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Abstract

This work is motivated by the general interest in moduli spaces of based SU(r)-

instantons on S4 and on the connected sum of complex projective planes, which can

be interpreted as moduli spaces of framed holomorphic vector bundles on blown up

ruled surfaces. To be precise, we consider moduli of based SU(r)-instantons over all

self-dual four dimensional manifolds, where the twistor �bration contains a surface

of degree 1 which itself contains a twistor �bre. This applies for instance to the

well-examined class of LeBrun-twistor spaces (cf. [30], [27]).

We display the necessary background of this relationship. Inspired by J. Hur-

tubise's paper [18], we study the local jumping behaviour of such framed vector

bundles and introduce the concept of framed exceptional local jumps. We describe

framed ordinary and exceptional jumps by monads and examine the geometric prop-

erties of their �ne moduli spaces.

Based on this examination and on the results of [4] and [40], where the Atiyah-

Jones conjecture for based SU(r)-instantons on S4 is proved, we show homological

and homotopical charge stability for all considered moduli of based SU(r)-instantons.

Moreover, we present a smooth compacti�cation of these moduli spaces.

Zusammenfassung

Diese Arbeit ist motiviert durch das allgemeine Interesse an den Modulr�aumen von

basierten SU(r)-Instantonen auf S4 und auf der zusammenh�angenden Summe von

komplexen projektiven Ebenen, welche als Modulr�aume von gerahmten holomorphen

Vektorb�undeln auf Aufblasungen von Regel�achen interpretiert werden k�onnen.

Genauer gesagt, betrachten wir Modulr�aume von basierten SU(r)-Instantonen auf all

denjenigen selbstdualen vierdimensionalen Mannigfaltigkeiten, welche eine Fl�ache

vom Grad 1 enthalten, die selbst wiederum eine Twistorfaser enth�alt. Dies tri�t

zum Beispiel f�ur die wohluntersuchte Klasse von LeBrun-Twistorr�aumen zu (vgl.

[30],[27]).

Es erfolgt eine Darstellung des notwendigen Hintergrundes dieses Zusammenhanges.

Inspiriert durch J. Hurtubise's Artikel [18] untersuchen wir das lokale Sprungver-

halten dieser gerahmten Vektorb�undel und f�uhren den Begri� des gerahmten exzep-

tionellen lokalen Sprunges ein. Wir beschreiben die gerahmten gew�ohnlichen und

exzeptionellen Spr�unge durch Monaden und untersuchen die geometrischen Eigen-

schaften ihrer feinen Modulr�aume.

Aufbauend auf dieser Untersuchung und den Resultaten in [4] und [40], worin

die Atiyah-Jones-Vermutung f�ur basierte SU(r)-Instantonen auf S4 bewiesen wird,

zeigen wir homologische und homotopische Charge-Stabilit�at f�ur alle betrachteten

Modulr�aume basierter SU(r)-Instantonen. Dar�uberhinaus stellen wir eine glatte

Kompakti�zierung dieser Modulr�aume vor.
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4 0 MOTIVATION AND INTRODUCTION

0 Motivation and introduction

This thesis is motivated by the abundant advancements in the theory of twistor

spaces and instanton bundles in the last years. In 1984, S. Donaldson has shown

in [8] that based SU(r)-instantons on the four dimensional sphere S4 can be inter-

preted as holomorphic vector bundles on the complex projective plane equipped

with a trivialisation along a �xed line. Moreover, he has given a monadic descrip-

tion of these framed vector bundles based on Hulek monads. In his article [18]

from 1986, J. Hurtubise used Donaldson's approach to identify the moduli of based

SU(2)-instantons on S4 with the moduli of framed vector bundles on rational ruled

surfaces, where the framing lives on the section of the ruling and where the vector

bundles considered are trivial along a �xed special �bre. He studied these moduli

spaces by examining the local jumping behaviour in neighbourhoods of �bres and

introduced and described the concept of framed local jumps. Besides other bene�ts,

his results turned out to be essential in proving the Atiyah-Jones conjecture about

the homotopical stability of based SU(r)-instantons in [4]. The article of Hurtubise

can be called the main inspiration of this thesis.

The idea of Donaldson has been generalised by N. Buchdahl in [6] and [7] for

SU(r)-instantons on the connected sum of complex projective planes. In fact, this

idea works for all based four dimensional self-dual manifolds (M; x) where the twistor

space contains a surface S0 of degree one, which in turn contains the twistor �bre F0

over x. These twistor spaces have been examined by B. Kreu�ler, H. Kurke ([26],

[27]) and C. LeBrun ([30]). In particular, the surface S0 is always a blowing up of

the complex projective plane. A based SU(r)-instanton of charge m on (M; x) is

associated to a framed SU(r)-instanton bundle on the twistor space by using the

Penrose-Ward transformation, and this framed holomorphic vector bundle restricts

to a framed vector bundle on (S0;F0) with Chern classes c1 = 0 and c2 = m. This

map is bijective, as demonstrated by Buchdahl.

The theory of framed vector bundles and their moduli spaces has been developed

by M. L�ubke ([32]), D. Huybrechts and M. Lehn ([31], [21], [20]). One result is,
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that there is a �ne algebraic moduli space Vec(S0;F0;Or
F0 ; c1 = 0; c2 = m) for the

framed vector bundles on (S0;F0) with Chern classes c1 = 0 and c2 = m. In [33], a

suitable deformation theory of framed vector bundles is given and it is shown that

the map from the space InsSU(r)(m; r) of based SU(r)-instantons of charge m on

(M; x) to Vec(S0;F0;Or
F0 ; c1 = 0; c2 = m), due to Buchdahl, is in fact a real-analytic

isomorphism.

The initial idea of this thesis is to approach this moduli space in the same way

as Hurtubise has done in [18]. That is, we consider a blowing up S! S0 in a point

on F0 with exceptional divisor N and identify Vec(S0;F0;Or
F0 ; c1 = 0; c2 = m) with

V(m; r), wherewith we denote the moduli space of vector bundles on S equipped

with a trivialisation along N, which are trivial along the strict transform F of F0

and which have Chern classes c1 = 0 and c2 = m. We have a natural morphism

� : S ! N and want to describe V(m; r) by the local jumping behaviour around

�bres of �. The di�erence from [18] is that � is not a ruled surface, but a blowing

up of a ruled surface. Therefore, we have to struggle with exceptional �bres. In this

form, the problem was given to me by my mentor and supervisor, Herbert Kurke

from the Humboldt-University in Berlin.

The �rst chapter of this thesis reviews some necessary background, including

the theory of framed module sheaves, their moduli and their deformation theory

and the above mentioned relationship between based SU(r)-instantons and framed

holomorphic vector bundles on rational surfaces. We proceed by presenting the

space V(m; r) and a morphism � : V(m; r) ! SymmN, which is constructed with

the help of determinantal divisors. The study of � may be considered as the central

issue of this work. In the case where � : S ! N is ruled, which corresponds to

M = S4, the �bres of � can be described using J (m; r), the spaces of framed local

jumps of order m from [18], which we will call ordinary framed jumps. Since S is in

general the blowing up of a ruled surface, we have to consider in addition spaces of

framed exceptional jumps of order m, which we denote with E(m; r).

Chapter 2 is dedicated to the study of the spaces J (m; r) and E(m; r). We review
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known facts about J (m; r) - that it is a variety of dimension 2mr�m appearing as

geometric quotient, which is due to a monadic description of ordinary framed jumps.

Then we treat E(m; r) in an analogous manner: we de�ne the order of an exceptional

jump, give a monadic description based on King monads ([24]) and describe E(m; r)

as a geometric quotient. In particular, we show that E(m; r) is a reduced algebraic

scheme of dimension 2mr� m, consisting of two irreducible components which are

closures of two disjoint open embeddings of J (m; r) into E(m; r). Moreover, we

discuss the spaces E(1; r), show a theorem of �nite determination, enabling us to

generalise our considerations for blowing ups of non-rational ruled surfaces, and we

describe the singular locus of J (m; r) and E(m; r).

Based on these results, we examine in the third chapter the problem of ho-

motopical stability of the moduli spaces InsSU(r)(m; r). In [4] and [40], C. Boyer,

J. Hurtubise, B. Mann, R. Milgram and Y. Tian have proved the Atiyah-Jones

conjecture. Precisely, they have shown that for M = S4, the stabilisation map

of C. Taubes ([39]) from InsSU(r)(m; r) to InsSU(r)(m + 1; r) induces isomorphisms

�t(Ins
SU(r)(m; r)) �= �t(Ins

SU(r)(m + 1; r)) on the homotopy groups with t � m
2
� 2.

We generalise the de�nition of the stabilisation map given in [4] for all consid-

ered manifolds M. Using the result for M = S4, some insight in L-strati�cations

and the descriptions of J (m; r) and E(m; r), we show that it induces isomorphisms

�t(Ins
SU(r)(m; r)) �= �t(Ins

SU(r)(m + 1; r)) for t � m
2
� 2, too. Although we do not

execute it explicitly, we note that our considerations may be also used to generalise

the results of Hurtubise and Milgram in [19] to blown up ruled surfaces.

In the last chapter, we complete the moduli space V(m; r) by an open embedding

into a quotient scheme. The morphism � extends to the completion. We show that

this completion is smooth and describe the degeneration locus.

The notation and symbols in this thesis are the same as in the standard literature.

Any additional symbols and de�nitions introduced are included in an index found

at the end. Please note that the dual of an object � is always denoted with �_.

I would like to express my appreciation to my supervisor, Herbert Kurke, for the
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support and mentorship given to me over the last years. I am also grateful for the

pleasant and productive atmosphere in the research group for algebraic geometry at

the Humboldt-University. Especially, I would like to thank Georg Hein, Ines Quandt

and Klaus Altmann for all the helpful discussions. Last but not least I thank the

Graduiertenkolleg \Geometrie und Nichtlineare Analysis". Without its fellowship

over the last two years, my graduate study would not have been possible.

1 Basic material and the initial problem

1.1 Framed vector sheaves

Let X be an analytic space, Y a closed subspace with associated ideal sheaf JYjX

and W a �xed coherent and locally free sheaf of modules over Y, i.e. a vector sheaf

on Y. A framed vector sheaf to the data (X;Y;W) consists of a pair (V; �) with V a

vector sheaf over X and � : VjY �= W a framing isomorphism. A morphism f between

two framed vector sheaves (V; �) and (V0; �0) is a sheaf morphism f : V ! V0 with

�0 � (fjY) = �. For an analytic space T, a family of framed vector sheaves for the

given data (X;Y;W) parametrized by T is a framed vector sheaf (~V; ~�) for the data

(T� X;T� Y; p�W), where p : T� Y! Y is the projection.

A deformation of a �xed framed vector sheaf (V; �) over a germ of an analytic

space (T; t0) is represented by a triple (~V; ~�;  ), where (V; �) is a family of framed

vector bundles over T and  is an isomorphism from ~Vjfs0g�X to V such that the

diagram

~Vjfs0g�Y
�=

����!
 

VjY

�=
??y~� �=

??y�
W

=
����! W

commutes. Here, the pointed space (T; t0) is any representative of our germ. If

� : (T0; t00)! (T; t0) is a local analytic isomorphism, then

((� � idX)
� ~V; (� � idX)

�~�; (� � idX)
� )
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represents the same deformation.

Two deformations (~V; ~�;  ) and (~V0; ~�0;  0) of (V; �) over the same germ can

be realized as families over the same pointed analytic space (T; t0). A morphism

between two deformations f : ( ~V; ~�;  )!(~V0; ~�0;  0) is represented by a local analytic

isomorphism � : (T0; t00)! (T; t0) and a morphism

f : ((� � idX)
� ~V; (� � idX)

�~�)! ((� � idX)
� ~V0; (� � idX)

�~�0)

of framed vector sheaves with (� � idX)
� 0 � (fjs0�X) = (� � idX)

� .

We denote with Vec(X;Y;W) the functor

(analytic spaces) �! (sets)

de�ned by

T �!

8>><
>>:

isomorphism classes of families of
framed vector sheaves to the data
(X;Y;W) parametrized by T

9>>=
>>;

and with Def(V; �) the functor

(germs of analytic spaces) �! (sets)

de�ned by

(T; t0) �!

8<
: isomorphism classes of deformations

of (V; �) over (T; t0)

9=
; :

For X compact and c� 2 H2�X �xed cohomology classes, we let Vec(X;Y;W; c�) be

the closed and open subfunctor of Vec(X;Y;W) containing all the points (V; �) with

Chern classes c�V = c�.

Let C ["] be the C -algebra C [X]=(X2) with " = X modX2. According to Schles-

singer [37] or M. Artin ([1], [2]), Def(V; �)(Spec C ["]), the in�nitesimal deformations

of the framed vector sheaf (V; �), is the formal tangent space of Vec(X;Y;W) at the

point (V; �) 2 Vec(X;Y;W)(Spec C ). Due to [33, Lemma 1.1], Def(V; �)(Spec C ["])

carries a natural structure as a complex vector space. Aut(V; �) acts on Def(V; �)

by g � (~V; ~�;  ) = (~V; ~�; g �  ). If this action is trivial and if there is a local moduli

M for (V; �), then we have canonically T(V;�)M = Def(V; �)(C ["]).
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Theorem 1.1 For (V; �) 2 Vec(X;Y;W)(Spec C ), there is a canonical isomor-

phism

Ext1X(V;V
OX
JYjX) = Def(V; �)(Spec C ["]):

Proof. [33, Theorem 1.2] 2

A functor F on Artin rings is formally smooth if for small extensions A! �A the

induced map F(A)! F(�A) is surjective. If the functor is representable, then formal

smoothness implies the smoothness of the local moduli.

Theorem 1.2 Let (V; �) be in Vec(X;Y;W)(Spec C ). If dimCExt
1
X(V;JYjXV) <1

and Ext2X(V;JYjXV) = 0, then Def(V; �) is formally smooth.

Proof. [33, Theorem 1.4] 2

All considerations so far can be translated to the category of algebraic spaces

over a �eld k and are valid there as well. For Theorem 1.2 to hold, we need the

characteristic of k to be 0. Further sources for the theory of framed vector sheaves

are the works of M. L�ubke [32] in the analytic case and of M. Lehn [31] in the

algebraic setup. An important result of M. Lehn is

Theorem 1.3 ([31, Theorem 3.4.1]) Let D0 be an e�ective big and nef divisor on

a smooth projective surface S. If D is an e�ective divisor with suppD0 � suppD,

W a vector sheaf on D, c� �xed Chern classes and if H0(S;Hom(V;V(�D))) vanishes

for all framed vector sheaves (V; �) in Vec(S;D;W; c�)(Spec k), then Vec(S;D;W; c�)

is represented by a separated algebraic space of �nite type.

We recall that a divisor is big and nef, if its self-intersection is positive and its

intersection with any integral curve C on S is non-negative.

D. Huybrechts and M. Lehn consider in [20] the more general notion of framed

modules over an algebraic nonsingular projective variety X as given by a coherent

OX-module V and a morphism from V to a �xed coherent OX-module D. They

introduce a notion of stability in this situation and show the existence of �ne moduli

spaces for the stable objects. Moreover, they prove
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Theorem 1.4 ([20, Section 4]) The formal tangent space of a framed torsion free

module (V;V ! D) is canonically isomorphic to E xt1(V;V ! D). Its deformation

functor is formally smooth if E xt2(V;V! D) vanishes.

Here, we think of a sheaf as a complex of sheaves concentrated at zero and of a

morphism of sheaves as a complex of sheaves concentrated at zero and one (see

[14] for a quick reference to hyper-ext groups). In the case where a framed module

is actually a framed vector sheaf in the above introduced sense, Theorem 1.4 is

equivalent to Theorems 1.1 and 1.2 applied to the smooth projective case.

1.2 Framed physical instanton bundles

We consider the twistor �bration � : P ! M over a real four dimensional compact

manifold M with self-dual Riemannian metric. P is a three dimensional complex

manifold with an induced antiholomorphic �xpoint free involution � , an antipodal

map on the twistor �bers (cf. [3, 6, 9]). A line on P is a complex submanifold L � P

with L �= P
1
C
and normal bundle NLjP

�= O
P
1(1)�2. In particular, twistor �bres

are lines. We denote with � : Z ! H the universal Douady family of lines in P.

The involution � maps lines to lines and consequently induces an antiholomorphic

involution on H. Then M appears as a set of �xpoints of � and moreover as a real-

analytic submanifold of H (cf. [3, 29]):

H� P

[

P = Z�HM �! Z
�
�! P

#� #�

M � H

The degree of a divisor on P means the degree of the restriction of the correspond-

ing line bundle to a twistor �bre. Let S0 � P be a surface of degree 1 containing

a twistor �bre F0. By [27, Proposition 2.1], S0 is a smooth algebraic surface and

F0 the only twistor �bre in S0. With �S0 = �(S) we have F0 = S0 � �S0. The linear
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system jF0j de�nes a birational morphism S0 ! P
2
C
, and we have M �

n

# (�P2
C
) or

S4. A well-examined class of examples are the LeBrun twistor spaces which ful�ll

the additional property dimjSj � 1 (cf. [30, 27]). These twistor spaces are classi�ed

as modi�cations of conic bundles and are algebraic in the sense of M. Artin [25]; i.e.

they are Moishezon spaces.

A (mathematical) instanton bundle is an holomorphic vector bundle on P, triv-

ial on all twistor �bres. The Penrose-Ward transformation gives us an analytic

equivalence between the categories of instanton bundles and of pairs (E;r) of com-

plex vector bundles on M with self-dual connection. The pair (E;r) is associ-

ated to the C1-bundle ��E together with the holomorphic structure de�ned by

�@ = (��r)
01
. Conversely, an instanton bundle V gives rise to a pair (E;r) by

taking E = (���
�V) jM and r as the restriction of

�� (OZ 
��1OP
��1V)

��(dZjP
id��1V)

����������������! ��(

1
ZjP 
OZ

��V)??yr
??y �=


1
H 
OH

���
�V

�=
����������������! ��


1
ZjP 
OH

���
�V

(cf. [3, 29]).

For G a linear group as, for example, U(r), SU(r), Sp(r) or SO(r), a G-instanton

on M is given by a complex G-vector bundle E with self-dual connection r com-

patible with the G-structure on E. The Penrose-Ward transformation associates a

G-instanton to an instanton bundle with additional properties. In particular, the

category of U(r)-instantons is analytically equivalent to the category of instanton

bundles V on P for which there is an isomorphism ' : V�=� � �V_ with � � �'_ = ',

where �V_ denotes the bundle of antilinear forms. We denote these instanton bun-

dles as U(r)-instanton bundles or as physical instanton bundles (cf. [3, 6, 29]). We

are especially interested in the subcase of SU(r)-instanton bundles for which we have

to add the condition detV �= OP or equivalently, c1V = 0.

For an instanton bundle V on P, we can �x a trivialisation � : VjF0 �= O
r
F0 along

our twistor �bre F0 = S0 � �S0. The resulting pair (V; �) is called a framed instanton

bundle. The frame lives in codimension 2. The corresponding notion over the four-
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manifold M is the based instanton. By restricting V to S0, we obtain a framed vector

bundle on a smooth rational surface, framed along a divisor that is big and nef. For

this case, the moduli problem has been well-examined by Lehn and Huybrechts in

the algebraic-projective case ([31, 20]) and by L�ubke [32] from the analytic point

of view. It was an idea of Donaldson [8] to use this restriction map to discuss

moduli of framed instantons. By the results of Buchdahl [7], it follows that there is

a bijection between the isomorphism classes of framed U(r)-instantons and framed

vector bundles on S0.

