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Abstract

The subject of this work is part of the theory of strings and in particular concerned with geomet-
rical aspects of the realization of gauge theory within string theory. In particular we study the
gauge theory of D3-branes at generalised singularities like orbifolds and the orbifolded conifold
singularities. The introduction of the so called diamonds leads to a consistent picture. The action
of mirror symmetry for this class of models is discussed.

In a second part the field theory of the M5-brane will be investigated on the basis of the su-
perembedding approach. The main result here will be a rather explicit identification of the self
dual three form field with the parameters of the complex structure of the embedding space.
The heuristic material collected from the previous chapters states that the information contained
in supersymmetric 3-cycles can be partially extracted from supersymmetric 2-cycles. Thus we
study the case of brane boxes, which can be obtained by sewing together usual N = 2 setups
of D4 and NS5-branes. These systems satisfy the condition of uniform bending and the lift to a
supersymmetric 3-cycle can be performed explicitly.

In the last part a new superconformal N=1 gauge theories will be constructed which arise as
certain deformations of N=4 SYM and have a dual description due to the AdS/CFT correspon-
dence.
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Zusammenfassung

Der Gegenstand dieser Arbeit ist Bestandteil der Stringtheorie und betrifft insbesondere die
geometrischen Aspekte der Realisierung von Eichtheorien innerhalb der Stringtheorie. Wir stu-
dieren die Eichtheorie von D3-Branes an verallgemeinerten Singularitéten wie der Orbifold- oder
Conifold-Singularitdt. Die Einfihrung der sogenannten Branediamanten fiihrt auf ein konsi-
stentes Bild. Fiir diese Klasse von Modellen wird die Wirkung der Mirrorsymmetrie diskutiert.
Im zweiten Teil untersuchen wir die Feldtheorie der M5-Brane auf der Grundlage des Super-
einbettungsformalismus. Das Hauptresultat dieses Kapitels ist eine explizite Identifikation der
selbstdualen 3-Form mit den Parametern der komplexen Struktur des Einbettungsraumes.

Das heuristische Material, das in den vorangegangenen Kapiteln angesammelt wurde, weist dar-
auf hin, dafl die Informationen, die ein supersymmetrischer 3-Zykel enthilt, zumindest teilweise
auf supersymmetrische 2-Zykel zuriickgefiihrt werden konnen. Daher studieren wir den Fall von
Brane-Boxen, die durch Uberlagerung von gewshnlichen N=2 Systemen aus D4 und NS5-Branes
gewonnen werden konnen. Diese Konfigurationen erfiillen die Bedingung des ‘uniform bending’
und der Lift auf einen supersymmetrischen 3-Zykel kann explizit ausgefiihrt werden.

Im letzten Teil konstruieren wir eine neue superkonforme N=1 Eichtheorie, die aus einer Mas-
sendeformation der N=4 SYM entsteht und eine duale Supergravitationsbeschreibung durch die
AdS/CFT-Korrespondenz besitzt.

Schlagworter:
Stringtheorie, Branes, Eichtheorie, AdS/CFT
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Fede é sustanza di cose sperate
e argomento de le non parventi;
e questa pare a me sua quiditate.

Preface

This is a summary of the results obtained in my research toward the academic degree
“doctor rerum naturalium”. The subject of this work is part of the theory of strings and in
particular concerned with geometrical aspects of the realization of gauge theory within
string theory. The main tools for these investigations are solitonic solutions (branes)
of the effective equations of motions, which describe the low energy behaviour of string
theories. The effective theories we want to consider are the ITA and IIB supergravities
and the 11 dimensional supergravity of [1], respectively. The latter is introduced since
it helps to unify a lot of properties into a common picture. So by the Kaluza-Klein
mechanism and T-duality the vast number of ITA and IIB-branes can be traced back
to only two kinds of brane solutions of the 11 dimensional theory (M-theory), called
M2 and M5-brane. In fact the study of quantum properties of the gauge theories liv-
ing on ITA branes can be obtained from classical solutions of the M5-brane as shown in [2].

In chapter 1 we introduce the basic objects necessary for the description of gauge theo-
ries in stringy terms. Here we follow the approach of constructing as much as possible
from 11 dimensional supergravity. A central place is assigned to the Mb-brane solu-
tion, whose worldvolume theory is described. BPS-solutions of the M5-brane will be
of dominant interest in chapters 3 and 4. T as well as S-duality are examined, since
they relate different brane setups to singularities. The worldvolume theories of Dirichlet
branes (D-branes) are briefly discussed. For the gauge theory of n parallel D3-branes at
a orbifold singularity the orbifold projection is shown explicitly using the tools of [3].

In chapter 2 [4] we study the gauge theory of D3-branes at generalised singularities.
For two classes of non compact Calabi-Yau threefolds the T-dual Neveu-Schwarz five
brane (NS5-brane) configurations are investigated. It turns out that blowups (deforma-
tions) of orbifolded conifold singularities are T dual to boxes (intervals) of NS5-branes,
whereas blowups (deformations) of generalised conifold singularities are T' dual to inter-
vals (boxes) of NS5-branes. The two singularities are in fact mirror pairs. The Kéahler
resp. complex structure parameters of the geometric singularities correspond to posi-
tions of the NS5-branes in the dual brane picture. Moreover a conifold transition for
the mirror pairs via shrinking 2-cycles and growing up 3-cycles corresponds to the tran-
sition between the box and interval theory. These geometric singularities as well as the
NS5-brane configurations serve as backgrounds, which are probed by a certain number



of D-branes.

In order to establish the duality between conifold singularities and brane boxes we had
to generalise the concept of brane boxes by also including brane diamonds. As a result
we can formulate rules for deriving the matter content of the gauge theories living on
boxes and diamonds generalising the rules of [5].

For certain geometries, blowups (deformations) allow both for a dual brane box as well
as for a dual interval description. It follows that the corresponding gauge theory on the
interval and on the brane box are mirror to each other. This observation is interesting
with respect to the nonperturbative description of these kind of N = 1 gauge theories:
namely for every supersymmetric 2-cycle which describes the dynamics of the interval
theory embedded in M-theory, there should exist a mirror supersymmetric 3-cycle for
the brane box theory also embedded in M-theory.

In chapter 3 [6] we begin a slightly more formal investigation of the M5-brane. This was
inspired by the arguments of chapter 2 which point out an equivalence in the description
of gauge theories by supersymmetric 2-cycles and 3-cycles respectively. We will push
forward this idea by collecting facts from concrete computations, which provide evi-
dence in this respect. The basis of this investigation is the intrinsic formulation of the
M5-brane worldvolume theory, developed in [7]. The main new result of this chapter
will be the derivation of the differential equations ruling the structure of M5-branes in
the presence of the self dual three form field H, living on the brane. In the case of the
modified supersymmetric 2-cycle a rather explicit identification of the three form field H
with the parameters of complex structures on R* is possible. For the case of supersym-
metric 3-cycles, the closure of H will become a deformed Laplace equation which should
admit quite nontrivial solutions.

This results are closely connected to the results of [8]. There it was shown that the
calibration bound can be cast into a form which estimates the energy of the M5-brane
but the geometrical picture remained obscure.

In chapter 4 [9] we resume the discussion of brane boxes. The heuristic material col-
lected from the previous chapters states that the information contained in 3-cycles can
be partially extracted from 2-cycles. Thus we study the case of brane boxes, which can
be obtained by sewing together usual N = 2 setups of D4 and NS5-branes [10]. These
systems satisfy the condition of uniform bending [11] and the lift to a supersymmetric
3-cycle can be performed explicitly. The 3-cycles do have a rather special structure and
can be constructed out of the 2-cycles describing the N = 2 subsystems. We show that
the so obtained 3-cycle contains the information about the S-function by extracting the
coefficient by from the cycle.



The discussion of D3-branes at singularities in chapter 2 is closely related to the by
now famous AdS/CFT correspondence [12]. It provide us with a dual description of the
N =4 SYM on the worldvolume of D3-branes in terms of IIB supergravity on AdSs x S°.
To study extensions of this correspondence one is led to discuss the gauge theories of
branes at orbifold singularities. For six-dimensional orbifold singularities O = R® /T, with
' a discrete group, this was discussed in [13, 14] with S5 replaced by S°/T. The corre-
sponding orbifold gauge theory can be calculated, again using the methods of [3]. The
conifold singularities were later obtained in [15], where for the simplest conifold instead
of S5 there appears the homogeneous Einstein space T1:!. Further types of conifold sin-
gularities were recently discussed in [16].

In chapter 5 [17] new superconformal N = 1 gauge theories will be constructed which
arise as certain deformations of N =4 SYM and have a dual description as supergravity
on AdSs x M®, with M® a five-dimensional Einstein space. There we will argue that
after giving a mass to one of the chiral multiplets of N =4 SYM, the effective theory of
massless fields is dual to an AdSs x M® like solution found in [18]. There a description
of the dual gauge theory was still missing.

Finally I want to express my sincere thanks to Dr. Andreas Karch and Prof. Dr. Dieter
Liist, whose kind support and collaboration made this work possible. Furthermore I
want to thank Mina Aganagic for pleasant collaboration. Last but not least I would like
to thank Volker Braun, Dr. Ilka Brunner, Boris Kors, Axel Krause, René Reinbacher,
Dr. Douglas J. Smith as well as the members of the group “Quantum field theory” at
Humboldt University for valuable discussions.



Chapter 1

Preliminaries

1.1 M-Theory

As a starting point for the organisation of the material necessary in the upcoming sections
we choose the 11d supergravity (M-theory) of [1], which is given by the Lagrangian
1 1 -
L = 1 eR — 3 ey, T*"P Dy, — GLvpe GHP7
1
g2
1
4-1442

1
4-48°
P DB, + 124°TP10) Gopys (1.1)

+ Gal"'a461"'B4HVpGa1...a4G51...B4Cuup + (4_Fermi terms)

with flat 11d gamma matrices I'* and vielbein e®, defined with respect to the flat 11d
metric g = (-1,1,...,1) and k4, = 1. The corresponding action is invariant with
respect to N = 1 supertransformations acting by

5Qe,ﬂ = EF“%
6QCIWP = -3 éF[;wwp] (12)
1
0oy = Due+ 288 (Faméu -8 I‘mééz‘) € Gopys + (3-Fermi terms)

on the space of fields. Here G,,,, = 40[,C, 0 is the field strength of the 3-form potential
Cuvp and the covariant derivative is defined with respect to the spin connection w,®:

1
Dy = 9 + Zwﬂ“brab. (1.3)



In practice one investigates pure bosonic solutions, i.e. setting the spinor fields to zero
(¢, = 0). Under this assumption the equations of motion are given by

1 1
Ru = (GWI,,,QSG,,O‘I'“‘” - @ g,w) (1.4)
0 = d*G+%G/\G (1.5)

with R,, = R%u50.

Finding solutions to the above action is an extensively studied problem. Setting the
3-form C' and the fermionic fields to zero one has just to solve the classical problem
of integrating the Einstein equations. In particular the flat 11-dimensional Minkowski
space is a solution, which will become important in section 1.1.1.

A deep insight into the structure of solutions is given through the SUSY-algebra. On
behalf of arguments from the theory of representations [19] one is able to deduce the
possible central terms which may appear on the left hand side of the anticommutator of
two supercharges @, and @z ending up with (C = TI?)

1 1
{Qa, Qs = (MClagPu + 5 (T ChapZu + 5 (T ChapZps s (16)

Thinking of the SUSY-algebra as realized on the space of fields by d; one can take
advantage of it for constructing solutions even in the case of vanishing spinor fields.
Bosonic solutions of the equations of motion which form a representation of the SUSY-
algebra at the same time must satisfy a further constraint (Killing equation),

0= doYy = |D, + K}s (TP, — 8TP96%) Gapys| € (1.7)
which strongly restricts the set of solutions. Since configurations of fields of this type
form short representations of the SUSY-algebra [20], they share a lot of special properties.
The shortening of representations is a well known effect which goes hand in hand with
the saturation of a bound estimating the energy through central charges. To be more
precise for a static solution which has a rest frame the SUSY-algebra allows to express
the energy density £ of the solution in terms of the central charges appearing on the
right hand side:

& = |z (1.8)

Solutions of this type are called extreme or BPS (Bogomolnyi-Prasad-Sommerfield).
The BPS solutions which carry the central 2 or 5-form charge are the M2-brane and
Mb5-brane, respectively. The corresponding supergravity solutions are constructed in
[21, 22].

The M2-brane couples electrically to the 3-form C whereas the Mb5-brane is the dual,



magnetically charged object. At this step the notions ‘electrically charged’ and ‘magnet-
ically charged’ do not have a real meaning and refer only to the fact that the M2-brane
couples directly to the form C while the M5-brane couples to C', which is locally defined
by dC = %dC and remind of the situation familiar from electrodynamics.

The M5-brane solution has the form

ds* = H7'Y3(—dt®+da}+...+da}) + H?P(dal +...+dz?y)
Gal...a4 = —Cé€qy...a5 aa,a H(:L'G;-'- 71'10)7 c = il; AH =0 (19)

and it is convenient to consider the fundamental M5-brane solution as corresponding to
the choice H = 1+ 5.

An important characteristics of a solution is its tension. To be precise the tension T}, of an
asymptotically flat p-brane solution is the mass per unit volume defined as a generalised
ADM-energy [23] of the p-brane solution in question. In practice this computation can
be performed by splitting the spacelike part of the metric g;; = d;; + h;; into a flat
background part é;; and a field h;;. Then one computes in the flat background the
asymptotically defined energy

T, = /( 0" hinp — Om b)) deQS4 = 8n’a
S4
For a extreme solution it is equal to the charge Q, T, = |Q|, with @ the G-flux trough

the S*. From what was said before about the SUSY-algebra one can compute the con-
dition a preserved supersymmetry must satisfy. Since the M5-brane is aligned along the

(012345)-directions one obtains in a rest frame P, = (=&,0...0) an eigenvalue equation,
{Qa,Qple = € (1-TU4) ¢ L o, (1.10)
whose eigenvectors coincide with the preserved supersymmetries.  The matrix

[ = 012345 fylfils
rz =1, trT = 0.

Thus the M5-brane preserves a half of the 32 supersymmetries in 11 dimensions. This
is a typical behaviour for all types of p-brane solutions.

1.1.1 Mb5-Brane

So far the M5-brane was introduced as a genuine SUGRA solution. From an alternative
point of view one could consider a M5-brane as a probe which detects the gravitational
field without taking any influence on it. But doubtless this is an idealisation, too. Since
the M5-branes carry charge they act as sources for the 4-form field strength and their



presence modify the gravitational field. An obvious question is for the dynamics of the
branes induced by this back reaction. There are two complementary approaches dealing
with this problem. The worldvolume action approach of [24] and the covariant field
equation approach of [7]. It seems to us that for the purpose of application the latter
approach is more suitable. Since it is essential for the arguments in the chapters 3 and
4 we want to explain the idea behind it, now. An excellent recent review is [25].

We will have to distinguish the components of a worldvolume form written in a spacetime
frame (the indices are lower Latin letters from the middle of the alphabet m,n,...) and
in a tangent frame (indices are lower Latin letters from the top of the alphabet a,b,...).
In case of conflicting notation we will note explicitly the frame we are working with.

In static gauge the embedding of the Mb-brane into flat 11d spacetime is realized by a
map f, which describes the dependence of the transverse coordinates X™, n' =1, ..., 5
on the brane coordinates ¢,, m = 0, ..., 5. n' labels only the transverse coordinates.
Furthermore there lives a two-form field B,,, on the six-dimensional worldvolume of
the Mb-brane with field strength H = dB. A nonlinear self duality constraint is real-
ized on the field H, so that the anti self dual part can be computed from the self dual one:

1
Habc = a (habc + 2 (kh)abc)- (].].1)
Here k! and Q are defined by k} = hocqh®? and Q =1 — 2trk®. The 3-form hgy. is self

dual in the usual sense. The equations of motion of the M5-brane are obtained from the
superembedding approach [7]:

G™V, V., X" = 0
GV Hppy = 0

d b

The effective metric is given by G™" = e.™n*m,%m4’e,™, which exhibits in a complicated
way the Hg. dependency through m,b® = §,% — 2 heeqh®?. If one sets the 3-form Hy,p. to
zero G™" becomes identical to the usual metric ¢™” and the equations of motion reduce
themself to the harmonic embedding condition or said differently the M5-brane becomes
minimal embedded into spacetime. This is a very geometrical description which will at-
tract much more attention after discussing the lessons learned from the BPS properties
of the M5-brane.

As it was further shown in [7], in the transformation law of the residual spacetime su-
persymmetry a projector r appears,

1 ~ 1 ~
0 = (1—F)6, I = —aCul"'aGFal...aﬁ + ghala2a3ra1azasa



with T, six-dimensional tangent frame gamma matrices of the M5-brane worldvolume.
From this formula one can find supersymmetry preserving solutions by requiring 6@ = 0.
Since the M5-brane breaks the SO(1,10) Lorentz invariance to a residual SO(1,5) x SO(5)
subgroup, the formulas can be written in a well adapted form. In particular the 11d
gamma matrices ', can be constructed out of Spin(1,5) and Spin(5) gamma matrices by
a general property of Clifford algebras. For the case at hand (appendix A) we obtain:

CUR™ o R®) —» CURY®)® CLUR®) (1.12)
jwvew) = vl1+I;Qw.

I'; is the chirality operator of the algebra C/(R"®). Then the explicit coordinate expres-
sion of the last formula for a flat 11d SUGRA background as derived in [26] reads:

I j -1 ai '/ a j 1 ch ch ch ajaza j
00p" = ¢ {aaX (7)ap (Yer)i” — 3701 X Bay X2 0a X (772 )ap (Yey eper )i”

2det e

]_ ’ 7 1 1 ] .
+53a1XC1 6a2X82aa3XC3aa4XC4aa5X65 (,ya1a2a3a4a5)aﬂ (’Yc’lc’2cgcilcg)ij} (1_13)
1 .- ! ’ .1 )
_560” {_hm1m2m3 6m2XC26m3X03 ('Ym1)a6 ('Yc’gc’s)ij _ 5hm1m2m3 ('Ym1m2m3 )aﬁézj} X

Here 4% are the chiral Spin(1,5) tangent space gamma matrices on the M5-brane and
7't the Spin(5) tangent space gamma matrices of the transverse space. The components
Rmamems Of the self dual 3-form refer to the spacetime frame. Without further special-
isations the only solution is given by a flat M5-brane preserving one half of spacetime
supersymmetry. On the other hand if there are some nontrivial identities of products of
gamma matrices applied to the spinor € one obtains differential equations which deter-
mine more general supersymmetric M5-brane solutions. The amount of supersymmetry
preserved by such a solution is determined by the number of relations imposed on the
11d gamma algebra.

1.1.2 Dimensional Reduction to Type ITA SUGRA

By dimensional reduction [27] of the 11d SUGRA ( eq. (1.1) ) down to 10 dimensions one
obtains the Lagrangian of type ITA supergravity. As usual this process will be performed
by compactifying the 11th coordinate on a circle of Radius Ry;. The Kaluza-Klein metric
to end up in the 10-dimensional string frame reads

., g, + 62¢A(1) A,(,l) e2¢A(1)
9 = e s¢< " 62¢A9§ Py (1.14)

The gio1) component describes the metric in the internal circle. Therefore the physical

radius should be R;; = e3® R with R the length in the identification z19 = z10 + 27R.



But ¢ is a dynamical field, the dilaton. To get a meaningful constant one inserts the
expectation value ¢ of ¢. The inverse of R sets the Planck mass m, = R~!. From these
formulas one can express the physical radius in terms of the Planck mass and e, the
latter of which is precisely the string coupling g,, ending up with

Ry = m;lgf/?’. (1.15)

For the case at hand the decomposition of the 11 dimensional fields generates the fol-
lowing spectrum in 10 dimensions,

Juw — Gu D AS) ® ¢,

CIWP — Aft?;/)p © Bl(f,,),

and using the basic Kaluza-Klein formula R,, = R, — [|[F?||?/4 valid for ¢ = 0 as well
as the behaviour of the Ricci scalar with respect to rescaling of the metric g,, = e Guvs

Ra = € 2[Ry —2(d—1)Ac — (d—1)(d—2)d,00"0 ], (1.17)
one obtains the action of ITA SUGRA in ten dimensions:
1 1 1
1A _ 10 /— —2¢ 4 oA H2 _ - F(2)2
Si TN /dm V=g [e (R+ VbV o — o ) 1
1 2 1
L (pw L 40 _/ @) A F® A BO -
2.4!( + A /\H) + i FOYANFOAB (1.18)

+ further terms containing fermions.

The 10 dimensional Newtonian coupling constant is given by the 11 dimensional one
(k11 = 1) by k2, = k?,/(m R) and if one anticipates a formula following from the first
identification of tensions in Tab. 1.1 the radius of the compactification can be written
as

Ry = Is. (1.19)

s

Since the parameter g; controls the string perturbation theory it is justifiable to state
that 11d SUGRA describes the strong coupling limit of type ITA string theory.

For practical computations the action should be written in the Einstein frame
g, = ef g, (1.20)

Brane solutions do have only one of the gauge fields turned on. Then the generic form
of the action is

1
S = g [Vl
Kio

with a, = (5—n)/2 for Ramond-Ramond fields and a = —1 for the Neveu-Schwarz field.

1 1
— _ an @ ;2
R — 50.60" En:me F? (1.21)
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1.1.3 Dimensional Reduction of the M5-Brane

What happens with the solitonic objects of 11d SUGRA introduced at the beginning in
the process of dimensional reduction 7 A good deal of information can be deduced from
the reduction of the 11d-superalgebra, which decomposes into

1
{QaaQﬂ} = (I‘“C)QBPH + (ch)aﬂplﬂ + (F“ch)aﬂzﬁblﬂ + E(I‘“”C)aﬁZ‘w
1 1
+ E(prarmc)aﬂzwpam + a(rmmusc)aﬁzmmus- (1.22)

Obviously the number of solitonic objects which carry central charges increases consid-
erably. Each term in the list can be identified from the point of view of 11d SUGRA [19].
What are the possible descendants of the solitonic M5-brane solution discussed before ?
Since the Mb5-brane is magnetically charged with respect to the 3-form C of the 11d
SUGRA, which in terms of ITA fields reads

C = A® 4+ B® Adzt (1.23)

it is very simple to deduce from the two diagrams below

F@W =y F6) A gyl H® Adz! = HO
1 ! T A
AB®) ABG) A dgtt B®@) A dglt B®

that after dimensional reduction the Mb5-brane wrapped around the circle gives raise
to a (D)4-brane magnetically charged with respect to the Ramond-Ramond field A®)
whereas an unwrapped M5-brane produces an (NS)5-brane magnetically charged under
the NS-NS 2-form B(?) (NS=Neveu-Schwarz). The reason for the different names of the
p-forms appearing here is due to their origin from different sectors in string theory.
The explicit form of the D4-brane and NS5-brane solutions in the string frame can be
computed most easily from the M5-brane solution ( eq. (1.9) ) simply by performing the
dimensional reduction ( eq. (1.14) ) one time along a direction longitudinal and the other
time transversal to the Mb5-brane combined with an appropriate Weyl rescaling to end
up in the correct frame. For transversal reductions one has to handle a little subtlety
concerning the dependencies of H of the coordinate which will be reduced but then by
straightforward application of the procedure described before one obtains in the string
frame:

D4: ds® = H7'/? (—dt? +da? +...+da}) + HY/? (de?+...+dz}) (1.24)

e?? = H*%, AH(zs,...,29) = 0, H = 1+i

Foiasasas = —CE€ay..a5 Ous H(xs,... ,29)
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NS5: ds® = (—dt® +dzi+...+d2i) + H (dzg +...+dz}) (1.25)
62¢ = H, AH(:EG,---,.'I:Q) = 0’ H = 1+%,

Halaga:; = _Ceal...a‘; 6064H($67"' ng)

What’s about the corresponding p-brane tensions ? From the definition of tension as
mass per unit volume it must be proportional to the p+ 1 power of a fundamental mass
scale of the theory (mass ~ length™!'), i.e. T, ~ m?*'. The unique mass scale for
M-branes is given by the 11d Planck mass m,. The factors of R;; in the middle column
of Tab. 1.1 are inserted by dimensional reasons.

