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Zusammenfassung

Die vorliegende Arbeit befa�t sich mit der Herstellung und der Charakterisierung von Gruppe

III Nitriden, wobei der Schwerpunkt im Bereich der metastabilen, kubischen Modi�kation

liegt. Diese wurde auf GaAs(001) Substraten mittels Radiofrequenz-Plasma (RF) unterst�utzter

Molekularstrahl-Epitaxie (MBE) hergestellt.

W�ahrend �uber hexagonales (�) GaN zum ersten Mal 1932 berichtet wurde, gelang erst 1989

die Synthese einer epitaktisch gewachsenen kubischen (�) GaN Schicht. Im Vergleich zur hexag-

onalen bietet die kubische Kristallstruktur auf Grund ihrer Symmetrie potentielle Vorteile f�ur

die Anwendung in optischen und elektronischen Bauelementen. Die Herstellung einkristalliner,

kubischer Schichten erweist sich jedoch als schwierig, da dem Gitter angepa�te Substrate nicht

zur Verf�ugung stehen. Es stellt sich daher die Frage, ob kubische Nitride �uberhaupt in einer

f�ur Bauelemente ausreichenden Qualit�at produziert werden k�onnen. Vor diesem Hintergrund

ist zu verstehen, da� zahlreiche sowohl fundamental wichtige als auch technologisch relevante

Materialgr�o�en dieser neuartigen Verbindungen noch g�anzlich unbekannt sind.

Das Ziel dieser Arbeit ist es daher erstens, einen Beitrag zur Aufkl�arung der bis dato

wenig bekannten optischen und elektronischen Eigenschaften des �-GaN und der Mischkristalle

�-InxGa1�xN zu leisten und zweitens, die technologischen Grenzen der Herstellung von bauele-

mentrelevanten kubischen (In,Ga,Al)N Heterostrukturen auszuweiten. Ein wesentliches Zwis-

chenergebnis war die reproduzierbare Herstellung glatter, einphasiger �-GaN Nukleationss-

chichten auf GaAs in einer neuen MBE Maschine, welche mit einer RF Plasmaquelle hohen

Sticksto�usses ausgestattet worden war. Die Optimierung der Epitaxie dicker �-GaN Schichten

hinsichtlich Phasenreinheit und Ober
�achenmorphologie lieferte dann die Grundlage f�ur die

Synthese komplizierterer �-(In,Ga,Al)N Strukturen.

W�ahrend die optischen Eigenschaften des �-GaN hinreichend bekannt sind, gibt es ein

erhebliches De�zit an gesicherten Informationen zur kubischen Phase. Es wurden daher

das Re
exions- und Transmissionsverm�ogen einer einkristallinen �-GaN Schicht im Spektral-

gebiet 2:0 � �h! � 3:8 eV in Abh�angigkeit der Temperatur untersucht. Auf Grundlage

der bekannten Theorie f�ur Mehrschichtsysteme wurde ein numerisches Verfahren entwickelt,

welches eine Berechnung des kompletten Satzes der optischen Konstanten aus den Me�daten

erm�oglicht. Abweichungen von der idealen Fabry-P�erot Struktur f�uhren dabei zu einer Ver-

ringerung der Koh�arenz der Me�strahlung. Dieser E�ekt wurde explizit behandelt und dazu

benutzt, die r�aumliche Inhomogenit�at des Brechungsindex in der �-GaN Schicht abzusch�atzen.

Unter anderem erfolgte auch eine Bestimmung der Temperaturabh�angigkeit der fundamentalen

Absorptionskante im Bereich 5 � T � 300 K.

Die Strahlungsemission wurde f�ur beide Modi�kationen des GaN untersucht. Dazu wurde

die Photolumineszenz (PL) nahe der Bandkante hinsichtlich �Ubergangsenergien, Linienbre-

ite und -form, sowie Intensit�at als Funktion der Temperatur vermessen. Mittlere Phononen-

ergien, -kopplungskonstanten und thermische Aktivierungsenergien wurden hieraus berechnet.

Um den Ein
u� nichtstrahlender Rekombinationsprozesse quantitativ zu erfassen, erfolgten

PL Messungen mit variabler Anregungsdichte an kubischem und hexagonalem GaN bei 300

K. Mittels eines Minimalmodells f�ur die Rekombination wurden die interne Quantene�zienz,

(nicht)strahlende Lebensdauern, sowie das Verh�altnis der Koe�zienten f�ur Elektronen- und

L�ochereinfang abgesch�atzt. Das dominante nichtstrahlende Zentrum erweist sich dabei als

Lochfalle, welches jedoch mit moderaten Anregungsdichten abges�attigt werden kann.
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Es hat den Anschein, als ob strukturelle Defekte wie Stapelfehler und Versetzungen im GaN

weit weniger Ein
u� auf die optischen Eigenschaften haben als in anderen III-V Verbindun-

gen, welche schw�acher ionisch gebunden sind. Ein Vergleich zwischen beiden Phasen des GaN

zeigt, da� strahlende Zentren, deren gelbe Lumineszenz im Wettbewerb zur Bandkantenemis-

sion steht, �uberraschenderweise ein geringeres Gewicht im �-GaN bei T > 100 K haben. Trotz

der durch die Gitterfehlanpassung verursachten hohen Defektdichten des �-GaN konnte selbst

bei 500 K Lumineszenz nachgewiesen werden, deren Intensit�at mit der hochwertiger �-GaN

Proben vergleichbar ist.

InxGa1�xN spielt eine wesentliche Rolle in kurzwelligen Lichtemittern. Die Synthese von

Mischkristallen hoher Qualit�at mit x > 0:3 wird jedoch durch die im thermodynamischen Gle-

ichgewicht vorliegende Mischungsl�ucke { als Folge der stark unterschiedlichen Bindungsst�arken

im GaN und InN { drastisch erschwert. W�ahrend bereits seit einigen Jahren auf der hexago-

nalen Modi�kation basierende, blau-gr�une Leuchtdioden kommerziell erh�altlich sind, ist kaum

etwas �uber das kubische �-InxGa1�xN bekannt.

Zur Untersuchung der strukturellen und optischen Eigenschaften des �-InxGa1�xN wur-

den daher etwa 200 nm dicke Schichten mit hohen In-Gehalten auf �-GaN hergestellt. Mit

x = 0:17 und x = 0:4 wurden jeweils blaue und gr�une Photolumineszenz bei Raumtemper-

atur und dar�uber erzielt. Die erhebliche inhomogene Linienbreite dieser PL im Zusammen-

hang mit der schwachen Temperaturabh�angigkeit der �Ubergangsenergien, der homogenen Ver-

breiterung, sowie der Intensit�aten legt den Schlu� nahe, da� es sich hierbei um �Uberg�ange

zwischen lokalisierten Zust�anden handelt, welche ihrerseits mit Kompositionsschwankungen in

Verbindung gebracht werden. Durch Transmittanz- und Re
ektanzmessungen konnte einerseits

nachgewiesen werden, da� diese Lumineszenz mit der Absorptionskante korreliert. Andererseits

zeigt sich, da� die Bandl�ucke des kubischen Mischkristalls um 0.2 eV kleiner ist als die der

hexagonalen Form im untersuchten Bereich von 0 � x � 0:4. Nach bestem Wissen sind die

vorliegenden optischen Daten die ersten ihrer Art �uber �-InxGa1�xN.

Neben dicken �-InxGa1�xN Schichten konnten die ersten koh�arent verspannten �-InxGa1�xN

/GaN (Multi-)Quantengr�aben mit In-Gehalten von 50% und abrupten Grenz
�achen mit-

tels RF-Plasma unterst�utzer Molekularstrahl-Epitaxie hergestellt werden. Dies ist ein aufre-

gendes Ergebnis, da es zun�achst einmal zeigt, da� verm�oge einer Nichtgleichgewichts-

Wachstumsmethode ein tern�arer Mischkristall in einer metastabilen Struktur weit jenseits der

Mischungsl�ucke seiner bin�aren Komponenten gez�uchtet werden kann. Dabei wurden Gren-

z
�achen mit Rauhigkeiten von etwa 1 nm erreicht. Dar�uber hinaus sind die Quantengr�aben

erheblich verspannt. Deren Dicken belaufen sich auf 4 bis 7 nm und liegen damit jenseits

der erwarteten kritischen Schichtdicken f�ur die vorliegenden Restverspannungen von �uber

3%. Da mittels hochaufgel�oster Transmissions-Elektronenmikroskopie keinerlei Anzeichen f�ur

Phasenseparation gefunden werden konnten, ist zu erwarten, da� noch h�ohere In-Gehalte in

Schichten mit Dicken von weniger als 5 nm erreicht werden k�onnen. Eine potentielle Anwen-

dung solcher �-InxGa1�xN/GaN Multi-Quantengr�aben mit x � 0:4 w�aren daher Dioden-Laser,

welche im gr�un-gelben Bereich emittieren.
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Chapter 1

Introduction

Tremendous research e�ort has been devoted during the past decade to the wide band gap

semiconductors SiC, ZnSe, and GaN with the aim of high-temperature electronic and short-

wavelength optical devices. Since SiC and GaN o�er outstanding thermal and chemical stability,

these materials are suitable for high-power operation in hostile environments. In contrast to

the group IV compounds, ZnSe and GaN have a direct band gap and are therefore particularly

attractive for opto-electronic applications. Indeed, the �rst blue lasers demonstrated were

based on the ZnSe system. However, the II-VI compounds su�er in general from a low damage

threshold causing rapid device degradation.

The physical properties of a crystal are very sensitive to its real structure, which is a direct

manifestation of the valence electron density distribution. Materials which exhibit polymor-

phism 1 may therefore have widely ranging electronic, optical, and electrical characteristics

depending on the actual crystal structure. Most III-V and II-VI compounds crystallize at am-

bient pressures in either the hexagonal wurtzite (�) or the cubic zincblende (�) structure which

are both tetrahedrally coordinated and di�er only in the handedness of the fourth interatomic

bond along the [111] direction. These structural similarities manifest themselves in small dif-

ferences in the bulk structural energies, �E
��� := E

�
� E

�
, being typically of the order of

20 meV/atom or less and can thus give rise to the wurtzite{zincblende polytypism 2 . Despite

a small j�E
���j, the physical characteristics of the wurtzite and zincblende phase can di�er

signi�cantly. The so-called metastable phase, which is less favorable in terms of the intrinsic

stability measure �E
��� may be stabilized by providing a corresponding template which serves

as epitaxial constraint.

1.1 Zincblende Nitrides: A new material class

The group III nitrides GaN, InN, AlN, and their alloys have long been thought to crystallize

exclusively in the wurtzite modi�cation due to the strongly ionic character of the III-N bond.

The strength of this bond causes very high melting points and, thus, makes epitaxial growth of

high-quality crystals di�cult, anyway. Considering the hardness of these materials and bearing

in mind the lack of a su�ciently well lattice-matched zincblende substrate, any attempt to

synthesize the cubic phase may be regarded to be hopeless a priori. Therefore, it was not until

1Crystallization of a compound in at least two distinct forms.
2One-dimensional polymorphism, i.e. the occurence of di�erent stacking sequences of atomic planes.

1



2 Chapter 1. Introduction

the end of the 80's that the �rst monocrystalline 3
�-GaN epilayer was obtained on 3C-SiC by

means of a non-equilibrium growth technique. Tab. 1.1 displays milestones in the research and

development of cubic nitrides.

Time Event Author

1974 Discovery of �-GaN Seifert [1]

1978 Discovery of �-AlxGa1�xN inclusions in �-AlxGa1�xN Baranov [2]

1986 Observation of �-GaN inclusions in polycrystalline GaN grown on

GaAs by metal organic chemical vapor deposition in the course of

surface passivation studies.

Mizuta [3]

1989 First monocrystalline �-GaN epilayer grown on 3C-SiC/Si

by microwave plasma assisted molecular beam epitaxy.

Paisley [4]

1992 Synthesis of the �-AlN polytype by the solid-state reaction

4Al + TiN �! AlN + Al3T between monocrystalline Al(001) and

TiN(001) layers grown on MgO(001).

Petrov [5]

1993 Discovery of the �-InN polytype in polycrystalline InN grown on

vicinal GaAs(001) by plasma enhanced MBE.

Strite [6]

1995 First monocrystalline �-InxGa1�xN grown on GaAs(001)

by metal organic MBE.

Abernathy [7]

1995 Epitaxial growth of �-AlN on Si(100) Lin [8]

Table 1.1: History of zincblende group-III nitrides

Work on zincblende nitrides is motivated by the potential advantages that these materials

would o�er for (opto-)electronic applications, compared to the commonly employed hexagonal

nitrides, once they can be synthesized in su�ciently high quality:

� Band gap engineering by strain-induced e�ects similar to other zincblende III-V com-

pounds is, in principle, possible. In contrast, neither compressive nor tensile biaxial

strain in the c-plane are feasible for e�ectively reducing the threshold carrier density of

wurtzite GaN/AlxGa1�xN lasers.[9, 10, 11]

� A smaller electron e�ective mass has been reported for �-GaN [12] and a better amenabil-

ity to p-type doping as well as a lower hole mass are to be expected [13, 14].

� A higher saturated electron drift velocity has been predicted [15] for cubic nitrides as a

result of the reduced phonon scattering rate due to the higher degree of crystal symmetry.

� Output facets of lasers can be obtained by simple cleavage in combination with techno-

logically relevant substrates like GaAs, GaP, Si.

3The attribute monocrystalline or single-phase is used for materials which exhibit under electron and x-

ray di�raction (TEM, RHEED, XRD) a single-crystal symmetry and a well-de�ned epitaxial orientation with

respect to the substrate. The crystal may, however, possess structural defects such as dislocations, stacking

faults, and micro-twins as long as the abundancy of these imperfections merely leads to a broadening in the

di�raction patterns. As soon as disorder on a macroscopic scale or the macroscopic presence of another phase

is observed, the material will be called polycrystalline. This operational de�nition of a mono-crystal is by far

less stringent than that of a single-crystal usually encountered in the Si research community.
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With the exception of BN, all compounds showing zincblende{wurtzite polytypism exhibit

a lower band gap in their cubic modi�cation. It is anticipated that the same holds for the

(In,Ga,Al)N system which would be bene�cial for InxGa1�xN-based visible light emitters.

1.2 What we know about zincblende nitrides

Due to the immaturity of the zincblende nitrides being currently available, not much is known

about these new materials. In fact, the only fairly well established quantities are the lattice

constants. Many issues concerning growth, structural, optical, and electrical properties are yet

to be addressed since the progress in improving the crystal quality is aggravated by the current

inavailability of a suitable substrate.

The synthesis of thick epitaxial monocrystalline layers, which can be used for fundamental

optical investigations is, hence, a highly non-trivial task. Thus, even such a fundamental and

important parameter like the direct band gap EG of �-GaN has been subject of controversy at

the beginning of this study in 1995. Low-temperature values ranging from 3.3 { 3.8 eV, i.e.

even higher than EG(�-GaN) = 3:47 eV, have been reported as can be seen in Tab. 1.2.

EG[eV] T[K] Substrate Method Time Author

3.52 4 GaAs CL 1991 Strite [16]

3.45 300

3.81 77 GaAs CL 1991 Okumura [17]

3.21 300 MgO Absorption 1993 Powell [18]

3.35 4 3C-SiC PL, Re
ectance 1994 Okumura [19]

3.30 10 MgO Photore
ectance 1994 Ram��rez-Flores [20]

3.23 300

3.22 300 GaP Re
ectance 1995 Lacklison [21]

3.26 300 Si Ellipsometry 1995 Logothetidis [22]

3.39 300 | Calculated 1997 Van de Walle [23]

Table 1.2: Reported values for the direct band gap of �-GaN

The discrepancies in EG arise in many cases from a lack of phase purity as well as from

ambiguities in the interpretation of optical data. Also, it is not clear a priori as to how strain

caused by the use of highly mismatched substrates a�ects the fundamental gap. Signi�cant

strain-induced shifts were observed in the case of hexagonal GaN. [24, 25, 26, 27]

1.3 The goal of this work

The objective of this study is to address both the physics and the materials science of zincblende

nitrides concerning the potential application of these metastable compounds in visible light

emitters. The present thesis is therefore devided into two parts: The �rst part (chapters 2

to 6) mainly covers growth, microstructure, and especially, fundamental optical properties of

�-GaN. It is intended to constitute the basis for the second part (chapters 7 and 8), dealing

with zincblende (In,Ga,Al)N heterostructures. In the latter, special emphasis is put on the

optical characterization of �-InxGa1�xN.
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In more detail, the work is organized as follows: After closer inspection of wurtzite{

zincblende polytypism in the following chapter, the RF plasma assisted growth of �-GaN on

GaAs(001) by MBE will be treated in chapter 3. Chapter 4 is devoted to a method by which

the complete set of optical constants of �-GaN is determined from re
ectance and transmit-

tance measurements in the below as well as the above band gap energy range. The temperature

dependent photoluminescence of both polytypes of GaN will be compared in chapter 5 where

particular attention is paid to the band edge related transitions. The role of nonradiative re-

combination in GaN is studied in chapter 6 on the grounds of excitation density dependent PL

investigations in conjunction with a rate equation model.

Chapter 7 deals in general with the growth of �-(In,Ga,Al)N heterostructures and in par-

ticular with �-InxGa1�xN/GaN (multi) quantum wells with large x. The optical properties of

thick �-InxGa1�xN layers will be presented in chapter 8 comprising re
ectance, transmittance,

and photoluminescence investigations. Finally, a brief account will be given on �-AlxGa1�xN.

Yet another important topic is the tailoring of electric properties which is, however, beyond

the scope of this dissertation.



Chapter 2

Wurtzite{Zincblende Polytypism

2.1 Stability of the wurtzite structure:

Qualitative concepts

Wurtzite{zincblende polytypism is a well-known phenomenon that has been observed during

the past 30 years for various semiconductors such as ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe,

CuCl, CuBr, or SiC. [28, 29] Since an ideal wurtzite (�) structure with (c=a)ideal =
q
8=3 can

be transformed into the zincblende structure and vice versa by merely changing the stacking

sequence of atomic layers along the [111]-axis (c-axis)

(�) AaBbAaBb :::  ! (�) AaBbCcAaBbCc :::,

the coexistence of both phases as mixture of di�erently stacked (111)-planes is possible. The

tetrahedral coordination remains una�ected by such a phase transition and the two structures

di�er only in the relative position of third nearest neighbors and beyond. Therefore, weak

long-range Coulomb interactions, being most dominant in covalently bonded materials, are of

relevance for controling the �$ � transition.

In contrast, the coordination, i.e. the number of nearest neighbors in a crystal, is determined

by strong short-range ionic forces. Such interactions are a measure of the character of the

individual bond and, thus, account for the elastic properties of the solid. The ionicity scales

introduced by Van Vechten [30] and Phillips [31] adequately describe the transitions between

di�erent coordinations but cannot always explain polytypism within a given coordination.

The lower symmetry of the wurtzite structure allows for an internal distorsion �(c=a) =

c=a � (c=a)ideal from the ideal arrangement of atoms in terms of dense packing in order to

minimize the structural energy. The low-temperature deviation �(c=a) from the isotropic

tetrahedral coordination and the associated energy di�erences can be qualitatively described

as follows:

� For a purely ionic crystal, the Madelung constant of a wurtzite con�guration with (c=a)ideal
is M

�
= 1:6406 while the Madelung constant in the zincblende case is given by M

�
=

1:6381 [32], corresponding to an energy di�erence per valence electron of about 10 meV.

Therefore, considerations of the ionic energy favor the wurtzite phase.

Since a decrease in c/a increases M
�
[32], wurtzite structures should deviate from the

ideal con�guration by a relaxation �(c=a) < 0 in order to minimize the ionic energy as

long as long-range e�ects can be neglected.

5
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� In the case of a covalent crystal, the valence electron distribution extends beyond the

nearest neighbors as opposed to an ionic crystal where stable closed-shell con�gurations

are reached. The minimization of the covalent energy leads to a �(c=a) > 0. Under these

circumstances, an �! � phase transition may be energetically more favorable, though.

In the intermediate case, ionic and covalent forces are competing in minimizing the total struc-

tural energy. Empirically, the following correlation between the internal structure parameter

c=a and the low-temperature stability of the wurtzite phase is observed (Tab. 2.1):

Compounds with �(c=a) < 0 favor the wurtzite structure while those for which �(c=a) > 0,

preferentially crystallize in the zincblende con�guration. However, since c=a is very sensitive

to crystal imperfections, impurities and stresses, care has to be taken in interpreting exper-

imental data and a decision about the structural stability of a certain material may not be

straightforward.

For materials with zincblende as stable low-temperature phase, a reversible � ! � transition

usually takes place above a certain temperature which is mediated by the vibrational part of

the crystal energy. For ZnS, CdSe, CuCl, CuBr, and CuI, the critical temperatures are T
�!�

=

1020 � 5oC, [33] 950 � 5oC, [34] 407, 386, and 396oC, [35] respectively. These temperatures

essentially re
ect the hardness of the material being determined by the bond strength.

Apart from the c=a ratio, several other (non)classical structural coordinates have been born

out of the desire of an at least qualitative systematization of structural trends. Based on

Phillips and Van Vechtens semi-empirical dielectric theory for 4- and 6-fold coordinated binary

compounds, electronegativity variables such as homo- and heteropolar dielectric band gaps

[30, 31, 36, 37] and e�ective charges [29] were proposed.

With the availability of su�cient computing power, wavefunction and local-density pseu-

dopotential orbital radii were determined. The latter have been successfully applied to system-

atize the structure types of numerous binary, ternary, and quaternary compounds. However,

for a quantitative assessment of structural regularities within, e.g., homological sequences like

AlN! InN! GaN, the calculation of total structural energies is required.

2.2 Structural Energies and Epitaxial Stabilization

Based on local-density-functional calculations employing plane-wave nonlocal pseudopotential

methods, the T = 0 K wurtzite-zincblende total structural energy di�erence per atom,

Compound �E
��� [meV ] �(c=a) Compound �E

��� [meV ] �(c=a)

AlN �18:4 �3:3� 10�1 CdSe 1.4 2:7� 10�3

InN �11:4 �2:4� 10�1 ZnS 3.1 4:6� 10�3

GaN �9:9 �5:2� 10�2 ZnSe 5.3 4:2� 10�3

CdS �1:1 �9:5� 10�3 AlAs 5.8 |

MgTe �1:0 � 0 GaAs 12.0 |

Wurtzite (�) Zincblende (�)

Table 2.1: Calculated structural energy di�erences per atom between wurtzite and zincblende phase

and measured relaxation parameter of the wurtzite structure. [38]

�E
��� = E

�
�E

�
, has been calculated by Yeh et al. [38] for many octet binary semiconductors

and correlated with atomistic orbital-radii coordinates. The values of �E
��� for selected III-
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V and II-VI compounds are compared in Tab. 2.1 with the structural relaxation parameter

�(c=a).

These structural energies de�ning the bulk stability of a given compound, however, can be

overruled by imposing a suitable epitaxial boundary condition. Put the case that the wurtzite

structure is thermodynamically favored by �E
��� < 0. Then, the metastable cubic phase may

nevertheless crystallize as a result of geometrical compatibility or epitaxial size selectivity:

1. By o�ering a well lattice-matched (001)-oriented zincblende substrate, the �-phase will be

automatically selected since this is the only geometrically compatible structure. Growth

of the �-modi�cation would cause miscoordinated atoms and, thus, result in high densities

of structural defects which in turn considerably raise the total crystal energy. Growth of

ZnS, ZnSe, [39] ZnTe,[40] and CdTe [41] on GaAs(001) hence results in the metastable

cubic form in de�ance of the bulk structural energies.

