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Zusammenfassung 
 
Die photophysikalische Kinetik von TICT-Zustände bildenden Verbindungen –Derivate 

von DMABN 

 

Das Hauptaugenmerk der vorliegenden Arbeit richtet sich auf die Untersuchung der 

photophysikalischen Eigenschaften von Derivaten von N,N-Dimethylaminobenzonitril 

(DMABN) und N-Phenyl-pyrrolobenzonitril (PBN) als Donor-Akzeptor Verbindungen. Die 

untersuchten Verbindungen zeichnen sich durch Einführung von Fluor-Substituenten durch 

eine erhöhte Akzeptorstärke aus, wodurch neue Erkenntnisse bzgl. der intramolekularen 

Charge-Transfer-Zustände (ICT) gewonnen werden konnten. Hierbei wurden die Ergebnisse 

zum Verhalten der untersuchten Moleküle im angeregten Zustand mit denen der 

entsprechenden Basisverbindungen verglichen. 

Die spektroskopischen und photophysikalischen Eigenschaften wurden sowohl 

durch die Anwendung der stationären und zeitaufgelösten Fluoreszenzspektroskopie bei 

Raum- und Tieftemperatur als auch durch Nutzung der transienten Absorptionsspektroskopie 

in Kombination mit quantenchemischen Berechnungen untersucht. 

Im Unterschied zu den Basisverbindungen DMABN und PBN zeigen die Spektren 

der fluorierten Derivate nur eine einzige stark rotverschobene Fluoreszenzbande, die dem 

ICT-Zustand zugeordnet werden kann. Die extrem kleinen Quantenausbeuten, die typisch für 

alle fluorierten Derivate sind, können auf die Existenz eines weiteren strahlungslosen 

Deaktivierungskanals zurückgeführt werden. Der beobachtete ICT kann mit dem TICT-

Modell (Twisted intramolecular Charge Transfer), bei dem von einer gegenseitigen 

Verdrillung der Donor- und Akzeptoreinheiten ausgegangen wird, erklärt werden. Weiterhin 

wurden die Variation der Verknüpfungsposition zwischen Donor- und Akzeptoreinheit sowie 

der Einfluss zusätzlicher Akzeptor-Substituenten auf die Eigenschaften der ICT-Zustände 

untersucht.  

Durch die Ergebnisse dieser Arbeit konnte ein vertieftes Verständnis über die 

Ladungstrennungsprozesse in Donor-Akzeptor-Systemen, die sich durch eine starke 

Solvatochromie und die Existenz von strahlungslosen Deaktivierungskanälen auszeichnen, 

entwickelt werden. Es konnte die Möglichkeit der Besetzung von zwei verschiedenen ICT-

Zuständen (TICT – verboten, mesomerer ICT – erlaubt) gezeigt werden. 

Schlagwörter:  
DMABN, Charge transfer, dual fluorescence, TICT 
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Abstract 
 

The focus of this work is mainly concerned with the investigation of photophysical 

properties of electron donor-acceptor compounds, namely, derivatives of N,N-dimethylamino 

benzonitrile (DMABN) and N-phenyl-pyrrolobenzonitrile (PBN). New insights into the 

intramolecular charge transfer (ICT) states were obtained while dealing with an acceptor 

moiety of increased strength in the form of fluorinated analogues of both these compounds. 

The molecules studied in this work have been compared with their corresponding parent 

compounds to get more useful information on the excited state behaviour. 

The spectroscopic and photophysical properties were studied using steady-state and 

time-resolved fluorescence at room and low temperature as well as with transient absorption 

spectroscopy in conjunction with quantum chemical calculations. 

 Unlike in the parent compounds DMABN and PBN, their fluorinated derivatives 

show only a single strongly red-shifted fluorescence emitted from the ICT state, and possess 

low quantum yields. The nearly non-fluorescent behaviour for all of these fluorinated 

derivatives investigated is due to the presence of a photochemical mechanism additional to 

that of ICT, which acts as a new non-radiative funnel. The ICT observed in these compounds 

can be explained by twisting motion taking place between the donor and acceptor moieties. 

Thus, twisted intramolecular charge transfer (TICT) model supports the observations.  Apart 

from the changes in the strength of the acceptor moieties, the ICT nature has been further 

explored by changing their linking positions as well as with additional acceptor substituents.  

From the findings obtained in this work, a deeper understanding of the charge 

separation processes occurring in donor-acceptor systems with high solvatochromism and 

non-radiative decay properties was obtained. The possibility for populating two different ICT 

states (of forbidden nature – TICT, and allowed nature – mesomeric ICT) has been 

exemplified.  

Keywords:  
DMABN, Charge transfer, dual fluorescence, TICT  
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1 Introduction 

1.1 Background and Motivation 

Electron transfer (ET) processes play a major role in the photophysics of donor-

acceptor aromatic systems. They can occur between separate molecules (intermolecular) or 

among the distinct regions within the same molecule (intramolecular). The resulting product, 

which occurs in these latter processes, is called intramolecular charge transfer (CT) state. The 

photoinitiated ET processes and CT states are of paramount importance in elucidating the 

photosynthesis in plants, and in the application of molecular device technology. Among the 

intramolecular CT processes, twisted intramolecular charge transfer (TICT) states have been 

the focus for many years due to the burgeoning area of physical, physical-organic and organic 

chemistry connected with a rationalization of the excited state behaviour of many dye 

systems. The innumerable applications are growing in various fields such as tailor-made 

fluorescent dyes [1, 2], sensing of free volume in polymers [3, 4], fluorescent pH or ion 

indicators [5, 6], fluorescent solar collectors [2], and electron transfer photochemistry [7]. The 

aim of this thesis lies in the investigation of the CT characteristics of fluorinated derivatives 

of N,N-dimethylamino benzonitrile (DMABN) and N-phenyl pyrroles. The central part of this 

dissertation deals with the nature of the excited states and dipole moment changes of different 

donor-acceptor systems. Furthermore, the modification of either the donor or acceptor 

strength in these types of molecules resulted in changes of photophysical properties that have 

been well studied in this work. Apart from that, also the change of the position of the acceptor 

or donor part influences the excited state properties of these systems. In order to gain further 

insight into the excited state of these investigated molecules, quantum chemical calculations 

were also done to support the experimental findings. The main families of the molecules 

investigated in this thesis are as follows: 
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1.2 Outline of other Chapters 

This introductory chapter presents the general motivation of this thesis, and serves 

as a guide to other chapter’s work. Each following chapter contains its own introduction to the 

molecules investigated and its corresponding references.  

In Chapter 2, the necessary theoretical background for the understanding of the 

work is clearly described. It also gives the general introduction of the concepts involved in 

this work.  

Chapter 3 give details about the solvents used and their purification, and about the 

experimental methods like absorption spectroscopy, transient absorption spectroscopy, steady 

state and time resolved-fluorescence at different temperature used in this work.  

In chapter 4, absorption and emission properties of the tetrafluoro analogue of 

DMABN, DMABN-F4 have been investigated and compared with the parent compound. The 

formation of a CT state of DMABN-F4 is a quasi-barrierless process in both polar and non 

polar solvents when compared to DMABN, and the TICT character has been confirmed by the 

combination of time resolved absorption and emission spectroscopy. The assumptions of 

Onsager radii by different methods on the excited state dipole moments values has been 

discussed. Electronic structure and conformational analysis of the investigated molecules 

were studied by quantum chemical calculations using semiempirical method.  

Chapter 5 discusses mainly steady state absorption and emission characteristics of 

fluorinated derivatives of anilines and p-PBN such as such as ABN-F4, A-F5 and PBN-F4. 

Their non-fluorescent properties have been compared with DMABN-F4. The main reason for 

their non-fluorescent behaviour has been rationalized in terms of ‘F’ atom substitution, which 

acts as a new non-radiative funnel in all these type of compounds. 

In Chapter 6, the photophysical properties of meta- and para-cyano N-phenyl 

pyrrole (m- and p-PBN) are compared. It has been found that both compounds show highly 

red shifted and strongly forbidden emission in polar solvents, assigned to a twisted 

intramolecular charge transfer state (TICT). Comparison to quantum chemical calculations 
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indicates that the twisted structure possesses an antiquinoid distortion of the benzonitrile 

group. It has been concluded that m-PBN differs from p-PBN by a less exergonic formation 

of the TICT state from the LE/ICT quinoid state, and it therefore shows only single LE/ICT 

fluorescence in nonpolar alkane solvents, whereas p-PBN shows dual fluorescence (LE/ICT 

and TICT). 

Chapter 7 covers the photophysical studies on the meta-positioning effect on the 

dimethyl derivative of N-phenylpyrrole such as p-DPBN and m-DPBN. The results indicate 

that the CT state arises due to the twisting of the acceptor group. The twisting was enhanced 

by the positioning of the cyano group in the acceptor moiety that would lead to the higher rate 

of non-radiative decay in m-DPBN. The conclusion was drawn from the fact that irrespective 

of the meta positioning effect, these molecules possess similar excited state properties. 

Chapter 8 presents photophysical studies on donor-acceptor compounds with a 

different linkage position on the donor such as MP2BN and additionally by changing the 

orientation of the acceptor part by increasing its strength such as MP2-B25CN. The 

mesomeric interaction between donor and the different acceptor units has been investigated, 

and it was found that the behaviour could switch between ICT states with large mesomeric 

interaction (MICT -Mesomeric Intramolecular Charge Transfer) such as in MP2BN, and with 

the minimum mesomeric interaction (TICT – Twisted Intramolecular Charge Transfer) states 

such as in p-PBN and MP2-B25CN. The factors are i) the relative energies of LE/ICT (MICT) 

and TICT state ii) the strength of the mesomeric interaction in the MICT state. 
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2 Theoretical Background 

2.1 Mechanism of Dual Fluorescence 

In general, fluorescent compounds possess a single fluorescence band, there are 

however, where two fluorescence bands are observed in compounds even in the case of a 

simple donor-acceptor benzene called 4,N,N-dimethylaminobenzonitrile (DMABN). This 

phenomenon was first discovered by Lippert et al. [8] The first band around 350 nm 

corresponds to the “normal” band for closely related benzene derivatives, the other one, at 

considerably longer wavelengths was assigned to an anomalous band. Lippert proposed a 

solvent-induced reversal of excited states. The anomalous band was assigned to fluorescence 

from the more polar 1La-type state, which is preferentially stabilized by solvation. This has led 

to the nomenclature in photophysics: ‘A’ band for the “anomalous” emission from the 1La-

type state or charge transfer (CT) state and ‘B’ band for the normal short wavelength emission 

from the 1Lb-type state or locally excited (LE) state. These emitting states are also called B* 

and A* states, and can be in thermal equilibrium. Lippert et al. [8] observed that the dual 

fluorescence strongly depends on the solvent polarity and on the temperature. In polar 

solvents, the long wavelength fluorescence band grows in relative intensity, while the 

intensity of the first band decreases with increasing polarity of the medium. The kinetic 

scheme for this process is shown below in Fig. 2.1 

B* A*kBA

kABkBf kB
o kAf kA

o

 

Figure 2.1: Kinetic scheme for the dual fluorescence of DMABN. Straight arrows represent radiative channels 
and dotted arrows represent non-radiative channels from the respective states. 

