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Abstract

The general aim of this thesis is to probe several methods to extract low-
energy quantities (masses, decay constants, ...) more reliably in lattice gau-
ge theory. We will investigate how to suppress contributions to correlation
functions from the first excited meson state. We will show how to construct
so-called improved meson interpolating fields, as they have only small con-
tributions from the first excited meson state, from a basis of interpolating
fields at the Schrödinger functional boundaries.

The variational principle is applied to correlation matrices that are built
up from boundary-to-boundary correlation functions. It will deliver informa-
tion about the lowest-lying meson states in the considered channel.
We also investigate the possibility to cancel the first excited state contri-
bution by means of an alternative method. Moreover, an alternative way to
extract the mass gap between the ground and the first excited state will be
presented.

Monte-Carlo simulations at several lattice spacings are performed in the
’quenched approximation’. Spectral properties of light-light and static-light
pseudoscalar mesons are investigated.
The first type is realised by two mass-degenerate quarks at about the strange
quark mass, the second type by a light quark with the mass of the strange
quark and an infinitely heavy b−quark. The light-light channel describes un-
physically heavy pions and the static-light one is an approximation for the
Bs−meson.
The investigation of the latter case is particularly interesting since so-called
B–factories, such as BaBar and Belle, are gathering physical information
about masses, decay modes and CP–violating effects in the B–meson system.

Keywords:
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Zusammenfassung

Diese Arbeit befasst sich mit der Konstruktion verbesserter interpolierender
Mesonenfelder in der Gitter-QCD. Sie hat das primäre Ziel, Korrelations-
funktionen mit einem deutlich reduzierten Beitrag des ersten angeregten
Mesonenzustandes zu erhalten, um eine sicherere Bestimmung von Massen
und Zerfallskonstanten der Mesonen zu ermöglichen. Eine Basis solcher in-
terpolierender Mesonen-Randfelder wird im Schrödinger Funktional in der
gequenchten Approximation benutzt.

Verbesserte interpolierende Felder zur Bestimmung spektraler Eigenschaften
leichter pseudoskalarer Mesonen sowie des B–Mesonensystems (letzteres wird
in führender Ordnung der HQET behandelt) werden auf mehreren Wegen ge-
wonnen.
Ein Hilfsmittel, verbesserte Felder zu konstruieren, ist das Variationsprinzip.
Es wird auf Matrizen von Rand-Rand-Korrelationsfunktionen angewandt.
Darüber hinaus werden alternative Analysemethoden vorgestellt. Sie erlauben
sowohl die Abschätzung der Grundzustandsenergie als auch der Energielücke
zum ersten radial angeregten Zustand.

Die Untersuchung des B-Mesonensystems ist in vielfacher Hinsicht interes-
sant. Zum einen werden sie in sogenannten B-Fabriken, wie z. B. im BaBar-
und Belle-Experiment, in grosser Zahl erzeugt, um ihre charakteristischen
Eigenschaften (Masse, Zerfallsbreiten, CP-Symmetrie verletzende Zerfälle
usw.) genau zu messen. Zum anderen müssen die von der Theorie vorher-
gesagten auftretenden Phänomene, wie z. B. die CP-Verletzung, auch ver-
standen werden. Die Methoden der Gittereichtheorie können unter ande-
rem dabei helfen, bestehende Unsicherheiten in CKM-Matrixelementen durch
nicht-perturbative Bestimmungen hadronischer Massen, Zerfallskonstanten
usw. zu reduzieren.

Schlagwörter:
Gitter-Eichtheorie, Gitter-QCD, Matrixelemente, B-Physik, HQET,
Variationsprinzip, Schrödinger-Funktional
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2.2 O(a) Improvement Programme . . . . . . . . . . . . . . . . . 18

2.2.1 Gauge Action . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Fermion Action . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Correlation Functions fA, fP and f1 . . . . . . . . . . . . 20

2.4 Spectral Representations of Correlation Functions . . . . . . . 23

2.4.1 The QCD Transfer Matrix Formalism in the
Schrödinger Functional . . . . . . . . . . . . . . . . . . 23

2.4.2 Spectral Decomposition of Correlators . . . . . . . . . 25

2.5 Pseudoscalar Masses and Decay Constants . . . . . . . . . . . 28

2.5.1 The Pseudoscalar Mass mPS of the Ground State . . . 28

2.5.2 The Pseudoscalar Decay Constant FPS of the
Ground State . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 The PCAC Relation on the Lattice . . . . . . . . . . . . . . . 31

i



3 The b−quark on the Lattice 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The Static Approximation . . . . . . . . . . . . . . . . . . . . 36
3.3 The Static b−quark in the Schrödinger Functional . . . . . . . 38

3.3.1 The Action . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Correlation Functions . . . . . . . . . . . . . . . . . . . 39
3.3.3 The Static Decay Constant . . . . . . . . . . . . . . . . 41

4 Wave Functions 43
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Variational Principle . . . . . . . . . . . . . . . . . . . . . 44
4.3 The Variational Principle in Practice . . . . . . . . . . . . . . 47
4.4 The Program Implementation . . . . . . . . . . . . . . . . . . 48

4.4.1 General Remarks . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Propagators and Correlation Functions . . . . . . . . . 49
4.4.3 Details of used Wave Functions . . . . . . . . . . . . . 53
4.4.4 Program Tests . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.5 Performance and Scaling . . . . . . . . . . . . . . . . . 54
4.4.6 A brief Remark on the Static Approximation . . . . . . 58

5 Alternative Extraction Techniques 61
5.1 Ground State Masses and Decay

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 The First Excited State . . . . . . . . . . . . . . . . . . . . . 64
5.3 The Mass of the 0++−Glueball . . . . . . . . . . . . . . . . . 65

6 Numerical Results 67
6.1 The Choice of the light Quark Mass . . . . . . . . . . . . . . . 68
6.2 The Variational Principle . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 69
6.2.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Extraction of Masses with optimal Wave Functions . . . . . . 78
6.3.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 78
6.3.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 An Alternative Way without applying the

Variational Principle . . . . . . . . . . . . . . . . . . . 84
6.4 Alternative Extraction of the Pseudoscalar Mass Gap . . . . . 88

6.4.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 88



6.4.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Decay Constants . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 91
6.5.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 93

6.6 The Mass of the 0++−Glueball . . . . . . . . . . . . . . . . . 96
6.7 Summary and Discussion of the Results . . . . . . . . . . . . . 98

6.7.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 98
6.7.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusions and Outlook 101

Appendix 103

A Notation 103

B Program Implementation and related Issues 105
B.1 The Quark Propagator . . . . . . . . . . . . . . . . . . . . . . 105
B.2 The Fermionic Generating Functional . . . . . . . . . . . . . . 106
B.3 Quark Two-Point Functions . . . . . . . . . . . . . . . . . . . 108
B.4 Correlation Functions in terms of Two-point Functions . . . . 108

B.4.1 The Correlator fA . . . . . . . . . . . . . . . . . . . . . 108
B.4.2 The Correlator f1 . . . . . . . . . . . . . . . . . . . . . 110

C Numerical Results 111
C.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 111

C.1.1 Wave functions . . . . . . . . . . . . . . . . . . . . . . 111
C.1.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.2 The Variational Principle . . . . . . . . . . . . . . . . . . . . . 113
C.2.1 The Relativistic Case . . . . . . . . . . . . . . . . . . . 113
C.2.2 The Static Case . . . . . . . . . . . . . . . . . . . . . . 120

C.3 Alternative Extraction of the Ground State Mass . . . . . . . 122
C.3.1 Relativistic case, β = 6.2 . . . . . . . . . . . . . . . . . 122
C.3.2 Static Case, β = 6.45 . . . . . . . . . . . . . . . . . . . 123





List of Figures

1.1 The plaquette is the smallest closed and gauge-invariant path. 5

2.1 Visualisation of the Schrödinger functional as a four-dimensional
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Visualisation of the contribution Qµν(x) in the SW clover term. 20

2.3 Visualisation of the correlators fA and fP, respectively. Cur-
rents A0 or P are inserted in the interior. . . . . . . . . . . . . 21

2.4 The boundary-boundary correlator f1. . . . . . . . . . . . . . 22

3.1 Visualisation of the correlators f stat
A (left) and f stat

1 (right). The
static quark is drawn with a double line. The current Astat

0 is
inserted in the interior of the left figure. . . . . . . . . . . . . 40

4.1 An effective energy plot from the static axial current on a
243 × 36 lattice at β = 6.2, θ = 0 and κ ≈ κs. Symbols are
displaced horizontally for clarity. The static quark is either
smeared (red plusses) or not (blue stars). Due to symmetry
relations, the same average is expected. Obviously, this fact
does not need to hold for statistical errors. . . . . . . . . . . . 60

6.1 Effective pseudoscalar ground state mass from the variational
principle, relativistic case, β = 6.0, κ = κs, in comparison to
the extracted mass mPS(f

I
A)a = 0.340(3) (dotted lines). . . . . 70

6.2 Effective mass of the pseudoscalar ground state from the vari-
ational principle, relativistic case, β = 6.2, κ ≈ κs, in com-
parison to the extracted mass mPS(f

I
A)a = 0.250(5) (dotted

lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



6.3 Effective mass of the first excited pseudoscalar state from the
variational principle, relativistic case, β = 6.0, κ = κs, in
comparison to the resultm∗PSa = 0.83(5) from f I

A or fP (dotted
lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Effective pseudoscalar mass gap from the variational principle,
relativistic case, β = 6.0, κ = κs. Error bands: a∆ = 0.55(5)
(text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Effective pseudoscalar mass gap from the variational principle,
relativistic case, β = 6.2, κ ≈ κs. Error bands: a∆ = 0.41(5)
(text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Effective ground state binding energy from the variational
principle, static case, β = 6.0, κ = κs. . . . . . . . . . . . . . . 76

6.7 Effective binding energy of the first excited state, obtained
from the variational principle, static case, β = 6.0, κ = κs. . . 76

6.8 Effective energy gap from the variational principle, static case,
β = 6.0, κ = κs. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.9 Effective ground and first excited state mass, β = 6.0, κ = κs,
relativistic case. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.10 Scaling of effective ground and first excited state masses, β =
6.0 and 6.2 for the relativistic case. Symbols are as in figure 6.9. 80

6.11 Smearing is essential in the static case: Effective energy plot
of the static axial current correlator with(out) smearing, β =
6.0, κ = κs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.12 Effective energy plot of the static axial current corr., β = 6.0. 82

6.13 Scaling of r0(E − Γstat) using vectors v(0), v(1)′ at all β’s. . . . 82

6.14 Effective mass plot using f I
A and various values ofRij, β = 6.2, κ ≈ κs,

relativistic case. Values for Rij are taken from table C.14. . . . 85

6.15 Effective mass plot using f I
A for the original basis and an im-

proved case with R from eq. (5.10), at β = 6.2, κ ≈ κs,
relativistic case. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.16 Effective energy plot from the static axial correlator, for two
Rij−values, β = 6.45, κ = κs. . . . . . . . . . . . . . . . . . . 87

6.17 Effective pseudoscalar mass gap, β = 6.0, κ = κs, relativis-
tic case. Effective masses from fP and several pairs of wave
functions are used. . . . . . . . . . . . . . . . . . . . . . . . . 89

6.18 Scaling of the eff. pseudoscalar gap, relativistic case, κ ≈ κs. . 89



6.19 Scaling of the effective energy gap (upper plot) and the con-
tinuum extrapolation for x0 ≈ r0 (lower plot), static case,
κ = κs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.20 Change of the effective bare pseudoscalar decay constant (ground
state) for several time extents T , a suitable ωopt (given in the
text), β = 6.0 and 6.2, κ ≈ κs, relativistic case. . . . . . . . . 92

6.21 Change of r
3/2
0 ΦRGI for several time extents T ′ and ω′opt at

β = 6.0, κ = κs. . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.22 Quark mass dependence of mG (from eq. (5.16)) at β = 6.2. . 97
6.23 Plot of mG −mPS for various quark masses and β−values. . . 97





List of Tables

4.1 Comparison of the statistical errors for different estimators. . . 55

4.2 Comparison of the statistical error with/out translational in-
variance. The same set of parameters is used. . . . . . . . . . 56

4.3 Scaling of the time [secs] to solve the Dirac equation on a
(L/a)4 lattice on a board, quenched case. . . . . . . . . . . . . 57

4.4 Total time in seconds to build up a 2 × 2 correlation matrix
(as given in column 2 & 3) as a function of L/a on a board,
quenched case. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Total time in seconds to build up the correlation matrix as a
function of Nω for L/a = 12 on a board. . . . . . . . . . . . . 58

6.1 Pseudoscalar masses for the light-light case taken at x0 ≈ 2r0
(ground state) and at x0 ≈ r0 for the first excited one. . . . . 79

6.2 Results for the static-light case, eq. (6.11), taken at x0 ≈ 1.3r0
(resp. x0 ≈ 1.8r0), Γstat(L2) = 0.410024− 0.131595 (β − 6) for
6.0 ≤ β ≤ 6.45. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Energy gap for the static-light case taken at x0 ≈ r0. . . . . . 90

6.4 Systematic shift of the plateau level for aFPS (bare case) as a
function of T ′ ≤ T , relativistic case. The value for T = 3L/2
has been fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Renormalisation constants to compute ΦRGI from available data. 94

6.6 The quantity r
3/2
0 ΦRGI at β = 6.0, L = 16a, T = 24a fixed

and various T ′ < T . The optimal wave functions are given in
the text. Quoted plateau values are taken at x0 ≈ 2r0. . . . . 95

6.7 Summary of pseudoscalar masses in the relativistic case, κ ≈ κs. 99

6.8 Summary of the results in the static case, κ = κs. . . . . . . . 100

C.1 The set of 4 hydrogen-like trial wave functions. . . . . . . . . . 111

ix



C.2 Relativistic case: List of several time extents of the Schrödinger
functional box. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.3 Static case: List of several time extents of the Schrödinger
functional box. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.4 Effective masses directly from the Variational Principle, eq.
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Introduction

To gain a better understanding of nature, particle physicists have been ex-
ploring the fundamental forces down to distance scales of roughly 10−18 m
for some decades. Usually, this is done in high-energy collision experiments,
such as in a ring collider at CERN or in a linear collider at SLAC. The
experimental observations may be accurately described and predicted by a
theoretical framework that is known as the Standard Model of elementary
particles. It unifies the description of the electromagnetic, weak as well as
strong force and is based on a local gauge principle [1] of the group

Gloc = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (1)

It is essentially determined once the matter fields and their transformation
laws under Gloc are specified.
The electroweak sector is described by the product group SU(2)L ⊗ U(1)Y
[2, 3, 4] with self-coupling gauge fields W a

µ for the former and an Abelian
field Bµ for the latter factor. They carry the quantum numbers of the weak
isospin T3 respectively the weak hypercharge Y . Mixing of these gauge fields
produces the observable photon (γ) for QED and the triplet (W+,W−, Z0)
that mediates the weak force. Left-handed matter fields are grouped into
doublets, right-handed ones are singlets. This undemocratic treatment is
due to maximal parity (P–) violation. Also CP–violation is known from
experimental observations in the kaon- [5, 6] and recently in the B-meson
system [7, 8, 9]. The gauge group of the electroweak sector is spontaneously
broken through a Higgs mechanism [10] to U(1)em, and particle fields acquire
masses according to their coupling strength to the Higgs boson.
The unbroken subgroup SU(3) of Gloc is the non-Abelian gauge group of the
strong interaction (QCD) [11]. Its 8 spin-1 gauge bosons, the gluons, are
massless and carry a colour charge. In contrast to the more familiar photons
of QED, self-interactions are here admitted due to the non-Abelian nature of
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2 Introduction

QCD. Coloured quarks [12, 13] couple to them but cannot occur as free par-
ticles in nature. Their confinement at low energies allows only colour-singlet
realisations, the hadrons, as observable states. They form a rich spectrum
with a multiplet structure. In the regime of high energies, the strong coupling
αS is small and hence perturbative techniques may be applied. Quarks are
asymptotically free there [14, 15], as deep-inelastic scattering experiments at
high energies have revealed. In the low-energy region, however, αS is too
large for perturbation theory to give reasonable results. Non-perturbative
methods or effective theories are needed to describe QCD there.

In 1974, Wilson proposed to formulate gauge field theories on a discretised
Euclidean space-time, the lattice, and showed in conjunction with a strong
coupling expansion that pure SU(3) lattice gauge theory may exhibit colour
confinement. The inverse lattice spacing a−1 serves as ultraviolet cutoff that
has to be removed at the end by sending a to zero. The lattice formulation
is the only known non-perturbative regularisation of quantum field theories
and allows the treatment as a classical statistical system.
Typical tasks are the computation of running couplings at any given scale,
hadron and glueball masses as well as weak matrix elements. If the latter
involve hadronic states, they will contain a QCD part that is parametrised
by QCD matrix elements. They had to be computed non-perturbatively and
some of them are investigated in this work. Free parameters are fixed by
experimental low-energy observables such as hadron masses.

The thesis is divided as follows: an introduction to the basics of lattice gauge
theory is given in chapter 1. As the working ground, the Schrödinger Func-
tional (SF) is explained in chapter 2, where furthermore a running coupling
ḡ and fermionic correlation functions are defined. In view of recent experi-
ments in B-physics, such as BaBar and Belle, chapter 3 explains how heavy
meson systems may be treated on the lattice and which problems arise. Im-
proved meson interpolating fields at the boundaries are used to accelerate the
approach to ground state dominance in correlators. This issue is discussed
in chapter 4 together with their determination through the variational prin-
ciple and details to their implementation in the program. The variational
principle is not the only tool to extract information about the meson ground
state and its lowest excitations. Others are introduced in chapter 5.
Data analysis and results are discussed in chapter 6, and final conclusions
are drawn in chapter 7.



Chapter 1

Basics of Lattice Gauge Theory

Lattice QCD is a non-perturbative implementation of field theory from first
principles using the Feynman path integral approach. The lattice Λ dis-
cretises four-dimensional continuum space-time by a finite lattice spacing a,

Λ = aZZ4 = {x|xµ/a ∈ ZZ}, µ = 0, 1, 2, 3. (1.1)

Fourier transforms of functions defined on the lattice can be restricted to the
first Brillouin zone, p ∈ [−π

a
, π
a
). So there is an intrinsic ultraviolet cutoff

π/a of lattice momenta.
By changing from Minkowskian to Euclidean space, x0 = −ix4, one may
relate field theory to statistical mechanics [16]. A vast amount of degrees of
freedom are to be integrated over in the path integral. As this is numerically
impossible within a reasonable time, one has to employ a stochastic integra-
tion. So one may non-perturbatively compute quantities O of interest, such
as running couplings, hadron masses and decay constants as well as moments
of structure functions, by means of Monte-Carlo techniques. The expectation
value is given by a sum,

〈O〉 = 1
n

n∑
i=1

Oi + O(n−1/2), (1.2)

over n � 1 gauge configurations of a statistical ensemble which is given by
the action. This formula turns out to be asymptotically exact, because the
error term is a purely statistical one and can in principle be made arbitrarily
small. Once quantities have been computed non-perturbatively on the lat-
tice, they have to be related to the continuum. In practice, this ’continuum

3
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limit’ is realised by first computing the same quantity on lattices at different
lattice spacings a and then by extrapolating the quantity to a = 0.

This chapter continues with a brief introduction which action has been used
and how one can improve the approach of lattice results to the continuum.
More detailed reviews on the subject are for instance [17, 18, 19] and [20].

1.1 Discretisation of the continuum

SU(N) Yang–Mills Action

In this section, the discretised gauge part of the action is introduced. Starting
with the general case, that is the Euclidean SU(N) Yang-Mills action in the
continuum,

SG = 1
4

∫
d4xF a

µνF
a
µν = − 1

2g20

∫
d4x tr (FµνFµν), (1.3)

one has to find a suitable discretised version.1 The trace is taken over the gen-
erators T a of the gauge group SU(N). The vector potentialAµ(x) = Aaµ(x)T

a,
a = 1...N2 − 1 is in the adjoint representation. The field strength tensor
Fµν(x) = F a

µν(x)T
a is defined through

F a
µν(x) = ∂µA

a
ν(x)− ∂νAaµ(x) + fabcA

b
µ(x)A

c
ν(x). (1.4)

The symbol fabc shall denote the structure constant for the SU(N) Lie algebra
and g0 is the bare coupling.
On the lattice, it is more convenient to replace the SU(N) Lie algebra valued
gauge field Aµ(x) by an SU(N) group element U(x, µ), µ = 0, 1, 2, 3 re-
presented by a unitary N×N matrix. This ’link variable’ may be considered
a transporter of colour charge between the sites x and x+ aµ̂. Formally, the
relation to Aµ(x) in the continuum is

U(x, µ) = U(x, x+ aµ̂) = exp(aAµ(x)) = 1 + aAµ(x) + O(a2), (1.5)

where the exponential has been expanded up to the term linear in the lattice
spacing a. Links are covariant under local SU(N) gauge transformations
Λ(x),

U(x, µ)→ Λ(x)U(x, µ)Λ(x+ aµ̂)†. (1.6)

1The case N = 3 is of particular interest since SU(3)c is the local gauge group of QCD.
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x x+µ̂

x+ x+µ+ν̂ν̂ ^

Figure 1.1: The plaquette is the smallest closed and gauge-invariant path.

The smallest gauge-invariant loop on the lattice, as shown in figure 1.1, is
referred to as plaquette,

U(p) = U(x, µ)U(x+ aµ̂, ν)U(x+ aν̂, µ)−1U(x, ν)−1. (1.7)

It may be used to construct gauge-invariant quantities, such as the Yang-
Mills lattice action [21],

SG = β
2N

∑
p

tr (1− U(p)), g2
0 = 2N

β
, (1.8)

where the sum has to be taken over all oriented plaquettes. It can be shown
that Wilson’s plaquette action is a lattice version of eq. (1.3) that has O(a2)
lattice artefacts.

1.2 The Wilson-Dirac Fermion Action

Since QCD includes fermions, the quarks, one has to discretise the Euclidean
continuum fermion action,

SF =

∫
d4xψ(x)(γµDµ +m0)ψ(x), (1.9)

for quarks with mass m0 in the fundamental representation of SU(3).2 In the
continuum, chiral symmetry is only broken by non-zero quark masses.

2Accordingly, anti-fermions are in the SU(3)∗.
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In general, a Dirac field ψ(x) at the lattice site x carries colour (α), Dirac
(A) and flavour (i) indices,

(ψi(x))αA, i = 1...Nf , α = 1...3, A = 1...4. (1.10)

From now on, colour and Dirac indices are suppressed, and flavour indices
are written down where appropriate.
QCD interactions are realised through the concept of minimal coupling. The
symbol Dµ = ∂µ + Aµ denotes the covariant derivative, and the γµ are the
Euclidean Dirac matrices listed in appendix A. As a discretised version of
γµDµ, one may use the Wilson-Dirac operator

D = 1
2

3∑
µ=0

(
γµ(∇∗µ +∇µ)− ar∇∗µ∇µ

)
. (1.11)

The symbol r is the Wilson parameter and ∇µ,∇∗µ are the covariant lattice
forward/backward derivatives,

∇µψ(x) = 1
a
[U(x, µ)ψ(x+ aµ̂)− ψ(x)], (1.12)

∇∗µψ(x) = 1
a
[ψ(x)− U(x− aµ̂, µ)−1ψ(x− aµ̂)].

Wilson proposed to write the fermionic lattice action as

SF[U, ψ, ψ] = a4
∑
x

ψ(x)(D +m0)ψ(x). (1.13)

It converges with a rate proportional to a to its continuum version.
Through the naive discretisation, r = 0, of γµDµ the fermion propagator has
2d−1 additional zeros for pµ 6= 0 in the Brillouin zone. Due to the extra term
a∇∗µ∇µ, they get a mass ∝ a−1, freeze out in the continuum limit and thus
disappear from the physical spectrum. Throughout this work, r has been set
to one.
A serious disadvantage of Wilson fermions is that even in the massless case,
m0 = 0, they explicitly break chiral symmetry.

Nielsen and Ninomiya [22] pointed out that if one uses an action which

• is translation invariant,

• has continuum lattice momenta in the range of [−π, π) for L→∞,
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• has only local interactions,

• gives the correct continuum properties in the continuum limit,

• and preserves chiral symmetry, {D, γ5} = 0, at finite lattice spacing a,

then the theory will have doublers. To avoid fermion doubling, one has to
give up at least one of these properties. Points one to four are usually kept
and therefore point five is violated. The absence of doublers is at the cost of
a broken chiral symmetry, even for m0 = 0.

A recent development are so-called Ginsparg-Wilson (GW-) fermions. They
preserve chiral symmetry in the form of a modified infinitesimal chiral trans-
formation. To order ε, the action is invariant under

ψ → ψ + εγ5 (1− aD̂)ψ, ψ → ψ + εψγ5.

The lattice Dirac operator D̂ satisfies the Ginsparg-Wilson relation [23],

{D̂, γ5} = aD̂γ5D̂, (1.14)

as well as γ5−hermiticity. Simulations using this formulation are numerically
very expensive. But the computational power is growing and algorithms are
improving. In view of nowadays computing power (and the purpose of this
work), Wilson fermions are still the more favourable choice.

1.3 The Symanzik Improvement Programme

To accelerate the approach to the continuum, Symanzik studied an effective
continuum theory where the lattice spacing a is made explicit [24, 25]. Close
to the continuum, lattice theory may be described by an effective action

Seff = S0 + aS1 + a2S2 + · · · , Sk =

∫
d4xLk, (1.15)

with the QCD continuum Lagrangian L0 and linear combinations of dimen-
sion 4 + k, k ≥ 1 local operators in Lk. The dimensional counting here
includes (non-negative) powers of the quark mass m0 by which some of the
fields may be multiplied. The presence of operators in eq. (1.15) is restricted
to those that are invariant under the symmetries of the lattice theory. Their
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number can be further reduced by partial integration.
As a concrete example, ref. [26] give terms that may occur in an order a
effective Lagrangian L1.
Cutoff effects do not only originate in the action, but may also be involved in
local composite fields φ(x). In many cases, they need to be improved as well.
In the effective continuum theory, renormalised lattice fields are represented
through effective fields of the form

φeff = φ0 + aφ1 + a2φ2 + · · · (1.16)

The fields φk are linear combinations of local fields with appropriate dimen-
sion. They have to transform under the lattice symmetries in the same way
as the lattice field to be represented. To order a, the lattice correlation
functions are given by

Gn(x1, ..., xn) = 〈φ0(x1)...φ0(xn)〉con
−a
∫
d4y 〈φ0(x1)...φ0(xn)L1(y)〉con

+a
n∑
k=1

〈φ0(x1)...φ1(xk)...φ0(xn)〉con + O(a2),
(1.17)

where the label ’con’ on the correlation functions means their connected form.
The expectation values on the right-hand side are with respect to the contin-
uum action S0. The second term is a contribution of the O(a) correction in
the effective action. When y gets close to any xi, i = 1...n, divergences may
arise and hence subtraction prescriptions have to be employed. This amounts
to a redefinition of the field φ1(x). A further reduction of the operator basis
may be achieved through the equations of motion. Because they are only
valid up to contact terms, their application is restricted to position space
correlation functions at non-zero physical distance. But this restriction is
not severe since most on-shell quantities, such as hadron masses and decay
constants, can be extracted from such correlation functions.