M M/S" 74
A Rumd  ~  m2 (string)
M2 : T2 ~ mf,
3
N my o~ 2= (D2-brane)
N RumfJ ~ Ty (D4 - brane)
M5 : T5 ~ mg
N mé  ~ T (NS-—brane)

Tab. 1.1: Tensions of ITA Branes

If one identifies the tension of a wrapped M2-brane with the tension of a fundamental
string and uses eq. (1.15) one finally obtains from Tab. 1.1:

6

5
m s

Ty ~ == Ty ~ 2.

9s 95
The tensions of the D4-brane and the NS5-brane exhibit a strong difference in their
dependence on the string coupling g,. This is a common feature to all D-branes. It is

m

crucial for the discussion of the dynamical behaviour of these branes compared to each
other. At weak string coupling the NS5-brane is much more heavier than a D-brane.

1.2 Dualities

1.2.1 T-Duality

Up to now we only considered M and ITA-branes. The third theory we announced in
the preface was IIB supergravity [28]. Looking only for brane solutions the action can
be written like the ITA action in eq. (1.21). The only difference is the degree of the
Ramond-Ramond field strengths, which in ITA are even while in IIB odd. In addition
the Ramond-Ramond five form is self dual. The NS5-brane of eq. (1.25) is also a solution



12

of IIB theory. As shown in Fig. 1.1 below the IIA and IIB theories are connected trough
a transformation, called T-duality [29, 30].

M

V

A 1B
T

Fig. 1.1: Dualities of effective Theories

Here by T-duality we mean a transformation on the level of supergravity solutions admit-
ting a killing vector (isometry). This parallels the usual T-duality in ITA and IIB string
theories [31]. T-duality in string theory is a perturbative duality and one can regard
the formulas below as valid on the lowest perturbative level, which are the supergravity
theories. For a SUGRA solution it is simply defined by the map:

Goi = Guo Boi Gij = Gij — Ggy (GioGoj + Big By;) Goo = Ggo
Boi = GotGoi  Bij = By + Gog (GioBoj + BioGo;) (1.26)

1
o = ¢ — §1HG00

Note that the 0-direction denotes the direction of the isometry not time. The metric G,
is written in the string frame. From the D4-brane solution of type ITA one can generate
a Db5-brane solution of IIB by straightforward application of the above rules:

D5 : ds? = H™/? (—dt* +dz} + ... +dz?) + H'/? (dzg + ... + daj)
2 = H™',  AH(ze,...,z0) = 0, H = 1+%, (1.27)

Fa1a2a3 = _06(11(12(138(13 H(xﬁa“‘ng)‘

The structure of the Ramond-Ramond 3-form F,, 4,4, is fixed by supersymmetry.

1.2.2 S-Duality

The full equation of motion of IIB supergravity are invariant under the combined trans-
formations of the fields with respect to

g = (‘c’ Z) € SL(2,R).
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This duality is called S-duality [32, 33] and the action on the fields looks like

gﬁll — gﬁ,, Fy; — Fj
= A e~ 9 ar + b Fy a b\ ([ F;
T = A% + je — o + d Hs = e d H,

Here A is the axion. Unlike T-duality which interchanges ITA and IIB solutions,
S-duality stay inside the class of IIB solutions. An important consequence of S-duality
is that it relates the NS5-brane to the D5-brane by the transformation g = (e;;), while
inverting the string coupling at the same time.

1.2.3 Intersecting BPS-Solutions

All the fundamental brane solutions described so far can be used to build more compli-
cated metrics by what is known as intersecting branes. Furthermore exploiting the two
duality transformations discussed before on such configurations one can generate many
more interesting solutions, which sometimes could be reinterpreted in terms of branes
at singularities.

The basic example is already known for some time [34, 35]. There it was argued that
the geometric orbifold and conifold singularities are T-dual to a certain number of
NS5-branes. This T-duality will be used to transform D3-branes probing the singu-
larity (cf. section 1.3.1) into a pure brane configuration of intersecting NS5-branes and
D-branes of the Hanany-Witten type [5, 36]. It is this fact that we will systematically
explore in chapter 2. For convenience we will review the basic example of D4-branes
between k& NS5-branes which is dual to D3-branes at the Z,-singularity [37]. It proves
useful to start from the configuration in IIB below

D5(0 1 2 3 4 5
D3(0 1 2 6

Tab. 1.2: Intersecting configuration

for which the intersecting brane solution can be written down. There is a general rule
to obtain the metric of a system of N intersecting Dp-branes not necessarily of the same
dimension p. Determine the number m; of Dp-branes which have n; common directions,
with n; a decreasing sequence. The metric is given by,

ds® = (Hy...HN)"? [(Hy...Hpy)7tdsdy g + (Hie o Hipy) 7082 1 iy + -+ ds% ],

where ds% covers all the coordinates, which do not have a common directions with the
branes involved.
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Then for the configuration of Tab. 1.2 one can determine the metric and the behaviour
under a whole sequence of dualities:

ds® = (HsHs) /?ds3y, + (Hs/Hs)'/?dsiy; + (Hs/Hs)"/*ds} + (HsHs)'/?ds?g

4 S-duality
D3-brane between NS5-branes
4 T3-duality
D4-brane between NS5-branes
4 Tg-duality

ds? = Hy'dshpy + Hy'* [dsty + Hy'(dws +@-dirsg)? + Hdsly, |

Here rot& = grad Hs with Hs the multi centre harmonic function

The solution has the form of a D3-brane solution, whose transversal space contains a
Taub-NUT space in the 6789-directions. Near the brane one can neglect € and the Taub-
NUT metric becomes the metric of the resolution of an Aj_;-singularity. The singular
space can be obtained back by putting all NS5-branes at the same position Z.

In the same reference [37] it was shown, that the skeleton of £ NS5-branes in 012345
and [ NS5-branes in 012367 are dual to a geometric singularity of type C?/Zj, x Z; (this
becomes important for the brane boxes of chapter 2). In [38] it was shown that the
SUGRA solution of D4-branes between orthogonal NS5-branes can be mapped into a
SUGRA solution of D3-branes at the conifold singularity ( this will be useful for the
interval theory of chapter 2). The steps to establish this correspondence are very similar
to that of the example described above. Further examples of dualities between geometries
and brane configurations including orbifolded conifolds and generalised conifolds can be
found in the literature [39, 16, 40].

1.3 Dynamics of D-Branes

After having discussed the classical brane solutions to some extend we want briefly
mention the origin of the field theory living on D-branes. This field theory is the essential
ingredient for the realization of gauge theories inside string theory. As one can see from
the explicit solutions, e.g. eq. (1.24), D-branes are charged with respect to the Ramond-
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Ramond fields. The same observation was made for spacetime defects on which open

strings can end [41], which therefore becomes identified. The massless excitations of

open strings, which couple to the Dp-brane, describe the low energy dynamics of the

N,)’,/’:

= (op)

Fig. 1.2: Open string

Fig. 1.3: n D-branes

D-brane. The open string wave function satisfy
the equation (87 — 82 )X* = 0. The endpoints are
restricted to lie on the hypersurface depicted in
Fig. 1.2. This can be implemented by imposing
Dirichlet or Neumann boundary conditions on the
two endpoints as shown in Fig. 1.2. For each di-
rection the two endpoints fulfil the same bound-
ary condition (DD or NN). The solution of the
wave equation can be written as a Fourier ex-
pansion, with free coefficients a!,,. The quantised
system does have excited states of mass (energy)

m? ~ (iz-zv,—1)
=1

with N; the number of particles excited in the
I-th mode and a/'" := a”, the creation operators.
The massless states are the states with only one
creation operator acting on the vacuum:

ki >  p=0..p long. dir.

alt |k, ii > n=p+1...9 transv. dir.

Since the first set of states are due to NN-directions
they do not transfer a momentum to the brane.
The states are confined to the brane and produce
the degrees of freedom of a U(1)-gauge field A4,.
The second set of states do have a momentum
transfer and can be interpreted as scalar fields
parametrising the position of the D-brane in the
transverse directions. A slight generalisation is
possible if one considers n parallel branes as in

Fig. 1.3. There are open strings stretching from one brane to the other. Their mass is

proportional to the distance:

~ |z -y,

If two or more D-branes are on top of each other there are additional massless gauge

fields, which lead to enhanced gauge symmetry. For n coincident D-branes the gauge
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group becomes enhanced from U(1)® — U(n).
This intuitive rules can be made more precise by the usual o-model approach to string
theory. If one considers the o-model action below with boundary conditions as in Fig. 1.2,

S, = _% / d%¢ (\/E hP 3y X 35X Gy + €20, X 33XV By, — 2na’Vh R @) , (1.28)

one can derived the consistency conditions of the system in Fig. 1.2, required for confor-
mal invariance. As was shown in [42, 43] these consistency conditions imply equations
of motion of the Born-Infeld action of nonlinear electrodynamics

S, = -T, /dP“geﬂf’ \/det(g,,, + B, + 21 F,), (1.29)

which therefore is taken as the effective low energy description of the D-brane. In the
non abelian situation a slight simplification is possible, if one considers flat spacetime
and only weak nonlinearities. Then the effective action of a Dp-brane can be well
approximated by the dimensional reduction of 10-dimensional, N=1, supersymmetric
U(n)-Yang-Mills theory (SYM) [44].

1.3.1 Gauge Theories from D3-Branes

A primary role in applications is played by the D3-brane. Here the dimension of the
worldvolume is four, which matches with the number of dimensions visible to us. The
IIB-SUGRA solution is simply given by [45]
D3: ds® = H7'/? (=dt* +da? +...dad) + HY? (dzj +... +dz3)
e = g, AH(za,...,x9) = 0, H = 1+ 7% (1.30)

OH!
Foi03, = 5 and Fy, g, = \/__gF01237'.

The field theory of n parallel D3-branes is N = 4 supersymmetric U(n) gauge theory
with the action below:

3
ﬁN:4 = /d20d20_ lz@ie2gv (I)l
i=1

2 ..
—}—gg [/d20 Gl]k(I)i [q)],‘ik] =+ hc]

+ L om [/d26 TWaWa] (1.31)
8w

In N = 4 there is only the vector multiplet from which one can build the action. In
terms of N =1 superfields it contains an N = 1 vector multiplet and three chiral multi-
plets in the adjoint representation of the gauge group. The complex scalars of the chiral
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multiplets can be seen as the position coordinates of the D3-branes in the transverse
directions. Furthermore the R-symmetry can be connected to the group of isometries of
the transverse space.

To obtain gauge theories with lower amount of supersymmetry one uses a special orb-
ifolding technique [3, 46]. One considers the action of a discrete group I' on the transverse
space, which defines the orbifold © = C3*/I. Generically this will break all of the su-
persymmetries by breaking the whole R-symmetry. If one chooses a proper embedding
of T into SU(4) one could preserve a residual R-symmetry of lower supersymmetry. The
corresponding choices are listed in Tab. 1.3:

I' ¢ residual R-symmetry N

1 SU(4) 4
SU(2) SU(2) x U(1) 2
SU(3) U(1) 1
SU(4) 1 0

Tab. 1.3 : Broken R-Symmetries

As can be seen from the above list to preserve a certain fraction of SUSY the orbifold
group I' must be embedded into an SU subgroup of SU(4). One obtains N = 1 super-
symmetric theories if one takes the generators of I" inside SU(3). An explicit choice is
given in appendix B, where the embedding into SU(3) is manifest. This will lead to an
Zy, x Z; orbifold O;. From Tab. B.1 one can read off the action of I' on the coordinates.
The orbifold action on the branes can be visualised by taking k-l copies of the original
brane configuration. Then the group acts as a shift operation on the set of copies. If
one starts with n branes one may label each brane in the set of copies by a Chan-Paton
index ¢ = 1...k-I'n. The action of the generator g of Z; on the set of all copies can be
represented by the matrix

7(9) = dla‘g( ll-nag ]ll-na D) gkil 1l-n )7
while the generator h of Z; acts like
y(h) = diag(1,,h1,,... A7 1, ...... , 1, k1, .. A,

1,, is the unit matrix in m dimensions. On fields carrying Chan-Paton labels, T acts like

Aij — ’Y(a)zm Amn ’Y(a);gl

The gauge theory at the orbifold point contains all the fields of the covering space
invariant under the group I'. The invariant gauge fields must commute with the v(g)
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and ~(h) action. So only the entries of the right matrix survive:

Ay ... : Apxn 00
: : - o . 0
Akln,kln 0 0 Anxn

This leads to the gauge group** SU(n)*. On the chiral matter fields ®}; in the adjoint
representation there is a similar effect. But now one has to take the additional contribu-
tion from the action of I' on the vector index into account. The concrete computation is
a little bit lengthy but we will include it for being self contained. To keep the formulas
short we will suppress the vector index sometimes. To prepare the chain of arguments
we would like to decompose the matrix containing all the chiral matter fields into blocks
on which the Chan-Paton matrices act.

X1711 Xl,k’ X1,1’ Xl,l’

® = 3 Xiji : Xig = ; Xijj

Xk71/ Xk,k:’ Xl711 Xl,l’

The crucial point to note is that v(g) acts only on the blocks X but not inside X. Similar
v(h) acts only inside X (on the X) but not on the blocks X. Therefore one can compute
the invariant state by iterating the two orbifold projections. First look at the action of
h on X. One obtains:

Xl’ll h_le’zl h_(l_l)Xl,l/
hXs 1 :
MO SR %,
hlil)?hll Xl,l’

This has to be combined with the action of T on the vector index. From Tab. B.1 one
can read off that Z; acts on the coordinates Z* of C® like

VA A (al,az,ag) = (—1,1,0)

*1One might wonder about the actual gauge group we are dealing with, which is not U(n)* as one might expect.
In the standard brane setup the U(1) factors are frozen out by quantum effects for d > 4 dimensions. The reason
is that the U(1) corresponds to the centre of mass motion of the D-branes in the brane picture. Since for d > 4
there is a logarithmic (or worser) bending of branes this motion would change the asymptotic behaviour of the
branes and is frozen out [2].
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which multiplies X* by a certain power of h. As a result the invariant fields are indicated
below

0 X 0 X X
= I =

. X )

X 0 X 0 X

X' =

The same arguments apply to the determination of invariant states for the v(g)-action.
The only difference is that we change the scope of resolution and work on the X-matrices,
now. From the computation before we actually know how ~(g) acts. The only thing which
differs is the action of the group Z; on the coordinates Z#:

Z¢ — g* Z* ¢ (a1,a9,a3) = (—1,0,1).

Now we can simply put all pieces together, obtaining:

it

5
?

’ 0 X
000 0 )
1 0oo0 00 X
71 o0 0 o0 .
000 0 -
X 0
0 X
) 000 0
X 000 0
o = | N 000 0
= 000 0
X 0
0 X
000 0 i
000 0 X
000 0 N
000 0 -
X 0

It is simple to read off the surviving fields. The first class of fields stems from the chiral
®! and transforms in the representation (0,0) of

SU(ni,j) X SU(ni_l,j_l).

For obvious reasons concerning the index structure of the gauge groups involved they
are called diagonal fields D;;. The same steps can be repeated for the other two classes.
Omitting the details the other two chiral fields descends to the ‘horizontal’ chiral bi-
fundamentals H;; transforming in (0,0) of SU(n;,;) x SU(ni41,;) and the ‘vertical’ chiral
bifundamentals V;; in the representations (O,0) of SU(n; ;) x SU(n; jt1)-



The superpotential consists of the terms surviving the projection and is of the form:
W = ZH” Vie1,j Div1,j+1 — Z Vij Hijy1 Dig1,jy1-
ij ij
A more striking method to derive the above results, which is in fact applicable to a wider
class of models, was described in [14].



Chapter 2

Branes at Singularities

In this chapter we want to study the gauge theories living on D-branes, which probe the
singular limits of typical compactification manifolds, the famous Calabi-Yau spaces.
We start to consider n D3-branes probing a Calabi-Yau manifold M. At a smooth point
of M the tangent space is R® and the D3-brane will have N = 4 supersymmetry on
the world volume. As explained in section 1.3.1 more interesting models arise, if one
considers the action of a discrete group in the transversal directions or said differently
if one considers singular Calabi-Yau spaces. Since we are only concerned with the local
physics near the singularities, the manifolds can be taken to be non compact Calabi-Yau
spaces.

The singularities we want to consider comprise generalisations of the gauge theory of
D3-branes probing a conifold singularity, which was derived in [15]. Such hyperquotient
singularities can be obtained as orbifolds of the aforementioned conifold singularity C,
and so are of the form C/T", where T is a discrete symmetry group the conifold admits
[47]. The gauge theory of D3-branes on C/T is then defined by a similar quotient of the
theory on C as described in 1.3.1.

The effects of T-duality and mirror symmetry of type II string theory will be discussed.
The mirror transformation to the mirror geometry M will be understood precisely in
the spirit of [48], namely by performing three T-dualities around isometric directions of
the geometric singularity. All singularities we are interested in do have a toric descrip-
tion, so one can equivalently apply the local mirror map in the toric language [49, 50].
Nevertheless the first point of view will be more useful here, since it allows to follow the
action of mirror symmetry on the stage of the D-branes.

21
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2.1 Toric Description of Singularities

One is now in place to introduce toric geometry [51], as a tool for treating more com-
plicated singularities. A toric variety M is given by a fan in the N = Z%lattice. Every
generating element ¥; of the lattice determines one divisor D;. The set of divisors split
into the principal divisors generated by functions and excep-
tional ones. Functions can be seen as formal linear combina-
tions of elements in the lattice M, which is the dual lattice of
N. The principal divisors are the images of the map a.

d+n
a:M — @Z-Di
=1

d+n
mooe Yy <, > D

=1

Fig. 2.1: Toric data  Then one can talk about linear equivalence of divisors. This

is defined in the following way: Two divisors are equivalent,
iff their difference is a principal divisor. Equivalence classes of divisors are classified by
the divisor class group Agz—1(M):

d+n
0—M % @z D “8 A4_1(M) —0
i=1

This group contains the complete information about the grading of the divisors with
respect to the torus action. This very formal approach can be translated into the lan-
guage of linear sigma models [52, 53]. In this picture one constructs a linear sigma model
whose moduli space will be a non compact Calabi-Yau manifold M, which allows for a
toric description. Every vector #; corresponds to a matter multiplet in the sigma model
which is called z; [54]. Following physical conventions, we will denote these matter fields
by A; and B; later on. Since N is only d-dimensional, there are n relations between the
d + n vectors which we will write in the form

d+n

Y =0, a=1,...,n (2.1)
=1

They are given as the cokernel of a and define the images of each single divisor in-
side A4_1(M). The Q¢ defines a weight for the z; [55] which transform like z; — A9 z;,
a =1,..,n, where )\ takes values in the complexified gauge group. From the physical
point of view the Q¢ should be interpreted as the charges of the matter fields under the
n U(1)’s. Expressing the constraints of eq. (2.1) in terms of invariant polynomials one
finds the equations defining the toric variety ( the singularity ).
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From the sigma model perspective the same result can be obtained by requiring a
D-flatness conditions,
d+n

D Qe = re, a=1,...n (2.2)
i=1

from which M can be obtained as the space of solutions to (2.2), up to the identifications
imposed by gauge symmetry ( thus M denotes the manifold obtained by smoothing out
the singularity ). The number of independent Fayet-Iliopoulos parameters r, appearing
in eq. (2.2), or equivalently the number of U(1) factors, will equal the Hodge number
ht1(M), the blowup modes of the Kéhler structure. It is this number, and the charges
of the various matter multiplets that toric geometry encode.

For the visualisation of the N-lattice a slight simplification occurs when M is a (non-
compact) Calabi-Yau manifold. The Calabi-Yau condition states that the canonical class
is trivial, i.e. there should exist an element 77} of the M-lattice, so that

n n
K =+ Di = ) <ii,v;>-D;.
i=1 i=1
This leads to < mi,v; >= 1, which is nothing than the Hessian normal form. It states
that all vectors v; should lie in the plane perpendicular to 7 and with the distance one
to the origin. Since in all our examples the lattice N is 3-dimensional, toric singularities
can be described by planar diagrams, only.

2.1.1 Conifold

A simple isolated singularity a three dimensional Calabi-Yau manifold can develop is
the conifold. The toric diagram (fan) is generated
by the four vectors v; = (0,0,1), v« = (1,0,1),

-0 vs = (0,1,1) and v4 = (1,1,1) in C* and the single
relation can be set into an equation:

C: zy—uww=0 (2.3)

>0 <0 There are alternatives to smooth out the singu-
larity, resulting in topologically distinct spaces.
Small resolution replaces the singular point by a
CP!, thereby changing the Kihler structure. Different ones are related by a flop (see
Fig. 2.2). |r| is the size of the CP' and the sign denotes which one (cf. eq. (2.2)). The
resulting spaces have h'' =1, h2! = (. A second possibility is to resolve the singularity
by adding a constant e to the right hand side of eq. (2.3), which changes the complex
structure. After the deformation, "' =0, A2 = 1.

Fig. 2.2: Two small resolutions
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2.1.2 Orbifolds

The toric diagram of the orbifold Oy = C3/Zj x Z; can be obtained starting from a
toric diagram containing just three vectors @, = (0,0,1),7» = (1,0,1),953 = (0,1,1) in
an integral lattice N, which gives a toric variety homeomorphic to flat space C*, and
then refine the lattice to N, as in Fig. 2.3 by including the vectors &, = (U3 — @1)/k
and & = (¥, —¥1)/l. The map from the toric variety in N to the one living in N is

one to one provided one includes discrete identifica-

Y tions on the three matter fields A;,i =1,2,3,

_2mi 27
A1N€ lAl, AzNel Az, A3NA3,

and

A]_Ne_Q;c”‘Al, AQNAQ, A3N62’7°riA3.
(.0
The number of Kéahler structure deformations is just

Fig. 2.3: Toric diagram of O. the number of independent points in the toric diagram,
and this number will clearly depend on whether (k,1) are coprime or not, since the number
of points on the diagonal is ged(k,!) + 1. The complex structure deformations can be
obtained from the deformation of the equations derived in appendix B.

2.1.3 Hyperquotient Singularities

Taking a quotient by a discrete group action of a hypersurface singularity like C one
obtains what are called hyperquotient singularities. Both can be treated easily in the
language of toric geometry. One is up to producing orbifolds of the conifold, C/T'. Let us
take I' = Zj, x Z;. So, start with the conifold C (Fig. 2.2), but refine the cone spanned by

#1,...,0 by adding two vectors, & = (%,0,0), and

©01) _ .. . 0L & = (0,1,0). The resulting toric diagram (cf. Fig. 2.4)
e e e e “looks” the same as that for the conifold C, except for
e e e e the fact that it lives in a finer lattice. This, as ex-
e e e e e e e plained above, results in the following identifications.
e e e e o o o . With &, = (#; — #1)/k and & = (03 — ¢1)/l one finds
e e e e e o e . that the group T" acts by
(0,1) . .
A ~ e * A, By ~e* By, Ay ~ Ay, By ~ Bs,
Fig. 2.4: Orbifolded conifold 2m 2mi

Al ~ e liAl, B1 ~ Bl, A2 ~ AQ, B2 ~ e ! BQ.

Ch,i-
. . . 2mi 2mi 2w
Equivalently on zy = uv, one identifiesz ~z,y ~y, u ~e * u, v~er v,andzx ~e I z,

y~e’ Ty, u~u, v~o. Interms of I invariant coordinates (for details see appendix B)
the orbifolded conifold Cy; is given by the equations:

Cri: o'y =24 w'v' =2k (2.4)
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In the following we usually neglect the primes on the coordinates.

Resolution by Blowing Up

Toric geometry has equipped us with a means of blowing up the singularity. First let us
look at the orbifolded conifold Cy;. There are still only four vectors defining the diagram
which were inherited from the conifold. There is a single relation between them, and
thus a single Kahler class but this is insufficient to smooth out Cy;. However, due to
the fact that the lattice is finer, there exist lattice points within the rectangle, these
are all the points @;; = (i,5,1), 0 < i <k, 0 < j < I. One can add these points to
the toric diagram. In the language of linear sigma models, the effect is to add more
matter fields, but also more U(1) factors, and thus more Fayet-Iliopoulos parameters.
Clearly, the resolved manifold will have h'1(Cy;) = (k + 1)(I + 1) — 3, which is the total
number of linear dependent vectors within the diagram. Thus starting from Cj;, with
k, I sufficiently large, by performing partial resolutions one obtains essentially any other
toric singularity**. Adding or subtracting one of the boundary points of the diagram
changes h''t — p11 —1.

