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Abstract

This work is dedicated to a further development of the density matrix theory
and its application to the study of ultrafast laser pulse induced dynamics in
molecular systems interacting with a thermal environment. Two topics are
considered, first the so-called memory effects are analyzed which result from a
reduced description of the molecular system excluding the environmental de-
grees of freedom. And secondly, the laser pulse control of dissipative molecular
dynamics is examined.

The theoretical description of open quantum systems results in a time non-
local equation of motion so that the evolution of the molecular system depends
on its past. In this work a numerical method to solve the time non-local
equations of motion has been developed and tested for a minimal model of a
polyatomic molecule subject to the dissipative influence of an environment. An
analytical solution of the equation of motion for the special case of very long
standing memory is also achieved. To identify signatures of such memory effects
in general case we compare this analytical solution with numerical calculations
involving memory and with approximative computations ignoring time non-
locality. For the excitation by a laser pulse shorter than the duration of the
memory the molecular systems exhibit noticeably different dynamics than for
the absence of the memory. The effects become significantly more pronounced
with decreasing laser pulse durations.

The second part of the work concentrates on the application of the op-
timal control theory to guide molecular dynamics. Optimal control theory
provides laser pulses which are designed in such a manner to fulfill certain
control tasks, e.g. the population of a desired vibrational level of the molecu-
lar system or the placement of a wavepacket on a prescribed position on the
molecular potential energy surface. As a first example the control of the dissi-
pative photo-induced electron transfer in a donor-bridge—acceptor systems has
been particularly considered ignoring the memory. The controllability of the
electron transfer has been discussed and the mechanism by which it becomes
possible has been identified. We have found the control of electron transfer
reactions feasible even under the influence of dissipation although the yield of
the control decreases drastically with increasing dissipation. In the presence of
dissipation mechanism of the control has been found to change. The feasibil-
ity of the reproduction of the control pulses resulting for the optimal control
theory in the experiment has been discussed and methods have been presented



how to check the efficiency of the reproduction of optimal control pulses by lig-
uid crystal pulse shapers, prevailingly used in modern control experiments. To
distinguish different control tasks a quantitative measure has been introduced
characterizing complexity of the control task. The optimal control theory has
also been formulated for molecular systems showing static disorder and applied
on an ensemble of molecules exhibiting random orientations. Finally, the im-
portance of memory effects for the control of dissipative dynamics has been
discussed and the optimal control theory has been formulated to account for a
time non-locality in the equation of motion for molecular systems.

Keywords:

Density matrix theory, non-Markovian dynamics, ultra-fast molecular dynam-
ics, optimal control of dissipative molecular dynamics, optical control of elec-
tron transfer reactions, complexity of the control task



Zusammenfassung

Diese Arbeit wird einer Weiterentwicklung der Dichtematrixtheorie und ih-
rer Anwendung zum Studium ultraschneller laserpulsinduzierter Dynamik in
Molekularsystemen in Wechselwirkung mit einem thermischen Bad gewidmet.
Zwei grofle Themenkomplexe werden behandelt. Zuerst werden die sogenannten
Gedéachtniseffekte diskutiert. Diese folgen aus einer reduzierten Beschreibung
des Molekularsystems, in der die Umgebungsfreiheitsgrade eliminiert werden.
Im zweiten Teil wird die Laserpulssteuerung der dissipativen Molekulardyna-
mik untersucht.

Die theoretische Beschreibung von offenen Quantensystemen fiithrt zu ei-
ner zeitlich nicht-lokalen Bewegungsgleichung: Die Zeitentwicklung des Mole-
kularsystems héngt von seiner Vergangenheit ab. In dieser Arbeit wird eine
numerische Methode zur Lésung der zeitlich nicht-lokalen Bewegungsgleichung
entwickelt und mit einem minimalen Modell eines polyatomaren Molekiils un-
ter dissipativem Einfluss der Umgebung getestet. Eine analytische Losung der
Bewegungsgleichung fiir den speziellen Fall einer sehr langen Gedéchtniszeit
wurde hergeleitet. Zur Identifizierung solcher Gedéchtniseffekte vergleichen wir
diese analytische Losung mit numerischen Rechnungen inklusive Gedéachtnis
und mit approximativen Rechnungen, die die zeitliche Nicht-Lokalitdt ver-
nachlédssigen. Fiir eine Anregung mit einem Laserpuls, der kiirzer als die Ge-
déchtniszeit des Systems ist, zeigt das Molekularsystem eine erkennbar unter-
schiedliche Dynamik als ohne Gedéchtniss. Die Gedéchtniseffekte werden mit
abfallender Laserpulsldnge deutlich ausgeprégter.

Der zweite Teil der Arbeit konzentriert sich auf die Anwendung der Theo-
rie der Optimalen Kontrolle, um die molekulare Dynamik zu steuern. Aus
der Theorie der Optimalen Kontrolle erhélt man Laserpulse, die bestimm-
te Aufgaben erfiillen, z.B. die Besetzung gewiinschter vibronischer Niveaus
des Molekularsystems oder die Platzierung eines Wellenpakets auf einer vor-
gegebenen Position auf der molekularen Potentialfliche. Als erstes Beispiel
haben wir die Kontrolle des dissipativen fotoinduzierten Elektronentransfers
in einem Donator-Briickenmolekiil-Akzeptor System betrachtet, wobei wir das
Gedéachtniss vernachldssigt haben. Die Steuerbarkeit des Elektronentransfers
wird diskutiert und der Mechanismus, mit dem sie méglich wird, wird iden-
tifiziert. Wir haben festgestellt, dass die Steuerung der Elektronentransferre-
aktionen selbst unter dem Einfluss von Dissipation moglich ist, obwohl die
Kontrollausbeute mit steigender Dissipation drastisch abféllt. In Anwesenheit



von Dissipation verdndert sich auch der Mechanismus der Steuerung. Die ex-
perimentelle Ausfithrbarkeit der Herstellung des aus der Theorie der Opti-
malen Kontrolle resultierenden Kontrollpulses wird diskutiert und Methoden
werden prisentiert, die die Abschitzung der Effizienz ermoglichen, mit der ein
Flussigkristall-Laserpulsformer, wie er heute in Experimenten verwendet wird,
den gewiinschten Puls erzeugen kann. Um zwischen verschiedenen Kontroll-
aufgaben zu unterscheiden, wird ein quantitatives Mafl eingefiihrt, das die
Komplexitiat der Kontrollaufgabe charakterisiert. Die Theorie der Optimalen
Kontrolle wird auch fiir Molekularsysteme formuliert, die statische Unordnung
zeigen, und wird auf ein Ensemble von Molekiilen mit zufélligen Orientierungen
angewendet. Zum Schluss wird die Bedeutung der Gedichtnisseffekte fiir die
Steuerung der dissipativen Dynamik diskutiert und die Theorie der Optimalen
Kontrolle neu formuliert um eine zeitliche Nicht-Lokalitéit in der Bewegungs-
gleichung des Molekularsystems zu beriicksichtigen.

Schlagworter:

Dichtematrixtheorie, nicht-Markovsche Dynamik, ultraschnelle Molekulardy-
namik, optimale Steuerung der dissipativen Molekulardynamik, optische Kon-
trolle des Elektronentransfers, Komplexitiat der Kontrollaufgabe
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Part 1

Introduction






The dream to actively guide chemical reactions on a microscopic level can
be traced back to sixties. In the first attempts to actively control chemical
reactions the cw-laser has been used to excite special vibrational modes of the
molecular system to break corresponding chemical bonds. Unfortunately, such
a so-called mode selective chemistry which used a well defined frequency of
the laser and its relatively high intensity failed due to the presence of strong
intramolecular vibrational redistribution which leads to the fast flow of energy
out of the selectively excited mode to other ones. A renaissance of the efforts
to control a dynamics of small molecular systems came with the prospect of
ultra-short laser pulses. Such radiation sources enable a coherent excitation of
the system leading to wavepackets on the respective potential energy surfaces
of molecular systems. Thus, control scenarios have been derived such as the so-
called pump-dump scheme of Tannor and Rice [TKR86] and the method called
stimulated Raman scattering involving adiabatic passage (STIRAP) [GRSBI0]
which use simple sequences of short pulses to achieve the population of some
prescribed target states. They profit from the detailed knowledge of the po-
tential energy surfaces and the energy spectra of the molecular system and
have also been experimentally verified [BTS98] (see also [RZ00] and references
therein).

A rather universal method to design laser fields for the control has been
proposed by Rabitz and coworkers [PDR88, SWRS&8|. This so-called optimal
control theory enables to compute control fields automatically utilizing prop-
agations of their wavefunction or density matrix. The laser field designed by
optimal control theory is usually denoted as the optimal laser pulse.

While utilizing simple pulse sequences similar to the pump-dump or STI-
RAP at early stages of the experimental developments, it was a breakthrough
in experimental control to follow the proposal of [JR92a] to use feedback from
the experimental measurement as an input for so-called evolutionary algorithms
[BS]. The evolutionary algorithm provides the search for the optimal laser pulse
parameters in order to achieve high yield in a given control task. In this way
an experimental scheme could be designed with a modern pulse shaping device
creating laser pulses according to the decision of a computer which analyzes
the results of previous measurement.

Unfortunately, the application of the evolutionary algorithms in numerical
simulations of control experiments becomes not feasible due to an enormous
computational effort which would be connected with the multitude of corre-
sponding numerical propagations of the molecular system. Rather, optimal
control theory should be used to determine the theoretical optimal control
pulses. These can be used e.g. as initial guesses in an evolutionary algorithm.
A prerequisite for such an usage of the optimal control theory would be the



ability to estimate the possibility to generate the theoretical control pulse in
experiment. To this end methods also have to be provided which enable a
quantitative characterization of the complexity of the control pulse and the
complexity of the control task [BKGO1].

During the last 10 years the controllability of many types of molecules
has been proven, both theoretically and experimentally. At the experimental
field the pioneering work of the Gerber group has to be mentioned, for exam-
ple in controlling the yield of photodissociation reactions [ABB198, BBK ™99
pushing even forward to the control in condensed phase [BDNGO0]. In recent
experiments the controlled systems range from atoms [BTS98] over polyatomic
molecules [DFG101] even to biological systems [HWCT].

In experiments on complex molecules, or in a condensed phase situation
effects of relaxation and dissipation become unavoidable. There are only a few
examples on theoretical discussions of control including dissipation [YOR99,
Gev02] or including non-Markovian dissipation [KP97]. But the studied sys-
tems are few level ones only or the dissipation takes some special form. There-
fore it becomes necessary to provide a formulation of the optimal control theory
valid for more general types of dissipative systems. This formulation can be
provided in the density matrix representation using the so-called quantum mas-
ter equation. The density matrix formulation enables to derive optimal control
equations in full analogy with the wavefunction description and enables to
utilize previous experience with control of isolated systems [YOR99].

The exact formulation of the density matrix equation of motion for a small
quantum system embedded in a solvent or another environment with a macro-
scopic number of degrees of freedom suggests that at any time the evolution of
the system depends not only on the state of the system at that particular time,
but also on its history (see e.g. [MK99]). This memory is the result of the re-
moving of the environmental degrees of freedom from an explicite description in
the equation of motion. The approximation neglecting the memory is usually
termed the Markov approximation. This approximation is very useful in cases
where the memory of the systems is much shorter than any typical time scale
of the motion of the system. Considering short pulses with a duration on the
10 fs region which induce ultra-fast dynamics in the molecular system detailed
description of the molecular dynamics becomes necessary. Particularly, the
control pulses obtained from optimal control theory represent the whole trains
of very short and intense pulses suggesting the necessity of the corresponding
optimal control formulation which includes memory.

The main aim of this thesis is to investigate the optimal control of dissi-
pative molecular dynamics. In line with what has been mentioned so far we
concentrate on the following topics: (i) the clarification of the role of mem-



ory effects in the molecular dynamics; (ii) the formulation of the optimal con-
trol theory with Markovian dissipation for molecular systems with complicated
electron-vibrational spectra; (iii) the methods to check the feasibility of an ef-
ficient experimental reconstruction of the optimal pulses obtained by optimal
control theory; (iv) the simulation of more complicated experimental situation
e.g. the disorder in the controlled systems; (iv) the formulation of the optimal
control with non-Markovian dissipation.

The thesis are formally divided into five parts with Part I comprising this
introduction. The main topic of the Part II is the description of memory effects
in open quantum systems. It starts with an introductory chapter (Chapter 1)
dealing with the description of the dynamics of open quantum systems. The
density matrix theory is reviewed and the standard equation of motion for
the density matrix of the system subject to the influence of a thermal bath
is derived. Several types of approximations are used in the equation of mo-
tion and the Markov approximation is especially discussed. In Chapter 2 the
non-Markovian dynamics (i.e. allowing for the memory effects) is studied for a
reference model of a molecular systems. The memory effects are identified and
discussed. Part III deals with the optimal control of electron transfer reactions.
In Chapter 3 the optimal control theory is given in its most general form valid
for the density matrix formulation of system dynamics. Thus, a formulation
comprising both open as well as closed quantum systems is achieved. The the-
ory is applied in Chapter 4 to the electron transfer reactions with and without
dissipation and the controllability of electron transfer reactions is demonstrated
and discussed. The questions of an experimental relevance of the optimal con-
trol theory, the complexity of the control task and some generalizations of the
optimal control theory to describe some more complicated experimental situa-
tions are studied in the Chapter 5. The final part of the Chapter 5 is devoted
to the formulation of the optimal control theory for the non-Markovian quan-
tum master equation, which would make it possible to study the influence of
the memory on the controllability of molecular systems. The conclusions and
outlook from this work can be found in Part IV, many details of the presented
theory have been shifted into the Appendices, which form Part V of this work.






Part 11

Dynamics of Open Quantum
Systems and Memory Effects






Chapter 1

Dynamics of Open Quantum
Systems

The properties of a small open system embedded in a large one has been stud-
ied since the full recognition of the molecular theory. Pioneering works on
Brownian motion conducted by Einstein and Langevin [Ein56, Lan08] started
the development of the corresponding description of classical open microsys-
tems resulting in two equivalent descriptions: master equations describing the
evolution of the probability density of the microscopic system variables, such
as Focker-Planck Equation [Ris89]; and the stochastic differential equations of
the Langevin-type ruling the time evolution of the individual random trajec-
tories of the microscopic system [vK92]. With the appearance of the Quan-
tum Theory and with the remarkable progress in experimental techniques the
description of the quantum situation became necessary. The success of the
phenomenological Bloch equations [Abr61] in the description of the quantum
relaxation processes and usability of the Pauli Equation for the description of
the quantum transport phenomena [Pau28| initiated a rapid development of
several types of the generalized master equations as a quantum analog to the
Fokker-Planck equations [Nak58, Zwa60, Lin74]. Rather recently, the stochas-
tic schemes reminding that of the Langevin-type equations, has been developed
for open quantum systems [vK92, DCM92, GP92, PK9§|.

In modern experiments using e.g. an optical, infrared or NMR spectro-
scopies the information extracted from the system involves only some selected
degrees of freedom (DOF). The dynamics of the rest of the system appears only
in indirect manner through the dynamics of the observed DOF. For the further
discussion we first remind some standard terminology (see e.g [MK99]). We
denote the observed DOF as the relevant system and the rest of DOF as its
environment. Sometimes the relevant system is denoted as active system or
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Figure 1.1: Pump-probe experiment and its results for a polyatomic molecule.
The probabilities to find the system in its excited state are plotted as a function
of time. The pump pulse is centered at time ¢,. Left, the molecule in gas phase
where intra-molecular vibrations form an microscopic environment. Due to
the finite dimension of the system it never reaches an equilibrium and the
measurement shows some quasi periodic dynamics (recurrences) before optical
recombination. Right, the same with the polyatomic molecule embedded in
solution. The probe measurement shows just a relaxation due to the fast
energy redistribution among an infinite number of reservoir DOF.

active set of DOF while we usually refer to the environment as to the passive
DOF. Under this classification the environment can be both micro- and macro-
scopic depending on a given experimental situation. To name an example, for
the electronic excitation dynamics of a polyatomic molecule in the gas-phase
situation the intramolecular vibrational modes may act as a finite environment
for the studied system of electronic levels which represents the relevant system.
The characteristic feature of such a small microscopic environment is the pres-
ence of a coherence leading to the reversibility in its dynamics and appearance
of the so-called recurrences. On the other hand, if the same molecule is situated
on the surface of a solid body, it is embedded in a solid body or dissolved in
a solution, the environment becomes macroscopic and the number of its DOF
can be regarded as infinite. The interaction with such a macroscopic system
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leads inevitably to the appearance of irreversible dynamics. The macroscopic
environment is in such a case usually denoted as the heat bath, thermodynamic
bath or reservoir. It is characterized by a small number of macroscopic vari-
ables or functions such as spectral density (see later detailed discussion). An
example of the comparison between microscopic and macroscopic bath can be
found e.g. in [MBS98]. On Fig. (1.1) a possible photo-induced dynamics of a
system connected to such baths is depicted. Here we consider two electronic
levels of a molecule. The system is exited from its ground-state by a strong
pump pulse and then the population of the excited state is probed with certain
delay with the second weak pulse. For an isolated molecule recurrences in the
population of the excited state appear due to the system finite size, whereas
the system connected to some macroscopic body shows just relaxation.

It may be advantageous to divide the system formally into the relevant
part (denoted here with the letter S) and the reservoir (denoted as R) in
such a way that the interaction between both parts can be regarded as week.
Approximative methods can then be recalled to treat the relevant system-
reservoir interaction. To make our discussion more concrete we introduce the
standard formal decomposition of the Hamiltonian of the compound system
S + R. We denoted the set of coordinates and their conjugated momenta
corresponding to the system S as s = {s;} and similarly Z = {Z;} for the
system R. The Hamiltonian of the system S + R reads generally

H=Hs+ Hr + Hs_r, (11)

where Hg is the Hamiltonian of the relevant system, Hgi the Hamiltonian of
a reservoir and Hg_pg represents the interaction between S and R. It is well-
known, that due to the interaction term Hg_g, only the total wavefunction
of the system exists and it is not possible to factorize it into the system part
®5(s) and a reservoir part xg(Z), so that ¥(s, Z) # ®g(s)xr(Z). To enable the
quantum mechanical description of systems in interaction with the environment
the concept of the density operator has been introduced by Landau and von
Neumann shortly after the birth of the Quantum Theory. The density operator
can describe not only the subsystems of a quantum system but also so-called
mized state which are represented by a set of its pure states weighted by their
probabilities to be found in a given statistical mixture. The density matrix can
be also assigned to the whole system S + R. It is the main task of the theory
to find to correct time evolution of the density operator corresponding to the
relevant system. The latter is obtained from the density operator of the whole
system S + R be means of the averaging over the DOF of the system R. Thus,
the density operator of the relevant system S is usually called the Reduced
Density Operator (RDO). In the state representation RDO is represented by
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a matrix called Reduced Density Matriz (RDM). Sometimes the two terms are
used a synonyms.

One of the most common approaches to the derivation of the equation of
motion for RDO is to treat the interaction between systems S and R per-
turbatively and to derive the so-called Master equation. Depending on the
problem one finds the second order approximations satisfactory [SM98| or may
recall higher order [KP97], however the treatment of higher than 4th order
becomes cumbersome. The Master equations provide the closed formulation of
the equation of motion for the RDO and will be discussed in detail in section
1.1.

Trying to simulate larger relevant systems the scaling of the density matrix
(~ N?% where N represents the number of involved quantum states) becomes
a technical obstacle. As it was already mentioned a state of an open quantum
system can be represented by a set of wavefunctions (in the similarity to the
mixed state). The influence of the environment in this so-called Monte-Carlo
Wavefunction Methods is described by stochastic action of certain dissipa-
tion operator. This operator provides e.g. for jumping between eigenstates
which would not be possible in the isolated system. Between the jumps the
wavefunction evolves freely according to some effective Schrodinger equation
[DCM92, BKP99]. The corresponding density matrix can be obtained by aver-
aging over the wavefunctions in the set. The important feature of the method
is that in limit of the infinite number of wavefunctions in the set one reproduces
the result obtained for the RDO within so-called Lindblad form of dissipation
(explained shortly in section 1.3.3) so that the results are analog to those ob-
tained from the master equation approach. Although we have to treat many
wavefunctions instead of one density matrix the scaling of the wavefunction
(~ N) together with the suitability of such algorithm for parallel computers
makes this approach an attractive alternative to QME. Recently, the method
has been generalized also for other forms of dissipation than the Linblad one
[GN99a, BKP99).

Another approach enabling to find the time evolution of the reduced den-
sity matrix is based on the so-called path integral formulation of the quantum
dynamics developed by R. P. Feynman [Fey48, FH65, Sch81, Mak98]. In the
path-integral approach a transition amplitude or propagator is expressed as
a sum of amplitudes along all paths that connect the initial and final points.
Each of these amplitudes is a complex number with phase equal to the classical
action along the path, measured in units of Planck’s constant. This formulation
goes in many aspects beyond the Master equation approach, since for a special
case of the reservoir built up from the infinite number of harmonic oscillators
it is possible to derive an exact, non-perturbative expression for the RDM. The
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influence of the reservoir R on the relevant system S in incorporated via the
so-called Feynman-Veron influence functional [F'V63]. Despite this clear advan-
tage over the Master equation approach in its non-perturbative incorporation
of the environment, in the practical applications the path-integral approach is
limited to the relevant systems with few levels only [Mak98].

Often, the reservoir DOF are of such a type, that they can be described
in a classical manner. The dynamics of the relevant quantum system is com-
puted with an additional potential resulting from presence of classical DOF.
The DOF of the reservoir feel, on the other hand, the quantum mechanically
averaged force of the relevant system [BHM97, Her94, SG96|. This approach is
a mixed quantum-classical version of a more general approach also called Time-
Dependent Self-Consistent Field (TDSCF) method [BJWMO00]. Today, the TD-
SCF method enables to treat numerically systems consisting of about 10 atoms.
Such calculations, if accurate enough, can play a role of the reference calcula-
tions for the approximative calculations which start with the system—"micro”-
bath separation (e.g. electronic states versus vibrational modes). The most
well-know system is here the pyrazine molecule (see [BJWMO00, KWPD94)).

1.1 Density Matrix Theory

The density matrix theory provides a general formulation of the quantum dy-
namics of molecular system and enables a unified treatment of the quantum
systems in interaction with a reservoir and isolated systems in mixed or pure
state. Having once formulated the problem in the most general i.e. density
matrix formulation, its subsequent reformulation for the special case of the
isolated system is straightforward. The approach leading to the formulation of
the concrete equation of motion for the RDO of a molecular system is explained
in detail in the Appendices A, B and C. Here, we only review the important
points of the derivation to present the logical construction of the theory we use
throughout this work.

We regard the system S + R as isolated, so that it can be described by a
density operator

W (t) =3~ waltn () (Wu()] (1.2)
and its time evolution follows the so-called Liouville-von Neumann equation

0 1 .

—W(t)=—=|H t . 1.

W)=~ [HW(1)] (1.3)

Throughout this work we will often use the so-called superoperator notation,
so that we define e.g. the Liouvillian acting on an operator as a commutator
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with Hamiltonian, £... = 1/h[H,...]-. With this definition one can write
(1.3) as

9 . .

aW(t) = —iLW(1). (1.4)

As it is well-known the operator comprising the information about the state
of the relevant system S only, regardless of the state of the system R can be
obtained from W by summing over some complete basis {|a)} defined in the
state space of R. This leads to the definition of the RDO

pt) =S (W (t)|a) = tra {W(t)} . (1.5)

The RDO is the central quantity of the following chapters. It involves the
complete quantum mechanical information available about the relevant system
S. To be able to apply the density matrix theory one needs to formulate the
equation of motion for RDO.

A systematic derivation of the equation motion of the RDO is enabled by
so-called projection operator method. We define an operator P acting on the
density operators (so-called projection superoperator), performing the summa-
tion over all reservoir (and/or other experimentally irrelevant) DOF

Pi(t) = tra{p(t)} R, (L6)

where R is so-far arbitrary operator acting exclusively on the state space of
the system R with the trace equal to 1. Using the projector operators it
is possible to derive general expressions for the time evolution of the RDO
without having to concentrate on any special form of the Hamiltonian (1.1).
There are two formally equivalent ways how to achieve this goal resulting in so-
called Convolutionless Generalized Master Equation (CL-GME) [CST79, ST77]
taking a general form

;ﬁ(t) = Zow(t,to; W (t)) + Kow(t, o) p(t) (L.7)

and so-called Nakagima-Zwanzig Equation (NZE) [Nakb8, Zwa60] with the gen-
eral form 5

&P(ﬂ = jNZ(tv to; W(to)) —iLnzp(t)

+ tMNz(t,to;T)ﬁ(t—T). (1.8)

to

Here, in both Equations (1.7) and (1.8) the first terms on the right-hand side
are called initial correlation terms. In the CL-GME the whole influence of the
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reservoir DOF and the free dynamics is comprised to the operator KCL(t, to)
whereas for the NZE we can define an effective Liouvillian £y involving the
free dynamics of the system and some meanfield term, and a dissipative term
in form of a convolution of p(t) with the so-called memory kernel My z(¢,to; 7).
Despite their formal equivalence, there is one principal difference in both for-
mulations. The convolutionless generalized Master equation is local in time i.e.
the time evolution of the RDO in a given time ¢ depends just on the state of the
system in this given time ¢, while in the Nakajima-Zwanzig formulation, the
time evolution of the RDO in a given time ¢ is influenced by the contributions
from the earlier times ¢t — 7 (with 7 > 0) of the system evolution.

The solutions of CL-GME and NZE represent still the same degree of diffi-
culty as the solution of the original equation of motion for the density operator
of the whole system S + R since they still involve all DOF of S + R explicitely.
Thus, both CL-GME equation and NZE serve just as a starting point for the
perturbation theory which enables the derivation of some treatable equations
of motion for the RDO. To obtain them we can apply the perturbation theory
with respect to the system-reservoir coupling represented by Hg_g. Provided
Hg_g can be regarded as a small parameter, one neglects all contributions to
the RDO time evolution of higher orders in Hg_g. It might be possible that
the first non-trivial (second order) contribution is sufficient to account for the
experimentally observed effects (see e.g. [SM98]). But in general it depends
on the choice of the systems S and R and must always be thoroughly checked.
Applying the second order perturbation theory, the approaches via CL-GME
and NZE cease to be equivalent. The comparison of the expressions for both
approaches in lower orders can be found e.g. in [BKP99]. Particularly the
CL-GME in the second order approximation has the form of the second order
NZE with additional Markov approximation applied.

In the rest of this chapter we will shortly review all the necessary steps
leading to the so-called Quantum Master Equation (QME), which represents a
particular second order perturbation theory version of the NZE. QME will be a
starting point for our treatment of the effects of the relevant system interaction
with a reservoir. Particularly we will be interested in memory effects.

1.2 Quantum Master Equation

In order to proceed from the exact NZE which solution is not feasible in any
non-trivial case to an equation of motion for the RDO which enables such a
solution we have to assume some special properties of the Hamiltonian (1.1).
In most of the practical cases the assumption of Hg_g to be a small parameter
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is justified. Thus, perturbation theory can be applied to obtain approximative
equations of motion for RDO. Further we assume a special factorization anzatz
on the form of the system-reservoir interaction Hamiltonian Hg_r. We will
assume that it is of the form

Hy_p =3 K.(s)0,(2), (1.9)

where K,,(s) and ®,,(Z) are operators acting exclusively on the relevant system
DOF and the reservoir DOF, respectively. Since no further assumptions about
the functions K,(s) and ®,(Z) are made the Hamiltonian (1.9) can account
for most cases of the practical importance [MK99].

Applying the second order approximation in the system-reservoir interac-
tion Hg_g and the anzatz (1.9) we arrive at so-called Quantum Master Equation
(QME) derived in detail in Appendix B

0
Ot () HS+Z map

_;2 > | T 4 (Conn(7) [Ko, Us(1) Kt — 1)UL(T)]

= () Ko, Us(1)p(t — ) KU (7)] ). (1.10)

Here we transformed the expression (B.6) into the Schrodinger representation.
The dissipative part of (1.10) will be denoted D(t, to; p) so that we can write
in similarity to Eq. (1.8)

0 .

ap(t) = _Z‘Ceffﬁ(t) + ﬁ(tatmﬁ)a (111)

where the definitions of D(t, t; p) and L.z, are obvious from (1.10). To empha-
size the integral structure of the dissipative term we define so-called memory
kernel M and write

t—to

Dt, to, p /dT/\/l (t, to: T)p(t — 7). (1.12)

In Eq. (1.10) one immediately notices the presence of the operator Hg (in the
first term on the right hand side and in the evolution operators Ug(t)) and of
the operator K, of the system part of (1.9). The reservoir operators Hg and
®,, appear only in an averaged manner via the first contribution on the right
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hand side and via so-called correlation function Cy,,(t) defined in Appendix B
as

Cmn(t) = <(I)m(t)q)n(0)>R - <<I)m>R<(I)n>- (1~13)
Here we used the abbreviation (...) = trg{...}. The correlation function
comprises the whole information about the reservoir necessary to describe the
time evolution of the RDO within our second order treatment of the system-
reservoir interaction.

The RDO p appears with the retarded argument ¢ — 7 in the QME, so that
the history of the system also determines its time development. Such a situation
is commonly call the non-Markovian, in contrast to the Markovian situation
when the future of the system depends on its current state only. The Eq.
(1.10) is correspondingly called non-Markovian QME. The extension to which
the history of the system plays a role in its time development is determined by
the correlation function C,,,(t), mainly by so-called correlation time t. which
characterizes the time scale on which the correlation function decays. We will
often refer to the correlation time as to a memory time t,,en. The length of
the correlation time also determines whether we can apply approximations to
simplify the treatment of Eq. (1.10).

