
 

Understanding of Carbon Partitioning in Tomato 

Fruit 

 

Dissertation 

zur Erlangung des akademischen Grades 

doctor rerum agriculturarum  

(Dr. rer. agr.) 
 

Eingereicht an der 

Landwirtschaftich-Gärtnerischen Fakultät 

der Humboldt-Universität zu Berlin 
 

von 

Hazem Abd El-Rahman Obiadalla Ali (M.Sc.) 

geb. am 14.09.1969 in Sohag, Ägypten 
 

Präsident der 

Humboldt-Universität zu Berlin 

Prof. Dr. Jürgen Mlynek 

 

Dekan der 

Landwirtschaftich-Gärtnerischen Fakultät 

Prof. Dr. Uwe Jens Nagel 

 

Gutachter: 1- Prof. Dr. F. Pohlheim 

2- Prof. Dr. L. Willmitzer 

3- Dr. J. Kossmann 

 

Tag der mündlichen Prüfung: 10.06.2003 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work presented in this thesis was carried out between November 1999 and December 

2002 at the Max-Planck-Institute für Molekulare Pflanzenphysiologie, Golm. 

 

  



 

This Ph.D. thesis is the account of work done between November 1999 and December 2002 

in the department of Prof. L. Willmitzer in the Max-Planck Institute of Molecular Plant 

Physiology, Golm, Germany. It is results of my own work and has not been submitted for any 

degree or Ph.D. at any other university. 

 

 

 

Eidesstattliche Erklärung 

 

 

Die Dissertation ist das Ergebnis praktischer Arbeit, welche von November 1999 bis 

Dezember 2002 durchgeführt wurde im Department von Prof. L. Willmitzer im Max-Planck-

Institut für Molekulare Pflanzenphysiologie, Golm, Germany. Ich erkläre, das ich die 

vorliegende Arbeit selbständig und ohne unterlaubte Hilfe angefertigt habe. Es wurden keine 

anderen als die angegebenen Quellen und Hilfsmittel benutzt, und die den benutzten Quellen 

wörtlichen und inhaltlichen Stellen sind als solche kenntlich gemacht. 

 

 

Berlin, Februar 2003 

 

 

 

Hazem Abd El-Rahman Obiadalla Ali 

 

 

 

 

 

 

  



 

TABLE OF CONTENTS 
1 General Introduction .......................................................................................................... 1 

2 Review of literature............................................................................................................ 3 

2.1 Carbon Metabolism in Photosynthetic Tissue............................................................. 3 

2.1.1 Feedforward control of photosynthesis .............................................................. 4 

2.1.2 Feedback control of photosynthesis ................................................................... 4 

2.2 Carbohydrate Allocation from photosynthetic “source” to heterotrophic “sink 

Tissues” ....................................................................................................................... 7 

2.3 Mobilisation of Sucrose in sink tissues ....................................................................... 8 

2.4 Uptake of carbon into amyloplasts............................................................................ 10 

2.5 The synthesis of starch .............................................................................................. 11 

2.6 Starch degradation..................................................................................................... 13 

2.7 Starch phosphorylation.............................................................................................. 13 

2.8 Glycolysis.................................................................................................................. 15 

2.9 Fruit metabolism ....................................................................................................... 16 

3 Material and Methods....................................................................................................... 17 

3.1 Chemicals .................................................................................................................. 17 

3.2 Vectors and Bacterial Strains .................................................................................... 17 

3.2.1 Vectors ............................................................................................................. 17 

3.2.2 Bacterial ........................................................................................................... 18 

3.3 Transformation and Cultivation of Bacteria.............................................................. 18 

3.4 DNA manipulations................................................................................................... 18 

3.5 Cloning ...................................................................................................................... 19 

3.6 Plant Material ............................................................................................................ 19 

3.7 Sampling of fruits...................................................................................................... 19 

3.8 Transformation and Cultivation of tomato................................................................ 20 

3.9 Selection of plants with reduced cp-FBPase AGPase and GWD protein ................. 20 

3.9.1 Selection of plants with reduced cp-FBPase activity ....................................... 20 

3.9.2 Selection of plants with reduced AGPase activity ........................................... 21 

3.9.3 Selection of plants with reduced GWD protein levels ..................................... 21 

3.10 Western Blot Analysis............................................................................................... 21 

3.11 RNA (Northern) Blot Analysis ................................................................................. 22 

3.12 Determination of enzyme Maximum Catalytic Activities ........................................ 23 

3.12.1 Extraction Procedures and Assay Condition.................................................... 23 

 I



 

3.12.2 Phosphoglucoisomerase (EC 5.3.1.9) .............................................................. 23 

3.12.3 Phosphoglucomutase (EC 5.4.2.2) ................................................................... 24 

3.12.4 Hexokinase (EC 2.7.1.1) .................................................................................. 24 

3.12.5 Fructokinase (EC 2.7.1.4) ................................................................................ 24 

3.12.6 UDP-glucose Pyrophosphorylase (EC 2.7.7.9) ................................................ 24 

3.12.7 Sucrose Synthase (EC 2.4.1.13) ....................................................................... 24 

3.12.8 Enolase (EC 4.2.1.11) ...................................................................................... 25 

3.12.9 Triose Phosphate Isomerase (EC 5.3.1.1) ........................................................ 25 

3.12.10... Phosphoglycerate Kinase (EC 2.7.2.3)............................................................. 25 

3.12.11... Phosphofructokinase (EC 2.7.1.11).................................................................. 25 

3.12.12... Pyruphosphate dependent Phosphofructokinase (EC 2.7.1.90) ....................... 25 

3.12.13... Glyceraldehyde 3-Phosphate dehydrogenase (EC 1.2.1.12) ............................ 26 

3.12.14... Pyruvate Kinase (2.7.1.40)............................................................................... 26 

3.12.15... Phosphoenolpyruvate Phosphatase (3.1.3.60).................................................. 26 

3.12.16... Fructose-1, 6-bisphosphatase (EC 3.1.3.11) .................................................... 26 

3.12.17... ADP-glucose Pyrophosphorylase (EC 2.2.7.27) .............................................. 27 

3.12.18... Acid Invertase (EC 3.2.1.26)............................................................................ 27 

3.13 Determination of Soluble Sugars and Starch Content............................................... 27 

3.14 Determination of Metabolic Intermediates ............................................................... 28 

3.15 Analysis of fruit yield and flowers............................................................................ 29 

3.15.1 Analysis of fruit weight.................................................................................... 29 

3.15.2 Analysis of fruit size ........................................................................................ 29 

3.15.3 Fruit setting ...................................................................................................... 29 

3.15.4 Date of 50% flowering ..................................................................................... 29 

3.16 Statistical Analysis of Data ....................................................................................... 29 

4 Analysis of Carbohydrate Metabolism in Micro-Tom Fruits........................................... 30 

4.1 Introduction ............................................................................................................... 30 

4.2 Aim of the work ........................................................................................................ 30 

4.3 Results ....................................................................................................................... 31 

4.3.1 Development of fruit of tomato cultivar Micro-Tom....................................... 31 

4.3.2 Starch and soluble sugars in developing fruits of Micro-Tom......................... 31 

4.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 33 

4.3.4 Changes in activities in enzymes involved in glycolysis or the Calvin cycle.. 34 

4.3.5 RNA blots of plastidial transporters................................................................. 37 

 II



 

4.4 Discussion and conclusion ........................................................................................ 38 

5 Analysis of the Function of Chloroplastic Fructose 1,6-bisphosphatase in Tomato Fruit42 

5.1 Introduction ............................................................................................................... 42 

5.2 Aim of the work ........................................................................................................ 42 

5.3 Results ....................................................................................................................... 42 

5.3.1 Recovery of Plants with Reduced FBPase Activity in the Pericarp of Tomato 

Fruit. ................................................................................................................. 42 

5.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic 

lines .................................................................................................................. 44 

5.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 44 

5.3.4 Concentration of Metabolic Intermediates in the pericarp of the WT control 

and transgenic lines .......................................................................................... 47 

5.3.5 Analysis of fruit yield....................................................................................... 47 

5.3.6 Number of flower, fruit per plant, fruit set and number of days to 50% 

flowering. ......................................................................................................... 51 

5.4 Discussion and conclusion ........................................................................................ 51 

6 Functional Analysis of ADP-glucose Pyrophosphorylase in Tomato Fruit ..................... 57 

6.1 Introduction ............................................................................................................... 57 

6.2 Aim of the work ........................................................................................................ 58 

6.3 Results ....................................................................................................................... 58 

6.3.1 Recovery of plants with reduced AGPase activity in the pericarp of tomato 

fruit ................................................................................................................... 58 

6.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic 

lines .................................................................................................................. 58 

6.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 60 

6.3.4 Concentration of metabolic intermediates in the pericarp of the WT control and 

transgenic lines................................................................................................. 62 

6.3.5 Analysis of fruit yield....................................................................................... 62 

6.3.6 Number of flowers, fruits per plant, fruit set and number of days to 50% 

flowering .......................................................................................................... 65 

6.4 Discussion and conclusion ........................................................................................ 66 

7 Analysis of the Function of the GWD protein in Tomato Fruit ....................................... 69 

7.1 Introduction ............................................................................................................... 69 

7.2 Aim of the work ........................................................................................................ 69 

 III



 

7.3 Results ....................................................................................................................... 70 

7.3.1 Recovery of Tomato Plants with Repression of the GWD Protein.................. 70 

7.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic 

lines .................................................................................................................. 71 

7.3.3 Starch and soluble sugar contents in the leaves of the WT and transgenic lines

.......................................................................................................................... 72 

7.3.4 Changes in activities in enzymes involved in conversion of sucrose to starch 73 

7.3.5 Analysis of fruit yield....................................................................................... 75 

7.3.6 Number of flower, fruit per plant, fruit set and number of days to 50% 

flowering .......................................................................................................... 77 

7.4 Discussion and conclusions....................................................................................... 79 

8 Literature Cited ................................................................................................................ 88 

Acknowledgements ................................................................................................................ 103 

 IV



 

List of Figures 
 

Figure 1: The role of Fru-2,6-P2 in feedforward control of sucrose synthesis. ......................... 5 

Figure 2: The role of Fru-2,6-P2 in feedback control of sucrose synthesis. .............................. 6 

Figure 3: The predominant route of sucrose unloading and subsequent mobilization............... 9 

Figure 4: Developmental series of tomato fruits from Micro-Tom cultivar. ........................... 31 

Figure 5: Starch and soluble sugar contents in pericarp and placental tissues of tomato cultivar 

Micro-Tom during development. (A) Starch. (B) Sucrose. (C) Fructose. (D) 

Glucose. Data represent the mean of five independent measurements + SE........... 32 

Figure 6: Activities of enzymes involved in the conversion of sucrose to starch in the pericarp 

and placental tissues of fruit of the tomato cultivar Micro-Tom. (A) SuSy. (B) Acid 

invertase. (C) UDPase. (D) PGM. (E) AGPase. Data represent the mean of five 

independent measurements + SE. ............................................................................ 35 

Figure 7: Activities of some glycolytic and clavin cycle enzymes in pericarp and placental 

tissues of fruit from the tomato cultivar Micro-Tom during its development.(A) 

HK. (B) FK. (C) FGI. (D) FBPase. (E) PPi-PFK. (F) PFK. (G) TPI. (H) G3P DH. 

(I) PGK. (J) Enolase. (K) PK. (L) PEP phosphatase. Data represent the mean of five 

independent measurements+ SE. ............................................................................. 36 

Figure 8: RNA blot analysis of some plastidial transporters throughout fruit development in 

the tomato cultivar Micro-Tom. TPT in (A) pericarp and (B) placental tissues. Glc-

6-P transporter in (C) pericarp and (D) placental tissues. ATP/ADP transporter in 

(E) pericarp and (F) placental tissues. ..................................................................... 37 

Figure 9: Aerial parts of plants in both WT control and α-cp-FBP-transgenic lines after 8 

weeks growth in the glasshouse. From left to right: untransformed WT control, α-

cp-FBP#19, α-cp-FBP#33, α-cp-FBP#34 and α-cp-FBP#34. The α-cp-FBP plants 

are phenotypically identical to the untransformed WT control. .............................. 43 

Figure 10: FBPase activity during developmental stage (A), Western blot analysis in green 

(25 DAF) (B) in the pericarp of WT and α-cp-FBP-transgenic lines [total soluble 

fruit protein (25µg) was subjected to SDS-PAGE on a 10% (w/v) gel] and FBPase 

activity in the leaves of WT control and α-cp-FBP-transgenic lines (C). Data 

represent the mean of five independent measurements + SE. ................................. 45 

 V



 

Figure 11: Starch and soluble sugar contents in pericarp of WT and α-FBP-transgenic lines in 

tomato cultivar Moneymaker during development. (A) Starch. (B) Glucose. (C) 

Fructose. (D) Sucrose. Data represent the mean of five independent measurements 

+ SE. ........................................................................................................................ 46 

Figure 12: Activities of enzymes involved in the conversion of sucrose to starch in pericarp of 

the WT control and αcp-FBP-transgenic lines of fruit of the tomato cultivar 

Moneymaker. (A) SuSy. (B) UGPase. (C) PGM. (D) AGPase. Data represent the 

mean of five independent measurements + SE........................................................ 48 

Figure 13: Some 65 DAF old fruits from αcp-FBP-transgenic lines (bottom) in comparison 

with a control fruit (above).(A) Transgenic line #19. (B) Transgenic line #33 (C) 

Transgenic line #34.................................................................................................. 50 

Figure 14: Aerial parts of plants in both WT control and α-AGP-transgenic lines after 13 

weeks growth in the glasshouse. From left to right: WT control, transgenic line #2, 

transgenic line #7, transgenic line #11 and transgenic line #11. The α-AGP plants 

are phenotypically identical to the untransformed WT control. .............................. 59 

Figure 15: AGPase activity during developmental stage (A) and Western blot analysis in 

green (25 DAF) (B) in the pericarp of WT control and α-AGP-transgenic lines. 

Total soluble fruit protein (25µg) was subjected to SDS-PAGE on a 10% (w/v) gel.

................................................................................................................................. 60 

Figure 16: Starch and soluble sugar contents in the pericarp of the WT control and α-AGP-

transgenic lines.(A) Starch. (B) Glucose. (C) Fructose. (D) Sucrose. Data represent 

the mean of five independent measurements + SE in both WT control and 

transgenic line #7, but four independent measurements + SE in transgenic line #2 

and transgenic line #11. ........................................................................................... 61 

Figure 17: Activities of enzymes involved in the conversion of sucrose to starch in pericarp of 

the WT control and α-AGP transgenic lines of fruit of the tomato cultivar 

Moneymaker. (A) SuSy. (B) UGPase. (C) PGM. (D) FBPase. Data represent the 

mean of five independent measurements + SE in both WT control and transgenic 

line #7 and four independent measurements + SE in transgenic line #2 and 

transgenic line #11. .................................................................................................. 63 

Figure 18: Some 65 DAF old fruits from α-AGP-transgenic line #7 (bottom) in comparison 

with the WT control fruit (above)............................................................................ 65 

 VI



 

Figure 19: Aerial parts of plants in both WT control and α-GWD-transgenic lines after 8 

weeks growth in the glasshouse. From left to right: WT control, transgenic line #16, 

transgenic line #17, transgenic line #20 and transgenic line #20. ........................... 70 

Figure 20: Immunoblot analysis of the GWD protein in (A) leaves of untransformed WT 

control and three selected transgenic lines [Total soluble leaf protein (15µg) was 

subjected to SDS-PAGE on an 8% (w/v) gel], (B) in the pericarp of the WT control 

and transgenic lines (25 DAF) [Total soluble fruit (pericarp) protein (30µg) was 

subjected to SDS-PAGE on an 8% (w/v) gel] and (C) in the pericarp of the WT 

control fruits between 25-70 DAF [Total soluble fruit protein (20µg) was subjected 

to SDS-PAGE on an 8% (w/v) gel]. ........................................................................ 71 

Figure 21: Starch and soluble sugar contents in the pericarp of the WT control and α-GWD-

transgenic lines in tomato cultivar Moneymaker during development. (A) Starch. 

(B) Glucose. (C) Fructose. (D) Sucrose. Data represent the mean of five 

independent measurements + SE in the WT control and transgenic line #17, but 

four independent measurements + SE in transgenic lines #16 and #20 .................. 74 

Figure 22: Starch and soluble sugar contents in the leaves of the WT control and transgenic 

tomato lines lacking the GWD protein. (A) Starch. (B) Soluble sugars. Data 

represent the mean of five independent measurements + SE in the WT control and 

transgenic line #17, but four independent measurements + SE in transgenic lines 

#16 and #20.............................................................................................................. 75 

Figure 23: Activities of enzymes involved in the conversion of sucrose to starch in the 

pericarp of the WT control and α-GWD-transgenic lines of tomato cultivar 

Moneymaker.(A) SuSy. (B) UGPase. (C) PGM. (D) AGPase. (E) FBPase. Data 

represent the mean of five independent measurements + SE in WT control and 

transgenic line #17, but four independent measurements + SE in transgenic lines 

#16 and #20.............................................................................................................. 76 

Figure 24: Some 65 DAF old fruits from α-GWD-transgenic lines (bottom) in comparison 

with the WT control fruit (above). (A) Transgenic line #16. (B) Transgenic line 

#17. (C) Transgenic line #20. .................................................................................. 78 

 

 VII



 

List of Tables 
 

Table 1: Metabolite concentrations in the pericarp of 30 DAF old WT control and αcp-FBP-

transgenic fruits. ...................................................................................................... 49 

Table 2: Weights and sizes of ripe tomato fruits in the WT control and αcp-FBP-transgenic 

lines.......................................................................................................................... 49 

Table 3: Number of flowers, fruits, fruit set and number of days to 50% flowering in the WT 

control and αcp-FBP-transgenic lines. .................................................................... 51 

Table 4: Metabolite concentrations in the pericarp of 30 DAF old WT control and α-AGP-

transgenic lines. ....................................................................................................... 64 

Table 5: Weights and sizes of ripe tomato fruits in the WT control and α-AGP-transgenic 

lines.......................................................................................................................... 64 

Table 6: Number of flowers, fruits, fruit set and number of days to 50% flowering in the WT 

control and the transgenic lines. .............................................................................. 65 

Table 7: Weights and sizes of ripe tomato fruits in WT control and α-GWD-transgenic lines.

................................................................................................................................. 77 

Table. 8: Number of flowers, fruit set and number of days to 50% flowering in the WT 

control and α-GWD-transgenic lines. ..................................................................... 77 

 VIII



 

List of Abbreviations 
 

1,3-BPGA 

2-PGA 

3-PGA 

ADP 

ADPglc 

AGPase 

ATP 

ATP-PFK 

BSA 

CaMV 

cDNA 

CO2 

CoA 

Conc. 

cp-FBPase 

cv 

cy-FBPase 

DAF 

D-enzyme 

DEPC 

DHAP 

DTT 

EDTA 

EGTA 

EMS 

EST 

FBPase 

FK 

Fru-1,6-P2 

Fru-1,6-P2 aldolase 

Fru-2,6-P2 

Fru-6-P 

1,3-bisphosphoglyceric acid  

2-phosphoglyceric acid  

3-phosphoglyceric acid  

adenosine diphosphate 

ADP-glucose 

ADP glucose pyrophosphorylase 

adenosine triphosphate 

ATP-dependent phosphofructokinase 

bovine serum albumin 

cauliflower mosaic virus 

complementary deoxyribonucleic acid  

carbon dioxide 

coenzyme A 

concentration 

chloroplastic fructose-1,6-bisphosphatase 

cultivar 

cytosolic fructose-1,6-bisphosphatase 

days after flowering 

disproportionating enzyme 

diethyl pyrocarbonate 

dihydroxyacetone phosphate 

1,4-dithiothreitol 

ethylenediaminetetraacetic acid 

(ethylene-bis[oxyethylenenitrilo]tetaacetic acid 

ethyl methanesulfonate 

expressed sequence tag 

fructose-1,6-bisphosphatase 

fructokinase 

fructose-1,6-bisphosphate 

fructose-1,6-bisphosphatase aldolase 

fructose-2,6-bisphosphate 

fructose 6-phosphate 

 IX



 

FW 

G3P 

G3P DH 

G6P DH 

GBSS 

Glc-1-P 

Glc-6-P 

GWD 

Hepes 

hexose-P 

HK 

kDa 

mRNA 

MW 

NAD+ 

NADH 

NADP+ 

NADPH 

PAGE 

PEP 

PEP phosphatase 

P-ester 

PFK 

PGA 

PGI 

PGK 

PGM 

Pi 

PK 

PMSF 

PPi 

PPi-PFK 

PVP 

RNA 

fresh weight 

glyceraldehyde 3-phosphate 

glyceraldehyde 3-phosphate dehydrogenase 

glucose 6-phosphate dehydrogenase 

granule-bound starch synthase 

glucose 1-phosphate 

glucose 6-phosphate 

glucan water dikinase 

N-(2-hydroxyethyl)piperazine-N’-2-ethane sulfonic acid 

hexose phosphate 

hexokinase 

kilo Dalton 

messenger RNA 

molecular weight marker 

oxidised nicotinamide adenine dinucleotide 

reduced nicotinamide adenine dinucleotide 

oxidised nicotinamide adenine dinucleotide phosphate 

reduced nicotinamide adenine dinucleotide phosphate 

polyacrylamide gel electrophoresis 

phosphoenolpyruvate 

phosphoenolpyruvate phosphatase 

phosphate ester 

phosphofructokinase 

phosphoglyceric acid 

phosphoglucose isomerase 

phosphoglycerate kinase 

phosphoglucomutase 

inorganic phosphate 

pyruvate kinase 

phenylmethylsulfonylfluoride 

pyrophosphate 

pyrophosphate dependent phosphofructokinase 

polyvinyl pyrrolidone 

ribonucleic acid 

 X



 

Ru 1,5-P2 

Rubisco 

SDS 

SE 

SPS 

SSC 

SuSy 

TPI 

TPT 

Triose-P 

Tris/HCl 

UDP 

UDPglc 

UGPase 

UTP 

v/v 

w/v 

WT 

ribulose-1,5-bisphosphate 

ribulose-1,5-bisphosphate carboxylase/oxygenase 

sodium dodecyl sulfate 

standard error 

sucrose phosphate synthase 

saline-sodium citrate 

sucrose synthase 

triose phosphate isomerase 

triose phosphate transporter 

triose phosphate 

tris(hydroxymethyl)aminomethane 

uridine diphosphate 

UDP glucose 

UDP glucose pyrophosphorylase 

uridine triphosphate 

volume per volume 

weight per volume 

wild type 

 

 XI



 

1 General Introduction 
 

Tomato was one of the first plants to be genetically modified utilising recombinant DNA 

techniques. It might have been expected, therefore, that it would become a model system for 

the study of many aspects of plant biology. Although there have been some studies examining 

carbohydrate metabolism in tomatoes utilising molecular biological techniques (Ohyama et 

al., 1995; Klann et al., 1996; Chengappa et al., 1999; D’Aoust et al., 1999; Nguyen-Quoc 

et al., 1999), in recent years other species, such as Arabidopsis and potato, have been much 

more widely used. The reasons for this are that potato, for example, produces a large, 

commercially important storage organ, whilst Arabidopsis has a short life cycle and a fully 

sequenced genome. It has been demonstrated that the tomato fruit are an excellent model for 

the investigation of the regulation of sink activity and strength (Ho, 1996). 