2. In contrast, a (111)-� substrate is geometrically compatible with both the wurtzite and

the zincblende structure. The driving force for nevertheless selecting the �-modi�cation

may, however, be the minimization of elastic strain caused by lattice mismatch between

substrate and epilayer.[42]

2.3 Group-III Nitrides

2.3.1 Prospective substrates for �-GaN

Since the nitrides rank on top of the �E
��� and �(c=a) scale in Tab. 2.1, their wurtzite phase

is highly stable. Indeed, even on a polycrystalline AlN layer, GaN forms in the �-modi�cation.

The use of such an AlN bu�er layer for lattice mismatched growth of �-GaN on Al2O3 or

6H-SiC is therefore common practice. In contrast, the attempt to force GaN or InN into the

zincblende structure encounters an energy barrier �E
��� comparable to that separating the

wurtzite phase of GaAs from its extremely stable zincblende groundstate.

The only good reason for convincing the nitrides to crystallize in the �-phase would be a

well lattice matched substrate which, unfortunately, does not exist to date. The relative lattice

mismatch between a substrate material with lattice constant aSub and a GaN epilayer with aGaN
is de�ned 1 as

�GaN = 2
aSub � aGaN

aSub + aGaN
: (2.1)

In Tab. 2.2, �GaN, density �, coe�cient of thermal expansion �a=a, thermal conductivity �,

melting point Tm, and lowest band gap energy EG are compiled for di�erent zincblende structure

substrates and compared to �-GaN.

Due to the comparatively small �GaN(3C-SiC) of 3.6%, this { rare and expensive { material

seems to be the best candidate for an epitaxial stabilization of zincblende GaN. Indeed, the �rst

monocrystalline cubic GaN �lm was synthesized on a 3C-SiC/Si substrate in 1989. [4] Epitaxial

growth of �-GaN has also been reported on MgO [18] and attempts were made to nucleate cubic

GaN on Si(001). [43, 44] Since in this case a polar material is grown on a non-polar substrate,

antiphase domains readily form which cause high densities of structural defects and may result

in polycrystalline GaN.

1Depending on the actual analysis technique, other de�nitions of the mismatch may be applied: In x-ray

di�raction, e.g., the di�erence in lattice constants is usually refered to aSub.
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Substrate a [�A] �GaN [%] � [g=cm3] �a
a
[10�6=K] � [W=(cmK)] Tm[K] EG[eV]

InP 5.8687 25.97 4.81 4.5 0.8 1335 1.344

GaAs 5.6533 22.28 5.318 6.0 0.5 1513 1.424

GaP 5.4502 18.68 4.138 4.65 1.2 1730 2.272

Si 5.4310 18.29 2.329 3.59 1.58 1685 1.124

�-GaN 4.52 0.0 ... ... ... ... 3.23

3C-SiC 4.3596 �3.60 3.166 ... 4.9 3100 2.416

MgO 4.216 �6.96 3.576 10.5 0.24 3073 7.833

Table 2.2: Room temperature properties of prospective cubic (001) substrates for zincblende GaN

[45]

2.3.2 �-GaN on GaAs(001): Impossible ?

Growth of cubic GaN on technologically attractive GaAs substrates seems to be, at �rst sight,

impossible in view of the large mismatch of �GaN(GaAs)=22 %. However, closer inspection

reveals that the spacings between 4 GaAs and 5 GaN atoms in the (001) plane nearly match.

This gives rise to hope that at least thin layers of �-GaN could be nucleated on GaAs(001) via

the formation of a regular dislocation network, usually referred to as coincidence lattice, which

accounts for the extra f110g planes to be introduced into the GaN lattice. [46]

The synthesis of epitaxial layers of �-GaN on GaAs(001) was pioneered by Strite et al.

[16] and Okumura et al. [17] in 1991 by molecular beam epitaxy. In 1995, it was discovered

that the cubic structure cannot only be prepared on GaAs(001) but also, at least partially, on

(111)A and (�1�1�1)B substrates [47]. For layers grown on GaAs(111)A, a temperature-mediated

reversible � $ � phase transition has been observed, the cubic structure being stable up to

about 850oC.

An amorphous to crystalline transformation has been observed to occur in N ion implanted

GaAs(001) upon furnace annealing at 850{950oC. [48] The GaN precipitates were found to

consist of predominantly the cubic phase in coexistence with small amounts of the wurtzite

structure. Despite the presence of these hexagonal seeds, a prolonged thermal treatment at

T
�!�

= 950oC was necessary to induce a � ! � phase transition in the cubic GaN clusters.



Chapter 3

Growth of Zincblende GaN

3.1 Nitrogen Precursors and Nitridation

Surface nitridation, i.e. exclusive exposure to a nitrogen containing agent, is common practice

as substrate preparation step prior to growth of hexagonal nitrides. In the case of the popular

sapphire substrate such a treatment is frequently applied to form a polycrystalline AlN bu�er

layer onto which �-GaN can be nucleated. Nitridation may also be used for simply removing

oxide layers and contaminations from, e.g., SiC.

Whether a substrate nitridation procedure for growth of �-GaN on GaAs is useful or not

strongly depends on the precursor and nitrogen source used. In what follows, a brief review

is given on the most commonly applied nitrogen precursors with respect to the bene�ts of

nitridation.

� Compounds like N2H4�n(CH3)n are sometimes used in CVD, MOMBE or MOCVD. In

the course of GaAs surface passivation studies with dimethylhydrazine [17], the formation

of �-GaN was observed. No growth of thick GaN layers was possible unless the GaAs

substrate has been nitridized for several minutes at 660oC. However, the material obtained

by this procedure was essentially polycrystalline.

� Thermal nitridation of GaAs with N2 results in polycrystalline GaN. [49, 50]

NH3, N2, or mixtures of these gases are the most common nitrogen precursors for MBE and

MOCVD and will now be considered in conjunction with plasma sources.

� Nitridation of a (2� 4){reconstructed GaAs surface with electron cyclotron resonance

(ECR) plasma sources for a minute or less was reported to lead to thin, dominantly cubic

GaN layers with rough surface morphology.[51] A (3�3) reconstruction was observed

during the �rst seconds of this nitrogen treatment and attributed to the formation of a

commensurate GaN layer of one monolayer thickness.[52]

� Nitridation with radio frequency (RF) plasma sources is disastrous: The GaAs is highly

selectively etched along the f111g planes leading to facets on which �-GaN can easily

nucleate. As a consequence, only polycrystalline GaN is obtained.[50, 53] Nitrogen-rich

growth was even observed to lead to the formation of the hexagonal phase on the cubic

GaAs(001). [54]

9
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It appears that the less reactive the nitrogen precursor or source, the more bene�cial a ni-

tridation step may be for the formation of �-GaN. However, most of the nitridation studies

published do not actually cover the growth of thick �-GaN layers and many of the so-called

single phase cubic nucleation layers obtained by one of the above treatments exhibit more or

less severe polycrystalline features in the RHEED patterns shown. As a bottom line, nitridation

of GaAs is in general very critical and in most cases deleterious for further growth of �-GaN.

3.2 MBE Growth: Early Results at the PDI

At the Paul-Drude-Institute, the �rst cubic GaN samples were grown in a two chamber MBE

system on GaAs. The growth chamber which is evacuated by a cryo pump (1500 l/s) and an

ion pump is equipped with 4 solid source cells (Ga, As, Si, Be) and a DC plasma source (Riber)

for providing atomic and ionic nitrogen species.

The epitaxial stabilization of the �rst 3{10 monolayers of GaN on GaAs is of vital importance

for the subsequent growth of �-GaN. The DC plasma assisted nucleation has therefore been

thoroughly investigated [55]. Due to the low growth rate of g = 10� 30 nm/h, imposed by the

limited nitrogen 
ux of the DC source, the parameter window for this essential process showed

to be su�ciently wide. In particular, the growth temperature could be varied over a range of

about 50oC without signi�cantly a�ecting the quality of the nucleation layer. Therefore, the

DC nucleation procedure as described in [55, 56] turned out uncritical regarding reproducibility.

However, a major problem consisted in obtaining thick single-phase zincblende layers with

smooth surface morphology: The synthesis of a 1.5 �m thick �lm, e.g., required approximately

50 hours, making it almost impossible to achieve stable growth conditions throughout such a

run. Even worse, the thicker the layers, the rougher the samples' morphology usually became.

This roughening phenomenon represents not only a fundamental obstacle for obtaining het-

erostructures with abrupt interfaces but gives also way for the formation of f111g facets which
serve as nucleation sites for the hexagonal phase.

The photoluminescence properties of the following two samples grown in this MBE system

on GaAs(001) will be considered in detail within this work (chapters 5, 6):

1. (# 2058)

On top of a 1:5�m thick zincblende GaN �lm, cubic and hexagonal microcrystals with

diameters of � 3�m were synthesized by a vapor-liquid-solid like epitaxial process under

Ga-rich conditions. [57] The crystals are very pure and of high structural quality. As

will be shown below, the luminescence of this sample is dominated by the band edge

recombination taking place in the crystals which are basically unstrained since they grew

virtually independently of the underlying �lm. Therefore, this sample structure de�nes

an optical standard in terms of band edge transition energies.

2. (# 2070)

This sample consists of a 900 nm thick dominantly �-GaN �lm on GaAs with com-

paratively smooth surface morphology which has been grown under near stoichiometric

conditions (Ga=N � 1). [58] In contrast to sample #2058, no micro-crystals are present

as proved by scanning electron microscopy.
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3.3 The New MBE System

The need for a new MBE system with a su�cient number of ports for e�usion cells, high growth

rate, and high-quality vacuum arose from the desire to obtain (In,Ga,Al)N heterostructures for

device applications. To meet these criteria, a custom-designed three chamber machine featuring

7 solid source cells (Ga, Al, In, As, Be, Mg, Si) and a water-cooled radio frequency plasma

source (SVT Associates) has been built by CREATEC. The N source is typically operated at a

plasma power of 300{500 Watt with N2 
ows of 1{10 sccm, which allows growth rates in excess

of 1 �m/h.

The growth chamber is equipped with a continuously rotatable sample holder, in situ

RHEED, heatable viewports for optical monitoring, an ion gauge for beam 
ux measurements

and a continuous 
ow liquid nitrogen cryoshroud. A cryopump (4500 l/s) in combination with

an ion pump yield a base pressure of po � 3� 10�10 Torr. The middle chamber houses a sam-

ple holder caroussel and is pumped by an ion pump identical to that of the growth chamber,

resulting in po � 5 � 10�10 Torr. In the load lock chamber being evacuated by a cryo pump

(po � 8� 10�9 Torr), two samples can be accommodated at a time for water desorption prior

to transfer into the middle chamber. In what follows, the optimization of the nucleation and

growth of �-GaN on GaAs by means of RF plasma assisted MBE are described.

3.4 Nucleation of �-GaN/GaAs(001)

3.4.1 Substrate Preparation

As substrates, exactly [001]-oriented, semi-insulating, epi-ready, quarter 2" GaAs wafers (AXT)

were used. They were �rst outgased in the load lock chamber by front-side radiation heating at

150{200oC. After thermal removal of the native oxide at 580�C under an As ambient pressure

of � 3� 10�7 Torr, a 20{50 nm thick GaAs bu�er layer was grown to yield a smooth �-(2�4){
reconstructed surface which is a suitable template for the subsequent nucleation of zincblende

GaN (Fig. 3.04a).

As opposed to the DC plasma source, the nucleation of �-GaN on GaAs(001) with the RF

source represented a major problem for two technological reasons:

1. The 
ux of active nitrogen of the RF source is higher by almost an order of magnitude.

2. The di�erent ignition procedure of the RF source makes a precise timing of the nucleation

very di�cult and may result in uncontrolled exposure of the GaAs surface to active

nitrogen even with closed shutter.

Unintentional nitridation of the GaAs as well as plasma etching are therefore serious issues,

making the freshly prepared �-(2�4) surface easily unsuitable for epitaxial stabilization.

3.4.2 The Nucleation Scheme

In principle, the RF plasma assisted nucleation of �-GaN/GaAs follows the same concepts than

the DC plasma process:

1. Arrangement of a dense array of su�ciently small �-GaN nuclei by three dimensional

growth.
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2. Vertical as well as lateral growth of these seeds and formation of a coincidence lattice of

edge-type mis�t dislocations within each of the �-GaN islands at the GaAs/GaN interface

to account for the 4 : 5 ratio of the respective mismatched f110g planes.

3. Island coalescence and incorporation of stacking faults along the f111g planes since the
dislocation networks of adjacent islands are, in general, out of phase.

Provided that the interfacial strain is completely relieved, the surface of such a GaN template is

smooth enough, and the density of stacking faults is not too high, subsequent two dimensional

growth of single-phase �-GaN is possible.

Let the island growth rate g = gk + g? be decomposed into a lateral (in-(001)-plane) and a

vertical (out-of-plane) component, then the ratio � = gk=g? controls the growth mode: � = 0

corresponds to 3D growth without any surface di�usion while � � 1 is necessary to establish

the step-
ow growth mode. Unless � attains an optimum value, no transition from the initial

3D to 2D growth will occur and the outlined nucleation mechanism will not work.

If the growth temperature TG is low enough such that desorption processes may be neglected,

then g is essentially determined by the minimum of the Ga and the N 
ux. In contrast, �

depends strongly on the thermally activated surface di�usion processes and sticking coe�cients

and is therefore a function of TG. In addition, it may be in
uenced by a deviation of the Ga/N


ux ratio from unity and (un)intentional adsorbants (C, O, As, ...). An excess in nitrogen,

e.g., will reduce the mean-free path of Ga atoms by surface scattering. Thus, prerequisites for

a succesful �-GaN nucleation are a well-prepared GaAs surface and a proper, time dependent,

adjustment of the absolute Ga and N 
uxes as well as the growth temperature TG.

The high-resolution TEM micrograph in Fig. 3.01 shows an example of a polycrystalline,

rough GaN nucleation layer as a result of non-ideal process parameters. Even though no obvious

plasma damage of the GaAs substrate is perceivable, the epitaxial constraint is lost as evidenced

by the �-GaN seeds at the interface and the misoriented grains.

Unless the nucleation layer is absolutely phase pure, no thick monocrystalline �-GaN �lm

can be obtained. Hexagonal grains will laterally expand with increasing �lm thickness and

will �nally take over. This can be seen in the dark-�eld cross-sectional transmission electron

micrograph Fig. 3.03, where hexagonal (�) cone-like inclusions appear as dark regions while

the dying-out cubic (�) phase exhibits bright contrast.

3.4.3 The Role of As

A necessary condition for the successful RF plasma nucleation of �-GaN is an As-terminated

GaAs surface obtained by providing an As 
ow until coalescence of the three dimensional GaN

islands. Nucleations carried out without As resulted inevitably in polycrystalline material. In

contrast, no such As stabilization was necessary in the case of the low-nitrogen-
ow DC plasma

source. There, the As shutter was closed immediately upon initiating the nucleation procedure

[55].

This suggests that the role of As in achieving a single-phase cubic template is to protect the

GaAs surface from premature nitridation. As a result of the higher strength of the Ga{N bond

(93 kJ/mol) compared to the Ga{As bond (47 kJ/mol) [59], GaN can form through an As! N

exchange reaction despite an elevated As background. However, a su�ciently low growth rate

and a high V/III ratio are necessary for this mechanism to completely take place.
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Fig. 3.01: HRTEM micrograph [AT] of a poly-

crystalline �-GaN nucleation on GaAs

with rough surface morphology.

Fig. 3.02: HRTEM micrograph [AT] of a single-

phase �-GaN nucleation on GaAs.
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Fig. 3.03: XTEM micrograph [AT] of a sample with dominantly cubic (grey) nucleation where

the hexagonal phase (black) is taking-over with increasing thickness. The �-GaN

seeds are arrowed.

While an impinging As4 
ux is bene�cial for achieving a 2{5 nm thin, connected �lm of

�-GaN, it may have detrimental e�ects on the growth of thick layers. In the latter case,

competitive growth of GaAs will not be completely suppressed as a result of the substantially

higher growth rate (V=III � 1). Due to the immiscibility of �-GaN and GaAs [59, 60], phase-

separated GaAs clusters can thus form which may trigger a � ! � phase transition. This

phenomenon was observed for even moderate As backgrounds at �lm thicknesses of about 50

nm.

3.4.4 Optimization of RF Plasma Nucleation

Apart from the afore-mentioned Ga 
ux and the growth temperature, the plasma power, the

N2{
ow, and the As 
ux are relevant process parameters, thus, amounting to 5 independent
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quantities which have to be optimized as a function of time.

About 70 samples were necessary to establish a reproducible RF plasma process yielding

�-GaN nucleation layers of su�cient quality. Once the N2{
ow was reduced down to about 0.3

sccm/min, i.e. far beyond the values of 1{10 sccm/min being recommended by the manufacturer

of the RF source for the applied plasma power of 300 Watt, the optimization proceeded at a

quick pace. In conjunction with a Ga 
ux of g � 0:05 monolayers/s, uncontrolled nitridation

of the GaAs can be e�ectively suppressed. On the other hand, the nitrogen abundancy under

these conditions (V=III � 4) is just enough to limit the di�usion of Ga in order to avoid the

formation of large GaN clusters. Also, the ideal substrate temperature of TG=590
oC turns out

to be a critical parameter.

Fig. 3.04a: RHEED patterns taken along the [�110]-azimuth at di�erent stages of an optimized

RF plasma assisted nucleation of �-GaN/GaAs (see text). The reciprocal lattice

spacings of GaAs and GaN are indicated by the white lines.

Fig. 3.04a shows di�erent stages of an optimized nucleation of zincblende GaN on GaAs,

recorded along the [�110] azimuth. The conditions are as stated above. Right after ignition of

the RF plasma source, the �-(2�4)-reconstructed GaAs pattern is replaced by a (3�3) pattern.
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Upon simultaneously opening the Ga and the N shutters, the latter transforms readily into a

(1�1){surface where the reciprocal lattice spacing is the same as that of the initial (2�4){GaAs
surface, dGaAs. After deposition of only 0.5 monolayers of GaN { referred to the bulk lattice

constant of aGaN = 4:514�A { new di�raction spots, separated by dGaN, appear in the upper

part of the respective snap shot. As the nucleation proceeds, these blurred re
exes become

more intense at the expense of the GaAs spots which disappear at a GaN coverage of about

1.4 monolayers. At an equivalent thickness of 4 monolayers, the new pattern with larger period

remains essentially invariant under further deposition.

Fig. 3.04b: RHEED patterns after completion of the nucleation (5 monolayers �-GaN) taken during

a growth interruption.

Fig. 3.05 : Atomic force microscopy scan [MW] of an optimized �-GaN nucleation layer.

Measuring the spacings dGaAs;GaN as indicated by the white lines, the ratio dGaN=dGaAs =

1:25 � 0:01 is obtained. On the grounds of the GaAs lattice constant of aGaAs = 5:65�A, the

�-GaN lattice constant at growth temperature aGaN = 4:52 � 0:04�A can be estimated. This
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�nding shows that already at equivalent coverages of as little as one monolayer, the GaN is

fully relaxed. The interpretation of the (3�3) reconstruction as to a commensurate GaN �lm

of one monolayer thickness given by Gwo et al. [52] can thus not be supported.

The nucleation procedure was typically stopped at coverages of 5{7 monolayers. Heating up

the substrate temperature to TG = 640oC brings along a tremendeous improvement in intensity

and contrast of the RHEED patterns as shown in Fig. 3.04b. Along all major azimuths,

elongated spots aligned in parallel are observed, which have their origin in the formation of a

connected, epitaxial layer of monocrystalline �-GaN. TEM studies of such nucleation layers

con�rm this interpretation (Fig. 3.02).

In the course of the thermal treatment, a very weak 2� reconstruction evolved along the

[�110] azimuth, indicating a rather smooth surface morphology. Indeed, an AFM scan of a

typical nucleation layer shown in Fig. 3.05 yields a peak-to-valley roughness of 13 �A and a

root-mean-square value of only 1.5 �A.

3.5 Degradation of thick GaN layers

Once a single-phase, connected layer of �-GaN is obtained, (near) stoichiometric growth con-

ditions V=III � 1 are to be adjusted and the substrate temperature TG has to be raised. The

possibilities for ruining a good �-GaN template are numerous and, as in the case of the nucle-

ation stage, the ideal parameter window for the RF plasma process is tighter than that of the

DC plasma growth.

3.5.1 Ga-rich conditions

Gallium-rich conditions and low growth temperatures may lead to the formation of microcrys-

tals through a vapor-liquid-solid like epitaxial process. Fig. 3.06 displays an example of this

Fig. 3.06 : Crystallite growth under Ga-rich conditions at low temperatures as viewed by SEM. [IP]
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growth mode where mesa-like zincblende structure crystals have formed on top of the underlying

�-GaN �lm. Cathodoluminescence measurements carried out on these mesas yield spectra

similar to those obtained from the cubic crystallites of sample #2058. In contrast to the latter,

no evidence for wurtzite phase crystallites could be found.

3.5.2 N-rich conditions

Nitrogen-rich growth will lead to columnar, polycrystalline material with poor surface morphol-

ogy as shown in the cross-sectional transmission electron micrograph (Fig. 3.07) and the atomic

force microscopy scan (Fig. 3.13) on page 22. Selected area di�raction (Fig. 3.08) reveals a

superposition of the cubic and hexagonal pattern along with stacking faults and twins.

Figs. 3.07,08: XTEM (left) and SAD (right) micrographs [AT] of columnar, polycrystalline GaN

(#8004) obtained under N-rich conditions.

However, it has to be emphasized that the brick-like morphology (Fig. 3.13) does not nec-

essarily correlate with the structural quality of the GaN �lm. It was observed for many single-

phase �-GaN �lms grown with the RF plasma and basically for all samples obtained by the

DC source. Even nearly amorphous GaN grown on GaAs at room temperature exhibited this

surface morphology. Since these bricks could also be detected on the surfaces of very thin GaN

layers, the underlying GaAs being atomically smooth, the crucial question arises whether this

roughening phenomenon is an intrinsic feature of the GaN/GaAs heteroepitaxy. If this is the

case, then cubic GaN grown on GaAs can be ruled out as a viable material for (opto-)electronic

applications: Neither (In,Ga,Al)N heterostructures like quantum wells nor even su�ciently

thick single-phase GaN layers were possible.

3.5.3 Growth temperature and growth rate

The ideal growth rate g and temperature TG are intimately correlated via the collision-limited

surface di�usion of Ga and N. Being unable to state a quantitative law of the form gideal(TG),

growth experience shows that raising either of both quantities too quickly upon nucleation may
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lead to a degradation of the �-GaN in terms of phase purity and/or morphology. A rather

conservative set of parameters resulting in stable zincblende growth with the RF plasma source

is g = 130 nm/h and TG=640{650
oC.

3.6 Growth under optimized conditions

3.6.1 Structural Properties

Figs. 3.09,10 depict XTEM and SAD data, both taken along the [110] azimuth, of a represen-

tative 0:7�m thick �-GaN �lm which will be referred to as reference sample #8092. It was

grown under stoichiometric conditions V=III � 1 with TG=640
oC and g = 140 nm/h on top

of a smooth, single-phase nucleation layer. The GaN is relaxed and of zincblende structure as

proved by selected area di�raction. Even though strongly overexposed, the di�raction pattern

visible in Fig. 3.10 does not exhibit any hexagonal re
exes. The di�raction spots are symmet-

ric, intense and, in contrast to Fig. 3.08, no twinning or facetting is observed. The same applies

for the [�110] azimuth (not shown).

Figs. 3.09,10: XTEM and SAD micrographs [AT] of the single-phase �-GaN reference �lm #8092

obtained under optimized conditions.