In order to be able to apply the QME on a particular molecular system we
have to be yet more specific about the reservoir. In many cases it becomes
possible to perform a normal mode analysis among the DOF of the reservoir.
Assuming it was performed one can write Hg as a sum of independent harmonic
oscillators. Concerning the system-reservoir interaction term we perform a
formal Taylor expansion of Hg_ g with respect to the reservoir coordinates
Z = {Z} and we take in account only the first order terms for the interaction
Hamiltonian. It yields

HS—R = K(S)ZCng (114)
3

for the interaction Hamiltonian, where ¢, is the system-reservoir coupling con-
stant. Within this approximation and assuming the system is in thermal equi-
librium we are able to write down a new expression for the Fourier transformed
correlation function (see Appendix C)

C(w) = 27h*W?[1 + n(w)][J(w) — J(—w)]. (1.15)

Here, n(w) is Bose-Einstein distribution so that the temperature dependency
of the system-reservoir interaction is now explicitely taken in account. The
function J(w) is the so-called spectral density which fully describes the reservoir
for our purpose. It is defined as

J(w) = %:ggé(w—wg), (1.16)
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where g is the dimensionless coupling constant (C.13) of the reservoir mode
with the frequency we to the relevant system. The interpretation of this func-
tion is possible by comparing it to the well-know definition of the density of

states of the reservoir
Nw)=> 6w — we). (1.17)
3

Taking in account the definition of g¢ according to (C.13) we see that J(w)
can be understood as the density of states weighted by the coupling of the
particular states to the system S. The form of J(w) decides which states of
the system R couple to the system S and how. Usually, one prescribes some
continuous function for J(w). In this work we mainly use the form

W J(w) = O(w)jowPe /e, (1.18)

which is characterized by a cut-off frequency w. and an exponential decay into
large frequencies. We use p = 1 in our latter applications.

In our equation of motion (1.10) the correlation function C(w) appears in
its time domain form C(t). Using J(w), Eq. (1.18) the cut-off frequency is one
of the main factors determining the time dependence of C(t). In our case with
p = 1 the C(t) decays with the time constant ¢, ~ 1/weu—off. The time t. is
the previously mentioned correlation time.

By prescribing the function J(w) we completely described the reservoir in-
teracting with our model system. But even if we define a convenient system
Hamiltonian Hg and the system part of the interaction Hamiltonian K (s), it
would still be quite difficult to solve the equation (1.10) because of its integral
nature. In the following section we will introduce some standard approxima-
tions which yield an ordinary differential equation for RDO.

To deal practically with QME it is convenient to convert it into the state
representation. We consider the Hamiltonian Hg and the eigenvalue problem

HS|77DOZ> = Ea|¢a>7 (119)

we define the RDM as
pab(t) = <¢a|ﬁ(t)’¢b> (120)

and similarly the matrix elements of all other necessary quantities. Introducing
tetradic matrix

1 m n
My calt) = ?Zcmn(t)f(éb ‘K™, (1.21)

one may write the non-Markovian dissipative part of the QME as

9 t=to Wi T o
(atpab>d' - - %;‘/0 dT(Mcd,db(_T)e pac(t T)

188
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_Mac,cd (T)eiwaT,Odb(t - T)
— [Mapae( =)™ + My ae(T)€™*  pea(t — 7)). (1.22)

Besides the convenience of the numerical dealing with Eq. (1.22) one can
also easily prove using this representation that the total probability is conserved
here trg{p} = 1 and the relation

. 1
Jim pap = dap e Ba/kpT (1.23)

with Z =Y, e~ Fa/k8T is fulfilled. This means that the asymptotic solution of
the QME is the canonical thermal equilibrium with the reservoir.

1.3 Markovian versus Non-Markovian Quan-
tum Master Equation

In the previous sections we have derived a closed equation of motion for the
RDO correct in the second order perturbation approximation in system-bath
interaction (1.10). We have seen in section 1.2 that the right hand side of the
equation (1.10) depends on the RDO at earlier times of its propagation (non-
Markovian case). The system inevitably remembers its previous evolution. To
which extend these possible memory effects become noticeable the strength
of the system-bath coupling and the concrete form of the correlation function
decide. We refer to the memory effects often as to the retardation effects in the
analogy with classical electrodynamics where the electromagnetic potentials
exhibit retarded (delayed) dependency on the charge and current density due
to the finite speed the electromagnetic signal travels between two points in
space. So the charge- and current-densities act on itself in a retarded manner
in an analogy to (1.10).

Whenever it is possible to neglect the retardation i.e. the memory time
tmem — 0 (or in electromagnetism if one can regard ¢ — o) the treatment of
the equation becomes much simpler. Usually one refers to the neglect of the
memory as to the Markovian approximation. In the theory of open quantum
systems such approximations found wide application. It is the main aim of the
next chapter of this work to study retardation effects and to find differences
between retarded and non-retarded dynamics. To this end we need to derive
and solve also the Markovian form of QME.
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1.3.1 Markov Approximation

If the coupling to the reservoir is not too strong, so that the change induced to
the relevant system during the interval (0;%,,emm) by the reservoir is small one
may invoke the approximation

p(t — 1) = p(t). (1.24)

Obviously this is too rough, since we also assume the change induced by the
Hamiltonian Hg to be negligible. If it is not the case it is more appropriate to
make the above approximation in the interaction picture as following

plt —7) = Us(t — 7 — to)p D (t — T)ULE — 7 — 1)

~ Us(—7)Us(t — to)pD (DU (t — to)UL(—7) = UL(1)p(t)Us(7).  (1.25)

Thus, the evolution of p(t) induced by the system Hamiltonian Hg is still
exactly incorporated, while the influence of the reservoir and external fields
during the interval (0;¢,,em) is neglected.

Utilizing this approximation the dissipative part of the QME becomes

(@17),,, =~ 5 (o) [t

— Cro(7) [ Ko, (VKD (=7)] (1.26)

where K()(—7) = Us(7)K,UL(7). Because the C(t) dies out for ¢t > tyem we
could prolongate the upper interval of the integral to the infinity. Introducing
the operator

= /D S drCp (1) KD (=7) (1.27)

and the non-Hermitian effective Hamiltonian
H' = HS+Z ——ZK A (1.28)
we arrive at a very compact notation for the QME in Markov approximation

0 . i of f . .
5,00 = 5 (H'p(t) = p(t) )

hlz (DAL, + Ap(t) Ko (1.29)
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Throughout the next chapters two reference Markovian cases will be used.
The Markov approximation of the dissipative part of (1.10) we get

D(t,to;p) ~ Rt to; E)p(D)

t—to

= / drM(t,t — T BYUS (£t — 7)p(t) - (1.30)

The definition of the dissipative superoperator R is obvious. It realizes time—
local but time—dependent dissipation which, additionally, is influenced by the
presence of the external-field pulse. In the case where t — ty > t,on We can
replace the upper limit of the 7—integral by oco. If the external field dependence
is neglected the dissipative superoperator R, (its matrix elements) becomes
identical with the dissipative part of (1.29) which will be called the standard
Markovian QME here

2 9(1) = —iLesf(DR1) — Rap(t). (131)

In the state representation one notices the relation between the Redfield tensor
explained in the next section (1.35) and the superoperator Ry being

Rab,cd = Re{(RO)ab,cd}a (132)

where (Ro)ap.ca is & the matrix representation of Ry.

We note that the dissipative superoperator R remains time—dependent. It
will be demonstrated below that the use of R(¢, tgeq; E = 0) for times ¢ — tgeq
in the range of .. can give a reasonably good reproduction of the correct
solution of the non-Markovian Eq. (2.16).

1.3.2 Multi-Level Redfield Equation

Working again in the state representation, we can proceed analogously to the
section (1.2) and obtain the Markov version of Eq. (1.22). We carry out the
Markov approximation and shift the upper bound of the integral into infinity,
what yields

0 00 ) )
(Cf%pab> = Z/O dT<MCd,db(_T)eZWdCTpac(t) + Mac,cd(T)ewdCTpdb<t)
diss. cd

— [Mapae(—7)€™®™ + Mgy e (7)€" pea(t)). (1.33)

The dissipative part of the QME, or the operator acting on RDM here are com-
plex quantities. Their real parts are responsible for the irreversible dynamics
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of the density matrix. On the other hand the imaginary part only introduces
some shift of transitional frequencies, what has often no qualitatively new con-
tribution to the dynamics of the system. Therefore, one may get rid of the
imaginary part and work with just the real one. Thus, we define the so-called
damping matriz

[apea(w) = Re /OO dTe™™ Myp ca(T) (1.34)
0

and the relaxation matrix

Rab,cd - 50,6 Z Fbe,ed(wde) + 6db Z Fae,ec(wce)

- Fca,bd(wdb) - de,ac(wca)- (135)

The relaxation matrix (1.35) is usually called the Redfield tensor after [Red65].
Further details on Redfield tensor and the QME can be found in various text-
books like [MK99, Blug9].

To distinguish the standard Markovian QME from the QME with the dis-
sipative part according to Eq. (1.30) the latter will be named the Markovian
QME with time-dependent Redfield—tensor. A detailed comparison is given be-
low of all three versions of the QME, i.e. of the standard Markovian QME,
the non—Markovian QME, and of the Markovian QME with time-dependent
Redfield—tensor.

1.3.3 Critical View on the Quantum Master Equation

Since the second order QME is only an approximative equation of motion
for the RDO the validity of the general properties the time dependent RDO
is expected to have has to be checked. Previously in section 1.2 we have
mentioned that the asymptotic solution of the QME is the canonical thermal
equilibrium density operator (1.23). Other important relation for (¢) which
has to be fulfilled is the conservation of the trace tr{p(t)} = 1. It can be easily
show [MK99] that it is fulfilled by both Markovian and non-Markovian QME.

The real problem is encountered if considering the positivity of the RDO.
Since in the state representation the diagonal elements of the density matrix
Paa(t) Tepresent probabilities they have to be non-negative. Unfortunately, it
is not in general true for the QME that the p,q(t) > 0. In seventies Lindblad
[Lin74] derived the general form of the dissipation tensor entering equation of
motion for density matrix which ensures the positivity of the probabilities in
RDO. The so-called Lindblad form of the dissipation can be also derived from
our non-Markovian QME under the assumption of the ultra-short correlation



23

times, so that we can write
Crrn(t) 2 Cound (2). (1.36)

Provided the coefficients C,,,, are real and diagonal the dissipative part of the
Eq. (1.10) takes the form

AN s o

which is the form derived by Linbdlad.

As this is the only known form of the QME generally preserving positivity
of the RDO its breakdown has to be anticipated for finite memory times. The
problem of the positivity of the density matrix within QME has lead to many
studies trying to avoid the problem by different means [SSO92, GN99b]. In
this work we assume that the break down of the positivity can be regarded
as the breakdown of the second-order perturbation theory. Namely the factor
t|Hs_g|? has to be small in order the second order approximation to be valid.
Obviously, if the system-bath coupling (or the time ¢, or both) becomes too
large QME is no more correct what can lead to different failures with respect to
the general properties expected from RDO. To ensure the positivity we always
use a reasonably weak coupling and short times in the following studies.



Chapter 2

Memory Effects and Ultrafast
Optical State Preparation

The theoretical description of dissipative quantum dynamics using the RDO
and leading to the formulation of QME has been particularly useful in the
description of the relaxation phenomena in molecular systems. It enabled e.g.
the quantum mechanical foundation of chemical reaction dynamics. The re-
search done up to the eighties in optical experiments on electronic transitions
and vibrational motion could be characterized by a clear separation of the time
scales. To prepare a molecule in the excited state, picosecond or even nanosec-
ond laser pulses have been used, whose durations are clearly much longer than
the typical time nuclear DOF need to reach the equilibrium. This particu-
lar aspect enabled to justify coarse-graining approximations in the equation of
motion for the relevant system and to disregard of the possible memory effects.
Meanwhile, optical pulses with a duration of less that 10fs are available
what enables e.g. to detect the coherent nuclear dynamics [Zew94, MWO95,
Zew96, Sun98| and may possibly lead to the detection of the non-Markovian
effects. This experimental achievements initiated a renaissance of dissipative
quantum dynamics, putting emphasis on the description of ultrafast nuclear
dynamics in polyatomic systems and systems in condensed phase.
Propagating the RDO on a time-scale of some tens of femtoseconds any
time coarse—graining is forbidden and dissipative quantum dynamics asks for a
proper incorporation of retardation effects between the active system and the
environment (reservoir). The need for such a more sophisticated description
becomes obvious if one imagines an experiment where (i) the nuclear oscillation
period of the molecules lies in the range of 50fs up to 100fs, where (ii) the
molecule is dissolved in a solvent with a correlation time again of about 100fs,
and where (iii) the molecule is excited by a laser pulse with duration of some

24
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10fs (in similarity to experiments done, for example, at iodine in a solvent
[SJF93] or in rare gas clusters [PLZ92]). Trying to simulate such an experiment
one has to account for the interference of all three mentioned characteristic
time—scales. It is the main aim of this chapter to study such an interference
of (a) vibrational dynamics, (b) retarded coupling to the environment, and (c)
ultrafast laser—pulse excitation. In the present work, emphasis will be put on
the memory effects.

The main obstacle in the investigation of the non-Markovian effects lies in
the difficulty of the solution of the non-Markovian QME. Its time non-local
nature does not allow for the usage of a standard Runge-Kutta like numerical
method to integrate Eq. (1.10). Also, methods developed to solve integro-
differential equations such as Fourier-Laplace transform etc. are not general
enough to provide a solution of the non-Markovian QME for all necessary
cases. In the practical calculations throughout this thesis we use the so-called
Laguerre Polynomial Method developed in [MBS98, MM00, MMO1] and ex-
plained in detail in Appendix F. This method is suitable for solution of the
non-Markovian QME in time domain if the external field is handled pertur-
batively, because it cannot treat the term FE(t)p(t) in the equation of motion.
Similar restrictions apply also the use of the Fourier transform method. The
complete inclusion of the external fields within QME becomes possible with the
method of artificial bath modes developed in [MT99]. Instead of the perturba-
tive treatment of the external field we are faced here with the approximative
treatment of the reservoir correlation function. The method is explained in
Appendix E. It will be used to generalize the main topic of the Part III of this
thesis for the case of non-Markovian dissipation.

In the following chapters, we will first try to get some analytical insight
into how the memory effects and the initial correlation effects present themself
in the molecular dynamics and how the solution of the non-Markovian QME
can be found. In section 2.2 the Fourier transform method to solve the non-
Markovian QME is presented and used to analyze the memory effects in optical
absorption coefficient. In section 2.3 we concentrate on the effects of initial
correlation in case of the excitation of the relevant system by a short pulse
of laser field. We derive a somewhat different form of QME which enable us
to overcome the necessity to include the initial correlation term explicitely in
QME. Another analytical result on QME can be obtained in the limit of very
long correlation times. For such a case we solve in section 2.4 the problem of
non-Markovian dynamics of the wavepacket on a harmonic PES. This result
give us some important hints for the identification of memory effects in time
domain. In section 2.5 we present detailed calculation of the non-Markovian
dynamics for a molecular system excited by a short laser pulse. Finally, a
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(9]

Figure 2.1: Scheme of the minimal model of two PES connected by an optical
transition.

study concentrating on the non-Markovian effects in case of the non-linear
system-bath coupling is presented in section 2.6.

2.1 The Molecular System

According to the introduction of active DOF our discussion will start with a
respective separation of the complete Hamiltonian (1.1) which is standard in
dissipative quantum dynamics and was introduced in Chapter 1.

The first part of the Hamiltonian describes the molecular system of interest
(active system, Hamiltonian H,.) together with its coupling to an external
radiation field (Hamiltonian Hygeq(t)) Hs(t) = Hmol + Heea(t). The part Hg g
accounts for the coupling of the active system to the reservoir, whereas the
reservoir is described by Hg. The molecular contribution to Hg will be given
by the expression

mol ZH |90a @a| . (21)

It corresponds to an expansion with respect to the adiabatic electronic states
©q (with electronic quantum number a) and the neglect of any non—adiabatic
coupling. The vibrational Hamiltonian H, = Ty, + U,(Q) contains the kinetic



27

energy operator Ty, and the respective PES U, defined with respect to the
set @ = {Q;} of active vibrational DOF. The eigenfunctions of the various H,
will be denoted as . (Q), where M stands for the set of related vibrational
quantum numbers.

The molecular Hamiltonian is general enough to carry out different consid-
erations. Performing concrete numerical calculations it will be further reduced
to the minimal model used in [SM97, SM98| for the simulation of ultrafast
optical data obtained for a dissolved dye molecule. In particular, this model
will serve as a reference system to study an interplay of the external field ex-
citation of the molecule and the non-Markovian relaxation of the vibrational
DOF in the excited electronic state. The minimal model consists of two elec-
tronic levels modulated by a single effective vibrational coordinate Q = CT+C,
where CT and C' are the vibrational quanta creation and annihilation operators,
respectively. In this case the H,(Q) are vibrational Hamiltonian operators cor-
responding to the the ground (a = g) as well as to the excited electronic states
(a = e ) and incorporating harmonic oscillator PES
h(«jlvlb (Q . Qa)2 . (22)
For the coupling to the radiation field we have in mind a description within
the electric dipole approximation

Hiea(t) = —E(t)/1 - (2:3)

Here E(t) is the electric field—strength of a laser pulse (or a sequence of pulses).
It reads in detail

Ua(Q) = U3 +

E(t) = nAE(t)e ™" +c.c. , (2.4)

where n is the polarization unit vector, A the complex field amplitude, £(t)
the normalized pulse envelope and wy the carrier frequency. Furthermore, we
introduced in Eq. (2.3) the molecular dipole operator

fr=">_(1 = dap)das|0a) (s . (2.5)

a,b
which only contains off-diagonal contributions connecting different electronic
states. dg, is the related transition matrix element. In the concrete compu-
tations it will only connect the ground state ¢, with a single excited state
Pe-

The dissipative part of the QME to study non-Markovian effects in this
model is taken in the form explained in section 1.2. The operator K in (1.9)
will be taken to be equal to the dimensionless coordinate (), so that the system-
bath coupling takes a bilinear form.
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2.2 Memory Effects in the Frequency Domain

Inspecting the general form of the QME, Eq. (1.10) the idea arises to use the
Fourier—Laplace transformation method for the solution of the time non—local
problem. Under certain additional conditions and for a few level systems one
can obtain results by analytical calculations which are applicable, for example,
to the computation of pump-probe spectra (see [GR92, LV91, VVLI1, BMP94,
GBF98)).

Omitting any field dependence (Hs = H,,,), providing that the mean—field
term, (see Eq. (1.10)) does not exist and setting to = 0, one easily constructs
the Fourier-Laplace transformed version of Eq. (1.10). Its solution reads

pw) = {iw = iLme — M(w)} ' (I(w) = p(t =0)) , (2.6)

where L] denotes the Liouville superoperator corresponding to the commuta-
tor with Hy,, and M(w) is the memory kernel, Eq. (1.12) transformed into the
frequency domain. Choosing a concrete representation the respective Fourier—
Laplace transformed density matrix can be determined, at least numerically.
After a back transformation the time—dependence of the complete set of density
matrix elements is available (see, e.g. [RMO02]). But all those problems con-
nected with the presence of a time-dependent external field cannot be treated
in this manner. After the transformation into the frequency domain a convolu-
tion integral of the Fourier—Laplace transformed field and the density operator
occurs. However, if a linearization with respect to the field can be carried
out (or some higher—order expansions) the problem becomes tractable again.
This will be demonstrated in the following for the case of the linear absorption
coefficient.

We start with the time-dependent formulation of the frequency-domain
absorption coefficient [MK99]

B 4w

a(w) #Re/dt ei“’tC(g:zi(t) , (2.7)
0

3h

where n,,, denotes the volume density of the absorbing molecules, and the
dipole—dipole correlation function is given by C’((l:)d(t). For the molecular sys-
tems under consideration the dipole operator should exclusively act on system
DOF and should realize transitions from the electronic ground-state ¢, to the
excited state g, (2.5). Accordingly, the dipole-dipole correlation function can
be written as (tryp{...} denotes the trace with respect to the active vibrational

DOF)

O = detran{{peo(t)]g)}
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T dgtrad (gl ®led} - (2.8)

The operator ¢(t) is a solution of the non-Markovian QME but with the initial
condition 6(0) = [fi, Peq]— (Peq 1s the vibrational equilibrium statistical opera-
tor in the electronic ground-state, see also [LMOO]). Furthermore, since only
electronic off-diagonal matrix elements of & are needed the initial correlation
term vanishes.

Eq. (2.8) together with (2.7) is a generalization of the well-known formula
which gives the absorption coefficient at frequency w via the Fourier transform
of the vibrational wavepacket motion on the excited electronic state PES af-
ter an instantaneous transition from the ground-state at time ¢t = 0 (see, for
example [MK99]). In this picture the ultrafast wavepacket motion within a
sub—picosecond time-region determines the cw—absorption. If the vibrational
wavepacket motion on the excited state PES involves dissipation but without
retardation effects (Markovian relaxation), or in other words if the coherences
responsible for linear absorption decay according to an exponential law the
frequency-domain line broadening appears to be of the Lorentzian type. Ob-
viously, non-Markovian effects, i.e. non—exponential decay of the coherences
will result in a deviation from the Lorentzian line-shape. This fact is well
anticipated in semiconductor optics [ZW94], but has not been discussed in a
similar clear fashion in chemical physics. Therefore, we shortly demonstrate
the non—Lorentzian line-broadening of a vibrational progression corresponding
to an electronic transition coupled to a single vibrational DOF (compare the
Hamiltonian Eq. (2.1)).

To end up with an analytical formula we consider the special case where the
coupling of the active vibrational DOF to the reservoir modes is much larger
in the excited electronic state than in the ground-state, i.e. we set K, = 0
in Eq. (1.10). A compact treatment is achieved if we introduce the Green’s
function type matrix Gar (£) = O(1) (xearl (2l #(D]y) o).

According to the initial value of & we get G (t = 0) = deg(Xenmr|Xgn) f(Pwgn),
where f gives the thermal distribution versus the vibrational levels Eyn = hwgy
of the electronic ground-state. This Green’s function enables us to rewrite the
first electronic matrix element in Eq. (2.8). The second matrix element can be
neglected since it leads to non—resonant (anti-resonant) contributions. Before
giving the equation of motion for G,y we note

4wl

a(w) = WRe{ng Z <XgN|XeM>GMN(W)} : (2.9)

)

Taking the general non—Markovian QME expanded with respect to electronic
states and concentrating on a coupling to the reservoir DOF in the excited—
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state only gives after a Fourier transform (wepqn are respective transition
frequencies)

—wGun(w) = Gun(t=0) = iwerrnGun (W)
- ; Cur (W + wyn)Grn(w) - (2.10)

The frequency—dependent correlation function has been introduced according
to

Cuc(w) = [ dt Cealt) (xear Ko(Q) Uelt) Kol @er) - (2.11)

The general absorption coefficient is obtained after inverting the matrix formed
by the prefactor of Gy in Eq. (2.10) [MAS99, RMO0]. If one neglects the
off-diagonal parts of C'y;x one obtains

4Twnmor | deg |2

3hc .
> f(hwgn) | (XgnIxens) |? ReCpnr(w + wyn)
M,N

a(w) =

X ((w—weM@N—I—ImC’MM(w—ngN))Z
-1

+ (RGGMM(W+ng))2) . (212)

The derived expression clearly shows that the correlation function (the quantity
being responsible for non—-Markovian effects) if transformed into the frequency
domain, strongly influences the concrete line—shape of the optical absorption
spectrum. The real part of Cyyy is responsible for a line broadening of the
transitions whereas the imaginary part shifts the position of the transitions.
But the frequency dependence of both, i.e. ReC v and ImC’M M may result in
strong deviations from a simple Lorentzian line shape [RMO00].

2.3 Effects of Initial Correlations

Turning our attention back to the time domain and considering the laser pulses
with short duration, the proper inclusion of the initial correlation term Ing
becomes necessary. The correlation term Inz in Eq. (1.8) describes the decay
of correlations present between the active system and the reservoir at the initial
time ty. After starting the evolution these initial correlations tend to zero
on a time-scale comparable to t,em, and I ~z should be negligible for ¢t >
to + tmem- They compensate the incomplete description of the dynamics of
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system S for initial times t < tg+tpem- In a formulation of dissipative quantum
dynamics where a time coarse—graining has been introduced which neglects a
time-resolution comparable to tyem (See Section 1.2) one can neglect initial
correlations and can change to a Markov approximation of expression (1.10).

Obviously, in the contrary case of a time-resolution much below .., initial
correlations together with retardation effects of the system-reservoir coupling
(non—-Markovian effects) have to be accounted for. The disregarding of the
initial correlation is usually performed by setting initial density matrix of the
compound system S+ R to W (to) = p(to) Req which yields Iy = 0. If retarda-
tion is considered but initial correlations are neglected the time—dependence of
the density operator (its matrix elements) displays artificial oscillations for an
initial time interval extending from ¢y to g + timem (Or somewhat larger times).
This has been recently demonstrated for the dissipative dynamics of a single
molecular DOF moving in a double-well potential [MT99].

The situation changes if one considers (as it will be the case here) the action
of field—pulses driving the system out of equilibrium. Now, it is not necessary to
deal with initial correlations. According to their decay with the characteristic
time ., One can arrange the presence of the field—pulses for times where the
influence of initial correlations already vanished. For numerical simulations
this means that one should let evolve the system freely without the action of
the external field and without including the term Iny for a time-interval large
compared to tnem. Therefore, if the field—pulse acts, a correct description of
non—Markovian molecular dynamics has already been achieved.

The field influence on the system dynamics can be considered as establishing
a new initial condition for p (this is best seen for a pulse short compared t0 tem
as well as any other characteristic time of the active system). The act of the ex-
ternal field results in a sudden jump in the dynamics of the system breaking also
the system-bath correlations. But, this takes place without contributions in
the density matrix equations similar to the initial correlation terms I Nz(t, o).
Therefore, one can expect that the interplay of non—Markovian dynamics and
short pulse excitations are similar to the time-evolution of / one observes for
times just after starting the evolution with retardation accounted for but with-
out the consideration of initial correlations. The following considerations are
devoted to make this statement more clear.

We suppose that the external field starts to deviate from zero (arrival time
of the pulse in the probe) at time tgeq, Where tgeq = to. Thus, for any ty < ¢t <
thea the field—free version of Eq. (1.10) would be valid, and should describe
the equilibrium situation between the active system and the reservoir. We
will denote the respective equilibrium version of the reduced density operator
by peq. If the exact expression for the memory kernel is taken we expect
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Peq = trR{Weq}, where Weq is the canonical equilibrium statistical operator of
the active system plus reservoir, proportional to exp —(Hyo+Hs_r+Hg)/ksT'.
If the field—free memory kernel My is used in the second Born—approximation
we get (see e.g. [MK99])

ﬁeq = exp ( — Hmol/kBT) / trg{exp ( — Hmol/kBT)} 5 (213)

i.e. the canonical statistical operator of the active system. Although the con-
crete computations presented in the following sections have been done in the
framework of the second Born—approximation it is not necessary for the rea-
soning below to use this approximation.

Since equilibrium should be established for tg < t < tgaq We get from Eq.
(1.10) (note the replacement of ¢ — ¢y, which is much larger than zero, by o)

0= —iLomoteq — / dr M(7)feq - (2.14)
0

For ¢ > geq, thus for times when the field already acts, the whole equation
(1.10) (with I(t,to) = 0) applies. To solve this equation for times t > tgaq We
introduce a formal decomposition of the RDO according to

PE) = AR + feq (2.15)

where Ap(t) vanishes for times less than tgeq. Inserting (2.15) into (1.10) we
obtain for t > Theld

;Aﬁ(t) = —iLs(1)Ap(t)

t—Lgeld
— / dr M(t,t — m; E)Ap(t — 1)
0
- Z'ﬁﬁeld (t))aeq
t—to

— iLaote — / dr M(t,t — 7;E)feq - (2.16)
0

Here, the parts depending on pe, (three last terms on the right-hand side) act
as inhomogeneities. Indeed, one can interpret these inhomogeneities as terms
replacing I in Eq. (1.8).

If one neglects the less important effect of the field—influence on the memory
kernel (and notes t — tg > 0) the last term in Eq. (2.16) is compensated
by the foregoing one (compare Eq. (2.14)) and iLgaa(t)peq remains as the
inhomogeneity. But in difference to I this inhomogeneity substantially deviates
from zero for the whole time the external field is present.
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2.4 An Analytical Solution for the Case of Long
Correlation Times

In the previous section we have transformed the initial correlation term I into
the inhomogeneity iLged(t)peq- This transformation is very fruitful when con-
sidering the electronic excitation by a J-pulse. Such a pulse just shifts the
vibrational wavepacket from the ground state to the excited one. For all times
t > to, where ty = ty;q is the time when the J-pulse acts the inhomogeneity
iL fie1a(t) Peq 1s zero and the equation

;A,ﬁ(t) — iLs(t)AP(E) — 0/ drM(t,t — T)Ap(t — 7) (2.17)

correctly describes the non-Markovian dynamics of the system for ¢t > ¢3. The
initial condition of the equation is Ap(t = to) = |&)(&o| where |&) denotes
the vibrational ground-state of the electronic ground-state PES, displaced by
Q = —(Q. — Q,) with respect to the vibrational ground state |0) of the ex-
cited electronic state. It means we assume an instantaneous transition of the
wavepacket as it is depicted on Fig. 2.1. () represents again the dimension-less
oscillator coordinate.

We will focus on this situation and demonstrate that an analytical treat-
ment of the non-Markovian QME, Eq. (2.16) is possible if the inequalities
tmem > 1/wyip and ¢ >& tyenm are fulfilled. The first inequality corresponds to
the case in which the internal motion of the oscillator (not disturbed by the
environment) is faster than the retardation effect resulting from the environ-
mental influence. The second inequality reduces the actual time on the interval
from the beginning of the evolution up to times not larger than ¢,.,. Both
inequalities enable us to replace the correlation functions C'(7) and C*(7) by
the common and real value C'(7 = 0). For the approximative description of
the memory effects we write the dissipative term [; dT M(t — 7)Ap(7) as in
Eq. (1.10). The the time-integral can be removed by the definition of a new
operator . It follows the whole QME as

A~

g 00(0) = — [Hs, Ap(t)]_+ily/C(0)K, (1) . (2.18)

with the definition

0 _ !

5(t) = z’/dr Us(t — 7)(/C(0)K, Ap(t)) U (t — 7). (2.19)
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Figure 2.2: Wavepacket dynamics following from the solution of the non-
Markovian QME for ¢ e = 100fs and J(wyp) = 1.52 x 10712 fs.

One easily verifies that the equation of motion for ¢ is obtained if we inter-
change Ap and ¢ in the given equation of motion for Ap. Accordingly one can
introduce the new density operators

WP =Ap+é6, (2.20)

with initial conditions w®)(t = 0) = Ap(t = 0) (note 6(t = 0) = 0). Fur-
thermore, we note Ap(t) = (W) (t) + @) (¢))/2. Since the operator K which
appears in the Egs. (2.18) and (2.19) has been chosen be equal to the (dimen-
sionless) oscillator coordinate @) (see section 2.1) the contribution /C(0)Q
resulting from non—Markovian dissipation can be incorporated into the oscil-
lator Hamiltonian Hg by defining shifted potential energy functions

o hwvib

Q@ Q.2 "V

4 Wyib

U(Q) (2.21)

The origin of the oscillator potential has been displaced to Q. = 21/C(0)/wyip.

