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Abstract 

 

Hypertrophic cardiomyopathy (HCM) is a heart disorder characterized by 

unexplained ventricular myocardial hypertrophy and a high risk of sudden cardiac 

death. The disease is inherited as an autosomal-dominant trait. Nine disease-causing 

genes have been described all encoding for sarcomeric proteins. Mutations in the 

ventricular myosin essential (ELC) and regulatory (RLC) light chain genes are 

responsible approximately for 1% and 1 - 7% of all HCM cases, respectively. Limited 

data are available on the disease course and prognosis in HCM caused by mutations in 

these genes. Therefore, the present study was aimed to analyse the ELC and RLC 

genes for disease-causing mutations in a group of clinically well-characterized HCM 

patients. Further purpose was to assess whether the detected mutations are associated 

with malignant or benign phenotype in the respective families. 

Methods: 71 unrelated patients with HCM and 14 family members were 

evaluated using physical examination, ECG and echocardiography. DNA was extracted 

from blood lymphocytes. Screening of the 6 exons of the ELC gene and the 7 exons of 

the RLC gene was done by using PCR and single strand conformation polymorphism 

analysis (SSCP). Samples with aberrant band patterns were directly sequenced. 

Results: Systematic analysis revealed no mutation in the ELC gene but two 

disease-associated mutations leading to an amino acid exchange in the RLC gene. The 

first mutation was found in exon 2 of the RLC gene: a G>A nucleotide substitution at 

position c.64 caused a replacement of glutamic acid by lysine at codon 22. The second 

mutation was in exon 4 of the RLC gene: a G>A substitution at nucleotide c.173 led to a 

change of arginine to glutamine at codon 58. Both mutations affected highly conserved 

amino acids and were located in the amino terminal half of the RLC close to the 

putative phosphorylation and calcium-binding sites. They also changed overall electrical 

charge of this protein region. The Glu22Lys mutation was identified in seven individuals 

of family K and was associated with moderate septal hypertrophy, a late onset of 

clinical manifestation, benign disease course, and good prognosis. The mutation 

Arg58Gln showed also moderate septal hypertrophy, but, in contrast, it was associated 

with an early onset of clinical manifestation and premature sudden cardiac death in 

family B. 
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Additionally, a number of sequence differences from reference genomic 

sequences, one silent mutation, and two single nucleotide polymorphisms (SNPs) were 

identified while screening the ELC and RLC genes. Detected SNPs did not cause an 

amino acid exchange and did not affect splicing process proceeding from their 

localisation.  

Conclusions: Two missense mutations were identified in the ventricular myosin 

regulatory light chain gene and associated with either benign or malignant HCM 

phenotypes. These findings show that genotyping could give valuable information for 

risk stratification, genetic counselling, and treatment strategies in hypertrophic 

cardiomyopathy. 

 

Keywords: Genetics, Cardiomyopathy, Hypertrophy, Sudden cardiac death 
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Zusammenfassung 

 

Die Hypertrophe Kardiomyopathie (Hypertrophic Cardiomyopathy, HCM) ist eine 

Erkrankung des Herzens, die durch eine Hypertrophie des Myokards und einem 

erhöhten Risiko für den plöztlichen Herztod charakteriziert ist. Die Erkrankung  wird 

autosomal-dominant vererbt.  Neun HCM-assozierte Genen wurden bisher 

beschrieben, die alle für Sarkomer-Proteine kodierend. Mutationen in den Genen für die  

essentielle (ELC) und regulatorische (RLC) leichte Myosin-Kette sind für ca. 1% bzw. 1-

7% aller HCM-Fälle verantwortlich. Bisher gibt es nur wenige Informationen zum 

Krankheitsverlauf und zur Prognose bei HCM-Formen, die durch Mutationen in diesen 

Genen verursacht werden. Ziel dieser Studie war daher, das ELC- bzw. RLC-Gen in 

einem Kollektiv klinisch gut charakterisierter HCM-Patienten hinsichtlich möglicher 

krankheitsverursachender Mutationen zu analysieren. Darüber hinaus sollte untersucht 

werden, ob  die hier identifizierten  Mutationen mit einem malignen bzw. benignen 

Phänotyp assoziiert sind. 

Methoden: 71 unverwandete Patienten mit primärer HCM wurden mittels 

körperlicher Untersuchung, EKG und Echokardiographie evaluiert. Die aus 

Blutlymphozyten extrahierte DNA wurde mittels exonspezifischer PCR-Amplifikation 

und Single-strand-conformation-polymorphism (SSCP) Analyse auf Mutationen in den 6 

Exons des ELC- und 7 Exons des RLC-Gens untersucht. Proben mit auffälligen 

Bandenmustern wurden direkt sequenziert. 

Ergebnisse: Die systematische Analyse ergab zwei krankheitsassoziierte 

Mutationen im RLC-Gen, die zu einem Aminosäurenaustausch führen. Im ELC-Gen 

wurden keine Mutationen gefunden. Die erste Mutation im RLC-Gen ist ein G zu A-

Basenaustausch an Position c.64 im Exon 2, der zu einem Austausch von Glutamat 

durch Lysin im Codon 22 führt. Die zweite Variante verursacht eine Argininsubstitution 

durch Glutamin im Codon 58 aufgrund eines Basenpaaraustausches an Position c.173 

im Exon 4 (G zu A). Beide Mutationen betreffen hoch-konservierte Aminosäuren in der 

amino-terminalen Domäne des RLC in der Nähe von möglichen Phosphorylierungs- 

bzw. Kalcium-Bindungsstellen. Zusätzlich wird die elektrische Ladung dieser 

Proteinregion durch den Aminosäurenaustausch verändert. Die Glu22Lys-Mutationen 

konnte in sieben Individuen der Familie K identifiziert werden und ist mit einer geringen 

septalen Hypertrophie, einer späten klinischen Manifestation sowie einem benignen 
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Verlauf und einer guten Prognose assoziiert. Die Arg58Gln-Mutation ist ebenfalls mit 

einer moderaten Septumhypertrophie aber mit einem frühen Krankheitsbeginn und 

einem vorzeitigen Auftreten eines plötzlichen Herztodes in der Familie B assoziiert. 

Zusätzlich wurden mehrere Abweichungen von der Referenz-Sequenz, eine 

stumme Mutation sowie zwei “Single Nucleotide Polymorphisms” (SNPs) während des 

Screenings in beiden Genen identifiziert. Die SNPs verursachen keinen 

Aminosäureaustausch und beeinflussen nicht den Spleißvorgang, soweit dies durch 

ihre Lokalisation vorhersagbar ist. 

Schlussfolgerung: Zwei missense Mutationen konnten in der regulatorischen 

leichten Myosinkette identifiziert und sowohl mit einem benignen als auch einem 

malignen HCM-Phänotyp assoziiert werden. Diese Ergebnisse zeigen, dass die 

Genotypisierung wertvolle Informationen für die Risikostratifizierung,  die genetische 

Beratung sowie für Therapiestrategien in der Hypertrophe Kardiomyopathie liefern 

kann. 

 

Schlagwörter: Genetik, Kardiomyopathie, Hypertrophie, plötzlicher Herztod 
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1 Introduction 

 

 

 

Hypertrophic Cardiomyopathy (HCM) is a heart disorder characterized by 

unexplained ventricular myocardial hypertrophy and a high risk of sudden cardiac 

death.1 Myocardial hypertrophy is predominantly confined to the left ventricle (LV) and 

generally easily detectable by conventional echocardiography. The main diagnostic 

criterion for HCM is an increased LV wall thickness (normal ≤12mm) in the absence of 

other possible causes of myocardial hypertrophy as arterial hypertension, valvular 

disease, and others. HCM is also diagnosed pathologically by the presence of myocyte 

disarray and interstitial fibrosis along with myocyte hypertrophy.2 The disease is caused 

by mutations in genes encoding for sarcomeric proteins. It can either be transmitted as 

an autosomal-dominant trait from an ill parent to a child or develop due to a de novo 

mutation.3 

HCM is a relatively common genetically transmitted cardiovascular disease with 

a prevalence in the general population of about 0.2% (or 1 in 500).3,4 The annual 

mortality rate for all HCM related deaths (sudden cardiac death, heart failure, and 

stroke) has been estimated as 1.4%, where the rate for sudden death is as high as 

0.7%.5 Young HCM patients are more prone to sudden cardiac death, however, elder 

patients are also in substantial risk of dying unexpectedly.5 
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1.1 Molecular genetics and pathogenesis of HCM 
 

Since the first detailed description of HCM in 1958 by Teare,6 research has been 

mainly directed on elucidating causes and pathogenesis of this disorder that could 

provide clues in earlier diagnosis, treatment, and prevention of the disease. Major 

advances have been made in understanding the etiologic factors of this disease. To 

date, mutations in nine genes all encoding for the cardiac sarcomeric proteins have 

been shown to cause HCM, however, mechanisms by which they lead to the disease 

are still not completely understood. 

The first described gene was the one encoding for cardiac β-myosin heavy chain, 

the major contractile protein of the cardiac sarcomere.7 Identification of mutations in two 

more sarcomeric components, α-tropomyosin and cardiac troponin T,8 in HCM patients 

led to the postulation that HCM results from defects in the sarcomeric proteins. HCM 

was subsequently referred to as a “disease of the sarcomere”.8 Later, this postulation 

was supported by identification of mutations in the next six genes also encoding for the 

proteins of the cardiac sarcomere, namely, cardiac myosin binding protein-C,9 

ventricular myosin essential and regulatory light chains,10 cardiac troponin I,11 cardiac 

α-actin,12 and titin.13  

The genes encoding for the sarcomeric proteins involved in HCM are located on 

different chromosomes and listed in table 1.1. As shown, the contribution of single gene 

mutations to HCM varies from less than 5% to 30%.3,14 The most common causes are 

mutations in the β-myosin heavy chain, myosin binding protein-C, and cardiac troponin 

T genes accounting for approximately 70% of all HCM cases (table 1.1). Mutations in 

other genes are much less common. In total, more than 130 causal mutations have 

been identified, most of them in the β-myosin heavy chain gene. So far, only few 

mutations have been found in the titin, cardiac α-actin, and ventricular myosin essential 

light chain genes. 
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Table 1.1. Sarcomeric proteins and genes responsible for HCM 

Sarcomeric protein Gene Locus Frequency  Number of mutations 
β -Myosin heavy chain MYH7 14q12 ∼ 30% 70 
Myosin binding protein-C MYBPC3 11p11.2 ∼ 20% 29 
Cardiac troponin T TNNT2 1q32 ∼ 20% 14 
α-Tropomyosin TPM1 15q22.1 ∼ 5% 4  
Cardiac troponin I TNNI3 19p13.2 ∼ 5% 8 
Cardiac α-actin ACTC 15q14 < 5% 2  
Titin TTN 2q24.1 < 5% 1 
Myosin light chain, regulatory (RLC) MYL2 12q23-q24.3 1 - 7%* 8 
Myosin light chain, essential (ELC) MYL3 3p21.3-p21.2 ∼ 1%* 3 
Note: adapted from ref. 3. *From ref. 10, 15, and 16. 

 

 

Genetically engineered animal models have been used efficiently to confirm the 

causality of sarcomeric protein mutations in HCM. Phenotypes similar to those found in 

human HCM were induced in transgenic mice expressing a sarcomeric protein carrying 

a certain human mutation, and in "knockout" mice, in which a particular sarcomeric 

protein gene was ablated by gene targeting.17 The cardiac expression of the common 

β-myosin heavy chain mutation (Arg403Gln) in transgenic rabbits also induced 

hypertrophy, myocyte and myofibrillar disarray, interstitial fibrosis, and premature death, 

phenotypes observed in HCM patients carrying this mutation.18 Development of animal 

models, in which disease progression can be studied closely over the lifespan of an 

animal, has also shed significant light into the pathogenesis of HCM. 

 

The sarcomere is the contractile unit of striated muscle. As shown in figure 1.1, 

cardiac myocytes contain numerous myofibrils. Each myofibril is in turn composed of 

repeating sarcomere units separated by Z discs. Each sarcomere is a highly ordered 

complex array of numerous proteins, the precise organisation and alignment of which 

are essential for proper muscle function.19 The overall organisation of the sarcomere is 

similar in all striated muscles, although the proteins constituting it have a number of 

isoforms, which are differentially expressed depending on the muscle type. 
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Figure 1.1. Microscopic structure of heart muscle. A) Myocardium as seen under the light 
microscope. Myocytes contain a centrally located nucleus and are connected across 
intercalated disks. B) Myocardial cell reconstituted from electron micrographs. Each myocyte is 
composed of multiple parallel fibrils. Each fibril is composed of serially connected sarcomeres 
(N, nucleus). C) Sarcomere from a myofibril, with diagrammatic representation of myofilaments. 
Thick filaments (1.5 µm long, composed of myosin) from the A band, and thin filaments (1µm 
long, composed primarily of actin) extend from the Z line through the I band into the A band. 
The overlapping of thick and thin filaments is seen only in the A band. D) Cross sections of the 
sarcomere indicate the specific lattice arrangements of the myofilaments. In the center of the 
sarcomere only the thick, or myosin, filaments arranged in a hexagonal array are seen. In the 
distal portions of the A band, both thick and thin, or actin, filaments are found, with each thick 
filament surrounded by six thin filaments. In the I band only thin filaments are present. From ref. 
20. 



Introduction 

 5

 

Figure 1.2. Schematic diagram of sarcomere organisation and contraction process. The 
thin filament is made up of actin, the troponin complex (T,C and I) and  α-tropomyosin. The 
thick filament is composed of myosin heavy and light chains. The sarcomere produces muscle 
contraction by sliding of myofilaments: the myosin heads interact with actin and pull it towards 
the center of the sarcomere resulting in shortening of the sarcomere. From ref. 2. 

 

 

 

The sarcomere consists of overlapping arrays of thick and thin filaments, which 

shorten the length of the sarcomere during contraction by sliding past each other (figure 

1.2). The thin filaments are attached to the Z discs. The thick filaments extend from the 

centre of the sarcomere in either direction towards the Z lines and are supported by 

binding to the protein-C and titin molecules. The major components of the thin filaments 

are cardiac α-actin, α-tropomyosin, and the troponin complex consisting of three 

subunits: troponin C, troponin I and troponin T. The thick filaments are composed of 

several hundreds of myosin molecules assembled together. 

