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Abstract

We consider an alternative computation methodology of the systemic risk measure (Co-

VaR) using copula and extend it to high dimension case. In addition, we modify the

definition of risk contribution (ΔCoVaR) to make it more reasonable. We investigate the

change of ΔCoVaR for eight European sovereign debt markets before and after Euro-

pean debt crisis. Evidences show that crisis markets were highly correlated with system

and within each other before crisis, while they decoupled with system after the crisis.

Keywords: VaR,CoVaR,Copula,systemic risk measure
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Chapter 1

Introduction

The outbreaks of subprime crisis and European debt crisis ignite the discussion of the

complexity and fragility of financial system and systemic risk measure both in academia

and industry. One lesson that we learn from the crisis is that Value-at-Risk (VaR),

which is the most widely used risk measure by financial institutions, is far from enough

for risk management. VaR fails to capture the nature of systemic risk — the risk that

stability of the financial system as a whole is threatened1, because it only focuses on

individual institution in isolation, and tail comovement and spill-over effect have been

ignored. As a result, it is crucial to find a practical method for systemic risk measure

to supervise the stability of financial system.

Current scientific and regulatory discussion of systemic risk measure is far from closed

and its computing methodology is still under development. CoVaR, shorted for Condi-

tional Value-at-Risk, which is introduced by Adrian and Brunnermeier [1], may be the

most popular and widely-used systemic risk measure among various versions in financial

institutions (see Board [2], Fong et al. [3]). The general idea of CoVaR is to use the con-

ditional distribution of a random variable Xj conditioning on Xi. They define CoV aRj|i

as the VaR of institution j conditioning on institution i being in financial distress, which

allows to measure risk contribution of one institution adding to the whole system (or

other financial institutions) by taking the difference between CoVaR conditioning on the

institution being at stress and CoVaR conditioning on the institution being at normal

1Adrian and Brunnermeier [1]
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Chapter 1. Introduction 2

state.

Copula is an elegant concept and a powerful instrument when we have to deal with

high-dimension joint CDF. Copula was firstly introduced by Sklar [4], where the famous

Sklar’s Theorem was given, although similar ideas can be traced back to Hoeffding [5].

The most attractive property of copula is allowing us to separately model margins and

dependence structure. The past decade has witnessed the rapidly growing applications

of copula, not only in the area of statistic research, but many other disciplines such as

finance, geology, engineering. One of early applications of copula is to price the credit

derivatives (CDO and CDS). Li [6] was the first to utilize copula in valuation of some

credit derivatives, which is known as “the formula that killed Wall Street.” Another

area of copula’s application is risk management. The nature of co-movement between

sources of risk creates the demand of estimating high-dimension joint distribution. Em-

brechts and Höing [7] study the VaR of portfolios and Cousin and Di Bernadino [8] use

copula to define VaR in multivariate setting. Basically, CoVaR is the VaR of a condi-

tional distribution and it should capture the dependence between objective variable and

conditional variable, which makes it possible to take the advantage of copula to redefine

and compute CoVaR.

This thesis attempts to characterize the CoVaR using Copula and to apply Copula-based

CoVaR to capturing how systemic risk change as a result of the European debt crisis.

The thesis is organized as follows: Chapter 2 discusses copula theories and properties

of copula classes, which would be utilized in CoVaR computation and empirical study;

In chapter 3, we develop the copula-based CoVaR and extend it to multivariate case.

Simulations of bivariate CoVaR and multivariate CoVaR are also given; In chapter 4,

we conduct empirical analysis of copula-based CoVaR based on the European sovereign

bond markets data. Results indicate that GIIPS markets are closely linked with EMU

index (the representative of system) before crisis and decoupled with EMU after crisis.



Chapter 2

Copula

In this Chapter, we will introduce some related definitions and properties of copula.

Copula is a important method to model multivariate distribution, because it allows us

to model margins and dependence structure respectively, which suggests copula function

contains full information of dependence. It is quite clear that linear correlation does not

precisely describe the dependence. No correlation does not imply independence and

a positive correlation does not mean positive dependence (Lehmann [9]). Therefore,

copula-based dependence measures are presented in this chapter. Archimedean copula

class is quite popular in the literature because it makes it possible to model depen-

dence with one parameter even in high dimensions. Summary and comparison between

Archimedean copulas are also given in this chapter. For details of copula theory, we

refer to Joe [10] and Nelsen [11].

2.1 Basic Copula Theory

Definition 2.1.1 (Copula). A d-dimensional copula is a function C from [0, 1]d → [0, 1]

with following properties:

(1) C(u1, . . . , ud) is increasing in each component ui ∈ [0, 1], i = 1, . . . , d.

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1], i = 1, . . . , d.

3



Chapter 2. Copula 4

(3) For all (ui, . . . , ud), (u
′
1, . . . , u

′
d) ∈ [0, 1]d with ui < u

′
i we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(vj1, . . . , vjd) ≥ 0,

where vj1 = uj and vj2 = u
′
j ,for all j = 1, . . . , d.

Property (1) and (3) in Definition 2.1.1 imply that copula is multivariate cumulative

density function. Property (2) suggests that copula has uniform margins. It is apparent

that copula is nothing but a multivariate distribution with uniform margins. However,

copula has its own power when dealing with multivariate distribution, which is given by

Sklar’s Theorem.

Theorem 2.1.1 (Sklar’s Theorem (Sklar [12])). Let F be a multivariate distribution

function with margins F1, . . . , Fd, the exists the copula C such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} = C(u1, . . . , u2), x1, . . . , xd ∈ R. (2.1)

If Fi are continuous for i = 1, . . . , d, the C is unique. Otherwise C is uniquely determined

on
∏d

i=1 Fi(R). Conversely, if C is a copula and F1, . . . , Fd are univariate distribution

functions, the function F defined above is a multivariate distribution function with

margins F1, . . . , Fd.

Sklar’s theorem is valuable and important because it associates each multivariate distri-

bution with a copula and allows us to model dependence structure independently. Also,

we can derive the joint density from Sklar’s Theorem. The joint density f12(x1, x2) is

f12(x1, x2) =
∂2F12(x1, x2)

∂x1∂x2

=
∂2C(u1, u2)

∂u1∂u2

∂F1(x1)

∂x1

∂F2(x2)

∂x2

=c(F1(x1), F2(x2))f1(x1)f2(x2),

(2.2)

where c(u1, u2) =
∂2C(u1,u2)
∂u1∂u2

is the copula density. For independent copula, c(u1, u2) = 1,

and a important property of copula is invariance under increasing and continuous trans-

formation.
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Continuing with the equation 2.2, let Xt = (x1,t, x2,t)
′
, the log-likelihood function for

Xn
t=1 is

L(θ) =

n∑
t=1

log f12(x1,t, x2,t; θ)

=
n∑

t=1

log f1(x1,t; θ1) + log f2(x2,t; θ2) + log c(F1(x1,t; θ1), F2(x2,t; θ2); θ3),

(2.3)

where θ = (θ
′
1θ

′
2θ

′
3)

′
,θ1 and θ2 are the parameters of margins of X1 and X2, θ3 is the

copula parameter, and n is the number of the observations.