In [33], we have described the moduli space of framed U(r)-instanton bundles

InsU(r)(P;F0;Or
F0) as a real structure on an open part of Vec(P;F0;Or

F0) and have

shown that InsU(r)(P;F0;Or
F) is real-analytically isomorphic to Vec(S

0;F0;Or
F0), which

is a representable moduli functor due to Theorem 1.3. In particular, we have

Theorem 1.5 The space InsSU(r)(m; r) of based SU(r)-instantons of charge m and

rank r is real-analytically isomorphic to Vec(S0;F0;Or
F0; c1 = 0; c2 = m).

Throughout the rest of the paper, we will denote Vec(S0;F0;Or
F0 ; c1 = 0; c2 = m)

with I(m; r).

1.3 Vector bundles on blown up ruled surfaces

We consider a smooth projective curve N of genus g over Spec k, where, from now

on, we assume that k is a �eld of characteristic zero. We �x a closed point 1 2 N.

Now let � : S ! N be the blowing up of a ruled surface over N via n successive

monoidal transformations with centres in �bres over N� f1g, and let N � S be a

section of � disjoint to the exceptional locus. For points P on N, we denote the �bre

of � over P with FP. For � the generic point on N, we have in particular F� as the

generic �bre of �.

We de�ne V 0(S;m; r) as the open subfunctor of Vec(S;N;Or
F; c1 = 0; c2 = m),

which associates to an algebraic space T the isomorphism classes of all those families

(V; �) where VjT�F� is free. Furthermore, we de�ne V(S;m; r) as the open subfunctor
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of V 0(S;m; r) which associates to an algebraic space T the isomorphism classes of

all those families (V; �) where VjF1 is free. If the context is clear, we just write

V 0(m; r) and V(m; r) instead of V 0(S;m; r) or V(S;m; r).

Theorem 1.6 The moduli functors V 0(m; r) and V(m; r) are represented by �ne and

smooth moduli spaces of dimension 2rm.

Proof. For a vector sheaf which is free along F1, a framing along N induces a

framing along N [ F1. Therefore, the functor V(m; r) is naturally equivalent to

Vec(S;N [ F1;O
r
N[F1

; c1 = 0; c2 = m). The divisor N + F1 has the same support

as the e�ective divisor N+max(1;�N �N)F1, which is big and nef as a corollary of

[13, Proposition V.2.3 and Proposition V.3.2].

For (V; �) a point in V(m; r), we have V as trivial on general �bres of �. The

same property is true for the vector sheaf End V, and we obtain the vanishing of

H0(U; (End V)(�N � F1), where U is the open neighbourhood of S containing all

�bres of � where End V is trivial. Since End V is torsion free and since S is irre-

ducible, the long exact sequence of cohomology with support in S � U shows that

H0(S; (End V)(�N� F1) vanishes, too. Thus, we can apply Theorem 1.3 to obtain

the existence of a �ne moduli space for V(m; r).

Again, because of the triviality of points (V; �) in V(m; r) along general �bres

of �, we have Hom(V;V(�N)) = 0. By Serre duality, we have Ext2(V;V(�N))

equal to Hom(V;V(N)
 !)_, where ! denotes the dualising sheaf on S. Because of

[13, Lemma V.2.10], ! has degree �2 on �bres of �. Hence, for general �bres F of

�, we have Hom(VjF;VjF(N) 
 !jF) = 0, and, analogously as above, we infer the

vanishing of Ext2(V;V(�N)) = Hom(V;V(N) 
 !)_. By Theorem 1.2, this shows

the smoothness of V(m; r).

We have also obtained that the dimension of V(m; r), which equals the dimension

of the vector space Ext1(V;V(�N)), equals the Euler characteristic��(End V)(�N).

By an easy computation, Hirzebruch-Riemann-Roch shows this number to be 2rm.

The result for V(m; r) can be easily extended to V 0(m; r), as V 0(m; r) has an

open covering fVP(m; r)jP 2 Ng, where VP(m; r) is the open subfunctor of V 0(m; r)
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which associates to an algebraic space T the isomorphism classes of all those families

(V; �) for which VjFP is free. All these open subfunctors are represented by smooth

algebraic spaces for exactly the same reasons as for V(m; r) = V1(m; r). Thus,

V 0(m; r) is represented by a smooth algebraic space, too. 2

In this proof, we have intensively used the fact that the triviality of a vector

sheaf along one �bre of � implies the triviality along general �bres. This fact is

due to the rigidity of the trivial bundle on the projective line. One consequence is

that, for (V; �) a point in V(m; r), V is non-trivial along only �nitely many �bres

FP1; : : : ;FPq of �. These are the jumping �bres of (V; �). They are important

continuous invariants of our framed vector sheaves. This statement can be made

more precise in the following way:

Let p : C! B be a curve over B (i.e., a at and projective morphism of relative

dimension 1, where B is supposed to be irreducible), and let D � C be an e�ective

divisor in C which is �nite over B and relatively ample with respect to p. Let W be

a vector sheaf on C with the properties that the Euler characteristic of W restricted

to �bres of p vanishes, and that there is at least one �bre where the cohomology

vanishes as well. Therefore, we have p�W = 0 as well as R1p�W(`D) = 0 for ` big

enough. Hence, there is the short exact sequence

0! p�W(`D)
s
�! p�(W 
 (OC(`D)=OC)) �! R1p�W! 0:

Because of the assumptions, the �rst two modules in this sequence are locally free,

and we de�ne the divisor � of the determinant of s to be the determinantal divisor of

W with respect to p. This � does not depend on the choices made. This concept is

well-known and well-used in the theory of vector sheaves on curves and their moduli.

We note that for (V; �) an element in some V(m; r)(T), we may apply the concept

of determinantal divisors to the sheaves V(�(T � N)) with respect to the curve

T� S! T� N.

Theorem 1.7 Due to the natural map, which assigns to a family of framed vector

sheaves (V; �) in V(m; r)(T) the determinantal divisor associated to V(�(T � N)),
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there is a morphism

� : V 0(m; r)! Symm(N)

with restriction

� : V(m; r)! Symm(N� f1g):

Proof. The number m is obtained by an easy computation via Grothendieck-

Riemann-Roch. 2

What are the �bres of �? For P a point on N, we de�ne SP to be the localisation

of S around FP. The restrictions of � and N to SP are again denoted with � and N.

We call V a jump on SP if V is a vector sheaf on SP which is trivial along F� and

which has trivial determinant. For such a given jump V, there is a determinantal

divisor associated to V(�N) as above. This determinantal divisor is of the form

m �P, where m equals the length of the module R1��V(�N), and is called the order

of V. We put J (SP;m; r) to be the set of isomorphism classes of all framed jumps

on SP; i.e., of all pairs (V; �) with V a jump of rank r and order m and � a framing

VjN �= O
r
N.

Theorem 1.8 (Cutting and gluing) Via restriction, the set of closed points in the

inverse image ��1(m1P1 + : : :+mqPq) is naturally bijective to

J (SP1 ;m1; r)� : : :� J (SPq ;mq; r):

Proof. The map

��1(m1P1 + : : :+mqPq)! J (SP1 ;m1; r)� : : :� J (SPq;mq; r)

is given by mapping a closed point (V; �) to the q-tuple ((V1; �1); : : : ; (Vq; �q)),

where (Vi; �i) is the restriction of (V; �) to SPi . The inverse map is obtained as

follows:

Since Vi is trivial along F�, the framing �i induces a framing VijF�
�= Or

F�
. We

also have a canonical isomorphism Or
S�F1�:::�Fq

jF�
�= Or

F� . Therefore,

V = Or
S�F1�:::�Fq

tOr
F�
V1 tOr

F�
: : : tOr

F�
Vq
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is a well-de�ned vector sheaf on S, and is indeed the same V as we have started

with. Moreover, we recover the original �.2

From Theorem 1.8 we infer that the set J (SP;m; r) is naturally bijective to the

closed points of the closed subfunctor of V(m; r) of those families whose image under

� is the constant family of divisors mP. Thus, J (SP;m; r) itself can be considered

as a functor. Since this functor is given as a �bre of a morphism between algebraic

spaces, it is represented by an algebraic space, too.

If (V1; �1) and (V2; �2) are elements in V
0(m1; r)(Spec k) and V

0(m2; r)(Spec k)

with di�erent jumping lines, then we may associate to them an element (V; �) in

V 0(m1 + m2; r)(Spec k) by the previously described cutting-and-gluing procedure.

In particular, if (V1; �1) in V
0(m1; r)(Spec k) is trivial along FP and (V2; �2) is an

element in J (SP;m2; r)(Spec k), then we may add the framed jump (V2; �2) to the

framed vector sheaf (V1; �1) to obtain an element in V 0(m1 +m2; r)(Spec k).

We could reformulate now Theorem 1.8 for families instead of closed points. For

k = C , we may translate the whole situation into the complex analytic setup. In

Section 3, we will make use of the following

Corollary 1.9 Consider an analytic space B and a family (V; �) in V(m; r)(B),

whose image under � is D0 2 SymmN(B). Assume, the points Q1; : : : ;Qn in N�f1g

are �xed in such a way, that we can choose an isomorphism

��1(N� fQ1; : : : ;Qng) �= (N� fQ1; : : : ;Qng)� P
1
C
:

Let (T; t0) be a based topological space and D : T � B ! Symm(N � f1g) be a

continuous map such that

(i) Djft0g�B equals the map B! Symm(N� f1g) induced by D0;

(ii) and, for D(t; b) = m1P1+ : : :+mqPq+n1Q1+ : : :+nnQn with Pi 6= Pj for i 6= j

and Pi 6= Qj for all i; j, the integers q;m1; : : : ;mq; n1; : : : ; nn do not depend on

t.

Via cutting and gluing, there is a unique lift ~D : T�B! V(m; r) of D along � such

that ~Djft0g�B is equal to the map B! V(m; r) induced by (V; �).
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Proof. A �xed isomorphism

��1(N� fQ1; : : : ;Qng) �= (N� fQ1; : : : ;Qng)� P
1
C

induces a �xed isomorphism

J (SP;m; r) �= J (SP1 ;m; r)

for all P 2 N � fQ1; : : : ;Qng. Let (Vb; �b) be the restriction of (V; �) to fbg � S,

and consider D(t; b) = m1P1(t)+ : : :+mqP(t)q+n1Q1+ : : :+nnQn with Pi 6= Pj. By

Theorem 1.8, (Vb; �b) is given by certain framed jumps (Vb1; �b1), : : :, (Vbq; �bq)

with (Vbi; �bi) 2 J (SPi ;mi; r) �= J (SP1;mi; r). We obtain ~D(t; b) by adding these

framed jumps to the framed trivial vector sheaf at the �bres over P1(t); : : : ; Pq(t),

respectively. 2

Now we explain what these framed vector sheaves on blown up, ruled surfaces

have to do with the moduli I(m; r) of framed SU(r)-instanton bundles introduced

in Section 1.2.

We may think about the smooth rational surface S0 as being obtained from P
2
k

via n successive monoidal transformations. Indeed, if P is a LeBrun twistor space,

then S0 is the blowing up of the projective plane in n di�erent points, situated all on

one line. We continue with two di�erent approaches, which in fact look quite alike.

First, we choose a point P0 on F0, consider the blowing up S ! S0 in P0 with

exceptional divisor N, and obtain a curve � : S ! N with section over a base,

again denoted with N, which looks like the n-fold blowing up of the �rst Hirzebruch

surface. We choose the point 1 2 N such that F1 is the strict transform of F0.

In the second approach, we choose two di�erent points P0 and Q0 on F0 and de�ne

S as the surface obtained by blowing up S0 in both points and contracting the strict

transform of F0 afterwards. We denote with N and F1 the images of the exceptional

divisors over P0 and Q0, respectively. We have thus obtained two curves � : S! N

with section N and � : S ! F with section F1, which are both isomorphic to the

n-fold blowing up of P1k � P
1
k ! P

1
k.
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In both approaches, � : S ! N is the n-fold blowing up of a ruled surface with

centre disjoint to the �xed section and a �xed �bre. Due to pullback and direct

image, we obviously have

Theorem 1.10 V(S;m; r) = I(m; r).

We remark that in the general case, where S0 is the blowing up of P2k in n distinct

points, we can choose the point(s) P0 (and Q0) above in such a way that the �bres

of � (and �) in the �rst approach (respectively in the second approach) are either

smooth rational curves or the union of two smooth rational (�1)-curves which meet

transversally. This is in particular possible for LeBrun-twistor spaces and justi�es

why we consider in Section 2 and 3 only such general blow ups. This restriction is

not made in Section 4.

2 Framed local jumps

2.1 Ordinary and exceptional local jumps

We consider a discrete valuation ring A �nitely generated over a �eld k of charac-

teristic zero with maximal ideal mA and minimal ideal � and de�ne An = A
mn+1
A

for n � 0. We let Y be the local line P1A = ProjA[x; y]
�
�! SpecA, Yn the restric-

tion of Y over SpecAn, Y� the generic �bre of � over � and N = Z+(y) the section

of � at in�nity. We will frequently identify quasi coherent sheaves on SpecA and

A-modules.

An ordinary local jump is given by a vector sheaf V on Y with trivial determinant,

which is trivial along Y�. We obtain that R1��V(�N) is an A-module of �nite length

m=ordV, the order or the multiplicity of the jump V. With ordnV, the n-th order

of V, we denote the length of the module R1��V(�N)
An. Because of base change,

we have ordnV = dimkH
1(Yn;VjYn). In particular, in the case r = rkV = 2 we have

ord0V as the splitting type of V0, that is VjY0 = OY0(ord0V) � OY0(�ord0V). A

framed ordinary jump consists of a pair (V; �), where V is an ordinary jump and �

is a framing � : VjN �= O
r
N.
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We embed SpecA into the smooth projective curve N associated to the �eld of

fractions of A. We �x closed points 0 = mA 6= 1 2 N, consider the ruled surface

S = N � P
1
k ! N and de�ne JA(m; r) = J (S0;m; r). That is, JA(m; r) is the

closed subfunctor of V(S;m; r) which associates to an algebraic space T only the

isomorphism classes of those families (V; �) where VjT�(S�F0) is free. As a corollary

of Theorem 1.8, JA(m; r) is a functor represented by an algebraic space, such that

JA(m; r)(Spec k) equals the set of isomorphism classes of framed ordinary jumps.

We will see later that JA(m; r) carries the structure of an algebraic variety. Unless

it is not clear from the context, we will write J (m; r) instead of JA(m; r) in the

following.

The rational surface S0 from Section 1.2 and 1.3, an n-fold blowing up of the

projective plane, is in the general case the blowing up in n distinct points. As we

remarked before, this is especially true for surfaces of degree 1 in LeBrun twistor

spaces. We may assume that all �bres of � : S ! N from Section 1.3 are either

smooth rational curves in the general case, or unions of two (�1)-curves in ex-

ceptional cases. In other words, the local �bres SP are either isomorphic to Y, or

isomorphic to

X = Z(x0x1 � ty0y1) � Proj A[x0; y0]�Spec A Proj A[x0; y0];

the blowing up of Y in a point on the central �bre, which will be referred to as the

exceptional local line. We �x inhomogeneous coordinates zi = xi=yi for i = 0; 1. The

morphism X! SpecA is again denoted with �.

In the following, (i; j) will always be a permutation of (0; 1). We �x the closed

subvarieties Ei = Z(t; xj), N = N0 = Z(y0) and N1 = Z(y1). Corresponding to the

contraction of E1 or E0, we obtain two monoidal transformations

�0 Y0 = Proj C [t](t)[x0; y0]
%

X
&
�1 Y1 = Proj C [t](t)[x1; y1]

with center in the points Pi = Z(xi; t) � Yi and with �i : Ni
�= Ni, where Ni is the

section yi = 0 in Yi as well as in X.
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Now let (V; �0) be a framed exceptional jump, which means that V is a vector

sheaf of rank r on X with trivial determinant detV = �rV, such that the restriction

on the generic �bre VjX�
is trivial, and that �0 : VjN0

�= Or
N0

is a framing of V along

the section N0. We de�ne the order of the exceptional jump V as the length of the

module R1��V(�N0).

Lemma 2.1 For (V; �0) a framed exceptional jump, the length of R1��V(�N0) is

equal to the length of R1��V(�N1).

Proof. Because Ni � Nj � Ej = div zi, we have linear equivalence between Ni � Nj

and Ej. From

0! V(�Ni) �! V(�Nj)(�= V(Ej � Ni)) �! VjEj(�1)! 0

we obtain an exact sequence

0! H0(Ej;VjEj(�1))! R1��V(�Ni)! R1��V(�Nj)! H1(Ej;VjEj(�1))! 0:

Since detV �= OX, we infer �(VjEj(�1)) = 0. Therefore, the modules R1��V(�Ni)

and R1��V(�Nj) have the same length, and the de�nition of the order of an excep-

tional jump is invariant under permutations of (0,1).2

We proceed in the same way as we have done for ordinary jumps and embed

SpecA into the smooth projective curve N associated to the �eld of fractions of A.

We �x closed points 0 = mA 6=1 2 N, consider the blowing up S! N of the ruled

surface N�P1k ! N in the point (0; 0 : 1) and de�ne EA(m; r) = E(S0;m; r). That is,

EA(m; r) is the closed subfunctor of V(S;m; r) which associates to an algebraic space

T only the isomorphism classes of those families (V; �) where VjT�(S�F0) is free. By

Theorems 1.6 and 1.8, EA(m; r) is a functor represented by an algebraic space such

that EA(m; r)(Spec k) equals the set of isomorphism classes of framed exceptional

jumps. Unless the context is not clear, we will write E(m; r) instead of EA(m; r).

Generally, we see that the moduli problem of framed exceptional jumps of given

order m is symmetric with respect to the two contractions �0 and �1. One obvious

result is
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Lemma 2.2 Due to ��0 and ��1, we have two open and disjoint embeddings

J (m; r) ,! E(m; r):

An exceptional jump (V; �) belongs to ��iJ (m; r) i� V is free along Ej. In particular,

the spaces E(m; r) are not irreducible.

2.2 Monadic description of ordinary jumps

Here, we restrict ourselves to the case A = k[t](t), which will be seen later as no

restriction at all. We repeat the construction and reduction of monads as can be

found in the literature (e.g. [18, 28]), which is based on Hulek monads. We recall

that a monad is a short complex

0! M0 '
�! M

 
�! M00

! 0

of vector sheaves, where  and ' are bundle morphisms (not just sheaf morphisms),

and where the only non-vanishing cohomology is the vector sheaf ker( )=im(').

Theorem 2.3 (K. Hulek) If V is a vector sheaf on P
2
k of rank r and with second

Chern class m, which is trivial along one line, then V appears as the cohomology of

a monad

0! OP
2
k
(�1)
 C0

'
�! OP

2
k

 C

 
�! OP

2
k
(1)
 C00 ! 0;

where C0 and C00 are k-vector spaces of dimension m and where C is a k-vector space

of dimension 2m+ r.

Proof. We �x a line F on the plane such that VjF is free. As a consequence, we have

H0(V(�`)) = 0 for all positive `. With Serre duality, we also obtain H2(V(�`)) = 0

for all ` � �2. Therefore, the vector spaces

C0 = Ext1(V;OP
2
k
(�1))_

and

C00 = Ext1(OP
2
k
(1);V)
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are both of dimension m, as can be easily computed with Hirzebruch-Riemann-Roch.