Tomato is, however, interesting in its own right as it produces a fruit, which has a very 

different metabolism to either a leaf or a potato tuber. Leaves have the capacity to fix carbon 

through photosynthesis and, therefore, produce starch in the chloroplast directly. Potato tubers 

on the other hand rely on sucrose, which is exported from leaves via the phloem for a source 

of carbon. The sucrose has to be metabolised and transported over the amyloplast membrane 

before being converted to, among other things, starch. Tomato fruits initially contain 

chloroplasts that are photosynthetically active, but these differentiate to non-photosynthetic 

chromoplasts during the ripening process. They can, therefore, at least initially fix carbon, but 

they also receive carbon in the form of sucrose from the phloem. This raises several 

questions, not least about whether it is carbon fixed in the fruit or in the leaf that is most 

important for the growth and development of the fruit, and how this alters during fruit 

development. 

Because tomato is a very close relative of potato it is normally possible to repress the activity 

of specific enzymes using cDNA’s isolated from potato. Many cDNA’s from potato have 

been isolated for genes involved in carbohydrate metabolism, which could act as a resource 

for studies in tomato. In addition, the recent isolation of many expressed sequence tags (EST) 

from tomato allows the possibility of using genetic engineering techniques to repress the 

activity of many enzymes in tomato. As tomato is a diploid species that can be crossed, it is 

also possible to combine the reduction in activities of multiple enzymes simultaneously, 

something that is difficult in potato. 

The conversion of sucrose to starch has been relatively well studied in tomato fruits 

(Robinson et al., 1988; Yelle et al., 1988; Schaffer and Petreikov, 1997a). It has been 
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found that sucrose concentrations are lower than both glucose and fructose (Damon et al., 

1988; Klann et al., 1996; Schaffer and Petreikov, 1997a), whilst the wild type (WT) tomato 

relative Lycopersicon chemielewskii accumulates higher levels of sucrose than the other 

soluble sugars (Yelle et al., 1988). The reason for this accumulation of sucrose in the wild 

relative is due to a reduction in the activity of acid invertase (Klann et al., 1996) 

There are two aims for this work. The first one was to examine whether the Micro-Tom 

tomato cultivar was a suitable candidate to act as a model system for the study of 

carbohydrate metabolism in tomato fruit generally and the second to elucidate the role of 

three enzymes are thought to influence the accumulation of starch in early development stage 

of tomato fruits (cp-FBPase, AGPase and GWD protein) by antisense technique. 
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2 Review of literature 
 

2.1 Carbon Metabolism in Photosynthetic Tissue 

Life on our planet obtains its substance and energy through the process of photosynthesis- by 

which photosynthetic organisms use the electromagnetic energy of sunlight to synthesize 

carbohydrates and other cellular constituents from carbon dioxide and water. Photosynthesis 

can be broadly divided into two phases: a light phase in which the electromagnetic energy of 

sunlight is trapped and converted to ATP and NADH, and a synthetic phase in which the ATP 

and NADH thus generated are used in part for biosynthetic reduction of assimilated carbon 

dioxide (Calvin-Benson cycle; for review see Leegood, 1996). The overall reactions of the 

Calvin-Benson cycle can be described as the fixation of three molecules of carbon dioxide 

into triose phosphate (triose-P) with the incorporation of one Pi derived from hydrolysis of 

ATP. Light functions to regulate not only the source of reductant but also the synthetic and 

carbon reductive phases of photosynthesis and related biochemical processes of chloroplasts. 

In most plants the major products of photosynthesis are starch (formed in the chloroplasts) 

and sucrose (formed in the cytosol). Both of these products are synthesized from 

photosynthetically generated dihydroxyaceton phosphate (DHAP). In the first case, DHAP is 

converted into hexose phosphates (hexose-P) by the concerted action of aldolase and 

chloroplastic fructose-1,6-bisphosphatase (FBPase), these hexose-P are in turn converted to 

starch following the reactions of chloroplastic isoforms of phosphoglucoisomerase (PGI) and 

phosphoglucomutase (PGM) and those of ADP-glucose pyrophosphorylase (AGPase) and the 

starch polymerising enzymes starch synthase and starch branching enzyme. In sucrose 

synthesis DHAP, or a derivative thereof is transported to the cytosol where it is converted 

firstly to fructose 6-phosphate (Fru-6-P) through operation of cytosolic isoforms of aldolase 

and FBPase and then to sucrose via the route defined below. When the rate of photosynthesis 

exceeds the rate of sucrose export from the source tissue, sucrose initially accumulates in the 

vacuole, where it has little effect on the rate of triose-P export from the chloroplast. At 

saturation of the vacuolar sucrose capacity sucrose synthesis is inhibited and instead 

photosynthate is converted to starch, which is transiently stored in the chloroplast. The 

relative rates of sucrose and starch production in photosynthetically active tissues are 

maintained by tight and complex regulation patterns known as feedforward and feedback 

control mechanisms. 
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2.1.1 Feedforward control of photosynthesis 

At the start of the photoperiod the rate of photosynthesis increases. This results in an 

increased cytosolic DHAP concentration due to a greater rate of export from the chloroplast 

via the triose-P translocator in exchange for Pi (Heldt and Flügge, 1987), and therefore the 

cytosolic 3-PGA/Pi ratio rises (Gerhardt et al., 1987; Neuhause and Stitt, 1989; Stitt et al., 

1984b,c) (Fig. 1). These changes bring about an increase in the cytosolic concentration of the 

substrate of the cytosolic FBPase, Fru-1,6-P2, which is nearly in equilibrium with triose-P. 

Simultaneous with the increase in the levels of Fru-1,6-P2 is a rapid drop in the concentration 

of Fru-2,6-P2 (a potent inhibitor of cytosolic FBPase) which relieves inhibition of the enzyme 

and thus increases flux through the reaction it catalyes. A consequence of the increased flux 

through FBPase is an increase in the cytosolic concentration of glucose 6-phosphate (Glc-6-

P). This leads to an increased Glc-6-P/Pi ratio and causes potent allosteric activation of, one 

of the routes of sucrose synthesis that catalysed by, sucrose phosphate synthase (SPS) (Huber 

and Huber, 1992) resulting in an increased rate of sucrose synthesis. Furthermore the 

elevated Pi in the plasted results in an inhibition of the reaction catalysed by AGPase (Preiss, 

1988) and thus restricts the partitioning of photoassimilate towards starch. 

 

2.1.2 Feedback control of photosynthesis 

During the day, the rate of sucrose synthesis increases with the rate of photosynthesis. If the 

rate of sucrose production exceeds its rate of export from the cell, sucrose will accumulate. 

However, in response to feedback signals, probably related to the absolute level of sucrose, 

the rate of synthesis is decreased via inhibition of SPS (Stitt, 1990) (Fig. 2). This inhibition 

leads to increased cytosolic levels of hexose-P, which result in a large increase in the Fru-2,6-

P2 level leading to inhibition of cytosolic FBPase. The inhibition of cytosolic FBPase results 

in increased cytosolic levels of triose-P, which prevent export of chloroplastic triose-P. 

Consequently, more carbon is retained in the chloroplast and enters the pathway of starch 

synthesis. Studies on mutants of Clakia xantiana, which have reduced levels of cytosolic PGI, 

support this theory (Neuhause et al., 1989). These plants have a higher Fru-2,6-P2 

concentration than wild type (due to an increase in Fru-6-P concentration) and all of the above 

effects on metabolite concentrations were observed (Krukeberg et al., 1989; Neuhause et 

al., 1989). The reduced rate of sucrose synthesis additionally prevents Pi cycling, which has 

consequently been shown to result in an accumulation of 3-PGA in isolated chloroplasts 

(Heldt et al., 1977). This is probably due to the fact that phosphoglycerate kinase (PGK) is 

particularly sensitive to the falling concentrations of ATP that occur during these conditions. 
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The elevated chloroplastic 3-PGA/Pi ratio stimulates starch synthesis by the allosteric 

activation of AGPase (Preiss, 1988). 
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Figure 1: The role of Fru-2,6-P2 in feedforward control of sucrose synthesis.  

+ represents allosteric activation. Reactions shown are catalysed by the following enzymes 

(note in some instances multiple reactions are represented by a single arrow): 1, Rubisco; 2, 

chloroplastic PGK and chloroplastic TPI; 3, chloroplastic Fru-1-6-P2 aldolase; 4, 

chloroplastic FBPase; 5, transketolase, sedoheptolase-1,7-bisphosphatase aldolase, 

sedoheptolase-1,7-bisphosphatase, phosphopentoepimerase, phosphoriboisomerase and 

phosphoribulokinase; 6, triose phosphate transporter; 7, cytoslic PGK and cytosolic TPI; 8, 

cytosolic Fru-1-6-P2 aldolase; 9, cytosolic FBPase; 10, cytosolic PGI ; 11, cytosolic PGM , 

12, UGPase, 13, SPS, 14, sucrose phosphatase. 
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Figure 2: The role of Fru-2,6-P2 in feedback control of sucrose synthesis.  

+ represents allosteric activation, - represents allosteric inhibition.  Reactions shown are 

catalysed by the following enzymes (note in some instances multiple reactions are represented 

by a single arrow): 1, Rubisco; 2, chloroplastic PGK and chloroplastic TPI; 3, chloroplastic 

Fru-1-6-P2 aldolase; 4, chloroplastic FBPase; 5, transketolase; sedoheptolase-1,7-

bisphosphatase aldolase; sedoheptolase-1,7-bisphosphatase; phosphopentoepimerase, 

phosphoriboisomerase and phosphoribulokinase; 6, triose phosphate transporter; 7, cytoslic 

PGK and cytosolic TPI 8, cytosolic Fru-1-6-P2 aldolase; 9, cytosolic FBPase; 10, cytosolic 

PGI; 11, cytosolic PGM; 12, UGPase; 13, SPS; 14, sucrose phosphatase; 15, choroplastic PGI 

and chloroplstic PGM; 16, AGPase; 17, starch synthase and branching enzyme. 

 

In summary, the rate of carbon export from the chloroplast and therefore ultimately the rate of 

sucrose synthesis depends on a balance between feedforward mechanisms that decrease Fru-

2,6-P2 (and activate SPS) and feedback mechanisms that increase Fru-2,6-P2 (and inhibit 

SPS). Similarly the accumulation of starch is a function of the relative activities of the 

enzymes which synthesize and degrade it. In leaves, starch is accumulated during the day and 

is nocturnally degraded to provide carbohydrate required for various anabolic reactions (Beck 

and Zieger, 1989; Trethewey and Smith, 2000). The metabolism of transitory starch is 

dynamic and regulation of this process results in alternating periods of net synthesis and 

degradation (Stitt and Heldt, 1981). Degradation of transitory starch is initiated by α-

amylases at the surface of starch granule (Beck and Zieger, 1989; Trethewey and Smith, 

2000), and involves the co-operative attack of phosphorolytic and hydrolytic activities (Steup 
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et al., 1983). The final starch degradation products glucose or triose-P are exported into the 

cytosol (Trethewey and ap Rees, 1994a,b) where they are metabolised to sucrose. 

 

2.2 Carbohydrate Allocation from photosynthetic “source” to heterotrophic “sink 

Tissues” 

In photosynthetic tissues sucrose is predominantly exported from cells, most probably by 

facilitated diffusion and subsequently taken up by the phloem complex by a specific 

sucrose/H+ co transport mechanism (Riesmeier et al., 1994; Frommer and Sonnewald, 

1995). Once in the phloem complex sucrose is transported to cells in heterotrophic “sink” 

tissues. At least two distinct classes of sink tissues can be differentiated: (i) “utilisation sinks”, 

highly metabolically active, rapidly growing tissues like meristems and immature leaves, and 

(ii) “storage sinks”, such as tubers, seeds, roots or fruits which deposit imported 

carbohydrates as storage compounds (e.g. starch, sucrose, lipid or protein) (Sonnewald and 

Willmitzer, 1992). However, the route of carbon transport to these and the mechanisms by 

which the different types of sink obtain carbon in the form of sucrose is the same so they will 

be considered together for the purposes of this report. Sucrose obtained through translocation, 

by sink tissues, can enter a cell directly via the symplasm (see Fig., 3A) or the apoplasm 

(whereby it is transported by specific sucrose or, following cleavage to its component 

hexoses, monosaccharide transporters (see Fig., 3B). In many plants the nature of the 

predominantly used route of sucrose unloading is heatedly debated. Several studies using 

asymmetrically labelled sucrose suggest that carbon obtained by heterotrophic cells moves 

primarily through the symplastic route and is not cleaved to glucose and fructose during 

transport. It seems likely that cells of many species receive most of their sucrose by such as 

route (Patrick, 1990; Tegeder et al., 1999; Lalonde et al., 1999). However, in certain tissues 

it is clear that sucrose must be supplied through the apoplasm. This is certainly the case in 

developing seeds in which protoplasmic concentrations between maternal and embryonic 

tissue simply do not exist. In potato tuber recent studies using a combination of confocal 

microscopy, autoradiography and biochemical analyses have provided definitive evidence that 

unloading in the potato tuber is predominantly apoplastic during stolon elongation and 

becomes primarily symplastic during initial phases of tuberisation (Viola et al., 2001). This is 

in direct contrast to the situation observed in the developing tomato fruit in which sucrose 

unloading is predominantly symplastic during early, starch accumulating, stages of 

development (Damon et al., 1988; Ruan and Patrick, 1995) and apoplastic during later, 

hexose accumulating stages (Patrick, 1990; Ruan and Patrick, 1995). The amount of 
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sucrose unloaded into tomato fruits differs with the age (Walker and Ho, 1977) and 

developmental stage of fruit. Being high during early periods of high growth and maintained 

albeit it at a much reduced level during the later phases of slow growth (Walker and Ho, 

1977). It has been suggested that sucrose unloading may be controlled, at least in part, by the 

activity of the sugar transporters which may in turn be influenced by the activity of the 

enzymes of sucrose cleavage within the sink tissues (D’Aoust et al., 1999; N’tchobo, 1998). 

Definitive proof in support of this suggestion is however still lacking and it is important to 

note that although the transport mechanism of the much studied potato sucrose transporter 

SUT1 has been characterised by expression in Xenopus oocytes (Boorer et al., 1996). Its 

precise role in planta has yet to be fully elucidated. Since this is one of the best characterized 

transporters it therefore follows that much work is required before the factors controlling the 

intracellular movement of sugars can be fully resolved. 

 

2.3 Mobilisation of Sucrose in sink tissues 

Sucrose delivered to the sink tissue can be cleaved in one of three ways (i) in the apoplast, as 

described above, by the action of an acid invertase or in the cytosol by either (ii) alkaline 

invertase or (iii) sucrose synthase (SuSy). As indicated in Fig., 3A and B the primary route of 

sucrose cleavage mirrors the mechanism of unloading with invertase activities being high in 

during the early stages of tuber inititation whilst SuSy predominates in the developing tuber 

(Appeldoorn et al., 1999), whereas the opposite is true for the developing tomato fruit 

(Damon et al., 1988; Robinson et al., 1988; DemnitzKing et al., 1997). The products of 

sucrose cleavage enter into metabolism by the concerted action of fructokinase (FK) and 

UDP-glucose pyrophosphorylase (UGPase) (Zrenner et al., 1993) or FK and hexokinase 

(HK) (Smith et al., 1993; Veramendi et al., 1999) in the case of the SuSy and invertase 

pathways, respectively. Hexose phosphates produced by these pathways are then equilibrated 

by the action of cytosolic isoforms of PGI and PGM. Hexose phosphates are then partitioned 

between starch synthesis within the amyloplast and glycolytic pathway of the cytosol (and 

plastid). 
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Figure 3: The predominant route of sucrose unloading and subsequent mobilization.  
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(A) Symplasmic unloading. (B) Apoplasmic unloading. The numbers denote the following 

enzymes: 1, Sucrose transporter; 2 and 3, Hexose transporter(s); 4, Invertase; 5, SuSy; 6, 

UGPase; 7, HK; 8, FK; 9, PGM and 10, PGI. The thickness of the arrow indicates the 

predominant flux. 



 

 

2.4 Uptake of carbon into amyloplasts 

The form in which carbon crosses the amyloplast membrane and enters into starch 

biosynthesis has been the subject of considerable debate. Categorical evidence that carbon 

enters the amyloplasts of a wide range of species, including the Solanaceous species tobacco 

and potato, in the form of hexose monophosphates (or nucleosides) rather than triose 

phosphates was provided by determination of the degree of randomisation of radiolabel in 

glucose units isolated from starch following incubation of various tissues with glucose 

labelled at the C1 or C6 position (Keeling et al., 1988; Viola et al., 1991; Hatzfeld and Stitt, 

1990; Fernie et al., 2001). These data are in agreement with the observation that many 

heterotrophic tissues lack plastidial FBPase activity (Entwistle and ap Rees, 1990) and the 

failure to find expression of plastidial FBPase in potato tubers (Kossmann et al., 1992).  

Although it is clear that triose phosphates are not the substrate taken up by amyloplasts to 

support starch synthesis there has been considerable debate as to whether Glc-1-P (Naeem et 

al., 1997; Tetlow et al., 1994; Tyson and ap Rees, 1988) or Glc-6-P (Schott et al., 1995; 

Wischmann et al., 1999) is the preffered substrate for uptake. Recently, particularly in 

cereals, the uptake of cytosolically produced ADP-glucose has also been much discussed 

(Pozeuta-Romero et al., 1991a,b; ap Rees, 1995). The results of many recent transgenic and 

immunolocalisation experiments have indicated that the substrate for uptake is most probably 

species specific. Clear evidence for the predominant route of carbon uptake in the tuber being 

in the form of both transgenic experiments (Tauberger et al., 2000) and the recent cloning of 

a Glc-6-P transporter (Kammerer et al., 1998). Whilst a wealth of experimental evidence 

indicates that in barley, wheat, oat and possibly maize the predominant form of uptake is as 

ADP-glucose (Denyer et al, 1996; Thorbjornsen et al., 1996b; Shannon et al., 1998). In 

tomato the form in which carbon crosses the amyloplast membrane is contentious. Studies 

comparing the ratio of ADP-glucose to UDP-glucose (Beckles et al., 2001a) and comparing 

the activity of AGPase that is confined to the plastid with that of other enzymes known to be 

confined to the plastid (Beckles et al., 2001b) suggest the absence of a cytosolic AGPase in 

this species. However, these are in contradiction to earlier immunolocalisation studies using 

antisera raised against AGPase that suggested the presence of an extra-plastidiary isoform of 

the enzyme in tomato fruit (Chen et al., 1998). 
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2.5 The synthesis of starch 

Following uptake of carbon into the amyloplast, starch synthesis proceeds variously via (i) 

plastial PGM and plastidial AGPase, (ii) only via plastidial ADP-glucose or (iii) via no 

intermediate steps prior to the polymerising reactions of starch synthases and branching 

enzymes (Smith et al., 1997). The involvement of plastidial enzymes upstream of starch 

synthase being determined by the route of carbon import (see Fig., 2). The first reaction of 

heterotrophic plastidial starch metabolism within both the potato tuber (Tauberger et al., 

2000), the pea embryo (Hill and Smith, 1991) and most probably the tomato fruit also is the 

interconversion of Glc-6-P and Glc-1-P catalysed by plastidial PGM. Compelling evidence 

for the involvement of this enzyme in pea starch synthesis was provided by studies on the 

rug3 mutant which revealed that this locus encodes a plastidial PGM and that mutation at this 

locus results in a severe depletion of starch levels in pea embryos (Harrisson et al., 1998). 

The next reaction on the path to starch synthesis, that catalysed by plastidial AGPase has 

received much attention for a number of years. This reaction is often considered to be the first 

committed step of starch synthesis it utilizes ATP and produces pyrophosphate (PPi), which is 

then hydrolysed by a specific pyrophosphatase to yield 2Pi. The hydrolysis of PPi serves to 

remove the AGPase reaction away from equilibrium. As discussed above, in many species 

including pea embryos, soybean cell suspension cultures and cauliflower buds AGPase 

appears to be located exclusively in the plastid (Macdonald and ap Rees, 1983; Journet and 

Douce, 1985; Smith, 1988) and this isoform thus plays an importance role in mediating the 

flux of carbon to starch. In keeping with this statement the removal or severe reduction of the 

AGPase activity in Arabidopsis or potato resulted in a dramatic reduction in the starch level in 

all tissues (Lin et al., 1988a,b; Müller-Röber et al., 1992).  

Plant AGPases are multisubunit proteins and expression studies in which the potato tuber 

enzyme was expressed in E.coli revealed that maximal activity can only be achieved on 

expression of both the large and small subunit (Iglesias et al., 1993). Moreover they are 

allosterically regulated, being activated by 3-PGA and inhibited by Pi (Preiss, 1988), and 

there is clear evidence that changes in these metabolites are involved in the regulation of 

starch synthesis within leaves allowing the co-ordination of carbon assimilation, sucrose 

synthesis and starch synthesis (Stitt, 1997). The AGPase from potato tuber resembles that 

found in leaves with respect to its kinetic properties (Sowokinos and Preiss, 1982; Ballicora 

et al., 1995). There is also increasing evidence of a strong correlation between the 3-PGA and 

ADP-glucose levels and the rate of starch synthesis within potato tubers under a wide range of 

conditions (Geigenberger et al., 1997; 1998). Whilst there have been few direct studies of 
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the allosteric properties of AGPase from tomato it is likely that these will be similar to those 

found in potato. 

 

Whilst the involvement of the above enzymes in starch biosynthesis are strictly species 

dependent, the starch polymerising activities are ever present and responsible for the 

formation of the two different macromolecular forms of starch, amylose and amylopectin. 

Starch synthases catalyse the transfer of the glucosyl moiety from ADP-glucose to the non-

linear end of an α-1,4 glucan. The various starch synthases are able to extend 1,4-glucans in 

both amylose and amylopectin. At least four different classes of starch synthases exist, 

designated as GBSS (granule-bound starch synthase), SSI, SSII and SSIII which vary greatly 

in molecular weight, need for primers, substrate affinities and antigenic properties. It seems 

likely that most plant species contain the four different classes of starch synthase, however, 

the extent to which they contribute in vivo probably differs considerably between species 

(Denyer et al., 2001). Starch branching enzymes are responsible for the formation of α-1,6 

branch points within amylopectin. Although there are more than two isoforms present in most 

plant species, all isoforms can be separated into two classes – most simply designated as A 

and B forms (Burton et al., 1995). The precise mechanism by which this is achieved is 

unknown, however it is thought to involve cleavage of a linear α-1,4 linked glucose chain and 

reattatchment of the chain to form an α-1,6 linkage (Kossmann and Lloyd, 2000). The 

combined action of starch synthases and branching enzymes play an important role in 

determining the structure of starch which will be described in detail below. Other enzymes of 

starch synthesis and degradation are less well understood. Disproportionating enzyme (D-

enzyme) is able to synthesise α-1,4-glucans from maltose and has been suggested to be a 

candidate as a source of the malto-oligosaccharide primers required for starch synthesis. 