Myosin is called "molecular motor" of the sarcomere due to its ability to hydrolyse 

adenosine triphosphate (ATP) and thereby to transfer chemical energy into contraction 

force and motion.21 Each myosin molecule is made up of two myosin heavy chains and 

two pairs of light chains (figure 1.3 A). 
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Figure 1.3. A) Schematic representation of a myosin molecule constituting the thick 
filaments of the sarcomere. The myosin molecule is a hexamer consisting of two heavy 
chains (orange), two essential light chains (blue) and two regulatory light chains (yellow). The 
myosin heavy chains are dimerized through their coiled-coil tails. Adapted from ref. 22. 
B) Three-dimensional (crystal) structure of a chicken skeletal myosin head. The catalytic 
and light-chain-binding domains are indicated. The heavy chain is shown in red, green and 
blue. The essential (yellow) and regulatory (purple) light chains wrap around the heavy chain α-
helix (blue). Adapted from ref. 10 and 30. 

 

 

 

The myosin heavy chain is a highly asymmetric molecule with a predominantly 

globular head and a rod like tail. The latter is formed by a coiled-coil structure of two α-

helices and accounts for the formation of the thick filament backbone. The globular 

head contains a light-chain-binding domain and a catalytic domain with actin- and ATP-

binding sites as shown in figure 1.3 B depicting the three-dimensional structure of a 

chicken skeletal myosin head.21  
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The regulatory and essential light-chain-binding domain of myosin is also 

referred to as the neck region, because it connects the head with the myosin tail. As 

shown in figure 1.3 B, the essential light chain wraps around the amino terminal half of 

the myosin neck, whereas the regulatory light chain lies closer to the head-rod junction. 

Myosin light chains have several isoforms with some of them encoded by different 

genes. The genes encoding for the ventricular myocardium isoforms of myosin light 

chains were analysed for HCM causal mutations in the present study and, therefore, will 

be considered in detail later in this chapter. 

The actin- and ATP-binding sites are crucial for the myosin function. During 

contraction, the myosin heads attach to actin, forming so called "cross-bridges" 

between the thick and thin filaments. Subsequently, an ATP molecule binds up to a 

myosin head. Following ATP hydrolysis along with the release of products of this 

hydrolysis causes conformational changes in the myosin heads, which result in the 

displacement of the thin filament along the thick filament causing contraction.  

The force generating myosin-actin interaction is regulated by tropomyosin, the 

troponin complex, and calcium ions.23 In a relaxed muscle, tropomyosin, troponin T and 

troponin I inhibit the attachment of the myosin heads to actin. With the beginning of a 

contraction event, myoplasmic Ca2+ concentration increases from 10-7 to about 10-5 M. 

Troponin C subsequently binds up to four calcium ions and relieves the inhibition of the 

actin-myosin interaction produced by tropomyosin, troponin T and troponin I. This 

enables the myosin heads to form cross-bridges and to draw the actin filament towards 

the centre of the sarcomere. Cycling formation of cross-bridges occurs until myoplasmic 

concentration of Ca2+ decreases, and troponin C relieves the Ca2+ molecules bound to 

it. 

The mechanisms by which sarcomeric protein mutations lead to HCM are still 

unclear. However, the evidences accumulated from diverse functional studies, including 

animal modelling, have led to a hypothesis, which considers myocyte disarray, 

hypertrophy and interstitial fibrosis as a compensatory response to the alteration of the 

sarcomere contractile function by mutated proteins.3,24 In the case of missense 

mutations, it is assumed that mutated proteins are incorporated into the myofibrils and 

act as "poison peptides" affecting the function of the normal proteins (dominant-

negative effect). Truncation mutations are assumed to result in an insufficient amount of 

functional proteins by either complete inactivation of a mutated allele or production of 

truncated proteins unable to incorporate into the myofibrils ("haploinsufficiency" or "null 
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allele" effect). Both cases lead to the impairment of force generation by the contractile 

units. The contractile deficit further provides the primary stimulus for increased 

expression of trophic and mitotic factors in the heart (such as insulin-like growth factor 

1, transformic growth factor, and endotelin 1), which leads to hypertrophy, disarray and 

interstitial fibrosis characteristic of HCM. However, despite already available supporting 

evidences such as the observation of impaired mechanical performance of cardiac 

myocytes expressing mutated sarcomeric proteins, decreased LV end-systolic stress-

volume ratio, and upregulation of the above stated trophic factors in patients with HCM, 

more studies are needed to prove the accuracy of this hypothesis. 

 

 

1.2 The ventricular myosin regulatory and essential light chains 
 

The human MYL2 gene encoding for the ventricular myosin regulatory light chain 

(RLC or also called MLC-2s/v) is located on chromosome 12q23-q24.3.25 Seven coding 

exons of this gene encode for a polypeptide of 166 amino acids. Apart from ventricular 

myocardium, the RLC is also expressed in slow skeletal muscle fibers. 

The ventricular myosin essential light chain (ELC or MLC-1s/v) is encoded in 

humans by the MYL3 gene. It is located on chromosome 3p21.3-p21.2 and is also 

composed of seven exons, of which the last one is noncoding.26 MYL3 encodes for a 

polypeptide of 195 amino acids, which is, similar to the RLC, expressed in ventricular 

myocardium and slow skeletal muscle. 

The RLC and ELC belong to a family of calcium-binding proteins like calmodulin 

and troponin C. The common feature of these proteins is the presence of structural 

motifs made up of a bivalent-cation-binding loop flanked by α-helices. These motifs are 

also called EF-hand domains. Calmodulin and troponin C have four functionally active 

EF-hand domains, which are essential for striated and smooth muscle contraction.23,27 It 

has been shown that deletions and non-conserved amino acid substitutions inactivate 

all EF-hand domains of the ELC and three of the RLC.28 Only one N terminal EF-hand 

domain of the RLC retains the ability to bind a bivalent cation. 28 

Besides the EF-hand domain, the RLC possesses a putative phosphorylation site 

on a single serine residue at the amino termini (Ser15),29 while the ELC has an actin-

binding site also at its amino terminal half.30  
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The function of myosin light chains in striated muscle is only partially understood. 

Based on the three-dimensional structure, it has been initially suggested that a major 

function of the striated muscle myosin light chains is to stabilize and elongate the 8.5 

nm α-helical neck region of myosin.21 It is thought that a swinging motion of this neck 

relative to the catalytic domain is essential in amplifying generated power stroke (the 

lever arm model).21,31 Further functional studies, however, have suggested that the 

striated muscle myosin light chains also regulate and modulate the myosin-actin 

interaction.30,32-34 

The ELC is thought to modulate the force production by binding with its N-

terminus to the C-terminus domain of actin and thereby acting as a tether between the 

thin and thick filaments.30 

The RLC might influence the myosin-actin interaction through phosphorylation 

and/or calcium binding. It was shown that RLC phosphorylation increases the rate of 

cross-bridges and, hence, increases the force production in cardiac and skeletal 

muscles at low levels of calcium.35,36 The mechanism of such effects of RLC 

phosphorylation might involve the conformational change of the entire myosin head due 

to a change in the charge of the N-terminal region of the RLC that occurs upon 

phosphorylation.37,38 

It was also shown that a definite link exists between RLC phosphorylation and 

calcium binding.29,39 Szczesna et al.39 demonstrated that inactivation of the RLC 

calcium-binding site causes removal of all effects of phosphorylation. Furthermore, both 

phosphorylation and calcium binding properties as well as their relationship have been 

shown to be altered due to HCM-causing RLC mutations suggesting that alteration of 

exactly these properties could contribute to the pathogenesis of this disorder.29 

 

 

1.3 Clinical features and diagnosis of HCM 
 

HCM is a clinically heterogeneous and unpredictable disease. Its clinical 

manifestations vary from a benign course to that of severe heart failure and peripheral 

embolisation.5 The importance of recognising this disorder in patients as early as 

possible is highlighted by a high rate of sudden cardiac death in young people. 
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Premature death can occur even in completely asymptomatic patients as the first 

manifestation of the disease. 

Myocardial hypertrophy generally develops during adolescence, however, in 

severe cases it can occur in an infant or even during foetal life. Simultaneously with 

hypertrophy, some HCM patients become symptomatic, while others exhibit no 

symptoms over long periods. HCM patients generally present with dyspnea, angina 

pectoris, palpitations, fatigue, presyncope, and syncope. Although these symptoms are 

common in all HCM patients, their onset and severity show great variability. 

 In approximately 25% of cases, myocardial hypertrophy leads to dynamic LV 

outflow or midventricular obstruction and, consequently, to the development of a 

pressure gradient.40 In case of LV outflow tract obstruction, apart from hypertrophy, 

systolic anterior motion of the mitral valve and mitral valve-septal contact contribute to 

the development of the pressure gradient. The value of the pressure gradient varies 

among the patients. If pressure gradients of >30 mm Hg (at rest) are present, the 

potential for further hypertrophy and deterioration is very likely.40 In such patients, 

operative reduction of the pressure gradient by means of septal myectomy (Morrow 

procedure) or nonsurgical septal reduction has been shown to be effective.40 Patients 

with the obstructive form of HCM usually exhibit a number of clinical signs, which are 

not seen in the non-obstructive form of the disease. Among them are systolic ejection 

murmur, bifid arterial pulse, double systolic impulse, and paradoxically split second heat 

sound.41 

The minimal investigations needed for the diagnosis of HCM include ECG and 

transthoracic echo Doppler examination. Electrocardiogram is generally abnormal in 

HCM, although entirely normal electrocardiograms are seen in about 15% of patients 

and usually are found in the presence of only localized LV hypertrophy.42 The most 

common abnormalities are evidence of LV hypertrophy, negative T-waves, ST 

abnormalities, and pathological Q-waves. All these abnormalities can be absent in 

children and become evident over time with development of LV hypertrophy. However 

in some cases, especially in the young, ECG may be abnormal, even when 

echocardiography reveals no LV hypertrophy.43 

Transthoracic echo Doppler examination is the most important diagnostic test in 

HCM. These combined techniques allow the assessment of extent and distribution of 

hypertrophy, systolic and diastolic function, the presence of systolic anterior motion of 

mitral valve, and the severity of the pressure gradient. The magnitude of LV wall 
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thickness can be very variable  (13 - 30 mm or more).44 The location of hypertrophy is 

also diverse, although four frequent patterns of LV hypertrophy distribution have been 

reported.45 Type I is confined to the anterior portion of the interventricular septum (IVS), 

whereas type II involves the entire IVS. Type III, the most common, is characterized by 

hypertrophy of substantial portions of both interventricular septum and LV anterolateral 

free wall. Hypertrophy identified in regions of the LV other than basal IVS belongs to 

type IV. 

Among other investigations, Holter ECG monitoring is a valuable tool in 

assessing the type and severity of cardiac arrhythmias. Chest X-ray, heart 

catheterisation, and magnetic resonance imaging can be helpful in the differential 

diagnosis of HCM, revealing the particular hypertrophy pattern and the stage of 

congestive heart failure. 

Clinical heterogeneity of HCM makes it difficult to predict the outcome of the 

disease and to diagnose subjects who are in a high risk of premature death. According 

to clinical studies, a family history of premature sudden cardiac deaths, magnitude of 

hypertrophy more than 30 mm, an abnormal blood pressure response to exercise 

testing, and nonsustained/sustained ventricular tachycardia could be used as markers 

for sudden cardiac death in HCM and justify prophylactic therapy with amiodaron or 

implantation of cardioverter defibrillator.44,46,47 However, the accuracy of these risk 

factors is still subject of discussion. For instance, it has been argued that such risk 

factor as magnitude of hypertrophy is not accurate, since sudden cardiac death also 

occurs in the presence of little hypertrophy as in HCM caused by mutations in cardiac 

troponin T.48,49 A recent study showed that combination of the several risk factors 

increases the likelihood of sudden death.46 In addition to the investigation of the clinical 

risk factors, attempts have also been directed towards establishing genetic markers for 

assessing the severity of HCM phenotypes. 
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1.4 Genotype-phenotype correlation studies 
 

Genotype-phenotype correlation studies have revealed that HCM phenotype is 

substantially influenced by the nature of the causative genetic defect. The causal gene 

as well as the type and localization of a mutation play the primary role. Thus, mutations 

in the β-myosin heavy chain gene are generally associated with more significant 

hypertrophy and severe disease course than those in the other genes.50,51 Myosin 

binding protein-C gene mutations are mostly characterized by late clinical manifestation 

and a relatively benign disease course.52 High incidences of sudden cardiac death but 

little LV hypertrophy are features of cardiac troponin T mutations.53 Mutations in the 

cardiac troponin I gene have been shown to cause LV apical hypertrophy,11 whereas 

those in the ventricular myosin light chain genes have been initially associated with left 

midventricular hypertrophy.10 Concerning the causal mutations, protein truncation 

mutations or those located in highly important protein domains are generally associated 

with a severe course of HCM.54,55 

The diversity in disease appearance in individuals bearing exactly the same 

mutation suggested that phenotypic expression of HCM is also influenced by factors 

other than the basic genetic defect, such as modifier genes or environmental 

influences.56 Amongst the known potential modifier genes are those encoding for 

functional variants of angiotensin-1 converting enzyme, angiotensinogen, endotelin-1, 

and several trophic factors.3,57 

Correlation studies have also revealed that causal mutations carry prognostic 

significance.58 Some of them were associated with poor prognosis and a high incidence 

of sudden cardiac death and could be therefore used as genetic markers for 

sudden death in HCM. Table 1.2 lists some mutations associated with a high, 

intermediary and low risk of sudden cardiac death in HCM. 
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Table 1.2. Mutations and prognosis in HCM 

  Prognosis  
Sarcomeric protein Good Intermediate Poor 
β-MHC Gly256Glu Arg249Gln Arg403Gln 
 Leu908Val Glu930Lys Arg719Trp 
 Val606Met Val606Met Arg453Cys 
 Phe513Cys  Arg723Gly 
 Asn232Ser   
Cardiac troponin T Ser179Phe Phe110Ile Arg92Gln 
   Arg92Trp 
   Ile79Asn 
   delGlu160 

   
Ser179Phe 
(homozygous) 

MYBP-C All unless listed SASint20*  
α-Tropomyosin Asp175Asn   
Myosin light chains  Insufficient data  
Note: β-MHC, β-myosin heavy chain; MyBP-C, myosin binding protein-C. *Splice acceptor site mutation 
in intron 20. From ref. 58. 