Associated to

id 2 End(Ext1(V;O
P
2
k
(�1))) = Ext1(V;C0 
O

P
2
k
(�1))

and to

id 2 End(Ext1(O
P
2
k
(1);V)) = Ext1(C00 
O

P
2
k
(1);V)

are the two extensions

0! C0 
O
P
2
k
(�1) �! K �! V! 0

and

0! V �! Q �! C00 
OP
2
k
(1)! 0:

Since Ext2(C00 
 OP
2
k
(1);C0 
 OP

2
k
(�1)) = 0, we can complete these two extensions

to a monad display and obtain a monad

0! C0 
OP
2
k
(�1) �! ~V �! C00 
OP

2
k
(1)! 0

with cohomology V.

It follows immediately that the Chern classes of ~V vanish. The special choice of

our extensions above imply, that

H0(C00 
OP
2
k
)! H1(V(�1))

and

H1(V)! H2(C0 
OP
2
k
)(�1)

are essentially identities. Chasing through the cohomology diagrams associated

to the monad display yields that the cohomology groups of the twists ~V(`) are

isomorphic to the cohomology groups of the trivial sheaf; thus ~V is isomorphic to

the trivial sheaf C
OP
2
k
with C a k-vector space of dimension 2m+r. 2

We examine now the moduli space V(m; r) in the classical case that S0 is just

the projective plane P2k with homogeneous coordinates (x : y : z). In the notation

of Section 1.3, the �xed line F0 = F01 will be equal to Z(z), and the point P0 will be

(0 : 1 : 0). The following theorem is due to J. Hurtubise [18, Section 3.D].
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Theorem 2.4 A closed point (V; �) 2 V(m; r) is determined by a monad

0! O
P
2
k
(�1)
 L

'
�! O

P
2
k

 (L� L� kr)

 
�! O

P
2
k
(1)
 L! 0;

where the following conditions are ful�lled:

(0) L is a k-vector space of dimension m;

(i)

' =

0
BBBBB@

id

0

0

1
CCCCCA
x +

0
BBBBB@

0

id

0

1
CCCCCA
y +

0
BBBBB@

a

b

c

1
CCCCCA
z;

(ii)

 =

�
0 �id 0

�
x +

�
id 0 0

�
y +

�
b �a d

�
z;

(iii) a; b 2 Endk(L), c 2 Homk(L; k
r), d 2 Homk(k

r;L) with ba� ab + dc = 0;

(iv) ' and  are �brewise of full rank;

(v) �(V; �) equals the zero divisor of det(a� �id).

In the case that the vector sheaf V has F00 = Z(x) as the only jumping line through

the point P0 = (0 : 1 : 0), then (iv) translates to the condition, that

rk

0
BBBBB@

a

b + �id

c

1
CCCCCA
= rk

�
b + �id �a d

�
= m

for all � 2 k. If the group Gl(L) acts on the space of such monads by

g � (a; b; c; d) = (gag�1; gbg�1; cg�1; gd);

then the orbits of this action are in bijection with V(m; r)(Spec k).
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Proof. We consider a monad

0! O
P
2
k
(�1)
 C0

'
�! O

P
2
k

 C

 
�! O

P
2
k
(1)
 C00 ! 0;

with cohomology V, as provided by Theorem 2.3. The fact that V is trivial along F01

is equivalent by [24, Lemma 2.3.4] to the condition that, for any two distinct points

P and Q on F01, the composition D =  (Q)'(P) = � (P)'(Q) is an isomorphism

from C0 to C00. We choose P = (0 : 1 : 0) and Q = (1 : 0 : 0) and use  (Q)'(P) to

identify L = C0 = C00. Moreover, with  ' = 0 we obtain a decomposition

C = im'(Q)� im'(P)� (ker (Q) \ ker (P)) = L� L� C1

and can write

' =

0
BBBBB@

id

0

0

1
CCCCCA
x +

0
BBBBB@

0

id

0

1
CCCCCA
y +

0
BBBBB@

a

b

c

1
CCCCCA
z

and

 =

�
0 �id 0

�
x +

�
id 0 0

�
y +

�
e f d

�
z:

The monad condition  ' = 0 implies e = b, f = �a and ba� ab + dc = 0. Hereby,

a; b 2 Endk(L), c 2 Homk(L;C1) and d 2 Homk(C1;L).

As it can be seen immediately from the restriction of the so-reduced monad to

F01 = Z(z), the framing � corresponds to an isomorphism C1 �= kr. The condi-

tion (iv) is necessary to have ' and  as injective, respectively surjective, bundle

morphisms.

We consider now the pencil N = fF0� = Z(x+�z)g of lines through P0. Recall that

� : S! S0 is the blowing up of S0 in P0 with the corresponding morphism � : S! N

and a section N ,! S. � maps (V; �) to the determinantal divisor associated to

(��V)(�N). For �xed �, V is free along F0� i�

 (0 : 1 : 0)'(�� : 0 : 1) = a� �id

is an isomorphism by [24, Lemma 2.3.4]. Together with the Semicontinuity Theorem,

this implies (v).
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In the case that V has F00 as the only jumping line in N, we have to check the

condition (iv) only in points on F00 � f(0 : 1 : 0)g and obtain (iv) as equivalent to

rk

0
BBBBB@

a

b + �id

c

1
CCCCCA
= rk

�
b + �id �a d

�
= m

for all � 2 k.

It is evident that any monad given by a quadruple (a; b; c; d) ful�lling the condi-

tions (0)-(iv) de�nes a point in V(m; r). Conversely, a given point in V(m; r) de�nes

such a quadruple (a; b; c; d) in the form of matrices up to the choice of a basis in L.

We obtain the set V(m; r)(Spec k) as the quotient of the above formulated action of

Gl(L). 2

We de�ne W(m; r) to be the space of tuples (a; b; c; d) in

End(L)� End(L)� Hom(L; kr)� Hom(kr;L)

ful�lling the conditions

(1) ba� ab + dc = 0;

(2) a is nilpotent;

(3)

rk

0
BBBBB@

a

b + �id

c

1
CCCCCA
= rk

�
b + �id �a d

�
= m

for all � 2 k.

Since the condition (2) is equivalent to the condition that det(�id + a) is equal to

�m � constant, W(m; r) is the space of those monads which determine the elements

in V(m; r)(Spec k) with the only jumping line F00 through P0; i.e., W(m; r) can be

considered as the preimage of J (m; r)(Spec k) in the space of monads ful�lling (0)-

(iv) under the action of Gl(L).
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Theorem 2.5 The algebraic space J (m; r) is an algebraic variety over Spec k of

dimension (2r�1)m. It equals the geometric quotient of the algebraic space W(m; r)

by the action of Gl(L).

Proof. Since we know already that the functor J (m; r) is represented by a �ne

moduli space, we may proceed as follows:

Due to the construction of Theorem 2.4, there is obviously a family of monads

on W(m; r) which could be considered as a universal reduced monad and which

induces an element in J (m; r)(W(m; r)). This element gives a unique morphism

from W(m; r) to J (m; r), which is surjective by the previous theorem. From this

morphism, we can verify the dimension and the irreducibility of J (m; r).

But as the theorem is quite important, we will give the self-contained proof from

[28] in its full beauty.

Step 1. Integrality

Let W 0(m; r) be the closed subspace of tuples (a; b; c; d) in

End(L)� End(L)� Hom(L; kr)� Hom(kr;L)

ful�lling the conditions (1) and (2) from above. We get a projection into the nilpo-

tent cone N � End(L) with irreducible and reduced image. The �breW 0
a over a 2 N

projects onto a subset P of Hom(L; kr)�Hom(kr;L), and the condition (c; d) 2 P is

expressed by a system of equations `(dc) = 0, where ` are linear forms on End(L).

Therefore, P is a subvariety, since it projects surjectively onto Hom(L; kr) and the

�bres are linear subspaces. The �bres of W 0
a ! P are a�ne subspaces, hence W 0

a,

and therefore W 0(m; r), is integral. We note that W(m; r) is an open subvariety of

W 0(m; r), since the condition (3) de�nes an open part.

An easy dimension count at a general a 2 N gives dimW 0
a = m + dimP and

dimP = 2rm�m and hence dimW 0
a = 2rm. We infer dimW 0(m; r) = 2rm +m2.

Step 2. W(m; r)!N is surjective

Given a 2 N , we split L into a-invariant subspaces L1 � : : :� Lq of dimensions

m1; : : : ;mq, each Li generated as a k[a]�module by one vector `i. Then choose b by

bjLi = iid with pairwise disjoint i 2 k such that the commutator [b; a] vanishes.
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We also choose a non-vanishing linear form � : kr ! k and a non-vanishing

vector w 2 ker(�). Since

rk

0
B@ a

id + b

1
CA = rk

�
id + b �a

�
=

8><
>:

m if  2 fig

m� 1 if  =2 fig;

we can choose

d(v) = �(v)(`1 + : : :+ `q)

and

c(a�`i) =

8><
>:

0 if � < mi � 1

w if � = mi � 1:

Then the condition (1) is ful�lled because ba� ab = dc = 0, and the condition (3)

is ful�lled as well.

Step 3. Stability

We check stability by the Hilbert-Mumford criterion (cf. [34, Theorem 2.1]),

so we have to consider 1-parameter subgroups g : G m ! Gl(L) and to show that

limt!1g(t)(a; b; c; d) never exists.

Given g(t), we can split L into L1 � : : : � Lq such that g(t) = t!j on Lj with

!1 > : : : > !q. We �rst assume !1 > 0. We let 1 < s � q be the last index such

that !s is positive, and let s < � � q be the �rst index such that !� is negative.

According to the decomposition of L, we write our homomorphisms in blocks

a = (aij); b = (bij); c = (c1 : : : cq); d =

0
BBBBB@

d1
...

dq

1
CCCCCA
:

Suppose limt!1g(t)(a; b; c; d) exists. Since the (i; j)-block of g(t)ag(t)
�1 is t!i�!j,

we have aij = 0 for i > j, and similarly bij = 0 for i > j, ci = 0 for i > � and dj = 0

for j � s. This leads to a contradiction for (a; b; c; d) 2 W(m; r):

Considering the (s; s)-blocks in the equation (1) gives

bssass � assbss = dscs = 0:
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On the other side, the rank condition (3) implies

rk(�idLs + bss ass) = dimLs

for all � 2 k. Since ass is nilpotent, ker a_ss is not trivial. If ` 2 ker a_ss, then

`assbss = `bssass = 0, hence b_ss is an endomorphism on ker a_ss. Therefore, there is a

non-vanishing linear form ` on Ls such that ` � ass = 0 and ` � bss = �0` with some

constant �0 2 k. With � = ��0 we obtain

` � (�idLs + bss ass) = 0

and hence

rk(�idLs + bss ass) < dimLs;

which is a contradiction. Obviously, we may deal with the case !1 � 0 in the same

way by interchanging the role of s and �. This proves the stability of points in

W(m; r).

Step 4. The action of Gl(L) on W(m; r) is free

By step 3, the orbits of points of W(m; r) are closed and the isotropy group

is �nite. If g 6= id is in the isotropy group of (a; b; c; d) 2 W(m; r), we can split

L = L0 � : : : � Lp into eigenspaces of g with gjL0 = idL0 and gjLi = "iidLi for

i = 1; : : : ; p, where the "i are certain roots of unity not equal to 1.

Corresponding to this splitting, we write our homomorphisms as blocks

a =

0
BBBBB@

a0 0

. . .

0 ap

1
CCCCCA
; b =

0
BBBBB@

b0 0

. . .

0 bp

1
CCCCCA
; c = (c0 0 : : : 0); d =

0
BBBBBBBB@

d0

0
...

0

1
CCCCCCCCA
;

where we have applied gd = d and cg�1 = c. We obtain [a0; b0] = d0c0, [ai; bi] = 0

and rk(�idLi+bi ai) = dimLi for i > 0 and all � 2 k, which again is a contradiction.

Step 5. Existence of a geometric quotient

The set W 0
s(m; r) of stable points in W

0(m; r) admits a geometric quotient

W
0
s(m; r)! Gl(L) nW 0

s(m; r):
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SinceW(m; r) is an open and Gl(L)-invariant subvariety ofW 0
s(m; r), the restriction

W(m; r)! Gl(L) nW(m; r)

is a geometric quotient of W(m; r). Since the action is free, the image is again a

variety, and the dimension is dimW(m; r) � dimGl(L) = (2r � 1)m. Because of

Theorem 2.4, this variety is just J (m; r). 2

Corollary 2.6 The subspace of J (m; r) de�ned by the condition ord0 = 1 is an

open and dense subvariety.

Proof. The condition ord0 = 1 de�nes an open subfunctor because of the Semicon-

tinuity Theorem. This subfunctor is non-empty, as the transition function

0
BBBBBBBBBBBB@

zm t + z 0 � � � 0

0 z�m 0 � � � 0

0 0 1 0
...

...
. . .

0 0 0 1

1
CCCCCCCCCCCCA

2 Glr(k[t](t)[z; z
�1])

de�nes an ordinary jump V of rank r on the local line Y with ordV = m and

ord0V = 1. Since J (m; r) is irreducible by Theorem 2.5, this subfunctor is dense. 2

2.3 Monadic description of exceptional jumps

We consider a blowing up S0 ! P
2 of n distinct points on the projective plane

with associated exceptional lines E1; : : : ;En. For a �xed point P 2 S0 outside of

the exceptional locus we let fF0� j � 2 P
1
kg be the pencil of the total transforms of

lines through P. We assume that F01 is disjoint to the exceptional locus. If F0� is

the rational curve in the above pencil containing Ei, then we de�ne L0i to be the

second component of F0�. We note that L0i is numerically e�ective and (Ei � L
0
i) = 1.

Moreover, there is a short exact sequence

0! OS0(�L
0
i) �! O

2
S0 �! OS0(L

0
i)! 0:
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For notational reasons, we set F01 = L00. The following theorem is essentially due to

A. King, [24, Theorem 3.3.2].

Theorem 2.7 Let V0 be a vector sheaf on S0 with V0jF01
�= Or

F01
and with second

Chern class c2V
0 = m. There is a monad

0!
nM
i=0

C0i 
OS0(�L
0
i)

'
�! C
OS0

 
�!

nM
i=0

C00i 
OS0(L
0
i)! 0

with cohomology V0. Hereby, C0i and C00i are vector spaces of dimension m and C is

a vector space of dimension 2m(n + 1) + r.

Our proof of this theorem will be much di�erent from the proof given by King,

less natural but considerably shorter. The idea is quite simple: After blowing up

with center in P, we construct �rst a monad in a neighbourhood of all exceptional or

jumping �bres using the fact that nice short exact sequences on the union D of these

�bres can be lifted without obstruction to suitable sequences creating the display of

the desired monad. To obtain a monad on the whole surface, we glue this monad

together with a trivial monad on the complement of D. Finally, we just take the

direct image of this monad on S0, which will be a monad again.

Proof. We consider the blow up � : S! S0 with centre in P and exceptional divisor

N, and put Li to be the total transform of L0i, F� to be the strict transform of F0�

and V = ��V0. As Ei does not meet P, we denote its pullback again with Ei. We

also �x the natural map � : S! N.

As V is trivial along F1, there are only �nitely many �bres F0; : : : ;Fq which are

either exceptional or where the restriction of V is not free. We set D = F0[ : : :[Fq.

D is a union of smooth rational curves ` which either intersect N transversally or

equal some Ei.

For ` of the �rst kind, we choose an extension

0! Vj` �! R0` �! C000 
O`(L0)! 0;

and for ` of the second kind an extension

0! Vj` �! R0` �! C00i 
O`(Li)! 0;
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such that in both cases H1(`;R0`(�1)) = 0, which is possible since m is equal to

dimkC
00
i = c2V � h1(`;Vj`(�1)). We de�ne

0! Vj` �! R` �!

nM
i=0

C00i 
O`(Li)! 0

by adding the missing direct summands to R0`. Due to our de�nitions, (` � Li) � 0

and therefore H1(`;R`(�1)) = 0 for all appearing components ` � D.

We can glue together these extensions in the intersection points of the compo-

nents of D to obtain an extension

0! VjD �! RD �!

nM
i=0

C00i 
OD(Li)! 0;

where the property H1(`;RDj`(�1)) = 0 still holds.

Since the cohomological dimension of S0 = S� F1 is one, there are no obstruc-

tions to lifting the last short exact sequence to an extension

f0 = (0! VjS0 �! RS0 �!

nM
i=0

C00i 
OS0(Li)! 0):

In exactly the same manner we can obtain an extension

eD = (0!
nM
i=0

C0i 
OD(�Li) �!MD �! RD ! 0)

with the property thatMDj` is free for all irreducible components ` � D. We can

�nd D � S3 � S0 as a complement of �nitely many �bres and a lift

e3 = (0!
nM
i=0

C0i 
OS3(�Li) �!MS3 �! RS0 jS3 ! 0)

of eD, such that MS3 is free on all �bres of �jS3 and therefore free. On the other

side, we consider S2 = S0 � D � S0 and choose an extension

e2 = (0!
nM
i=0

C0i 
OS2(�Li) �!MS2 �! RS0 jS2 ! 0)

withMS2 free. This can be done since f0jS2 splits. Obviously, we can glue e2 and e3

together to an extension

0!
nM
i=0

C0i 
OS0(�Li) �!MS0 �! RS0 ! 0
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with the property thatMS0 is free.

We de�ne a vector sheaf KS0 on S0 as the �bre product of the two morphisms

VjS0 ! RS0 and MS0 ! RS0 and obtain a commutative diagram with exact rows

and columns:

0 0 0

# # #

0 !
nL
i=0

C0i 
OS0(�Li) �! KS0 �! VjS0 ! 0

# # #

0 !
nL
i=0

C0i 
OS0(�Li) �! MS0 �! RS0 ! 0

# # #

0 ! 0 �!
nL
i=0

C00i 
OS0(Li) �!
nL
i=0

C00i 
OS0(Li) ! 0

# #

0 0

This diagram is the display of a monad

M
�
0 = (0!

nM
i=0

C0i 
OS0(�Li)
'0
�!MS0

 0
�!

nM
i=0

C00i 
OS0(Li)! 0)

of vector sheaves on S0 = S� F1 with cohomology VjS0 .

Let be S1 = S� D. We choose an extension

0!
nM
i=0

C0i 
OS1(�Li)�!O
2m(n+1)
S1

�!

nM
i=0

C00i 
OS1(Li)! 0

and obtain a monad

M
�
1 = (0!

nM
i=0

C0i 
OS1(�Li)
'1
�!MS1

 1
�!

nM
i=0

C00i 
OS1(Li)! 0)

by adding Or
S1

to the middle term.

We denote with M�
2 the restriction ofM�

1 to S2. We can �nd an isomorphism

fromM�
0jS2 toM

�
2 as follows: Since Ext

1(OS2(Li);VjS2) = 0 for all i, we can �x a

splitting

RS0 jS2
�= VjS2 �

nM
i=0

C00i 
OS2(Li):
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We infer a splitting

MS0jS2
�= VjS2 �O

2m(n+1)
S2

:

Any isomorphism VjS2
�= Or

S2
induces now the desired isomorphism of monads.

We denote with ji the embedding of Si into S. Due to the above isomorphism

we have a morphism j0�M
�
0 ! j2�M

�
2. The natural restriction a�ords the further

morphism j1�M
�
1 ! j2�M

�
2. The product

M
� = j0�M

�
0 �j2�M

�
2
j1�M

�
1

is evidently a monad of vector sheaves of the form

0!
nM
i=0

C0i 
OS(�Li)
'
�!M

 
�!

nM
i=0

C00i 
OS(Li)! 0

and has cohomology V by construction.

