
level if test statistics ξ is smaller than threshold value M(I, J)− t0.05V (I, J).
For each interval I, J where surface ξ(I, J, 50)−M(I, J, 50)+t0.05,50V (I, J, 50)
is negative, a corresponding rejection interval is plotted in figure 4.2.7. Sum-
mary of results for three years is presented in table 4.2.1. In addition to ac-
cepted hypothesis, value of minI,J,b {ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)}
is givenin the table. By evaluating this values we can estimate the signifi-
cance of accepted hypotheses. Test significantly rejectes monotone decreasing
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Figure 4.2.3: Calculated Zk for years 2000, 2002 and 2004

EPK in 2002 as well as can not reject strictly decreasing EPK in 2004 for
5% and 10% significance level. Situation in 2002 is on the verge: H0 can not
be rejected with 5% critical values, but rejected at 10% signifiance level.
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Figure 4.2.4: Surfaces M and V for 255 observations, b = 1

Sign. level/Year of analysis 2000 2002 2004
5% Significance level
minI,J,b 0.5437 -133.78 3.7935
Accepted H0 H0 H1 H0

10% Significance level
minI,J,b -0.1840 -134.42 3.1685
Accepted H1 H1 H1 H0

Table 4.2.1: Summary of results on monotonicity of EPK in 2000, 2002 and
2004.
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Figure 4.2.6: Surface ξ(I, J, 50) −M(I, J, 50) − t0.05,50 · V (I, J, 50) for years
2000, 2002, 2004
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Chapter 5

Conclusion

In this master thesis we describe the test that checks monotonicity of pricing
kernels. By testing monotonicity of pricing kernel we can determine whether
utility function is concave or not. Strictly decreasing pricing kernel corre-
sponds to concave utility function while non-decreasing EPK means that
utility function contains some non-concave regions.

Pricing kernels are constructed as a ratio of risk neutral density q and
subjective density p. Density q is obtained from derivative market and due to
large number of obsrevations can precisely estimated. p is usually estimated
from historical information, but due to scaricity of data is considered to be
unknown. Therefore we test ratio of two densities q

p
, where q is given and

p is unknown. Using Pyke’s theorem (see Pyke, R. (1965)) this problem is
reduced to simple exponential problem. The test isteslf is constructed on the
basis of likelihood ratio test for a fixed interval. By using intersection of tests
for different intervals we can expand it to the variant which is independent
from intervals.

We investigated EPK for German DAX data in years 2000, 2002 and
2004. We found the evidence of non-concave utility function: H0 hypothesis
of monotone decreasing pricing kernel function was rejected at 5% and 10%
significance level in 2002; in 2000 H0 was rejected at 10% significance level.
This result is consistent with work of Detlefsen, et al (2007) who observed
non-cocavity in utility functions obtained from German DAX market. For
year 2004 hypothesis of decreasing EPK could not be rejected. These find-
ings also support the idea of Giacomini and Haerdle (2007) who wrote the
structure of pricing kernel may vary over time.
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