Resolution by Deformation of the Equation

The orbifolded conifold C; can be deformed into a smooth space by modifying the
defining equation as:

k l

Ty = H(z—wi), w = H(z—w}) (2.5)

i=1 j=1
One of these parameters can be set to 1 by shifting z, so one is left with £ +1 -1
parameters. This gives h21(Cy) =k +1—1.

2.1.4 Generalised Conifold

By partial resolution of Cj := Ci;1, one can obtain the generalisation of a conifold, with
only k+1—1 Kahler structure deformations and defining

((1,0) o 0 o o o o (9'k) equation:
¢ e (ll) gkl: Yy = 'U,kUl (26)
Fig. 2.5: Generalised The defining equation of Gi; can be deformed into
conifold Gy,;. k.
i,j=0

*1These singularities have been introduced in the physics literature for the description of gauge theories in [56].
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This time we see h?!'(Gy) = (k+ 1)(I + 1) — 3 complex structure deformations m;;, since
one can eliminate two of the parameters by shifting u,v and another one by rescaling
the defining equation.

Clearly, in this notation G = C.

2.2 Local Mirror Symmetry & dual Geometries

Toric geometry is well adopted to discussing mirror symmetry as well. We will review
it here very briefly, only. Mirror symmetry exchanges the K&hler structure parame-
ters with the complex structure parameters. Now, to understand the mirror map, one
first needs to know something about the complex structure moduli space. How is the
complex structure encoded in the equation of the manifold? The answer is as follows:
the coefficients of the monomials appearing in the defining equation are coordinates on
the complex structure moduli space. What they parameterise are the “sizes” of vari-
ous three-cycles (i.e. the periods of the holomorphic three form) and the metric on the
moduli space. The periods, (and therefore the metric — the moduli space has special
geometry structure) can be derived directly as a solution to a system of differential equa-
tions (Picard-Fuchs equations). The main point is that the differential equations depend
solely on the relationships between the monomials in the defining equation and nothing
else. Given the toric manifold M (assuming a completely smooth space here, with all
the possible blowups performed), relations between the vectors in the toric diagram of
M
n+d

E Qiaﬁi = U, a:l,...n
i=1

map to relationships between the monomials in the defining equation of M, the mirror
of M, given by

./\;t : Zaimi = 0, (28)
i
where a; are coefficients, and m; monomials, the monomials must satisfy
n+d .
Hm?" =1, a=1,...n. (2.9)
i=1

Any solution to these equations (and in general there are more than one) will represent
the same complex structure. Note that there are n + d monomials with n relations
between them. Together with the hypersurface equation, this gives a d — 1 dimensional
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manifold, but the homogeneity of the monomial relations will allow us to remove one
more. The mirror will naively have d — 2 dimensions. This is not a problem, rather an
artifact of the fact that local mirror symmetry is encoding all the information about
the complex structure of the mirror, and nothing but. One can fix the “dimensionality”
of the local mirror by adding quadratic pieces, as this will not influence the complex
structure moduli space.

Let us briefly show how this works for the two examples we will be concerned within
this work*2, Cr; and Gy;. Consider first the blowup of Cy;. We want to interpret the same
diagram Fig. 2.4 as defining the complex structure of the mirror. Assigning the vector
(i,4,1) to a monomial uiv? clearly eq. (2.9) is satisfied for all the relations by construction.
The defining equation for the mirror of C; hence becomes according to eq. (2.8):

kil
Z mz-juivj =0
4,j=0
Note that m;; now refers to the coeflicients. After adding irrelevant quadratic pieces
and an obvious manipulation z'? +y'? = (z' +iy') (' —iy') =: zy the equation can be
written as

Ty = E mg;uv’

which is nothing but the deformation of Gy;. Having established that the blowup of
Cy; is mirror to the deformation of G, one can find another dual pair by following our
geometries through a conifold transition. One should find that the blowup of Gy, is the
mirror of the deformation of Cj;. Let us see how this works. As before mapping the
lattice points of Fig. 2.5 to monomials the equation of the mirror is:

k

!
H(z—wi) + tH(z—w;) = 0.

i=1
Because t appears only linearly this encodes the same complex structure as

k

1

Yy = H(z_wi)a uv = H(z—w}),
i=1 j=1

where we take the freedom to add quadratic pieces again. But this is indeed the defor-

mation of Cy; as presented in eq. (2.5). The quintessence of this discussion is that Cy,

and Gy; form a mirror pair.

*2These examples and many more along these lines have been recently analysed in great detail in [57].
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2.3 The Gauge Theories

Having introduced the geometric backgrounds we will now remind of the gauge theories,
living on the worldvolume of n D3-branes and probing the singular geometries. The
simplest type of singularities is the orbifold singularity O,. The gauge theory of which
was studied in 1.3.1. There one founds a

SU(n)* (2.10)

gauge theory with three types of chiral bifundamental multiplets H; j;;y1,5, Vi, j;i,j+1 and
D;t1,j415,; in each gauge group and a cubic superpotential

W = §:Hz',j;z'+1,jVz’+1,j;z'+1,j+1Dz’+1,j+1;z',j - E:Vi,j;z’,j+1Hz',j+1;z'+1,j+1Dz‘+1,j+1;z',j- (2.11)
irj i

In [15] the field theory of n D3-branes at the conifold singularity was derived. After an
orbifold projection the field theory of the orbifolded conifold Cy;, eq. (2.4), is given by
[16] the N =1 supersymmetric gauge theory with gauge group

SUn)* x SU(n)* (2.12)

and matter fields (A1)iy1,j41;1,0, (A2)i 1,7, (B1)1,7i+1, (B2)1,75i41,5, all in a bifundamen-
tal representations of the gauge groups as indicated by the indices. Here we are using a
highly redundant notation. First we distinguish the gauge groups by taking small Latin
letters for the first and big Latin letters for the second (i,] = 1...k and j,J = 1...1).
The fields are indexed by pairs. The first pair denotes a fundamental the second an
antifundamental representation of the appropriate group.

(AD)it1 ;0,0 (Oigr,j41,00,0)
(A2)ijir,g (i, Orng)
(B1)1,731,j+1 (Dij+1, Org)
(B2)1,73i+1,j (Oit1,5» Org)

In addition there will be a quartic superpotential

w = Z(Al)i+1,j+1;I,J(Bl)I,J;z',j+1(A2)z',j+1;I,J+1(B2)I,J+1;z'+1,j+1
,J
= (A)is1j10,0 (B 1zt (A2)ign jira,a (B) 141, g1 41 - (2.13)
i,J
The field theory of the third singularity, the generalised conifold eq. (2.6), does have
gauge group SU(n)** with bifundamental matter according to the rules in [16] and
quartic superpotential.
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This way the orbifold gauge theories will have 3n matter fields per gauge group and
cubic superpotentials, leaving us with a finite theory. The conifold gauge theories have
2n matter fields per gauge group and quartic superpotentials. These theories are non-
finite but flow to a fixed line parameterised by a marginal operator in the IR. They give
rise to conformal field theories and have a dual AdS description. Related topics will be
discussed in chapter 5.

2.4 The associated Brane Picture

In this section we would like to discuss the brane configurations which are T-dual to
the singularities introduced in section 2.1. There are two configurations we are going to
consider, for one the standard Hanany-Witten type of brane setup [36, 58], where D4-
branes (living in 01236) are stretched in between NS5 and NS5-branes, former living
along 012345 and latter along 012389.

NS5 |0 1 2 3 4 5
NS5 [0 1 2 3 8 9 D4
D4 |0 1 2 3 6 NS

Tab. 2.1: Interval

The rotation is necessary in order to break SUSY down from 8 to 4 supercharges. In
order to have a supersymmetric theory from D4-branes on the interval all the NS5 and
NS5’-branes have to be at the same position in the 7 direction. Separations along the
7 direction would be interpreted as Fayet-Iliopoulos terms or baryonic branches in the
gauge theory and effectively leads to a breaking of the gauge group we want to see.
Similarly we should require all the NS5-branes to have the same position in 89 and all
the NS5’-branes to have the same position in 45 space. They are separated along the 6
direction building the intervals, along which the D4-branes stretch. Now let us take the
interval to be compact. The corresponding Tg-duality was first discussed in [16, 38] and
is very similar to the case explained in section 1.2.3. The effect of the transformation
is to convert the blowup of the generalised conifold G, into & NS5 and [ NS5-branes
separated along zg (the interval). By this T-duality D3-brane probes are transformed
into D4-branes stretched between the NS5/NS5’-branes. We will henceforth refer to it
as Tg =: Tt for interval.

The second kind of brane setup we are going to consider are the so called brane boxes
[6], which are a straightforward generalisation of the interval theories. The brane box
is a rectangle bounded by NS5 and NS5’ branes with a D5-brane suspended on it. This
can be achieved by the same NS5 and NS5’-branes as above but now all branes have to
be located at the same 67 position, closing the intervals.
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NS5 |0 1 2 3 4 5 NS
NS5 |0 1 2 3 8 9 D5
D5 |0 1 2 3 4 8 -

NS NS

Tab. 2.2: The Box
We can open up the boxes by separating the NS5 and NS5’-branes along their 48 di-
rections*s. We still want to keep the 5 and 9 positions equal in order to preserve su-
persymmetry of the suspended probes. Deformations along these directions are again
Fayet-Iliopoulos terms in the gauge theory, which are reinterpreted as baryonic branches
after freezing out the diagonal U(1)s. The corresponding T-duality was introduced in [35]
and can be performed along the compact directions z* and z8, ( Tys = TyTs ). It trans-
forms the blowup of the orbifolded conifold Ci; into a box of & NS5 and I NS5’-branes
again. But now the D3-probes will become D5-branes, which fill the compact z* — 28
directions of the brane box. We will henceforth refer to it as Tz for boz (cf. section 1.2.3).

Combining the two, that is doing Tmirror = T46s We actually performed the local mirror
symmetry transformation of section 2.2. Let us forget for a moment about the D-brane
probes altogether. That is, we want to study the map of the singular geometry into
a configuration of NS5/NS5’-branes. Actually it turns out to be easier to start with
the NS5/NS5-brane configurations, where it is clear what is meant by the 4, 6 and 8

direction. Performing Tg = Tys and Ty = T

}Lx respectively we found in section 2.2 two ge-

ometries, which are local mirrors of each

A .
D3 / 1 k% wappedonz,  other. Therefore one obtains

N s . .
W = blowup(gen. conif.) "% def(orbifolded conif.) =W e The blowup of the generalised conifold
A o — & is Tr dual to NS5/NS5-branes separated
M = def(gen. conif.) 2 blowup(orbifolded conif.) = M along 67 (the interval). These are in turn
8

. S Tp dual to the mirror, the deformation of
oo W’*’p”“‘f’”&\ 3 / D3 the orbifolded conifold.

e Similarly the blowup of the orbifolded
conifold will T dualise into a box and then

D5

Ty dualise in the mirror, the deformation of

Fig. 2.6: The proposed picture. the generalised conifold.

*3This differs from the notation in [5], where the boxes were taken to live in the 46 space. This deviation
is nevertheless necessary, since it is crucial, that box and interval can be realized by the same set of NS5 and
NS5’-branes.
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Indeed these two transformations are related by a conifold transition, that is bringing to-
gether the NS5/NS5’-branes on the interval and then separating them along 4589 instead
corresponds to blowing down the 2-cycles and opening up the 3-cycles of the deformed
conifold (and vice versa for the orbifolded conifold).

2.4.1 The Brane Box and its both T-dual Geometries

As yet discussed in section 2.2, it is important to distinguish whether one studies the
deformation or the blowup of the singularity under investigation. The corresponding
parameters can be found in the brane picture as well. If the dual is ‘pure brane’,
i.e. consists only of branes in flat space, this interpretation will be solely in terms of
NS5/NS5’-brane positions and, as will be established later, on brane shapes. Otherwise
some of the parameters encode blowups of the non-trivial background geometry. Here
we want to consider only the case, where the dual is a ‘pure brane’.

In general m; = («%,24°), m} = (2*,2°) denote the positions of the ¥ NS5 and I NS5’
branes respectively in z%%%% and w; = (2%,27), w} = (2%, 27) the positions in the other
two directions.

If one considers the “brane box”, one has to choose all the w; and wj equal to zero.

e Ty : The Tg-dual space M is the orbifolded conifold Cx; of eq. (2.4), where k, | are
numbers of NS5 and NS5-branes. The z*, z® separations of the branes must map into
B-fluxes through 2-cycles of Cr;. We must therefore identify the m;, m/ from above
with deformations of the Kihler structure. Deformations of the Kahler structure do not
influence the complex structure, so the m; and m/ will not be visible in the defining
equations. Having identified m;, m/ as the Kéhler structure parameters, w; and wj are
identified as complex structure parameters. But they are frozen, since turning them on
would destroy the box structure.

For definiteness take IIB theory compactified on Cy;. Tg duality takes us back to type
IIB with NS5-branes. In this case Kahler structure parameters, that is the 2-sphere
sizes, sit in hypermultiplets, which contains four real scalars. The other scalars in this
multiplet are the NS-NS B-flux the R-R B-flux and the R-R 4-form-flux through the
sphere. Latter is a 2-form in 4d, which can be dualised into a scalar. The 2-sphere
size and the NS-NS B-flux are the complexified Kdhler parameter which map to m; and
mj under Tp. In the brane box the two other scalars come from Wilson lines of the
NS5-brane world volume gauge fields in 45 and 89 which pair up in hypermultiplets with
m; and m/; respectively.

Note however the little puzzle. The orbifolded conifold Cy; has (k+ 1)(I + 1) — 3 Kéahler
structure parameters m;; (see subsection 2.1.3) which can be turned on to smooth out
Cri- Only k + 1 — 2 have been realized in terms of the relative brane positions m; and
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mj. So where are the kI hypermultiplets in the brane box skeleton, which one expects ?
They sit at the kl intersections! Strings stretching from NS5 to NS5’-branes give rise to
precisely these hypermultiplets (see Fig. 2.7) [45, 59].

D1

NS NS

Fig. 2.7

Turning on vevs for the two scalars corresponding to 2-sphere sizes and NS-NS B-fluxes
resolves the intersection of the NS5 and NS5’ into a smooth object, a little ‘diamond’.
For non-zero B-fields this diamond will open up in the 48 plane, for 2-sphere sizes in the
59 plane. This interpretation will become more suggestive after discussing 77 on this
configuration and once we start discussing the D3-brane probes.

In the geometry the 2-spheres give rise to strings from wrapping D3-branes around them.
How do we see them in the NS5 box skeleton? The D3 branes on the k + 1 — 2 spheres
from the curves of singularities correspond to D3-branes living in the boxes (or better
in whole stripes). The additional kI strings must now correspond to D3-branes in the
diamonds. We will indeed see that the diamonds allow for such a configuration.

Of course the same story can be repeated in type ITA. Here the diamonds will correspond
to matter on the intersection of type ITA NS5-branes, this time sitting in a vector mul-
tiplet. Again the 2 scalars correspond to the kl sizes and B-fluxes of the corresponding
2-spheres. Instead of the two additional scalars in the hypermultiplet we this time see a
vector from the R-R 3-form on the sphere. In the brane language the Wilson lines of the
NS5-brane gauge field have to be substituted by Wilson lines of the (2,0) 2-form field,
again giving rise to vectors.

e T; = Tg, T-duality to M. What happens now is as follows. Since we did a T; duality,
2% separations will become the B-fields. Thus, now the w; (which had to be put to zero
since we are discussing a box) parameters are Kihler structure deformations, while the
non-zero m;; now should show up as complex structure deformations.

The dual geometry will be described by an equation whose parameters, the complex
structure deformations, must be m;;. Let us first study the situation where the vevs of
the scalars in the hypermultiplets living at the intersections are zero. In this case the C*
fibration must degenerate over the NS5 and NS5’ positions m;, m/, but in an independent
way, since the branes are orthogonal — it must contain two curves of singularities 4,,_1,
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and A,,_; corresponding to NS5 and NS5’-branes. There is one such equation for generic
values of m;’s

k I

M: w = H(z—mi)H(w—m;)

i=1 j=1

The curve contains kl conifold singularities located at z = m; and w = m/; corresponding
to the fact that all the hypermultiplets at the intersections where turned off.

Let us jump ahead and let us realize M directly as the mirror of M. Performing the
local mirror map we obtain:

ko1
M . uv = ZZmzjziw".
=0 j=0
By now the T-dual interpretation of this more general space should be clear. It describes
a single NS5-brane wrapping a curve

l

¥: 0= ZZmzjz"w". (2.14)

k
i=0 j=0

The smoothing out of the intersections corresponds to the diamonds. For example one
intersecting NS5 and NS5’-brane is described by zw = 0. Turning on the hypermultiplet
corresponds to smoothing this out to 2w = mqo, as e.g. discussed in [60]. Indeed the

1/2 as can be seen by

resulting smooth curve has a non vanishing circle of radius (mqo)
writing it as z? + y%2 = mgo and restrict oneself to the real section thereof, for example.
This is precisely what we need: we can suspend a D3-brane as a soap bubble on the
NS5 skeleton, its boundary being given by the circle. The tension of the resulting string
is given by the area of the disk and hence is proportional to mge as expected from the
dual geometry M (where the size of the 2-sphere was also proportional to m). In M the
same string will be given by a D4-brane on the vanishing 3-sphere.

In the same way we can T-dualise any singularity that can be represented as a toric

variety into a generalised box of NS5-branes, with a certain amount of diamonds frozen.

2.4.2 Going to the Interval through a Conifold Transition

One can derive a second T-dual triple of geometry T-dual brane setup and mirror ge-
ometry by studying 77 and Ts on the interval theory. Note that the interval theory
can be directly obtained from the box by brane motions. First one moves all the NS5
and NS5’-branes on top of each other, setting all m;; to zero, closing all the boxes and
diamonds. This is the conifold point. Now one sees that one has the choice to open up
the intervals, by turning on the w; and wj.
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We can follow this transition in the geometry as well. Let us see what it does to M. For
one we have shrunk all the 2-spheres to zero size, putting us at the most singular point
of the geometry. In addition we have put all the B-fields to zero. From there we can
deform the singularity by turning on 3-spheres to obtain W and this is precisely what
corresponds to turning on the w; and v} in the brane picture. This is a conifold transition
[61]. We went from the blowup of the orbifolded conifold Cj; to its deformation.

Last but not least we can study the effect on M. In going to W, the mirror of W, we
this time send all the 3-spheres to zero size and then turn on blowup modes, taking us
from the deformed generalised conifold Gy; to its blowup.

2.5 Probing the Mirror Geometries

2.5.1 Reintroducing the Probes

As a next step we want to introduce n D3-brane probes on top of the geometry. This
way one breaks the supersymmetry down to 4 supercharges and get interesting N =1
4d gauge theory. The deformation parameters of the singularity appear as parameters
in the gauge theory, the moduli space of the gauge theory describes the motion of n
D3-branes on the singular space.

In principle we could take any of the four geometries introduced before, compactify type
IIB on it and then put a D3-brane probe on top of the singularity. The two situations
we are going to study are n D3-branes on the blowup of the orbifolded conifold Cy; (M)
and n D3-branes on the blowup of the generalised conifold G, (W).

Performing the two T-dualities 77 and T one will find two different realizations of each
of the probe theories. The background geometry will transform precisely as we discussed
in the last section (see Fig. 2.6). This way

e n D3-brane probes of the blowup of the generalised conifold W are T; dual to
D4-branes on an interval defined by w; and w; and Tyfirror to D6-branes wrapping
3-cycles in W

e n D3-brane probes of the blowup of the orbifolded conifold M are Ts dual to
D5-branes on a box defined by m;; and Twiror to D6-branes wrapping 3-cycles in

M.
One has to deal with what is usually referred to as elliptical models in the literature
[2, 10]. That is the 6 direction of the interval or the 48 direction of the box are actually

compact, leaving no room for semi-infinite branes. All D-brane groups will actually be
gauged.
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2.5.2 Generalised Conifold and Interval

First we would like to consider the gauge theory on the world volume of n D3-brane
probes on the blowup of a generalised conifold singularity*s. This gauge theory is given
e.g. in [16] and can be read off most easily in the dual brane setup we are about to
describe. In the last section we have seen that this geometry is 77 dual to NS5 and
NS5’-branes on a circle, forming intervals with 67 separations given by w; and wj, all the
m;; being zero. As utilised in [16, 38] this means that the n D3-brane probes turn into an
elliptical model with n D4-branes wrapping the circle. It is straightforward to read off
the gauge theory from this according to the standard Hanany-Witten rules. Of course
it agrees perfectly with the one obtained from applying a standard orbifold procedure
directly on the conifold gauge theory of [15].

There is yet another realization of the same gauge theory. Performing the whole
Tuirror = Tues one can turn W, the blowup of the generalised conifold on which we
originally put the D3-brane probes, into W, the deformation of the orbifolded conifold.
The theory with which one has to compare is that on the mirror of the D3 probe, that is
a D6-brane wrapping SUSY 3-cycles in W. But this is precisely the situation discussed
in [63]. The parameters w; and w} in W, given by (2.5) determine the loci in the z plane
where the C* x C* fibration degenerates. As found in [63] in order to have a BPS state the
w; and w! have to align along a line in the z plane. Since the S x S! fibration degenerates
over w; and w}, we can regard this fibration over the interval between neighbouring w;
and w! as a 3-cycle. In [63] it was shown that this 3-cycle is S® and S? x S? respectively,
depending on whether neighbouring points are a w, w' pair or both w (both w'). In the
former case one obtains a quartic superpotential, in the latter case an N = 2 like setup.
Obviously this yields the same gauge theory as the D3 probe on WV and the D4-brane
on the interval.

2.5.3 D5-Branes on the Box, the modified Box Rules

The second theory we would like to consider are n D3-branes on an orbifolded coni-
fold Cr;. As shown above, the geometry dualises under T into brane boxes where the
NS5-brane skeleton wraps the curve in eq. (2.14). The m;; parameters can be associ-
ated to brane positions, while the other kI parameters correspond to diamonds, that is
the hypermultiplets sitting at the NS5/NS5’ intersections, whose vev smoothes out the
singular intersections.