Also by construction,M is free along �bres of �.

R1��V(�N) = 0 and R1��OS(Li)(�N) = 0 imply R1��RS(�N) = 0, where RS

denotes the cokernel of '. With R1��OS(�Li)(�N) = 0 we obtain R1��M(�N) = 0

and hence thatM is free along N. Therefore, it is free on S and hence isomorphic

to C
OS. ��M
� is the desired monad for V0. 2

The previous theorem opens a way for the monadic description of spaces E(m; r)

of exceptional framed jumps introduced in Section 2.1. We consider S0 as a blowing

up of P2 = Proj k[u0; u1; u2] in the point (0 : 1 : 0). We denote with H the pullback of

OP2(1) and with E the exceptional divisor on S0. Out of E, we use the homogeneous

coordinates of P2 to describe points on S0. We note, that H0(S0;H) = span(u0; u1; u2)

and H0(S0;H(�E)) = span(u0; u2). We also consider the pencil of rational curves

fF0� = Z(�u1 + u2)g through the point P0 = (1 : 0 : 0), with F01 = Z(u1).

Proposition 2.8 The algebraic space E(m; r) is naturally isomorphic to the closed

subfunctor of Vec(S0;F01;OF01; c1 = 0; c2 = m) parametrising all those families

(V; �), where V is trivial along all F� with � 6= 0.

Proof. Note, that Vec(S0;F01;OF01 ; c1 = 0; c2 = m) is just our moduli space I(m; r)

from Section 1.2 in the case that S0 is the blowing up of the plane in one point. This
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space is isomorphic to V(S;m; r) by Theorem 1.10, where S is the blowing up of S0

in a point on F01. The statement is thus a consequence from the de�nition of the

space E(m; r) in Section 2.1. 2

Theorem 2.9

(I) A closed point (V; �) in E(m; r) is determined by a monad of the form

0!L0
H
_
�L1
H

_(E)
'
�!(L0�L1�L0�L1�k

r)
OS0
 
�!C000
H�C

00
1
H(�E)!0

with

(0) L0 and L1 are k-vector spaces of dimension m;

(i)

'=

0
BBBBBBBBBBBB@

idL0u0 � dau1 0

au1 idL1u0

idL0u2 � dbu1 0

bu1 idL1u2

eu1 0

1
CCCCCCCCCCCCA

;

(ii)

 =

0
B@ bu1 idL1u2 �au1 idL1u0 fu1

idL0u2 du2 �idL0u0 �du0 0

1
CA ;

(iii) a; b 2 Hom(L0;L1), d 2 Hom(L1;L0), e 2 Hom(L0; k
r), f 2 Hom(kr;L1) with

�bda + adb + fe = 0;

(iv) the linear maps

0
BBBBBBBB@

�id� da

�db

b

e

1
CCCCCCCCA
;

0
BBBBBBBB@

�da

a� �b

�db

e

1
CCCCCCCCA
;

�
b �id + ad f

�
and

�
�bd �b� a f

�

have full rank m for all � 2 k;
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(v) the product bd is nilpotent.

(II) We de�ne Z(m; r) as the locally closed subspace of

Hom(L0;L1)� Hom(L0;L1)� Hom(L1;L0)� Hom(L0; k
r)� Hom(kr;L1)

of all tuples (a; b; d; e; f) which ful�ll the conditions (iii), (iv) and (v). If the group

Gl(L0)�Gl(L1) acts on Z(m; r)(Spec k) by

(g0; g1)(a; b; e; f; d) = (g1ag
�1
0 ; g1bg

�1
0 ; eg�10 ; g1f; g0dg

�1
1 );

then E(m; r)(Spec k) is in natural bijection to the set of orbits of this action.

Proof. Due to the previous proposition, we may consider instead of our closed point

in E(m; r) an element (V; �) in Vec(S0;F01;OF01; c1 = 0; c2 = m)(Spec k) with the

property that the only jumping line of V through (1 : 0 : 0) is the exceptional line

F00. For this framed vector sheaf, we reproduce the reduction of the monad given by

Theorem 2.7 analogously to [24], Section 3.4.

We may write

' =

�
'00u0 + '01u1 + '02u2 '10u0 + '12u2

�
;

 =

0
B@  00u0 +  01u1 +  02u2

 10u0 +  12u2

1
CA ;

where 'ij 2 Hom(C0i;L) and  ij 2 Hom(L;C00i ).

The fact, that V is trivial along F01 implies by [24, Lemma 2.2.4], that for any

two distinct points P and Q on F01 the composition D =  (Q)'(P) = � (P)'(Q)

is an isomorphism C00�C01
�= C000 �C001. We choose P = (1 : 0 : 0) and Q = (0 : 0 : 1)

and obtain

D =

0
B@ D00 D01

D10 D11

1
CA =

0
B@  02'00  02'10

 12'00  12'10

1
CA = �

0
B@  00'02  00'12

 10'02  10'12

1
CA :

The automorphism group of C00 
 H_ � C01 
 H_(E) is

0
B@ Gl(C00) 0

Hom(C00;C
0
1) Gl(C01)

1
CA ;
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and since D is an isomorphism we can replace C00 by a new C00, which is in the

complement of C01 as well as in the complement of D�1C000. Then we replace C001 by

D(C00) and obtain

D =

0
B@ 0 D01

D10 D11

1
CA :

We have a decomposition C = C(P)� C(Q)� C1 with

C(P) = im'(P); C(Q) = im'(Q) and C1 = ker (P) \ ker (Q):

With  02'00 = 0 and  02'10 an isomorphism we infer

C(P) = im'00 + im'10 = im'00 � im'10:

Analogously, we obtain

C(Q) = im'02 + im'12 = im'02 � im'12:

Thus, we may identify

L0 = C00 = im'00 = im'02 = C001

and

L1 = C01 = im'10 = im'12 = C000

and obtain a decomposition

C = L0 � L1 � L0 � L1 � C1:

Moreover, we have

'00 =

0
BBBBBBBBBBBB@

id

0

0

0

0

1
CCCCCCCCCCCCA

'02 =

0
BBBBBBBBBBBB@

0

0

id

0

0

1
CCCCCCCCCCCCA

'10 =

0
BBBBBBBBBBBB@

0

id

0

0

0

1
CCCCCCCCCCCCA

'12 =

0
BBBBBBBBBBBB@

0

0

0

id

0

1
CCCCCCCCCCCCA
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and

 00 = ( 0 0 0 �id 0 )

 02 = ( 0 id 0 0 0 )

 10 = ( 0 0 �id �d 0 )

 12 = ( id d 0 0 0 );

where we have put d = D11 2 Hom(L1;L0). It remains to determine

'01 =

0
BBBBBBBBBBBB@

a0

a

b0

b

e

1
CCCCCCCCCCCCA

and  01 =

�
a000 a00 b000 b00 f

�
:

From the vanishing of  ' we obtain the conditions

a000a0 + a00a + b000b0 + b00b + fe = 0; a000 � b = 0;

b000 + a = 0; a00 = 0;

b00 = 0; b0 + db = 0;

a0 + da = 0;

and conclude

'=

0
BBBBBBBBBBBB@

idL0u0 � dau1 0

au1 idL1u0

idL0u2 � dbu1 0

bu1 idL1u2

eu1 0

1
CCCCCCCCCCCCA

;  =

0
B@ bu1 idL1u2 �au1 idL1u0 fu1

idL0u2 du2 �idL0u0 �du0 0

1
CA ;

where a; b 2 Hom(L0;L1), d 2 Hom(L1;L0), e 2 Hom(L0;C1), f 2 Hom(C1;L1),

and the condition

�bda + adb + fe = 0

holds in order to guarantee  � ' = 0.

The cohomology of the restriction of the monad to F01 is obviously C1 
OF01.

Hence, the framing � : VjF01
�= Or

F01
is �xed by an isomorphism C1 �= kr.
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Now, we want to implement the property that the only jumping line of V through

the point (1 : 0 : 0) is the exceptional line F00 = Z(u2). This means that, for all lines

F0� = Z(�u1 + u2 = 0) with � 6= 0, we have to guarantee that VjF0
�
is free. By [24,

Lemma 2.3.4], this is equivalent to the condition

det( (0 : 1 : ��) � '(1 : 0 : 0)) = jD�j =

�������
b ��id

�id ��d

�������
= �� � constant:

We obtain

(��)�2mjD�j =

�������
���1b id

id d

�������
=

�������
0 id + ��1bd

id d

�������
= (���1)mj�id� bdj;

where the equality in the middle is an easy application of Gauss elimination. There-

fore detD� = �� � constant i� the characteristic polynomial of bd equals �m; i.e., i�

bd is nilpotent.

To have ' as injective and  as surjective bundle morphisms, we have to add the

non-degeneracy condition, that both homomorphisms have �brewise full rank m. So

far, this is already clear for points on lines F0� with � 6= 0. We restrict now ' and

 �rst to the strict transform of Z(u2) � f(1 : 0 : 0)g and then to the exceptional

divisor and obtain immediately condition (iv).

We have shown the �rst claim (I) of the theorem, namely the existence of a

monad with the properties (0) - (v), that determines a given (V; �). Moreover it

is clear that any such reduced monad in Z(m; r) determines an element (V; �) in

Vec(S0;F01;OF01; c1 = 0; c2 = m)(Spec k) with the property that the only jump-

ing line of V through (1 : 0 : 0) is the exceptional line F00; i.e., an element in

E(m; r)(Spec k). As the spaces L0 and L1 are �xed up to isomorphisms, the action

of their automorphism groups and thus the induced action of Gl(L0) � Gl(L1) on

Z(m; r)

(g0; g1)(a; b; e; f; d) = (g1ag
�1
0 ; g1bg

�1
0 ; eg�10 ; g1f; g0dg

�1
1 )

does not change the determined (V; �). On the other side, it is clear from the above

construction, that no other choices can be made, and we obtain

E(m; r)(Spec k) = Z(m; r)(Spec k)=Gl(L0)�Gl(L1):2
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Of course, we do not want E(m; r) just as a set-theoretical quotient but as an

algebraic quotient together with some insight in its geometry, which is provided by

the next theorem.

Theorem 2.10

(i) The algebraic space E(m; r) is a reduced algebraic scheme over (Spec k) of

dimension (2r � 1)m, consisting of two integral components appearing as the

closures of ��0J (m; r) and �
�
1J (m; r), respectively.

(ii) The action of the algebraic group Gl(L0)�Gl(L1) on the space Z(m; r) is free,

and there exists a geometric quotient which is equal to E(m; r).

Proof.

Step 1. The natural morphism Z(m; r)! E(m; r)

Due to the construction of Theorem 2.9, there is a monad on Z(m; r)�S0, which

could be considered as the universal reduced monad. The cohomology of this monad

is clearly an element in E(m; r)(Z(m; r)). Because of the universal property of a �ne

moduli space, this element gives rise to a natural morphism Z(m; r) ! E(m; r).

This morphism is set-theoretically the quotient of the action of Gl(L0)�Gl(L1) on

Z(m; r) due to Theorem 2.9.(II).

Step 2. The preimage of ��0J (m; r) in Z(m; r)

When does a tuple (a; b; d; e; f) in Z(m; r)(Spec k) de�ne a monad whose coho-

mology is trivial along E? We restrict the monad to E and obtain

0!L0
OE�L1
OE(�1)
'E
�!(L0�L1�L0�L1�k

r)
OE
 E
�!L0
OE�L1
OE(1)!0

with

'E =

0
BBBBBBBBBBBB@

�da 0

a id�

�db 0

b id�

e 0

1
CCCCCCCCCCCCA

and  E =

0
B@ b 0 �a 0 f

id� d� �id� �d� 0

1
CA ;
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where � and � are the homogeneous coordinates on E obtained by the equation

u0
u1
�� u2

u1
�. Since kernel and cokernel of morphisms between trivial bundles are again

trivial, we see that the cohomology of the above monad is trivial if the cohomology

of the monad

0!L1 
OE(�1)
'0
E
�!(L0 � L1 � L0 � L1 � kr)
OE

 0
E
�!L1 
OE(1)!0

is trivial, where

'0E =

0
BBBBBBBBBBBB@

0

id�

0

id�

0

1
CCCCCCCCCCCCA

and  0E =

�
id� d� �id� �d� 0

�
:

The criterion of [24, Lemma 2.3.4] tells us that this is exactly the case i� the com-

position  0E(1 : 0) � '0E(0 : 1) = �d is an isomorphism. Hence, the preimage of

��0J (m; r) in Z(m; r) is given by the condition that d is regular.

Step 3. The preimage of ��1J (m; r) in Z(m; r)

In analogy to Step 2, we show when a tuple (a; b; d; e; f) in Z(m; r)(Spec k) de�nes

a monad whose cohomology is trivial along the strict transform L of Z(u2). We

restrict the monad to L and obtain

0!L0
OL(�1)�L1
OL
'L
�!(L0�L1�L0�L1�k

r)
OL
 L
�!L0
OL(1)�L1
OL!0

with

'L =

0
BBBBBBBBBBBB@

idL0u0 � dau1 0

au1 idL1

�dbu1 0

bu1 0

eu1 0

1
CCCCCCCCCCCCA

and  L =

0
B@ bu1 0 �au1 idL1u0 fu1

0 0 �idL0 �d 0

1
CA :

Since the kernel and cokernel of morphisms between trivial bundles are again trivial,

we see that the cohomology of the above monad is trivial if the cohomology of the
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monad

0!L0 
OL(�1)
'0
L
�!(L0 � L1 � L0 � L1 � kr)
OL

 0
L
�!L0 
OL(1)!0

is trivial, where

'0L =

0
BBBBBBBBBBBB@

idL0u0 � dau1

au1

�dbu1

bu1

eu1

1
CCCCCCCCCCCCA

and  0L =

�
bu1 0 �au1 idL1u0 fu1

�
:

The criterion of [24, Lemma 2.3.4] tells us that this is exactly the case i� the compo-

sition  0L(0 : 1)�'
0
L(1 : 0) = b is an isomorphism. Hence, the preimage of ��1J (m; r)

in Z(m; r) is given by the condition that b is regular.

Step 4. ��0J (m; r) [ �
�
1J (m; r) is dense in E(m; r)

Of course, we show that the preimage, given by the condition that b or d is

regular, is dense in Z(m; r).

First, we note that if b 2 Hom(L0;L1) and d 2 Hom(L1;L0) are both singular

with bd nilpotent, then any open neighbourhood of the pair (b; d) in the space

Hom(L0;L1) � Hom(L1;L0) contains pairs (b0; d0) such that b0d0 is nilpotent and

either b0 or d0 is regular. Indeed, as we may choose bases of L0 and L1 such that bd

is in Jordan normal form and

b =

0
B@ id 0

0 0

1
CA ;

this is provided by for instance by b0 = b and

d0 = d + �

0
B@ 0 id

id 0

1
CA

and the observation that d0 is regular for general � 2 k.

Now we may choose other bases such that d0 is the identity and b0 is nilpotent in

Jordan normal form. From here it is evident that in every neighbourhood of (b; d)
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there is a pair (b0; d0) such that d0 is regular, b0 is nilpotent and b0d0 and d0b0 are

both nilpotent and of rank m � 1. The bene�t of such a choice is that the linear

endomorphism on Hom(L0;L1) which sends a homomorphism a to ad0b0�b0d0a is of

corank m. As a side remark, we note that the roles of b and d can be interchanged.

We consider now a point (a; b; d; e; f) in Z(m; r), with b and d both singular,

together with an arbitrary open neighbourhood, which we may assume to be of the

form U� V �W, where

a 2 U � Hom(L0;L1),

(b; d) 2 V � Hom(L0;L1)� Hom(L1;L0) and

(e; f) 2 V � Hom(L0; k
r)� Hom(kr;L1).

We choose (b0; d0) 2 V of the above form. The map from U to Hom(L0;L1) which

sends a homomorphism a0 to a0d0b0�b0d0a0 is hence of corank m, and, for dimensional

reasons, we �nd a0 2 U and (e0; f 0) 2W such that a0d0b0�b0d0a0 = �f 0e0. This shows

that the condition that either b or d is regular, is dense in Z(m; r) and consequently,

that ��0J (m; r) [ �
�
1J (m; r) is dense in E(m; r).

The steps 1-4 already show the assertion (i). To prove that E(m; r) is the quotient

claimed in (ii), we examine the group action closer.

Step 5. The action of Gl(L0)�Gl(L1) on Z(m; r) is stable

We check the stability by the Hilbert-Mumford criterion (cf. [34], Theorem 2.1).

We consider one parameter subgroups g = (g0; g1) : G m! Gl(L0)�Gl(L1) and have

to show that, for all (a0; b0; d0; e0; f 0) in Z(m; r), the limit limt!1g(t)(a
0; b0; d0; e0; f 0)

does not exist in Z(m; r). We assume

limt!1g(t)(a
0; b0; d0; e0; f 0) = (a; b; d; e; f)

for some �xed g and (a0; b0; d0; e0; f 0). We obtain decompositions

L0 = L01 � : : :L0s � : : :L0q

L1 = L11 � : : :L1s � : : :L1p

with the following properties:
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� gi(t)jLij = t!ij idLij with !ij 6= !il for j 6= l;

� for i = 1; : : : ; s, we have !0i = !1i = !i;

� for all i; j > s, we have !0i 6= !1j.

According to this decomposition, we may write a0 in blocks a0ij : L0j ! L1i. g(t)

acts on a0ij by multiplication with t
!1i�!0j . If this di�erence !1i � !0j is positive, then

a0ij = 0 is necessary to allow the existence of a limit for t ! 1, and consequently

aij = 0. If this di�erence is negative, then limt!1g(t)(a
0
ij) = 0, and hence again

aij = 0. Therefore, a is of the form

0
BBBBBBBB@

a1 0 0

. . .
...

0 as
...

0 � � � � � � 0

1
CCCCCCCCA

with ai = aii the only not necessarily vanishing blocks, i = 1; : : : ; s. We may treat b

and d in a similar fashion to obtain

b =

0
BBBBBBBB@

b1 0 0

. . .
...

0 bs
...

0 � � � � � � 0

1
CCCCCCCCA

d =

0
BBBBBBBB@

d1 0 0

. . .
...

0 ds
...

0 � � � � � � 0

1
CCCCCCCCA
:

Moreover, we can write

f =

0
BBBBB@

f1
...

fp

1
CCCCCA

e =

�
e1 � � � eq

�

with the property that fi 6= 0 implies !1i = 0 and ej 6= 0 implies !0j = 0.

Now we assume that !1i 6= 0 for i > s. We infer fi = 0, bij = 0 and (ad)ij = 0 for

all j. This contradicts

rk(b ad f) = m:
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Therefore, either p = s + 1 and !1p = 0, or p = s.

If we assume that !0j 6= 0 for j > s, then we have ej = 0, (da)ij = (db)ij = 0 and

bij = 0 for all i and obtain a contradiction to

rk

0
BBBBBBBB@

da

db

b

e

1
CCCCCCCCA
= m:

Hence, either q = s + 1 and !0q = 0, or q = s.

Now let us assume that !i 6= 0 for some i 2 f1; : : : ; sg. We obtain fi = 0, ei = 0

and aidibi = bidiai. We consider three di�erent cases:

Case 1. bi is not surjective. Because aidibi = bidiai, (aidi)
_ restricts to an

endomorphism on ker b_i , which is a non-trivial vector space since bi is not surjective.