2.2 Dependence and Copula

As mentioned in Chapter 1, copula allows us to separately model marginal distribu-

tion and dependence, which provides a natural way to measure dependence. Pearson’s

correlation (or linear correlation) is the most frequently-used dependence measure in

practice. However, it is often misleading because it is not the copula-based dependence

measure. In this section,we recall the definition of Pearson’correlation and continue with

copula-based rank correlation and tail dependence.

Definition 2.2.1 (Pearson’s Correlation). Let (X1, X2)
T ∈ R

2 be vector of two random

variables with V ar(Xd) < ∞, V ar(Xd) �= 0, d ∈ 1, 2, the Pearson’s correlation ρp of X1

and X2 can be defined as follows,

ρp(X1, X2) =
CoV (X1, X2)√

V ar(X1)
√
V ar(X2)

, (2.4)

CoV() is the covariance operator and Var() is the variance operator.

Pearson’s correlation is a measure of linear dependence and its popularity stems from the

simplicity of calculation and that it is a natural scalar measure of dependence in elliptical

distribution (see Embrechts et al. [13]). However, plenty of evidences indicate most

random variables are not jointly elliptical distribution, especially in the area of finance

and economics. Therefore, it is often inappropriate and misleading to take Pearson’s

correlation as the measure of dependence. Pearson’s correlation is relied on the existence

of covariance of two variables, but there is possibility that Pearson’s correlation does not

make sense even they are elliptically distributed, such as t2 distribution (t2 distribution
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has infinite second moment). Moreover, Pearson’s correlation is not invariant under

non-linear strictly increasing transformation. That’s why we need more proper measure

of dependence. Two important dependence measures will be introduced in the following

part.

Definition 2.2.2 (Kendall’s tau). Let X and Y be random variables with joint distri-

bution of F, and (X1, Y1) and (X2, Y2) be two independent pairs of random variables

from F, Kendall’s tau is defined as follows:

ρτ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0].

Kendall’s tau is relevant to concept of concordance and discordance. For any pair of

observations (xi, yi) and (xj , yj), if both xi > xj and yi > yj and if both xi < xj and

yi < yj , then we say observations (xi, yi) and (xj , yj) are concordant; they are said to

be discordant if both xi > xj and yi < yj and if both xi < xj and yi > yj . Kendall’s tau

tries to measure the dependence as the difference between probability of concordance and

probability of discordance, and it can be connected with copula by following theorem.

Theorem 2.2.1. Let X and Y be random variables with joint distribution of F and

copula C, the Kendall’s tau can be calculated as

ρτ = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (2.5)

Another popular rank correlation is Spearman’s rho,which is defined as follows,

Definition 2.2.3 (Spearman’s rho). Let X and Y be random variables with distribution

function F1 and F2, and joint distribution of F, spearman’s rank correlation is defined

as

ρs(X,Y ) = ρp(F1(X), F2(Y )).

Theorem 2.2.2. Let X and Y be random variables with joint distribution of F and

copula C, the Spearman’s rho can be calculated as

ρs = 12

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 3.

The main difference between rank correlation and Pearson’ correlation is that both

Kendall’s tau and Spearman’s rho measure the degree of monotonic dependence, while
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Pearson’s correlation is to measure the degree of linear dependence. The advantages of

rank correlations over linear correlation are invariance under monotonic transformation

as well as sensitiveness to error and discrepancy in data.

Tail dependence

If we are more concerned about the dependence in the tail and extreme values, tail

dependence may be a valuable concept.

Definition 2.2.4 (Upper Tail Dependence). Let X and Y be random variables with

distribution function F1 and F2, the coefficient of upper tail dependence is defined as

λu = lim
α→1

P[Y > F−1
2 (α)|X > F−1

1 (α)]. (2.6)

Provided λu ∈[0,1], we call X and Y are asymptotically dependent in upper tail if

λu ∈(0,1] and asymptotically independent in upper tail if λu =0.

If F1 and F2 are continuous distribution, we can rewrite the equation 2.6 using copula,

lim
α→1

P[Y > F−1
2 (α)|X > F−1

1 (α)] = lim
α→1

P[Y > F−1
2 (α), [Y > F−1

1 (α)]

P[Y > F−1
1 (α)]

= lim
α→1

C̄(α, α)

1− α

= lim
α→1

2α− 1 + C(1− α, 1− α)

1− α
,

(2.7)

where C̄(u,v) is the survive copula function defined as C̄(u,v)=u+v-1+C(1-u,1-v), if

copula has explicit form, taking Gumbel copula as example, we can derive the upper tail

dependence according to equation 2.7 λu = 2 − 2θ, and θ is the dependence parameter

of Gumbel copula.

Definition 2.2.5 (Lower Tail Dependence). Let X and Y be random variables with

distribution function F1 and F2, the coefficient of lower tail dependence is defined as

λl = lim
α→0

P[Y < F2(α)|X < F1(α)].

Provided λl ∈ [0, 1], we call X and Y are asymptotically dependent in lower tail if λl ∈
(0,1] and asymptotically independent in lower tail if λl=0.
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Adopting the same logics presented in the part of upper tail dependence, we can calculate

the lower tail dependence via copula,

λl = lim
α→0

C(α, α)

α
. (2.8)

2.3 Copula Class

In this section, elliptical copula class and Archimedean copula class are introduced,

which are most popular copula classes in literature. They also will be used in the

empirical part of this thesis. Gaussian copula is often used as the benchmark since its

dependence parameter is just linear correlation and can not capture the tail dependence.

Archimedean copula is an useful copula class because it is convenient to be constructed

and has some good analytic properties.

2.3.1 Elliptical Copula

Gaussian Copula

Definition 2.3.1 (Gaussian Copula). For d-dimension Gaussian copula with u=(u1, . . . , ud)
T ∈

[0, 1]d, the Gaussian copula can be described as

CGa(u1, . . . , ud; Σ) = Φd,Σ(Φ
−1(u1), . . . ,Φ

−1(ud)),

where Σ is d × d correlation matrix, Φ() is standard normal distribution function, Φ−1()

is the inverse function of Φ(). Note that Gaussian copula has no tail dependence unless

ρ = 1.

Student-t Copula

Definition 2.3.2 (Student-t Copula). For d-dimension Student-t copula with u=(u1, . . . , ud)
T ∈

[0, 1]d, the Student-t copula can be described as

Ct(u1, . . . , ud; ν,Σ) = tν,d,Σ(t
−1
ν (u1), . . . , t

−1
ν (ud)),
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where tν() is the student-t distribution function with degree of freedom ν, and σ is the

correlation matrix,t−1
ν () is the inverse function of tν() .