However several lines of evidence suggest this is unlikely to play a major role in starch 

synthesis in vivo. The maltose present in plant tissues is almost exclusively derived from 

starch (Kossmann and Lloyd, 2000) and transgenic plants exhibiting reduced D-enzyme 

expression had no effect on starch content (Takaha et al., 1998). Furthermore, recent studies 

on an Arabidopsis mutant deficient in D-enzyme reveal a minor decrease in starch under 

certain conditions, however, they indicate that this enzyme primarily plays a role in the 

removal of malto-oligosaccharides during starch degradation (Critchley et al., 2001). 

Recent studies of 14-3-3 proteins within starch granules of Arabidopsis chloroplasts (Sehnke 

et al., 2001) and of an AGPase from barley leaves (Rodriguez-Lopez et al., 2000) indicate 

that enzymes other than those classically considered to constitute the starch synthetic pathway 
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may also contribute to this process. However, there is no evidence as yet for a physiological 

role for either of these proteins within plant systems. 

 

2.6 Starch degradation 

Starch is synthesised as a store for carbon. In leaves it is manufactured and degraded over a 

24 hour period, being synthesised during the light period and degraded in the dark period; in 

storage organs, however, it can be stored for years, or even decades, prior to its mobilisation. 

Many enzymes have been isolated which can degrade starch yet, despite this, it is only 

recently becoming apparent which isoforms are actually important in this process. This is 

because many of the enzymes which can degrade starch (β-amylase, starch phosphorylase, α-

amylase) are present as multiple isoforms, some of which are present within the plastid, others 

being extra-plastidial.  

Recently two papers have been published showing unequivocally that two different enzymes 

are involved in mobilising starch in leaves. The first was mentioned above as being an 

Arabidopsis mutant affected in D-enzyme activity (Critchley et al., 2001). The second was an 

isoform of β-amylase in potato that was repressed using an antisense construct (Scheidig et 

al., 2002). Leaves from both of these plants did not degrade as much starch during the dark 

period as the controls, demonstrating a block in starch degradation. 

In order to try and identify enzymes involved in starch degradation there have been several 

screens of mutant Arabidopsis populations to identify plants that do not degrade starch upon 

being shaded. Many mutants have been isolate and have been named sex mutants as they 

show a starch excess phenotype (Caspar et al., 1991). Two of these showing such a 

phenotype (sex1 and sex4) have been characterised in more detail. The sex1 mutant will be 

discussed below in a section on starch phosphorylation. The mutation in sex4 has not been 

identified, but the mutant plant has been shown to be deficient in a plastidial isoform of α-

amylase (Zeeman et al., 1998). It is known, however, that the mutation does not lie in the 

gene coding for this α-amylase as that is situated on chromosome 1, while the mutation lies 

on chromosome 4 (Dr. Samuel Zeeman, University of Berne, personnel communication). 

More work needs to be performed, therefore, to identify the genetic lesion. 

 

2.7 Starch phosphorylation 

Phosphate residues have often been associated with starch granules. The nature of these 

residues is, however, dependant on the species. Starch from potato tuber, for example, 

contains large amounts of phosphate that is covalently bound either to the C3 or C6 positions 
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of glucose residues. That from cereal endosperm contains almost no covalently bound 

phosphate, but large quantities of phospholipids which are associated with the granule. In this 

section I will concentrate solely on the covalently bound phosphate. 

For many years it was speculated that covalently bound phosphate becomes incorporated into 

starch either through the action of starch phosphorylase, or AGPase (Kossman and Lloyd, 

2000; Lloyd et al., 1999). The reason for this was that it no enzyme had been isolated which 

could phosphorylate starch directly. Recently however this has been accomplished. The 

cDNA coding for this protein was isolated using an early proteomic approach. It is known that 

many enzymes bind to starch granules, and that many of these are involved in starch 

metabolism. It was hypothesised that if one could identify the cDNA’s coding for previously 

unidentified proteins which bind to starch granules they may well also be involved in starch 

metabolism. To achieve this, starch-granule-bound proteins were isolated, antibodies raised 

against them and these antibodies were used to screen a potato cDNA library. One of the 

clones isolated coded for a protein which is approximately 160 kDa in size. This protein was 

repressed in potato using an antisense construct, and two phenotypes were noted. The first 

was that the amount of covalently bound phosphate in the starch was greatly reduced, and that 

the plants were also inhibited in starch degradation in both leaves and tubers (Lorberth et al., 

1998). It was not demonstrated for several years, however, that the protein could actually 

phosphorylase glucans, and therefore at the time it was called R1. To show that the R1 protein 

was indeed responsible for phosphorylating starch it was purified to homogeneity. It was then 

incubated with starch and various potential phosphate donor molecules. The amount of 

phosphorylation was measured after incubation and it was shown that the protein could 

indeed phosphorylate starch, and that it required ATP to do so. It was further shown that the 

mechanism of phosphorylation was a dikinase rather than a kinase. This means that the γ-

phosphate of ATP is released as inorganic phosphate, while the β-phosphate is the one 

transferred to the glucan (Ritte et al., 2002). The protein is, therefore, a glucan water dikinase 

and has been renamed as GWD (Ritte et al., 2003).  

Other evidence has demonstrated that the GWD protein has a similar effect in other species. 

This comes from the identification of the starch accumulating sex1 mutant as being mutated in 

an Arabidopsis homolog of the GWD protein (Yu et al., 2001). It was also found that the 

phosphate content of the starch in the mutant Arabidopsis leaves was greatly reduced. This 

raises the question, however, as to why starch phosphorylation appears to affect starch 

degradation also. There is no clear answer to this. It may be that enzymes which degrade 

starch need covalently bound phosphate residues to act, or that they interact with the GWD 
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protein in some way during the degradation process. The possibility of answering these 

questions in the future are, however, now greater because of the identification of the function 

of the GWD protein 

 

2.8 Glycolysis 

Hexose phosphates are not only precursor (and products) of starch synthesis (and degradation) 

but also important substrates for glycolysis. Respiratory carbon metabolism which is an 

essential provider of both the energy and the required precursors to support biosyntheisis in 

the heterotrophic cell couples the partial oxidation of glucose to pyruvate during gylcolysis to 

the complete oxidation of pyruvate to carbon dioxide during operation of the Krebs cycle. In 

plants, oxidation of carbohydrate via glycolysis provides the majority of substrate for the 

operation of the Krebs cycle – with the oxidative pentose phosphate pathway, protein and 

lipid only making minor contributions to respiration (ap Rees, 1980; Holtman et al., 1994). 

The glycolytic chain of reactions is often split into two parts (for a review see Hopkins, 

1995), the first part comprising of the set of reactions by which substrates of glycolysis are 

converted to the common intermediate Fru-6-P and the second part comprising of steps 

following on from the conversion of Fru-6-P to Fru-1,6-P2 by the action of either ATP- or 

PPi-dependent PFK. The interconversion of Fru-6-P to Fru-1,6-P2 is often said to be the first 

committed step of glycolysis. In plants this step is very tightly regulated and is complicated 

by the presence of three enzymes involved in its interconversion the ATP-PFK which catalyse 

the production of Fru-1,6-P2 and FBPase and the PPi-PFK (which is freely reversible) which 

catalyse the production of Fru-6-P. Moreover, the interconversion of Fru-6-P to Fru-1,6-P2 in 

the cytosol is strongly influenced by the concentration of the signal metabolite Fru-2,6-P2 

which potently inhibits the FBPase and activates PPi-PFK (Stitt, 1990). Following the 

phosphorylation of Fru-6-P, the resultant bisphosphate is cleaved to form the triose-P DHAP 

and G3P by the action of aldolase. The triose-P are readily equilibrated by triose phosphate 

isomerase (TPI), whilst G3P subsequently converted to 1,3-BPGA, 3-PGA, 2-PGA, PEP and 

pyruvate via the actions of glyceraldehyde 3phosphate dehydrogenase (G3P DH), (PGK), 

phosphoglycerate mutase, enolase and pyruvate kinase (PK) respectively. 

PEP can alternatively be brought into the Krebs cycle by a different route in which it is 

carboxylated by the action of PEP carboxylase yielding oxaloacetate which is subsequently 

reduced to malate by the action of malate dehydrogenase which is then taken up into the 

mitochondrion. That said the major link between glycolysis and the Krebs cycle is provided 

by the uptake of pyruvate and its subsequent decarboxylation and oxidation and finally 
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condensation of the resultant acetyl group with CoA to form acetyl CoA is all carried out by 

the large multienzyme complex known as pyruvate dehydrogenase (Bryce and Thornton, 

1996; Hopkins, 1995). Acetyl CoA production by the pyruvate dehydrogenase complex thus 

fuels the operation of the Krebs cycle which in conjuncture with the respiratory electron 

transport chain provides for the majority of the energy requirements of the heterotrophic cell 

in addition to providing carbon skeletons for the biosynthesis of a wide range of primary and 

secondary metabolites and being an important source of reductant for the cell. 

 

2.9 Fruit metabolism 

Whilst the preceding chapters have largely considered organs as either photosynthetic or 

heterotrophic the situation in fruits is somewhat more complex. The tomato fruit is no 

exception to this generalisation with numerous studies investigating source sink interactions 

between leaves and fruits and the effect of crop yields of manipulating leaf photosynthetic 

activity by altering photon flux density, temperature, carbon dioxide concentration, nutrient 

and water supplies (for a review see Ho and Hewitt, 1986). However, there are many parts 

of the tomato plant other than the leaves that contain chlorophyll and capture light energy. Yet 

the photosynthetic contribution of these tissues to the maintenance and growth of the plant 

have received scant attention. The work described in this thesis is intended to investigate the 

impact of altering the activities of three enzymes associated with starch metabolism on the 

development and metabolism in the fruit. Whilst the enzymes involved in photosynthetic and 

heterotrophic starch synthesis are well known it is clear that their regulation and precise 

metabolic function within the fruit is not fully understood. The application of antisense 

technology approaches targeted at AGPase, FBPase and GWD and biochemical analysis of 

fruits, taken along a developmental axis, from the resultant transformant lines may well allow 

a better understanding both of the regulation of this important storage pathwaye in the fruit 

and of the relative importance of photosynthesis during early stages of fruit development.  
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3 Material and Methods 

 
3.1  Chemicals 

General chemicals were obtained from Boehringer Mannheim (Mannheim), Sigma Chemical 

company (St.Louis, Missouri, USA) or Merck (Darmstadt). 

Bactotrypton (= Select Peptone 140), Select Yeast Extract, Meat Peptone, and Select Agar 

were obtained from GibcoBRL Life Technologies GmbH (Paisley, Scotland, UK). Antibiotics 

were purchased from Sigma Chemical company (St. Louis, Missouri, USA) or Boehringer 

Mannheim (Mannheim) except for Betabactyl® (Smithkline Beecham Pharma, Munich).  

Restriction enzymes and buffers were obtained either from Boehringer Mannheim 

(Mannheim) or from New England Biolabs (Beverly, Massachusetts, USA), Ready-to-GoTM 

T4-DNA-Ligase was brought from Pharmacia Biotech (Freiburg). 

[α-32P]dCTP (110 TBq mmol-1) were purchased from Amersham Buchler (Braunschweig, 

Germany) 

The starch determination kit (UV method; Cat. No. 207 748) and, except where noted 

otherwise, all biochemical enzyme purchased from Boehringer Mannheim (Mannheim). 

Adenine and uridine nucleotides, NAD+, NADH, NADP+, fructose 6-phosphate, glucose 6-

phosphate, glucose 1-phosphate, phosphoenolpyruvate and 3-phosphoglycerate were obtained 

from Boehringer Mannheim (Mannheim). All other substrates were purchased from Sigma 

Chemical company (St. Louis, Missouri, USA). 

Rainbow TM coloured protein molecular weight marker (14 300-220 000 Da) was purchased 

from Amersham Buchler (Braunschweig), all other chemical for PAGE and protein 

determination were obtained from BioRad (Richmond, California, USA). 

The peptide antibody recognising the GWD protein was kindly provided by Dr. James Lloyd 

Plant Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark. 

 

3.2 Vectors and Bacterial Strains 

3.2.1 Vectors 

pBluescript II SK+/- Stratagene, La Jolla, CA, USA.

pBluescript II KS+/- Stratagene, La Jolla, CA, USA.

pBinAR (Höfgen and Willmitzer, 1990).
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3.2.2 Bacterial  

Strains Escherichia coli 

Xl-1 blue Startagene, La Jolla, CA, USA (Bullock et al., 1987).

DH5α Gibco BRL, Gaithersburg, USA (Raleigh et al., 1989).

 

Strains Agrobacterium tumefaciens 

GV2260 (Deblaere et al., 1985).

GV3101 (Koncz und Schell, 1986).

pBluescript Plasmids which include fragment cDNA’s encoding for FBPase, AGPase and 

GWD were kindly provided by Dr. Jens Koßmann, Max-Planck Institute of Molecular Plant 

Physiology, Golm. 

Aqueous plasmid stocks were kept at -20 °C prior to use. Bacterial glycerol stocks were 

generated as described Sambrook et al., 1989 and stored at -80°C. 

 

3.3 Transformation and Cultivation of Bacteria 

Competent E.coli XL1 Blue cells were prepared and transformed by heat-shock as described 

by Hanahan (1983). The cells were grown at 37°C on YT-medium plus appropriate selective 

antibiotic as described by Sambrook et al., (1989). 

Competent Agrobacterium Tumifaciens cells were prepared according to Höfgen and 

Willmitzer (1990) and transformed by electroporation according to Miller et al., (1988). The 

cells were grown at 28°C on YEP-medium plus appropriate selective antibiotic according to 

Vervliet et al., (1975). 

 

3.4 DNA manipulations 

DNA manipulations were performed essentially as described by Sambrook et al., 1989. For 

construction of the cp-FBPase antisense gene, cDNA from potato (Kossmann et al., 1992) 

was digested with the restriction enzymes ASP718 and BamH1 resulting in two DNA 

fragments, one of approximately 800bp ant the other of 400bp. The 800bp fragment was 

isolated from an agarose gel using a commercially available kit (Qiagen), and was ligated in 

antisense orientation with respect to the patatin B33 promoter (Rocha-Sosa et al., 1989) in 

the ASP718/BamH1 sites of the plant transformation vector pBinARB33 producing the vector 

pBinB33cp-FBPase. 

For construction of the AGPase antisense gene, cDNA from potato (Müller-Röber et al., 

1990) was digested with the restriction enzymes EcoR1 and SmaI resulting one DNA 
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fragment approximately 1.6kp. The 1.6kp fragment was isolated from an agarose gel using a 

commercially available kit (Qiagen), and was ligated in antisense orientation with respect to 

the CaMV 35S promoter in the EcoR/SmaI sites of the plant transformation vector 

pBinAR35S (Höfgen and Willmitzer, 1990), producing the vector pBin35S AGPase. 

For construction of the GWD antisense gene, cDNA from potato (Kossmann et al., 1991) 

was digested with the restriction enzymes ASP718 and BamH1 resulting one DNA fragment, 

approximately 1.9kp. The 1.9kp fragment was isolated from an agarose gel using a 

commercially available kit (Qiagen), and was ligated in antisense orientation with respect to 

the CaMV 35S promoter in the ASP718/BamH1 sites of the plant transformation vector 

pBinAR35S (Höfgen and Willmitzer, 1990), producing the vector pBin35S GWD. 

 

3.5 Cloning  

Preparation and restriction of plasmids, cloning, and gel electrophoresis were performed 

according to Sambrook et al., (1989). Ligations were performed using the Ready-to-GoTM 

T4-DNA-Ligase system (Pharmacia Biotech; Freiburg) according to the manufacturer's 

protocol. DNA fragment were eluted from the gel and purified using Microcon Columns 

(Amicon Inc.; Bevery, Massachusetts, USA) according to the manufacturer's protocol. 

 

3.6 Plant Material  

Wild-type (WT) Micro-tomato (Lycopersicon esculentum cv. Micro-Tom) seeds were a kind 

gift of Dr. Avraham Levy (The Weizmann Institute of Science, Rehovot, Israel), whilst seeds 

of wild-type Moneymaker (Lycopersicon esculentum L. cv. Moneymaker) were kindly 

provided by Dr. Jens Koßmann, Max-Planck Institute of Molecular Plant Physiology, Golm. 

Seeds were sown individually in small pot (5cm diameter) in the case of Micro-Tom and in a 

big pot (10 cm diameter) in the case of Moneymaker in growth chamber. After two weeks the 

plants were transported into a glasshouse and grown illumination (16h light: 8h dark regime 

(approximately 250µmol photons m-2 sec-1) at 22°C temperature (20-24°C) with a relative 

humidity of 60-70%. Individual flowers were tagged at anthesis to accurately follow fruit ages 

through development, with only ten fruits per plant being allowed to develop. 

 

3.7 Sampling of fruits  

Micro-Tom and Moneymaker fruits were harvested at five days intervals between 20-60 DAF 

in the case of Micro-Tom and 25-70 DAF in the case of Moneymaker, which covered the 

transition from green to fully ripe red fruit. Harvested fruits were cut in two parts with a 
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scalpel blade and the pericarp was separated from the placental tissue. In the case of Micro-

Tom the placenta was then further separated from the developing seeds and jelly, and the both 

pericarp and placental tissues were frozen separately in liquid nitrogen, but in the case of 

Moneymaker only the pericarp was immediately frozen in liqued nitrogen. All samples were 

kept at –80°C until use. 

 

3.8 Transformation and Cultivation of tomato 

Transformation of three antisense construct (αcp-FBPase, α-AGPase and α-GWD protein) 

has been carried out using (Lycopersicon esculentum L. cv. Moneymaker) instead of 

(Lycopercicon esculentum cv. Micro-tom) which can not be used for transformation of these 

antisense construct. 

Transformation of tomato (Lycopersicon esculentum cv. Moneymaker) plants was achieved 

by Agrobacterium Tumifaciens mediated gene transfer following the method of Rocha-Sosa 

et al., (1989). The selection of transgenic plants was performed on medium containing 

Kanamycin (Dietze et al., 1995). 

 

3.9 Selection of plants with reduced cp-FBPase AGPase and GWD protein 

Plants were maintained in tissue culture on MS-Medium (Murashing and Skoog, 1962) 

containing 2% (w/v) sucrose, 0.8% (w/v) Select Agar and 125µg/ml Ticarcillin 

Disodium/Potassium Clavulanate (Duchefa) (Timentin) under the following conditions: 22°C, 

56-70% relative humidity, 3000 Lux, and a 16h light, 8h dark regime. Regenerates were 

screened for expression of the transgene by determining enzyme activity in the case of α-cp-

FBPase and, by determining enzyme activity as well as starch content in the case of α-

AGPase and by determining western blot analysis in the case of α-GWD protein. 

 

3.9.1 Selection of plants with reduced cp-FBPase activity 

In order to select plants with reduced cp-FBPase activity, 25 days old green fruits were 

harvested from sixty independent transgenic lines growing in soil. Soluble proteins were 

extracted from the pericarp of all lines and FBPase activity was determined in all of them. 

Three lines (#19, #33 and #34) showed significant reduction in total FBPase activity and were 

chosen for further study. Seeds from these plants were sterilized and germinated on MS media 

(Murashige and Skoog, 1962) containing 50mg l-1 kanamycin. Seeds that were able to grow 

on this media were presumed to contain the transgene and were planted in soil for further 
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analysis. In those fruits showing reduced FBPase activity the amount of the cp-FBPase was 

examined using western blot analysis. 

 

3.9.2 Selection of plants with reduced AGPase activity 

In order to select plants with reduced AGPase activity, 25 days old green fruits were 

harvested from forty independent transgenic lines growing in soil. Soluble proteins were 

extracted from the pericarp of all lines and AGPase activity was determined in all of them. 

Three lines (#2, #7 and #11) showed reductions in AGPase activity as well as in starch 

content and were chosen for further study. Seeds from these plants were sterilized and 

germinated on MS media (Murashige and Skoog, 1962) containing 50mg l-1 kanamycin. 

Only seeds of transgenic lines (#7) were able to grow on this media, while seeds both lines 

(#2 and #11) were not able to grow in this media, therefore, both seeds from WT control and 

all of transgenic lines were sown directly in soil for further analysis.  

 

3.9.3 Selection of plants with reduced GWD protein levels 

In order to select plants with reduced GWD expression, plant leaves were kept for 72 hour in 

darkness. Leaf blades in different stages of development were collected, and de-stained in 

80% (v/v) ethanol at 80°C. After chlorophyll was removed, the leaf blades were stained in 

lugol’s solution for the absence or presence of starch. All plants with lowered levels of GWD 

expression displayed a starch excess phenotype in leaves. Out of 30 independent transgenic 

plants screened only three lines (#16, #17 and #20) displayed a starch excess phenotype in 

leaves. In these lines the level of GWD expression was examined using western blot analysis. 

Seeds from all of these transgenic lines were sterilized and germinated on MS media 

(Murashing and Skoog, 1962) containing 50mg l-1 kanamycin. Seeds that were able to grow 

on this media were presumed to contain the transgene and positive transformants were planted 

in soil for further analysis.  

 

3.10 Western Blot Analysis 

Soluble proteins from the pericarp of 25 DAF old tomato fruits and leaves were denatured in 

buffer containing SDS Laemmli (1970). 25µg of soluble were separated by SDS-PAGE on 

either a 8% gel in the case of GWD protein or 10% gel in the case of FBPase and AGPase. 

The proteins were blotted at 4°C according to Khyse-Andersen (1984) on a nitrocellulose 

membrane (BA 85, 0.45µm; Schleicher und Schüll, Dassel) using a semi-dry electroblotting 

apparatus (MultiphorII, LKB, Bromma, Sweden). The blots were developed with rabbit serum 
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followed by alkaline phosphatase-conjugated goat anti-rabbit serum (Amersham) according to 

Bhattacharyya et al. (1990). 

 

3.11 RNA (Northern) Blot Analysis  

Total RNA was isolated from frozen developing tomato fruits by a modification of the 

method of Hughes and Galau (1988). Plant tissue (5 to 10g) was ground to a fine powder in 

liquid nitrogen and sprinkled into 55 ml of ice-cold buffer (200mM Tris-HCL, pH 8.5, 

300mM LiCl, 10mM EDTA, 1,5% (w/v) lithium dodecylsulfate, 1% (w/v) sodium 

deoxycholate, 1% (v/v) Nonidet P-40, 5% (w/v) insoluble PVP, 90mM β-mercaptoethanol, 

10mM DTT, 0,5% (v/v) DEPC) and stirred to ensure immediate contact with the buffer. After 

stirring for 5 to 10 min, 46 ml of 3M ammonium acetate was added, and the extract was spun 

at 2500 g for 10 min at 4°C. RNA was precipitated from the supernatant with one-tenth 

volume of isopropanol and was centrifuged at 2500 g for 10 min at 4°C. The pellet was 

resuspended in 5 to 10 ml of H2O and purified by phenolchloroform extraction; this process 

was repeated until the preparation appeared clean. RNA was precipitated with ¼ volume of 10 

M LiCl on ice for 2 to 12 hours, and then centrifuged at 2500 g for 10 min at 4°C. The RNA 

pellet was re-suspended in DEPC-water. 