Therefore, there is a non-vanishing eigenvector ` 2 ker b_i with some eigenvalue �0,

which yields ` � (bi �0idL1i � aidi) = 0. Thus, we have a contradiction to

rk(b �0idL1 � ad f) = m:

Case 2. bi is an isomorphism. We may use bi to identify L0i = L1i. We thus

have aidi = diai; hence, a
_
i maps ker d_i to itself. Since bidi is nilpotent, ker d

_
i is

not trivial, and a_i jker d_i admits a non-vanishing eigenvector with some eigenvalue

�0. This contradicts

rk(bd �0b� a f) = m:

Case 3. bi is not injective. With aidibi = bidiai, diai maps ker bi to itself. We

choose an eigenvalue �0 and obtain again a contradiction, this time to the condition

rk

0
BBBBBBBB@

da

db

b

e

1
CCCCCCCCA
= m:

We summarize that all !ij are equal to 0, hence g(t) is constant, and the Step 5

is complete.
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Step 6. The action of Gl(L0)�Gl(L1) on Z(m; r) is free

By Step 5 we already know that all the isotropy groups of the action of the group

Gl(L0)�Gl(L1) on Z(m; r) are �nite. We assume that g = (g0; g1) is in the isotropy

group of (a; b; d; e; f). We obtain decompositions

L0 = L00 � : : :L0s � : : :L0q

L1 = L10 � : : :L1s � : : :L1p

with the following properties:

� gi(t)jLij = "ijidLij, where the "ij are certain roots of unity with "ij 6= "il for j 6= l;

� "00 = "10 = 1;

� for i = 1; : : : ; s, we have "0i = "1i = "i;

� for all i; j > s, we have "0i 6= "1j.

According to this decomposition, we may write a in blocks aij : L0j ! L1i. g acts on

aij by multiplication with "1i � "
�1
0j . Since g1ag

�1
0 = a, aij = 0 except in those cases,

where i = j � s. Therefore, a is of the form

0
BBBBBBBB@

a0 0 0

. . .
...

0 as
...

0 � � � � � � 0

1
CCCCCCCCA

with ai = aii the only not necessarily vanishing blocks, i = 1; : : : ; s. We may treat b

and d in a similar fashion to obtain

b =

0
BBBBBBBB@

b0 0 0

. . .
...

0 bs
...

0 � � � � � � 0

1
CCCCCCCCA

d =

0
BBBBBBBB@

d0 0 0

. . .
...

0 ds
...

0 � � � � � � 0

1
CCCCCCCCA
:
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Moreover, we can write

f =

0
BBBBBBBB@

f0

0
...

0

1
CCCCCCCCA

e =

�
e0 0 � � � 0

�
:

It is evident, that the assumptions p > s, q > s or s > 0 lead to the same contradic-

tions as we have constructed in Step 5. Thus, the action is free.

Step 7. Z(m; r)! E(m; r) is the geometric quotient under the action of the group

Gl(L0)�Gl(L1).

Step 5 shows the existence of a geometric quotient. Since we can repeat the

monadic construction in Theorem 2.9 locally for families, the quotient is equipped

with a universal property: it is covered by local moduli of points in E(m; r). Since

E(m; r) is represented by a �ne moduli space, it is canonically isomorphic to the

quotient. 2

2.4 The spaces of framed exceptional jumps of order 1

Here, we use the above given monadic description to study the spaces E(1; r) in the

case of k being the �eld of complex numbers. By Theorem 2.9 and 2.10, we are

to examine all tuples (a; b; d; e1; : : : ; er; f1; : : : ; fr) in C
3
� C

r
� C

r, which ful�ll the

equations f1e1 + : : :+ frer = 0, bd = 0 and the non-degeneracy condition (iv).

First, we restrict ourselves to the case of those points in E(1; r) which are non-

trivial along E1, call it the subspace E0(1; r) � E(1; r). By Theorem 2.9 and 2.10, this

space E0(1; r) is the quotient of the space Z of all tuples (a; b; e1; : : : ; er; f1; : : : ; fr) in

C
2
� C

r
� C

r which ful�ll the conditions

f1e1 + : : :+ frer = 0;

(e1; : : : ; er) 6= 0;

(f1; : : : ; fr) 6= 0;

where the last two inequalities come from (iv), by the action of C � � C
�

(�; �)(a; b; e; f) = (���1a; ���1b; ��1e; �f):
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The supspace E01(1; r) � E0(1; r) of all framed exceptional jumps of order 1 that

are non-trivial along E0, as well as along E1, corresponds to the additional equation

b = 0.

Proposition 2.11 For all ranks r � 2, E01(1; r) is a strong deformation retract of

E0(1; r).

Proof. We consider � : [0; 1] � Z ! Z with �(t; a; b; e; f) = (a; tb; e; f). This

continuous map commutes with the action of C � � C
� on Z because

(�; �)(�(t; a; b; e; f)) = (���1ta; ���1b; ��1e; �f) = �(t; (�; �)(a; b; e; f)):

Therefore, � descends to a continuous map � : [0; 1]�E0(1; r)! E0(1; r). Obviously,

� � restricted to f1g � E0(1; r) is the identity on E0(1; r);

� � restricted to f0g � E0(1; r) maps to E01(1; r);

� for all t 2 [0; 1], � restricted to ftg � E01(1; r) is the identity on E01(1; r).

But this is just the de�nition of a strong deformation retract.2

Corollary 2.12 For all ranks r � 2, E01(1; r) is a strong deformation retract of

E(1; r).

Proof. By symmetry, the space E1(1; r) of points in E(1; r) which are non-trivial along

E0 is isomorphic to E0(1; r). The union of both is E(1; r), and their intersection is

E01(1; r). 2

Theorem 2.13 For all ranks r � 2, E(1; r) is homotopically equivalent to the ag

variety F C (1; r�1) = f(e; f) 2 P
r�1
C
�P

r�1
C
jf(e) = 0g. In particular, we have E01(1; 2)

homotopically equivalent to P
1
C

�= S2.

Proof. This is just one step further than in the previous proposition. E(1; r) is by

Corollary 2.12 homotopically equivalent to E01(1; r), and the second is the quotient
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of the space Z 0 of all tuples (a; e1; : : : ; er; f1; : : : ; fr) in C � C
r
� C

r which ful�ll the

conditions

f1e1 + : : :+ frer = 0;

(e1; : : : ; er) 6= 0;

(f1; : : : ; fr) 6= 0;

by the action of C � � C
�

(�; �)(a; e; f) = (���1a; ��1e; �f):

We consider � : [0; 1]�Z 0 ! Z 0 with �(t; a; e; f) = (ta; e; f). Obviously,

� � restricted to f1g � Z 0 is the identity on E0(1; r);

� � restricted to f0g � Z 0 maps to the subspace Z 00 of tuples (0; e; f);

� for all t 2 [0; 1], � restricted to ftg � Z 00 is the identity on Z 00.

Therefore, Z 00 is a deformation retract of Z 0.

The continuous map � commutes with the action of C � � C
� on Z 0; hence, �

descends to a continuous map � : [0; 1]�E01(1; r)! E01(1; r), which shows that the

quotient Z 00=(C �� C �) is a strong deformation retract of E01(1; r). But this quotient

is just the ag variety from the assertion. 2

2.5 Finite determination

Here, �nite determination means that an object on the exceptional local line X is

already determined up to isomorphism by its restriction on the m-th in�nitesimal

neighbourhood Xn = X�SpecA SpecAn of the central �bre. The ring A can be again

any discrete valuation ring over k. We show that a framed exceptional jump (V; �)

of order m is already determined by (Vm = V 
 An; �m = �jXm). Of course, this

implies the analogous statement for framed ordinary jumps.

Lemma 2.14 Let (V; �) and (W; �) be two exceptional framed jumps on X. Ifm � 0

is an integer such that the homomorphism

Ext1(V;W(�N))! Ext1(Vm;Wm(�N))
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induced by restriction is an isomorphism, then (Vm; �m) �= (Wm; �m) is equivalent

to (V; �) �= (W; �).

Proof. We consider the commutative diagram with exact rows and columns:

0 0 0

# # #

0 ! Hom(V;mm+1
A W(�N)) ! Hom(V;mm+1

A W) ! Hom(VjN;m
m+1
A WjN) ! 0

# # #

0 ! Hom(V;W(�N)) ! Hom(V;W) ! Hom(VjN;WjN) ! 0

# # #

0 ! Hom(Vm;Wm(�N)) ! Hom(Vm;Wm) ! Hom(VmjN;WmjN) ! 0

# # #

0 0 0

and the resulting commutative diagram with exact rows:

Hom(V;W) ! Hom(VjN;WjN) ! Ext1(V;W(�N))

# # # �=

Hom(Vm;Wm) ! Hom(VmjN;WmjN) ! Ext1(Vm;Wm(�N))

A diagram chase remains: Let m be the image of the isomorphism  = ��1�� in

Hom(VmjN;WmjN). With the assumption (Vm; �m) �= (Wm; �m), there is a preimage

of m in Hom(Vm;Wm). In particular, the image of m in Ext1(Vm;Wm(�N))

vanishes. Because of the isomorphism between the modules Ext1(V;W(�N)) and

Ext1(Vm;Wm(�N)), the image of  in Ext1(V;W(�N)) vanishes, too. Hence, we

�nd a preimage 0 of  in Hom(V;W). As it is a morphism between framed jumps

di�erent from zero, 0 is an isomorphism. 2

Corollary 2.15 Up to isomorphy, the spaces JA(m; r) and EA(m; r) do not depend

on the discrete valuation ring A over k.

Proof. If (V; �) and (W; �) are two framed exceptional jumps, then Hom(V;W)

is a jump, too. The A-module Ext1(V;W(�N)) is hence of �nite length equal to
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m = ord(Hom(V;W)). Because of base change in the highest relative dimension,

we have

Ext1(V;W(�N)) = R1��Hom(V;W)(�N) = (R1��Hom(V;W)(�N))
 Am

= Ext1(Vm;Wm(�N))

and infer from Lemma 2.14 that framed jumps are already determined by their

restriction to an in�nitesimal neighbourhood of the central �bre. Since the formal

neighbourhood of the central �bre does not depend, up to isomorphism, on the �xed

discrete valuation ring A, we have obtained our corollary. 2

In particular, the statements of the Sections 2.2 - 2.4 can be applied for other

cases than A = k[t](t). This is true, for instance, for the given monadic descriptions

as well as for the fact that the condition ord0 = 1 is dense in JA(m; r) and EA(m; r).

Although we will prove the �nite determination below with an explicit descrip-

tion of the necessary in�nitesimal neighbourhood only for framed exceptional jumps,

it is quite obvious by the proofs of Lemma 2.14 and Corollary 2.15 that �nite deter-

mination on some in�nitesimal neighbourhood also holds for framed jumps on more

exotic local lines obtained by blowing up Y in an arbitrary centre situated on the

central line.

Lemma 2.16 Let V and W be exceptional jumps on X which are both non-trivial

along Ei with i 2 f0; 1g �xed. If the annulator of the A-module R1��V(�N) is m
m+1
A

and the annulator of the A-module R1��W(�N) is mn+1
A , then the annulator of the

A-module Ext1(V;W(�N)) is contained in the ideal m
maxfm;ng+1
A .

Proof. Without loss of generality, we assume i = 0. The claim is obviously true

in the case that V and W are pullbacks under �0 of ordinary jumps with the property

that Vm = V0 
k Am and Wn = W0 
k An. This property is open and dense in

families of pairs of pullbacks of ordinary jumps by Corollary 2.6. In particular, it is

ful�lled whenever ord0V = ord0W = 1, ordV = m+ 1 and ordW = n + 1. On the

other side, the property annAExt
1(V;W(�N)) � m

maxfm;ng+1
A is closed. Hence, the

claim is true for all pullbacks of pairs of ordinary jumps under �0.
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To be such a pullback is again an open and dense property in families of excep-

tional jumps which are non-trivial along E0. Indeed, Step 4 of the proof of Theorem

2.10 shows that ��0J (m; r) is dense in E(m; r)� �
�
1J (m; r). Therefore the lemma is

true in general. 2

Theorem 2.17 (Finite Determination.) Let (V; �) and (W; �) be two exceptional

framed jumps of order m+ 1. We have

(i) (V; �) �= (W; �) if and only if (Vm; �m) �= (Wm; �m),

(ii) V �= W if and only if Vm
�= Wm.

Proof. Lemma 2.16 implies annAExt
1(V;W(�N)) � mm+1

A . Because of base

change in the highest dimension, we have the module Ext1(V;W(�N))
 Am equal

to Ext1(Vm;Wm(�N)), and infer Ext1(V;W(�N)) = Ext1(Vm;Wm(�N)). Thus,

the assumption of Lemma 2.14 is ful�lled, and we obtain (i).

The second claim (ii) is a consequence from (i) as follows: For a given isomor-

phism m : Vm
�= Wm and an arbitrary framing �m : VmjN

�= Or
N 
 Am, we just

choose the framing �m = �1m � �m and arbitrary lifts � and �. 2

2.6 The tangent map of V(m; r)! SymmN

Consider again A = k[t](t), and let M be an A-module of �nite length m. If we de�ne

Ti = k[t]=(t)i+1, we may assume that M = Tm1
� : : :�Tmp with m1+ : : :+mp = m.

We choose a free resolution of M

0! Ap s
�! Ap b

�! M! 0

with

s =

0
BBBBB@

tm1 0

. . .

0 tmp

1
CCCCCA

and obtain the determinantal divisor of M as div(det s).
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Now consider (V; �) 2 V(m; r)(Spec k). We look for the tangent map

T(V;�)V(m; r)! TDSym
mN;

where D is the determinantal divisor belonging to R1��V(�N). We assume that

D = div(tm) and R1��V(�N) = M. Then D is also equal to the determinantal

divisor of M.

A tangent vector � at (V; �) corresponds to a deformation of (V; �) over Spec k["].

This deformation yields an element e 2 Ext1A(M;M) represented by a short exact

sequence

0! M! ~M! M! 0:

We choose the following commutative diagram with exact rows and columns:

0 0 0

# # #

0 ! Ap s
�! Ap b

�! M ! 0

# # #

0 ! A2p ~s
�! A2p

~b
�! ~M ! 0

# # #

0 ! Ap s
�! Ap b

�! M ! 0

# # #

0 0 0

We may consider ~M and A2p as k["]-modules. Under this point of view we obtain

~s = s + "s0 and

det~s = tm + "
X

s0iit
m1+:::+�mi+:::+mp = tm + "�:

Hereby, �mi means the ommiting of the i-th summand. Evidently, the element

� 2 A can be a unit only if p = 1. The line bundle over SpecA["] associated

to div(det~s) corresponds to the module (1=(tm+"�))A["], and the associated vector

in (1=t�m)A=A, the tangent space at D, is precisely t�m� modulo 1.

We have thus obtained:
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Theorem 2.18 � : V(m; r)! SymmN is smooth only in those points (V; �), where

dimkH
1(FP;VjFP(�N)) � 1 for all points P 2 N. The smooth part of J (m; r) is

given by the condition ord0 = 1.

Of course, the occurence of singularities is caused by the fact that � completely

forgets about the framing. It is tempting to amend this situation by introducing the

notion of a framed determinantal divisor, which could be done in several ways. Alas,

the spaces of such framed determinantal divisors are necessarily much more involved

and less familiar than SymmN, which destroys the bene�t of the whole action and

proves another time the Theorem of Conservation of Di�culty.

3 On the topology of moduli of instantons

3.1 Homological stability

As promised in the introduction, we prove in this section the following theorem:

Theorem 3.1 Let M be a self-dual oriented Riemannian 4-dimensional manifold

with twistor �bration P ! M, such that P contains a surface of degree 1, which

in turn contains the twistor �bre over a point x 2 M. Let InsSU(r)(m; r) denote the

moduli space of based SU(r)-instantons of charge m on (M; x) with r � 2 an arbitrary

rank. There is a stabilisation map � : InsSU(r)(m; r) ! InsSU(r)(m + 1; r) such that

the induced homomorphisms Ht(�) : Ht(Ins
SU(r)(m; r)) ! Ht(Ins

SU(r)(m + 1; r)) on

the homology groups are isomorphisms for all t � m
2
� 1. In the case of M = S4, � is

homotopy equivalent to the original stabilisation map of Taubes ([39]) and the ones

used in [4] and [40].

Throughout this section, we consider homology groups with coe�cients in a �xed

group, which may be assumed to be Z or Z=pZ.

By Theorem 1.5 and 1.10, the moduli space InsSU(r)(m; r) is real-analytically

isomorphic to a moduli space V(S;m; r). Recall from Section 1.3 that thereby � :

S ! P
1
C
is the blowing up of the �rst Hirzebruch surface ~P

2

C
! P

1
C
in n distinct
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points, of which no two are situated on the same �bre over P1. N is a section of �.

For z 2 P
1
C
= C [f1g, Fz is the �bre of � over z, and we assume that F1 is smooth.

We denote with V(S;m; r) the moduli space of framed vector bundles (V; �), where

V is a rank-r vector bundle on S with trivial determinant and second Chern class

equal to m, which is trivial along N [ F1, and where � : VjN �= O
r
N.

Lemma 3.2 For n �xed, all the manifolds V(S;m; r) are homotopy equivalent and

even homeomorphic.

Proof. To see this, we consider two such surfaces S and S0 with exceptional �-

bres over P1; : : : ;Pn and P01; : : : ;P
0
n, respectively. We choose any homeomorphic

homotopy equivalence (C ;P1; : : : ;Pn) ' (C ;P01; : : : ;P
0
n) of n-pointed spaces, that

is a continuous map h : C � [0; 1] ! C such that all restrictions ht = hjC�ftg are

homeomorphisms, h0 is the identity and h1 maps Pi to P
0
i.

Because of Corollary 1.9, this homotopy equivalence lifts along the morphisms

provided by the determinantal divisor to a commutative diagram:

V(S;m; r) ' V(S0;m; r)

# #

Symm(C ;P1; : : : ;Pn) ' Symm(C ;P01; : : : ;P
0
n) 2

We denote with V(n;m; r) an arbitrarily �xed representative V(S;m; r) with the

property that the exceptional �bres of S over P1
C
are F1; : : : ;Fn, where we consider

the integers as elements in C � P
1
C
.

For positive integers s, we let Vs(n;m; r) be the open submanifold of V(n;m; r)

corresponding to all points (V; �) with VjFi trivial for i 2 f1; : : : ; sg � Z � P
1
C
,

and put V0(n;m; r) = V(n;m; r). Moreover, for X any subspace of C , we de�ne

VXs (n;m; r) to be the subspace of Vs(n;m; r) consisting of all points (V; �), where V

is trivial along all �bres of � over P1
C
� X.

Lemma 3.3 If B is a simply connected open domain in C containing the integers

f1; : : : ;max(s; n)g, then Vs(n;m; r) is homotopy equivalent, and in fact homeomor-

phic, to its open subspace VBs (n;m; r).
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Proof. This is done analogously to the previous lemma by considering a homeomor-

phic homotopy equivalence between C and B which leaves 1; : : : ;max(s; n) �xed.

2

Now, we �x B as the open disk around 0 of radius r0 > n and choose a point

z0 2 P
1
C
� (B [ f1g) and a framed ordinary jump (V0; �0) of order 1 and rank r.

We obtain a continuous map

� : V(n;m; r) �= VB(n;m; r)! V(n;m+ 1; r)

by adding to each (V; �) 2 VB(n;m; r) the framed jump (V0; �0) at the point z0 via

the cutting and gluing procedure described in Section 1.3. This � is our candidate

for the stabilisation map. Up to homotopy equivalence, it does not depend on the

chosen r0. In the case n = 0, it coincides with the stabilisation map used in [4] and

[40], and by [4, Lemma 1.22], it is homotopic to the stabilisation map of Taubes.