Note that student-t copula has tail dependence for all ν > 0.

2.3.2 Archimedean Copula

Definition 2.3.3 (Archimedean Copula).

Let φ : [0, 1] → [0,+∞] be the function which satisfies that φ(1) = 0, φ(+∞) = 1, and φ

is a decreasing function. The function C:[0, 1] → [0,+∞] defined as

C(u1, . . . , un; θ) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1 . . . ud ∈ [0, 1] (2.9)

is a d-dimensional Archimedean copula, where φ is called the generator of the copula. For

Archimedean copula, the relationship with kendall’tau is ρτ = 1+4
∫ 1
0

∫ 1
0

φ(u1,u2)

φ′ (u1,u2)
du1du2,

which can be derived from equation 2.5.

Table 2.1 gives the summary of some Archimedean copula, including the generator,

domain of dependence parameter, rang of attainable tau and tail dependence.

Copula Generator θ τ range Tail Dependence

Gumbel (− log(t))θ [1,+∞) [0,1) weak λl and strong λu

Clayton 1/θ(t−θ − 1) θ ∈ [−1,+∞) \ {0} [-1,1)\{0} weak λu and strong λl

Joe − log(1− (1− t)θ) θ ∈ [1,+∞] [0,1) weak λl and strong λu

Ali-Mikhail-Haq log( 1−θ(1−t)
t

) θ ∈ [−1, 1] (0,1/3) exhibitλl only when θ = 1

Frank − log( exp(−θt−1)
exp(−θ)−1

) θ ∈ R \ {0} (-1,1) symmetric,weak λl and λu

Table 2.1: Archimedean copula with corresponding generator ,range of dependence
parameter and attainable Kendall’s tau



Chapter 3

CoVaR

3.1 CoVaR Background

3.1.1 Definition

Recall the definition of VaR. For a given return Xi
t of institution i and a confidence level

1-α, V aRi
α,t is defined as α-quantile of the return distribution,

Pr(Xi
t ≤ V aRi

α,t) = α. (3.1)

Note that usually V aRi
α,t is a negative number. But in practice Xi

t is often defined as

random loss variables so that the positive value of Ri
t represents loss, which switches

V aRi
α,t to positive number. We will not follow the convention here for the simplicity

of the CoVaR definition in high dimension case. If α =0.05, V aRi
0.05,t represents the

probability ofXi
t less than V aR

i
0.05,t would not exceed 0.05. The concept of CoVaR is the

dependence adjusted of VaR, which was first introduced by Adrian and Brunnermeier

[1]. Original definition of CoVaR is just the β−quantile of the conditional probability

distribution,

Pr(Ri
t ≤ CoV aR

i|j
β,t|Xj

t = V aRj
α,t) = β. (3.2)

However, conditioning on Xj
t = V aRj

α,t has several limitations and drawbacks,which

have been discussed by Girardi and Tolga Ergün [14] and Mainik and Schaanning [15].

(1) CoVaR proposed by Adrian and Brunnermeier [1] assumes the conditioning financial

stress refers to Xi
t being exactly at its VaR level, which does not consider more severe

10
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distress events. (2) It is not consistent with requirements of standard Kupiec [16] and

Christoffersen [17] tests to backtest the CoVaR estimates. (3) Mainik and Schaanning

[15] argue that, under the definition of Adrian and Brunnermeier [1], CoVaR is not a

monotonic function of the dependence parameter (see Figure 3.1a), which is inconsistent

with the intuition that systemic risk of one institution should increase with its corre-

lation with financial system. Therefore, CoVaR proposed by Adrian and Brunnermeier

[1] fails to detect systematic risk when the correlation is high.

For those reasons above, Girardi and Tolga Ergün [14] propose to generalize the definition

by assuming conditioning stress event as its returns being at most at its VaR (Xj
t ≤

V aRj
α,t). The modified definition of CoVaR is :

Pr(Xi
t ≤ CoV aR

i|j
β,t|Xj

t ≤ V aRj
α,t) = β. (3.3)

This new-defined conditioning event allows for considering more severe case of losses

and facilitates the CoVaR backtesting. More importantly, Mainik and Schaanning [15]

find that the modified CoVaR is a continuous and increasing function of dependence

parameter (see Figure 3.1b).
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(a) Original CoVaR in the bivariate normal
model as function of ρ
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(b) Modified CoVaR in the bivariate nor-
mal model as function of ρ

Figure 3.1: Original CoVaR and modified CoVaR OR-MO-CoVaR.R

3.1.2 Δ CoVaR

Adrian and Brunnermeier [1] define the ΔCoV aR
i|j
β,t as the difference between the

CoV aR
i|j
β,t conditioning j being under stress and CoV aR

i|j,α=0.5
β,t conditioning j being at
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normal state(α=0.5), which would be regarded as measurement of the systematic risk

contribution of institution j to the risk of system i,

ΔCoV aR
i|j
α,β,t = CoV aR

i|j
α,β,t − CoV aR

i|j
α=0.5,β,t.

For the modified CoVaR,Girardi and Tolga Ergün [14] define the analogical systematic

risk contribution measurement

ΔCoV aR
i|j
α,β,t = 100 · (CoV aRi|j

β,t − CoV aR
i|bj
β,t )/CoV aR

i|bj
β,t ,

where bj is a one-standard deviation from the mean event, μjt − σjt ≤ Xj
t ≤ μjt + σjt ,

μjt and σjt are conditional mean and conditional standard deviation of institution j re-

spectively. Hence, ΔCoVaR proposed by Girardi and Tolga Ergün [14] is the percentage

change of CoVaR. Reboredo and Ugolini [18] employ similar definition of systemic risk

contribution as Girardi and Tolga Ergün [14].

What we are interested in is the change of CoVaR from normal state to distressed state,

which measures the risk contribution of j to i. In this thesis, we decide to redefine sys-

temic risk contribution as the percentage change of the CoVaR standardized by absolute

value of benchmark state CoVaR (see equation 3.4). There are several reasons to adopt

the new-defined systemic risk contribution,

(1) ΔCoVaR defined as simple change of CoVaR in Adrian and Brunnermeier [1] is

not standardized, which may be not a proper index for comparison;

(2) ΔCoVaR defined as percentage change of CoVaR in Reboredo and Ugolini [18]

allows negative scaling denominator, which may reverse the sign of ΔCoVaR and

results in misleading results (see Figure 3.2). Remember that ΔCoVaR should

decrease with the dependence parameter;

(3) The new-defined ΔCoVaR allows to capture both positive dependence and negative

dependence.