 
The above scheme in Fig. 2.1 contains the reaction rate constants kBA (forward 

reaction) and kBA (backward reaction) as well as the radiative decay constants (kBf and kAf) 

and the non-radiative decay constants 0
Bk  and 0

Ak  to the ground state. The origin of the 

dual fluorescence can be well-described in terms of photoinduced charge separation via 
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twisted intramolecular charge transfer (TICT) [9]. It occurs by an adiabatic photoreaction 

[10] taking place on the excited state potential energy hypersurface. The following sections 

will give a short description on the principles of photoinduced electron transfer. 

 

2.2 Photoinduced Charge Transfer 

In order to describe an electron transfer process, it is useful to draw potential 

energy surfaces, a graphical representation that allows one to visualize the details of the 

complex mechanism. A potential energy surface is a topological representation of the 

approximated coordinate dependence of the total energy parabolic curve, which can give an 

overview of a chemical reaction. Intersections of parabolic curves were used to represent the 

course of electron transfer from reactant to product. According to Marcus electron transfer 

theory [11, 12, 13, 14], there are two types of electron transfer reactions [15]  taking place in 

donor-acceptor systems: 

 

 
 

Figure 2.2: Potential energy diagrams of adiabatic and non adiabatic intersecting curves during electron transfer. 
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(i) Adiabatic: Electron transfer reactions that take place on a single potential energy 

surface with out intersecting one another. 

(ii) Non adiabatic or diabatic: Process in which the potential energy surfaces that do not 

interact but intersect since the interaction between diabatic curves is weak as compared 

with the strong mixing in the adiabatic case. 

There are different classes of adiabatic and non adiabatic photoreactions taking place in 

donor-acceptor systems. Here only the intramolecular and intermolecular electron transfer 

processes are considered in the following sections. 

 

2.2.1 Intramolecular Electron Transfer 

Intramolecular electron transfer is one of the main types of an adiabatic 

photoreaction, which forms the basis for dual fluorescence. The direct contact of the donor 

and acceptor molecules seems to be necessary for efficient electron transfer, particularly in 

the photoinduced electron transfer reactions. To be precise, after electronic excitation, 

electron transfer takes place from initial molecular orbital (MO) of the donor (D) state, to a 

MO of the final of the acceptor (A) state. When the donor and acceptor molecules are linked 

together by covalent bonds so that they are part of a single molecule, and the resulting 

electron transfer is called intramolecular. If an electron transfer from D to A is energetically 

feasible in the excited state, the product of such an intramolecular ET reaction is a charge-

separated species, D+…. A-. Its electronic structure corresponds to the ground state of the free 

radical ion pair of opposite charges, consisting of a radical cation D+ and radical anion A-. 

This results in changes in the dipole moment values between ground and excited state that led 

to the charge transfer (CT) state. Relaxation processes e.g pyramidalization or planarization, 

linearization, bending or twisting etc. accompanied by during or after electron transfer 

reactions will cause various modifications in their electronic structure of the excited 

molecules. It is interesting to know which of the reaction coordinate determines the feasibility 

of electron transfer in this kind of donor-acceptor systems. There have been various 

mechanisms proposed to explain the phenomena of dual fluorescence, and these are as 

follows: 
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(i) TICT- mechanism (Twisted Intramolecular Charge Transfer) 

The TICT model was first put forward by Grabowski and coworkers [16, 17, 18] 

to account for the observation that the dual fluorescence of DMABN with its “normal” 

band (B- band) and its “anomalous” one depends on the conformational freedom of the 

dimethylamino (DMA) group, coupled with an electron transfer in the orthogonal 

conformation. In the case of DMABN, there exists a reaction path in the excited state 

leading from the near planar conformation (emitter of the B-band) to an excited 

photochemical product with an energetic minimum at the perpendicular conformation 

(emitter of the A-band). These two emitting states possess a mother-daughter relationship, 

which has been revealed by direct kinetic measurements [19]. In many cases, the back 

reaction A*  B* also occurs leading to an excited state equilibrium. The ground state of 

DMABN is known to possess an energy barrier for the perpendicular conformation (the 

rotational barrier), therefore the emission from the perpendicular excited-state minimum 

occurs to a repulsive potential and is expected to lead to structureless spectra. The key 

point here is that the reaction coordinate is not only the intramolecular twisting motion but 

involves other coordinates, too, such as electron transfer, solvent dipolar relaxation and, 

most probably, some rehybridization at the amino nitrogen. For the perpendicular TICT 

conformation, donor (dialkylamino group) and acceptor (benzonitrile) π-orbitals are 

orthogonal (zero overlap) and thus decoupled leading to a maximum for the dipole 

moment in the excited state (and a minimum in the ground state). This maximum of the 

dipole moment (near full electron transfer from donor to acceptor) connected with the 

energetic minimum for the perpendicular conformation are essential ingredients of the so-

called “minimum overlap rule” [16]. For the near planar conformation (B* state), 

mesomeric interaction between the donor and acceptor π-systems exists and diminishes 

the dipole moment of B* state, and as schematically shown below: 

 

 

Figure 2.3: The TICT model involves a twisted product species with charge transfer or charge shift properties 
(A* state) formed through an adiabatic photoreaction from the precursor (B* state) with a nearly coplanar 
conformation. 
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0>− TICTE*B
E                                  (2.1) 

solEC)A(EA)D(IPTICTE ++−=      (2.2) 

The above equations 2.1 and 2.2 can be used to predict possible new TICT 

systems. Whether or not the energetic minimum of the A*/TICT state is lower than that of 

the precursor B* state (inequality Eq. 2.1 fulfilled) sensitively depends on the electron 

donor-acceptor properties of the sub systems which can be quantified by ionization (or 

oxidation) potential and electron affinity EA (or reduction potential) of donor D and 

acceptor A. 

The B* state responds much less to changes in donor and acceptor properties than 

the TICT state, and Eq. 2.1 can often easily be fulfilled by increasing donor and /or 

acceptor strength. In addition to these two factors which deliver the decisive part of the 

reaction driving force, polar solvent stabilization Esol and the mutual Coulombic attraction 

C of the linked donor and acceptor radical anion/cation pair also help to preferentially 

stabilize the TICT state with respect to the precursor B* state. 

 

(ii) Pseudo – Jahn-Teller Mechanism: 

Zachariasse et al. found a new explanation for the occurrence of dual fluorescence 

in DMABN based on a Pseudo – Jahn-Teller (PJT) distortion of the molecular structure. It 

correlates between the efficiency of the CT state formation and the 1La– 1Lb energy gap in 

the absorption spectrum. They postulated that the proximity of these two electronic states 

favors the CT state. The PJT coupling of 1La and 1Lb states via the inversion mode 

(rehybridization) of the amino group is assumed to lead to a pyramidal geometry in the 

ICT state [20, 21, 22]. 

 

(iii) Rehybridization of the acceptor (RICT model): 

Apart from the amino group (donor) involvement in the CT state, there can also be 

another site of structural changes in the cyano substituent (acceptor), that is, a bending of 

the cyano group (rehybridization) taking place in the excited state. It was suggested that 

the latter could be responsible for the anomalous emission from the A* state [23, 24]. 
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2.3 Intermolecular Electron Transfer 

Intermolecular electron transfer is defined as the transfer of an electron density 

from one molecule to another molecule in the excited state. As a result, it forms a complex. It 

can be either excimer (excited dimer) or exciplex (excited complex). Collision between an 

excited and an identical unexcited molecule forms excimer whereas exciplexes are formed by 

collision of an excited molecule (electron donor or acceptor) with an unlike unexcited 

molecule (electron acceptor or donor). Excimer and exciplex formation processes are 

diffusion-controlled. The photophysical effects can thus be detected at relatively high 

concentrations of the species so that a sufficient number of collisions can occur during the 

excited-state lifetime. Temperature and viscosity are major governing parameters. 

 

2.4 TICT Model Compounds 

The TICT phenomenon is observed not only in DMABN, but also in its numerous 

derivatives and analogous compounds, with modified donor or acceptor groups in the benzene 

ring. When methyl groups were introduced in ortho or meta position to the N-Me2 group of 

DMABN, different effects were observed. To analyse the possible role of the steric effect, a 

series of model compounds was synthesized [16, 17, 25, 26, 27], with the dialkylamino group 

structurally fixed nearly coplanar to the ring (MIN), or strongly sterically hindered 

(TMABN), or rigidly fixed in a position perpendicular to the aromatic ring (CBQ).  

 

N

CN

N

CN CN

N N

CN  

                                    MIN                      TMABN           CBQ            m-DMABN 
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N

CN

N

CN

N

CN

N

CN

OMe

 
      o-DMABN          MO-DMABN           PYRBN              PIPBN 

Figure 2.4:  Scheme of model compounds 

Compounds with a possible rotational degree of freedom around the benzene – amine bond 

such as DMABN, m-DMABN, MO-DMABN [17], PYRBN and PIPBN [28] exhibit a dual 

fluorescence, whereas for compounds MIN and CBQ with fixed rigid structure, only one band 

was observed: the ‘B’ band in MIN and the ‘A’ band in CBQ similar to DMABN. In the case 

of o-DMABN, only ‘A’ band has been observed. This was interpreted in terms of a steric 

effect: the methyl substituent in the position ortho to the –NMe2 group sterically hinders the 

coplanar (quinoid) structure. Similarly, for pretwisted compounds such as TMABN and CBQ, 

where the nitrogen lone pair is nearly in-plane with the benzonitrile skeleton and 

perpendicular to the π−orbital system, only the A-band was observed. Thus the emission 

spectra of the model compounds exemplify the effect of the substituents sterically hindering 

the coplanarity of the –NR2 group with the ring. 
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3 Experimental Section  

3.1 Synthesis of the Investigated Compounds 
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(i) DMABN – 4-(N,N-dimethylamino)benzonitrile: It was obtained from Aldrich. 