40 µg RNA was denatured in 40% (v/v) formamide, separated on a 1.5 % (w/v) agarose gel 

containing formaldehyde (Lehrach et al., 1977) and blotted onto nylon membrane (porablot 

NY plus, Macherey-Nagel, Düren, Germany), by means of capillary transfer using 20*SSC as 

the buffer (1*SSC is 0.15M NaCl, 0.015 M sodium citrate). The RNA was fixed to the 

membranes using an UV-crosslinker (Stratagene, La Jolla, USA). Hybridization of 

membranes was performed with 32P-labelled probes in 0.25M sodium phosphate (pH 7,2), 

1mM EDTA, 1% (w/v) BSA and 7% (w/v) SDS. The filters were washed twice with 0.1 % 

SSC and 0.5% (w/v) SDS for 15 min at 68°C. The filters were subjected to autoradiography 

between intensifying screens at –80°C. 

cDNA clones coding for plastidial transporters were either tomato EST’s (TPT, EST 

No.cLEM23J19; ADP/ATP transporter, EST No.cLEM8I17) purchased from the Clemson 

University Genomics Institute (Clemson, South Carolina, USA) or in the case of Glc-6-P 

transporter, a potato clone which was the gift of Dr. Andreas Weber (Michigan State 

University, East lansing, Michigan, U.S.A). The plasmids were cut with sutable restriction 

enzymes and fragments isolated from a gel using the QIAquick kit (Qiagen) according to the 

manufacturers instructions. Radioactively labelled probes were made by the random primed 
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method using a commercially available kit (Roche) according to the manufacturer 

instructions. 

 

3.12 Determination of enzyme Maximum Catalytic Activities  

3.12.1  Extraction Procedures and Assay Condition 

Plant material was ground under liquid nitrogen to a fine powder in a pestle and mortar. 

Twice as much extraction buffer (50mM Hepes-KOH (pH 7.4), 5mM MgCl2, 1mM EDTA, 

1mM EGTA, 10%(v/v) Glycerol, 0.1% (v/v) Triton X-100, 5mM DDT, 2mM ε-Amino-

caproic acid, 2mM Benzamidine, and 0.5mM PMSF according to Trethewey et al. (1998), 

was added as weight of sample and the buffer and powder were mixed together. The samples 

were centrifuged at 2800 g and 4°C for 15 min and the supernatant was recovered. This was 

de-salted using NAP-5 columns (Pharmacia) and the resulting plant extract was either assayed 

for enzyme activity immediately in the case of AGPase and FBPase, or frozen in aliquots in 

liquid nitrogen before being stored at –80°C until use. Total protein content was determined 

by the method of Bradford (1976)  

Extracts were kept at 4°C prior to assaying. If not noted otherwise, enzyme assays were 

carried out at 25°C in a final reaction volume of 300µl according to the accompanying 

references. The change in absorbance was continuously followed at 340nm using an Anthose 

ht II microtiter-plate reader (Anthos Labtec Instruments, Hanau). 

Activities of Sucrose Phosphate Synthase and acidic Invertase were determined in stopped 

assays. 

All coupling enzymes provided as ammonium sulfate suspension were desalted by 

centrifuging for 1 min, the supernatant being discarded and the sediment dissolved in the 

corresponding reaction buffer. 

 

3.12.2 Phosphoglucoisomerase (EC 5.3.1.9) 

Phosphoglucoisomerase was assayed in the direction of glucose-6-phosphate as described by 

Burrell et al., (1994). The assay consisted of 5µl de-salted extract in 75mM glycylglycine 

(pH 8.5), 10mM MgCl2, 0.5mM NAD+, 0.5U/ml glucose 6-phosphate dehydrogenase 

(Leuconostoc mesenteroides). The reaction was started by the addition of fructose 6-

phosphate to a final concentration of 1mM. 
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3.12.3 Phosphoglucomutase (EC 5.4.2.2) 

Phosphoglucomutase was assayed in the direction of glucose-6-phosphate formation 

(Takamiya and Fukui, 1978). The assay consisted of 5µl de-salted extract in 50mM Hepes-

KOH (pH 7.8), 5mM MgCl2, 2mM NAD+, 100µM glucose-1,6-bisphosphate, 0.5U/ml 

glucose 6-phosphate dehydrogenase (Leuconostoc mesenteroides). The reaction was started 

by the addition of glucose 1-phosphate to a final concentration of 2mM. 

 

3.12.4 Hexokinase (EC 2.7.1.1) 

Hexokinase was assayed in the direction of glucose-6-phosphate production as described by 

Veramendi et al., (1999). The assay consisted of 5µl de-salted extract in 50mM Tris/HCl (pH 

8.0), 4mM MgCl2, 0.33mM NAD+, 2mM ATP, 2.5U/ml glucose 6-phosphate dehydrogenase 

(Leuconostoc mesenteroides). The reaction was started by the addition of glucose to a final 

concentration of 1mM. 

 

3.12.5 Fructokinase (EC 2.7.1.4) 

Fructokinase was assayed in the direction of glucose 6-phosphate as described by Renz et al., 

(1993). The assay contained 10µl de-salted extract in 50mM Tris/HCl (pH 8.0), 4mM MgCl2, 

0.33mM NAD+, 2.5mM UTP, 2.5U/ml glucose 6-phosphate dehydrogenase (Leuconostoc 

mesenteroides) and 1.75 U/ml phosphoglucoisomerase (Yeast). The reaction was started by 

the addition of fructose to a final concentration of 1mM. 

 

3.12.6 UDP-glucose Pyrophosphorylase (EC 2.7.7.9) 

UDP-glucose pyrophosphorylase was assayed in the direction of glucose 1-phosphate 

formation (Zrenner et al., 1993). The reaction mixture contained 10µl de-salted extract in 

100mM Tris/HCl (pH 8.0), 2mM MgCl2, 0.25mM NAD+, 2mM UDP-glucose, 20µM 

glucose-1,6-bisphosphate, 2.5U/ml glucose 6-phosphate dehydrogenase (Leuconostoc 

mesenteroides) and 3U/ml phosphoglucomutase (rabbit muscle). The reaction was started by 

the addition of tetrasodium pyrophosphate to a final concentration of 2mM. 

 

3.12.7 Sucrose Synthase (EC 2.4.1.13) 

Sucrose synthase was assayed in the direction of sucrose production (Sweetlove et al., 1996). 

The assay consisted of 5µl de-salted extract in 100mM Hepes-NaOH (pH 7.5), 4mM MgCl2, 

0.2mM NADH, 40mM UDP-glucose, 1mM phosphoenolpyruvate, 10U/ml Pyruvate kinase 
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and 2U/ml lactate dehydrogenase. The reaction was started by the addition of fructose to a 

final concentration of 10mM. 

 

3.12.8 Enolase (EC 4.2.1.11) 

Enolase was assayed in the direction of phosphoenolpyruvate production as described by 

Burrell et al., (1994). The assay consisted of 10µl de-salted extract in 100mM Hepes-NaOH 

(pH 7.5), 10mM MgCl2, 0.2mM NADH, 2.7mM ADP, 5U/ml Pyruvate kinase and 6U/ml 

lactate dehydrogenase. The reaction was started by the addition of 2-phosphoglycerate to a 

final concentration of 0.5mM. 

 

3.12.9 Triose Phosphate Isomerase (EC 5.3.1.1) 

Triose phosphate isomerase was assayed in the direction of dihydroacetone phosphate 

formation (Burrell et al., 1994). The assay consisted of 10µl de-salted extract in 100mM 

Hepes-NaOH (pH 8.0), 0.2mM NADH, 5mM EDTA, 1U/ml glycerol 3-phosphate 

dehydrogenase. The reaction was started by the addition of glyceraldehydes 3-phosphate to a 

final concentration of 1.5mM. 

 

3.12.10 Phosphoglycerate Kinase (EC 2.7.2.3) 

Phosphoglycerate kinase was assayed in the direction of formation 1,3-bisphosphoglycerate 

according to Burrell et al., (1994). The assay consisted of 5µl de-salted extract in 100mM 

Hepes-NaOH (pH 7.6), 2mM MgSO4, 0.3mM NADH, 1mM EDTA, 6.5mM glycerate 3-

phosphate, 3.32U/ml glycerate 3-phosphate dehydrogenase. The reaction was started by the 

addition of ATP to a final concentration of 1mM. 

 

3.12.11 Phosphofructokinase (EC 2.7.1.11) 

Phosphofructokinase was assayed by the production of fructose-1,6-bisphosphate (Burrell et 

al.,1994). The assay consisted of 25µl de-salted extract in 100mM Tris/HCl (pH 8.0), 5mM 

MgCl2, 0.1mM NADH, 5mM fructose 6-phosphate, 1U/ml aldolase, 1.36U/ml glycerol 3-

phosphate dehydrogenase and 2.6U/ml triose phosphate isomerase. The reaction was started 

by the addition of ATP to a final concentration of 1mM. 

 

3.12.12 Pyruphosphate dependent Phosphofructokinase (EC 2.7.1.90) 

Pyruphosphate dependent Phosphofructokinase activity was measured in the glycolytic 

direction by following the production of fructose-1,6-bisphosphate (Scott et al., 1995). The 
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assay consisted of 10µl of de-salted extract in 75mM Hepes-NaOH (pH 7.5), 2mM Mg-

acetate, 0.15mM NADH, 10µM fructose-2,6-bisphosphate, 7.5mM fructose 6-phosphate 

1U/ml aldolase, 1.36U/ml glycerol 3-phosphate dehydrogenase (rabbit muscle) and 2.6U/ml 

triose phosphate isomerase (rabbit muscle). The reaction was started by the addition of 

tetrasodium pyrophosphate to a final concentration of 0.25mM. 

 

3.12.13 Glyceraldehyde 3-Phosphate dehydrogenase (EC 1.2.1.12) 

Glyceraldehyde-3-phosphate dehydrogenase was assayed in the direction of glyceraldehydes 

3-phosphate production as described by Plaxton (1990). The assay consisted of 5µl de-salted 

extract in 100mM Hepes-NaOH (pH 8.0), 8mM MgSO4, 0.3mM NADH, 1mM EDTA, 2mM 

DTT, 6mM 3-phosphoglycerate and 4U/ml phosphoglycerate kinase. The reaction was started 

by the addition of ATP to a final concentration of 2mM. 

 

3.12.14 Pyruvate Kinase (2.7.1.40) 

Pyruvate kinase was assayed in the direction of pyruvate formation (Burrell et al., 1994). The 

assay consisted of 10µl de-salted extract in 50mM MOPS (pH 7.0), 15mM MgCl2, 0.15mM 

NADH, 100mM KCl, 5mM phosphoenolpyruvate and 6U/ml lactate dehydrogenase. The 

reaction was started by the addition of ADP to a final concentration of 5 mM. 

 

3.12.15 Phosphoenolpyruvate Phosphatase (3.1.3.60) 

Phosphoenolpyruvate phosphatase was assayed in the direction of pyruvate formation (Duff 

et al., 1989a). The assay used was the same as that for pyruvate kinase except ADP was 

omitted. The reaction was started by the addition of phosphoenolpyruvate to a final 

concentration of 5mM. 

 

3.12.16 Fructose-1, 6-bisphosphatase (EC 3.1.3.11) 

Fructose-1,6-bisphosphatase was assayed in the direction of fructose-6-phosphate production 

according to Kruger and Beevers (1984). The assay consisted of 40µl de-salted extract in 

20mM Hepes-NaOH (pH 7.0), 5mM MgCl2, 0.5mM NAD+, 1U/ml phosphoglucoisomerase 

and 1U/ml glucose 6-phosphate dehydrogenase (Leuconostoc mesenteroides). The reaction 

was started by the addition of fructose-1,6-bisphosphate to a final concentration of 0.5mM. 
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3.12.17 ADP-glucose Pyrophosphorylase (EC 2.2.7.27) 

ADP-glucose pyrophosphorylase was assayed in the direction of glucose-1-phosphate 

formation as described by Müller-Röber et al., (1992). The assay consisted of 30µl de-salted 

extract in 80mM Hepes-NaOH (pH 7.4), 10mM MgCl2, 0.02%(w/v) fatty-acid free BSA, 

0.6mM NAD+, 10µM glucose-1,6-bisphosphate, 10mM 3-phosphoglycerate, 3mM DTT, 

1mM ADP-glucose 2.5U/ml phosphoglucomutase (rabbit muscle) and 1U/ml glucose 6-

phosphate dehydrogenase (Leuconostoc mesenteroides). The reaction was started by the 

addition of tetrasodium pyrophosphate to a final concentration of 2mM. 

 

3.12.18 Acid Invertase (EC 3.2.1.26) 

Acid Invertase was assayed in the direction of sucrose degradation to produce glucose and 

fructose as described by Zrenner et al., (1996). The reaction mixture consisted of 20mM 

acetate buffer (pH 4.7), 100mM sucrose and 30µl of desalted enzyme extract in total volume 

of 100µl. The reaction mixture was incubated at 25°C for 60 min. After 1h, 25µl of 1M 

Tris/Hcl (pH 8.0) was added to the solution to be neutralized. The reaction mixture was 

stopped by heating at 95°C for 3 min. Control sample was prepared by heating the reaction 

mixture for 3 min in the presence of 25µl of 1M Tris/Hcl (pH 8.0) without period of 

incubation. For both control and assay samples glucose and fructose was measured directly in 

25µl of the reaction mixture by the method of Stitt et al., (1989) as described below. 

 

3.13 Determination of Soluble Sugars and Starch Content 

Starch and soluble sugars glucose, fructose and sucrose were extracted as described by 

Trethewey et al., (1998) and determined photometrcally. The change in absorbance was 

continuously followed at 340nm using an Anthos hat II microtiter-plate reader (Anthos Labtec 

Instrument, Hanau). 

Soluble sugars were determined modified from Stitt et al., (1989). The reaction mixture 

consisted of 5µl ethanolic extract and 250µl of 100mM imidazol, 5mM MgCl2, 2mM NADP+, 

1mM ATP and 2U/ml glucose 6-phosphate dehydrogenase (yeast). To start the reaction, 5µl 

of the respective enzymes were sequentially added: for glucose 1U/ml hexokinase (yeast 

overproducer), for fructose 0.5U/ml phosphoglucoisomerase (yeast), for sucrose a 1:5 dilution 

of saturated solution of Invertase (β-fructosidase from yeast). 

Starch content was measured according to Trethewey et al., (1998) using a commercially 

available starch determination kit (Boehringer Mannheim, Mannheim). The assay is based on 
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the enzymatic hydrolysis of starch by α-amyloglucosidase and the determination of glucose in 

a coupled assay with hexokinase and glucose 6-phosphate dehydrogenase. 

 

3.14 Determination of Metabolic Intermediates 

Trichloroacetic acid extracts of pericarp material for the determination of metabolic 

intermediates were prepared as described by Trethewey et al., (1998). The intermediates 

were determined photometrically in a final volume of 700µl according to Lytovchenko et al., 

(2002) using a Dual-wavelength spectrophotometer (ZWSII; Sigma, Berlin). Extraction 

procedure and assays were evaluated according to (Fernie et al., 2001).  

Pyruvate and phosphoenolpyruvate were sequentially determined in 50mM Hepes-KOH (pH: 

7.4), 5mM MgCl2, 50µM NADH and 1mM ATP. The reaction for pyruvate was started by 

addition of 0.6U lactate dehydrogenase (hog muscle), for phosphoenolpyruvate by addition of 

2U pyruvate kinase (rabbit muscle). 

Glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate, were determined in 

50mM Hepes-KOH (pH: 7.4), 5mM MgCl2 and 250µM NADP+. The reactions were 

sequentially started by addition of 0.2U glucose 6-phosphate dehydrogenase (yeast), 0.4U 

phosphoglucomutase (rabbit muscle) and 0.4U phosphoglucoisomerase (yeast).  

3-phosphoglycerate was assayed in 50mM Hepes-KOH (pH: 7.4), 5mM MgCl2, 50µM 

NADH, 1.5mM ATP and 5U/ml 3-phosphoglycerate kinase (yeast). The reaction was initiated 

by addition of 5U glyceraldehydes 3-phosphate dehydrogenase (rabbit muscle). 

Inorganic phosphate was measured after extraction of the metabolite fraction in 700µl 3.5% 

perchloric acid as described by Sharkey and Vanderveer (1989). The extracts were 

neutralized to pH 6 to 7 by adding a solution of 2N KOH, 150mM Hepes (to help stabilize the 

pH), and 10mM KCl (to help the precipitation of KClO4). The phosphate assay was the 

malachite green enhanced-molybdate assay. An assay solution of 2g l-1 malachite green 

(Sigma M9636) and 10mM ammonium molybdate in 0.8 M HCl was made up at least two 

days prior to assay. This solution was filtered through Whatman No. 1 filter paper. Plant (10-

50 µl) was added to 800µl of molybdate reagent. After 1 min, 100 µl 1M trisodium citrate 

was added to the assay. After 1 further min, 100µl of 1% Extran 1000 detergent was added to 

the assay. The optical density at 650 nm was read after 30 min and compared with standards 

made with dried KH2PO4. 
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3.15 Analysis of fruit yield and flowers 

 

3.15.1 Analysis of fruit weight 

This trait was measured directly after harvesting when fruits were fully ripe (after 65 DAF). 

The weight of fruits was carried out on a balance. 

 

3.15.2 Analysis of fruit size 

This trait was also measured directly after harvesting when fruits were fully ripe (65 DAF). 

The size of fruits was carried out by a diameter. 

 

3.15.3 Fruit setting 

This trait was calculated by using the following formula:  

Fruit setting% = No.of fruits that set/No.of flowers that anthesized *100 

 

3.15.4 Date of 50% flowering 

This trait was recorded as a number of days from date of planting to date of flowing 50% of 

plants. 

 

3.16 Statistical Analysis of Data 

t-tests were performed using the algorithm included into Microsoft Excel 2000. The 

expression ‘significant’ is used only when an alteration has been confirmed to be statistically 

significant ((P≤ 0,05) and (P≤ 0,01) with the Student’s t-Test. 
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4 Analysis of Carbohydrate Metabolism in Micro-Tom Fruits 
 

4.1 Introduction 

The Arabidopsis model system has been contributed much to the remarkable advances in 

plant molecular biology during the last decade. The major reasons for the success of 

Arabidopsis are its small size, short life cycle, small genome (Leutwiler et al., 1984) and 

easy of transformation (Bechtold et al., 1993) These features facilitate the genetic dissection 

of any trait through the screening of large populations saturated in mutants for the various 

genes involved in the trait. Nevertheless, despite the considerable advantages of Arabidopsis, 

the knowledge acquired in this species cannot always be applied to other plant species. 

Having a silique type of fruit makes Arabidopsis a good model for species of the Brassicaceae 

but not for those with a fleshy fruit. 

Tomato (Lycopersicon esculentum) offers a good model for other crop species whose fruit is 

also a fleshy berry. It is one of the most important crops in the fresh vegetable market as well 

as in the food processing industry (Rick and Yoder, 1988; Hille et al., 1989). It is well 

characterised genetically; it has a relatively small diploid genome (n=12) and is readily 

transformable (McCormick et al., 1986). One disadvantage of tomato is that the plants have a 

large size and relatively long live cycle.  

A new cultivar (Micro-Tom) has, however, recently been developed that overcomes these 

problems (Meissner et al., 1997). The plants of this variety grow to a similar size as 

Arabidopsis and have a considerably shorter life cycle than other tomato varieties, routinely 

producing seed within twelve weeks of being planted. 

 

4.2 Aim of the work 

We wish to study tomato fruit carbohydrate metabolism in the Micro-Tom cultivar using 

genetic engineering techniques. As an initial study we decided to examine the activity of 

enzymes in untransformed fruit during development to see whether this new variety is 

equivalent to other varieties that have been studied previously, and as such to ascertain if it 

represent a useful model for fruit carbohydrate metabolism. 
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4.3 Results 

4.3.1 Development of fruit of tomato cultivar Micro-Tom 

The development of fruit of the Micro-Tom cultivar are shown in Fig. 4. The fruits were small 

and green at 20 DAF and remained green until 45-50 DAF when they reached the breaker 

stage. By 60 DAF they were fully ripe. 

 
Figure 4: Developmental series of tomato fruits from Micro-Tom cultivar.  

DAF = Days after Flowering. 

 

4.3.2 Starch and soluble sugars in developing fruits of Micro-Tom 

Starch and soluble sugar contents were determined in both the pericarp and placental tissues 

between 20-60 DAF Starch accumulated transiently in the fruits of the Micro-Tom variety in 

both the pericarp and placental tissues (Fig. 5A). In both these tissues the starch content was 

approximately 45µmol hexose (g FW)-1 at 20 DAF. In the pericarp the decrease was quickly 

to under 10µmol hexose (g FW)-1 at 30 DAF, before decreasing more slowly to barely 

detectable amounts at 45 DAF. In the placental tissue the decrease was slower and more 

linear, reaching barely detectable amounts at 60 DAF. There were no significant differences 

in starch concentrations between the pericarp and placental tissues between 25 and 35 DAF. 

After that the concentrations were significantly decreased in the pericarp in comparison with 

the placenta. 
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Sucrose levels remained relatively constant in the different tissues throughout fruit 

development, although they were generally greater in the placental tissue in comparison with 

the pericarp (Fig. 5B). There were no significant differences in sucrose concentrations 

between the pericarp and placenta, except for three time points. At 20, 25 and 30 DAF in the 

placental tissue there were significantly increased sucrose in comparison with the pericarp. In 

both tissues the concentration stayed below 7µmol hexose (g FW)-1 throughout development. 
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Figure 5: Starch and soluble sugar contents in pericarp and placental tissues of tomato 

cultivar Micro-Tom during development. (A) Starch. (B) Sucrose. (C) Fructose. (D) 

Glucose. Data represent the mean of five independent measurements + SE. 
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Changes in both fructose (Fig. 5C) and glucose (Fig. 5D) concentrations showed a similar 

pattern. In the pericarp they remained relatively constant between 20-50 DAF, before 

increasing at the end of development. Fructose levels also remained relatively constant in the 

placenta between 20-45 DAF whilst over this time period glucose levels decreased slightly. 

After 45 DAF the concentrations of both fructose and glucose increased. Both glucose and 

fructose levels were generally lower in the placenta than in the pericarp, but in both tissues 

their concentrations were an order of magnitude higher than the concentration of sucrose. 

Fructose concentrations were significantly increased in the pericarp in comparison with the 

placenta, but only at four time points (20, 35, 45 and 60 DAF). Glucose concentrations were 

also significantly increased in the pericarp in comparison with the placenta, but at six time 

points (30, 35, 40, 45, 55 and 60 DAF). 

 

4.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 

Sucrose synthase (SuSy) activity was initially about twice as high in the pericarp than in the 

placenta (Fig 6A). The Susy activity was significantly reduced in the placenta in comparison 

with the pericarp until 40 DAF, but at 60 DAF the activity was significantly increased in the 

placenta in comparison with the pericarp. The activity in both tissues decreased over time.  

Acid-invertase activity was significantly greater in the placenta than in the pericarp at six time 

points (20, 25, 40, 45, 50 and 55 DAF), but at 60 DAF the activity was significantly increased 

in the pericarp in comparison with the placenta (Fig 6B). The activity in both tissues increased 

slightly between 20-55 DAF, before increasing quickly at 60 DAF. 

UDP-glucose pyrophosphorylase (UGPase) activity was very high in both tissues (Fig 6C). It 

increased initially in both tissues until 45 DAF, after which it decreased slightly. The activity 

was significantly reduced in the placenta in comparison with the pericarp but only at three 

time points (30, 35, and 50 DAF).  