 

One should also keep in mind that the number of families identified with each 

specific mutation is relatively small, and the described phenotypes may be unique to the 

particular family and not generally applicable. More studies are needed to draw strong 

and accurate conclusions regarding the prognostic significance of a given genetic 

defect. However, identification of a malignant mutation along with the clinical risk factors 

can be useful in revealing patients with an adverse disease phenotype and the need for 

preventive measures. 
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1.5 Aims of the present study 
 

In comparison with other disease genes, only few studies concerning the MYL2 

and MYL3 genes have been performed so far. As mentioned above, mutations in these 

genes have been initially associated with a particular phenotype with massive 

hypertrophy of papillary muscles and adjacent LV tissue causing midventricular 

obstruction.10 However, further investigations have shown that typical septal 

hypertrophy can be also caused by ELC and RLC mutations.15,16,59 In contrast to other 

genes, phenotypic characterisation of HCM caused by defects in MYL2 and MYL3 has 

mainly dealt with the pattern of hypertrophy, and very little data are available regarding 

the disease course and prognosis. 

 

Considering the limited information on HCM related to the ELC/RLC, this study 

was aimed to detect disease-causing mutations in the MYL2 and MYL3 genes in a 

group of clinically well-characterized HCM patients. Further purpose was to assess 

whether the detected mutations are associated with malignant or benign phenotype in 

the respective families. 
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2 Materials and methods 
 

 

 

2.1 Clinical evaluation 
 

A total of 71 unrelated HCM patients were consecutively enrolled from 

Charité/Franz-Volhard-Klinik (Berlin, Germany), the National Center of Cardiology and 

Internal Medicine (Bishkek, Kyrgyzstan), Hospital Pulido Valente (Lisbon, Portugal) and 

Klinik für Thorax- und kardiovaskuläre Chirurgie (Düsseldorf, Germany). Informed 

consent was obtained in accordance with the guidelines of institutional ethic 

commissions. Clinical evaluation was performed on the basis of medical history, 

physical examination, 12-lead electrocardiogram, M/B-mode and Doppler 

echocardiography, and, in some cases, Holter electrocardiography. The 

echocardiographic evaluation was performed without prior knowledge of genetic results 

according to the guidelines of the American Society of Echocardiography.60 Left 

ventricular (LV) wall thickness of ≥13 mm43 was used as the inclusion criterion in the 

absence of other known causes for LV hypertrophy (hypertension, aortic stenosis, etc). 

Once the mutations were identified in probands, members of family K and B were 

invited to undergo genetic analysis and clinical evaluation. The clinical diagnosis of 

HCM in participating family members was based on the presence of LV hypertrophy 

observed by echocardiography and corrected to age, weight and body surface area 

according to Henry et al.61 

Blood samples were drawn from all HCM patients and family members in tubes 

containing 1.6 mg/ml EDTA and stored at  -20 °C until DNA extraction. Blood for control 

DNA was obtained from anonymous blood donors. 

Statistical analysis was performed using StatView software, release 4.51, 

PowerPC Version (Abacus Concepts Inc, Berkeley, California). Data are expressed as 

the mean value ± standard deviation or number (%) of patients. 
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2.2 Genetic analysis 
 

2.2.1 Approach overview 
 

The approach undertaken in the present study allows performing genome 

screening for unknown mutations in a large patient group. The screening started with 

the isolation of total genomic DNA from blood of patients. Genomic DNA was used 

thereafter as a template for amplifying a gene of interest by means of polymerase chain 

reaction (PCR). All amplified fragments were screened further by single strand 

conformation polymorphism (SSCP) analysis. Samples showing an aberrant band 

pattern on SSCP gels were selected for direct automated DNA sequencing for detection 

of possible mutations. Once a mutation was identified, it was confirmed by another 

sequencing run or, when possible, by restriction fragment length polymorphisms 

analysis. The latter was also used for screening family members for the identified 

mutation (figure 2.1). 

 

Figure 2.1. Schematic representation of the approach for mutation detection undertaken 
in the present study. DNA, deoxyribose nucleic acid; PCR, polymerase chain reaction; SSCP, 
single strand conformation polymorphism. 
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2.2.2 Preparation of genomic DNA 
 

Genomic DNA was isolated from peripheral blood obtained from patients and 

stored at -20 °C. A modified DNA extraction method suggested by Lahiri and co-

workers was used.62 It yields up to 150 µg of DNA from 5 ml of blood. An advantage of 

this method is that it avoids the use of any toxic organic solvents required for 

elimination of cellular proteins. Unlike other standard techniques, these proteins are 

removed by using saturated sodium chloride solution. Moreover, the method eliminates 

the step of prolonged digestion of samples with proteinase K, thus saving costs and 

time.62 

 

The following protocol was used: 

 

1. 5 ml of blood sample, 5 ml of low salt buffer TKM1 (10 mM Tris, pH 7.6; 10 mM 

MgCl2, and 2 mM EDTA) and 100 µl of triton X-100 were mixed and centrifuged at 

2500 rpm for 20 min. The supernatant was poured off. 

2. 5 ml of the TKM1 buffer was added to the pellet and followed by centrifugation at 

2500 rpm for 20 min; supernatant was then poured off. This step was repeated at 

least two times more. 

3. The saved pellet was resuspended in 800 µl of high salt buffer TKM2 (10 mM Tris, 

pH 7.6; 10mM KCl; 10 mM MgCl2; 0.4 mM NaCl, and 2 mM EDTA) and 50 µl of 10% 

SDS, mixed and incubated at 55° C for 10 min in a water bath. 

4. 100 µl of 5 M NaCl was pipetted in the tube, mixed and centrifuged at 1200 rpm for 

5 min. The supernatant containing DNA (about 1 ml) was transferred into a new 

tube, mixed with two volumes of absolute ethanol (about 2 ml) at room temperature; 

the tube was then inverted several times until DNA precipitated. 

5. The DNA was further transferred in a new tube containing 1 ml of ice-cold 70% 

ethanol and centrifuged for 5 min at 1200 rpm at 4 °C. The DNA containing pellet 

was dried of rest of ethanol for 10 min in a vacuum centrifuge and then resuspended 

in 500 µl of Tris buffer (10 mM, pH 8.0) at 65 °C for 15 min and used further as DNA 

stock solution. 
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The quality of extracted DNA was assessed by agarose gel electrophoresis. 

Concentration of DNA in the stock solution was determined by measuring the 

absorption at 260 nm (1 absorbance unit corresponds to 50 µg/ml) in the Ultrospec Plus 

spectrophotometer (Pharmacia). Working solution containing 25 ng/µl of genomic DNA 

was diluted from the stock solution adding respective volume of Tris buffer (10 mM, pH 

8.0). The stock solution was stored at -20 °C, whereas the working solution was further 

used for PCR. 

 

 

2.2.3 Amplification of coding exons of MYL2 and MYL3 
 

The polymerase chain reaction (PCR) is one of the most rapid in vitro methods 

for producing large quantities of a particular DNA region for further molecular analysis. 

It is based on the extension of two recombinant oligonucleotide primers, each 

complementary to the opposite DNA strands and flanking the region of interest.  The 

extension is carried out by a recombinant DNA polymerase in the presence of 

deoxynucleotides (dNTPs) and buffer containing magnesium. Specially designed PCR 

thermo cyclers allow rapid changing and repeating of different temperatures required for 

DNA denaturing, primer annealing and extension. 

PCR primers were designed on the basis of MYL2 and MYL3 reference genomic 

DNA sequences downloaded from GenBank (www.ncbi.nlm.nih.gov). GenBank 

accession numbers for the MYL2 and MYL3 reference sequences are L01652 and 

J04462, respectively. Forward and reverse primers were designed for each of the 

seven coding exons of MYL2 and six coding exons of MYL3 using OLIGO software, 

release 4.06 (National Biosciences, Inc, Plymouth, USA). The primers are listed in table 

2.1. 
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Table 2.1. Oligonucleotide primers used to amplify coding exons of MYL2 and MYL3  
Gene Exon Forward primer Reverse primer 
    
MYL2 1 5'ACCTATGACTGCCAAAAGCG3' 5'GTAGTGGCTTCCTCTCCTCG3' 
 2 5'GGGGCCTGACCTAGTTTTTT3' 5'TTTGGGATTGTTTGGAGGAT3' 
 3 5'TCCACTCCTGCCAACTCCTT3' 5'ACCCACCTCCTGCTCCTCAT3' 
 4 5'GCCTCATCACCCCATCTCTG3' 5'AGCCCCCCCGAAGAAACATA3' 
 5 5'TCATCTCTGGGGGAACTTGG3' 5'TGTGTGTGTGTAGGGGGG AC3' 
 6 5'AAAGGGGTGCTGAAGGCTGA3' 5'AGACGAGAGGGGAGACGGAG3' 
 7(A) 5'TCCGTCTCAGTTCCCCTCCC3'  5'GTACCCATAGCCACCCAGGC3' 
 7(B) 5'GCCCCATTTATCCACCTCCA3' 5'GGCTTTGGTCATCCAGGTAA3' 
MYL3 1 5'GGGGTCATGAGGTATCCGGG3' 5'TCCACTCACTTGCCCTGCTC3' 
 2 5'CCACCTTTTAAGCCGGGCAT3' 5'CCGCAGGACATCCCCACACT3' 
 3 5'ATTGAAGGTGAGCAGGGGTC3' 5'TAACACTATGGGGGCTCTCG3' 
 4 5'GTGTGAGAGGTGGGGATAGC3' 5'TGGAAGGAGTTGGGGTAGGG3' 
 5 5 TGACTCAGCCTCCCACTCCT3' 5'CTCCCCTCCCAGAAGACCCC3' 
 6 5'GGTCTTCTGGGAGGGGAGTG3' 5'TTCCCTGGGCTTCCTGAGAG3' 

 

 

 

Each primer was 20 base pairs (bp) in length. Most PCR products were 150-400 

bp long, which is in an optimal range for SSCP analysis and DNA sequencing. Exon 7 

of MYL2 was divided into two parts, and a primer pair was determined for each part. 

Primers were located in the exon-flanking intronic region not closer than 30 base pairs 

to the start/end of exon. This allowed good reading of the sequence of the whole exon. 

DNA sequencing was performed by the Dye Primer Chemistry method, which requires 

specific oligonucleotide sequences to be incorporated in a PCR product. This was 

achieved by attaching the required sequences to 5'-end of primers. The 21-M13 

sequence (5'-TGTAAAAGGAGGGCCAGT-3') was attached to each forward primer, 

whereas the M-13 sequence (5'-CAGGAAACAGCTATGACC-3') was connected to each 

reverse primer. The primers were produced by BioTeZ. 

After obtaining the primers, a PCR protocol was optimised for each exon in terms 

of primer concentration, primer specific annealing temperature, and number of cycles. 

Final values are listed in table 2.2. 
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Table 2.2. Optimised parameters of PCR protocols used to amplify coding exons of 

MYL2 and MYL3 

Gene Exon Primer concentration Annealing temperature Number of cycles 
  pmoles/µl °C  
MYL2 1 0.125 60 38 
 2 0.125 59 40 
 3 0.2 57 34 
 4 0.16 57 34 
 5 0.125 63 35 
 6 0.125 63 35 
 7A 0.2 59 31 
 7B 0.4 57 35 
MYL3 1 0.08 54 32 
 2 0.08 63 34 
 3 0.125 63 34 
 4 0.08 63 34 
 5 0.16 63 29 
  6 1.125 61 32 
Note: concentration of forward and reverse primers was identical and calculated for one sample. 

 

 

The concentration of the required reagents other than primers, i.e. PCR buffer, 

MgCl2, dNTPs, AmpliTaq DNA polymerase and genomic DNA, was identical for all 

exons (table 2.3). A PCR mix of final volume of 25 or 38 µl was used. Composition of 

the reaction mix for amplifying one sample is shown in table 2.3. 

 

Table 2.3. Composition of 25 µl PCR mix for one sample 

  MYL2   MYL3  
 ex 1,2,5,6 ex 3,7A ex 4 ex 1,2,4 ex 3,6 ex 5 
        
Reagent, company end vol,µl end vol,µl end vol,µl end vol,µl end vol,µl end vol,µl
       
Deionized water 18,2 17,4 17,8 18,2 18,2 17,8 
10xPCR buffer, Appl Bios 2,5 2,5 2,5 2,5 2,5 2,5 
MgCl2 , 25 mM, Appl Bios 1,5 1,5 1,5 1,5 1,5 1,5 
Forward pr, 5 pmoles/µl, BioTeZ 0,6 1 0,8 0,4 0,6 0,8 
Reverse pr, 5 pmoles/µl, BioTeZ  0,6 1 0,8 0,4 0,6 0,8 
dNTP, 20 mM, ByoZym 0,3 0,3 0,3 0,3 0,3 0,3 
Amplitaq, 5 U/µl, Appl Bios 0,3 0,3 0,3 0,3 0,3 0,3 
DNA, 25 ng/µl 1 1 1 1 1 1 
Abbreviations used in the table: ex, exon; Appll Bios, Applied Biosystems; Forward pr, forward primer; 
Reverse pr, reverse primer; dNTP, deoxynucleotides; end vol, end volume 
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All PCR reagents were mixed together in a 0.2 µl PCR tube, which was then 

placed in a thermal cycler (Peltier Thermal Cycler, MJ Research Inc; Uno-Thermoblock, 

Biometra). The following cycling programme was used: 

I. Initial denaturing 90 °C 2 min 
 94 °C 1min 
II. 29 -40 cycles for   
 annealing Primer specific annealing temperature (57 - 63 °C)* 15 sec 
 extension 72 °C 2 min 
 denaturation 92 °C 30 sec 
III. Final annealing Primer specific annealing temperature (57 - 63 °C)* 15 sec 
IV. Final extension 72 °C 10 min 
*Primer specific annealing temperatures are listed in table 2.2. 