Chapter 2

The Schrödinger Functional

2.1 Model

The Schrödinger functional is the propagation kernel for the transition from
some field configuration at time x0 = 0 to some other configuration at x0 = T .
In Euclidean space-time it can be written as a functional integral over all
fields with the specified initial and final values [27, 28, 29].
In section 2.1.1 the model is motivated in view of lattice simulations, and it is
introduced for SU(N) Yang-Mills theory for continuum space-time in section
2.1.2. The Schrödinger functional turns out to be renormalisable [27]. For
the Yang-Mills case, only standard counterterms for the action are required.
A running coupling, that only depends on one scale, is introduced in section
2.1.5. The extention to QCD [29] is shortly mentioned in section 2.1.3, and
section 2.1.4 introduces the reader to the formulation of the Schrödinger
functional on the lattice.
Good reviews on the topic can be found in [30, 18].

2.1.1 Motivation

QCD is a theory in which totally complementary physics takes place. At low
scales, q ∼ 1 GeV, the mass of the proton, there is quark confinement – a
non-perturbative phenomenon, whereas at very large scales, say q ∼ 100 GeV,
quarks behave like free particles. This is the domain of jet physics, where
perturbative techniques are applicable. The two scales differ by two orders
of magnitude. If one is interested in a non-perturbative computation of the
running strong coupling αS or the renormalisation group invariant (RGI-)

9
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quark mass M in a lattice simulation, one has to relate both disparate scales
to each other. This is because in the lattice regularisation QCD is naturally
renormalised through the hadron spectrum.
By means of perturbation theory, one is able to evolve αS and the running
quark mass m from infinite energy down to scales of q ∼ 10 GeV with con-
trolled perturbative errors. But to reach the low-energy regime of hadron
physics for renormalisation, at least one order of magnitude in the energy
scale q still remains to be overcome. To avoid large discretisation effects on
the lattice and to be able to take the continuum limit, one should keep q
away from the cutoff a−1 as well. Large physical box lengths L compared
to the confinement scale are needed to keep finite-size effects small.1 These
conditions are summarised by

L� 1
0.4GeV

� 1
q
∼ 1

10 GeV
� a. (2.1)

Thus, to fulfil all requirements on a single lattice, one needs very fine lattices,
N = L/a� 25. But this is still too demanding for present computers.

A solution to this problem has been pointed out by Lüscher, Weisz and
Wolff [31]. By identifying the two physical scales

q = 1/L, (2.2)

one may take a finite-size effect as a physical observable. The running coup-
ling may then be computed recursively in several steps, where q is changed
by a factor s in each step. In this way, no large scale ratios appear and
discretisation errors are small for L/a� 1 in each step.

2.1.2 Formal Definition – Pure Gauge Theory

One starts in the Hamiltonian theory in the temporal gauge [28]. The
Schrödinger functional is defined by the Hamiltonian evolution of the gauge
fields. The Hamiltonian has to be written down, for instance at x0 = 0, by
assuming commutation relations among the basic fields.
Because the Schrödinger functional will be used to study scaling properties
of the theory in finite volume, space is taken to be an L×L×L box with pe-
riodic boundary conditions. SU(N) gauge fields are accordingly represented

1The confinement scale, q ∼ 0.4 GeV, is given by the square root of the string tension.
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by periodic vector potentials2 Ak(x) on R3 in the Lie algebra of SU(N). The
index k = 1, 2, 3 labels the direction, the symbol k̂ shall denote the unit
vector in k−direction. Periodicity under gauge transformations

Ak(x)→ AΛ
k (x) = Λ(x)Ak(x)Λ(x)−1 + Λ(x)∂kΛ(x)−1, (2.3)

Ak(x + k̂L) = Ak(x), Λ(x + k̂L) = Λ(x)

is only preserved if periodic gauge functions Λ(x) ∈ SU(N) are admitted. It
can be regarded as a continuous mapping from a three-dimensional torus to
SU(N), and it is characterised by an integer – the winding number n.
In the Schrödinger representation, quantum mechanical states of the theory
are wave functionals ψ[A], where A runs over all gauge fields. A scalar
product is given by

〈ψ|χ〉 =

∫
D[A]ψ[A]∗χ[A], D[A] =

∏
x,k,a

dAak(x). (2.4)

Physical states are gauge invariant. So

ψ[AΛ] = ψ[A] (2.5)

has to apply for all gauge transformations Λ. Any wave functional state can
be projected on the physical subspace,

ψ[A]→ IPψ[A] =

∫
D[Λ]ψ[AΛ], D[Λ] =

∏
x

dΛ(x). (2.6)

Here dΛ(x) denotes the Haar measure of SU(N). The gauge field Aak(x) can
be interpreted as an operator field that acts on wave functionals ψ[A]. The
canonically conjugate field,

F a
0k(x) = −i δ

δAa
k(x)

, (2.7)

is the colour-electric part of the colour field strength tensor. The magnetic
components are

F a
kl(x) = ∂kA

a
l (x)− ∂lAak(x) + fabcAbk(x)Acl (x). (2.8)

2Anti-hermitean vector potentials are used. With respect to a basis of group generators
T a in the adjoint representation, a = 1...N2 − 1, one obtains Ak(x) = Aa

k(x)T a with real
gauge fields Aa

k(x).
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The Hamiltonian of the theory, H, is given by

H =

L∫
0

d3x
(
g20
2
F a

0k(x)F a
0k(x) + 1

4g20
F a
kl(x)F a

kl(x)
)
, (2.9)

whereas g0 denotes the bare gauge coupling.

Each classical gauge field Ck(x) defines a state |C〉 through

〈C|ψ〉 = ψ[C]. (2.10)

Generally, such a state |C〉 is not gauge-invariant, but may be made so by
applying the projector IP. The Euclidean Schrödinger functional Z[C ′, C] is
now defined by

Z[C ′, C] = 〈C ′|e−HT IP|C〉. (2.11)

The spectral representation may be written down by inserting an orthonormal
basis |ψn〉, n = 0, 1, 2, ..., of gauge-invariant and discrete energy eigenstates,

Z[C ′, C] =
∞∑
n=0

e−EnT ψn[C
′]ψn[C]∗, (2.12)

with real energy eigenvalues En.
3 Z[C ′, C] is invariant under arbitrary gauge

transformations since only physical intermediate states contribute.

Alternatively to the Hamiltonian approach, one may express the matrix ele-
ments of the Euclidean time evolution operator e−HT between gauge-invariant
states through a functional integral over all gauge field configurations Aµ in
four dimensions, in a L3 × T box, with 0 ≤ x0 ≤ T and periodic boundary
conditions in the spatial directions and Dirichlet boundary conditions at the
x0 = 0, T hyperplanes,

Ak(x) =

{
CΛ
k (x) atx0 = 0,

C
′

k(x) atx0 = T.
(2.13)

In this formulation, the Euclidean gauge action is

SG[A] = − 1
2g20

∫
d4x tr (FµνFµν), (2.14)

3Lüscher has shown that this holds even on the lattice, chapter 2.4.1.
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where the trace is taken over colour indices a = 1...N2− 1 of the gauge fields
in the adjoint representation. The field strength tensor has the well-known
form

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (2.15)

Finally, the definition of the Schrödinger functional in terms of the functional
integral is

Z[C ′, C] =

∫
D[A]

∫
D[Λ] e−SG[A]. (2.16)

The integration over all gauge transformations Λ is required to account for
the projector IP, eq. (2.6). The functional integral representation will be
chosen for the definition on the lattice.

The issue of renormalisation of the Schrödinger functional is discussed (and
numerically checked to a certain extent) in a wide range of literature, for
instance [27, 28, 29, 32, 33, 34, 35]. It was shown up to 2-loop order in
perturbation theory that, apart from the standard renormalisation of the
bare coupling constant, no additional counterterms occur in the Yang-Mills
theory.

2.1.3 Formulation with Fermions

The Schrödinger functional, as defined for the pure gauge, may be extended
to QCD by including fermions [29]. It is useful to write the fermionic part
of the action in the functional integral representation,

SF[A,ψ, ψ] =

T∫
0

dx0

L∫
0

d3xψ(x)[γµDµ +m0]ψ(x) (2.17)

−
L∫

0

d3x [ψ(x)P−ψ(x)]x0=0 −
L∫

0

d3x [ψ(x)P+ψ(x)]x0=T .

This is the usual fermion action for manifolds without boundaries plus two
extra surface terms at the x0 = 0, T boundaries. Dµ denotes the covariant
derivative, Dµ = ∂µ +Aµ, and P± = 1

2
(1± γ0) the projector where standard

Euclidean γ−matrices have been used.4 The quark fields are taken to be

4Their explicit form is given in appendix A.
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Figure 2.1: Visualisation of the Schrödinger functional as a four-dimensional
cylinder.

periodic up to a phase in the spatial directions,

ψ(x+ k̂L) = eiθk ψ(x), ψ(x+ k̂L) = ψ(x)e−iθk , k = 1, 2, 3, (2.18)

and have to obey on the x0 = 0, T boundaries,

P+ψ(x)|x0=0 = ρ(x), P−ψ(x)|x0=T = ρ ′(x), (2.19)

ψ(x)P−|x0=0 = ρ̄(x), ψ(x)P+|x0=T = ρ̄ ′(x). (2.20)

Since the Dirac operator is a first order differential operator, only half of the
spinor components have to the specified at the boundaries.

The total action is the sum of the gauge and the fermion part,

S[A,ψ, ψ] = SG[A] + SF[A,ψ, ψ]. (2.21)

It appears in the Boltzmannian of the QCD Schrödinger functional,

Z[C ′, ρ̄ ′, ρ ′, C, ρ̄, ρ] =

∫
D[A]D[ψ]D[ψ] e−S[A,ψ,ψ], (2.22)

and an integration over all fields with specified boundary values is involved.
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To write down correlation functions

〈O〉 =

(
1
Z

∫
D[A]D[ψ]D[ψ]O e−S[A,ψ,ψ]

)∣∣∣
ρ̄ ′=ρ ′=ρ̄=ρ=0

(2.23)

as expectation values of an operator O, one may define ’boundary fields’ that
create quarks and antiquarks at x0 = 0, T ,

ζ(x) = δ
δρ̄(x)

, ζ̄(x) = − δ
δρ(x)

, (2.24)

ζ ′(x) = δ
δρ̄ ′(x)

, ζ̄ ′(x) = − δ
δρ ′(x)

. (2.25)

O may contain gauge fields and matter fields ψ, ζ etc.5 As an application,
the definition of the renormalised quark mass in the Schrödinger functional
is discussed in chapter 2.6.

Some comments to the renormalisation of the Schrödinger functional with
quarks are in order:
The existence of gauge-invariant composite fields of dimension three enforce
counterterms. Sint [29, 32] showed in 1-loop order of perturbation theory
that two counterterms at the x0 = 0, T boundaries have to be added to ob-
tain a finite renormalised theory. This turned out to be equivalent to a wave
function renormalisation of the boundary values,

ρR = Z
−1/2
b ρ, etc. (2.26)

For vanishing boundary values, no additional renormalisation is necessary.

2.1.4 Lattice Formulation

Starting from the formulation of the Schrödinger functional in continuum
space-time, section 2.1.2 and 2.1.3, one discretises a physical volume L3 × T
by a finite lattice spacing a. As introduced in chapter 1, one defines gauge
fields U(x, µ) ∈ SU(N) with direction µ = 0, 1, 2, 3, as well as quark and
antiquark fields, ψ(x) and ψ(x), that carry Dirac, flavour and colour indices
on each point x on the lattice. Fermion fields are assumed to be periodic in

5These derivatives, eqs. (2.24), (2.25), act on the Boltzmannian with the effect of
inserting certain combinations of ψ(x) and ψ(x) close to the lattice boundaries.
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space up to the phase, −π < θk < π, eq. (2.18). A compact notation for the
phase in four dimensions is θµ with the time component θ0 set to zero.

The Euclidean gauge field is subjected to the following boundary conditions,

U(x, k)|x0=0 = W (x, k), and U(x, k)|x0=T = W ′(x, k), (2.27)

with lattice boundary fields W,W ′. For example, W may be written as

W (x, k) = P exp

a 1∫
0

dtCk(x + ak̂ − tak̂)

 (2.28)

with continuum gauge potentials Ck, eq. (2.13). The expression for W ′ is
analogous. The symbol P denotes the path-order operator.
A convenient choice for the matrices Ck and C

′

k are constant Abelian fields.
They are smooth, introduce only small lattice artefacts and are discussed in
ref. [28]. The gauge field action is the Wilson plaquette action [36],

SG[U ] = 1
g20

∑
p

w(p) tr (1− U(p)), (2.29)

with the sum over all oriented plaquettes p, weights w(p) and parallel trans-
porters U(p) around p.
In the interior, the weight is always set to 1, whereas

w(p) =

{
1
2
cs if p is a spatial plaquette at x0 = 0 or x0 = T ,

ct if p is time-like and attached to a boundary plane.
(2.30)

The case cs = 1 = ct corresponds to the standard Wilson action. For an O(a)
improved action, however, these coefficients depend on the bare coupling g0.
This will be described in more detail in section 2.2.

Because the Schrödinger functional has Dirichlet boundary conditions im-
posed at x0 = 0, T , it is suitable to use a ’padding with zeros’,

ψ(x) = 0 if x0 < 0 or x0 > T, (2.31)

and
P−ψ(x)|x0=0 = 0 = P+ψ(x)|x0=T , (2.32)
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similarly for the antiquark fields, to write down the fermion action more
elegantly. Gauge fields that reside outside the manifold are set to 1.
One may then write the fermion action as a sum over all space-time points
without restrictions for the time coordinate,

SF[U, ψ, ψ] = a4
∑
x

ψ(x)(D +m0)ψ(x), (2.33)

with the standard Wilson-Dirac operator,

D = 1
2

3∑
µ=0

(
γµ(∇∗µ +∇µ)− a∇∗µ∇µ

)
. (2.34)

The symbol m0 denotes the diagonalised mass matrix in flavour space, and
∇µ,∇∗µ are the covariant lattice forward/backward derivatives6

∇µψ(x) = 1
a
[eiθµ/LU(x, µ)ψ(x+ aµ̂)− ψ(x)], (2.35)

∇∗µψ(x) = 1
a
[ψ(x)− e−iθµ/LU(x− aµ̂, µ)−1ψ(x− aµ̂)].

The Schrödinger functional may then be written as [29, 32],

Z = e−Γ =

∫
D[ψ]D[ψ]D[U ]e−(SG[U ]+SF[U,ψ,ψ]), D[U ] =

∏
x,µ

dU(x, µ), (2.36)

with the Haar measure dU . The symbol Γ denotes the effective action. One
usually integrates ψ, ψ out by hand, as explained in appendix B. This gives
rise to quark propagators and the fermion determinant.

2.1.5 The Renormalised Coupling ḡ(L)

The Schrödinger functional allows one to define a renormalisable coupling ḡ
in finite volume that depends only on one scale 1/L. It is chosen such that

αS(q) = ḡ2(L)
4π

, q = 1/L (2.37)

applies. Starting from the Schrödinger functional, there are many ways to
define such a coupling non-perturbatively. One may choose a background

6The periodicity of fermion fields in space, eq. (2.18), may be rewritten such that
the phase θµ is uniformly distributed over the lattice with a phase θµ/L between two
neighbouring sites. This allows a more convenient numerical treatment.
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field7 B that is a smooth function of some dimensionless parameter η, and
differentiates the effective action Γ = − lnZ[C ′, C], eq. (2.16),

Γ′[B] = ∂
∂η

Γ[B]. (2.38)

That is defined to be ḡ−2 up to a normalisation factor,

ḡ2 = (Γ′0[B]/Γ′[B]) |η=0,T=L, (2.39)

where Γ′0[B] = g2
0∂ηS[B] ensures that ḡ2 coincides with the bare coupling g2

0

to leading order of perturbation theory. Non-perturbative determinations of
the running coupling may be found in [34] for the quenched approximation,
for a toy model with Nf = −2 sea quark flavours in [37] and for full QCD
with Nf = 2 in [38]. Perturbative results up to two-loop order in g0 are
known [33].

2.2 O(a) Improvement Programme

In this section, the O(a) improved action Simpr is introduced. It may be
obtained by adding suitable counterterms to the Wilson action S such that
O(a) contributions are cancelled out,

Simpr[U, ψ, ψ] = S[U, ψ, ψ] + δS[U, ψ, ψ]. (2.40)

This is done in the framework of Symanzik’s improvement programme as
introduced in section 1.3. Schrödinger functional boundaries have to be taken
into account since they may enforce the presence of additional counterterms.
Improvement of operators is not discussed here but is usually necessary.

2.2.1 Gauge Action

Because of boundaries, the gauge action in eq. (2.29) is not fully O(a) im-
proved. But it can be made so by adding a counterterm at the boundaries.
This amounts to a redefinition of the weight in eq. (2.30),

w(p) = ct(g0), (2.41)

7 Certain fields B are referred to as background fields. Such a field is induced by the
boundary conditions, and S[A] > S[B] holds for all A that are not equivalent to a gauge
transform of B. Furthermore, B has to be a solution of the equation of motion satisfying
the boundary conditions, eq. (2.13).
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for time-like plaquettes attached to the boundary planes. For the other case,
w = 1 remains. The improvement coefficient ct is known up to two-loop order
in perturbation theory [35]. For constant Abelian fields, as used throughout
this work, the improvement coefficient cs is not needed.

2.2.2 Fermion Action

In [26] it is shown that there are two sorts of improvement terms for the
fermionic part of the action – a volume term (v) and a boundary term (b),

δSF[U, ψ, ψ] = δSF,v[U, ψ, ψ] + δSF,b[U, ψ, ψ]. (2.42)

The first contribution is the Sheikholeslami-Wohlert (clover) term [39],

δSF,v[U, ψ, ψ] = a5
∑
x

csw(g0)ψ(x)1
4
σµνF̂µν(x)ψ(x). (2.43)

It is independent of imposed boundary conditions. The improvement coeffi-
cient csw must be tuned such that O(a) cutoff effects cancel. This tuning is
a non-trivial task. The tree level value is csw = 1. A non-perturbative deter-
mination is found in [40, 41]. The symbol σµν = i

2
[γµ, γν ] is the commutator

of Dirac matrices, and F̂µν = 1
8a2 (Qµν −Qνµ) the gluon field strength tensor

on the lattice. The symbol Qµν is defined as

Qµν(x) = U(x, µ)U(x+ aµ̂, ν)U(x+ aν̂, µ)−1U(x, ν)−1

+U(x, ν)U(x− aµ̂+ aν̂, µ)−1U(x− aµ̂, ν)−1U(x− aµ̂, µ)
+U(x− aµ̂, µ)−1U(x− aµ̂− aν̂, ν)−1U(x− aµ̂− aν̂, µ)U(x− aν̂, ν)
+U(x− aν̂, ν)−1U(x− aν̂, µ)U(x+ aµ̂− aν̂, ν)U(x, µ)−1

and looks like a clover leaf. This is depicted in figure 2.2. Eq. (2.42) involves
one more counterterm that originates in the presence of fermion fields at the
boundaries. In [26] one may find all operators of dimension four that may
occur in counterterms. There it is also shown how the number of operators
can be reduced to four,

Ôs(x) = 1
2
ρ̄(x)γk(∇∗k +∇k)ρ(x), (2.44)

Ô′s(x) = 1
2
ρ̄ ′(x)γk(∇∗k +∇k)ρ

′(x), (2.45)

Ôt(x) =
(
ψ(y)P+∇∗0ψ(y) + ψ(y)∇∗0

←
P−ψ(y)

)
|y=(a,x), (2.46)

Ô′t(x) =
(
ψ(y)P−∇0ψ(y) + ψ(y)∇0

←
P+ψ(y)

)
|y=(T−a,x), (2.47)
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ν

µ
x

Figure 2.2: Visualisation of the contribution Qµν(x) in the SW clover term.

that are part of the counterterm,

δSF,b[U, ψ, ψ] = (2.48)

a4
∑
x

(
(c̃s − 1)[Ôs(x) + Ô′s(x)] + (c̃t − 1)[Ôt(x)− Ô′t(x)]

)
.

The result for c̃t as a function of the bare coupling is given in [42] to one-loop
order of perturbation theory.
Eq. (2.48) simplifies for vanishing fermionic boundary fields because in this

case Ôs and Ô′s will drop out. So one is left with the tuning of c̃t(g0).

2.3 The Correlation Functions fA, fP and f1

In order to compute quantities of interest, for instance pseudoscalar masses
and decay constants as well as current quark masses, one needs to choose
operators O and O′, each of them creates a pair of a quark and an antiquark
with flavours i, j = 1...Nf at the x0 = 0, T boundary,

Oij(ω) = a6

L3

∑
y,z

ζ̄i(y)γ5 ω(y − z)ζj(z), (2.49)

(Oij)′(ω′) = a6

L3

∑
u,v

ζ̄ ′j(u)γ5ω
′(v − u)∗ζ ′i(v). (2.50)

The boundary fields are defined in eqs. (2.24), (2.25), and Euclidean γ-
matrices are given in appendix A. The functions ω, ω′ have to be smooth
functions in space. Later in this work, they will be referred to as ’wave
functions’ and play a central role. The axial current and pseudoscalar density
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space

x  = 0

x  = T0

0

Figure 2.3: Visualisation of the correlators fA and fP, respectively. Currents
A0 or P are inserted in the interior.

are

Aijµ (x) = ψj(x)γµγ5ψi(x), (2.51)

P ij(x) = ψj(x)γ5ψi(x). (2.52)

Both are used to build up bare correlation functions. Then one has to re-
normalise both the currents and the operators.
Bare correlation functions fA, fP and f1 for finite quark masses can be defined
as follows8,

fA(x0, ω) = −a3

2

∑
x

〈Aij0 (x) Oij(ω)〉, (2.53)

fP(x0, ω) = −a3

2

∑
x

〈P ij(x) Oij(ω)〉. (2.54)

Correlators fA and fP are depicted in figure 2.3. They are proportional to
the transition probability amplitude that a quark-antiquark pair is created
at the x0 = 0 boundary, propagates to a point x in the interior of the box
and is annihilated there.

8If expressions are explicitly written out, a trace over Dirac and SU(3) colour indices
appears. But flavour indices are not summed over.
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space

x  = 0

x  = T0

0

Figure 2.4: The boundary-boundary correlator f1.

In the context of O(a) improvement [26], one needs to define an improved
axial current (AI)µ,

(AI)
ij
µ (x) = Aijµ (x) + a cA · 1

2

(
∂∗µ + ∂µ

)
P ij(x), (2.55)

and correspondingly in the Schrödinger functional,

f I
A(x0, ω) = fA(x0, ω) + cA

1
2

(fP(x0 + a, ω)− fP(x0 − a, ω)) , (2.56)

for a < x0 < T − a. Values for cA have been determined non-perturbatively
in ref. [40]. The pseudoscalar density P does not need to be improved.

The boundary-boundary correlator f1 for quark flavours i and j is shown
in figure 2.4,

f1(ω, ω
′) = −1

2
〈(Oij)′(ω′)Oij(ω)〉. (2.57)

It is proportional to the transition amplitude that a pair consisting of a
quark and an antiquark is created at the bottom x0 = 0, propagates to the
top x0 = T where it is annihilated. Since the propagation is between the two
boundaries, f1 may depend on two functions ω and ω′. An O(a) improvement
term is not necessary.
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2.4 Spectral Representations of Correlation

Functions

2.4.1 The QCD Transfer Matrix Formalism in the
Schrödinger Functional

The transfer matrix is an important tool in solid state physics and field
theory. Its knowledge for the studied model would allow to extract valuable
information about the energy spectrum [36].
In this section, the Euclidean transfer matrix is introduced and related to
correlation functions that can be computed non-perturbatively. They in turn
allow to gain some knowledge about the spectrum of the transfer matrix.
The notation is taken from [43]. Lüscher showed in [44] how to construct a

• self-adjoint and bounded

• gauge-invariant

• strictly positive (i.e. all its eigenvalues are larger than zero)

transfer matrix T for Wilson fermions.9 For the O(a) clover improved case,
however, one has to argue with universality in the continuum limit.
It is suitable to work in the Heisenberg picture10 of quantum mechanics,

T = exp(−aH), (2.58)

for the QCD Hamiltonian H on the lattice with unknown energy spectrum
E

(q)
n . Here n ≥ 0 is the energy level of states with quantum numbers (q) =

(J, P, C, · · · ). The action of the transfer matrix on a state |E(q)
n 〉 is

T|E(q)
n 〉 = exp(−E(q)

n a)|E(q)
n 〉. (2.59)

States are normalised to one,

〈E(q)
n |E

(q′)
n′ 〉 = δn,n′δq,q′ , (2.60)

9One should not take these properties for granted. For example, RG improved actions
do usually not fulfil positivity.

10As a short reminder: in the Heisenberg picture, operators are functions of time, and
states are time-independent.
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where δ.,. is the Kronecker symbol. Since only differences of energies are
observable, one may define quantities with the vacuum energy subtracted,

Ẽ(q)
n = E(q)

n − E
(0)
0 . (2.61)

For convenience, the vacuum energy is from now on set to zero,

E
(0)
0 = 0. (2.62)

In the present case, homogeneous boundary conditions are imposed. The
spatial components of the gauge potentials are set to zero

Ck = 0 = C ′k, k = 1, 2, 3 (2.63)

at the boundaries. That defines states |i0〉 at x0 = 0 and 〈f0| at the x0 = T
hyperplane, and |f0〉 = |i0〉 carries the quantum numbers of the vacuum.

Also the fermion fields are taken to vanish. The application of Ôij, eq. (2.49),
on |i0〉 creates a pseudoscalar meson state,

|iM(ω)〉 = Ôij(ω)|i0〉, (2.64)

at x0 = 0. Correspondingly, (Ôij)′ creates a pseudoscalar meson at x0 = T ,
and |fM(ω)〉 = |iM(ω)〉 applies.

Schrödinger functional states are usually no eigenstates of T. Rather, they
are a mixture of all states that have the same set of quantum numbers q,

|i0〉 = c0|E(0)
0 〉+ c1|E(0)

1 〉+ ... (2.65)

|iM(ω)〉 = Ôij(ω)|i0〉 = d0(ω)|E(PS)
0 〉+ d1(ω)|E(PS)

1 〉+ ...

Analogous expressions hold for states at x0 = T . Quantum numbers of
the vacuum are labelled by ’0’, those for pseudoscalar mesons by ’PS’. The
amplitudes cn, dn(ω) are overlap coefficients11 of the nth energy eigenstate of
T with the SF boundary states at x0 = 0, T , respectively,

cn = 〈E(0)
n |i0〉, dn(ω) = 〈E(PS)

n |iM(ω)〉. (2.66)

As discussed in the introduction of the Schrödinger functional, the partition
function Z can be written as a power of T,

Z = 〈i0|TT/a IP|i0〉, (2.67)

11In this work, they are real and positive.
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with IP projecting onto the gauge-invariant sector.
For correlation functions one obtains

fX(x0, ω) = 1
Z ·

L3

2
〈i0|e−(T−x0)H IP X e−x0H IP|iM(ω)〉, (2.68)

a ≤ x0 ≤ T − a,
f1(ω, ω) = 1

Z ·
1
2
〈iM(ω)|TT/a IP|iM(ω)〉, (2.69)

with fX = fA, fP and the operator X = A0, P in the Heisenberg picture. For
simplicity, one has used translational invariance of the spatial sites, where
V3 = (L/a)3 is the corresponding volume.