The Hamiltonian Héi) following from the replacement of U by U®) define
dissipation-less equation of motions for @™ which solution is obtained as

7

hHéi)t) . (2.22)

W) (t) = exp (— %Héi)t) Ap(t=0) exp(
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Since Ap(t = 0) describes a pure state, those states both density operators ™)

describe at later times remain pure. In contrast, Ap(t) will describe a mixed
state. The pure states corresponding to w* are given by the propagation
of the displaced vibrational ground—state D% (g)|0) in the displaced oscillator
potential U*). Here D*(g)|0) = exp{g(C — C'} with C and C' the oscillator
annihilation and creation operators, is the well-known displacement operator
[IMK99]. Changing to the coordinate representation the solution follows as the
moving wavepacket

i

Q1) = (Qlexp(—
= Xo(QW(1))e O (2.23)

Here, xo(®) denotes the oscillator ground-state wavefunction which reads in
the present notation (pyipwyin/7h)Y4 exp(—Q?/4) (the phase o) (t) can be
found in [MK99]). The time-dependent coordinate Q) (t) = Q F Q. +
(29 £ Q) cos(wyipt) leads to harmonic (but shape invariant) motion of the
wavepacket. Again, we state that the non—Markovian dissipative dynamics
discussed here is not described by a (coherent) superposition of the two types
of wavefunctions ¥(*)(Q,t). There only appears a superposition of the related
pure—state density operators. We introduce the respective coordinate distribu-
tion function as

Q1) = (QIMKIQ) = S(@WO () + 0T (1))
= Q)+ 3@ (2.21)

It give the (phase insensitive) superposition of two independent coordinate
distribution functions. In contrast to the case of Markovian dissipation where

a single wavepacket is moving the given superposition introduces a specific
structure into coordinate distribution P(Q,t). This can be seen in Fig. 2.2
where the numerical solution of the non—Markovian QME is displayed. The
mentioned dip in P(Q,t) disappears if the memory time is reduced.

For the time-dependence of the vibrational level populations Py = (M |Ap|M)

one obtains

HSY't) D*(g)]0)

Pu(t) = |ASP () + |AS (0) 2 (2.25)
where the transition amplitudes read
A () =3 fee(M, N) fro(N, 0) exp(—iw,nNt). (2.26)
N

The Frank-Condon factor fre = <§eM|§](\;_L)> describes the overlap between
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Figure 2.3: The population dynamics of the vibrational ground and the first
two excited states in the case of a long correlation time t. = 50fs (part a) in
comparison with the analytical result from Eq. 2.25 for the case of an infinitely
long memory (part b). In part (a) the full non-Markovian calculation (full line)
and the corresponding Markovian approximation (dashed line) are presented.

oscillator states belonging to U, with quantum number M and those of the
displaced oscillator with Hamiltonian H éi). The overlap between the state of
H éi) and the electronic-ground state vibrational wavefunction [£,0) is given by
fre = <§](\;_L) £40). Obviously, Py(t) should display constructive and destructive
interferences among the various contributions stemming from the simultaneous
presence of two different contributions |A( (t)]>. In Figure 2.3 the vibrational
populations of the first three levels of the excited electronic states are pre-
sented. The analytical solution in part (b) of the figure is compared to the
corresponding exact solution for the long correlation time and the Markovian
solution (in part (a) of the figure). For the comparison with non-Markovian
results we use the Markovian approximation introduced in section 1.3.1. More
detailed discussion of the comparison between non-Markovian and Markovian
results will be given later. For the time being one can analyze what we can
learn about non-Markovian dynamics from the Figures 2.2 and 2.3.

In Figure 2.2 the whole one period of the wavepacket motion on the excited
PES is presented. One notices the broadening of the wavepacket and creation
of the dip in the middle of it. We find the wavepacket to be narrow when it
is present on the one side of the harmonic PES and to be broad on the other
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side. This movement is reflected by the population probabilities. The minima
and maxima alternate after the half of the oscillator period T' = 27 /w,;, what
can be clearly seen on Fig. 2.3 (b).

The situation for the Markovian dynamics described in terms of the wavepacket
differs. On the time scales where the dissipation (described by the real part
of the Redfield tensor) of the wavepacket energy is still negligible, the in-
fluence of the imaginary part of the Redfield tensor causes some changes of
the wavepacket shape as it moves on the PES. In particular, the wavepacket
broadens in the middle of the PES and becomes narrow when it hits the turn-
ing point on the PES. Similarly to the non-Markovian case this leads to the
oscillations of vibrational populations. But now, the broadening and narrow-
ing of the wavepacket happens twice in one period of the wavepacket motion.
The Markovian vibration populations display the modulation by the frequency
twice as high as the non-Markovian ones (compare Figs. 2.3 (a) and 2.3 (b)).
The case with the finite memory time t,,.,, exhibits the non-Markovian fre-
quency of the modulation in times just after the excitation which turns into
Markovian one for times ¢ > t,,em-

Another aspect differing Markovian and non-Markovian results is a clear
separations of the overall course of the vibronic population. This separation
happens immediately after the excitation with Markovian and non-Markovian
populations heading opposite directions. This effect reminds the works suggest-
ing the slippage of the initial conditions in Markovian equations to account for
non-Markovian effect [SSO92, GN99b|. Indeed, in Fig. 2.3 (a) the change of
the starting vibrational populations would be able to account for the difference
between Markovian and non-Markovian dynamics in later times, but certainly
not for time ¢t < t,em.-

2.5 Interplay of Non-Markovian Relaxation and
Ultrafast Optical State Preparation

In the previous sections we have already looked at the non-Markovian effects
in the frequency domain, we have accounted for the initial correlation problem
and obtained several hints on how to recognize the non-Markovian effects in
the time domain via an analytical solution of the non-Markovian QME for
certain special case. All the studies presented here so-far have assumed either
a cw-field or an infinitely short pulse excitation. Now the case of the short
pulse of the finite duration will be studied. Of basic interest for the following
will be the study of the ultrafast laser—pulse action and its interplay with the
non—-Markovian dynamics of the vibrational DOF as well as the comparison of
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the non-Markovian dynamics with the dynamic behavior present in the limit
of the Markov approximation. This latter comparison can be carried out in
different ways. First we can try to compare those types of non—Markovian
dynamics which obey the same Markov-limit as a common feature. Inspecting
Egs. (1.33) and (1.35) it becomes obvious that the requirement for the same
Markov-approximation is equivalent with the demand for the same Redfield—
tensor. This can be translated to the requirement that the different types of
correlation function C(t) used in the comparison should have the same values
C(w) at certain frequencies. In the present case of a harmonic oscillator there
remains only the single value C'(wyip,) of C(w) at which all correlation functions
should coincide.

An alternative scheme to compare different types of non-Markovian dy-
namics could be based on the application of different correlation functions
C(t) with different extension along the time-axis, but with the same integral
value. However, we found the first of these approaches to be more suitable for
our purpose. In the Markov-limit and in so-called secular approximation (see
e.g. [MK99]) the quantity C'(wy), and in the present limit 7= 0 J(wy) can
be directly related to the inverse life-time of an oscillator level, i.e. we have
/7y = 27 M J(wyip). Thus, to compare non-Markovian results with different
correlation functions we choose the coupling in such a way, that it corresponds
in the Markovian limit to the same life-time of the first excited oscillator level.

2.5.1 Density Operator Equation

In the following we will consider the weak field case. The field-strength should
be of such a low value that the following two approximations are allowed. First,
we provide that it is sufficient to consider the excited—state population linear
with respect to the intensity. This will enable us to reduce the description
of the complete excited state dynamic to the computation of the electronic
diagonal matrix element of the reduced density operator. Some details on
the respective derivation can be found in Appendix D. Using the separation
according to Eq. (2.15), we have exclusively to determine Ape., the density
matrix operator corresponding to the excited electronic state (this is still an
operator in the space of vibration states).

As a second consequence of the considered weak—field case we neglect the
field-dependence of the memory kernel (cf. the discussion in [SM98]). It results
the following density operator equation

0 . it
5,01 = ﬁ[He,a(w}
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- ﬁee(t - tﬁeld; (3') + Fee(ta tﬁeld; E) . (227)
This equation directly follows from Eq. (D.15). Note the identification
&= Npee . (2.28)

The dissipative part D,. is obtained from Eq. (D.5) in Appendix D, and
the external-field dependent source term Fp. is given in Eq. (D.16). In our
calculation we use the following form of the quantity J(w)

Jee(w) = ®(w)J0J<w) ’ (229)

where j(w) has been normalized to 1 in the frequency interval between 0 and
00, and ©(w) denotes the unit-step function. Furthermore we use the following
ansatz [SM98, WL93]

. W, We
jlw) = —e feve (2.30)

we

Here, we introduced a cut-off frequency w,., which corresponds to the character-
istic memory time 7,,.,, on which the correlations of the reservoir DOF decay.
The inverse of w, will be denoted as t. and named correlation time.

2.5.2 Energy Representation

For the numerical determination of the density matrix we have to change from
the operator expression ¢ to a concrete representation. In the present case
it is most appropriate to take the harmonic oscillator like eigenstates of the
vibrational Hamiltonian H, which will be denoted by |x.ar). Then, the ex-
cited electronic state density matrix which elements will be calculated in the
following reads

oun (t) = (Xear| (1) xen) - (2.31)

From Eq. (2.27) we directly obtain the following density matrix equation

aO’MN(t) = _iWMNUMN(t)
—KZL /dT Munrr(T)orn(t — 1) + Fun(t) - (2.32)

Note the special choice t4eq9 = 0, and the abbreviation wyn = (Eepr — Een) /Ry
where the E.p are the eigenvalues of H.. The tetradic matrix My gr(T)
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following from the memory kernel superoperator reads in detail
Munkp(t) = duk Z My aan(—7)e™amT
A
+ N Y Muraaw(T)eNAT
A

— My (—T7)eNKT

— MLN7MK(T)€ithIT s (233)
with
My k(1) =
Cee(T)<XeM‘Ke|XeN><X6K‘K6|X6L> . (2-34)

The energy representation of the inhomogeneity is obtained as

|d7;g| Z<XeM [Xg2) (XgrlXen) f(EgL)
L

Fun
t

% &) / df E(F) e~ 1em=8)t=D 4} o (2.35)
0

Here, f(E,) denotes the thermal distribution versus the electronic ground-
state vibrational levels. To have a sufficient simple expression we neglected the
contribution of the dephasing operator introduced in Eq. (D.14) of Appendix
D. The field—pulse envelope £ has been introduced in Eq. (2.4). For the
concrete computations we take the following form

A [2
E(t) = = Ze 27 (2.36)
m

Tp

The time 7y where the pulse reaches its maximum has to be chosen large com-
pared to 7, in order to get £(t = 0) ~ 0. We set 7y = 50 fs. The field amplitude
A (cf. Eq. (2.36)) together with the transition dipole moment is not specified
explicitely. Instead, we choose A x nd., in such a manner to achieve an excited
state population sufficiently smaller than 1. For our computation this choice
guarantees oy y(t — 00) ~< 107%. Beside the envelope we introduced in Eq.
(2.35) the quantity Aw giving the detuning between the energetic distance of
both PES and the photon energy, i.e

Aw=Q— (U —UO)/n. (2.37)
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If we take the standard Markovian QME, Eq. (1.29) the dissipative part of
Eq. (2.32) reads Yk Rymn, krokr where the complex Redfield tensor reads

Runkr = Omk Z ME:/AAL(—WAL)
A
+ Onr Z MMA,AK(LUKA)
A
_MI*{M,NL<_WNL> — MLN,MK(UJKM) . (2.38)

Here, M)y, ~.kL(w) denotes the half-sided Fourier transform of the function in-
troduced in Eq. (2.34) (note My g1 (w) = Mi; ya(—w)). The usual Redfield
tensor is obtained as the real part of the above gi;fen expression [Blu89, MK99].
Finally, the time-dependent Redfield-tensor Ry kL (t, thea; E = 0) intro-
duced in Eq. (1.30) follows from Eq. (2.38) in replacing My k1 (w) by

t—tfield
My ne(w,t) = / dr €T Mgnn(T) (2.39)
0

The last two versions of the QME are local in time, so the solution can be
found by a standard Runge-Kutta type method [PTVF92].

As we have already mentioned to solve the set of equations (2.32) the so-
called Laguerre-polynomial method [MMO00, MMO1] is used in this work. The
basic idea of the method is to expand the non-Markovian equations of motion
with respect to some special functions [SB82, Men95]. Such an expansion will
enable us to convert the respective integro-differential equations into algebraic
ones. From earlier works [Man97, MBS98] it follows, that the most suitable set
of special functions is given by the orthonormal set of Laguerre polynomials
defined as

Lo(z) = ;ex (;‘;)n (z"e7). (2.40)

Besides other different properties explained in the Appendix F Laguerre poly-
nomials obey the following important equation

/ ALn(2 — T) = Lo (2) — Lnymsr (). (2.41)

This represents the key relation to handle any type of time non-locality. If
all ingredients of the non-Markovian density matrix equation are expanded
with respect to the Laguerre polynomials the difficulty to treat the retardation
effects has been overcome. The method is in detail explained in Appendix
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Figure 2.4: Accuracy of the Laguerre polynomial expansions. The measure
e(t, = 0,t, = 300fs; N), Eq. 2.42 and Ae(t, = 0,t, = 300fs; N + 100, N),
Eq. 2.43 are drawn versus the expansion order N. Part (a) € (solid line) and
Ace (dashed line) determined for the correlation function Ce.(t) with different
t.. Part (b) The same as in part (a) but for the function Cp.(t)e™»! the
single value t. = 10fs, and different n. Part (¢) The same as in (a) but for
the time-dependent part £(t) [y dt€ () exp —i(nw — Aw)(t —t) of the field term,
Eq. (2.35). Curve pair 1: n = 0, curve pair 2: n = 8. Part d) Ae(t, =
0,t, = 300fs; N 4+ 100, N) versus N for the diagonal elements of the harmonic
oscillator density matrix. Solid line: pgg, dashed line: py4, dashed-dotted line:
Pgs-

F. Before the method will be used for actual calculations we try to test its
accuracy.

A convenient way to proof the convergence of the expansion into Laguerre
polynomials is to compute the contribution given by a few last terms in the
expansion while enlarging the number of expansion coefficients. However, in a
case where the function f(¢) to be expanded is known we can easily check the
accuracy of the actual expansion fe,(t; N) = foxp(tenarz; N) = SN o f™ L, (2)
of order N by introducing

S |50~ et N) | (2.42)

E(tl,tQ;N) = t2 _ tl
t

1
The expression gives the absolute value of the difference between the original

function and its Nth order expansion averaged with respect to the time inter-
val [t1,ts]. Since we are mainly interested in the question how the Laguerre
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polynomial expansion may be improved by enlarging the expansion order we
will use the quantity €(t1,t9; N) instead of an expression defining a relative
deviation.

If the function f(t) is not known one has to compare different orders N
of the expansion, say N and N + AN, (AN > 0). For this reason one may
introduce as a measure of accuracy

AE(t17t2;N+AN, N) =

t . t2/tcha7' N+AN
T / de | Y ML) ] . (2.43)
2 ! tl/tchar n=N+1

In Fig. 2.4 we demonstrate the accuracy of the polynomial expansions of
the correlation function, the density matrix elements and the field—term. The
quantities €(0,300fs; N) and €(0,300fs; N 4+ 100, N) (Eq. 2.42 and 2.43, re-
spectively) are presented in part (a) of the Fig. 2.4 as a function of N for
the correlation function Ce.(t), (1/w. =t. = 10fs and 100fs). Both measures
show a strong decay for N less than 10%. Afterwards a saturation appears if
N is further increased. This behavior points out the fact that the accuracy of
the expansion reaches its limit if it coincides with the accuracy of the spline
approximation. Of course, this can be improved by shortening the step length
of the spline approximation. Thanks to the smoother behavior of the C.(t)
with ¢. = 100 fs as compared with ¢. = 10 fs the corresponding spline approx-
imation with the same step length is more accurate. This also leads to higher
accuracy in the polynomial expansion.

According to Eq. (2.33) which determines the memory kernel terms of the
type Cee(t) exp(inwyint) have to be studied. In part (b) of Fig. 2.4 we again
present € and Ae but defined for those expressions incorporating oscillating
contributions with n = 4,8 and ¢t. = 10fs. Now we are expanding highly
oscillating functions what leads to the slower increase of the accuracy. However,
in the case of n = 4, for example, we reach saturation at the same accuracy
as in the case of n = 0 with some 4000 coefficients. As it has to be expected
the accuracy of the term with n = 8 is lower. In the case of such a highly
oscillating term we can, however, expect that their contribution is small and a
less accurate expansion seems to be sufficient.

Next, in part (c) of Fig. 2.4 we show analogical picture for the expansion
of the laser pulse. The field term does not show any dramatic oscillations and
the functions dies out very fast far from the center of the pulse, so that the
method explained in Appendix G enables us to evaluate actual infinite integrals
determining the expansion coefficients of the laser pulse with a high accuracy
using a small finite interval. Interestingly, in parts (a),(b) and (¢) we could
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observe that both quantities € and Ae are approximately of the same order.
This indicates that they can be used alternatively.

Finally, the accuracy of the density matrix expansion is estimated where
the only measure to be used is given by Ae, Eq. (2.43). The accuracy of this
expansion is determined by the respective accuracy of the expansions of the
memory kernel, the field—term, and the expansion of the free dynamics of the
system. Different contributions may be expanded with different accuracies. For
the highly oscillating terms of the memory kernel which do not contribute sub-
stantially to the dynamics low accuracy seems to be sufficient. The expansion
of the free dynamics part is naturally involved in the algebraic equation (F.9).
Thus, in part (d) Fig. 2.4 we display Ae(0,300fs; N + AN, N) as a function
of N for AN = 100 and for the expansion of different matrix elements.

2.5.3 Numerical Results

In this section we present and analyze the numerical results on the model
system presented in section 2.1. We use a short laser pulse excitation to pop-
ulate the excited electronic state |p.) and study the subsequent evolution of
the vibrational populations and the influence of the dissipation. We vary the
excitation pulse length, the correlation time ¢. and the strength of the dissipa-
tion. The latter is determined by the value of the spectral density J(w) at the
oscillator frequency wyp.

We start the presentation of numerical calculations by displaying the pop-
ulation gg9(t) = P»(t) of the second excited vibrational level (which is the level
positioned in resonance to the applied light field). Fig. 2.5 shows the time—
development of P,(t) in its dependence on the length of the laser pulse. In part
(a) we can identify three kinds of the non-Markovian effects. First, one can im-
mediately notice that P, reaches somewhat lower values in the non—Markovian
case. This behavior reflects the fact that the dynamics is determined by the
preceding states of the system. Further we can observe that the fast oscilla-
tions of P, present in the Markov case become approximately twice slower in
the non-Markovian case. After a certain time—interval this smaller oscillation
frequency changes back to that of the Markov case, but with a smaller ampli-
tude. Finally, an alternation of the decay rate of P, appears if one changes
to the case of non-Markovian dynamics. (This latter effect can be seen more
clearly in some other curves presented below.) Comparing the results of Fig.
2.5 valid for different pulse lengths one notices that the oscillating structures
superimposed to P, disappear with pulses comparable or longer as the vibra-
tional period 27 /wyip.

A similar behavior as in Fig. 2.5 is shown in Fig. 2.6, but now with a
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Figure 2.5: Population of the second exited vibrational level in dependence on
the pulse-length 7, based on the solution of the non-Markovian (full-line) and
Markovian (dashed-line) QME. t. = 30fs, J(wyip) = 1.9 x 1074 /fs.

correlation time shorter than the vibrational period 27 /wyy,. Using the same
coupling strength as in Fig. 2.5 (upper curves) the situation change consid-
erably since we observe only a very small deviation between the case of non—
Markovian and Markovian dynamics. On the other hand while increasing the
coupling strength jo we can again restore the situation from Fig. 2.5.

To further indicate the influence of the memory kernel decay—time, e.g. the
correlation time t. on the dynamics, we display in Fig. 2.7 the population
of the first four vibrational levels for the two different correlation times of 20
fs and 30 fs. Using the coupling strength of Fig. 2.5 we found in the case
of t. = 10fs a complete agreement between the Markovian and non-Markov
dynamics (not shown). This coincidence is somewhat weakened for ¢, = 20fs
(Fig. 2.7 a). But for t. = 30fs the characteristics of the non-Markovian effects
as described above arise (part b).

A situation where the correlation time t. is shorter than the vibrational
period 27 /wy;p, is considered in Fig. 2.8. Using the coupling strengths jy already
applied in Figs. 2.5 and 2.7 we again find a complete agreement between the
Markovian and non—Markovian type of dynamics. A small deviation between
both cases can be observed in part b of Fig. 2.8. This part also shows that
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Figure 2.6: Population of the second exited vibrational level in dependence
on the pulse-length 7, based on the solution of the non-Markovian (full-line)
and Markovian (dashed-line) QME. t. = 20fs, J(wyp) = 1.9 x 104 /fs (upper
curves in graphs) and J(w,s) = 3.5 x 1074 /fs.

a further increase of j, may cause some small deviations between the Markov
and non—Markov case. In particular, in the case of non—-Markovian relaxation
the equilibrium value is reached slightly faster.

Let us summarize the phenomena which indicate a deviation of the non—
Markovian type of relaxation from the Markovian case. First, we observed a
change of the layout of the light—pulse induced vibrational levels population
if non—-Markovian relaxation is accounted for. And second, the retardation
effect somewhat slows down the relaxation. Finally, as a third hint on non-
Markovian effects we mention a reduction of the fast oscillations superimposed
to the vibrational level populations. While the first two effects were found to
be relatively unaffected by the pulse length, the oscillations are only present for
pulse lengths sufficiently shorter than the oscillation period of the vibrational
coordinate. Therefore, only the observation of these fast oscillations just after
the pulse action can be considered as a sufficient clear hint on non-Markovian
effects in the molecular dynamics. The results of the section 2.4 indicate that
the irregular oscillations just after the external field action are really a pure
memory effects.
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Figure 2.7: Influence of the correlation time ¢, on the dynamics of the occu-
pation probabilities of the first four vibrational levels. Parameters: J(wys) =
1.9 x107*, 7, =5fs, t. = 20fs and t. = 30fs in parts a and b, respectively.

At the end of this section we will compare the given correct description
of non-Markovian dynamics with the approximate one introduced in Section
1.3 via establishing the QME with a time-dependent Redfield—tensor. Since
the non—equilibrium part Ap of the complete RDO obeys a QME starting at
time tg0q and having the same inhomogeneity whether non—-Markovian dynam-
ics or Markovian dynamics (including a time-dependent Redfield tensor) are
considered, we expect that both approaches should give similar results. But a
problematic issue of this comparison would be the choice of the time tgq1q.

In Fig. 2.9 we present respective results for the case of an impulsive exci-
tation (infinitely short laser pulse). In such a case tgeq can be identified with
the center of the pulse, and the agreement between both types of dynamics is
very good. Since the pulse is infinitely short the final population of the levels
after the action of the pulse is the same for both, the Markovian as well as the
non—Markovian case. However, details of the dynamics immediately after the
pulse action differ in both case.

For a situation with laser pulses of finite duration one may expect a similar
result as in the case of the impulsive excitation as long as the pulse length
is shorter than the oscillation period of the vibrational coordinate. Indeed,
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Figure 2.8: Influence of the system bath coupling on the population dynamics
of the first four vibrational levels (7, = 5fs, t. = 10fs). Part a: J(wyp) =
3.5 x 107*/fs. Part b: J(w,p) = 2.3 x 1073 /fs.

choosing an optimal time tg0q one is able to reproduce the results of the non—
Markovian case quit well (see Fig. 2.10 curve b). However, the agreement
appears to be very sensitive on the choice of tgzqq. In particular, choosing tgeq
too close to the center of the pulse leads to an underestimation of the level
populations created by the pulse (curve a in Fig. 2.10). The opposite choice
leads to a fast convergence to the corresponding standard Markov results as
demonstrated by curve c of Fig. 2.10.

To conclude we note that in the case of an instantaneous excitation, the
time-dependent Markov approach reproduces some of the non—Markovian ef-
fects quite well. In particular, one is able within this approximation to account
for the initial dynamics leading to the difference in the occupation probability
after the action of the pulse and partly also for the initial change of the fast
oscillations superimposed to the populations. Finally, we underline that the
given evaluation of the approach based on the time—dependent Redfield—tensor
justifies earlier studies on the field—pulse alternation of dissipation [SM98§].
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Figure 2.9: Population dynamics of some selected vibrational levels after im-
pulsive excitation (J(wyp) = 3.5 x 1074 /fs, t, = 20fs). Full-line: solution of
the non-Markovian QME, dashed-line: solution of the non—-Markovian QME,
dashed—dotted line; solution of Markovian QME with time-dependent Redfield
tensor.

2.6 Non-Markovian Dissipation via
Multi-Quantum Processes

The discussion of the non-Markovian effects has been so far limited to our
bilinear system-bath coupling model with both system and bath coordinates
appearing only linearly in the expression (1.14). Clearly, this represents the
lowest order approximation of the general expression with respect to the sys-
tem and bath coordinates and higher order interaction would be in principle
possible.

The bilinear type of system reservoir coupling represented by formula (1.14)
has been broadly used in dissipative quantum dynamics by additionally pro-
viding a normal-mode analysis with respect to the reservoir DOF (see for
example [LCD*87, Wei93, MK99]). Consequently the bath coordinates Z,
where £ counts the bath modes, correspond to a thermal bath of decoupled
harmonic oscillators. It has been demonstrated many times (see, e.g. [MK99]
and references therein) that the used bilinear coupling results in a description
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Figure 2.10: Population dynamics of the second excited vibrational level
(J(wyip) = 1.9 x 107*/fs, t. = 30fs, 7, = bfs, 74 = 50fs). Thick full-line:
solution of the non—Markovian QME, dashed—line: solution of the Markovian
QME, thin full-lines; solution of Markovian QME with time-dependent Red-
field tensor. The initial time ¢y for the propagation with the time-dependent
Redfield tensor has been chosen in different ways. Curve a:ty = 77 —5fs, curve
bitg = 7 —3.5fs, curve c tg = 7y — 2.5fs.

of dissipation connected with the emission or absorption of a single reservoir
oscillator quantum. Obviously, if the expansion of Hg_g with respect to Z; is
continued higher—order quantum processes may appear.

Anharmonic couplings among nuclear coordinates or normal-mode vibra-
tions represent an ubiquitous phenomenon responsible for IVR, vibrational
relaxation, and excitation energy dissipation. The discussion of such types of
anharmonicities has a long tradition (see e.g. the more recent paper [KTF94]
and references therein). Already in [OF89] some general relations for the in-
corporation into a density matrix description have been given.

It is the aim of the present section to study a modification of non-Markovian
dynamics studied so far induced by such anharmonic couplings. For this reason
we will deal with the first non-trivial example which goes beyond relation
(1.14). This expression is given as the coupling of a single nuclear coordinate
() representing the system S (we use again dimension-less nuclear coordinate)
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to the square of the passive reservoir coordinates, i.e. Hg_g ~ QZE2

The chosen type of anharmonic coupling can be justified as follows (see
also [MK99]). Let us assume the existence of a PES which depends on the
set of active-system coordinates Rg and on reservoir coordinates Rg. Then,
an expansion of U(Rg, Rr) with respect to the deviations ARy from local
equilibrium values RQ) can be carried out. The zeroth-order contribution
gives the active-system PES. The second-order contribution if diagonalized
(together with the kinetic energy part) leads to a harmonic oscillator PES
of the reservoir. Using dimensionless normal-mode coordinates Z; we obtain
this PES as >, hwg(Rs)Zg, where the normal-mode frequencies depend on
the active-system coordinates. Next let us reduce the set Rg to the single
coordinate (). Then, a power expansion of the respective we(Q) yields in first
order a system-reservoir coupling of type ~ QZE, whereas the zeroth order of
this expansion leads to the unperturbed reservoir PES entering Hy. Finally,
the first-order expansion of U(Rs, Rg) gives a contribution linear with respect
to Z¢. The given derivation can be put into the following type of system
reservoir coupling (present in the excited electronic state )

H = K(Q)2(2), (2.44)
where K (@) is linear in ) and the second part reads as

¢ = Z hewe(91(8) Ze + gll(f)Z§2> . (2.45)
13

The studies reported below are based on Eq. (2.44) for the system reservoir
coupling and extend the investigations on non—Markovian nuclear dynamics in
previous sections to the case where two—quantum processes govern the dissipa-
tive nuclear dynamics. In particular, we will demonstrate that the term propor-
tional to Z 52 results in a correlation function which contains a time—independent
part. The reasonableness of such a function which mainly determines the
structure of the memory kernel entering the non—-Markovian Quantum Master
Equation (QME) is demonstrated and the breakdown of a Markovian Redfield—-
theory is shown. As the basic technique to solve the non-Markovian QME we
use our Laguerre polynomial expansion method explained in Appendix F.

2.6.1 Non—Linear Coupling

In contrast to an expression where ® depends linearly on the reservoir coordi-
nates Eq. (2.45) results in a thermal averaged expectation value of ® which
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does not vanish but gives

13

Here,
< ... >p= trp{Req...} (2.47)

A

denotes the thermal average with respect to the reservoir DOF. (R, is the
respective equilibrium statistical operator as in previous sections.) The non-
vanishing < ® >y leads to the appearance of the so—called mean—field term in
the QME proportional to < Hg_g >gr. To allow for excitation energy dissi-
pation via a coupling to the reservoir of passive coordinates, we provide that
initially the active coordinate has been prepared in a non—equilibrium state by
a photo-excitation process into an excited electronic state. The complete QME

governing the dynamics of the excited state the density operator 6 (compare
2.27) (= Apee) reads

0 . i e .
5,0(t) = —lHet < HEy >r, A6 (1))
— D(t — tﬁeld; A&) + F(t7 tﬁeld; E) )

(2.48)

where the time argument t5.q indicates the time region just before the action
of the light—pulse. This time argument can be considered as the initial time of
the density matrix propagation since we have ¢ = 0 for ¢ < tgeq (note that we
will set tgeq = 0 in the following). The light field enters Eq. (2.48) again via
the source term F' introduced in Appendix D.