Phosphoglucomutase (PGM) activity was significantly greater in the pericarp at all time 

points than the placenta. The activity stayed approximately the same until 40-45 DAF, after 

which it decreased (Fig 6D). 

ADP-glucose pyrophosphorylase (AGPase) activity was also significantly greater in the 

pericarp than in the placenta but only at three time points (20, 35 and 45 DAF). In the 

placental tissue it decreased from a high activity to a low one between 20 and 30 DAF, after 

which it stayed at the low activity throughout the rest of development. The activity in the 

pericarp, on the other hand, decreased over the entire developmental stage (Fig. 6E). 
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4.3.4 Changes in activities in enzymes involved in glycolysis or the Calvin cycle 

Hexokinase (HK) activity increased in a similar manner in both pericarp and placental tissues 

until 45 DAF, after which it decreased (Fig. 7A). The activity was significantly lower in the 

placenta than in the pericarp but only at two time points (30 and 35 DAF). 

Fructokinase (FK) activity was initially significantly higher in the pericarp than in the 

placenta until 40 DAF, but after 50 DAF no differences could be detected. The activity 

decreased after 45 DAF in both tissues (Fig. 7B). 

Phosphoglucose isomerase (PGI) activity increased in both pericarp and placental tissues until 

45 DAF, wherafter it decreased (Fig. 7C). The activity was significantly lower in the placenta 

than in the pericarp at four time points (40, 45, 50 and 60 DAF), but at 25 DAF the activity 

was significantly increased in the placenta in comparison with the pericarp. 

Fructose 1,6 bisphosphate (FBPase) activity was significantly higher in the placenta than in 

the pericarp at all time points except at 20 DAF. The activity of this enzyme decreased over 

time (Fig. 7D). 

Phosphofructokinase dependent pyruphosphate (PPi-PFK) activity decreased rapidly in both 

tissues from an initial relatively high activity to a basal activity at 35 DAF. Thereafter the 

activity remained relatively constant (Fig 7E). The activity was significantly increased in the 

placenta in comparison with the pericarp at three time points (20, 25 and 30 DAF). 

Phosphofructokinase (PFK) activity was initially relatively high in both tissues and increased 

slightly until 45 DAF, after which it decreased (Fig. 7F). Its activity in the placenta was 

significantly lower than in the pericarp but only at two time points (30 and 35 DAF) 

Triose phosphate isomerase (TPI) activity increased in both tissues until 40-45 DAF, after 

which it decreased (Fig 7G). The activity in the placenta was significantly lower than in the 

pericarp but only at three time points (30, 35 and 50 DAF). 

Glyceraldehyde 3-phosphate dehydrogenase (G3P DH) activity was significantly greater in 

the placenta than in the pericarp at all time points except at 20 DAF. In the placenta it 

increased until 35 DAF, after which it decreased. In the pericarp it decreased from the first 

time point until 50 DAF after which it increased slightly (Fig. 7H).  

Phosphoglycerate kinase (PGK) activity was significantly greater in the pericarp than in the 

placenta until 50 DAF. In both tissues it rose between 20-45 DAF, after which it decreased 

(Fig 7I).  

Enolase activity was significantly lower in the placenta than in the pericarp at all time points 

except two time points (50 and 55 DAF). In the pericarp, however, the activity was greater 

and stayed relatively stable until 40 DAF after which it decreased (Fig. 7J). 
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Figure 6: Activities of enzymes involved in the conversion of sucrose to starch in the 

pericarp and placental tissues of fruit of the tomato cultivar Micro-Tom. (A) SuSy. (B) 

Acid invertase. (C) UDPase. (D) PGM. (E) AGPase. Data represent the mean of five 

independent measurements + SE. 
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Figure 7: Activities of some glycolytic and clavin cycle enzymes in pericarp and placental tissues of fruit from the tomato cultivar Micro-

Tom during its development.(A) HK. (B) FK. (C) FGI. (D) FBPase. (E) PPi-PFK. (F) PFK. (G) TPI. (H) G3P DH. (I) PGK. (J) Enolase. (K) PK. 

(L) PEP phosphatase. Data represent the mean of five independent measurements+ SE. 
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Pyruvate kinase (PK) activity was significantly greater in the placenta than in the pericarp at 

all time points except one time point (at 60 DAF). It remained constant until 35 DAF. 

Between 35-40 DAF the activity increased, before decreasing afterwards (Fig 7K). 

Phosphoenolpyruvate phosphatase (PEP phosphatase) activity was also significantly greater in 

the placenta than in the pericarp at all time points except one time point (at 55 DAF). 

Generally, the alterations in activities of PEP phosphatase was similar to those of PK (Fig. 

7L). 

 

4.3.5 RNA blots of plastidial transporters 

We wanted to examine how the accumulation of mRNA coding for of various plastidial 

transporters changed during development of the fruit. mRNA coding for the triose phosphate 

transporter (TPT) accumulated most in young, green, fruit. As the fruit developed the amount 

of mRNA decreased, but was still present throughout most of the developmental period (Fig. 

8A and B). 
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Figure 8: RNA blot analysis of some plastidial transporters throughout fruit 

development in the tomato cultivar Micro-Tom. TPT in (A) pericarp and (B) placental 

tissues. Glc-6-P transporter in (C) pericarp and (D) placental tissues. ATP/ADP transporter in 

(E) pericarp and (F) placental tissues. 
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The accumulation of mRNA coding for the Glc-6-P transporter was greatest between 25-30 

DAF. There appeared to be no expression after 40 DAF (Fig. 8C and D). The expression in 

the placental tissue was greater than in the pericarp. 

The ATP/ADP transporter was only expressed at low levels, but was present throughout 

development (Fig. 8E and F). 

 

4.4 Discussion and conclusion  

This study was initiated to examine carbohydrate metabolism in a new variety of tomato that 

is beginning to be used as a model system. Much of the data is, therefore, descriptive, but it 

also leads to some novel conclusions. The first of these is that the metabolism in the pericarp 

is different to that in the placenta. The placenta accumulates starch over a longer period than 

the pericarp, and has different concentrations of soluble sugars within it. This is presumably 

because the different tissues serve different roles. The placental tissue acts as a conduit for 

nutrients going to the developing seeds, while the pericarp protects the seeds within the fruit. 

The starch that accumulates over a longer period in the placenta may act as a nutrient reserve 

in case the flow of sucrose coming to it from the leaves becomes disrupted. The chloroplasts 

in the pericarp, on the other hand, differentiate to chromoplasts during ripening, and the starch 

is presumably degraded as a source of soluble sugars to make the fruit more palatable for the 

dispersal of seeds. 

There were also differences in the activities of enzymes measured in the pericarp in 

comparison with the placental tissue. Although all of the enzyme activities shown were 

calculated on the basis of the amount of protein in the extract, it is also possible to do so based 

on the fresh weight. Although they showed minor differences with the data presented, these 

were not large enough to alter the conclusions. The pericarp consistently had increased 

activities of several enzymes in comparison with the placenta. These were SuSy, PGM, 

enolase, PGK and UGPase. With the exception of enolase all of these enzymes are closely 

associated with the degradation of sucrose. It is interesting to note that the pericarp had a 

lower concentration of sucrose in comparison with the placenta during development. It may 

be that the higher activities of these enzymes led to it being metabolised faster to its lower 

concentration. 

The conversion of sucrose to starch has been relatively well studied in tomato fruits from 

varieties other than Micro-Tom (Robinson et al., 1988; Yelle et al., 1988; Schaffer and 

Petreikov, 1997a) and it is, thus, possible to compare the data from this study with that from 
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those. As in this study, it has often been found that sucrose concentrations are lower than both 

glucose and fructose (Damon et al., 1988; Klann et al., 1996; Schaffer and Petreikov, 

1997a), although the wild tomato relative Lycopersicon chmielewskii accumulates higher 

levels of sucrose than the other soluble sugars (Yelle et al., 1988). The reason for this 

accumulation of sucrose in the wild relative is due to a reduction in the activity of acid 

invertase (Klann et al., 1996). The invertase activity in this study increased dramatically in 

the final stages of fruit development, especially in the pericarp. This again is similar to what 

has been found previously in wild-type tomato fruits (Klann et al., 1996) indicating that the 

Micro-Tom cultivar is not significantly altered in this respect. 

SuSy activity is often considered to be a major determinant of sink strength, although the 

evidence in tomato for this is contradictory. One study found repression of SuSy using genetic 

engineering techniques let to a decrease in a fruit set (D’Aoust et al., 1999), whilst a second 

found no effect (Chengappa et al., 1999). This might be because the first study used a 

constitutive promoter to reduce SuSy activity, whilst the second used a fruit specific 

promoter. In this study SuSy activity decreased during development in both the pericarp and 

placental tissues. Although there is variation between different studies as to what occurs to 

SuSy activity during fruit development, this type of pattern is not unusual (for example 

Robinson et al., 1988; Klann et al., 1996) and furthermore parallels the switch from 

symplastic to apoplastic unloading that occurs during development (Ruan and Patrick, 

1995). 

AGPase activity has often been correlated with starch accumulation in tomato fruits. In this 

study that was also the case, with AGPase activity being below detectable levels after 30 DAF 

in the placenta and decreasing in activity in the pericarp. At this time point there is net 

degradation of starch, and it might be expected, therefore, that enzymes involved directly in 

its synthesis would be down -regulated. 

Although not so well studied in tomato as enzymes involved in sucrose to starch conversion, 

we also measured some enzymes involved in glycolysis or the Calvin cycle. Most glycolytic 

enzymes showed a peak of activity at about 40 DAF. Some of these, specifically HK, FK, 

PGI, PFK, TPI, G3P DH, and PGK, showed a gradual increase and decrease. Two others 

though, PK and PEP phosphatase showed a dramatic increase in activity between 35 and 40 

DAF, which then declined very quickly to a lower level at 45 DAF. It is interesting that PK 

showed this sudden increase in activity as it is thought to exert significant control over flux 

through the glycolytic pathway (Plaxton, 1990). The peaking of activities of glycolytic 
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enzymes at 45 DAF is presumably due to climacteric respiration. It may be that the sudden 

up-regulation of PK just before this point indicates that this enzyme is important in increasing 

flux through glycolysis to generate ATP for climacteric respiration. 

It has been speculated that climacteric respiration in fleshy fruits, such as tomato, only occurs 

when they are detached from the plant. This idea was based on studying internal CO2 

concentrations in both tomato and muskmelon, and not finding expected increases when the 

fruits were attached to the plant (Saltveit, 1993; Shellie and Saltveit, 1993). It has been 

argued, however, that the interpretation of these studies was incorrect as; they did not take 

into account the effect of photosynthesis on internal CO2 concentration (Knee, 1995). Our 

data are consistent with tomatoes acting as climacteric fruits when attached to the vine as they 

show an up-regulation of glycolysis just prior to the onset of ripening. 

We also decided to study the expression of some transporters that are present in the plastidial 

membrane. Expression of the TPT has previously been studied in tomato fruits (Schünemann 

et al., 1996; Büker et al., 1998). In these studies it was shown that both mRNA coding for the 

TPT protein, and the protein itself, accumulated in both green and red fruits. Our data do not 

disagree with these findings, showing maximal accumulation of mRNA in green fruits, with 

less accumulation during development. The expression of the Glc-6-P transporter has not 

previously been studied in tomato fruits. In maize, mRNA coding for it has been 

demonstrated to be present only in tissues containing non-green chloroplasts (Kammerer et 

al., 1998). Our data indicate that in tomato fruits, the mRNA coding for the Glc-6-P 

transporter is expressed maximally in tissues containing green chloroplasts, with reduced 

amounts in red fruits. This is opposite to that found in maize, but indicates the difference of 

fruit of chloroplasts in comparison with those in leaves. The sole source of sugars in leaf 

chloroplasts comes directly from photosynthesis, while fruit chloroplasts can import Glc-6-P 

from the cytoplasm also (Büker et al., 1998). This Glc-6-P is the result of the catabolism of 

imported sucrose in the cytosol. The expression of the Glc-6-P transporter appears to correlate 

with accumulation of starch in the pericarp and placental tissues. It is tempting to speculate 

that the Glc-6-P transporter is expressed at times of maximal starch accumulation to 

supplement carbon being fixed through photosynthesis in the chloroplast. This is especially so 

as it is much more strongly expressed in the placental tissues, which are in the centre of the 

fruit and will, therefore, receive less light for photosynthesis. This tissue would have to rely 

more on sucrose to supply starch synthesis, than on any photosynthate it may be able to 

produce. This is of course true for all pathways that would utilise Glc-6-P in the plastide, but 

 

 

-40-



 

starch constitutes the major sink for carbon in plastids and so would have the greatest 

influence. The ATP/ADP transporter was weakly expressed throughout development of the 

fruits. This transporter has been demonstrated to have a great influence on the rate of starch 

accumulation in potato tubers (Tjaden et al., 1998), but ATP is used in practically, all 

biosynthetic pathways, so maintaining a constant into the plastids would be expected. 

One aim of this study was to examine whether the Micro-Tom tomato cultivar was a suitable 

candidate to act as a model system for the study of carbohydrate metabolism in tomato fruit 

generally. It might be that the mutations leading to the dwarf phenotype lead to pleotropic 

effects on the metabolism of the fruit, which would make it an unsuitable candidate. All the 

data in this study indicate that the metabolism of the Micro-Tom cultivar is not greatly altered 

in comparison with reports of other cultivars, showing that suitable for such studies. 

From the previous data presented in this investigation, it can be concluded that: (A) The 

metabolism in the pericarp is different to that in the placenta. (B) Starch was degraded more 

slowly in the placenta in comparison to the pericarp, while soluble sugars accumulated to a 

greater extent in the pericarp. (C) There were also differences in the activities in enzymes 

involved in conversion of sucrose to starch measured in the pericarp in comparison with the 

placental tissue. (D) The pericarp consistently had increased activities of several enzymes 

SuSy, PGM, enolase, PGK and UGPase. SuSy, PGM and UGPase in comparison with the 

placenta. (E) The activities of glycolytic enzymes tended to peak at 40 DAF. (F) Two of 

these, PEP phosphatase and PK, showed a dramatic increase in activity just before this peak 

possibly indicating a role in up-regulating glycolysis to generate ATP for climacteric 

respiration. (G) Both the TPT and Glc-6-P transporter were expressed greatest in green fruits, 

before declining. (H) The expression of the TPT was greater than that of the Glc-6-P 

transporter. (I) The ATP/ADP transporter was expressed to a low level throughout fruit 

development. 
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5 Analysis of the Function of Chloroplastic Fructose 1,6-

bisphosphatase in Tomato Fruit 
 

5.1 Introduction 

Fructose-1,6-bisphosphatase (FBPase) catalyses the inter-conversion of Fru-1,6-P2 and Fru-6-

P. In green plant tissues there are two isoforms, one situated in the plastid (cp-FBPase), and 

one in the cytosol (cy-FBPase). The plastidial isoform is an important enzyme in control of 

the Calvin cycle, and its repression in potatoes leads to an inhibition of photosynthesis and a 

reduction in growth (Kossmann et al., 1994). The cy-FBPase isoform, on the other hand, is 

involved in gluconeogensis and sucrose synthesis. Inhibition of this isoform leads to increases 

in starch and decreases in sucrose synthesis (Zrenner et al., 1996; Strand et al., 2000). 

Green tomato fruits contain photosynthetically active chloroplasts, which differentiate to 

chromoplasts during the ripening process. The cp-FBPase is present in green, but not in red 

fruits, which correlates with a switch from the fruits being photosynthetically active to 

becoming inactive (Büker et al., 1998). Fruits obtain sugars both directly from 

photosynthesis, and through import from source leaves via the phloem. The triose phosphate 

and glucose phosphate transporters are active in tomato chloroplasts (Büker et al., 1998), 

indicating that they could in principle both import and export sugars. It is not clear, therefore, 

what the role of fruit photosynthesis in fruit metabolism is, although it has been estimated to 

contribute between 10-15% of carbon skeletons in green fruits (Tanaka et al., 1974).  

 

5.2 Aim of the work 

The aim of this work is to study the role of cp-FBPase in tomato fruit metabolism. To 

accomplish this, tomato plants were transformed with a construct designed to repress cp-

FBPase activity solely in the fruit. Transgenic lines were isolated with reduced amounts of cp-

FBPase protein, which showed a reduction in total FBPase activity also. Fruits from these 

plants were analysed for alterations in carbohydrate metabolism. 

 

5.3 Results 

5.3.1 Recovery of Plants with Reduced FBPase Activity in the Pericarp of Tomato Fruit. 

The pericarps from 25 days after flowering (DAF) old tomato fruits were analysed for FBPase 

activity in sixty transgenic lines. Three lines (#19, 33 & 34) were selected which showed 
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reductions in FBPase activity (see Material and Methods). These cp-FBPase antisense plants 

were phenotypically identical to the untransformed control (Fig. 9). 

 

 
Figure 9: Aerial parts of plants in both WT control and α-cp-FBP-transgenic lines after 

8 weeks growth in the glasshouse. From left to right: untransformed WT control, α-cp-

FBP#19, α-cp-FBP#33, α-cp-FBP#34 and α-cp-FBP#34. The α-cp-FBP plants are 

phenotypically identical to the untransformed WT control. 

 

Fructose-1,6-bisphosphatase (FBPase) activity was studied throughout fruit development in 

the pericarp of these plants. In young (25 DAF), green, fruits, there was a significant 

reduction in total FBPase activity in all three transgenic lines in comparison with the WT 

control (Fig. 10A). At that time point the reduction in activity of line #34 was 25%, and of the 

other two lines 50%. The activity in all lines decreased during the ripening process, and was 

significantly lower than the WT control in lines #19 and #33 until 55 DAF when there was no 

significant difference. 

Immunoblots using an antibody raised against wheat cp-FBPase (Hagelin et al., 1996), but 

which recognizes the tomato cp-FBPase also, indicated that it was completely eliminated in 

25 DAF fruit of the lines #19 and #33, and greatly reduced in the line #34 (Fig. 10B). To 

demonstrate that the antisense effect was fruit specific, FBPase activity was also determined 
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in the leaves of the transgenic plants. No differences between the transgenic plants and the 

WT control were found (Fig. 10C). 

 

5.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic lines 

Starch and soluble sugar contents were determined in the pericarp between 25-70 DAF. There 

was net degradation of starch over the ripening period (Fig. 11A). In the control the 

concentration was approximately 8µmol hexose (g FW)-1 at 25 DAF, and was less that 1µmol 

hexose (g FW)-1 at the final sample point. The starch contents in lines #19 and #33 were not 

significantly different in comparison with the control over the entire sampling period, but 

those of line #34 were significantly (P≤ 0,05) reduced until 45 DAF, when there was no 

difference. 

Glucose concentrations were significantly (P≤ 0,05) increased in the three transgenic lines in 

comparison with the WT control, but only between 25 and 35 DAF. At these time points the 

concentrations in the transgenic fruits were between 60-80 µmol hexose (g FW)-1, while in the 

WT control fruits they were between 40-50 µmol (g FW)-1 (Fig. 11B). After this point there 

were no significant differences with the concentration of glucose increasing to just less than 

100µmol hexose (g FW)-1 at the final sampling point. 

Fructose concentrations showed a similar pattern to glucose concentrations (Fig. 11C). They 

were initially about threefold greater in the transgenic lines being generally between 50-70 

µmol hexose (g FW)-1 in comparison to under 20µmol hexose (g FW)-1 in the WT control 

fruits. The fructose concentration in the WT control fruits then increased to similar levels as 

in the transgenic plants by 45 DAF, and after this point the fructose concentration stayed 

relatively constant at between 60-80 µmol hexose (g FW)-1 in all the plants. 

There were no significant differences in sucrose concentrations between the transgenic lines 

and WT control, except for two time points in one transgenic line. At 30 and 35 DAF in line 

#19 (Fig. 11D) there was greatly increased sucrose in comparison with the WT control. In all 

the other lines, however, the sucrose concentration decreased from about 3µmol hexose (g 

FW)-1 at the first sampling point, to about 1µmol hexose (g FW)-1 at the final sampling point. 

 

5.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 

Sucrose synthase (SuSy) activity decreased in pericarp tissue from WT control fruits over 

time from 176nmol min-1 (mg protein)-1 at 25 DAF to 62nmol min-1 (mg protein)-1 in the 
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oldest fruit. In the transgenic lines the activity was significantly decreased at three time points 

(45, 55 and 65 DAF) in one transgenic line (#33; Fig 12A). 

 

A
ct

iv
ity

 (n
m

ol
 m

g 
pr

ot
ei

n-1

0

10

20

30

40

25 35 45 55 65
DAF

Ave.(WT) Ave.(#19)
Ave.(#33) Ave.(#34)

A

 

30 kDa 

cp-FBPase 45 kDa 

   #34     #33   #19  WT MW 
 α-FBP-transgenic Lines 

B

C
 

A
ct

iv
ity

 (n
m

ol
 m

g 
pr

ot
ei

n-1

0
2
4
6
8

10
12
14
16

#19 #33 #34 WT

Lines
 

Figure 10: FBPase activity during developmental stage (A), Western blot analysis in 

green (25 DAF) (B) in the pericarp of WT and α-cp-FBP-transgenic lines [total soluble 

fruit protein (25µg) was subjected to SDS-PAGE on a 10% (w/v) gel] and FBPase activity in 

the leaves of WT control and α-cp-FBP-transgenic lines (C). Data represent the mean of 

five independent measurements + SE. 
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Figure 11: Starch and soluble sugar contents in pericarp of WT and α-FBP-transgenic 

lines in tomato cultivar Moneymaker during development. (A) Starch. (B) Glucose. (C) 

Fructose. (D) Sucrose. Data represent the mean of five independent measurements + SE. 
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UDP-glucose pyrophosphorylase (UGPase) activity was high in both the WT control and 

transgenic lines, and in the WT control the activity increased between 25 and 45 DAF, after 

which it decreased  (Fig 12B). The activity in the fruits of the transgenic lines was 

significantly lower than the control at 25 DAF (line #33), 45 DAF (all lines) and 55 DAF (line 

#34; Fig 12B).  

Phosphoglucomutase (PGM) activity decreased over the entire developmental period in the 

WT control from 1768nmol min-1 (mg protein)-1 at 25 DAF to 897nmol min-1 (mg protein)-1 at 

65 DAF. The PGM activity was significantly reduced in the transgenic lines at 25 DAF (all 

lines), 35 DAF (line #19), 55 DAF (lines #19 and #34) and 65 DAF (lines #33 and #34; Fig 

12C).  

ADP-glucose pyrophosphorylase (AGPase) activity was significantly greater in the WT 

control at all time points up until 55 DAF than in all of the transgenic lines (Fig 12D). 

 

5.3.4 Concentration of Metabolic Intermediates in the pericarp of the WT control and 

transgenic lines 

The concentrations of several metabolites were measured in trichloroacetic acid extracts of 

the transgenic lines from 30DAF fruits. The metabolites determined were glucose 6-

phosphate (Glc-6-P), glucose 1-phosphate (Glc-1-P), fructose 6-phosphate (Fru-6-P), 3-

phosphoglyceric acid (3-PGA), phosphoenolpyruvate (PEP), pyruvate and inorganic 

phosphate (Pi). The data are presented in Table 1. The concentration of 3-PGA was increased 

in all lines, significantly (P≤0.05) so in lines #33 and #34. In addition the concentration of 

both Glc-1-P and Pi were significantly (P≤0.05) reduced in line #19. There were no other 

significant reductions of metabolite concentrations. The ratios of hexose phosphates (hexose-

P) to 3-PGA, phosphate esters (P-ester) to Pi and 3-PGA to Pi were calculated also. The ratio 

of hexose-P to 3-PGA was reduced significantly (P≤0.05) in lines #33 and #19, but that of P-

ester to Pi was increased, significantly in line #19. The ratio of 3-PGA to Pi was significantly 

(P≤0.05) increased in lines #19 and #34. 

