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Abstract

This Master thesis further develops the framework for the joint modelling of several
futures curves proposed by Ohana (2010). The key innovation is the incorporation of
dynamic conditional correlation models based on hierarchical Archimedian copula
(HAC-DCC). The conducted analysis allowed to forecast the distribution of the
returns of any portfolios composed of the available futures contracts for short time
periods. As shown in the study, value-at-risk estimates derived from the forecasts
produced by HAC-DCC models are accurate, and these models outperform other
benchmark models on a consistent basis as shown by the value-at-risk backtesting
procedure carried out on a set of 1000 simulated futures portfolios.

Keywords: multivariate GARCH, hierarchical Archimedean copula, value-at-risk,
commodities, forward curves
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1 Introduction

Nowadays more and more agents are involved in trading of energy commodities and
various instruments linked to their prices: these agents include banks, electric utilities,
commodity producers, specialised trading companies and others. Some of them deal
with several instruments that may based only on one commodity, but have quite different
properties. Nevertheless, the situation becomes even more complicated if an agent has
to deal with instruments related to several commodities whose prices may be partly
influenced by common factors. Risk management and portfolio optimisation in such
multi-product and especially multi-commodity setting where product prices may be
dependent on each other in a complicated way is a challenging task and requires reliable
tools for pricing various instruments.
Commodity futures and forward contracts play a special role in the world of the

energy-related instruments. First, they represent the simplest type of commodity deriva-
tives, an agreement to buy or sell the underlying asset at a predetermined time in the
future for a particular price that is agreed today. Their difference is that the former is
a standardised contract that is traded on a futures exchange, whereas the latter is an
OTC product that does not have to be standardised, but rather can take into account
specific needs of the buyer and/or the seller. However, as noted in Pilipovic (2007),
due to the nature of the energy commodity market, the terms forward and futures price
can be used interchangeably, if the delivery and the payment dates of both contracts
coincide and “there is no possibility of default on either side” because they represent the
same value. The second feature of the forward and futures contracts is that despite their
simplicity, the so-called forward curves formed by all available futures/forward prices
at a particular point in time, constitute an essential input to the pricing model of any
other energy derivatives. Hence the importance of the ability to model the whole set of
futures/forward prices stems from the two sources: 1) due to their simplicity, forward
and futures contracts are among the most popular and liquid energy-related instruments
which means that many market participants have open positions in the futures/forward
markets and are interested in tools allowing to predict the short- (or possibly long-)
term dynamics of their futures/forward portfolios, 2) a reliable model of the futures
price dynamics allows to price other more complex commodity derivatives.
In this thesis, the first motivation is prevailing. We assume that modelling the dy-

namics of a commodity curve is a self-sufficient goal, but the techniques and methods
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1 Introduction

applied in the work may also find their application in the second line of possible research,
i.e. pricing of more complex derivatives.

Throughout the paper we will use the notation F (t, T ) for the observed at time t price
of a forward/futures contract with maturity (which we assume to coincide with the last
trading day) at time T , T > t. Let T be the time of maturity of some futures contract
in general, additionally let T it denote the last trading day of the i-th nearby futures
observed on day t. There seems to be a convention to refer to a commodity price curve
as a forward curve, i.e. not a futures curve. This may be reasonable since forward and
futures price typically refer to the same value. However, in this thesis we decided to
refer to the forward curve as a futures curve to avoid any confusion and to emphasise
that market futures prices were used in the empirical work. The term forward curve
will be encountered only in the review of the previous research.

As mentioned above, a multi-commodity setting presents an additional challenge for
practitioners. Ohana (2010) is a relatively recent study that proposed a framework of
evolution of the heating oil and natural gas futures curve. An attractive feature of
this study is a combination of elements of several approaches to the commodity spot
and futures price modelling (two-factor model of the futures curve dynamics, vector
error-correction model, copula-based multivariate distributions). However, the solid
framework was applied to draw only descriptive conclusions and was not used to solve
any problems that may be faced e.g. by a commodity risk manager.

This thesis was inspired by Ohana (2010) and follows the basic structure of this paper.
In the first step, we calibrate the so-called two-factor model that helps describe the whole
range of futures returns of the two commodities with only four series of shocks. Next,
in line with Ohana (2010), the deterministic component is extracted from the shocks
series by estimating a model of the vector autoregression class. After that, the series
of the residuals in this model are analysed. Our main contribution is the estimation
of the multivariate GARCH models based on the hierarchical Archimedian copula, a
recent development in the GARCH family which is a flexible instrument allowing for a
variety of possible dependence structures for several time series. The ultimate goal of
estimating these models is to predict value-at-risk for a particular futures portfolio for a
given day, which is derived from the predicted distribution of the return of this portfolio
for this day. The models are estimated on many time windows, and value-at-risk is
estimated for 1000 portfolios. Value-at-risk backtesting and subsequent benchmarking
with other nested and non-nested model specifications showed that the incorporation of
multivariate GARCH models based on the hierarchical Archimedian copula can make
the framework of Ohana (2010) a useful risk management tool.

This thesis is organised as follows. Chapter 2 reviews approaches to modelling future
prices developed to date, classifies them into two groups and shows the theoretical
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link between them. Chapter 3 focuses on the two-factor model of the futures curve
described in Ohana (2010). Chapter 4 provides necessary theoretical background on
multivariate GARCHmodels including those based on hierarchical Archimedian copulas.
Chapter 5 is a simulation study where we investigate how competing model specifications
can approximate data generated by each other and what the consequences of a model
misspecification are. Chapter 6 presents the multi-stage empirical study. Chapter 7
concludes.
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2 Review of approaches to futures price
modelling

All approaches to model futures curves can be subdivided into two broad groups: 1) the-
oretical stochastic models for a spot price that provide a framework for pricing various
commodity derivatives including futures and 2) methods to model and analyse futures
curves as a whole (see e.g. Clewlow and Strickland (2000)).

2.1 Stochastic models for spot prices

Development of stochastic methods for the modelling of commodity prices began in
the late 1980s – early 1990s and was inspired by the yield curve modelling techniques
developed by that time. The main assumption in such models is the process followed
by the spot price of a commodity. Clewlow and Strickland (2000) and Geman (2005)
mention several models of this kind having different number of state variables. Simplest
models assume only one state variable which is the current spot price itself. The general
form of the diffusion process followed by the spot price in this case is:

dS(t) = µ {S(t)} dt+ σ {S(t)} dW (t), (2.1)

where S(t) is the spot price, t is the time of observation, µ {S(t)} is the drift rate,
σ {S(t)} is the instantaneous volatility of the spot price, W (t) is the Wiener process.
Model 1 in Schwartz (1997) is an example of this general formulation. In this model,
the drift part µ(St)dt exhibits mean reversion to some long-term value, and the variance
is proportional to the current spot price. The risk-neutral dynamics of the spot price
has the form:

dS(t) = h {θ − ν − lnS(t)}S(t)dt+ σS(t)dW (t), (2.2)

where θ is the long-term value of the spot price, h is the speed of mean-reversion, ν is
the market price of energy risk and σ is the constant volatility of the spot price return.
Schwartz (1997) shows that under such assumptions the forward price will be expressed
as:

F {t, T, S(t)} = A(t, T ) {S(t)}B(t,T ) , (2.3)
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2 Review of approaches to futures price modelling

where

A(t, T ) = exp
[{

1− e−h(T−t)
}
α+ σ2

4h
{

1− e−2h(T−t)
}]

,

B(t, T ) = e−h(T−t),

α = θ − σ2

2h − ν.

This simple model can be extended by introducing seasonality (although this is not
relevant for all commodities) as in Borovkova and Geman (2008) or by the inclusion of
jumps (see Clewlow and Strickland (2000)) as previously done by Merton (1976) for the
purposes of stock option pricing.

More sophisticated models introduce more state variables in addition to the spot
price, all of which are assumed to follow a joint stochastic process. Apart from the
simple mean-reversion model discussed above, Schwartz (1997) also discusses two its
generalisations: the two-factor model with spot price and net convenience yield being
the factors, and the three-factor model that additionally includes instantaneous interest
rate as the third factor. The two factors in the models described in Gabillon (1991)
and Pilipovic (2007) are spot price and long-term value of mean-reversion. Cortazar
and Schwartz (2003) propose a model with three factors: spot price, net convenience
yield and long-term spot price return. The factors in the model of Eydeland and Geman
(1998) are spot price and instantaneous volatility, analogous to the interest rate model of
Heston (1993). One of the examples of recent developments in this area of research is Liu
and Tang (2010) who criticise the idea of modelling net convenience yield (convenience
yield minus storage costs), i.e. implicit treating of storage costs as a percentage of the
spot price and suggest treating convenience yield and storage costs separately instead.

In most cases, estimation of the parameters in these models implies the using the
Kalman filter since the state variables are not directly observable (see an example of
the Kalman filter implementation in Schwartz (1997)). In some cases it is possible to
use procedures that do not impose strict requirements on the data with regard to the
missing values and are considerably easier to implement as compared to the Kalman
filter. Thus, Cortazar and Schwartz (2003) applied an iterative procedure to their three-
factor model and to the two-factor model of Schwartz (1997) to estimate both the factors
and the values of the state variables for each observation date. These estimates were
shown to be “reasonably close” to those obtained using the Kalman filter.

One of the central questions in stochastic modelling of forward or futures commodity
prices is formulated in Gabillon (1991): he pointed out an important difference between
the goal of “developing a model which describes the motion of the term structures of
futures prices and volatilities with satisfactory accuracy” and “developing a model that
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2.2 Forward curve models

adequately values most of the derivative securities”. Both goals are important to a risk
manager. But in fact, there exists a trade-off between them - allowing some parameters
to be time-varying one could develop a model that would price most traded derivatives
on a particular commodity fairly correctly. However, such a model would normally be
just a static fit with poor dynamic properties. In order for the model to have adequate
dynamic behaviour, one should either assume all its parameters to be constant or to be
a very simple function of time.

2.2 Forward curve models

Specifying spot commodity price dynamics is not an essential step for the modelling
of commodity forward/futures prices. It is also possible to model the dynamics of the
latter explicitly, defining risk factors only in general form. This approach also allows to
model all forward/futures prices simultaneously. One of the first studies to formulate
the framework for this approach was Reisman (1991). The risk-neutral process followed
by the futures price F (t, T ) is assumed to have the form:

dF (t, T )
F (t, T ) =

d∑
l=1

χl(t, T )dWl(t), (2.4)

where W1,W2, ...,Wd are d independent Brownian motions and χl(t, T ) are the corre-
sponding volatility functions of the futures prices, or risk factor loadings.

Under the risk-neutral probability measure, a position in an asset that requires no ini-
tial investment, such as a futures contract, must have a zero expected return. Therefore
the dynamics of the futures prices in (2.4) has zero drift.