A straightforward calculation gives for the correlation function (compare
also [OF89))

C(t) = Ci(t) + Cry(t) . (2.49)

The first term on the right—-hand side corresponds to the linear part of expan-
sion (2.45) whereas the second term is originated by the quadratic contribution
in Eq. (2.45). There is no mixing between both since expectation values of
an odd number of reservoir coordinates vanishes. C7(t) can be written in the
standard form [Wei93, MK99]

Oy(t) = / dw w* (1 4 n(w)) (Jr(w) — Jr(~w))
(2.50)
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with the Bose-Einstein distribution n(w) and the spectral density Jr(w) =
> gél)Qé(w — wg). For the second contribution to C'(t) we get

Cut)y=cP)+c? . (2.51)

The first time-dependent contribution is obtained as

O (t) = ; / dw w? e7(1 + n(w/2))?
x (Jir(w) + Jrr(~w)) (2.52)

but with the new spectral density Jr;(w) = 3 g7;(€)0(w — 2we). The frequency
3

argument 2w, indicates that the considered type of system-reservoir coupling
results in relaxation processes where transitions within the spectrum of the
active system are accompanied by the emission or absorption of two reservoir
quanta. For the second, time—independent part of the correlation function, Eq.
(2.51) one obtains

o = / dw w? n(w/2)(1 + n(w/2)) (W) . (2.53)

The absence of any time-dependence shows that C®, if inserted into the dissi-
pative part of Eq. (2.48) (see Eq. (D.5)), results in a memory extending up to
the beginning of the time-evolution. Consequently, such a retarded dissipation
has to be considered within the non-Markovian version of the QME. Chang-
ing to the Fourier—transformed correlation function Cr;(w) the part Cg) would
become proportional to §(w). This singular frequency dependence, again, in-
dicates that it cannot be described within a standard Markov approximation
of the QME (Redfield theory).

However, the presence of a time—independent part in C'(¢) does not mean
that long—living correlations appear in the reservoir. This becomes obvious if
one perturbs the reservoir with a coupling expression like that given in Eq.
(2.44), where K (@), however, has to be understood as an external field and
not as a quantum-mechanical operator. Asking for the linear response of the
reservoir if the external field K has been applied one ends up with a generalized
linear susceptibility (see, for example [MK99]). It is given as —ihO(t)(C(t) —
C(—t)), where the unit step function O(t) takes notice of causality. Since the
anti-symmetrized version of the correlation function enters the susceptibility
any contribution of the time-independent part C’ﬁ), Eq. (2.53) is canceled, i.e.
the susceptibility goes to zero for ¢t — oo.
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Figure 2.11: Ratio between the time-independent part C'g) of the correlation
function and the time-dependent part Cﬁ) () at time t=0 versus temperature
and for different values of the correlation time t. = 1/w.: (a) t. = 50fs, (b)
te = 30fs, (c) t. = 20fs, (d) t. = 10fs and (e) t. = 5fs. Pairs of the
correlation time and temperature taken to compute curves in further figures
are indicated by a dot.

In the calculations, both spectral densities J; and J;; are used in the com-
mon form J(w) = O(w)Jpj(w). The normalized quantity j(w) is taken as
1/w? x exp(—w/w,), and O(w) denotes the unit step function. The cut-off
frequency w. mainly determines the memory time of the non—-Markovian dy-
namics. We again denote the inverse of w. by ¢. and call it correlation time.

Before presenting numerical results we will concentrate on the effect the
time-independent part Cﬁ) causes on the dissipative dynamics. Such a con-
sideration would be most useful if C’ﬁ) dominates on Cﬁ). According to Egs.
(2.52) and (2.53) this should be the case for higher temperatures. Fig. 2.11
shows the ratio C’g) / C’g) (t = 0) versus temperature for different t. = 1/w..
Indeed, for kgT < h/t. the dissipative dynamics are governed by the time-
independent part of C(t).

2.6.2 Numerical Results

In this section we calculate the non-Markovian dynamics of the system used
also in previous sections i.e. the system consisting of two electronic states (see
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Fig. 2.1). For the case where the time-independent part of the correlation
function is predominant one can recall the analytical solution we have derived
in section 2.4. For the analysis below we will orient on the results obtained on
non—Markovian effects in the earlier chapters. There, the interplay has been
discussed of optical state preparation, vibrational motion in the excited elec-
tronic state, and decay of reservoir coordinate correlations. It could be shown
that the most pronounced deviation from non-retarded dynamics is obtained
for the case of impulsive excitation. For such an excitation where the length
of the light—pulse is short compared to the two other characteristic times the
vibrational state populations P,; show characteristic oscillations modulating
the redistribution of the probability among different vibrational levels. The
doubling of the period characterizing the modulations of P, just after the
excitation process could be identified as a clear signature of retarded, i.e. non—
Markovian dynamics. If the pulse length becomes larger or comparable to the
vibrational period these modulations vanish but the overall time—dependence
of the level populations show just a deviation from that of the Markovian case.
In Fig. 2.2 in section 2.4 we have compared the full non-Markovian results for
the case of a bilinear coupling and a long correlation time t. = 50fs with the
corresponding Markovian results as well as the analytical solution for the case
of an infinitely long correlation time. The system was excited by an infinitely
short laser pulse at time t = 50fs and the coupling with the bath in Fig. 2.2
part (a) is chosen so, that we cannot notice any considerable relaxation in our
300fs long time window. The non—Markovian results with finite memory show
clearly both the features of the analytical solution with infinite memory and
those of Markovian theory. Since the relaxation is negligible the differences
are reduced to irregularities in the oscillation pattern of the non—Markovian
population probabilities.

As already stated, the presence of a time—independent part Cﬁ) of the corre-
lation function leads to a breakdown of the Markov—approximation. Therefore,
it is impossible to compare retarded with non-retarded dynamics. Instead, we
use the irregular modulation of the level populations as an indication for the
presence of retardation effects. If for a given parameter set temperature is in-
creased we expect the dominance of the irregular modulation of the P, since
Cﬁ) governs the whole dissipative dynamics.

Thus, in Fig. 2.12 we present the time-dependence of the vibrational level
population. To meet conditions near an impulsive excitation we describe the
excitation by a laser—pulse of 5fs duration, and the correlation time %, is set
equal to 20fs. The magnitude Jy of the spectral density (system reservoir
coupling strength) has been chosen to observe non—Markovian effects in the

dynamics even without the presence of the constant term C’ﬁ). Accordingly
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Figure 2.12: Vibrational population dynamics for the parameters: Cj+ C’ﬁ) =
2.2 x 107*1/fs (Fourier-transformed correlation function), 7, = 5fs, and
t. = 10fs. Part (a): T = 900K and Part (b): T"= 10K. For the chosen pa-
rameters the linear coupling to the bath would result in population dynamics
not showing any non-Markovian effects similarly to part (b). The modulation
of the populations by a frequency w & wy;/2 is clearly due to the constant

contribution Cﬁ) .

the curves in Fig. 2.12 part (a) valid for the case kgT < h/t. show a typical
non—Markovian behavior (irregular modulation of the populations) surviving
up to large times. In contrast, at low temperature the irregular modulation
of Py is only present at an early part of the dynamics. After a sufficiently
long time (say from ¢ ~ 150fs) the low temperature dynamics in Fig. 2.12
part (b) exhibits the modulation with the frequency typical for Markovian
dynamics. Consequently, this offers a clear distinction between Markovian and
non—Markovian dynamics.

Another aspect of the given description is the fact that we can observe a
non—Markovian behavior even for parameter sets for which the bilinear cou-
pling, Eq. (1.14) or a description where Cﬁ) has been removed would not show
characteristic retardation effects. This indicates that the time-independent
term Cﬁ) is the only source of the non-Markovian effects in this case. In
Fig. 2.13 we present respective results for a duration of the laser pulse of 5fs,
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Figure 2.13: The vibrational population dynamics for the parameters C; +
C’I(? = 2.27*1/fs (Fourier-transformed correlation function), 7, = 5fs, and
te = 20fs. Part (a): T = 200K and Part (b): T" = 10K. For the sake of
clarity we only show the second and the first excited vibrational levels. Non-
Markovian effects can also be observed for low temperature, but in the initial
part of the dynamics only. The presence of the time-independent part of the
correlation function prolongs these effects essentially.

and a correlation time ¢, = 10fs. In part (a) of this figure, where the tem-
perature equals 900K one can observe an irregular modulation of the level
populations over the whole time. In the low temperature case (7" = 10K)
as displayed in part (b), however, any irregular modulation is absent and the
time—dependence can be well reproduced by means of corresponding Markov—
theory. The results obtained at 7" = 900K while dropping C’ﬁ) (not shown)
exhibit the same time—dependence as in the low temperature case. From what
was written above we can draw the following general conclusion. Whenever
an anharmonic coupling between active and passive coordinates becomes no-
ticeably strong non-Markovian effects may become predominant. And, this
would be even the case when a bilinear coupling with a comparable spectral
density does not lead to any retardation effect in the course of the dissipative
time—evolution.
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2.7 Summary of Chapter 2

In Part II of this work we have dealt with the theory of open quantum systems
with the particular emphasis on the memory effects. In Chapter 1 we have
reviewed the well-known density matrix approach to the theory of open quan-
tum systems, we have introduced the RDO and obtained the time non-local
QME. We have also introduce the Markov approximation removing this time
non-locality.

The central topic of the Chapter 2 was to study the memory effects in
the photo-induced vibration dynamics of molecular systems. After discussing
the necessary conditions for the memory effects to appear we introduced the
molecular system in section 2.1 consisting of two electronic levels modulated
by a single vibrational coordinate. With this model in mind we have shortly
discussed the memory effects in frequency domain by deriving the cw absorp-
tion coefficient in section 2.2. Starting from the section 2.3 we concentrated
exclusively on the time-domain memory effects.

In section 2.3 we derived a more convenient form of the QME getting ex-
plicitely rid of the initial correlation term. It was also argued that the non-
Markovian dynamics after the ultra-fast optical preparation would be similar
to the “artificial” dynamics which appears when neglecting the initial system-
bath correlation term in the equation of motion involving memory. This is
best seen while considering a d-pulse. In order to see what kind of dynamics
we could expect we solve a special case of an infinitely long memory time and
excitation by d-pulse analytically in section 2.4. We have observed an irregular
wavepacket motion which can be described as a phase insensitive superposi-
tion of two independent wavepackets moving on effective potentials. More im-
portantly, the wavepacket motion results in the oscillations of the vibrational
populations which exhibit the frequency equal to the half of the vibrational
frequency of the system.

The interplay of the memory effects and the optical state preparation by
ultra-fast laser pulses has been studied in section 2.5. By means of the compar-
ison of the results obtained from the full non-Markovian QME with the results
following from the Markov approximation we have identified three main mem-
ory effects in the vibrational dynamics

e the different layout of the vibrational levels populations in times just
after the excitation

e slight change in the life times of the vibrational levels

e change of the amplitude and the period of the oscillations modulating
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the overall course of the vibrational level populations

Since in case of an experiment we do not have a comparison with Markovian
dynamics only the change of the oscillation period can be taken a character-
istics enabling to identify the memory effects independently. The irregular
oscillation in the times just after the laser pulse excitation corresponds exactly
to that one obtained from the analytical solution in section 2.4. The oscilla-
tion period tends to that one of the Markovian dynamics after the time roughly
corresponding to the memory time.

Finally, the section 2.6 dealt with the extension of the QME to the case of
the non-linear system-bath coupling. It was shown that the chosen form of the
non-linearity leads to a constant part of the correlation function and thus to the
survival of the memory effects to long times. The calculation suggested that in
case of the strong non-linear system-bath coupling non-Markovian effects may
become predominant.

The memory effects found in Chapter 2 are the most pronounced for the case
of the impulsive excitation. For this case an alternative description using the
time-dependent Redfield tensor has been found reproducing non-Markovian re-
sults quite well. For the finite laser pulses the correspondence of the results has
been worse, but the memory effects become less pronounced, on the other hand.
Thus, one may conclude, that unless there have to be large non-Markovian ef-
fects expected or the computational effort to solve non-Markovian equations
is reduced the practical simulations of the photo-induced molecular dynamics
may be successfully done within a (special type of) Markovian QME.

The memory effects identified in the dynamics of the studied system can
be related to the effective redefinition of the initial state by the action of an
ultrafast laser field. The effects appear as the reaction of the system on this
sudden change which the system “remembers” at least for the memory time
tmem- In the regime of the weak system-bath interaction (which is the only
valid here because of the usage of the second order perturbation theory with
respect to the system-bath coupling in QME) such a sudden change cannot
be induced by the dissipative part. Thus, one can conclude that in case of a
weak dissipation the only non-Markovian effects possibly observable are those
induced by ultra-fast external fields.

In the next part (Part III) of this work the optimal control theory is ap-
plied on the dissipative systems within the Markovian approximation. The
generalization to include the memory effects is the next logical step in the con-
struction of the theory and a corresponding formulation will be also done in
Part ITI. The inclusion of the memory into the optimal control theory becomes
necessary whenever the resulting optimal fields show ultrafast features.






Part 111

External Field Control of Open
Quantum Systems

61






Chapter 3

Laser Pulse Control of
Molecular Dynamics

The suggestion to the control molecular dynamics by means of ultrashort laser
pulses dates back to the middle of the eighties. First control schemes have been
results of more or less completely theoretical considerations. A comprehensive
overview on all attempts discussed so far has been given recently in [RZ00]. The
effort invested into the laser pulse control of the molecular dynamics is mainly
motivated by a prospect of the control of chemical reactions [RAVRMKO00]. One
expects to be able to selectively induce distinct channels of a chemical reaction
to enhance the yield of special reaction products and to suppress unwanted
ones. This goal should be achieved by means of specially tailored laser pulses.
The idea is usually nicely depicted by a simple ABC model (Fig. 3.1). We
start with the molecule consisting of a bond state of three components A, B, C
and we aim to selectively induce a reaction yielding either a molecule AB and
separate fragment C' or a molecule AC' and a fragment B.

Originally, several different approaches to the laser pulse control have been
suggested, using several different mechanisms to achieve the control goal. In
their pioneering work Tannor, Kosloff, and Rice [TKR86] suggested so-called
pump-dump scheme. Here, the molecular system is first excited electronically
by a short pump pulse. Such a short laser pulse has correspondingly broad
frequency spectrum and enables to excite a coherent superposition of several
vibrational levels in the excited electronic state. This yields a creation of a
wavepacket in a non-equilibrium position on the PES of the excited electronic
state and subsequent motion of the wavepacket on a given PES. The system
evolves freely on the excited PES and after a particular delay t4 it is de-excited
using a second (dump) laser pulse. The delay time ¢, is chosen in such a manner,
that the wavepacket has a convenient position in order to make a transition
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Figure 3.1: Example of the control of chemical reaction. The laser pulse should
selectively drive the system into a given reaction chanel.

into a desired reaction chanel. On Figure 3.2 this mechanism is demonstrated
for a one-dimensional PES.

A different control scheme this time using continuous lasers has been pro-
posed by Brumer and Shapiro. It uses the phase relation between two laser
fields to vary the population ratio between two energetically degenerated lev-
els [BS86]. The basic idea is that if one finds two independent pathways that
connect the same initial and final states of the system, one can modulate the
probability of the population of a specific final state. This is possible because
the probability of the transition from the initial to the final state is propor-
tional to the square of the of the sum of the amplitudes associated with the
individual transitions. As an example one can deal with a single- and three—
photon excitation as it is depicted on Fig. (3.3). The control is performed
by the laser pulse with frequency 3w for the resonant excitation and the laser
pulse with the frequency w for three-photon excitation. The target states are
denoted |e) and |€’). The probability of the transition from the initial state to
the final state |e) with the energy E can be written as

Wie, E) =Wi(e, E) + Ws(e, E) + Wis(e, E). (3.1)

Here, Wi(e, E) and Wj(e, E) represent the probabilities of the one-photon and
three-photon transitions, respectively, and Wi3(e, F') represents an interference
term rising from the simultaneous one-photon and three-photon transitions. In
the weak field regime it can be shown [SB92] that Wis(e, £Y) depends on the
difference 05 — 301, where 6; and 65 are the phases of the radiation field of the
one-photon and three-photon transitions, respectively. Because the interference
term of the transition probabilities to the individual states depends on the
mutual phase of the laser fields the ratio
W(e, E)

R(e,e') = Wi B) (3.2)
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Figure 3.2: Example of the control by the pump-dump scheme. To dissociate
the molecule one can use two transitions (red arrows) between the ground and
the exited state. First, pump pulse creates a wavepacket on the excited PES.
After a delay time ¢, the position of the wavepacket is suitable for the second
transition accomplished by the dump pulse. It results in a non-equilibrium
position of the wavepacket on the ground state PES leading to the dissociation
of the molecule.

may be changed within some interval by shifting those phases.

Both above discussed schemes have been developed theoretically and require
the knowledge of the PES of the molecular system to be controlled. They are
characterized by a small number of control parameters which may be varied
to optimize the probability of the formation of the desired product of the
reaction. Indeed, both Tannor—Rice and Brumer—Shapiro schemes have been
verified experimentally [HCP*00] (or see [RZ00] and references therein).

The theory of laser—pulse control has been finally put into a universal frame
in suggesting the so-called Optimal Control (OC) theory by Rabitz and cowork-
ers [PDR88, SWR&8]. The OC theory is based on a certain functional which
extremum has to be found. Once this extremum has been calculated the shape
is known of the laser pulse which drives the system in a desired manner. The
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Figure 3.3: Control of dissociation into two different product states.

functional consists of the expectation value of the observable one wants to
maximize (e.g. the population of a particular state) at a certain time, and a
constrain which restricts the pulse energy to a finite value. It is believed that
the above discussed direct control schemes can be reproduced by the OC theory
when applying suitable constrains on the laser field. It will be demonstrated
in this work for the case of Tannor-Rice scheme [TKRS6].

Originally, the OC theory has been formulated for gas—phase systems which
dynamics are governed by the time-dependent Schrodinger equation [PDRSS,
SWRS8]. A formulation for mixed states could be already achieved in Ref.
[YGW™93]. The extension to reduced state dynamics of an open quantum
system has been given in [BKT93], and recently in [YOR99] by extending the
efficient iteration scheme of Refs. [ZBR98, ZR9S|.

Also the experiments on femtosecond laser—pulse control of molecular dy-
namics became a subject of an active physico—chemical research [BG95, Zew97,
Wil99]. Most of the work has been concentrated on the central idea of con-
trolling chemical reactions resulting in a destruction or formation of a selected
chemical bound. And indeed, a number of promising examples already exists
even in the condensed phase [BDNGO00]. While direct strategies according to



67

the above discussed schemes to achieve the control goal have been applied in an
earlier state of this research (see [RZ00] and references therein) it was an exper-
imental breakthrough to use highly flexible optical pulse shaping systems com-
bined with self-learning algorithms as suggested in [JR92b]. Such techniques
have been used for a broad variety of problems, among others for the control
of fluorescence yields in dye molecules [BYW™197], to control yield of molecular
photodissociation reactions [ABB198, BBK™99, DFG*01], to control atomic
two-photon transitions [MS98], to tailor atomic wavefunctions [WAB99], to
excite selective molecular vibrations [WWB99] or to increase the efficiency
of high-harmonic generation [BBzT00]. Beside the applications on the field
of OC, the techniques developed to shape laser pulses and to use them for
automatic optimal control experiments found also technological applications
in telecomunications [WK98], in automated compression of ultrashort laser
pulses [YMS97, BBST97, EMB'98] or in multi-photon imagining techniques
[BYS*99].

Although this type of approach found a widespread experimental applica-
tion the use of self-learning algorithms in theory would remain on a preliminary
level. This is because of the enormous amount of computational time necessary
for carrying out the multitude of dynamic propagations. Consequently, it is
much more appropriate to apply the OC theory whenever a control experiment
has to be simulated.

The optimal laser fields obtained from the OC theory are usually charac-
terized by a high complexity in contrast to the direct strategies as e.g. the
pump-dump scheme. They may appear in the form of a complicated train
of pulses with single features as short as few femtoseconds. It is almost cer-
tainly a difficult task to create such pulses experimentally. Clearly, there is
a lack of any restriction on the form of the optimal pulse in the standard
formulation of OC theory we will present in the next section. This is an ad-
vantage against the experimental approach with self-learning algorithms while
searching for new control pathways but creates a significant obstacle for the
application of the theoretical results in the experiments. Thus, the theory and
experiment could not easily benefit from the advances of each other and their
developments proceeded relatively independently in the past. This resulted
in a significant incompatibility between both approaches. Namely, due to the
different methodology the conditions put on the optimal search in the experi-
ment and the theoretical considerations differ substantially. While in the initial
stage the research on the OC of molecular dynamics has concentrated on devel-
oping the methods of control and proving the controllability as such, recently
efforts have been done to bring the experimental and theoretical approaches
into closer cooperation [HMdVRO01, HMdVR02, MM02].
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It will be the aim of the following sections to formulate a general OC theory
for the systems exhibiting dissipative dynamics and to study the possibility
of their control by means of short laser pulses. Concerning the applicability
of the theoretical results in OC experiments we will also discuss a standard
experimental set-up for OC experiments and the ways of adapting the OC
theory to the experimental conditions. First, in Chapters 3, 4 we concentrate
on the prospects of the OC of electron transfer (ET) reactions also including
the dissipative influence of the environment on the controlled dynamics. To
this end we formulate the general OC for density matrix in Chapter 3 and
apply it on diverse ET systems in Chapter 4. In Chapter 5 we introduce
several generalizations of the OC and in Chapter 5 we discuss an example of the
experimental set-up for OC experiments and its theoretical description and also
formulates the OC theory in order to meet the requirements for the successful
simulation of the OC experiments. In particular we address the problem of
static disorder in the molecular ensemble and the optimization of the probe
signal in the pump-probe experiment. The discussion from Chapter 5 enables
us to define certain notion of the complexity of the control task presented in
section 5.2. Finally, to connect the OC theory for dissipative dynamics with
Part II of this work we formulate the OC theory for non-Markovian dynamics
in section 5.4.

3.1 Optimal Control Scheme for Dissipative
Molecular Dynamics

The aim of this section is to derive an effective optimal control scheme valid
for the optimization of the the control yields in open quantum systems. To
this end we start with the most general type of OC theory, i.e. the formulation
for a density operator [YOR99]. A reduction to mixed or pure state dynamics
of closed system is straightforward and will be presented in the next section.
The time evolution of the density matrix has been discussed in detail in
section (1.2). There, several types of dissipative dynamics have been studied
with particular emphasis on memory effects. It was show there that these
effects really induce different dynamics for the case of the system interaction
with short laser pulses. On the other hand it became clear that in many
cases their influence is not dramatic and some of them can be even reproduced
by a certain corrections within the Markov theory. Also, to include memory
effects proofed to be a very difficult task. Therefore, we will concentrate on the
Markovian dynamics and thus omit the memory effects as well as the influence
of the laser field on the dissipative part of the equation of motion. A possible
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generalization of the OC theory for the case of the non-Markovian dynamics
will be given in section 5.4.

Thus, the equation of motion for the reduced density matrix of the system
to control reads

;ﬁ(t) — —iLmap(t) — iLp(t)p(t) — Dp(t) . (3.3)

Here, we comprised the whole dissipative influence of the thermodynamic reser-
voir into a superoperator D. Its concrete form follows from the QME formu-
lation in the Markov approximation (see section 1.3 and Appendix I. The
system Hamiltonian is divided into a part describing the molecular system it-
self Hy,o and its interaction with the radiation field Hp(t). The L, and Lp
are the Liouville superoperators corresponding to the commutators with H
and Hp(t), respectively. The time evolution of the reduced density operator
can be expressed using the time evolution superoperator U(t, ty, E) as

p(t) =U(L, to; E)p(to) - (3.4)

As we have already mentioned in the introduction to this chapter, the OC
of molecular dynamics is usually formulated as the task to realize at a certain
final time ¢ the expectation value

O(ty) = trs{Op(ts)} (3.5)

of the observable described by the (hermitian) quantum mechanical operator
O. To get O(t;) one applies a field pulse E(t) which should drive the system in
the required manner (the optimal pulse). According to [YGW93] the optimal
pulse is defined as the extremum of the following functional

J(t/E) = O(ty: E) ;/dt AOE() | (3.6)

where the second term on the right-hand side guarantees an upper limitation
of the field intensity. (The penalty factor A(t) has been taken time-dependent
to avoid a sudden switch on and switch off of the control field [SAVR99].)
A slightly different version of the functional has been suggested by Rabitz
[ZBR98, ZR98, YOR99|, who used a somewhat larger expression which ensures
the use of the correct dynamic equations. In the present approach, however,
the concrete dynamic equation to be used is already fixed by the demand how
to determine O(ty), Eq. (3.5).
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In order to determine the extremum one sets the functional derivative of
J with respect to E equal to zero. One obtains (details of the derivation are
given in the Appendix H)
1 00(t;) _ K(ty, t; E)

BO =30 5B0) — 2 (3.7)

This expression has to be understood as a self—consistency relation for the
optimal field. The actual value of the field at time ¢ becomes proportional
to the change of O(t;) with respect to the field-strength at this time. The
quantity

K(ty, ;) = 1 trs (U1, 1 E)MU, o B) (1)} (3.8)

is called the (vectorial) control kernel and depends on E in a highly nonlinear
manner. The kernel is obtained by propagating in a first step the reduced
density operator (under the presence of the external field) from the initial time
to up to an intermediate time ¢ < t;. Then, the commutator with respect to
the dipole operator is calculated (abbreviated here by the action of the dipole
superoperator M... = (fi,...)_). Afterwards, the result has to be propagated
from ¢ to the final time ¢; where the operator O acts. According to Eq. (3.7)
the control kernel has to be calculated in such a manner that it coincides
(despite the prefactor 1/A) with the field. If this became possible the optimal
field has been determined.

Obviously, one needs a certain iteration procedure to solve Eq. (3.7). A
direct iteration of Eq. (3.7) has been proposed in [YGW193]. Its inconvenience
and sometimes inability to achieve convergency has been discussed in literature
[ZBR98, ZR98, YOR99]. In these works the theory has been used to investigate
just a few level systems. The approach has been generalized for larger systems
in [MMO1] and applied for electron transfer problems in [MKMO02].

For this reason the control kernel is rewritten as

Kty t:B) = s (1 B)Mp( B)) (3.9)

where the two time—dependent operators (t; E) and p(t; E) are propagated
separately up to the intermediate time t. The operator at the left part of the
trace is given as

~ N

o(t;E)=U(ts,t, E) O . (3.10)
It comprises a reverse propagation from the final time ¢; up to the interme-

diate time starting with Oatt=t ¢. The time-evolution superoperator U is
discussed in some more detail in Appendix 1.
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This separate propagation of 6 and p is used to establish an efficient iter-
ation procedure [YOR99|. Therefore, the explicite appearance of the control
field E via the term proportional to Lp(t) is removed in the equations for p
and ¢ in using Eqgs. (3.7) and (3.9) for the control kernel. As a result a coupled
set of nonlinear equations of motion is obtained

gt,a(t) = —iLlnap(t) — Dp(t)
~ hQi(t)trs{&(t)Mﬁ(t)}Mﬁ(t), (3.11)
and
5. ) )
aa(t) = —iLnao(t) + Do (1)
_ %trs{w)w(t)}w(t). (3.12)

Here, the coupling via the field E is replaced by Eq. (3.7) i.e by a coupling
via the terms being nonlinear in both density operators. These nonlinearities
ensure a feedback of the dynamics of p as well as ¢ via the field—term on itself.
Since the equation for (t) has to be propagated in reverse time order, i.e.
from ¢y to earlier times ¢ a simultaneous solution of the Egs. (3.11) and (3.12)
is not possible. The iteration procedure [ZBR98, ZR98, YOR99] is based on
the idea to determine, e.g. &(t) appearing in Eq. (3.11) for p(t) separately.
Then, Eq. (3.11) for p(t) is closed and an approximate version for p(t) can be
computed. Inserting this p(t) together with the used form for 4(t) into Eq.
(3.7) an approximate form of the optimal field has been obtained, too. (Note
that the role of 6(¢) and p(t) can be interchanged in the present scheme.)

The given procedure is based on the following n’th order iteration step for
p(n>0)

2 HO) = L™ (1) ~ DR()

%trs{&m-“(t)wm (O} MF™ (), (3.13)

where 6"~V (t) is the result of the foregoing iteration step. In a similar manner
we obtain for (™ (t)
9 s
ot

_ %trs{&n) (OMF™ (1)} M (1) (3.14)

(t) = —iLmad ™ (t) + De™(t)
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The zero—order approximation for p follows by replacing the optimal field term
by a concrete field expression

S P01 = —iLwap® (1) — DI (1)

+ ;E(t)/\/lﬁ(o) oF (3.15)

Every iteration step produces two approximation of the optimal field. The first
reads

B = - /\i(t)trg{&(”‘l)(t)/\/lﬁ(")(t)} | (3.16)

If 6("=V(t) is replaced by the n’th iteration 6 (¢) the second approximation
for the field is obtained. The fast convergence of this iteration could be demon-
strated in [YOR99).

3.2 Restriction to Mixed and Pure—State Dy-
namics

The control scheme explained in the foregoing section provides the introduction
of a RDO and is based on dynamic equations including dissipation. Neglecting
any coupling to the environment the scheme can be easily specified to closed
system dynamics characterized by pure or mixed states. Therefore, the reduced
density operator will be identified with the complete statistical operator W(t)
of a closed system. In such a case the time evolution superoperator introduced
in Eq. (3.4) is reduced to

W(t) = Ut to; EYW (to) = U(tL, to; EYW (t0) U™ (¢, to; E) (3.17)

with the ordinary time—evolution operator U(t,ty; E) defined via the system
Hamiltonian Hg = H,,,+ Hp(t). For the initial value of the statistical operator
we use the canonical equilibrium form written here via an expansion with
respect to the eigenstates |1),) of Hye (f is the thermal distribution versus the
eigenenergies Ey)

W (to) = Weq = Zf o)|Ya) (Yal - (3.18)

The pure state version of W(to) is given by |V ) (¥ini|, where |1;,;) is the state
vector of the initial pure state.
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The reduction of U to the action of ordinary time—evolution operators en-
ables a rearrangement of the various terms in Eq. (3.8) with the following
result

K(tf, t; E) =
2 A R
- ﬁlm tr{ U™ (ty, to; E)OU (t7, t; B)aU (t, to; E)W (to)} -
(3.19)
Introducing Eq. (3.18) and carrying out the trace gives
K(ty, t; E) —*Zf ) Im {{O4 (8)] £t [¢a(t))} (3.20)
where we defined
[Ya(t)) = U(t, to; E)|¢ba) | (3.21)
and R
©a(t)) = U(t, 15 E)Olba(ty)) - (3.22)

The state |1,(t)) is obtained as the propagation according to the time-dependent
Schrodinger equation of one of the states |¢),) (but, as indicated, with the in-
clusion of the radiation field). The index « gives a hint on the particular initial
state. In contrast, the state |©,(t)) is the result of a reverse propagation from
tf to the earlier time t starting with O |1,(t;)) as the initial state. Therefore,
this propagation requires the complete propagation of |, (t)) up to t = t;.