Compounds p-PBN and m-PBN were synthesized in our group according to the 
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procedure [29, 30]. The absence of possible traces of impurities was checked by 

thin layer chromatography (TLC).  

(ii) DMABN-F4 – 2,3,5,6-tetrafluoro-4-(N,N-dimethylamino)benzonitrile: It was 

synthesized by the reaction of pentafluorobenzonitrile with dimethylformamide 

using the procedure as described in ref. [31] The compounds was a gift of Prof. 

Alexei I. Tolmachev, Institute for organic chemistry of the national academy of 

sciences of Ukraine, Kiew, Ukaraine. The other fluorinated analogues ABN-F4, A-

F5 and PBN-F4 were also a gift of the latter group.  

 

(iii) p-DPBN - and m-DPBN: p-DPBN was synthesized by the condensation of 2,5-

hexanedione with 4-aminobenzonitrile and taken from a previous publication [32]. 

m-DPBN was synthesized by the cyclocondensation of 2,5-hexanedione with 3-

aminobenzonitrile [33]. The latter synthesis was kindly done by Mr. Sascha Jautze. 

The absence of impurities has been confirmed by NMR method and elemental 

analysis. 

(iv) The other pyrrole derivatives such as MP2BN and MP2-B25CN were a gift of 

Prof. René Lapouyade, Ecole nationale supérieure de chimie et de physique de 

Bordeaux, Bordeaux, France. 

 
3.2 Solvents Used 

The solvents used in this work range from non-polar (alkane) to polar solvents 

(acetonitrile) and are of spectroscopic grade Merck (Uvasol) except n-butlychloride 

(Lichrosolv) and butyronitrile. The absorption and fluorescence spectra of all solvents were 

checked to make sure that they are devoid of impurities. The following table gives a list of the 

solvents and their parameters used in this work. 

Table 3.1: Solvents used in this work and their parameters 

 
Solvents Abbreviations ε20 nd

20 ∆f b) ∆f' c) 

n-Hexane HEX 1.89 1.375 0.000 0.0919 

dibutylether BOB 3.08 1.399 0.096 0.1931 

diethylether EOE 4.34 1.352 0.167 0.2558 

n-butyl chloride BCl 7.40 1.402 0.209 0.3071 

Tetrahydrofuran THF 7.58 1.407 0.210 0.3182 
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Acetonitrile ACN 35.94 1.344 0.305 0.3928 

Butyronitrile BCN 20.30 1.384 0.275 0.3756 

Methyl 

cyclohexane and 

isopentane (1:4) 

MCH:IP 0.64 1.384 0.0 0.0000 
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 Where  ε − Relative dielectric constant of the solvent 

  n −  Refractive index of the solvent.  

 

3.2.1 Purification of Butyronitrile 

To 500 ml of butyronitrile were added 2.5 spoons of charcoal and left to stand for 

one day. After filtration 2.5 g of potassium carbonate (K2CO3) were added. The mixture was 

allowed to stand for another day and then filtered. 20 g of phosphorus pentoxide were added 

to the filtrate and after allowing to stand for one day, a distillation was carried out. The purity 

of butyronitrile was tested by both absorption and fluorescence measurements. 

 
3.3 Absorption and Fluorescence Measurements 

Absorption spectra were measured on ATI UNICAM UV Series Spectrometer 

UV4-21113. Before measuring the absorption spectrum of the sample, the base line correction 

was done by placing solvent in both sample and reference Quartz cuvettes of 1 cm. The true 

absorption spectrum was measured by maintaining optical density of a solution between 0.1 

and 0.2. 

 Fluorescence spectra were measured by using an AMINCO-Bowmann series 2 

Luminescence spectrometer in which the excitation source is a 150 W Xenon lamp. The 

emission parameters in the set up are adjusted by keeping the optimum voltage of the 

photomultiplier between 600 and 800 V, slit widths of both excitation and emission 

monochromators at 4 nm and setting a scan rate of 2 or 3 nm per second.  
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3.3.1 Correction of the Emission Spectra 

The emission spectrum recorded directly from a fluorescence spectrometer, when 

the emission monochromator is scanned at constant slit width and constant photomultiplier 

sensitivity, is an uncorrected spectrum. To determine the true spectrum, the observed 

spectrum has to be corrected with the wavelength dependent factors, namely the quantum 

efficiency of the photomultiplier, the band width of the monochromator and the transmission 

factor of the monochromator. These factors were determined by the manufacturer using a 

calibrated tungsten lamp. A reflector made of freshly prepared magnesium oxide is introduced 

into the sample holder and set at 45°, and is illuminated by the lamp externally positioned at 

right angles. The spectral response of the detection system is recorded and the correction 

factors are obtained by dividing this spectral response by the spectral output data provided 

with the lamp. For wavelengths shorter than about 320 nm, where the intensity of tungsten 

lamps is too low to get reliable correction factors, a hydrogen or deuterium lamp can be used.  

Here in this work, all the uncorrected fluorescence and excitation spectra have been corrected 

with the help of a correction file, determined in this way. 

 

3.3.2 Low Temperature Measurements 

Temperature dependent fluorescence spectra were measured with a homemade 

cooling apparatus that allows to simultaneously freeze and control the temperature of four 

samples in quartz cuvettes by pumping cold nitrogen gas through the cryostat. The 

temperature in the cuvettes was monitored using PT 100 resistor. The lowest temperature 

achieved with this set-up was 100 K. 

For the 77 K measurements, a dewar flask with an optical access was filled with 

liquid nitrogen in which a quartz tube was filled with the sample solution was inserted. The 

solvents that form a glassy matrix are used for this kind of low temperature measurement. e.g. 

the MCH:IP alkane mixture, EOE and BCl. 

3.3.3 Determination of Fluorescence Quantum Yields 

For the determination of the fluorescence quantum yields of the probe p
fφ , the 

optical densities of the solutions were determined at the excitation wavelengths in a 1cm 

absorption quartz cell and were adjusted to a value in the range 0.1-0.2 with a precision of 

0.001. Fluorescence quantum yields of any substance can be determined by comparing with a 
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fluorescence standard whose quantum yield value is already known. For that purpose, the 

fluorescence standard, quinine bisulfate was used. The latter can be prepared as a solution in 

0.05M in H2SO4, and the reference value is s
fφ  = 0.515 [34]. While calculating the quantum 

yield of a sample, the value has to be corrected for the refractive index of the solvents using 

[35] equation (3.1). 

    

p

fφ  = 
s

fφ
sps

psp

AODn
AODn

2

2

                      (3.1) 

 

where np and ns are refractive indices of the solvents , ODp and ODs are the optical densities, 
p
fφ and s

fφ  are the quantum yields, and Ap and As denote the computed area of the corrected 

fluorescence bands, each parameter for the sample solution  and standard (reference), 

respectively.  

The temperature dependent relative fluorescent intensities If(T) are corrected for 

the linear increase of the refractive index n(T) [36] and density [36] of the solvent relative to 

room temperature conditions using equation (3.2). 

LT

fφ  = 
RT

fφ
RTLTRT

LTRTLT

An
An

ρ
ρ

2

2

          (3.2) 

 

where the terms in the above equation have their usual meanings. The error of the 

low temperature fluorescence quantum yields p
fφ  determined from the integrated intensity 

area relative to the values at room temperature is estimated to be 10%. 

 

3.4 Time Resolved Fluorescence 

The fluorescence decay measurements were performed by using time correlated 

single photon counting (TCSPC) [37]. They have been done either with Synchrotron radiation 

from the Berlin Storage Ring for Synchrotron radiation (BESSY) or with a ps-laser source. 

Both the methods are explained in the following sub sections. 

 

 

 



 

 

3.4.1 BESSY II 

Synchrotron radiation from the Berlin Synchrotron facility BESSY II was used as 

light source in conjunction with an excitation monochromator (Jobin Yvon, II, 10 UV). It 

delivers a 1.25 MHz pulse train with characteristic pulse widths of 30-50 ps. The fluorescence 

decays were detected by a microchannel plate photomultiplier (MCP, Hamamatsu R 1564-U-

01) cooled to –30 oC, coupled to an emission monochromator (Jobin Yvon II, 10 VIR) by 

means of quartz fiber optics. The signal from a constant fraction discriminator (CFD, 

Tennelec 454) was used as the start pulse for the time-to-amplitude converter (TAC, Tennelec 

TC864) operating in the reverse mode. The BESSY II synchronisation pulse was used as the 

stop pulse. The MCP pulses were amplified by an amplifier (INA 10386) and coupled into the 

CFD. A multichannel analyser (Fast Comtec MCDLAP) was used for data accumulation. The 

decays were analysed by the “least squares” iterative reconvolution method on the basis of the 

Marquardt-Levenberg algorithm, which is implemented in the commercial global analysis 

program [38]. The instrument response function was obtained by the detection of Rayleigh 

scattered light in a scattering solution and had a width of 120 ps. The quality of the 

exponential fits was evaluated on the basis of the reduced χ2 values.  
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Figure 3.1: Construction of the Single Photon Counting (SPC) set up 
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MCP-PM     : Microchannel plate photomultiplier ( Hamamatsu R 1564-U-01)
GPA             : Gigahertz pre amplifier (INA 10386) 
CFD             : Constant fraction discriminator 
TAC             : Time to amplitude converter 
ADC             : Analog to Digital converter 
MCA            : Multi channel analyser 
PC  : personal computer 
SR  : Synchrotron radiation 

 
3.4.2 ps-Laser   

The measurement has been done with a conventional setup using an argon ion 

laser-pumped, passively mode locked Ti:sapphire laser as the excitation source. The pulse 

duration is about 80 fs, and the repetition rate is 82 MHz. The excitation wavelength was 

obtained by frequency doubling or tripling of the fundamental wavelength of about 800 nm. 