An interesting feature is the pronounced anisotropy of the stacking fault density, being

considerably higher along the [110] direction than along the [�110] azimuth. This asymmetry

may be due to the fact that in the polar zincblende lattice one set of f111g planes terminates
on Ga atoms while the other one ends in N atoms.

It is also noteworthy that the sensitivity of (SAD) TEM towards stacking faults is consid-

erably higher than that of RHEED: Not only in the early-stage-of-growth patterns displayed

in Fig. 3.12 but throughout the entire growth process of the present sample, no stacking faults

could be detected by means of in situ RHEED. In contrast, the RHEED patterns belonging
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to structurally inferior samples clearly exhibit stacking faults along both the [�110] and [110]

azimuths.

The x-ray di�raction data shown inhere were acquired with a di�ractometer in double

crystal con�guration using CuK
�1

(� = 0:154 nm) radiation. An x-ray ! � 2� di�raction

pro�le of the sample under investigation is viewed in Fig. 3.11a. It was measured with a 100

�m aperture placed in front of the detector across the symmetric (002) re
ections of GaAs

at �GaAs = 15:8138� and �-GaN at �GaN = 19:954�, corresponding to a lattice constant of

aGaN = 4:514 �A. A Pseudo-Voigt function

f(x) = m
ac

2

(x� xo)2 + c2
+ (1�m)a exp

�
� ln 2

�
x� xo

c

��
(3.1)

was used to model the GaN peak, having a full width at half mean of ��GaN = 0:28�. This

value correlates to 
uctuations in the lattice constant of �aGaN = �0:03 �A. The curve shape is
close to a Lorentzian as indicated by m = 0:93 and exhibits a slight asymmetry in the low-signal

tails.

Figs. 3.11a,b: XRD ! � 2� and ! scans of the �-GaN reference sample #8092 grown under opti-

mized conditions

For comparison, Fig. 3.11b depicts an !-scan which was measured about the (002) Bragg

re
ex of �-GaN by rotating the sample whereas the wide-open detector was kept �xed. The

width of the Gaussian-like peak (m=0.22) amounts to �! = 1:3o. It stems from misoriented

domains as well as from the high densities of dislocations and stacking faults which result

in considerable local strain. Further optimization of growth parameters, especially of TG in

conjunction with the growth rate g is necessary to improve the crystal quality.
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3.6.2 Surface Morphology

In situ RHEED patterns taken during growth of the �-GaN reference sample at a thickness of 30

nm are shown in Fig. 3.12. The cubic symmetry of the di�raction patterns is in accordance with

the TEM results (Figs. 3.09,10). No hexagonal or polycrystalline features could be detected

throughout the entire growth sequence. Starting from a smooth nucleation layer with parallel

and slightly elongated di�raction spots, a streaky pattern showing a 2� reconstruction along

the [�110] azimuth evolves at a �lm thickness of about 20 nm.

Fig. 3.12: RHEED patterns of the epilayer #8092 recorded at a thickness of 30 nm
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Along the [110] direction, a weak 4� superstructure with missing half-order streak is visible.

In contrast to the gallium-stable (2�2) and c-(2�2) reconstructions observed so far for DC

plasma grown �lms [61, 62, 63], this (4�2) reconstruction is nitrogen-stable. It appears during

growth interruptions and is una�ected by an exposure to the nitrogen plasma. In contrast, the

(4�2) disappears immediately upon deposition of 0:3� 0:6 monolayers of Ga. Once the Ga has
been desorbed, the reconstructions recover.

The improvement in the RHEED patterns shown is in accordance with the AFM scan

displayed in Fig. 3.14. The surface morphology of the �-GaN reference sample is not only

considerably smoother, having an RMS roughness of about 1.5 nm, but in particular, it is

lacking the brick-like features observed so far for all DC as well as RF plasma grown GaN �lms.

An example of such is given in Fig. 3.13 where AFM data of a sample grown under N-rich

conditions is viewed. This achievement gives rise to hope that growth of thick single-phase

zincblende heterostructures may not be an illusion.

Fig. 3.13: AFM scan [MW] of the columnar,

polycrystalline GaN sample #8004.

Fig. 3.14: AFM scan [MW] of the single-phase

�-GaN sample #8092.
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Re
ectance & Transmittance of �-GaN

To date, very little is known about the dielectric properties of �-GaN. No complete and

consistent set of optical constants, i.e. the spectral dependence of the complex dielectric constant

�
c
= �1 + i�2 or the index of refraction n

c
= n + i�, are available for photon energies covering

both the below- and above-band-gap range. Investigations published so far are either restricted

to the regime of strong absorption [64, 65] or to the transparent spectral range [66]. In the

former case, spectroscopic ellipsometry was used to measure �
c
for 3:3 � E � 20 eV.

Fig. 4.01: Measured (symbols) and calculated (lines) re
ectance R and transmittance T of the

0.7 �m thick �-GaN reference �lm #8092 at room temperature.

For energies below the fundamental band gap energy EG, the refractive index n is usually

assessed by analyzing interference fringes modulating optical data. In transmission or photo-

luminescence, e.g., maxima of order l occur for normal incidence if

n
l
=

�
l
(2l + 1)

4d
: (4.1)

Provided that the �lm thickness d is su�ciently large (d � 3�m for � � 350 nm), the observed

interference maxima at wavelengths �
l
are densely enough spaced such that the optical constants

23
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may be considered as being roughly constant in between the intervals [�
l
; �

l+1[. The discrete set

of values fn
l
g can then be interpolated to obtain n(�). This method was applied to determine

the refractive index of �-GaN from the modulations of a deep-level luminescence band [67].

Here, the re
ectance and the transmittance of the 0.7 �m thick �-GaN reference �lm intro-

duced in chapter 3 will be considered (Fig. 4.01) for photon energies covering almost the entire

visible and near-ultraviolet spectral range (2:0 � E � 3:8 eV). Due to the low �lm thickness,

the spacings between the extrema �
l
are by far too large to allow for a determination of n(E) by

virtue of equation (4.1). Considerable numerical e�ort will be required to calculate the optical

constants of the �-GaN reference sample.

4.1 Experimental Setup

The experimental setup used to carry out transmittance and re
ectance measurements is

sketched in Fig. 4.02. The light of a halogen lamp was passed through a monochromator, mod-

ulated by a chopper and focused onto the respective sample which was mounted in an evacuated

cryostat, adjustable via an x-y-z-table. The sample holder could be rotated to vary the angle of

incidence �. Behind the cryostat, a photomultiplier tube with an integrated lens was adjusted

in line with the optical axis to acquire the transmitted light. A second detector of the same type

was used to collect the re
ected radiation. Due to the �nite detector aperture, near-normal in-

cidence � = 5�2o is given. This setup enables measurements for photon energies 2 � E � 4 eV.

Fig. 4.02 : Transmittance and re
ectance setup (Top view, not to scale).

Absolute measurements of the transmittance T or re
ectance R require the determination

of the apparatus function being the product of the incident light intensity I and the detector

sensitivity S. The vertically displacable sample holder possesses for this purpose a second

pinhole located underneath that one onto which the sample is mounted, both holes having

the same diameter (2 mm). By measuring the transmittance through the free hole without

modifying the optical adjustment, the apparatus function SI is obtained by which T can be

calibrated. The same procedure is applied to the re
ectance detector placed in the transmission

path for calibration.

In order to extract the optical constants of the layer under investigation from the measured

transmittance and re
ectance spectra (T ;R)(E), the �lm will �rst be idealized as being a

parallel plate of thickness d with perfectly plane surfaces. In chapter 4.2, the theory of re
ection

and refraction at the boundaries of such a plate embedded in air is briefely reviewed. [68, 69]
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4.2 Basic Theory of the Fabry-P�erot Resonator

We consider a plane wave E(x; t) = Eoei(kx� !t) with angular frequency ! = cjkj striking the
interface between air and a medium of thickness d with plane surfaces and complex index of

refraction

n
c
= n + i� ; (4.2)

which is linked to the dielectric constant �
c
= �1 + i�2 by the Maxwell relation n

c
=
p
�
c
.

The Re
ectivity � and Transmittivity � of the two interfaces are given by the Fresnel-Stokes

equations

� = �nc � 1

n
c
+ 1

; � =
q
1� �2 ; (4.3)

where '+' applies for the air/plate and '�' for the plate/air interface. Therefore, the re
ected
wave is E 0(x; t) = �E(x; t), whereas the refracted wave in the plate at a distance x from the �rst

interface (xkk) states E 00(x; t) = �Eo exp
�
i!

�
x
n
c

c
� t

��
. Let Io = jEoj2 and the Re
ection

Coe�cient r and Absorption Coe�cient � be de�ned as

r = j�j2 ; � =
4�

hc
�E and E = �h! ; (4.4)

then the respective intensities are

jE 0j2 = r Io ;
jE 00j2 =

p
1� r expf��xg Io :

(4.5)

Since at each of the two interfaces, the wave is being split into a re
ected and a refracted part

(Fig. 4.03) according to equations (4.3), the total transmitted and re
ected intensities, T and

R, are obtained by an in�nite series over the individual re
ected and refracted rays at the

respective interfaces.

Fig. 4.03: Re
ection and refraction at the boundaries between a parallel plate of thickness d

and air. In the example shown, a real index of refraction n
c
= 2:6 and an angle of

incidence of � = 22o was adopted.
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4.2.1 Incoherent Intensities

Repeatedly applying (4.5) the intensities of the re
ected and transmitted beams of order j read

Ro = r Io ;
Rj = r

2j�1(1� r)2e�2j�s Io ; j 2 IN ; and

Tj = r
2j(1� r)2e�(2j+1)�s Io ; j 2 INo ;

(4.6)

respectively, with s = d= cos 
 and sin � = n sin 
. Ignoring interference e�ects, i.e. incoherently

adding the individual intensities Rj and Tj, the total re
ected and transmitted intensities are

obtained

RI =
1X
j=0

Rj = r
1 + (1� 2r)re�2�s

1� r2e�2�s
Io ;

TI =
1X
j=0

Tj =
(1� r)2e��s

1� r2e�2�s
Io :

(4.7)

4.2.2 Coherent Intensities

For an adequate treatment of the multiple re
ections occuring in the plate with perfect inter-

faces, the Relative Phase between the amplitudes of the interfering rays,

� = 2jkjnd cos 
 ; (4.8)

has to be considered. Using (4.3) the amplitudes of re
ected and transmitted rays of order j

are then
Ro = � Eo ;
Rj = �eij�(1� �

2)�2j�1e�2j�s Eo ; j 2 IN ; and

Tj = e
ij�(1� �

2)�2je�2(j+1)�s Eo ; j 2 INo :

(4.9)

By coherently summing the amplitudes, the total intensities become

RA(�) =

������
1X
j=0

Rj

������
2

= r
1� 2e��s cos � + e

�2�s

1� 2re��s cos � + r2e�2�s
Io

TA(�) =

������
1X
j=0

Tj

������
2

=
(1� r)2e��s

1� 2re��s cos � + r2e�2�s
Io

(4.10)

and the total absorbed intensity yields

A(�) = Io �RA(�)� TA(�) = (1� r)
�
1� e

��s

� 1 + re
��s

1� 2re��s cos � + r2e�2�s
Io : (4.11)

Provided that r and � are �-independent, the Consistency Relations

RI =
1

2�

Z
2�

0

RA(�) d� and TI =
1

2�

Z
2�

0

TA(�) d� (4.12)

hold. Whereas equations (4.10) are a direct consequence of energy conservation and the bound-

ary conditions of the electromagnetic �eld at the interface between two media with di�erent
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dielectric constants, the relations (4.12) may be interpreted as a conservation law for the integral

�eld energy taken over one complete period.

In what follows, we assume normal incidence � = 0, i.e. s = d and require R, T to be

normalized such that Io � 1.

4.3 Finite Coherence E�ects

So far, the layer whose optical constants are to be assessed was idealized as being a homo-

geneous, continuous medium with uniform thickness. The fact that, in reality, any solid is

composed of discrete entities such as nano-crystals or, ultimately, atoms gives rise to structural

inhomogeneities on a microscopic scale. The dielectric constants of bulk matter which rely on

the macroscopic Maxwell equations may therefore deviate from the values measured on ultra-

thin �lms. Such discrepancies between bulk and thin �lm properties were observed by Schulze,

Goos, and Mal�e at the beginning of this century who carried out measurements on thinned gold

foils or evaporated �lms having thicknesses of d � 20 nm [71, 72, 73]. The Maxwell Garnet

theory [74] and their extensions [75, 76] try to account for this phenomenon by treating a thin

�lm as a random distribution of isolated particles which, themselves, are assumed to have the

bulk refractive index. By varying the volume �lling ratio, it is possible to model the e�ective

index of refraction of the entire �lm.

Since in the present work we are not seeking to characterize ultra-thin �lms but samples

having thicknesses of at least 200 nm, we will not question the concept of macroscopic material

parameters. Instead, we have to face the problem that a real sample is in general subject

to thickness variations and to inhomogeneities in the index of refraction, leading to random


uctuations in the phase �. Apart from these sample-inherent e�ects, there may be also extrinsic

sources of incoherence such as the thick, transparent sapphire/glue sandwich onto which the

GaN �lm has been mounted (Fig. 4.04, page 31).

Let � be the average phase, then each re
ected or transmitted beam of order j will encounter

its own phase

�
j
= � +��

j
; j 2 IN ; (4.13)

where ��
j
are equally distributed, stochastically independent random variables with probability

density P and expectation values

h��
j
i =

Z
+1

�1

��
j
P(��

j
) d��

j
= 0 (4.14)

h��
j
��

k
i = h��

j
i h��

k
i for j 6= k : (4.15)

Based on the standard deviation �
�
of P, the degree of incoherence can be quanti�ed by the

Statistical Coherence Factor

C��
:= 1� �

�1
�
�

with �
�

2 =
D
(��

j
� h��

j
i)2
E
: (4.16)

The measured re
ectance RA(�) and transmittance TA(�) are now to be replaced by the ex-

pectation values hRAi and hT Ai, respectively, obtained by taking the stochastical mean over

P(��
j
); j 2 IN. Irrespective of the actual P , values of C��

nearby unity will lead to a re-


ectance and transmittance being close to the coherent limit, whereas a vanishingly small C��

will result in a complete loss of coherence:

h(RA; T A)i �
8<
:

(RA(�); TA(�)) for C��
� 1

(RI; TI) " C��
� 0 :

(4.17)
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Provided that the root-mean-square value �
s
of the interfacial roughness is known, a stochastical

analysis of the re
ectance and transmittance data may be performed to estimate the optical

inhomogeneity �
n
caused by local variations of the refractive index (Chapter 4.6).

Instead, the �nite coherence e�ects may be treated e�ectively without resorting to details

about the underlying stochastical processes. To do so, an analytical expression (RC; TC) is
required which complies with the boundary conditions (RC ; TC)C=0 = (RI; TI) and (RC ; TC)C=1 =
(RA(�); TA(�)) and leaves the integral mean re
ectance and transmittance invariant for all C.
The convex combinations

RC(�) := C � RA(�) + (1� C) � RI

TC(�) := C � TA(�) + (1� C) � TI
(4.18)

with the E�ective Coherence Factor C are in accordance with these requirements and, in par-

ticular,

(RI; TI) =
1

2�

Z
2�

0

(RC ; TC)(�) d� for 0 � C � 1 and �; r = const: (4.19)

4.4 Analysis of Real Data: The Numerical Scheme

By measuring the normal incidence re
ectance R(E) and transmittance T (E) as a function

of photon energy E = �h! in [Emin; Emax], the optical constants r(E) and �(E) and thus

n
c
(E) =

q
�
c
(E) can be determined. Two cases have to be distinguished:

1. Sample free-standing in air

Since the sample has two equivalent interfaces, an analytical expression for the refractive

index as function of re
ectivity,

) n =
1 + r

1� r
+

s
4r

(1� r)2
� �2 ; � =

hc

4�

�

E
; (4.20)

exists which greatly facilitates the numerical procedure. The tradeo� of such a con�gu-

ration is the lack of mechanical stability. In the case of thin �lms (s � 5�m), corrugated

interfaces may result which cause di�use scattering of the re
ected light as well as artefac-

tual modulations of the interference oscillations and lead thus to unbearable systematical

errors.

2. Sample mounted on a transparent substrate

Thin �lms have to be mechanically supported by a transparent substrate. Provided that

in the energy range [Emin; Emax] of interest, the substrate real index of refraction nSub is

essentially energy independent and the extinction coe�cient �Sub � 0, then the roundtrip

re
ection coe�cient reads

) r = j�1�2j =
vuut(n� 1)2 + �2

(n+ 1)2 + �2

(n� nSub)2 + �2

(n + nSub)2 + �2
: (4.21)

Here, �1 denotes the re
ectivity of the air/sample interface and �2 the re
ectivity of

the sample/substrate boundary. In contrast to (4.20) where j�1�2j = f(n� 1)2 + �
2g =

f(n + 1)2 + �
2g, no analytical solution of the form n(r; nSub; �) exists. Furthermore, nSub

may not be exactly known a priori.
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Since we are dealing with thin �lms with s � 1�m, the second case is given and the following

system of equations has to be solved for each photon energy E:

R(E) = r

(
C 1� 2e��s cos � + e

�2�s

1� 2re��s cos � + r2e�2�s
+ (1� C)1 + (1� 2r)re�2�s

1� r2e�2�s

)

T (E) = (1� r)2e��s
� C
1� 2re��s cos � + r2e�2�s

+
1� C

1� r2e�2�s

�

�(E) =
4�

hc
Esn ; � =

hc

4�

�

E

r(E) =

vuut(n� 1)2 + �2

(n+ 1)2 + �2

(n� nSub)2 + �2

(n + nSub)2 + �2

(4.22)

Even if the �lm thickness s and the substrate index of refraction nSub are su�ciently well

known and �nite coherence e�ects can be neglected (C = 1), the solution of (4.22) from scratch

by standard numerical methods represents an ill-posed problem.

Since no a priori assumptions about the energy dependence of the �lm index of refraction

n(E) are being made and (4.22) has to be solved pointwise for each E, no mathematical corre-

lation between the respective pairs of optical constants (r; �s)(E) exists for di�erent energies.

Unless a good set of initial values (rI; �I) (E) is available as starting point, the physical meaning

of �(E) as a monotonically increasing, continuous phase to control the modulations in (R,T )
can easily get lossed during the numerical processing. The consequence is a mathematical

solution without any physical relevance, though.

Actually, not even s or nSub are precisely known and one may therefore wonder if (4.22) can

be tackled at all without resorting to a model refractive index. In what follows, a numerical

scheme is presented that solves the above equations on di�erent stages.

4.4.1 Initial Value Calculation

The key to the problem of solving equations (4.22) over the entire energy range Emin < EG <

Emax lies in appropriately exploiting the consistency relations (4.12). If we assume that s and

nSub are approximately adjusted and neglect for the moment �nite coherence e�ects, i.e. C = 1,

the task of initial value calculation can be roughly split as follows:

1. Low-energy : E � EG � 0:5 eV

Since in this regime the optical constants (r; �), respective (n; �), are approximately en-

ergy independent, equations (4.12) hold. These imply that solving the coherent equations

(4.10) with the raw data (R,T ), is equivalent to applying the incoherent equations (4.7)
to the integral-mean data ( �R; �T ):

(RA; T A)(�(E)) = (R; T )(E) (4.23)

()

(RI; TI)(E) = ( �R; �T )(E)

:=
1

�
E

Z
E+�E=2

E��E=2

(R; T )( �E) d �E

� (E +�
E
) := �(E) + 2� :

(4.24)
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The Integral Approach (4.24), however, requires the implicitely de�ned energy period

�
E
and thus, the knowledge of n respective (r; �) which are actually to be determined !

Nevertheless, the distinct advantage of the latter method lies in its amenability to iteration

and in its high numerical stability since the phase �(E) enters only implicitely: Starting

with almost arbitrary initial values (r0; �0), rapidly converging sequences
�
( �R; �T ;�

E
)
j
; (r; �)

j

�
0�j�N

are obtained by repeatedly solving equations (4.24). Apart from errors in the calculation

of ( �R; �T ), the exact solution is obtained by (r
N
; �

N
), for N su�ciently large, and the a

posteriori calculated phase �(r
N
; �

N
; E) has the correct physical meaning. In this way, the

explicit treatment of interference e�ects is circumvented and the phase-related problems

of numerical instability are avoided.

2. Close-to-band-gap : EG � 0:5 eV < E � EG

This energy range is the most critical due to the signi�cant energy dependence of r and

�. However, even in this regime where the consistency relations do not hold, the integral

approach will at least give initial values (rI; �I) (E) suitable as starting point for the next

stage of calculation.

3. Above-band-gap : EG < E

Above the fundamental absorption edge, the Fabry-P�erot oscillations are getting heavily

quenched. Therefore, the incoherent equations (4.7) adequately describe the regime of

strong absorption and yield the exact solution (r; �)(E).

Since the empirical coherence factor C merely controls the peak-to-valley ratio of the interfer-

ences but leaves the integral mean of the transmittance, re
ectance, and in particular, the phase

�(E) invariant, it does not a�ect the mean values of the optical constants. Thus, C is not a

critical parameter and can easily be determined by adjusting the amplitude of the Fabry-P�erot

oscillations (Fig. 4.06, page 33).

4.4.2 Determination of s and nSub

So far, it was assumed that the �lm thickness s and the energy independent substrate index of

refraction nSub are known. We will now address the determination of these important param-

eters as well as the issue of numerical stability. The absorption coe�cient � is comparatively

insensitive to nSub and relates to s according to � � s
�1. In contrast, r and n are very sensi-

tive to (s; nSub) since they depend non-linearly on these parameters. Even small deviations of

(s; nSub) from their correct values bring the measured and calculated (R; T )(E) spectra out of
phase. This is numerically compensated for by artefactual variations in r which, consequently,

raise the Curvature of n(E) Z
Emax

Emin

����� @
2
n

@E2

����� (E) dE : (4.25)

Furthermore, failure to properly adjust s and nSub leads to intrinsic inconsistencies between

(r; �) and (n; �): Suppose that (r; �) and n(E) have been determined by solving the equations

(RA; T A) = (R; T ) and (~r; ~�); ~n by repeating the calculation under the constraint n(E):

(RA; T A)
���
n(E)

!
= (R; T )) (~r; ~�)) ~n(E) : (4.26)
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Then (r; �) 6= (~r; ~�) and n(E) 6= ~n(E) unless (s; nSub) attain their correct values. The unknowns

(s; nSub) can thus be determined by minimizing the Inconsistency Measure

Dn(s; nSub) := (Emax � Emin)
�1

Z
Emax

Emin

(
jn� ~nj+

����� @
2
n

@E2

�����
)
(E) dE ; (4.27)

which may also be used for a �ne-tuning of C due to the curvature term. Numerical tests show
that the contribution from the �rst term in (4.27) saturates if (s; nSub) are too far from the

right values while the curvature term dominates in this regime. Once (s; nSub) are close to the

optimum, the latter does not exhibit signi�cant variations anymore in contrast to the actual

inconsistency term. Therefore, the incorporation of (4.25) into (4.27) serves to accelerate the

convergence.

4.5 The Optical Constants of �-GaN

The preceeding method is now being applied to the 0.7 �m thick �-GaN reference layer intro-

duced in chapter 3. The sample preparation consists in locally removing the GaAs substrate by

wet chemical etching. For achieving plane surfaces and the required mechanical stability, the

resulting thin �lm was �xed face down onto a sapphire substrate (Fig. 4.04) using an optical

UV glue.

Fig. 4.04: Sample preparation for transmittance and re
ectance measurements.