 

5.3.5 Analysis of fruit yield 

Fruit were harvested, and their weights and sizes determined, after 65 DAF. Some fruits of the 

transgenic line can be seen in comparison with the WT control in Fig. 13. Both the average 

weights and sizes of fruits of all of the transgenic lines were significantly (P≤ 0.05) reduced in 
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comparison with the WT control (Table 2). This reduction was between 15-20% with respect 

to the weights of the control fruits and 9-11% with respect to the sizes of the control fruits. 
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Figure 12: Activities of enzymes involved in the conversion of sucrose to starch in 

pericarp of the WT control and αcp-FBP-transgenic lines of fruit of the tomato cultivar 

Moneymaker. (A) SuSy. (B) UGPase. (C) PGM. (D) AGPase. Data represent the mean of 

five independent measurements + SE. 
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Table 1: Metabolite concentrations in the pericarp of 30 DAF old WT control and αcp-FBP-

transgenic fruits.  

Lines  

Conc. nmol.(g FW)-1 WT #19 #33 #34 

G6P 44.6  +  2.5 48.5  +  4.1 49.8  +  4.3 52.9  +  3.8 

G1P   5.6  +  0.3   4.8  +  0.2   4.7  +  0.7   6.1  +  0.4 

F6P 15.0  +  1.0 14.8  +  1.3 15.5  +  1.5 17.2  +  0.8 

Total Hexose-P 65.2  +  3.1 68.1  +  4.4 70.0  +  5.8 76.2  +  6.3 

3-PGA 15.0  +  1.0 18.4  +  1.0 19.3  +  2.2 19.7  +  1.5 

PEP   4.5  +  0.6   3.5  +  0.4   4.6  +  0.4   5.1  +  0.8 

Pyruvate   2.8  +  0.4   3.9  +  0.5   3.9  +  0.5   3.2  +  0.5 

Pi   1.7  +  0.1   1.2  +  0.1   1.5  +  0.2   1.6  +  0.1 

Ratio     

Hexose-P/3-PGA   4.5  + 0.5   3.7  +  0.1   3.6  +  0.1   3.9  +  0.2 

P-ester/Pi 50.6  + 5.3 79.4  +  12.6 59.8  +  6.8 60.2  +  2.6 

3-PGA/Pi   8.8  + 1.1 15.3  +  3.4 12.8  +  3.9 12.3  +  0.9 

The data represent means ± SE of five independent samples. Samples significantly different 

from the control (P≤0.05, Students t-test) are in bold. 

 

Table 2: Weights and sizes of ripe tomato fruits in the WT control and αcp-FBP-transgenic 

lines.  

Average  

Lines Weight of Fruit (g) Size of Fruit (cm) 

WT 

#19 

#33 

#34 

54.2  +  1.2 (n=146) 

46.4  +  2.1  (n=42) 

45.8  +  1.8  (n=52) 

43.5  +  1.7  (n=62) 

4.8  +  0.03 (n=146) 

4.4  +  0.08  (n=42) 

4.4  +  0.07  (n=52) 

4.3  +  0.06  (n=62) 

The data are means + SE, number of sample is in parentheses. Significant differences (P≤ 

0,05), Student’s t-test are in bold 
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Figure 13: Some 65 DAF old fruits from αcp-FBP-transgenic lines (bottom) in 

comparison with a control fruit (above).(A) Transgenic line #19. (B) Transgenic line #33 

(C) Transgenic line #34. 
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5.3.6 Number of flower, fruit per plant, fruit set and number of days to 50% flowering. 

Data of this trait are presented in Table 3. No significant differences were found between the 

control and the transgenic lines with respect to both number of flower per plant and number of 

days from planting to 50% flowering, while two transgenic lines (#19 and #33) showed 

significant reductions in comparison with the control with respect both number of fruit per 

plant and fruit set. No significant differences were found between the control and line #34 

with respect to either number of flower per plant or fruit set. 

 

Table 3: Number of flowers, fruits, fruit set and number of days to 50% flowering in the WT 

control and αcp-FBP-transgenic lines. 

Average  

Lines No. of flower/plant No. of fruit/plant Fruit set % No. of days to 50% 

flowering 

WT 

#19 

#33 

#34 

42.9  +  1.7 

46.0  +  4.9 

42.8  +  2.0 

44.4  +  4.7 

26.3  +  1.2 

21.4  +  1.8 

21.2  +  1.7 

26.8  +  2.6 

61.0  +  0.5 

47.1  +  1.6 

49.2  +  2.2 

60.6  +  1.1 

51.4  +  0.5 

50.2  +  0.4 

50.0  +  0.6 

49.8  +  0.7 

Data represent the mean of fifteen independent measurements + SE in WT and five 

independent measurements + SE in the transgenic lines. Significant differences (P≤ 0,05, 

Student’s t-test) are in bold. 

 

5.4 Discussion and conclusion 

In this study I have described the production of transgenic tomato plants repressed in cp-

FBPase activity in the fruit. A fruit specific promoter was used as constitutive reduction of 

this enzyme represses photosynthesis in leaves and lead to stunted growth of the whole plant 

(Kossmann et al., 1994). If plants had been produced in this study using a constitutive 

promoter it would not have been possible to separate the effect in fruit metabolism of reduced 

photosynthesis in the leaves from that in fruits. The transgenic plants appeared phenotypically 

normal, indicating that the antisense effect was indeed restricted to the fruits, a view 

confirmed by measurement of FBPase activity, which was unchanged in leaves of the 

transgenic lines. Although unchanged in the leaves, the total FBPase activity was reduced in 

green fruits. This is a measure of both cp-FBPase and cy-FBPase simultaneously. The 

reduction in comparison with the total activity was more than 50% in the most inhibited lines 
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(#19 and #33), which is a smaller reduction in activity than was found in leaves of potato 

plants where the cp-FBPase was inhibited (up to 85% inhibition; Kossmann et al., 1994). 

This might indicate either that the cy-FBPase contributes a greater proportion of the total 

FBPase activity in tomato fruits than in potato leaves, or that the fruit specific promoter used 

in this study does not inhibit the cp-FBPase as strongly as the constitutive promoter used in 

the experiments of Kossmann et al. (1994). I feel that the former explanation is more likely 

as immunoblot experiments using an antibody that recognizes cp-FBPase indicated that it was 

almost completely eliminated in lines #19 and #33, and greatly reduced in lines #34. This 

indicates that the residual FBPase activity, at least in lines #19 and #33, comes almost entirely 

from the cy-FBPase. As expected the reduction in FBPase activity was found only in younger 

fruits (45 DAF or younger). It is known that the cp-FBPase is present in green, but not red, 

fruits and, therefore, that in red fruits all FBPase activity comes solely from the cy-FBPase 

(Büker et al., 1998). As it was the cp-FBPase isoform that was being repressed, differences in 

activity should have been noted only in younger fruits. 

As was stated above, cp-FBPase activity has previously been repressed in transgenic potato 

plants and much data has been collected on alterations in metabolism in leaves of those plants. 

Repression of cp-FBPase in leaves led to decreases in the concentrations of soluble sugars and 

in starch contents (Kossmann et al., 1994). Such drastic differences were not found in the 

fruits of the transgenic tomato plants repressed in cp-FBPase and the differences that were 

noted were qualitatively different to those found in potato leaves. Glucose and fructose 

concentrations, for example, were not decreased in comparison with the control, but rather 

increased in green fruits. These alterations are at precisely the developmental stage when cp-

FBPase would be expected to have the greatest influence indicating that it is indeed a 

reduction in activity of this enzyme that leads to the increase. This probably indicates that the 

fruits from the transgenic plants are relying more on imported sucrose than the WT control 

fruits. Sucrose is degraded very quickly upon import into fruits by either invertase or sucrose 

synthase. This is demonstrated by the very low concentration of sucrose in relation to either 

glucose or fructose found in the fruits both in the present study and in previous ones (Klann 

et al., 1996; Schaffer and Petreikov, 1997). Although it is not clear in tomato fruits which 

enzyme has the greatest influence on sucrose degradation, both appear to effect fruit 

metabolism. Repression of invertase leads to fruits that accumulate sucrose (Klann et al., 

1996), whilst inhibition of sucrose synthase has been reported to decrease fruit set and sucrose 

import, but did not alter soluble sugar levels (D’Aoust et al., 1999). Invertase degrades 
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sucrose to glucose and fructose, whilst sucrose synthase produces UDP-glucose and fructose. 

Increases in concentrations of glucose and fructose in fruits of the transgenic lines indicates, 

therefore, either that more sucrose has been imported and degraded, or that the glucose and 

fructose produced are not being utilized as quickly. As the transgenic fruits are repressed in 

cp-FBPase, and it is known that repression of this enzyme leads to repression of 

photosynthesis (Kossmann et al., 1994), it is likely that the transgenic fruits will have to rely 

more on imported sucrose for growth than the WT control fruits. The levels of PEP and 

pyruvate were not altered in the transgenic lines, which indicates that glycolysis has not been 

down-regulated and, therefore, that utilization of glucose and fructose has also not been 

reduced. This indicates, therefore, that the increased concentrations of fructose and glucose 

are due to increased import of sucrose. 

In one transgenic line (#19) at both 30 and 35 DAF there was a significantly greatly increased 

sucrose concentration in comparison with the WT control, and the other transgenic lines. I 

have no explanation for this, and it was not noted in any other line at any other point, 

indicating that it was due to random variation. Other than those points, there were no 

significant differences in sucrose concentrations in the transgenic lines in comparison with the 

WT control fruits. These lack of differences in soluble sugar concentrations between the 

transgenics and the WT control are presumably because the fruit can compensate for any 

reduction in sugar production due to a fruit specific repression in photosynthesis by importing 

more soluble sugars. 

I also measured the concentrations of some metabolites, which might be affected by 

reductions in cy-FBPase (Table 1). To our knowledge these data represent the first 

documented measurement of these metabolites in tomato fruit. The levels of most measured 

metabolites are lower than those observed in leaves or tubers from the closely related potato 

plant (see for example Westram et al., 2002; Lytovchenko et al., 2002) most probably 

because of the high water content of this tissue. In addition, the relative 3-PGA concentration 

with respect to the other metabolites is much lower in the WT fruit tissue than that observed 

in potato leaves (Lytovchenko et al., 2002) suggesting that photosynthesis in the tissue 

studied here is less efficient. Although the levels of hexose-P were unchanged, the hexose-P 

to 3-PGA ratio - which is indicative of the rate of inter-conversion between Fru-1,6-P2 and 

Fru-6-P (Fernie et al., 2001) - is moderately decreased in all lines (significantly in the case of 

#33 and #19). This indicates that the flux through the chloroplastic FBPase is indeed inhibited 

in vivo. Furthermore, evaluation of the metabolic profile of these plants strongly hints that 
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photosynthesis was repressed by phosphate limitation – the levels of inorganic phosphate (Pi) 

are somewhat lower in the transgenics (significantly in the strongest line), and most 

importantly the P-ester to Pi ratio increases. Such changes are characteristic of phosphate 

limitation of photosyntheis (Lytovchenko et al., 2002; Leegood and Furbank, 1986) and 

indeed resemble those observed on the inhibition of the cytosolic isoform of this enzyme in 

potato (Zrenner et al., 1996). The glycolytic metabolites, PEP and pyruvate were unaltered in 

the transgenics whilst there was a slight decrease in the levels of Pi. This was only significant, 

however, in the strongest transgenic line. The ratio of total P-ester to Pi shows a trend of 

increasing with decreasing cp-FBPase activity, as does the ratio of 3-PGA to Pi. 

None of the metabolites downstream of the FBPase reaction (Glc-6-P, Fru-6-P and Glc-1-P) 

were greatly altered in the fruits of the transgenic plants. Glc-1-P was reduced, but only in the 

fruits from one line (#19). These data are similar to those reported by Kossmann et al. (1994) 

who argued that hexose-P are present mainly in the cytosol and, therefore, are less likely to be 

influenced by alterations in plastid metabolism. 3-PGA concentrations, however, were 

significantly increased in two out of the three transgenic lines. This is in contrast to what was 

found in potato leaves repressed in cp-FBPase where 3-PGA was reduced in concentration 

(Kossmann et al., 1994). In that study they did find, however, that glyceraldehyde 3-

phosphate (G3P), the precursor of which is 3-PGA, was increased in leaves with reduced cp-

FBPase. It was argued that photosynthetically active tissues with reduced cp-FBPase should 

contain less ribulose 1,5-bisphosphate (Ru 1,5-P2) which is the substrate for carboxylation. 

They argued further that it would be reasonable to assume that under those circumstances 

G3P would accumulate in preference to 3-PGA as G3P is involved in the regeneration phase 

of the Calvin cycle while 3-PGA is the primary product of carboxylation. Although these 

arguments hold true for leaves, where photosynthesis is essential for growth, they do not 

necessarily hold true for fruits, which have a second source of energy. As the fruit must not 

rely on its own photosynthate the regeneration phase of the Calvin cycle is not of such 

importance and, therefore, it is reasonable to assume that reductions in cp-FBPase would 

result in increases in 3-PGA.  

The starch content in two out of three of the transgenic lines was not consistently altered in 

comparison with the WT control. One line (#34) did produce less starch than the WT control, 

but this was the line which was least inhibited in FBPase activity indicating that the reduction 

is not related to the reduction in cp-FBPase activity. Reduction in cp-FBPase activity in 

potatoes did lead to a reduction in starch accumulation in leaves (Kossmann et al., 1994). 
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This differences seen in the fruits of the transgenic lines here in comparison with the situation 

in potato leaves probably due to a major difference between starch production in leaves and 

fruits. Tomato fruit chloroplasts contain both an active glucose phosphate and a triose 

phosphate transporter (Büker et al., 1998). Chloroplasts in leaves are not thought to contain a 

glucose phosphate transporter as, leaves do not appear to accumulate transcript that codes for 

this transporter (Kammerer et al., 1998). Repression of cp-FBPase activity should reduce 

flux of carbon produced by photosynthesis into starch. As no consistent reductions in starch 

were found in the transgenic lines it appears that fruit plastids can compensate for any 

reduction in flux from photosynthesis, presumably by importing glucose phosphate formed by 

cytoplasmic sucrose degradation. It appears that AGPase activity was reduced in the 

transgenic lines by up to 60 %. This is something that would be expected to reduce starch 

contents, but in the next chapter I will demonstrate that AGPase has to be repressed to a 

greater extent than was found in the transgenic lines before starch accumulation is affected. In 

addition the ratio of 3PGA to Pi in the pericarp of the transformants is elevated in the 

transgenic tomato lines (Table 1), which would be expected to stimulate AGPase activity and 

might compensate for any reductions in activity. In addition PGM activity was reduced in the 

transgenic lines at early stages of development. PGM exists as two isoforms, one in the 

cytoplasm and one in the plastid each of which contributes approximately 50 % of the total 

activity. It is known that the plastidial isoform is essential for starch biosynthesis (Hanson et 

al, 1988; Harrison et al., 1998; Tauberger et al., 2000), but it is not clear from my 

measurement which isoform is reduced in activity. 

No significant differences were found between the WT control and all of transgenic lines with 

respect to either number of flower per plant or number of days from planting to 50% 

flowering. Two transgenic lines (#19 and #33), however, showed significant reductions in 

comparison with the WT control in respect to both number of fruit per plant and fruit set. 

These are the two most strongly inhibited lines indicating that this reduction in fruit set is 

indeed due to the reduction in FBPase activity. It is difficult to understand, however, how cp-

FBPase could influence fruit set. It might be possible that its repression leads to reduced 

pollen viability or to alteration in ovule development. To my knowledge it is not known 

whether the B33 promoter confers expression in these tissues. If it did then this could be a 

feasible explanation. It has been demonstrated previously, for example, that reductions in 

citrate synthase activity in potato leads to disintegration of the ovary (Landschütze et al., 

1995), indicating that alterations in metabolism can indeed influence fertility. A second 
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possibility is that very young fruit abort for some unknown reason due to repression of cp-

FBPase affecting carbohydrate metabolism within the fruit. These possibilities are something 

that could be investigated in the future. 

One final question that I wished to address was how much carbon was supplied to the fruit 

through photosynthesis in the fruit itself. I have demonstrated above that cp-FBPase is 

repressed in the fruits of the transgenic plants, and it is known that this leads to reductions in 

photosynthesis (Kossmann et al., 1994). In addition, the metabolic analysis that I have 

carried out (discussed above) indicates that photosynthesis is indeed repressed in the fruits of 

these transgenic plants by phosphate limitation. The most likely explanation, therefore, for 

any effect on yield would be that it is caused by repression of photosynthesis in the fruits. 

Repression of cp-FBPase led to a reduction in both the weights and sizes of ripe fruits in all 

three transgenic lines (Fig. 13, Table 2). There are three possibilities as to how this could 

occur. The first is that the reduction in cp-FBPase leads to a reduction in sink strength in the 

fruits and, thus, to decreased import of carbon from the leaves. This seems unlikely, as it 

would be expected that reducing the amount of carbon produced by photosynthesis in the fruit 

would actually increase demand for carbon from the fruit. The second possibility is that in the 

transgenic plants there is less carbon fixed in the leaves and, thus, less exported to the fruits. 

This again appears unlikely as there was no effect of the transformation on FBPase activity in 

the leaves, indicating that the repression was fruit specific and, thus, that the only direct 

effects would be found in the fruits. The third, and most likely explanation is that the 

reduction in fruit weight represents the carbon produced within the fruit by photosynthesis. 

This explanation is supported as the reduction in average fruit weight was between 15-20% in 

the three lines. This is very similar to the estimate of the contribution of photosynthesis to 

production of carbon skeletons in green tomato fruits of Tanaka et al. (1974).  

From the data presented in this chapter, it can be concluded that: (A) cp-FBPase activity is 

almost completely eliminated in the two most strongly inhibited lines (#19 and #33). (B) 

Repression of cp-FBPase in fruits leads to some alterations in concentrations of soluble sugars 

in young fruits. (C) The metabolic profile in fruits of the transgenic lines strongly indicates 

that photosynthesis is inhibited in vivo. (D) Fruit weight and size is reduced in the transgenic 

lines suggesting a significant contribution of fruit photosynthesis in the provision of carbon 

and energy required to support fruit expansion. (G) Repression of cp-FBPase affected fruit 

set, but the reason for this remains unclear. 
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6 Functional Analysis of ADP-glucose Pyrophosphorylase in 

Tomato Fruit 

 
6.1 Introduction 

ADP-glucose pyrophosphorylase (AGPase) catalyses the first reaction on the committed 

pathway of starch biosynthesis. In higher plants, AGPase is a heterotetramer consisting of two 

large and two small sub-units which are 54 and 51 kDa in size respectively (see Preiss, 1991). 

It is known that it is essential for starch production as reductions in its activity in mutant and 

transgenic plants leads to reductions in starch contents (Tsai and Nelson 1966, Dickinson 

and Preiss 1969; Lin et al., 1988; Smith et al., 1989; Müller-Röber et al., 1992).  

Until recently it was thought that the AGPase enzyme was located solely in the plastid in all 

plant species. Evidence over the past decade, however, has indicated that in cereal endosperm 

there is a second isoform present in the cytosol also, which contributes the majority of the 

total activity, at least in barley, maize, wheat and rice (Thorbjørnsen et al, 1996a, Denyer et 

al. 1996; Sikka et al., 2001; Burton et al., 2002). As starch is manufactured within the 

plastid this would mean that in cereal endosperm any ADP-glucose produced in the cytosol 

would have to be imported into the amyloplast. It is thought that this is performed by a protein 

named Brittle-1. Mutations in the gene coding for this protein in maize lead to a decreased 

starch content (Sullivan et al., 1991) and increased ADP-glucose concentrations (Shannon et 

al., 1996), both of which would be expected if the protein has this function. In addition, it has 

been localized in the amyloplast membrane (Cao et al., 1995, Sullivan and Kaneko, 1995) 

and analysis of its primary protein sequence indicates that it is a sugar-nucleotide transporter. 

There is still some controversy about whether a similar system is present in tomato fruits. One 

immunolocalisation study indicated that AGPase was present both inside and outside the 

plastid in tomato pericarp (Chen et al., 1998), however, its activity was found only in the 

plastid fraction upon sub-cellular fractionation (Beckles et al., 2001a).  

Starch accumulates transiently in tomato fruits being present when they are immature, but not 

when they are ripe. Its role in tomato fruit metabolism is not understood, but it has been 

proposed that carbohydrate metabolism in this organ is controlled by a number of different 

futile cycles, one of which involves continuous synthesis and degradation of starch (Nguyen-

Quoc and Foyer, 2001). In that paper it was proposed that repression of AGPase in tomato 

fruits would be a good method to examine any such futile cycle.  
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6.2 Aim of the work 

The aim of the work described in this chapter is to repress the activity of AGPase in tomato 

plants and study the effect on fruit metabolism. It would be hoped that these data would help 

to answer the question as to whether AGPase is situated both inside and outside the plastid in 

tomato fruit, and to help to understand the role, if any, of a futile cycle of starch degradation 

and synthesis in carbohydrate metabolism in tomato fruits. 

 

6.3 Results 

6.3.1 Recovery of plants with reduced AGPase activity in the pericarp of tomato fruit 

The pericarp of 25 days after flowering (DAF) old tomato fruits were analysed for AGPase 

activity in forty transgenic lines. Three lines (#2, #7 and #11) showed reductions in AGPase 

activity and were chosen for further study (see Material and Methods). The transgenic plants 

themselves were phenotypically identical to the untransformed control (Fig. 14). 

AGPase activity was studied throughout fruit development in the pericarp of these plants. 

There was a significant reduction in AGPase activity in all three transgenic lines throughout 

fruit developing in comparison with the WT control (Fig. 15A). Initially the reduction in 

activity of line #7 was 90%, and in the other two lines 70%. The activity in the control 

decreased during the ripening process, but the activity in all transgenic lines relatively 

constant during the ripening process. AGPase activities were significantly reduced in 

comparison with the WT control until 55 DAF in transgenic line #2, and at every time point 

studied in the other two lines. 

Immunoblots using an antibody raised against the a sub-unit of maize AGPase (Müller-

Röber, et al., 1992), but which recognizes the tomato protein also indicated that it was 

completely eliminated in 25 DAF fruit of the lines #7 and greatly reduced in the lines #11 and 

#2 (Fig. 15B). 

 

6.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic lines 

Starch and soluble sugar contents were determined in the pericarp between 25-70 DAF. There 

was net degradation of starch over the ripening period (Fig. 16A). In the WT control the 

concentration was approximately 18µmol hexose (g FW)-1 at 25 DAF, and was 0.3µmol 

hexose (g FW)-1 at the final sample point. The starch contents in lines #2 and #11 were not 

significantly different in comparison with the control over the entire sampling period, but 
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those of line #7 were significantly reduced until 50 DAF, after which there were no 

differences. 