As described in Clewlow and Strickland (2000), the next step in this framework is
to define the number of factors and to estimate the corresponding volatility functions
χl(t, T ). In general case, χl(t, T ) are not assumed to have any parametric form. To
define the factors, many authors follow the methodology of Heath et al. (1990) and
apply principal components analysis (PCA) which implies the eigenvalue decomposition
of the sample covariance matrix Σ̂ of all the futures prices F (t, T ) for all M available
maturities, whose elements σ̂ij are estimated as:

(σ̂)ij = 1
N

N∑
t=1

(r̂it − r̂
i)(r̂jt − r̂

j), (2.5)

where r̂it is the observed at time t return of the i-th nearby futures, r̂i is a sample
mean of the return of the i-th nearby futures, N is the number of observations for each

7



2 Review of approaches to futures price modelling

considered maturity, i, j = 1, . . . ,M . The matrix Σ̂ is decomposed as:

Σ̂ = ΓΛΓ>, (2.6)

where the columns of Γ are the eigenvectors of Σ̂ and Λ is the diagonal matrix composed
of the corresponding eigenvalues of Σ̂:

Γ =


γ11 γ12 . . . γ1M

γ21 γ22 . . . γ2M
...

... . . . ...
γM1 γM2 . . . γMM

 and Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λM

 .

The share of the variance υ explained by the first d principal components in the total
variance can be calculated as:

υ =
∑d
l=1 λl∑M
i=1 λi

. (2.7)

In practice, it is possible to explain a considerably high share of variance with d first
factors where d < M (see below), which allows to reduce the dimensionality of the
subsequent analysis by disregarding factors with low explanatory power. The estimates
of the volatility functions in (2.4) are obtained as χl(t, T it ) = γil

√
λl.

Clewlow and Strickland (2000) showed that similar to the derivation of the forward
price from a spot price diffusion process such as given in (2.1), one can also derive
the process for the spot price from the futures price process, such as provided in (2.4).
Moreover, they showed that the one-factor version of 2.4 with volatility of the factor
parametrically defined as χ1(t, T ) = χeκ(T−t) with χ and κ being parameters, is equiva-
lent to the single factor Schwartz (1997) model (2.2) with time dependent term (θ − ν).

Cortazar and Schwartz (1994) is one of the first studies where PCA is applied to the
commodity futures curves analysis in order to define the optimal number of factors and
to estimate the corresponding volatility functions in (2.4). Using historical data, the
authors simulated stochastic processes of the copper futures prices which allowed them
to estimate expected cash flows of a copper-linked note and define its price.

Cortazar and Schwartz (1994) is also one of the first works where the first three de-
termined factors defining the dynamics of a commodity forward curve were denoted as
“level”, “steepness” and “curvature”. These terms were used in a somewhat abstract
sense since e.g. by “level” no parallel shift is meant and “steepness” does not corre-
spond to any commonly used steepness measure. Nevertheless, these factors turned
out to be more convenient for modelling yield curve dynamics than more “intuitive”
ones. Cortazar and Schwartz (1994) note that the patterns of the factor loadings of the
principal components resulted from their analysis resemble those of the factors defining
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2.2 Forward curve models

the dynamics of a yield curve described in the earlier study Litterman and Scheinkman
(1991).

A more recent study Tolmasky and Hindanov (2002) attempts to consider heating and
crude oil futures traded on NYMEX within one model, i.e. to define factors affecting
the shape of both curves. PCA in this case is performed on the whole dataset, and the
seasonality problem which is present in the case of the heating oil is taken into account.
Factor loadings are corrected for each season depending on the variance explained by
a particular factor in the past seasons. However, the authors admit that it is not clear
how to assess the statistical significance of the seasonality in this case. The estimated
model is used to simulate futures contract returns which allows to estimate value-at-risk
and price complex commodity derivatives such as basket spread options.

Notably, the explanatory power of the factors governing the dynamics of the futures
curve of a single commodity is reported to be remarkably high - even two factors explain
around 96-97% of the variance as documented by Cortazar and Schwartz (1994). When
applied to the explanation of the dynamics of more than one commodity curve within one
model, as in Tolmasky and Hindanov (2002), PCA yields worse results in terms of the
variance explained by the factors. Besides, the factors become less interpretable. These
results are confirmed in Chantziara and Skiadopoulos (2008) who consider futures on
four different oil products. They also note that the quality of the regression models where
futures prices are explained by the revealed factors does not improve after applying PCA
to all contracts simultaneously.

Koekebakker and Ollmar (2005) who studied the dynamics of electricity prices on the
Nord Pool electricity derivative exchange documented much lower explanatory power of
the principal components: 75% of the variance is explained by two factors whereas more
than 10 factors are required to explain 95% of the variance. This may be attributed
to the higher complexity of the electricity price dynamics and a specific nature of this
market.

Järvinen (2004) studied the dynamics of prices for Brent oil and NBSK using PCA
and found a relatively poor explanatory power of the principal components (two factors
explain around 63% of the variance for NBSK and 81% for Brent, four factors are
required to explain more than 90% of the variance for both commodities). He also notes
that the components themselves cannot be cleary interpreted since they do not look
similar to the typical “level”, “steepness” and “curvature” factors. It is necessary to
point out that in contrast to many other studies, he used broker’s swap quotes as the
source of the price data which may have influenced the obtained results.

Model (2.4) can also be formulated under the physical probability measure P. But in
this case, since a futures contract is a risky investment, it does not necessarily have a zero
expected return which means that the terms Wl(t) are not necessarily Wiener processes
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under P. For the purposes of the empirical work the model is usually discretised, so the
times series formed by the terms dWl(t) can be broadly denoted as shocks series and
modelled separately.

An example of forward curve modelling under P is the study Borak and Weron (2008).
Prompted by the unsatisfactory results yielded by PCA for electricity markets they
applied more sophisticated dynamic semiparametric factor model (DSFM) that also fits
the general framework of (2.4). Analysing the Nord Pool dataset also used in the study
Koekebakker and Ollmar (2005) mentioned above, Borak and Weron (2008) found that
DSFM is “an efficient tool for approximating forward curve dynamics” in application to
the electricity markets.

The two-factor model used in the recent work Ohana (2010) also defines the commod-
ity process under the physical probability measure and employs parametrically defined
factor loadings. This model is used as a first step to get insights into the dynamic
interdependence of the heating oil and natural gas futures curves in the US market.
As the motivation to investigate the interrelations between the two markets, economic
reasons, such as links on both demand and supply side of the markets were cited. Thus,
on the demand side there is a certain switching potential between the two commodities
in the industry sector, power generation sector and at times even in the private sector.
Since the two commodities are substitutes to some extent, if the price for one of the
commodities is driven up by external factors, the agents switching to the cheaper com-
modity will put upward pressure on its price, too. On the supply side the link between
the markets is not so well defined, i.e. there exist at least two effects that may influence
the price relationship in the opposite directions. As the reason forcing the prices to
co-move, the geographical position of major US gas and oil fields (the Gulf of Mexico) is
mentioned. This area is often adversely affected by weather conditions and even natural
catastrophes that cause a rise in both commodity prices.

The factors defining the shape of the futures curve every day, “level” and “steepness”
(called “slope” in the paper), are predetermined in the model framework. Ohana (2010)
uses the two-factor framework to transform the dataset of 28 futures return series to the
4-variate set of so-called long-term and short-term price shocks of the two commodities.
The four series of shocks are used in the subsequent time series analysis to discover both
long- and short-term dependence structures.

The idea to decompose “daily deformations” of a futures curve into short-term and
long-term shocks had already been explored in e.g. Manoliu and Tompaidis (2002),
Schwartz and Smith (2000) and Geman and Nguyen (2005). Besides, in connection
with modelling of the yield curve dynamics, these concepts have an even longer history
and were mentioned already in Heath et al. (1990). However, the advantage of the
model used in Ohana (2010) is the combination of straightforward interpretability with
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a good explanatory ability: the percentage of explained futures return variance is over
95%. A detailed description of the model is given in chapter 3.
Ohana (2010) was not the first to study interrelations of the futures prices for dif-

ferent commodities. The innovation of this study is the combination of an analytical
approach to the futures curve decomposition with the subsequent cointegration and
error-correction time series analysis in the spirit of e.g. Asche et al. (2006), Bachmeier
and Griffin (2006), Dawson et al. (2006), Grasso and Manera (2007) or Hartley et al.
(2008). The mentioned authors pay a lot of attention to the econometric model specifi-
cation in order to find out laws of market interactions. But they use only front-month
futures prices which probably constrains the power of the techniques applied, whereas
the work of Ohana (2010) makes use of the wide spectrum of the available futures prices.
Ohana’s (2010) study resolves among other things a problem that some researchers

seem to ignore: on most futures markets one can never observe one and the same futures
curve on different days because the spectrum of available maturities changes every day
(i.e. all maturities decrease by one day). This may pose a problem if a futures contract
has a long (say, monthly) delivery cycle. In this case, nearby futures prices shortly after
the delivery (with maturity in a little less than one month) will be regarded exactly in
the same manner as nearby futures prices shortly before the delivery. Ohana’s model
automatically accounts for these differences in remaining days to maturity.
As mentioned in chapter 1, in our research we follow the general structure of Ohana

(2010), but use recent developments in the multivariate GARCH modelling to better
capture the variance-covariance of the series vector in question. Besides, we pursue
a practical goal to find a reliable way to produce accurate value-at-risk forecasts for
various portfolios composed of futures contracts.
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3 Two-factor model of the futures curve
(Ohana, 2010)

This chapter is devoted to the description of Ohana’s (2010) two-factor model. Its main
features are: 1) it explicitly defines the factors that determine the shape of the futures
curve at every moment t and 2) it enables decomposition of daily futures curve moves
into long-term shocks that affect all maturities equally, and short-term shocks that affect
shorter maturities more significantly that longer ones. As economic justification for this
decomposition the following interpretation of shocks is given in Ohana (2010):

• the short-term shocks are related to events that are expected to affect the mar-
ket for a limited period of time, such as temperature change, transitory supply
shortage, transportation problems etc.

• the long-term shocks reflect fundamental changes in supply or demand for the
commodity, such as new information on available reserves, change of political
situation in commodity-rich countries etc.