The optical properties of the sapphire and the glue were investigated separately. Trans-

mission measurements with the sapphire did not reveal any measurable absorption up to the

detection limit at Emax = 3:8 eV of the optical setup used. An approximately 1�m thick

glue layer sandwiched between two sapphire plates showed to be transparent up to 3.6 eV

in accordance with the manufactorer's data sheet of the glue. Thus, the consideration of the

transmission curve of the UV glue in analyzing the GaN data resulted in just a minor correction.

In contrast, the incorporation of the index of refraction of the glue, nSub, in the determination

of the optical constants of the �-GaN �lm is essential since it determines the roundtrip re
ection

coe�cient r = �Glue=GaN � �GaN=Air. Simple tests indicated nSub � 1:4, i.e. close to the index of

refraction of glass. Since nSapphire = 1:8, also the glue/sapphire interface gives rise to re
ection

and refraction. However, compared to the di�erence between nSub and nGaN � 2:6, back-

re
ections from the former boundary into the GaN �lm may be neglected. Even though the

discontinuity in the index of refraction at the sapphire/air interface is appreciable, interference

e�ects in the sapphire are suppressed by its large thickness of 250 �m. This was veri�ed

by independently measuring the sapphire. Thus, the latter rather constitutes a source of

incoherence.

In summary, the optical glue is treated as a substrate establishing a boundary condition to

the problem of assessing the optical constants of the �-GaN �lm. All quantitites obtained are

to be considered as e�ective ones within the validity of the equations (4.22).
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4.5.1 Room-Temperature Properties

Initial Value Calculation

The �rst step in extracting the optical constants from the room temperature transmittance

and re
ectance data, shown in Figs. 4.01,08, consists in establishing initial values (rI; �I) (E)

and the parameters (s; nSub). This is achieved by minimizing Dn according to (4.27) by using

the integral approach (4.24) in the energy range [2:0; 2:8] eV. The topology of Dn(s; nSub) for
650 � s � 730 nm and 1:0 � nSub � 1:8 in Fig. 4.05 exhibits a global minimum at s = 685 nm

and nSub = 1:35.
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Fig. 4.05: 3D-Contour plot of Dn(s; nSub) for s 2 [650; 730] nm, nSub 2 [1:0; 1:8]

and C = 0:6 with absolute minimum at s = 685 nm and nSub = 1:35.

The resolution of the grid is �s = 1:0 nm and �nSub = 0:05.

This optically determined, preliminary, thickness value is in accordance with scanning elec-

tron and transmission electron microscopy measurements carried out on the sample under

investigation. The estimated value for the substrate index of refraction, on the other hand,

is consistent with the previously mentioned tests. It is clearly seen in Fig. 4.05 that choosing

nSub � 1:5 causes large intrinsic inconsistencies, no matter what �lm thickness is adjusted. Es-

pecially, setting nSub = 1:8, i.e. to the refractive index of sapphire leads to the most divergent

results.
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Fig. 4.06: Initial value calculation with s = 685 nm, nSub = 1:35. The symbols are the

measured data while the lines are the calculated re
ectance and transmittance for

C = 0; 0:6; 1:0. The arrows indicate the periods obtained from the phase � in Fig.

4.07.

Fig. 4.07: Initial values for the optical constants (rI; �I) (E) and the phase �. The energy

periods of interference order 6{8 are arrowed (compare to Fig. 4.06).

The low-energy initial solution shown in Fig. 4.06 is obtained as a result of the above

coarse optimization of Dn(s; nSub) and an adjustment of the coherence factor to C = 0:6. The

corresponding initial values �I(E) and the phase �(E) are depicted in Fig. 4.07. Since the

re
ection coe�cient (not shown) is varying around a mean value of rI = 0:145 which correlates

to nI = 2:64, these quantities were set constant in the energy range under consideration. The
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absorption coe�cient, on the other hand, is monotonically increasing. The constant parts at

the boundaries of half-period width are due to applying the integral method (4.24).

Since for E � 2:6 eV, the optical constants exhibit only little variation, the calculated

transmittance and re
ectance model the experimental data quite well at these low energies.

Note also that the linear phase � is in accordance with the observed interference extrema.

The discrepancies between the measured and calculated data stem from the neglect in energy

dependence of r and from the constant boundary values of � at E = Emin; Emax. Furthermore,

the adjustment of (s; nSub) has to improved by a more elaborate calculation solving the equations

(4.22) over the entire energy range.

Complete Calculation

On the grounds of the initial values (rI; �I) (E) and (s; nSub), the system of equations (4.22) can

now be solved in conjunction with a �ne-tuning of the �lm thickness and the substrate index

of refraction by minimizing Dn(s; nSub) over the entire energy range from 2.0 { 3.8 eV. As a

result, the values s = 690:0 nm, nSub = 1:34, and the optical constants depicted in Fig. 4.09

are obtained. In Fig. 4.08, the corresponding calculated re
ectance and transmission curves

(solid lines) are compared to the experimental data (symbols). Apart from a few outliers, the

theoretical curves match the measured ones and lead to a smooth, monotonically increasing

phase �(E) which is consistent with the observed extrema in (R; T )(E).

Fig. 4.08: Measured (symbols) and calculated (lines) re
ectance and transmittance

of �-GaN at T=300 K. The arrows indicate the periods as determined

by the phase � in Fig. 4.09.

The lower left subplot of Fig. 4.09 shows the energy dependence of the index of refrac-

tion. Evidently, n(E) cannot by understood as arising from a simple Lorentzian-oscillator-like
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fundamental gap in which case n2(E) can be stated as

�n2(E) = n
2

1
+ (�n)

2 (�E)
2

(E � Eo)2 + (�E)
2
: (4.28)

However, n2(E) can be modelled in limited photon energy ranges by the equation (4.28), yield-

ing the parameters listed in Tab. 4.1.

Eo [eV] �E [eV] n1 �n Photon Energy [eV]

3.22 0.13 2.63 1.10 2:00 � E � 3:23

3.23 0.33 2.47 1.91 3:21 � E � 3:80

Table 4.1: Model parameters for �n2(E) of �-GaN at 300 K.

Fig. 4.09: Solution of equations (4.22) for �-GaN at T=300 K with s = 690:0 nm, nSub = 1:34, and

C = 0:6. The energy periods in �(E) of interference order 6{10 are arrowed (compare

to Fig. 4.08). The line in the n(E) plot shows the double-Lorentzian �t (4.28).

The two partial curves out of which �n(E) is composed match smoothely in the overlap

range 3:21 � �h! � 3:23 eV. They adequately describe the experimental data (circles in Fig.
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4.09) apart from the low-energy 
uctuations in n(E) which are not believed to be an intrinsic

property of �-GaN but are rather assigned to error propagation. It has to be stressed that the

values given in Tab. 4.1 merely serve to mathematically model the overall trend in n(E) and

care has to be taken not to physically overinterpret those parameters. The complex dielectric

constant �
c
is displayed in Fig. 4.10 together with the smooth model function ��c = (�n+ i�)2.

Fig. 4.10: Real and imaginary part of the dielectric constant at T=300 K (sym-

bols). The lines arise from the modelled refractive index �n.

4.5.2 Low-Temperature Properties

The above scheme is also used to analyse re
ectance and transmittance data acquired at 10,

150, and 260 K. For the lowest temperature considered, the (s; nSub){optimization was repeated

in order to probe the consistency. Values of nSub = 1:335 and s = 688:9 nm were obtained

giving con�dence in the method presented. In Fig. 4.11, the measured 10 K data are compared

to the calculated spectra while Figs. 4.12,13 show the corresponding optical constants.

As expected, the prominent spectral features are shifted towards higher energies. The

low-energy mean values of the re
ection coe�cient and the index of refraction are almost the

same as those obtained at room temperature within the present accuracy (� �3%). If the

10 K refractive index is submitted to the same crude model than its 300 K counterpart, the

parameters shown in Tab. 4.2 are obtained.
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Fig. 4.11: Measured (symbols) and calculated (lines) re
ectance and transmittance of �-GaN at

T=10 K. The arrows indicate the periods as determined by the phase � in Fig. 4.12.

Fig. 4.12: Solution of equations (4.22) for �-GaN at T=10 K with s = 688:9 nm, nSub = 1:335, and

C = 0:6. The energy periods in �(E) of interference order 6{10 are arrowed (compare

to Fig. 4.11). The line in n(E) shows the double-Lorentzian �t (4.28).
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Fig. 4.13: Real and imaginary part of the dielectric constant at T=10 K (symbols).

The lines arise from the modelled refractive index.

Eo [eV] �E [eV] n1 �n Photon Energy [eV]

3.30 0.16 2.62 0.98 2:00 � E � 3:47

3.29 0.29 2.42 1.97 3:29 � E � 3:80

Table 4.2: Model parameters for n2(E) of �-GaN at 10 K.

4.5.3 Fundamental Absorption Edge

Having determined the optical constants of the �-GaN reference sample, we will now consider

its band edge properties in more detail. Within the validity of Fermi's Golden Rule the electric

dipole transition probability per unit time between conduction and valence band states jci, jvi
under the impact of an electric �eld E(r; t) = E

o
exp fi(kr � !t)g is given by [70]

R = 2��h

�
e

m�h!

�2 ����Eo2
����
2 Z
j hcjx̂pjvi| {z }

P
cv

j2D(E
cv
) dE

cv
(4.29)

with the joint density of states

D(E
cv
) =

1

4�3

Z
dS

k

jr
k
(E

cv
)j ; (4.30)

E
cv

= E
c
� E

v
; E

cv
= const: for k 2 S

k
:
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Since the power loss in the �eld equals to R�h! = �Ic=n where I = jnE
o
j2 =(8�), the imaginary

part of the dielectric constant

�2 =
8��h

jE
o
j2R (4.31)

follows. For an ideal direct-gap semiconductor with parabolic bands E
cv

= EG + (�hk)2=(2�),

�
�1 = m

�1

c
+m

�1

v
,

D(E
cv
) =

p
2�3

�2�h3

q
E
cv
� EG (4.32)

and thus

�2(E) =
4e2
p
2�3

�hm2
jP

cv
j2
p
E � EG

E2
; E = �h! (4.33)

for E � EG and �2(E < EG) = 0. Provided that the semiconductor complies with the above

idealizations, the band gap EG is obtained by the intercept of (�2(E)E
2)
2
, or equivalently,

(�(E)E)2 with the photon energy axis at �2 = 0.

Fig. 4.14: Fundamental absorption edge of �-GaN at 300 K

In praxis, however, the assignment of EG may not be straightforward. Even in high-purity

material, an Urbach tail at energies close to EG generally is observed [77]. In addition, impurity-

related acceptor and donor levels can merge with the intrinsic bands and further blur the
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fundamental band gap. An example of such is shown in Fig. 4.14 where the present room

temperature absorption data of the �-GaN reference sample, �E, are plottet against energy.

A least-squares �t of the expression a
p
E � EG (solid line) leads to a value of EG = 3:19�

0:05 eV. If the reduced e�ective mass � of �-GaN was known, the momentum matrix element

jP
cv
j could be calculated from the slope a. For 3:0 � E � 3:2 eV, an exponential behavior

�E = b exp(E �E
T
) with E

T
= 2:95� 0:05 eV is observed. At even lower energies measurable

absorption still prevails which is attributed to transitions between gap states. Even if the latter

were not present, the fundamental absorption edge would be smeared out by the Urbach tail

such that a determination of EG on the grounds of the square root density of states may lead

to an underestimation of the band gap.

Fig. 4.15: Temperature dependence of the fundamental absorption edge of �-GaN

Rather than resorting to absorption data alone, the refractive index n being a result of

re
ectance R in conjunction with transmittance T will now be used to determine the tempera-

ture dependence of the fundamental band gap of the �-GaN sample . Since an ideal absorption

edge is correlated with the onset of anomalous dispersion dn=dE < 0, the band gap EG will

be de�ned by the maximum in the refractive index at which
dn

dE
(EG) = 0. The values EG(T )

obtained in this fashion (symbols in Fig. 4.15) are larger by about 25 meV than those extracted

from the simple square root �t to �E.

The temperature dependence of the inter-band energy behaves as

EG(T ) = EG(0)� S
E


�
coth

�
E


2KT

�
� 1

�
(4.34)

where E
 stands for an average phonon energy and S
 is a coupling constant [78, 79, 80]. In

contrast to the frequently used Varshni empirical relation, this expression is physically moti-

vated by phonon occupation numbers obeying Bose-Einstein statistics.
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The parameters obtained by �tting the expression (4.34) to the band edge data shown in Fig.

4.15 (symbols) are summarized in Tab. 4.3. For comparison, data published by Ramirez-Florez

[81] and Petalas [82] are displayed (broken lines).

EG(0) [eV] E
 [meV] S
 [1]

3:3� 0:04 37� 2 3:5� 0:35

Table 4.3: Model parameters for the temperature dependent band gap energy of �-GaN.

These authors have used the Varshni expressions EG(T ) = 3:302�6:697�10�4 T 2
=(T+600)

eV and EG(T ) = 3:237� 5:161� 10�4 T 2
=(T + 600) eV, respectively, to model their data.

4.6 Incoherence and Optical Inhomogeneity

So far, e�ects of incoherence were analytically treated by linearly interpolating between the

two extreme cases of perfect coherence (sum over ampliudes ) RA(�),TA(�)) and entire inco-

herence (sum over intensities ) RI,TI). A so-called empirical coherence factor 0 � C � 1 has

been de�ned which allows for a quantitative treatment of intermediate degrees of coherence.

Even though this approach is intuitively evident and leads to reasonable values for the

optical constants of the �-GaN reference sample, it is not obvious at all whether the e�ect

of random phase 
uctuations on the observed re
ectance and transmittance can indeed be

quanti�ed in such a simple manner. Further, even if a linearized description of (in)coherence

by virtue of a macroscopic parameter C is justi�ed, no microscopic interpretation of C is possible
at the present stage.

Since many stochastically independent processes caused by interfacial roughness and spatial

inhomogeneities in the refractive index sum up in contributing to the random phase 
uctuations

��
j
in (4.13), the resulting probability density P will be a normal distribution

P(��
j
) =

1p
2��

�

exp

(
�(��j)

2

2�
�

2

)

�
�

= � (1� C��
) ;

(4.35)

characterized in width by the statistical coherence factor C��
. Indeed, the statistical distribution

of the surface roughness alone has a Gaussian pro�le as revealed by AFM investigations. Given

such a probability density P(��), we now have to investigate if for each C��
, there exists an

empirical coherence factor C such that for all �, j�j2 = r and �:

hRAi =

*��������
1X
j=1

e
ij(� +��

j
)(1� �

2)�2j�1e�2j�s

������
2+

� r

(
C 1� 2e��s cos � + e

�2�s

1� 2re��s cos � + r2e�2�s
+ (1� C)1 + (1� 2r)re�2�s

1� r2e�2�s

)
= RC

and

hT Ai =

*������
1X
j=0

e
ij(� +��

j
)(1� �

2)�2je�2(j+1)�s

������
2+

� (1� r)2e��s
� C
1� 2re��s cos � + r2e�2�s

+
1� C

1� r2e�2�s

�
= TC :

(4.36)
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A rigorous analytical proof of the above relations is not at all straightforward and actually

not even necessary. It su�ces to verify that these equations hold to within the accuracy in

re
ectance and transmittance data acquisition for the values of (r; �s) being typically encoun-

tered in praxis. Therefore, (RC ,TC) spectra were calculated with �xed (r; �s) for 0 � C � 1

and the corresponding C��
(C) was determined which yields the best match between the Monte

Carlo simulated (hRAi ; hT Ai) and the given (RC ,TC).

Figs. 4.16a,b: Comparison between (RC ,TC) calculated for r � 0:2, �s � 0:1, s = 500 nm (sym-

bols) and the corresponding Monte Carlo simulation (hRAi ; hT Ai) with adjusted

statistical coherence factor C��
(lines). In the left �gure C = 0:1 and in the right

one, C = 0:9 were given.

Fig. 4.17: Empirical C versus statistical coherence factor C��
.
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This comparative study was carried out for various combinations of (r; �s). In general,

good agreement can be reached between the empirical and the statistical re
ectance and trans-

mittance curves provided that C��
is optimized to within an accuracy of �0:01. The random

phase 
uctuations model with Gaussian density P exhibits slightly less abrupt minima in R
and, accordingly, maxima in T . For re
ectance coe�cients r � 0:5, these systematical devi-

ations are typically � 1% for 0 � C � 1. Examples of such are given in Figs. 4.16a,b where

(r; �s) � (0:2; 0:1) and s = 500 nm were used and the two cases of C = 0:1 and 0.9 are depicted.

It has to be emphasized that the optimum C��
(C)� 0:01 found is independent of the values

of (r; �s) assumed. Thus, the correlation between the empirical and the statistical coherence

factor shown in Fig. 4.17 has universal meaning in the sense that it applies for a wide range of

optical constants and for all (mean) phases �. While the equality in equations (4.36) does not

hold exactly, the discrepancies between (hRAi ; hT Ai) and (RC ,TC) are within the experimental
error in (R,T ) of typically 1{2%.

Fig. 4.18: Calculated 300 K re
ectance RC and transmittance TC spectra (dashed lines) of the �-GaN

reference sample, based on equations (4.22) with C = 0:6 and the determined optical con-

stants (r; �s)(E). In comparison, (hRAi ; hT Ai) spectra are shown (solid lines) which were

obtained by a Monte Carlo simulation with C��
= 0:68 employing the same (r; �s)(E).

According to Fig. 4.17, the empirical factor C = 0:6 employed so far to model the ex-

perimental (R,T ) data of the �-GaN reference sample should be equivalent to a statistical

coherence factor of C��
= 0:68. Indeed, performing a statistical simulation using the previously

determined optical constants (r; �s)(E) seen in Fig. 4.09 leads to (hRAi ; hT Ai) (E) spectra
(bright lines in Fig. 4.18) which almost exactly match the empirically determined (RC,TC)(E)
curves (dark dashed lines in Fig. 4.18). Since the extrema in the Monte Carlo simulations are

slightly smoother than those of the (RC ,TC) spectra, the agreement between the former and the

experimental data is even better (compare Fig. 4.08 on page 34).
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The fact that, despite signi�cant gradients in the real-live-data (r; �s)(E) of the �-GaN

sample, the conformity in the re
ectance and transmittance curves depicted in Fig. 4.18 is so

good, exempli�es the correctness of the correlation C��
(C) shown in Fig. 4.17 over a wide range

of optical constants. Further, it should be pointed out that the damping in the peak-to-valley

ratio of the sub-band-gap (R,T ) data, which has been attributed to incoherence, is independent
of the photon energy. Therefore, it was possible to model (R,T ) with constant C and C��

. From

the latter, the standard deviation of the phase 
uctuation �
�
= 1:00 is obtained

Fig. 4.19: Relative inhomogeneity �
n
=n [%] in the refractive index of the �-GaN reference

sample extracted from the room temperature (R,T ) data with C��
= 0:68, corre-

sponding to �
�
= 1:00, and �

s
= 3 nm.

On the other hand, AFM measurements yield a RMS surface roughness of 1.5 nm (Fig.

3.14, page 22), which is comparable to the roughness of the GaN/GaAs interface as shown by

HRTEM. Thus, the mean deviation in the sample thickness is �
s
� 3 nm. With this value we

are now in a position to estimate the relative contribution 1 of the statistical variations �
n
in

the refractive index to the observed phase 
uctuations:

�
n

n
=

vuuuuuut
�
�
�

�

�2
�
�
�
s

s

�2
�
�
s

s

�2
+ 1

: (4.37)

The energy dependence of this optical inhomogeneity inherent to the �-GaN reference sample

is displayed in Fig. 4.19. At the band edge, e.g., the spread in n is about 1.5% and therefore

n(3:2 eV) = 2:83�0:04. These variations in the refractive index are assigned to the local strain
�elds caused by structural inhomogeneity which can be perceived in the bright-�eld XTEM

micrograph Fig. 3.09 on page 19.

1For stochastically independent random variables A, B with probability densities PA;B and respective �A;B ,

the standard deviation of the product AB can be stated as �2AB = �
2

A hBi
2
+ �

2

B hAi
2
+ �

2

A�
2

B for all PA;B .



Chapter 5

Photoluminescence of GaN versus

Temperature

In view of the high density of structural defects encountered in zincblende GaN grown on

highly lattice-mismatched substrates, it is not obvious at all that any detectable radiative

recombination will take place even at cryogenic temperatures. However, the high luminescence

intensities observed in the case of wurtzite GaN are also astonishing since the crystal quality

in terms of defect densities of even the best available �-GaN is by orders of magnitude inferior

than that of any other III-V or II-VI compound used for opto-electronic applications. Even

more contradicting to common sense is the fact that, on the grounds of such an immature

material system, room temperature lasing is obtained with device lifetimes being of the order

of 10000 hours.[83]

While the temperature dependent optical constants and especially, the band edge of the

�-GaN reference sample are amenable to re
ection and absorption measurements, it is not

possible to clearly link a distinct emission process to the fundamental absorption edge over

the entire temperature range. The sample does exhibit weak photoluminescence up to 500 K.

However, the spectra are dominated by broad defect luminescence bands covering quantum

energies from about 2.5 to 3.2 eV, in particular at low temperatures.

In order to systematically investigate the luminescence properties of �-GaN, we therefore

have to resort to the two DC plasma grown samples (#2058, 2070) mentioned in chapter 3. The

band edge emission energies, linewidths, and intensities will be studied as a function of tem-

perature and compared to the exciton recombination of an �-GaN reference layer courteously

provided by Prof. Akasaki (Meijo University, Japan).

The continuous wave photoluminescence measurements were carried out in a standard ap-

paratus using the 325 nm line of a 50 mW He-Cd laser for carrier excitation. Neutral density

�lters were employed to vary the excitation power which was measured in front of the sample by

a calibrated power meter. The luminescence signal was detected by a cooled GaAs photomulti-

plier after having been dispersed in a grating spectrometer (600 lines/mm, �� = 0:1 nm). The

sample itself was kept in an evacuated continuous-
ow cryostat allowing stable temperatures

in the range of T = 4�500 K.

45
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5.1 Photoluminescence Spectra of �- and �-GaN

5.1.1 �- and �-GaN Microcrystals

The solid lines in Figs. 5.01,02 show PL spectra of sample #2058 for T ranging between 5 and

500 K. The low temperature luminescence is dominated by fairly sharp emission lines, denoted

by XC and XH. Upon raising T , an overall drop in luminescence intensity is observed and the

linewidths of XC and XH strongly increase while the transition energies monotonically decrease.

The transitions with �h! � 3:2 eV overwhelm when T is increased from 5 to 70 K and get �nally

quenched as soon as room temperature is reached. At T � 400 K, a weak yellow luminescence

band is evolving. Since the sample comprises cubic and hexagonal microcrystals sitting on top

of a zincblende-phase �lm, the PL spectra are a superposition of the various emission processes

occuring in the di�erent phases.

Selected-area-excitation in cathodoluminescence measurements [57] revealed the XC andXH

transitions to originate from cubic and hexagonal GaN, respectively. Even though XC appears

most strongly upon excitation of cubic microcrystals, it can also be detected in the cubic-phase

�lm underneath the crystals. In this case, the linewidth of the XC transition is larger due to

the inferior structural quality of the �lm as compared to the cubic crystals. In contrast, XH can

only be detected in hexagonal crystals and not in the �lm. While the CL spectra acquired from

�- as well as the �-GaN crystals are very clean in terms of low-energy defect luminescence, the

low-temperature cathodoluminescence of the �lm exhibits an intense band at 3.2 eV attributed

to donor-acceptor pair recombination. [57]

5.1.2 �-GaN Film

The luminescence spectra of sample #2070 taken at cryogenic temperatures di�er markedly

from those of the crystallite sample. Instead of the distinct, intense line XC, a shoulder is

detected having a local maximum at slightly lower energy which will be referred to as BXC.