 

The quality of obtained PCR products was assessed by agarose gel 

electrophoresis. 

 

 

2.2.4 Single strand conformation polymorphism analysis 
 

Single strand conformation polymorphism  (SSCP) analysis is a widely used 

method for carrying out efficient and economical screening for unknown mutations in 

the PCR amplified region of interest in the genome. The sensitivity of SSCP analysis 

has been shown to be about 80-90% if fragments are shorter than 400 bp and if optimal 

running conditions are used.63,64 The method is based on assessment of mobility of a 

single DNA strand by non-denaturing polyacrylamide gel electrophoresis. Amplified 

fragments are thermally denatured and rapidly cooled. This results in single DNA 

strands, which refold in specific conformations unique to the nucleotide sequence. In 

comparison with wild type, a mutated DNA strand adopts different conformations and, 

consequently, migrates differently when subjected to electrophoresis. On a stained 

SSCP gel, such mobility shift can be recognized as an aberrant band pattern. 

Generally, aberrant band patterns are characterized by the presence of additional 

bands in comparison with neighbouring patterns. Samples showing an aberrant pattern 

are selected for further sequence analysis. 

In the present study, experimental conditions were optimised for each PCR 

amplified fragment. Two different conditions with respect to gel composition and running 

temperature were used to test each sample (table 2.4). 
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Table 2.4. SSCP conditions used to screen MYL2 and MYL3 

  MYL2   MYL3   
 ex 1- 6 ex 7A ex 7B ex 1,3,6 ex 2 ex 4 ex 5 
Condition I        
Gel type MDE MDE MDE MDE MDE MDE MDE 
Temperature, °C 5 5 20 20 20 25 5 
Run duration, min  75 75 75 120 120 120 80 
        
Condition II        
Gel type MDE MDE-F5% MDE-F10% MDE 6% PAA 6% PAA MDE 
Temperature, °C 10 20 10 25 17 25 10 
Run duration, min  75 75 75 120 100 100 80 
Abbreviations used in the table: ex, exon; MDE, Mutation Detection Enhancement gel; MDE-F5%, 
2XMDE gel containing 5% of Formamide;  2xMDE-F10%, 2XMDE gel containing 10% of Formamide;  6% 
PAA, 6% polyacrylarmide gel. 

 

As shown in table 2.4, four different modifications of polyacrylamide gel were 

used. The Mutation Detection Enhancement (MDE) gel solution is a polyacrylamide 

matrix that has a high sensitivity to DNA conformational differences. This ready to use 

solution was purchased from BioWhittaker Molecular Application. MDE gels were used 

for screening most of the exons. In two exons of MYL2, MDE gels were modified by 

addition of 5% and 10% of formamide. In two exons of MYL3, 6% acrylamide gel was 

prepared from a Rotiphorese gel 29:1 ready to use solution (acrylamide/bisacrylamide 

in ratio 29:1), which was purchased from Roth. Composition of these gels is given in 

table 2.5. 

 
Table 2.5. Composition of SSCP gels used to screen MYL2 and MYL3 

Gel name Compounds Quantity, ml 
MDE 2xMDE solution  7.5 
 10xTBE buffer  1.8 
  Deionized water 20.8 
MDE-F5% 2xMDE solution 7.5 
 10xTBE buffer  1.8 
 Formamide  1.5 
 Deionized water  19.3 
MDE-F10% 2xMDE solution  7.5 
 10xTBE buffer  1.8 
 Formamide  3.0  
  Deionized water  17.8 
6% PAA Rotiphorese gel 29:1 4.7 
 10xTBE buffer  1.8 
  Deionized water  20.8 
Note: 10xTBE buffer contained 450 mM Tris, 450 mM Boric acid, 20 mM EDTA. 
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An apparatus for casting a SSCP gel consisted of two glass plates sized 26 x20 

cm (Amersham Bioscience). One of the plates was coated with 0.5 mm thick and 5 mm 

broad rubber around the side and foot edges and had a row of 26 small slots. Special 

firm plastic foil (Serva) was put between the glass plates and used for gel backing. 

SSCP gel compounds (see table 2.5) were mixed in a glass beaker.  Immediately after 

adding 24 µl of 99% TEMED and 48 µl of 40% ammonium persulfate, a gel was cast in 

the space between the foil and the rubber-coated plate and polymerised for 1-2 hours. 

The PCR products were mixed with equal or double volume of formamide 

loading buffer (formamide 0.9 g/ml, 10 mM NaOH, 11mM EDTA), denatured at 95 °C 

for 3 min and quenched on ice for 1 min prior to loading. 8 µl of diluted samples were 

loaded onto the polymerised gel, which was previously taken out of the glass plates and 

placed in electrophoresis unit Multiphor II (Pharmacia). The gel was run at 35 Volt and 

at corresponding temperatures (table 2.4). After electrophoresis, bands on the gel were 

visualized by silver staining according to a protocol adapted from Pharmacia (table 2.6). 

 

Table 2.6. Silver staining protocol used to visualize DNA on a SSCP gel 

Step Solutions Time 
Fixation Acetic acid glacial 25 ml  20 min 
 Make up to 250 ml with deionized water  
Washing Deionized water 3x2 min 
Silver reaction 1% silver nitrate solution 25 ml 20 min 
 37% formaldehyde 0.25 ml  
 Make up to 250 ml with deionized water  
Washing Deionized water 0.5 min 
Developing Sodium carbonate 6.25 g until bands become visible 
 37% formaldehyde 0.25 ml  
 2% Sodium thiosulphate 0.25 ml  
 Make up to 250 ml with deionized water  
Stopping Glycin 5 g 10 min 
 0.5 M EDTA 18.8 ml  
 Make up to 250 ml with deionized water  
Preserving 99.5% glycerol 25 ml 10 min 
  Make up to 250 ml with deionized water   

 

 

After silver staining, the gel was transferred onto another glass plate, covered 

with thin soft plastic foil (Cotech) and fixed by tape. The gel was dried for 24-48 hours, 

removed form the plate and evaluated.  Samples showing an aberrant pattern were 
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selected and subjected to direct automated DNA sequencing for detection of possible 

mutations. 

 

 

2.2.5 Automated DNA sequencing 
 

Direct genomic DNA sequencing was performed using the Dye Primer Chemistry 

method on a 373 DNA sequencing system (Applied Biosystems). The method employs 

four specific sequencing primers labelled with one of four fluorescent tags (JOE, FAM, 

TAMRA, ROX) corresponding to the four nucleotides. Using a PCR amplified DNA 

fragment as a template, each primer is extended in a separate tube in the presence of 

corresponding dideoxynucleotides and deoxynucleotides as well as DNA polymerase 

and specific buffer. In each tube, cycle sequencing reaction produces fluorescently 

labelled, chain-terminated DNA fragments. The contents of all four tubes are pooled 

together after cycle sequencing and loaded in a single lane on a denaturing gel. During 

electrophoresis, the labelled fragments pass through a laser beam, directed near the 

bottom of the gel, which excites the fluorescent tags. The emitted light is then detected 

by a photomultiplier and directed into a computer, which displays the readout as series 

of four different coloured peaks, one colour for each nucleotide. 

The Dye Primer Chemistry kits for cycle sequencing were purchased from 

Applied Biosystems. In order to sequence both the sense and antisense DNA strands, 

two kits containing either forward or reverse primers were used. Each kit included four 

different ready to use mixes (A-, C-, G-, T-mix) corresponding to each of the four 

nucleotides (table 2.7). 

 
Table 2.7. Components of Dye Primer Chemistry kit 
Ready Reaction Mix Reagents 
A-mix ddATP, forward/reverse JOE dye primer 
C-mix ddCTP, forward/reverse FAM dye primer 
G-mix ddGTP, forward/reverse TAMRA dye primer 
T-mix ddTTP, forward/reverse ROX dye primer 
All mixes dATP, dCTP, 7-deaza-dGTP, dTTP, Tris-HCl (pH 9.0 at 25 °C),MgCl2, thermall stable pyrophosph
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Apart from samples with an aberrant band pattern on SSCP gels, two HCM 

samples with a normal band pattern were sequenced for each exon of MYL2 and 

MYL3. Control DNA was sequenced when needed. 

PCR products were mixed with the ready reaction mixes in four 0.2 µl tubes in 

following proportions: 

 

Reagent A, µl C, µl G, µl T, µl 
Ready reaction mix 4 4 8 8 
PCR product 1 1 2 2 
Total volume 5 5 10 10 

 

After brief centrifugation, tubes were put in a thermal cycler pre-heated at 94 °C. 

The following programme was used: 
 

I.15 cycles of 96 °C 10 sec 
 55 °C  5 sec 
 70 °C 60 sec 
II.15 cycles of 96 °C 10 sec 
 70 °C 60 sec 

 

After cycle sequencing, contents of the four tubes were centrifuged and pooled 

together in a 2.0 ml tube already containing 80 µl of 95% ethanol and 1 µl of 2% blue 

dextran. The sample was further placed on ice for 15 min and thereafter centrifuged for 

30 min at 1200 rpm at 4 °C. The supernatant was then poured off, and pellet was dried 

of rest of ethanol for 10 min in a vacuum centrifuge. For loading, the pellet was 

resuspended in 3.5 µl of formamide loading buffer (deionised formamide and EDTA/5 % 

blue dextran in ratio 5:1) or stored at  -20 °C, when it was not loaded on the gel the 

same day. 

A 0.3 mm thick sequencing gel was cast between two glass plates sized 25x59 

cm (Applied Biosystems) previously washed with 1% alconox solution and cleaned with 

70% ethanol. The gel composed of 30 g urea, 10 ml of 30% acrylamide solution, 6 ml of 

10xTBE buffer (450 mM Tris pH 8.0, 450 mM boric acid, 20 mM EDTA) and 22 ml of 

deionized water. 15 µl of 99% TEMED and 350 µl of 10% ammonium persulfate were 

added to the gel briefly before pouring in. The gel was poured in between the glass 

plates with the aid of a 50 ml syringe and polymerised for 2 hours. 
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The resuspended pellet (see above) was denatured at 95 °C for 3 min and 

loaded onto the gel. The gel was run for 15 hours at 2500 Volt. The generated 

sequences were stored and further analysed manually and by using the Sequencher 

software, release 4.1, PowerPC Version (Gene Codes Corporation, USA), which 

facilitated comparison of generated sequences to the corresponding reference 

sequences obtained from GenBank. 

 

 

2.2.6 Restriction fragment length polymorphism analysis 
 

Restriction fragment length polymorphism (RFLP) analysis is a method of 

detecting known mutations by digestion of DNA fragment with a restriction enzyme. In 

the present study, this method was used to confirm the presence of mutations initially 

identified on sequencing as well as to screen for it in family members.  The method is 

more rapid and less time consuming when compared to sequencing, but it is possible 

only when restriction enzyme recognition sequence is affected by a mutation. Some 

mutations remove existing recognition sites of an enzyme, whereas others introduce 

new ones. In both cases, the presence of a mutation is recognized by observation of 

particularly sized restriction fragments.  

Screening for the Glu22Lys mutation in exon 2 of MYL2 within family K and 

controls was done by digestion with the Taqα I restriction enzyme (New England 

Biolabs). 4 µl of amplified fragments were mixed with 4 Units (0.2 µl) of Taqα I, 1 µl of 

10xNEB buffer, 1 µl of 10xBSA, and 3.8 µl of deionized water. The samples were then 

incubated at 65 °C for 2 hours in a thermal cycler. 

The Sty I restriction enzyme (New England Biolabs, USA) was used to confirm 

the c.169C>G variant in exon 3 of MYL2. 4 µl of amplified fragments were mixed with 5 

Units (0.5 µl) of Sty I, 1 µl of NEBuffer, 1 µl of 10xBSA, and 3.5 µl of deionized water. 

The samples were then incubated at 37 °C for 2 hours in a thermal cycler. 

The digested products were separated on a 4% agarose gel and stained with 

ethidium bromide. 
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2.2.7 Agarose gel electrophoresis 
 

Agarose gel electrophoresis was used for assessing the quality of genomic DNA 

and amplified PCR products as well as for separating products of RFLP analysis. A 

1.5% agarose gel was used to check the quality of genomic DNA after it was extracted 

from blood, whereas a 4% agarose gel was used for loading PCR amplified fragments 

and restriction enzyme digests (table 2.8). DNA was stained with ethidium bromide 

added into a gel and visualized under UV light on Transilluminator TI 1 (Biometra).  

 

Table 2.8. Agarose gel composition 

 1% gel 4% gel 
Agarose, g 0.3  0.8 
1xTBE, ml 20 20 
1% Ethidium bromide, µl  1.5 1.5 
Note: 1xTBE buffer contained 45 mM Tris (pH 8.0), 45 mM Boric acid and 2 mM EDTA. 