The fluorescence and scatter light were detected as described in the method above. The 

instrument response function was obtained by detection of Rayleigh scattered light in pure 

solvents and had a width of 50-60 ps at the excitation wavelength and is dominated by the 

optical path difference in the monochromator. Detection without the monochromator yielded 

a pulse width of 28 ps. The entire operation of the equipment is also described in detail 

elsewhere [39, 40]. 

 

 
Figure 3. 2: Block diagram for the time resolved fluorescence measurements with the ps laser 

 
 

MHG : Multi harmonic generation 
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S : Sample 
MC : Monochromator 
MCP : Micro channel plate photomultiplier 
AMP : Amplifier 
PD : Photodiode 
SPC : Single photon counting setup 
PC : Personal computer 

 
 
 

3.5 Transient Absorption Spectroscopy 

Time-resolved transient absorption and gain experiments were performed at the 

Ecole Normale Supérieure, Paris in collaboration with Dr. Monique Martin with the pump-

probe technique using a home-made dye laser described in details elsewhere [41]. 

Subpicosecond pulses were generated at 610 nm and frequency doubled in order to obtain 

excitation pulses at 305 nm. The probe was a white-light continuum produced by focusing the 

residual 610-nm into a 1-cm water cell. The differential absorbance spectra were recorded in 

the 340-700 nm range through a polychromator by a CCD camera. 

 

 

                            Figure 3.3: Pump-Probe set-up of Trasient Absorption Spectroscopy. 
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The energy of the pump beam was determined found to be 55 micro joule. The spectra were 

averaged over 500 laser shots and corrected for the group velocity dispersion in the probe 

beam. The experimental time resolution was estimated to be about 1.5 ps. 

 
3.6 Quantum chemical Calculations 

The electronic properties of a molecule can be calculated by solving the 

Schrödinger equation, 

 

  HΨ = EΨ       (3.2) 

 

There are various methods available to calculate the structural and electronic properties of a 

molecule, such as ab initio, semiempirical and density functional theory (DFT) methods. The 

latter method has been gaining popularity over the recent years because of the intermediacy 

between ab initio and semiempirical methods. The Hartree-Fock procedure or self-consistent 

field (SCF) model plays a crucial role in electronic structure calculations. The SCF model 

uses the idea of particles moving in an average electrostatic field and therefore cannot 

accurately treat the instantaneous interaction between electrons (electron correlation). The 

SCF model for the calculation of orbitals makes use of the variational principle to minimize 

the energy of the system iteratively until it is self-consistent. Ab initio methods are 

characterized by the introduction of chosen basis set for expanding the molecular orbitals and 

then the explicit calculation of all required integrals involving this basis set. The same is valid 

for Density Functional Theory (DFT) calculations. DFT calculations have a different effective 

Hamiltonian than Hartree-Fock calculations but the SCF procedure used to solve for the 

molecular orbitals (Kohn-Sham orbitals in one case and Hartree-Fock orbitals in the other 

case) is very similar. 

 

Ab initio calculations can be extremely demanding in terms of the computational 

resources. But nevertheless, improvements in the computer hardware have made it possible 

that ab initio methods are a widely used computational tool nowadays. The approximate 

quantum chemical methods require significantly less computational resources. Especially, 

semi-empirical methods, which satisfy the latter criteria by incorporating the parameter, 

derived from the experimental data can calculate some electronic properties more accurately 

than even very high levels of ab initio calculations. There are number of ways in which 
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correlation effects can be incorporated into the molecular orbital (MO) calculation. One 

popular approach is configuration interaction, in which various excited configurations are 

included in the description of an electronic state. The electron correlation problem is 

meticulously handled on the basis of configuration interaction by both ab initio and semi-

empirical method.  In this work, mainly the semiempirical method AM1 (Austin model 1) [42, 

43], which has an increased improvement over the other semiempirical method like MNDO, 

was used together with multiexcited configuration interaction.  

The treatment of the compounds studied in this work included full geometry 

optimization in the ground state without configuration interaction using the AM1 method [42] 

contained in the AMPAC program package [44] running under the Linux operating system. 

Single point calculations (1SCF) for the Franck-Condon excited states were performed by 

taking the fixed optimized ground state geometry and using configuration interaction 

including 300-400 singly and multiply excited configurations constructed on the basis of the 

central sixteen molecular orbitals.  
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4 The Tetrafluoro Analogue of DMABN: Anomalous 
Fluorescence and Mechanistic Considerations 

 

 

Abstract  
Absorption and emission properties of DMABN-F4, the tetrafluoro analogue of 

DMABN, have been investigated and compared with the parent compound. Unlike in 

DMABN, this new compound exhibits only a highly solvatochromic and strongly redshifted 

fluorescence CT and is characterized by the absence of an LE band even in nonpolar solvents. 

This evidences the faster formation of CT in the excited state as compared to DMABN. The 

low quantum yield values of DMABN-F4 suggest that the high rate of non-radiative decay 

takes place via internal conversion (IC) rather than intersystem crossing (ISC) as no 

phosphorescence is observed in rigid glass solvents at 77 K in contrast to DMABN. The 

emission transition moment and radiative rate constant values of DMABN-F4 in medium and 

highly polar solvents point to a forbidden emission in the excited state similar to DMABN. 

Electronic structure and twist potentials were also studied by quantum chemical calculations 

using ab initio and semiempirical methods. In contrast to DMABN, DMABN-F4 is found to 

be twisted by around 30-50°, but the photophysics are concluded to be analogous to DMABN 

with the addition of a very fast IC channel. 

 

4.1 Introduction 

Donor-Acceptor substituted benzenes have been the focus for many years 

regarding the nature of dual fluorescence or of emissions with very large Stokes shifts. 

Lippert et al. [8] showed that DMABN emits a dual fluorescence consisting of two bands 

assigned to two different excited states: The A band for the "anomalous" emission from the 
1La-type state, B band for the normal short wavelength arises from the 1Lb-type/CT state. The 

emitting species, also called A* and B* states, can be in thermal equilibrium.  

The photophysics of electron donor-acceptor aromatic systems has been well 

explained with the help of the TICT model (“Twisted Intramolecular Charge Transfer”). 

According to this model, [1, 9, 16, 19] the untwisted dimethylamino group (electron donor) 

rotates after photoexcitation towards an orthogonal orientation of the donor group relative to 

the aromatic ring system. In nonpolar solvents and under jet-cooled conditions, DMABN 
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emits only from the near planar LE excited state, [22] whereas a second minimum at a twisted 

conformation is populated on the excited state energy surface in more polar solvents. 

Recently, the effect of F-substitution in DMABN-derivatives has been investigated 

for 4-(azetidinyl)benzonitrile by Druzhinin et al [45]  who stated that there is no indication of 

dual fluorescence, and that internal conversion is enhanced by the fluoro substituent. 

 DMABN-F4 which differs more from DMABN by the further increased strength 

of the acceptor unit leads to the expectation of an increased CT nature of the excited state. In 

the present chapter, DMABN-F4 is characterised spectroscopically and compared with 

DMABN. The investigation of the spectroscopic behaviour includes both polarity and 

temperature effects. The red shift of both absorption and more strongly fluorescence spectra 

can be ascribed to this increase of the acceptor nature quantifiable by an enhancement of the 

electron affinity (EA) by 0.78eV. 

In order to compare and interpret the spectroscopic properties, quantum chemical 

calculations were performed using ab initio and semiempirical methods. 
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Figure 4.1: Structure of the molecules investigated 

 

 

4.2 Experimental Section 

4.2.1 Materials  

The compounds with their structures and abbreviations are shown in Fig. 4.1 

DMABN-F4 was synthesized by the reaction of pentafluorobenzonitrile with 

dimethylformamide using the procedure described in ref. [46] DMABN was a sample 

previously used. The absence of possible traces of impurities was confirmed by thin layer 

chromatography (TLC).  

4.2.2 Apparatus and Methods 
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The experimental details about the absorption, fluorescence, lifetime and quantum 

yield measurements are described in chapter 3. 

 

4.2.3 Calculational Details 

Semiempirical calculations for the compounds DMABN and DMABN-F4 were 

carried out with full geometry optimization and with a vibrational analysis of the optimized 

structures by the Newton algorithm using the AM1 program contained in the AMPAC 6.0 

package [42, 44].   

The study of equilibrium and transition structures for the compounds by ab initio 

calculations at Hartree-Fock theory HF and Density Functional Theory DFT levels were 

realized with different basis sets (6-31G(d), 6-311++(d,p), cc-pVDZ, and D95(d,p)) using 

Gaussian 98 [47]. Full optimization of the ground state including vibrational analysis was 

performed to detect stable minima and transition geometries. The twist angle between the 

compound fragments was determined as the torsional angle between the lone pair on the 

nitrogen atom and the benzene plane from the bisector between the optimized torsional angles 

of the carbon atoms of the dimethylamino group (see Scheme 2). The study of the fragment 

rotation in the S0-state was carried out by fixing the torsional angle of one carbon atom of the 

dimethylamino-group optimizing all other geometrical parameters.  

The calculations of the transition energies and oscillator strengths for the ground 

state optimized geometries were carried out using configuration interaction (CI) for the 

optimized structures with inclusion of 10 unoccupied and 10 occupied orbitals (C.I. = 10) by 

ZINDO/s (CIS) included in Gaussian 98.  

   

4.3  Results and Discussion  

4.3.1  Absorption Spectra 

 The absorption spectra of DMABN-F4 in various solvents of different polarity are 

depicted in Fig.1a. The corresponding spectra of DMABN are also presented for comparison 

(Fig. 4.2b). All spectra of DMABN-F4 as compared with the spectra of DMABN are shifted 

to the red (Table 4.1a). But in contrast to DMABN, in the spectrum of DMABN-F4 in hexane 

the weak shoulder is not visible, which is found at the red side of the main absorption 

maximum of DMABN and ascribed to absorption to the 1Lb-S1 state. It can be concluded that 
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the weak 1Lb absorption band of DMABN-F4 is hidden by the stronger 1La type band. It is 

even possible that the 1La state is S1 in this compound. 
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Figure 4.2: Absorption and normalised fluorescence spectra at room temperature of DMABN-F4 (a) and 

DMABN (b) in various solvents of different polarity. Hex = n-hexane; BCl = n-butyl chloride ; EOE =diethyl 

ether; ACN = acetonitrile.    