The model is defined in discrete time on a filtered probability space (Ω,Ft,P) where the
probability measure P is physical. For t ≥ 0 the following arbitrage-free dynamics for
the futures prices of a commodity is assumed:

F (t, T )− F (t−∆, T )
F (t−∆, T ) = exp

{
− k

252(T − t+ ∆)
}
δSt + δLt , (3.1)

with ∆ being some small time interval, (δS)t≥1 and (δL)t≥1 are Ft-adapted short-term
and long-term shocks which we decompose as

δSt = λSt + ξSt , (3.2)

δLt = λLt + ξLt ,

where λt and ξt are the deterministic and random shocks components respectively, k is
the characteristic value of a commodity defining the extent to which a short-term shock
affects longer maturities and 252 is the assumed number of trading days in a year.
In (3.1) and thereafter, T , t and ∆ are measured in trading days. In the subsequent

analysis ∆ is equal to one trading day.
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3 Two-factor model of the futures curve (Ohana, 2010)

Both deterministic and random components of the shocks are in general mutually
dependent. The general model view defined by (3.1) is assumed to remain unchanged
throughout the whole time period considered in the study for both commodities. In
particular, the parameter k is assumed to be constant for each commodity. Contrary to
this, the mechanisms defining the behaviour of the shocks components are not required
to be stable over the course of time. Econometric models that parametrise various types
of the dependence of the shocks components constitute the essence of this study. After
both futures curves datasets are transformed into the shocks series, the next step is to
extract the deterministic component using the VAR framework, and then apply different
specifications of multivariate GARCH to capture the residual variance.
Every day t we observe a futures curve which consists of the prices of the first nearby

(soonest to mature), second nearby, . . ., M -th nearby futures contracts. Hence, M
futures returns can be calculated every day. In order to decompose the futures price
returns into shocks consistently, these returns need to be consistently calculated, i.e.
only the price of one and same contract can be used to calculate a return. For example,
if today is the last day when the first nearby futures contract is traded, tomorrow’s
return of the first nearby futures has to be calculated using the tomorrow’s and today’s
price of the futures contract which is still second nearby today but will the be the first
nearby tomorrow. Let us denote r̂it the return of the i-th nearby futures calculated on
day t.
In order to be able to transform futures returns into shocks, the model must be

calibrated. A crucial assumption that considerably facilitates the calibration of the
model is that the short-term shock does not affect the farthest (M -th) return which
can be formally written as exp

{
−k(TMt − t+ ∆)/252

}
≈ 0. The most distant futures

return is therefore fully attributed to the long-term shock which implies that the short
term shock can be easily expressed e.g. from the actual return of the first nearby futures.
The expressions for both shocks are thus:

δLt = r̂Mt , (3.3)

δSt = exp
{
k

252
(
T 1
t − t+ ∆

)}(
r̂1
t − r̂Mt

)
.

Plugging these expressions for shocks to (3.1), we obtain the following formulation for
the model-implied return (denoted by rit) of the futures contract with the maturity T it
that can be written as a function of k:

rit(k) = r̂Mt + exp
{
− k

252
(
T it − T 1

t

)}(
r̂1
t − r̂Mt

)
. (3.4)

In order to calibrate the model, i.e. estimate k, we minimise the root mean square error
(RMSE) calculated from squared differences between the model-implied (rit) and actual
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(r̂it) futures returns using all available information (every trading day across all available
maturities) for each commodity:

k̂ = arg min
k
RMSE =

√√√√ 1
NM

N∑
t=1

M∑
i=1

{
r̂it − rit(k)

}2
, (3.5)

where N is the number of returns observations (which requires N + 1 futures curve
observations) and M is the number of considered maturities.

An attractive and desirable for us feature of model 3.1 is that it can also be interpreted
as a model for the shape of a futures curve after some rearranging of terms. This also
implies that discrete daily returns are actually an approximation of continuous returns:

∆ logF (t, T ) ≈ F (t, T )− F (t−∆, T )
F (t−∆, T ) = exp

{
− k

252(T − t+ ∆)
}
δSt + δLt , (3.6)

which repeats (3.1) and equates it to the difference of the logarithmised futures prices.
Isolating logF (t, T ), we obtain the expression for the futures curve at time t:

logF (t, T ) ≈ logF (0, T ) +
t∑

j=1
exp

{
− k

252(T − j + ∆)
}
δSj +

t∑
j=1

δLj ; t ∈ [0;T ] . (3.7)

Now, if we assume the initial futures curve to take the form:

logF (0, T ) = Q(T ) + exp
{
− k

252T
}
X0 + Y0; T ≥ 0, (3.8)

whereX0 and Y0 are real deterministic numbers and Q(T ) is some periodic function with
the 12 months cycle that ensures the seasonality property of a futures curve observed
in chapter 6, then (3.7) can be rearranged as:

logF (t, T ) ≈ Q(T ) + exp
{
− k

252(T − t)
}
Xt + Yt; t ∈ [0;T ] , (3.9)

where for t ≥ 1, Xt and Yt are defined respectively as:

Xt = X0 exp
(
− k

252 t
)

+
t∑

j=1
exp

{
− k

252(t− j + ∆)
}
δSj , (3.10)

Yt = Y0 +
t∑

j=1
δLj . (3.11)

Equation 3.9 shows that a futures curve is decomposed into two summands: Yt which
regulates the vertical shift of the curve (later referred to as “level”) and the product of
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3 Two-factor model of the futures curve (Ohana, 2010)

two factors, one of which, exp {−k(T − t)/252}, depends only on the time to maturity
for a particular commodity curve on a given day. Hence the exact shape of the curve is
governed solely by Xt which we will refer to as “slope”. It is easy to see that positive
values of Xt will generate a curve that declines with increasing time to maturity (the
situation referred to as backwardation) and, conversely, negative values of Xt generate
an upward-sloping curve (which is referred to as contango).
At this point it is worthwhile to note that although the described model can generate

futures curves that exhibit the seasonality property, the presence of this property itself
is irrelevant to the subsequent analysis. Since the value of the seasonality function Q(T )
is constant for every futures price for some T , its value cancels out when futures price
returns are calculated which is why no seasonality term shows up in (3.1) and all other
expressions that directly follow from it.
It is clear that the names of the factors defining the shape of a futures curve in the

described model (slope and level) are somewhat allegoric. Nevertheless, to a considerable
extent these factors are analogous to purely empirical principal components such as
those documented by Cortazar and Schwartz (1994). It is even possible to claim that
“slope” in the Ohana’s model corresponds to both “steepness” and “curvature” regarded
from the common sense point of view. However, one must understand that one factor
cannot be so flexible and cannot allow for arbitrary separate changes in “curvature” and
“steepness”, e.g. the Ohana’s model cannot produce a straight line (a line with “zero
curvature”) other than the one parallel to the horizontal axis.
Ohana (2010) also provides fundamental theoretical interpretation of the factors in the

light of the risk factors in spot commodity price models reviewed in chapter 2. “Level”
corresponds to the long-term commodity price and “slope” is related to the convenience
yield, i.e. to the relative benefit of holding of a physical commodity as compared to
having a long futures position in this commodity.
Finally, we note that the slopes and the levels of the futures curves can be easily

estimated from the futures price data. Assuming the level to be zero on the day of the
first observation, we can use (3.11) to derive the levels for all other days. The slopes
can be estimated applying (3.9) for some maturities with the same value of the seasonal
function Q(T ) (e.g. the 1st and the 13th) and subtracting one expression from the other.
Assuming that exp

{
k(T 13

t − 1)/252
}
≈ 0, we obtain the following approximation for the

slope on day t:

Xt ≈ exp
{
k

252(T 1
t − t)

}
log

(
F (t, T 1

t )
F (t, T 13

t )

)
. (3.12)

The shocks will represent our time series of interest in the following analysis described
in chapter 6. Since we are dealing with two commodities, the subsequent analysis implies
four-dimensional models.
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4 Copula-based multivariate GARCH

Copula-based multivariate generalised autoregressive conditional heteroskedasticity model
(C-MGARCH) was proposed by Lee and Long (2009) as a generalisation of the family
of multivariate generalised autoregressive conditional models (MGARCH), such as the
BEKK model (Engle and Kroner (1995)), the DCC model (Engle (2002)) or the VC
model (Tse and Tsui (2002)). The main advantage of such generalisation is a possibility
to loosen assumptions regarding the distribution of the error terms. More specifically,
the error terms are allowed to be conditionally non-normally distributed which is line
with the empirical studies Fama and French (1993), Richardson and Smith (1993), Lon-
gin and Solnik (2001) and many others that reject the conditional multivariate normality
assumption. In C-MGARCH, the error terms are uncorrelated, but can still be (nonlin-
early) dependent which represents a situation that is impossible under the multivariate
normality assumption for the error distribution. The nonlinear dependence structure
of the error terms is controlled by a copula. Thus, another side of the looser require-
ments imposed on error terms in C-MGARCH is the possibility to separately model
both nonlinear dependence of the time series through various copula specifications and
their linear dependence by means of the standard MGARCH.

In this study we employ hierarchical Archimedian copulas (HAC) that provide an
especially flexible way to capture different dependence structures using a low number of
parameters which proves very useful in the high-dimensional setting. Later we compare
the performance of MGARCH models based on the hierarchical Archimedian copulas
(HAC-MGARCH hereafter) with that of those based on plain Archimedian copulas (AC-
MGARCH hereafter) and those employing no copula (standard MGARCH hereafter).
In this chapter, first essential theoretical background on copulas is provided and the
concept of HAC is explained, then standard MGARCH framework is presented. Finally,
it is shown how the two approaches are combined in C-MGARCH models.

This chapter presents general C-MGARCH framework and describes an approach
to the estimation of all models of this family. The exact lists of models used in the
simulation and empirical studies are provided in the respective chapters.
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4 Copula-based multivariate GARCH

4.1 Copulas

The concept of copula was introduced in the seminal paper of Sklar (1959). An extensive
introduction into the properties of copulas is provided in Nelson (2006) and Joe (1997).
By definition, a copula is a function that helps describe some multivariate distribution by
formalising a relation between the values of the marginal distributions and the values of
the corresponding multivariate distribution. Formally, a copula is a continuous function
C: [0; 1]d → [0; 1] that satisfies the equality:

F (x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)} , x1, . . . , xd ∈ R, (4.1)

where F (x1, . . . , xd) is a d-dimensional multivariate distribution, and F1(x1), . . . , Fd(xd)
are the respective marginal distributions.
In his theorem, Sklar (1959) showed the function C to be unique for every continuous

multivariate distribution. By its nature, every copula itself is also a multivariate dis-
tribution function with uniform margins. In practice, a class of so-called Archimedian
copulas proved to be very convenient due to its useful properties: Archimedian copulas
can generate a big variety of dependence structures, and a closed form is available for
all copulas of this class. In general case a d-dimensional Archimedian copula has the
form:

C (u1, . . . , ud) = φ−1 {φ (u1) + . . .+ φ (ud)} , [u1, . . . , ud] ∈ [0, 1], (4.2)

where φ is a copula generator function. Both φ and φ−1 need to have a closed form for
(4.2) to have a closed form as well. Necessary and sufficient properties of φ are provided
in McNeil and Nešlehová (2009). Some of the most widely used generator functions are
the Gumbel generator φθ (u) = (− log x)θ for x ∈ [0,∞), θ ∈ [1,∞) that generates a
copula with upper tail dependence:

CGumbel (u1, . . . , ud; θ) = exp
[
−
{

(− log u1)θ + . . .+ (− log ud)θ
}1/θ

]
, (4.3)

and the Clayton generator φθ (u) =
(
xθ − 1

)
/θ for x ∈ [0,∞), θ ∈ (−1/(d− 1),∞),

θ 6= 0 that generates a copula with lower tail dependence:

CClayton (u1, . . . , ud; θ) =
(
uθ1 + . . .+ uθd − 1

)−1/θ
. (4.4)

The concept of copula also nests the case of independence of the variables which is
described by the product copula C (u1, . . . , ud) = u1 · . . . · ud.
Archimedian copulas are permutation symmetric which can be too restrictive even in

the 3-dimensional case. A generalisation of an Archimedian copula called hierarchical
Archimedian copula (HAC) solves this problem. A hierarchical copula is a copula that
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Figure 4.1: Graphical representation of two HAC structures for HAC dimension d = 4:
s=(((12)3)4) (left) and s=((12)(34)) (right)

may nest other copulas using them as arguments, whereas some of these nested copulas
(subcopulas) may in turn nest other copulas, too, thus forming several levels of hierarchy.
Hereafter we will refer to the previously described one-parameter copula as plain copula.
An extensive overview of properties of HAC is given in Okhrin et al. (2012). The variety
of distributions that can be described by a HAC stems from the following sources:
copula’s structure, employed generator functions and dependence strength reflected in
parameter values. There exist certain limitations as to which generator functions (i.e.
which copula types) can be combined, and certain conditions that should be imposed
on parameters to ensure that the resulting HAC is indeed a copula. These conditions
are investigated in McNeil (2008) and Hofert (2008). In this study we will use only the
HAC with the same kind of the generator function in all subcopulas. For this case the
necessary condition for a function to be a copula is that any outer copula, i.e. a copula
nesting another copula, should have a parameter not higher that any of its subordinated
(inner) copulas. In other words, the strength of the relationship described by the outer
copula should exceed none of those described by any of its subordinated copulas. For
the sake of brevity, we will say that copula Ca links variables xj and xk and subcopula
Cb to mean that Fj(xj), Fk(xk) and subcopula Cb are the arguments of the copula Ca.

The structure s of a HAC will be described as s = {(. . . (. . . ij . . . ik . . .) . . . (. . .) . . .)}
or s =

{(
. . .
(
. . . “ηij” . . . “ηik” . . .

)
. . . (. . .) . . .

)}
, where “ηi`” are names of the variables

following the d-dimensional distribution whose dependence structure is defined by the
HAC, i` ∈ {1, . . . , d} are the indices of these variables, and every expression in brackets
describes the structure of a subcopula by showing what variables and/or other subcop-
ulas it links with each other. Figure 4.1 illustrates this notation demonstrating two
possible HAC structures.
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4 Copula-based multivariate GARCH

4.2 Multivariate GARCH

If ξt is a d-variate vector with E(ξt|Ft−1) = 0, where Ft−1 is the information set available
at t− 1, MGARCH models describe the conditional dynamics of its variance-covariance
matrix Ht

def= E(ξtξ>t |Ft−1). It is natural to measure time in trading days as in chapter
3 since daily data will be analysed in the empirical part of the study.

Vector ξt is expressed as ξt = H
1/2
t et, where et ∼ N(0, Id). As mentioned earlier,

several MGARCH models were proposed in the literature. In our study we focus on
two of them: Dynamic conditional correlation (DCC) proposed in Engle (2002) and the
more recent Dynamic equicorrelation model (DECO), see Engle and Kelly (2012).

The main feature of the DCC model is the decomposition of Ht into the correlation
matrix and two diagonal matrices of variances of the components of ξt:

Ht = DtRtDt, where

D2
t = diag(σ2

1,t, . . . , σ
2
d,t),

Rt = diag
(
Q
−1/2
t

)
Qt diag

(
Q
−1/2
t

)
, (4.5)

Qt = (1− a− b)Q+ a(εt−1ε
>
t−1) + bQt−1,

εt
def= D−1

t ξt

and Q is the unconditional covariance matrix of εt, a ≥ 0, b ≥ 0, a + b < 1. The
dynamics of the individual series variances σ2

1,t, . . . , σ
2
d,t has to be specified separately,

we assume each of them to follow univariate GARCH(1,1):

σ2
`,t = ω` + α`σ

2
`,t−1 + β`ζ

2
`,t−1, (4.6)

where ζt = σtzt, zt ∼ N(0, 1), ω` > 0, α` ≥ 0, β` ≥ 0 and α` + β` < 1.

The DECO model is based on DCC though the two models are not nested. DECO
applies the same decomposition of Ht as DCC, but the correlation matrix RDECOt is a
transformation of RDCCt :

RDECOt =


1 ρt . . . ρt

ρt 1 . . . ρt
...

... . . . ...
ρt ρt . . . 1

 , (4.7)

where ρt = 1/ {d(d− 1)}
(
ι>RDCCt ι− d

)
and ι is a unit vector with length equal to d.

As can be easily seen, all non-diagonal elements of RDECOt are equal. In the following,
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4.3 Estimation of copula-based multivariate GARCH

this specification will be referred to as “standard DECO”.
Another specification of DECO also described in Engle and Kelly (2012) is a so-called

Block DECO which allows for a non-homogeneous structure of the vector ξt. Similar to
the Archimedian copula that can allow for various degrees of strength of the (nonlin-
ear) dependence between different data series, Block DECO can accommodate different
intragroup correlations within certain groups of series as well as different intergroup
correlations. In general case, if the series can be broken down into V groups of sizes n1,
n2,. . . ,nV respectively, the correlation matrix Rt will contain V diagonal blocks with
the sides equal to n1, n2,. . . ,nV respectively, and V (V − 1)/2 off-diagonal blocks:

Rt=


(1− ρ1,1,t)In1 0 . . .

0 . . . 0
... 0 (1− ρV,V,t)InV

+


ρ1,1,tJn1 ρ1,2,tJn1×n2 . . .

ρ2,1,tJn2×n1
. . .

... ρV,V,tJnV

 , (4.8)

where ρl,m,t = ρm,l,t for all l,m.
The correlations in the blocks on the main diagonal are calculated as:

ρl,l,t = 1
nl(nl − 1)

∑
i∈l,j∈l,i6=j

qi,j,t√
qi,i,tqj,j,t

, (4.9)

and the correlations in the off-diagonal blocks are equal to:

ρl,m,t = 1
nlnm

∑
i∈l,j∈m

qi,j,t√
qi,i,tqj,j,t

, (4.10)

qi,j,t is the i, j-th element in the matrix RDCCt , so Block DECO correlations are in fact
average correlations of each block of the matrix Rt in the DCC model.
To denote the structure of Block DECO we will use the same notation that was

introduced for the copula structure. Each expression in brackets will refer to one of the
V groups of variables.

4.3 Estimation of copula-based multivariate GARCH

As explained above, C-MGARCH models assume that the distribution of the error terms
et is not limited to standard normal. Instead, et is calculated as et = Σ−1/2ηt, where
ηt is a random vector, E(ηt|Ft−1) = 0, E(ηtη>t |Ft−1) = Σ, whose components are in
general non-linearly dependent. The exact form of this dependence is described by a
copula: ηt|Ft−1 ∼ F1,...,d(ηt, θ)

def= C {F1(η1,t), . . . , Fd(ηd,t); θ}, where C is a copula, θ is
its parameter vector which is assumed constant and F1(η1,t), . . . , Fd(ηd,t) are marginal
distributions followed by η1,t, . . . , ηd,t. In the following we assume F1(η1,t), . . . , Fd(ηd,t)
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4 Copula-based multivariate GARCH

to be standard normal distributions. Since the copula parameter vector θ is assumed
constant, the multivariate distribution of ηt is not affected by any past information Ft−1.

The assumptions on the distribution of ηt give rise to the following log-likelihood
function which should be maximised for model parameter estimation (see Lee and Long
(2009)):

L(ϕ, θ) =
N∑
t=1

{
log f1,...,d(ηt; θ) + log

∣∣∣Σ1/2(θ)H−1/2
t (ϕ)

∣∣∣} , (4.11)

where N is the number of observations of vector ξt, ϕ is the vector of the MGARCH
parameters defined as ϕ = (ω1, . . . , ωd, α1, . . . , αd, β1, . . . , βd, a, b)> for both DCC and
DECO models, f1,...,d(ηt; θ) is the pdf of ηt. The log-likelihood function should be
maximised by choosing the values of ϕ and θ:

(ϕ̂, θ̂) = arg max
ϕ,θ
L(ϕ, θ). (4.12)

Taking into account the assumption on the distribution of ηt, we can also write the
log-likelihood function for copula-based models as:

L(ϕ, θ) =
N∑
t=1

[
d∑
i=1
{log fi(ηi,t)}+ log c {F1(η1,t), . . . , Fd(ηd,t); θ}+ log

∣∣∣Σ1/2(θ)H−1/2
t (ϕ)

∣∣∣] ,
(4.13)

where fi(ηi,t) is the marginal pdf of ηi,t assumed to follow standard normal distribution,
c(·) is the copula density function calculated as:

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)
∂u1 . . . ∂ud

. (4.14)

Within one MGARCH type (e.g. DCC, or VC), HAC-GARCH represents the most
general model with AC-GARCH being its special case which in turn nests standard
MGARCH. Since the latter assumes independence of ηi,t, C(·) takes the form of the
product copula in this case, hence log c(·) turns to zero and Σ1/2 is a unity matrix.