ΔCoV aR
i|j
α,β,t = 100 · CoV aR

i|j
α,β,t − CoV aR

i|j
α=0.5,β,t

|CoV aRi|j
α=0.5,β,t|

(3.4)
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(b) New-defined ΔCoVaR

Figure 3.2: Comparison of two different ΔCoVaR definitions(Guassian Copula with

norm margins N(0.5,1)) New-delta-CoVaR.R

3.1.3 Current Computation Methodology

CoVaR measure can be estimated in many different ways. In this section we will men-

tion three mainstream methods to compute CoVaR, quantile Regression CoVaR (Adrian

and Brunnermeier [1]), bivariate GARCH CoVaR (Girardi and Tolga Ergün [14]), and

Copula-based CoVaR (Reboredo and Ugolini [18]). We will briefly review the method-

ology of quantile regression and GARCH to compute CoVaR, because what we are

interested in is copula-based CoVaR. We will discuss copula-based CoVaR in details in

this section and extend it to high dimension case.

Quantile Regression CoVaR

Considering the fact that V aRi
α,t is α-quantile of the return distribution, and that

CoV aR
i|j
α,β,t is just VaR of conditional distribution, quantile regression is a straightfor-

ward way to obtain CoVaR. Adrian and Brunnermeier [1] run linear quantile regression

of Xi
t on a set of lagged state variables Mt−1 to get estimated time-varying V aRi

q,t, and

linear quantile regression of Xj
t on Xi

t together with the same lagged state variables,

Xi
t =α

i + βiMt−1 + εit,

Xj
t =αj|i +Xj

t + βj|iMt−1 + ε
j|i
t .

(3.5)
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Consequently, CoVaR can be obtained in following way:

V aRi
q,t =α̂

i + β̂iMt−1,

CoV aR
i|j
q,t =α̂

j|i + V aRi
q,t +

ˆβj|iMt−1.
(3.6)

Quantile regression proposed by Adrian and Brunnermeier [1] is one of trackable and

efficient ways to estimate CoVaR. However, one of the drawbacks is that the effect of

VaR on CoVaR stays constant although CoVaR in equation 3.6 is time-varying, which

is unrealistic and does not capture the effect of time-varying dependence on CoVaR.

Bivariate GARCH CoVaR

Girardi and Tolga Ergün [14] propose to calculate CoVaR via multivariate DCC model.

If we start from CoVaR definition in equation 3.3, given that Pr(Xi
t ≤ V aRi

α) = α,

CoVaR should satisfy the following equation,

Pr(Xj
t ≤ CoV aR

j|i
α,β,t, X

i
t ≤ V aRi

α,t) = αβ, (3.7)

which requires the knowledge of bivariate joint distribution of (Xi, Xj) and to calculate

the V aRi
α,t. Girardi and Tolga Ergün [14] run a three-step procedure to estimate CoVaR.

First, VaR of each institution i is obtained by estimating a univariate GARCH (1,1)

models for each time period; Second, for the return of institution i and j, they set up a

bivariate GARCH model with DCC specification to estimate the pdf of (Xi, Xj). Third,

according to the equation 3.7, once V aRi
α,t and pdf of (Xi, Xj) have been estimated in

previous two steps, CoVaR can be obtained by numerically solving the equation,

∫ CoV aR
j|i
α,β,t

−∞

∫ V aRi
α,t

−∞
ft(X

i, Xj)dxdy = αβ, (3.8)

where f(Xi, Xj) is the bivariate density of Xi and Xj .
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3.2 Copula-based CoVaR

Methodology

This thesis will employ the modified version of CoVaR propose by Girardi and Tolga Ergün

[14]. As the definition of CoVaR shown, the key to compute CoVaR is to find the con-

ditional probability distribution function. Let Xi and Xj be the random variable repre-

senting the returns of two financial institutions i and j, then the general case of CoVaR

could be express as

CoV aR
j|i
α,β = V aRβ(Xj |Xi ≤ V aRi

α), (3.9)

which requires to know the conditional cumulative density function FXj |Xi≤V aRi
α
(xj),

and

FXj |Xi≤V aRi
α
(xj) =Prj ≤ xj |Xi ≤ V aRi

α)

=
Pr(Xj ≤ xj , Xi ≤ V aRi

α)

Pr(Xi ≤ V aRi
α)

.

Calculation of Pr(Xj ≤ xj , Xi ≤ V aRi
α) requires the information of bivariate CDF of

Xj and Xi, which give us the opportunity to utilize copula to compute CoVaR .

Let (U, V ) ∼ C, where C is the copula of FXi,Xj (xi, xj) and U = FXi(xi), V = FXj (xj)

are margins of Xj and Xi. We could decompose bivariate distribution function into

copula function C and their margins according to Sklar’s Theorem

FXi,Xj (xi, xj) = C(FXi(xi), FXj (xj)).

If we follow the idea of Mainik and Schaanning [15], we can easily show

FXj |Xi≤V aRi
α
(xj) =

C(α, v)

α
.

Then the expression of CoVaR based on copula in bivariate case is

CoV aR
j|i
α,β = F−1

Xj
(FXj |Xi≤V aRi

α
(xi)) , (3.10)

where FXj |Xi≤V aRi
α
(xi) =

C(α,v)
α .
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Alternatively, recalling CoVaR’s definition Pr(Ri
t ≤ CoV aR

i|j
beta|Xj

t ≤ V aRj
α) = β, if the

marginal distribution of Xj and copula function are given, CoVaR also can be obtained

by numerically solving the following equation:

C(Fxj (CoV aR
j|i
α,β), α) = αβ. (3.11)

Similarly, for survived copula, we have

C̄(1− Fxj (CoV aR
j|i
α,β), 1− α) + α+ Fxj (CoV aR

j|i
α,β)− 1 = αβ. (3.12)

Note that copula-based CoVaR only needs the information of cumulative probability of

VaR rather than VaR itself according to the equation 3.11, which makes computation

of copula-based CoVaR less cumbersome than bivariate GARCH CoVaR. Copula-based

CoVaR has several advantages as Reboredo and Ugolini [18] point out.

(1) Copula makes it flexible to model the marginal distributions. The main advantage

of copula is that it could allow separately modelling the margins and dependence

structure, which is essential for the computation of CoVaR, because mis-specified

marginal model would result in wrong information for copula.

(2) Copula could capture more dependency information than traditional dependence

measure given by linear correlation coefficient, especially when the joint distribu-

tion is not elliptical.

(3) Finally, Copula-based CoVaR is computationally more tractable than CoVaR pro-

posed by Girardi and Tolga Ergün [14]. The equation 3.8 requires numerically

solving of double integral and VaR of conditional variables,Copula-based CoVaR,

in contrast, even has explicit form for some Archimedean copulas.