2.4.2 Spectral Decomposition of Correlators

The expansion of the partition function, eq. (2.67), is

Z(T ) =
∑
q

∞∑
m=0

〈i0|E(q)
m 〉〈E(q)

m | exp(−E(q)
m T ) |i0〉

=
∑
q

∞∑
m=0

δq,0 c
2
m exp(−E(0)

m T ), cm = 〈E(0)
m |i0〉

= c20 exp(−E(0)
0 T )

(
1 +

∞∑
m=1

c2m
c20

exp(−Ẽ(0)
m T )

)
= c20Z ′(T ).

To get the result, a complete set of eigenstates

1 =
∑
q

∞∑
m=0

|E(q)
m 〉〈E(q)

m | (2.70)

has been inserted into eq. (2.67) and expanded in energy states, |E(0)
m 〉, with

vacuum quantum numbers. The vacuum-to-SF boundary state overlap coef-
ficients cm are independent of the functions ω, ω′.12 After factorising out the
overlap with the vacuum, the remainder Z ′(T ) accounts for all contributions
from vacuum excitations.
The behaviour of Z for large time extents, such as O(2 fm), is dominated
by the vacuum ground state and its lowest excitation – the 0++−glueball.13

12This is obvious, since the dependence on ω, ω′ would be due to the application of
meson operators Ôij and (Ôij)′.

13Glueballs have not been experimentally detected so far. Their nature originates in
non-perturbative dynamics of gluons [45].
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Since it is quite heavy, about 1.6 GeV in physical units [46], one expects neg-
ligible contributions for moderate time extents of the lattice.

With the notation taken from [43], the spectral representation of the cor-
relator fA is derived,

fA(x0, ω) = L3

2
·

∑
n=0,g=0

exp(−(T−x0)E
(0)
n ) exp(−x0E

(PS)
g ) cndg(ω) 〈E(0)

n |A0|E(PS)
g 〉∑

m=0
c2m exp(−E(0)

m T )
, (2.71)

cm = 〈E(0)
m |i0〉, dg(ω) = 〈E(PS)

g |iM(ω)〉.

Again, complete sets of eigenstates of the transfer matrix were inserted.

A qualitative discussion of the correlator follows for large time extents of
order O(2 fm).

• Among the lowest state in the vacuum and the pseudoscalar channel,
there are sizeable contributions from excited pseudoscalar meson states
for small time separations x0 � T/2. But because of their relatively
large mass, they decay fast.

• In the limit x0 � T/2 one expects contributions from vacuum excita-
tions to be large because T − x0 in the exponential gets small.

• For the intermediate region, x0 ≈ T/2, the leading behaviour is gov-
erned by the lightest pseudoscalar meson state, n = 0. Small contri-
butions may come from the first excited meson state (its gap to the
ground state is denoted by ∆) and from the glueball (with mass mG),

fA(x0, ω) = L3

2
· 〈E(0)

0 |A0|E(PS)
0 〉︸ ︷︷ ︸

∝FPS

·ρ(ω) · exp(−Ẽ(PS)
0 x0)· (2.72)

(
1− c21

c20
exp(−mGT ) + ηPS

A (ω) exp(−∆x0) + η0
A exp(−mG(T − x0)) + ...

)
.

The matrix element in front is proportional to the bare decay constant
FPS,

〈E(0)
0 |A0|E(PS)

0 〉 = FPSmPS ·
√

1
2mPSL3 . (2.73)

The last factor takes account of the conventional normalisation of one-
particle states. In this convention, the experimental value of the pion
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decay constant is 132 MeV. The overlaps of the boundary states with
the corresponding ground states, here denoted by ρ(ω), appear in fA.

The amplitudes η
(.)
A are ratios of decay constants of different channels,

ρ(ω) = c0d0(ω)

c20
, (2.74)

ηPS
A (ω) = d1(ω)

d0(ω)

〈E(0)
0 |A0|E(PS)

1 〉
〈E(0)

0 |A0|E(PS)
0 〉

, η0
A = c1

c0

〈E(0)
1 |A0|E(PS)

0 〉
〈E(0)

0 |A0|E(PS)
0 〉

.

One should keep in mind that fA has two contributions of vacuum excita-
tions: both in the numerator and in the denominator.
The spectral representation of fP(x0, ω) is not given here, but it may be de-
rived analogously.

The boundary-boundary correlator, eq. (2.69), is

f1(ω, ω
′) = 1

2

∑
g=0

dg(ω′)dg(ω) exp(−E(PS)
g T )∑

m=0
c2m exp(−E(0)

m T )
, (2.75)

and it becomes for large time extents,

f1(ω, ω
′) = 1

2
ρ(ω)ρ(ω′) · exp(−Ẽ(PS)

0 T ) · (2.76)(
1 + d1(ω′)d1(ω)

d0(ω′)d0(ω)
exp(−∆T )− c21

c20
exp(−mGT ) + ...

)
.

This correlation function decays exponentially in T with the lowest pseudo-
scalar mode. Corrections come from higher excitations, but are exponentially
damped for large enough times. Again, one should keep in mind that there
are glueball corrections from the denominator (partition function).

Because of universality in the continuum limit, one does not need to dis-
tinguish the spectral decomposition of correlators for Wilson fermions with
or without O(a) improvement. Though numbers may change, the formulae
are the same.
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2.5 Pseudoscalar Masses and Decay Constants

2.5.1 The Pseudoscalar Mass mPS of the Ground State

The local (effective) mass from the axial current is usually taken to extract
the meson ground state energy.14 Starting from the definition in the con-
tinuum,

meff(x0) = −d ln fA(x0, ω)/dx0, (2.77)

one may discretise the derivative in x0 up to O(a2) effects,

meff(x0, ω) a = 1
2
ln fA(x0−a,ω)

fA(x0+a,ω)
. (2.78)

Obviously, partition functions and renormalisation factors of the boundary
fields from individual correlators fA drop out.
If one considers physical time extents of order O(2 fm) and x0 ≈ T/2, one
can assume to be in a region where the meson ground state dominates and
excited state contributions are small. If so, eq. (2.72) may be applied. Then
leading contributions are

meff(x0, ω) a = aẼ
(PS)
0 + ηPS

A (ω) sinh(a∆) exp(−x0∆)− (2.79)

η0
A sinh(amG) exp(−mG(T − x0)) + ...

Instead of using the axial current, the mass may also be defined by means
of the pseudoscalar density fP. Both versions of effective masses have to
coincide within error bars in the plateau region.

Another way to extract the mass from correlators is

meff(T
′, T, ω) a = ln

[(
f1(T ′,ω,ω)
f1(T,ω,ω)

)a/(T−T ′)]
. (2.80)

For large time separations T, T ′ and T−T ′ one expects a leading contribution
from the meson ground state,

meff(T
′, T, ω) a = aẼ

(PS)
0 + (2.81)

a
T−T ′

(
d21(ω)

d20(ω)
exp(−∆T ′)

(
1− e−∆(T−T ′)

)
−

c21
c20

exp(−mGT
′)
(
1− e−mG(T−T ′)

)
+ ...

)
,

14In this work, all fermion fields have p = 0. Then mPS ≡ Ẽ
(PS)
0 is the mass of the

lowest pseudoscalar state, and similarly m∗
PS ≡ Ẽ

(PS)
1 for its first excitation.
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shown with its leading corrections in both the pseudoscalar and vacuum
channel. But here, in contrast to the definition of meffa involving fA or fP,
glueball corrections from the partition functions are present.

If corrections from excited states are small, the latter definition gives a value
for the pseudoscalar mass that is consistent with the two other versions.

2.5.2 The Pseudoscalar Decay Constant FPS of the
Ground State

Some ways to extract the pseudoscalar decay constant are described.

First, one defines the bare decay constant by means of lattice correlation
functions, and then one renormalises the quantity. Given a bare pseudoscalar
decay constant FPS, eq. (2.73), one obtains the renormalised one, (FPS)R,
through

(FPS)R = ZA (1 + bA amq)FPS. (2.82)

Because chiral symmetry is not preserved on the lattice, ZA 6= 1 applies. It
has been computed non-perturbatively in [47]. In contrast to the massless
case, a fully O(a) improved axial current for massive quarks needs an addi-
tional improvement term with coefficient bA. It is only known perturbatively
to one-loop order so far [48]. The symbol mq shall denote the subtracted
quark mass which is further discussed in section 2.6.
The following dimensionless quantity is often used to extract the pseudoscalar
decay constant,

X(x0, T, ω) = fA(x0,T,ω)√
f1(T,ω,ω)

, (2.83)

which decays exponentially with the mass of the meson ground state for
large times. The factor

√
f1 cancels the renormalisation factor of the bound-

ary quark fields that also appears in fA. Provided that the time extent is
sufficiently large, the spectral representation of X around x0 ≈ T/2 is well
described by

X(x0, T, ω) = 1
2

√
V3 FPSa

√
Ẽ

(PS)
0 a exp(−(x0 − T/2)Ẽ

(PS)
0 ) (1 +R) . (2.84)
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The factor appearing in front of the exponential term is proportional to the
matrix element15 in eq. (2.73). The bare pseudoscalar decay constant FPSa
may be determined through

Feffa = 2√
V3 Ẽ

(PS)
0 a

X|x0=T/2 ≈ FPSa, (2.85)

provided that the pseudoscalar mass is known and contributions from ex-
cited states are small. Corrections, R, come from excitations in both the
mesonic and the vacuum channel. The leading terms for large time extents
and x0 ≈ T/2 are given here,

R = ηPS
A (ω) exp(−x0∆)− d21(ω)

2d20(ω)
exp(−∆T )− (2.86)

c21
2c20

exp(−mGT ) + η0
A exp(−mG(T − x0)) + ...

Due to mesonic corrections in f1 and contributions of vacuum excitations
in the partition function, the curve of the effective decay constant is shifted
independently of x0. The leading term of that shift is

shift = − d21(ω)

2d20(ω)
exp(−∆T )− c21

2c20
exp(−mGT ) + ... (2.87)

The other terms in eq. (2.87) depend on x0 and may distort the curve but
cannot shift it. A few comments are in order:

• As in the case of effective masses, excited mesons contribute for small
times x0, vacuum excitations for T − x0 small.

• Eq. (2.87) says that the leading contribution from excited mesons shifts
FPSa downwards, that one from the glueball as well.

As an alternative definition, one could generalise eq. (2.83) using a distinct
(usually smaller) time extent T ′ in f1,

16

X(x0, T
′, T, ω) = fA(x0,T,ω)√

f1(T ′,ω,ω)
(2.88)

= 1
2

√
V3 · FPSa

√
Ẽ

(PS)
0 a exp(−(x0 − T ′/2)Ẽ

(PS)
0 ) · (1 +R) ,

15The definition in the static-light channel differs slightly. The chapter on B-physics
will give more details.

16This case is considered because for large time extents, the signal-to-noise ratio de-
creases rapidly in the static approximation. So this formula gives an option to extract the
decay constant there.
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The leading corrections from excited states to the asymptotics, T →∞, are

R = ηPS
A (ω) exp(−x0∆)− d21(ω)

2d20(ω)
exp(−∆T ′) + (2.89)

c21
c20

exp(−mGT
′)
(

1
2
− e−mG(T−T ′)

)
+ η0

A exp(−mG(T − x0)) + ...

Contributions in the pseudoscalar sector decrease X. In the vacuum channel,
however, this does not need to be the case. They could even cancel or change
the sign depending on the size of the argument in the exponential.

Still another example, how to obtain the pseudoscalar decay constant is

aFeff(x0, T
′, T, ω) = 2√

V3

fA(x0,T,ω)√
f1(T ′,ω,ω)

exp(meff · (x0 − T ′/2))/
√
meffa, (2.90)

with meff as defined in eq. (2.78). This is the version that is used in this
work. For small corrections to the asymptotics one expects a plateau level
at aFPS. The expected approach to the plateau region is

aFeff = aFPS ·
(
1− d21(ω)

2d20(ω)
e−∆T ′ +

c21
c20
e−mGT

′
(

1
2
− e−mG(T−T ′)

)
+ (2.91)(

x0

a
−
[
T ′

2a
+ 1

2aẼ
(PS)
0

− 1
sinh(a∆)

])
· sinh(a∆) ηPS

A (ω)e−x0∆ −(
x0

a
−
[
T ′

2a
+ 1

2aẼ
(PS)
0

+ 1
sinh(amG)

])
· sinh(amG) η0

Ae
−(T−x0)mG + ...

)
.

This version needs no prior knowledge of the pseudoscalar mass, and corre-
lations between fA’s for consecutive values of x0 are fully taken into account.
As in the previous definitions, there is a systematic shift, even of the plateau
level, if contributions from excited states are not negligible.

2.6 The PCAC Relation on the Lattice

In the Schrödinger functional, it is suitable to define a renormalised quark
mass by means of the PCAC relation. It says that the axial current, as
defined in eq. (2.51), is partially conserved,

∂µA
ij
µ (x) = (mi +mj)P

ij(x), (2.92)

with the pseudoscalar density as defined in eq. (2.52) and bare quark masses
mi,j for the flavour indices i, j = 1...Nf . This equation is exact in the con-
tinuum. For finite lattice spacing a, however, it is valid up to corrections



32 Chapter 2 The Schrödinger Functional

with certain powers in the lattice spacing. This is because Wilson fermions
explicitly break chiral symmetry. But chiral symmetry is restored when one
approaches the continuum limit.
For the unimproved theory, the leading correction term is linear in a. The
approach to the continuum can be accelerated by means of Symanzik’s im-
provement programme. For the O(a) improved theory [26], the leading lattice
artefacts are quadratic17 in the lattice spacing a. The axial current needs an
improvement term, eq. (2.55). The pseudoscalar density already converges
with a rate proportional to a2. As a part of the research programme of the
ALPHA collaboration, the improvement coefficient cA has been determined
non-perturbatively [40].

For Wilson fermions, masses are not protected through chiral symmetry.
They are shifted because of an additive renormalisation. That means, even
for massless quarks, there must be a bare mass. In other words, there is a
critical line in the bare parameter space for which the renormalised quark
mass vanishes,

m0 = mc(g0) ↔ mR = 0. (2.93)

It is convenient to change to the subtracted quark mass mq = m0−mc. This
quantity will be renormalised multiplicatively. Thus, the critical line is also
described by the condition

mq(g0) = 0. (2.94)

The renormalised versions of the axial current and pseudoscalar density

(AR)ijµ = ZA

(
1 + 1

2
bA a(m

i
q +mj

q)
)

(AI)
ij
µ , (2.95)

P ij
R = ZP

(
1 + 1

2
bP a(m

i
q +mj

q)
)
P ij (2.96)

define the renormalised quark mass through eq. (2.92).

For non-vanishing quark masses, one needs the coefficients bA and bP. Their
difference has been computed non-perturbatively in [50], but they are only
known to one-loop order of perturbation theory individually [48]. Because
chiral Ward identities are only valid up to O(a2) lattice artefacts in the re-
gularised theory, the factor ZA gets a dependence on g0. But it does not
depend on a renormalisation scale [47]. The renormalisation factor of the
pseudoscalar density, ZP, has not only a dependence on g0 but also on the

17This is confirmed in scaling tests, for instance in [49].
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scale. It can be used to compute running quark masses [51, 52]. The re-
normalised quark mass mR may be defined by virtue of an operator identity,

〈1
2

(
∂µ + ∂∗µ

)
(AR)ijµ (x)O〉 =

(
mi

R +mj
R

)
〈P ij

R (x)O〉+ O(a2), (2.97)

for any operator O apart from the location x.

Solved for the renormalised quark mass, eq. (2.97) reads18

mR = ZA

ZP
(1 + (bA − bP) amq) m+ O(a2). (2.98)

Translated in terms of correlation functions fA and fP, the bare PCAC mass
m is given by

m(x0, ω) =
∂̃0fA(x0,ω)+a cA∂

∗
0∂0fP(x0,ω)

2fP(x0,ω)
= r(x0, ω) + a cAs(x0, ω) = (2.99)

fA(x0+a,ω)−fA(x0−a,ω)
4a fP(x0,ω)

+ cA
fP(x0+a,ω)−2fP(x0,ω)+fP(x0−a,ω)

2afP(x0,ω)
+ O(a2).

There is more than one possibility to meet the condition of a vanishing quark
mass, for instance one may choose m|x0=T/2 = 0. Then one has to tune the
bare parameters. such that eq. (2.93) holds there. On the lattice, this may
be realised by

m =

{
m
(
T
2a
, ω
)

for T/a even,
1
2

(
m
(
T−a
2a
, ω
)

+m
(
T+a
2a
, ω
) )

for T/a odd.
(2.100)

In the general context one may introduce the hopping parameter κ as

κ = 1
2am0+8r

, 2amq = 1
κ
− 1

κc
, (2.101)

where κc describes the critical line, eq. (2.94). The hopping parameter κ
usually serves as an input parameter for simulations.

18 Written down for two mass-degenerated quarks, as they are used in the light-light
channel of this work.
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Chapter 3

The b−quark on the Lattice

3.1 Introduction

The b−quark was the first discovered heavy quark of the predicted third
family.1 Heavy-light and heavy-heavy quarkonia may decay into many chan-
nels. Amongst purely hadronic channels, that are governed by QCD, there
are also semi-leptonic decays, such as B → D∗lνl, where quarks decay due
to electroweak currents.2

The fact that there exist three families of fermions which are made up of
fields with identical SU(2)L⊗U(1)Y transformation properties allows one to
form invariant Yukawa couplings for arbitrary combinations of fields from
the different families. This is flavour mixing in the charged current3 that
is described by a unitary SU(3) matrix, the Cabibbo-Kobayashi-Maskawa
CKM matrix [54, 55],

djL → d̃jL = (UKM)jkdkL, UKM ∈ SU(3), (3.1)

for the lower components of the left-handed doublets. One can show that the
CKM matrix is determined by 4 (observable) parameters. Possible choices
are 3 rotation angles and one phase or the approximate description by the
Wolfenstein parametrisation [56]. Both versions contain a complex phase.

1The existence of three quark families is due to lepton-quark duality in the electroweak
sector. This cancels the chiral anomaly there, and this is essential for renormalisibility of
the Standard Model. A general introduction into the Standard Model is e. g. [53].

2This means, there is flavour number violation in charged weak interactions.
3The experimentally confirmed absence of flavour-changing neutral currents at tree-

level is due to the GIM mechanism.

35
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The latter may lead to complex effective couplings in the charge-changing
currents and is therefore the cause of CP-violation. It is important to note
that this may only occur for more than two families and non-degenerate
quark masses. CP-violating effects have been observed in the kaon system
[5, 6] and recently in the B-system [7, 8, 9].
To test if the Standard Model describes our world, a precise knowledge of
independent CKM matrix elements and their ratios is, amongst other quanti-
ties, needed. Elements, such as |Vud| and |Vus|, are quite precisely known [57].
The Belle experiment at KEK [58] delivers still rough estimates for |Vub| and
|Vcb|. The CP-violating phase depends very sensitively on a quantity BBf

2
B

[59, 60, 61]. Therefore, the latter should be known precisely. Here, BB is
referred to as B−parameter and fB is the decay constant of the B−meson.
A good review for these issues is [62].

3.2 The Static Approximation

Heavy quark physics on the lattice is a great challenge for present computers,
even quenched, because it requires a very fine discretisation of the lattice.
This is because the masses of charm (c−), bottom (b−) and top (t−) quarks
are above 1 GeV and therefore far heavier than the typical scale ΛQCD of a
few hundred MeV.4 Large masses ma > 1, as for heavy quarks for currently
accessible lattice spacings a ≈ 0.05 fm, result in large undesired discretisation
errors. To treat the b−quark by means of relativistic lattice QCD reliably,
one has to meet

mba� 1. (3.2)

At the same time, to keep finite size effects due to pion propagation small,

mπL� 1 (3.3)

has to apply. Unfortunately, typical lattice sizes in nowadays quenched lat-
tice QCD simulations are too small to meet both constraints.
But experimentally observable spectra of heavy-light and heavy-heavy bound
states reveal that due to their large mass heavy quarks are non-relativistic

4The heaviest quark, the top, is not presently known to have bound states. It is too
heavy to establish them and decays weakly. But those ones of the c− and b−quark may
be investigated.
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rather than relativistic particles. Therefore, using a non-relativistic treat-
ment on the lattice should be a suitable choice from both the physical and
numerical point of view.
In the Heavy Quark Effective Theory [63], one uses a Lagrangian that is
expanded in inverse powers of the heavy quark mass,

LHQET(x) = Lstat

h (x) + 1
m
L(1)

h (x) + O( 1
m2 ), (3.4)

where the Lagrangian Lstat
h of the static theory has mass dimension four and

L(1)
h is of mass dimension five etc. The Lagrangian of the static theory is

Lstat

h (x) = ψh(x)(D0 +m+ δm)ψh(x). (3.5)

The mass term mψh(x)ψh(x) is usually subtracted since it corresponds to a
universal energy shift of all states that contain a heavy quark. Removing it
makes explicit that the dynamics of heavy-light systems is independent of
the scale m at lowest order of 1/m. The symbol δm is a mass counter term.
Composite fields of mass dimension higher than four are treated as per-
turbations to the static theory [64]. The perturbation in O(1/m) is

L(1)
h (x) = ψh(x)(−1

2
~D2 − ~σ · ~B)ψh(x). (3.6)

To compute expectation values, the fermionic action in the Boltzmannian is
always the sum of the light and the static quark action. The remainder of
the HQET action in the exponential, Sstat − SHQET, has to be expanded to
the given order O(1/mn) of the action and appears as operator insertions
into correlation functions. The reason to do so is that the static effective
theory is renormalisable [65, 66, 67], as perturbative and non-perturbative
tests support. And the continuum limit exists if the correlation function has
been renormalised.
The natural starting point in this effective description of QCD is therefore
the static case. It is a suitable tool to explore the heavy quark sector of
QCD with a low numerical effort. It may serve as a guide for extrapolations
of masses and decay constants from simulations with relativistic quarks, such
as the charm [68], to the b.
In the limit m → ∞, new symmetries appear [69, 70, 71]. Quarks become
spatially static sources of colour charge with no spin and flavour.5

5On the lattice, the static propagator is just a product of links and therefore cheap to
compute.
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3.3 The Static b−quark in the Schrödinger

Functional

This section complements chapter 2 in describing how the Eichten-Hill action
for static quarks [63] is implemented in the Schrödinger functional. Cor-
relation functions are defined from which physical observables, such as hadron
masses and decay constants, may be extracted. The notation is taken from
ref. [66].

3.3.1 The Action

As in the case of relativistic quarks, boundary fields ρh and ρ̄ ′h are defined
such that

ψh(x)|x0=0 = ρh(x), ψh(x)|x0=T = ρ̄ ′h(x). (3.7)

The projectors are not necessary because the theory is defined with two-
component spinor fields only. The redundant two components are set to
zero. For the same reason, P−ψh(x) will vanish. Since static quarks propa-
gate only in time, spatial boundary conditions do not need to be discussed.

In the Schrödinger functional, the continuum static quark action is as for
space-time without boundaries plus a boundary term [29],

Sh[A,ψh, ψh] =

∫
dx0

∫
d3xψh(x)D0ψh(x)−

∫
d3x[ψh(x)ψh(x)]x0=T . (3.8)

Similarly to the relativistic case, the static quark field on the lattice is defined
to be

ψh(x) = 0 if x0 < 0 or x0 ≥ T , (3.9)

such that the lattice counterpart of the continuum action, eq. (3.8), is

Sh[U, ψh, ψh] = a4
∑
x

ψh(x)∇∗0ψh(x). (3.10)

The mass term in Sh, eq. (3.8), has been dropped in eq. (3.10) since it shifts
all energies by a common value. The total action is

S[U, ψ, ψ, ψh, ψh] = SG[U ] + SF[U, ψ, ψ] + Sh[U, ψh, ψh], (3.11)
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and the Schrödinger functional, eq. (2.36), now includes static quarks,

Z[C ′, ρ̄ ′, ρ ′, ρ̄ ′h, C, ρ̄, ρ, ρh] =

∫
D[U ]D[ψ]D[ψ]D[ψh]D[ψh] e

−S[U,ψ,ψ,ψh,ψh]. (3.12)

The expectation value, eq. (2.23), of an operator O is easily generalised.
This operator may also contain static boundary fields,

ζ ′h(x) = δ
δρ̄ ′h(x)

, ζ̄h(x) = − δ
δρh(x)

. (3.13)

As for light quark boundary fields, static ones are explicitly set to zero after
integration. The renormalisation of static quark boundary fields is multi-
plicative. This is analogous to the relativistic case.

The acceleration of the approach to the continuum limit by means of Syman-
zik’s improvement programme to order a has been investigated in [66]. It
turns out that the static quark action, eq. (3.10), is already O(a) improved.
Operators, however, usually need improvement.

3.3.2 Correlation Functions

The static-light axial current is defined as

Ajstat0 (x) = ψj(x)γ0γ5ψh(x), j = 1...Nf . (3.14)

This quantity may be used to extract energies and decay constants. From
now on, the flavour index j of the light quark will be considered irrelevant
in the designation of Astat

0 and is therefore omitted.
The current needs O(a) improvement,

δAstat

0 = ψj(x)γkγ5
1
2
(∇k

←
+∇∗k
←

)ψh(x), j = 1...Nf , (3.15)

where the expression is summed over the spatial index k = 1, 2, 3. Thus, the
O(a) improved static axial current is given by

(Astat

I )0(x) = Astat

0 (x) + acstat

A δAstat

0 (x). (3.16)

The improvement coefficient cstat
A is only known in perturbation theory up to

one-loop order [72, 66]. Unlike in the relativistic case, there is no symmetry
that allows one to compute cstat

A non-perturbatively.
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0x  = 0 0x  = T x  = 0 x  = T
0 0

Figure 3.1: Visualisation of the correlators f stat
A (left) and f stat

1 (right). The
static quark is drawn with a double line. The current Astat

0 is inserted in the
interior of the left figure.