The probe D3-branes turn into D5-branes living on these boxes and diamonds. Again
this should in principle be a very useful duality in the sense that we can read off the
associated gauge theories by using an analogue of the Hanany-Witten rules. In addition
some information about the corresponding quantum gauge theory should be obtainable

*4 Similar setups have been discussed recently in [62].
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by lifting the setup to M-theory. In order to understand the new rules it is best to start
with the easiest example, the conifold C = Ci1, eq. (2.3), itself. This model is dual to
an interval as well as a box [16, 38]. The dual description in terms of a box is just that
of a single NS5 and NS5’-brane on a square torus, as depicted in Fig. 2.8.a for a generic
situation. The conifold has one blowup parameter, corresponding to the one diamond
sitting at the intersection. As long as we keep the size of this 2-sphere zero, the B-flux
through the sphere will correspond to the size of the diamond (cf. page 32). As we
have argued in the last section, the curve describing the diamond actually supports a
non-trivial S on which the D5-brane can end, so the gauge theory will have two group
factors, SU(M) x SU(M). The inverse gauge couplings are proportional to the area of
the corresponding faces.

a.) generic B-value  b.) maximal B-value ¢.) B=0 & g— o0

Fig. 2.8

There is a special point, when the diamond has the same area as the other gauge group,
that is the diamond occupies half of the torus. In this case we know that we have to
recover the standard conifold gauge theory of [15]*s. By comparison this can easily be
implemented using the simple brane rules specified in Fig. 2.8.b. We have to demand,
that half of the matter multiplets we would naively expect are projected out. The
transformation properties of the fields can be represented by an arrow. His orientation
indicate which index of the field sits in the fundamental and which in the antifundamental
representation of the gauge group. The orientation of the arrows seems quite arbitrary.
Indeed we will see that the orientation can be changed and that this corresponds to
performing flop transitions in the dual geometry. Indeed one can easily establish that
these rules also are capable of realizing more complicated setups. Generically, the gauge
theory on the Cj; orbifolded conifold has a SU(M)* x SU(M)* gauge group. In our
picture the gauge group factors will correspond to the k! diamonds and the kI boxes
respectively. Again it is easiest to compare at the point, where all gauge couplings are

*5The reason is, that to establish the equivalence of the field theory from branes to the conifold theory one
usually has to take the gauge couplings to be equal [16].
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equal. In this case, both the diamonds as well as
the boxes degenerate to rhombes, as pictured in
Fig. 2.9, where we denoted them as filled and un-
filled boxes. Generalising our A and B fields from
above we will find that the matter fields transform

as
(A1 j+10,0  (Oig1,41 ,@I,J )
(A2)iji1,0 (Oij>  Orag)
(B1)1,7:1,j+1 (ij+1, Ora)
(B2) 1,741, (Oit1,5, Orng)

which are exactly the rules expected [16] (the two

sets of kI gauge groups are indexed by small and
capital letters respectively). This proposal can
Fig. 2.9: The diamond rules at also easily deal with the situation of non-trivial
the point of maximal B-fields. identifications on the torus as discussed in [10].
In addition there will be quartic superpotential for every closed rectangle, the relative
sign being given by the orientation

W = Z(Al)i+1,j+1;I,J(BI)I,J;i,j+1(A2)i,j+1;I,J+1(B2)I,J+1;i+1,j+1
]
— > (Air s (Be)rgiies,j(A2)iv1girrn,s (Be) ren,giien g
]
We do not expect that this picture changes when we take the sizes of box and diamond
to differ. We will still see the A and B fields. Only the relative couplings will change
and no new fields or interactions appear, since they certainly don’t in the dual geometry.
The singular conifold points correspond to the situations where diamonds close. From
the field theory point of view this just means that we take the corresponding gauge
coupling to infinity. As in the standard Hanany-Witten situation with only parallel
NS5-branes this corresponds to a strong coupling fixed point with possibly enhanced
global symmetry if several NS5-branes coincide.
Another interesting question to consider is to ask ourselves what happens when we blow
up the spheres to finite size. This now should correspond to some mode of the diamond
that “rotates” it away out of the 48 plane into the 59 plane. According to common
lore this should correspond to a Fayet-Iliopoulos term in the gauge theory. We will no
longer be able to support a D5-brane stretched inside the diamonds in a supersymmetric
fashion, independent of their size (that is the B-field)*s. Since we expect that the centre

*6 This is very similar to what happens on the interval: blowing up a sphere corresponds to moving off an NS5-
brane in the 7 direction. Since in order to preserve supersymmetry branes are only allowed to stretch along the
6 direction this effectively reduces the number of gauge groups (the number of intervals) by one. The 6 position
of the brane we moved away (the B-field on the blown up sphere) does not affect the massless matter content
anymore.



38

of mass U(1)s are frozen out as in [2], the Fayet-Iliopoulos term will be reinterpreted as
a baryonic branch as usual. Especially there should exist a baryonic branch along which
we reduce to the orbifold gauge theory.

Indeed as shown in [16] the gauge theories described here do have such a baryonic branch.
Giving a vev to (say) all the A, fields will break each SU(M);; x SU(M)r; pair down to its
diagonal SU(M),s subgroup. The remaining massless fields after the Higgs mechanism
are

Dotiptt00 = (A)attpitian  (Datrprsap )
Va,bja,b+1 = (B1)abab+1 (Oaps Oa,b+1)
Ha,b;a+1,b = (BQ)a,b;a+1,b (Da,b; Da—i—l,b)

with the remaining superpotential:

W~ g Da+1,b+1;a,bva,b;a,b+1Ha,b+1;a+1,b+1 - E Da+1,b+1;a,bHa,b;a—i-l,bVa+1,b;a+1,b+1
a,b a,b

which are precisely the box rules of [5], as claimed. Note that the diagonal D fields,
which from the point of view of [5] looks something obscure, are not special at all. They
arise just from the fundamental A, B degrees of freedom of the generalised box.

A small complication arises once we consider situations that are more involved than the
conifold. For simplicity let us study the case of the Z, orbifolded conifold. Since this can
as well be thought of as the G, generalised conifold, it has a box dual as well as an interval
dual. Both of them are displayed in the sequence of figures 2.10 for various values of the
B-fields. The gauge group is SU(M)* and one sees only 3 B-fields governing the relative
sizes of the gauge couplings, since the volume of the torus produce one relation on the
four couplings.

B
,,,,, ,G,,,,,,,,, ,G, - =
BN

Fig. 2.10.1: Generic position of branes

According to our scenario this will correspond to one relative brane position B and the
sizes of two diamonds b; and b,. In the interval picture b; » will be the distance between
NS5; and NS5’; (i = 1,2) while B is the distance between the centre of masses of the
two NS5/NS5’ pairs, denoted as circles in Fig. 2.10.1.

Take the torus to have sides 2 and 1 and the periodic interval to have circumference 2.
Since B-fields (inverse gauge couplings) are areas on the torus and length on the inter-
val, in these units the area of a given gauge group on the torus should have the same
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numerical value as the corresponding length on the circle (total area=total length=2).
Fig. 2.10.2 shows B = 1 and b; = b» = 1/2. Both sides have 4 gauge groups of strength
of inverse couplings 1/2

Fig. 2.10.2: All gauge couplings are equal

and therefore on both sides all gauge couplings are equal. It is very simple to find two
further special points, namely the point where all B-fields are zero (the most singular
point) and the point where the setup looks like two separated conifolds ( Fig. 2.10.3 ).

Fig. 2.10.3: Two extreme situations

Similarly for all positive values of the b; and of B we can read off the gauge theory
from the diamonds, just using the standard A and B fields, representing the diamonds
as rhombes of area b;. However from the interval it is clear, that we can also pass
an NSbH-brane through an NS5-brane, performing Seiberg duality on the gauge the-
ory and simultaneously changing the sign of one of the b; fields [16, 64]. If we set
by = by = —1/2 the picture looks the same as for by = b = 1/2. The overall sign
does not matter. However Fig. 2.10.4 shows a setup where the signs of the b; differ.

Fig. 2.10.4: Diamonds do have an orientation.



We should assign our diamonds an orientation in order to be able to address this issue.
This orientation assigns whether the A or the B fields point outward or inward, the other
doing the opposite. The rules we have introduced are valid for the case that all orienta-
tions are equal. The situation with opposite orientations is slightly more complicated.
The rules can be determined by comparing with the interval. Whenever the arrows point
around the closed rectangle we write down a quartic superpotential. If diamonds with
different orientation touch, we will have to introduce additional ‘meson’ fields with cubic
superpotential (see Fig. 2.10.4). Since this inversion of orientation should correspond to
Seiberg duality in the field theory, we basically found this way a realization of N =1
dualities in the box and diamond picture.

2.6 Concluding Remarks

The D3-brane probe we have been considering so far maps to a D4-brane on the interval
and a D5-brane in the box respectively. We identified the corresponding gauge theories
above. For a special subclass of models it turns out that one can actually perform
both. These geometries are those whose toric diagram is given by two rows of k points.
Viewing them as orbifolded conifolds Ci, their blowups turn into a box with 1 NS5’
and k NS5 under T5. One can as well describe them as a Gy generalised conifold and
hence T dualise them into an interval with & NS5 and & NS5’-branes. According to this
philosophy these two ways of realizing the gauge theory should actually be mirror to each
other. So one was able to turn one Hanany-Witten setup into its ‘mirror branes’. Now
we can try to solve these gauge theories via the lift to M-theory. Interestingly enough,
the intervals lift via SU(2)-SLAG 2-cycles in R® while the boxes lift via SU(3)-SLAG
3-cycles [9] in R®. So the information contained in a 3-cycle should be related to those
of the dual 2-cycle and vice versa.



Chapter 3

BPS Mb5-Branes

Supersymmetric M5-brane solutions have received a lot of attention through the role they
are playing in the description of gauge theories in string theory. It became clear, that
various supersymmetric brane configurations embedded in flat spacetime capture a lot
of information about the nonperturbative behaviour of supersymmetric gauge theories,
which can be extracted by lifting brane configurations to 11d M-theory (more about this
in chapter 4). As noted in subsection 1.1.1 the M5-brane support a host of fields, whose
equations of motion describe the dynamical behaviour of the brane. If one switches off
the closed 3-form field H,;,m,m, keeping only the scalar fields, supersymmetric branes are
described by calibrated surfaces [65, 66, 67]. Calibrated surfaces are minimal surfaces
within a given homology class. They are specified by supersymmetry. The mathematical
theory of these objects has a long history and one can find an enlightening collection of
the corresponding results in [68, 69].

The first convincing application of these ideas to physics are in the context of N = 2 su-
persymmetric gauge theories in 4 dimensions which make use of SU(2) Special Lagrangian
(SLAG) calibration (supersymmetric 2-cycles) [2]. One expects for N = 1 gauge theories
an analogue behaviour. To be more precise their nonperturbative informations must be
associated with SU(3)-SLAG submanifolds (supersymmetric 3-cycles), the case we will
be concerned with in chapter 4. However, unlike the supersymmetric 2-cycles, the ge-
ometry of supersymmetric 3-cycles and all higher odd dimensional SLAG cycles are not
as transparent as in the case of SU(2)-SLAG. Nevertheless concrete applications require
a simple handling of such M5-brane solutions. Unfortunately for the SU(3)-SLAG only
extremely special solutions could be written down so far. Therefore we are interested
in constructions which connect SLAG geometries of different dimensions to each other.
This is the focus of this chapter.

We start to explain all the necessary notions in section 3.1, which are required later on.

41
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Then in section 3.2 we will pick up an old idea, which allows to connect Lagrangian
submanifolds of different dimensions to each other. After restriction to the class of
SLAG submanifolds this construction fails since inevitably it generates a smoothly vary-
ing phase a on the projected cycles which prevents it to be SLAG (a = const) again.

In section 3.3 the BPS equation (1.13) in the presence of a 3-form H-field will be in-
vestigated for the possibility to reestablish a BPS property of projected cycles. The
interesting point which comes out is the appearance of additional terms generated by
the H-field with the capability to modify the differential equations of the SLAG condi-
tions in the right way, while breaking further supersymmetries.

We will derive the modified differential equations** and discuss their geometrical mean-
ing.

3.1 The SU(n)-SLAG Calibrations

We start from the configurations of intersecting M5-branes in the two tables below (a bar
denotes a negative sign of the eigenvalues of supersymmetries preserved by the brane).
Here the notion “intersecting brane” should be taken as a more symbolic one. It is
only comfortable to encode the information about the preserved supersymmetries in this

manner.
1 2 172 1 2 3 723
M5|1 2 3 4 5 Msb |1 2 3 4 5
M5 3 4 5 6 7 M5 3 4 5 6 7
M5 2 4 5 6 8
Tab. 3.1: SU(2)-SLAG Tab. 3.2: SU(3)-SLAG

So the generalisation of the SUSY conditions of eq. (1.10) for the configuration depicted
in Tab. 3.1 leads to the two equations below, one for each brane:

F012345 € F034567 € =

= €, —€

Using the split of 11d gamma matrices of eq. (1.12) this can be written in the form
v% e = —v' ¢, which is an identity of gamma matrices applied to a spinor of preserved
supersymmetries. The details can be easily filled in from the formulas in appendix A).
The topology of a SU(n)-SLAG calibrated M5-brane is R15—" x M,, with M, the SU(n)-
SLAG submanifold. In the absence of the self dual 3-form h,;. these projectors imply

*1The authors of [70] considered the same questions independently.
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the SLAG differential equations as shown in [67]. There the authors analysed the first
three terms of eq. (1.13) and reobtained the differential equations of the SU(n)-SLAG
geometries, which for SU(2)-SLAG and SU(3)-SLAG read:
50 = — ea"{ E [6axc—acxa] A+ [Zaaxa— det(9X) ]717'1 } (3.1)
2det e 2 - ——
0 for SU(2)

generic

The term in front of 4%+’ enforces the Mb-brane to be a Lagrangian submanifold,
i.e. a submanifold of half of the dimension of the embedding space on which the
symplectic forms restricts to zero. This can be seen by computing the pullback of
the symplectic form under the embedding map. The symplectic form is defined by
w(Xgr,Yr) = g(JXg,Yr) with J the complex structure and g the Euclidean scalar prod-
uct of the embedding space. Using the complex structure one can make a real vector Xg
into a complex one X¢ and the identity,

< Xc, Yo >c = 9(Xr, Yr) + i - wr(XR, YR),
—_———
0
states, that orthogonality in the real sense implies orthogonality in the complex sense
and vice versa. Thus for a manifold to be Lagrangian the complexified tangent vectors
must be complex orthonormalised. Locally the evaluation of the form

P = (él + iég) A...A (éQn—l + iégn)

on the tangent planes (¢; a dual basis of e;, Je; = e;11) measures the phase e of the
unitary matrix build out of these unitary tangent vectors. In a spacetime frame the
role of @ is played by the holomorphic volume form Q = dz!'A...Adz" living on the
embedding space X¢ regarded as a complex space and one obtains

e\ /gdg'A...Ndg" = f*Q = [*ReQ + i-f*SmQ (3.2)
from which one can compute the tana as:
[f*Sm €]
t = . 3.3
an o FRe 0l (3.3)

For the definition of the brackets see around eq. (3.12). The second term in formula (3.1)
can be interpreted as the requirement f*3mQ = 0, which by eq. (3.3) leads to e’* = 1.
In fact these are conditions referring only to the tangent planes of the submanifold they
belong to. The reason for the simplicity of the SU(2)-SLAG case is due to the simple
structure of the space of 2-planes in R*, which satisfy further geometrical requirements
as discussed in details in appendix C.3. It can be analysed by studying the associated
Gaufl map. The results can be summarised as:

o The space of 2-planes in R* is isomorphic to S x S2.
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¢ Each point in S% can be identified with a complex structure of R*.

e In a fixed complex structure the intersection of S with the orthogonal complement
of the direction defined by the complex structure is a S'. It corresponds to the S!
of phases a Lagrangian plane can have.

The origin for the complications arising for SU(3)-SLAG can be traced back to the
complicated structure of the corresponding Gaufl map.

3.2 A Generic Property of Lagrangian Submanifolds

A short calculation indicates a possible way out. Starting from a SLAG 3-cycle and only
reshuffling terms in eq. (3.1) one finds:

N | =

505 = —%det(e_l) {[ax 0. X ]7“7'C+[28X — det(9X) | 7" 1}

1 1 .
= —5 det(e_l)e‘” { 5 |:81X2 - 62X1 :| ’yl’ylz

+ [Zaaxa + ( 1— 01 X105Xs + 0:X10; Xo ) 3 X3 ] vy

+ |:62X3 (81X1(93X2 — 61X263X1) - 81X3 (81X263X2 - 83X182X2) :| ’Yl’yll

+ % [51)(3 — 03Xy ] P+ [32X3 — 03X, ] v*y? }

If one would forget about the dependence on the coordinate ¢; and in addition treats
the transversal coordinate X3 only as a certain function appearing in the differential
equations one would project onto a Lagrangian submanifold of lower dimension but now
with a non constant phase a.

This idea could be made very precise since it is a well established property of Lagrangian
submanifolds (see e.g. [71]). The basic ingredient is a Lagrangian submanifold Ax of the
symplectic manifold X and a Lagrangian submanifold Axxy of the Cartesian product
X x Y of X with another symplectic manifold Y. We are interested in constructing
a Lagrangian submanifold of Y out of these data. Thereby the Cartesian product is
made into a symplectic manifold by defining the symplectic form to be the sum of the
symplectic forms on the individual constituents pulled back under the projection maps
to X and Y respectively:

* *
WXxxy = TxWx + TyWy
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The main idea of the construction are depicted in Fig. 3.1 and will be explained soon.
Our candidate Ay for a Lagrangian submanifold Ay in YV
XX Y would be the projection into Y of the (transversal) intersec-

tion below:
transversal

¥ /\y:’lry(AX XYﬂAxxy)

~

Ay.y Let us start to analyse the properties of this intersection.
What is its dimension ? Of course we can reduce the compu-
tation of the dimension to the computation of the dimension

A< Y of the intersecting tangent planes.
But then we can use a very simple formula for the dimension
Fig. 3.1: The basic of the intersection of two subspaces of a vector space, say V.
construction For Uy, U, €V

d1m(U1 n U2) =dimU; +dim U, — d1rn(U1 + Uz)

which can be checked by simply complete a basis of U; N Us to a basis of U; or Us,
respectively. Choosing Uy = T(Ax X Y), Us = TAxxy and V = U; + Uy = T(X x Y)
(transversality!) we obtain the dimension of the intersection

dim(Ax x YNAxxy) = dimU; +dimUs; — dim(U; + Us)
= (%dimX +dimY) + %(dimX +dimY)
—(dim X + dimY)
= %dimY

Now we investigate the behaviour of the intersection under the projection map to Y.
Especially interesting is a possible loss of dimensionality under this projection. Therefore
we want to know which are the tangent vectors of the intersection which get mapped to
zero in the image of the projection. Since the preimage do have the right dimension of a
Lagrangian submanifold of Y, we would like to guarantee that there is no tangent vector
of the intersection which get mapped to zero in the image beside the zero vector, i.e. the
projection map is an immersion. This is the idea behind the following computation. To
analyse this question we restrict ourself to the first member Ax x Y of the intersection.
Let i denote its immersion into X x Y. The pullback of the symplectic form wx«y of the
Cartesian product onto Ax x Y under the immersion i yields

Twxxy = i*ﬂ';(wx +’I:*7T=;/LUY
—
0!

One terms drops out since we pulled back the symplectic form of X to a Lagrangian
submanifold Ax of X. Now we choose a tangent vector of the intersection which is
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mapped to zero under the projection map:
d?‘l'y (f) =0

Choose ¢ € T(Ax x Y) then the following equality holds

Ffwxxy (§,€) = i*mywy (€, €) = i*wy (dry (£),) =0

by the equation above. On the other side if we evaluate wxyy on ¢ and € € T(Axxy) the
answer is zero by definition. Since the intersection is transversal wxxy (§,0) = 0. But by
the nondegeneracy of the symplectic form this implies ¢ = 0. Therefore the projection
is immersiv. Last but not least the symplectic form reduces to zero on the intersection
since it is contained in a Lagrangian submanifold. All in all we end up with the result
that Ay is a Lagrangian submanifold of Y.

3.3 Modified BPS Equations

After presenting the basic idea we want to collect evidence for the possibility to im-
plement the above mentioned construction on the level of BPS solutions. By what is
known about BPS solutions so far there is no doubt about the necessity to take the
self dual 3-form field A, mom, into account to get a chance that these new BPS solu-
tion exists. After inclusion of this field the general SUSY variation for a M5-brane in

a flat background are given in eq. (1.13). The new

cl SLAG3-Cycle ingredients are the additional terms, which appear
after turning on A, m,ms- 10 uncover the structure
of these terms we consider the contribution of the
“ 4th and 5th term of eq. (1.13) to the BPS equations.
These terms contain the full dependence on the field
| c2 Pmimamg- SINCE Ny mams 1S self dual*2,

— pramams = L1 maime (3.4)

Lagr. 2-Cycle 3! /—g amstne?
Fig. 3.2: The projection 7y the purely space like components can be computed

from hgyn, 1.€.

pmimams 1 1 6m1m2m30mn ho — _l 1 gMmimamsmn ho
D) ,—_g mn B} ,—_g mn
Minkowskian Euclidean

*2For the conventions see appendix A.
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This motivates the introduction of the following abbreviations

an = hOmn € A2 (Rs)a

1 1 rstmn 3 (b
homn € A’ (R
2 /— 0 ( )

with €757 the five dimensional Euclidean e-symbol. With these definitions the fourth
term can be rewritten like:

(*F)rst

4th = _hm1m2m38m2X028m3X03 ('yml)aﬂ(’ylwcs)ij
= —h" 0 Xy 0n Xy (70)as (7/22)i? = W™ O Xy 0n Xeg (Yp)as (7/€2)i’
= F""0nXey0nXes 07 % + (xF)"" O Xy 0n Xey 15 7,

and the last one simplifies according to

1
5th = _ghmlmy% (7m1m2m3) B

— _homn’YOmn _ ghmn]a Yrnp

11 1 1
— _hoab'YOab _ g 3_ \/_ 6mnprst h'rst gemnpuvw’yuvw

Ost 0
= _homn'YOmn + ,— E (Sozw":;:p host Y v
1

= —homn’YOmn + \/T_g B 5832, host Y Ovw
— _hOmn Omn

+ 2 Lohgmn
Yo T 5 0

1 0
= an’)/Omn + an’Y mn
V=g

Then the BPS equation is modified by the following expression:

N 1 ..
0057 = .- 56‘”{ F™" 0 Xy 0n Xy Y0y 2 + (+F)"" 0 Xy On Xeg 17 2% (3.5)
mn 1 Oomn
+F Yomn + —F/— an’y }
')

If one does not introduce additional projectors, which further reduce the amount of
supersymmetry, the last equation states that the cycle remains SU(n)-SLAG but will
be deformed by the field h,,;m,ms- Technically speaking the moduli of the cycle become
functions of the field Ay, m,ms and are partially eliminated in favour of the degrees of
freedom of the field A, myms- One the other hand breaking SUSY further by additional
projectors the SU(n)-SLAG conditions will be affected as we will discuss now.
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3.3.1 Investigation of the Basic Example

Now we specialise all considerations for the SU(2)-SLAG example as given in Tab. 3.1
which contains the generic behaviour. One can use a duality relation of the chiral 6d
gamma matrices (see eq. (A.1) in the appendix) to further simplify eq. (3.5). We want
to put as many as possible y-terms into the form ~yy'¢2¢2. Writing out the corresponding
expression for the 2-cycle one obtains

(*F)™ P8 X o, 0n Xey 1p 7 2% = 2(xF)'P01 X102 X0 v 7'

This has to be discussed for ¢ = 3,..., 5. With the help of the projectors of Tab. 3.1
and the 6d duality relation eq. (A.1) we may compute,

13y e = —y"?e

and (xF)!2 = ﬁ F,5. Similarly we may conclude yous = —7vy''2. Then the BPS
equations read

A s 1 )1

J o _ = -1\ ai ) ~ _ a_tlec 111
0057 = 2det(e )e {Z[BaXc BCXG]’y'y +[;6aXa]'y'y }
i) g m? - L By (0,%10:Xs — 0:X10, ) (3.6)
26 \/_—g 45 1A102A2 2A1U1 A2 .
1 ’
_2(F12—|—F45)—|—2—,__g (F12+F45) } Yoy 12 + ...

where the dots are the terms for ¢ = 4,5 implying that that the corresponding compo-
nents of F™" vanish. The vielbein e?, (see appendix A) has a very simple form:

1 0

_ 0 e'v ey

Cn = 0 621
0 0

¢ (3.7)

®
O v RO
N
=0 o0

The transformation to the tangent frame is performed by F™* = ™ ,6", F® and yields

1
F12 — élaéQbFab — F12 F45 — é4aé5bFab — F45. (38)
v—9

Since in the tangent frame F'?> = Fj, and the same valid for F*° eq. (3.6) reads:
A . 1 _1 ; 1 ’ 111
J — __ an - _ a,lc
007 = 5 det(e™ " )e { 5 [(%Xc 0. X, ] vy'C + [Xa:BaXa ] vy
+ [ 2 (Fi2 — Fus5) (01 X102 X2 — 02 X101 X2) — 2(F12 — Fus) +2/—g (F12 — Fius) ] 'yg'y'12 }

+... (3.9)
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The new term is precisely (for the notation see around eq. (3.12))

2(Fiz — Fi5) (V=g — [f"Re]) (3.10)

which for a SU(2)-SLAG 2-cycle already vanishes, as a consequence of eq. (3.2) and
f*SmQ = 0. Thus the picture does not change. A completely different behaviour
arises after breaking further supersymmetries. Concretely we will break supersymmetry
by imposing additional projectors which modify either the Lagrangian or the constant
phase condition. The latter can be translated to the altered brane picture below [26]:

1 2 2
M5|1 2 3 4 5
M5 3 4 5 6 7
M2 |1 7

Tab. 3.3: Brane configuration

From the additional “M2-brane projector” T'gize = ne (I, 11d tangent frame gamma
matrices, n a sign) one obtains

Pogre = —nliee
and by the construction of T', (see eq. (1.12)) this is identical to
w0y ?e = ny'yle

This equality generates an inflow from the purely h-field terms to the term proportional
to y14'! and modifies the SLAG condition while preserving the Lagrangian property*:.
If one writes out the resulting BPS equations, one finds:

Sc..)ﬁj - _% det(e_l)eai { % [61X2 — X, ] ’)’1712 + I:za: 0u X, ] 71711

+ 2(Fi2 — Fis) (V=g — [f*ReQ]) 707" }

n’Yl’Yll
We can solve for the F;:
n__ [f*SmQ]
F12—F45 = — — 3.11
2 /=g — [f*ReQ) ( )
*3 Instead of including the M2-brane projector I'g17 € = 7€ one could choose I'g16 € = k €, which modifies the

Lagrangian condition but preserves the other equation. But this case is not so well suited for our purposes but
seems to be the generic one for higher dimensions.
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Before we discuss the consequence of this choice let us remind of some of the geometrical
formulas. The pullbacks of the embedding space differential forms w, ReQ and SmQ
under the map f read

f*(.d = (62X1 — 61X2) dql A dql,
f*%e Q = (1 — 61X162X2 + 62X181X2) dql A dq2, (312)
f*%mﬂ = (61X1 + 62X2) dql N dqz.