In the more general case of AC-GARCH and HAC-GARCH, matrix Σ has to be
normalised for identification (σii = 1). Its off-diagonal elements can be evaluated using
Hoeffding’s lemma (Hoeffding (1940)):

Hoeffding’s Lemma. Let η1 and η2 be random variables with the marginal distri-
butions F1 and F2 and the joint distribution F12. If the first and second moments are
finite, then

σ12(θ) =
∫∫
R2

{F12 (η1, η2; θ)− F1 (η1)F2 (η2)} dη1dη2. (4.15)
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4.3 Estimation of copula-based multivariate GARCH

Taking Sklar’s theorem into account we can rewrite (4.15) in terms of a copula:

σ12(θ) =
∫∫
R2

[C {F1 (η1) , F2 (η2) ; θ} − F1 (η1)F2 (η2)] dη1dη2. (4.16)
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5 Simulation study

In order to demonstrate that HAC-MGARCH models can generate time series dynamics
that cannot be fully captured by other MGARCH models and to investigate the effects
of possible model misspecifications we ran the following Monte-Carlo simulation study
using a reduced set of models applied in the empirical study. We pay most attention to
the three DCC specifications:

1. Standard four-dimensional DCC.

2. Copula-based four-dimensional DCC with Gumbel AC.

3. Copula-based four-dimensional DCC with Gumbel HAC, s = ((12)(34)).

As mentioned in chapter 4, the first two specifications are nested within DCC with
Gumbel HAC. For reference purposes we also consider two specifications of DECO:

4. Standard four-dimensional DECO.

5. Block DECO, s = ((12)(34)).

A thorough simulation study would require considering multiple parameter sets, ap-
plying several copula types and structures and also combining them with all possible
Block DECO specifications. However, our aim in this chapter is not to compare the be-
haviour of all possible specifications, but to investigate on a few representative models
if and how simpler specifications can approximate more complex copula-based ones. We
assume that more general specifications can generate data dependence structures that
cannot be adequately described by models with stricter conditions imposed on errors,
e.g. HAC-DCC may not be approximated well enough by AC-DCC, let alone standard
DCC. The values of the true parameter vectors are assumed to be reasonably close to
the typical empirical parameter vector estimates which is why it is possible to treat the
conclusions made in the simulation study as being related to at least a considerable
fraction of all practical cases. The structure s = ((12)(34)) was considered because it
will be used in the empirical study.
The length of each data series is N = 2000 observations. The vector of univariate

GARCH parameters for the four series is (ω1, ω2, ω3, ω4, α1, α2, α3, α4, β1, β2, β3, β4)> =
(0.013, 0.003, 0.014, 0.016, 0.15, 0.2, 0.06, 0.2, 0.6, 0.7, 0.8, 0.6)>. Parameters in the DCC
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5 Simulation study

part are a = 0.1, b = 0.7. The chosen parameter values correspond to the typical
situation encountered in practice: α and a estimates are usually relatively close to their
lower boundary 0, whereas β and b estimates are often close to their higher boundary 1.
Copula parameters are θ = 3 for AC-DCC and θ def= (θ1, θ2, θ3)> = (1.5, 3, 5)> for HAC-
DCC, where θ1 is the parameter of the outer copula and θ2 and θ3 are the parameters
of the two subordinated copulas, as in the right panel of Figure 4.1. Nesting conditions
θ1 ≤ θ2 and θ1 ≤ θ3 given in McNeil (2008) are satisfied.

Each of the five models was simulated J = 1000 times and each simulated dataset
was used to estimate all five specifications. The only fit quality criterion we used is the
conditional Kullback-Leibler information criterion (Kullback and Leibler (1951)).

KLIC = Eψt

{
log ψt(ξt, ϕ, θ)

ψ̂y(ξt, ϕ̂y, θ̂y)

}
, (5.1)

where ψt(ξt, ϕ, θ) is the true conditional density of the observation ξt calculated using the
true parameter vector values (ϕ, θ)> and ψ̂yt (ξt, ϕ̂y, θ̂y) is the estimate of the conditional
density of the observation ξt according to the model y calculated using the estimated
parameter vector values (ϕ̂y, θ̂y)>.

Expectation in (5.1) is taken with respect to the true conditional density ψt(·|Ft−1).
Since the actual conditional probability corresponds to the true conditional probability,
we can estimate the KLIC by taking a simple average of the logarithms of the actual
calculated conditional probability ratios. This is why the KLIC estimate takes the form
of the difference between the log-likelihood of the true model with true parameters
and that of the assumed model with estimated parameters (i.e. the parameters that
maximise the respective log-likelihood function), divided by the number of observations:

K̂LIC = 1
N

{
L(ϕ, θ)− L̂y(ϕ̂y, θ̂y)

}
, (5.2)

where N = 2000 is the length of the simulated series, L(ϕ, θ) is the log-likelihood func-
tion value according to the true model calculated using true parameter vector values
(ϕ, θ)>, L̂y(ϕ̂y, θ̂y) is the maximum value of the log-likelihood function obtained when
estimating model y and (ϕ̂y, θ̂y)> is the vector that maximises this log-likelihood func-
tion. Log-likelihood is calculated as shown in chapter 4.

Empirical kernel density of KLIC of each of the five assumed specification for each
of the five true models is shown in Figures 5.1-5.5. In order to estimate kernel density,
normal kernel smoother was used with bandwidth h equal to:

h =
( 4

3J

) 1
5

MADKLIC , (5.3)
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where MADKLIC = 1.4826 med (|KLICj −med(KLIC)|) is the median absolute de-
viation of KLIC, a robust and consistent estimator of its standard deviation (see e.g.
Rousseeuw and Croux (1993)), med(·) is the sample median of (·) and j = 1, . . . , J ,
where J is the KLIC sample size equal to the number of simulations of each model, i.e.
1000. Bandwidth was estimated for each KLIC distribution separately.

In this formulation of KLIC, its smaller absolute values correspond to a model that is
closer to the true one. Estimation of a true specification should result in KLIC estimates
distributed closely around zero.

Figure 5.1 shows the distribution of the estimated KLIC based on 5 specifications with
standard DCC being the true model. It is clear that the lines corresponding to standard
DCC, DCC with Gumbel AC and DCC with Gumbel HAC are indistinguishable from
each other since standard DCC is a special case of both AC-DCC and HAC-DCC. The
lines corresponding to both DECO specifications are positioned relatively far away from
those corresponding to all the DCC specifications which can be interpreted that the
ability of DECO to approximate DCC models is rather low.

Figures 5.2 and 5.3 show the results of estimation of the dataset generated by DCC
with Gumbel AC and DCC with Gumbel HAC respectively. They represent a similar
picture with respect to the position of the kernel density graphs of DECO models.
It is also obvious that simpler DCC models fail to capture the dependence structure
generated by more general models: standard DCC fails to capture even the dependence
structure generated by AC-DCC, let alone HAC-DCC which cannot be satisfactorily
approximated by AC-DCC itself.

Standard and Block DECO are the models that generated the datasets analysed in
Figures 5.4 and 5.5 respectively. These figures are given for reference purposes since
one could not expect DCC models to perfectly approximate DECO models since both
model classes are non-nested. However, one can see from Figure 5.4 that all three lines
demonstrating the distribution of the KLIC estimate obtained from the DCC models
estimation is positioned relatively closely to that of the standard DECO compared with
the situation in Figures 5.1, 5.2 and 5.3 where all KLIC estimate distributions resulting
from the DECO models estimation are quite remote from those corresponding to the
true models. In Figure 5.5, the KLIC estimate distributions resulting from the true
Block DECO and all DCC models estimation are again reasonably close to each other
with the distribution of the KLIC estimate related to the standard DECO model being
distant from that of the true model showing that standard DECO fails to approximate
Block DECO satisfactorily. The ideas conveyed by the KLIC estimate kernel density
figures may be summarised in the following way. First, the KLIC estimate correspond-
ing to the true specification is indeed always distributed around zero and has a relatively
small variance. Second and most important, the KLIC estimate distribution resulting
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5 Simulation study
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Figure 5.1: KLIC kernel density estimation under various assumed MGARCH spec-
ifications, true model: standard DCC. Assumed specifications: standard DCC, DCC
with Gumbel AC, DCC with Gumbel HAC, s = ((12)(34))(last three lines coincide),
standard DECO, Block DECO, s = ((12)(34)).
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Figure 5.2: KLIC kernel density estimation under various assumed MGARCH speci-
fications, true model: DCC with Gumbel AC. Assumed specifications: standard DCC,
DCC with Gumbel AC, DCC with Gumbel HAC, s = ((12)(34))(last two lines coincide),
standard DECO, Block DECO, s = ((12)(34)).
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Figure 5.3: KLIC kernel density estimation under various assumed MGARCH speci-
fications, true model: DCC with Gumbel HAC, s=((12)(34)). Assumed specifications:
standard DCC, DCC with Gumbel AC, DCC with Gumbel HAC, s = ((12)(34)), stan-
dard DECO, Block DECO, s = ((12)(34)).
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Figure 5.4: KLIC kernel density estimation under various assumed MGARCH speci-
fications, true model: standard DECO. Assumed specifications: standard DCC, DCC
with Gumbel AC, DCC with Gumbel HAC, s = ((12)(34))(last three lines almost coin-
cide), standard DECO, Block DECO, s = ((12)(34)).
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Figure 5.5: KLIC kernel density estimation under various assumed MGARCH speci-
fications, true model: Block DECO, s = ((12)(34)). Assumed specifications: standard
DCC, DCC with Gumbel AC, DCC with Gumbel HAC, s = ((12)(34))(last three lines
almost coincide), standard DECO, Block DECO, s = ((12)(34)).

from HAC-DCC estimation obviously matches the KLIC estimate distribution result-
ing from the estimation of less sophisticated nested models (standard DCC, AC-DCC),
whereas the opposite is not true: i.e. KLIC estimate distributions under various as-
sumed specifications hardly intersect when the true model is HAC-DCC which means
that a HAC-DCC dataset will be adequately described only by estimating a HAC-DCC
specification. Third, DCC models seem to be able to approximate dependence struc-
tures generated by DECOmodels better than the latter can approximate the dependence
structures generated by the former. This implies that our suggestion in chapter 4 is sup-
ported: HAC-DCC specification in fact looks promising since it can capture dependence
structures that other models cannot, at the same time it can approximate dependence
structures defined by other models, albeit with different quality.
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6 Empirical study

In the empirical section we conduct a multi-stage analysis of the futures prices data with
the goal to compare the ability of the mathematical tools described in chapters 3 and
4, namely of the two-factor model of the futures curve and recent developments in the
MGARCH modelling to capture and forecast the joint dynamics of the two commod-
ity futures curves. We simulated 1000 random portfolios and computed value-at-risk
forecasts based on the assumptions and estimated parameters of 11 models that were
estimated on 495 different time windows and conducted the value-at-risk backtesting
procedure. Our main criterion in defining best-performing models was the average pre-
cision of value-at-risk estimation.

In particular, first the two-factor model of the futures curve (Ohana (2010)) is cal-
ibrated which allows to estimate the long- and short-term shocks series for both com-
modities. In line with the two-factor model, the deterministic and the random parts
of the shocks series are analysed separately. The subsequent analysis is performed on
a rolling window of 500 trading days with the step equal to 5 trading days. On each
window the vector autoregression (VAR) model is estimated in order to extract the
deterministic part from the shocks series, then 11 C-MGARCH specifications are esti-
mated on the residual series of the VAR model. Combined with the VAR forecast, each
of the 11 C-MGARCH models produces a forecast of the joint distribution of the four
daily shocks for each of the 5 days following the last day of each estimation period.
This forecast is transformed to the forecast of the joint distribution of the daily return
of a particular portfolio of futures contracts for these 5 days. The forecast of the joint
distribution of the portfolio return is used to predict daily value-at-risk for a particular
day and particular predefined exceedance probability for this portfolio.

In this chapter, first the data is presented, then the two-factor model of the futures
curve is calibrated, after that basic properties of the shocks series are investigated. It
is followed by the presentation of the VAR model and description of the C-MGARCH
specifications used in the study. Finally, the value-at-risk backtesting procedure is
explained in detail, and its results are discussed.