 

 The molar extinction coefficient values for both compounds determined in n-

hexane are approximately equal [ε (λ max
282 ) = 28,911 and ε (λ max

300 ) = 34,436 respectively for 

DMABN and DMABN-F4]. In view of the twisted ground state structure of DMABN-F4, this 

might indicate a different vibronic mixing of the two lowest singlet states, 1La and 
1Lb. 

Analogous to DMABN, the long wavelength absorption band of DMABN-F4 is 

shifted to the red by increasing the solvent polarity (Fig. 4.2a and Tables 4.1a and 4.1b). 
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4.3.2 Fluorescence at Room Temperature  

 
TABLE 4.1a: Photophysical parameters of DMABN-F4 in Various Solvents at Room Temperature  

 
Solventa) λabs 

(nm) 
λflu 

(nm) 
∆νst 

(103 cm-1) 
φf kr 

(106 s-1) 
knr 

(108 s-1) 
Mf 
(D) 

Hex 300 456 11.40 0.0006 2.22 37 0.53 
BOB 302 490 12.70 0.0018 1.74 9.6 0.50 
BCl 306 496 12.52 0.0016 1.34 8.4 0.45 
ACN 308 537 20.86 0.0001 0.47 47 0.33 

 
TABLE 4.1b: Photophysical parameters of DMABN in Various Solvents at Room Temperature  
 
Solventa  λabs 

(nm) 
 λflu 
(nm) 

∆νst 
(103 cm-1) 

φf φtot  φa /φb  φ tot  φa /φb 

 
Hex 

 
282 341 6.14 0.1642 0.16 - 0.11b - 

BCl 288 349 (B) 6.06 (B) 0.065 (B)  0.12 0.82 0.09c 0.8d 
  390 (A) 9.08 (A) 0.053 (A)     

ACN 292 365 (B)  6.85 (B) 
 

0.0016 (B)  0.02 10.12 0.02b - 

  476 (A) 13.24 (A) 0.0162 (A)     
 
a Solvent abbreviations: Hex – n-hexane; BOB – di-n-butyl ether; BCl – n-butyl chloride; ACN – acetonitrile. b 

Rettig, W.; Bliss, B.; Dirnberger, K. Chemical Physics Letters 1999, 305, 8. c Rettig, W.; Wermuth, G.; Lippert, 
E.; Ber. Bunsenges. Phys. Chem. 1979, 83, 692.d Rotkiewicz, K.;  Köhler, G.; J. Lumin., 1987, 37, 219. 
 

In all solvents studied, DMABN-F4 possesses very weak fluorescence (quantum 

yield φf ≤ 0.002) with a broad emission band ( ∆ν1/2 > 6000 cm-1) shifted unusually far from 

the long wavelength absorption band (Stokes shift ∆νst ≥ 11000 cm-1) even in hexane (Table 

4.1a and Fig. 4.2a) In contrast, in the latter solvent the emission of DMABN is relatively 

strong (φf  = 0.17) and narrow (Fig. 4.2b and Table 4.1b). The absence of dual fluorescence 

and the indicated fluorescence properties (strong red shift) suggest a very fast formation of an 

emitting CT species in the excited singlet state of DMABN-F4 in contrast to DMABN. As one 

can see from Table 4.1a, quantum yield values decrease from low-polarity to high-polarity 

solvents with the exception of hexane, where an anomalously high knr is found. 

 The fluorescence decay curves measured for DMABN-F4 in different solvents are 

monoexponential and similar for different wavelengths of the emission spectra with the 

fluorescence lifetime ranging between 0.21 and 1.19 ns (Table 4.1a). These measurements 

support the formation of only one emitting state in all solvents. 
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 If we assume the direct formation of the emitting species without losses (i.e. 

validity of the Kasha rule), then the radiative kr and nonradiative knr rate constants can be 

calculated according to equations 4.1 and 4.2,  

    kr  = φf /τf                                       (4.1) 
     
    k tot

nrn

 = kr (φf
-1-1)                              (4.2) 

 
 where k tot

nr   corresponds to the sum of all nonradiative processes including triplet formation, 

internal conversion and the possible formation of nonemissive photochemical products. The kr 

values are extremely small and decrease from about  2 x 106 s-1 (the corresponding the 

radiative life time τr is 450 ns) in hexane to 0.5 x 106 s-1 (τr is 2100 ns) (Table 4.1c) in 

acetonitrile. Similarly low kr values were observed for a sterically hindered DMABN 

analogue, TMABN [48, 49] in which two methyl groups are present in ortho positions of the 

DMABN, in the highly polar solvent propanol (5.1 x 106 s-1).  This gives supporting evidence 

for the forbidden radiative transition from the excited state, which is typical for TICT states.  

  The formation of full charge transfer (i.e. a TICT state) in DMABN-F4 has been 

recently confirmed by time resolved absorption spectroscopy [50]. The transient absorption 

spectrum in acetonitrile at 1 ps delay showed a band around 360 nm. It was attributed to the 

CT state by its similarity with that reported for DMABN at 100 ps. The much faster 

appearance time of the CT state of DMABN-F4 suggests that the CT formation is a quasi-

barrierless process in both polar and non polar solvents in this molecule and that TICT state 

formation is strongly favored with respect to DMABN.  
TABLE 4.1c: Photophysical Parameters (radiative life timeτf, radiative kr and non-radiative knr rate constants, 
the CT Transition Dipole Moment, Mf) of DMABN-F4 and DMABN in Various Solvents at Room Temperature  

 
Solvent   DMABN-

F4 
  DMABN   

 τf 
(ns) 

kr 
(106 s-1) 

Mf 
(D) 

knr 
(108 s-1) 

τf 
(ns)a 

kr 
(106 s-1) 

Mf 
(D) 

knr      
(108 s-1)   

Hex 0.27 2.22 0.53 37 2.3 48a 1.53d 3.9a 
BOB 1.03 1.74 0.50 9.6  - - - 
BCl 1.19 1.34 0.45 8.4  13.6b, c 0.96 - 
ACN 0.21 0.47 0.33 47 3.0 7a 1.12e 3.3a 

 
a Rettig, W.; Bliss, B.; Dirnberger, K. Chem Phys Lett 1999, 305, 8-14. b Rettig, W.; J. Lumin., 1980,  26,  21. c 

Van der Auweraer, M.; Grabowski, Z. R.; Rettig, W. J. Phys. Chem. 1991, 95, 2083. d corresponds to the LE 

state. e Okada, T.; Uesugi, M.; Kohler, G.; Rechthaler, K.; Rotkiewicz, K.; Rettig, W.; Grabner, G. Chem. Phys. 

1999,241,327.
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The radiative transition moment values Mf in Table 4.1c as calculated from eq. 4.3 

decrease from hexane to acetonitrile in the case of DMABN-F4 in contrast to DMABN and 

TMABN, where the Mf values are independent of polarity [49, 51]. The small magnitude of 

Mf in DMABN-F4 is typical for the twisted structure of a TICT-state. In the case of TMABN, 

the smaller values of Mf can be interpreted by sterical hindrance, which leads to a narrowing 

of the angular distribution around 90° as compared to the unhindered compound DMABN and 

therefore to more strongly forbidden emission.  It is remarkable that Mf of DMABN-F4 in 

acetonitrile is the smallest value ever reported for the TICT fluorescence of an aniline 

derivative, lower even than for TMABN or other twisted model compounds of DMABN.  

     

Mf = 334643 fn/rhk νπ        (4.3)  
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Figure 4.3: Low temperature effects on the fluorescence spectra of DMABN-F4 in n-butyl chloride. 
Down head arrow indicates the decreasing of temperature. The data points in the range 600-630 were 
omitted (second order of excitation wavelength). 

 
TABLE 4. 2: Temperature Dependence of the Photophysical Data of DMABN-F4 in BCl 
 

    T 

(K) 
λ flu

max  
(nm) 

 νflu 
(cm-1) 

 ∆ν1/2 

(cm−1)  φf 
τf 

(ns) 
kr 

(106 s-1) 
knr 

(108 s-1) 
298 501 19960 6320 0.0016 1.19 1.34 8.40 
273 505 19802 6910 0.0014 1.20 1.25 8.32 
253 510 19608 5730 0.0013 1.19 1.09 8.37 
233 516 19380 5910 0.0011 1.15 0.96 8.71 
213 521 19194 5850 0.0009 1.09 0.92 9.19 
193 530 18868 6300 0.0007 0.99 0.81 10.1 
173 535 18692 7100 0.0006 - - - 
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 Figure 4.4: Fluorescence spectra of a) DMABN-F4 in BCl and BCN at 77 K and b)  DMABN in BCl at room 

temperature and at 77 K. 

 

4.3.3 Fluorescence at Low Temperatures 

 The fluorescence study of DMABN-F4 at lower temperatures was done in n-

butylchloride in order to study the relaxation processes in a glassy matrix. These 

measurements detected a weak red shift of the emission maximum from 501 to 535 nm and a 

decrease of the fluorescence quantum yield by more than a factor of 2 when the solvent is 

cooled from room temperature to 173 K  (Figs. 4.3 and 4.4, Table 4.2). Further cooling until 

77 K did not allow quantum yield measurements, but the fluorescence band is found to be 

weak and shifted somewhat to the blue. However, even with the rigid glass matrix at 77 K the 

LE emission and phosphorescence are absent. In contrast to this, DMABN at 77 K possesses 

only the LE emission at 342 nm and phosphorescence is observed at 411 nm with a highly 

structured band (Fig. 4.4b). The small fluorescence intensity and the redshifted spectrum of 

DMABN-F4 at 77 K gives evidence that the emission is forbidden and that there is some 

relaxation even in a highly polar glassy matrix.  