In similarity to the general scheme given in the forgoing section we introduce
the iteration procedure to determine the optimal pulse. We start with a zero—
order solution for |¢,(t)) in solving the time-dependent Schrédinger equation
corresponding to Eq. (3.21) with an arbitrary chosen field pulse E(t). Having
this zero—order solution one can determine the n’th order (n > 0) solution by
an iteration procedure where the n’th iteration step is given by (mixed state

version of Egs. (3.13) and (3.14))

mfw“%(»: Hipet |15 zf

m{(05" (1)] fu [¥5” (1))}t [ <t>> , (3.23)
and

m*|@"<>>= Hynot| O (t ;

<
Im{(05"(6)] & [w§ ") |8 (1)) (3.24)
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m | UO —UO  hwg QM

g

g |0 0.1eV 0

e | 2eV 0.1eV 2.1

Table 3.1: Parameters of the PES of the diatomic model molecule used to test
the appearance of the pump-dump scheme in OCT.

with A
057 (t4)) = Ol D(ty)) . (3.25)

Since for n = 1 the zero-order solution |1)(?)(¢)) already exists the initial value,
Eq. (3.25) for the first iteration of |©,(t)) is well defined, and Eq. (3.23) (for
n = 1) can be solved, too. Proceeding in this manner fast convergency can be
achieved [YOR99]. For every iteration step two approximations for the optimal
field can be given, either

EM(t) = TG > F(Ea) Im(O(1)] o [0V (1)) (3.26)

and a somewhat improved expression with [/ (¢)) instead of [~V (#)).

3.3 Reappearance of the Pump-Dump Scheme
in the Optimal Control Theory

In order to demonstrate the compatibility of the OC equations derived in the
previous section with the control schemes discussed at the beginning of this
chapter, we apply them to a simple control problem in a diatomic molecule.
The control task will be to create a wavepacket in a non-equilibrium position
on the ground state PES at a certain time ¢;. According to our previous
discussion, this should lead to the pump-dump scheme of [TKR86].

We employ the simplest model of a diatomic molecule assuming only the
ground and the first excited electronic states |p,) and |¢.), respectively, with
corresponding electronic energies F, and E. to be of importance. The PES
corresponding to each electronic level are supposed to be harmonic with the
same frequency w. Thus, the system Hamiltonian can be taken in the form
(2.1) and (2.2). We use again the well-known dimensionless coordinates ) (see
[MK99]) for the harmonic PES. The coupling to the laser field is realized via
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Figure 3.4: The optimal pulse as a solution of the control task from the section
3.3. One immediately notices the double pulse structure characteristic for the
pump-dump control scheme.

the term (2.3). In the present calculations we set the transition dipolemoment
between the states |p,) and |¢.) to be equal 1D. The parameters used in our
calculation are summarized in Table 3.3.

We assume that the molecule is initially in the electronic and vibrational
ground state. The control task will be now to shift the ground state wavepacket
(having the Gaussian form) from its equilibrium position at ¢ = 0 into a
new position on the electronic ground state PES. For our example we choose
Qsnire = 4.2. The wavepaket should arrive at the target position at some
time ;. Since the coupling between the laser field and the molecule connects
the ground- and excited electronic level the population transfer will certainly
proceed over the excited electronic state. In other words, we work with the
optical laser fields, so that any possible coupling among the vibrational levels
is irrelevant for the control task. But notice that in this formulation of the
OC theory there is no limitation on the resulting optimal field to the optical
region. If our Hamiltonian would include coupling to the laser field connecting
the vibrational levels within the same electronic level the optimal field would
include the corresponding infra-red transition frequencies. The absence of such
a coupling can be understood as the additional restriction of the OC to the
optical fields.

Working with the optical fields the conditions for obtaining the optimal
pulse in form of the pump-dump scheme are fulfilled. Indeed, in Figure 3.4 we
observe the desired pattern of two pulses and also the electronic populations
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Figure 3.5: Electronic populations corresponding to the Fig. 3.4. The time
dependence of the populations confirms the pump-dump nature of the control
mechanism.

on Figure 3.5 display a characteristic time evolution which also confirms the
character of the first pulse as pump and the second one as dump pulse, respec-
tively. The yield of the reaction is in this case about 60% which is less than
one may expect. The reason is the chosen value of the target time ¢;. We have
chosen t to correspond to the oscillation frequency of the wavepacket on the
excited PES in order to allow for no more than one cycle of the wavepacket
on the excited PES and thus also for no more that on cycle of the pump-dump
scheme.

Similarly, it should be possible to obtain also other previously discussed di-
rect control schemes from the OC theory using a proper molecular model and
a proper restriction of the OC algorithm. Moreover, if these schemes do not
appear in OC calculation it may also mean that in the case they have been pre-
viously used, other more effective ways of controlling the system exist. These
should of course be found by OC theory. In this way we have demonstrated (at
least for one predicted control scheme) that the previous development towards
controlling the molecular dynamics is consistent with the OC theory.

For the same target state to be reached and the same arrangement with
the relative shift Qgsuipe = 4.2 but with the target time 10 times longer the
optimal field changes dramatically. The result is plotted in Fig. 3.6. Here, the
pulse consists of many repeating cycles of the previous scheme. This can be
also confirmed by looking at the populations of the electronic states presented
of Fig. 3.7. This suggests that for different control schemes the characteristic
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Figure 3.6: Pump-dump scheme for large target times ¢¢. The OC field consists
of many cycles similar to those on Fig. 3.4.
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Figure 3.7: Populations in the pump-dump scheme for large target times t;.
Repeating of many pump-dump cycles is clearly visible.
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times exist. If the target time exceeds this characteristic time the scheme is
iteratively repeated to achieve higher yield of the control.

The results obtained in this section underline the importance of the time ¢
in the OC algorithm. It shows also that the optimal laser pulse resulting from
the OC algorithm (and generally also from other optimum searching methods)
may depend drastically on the external parameters of the optimization, which
are not properties of the optimized molecular system.



Chapter 4

Optimal Control of Electron
Transfer

After demonstrating the capabilities of the OC theory on a rather simple two
electronic state system in previous chapter, we will now concentrate on a more
complicated problem. Namely, the photo-induced electron transfer (ET). There
is a certain amount of theoretical literature on the external field control of ET
[Dak94, DC95, DEKC95, GPM96, GPM97, GHI8, YDO01]. These studies, how-
ever, do not deal with photoinduced ET reactions but with a type of external
field control characterized by the action of a high-frequency electric field which
modulates the energetic distance between the donor and acceptor level. In
contrast in the following we will demonstrate the control of ET reactions by
another mechanism using external fields in the optical region. In particular,
we are going to study bridge mediated ET on a simple donor-bridge-acceptor
(DBA) system. Although it only represents a generalization of the standard
curve-crossing problem by an additional level it allows to describe different new
aspects of ET [JB99]. Here, first the dissipation-less control of ET will be con-
sidered to test the feasibility of the control and to find the underlying control
mechanisms. The OC of the systems under the influence of the dissipation is
also studied in the this chapter for a slightly reduced molecular system con-
sisting of just donor and acceptor states. The main questions to be answered
are whether and to which extent the control of the molecular systems under
the influence of the dissipation becomes possible.

79



80

4.1 The Electron Transfer Model

A common model for the description of ultrafast photo-induced ET is given
by a set of electronic levels which are defined versus a small set of vibrational
(reaction) coordinates (see e.g. [MK99]). Often it is sufficient to consider one
or two vibrational coordinates, but in case one needs to account for dephasing
and energy dissipation a coupling to environmental vibrational modes becomes
necessary. In similarity to the section 3.3 the relevant system Hamiltonian
Hgs includes the molecular part H,,, and the coupling to an external field
Hp(t). Using the diabatic electronic states |¢p,) of the molecular system the
first contribution can be written as

Hmol - Z (5a,bHa + (1 - 5a,b)‘/ab> |90a> <90b| (41)
a,b

The electronic quantum number a comprises the ground-state contribution
a = g as well as the donor, bridge and acceptor states a = D, B, A. The
coupling terms V,; concern only the donor, bridge and acceptor states. The
vibration Hamiltonian H, written with dimensionless coordinates @ = {Q;}
reads

H,= T+ UO + 3 5(Q, - QU (4.2)

a vib a - 4 J j . .

The minima and the mutual displacement of the respective PES are denoted
by U® and Qg-a), respectively. The coordinates (); can be expressed via the
harmonic oscillator creation and annihilation operators C; and C;“ according
to Q; = C’;r + C;. Respective vibrational eigenfunctions of the Hamiltonian
H, read |x.n) where M denotes the set of vibrational quantum numbers.
Consequently, the complete electron-vibrational states are given by |xan)|@a)-
The external field part of the system Hamiltonian Hy is given by

Hi(t) = —E(®)ji (4.3)
similarly to the section 2.1. The dipole operator reads

fi = dpglea){@e| + h.c., (4.4)

and is assumed to be independent of the @); (Condon approximation).

For the present calculation we use a three level model versus a single vi-
brational coordinate which is depicted depicted on Fig. 4.1. Such a model has
been already successfully used for the simulations of an ultrafast ET in dye
molecules [RWMOO0].
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Figure 4.1: PES of the Donor-Bridge-Acceptor system. The laser field excita-
tion from the ground state |g) is possible due to the existence of the molecular
dipole moment dy,p. The transfer integrals Vpp and Vs couple the donor,
bridge and acceptor states and enable the ET in the excited state.

4.2 Optimal Control of Dissipation-Less Elec-
tron Transfer

For the subsequent discussion, which should serve as simple reference case for
more involved further computation, we additionally neglect any coupling of the
reaction coordinate (active coordinate) to a thermal reservoir of passive molec-
ular DOF. Furthermore, we start with the electronic and vibrational ground
state as the initial state (zero-temperature case). Therefore, the set of eigen-
states |1,) appearing in the scheme of the section 3.2 has to be replaced by
the electron-vibrational ground state |x,0)|p,) of the ET system. It enters Eq.
(3.21) where it acts as a single initial state for the single wavefunction [ (t)) to
be determined. To solve Eq. (3.22) where a backward time propagation has to
be carried out, first we have to fix the observable represented by the operator



82

m | UD — U hwgy QM
g 10 0.1eV -4
D|2eV 0.1eV -1.172
B |2eV 0.1eV 1.414
Al2eV 0.1eV 4

Table 4.1: Parameters of the single-mode version of the ET model introduced
in Section 4.1. The transfer integrals among the three PES responsible for the
ET have been taken as Vpg = Vpa = 0.03 €V, and Vp4 = 0. The transition

dipole moment dp, has been set equal to 12 D.

O. Since dynamical electron localization at a single electron—vibrational state
(or a superposition of such states) will be of main interest we identify O with
a projector on a certain state |{iaget) (target state).

To carry out the iteration of the Egs. (3.23) and (3.24) we change to a
representation using the diabatic electron—vibrational states |x..ar)|¢¥m) and
use the type of penalty function A(¢), Eq. (3.6) suggested in [SAVR99]. As the
zero—order approximation for the field we took a Gaussian shaped pulse of 20
fs duration, with maximum at 50 fs, and with carrier frequency in the Frank—
Condon region of the donor excitation. The parameters of the Hamiltonian for
these calculations are summarized in Table 4.2.

In order to observe the ET uneffected by the external field we first compute
a reference case with the ET dynamics after an impulsive (instantaneous) and
complete excitation of the donor level i.e. after the action of an infinitely short
pulse. Here obviously, the structure of the pulse cannot play any role. This
results in a propagation of the Schrodinger equation for the ET system in the
absence of an external field but with an initial condition determined by the
field. The latter is given by |¢(0)) = |x,0)|¥p) and corresponds in the scheme
of PES, Fig. 4.1 to a vertical displacement of the electronic ground-state
vibrational wavefunction |x4) into the (excited) donor state |¢p).

To visualize the dynamics we draw in the following the complete diabatic
electronic level populations

Bn(t) = ]Zw: P () (4.5)

where P,y is the electron—vibrational state population. The respective P,,(t)
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Figure 4.2: Reference dynamics in the DBA-system (parameters see Tab.4.2)
after an impulsive excitation at ¢ = 0. The excitation process results in a
complete probability transfer into the donor level. The total populations P, of
the donor level (solid line), the bridge-level (dot-dashed line), and the acceptor
level (dashed-line) are plotted .

(m = D, B, A) valid for the case of impulsive action of the external field are
displayed in Fig. 4.2 for the first 500fs. The transferred electron starting
with 100% population of the donor state reaches a maximum population of
about 70% at the acceptor after ¢t ~ 120fs. Since any dissipation is absent the
populations show a coherent oscillatory behavior. Changing to the correspond-
ing wavepacket motion (in the coordinate representation, not shown here) one
notices a fast spread out of the initial wavepacket over a broad range on the
(Q—axis.

It is the question we try to answer whether or not it is possible to control
(guide) the ET dynamics in such a manner to reach a chosen state at a chosen
time. A first example for the application of OC approach is shown in Fig.
4.3. Here, the second excited vibrational state of the acceptor electronic state
|x42)|¢a) has been chosen as the target state which should be reached at time
t; = 500fs. One notices that the population dynamics under the action of the
control pulse turns out to be rather regular and finally the system reaches the
desired state with a probability of about 95%. To obtain this result less than
20 iterations of the Egs. (3.23) and (3.24) have been necessary. In Fig. 4.3 we
also presented the optimal pulse. It increases up to a time (about 130 fs) at
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Figure 4.3: Laser pulse control of photoinduced ET in DBA-system. Optical
excitation proceeds in the Frank-Condon transition region of the donor level.
The second excited vibrational state of the acceptor level |y a2)|¢a) has been
chosen as the target state. Upper part: populations P, of the ground state of
the ET-system (dashed line), Pp of the donor level (dot-dashed line), Pp of
the bridge level (dotted line) and P4 of the acceptor level (solid line).Lower
part: shape of the optimal laser pulse field in units of 107V/em.

which the ground-state population is nearly completely removed. Afterwards
the pulse kicks the ET dynamics (with decreasing amplitude) in such a manner
to achieve the required population of the acceptor level. If one takes a look
on the related moving wavepacket the regular behavior of the external-field
guided ET can be observed, too. The quantity drawn in Fig. 4.4 is the time-
dependent probability distribution P(Q,t) of the reaction coordinate. It is
obtained via the expectation value of the projector on the coordinate operator
eigenstates

PQ,t) = (1)@ >< Q1)) - (4.6)

Introducing an expansion of |1(t)) with respect to the diabatic electron—vibrational

states one obtains P(Q,t) = > mrn Coar(t) emn (1) Xoonr (@) Xmn (@) where the
cior(t) and ¢,y (t) denote the related time-dependent expansion coefficients.
Thus, the expansion is diagonal with respect to the diabatic electronic states
but off-diagonal with respect to the vibrational wavefunctions. The oscillatory
behavior which is shown by P(Q,t) nicely corresponds to the oscillations of
the level populations in Fig. 4.3.
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Figure 4.4: Wavepacket motion (probability distribution P(Q,t) of the vi-
brational coordinate) related to the controlled ET dynamics shown on Figure
4.3 (Note that time increases from the backward part of the figure to the
foreground.) The shape of the probability distribution corresponds mainly to
a wavepacket with two nodes indicating that the corresponding target state
|X42)|¢a) has been reached.

Besides the population of a single electron—vibrational state we can, of
course, design pulses which lead to the formation of a wavepacket of Gaussian
(or any other) form. To that end, we introduce the target state as the displaced
vibrational ground state of the acceptor level. Using the coordinate representa-
tion with respect to the vibrational coordinate it reads (€ — Qais|X 40)|¢a). The
quantity Qais (= 2.4, compare Fig. 4.5) denotes the actual displacement with
respect to acceptor equilibrium position @Y. As shown in Fig. 4.5 the opti-
mization procedure results in a 91% population of the target state. Although
the pulse extends over more than 300fs the main portion of the excitation
is achieved in the time period just after t = 100fs (compare the population
P, of the electronic ground state). Between t ~ 150fs and ¢ ~ 350fs there
is no further probability transfer from the ground-state. The corresponding
wavepacket motion (Fig. 2.8) shows again an oscillatory behavior correspond-
ing to the electronic population dynamics and finally the formation of the
required wavepacket.

Next we chose the population of the vibrational ground—state of the bridge
state |xpo)|pn) as the target state. The results of the OC approach are dis-
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Figure 4.5: Laser pulse control of photoinduced ET in DBA-system. Optical
excitation proceeds in the Frank-Condon transition region of the donor level.
The target state is given by the vibrational ground-state of the acceptor level
but displaced from Q4 = 4 to a new position 6.4. Upper part: populations
P, of the ground state of the ET-system (dashed line), Pp of the donor level
(dot-dashed line), Pg of the bridge level (dotted line) and P4 of the acceptor
level (solid line).Lower part: shape of the optimal laser pulse field in units of
107V/em.

played in Fig. 4.7. In the DBA configuration introduced for the ET transfer
system the bridge PES lies symmetrically between donor and acceptor PES.
Therefore, the field tries to synchronize the population of the donor and accep-
tor level. If the respective oscillations of Pp and P4 reach their minimum the
bridge population achieves its maximum with a higher and higher population
up to the nearly 100% population of the target state at t; = 0.5 ps.

The above given results demonstrate the possible laser pulse control of
ET reactions. For all the chosen target states we have been able to achieve
an optimal laser pulse yielding more that 90% population of the desired target
state. In the Figures of this section only the electronic populations have always
been presented, but the detailed analysis of the vibrational populations (not
presented here) in case of targeting a single vibrational level shows that the
whole population of the target electronic state is concentrated in the target
vibrational state.

To conclude the investigations made in this we may state that indeed the



87

Figure 4.6: Wavepacket motion (probability distribution P(Q,t) of the vibra-
tional coordinate) related to the controlled ET dynamics shown on Figure 4.5
(Note that time increases from the backward part of the figure to the fore-
ground.)

control of the bridge mediated electron transfer becomes possible. We have
found the OC theory to suggest pulses which use a special timing to synchronize
the movement of the wavepacket on the DBA system to fulfill a given control
task. The population of targeted vibrational levels as well as the preparation
of precisely located wavepackets has been demonstrated.

4.3 Electron Transfer and Vibrational Relax-
ation

After the encouraging results of both theory and experiment on the laser pulse
control of the molecular dynamics of small systems in gas-phase the next step is
to apply control methods on systems exhibiting dissipative dynamics [Ger01].
In the present section we use a slightly simplified (in comparison to the previ-
ous section) molecular system to study the feasibility of the OC in presence of
the dissipation. We first perform some calculations with absence of the cou-
pling to the reservoir to have a reference case. The subsequent calculations
with increasing strength of the coupling to the dissipative reservoir will be
compared to this reference case and some conclusions on the controllability of
the dissipative dynamics will be drawn.

We decided to reduce the number of the excited electronic states to donor
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Figure 4.7: Laser pulse control of photoinduced ET in DBA-system. Optical
excitation proceeds in the Frank-Condon transition region of the donor level.
The target state is given by the vibrational ground-state of the bridge level.
Upper part: populations P, of the ground state of the ET-system (dashed line),
Pp of the donor level (dot-dashed line), Pg of the bridge level (dotted line)
and P, of the acceptor level (solid line).Lower part: shape of the optimal laser
pulse field in units of 107V /cm.

and acceptor only, in order to reduce the size of the model system and thus
reduce the amount of the computational time necessary for carrying out the
density matrix calculation. We denote this particular model Hamiltonian as
model /. For the later use in this section we also introduce a different kind of
ET model Hamiltonian allowing to study the OC in the system exhibiting an
interplay of the vibrational relaxation and internal conversion. This Hamilto-
nian corresponds to model 1. The particular parameters of the models are
summarized in the corresponding tables 4.3, 4.3 and 4.4. We use two different
parameters sets denoted as I — 1 and I — 2 for model I and one parameter set
for the model /1. Both model systems are depicted on Figure 4.8.

First of all we will concentrate on the controllability of the ET in depen-
dence on the control pulse length. It is obvious that ET spontaneously pro-
ceeds between the donor and the acceptor if initially electron—vibrational state
has been prepared in the donor PES (probably by a laser excitation). And
it depends on the degree of dissipation whether the electron remains at the
acceptor after the ET took place or whether it moves different times back and
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m | UO —U©O hwg, QU
g | 0.00 0.1eV 0.0

2.00 eV 0.1eV 3.2

B | 1.85eV 0.1eV 7.0

Table 4.2: Model I-1. Parameters of the single-mode version of the ET model
introduced in Section 4.1 reduced to only donor-acceptor system. The transfer
integrals have been taken as Vpg = Vga = 0.03 eV, and Vpy = 0. The
transition dipole moment dp, has been set equal to 12 D.

m | UQ — U Aoy, QM

g | 0.00 0.1eV 0.0
2.00 eV 0.1eV 3.2
B | 1.89 eV 0.1eV 7.0

Table 4.3: Model I-2. Parameters of the single-mode version of the ET model
introduced in Section 4.1 reduced to only donor-acceptor system. The transfer
integrals have been taken as Vpp = Vs = 0.03 eV, and Vps = 0. The
transition dipole moment dp, has been set equal to 12 D.
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Figure 4.8: PES of the studied model systems. ET model I: a donor-acceptor
system typical for photo-induced ET. ET-model II: a system showing ET in
the inverted regime after photo-induced charge separation into an excited state.
The electronic transfer coupling (non-adiabatic coupling) and the optical tran-
sition are indicated by horizontal and vertical arrows, respectively.

forth between the donor and the acceptor. In both cases the ET can be con-
trolled by a particular shaping of the initial electron—vibrational wavepacket.
For weak dissipation a continuous formation of the electron—vibrational wave
packet through the Frank-Condon window of the optical transition would con-
trol the ET. And in any case the target time t; at which the electron should
arrive at the target state must be comparable or longer than the time ¢z the
electron needs to reach the acceptor without an external field influence. If
ty > tpr and if dissipation is weak enough or completely absent the laser pulse
may act within different cycles of the electron motion between the donor and
the acceptor.

To have a reference case for a comparison with more involved calculation
including dissipation, we still work in the absence of the dissipation here (or
assume it to be so weak that it does not play any role in the dynamics on
our time scale). Fig. 4.9 demonstrates that for t; > tpr the OC yield can
be increased if the number of the forth and back motion of the electron, i.e.
if t; is increased. Note, that the first excited vibrational state |p4)|xa1) at
the acceptor PES has been taken as the target state. Besides the structure
of the optimal pulse Fig. 4.9 also shows the yield of the laser pulse control in
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Figure 4.9: Laser pulse control of ET in the absence of dissipation (system
parameters according to Tab. 4.3, target state: |¢pa)|xa1)). The optimal pulse
is shown for control tasks which differ with respect to their target time ;.
Panel a: ty = 200fs, panel b: t; = 400fs, panel c: t; = 600fs, panel d:
t; = 800fs. The convergency behavior of the OC algorithm is shown in panel
e.

dependence on the number of iteration steps within the OC algorithm. Here
and in the following the yield (control efficiency) is given by O(t), Eq. (3.5),
i.e. the degree to which the control task has been solved. The OC algorithm
leads to a fast convergency into regions where more than 90 % of the final
value of O(ty) have been realized. This behavior may indicate that the chosen
iteration procedure drives the solution of the optimization problem into a local
minimum. If the "surrounding” of the local minimum is reached the conver-
gency becomes weak. Furthermore we emphasize the strong dependence of the
control yield on details of the control task, here in particular on the chosen
target time. A similar dependence on the target state could be also observed
within other control tasks. This indicates again (compare section 3.3) that be-
side the specificity of the molecular system also details of the control task can
strongly affect the completeness the task may be solved by OC theory. The
fast convergency of the iteration as reported in literature (see, for example
[ZBR98, ZR98, YOR99, SAVRI9]) can be confirmed for the present example,
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Figure 4.10: ET control efficiency for the model I-1 in dependence on the
inverse life-time of the target vibronic state (system parameters according to
Tab.4.3). Curves for different values of the penalty factor A are drawn. Filled
squares: A = 1, filled circles: A = 1/5, and filled diamonds: A = 1/20. For
comparison the efficiency is shown which is achieved in applying the optimal
pulse valid for the absence of dissipation (open circles)

too.

Now we proceed to study the way the presence of a thermal environment
may influence the laser pulse control ET. We use the formulation of the OC for
the dissipative dynamics explained in section 3.1. To avoid so-called diabatic
damping approximation which may lead to the wrong results [KKS01, EKDO1]
we construct the dissipative part of the QME for the Hamiltonian transformed
into the basis of adiabatic states. Subsequently, the dissipative part is trans-
formed back to the basis of diabatic states which is used for the computation.
We will consider the state |p4) |xa1) as a target state. Due to the action of
the thermal environment all electron—vibrational states are characterized by a
finite life—time. In particular, the target state may decay into the acceptor vi-
brational ground state. To get an impression on the influence of dissipation on
the controllability of the ET reaction the coupling strength, i.e. the magnitude
of the bath spectral density J(w) will be varied.

Before giving a detailed analysis of the control task we try to characterize
the general importance of laser pulse control at the presence of dissipation.
While trying to control molecular dynamics, the counterproductive influence
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of dissipation is usually emphasized. Fig. 4.10 put this into a more quantita-
tive frame. There we have drawn the control yield O(tf) versus the strength
of dissipation represented by an increasing decay rate of the target state (de-
creasing vibrational life-time 74; of the first excited vibrational state at the
acceptor). To distinguish between different laser pulse intensities the penalty
factor A has been varied, too. All these curves have to be compared with a
curve which is obtained applying the OC theory formulated for dissipation-
less case. What has been only done to get this reference curve is to take the
pulse which solves the OC theory in the absence of dissipation and to calculate
the control efficiency O(ts) while increasing dissipation. As can be seen from
Fig. 4.10 the application of the OC theory at the presence of dissipation may
drastically increase the control efficiency, in particular for an intermediate in-
fluence of vibrational relaxation and the largest applied laser pulse intensities.
If a generalization to other types of molecular systems might be possible the
promising result can be stated that laser pulse control for condensed phase
situations would really make sense although the given control task cannot be
solved completely. To get more insight into the convergency behavior of the
OC algorithm we show in Fig. 4.11 the control yield O(ts) in its dependence
on the number of iteration steps. And indeed, the dissipation—less case shows
the same rapid convergency as it could be already observed in Fig. 4.9. In
contrast, the presence of dissipation results in a somewhat slower convergency
which behaves unpredictably and even non—monotonously. And, more itera-
tion steps become necessary. But in any case more than 90 % of the final yield
are achieved within about 50 iteration steps (except the curve with a second
threshold at about 170 steps). According to our observations this seems to be
a universal property of the used iteration procedure, again indicating that the
solution of the OC problem may be locked in a local minimum. How to tackle
this problem will be discussed later.

Any computation mentioned so far leaves a corresponding optimal laser
field. Those related to the calculations of Fig. 4.10 have been displayed in
Fig. 4.12. In the absence of dissipation an almost 100% population of the target
state is achieved. The laser field extends over the whole interval (¢, ;) having
enough time to adjust the wave packet motion over the exited PES in order to
populate the desired target state at the given time. If dissipation starts to act
we observe a concentration of the control field to larger times and a change of
some features. The latter behavior is caused by the reduced wave packet motion
when increasing the strength of dissipation. The time evolution of the electronic
and vibrational state populations related to the laser pulses given in Fig. 4.12
are shown in Fig. 4.13. If dissipation is absent one observes a periodic motion
of the population between the donor and acceptor level. After two periods
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Figure 4.11: ET control efficiency for the model I-1 in dependence on the
number of iteration steps taken to solve the OC equations (system parameters
according to 4.3). Curves for different inverse life-times of the vibronic target
state are shown. Filled diamonds: 1/ = 0, empty triangles: 1/7 = 1.45 X
1073/ fs, filled circles: 1/m = 2.9 x 103/ fs, empty squares: 1/7; = 7.25 x
1073/ fs, filled triangles: 1/7; = 1.01 x 1072/ fs and empty circles: 1/7; =
1.45 x 1072/ fs. Insert: Final control yield as a function of the target state
inverse vibrational life-time.

of this motion an almost complete population is achieved of the excited state
PES, exhibiting at some points nearly 100% population of the donor excited
level, but only about 80% population of the desired acceptor state. From the
corresponding part of Fig. 4.13 displaying vibrational populations we see that
within the target electronic state, the whole population is already concentrated
on the target vibronic level. Finally, we notice the action of the pulse near the
end of the control interval which removes the part of the wave packet trapped
in the donor level and achieves the complete population of the target state.
This is a behavior characteristic for the completely coherent motion of the
system. Specially shaped wave packets are iteratively improved while they
move coherently on the excited PES.

In part (b) and (c) of Fig. 4.13 the populations are shown for an increasing
strength of dissipation. Due to the loss of coherence the algorithm cannot relay
on iterative improvement of the wave packet. Instead, the action of the laser
pulse concentrate to later times to avoid the depopulation of the target level.
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Figure 4.12: Laser pulse control of ET for the model I-2 with increasing dissi-
pation (system parameters according to Tab. 4.3). The optimal pulse is shown
for control tasks which differ with respect to the life-time of the target state.
Panel a: isolated system, panel b: small dissipation, and panel c¢: medium
dissipation

In the case of medium dissipation (part (b) of Fig. 4.13) the excited donor level
is populated first around ¢ = 200fs. And in contrast to the dissipation—less
case where population has been directly transfered into the target vibronic
level, now population is also transfered into to levels positioned above the
target level (here the first excited vibrational level). According to vibrational
relaxation these higher lying levels are later depopulate into the target state
and in this way they contribute to its population.