The above Theorem 3.1 is now a corollary of the following.

Theorem 3.4

Ht(�) : Ht(V(n;m; r))! Ht(V(n;m+ 1; r))

is an isomorphism for all t � m
2
� 1.

The proof of this theorem is the object of Section 3.3.

3.2 L-strati�ed maps

Let

M0 ,! : : : ,! M` = M

be an increasing �ltration of the smooth manifold M by open-dense submanifolds

such that fSi = Mi �Mi�1g is a strati�cation of M by smooth submanifolds, where

the normal bundles NSijM are all orientable. Such a strati�cation M =
`
Si will be

called an L-strati�cation. We denote with di the codimension of Si in M. This notion

of an L-strati�cation was taken over from [4], and will be crucial for the proof of

Theorem 3.4. Examples are provided by the following lemma.
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Lemma 3.5 Let M =
`
i=0;:::;` Si be a strati�cation of a complex manifold by locally

closed submanifolds such that all Mi =
`
p=0;:::;i Sp are open and dense submanifolds

of M. Then it is an L-strati�cation.

Proof. The normal bundles of complex submanifolds are holomorphic bundles and

therefore orientable. 2

The bene�t of such an L-strati�cation is explained in [4, Theorem 5.10]. There,

it is proved that the homology spectral sequence associated to the �ltration M�

starts at the E1-level with

E1
p;q = Hp+q(�

dp(Sp t �));

where Sp t � is the disjoint union of Sp with the one-point space �, producing a

based space, and �dp is the dp-fold reduced suspension. This spectral sequence

abuts upon a �ltration of H�(M). We will use the equivalent statement made in the

next theorem.

Theorem 3.6 For M =
`
Si an L-strati�cation as above with corresponding �ltra-

tion M�, the homology spectral sequence associated to M� starts with E1-terms

E1
p;q = Hp+q�dp(Sp):

As the �ltration is �nite, this spectral sequence converges to a �ltration of H�(M).

Proof. Of course, this result can be obtained as a corollary of [4, Theorem 5.10], by

realising that Hp+q�dp(Sp) = Hp+q(�
dp(Spt�)). But since it is our strongest tool to

showing Theorem 3.4, we give here an extra, self-contained proof.

The �ltration M� induces a �ltration on the complex of singular chains of M.

Associated to this �ltration, there is a spectral sequence converging to a �ltration

of H�(M) with E1-terms

E1
p;q = Hp+q(Mp;Mp�1);

which is just the known homology spectral sequence of a �ltration.
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By the excision axiom, we have Hp+q(Mp;Mp�1) = Hp+q(Mp �U;Mp�1 �U) for

any open U � M with �U � Mp�1. We choose T as a closed tubular neighbourhood

of Sp = Mp�Mp�1 and U = Mp�T, and obtain Hp+q(Mp;Mp�1) = Hp+q(T;T�Sp).

In the notation of [38], the pair (T;T � Sp) is a (dp � 1)-sphere bundle over

Sp, where dp is again the codimension of the stratum Sp in M. The tubular neigh-

bourhood T is homotopy equivalent to the normal bundle of Sp in M, which can be

shown, as usual, with the exponential function. By assumption, the sphere bundle

(T;T�Sp) is therefore orientable, and we can apply the Thom isomorphism theorem

([38, Theorem 5.7.10]) to obtain Hp+q(T;T� Sp) = Hp+q�dp(Sp). 2

For two L-strati�ed manifolds M0 ,! : : : ,! M` = M and M0
0 ,! : : : ,! M0

`0 = M0,

a continuous map f : M ! M0 is said to be L-strati�ed if it preserves the �ltration.

Such an L-strati�ed map induces of course a map of the associated homology Leray

spectral sequences. We also note that necessarily ` � `0. The easiest example of an

L-strati�ed map is obtained if we consider for a given L-strati�cation

M0 ,! : : : ,! M` ,! : : : ,! M`+`0 = M

the inclusion M` ,! M. In this situation, the following lemma holds.

Lemma 3.7 If dp > t0 + 1 for all p > ` and a �xed integer t0, then the inclusion

M` ,! M induces isomorphisms in the homology Ht(M`) �= Ht(M) for all t � t0.

Proof. By evident induction, it is enough to show the assertion in the case `0 = 1.

We de�ne a new L-strati�cation on M consisting only of the two strata S00 = M`

and S01 = S`+1 = M � M`. Due to Theorem 3.6, the E1
p;q terms in the associated

homology Leray spectral sequence vanish for p 6= 1; 2. Recall, that the di�erentials

drpq of a spectral sequence go from Er
pq to E

r
p�r;q+r�1. Our spectral sequence therefore

degenerates at E2, i.e. Ht(M) = �p+q=tE
2
p;q. As the codimension of the stratum S01 is

greater than t0+1, we also have E1
1;q = 0 for q � t0. Hence, Ht(M) = E1

0;t = Ht(M`)

for all t � t0. 2
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Lemma 3.8 Consider a �xed integer t0 and an L-strati�ed map

f :

0
@M =

a
p=0;:::;`

Sp

1
A �!

0
@M0 =

a
p=0;:::;`0

S0p

1
A

with dp and d0p the codimensions of Sp and S0p in M and M0, respectively. If

� dp � d0p for all p = 0; : : : ; `;

� d0p > t0 + 1 for all ` < p � `0;

� Ht(f) : Ht(Sp) ! Ht(S
0
p) are isomorphisms for all p = 0; : : : ; ` and for all

t � t0 + p� dp;

then Ht(f) : Ht(M)! Ht(M
0) are isomorphisms for all t � t0.

Proof. Because of Lemma 3.7 and because of the assumption that d0p > t0 + 1 for

all ` < p � `0, we may assume that ` = `0.

By Theorem 3.6, the homology spectral sequence E�(M�) associated to M� starts

with E1
p;q = Hp+q�dp(Sp). The �rst table of E

�(M�) looks like

...
...

...
...

...
...

E1
2;�2(M�) E1

2;�1(M�) E1
2;0(M�) E1

2;1(M�) E1
2;2(M�) E1

2;3(M�) : : :

# # # # #

E1
1;�1(M�) E1

1;0(M�) E1
1;1(M�) E1

1;2(M�) E1
1;3(M�) : : :

# # # #

E1
0;0(M�) E1

0;1(M�) E1
0;2(M�) E1

0;3(M�) : : :

where the arrows correspond to the di�erentials d1pq. The �rst table of E
�(M0

�) looks

alike. By the assumption, f induces a map E�f : E�(M�) ! E�(M0
�) of spectral

sequences and in particular isomorphisms E1
p;q(M�) �= E1

p;q(M
0
�) for q � t0. Because

of the naturality of the di�erentials, we obtain E2
p;q(M�) �= E2

p;q(M
0
�) for q � t0.

Remembering that drpq : Er
pq ! Er

p�r;q+r�1, we obtain E3
p;q(M�) �= E3

p;q(M
0
�) for

q � t0 � 1 and for those (p; q) with q = t0 and p � 2. Successively, we obtain that

Er
p;q(M�) �= Er

p;q(M
0
�) for all r and all p+q � t0. Because of the convergence of both

spectral sequences, we have proved the lemma. 2
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The previous lemma provides a means to deduce from the homological behaviour

of an L-strati�ed map on the strata its homological behaviour on the whole spaces.

Now, with the next lemma we want to do it the other way around.

Lemma 3.9 Consider a �xed integer t0 and an L-strati�ed map

f :

0
@M =

a
p=0;:::;`

Sp

1
A �!

0
@M0 =

a
p=0;:::;`0

S0p

1
A

with dp and d0p the codimensions of Sp and S0p in M and M0, respectively. If

� dp � d0p for all p = 0; : : : ; `;

� d0p > t0 + 1 for all ` < p � `0;

� Ht(f) : Ht(Sp) ! Ht(S
0
p) are isomorphisms for all p = 1; : : : ; ` and for all

t � t0 + p� dp;

� Ht(f) : Ht(M)! Ht(M
0) are isomorphisms for all t � t0;

then Ht(f) : Ht(M0)! Ht(M
0
0) are isomorphisms for all t � t0.

Proof. Because of Lemma 3.7, we may assume that ` = `0. The statement is

moreover obvious for ` = 0. We de�ne new L-strati�cations on M and M0 by putting

M = M`�1 t S` and M0 = M0
`�1 t S

0
`. Due to our assumptions, a quick look at the

E1-table of the associated homology Leray spectral sequences gives us, analogous to

the proof of Lemma 3.7, the following commutative diagram for all t � t0:

Ht(M`�1)
Htf
�! Ht(M

0
`�1)

# = # =

Ht(M)
Htf
�! Ht(M

0)

Thus, it is enough to show the lemma for f : M`�1 ! M0
`�1, and the proof is

completed via induction. 2

In the next subsection, we will also use the following lemma.
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Lemma 3.10 Let X, X0 and Y be topological spaces, f : X! X0 a continuous map

and t0 an integer. If Htf is an isomorphism for all t � t0, then the same is true for

Ht(f � idY) : Ht(X� Y)! Ht(X
0
� Y):

Proof. Due to the theorem of K�unneth, there is a natural short exact sequence

0 !
L

p+q=t
HpX
 HqY �! Ht(X� Y) �!

L
p+q=t�1

Tor1(HpX;HqY) ! 0

# # #

0 !
L

p+q=t
HpX

0 
 HqY �! Ht(X
0 � Y) �!

L
p+q=t�1

Tor1(HpX
0;HqY) ! 0

where the �rst and the third downward arrows are isomorphisms for t � t0, where-

with the middle downward arrow is an isomorphism, too. 2

3.3 Proof of Theorem 3.4

Let s � 0 be a �xed integer. In the de�nition of the stabilisation map � after Lemma

3.3, we may choose r0 > s. Because of Lemma 3.3, we may thus assume that � maps

Vs(n;m; r) to Vs(n;m+ 1; r).

Proposition 3.11

Ht(�) : Ht(Vs(0;m; r))! Ht(Vs(0;m+ 1; r))

is an isomorphism for all t � m
2
� 1.

Proof. We will proceed by induction on s and m. For s = 0, the claim holds

by the results of [4] and [40], and it moreover holds for trivial reasons in the case

of m = 0. We assume now that our assertion is true for the stabilisation maps

� : Vs0(0;m
0; r)! Vs0(n;m

0 + 1; r) with s0 < s or m0 < m.

We de�ne Vs�1(n;m; r)(p) to be the subspace of Vs�1(n;m; r) consisting of all

points (V; �), where V has a jump of order no greater than p at Fs. Because of the

Semicontinuity Theorem,

Vs�1(n;m; r)(0) ,! : : : ,! Vs�1(n;m; r)(m) = Vs�1(n;m; r)
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is an increasing �ltration by open and dense submanifolds. We also have that �

maps the stratum

Vs�1(n;m; r)(p)� Vs�1(n;m; r)(p� 1)

to the stratum

Vs�1(n;m+ 1; r)(p)� Vs�1(n;m+ 1; r)(p� 1):

Alas, the stratum Vs�1(n;m; r)(p)�Vs�1(n;m; r)(p� 1) is isomorphic to the variety

Vs(n;m� p; r)� J (p; r), and therefore non-smooth for p > 1. Hence, to obtain an

L-strati�cation we have to re�ne our considerations.

We take J (p; r)(1) as the open regular part of the variety J (p; r) and de�ne

inductively J (p; r)(q) as the open regular part of J (p; r) � J (p; r)(q � 1). We

obtain a strati�cation

Vs�1(n;m; r)(p) =
a

q=0;:::;`

Sq(s;m; p);

where we have that S0(s;m; p) is equal to Vs�1(n;m; r)(p � 1) and where we have

that Sq is isomorphic to Vs(n;m� p; r)� J (p; r)(q� 1) for q � 1. Lemma 3.5 tells

us that this is in fact an L-strati�cation. Moreover,

Vs�1(n;m; r)(p) =
a

q=0;:::;`

Sq(s;m; p)
�
�! Vs�1(n;m+ 1; r)(p) =

a
q=0;:::;`

Sq(s;m+ 1; p)

is an L-strati�ed map.

A �rst result of this L-strati�cation is that

Ht(Vs�1(n;m+ 1; r)(m))! Ht(Vs�1(n;m+ 1; r))

are isomorphisms for all t � m
2
. Indeed, as dimCJ (m + 1; r) = (2r� 1)(m + 1) and

dimCVs�1(n;m+1; r) = (2r)(m+1), this is a consequence from Lemma 3.7. Because

of our assumption, this also implies that

Ht(�) : Ht(Vs�1(n;m; r)(m))! Ht(Vs�1(n;m+ 1; r)(m))

are isomorphisms for all t � m
2
.
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Now we claim that

Ht(�) : Ht(Vs�1(n;m; r)(p))! Ht(Vs�1(n;m+ 1; r)(p))

are isomorphisms for all t � m
2
if the same is true for

Ht(�) : Ht(Vs�1(n;m; r)(p + 1))! Ht(Vs�1(n;m+ 1; r)(p + 1)):

To show this claim, we look again at the L-strati�ed map

Vs�1(n;m; r)(p + 1) =
`
q=0;:::;` Sq(s;m; p + 1)

#�

Vs�1(n;m+ 1; r)(p + 1) =
`
q=0;:::;` Sq(s;m+ 1; p + 1)

and verify the following facts:

(i) Since

dimRJq(p + 1; r) � 4rp + 4r� 2p� 2q

dimRVs�1(n;m� p� 1; r) = 4rm� 4rp� 4r

dimRVs�1(n;m; r)(p + 1) = 4rm;

we have for q � 1 the codimension of Sq(s;m; p + 1) in Vs�1(n;m; r)(p + 1) as

equal to the codimension of Sq(s;m+ 1; p + 1) in Vs�1(n;m+ 1; r)(p + 1) and

as greater than or equal to 2p + 2q;

(ii) Because of our assumption, the homomorphisms

Ht(�) : Ht(Vs�1(n;m� p� 1; r))! Ht(Vs�1(n;m� p; r))

are isomorphisms for t � m�p�1
2
� 1. By Lemma 3.10, the homomorphisms

Ht(�) : Ht(Sq(s;m; p + 1))! Ht(Sq(s;m+ 1; p + 1))

are also isomorphisms for t � m�p�1
2
� 1 and q � 1;

Combining (i) and (ii), Lemma 3.9 implies that

Ht(�) : Ht(S0(s;m; p + 1))! Ht(S0(s;m+ 1; p + 1))
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are isomorphisms for t � m
2
� 1, which is our above claim. By decreasing induction

on p we obtain that

Ht(�) : Ht(Vs(n;m; r))! Ht(Vs(n;m+ 1; r))

are isomorphisms for all t � m
2
. 2

Let E(m; r) be the space of framed exceptional jumps as in Section 2. We de�ne

E(m; r)(0) to be the open subspace of points (V; �), where V is trivial along one of

the two exceptional lines E0 and E1. E(m; r)(0) consists of two components, both

isomorphic to J (m; r). For i � 1, we de�ne E(m; r)(i) as the regular locus of the

variety E(m; r) � E(m; r)(i � 1). Thus, we have constructed a �nite strati�cation

E(m; r) =
`
i�0 E(m; r)(i) of E(m; r). For i � 1, the strata E(m; r)(i) are smooth

manifolds. As the dimension of E(m; r) equals (2r � 1)m, we have the complex

dimension of E(m; r)(i) as less than or equal to (2r� 1)m� i. A detailed description

of these strata can be obtained from the monadic description of E(m; r) in Section

2, but will be not used here.

We recall that � : S ! P
1 is the blowing up of a ruled surface such that the

exceptional �bres of � are precisely F1; : : : ;Fn. We �x an integer n � s � 1 and

describe Fs as the union of two (�1)-curves E0 and E1.

We let Vs�1(n;m; r; `) be the subspace of Vs�1(n;m; r) of all points (V; �), where

either V has jumping order at Fs less than or equal to `, or where V is trivial along

at least one of the exceptional lines E0 and E1. We obtain a strati�cation of the

space Vs�1(n;m; r; `) into strata Vs�1(n;m; r; `)(i) as follows:

� Vs�1(n;m; r; `)(0) is the space of all points (V; �) in Vs�1(n;m; r; `), where

either V is trivial along E0 or along E1, or where V has a jump of order less

than ` at Fs, i.e Vs�1(n;m; r; `)(0) = Vs�1(n;m; r; `� 1).

� For i � 1, Vs�1(n;m; r; `)(i) = Vs(n;m�`; r)�E(`; r)(i), where ((V; �); (V
0; �0))

corresponds to the point in Vs�1(n;m; r) obtained by adding the framed jump

(V0; �0) to the framed vector sheaf (V; �) at the �bre Fs.
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Lemma 3.12 Assume that

Ht(�) : Ht(Vs(n;m; r))! Ht(Vs(n;m+ 1; r))

and

Ht(�) : Ht(Vs�1(n� 1;m; r))! Ht(Vs�1(n� 1;m+ 1; r))

are isomorphisms for �xed n � s � 1, r � 2, and for all m � 1 and all t � m
2
� 1.

Then

Ht(�) : Ht(Vs�1(n;m; r; 0))! Ht(Vs�1(n;m+ 1; r; 0))

are isomorphisms for all m � 1 and all t � m
2
� 1.

Proof. By the de�nition of the stabilisation map, � indeed maps Vs�1(n;m; r; 0) to

Vs�1(n;m+1; r; 0). The space Vs�1(n;m; r; 0) is the union of the two open subspaces

U0(m) and U1(m), where Ui(m) contains all points (V; �) with V trivial along Ei.

Corresponding to the contraction of Ei, Ui(m) is isomorphic to Vs�1(n � 1;m; r).

The intersection U01(m) = U0(m) \ U1(m) is just the space Vs(n;m; r). Due to

our arrangements, we may assume that � maps Ui(m) to Ui(m + 1) and U01(m) to

U01(m + 1).

We have the Mayer-Vietoris sequence:

...
...

# #

Hp(U0(m);Z)� Hp(U1(m)) ! Hp(U0(m + 1);Z)� Hp(U1(m + 1))

# #

Hp(Vs�1(n;m; r; 0)) ! Hp(Vs�1(n;m+ 1; r; 0))

# #

Hp�1(U01(m)) ! Hp�1(U01(m + 1))

# #

...
...

and by our assumptions and a diagram chase, we have proved our claim. 2



3.3 Proof of Theorem 3.4 65

Lemma 3.13 Let ` � 1 be a �xed integer, and assume that

Ht(�) : Ht(Vs(n;m; r))! Ht(Vs(n;m+ 1; r));

Ht(�) : Ht(Vs�1(n� 1;m; r))! Ht(Vs�1(n� 1;m+ 1; r))

and

Ht(�) : Ht(Vs�1(n;m; r; `� 1))! Ht(Vs�1(n;m+ 1; r; `� 1))

are isomorphisms for �xed n � s � 1, r � 2, and for all m � 1 and all t � m
2
� 1.

The homomorphisms

Ht(�) : Ht(Vs�1(n;m; r; `))! Ht(Vs�1(n;m+ 1; r; `)):

are isomorphisms for all t � m
2
� 1.