 

4.3.4 Geometry of the Ground State 

The calculations indicate that in contrast to planar DMABN, the derivative with 

fluorine atoms DMABN-F4 possesses a somewhat twisted equilibrium geometry in the 

ground state (torsional angle between the fragments is 35 – 50 degrees, depending on the 

calculation method, see Fig. 4.5 and Table 4.3). The reason is a stronger sterical interaction 

between the two methyl groups of N(CH3)2 and the fluorine atoms in the benzene ring. The  
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interaction is caused by the longer C-F bond (close to 1.3 Ǻ for all calculation methods) in 

DMABN-F4 as compared to the C-H bond length close to 1.08 Ǻ in DMABN. The 

pyramidalization of the dimethylamino group of DMABN-F4 is predicted very differently 

depending on basis set and method used. For the conditions of Fig. 4.5, it is practically 

nonpyramidal in the equilibrium structure (near sp2 hybridization). Similar strong variations 

of the pyramidalization depending on the method can be observed for DMABN (Table 4.3). 
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Figure 4.5: The planar transition, twisted equilibrium and perpendicular transition structures of DMABN-F4 and 
the planar equilibrium geometry of DMABN with some geometrical characteristics calculated by DFT 
(B3LYP/6-311++G(d)). 
 

 

 

For comparable methods, both semiempirical and ab initio calculations 

demonstrate a smaller sp3 hybridization of the dimethylamino group for the relaxed 



 36

geometries of DMABN-F4 than for DMABN (from AM1, equilibrium pyramidalization 

angles are around 13° and 29° deg respectively, Table 4.3).   
 
 
 
TABLE 4.3: Ground State Characteristics of the molecules studied: Dipole Moment µeq, Equilibrium Twist 
Angle αeq, Equilibrium Pyramidalization Angle βeq, Activation Barrier of the Intramolecular Fragment Rotation 
to the Planar (∆H(00)) and the Perpendicular (∆H(90)) Geometry for DMABN-F4 and DMABN  as Calculated 
by Different ab initio and Semiempirical Methods and different basis sets. 
 

 
Compound 

 
Method 

 
µeq (D) 

 
αeq 

(deg) 

 
βeq 

(deg) 

 
∆H(00) 

(kcal/mol) 

 
∆H(90) 

(kcal/mol) 
 

AM1 
 

4.62 
 

29.34 
 

10.84 
 

1.35 
 

2.52 

HF 6.64a 33.35 0.07 4.58 0.38b 
 

 6.19c 51.99 29.56 5.36 0.50b 

 5.97d 51.27 29.86 4.76 0.47b

 6.10e 53.29 31.98 5.41 0.30b 

DFT 
(Becke3LYP) 

7.09a 
 

33.70 
 

0.87 
 

3.09 
 

3.32 
 

 7.48c 35.09 0.01 3.76 3.23 

 6.56d 38.18 11.55 2.87 3.05 
 7.10e 40.09 20.78 3.15 3.08 

DMABN-F4 
 
 
 
 
 
 
 
 

MP2 6.58a 40.86 0.00 4.27 - 
 

AM1 
 

5.35
 

0.00
 

25.15
 

0.00 
 

2.45
 

HF 
 

7.29a 
 

0.00 
 

14.85 
 

0.00 
 

2.09 
DFT 

(Becke3LYP) 
7.63a 0.00 0.95 0.00 5.98 

 
 7.87f 0.00 6.50 0.00 11.27 

DMABN 
 
 
 
 
 
 
 

MP2g - 0.00a 28.8 - - 

 
a 6-31G(d) basis set. b local minimum. c 6-311++G(d) basis set; d cc-pVDZ basis set. e D95(d,p) basis set. f TVZP 
basis set [Parusel, A. B. J. Physical Chemistry Chemical Physics 2000, 2, 5545.]. g [Sobolewski, A.L.;  Sudholt, 
W.;  Domcke, W.;  J. Phys. Chem. A, 1998, 102, 2716] 
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Figure 4.6: The ground state potentials of DMABN-F4 (1) and of DMABN (2) calculated by DFT (B3LYP/6-

31G(d)) method. The torsion angle is determined according to figure 4.7. The inflection in the potential for 

DMABN at around 15° is due to different methyl group conformations being the most stable ones (see Scheme 

4.8). 

 

The intramolecular fragment rotation away from the equilibrium geometry to the 

planar and perpendicular geometry of DMABN-F4 (Table 4.3, Fig. 4.6) increases the 

potential energy. Both planar and perpendicular geometries possess a Cs symmetry and 

correspond to a saddle point (Fig. 4.7) (one negative Eigenvalue in the Hessian matrix).  

 
TABLE 4.4: Relative Energya (from DFT-B3LYP/6-31G(d) calculations) in kcal/mol, (number of negative 
Eigenvalues χ of the Hessian matrix) and the Symmetry Point Group for Planar Arrangements of the 
Dimethylamino Group (figure 4.8) of the Compounds DMABN and DMABN-F4  
 

 
Compound 

 
syn1 

 
syn2 

 
syn3 

DMABN 0.00 (χ=0) 2.39 (χ=2) 1.39 (χ=2) 
 Cs C2v Cs 

DMABN-F4    0.00 (χ=1)    1.54 (χ=2)    0.62 (χ=2) 

 Cs C2v Cs 
 
a relative to the energies calculated for the nontwisted equilibrium (DMABN) and nontwisted transition 
geometries (syn1) (DMABN-F4) both slightly pyramidal . 
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Figure 4.7: Planar, equilibrium and perpendicular structures of the dimethylamino group for DMABN-F4 in the 
ground state (top). Determination of the dimethylamino-group twist angle α and the dimethylamino group 
pyramidalization angle β (bottom): n is a vector perpendicular to the plane of the aromatic ring, nα is the bisector 
vector of the two N-methyl bonds of the dimethylamino-group, nβ is a vector perpendicular to the CNC plane of 
the dimethylamino group.  
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Figure 4.8: conformation of methyl-group of dimethylamino-group for DMABN-F4 and DMABN in the ground 
state.  
 

A study of the possible conformations of the two methyl group of the 

dimethylamino N(CH3)2 fragment shows that several conformers are important (Fig. 4.8) that 

only conformer syn1 with Cs symmetry for the planar and twisted geometries has the lowest 

energy, and the Hessian matrix indicates a saddle point of first order. The other conformers 

syn2 and syn3 of the symmetries C2v and Cs possess saddle points of second order (Table 4.4). 

Depending on the twist angle, the relative energy of the conformers can change. This is the 

reason for the inflection in the potential for DMABN at around 15° (Fig. 4.6).  

 

4.3.5 Dipole moments at Room Temperature 

 The excited-state dipole moments µe of DMABN-F4 and DMABN were 

determined from the solvatochromic slopes by applying the Mataga equation (4.4) [52, 53, 

54]. The slopes from the corresponding solvatochromic plots of the emission maxima against 

the solvent polarity parameter, f ′∆  can be used to calculate the excited state dipole moment. 

Different values result from different assumptions regarding the Onsager radius a. These are 

compiled in Table 4.5a for the cases where ‘a’ was calculated from (1) the mass-density 

formula (eq. 4.5) [55] (2) the molecular volume as calculated using the HF method and (3) 

using the Lippert approach [52]. In order to gain a more reliable basis, the Onsager radii for 

different fluorosubstituted benzenes and dimethylaminobenzenes were determined from the 

experimental densities and the molecular weight (eq. 4.5). As one can see from Table 4.5b, 

addition of one or more fluorine atoms to benzene do not induce any drastic changes in the 

value of the Onsager radius. Thus, it is not surprising that both DMABN and DMABN-F4 are 

predicted to have similar Onsager radii. Hence, all the above mentioned three methods 

resulted in approximately of the same excited state dipole moment values for the CT state, 

around 13 D for DMABN-F4 and 18 D for DMABN. For the usual point dipole Onsager 

model, because of similar Onsager radii, the resulting significantly different CT dipole 
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moment values are entirely a consequence of the difference of the experimental 

solvatochromic slopes. 

 
TABLE 4. 5a:  Onsagar radius, Solvatochromic Slope of the Mataga plot, Calculated Ground and Derived 
Excited State Dipole Moments of DMABN and DMABN-F4 
 

Compound 
a 

(Å)a 
a 

(Å)b 
a 

(Å)c 

Slope 
(103cm-

1)f 
µg(D) µe(D)a µe(D)b µe(D)c 

DMABN 3.7 4.3 4.5d 6.3(B), 6.7d 9.9(B), 11.1(B), 11.6(B), 

    24.2(A) 

  14.8(A) 17.6(A) 18.5(A) 

DMABN-F4 3.8 4.5 4.5 8.4 6.2e 10.5 
 

12.4 
 

12.4 

 
a from the mass-densitiy formula, eq (4.5). b from the molecular volume as calculated using the HF method. c 
based on Lippert approach of the long molecular axis in ref. Lippert, E.; Z. Naturforsch., 1955, 10a,  541. d 
Baumann, W.; Bischof, H.; Froehling, J. C.; Brittinger, C.; Rettig, W.; Rotkiewicz, K. Journal of Photochemistry 
and Photobiology, A: Chemistry 1992, 64, 49. e approximated from µg(DMABN) + ∆µcal.(DMABN-F4 - 
DMABN). f Error estimated at less than 10%. 
 

TABLE 4.5b: Densities and Onsager radius, compared for benzene, fluorinated benzenes, DMABN and 
DMABN-F4. 
 

Molecules 
 

ρa, 
g/cm3 

 
ab, Å 

 
ac, Å 

Benzene 0.877 
 

3.28 4.00 

F-Benzene 1.022 3.34 3.92 

1,2,-F-Benzene 1.157 3.39 4.02 

1,2,4,5-F-Benzene 1.319 3.56 3.90 

Hexa fluorobenzene 1.6184 3.57 3.71 
Dimethylamino 
benzene 

0.956 
 3.82 4.23 

DMABN 1.129d 3.72 4.28 

DMABN-F4 1.561e 3.81 4.45 

 
 
 
a CRC Handbook of Chemistry and Physics, 73rd Edition, CRC press, 1992-1993.b from eq. 4.5.  
c the Onsager radii were determined by Gaussian 98 for the optimised equilibrium geometries using the HF/6-
311G(d) method. dHeine, A.; Herbstirmer, R.; Stalke, D.; Kuhnle, W.; Zachariasse, KA.;  Acta Crystallogr. 
1994, B50, 363. eestimation using DMABN and the difference between 1,2,4,5-F-benzene and benzene 
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νf = − ehca
f µ

π 3
04

2
∈

′∆
( eµ − gµ ) + const             (4.4) 

  
where f ′∆ = (ε-1)/(2ε+1) − 1/2(n2-1)/(2n2+1)        
    
 a = 3

AN4/M3 ρπ                                                         (4.5)       
 

 

 In the above equations, µe and µg are the excited and ground state dipole moments 

respectively, h is Planck’s constant, c is the velocity of light, M is the molecular mass, NA is 

Avagadro’s number and n and ε are the refractive index and dielectric constant, respectively. 