We may also note that the population of the target level still preserves some
oscillatory features from the dissipation—less case. However, these traces of the
coherent dynamics are lost if dissipation is further increased and the OC algo-
rithm avoids earlier excitations completely. The whole population is transfered
into the target state during the last 200 fs. Looking at the vibronic populations
it can be again concluded that a substantial portion of the target state popu-
lation comes from the decay of higher laying vibrational levels. So our general
observation is, that the OC algorithm finds an alternative route to solve the
control problem when the strength of dissipation increases. Due to this fact the
optimal field computed for the absence of dissipation, although having higher
pulse energy, fails to guide the dissipative dynamics (cf. Fig. 4.10). It is of
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Figure 4.13: Populations of the electronic states (left) and of the vibrational
levels in the acceptor state (right) versus time for the ET model I-2 and for the
optimal pulses give in Fig. 4.12. Left part: electronic ground state (thin full
line), excited donor state (dashed line), acceptor state (full line). Right part:
acceptor vibrational ground-state (dashed line), first excited vibrational state
(target state, full line), second excited vibrational state (long dashed line), and
third excited vibrational state (dashed-dotted line).

some interest to compare the results of the OC calculations with the dynam-
ics being free of any external control and following an ultra—short laser pulse
excitation (compare Fig. 4.14 with Fig. 4.13). Due to the lack of dissipation
ET proceeds coherently with comparatively low population of the acceptor
level, where mainly higher excited vibronic levels are populated (Fig. 4.14 part
a right). The population of the target vibronic state is negligible. With in-
creasing dissipation the dynamics in both cases become more similar for the
electronic populations. The vibronic populations, however, show still signs of
the coherent motion in the control case, in contrast to the case without a con-
trol field. The maximum population of the target level achieved around the
middle of the studied time window (about 25%) is smaller than that achieved
if the laser pulse control has been carried out (more that 35%). For higher
coupling—strengths to the environment the results without a control field and
in the presence of such a field become almost identical, except for the shift to
later times in the case external-field control. A short laser pulse populating
the target state in the shortest possible time is close to the optimum for this
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Figure 4.14: Populations of the electronic states (left) and of the vibrational
levels in the acceptor state (right) versus time for the ET model I-2 and for an
excitation with 50fs long Gaussian laser pulse. Left part: electronic ground
state (thin full line), excited donor state (dashed line), acceptor state (full
line). Right part: (a) vibrational states with quantum numbers N = 2 (full
line) and N = 3 (dashed line), (b) and (c): acceptor vibrational ground-state
(dashed line), first excited vibrational state (target state, full line), second
excited vibrational state (long dashed line), and third excited vibrational state

(dashed-dotted line).

particular case.

4.4 Interplay of Vibrational Relaxation and In-
ternal Conversion

In this section we will consider ET control using another Hamiltonian which
represents a minimal model for the internal conversion process observed in e.g.
betaine 30 [FS96, KWPD94]|. The parameters of the model are taken from
[F'S96] and presented in Tab. 4.4.

In the language of donor—acceptor ET the charge motion described in this
model corresponds to ET in the inverted region. The final state of this ET
would be the vibrational ground state in the Sy—state PES. However, to demon-
strate the possible ET control we chose as a target state the third excited vi-
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m | UQ — U hwyy, Q™
g |0.00 0.223 eV 0.0

D | 1.305 eV 0.223 eV -2.483

Table 4.4: Model II. Parameters of the single-mode version inverted region
model of the ET with internal conversion (see Fig. 4.8). The transfer integrals
have been taken as V. = V., = 0.31 eV. The transition dipole moment d., has
been set equal to 5.3 D.

brational state in the S;—state PES, i.e. |¢.)|xes). This state has been take to
have a target somewhat similar to that of the foregoing section. And, it would
allow to discuss laser pulse stabilization of an excited state against internal
conversion.

Again we start with a discussion of the convergence behavior of the OC
algorithm what is displayed in Fig. 4.15. In comparison with ET discussed in
previous sections, Fig. 4.11 the convergence seems to be rather fast, and already
the initial guess for the laser pulse used to initialize the iterative OC algorithm
(a simple Gaussian shaped pulse) reaches a good result. On the other hand, the
optimal field obtained when the iteration has been finished differs substantially
from the initial guess and exhibits a rather complicated time—dependence. This
is due to the non-adiabatic coupling between the ground and the excited state.
Apparently, the OC algorithm tries to compensate the fast oscillations caused
by this coupling (see the initial part of the electronic populations given in
Fig. 4.16). We can also observe, that these oscillations almost disappear at
later times. Since these oscillations have a small amplitude, their compensation
only results in a small improvement of the control yield compared to the yield
achieved with the initial guess for the laser pulse. Noting the insert in Fig. 4.15
we can state that a similar reduction of the control efficiency is obtained as for
ET in previous section. And the optimal pulse shows a very similar tendency
with an increasing strength of dissipation to concentrates at later times and
to populate the target state via a depopulation of levels positioned above the
target level.

The laser—guided dynamics obtained from the OC theory has also been
compared with the dynamics following after a short excitation with a Gaussian
shaped pulse with pulse width 7, = 20fs, and positioned at the corresponding
Frank-Condon window (the figures not shown). The calculation demonstrates
that the application of the OC theory leads to a significant enhancement of the
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Figure 4.15: ET control efficiency for model IT in dependence on the number of
iterations necessary to solve the OC equations (system parameters according
to Tab. 4.4). Curves for different inverse life-times of the target vibronic
state are shown. Filled diamonds: 1/7, = 0, empty triangles: 1.45 x 107/ fs,
filled circles: 7.25 x 107*/fs, empty squares: 1.45 x 1073/ fs, filled triangles:
2.9 x 1073/ fs, and empty circles: 7.25 x 1073/ fs. Insert: control yield versus
the inverse life-time of the first excited vibrational level.

yield compared to that one obtained by the 20 fs excitation. And, the calcu-
lations also prove that the laser—guided dynamics exhibits a rather organized
motion of the population among the electronic levels what is in contrast to the
motion one gets after the short excitation.

4.5 Acceleration of the Control Algorithm Con-
vergency

As demonstrated in Fig. 4.15 the iteration algorithm for solving the OC theory
may exhibit a fast convergence. Sometimes, however, it first converges to a
certain value of O(ty) where it remains for a comparatively high number of
iteration steps. Later, it jumps within several iteration into a new region
where a slow convergency follows to a new larger value of O(ty). This behavior
indicates that the OC algorithm has only found a local extremum first. It seems
that the algorithm is able to avoid complete pining in this local extremum but
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Figure 4.16: ET control in the inverted region, model II. The figure shows the
optimal pulse (top), the electronic level populations (center), and the vibronic
level population (bottom) for the case of the isolated system (left) and for the
case with dissipation (1/7, = 2.9 x 1073/ fs) (right, note the changed scale for
the vibrational level populations). On the lowest figures the populations of
the vibrational levels are displayed of the target vibrational state (bold solid
line), the vibrational ground state (dashed line) and in case of the presence of
dissipation also of the two vibrational levels lying over the target state.

the whole procedure takes a significantly long time. We shortly explain how
to circumvent such a pinning in a local extremum, and in this manner, how to
accelerate the iteration procedure.

The idea here is to randomly add some fluctuations to the control field
during the iterative solution of the OC problem. Such a procedure should
check whether or not a local optimum is occupied. The easiest way to intro-
duce such fluctuations which perturb the OC algorithm is first to generate a
Gaussian pulse of random duration, intensity, frequency and position in time,
and second, to add this pulse to the obtained iterative version of the optimal
pulse. The random parameters have been chosen from a certain range of them
characteristic for a given system, e.g. the frequency of the pulse is chosen
between the minimum and maximum transition frequencies possible between
vibrational levels of the ground and excited states, respectively.
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Figure 4.17: Convergency behavior of OC algorithm extended by random fluc-
tuations. Model I-1 with 1/7, = 2.9 x 10%/ fs. Fluctuations are applied for 10
successive iterations beginning at the 3rd one (full line, dashed line) as well
as the 15th on (dot-dashed line) to induce the transition to the higher opti-
mum, and beginning from the 35th one, the 80th one (dashed line), the 100th
one (dot-dashed) as well as the 125th (full line) to check the stability of the
extremum. For comparison, the result is plotted following the standard OC
approach (full line with filled circles).

The results of our computations for ET from section 4.3 are summarized
in Fig. 4.17. The fluctuation of the approximate version of the optimal pulse
has been introduced within 10 successive iteration steps starting from the 3rd
iteration (full and dashed lines in Fig. 4.17) and the 30th iteration (dot-dashed
line in Fig. 4.17), respectively. As it is obvious the procedure moves the solu-
tion of the OC problem away from a local extremum, and in all cases the speed
of convergency has been significantly enhanced as compared to the ordinary
iterative computation. Furthermore, the value for O(ty) reached after about
150 iterations is even higher than that obtained after 300 iterations following
the standard way. If further fluctuations are applied for later iterations a tem-
porary decrease of the OC efficiency appears, but after a few iterations the
result continues to converge to the original value. This shows the stability of
the extremum, which than can be more likely the global one. But the behavior
of the standard OC algorithm in this case indicates that it also converges to
a global extremum. This indicates that the results presented in the foregoing
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sections remain valid, possibly with a somewhat large value of O(tf). Such a
introduction of random fluctuation into the ordinary OC scheme can be used
in general to enhance the convergency and to check the stability of the reached
extremum.

4.6 Summary of the Chapter 4

The Chapter 4 has been devoted to the control of the photo-induced ET reac-
tions. First the dissipation-less dynamics has been investigated in section 4.2.
As the target states to be populated by the optimal field we have used single
vibrational levels in the donor, bridge or acceptor states and wavepackets of
the Gaussian form located on a given coordinate () in the electronic states. It
could be shown that in this dissipation-less case the control of the wavepacket
position in the DBA system at a give target time can be almost fully controlled.
The control is enabled by the iterative action of the laser field, which synchro-
nizes the motion of the different contributions of the excited state wavepacket
in such a way that they meet in a given location at a given time.

The extended study including the control of the dissipative ET dynamics
is performed in sections 4.3 and 4.4. The detailed investigation of the system
dynamics show that the control pathways in presence of the dissipation differ
from those found in dissipation-less case. And, as it was anticipated the dissi-
pation acts in rather destructive manner on the controllability of the systems.
The control efficiency decreases rapidly with the increase of the strength of
the dissipation (see Fig. 4.10). But because the optimal pulses optimized for
the dissipation-less case fail much faster to control the dissipative dynamics
as the dissipation increases one may conclude that the separate formulation
of the OC for dissipative dynamics really make sense. In section 4.5 we have
also addressed one technical problem connected with the OC of the dissipative
dynamics. During the iterative procedure of the OC algorithm we have applied
some additional external stochastic fields in order to check the stability of the
OC results. Not only we have found the results rather stable i.e. converging
to roughly the same value, but also the speed of the convergence has to be
enhanced as a side effect.



Chapter 5

Adapting Optimal Control
Theory to Experimental
Conditions

We have noted in the earlier discussions that the experimental and theoretical
approaches to the optimal search differ substantially. Namely, in the experi-
mental device some input pulse is shaped in the way that it enhances a yield
of a given reaction so that the resulting optimal pulse is naturally spectrally
limited. On the other hand the theoretical OC defines a target time and can
restrict the overall optimal pulse envelop and thus it is naturally restricted in
time domain. Also, the description of the experimental situation in the OC
theory as it was formulated in Chapter 3 was far too simple to enable the de-
scription of the real experiment. The effects like laser pulse spatial profile, the
probing of the final state by a weak laser field or the disorder in the molecular
ensemble have ultimately be taken into account.

A trivial but crucial difference between the theoretical and experimental
approach is that the functional values used to search the optimal pulse in ex-
periment are taken from the response of the real molecular system to the par-
ticular laser field, whereas for the theoretical simulation only a model of the
molecular system can be used. For small molecules in gas-phase, the model
can be taken from quantum chemical calculations (see e.g. [DFGT01]). An
independent check of the model can be performed by the simulation of well
established experiments, e.g. pump-probe spectroscopy etc. Another possible
way how to check for the suitability of the theoretical model of the molecular
system for the OC simulation would be to compare the measured products
of the experimental optimal control with the output of the simulation using
the experimental pulse and the theoretical model of the molecule. Entering
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the realm of the large systems and the dissipative dynamics there is no hope
for calculating the parameters of the molecular model from first principles in
recent time. Therefore, simple models have to be used which extract impor-
tant features of the molecular system in terms of reproducing spectroscopic
experiments. This is also the way taken in this work.

The aim of the present chapter is to address some of the problems connected
with the application of OC theory results in to recent experiments and to
demonstrate its flexibility in describing different experimental situations. In
section 5.1 we present a short description of the experimental set-up used for
the OC and we analyze its central component, the so-called Liquid-Crystal
Spatial Light Modulator (LC-SLM). This is the device which enables a creation
of flexible pulse shapes. Analyzing the LC-SLM we define a quantity called
complexity of the control task in section 5.2 which enables us to classify the
control tasks and estimate the experimental feasibility of the control of different
system. Section 5.3 is devoted to the problem of controlling with static disorder,
which is also closely related to the problem of the inclusion of the finite spatial
light profile of the laser pulses. The OC algorithm is generalized for the case of
the ensemble of molecules with different orientations of the dipole-moment with
respect to the polarized control laser pulse. Finally, the OC is formulated for
non-Markovian dynamics in section 5.4 demonstrating that OC theory can cope
not only with complicated situation rising from the experimental arrangement,
but can also in principle handle the dissipative dynamics beyond the Markov
approximation.

5.1 A Standard Experimental Set-Up

We will concentrate now on the basic principles of the experimental OC set-up.
Following the suggestion [JR92a] the experimentalists use the measurement of
physical quantities their devices provide as a feedback for some kind of optimum
search algorithm to provide optimal set of respective parameters. Sometimes
one speaks about experiment in this context as about an “analog solution
of equations of motion” [JR92a]. Here one refers to the fact, that otherwise
equations of motion for the system in question have to be solved to provide
input of the searching algorithm.

In the recent practical experimental use a class of optimum search algo-
rithms prevails which takes its main ideas from the evolution of species ob-
served in the nature. In general these algorithms are referred to as Evolution-
ary Algorithms (EA), where we distinguish at least three main groups, namely
Evolutionary Strategies, Evolutionary Programming and Genetic algorithms
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[BS], which differ in concrete implementation of the general scheme we intro-
duce in the following. The main idea of EA is the identification of certain
parameters of the problem with genes of the living individual and the objec-
tive value of the optimization search with its fitness for survival. Thus, having
to maximize a function of 10 parameters we have in the simplest case 10 genes
and the value of the function represents a fitness of an individual with these
genes. For the search to be performed we build up a population of individuals
(possibly with randomly chooses genes) and let this population evolve in the
survival of the best scheme. In order to obtain a next generation individuals
we use the recombination of the individuals e.g. random combination of the
genes from two of them (mother and father), and mutation to enrich the set of
genes to explore new parameter areas. The whole procedure is repeated until
a certain convergency criterion is met.

The main practical advantage of this algorithm is that it is very effective in
avoiding pinning into a local minimum and is applicable also for the problems
with large number of parameters. Thinking about a laser experiment we now
have to find suitable quantity to be used as a fitness value and some kind of
parameterization of the laser pulse to represent genes.

The laser pulse shaping techniques developed in the last decade enable a
suitable parameterization of the laser pulse, which can be used in EA. More-
over, these techniques also provide highly flexible laser pulses and thus arrange
for a search within correspondingly broad spectrum of parameters. In our con-
sideration we will concentrate on a well-known technique using the LC-SLM.
The device is depicted of Figure 5.1.

It consists of two optical grids (G1 and G2), two lenses (L1 and L2) and a set
of some 10th of liquid crystal elements (LCE) laying in the center of the device.
A short laser pulse of a simple (Gaussian) form enters on the input of the device,
it is spectrally decomposed on G1 and focused onto the central plain with LCE.
Clearly, through each of the depicted LCE a pulse component with different
frequency is traveling. Every LCE can now be addressed by a local voltage
enabling to change its refracting index and transparency independently on the
other LCEs, and thus enabling to shift the phase and modulate the intensity of
the corresponding component of the input laser pulse. After coming through
the LCE the components of the laser pulse are focused by L2 on the second
grid G2, where a process opposite to the decomposition of the input laser
pulse takes place. Due to the modulation of the intensity and the shift of the
phase the resulting laser pulse takes a different shape from the input one. If
an input pulse with a sufficiently broad spectrum is provided the flexibility of
the outcomming laser pulse is limited only by a number of the LC elements
in the device. Commercially available shapers dispose with about 128 LCE
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Figure 5.1: A sketch of the LC-SLM. The LC-SLM consists of two optical
grids G1 and G2, two lenses L1 and L2, and a central plain with liquid crystal
elements LCE.

for intensity modulation and 128 LCE for the phase shift, having thus 256
parameters which can be used in the optimal pulse search.

Bringing together the techniques described in the above discussion one ob-
tains the recent experimental set-up for conducting the OC experiments. Here
the output of the experimental measurement (detection of some molecular frag-
ments in the fragmentation experiments [vVBK™01] or particular vibrational
states [HCPT00] etc.) is analyzed by a computer which changes the laser shape
choosing new values of the voltages applied to the different LCE in the LC-
SLM. This procedure repeats until a convergency is achieved.

There are also other types of modulators used in place of LC-SLM like so-
called acusto-optical systems. In these systems the LC elements are replaced
by the material in which the acoustic waves change the refracting index. The
modulation of the phase and the intensity of the spectral components of the
input pulse is in principle possible in a continuous manner (in contrast to the
LC-SLM which has some number N of pixels), but in order to use it with EA
one also needs some kind of discrete parameterization.

As far as the OC theory is concerned, it is the feasibility of the optimal
pulse which decides about the relevance of the theory for the experiment. A
prerequisite to achieve the reconstruction of the theoretical pulse with the ex-
perimental device would be, of course, the ability to estimate how complicated
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is this reconstruction and how efficient such an experimentally reconstructed
theoretical pulse would be in solving the task. The discussion of this problems
will lead us later to certain definition of the complexity of the control task.

5.2 Complexity of the Control Task

In the present section we will demonstrate systematically to which extend the
complex field of the optimal pulse can be reproduced in the experiment, and
resulting from this to which extend the control task can be solved. This is done
by an analysis of molecular systems with a different energy level structure and
the consideration of different types of target states. After having applied the
OC theory to compute the optimal pulse we discuss the extent the LC-SLM
systems reproduces the optimal pulse, and the ability of this approximated
optimal pulse to achieve a high yield in the required reaction channel.

Resulting from this study we want to derive a working definition of the
complexity of the control task. The complexity as it will be understood here is
a quantity describing the amount of effort which has to be used to achieve a
given control task. This is something slightly different from the controllability
as discussed in Ref. [RZ00], or the notion of the complexity of the molecular
system, which are properties of the molecular system irrespective of the par-
ticular initial and final (target) state. Regarding the complexity of the control
task, there may exist e.g. less complex control tasks within an apparently very
complex molecular system and vice versa.

Also, while asking for the complexity of the control task one needs to take
into account the time scale of the control process. In the OC theory we have
always specified the target time t; at which we wanted to achieve the con-
trol task. Demanding different target times, the difficulty connected with the
achievement of the control task may vary significantly, in spite of the fact, that
the complexity of the system, or its controllability remain the same. Similar sit-
uation applies for any other external condition put on the control pulse. From
this argument it is evident, that we cannot conclude on the control task com-
plexity from analyzing the molecular system only. Rather, the control pulse,
its complexity or the amount of effort one has to use to create it should be
used to classify the control tasks and to define their complexities. It may seem
reasonable to consider a spectrally broader laser pulse for more complicated
one. But taking this criterion only a large class of very different laser pulses
would fall into the same category. Different laser pulses with the same overall
spectral width may have different complicated forms of the spectrum and we
may try to define the laser pulse complexity by characterizing the form of its
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Figure 5.2: Control Tasks to illustrate the Definition of Complexity. The first
excited vibrational level on Up (full line), shifted wavepacket on U, (dashed
line) and first excited level on U, (long dashed line)

spectra relatively to the spectral width.

Referencing to the previous sections, we notice that the principle of the LC-
SLM may be suitable for this task. While reconstructing the laser pulse, we
adjust the grid and the lenses so that the whole spectrum falls into the area of
LCE. Now, only the number of the LCE in the plane defines the spectral width
per element, which further determines the ability of the shaper to reconstruct
the fine structure of the pulse. Being able to determine the minimum number
of LCE in the shaper which enables a full reconstruction of the pulse, this
number characterize the amount of the effort which has to be used to form
the OC pulse from the input one, and thus it is proportional to the complexity
of the control task. The criterion of the successful reconstruction of the laser
pulse is the efficiency the reconstructed laser pulse shows in solving the control
task.

It the next section we make some calculations to show that this definition of
the complexity is really reasonable in the sense, that it give results intuitively
expected and we also define the complexity more quantitatively.
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5.2.1 Control Tasks with Growing Complexity

The molecular systems we will study and the target states to be achieved are
shown in Fig. 5.2. The simplest system is given by two electronic states versus
a single vibrational coordinate (two-atomic molecule in the gas phase). Since
we choose harmonic PES the vibrational spectrum is completely regular. To
start with such a — as one may think — oversimplified system is very useful
since it allows to put emphasis on what we will understand as the complexity
of the control task. This system becomes more complicated if coupled to a
thermal environment introducing energy dissipation and dephasing. The regu-
lar harmonic oscillator spectrum is transferred to a heterogenous spectrum by
coupling the excited—state PES to two additional PES. Such an arrangement
is typical for an electron transferring donor bridge acceptor complex. The in-
homogeneity of the spectrum can be regulated by the transfer integrals V,,,.

The solution of the OC problem for those control tasks introduced in Fig.
5.2 are shown in the upper part of Fig. 5.3 by drawing the respective optimal
pulse Egpi(t) = nEopi(f) (n denotes the polarization unity vector equal for
all considered fields). For control task 1 (population of a vibrational level
in the excited—state PES) the yield amounts nearly 99%. A somewhat more
complicated situation arrises in control task 2 where the target state is given
by a Gaussian wavepacket in the electronic ground-state (the task corresponds
to the well-known pump-dump scheme of Ref. [TR85]). Generally, the OC
algorithm provides a sequence of pump and dump pulses over the whole interval
(ti,tr). In the present case the vibrational frequency in the excited state PES
has been chosen to obtain just a single pump—dump cycle within the 500 f s time
window, which leads to a 66% population of the target state. A more complex
control task is given by number 3 aimed to guide photoinduced electron transfer
through a DBA system. Finally, control task 4 accounts for dissipative effects
according to a linear coupling of the active coordinate Q (see Fig. 5.2) to a
set of passive (reservoir) coordinates. The Fourier transform FEoy;(w) of the
optimal pulse is drawn in the lower part of Fig. 5.3 together with a Gaussian
pulse as an envelope. The overlap of the latter with the respective Eypi(w)
may be used as quantity characterizing the complexity of the optimal pulse
and thus the complexity of the whole control task. In cases 1 to 3 a = 1, the
task 4 has been studied with oo = 1/5.
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Figure 5.3: The optimal pulse E,,;(t) and its Fourier transform E,,;(w) for the
four control tasks as introduced in Fig. 5.2. The additionally shown Gaussian
pulse covering FE,,;(w) is used to construct the incoming pulse of the LC-
SLM pulse shaping system. The total spectral width covered by the shaper
Aw®M is taken as three times the spectral width of the in§ut pulse and reads
for the control tasks 1-4: Aw!™ = 8.0 x 102em~, Awl™ = 2.6 x 10%em ™,
Awl™ = 2.0 x 103em=! and Aw(™ = 5.7 x 103cm=!. The average spectral

width going through a single LC cell can be estimated as Aw®? /N.

5.2.2 Pulse-Shaper Analysis and Definition of the Com-
plexity

Now we proceed to define the complexity in a quantitative manner. To this
end we look closely on the way in which the control pulse is produced with
LC-SLM. Once E,;(t) is known we have to proof to which extend it can be
reproduced in the LC-SLM pulse shaping system. As it has been described
in detail in Fig. 5.1 a LC-SLM pulse shaper contains two optical grids and
in between an array of liquid crystal cells. The first grid realizes a spectral
decomposition of the incoming pulse Ei,(t). The N cells of the array may
change the phase and amplitude of every sub—pulse going through the cell.
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Afterwards, the second grid unites all N sub—pulses to a common outgoing
pulse

Eout<t) - i E]()OUt) (t) (51)

The p’th sub—pulse of the outgoing field reads

E™(t) = Re / Ci‘:’ e N By (w) (5.2)
Wp
Here, Fi,(w) is the Fourier transform of the complete pulse, and the outgoing
sub—pulse is obtained as a superposition of all frequency components around
the central frequency w,. The latter is the mean frequency corresponding the
p'th cell of the LC-SLM. The frequencies around w, are determined by the
geometry of the LC part of the modulator. We will consider an idealized pulse
shaper neglecting any effect of a lateral extension of the incoming pulse. But
it is taken into account that there is not any continuous connection between
the frequency interval of sub—pulse p sub—pulse p + 1 (because of the spatial
separation between cell p and p + 1).

The alternation of every incoming sub—pulse lets deviate Fou(t) drastically
from Ej,(t). This alternation may be achieved by an independent change of all
transmission coefficients T},,p = 1, ..., N of the cells. It offers an easy way how
to map the optimal pulse E,;(t) obtained in solving the OC theory for a given
problem to an approximate pulse équi(t; V) available via a pulse shaper with
N cells. To this end we have to identify E")(t), Eq. (5.2) with the sub—pulse
eCP(t) of Eopyi(t; N). To really get the latter quantity we identify T, Ey, (w)
with the Fourier transform FEqu;(w) of the optimal pulse. This explains how
to choose the transmission of cell p to form the optimal pulse, at least its
approximate form €qp;(¢; V).

Unfortunately, the ratio Eqpi(w)/Ein(w) may strongly oscillate around the
central frequency w, of cell p whereas the transmission of the liquid crystal
does not. Therefore,

Eopii(w)/ Ein(w) = A(w) exp(i¢(w)) (5.3)

has to be averaged around w,. One can either average the whole expression or
choose an independently averaged amplitude A and an averaged phase ¢.

If éopti(f; N) has been constructed for a given LC-SLM pulse shaper one
can proof the way it guides the considered system up to time ¢y where one
computes O(tf; €opti). Then, the completeness to fulfill the control task can be
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Figure 5.4: The efficiency of the pulse shaper characterized by the ratio n versus
the number N of liquid crystal cells in the shaper for the different control tasks
of Fig. 5.2. Inset: N, leading to a 95% yield ordered with respect to the
different control tasks.

characterized by
O(tﬁ Eopti)
O(ts; Eopti)

Obviously, the introduced quantity should depend on the cell number N, and
in this way on the accuracy we can reproduce the optimal field.

Fig. 5.4 displays n(NN) versus N for the first three control tasks described in
Fig. 5.2. The curves should be confronted with the Fourier—transform Eqp¢;(w)
of the respective optimal pulse shown in the lower part of Fig. 5.3 together
with Fi,(w). For control task 1 the optimal pulse is mainly determined by
the demand of its convergency to zero at times ¢ = 0 and ¢ = t;, and it is
rather close to the input pulse. 7n(N) clearly shows that the desired optimal
form can be achieved with a rather moderate number of liquid crystal cells
of the LC-SLM. Control task 2 is characterized by a more complicated target
state (displaced vibrational ground-state function at ¢t = 500 fs). In Eyu(w)
we can recognize all the transition frequencies involved in the dynamics. The
input pulse which covers the whole spectrum and fits its maximum has the
width of 7, = 15 fs. The laser field consists mainly of two pulses with the
delay corresponding to the oscillator period. The time evolution of the level—
population (not shown here) demonstrates that they act exactly in accordance

n(N) = (5.4)
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with the pump—dump scheme. According to the 15 fs duration of the incoming
pulse n(N) approaches 1 for N < 60 , what is well within the capabilities of
commercial pulse shapers. The laser field connecting the initial and the target
state for control task 3 is rather complicated and for its reproduction a larger
number of liquid crystal cells are necessary. In the present case our task could
be accomplished with the 20 fs incoming pulse. According to Fig. 5.4 one
notices that n(N) converges to 1 for N about 200.

For the control tasks on the Fig. 5.4 we can introduce a characteristic
number N, of liquid crystal cells (in the pulse shaper) necessary to solve the
control task. We define N, by the demand that the ration n(N.,), Eq. (5.4)
amounts the value of 0.95. Accordingly, an ordering of the discussed control
tasks with increasing N, becomes possible (inset of Fig. 5.4). As expected,
this ordering coincides very well with the increasing complexity of the optimal
pulse (either in its time or frequency dependent form). In this manner we can
understand N, as a number which offerers a combined characterization of the
complexity of the considered molecular system as well as of the control problem
as it was required in our discussion at the beginning of this section. The results
obtained from this and other computations (not shown here) suggest that the
n(N) dependency is rather general and as such the quantitative definition of
the complexity introduced here can be regarded as general, too.

5.2.3 Complexity and Dissipation

Similar situation as above can be observed in the case of a relatively simple
control task where the system is subject to the influence of increasing dissipa-
tion. The results are summarized in Fig. 5.5. The influence of the dissipation
results in the control field acting in somewhat later times. This is a tendency
already observed in Chapter 4 while studying ET. In Fig. 5.5 (c¢) the pulse
gets spectrally broader and more structured in time as well as in frequency
domain. It corresponds to the population of more than one vibrational level.
Increasing the strength of dissipation, different mechanisms to populate a de-
sired level are switched on (like indirect population through the relaxation from
the above levels), so the critical number N,.; grows. Change of the control
mechanism in presence of the dissipation has also been demonstrated in section
4.3 in case of ET. With increasing dissipation the absolute efficiency of the con-
trol is decreasing as one may see from the insert in Fig. 5.6. Relative efficiency
as a function of the number of LC elements N, shows a similar dependency as
in forgoing examples from Fig. 5.3.

In section 4.3 it was also shown, that by increasing strength of dissipation
over a certain critical point, the control pulse gets shorter and loses compli-
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Figure 5.5: The optimal pulse E,;(t) and its Fourier transform FE,,;(w) for
the control task 1 including the dissipation. The vibrational life-time of the
target level 7; is used to characterize the strength of dissipation. (a) Without
dissipation, (b) 7, = 320fs, (3) 7 = 640fs.

cated structure, so that the number characterizing complexity according to
our definition would become smaller and the definition fails. But to compute
reliable value for the complexity we need a OC pulse solving the control task
and with strong dissipation the OC theory fails to provide such a control pulse.
Thus one may conclude, that the failure of the definition of the complexity is
caused by the failure of the OC theory itself. Alternatively, a new definition of
the complexity, taking in account the absolute value of the control yield may
be used to overcome this problem.

5.2.4 Experimental Relevance of the Optimal Control
Theory
From the Figures 5.4 and 5.6 it becomes clear that the values of the charac-

teristic number of cells N, lies for all given examples within parameters of
available experimental devices. Thus, the proof is given, that the experimen-
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Figure 5.6: The efficiency of the pulse shaper as shown in Fig. 5.4, but for
the control task 4, and with different strength of dissipation. The vibrational
life-time of the target level 7; is used to characterize the strength of dissipation.
1. Without dissipation, 2. 7, = 320fs, 3. 7, = 640fs. Inset: N, as in Fig. 3
(black bar) and the population of the target state in percentage (white bar).

tal reproduction of the theoretical pulses is possible without any loss of their
ability to control the molecular dynamics. For the given examples one also
notices the absence of any remarkable discontinuity in the curves showing the
extent the control task has been solved by the approximate optimal pulses for
different N. However, this regular behavior is disturbed for the calculations
with a small number of cells N and whenever there are any control pathways
leading to different dynamics in the vicinity of our control path. To check the
reliability of the OC results one can use the method introduced in section 4.5.