Correlation functions, such as f stat
A and f stat

1 , are built up with the boundary
operators, eqs. (2.49) and (2.50), where the light flavour i is replaced by the
static quark h,

O(ω) = a6

L3

∑
y,z

ζ̄h(y)γ5 ω(y − z)ζj(z), (3.17)

O′(ω′) = a6

L3

∑
u,v

ζ̄ ′j(u)γ5ω
′(v − u)∗ζ ′h(v), (3.18)

f stat

A (x0, ω) = −a3

2

∑
x

〈Astat

0 (x) O(ω)〉, (3.19)

δf stat

A (x0, ω) = −a3

2

∑
x

〈δAstat

0 (x) O(ω)〉. (3.20)

The static quark can only propagate forward in time. The correlators are
depicted in figure 3.1. The boundary-boundary correlator f stat

1 is given by

f stat

1 (ω, ω′) = −1
2
〈O′(ω′)O(ω)〉. (3.21)

Their spectral representations, eqs. (2.71) and (2.75), are derived straight-
forwardly.
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3.3.3 The Static Decay Constant

The renormalisation group invariant matrix element ΦRGI of the axial current
between the vacuum and the heavy-light pseudoscalar is defined by

ΦRGI = ZRGI〈E(0)
0 |Astat

0 |E
(PS)
0 〉, (3.22)

with some renormalisation factor ZRGI. The latter is proportional to the
scale- and regularisation-dependent renormalisation factor Zstat

A (g0, µ = 1/L),

ZRGI(g0) = ΦRGI

Φ(µ)
|µ=(1.436 r0)−1 × Zstat

A (g0, L/a)|L=1.436 r0 . (3.23)

For the Eichten-Hill action, it has been computed non-perturbatively [73, 67].
And the regularisation-independent part is

Φ(µ)/ΦRGI = 1.088(10) at µ = (1.436 r0)
−1, (3.24)

with an error of 0.9% that has to be added in quadrature after the continuum
extrapolation.
The RGI matrix element and the decay constant may be related through [67]

FPS

√
mPS = CPS(Mb/ΛMS)ΦRGI, (3.25)

up to leading corrections in O(1/mPS). The value of the mass-dependent
function CPS(Mb/ΛMS) = 1.22(3) is known from perturbation theory. Its
argument is the ratio of the RGI mass of the b−quark and the Lambda-
parameter in the MS-scheme. If the experimental value for the spin-averaged
B-meson mass, mB = mBs = 5.4 GeV, is used as input and ΦRGI known from
lattice calculations, eq. (3.25) may be solved for the decay constant FPS.
The matrix element ΦRGI can be extracted from an x0−independent range,
the plateau level, for a suitable combination of correlation functions,

ΦRGI(x0) = −ZRGI (1 + bstatA amq)
2√
V3

f stat
A (x0,T,ω)√
f stat
1 (T ′,ω,ω)

eEeff·(x0−T ′/2). (3.26)

The effective energy is defined as in eq. (2.78), but with fA replaced by f stat
A .

The coefficient bstatA is required to improve the decay constant to order a for
a massive light quark. Its tree-level value is bstatA = 1/2.
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Some further comments are in order:

• correlation functions usually depend on the divergent mass counter
term, but the dependence is known explicitly. For the decay constant,
eq. (3.26), and energy differences (mass splittings) no knowledge of the
counter term is needed.

• to extrapolate effective energies to the continuum, one needs to subtract
the mass counter term. Unfortunately, there are only perturbative
estimates [74], and there is no symmetry that allows a non-perturbative
determination of the mass counter term. But there is a proposal to
circumvent the problem [75, 76].

• following Eichten [77] it was noted in [74], that the signal in correlation
functions decreases exponentially with Euclidean time separation x0.
Using conventional methods, it is very difficult to obtain the decay
constant with a satisfying statistical precision. Wave functions, also
called ’smearing’, may provide a way out [78, 79, 80, 81, 82].



Chapter 4

Wave Functions

4.1 Motivation

As eq. (2.65) indicates, Schrödinger functional boundary states are a super-
position of eigenstates of the transfer matrix T with the same set of quantum
numbers q. They contribute to correlation functions, such as fA, fP and f1,
eqs. (2.71) and (2.75), which are used to extract hadron masses and decay
constants for a given state. Regarding the ground state, that is usually the
state of interest, a safe extraction can only be obtained if contributions from
excited states are negligible. To ensure that, one has several options:

• choose the time extent of the box sufficiently large, T � 1 fm,

• accelerate the approach to ground state dominance.

From the theoretical point of view, item number one is quite obvious but prac-
tically not always feasible. This is due to limited computational resources.
In addition, especially in the static approximation, the signal-to-noise ratio
is known to be rapidly decreasing with increasing Euclidean times x0 [74].
Therefore, in this work, option two is investigated. In practice, one chooses

an arbitrary operator Ôij(ω) with the correct set of quantum numbers q.
The overlap with the particular state of interest may be varied through the
function ω. This ’wave function’, that appears in eq. (2.49), depends on the
relative displacement r of the boundary quark fields.
A good meson interpolating operator Ô(n) for the state n has a large overlap
with the nth energy eigenstate of T. Since it is not a priori known, one may
choose a set of operators with different wave functions ωi, i = 1...Nω, and try
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to approximate the improved interpolating field Ô(n) by a linear combination
of Ô(ωi) with unknown weight factors α

(n)
i ,

Ô(n) ≈ Ô(ω(n)
opt ), ω(n)

opt (r) =

g∑
i=1

α
(n)
i ωi(r), g ≤ Nω. (4.1)

Eq. (4.1) defines ω
(n)
opt . A technique to find the coefficients α

(n)
i is based on

the variational principle.

4.2 The Variational Principle

It is typically applied to the static potential [83], the extraction of glueball
masses [84], the computation of phase shifts in elastic π − π−scattering [85]
or in heavy quark physics in the static approximation [78].
The variational principle will be introduced following [86, 87, 88] but with
an emphasis on hadron physics. The notation of section 2.4.1 is used. Con-
cerning the Schrödinger functional, some points need a separate discussion.

The General Case

It is a well-known fact from elementary quantum mechanics that the vari-
ational principle may serve as a suitable tool to estimate the ground state
and its energy. It is based on an extremal principle. One chooses some set
of meson operators Ô(ωi), that create ’trial states’ with quantum numbers
of pseudoscalar mesons from the vacuum state |0〉, and varies within them
such that the energy expectation 〈H〉 gets minimal,

δ{ 〈iM(ω)|H|iM(ω)〉
〈iM(ω)|iM(ω)〉 } = 0. (4.2)

On the lattice, however, the transfer matrix T = exp(−aH) is considered.
Therefore, eq. (4.2) changes to

δ{ 〈iM(ω)|T|iM(ω)〉
〈iM(ω)|iM(ω)〉 } = 0, (4.3)

and the expectation value of the transfer matrix needs to be maximised. For
a positive and bounded operator T, eq. (4.3) gives an upper bound on the
true ground state value

〈T〉 ≤ exp(−aẼ(PS)
0 ). (4.4)
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Equality holds if the state |iM(ω)〉 is the true ground state |E(PS)
0 〉. For any

power p ≥ 0 one obtains 〈Tp/a〉 ≤ exp(−pẼ(PS)
0 ). In particular, for p = T−T ′

and a basis transformation |iM(ω)〉 = TT ′/(2a)|ψ〉, eq. (4.3) changes to

δ〈Tp/a〉 = 0 = δ{ 〈ψ|T
T/a|ψ〉

〈ψ|TT ′/a|ψ〉}, (4.5)

that has to be maximised. As introduced in section 2.4.1, correlation func-
tions with time separation T may be expressed by means of the transfer
matrix,

Cij(T ) = 〈0|Ô†(ωj)TT/aÔ(ωi)|0〉, (4.6)

for i, j = 1...Nω. Under the model assumption that the Nω lowest eigen-
states of T with non-degenerate energies contribute for large time extents,
the spectral representation of C(T ) is approximated by

Cij(T ) =
Nω−1∑
n=0

e−Ẽ
(PS)
n T ψ

(n)
i ψ

∗(n)
j , (4.7)

where the unknown overlap of the operator Ô(ωi) with state n is denoted by

ψ
(n)
i = 〈0|Ô†(ωi)|E(PS)

n 〉 = dn(ωi).

It is suitable to introduce a set of vectors v(m) dual to the ψ(n),

〈v(m), ψ(n)〉 = δmn.

Demonstrating for the ground state, the application of v(0) to C(T ) and C(T ′)
from the left and right yields the variational principle, eq. (4.5),

〈v(0),C(T )v(0)〉
〈v(0),C(T ′)v(0)〉 = e−Ẽ

(PS)
0 (T−T ′), (4.8)

if the model assumption is fulfilled. In general, state vectors and energies
may be extracted by means of the generalised eigenvalue problem (GEVP),∑

j

Cij(T )v
(n)
j (T, T ′) = λn(T, T

′) ·
∑
j

Cij(T
′)v

(n)
j (T, T ′), T > T ′. (4.9)

Effective generalised eigenvalues are denoted by λn(T, T
′), and corresponding

generalised eigenvectors are the v(n)(T, T ′). They are the weight factors

v(n) = (α
(n)
1 , ..., α

(n)
Nω

) to obtain an approximative interpolating operator for
the nth energy state of the meson, eq. (4.1).
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A few remarks are in order:

• The correlation matrices are symmetrised by hand in order to ensure
that their eigenvalues are real. Negative eigenvalues or those close to
zero with large statistical errors may be present due to limited statisti-
cal precision. They are the cause of numerical instabilities and should
be discarded.

• A formulation of eq. (4.9) as an ordinary eigenvalue problem for a
symmetric matrix Ĉ(T, T ′) = C−1/2(T ′)C(T )C−1/2(T ′) may be used to
compute λn(T, T

′) and orthonormal vectors v̂(n)(T, T ′) that are related
to the v(n)(T, T ′) through

v̂
(n)
i (T, T ′) =

∑
j

[C1/2(T ′)]ijv
(n)
j (T, T ′).

• Because the signal decreases exponentially with time separation, one
usually inverts C(T ′) for T ′ < T .

• Eq. (4.9) should be solved for several time extents. All other para-
meters have to be equal.

• Reference [85] proposes to extract the energy of state n by

meffa = a
T−T ′ ln

(
λn(T,T ′′)
λn(T ′,T ′′)

)
= aẼ(PS)

n + O(exp(−T∆Ẽ(PS)
n )), (4.10)

for T > T ′ > T ′′ and T ′′ fixed such that C(T ′′) has no noisy eigenvalues
close to zero. The symbol

a∆Ẽ(PS)
n = min

n6=m
|Ẽ(PS)

n a− Ẽ(PS)
m a|

is the distance of aẼ
(PS)
n to some other energy aẼ

(PS)
m . The practicality

in the Schrödinger functional is discussed in the chapter on data ana-
lysis.

The Variational Principle in the Schrödinger Functional

Some facts of the previous subsection need to be modified in the Schrödinger
functional. For instance, the vacuum state |0〉 is replaced by the boundary
state |i0〉, eq. (2.65),

|0〉 → |i0〉 = c0|E(0)
0 〉+ c1|E(0)

1 〉+ ... (4.11)



4.3 The Variational Principle in Practice 47

In the Schrödinger functional, one simulates the correlation matrix

Cij(T ) = f1(T, ωi, ωj) = C̃ij(T )Z−1(T ),

as given by eq. (2.75). Different time arguments refer to different statistically
independent simulations of the correlation matrix. All facts mentioned in
the general case of the variational principle apply to C̃(T ) but not to the
directly accessible quantity C(T ). The latter involves an unknown scalar time-
dependent function – the partition function Z(T ). It modifies the generalised
eigenvalues

λ(T, T ′) = λ̃(T, T ′) · Z(T ′)
Z(T )

> λ̃(T, T ′), (4.12)

with the consequence that the meson energies are systematically shifted down-
wards due to excited vacuum states. The eigenvectors, however, remain un-
changed by this scalar factor.

4.3 The Variational Principle in Practice

A recipe to reliably solve the generalised eigenvalue problem, eq. (4.9), is
proposed in [89] and well-described in [88]:

1. symmetrisation of the correlation matrices C(T ) and C(T ′),

2. diagonalisation of C(T ′),

C(T ′)bi = µibi, µ0 ≥ ... ≥ µNω−1, (4.13)

and projection of the correlation matrices to the space of eigenvectors
corresponding to the M highest eigenvalues1,

CM
ij (t) = 〈bi, C(t)bj〉, i, j = 0...M − 1, t = T ′, T. (4.14)

Since correlators of the operator basis may not be statistically precise
enough on the Monte-Carlo sample with finite statistics, small or even
negative eigenvalues with large statistical errors may appear. They
introduce undesired numerical instabilities. To avoid them, one has to
choose the subspace of dimension M ≤ Nω appropriately.2 The final

1Eigenvalues that are close to zero, for instance within two standard deviations, as well
as negative or complex ones have to be projected away.

2One should be aware that one therefore discards noisy linear combinations of operators
rather than individual operators. That keeps physical information from all operators.
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result should not depend on the choice of M . This has to be checked
afterwards.

3. solving of the generalised eigenvalue problem, eq. (4.9), but with cor-
relation matrices CM(T ) and CM(T ′) in the truncated basis. This
yields vectors v(n)(T, T ′) and eigenvalues λn(T, T

′) for n = 0...M − 1,
M ≤ Nω. For the extraction of glueball masses [88], the problem is
reported to be still too sensitive to statistical fluctuations. There it is
proposed to restrict the problem to a more stable subspace, K ≤M ,

CK
ij (t) = 〈v(i), CM

ij (t)v(j)〉, i, j = 0...K − 1, t = T ′, T. (4.15)

4. fit of all correlation matrices CK
ij (t) according to the expected functional

behaviour. This yields the energies aẼ
(PS)
m and the overlap amplitudes

ψ
(m)
i for the ’optimal operator’ with eigenstate |E(PS)

m 〉.

Apart from the last step, this proposal has been implemented in this work.
A direct comparison of effective masses, eq. (4.10), is not reliable because
the factor Z−1(T ) in eq. (2.75) changes the effective eigenvalues, eq. (4.12),
from which the masses are extracted. So it is difficult to justify which pair
of (T ′/a, T/a) values delivers weights v(n) to obtain a satisfying suppression
of contributions from m 6= n energy eigenstates.
One way to assess the quality of v(n) = (α

(n)
1 , ..., α

(n)
Nω

) consists in applying

eq. (4.1) to build up ω
(n)
opt and the computation of the effective pseudoscalar

mass meff(x0, ω
(n)
opt )a for correlators fA, fP and the effective pseudoscalar de-

cay constant aFeff(x0, ω
(n)
opt ). An early and long plateau region in x0 for all

quantities is desirable.3

The variational principle should be applied for each β−value since the com-
ponents of the solution vectors may have relevant intrinsic O(a)−effects.

4.4 The Program Implementation

This chapter deals with technical details of the simulations. The implementa-
tion of correlation functions fA, f1 etc. in terms of quark two-point functions
is described. Compared to the standard ALPHA case with no wave function,

3The check with several observables avoids the case that cancellations among excited
state contributions show up.
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the ’naive’ implementation with smeared quark sources at the boundaries is
shown to increase the numerical effort considerably. But there are possibili-
ties to reduce the effort.

4.4.1 General Remarks

Numerical simulations in the quenched approximation have been carried out
on the APEmille parallel computer; very early stages of this work on its pre-
decessor APE-100. Random number generation is described in [90].
Hybrid Overrelaxation (HOR) is used for updating. It is a local algorithm
and numerically inexpensive. It consists of some nOR overrelaxation steps
followed by heatbath updates. The overrelaxation update [91] is known to
effectively decorrelate successive configurations but is not ergodic. For that
reason, ergodic heatbath steps [92] are necessary. In practice, one heat-
bath step follows nOR overrelaxation updates, where the number of the latter
should be chosen such that autocorrelations will be small.
Fermionic correlators may be expressed by quark two-point functions as de-
rived in section B.4. To obtain the propagator, the Dirac equation has to be
solved, section B.1. This is done by the BiCGstab solver with SSOR pre-
conditioning [93, 94].
The action is always O(a) improved. Non-perturbatively obtained values for
improvement coefficients are used where possible.
Existing code with a non-trivial hydrogen-like wave function in the static
case was the basis. This version has first been extended to several wave
functions and partially optimised for the APEmille.4 After that, smearing of
light quark boundary fields has been implemented.

4.4.2 Propagators and Correlation Functions

This section will give explicit expressions for correlation functions in terms of
quark propagators. To keep this section concise, the derivation of the quark
propagator, its properties and the form of fA as well as f1 in terms of quark
two-point functions may be found in appendix B. Important results of the
latter are given here where appropriate.

4Apart from more memory and computational power, this machine provides far more
registers and nice features such as complex conjugation during loading data.
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Eqs. (2.53) and (2.57) for fA and f1 may be expressed in terms of quark
propagators that are defined in eqs. (B.22) and (B.27),

fA(x0, ω) = − a9

2L3

∑
x,y,z

〈Tr′
(
Sj(x, z)† γ0S

i(x,y)ω(y − z)
)
〉G, (4.16)

f1(ω, ω
′) = a12

2L6

∑
y,z,u,v

〈Tr′
(
SjT (u, z)†SiT (v,y)ω(y − z)ω′(v − u)∗

)
〉G. (4.17)

The trace extends over Dirac and SU(3) colour but not over flavour indices
i, j. The notation 〈...〉G means that only the gauge part of the action is used
to compute the expectation value. One realises in the formulae above that
quark propagators are needed from all points at the bottom to all points
with x0 > 0. In the case of a constant wave function, ωstd = 1, one may
significantly reduce the computational effort by a factor V3 = (L/a)3 because
the summations over y and z may be performed independently,

fA(x0, ωstd) ≡ fA(x0) = − 1
2V3

∑
x

〈Tr′
(
S
j
(x)† γ0S

i
(x)
)
〉G, (4.18)

S
i
(x) = a3

∑
y

Si(x,y). (4.19)

Thus, it remains to solve a single Dirac equation for each value of x, where

the propagator S
i
(x) is defined through

(DI +mi
0)S

i
(x) = a−1δx0,a c̃t U

†(x− a0̂, 0)P+. (4.20)

Thus, a constant wave function allows one to take advantage of translational
invariance in the boundary quark fields.5 One expects a sizeable reduction
of the statistical error of order

√
V3 compared to an ordinary point-to-point

quark propagator.
With similar arguments one may write f1 as

f1 = 1
2V 2

3
〈Tr′

(
(S

j

T )† S
i

T

)
〉G, S

i

T = a3
∑
x

c̃tP+U
†(x, 0)S

i
(x)|x0=T−a. (4.21)

For a general wave function ω, however, eqs. (4.18) and (4.21) unfortunately
do not apply. In order to avoid the computation of all point-to-point propa-
gators, one may think of

5This is the usual program implementation in the ALPHA collaboration.
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1. giving up one summation in eqs. (4.16) and (4.17),

2. introducing a stochastic estimator as demonstrated in [95].

Both proposals are briefly discussed here. Since point one may be regarded
as a special case of the stochastic estimator, the latter is discussed first. The
basic idea to sum independently in eqs. (4.16) and (4.17) is to introduce a
stochastic estimator for the delta function,

a−3δz,z′ = 〈σ(z)σ(z′)〉σ,
∑
z′

δz,z′ = 1, (4.22)

with a scalar field σ. It may be taken as a random Ising field at inverse
temperature β̂ = 0. As the Ising field and the gauge field are completely
decoupled the averages may be performed trivially, for instance by picking
one random Ising field per gauge field considered in the gauge field average.
One obtains for the correlators,

fA(x0, ω) = − a9

2L3

∑
x,y,z,z′

〈Tr′
(
Sj(x, z′)† δz,z′ γ0S

i(x,y)ω(y − z)
)
〉G

= − 1
2V3

∑
x

〈Tr′

([
a3
∑
z′

Sj(x, z′)†σ(z′)

]
γ0

[
a6
∑
y,z

Si(x,y)ω(y − z)σ(z)

])
〉Gσ.

The sums over z′ and y may be done independently. To keep notation short,
it is suitable to introduce new symbols that are defined through

(DI +mi
0)S

i
σ(x) = a−1δx0,a c̃tU

†(x− a0̂, 0)P+ σ(x), (4.23)

(DI +mi
0)S

i
ω,σ(x) = a6

∑
y,z

(DI +mi
0)S

i(x,y)ω(y − z)σ(z) (4.24)

= a−1δx0,a c̃tU
†(x− a0̂, 0)P+ · a3

∑
z

ω(x− z)σ(z).

The final result for fA is

fA(x0, ω) = − 1
2V3

∑
x

〈Tr′
(
Sjσ(x)

† γ0S
i
ω,σ(x)

)
〉Gσ. (4.25)

Thus, one needs to compute Nω + 1 propagators for a set of Nω non-trivial
wave functions. The term

a3
∑
z

ω(x− z)σ(z) (4.26)
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has a numerical effort proportional to V 2
3 = (L/a)6 and needs to be deter-

mined after each update of the Ising field.
The summations for f1, eq. (4.17), may be separated similarly. A compact
notation is obtained by the introduction of

SiT,σ(u) = a3
∑
z′

SiT (u, z′)σ(z′) = c̃tP+U
†(u, 0)Siσ(u)|u0=T−a, (4.27)

SiT,ω,σ(v) = a6
∑
y,z

SiT (v,y)ω(y − z)σ(z) = c̃tP+U
†(v, 0)Siω,σ(v)|v0=T−a. (4.28)

Then f1 may be written as

f1(ω, ω
′) = 1

2V 2
3

∑
u,v

〈Tr′
(
SjT,σ(u)† SiT,ω,σ(v)ω′(v − u)∗

)
〉Gσ. (4.29)

The computation of f1 amounts to ∝ V 2
3 operations and is therefore nume-

rically expensive.

Another way to reduce the computational effort of eqs. (4.16) and (4.17)
is to give up one summation. This corresponds to the case σ(x) = δx,0 in
the stochastic estimator. Here, the unsmeared propagator is always taken at
the origin z = 0 of the bottom of the Schrödinger functional. In this special
case, the numerically expensive term in eq. (4.26) needs to be computed
only once rather than after each update of the Ising spin field. This special
case is therefore numerically less expensive than the general case. Some more
comments are in order:

• the default implementation of many programs of the ALPHA collabora-
tion uses an independent summation over boundary quark fields. This
actually corresponds to using a constant wave function. Since other,
rather non-trivial, wave functions are not implemented there, the case
will be labelled by ’noWF’.

• in the static case one smears the static quark fields. This amounts
to computing Nω static quark propagators. For static-light correlation
functions, it is necessary to solve the Dirac equation for a point source.
The label is ’statWF’.

• In the relativistic case one needs to solve the Dirac equation Nω times
for the different wave functions and additionally for the point source,
therefore Nω + 1 times in total. This case is labelled by ’relWF’.
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Thus: the reduction of the number of propagators that are required to com-
pute the correlators, eqs. (4.16) and (4.17), is expected to be at the cost
of the statistical precision. Because of translational invariance, expectation
values have to be the same. The issue of statistical precision will be discussed
later in this chapter.

4.4.3 Details of used Wave Functions

So far, the wave functions have not been specified. Three types of them have
been used in this work: a localised, a constant and exponential ones6,

ωδ(r) = δr,0, (4.30)

ωstd(r) = 1, (4.31)

ω(r) = ω(r) = N−1 · rn exp(−r/rH), (4.32)

given here for the infinite volume. The second one, eq. (4.31), is the
’standard’ wave function. In the third case, there is a radial dependence,
r = |x−y|, upon the boundary quark fields. Eq. (4.32) is motivated from the
non-relativistic picture of heavy-light mesons that is similar to the hydrogen
atom. Wave functions of that kind were studied in the static approximation
very early, for instance in [78]. There, they had quite effective projection
properties.
In the present work, they have been used in the static approximation and
later also for light quarks. The parameter n is a non-negative integer value.
The case n = 0 corresponds to purely exponential functions. The parameter
rH is the Bohr radius. As an example, the values rH/r0 = const, where
rH/r0 = 0.1863, 0.3726, 0.7457, have been used in this work.
Hydrogen-like wave functions ω(r) are radially symmetric around 0. On a
finite lattice, eq. (4.32) is modified to

ω(x) = N−1 ·
∑
m∈ZZ3

e−|x−mL|/rH ·
(
|x−mL|

r0

)n
, (4.33)

where x runs over all lattice sites. The wave function gets L−periodic
through the sum. The prefactor N ensures

∑
x ω

2(x) = 1. The summa-
tion will be stopped in the program if the relative change in N is below a
certain value, say 10−3, between the current step and the previous one.

6The latter class will be referred to as hydrogen-like wave functions throughout this
work.



54 Chapter 4 Wave Functions

4.4.4 Program Tests

The following numerical tests have been successfully done:

• for any wave function used, the stochastic estimator is expected to
give the same averages within statistical errors as the case where one
summation in the correlators is given up...✓

• for a constant wave function ωstd one expects ’noWF’ and the stochastic
estimator to give statistically compatible results...✓

• correlators for the point-like source ωδ are to be obtained from a hydrogen-
like wave function in the limit rH → 0 for each fixed lattice spacing...✓

• for large time extents, extracted masses and decay constants from a
plateau in x0 should be compatible for any used wave function...✓

4.4.5 Performance and Scaling

The implementation of several wave functions implies the computation of
several quark propagators. Light quark propagators are numerically expen-
sive. So the static case has first been studied because static propagators are
just products of gauge fields and therefore numerically inexpensive. But re-
gardless of the relativistic or static case, the computation of the correlation
matrix will turn out to have a large numerical effort.
In this section, statistical precision and computational costs are compared
to the standard case ωstd = 1. Issues such as the quality of plateaux in the
effective pseudoscalar mass and decay constant are discussed in the chapter
on data analysis.

Comparison of Estimators

Both estimators of chapter 4.4.2 are now compared with respect to their
statistical errors for the same number of measurements. Table 4.1 shows
data of

f stat

A (T/4), f stat

A (T/2), f stat

1 and X stat(T/2) =
f stat
A (T/2)√

f stat
1

(4.34)

for some (L/a)3 × T/a lattices at β = 6.0, κ = 0.132, θ = 0, ω ∝ exp(−r/a)
and Nmeas = 800 measurements. O(a) improvement has been employed.
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lattice estimator f stat
A (T/4) f stat

A (T/2) f stat
1 Xstat(T/2)

63 × 6 stochastic -0.980(9) -0.1580(36) 0.285(12) -0.2958(19)
σ(x) = δx,0 -0.986(1) -0.1611(6) 0.297(3) -0.2952(12)

63 × 12 stochastic -0.1553(9) -0.0177(7) 0.0079(6) -0.200(7)
σ(x) = δx,0 -0.1560(3) -0.0184(3) 0.0089(4) -0.195(4)

123 × 12 stochastic -0.1247(9) -0.00942(17) 0.00254(15) -0.187(4)
σ(x) = δx,0 -0.1245(3) -0.00923(6) 0.00258(11) -0.182(4)

163 × 16 stochastic -3.772(20)E-4 -1.345(15)E-5 4.6(7)E-9 -0.198(15)
σ(x) = δx,0 -3.769(14)E-4 -1.355(14)E-5 5.5(9)E-9 -0.182(15)

163 × 32 stochastic -1.352(19)E-5 -3.96(39)E-8 -3(6)E-12 ?
σ(x) = δx,0 -1.325(13)E-5 -3.77(50)E-8 2.0(7)E-11 -8(2)E-3

Table 4.1: Comparison of the statistical errors for different estimators.

Obviously, data are statistically compatible. The estimator with one summa-
tion given up, σ(x) = δx,0, shows smaller statistical errors in the correlators
than the stochastic estimator, σ(x) = random. This especially applies for
small lattices, whereas statistical errors are about the same for large L/a,
except for f stat

1 on the largest lattice. As already pointed out, the first men-
tioned case, σ(x) = δx,0, is even numerically cheaper. For that reason, all
following simulations in this work have used it.
An application of the stochastic estimator to light quarks has been investi-
gated in [95]. It turns out, however, that the method is not as competitive
as conventional techniques there. This is another argument to disregard the
’noisy’ estimator, σ(x) = random, in the present work.