 

 

Agarose powder was mixed with 1xTBE buffer and boiled in a microwave until 

agarose melted completely. 1.5 µl of ethidium bromide was added into the solution, and 

it was briefly boiled again.  The gel was poured into a horizontal apparatus (GibcoBRL) 

and polymerised for 20 min. The apparatus was then filled with 1xTBE buffer until it 

covered completely the gel and appropriate amount of a sample was loaded onto the 

gel. Loading volume was 2 µl, 3 µl, and 10 µl for genomic DNA, PCR products, and 

restriction fragments, respectively. 25 base pair and VIII-DNA molecular weight markers 

(Roche and GibcoBRL) were used to estimate fragment size of amplified and digested 

products. 
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2.3 Devices and Chemicals 
 

2.3.1 Devices 
 

373 DNA Sequencer Applied Biosystems 

Centrifuge 3K12 Sigma 

Centrifuge 3K30 Sigma 

Centrifuge RC 5B Sorvall 

Electrophoresis unit Multiphor II Pharmacia  

Enchanced Analysis System 429K  Herolab 

Eppendorf Thermomixer 5436/5437 Eppendorf 

Horizon 58 Gel electrophoresis Apparatus GibcoBRL 

Ice machine AF - 100 Scotsman 

Metallblock-Thermostate DB-3D  Techne  

Microwave Micromat  AEG 

OPTILAB-Plus-System MembraPure 

Pelitier Thermal Cycler, PTC - 100 MJ Research, Inc 

Pelitier Thermal Cycler, PTC - 200 MJ Research, Inc 

pH – Meter Calimatic Knick 

Power supply Power Pack P 25 Biometra  

Power supply Power Pack ST 606 GibcoBRL 

Power supply PS 9009 TC GibcoBRL 

Spectrophotometer Ultrospec Plus Pharmacia LKB 

Thermal cycler Uno-Thermoblock Biometra 

Thermostate Multitemp II/III Pharmacia  

Transilluminator TI 1 Biometra  

Vacuum Centrifuge UNIVAPO 150/100  UniEquip 

Vacuum pump Cryo Vac Appligene 

Video copy processor Mitsubishi 

Weighing machine Kern 510 Kern 
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2.3.2 Chemicals 
 

Acetic acid (glacial) 100% Merck 

Acetone Merck 

Acrylamide/Bis 29:1 BioRad 

Agarose BioWhittaker Molecular  

 Application 

Alconox Alconox, Inc 

Ammonium persulfate Amresco, Inc 

AmpliTaq DNA polymerase Applied Biosystems 

Blue dextran Pierce 

Boric acid Merck 

Bromphenol blue Pierce 

10xBSA buffer New England Biolabs 

dNTPs ByoZym 

Dye Primer Chemistry sequencing kit Applied Biosystems 

Ethanol absolute Merck 

Ethidium bromide Roth 

Ethylenedinitrilotetraacetic acid (EDTA) Merck 

Formaldehyde solution 37% Merck 

Formamide 99.5% Merck 

Glycerol 99.5% Merck 

Glycine Merck 

Hydrochloric acid 32% Merck 

LiChrosolv water for chromatography Merck 

Magnesium chloride Roth 

MDE Solution 2x BioWhittaker Molecular 

 Application 

Mineral oil Serva 

MgCl2 buffer for PCR Applied Biosystems 

10xNEBuffer New England Biolabs 

PCR-buffer Applied Biosystems 



Materials and methods 

 30

Potassium chloride Roth 

Rotiphorese gel 29:1 Roth 

Silver nitrate Merck 

Sodium carbonate Merck 

Sodium chloride Roth 

Sodium hydroxide pellets Merck 

Sodium thiosulfate pentahydrate Merck 

Sty I restriction enzyme  New England Biolabs 

Taqα I restriction enzyme  New England Biolabs 

TEMED Promega 

Tris (hydroxymethyl) aminomethane Merck 

Triton X–100  99.6% Calbiochem 

Urea Merck 

Xylene cyanol FF Pierce 
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3 Results 
 

 

 

3.1 Patient characteristics 
 

A total of 71 unrelated HCM patients including 48 males and 52 females aged 22 

- 78 years (mean 53.3±14.7) were examined for disease-causing mutations in MYL2 

and MYL3. Clinical data on these patients are summarized in table 3.1. 

The majority of the patients had either no or mild symptoms (NYHA functional 

class I and II). Mean interventricular septum (IVS) obtained by echocardiography was 

19.6±3.7 mm, while mean left ventricular (LV) posterior wall thickness was 10.5±2.4 

mm. LV hypertrophy mostly involved the entire IVS (37% cases of Maron type II) or 

both IVS and anteriolateral LV free wall (45% of Maron type III). 

LV outflow tract obstruction leading to an increased gradient of more than 10 mm 

Hg between LV and aorta was present in 58 % of the probands. It correlated with the 

presence of systolic anterior motion of mitral valve (54%). In 8 patients (11%) with the 

increased outflow tract gradient, an operative management was undertaken. 5 of them 

(7%) underwent LV myectomy (Morrow procedure), and 3 patients (4%) underwent 

nonsurgical septal reduction. 

At the time of examination, most of the patients (94%) were in sinus rhythm; only 

few had atrial fibrillation and an implanted pacemaker (1.4% and 4,2%, respectively). 

ECG findings characteristic of HCM such as Q- and T-wave abnormalities were present 

in 83% of all cases: 31% of the patients showed abnormal Q waves, while negative T 

waves were observed in 52% of them. 
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Table 3.1. Clinical features of HCM patients screened in the present study 

Number of patients (n) 71 
Age, years 53.3±14.7 
Sex,% (n)  
 Male 48.0 (34) 
 Female 52.0 (37) 
Age at diagnosis, years 45.5±16.6 
NYHA class, % (n)  
 I 46.5 (33) 
 II 42.3 (30) 
 III 9.9 (7) 
 IV 1.4 (1) 
IVS thickness, mm 19.6±3.7 
PW thickness, mm 10.5±2.4 
IVS/PW 1.9±0.5 
LVEDD, mm 45.7±6.0 
Maron type,  % (n)  
 I 12.7 (9) 
 II 36.6 (26) 
 III 45.1 (32) 
 IV 5.6 (4) 
LVOT gradient increased,  % (n) 57.7 (41) 
SAM, % (n) 53.5 (38) 
Morrow myectomy, % (n) 7 (5) 
Nonsurgical septal reduction, % (n) 4.2 (3) 
Rhythm, % (n)  
 Sinus 94.4 (67) 
 Atrial fibrillation 1.4 (1) 
 Pacemaker 4.2 (3) 
Abnormal Q waves, % (n) 31.1 (22) 
Negative T waves, % (n) 52.1 (37) 

Data are expressed as mean±standard deviation or as relative (%) and absolute (n) values. 
Abbreviations used in the table: NYHA, New York Heart Association class of heart failure; IVS, 
interventricular septum; PW, left ventricular posterior wall; LVEDD, left ventricular end-diastolic 
dimension; LVOT, left ventricular outflow tract; SAM, systolic anterior motion of mitral valve. 
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3.2 Genetic variants in human MYL2 and MYL3 
 

Numbering of identified genetic variants was performed as suggested by Dunnen 

et al.65 The nucleotide number is preceded by “g.” when a genomic or by “c” when a 

cDNA reference sequence was used. In MYL3, only the cDNA reference sequence was 

used, because no full-length genomic DNA reference sequence was available. The 

variants, except those in MYL3 intronic regions, were simply designated by the 

nucleotide numbers of the respective reference sequences. For instance, g.8353G>A 

denotes the G-to-A substitution at nucleotide 8353 of the MYL2 genomic reference 

sequence. The MYL3 intronic variants were designated by the number of nucleotides 

counted from the first or last nucleotide of an adjacent exon. The negative and positive 

numbers denote the variant’s location upstream and downstream of an exon, 

respectively. For instance, c.158-4_5insGTC denotes an insertion of GTC between 

nucleotides -4 and -5 upstream of nucleotide 158, which is the first nucleotide of exon 3 

according to the MYL3 reference cDNA sequence. 

As it has been already noted in the Material and Methods chapter, the reference 

sequences used in the present work were obtained form GenBank 

(www.ncbi.nlm.nih.gov). Accession numbers of these reference sequences are listed in 

table 3.2. In the present study, self-generated sequences of HCM patients or controls 

consistent with the reference genomic sequences were designated as wild type 

sequences. 

 
Table 3.2. GenBank accession numbers of the reference sequences used in the 

present study 
 genomic DNA reference sequence cDNA reference sequence 
MYL2 L01652 X66141 
MYL3 J04462 M24122 
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Figure 3.1. Schematic representation of the ventricular myosin regulatory light chain 
gene (MYL2) and the ventricular myosin essential light chain gene (MYL3). Boxes 
represent exons, light shaded boxes represent coding DNA of the gene; mutations found in this 
study are dark shaded; variants with asterisk indicate single nucleotide polymorphisms and the 
silent mutation; variants without asterisk indicate differences from the reference genomic DNA 
sequence. Numbering of the genetic variants was performed according to ref. 65. A) Location of 
two missense mutations, SNPs, and sequence differences in MYL2. B) Location of a silent 
mutation and sequence differences in MYL3. 

 

 
Two missense mutations, Glu22Lys and Arg58Gln, were identified in MYL2 and 

associated with different HCM phenotypes in two families.  The Glu22Lys mutation was 

identified in exon 2, whereas the Arg58Gln mutation was in exon 4. Additionally, one 

silent mutation and three single nucleotide polymorphisms (SNPs) were detected while 

screening the MYL2 and MYL3 genes. The c.420C>T (Phe140Phe) silent mutation was 

identified in exon 4 of MYL3. The g.8393G>A and g.8580C>T/A single nucleotide 

polymorphisms were observed in introns flanking exons 5 and 6 of MYL2. Finally, a 

number of sequence differences from the reference genomic DNA sequence were 

observed in both genes, most of them in intronic regions. An overview of these findings 

is given in figure 3.1. 
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3.2.1 Identification of the Glu22Lys mutation in family K 
 
The Glu22Lys mutation was detected initially in patient 1853 (or proband II-3 of 

family K) during screening of exon 2 of MYL2. The sample revealed an aberrant band 

pattern on SSCP analysis. As shown in figure 3.2 B, the aberrant pattern had three 

bands instead of two bands as in a normal pattern. Direct automated sequencing of 

both genomic DNA strands revealed a heterozygous G-to-A (guanine-to-adenine) 

substitution at nucleotide c.64. On the sequence electropherogram, this was present as 

two overlapping peaks with a black peak corresponding to G on one allele and a green 

peak corresponding to A on the other allele (figure 3.2 C). The two overlapping peaks 

were half the height in comparison with neighbouring peaks and were recognized as 

"N" by the sequencing analysis software. According to the reference cDNA sequence, 

this c.64G>A substitution affected the first nucleotide of codon 22 changing it from 

original GAA to mutated AAA. This subsequently caused a replacement of glutamic 

acid (Glu) by lysine (Lys) (Glu22lys). In addition to sequencing, the presence of the 

Glu22Lys mutation was confirmed by RFLP analysis with the Taqα I restriction enzyme 

(see further). 
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Figure 3.2. PCR, SSCP analysis and sequencing of exon 2 of MYL2. A) A 4% agarose gel 
loaded with 317-bp PCR products of exon 2. M, VIII-DNA ladder; Pr II-3, proband II-3 of family 
K; 1865 and 1743, other HCM patients; 141 and 142, control individuals; N, negative control. B) 
Partial SSCP gel. SSCP analysis of proband II-3 of family K (Pr II-3) revealed an aberrant band 
pattern, which has one additional band (indicated by asterisks) in comparison with patterns 
shown by neighbouring HCM samples (1438,1434, 1431, and 1427). C) Partial sequence 
electropherograms of exon 2 of the proband of family K and an individual with the wild type 
sequence. The proband's electropherogramm showed two typical overlapping peaks at 
nucleotide c.64: a black peak for guanine on the non-mutated allele and a green peak for 
adenine on the mutated allele. This G-to-A substitution caused a change of glutamic acid to 
lysine at codon 22. By contrast, the wild type sequence is homozygous for guanine at position 
c.64. 
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Figure 3.3. RFLP analysis of exon 2 of MYL2. A) Schematic representation of restriction sites 
of Taqα I. Two normal S1 and S2 restriction sites produce DNA fragments of 174, 78, and 65 
bp. The Glu22Lys mutation removes the S2 restriction site resulting in an abnormal fragment of 
252 bp. B) The picture of a 4% agarose gel loaded with restriction fragments of the proband of 
family K (Pr II-3) and controls (221, 222, 224, 225, and 226). The abnormal digestion fragment 
of 252 bp due to the Glu22Lys mutation is present in the proband of family K but absent in 
controls. Lane M contains 125-bp DNA ladder. bp, base pairs; U, undigested PCR product of 
exon 2. 

 

 

RFLP analysis of proband II-3 and his family members was possible, because 

the Glu22Lys mutation changed the normal restriction pattern of the Taqα I restriction 

enzyme. The wild type sequence of exon 2 possess two normal Taqα I restriction sites, 

which produce three DNA fragments of 174, 78, and 65 bp each (figure 3.3 A). Taqα I 

recognizes the TCGA sequence. The c.64G>A substitution changes this recognition 

sequence to the TCAA sequence and, consequently, removes one of the two normal 

Taqα I restriction sites. This will result in the appearance of only two restriction 

fragments of 65 and 252 bp instead of the three normal fragments (figure 3.3 A). 

However, the two fragments will be present only when the Glu22Lys mutation is 

homozygous. In the case of the heterozygous Glu22Lys mutation (as in Family K), the 

three normal fragments from the non-mutated allele (65, 78 and 174 bp) and the two 

fragments from the mutated allele (65 and 252 bp) will be observed. On a gel the 65-bp 

fragments from both alleles will be overlapping each other. Thus, the presence of the 

Glu22Lys mutation will be recognized by the presence of the additional 252-bp 

fragment. 

Exon 2 of MYL2 was also amplified from the genomic DNA of control individuals 

and digested with Taqα I. 105 controls failed to show the Glu22Lys mutation, because 

the abnormal 252-bp digestion fragment was observed in none of them (figure 3.3 B). 
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In the family of patient 1853 (designated as family K; figure 3.4), the Glu22Lys 

mutation was identified in further six individuals by RFLP analysis: the abnormal 

restriction fragment of 252 bp was observed in family members II-5, III-2, III-3, III-5, IV-

1, and IV-2. In addition to proband II-3, three of these individuals (III-5, IV-1, IV-2) had 

HCM at the time of examination. The pedigree of family K and results of RFPL analysis 

are presented in figure 3.4. As shown, the pedigree consisted of 12 individuals over 3 

generations. Four individuals (I-1, I-2, II-1, II-2) died before this study, and no data on 

them could be obtained. 