Concentrating on a single control task at a single type of molecule the
decreasing slope of the ration 7 with increasing N (or of O(ts; Epri) What can
be directly deduced from the experiment) may offer some experimental evidence
to which extent the control task has already been solved. It is an enlightening
approach to systematically apply pulse shapers where the number of LC cells
differs.

The approach discussed in this section enables a theoretical check of the
feasibility of the OC pulses and the estimation of their complexities. Also
developed here was a simple way how to transfer knowledge of the control
pulse from the theory to the experiment and wvice versa. The parameters of the
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LC-SLM to reproduce theoretical pulses can be easily computed.

5.3 Optimal Control with Static Disorder (Ori-
entational Averaging)

The present section will make one step towards performing the OC of the
molecular systems under more realistic conditions by considering a special type
of the disorder in the system. In the realistic situation, all quantities entering
the Hamiltonian, Eq. (4.1) and (4.3) can be subject to fluctuations caused by
structural and energetic disorder. Let us characterize such fluctuations by a set
of parameters y,, = {ygm)}. It may describe a specific energetic and structural
situation in the molecule m or the specific coupling to the environment. Below
we will deal with an example of the excitation of a molecular ensemble by a
polarized laser field. It depends on the orientation of the dipole-moment of the
particular molecule how strong the interaction with the field will be. Therefore,
one has to apply a configuration averaging to the quantity O(t; E) since it is
an ensemble average. With n,,, the volume density of the molecules in the
probe volume V we can write

1

O(tp E isorder —
(O(ts; E))disord oV

> Ot Eiym). (5.5)

meVp

The dependence of O(ty; E;y,,) on the concrete parameter set y,, can be
specified as follows

O(t5; Esym) = trs{OU(Ls, to; E; ym) (Lo B ym) }, (5.6)

i.e. disorder effects all parameters involved in the time-propagation and prob-
ably the initial state. To be simple enough the possible y,,—~dependence of the
target operator O has be neglected. Accordingly, the optimal field has to be
determined via

1
E(t) = — K(ts, t; E; ym), 5.7
(t) nmonoAm;,O (ty Ym) (5.7)
with control kernel
K(ty, t; E;yy) = ﬁtrs{a(t,E;ym)M(ym)p(t;E;ym)} (5.8)

referring to a single disorder configuration. If we would like to apply the
iteration scheme to determine the optimal field we first note from Eq. (5.7)
that the optimal field can be understood as a field which has been averaged
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with respect to the various disorder realizations. In contrast the iteration of
p(t; E; yn) and 6(t, E; y,,) has to be carried out for the various realizations,
but these are coupled via the disorder averaged control field.

As an example of the application of the above presented theory we will now
discuss a case where the control experiment is carried out using polarized light.
This is often the case in fragmentation experiments [vVBKT01]. Thus excita-
tion of the molecular systems depends on the orientation of its dipole moment
with respect to the polarization plane of the laser pulse. In the fragmentation
experiments in gas phase the different orientations of the molecules are caused
by their free rotation. The complete theory has to account for the rotation in
the equation of motion, however if the rotation period is much longer that the
control pulse, one can consider the molecule as non-rotating. We assume this
to be the case in the following. For molecules embedded e.g. in a solid the
situation gets even easier since the rotation is limited and molecular dipole-
moments can be regarded as fixed with respect to the polarization plain of the
laser pulse. In our treatment we will assume that the detection of the target
state does not differ between different orientations of the molecules, what is
again the case in common fragmentation experiments, where the fragments are
detected by a mass spectrometer.

In the following study we use the similar initial and target states as be-
fore (see section 4.4 and Table 4.4). Generally, the yield of the OC and the
control pathway via which the control goal is reached depend on the opti-
mal field strength. Using polarized field the effective field strength felt by
individual molecules is different from one to another. Therefore, for different
sub-ensembles composed of molecules with a chosen orientation, different con-
trol pathways should be applied to optimize the yield of the reaction. But, in
the practical case optimal field must have a shape compromising the optima of
the sub-ensembles in order to obtain the optimum for the complete ensemble.
Thus, we expect a different control pulse if optimizing molecules with identical
orientations of the dipole moment from that one optimized for the ensemble
with random orientation. Fig. 5.7 illustrates this situation for a single orienta-
tion and for an ensemble of orientations. The ensemble has been simulated by
taking N mutual orientation angles 6 of the dipole-moment and the plain of the
polarization of the incoming laser pulse with the equidistant step Af = 27 /N.
N is taken so that the results converge. For the presentation in this section we
have chosen N = 20 which represents a value leading to a well converged result
(see Fig. 5.8 and later discussions). We can see that the pulses optimized for
the ensemble of orientations and for a single orientation indeed differ. By a
careful comparison it can be found that the control pulse obtained with a single
orientation allowed has slightly more complicated structure. There are some
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Figure 5.7: Control tasks to illustrate the definition of complexity. The optimal
pulse for a single molecule (upper figure) and for an ensemble represented by
20 different orientations (lower figure).

small features with rapid change of the envelope of the pulse which disappear
on the pulse optimized for the ensemble so that the latter pulse appears to have
a little smoother envelope. This is the result of the averaging over different
orientations. It can also be seen that the positions of the sub-pulses are dif-
ferent between both optimal pulses from Fig. 5.7. Although it is not possible
to identify a direct reason for the particular structures of the control pulses,
Fig. 5.7 demonstrate the differences caused in the shape of the optimal pulse
by the effects of orientational averaging.

In our particular case the convergency with respect to the number of orien-
tations has been reached with an ensemble of 20 orientations. It can be clearly
seen from the Fig. 5.8, where the control yields O(ts; E) achieved with con-
trol pulses optimized for a given number of orientations has been plotted. We
notice that for the case of 1 and 2 orientations chosen according to the above
described scheme (i.e. parallel and anti-parallel to the polarization plain of the
laser field) we achieve the identical result corresponding to the upper pulse of
the Fig. 5.7. For a small number of orientations the control yield oscillates.
Clearly, in case of 4 orientations two of them are perpendicular to the polar-
ization plain of the laser field and they do not interact with the field at all. As
the number of orientations grows the ensemble covers all the possible orienta-
tions and the results converge. Thus, the oscillations are only an artefact of
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Figure 5.8: Convergency of the OC algorithm with orientational averaging
(upper figure). The converged value for an ensemble of 20 orientations is
significantly lower than that one for a single orientation, but the speed of the
convergency remains the same as in case of a single molecule. Convergency of
the results with respect to the number of orientations is also quit high (lower
figure). Only about 15 to 20 orientations is necessary to obtain convergency.

the scheme of choosing the ensemble, whereas the converged result represents
correctly any big ensemble with a homogeneous layout of the orientations.

Finally, one can ask a question how successful would be the pulse optimized
for a single orientation in guiding the ET of an ensemble of the molecules
with different orientations, and vice versa, how good would the optimal pulse
corresponding the that ensemble guide the ET in case of a single orientation.
Since both pulses represent the optimal solutions for their particular molecular
systems, while exchanging them we should find the control yield decreasing.
Indeed, this is the case in Fig. 5.9. For the particular model system studied
here we see only the difference less then 10 percent, but generally even much
bigger differences can be expected.

Similar studies including the averaging over the ensembles of molecules
subject to the interaction with the laser field depending on the molecule’s
position has been carried out in Ref. [SRAVRO00]. There, the effect of the laser
field spatial profile has been taken into account. Thus, the OC theory shows a
great flexibility in description of various experimental situations.
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optimal pulses

5.4 Optimal Control with the Non-Markovian
Dissipation

The importance of the memory effects in dissipative dynamics guided by the
non-Markovian QME have been studied in the Part II of this thesis. It was
found that the memory effects indeed lead to dynamics slightly different from
that one obtained from the standard QME (including Markov approximation).
As a first step we have considered the dissipation in Markov approximation in
Part 1II. Now, the generalization of OC theory for the case of non-Markovian
dissipative dynamics will be presented. To this end we utilize the factorization
method explained in Appendix E.

Thus, for the dissipative part of the non-Markovian QME, Eq. (1.10)
we write D = Dy + Dy where D, corresponds to the time independent part
C(2) of the correlation function and the contribution D, stems from the time-
dependent part C{})(¢) of the correlation function (see Appendix E). In the next
step the correlation function C!) which depends on the two time-arguments ¢
and ¢ will be replaced by the multiple factorization ansatz according to Eq. E.2.
Using Eq. E.2 and defining the auxiliary operators 6{%) (¢) and () (t) which
obey the Equations (E.6) and (E.7). The term D, determined by the time
independent part of C,, can be written by introducing the single additional
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density operator & which can be obtained from Eq. (E.10). All auxiliary oper-
ators 6(1) (t), 6{;),(t) and & vanish at the initial time ¢,. The quantities 6%, (¢)
are not hermitian whereas ¢ represents a hermitian operator. Furthermore, the
equations of motion for agiv( ) does not conserve the respective trace of the
operators. However, 6 obeys a trace-conserving equations. The introduction of
the auxiliary operators &gi)v(t) and ¢ demonstrates that the time-nonlocality
can be removed with any accuracy one needs. Furthermore, the external field
exclusively enters the equation of motion via the corresponding Hamiltonians
(see Appendix E).

Since we have now time-local equations at hand a generalization of the
approach given in section 3.1 to derive a control kernel, Eq. 3.9 is possible. To

this end we introduce the column vector of density operators
’ p(t)
S uv t
t)

The respective equation of motion reads

—Dl(t Uﬁi)v) Lo (t)
8ty = —csys@y+ | gl (D) C (5.10)
ot ; ( t)p ( e
SiL(1)
Introducing the matrix Liouville superoperator
L(t) = Ls(t)I + AL(%), (5.11)

where I denotes the unity matrix and AL generates the second term on the
right hand side of Eq. (5.10), we have the compact notation

)
—8(t) = ~L(®)S() (5.12)

of the equation of motion. Its solution reads

with the matrix time-evolution superoperator

Ul(t, to) = Texp{—i / drL(7)}. (5.14)
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Now it becomes possible to derive the control kernel. To get p(t;) we have to
determine S(ty) and take the element of the first row. The functional derivative
of O(t; E) can be carried out in similarity to Appendix H. First we note

ty
dS(t) . OL(7)
5B = / 47U t5,7) 5 U )L, (5.15)
The functional derivative gives
OL(t) 1

We insert the result into O(tf; E) and obtain the control kernel as
7 A
K(ty 1;E) = 4 trs {0, )MS(1)), }. (5.17)

The notation (...); indicates that we have to take the element of the first row.
Note the alternative notation MS(t) = MIU(¢,t,)S(t).

The control kernel (5.17) can be calculated by the same iterative procedure
as introduced in section 3.1 applied on the Eq. (5.10). Since (5.10) enables to
include the memory effects and the external field dependence of the dissipation
the formulation of the OC with Eq. (5.17) is the most general formulation
available in the literature.

5.5 Summary of the Chapter 5

The present chapter has been devoted to problems directly connected with the
application of the results of the OC theory in experiments. In section 5.1 we
have first discussed the experimental set-up used in the recent self-learning OC
experiments. It was discussed how this set-up with the LC-SLM can be used
to perform a search for the OC pulse and corresponding algorithms have been
shortly presented.

In section 5.2 we have studied how the pulse-shaping part of the experimen-
tal set-up is able to reconstruct the theoretical control pulses. Resulting from
the analysis we also came to a working quantitative definition of the complexity
of the control task. The reasonability of the definition of the complexity has
been tested on a series of control tasks with growing complexity of the electron-
vibrational spectra and on the systems subject to vibrational relaxation. The
definition of the complexity enabled us to obtain an additional insight into the
completeness of the solution of the control task even for recent experiments.
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Section 5.3 has been devoted to the problem of OC of the systems with
static disorder. The corresponding generalization of the OC scheme has been
introduced and the theory has been tested on a model system. As it was
expected the OC theory yields different results for disordered systems and
those without disorder. The technique developed to account for disorder can
be applied for a wide variety of problems including the consideration of the
spatial light profile of the laser pulse etc.

Finally, in section 5.4 we have formulated the OC theory for the case of non-
Markovian dissipation. With this formulation it would be in principle possible
to account for the memory effects and the effects of the field modulation of
the dissipation. The presented results show the great adaptability of the OC
theory to a variety of problems. The generalizations of the OC theory from
sections 5.3 and 5.4 can be combined with further achievements presented in
Appendix J and show the way towards its application for the explanation and
design of control experiments in the near future.
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In this thesis we have investigated ultrafast laser pulse induced dynamics of
dissipative molecular systems. We have applied the density matrix theory for
the description of the dynamics of polyatomic molecular systems interacting
with thermal bath. The reduced description excluding the so-called passive
thermal bath degrees of freedom from the explicit description results in time
non-local equation of motion for the reduced density matrix. This leads to
so-called memory (non-Markovian) effects. We have concentrated on the iden-
tification of memory effects in the system dynamics and on the estimation of
how important their inclusion would be for the description of its dissipative
dynamics. Based on these studies we have examined in which ways dissipative
molecular dynamics can be controlled by laser pulses.

To clearly identify signatures of memory effects the vibrational relaxation
dynamics have been compared with and without the memory. A characteristic
indication that vibrational relaxation observed in the experiment requires a
non-Markovian description is given by the change of the modulation frequency
the time evolution of the vibrational populations shows.

Although we have observed memory effects in a special case of the vibra-
tional relaxation dynamics the discussions in this work enables us to draw the
following general conclusion. The non-Markovian effects induced by an ultra-
fast laser field can be identified by an irregular dynamics in times just after
the action of the laser field. This irregularity is caused by the sudden change
in the dynamics and effective establishing of a new initial state for the system
breaking the correlations with the bath. A system with a memory “remem-
bers” this sudden change at least for the duration of the memory time and
turns to a Markov dynamics afterwards. A Markovian system develops after
the laser field action as if it always was in this newly defined effective initial
state.

The discussion of the results of our work suggests that the memory effects
can play an important role in the optimal control of dissipative dynamics.
While dealing with non-Markovian dynamics we always studied the case of a
single short laser pulse which induced the memory effects by effectively setting
new initial condition for the propagation of the system density matrix. The
control pulses obtained from optimal control theory represent whole trains of
such short pulses possibly inducing non-Markovian dynamics during the whole
duration of the pulse-train. The optimal control theory formulated including
non-Markovian dynamics may clearly obtain significantly different results from
the Markovian formulation if the control pulse features become much shorter
than the memory time of the system. This gives a future study of the non-
Markovian optimal control a new significance.

In our work we have applied the optimal control theory to the problem of
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photo-induced electron transfer in a donor—bridge—acceptor systems. The op-
tical field couples the electronic ground state of the molecular system with the
certain donor electronic state via a dipole allowed transition. After a photo-
excitation and according to the presence of an interstate coupling the electron
transfer proceeds from the donor state to the acceptor via intermediate bridge
state. If no control is provided and in absence of dissipation the population
of the excited state spreads over the whole donor-bridge-acceptor complex.
We have studied the feasibility of guiding the wavepacket motion so that we
could (i) populate certain vibrational levels of the bridge or acceptor state at
a given time or (ii) place a wavepacket of a given shape at a given position
at a given time. In order to fulfill the control task the optimal pulse obtained
from the optimal control theory excites and de-excites the system with a spe-
cial timing so that the different parts of the electro-vibration wavepacket meet
at a given time on the desired position at the set of potential energy surfaces
of the donor—bridge—acceptor complex. The control pulse establishes a vibra-
tional wavepacket moving periodically over the whole donor—bridge—acceptor
complex. In this way it has been demonstrated that the problem is completely
controllable.

The picture changes if one allows for dissipation e.g. by embedding the
system into the condensed matter or dissolving in a solvent. In order to ac-
count for the dissipative dynamics we have first formulated the optimal control
theory for the dissipative systems in Markov approximation. Such a formu-
lation for a rather general form of dissipation has been provided for the first
time in the literature. As expected it was shown that dissipation decreases the
control yields of the electron transfer reactions. Comparing the yield obtained
for the dissipative system by an optimal pulse designed for the dissipation-less
case we can conclude that the optimal control partially compensates for the
decrease of the control yield. The mechanism of such a compensation can be
demonstrated at the control task where one tries to populate a single vibra-
tional level in the acceptor state. A closer look at the time evolution of the
vibrational populations reveals that at the presence of dissipation not only the
desired target level but the above laying levels become populated. These levels
decay into the target level and enhance its population. Thus one can conclude,
that the optimal control algorithm utilizes the natural aspects of dissipative
dynamics such as the finite life time of energy levels to achieve the population
of the target state.

Further, we have concentrated on problems connected with the application
of the results of optimal control theory in experiment. The standard experi-
mental device, the liquid—crystal spatial light modulator has been analyzed and
it was shown how to compute its parameters in order to reconstruct the theo-
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retical optimal pulse in the experiment and vice versa. Comparing the control
of systems with energetic spectrum of increasing complexity and prescribing
different control tasks in these systems we have come to a certain quantitative
definition of the complexity of the control task. This quantity represents the
combined characteristics of both the molecular system and the control task and
is to some extend even experimentally available. By the control experiments
repeated with the light modulators with different numbers of liquid-crystal
elements (and thus with different pulse reconstruction capabilities) one may
answer the question to which extent a given control task has been fulfilled.
This is done by plotting the control yields in dependence on the number of
liquid crystal elements used in the experiment and examining the convergency
of the resulting curve.

In order to be able to describe more complicated experimental situations
the rest of the work has been devoted to certain generalizations of the optimal
control theory. Namely, we have studied the problem of a static disorder in
the controlled system. We provided a corresponding formulation of the optimal
control theory and calculated optimal pulses for the control of electron transfer
reaction in the molecular system studied previously, but now with the random
orientation of the electric dipole-moment with respect to the linearly polarized
laser control field. The results suggest that even here the optimal control
theory finds successfully solutions which exhibit heigh control yield. Thus the
flexibility of the optimal control theory has been clearly demonstrated.

It was already argued that due to the presence of ultrafast features in
the optimal pulses the consideration of memory effects in the optimal con-
trol theory becomes necessary. Therefore, a general formulation of the control
equations has been given to provide a basis for the future theoretical studies.
Depending on the molecular system in question, (particularly on the type of
the bath correlation function which determines the duration of the memory)
the non-Markovian optimal control would involve expensive numerical calcula-
tion. Consequently, a test of the importance of the non-Markovian dynamics
in optimal control has to be conducted on some limited model system before
one comes to the implementation of the non-Markovian optimal control theory
for general molecular systems.

Recently, experimental attention in the control of molecular systems turns
to complex systems including the dissipative systems. Thus the problems dealt
with in this work will find more experimental relevance in the near future. To
finally achieve a genuine correspondence of the theoretical and experimental
results very involved but in principle feasible calculations have to be performed.
In such a calculation it would be necessary to consider simultaneously many
effects from which we can particularly name:
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the spectral limitation of the control pulse

the spatial profile of the laser field

the averaging over disorder

time non-local target state measurement
e multi-photon transitions.

The time non-local target state measurement refers to experiments where the
target state of the system is tested by a weak field probe. Except for the
multi-photon transitions, corresponding theoretical formulations already exist
in the literature or have been presented in this thesis. The combined use of
these methods seems to be straightforward but may become numerically ex-
pensive. Also the optimal control calculations with potential energy surfaces
obtained for the controlled molecular systems from quantum chemical calcu-
lations does not represent any principle obstacle from the theoretical point of
view. The optimal control of dissipative dynamics has been shown to be feasi-
ble too, although the control yield decreases rapidly with increasing strength
of dissipation.

Although the original aim of the optimal control has been motivated by the
prospect of efficient governing the dynamics of chemical reactions towards the
desired products with possible industrial applications, the concept has become
very fruitful in basic research even outside chemistry. Simultaneously with
the development of the optimal control the studies has been conducted which
suggest to use control methods and the resulting control pulses to actually
extract information about the molecular system, e.g. about its potential energy
surface. The control of systems in condensed phase bring the prospect of the
control of e.g. the dynamics of artificial semiconductor structures like quantum
dots. The ability of precise preparation of particular target states may become
useful in quantum computing.

With the theoretical apparatus developed and refined in this work we have
in hand majority of the means to successfully simulate and explain future
control experiments on isolated and open molecular systems and to further
extend the optimal control theory.



Part V

Appendices

131






Appendix A

Nakajima—Zwanzig Equation
with External Fields

In section 1.1 we have mentioned the so-called projection operator technique
which enables the derivation of an exact equation of motion for the RDO.
According to the projection operator technique (see e.g. [MK99])one gets
the reduced statistical operator p(t) from the complete time-dependent sta-
tistical operator W(t) by applying the projector (projection superoperator)
P = trR{...}}?ﬁ. Here, R is a so far arbitrary operator acting on the reservoir
DOF, and the trace operation tri exclusively concerns the state space of reser-
voir states. For P to fulfill the definition of projection operator (P? = P)
the trace over R has to be equal 1. The aim of this appendix is to review the
derivation of the so-called Nakajima—Zwanzig equation (NZE) which represents
an exact equation of motion for the RDO. The general form of the NZE has
been given in Eq. (1.8) and here the concrete expressions or the initial corre-
lation term [ ~z and the memory kernel My, will be presented. We use the
superoperator notation in this appendix so that we define so-called Liouville
superoperators Lx ... = [Hx,...|- where Hx are corresponding Hamiltonian
operators with X = S, R, S — R etc..

For the derivation of NZE it is advantageous to switch into the interaction
picture and to write for the density operator of the compound system S + R

A

WD) = UL, w(t, 1) W (2). (A.1)

We assume the external field to be incorporated into the system Hamiltonian
so that the superoperator L{; +r(t,to) depends independently on times t, and ¢
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and follows as a time-ordered exponential
ot
Usinltsto) = Texp (= & [ di{Lsin(D)}) (A-2)
to

Applying the projection superoperator P on W& (t) we obtain
PWD(t) = Rtrg{WD (t)} = RpU (¢). (A.3)

For the later convenience we define so-called orthogonal complement Q = 1—P
of the projection superoperator P. We use the identity W@ (¢ (t) = PWD (t) +
oW ()(t) valid for an arbitrary statistical operator W on the Liouville-von
Neumann equation

o . o . i )
w4 = = D4y — 2 (1) (I
PoW () = ZPWOE) = —PLY (D)
- —%mgflR(t) [PWO (1) + QW (1)} (A.4)

Performing the trace over the reservoir DOF on the equation (A.4) we arrive

at .
0500 = e (L8 0) (RAO 1)+ QVO0)} . (A5)

For the expression QW) (t) we can write an equation analogous to Eq. (A.4)
for which a formal solution can be found in the form

QWD (1) = QWD (1) — /dtQ£ (DRI (D). (A.6)

Finally, we insert (A.6) into (A.5) and change back to the Schrodinger repre-
sentation. Introducing the abbreviation

< ... >R= tI‘R{R} (A?)

we obtain
0 .
() = trn{Ls nlds it 10)S(t,10) QW (1)}

- (ﬁs( )+ < Ls-r >r )ﬁ(t)
- / di < LI (OUs(t, t0)S (t, 1) QUs (7, to) L () >w

Xp(f) : (A.8)
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The first term on the right hand—side describes the influence of initial correla-
tions whereas the last term corresponds to the dissipative part of the density
operator equation. The quantity S can be obtained from Us,r by replacing
Lsir by QUs(t,to)Ls_r. In this manner S incorporates the complete pertur-
bation expansion with respect to the system-reservoir interaction.

As it can be seen from the second term on the right-hand side of Eq. (A.8)
the reversible part of the density operator equation has been extended by a
mean-field type term of the system-reservoir interaction. The quantity E(SIE)R(t)
introduced in the dissipative part of Eq. (A.8) has to be understood as Lg g
translated into an interaction representation defined by Ly alone.

Finally, we compare the NZE (A.8) with the expression (1.8) so that we can
list the concrete forms of the initial correlation term and the memory kernel.
It reads

Inz(t,to; W(to)) = trr{ Ls_rlUsyr(t, t0)S(t, to) QW (to)}, (A.9)

Mzt to, ) =< L& (OUs(t, t0)S(t, D) QUs(E, to) L () >k . (A.10)

The effective Liouvillian of the system reads now

ﬁNz(t) = ﬁs(t)—F <Ls_r>Rr. (A.ll)



Appendix B

Quantum Master Equation and
the Introduction of the
Reservoir Correlation Function

In Appendix A we have presented the concrete form of the NZE. It was argued
in section 1.1 that NZE represents only a starting point for an approximative
treatment, since its solution requires the same (if not more) effort as solving the
Liouville-von Neumann equation for the whole system S + R. The goal of this
appendix is to derive the equation of motion for RDO in the second order per-
turbation approximation with respect to the interaction term Lgs_g or Hg_g.
We apply a special factorization of the interaction Hamiltonian (1.9) and also
identify so far arbitrary operator R with the equilibrium canonical statistical
operator of the reservoir R,,. Further we assume the initial states of the sys-
tems S and R to be uncorrelated so that W (ty) = p(to)Re,- This assumption
turns the initial correlation term (A.9) to zero. During the derivation it will
become advantageous to define a quantity called reservoir correlation function
with comprises the whole information about reservoir necessary in our second
order equation.

We start in the interaction picture with the equation (A.8). Neglecting all
contributions in the memory kernel M involving more than 2 appearances of
Ls_g (i.e. dropping S form A.10) and using the commutator formulation again
we obtain

0 )

95000 = ~ ey { By (10,070 )

— = [drteg {[HO 10), (1 = PR, Bgp V() L} (B

to

The Equation (B.1) is the general second order equation of motion for RDO.
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Now, we use the anzatz (1.9) assuming the factorized system-reservoir coupling.
The first tern on the right hand side reads

tr { Reg[HE (1), 0 (1))} = KL (0)(@a), 800)- (B2)

with abbreviation < ... >= trg{...}. Thus the part of the effective Hamil-
tonian resulting from the system-reservoir interaction has been expressed via
a reservoirs average of the reservoir contribution of the interaction Hamilto-
nian Hg_g. Similar possibility appears also in the second term. It takes an
especially simple form if we define

Ay (t) = P (t) — (P)r (B.3)
and rewrite all terms in (B.1) similar to
(@D () (7)) k= tra{®L) ()0 (1) Reg}
= tra{ ReqUk(t, 7) @ Ug(t, )P0} = (DL (t — 7)@L(0)) 5. (B.4)
We define the function
Crn(t) = (P ()P (0)) r = (Pra) (Pr)- (B.5)

which is called the reservoir correlation function and describes a connection
between fluctuations of the reservoir operators ®,,(t) and ®,,(t) at different
times. Since ®,, should be a Hermitian operator one can show that C, (t) =
Crm(—t). Using the correlation function, the equation (B.1) can be written as
Q A () — 1 A(I)
50 = =5 (@) o 50

2 3 [ dr(Conlt = KD 1), KD (7))

= Crn(t = DD (1), (KD (7)]- ) (B.6)

This equation is known as the Quantum Master Equation or density matrix
equation in second Born approrimation.

More concrete expression for the correlation function can be found while
working with the Fourier transformation of C,,,(t)

Coun(w) = /_ Z dte ! Crn(1). (B.7)



138

Introducing the eigenstates |«) of the reservoir Hamiltonian Hpg it follows from
the definition (B.5)

Com(w) = [ T e S (| Roge T AD e R B) (3| AD o)
BN >

=3 [ e e (B, (0] A%, ) (52, o) (B3)
af T

where w,3 = (E, — Ej) are the transition frequencies between reservoir energy
levels and

f(Ea) = exp(—Ea/kpT)/ Zﬁ:eXP(_Eﬁ/kBT> (B.9)

represents the thermal distribution function with respect to the reservoir states.
Performing the integration which turns exponentials into delta-functions we
obtain

Cmnn(w) = 2%% f(Ea)(a| APy |B)(B]AP,|a)d(w — wag)- (B.10)

This expression gives an explicite way how to compute the Fourier-transformed
correlation function when a suitable model of the reservoir is defined. This is
done for a reservoir of independent harmonic oscillators linearly coupled to the
relevant system in Appendix C.



Appendix C

Microscopic Model for the
Correlation Function

In the following the reservoir correlation function will be considered for the
case when the reservoir consists of an infinite number of decoupled harmonic
oscillators. Let us perform the Taylor expansion of the interaction Hamiltonian
Hg_ i according to the reservoir coordinates and focus on the lowest contribu-
tion. Dropping the indices m and n for a while we write

HS—R = K(S)ZC&Z&. (Cl)

3
Here, c¢ is a system-reservoir coupling constant. The reservoir Hamiltonian
Hp = 3> Hf;{ consists of as sum of independent (normal) harmonic modes,

with frequencies we
Hj, = hwe(CLCe + 1/2), (C.2)

where C’g and C¢ are the oscillator creation and annihilation operators, respec-
tively. The eigenstates
1

will be labeled with oscillator quantum number M¢, the eigenenergies read

3 3

|Me) =

(CE)Me|0g) (C.3)

Assuming this we may write using (B.10)

C(w) =2 Y cecer Y FIEN)(N|Ze|M)(N|Ze|M)S(w — (Exr — Ew)). (C.5)
e/ NM
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Inserting
(N1Ze|M) = (Ne| Ze| Me) 1] Ow, ., (C.6)
g#E
into (C.5) enables us to carry out the complete summation over the index M.