We will need the prefactors in front of the differentials which we denote by [f*w] and
so on. By slight abuse of language we will denote the induced metric on the embedded
submanifold M? with the same name g;; as for the full M5-brane. This is justified by
the fact that the remaining components of the M5-brane metric are =1 and one has only
to keep the correct sign for the determinant in mind. The induced metric is given by

o = [ (O1X1)" + (1 X2)" 91 X18:X1 + 01 X202 Xo
N N X10:X1 + 01 XD X 1+ (8:X1)° + (02X2)°

and the following algebraic identity (see appendix C.2)
det g = [f*SmQ +[f*ReQ” + [fw]”

holds. Combining this identity with the BPS equation f*w = 0 and the BPS equation
(3.11) one can solve for [f*Sm ] in terms of [f*Re Q). There are two solutions. The first
one is simply [f*Sm Q] = 0 again. The second one can be rewritten into an expression
for the phase (see eq. (3.3)),

4(Fyy — Fys)
4(Fp — Fy5)? — 1

tana = —1n

which is generically not constant. Of course one has to ensure that the equation of
motion for the spacetime 3-form is satisfied. The simplest way this can be ensured is
to take the tangent frame components Fi, and Fy5 to be constant. As can be seen from
eq. (3.8) the corresponding spacetime components are non constant. Nevertheless in this
situation the cycle is not anymore SLAG but still a Lagrangian submanifold.

As can be seen from the Gaufl map (see appendix C.3) the parameter Fi, — Fy5 can be
identified with one of the angles parametrising the sphere S% of complex structures on
R*. Completely analogous for the other choice of the projector (see footnote on page 49)
one can identify the parameter with the second angle.

If F1, = Fy5 eq. (3.10) vanishes. The closure of H leads to F1, = Fi; = 0 and one gets
back the SU(2)-SLAG solution, with an spontaneously enhanced supersymmetry.
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3.3.2 The 3-Cycle Case

For the 3-cycle an unexpected behaviour appears. As will become clear, soon, we do
not have the freedom to modify either the phase or Lagrangian condition independently
but there is only the possibility to change the latter one. We start from the most
general pattern of M5-branes and M2-branes, which preserve a common supersymmetry
in Tab. 3.4.

1 2 3 r 2 3
M50 1 2 3 4 5
M5 |0 3 4 5 6 7
M5 |0 2 4 5 6 8
M2 |0 3 8
M2|0 1 6
M2 |0 2 7
M5 |0 1 4 5 8

Tab. 3.4: Brane configuration

The branes in the lower box are consequences of the projectors coming from the branes
in the upper box and can therefore added for free.

Repeating the same steps already done in the last section one finds that the M2-brane
projector can be rewritten like

Fozge = ne /-Ts6
Toese = —nlzge
0y =yt

From the last line of this formulas one recognises that the additional projector contribute
to the Lagrangian conditions, now. Completely analogues the other two M2-branes gen-
erate contributions to the same class of terms:

Yo'

Yo' *?

-7 71712
-nv*y"?

After taking notice of this effect we have to care about the possibility to find nontriv-
ial solutions for the closed 3-form H,,,m,m,- Now we added a twiddle to H if it is the
spacetime form. Nevertheless let us begin the discussion with the 3-form field Ay in a
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tangent frame. The only non vanishing components are

hoiz = a, hois = b, ho2zs = c.

We can compute the tangent frame components of H,j. from eq. (1.11) and obtain

a a
Hoy = Hays =
012 4a2+4b2 +4¢2 +1 345 daZ +4b2 +4c2 -1
b —b
013 4a2 +402 +4c2 +1 245 da2 +4b2+4¢2 -1 (3.13)
C C
Hyss Hiys

T 12 +4bP+4 +1 T il + 4+ 4 —1

Last but not least the spacetime components can be computed via the vielbein e?,, (see
appendix A) which is given by:

1 0 0 0 0
0 viou Vi Vi 0
o /1911 922—9%5]  g11923—913 912 [ ]911 922—97,]
eam - 0 0 g11 = 911 922—93s 911 = 0
0 0 0 —L 0
[911 g22 912|
0 0 0 0 1
The spacetime components fImlmzm can be obtained from
ﬁmlmgm;; = Ha1a2a3 ealml ea2 mo eas m3-
The only point to ensure is the closure of the spacetime 3-form H, i.e.
df = datnde®a | (Yes _OMhas) goay o2y (OHass  OHas ) o s (3.14)
8x1 sz 6$1 a$3

69:2 8.’1:3

OHzus  OHous de? Nda® | — OHoi1» 3ﬁ013+31~{023
6:63 3:132 8901

] dz’ A ... ANdz® = 0.

Since dz° appears only together with the second bracket, the closure implies two inde-
pendent conditions on H. From the first bracket in eq. (3.14) it follows that

Hpas = Omf(z1,29,23)
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Solve for the tangent frame components Hiys, Hags and Hsys
Hus = €™ Hupis = €™ 0n f
Introduce the abbreviation
|H|> = 6"HasHps = 6" e e OnfOnf = 0™ fOmf

one computes from eq. (3.13) the parameters a,b and c:

1+ +/1+16|H|?
4, L VI IGTH

8[| H||?
1+ /T+16[H]
b V14 16| H] (3.15)

—Hyys
8[| HI?

1+ /1+16[[H|?

R A

Then one can calculate from eq. (3.13) the tangent frame components

H 45

o Heas
P A+ 16| H|?

HOab

and finally spacetime components Hy,,,. Finally the function f(z,x,,s) is determined
from inserting the last expression into the remaining differential equation in eq. (3.14),
which follows from the closure of H.

Proof.

0
= € ~— | €abe Hc45 —Aeamebn
oz, <= /1+16H|?
ecq 0 f

c

0 1
~ Oz, [*/Wf V1T 1607 f 0 f amf]

O

The final result can be put in a more significant form imitating the structure of the usual
Laplace equation. Thus f can be seen as a solution of the deformed Laplacian:

1 9 1
77 o [V |




3.4 Concluding Remarks

We have shown that in the construction of supersymmetric solutions the field h,;. can be
used to go beyond the case of standard calibrations without loosing a geometric picture.
The physical three form field turns out as closely related to the complex structure. In
two recent paper [72, 8] the author constructed the calibration form for the case at
hand and demonstrated a method to estimate certain physical quantities by evaluating
the forms on the cycle. Since it becomes clear here that the H-field gain a geometric
interpretation, it should be possible to estimate a geometric quantity within this bound.
This would allow to extend the notion of calibrated surfaces in a proper sense.
Furthermore the idea that the information of 3-cycles and 2-cycles are correlated was
made more precise. The limitations of this calculation are mainly due to the restriction
to a flat metric SUGRA background but this can be improved in principle. Partial
results are available for non flat backgrounds [73, 74].



Chapter 4

N=1 Gauge Theories & 3-Cycles

From the work of Witten [2], it was recognised that many interesting non-perturbative
results of supersymmetric field theories can be derived from 11-dimensional M-theory.
So it was shown that N = 2 supersymmetric gauge theories can be solved via M-theory
by lifting the corresponding 10-dimensional type ITA brane configurations [36] to 11
dimensions (see Tab. 4.1 and 4.2). As a result the intersection of n parallel NS5-branes
and k suspended D4-branes is described in 11 dimensions by a complex curve, which is
a supersymmetric 2-cycle embedded in the four dimensional space R* x S'. This curve
precisely agrees with the famous Seiberg-Witten curves [75] of N = 2 supersymmetric
field theories.

1 2 3 4 5 6 7 89 1 2 3 4 5 6 7 8 9 10
NS5|1 2 3 4 5 Ms5|1 2 3 4 5
D4 |1 2 3 6 M5 |1 2 3 6 10
Tab. 4.1: ITIA Tab. 4.2: M-Theory

The D4-branes exert a force on the NS5-branes causing them to bend. As explained
in section 1.1.3 the tensions of the NS5-brane and the tensions of the D4-brane have

2 compared to

a different behaviour in terms of the string coupling constant, T5 ~ g
Ty ~ g;1, so classically the NS5-brane is much more heavier and there is no bending.
Therefore bending is a quantum effect. As a result of bending, NS5-branes on which
D4-branes end does not have a definite value of 26. More specifically, when there is
a bending which moves the two NS5-branes towards each other, the gauge coupling in
eq. (4.2) becomes strong at high energies, i.e. we deal with an IR free theory. Conversely,
if the bending is outwards, there is an asymptotically free theory. In four dimensions the
bending is logarithmic with the distance |v|, whereas in d dimensions the local bending

of the NS5-branes goes like |v|¢~*, v being the ‘position’ of the D4-brane on the world

95
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volume of the NS5-brane. This shows that in dimensions d < 4 all gauge theories are
asymptotically free, and all gauge theories with finite gauge coupling are IR free for
d > 4. The bending is absent if the number of left D4-branes ending on a given NS5-

brane is equal to the number of D4-branes ending from the right (see Fig. 4.1).
D4 kq D4 kn D4

Ko

——| k, D4 — 1 kpq D4

\
s

Fig. 4.1: The N=2 brane configuration

NS, NS, NS, NS,

In one-loop perturbation theory in four dimensions, the bending of the NS5-branes leads
to a logarithmic variation of % in terms of v:

25 = (ko — ko_1)log|v]. (4.1)

Taking into account that the square of the inverse gauge coupling is related to the dis-
tance of the NS5-branes, the logarithmic running of the gauge coupling g, is determined
as

1 2k + ks + ko
= = + gt FRa 1y, (4.2)
9a 9s

Note that the prefactor bY=2 = —2k, + kat1 + ka1 precisely agrees with the N = 2 3-
function coeflicient of the gauge group SU (k,) with Ny = kq41+kq—1 fundamental matter
fields. In this way the shape of the branes incorporates the 1-loop effects in field theory.
In N = 2 field theory there are no higher loop effects. However there are still non-
perturbative effects due to instantons. These instantons can be seen directly in the
brane picture, namely the DO-branes are instantons within D4-branes. The problem is
now to solve the theory by including all these effects. This can be done by “lifting” the
ITA configuration to M-theory [2]. The advantage of considering the above configuration
of branes in M-theory is that the D4-branes and NS5-branes descend from the same
object, the M5-brane (see subsection 1.1.3). The intersection of the D4- and NS5-branes
in ITA is singular but smoothed out in M-theory and in fact it is possible to consider
all the D4-branes and NS5-branes as a single Mb-brane with a nontrivial worldvolume.
The conditions for preserving the equivalent of N=2 supersymmetry in d=4, i.e. 8
supercharges in 11 dimensions, restrict the embedding of the M5-brane worldvolume to
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be a SU(2)-SLAG submanifold (see the discussion in chapter 3) and it is possible to
find the function describing this embedding explicitly. The outcome of the analysis is
that the M5-brane worldvolume is of the form R'? x %(?), with ©(?) a complex Riemann
surface holomorphically embedded into R® x S'. This curve incorporates the classical
ITA brane set up as well as the field theory 1-loop corrections through the shape of the
Mb5-brane. Finally the non-perturbative instantons are also automatically included since
DO0-branes are simply Kaluza-Klein momentum modes of compactified M-theory.

Why does this procedure work? The solution of the gauge theory is found by using the
duality between 11d SUGRA and ITA string theory. When R;; is large, 11d SUGRA is
valid. On the other hand one identifies the gauge group and matter content at small Ry,
where one works in weakly coupled ITA string theory and the analysis of [36] applies.
In order to decouple the bulk modes from the gauge theory we have to take the string
scale m, and the Planck scale m, to infinity and in order to decouple the KK modes
from the finite interval, we have to send the length of the z® intervals L — 0. This all
has to be done holding g3, = -2 fixed. In 11d units g3,, = £. In order to keep the
interacting gauge theory (fixed ¢%,,) while decoupling the KK modes (L — 0) R;; has
to go to zero! This is the limit in which the brane setup reduces to 4d SYM. But this is
the opposite limit of the one we were able to solve, where R;; and hence L have to be
very large and we can use 11d SUGRA. So we should only expect quantities protected
by holomorphy, like the N = 2 prepotential, which can not depend on the real parameter
R11, to come out correctly. Indeed it was shown in [76] that unprotected quantities like
the 4-derivative terms in the effective action disagree with field theory results.
Non-chiral N = 1 gauge theories can be obtained by rotating one or several of the
NS5-branes such that they intersect by a certain angle. The corresponding continuous

parameter can be regarded in field theory as a mass parameter which explicitly breaks
N = 2 supersymmetry down to N = 1. The M-theory embedding of the non-chiral N =1
models, constructed in this way, leads again to supersymmetric 2-cycles, now embedded
in the six-dimensional space R® x S* [77, 78, 79]. Analysing these curves, the form of the
corresponding N = 1 superpotentials can be derived.

A generic way to construct chiral N = 1 gauge theories in four dimensions is provided
by the brane box models of Hanany and Zaffaroni [5]*!, which already appeared in
chapter 2. Here one deals with a type IIB configuration of intersecting NS5 and D5-
branes. We will show that upon a T-duality transformation to the ITA superstring, the
M-theory lifting of the chiral N = 1 brane box configurations leads to supersymmetric
3-cycles suitably embedded into C*. These supersymmetric 3-cycles precisely correspond
to the SU(3) special Lagrangian calibrations (SLAG) [66, 67], which reduce the original
supersymmetry by a factor 1/8. This is just the right amount of supersymmetry breaking

*1 An alternative, but more restricted construction of chiral N = 1 models via orientifolds was introduced in
(80, 81].
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for a generic chiral N =1 gauge theory.

In the spirit of [2] one can study the quantum effects in the corresponding gauge theory
by analysing the bending of the branes. In particular the g-function should show up in
this approach, since the gauge coupling is encoded in the distance of NS5-branes, which
can be measured by the area of the brane box. In this sense the shape of the bent branes
directly gives some information about the running gauge coupling. In order to obtain
the exact quantum information (or at least the information protected by holomorphy)
one must lift the brane configuration to M-theory and use 11d SUGRA to solve it.
Mind ! The boxes of [5] live in IIB theory, so in order to perform the M-theory lift
on has to use the relation that IIB on a circle is M-theory on a torus, so we have to
compactify one of the common worldvolume directions. Like in the 5d case studied in
[82] this means that we are really solving the 4d theory on R?® x S'. In the limit where
the area of the M-theory torus shrinks to zero or grows to infinity we recover the N =1
d =4 and N = 2 d = 3 gauge theories respectively. We will provide evidence that in
this way all the holomorphic informations about these gauge theories are encoded in the
geometry of a SUSY 3-cycle.

In the next sections we will show how the classical brane boxes relate to supersymmetric
3-cycles. For the special case of finite theories and theories that satisfy the uniform
bending requirement of [11] we are able to perform the lift explicitly. However the
corresponding cycles turn out to be superpositions of special 3-cycles that are of the
form 2-cycle times line.
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4.1 N =1 Brane Boxes

Now let us discuss the brane boxes of [5] which can be used to construct N =1 super-
symmetric gauge theories with chiral matter content. The starting point is now a type
IIB superstring with the following branes included (see Fig. 4.2):

k k k
NS 00 10 lﬂ]-l,o n0
kO,l
NS
NS ——— : ; S S
ka,ﬁ D5
NS ———— ' T
NS ——
NS
|(O,n’ I(n,n‘
NS NS NS NS

Fig. 4.2: The N=1 brane configuration

e n parallel NS5-branes with world volumes along the (012345)-directions. These

branes are fixed at 7 = 28 = 2% = 0 and are placed at arbitrary positions in 5.

e n' parallel NS5’-branes with world volumes along the (012367)-directions. The

8

NS5’-branes are fixed at z° = 2% = 2% = 0 and are placed at arbitrary positions in

x4,

e D5-branes with world volumes along the (012346)-directions. The D5-branes can
take different position on the NS5-branes in the z®-direction and also different
positions on the NS5’-branes in the z7-direction. Depending on the specific model
one likes to discuss, the directions z* and 2% can be either uncompactified or periodic
(elliptic models). We will concentrate on the non-elliptic models. It follows that
the D5-branes are finite in the directions 2%, z* in case they are placed inside the
‘inner’ boxes. However they are semi-infinite in case they end only on one NS5
(NS5’) brane (‘outer’ boxes).
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This brane configuration preserves 1/8 of the original supersymmetry. We see that a
generic configurations consists of a grid of (n+1)(n'+1) boxes built by n NS5-branes and
n' NS5’-branes in the z*-z% plane. We are labelling the boxes by the two indices «, o/
where a =0,...,nand ¢ =0,...,n'. The (n—1)(n'—1) ‘inner’ boxes witha=1,...,n—1,
o' =1,...,n' =1 have always finite area whereas the remaining ‘outer’ boxes have infinite
size in case of uncompactified directions z* and z°.

Now, let ko denote the number of D5-branes which are placed in the box [a,a].
The gauge theory of the suspended D5-branes is a generalisation of the orbifold theory
described in section 1.3.1 and further investigated in chapter 2. It can be derived using
the abstract approach of [14] leading again to a gauge group in four dimensions:

n—1n'—1

G =[] ] SU(kaw)- (4.3)

a=1la'=1

The associated classical gauge coupling constants are given by the area of the corre-
sponding box [a, a']:

4
= . 44
9o 9s 4

The matter content of the model consists of three types of chiral N = 1 representations,
well known from section 1.3.1. The ‘horizontal’ chiral bifundamentals H, . in the repre-
sentations (kq,a/, kat1,ar) Of SU(ka,ar) X SU(kat1,a7), the ‘vertical’ chiral bifundamentals
Va,or 10 the representations (kq o, ko,ar+1) Of SU(kg,or) X SU (kq,ar+1) and finally the ‘diag-
onal’ chiral fields D, ,+ in the representations (ka,o', ka—1,a'—1) Of SU (kq,ar) X SU (ka—1,0'—1)
(a,a’ > 1). In this context the groups SU(kq,o) With @ = 0,n or o/ = 0,n' act as global
flavour symmetries if the directions z* and z% are uncompactified. Note that the choices
for the k,,o are severely constrained by the requirement of absence of anomalies. If all
three types of matter multiplets are present then there exists a classical superpotential
of the following form:

W = ZHa,a’Va+1,a’Da+l,a’+l - ZVa,a’Ha,a’+lDa+1,a’+l- (45)

a,a’ a,a’

So far we have only discussed the classical field theory. Of course it is essential to under-
stand the quantum features as well. Chiral N = 1 exhibit a huge variety of interesting
quantum phenomena. Especially the generic theory will have an anomaly which should
show up as an inconsistency of the brane box as a string background. In these general
cases the bending of the brane boxes isn’t well understood yet, but some special cases
can be analysed.

It is clear that the bending of the NS5 and NS5’-branes depends on the number k4
of D5-branes in each box. A very special class of N = 1 gauge theories is given by the
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finite models (further discussed in chapter 5) for which all -functions and all anomalous
dimensions vanish to all orders in perturbation theory [83, 84]. This condition includes
the vanishing of the one-loop -functions. In the brane picture complete finiteness means
that all NS5 and NS5’-branes do not bend at all, i.e. if the number of D5-branes in every
box is the same [84]. Then obviously, N; = 3N, for every gauge group factor, and the
one-loop S-functions are zero.

The corresponding brane setup consists of several branes put on top of each other. Each
of the branes preserves 1/2 of the supersymmetries, together they still preserve 1/8,
so the intersection is BPS. This ensures that the static branes don’t exert any force
on each other. We can freely move the constituent branes since they don’t feel the
presence of the other branes at all. Motions of the branes in the 46 plane corresponds
to changing the areas of the various boxes and hence to changing the gauge couplings.
Taking NS5 (NS5’) branes away along the z7 (2°) direction destroys the box structure
and corresponds to turning on Fayet-Iliopoulos terms.

Another special situation is that of uniform bending. The condition of uniform bending
was first introduced by [11]. There it was argued to be necessary for consistency. As we
will see this is too stringent. However uniform bent setups are very special and allow
for a precise treatment of the quantum properties. To motivate the uniform bending
requirement consider the basic cross configuration of Fig. 4.3.

Far Left Far Right
4 ka’a’ kOHl’O" 7ka,ot’ ka,a’+1 ka+1,a’ k0(+1,0(’+1
NS —
ka,a’+l I(0(+l,o(’+1
NS NS NS
6 4

Fig. 4.3: Basic cross configuration

For 2% — —oco (to the far left) the effects of the NS5-brane on the bending of the NS5’-
brane should be negligible. The D5 ending on the NS5’-brane just looks like a 5d gauge
theory with 8 supercharges and leads to the standard linear bending [85]. The slope of
the bending is given by the difference of branes ending from either side, hence

26 5 0o = ka,a' — ka,a’+l- (46)

For the same reason we will have linear bending to the far right, that is for 26 — oo, the

slope

slope this time given by

slopegs ,oo = kati,a0 — Kot1,0/+1- (4.7)
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The observation of [11] was that if
ka,a’ - ka,a’+1 = ka+1,a’ - ka+1,a’+1 (48)

the bending on the far left is the same as on the far right and one may expect that
the shape of the NS5’ in fact does not change at all as a function of z%. In [10] it was
observed that the most general setup compatible with condition (4.8) can be achieved
by “sewing” together N = 2 models, that is we take branes corresponding to 5d gauge
theory built out of NS5 and D5-branes and move them on top of a similar setup build
out of NS5’ and Db5-branes*z, as illustrated in Fig. 4.4.

us itk | Ko kitky
K, D5 kit ky
NS
L]
k, D5 kq D5 kn D5 K, D5
— kD5 — — Kpg D5 i 1 NS NS - —
ki
— — —] + Ky D5 p— ¢
NS — S E—
t{e ‘ ‘ ‘ NS
N N NS, | NS,
S S Sha -1 K01D5 NS
NS
k £k,
wos| || NS o
k0+ k’nv kn+k;1,
NS NS NS NS

Fig. 4.4: Sewing of N=2 models.

This sewing can be taken quite literally: as in the finite case there is a no force con-
dition between the constituent pieces, since their intersection still preserves some su-
persymmetry. So we are free to move them independently. These deformations should
correspond to marginal couplings in the field theory. Since we are not just tuning the
distance between two NS5-branes but are actually moving around compound systems,
these marginal operators won’t just be the gauge coupling as in the finite case but will
also involve the superpotential couplings. Using the methods of [83], the authors of
[84] were indeed able to show that the field theory has these marginal operators if the
conditions of eq. (4.8) are satisfied for all boxes. Since the subsystems don’t influence
each other, the exact bending is given in terms of the linear bending of the subsystems. All
uniform bent systems are anomaly free.