31



6 Empirical study
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Figure 6.1: Logarithmised heating oil futures curves on 01.02.2000 and 22.06.2000 in
US cents per gallon.

6.1 Data description

We use the same, but a longer, dataset as in Ohana (2010), i.e. NYMEX daily heating oil
and natural gas futures prices from 1.02.2000 to 19.12.2011 (exact names of the contracts
are New York Harbour No. 2 Heating Oil Futures and Henry Hub Natural Gas Futures).
Similar to Ohana (2010), we also consider first 14 maturities for both commodities. The
data was obtained from Bloomberg. Figure 6.1 demonstrates a heating oil futures curve
on 1.02.2000 and 22.06.2000. On both dates the curve exhibits two obvious features.
The first one is backwardation, i.e. a situation where more distant maturities trade
at lower prices than less distant ones which is a normal situation on the commodity
markets (see e.g. Gabillon, 1991) and reflects (buyers’) “preference for the present time
whatever the reasons are”. The other one is seasonality: contracts expiring in winter are
generally more expensive than those expiring in summer. It is also obvious that because
of the backwardation, rising slopes are much less pronounced than falling ones. As was
shown in Chapter 3, the seasonality feature can be disregarded for the purposes of our
analysis.
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6.2 Two-factor model calibration

Heating oil Natural gas
k 3.10 2.86
Percentage of explained variance 98.23 93.80

Table 6.1: Characteristic numbers of the commodities and explanatory power of the
two-factor model of the futures curve.

6.2 Two-factor model calibration

The first step of the analysis is the calibration of the two-factor model described in chap-
ter 3. N = 2975 daily observations of futures price returns for M = 14 maturities were
used. The calibration results, i.e. the values of the parameter k for both commodities
as well as the quality of the model fit are given in Table 6.1. The model explains over
90% of the return variance for both commodities which is a good result. For heating
oil futures returns, the model even explains over 98% of the variance. Due to a longer
time span used, our results are slightly different from those obtained by Ohana (2010),
i.e. we find the evidence for even higher explanatory power of the model for the heating
oil futures data and a little lower explanatory power for the natural gas data. Both
calibrated parameters are somewhat lower than in Ohana’s study. Calibration of the
two-factor model allows to estimate the four shocks series that are shown in Figure 6.4.
Their properties are discussed in the next section.

6.3 Basic properties of the shocks, levels and slopes time series

As mentioned above, the shocks series will remain in the focus of the subsequent anal-
ysis. One of the main properties of any time series that should be checked before any
further econometric analysis is stationarity. Figure 6.4 clearly suggests that both long-
and short-term shocks are concentrated around zero and do not seem to have any trend.
Since all four shocks are “components” of a return of a futures contract, they are analo-
gous to stock market returns that are common to assume to be stationary (Tsay (2002)).
This is why it is reasonable to assume shocks to be stationary, too.
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Figure 6.2: Heating oil and natural gas levels (1.02.2000 – 19.12.2011).
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Figure 6.3: Heating oil and natural gas slopes (1.02.2000 – 19.12.2011).
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6.3 Basic properties of the shocks, levels and slopes time series
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6 Empirical study

Series ADF (p-value) KPSS (p-value)
Heating oil levels -1.43 (0.55) 4.82 (0.01)
Natural gas levels -1.66 (0.45) 1.96 (0.01)
Heating oil slopes -3.07 (0.03) 2.84 (0.01)
Natural gas slopes -3.71 (0.00) 1.85 (0.01)
Heating oil long term shocks -19.80 (0.00) 0.17 (0.10)
Natural gas long term shocks -19.03 (0.00) 1.05 (0.01)
Heating oil short term shocks -19.91 (0.00) 0.15 (0.10)
Natural gas short term shocks -20.34 (0.00) 0.05 (0.10)

Table 6.2: Results of the stationarity tests of the shocks series, p-values in brackets.

Slopes and levels represent two different kinds of transformation of the shocks series.
Given the nature of these series, intuitively we cannot expect levels to be stationary
because global factors affecting both supply and demand for commodities can change in
any unpredictable way causing deterministic or stochastic trends in levels development.
This intuition is partially supported by Figure 6.2 which demonstrates that the levels of
both commodities during the period in consideration were experiencing an overall rising
at least up to 2008. Slopes represent a weighted sum of presumably stationary time
series. But since the weights of the summands change constantly, it is hard to predict
whether the slopes series would be stationary or not. The intuition tells us that the
slopes may have natural limits and therefore are expected to have a bouncing nature
rather than any kind of trend. However, Figure 6.3 provides some evidence in favour of
a possible negative trend in both slopes series during the period in consideration.

To further investigate unit-root properties of all 8 aforementioned series, Augmented
Dickey-Fuller (ADF) test in its “only constant” specification and the “no trend” spec-
ification of the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test were carried out. The
results are reported in Table 6.2. Qualitatively similar results were obtained under other
test specifications. As can be concluded from Table 6.2, ADF test does not reject the
null hypothesis of unit root for the levels series, but does reject it for all the other series.
The KPSS test rejects the stationarity hypothesis for both levels and slopes series, but
does not reject it for the shocks series. These results are in line with our expectations.
We will also use slopes as regressors in the model. The values of the Partial Autocor-
relation Function (PACF) of the shocks series (Figure 6.5) suggest that estimation of
autoregressive models can yield useful information about the shocks dynamics, but the
order of autoregressive models is not expected to be high which will be confirmed during
the VAR model estimation.
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6.4 Vector autoregression
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Figure 6.5: Partial autocorrelation function (PACF) for heating oil long-term shocks
(upper left), natural gas long-term shocks (upper right), heating oil short-term shocks
(lower left), natural gas short-term shocks (lower right).

6.4 Vector autoregression

After both long- and short-term shocks are calculated, the next step is to find out if
any of the past available information can be used to predict their dynamics. This may
mean e.g. estimation of autoregressive models as suggested in the previous section.
The approach applied in Ohana (2010) is to estimate a VECM (vector error correction
model). According to its formulation used in Ohana (2010), the levels of the two com-
modities are cointegrated. Following the approach of Engle and Granger (1987), the
long-term relationship between the commodity levels is estimated in a separate model
and turns out to be well approximated by a piecewise linear function. In the next step,
the residuals in this model, i.e. deviations from the long-term relationship are used as
an exogenous variable in the VAR model. In this paper we do not apply the VECM
framework for two reasons. First, even with cointegration accounted for, the model in
Ohana (2010) explains a too small proportion of the shocks’ variance: the R-squared
of the four equations within the VECM model explaining the dynamics of the heating
oil long-term shocks, natural gas long-term shocks, heating oil short-term shocks and
natural gas short-term shocks was only 3.19%, 1.89%, 2.21% and 1.72% respectively.
Second, there is enough evidence of the fact that the cointegration link between oil and
gas was broken over the course of 2009 due to marked changes in the US gas market.
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Figure 6.6: Long-term relationship between heating oil and natural gas levels (20000201
- 20020621 , 20020622 - 20041108, 20041109 - 20070329, 20070330 - 20090120, 20090121
- 20111219)
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Figure 6.7: Long-term relationship between heating oil and natural gas slopes
(20000201 - 20020621 , 20020622 - 20041108, 20041109 - 20070329, 20070330 - 20090120,
20090121 - 20111219)
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6.4 Vector autoregression

A quick look at Figure 6.6 confirms this: whereas oil prices have recovered after their
slump during the 2008-2009 crisis, gas prices have not. De Bock and Gijón (2011) cite
additional supply of non-conventional gas (above all shale gas) and high storage levels
in the US market as main reasons behind the relative weakness of US gas prices and
the loosening of the link between WTI and natural gas prices. This period can also
be denoted as a period of increased uncertainty in the gas market because it appears
to be difficult to reliably estimate the amount of the gas that can be extracted, and
serious corrections of the available reserves in the future cannot be excluded. It is also
reasonable to assume that the most the part of 2009 and 2010 constitute a transition to
a new long-term relationship between the two commodities, because there seems to be
little reason for the common factors on the demand side and for the link between the
two commodities to disappear completely. As a supporting argument, one could refer
to the Annual Energy Outlook prepared by the US Energy Information Administration
(EIA). In this report, among other things they provide their view on the future ratio
of low-sulfur light crude oil price to Henry Hub natural gas price which in their refer-
ence scenario appears to have reached its new long-term level around 2010-2011 after a
significant rise during 2007-2010. This projection can also refer to the ratio of heating
oil price to natural gas price since heating oil was shown to be cointegrated with WTI,
a low-sulfur light grade of oil and one of the world benchmarks in oil pricing (see e.g.
Hartley et al. (2008)). Figure 6.6 shows that during the period covered by Ohana’s
(2010) study, the cointegration approach seemed reasonable, but the newer data, shown
in black, give some impression of negative correlation between heating oil and natu-
ral gas price levels. Considering this negative relationship as a long-term dependence
cannot have any theoretical justification. This is why the VECM structure seemed to
make sense when only the data roughly up to February 2009 (the dataset used in Ohana
(2010)) were available, but not afterwards.
As a result, the model specification used in this paper is a vector autoregression

(VAR) with the maximum lag of 1 and two extra regressors - lagged slopes of both
futures curves:

Zt = µ+ ΓZt−1 + ΠAt−1 + ξt, (6.1)

where Zt =
(
δoil,Lt , δgas,Lt , δoil,St , δgas,St

)>
is the shocks vector, µ is a vector of constants,

At =
(
Xoil
t , Xgas

t

)>
is the slopes vector, E(ξt|Ft−1) = 0, ξt is explained by C-MGARCH,

Γ and Π are parameter matrices.
The maximum lag of 1 was chosen based on Hannan-Quinn and Bayesian Schwartz

information criteria that both were minimal for 1 lag for all 495 time windows with
only one exception. For both criteria their generalisation for multivariate processes was
calculated, see Lütkepohl and Krätzig (2004) for details.
The model is estimated on 495 time windows of size equal to 500 trading days. The
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6 Empirical study

first time window begins on the first observation day, 1.02.2000, and each subsequent
window begins five days later than the previous one. We treat VAR estimation as a
procedure with the only aim to extract the deterministic component from the vector Zt.
The exact form of the autoregressive relation is not as important to us as the obtained
residual series which is why no VAR results are reported here.