Proof. Because of Lemma 3.5, we have

Vs�1(n;m; r; `) =
a
i�0

Vs�1(n;m; r; `)(i)

as an L-strati�cation. Due to its de�nition, the stabilisation map � restricts to an

L-strati�ed map:

Vs�1(n;m; r; `)

# =

Vs�1(n;m; r; `� 1) t
`
i�1 Vs(n;m� `; r)� E(`; r)(i)

#�

Vs�1(n;m+ 1; r; `� 1) t
`
i�1 Vs(n;m� `+ 1; r)� E(`; r)(i)

# =

Vs�1(n;m+ 1; r; `)

By assumption,

Ht(Vs�1(n;m; r; `� 1))! Ht(Vs�1(n;m+ 1; r; `� 1))

are isomorphisms for all t � m
2
� 1. Because of ` � 1, we also have that the

homomorphisms

Ht(Vs(n;m� `; r))! Ht(Vs(n;m� `+ 1; r))
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are isomorphisms for all t � m�`
2
, and therefore Lemma 3.10 implies that

Ht(Vs(n;m� `; r)� E(`; r)(i))! Ht(Vs(n;m� `+ 1; r)� E(`; r)(i))

are isomorphisms for all t � m�`
2
.

Since

dimCVs�1(n;m; r; `) = 2rm;

dimCVs(n;m� `; r) = 2r(m� `);

dimC E(`; r)(i) � (2r� 1)`� i;

we obtain 2(`+ i) as a lower bound for the real codimension di of Vs�1(n;m; r; `)(i)

in Vs�1(n;m; r; `), i � 1. Moreover, as di does not depend on m, it equals also the

real codimension of Vs�1(n;m+ 1; r; `)(i) in Vs�1(n;m+ 1; r; `). We infer that

Ht(Vs�1(n;m; r; `)(i))! Ht(Vs�1(n;m+ 1; r; `)(i))

are isomorphisms for all t � m
2
+ i� di for all i � 0. We see that all conditions of

Lemma 3.8 are ful�lled and obtain the desired result. 2

Proof of Theorem 3.4. The only remaining tasks are some evident inductions:

First, we begin with induction on n, the number of blown up points. The start of the

induction at the classical situation n = 0 is provided by [4] and [40]. The induction

step itself is a decreasing induction on s = n; : : : ; 0, which shows that the statement

holds for

� : Vs�1(n;m; r)! Vs�1(n;m+ 1; r)

if it holds for

� : Vs(n;m; r)! Vs(n;m+ 1; r):

The start of this induction at s = n is given by Proposition 3.11, and the induction

step is proved by induction on ` = 0; : : : ;m: if the statement holds for

� : Vs�1(n;m; r; `� 1)! Vs�1(n;m+ 1; r; `� 1);

then it is also true for

� : Vs�1(n;m; r; `)! Vs�1(n;m+ 1; r; `):
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The necessary ingredients for this induction are provided by the Propositions 3.14

and 3.15. The induction stops at ` = m because of

Vs�1(n;m; r;m) = Vs�1(n;m; r)

and because of

Ht(Vs�1(n;m+ 1; r;m)) �= Ht(Vs�1(n;m+ 1; r))

for all t � m
2
�1. The last statement is an easy consequence from Lemma 3.7 applied

to the L-strati�cation

Vs�1(n;m+ 1; r) =
a
i�0

Vs�1(n;m+ 1; r;m+ 1)(i): 2

3.4 Homotopical stability

The strong part of the results in [4] and [40] is, of course, that the stabilisation

map � : V(0;m; r) ! V(0;m+ 1; r) induces isomorphisms on the homotopy groups

�tV(0;m; r)! �tV(0;m+ 1; r) for all t � m
2
� 2. To obtain an analogous homotopy

statement for the stabilisation � : V(n;m; r)! V(n;m+1; r), we �rst determine the

fundamental group of V(n;m; r).

Theorem 3.14 The fundamental group of V(n;m; r) does not depend on n and m.

To be precise,

�1(V(n;m; r)) �=

8><
>:

Z=2Z for r = 2;

0 for r > 2:

Proof. The result is known in the classical case of n = 0 by [18], Theorem 3.13, for

r = 2, and by [40], Theorem 4.14, for r > 2. The ruled surface considered is thereby

the �rst Hirzebruch surface, of which our S is a blowing up with exceptional divisor

E.

We de�ne S0 as the open dense submanifold in V(n;m; r) of all points (V; �),

where V is trivial along E and has m jumping �bres of order 1. We de�ne further

S1 to be the locally closed submanifold of points (V; �), where V is non-trivial
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along E and has m jumping �bres of order 1, and moreover S2 as the locally closed

submanifold of points (V; �), where V is trivial along E and has m � 2 jumping

�bres of order 1 and one of order 2. We have S = S0 [ S1 [ S2 as an open dense

submanifold of V(n;m; r) with a complement of real codimension greater than or

equal to 4. Therefore, �1(V(n;m; r)) = �1(S).

The submanifolds S1 and S2 have both real codimension 2 in S. Hence, repre-

sentative loops of classes in �1(S) may be chosen to lie in S0. As Y. Tian shows

explicitly in his proof of [40, Theorem 4.14], and as it has been shown by J. Hur-

tubise in the case of r = 2 before ([18, Theorem 3.13]), any loop in S0 is homotopic in

S0 [ S2 to a loop in a general �bre of � : S0 ! Symm(C ). Hence, we may represent

any class in �1(S) by a loop in such a �bre of �jS0 , as well. Consequently, �1(S) is

a quotient of �1(J (1; r)
m) by a subgroup.

Since �1(J (m; r)) = 0 for r > 2, by [40, Lemma 4.12], it remains only to exam-

ine the case r = 2. There we have J (1; 2) homotopy equivalent to SO(3) by [18,

Proposition 3.10], and therefore �1(J (m; r)) �= Z=2Z. We denote the generators

of �1(J (1; 2)
m) �= (Z=2Z)m by (0; : : : ; 0; 1; 0; : : : ; 0). It is not di�cult to see, that

(1; 0; : : : ; 0) is not contractible in S. On the other side, monodromies in S0 inter-

change the generators (cf. [40, Remark 4.21]), and we obtain �1(V(n;m; 2)) �= Z=2Z.

2

Theorem 3.15 The stabilisation map � : V(n;m; r) ! V(n;m + 1; r) induces iso-

morphisms on the homotopy groups

�t(�) : �t(V(n;m; r)) �= �t(V(n;m+ 1; r))

for all t � m
2
� 2.

Proof. In the case of r > 2, the fundamental group of V(n;m; r) vanishes by the

previous theorem, and our claim holds as a direct consequence of Theorem 3.4 by

the Whitehead Theorem [5, Theorem VII.11.2].
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For the case of r = 2, we consider the diagram

~V(n;m; r)
~�
�! ~V(n;m+ 1; r)

# #

V(n;m; r)
�
�! V(n;m+ 1; r)

of the universal two-fold coverings. We note that the inverse images of an L-

strati�cation on V(n;m; 2) induce an L-strati�cation on ~V(n;m; 2) and make the

covering to an L-strati�ed map. Moreover, this is an L-strati�ed map preserving

the codimension of the strata.

In the following, we obtain the two-fold coverings of the strata and submanifolds

under discussion by embedding them into some V(n;m; 2) and restricting the asso-

ciated covering. Because of the universal property, it does not matter in which of

the possible V(n;m; 2) we have embedded.

From [4] we know that

Ht(~V(0;m; 2))! Ht(V(0;m; 2))

are isomorphisms for all t < m. If we recall the L-strati�cations constructed in the

proof of Proposition 3.11, we obtain by Lemma 3.9 that

Ht(~Vs(0;m; 2))! Ht(Vs(0;m; 2))

are isomorphisms for all t � m
2
� 1. We also learn that

Ht(~Vs(0;m; 2))! Ht(~Vs(0;m+ 1; 2)):

In this way we proceed with Lemma 3.12 and 3.13; i.e., we replace in the as-

sumptions and assertions the conditions

Ht(�) : Ht(Sm)! Ht(Sm+1)

is an isomorphism for certain strata Sm and certain t

by

Ht(~Sm)
Ht(~�)
�! Ht(~Sm+1)

# #

Ht(Sm)
Ht(�)
�! Ht(Sm+1)

is a diagram of isomorphisms for those Sm and t:
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The proofs of both lemmas are easily generalised for the statements so obtained,

and the �nal proof of Theorem 3.4 can be adapted as well. We obtain that

Ht(~V(n;m; 2))
Ht(~�)
�! Ht(~V(n;m+ 1; 2))

# #

Ht(V(n;m; 2))
Ht(�)
�! Ht(V(n;m+ 1; r))

is a diagram of isomorphisms for all t � m
2
� 1.

It is quite obvious that

�t(�) : �t(V(n;m; 2))�!�t(V(n;m+ 1; r))

is an isomorphism. Indeed, we have seen in the proof of Theorem 3.14 that both

fundamental groups are generated by the fundamental group of a general �bre along

� and �t(�) is of the form

�t(J (1; 2))
m=Symm �! �t(J (1; 2))

m+1=Symm+1;

where the symmetric groups act by permutation. Since � just adds a new jump of

order one, the map is moreover induced by

�t(J (1; 2))
m
�! �t(J (1; 2))

m
� f0g

and therefore an isomorphism.

The universal two-fold covering is in particular a �bration, where the higher

homotopy groups �t of the �bre vanish for t � 2. From the exact homotopy sequence

of a �bration ([5, Theorem VII.6.7]) we infer that

�t(~V(n;m; 2))�!�t(V(n;m; 2))

is an isomorphism for all t � 2.

As universal coverings are simply connected, Whitehead's Theorem and the

above homology considerations yield

�t(~V(n;m; 2))�=�t(~V(n;m+ 1; 2))
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for all t � m
2
� 2, and the naturality of the homotopy functor implies

�t(V(n;m; 2))�=�t(V(n;m+ 1; 2))

for all t � m
2
� 2. 2

Thus we have proved, in generalisation of [4] and [40], the following Atiyah-Jones

type result.

Theorem 3.16 Let M be a self-dual oriented Riemannian 4-dimensional manifold

with twistor �bration P ! M, such that P contains a surface of degree 1, which in

turn contains the twistor �bre over a point x 2 M. For r � 2, there is a stabilisa-

tion map � : InsSU(r)(m; r) ! InsSU(r)(m + 1; r) between the moduli spaces of based

SU(r)-instantons of charge m and charge m + 1 on (M; x), such that the induced

homomorphisms �t(�) : �t(Ins
SU(r)(m; r))! �t(Ins

SU(r)(m + 1; r)) on the homotopy

groups are isomorphisms for all t � m
2
� 2. In the classical situation M = S4, � is

homotopy equivalent to the original stabilisation map of Taubes ([39]) and the ones

used in [4] and [40].

3.5 Instantons on blown up ruled surfaces

It is quite obvious that we may apply the techniques of Sections 3.2 and 3.3 to

generalise the results of J.C. Hurtubise and R.J. Milgram in [19] in the following

way:

Theorem 3.17 Let X be the blowing up of a ruled complex surface X0 in n points,

of which no two are situated on the same ruling �bre. ForMm the moduli space of

SU(2)-instantons of charge m on X, there is a stabilisation map � :Mm !Mm+1

such that Ht� is an isomorphism for all 0 � t � m
2
� c1(X). Hereby, c1(X) = c1(X

0)

coincides with the c1 explicitly computed in [19]. Moreover, in the case X = X0, the

stabilisation map is the same as the one constructed in [19].

Theorem 3.18 Let X be the blowing up of P2
C
in n distinct points. For Mm the

moduli space of SU(2)-instantons of charge m on X, there is a stabilisation map
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� : Mm ! Mm+1 such that Ht� is an isomorphism for all 0 � t � m
2
� 2. In the

case X = P
2
C
, the stabilisation map is the same as the one constructed in [19].

4 Completion of the moduli space

4.1 An embedding into a quotient scheme

We recall now the general setup, where S0 was isomorphic to the blowing up of the

projective plane over the �eld k in some zero-dimensional centre and F0 was a line on

S0 not meeting the exceptional locus E. We may think of S0 ! P
2
k as the composition

of n monoidal transformations for some n � 1.

From now on, we consider two smooth rational curves N and F over k and put

S to be the blowing up of N � F in some zero-dimensional centre with exceptional

divisor E. We have two at morphisms � : S! N and � : S! F induced by the two

projections. For P and Q points on N and F, we denote with FP and NQ the �bres

of � and � over P and Q, respectively. We set � 2 N and � 2 F to be the generic

points on our curves.

Moreover, we �x two closed points P1 2 N and Q1 2 F, such that the �bres

F1 = FP1 and N1 = NQ1 are sections of � and �. For F an arbitrary module

sheaf on S and two integers p and q, we denote with F(p; q) the tensor product

F 
 ��ON(pP1) 
 �
�OF(qQ1). We note that the canonical divisor on S is of the

form KS = OS(�2;�2)(E
0), where E0 is an e�ective divisor with support on E and

self-intersection (E0)2 = �n.

V(m; r) denotes the functor as well as the �ne moduli space of framed vector

sheaves (V; �) on S, where V is a vector sheaf with rank r, trivial determinant and

second Chern class equal to m, which is trivial along F1 [ N1, and where the

framing � is a �xed isomorphism VjF1[N1
�= Or

F1[N1.

We think of S as the birational model of S0 obtained by blowing up S0 in two

distinct points on F0 and then contracting the strict transform of F0. From there, it

is obvious that V(m; r) is naturally isomorphic to the moduli space of framed vector
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sheaves Vec(S0;F0;Or
F0; c1 = 0; c2 = m).

If (V; �) is an element in V(m; r)(Spec k), then V(�1;�1) has vanishing Euler

characteristic along all �bres of � and �, and moreover vanishing cohomology along

general �bres. Due to the determinantal divisor with respect to � and �, we therefore

obtain two morphisms � : V(m; r) ! SymmN and � : V(m; r) ! SymmF as in

Section 1.3.

In the following, we construct for each point (V; �) in V(m; r) monomorphisms

� : V ,! Or
S(m; 0) and  : V ,! Or

S(0;m). As we would like for these maps to be

natural, we actually construct them for families.

Lemma 4.1 Let T be an integral algebraic k-scheme and (~V; ~�) an element in

V(m; r)(T). Then ~� induces monomorphisms

~� : ~V ,! OT 2� O
r
S(m; 0)

and

~ : ~V ,! OT 2� O
r
S(0;m);

which are canonically determined as elements in the natural sets Quot(Or
S(m; 0))(T)

and Quot(Or
S(0;m))(T) by the isomorphism class of the framed module (~V; ~�).

Proof. We put W = Or
S(m; 0) and

~W = OT 2� O
r
S(m; 0). Because of symmetry, it is

su�cient to prove the lemma for W.

Let ~N = T� N, ~N1 = T� N1 and ~� = idT � �. If we �x coordinates on N, we

obtain a �xed isomorphism

O
r
T�S(D)

�= ~W

for D � ~N any family of e�ective divisors of order m in N. The short exact sequence

0! ~V_(�~N1)! ~V_ ! ~V_j~N1 ! 0

yields the exact sequence

0! ~�� ~V
_
! ~V_j~N1 ! R1~�� ~V

_(�~N1)! R1~�� ~V
_
! 0;
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where we have identi�ed ~N and ~N1 via ~�. The kernel K of R1~�� ~V
_(�~N1)! R1~�� ~V

_

is an OD-module for D some family of e�ective divisors of order m appearing as the

determinantal divisor associated to ~V_(�~N1).

From the exact sequence

0! ~��~�� ~V
_
! ~�� ~V_j~N1 ! ~��K ! 0

we thus obtain a factorization ~�� ~V_j~N(�D) ,! ~��~�� ~V
_. The framing ~� induces

~�� ~V_j~N1(�D)
�= Or

T�S(�D) = W_. Moreover, we note that the natural homomor-

phism ~��~�� ~V
_ ! V_ is injective, too. Hence, we have a monomorphism

~W_ ,! ~V_

with a cokernel of pure torsion. By dualization we obtain the desired monomorphism

~� : ~V ,! ~W:

Since ~V is locally free, the whole construction is compatible with restriction to

a �bre over a point t 2 T. In other words, ~�jftg�S is still injective. Therefore, if ~Q

denotes the cokernel of ~�, then the Chern classes of ~Qjftg�S are locally constant over

T. Hence, by [13], Theorem III.9.9., ~Q is at over T and ~� represents an element in

Quot(W)(T).

Since two isomorphisms between Or
T�S(D) and

~W resulting from two di�erent

choices of coordinates along N di�er by a scalar, ~� is well determined as an element

in Quot(W)(T) without �xing any coordinates. Obviously, this element does not

depend on the choice of a representative in the isomorphism class of ( ~V; ~�). 2

The functor V(m; r) is represented by a smooth algebraic space over k. This

space admits an etale covering by integral algebraic k-schemes. Thus, the above

natural mappings

V(m; r)(T)! Quot(Or
S(m; 0))(T)

and

V(m; r)(T)! Quot(Or
S(0;m))(T)
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for integral algebraic k-schemes T extend to natural transformations

V(m; r)! Quot(Or
S(m; 0))

and

V(m; r)! Quot(Or
S(0;m)):

Moreover, if we have �xed an ample divisor H on S, then we have natural trans-

formations from V(m; r) to the projective quotient schemes Quotf(Or
S(m; 0)) and

Quotg(Or
S(0;m)), where f and g are certain Hilbert polynomials.

Theorem 4.2 The natural transformations

V(m; r)! Quotf(Or
S(m; 0))

and

V(m; r)! Quotg(Or
S(0;m))

are open embeddings.

Proof. Note that all three functors are represented by �ne moduli spaces. The

morphisms due to Lemma 4.1 are obviously injective, and we will show the bijectivity

of the tangent maps. Again, we put W = Or
S(m; 0) and, because of symmetry, it is

enough to prove the Theorem for W.

Let (V; �) be a point in V(m; r). Since for a free vector sheaf along a projective

line a trivialisation is already given by a framing in one point, we may consider � as

restricted to N1, as long as we do not omit the condition that VjF1 is free. Thus,

the tangent space of (V; �) in V(m; r) is naturally identi�ed with Ext1(V;V(�N1))

(cf. [33]). By the proof of [33], Theorem 1.2, there is a one-to-one correspondence

between tangent vectors e 2 Ext1(V;V(�N1)) and commutative diagrams with

exact lines:

0 ! V �! ~V �! V ! 0

# # #

0 ! VjN1 �! ~VN1 �! VjN1 ! 0

#� #~� #�

0 ! Or
N1

�! Or
N1
�Or

N1
�! Or

N1
! 0
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On the other side, for 0! V
�
�!W �! Q! 0 a point in the image of V(m; r) in

QuotfW, the tangent space is naturally identi�ed with Hom(V;Q). From the proof

of this fact in [12], we learned that there is a one-to-one correspondence between

tangent vectors ' 2 Hom(V;Q) and commutative diagrams with exact lines and

columns:

0 0 0

# # #

0 ! V
�
�! W �! Q ! 0

# # #

0 ! ~V
~�
�! W �W �! ~Q ! 0

# # #

0 ! V
�
�! W �! Q ! 0

# # #

0 0 0

In terms of these diagrams, the tangent map

Ext1(V;V(�N1))! Hom(V;Q)

is described as follows: If U is the maximal neighbourhood on N1 such that V

is trivial along all �bres over U, then ~V is again trivial along all such �bres. In

the same way as � induces an isomorphism � 0 : Vj��1U �= O
r
��1U, ~� induces an

isomorphism ~� 0 : ~Vj��1U �= O
r
��1U � O

r
��1U, and in fact, ~� 0 = � 0 � � 0. Hence, the

pole order of ~� 0 along the complement of ��1U is also not greater than m, and we

obtain an extension ~� : ~V!W�W compatible with the � 0s obtained from Lemma

4.1. Moreover, we have constructed the diagram belonging to the image under the

tangent map.