*2In [10] they also allowed sewing in a third kind of N = 2 system connected to diagonal lines in the box setup.
This doesn’t lead to uniform bent models anymore and should hence be treated separately.
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4.2 T-Duality, M-Theory Embedding and the Emergence
of the 3-Cycles

Now let us describe the the strong coupling limit of the N =1 via embedding the brane
boxes into M-theory. Since our original brane configurations is in the type IIB string,
we have first to perform a T-duality transformation to the type ITA superstring before
we can perform the M-theory embedding. We do not want to touch the NS5 and NS5’-
branes, and we also do not want to create any D6-branes; therefore we will T-dualise
over one of the spatial directions common to all branes. To be specific we now assume
that =% is periodic with radius RI’® and we perform the T-duality with respect to the
x-direction. This leads to the following brane configuration:

e n parallel NS5-branes with world volumes along the (012345)-directions. These

8 6

branes are fixed at 7 = 28 = 2° = 0 and are placed at arbitrary positions in z°.

e n' parallel NS5-branes with world volumes along the (012367)-directions. The

8

NS5’-branes are fixed at #° = 8 = % = 0 and are placed at arbitrary positions in

zt.

e D4-branes with world volumes along the (01246)-directions. These D4-branes take
different 2° positions on the NS5-branes and also different 27 positions on the NS5’-
branes. In addition the D4-branes can have arbitrary positions in the compactified
spatial z*-direction.

This configuration preserves like before 1/8 of the original supersymmetries and cor-
responds to a three-dimensional gauge theory with N = 2 space-time supersymmetry.
The three-dimensional gauge theory can be simply obtained from the four-dimensional
N = 1 models by circle compactification on S! in the z3-direction. In the decompact-
ification limit, RI/B — oo, the four-dimensional N = 1 gauge theories are rediscovered.
On the hand, for R{/Z — 0, the theory is truly three-dimensional. Note that in three
dimensions, a new Coulomb branch can be opened, since the three-dimensional vector
multiplets contain one real scalar degree of freedom. The corresponding modulus v is
associated in the brane picture with the positions of the D4-branes in the z3-direction.
The three-dimensional gauge coupling is classically related to the 4d gauge coupling as
1/92 = RB/g2. So in the limit R/ — oo one must send g3 — 0 in order to have a finite
coupling g4. The scalar field in the vector multiplet live on a dual circle with radius
RIA = 1/RIB. So in the 4d limit, R4 — 0, one has to integrate out the fields with
masses of order v corresponding to the Coulomb branch. In this way we can regard v as
the parameter which sets the scale A of the four-dimensional gauge theory. So in order to
determine the logarithmic ‘running’ of the four-dimensional gauge coupling g, in terms of
A, 1/g2 = bV=tlog A, we will be in particular interested in the bending of the coordinates
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z* and 2% in terms of z3. (This precisely corresponds to the logarithmic running of z¢ in
terms of the Higgs field vev v = z* +iz® in case of the N = 2 brane models.) This will be
further discussed in section 4.5.2. Note that in the 3-dimensional limit, R/ — 0, the
pure Yang-Mills gauge theory has no stable supersymmetric groundstate unlike the 4d
theory. Many more details of the dynamics and superpotentials of three-dimensional,
N = 2 supersymmetric gauge theories can be found in [86].

After the duality in 23 we are now ready for lifting the above configuration to M-theory
by adding the period direction z!° with radius Ry;.

Like in the N = 2 case the singular intersections of the NS5, NS5’ and D4-branes are
described in M-theory by a single smooth M5-brane. Asymptotically, this M5-brane
takes the shape of the classical IIA branes:

e The NS5-branes asymptotically correspond to Mb5-branes which extend in the
(012345)-space and take different positions in the z8, 27, 28, z° and z'° directions.

e The NS5’-branes asymptotically look like M5-branes with world volumes along the

(012367)-space and positions in z*, 25, 28, 2% and z'°.

e Finally, the asymptotics of the D4-branes is given by M5-branes with world volumes

in 2%, 2!, 22, z*, 2% and z'° and positions in 2°, 2°, 27, 2® and 2°.

So all branes have common world volumes in the (012)-space and are all located at

28 = 2° = 0. Therefore, to characterise the M-theory configurations we have to focus on

the six-dimensional space spanned by the coordinates z2, z*, z°, 2%, 27 and z'°. Each
asymptotic brane fills three particular directions in this space. This means that the
general embedding of the M5-branes is described by a three-dimensional submanifold in
R* x T?. Supersymmetry requires this to be a supersymmetric 3-cycle. In the language
of [66] this is called a SU(3) special Lagrangian calibration (SLAG) which breaks 1/8 of
the supersymmetries.

Let us again briefly consider the validity of our approach. In 11d units the 3d gauge
coupling is given by ¢%,, = it where A is the area of the box. As in the N = 2 case
there are two distinct limits if we want to keep g3, fixed: for small Ry; and A the KK
modes decouple and the brane setup reproduces the gauge theory. For large R;; we can
solve using 11d SUGRA, that is by solving for the SUSY 3-cycle. However, as for N = 2,
all holomorphic quantities should be encoded in the geometry of the 3-cycle. That is
of the terms in the 2-derivative approximation of the effective action, the holomorphic
gauge coupling and the superpotential should be encoded in the 3-cycle, whereas the

Kahler potential probably escapes our control.
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4.3 Brane Cubes and M-Theory

As already mentioned in the original work of [5] the idea of brane boxes can naturally
be extended to brane cubes and brane hypercubes. Each time we add one more NS5-
brane with yet another orientation breaking another half of the supersymmetry. The
D-brane ends on these new NS5-branes as well, so that the brane spans a 3d cube or
4d hypercube instead of the 2d box we considered so far. Let us briefly discuss, how
these configurations are lifted to M-theory. We will find that the situation is especially
interesting in the case of brane cubes, where one can find two distinct models, one with
chiral and one with non-chiral SUSY.

For simplicity let us consider the brane cubes directly on the ITA side with the D4-brane
suspended between the NS5-branes. This is the setup that lifts to M-theory in a straight
forward fashion. The third NS5-brane that we add should have a fixed 22 position, so
that the D4-brane is finite in this direction as well as in z* and 26. There are two distinct
possibilities to do so. The first is to add an NS5”-brane along 014567. This is the setup
considered in [87]. It leads to a chiral N = (2,0) supersymmetric gauge theory in d = 2.
Rotations in 89 space give rise to the U(1)g symmetry. The dual orbifold consists of
D1-branes living on top of an C* /T orbifold, where T is a subgroup of SU(4). By the same
reasoning as for the brane box we find that this chiral brane cube should lift to M-theory
via a SUSY 4-cycle in the 7d 234567 space, that is via a SUSY 4-cycle associated with
G2 holonomy.

The second possibility is to have the NS5”-brane in 012468. This leaves us with N = (1,1)
in 2 dimensions. Since this time all three types of NS5-branes have a common direction
(z3) we can perform a T-duality to type IIB as for the box, leading to a 3d N =1
theory. This time the dual orbifold is a G5 orbifold while the lift to M-theory has to be
performed via an SU(4) SLAG 4-cycle in C*. Therefor this non-chiral cube requires the
same techniques as the SLAG 3-cycle. By simply adding another NS5 along 23469 we
find the brane hypercube and its lift via an SU(5) SLAG.

4.4 Supersymmetric 3-Cycles

Recall the characteristic N = 1 brane configuration:

NS5:|{0 1 2 3 4 5
NS5: |0 1 2 3 6 7
D4: |0 1 2 4 6 10

Tab. 4.3: brane configuration.

As explained in appendix C the precise definition of a supersymmetric 3-cycle requires the
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introduction of a complex structure into R®. This leads to a splitting of the coordinates
into two sets ¢; + i - p;, which is a reflection of the fact that R® can be regarded as the
phase space of a Hamiltonian system. Therefore we divide the variables into space (g;)
and momentum (p;) coordinates respectively. Since the NS5-branes together with the
D4-branes build a N = 2 subsystem, two conjugated (¢,p) pairs are given by (qi,p1) =
(1%, 23) and (g2,p2) = (2%,2°). Then a single NS5-brane as well as a single D4-brane
is automatically a supersymmetric 3-cycle, namely a supersymmetric 2-cycle in the z3-
5z 4_z7 space. The last pair of coordinates is
fixed by the requirement that also the NS5’-brane is a supersymmetric 3-cycle: (g3, p3) =
(z*,27). In summary, the complex structure of C* takes the following form:

x%-28-210 space times the line z7 = const in

ut = 0 +i-2?
u? = 28442
W o= 2t 4i-g”

Now we can work out the supersymmetric 3-cycle conditions (see appendix C.1) on the
three functions

fl = f(m3ﬂx47$57$67x73x10)7
f2 = g($37x47m57$67$77x10)7
3 = h(a® 2t 2%, 15,27, 210).

First, the three Poisson brackets are given by the following set of equations:

0 = {f,9} = fiogs — f3910 + fag7 — f194 + fegs — f596,
0 = {f,h} = fiohs — fshio + fah7 — frhs + fehs — fshe, (4.9)
0 = {g9,h} = gi0hs — gshio + gsh7 — grhs + gehs — gshs.

The equation det N = 1 takes the following form:

0 = (fage — fr95 — fe9a + f597) hio + (g10f6 — 93f5s — fr096 + f395) ha
(f1094 — f397 — grofa + 93 f7) he + (g3 fs + gr0f7 — fro97 — f394) hs (4.10)
(fio9s + fags — 93f6 — g10fs) hr + (fegr — fr96 — fags + f594) hs.

For a supersymmetric 3-cycles these four equations must be zero modulo the ideal of
vanishing functions determined by f, g and h.

One particular class of solutions for these equations is of course given by all 3-cycles
which are a supersymmetric 2-cycle in the z3-2°-2%-2'° space times the line 7 = const in
z-27 space: £(3) = ©(?) x R. The corresponding choice of functions is

f = ReF(z®+iz° 25 +iz'?),
= SmF(z® +iz®, 2% + iz'?), (4.11)

h = 1z — const.

+ +
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As a first and very simple check we can verify that flat, parallel Mb-branes in their
three possible asymptotic limits, namely being NS5, NS5 or D4-branes, are indeed
supersymmetric 3-cycles. For example consider the n parallel NS5-brane, positioned at

28, 27 and 2° (i =1,...,n). Hence the three functions f, g and h are given as
n
f = 1_[(3;6 - .'L'?),
i=1
n
9 = [l -2, (4.12)
i=1

It is easy to show that all eqs. (4.9) and (4.10) are identically zero. The same is of course
true for n' parallel NS5’-branes and k parallel D4-branes. In the following sections we
will discuss more complicate brane intersections and bent brane configurations.

4.5 Supersymmetric 3-Cycles for N =1 Brane Boxes

4.5.1 Branes as Quaternionic Coordinates

In the following sections we like to construct the defining equations f, g and h for those
supersymmetric 3-cycles, which correspond to intersecting NS5, NS5’ and D4-branes,
and in particular for those, which correspond to N = 1 brane box configurations with
uniform bending. For this purpose we would like to introduce three types of ‘coordinates’,
called s, s’ and v, which denote the asymptotic positions in C* of the NS5, NS5’ and D4-
branes respectively. These ‘coordinates’ should be one the same footing as the complex
variables s = 2¢ +iz1® and v = 2* + iz® of the N = 2 (NS5-D4) brane configurations.

To achieve this aim we will now extend the dimension of the space by including also
the directions z?> and z8. This means that we are now dealing with supersymmetric
4-cycles which are embedded into the space C*, which is spanned by the directions
(2,3,4,5,6,7,8,10). All our branes now fill 4 dimensions of this eight dimensional space:
their world volumes completely fill 2, and they are all positioned at 2® = 0. That
means that the 4-cycles, which correspond to the brane boxes of the NS5, NS5 and
D4-branes are in fact nothing else than supersymmetric 3-cycles times the line 28 = 0.
As discussed in detail above, we could add yet another type of NS5-branes, called NS5”-
branes, with world volumes along the (3,4,6,8)-directions and positions in the (2,5,7,10)
space. Considering intersections of all four types of branes (NS5-NS5’-NS5”-D4) one
can construct brane cube models, where the D4-branes are now finite in the directions

z?, z* and zf. These brane cubes provide two-dimensional gauge theories with (1,1)
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supersymmetry. A generic brane cube configuration corresponds to a supersymmetric
4-cycle, which is not a direct product of supersymmetric 3-cycle times R.

The positions of the branes in C* can now nicely described by introducing quaternionic
numbers. A general quaternion g € H has the structure

q = ¢"o0+q'o1 + o2 + ¢°0?, (4.13)

where o9 = 1, and the o; (i = 1,2,3) are the Pauli matrices, satisfying o;0; = €;j10%.
Clearly, a quaternion is zero, ¢ = 0, if all its components ¢; (i = 0,...,3) are vanishing.
Alternatively, we can also define the quaternions via two complex numbers z; = ¢° + ig*
and 2o = ¢®> —iq® as q =2 + jz, where i =0, j =0z and k =14 -j = 03.

Now we can associate to every brane a particular quaternion ¢, which describes its
asymptotic position in C*, and hence is a function of the position variables of every
brane:

NS5 : aqnNss = Q(xﬁax77$83w10)a
NS5 : qnsy = q(zt, 2,28 219), (4.14)
D4 : qpy = q(@*,2°,27,2%).
The four defining equations f™(z2, 2%, x4, 2%, 25, 27,28, 21%) (m = 1,...,4) for the 4-cycle

can be now simply written in terms of a single quaternionic function function

F(qnss,qnNss;qpa):
F(gnss,qnss,qpa) = ['(a") +if*(z") + 52 (") + kf* (2"). (4.15)

Of course, for a general function F(qnss,qnss, qps) one still has to verify whether the
4-cycle is supersymmetric. This is not automatic unlike the case of the supersymmetric
2-cycles, where every holomorphic function corresponds to a supersymmetric 2-cycle.
Specifically, as discussed in section C.1, the supersymmetry conditions are given by the
requirement that six Poisson brackets {f™, f*} plus (det N — 1) have to vanish (modulo
the ideal of vanishing functions determined by the zero locus of the f™). In addition,
since we want the supersymmetric 4-cycle = to be of the form ¥ = X3 x R s_, the
function F(s,s’,v) has to be chosen in such a way that the common zero locus of the
f™ always contains the line 8 = 0. In principle it is also possible to obtain the three
3-cycle equations f, g and h by solving one of the four equations f™ with respect to z8
and substituting the result into the remaining equations.

To understand this procedure of constructing supersymmetric 3-cycles let us first con-
sider case of classical brane configurations which are not bent by quantum effects. To
describe flat branes we introduce the following quaternionic coordinates in analogy to
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the complex variables s and v*3:

NS5: s = 2% +iz'® + jz" — kaB,
NS5 : s = z*+ic® + jo'% — kad, (4.16)
D4 : v = aP4ir®+ 2’ — kab.

A single NS5-brane is a supersymmetric 4-cycle simply defined by the equation FF = s =0
and likewise for the other branes. Next consider the triple intersection of n parallel
NS5-branes with n' parallel NS5’-branes and k parallel D4-branes. This configuration
corresponds to un-bent NS5 and NS5’-branes. In the language of field theory it leads
to finite N = 1 gauge theories. The associated quaternionic function F is given by the
following polynomial:

n' k

F(s,s',v) = H(s — 8i) H(s' —5%) H(v —vp). (4.17)

i=1 j=1 =1

Here s;, s; and v; are constant quaternionic numbers with zero os3-component, which
denote the positions of the three types of branes. It is straightforward to show that this
function F corresponds to a supersymmetric 4-cycle.

4.5.2 Uniform Bending — Sewing of N =2 Models

Now we will construct the supersymmetric 3-cycles which correspond to those N =
1 brane boxes which can be obtained via the sewing or superposition of two N = 2
subsystems. As explained in section 4.1, this means that all the NS5-branes as well as
all the NS5’-branes are bent in an uniform way.

In general, the bending of the NS5 and NS5’-branes should be parametrised by the z*
position of the D4-branes, where 23 is nothing else that the parameter which is associated
to the Coulomb branch in three dimensions. In addition, we roughly expect that the
bending of the NS5-brane is encoded in the functions z8(z3) and z'°(z?), and analogously,
the bending of the NS5’-branes is determined by z*(z3) and z'°(2?). Since z* takes in four
dimensions the role of Agep, 2%, 28 and cosz!® (219 is periodic!) should be logarithmic
functions of z3.

For the case of uniform bending we can be much more explicit. Consider first the uniform
bending of the NS5-brane caused by k& D4-branes. From the N = 2 models we know that
the perturbative bending is described by a two dimensional Laplace equation with the
holomorphic, logarithmic solution z% + iz'® = klog(z® + iz®). In the same way, for the
other N = 2 subsystem, NS5— k’D4, the following perturbative solution for the bending

holds: z!+iz'® = k'log(z” +iz?). This behaviour now suggest that we define the following

*3The NS5”-brane corresponds to the quaternion s” = z10 + x5 + jz7 — k2.
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quaternionic coordinates which describe the asymptotic positions of the bent branes in
a correct way:

NS5 : t = e coszl® + ie*’ sinz!?,
NS5 : ' = e cosz'® + je* sinz'®, (4.18)
D4 v = 2% +iz® + 2" — kab.

Sewing together the perturbative bending of the two N = 2 subsystems provides us with
the following quaternionic function for the supersymmetric 3-cycle, which corresponds
to the simple brane box shown in Fig. 4.5:

NS

k' k +K

NS

Fig. 4.5: A simple brane box with uniform bending

For k = k' = 1 the quaternionic function simply takes the form
F(t,t',v) = [t—v]-[t' —v] = 0. (4.19)

Similar one can write down an expression for arbitrary k and k'. It is possible to show
that this function satisfies the conditions for a supersymmetric cycle. The vanishing
locus which is defined by F(t,t',v) is a true 3-cycle; it consists out of two branches,
namely the superposition of the curve ¢t — v* = 0, which is a 2-cycle in the 3 — 5 — 6 — 10-
directions times the z%-axis, together with the curve t' — v*
2-cycle, now in the directions 3 — 4 — 7 — 10 times the z%-axis.
After having understood the most simple N = 1 brane box with uniform bending (see
Fig. 4.5) we can now construct the non-perturbative, supersymmetric 3-cycle equations
which describe the generic N = 1 brane box with uniform bending situation. It is given
by the superposition of two N = 2 subsystems: the first one consists out of n NSb5-
branes with k, D4-branes suspended between the NS5-branes (see Fig. 4.1). The second

= 0, which represents a
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N = 2 subsystem has the same structure, but now n’ NS5'-branes with %/, suspended
D4-branes. After sewing together these two subsystems, the N = 1 brane box has the
form shown in Fig. 4.4. Now recall that, non-perturbatively, an N = 2 system of the
type in Fig. 4.1 is characterised by a complex 2-cycle polynomial

O 0 Fura(t,0) = pro(0)t" + oy ()8 + 4 P, (0) € + pp, (v). (4.20)

Then the sewing procedure simply corresponds to the multiplication of the two N = 2
polynomials, where we replace the complex variables by the corresponding quaternionic
variables. In this way we get a supersymmetric 3-cycle which consists out of two
branches, namely the direct sum

= = =% xR o=

n,n' ka k', n', k’
a

x R). (4.21)

Note that the two superposed 3-cycles have a common volume in the 3-10 space. In
general the quaternionic 3-cycle equations will have the following structure:

SO F,t0) = (e + ...+ o, )] g " + .+ i, ()] (4.22)

This expression can be expanded and one obtains a polynomial of the following structure:

F(t,t',v) Z Z Pr. (0)pre, (v) £ o g’ =’ (4.23)

a=0a’'=0

’
—Q

Note that the degree of the polynomial in v in front of each term ¢"~>¢ n precisely
agrees with the number of D4-branes in each box [a, o/].

For example the sewing of two pure N = 2 gauge theories with G = SU (k) and G' = SU (k')
leads to a N =1 gauge theory with N. = Ny = k + k' (see Fig. 4.6).

The corresponding 3-cycle equations are then simply given in terms of the product of
two Seiberg-Witten elliptic curves of genus (k — 1) resp. (¥’ —1). This strongly suggests
that the instanton numbers of the pure N = 2 Yang-Mills theory with gauge group SU (k)

are intimately related to those of SUSY QCD with G = SU(2k) and Ny = 2k.
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0 k 0
NS
k' k + K k'
NS
0 Kk 0
NS NS

Fig. 4.6: Sewing of two pure N =2 Yang-Mills theories

At the end of this section we want extract the perturbative running of the N =1 gauge
coupling constant. A priori we deal with two different Coulomb branches parametrised
by 2% +ix® resp. by z3 +iz”. In the following we will consider the common direction, z3,
and freeze the other directions, i.e. z° = z” = 0. Now consider the box [a, '] with the
corresponding gauge group SU(k, + k). From eq. (4.19) we derive that

.CEi,_H - :L'i/ = L + (ktlll-i-l + k(’l’—l —_ 2]{:(111) IOg .CES,
28— 2% = L+ (kat1 +kao1 — 2kq)logz?, (4.24)
where L is the classical distance between the NS5 and NS5’-branes. Then using eq. (4.4),
the gauge coupling constants exhibits the following running behaviour:

1

2
ga,a’

(gs)_l (L2 + L(k:x’—i-l + k(’)’—l + ka+1 + kafl - 2]{7:11 - 2ka) log ;L'S

+  (khyq + Koy — 2k ) (kag1 + ka1 — 2ka)(log w3)2>. (4.25)

Since N, = ko +kl, and Ny = ki, +ki_y +ky +kay1+ka—1+Ea, the coefficient in front of
log z® precisely agrees with the one-loop N =1 g-function coefficient by—; = —3N.+ Ny*4.

4.6 Concluding Remarks

The example in Fig. 4.6 could be analysed in some more detail. From [89] one knows,
that the number of deformations of the 3-cycle solution coincides with the first Betti

*41t was already observed in [10, 88] that the brane box models with uniform bending lead to the correct N =1
B-function coefficients.
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number b and if one pairs deformations into complex numbers #moduli = b;/2. From
the field theory side this should be related to the number of moduli of the gauge theory.
The dimension of the moduli space of a N = 2, SU(V,) gauge theory in 3 dimensions
with N, flavours can be obtained from the classical point of view by counting the number
of scalar fields in the vector multiplet (Coulomb branch) and in the matter multiplets
(Higgs branch), respectively. Classical there is an N, dimensional Coulomb branch and
an 2NyN.— N? dimensional Higgs branch [86]. The quantum moduli spacesind = 3, N = 2
were worked out in [86]. For N; = N, the N.-dimensional Coulomb branch will be lifted
almost completely; only an 1-dim subbranch survives. The N2-dimensional classical Higgs
branch remains untouched. All in all one obtains for N, = Ny = 4 a moduli space of
dimension:

dimM=N2+1=4>+1=1T.

Note the close connection of the 3 and 4 dimensional theories. In fact in [90] the same
dimension is obtained for the genuine 4 dimensional theory.

This should be compared with the prediction derived from the special 3-cycle solution
above. To that end we proceed to compute the first Betti number for the 3-cycle solution
at hand. The both irreducible components of £ are given by the zero set of

Y xR: p1 = t2+(v2—u)-t+1=0and zT = by
Yo x R: pp = P4+ @ —-a)-t+1 =0 and 2° = b
t = ety = P yin = e § = 23 g

In the table below we point out the coordinates involved in the defining equations of the
both 2-cycles ¥; x Ry and X3 x Rg. Here a “x” is filled in, if this coordinates appears
in the defining equations p, ». The b/, denote

Rs |Ra [R5 | Rs | Re | Rio the coordinates held fixed on the irreducible
p1| X L X X | by X sty ..
p |l x| x| b | L] x 9 component p;/ = 0. 'L’ is the line in ¥ x R.
71 % | b | * | by | 7 In the last row we depict the generic result
({92

of the intersection of the two tori. “x” means
Tab. 4.4: Common intersection. there is always a common intersection, whereas
“?” denotes the variables for which one has to

decide the problem. The common intersection is given by:

p=t?+ @ —u)-t+1 =0 and p=F+@ -a)-t+1 = 0

zs = b, ®m = by, w3 = 0

These are four real equations of third degree in four unknown variables and the generic
solution are up to deg(p;) - deg(p2) = 9 points. Thus in the generic situation the two
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tori do intersect in points. Fig. 4.7 is a rough sketch of the situation in the case

of touching points. It is a simple computation in simplicial homology to construct

the matrix representation of the action of the boundary operator, which yields the
complex below

8 03 12 0y 2
0— Z2—cycles _% Zl—cycles —3 ZO—Cycles -0

Then we end up with

ker O, L : k=0
a :
: Hk(TfU2ptsT22)=ima =S Z5 : k=1
Dy £ Dy ko VA k=2
f e €
bip\g D b b|D; \B D, |b
4 2 , Completely analogous one proceeds for the
C C
D, d by ¢ n-point unification so that the formula for
A a A a

the first Bettinumberis b, =4+ n — 1. Here
Fig. 4.7: 2-point unification of two tori. 1 = deg(p1) - deg(p2) = (NS1+1) - (N5 +1),

which is closely related to the numbers N,
and Nl(:iz of D4-branes in the polynomials p; /5. If Ng‘z = Ngi = N./2 =2 then

N2 N
#moduli = 2+?C+7¢ = 2+2+2.