6.5 C-MGARCH specifications

C-MGARCH models are used in our study to describe the variance-covariance dynamics
of the random components ξt of the shocks series. Residuals in the VAR model described
in the previous section are the estimates of the random shocks components and will be
used as inputs in the C-MGARCH models.
In chapter 4, we mentioned that HAC represents a flexible way to describe vari-

ous dependence structures which in theory should lead to better performance of HAC-
MGARCH models as compared to that of AC-MGARCH or standard MGARCH models.
We check this hypothesis by comparing forecasting properties of standard DCC, AC-
DCC and HAC-DCC. We also compare their performance with that of standard and
Block DECO. By considering DECO specifications, we did not pursue the goal to com-
pare DCC and DECO per se, but we note that the situation where non-copula based
DECO models perform better than copula-based DCC would be undesirable because
depending on the comparative performance of non-copula based DCC and DECO it
would suggest that either the choice of DCC as the basic specification was wrong or
that the copula assumption does not help to better capture the data dynamics struc-
ture. As shown later in the backtesting section, on average such a situation is not the
case.
Normally, estimation of any HAC-MGARCH model based on a copula with a pre-

determined generator implies not only estimation of parameters, but also the choice of
an optimal structure. Here we do not apply any methods to estimate the copula struc-
ture, but we assume the following two structures to have enough economic motivation:
s1 = ((ol gl)(os gs)) and s2 = ((ol os)(gl gs)), where ol, gl, os, gs are the components
of the vector ηt in the C-MGARCH model (see section 4.3) corresponding to heating
oil long-term shocks, natural gas long-term shocks, heating oil short-term shocks and
natural gas short-term shocks respectively. Indeed, the shocks can be naturally classi-
fied into two groups in two different ways, and for each case one can assume that the
shocks in both pairs are more closely related to each other than to the shocks of the
other pair. We do not have any reason to treat either structure as more probable, which
is why each structure gives rise to a separate HAC-DCC model. Moreover, we impose
the same two structures on the vector ξt in the Block DECO model.
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6.6 Portfolio value-at-risk backtesting
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Figure 6.8: Parameter b in the DCC part: standard DCC, DCC with Gumbel HAC,
(s2) (1.02.2000 – 19.12.2011). Values were estimated during the 500-day period ending
on the respective day.

All in all, we have 7 DCC modifications: standard DCC and copula based DCC with
Gumbel AC, Clayton AC, Gumbel HAC (s1), Clayton HAC (s1), Gumbel HAC (s2) and
Clayton HAC (s2). Three DECO specifications estimated for reference purposes are:
standard DECO, Block DECO with s1 and s2. We also estimate univariate GARCH
which is effectively a special case of C-MGARCH and can be characterised as DCC or
DECO with constant zero correlation between the components of ξt.
Figures 6.8 and 6.9 demonstrate how parameter b in the main DCC equation and

Kendall’s τ (calculated as τ = (θ − 1)/θ for the Gumbel copula) corresponding to the
three copula parameters in DCC with Gumbel HAC, s2 vary from period to period which
can be seen as a justification to perform model estimation on several time windows.

6.6 Portfolio value-at-risk backtesting

Portfolio value-at-risk backtesting is a simple and useful tool for quality assessment of
a model that belongs to the GARCH family since value-at-risk is a risk measure widely
used in practice. The aim of this procedure is to compare the precision of value-at-risk
forecasts produced by different models for different futures portfolios. It is easy to show
that according to the two-factor model of the futures curve (Ohana (2010)) the return
of any portfolio of the futures contracts can be expressed as a “portfolio” of the four
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Figure 6.9: Kendall’s τ corresponding to the copula parameters in DCC with Gum-
bel HAC, s2: parameter of the subcopula linking heating oil long- and short-term
shocks residuals (red), parameter of the subcopula linking natural gas long- and short-
term shocks residuals (blue) and parameter of the outer copula (green) (1.02.2000 –
19.12.2011). Values were estimated during the 500-day period ending on the respective
day

shocks. This means that if the joint distribution of the shocks can be estimated for a
particular day, the distribution for any futures portfolio return, i.e. for any weighted
sum of the shocks can be easily obtained.
If the portfolio return forecast for an arbitrary day t + 1, Rett+1 is calculated as

Rett+1 = w>s Zt+1, where ws = (ws1, ws2, ws3, ws4)> is the vector of the shocks weights
corresponding to the vector of the futures weights and Zt+1 is the future vector of
shocks, then value-at-risk (V@R) at level 0 < α < 1 for day t+ 1 is defined as
V@Rt+1(α) def= F−1

Rett+1
(α). Keeping in mind that every shock δt is composed of a

deterministic component λt explained by the VAR model and a zero-expectation ran-
dom component ξt whose variance-covariance matrix is explained and can be predicted
by a C-MGARCH model, the expression for value-at-risk takes the form:

V@Rt+1 = w>s λt+1 + F−1
w>s ξt+1

(α). (6.2)

With estimated VAR parameters, it is straightforward to calculate the forecast for λt+1

because all necessary information up to the time t is available. For standard MGARCH
models, the expression F−1

w>s ξt+1
(α), where ξt+1 = H

1/2
t+1et+1 is evaluated based on the as-
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6.6 Portfolio value-at-risk backtesting

sumption on standard normal distribution of et+1 which implies that w>s ξt+1 is also dis-
tributed normally: w>s ξt+1 ∼ N(0, w>s Ht+1ws). For AC-MGARCH and HAC-MGARCH
such estimation is not possible since et+1 = Σ−1/2ηt+1 is not normal, hence the whole
distribution of H1/2

t+1et+1 has to be simulated based on the estimated copula parameters
governing the distribution of ηt+1. For each distribution 3000 points are simulated. Af-
ter that it is easy to obtain the distribution of any weighted sum of the four components
of H1/2

t+1et+1 and to estimate the empirical quantile F−1
w>s ξt+1

(α).

We estimated both VAR and each of the 11 C-MGARCH specifications on 495 time
windows with a size equal to 500 observations. Taking into account that each window
begins five days later than the previous one, having estimated the parameters on a
particular window, we used them to calculated a forecast for the 5 days following the last
day of the window. For each 5-day forecast only the parameters were taken constant, the
information on futures returns was updated every day. The whole time period covered
in the study contains 2975 daily observations. Since the first 500 were used for the
model estimation only, forecasts are available for 2975− 500 = 2475 days.

For a particular futures portfolio it is useful to estimate the exceedance rate α̂ of
every model which is the share of the observations for which the actual portfolio return
is lower that the corresponding value-at-risk forecast:

α̂w
def= n−1

n∑
t=1

I
{
Rett < V̂@Rt(α)

}
, (6.3)

where w = (w1, . . . , w28)> are the futures portfolio weights, n = 2475 is the number of
forecast values for each portfolio, and the relative deviation of the exceedance rate from
the true α is:

dw
def= α̂w − α

α
.

A model predicts value-at-risk perfectly if α̂ and α coincide, and dw = 0. Another
procedure to measure the accuracy of the value-at-risk forecast is the unconditional
coverage test of Kupiec (1995) with the null hypothesis H0: α̂ = α. The likelihood ratio
test statistic takes the form:

LRKupiec = 2 log
{(1− α̂

1− α

)n−I(α) ( α̂
α

)I(α)}
, (6.4)

where I(α) =
∑n
t=1 I

{
Rett < V̂@Rt(α)

}
. The test statistic follows χ2(1) under H0.

We generated a set W of |W | = 1000 portfolios w1, . . . , w1000 of p = 28 components
with weights of each component in each portfolio wq1, . . . , wqp, q = 1, . . . , |W | uniformly
distributed over the simplex Sp = {(y1, . . . , yp)|

∑p
i=1 yi = 1}. For weights generation we

used a variation of procedure 4 described in the review of weights generation algorithms
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by Wang and Zionts (2006). Procedure 4 was shown to efficiently generate uniformly
distributed portfolio weights. However, by design it can produce only positive weights
distributed over the simplex Sp = {(y1, . . . , yp)|yi ≥ 0,

∑p
i=1 yi = 1}, whereas in our case

it is also desirable to allow for negative weights which would correspond to taking short
positions in contracts. Unlike short positions in stocks, short positions in futures do
not cause any additional transaction costs as compared to long positions. This is an
argument in support of equal treatment of long and short positions both of which are
likely to be taken e.g. by a trader seeking arbitrage opportunities arising from futures
pricing deviating too far from some theoretical relationship. Moreover, higher variance
of the weights will allow us to check if a particular model can predict not only the left
tail of the shocks distribution correctly, but also its other intervals. Indeed, testing a
model on a portfolio will all negative weights (an extreme situation that cannot happen
in our case) can tell us if the model can capture the right tail of the shocks distributions
correctly. This is why the weights were allowed to take negative values, too. The exact
procedure we followed to generate both positive and negative weights is as follows:

1. Generate a set Λ1 of |Λ1| = 1000 portfolios of p = 28 components with weights
of each component in each portfolio λ1,q

1 , . . . , λ1,q
p , q = 1, . . . , |Λ1| uniformly dis-

tributed over the simplex Sp = {(y1, . . . , yp)|yi ≥ 0,
∑p
i=1 yi = 1}. Multiply all

weights in all portfolios by 2.

2. Generate a set Λ2 of |Λ2| = 1000 portfolios of p = 28 components with weights
of each component in each portfolio λ2,q

1 , . . . , λ2,q
p , q = 1, . . . , |Λ1| uniformly dis-

tributed over the simplex Sp = {(y1, . . . , yp)|yi ≥ 0,
∑p
i=1 yi = 1}.

3. LetW be a set of |W | = 1000 portfolios with weights calculated as wqi = λ1,q
i −λ

2,q
i

for all i = 1, . . . , p and q = 1, . . . , |W |.

4. The mean weight w in the resulting portfolios setW is equal to w = 1/28 = 0.0357
and the weight’s standard deviation σw = 0.077 (measured across all contracts and
portfolios).

We replace one of the simulated portfolio by an equally-weighted portfolio, w1
i = 1/28 =

0.0357. For the evaluation of the model performance on the whole portfolio set W we
will use the average exceedance rates and average p-values of the Kupiec test measured
across all |W | portfolios. Additionally we calculate the average relative deviation of dw
and its standard error:

AW = 1
|W |

∑
w∈W

dw, DW =
{

1
|W |

∑
w∈W

(dw −AW )2
}1/2

. (6.5)

Table 6.3 shows the results of the value-at-risk backtesting for the equally-weighted
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6.6 Portfolio value-at-risk backtesting

portfolio of 28 contracts and Table 6.4 summarises the results of the value-at-risk back-
testing for all 1000 portfolios.

As can be seen from Table 6.3, for α = 10% and α = 5%, H0 of the Kupiec test is
not rejected at the 5% significance level for all models except univariate GARCH which
implies that treating shocks series as independent leads to severe underestimation of
possible losses. However, best performers for α = 10% and α = 5% are Block DECO
with s2 and standard DECO respectively. We also see that copula-based DCC models
do not perform better than standard DCC for α = 5% (though they do for α = 10%).
Only α = 1% is the case where a HAC-based model is a clear leader: DCC with Clayton
HAC, s1 shows the best result. Moreover, this model is one of the only two for which
the hypothesis α̂ = 1% is not rejected at the 5% significance level. It is necessary to
emphasise that while best performing models were able to forecast value-at-risk fairly
well for α = 10% and α = 5% (though on average all models have a relatively low
exceedance rate, i.e. they overestimate losses), the value-at-risk forecasts for α = 1%
exhibit a relatively high exceedance rate which means that the fat-tail distributions of
the portfolio returns are not fully captured by the considered models. Good performance
of DCC with Clayton HAC, s1 for α = 1% can be explained by the fact that the Clayton
copula describes lower-tail dependence. This is also why exceedance rates of the models
based on the Clayton copula are mostly lower than those of the corresponding models
based on the Gumbel copula. Overall results of the value-at-risk backtesting for the
equally-weighted portfolio cannot be seen as satisfactory with regard to the comparably
better performance that we could expect from HAC-based models.