At the XH energy, only a very weak hump is observed stemming from a small volume fraction

of local �-GaN inclusions.

For T > 50 K, however, the two samples behave qualitatively quite similar in terms of peak

positions and relative intensities. Especially, the BXC transition being nearly masked by a

strong impurity recombination band at T < 50 K is taking over with rising T and approaching

the same energy as the XC peak of sample #2058 (Fig. 5.05, page 52). The room temperature

spectra of the two samples are possessing almost the same characteristics apart from the XH

transition which is virtually missing in the case of sample #2070. In contrast to sample #2058,

the �-GaN �lm exhibits no yellow luminescence even at 500 K.

In order to study the absorption edge of sample #2070, re
ectance and transmittance

measurements were carried at various temperatures having the GaAs substrate removed. As

opposed to the �-GaN reference sample #8092, an attempt was made to measure the present

900 nm thick �lm free-standing. The lack of mechanical support, however, led to an undulated

surface unfeasible for a sound assessment of the re
ection coe�cient.

The band edge of sample #2070 can thus only be estimated from the transmittance curve

T (E) by virtue of the 0th-order relation T � e
��s

; s = 900 nm (4.10). Underneath each set

of luminescence spectra in Fig. 5.01, � ln(T ) is plotted against energy and compared to the

position of the XC transition of sample #2058. Both XC and BXC correlate with the onset of

the fundamental absorption edge.
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Fig. 5.01: Photoluminescence (upper plots) of samples #2058 (solid lines) and #2070 (sym-

bols) for T = 5� 300 K with the XC, XH, and BXC transitions labeled. The lower

plots show the corresponding absorption data � ln(T ) (symbols) of the �lm #2070

based on the observed transmittance T .
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Fig. 5.02: Photoluminescence of samples #2058 (lines) and #2070 (symbols) for T = 400� 500 K

Note that for T � 50 K and E � 3:0 eV the local maxima in � ln(T ) coincide with those of
the PL signal of sample #2070 while at higher temperatures, this correlation holds for all E <

BX
C
. Apart from the 3.2 eV donor-acceptor transition being prominent at low temperatures,

the modulations in the sub-band-gap luminescence band of this sample are therefore due to

interference e�ects.

5.1.3 �-GaN Reference Film

A 10 �m thick �-GaN layer grown on sapphire by MOVPE serves as optical reference and will

be compared to the two previous samples. 5 and 300 K photoluminescence data of the �-GaN

reference sample are shown in Fig. 5.03a and, magi�ed around the band edge spectral range,

in the upper plots of Fig. 5.03b. The latter are complemented by re
ectance spectra (lower

plots).

At low temperatures narrow emission lines located around 3.5 eV preponderate the spectra.

These transitions are of excitonic origin as evidenced by the distinct resonances in the re
ectance

which correlate with the emission peaks denoted as FXA;B. The most intense peak labeled

BXH is assigned to a bound exciton whereas FXA;B;C are attributed to the free A-, B-, and

C-excitons of the wurtzite-structure GaN [24, 26].

Rising the temperature above 120 K causes the BXH peak to vanish and at room tempera-

ture, only the A-exciton prevails. In conjunction with a broadening of the emission peaks, the

re
ectance resonances get more and more washed out as T increases. At 300 K only a weak

structure can be seen which, however, relates to the PL peak observed and indicates that, even

at this elevated temperature, the luminescence is still excitonic in nature. This �nding is in

accordance with the large free exciton binding energy of R
X
= 27 meV [84].

Evidently, the excitonic luminescence of the �-GaN reference is much more narrow in

linewidth and considerably less superposed by defect-mediated recombination than the XC;H

and BXC transitions, especially at low temperatures. Consequently, a quantitative assess-
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ment of the BXH and FXA transitions is straightforward. The peak positions as well as the

linewidths are gained almost by inspection while the total excitonic intensity XAll is obtained

by integrating the luminescence over the BXH, FXA;B;C transitions.

Fig. 5.03a: Photoluminescence of the �-GaN reference sample at 5 and 300 K.

Fig. 5.03b: Band edge photoluminescence (symbols, upper plots) and re
ectance (lines, lower

plots) of the �-GaN reference sample at 5 and 300 K.
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5.2 Lineshape analysis

The positions of the XC, XH, and BXC transitions can be determined with reasonable accuracy

directly from the raw data. In contrast, a quantitative interpretation of the luminescence

spectra in terms of peak widths and areas requires a lineshape analysis in order to separate the

di�erent overlapping PL peaks. Being aware that the results obtained from such an analysis

are only as reliable as reasonable and unambigious the model actually is, an attempt was made

to describe the experimental data by a minimum number of model parameters.

Plotting the data logarithmically, it is seen that peaks with energies E lower than XC or

BXC have simple Gaussian pro�les over the whole temperature range. Since we are primar-

ily interested in the close-to-band-edge transitions, no explicit distinction between true PL

peaks and interference-related maxima at lower energies will be made. The XC and XH peaks

of sample #2058 are asymmetric with high-energy tails dropping single-exponentially. This

asymmetry is most strongly pronounced at low temperatures and nearly disappears at 300 K

where a Lorentzian shape is assumed. Such a behavior can be quanti�ed by the function

X
�
(E) =

2

1 + exp
�
E�Eo

�

� Io

(E � Eo)2 + (�E)2
; (5.1)

giving good agreement with the XH peak for all temperatures and with XC for T � 50 K.

The parameter � is monotonically increasing with temperature and of the order of 2KT . It

is straightforward to verify that the area underneath X
�
(E) is independent of the asymmetry

parameter 1=�: Z
+1

�1

X
�
(E) dE =

p
�Io�E 8 � (5.2)

� Fig. 5.04a compares the experimental data of sample #2058 (symbols) with a least-

squares �t involving only 4 Gaussians and X
�
(E) which will be referred to as model

(A). Apart from systematical deviations of the order of � 8% at the tails of the XC

transition, a reasonable agreement with the experimental data is obtained.

Model (A) is also applicable to sample #2070 by setting � = 1 in X
�
(E): For T > 50

K, the BXC transition exhibits a symmetric Lorentzian shape, while at lower T , the

BXC peak is too weak relative to the low-energy Gaussians for being clearly resolved.

Nevertheless, also in this temperature range, a Lorentzian matches the observed data for

E < 3:3 eV best, compared to other line shapes and, thus, gives at least an estimate for

the width and intensity of the BXC transition. The weak peak at E � 3:42 eV being

present for T < 150 K only, is of unknown origin and is not included in the analysis.

� The aforementioned discrepancies between model (A) and the low-energy tail of the XC

peak can be made to virtually vanish by adding a Lorentzian shape peak, referred to as YC.

Signi�cantly worse �ts were obtained with Gaussians or asymmetric Lorentzians of the

form X
�
(E); � 2 IR. Indeed, time-resolved PL studies carried out by R. Klann indicated

the presence of another transition at XC� 20meV � E < XC at low temperatures which

is di�cult to spectrally resolve. For T > 70 K this peak cannot be detected anymore.

The only remaining feature to be modelled is the asymmetric, broad pro�le located be-

tween XC and XH, being denoted by BB. It has the characteristic shape of an excitonic
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band-to-band transition [85] with exponential tail

BB(E) = max
n
1� exp

�
E�EG

KT

�
; 0
o exp

�
� E

KT

�
1� exp

�
�
q

RX

E�EG

� : (5.3)

The band gap EG estimated from this pro�le, assuming an exciton Rydberg of RX = 25

meV, is close to the values obtained in chapter 3. However, it cannot be ruled out that

this �nding is by coincidence only and that the physical origin of the BB peak is actually

defect-mediated recombination in the hexagonal phase. Furthermore, the BB peak cannot

be resolved anymore at higher temperatures due to the strong broadening of the XC and

XH transitions. Model (B) which comprises model (A) as well as the YC and BB pro�les

(Fig. 5.04b) may therefore be considered as a low-temperature extension to the 2-pro�le

model (A), the latter yielding stable and good �ts to both the #2058 and #2070 data

for T � 50 K.

Figs. 5.04a,b: Lineshape analysis of the 4 K photoluminescence spectrum of sample #2058 with a

simple 2-pro�le �t (A) (left plot) and a more sophisticated model (B) (right plot).

5.3 Transition energies and band gaps

Fig. 5.05 shows the temperature dependence of the FXA, XH, XC, and BXC transition energies

compared to the band gap energies EG
Hex:;Cub: of cubic and hexagonal [82, 94] GaN (broken

lines) where the curve for the �-gap of �-GaN was adopted from chapter 3. The solid lines are

least-squares �ts of

EX(T ) = EX(0)� S
E


�
coth

�
E


2KT

�
� 1

�
(5.4)

to the respective transitions, where E
 stands for an average phonon energy and S
 is a coupling

constant as in equation (4.34). The parameters obtained are compiled in Tab. 5.1.



52 Chapter 5. Photoluminescence of GaN versus Temperature

Fig. 5.05: Energies of the FXA, XH, XC, and BXC transitions (symbols) com-

pared to the band gaps of �- and �-GaN (dashed lines) as function of

temperature. The solid lines are �ts to (5.4).

At T � 50 K, XC and XH are rigidly shifted by �EX � �30 meV compared to the band

gaps EG
Cub: and EG

Hex: whereas the shift of BXC amounts to �EBX � �40 meV. At higher

temperatures, the fundamental inter-band energies are being approached by the mentioned

PL peaks. The XC, XH, and BXC transitions are therefore assigned to band edge related

recombination. Comparing the exciton Rydberg R
X
= 27 meV and �EX, one may be tempted

to interpret the XC;H transitions as being due to exciton annihilation in, respectively, the cubic

and hexagonal phase. However, neither the absorption nor the re
ectance data acquired on

the samples #2058, #2070, and the �-GaN reference �lm #8092 (chapter 3) exhibit features

characteristic to discrete exciton levels as those observed with the �-GaN reference.

Transition EX(0) [eV] E
 [meV] S
 [1]

FXA 3:497� 5� 10�4 38� 1 3:05� 0:08

XH 3:474� 4� 10�4 37� 1 2:57� 0:04

XC 3:272� 3� 10�4 41� 1 2:93� 0:01

BXC 3:258� 6� 10�4 35� 2 2:51� 0:09

Table 5.1: Model parameters for the temperature dependent band edge transition energies of �- and

�-GaN.
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5.4 Linewidths

In what follows, the temperature dependence of the widths of the FXA, BXH, XH, XC, and

BXC transitions will be investigated. A commonly employed expression to describe the thermal

broadening of the fundamental band gap of a semiconductor is

�E(T ) = �E0 +�EAcoust:(T ) + �EOptic:(T ) (5.5)

�EAcoust: = SAKT (5.6)

�EOptic: =
SO

eEO=KT � 1
: (5.7)

The �rst term, �E0, denotes the temperature independent inhomogenous broadening which

may originate from electron{electron interaction, Auger recombination, and various kinds of

scattering processes (surface, dislocation, impurity, alloy) which essentially account for crystal

imperfections.

Temperature dependent homogenous broadening is caused by electron(exciton){phonon in-

teractions. Electron { acoustical phonon scattering is usually modelled by the linear term

�EAcoust: and electron { longitudinal optical (LO) phonon scattering gives rise to the bosonic

expression �EOptic: where EO stands for an average LO phonon energy. SA;O are the respective

phonon coupling constants. Typically, �EAcoust: is dominant for T � 70 K while �EOptic: is

taking over at higher temperatures.

Figs. 5.06a,b: Free and bound exciton linewidth versus temperature of the �-GaN reference sample.

Fig. 5.06a shows a �t of the above expression �E(T ) to the free exciton FXA linewidth of

the �-GaN reference sample. Good agreement is obtained with the parameters broken down

in Tab. 5.2. In particular, the low-temperature linewidth is linearly increasing in consistency

with �EAcoust:
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The bound exciton BXH on the other hand, exhibits a virtually constant broadening for

T � 30 K which cannot be accounted for by the acoustical phonon scattering term. Instead,

the thermal increase in peak width is exponentially activated according to

�ELocal:(T ) = SLe
�EA=KT

: (5.8)

For 4 � T � 120 K, the experimental data can be decribed by the model function �E0 +

�ELocal:(T ) as viewed in Fig. 5.06b. At even higher temperatures the bound exciton cannot be

detected anymore.

Transition �E0 [meV] EA [meV] EO [meV] SA [1] SL [meV] SO [meV]

FXA 4.0� 0.2 | 110� 9 0.76� 0.04 | 700� 150
BXH 3.3� 0.1 16� 1 | | 27� 4 |

XH 6.7� 0.6 5.0� 1.5 26� 11 | 28� 1 76� 2
XC 8.1� 0.4 8� 1 35� 19 | 79� 14 70� 40
BXC 46� 1 2.0� 0.3 63� 6 | 39� 2 290� 50

Table 5.2: Model parameters for the temperature dependent band edge transition widths of �- and

�-GaN.

The same low-temperature behavior is found for the XH and XC transitions (Figs. 5.07a,b)

of the crystallite sample #2058 as well as for the BXC peak (Fig. 5.08) of the �-GaN �lm

#2070. Attempting to use �EAcoust:(T ) = SAKT instead of �ELocal: results in a negative

optical phonon coupling constant. This evidence does not support the assignment of XC;H to

free exciton recombination [57]. On the contrary, it rather suggests that these peaks stem from

transitions between localized states having their origin in band 
uctuations as a result of local

strain �elds.

Figs. 5.07a,b : XC and XH linewidth versus temperature of the crystallite sample #2058.
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Fig. 5.08 : BXC linewidth versus temperature of the �-GaN �lm #2070.

5.5 Thermal quenching

In Fig. 5.09, the temperature dependent intensities I
X
of the XC and BXC transitions are

compared to the total exciton luminescence of the �-GaN reference sample, XAll = BXH +

FXA + FXB + FXC. The data were taken under small-signal excitation conditions (Pex �
30W=cm2) and are normalized to unity at 4 K. The fact that the observed intensities are getting

heavily quenched is a clear indication for the presence of thermally activated nonradiative

recombination. The strongest drop in intensity by more than an order of magnitude, especially

for BXC, is taking place between 5 and 100 K. Remarkably, I(XC) and I(BXC) remain nearly

constant for 100 < T < 300 K. Above room temperature, though, another nonradiative process

sets in. I(XAll), in contrast, does not exhibit such a plateau-like behavior at intermediate

temperatures but continues to decrease at an exponential rate.

Temperature dependent intensities can frequently be characterized by n exponentially acti-

vated processes with activation energies E
i
[86] such that

I
X
(T ) =

1

1 +
nX
i=1

a
i
exp

�
� E

i

KT

� : (5.9)

For T � 300 K, two processes have to be postulated to give an account of the experimental

data XC and BXC, while in the case of XAll, n = 3 is necessary in this temperature range. The

high-temperature luminescence (T > 300 K) can only be decribed well if an additional third

and fourth process are considered for the cubic and hexagonal GaN, respectively. The solid
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lines in Fig. 5.09 indicate least-squares �ts of I
X
to the data, giving the activation energies E

i

quoted in Tab. 5.3.

Fig. 5.09: Normalized intensity of the excitonic �-GaN luminescence XAll and of the XC,

BXC transitions (symbols) against T acquired at small signal excitation (Pex �

30W=cm2) conditions. The solid lines are �ts of expression (5.9).

Transition T [K] E1 [meV] E2 [meV] E3 [meV] E4 [meV]

XC 2.9� 0.3 20� 4 | |

BXC 5{300 6� 2 21� 3 | |

XAll 5.1� 0.2 27� 3 100� 10 |

XC 3.5� 0.3 21� 2.5 320� 45 |

BXC 5{500 6� 2 21� 2.5 300� 50 |

XAll 5.0� 0.7 24� 3 80� 8 480� 20

Table 5.3: Activation energies for the thermal quenching of the band edge luminescence of �{ and

�{GaN as determined from (5.9) for the data shown in Fig. 5.09.

The aforementioned similarity in the temperature dependence of I(XC) and I(BXC) is also

re
ected in the activation energies which are basically identical within the quoted errors. In

contrast, XAll behaves di�erently in that an additional process with E3 � 90 meV determines

the decay at intermediate temperatures. However, E1; 2 are of comparable magnitude for both

cubic and hexagonal GaN. The values of E1 are compatible with potential 
uctuations that

typically result from structural defects or compositional inhomogeneities. E2, on the other

hand, is close to the free exciton binding energy R
X
.
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Figs. 5.10a,b: Total PL intensities ITotal
�; � of the �-GaN �lm #2070 and the �-GaN reference

sample versus temperature T (left). The lines show least-squares �ts of the power law

aT�b to the data (symbols). The fractions of the band edge luminescence intensities

IRel:
� = I (BXC) =ITotal

� and IRel:
� = I (XAll) =ITotal

� are displayed in the right

�gure. The thin solid lines are a linear interpolation as guide to the eye.

Having focused so far on the temperature dependence of the band edge luminescence, we

now investigate the total PL intensity ITotal, obtained by integrating the radiative spectrum

between 350 � � � 600 nm. Fig. 5.10a shows ITotal
�; �(T ) of the �-GaN reference sample and

the �-GaN �lm #2070, respectively. 1 It is seen that the data points follow the simple power

laws
ITotal

� � T
�2:67 for T � 100K and

ITotal
� � T

�2:96 " T � 60K :
(5.10)

It may be worth recalling that if the situation of nonequilibrium carrier concentrations n =

no + �n, p = po + �p brought about by photoexcitation can be adequately described by

thermal equilibrium Fermi-Dirac distribution functions with appropriately shifted quasi-Fermi

levels, then the spontaneous emission rate of an ideal cubic crystal with parabolic bands is to

�rst order given by [87]

RSpont:(E) � np(KT )�3
q
E � EG e

�(E�EG)=KT for E = �h! � EG (5.11)

and consequently,

I
Ideal

Total
=

Z
1

EG

RSpont:(E) dE � T
�2

: (5.12)

The deviations observed from this intrinsic thermal quenching are due to nonradiative centers

and will be investigated in more detail in the next chapter.

Finally, we consider the relative contribution IRel: of the band edge recombination to ITotal
in order to assess the losses caused by low-energy luminescence from radiative centers. The

temperature dependence of the ratios IRel:
� = I (XAll) =ITotal

� and IRel:
� = I (BXC) =ITotal

� are

1The crystallite sample #2058 will not be considered in this context since it is not possible to separate the

contributions from the cubic and the hexagonal crystals to the measured low-energy luminescence intensity
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displayed in Fig. 5.10b. It is seen that the fractional band edge intensities of both samples

behave qualitatively similar. In essence, three thermal regimes can be identi�ed:

(i) At very low temperatures, ITotal as well as IRel: are rising with increasing temperature. It

appears as if part of the carriers are frozen out for thermal energies ETherm:
< 1 meV. This may

be due to shallow localized states stemming from potential 
uctuations.

(ii) For 2 � ETherm:
� 8 meV, IRel: is steeply decreasing by thermal activation of radiative cen-

ters such as donor{acceptor pairs and at intermediate temperatures, IRel: assumes a minimum.

(iii) Rising the temperature further leads to a recovery in the contribution of the band edge PL

to the total radiative recombination since the centers which account for low-energy luminescence

are getting ionized.

Surprisingly, the thermal quenching of deep-level luminescence occurs more e�ciently for

the �-GaN sample than in the case of the �-GaN reference. For the latter, IRel:
� is roughly

constant in between 100 and 200 K while I (BXC) is already taking over in this temperature

range. Consequently, the fraction of excitonic luminescence in the �-GaN is only about 30% of

the total PL at room temperature whereas for the �-GaN, the band edge contribution amounts

to 80%. Thus, even though the low temperature luminescence of the �-GaN is by far superior,

the (above) room temperature band edge intensities are quite comparable for both polytypes.

5.6 Excitons in �-GaN ?

Even at room temperature, the band edge luminescence of high-quality �-GaN is clearly exci-

tonic in nature as a consequence of the large exciton rydberg of about 27 meV. In contrast, no

direct evidence of free excitons has been published so far for the zincblende modi�cation even

though R
X
(�-GaN) is supposed to be of the same order.

In consideration of the photoluminescence data shown, the most promising candidate for

unveiling excitonic features in �-GaN seems to be the crystallite sample #2058. However,

the multioriented facets of the cubic and hexagonal microcrystals sitting on top of a rough

�lm prohibit the acquisition of conclusive re
ectance data whereas no clear resolution of the

fundamental absorption edge is possible due to the appreciable �lm thickness of � 1:5�m. An

interesting technique for investigating the band edge properties of thick �lms is two-photon

absorption, which has prooved to be sensitive enough to detect n = 2 excitons in �-GaN. [88]

This method was therefore applied to sample #2058, but the spectra obtained do not show any

hint of excitonic resonances. [89] One may speculate whether the volume of the microcrystals

is too small to give rise to a measurable signal above the noise level.

A prerequisite for the occurence of discrete exciton levels are, however, su�ciently low

background carrier concentrations no and po such that the e�ective electron-hole Coulomb

interaction is strong enough to give rise to a bound state. In the case of strong dielectric

screening, no clear distinction can be made anymore between weakly bound e-h pairs and free

carriers. Further, large impurity concentrations as well as structural defects smear out the

intrinsic bands such that the resulting increase in linewidths makes a resolution of spurious

excitonic features very di�cult, if not impossible.

No sound electrical data are available on the crystals of the DC plasma grown sample

#2058. Hall measurements on the �lm revealed no � 1018cm�3. A comparison between the

defect luminescence obtained from the crystals and the �lm by selected-area-excitation CL

measurements indicates that the crystals are cleaner by at least an order of magnitude. [57]

Firm values for their impurity concentrations cannot be given, though. In comparison, the
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0:9�m thick �lm #2070 exhibits a background electron level of no = 2 � 1018cm�3 being too

high to give rise to distinct excitonic resonances. The RF plasma grown �-GaN reference

sample #8092 has a Hall concentration of no � 2 � 1016cm�3, but mobility measurements

reveal that this value is in part due to compensation. Indeed, a SIMS analysis disclosed carbon

concentrations of the order of 1017cm�3 which could be traced back to the inferior-quality steel

out of which the prototype RF plasma source has been manufactured. Thus, none of the �-GaN

samples presented inhere really complies with the condition that no and po be at most in the

mid 1017cm�3 range being necessary for the observation of discrete exciton states.

Except for the �-GaN reference sample where the excitonic linewidth is linearly increasing

with temperature for T � 70 K, the peak width of the �-GaN close-to-band-edge luminescence is

essentially constant at low temperatures. This behavior is indicative of the presence of localized

states caused by spatial band 
uctuations. For thermal energies low enough that the carriers are

con�ned to potential minima, the interaction with acoustical phonons is suppressed. Once the

carriers are free to move within the crystal, phonon scattering becomes e�ective in increasing

the homogeneous linewidth. In conclusion, the band edge related �-GaN luminescence which

can be observed up to temperatures as high as 500 K is attributed to transitions between

localized states in or close to the intrinsic bands. At low temperatures, localized excitons may

prevail which are either trapped to potential minima or bound to impurities such as shallow

donors.

At room temperature and above, not only the integrated, but even the peak intensity of

the band edge related radiative recombination taking place in �-GaN is competitive to that

of state-of-the-art �-GaN exciton luminescence. The fact, however, that the intensity drops

by more than two orders of magnitude for both polytypes when increasing T from 4 to 300 K

clearly shows that nonradiative recombination plays an important role in GaN.