What is the meaning of the number 6 ? The first 3 deformations are identified with
the parameters appearing in the 2-cycle polynomials. For the other three the correct
interpretation is still lacking. However it is possible to find this number in the relative
positions of the branes again. Let us explain how this works*s. In what follows we
want to count the number of parameters for relative orientations of branes, which are
compatible with the sewing ansatz, i.e. we want to maintain N = 2 subsystems. Note
that the branes (SLAG planes) of the N=2 subsystems intersect pairwise in a line. To
count moduli we start with a single brane. Each SLAG plane is generated by acting with
an SU(3)-element on the real section of C* (see Fig. C.2 in the appendix). We want to
assume that the D5-branes of both subsystems are parallel. Thus we have to count the
relative positions of two other SLAG planes which intersect the D5-brane in two lines,
non parallel but with a common intersection. The relative position of the second line
with respect to the first is described by two angles (the sphere in R®). Now restrict the
attention to a second brane, which intersect the first in one of the two lines. The second
plane is generated by acting with an element of SU(2) C SU(3) on the two remaining
directions. This contributes dim S£(2) = dim SU(2)/SO(2) = 2 moduli. The last step is
to put the third plane in the game, which intersect the first brane in the other line. We
iterate the process and obtain again 2 moduli. To sum up we obtain

2+2+2 =6

*5We want to thank V. Braun for a discussion about this subject.




real moduli describing brane positions in R® compatible with the sewing ansatz. This
should be the right interpretation for the other 3 complex parameters.



Chapter 5

Gauge Theory and Supergravity

In this chapter we want to discuss a detail which comes out as a byproduct of the dis-
cussion in the last chapters. Here it becomes important, that we are concerned with
the investigation of superconformal field theories (finite models). In a remarkable re-
cent development it became clear that in a large class of superconformal field theories
a new type of duality symmetry arises, namely they can be described equivalently by
supergravity in Anti-de-Sitter (AdS) spaces [12]. In particular, there is a correspondence
between four-dimensional superconformal field theories and supergravity on AdSs x M?®,
where M? is a certain five-dimensional Einstein space specified by the superconformal
field theory we are concerned with. The examples discussed intensively in the literature
are listed in Tab. 5.1:

Einstein space: 55 TV = M(ng def. S°

Gauge theory: | N = 4 SYM | D3-branes at conifold ?

Tab. 5.1: Einstein spaces and CFT

In the simplest case, M° is given by S, and the corresponding superconformal field
theory is just N = 4 super Yang-Mills with SU(n) gauge symmetry. This is precisely
the superconformal theory which lives on the world volume of n parallel D3-branes and
slightly discussed in 1.3.1. Another well studied example for M3 is the coset space T1!
which leads to a N = 1 superconformal gauge theory, which is the superconformal theory
of D3-branes probing the conifold singularity of eq. (2.3) [15].

The prescription of the holographic map [91, 92, 93, 94] allows for several non-trivial
checks of the conjectured AdS/CFT correspondence. For example, the central charge
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of the conformal field theory is inversely proportional to the volume of M®. This check
works very nicely for the correspondence between the coset space T*! and the supercon-
formal field theory from D3-branes at the conifold singularity. Recently, deformations of
the usual IIB string theory on AdSs x S5 has been studied [95, 96, 18] by analysing critical
points of the scalar potential of N = 8 gauged supergravity. N = 8 gauged supergravity
arises as a description for the effective theory of the massless modes in a S5-Kaluza-Klein
reduction. The Lagrangian of N = 8 gauged supergravity was derived in [97]. In [18]
a new critical point was found, leaving N = 2 unbroken in the bulk (or N = 1 on the
brane), while preserving an SU(2) x U(1) subgroup of the SO(6) gauged global symmetry.
The information about this fixed point is completed by the ratio of the volume of the
SUGRA solution corresponding to the N = 8 critical point (dual to N = 4 SYM - UV)
to the volume of the SUGRA solution corresponding to the new critical point (dual to
the unidentified N =1 theory - IR). The ratio yields

Ve _em _ 2
VN2 o CN, o 32'

(5.1)

The aim of this chapter is to show that this new fixed point corresponds to a particular
mass deformation of the N = 4 super Yang-Mills theory. It will be pointed out that
the new fixed point field theories obtained by mass deforming the N = 4 theory indeed
reproduce the global symmetry as well as the ratio c¢;g/cyy from the supergravity side.
The labels “IR” and “UV” are taken from the applications in the context of renormali-
sation group flows [98].

In section 5.1 we will briefly explain the method [83] of deforming a supersymmetric field
theory with a marginal operator to obtain a new class of superconformal models. Here
it will be established that applying the same types of arguments to the deformation of
the N = 4 SUSY gauge theory by a mass term for one of the adjoint chiral multiplets
one obtains a one parameter family of N = 1 superconformal field theories. They can be
expressed as N = 1 theories with two massless adjoints A and B deformed by a quartic
superpotential W ~ (AB)2. This has to be contrasted with the mass deformation of the
N =4 theories by a mass for a full hypermultiplet studied e.g. in [99]. While the latter
one leads to a N = 2 theory, this deformation leaves only N = 1 unbroken.

In section 5.3 we will turn to the dual supergravity description provided by the super-
symmetric fixed point found in [18] from the deformation of the AdS; x S® supergravity.
While the field theory considerations presented up to this point are actually valid for an

arbitrary gauge group, only the SU(n) theories will be realized on D3-branes probes in
IIB.
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5.1 Construction of the New Conformal Theories

Conformal field theories typically appear at the fixed points of the renormalisation group
flow, where all couplings become unrenormalised with respect to the energy (inverse
length) scale. If one starts from a given conformal field theory in d = 4 dimensions one
could deform it by adding additional terms O(z) to the action.

S—=+8 + h-/d4x O(x) (5.2)

In general the deformed theory is not any longer a conformal one. To decide whether
it is or not one has to take the scaling properties of O(z) into account. A denotes the
scaling dimension of O(z). One can distinguish three cases in d = 4:

<4 relevant UV 8" 1R
A = =4 marginal no effect
>4 irrel. UV «— IR

Only marginal operators preserve the property to be a conformal theory. Last but not

least a little complication arises. Quantum corrections may spoil the scaling properties

_0Inz;
Olnp

renormalisation. Here Z; is the common Z-factor of the wave function renormalisation
and p the Wilsonian cutoff. For a certain field ¢; the scaling dimension A is then given
as the sum of the canonical dimension d(¢;) and the anomalous dimension v(¢;)

of the field ¢; due to an anomalous dimension*' ~v(¢;) = it could pick up under

Ag) = d(6) + 576

Thus it is meaningless to talk about marginality without having control about the anoma-
lous scaling behaviour. Operators O(z), which are protected against this unwanted fea-
ture are called exactly marginal operators. Actually it is quite hard to figure out which
operator is a marginal one and which not, proving at the same time that one deforms
inside the class of conformal theories.

The construction in [83] gives an indirect method to establish the existence of a family
of finite N = 1 theories through the construction of whole fixed manifolds. The basic
idea is simply described. If one adds a perturbation & - ¢;...4, with parameter h to the
action as in eq. (5.2) the authors of [100, 101] found the expression for the S-functions
of the h-coupling:

B = AW (—dW + X Jaon) + %vwk)]) = h(u) Ar. (5.9
k

*1The definition of anomalous dimension deviates from the standard one which absorbs the factor 1/2.
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dy is the canonical dimension of the superpotential, which is 3. Furthermore the
B-function of the gauge coupling was computed in [102, 103]:

By = — gl ( [ 30,(G) - Y T(Ry) ] +ZT(Rk)v<¢k)) = f(olu) Ay (54)
k k

~

bo

/

Here by is the 1-loop B-function coefficient and T'(R;) is the Dynkin index of the rep-
resentation R;, which is defined by the trace on generators of the Lie algebra in the
representation R; below:

Tr(T°T®) = T(R;)d5%.

C3(@) is the same for the fundamental representation.

At a fixed point all S-functions must vanish. Therefore the theories are in particular finite
ones. In the case at hand the two coupling constant, will be determined from the two
relations, eq. (5.3) and eq. (5.4). In general one could expect at most isolated solutions
but if the equations are dependent a fixed line may appear. This simple observation will
be applied to the special case of a mass deformed superconformal theory.

5.2 The Flow from N =4 to N =1 Theories

From the N = 1 point of view, the field content of the N = 4 theory is depicted in
Tab. 5.2,

A, 4 Aaa 6 real ®!

in 4 of SUR(4) | in 6 of SUR(4)

Tab. 5.2: N=4 Vector multiplet

which provides us with three chiral matter fields ®, in the adjoint representation of the
gauge group. In N = 1 terms the SU(4) R-symmetry is not manifest any longer but
the chiral fields (the six real scalars combine into the three complex scalar components)
transforms under the residual R-symmetry group

®, € 3% of SU(3) x Ug(1) € SUR(4)
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The superpotential of eq. (1.31) is a marginal operator of the N = 4 theory,

W = gfi3,9,9,, (5.5)

which after appropriate renaming of the fields reads:

W = gf* AByX..

Now we add the mass term
Whass = m (Xc)2

for the chiral field X.. This mass term breaks the original R-symmetry and the fields
get the new R-charges as shown in Tab. 5.3.

field Aa Bb Xc

rol 12172 1

Tab. 5.3: R-charges of the chiral superfields

For the effective theory of massless modes one should integrate out the heavy field
which simply amounts to use the equation of motion to eliminate the field X, from the
superpotential

ow

0X = gfabcAaBb ; 2m X,
c

As a result we find that any N =1 theory with two adjoint matter fields A and B allows
for a marginal deformation by adding the quartic superpotential

W = h-fobeflecq B, A;B, h= 39 (5.6)

That this is in fact a marginal operator follow from the formulas in eq. (5.3) and eq. (5.4).
At first all matter fields are in the same representation and one obtains C2(G) = T'(R;).
A second piece of information originates from the residual R-symmetry. The surviving
SU(2) acts on the fields A and B and put them into doublets. Therefore the anomalous
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dimensions of these fields coincide. Having this in mind, we write out the equations (5.3)
and (5.4):

By ~ 3 -2+ 2:9(gh) =0

Bn ~ 1+ 2-9(g,h) = 0

These equations are in fact dependent giving rise to a fixed line of conformal field theo-
ries and one can convince oneself that the new superpotential really has the right scaling
property (A = 4).

Note that not all values of this marginal coupling are distinct. There exists an S-duality
inherited from the N = 4 theory, mapping strong coupling to weak coupling. Looking at
the special point where the quartic superpotential is turned off, we find the interesting
conclusion that all N =1 theories with 2 adjoints are self dual under Seiberg duality in
the sense that electric and magnetic theory have the same gauge group, but the mag-
netic theory has in addition a cubic superpotential coupling to some singlet meson fields.

Let us add some comments about this model:

1. This deformation is not the same as the deformation of the N = 4 theory by a mass
term for a full hypermultiplet as e.g. studied in [99]. The latter leaves an N = 2
SUSY unbroken and mass deformation is given by one complex parameter. In our
case it is just one real mass parameter.

2. A very similar family of N = 1 superconformal theories exists, which arise as mass
deformed N = 2 theories. Deforming the finite N = 2 SU(n) theory with 2n flavours
by a mass for the adjoint chiral multiplet leaves an N = 1 theory with a quartic
superpotential. The superconformal theory along the fixed line parametrised by the
marginal operator is precisely the superconformal theory of n D3-branes probing a
conifold.

5.3 The dual Supergravity Description

Now we come back to the point we started from in the foreword to this chapter. Fol-
lowing the general idea of [12] one would expect that these conformal field theories do
have a dual supergravity description. Since the field theory constructed in subsection
5.2 arises as a mass deformation of N =4 SYM, the dual supergravity description should
be a deformation of the usual IIB string theory on AdSs x S°. In [95, 96, 18] such de-
formations where studied by analysing critical points of N = 8 gauged supergravity. In
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[18] a new fixed point was found, leaving N = 2 unbroken in the bulk (corresponding
to N =1 on the brane). We will argue that this deformation indeed corresponds to the
dual of the superconformal field theories we were studying in this chapter.

As a first piece of evidence for having correctly assigned the SUGRA solution of [18] to
the conformal N = 1 theory obtained by a mass deformation of N =4 super Yang-Mills
theory let us compare the global symmetries. According to [18] the subgroup of SO(6)
unbroken by the solution is SU(2) x U(1). The SU(2) in the field theory rotates the 2
adjoints into each other. The ABAB super potential is invariant. The U(1) is the U(1)g
symmetry of the N = 1 theory under which A and B both have charge 1/2.

A more quantitative test is to compare the ratio of central charges ¢ of the deformed
(IR) and undeformed (UV) theories. On the supergravity side the ratio was computed
and the prediction is 27/32. Let us show that this value is reproduced by the proposed
dual field theory. The computation follows [94].

The quotient of the central charges of the IR and UV conformal theories can be calcu-
lated using a trick. The central charge ¢ appears in the formula of the Weyl anomaly,
which has the general structure [104]:

T Truv 1 v
Wnpe WHP? 4+ =V, VH

1 - ~ 1
< Tu” >9uV’V# = a- - w?Rpra'R“ " :| e |: 16? 6r

Here a is the axial charge, the subscripts g,, and V,, are the sources of 7,,, and R, in the
generating functional and R,,,, is the dual of the Riemannian curvature Ry, .,

A useful property of N = 1 super conformal algebras is the fact that the currents fit
into a supermultiplet of currents, which determines on the other side a supermultiplet
of anomalies. Therefore the Weyl anomaly and the anomaly of the R-charge are not
independent. In fact the latter is given by:

a—c ~ oo da — 3¢ ~
< aﬂ \/ng' >9#V7Vu = - W Ruypo-Ru b + W Vu,,V“ - (57)

The important point to note is the appearance of the constants a and ¢ we are interested
in in the latter formula. Thus one can determine the Weyl anomaly from the anomaly
of the R-charge, which is a rather standard computation in quantum field theory.
Taking appropriate variations of eq. (5.7) with respect to the sources g,, and V,, respec-
tively, one obtains two relations:
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a—c ~ < Ou\gR*T,3T,s >,
(5.8)
5a—3c ~ < O,9gR'R,Rg>.

The constants of proportionality does not really matter as we take quotients later on
and they drop out.

The correlators of eq. (5.8) can be computed from the famous triangle graphs (see
Fig. 5.1) below.

R T
Fig. 5.1: Triangle graphs

The pleasant property of this types of graphs is that a particle couples via its R-charge to
each of the R-current vertices. Therefore the graph on the left hand side is proportional
to the sum of third powers of R-charges of each propagating particle in the loop while
the graph on the right hand side does the same but only to the first power of R-charges.

UV - N =4 SYM: First consider the UV theory. We have (N2 —1) gauginos with r = 1
and 3 - (N? — 1) matter fermions with r = —1/3 (the superpotential has to have r = 2, so
the scalars have r = 2/3 and the fermions » = —1/3).

X r(x)

N2 —1  gauginos

(N2 —1) - 3 matter fermions | —

Tab. 5.4: R-charges of N =4
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<0, +/gRTT > is given by the sum of all R-charges,
a — ¢ ~ Zr(x) =0
hence a = ¢. Moreover

3
S5a — 3¢ ~ Y rP(x) = (N2-1)-1 + 3(Nf—1)-<—%) = S(Nf—l)

and therefore ¢ ~ % (N2 —1).

IR - deformed N =4 SYM: In the IR we see the mass deformed N = 1 theory with
a superpotential given in eq. (5.6). So we are left with (N2 — 1) gauginos with R-charge
r = 1 accompanied by 2 - (N2 — 1) matter fermions 4, B with R-charge r = —1/2.

X 7(x)

N2 —1 gauginos

(N2 —1) - 2 matter fermions | —

Tab. 5.5: R-charges of def. N =4

Therefore

a—c¢ ~ Zr(x)zo

3
S5a — 3¢ ~ Y rP(x) = (N2-1)-1 + 2(N3—1)-(—%) = Z(Nf—l)

and comparing finally with the supergravity prediction mentioned above one finds

27

CIR 27
32

cuv

©lis|oolw

in complete agreement. Finally one can determine the absolute value of the central
charge from the known value of cyy. The UV theory is the unbroken N = 4 theory.



Thus the central charge will be given just by the free field contributions and adds up to
c¢=1/4-(N2? —1). Then the central charge of the interacting IR theory is given by

27 )
CIR — 1_28(Nc —1).

Note that the numerical value 27/32 is precisely the same as the one obtained in the
related setup of the conifold as viewed as a mass deformation of the Z, orbifold [94, 2].
This lead [18] to the speculation that these two theories are indeed related. Here we
see that they are quite distinct. The reason for the matching of the numerical values
is just due to the mechanism by which we deform: a finite theory with a cubic super-
potential (the only choice in a finite theory) is deformed by a mass term, giving rise to
quartic superpotential while killing 1/3 of the fields. The superpotential uniquely fixes
the R-charge which in turn determines the central charge.



Appendix A

Definitions

Metric and e-Symbol

Nep = diag(—1,1...1)

601..n—1n — 1
_ ao...a
€ap.an, = g€
ag...a —_ ag-.--a
€0 ey by = GOp

agQ...a; a4 e @
€ 0 iAi4+1 n e

aQ... — . Qo...Q;
b0.--biGit1..-0n 96b0~~~biai+1---an =g(n—1)!- (sbo...bi

eao...aneao.“an — g . n[

Vielbein

The change from spacetime components to tangent frame components can be performed

via the vielbein e?), (e* = e%,dz* ),
N
a —
ey = al
which satisfies
b b _ . ab
Tab eaue v = Yuv gll«" eaue v — Wa
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and is given by
The inverse operation would be performed by the “inverse” vielbein é*;, which is defined
by:

e* = e"ydat = e, étpeb = e, e, = 0F and é e, = O
Obviously it is precisely the inverse matrix of e®,. Finally

et = (éua)‘r £, = (eau)’r

Gamma Matrices

The SO(1,10) vector index a splits under the residual SO(1,5)xS0(5) group intoa = (a,d’),
which corresponds to the space-time directions tangential or normal to the brane, re-
spectively.

What are the corresponding spin groups 7

Spin(1,5)
Spin(5)

SU*(4) a =1...4
USp(4) i =1...4

0 — Spin(1,5) x Spin(5) — Spin(1,10) — 0
(¥* © s, X B g @ ey

5-dimensional Euclidean Clifford algebra C£(0, 5): 9i; = 0ij

{717’7]} = 251] i?j = 17 ) 5

6-dimensional Minkowskian Clifford algebra C4(1,5): 754, = diag(-1,1,...,1)

We want to define a 6-dimensional Minkowskian Clifford algebra in terms of the 5-
dimensional Euclidean Clifford algebra given before. Of course we need an additional
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generator of the underlying vector space. Furthermore the general theory of Clifford
algebras teaches, that we can not prevent a doubling of the dimension of the matrices
in going from a five to a six dimensional one. We will get an satisfying answer after
considering some preliminary facts. Choose

’YO — _;?0 =1 a‘nd ;yz — ’YZ
then
Y= +1°(=") = 29”1
P50 44950 = 2701
On the other side for i = 1,..., 5:
P37 +97 =0

So we can combine the last formula and the 5-dimensional Euclidean Clifford algebra
into a new compact definitiona = 0, ..., 5:

’)’a’~)/b +,Yb,~)/a — 2nab 1.
But now we can define the 6-dimensional Minkowskian Clifford algebra by

~a 0 a
(F )aﬁ = ((&a)aﬁ (’70)045> a=20,...,9
which in fact satisfy
{Te,T%} = 299 a,b = 0,...,5.

The linear independence of the generators of the underlying vector space is ensured by
the relative minus sign in front of the v° and 4° matrices, respectively. Since +¢ are linear
independent, the both equations +1 = " ¢;4* cannot be fulfilled simultaneously.
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A general property:

Let A\ = e -...-eryy be the chirality operator of an even dimensional Clifford algebra
CL(k,1) of signature (k,1). Then

o= 22— (_l)oc—z—;)(k—z)

Let V be the even dimensional vector space underlying the even dimensional Clifford

algebra mentioned before. Then there is a Clifford map j, which establishes the graded
isomorphism below:

CUV dW,n®Kg) — CUV,n) ®CLW,g)

jvdw) = vl+AQw

Specialising to the case at hand, we obtain:
CURY oR® ndg) — CLR,n) ®CUR®,q)

jovdw) = vel+Aw

11-dimensional Clifford algebra C£(1,10):

9 = 6 (ses 70 ) @ = 02 (% )

; (5 B 0 1 1 130 s 6 ﬁ 0 1
a b _ ab g7 « a b _ a'b §J « a Ta _
{F ,F } - 277 6@' ( 0 (saﬁ ) ’ {F ,F } - 26 61’ ( 0 (saﬁ ) ’ {F 7F } = 0.

a2 bl ..b _ Y . (,ya1...a,2") B 0
(Fal a2n b7 m)gg = (’7171 bm)ﬂ( 0 « (_l)m(;)«/m...ag")aﬂ

7 1 7 ’ . 0 _1 m ai...a2n+1
(Fa1...a2n+1b1~~~bm)gﬁ = (7b1...bm)i1< (,"}’,al---ﬂan_'_l)aﬁ (-1 (’70 )aﬁ>
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[a1 ~a2

ylen yezyts ool

Q1...Qn

Duality relation:

We need a specialisation of the duality relation for 6-dimensional Gamma matrices given
below.