3.3 Multivariate CoVaR

Another advantage of copula-based CoVaR is the convenience to be extended to higher

dimension case to quantify more possible risk situations. For example, we may ask ques-

tions such as, how does the systemic risk change if more than one institution fall into

financial distress at the same times, or how much reserves do we need if the top two risky
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bonds in our portfolio default simultaneously ? Obviously, bivariate CoVaR is not ca-

pable to answer these questions, which requires us to extend CoVaR to higher dimension.

Complying with the same logics and notation of bivariate CoVaR in equation 3.2, if we

have d-1 conditional variables, multivariate CoVaR can be defined as follows,

Pr(Xd
t ≤ CoV aRα1,...,αd,t|X1

t ≤ V aR1
α1
, . . . , Xd−1

t ≤ V aRd−1
αd−1

) = αd. (3.13)

Let (u1, . . . , ud) ∼ C1, and (u1, . . . , ud−1) ∼ C2, where C1 and C2 are copula function

of F1,...,d(x1, . . . , xd) and F1,...,d−1(x1, . . . , xd−1) respectively. Then equation 3.13 can be

expressed using copula as follows,

C1(Fd(CoV aRα1,...,αd,t), α1, . . . , αd−1; θ1)

C2(α1, . . . , αd−1; θ2)
= αd, (3.14)

where Fd is the CDF of Xd , θ1 and θ2 are parameters of copula C1 and C2 respectively.

Numerically solving the equation 3.14, we will get the multivariate copula-based CoVaR.

3.4 Simulation

In this section, simulation will be implemented to study the properties of CoVaR. We

estimate CoVaR and ΔCoVaR under different margins and copula specification, and

investigate the correlation of CoVaR and ΔCoVaR with dependence parameter to guar-

antee the accuracy of the interpretation of CoVaR and ΔCoVaR.

CoVaR and Copula Dependence

Designed as a systemic risk index, CoVaR should be negative correlated with copula

dependence. Intuitively, if one of financial institutions in system has higher correlation

with the whole system, its CoVaR should be lower when it falls into financial stress

(usually CoVaR is a negative value in practice). Gaussian copula is often regarded as

the benchmark in literature, so it is reasonable to start with Gaussian copula case.

Mainik and Schaanning [15] conclude that CoVaR is always decreasing in dependence

parameter for bivariate elliptical copula (see Theorem 3.6 in Mainik and Schaanning [15]
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). Figure 3.3 shows the simulation result about the correlation between CoVaR and

Gaussian copula dependence parameter θ with different margins, which exactly meets

our expectation. The interesting part here is the ordering of CoVaR under different α

(or β). From the intuitive point of view, smaller α means that the financial institutions

falls in more severe financial stress, which in return would lead to smaller CoVaR. How-

ever, Figure 3.31 indicates that when dependence parameter is negative,the ordering

is reversed at one specified point. Same property has been found in student-t copula case.

In Archimedean copula case, the monotonicity of CoVaR in copula dependence param-

eter and ordering under different α (or β) are consistent with our expectation. Figure

3.4 displays the results of simulation in Gumbel copula case. Note that Gumbel copula

can only capture positive rank correlation. Similar properties have been found in Frank,

Joe and Clayton copula cases.

For multivariate CoVaR, simulation results (see Figure 3.5) show CoVaR is still negative

correlated with θ1 in multivariate setting. Similar properties have been found in Frank,

Joe and Clayton copula cases.
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(a) Gaussian Copula CoVaR with standard
normal distribution
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(b) Gaussian Copula CoVaR with t(30) dis-
tribution

Figure 3.3: Gaussian Copula CoVaR as function of θ Gau-CoVaR-Sim.R

1Breaking point is caused by the discontinuity of θ and accuracy of tolerance during numerically
solving
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(a) Gumbel Copula CoVaR with standard
normal distribution

CoVaR as funtion of θ(gumbel t)

θ

C
oV

aR

2 4 6 8 10

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5 α=β=0.01

α=β=0.05

α=β=0.1

(b) Gumbel Copula CoVaR with t(30) dis-
tribution

Figure 3.4: Gumbel Copula CoVaR as function of θ Gum-CoVaR-Sim.R
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(b) Mulitvariate gumbel CoVaR with t(30)
distribution

Figure 3.5: Mulitvariate gumbel CoVaR as function of θ1 Gum-3d-CoVaR-Sim.R

ΔCoVaR and Copula Dependence

The value of CoVaR itself seems not so important and it is not our aim. What is perhaps

more important and interesting is the risk contribution measure Δ CoVaR as defined in

equation 3.4. Intuitively, we expect ΔCoVaR would be a decreasing function of depen-

dence parameters, since it is obvious that the institution, which has higher dependence

with system, should have more risk contribution to the entire system. Figure 3.6 and

Figure 3.7 suggest that Δ CoVaR defined in equation 3.4 is consistent with our expecta-

tion. Moreover, the Δ CoVaR ’s ordering of different confidence level in Gumbel copula

case is more reasonable than that in elliptical copula case. Similar properties have been

found in Frank, Joe and Clayton copula cases. In multivariate setting, ΔCoVaR is also

deceasing function of θ1 in Gumbel, Joe, Frank and Clayton copula (see Gumbel case

3.8).
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In conclusion, simulation results further confirm that both CoVaR and ΔCoVaR are de-

creasing function of dependence parameter either in bivariate case or multivariate case,

which strengthens the reasonability and validity of copula-based CoVaR designed in this

thesis.
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Figure 3.6: Gaussian Copula ΔCoVaR as function of θ Gua-delta-CoVaR-Sim.R
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Empirical Study

4.1 Data

We evaluate the systemic risk of eight European countries by considering weekly data of

sovereign bond benchmark price indices, including non-crisis markets Germany, France,

the Netherlands and GIIPS markets (Greece, Ireland, Italy, Portugal, Spain), and we

select the European Economic and Monetary Union Government bond index (EMU) as

the representative of the system. All bond price indices are sourced from Datastream

for 10 years maturities starting from 7 January 2000 to 1 March 2015.

Table 4.1 gives a report of descriptive statistics for bond price returns (log-return). As

we expect, the average returns have slight difference across countries, while the standard

deviations of GIIPS markets are much higher than non-crisis markets. The autocorrela-

tion coefficients for squared returns and absolute returns are much higher than those for

log-returns for all return series, which suggests ARCH effects may be found for all return

series. The ARCH-Lagrange multiplier statistics further confirm our conjecture. High

kurtosis for most of return series indicates the fat tails in return distributions, which is

consistent with result of Jarque-Bera test (all return series strongly reject the normality

hypothesis). Finally, results of ADF test and KPSS test show that all return series are

stationary. Table 4.2 shows the rank correlation of the data. All countries in our sample

are highly correlated with the EMU index and high positive dependence is also shown

within the system.