Compared to the standard case ωstd = 1, it still remains to investigate how
large the increase in variance for σ(x) = δx,0 is. Naively, one expects that the
standard case has a smaller error of order

√
V3. This could for instance be

investigated by setting the wave function explicitly to one everywhere and
using either translation invariance, case ’noWF’, or not, case σ(x) = δx,0.
The central values are expected to be the same within statistical errors due
to translational invariance. Table 4.2 shows results.
Thus, giving up translational invariance leads to an increase of the statistical
error of usually less than a factor two. This is exciting. The same observation
has been made in the relativistic case.
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lattice estimator f stat
A (T/4) f stat

A (T/2) f stat
1 X stat(T/2)

63 × 6 noWF -2.201(3) -0.932(4) 34.48(39) -0.15876(55)
σ(x) = δx,0 -2.198(7) -0.933(6) 34.59(43) -0.15865(66)

63 × 12 noWF -0.887(4) -0.1766(25) 1.130(46) -0.1661(23)
σ(x) = δx,0 -0.887(6) -0.1767(28) 1.113(53) -0.1674(29)

123 × 12 noWF -0.939(2) -0.1963(14) 5.88(17) -0.0809(8)
σ(x) = δx,0 -0.943(5) -0.1968(16) 6.10(20) -0.0797(12)

Table 4.2: Comparison of the statistical error with/out translational in-
variance. The same set of parameters is used.

Scaling with L/a

The dependence of the numerical effort for the Dirac inversion and the cor-
relation matrix on the number of lattice points is considered. In all cases,
(L/a)4 lattices are used at β = 6.2, θ = 0 and κ = 0.13490. The latter is
approximately the hopping parameter of the strange quark. All simulations
have been carried out on an APEmille board.7 The labels ’relWF’, ’statWF’
and ’noWF’ refer to different program versions and were introduced at the
end of chapter 4.4.2.

Dirac Inversion:
Table 4.3 shows how much time is taken to build up a complete quark pro-
pagator for the specified geometry. The given times include the computation
of the Sheikholeslami-Wohlert term, eq. (2.43). The total effort for the in-
version scales with (L/a)n, 4 < n < 5.

7It has a topology of 2× 2× 2 CPU nodes.
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L/a time [secs]
6 6
8 6

10 16
12 32
14 63
16 115

Table 4.3: Scaling of the time
[secs] to solve the Dirac equa-
tion on a (L/a)4 lattice on a
board, quenched case.

L/a relWF statWF noWF
6 2 1 1
8 4 2 1

10 11 3 1
12 27 7 1
14 63 15 1
16 135 32 1

Table 4.4: Total time in seconds to
build up a 2× 2 correlation matrix (as
given in column 2 & 3) as a function
of L/a on a board, quenched case.

The Correlation Matrix:
A large amount of execution time is taken for the computation of the cor-
relation matrix C(T ). For Nω = 2, times are listed in column 2 and 3 of
table 4.4. As expected the standard case, which is labelled by ’noWF’, is
the cheapest one. There, f1 does not need to be convoluted with non-trivial
wave functions and may be computed as a volume-independent product of
two boundary-boundary propagators, eq. (4.21). In all other cases, a scaling
with A·(L/a)6 is expected, eq. (4.29).8 From the numerical point of view, the
coefficient A depends on the size of the structures that are convoluted. For
static quarks, the propagator is an SU(3) matrix. For light quarks, however,
it is a 4-spinor with an SU(3) matrix in each component. Therefore, the
times should differ by a factor 4, at least for large values of L/a where terms
in O((L/a)3) may be neglected. This scaling behaviour is confirmed.

Scaling with the Number of Wave Functions

is investigated on a 124 lattice for κ = 0.13490, θ = 0 at β = 6.2 and a
variable number of wave functions. The static case is listed twice. This is
because in the optimised case, new features of the APEmille have been used.
But the extensive usage of register variables limits to simulate 4 wave func-
tions simultaneously. However, this is sufficient in most cases.

8This is because the boundary-to-boundary propagator depends on a spatial variable
and has to be multiplied with a spatially dependent wave function.
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Dirac Inversion:
In the static case, only one light quark propagator is needed. Thus only the
relativistic case needs to be discussed here. To build up correlation functions,
one has to compute Nω + 1 light quark propagators. Therefore, compared
to the standard ALPHA case, smearing of light quarks will increase the nu-
merical effort by a factor Nω + 1.

Computation of the Correlation Matrix:
Since f1 is an Nω × Nω−matrix, one expects a scaling of the effort propor-
tional to N2

ω. But the prefactor may differ in the cases considered. This can
be seen in table 4.5. The additional optimisation in the static case amounts
to about 15% gain in performance. Since the size of the propagator for light
quarks is four times larger than the static one, execution times for the former
are expected to be four times larger. This is indeed the case for Nω > 1,
where Nω-independent operations are almost negligible in expense.

Nω relWF statWFopt statWF
1 13 5 5
2 27 7 8
3 46 11 13
4 74 18 20
5 106 not avail. 29
6 147 not avail. 39

Table 4.5: Total time in seconds to build up the correlation matrix as a
function of Nω for L/a = 12 on a board.

4.4.6 A brief Remark on the Static Approximation

The choice whether the static propagator or the one of the light quark is
smeared has a crucial influence on the statistical precision of correlators.
This is illustrated here on a particular example. Figure 4.1 shows an ef-
fective energy plot for f stat

A (x0, ω) on a 243 × 36 lattice at β = 6.2, θ = 0
and κ = 0.13485 for the estimator with σ(x) = δx,0. About 300 measure-
ments have been taken. In both cases, the same hydrogen-like wave function
ω(r) ∝ re−r/rH , rH/a ≈ 2.75 has been used. The case where the light quark
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is smeared and not the static one is the blue curve. Statistical errors are
very large, even for small Euclidean times x0. This curve is expected to have
the same average as the red one which uses a smeared static propagator and
a local one for the light quark. This follows from translational invariance.
Starting from eqs. (B.23) and (B.25) for the definitions of light quark and
static quark propagators, one obtains for f stat

A , eq. (4.25),

f stat
A (x0, .ω) = − 1

2V3

∑
x
〈Tr′

(
Shσ(x)†γ0S

i
ω,σ(x)

)
〉Gσ

= − a12

2L3

∑
x
〈Tr′

(
(
∑
z′
Sh(x, z′)†σ(z′)) γ0

∑
y,z
Si(x,y)ω(y − z)σ(z)

)
〉Gσ

= − a9

2L3

∑
x
〈Tr′

(
(W (x)P+)†σ(x) γ0

∑
y,z
Si(x,y)ω(y − z)σ(z)

)
〉Gσ

= − a6

2L3

∑
x
〈Tr′

(
(W (x)P+)† γ0

∑
y
Si(x,y)ω(y − x)

)
〉G

= − a9

2L3

∑
x,z
〈Tr′

(
(W (x)P+

∑
y,z′

δx,z′ω(y − z′)σ(z′))† γ0S
i(x, z)σ(z)

)
〉Gσ

= − a12

2L3

∑
x
〈Tr′

(
(
∑
y,z′

Sh(x, z′)ω(y − z′)σ(z′))† γ0
∑
z
Si(x, z)σ(z)

)
〉Gσ

= − 1
2V3

∑
x
〈Tr′

(
Shω,σ(x)

†γ0S
i
σ(x)

)
〉Gσ.

Therefore, both expectation values are the same. In contrast to the blue
curve, the red one has much smaller statistical errors. For that reason, static-
light correlators are from now on meant to consist of a smeared static quark
propagator and a local propagator for the light quark.
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Figure 4.1: An effective energy plot from the static axial current on a 243×36
lattice at β = 6.2, θ = 0 and κ ≈ κs. Symbols are displaced horizontally for
clarity. The static quark is either smeared (red plusses) or not (blue stars).
Due to symmetry relations, the same average is expected. Obviously, this
fact does not need to hold for statistical errors.



Chapter 5

Alternative Extraction
Techniques

The variational principle, as introduced in the previous chapter, allows one
to extract information about the ground state and low-lying excitations. But
to obtain reliable information, it is essential to apply it to several pairs of
time extents (T, T ′), (T, T ′′), (T ′, T ′′) etc., where all other parameters are kept
fixed. It would be desirable to reduce the numerical effort. The alternative
methods introduced here only need one lattice.1 They allow to gain knowl-
edge about the ground state and the lowest excitation in the pseudoscalar as
well as vacuum channel.

5.1 Ground State Masses and Decay

Constants

Effective masses or decay constants themselves may be used to obtain an
early ground state dominance. For simplicity, the case with a pair of wave
functions is considered. Generalisations using a larger operator basis may be
done easily.

The spectral representation of correlators, as given in chapter 2.4.2, should
be kept in mind. Masses and decay constants are defined through eqs. (2.78)
and (2.90) with their spectral representations, eqs. (2.79) and (2.91), for

1With a usually large time extent T of a few fermi.
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large time extents. If one knew a ratio

Rij = d1(ωi)
d1(ωj)

, i, j = fix, (5.1)

for any two trial wave functions, one may find an optimal one for which the
contribution from the first excited meson state vanishes,

ωopt = ωi −Rijωj. (5.2)

The symbol Rij is the weight factor between both trial wave functions ωi and
ωj, eq. (4.1). Its determination is described here.

For two Euclidean times x0 = T1, y0 = T2, x0 6= y0 in the range of [T/4, T/2]
and fixed wave function ωi, the expression

meff(T1,ωi)a
meff(T2,ωi)a

− 1 =
aẼ

(PS)
0 +ηPS

A (ωi) sinh(a∆)e−T1∆+...

aẼ
(PS)
0 +ηPS

A (ωi) sinh(a∆)e−T2∆+...
− 1

= ηPS
A (ωi)

sinh(a∆)

aẼ
(PS)
0

(
e−T1∆ − e−T2∆

)
+ ...

(5.3)

is computed.2 Divided by the same expression but ωi replaced by another
wave function ωj one obtains kij = k(T1, T2, ωi, ωj),

kij =

meff(T1,ωi)a
meff(T2,ωi)a

−1

meff(T1,ωj)a

meff(T2,ωj)a
−1

=
ηPS

A (ωi)

ηPS
A (ωj)

+ ... = d1(ωi)/d0(ωi)
d1(ωj)/d0(ωj)

+ ..., (5.4)

where eq. (2.74) has been used. The quantity kij is a ratio of overlap coeffi-
cients. An estimate for kij may also be obtained by a combination of effective
decay constants,

kij =

Feff(T1,ωi)a
Feff(T2,ωi)a

−1

Feff(T1,ωj)a

Feff(T2,ωj)a
−1

=
ηPS

A (ωi)

ηPS
A (ωj)

+ ... = d1(ωi)/d0(ωi)
d1(ωj)/d0(ωj)

+ ..., (5.5)

which is completely analogous to eq. (5.4). Provided that there is ground
state dominance, one may extract

d0(ωi)
d0(ωj)

≈
√
f1(T,ωi,ωi)√
f1(T,ωj ,ωj)

(5.6)

2One may also take the effective mass from fP, and coefficients ηA change to ηP.
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from f1, or alternatively from fX ∈ {f I
A, fP} correlation functions,

d0(ωi)
d0(ωj)

≈ fX(x∗0,ωi)

fX(x∗0,ωj)
, x∗0 ≈ T/2 and fixed. (5.7)

The weight factor Rij is obtained by multiplying both expressions,

Rij = kij
d0(ωi)
d0(ωj)

≈ d1(ωi)
d1(ωj)

. (5.8)

A few comments are in order:

• Even in the case of only one wave function, eq. (5.4) may be applied.
A modified correlator (f I

A)′ may be found such that no contributions
from the first excited meson state appear. For that, one has to use two
distinct definitions of the effective mass instead of two distinct wave
functions. So meff defined through f I

A and fP could be used instead
of meff(ωi) and meff(ωj) for the same fixed correlator. In this case, eq.
(5.4) has to be changed as follows,

kij → kf I
AfP

=
(
meff(f I

A,T1)a

meff(f I
A,T2)a

− 1
)/(

meff(fP,T1)a
meff(fP,T2)a

− 1
)

= ηPS
A /ηPS

P + ...

=
〈E(0)

0 |A0|E(PS)
1 〉

〈E(0)
0 |A0|E(PS)

0 〉

/
〈E(0)

0 |P |E
(PS)
1 〉

〈E(0)
0 |P |E

(PS)
0 〉

+ ...

(5.9)

To compensate the undesired factor 〈E(0)
0 |P |E

(PS)
0 〉/〈E(0)

0 |A0|E(PS)
0 〉, one

has to replace eq. (5.6) by f I
A/fP in the region x∗0 ≈ T/2. Then, the

axial current correlator with an absent first excited meson contribution
is

(f I
A)′(x0) = f I

A(x0)−Rf I
AfP

fP(x0), Rf I
AfP

=
〈E(0)

0 |A0|E(PS)
1 〉

〈E(0)
0 |P |E

(PS)
1 〉

. (5.10)

Unlike in the case of different wave functions, the correlator f1 cannot
be improved in this sense. Therefore, only observables without f1 may
approach the ground state faster.

• The considerations of the previous point may be extended. The knowl-
egde of matrix elements between the vacuum and the first excited
pseudoscalar meson state is necessary. As an operator identity, the
PCAC relation holds up to O(a2) lattice artefacts in the clover im-
proved theory and gives for any wave function ω,

ηPS
A (ω)

ηPS
P (ω)

≈ mPS

mPS+∆
→ Rf I

AfP
=
〈E(PS)

0 |A0|E(PS)
1 〉

〈E(PS)
0 |P |E(PS)

1 〉
≈ mPS

mPS+∆

〈E(PS)
0 |A0|E(PS)

0 〉
〈E(PS)

0 |P |E(PS)
0 〉

.

(5.11)
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• The numerical behaviour of the different formulations for Rij requires
investigation. Some of these aspects are considered in the chapter on
data analysis.

5.2 The First Excited State

It is suitable to extend the notation for the effective mass,

ameff(x0, ωi, X) = 1
2
ln
(
fX(x0−a,ωi)
fX(x0+a,ωi)

)
, (5.12)

with an explicit reference to correlators fX ∈ {f I
A, fP} and wave functions.

The pseudoscalar gap may be extracted from a plateau of a local mass in x0,
where the latter is defined similarly to eq. (2.78),

a∆eff = 1
2
ln
[
meff(x0−a,ωi,X)a−meff(x0−a,ωj ,Y )a

meff(x0+a,ωi,X)a−meff(x0+a,ωj ,Y )a

]
. (5.13)

Written in terms of correlators one obtains

a∆eff = 1
2
ln

 ln

(
fX(x0−2a,ωi)
fY (x0−2a,ωj)

)
−ln

(
fX(x0,ωi)
fY (x0,ωj)

)
ln

(
fX(x0,ωi)
fY (x0,ωj)

)
−ln

(
fX(x0+2a,ωi)
fY (x0+2a,ωj)

)
 . (5.14)

Leading corrections to ground state dominance are expected from the glueball
with mass mG and from the two lowest meson excitations above the ground
state with gaps ∆ < ∆∗ relative to mPS. The expression

ln
(
fX(x0,ωi)
fY (x0,ωj)

)
= ln

(
d0(ωi)〈E

(0)
0 |X|E

(PS)
0 〉

d0(ωj)〈E
(0)
0 |Y |E

(PS)
0 〉

)
+

ln
(

1+ηPS
X (ωi)e

−x0∆+η∗PS
X (ωi)e

−x0∆∗
+η0

Xe
−(T−x0)mG+...

1+ηPS
Y (ωj)e−x0∆+η∗PS

Y (ωj)e−x0∆∗
+η0

Y e
−(T−x0)mG+...

)
= ln

(
d0(ωi)〈E

(0)
0 |X|E

(PS)
0 〉

d0(ωj)〈E
(0)
0 |Y |E

(PS)
0 〉

)
+(

1 + η̂∗e−x0(∆∗−∆) + η̂0e−TmGex0(mG+∆) + ...
)
η̂e−x0∆,

η̂ = [ηPS
X (ωi)− ηPS

Y (ωj)], η̂∗ =
[η∗PS

X (ωi)−η∗PS
Y (ωj)]

[ηPS
X (ωi)−ηPS

Y (ωj)]
, η̂0 =

[η0
X−η

0
Y ]

[ηPS
X (ωi)−ηPS

Y (ωj)]

is likewise computed for the other time separations and inserted in eq. (5.14),

a∆eff = a∆ + A∆∗ η̂∗ e−x0(∆∗−∆) + A0η̂
0 e−TmG ex0(mG+∆) + ..., (5.15)
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with amplitudes

A∆∗ = sinh(a∆∗)
sinh(a∆)

sinh(a(∆∗ −∆)),

A0 = sinh(amG)
sinh(a∆)

sinh(a(mG + ∆)).

The contribution of the meson ground state drops out. For fX = fY , vacuum
excitations are cancelled because η0

X = η0
Y implies η̂0 = 0 in eq. (5.15).

5.3 The Mass of the 0++−Glueball

The method to determine the mass gap between the meson ground state and
the first excited one for x0 < T/2 may be applied in the region x0 > T/2 to
extract the lowest-lying glueball with mass mG,

amG,eff = −1
2
ln

(
fX(x0−2a,ωi)
fY (x0−2a,ωj)

)
−

(
fX(x0,ωi)
fY (x0,ωj)

)
(
fX(x0,ωi)
fY (x0,ωj)

)
−

(
fX(x0+2a,ωi)
fY (x0+2a,ωj)

)
 , (5.16)

where X 6= Y is required since otherwise vacuum corrections will cancel each
other out. The term fX/fY may also be replaced by its logarithm. Contri-
butions from excited mesons are expected to be negligible for x0 ≥ T/2 if T
has been chosen sufficiently large. Furthermore, those from the 0++−glueball
and the state above (labelled by a star) have to be taken into account,

fX(x0,ωi)
fY (x0,ωj)

=
d0(ωi)〈E

(0)
0 |X|E

(PS)
0 〉

d0(ωj)〈E
(0)
0 |Y |E

(PS)
0 〉
× 1+ηPS

X (ωi)e
−x0∆+η0

Xe
−(T−x0)mG+η0∗

X e−(T−x0)m∗
G+...

1+ηPS
Y (ωj)e−x0∆+η0

Y e
−(T−x0)mG+η0∗

Y e
−(T−x0)m∗

G
+... .

The spectral representation of mG,eff for a� T − x0 ≤ T/2 is

amG,eff = amG + A∆(η̂0)−1 eTmGe−x0(∆+mG) + A0∗ η̂
0∗e−(T−x0)(m∗

G−mG) + ...,

η̂0 =
[η0

X−η
0
Y ]

[ηPS
X (ωi)−ηPS

Y (ωj)]
, η̂0∗ =

[η0∗
X −η

0∗
Y ]

[η0
X−η

0
Y ]
,

with amplitudes

A∆ = sinh(a∆)
sinh(amG)

sinh(a(∆ +mG)),

A0∗ =
sinh(am∗

G)

sinh(amG)
sinh(a(m∗G −mG)).
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Chapter 6

Numerical Results

The techniques which were described in the preceding chapters are applied
to the data and discussed with respect to their practicality. They are tools
to extract the decay constant of the Bs meson in the static approximation.
A continuum estimate for r0(E−Γstat) is also provided. This quantity is used
in the computation of the RGI-quark mass Mb, as proposed in refs. [75, 76].
Also the mass gap to the lowest radial excitation above the ground state is
investigated.
For the light quarkonium system, the mass and decay constant of the ground
state as well as the mass of the first excited state are discussed.
In section 6.7, the results are summarised and compared with those from
other references.

All simulations have been carried out in the quenched approximation. Cor-
relators have been O(a)−improved where necessary. The spatial extent of
the boxes is approximately L = 1.5 fm, the time extent T ranges up to 3L/2,
as summarised in tables C.2 and C.3 in the appendix. Results are obtained
with a basis of Nω = 4 hydrogen-like wave functions, table C.1. The dimen-
sionless ratio rH/r0 is kept constant.
The mass of the light quark has usually been set the one of the strange quark.
The way how to obtain corresponding hopping parameters κ is described in
the next section.
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6.1 The Choice of the light Quark Mass

The determination of the subtracted quark mass (or hopping parameter)
for the strange quark can be done following refs. [51, 96]. The running of
the quark mass is computed non-perturbatively in the first reference. In
the O(a) improved lattice theory, the relation between the renormalisation
group invariant (RGI-) quark mass M and the bare current quark mass m,
eq. (2.99), is

M = ZM(g0)m(g0) + O(a2). (6.1)

The symbol ZM relates both types of masses to each other. One may find
ZM in ref. [51], table 2, for the relevant range of β−values, An interpolation
formula for the range 6.0 ≤ β ≤ 6.5 is also provided,

ZM(β = 6/g2
0) = 1.752 + 0.321 (β − 6)− 0.220 (β − 6)2. (6.2)

This parametrisation yields ZM with an accuracy of about 1.1%. However,
this determination neglects an O(a) contribution ∝ (bA − bP) amq to ZM.
Since bA − bP is small in the relevant range of β [50], one may neglect the
term (bA− bP) amq for small quark masses. The next step is to use the result

r0(Ms + M̂) = 0.362(12), Ms/M̂ = 24.4± 1.5, (6.3)

from ref. [96] and r0/a from ref. [83] to solve for msa in the range of β−values
one is interested in. Here, Ms shall denote the RGI strange quark mass and
M̂ is the averaged RGI mass of the u− and d−quark. The given ratio relies
on chiral perturbation theory [97].
Finally, the desired hopping parameter κs may be obtained through a linear
interpolation of bare current quark masses m in κ. For this work, those in
table 1 of ref. [96] have been used.

6.2 The Variational Principle

This section discusses eigenvalues (masses) and -vectors (weights) that are
obtained in realising the variational principle, eq. (4.3), by the generalised
eigenvalue problem. For that, eq. (4.9) is solved for several time extents
(T ′, T ) while keeping the other parameters fixed.
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6.2.1 The Relativistic Case

Effective Masses

Effective masses of the ground and first excited state are listed in tables
C.4–C.6 for β = 6.0 and in C.10 for β = 6.2. They have been extracted
in two different ways: (1) directly from the generalised eigenvalue problem,
eq. (4.9), and (2) using the Lüscher-Wolff proposal as given by eq. (4.10).
Formally, option (1) may be obtained from (2) by setting T ′′ = ∞. Results
of the gap in the pseudoscalar channel may be found in the tables as well.
For option (1) it may be defined through

a∆eff = − a
T−T ′ ln (λ1(T, T

′)/λ0(T, T
′)) , (6.4)

for option (2) as the difference of extracted LW-masses between the first ex-
cited and the ground state.

The Ground State Mass, β = 6.0
From the tables C.4–C.6 and figure 6.1 one can read off a complicated non-
monotonic behaviour of the effective mass from f1 in the Euclidean time
extents of the Schrödinger functional. This is due to contributions of excited
states in the meson as well as vacuum channel.
In figure 6.1, the effective mass is shown as a function of T . The separations
T − T ′ = 2a, 4a, 6a, 8a and T ′′ = 3a, 6a, 8a, 10a are kept fixed. First, the case
T − T ′ = 2a is discussed. The typical situation is: (1) for small time extents,
T/a ∼ 10, the effective mass comes from below, increases, and (2) forms a
more or less pronounced peak around T/a = 15, and (3) the approach to the
asymptotic value mPSa ≈ 0.340 from above for large times T/a. (4) These
effects are particularly pronounced for very small values of T ′′/a.
Point (1) can be understood by means of eqs. (2.75) and (2.82). Contri-
butions from excited mesons in the numerator of f1 and those with vacuum
quantum numbers in f1’s denominator have opposite sign to leading order
in T ′. For small Euclidean times, vacuum excitations push the effective
ground state mass down. And because of their large mass they are strongly
suppressed as T ′ increases. Points (2) and (4) indicate that at T ≈ 1.5 fm
excited mesons still give sizeable corrections to the asymptotics. The height
of the peak decreases for increasing values of T ′′. Statement (3) reflects what
one naively expects from the variational principle: approaching of the true
ground state mass from above. Qualitatively, the statements (1) to (4) also
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hold for T − T ′ = 4a, etc. But even for small values of T ′′, the peaks get
less pronounced. The reason is that the factor 1/(T − T ′) in eq. (2.82) also
suppresses excited state contributions.

Summary:
The extraction of the pseudoscalar ground state mass by means of the varia-
tional principle with f1−correlation matrices is possible. A safe extraction
requires T ′ ≥ 18a, T − T ′ � a (in practice 4a or more). The subspace di-
mension M , eq. (4.14), is two for T/a ≤ 20, and one otherwise. Extracted
masses are stable under changing M = 2...4 for T/a ≤ 20 and for all M
otherwise.
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Figure 6.1: Effective pseudoscalar ground state mass from the variational
principle, relativistic case, β = 6.0, κ = κs, in comparison to the extracted
mass mPS(f

I
A)a = 0.340(3) (dotted lines).
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The Ground State Mass, β = 6.2
This case is depicted in figure 6.2. Because there are runs for only four
different time extents, determinations of meff directly from the GEVP have
been included. The situation looks different from the one in figure 6.1. Since
all points at β = 6.2 yield compatible results one may conclude that the
asymptotic value mPSa = 0.250(5) is already reached at T ′/a = 15. The
complicated non-monotonic behaviour of effective masses for time extents
∼ 1 fm at β = 6.0 could be due to large discretisation effects of excitations
close to the cutoff scale.
To extract the masses, one has used subspace dimension M = 2, eq. (4.14),
except for the case (no T ′′, T ′ = 24a, T = 36a). Again, ground state masses
are stable under changes of M .
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Figure 6.2: Effective mass of the pseudoscalar ground state from the vari-
ational principle, relativistic case, β = 6.2, κ ≈ κs, in comparison to the
extracted mass mPS(f

I
A)a = 0.250(5) (dotted lines).

The First excited State Mass, β = 6.0
The case for the first excited meson mass, figure 6.3, also shows a non-
monotonic approach to the asymptotics from below. Data are collected in ta-
bles C.4–C.6 and may be compared with the extracted value m∗PSa = 0.83(5)
from a plateau in the effective mass of the axial current (or pseudoscalar
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density) for a suitable choice of ω
(1)
opt . They agree well within their statistical

errors. But for statistical reasons one is limited to use small time extents in
the GEVP. Since excited meson contributions in eq. (2.82) are always po-
sitive, one may conclude that contributions of vacuum excitations are sizeable
at T ′/a ∼ 10. One has used subspace dimension M = 2. A weak variation
of masses with M has been observed.
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Figure 6.3: Effective mass of the first excited pseudoscalar state from the
variational principle, relativistic case, β = 6.0, κ = κs, in comparison to the
result m∗PSa = 0.83(5) from f I

A or fP (dotted lines).

The First excited State Mass, β = 6.2
A reliable extraction ofm∗PSa for these few (and large) time extents is not pos-
sible. On the smallest lattices (withM = 2), one may extractm∗PSa = 0.63(3)
which fits to the determination via f I

A or fP. For the other combinations,
the central value decreases while statistical errors grow. There are strong
variations in M .
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The First pseudoscalar Mass Gap, β = 6.0
In contrast to pseudoscalar masses from the variational principle, the mass
gap ∆, eq. (6.4), has no contaminations from vacuum excitations. Contri-
butions at time extents (T ′, T ) are

a∆eff = a∆ + a
T−T ′

[
d21(ω)

d20(ω)
(exp(−∆T ′)− exp(−∆T ))− (6.5)

d22(ω̂)

d21(ω̂)
(exp(−∆∗T ′)− exp(−∆∗T ))

]
+ ...

This follows from eq. (2.82) and the corresponding one for the first ex-
cited state mass. Additional leading corrections appear when using the LW-
proposal, eq. (4.10). The case for β = 6.0 is shown in figure 6.4. At small
time extents T ′, excited states with masses larger than m∗PS give sizeable
contributions and push the gap downwards. The positive contribution pro-
portional to the gap itself decays most slowly, eq. (6.5), and the asymptotic
value a∆ = 0.50(10) is approached at T/a = 18. The dotted lines are error
bands for a∆ = 0.55(5) which stem from an alternative extraction of the gap
in section 6.4.