Chapter 6

(Non)radiative Recombination

6.1 Band Edge Photoluminescence Intensity versus

Carrier Injection Rate

So far all PL measurements presented were conducted at low excitation power densities of

Pex � 30 W=cm2 where Pex was kept constant within each temperature series. The ob-

served strong thermal quenching of the photoluminescence intensity IPL is indicative of the

presence of nonradiative recombination processes. To obtain order-of-magnitude estimates of

(non)radiative lifetimes and an idea of internal quantum e�ciencies, Pex{dependent measure-

ments were carried out at room temperature as shown in Figs. 6.01a,b for the XC and XH

transitions. The impinging laser power was varied by means of continuously adjustable neutral

density �lters in the range of 5� 10�3 � 30 mW and measured directly in front of the sample

with a calibrated powermeter supplied by the laser manufactorer. The excitation spot diameter

was kept at a value of d � 30�m.

Figs. 6.01a,b: Intensity of the XC- and XH-transition (circles) against applied excitation power

density with modelled radiative (solid line) recombination intensities. The errors in

the intensities are typically of order of the symbol sizes except for the lowest power

density points where the error amounts to about 20%.

61
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An attempt to account for the pronounced nonlinearity of IPL(Pex) with a recombination

model 1 that relies on symmetric electron and hole capture [90] failed. Not even qualitative

agreement between the measured and the simulated intensities could be reached. In the follow-

ing sections a simple extension of the latter rate equation model is discussed, which explicitly

distinguishes between nonradiative minority and majority carrier recombination at a Shockley-

Read-Hall (SRH) center. The leverage of an asymmetry in the corresponding recombination

rates is investigated under the aspect of defect saturation and the extended model is applied

to the present data yielding the solid curves plotted in Figs. 6.01a,b.

6.2 Basic Rate Equation Model

We consider a semiconductor with thermal equilibrium electron and hole concentrations no and

po and assume that the associated donor and acceptor levels are shallow enough to practically

merge with the conduction and valence band, respectively. An optical excitation at a carrier

injection rate G[cm�3s�1] will establish the nonequilibrium concentrations n = no + �n, p =

po +�p and result in radiative (close-to) band edge recombination

e+ h
bR�! �h! ; (6.1)

where the radiative recombination coe�cient bR [cm3
s
�1] covers the intrinsic band{to{band

as well as the shallow impurity{to{band and, possibly, shallow donor{to{acceptor transitions.

Defect-mediated radiative recombination between deep levels is neglected.

Furthermore, it is presumed that the cumulative e�ect of the nonradiative recombination

channels is equivalent to the presence of one kind of Shockley-Read-Hall centers [91, 92] with

total density S[cm�3] = S
+ + S

o where S+ and S
o denote the sites being �lled with holes and

electrons, respectively. The according carrier capture processes induced by such a center s,

e + s
+

be�! s
o

h+ s
o

bh�! s
+
;

(6.2)

are characterized by the nonradiative recombination coe�cients be and bh. Provided that Auger

recombination and photon recycling can be omitted, the spatially uniform, bilinear carrier

dynamics is described by the rate equations

@n
@t

= G� bR(np� nopo)� benS
+

@p
@t

= G� bR(np� nopo)� bhpS
o

@S
+

@t
= bhpS

o � benS
+
; S = const:

(6.3)

The recombination coe�cients are assumed to be constants for the moderate excitation densities

considered. Since no account is given of spatial nonuniformities, the above concentrations are

1This model has been succesfully applied to the (In,Ga)As system.
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to be interpreted as e�ective ones and the parameters extracted from the present model are to

be considered as �rst-order estimates.

The incorporation of di�usion processes into the simple model (6.3) is particulary desirable

when considering the transient solutions @n
@t

;
@p
@t

;
@S

+

@t
6= 0. The latter are studied in [93].

However, an adequate treatment of spatially nonuniform carrier concentrations is not at all

straightforward since it requires the knowledge of the electron and hole di�usion constants

D
e
; D

h
and the surface recombination velocities. Apart from D

e
, which can be estimated

from the mobility �
e
using the Einstein relation D

e
= �

e
KT=e, these material parameters are

essentially unknown and would have to be extracted from the present optical data in conjunction

with the (non)radiative recombination coe�cients. As a consequence, the large number of free

parameters may cause considerable ambiguity in the interpretation of the experimental data

and therefore mask the bene�ts of such a more complete model.

We are seeking the equilibrium solutions @n
@t

=
@p
@t

= @S
+

@t
= 0 for t!1 under the as-

sumption that the equilibrium within the nonradiative centers is reached quasi-instantaneously,

i.e.
@S

+

@t
(t) � 0 () �n(t) � �p(t) ; (6.4)

based on common experience that nonradiative processes are occuring on a much shorter

timescale than radiative ones. The stationary equations to be solved are then

G = bR(np� nopo) + benS
+ (6.5)

0 = benS
+ + bhp(S

+ � S) : (6.6)

For n-type material with po � no and po � �p,

S
+ = S

bh�n

be(no +�n) + bh�n
(6.7)

and thus

G = bR�n(no +�n)

| {z }
IR

+S�n
bebh(no +�n)

be(no +�n) + bh�n| {z }
INR

: (6.8)

Since in the small-signal limit �n� no the above equation tends to

G = �n[bRno + bhS] =: �n=�0, we de�ne the Asymptotic (Non-)Radiative Lifetimes

�R :=
1

bRno
; �NR :=

1

bhS
and A :=

bh

be
(6.9)

and �nally obtain

G = �n
�n+ no

no

"
1

�R
+

1

�NR

no

no + (A+ 1)�n

#
| {z }

=: ��1

: (6.10)

It is seen from the polynomial coe�cients of this third order equation that for G; no; �R; �NR; A

2 IR
+, one branch �n(G) 2 IR

+ and two complex conjugate branches of solutions exist. The

physically relevant solution is thus unique. Furthermore, there exists a kind of turning point

of �n at

G
� =

no

�NR(A+ 1)
: (6.11)
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The Total Lifetime � is a nonlinear function of the excess carrier concentration �n as

opposed to �NR and �R, which are { by de�nition { material constants. The asymptotic behavior

of � in the small- and large-signal limit, respectively, is

�
�1(�ne�:)!

8<
:

�0
�1 = �R

�1 + �NR
�1 for �ne�:=no ! 0

�R
�1 " no=�ne�: ! 0

(6.12)

in terms of the E�ective Excess Carrier Density

�ne�: := (A+ 1)�n : (6.13)

On the other side, the E�ective Nonradiative Lifetime ~�NR with �
�1 = �R

�1 + ~�NR
�1 8 �n is

given by

~�NR(�ne�:) = �NR

�
1 +

�ne�:

no

�
: (6.14)

Evidently, an asymmetry between electron and hole capture A > 1 brings � closer to its

radiative limit �R whereas ~�NR tends to in�nity for no=�ne�: ! 0.

The (Non-)Radiative Recombination Rates yield

IR =
�n

�R

no +�n

no

INR =
�n

�NR

no +�n

no +�n(A+ 1)

!

8><
>:

�n
�R

for �n=no ! 0

(�n)
2

�Rno
" no=�n! 0 ;

!

8><
>:

�n
�NR

for (A+ 1)�n=no ! 0

�n
�NR(A+ 1)

" no=�n! 0 ;

(6.15)

and the ratio of radiative to nonradiative recombination can be stated as

IR

INR
=

�NR

�R

no +�ne�:

no
!

8>>><
>>>:

�NR

�R
=

bR

bh

no

S
for �ne�:=no ! 0

�ne�:

no

�NR

�R
" no=�ne�: ! 0 :

(6.16)

Within the large-signal regime �ne�: � no, the ratio IR=INR is thus linearly rising with �ne�:.

A preferential minority carrier capture A = bh=be > 1 therefore e�ectively increases the excess

carrier density �n = �p as well as ~�NR and, in essence, favors radiative recombination.

6.3 Analysis of Photoluminescence Data

To access the material parameters [�R; �NR; A] { given a certain no { within the framework

of the above model, a solution �n to equation (6.10) has to be found such that the calcu-

lated IR (�n; �R) (6.15) matches the measured radiative recombination rate. Equivalently, the

Internal Quantum E�ciency

� :=
IR

G
=

�
1 + �rel

no

no +�ne�:

�
�1

with �rel :=
�R

�NR
(6.17)
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may be used to link the theory with the experiment. In practice, however, G and IR can-

not be absolutely determined but only up to multiplicative factors. Typically, the band edge

luminescence intensity IPL � IR is being measured as a function of excitation power density

PEx[W=cm2] � G. Let IPL be normalized such that

1 = max
Pex

fIPL(PEx)=PExg ; then (6.18)

�(PEx) = �max

IPL(PEx)

PEx
; (6.19)

where the calibration factor

�max := max
G

f�(G)g (6.20)

is a priori unknown. Furthermore, the background carrier concentration no may not be exactly

known in the case of, e.g., semi-insulating or very inhomogeneous samples.

We therefore have to investigate the transformation properties of the solution to (6.10)

under the variation

T
��

:

�
no

G

�
!

 
�no

�G

!
: (6.21)

Let [�n; �R; �NR; A] be a solution in compliance with no and G, then

T
��
[�n; �R; �NR; A] =

"
��n;

�

�
�R;

�

�
�NR; A

#
(6.22)

solves the transformed equation T
��
(6.10) and leaves not only �rel and A, but in particular �

invariant. Thus, the ignorance in the absolute carrier injection rateG and the actual background

carrier concentration does not a�ect the relative material parameters �rel and A as long as the

proportionality relations PEx � G and IPL � IR hold. Since according to (6.9), bR = (no�R)
�1,

a variation (6.21) results in T
��
[bR] = ��

�2
bR. Consequently, no sound judgement of the

radiative recombination coe�cient is possible unless the background carrier concentration is

su�ciently well known.

As opposed to the G-axis, the internal quantum e�ciency cannot be arbitrarily scaled since

�, �rel, and A are intimately correlated. Thus, the factor �max has to be determined for an

absolute calibration of the internal quantum e�ciency. The numerical procedure is as follows:

Let
�
PExj; IPLj

�
1�j�n

be a set of photoluminescence data, G
j
= const: � PExj and IRj =

IR(Gj
) the respective, calculated radiative recombination rates obtained from (6.15) by solving

for �n in (6.10). Then, the parameters �max, �R, �NR, and A can be determined by minimizing

�
2(�max; �R; �NR; A) :=

nX
j=1

 
IRj � IPLj

G
j

!2
; (6.23)

i.e. from a four parameter least-squares �t. In turn, � and the fraction of nonradiative centers

�lled with minority carriers, S+
=S, are obtained. The orders of magnitude of �R and �NR can

be appraised from no and the absolute range of G.



66 Chapter 6. (Non)radiative Recombination

6.4 The XC and XH Transitions

In order to estimate the room temperature values of �, �R=�NR , and A for the zincblende- and

wurtzite-phase GaN crystals of sample #2058, the above model will now be applied to the

intensities of the XC and XH transitions, which were measured as a function of the exciting

laser power covering 5� 10�5 � 2:65� 10�2 W. Using the 325 nm line of the He-Cd laser, hot

carriers were thus injected into the GaN.

With a circular excitation spot diameter of d � 30�m, power densities in the range of 1:8 �
PEx � 940Wcm�2 could be achieved. The corresponding photon 
ux is then N [s�1cm�2] =

6:24� 1018PEx[Wcm�2]= (�h![eV]), where in the present case �h!=3.81 eV. Since the absorption

coe�cient of GaN is �(3:8 eV) = 11�m�1 (chapter 3), a light penetration depth �
�1 � 90 nm

is to be expected. The average carrier injection rate is thus estimated to vary in the range of

3� 1023 � G � 2� 1026 cm�3s�1 for the values of PEx given.

The statistical errors in the measured intensities and excitation powers are typically 1{3%,

i.e. of the size of the symbols shown in Figs. 6.01a,b, apart from the weakest intensity points.

At the lowest injection rate used, the intensities of the XC and XH transitions could only be

measured up to a relative error of about 20 %. To assess the in
uence of this uncertainty on the

modelled curves, the calculations in the case of the cubic GaN were done (i) with the complete

data set and (ii) omitting the two lowest intensity data points. The corresponding simulations

are compared to each other in Figs. 6.02,03 where the dark curves belong to the full data and

the bright ones to the culled data points.

Fig. 6.02: XC transition intensity (circles) with modelled radiative (solid line) and nonradiative

(dashed line) recombination rates versus carrier injection rate G (dotted line). The

dark lines are based on the complete data set whereas the bright ones were calculated

omitting the �rst two data points with the lowest G.
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Fig. 6.03: Excess carrier concentration �n, fraction of nonradiative centers �lled with holes

S+/S, total lifetime � , and absolute internal quantum e�ciency � versus carrier

injection rate G for the XC transition. The dark lines stem from the complete pho-

toluminescence data while the bright lines are due to the culled data set. The dashed

lines indicate no and the limiting �R, �NR. The arrows point toG
� = no=(�NR(A+1)).

The simulated curves with their characteristic parameters �, �R=�NR , and A were obtained

by minimizing �
2 in (6.23). Fig. 6.04 displays the determination of the internal quantum

e�ciency parameter �max in the case of the XC transition (complete data set): Under the

constraint of a given �max, the unknowns �R, �NR, A, and the corresponding IR(G) which

best suits the experimental data are determined and the discrepancy �
2(�max) is calculated.

In this way, a unique minimum at �max = 0:80 is found which has been adopted for the

absolute calibration of the internal quantum energy. The optimized parameters leading to a

good agreement between the measured and the calculated data are compiled in Tab. 6.1.

The prominent S-shape of IR and � can only be explained by a pronounced asymmetry in

the nonradiative recombination coe�cients bh � be. Since the material under investigation

is n-type, radiative recombination is limited by the availability of holes. In the small-signal

regime, the majority of SRH centers are �lled with electrons, S+
=S � 1, and the few holes

being excited are getting captured very e�ciently. However, as G is ramped up, the preferential
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minority carrier capture leads to a saturation of the nonradiative SRH centers at already modest

excitation levels (Fig. 6.03, top right). Once enough excess carriers are generated such that

S
+
=S � 0:9, a strong rise in �n = �p, � , and � sets in. Finally, � and � tend to saturate while

�n and IR continue to linearly increase in the large-signal regime.

It should be pointed out that the asymmetry in the nonradiative recombination A > 1 does

not contradict to the equality in excess carrier densities �n = �p as long as the condition of

quasi-instantaneous capture @S
+

@t
(t) � 0 is ful�lled. While the capture coe�cients bh 6= be,

the actual capture rates are given by the products bhpS
o = benS

+ containing the densities of

available centers S
+; o as well as the total carrier densities adjusted in such a way that the

equality holds.

Fig. 6.04: Determination of �max by minimization of �2 in the case of �-GaN.

The above statements about the XC transition hold for the simulated curves based on

the entire as well as the reduced data set. In comparison, the analysis of the latter yields

�max = 0:83, �rel=180, and A = 130. Thus, even though the culled data does at �rst sight not

unambiguously de�ne the characteristic S-shape, basically the same qualitative conclusions can

be drawn. The quantitative agreement in the parameters obtained is to within an error of less

or equal 50%.

XC XH

(�-GaN) (�-GaN)

�max 0.80 0.80

�rel =
�R
�NR

270 200

A = bh
be

150 170

Table 6.1: Modell parameters for the excitation density dependent band edge transition intensity of

�- and �-GaN.
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Investigating the XH transition in the same way leads to very similar results, the overall

agreement between the calculated and measured radiative recombination rates being slightly

worse than in the case of the XC transition (Fig. 6.01b). The parameters extracted from the

�-GaN band edge luminescence are also quoted in Tab. 6.1. However, it has to be emphasized

that the dominant nonradiative center(s) in the cubic and hexagonal GaN under investigation,

which were e�ectively treated within the SRH model, may be di�erent in origin. We cannot

simply interpret the nonradiative processes competing with the XC and XH PL peaks as arising

from the same kind of defect located in just a di�erent crystallographic environment.

An estimation of the (non)radiative lifetimes requires the background electron concentration

no of the present sample #2058. Hall measurements carried out on the 1.5 �m thick, dominantly

cubic GaN �lm underneath the crystals resulted in no of the order of 10
18cm�3. The e�ective no

may, however, be considerably smaller due to the contribution of the crystals which dominate

the samples emission properties. Spatially-resolved cathodoluminescence measurements [57]

on these crystals hardly showed any defect luminescence while the �lm did exhibit low-energy

luminescence stronger by approximately 2 orders of magnitude. This indirectly evidences that

the crystals which have grown within Ga droplets are by far cleaner than the underlying �lm.

If we assume an average no = 1017cm�3 for both the XC and the XH transition, the values

shown in Tab. 6.2 are obtained.

no = 1017cm�3

XC XH

�R [ns] 39 28

�NR [ps] 143 145

Table 6.2: Modelled radiative and nonradiative lifetimes for the band edge transition of �- and �-GaN

assuming no = 1017cm�3.

Care has to be taken in generalizing the results obtained with this speci�c sample. The

processes contending band edge recombination may be dissimilar in material grown on di�erent

substrates by unlike methods. An example of such is the �-GaN reference sample where defect-

mediated luminescence (Fig. 5.03a, page 49) at quantum energies �h! � 3 eV is making a

signi�cant contribution to the total radiative recombination. This sample does therefore not

comply with the stringent requirements of the simple recombination model used.

The BXC transition from the 900 nm thick �-GaN �lm #2070, on the other hand, is too

heavily vied by nonradiative losses as to be feasible for the preceeding analysis. The acquired

PEx{dependent data (not shown) leads to the conclusion that carrier injection rates higher by

about 2 orders of magnitude than those that are possible with the present He-Cd laser would

be required to saturate the defects in this sample.





Chapter 7

Growth of Zincblende (In,Ga,Al)N

Heterostructures

So far, only the binary compound GaN was considered where special emphasis was put on the

optical properties of the metastable cubic phase. It was shown that the fundamental band gap

energies EG of zincblende (�) and wurtzite (�) GaN are related according to

EG(�-GaN) = EG(�-GaN)� 0:2 eV for 4 � T � 500K (7.1)

and that EG(�-GaN) = 3:22 eV at room temperature, i.e. in the near-ultraviolet energy range.

For reaching visible band edge luminescence, the ternary InxGa1�xN has to be involved.

Since the room temperature band gaps of �-GaN and �-InN are, respectively, 3.40 eV and 1.89

eV [94, 95], it is { in principle { possible to cover almost the entire visible and ultraviolet spectral

range by adjusting the In content x in the alloy. Hexagonal InxGa1�xN is therefore in the focus

of interest due to its application as the active region in group III nitride based light emitters.[96]

In reality, the incorporation of high amounts of In for achieving EG(�-InxGa1�xN) � 2:9 eV

represents a major problem. [97, 98] This is due to several reasons:

� InxGa1�xN su�ers from phase separation [99, 100, 101, 102, 103] as a consequence of the

miscibility gap between GaN and InN, which has been predicted to exist in thermody-

namic equilibrium. [99, 101] For �-InxGa1�xN, this phenomenon was observed for thick

layers with x > 0:3 even under nonequilibrium growth conditions. [102, 103] However,

also growth of high-quality thin �lms with large x, which are required for (multi) quantum

well structures, is a challenging task.

� The high vapor pressure of N over InxGa1�xN results in signi�cant In segregation. [104,

105, 106, 107] Low growth temperatures TG � 500�600oC [105, 106] and very high group

V/III ratios [106, 107] are necessary to prevent In droplet formation and to reach high

In contents. In contrast, the crystalline and optical quality has been shown to be best at

TG � 800oC for layers with low In mole fraction.[97, 98, 104]

� Yet another problem is the thermal instability of InxGa1�xN. Post-growth annealing even

below 700oC results in a decomposition of the crystal rather than in a reduction of defect

densities.[102]

Impressive progress has been made in adressing these issues. However, the emission e�ciency

of even the best �-InxGa1�xN quantum well light emitting diodes [108] still drops signi�cantly

71
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in going from the blue to the green-yellow spectral range, whereas the peak linewidth distinctly

increases. The aforementioned problems are even more detrimental for the performance of

lasers and have thus far prevented the room temperature CW operation of devices which lase

at photon energies lower than 2.9 eV.

Due to the similarity in the band structures of GaN and InN [109], one would expect that, at

least for small In contents, the band gap energy of cubic �-InxGa1�xN is likewise signi�cantly

smaller than that of hexagonal �-InxGa1�xN. The relation (7.1) is anticipated to hold also

for such ternaries whose In content is not too large. In view of the above-listed di�culties,

�-InxGa1�xN could be the material of choice for visible light emitters, provided that its potential

advantages are not overruled by problems of phase purity and poor structural quality. Apart

from the aspect of In incorporation, it is reminded that the cubic nitrides in general o�er the

possibility of easy cleavage on compatible (001)-oriented substrates for obtaining high-quality

laser facets.

As already detailed in chapters 2 and 3, progress in the synthesis of zincblende structure

nitrides is aggravated by problems of phase purity and rough surface morphology [107, 110, 111]

which stem from the inavailability of a su�ciently well lattice matched substrate required for

epitaxial stabilization. Therefore, it was not until 1995 that �rst results on �-InxGa1�xN were

published by C.R. Abernathy et al. who synthesized this alloy by means of MOMBE. [111, 112]

However, no optical data were provided and in particular, no experimental values for the band

gap energy E
G
of this new material were available.

7.1 Thick �-InxGa1�xN Films

7.1.1 MBE Growth

Previous attemps of our group to grow �-InxGa1�xN with the DC plasma source in the two

chamber MBE system [107] resulted in �lms showing no detectable luminescence signal above

70 K. Due to the low nitrogen 
ux of the DC source, the In mole fraction is limited to x � 0:11

as a result of massive In segregation.[107]

This limit in the In content could be overcome by the use of the water-cooled RF plasma

source attached to the new MBE system providing a considerably higher nitrogen 
ux. [113,

114] There, the optimization of process parameters for RF plasma assisted nucleation and

growth of �-GaN on GaAs(001) has paved the way for obtaining single phase cubic (In,Ga,Al)N

heterostructures with high In contents and surface morphologies good enough to allow for the

synthesis of InxGa1�xN/GaN (multi) quantum wells, as will be shown below. Two samples

containing thick InxGa1�xN layers will be presented in detail:

1. In0:17Ga0:83N/GaN/GaAs (#8027)

The { nonoptimized { nucleation of �-GaN on GaAs took place under N-rich conditions

at a growth temperature of TG=610
oC and a growth rate g = 95 nm/h. After deposition

of 10 monolayers, the previously (2�4)-reconstructed GaAs RHEED pattern was replaced

by an arrangement of intense spots with cubic symmetry but larger period along all major

azimuths, indicating the formation of a closed but fairly rough layer of monocrystalline

�-GaN.

During a short growth interruption, TG was ramped up to 650oC and g was increased to

0.25 �m=h for growth of a 400 nm thick GaN bu�er layer (Ga/N�1). On top of this,
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a 200 nm thick In0:17Ga0:83N layer was grown at TG=650
oC with g = 0:14�m=h under

N-rich conditions to suppress In segregation. Right after opening the In shutter, the

RHEED intensity dropped by about 50%, and a spotty, faceted pattern evolved. However,

the cubic symmetry along all major azimuths was una�ected during the entire growth

sequence, and the RHEED intensity could actually be recovered by growth interruptions.

2. GaN/In0:4Ga0:6N/GaN/Al0:17Ga0:83N/GaN/GaAs (#8095)

In this case, the { optimized { nucleation was carried out at a growth temperature

TG=590
oC with a lower growth rate of g = 40 nm/h and a group V to III ratio of

N=Ga � 3. Upon deposition of 5{7 monolayers, the characteristic �-GaN RHEED pat-

tern evolved which consisted in contrast to sample #8027 of elongated, parallel spots

along all major azimuths, having its origin in a considerably smoother epitaxial layer of

monocrystalline �-GaN. Also, a weak 2� reconstruction evolved along the [�110] azimuth

when TG was ramped up to 640oC.