 

 
Figure 14: Aerial parts of plants in both WT control and α-AGP-transgenic lines after 

13 weeks growth in the glasshouse. From left to right: WT control, transgenic line #2, 

transgenic line #7, transgenic line #11 and transgenic line #11. The α-AGP plants are 

phenotypically identical to the untransformed WT control. 

 

Both glucose and fructose concentrations increased slightly over time in both the control and 

the transgenic lines. Glucose concentrations were significantly increased in the WT control in 

comparison with the three transgenic lines, but only between 55 and 70 DAF. At these time 

points the concentrations in the WT control fruits increased from approximately 70 to 110 

µmol (g FW)-1, while in the transgenic fruits they increased from approximately 60 to 90 

µmol hexose (g FW)-1 (Fig. 16B). There were no significant differences in fructose 

concentrations between the transgenic lines and the WT control (Fig. 16C). 

Sucrose concentrations stayed between 2-4 µmol (g FW)-1 in all lines from the first sampling 

point until 60 DAF, after this point they increased to between 6-8 µmol (g FW)-1. The only 

significant differences in sucrose concentrations between the transgenic lines and the WT 
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control were at 65 and 70 DAF (Fig. 16D). At these time points there was a significantly 

greater concentration of sucrose in the pericarp from control than the transgenics. 
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Figure 15: AGPase activity during developmental stage (A) and Western blot analysis in 

green (25 DAF) (B) in the pericarp of WT control and α-AGP-transgenic lines. Total 

soluble fruit protein (25µg) was subjected to SDS-PAGE on a 10% (w/v) gel. 

 

6.3.3 Changes in activities in enzymes involved in conversion of sucrose to starch 

Sucrose synthase (SuSy) activity approximately 100nmol min-1 (mg protein)-1 in the pericarp 

of the control plants at 25 DAF. This decreased to about 25nmol min-1 (mg protein)-1 at 45 

DAF, after which it remained relatively constant. There were no significant differences in 
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SuSy activity between the transgenic lines and the WT control except at 45 DAF in line #7 

where the activity was significantly greater than in the WT control (Fig 17A). 
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Figure 16: Starch and soluble sugar contents in the pericarp of the WT control and α-

AGP-transgenic lines.(A) Starch. (B) Glucose. (C) Fructose. (D) Sucrose. Data represent the 

mean of five independent measurements + SE in both WT control and transgenic line #7, but 

four independent measurements + SE in transgenic line #2 and transgenic line #11. 
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The activity of UDP-glucose pyrophosphorylase (UGPase) increased from approximately 

500nmol min-1 (mg protein)-1 in the WT control at 25 DAF to 1000nmol min-1 (mg protein)-1 

at 55 DAF, before decreasing to 530nmol min-1 (mg protein)-1 at 65DAF. Some significant 

differences in activities were noted in the transgenic lines. Activities were significantly 

reduced in line #2 at 35 DAF and in line #7 at 65 DAF, however the activitiy was 

significantly increased in line #11 at 45 DAF (Fig 17B). 

Phosphoglucomutase (PGM) activity increased from 416nmol min-1 (mg protein)-1 to 

732nmol min-1 (mg protein)-1 in pericarp from the control between 25 and 45 DAF. It then 

decreased to 306nmol min-1 (mg protein)-1 at 65 DAF. The activity in all the transgenic lines 

was significantly reduced in comparison with the control at 35DAF and was also significantly 

reduced in line #2 at 45DAF (Fig 17C). 

Fructose-1,6-bisphosphatase (FBPase) activity decreased from 12nmol min-1 (mg protein)-1 at 

25 DAF to 4nmol min-1 (mg protein)-1 at 65 DAF in the WT control. The activities in the 

transgenic lines were not significantly altered, except at 65 DAF in line #7 when a significant 

reduction in activity was found (Fig 17D). 

 

6.3.4 Concentration of metabolic intermediates in the pericarp of the WT control and 

transgenic lines 

The concentration of some metabolites were measured in trichloroacetic acid extracts from 30 

DAF fruits. The metabolites determined were Glc-6-P, Glc-1-P, Fru-6-P, 3-PGA, PEP, 

pyruvate and Pi. The data are representing in Table 4. Few significant differences were found 

between the transgenic lines and the WT control. Both PEP and 3-PGA were significantly 

reduced (P≤ 0.01, P≤ 0.05 respectively) in line #7. Pyruvate concentrations were also 

significantly reduced (P≤ 0.05) in lines #2 and #11. No significant differences were found 

between the transgenic lines and the control for total hexose-P, the hexose-P to 3-PGA ratio 

and the total phosphateester to Pi ratio, however the 3-PGA to Pi ratio was significantly 

reduced (P≤ 0.01) in line  #7. 

 

6.3.5 Analysis of fruit yield 

Fruit were harvested, and their weights and sizes determined after 65 DAF. Some fruits of one 

transgenic line (#7) can be seen in comparison with the WT control in Fig. 18. As can be seen 

in Table 5 in one transgenic line (#7) the average weights and sizes of harvested fruits were 
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significantly (P≤ 0.01) reduced in comparison with the WT control. This reduction was 22% 

and 10% of respectively the weights and sizes of the WT control fruits. 
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Figure 17: Activities of enzymes involved in the conversion of sucrose to starch in 

pericarp of the WT control and α-AGP transgenic lines of fruit of the tomato cultivar 

Moneymaker. (A) SuSy. (B) UGPase. (C) PGM. (D) FBPase. Data represent the mean of 

five independent measurements + SE in both WT control and transgenic line #7 and four 

independent measurements + SE in transgenic line #2 and transgenic line #11. 
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Table 4: Metabolite concentrations in the pericarp of 30 DAF old WT control and α-AGP-

transgenic lines. 

Lines  

Conc. nmol.(g FW)-1 WT #2 #7 #11 

G6P 67.6  +  5.5 64.9  +  3.9 65.9  +  3.0 56.1  +  1.8 

G1P   9.3  +  0.7   8.5  +  0.4   7.9  +  0.3   8.6  +  0.1 

F6P 22.0  +  2.1 21.2  +  2.3 21.0  +  1.1 18.1  +  1.2 

Total Hexose-P 98.8  +  7.8 94.6  +  6.0 94.8  +  4.1 83.8  +  2.6 

3-PGA 17.4  +  0.6 16.4  +  1.7 13.8  +  0.8 18.7  +  0.5 

PEP   5.3  +  0.6   4.1  +  0.5   2.4  +  0.4   5.0  +  0.4 

Pyruvate   6.3  +  0.9   3.4  +  0.2   4.1  +  0.5   3.5  +  0.4 

Pi   1.1  +  0.01   1.2  +  0.11   1.2  +  0.11   1.2  +  0.05 

Ratio     

Hexose-P/3-PGA    5.1   +  0.29   7.0  +  0.92   6.7  +  0.20   4.4  +  0.05 

P-ester/Pi 106.0  +  7.8 93.2  +  7.5 90.2  +  4.6 88.9  +  6.0 

3-PGA/Pi  15.8   +  0.6 14.1  +  2.1 11.3  +  0.4 16.2  +  1.2 

The data represent means + SE of five independent samples. Significant differences (P≤ 0.05 

and P≤ 0.01, Student’s t-test) are in bold. 

 

Table 5: Weights and sizes of ripe tomato fruits in the WT control and α-AGP-transgenic 

lines. 

Average  

Lines Weight of Fruit (g) Size of Fruit (cm) 

WT 

#2 

#7 

#11 

56.7  +  2.0    (n=53) 

59.3  +  2.7    (n=44) 

44.7  +  1.6   (n=46) 

55.6  +  1.9    (n=44) 

4.8  +  0.07    (n=53) 

4.9  +  0.08    (n=44) 

4.3  +  0.06    (n=46) 

4.8  +  0.07     (n=44) 

Data are means + SE, number of sample is in parentheses. Significant differences (P≤ 0,01), 

Student’s t-test are in bold. 
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Figure 18: Some 65 DAF old fruits from α-AGP-transgenic line #7 (bottom) in 

comparison with the WT control fruit (above). 

 

6.3.6 Number of flowers, fruits per plant, fruit set and number of days to 50% flowering 

Data of these traits are presented in Table 6. The only significant difference in the transgenic 

lines was that line #7 took longer to reach 50% of its flowers than the control. 

 

Table 6: Number of flowers, fruits, fruit set and number of days to 50% flowering in the WT 

control and the transgenic lines. 

Average  

Lines No. of flower/plant No. of fruit/plant Fruit set % No. of days to 50% 

flowering 

WT 

#2 

#7 

#11 

50.8  +  4.7 

49.0  +  3.6 

45.4  +  3.4 

56.3  +  3.0 

42.2  +  3.4 

39.0  +  3.7 

34.2  +  1.9 

48.5  +  1.9 

83.6  +  3.8 

79.2  +  2.3 

76.6  +  6.0 

86.4  +  1.3 

54.0  +  0.5 

55.5  +  1.2 

59.8  +  1.3 

56.5  +  1.0 

Data represent the mean of five independent measurements + SE in the WT control and in 

transgenic line #7, but four independent measurements + SE in both transgenic lines #2 and 

#11. Significant (P≤ 0,01, Student’s t-test) differences from the control are in bold. 
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6.4 Discussion and conclusion  

In this study I have described the production of transgenic tomato plants repressed in AGPase 

activity using a constitutive promoter. The transgenic plants appeared phenotypically normal, 

indicating that repression of AGPase activity has no effect on growth of the plants under the 

conditions used. In addition the activities of other enzymes involved in the conversion of 

sucrose to starch were not consistently altered indiacting that reductions in AGPase activity 

did not lead to pleiotropic effects on fruit metabolism. 

AGPase activity was demonstrated to be reduced throughout fruit development in the pericarp 

of these plants, and the degree of reduction correlated with reductions in amount of AGPase 

protein as determined by immunoblots. This reduction in activity ranged between 70 to 90% 

of the WT control activity in the different transgenic lines at 25 DAF, with line #7 being the 

most repressed. AGPase activity in the WT control decreased during fruit ripening, as did 

starch contents in the pericarp. This is interesting as AGPase activity has often been 

associated with starch accumulation both in tomato (Yelle et al., 1988) and other plants 

(Okita, 1992; Preiss, 1988, 1991). It has indeed been suggested that it may catalyse a rate-

limiting step in starch accumulation (Stark et al., 1992), although this still remains a 

controversial idea. My data indicates that AGPase activity is in excess in tomato fruits as 

repression of its activity by 70% did not greatly alter starch accumulation. It was only in the 

one line (#7) where activity was reduced by 90 % that an effect on starch accumulation was 

found. The starch content of that line was only approximately 25 % that of the WT control. 

This is similar to the data found in the study of Müller-Röber et al. (1992), who repressed 

AGPase activity in potatoes using the same construct as in this study. They found that 

decreased starch contents were only found when AGPase activity was reduced by more than 

50 %. This indicates that in tomato fruit AGPase does not control the amount of starch that 

accumulates. If that were the case it would be expected that a straight-line relationship would 

be found between its activity and starch content. Although there is obviously some influence 

of AGPase on starch content (as demonstrated by line #7), the reductions in activities in lines 

#2 and #11 were not mirrored by reductions in its accumulation. This indicates that other 

enzymes also influence the rate of its synthesis. In Arabidopsis and potato it has been 

demonstrated that plastidial PGM – which catalyses the step prior to AGPase – can influence 

the rate of starch synthesis (Neuhaus and Stitt, 1990; Fernie et al., 2001), and it might be 

that this is the case in tomato also. 

 

 

-66-



 

In a previous study AGPase was repressed in potato (Müller-Röber et al., 1992), which led 

to plants producing tubers containing only a small amount of starch, but high levels of soluble 

sugars, mainly sucrose and glucose. Such drastic differences were not found in the fruits of 

the transgenic tomato plants in this study. As was said above, starch contents were reduced in 

only one of the transgenic tomato lines, but this was not accompanied by increases in soluble 

sugar concentrations. The only differences noted in respect to this was that there were slight 

decreases in glucose and sucrose concentrations at the final two sampling points, a time when 

the fruits are ripe. These were precisely the points where it would not be expected that 

AGPase would have an influence as both its activity, and starch contents in the pericarp are 

extremely low. In addition the same reductions in glucose and sucrose were noted in the two 

transgenic lines where starch was not reduced (#2 and #11). Soluble sugar concentrations are 

often quite variable, and I feel that it is most likely that these small differences are due to the 

small number of probes taken (four or five) rather than due to some difference caused by the 

transgene.  

The lack of increase in soluble sugars demonstrates that starch is not used as a major carbon 

reserve in tomatoes. This is again different to the situation in a potato tuber where the starch 

content is generally between 25-50 times greater than the maximum amount found in the 

pericarp in this study. Tomato fruits obviously store more carbon in the form of soluble sugars 

than starch. In this study in green fruits – the time point when starch contents are maximal and 

sugar contents minimal - there was approximately six fold more carbon present as glucose, 

sucrose and fructose than starch. It is, therefore, not surprising that reductions in starch in line 

#7 did not greatly influence sugar contents as it makes up such a small proportion of the total 

metabolisable carbon in the fruit. 

One aim of this study was to use a genetic approach to examine whether AGPase is present 

solely in the plastid in tomato fruit. The reason why that is possible is that it is known that the 

construct I used represses a plastidial isoform of AGPase. This is demonstrated as starch 

contents are reduced in potato leaves where this isoform has been repressed (Leidreiter et al., 

1995). Although it is now generally accepted that cereal endosperms contain an extra-plastidic 

AGPase isoform, it is still assumed that leaves do not as the starch is manufactured from 

carbon derived directly from photosynthesis, a process that occurs solely in the chloroplast. 

My data does not rule out the possibility of a cytosolic form of AGPase in tomato fruit as I 

was only able to repress up to 90 % of the AGPase activity and it is possible that the 

remaining 10 % of the activity is extra-plastidial, however it does demonstrate that the 
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majority of the activity is in the plastid. The assumption for this statement is that there is no 

differential splicing mechanism of the AGPase gene in tomato. In wheat and barley it has 

been demonstrated that the gene coding for the small sub-unit of AGPase is subject to 

alternative splicing giving rise to two forms of the protein, one of which can be imported into 

plastids and one which cannot (Thorbjonsen et al., 1996b; Burton et al., 2002). This seems 

unlikely in tomato based on the strong evidence in potato that the AGPase small sub-unit gene 

is not differentially spliced. As potato and tomato are so closely related it is reasonable to 

assume that is also the case in tomato. The evidence in potato that there is no cytoplasmic 

AGPase is that when a bacterial form of AGPase was expressed in either the cytoplasm or 

plastid in potato tubers, increases in starch contents were found only upon expression in the 

the plastid (Stark et al., 1992). If there was a cytosolic form it would be expected that 

expression in the cytoplasm would lead to increased manufacture of starch also. 

In this study I analysed the yield of tomato fruit and found that the both average weights and 

sizes of fruits in one transgenic line (#7) were significantly (P≤ 0.01) reduced in comparison 

with the WT control. This was the strongest inhibited line, and the only one with a reduced 

starch content, indicating that this phenotype may well be due to the inhibition of AGPase 

activity. Unfortunately as this was only found in one line, somaclonal variation cannot be 

ruled out. The same argument holds true for the delay in flowering noted in line #7. To study 

whether this was really an effect of strong reductions in AGPase activity, other lines which 

are equally strongly inhibited would have to be identified. 

From the data presented in this chapter it can be concluded that: The line exhibiting the 

greatest level of AGPase inhibition was characterised by a depressed starch content, 

significant reduction in fruit yield and a delayed flowering. 
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7 Analysis of the Function of the GWD protein in Tomato Fruit 
 

7.1 Introduction 

Starch is one of the most abundant polymers produced in nature and is synthesized as a 

storage carbohydrate throughout the plant kingdom. In storage organs it serves as a long-term 

carbon reserve, whereas in photosynthetically competent tissues it is transiently accumulated 

to provide both reduced carbon and energy during periods unfavourable for photosynthesis. 

Starch comprises both linear (amylose) and branched (amylopectin) glucose polymers. 

Amylopectin from many, but not all plant sources contains phosphate-monoesters that are 

linked mainly to the C6 and C3 positions of glycosyl residues. The biochemical mechanism of 

starch phosphorylation has, however, only recently been elucidated. Transgenic potato plants 

(Lorberth et al., 1998) and the sex1 mutant of Arabidobsis (Yu et al., 2001) are deficient in a 

starch associated protein, which was provisionally designated as R1, and they synthesise 

starch with a decreased phosphate content. The purified recombinant R1-protein from potato 

is able to phosphorylate α-glucans (Ritte et al., 2002). It catalyses a dikinase-type of reaction, 

liberating the γ-phosphate of ATP (resulting in the release of orthophosphate), but using the 

β-phosphate to phosphorylate glucosyl residues the polyglucan. Because of this the protein 

has been renamed as GWD (Glucan Water Dikinase; Ritte et al., 2003). 

The phosphorylation of starch strongly affects its in vivo degradability. This is indicated by 

the starch-excess phenotype observed in leaves of GWD deficient potato or Arabidopsis 

plants (Lorberth et al., 1998; Yu et al., 2001). The reasons for this impairment of starch-

degradation are, as yet, unknown.  

 

7.2 Aim of the work 

The role of starch in tomato fruits is not well understood. It accumulates in young fruits, but 

afterwards there is net starch degradation leading to it being almost undetectable in ripe fruits. 

One way of examining this is to alter how much starch accumulates during fruit development. 

In a previous chapter I described the repression of ADP-glucose pyrophosphorylase (AGPase) 

in tomato, which leads to reductions in starch accumulation. It would also be interesting, 

however, to take the reverse approach and study tomato fruits that accumulate starch over a 

longer time period than normal. As repression of the GWD protein leads to reductions in 

starch degradation I decided to try and accomplish this by manipulating the amount of GWD 

protein using genetic engineering techniques 
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7.3 Results 

7.3.1 Recovery of Tomato Plants with Repression of the GWD Protein 

As was described in the Material and Methods, immunoblots demonstrated that three 

transgenic lines (#16, #17 and #20) showed a reduction in GWD protein accumulation (Fig. 

20A) and were chosen for further study. The plants in all of these transgenic lines differed 

phenotypically form the untransformed control (Fig. 19). The leaves senesced much earlier 

than the control. 

 

 
Figure 19: Aerial parts of plants in both WT control and α-GWD-transgenic lines after 

8 weeks growth in the glasshouse. From left to right: WT control, transgenic line #16, 

transgenic line #17, transgenic line #20 and transgenic line #20. 

 

To examine at what developmental period the GWD protein is present in tomato fruits, 

immunoblots was performed using protein extracts from differently aged WT fruits (Fig. 20C) 

and an antibody raised against the potato GWD protein (Ritte et al. 2000). This showed that it 

was present at every time point up to 50 DAF, after which it was absent. Immunoblots were 

also used to demonstrate that the protein was repressed in the pericarp of the transgenic plants 
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also and it appeared to be completely absent from 25 DAF fruits in all of the transgenic lines 

(Fig 20B). 
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Figure 20: Immunoblot analysis of the GWD protein in (A) leaves of untransformed WT 

control and three selected transgenic lines [Total soluble leaf protein (15µg) was subjected 

to SDS-PAGE on an 8% (w/v) gel], (B) in the pericarp of the WT control and transgenic 

lines (25 DAF) [Total soluble fruit (pericarp) protein (30µg) was subjected to SDS-PAGE on 

an 8% (w/v) gel] and (C) in the pericarp of the WT control fruits between 25-70 DAF 

[Total soluble fruit protein (20µg) was subjected to SDS-PAGE on an 8% (w/v) gel]. 

 

7.3.2 Starch and soluble sugar contents in the pericarp of the WT and transgenic lines 

Starch and soluble sugar contents were determined in the pericarp between 25-70 DAF. There 

was net degradation of starch over the ripening period (Fig. 21A). In the control the 

concentration was approximately 8µmol hexose (g FW)-1 at 25 DAF, and was less that 

0.5µmol hexose (g FW)-1 at the final sample point. The starch contents in all of transgenic 
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lines were significantly reduced in comparison with the control until 45 DAF after which 

there were no differences. 

There were no significant differences in glucose concentrations between the transgenic lines 

and control between 25 and 35 DAF. After that the concentrations were significantly 

decreased in the three transgenic lines in comparison with the WT. At these time points the 

concentrations in the transgenic fruits were between 40-50 µmol hexose (g FW)-1, while in the 

control fruits they were between 60-90 µmol (g FW)-1 (Fig. 21B).  

Fructose concentrations were significantly increased in the three transgenic lines in 

comparison with the control, but only between 25 and 35 DAF. At these time points the 

concentrations in the transgenic fruits were between 40-55 µmol hexose (g FW)-1, while in the 

control fruits they were between 15-18 µmol (g FW)-1 (Fig. 21C). Between 40-70 DAF, 

however, the fructose concentrations in the transgenic lines were significantly decreased in 

comparison with the control. During this period the concentrations in the transgenic fruits 

ranged between 40-50 µmol hexose (g FW)-1, while in the control fruits they were between 

60-100 µmol (g FW)-1. 

Sucrose concentrations in the pericarps of all the transgenic lines were significantly lower 

than the control at virtually every time point. The exceptions were in line #20 at 30 DAF and 

line #17 at 65 and 70 DAF where the sucrose concentration was not significantly altered in 

comparison with the control (Fig. 21D) In the controls the sucrose concentration decreased 

from about 3µmol hexose (g FW)-1 at the first sampling point, to about 1.5µmol hexose (g 

FW)-1 at the final sampling point. Although variable, in the transgenic lines there was a 

general decrease in sucrose concentrations from approximately 1.5µmol hexose (g FW)-1 at 

25 DAF to barely detectable levels at the final sample point. 

 

7.3.3 Starch and soluble sugar contents in the leaves of the WT and transgenic lines 

The starch and soluble sugar contents were determined also in the leaves of the control and 

transgenic plants (Fig.22A and B). The all of transgenic lines contained significantly more 

starch than the control (Sampling was done on fully developed leaves of 8 weeks old plants in 

the middle of the light period) (Fig.22A). In the control the concentration was 15.1µmol 

hexose (g FW)-1, but in the transgenic lines the concentrations were 26.5, 36,2, and 28,4µmol 

hexose (g FW)-1 for lines #16, #17 and #20 respectively. 

There were significantly increased glucose concentrations in leaves of the transgenic lines in 

comparison with the control (Fig.22B). In the control the glucose concentration was 16.5µmol 
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hexose (g FW)-1, but in all the transgenic lines it was approximately 21.0 µmol hexose (g 

FW)-1. Fructose concentrations conversely were significantly decreased in the three transgenic 

lines in comparison with the control (Fig.22B). The fructose concentration in the control was 

22.2µmol hexose (g FW)-1, but in the transgenic lines they were 6.3, 6.6 and 7.0µmol hexose 

(g FW)-1 in lines #16, #17, and #20 respectively. Sucrose concentrations were significantly 

increased in the three transgenic lines in comparison with WT control (Fig.22B). In the 

control this was 3.6µmol hexose (g FW)-1, however, in the transgenic lines the concentrations 

were 6.5, 5.3 and 6.9µmol hexose (g FW)-1 in lines #16, #17, and #20 respectively 

 

7.3.4 Changes in activities in enzymes involved in conversion of sucrose to starch 

Sucrose synthase (SuSy) activity decreased over time in fruits of both the control and 

transgenic plants. Significant reductions in activities were found in the transgenic lines at 55 

DAF (line #17) and 65 DAF (lines #16 and #20; Fig 23A). UDP-glucose pyrophosphorylase 

(UGPase) activity was high in both the control and transgenic lines, increasing between 25-55 

DAF. It then decreased in activity between 55-65 DAF. The pericarp from transgenic lines 

#17 and #20 contained significantly reduced UGPase activity at 45 DAF else there were no 

significant differences between the control and transgenic lines (Fig 23B). 