The First pseudoscalar Mass Gap, β = 6.2
With present data, one obtains a plot as in figure 6.5. Horizontal lines give
a∆ = 0.41(5) which is obtained in section 6.4.

Eigenvectors

have been computed following the recipe given in section 4.3. They are
listed in tables C.7–C.11 in the appendix. The set of eigenvectors of the
lowest states of C(T ′) are denoted by B. Projecting out negative eigenvalues
or those compatible with zero determines the subspace dimension M . The
generalised eigenvectors in the subspace of dimension M will be given in
terms of the basis B. One usually works with M = 2.
The components of the eigenvectors are relatively stable for intermediate to
large (T ′, T ). But it is not at all understood why the Mth component gets
pronounced. Also, eigenvectors of the lowest states form a cone that gets
very narrow for large time arguments (T ′, T ). And statistical errors may not
always allow to safely determine the vectors v(0) and v(1). This behaviour
may indicate that the chosen basis of trial wave functions is not a very good
one to describe the light-light system. This may not be very surprising since
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Figure 6.4: Effective pseudoscalar mass gap from the variational principle,
relativistic case, β = 6.0, κ = κs. Error bands: a∆ = 0.55(5) (text).

15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T/a

a*
∆ ef

f(T
,T

’)

effective mass gap

no T’’
T’’=15a
T’’=20a

T’=15a 

T’=15a 

T’=20a 

T’=15a 

T’=20a 

Figure 6.5: Effective pseudoscalar mass gap from the variational principle,
relativistic case, β = 6.2, κ ≈ κs. Error bands: a∆ = 0.41(5) (text).



6.2 The Variational Principle 75

the non-relativistic picture of an hydrogen atom does not apply to light-light
pseudoscalars. Best results are obtained for T ≥ T ′ = 10a at β = 6.0 and
T ≥ T ′ = 15a at β = 6.2. One may understand that by means of an effective
mass plot, such as figure 6.1. The second and any higher excited state has
practically died out at these Euclidean time extents of roughly 1 fm, and one
may get v for the lowest two states well. Increasing T ′ will exponentially
suppress the signal of the first excited state relative to the ground state.
Therefore, the extraction of v(1) gets more and more unreliable for large T ′.

6.2.2 The Static Case

Effective Energies

A severe problem in the static approximation (with Eichten-Hill action for
the static quark) is the exponentially deteriorating quality of the signal in
correlation functions. With the current data sets and statistical precision,
one can only discuss the results of the variational principle at β = 6.0.

The Ground State Energy, β = 6.0
Data from table C.12 (for M = 2; stable under changes of M) is dis-
cussed here and plotted in figure 6.6. The dotted horizontal lines estimate
the corridor of the ground state energy as obtained from Eeff(f

stat
A ) with an

O(a)−improved static axial current. Effective energies in figure 6.6 increase
monotonically, and the asymptotic value Eeff(f

stat
A ) is overshot. This some-

how reminds one of observation (1) in the relativistic case. This could be an
indication that vacuum corrections are still present at T ′/a = 14 (considering
the case T − T ′ = 2a). Increasing the difference between T and T ′ decreases
the overshot but cannot eliminate it. Therefore, one is not able to safely
extract the ground state binding energy from the GEVP alone.

The First excited State Energy, β = 6.0
The binding energy of the first excited state (M = 2) also shows large cor-
rections to the asymptotics. From the effective energy plot of the static axial
current one obtains aE∗ = 0.88(3), as drawn in with dotted lines in figure
6.7. This estimate is indeed reached at T/a ∼ 15. So it seems to be easier
to obtain an estimate for the first excited state energy out of the variational
principle than for the ground state. Extracted energies vary weakly in M .
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Figure 6.6: Effective ground state binding energy from the variational prin-
ciple, static case, β = 6.0, κ = κs.

5 10 15
0.6

0.8

1

T/a

a*
E

ef
f(T

,T
’)

effective first exc. state energy, T−T’=2

no T’’
T’’=6a
T’’=8a
T’’=10a

5 10 15
0.6

0.8

1

T/a

a*
E

ef
f(T

,T
’)

effective first exc. state energy, T−T’=4

no T’’
T’’=6a
T’’=8a
T’’=10a

5 10 15
0.6

0.8

1

T/a

a*
E

ef
f(T

,T
’)

effective first exc. state energy, T−T’=6

no T’’
T’’=6a
T’’=8a

5 10 15
0.6

0.8

1

T/a

a*
E

ef
f(T

,T
’)

effective first exc. state energy, T−T’=8

no T’’
T’’=6a

Figure 6.7: Effective binding energy of the first excited state, obtained from
the variational principle, static case, β = 6.0, κ = κs.
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The Energy Gap, β = 6.0
Figure 6.8 shows the gap as a function of T . The gap decreases monotoni-
cally to an estimated value as small as 0.2 or 0.3 (given in lattice units). No
plateau in T can be seen. But the smallness of the gap may explain the late
on-set of ground state dominance.
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Figure 6.8: Effective energy gap from the variational principle, static case,
β = 6.0, κ = κs.

Eigenvectors

In the static-light case, one expects a physical picture that is similar to the
hydrogen atom. Therefore, wave functions of that kind should be a suitable
choice. The generalised eigenvalue problem has been applied and the vectors
are collected in table C.13. Good vectors can be obtained at T ′ = 10a and
T = 12a, 14a.
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6.3 Extraction of Masses with optimal Wave

Functions

Assuming that the generalised eigenvalue problem provides ground and first
excited state vectors v(0) and v(1), one may use them to build up ’optimal’
correlators, eq. (4.1), that have a large overlap with the ground and first
excited state, respectively. This section considers the quality of extracted
v(n) in the sense how well the mass of the nth energy eigenstate appears as
a constant in the effective mass plot of the (static) axial current correlator.

6.3.1 The Relativistic Case

Figure 6.9 shows effective masses from f I
A for n = 0, 1 at β = 6.0 and two

sets of optimal wave functions from the variational principle with T ′ = 10a
and some T > T ′. For the ground state, they are given by

v(0) = (−0.7694,−0.5161, 0.1651, 0.3383), (6.6)

v(0)′ = (−0.7894,−0.4933, 0.1909, 0.3113),

and for the first excited state by

v(1) = (0.5688,−0.3523,−0.5142, 0.5366), (6.7)

v(1)′ = (0.7624,−0.0387,−0.5709, 0.3024).

The v(0)’s give a long plateau of the effective mass in x0. Different vectors will
have different excited state contributions, but plateau values are expected to
be independent of the wave functions. This can be confirmed. The plateau
region of the ground state mass, which yields mPSa = 0.340(3), ranges be-
tween [6a, 13a] with smearing. Compared to the standard case ωstd, the gain
is about four lattice spacings. Excited mesons give sizeable contributions
for smaller Euclidean times, and vacuum excitations for larger ones.1 In
contrast to the first kind of contributions, the latter cannot be minimised
through hadron wave functions.
The plateau region of the first excited state is stable but very short. It gives
m∗PSa = 0.83(5), and therefore a large gap a∆ = 0.49(5) between the first ex-
cited and the ground state. One may similarly proceed with data for β = 6.2.

1As a rule of thumb, the influence of excited mesons is negligible after 1 fm (without
smearing) from the bottom of the box and vacuum excitations about 1 fm from the top.
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The following vectors, for which the GEVP has been solved at T ′ = 15a and
some T > T ′, give flat effective mass plots,

v(0) = (0.7407, 0.5831,−0.0082,−0.3336), (6.8)

v(1) = (0.6209,−0.1631,−0.6060, 0.4698).

Finally, one may plot r0meff versus x0/r0 (or (T − x0)/r0), as done in figure
6.10. The Sommer scale r0 is computed in [83] and makes the quantities
of interest dimensionless. The physical value of r0 is approximately 0.5 fm.
Scaling can be observed if the mass of the light quark was chosen correctly.
Concerning the effective mass of the ground state, one observes scaling vi-
olations for Euclidean time separations x0 < r0 and much stronger ones for
x0 ≥ 3r0. To large extent, these violations at given times come from not ex-
actly scaled box extents, as this can be seen by changing x0/r0 to (T−x0)/r0.
Data from figure 6.10 are summarised in table 6.1. The pseudoscalar gap be-
tween both states is estimated by the mass difference.

β r0mPS r0m
∗
PS r0∆

6.0 1.823(8) 4.40(15) 2.58(15)
6.2 1.834(13) 4.98(13) 3.15(13)

Table 6.1: Pseudoscalar masses for the light-light case taken at x0 ≈ 2r0
(ground state) and at x0 ≈ r0 for the first excited one.

6.3.2 The Static Case

As mentioned in the introduction of chapter 4, it is very difficult to extract
the ground state energy in the static approximation and smearing techniques
must therefore be applied. The signal decreases exponentially and is typically
very noisy at x0 ≥ 1.5 fm. Without smearing, the on-set of ground state
dominance is in the same range of x0. This is shown in figure 6.11.
Taking two different vectors for the ground and first excited state, n = 0, 1,
v(n) = (α

(n)
1 , ..., α

(n)
g ), and building up ’optimal’ correlators, eq. (4.1), one

obtains estimates for the effective energy, as shown in figure 6.12. Two
choices of optimal wave functions for the ground state are

v(0) = (0.2103, 0.4400, 0.5969, 0.6371), (6.9)

v(0)′ = (0.3927, 0.5301, 0.5222, 0.5404),
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and for the first excited state,

v(1) = (−0.2342,−0.6905,−0.0417, 0.6831), (6.10)

v(1)′ = (0.0137,−0.6909,−0.1721, 0.7020).

For the best choice of the ground state vector, the effective energy has a
plateau in x0 = 7a...13a. And for the first excited state there is one for
x0 = 8a...11a. This allows to extract binding energies aE = 0.630(6) and
aE∗ = 0.88(3) at β = 6.0. Obviously, the influence of the second excited
meson state is sizeable up to x0 ≈ 8a. This is an indication for a rather small
mass gap between the first and the second excited state.
Scaling is considered and shown in figure 6.13. For static data, there is a run
with a third value, β = 6.45, available. Because of the flatness of effective
binding energies in x0 for v(0) (ground state) and v(1)′ (the first excited state),
they have been taken at all β−values.
In order to take the continuum limit of the binding energies, one has to
subtract the divergent self-energy of the static quark. This is done following
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the strategy in refs. [75, 76]. One computes

r0∆Ea = r0(E − Γstat(L2)), Γstat(L) = −∂0+∂∗0
2

ln f stat

A (x0)|x0=L/2 (6.11)

at L2 ≈ 0.8 fm. The value for Γstat has been taken from ref. [64]. Results
are summarised in table 6.2 and plotted in figure 6.13. It shows a rough
scaling of the plateau for the ground state that starts at x0 ≈ 1.2r0. For
β = 6.45, small deviations of data at x0 ≈ 1.5r0 are attributed to poor
statistical precision. This situation should be improved in future studies.
Also, a faster approach to the plateau region at β > 6.0 may be achieved
through solving the variational principle at these particular β’s. The scaling
of the first excited state shows sizeable violations between β = 6.45 and the
other β−values.
To obtain the continuum limit, figure 6.13, one could make fit ansätze of
the following form: fit to a constant (fit A) or one to a constant plus a term
quadratic in a/r0 (fit B). This has been done at x0 ≈ 1.3r0 (columns 2 and 3)
and x0 ≈ 1.8r0 (columns 4 and 5). Both ansätze agree within errors for the
ground state energy. To get a reasonable result for the first excitation, one
has to use fit A or B for the smaller time extent, where one has to exclude
the point at β = 6.0 for fit A. Data are very noisy at x0 ≈ 1.8r0.

β r0∆Ea r0∆E
∗
a r0∆Ea r0∆E

∗
a

6.0 1.16(1) 2.54(2) 1.17(2) 2.5(1)
6.2 1.18(2) 2.75(11) 1.15(7) 2.4(4)
6.45 1.14(4) 2.77(21) 1.43(19) 4(3)
CL, fit A 1.17(1) 2.75(11) 1.17(2) 2.54(9)
CL, fit B 1.17(4) 2.93(18) 1.22(13) 2.4(9)

Table 6.2: Results for the static-light case, eq. (6.11), taken at x0 ≈ 1.3r0
(resp. x0 ≈ 1.8r0), Γstat(L2) = 0.410024−0.131595 (β−6) for 6.0 ≤ β ≤ 6.45.

With L0/r0 = 1.436/4 from ref. [51] multiplied by the continuum result
r0∆Ea = 1.17(4) from table 6.2, one yields a more precise result than given
in ref. [76],

L0∆Ea = 0.420(14).

One obtains an estimate for the energy gap from table 6.2,

r0∆ = r0∆E
∗
a − r0∆Ea = 2.75(11)− 1.17(4) = 1.58(12).
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6.3.3 An Alternative Way without applying the
Variational Principle

The numerical treatment of the proposal in section 5.1 is considered here. It
allows to improve the correlators in the sense that a faster approach to ground
state dominance is obtained on a single lattice without solving the variational
principle for several lattice sizes. This is illustrated in the relativistic case at
β = 6.2 and in the static approximation at β = 6.45.2

The quantity Rij is computed at x∗0 = T/2 + a = fix (relativistic case only),
T2 = T/2− a as the reference point and several times T1 ranging from r0 to
T2 − 3a. All pairs of trial wave functions are taken into account.

The Relativistic Case

The computation of Rij may be done through the decay constant as well as
the effective mass. Table C.14 lists the results for Rij in dependence of the
pair (i, j) of trial wave functions, several correlators and x0 = T1.
All versions give similar results. Error bars are in the same order, but they
are somewhat larger for the implementation using the decay constant.
Disregarding the case (3, 4) for a while, one notices: For time separations
x0/a < 10, Rij(x0) grows fast. This is followed by a narrow ’plateau re-
gion’ of 3a length. At x0/a ≈ 14, coefficients may fluctuate and errors start
to grow quickly. This behaviour is expected since effective masses (or decay
constants) approach the region of ground state dominance for each trial wave
function individually at these Euclidean times, hence their ratio is close to
one. Meaningful information with small errors can only be extracted if effec-
tive masses (decay constants) are significantly spread. The case (3, 4) differs
because it still has not entered the region of ground state dominance.
Since Rij ≈ d1(ωi)/d1(ωj), one may read off from the table that the trial
basis ω1, ..., ω4 has increasing absolute overlaps with the first excited state,
as indicated by Rij getting smaller for i < j at fixed x0 and i.3

The optimal wave function is given by eq. (5.2). This translates into a
difference of correlation functions, for instance

f I
A(x0, ωopt) = f I

A(x0, ωi)−Rijf
I
A(x0, ωj). (6.12)

2With the intention to obtain a better plateau in the effective energy, figure 6.13.
3One may also get this impression in plotting the effective mass for the individual

correlators f I
A(x0, ωi) versus x0/a. Then meff(x0, ω1)a turns out to be the flattest.
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β = 6.2, κ ≈ κs, relativistic case. Values for Rij are taken from table C.14.

For numerical reasons, it is desirable to work with wave functions that ap-
proach the plateau region for effective masses (decay constants) from different
directions, such that Rij is negative.4 Otherwise, extra statistical noise will
be introduced. Figure 6.14 shows some effective masses and summarises given
facts. The statistical errors of the coefficients Rij have been propagated. If
T1 is too small, such as 5a, Rij will not be well approximated due to the
influence of highly excited meson states, and the plateau region of meffa in
x0/a starts late. Taking Rij for larger values of T1 provides better results,
even independent of the pair (i, j). These effective mass plateaux are equally
good with those where the ground state vector v(0) has been computed by
means of the variational principle. At T1 ≈ 14a (and above), the coefficients
Rij cannot be reliably computed anymore and the effective mass gets noisy.
One may also consider eq. (5.10) which provides an interesting option to ac-
celerate ground state dominance for effective masses (only!) even if there is
only one wave function at hand. The quantity Rf I

AfP
is related to the PCAC-

relation and is expected to be independent of ω. Results for Rf I
AfP

are given

4such as the basis (ωstd, ωδ)
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in table C.15 for β = 6.2 and in table C.16 for some more β−values. Table
C.15 confirms ω−independence within statistical errors for ωi, i = 2, 3, 4 and
x0 ≈ 7a...10a (or r0...1.5r0). Obviously, ω1 is not suitable for the computation
of Rf I

AfP
. Within the trial basis, this wave function has the smallest absolute

overlap with the first excited meson state and a reliable extraction of Rf I
AfP

at present statistical precision was not possible.
One can read off from table C.16 that Rf I

AfP
changes only weakly as the

quark mass is increased from the strange to twice the strange. But a further
increase to roughly four times the strange quark mass doubles Rf I

AfP
.

A direct comparison of effective mass plots with the original correlators
f I

A(x0, ωi) and ’improved’ ones (f I
A)′(x0, ωj) is shown in figure 6.15, where

Rf I
AfP

= 0.12(2) at β = 6.2 and κ = 0.13485 has been determined from

ω4.
5 For all ’improved’ axial current correlators, effective masses include

error propagation of the R−coefficient. They approach the plateau region
around x0 = 8a and are therefore as good as those from previously described
techniques. However, the price to pay for this earlier on-set is an increased
statistical error.
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5Since ω4 has the largest overlap with the first excited pseudoscalar state.
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The Static Case

A safe extraction of the ground state energy would be of particular interest.
Because f1 gets noisy for large time extents, a computation of Rij will be
only possible if the effective energy version is used. For the same reason, the
factor d0(ωi)/d0(ωj) has to be extracted from O(a)−improved f stat

A correla-
tors.
Table C.17 shows the time dependence of corresponding weights Rij for all
pairs of wave functions. Since ω3 and ω4 show a much flatter behaviour in
the effective energy plot than ω1, ω2, they are now written in the first place.
Central values for Rij vary only weakly in x0. However, combinations involv-
ing ω1 have errors of the same size as the central value. R43, the best case,
has only 20% statistical uncertainty.
Applying some Rij−values to the data and taking error propagation from the
Rij into account, one obtains effective energy plots as shown in figure 6.16.
Unfortunately, plateaux in the effective energy have large statistical errors.
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6.4 Alternative Extraction of the Pseudoscalar

Mass Gap

A method to obtain estimates of the pseudoscalar mass gap on a single lattice
through effective masses themselves was described in section 5.2. It will now
be applied to available data in the relativistic and static case.

6.4.1 The Relativistic Case

The estimate for the gap has been done via eq. (5.14) and several combina-
tions of correlators f I

A and fP. It turned out that, for the presently available
statistical precision, the version with fP gives the most precise results. The
version containing f I

A alone gives consistent values to the fP case but is too
noisy. This behaviour is not surprising: For the same set of parameters, fP is
known to have larger contributions of excited meson states and the approach
to ground state dominance is at larger Euclidean time separations than for
the improved axial current correlator f I

A.
The mixed form, that is f I

A in one and fP in the other definition of the
effective mass, is disfavoured. Though this is a theoretically allowed com-
bination, it suffers from corrections of excited meson states and those with
vacuum quantum numbers, eq. (5.15). A plateau of the gap in x0 could not
be seen.
Therefore, effective masses constructed from the pseudoscalar density are
used to determine the gap. One furthermore could vary the time extent of
the box since glueball corrections will cancel each other exactly. Consistent
results are confirmed at β = 6.0 and T/a = 18, 20, 22, 24 as well as β = 6.2
and T/a = 24, 36. Such a plot is figure 6.17. At β = 6.0, the effective
pseudoscalar gaps for the six possible twin combinations of wave functions
are shown. The combination (3,4) approaches the plateau region around
0.55 (in lattice units) only for large Euclidean times. This is due to large
contributions from higher meson states. The other twin combinations give
indistinguishable results around x0 = 8a (x0/r0 ≈ 1.5). The case at β = 6.2
gives worse estimates for the gap. This could be improved by increasing the
statistical precision. Figure 6.18 shows the scaling plot of the gap.6

6If the quark mass is close to the strange one, one obtains r0∆|x0=r0 ≈ 3.0(3) (no
continuum limit taken). At β = 6.2 and twice the strange quark mass one gets r0∆|x0=r0 ≈
2.5(2) and at roughly four times the strange quark mass it yields r0∆|x0=r0 ≈ 2.0(1).
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6.4.2 The Static Case

Similarly to the relativistic case, one may apply the procedure to static-light
correlators. The choice f stat

A (O(a)−improved) and several combinations of
wave functions allow for a safe extraction of the gap. This is done at three
different β−values, as shown in figure 6.19 and summarised in table 6.3. The
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plateau region of r0∆eff in x0 starts around r0. To obtain the continuum
limit, figure 6.19, one may think of a polynomial fit to a constant (fit A) or
one to a constant plus a term quadratic in a/r0 (fit B). This has been done
at x0 ≈ r0, as listed in table 6.3.

β 6.0 6.2 6.45 CL: fit A fit B
r0∆ 1.44(2) 1.43(8) 1.35(16) 1.44(2) 1.38(13)

Table 6.3: Energy gap for the static-light case taken at x0 ≈ r0.
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6.5 Decay Constants

Eq. (2.90) and the corresponding version in the static approximation, eq.
(3.26), have been used to compute decay constants.
The relativistic case is considered first since the signal is clear there, and
one may study the theory at large time separations. This is essential to
understand the qualitative behaviour of corrections in the vacuum and meson
channel. The static case is investigated afterwards.

6.5.1 The Relativistic Case

The dependence of the bare decay constant upon the time extent T of the
Schrödinger functional box is investigated and plotted in figure 6.20. Correc-
tions from excited states are described by eq. (2.91). The boxes at β = 6.2
roughly correspond to scaled ones at β = 6.0. One uses

v(0) = (−0.7894,−0.4933, 0.1909, 0.3113) at β = 6.0,

v(0)′ = (0.7407, 0.5831,−0.0082,−0.3336) at β = 6.2

to define ωopt and ω′opt. There are long plateau regions for the largest values
T/a = 24, 36 at β = 6.0 and 6.2, respectively, and the decay constant may be
safely extracted there.7 Thus, wave functions allow a reduction of the time
extent from T = 2L to T = 3L/2 without changing results. At β = 6.2, even
T = L seems to be safe.
Contributions from vacuum excitations get sizeable for T − x0 ≤ 1 fm. The
plateau region is shortened for smaller T and disappears if T is too small.
This is because vacuum contributions cannot be affected by meson wave func-
tions, and contributions in the pseudoscalar channel can only be minimised
to a certain extent. Additionally, eq. (2.90) is very sensitive to both types of

corrections because the factor exp(+(x0 − T/2)Ẽ
(PS)
0 ) contains the effective

mass in the exponential.
The analysis of figure 6.20 with ω1 had yielded the same results for x0 ≥ 9a
(β = 6.0) and x0 ≥ 11a (β = 6.2). Therefore, the ’bump’ is caused by
x0−dependent vacuum contributions.
Another way to study the influence of excited states on the decay constant is

7Their values are checked through interpolation of data from [96] linearly in κ. There
one has used the standard wave function and T = 2L.
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to insert f1(T
′) for T ′ ≤ T . The exponential factor has to be modified appro-

priately. The potential advantage of this method is that the plateau region
should be almost unchanged. However, the plateau level may significantly
change since f1(T

′) has more contaminations by excited states.8 Table 6.4
summarises the dependence of the plateau value aFPS(T, T

′) as a function of
T ′ for two wave functions.
As expected, the result of aFPS becomes independent of the wave function
if T = T ′ is large enough to neglect excited state contributions. Meson
contributions always decrease the plateau level, whereas those from vacuum
excitations always increase it.9 By means of eq. (2.91) one concludes for
given T ′ that excited mesons have stronger contributions than vacuum cor-

8And the asymptotic value, T ≥ T ′ →∞, for FPS is independent of the wave function.
9One should keep in mind that shifts in the plateau level only indicate the difference

of excited state contributions in both channels.
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β T/a T ′/a aFPS(ωopt) aFPS(ω1)
6.0 24 10 0.0926(6) 0.0832(4)

12 0.0909(5) 0.0824(4)
14 0.0916(5) 0.0881(6)
16 0.0919(6) 0.0904(6)
18 0.0935(6) 0.0928(5)
20 0.0946(11) 0.0939(10)
22 0.0938(10) 0.0932(10)
24 0.0938(7) 0.0938(4)

6.2 36 15 0.0692(9) 0.0656(9)
20 0.0726(10) 0.0718(11)
24 0.0726(13) 0.0721(13)
36 0.0734(9) 0.0733(8)

Table 6.4: Systematic shift of the plateau level for aFPS (bare case) as a
function of T ′ ≤ T , relativistic case. The value for T = 3L/2 has been fixed.

rections. Therefore, the plateau level is gradually pushed downwards for
decreasing values of T ′. This behaviour changes for T ′ ≈ 1 fm. Since contri-
butions from vacuum excitations are independent of the particular choice of
ω, the systematic shift in the plateau level is a direct measure how large the
contamination from excited meson states still is.
Obviously, the proposed ωopt has rather small contributions from excited me-
son states. To safely extract the decay constant, on could have used T ′ ≥ 18a
at β = 6.0 and T ′ ≥ 20a at β = 6.2 for the present level of statistics.

6.5.2 The Static Case

Data are analysed along the line of reference [98]. The quantity r
3/2
0 ΦRGI, as

given in eq. (3.26), is computed with Zstat
A from ref. [73]. The improvement

coefficient cstat
A is known to 1-loop, refs. [72, 66], and bstatA has been set to

its tree-level value bstatA = 1/2. The subtracted light quark masses mq, which
are necessary for O(a)−improvement in the massive case, are computed with
κc−values from ref. [47] and are listed in table 6.5. Unfortunately, the
extraction of ΦRGI was only possible at β = 6.0. In all other cases, the
correlation matrices were too noisy. Plateau values are investigated for two
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β κc κ amq Zstat
A

6.0 0.135196 0.133901 0.0358 0.6944
6.2 0.135795 0.134905 0.0243 0.6804

6.45 0.135701 0.13510 0.0164 0.6769

Table 6.5: Renormalisation constants to compute ΦRGI from available data.

optimal wave functions ωopt and ω′opt that are given by

v(0) = (0.2103, 0.4400, 0.5969, 0.6371), v(0)′ = (0.3927, 0.5301, 0.5222, 0.5404),

and for the trial wave functions ω3, ω4. The larger time extent, T = 24a, is
fixed and the smaller one is varied. The results are summarised in table 6.6
and shown in figure 6.21.
Obviously, the plateau level decreases for 16 ≥ T ′/a ≥ 10 by ∼ 20%, from
16a down to 14a still by about 10%. These corrections are described by eq.
(2.91).10 The decrease of the plateau level is caused by excited meson state
contributions. The smallest variation of the plateau level in T ′ has been ob-
served for ω′opt. Therefore, the latter is taken for the plot in figure 6.21.
Since the plateau level for T ′/a = 8 is above the one for T ′/a = 10, one
concludes that vacuum corrections are very strong for small time extents.

For the largest pair of time extents, (T ′, T ) = (16a, 24a), table 6.6 gives

r
3/2
0 ΦRGI

∣∣∣
β=6.0

= 1.82(5) −→ r0F
stat

Bs
= 0.60(2),

setting r0 = 0.5 fm. Since statistical noise prevents a simulation of ΦRGI at
T ′ > 16a, it has not been possible to check how large remaining corrections
to the asymptotics are.