After g was increased to 0.23 �m=h, a 220 nm thick GaN bu�er layer (Ga/N�1) was
grown, followed by 110 nm Al0:17Ga0:83N and 255 nm GaN. Further improvement of

the cubic pattern in terms of intensity, sharpness and streakiness was observed with

increasing thickness. The RHEED pattern was virtually una�ected by the growth of

the Al0:17Ga0:83N-cladding layer which also exhibited the aforementioned reconstruction

during growth interruptions. Nonetheless, secondary ion mass spectrometry as well as

XTEM investigations clearly show the incorporation of Al and the formation of abrupt

�-GaN/Al0:17Ga0:83N interfaces. On top of this �-(Ga,Al)N structure, a 185 nm thick �-

In0:4Ga0:6N layer was grown at TG = 640�C with g = 0:1�m=h under N-rich conditions.

After growth of 10 { 15 nm, relaxation took place and a more spotty RHEED pattern

of cubic symmetry evolved. No traces of wurtzite structure inclusions could be detected.

Finally, a 55 nm thick �-GaN cap layer was grown.

In what follows, SIMS, XRD, TEM, SAD, SEM, and AFM data will be presented for these

samples.

7.1.2 Composition and Structural Properties

Secondary Ion Mass Spectrometry

To quantitatively determine the amount of In and Al incorporated, a SIMS analysis 1 was

carried out with 15 kV O+

2 ions. For calibration of the measured secondary ion intensities,

Rutherford backscattering spectrometry [115] as well as Auger electron spectroscopy [116] were

performed on free �-InxGa1�xN surfaces with x � 0:11 and �-AlxGa1�xN with x � 0:15.

The SIMS measurements on an alloy XxGa1�xN, X 2 fIn; Alg yield then the absolute atom

density nX of the species X from which the molar fraction x is calculated by solving

x (aXN � aGaN)�
�
4x

nX

�1=3
+ aGaN = 0 : (7.2)

This equation for the zincblende lattice having 8 atoms per unit cell is based on a linear

interpolation between the lattice constants aGaN and aXN of GaN and XN, respectively, which

are compiled in Tab. 7.1.

1The measurements were done by the company RTG Mikroanalyse, Berlin.
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Compound a [�A] nIII[ cm
�3]

AlN 4.38 4:76� 1022

GaN 4.515 4:35� 1022

InN 4.98 3:24� 1022

GaAs 5.653 2:21� 1022

Table 7.1: Lattice constants and group-III atom densities of zincblende nitrides [127] and GaAs.

Figs. 7.01,02 show the respective spectra for samples #8027 and #8095. In addition to the

In and Al depth pro�les (left axis), the corresponding GaN reference signal is plotted (right

axis) in order to clarify the layer sequence. The concentrations obtained by SIMS and by x-ray

di�ractometry (see below) are in accordance to within the experimental errors. The sharpness

of the (In,Ga,Al)N interfaces of sample #8095 as compared to those of sample #8027 illustrate

the improvement in the surface morphologies due to the optimization of nucleation and growth

parameters.

The kinks in the In pro�le of the In0:17Ga0:83N sample are caused by the growth interruptions

during which the cubic symmetry of the RHEED patterns was veri�ed along di�erent azimuths.

Throughout these short breaks, In desorption has occured leading to the observed reduction in

the In content.

Figs. 7.01,02: SIMS spectra of the In0:17Ga0:83N and In0:4Ga0:6N sample. In each plot, the symbols

show the absolute In and Al depth pro�les (left axis) while the solid line depicts a

normalized GaN reference signal (right axis).

X-Ray Di�ractrometry

With the setup described in chapter 3, !�2� XRD pro�les were measured across the symmetric

(002) re
ections of GaAs, GaN, and InxGa1�xN to determine the lattice parameter di�erence

of the two nitride layers.
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Figs. 7.03,04: ! � 2� x-ray scan of the In0:17Ga0:83N and In0:4Ga0:6N sample. The dots are the

experimental data while the solid lines are least-squares �ts with two Pseudo-Voigt

functions. [113, 114]

Fig. 7.03 shows an ! � 2� XRD scan of sample #8027. The (002) re
ection of zincblende

GaN at 19.95�, corresponding to a lattice constant of aGaN = 4:516 �A, is clearly superposed

by a broad peak which is not present in the case of pure �-GaN. It is therefore attributed

to the InxGa1�xN layer. The pro�les can be �tted well by Pseudo-Voigt functions giving the

position of the second peak at �InGaN = 19:57�. Interpolating the lattice parameter [117] of

�-InN, aInN = 4:98 �A, and aGaN linearly as a function of x (Vegards rule), we estimate the

average In content to be x = 0:18 � 0:01, where the error is dominated by the uncertainty in

aInN. This compares well with the above SIMS analysis. The x-ray peak widths are given by

��GaN = 0:38o and ��InGaN = 0:66o. Assuming the crystalline imperfection of the InxGa1�xN

layer to be comparable to that of the underlying GaN, an upper limit for the contribution of

compositional 
uctuations to ��InGaN can be estimated from � = ��InGaN ���GaN, yielding

j�xj � 0:06.

For sample #8095, part of an !�2� scan between the (002) re
ections of GaAs at �GaAs =

15:814o (not shown) and GaN at �GaN = 19:966o
^

= aGaN = 4:512�A, is viewed in Fig. 7.04. The

additional peak at �InGaN = 19:141o
^

= 4:698�A stems from the InxGa1�xN layer. The solid lines

in Fig. 7.04 indicate a least-squares �t of Pseudo-Voigt functions to the data. In situ RHEED

revealed the InxGa1�xN to be relaxed apart from the �rst 10 { 15 nm at the GaN/InxGa1�xN

interface. Thus, linear interpolation as above between aInN and aGaN yields an In content of

x = 0:40� 0:01.

The weak bump at � � 18o is believed to arise from phase separated InN similar to what

has been observed in the case of �-InxGa1�xN with x > 0:3.[102, 103] From the di�erence in the

peaks widths ��InGaN���GaN = 0:35o, an upper bound for the compositional inhomogeneity

of the In0:4Ga0:6N layer is estimated to j�xj � 0:1. These local variations in x will result in

large photoluminescence linewidths and blurred absorption edges.
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Transmission Electron Microscopy

A typical cross-sectional bright-�eld TEM micrograph of the In0:4Ga0:6N sample in Fig. 7.05(a)

clearly shows the sequence of the various nitride layers separated by comparatively smooth and

abrupt interfaces. This result is amazing considering the high number of extended defects

crossing the multilayer structure. These defects, which are of planar type, are not directly

correlated to the strain relief between GaN and the GaAs substrate, but are generated during

island coalescence or via defect interactions. Therefore, they remain relatively una�ected during

growth.

Fig. 7.05: The XTEM picture (a) of sample #8095 is clearly showing the sequence of the nitride

layers. The respective interfaces are marked by arrows. The SAD patterns on the

right-hand-side were taken from the GaN/GaAs interface (b) and the In0:4Ga0:6N

layer (c). The cubic symmetry of the respective epilayers can be veri�ed. [114]

The crystallinity and the epitaxial orientation of the whole heterostructure and, in particu-

lar, of the In0:4Ga0:6N epilayer was investigated by selected area di�raction as indicated in Figs.

7.05(b) and (c) along the [�110] zone axis. The SAD pattern in Fig. 7.05(b) was taken from

the GaN/GaAs interfacial region demonstrating the perfect epitaxial alignment of both cubic

lattices. The round and symmetric shape of the �-GaN spots reveals a high crystal quality

with only little inhomogeneous strain.

The SAD pattern from the near surface region (Fig. 7.05(c)), which includes mainly the

In0:4Ga0:6N layer, is also of cubic symmetry without any hexagonal contributions. However,

the di�raction peaks are more spread out, compared to the case of pure �-GaN. Indeed, a
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magni�cation of the di�raction pattern (see inset in Fig. 7.05(c)) shows that these spots actually

consist of two separate peaks corresponding to �-GaN and �-InxGa1�xN, respectively. In situ

RHEED revealed the InxGa1�xN layer to be relaxed apart from the initial 10{15 nm of growth.

The observed separation of the peaks thus corresponds to an In content of x = 0:37�0:05 when
linearly interpolating between the lattice constants of �-GaN and �-InN. The asymmetric shape

of some of the re
exes may be a result of inhomogeneous strain induced by variations in the

In content, or of low-angle boundaries separating small misaligned domains. In addition to the

major cubic di�raction pattern, twin re
ections and weak stacking fault streaks, being absent

in Fig. 7.05(b), can be perceived. As a consequence of the relaxation having occured in the

In0:4Ga0:6N layer, the structural quality and the surface morphology of the following �-GaN

cap layer is poor.

7.1.3 Morphology

Scanning Electron and Atomic Force Microscopy

The surfaces of both samples under investigation are mirror-like and featureless under optical

microscopy. Scanning electron microscopy performed with sample #8027 (Fig. 7.06a) reveals a

smooth, homogeneous InxGa1�xN/GaN layer with a total thickness of 640 nm. The sample is

tilted by about 10o in order to visualize the In0:17Ga0:83N surface as well as the (�110) GaN/GaAs

facet obtained by cleavage. No In droplets or crystallites could be found.

The surface morphologies were studied by atomic force microscopy in ambient air with a

commercially available AFM. The AFM micrograph in Fig. 7.06b shows details of the surface

morphology of sample #8027. The peak-to-valley roughness amounts to 15 nm while the root-

mean-square roughness is only 3.5 nm. The characteristic brick-shaped features are very similar

to those observed for nonoptimized �-GaN (compare discussion in chapter 3).

Fig. 7.06a: SEMmicrograph [UJ] of the surface of

the In0:17Ga0:83N layer which is tilted

to visualize the (�110) facet obtained

by cleavage.

Fig. 7.06b: AFM micrograph of the surface of the

In0:17Ga0:83N layer. [113]
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The surface of sample #8095 is, as already evidenced by XTEM, rougher as a result of the

relaxation process which has taken place in the In0:4Ga0:6N layer. In contrast, measurements

on samples containing InxGa1�xN layers with thicknesses less than 10 nm and 0:4 � x � 0:5

being coherently strained yield substantially smoother surfaces with RMS roughnesses of the

order of 1 nm, as will be shown below.

7.2 �-GaN/InxGa1�xN/GaN (Multi) Quantum Wells

7.2.1 SQWs: Morphology and In Pro�les

Wurtzite phase InxGa1�xN/GaN (multi) quantum wells are routinely employed as active regions

of commercially available blue-green light emitting diodes and in prototypes of lasers emitting in

the violet. In contrast, no reports are available to date about thin zincblende phase InxGa1�xN

layers.

An important prerequisite for the synthesis of such quantum well structures is a su�ciently

smooth surface morphology. The result of growing an InxGa1�xN/GaN structure on top of a

rough �-GaN bu�er is viewed in Fig. 7.07a. The SIMS spectrum shown reveals an In pro�le

with a peak concentration of 20% and a FWHM of 10 nm. Actually, a well thickness of d = 5

nm was anticipated. However, the poor brick-shaped morphology of the underlying GaN, which

is already evidenced by the spotty RHEED pattern (Fig. 7.07b), induces a highly asymmetric

shape of the In distribution. It appears as if the InxGa1�xN is gradually �lling up the holes in

the GaN surface resulting in a slowly increasing x. No further roughening during the InxGa1�xN

growth could be observed. Thus, the GaN/InxGa1�xN interface is actually smoother than the

InxGa1�xN/GaN boundary.

In comparison, Figs. 7.08,09 view the depth pro�les of two thin InxGa1�xN layers with

x � 0:4 being sandwiched by considerably smoother �-GaN barriers which were grown un-

der optimized conditions (TG=640
oC, g = 130 nm/h, high-quality �-GaN/GaAs nucleation).

Within the SIMS depth resolution of �d � 1:5 nm, the In pro�les are symmetric and have a

FWHM of 8 and 3.8 nm, respectively. The surface morphologies of these samples are compa-

rable to that shown in Fig. 3.14 (page 22).

Fig. 7.10 shows RHEED snapshots of the growth of the In0:4Ga0:6N/GaN quantum well

with d = 3:8 nm. Unfortunately, almost half of the phosphorous coating of the RHEED screen

was already brittled (white areas) such that only a small part of the di�raction patterns could

be recorded. Since the resulting di�raction conditions were far from being ideal, the spots

appear less streaky than under normal circumstances. In the bottom of Fig. 7.10, the RHEED

pattern of the smooth �-GaN template is seen onto which the In0:4Ga0:6N was nucleated. At the

initial stage of In0:4Ga0:6N growth, the di�raction spots merely smear out and a slight decrease

in intensity is perceived, an example of which is shown at a well thickness of 2.8 nm. With

increasing thickness, the outmost re
exes are getting tilted towards smaller reciprocal lattice

spacings due to either elastic or plastic relaxation. However, no deterioration of the zincblende

phase could be detected. At d = 3:8 nm the In0:4Ga0:6N growth was stopped and the GaN

barrier was nucleated without interruption. After only 3 nanometers of �-GaN growth, the

original streaky di�raction pattern was almost recovered. In particular, the spots are aligned

in parallel again. This shows that the In0:4Ga0:6N is pseudomorphic to the �-GaN.
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Figs. 7.07a,b: Graded, asymmetric In depth pro�le (left) of a InxGa1�xN/GaN SQW with x = 0:2

and d = 10 nm grown on a rough GaN surface. The RHEED pattern of the GaN

template is shown on the right-hand-side.

Figs. 7.08,09: SIMS spectra showing symmetric In depth pro�les and abrupt interfaces of two

InxGa1�xN/GaN SQWs with x = 0:4 and d = 8 and 3.8 nm, respectively, grown on

a smooth GaN template.



80 Chapter 7. Growth of Zincblende (In,Ga,Al)N Heterostructures

Fig. 7.10: RHEED patterns recorded along the [110] azimuth at di�erent stages of growth of

the SQW with x = 0:4 and d = 3:8 nm shown in Fig. 7.09. The outer spots are

Fourier-�ltered to suppress a jittered noise signal.
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7.2.2 Strained MQWs

The fact that strained �-InxGa1�xN/GaN SQWs with high In content can be grown without

serious degradation in morphology or phase purity gives rise to hope that also zincblende phase

multi quantum well structures may be synthesized.

Indeed, Fig. 7.11 shows a SIMS spectrum of a sample consisting of four �-InxGa1�xN/GaN

quantum wells with x = 0:50 � 0:2 and well widths of d = 6:4 � 0:3 nm. The respective

layers appear as dark stripes in the bright-view XTEM picture Fig. 7.13. The corresponding

interfaces are abrupt, basically parallel to each other, and hardly a�ected by the massive bundles

of stacking faults being present in some parts of the sample.

Fig. 7.11: SIMS spectrum showing the In depth pro�le (symbols, left axis) of a

InxGa1�xN/GaN MQW with x � 0:5 and d � 6 nm. The GaN reference signal

normalized to unity is displayed (line, right axis) for comparison.

Fig. 7.12: AFM scan [MW] of the surface of the MQW sample.
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Fig. 7.13: XTEM and HRTEM micrographs [AT] of the MQW sample. The high-resolution

picture views the topmost of the four QWs. A schematic plot to illustrate the

determination of strain at a heterojunction is also shown.



�-AlxGa1�xN 83

A high resolution XTEM micrograph (Fig. 7.13) reveals structural details of the topmost

In0:5Ga0:5N/GaN quantum well. The interfacial widths are �d � 1 nm (In0:5Ga0:5N/GaN) and

�d �1.5 nm (GaN/In0:5Ga0:5N), i.e. equal to the root-mean-square roughness of the samples'

surface, as determined by an AFM scan (Fig. 7.12). The peak-to-valley roughness amounts

to 15{20 nm which is, however, observed at only a few locations. The surface morphology of

this sample with a total thickness of 815 nm is very similar to that of the 0.7 �m thick �-GaN

reference layer (Fig. 3.14, page 22).

The most interesting question, however, concerns the degree of residual strain in such a

heterostructure. Bearing in mind that the lattice mismatch between �-GaN and �-In0:5Ga0:5N

is about 5 %, it would not be surprising if substantial relaxation took place beyond the �rst few

monolayers of In0:5Ga0:5N, in compliance with common experience gained on similarly highly

mismatched systems such as SiGe/Si [118, 119], InGaAs/GaAs [120, 121, 122], or more recently

GaN/AlN [123, 124].

The alignment of the f110g planes at the GaN/In0:5Ga0:5N interface, however, shows that

at least the �rst few In0:5Ga0:5N monolayers are coherently strained. According to elasticity

theory, the mismatch at the interface between a commensurate InxGa1�xN thin �lm and the
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= a

InGaN

?o
and a

InGaN

jj
= a

GaN

jj
. Thus, an analysis of the angle 	 between the

respective f111g planes of the two materials [125] allows to estimate the residual strain �"jj =

"
InGaN

jj
� "

GaN

jj
being present in the heterosystem:

	111[rad] =
1

2
sin(2�111)

1 + �

1� �
�"jj : (7.4)

For the sample under investigation, values of 	111 = 1:8� 0:2o were measured as indicated

in Fig. 7.13. In contrast, the angle between the f111g planes of the GaN barriers is 0� 0:1o,

i.e. the GaN layers below and on top of a well are structurally equivalent within the accuracy

of the strain measurement. It is therefore presumed that "GaN
jj
� 0. With �111 = 54:7o and

� = 0:366 [126], the observed angles 	111 correspond to unexpectedly high strain values of

"
InGaN

jj
= (3:4 � 0:3) %. This �nding shows that despite the large well thicknesses of 6{7 nm,

only little elastic relaxation has taken place in the In0:5Ga0:5N layers. Direct evidence for defect

mediated relaxation processes is given by stacking faults originating from the heterointerfaces

at some places.

7.3 �-AlxGa1�xN

Wurtzite AlxGa1�xN is �nding numerous applications in (opto-)electronic devices. Since �-AlN

has a direct room temperature band gap of EG(�-AlN)=6.3 eV, compared to EG(�-GaN)=3.4

eV, the alloy is employed as cladding layer for carrier con�nement and as optical wave guide in

AlxGa1�xN/ InxGa1�xN heterostructures, which are encountered in light emitting diodes and,

especially, in lasers. In electronic devices based on parallel transport such as high-electron-

mobility �eld e�ect transistors, the use of AlxGa1�xN is essential for realizing the two dimen-

sional electron gas.
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Zincblende AlxGa1�xN, on the other hand, is just about to be discovered for device applica-

tions. Because the di�erence in the lattice constants between �-AlN (aAlN = 4:38�A) and �-GaN

(aGaN = 4:51�A) is comparatively small, only little strain is created in AlxGa1�xN/GaN struc-

tures with 0 � x � 0:15. Therefore, growth of such is relatively straightforward. This statement

holds for zincblende as well as for wurtzite phase AlxGa1�xN. First results on �-AlxGa1�xN

grown on GaAs by MOCVD are reported in [128]. There, growth was performed at TG=950
oC

and layers with Al molar fractions up to 23% were achieved.

A systematic study of �-AlxGa1�xN is beyond the scope of this work. In what follows,

the compositional and structural properties of a simple low-temperature �-AlxGa1�xN test

structure will be discussed.

7.3.1 Low Temperature Growth

Due to the very high melting points of GaN and AlN , wurtzite AlxGa1�xN is usually grown

at TG > 1000oC. In contrast, the zincblende GaN �lms considered within this work were

synthesized at TG � 650oC and only a few tests were carried out to grow �-AlxGa1�xN. For the

sake of compatibility with the �-GaN process, the same low growth temperatures were chosen

in these cases.

An example of such a heterostructure is seen in Fig. 7.14 where a SIMS spectrum is visu-

alizing the Al depth pro�le. The incorporation of Al was independently veri�ed by means of

RBS. [115] On top of a �-(2�4){GaAs(001) surface, a 70 nm thick �-GaN bu�er layer was nu-

cleated and grown by the same optimized procedure as that decribed in chapter 3, resulting in

a smooth (4�2) reconstructed surface. Keeping the substrate temperature TG=640oC constant,

a 35 nm thick Al0:17Ga0:83N layer was grown, followed by 50 nm Al0:2Ga0:8N and, �nally, 75 nm

Al0:15Ga0:85N. During growth of the Al0:17Ga0:83N �lm, the RHEED pattern remained virtually

una�ected and, in particular, the (4�2) surface reconstruction could be recovered by growth

interruptions. This indicates that the Al0:17Ga0:83N layer is commensurable to the underlying

�-GaN bu�er, i.e. coherently strained.

Fig. 7.14: SIMS spectrum showing the Al depth pro�le of sample #8100.
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Raising the Al concentration up to 20% caused a gradual roughening of the growth front

as evidenced by the evolution of a spottier RHEED pattern. Some of the spots got slowly

tilted as a result of substantial amounts of strain being built up with increasing thickness.

Lowering the Al content down to 15% lead to an improvement of the RHEED pattern in terms

of elongation and parallel aligment of the di�raction spots, indicating a partial recovery in

surface morphology.

Indeed, the AFM micrograph displayed in Fig. 7.15 reveals a comparatively large peak-to-

valley roughness of 25 nm and a RMS value of 3 nm for the Al0:15Ga0:85N surface.

Fig. 7.15: AFM scan [MW] visualizing the surface morphology of sample #8100.

Figs. 7.16a,b: X-ray di�raction ! � 2� and ! scans of the AlxGa1�xN test structure #8100.



86 Chapter 7. Growth of Zincblende (In,Ga,Al)N Heterostructures

An ! � 2� x-ray di�raction scan of the sample under investigation can be seen in Fig.

7.16a. The maximum of the broad peak at � = 20:004o corresponds to a lattice constant

of 4.504 �A, close to the value of aGaN = 4:51 �A for the �-GaN reference sample. The full

width at half maximum amounts to �� = 0:45o. Applying Vegards' law, i.e. presuming a

complete relaxation in the AlxGa1�xN structure, yields an average Al concentration of 6.6%

in contradiction to the results obtained from the SIMS and RBS analysis. This leads to the

conclusion that only little plastic relaxation has occured during the growth of the various

AlxGa1�xN layers in accordance with the RHEED observations. While �� is a measure for the

variation in the lattice constant, the width �! = 1:76o as obtained by an !-scan (Fig. 7.16b)

is dominated by misaligned domains.

In conclusion, thick strained �-AlxGa1�xN layers with Al contents up to x = 0:2 were grown

by RF plasma assisted MBE at TG=640
oC and a growth rate of g = 150 nm/h. The structural

quality, however, is yet to be improved by a further optimization of growth temperature and

growth rate.



Chapter 8

Optical Properties of Zincblende

(In,Ga,Al)N

8.1 Thick �-InxGa1�xN Films

In what follows, the optical properties of cubic (In,Ga,Al)N heterostructures comprising thick

�-InxGa1�xN �lms are investigated. Re
ectance, transmittance and photoluminescence data

of two �lms having In contents of x = 0:17 and x = 0:4 are presented. The growth, crystal

structure and morphology of these samples were discussed in the preceeding chapter. An

attempt is made to estimate the so far unknown band edge energy of �-InxGa1�xN for In mole

fractions up to 40 % by combining the available data from RF and DC plasma grown �lms.

The latter have a maximum In content of 11 % due to the limited active nitrogen 
ux of the

DC source. [107]

8.1.1 Re
ectance & Transmittance

To appraise the absorption edges of the In0:17Ga0:83N and the In0:4Ga0:6N samples, re
ectance

and transmittance measurements were carried out after the GaAs substrates have been etched

away and the resulting thin (In,Ga,Al)N �lms have been mounted on sapphire for mechanical

stability. The sample preparation as well as the actual measurements were performed in the

same fashion as in the case of the 690 nm thick �-GaN reference layer treated in chapter 4.