 

4.4 Theoretical Results 

4.4.1 Electronic Property of the Acceptor Fragments 

 
For the discussion of the CT structure and dipole moment, it became important to 

know more about the properties and relative energies of the acceptor orbitals involved. 

Although fluorine substitution is expected to lead to an overall lowering of the energy of the 

acceptor orbitals, a closer look into the reported literature shows that this lowering very 

strongly depends on the substitution pattern, and that orbitals of different symmetry can 

exchange their energetic position. We therefore undertook to calculate the orbital energies of 

both the highest two occupied orbitals and the lowest two unoccupied orbitals by different 

methods and to compare them to the available experiments (Table 4.6). Especially useful is a 

look at their energetic difference (Table 4.7), which changes from negative to positive values 

if the orbitals exchange their energetic position. Both the theoretical and the experimental 

results (Table 4.6) show that insertion of the fluorine atoms into the benzene ring increases 

the acceptor property of this fragment. The HF ab initio calculations (Table 4.6) for a series of 

compounds containing fluorine are in rather good agreement with the experimental ionization 

energies, but the electron affinities are poorly represented. On the other hand, DFT 

(B3LYP/6-31G(d)) shows a much better correspondence to the LUMO energies than HF.  Fig 

4.9 shows that depending on the substitution pattern and the number of fluorine atoms, the 
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orbitals of different symmetry (labeled with respect to the C2 symmetry point group) 

exchange their energetic position. Fig. 4.10 depicts the HOMO and LUMO energies 

calculated with HF and DFT: HF fits much better to the experimental ionization energy, 

whereas the correspondence of DFT LUMO energies and the experimental electron affinities 

is much better. But both methods agree in the prediction of the relative changes of orbital 

energies with the fluorine substitution pattern.  

 
 
 
TABLE 4.6: The energies ε of the four frontier orbitals (the orbital symmetries within point group C2), 
calculated for optimised geometries of  benzene with different substituents (fluorine atom F and CN group) and 
comparison to the negative experimental values of ionisation potential Ie and the electron affinity EA. (F0 – 
Benzene, F1 – Fluorobenzene, CN - Cyanobenzene, F 1,4 - 1,4-difluorobenzene, F 1,3,5- 1,3,5-trifluorobenzene, 
F 1,2,4,5 - 1,2,4,5-tetrafluorobenzene, F 1,2,3,4,5 - 1,2,3,4,5-pentafluorobenzene, F 1,2,4,5,CN - 1,2,4,5-
tetrafluorobenzonitrile). The symmetry designations A and B mean that orbitals with A symmetry have a zero 
orbital coefficient for the atoms lying on the C2 twist axis, those with B symmetry have a nonzero coefficient for 
these orbitals and are symmetric with respect to a plane perpendicular to the molecular plane and containing the 
C2 axis. 
 
 

‘F’ and other 
Substituents 

HF/6-31G(d) 
ε (MO), eV 

calc. 
 

-Ie, eVa 

Exp. 

DFT(B3L/6-
31G(d)) 

ε (MO), eV 
cal.

-EA, eVb 

exp. 
∆EA 

(exp-calc.) 

0 4.07 (B)  0.10 (A)   
(F 0) 4.07 (A)  0.10 (B) +1.15 [1,2] 1.0 

 -9.00 (B) -9.24 -6.70 (B)   

 -9.00 (A) -9.24 -6.70 (A)   

1 4.12 (B)  0.10 (B)   

(F 1) 3.65 (A)  -0.24 (A) +0.89 [1,2] 1.1 

 -9.08 (B) -9.19 -6.62 (B)   
 -9.45 (A) -9.63 -7.04 (A)   

CN 3.29 (A)  -0.67 (A)   

(CN) 2.45 (B)  -1.41 (B) +0.23 [3] 1.6 

 -9.66 (B) - -7.26 (B)   
 -9.84 (A)  -7.52 (A)   

1,4 4.18 (B)  0.10 (B)   
(F 1,4) 3.21 (A)  -0.57 (A) -  

 -9.16 (B) -9.32 -6.56 (B)   
 -9.88 (A) -9.68 -7.37 (A)   

1,3,5 3.59 (B)  -0.36 (B)   
(F 1,3,5) 3.59 (A)  -0.36 (A) -  
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 -9.79 (A) -9.62 -7.09 (A)   
 -9.79 (B) -9.62 -7.09 (B)   

1,2,4,5 3.81 (A)  -0.24 (A)   

(F 1,2,4,5) 2.90 (B)  -0.82 (B) -  

 -9.60 (A) -9.36 -6.78 (A)   
 -10.34 (B) -10.04 -7.56 (B)   

1,2,3,4,5 3.42 (A)  -0.52 (A)   
(F 1,2,3,4,5) 2.95 (B)  -0.82 (B) -0.64 [3]; 0.2 

 -9.99 (A) -9.64 -7.06 (A) -0.86 [4]  
 -10.35 (B) - -7.43 (B)   

1,2,3,4,5,6 3.02 (B)  -0.81 (A)   
(F 1,2,3,4,5,6) 3.02 (A)  -0.81 (B) -0.52 [3]; 0.3 

 -10.36 (B) -9.90 -7.33 (A) -0.73 [4]  
 -10.36 (A) -9.90 -7.33 (B)   

1,2,4,5,CN 3.13 (A)  -0.89 (A)   
(F1,2,4,5,CN) 1.41 (B) - -2.19 (B) -  

 -10.28 (A)  -7.44 (A)   
 -10.80 (B)  -7.96 (B)   

1,2,3,4,5,CN 2.76 (A)  -1.17 (A)   

 1.45 (B) - -2.20 (B) -1.08 [3] 1.1 

 -10.68 (A)  -7.72 (A)   
 -10.79 (B)  -7.86 (B)   

DMABN-F4 3.40 (A)  -0.54 (A)c   
 1.98 (B) - -1.54 (B)c -  
 -9.06 (B)  -6.16 (B)c   
 -10.10 (A)  -7.12 (A)c   

 
 

 

a from [D.G. Streets, G.P. Caesar, Mol. Phys., 1973, 26, 1037; C.B. Duce, K.L. Yip, G.P. Caesar, A.W. Potts, 
D.G. Streets, J.Chem. Phys., 1977, 66, 256] b by electron transmission spectroscopy in the gas phase:[1]. K. D. 
Jordan, J.A. Michejda, P.D. Burrow, J. Am. Chem. Soc., 1976, 98, 7189.[2]. K. D. Jordan, P.D. Burrow, Acc. 
Chem. Res. II, 1978, 11, 341.[3]. S. Chowdhury, E.P. Grimsrad, T. Heinis, P. Kebarle, J. Am. Chem. Soc., 1986, 
108, 3630.[4]. W.E. Wentworthm, T. Limero, C.M. Chen, J. Phys. Chem., 1987, 91, 241. c local symmetry on 
the acceptor group 
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Table 4.7: The energy difference ∆ε (eV) = ε(Β) − ε(Α), of the molecular orbitals of benzene with different 
substituents and with different symmetry as calculated by the following methods: HF/6-31G(d), AM1, DFT 
(B3LYP/6-31G(d)) and compared to experimental values as far as available. Upper rows: difference of the first 
two LUMOs, lower rows: difference of the two highest occupied orbitals. 
 

Position of F-
substituents and other 

substituents 

HF 
 

AM1 
 

DFT 
(B3LYP/6-

31G(d) 

expa 

 

0 0.00 0.00 0.00  

 0.00 0.00 0.00  

1 0.47 -0.06 0.34 - 

 0.37 0.49 0.42 0.44 

CN -0.84 -0.46 -0.74 - 

 0.18 0.15 0.26 - 
1,4 0.97 - 0.67 - 

 0.72 -  0.81 0.83 
1,3,5   0.00 0.00   0.00 - 

 0.00 0.00   0.00 0.00 
1,2,4,5 -0.91 0.10 -0.58 - 

 -0.74 -0.83 -0.78 -0.68 
1,2,3,4,5   -0.47 - -0.30 - 

  -0.36 - -0.37 - 
1,2,3,4,5,6   0.00 0.00 0.00 - 

   0.00  0.00  0.00 0.00 
1,2,4,5,CN   -1.72   -0.26 -1.30 - 

  -0.52  -0.68 -0.52 - 
1,2,3,4,5,CN -1.31 - -1.03 - 

 
 

-0.11 
 

- -0.06 
 

- 
 

 
a Calculated from the negative experimental IP values in ref.  D.G. Streets, G.P. Caesar, Mol. Phys., 1973, 26, 
1037 
 
 
Figure 4.9 and Tables 4.6 and 4.7 show that in some compounds (1 fluoro and 1,4 

difluorobenzene), the orbitals of B symmetry are higher lying than the orbitals of A 

symmetry. In the twisted geometry, the electron transfer from dimethylamino group (the 
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donor orbital transforming as B) can be to either of the two lowest LUMO orbitals of the 

acceptor. This could have the consequence that also the energetic position of the two possible 

TICT states interchanges, and the lowest TICT state could become of B symmetry instead of 

A symmetry as in DMABN.         

 

 

 

The results for 1,2,4,5 tetrafluorobenzene, ho

is lower than the A orbital for both the HOMO and th

enhanced for the LUMO by introducing a further cyano 

orbitals of the acceptor). From the DFT-LUMO energie

cyano derivative, we can conclude that the four fluorin

0.78 eV. 