10whereas light-light correlators have be to replaced by static-light ones and the factor
x0 − T ′/2 is used instead of x0 − T ′/2− 1/(2Ẽ(PS)

0 )
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T ′/a r
3/2
0 ΦRGI

ωopt ω′opt ω3 ω4

8 1.45(3) 1.56(3) 1.30(2) 1.31(4)
10 1.35(2) 1.44(2) 1.22(3) 1.22(3)
12 1.37(2) 1.45(2) 1.26(3) 1.26(3)
14 1.53(5) 1.59(3) 1.42(5) 1.42(4)
16 1.75(5) 1.82(5) 1.65(4) 1.65(4)

Table 6.6: The quantity r
3/2
0 ΦRGI at β = 6.0, L = 16a, T = 24a fixed and

various T ′ < T . The optimal wave functions are given in the text. Quoted
plateau values are taken at x0 ≈ 2r0.
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6.6 The Mass of the 0++−Glueball

This section considers the practicality to extract the mass of the lowest-
lying excitation in the vacuum channel from a combination of correlation
functions, eq. (5.16). For instance, one may set X = f I

A(ωi) and Y = fP(ωj)
for arbitrary wave functions. As a purely gluonic quantity, the extracted
glueball mass mG has to be independent of fermionic parameters,

1. cA,

2. meson wave functions ω,

3. the quark mass (hopping parameter).

Point one has been checked by comparing mG through setting cA either to
zero or to the fit value from its non-perturbative determination in ref. [40].
The second point is also confirmed provided that the time extent of the lattice
will be large enough to suppress contributions from excited mesons. More
than 2 fm are enough to get a long plateau of f I

A/fP in x0, thus separating
excitations in the meson and vacuum channel well.
Point three, however, is not confirmed by the numerical findings of this work.
At β = 6.2, the dependence on the quark mass (two sets have light quark
masses at about the mass of the strange quark, ms, another one at about 2ms,
and a third one at roughly 4ms) is shown in figure 6.22. Extracted values
of mG, as they are given for four different quark masses, clearly depend
on κ. The curves have moderate errors for T − x0 ≤ 8a (≈ r0/a), but for
larger times statistical errors are very large. Even more surprising is that
the difference mG − mPS has a very weak dependency on the quark mass.
This behaviour is not understood by the author of this thesis. The statistical
errors are dominated by those of mG.
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6.7 Summary and Discussion of the Results

This section summarises the results for masses, the mass gap and decay con-
stants as obtained by different extraction methods in the preceding sections
and compares them to results of other works.
The variational principle is used to obtain estimates of the ground/first ex-
cited state mass and the gap between them. The optimal wave functions that
come out are used to build up ’optimised’ correlation functions f I

A, fP, f1, ...
with a larger overlap to the particular energy level. In this work, masses of
the ground and first excited state are given and their difference is an esti-
mate of the gap. Alternatively, a suitable optimised wave function may be
found for a pair of trial wave functions (combined with weight Rij) such that
the first excited state contribution is considerably reduced. And one more
possibility to extract the gap has been explained.

6.7.1 The Relativistic Case

The results are listed in table 6.7. The ground state masses are statistically
compatible. Results from the variational principle have a larger error but
coincide with those extracted from f I

A (or fP) provided that (T ′, T ) are large
enough for the asymptotics to have set in. Results from reference [96] may
be interpolated to the κ−values of the present work. This yields aminterpol

PS =
0.3401(11) at β = 6.0 and aminterpol

PS = 0.2493(6) at β = 6.2. They are in
perfect agreement with the values quoted here.11

However, it was not always possible to extract the mass of the first excited
meson state unambiguously with available data sets. The variational prin-
ciple requires a set of lattices. Estimates of am∗PS at β = 6.0 are compatible.
At β = 6.2, however, one should do runs with smaller time extents T ′, and
solve the GEVP there.
The results for the pseudoscalar gap seem to crucially depend on the methods.
Its extraction from an effective mass plot of the axial current or pseudoscalar
density strongly depends on the quality of v(1). Since this state decays fast,
one still might have sizeable contributions from the second excited state at
small values of x0 where the signal is good. The indirect extraction of am∗PS

through the pseudoscalar gap has turned out to be a good alternative.
In reference [43], appendix A, one has estimated the size of the pseudoscalar

11The decay constant aFPS has also been checked and confirmed.
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gap to be r0∆ ≈ 3.2 (a∆ ≈ 0.43) at β = 6.2, κ = 0.1345, L/a = 24 and
T = 2L. The value is reported to vary only little in the bare quark mass, so
that it may be compared to the ones in table 6.7. They are about the same,
but we are able to also give an error estimate.

β method amPS am∗
PS a∆

6.0 GEVP, evals 0.341(4) 0.84(3) 0.49(3)
ωopt from GEVP 0.340(3) 0.83(5) 0.49(5)

ωopt from Rij 0.340(3) – –
∆ from meff(fP) – – 0.55(5)

6.2 GEVP, evals 0.250(5) 0.63(3) 0.38(3)?
ωopt from GEVP 0.250(5) 0.67(3) 0.42(3)

ωopt from Rij 0.249(3) – –
∆ from meff(fP) – – 0.41(5)

Table 6.7: Summary of pseudoscalar masses in the relativistic case, κ ≈ κs.

There are two further data sets at β = 6.2 with quark masses of about twice
and four times the strange quark mass available. The extraction of the gap,
as explained in section 5.2, yields r0∆ = 2.5(2) (a∆ = 0.34(3)) for the former
and r0∆ = 2.0(1) (a∆ = 0.27(2)) for the latter. Thus, the pseudoscalar gap
decreases as the quark mass is increased.

6.7.2 The Static Case

As listed in table 6.8, the results of the ground state energy from the static
axial current and those from the variational principle (only done at β = 6.0)
differ significantly. Since the gap to the first excited state is rather small, one
cannot expect to obtain a safe estimate for the true ground state energy, aE,
from the GEVP within accessible values of T ′ < T . Since the variationally
determined energy is larger than the one from a plateau in Eeff(f

stat
A ), re-

maining contaminations of the former come from excited states in the meson
channel.
As shown in figure 6.13, the plateau value of the subtracted ground state
energy scales. Its continuum estimate is

L0∆Ea = 0.420(14)←→ r0∆Ea = 1.17(4).

This is a more precise result than the one given in ref. [76],

L0∆Ea = 0.40(4).
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The subtracted energy of the first excited state, however, shows sizeable scal-
ing violations. Different methods to estimate the gap give consistent results.
They all yield small values for this quantity. Equally precise estimates have
been obtained by (1) the alternative determination of the gap, section 5.2,
and (2) the energy difference, table 6.2. Their continuum estimates are

r0∆ = 1.38(13) and r0∆ = 1.58(12).

Using quenched data from ref. [99], table 2, one may extract r0∆ ≈ 1.10(5).
A direct comparison is not possible since their β−value is far away from the
continuum limit, hence their result should have large cutoff effects. But the
order of magnitude is the same.

β method aE aE∗ a∆
6.0 GEVP, evals 0.67(2) 0.88(5) 0.25(5)

ωopt from GEVP 0.630(6) 0.88(3) 0.25(4)
ωopt from Rij 0.630(5) – –

∆ from Eeff(f stat
A ) – – 0.268(4)

6.2 GEVP, evals – – –
ωopt from GEVP 0.541(6) 0.740(7) 0.199(9)

ωopt from Rij 0.530(10) – –
∆ from Eeff(f stat

A ) – – 0.194(11)
6.45 GEVP, evals – – –

ωopt from GEVP 0.465(6) 0.623(5) 0.158(8)
ωopt from Rij 0.456(10) – –

∆ from Eeff(f stat
A ) – – 0.138(11)

Table 6.8: Summary of the results in the static case, κ = κs.

The extraction of the RGI matrix element of the static axial current was only
successful at β = 6.0. For the best wave function and (T ′, T ) = (16a, 24a) it
is

r
3/2
0 ΦRGI|β=6.0 = 1.82(5) at x0 ≈ 2r0,

which is compatible to r
3/2
0 ΦRGI = 1.74(13) from ref. [98]. However, their

result is an estimate of the continuum limit. Compared to the present work
(where it is not possible to investigate still remaining systematic corrections
of excited states to the asymptotics), their correlation functions have a much
clearer signal at Euclidean time extents larger than 1.5 fm. In their case,
decay constants may be computed for larger time extents and hence extracted
more reliably.
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Conclusions and Outlook

In this work we have investigated how to construct improved meson inter-
polating fields from a basis of interpolating fields (here: a basis of hydrogen-
like wave functions) at the Schrödinger functional boundaries by means of
various procedures. These fields have been used to build up correlation func-
tions with a suppressed contribution from the first excited state in the meson
channel.
A procedure to construct these improved fields is the variational principle, as
outlined in chapter 4. It has been applied to correlation matrices that have
been built up from boundary-to-boundary correlators f1. Additionally, some
alternative techniques to cancel contributions from the first excited meson
state have been presented in chapter 5.

It has turned out that the variational principle provides suitable improved
meson interpolating fields. The extraction of ground and first excited state
masses of pseudoscalars, their gap as well as the decay constant of the ground
state has been done in the light-light channel. The on-set of ground state
dominance in the pseudoscalar mass and decay constant typically starts at
Euclidean time separations as small as x0 ≈ 0.7 fm. This is a considerable
improvement of the standard case, where the on-set starts after x0 ≈ 1 fm.
Regarding the static-light channel, improved meson interpolating fields have
allowed to extract effective energies for all lattice spacings used, and esti-
mating the continuum limit of E − Γstat has been possible. The RGI matrix
element ΦRGI of the static axial current has been computed at β = 6.0 with
small statistical errors. However, investigations at larger β−values have not
been possible because of too much statistical noise. The matrix element

101
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ΦRGI|β=6.0 is in agreement with a recent (continuum) result of the ALPHA
collaboration.
A disadvantage of the variational principle for f1−correlation matrices is a
non-trivial systematic increase of generalised eigenvalues with meson quan-
tum numbers due to contributions from vacuum excitations. The variation-
ally determined energy does not yield an upper bound to the true ground
state energy in the considered channel! Generalised eigenvectors, however,
are not affected by these vacuum excitations.
We have shown how to extract information about the ground state and the
gap between the ground and the first excited state on a single lattice. Com-
pared to the variational principle, this may mean a large reduction of the
computational effort.

Some investigations of the present work have been used in the computation
of the Bs−meson decay constant [98] in the static approximation. Another
example is a non-perturbative determination of the improvement coefficient
cA. First results may be found in ref. [100]. And it should be possible to
carry these quenched simulations over to full QCD (Nf = 2) in the near fu-
ture.
Some further potential applications are calculations of moments of structure
functions [101] as well as nucleon masses [102].



Appendix A

Notation

Euclidean γ−matrices are listed here. They may be obtained from those in
Minkowski space by

γ0 = γMinkowski
0 , (A.1)

γk = −iγMinkowski
k , k = 1, 2, 3. (A.2)

Written in terms of the Pauli matrices σk,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.3)

they are

γ0 =

(
1 0
0 −1

)
, γk = i

(
0 −σk
σk 0

)
. (A.4)

Their product γ5 = γ0γ1γ2γ3 reads

γ5 =

(
0 −1
−1 0

)
. (A.5)

The projectors P± = 1
2
(1± γ0) are diagonal in this representation,

P+ =

(
1 0
0 0

)
, P− =

(
0 0
0 1

)
. (A.6)
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The chiral representation of Dirac matrices [26] is used in the implementation
of the APEmille code,

γµ =

(
0 εµ
ε†µ 0

)
(A.7)

for µ = 0, 1, 2, 3 and with

ε0 = −1, εk = −iσk, k = 1, 2, 3. (A.8)

Again, the symbols σk are the Pauli matrices. For γ5 = γ0γ1γ2γ3 one obtains

γ5 =

(
1 0
0 −1

)
. (A.9)

All γµ are hermitean. The projectors P± = 1
2
(1± γ0) read

P+ = 1
2

(
1 −1
−1 1

)
, P− = 1

2

(
1 1
1 1

)
. (A.10)



Appendix B

Program Implementation and
related Issues

B.1 The Quark Propagator

In the improved theory [42], the quark propagator S(x, y) is defined by

(DI +m0)S(x, y) = a−4δx,y, 0 < x0 < T, (B.1)

DI = D + δD, δD = δDb + δDv, (B.2)

with imposed boundary conditions,

P+S(x, y)|x0=0 = 0, P−S(x, y)|x0=T = 0. (B.3)

In this notation, D is the standard Wilson-Dirac operator, eq. (2.34), and the
correction term δD accounts for all O(a) improvements that are independent
of the boundaries (v) or due to their presence (b). The relation to the O(a)
improved fermionic part of the action SIF = SF + δSF, eqs. (2.33) and (2.42),
is

∂SI
F

∂ψ(x)
= (DI +m0)ψ(x), − ∂SI

F

∂ψ(x)
= ψ(x)(D

←†
I +m0), (B.4)

for 0 < x0 < T . The quark propagator is γ5−hermitean,

S(x, y)† = γ5S(y, x)γ5. (B.5)

This follows from the γ5−hermiticity of the improved Dirac operator. There-
fore,

S(x, y)|y0=0P− = 0, S(x, y)|y0=TP+ = 0. (B.6)
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In general, the Dirac fields ψ, ψ may be decomposed into classical and fluc-
tuation fields,

ψ(x) = ψcl(x) + χ(x), ψ(x) = ψcl(x) + χ(x), (B.7)

where the latter have zero boundary conditions. The classical quark field ψcl
is defined such that it solves the homogeneous Dirac equation,

(DI +m0)ψcl(x) = 0, 0 < x0 < T. (B.8)

On the boundaries, it reproduces the classical boundary conditions,

P+ψcl(x)|x0=0 = ρ(x), P−ψcl(x)|x0=T = ρ ′(x). (B.9)

In the interior of the Schrödinger functional, the classical field is given by

ψcl(x) = a3 c̃t
∑
y

(S(x, y)U †(y − a0̂, 0)ρ(y)|y0=a + (B.10)

S(x, y)U(y, 0)ρ ′(y)|y0=T−a).

Furthermore, using the adjoint Dirac equation one obtains

ψcl(x)P−|x0=0 = ρ̄(x), ψcl(x)P+|x0=T = ρ̄ ′(x), (B.11)

for the boundaries and

ψcl(x) = a3 c̃t
∑
y

(ρ̄(y)U(y − a0̂, 0)S(y, x)|y0=a + (B.12)

ρ̄ ′(y)U †(y, 0)S(y, x)|y0=T−a)

in the interior 0 < x0 < T .

B.2 The Fermionic Generating Functional

To discuss fermionic correlation functions O, it is suitable to write down the
fermionic part of the generating functional and integrate quark fields out by
hand in a gauge background average 〈...〉G,

〈O〉 = 〈|O]F〉G, (B.13)
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with a probability density proportional to

exp(−Seff [U ]) = det(DI +m0) exp(−SIG[U ]). (B.14)

In the quenched approximation, the fermion determinant in eq. (B.14) is
set to a constant thus neglecting effects of sea quarks. As a rule of thumb,
quenched quantities of interest usually differ by about 10% from unquenched
ones. From the computational point of view, the quenched approximation
represents a large reduction of the effort compared to the full, unquenched
case, and is therefore useful for explorations of new fields and for testing of
new ideas.

The fermionic generating functional is given by

ZF[ρ̄ ′, ρ ′, ρ̄, ρ, η̄, η, U ] =

∫
D[ψ]D[ψ] exp(−SIF[U, ψ, ψ] + SS[ψ, ψ]) (B.15)

with a source term for quark fields in the interior 0 < x0 < T ,

SS[ψ, ψ] = a4
∑

0<x0<T

∑
x

[ψ(x)η(x) + η̄(x)ψ(x)]. (B.16)

By substituting

ψ(x) = δ
δη̄(x)

, ψ(x) = − δ
δη(x)

, (B.17)

in the polynomial O, its quark field average is obtained through

[O]F =
(

1
ZF
OZF

)
|ρ̄ ′=...=η=0

. (B.18)

In [42] it is shown, that Wick’s theorem may be used such that eq. (B.18)
reduces to algebraic expressions of quark two-point functions.
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B.3 Quark Two-Point Functions

The complete list of non-zero contractions is taken from [42] and given here
for later use,

[ψ(x)ψ(y)]F = S(x, y),

[ψ(x)ζ̄(y)]F = c̃t S(x, y)U †(y − a0̂, 0)P+|y0=a,
[ψ(x)ζ̄ ′(y)]F = c̃t S(x, y)U(y, 0)P−|y0=T−a,

[ζ(x)ψ(y)]F = c̃t P−U(x− a0̂, 0)S(x, y)|x0=a,

[ζ ′(x)ψ(y)]F = c̃t P+U
†(x, 0)S(x, y)|x0=T−a,

[ζ(x)ζ̄(y)]F = c̃2t P−U(x− a0̂, 0)S(x, y)U †(y − a0̂, 0)P+|x0=y0=a

−1
2
c̃s P−γk(∇∗k +∇k)a

−2δx,y,

[ζ(x)ζ̄ ′(y)]F = c̃2t P−U(x− a0̂, 0)S(x, y)U †(y, 0)P−|x0=a,y0=T−a,

[ζ ′(x)ζ̄(y)]F = c̃2t P+U
†(x, 0)S(x, y)U †(y − a0̂, 0)P+|x0=T−a,y0=a,

[ζ ′(x)ζ̄ ′(y)]F = c̃2t P+U
†(x, 0)S(x, y)U(y, 0)P−|x0=y0=T−a

−1
2
c̃s P+γk(∇∗k +∇k)a

−2δx,y.

For vanishing boundary conditions, contributions proportional to c̃s will drop
out.

B.4 Correlation Functions in terms of Two-

point Functions

This will be considered on the example of fA and f1. The generalisation to
other cases is straightforward.

B.4.1 The Correlator fA

Taking eqs. (2.51), (2.49) and (2.53) as definitions one finds for fA,

fA(x0, ω) = −a3

2

∑
x
〈Aij0 (x)Oij(ω)〉

= − a9

2L3

∑
x,y,z
〈ψjαA(x) (γ0γ5)AB ψiαB(x) ζ̄iβC(y)ω(y − z)(γ5)CD ζjβD(z)〉.

Colour (α, β) and Dirac (A,B, ...) indices that appear twice are summed over.
Flavour indices i, j, however, are not contracted. Using the anti-commutation
property of Grassmann variables, one obtains

fA(x0, ω) = a9

2L3

∑
x,y,z

〈(γ5)CD ζjβD(z)ψjαA(x) (γ0γ5)AB ψiαB(x)ζ̄iβC(y)ω(y − z)〉.
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This amounts to a trace Tr′ in Dirac and colour space,

fA(x0, ω) = − a9

2L3

∑
x,y,z

〈Tr′
(
γ5[ζj(z)ψj(x)]Fγ5γ0[ψi(x)ζ̄i(y)]F

〉
G
, (B.19)

where the anti-commutation property of γ5 has been used and the fermionic
part of the action has been integrated out. For that reason, the expectation
value 〈...〉G is only taken with respect to the gauge action. Using the con-
tractions given in the last section, fA may be written as a product of two
propagators. With

γ5[ζj(z)ψj(x)]Fγ5 = [ψj(x)ζ̄j(z)]
†
F (B.20)

one obtains

fA(x0, ω) = − a9

2L3

∑
x,y,z

〈Tr′
(
[ψj(x)ζ̄j(z)]

†
F γ0[ψi(x)ζ̄i(y)]F ω(y − z)

)
〉G.

(B.21)
A few comments are in order:

• the expression [ ]F above is the quark propagator1 for the flavour index
i including the parallel transport from y0 = 0 to a,

Si(x,y) = [ψi(x)ζ̄i(y)]F. (B.22)

It solves the inhomogeneous Dirac equation

(DI +mi
0)S

i(x,y) = a−4δx0,aδx,yc̃t U
†(x− a0̂, 0)P+. (B.23)

The static propagator is known explicitly,

Sh(x,y) = a−3δx,yW (x)P+, a ≤ x0 ≤ T − a, (B.24)

W (x) = U †(x− a0̂, 0) · · ·U †((0,x), 0), a ≤ x0 ≤ T. (B.25)

Thus, one has to compute the propagator from every point on the
bottom to everywhere inside the Schrödinger functional box.

• for wave functions ω with the relative displacement y − z of quark
boundary fields as their argument, the summations over y and z cannot
be performed independently.

The final formula for fA is

fA(x0, ω) = − a9

2L3

∑
x,y,z

〈Tr′
(
Sj(x, z)† γ0S

i(x,y)ω(y − z)
)
〉G. (B.26)

1that is defined for 0 < x0 < T
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B.4.2 The Correlator f1

Starting with eq. (2.57) and applying Wick’s theorem, one obtains

f1(ω, ω′) = −1
2〈(O

ij)′(ω′)Oij(ω)〉
= − a12

2L6

∑
y,z,u,v

〈Tr′
(
ζ̄ ′j(u) γ5ω

′(v − u)∗ ζ ′i(v)ζ̄i(y) γ5ω(y − z) ζj(z)
)
〉

= a12

2L6

∑
y,z,u,v

〈Tr′
(
γ5[ζj(z)ζ̄ ′j(u)]Fγ5 ω

′(v − u)∗ [ζ ′i(v)ζ̄i(y)]F ω(y − z)
)
〉G

= a12

2L6

∑
y,z,u,v

〈Tr′
(
[ζ ′j(u)ζ̄j(z)]

†
F [ζ ′i(v)ζ̄i(y)]F ω(y − z)ω′(v − u)∗

)
〉G.

The term [ ]F describes the propagation of a quark from x0 = 0 to T including
appropriate parallel transports from x0 = 0 to a and x0 = T − a to T . To
keep notation brief, one may introduce

SiT (x,y) = [ζ ′i(x)ζ̄i(y)]F = c̃t P+U
†(x, 0)Si(x,y)|x0=T−a, (B.27)

and one finally obtains

f1(ω, ω
′) = a12

2L6

∑
y,z,u,v

〈Tr′
(
SjT (u, z)†SiT (v,y)ω(y − z)ω′(v − u)∗

)
〉G. (B.28)

Similar to the case of fA, a knowledge of the propagator for all points from
the bottom to the top of the Schrödinger functional is needed.



Appendix C

Numerical Results

C.1 Simulation Parameters

C.1.1 Wave functions

The trial basis consists of four hydrogen-like wave functions, as defined in
eq. (4.32). This table lists the parameters n and rH/r0.

WF# 1 2 3 4
n 0 0 1 0

rH/r0 0.1863 0.3726 0.3726 0.7457

Table C.1: The set of 4 hydrogen-like trial wave functions.

C.1.2 Data sets

All runs use the clover improved action for light quarks and the Eichten-
Hill action for static ones. Table C.1 lists the Nω = 4 hydrogen-like wave
functions. Data sets for smeared light and static quarks are summarised in
tables C.2 and C.3. All runs use θ = 0.
Hopping parameters in table C.3 correspond to those of the strange quark,
κ = κs. Given κ−values in table C.2 are for quark masses at about the
strange (written in roman), and those in italic roughly correspond to twice
and four times the strange quark mass.
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β L/a T/a κ Nmeas

6.0 16 3 0.133901 1600
6 4000
8 4000

10 4000
12 4000
14 3600
16 2000
18 5600
20 1100
22 1200
24 4800

6.2 24 15 0.13485 580
20 600
24 590
36 565
36 0.134026 590
36 0.13220 390

Table C.2: Relativistic case: List of several time extents of the Schrödinger
functional box.

β L/a T/a κ Nmeas

6.0 16 6 0.133901 9600
8 4800

10 19200
12 8000
14 4800
16 12000
24 4160

6.2 24 32 0.134905 900
36 675

6.45 32 28 0.1351 275
48 970

Table C.3: Static case: List of several time extents of the Schrödinger func-
tional box.
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C.2 The Variational Principle

C.2.1 The Relativistic Case

obs T ′′/a T ′/a
no 3 T/a = 6 8 10 12 14

mPSa 0.196(2) 0.201(1) 0.218(1) 0.248(1) 0.282(1)
m∗

PSa 0.870(2) 0.824(1) 0.789(1) 0.765(3) 0.762(4)
a∆ 0.674(2) 0.623(2) 0.572(2) 0.518(2) 0.480(3)

T/a = 16 18 20 22 24
mPSa 0.295(1) 0.305(1) 0.311(1) 0.312(1) 0.320(1)
m∗

PSa 0.758(10) 0.772(15) 0.87(13) n.a. n.a.
a∆ 0.463(9) 0.467(15) 0.56(11) n.a. n.a.

no 6 T/a = 8 10 12 14
mPSa 0.207(3) 0.232(2) 0.270(2) 0.308(2)
m∗

PSa 0.749(3) 0.727(3) 0.715(3) 0.728(5)
a∆ 0.542(3) 0.495(2) 0.445(2) 0.420(5)

T/a = 16 18 20 22 24
mPSa 0.321(2) 0.328(2) 0.332(2) 0.331(2) 0.335(2)
m∗

PSa 0.744(14) 0.759(18) 0.81(8) n.a. n.a.
a∆ 0.423(14) 0.431(18) 0.48(8) n.a. n.a.

3 6 T/a = 8 10 12 14
mPSa 0.209(3) 0.234(2) 0.273(2) 0.314(2)
m∗

PSa 0.756(3) 0.729(2) 0.713(3) 0.722(5)
a∆ 0.547(3) 0.495(2) 0.440(3) 0.408(5)

T/a = 16 18 20 22 24
mPSa 0.329(2) 0.335(2) 0.338(2) 0.336(2) 0.338(2)
m∗

PSa 0.737(13) 0.753(18) 0.88(14) n.a. n.a.
a∆ 0.409(13) 0.418(18) 0.54(14) n.a. n.a.

no 8 T/a = 10 12 14
mPSa 0.255(3) 0.294(3) 0.326(2)
m∗

PSa 0.706(4) 0.704(4) 0.734(7)
a∆ 0.451(3) 0.410(3) 0.408(3)

T/a = 16 18 20 22 24
mPSa 0.334(2) 0.338(2) 0.340(2) 0.351(2) 0.350(2)
m∗

PSa 0.758(16) 0.774(22) 0.77(8) n.a. n.a.
a∆ 0.424(16) 0.436(22) 0.44(8) n.a. n.a.

3 8 T/a = 10 12 14
mPSa 0.259(3) 0.306(2) 0.349(2)
m∗

PSa 0.703(4) 0.692(4) 0.711(7)
a∆ 0.443(4) 0.387(4) 0.362(6)

T/a = 16 18 20 22 24
mPSa 0.359(2) 0.360(2) 0.359(2) 0.354(2) 0.354(2)
m∗

PSa 0.733(16) 0.752(22) 0.90(16) n.a. n.a.
a∆ 0.374(16) 0.392(22) 0.54(16) n.a. n.a.

6 8 T/a = 10 12 14
mPSa 0.258(3) 0.302(2) 0.341(2)
m∗

PSa 0.704(4) 0.698(4) 0.720(7)
a∆ 0.446(4) 0.396(4) 0.379(7)

T/a = 16 18 20 22 24
mPSa 0.350(2) 0.352(2) 0.352(2) 0.349(2) 0.348(2)
m∗

PSa 0.743(16) 0.759(22) 0.82(9) n.a. n.a.
a∆ 0.393(16) 0.407(22) 0.47(9) n.a. n.a.