We have to take in account that we perform the summation over M, and Ng
if £ # ¢ and over M, only when £ = ¢’. Thus we obtain

Clw) =21 Y cece{0eer 3 [(Nel Ze| Me) PO (w — wivnr,)

1334 My
+H(1 = 0ee) D f(En) D (Nel Ze| Me)wn,
N M Z:N£
X <M§’|ZE"NE’>5N§/M§,5(W — WMN; — ng,ME,)}. (C.7)
Because of the relation (Z¢) = 0, all the terms with £ # £’ are zero and it reads
w) = 272 Z C§f<EN5)‘<N§‘Z§‘M§>’25(w - wMgNg)‘ (CS)
€ NeM

Finally, we introduce the representation of Z, by the creation and annihilation

operators Zg = y/h/2we(Ce + C’g) and we get
=27 Z Cf Z f EMg Mg + 1)(5(&1 — w§) + M§(5<w + w§)) . (Cg)
Now we consider the harmonic reservoir to be in equilibrium and introduce the

corresponding mean occupation number of the oscillator mode

—hwM/kpT
= Y f(hwd) M = 2 e - (C.10)
M

Sy e MN/ksT chw/ksT _

We obtain the expression we have been looking for
=2 Z c£ n(we) + 1)d(w — we) + n(we)d(w + we)]. (C.11)

The Eq. (C.11) enables us to write the correlation function in terms of quan-
tities which can be physically interpreted. To that end we define so-called
spectral density

= zg:gg(S(w — we), (C.12)
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with g¢ being the dimensionless coupling constant g given by the relation

ce\/ P/ 2we = hwege. (C.13)

With this we can finally write
C(w) = 27h*W?[1 + n(w)][J(w) — J(—w)]. (C.14)

We can see, that in our model describing the reservoir as an infinite set
of the harmonic oscillators, the correlation function of is given by a single
function J(w). Although this function is given as as sum of delta-functions,

any macroscopic reservoir would have practically continuous spectral density
(see [MK99)).



Appendix D

The Dissipative Part of the
Quantum Master Equation and
the Reduction to the
Excited—State Potential Energy
Surface

According to the presence of two different electronic levels in the molecular sys-
tem from the section 2.1, p(¢) has to be expanded with respect to the electronic
states yielding pa(t) which is just an operator in the vibrational state-space.
For the separation of the density operator into an equilibrium part and a non—
equilibrium deviation as introduced in Eq. (2.15) we get

Pap(t) = 5a,baa,gfgg> + Apa(t) (D.1)

with L, T
plo) — €
€ tryp{eHo/ksT)

The density operator Apg(t) obeys the following equation (cf. Eq. (2.16) and
note the neglect of the field-dependence of M)

(D.2)

o A
Eﬁpab(t) = Lap(t)

— %(HaAﬁab(t) — A[)ab(t)Hb) — Dap(t — thea; Ap)

+ B0 Y (duedian(t) - dadpat)) (D.3)

c
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Here, the inhomogeneity is given as

. i .
L(t) = 7 E(t) (0acGg.6deq — Bag0esdye ) Reg (D.4)

The dissipative part for the system-bath interaction Hamiltonian Hg_ rp =
Yo Ku®,(Z) reads
t—tgeld

Doy (t — theia; Ap) = / dr

0
(Caa(T) KaKa(—7)6a(t — 7,7)
+Cpp(—T)0ap(t — 7, 7) Kp(—7) K
—Co(T)Ko(—=T)0a(t — 7, 7) K
(

+Cha(—7) Kabap(t — 7, 7) Kp(—7)) - (D.5)
To have a sufficient compact expression we introduced
Ko(=7) = Ua(7) KU, (7) (D.6)
and
ap(t — 7, 7) = Us(T) Apap(t — 7)Up(T) (D.7)

The reservoir correlation functions read (cf. (A.7))
1
Cab(t) = ﬁ < UEqDaUR(Db >R - (DS)
with the time-evolution operators denoted as
U,(t) = e tHat/, (D.9)

In order to simulate the reservoir we provide that a normal mode analysis has
been carried out. It results an ensemble of independent harmonic oscillators
which will be coupled linearly to the system DOF. Thus, we suppose

0,(Z) = h;kg(a)Zg , (D.10)

with k¢ being a coupling constant of a corresponding harmonic oscillator with
system DOF. For such a reservoir the correlation function takes the form (see,
e.g. [MK99])

Cu(t) = / dwe™ ™ (1 + n(w)) (Jup(w) — Jup(—w)) , (D.11)
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with n(w) = 1/(exp(hw/kgT) — 1) being the Bose—Einstein distribution and
the quantities
W) = ¥ kela)he(b)3(w - we) (D.12)
3

represent the spectral densities of normal modes.

In the case of an arbitrary strength of the applied field all elements of
Apgy(t) have to be considered. Here, we will concentrate on the case of weaker
field-strength realizing only marginal population transfer to the excited elec-
tronic levels. Then, one can reduce the whole description to the use of the quan-
tity Ape(t) describing vibrational dynamics on the excited—state PES initiated
by the external-field pulse. It will enter the respective equation of motion in
the second order corresponding to a linearization in the field—intensity.

As it is well-known such a result is obtained if one determines Ap., lin-
early with respect to E and inserts the expression into the equation of motion
for Apee. According to Eq. (D.3) one obtains for the electronic off-diagonal
density operator

o . . 1 . R
a8 (t) =~ (Hel\peg () = Ay (1) H, )

— Doyt — 1 — field; M) + S E(1)dg7)
(D.13)

Solving this equation and inserting the result into the equation of motion for
Ape. gives the desired closed description of the vibrational dynamics in the
excited electronic state. To have an analytlcal expression we replace Deg by
a time-local expression I’ eApeg + ApegF and the respective deviation ADeg
from this expression. On the one hand side this procedure enables us to derive
an analytical formula for the field-dependent source term in the equation of
motion for Ape,. And, on the other hand side, we can improve the result step
by step. The operators [, realize dephasing and are given as

T, = 7(17 Coa(T) Ko Ko(—7) . (D.14)

Instead of a contribution proportional to Ape,, now the equation of motion for
Ape. contains a source term and reads

SRR = 3 (o Bplh)

Dee(t - tﬁeld; Aﬁee) + Fee(ta Zffield; E) )
(D.15)
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For the source term one gets

Fee(tv tﬁeld; E)
t
1 _ ) o
= o [ 4 (dEW) (dED)0.( - DAET; (¢t~ 1)
theld
+ he, (D.16)
The evolution operators U, (t) and U,(t) are defined according to
Ua(t) = " (H, — int D.17
a(t)—exp_%( a1 a)’ ( . )

i.e. they are formed by non-hermitian Hamiltonian including dephasing oper-
ators I',.



Appendix E

Solution of Non-Markovian
Equations: Factorization of the
Correlation Function

Although the general form of the correlation function C(t) does not allow for
the direct transformation of the non-Markovian equation of motion into a time—
local form, there are some special forms of C(t) which allow it. In principle,
all functions f(¢) which can be decomposed as

f(t=7) = g(t)h(r) (E.1)

when substituted for the correlation function in (1.10) result in its direct trans-
formation into the time local form.

To characterize the retardation effects and to construct time-local equations
of motion it will be of great advantage to change the notation of the dissipative
part. Therefore, we write the dissipative part of Eq. (1.10) as D =D, + D,
and identify D, with the contribution given by the time—independent part
C2 = - < ®, >g< &, >g /h* of Cy,, Eq. (1.13). The first contribution
D, follows from the time dependent first term in Eq. (1.13). We start to
give an alternative notation for Dy. It is obvious from Eq. (1.10) that we
can write Dy = ¥, [K,, 8,]— (where 3, is easily deduced from Eq. (1.10) and
K, is a system part of the system-bath interaction Hamiltonian Hg_ g defined
in Eq. (1.9)). This expression removes the time non-locality from the QME.
Unfortunately, one cannot derive a separate equation of motion for $,. This
only becomes possible if the various correlation function C!), which depend

on the two time-arguments ¢ and ¢ can be replaced by the following multiple

146



147

factorization ansatz
1 S S
COt—1t) = P S ol ()l () . (E.2)

Such an expression may be constructed by a double expansion with respect to
an orthogonal set of functions. Providing the multiple factorization of C{}) we
can introduce the following new auxiliary density operators (note the use of
the interaction representation)

| / O DU (F, 1) Kop(BUs(F o) (E.3)

D" \

and

/ dt B3 (—DUE (7. 0)p (DK Us (. 1o) (E.4)
which remove the time—nonlocality in Dy to give
?
sy
(K al)(0)ali,(8) — afi) (—t)a {0 (0] - (E.5)

The equations of motion for the auxiliary operators read

5, i i
9 )y L ~(+) ¥ as) -
at%,w(t) h[Hs(t), Gom()]_ + hﬂw (t)Kup(t) , (E.6)
and 5 , .
) () — b (=) Y as) a4
6)tffs,w(t) h[Hs(t),as,uv(t)]_ + hﬁuu( t)p(t) Ky (E.7)

We note that the term stemming from initial correlations can be handled in
a similar manner [MT99]. However, for the description of the external field
influence initial correlations are of less importance as discussed in section 2.3.
Next we deal with term D, determined by the time-independent part of
Cup- It can be rewritten by introducing a single additional density operator &
i
h [

Using the interaction representation the new operator reads

D2(tat0) = Hmf7 &(t)]f : (Eg)

‘ / (1) [Hour, p(D)]_Us(F, o) - (E.9)

D" \
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This expression can be related to the following equation of motion (in the
Schrodinger representation )
0 1 i

5&“) - h[HS(t)’&(t)]— - ﬁ[Hmfaﬁ(f)]_ : (E.10)

The introduction of the auxiliary operators 6%)1) and ¢ demonstrates that the
time—nonlocality can be removed with any accuracy one needs. In which man-
ner the two types of auxiliary operators contribute depends on the properties
of the reservoir correlation functions. If the time—independent part dominates
the dissipation one may have the chance to find an analytical solution of the
non-Markovian QME (cf. Section 2.4).

Before dealing with techniques based on a certain expansion of the den-
sity operator and the QME we refer to methods which try to solve the non—
Markovian QME directly, i.e. in the time-domain. In [Ima94| the introduction
of the fictious bath modes to simulate a spectral density of the bath has been
suggested. Behind this idea is the common observation that a given non-—
Markovian process can be related to a Markovian process of a system with a
larger set of DOF. The easiest way would be to enlarge the system in ques-
tion by a single fictious harmonic-oscillator mode. If the latter interacts with
a zero—correlation time bath, the spectral density obtained after tracing over
the fictious mode turns out to be of a Lorentzian shape. Although originally
suggested for the Monte Carlo wavefunction method [Ima94], where the scaling
of the problem (related to the involved level number) is much more favorable
than that of the density matrix approach, it is obvious that the system cannot
be enlarged by more than a few fictious modes. Therefore, the flexibility to
chose a particular shape of the effective spectral density is rather small.

The scaling problem can be avoided if we view the fictious bath modes only
as a numerical trick for the decomposition of the spectral density. To this end
the following parameterization of the correlation function has been suggested
in [MT99] (for a single electronic state, see also [KP97])

12X e
M= L T ar e — e

s=1

(E.11)

where the parameters Js, ws and v, are arbitrary and real. It is the great ad-
vantage of such a generalized multi-Lorentzian form that an analytical deter-
mination of the time-dependent correlation function according to Eq. (D.11)
becomes possible. One obtains (note the absence of electronic quantum num-
bers)

ReC(t) = z’/: Js (Coth(g(ws_i_z',ys))eiwst'Yst)

s=1 WsYs
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g JS ﬁ . —twst—"st
+ 2o (Coth (E(ws —i5))e )
22 a . —Ust
+ le](zys)e S , (E12)
ﬁ s=1
and
Im C(t) = —i XV: s (ewSt*%t — e*i“’st*%t) , (E.13)
s=1 Ws's
where v, = 2mwskgT are the Matsubara frequencies. If formulated for the

difference time-argument ¢ — ¢ the real and imaginary part of the correlation
function are just of the type introduced in Eq. (E.2). Therefore, the original
QME can be completed by the equations of motion for the auxiliary density
operators, Egs. (E.3) and (E.4).

The resulting equations would represent the time local equivalent to the
original time non-local Eq. (1.10) if the parameterization (E.11) is exact.
Although this is not the case it has been noted in [MT99] that it gives a good
approximation for an Ohmic spectral density even if one incorporates only a
few terms in the expansion Eq. (E.11). But the main advantage of this method
is that one can easily account for an external field influence. So, the approach
is suitable for strong field problems as well as for problems of laser pulse control

of molecular dynamics, e.g. in the framework of the optimal control scheme
(see Part III of this work).



Appendix F

Solution of Non-Markovian
Equations: Laguerre Polynomial
Expansion

To obtain the solution of the non-Markovian density matrix equation (2.32)

we expand all parts with respect to the Laguerre polynomials
1 t dn n —t

Therefore, we note their orthogonality with respect to the scalar product
(f,9) = [ dee* f(w)g(a) (F2)
0

In carrying out the expansion the time—argument ¢ has to be replaced by the
dimensionless variable x
r = t/tchar s (F3)

where the time—constant t.,,, roughly fixes the characteristic time—interval in
which the function to be expanded by Laguerre polynomials can be properly
described. Since we will consider the correlation functions decaying on a time-
scale of some 10fs we set t.pq = 10fs.

Carrying out the expansions for the density matrix we get

omn (tehar) = Uj(\%an(x) . (F.4)
n=0
If we set ¢ = 0 this expression reduces to (note L,(z =0) = 1)

n=0

150



151

Using the scalar product (F.2) the expansion coefficients of the density matrix
introduced in Eq. (F.4) are obtained as

o0

0-1(\23\/ = /d&: eian(x)aMN@charx) . (F6)
0

The algebraic equations determining the expansion coefficients are obtained
from the expansion of the original equation of motion (2.32). To do this we
use the relations [MBS98, AST72]

/ AT L (& — 7)Lon(Z) = Loy () — Loy (2) (F.7)
and -
Sl(@) == 3 Lu(w). (F.3

It( r)esults the recurrence relation for the density matrix expansion coefficients
n
OMN

Z ((itchaerN + 1)0mkonL + tchang\(})N KL)U%%
KL

= O'MN(tZO)
5 ) (n=m-1)y _(m)
- > (UMN+tcharZMMNKL Myn ke UMN)
m=0

+ tcharF]gl])V . (Fg)

If the coefficients ./\/lg\Z)N k1 as well as and F ]%)V are known the density matrix
can be deduced.

Computing the memory kernel expansion coefficients M%Z)N i, in similarity
to Eq. (F.6) a detailed inspection of relation (2.33) demonstrates that we have
to handle contributions of the type

C«(n) = /dl‘ Ln(fE)@iA&xe_xCee(itcharx) . (F]'O)

Here, A& = t.pqr Aw where Aw denotes one of the various transition frequen-
cies.

To calculate the above given type of integrals we proceed as follows. First we
note that Ce.(t) follows from an inverse Fourier transformation according to Eq.
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(D.11). In the general case this Fourier transformation has to be carried out nu-
merically, and, consequently, the values of the function C..(t) are given for a set
of points ¢y, t1, ..., ty on the time axes (corresponding to xg, x1,...,zyN). Such
a set can be interpolated by so—called cubic splines [PTVF92], which result
in a function, analytical by—parts and continuous up to the second derivative.
Then, between any two points x;, x;11 of the set, the function Cee(2tcna,) is
represented by a cubic polynomial and the integral (F.10) turns to a sum of
the integrals

spl

i) = / dx Ln(x)emme’””(?(j)(:txtchar) : (F.11)

with C’s(ﬁ (t) being a spline interpolation of Ce.(=£t) in the interval [t;,¢,41]. For
all of these integrals special recurrence formulas can be derived. Accordingly,
the complete expansion coefficient, Eq. (F.10) can be computed in any degree
of accuracy, for any order of the polynomial expansion, and any value of Aw.
Details on the derivation of the recursion formulas are given in appendix G.

In the same manner we can calculate the expansion coefficients F z%v of the
filled term in Eq. (2.32). Therefore, Fyn(tenar®) is determined for the discrete
set of time-arguments tg,%,...,ty and the respective spline approximation is
used to calculate Fﬁ%v(tcharx) according to Eq. (F.11).

It has been already highlighted in [MBS98] and can be made obvious by
an inspection of Eq. (F.9) that the accuracy of the memory kernel expansion
determines the accuracy we can compute the density matrix elements. Having
at hand a sufficient good approximation of the memory kernel for the time
interval [t1, 5] one may expect that the density matrix expansion results in the
same accuracy.



Appendix G

Evaluation of the Correlation
Function Expansion Coefficients

In Appendix F we claimed that, based on the spline approximation of the
correlation function, the integrals (F.11) can be evaluated analytically. Here

we give some details of this procedure. The function C’S(gf (t) introduced in
(F.11) is an interpolation of the correlation function by cubic splines, i.e.

CS(IJJ'Mxtchar) - &(x)cee($jtchar) +ﬁ(x)cee($j+1tchar)
+ Y(@)C" (@ jtenar) + 0(2)C" (2j1tchar) -
(G.1)

The four different expansion coefficients can all be expressed by the first one

which reads
Tjt1 — T

ale) = HE = o (Li@) - Lifayn) (@2
Here, we introducedAz = z;41 — ;. The remaining three coefficients are
flx) =1-alz), (G-3)
1) = B @) — ate) (@4
and A2
5(z) = 6“‘) (0®(2) — 30(2) + 2a(x)) . (G.5)

The second derivative C” of Cee(2tehar) at @ = x;, x;41 are computed using a
standard interpolating algorithm [PTVF92]. The above given relations indicate

that it is necessary to compute integrals of type Eq. (F.11) but with C’S(gf (@tchar)
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replaced by a(x) up to its third power. In carrying out these integrations it is
useful to generate recurrence formulas. Therefore we define

Tjyl

o™ = / d (Ly(2))™ Lo(x)e%e— . (G.6)

In particular we have aél) = ago), and
o _ _ 1 —(1—iAG) | T+t Q.7
W' =~ g I L (G7)

where the abbreviation [g(x)]¢ = g(a) — g(b) has been introduced. These
expression enables us to express the required integrals as

Tj+1

A 1
dx a(z) Ly (z)e' %% e = A—x(ag) —al%y), (G.8)
Zj+1
dr o (x) Ly, (z)e %"
1
= (0 oLl + (L)) . (G
and
ZTj+1 1
dr o®(x) L, (z)e %™ = @(af) -
3L1(j1)al + 3(Li (1)) all) = (Li(2))°a)) -
(G.10)

Accordingly, the announced recursion formulas which are essential for an effi-
cient computation of a;' read

1 - .
o) _ IADT —x _ I+l
af) = M{[e e (L1 () Ln(g;))]zj
iApay, } (G.11)
and similarly for the other integrals
1 ~ .
v - - AT — _ Tjt1
o) = L) B (L1 (2) — L))

+ a) —ad? —irwal) (G.12)
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1 .
2 _ 2 _iAQT  —T]Tj+1 (0)
ay) =~ { (@) e + 20} (G3)
1 .
2 _ 2 _1Adx _—x _ Tji1
aff = L) et e (Lo (2) - Lu(@)))52
+ 2@5}21 —2a{l) — z’AcDaff_)l} , (G.14)
1 .
(3) _ _ 3 _iADx  —x]Tj+1 (2)
ay) = — AL @)’ 4307} (G.15)
and
1
3 —
fn 1—iAG
x AH{(Ia(@)) e85 e (Lo (x) = La(2))]37"
— 30\, — 30 — iADal) ) (G.16)

At the first glance the given formulas look to complex to be useful for inte-
grating a function of a single variable. But according to our efforts to reach a
sufficient precision they seem to give the only way to get precise results even
for Laguerre polynomials of the order 10° or higher. Moreover these formulas
if accompanied by a routine to compute Laguerre polynomials via standard
recurrence formulas [PTVF92] can be put in a very compact computer code.
Finally we note that the given spline interpolation scheme to integrate a prod-
uct of a smooth and a highly oscillating function such as polynomials of a high
order and/or exp{ior} may be used in many other cases.



Appendix H

Derivation of the Control Kernel

The control kernel Eq. (3.8) follows as the functional derivative of the expec-
tation value introduced in Eq. (3.5). The latter expression shows that one
has to determine the respective derivate of the reduced density operator. To
perform the derivative we first note the more explicite structure of the time—
evolution superoperator introduced in Eq. (3.4). It reads (T guarantees proper
time—ordering)

U(t,toE) = Texp | - i/dr (Lol + Lr(7) —iD)} . (H.1)

Accordingly the functional derivate of p(t;) follows as

(;[;Z)) = —it/dT U(ty, 7 E) 5;5(%) U(T,t0;E) . (H.2)
Noting
55&(5) =~ =M (1.3)

expression (H.2) is easily converted into the final result, Eq. (3.8) for the
control kernel.
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Appendix 1

The Reverse Time Evolution
Superoperator

To have a more specific version of the time evolution superoperator at hand
we specify the dissipative superoperator D introduced in Eq. (3.3). According
to the standard QME (see for example [MK99, LMO00]) we set

u

These dissipative terms correspond to a second—order perturbational treatment
of the type of system reservoir coupling introduced in Eq. (1.9). Although
not necessary in general we will additionally assume that the single operators
K, are hermitian. The operators A, are obtained from the time dependent
operators K, (t) (defined in the Heisenberg picture with respect to Hy,, and
thus incorporating any order in the transfer integrals V,,,) and the reservoir
correlation functions C,(t) as [MK99, LMOO]

A, = ; /dT Cou(T) Ky (—7) (1.2)

To justify the representation Eq. (3.9) for the control kernel and to give a
definition of the reverse time evolution superoperator we first note the general

form of any superoperator. i.e. of the time evolution superoperator, too. It is
given by [LMOO]

(1.3)
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Here, the A(t,to), B(t, to), C;(t,to), and D;(t, to) are ordinary operators acting
from the left or from the right on the initial value p(¢y) of the reduced density
operator. The set of operators can be somewhat restricted if we note that p(t)
is a hermitian operator

plt) = Ut to)plto) = 57 (1) = (ULt t)p(to)) . (14)

If all contributions to U are considered to be linearly independent one obtains
B = A" and D; = C}. This gives

Ult to)p(te) = Alt,to)p(t ) plto) AT (¢, to)
+ ZC (t,t0)p(to)C (¢, to) - (1.5)

We use this relation to change from Eq. (3.8) to Eq. (3.9). In a first step we
rewrite Eq. (3.8) in replacing & which carries out the time evolution from ¢ to
tr according to Eq. (1.5)

K(ty, t;B) = *trs{O( (£, )IMA(E)] + [MA(E)] AT (k4 1)
+ ZC £, IMPOICT (15,1))} - (1.6)

A rearrangement of the different terms in the trace leads to

A(tﬁ )
)M

N

K(t;, t;E) = %trs{(fﬁ(tf, 0 +

+ Zéj(tf,t)éé tyt (1.7)
J

The derived expression confirms the existence of U, Eq. (3.10) and demon-
strates how to obtain this quantity if ¢/ is given in the form of Eq. (I.5).

To derive an equation of motion for &, Eq. (3.10) with respect to a de-
pendence on the intermediate time ¢ we first take notice of Eq. (H.1) and

get
0

ot
Generalizing the control kernel written in the form of Eq. (3.9) to a quan-
tity which depends via p on a second independent time-argument ¢ the time
derivative with respect to t yields

—U(ts, t) =U(ts,t) (ILmo +iLr(t) +D) . (1.8)

) i}
K .E) =
ot (ty,t, 6 E)

%trs{&(t)(i[,mol +iLp(t) + D)MH(D)} | (L.9)
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A rearrangement of the terms in the bracket leads to the required equation of
motion for &

;6(” = —iLmad (1) —iLp(t)5(t) + Do (t) , (1.10)

with the dissipative part

Do (t) =
> (ALK () + (6 Kuhy — AL6 () Ky — Ko (t)A)

(1.11)

which is essentially different from D, Eq. (I.1). Eq. (L1.10) tells us how to
perform the reverse time propagation in Eq. (3.10).



Appendix J

Further Generalizations of the
Optimal Control Theory

J.1 Spectral Limitation of the Laser Pulse

Although it was not directly the aim of the present work to develop new meth-
ods to reduce the spectral width of the OC pulse and we work throughout
this thesis with unrestricted field, the importance this aspect for the appli-
cation of OC results in experiment is such, that we find it necessary to dis-
cuss this problem here. At the moment, there exist only few attempts to
introduce the spectral limitations on the the optimal field within OC theory
[HMdVRO01, HMdVRO02]. The results will be shortly reviewed here.

The first method discussed here uses a special projection method to elimi-
nate the unwanted components of the optimal field spectrum and to restrict it
onto a given spectral interval. A spectrally broad laser pulse would coherently
excite many eigenstates of the molecular system, while the reduced one should
excite only few of them. Thus, we define a projector onto a specified subset
of the N eigenstates |1;,) of the field free Hamiltonian H,,,. The states in the
projector will be weighted with a shape function W (n),

p= Zl W (1)) (V- (J.1)

In [HMdVRO1] the shape function was chosen to represent a Gaussian distri-

bution,
W(n) :exp{— (V;VV())Q}. (J.2)
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Here vy is the maximum and Av is the width of the desired eigenstate dis-
tribution. Once the parameters of the distribution are chosen one applies the
projector in Eq. (3.19) for the optimal laser field to restrict its spectra. This
results in the splitting of the Eq. (3.19) into the desired spectrally restricted
part and the un-wanted one which should be eliminated. We obtain for the
control kernel

K(t, to, tf; E) = —Im{ (Z W (1)2a" <f>5,d)

k=1

( Z_ Vl|aT(f)lual(;)|yk>) } 4+ ... . (J?))

Here we used complex numbers al = (y|¢i(t)). Numerically the formula is
applied in each step of the OC propagation. The propagation is performed
with the unrestricted wavefunctions, only the optimal field is created with the
restriction. The method has been successfully applied in [HMdVRO01] to calcu-
late the optimal pulses to control the dynamics of K5 molecule. A significant
simplification of the laser pulses in terms for their experimental feasibility has
been reported.

Another method to put a spectral pressure on the optimal pulse has been
developed in [HMdVRO02]. The method is based on the observation, that the
standard OC algorithm naturally selects the transitions with the highest tran-
sition dipolemoment from those contributing to the control yield. Therefore,
an artificial two level system with very high transition dipolemoment and the
transition frequency required from the restricted optimal pulse is added and
optimized simultaneously with the original molecular system. This results in
the new type of the objective functional

1 rtr
J(totfiE) = Omor(ts, E) + Oure. (£, E) + 5/0 A()|E(1)|2dt. (J.4)

Thus additionally to the propagation of the coupled equations (3.11) and (3.12)
we are obliged to propagate similar set of equations for the artificial two level
system. The optimal electric field is computed as a sum of the fields produced
from the OC algorithm for both systems. Because the additional computational
effort for propagating the two level system is rather minor the method could be
successfully used. It is demonstrated in [HMdVR02] that the method is indeed
able to distill the right frequencies from the optimal pulse.

The methods presented above demonstrate the ability of the OC theory
upon some generalizations to achieve spectral limited control pulses. The gen-



162

eralizations presented here are simple enough so that they can be combined
with other refinements of the OC theory presented in following sections.

J.2 Generalized Target States

The formulation of OC theory introduced so far tries to maximize a certain
observable at a certain time. However, it would be of a great interest to
relax this strict demand somewhat. For example, if a wavepacket has been
excited in a particular electronic level, the demand should be sufficient to have
this wavepacket localized in a certain part of the respective PES in a certain
time interval. Indeed, since the coordinates () are continuous functions the
OC theory becomes ill defined if we try to maximize Q(t;) = trs{p(t;)@Q}. It
would be more appropriate to introduce into the control function F(Q(t;)—Q),
where @ is a value of the coordinate to be achieved and F(z) is a ordinary
function of the argument x vanishing at z = 0, e.g. F(z) = 22. Now we try to
minimize the deviation of Q(t;) from the given value Q.

The formulation of the OC theory using the control functional J(ts; E), Eq.
(3.6) enables one to formulate the control task for a target state which deviates
from those discussed in this thesis so far. Up to now the target state of the
control task has been defined via a pure state, i.e. |@iarger) Or by a hermitian
operator, i.e. a mixed state

O =" 0altha) (tal, (J.5)

where o, and |i,) are the eigenvalues and eigenstates of the operator O, re-
spectively. The latter case would result in

tf,be ZOQ tf, (JG)

Here, every O, corresponds to the case where O in Eq. (J.5) has to be defined
with the projector |1 ) (/.

The control task defined via Eq. (J.6) can be somewhat relaxed in setting
F(Ou(ts; E) — O,) instead of O,(ts; E) (the function F are not necessarily
identical for all ). This scheme can be used to achieve an incoherent popula-
tion of certain molecular levels. Therefore, we identify the 0, with given level
populations P, and set, e.g.

Ots; E) = = (Oa(ts; E) — P)?, (J.7)

[0}

N —
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where the index « only runs over a few numbers.

Noting this generalization of the Eq. (3.5) and thus of the control func-
tional, Eq. (3.6) it becomes immediately clear that we have to work with the
set of K, of control kernels. According to Eq. (3.8) they would contain the
prefactors O, (t;; E) — P,. Here, we define

Ka(tf, t; E) =

= ~trs{ ) (altd(ty, 1 B)MU(, o E)p(10)}

- %trg{&(t; EMj(t; E}. (1.8)

Instead of a single density operator for back propagation we have the set

Ga(t; B) = U(ty, 1, E) o) (Yal- (J.9)

Once the various control kernels, Eq. (J.8) have been introduced the functional
equation defining the optimal pulse has to be generalized to

(1) = 577 Y (0n(15E) = P, (1.6 ) (J.10)

«

including now the prefactors O, (ts; E) — P,

To solve the control task in a manner given by the two equations (3.11)
and (3.12) we have to notice that the control field is composed by different
contributions.

J.3 Probe—Pulse Absorption as the Target of
the Optimal Control

The absorption spectrum of a probe pulse which has been applied in addition
to the laser pulse guiding the molecular system in the required manner repre-
sents an observable to which one has a direct access in an optical experiment.
It is usually derived from expression describing the amount of field energy
exchanged with the medium

/ dr aEp“’be Bprone(B, D) e 1), (J.11)
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Here, E,, o is the probe pulse field-strength which can be written as (in con-
trast to the control field)

Eyrobe (T, 1) = Nprobe Eprobe (t) €Xp{i(Kpropel — Wprobet) + C-C. . (J.12)

It includes field polarization vector Ny, amplitude Ep.pe(t), wavevector
Kyrove and frequency wprope. The respective polarization (dipole density) in-
duced by the probe pulse has to be deduced from the complete polarization
field P. If any inhomogeneous broadening is absent it reads (n,y is volume
density of molecules)

P(1) = nyatrs {p(t; E)ji}. (1.13)

The total field E is given as a sum of the probe field E,, .. and the control field
E.. Since the probe field is usually assumed to be weak compared to the control
field one can carry out a linearization of P(¢) with respect to E,, .. Changing
to the total energy exchange between the probe pulse and the medium one
obtains (note the neglect of the time-derivative of the probe field amplitude)

Stotal - /dtS(t) - 2wprobe%
to

t
x Im ’ dt/dfe{iprObE(t_f)} ;robe(t)Eprobe(ﬂK(taf; Ec) (J14)
0 i
Since a linearization with respect to the weak-field part of the complete laser
pulse has been carried out a derivative appears allowing the introduction of
the control kernel according to Eq. (3.8).
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