The symbols in Figs. 8.01,02 show the room temperature transmittance T (E) and re-


ectance R(E) spectra of the In0:4Ga0:6N and In0:17Ga0:83N samples, respectively. As reference,

the corresponding data of the �-GaN �lm #8092 are overlayed (lines). Comparing the two

transmittance spectra in Fig. 8.02, one perceives that for the In0:17Ga0:83N structure #8027

absorption sets in at about 2.9 eV. The re
ectance, however, is dominated by the underlying

400 nm thick �-GaN layer which is of inferior quality than the 690 nm thick reference �lm.

Therefore, no abrupt damping of the oscillations at E
G
(�-GaN) = 3:2 eV is observed.

In the case of the In0:4Ga0:6N sample #8095, signi�cant absorption takes place already

for E � 2:45 eV as evidenced by the transmittance spectrum in Fig. 8.01. In accordance,

the corresponding interference fringes of the re
ectance exhibit damping at about 2.5 eV.

Interestingly, the transmittance spectrum is also markedly damped for E � 2:1 eV. This rise

in absorption may be due to the combined action of low-energy defect bands in the InxGa1�xN

alloy and phase-separated InN. A hint for the existence of such InN inclusions was given by

x-ray di�raction in Fig. 7.04 (page 75).

87
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The sudden disappearance of re
ectance oscillations at 3.2 eV for both the reference sample

and the structure containing the In0:4Ga0:6N layer indicates a well de�ned �-GaN band gap.

Figs. 8.01,02: Room temperature re
ectance and transmittance spectra (symbols) of the

In0:4Ga0:6N (left) and In0:17Ga0:83N (right) sample compared to the �-GaN reference

(lines).

Figs. 8.03,04 : Linearization of (�E)2 to judge the absorption edges of the In0:4Ga0:6N and

In0:17Ga0:83N epilayers.
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As opposed to the �-GaN reference sample consisting of a single nitride layer, we are now

facing the problem of how to analyse the re
ectance and transmittance of an (In,Ga,Al)N het-

erostructure. A rigorous treatment would require the extension of the present theory (chapter

4) to multilayer systems involving the transfer matrix formalism [68]. In principle, the optical

constants of one layer can be determined once the complete set of material parameters of all

other constituents of the system are known. The task to solve the resulting set of equations,

which are considerably more complex than those considered in chapter 4, however, is not only

by orders of magnitude more elaborate but also very susceptive to error propagation.

Instead, we try to assess the e�ective absorption edge of the InxGa1�xN layers by applying

the method introduced in chapter 4. The heterostructure will be treated as a pseudo-one-layer

system having pseudo-optical constants (r̂; �̂) which account for the observed behavior of the

actual multilayer sample. This crude simpli�cation raises the question as to how meaningful

such pseudo-values really are. The re
ection coe�cient r̂ will certainly be strongly a�ected by

the occurence of the various interfaces in, e.g., the In0:4Ga0:6N sample consisting of 5 nitride

layers in total. Due to the variety of ways how light rays can be traced and superposed in

such a multilayer system, there is no simple correlation between the roundtrip re
ectivity of

the individual layers, r
i
, and that of the total system, r̂. In contrast, the total absorption

coe�cient �̂ of a stack of layers with thicknessess s
i
and individual absorption coe�cients �

i

may to �rst order be written as

�̂ =

P
i
�
i
s
iP

i
s
i

; (8.1)

provided that the discontinuities in the refractive indices of adjacent layers, jn
i
� n

i+1j are not
too large.

Treating the two samples under investigation as if they consisted of one e�ective layer, it

is possible to model the observed re
ectance and transmittance data with the set of equations

(4.22). Whilst focusing on the pseudo-absorption coe�cient �̂, the values obtained for the

pseudo-refractive index n̂ and the e�ective �lm thickness ŝ are briefely mentioned in order

to judge their consistency. In the case of the In0:17Ga0:83N sample, the e�ective thickness is

ŝ = 573 nm and n̂(2 eV) = 2:6, corresponding to a total re
ection coe�cient of r̂ = 0:13 for

the multilayer system. At about 2.85 eV, r̂ and n̂ are steeply rising and for 3:0 � E � 3:3

eV an average pseudo-refractive index of 2.9 is obtained. The analysis of the In0:4Ga0:6N

heterostructure yielded low-energy values of r̂ = 0:14 and n̂ = 2:7 for an e�ective �lm thickness

of 810 nm. This time, a pronounced increase in the quantities r̂ and n̂ is observed at 2.5 eV

which assume mean values of 0.19 and 3.1, respectively, in the high-energy range.

The values of ŝ are reasonable when comparing them to the real �lm thicknesses measured

by SIMS and electron microscopy (chapter 7). The average pseudo-refractive indices, on the

other hand, are somewhat larger than that of the �-GaN reference layer. Such a behavior is

to be expected since the absorption edges of the InxGa1�xN samples set in at lower energies.

Finally, it should be noted that the optimization of (ŝ; n̂Sub) yielded for both samples an e�ective

boundary value of n̂Sub = 1:44, i.e. higher than the refractive index of 1.34 for the UV glue by

which the heterostructures were mounted on the sapphire. This larger value accounts for the

fact that the discontinuity between the refractive index of the InxGa1�xN and the glue layer is

virtually graded by the presence of the intermittent GaN epilayer(s).

The e�ective absorption edges of the In0:4Ga0:6N and the In0:17Ga0:83N layers are visualized

in Figs. 8.03,04 where (�̂E)
2
(symbols) are plotted against the photon energy E and compared

to the corresponding values (dashed lines) of the �-GaN reference sample. The �lled circles

indicate the total absorption coe�cient �̂ as calculated within the one-layer theory (4.22),
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covering multiple re
ections and �nite coherence e�ects (C = 0:6). As simple consistency check

for the complete set of pseudo-optical constants (�̂(E); r̂(E); ŝ), the open circles in Figs. 8.03,04

show �̂1(E) deduced from the �rst-order relation

T = e
��̂1ŝ(1�R)2 ; (8.2)

which is based on the incoherent equations (4.7). The negligence of multiple re
ections within

the �lm leads in general to an underestimation of the absorption coe�cient and to an overesti-

mation of the re
ection coe�cient in the sub-band-gap energy range. Further, these �rst-order

quantities are modulated by residual interference oscillations and they converge to the exact

solution of the coherent equations (4.10) in the strongly absorbing regime. These phenomena

can be seen in Figs. 8.03,04 and in particular, it is veri�ed for both samples that �̂1 tends to

�̂ in the range of strong absorption.

The solid lines in Figs. 8.03,04 envisage attempts to determine the absorption edge of the

InxGa1�xN layers by linearization of (�̂E)
2
. Evidently, this simple method does not lead to

satisfactory results for two reasons: First, the compositional inhomogeneity in the In content

leads to a statistical broadening of the mean absorption edge. Second, the material under

investigation may intrinsically not behave according to the idealized square-root-density-of-

states law even if alloy e�ects can be neglected. Comparing the available absorption data with

the above-mentioned steep rises in the refractive indices n̂ at 2.85 and 2.5 eV, respectively,

we roughly estimate the e�ective band gaps EG(�-In0:17Ga0:83N) = 2:9 � 0:04 eV and EG(�-

In0:4Ga0:6N) = 2:5 � 0:04 eV at 300 K. The same analysis was carried out for the 10 K data

leading to similar values within the given accuracy.

8.1.2 Photoluminescence

PL data of the In0:17Ga0:83N layer taken at various temperatures are depicted in Fig. 8.05.

The maxima of the broad spectra, being distinctly di�erent than those of �-GaN, occur at

� = 440� 450 nm, i.e. in the blue spectral range. Upon raising the temperature from 5 to 500

K, the overall PL intensity decreases by only 50 % and the high-energy shoulder is becoming

more pronounced at the expense of the lower energy transitions. Furthermore, a slight redshift

can be observed.

To quantify this behavior, a lineshape analysis is performed. Good agreement is obtained

between a model (solid lines) comprising four Gaussians and the experimental data. Usually,

low-temperture band edge PL peaks of high quality �{ as well as �{GaN have Lorentzian shape

with a Boltzmann tail at the high-energy side, resulting in an asymmetric pro�le (chapter 5).

However, in the case of an alloy subject to statistical compositional 
uctuations, Gaussian

pro�les are to be expected. Even though the peaks overlap signi�cantly, stable least-squares

�ts are achieved and thus allow an estimation of transition energies (Tab. 8.1) within the quoted

errors. In comparison, the temperature dependence of the �-GaN band edge transition energy

XC (chapter 5) is added in the last column of Tab. 8.1.

The consistency of the E0 = 2:9 eV PL peak with the above absorption data suggests that

this transition can be assigned to the band edge of the In0:17Ga0:83N layer. In contrast, a band

gap energy of 3.1 eV has been reported for �-In0:17Ga0:83N. [100, 129] Note that the thermal

redshift �E := E0(5K) � E0(500K) of the �-In0:17Ga0:83N PL is only 50 meV as opposed to

154 meV for �-GaN. Further, the intensity of this transition remains nearly constant over the

whole temperature range from 5 to 500 K.



Thick �-In
x
Ga1�x Films 91

Fig. 8.05 : Photoluminescence spectra (symbols) of the In0:17Ga0:83N sample #8027 as function of

temperature. A superposition of 4 Gaussians (lines) is employed to model the data.

T [K] E2 [eV] E1 [eV] E0 [eV] XC [eV]

5 2.49 � 0.02 2.803 � 0.001 2.91 � 0.01 3.272

300 2.43 � 0.01 2.777 � 0.002 2.89 � 0.01 3.205

500 2.40 � 0.01 2.745 � 0.003 2.86 � 0.01 3.118

�-In0:17Ga0:83N �-GaN

Table 8.1: Temperature dependent PL transition energies of the In0:17Ga0:83N sample compared to

the corresponding values of the �-GaN band edge transition XC.

Fig. 8.06 depicts PL data of the In0:4Ga0:6N sample taken between 4 and 400 K along with

the room temperature absorption curve (�E)2, part of which has already been shown in Fig.

8.03. For comparison, the 300 K absorption of the �-GaN reference �lm is also displayed. The

emission spectra are clearly dominated by a broad peak at E0 � 2:45 eV which is absent in the

PL of the reference sample (not shown). Luminescence at energies E � 2:9 eV stems from the

poor quality GaN cap layer (Fig. 7.05, page 76).

The overall intensity of the green PL being modulated by interferences is weak but drops

by no more than a factor of 4 upon raising the temperature from 4 to 400 K. The correlation

of E0 with the onset of absorption leads to the conclusion that the observed maxima in the

PL stem from band edge related transitions in the In0:4Ga0:6N layer. In the case of hexagonal

In0:4Ga0:6N, a band gap energy of 2.7 eV would be obtained resulting in blue emission. To

reach the green spectral range with �-InxGa1�xN, an In content of about x = 0:55 is required.

The two �-InxGa1�xN layers investigated share not only broad PL peaks and a fairly weak

temperature dependence of the transition energies, widths, and intensities. They also have in

common that the corresponding (002) Bragg re
exes observed by XRD (Figs. 7.03,04, page 75)

su�er from a strong broadening which was in part attributed to an appreciable spread �x in

the In content. These compositional inhomogeneities create spatial potential 
uctuations and

localized states which have been found to also dominate the emission of �-InxGa1�xN.[130, 131]

Such states in turn give rise to large PL linewidths as well as to intense deep-level emissions.
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Fig. 8.06: Photoluminescence spectra (symbols) of the In0:4Ga0:6N sample as function of

temperature . The solid and broken lines indicate the absorption (�E)2 of the

In0:4Ga0:6N layer and the �-GaN reference, respectively. In the inset both absorp-

tion spectra are magni�ed by a factor of 20.

8.1.3 Band Edge Properties of �-InxGa1�xN: Summary

The data acquired on �-InxGa1�xN samples with In contents ranging between 0 � x � 0:4 allows

to sketch the compositional dependence of the { so far unknown { band gap EG(�-InxGa1�xN).

In Fig. 8.07, the respective low-temperature band gap energies of zincblende and wurtzite

InxGa1�xN are compared to each other, the latter (dashed line) being �rmly established in

literature [129].

The data points with x � 0:11 originate from samples grown with the DC plasma source.

[107] Neither re
ectance nor ellipsometry measurements carried out on these samples yielded

conclusive information on EG. On the other hand, these InxGa1�xN �lms are too fragile for a

substrate removal step being a prerequisite for acquiring their transmittance. Therefore, the

band gap energies had to be estimated by means of photoluminescence measurements. Since

these samples did not exhibit any measurable PL signal at T � 70 K, the available room

temperature band gap data is limited to the two RF plasma grown �lms having x � 0:17.

The open circles in Fig. 8.07 display the 5 K band edge transition energy E0 of �-InxGa1�xN

while the solid circles show the corresponding room temperature values which have been sub-

stantiated by absorption data as discussed above. The compositional dependence of E0(5K) is

modelled (solid line) by the parabolic expression

EG(�-InxGa1�xN) = xEG(�-InN) + (1� x)EG(�-GaN) +Bx(x� 1) ; 0 � x � 1 ; (8.3)
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containing the unkown band gap energy of cubic InN, EG(�-InN), and the bowing param-

eter B � 0 as adjustable quantities. Reasonable agreement with the data is reached with

EG(�-InN) = 1:8 eV and B = 0:9 eV, where the bowing obtained is close to the calculated

value of 1.02 by Wright et al. [109] and the experimental one of 1.05 by Osamura et al. [129].

Lacking data points with x > 0:4, the extrapolated value for the fundamental absorption edge

of �-InN may only be considered as a rough estimate. In comparison, the low-temperature

band edge energy of hexagonal InN has been determined from absorption measurements to be

EG(�-InN) = 2:05 eV. [132]

Fig. 8.07: Fundamental band edge of �-InxGa1�xN compared to �-InxGa1�xN (see

text).

Even though the entire compositional range of the zincblende alloy could not yet be covered,

Fig. 8.07 shows that, at least for 0 � x � 0:4,

EG(�-InxGa1�xN) � EG(�-InxGa1�xN)� 0:2 eV : (8.4)

As a consequence, signi�cantly less In is required by using the cubic phase for reaching the blue {

green spectral range. In view of the previously mentioned problems concerning In incorporation

the potential advantage of �-InxGa1�xN for visible light emitters becomes evident.
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8.2 �-AlxGa1�xN

The � band gap of �-AlxGa1�xN is of direct nature over the whole compositional range. [133]

In contrast, a direct ! indirect transition has been predicted for the lowest band gap of

�-AlxGa1�xN at x = 0:5. [127] To date, only little experimental data are available on the

electronic properties of �-AlxGa1�xN. In reference [128], the room temperature band edge

was estimated from photoluminescence data to depend linearly on the Al content according to

EG(�-AlxGa1�xN) = (3:2 + 1:85 x) eV for x � 0:23.

The �-AlxGa1�xN heterostructure treated in the preceeding chapter is not suitable for a

precise determination of EG(�-AlxGa1�xN) due to the inhomogeneity in the Al concentration.

Nevertheless, it is important to verify the impact of the Al on the (e�ective) absorption edge

of the alloy. Therefore, re
ectance and transmittance measurements were carried out on the

�-AlxGa1�xN �lm mounted face-down on quartz by means of optical UV-glue as described in

chapter 4. The corresponding spectra are compared to those of the �-GaN reference sample in

Fig. 8.08.

Fig. 8.08: Room temperature re
ectance and transmittance spectra (symbols) of the

�-GaN/Al0:17Ga0:83N/Al0:2Ga0:8N/Al0:15Ga0:85N test structure compared to the

�-GaN reference (lines).

As opposed to all R and T data shown so far, the spectra of the 220 nm thick �-AlxGa1�xN

sample are modulated by a short-period signal which is attributed to interference phenomena

occuring in the glue layer. The long-period interference fringes, on the other hand, are con-

sistent with the samples' thickness assuming a pseudo-refractive index of the order of 2.5. It
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is apparent that the e�ective absorption edge of the heterostructure is shifted towards higher

energies relative to the �-GaN reference. Considering the quenching of the modulations in the

re
ectance, an e�ective band gap of 3:6� 0:05 eV is estimated. In comparison, a value of 3.51

eV is obtained for the PL band gap of an alloy with x = 0:17 when applying the cited linear

relation. [128]





Chapter 9

Summary and Outlook

The present work focuses on MBE growth, microstructure, and optical properties of the metastable

zincblende (�) (In,Ga,Al)N system on GaAs(001). Due to their higher crystal symmetry, these

cubic nitrides are expected to be intrinsically superior for (opto-)electronic applications than

the widely employed wurtzite (�) counterparts. Confronted with the unavailability of a suit-

able substrate required for epitaxial stabilization, however, the debate is on whether these

compounds can be prepared at all in su�cient quality such that the potential advantages of

the zincblende lattice come into play. Due to the di�culties of obtaining single-phase crys-

tals, many material constants of both fundamental interest and technological relevance are

essentially unknown for the cubic nitrides.

The aim of this work was therefore twofold: First, to determine the basic optical and

electronic properties of �-GaN and to shed some light on �-InxGa1�xN. Second, to push the

technological limits of synthesizing device-relevant zincblende (In,Ga,Al)N heterostructures in a

new, custom-designed MBE machine. One major achievement was the reproducible nucleation

of smooth, monocrystalline �-GaN layers on GaAs using a high-nitrogen-
ow RF plasma source.

The optimization of a growth process for thick �-GaN layers with respect to phase purity

and surface morphology has then opened the way for the synthesis of ternary �-(Ga,In,Al)N

structures.

While the optical properties of wurtzite GaN are quite well established, a paucity of infor-

mation prevails on the zincblende pendant. In order to �ll this gap, temperature dependent

re
ectance and transmittance measurements were carried out on a monocrystalline �-GaN �lm

grown with the RF plasma. On the basis of the theory for a strati�ed medium, a numerical

method was developed which allows to extract from these data the complete set of optical con-

stants for photon energies covering the transparent as well as the strongly absorbing spectral

range (2.0 { 3.8 eV). Finite coherence e�ects due to interfacial roughness and inhomogeneities

in the refractive index were elucidated and quantitatively analyzed by means of Monte Carlo

simulations. The fundamental band gap EG(T ) of �-GaN was determined for 5 � T � 300 K

and the room temperature density of states was investigated.

On the emission side, systematic studies of the band edge photoluminescence in terms of

transition energies, lineshapes, linewidths, and intensities were carried out for both �- and

�-GaN as a function of temperature. Average phonon energies and coupling constants, ac-

tivation energies for thermal broadening and quenching were determined. In order to study

the impact of nonradiative recombination processes, excitation density dependent PL measure-

ments were carried out on cubic and hexagonal GaN microcrystals at 300 K. A recombination

model was applied to estimate the internal quantum e�ciency, the (non)radiative lifetimes, as

97



98 Chapter 9. Summary and Outlook

well as the ratio of the electron to hole capture coe�cients for both polytypes. It is seen that

the dominant nonradiative centers in the n-type material investigated act as hole traps which,

however, can be saturated at already modest carrier injection rates.

It appears as if the abundant structural defects like stacking faults and dislocations are

optically almost inert in both phases of GaN as opposed to other III-V compounds which are less

ionic in bonding. An interesting �nding is that the radiative centers, causing unwanted yellow

luminescence, are less competitive to the band edge recombination in the case of zincblende

GaN as compared to wurtzite at T > 100 K. In conclusion, despite large defect densities in

�-GaN due to highly mismatched heteroepitaxy on GaAs, band edge luminescence was observed

up to 500 K with intensities comparable to those of state-of-the-art �-GaN.

InxGa1�xN plays a key role in short wavelength light emitters. The growth of high-quality

material with large x, however, is a challenging task due to the miscibility gap between GaN

and InN in thermodynamic equilibrium and the weakness of the In-N bond as compared to the

Ga-N bond. Currently, �-InxGa1�xN based blue-green light emitting diodes having In contents

0:3 � x � 0:5 are commercially available while, in contrast, scarcely any data on �-InxGa1�xN

are found in literature.

In order to investigate the optical as well as the structural properties of �-InxGa1�xN, thick

�lms with high In contents were grown on �-GaN templates. Blue and green photoluminescence

were obtained at room temperature and above for In mole fractions of 0.17 and 0.4, respec-

tively. Since this PL exhibits a large inhomogeneous broadening but a rather weak thermal

dependence of peak energies, homogeneous linewidths, and intensities, it is assigned to tran-

sitions between localized states caused by compositional inhomogeneities. Transmittance and

re
ectance measurements reveal this luminescence to be band edge related. It is found that the

apparent band edge of the cubic alloy is smaller by about 0.2 eV than that of the hexagonal

polytype for the In contents 0 � x � 0:4 considered. To the best of our knowledge, these

optical data are the �rst published on �-InxGa1�xN.

Apart from bulk-like �-InxGa1�xN �lms, the �rst coherently strained �-InxGa1�xN/GaN

(multi) quantum wells with In contents as high as 50% and abrupt interfaces could be grown

by RF plasma assisted MBE. This is an exciting result since it does not only show that by

means of a nonequilibrium growth technique, a ternary alloy can be synthesized in a metastable

crystal structure far beyond the miscibility limit of its binary constituents. In addition,

InxGa1�xN/GaN interfaces with roughnesses of the order of 1 nm were achieved despite the

handicap of highly lattice mismatched heteroepitaxy. Furthermore, the quantum wells are con-

siderably strained. The well widths of these structures range between 4 and 7 nm and are thus

beyond the theoretically expected critical thickness for the strain values observed. Since no

indications of phase separation were found by HRTEM, it is to be expected that even higher

In contents can be reached for �lm thicknesses below 5 nm. The potential application of such

�-InxGa1�xN/GaN multi quantum wells with x � 0:4 would thus be diode lasers operating in

the green-yellow range.
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9.1 What we don't know about cubic nitrides

Despite their immaturity, promising results were achieved with zincblende group-III nitrides

which make these compounds attractive for future (opto-)electronic device applications. Never-

theless, numerous issues are yet to be addressed before the �rst zincblende-based green laser is

obtained that can compete with or even surpass the performance of devices based on alternative

material systems (II-VI, wurtzite nitrides).

At �rst, the structural quality of cubic nitrides is to be further improved where special

attention has to be paid to a reduction of defect densities right at the substrate interface.

Systematic studies are necessary comparing the currently available cubic substrates under the

aspects of heteroepitaxy as well as regarding device issues such as vertical transport, thermal

mismatch, heat conductivity, and processing.

Not much is currently known about doping, impurity di�usion, and the (low-dimensional)

transport properties of the zincblende (In,Ga,Al)N material system. Even such an important

quantity as the hole mass of �-GaN is not yet established. Since so far, the intrinsic properties

of the cubic nitrides are quite often masked by exceedingly large defect densities, it is not

clear yet to which extent advantage can be taken of the higher crystal symmetry of these new

materials as compared to their hexagonal counterparts.

A particular appealing topic for heterostructures is the quaternary �-InxAlyGa1�x�yN sys-

tem since it o�ers by the additional degree of freedom the prospect to tailor both the band

gap and the lattice constant. The potential application of such an alloy would be as wide band

gap barrier material for strained InxGa1�xN quantum wells being lattice-matched to GaN or

AlxGa1�xN. To date, no reports exist on this promising quaternary compound.

The optical constants of �-InxGa1�xN presented herein are only the �rst few steps on a long

walk towards a complete database of fundamental as well as device relevant material properties.

Even if the structural quality of the constituent epilayers of a laser is in principle su�cient and

the know-how and technology for tailoring the electronic and electrical properties is available,

a smart device design is needed to reach the required carrier and photon con�nement. Among

the indispensable quantities for optimizing such a device structure are the refractive indices

and the band gaps of the individual layers.
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