 

 

Figure 3.4. Pedigree of family K and results of RFLP analysis on available family 
members. Upper panel: Pedigree. Black symbols represent clinically affected patients; white 
symbols, clinically unaffected individuals; grey symbol, individuals with uncertain phenotype; 
symbols with plus sign above, genetically affected individuals; symbols with minus sign above, 
genetically unaffected individuals; and symbols with diagonal slash, deceased individuals. 
Proband II-3 (patient 1853) is indicated by arrow. Squares, males; circles, females. Lower 
panel:  Identification of the Glu22Lys mutation in family members by RFLP analysis with 
Taqα I. A picture of a 4% agarose gel loaded with restriction digests. The abnormal 252-bp 
fragment is present in family members II-3, III-2, III-3, II-5, III-5, IV-1, and IV-2 indicating the 
presence of the Glu22Lys mutation. Lane U contains undigested amplification product of MYL2 
exon 2 of 317 base pairs (bp). Lane M contains 125-bp DNA ladder with sizes of bands shown 
on the right side of the gel picture.  Sizes of the digestion products are shown on the left side of 
the gel picture. 
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3.2.2 Identification of the Arg58Gln mutation in family B 
 
The Arg58Gln mutation was initially identified in patient 1555 (or proband II-2 of 

family B) while screening exon 4 of MYL2. The sample showed an aberrant band 

pattern (with three clear additional bands) on SSCP analysis (figure 3.5 A). Direct 

automated sequencing of both DNA strands revealed two typical overlapping peaks 

indicating a heterozygous G-to-A (guanine-to-adenine) substitution at nucleotide c.173 

(figure 3.5 B). The c.173G>A substitution resulted in a replacement of arginine (Arg) by 

glutamine (Gln) at codon 58  (Arg58Gln), because this codon was changed from 

original CGA to mutated CAA. The Arg58Gln mutation was confirmed by sequencing in 

two independent runs, because it did not affect any restriction site making RFLP 

analysis impossible. 

 

 

Figure 3.5. SSCP analysis and sequencing of exon 2 of MYL2. A) SSCP analysis. The 
aberrant band pattern observed in proband II-2 of family B (Pr II-2) was absent in controls (34, 
33, 31, 23, and 21) and contains three clear additional bands, which are indicated by asterisks. 
NBP, normal band pattern; ABP, aberrant band pattern. B) Sequence electropherograms of 
proband II-2 of family B, the proband's mother, and a control individual. Proband II-2 has two 
overlapping peaks at position c.173 with a black peak corresponding to guanine on the non-
mutated allele and a green peak for adenine on the mutated allele. A G-to-A heterozygous 
substitution resulted in a replacement of arginine by glutamine at codon 58. By contrast, the 
Arg58Gln mutation was absent in a control and the proband's mother. 
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In the family of patient 1555 (designated as family B; figure 3.6), two more 

individuals suffered from HCM: proband’s father I-1 and sister II-1. However, genetic 

analysis on them could not be performed, because they died before this study, and no 

DNA could be obtained. Genotyping of only alive proband’s mother I-2 revealed no 

Arg58Gln mutation (figure 3.5 B and 3.6). The pedigree of family B with results of SSCP 

analysis on patient 1555 and her mother is presented in figure 3.6. 

Exon 4 of MYL2 was further amplified from DNA of control individuals and 

subjected to SSCP analysis. 105 controls failed to show the Arg58Gln mutation, 

because none of them revealed the aberrant band pattern characteristic of this mutation 

(figure 3.5 A). 

 

 

Figure 3.6. Pedigree of family B and results of SSCP analysis. Upper panel: Pedigree. 
Black symbols represent clinically affected patients; white symbols, clinically unaffected 
individuals; symbols with plus sign above, genetically affected individuals; symbols with minus 
sign above, genetically unaffected individuals; symbols with diagonal slash, deceased 
individuals; squares, males; and circles, females. The proband (patient 1555) is indicated by 
arrow. SCD, sudden cardiac death. Lower panel: SSCP gel. Proband II-2 showed an aberrant 
mobility pattern absent in her mother (I-2) and control (C). 
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3.2.3  Localization of the mutations in highly conserved RLC regions 
 
The amino acid residues affected by the Glu22Lys and Arg58Gln mutations are 

strictly conserved throughout evolution: as shown in figure 3.7, glutamic acid at position 

22 and arginine at position 58 are invariant in RLC isoforms, which are expressed in the 

heart of different species (human ventricular/slow skeletal, rat and mouse ventricular, 

chicken cardiac). Glutamic acid is also preserved among skeletal isoforms of the shown 

species. 

The identified Glu22Lys and Arg58Gln mutations are located in the amino 

terminal half of the RLC, which contains two putatively important functional regions: the 

phosphorylation and calcium-binding sites. As shown in figure 3.8, both variants are in 

α-helices flanking the calcium-binding loop. The Glu22Lys is additionally in the region 

adjacent to the RLC phosphorylation site. 

The Glu22Lys and Arg58Gln mutations are further predicted to alter the normal 

net charge of the RLC N-terminus, because the Glu22Lys variant caused a replacement 

of negatively charged glutamic acid by positively charged lysine, and the Arg58Gln 

mutation caused a substitution of positively charged arginine by non-charged glutamine. 

 

 

Figure 3.7. Amino acid alignment across species and RLC isoforms. The Glu22Lys and 
Arg58Gln mutations affect the highly conserved amino acids, suggesting the essentiality of 
these residues for normal protein function. RLCs from the same muscle type show the highest 
sequence homology. This indicates that functional properties of a protein are determined by its 
amino acid sequence. Glu and E, glutamic acid; Lys and K, lysine; Arg and R, arginine; Gln and 
Q, glutamine. 
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Figure 3.8. Localization of the Glu22Lys and Arg58Gln mutations in the RLC sequence 
(A) and three-dimensional structure (B). The putative phosphorylation site at serine-15 (A) 
and calcium-binding site at residues 37-48 (A, B) are highlighted. As shown, the Glu22Lys 
mutation is located close to the RLC phosphorylation site, moreover it is in the α-helix flanking 
the calcium-binding loop. The Arg58Gln mutation is in the α-helix, which flanks the calcium-
binding loop from the other side. Adapted from ref. 29. 
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3.2.4 Clinical features of family K with the Glu22Lys mutation 
 

Clinical data of the genetically affected members of families K and B are 

summarized in table 3.3.  

In family K, the Glu22Lys mutation was identified in seven individuals. Within 

them, four individuals had HCM (II-3, III-5, IV-1, and IV-2), one individual had borderline 

cardiac hypertrophy (II-5), and another one (III-2) was a healthy carrier. Remaining 

genetically affected individual III-3 (32 years old) had normal ECG, but 

echocardiographic evaluation could not be performed because of patient’s 

unwillingness. All these individuals were asymptomatic apart from proband II-3 and his 

sister II-5. 

75-year old male proband II-3 was referred for clinical evaluation because of 

episodes of palpitation, chest pain, and dyspnea. His ECG showed sinus rhythm and 

left bundle branch block. Holter electrocardiography demonstrated an episode of 

supraventricular tachycardia and polytopic ventricular extrasystoles. Echocardiography 

revealed asymmetric hypertrophy with IVS of 23 mm. No LV cavity or outflow tract 

obstruction was observed. Within the following year, the proband was admitted to 

Franz-Volhard-Klinik twice because of events of atrial fibrillation. During the first visit, he 

was converted to sinus rhythm by electrical cardioversion. The next time, he underwent 

a successful high frequency ablation. 

Genetically affected proband’s niece III-5, 42 years old, did not report any 

symptoms.  But her ECG demonstrated abnormal Q waves at leads I and aVL. 

Echocardiography revealed basal septal hypertrophy of 15 mm. No pressure gradient 

was present. 

20-year old female individual IV-1, who inherited the Glu22Lys mutation from her 

mother III-5, also did not show any clinical symptoms but had abnormal ECG, and 

echocardiographic findings characteristic of HCM. Her ECG demonstrated pathologic Q 

waves at aVL, while echocardiography revealed midseptal hypertrophy related to body 

surface area with IVS thickness of 12 mm. No LV cavity or outflow tract obstruction was 

observed. 

Similarly, 18 year-old male individual IV-2, who also inherited the mutation from 

his mother III-5, did not report any clinical symptoms but exhibited ECG and 

echocardiographic abnormalities characteristic of HCM. ECG showed voltage criteria of 



Results 

 44

LV hypertrophy: Sokolow-Lyon index was 4.8 mV. Echocardiography demonstrated 

midseptal hypertrophy of 13 mm without any obstruction.  

The phenotype of genetically affected proband’s sister II-5 was defined as 

”uncertain”. The 62-year old woman reported periodic dyspnea and chest pain. But her 

ECG was normal. Echocardiography revealed IVS of 13 mm, however, it was in the 

normal range in relation to her body surface area of 2.45 m2. No pressure gradient was 

present. 

33-year old proband’s daughter III-2, who inherited the mutation, reported no 

clinical symptoms. Her ECG revealed pathologic Q waves at lead aVF, but 

echocardiography showed no myocardial hypertrophy. 

 

 
Table 3.3. Clinical features of genetically affected individuals of families K and B 

Family   Family K   Family B 
Pedigree number II-3 II-5 III-2 III-5 IV-1 IV-2 II-2 
        
Mutation Glu22Lys Glu22Lys Glu22Lys Glu22Lys Glu22Lys Glu22Lys Arg57Gln
Age (years) 75 62 33 42 20 18 27 
Age at diagnosis (years) 75 62 33 42 20 18 7 
BSA (sqm) 1.97 2.45 2.08 2.06 1.75 2.01 1.58 
Weight (kg) 81 139 98 96 65 80 56 
Heart block LBBB no no no no no no 
Negative T n.a. no no no no no yes 
Abnormal Q n.a. no aVF I, aVL aVL no no 
S-L index (mV) n.a. 1.9 2.4 3.1 2.2 4.8 4.8 
IVS (mm) 20 13 10 15 12** 13 21 
PW (mm) 13 n.d. 7 8 7 10 7 
IVS/PW 1.5 n.a. 1.4 1.8 1.7 1.3 3 
LVEDD (mm) 52 47 48 53 44 52 39 
Maron type of LVH* I I n.a. I IV IV III 
NYHA class III II I I I I II 
Clinical status affected uncertain unaffected affected affected affected affected 
BSA, body surface area; S-L index, Sokolow-Lyon index; IVS, interventricular septum; PW, left ventricular 
posterior wall; LVEDD, left ventricular end-diastolic dimension; LBBB, left ventricular bundle branch 
block; LVH, left ventricular hypertrophy; NYHA, New York Heart Association class of heart failure; n.d., 
not determined; n.a., not applicable. *According to ref. 28. **In this individual, HCM diagnosis was based 
on increased IVS thickness for his age, weight and BSA. 
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3.2.5 Clinical features of family B with the Arg58Gln mutation 
 
In family B, three individuals had HCM, two of them died suddenly at young age. 

The proband II-2 was 7 years old when HCM was diagnosed during a medical 

evaluation because of sudden cardiac death of her 28-year old father. When she was 

16 years old, therapy with β-adreno receptor blockers was started due to premature 

fatigue on exertion. At the age of 25, the patient additionally reported palpitations and 

presyncopal conditions. She was referred to an electrophysiological examination; during 

this procedure she developed ventricular tachycardia degenerating into ventricular 

fibrillation. The proband was converted to sinus rhythm by electrical defibrillation. 

Afterwards, considering the family history of two sudden cardiac deaths and 

aggravation of clinical symptoms, a cardioverter-defibrillator (ICD) was implanted. At the 

age of 27, recurrent events of supraventricular tachycardia (up to 170/min) were 

registered on the ICD, and she was admitted to Franz-Volhard-Klinik. No shock had 

been delivered from the ICD by that time. ECG showed voltage signs of LV hypertrophy 

with T wave inversion. Echocardiography revealed asymmetric septal hypertrophy of 21 

mm extending to the LV apex and lateral free wall. No pressure gradient was observed. 

Electrophysiological investigation demonstrated the common type of atrial flutter with 

2:1 conduction ratio. Ablation therapy was considered, but due to the risk of affecting 

the ICD lead, therapy with sotalol was attempted first. The latter resulted in suppression 

of the tachycardia and improvement of clinical symptoms. 

Proband’s mother I-2 did not have HCM: she had a normal ECG and LV wall 

thickness on echocardiography. 

Proband’s father I-1 did not show any symptoms of the disease. He died 

suddenly at the age of 28. It is known from his wife that HCM was diagnosed on 

autopsy. 

Clinical data on proband’s younger sister II-1 were kindly sent by Prof. Kienast 

from the University Clinic in Rostock. She was 5 years old when HCM was diagnosed. 

The only symptom reported was premature fatigue on exertion. Her ECG showed signs 

of LV hypertrophy with negative T waves in left chest leads. Echocardiography 

demonstrated septal hypertrophy of 26 mm, normal thickness of LV posterior wall, and 

LV outflow tract obstruction. Despite regular medical check-ups and treatment by 

calcium channel blockers, she died suddenly at home at the age of 21. 
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3.2.6 The c.420C>T (Phe140Phe) silent mutation in MYL3 
 

In MYL3, the c.420C>T (Phe140Phe) silent mutation was detected in one patient 

(DNA sample 1635) out of the 71 individuals while screening exon 4. The sample 

showed an aberrant band pattern on a SSCP gel. As shown in figure 3.9 B, the aberrant 

band pattern possessed an additional band in comparison with normal patterns shown 

by the neighbouring samples. DNA sequencing revealed a heterozygous C-to-T 

(cytosine-to-thymine) substitution at nucleotide c.420 (figure 3.9 C). No amino acid 

change was caused by this substitution, because both codons TTC and TTT encode for 

phenylalanine. 