]_ n(n+1)
2 €

f\a1...an — (_1)

A1...QnAn41...06 fO 5]"_"*

An+41...046

1 n(n+1)
1 pl

€a1...anan+1...GGFO...5Fan+1...a5

1 n(nt1) ~ -
(6 _n)'(_l) 2 Fal...anan+1...aera"+1...a6

—1) = [ (6 —n)!
( 1) Fal...a"a(no_f_l...aéo) Fa(noj_lmaéo) (6 TL)
fix.Belegung

_ +(_1) S fa1---anra(0) . Faéo)f‘a(no—:—l' .. f‘aéo)

n41

nntl) o 6—n—1)+...41 2 =2
7 Tg,.q, - (=)= DF 1 P2 ...Fa(o)
~ 6

s Onir

~
(nt1)
n(ndl) 1y

(-1

— 2 s — Tai...0n
= _Fal...a" -T ) °°° r o) — r
A1 ag

Using the explicit form of the antisymmetric product of Gamma matrices we can derive
the following lines for even n:

1 n(nt1)
2

Paran  _ (_1) €a1...anan+1...a6f‘0m5f

An41---06

1
1 1 %em---ananﬂ---ae )

( 1 0 ) . ( (’Yan_(_l...aﬁ)aﬂ 5 0 )
0 -1 0 (’Yan+1~~~a6)aﬁ

A completely similar computation holds for n odd. Then for all n we find the same
duality relation

1 1 %6a1...anan+1...a

6’Yan+1~~~a6 (Al)



or with an extra minus sign for %=,



Appendix B

Toric Data of Singularities

Orbifold Geometries

The (complex) 3-dimensional orbifold geometries we are studying are

e The flat complex space C* with coordinates z; = z* +iz°, 20 = 2% + i2” and 23 =
8 4 ;9
M XA

e The Zj, x Z; orbifold Oy, = C? /(Zy x Z;), being defined as

7 7

2 o ekl g e e 2mi/lL 5 (B.1)
29 29 | 22 > e 27/l 4,

23 > e 2mifk 23 | 23 23

The defining equations of the orbifold are given by writing down the relations between
the invariant monomials which are

U1 U2 us 2 Us Ug

. . k l
inv. monomials | 2f!' (21 -23)" 25 (21-22)" 2 212923

By the map, which associates invariant polynomials with lattice points

M: z{z325- (a, b, c )T

we get a list of generating elements of the lattice of invariant monomials as the columns
of M. Since obviously the lattice is at most three dimensional, on the other hand there

92
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are more than three generating elements, we expect relations in the u;. To compute these
relations we have do deal with integral lattices. A relation is an element of the preimage
of M which gets map to zero in the image of M, i.e. a certain sum of generating vectors
of the lattice combine to zero. But this is certainly the kernel of the map mentioned
before. The matrix representation of M is simply

kKl &k 0 I 0 1
M = 0 0017111
k Kk 0 01
Then the kernel is given by
ker M = span{ (1,-!, 0,—k, 0, kl), (0, O, I, k, 0,—kl), (0, I, O, O, k,—kl) }
If one translate these relations back one obtains the equations, which describe this special

singularity:

up-ult = uhuk o uhouk = Wl bl = Wl
Again we can best encode the possible blowups in a toric language. The corresponding
diagram was shown in Fig.2.3. One can view this geometry as a partial blowup of the
orbifolded conifold, which was given by the toric diagram in Fig.2.4. Basically by sending
all m;; in the upper triangle to infinity we “remove” half of the two-cycles, leaving us
with the orbifold geometry.

Orbifolded Conifold

The defining equations of the conifold can be obtained by writing down the relations
between the invariant monomials which are

Uy U2 U3 Ug Us U
i

i k k

inv. monomials | z v® ww

¥y oy wu

By the map, which associates invariant polynomials with lattice points
M: zy*uv®— (a, b, c,d )T

we get a list of generating elements of the lattice M of invariant monomials as the columns
of M. Since obviously the lattice is at most four dimensional, on the other hand there
are more than four generating elements, we expect relations in the u;. A relation is an
element of the preimage of M which gets map to zero in the image of M, i.e. a certain



sum of generating vectors of the lattice add up to zero. But this is certainly the kernel
of the map mentioned before. The matrix representation of M is simply

OO O~
OO ~O
SO ==
o OO
O OO
- o

Then the kernel is given by
kerM = span{ (1, 1,-1,0,0,0), (0,0,0,1, 1,-k) }
If we translate these relations back to equations we obtain
up -ug =ub  and  uy-us = uk.

With the help of the conifold equation zy — uv = uz — ug one can eliminate a further
variable, such that the resulting equations read

UL - Us =ul3 and ug4 - us =u’3“.
Renaming the variables to more conventional ones (z' = ui, ¥' = uz2, z = uz, u' = uy,
v' = ugz) we obtain

zy = =z

u/ 1}' k

I
x



Appendix C

SLAG d-Cycles

C.1 The d-Cycle Equations

A d-dimensional ‘curve’ (9, embedded into 2d-dimensional flat space R?¢ with coor-
dinates z¢ (i = 1,...,2d) can be described at least locally by the zero locus of d real
functions f™(z?,...,z2%):

D =V Y = {(@1,. - 20a) | fME 2% =0, m=1,...,d}.

If one wants to deal with a so called supersymmetric d-cycle, the choice of the functions
f™ is highly constrained. To study these restrictions we first introduce d real coordinates
& (i = 1,...,d) which parametrise the curve (9. Furthermore we consider complex
coordinates u?, u* = 22! + iz of C?. Then the d-cycle can be characterised by making
the complex u? to be functions of the real coordinates &;, i.e. by the following embedding
map i from (¥ into C%:

i:2@ ¢t & —ui(&G), i=1,....,d (C.1)

Fig. C.1: The intersecting configuration
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The intersection configuration (for the case d = 3) is depicted in figure C.1.
Now by applying the partial derivative J, to the defining equations f™ of the d-cycle,
we get the following relations:

d
§ m, n m -n _
n=1
m _ Of™ n _ ou" : : : :
(here f% = S, ug, = ﬁ). These can be grouped into the following matrix expressions
1 1 1 1 1 1 1 =1
ul w2 ud ugk al fﬁz v ad ugk
2 2 2 u 2 2 2 a
ul  Ju2 e ud 3% = (—1)d at  Ja ot ad . £k
d d d d d d d —d
v [ oo foa ug, o Jfae oo fia ag,

We will denote the left matrix by M and the right matrix as M, henceforth. Note, the
sign in front of M depends on the dimension d of the cycle. With the help of these
matrices we can express the bared derivatives by the unbared ones in the following way:

U = (=1)M~M - 8,U = N - 8 U. (C.3)
By definition N shares the properties:
. N 1=(-1)M'M=N
2. |det N| =1

Remembering the d-cycle should be supersymmetric we can ask for restrictions of the

matrix N following from this condition. It is well known that the notion of supersymmet-

ric cycles [65] coincides with the notion of special Lagrangian submanifolds [68] which

can be rephrased in terms of the embedding map i: (9 — C? and the two conditions:
i*SmQ = 0 volume minimizing

i*w = 0 Lagrangian submanifold (C.4)

With @ = du' A...Adu? and w = & Y du’ A du’. The requirement of minimal volume
i

reads
0 = *ImQ = Sm(du'(&,...,&)A...Adul(&,.. . &)

= Sm(eq. qugul.. ul) ' AL A dE?

1 . . . )
= 0 = Z(eil"'idu?l"'ugz _6’i1---id11211"'17’22)

1 . . ) o .

= Q_Z'(ei1~~~idu211' cugh = €yl NG N ugt)
1 . S )

= Q_z'(eil"'id —€jy..juNi . NZJ;)uz}l .. uz‘;

_ l(l _ det N) - Aul, ... ut)
2 6(51) B §d)
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which yields
det Ny, . ¢n) =1 or for short det N = 1.
For the calculation of the det-equation the following relation is useful.
det N = 1 & det M —(—1)%det M =0

Now we turn to the second equation. With the canonical Kahler (symplectic) form w,
the pull back operation results in

0=i*w = %Zd«/(gl...gd)/\dai(gl...gd)
1 ; g
©aX () (B

= 5 20 [uf,uf, — b uf,] dée A dé

k<l 1

= 0 = Z[uékazl_uélﬂék]

i

- Sl (Free) - (S

1

- Y (2 N) Y (z N)
1 m 7 m

- S (Svir) -5 (k)
1 m m 7

SR PoYRE B ol Do
1 m m

%
= 3 (Nh - NTL) b

i,m

which is satisfied if we set N = N7. However, as it stands, this requirement is sufficient,
only. Now we intend to give a proof that the condition is necessary, too.

To proof N = NT we remember some facts from symplectic geometry especially various
ways of characterising Lagrangian planes in symplectic vector spaces. The utility of
this investigation rest on the simple observation that our conditions on the d-cycle to
be a special Lagrangian submanifolds are in fact conditions on its tangent bundle, i.e.
Lagrangian planes locally.
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To begin with, we consider a complex vector space C¢ furnished with a Hermitian struc-
ture

<z,y>= szgl :g(.fl?,y) +lO'(£L',y)
1

which splits into an Euclidean metric g and a symplectic form ¢. One can check that o
coincides with

1 S
w = % E du' A da’.
1

given before. Therefore we identify both objects. The two-form w is non degenerated,
antisymmetric and bilinear. With help of w we can define the notion of symplectic
orthogonality.

Definition 1. The orthogonal complement of a vector subspace E € C? is defined by
Et ={zeC?|w(z,E) =0}

In the special case that E = E1 we call E a Lagrangian plane. Obviously on a La-
grangian plane the symplectic form restricts to zero. So we recognise the content of the
constraint i*w = 0. It simply states that all tangent spaces to the supersymmetric cycle
are Lagrangian planes embedded in the tangent space of the embedding space. Here we
collect some facts:

1. Sp(E) operates transitively on Lagrangian planes
2. Since U(d) preserves the Hermitian form, it is contained in Sp(E).
3. By £(C?) we denote the GraBmannian of Lagrangian planes

4. X € £(C?%) is characterised by choosing an orthonormal basis (ai,... ,a,) with re-
spect to the Euclidean metric g. But then it is orthonormal with respect to the
Hermitian form, too:

< aj,a; >=g(a;,a;) +iw(a;,a;) = b,
i.e. the matrix a = (a4,...,a,) is unitary. The other direction works, too. Hence

AeL(CY) & FaecU(d), A =a(R?)
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Fig. C.2: The operation of a on Lagrangian planes

5. Obviously each Lagrangian plane will be stabilised by any element in O(n), i.e. we
can regard the Gramannian of Lagrangian planes as the quotient space

U(d)
dy _
A = o)
How can we define a projection from U(d) onto £(C?) ? We observe that two elements
a and o' determine the same Lagrangian plane, iff

A=aR) =d(R) & aa'=da !

which is constant on the O(d)-orbits of the fibration. Now we can identify £(C?) with
the image of the projection map

7:Ud) — L£(C?)

a — A=aa!

By abuse of language we denote the matrix representative aa—! of the Lagrangian plane
A = a(R") by A again. But how can we associate the geometrical object with this artificial
matrix representative? The connection between the matrix A on the one side and the
concrete Lagrangian plane A on the other side is given through the central equation

TEN & 2=)T

In the last formula we recognise the familiar equation (C.3). But now we know, that we

can represent A as A = aa~! and this yields straight forward

g+ 1T 1 - _
M = gl at=atatl=aa =)

= AT = )\



100

But then we can finally conclude by identifying A = N~ and performing some mild
manipulations that

N=NT

O
In summary, all what we have done so far can be formulated in a short but important
proposition which is the starting point for all further computations:

Proposition: A d-cycle, represented as an intersection of d real valued functions is
supersymmetric, iff N = NT and det N = 1.

It will turn out to be very useful to reformulate the last proposition N = N7 in a differ-
ent, but equivalent way. Namely, it is not difficult to show that the requirement N = NT
is equivalent to the condition that the matrix MM* should be real modulo I(V). To
prepare this reformulation we remark that by the split of the coordinates of R2? into
the coordinates of C? they inherit an intrinsic meaning as the spatial and momentum
variables of symplectic geometry. This is given by

ut = ¢ +ipt, (C.5)

i.e. the real part of u’ gets the meaning of a spatial coordinate whereas the p is a
momentum variable. Then we are free to define the convenient Poisson brackets of
phase-space functions {f, g}. This is done in the standard way as

d

¢ 1af a9 8f dg
{fi9}= ; (8_q’6_p’ ~ o 6_q1> = ;(fmqgm = f2i92i-1), (C.6)

where fo;_1 = gf; = a—w‘z% and fo; = 3%57 = 8—?0%. Then the matrix MM™ reads
(MM =< V™V > i {f™ f}. (C.7)

So MM+ is a real matrix modulo I(V), i.e. N = N7, if all Poisson brackets among the
defining functions f™ and f" vanish:

{f™rrr=0. (C.8)
So we get a more suitable set of equations for concrete calculations.

Corollary: A d-cycle, represented as an intersection of d real wvalued functions is
supersymmetric, iff {fi,f7} =0 and det N =1
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C.2 An Algebraic Identity
X X5\ 2 2 2 X, 0X X 0Xo ]2
v () + () ) () |~ o0 o0 * 0 20r)
oq Oq1 g Oq1 Og Oq1 Oga
X X5\ X1\ X5\ 2
G Gy Gy G
oq oq a2 0qo
(axl) (@)2 ) (@)2 _[axlaxl aXQaXQ]2
oq Oq: Oq1 Oga Oq1 Oqa
0X 0X>\2  [0X:\? 2 X, 8X X, 80X\ 2
- (50 () () (5 (-
oq Oq1 0go q2 Oq1 Oga Oq1 Oga

(% %>2_26X1 0X, (axl ~ 6X2)2+26X1 80X, (axl 0X, 90X, 8X1)2+1
on Oqa Oq1 Ogo Ogz oq Oq2 Oq
2

det g =

I
—

+

0q1 Oq2 0q1 0qz
_ (%Jr%y (% _ %> (1_ 0X; 0X> _ 0X; 6X1>2

oq 0qa 0go oq1 Oq1 Ogo dq1 Oqo
= [SmQP +[f*Re Q) + [f*w])”

C.3 Grafimannians of 2-Planes in R*
The GraBmannian of 2-planes in R* is defined through:
G(2,4) = {EAn|&neQ (R} C AR

Each element is a plane generated by the vectors corresponding to the 1-forms ¢ or 7,
respectively. To investigate the structure of the manifold G(2,4) we take notice of the
action of the Hodge star operator (x) on A’R*. Since %> = 1 there is a split of A’R* into
eigenspaces of x.

AZR?
P N P
AZ RS AZRS

Each element z of G(2,4) is of the form z = £ Ay, where the vectors £ and 5 can be chosen
to be orthonormal, i.e.

z€G(2,4), ifftAzx = 0.
Using the decomposition into eigenspaces each = € G(2,4) can be written as

r = Piz+ Pz
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and it is easy to see that this splitting defines a bijection of G(2,4) onto S3 x S2.

To each point of z;, € S3 one can associate a complex structure.
<JEn>=<z5,EAN>

and this is a bijection, too. It is is simple exercise to compute J in terms of z; which is
given by

0 —ai —as —as
J = ay 0 —as as
as as 0 —ai

as —Qas9 ai 0

for z; = (a1, as,a3) the coordinates of ;. Then a real vector can be maid into a complex
one by the map

(bl,bz, b3,b4)Ti—) ( b1+Z'b2 )

by +1i-by

After the choice of a complex structure, one is able to talk about the Grafimannian of
Lagrangian planes £(R*), defined by those ¢ A n satisfying

wJ(é-JT’) = <J§77)> = <xJ7£/\77> = 0.
After some short calculations it becomes clear, that

L(RY) = S;xS2

with $1 = 52 Nz7,ie. S} is the intersection of S2 with the orthogonal complement of
Ty € Si
Taking into account that £(R*) = U(2)/S0O(2) as a homogeneous space one can rein-

terpret the topology of £(R?*) in terms of U(2) as indicated below:

U(2)
!
U(1) x SU(2)
Phase N\, Hopf
St S

Each element of U(2) can be represented by a 2 x 2-matrix:

U = ar+i-as by +17-by
- ag+i-as bs+1i-by



The projection of the corresponding plane aAb into the “+”-eigenspace can be parametrised
by the angle a of S} as follows:

Pi(anb) = {apba+apby} Pr(dz' Ada?)

/

0
+ { an b3] —ap b4] } P+(d.’1]1 A d$3)

~~

Cos

+ { a[2 b3] + a[1 b4] } P+(dib'2 A dl’g)

sin o

On the other side one can compute the determinant of U(2) which yields

det U = \{a[lbg]—a{2b4]}l+i\{a[1b4]+a[2b3]}l = eia

~~
cos « sin o

A SU(2)-SLAG calibrated surface would be one with a constant phase function.
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Zusammenfassung

Der Gegenstand dieser Arbeit ist die Untersuchung von supersymmetrischen Eichtheorien
durch die Anwendung geometrischer Methoden, die sich aus der Einbettung der Eich-
theorien in die Stringtheorie ergeben. Das entscheidende Bindeglied ist hierbei die
Niederenergiedynamik sogenannter Branes. Branes sind solitonische Losungen der Be-
wegungsgleichungen in effektiven Stringtheorien (Supergravitation). Wir betrachten
Branelosungen der ITA und IIB Supergravitation sowie der 11 dimensionalen Supergravi-
tion (M-Theorie). Die M-Theorie wird aus zwei Griinden eingefiihrt. Erstens gestattet
sie es, eine vereinheitlichte Sicht auf die recht verwickelten Verhaltnisse zu gewinnen.
So lassen sich beispielsweise durch Kombination von Kaluza-Klein Mechanismus und
T-Dualitéit alle ITA und IIB-Branes aus nur zwei elementaren M-Brane Losungen, der
M2 und M5-Brane, herleiten. Zweitens enthalten die klassischen Lésungen der M5-Brane
die Informationen iiber die Quanteneffekte der Eichtheorien auf den ITA-Branes. Die fol-
genden Kapitel diskutieren verschiedene Aspekte dieses Programms.

Kapitel 1 fa3t den theoretischen Hintergrund knapp zusammen. Es werden alle notwendi-
gen Objekte zur Einbettung von Eichtheorien in die Stringtheorie eingefiihrt. Einen zen-
tralen Platz nimmt dabei die Diskussion der Weltvolumentheorie der M5-Brane ein, die
fir die Kapitel 3 und 4 unentbehrlich wird. S und T-Dualitidt werden benétigt, um die
Beziehung zwischen Systemen von Neveu-Schwarz-Branes (NS-Branes) und singuldren
Raumzeiten zu beleuchten. Neben den NS-Branes treten noch sogenannte Dirichlet-
Branes (D-Branes) auf. Diese sind wesentlich leichter als NS-Branes und kénnen daher
als Testladungen in der singulidren Raumzeit angesehen werden. Die Weltvolumentheo-
rie von D-Branes ist eine Eichtheorie. Fiir den Fall, dafl die Raumzeit die Struktur einer
Orbifold Oy = C/Zy, x Z; hat, wird die Eichtheorie von n parallelen D3-Branes explizit
berechnet.

In Kapitel 2 untersuchen wir die Eichtheorie von D3-Branes an allgemeineren Sin-
gularitdten. Fiir zwei Arten von Singularitdten werden die T-dualen NS5-Branekon-
figurationen untersucht: Quotienten aus der Conifoldsingularitdt ¢ und der Gruppe
I = C/Zy x Zi, d.h. Cy = C/T', und verallgemeinerte Conifoldsingularititen Gy;. Es
erweist sich, dafi der Blowup (bzw. die Deformation) von Cj; T-dual zu einer Brane-
Box (bzw. einem Intervall) aus NS5/NS5’-Branes ist. Ebenso ist der Blowup (bzw.
die Deformation) der verallgemeinerten Conifoldsingularitat Gy, 7-dual zu einem In-
tervall (einer Box) aus NS5/NS5-Branes. Die beiden Singularitdten bilden ein Mir-
rorpaar im Sinne der lokalen Mirrorsymmetrie torischer Varietiten. Die Parameter
der Kéhler bzw. komplexen Struktur der Singularitdt entsprechen den Positionen der
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NS5-Branes im dualen Branebild. Die Verbindung zwischen der Box- und der In-
tervalltheorie wird durch das Zusammenziehen von 2-Zykeln und nachfolgende Off-
nung von 3-Zykel der Mirrorpaare hergestellt (“conifold transition”). Die singuldren
Raumzeiten und die NS5-Branekonfigurationen reprasentieren die Hintergrundmetrik,
die durch D-Branes ausgetestet wird.

Um den Zusammenhang zwischen Conifoldsingularitaten und Brane-Boxen herzustellen,
muf} das Konzept der Brane-Box durch Einschlufl von Branediamanten erweitert werden.
Im Ergebnis dessen lassen sich exakte Regeln zur Ableitung der auf der Brane-Box leben-
den Eichtheorie und ihrer Materiefelder angeben, die die Regeln von [5] verallgemeinern.
Ausgezeichnete singulire Raumzeiten besitzen sowohl eine duale Beschreibung durch eine
Brane-Box als auch durch ein Intervall. Die entsprechenden Eichtheorien auf der Brane-
Box und auf dem Intervall sind “mirror” zueinander. Das bedeutet folgendes: Wahrend
die Einbettung der Intervalltheorie in der M-Theorie durch einen supersymmetrischen
2-Zykel beschrieben wird, wird die Brane-Box durch einen supersymmetrischen 3-Zykel
in die M-Theorie eingebettet. Diese Beobachtung sollte niitzlich fiir die nichtstérungs-
theoretische Beschreibung dieser Klasse von N = 1 Eichtheorien sein.

Im 3. Kapitel beginnen wir mit einer formalen Untersuchung der M5-Brane. Diese folgt
der Idee aus dem letzten Kapitel, das eine Aquivalenz in der Beschreibung von Eichtheo-
rien durch supersymmetrische 2-Zykel und supersymmetrische 3-Zykel postulierte. Im
Zentrum steht das “Projektionsprinzip”, das aus supersymmetrischen Zykeln supersym-
metrische Zykel kleinerer Dimension konstruieren soll. Ein naives Projektionsprinzip
funktioniert nicht, aber wir wollen durch eine konkrete Rechnungen zeigen, dafl nach Ein-
beziehung der selbstdualen 3-Form H eine Konstruktion in diese Richtung moglich wird.
Die Grundlage fiir diese Analyse ist die intrinsische Formulierung der Weltvolumentheo-
rie der M5-Brane, wie sie in [7] ausgearbeitet wurde. Das Hauptresultat dieses Kapitels
ist die Ableitung von Differentialgleichungen, die die Struktur der M5-Brane nach dem
Anschalten der selbstdualen 3-Form H, beschreiben. Im Fall des supersymmetrischen
2-Zykels ist es moglich, die 3-Form H mit den Parametern der komplexen Struktur auf
R* zu identifizieren. Im Fall des supersymmetrischen 3-Zykels ist die Geschlossenheit
von H aquivalent zu einer deformierten Laplace-Gleichung.

In Kapitel 4 [9] wird die Diskussion von Brane-Boxen wieder aufgenommen. Das in den
vorhergehenden Kapiteln aufgehiufte heuristische Material deutet darauf hin, daf die in
einem 3-Zykel enthaltenen Informationen zumindestest teilweise aus geeignet konstru-
ierten 2-Zykeln extrahiert werden kann. Aus diesem Grunde studieren wir Brane-Boxen,
die explizit aus N = 2 Untersystemen [10], bestehend aus D4 und NS5-Branes, aufgebaut
sind. Diese Konstrukte erfiillen die Bedingung des ‘uniform bending’ [11] und der Lift
auf einen supersymmetrischen 3-Zykel kann explizit durchgefithrt werden. Die Struktur



dieser 3-Zykel ist sehr speziell und besteht im wesentlichen aus einer Vereinigung der
die N = 2 Untersysteme beschreibenden 2-Zykel. Wir zeigen, dafl die so konstruierten
3-Zykel tatsachlich die richtige Information iiber die -Funktion enthalten, indem wir
den Koeffizienten b, extrahieren.

Die Untersuchung von D3-Branes in singularen Raumzeiten hangt eng mit der soge-
nannten AdS/CFT-Korrespondenz [12] zusammen. Diese gibt uns eine Mdoglichkeit zur
dualen Beschreibung der N = 4 Super-Yang-Mills Theorie (SYM), d.h. der Weltvo-
lumentheorie von D3-Branes, durch IIB Supergravitation auf AdSs; x S®. Das Studium
von Eichtheorien an Orbifoldsingularitaten fithrt zu einer Erweiterung dieser Korrespon-
denz. 6-dimensionale Orbifoldsingularitdten O = R® /T, T eine diskrete Gruppe, wurden
in [13, 14] untersucht. Die Modifikation auf der Supergravitationsseite besteht in der
Ersetzung von S5 durch S$°/I'. Die Orbifoldeichtheorie kann analog zum Beispiel im
1. Kapitel berechnet werden. Die Conifoldsingularitat [15] fithrt ganz analog zu der
Ersetzung von S° durch den homogenen Einsteinraum 711,

In Kapitel 5 [17] werden neue superkonforme N = 1 Eichtheorien konstruiert, die sich aus
Deformationen der N = 4 SYM ergeben und eine duale Supergravitationsbeschreibung
durch IIB auf AdS5 x M5 besitzen. M?® ist ein 5-dimensionaler Einsteinraum. Wir wollen
zeigen, dafl ein Massenterm fur eines der drei chiralen Multipletts der N =4 SYM eine
effektive Theorie der masselosen Felder zur Folge hat, die dual zu der AdSs-Lésung mit
N = 2 Supersymmetrie aus [18] ist. In [18] konnte die duale Eichtheorie nicht identifiziert
werden.
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