We obtain an inverse to this tangent map by observing that, starting with a

diagram belonging to a tangent vector at a point in the image of V(m; r), ~� induces

a framing of ~V along F�, and hence by restriction a framing in the generic point

of N1. Since ~V is again trivial along N1, this framing induces an isomorphism

~� : ~VjN1
�= Or

N1
�Or

N1
compatible with �. 2
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4.2 Smoothness of the completion

Recall that V(m; r) is smooth and irreducible. We de�ne V�(m; r) and V�(m; r) to

be the closures of V(m; r) in Quotf(Or
S(m; 0)) and Quotg(Or

S(0;m)), respectively. Of

course, the projective varieties obtained in this manner do not depend on the chosen

ample divisor H.

Lemma 4.3

(i) Let Or
S(m; 0)!! Q be a point in V�(m; r). Then Q is concentrated in �nitely

many �bres of �.

(ii) Let Or
S(0;m) !! Q be a point in V�(m; r). Then Q is concentrated in �nitely

many �bres of �.

Proof. Again, because of symmetry, we have only to show (i).

As a cokernel of a monomorphism of a sheaf of rank r into a vector sheaf of

rank r, Q is a direct sum of torsion concentrated in points and torsion concentrated

on curves. We are to show that with respect to � no horizontal curves may occur.

For that, we consider the Hilbert polynomial �(Q(`F1)). Since Hilbert polynomials

are locally constant and additive in exact sequences, we may compute this Hilbert

polynomial as the di�erence �(Or
S(m; 0)(`F1)) � �(V(`F1)) for (V; �) arbitrarily

chosen in V(m; r). In this way, we obtain �(Q(`F1)) = rm+m = constant. But for

any horizontal curves of �, the restriction of F1 is ample. Hence, if the support of

Q would contain horizontal curves, �(Q(`F)) would be a polynomial of degree 1. 2

Corollary 4.4

(i) Let Or
S(m; 0) !! Q be a point in V�(m; r). The kernel V of this quotient

restricted to F� is free of rank r.

(ii) Let Or
S(0;m) !! Q be a point in V�(m; r). The kernel V of this quotient

restricted to N� is free of rank r.
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Proof. Again, we are to show only (i). Since Q is concentrated in some �bres of �,

there is an open neighbourhood U in N, such that Vj��1U ,! Or
S(m; 0)j��1U is an

isomorphism. And the restriction of Or
S(m; 0) to F� is free. 2

Theorem 4.5 V�(m; r) and V�(m; r) are smooth projective varieties of dimension

2mr.

Proof. It is enough to show the statement for V�(m; r). This variety is projective,

irreducible and of dimension 2mr as closure of V(m; r) in the projective scheme

Quotf(Or
S(m; 0)). It remains to show the smoothness.

We de�ne V 0�(m; r) as the subfunctor of Quot
fOr

S(m; 0) which associates to an

algebraic space T all those elements

OT 2� O
r
S(m; 0)!!

~Q 2 Quotf(Or
S(m; 0))(T);

where ~Q
k(t) is concentrated in �nitely many �bres over Spec k(t)�N for all points

t 2 T. Because of Lemma 4.3, we have V 0�(m; r) ,! V
0
�(m; r). It is enough to show

that the deformation functor of all points in V 0�(m; r)(Spec k) is formally smooth,

which is provided by the following lemma. 2

Lemma 4.6 Let W = Or
S(m; 0) and consider an element

W!! Q 2 V 0�(m; r)(Spec k)

with kernel � : V ,!W and an arbitrary �bre N� of � isomorphic to P
1
k.

(i) The functor DefV�(m;r)(W!! Q) is naturally equivalent to a deformation func-

tor Def(V; � : V!WjN�
) of framed module sheaves.

(ii) The resulting functor Def(V; � : V!WjN�
) is formally smooth.

Proof. Let (T; t0) be a pointed k-scheme and

0! ~V
~�
�! ~W �! ~Q! 0
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an element of V�(m; r)(T) together with an identi�cation ~�jt0�S = �. We de�ne

� and ~� as the composition of � and ~� with the two restrictions W ! WjN�
and

~W ! ~WjT�N�
, respectively. In this natural way we have obtained a deformation

(~V; ~� : ~V! ~WjT�N�
) of the framed module (V; � : V!WjN�

).

Conversely, let (~V; ~� : ~V ! ~WjT�N�
) be a deformation over (T; t0) of such

a framed module (V; � : V ! WjN�
) obtained as above. By Corollary 4.4, we

know that after restricting T to a suitable open neighbourhood of t0, the restriction

of ~V to T � F� is free of rank r. The determinantal divisor associated to the

module R1~�� ~V(�T � N�) is a family of e�ective divisors of order m on N. For

U the complement of the support of R1~�� ~V(�T � N�), we have ~�� ~VjU = ~Vj~��1U,

and ~�� induces a monomorphism

~� 0 : ~Vj~��1U ,! O
r
~��1U:

By assumption, ~� 0ft0g�~��1U extends to a monomorphism � : V ,! W, namely the

same � from which � was derived. Hence, possibly after restricting T further to a

neighbourhood of t0, ~�
0 extends to a monomorphism ~� : ~Vj~��1U ,! ~W. The maps

thus obtained

DefV�(m;r)(W!! Q)(T) �!
 �

Def(V; � : V!WjN�
)

are obviously functorial and inverse to each other. Hence, we have proved statement

(i).

By [20, Theorem 4.1], Def(V; � : V!WjN�
) is formally smooth if the hyper-ext

group E xt2(V; � : V !WjN�
) vanishes. The kernel of � is just V(�N�). We let M

be the cokernel and obtain a short exact sequence of complexes

0! K�
0 ! K�

1 ! K�
2 ! 0

with

K0
0 = 0�!K1

0 = 0 �! K2
0 = M;

K0
1 = V

�
�! K1

1 = WjN�
�! K2

1 = M;
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K0
2 = V

�
�! K1

2 = WjN�
�! 0:

We infer an exact sequence

E xt2(V;K�
1)! E xt2(V;K�

2)! E xt3(V;K�
0):

We recall that if K� ! I� is a quasi-isomorphism from a complex K� to a complex

of injective modules, then E xti(V;K�) is equal to Hi(Hom(V;�)(I�)). As a �rst

consequence, E xt3(V;K�
0) = Ext1(V;M). Since VjN�

! WjN�
is generically an

isomorphism due to the de�nition of V 0�(m; r), we have M as a torsion module on

N�. Since V is torsion free, we have a short exact sequence

0! V �! V__ �! T! 0;

where the bidual V__ is locally free as a reexive sheaf on a smooth surface and

where T is a torsion sheaf concentrated in a subscheme of S of codimension 2, the

algebraic set of singularities of V (cf. [35, II.1.1]). Therefore, we may choose the

�bre N� of � in such a way that V is locally free in a neighbourhood of N� and thus

locally free restricted to N�. We have this freedom of choice because of statement

(i). In the exact sequence

0! T orOS
1 (V;ON�

) �! V(�N�) �! V �! VjN�
! 0

we see that T orOS
1 (V;ON�

) is a torsion sheaf with support of codimension 2 and

V(�N�) is torsion free; therefore T orOS
1 (V;ON�

) vanishes. Hence, every locally free

resolution L� ! V restricts to a locally free resolution L�jN�
! VjN�

, and with [13,

Proposition III.6.5 and 6.9] we obtain

Ext1S(V;M) = H0(S; Ext1(V;M)) = H0(S;Hi(L_� 
M)) = H0(N�;H
i(L_� jN�


M))

= H0(N�; Ext
1(VjN�

;M)) = Ext1N�
(VjN�

;M);

where we have used that M = M(H) for any divisor H. We obtain that Ext1(V;M)

is equal to H1(N�; (VjN�
)_ 
M), which vanishes, as (VjN�

)_ 
M is concentrated in

�nitely many points.
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Thus, we have E xt2(V; � : V ! WjN�
) as a quotient of E xt2(V;K�

1). Since any

complex of injective modules quasi-isomorphic to K�
1 is in fact an injective resolution

of V(�N�), we have E xt
2(V;K�

1) = Ext2(V;V(�N�)). Therefore it remains to show

that Ext2(V;V(�N�)) vanishes.

We keep T as the cokernel of V ,! V__, which is either zero or a torsion sheaf

concentrated in �nitely many points. We consider the spectral sequence

Ep;q
2 = Hq(S; Extp(V;V(�N�)))) Extp+q(V;V(�N�)):

Since V is torsion free, it is of projective dimension 1 and Ext2(V;V(�N�)) van-

ishes; in particular H0(S; Ext2(V;V(�N�))) = 0. Because V ,! V__ is an isomor-

phism outside the support of T, Ext1(V;V(�N�)) is concentrated in �nitely many

points. Hence, H1(S; Ext1(V;V(�N�))) vanishes, too. Finally, we take a look at

H2(S;Hom(V;V(�N�))): From the short exact sequence

0! V! V__ ! T! 0;

we obtain the short exact sequence

0!Hom(V__;V(�N�))!Hom(V;V(�N�))! Ext
1(T;V(�N�))! 0

and infer an exact sequence

H2(S;Hom(V__;V(�N�))) ! H2(S;Hom(V;V(�N�)))

! H2(S; Ext1(T;V(�N�))):

Because of Serre duality and V__ being locally free, we have

H2(S;Hom(V__;V(�N�))) = H2(S;V_ 
 V(�N�))

= H0(S;V__ 
 V_(�2;�1)(E0))_:

Since V__ 
 V_(�2; 0)(E0) is torsion free and trivial along general �bres of �,

the module ��V
__ 
 V_(�2;�1)(E0) vanishes, as does the cohomology module

H0(S;V__ 
 V_(�2;�1)(E0)). But H2(S; Ext1(T;V(�N�))) is also zero, since the

sheaf Ext1(T;V(�N�)) is concentrated on the support of T, too. Thus, all cohomol-

ogy groups Hq(S; Ext2�q(V;V(�N�))) vanish, and we obtain Ext2(V;V(�N�)) = 0,

and hence the formal smoothness of Def(V; � : V!WjN�
). 2
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4.3 Natural description of the completion

Of course, the described completion of the moduli space V(m; r) is natural. But the

question we discuss here is, which objects are precisely parametrised by V�(m; r) or,

equivalently, which are the objects in the complement

V�(m; r)� V(m; r)?

We recall the de�nition of V 0�(m; r) from the proof of Theorem 4.5 as the subfunctor

of Quotf(Or(m; 0)) corresponding to all those points

0! V �! Or(m; 0) �! Q! 0;

where Q is concentrated in �nitely many �bres of �.

Theorem 4.7

V�(m; r) = V
0
�(m; r):

Proof. We put W = Or(m; 0) and consider a point

(�) = (0! V
�
�!W �! Q! 0)

in V 0�(m; r). We will say that this point is deformable to another point

(�1) = (0! V1
�
�!W �! Q1 ! 0)

if there is a connected double-based algebraic space (T; t0; t1) and an element

( ~�) = (0! ~V
�
�! ~W �! ~Q! 0)

in V 0�(m; r)(T) such that ( ~�)jft0g�S
�= (�) and (~�)jft1g�S

�= (�1). Because of Lemma

4.6, we know that V 0�(m; r) is smooth. Hence, all its connected components are

irreducible, and it is enough to show that (�) is deformable to a point in V(m; r).

This is a consequence of the following three lemmas. 2

Lemma 4.8 A point

(�) = (0! V
�
�!W �! Q! 0)

in V 0�(m; r) belongs to V(m; r) i� V is locally free and free along the �bre N1 of �

and the �bre F1 of �.
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Proof. As we have seen before, � induces a framing of V in a point on N1 and hence

a framing � : VjN1
�= Or

N1
. The element (V; �) 2 V(m; r)(Spec k) is obviously

mapped to (�) under V(m; r) ,! QuotfW. 2

Lemma 4.9 Any point

(�) = (0! V
�
�!W �! Q! 0)

in V 0�(m; r) is deformable to a point

(�1) = (0! V1
�
�!W �! Q1 ! 0)

such that V1 is free along N1 and F1.

Proof. Evidently, it is enough to show that (�) deforms to a (�1), where V1 is free

along the generic �bre of �, as such a point is easily deformed to a point which is

trivial along two given special �bres of � and �.

We choose a �bre N� of � such that V is locally free in a neighbourhood of N�.

During the proof of Lemma 4.6.(ii), we have shown the vanishing of T orOS
1 (V;OL).

Therefore, we have the exact sequence of complexes

0! (V(�N�)! 0) �! (V!WjN�
) �! (VjN�

!WjN�
)! 0

and obtain an exact sequence

E xt1(V;V!WjN�
) �! E xt1(V;VjN�

!WjN�
) �! Ext2(V;V(�N�)):

As we have seen in the proof of Lemma 4.6.(ii), the vanishing of T orOS
1 (V;OL)

implies E xt1(V;VjN�
! WjN�

) = E xt1(VjN�
;VjN�

! WjN�
), and it was also shown

there that Ext2(V;V(�N�)) = 0. The module E xt1(VjN�
;VjN�

! WjN�
) equals

Ext1(VjN�
;WjN�

)=VjN�
)), which is naturally identi�ed with the space of in�nitesimal

deformations of the quotient VjN�
,!WjN�

. Hence, any in�nitesimal deformation of

VjN�
,!WjN�

lifts to an in�nitesimal deformation of the framed module V!WjN�
.

Because of the formal smoothness shown in Lemma 4.6.(ii), this yields that any
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deformation of VjN�
,! WjN�

lifts to a deformation of the framed module sheaf

V!WjN�
. And by Lemma 4.6.(i), we have that any deformation of VjN�

,!WjN�

lifts to a deformation of the quotient V ,! W. As VjN�
,! WjN�

is deformable to

Or
N�
,!WjN�

, we have shown our claim. 2

Lemma 4.10 Any point

(�) = (0! V
�
�!W �! Q! 0)

in V 0�(m; r) is deformable to a point

(�1) = (0! V1
�1
�!W �! Q1 ! 0)

such that V1 is locally free.

Proof. For any torsion free sheaf F we de�ne T(F) as the quotient of F ,! F__,

which is a torsion sheaf concentrated in �nitely many points. We will proceed now

in several steps.

Step 1. V is deformable to a torsion free sheaf V1, such that T(V1) is isomorphic

to a direct sum k(P1)� : : :� k(Pq) with Pi 6= Pj for i 6= j.

This is true since Quotq(V__) is irreducible by [22, Theorem 6.A.1], and since

the morphism Quotq(V__)! SymqS is surjective.

Step 2. Let V be a torsion free sheaf of rank r � 2 with T(V) = k(P1)�: : :�k(Pq),

and let � : S0 ! S be the blowing up in fP1; : : : ;Pqg. There is a locally free sheaf V0

on S0 such that ��V
0 = V and R1��V

0 = 0.

As this problem is local around singular points of V, we may assume q = 1. We

�x an open neighbourhood U of P = P1, where V
__ is trivial. Hence, we may choose

an isomorphism ' : VjU �= JPjU � O
r�1
U . We obtain (�j~U)

�VjU �= O~U(�E) � O
r�1
~U

,

where ~U = ��1U and E = ��1fPg. We embed this into

V0~U = O~U(�E)�O~U(E)�O
r�2
~U

and de�ne V0 by gluing together (�jS0�E)
�V and V0~U by (�j~U�E)

�'jU�P. Clearly, this

locally free sheaf V0 meets our requirements.
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Step 4. For the vector sheaf V0 constructed in Step 3. we have c�V
0 = ��c�V.

By construction, the determinant of V0 along E is trivial. Hence, detV is a

pullback under �. Since determinants are not altered by changes in codimension 2,

and since � : S0 � E! S� fPg is an isomorphism, we obtain detV0 = ��detV.

Because of the vanishing of the higher direct images, the Leray spectral sequence

associated to V0 and � degenerates and we have Hi(S;V) = Hi(S0;V0) for i = 0; 1; 2.

Therefore, the Euler characteristics coincide, as do the second Chern classes due to

Hirzebruch-Riemann-Roch.

Step 5. The vector sheaf V0 constructed in Step 3 is deformable to a vector sheaf

V1 on S0 which is free along E.

We de�ne �0 = � � � and note that V0 is free along the generic �bre of �0

by construction. Hence, Ext2(V0;V0(�E)) = H0(S0; End(V0)(E + !S0))
_ vanishes,

and the map Ext1(V0;V0) ! Ext1(V0jE;V
0jE) is surjective. This implies, that any

in�nitesimal deformation of V0jE lifts to an in�nitesimal deformation of V
0, and since

Ext2(V0;V0) also vanishes, this is true for all deformations. Now we conclude with

the observation that OE(1)�OE(�1)�O
r�2
E is deformable to Or

E.

Step 6. V is deformable to a locally free sheaf V1 in a family of sheaves, which

are all free along the generic �bre of �.

Because of the previous steps, we may assume that V occurs as the direct image

of a vector sheaf V0 on a blowing up � : S0 ! S with R1��V
0 = 0, and that there is

a at family ~V0 2 Vec(T� S0) with the following properties:

� There is a point t0 2 T with ~V0jft0g�S0
�= V0;

� For all other closed points t 2 T, ~V0jftg�S0 is free along the exceptional divisor

of �;

� All members of the family are free along the generic �bre of �0.

For �T : T � S0 ! T � S, we have that ~V = �T� ~V
0 is at over T, as the Hilbert

polynomials are constant. Because of base change being possible in at families,

this yields in particular the desired deformation of V.
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Step 7. (�) is deformable to (�1) with V1 locally free.

We consider the at family ~V from Step 6 and de�ne ~� : T� S! T� N. Since

the members of the family are trivial along the generic �bre of �, we may consider

the determinantal divisor ~� associated to ~V(�T � N1) and ~�. If U denotes the

complement of the support of ~�, then � induces an isomorphism

~�~��1U : ~Vj~��1U �= (OT 2� W)j~��1U:

In the same way as in the proof of Lemma 4.6.(i), this extends to a monomorphism

~� : ~(V) ,! OT 2� W at over T, which is obviously an element in V 0�(m; r) and

proves our claim. 2

Due to Theorem 4.7, the following forms of degeneration of a point

0! V �! Or(m; 0) �! Q! 0

in V�(m; r)� V(m; r) are feasible:

(1) V is not free along N1 and F1;

(2) V is not even free along the generic �bre of �;

(3) V is not locally free.

Of course, there are certain restrictions. For instance, if L is a �bre of � or �,

and P is a smooth point of L, then dimkH
1(L;VjL(�P)) � m. If VjL is locally

free, then there are m smooth points P1; : : : ;Pm on L such that we have vanishings

H0(L;VjL(�
P
Pi)) = H1(LVjL(

P
Pi)) = 0. And the length of V__=V is always less

or equal to m.

On the other side, all the mentioned cases of degenerations actually occur. We

consider for example S = N�F. Due to a Serre construction, any element in V(1; 2)

is given by a non-trivial extension

0! OS �! V �! JP ! 0;

where JP is the ideal sheaf of a point P which lies in the complement of N1 [ F1,

and a framing VjN1
�= Or

N1
.
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If we choose such an extension with P 2 N1 [ F1, we obtain a degeneration

of type (1). If we let such an extension degenerate to a trivial one, we have a

degeneration of type (3). A degeneration of type (2) is given if we consider an

embedding of O(1; 0)� JP(�1; 0) or of O(�1; 0)� JP(1; 0) into O
2(1; 0).
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