 

 

 

Figure 3.9. PCR, SSCP analysis and sequencing of exon 4 of MYL3. A) A 4% agarose gel 
loaded with PCR products of exon 4. The amplified fragments were approximately 400 base 
pairs (bp) long. Lane M contains VIII-DNA ladder. 1635, a patient carrying the c.420C>T 
polymorphism; 1781, 1782, and 1783, other HCM patients. B) SSCP analysis of patient 1635 
revealed an aberrant band pattern, which has an additional band (indicated by asterisk) in 
comparison with patterns shown by neighbouring HCM patients 1855, 1853, and 1592. C) 
Partial sequence of patient 1635 showing the heterozygous c.420C>T silent mutation and of an 
individual homozygous for the wild type MYL3 allele. 
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3.2.7 Single nucleotide polymorphisms in MYL2 
 

SSCP analysis of PCR products containing exons 5 and 6 and their flanking 

intronic regions revealed different band patterns, which were unevenly distributed but 

frequent. This suggested that eventually some common genetic variants underlie the 

observed SSCP band patterns. Although the relatively high frequency of each band 

pattern within a group of 71 patients suggested that underlying genetic variants are not 

disease-causing mutations but rather polymorphisms, in order not to miss any disease-

causing mutation, several samples from each subset of samples showing a similar 

SSCP pattern were selected for sequencing. The latter revealed the g.8393G>A and 

g.8580C>T/A intronic single nucleotide polymorphisms confirming the initial proposal 

about common polymorphisms. 
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The g.8393G>A polymorphism in intron 4 of MYL2 
After evaluating SSCP gels of the exon 5 fragment, seven samples were 

sequenced. Two MYL2 allelic variants were observed with regard to nucleotide position 

g.8393 in the part of intron 4 flanking exon 5. The first one was a g.8393G variant, 

which designates the presence of guanine at nucleotide position g.8393. This variant 

corresponded to the reference genomic DNA sequence and was therefore considered 

the wild type sequence. The second variant was g.8393G>A, which denotes a MYL2 

allele possessing adenine at the same g.8393 nucleotide position. 

Within the seven sequenced samples, three samples (1595, 1808, and 1744) 

were homozygous for the g.8393G wild type allele (figure 3.10 A). Three further 

individuals  (1795, 1811, and 1817) were heterozygous for the g.8393G and 

g.8393G>A alleles (figure 3.10 C). The remaining sample (1819) was homozygous for 

the g.8393G>A polymorphism (figure 3.10 B). 

 

 

Figure 3.10. Partial sequence electropherograms of intron 4 of MYL2 showing genetic 
variants at position g.8393. A) DNA sequence of sample 1595 with guanine at nucleotide 
position g.8393 on both alleles. B) DNA sequence of patient 1819 showing the presence of the 
homozygous g.8393G>A polymorphism. C) DNA sequence of patient 1811 showing the 
presence of the heterozygous g.8393G>A polymorphism. 
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The g.8580C>T/A polymorphism in intron 5 of MYL2 
In the case of the MYL2 exon 6 fragment, eight samples underwent DNA 

sequencing, which revealed three allelic variants with regard to nucleotide position 

g.8580 in the part of inron 5 flanking exon 6. The first variant was g.8580C, which 

denotes an allele with cytosine at nucleotide position g.8580. This variant was 

consistent with the reference genomic DNA sequence and was considered the wild type 

sequence. The second identified variant was g.8580C>T, which designates a MYL2 

allele carrying thymine at nucleotide g.8580. The third variant was g.8580C>A, which 

denotes an allele possessing adenine at the same g.8580 position.  

Among eight sequenced samples, two samples (1584, 1781) were homozygous 

for the g.8580C wild type allele (figure 3.11 B). Three further samples (1565, 1744, and 

1782) were heterozygous for the g.8580C and g.8580C>T alleles (figure 3.11 D).  Two 

other individuals (1707 and 1780) were homozygous for the g.8580C>T polymorphism 

(figure 3.11 A). The remaining sample (1594) was heterozygous for the g.8580C>T and 

g.8580C>A alleles (figure 3.11 C). 

 

 

Figure 3.11. Partial sequence electropherograms of intron 5 of MYL2 showing genetic 
variants at position g.8580. A) DNA sequence of patient 1707 showing the homozygous 
g.8580C>T polymorphism. B) DNA sequence of wild type sample 1584 with guanine at position 
g.8580 on both alleles. C) DNA sequence of patient 1594 showing the presence of the 
g.8580C>T polymorphism on one allele and the g.8580C>A polymorphism on the other allele. 
D) DNA sequence of patient 1782 showing the presence of the heterozygous g.8580C>T 
polymorphism. 
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Both g.8393G>A and g.8580C>T/A MYL2 variants were located in intronic 

regions and did not cause an amino acid exchange. Furthermore, these polymorphisms 

are not predicted to have any effect on the splicing process proceeding from their 

localizations sufficiently far from the splice sites. 

After clarifying that no disease-causing mutations but nucleotide polymorphisms 

did underlie the observed SSCP band patterns, no further sequencing of the exon 5 and 

exon 6 containing fragments was performed. 
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3.2.8 Genomic sequence differences 
 

While evaluating data obtained in the course of this study, some self-generated 

genomic DNA sequences had regions (further designated as differences), which 

mismatched to the reference genomic DNA sequences. These nucleotide differences 

were considered such rather than polymorphisms or mutations, because they were 

present in all samples subjected to DNA sequencing. Proceeding from the high quality 

of self-generated sequences, it was concluded that the observed differences were due 

to the errors in the reference genomic DNA sequences. This conclusion was confirmed 

by further analysis of the self-generated sequences in comparison to the reference 

cDNA sequences. The presence of eventual errors in the reference genomic DNA 

sequences required careful analysis in order to interpret obtained data accurately. 

All observed differences were in intronic regions of both genes, except for 

c.240A>T and c.169C>G differences, which were detected in the coding part of MYL2 

(see overview in figure 3.1). As indicated in figure 3.1, the differences were present as 

nucleotide substitutions (n=10), nucleotide deletions (n=4) and insertions (n=9). 

 Figure 3.12 below shows examples of the observed differences in intron 1 

(g.1277A>G, g.1278G>A and g.1291T>C) and in exon 4 (c.240A>T) of MYL2. As 

shown, the c.240A>T difference was observed in comparison to the reference genomic 

DNA sequence but was in agreement with the reference cDNA sequence. 

 

 

Figure 3.12. Partial sequence alignment of HCM samples, control and the reference 
genomic DNA and cDNA sequences. Ref gDNA, the reference genomic DNA sequence; 
HCM, self-generated DNA sequence of a HCM patient; control, self-generated DNA sequence 
of a control individual; cDNA, the reference cDNA sequence. A) Partial sequence alignment of 
intron 1 of MYL2. Three identified differences, g.1277A>G, g.1278G>A and g.1291T>C, are 
highlighted. B) Partial sequence alignment of exon 4 of MYL2 with the c.240A>T difference 
highlighted. 
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Figure 3.13. Partial sequence alignment of HCM samples, control and the reference 
genomic DNA and cDNA. Ref gDNA, the reference genomic DNA sequence; HCM, self-
generated DNA sequence of a HCM patient; control, self-generated DNA sequence of a control 
individual; cDNA, the reference cDNA sequence; RLC, RLC amino acid sequence translated on 
the basis of the reference cDNA sequence. A) Sequence alignment of exon 3 and a donor 
splice site of intron 3 of MYL2. The c.169C>G difference is highlighted. B) Sequence alignment 
of exon 4 of MYL2. The deletion of adenine and guanine (g.7488_7489delAG) at the acceptor 
splice site of exon 4 is highlighted. The actual splice site is shown three nucleotides upstream. 
C) Exon 3 and 4 of MYL2 are aligned together to show that the self-generated sequences are in 
agreement with the reference cDNA but not with the genomic DNA sequences. 

 

 

 

The most confusing findings were the c.169C>G and g.7488_7489delAG 
differences identified in MYL2. The c.169C>G difference denotes the presence of 

guanine instead of cytosine at nucleotide c.169, which is the last nucleotide of exon 3 

(figure 3.13 A). The g.7488_7489delAG difference denotes a deletion of the AG 

acceptor splice site of exon 4 (figure 3.13 B). But another AG splice site was found 

three nucleotides upstream and is predicted to be the actual acceptor splice site of exon 

4 proceeding from the comparison with the c.DNA reference sequence. 

The presence of the c.169C>G difference and shift of the acceptor splice site of 

exon 4 upstream resulted in three more nucleotides GGC at the beginning of exon 4.  

This subsequently resulted in two rearranged codons: GGG encoding for glycine and 

GCA encoding for arginine. These findings were in agreement with the reference cDNA 

sequence as shown in figure 3.13 C. 
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Figure 3.14. RFLP analysis of exon 3 of MYL2, which confirmed the presence of the 
c.169C>G difference in all of 71 HCM-patients and 100 control individuals. A) Schematic 
drawing of the restriction sites of Sty I. According to the MYL2 genomic DNA reference 
sequence, an amplified product of exon 3 is supposed to have only one restriction site (S1), 
which gives rise to two digests of 35 and 235 base pairs (bp) each.  But in the presence of the 
c.169C>G difference, it has two restriction sites (S1 and S2), which produce three restriction 
fragments of 35 bp, 92 bp, and 143 bp each. B) A picture of 4% agarose gel loaded with 
digests. The presence of three restriction fragments of 35, 92, and 143 bp but not two of 35 and 
235 confirms the presence of the c.169C>G difference and of an error in the genomic DNA 
reference sequence. The same band pattern as shown on this gel was observed in all 71 
patients and 100 controls.  Lane U contains undigested amplification product of exon 3 of 270 
base pairs. Lane M contains 125-bp DNA ladder. 

 

 

 

In the case of the c.169C>G difference, it was possible to perform RFLP analysis 

with the Sty I restriction enzyme. This enzyme recognizes the sequence CCTTGG. 

According to the MYL2 genomic reference sequence, the amplified fragment containing 

exon 3 (270 bp long) is supposed to possess a single Sty I restriction site, which 

produces two DNA fragments of 35 and 235 bp each (figure 3.14). However, the 

c.169C>G difference introduces an additional Sty I recognition site. Collectively, the two 

Sty I restriction sites will result in three fragments of 35, 143, and 92 bp. The 

observation of these three fragments in all 71 HCM probands and 100 controls 

confirmed the presence of an error in the reference genomic DNA sequence at 

nucleotide c.169 (figure 3.14). 
 



Discussion 

 54

 

 

 

4 Discussion 
 

 

 

The ventricular myosin essential (MYL3) and regulatory light chain (MYL2) genes 

were analysed in a group of 71 unrelated clinically well-characterized HCM patients. 

Systematic analysis revealed two missense mutations in MYL2 associated with either 

benign or malignant HCM phenotype. Additionally, one silent mutation, two single 

nucleotide polymorphisms (SNPs), and a number of sequence differences were 

detected while screening the MYL2 and MYL3 genes. 

 

 

4.1 Patient cohort and screening approach 
 

The patients enrolled in the present study revealed typical features of HCM and 

were well representative of the overall HCM population.56 Similarly to other studies, the 

age of the patients varied widely, however, most of them were already at midlife at the 

time of diagnosis.5,44,66 The majority of the patients had mild or no symptoms and were 

diagnosed after the third decade of their life. In most cases, LV hypertrophy involved 

the entire IVS or both IVS and the free wall. These two patterns of hypertrophy 

distribution have also been previously described as the most common in HCM.45 

Despite the high number of patients with obstructive HCM in the present cohort, 

operative management of obstruction was performed only in few of them. This suggests 

that the number of patients with massively increased pressure gradient and in the need 

of operative treatment in the overall population of HCM patients is small in comparison 

with the number of individuals, who can be treated by drugs. 

 

Among a variety of available techniques,67 the PCR-SSCP method used in the 

present work has been shown to be a reliable and informative method for detecting 

unknown mutations in DNA fragments of interest.64,67,68 Although it has been argued 
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that the 80-90% sensitivity of SSCP analysis does not exclude a possibility of some 

mutations remaining undetected, there is a common agreement that this method is the 

most suitable for mutation screening in a large patient group, because it is economical, 

rapid and simple in carrying out. Moreover, the sensitivity of SSCP analysis can be 

significantly increased by adjusting the running conditions.63,69 In the present work, two 

SSCP runs under different conditions were used to screen each of coding exons in 

order to achieve a high detection rate and to decrease the number of missed genetic 

variants. Furthermore, since the SSCP analysis is more sensitive for shorter DNA 

fragments,64 most of the PCR fragments were 150-400 base pairs in length.  The 

efficiency of SSCP analysis in the present study is supported by the identification of 

such minor DNA changes as SNPs and point mutations. Notably, results of SSCP 

analysis were always consistent with the results of DNA sequencing: each of the 

observed aberrant SSCP patterns had an underlying sequence variation. By contrast, 

sequence differences did not show any aberrancy on SSCP. Observation of high 

number of sequence differences also underlines the possibility of frequent errors in 

reference sequences, and how careful one should be in using them. 

 

It is necessary to note that the present work did not aim to study genetic 

polymorphisms but disease-causing mutations. SNPs were determined in the course of 

this study, because they mimic disease-causing mutations on the SSCP analysis. SNPs 

are common single nucleotide allelic variations, which are present at least in 1% of a 

population.70 According to recent studies, SNPs occur on average every 1,000-2,000 

nucleotides.70-72 It is supposed that they account for much of the functional 

heterogeneity in gene expression and protein activity exhibited in the human 

population.72,73 In contrast to disease mutations, SNPs do not directly cause any 

disorder, however, recent studies showed that SNPs or particular combinations of them 

might be associated with individual susceptibility to common polygenic disorders 

(diabetes, cancer, cardiovascular and neurological diseases, and others).57,71,74,75 

In the present study, the exact distribution of the observed SNPs among the 71 

examined patients was not estimated, because, firstly, it was not consistent with the 

study purposes, and, secondly, it would have required sequencing of corresponding 

DNA fragments in all patients. However, recurrent observation of the SSCP patterns 

characteristic of g.8393 G>A and g.8580 C>T/A indicates that these polymorphisms are 

common sequence variations. According to SSCP analysis, the frequency of these 
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variants in this study population was much more than 1%. Interestingly, the g.8393G>A 

polymorphism was also observed in South African as well as Danish HCM patients and 

controls.16 Thus, further studies are needed to determine the frequency of the MYL2 

g.8393G>A and g.8580C>T/A polymorphisms and whether they have any implication in 

HCM or other diseases. 