22
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GM IT FR SP GR NL IR PT EMU

Min -0.0232 -0.0427 -0.0318 -0.0489 -0.2904 -0.0290 -0.1027 -0.1370 -0.0232
Max 0.0289 0.0817 0.0386 0.0793 0.2933 0.0319 0.1186 0.1266 0.0289

Median 0.0011 0.0007 0.0012 0.0008 0.0006 0.0013 0.0009 0.0008 0.0011
Mean 0.0006 0.0006 0.0007 0.0006 -0.0008 0.0007 0.0006 0.0006 0.0006
Std.dev 0.0080 0.0097 0.0080 0.0111 0.0350 0.0078 0.0145 0.0191 0.0080
ACF -0.0773 -0.0448 -0.0761 -0.1680 0.0465 -0.0532 0.0531 0.0263 -0.0781
ACFS 0.0882 0.1396 0.1648 0.1123 0.3173 0.1012 0.4085 0.2502 0.0876

ACFABS 0.0813 0.2432 0.0909 0.2253 0.4524 0.0410 0.4470 0.4003 0.0802
Kurtosis 0.3326 9.4338 1.3920 8.9383 24.0191 0.9920 18.5606 13.3512 0.3339
Skewness -0.1298 0.9312 -0.0943 0.9018 -0.9160 -0.2132 0.0659 -0.1367 -0.1290

JB 6.29* 3110.5* 67.62* 2797.42* 19491.7* 40.06* 11577.7* 5996.7* 6.30*
ADF -8.951* -9.743* -9.331* -9.848* -6.469* -9.150* -8.827* -8.212* -8.939*
KPSS 0.1872 0.2089 0.2376 0.2304 0.1544 0.1763 0.2402 0.2630 0.1852

Autocor 9.068 13.285 8.403 32.057* 22.848* 7.184 11.685 36.198* 9.333
ARCH 124.65* 54.26* 128.88* 72.18* 116.20* 101.43* 161.00* 136.86* 124.38*

This table shows the description statistics of return data, and results of some relevant tests are also
given. ACF reports the auto-correlation coefficient of return series; ACFS offers the auto-correlation
coefficient of squared return series; ACFABS gives the auto-correlation coefficient of absolute returns;
JB provides the results of Jarque-Bera test to test normality; ADF and KPSS are stationarity test .

Des-Sta-Return.R

Table 4.1: Descriptive statistics for sovereign bond price returns

GM IT FR SP GR NL IR PT EMU

GM 1.0000 0.4880 0.7721 0.5472 0.3922 0.8434 0.4703 0.4571 0.9991
IT 0.4880 1.0000 0.5540 0.7191 0.6051 0.5325 0.6173 0.6253 0.4875
FR 0.7721 0.5540 1.0000 0.6021 0.4657 0.8227 0.5361 0.5201 0.7725
SP 0.5472 0.7191 0.6021 1.0000 0.5952 0.5900 0.6269 0.6332 0.5475
GR 0.3922 0.6051 0.4657 0.5952 1.0000 0.4369 0.6098 0.6481 0.3926
NL 0.8434 0.5325 0.8227 0.5900 0.4369 1.0000 0.5347 0.5027 0.8438
IR 0.4703 0.6173 0.5361 0.6269 0.6098 0.5347 1.0000 0.6591 0.4697
PT 0.4571 0.6253 0.5201 0.6332 0.6481 0.5027 0.6591 1.0000 0.4566
EMU 0.9991 0.4875 0.7725 0.5475 0.3926 0.8438 0.4697 0.4566 1.0000

Table 4.2: Kendall’tau matrix of data M-tau.R

4.2 Models for Margins and Copula

For Marginal models, we consider ARMA model for conditional mean and TGARCH

model for conditional variance. The marginal model is specified as follows,

Rt = μ+

m∑
i=1

φiRt−i +

n∑
j=1

ψjεt−j + εt (4.1)

This is ARMA(m,n) specification for the conditional mean, where Rt is the return of

market return for a European debt market, μ is a constant, εt is the error term with
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εt = ztσt, σt is the conditional variance, given by TGARCH(p,q) specification,

εt =ztσt,

zt ∼D(0, 1),

σ2t =ω +

p∑
i=1

αiσ
2
t−i +

q∑
j=1

βjε
2
t−j +

q∑
j=1

ηj1t−jε
2
t−j ,

(4.2)

where 1t−j=1 if εt−j < 0, otherwise 1t−j=0; σ2t−j is the GARCH component, and ε2t−i is

the ARCH component, zt is i.i.d random variable with zero mean and unit variance that

follows skewed-t distribution, which is suggested by the fact of skewness and fat tail in

the data reported in table 4.1.

For copula model, we try several popular copula specifications mentioned in Chapter 1 to

capture different types of dependence structure. We also allow dependence parameters to

vary with time by following some specified evolution pathes. Therefore, CoVaR becomes

time-varying not only because of the time-varying mean and variance in marginal model,

but also the time-varying dependence in copula model. Patton [19] consider the time-

varying copula with fixed copula form and its dependence parameter vary through time

as a function of lagged information, which is very similar with the GARCH specification.

For Gaussian copula, the parameter ρt is specified as follows:

ρt = Λ(a+ bρt−1 + c

q∑
i=1

Φ−1(ut−j) · Φ−1(vt−j)/q), (4.3)

where Λ(x) = (1 − exp(−x))(1 + exp(−x))−1 is the modified logistic transformation 1.

The purpose of the transformation is to make ρt bound in (-1,1). Φ−1 is the quantile

transformation of standard normal distribution. For student-t copula, we just replace

Φ−1 with t−1. Similarly, for Archimedean copula, the evolution path is described as,

ψt = a+ bψt−1 + c

q∑
i=1

|ut−j − vt−j |/q. (4.4)

The parameters in marginal models and copula models are estimated by two-step proce-

dure called the inference functions for margins proposed by Joe and Xu [20]. According

1In Archimedean copula case, we deploy similar transformation to keep dependence parameter in the
domain of definition. For example, we take transformation like Λ(x) = (1 + exp(−x))−1 for Gumbel
copula
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to the equation 2.3, the log-likelihood function can be decomposed as the sum of the

log-likelihood of margins and the log-likelihood of copula density. Hence,the procedure

of estimation can be described as follows,

(1) estimate the parameters of marginal models separately by maximum likelihood

method;

(2) transform the return data to presudo-sample observations by probability integral

transformation for copula model, namely, ût = FRi,t(Ri,t; θ̂i) and v̂t = FRj,t(Rj,t; θ̂j),

which would be used in next step to estimate copula parameters;

(3) estimate the copula parameters by solve the problem,

θc = argmax
θc

T∑
t=1

log c(ût, v̂t; θc), (4.5)

where θc is the parameter of copula model, ût and v̂t are pseudo-sample observa-

tions getting from step 2;

(4) numerically solve the equation 3.11 to get estimated time-varying CoVaR.