Table C.4: Effective masses directly from the Variational Principle, eq. (4.9),
or à la Lüscher-Wolff, eq. (4.10), for the relativistic case, at β = 6.0 and
κ = 0.133901.
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obs T ′′/a T ′/a
no 10 T/a = 12 14

mPSa 0.316(3) 0.331(3)
m∗

PSa 0.717(9) 0.776(11)
a∆ 0.401(9) 0.445(11)

T/a = 16 18 20 22 24
mPSa 0.333(3) 0.338(2) 0.339(2) 0.366(2) 0.364(2)
m∗

PSa 0.799(25) 0.814(34) 0.74(10) n.a. n.a.
a∆ 0.466(23) 0.476(28) 0.40(10) n.a. n.a.

3 10 T/a = 12 14
mPSa 0.352(3) 0.394(3)
m∗

PSa 0.682(8) 0.715(10)
a∆ 0.330(8) 0.321(9)

T/a = 16 18 20 22 24
mPSa 0.392(2) 0.385(2) 0.379(2) 0.370(2) 0.367(2)
m∗

PSa 0.743(21) 0.764(28) 0.94(20) n.a. n.a.
a∆ 0.351(20) 0.379(28) 0.56(19) n.a. n.a.

6 10 T/a = 12 14
mPSa 0.346(3) 0.383(3)
m∗

PSa 0.691(8) 0.729(10)
a∆ 0.346(8) 0.346(10)

T/a = 16 18 20 22 24
mPSa 0.380(2) 0.376(2) 0.371(2) 0.364(2) 0.361(2)
m∗

PSa 0.756(21) 0.773(27) 0.85(10) n.a. n.a.
a∆ 0.376(21) 0.397(28) 0.47(10) n.a. n.a.

8 10 T/a = 12 14
mPSa 0.333(3) 0.361(2)
m∗

PSa 0.702(8) 0.748(11)
a∆ 0.369(8) 0.387(10)

T/a = 16 18 20 22 24
mPSa 0.360(2) 0.359(2) 0.357(2) 0.353(2) 0.351(2)
m∗

PSa 0.775(21) 0.780(28) 0.79(10) n.a. n.a.
a∆ 0.416(21) 0.421(28) 0.44(10) n.a. n.a.

no 12 T/a = 14
mPSa 0.323(5)
m∗

PSa 0.861(25)
a∆ 0.538(26)

T/a = 16 18 20 22 24
mPSa 0.324(4) 0.334(3) 0.336(3) 0.371(2) 0.367(2)
m∗

PSa 0.857(40) 0.858(45) 0.68(13) n.a. n.a.
a∆ 0.533(34) 0.523(36) 0.35(13) n.a. n.a.

3 12 T/a = 14
mPSa 0.436(7)
m∗

PSa 0.747(20)
a∆ 0.311(19)

T/a = 16 18 20 22 24
mPSa 0.412(3) 0.396(2) 0.386(3) 0.374(3) 0.370(2)
m∗

PSa 0.773(32) 0.792(37) 1.00(25) n.a. n.a.
a∆ 0.362(31) 0.395(37) 0.62(25) n.a. n.a.

6 12 T/a = 14
mPSa 0.420(6)
m∗

PSa 0.765(21)
a∆ 0.345(20)

T/a = 16 18 20 22 24
mPSa 0.398(3) 0.386(2) 0.378(3) 0.368(3) 0.364(2)
m∗

PSa 0.788(32) 0.800(36) 0.88(13) n.a. n.a.
a∆ 0.391(31) 0.414(36) 0.50(13) n.a. n.a.

8 12 T/a = 14
mPSa 0.389(5)
m∗

PSa 0.794(22)
a∆ 0.405(21)

T/a = 16 18 20 22 24
mPSa 0.373(3) 0.368(2) 0.363(3) 0.357(3) 0.354(2)
m∗

PSa 0.812(32) 0.806(37) 0.81(13) n.a. n.a.
a∆ 0.439(32) 0.438(37) 0.45(13) n.a. n.a.

10 12 T/a = 14
mPSa 0.346(5)
m∗

PSa 0.835(23)
a∆ 0.489(23)

T/a = 16 18 20 22 24
mPSa 0.342(3) 0.346(2) 0.345(3) 0.344(3) 0.343(2)
m∗

PSa 0.842(34) 0.843(37) 0.75(13) n.a. n.a.
a∆ 0.500(34) 0.497(37) 0.40(13) n.a. n.a.

Table C.5: Continuation of table C.4
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obs T ′′/a T ′/a
no 14 T/a = 16 18 20 22 24

mPSa 0.319(13) 0.340(3) 0.342(3) 0.357(3) 0.355(2)
m∗

PSa 0.85(10) 0.86(7) n.a. n.a. n.a.
a∆ 0.53(8) 0.52(7) n.a. n.a. n.a.

3 14 T/a = 16 18 20 22 24
mPSa 0.387(9) 0.376(4) 0.370(4) 0.358(3) 0.356(2)
m∗

PSa 0.80(7) 0.81(6) 1.10(30) n.a. n.a.
a∆ 0.41(7) 0.44(6) 0.73(30) n.a. n.a.

6 14 T/a = 16 18 20 22 24
mPSa 0.375(7) 0.369(3) 0.364(4) 0.354(4) 0.353(2)
m∗

PSa 0.81(7) 0.82(6) 0.92(17) n.a. n.a.
a∆ 0.44(7) 0.45(6) 0.56(17) n.a. n.a.

8 14 T/a = 16 18 20 22 24
mPSa 0.357(6) 0.357(3) 0.354(4) 0.349(4) 0.347(2)
m∗

PSa 0.83(7) 0.81(6) 0.82(17) n.a. n.a.
a∆ 0.47(7) 0.45(6) 0.46(17) n.a. n.a.

10 14 T/a = 16 18 20 22 24
mPSa 0.338(6) 0.345(3) 0.345(4) 0.343(4) 0.342(2)
m∗

PSa 0.85(7) 0.85(6) 0.72(17) n.a. n.a.
a∆ 0.51(7) 0.50(6) 0.37(17) n.a. n.a.

no 16 T/a = 18 20 22 24
mPSa 0.364(7) 0.360(5) 0.348(3) 0.348(3)
m∗

PSa n.a. n.a. n.a. n.a.
a∆ n.a. n.a. n.a. n.a.

3 16 T/a = 18 20 22 24
mPSa 0.366(7) 0.361(5) 0.349(3) 0.349(2)
m∗

PSa 0.86(12) n.a. n.a. n.a.
a∆ 0.50(12) n.a. n.a. n.a.

6 16 T/a = 18 20 22 24
mPSa 0.362(6) 0.358(5) 0.348(3) 0.347(2)
m∗

PSa 0.83(12) n.a. n.a. n.a.
a∆ 0.47(12) n.a. n.a. n.a.

8 16 T/a = 18 20 22 24
mPSa 0.357(5) 0.353(4) 0.346(4) 0.345(2)
m∗

PSa 0.79(12) n.a. n.a. n.a.
a∆ 0.44(12) n.a. n.a. n.a.

10 16 T/a = 18 20 22 24
mPSa 0.353(6) 0.350(5) 0.345(4) 0.343(2)
m∗

PSa 0.84(12) n.a. n.a. n.a.
a∆ 0.494(12) n.a. n.a. n.a.

no 18 T/a = 20 22 24
mPSa 0.355(9) 0.340(5) 0.343(3)

3 18 T/a = 20 22 24
mPSa 0.356(9) 0.340(5) 0.343(2)

6 18 T/a = 20 22 24
mPSa 0.353(8) 0.340(5) 0.342(2)

8 18 T/a = 20 22 24
mPSa 0.349(8) 0.341(5) 0.341(2)

10 18 T/a = 20 22 24
mPSa 0.348(8) 0.342(4) 0.340(2)

no 20 T/a = 22 24
mPSa 0.326(11) 0.337(5)

3 20 T/a = 22 24
mPSa 0.325(12) 0.337(5)

6 20 T/a = 22 24
mPSa 0.327(10) 0.337(5)

8 20 T/a = 22 24
mPSa 0.331(10) 0.337(5)

10 20 T/a = 22 24
mPSa 0.336(11) 0.336(5)

no 22 T/a = 24
mPSa 0.347(10)

3 22 T/a = 24
mPSa 0.347(10)

6 22 T/a = 24
mPSa 0.346(8)

8 22 T/a = 24
mPSa 0.341(7)

10 22 T/a = 24
mPSa 0.335(8)

Table C.6: Continuation of table C.4
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T ′/a T/a symbol
8 b1 0.1971 0.4345 0.6006 0.6416

b2 -0.7808 -0.4686 0.2254 0.3463
b3 0.4259 -0.4729 -0.4595 0.6195
b4 0.4124 -0.6065 0.6143 -0.2909

10 v(0) 0.1419 -0.1156 0.9831 0
0.7710 -0.6369 0 0

v(1) 0.0020 0.8020 0.5974 0
0.0027 1.0000 0 0

12 v(0) 0.1403 -0.4309 0.8914 0
0.3096 -0.9509 0 0

v(1) 0.0100 0.9981 -0.0607 0
0.0100 1.0000 0 0

14 v(0) 0.0845 -0.5017 0.8609 0
0.1662 -0.9861 0 0

v(1) 0.0181 0.9321 -0.3618 0
0.0193 0.9998 0 0

16 v(0) 0.0925 -0.6652 0.7409 0
0.1378 -0.9905 0 0

v(1) 0.0210 0.8974 -0.4407 0
0.0233 0.9997 0 0

18 v(0) 0.0915 -0.6852 0.7225 0
0.1324 -0.9912 0 0

v(1) 0.0065 0.2606 -0.9654 0
0.0243 0.9997 0 0

20 v(0) 0.1294 -0.9916 0 0
v(1) 0.0249 0.9997 0 0

22 v(0) 0.1336 -0.9910 0 0
v(1) 0.0241 0.9997 0 0

24 v(0) 0.1284 -0.9917 0 0
v(1) 0.0251 0.9997 0 0

Table C.7: Basis vectors bi and state vectors v(n) in that basis, from the
Variational Principle for the relativistic case, β = 6.0, κ = 0.133901.
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T ′/a T/a symbol
10 b1 0.1984 0.4352 0.6001 0.6411

b2 -0.7794 -0.4692 0.2256 0.3486
b3 0.4133 -0.4509 -0.4809 0.6283
b4 0.4271 -0.6222 0.5981 -0.2697

12 v(0) 0.0736 -0.6785 0.7309 0
0.1082 -0.9941 0 0

v(1) 0.0067 0.5452 -0.8383 0
0.0121 0.9999 0 0

14 v(0) 0.0300 -0.4548 0.8901 0
0.0659 -0.9978 0 0

v(1) 0.0107 0.5247 -0.8512 0
0.0200 0.9998 0 0

16 v(0) 0.0379 -0.6518 0.7574 0
0.0581 -0.9983 0 0

v(1) 0.0113 0.4925 -0.8702 0
0.0227 0.9997 0 0

18 v(0) 0.0371 -0.6479 0.7608 0
0.0572 -0.9984 0 0

v(1) 0.0031 0.1300 -0.9915 0
0.0231 0.9997 0 0

20 v(0) 0.0567 -0.9984 0 0
v(1) 0.0232 0.9997 0 0

22 v(0) 0.0586 -0.9983 0 0
v(1) 0.0225 0.9998 0 0

24 v(0) 0.0562 -0.9984 0 0
v(1) 0.0235 0.9997 0 0

Table C.8: Continuation of table C.7
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T ′/a T/a symbol
12 b1 0.2034 0.4382 0.5987 0.6389

b2 -0.7794 -0.4649 0.2307 0.3509
b3 0.4014 -0.4384 -0.4933 0.6351
b4 0.4359 -0.6322 0.5874 -0.2556

14 v(0) 0.0118 -0.2911 0.9566 0
0.0407 -0.9992 0 0

v(1) 0.0110 0.6672 -0.7448 0
0.0162 0.9999 0 0

16 v(0) 0.0384 -0.9993 0 0

v(1) 0.0172 0.9999 0 0

18 v(0) 0.0389 -0.9992 0 0

v(1) 0.0170 0.9999 0 0

20 v(0) 0.0393 -0.9992 0 0

v(1) 0.0168 0.9999 0 0

22 v(0) 0.0410 -0.9992 0 0

v(1) 0.0161 0.9999 0 0

24 v(0) 0.0387 -0.9992 0 0

v(1) 0.0171 0.9999 0 0

Table C.9: Continuation of table C.7

obs T ′′/a T ′/a
no 15 T/a = 20 24 36

mPSa 0.248(4) 0.249(3) 0.250(2)
m∗

PSa 0.626(30) 0.550(35) 0.49(10)
a∆ 0.378(30) 0.301(36) 0.24(10)

no 20 T/a = 24 36
mPSa 0.247(4) 0.250(2)
m∗

PSa 0.46(8) 0.43(12)
a∆ 0.21(8) 0.18(12)

15 20 T/a = 24 36
mPSa 0.249(6) 0.250(2)
m∗

PSa 0.46(9) 0.43(13)
a∆ 0.21(9) 0.18(13)

no 24 T/a = 36
mPSa 0.255(4)
m∗

PSa n.a.
a∆ n.a.

15 24 T/a = 36
mPSa 0.250(3)
m∗

PSa 0.42(17)
a∆ 0.17(17)

20 24 T/a = 36
mPSa 0.251(3)
m∗

PSa 0.42(17)
a∆ 0.17(17)

Table C.10: Effective masses directly from the Variational Principle, eq.
(4.9), or à la Lüscher-Wolff, eq. (4.10), for the relativistic case, at β = 6.2
and κ = 0.13485.
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T ′/a T/a symbol
15 b1 0.1779 0.4143 0.5963 0.6642

b2 -0.7137 -0.5337 0.0880 0.4451
b3 0.4887 -0.2725 -0.5969 0.5749
b4 0.4693 -0.6850 0.5295 -0.1738

20 v(0) 0.0290 -0.4651 0.8848 0
0.0626 -0.9980 0 0

v(1) 0.0056 0.1731 -0.9849 0
0.0296 0.9996 0 0

24 v(0) 0.0438 -0.6503 0.7584 0
0.0669 -0.9978 0 0

v(1) 0.0018 0.0737 0.9973 0
0.0277 0.9996 0 0

36 v(0) 0.0367 -0.5727 0.8189 0
0.0637 -0.9980 0 0

v(1) 0.0005 0.0265 0.9997 0
0.0291 0.9996 0 0

20 b1 0.1948 0.4266 0.5939 0.6537
b2 -0.7167 -0.5189 0.1093 0.4530
b3 0.5035 -0.3164 -0.5662 0.5708
b4 0.4415 -0.6698 0.5611 -0.2042

24 v(0) 0.1729 -0.9849 0 0
v(1) 0.0030 1.0000 0 0

36 v(0) 0.0948 -0.9955 0 0
v(1) 0.0056 1.0000 0 0

24 b1 0.1960 0.4275 0.5937 0.6529
b2 0.6844 0.5388 -0.0813 -0.4844
b3 0.5888 -0.3583 -0.5063 0.5182
b4 0.3827 -0.6313 0.6201 -0.2654

36 v(0) 0.0571 0.9984 0 0
v(1) -0.0041 1.0000 0 0

Table C.11: Basis vectors bi and state vectors v(n) in that basis, from the
Variational Principle for the relativistic case, at β = 6.2 and κ = 0.13485.
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C.2.2 The Static Case

obs T ′′/a T ′/a
no 6 T/a = 8 10 12 14 16

aE 0.455(6) 0.504(3) 0.554(3) 0.600(4) 0.634(5)
aE∗ 0.755(7) 0.776(4) 0.800(6) 0.835(19) 0.793(23)
a∆ 0.299(2) 0.272(2) 0.246(6) 0.235(21) 0.159(25)

no 8 T/a = 10 12 14 16
aE 0.552(3) 0.599(3) 0.637(6) 0.667(8)

aE∗ 0.798(4) 0.826(8) 0.870(27) 0.803(30)
a∆ 0.246(3) 0.227(9) 0.233(31) 0.135(35)

6 8 T/a = 10 12 14 16
aE 0.553(3) 0.604(3) 0.648(5) 0.678(6)

aE∗ 0.798(4) 0.823(8) 0.861(25) 0.801(28)
a∆ 0.245(3) 0.219(8) 0.213(28) 0.123(31)

no 10 T/a = 12 14 16
aE 0.632(6) 0.659(11) 0.684(12)

aE∗ 0.866(16) 0.924(44) 0.820(41)
a∆ 0.234(19) 0.266(51) 0.136(48)

6 10 T/a = 12 14 16
aE 0.655(5) 0.696(7) 0.714(8)

aE∗ 0.848(15) 0.893(37) n.a.
a∆ 0.193(17) 0.197(41) n.a.

8 10 T/a = 12 14 16
aE 0.646(5) 0.679(9) 0.714(8)

aE∗ 0.854(15) 0.906(40) n.a.
a∆ 0.208(17) 0.227(46) n.a.

no 12 T/a = 14 16
aE 0.671(28) 0.687(21)

aE∗ 0.99(9) 0.82(6)
a∆ 0.32(10) 0.13(6)

6 12 T/a = 14 16
aE 0.737(15) 0.749(11)

aE∗ 0.94(8) n.a.
a∆ 0.20(8) n.a.

8 12 T/a = 14 16
aE 0.713(18) 0.750(11)

aE∗ 0.96(8) n.a.
a∆ 0.24(9) n.a.

10 12 T/a = 14 16
aE 0.686(22) 0.749(11)

aE∗ 0.98(9) n.a.
a∆ 0.30(11) n.a.

no 14 T/a = 16
aE 0.767(25)

6 14 T/a = 16
aE 0.767(25)

8 14 T/a = 16
aE 0.767(25)

10 14 T/a = 16
aE 0.768(25)

Table C.12: Effective energies directly from the Variational Principle, eq.
(4.9), or à la Lüscher-Wolff, eq. (4.10), for the static case, at β = 6.0 and
κ = 0.133901.
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T ′/a T/a symbol
8 b1 0.23616 0.45554 0.58861 0.62470

b2 -0.80900 -0.39648 0.27626 0.33466
b3 0.42765 -0.60469 -0.32672 0.58713
b4 0.32689 -0.51927 0.68591 -0.39120

10 v(0) 0.2494 0.1714 0.9531 0
0.8544 0.5196 0 0

v(1) -0.0100 0.4519 0.8920 0
-0.0159 0.9999 0 0

12 v(0) 0.5809 -0.1630 0.7975 0
0.9587 -0.2846 0 0

v(1) 0.0033 0.5399 0.8417 0
0.0077 1.0000 0 0

14 v(0) 0.5783 -0.8159 0 0
v(1) 0.0368 0.9993 0 0

16 v(0) 0.4659 -0.8849 0 0
v(1) 0.0495 0.9988 0 0

10 b1 0.2314 0.4524 0.5899 0.6275
b2 -0.8035 -0.4092 0.2685 0.3388
b3 0.4312 -0.5862 -0.3482 0.5909
b4 0.3388 -0.5332 0.6772 -0.3771

12 v(0) 0.4554 -0.8903 0 0
v(1) 0.0307 0.9995 0 0

14 v(0) 0.2736 -0.9618 0 0
v(1) 0.0552 0.9985 0 0

16 v(0) 0.1906 -0.9817 0 0
v(1) 0.0807 0.9967 0 0

12 b1 0.2402 0.4571 0.5869 0.6236
b2 -0.7998 -0.4055 0.2733 0.3481
b3 0.4243 -0.5695 -0.3679 0.6003
b4 0.3501 -0.5498 0.6675 -0.3600

14 v(0) 0.1826 -0.9832 0 0
v(1) 0.0552 0.9985 0 0

16 v(0) 0.0940 -0.9956 0 0
v(1) 0.1081 0.9941 0 0

Table C.13: Basis vectors bi and state vectors v(n) in that basis, from the
Variational Principle in the static approximation, β = 6.0, κ = 0.133901.
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C.3 Alternative Extraction of the Ground State

Mass

C.3.1 Relativistic case, β = 6.2

(i, j) x0/a
7 8 9 10 11 12 13 14

Rij from Feff, where d0(ωi)/d0(ωj) is from f1
(1,2) 0.05(8) 0.19(6) 0.22(6) 0.27(7) 0.29(7) 0.30(6) 0.38(6) 0.28(19)
(1,3) 0.02(4) 0.10(4) 0.12(4) 0.15(5) 0.18(6) 0.18(5) 0.25(5) 0.16(14)
(1,4) 0.02(3) 0.08(3) 0.10(4) 0.13(5) 0.15(5) 0.16(5) 0.22(5) 0.14(13)
(2,3) 0.47(3) 0.53(3) 0.55(3) 0.58(4) 0.60(4) 0.61(4) 0.66(4) 0.58(11)
(2,4) 0.38(3) 0.44(3) 0.46(4) 0.49(4) 0.52(5) 0.52(4) 0.58(5) 0.50(12)
(3,4) 0.81(1) 0.83(1) 0.83(1) 0.85(2) 0.87(2) 0.86(2) 0.88(2) 0.85(4)

Rij from meff(f I
A), where d0(ωi)/d0(ωj) is from f1

(1,2) 0.10(4) 0.17(5) 0.24(5) 0.26(5) 0.29(5) 0.30(5) 0.33(5) 0.33(8)
(1,3) 0.05(2) 0.09(3) 0.13(3) 0.15(4) 0.17(4) 0.18(4) 0.21(5) 0.21(7)
(1,4) 0.04(2) 0.08(2) 0.11(3) 0.13(3) 0.15(4) 0.16(4) 0.18(4) 0.18(6)
(2,3) 0.50(2) 0.53(2) 0.57(3) 0.58(3) 0.60(3) 0.61(3) 0.63(3) 0.62(5)
(2,4) 0.42(2) 0.45(2) 0.48(3) 0.49(3) 0.52(4) 0.53(4) 0.55(4) 0.54(6)
(3,4) 0.83(1) 0.84(1) 0.85(1) 0.85(1) 0.86(1) 0.87(1) 0.87(2) 0.87(2)

Rij from meff(f I
A), where d0(ωi)/d0(ωj) is from f I

A

(1,2) 0.10(4) 0.17(4) 0.23(5) 0.26(5) 0.29(5) 0.30(5) 0.33(5) 0.33(8)
(1,3) 0.05(2) 0.09(3) 0.13(3) 0.15(4) 0.17(4) 0.18(4) 0.21(4) 0.20(7)
(1,4) 0.04(2) 0.08(2) 0.11(3) 0.13(3) 0.15(4) 0.16(4) 0.18(4) 0.18(6)
(2,3) 0.50(2) 0.53(2) 0.56(3) 0.58(3) 0.60(3) 0.61(3) 0.62(3) 0.62(5)
(2,4) 0.41(2) 0.44(2) 0.47(3) 0.49(3) 0.51(4) 0.53(4) 0.54(4) 0.54(6)
(3,4) 0.83(1) 0.84(1) 0.84(1) 0.85(1) 0.86(1) 0.87(1) 0.87(2) 0.87(2)

Rij from meff(fP), where d0(ωi)/d0(ωj) is from f1
(1,2) -0.25(6) -0.01(5) 0.11(4) 0.17(4) 0.21(5) 0.25(6) 0.29(6) 0.33(5)
(1,3) -0.09(2) -0.01(2) 0.05(2) 0.09(3) 0.12(3) 0.14(4) 0.17(5) 0.21(5)
(1,4) -0.07(2) -0.01(2) 0.04(2) 0.07(2) 0.10(3) 0.12(4) 0.15(4) 0.18(4)
(2,3) 0.37(2) 0.45(2) 0.50(2) 0.53(2) 0.55(3) 0.57(4) 0.59(4) 0.62(4)
(2,4) 0.29(2) 0.36(2) 0.41(2) 0.44(2) 0.46(3) 0.48(4) 0.51(4) 0.54(4)
(3,4) 0.78(1) 0.80(1) 0.82(1) 0.83(1) 0.84(1) 0.84(2) 0.85(2) 0.86(2)

Table C.14: Various determinations of Rij to build up ωopt from a linear
combination of trial WFs ωi and ωj, β = 6.2, relativistic case.
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x0/a WF# 1 2 3 4
5 0.005(13) 0.31(4) 0.13(1) 0.12(1)
6 -0.025(27) 0.18(2) 0.12(1) 0.11(1)
7 -0.13(12) 0.14(2) 0.11(1) 0.11(1)
8 -5(65) 0.14(3) 0.12(2) 0.11(1)
9 0.74(130) 0.14(3) 0.12(2) 0.12(2)

10 0.8(2.1) 0.17(4) 0.14(3) 0.13(3)
11 2(13) 0.23(11) 0.19(6) 0.18(6)
12 3(61) 0.31(28) 0.24(14) 0.22(12)
13 0.5(3.3) 0.21(26) 0.18(16) 0.17(14)

Table C.15: Values for Rf I
AfP

to build up f I
A with an absent first excited

pseudoscalar state, β = 6.2, κ = 0.13485, relativistic case.

β 6.0 6.2 6.2 6.2 6.45
L/a 16 24 24 24 32
κ 0.133901 0.13485 0.134026 0.13220 0.1351
Rf I

AfP
0.08(1) 0.12(2) 0.15(2) 0.26(2) 0.05(1)

Table C.16: Some more extracted R−values for the application of eq. (5.10).

C.3.2 Static Case, β = 6.45

(i, j) x0/a
7 8 9 10 11 12 13 14

(4,1) 0.63(51) 0.64(51) 0.65(50) 0.65(49) 0.65(49) 0.64(48) 0.67(48) 0.66(46)
(4,2) 0.73(24) 0.71(23) 0.70(22) 0.69(21) 0.68(21) 0.66(21) 0.66(20) 0.65(19)
(4,3) 1.07(13) 1.13(16) 1.16(19) 1.19(20) 1.21(22) 1.23(23) 1.22(22) 1.23(22)
(3,1) 0.59(52) 0.57(50) 0.56(48) 0.55(46) 0.54(45) 0.52(44) 0.55(44) 0.54(43)
(3,2) 0.68(27) 0.63(26) 0.60(25) 0.58(25) 0.56(25) 0.54(25) 0.55(24) 0.53(23)
(2,1) 0.87(50) 0.90(50) 0.93(51) 0.95(51) 0.96(51) 0.97(51) 1.00(52) 1.02(51)

Table C.17: Table of weights Rij (Eeff and d0(ωi)/d0(ωj) are extracted from
O(a)−improved f stat

A ) to build up ωopt from ωi and ωj, β = 6.45, static case.
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ideas and for doing some cross-checks of results. His collaboration was also
invaluable.

I am also indebted to Juri Rolf and Michele Della Morte for their willing-
ness to help me when I needed it.

Profs. Ulli Wolff and Fred Jegerlehner gave me various opportunities
to join to discussion seminars on lattice gauge theory and phenomenology,
respectively, for which I want to thank them.

Special thanks to Bernd Gehrmann. His critical reading of large parts of
the manuscript was invaluable.

I will miss the good working atmosphere that has been created by my
colleagues I shared the room with. In particular, I would like to thank
Cipollino, Alejandro, Silvia, Carsten and Niels. We have had a good time
together with Axel, Janusz, Ines, Andrea, Gosia, James, Michael and many
others.

It was an enjoyable stay in Zeuthen’s Theory Group of DESY/NIC. I
would like to thank the members of the Theory and NIC group, the secre-
taries as well as the computing staff, and DESY/NIC for providing me the
opportunity to use the APE machines for my work.
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