Phosphoglucomutase (PGM) activity decreased over the developmental period in all the lines. 

There were significant reductions in activity of PGM in comparison with the control in all the 

transgenic lines at 25 DAF, in line #17 at 35 and 55 DAF, and in lines #17 and #20 at 65 DAF 

(Fig. 23C). ADP-glucose pyrophosphorylase (AGPase) activity decreased over time in the 

control from 39.3 nmol min-1 (mg protein)-1 at 25 DAF to 19.5 nmol min-1 (mg protein)-1 at 65 

DAF (Fig. 23D). In the pericarp of the transgenic lines there was a significant reduction in 

AGPase activity at 25 DAF (lines #17 and #20), 35 DAF (line #20), 45 DAF (lines #17 and 

#20), 55 DAF (line #17) and 65 DAF (line #20). Fructose-1,6-bisphosphatase (FBPase) 

activity was generally greater in the WT control in comparison with the ά-GWD-transgenic 

lines. The activity decreased slowly over time period in both WT control and ά-GWD-

transgenic lines (Fig. 23E). 
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Figure 21: Starch and soluble sugar contents in the pericarp of the WT control and α-

GWD-transgenic lines in tomato cultivar Moneymaker during development. (A) Starch. 

(B) Glucose. (C) Fructose. (D) Sucrose. Data represent the mean of five independent 

measurements + SE in the WT control and transgenic line #17, but four independent 

measurements + SE in transgenic lines #16 and #20 
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Figure 22: Starch and soluble sugar contents in the leaves of the WT control and 

transgenic tomato lines lacking the GWD protein. (A) Starch. (B) Soluble sugars. Data 

represent the mean of five independent measurements + SE in the WT control and transgenic 

line #17, but four independent measurements + SE in transgenic lines #16 and #20. 

 

7.3.5 Analysis of fruit yield 

Fruits were harvested and their weights and sizes determined after 65 DAF. Some fruits of the 

transgenic line can be seen in comparison with the WT control in Fig. 24. As can be seen in 

Table 7 both the average weights and sizes of fruits in all of the transgenic lines were 

significantly (P≤ 0.01) reduced in comparison with the control. This reduction was between 

24-33% with respect the weights of the control fruits and 12-15% with respect the sizes of the 

control fruits. 
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Figure 23: Activities of enzymes involved in the conversion of sucrose to starch in the 

pericarp of the WT control and α-GWD-transgenic lines of tomato cultivar 

Moneymaker.(A) SuSy. (B) UGPase. (C) PGM. (D) AGPase. (E) FBPase. Data represent the 

mean of five independent measurements + SE in WT control and transgenic line #17, but four 

independent measurements + SE in transgenic lines #16 and #20. 
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Table 7: Weights and sizes of ripe tomato fruits in WT control and α-GWD-transgenic lines. 

Average  

Lines Weight of Fruit (g) Size of Fruit (cm) 

WT 54.2  +  1.2 (n=146) 4.8  +  0.03  (n=146) 

#16 36.1  +  1.8   (n=21) 4.1  +  0.08   (n=21) 

#17 36.2  +  1.4   (n=31) 4.1  +  0.05   (n=31) 

#20 40.9  +  1.3   (n=27) 4.2  +  0.05   (n=27) 

Data are means + standard error, number of samples is in parentheses. Significant differences 

(P≤ 0,01), Students t-test are in bold. 

 

7.3.6 Number of flower, fruit per plant, fruit set and number of days to 50% flowering 

Data of this trait are presented in Table 8. As can be seen in Table 8, the both average number 

of fruit per plant, fruit set and number of days to 50% flowering of all of the transgenic lines 

were significantly (P≤ 0.01) reduced in comparison with the WT control. This reduction was 

between 42-46% with respect the number of fruit per plant of the control fruits and 49-53% 

with respect the fruit set of the control fruits. Transgenic lines (#17) was significantly (P≤ 

0.05) increased with respect number of flower per plant in comparison with the WT control, 

while no different significant were found between WT control and transgenic lines (#16 and 

#17) with respect number of flower per plant. 

 

Table. 8: Number of flowers, fruit set and number of days to 50% flowering in the WT 

control and α-GWD-transgenic lines. 

Average  

Lines No. of flower/plant No. of fruit/plant Fruit set % No. of days to 50% 

flowering 

WT 

#16 

#17 

#20 

42.9  +  1.7 

47.5  +  3.3 

53.2  +  3.2 

49.5  +  4.4 

26.3  +  1.2 

14.8  +  2.3 

15.2  +  1.4 

14.0  +  1.6 

61.0  +  0.5 

30.8  +  3.3 

28.6  +  1.8 

28.1  +  1.0 

51.4  +  0.5 

54.8  +  1.3 

56.2  +  0.9 

57.0  +  1.4 

Data represent the mean of fifteen independent measurements + SE in the control, five 

independent measurements + SE in line #17 and four independent measurements + SE in lines 

#16 and #20. Significant differences (P≤ 0.05 and P≤ 0.01, Student’s t-test) are in bold. 

 

 

-77-



 

A

B

C

 
Figure 24: Some 65 DAF old fruits from α-GWD-transgenic lines (bottom) in 

comparison with the WT control fruit (above). (A) Transgenic line #16. (B) Transgenic 

line #17. (C) Transgenic line #20. 
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7.4 Discussion and conclusions 

In this study I have described the production of transgenic tomato plants repressed in the 

amount of GWD protein using a constitutive promoter. The GWD protein was demonstrated 

to be present in the pericarp of WT fruits only between 25-50 DAF, which is also the period 

when starch is present in the pericarp. This is consistent with the known role of the protein as 

an amylopectin phosphorylating enzyme. The protein was completely lacking in both leaves 

and pericarp of three transgenic lines chosen for further study. 

Potato and Arabidopsis plants lacking the GWD protein do not degrade starch in their leaves 

as quickly as WT plants, leading to a starch-excess phenotype (Lorberth et al., 1998, Yu et 

al., 2001). This was also found in leaves of the tomato plants lacking GWD protein which 

contained approximately twice the starch content of the control. Interestingly, however, the 

starch content in the pericarp was decreased in the transgenic lines rather than increased. The 

most likely explanation for this comes from studying the phenotype of the transgenic plants. 

The leaves of these plants senesced extremely early in comparison with the WT control. This 

is presumably some form of stress response caused by the accumulation of large amounts of 

starch in the leaves. This response was not noted in potato plants lacking the GWD protein 

(Lorberth et al., 1998), indicating that tomato responds differently to potato when it is 

repressed in starch degradation. Arabidopsis plants lacking GWD protein do, however, grow 

significantly worse than controls under certain environmental conditions (Caspar et al., 1991; 

Trethewey and ap Rees, 1994b). In any case, the senesced leaves should also be inhibited in 

photosynthesis meaning that they would not be able to produce as much sugar to export to the 

fruits as the control. I demonstrated in a previous chapter that fruit specific repression of 

chloroplastic fructose-1,6-bisphosphatase (cp-FBPase) – which leads to fruit specific 

inhibition of photosynthesis – did not produce significant reductions in starch contents, 

indicating that fruit starch is mainly the product of sucrose imported from the leaves. As the 

fruits from the transgenic plants in this study should be receiving less sucrose than the control 

it is reasonable to assume that this is what causes the reductions in starch contents. In addition 

I found that the activity of ADP-glucose pyrophosphorylase (AGPase) was reduced in the 

transgenic fruits. AGPase has often been considered to be an important enzyme in 

determining starch contents in storage organs, including tomato fruits (Yelle et al., 1988), and 

decreases in its activity would be expected to lead to reductions in starch contents. The 

reasons for its reduction in activity are not clear, but it is reasonable to assume that it may 

have something to do with alterations in soluble sugar concentrations within the pericarp. 
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Soluble sugar levels have often been considered to be important in regulating transcription of 

genes, and it has been demonstrated, for example, that AGPase transcript is greatly affected 

by growing Arabidopsis leaf discs on different soluble sugars (Sokolov et al., 1998). In the 

pericarp of the transgenic plants it was found that the concentrations of sucrose, fructose and 

glucose were lower than in the control at virtually every time-point measured indicating that 

starch synthesis may indeed be regulated in this way in tomato fruits. 

In this study I also analysed the yield of tomato fruits from the lines and found the both 

average weights and sizes of fruits of all of the transgenic lines were significantly (P≤ 0.01) 

reduced in comparison with the WT control. This reduction was between 24-33% with respect 

the weights of the WT control fruits and 12-15% with respect the sizes of the WT control 

fruits. This is again presumably due to the leaves exporting less sugar to the fruits due to the 

leaf senescence phenotype that the transgenic lines exhibited. If the fruits receive less sugars 

they would not contain as much carbon as the controls and would not grow so large. 

I also found that there was a significant (P≤ 0.01) reduction in all of the transgenic lines in 

comparison with the WT control with respect to both average number of fruit per plant and 

fruit set. This is despite the increased numbers of flowers in all of the transgenic lines in 

comparison with the WT control. The factors that control fruit set are not well understood, but 

it is again reasonable to assume that supply of sugars from the leaves would be important. 

There would be a selective advantage for the plant if a reduced supply of carbon were 

distributed between a smaller numbers of fruits than normal. These fruits would be larger and 

contain more nutrients than they would otherwise have done and would, therefore, have an 

increased chance of producing viable seeds than smaller fruits containing fewer nutrients.  

The problem with all the data presented in this chapter was that there was a completely 

unexpected and drastic effect on leaf growth and photosynthesis caused by the transformation. 

This means that it is impossible to separate out phenotypes caused by reduction of the GWD 

protein in the leaf to those caused by reductions in the fruits. The original aim of this 

experiment, for example, was to try and delay starch degradation in the fruits through 

repression of the GWD protein, but this was something that turned out not to be feasible with 

the fruits accumulating actually less starch in the transgenic lines. In a previous chapter I used 

a fruit specific promoter to reduce the activity of cp-FBPase and it would be possible to 

repress the GWD protein also in a fruit specific manner using this promoter. Production of 

such plants should enable the elucidation of the influence of the GWD protein on fruit 

metabolism. 
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From the data presented in this chapter it can be concluded that: (A) The GWD protein is 

mainly present in green, but not red tomato fruit. (B) Repression of the GWD proteins in 

tomato plants leads to early senescence of leaves presumably with a concomitant reduction in 

photosynthesis. (C) The leaf senescence phenotype leads to large alterations of metabolism in 

both leaves and fruits. 
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Summary 
 

Carbohydrate metabolism was studied during the development of fruits of the tomato cultivar 

Micro-Tom. The metabolism of the pericarp and placental tissues was found to be different. 

Starch being degraded more slowly in the placenta than in the pericarp, while soluble sugars 

accumulated to a greater extent in the pericarp. The activities of glycolytic enzymes tended to 

peak at 40 DAF. Two of these, phosphoenolpyruvate phosphatase and pyruvate kinase, 

showed a dramatic increase in activity just before this peak possibly indicating a role in up-

regulating glycolysis to generate ATP for climacteric respiration. The expression of some 

plastidial transporters was also studied. Both the triose phosphate transporter (TPT) and Glc-

6-P transporter was expressed greatest in green fruits, before declining. The expression of the 

triose phosphate transporter (TPT) was greater than that of Glc-6-P transporter. The 

ATP/ADP transporter was expressed to a low level throughout fruit development. These 

changes in transcript profiles are reflective of a switch from partially photosynthetic to fully 

heterotrophic metabolism. Whilst these characteristics are largely equivalent to those 

previously observed for normal sized tomato cultivars and as such indicated the suitability of 

Micro-Tom for studies of carbohydrate metabolism repeated failure to transform this cultivar 

made it inappropriate for further study. 

Activity repression using potato cDNA encoding for the cp-FBPase, AGPase, and the GWD-

protein for antisense inhibition studies was therefore performed in normal sized tomatoes of 

the cultivar Moneymaker. In the case of cp-FBPase, transgenic plants were isolated in which 

this activity was reduced by more 50% of the WT control in green fruits. Immunoblots 

indicated that the chloroplastidial isoform was almost completely eliminated in the most 

strongly inhibited lines. Measurements of metabolite levels in green fruits of the transgenic 

plants were consistent with an inhibition of photosynthesis, but there was little differences in 

the levels of metabolites or of other key enzyme activities at other time points. Consistent 

with the inhibition in photosynthesis the average weight and size of fully ripe fruits were 

significantly decreased by up to 20% in the transgenic lines. In addition the fruit set in these 

plants was markedly reduced, however from the present study it was not able to discriminate 

the reason for this. 

In the case of AGPase, transgenic plants were isolated in which this activity was reduced by 

more 90% of the control in green fruits with immunoblots indicating that the AGPase was 

almost completely eliminated in the strongly inhibited line. Analysis of metabolites through 
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development revealed little change in early development but a decreased content of glucose 

and fructose at latter stages of development. Furthermore, the line exhibiting the greatest level 

of AGPase inhibition was characterised by a depressed starch content. Phosphorylated 

intermediates determined in green fruit were also largely unchanged with the exception that 3-

PGA and PEP which were significantly decreased in the strongly inhibited line. The AGPase 

antisense plants were characterised by significant reduction in fruit yield and the strongest line 

also exhibited a delayed flowering, however, from this study it was not able to explain why 

this phenomenon appears. 

In the case of GWD protein, transgenic plants were selected by immunoblots in leaves which 

revealed that the GWD protein was almost completely eliminated in all transgenic lines 

(further experiments confirmed this was also true in the pericarp of the transgenics). Western 

blot analysis of GWD protein abundance revealed that it was present in green but not red fruit 

in the WT control. GWD-transgenic plants were phenotypically dramatically different from 

wild WT control, where, leaves of these plants senesced much earlier than the WT control. 

Analysis of metabolites through development revealed large change in early development 

(with respect starch and fructose content) but a decreased content of glucose and fructose at 

latter stages of development. On the other hand, sucrose concentration was low, and was 

decreased in GWD transgenic lines through development. Analysis of leaf metabolites 

revealed that glucose and sucrose and starch concentrations were increased in leaves in the 

transgenic lines, but fructose concentration was significantly decreased in leaves in the 

transgenic lines. The average weight and size of fully ripe fruits were high significantly 

decreased by up to 33% and 15% in all transgenic lines in comparison with the WT control 

with respect to average of weight and size respectively. Furthermore, the time of flowering 

was significantly delayed in these lines and the fruit set was dramatically reduced. However, 

the large changes in leaf metabolism combined with the fact that these are opposite in trend to 

those observed in the fruit make it hard to dissect the role of GWD protein in the fruit and 

suggests that the use of a fruit specific promoter have been a better approach by which to 

address this question. 

The role of three enzymes (cp-FBPase, AGPase and GWD protein) are thought to influence 

the accumulation of starch in early development in tomato fruit were studied using antisense 

technique under the control of the patatin B33 promoter in the case of cp-FBPase, and the 

CaMV 35S promoter in the case of AGPase and GWD protein. It appears that repression of 

cp-FBPase and AGPase in tomato fruits does not influence metabolite levels as greatly as it 
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does in leaves, possibly because any alterations are buffered by the ability of the fruit to 

import sugars. On the other hand, the repression of GWD protein in tomato fruits has been 

strongly affected on metabolite levels. 
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Zusammenfassung 

 
Während der Entwicklung von Früchten der Tomate (Sorte „Micro-Tom“) wurde der 

Kohlenhydrat-Stoffwechsel untersucht. Es wurde ein Unterschied zwischen dem 

Metabolismus im Perikarp und dem des Plazenta-Gewebes gefunden. Stärke wurde in der 

Plazenta langsamer abgebaut als im Perikarp, während lösliche Zucker im Perikarp stärker 

akkumulierten. Die Aktivitäten der glykolytischen Enzyme tendierten zu einem Maximum 40 

Tage nach der Blüte. Zwei davon, Phosphoenolpyruvat-Phosphatase und Pyruvat-Kinase, 

zeigten einen starken Anstieg der Aktivität kurz vor diesem Maximum. Diese Tatsache weist 

möglicherweise auf eine Rolle dieser Enzyme in der Hochregulierung der Glykolyse, um ATP 

für die klimakterische Respiration zu erzeugen, hin. Weiterhin wurde die Expression einiger 

plastidärer Transporter untersucht. Sowohl der Triosephosphat-Tranporter (TPT) als auch der 

Glukose-6-phosphat-Transporter wurde am stärksten in grünen Früchten exprimiert, danach 

nahm die Expression ab. Der ATP/ADP-Transporter wurde während der Fruchtentwicklung 

nur schwach exprimiert. Diese Änderungen der Transkriptionsprofile deuten auf  einen 

Wechsel von teilweise photosynthetischem zu vollständig heterotrophem Metabolismus hin. 

Diese Eigenschaften entsprechen zwar weitgehend den vorher in normalgroßen Tomaten-

Sorten beobachteten und schlagen dadurch die Eignung der Sorte „Micro-Tom“ für das 

Studium des Kohlenhydrat-Stoffwechsels vor; jedoch erwies sich diese Sorte letztendlich als 

ungeeignet, da mehrere Versuche einer Transformation erfolglos blieben. 

Stattdessen wurde die Sorte „Moneymaker“ mit normalgroßen Früchten für 

Untersuchungen zur Repression der Aktivität von plastidärer FBPase, AGPase und GWD-

Protein mittels Antisense-Inhibition verwendet. Im Falle der plastidären FBPase wurden 

transgene Pflanzen isoliert, in denen diese Aktivität in grünen Früchten um mehr als 50% im 

Vergleich zur Wildtyp-Kontrolle reduziert war. Ein Immunoblot zeigte, daß die plastidäre 

Isoform in den am stärksten inhibierten Linien fast nicht mehr vorhanden war. Die 

Messungen verschiedener Metaboliten-Konzentrationen in grünen Früchten der transgenen 

Pflanzen waren zwar im Einklang mit einer Inhibierung der Photosynthese, aber es konnten 

kaum Unterschiede der Metaboliten-Konzentrationen oder der Aktivitäten von Schlüssel-

Enzymen für andere Zeitpunkte in der Fruchtentwicklung gefunden werden. Entsprechend der 

Inhibierung der Photosynthese war das durchschnittliche Gewicht und die Größe vollreifer 

Früchte in den transgenen Linien signifikant (um bis zu 20%) kleiner als im Wildtyp. 
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Desweiteren war die Fruchtanlage in diesen Pflanzen deutlich reduziert, es war jedoch in der 

vorliegenden Studie nicht möglich, einen Grund für diese Reduktion zu finden. 

Im Falle der AGPase wurden transgene Pflanzen isoliert, in denen diese Aktivität in 

grünen Früchten um mehr als 90% im Vergleich zur Wildtyp-Kontrolle reduziert war. Auch 

hier zeigte ein Immunoblot, daß die plastidäre Isoform in der am stärksten inhibierten Linie 

fast nicht mehr vorhanden war. Die Analyse der Metaboliten während der Entwicklung der 

Frucht zeigte nur geringe Änderungen in der frühen Entwicklung, jedoch eine geringere 

Glukose- und Fructose-Konzentration in späteren Stadien der Entwicklung. Desweiteren 

zeigte die Linie mit der stärksten AGPase-Inhibition einen verminderten Stärkegehalt. 

Phosphorylierte Zwischenprodukte in grünen Früchten waren auch weitgehend unverändert, 

mit Ausnahme von 3-PGA und PEP, die in der am stärksten inhibierten Linie deutlich 

abnahmen. Die AGPase-Antisense Pflanzen zeigten eine erhebliche Abnahme der 

Fruchtausbeute, und die stärkste Linie wurde ausserdem durch ein verspätetes Blühen 

charakterisiert. Es war jedoch in dieser Studie nicht möglich herauszufinden, warum es zu 

diesen Phänomenen kommt. 

Im Falle des GWD Proteins wurden transgene Pflanzen durch Immunoblots mit 

Blättern isoliert. Die Blots zeigten, daß das GWD Protein in allen transgenen Linien fast 

vollständig verschwunden war (weitere Experimente zeigten, daß dies auch im Perikarp der 

transgenen Früchte der Fall war). Western-Blot-Analysen der Verbreitung des GWD Proteins 

zeigten, daß dieses in grünen, nicht aber in roten Früchten des Wildtyp vorkommt. Die 

transgenen GWD Protein Pflanzen zeigten eine drastische phänotypische Veränderung im 

Vergleich zum Wildtyp. Die Blätter dieser Pflanzen wiesen eine extrem frühe Seneszenz auf. 

Eine Analyse der Metaboliten während der Entwicklung zeigte große Veränderungen in den 

frühen Entwicklungsstadien der Frucht (bezüglich Stärke- und Fructosegehalt), aber einen 

verringerten Gehalt an Glukose und Fruktose in späteren Entwicklungsstadien. Auf der 

anderen Seite war die Saccharosekonzentration gering, und nahm in den GWD Pflanzen 

während der Entwicklung ab. Eine Analyse der Metaboliten im Blatt brachte hervor, daß die 

Glukose-, Saccharose- und Stärkekonzentration in den transgenen Pflanzen im Vergleich zum 

Wildtyp erhöht war, die Fruktose-Konzentration hingegen war in Blättern deutlich geringer in 

den transgenen Linien. Gewicht und Größe der vollreifen Früchte waren im Durchschnitt um 

bis zu 33% bzw. 15% im Vergleich zu der Wildtyp-Kontrolle erhöht. Desweiteren war der 

Blütezeitpunkt in diesen Linien deutlich verspätet und die Fruchtmenge war sehr stark 

reduziert. Die starken Änderungen des Metabolismus im Blatt zusammen mit der Tatsache, 
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daß diese einen gegenläufigen Trend zu denen der Frucht aufweisen, erschweren allerdings 

den Schluß auf eine Rolle des GWD Proteins in der Frucht. Der Gebrauch eines 

fruchtspezifischen Promoters wäre ein besserer Ansatz gewesen, diese Frage zu untersuchen. 

Es besteht die Hypothese, daß die Rolle dieser drei Enzyme (plastidäre FBPase, 

AGPase und GWD Protein) eine Beeinflussung der Stärke-Akkumulation in der frühen 

Entwicklung der Tomaten-Frucht ist. Diese Hypothese wurde durch Antisense-Technik mit 

der plastidären FBPase (unter der Kontrolle des B33 Promoters), sowie mit der AGPase und 

dem GWD Protein (beide unter der Kontrolle des CaMV 35S-Promoters) untersucht. Die 

Repression von plastidärer FBPase oder AGPase in der Frucht der Tomate scheint die 

Metaboliten-Konzentrationen nicht so stark wie in den Blättern beobachtet zu beeinflussen. 

Der Grund hierfür ist wahrscheinlich, daß jede Veränderung durch die Fähigkeit der Frucht, 

Zucker zu importieren, abgepuffert wird. Auf der anderen Seite hatte die Repression des 

GWD Proteins in der Frucht der Tomate starke Effekte auf die Metaboliten-Konzentrationen. 
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