4.3 Empirical Results

Table 4.3 shows the results of estimation for marginal models and table 4.4 reports the

results of estimation for different copula models. As for order selection of ARMA(m,n)-

GARCH(p,q) model, we try different value combinations of m, n, p, q ranging from zero

to six, and select the optimal model according to AIC criteria. We make sure there is

no auto-correlation in residuals and squared residuals. Most of estimates in marginal

model shown in table 4.3 are significant at 5%, and asymmetric effects are found in

all series except for Spain. Significant estimates of parameters in skewed-t distribution

indicates error terms are not normally distributed, which is consistent with the facts of

fat tail and skewness reported in table 4.1. Estimation results of marginal models indi-

cate our marginal models were not mis-specified and pseudo-observations obtained by

probability integral transformation are qualified to be used to estimate the copula model.
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Table 4.4 reports the copula model results of the EMU index with eight European coun-

tries, and seven different dynamic copula models (including Guassian Copula, Student-t

Copula, Gumbel copula, Survive Gumbel Copula, Clayton Copula, Frank Copula and

Joe Copula) are tried during estimation. According to AIC value, Survive Gumbel cop-

ula are best fitted for all of series except for Germany and Ireland, indicating that there

is more stronger lower tail dependence than upper tail dependence with EMU. Table

4.5 gives the statistic summary of estimated ΔCoVaR for eight counties. The first row

of table is the mean of ΔCoVaR for each countries. For example, financial distress of

Germany bonds market, on average, increases the 1% VaR of Germany by 51.23% over

its VaR when it is in the benchmark state. The second row is the standard deviation of

ΔCoVaR and the last row is the rank of mean of ΔCoVaR for eight countries. Germany

ranks the number one(smallest) in terms of ΔCoVaR values, which is quite reasonable,

since Germany is the biggest and most important economy in Europe and any subtle

vibration in German market would result in significant shock on the system. Figure

4.1 offers the time-series plot for ΔCoVaR and VaR for each countries and vertical line

denotes the outbreak time of European debt crisis (6 November 2009). It is evident that

European debt markets are strongly co-moved before European debt crisis and systemic

risk contribution index for each market is quite low. However, after the crisis, ΔCoVaR

value shots up dramatically for almost every market, especially for GIIPS countries,

indicating that crisis countries decoupled with EMU index after crisis. According to

Figure 4.1, VaR has no strong correlation with ΔCoVaR although CoVaR of one market

is related to its VaR, which is not consistent with Girardi and Tolga Ergün [14].
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GM IT FR SP GR NL IR PT EMU

Mean
φ1 -0.52* 0.98* -0.47* -0.60* -0.30* -0.49* 0.99* -0.01 -0.05

( -41.42) (335.02) (-41.81) ( -45.86) (-11.51) (-29.90) ( 219.16) (-0.45) (-1.77)
φ2 0.07*

(4.94)
ψ1 0.46* -0.97* 0.41* 0.29* 0.46* -0.95

(35.30) (-5092) (36.17) ( 12.39) ( 29.64) (-1180.04)
ψ2 0.06 0.03*

(1.59)
ψ3 0.06

(1.27)
ψ4 0.06

(1.87)
Variance

ω 0.01* 0.73* 0.02* 0.01* 0.05* 0.01* 0.36* 0.26* 0.01*
(3.38) ( 23.47) (3.72) ( 2.89) (2.20) ( 3.00) ( 12.89) (15.08) ( 3.40)

α1 0.06* 0.21* 0.07* 0.09* 0.21* 0.22* 0.26* 0.06*
( 5.05) ( 4.26) (6.10) ( 5.77) ( 6.37) (5.42) ( 7.69) (5.05)

α2 0.15* 0.38* 0.36*
(2.11) ( 5.75) (17.37)

α3 0.20* 0.09* 0.23*
( 2.98) (2.35) ( 8.03)

α4 0.13* 0.15* 0.26*
(3.37) (2.71) (21.25)

α5 0.11
( 1.39)

α6 0.05*
(3.28)

β1 0.92* 0.91* 0.90* 0.91* 0.92
(78.58) (76.61) (56.03) (78.89) (78.98)

η1 -0.30* 0.29* -0.27* 0.03 0.39* -0.31* 0.45* 0.11 -0.31*
(-2.31) ( 2.55) (-2.83) (0.42) (2.61) (-2.45) (3.76) (1.02) (-2.47)

η2 -0.55* -0.36* -0.35*
(-2.77) (-2.12) (-2.94)

η3 -0.52* -0.06 -0.53*
(-2.56) (-0.20) (-6.12)

η4 -0.65* -0.22 -0.17
(-2.7) ( -0.60) (-1.88)

η5 -0.58
(-1.78)

η6 0.63*
(4.27)

ξ 0.86* 0.88* 0.86* 0.87* 0.85* 0.84* 0.90* 0.88* 0.86*
( 20.78) ( 31.09) (28.56) (27.88) (25.91) (20.40) (24.56) (20.48)

ν 59.99* 5.83* 57.20 11.81* 4.88* 59.17 4.27* 5.52* 59.99*
(2.65) ( 6.24) (0.72) (3.43) (4.69) (0.46) (5.81) ( 6.29) (3.08)

the table is to present the maximum likelihood estimates for marginal models described in equation
4.1and equation 4.2, and t-statistics values are also present in parentheses. An asterisk(*) indicates
significance at 5%, we use 100*log-return as the estimation sample to avoid convergence problem during
estimation

Table 4.3: Estimated parameters for marginal models Marg-Est.R
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GM IT FR SP GR NL IR PT

Gaussian
a 5.36 3.27 2.10 0.79 4.27 3.18 0.53 0.60

(291.92) (0.17) (6.21) (0.12) (0.14) (7.35) (0.26) (0.13)
b 3.29 -0.31 1.01 0.29 0.04 1.17 0.71 0.10

(292.15 ) (0.40) (6.99) ( 0.25) ( 0.41) (7.61) (0.71) (0.36 )
c -0.39 -0.07 -0.08 1.81 -0.47 -0.46 1.31 2.00

(0.13) (0.21) (0.13 ) (0.14) (0.24 ) (0.14) (0.34) ( 0.21)
AIC -5463.55 -555.96 -1288.93 -802.07 -671.18 -1965.87 -560.24 -589.51

Student-t
a -77.80 1.34 2.33 1.93 1.31 8.85 0.29 0.91

(115.27) (0.31) (2.40) (0.36) (1.10) (2.37) (0.05) (0.24)
b 87.12 -0.14 1.64 -0.51 -0.47 -3.02 1.70 0.24

(115.24) (0.54) ( 2.43) (0.48) (2.02) (2.17) (0.13) (0.47)
c -0.87 0.84 -0.07 1.05 1.31 -1.52 0.65 1.12

(0.15) (0.16) (0.04) (0.12) (0.41) (0.50) (0.10) (0.17)
ν 62.26 3.93 2.00 4.58 5.45 7.38 4.98 4.78