 

 

4.2 The Glu22Lys and Arg58Gln mutations in MYL2 
 

HCM is caused by mutations in nine genes encoding for sarcomeric proteins 

including those for ventricular myosin light chains, although the frequency of mutations 

in each of these genes is variable.3 In the present study, screening of 71 unrelated 

HCM patients revealed only two mutations in MYL2 and no mutation in MYL3. These 

data underline the rarity of ELC/RLC mutations in HCM. The absence of mutations in 

MYL3 confirms that the contribution of ELC mutations to the HCM causes is 

significantly less than that of RLC mutations.15,16 In a study, which was previously 

conducted in our lab, an independent group of 85 HCM patients was screened, and 

neither MYL2 nor MYL3 mutations were found (unpublished data). Collectively, 186 

unrelated HCM patients (71 patients from the present study and 85 from the previous 

study) underwent genetic analysis in two independent studies in our lab: the frequency 

of MYL2 mutations in this relatively large patient cohort is approximately 1%. These 

data are consistent with data obtained by Potter et al.10 but not with data from later 

studies, which estimated the frequency of MYL2 mutations as 4.4%15 and 7%.16 

So far, only three disease-associated mutations have been identified in the ELC 

gene.10,59 In the RLC gene, seven point and one splice site mutations have been 

detected.10,15,16 These mutations and available information on associated phenotypes 

are listed in table 4.1. In contrast to some other genes, limited number of families 

confounds generally applicable conclusions regarding the disease course and 

prognosis in HCM caused by myosin light chain gene mutations. Therefore, in rare 

HCM forms, every single family, identified, becomes valuable. 
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Table 4.1. The known HCM associated mutations in the RLC and ELC genes 
Gene Exon Mutation Number of families Associated phenotype Reference 
MYL2 2 Ala13Thr  1 individual  midventricular hypertrophy Poetter et al,199610 
      

septal hypertrophy,  2 Ala13Thr 1 family  
good prognosis and survival 

Andersen et al, 200116 

 2 Phe18Leu 1 family  septal hypertrophy Flavigny et al, 199815 
2 brothers and 1  2 Glu22Lys 
unrelated individual 

midventricular hypertrophy Poetter et al,199610 

 2 Glu22Lys 1 family septal hypertrophy, benign 
course and prognosis 

present study 

 3 Asn47Lys 1 individual midventricular hypertrophy Andersen et al,200116 
septal hypertrophy,  4 Arg58Gln 2 families 
2 sudden deaths 

Flavigny et al, 199815 

septal hypertrophy,  4 Arg58Gln 1 family 
malignant course/prognosis 

present study 

 5 Pro94Arg 1 individual no phenotype is described Poetter et al, 199610 
5 and septal hypertrophy,  
Intr. 6 

Lys103Glu 
and IVS6-1* 

1 family 
good prognosis and survival 

Andersen et al, 200116 

2 families and 1 MYL3 3 Ala57Gly 
unrelated individual 

septal hypertrophy, 2 sudden 
deaths 

Lee W-H et al, 200159 

 4 Met149Val 1 family  midventricular hypertrophy Poetter et al,199610 
 4 Arg154His 1 individual midventricular hypertrophy Poetter et al,199610 
Note: the mutations identified in the present work are shown in bold; Intr. 6, intron 6; *IVS6-1, a splice site 
mutation in intron 6. 

 

 

 

This study presents two German families with the Glu22Lys and Arg58Gln 

mutations in the ventricular myosin regulatory light chain gene. The Glu22Lys and 

Arg58Gln variants have been previously observed in American and French HCM 

population, respectively.10,15 The Glu22Lys mutation was identified in two brothers and 

one unrelated individual by Potter et al.10, whereas the Arg58Gln mutation was detected 

in two unrelated families by Flavigny et al.15 In contrast to the previous study, this work 

presents a larger family spanning across three generations (family K) bearing the 

Glu22Lys mutation. However, the identified family with the Arg58Gln mutation (family B) 

was smaller than the two families described by Flavigny et al.15 Two individuals in 

family B, who died suddenly, probably did had the Arg58Gln mutation, because, 

similarly to proband II-2, they suffered from HCM. Moreover, the proband and her 

deceased sister eventually inherited the Arg58Gln mutation from their deceased father, 

since their mother was genetically and clinically healthy. 



Discussion 

 58

That these two mutations cause HCM is supported by several observations. 

First, there was a clear cosegregation of the Glu22Lys and Arg58Gln mutation with 

HCM in the present and previous studies: the mutations were present in all clinically 

affected family members. Second, neither of these mutations was observed in control 

individuals (105 controls were screened in the present study) indicating that they are 

not common polymorphisms.  Third, the altered residues as well as flanking sequences 

show strong evolutionary conservation across vertebrate species suggesting an 

important role for the RLC function (figure 3.7). Furthermore, the RLC carrying these 

mutations is a protein of the cardiac sarcomere: the causality of mutant sarcomeric 

proteins in HCM is well established.2,3 

The identification of the Glu22Lys and Arg58Gln mutations in the different study 

populations suggests that the codons 22 and 58 are highly susceptible to mutations. 

Such hot spots have also been observed in the β--myosin heavy chain gene: mutations 

often affected codons encoding amino acids 403, 719 and 741.50 Interestingly, different 

mutations were observed at these sites. Associated HCM phenotypes were generally 

different for distinct mutations but showed high similarity for the same mutations.50 As 

discussed further, the HCM phenotypes observed in the present and previous studies 

were similar for the Arg58Gln but not for the Glu22Lys mutation. 

 

 

4.3 Genotype-phenotype correlations 
 

In the previous study by Potter et at.10, the Glu22Lys mutation was associated 

with a particular phenotype with massive hypertrophy of the cardiac papillary muscles 

and adjacent ventricular tissue causing midcavity obstruction, whereas the Arg58Gln 

mutation caused typical asymmetric septal hypertrophy in the study by Flavigny et at.15 

In the present study, the individuals bearing the Glu22Lys mutation had no massive 

midventricular hypertrophy with midcavity obstruction but asymmetric hypertrophy of 

interventricular septum. The individuals of family B with the Arg58Gln mutation also had 

asymmetric septal hypertrophy similar to that described by Flavigny et at.15 These 

observations suggest that identical mutations in myosin light chains can cause diverse 

patterns of LV hypertrophy as mutations in other genes do. Furthermore, the 

midventricular hypertrophy was also observed in HCM cases caused by mutations in β--
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myosin heavy chain and cardiac myosin binding protein C and is, therefore, not an 

unique feature of myosin light chain mutations.16,59  

Concerning the disease course and prognosis, a recent study suggested that 

myosin light chain mutations cause only benign HCM phenotypes,16 however, the 

present work shows that clinical course and prognosis associated with myosin 

regulatory light chain mutations can differ markedly. The Glu22Lys mutation was 

associated with a benign phenotype. Two affected individuals had reached an 

advanced age. There was no case of sudden cardiac death in the family, and most of 

the family members had only mild hypertrophy, a late onset of symptoms or no 

symptoms at all.  In contrast, the Arg58Gln mutation identified in family B was 

associated with two cases of premature sudden cardiac death.  Furthermore, 

myocardial hypertrophy developed in early childhood and was accompanied by disease 

symptoms as premature fatigue and later on as arrhythmias. Flavigny et at.15 also 

reported two sudden deaths at young age in one of the identified families with the 

Arg58Gln mutation. Thus, pooled data from the study by Flavigny et at.15 and the 

present work suggest that the Arg58Gln mutation indeed may cause a malignant HCM 

phenotype with a high risk of sudden death and, therefore, could be added to the panel 

of mutations associated with a poor prognosis (see table 1.1). Genotyping for such 

mutations could be recommended in order to improve risk stratification in HCM patients 

and early diagnosis of individuals in the need for prophylactic therapy.  Apparently, the 

identification of more families with the Arg58Gln mutation will be of value in proving 

these observations. 

The penetrance of HCM was demonstrated to vary widely.76 Complete 

penetrance of familial HCM was shown to be a feature of some malignant mutations in 

β--myosin heavy chain.54 Low disease penetrance is characteristic of mutations in 

cardiac troponin T77 and myosin binding protein C.52 Furthermore, the penetrance of 

cardiac myosin binding protein C mutations were shown to be age related: generally 

HCM develops after midlife.78 Variable disease penetrance was also described for 

some previously identified RLC/ELC mutations.15,59 Similarly, in family B and K  the 

respective mutations penetrated to the HCM phenotypes differently. Although the 

Arg58Gln mutation was associated with complete disease penetrance, family B is too 

small to draw final conclusions. The Glu22Lys mutation, in contrast, showed reduced 

HCM penetrance (57%): among seven genetically affected individuals only four had 

apparent HCM. However, given the age-related penetrance of cardiac myosin binding 
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protein C mutations, it can be assumed that "healthy carriers" of family K may still 

develop HCM later on in their life and therefore need to be followed up. 

It was also shown that not all HCM phenotypes, when expressed, manifest to the 

same degree, for instance, with regard to magnitude of LV hypertrophy and severity of 

clinical course.50,52 Such variable expressivity is a typical feature of HCM and on certain 

extent, depends on the nature of the causative gene/mutation. Thus, malignant 

mutations in the β--myosin heavy chain gene, apart from complete penetrance, showed 

significant myocardial hypertrophy.54,79 Cardiac troponin T gene mutations were 

generally associated with mild hypertrophy.53,77 The extent of hypertrophy caused by 

mutations in the myosin light chain genes varied form mild to massive.10,15,59 The 

Arg58Gln was associated with moderate hypertrophy in the previous and present 

studies, whereas the Glu22Lys mutation caused massive hypertrophy in the earlier 

study but not in this work. 

The expressivity of HCM phenotypes was further shown to vary within the family 

members carrying exactly the same mutation.50,59 This was also observed in family K 

and B. The proband of family B (II-2) had non-obstructive HCM, whereas her sister (II-

1) exhibited obstruction of LV outflow tract with increased pressure gradient. In family K, 

the older individual showed moderate hypertrophy of the entire septum, while younger 

patients had mild mid- and basal septal hypertrophy. 

Several mechanisms are implicated in the variability of the penetrance and 

expressivity in HCM.3 The differences in the phenotypic expression and penetrance 

among causal genes could be explained by the functional role of the respective protein.  

Thus, in the case of β--myosin heavy chain mutations, more abundant phenotypes are 

expected considering the primary function of this protein in cardiac contraction. The 

diversity of phenotypes associated with mutations in the same disease gene may be 

due to the localization in differently important protein regions as well as to the kind of 

the mutation. Another contributing factor is the individual genetic background (i.e. 

modifier genes), which may have a modulatory role. Thus, in the case of family B and 

K, the distinct localization of the mutations within RLC may be responsible for the 

differences in phenotypic expression of HCM. Furthermore, the observed variable 

expressivity of mutations within the same families suggests the presence of specific 

modifier genes. Further studies of large numbers of families carrying the Glu22Lys and 

Arg58Gln mutations are necessary to clarify whether the observed malignant and 
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benign phenotypes are unique to these particular mutations and generally applicable, or 

whether they are due to the differences in genetic backgrounds in families B and K. 

 
 

4.4 Possible functional implications of the Glu22Lys and Arg58Gln 
mutations 

 

The high evolutionary conservation of the amino acid residues affected by the 

Glu22Lys and Arg58Gln mutations suggests their essentiality for the RLC function. The 

full-length amino acid alignment (partly presented in figure 3.14) also showed that the 

highest sequence homology is shared by the RLCs from the same muscle type and, 

hence, with similar functions. This underlines that the amino acid sequence determines 

functional properties of the protein and, consequently, any alteration in this sequence 

will affect its function. 

Possible functional implications of the Glu22Lys and Arg58Gln mutations have 

been studied by Szsesna et al.,29 who investigated the effects of the Glu22Lys and 

Arg58Gln mutations on the RLC calcium-binding and phosphorylation properties. In that 

study, the Glu22Lys mutant could not be phosphorylated and had decreased Ca2+ 

affinity, whereas the Arg58Gln mutant did not bind Ca2+ at all. 

In an earlier study, Levine et al.80 investigated functional and structural 

consequences of the Glu22Lys mutation in deltoid muscle fibers obtained from a HCM 

patient carrying this mutation, since the same RLC isoform is expressed in both cardiac 

ventricle and slow twitch fibers of the deltoid muscle. The study revealed that the 

biopsied fibers show loss of the normal arrangement of myosin heads associated with 

the relaxed state. This eventually accounted for a local change in electrical charge 

caused by the Glu22Lys mutation; charge alteration subsequently may affect the 

normal RLC conformation and weaken the RLC structural support to the myosin neck. 

That the normal net charge of the RLC N-terminus is important for the RLC 

conformation and RLC-myosin interaction has been also shown in a study by Sweeney 

et al.81 

Thus, the Glu22Lys and Arg58Gln mutations could alter the function of the 

molecular motor myosin by either eliminating the normal effects of RLC phosphorylation 

and calcium binding or by affecting the allosteric interaction of the myosin heavy 
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chain/RLC complex. This, consequently, may disturb the normal manner of the force 

generating myosin-actin interaction and lead to a contractile deficit. According to the 

current hypothesis on HCM pathogenesis, the impaired sarcomeric contractility induces 

increased expression of trophic factors in the heart, which leads to clinical and 

pathological phenotypes characteristic of HCM.24 Further genetic and functional studies 

will hopefully help us to complete our understanding of the mechanisms that underlie 

the development of HCM, because the establishment of new efficient management 

strategies can be based only on accurate knowledge of both the etiologies and 

pathogenic mechanism of a disorder. 

In conclusion, two mutations were identified in the ventricular myosin regulatory 

light chain gene and associated with either benign or malignant HCM phenotypes. The 

Glu22Lys mutation was associated with a late onset of clinical symptoms, benign 

course and good prognosis, whereas the Arg58Gln mutation was associated with an 

early onset of clinical manifestation and premature sudden cardiac death. These 

findings show that genotyping could give valuable information for the risk stratification, 

genetic counselling and treatment strategies in hypertrophic cardiomyopathy
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EDTA   ethylenediaminetetraacetic acid 
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