However, the situation is absolutely different on the aggregate level, i.e. for 1000 sim-
ulated portfolios on average. For all three α values, HAC-based DCC models are best
in class. They do not only produce the most accurate value-at-risk forecasts on average
as demonstrated by their exceedance rates that are closest to the respective required
α values, but also generate these accurate forecasts on a regular basis as witnessed by
their low AW and DW values. It is also a very encouraging result that for two of the
three α values, standard DCC performs worse than DECO in most cases. This means
that a copula assumption can increase forecast qualities of a poorly-performing model
significantly, so that it even overtakes other benchmarks. Some general conclusions,
such as lower exceedance rates of DCC models with Clayton copula as compared to
the corresponding DCC models with Gumbel copula, generally significantly worse per-
formance of all models for α = 1% (Kupiec test’s null hypothesis is not rejected only
two specifications of DCC based on the Clayton copula at the 10% signifiance level)
and a better ability of DCC with Clayton HAC, s1 to capture lower fat tails of the
portfolio return distributions, that were drawn from the value-at-risk backtesting for
the equally-weighted portfolio, remain valid for the analysis of the 1000 portfolios.
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Model α = 10% α = 5% α = 1%
DCC 9.616(0.522) 4.889(0.799) 1.495(0.021)
DCC with Gumbel AC 9.778(0.712) 5.253(0.567) 1.455(0.033)
DCC with Clayton AC 9.657(0.567) 4.848(0.728) 1.455(0.033)
DCC with Gumbel HAC, s1 9.697(0.614) 5.131(0.765) 1.495(0.021)
DCC with Clayton HAC, s1 9.657(0.567) 4.687(0.470) 1.374(0.077)
DCC with Gumbel HAC, s2 9.778(0.712) 5.131(0.765) 1.414(0.051)
DCC with Clayton HAC, s2 9.737(0.662) 4.889(0.799) 1.495(0.021)
Standard DECO 9.778(0.712) 5.051(0.908) 1.495(0.021)
Block DECO, s1 9.697(0.614) 4.848(0.728) 1.455(0.033)
Block DECO, s2 10.141(0.815) 5.333(0.451) 1.616(0.005)
Univariate GARCH 16.283(0.000) 11.071(0.000) 4.162(0.000)

Table 6.3: Value-at-risk backtesting results for the equally-weighted portfolio: α̂ (in %)
and Kupiec test p-values (in brackets). Results of the models yielding highest p-values
are shown in bold.

Value-at-risk backtesting results can be illustrated by depicting value-at-risk for each
forecast day along with actual returns. Figure 6.10 provides more insights into the third
column (α = 5%) of Table 6.3 and shows such graphs for standard DCC, DCC with
Gumbel AC, DCC with Gumbel HAC, s2 and Block DECO, s2. In Figure 6.10, actual
returns are shown in blue if they were higher than the predicted value-at-risk and in
red in the opposite case (exceedance event). The value-at-risk profiles look very similar
in these plots, the only difference that is easy to notice is that certain data points are
coloured differently in different plots meaning that different models produce somewhat
different portfolio return distribution forecasts.
Another perspective of the value-at-risk forecasts can be obtained by plotting their

kernel densities over the whole forecasting period for each model and each α. Figures
6.11 and 6.12 show the value-at-risk kernel densities for α = 5% and α = 1% respectively
for each of the 11 considered models. Kernel densities were evaluated using normal kernel
smoother and the optimal bandwidth was estimated as in chapter 5. Only left tails of
the resulting kernel density graphs are shown in the figures, but now it is much easier
to notice that the models behave differently on average. Models based on the Clayton
copula are more inclined to provide low value-at-risk estimates than other models which
is demonstrated by the fatter left tails of the respective kernel densities and which is
especially pronounced for α = 1%. This is in line with our conlusion from the analysis of
Table 6.3. Block DECO, s2 produces relatively high value-at-risk estimates for α = 5%
and α = 1% that have a higher chance to be exceeded. In Table 6.3 we see that
disregarding univariate GARCH, this specification performs worst and has the highest
exceedance rates which is in line with relatively thin left tails of its predicted value-at-
risk kernel density in Figures 6.11 and 6.12.
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6.6 Portfolio value-at-risk backtesting

Finally, we plot entire estimated daily portfolio return distributions for three par-
ticular days produced by the following models: standard DCC (used as a benchmark)
and three best performers in value-at-risk backtesting for the equally-weighted portfolio:
Block DECO, s2, standard DECO and DCC with Clayton HAC, s1. By doing this, we
show that the strength of the nonlinear dependence as expressed by the copula parame-
ters has an impact on the skewness of the resulting distribution and hence on its position
relative to those generated by the simpler standard DCC and by DECO models. Figure
6.13 shows the kernel density of the portfolio return distribution for 06.07.2011, the day
that was preceded by a period characterised by a relatively high nonlinear dependence,
hence relatively high Clayton HAC coefficients. Kernel density was again calculated
using normal kernel smoother and the optimal bandwidth was estimated as in chapter
5. It is easy to see that the distribution predicted by DCC with Clayton HAC return
distribution has a fatter left tail than the ones produced by the other three models which
in turn results in lower value-at-risk predicted by the HAC-DCC model. In Figure 6.14,
the distributions predicted by the same models for 18.09.2003 are depicted. The copula
parameters estimated during the 500-day period before this day are near average, and
the distribution generated by DCC with Clayton HAC is closer to the other three than
in Figure 6.13, and its left tail is only marginally fatter than that of generated by the
other three models. Finally, the distribution forecast for 16.03.2005, a day for which
a low nonlinear dependence is predicted, is shown in Figure 6.15. As a result of the
low dependence, DCC with Clayton HAC almost degenerates to standard DCC which
is why the kernel densities for these two models almost coincide, and the copula-based
model does not exhibit a fatter left tail.
Summing up, one can conclude that as expected, HAC-DCC models can be useful

for risk-management purposes. In particular, on average they generate more accurate
value-at-risk forecasts for various futures portfolios than nested models with stricter
assumptions and even some other benchmark models (DECO). In particular, one model
based on the Clayton HAC due to the ability of this copula to capture lower tail de-
pendence, is able to approximate the futures portfolios distribution in the region corre-
sponding to particularly low quantiles (as α = 1%) better than other models. Moreover,
unlike for most other models, this approximation is statistically significant as shown by
the Kupiec test results.
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Figure 6.11: Kernel density of the value-at-risk (α = 0.05) forecast by standard DCC
(solid line), copula-based DCC with Gumbel AC (solid line), Gumbel HAC, s1 (dashed
line), Gumbel HAC, s2 (dashed-dot line), Clayton AC (solid line), Clayton HAC, s1
(dashed line), Clayton HAC, s2 (dashed-dot line), standard DECO (solid line), Block
DECO, s1 (dashed line), Block DECO, s2 (dashed-dot line), univariate GARCH (solid
line).
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Figure 6.12: Kernel density of the value-at-risk (α = 0.01) forecast by standard DCC
(solid line), copula-based DCC with Gumbel AC (solid line), Gumbel HAC, s1 (dashed
line), Gumbel HAC, s2 (dashed-dot line), Clayton AC (solid line), Clayton HAC, s1
(dashed line), Clayton HAC, s2 (dashed-dot line), standard DECO (solid line), Block
DECO, s1 (dashed line), Block DECO, s2 (dashed-dot line), univariate GARCH (solid
line).
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Figure 6.13: Equally-weighted portfolio return distribution forecast for 06.07.2011,
estimated copula parameters in DCC with Clayton HAC, s1: θ1 = 0.002, θ2 = 0.085,
θ3 = 0.182 (strong dependence). Standard DCC (solid line), DCC with Clayton HAC,
s1 (dashed line), standard DECO (solid line), Block DECO, s2 (dashed-dot line).
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Figure 6.14: Equally-weighted portfolio return distribution forecast for 18.09.2003,
estimated copula parameters in DCC with Clayton HAC, s1: θ1 = 0.028, θ2 = 0.028,
θ3 = 0.043 (medium dependence). Standard DCC (solid line), DCC with Clayton HAC,
s1 (dashed line), standard DECO (solid line), Block DECO, s2 (dashed-dot line).
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Figure 6.15: Equally-weighted portfolio return distribution for 16.03.2005, estimated
copula parameters in DCC with Clayton HAC, s1: θ1 = 0.002, θ2 = 0.002, θ3 = 0.002
(weak dependence). Standard DCC (solid line), DCC with Clayton HAC, s1 (dashed
line), standard DECO (solid line), Block DECO, s2 (dashed-dot line).
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7 Conclusions

This thesis addresses the issue that can be of significant importance to many agents
involved in commodity trading. The study further develops the work of Ohana (2010)
and models the dynamics of the heating oil and natural gas futures curves within one
model. Multi-stage analysis of a large set of futures prices is carried out: first, futures
return series are transformed to the shocks series with the help of the two-factor model
of the futures price, then two components of the shocks were analysed separately. For
the analysis of the variance-covariance structure of the vector of the random shocks
component, HAC-MGARCH models, a recent development in the MGARCH class were
used. This analysis allowed to forecast the distribution of the returns of any portfolios
composed of the available futures contracts for short time periods. As shown in the
study, value-at-risk estimates derived from the forecasts produced by HAC-DCC models
are accurate, and these models outperform other benchmark models on a consistent
basis as shown by the value-at-risk backtesting procedure carried out on a set of 1000
simulated futures portfolios.
The research can be extended along the following directions. First, it is possible to let

MGARCH models account for the possible seasonality in the dynamics of the variance-
covariance matrix of the vector of the random shocks components as suggested in Ohana
(2010). Second, it is worthwhile to further exploit the advantages of the Archimedian
copula class and use other copula types and different structures, in particular a procedure
to estimate an optimal structure can be implemented which would be especially helpful if
the dimensionality of a problem were to increase with the inclusion of other commodities
in the analysis. Moreover, one can further combine copulas with different MGARCH
models, e.g. copula-based DECO models could be a promising forecasting tool. Finally,
more sophisticated methods to the determination of the estimation time window, such
as local adaptive methods, can be applied which can lead to the better understanding
of the time evolution of the processes and more precise forecasts.
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