(40.25) (0.52) (0.32) (0.42) (0.50) ( 2.03) (0.68) (0.49 )
AIC -5484.71 -677.49 -1655.96 -932.75 -687.56 -1995.75 -692.04 -643.72

Gumbel
a 0.76 0.66 0.68 0.20 0.86 3.03 0.77 0.67

(0.18 ) (0.50) (0.19) (0.09) (0.47) (0.48 ) (0.25) (0.55)
b 0.80 0.70 0.76 0.91 0.63 -0.06 0.65 0.72

(0.05) (0.23) (0.07) (0.04) (0.21) ( 0.17 ) (0.11) (0.24 )
c 1.02 -4.98 -5.53 -1.33 -6.45 -27.54 -5.54 -5.65

(4.60) (3.74) (1.43) (0.47) (3.37) ( 4.70 ) (1.75) (4.56)
AIC -5216.43 -930.81 -1963.09 -1292.96 -964.08 -2213.07 -973.82 -902.47
Frank
a 2.10 1.48 1.57 0.55 0.26 1.60 0.88 0.61

(0.00) (0.03) (0.03) (0.01) (0.02) (0.09) (0.04) (0.01)
b 3.26 0.42 0.55 0.81 0.90 0.32 0.67 0.78

(0.00) (0.02) (0.01) (0.01) (0.00) (0.02) (0.02) (0.01)
c -8.12 -3.76 -6.77 -1.53 -0.77 0.97 -2.38 -1.66

(0.00) (0.04) (0.03) (0.03) ( 0.05) (0.05) (0.12) (0.03)
AIC -5124.72 -942.27 -1941.57 -1296.61 -852.96 -2255.34 -712.09 -926.03
Joe
a 0.64 0.08 0.14 0.26 0.18 0.80 0.15 0.26

(0.17) (0.02) (0.02) (0.25) (0.04) (0.15) (0.04) (0.14)
b 0.80 0.96 0.94 0.87 0.93 0.65 0.92 0.88

(0.05) (0.01) (0.01) (0.13) (0.02) (0.07) (0.02) (0.07)
c 0.63 -0.88 -1.42 -2.56 -1.90 -8.48 -1.37 -2.87

(4.33) (0.19) (0.16) (2.19) (0.43) (1.74) (0.30) (1.40)
AIC -4725.51 -739.09 -1588.78 -1076.67 -781.98 -1833.77 -787.49 -708.35

Survive Gumbel
a 3.61 1.21 1.05 1.39 1.87 3.77 1.02 0.18

(1.90) (0.38) (0.59) (1.27) (0.72) (0.75) (0.56) (0.54)
b 0.46 0.50 0.69 0.51 0.26 -0.26 0.54 0.92

(0.50) ( 0.16) (0.18) (0.44) (0.28) (0.27) (0.25) (0.27)
c 0.46 -8.30 -8.25 -10.07 -12.79 -26.68 -7.07 -1.27

(333.40) (2.60 ) (4.53) (9.42) (4.90) (4.82) (3.94) (3.17)
AIC -5361.23 -994.83 -2141.45 -1420.05 -1014.77 -2348.44 -924.71 -943.55

Clayton
a 0.79 0.28 0.77 0.22 0.40 0.21 2.57 0.12

0.21 0.04 0.27 0.02 0.25 0.04 0.27 0.03
b 0.79 0.89 0.73 0.92 0.80 0.93 -0.56 0.94

0.06 0.02 0.09 0.01 0.12 0.01 0.14 0.02
c -0.64 -0.73 -6.74 -0.59 -3.43 -1.96 -22.73 -1.06

6.37 0.10 2.36 0.04 2.16 0.36 2.99 0.30
AIC -4880.85 -940.74 -1832.26 -1279.03 -689.74 -2062.64 51.60 -713.28

This table displays the ML estimates of copula model and its standard error (in brackets). AIC of the
copula models are also provided to select the best fitted model. Standard error is calculated as the square
root of Fisher information matrix and Note that some standard error of estimates may be affected by
starting value in optimization. The minimum AIC value (in bold) indicates the best copula fit. q in
equation 4.3 and 4.4 is set to 10; both α and β are 0.01.

Table 4.4: Estimated parameters for time-varying copula models Cop-Est.R
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GM IT FR SP GR NL IR PT

Mean -0.5123 -0.3276 -0.4414 -0.3521 -0.3013 -0.5082 -0.3157 -0.3233
SD 0.0097 0.2091 0.1307 0.2217 0.2265 0.0447 0.2137 0.2155
Max -0.4855 0.0000 -0.0184 0.0000 0.0000 -0.2598 -0.0007 -0.0040
Min -0.5424 -0.5436 -0.5903 -0.5726 -0.5382 -0.5868 -0.5342 -0.5384
Rank 1 5 3 4 8 2 7 6

Rank is the rank of mean by increasing order

Table 4.5: Statistics summary of estimated copula-based CoVaR Sum-delta-
CoVaR.R
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European countries

VaR-delta-CoVaR.R
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)
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Spain
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)

Greece
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)
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Netherland
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)

Ireland
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)
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Portgual
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Figure 4.1: Estimated time-varying ΔCoVaR and VaR for eight European coun-
tries(cont.)
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Conclusion

The European debt crisis has raised the concerns of investors and regulators about

the stability of financial system and risk contagion among Europe, but the crisis and

concerns are far from over, which stimulates the demand of supplementary risk manage-

ment tools besides VaR. CoVaR is the VaR of a market conditioning on the financial

distress of another market, which was firstly introduced by Adrian and Brunnermeier

[1] and generalized by Girardi and Tolga Ergün [14]. In this thesis, we introduce cur-

rent computation methodology of CoVaR and develop the CoVaR measure using copula.

Furthermore,we allow copula parameter to vary over time to construct more reasonable

dynamic copula-based CoVaR. Copula-based CoVaR is less cumbersome in computa-

tion and more flexible to extend to multivariate case. Moreover, we modify the systemic

risk contribution index ΔCoVaR as the percentage change of CoVaR scaled by absolute

benchmark CoVaR, which avoids the possibility of misleading sign of ΔCoVaR.

In empirical part, we attempt to calculate the systemic risk measure ΔCoVaR to capture

how the systemic risk change during European debt crisis. Results find that GIIPS

markets in our sample shown high co-movement before the crisis and decoupled with

the system index EMU after crisis, while non-crisis countries stay relatively stable in

ΔCoVaR, although they have higher risk contribution to system on average. Reasonable

rank order of estimated ΔCoVaR for eight countries further verify CoVaR’s ability to

capture the systemic risk change. Although the discussion of CoVaR is still open, CoVaR

34
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could be regard as another powerful risk management tool, together with VaR , to

improve and enrich current risk management system.
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