Thus we can conclude that the properties of

same for DMABN and DMABN-F4 regarding sym

distribution should be similar. 
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Figure 4.9: Correlation diagram of the energies of the 
occupied and unoccupied orbitals of fluorinated 
benzenes and benzonitrile as calculated by HF (values 
see table 6) 
 

Figure 4.10: The comparison of the orbital energy for 
HOMO (εhomo) and LUMO [(εlumo) calculated by 
different methods (HF/6-31G(d) and DFT (B3LYP/6-
31G(d))] with the negative experimental values of 
electron affinity EA and ionisation potential IP for 
different compounds. The compounds are defined in 
table 6. 
wever, clearly show that the B orbital 

e LUMO manifold, and this effect is 

group (but weakened for the occupied 

s for 1,2,4,5-tetrafluorbenzene and its 

e atoms lower the LUMO energy by 

 the lowest TICT state should be the 

metry, and hence also the charge 



 46

 
 
 

 
 Figure 4.11: Schematic diagram showing the state energies of DMABN and DMABN-F4 in the

calculated by ZINDO/s. 

 
This lowering of the TICT energy has also consequences for the rea

of the B* → A* reaction. In the gas phase, it is calculated as being uphill (en

both compounds, but significantly less for so for DMABN-F4. Thus, for a 

polarity, where the reaction is exothermic in DMABN, the exothermicity is th

larger for DMABN-F4 (Figure 4.11) 

 

4.4.2 Electronic Transitions 

The semiempirical ZINDO/s calculations show that the long

absorption region of DMABN and DMABN-F4 consists of two transitions (T

position and intensity of these transitions are characterized by an allowed S2 tr

eV, f = 0.49 and 4.59 eV, f = 0.64 for DMABN-F4 and DMABN, respectively

transfer (CT) nature (dipole moment 12.4 D similar to DMABN) and a polariza

long molecular axis (1La-type according to Platt nomenclature). Thus, there is a

of the 1La-type state as expected from the increased acceptor strength also 

experimental spectra (Fig. 4.2). The forbidden S1 transition (f = 0.01) with a so

energy (3.93 eV in DMABN-F4) is of 1Lb nature and does not lead to a st

absorption spectrum (Fig. 4.2a) in contrast to the similar S1 transition (4.27 e

DMABN which leads to a weak shoulder on red side of the absorption spectrum

of structure in the absorption spectrum of DMABN-F4 in hexane is in c

calculated S1-S2 energy difference (Table 4.8), which is even larger for DMA

eV) than for DMABN (0.32 eV). We consider that the energy lowering of the 1L

DMABN-F4 is probably smaller than predicted by the calculations in Table 4.8.

T
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Table 4.8: Comparison of the transition energy ∆E, oscillator strength f, dipole moments and configuration 
interaction analysis for the long wavelength absorption transitions for DMABN and DMABN-F4 as calculated 
by ZINDO/s for the optimized ground state equilibrium geometry and two further twist angles. (full optimization 
at the different fixed twist angles using DFT (B3LYP/6-311++G(d)). 

 

DMABN 
twist angle and symmetry 

DMABN-F4 
twist angle and symmetry 

 
 

Parameter 
 
 

 
00_cseq 

 
35_c1 a 

 
90_cs 

 
00_cs 

 
35_c1eq 

 
90_cs 

∆E(S0→ S1), 
eV (f) 4.27 (0.02) 4.27 (0.02) 4.49 (0.00) 3.94 (0.01) 

 
3.93 (0.01) 

 
4.16 

(0.00) 
µ (S1) (µ (S0), 

D) 8.36 (7.34) 8.33 (7.04) 5.84 (5.94) 8.81 (7.48) 8.87 (7.10) 5.90 
(5.85) 

∆µ, D 1.02 1.29 0.10 1.33 1.77 0.05 

CI-coefficient: 
HOMO+0→L

UMO+1 
0.58 0.58 0.46 0.56 0.57 0.47 

HOMO-
1→LUMO+0 0.38 0.39 0.52 -0.42 -0.40 -0.52 

nature 1Lb 1Lb LE(BN)b 1Lb 1Lb LE(BN)b 

∆E(S0→ S2), 
eV (f) 4.59 (0.64) 4.53 (0.56) 5.36 (0.00) 4.46 (0.57) 4.22 (0.49) 4.60 

(0.00) 

µ (S2) (µ (S0), 
D) 12.51(7.34) 13.26(7.04) 16.66(5.94) 12.35(7.48) 13.27(7.10) 16.81(5.8

5) 

∆µ, D 5.17 8.22 10.72 4.87 6.17 10.96 

CI-coefficient: 
HOMO+0→L

UMO+0 
0.68 0.68 0.64 0.68 0.68 0.65 

nature La/CT La/CT TICTc La/CT La/CT TICTc 

 
a fixed torsional angles of the carbon atoms of the dimethylamino group which are equal to the equilibrium 
orientation of the group for DMABN-F4; b LE state localised on the benzonitrile moiety; c S4 for DMABN, S2 for 
DMABN-F4 

 
 

The stronger acceptor in DMABN-F4 is also reflected in the energy of the 

calculated (and observed) TICT state: In DMABN, it is calculated at 5.36 eV, in DMABN at 

4.60 eV, i.e. 0.76 eV lower, very close to the value predicted by the lowering of the acceptor 

orbital energy (0.78 eV, Table 6). As a consequence, in contrast to DMABN, the lowest TICT 

state of DMABN-F4 calculated for 90° corresponds to S2, whereas it is S4 in DMABN in the 

gas phase according to the ZINDO/s calculations.  
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4.4.3 The Discrepancy of Experimental and Calculated CT Dipole moments 

On the basis of the solvatochromic measurements, the resulting CT dipole 

moments of DMABN (18 D) and DMABN-F4 (13 D) were found to be strongly different, 

with that of DMABN-F4 being anomalously low. On the other hand, the calculations indicate 

that the dipole moments should be similar (16.7 and 16.8 D, respectively, Table 8), and the 

transient absorption experiments [50] also indicate that the electronic structure is similar and 

full charge separation has occurred.  

This discrepancy is solved if the assumption of equal Onsager radii a is dropped, 

because the solvatochromic slope is proportional to the ratio µe /a3. An increased a for 

DMABN-F4 will lead to a correspondingly increased µe. In fact, we can estimate that an 

increase from a = 3.7 to a = 3.8 is sufficient to result in similar dipole moments for the TICT 

states of both DMABN and DMABN-F4. On the other hand, using the molecular volumes 

estimated by quantum chemical calculations and from the densities and molecular weights 

(Table 4.5b), we concluded that the solvent cavity volume excluded by the solvent should be 

very similar for the two compounds. Using Onsager's point dipole approximation, which is at 

the basis of the solvatochromic treatment according to Mataga, we are therefore forced to 

conclude for different CT dipole moments from the different experimental solvatochromic 

slopes. 

A possibility for justifying differently sized a-factors for the two compounds would be 

by assuming different solute-solvent interactions for the same value of the a-factor. If the 

solute-solvent response would be weaker in DMABN-F4 than in DMABN, this would 

correspond to an increased a-factor in the usual solvatochromic equation. This is equivalent to 

say that the Onsager point dipole approximation is not valid for this comparison. 

We can justify such a point of view by considering the different charge distribution in 

the two compounds: The pi and pi* orbitals are very similar, hence the CT charge distribution 

due to the pi-electronic transitions should be similar (see the calculations, Tab. 4.8). But the 

fluorine atoms on the acceptor are negatively charged (in both ground and excited state) 

whereas the H-atoms in DMABN are positively charged. The negative charge on the fluorine 

atoms will prepolarize the solvent dipoles already in the ground state such that upon 

excitation to the charge transfer state, their relaxation possibility is reduced which is 

equivalent to say that the solute-solvent interaction is effectively weakened. 

This explanation of the dipole moment discrepancy by a break-down of the 

Onsager point dipole theory is a first attempt to explain the unusual solvatochromic behaviour 
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of highly fluorinated charge transfer compounds. Further experiments are needed to verify 

this explanation. 

 

4.4.4 Competing Photochemical Reaction paths 

 
The value of knr is considerably larger for DMABN-F4 than for DMABN, 

especially in n-hexane (Table 4.1c). We can conclude that we have an additional nonradiative 

decay channel: Its nature could be either population of a triplet state (intersystem crossing 

ISC) or population of a transient nonemissive singlet species and/or nonradiative 

photochemistry through a conical intersection (internal conversion IC). As there is no 

permanent photochemical product these reaction paths have to lead back to the ground state of 

the starting material. As we do not observe phosphorescence, the triplet path is not probable. 

The number of fluorine substituents seems to be an important factor in the enhancement of 

this IC path as already stated by Druzhinin et al. [45]. In the tetrafluorinated DMABN, this IC 

path is further enhanced as compared with the monofluorinated derivatives.  

A possible reaction path that can be discussed is the folding (relaxation to 

nonplanarity) of the benzene ring in the excited state. Recent calculations of DMABN 

indicate that even in this nonfluorinated compound, the TICT state possesses a nonplanar 

benzene ring [56]. The case of 1,2,4,5 tetrafluorobenzene further exemplifies the effect of the 

fluorine atoms which enhance the tendency for nonplanar folding: Whereas benzene shows no 

sign of a deviation from planarity in the emissive excited state, the emissive state of 

tetrafluorobenzene shows a folding (butterfly motion) resulting in a double minimum 

potential, as deduced from laser-induced fluorescence spectra [57]. If there is a similar folding 

in DMABN-F4 (and to some extend even in DMABN which also has a nonnegligible 

contribution of IC), it could lead to a conical intersection along the reaction coordinate 

leading either to the Dewar isomer (folding of two four-membered rings) or to the benzvalene 

isomer (folding of two three-membered rings). Such conical intersections are known to play 

an important role in the nonradiative photochemistry of benzene and its derivatives [58, 59, 

60]. 
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4.5 Conclusion 

DMABN-F4 is spectroscopically closely related to DMABN but characterized by a 

higher acceptor strength. The strongly redshifted emission and absence of the short 

wavelength B-band in the fluorescence spectrum of DMABN-F4 at 77 K indicates the 

ultrafast formation of a CT structure in the excited state, probably linked to the pretwisted 

ground state geometry and the increased acceptor strength. The low fluorescence quantum 

yield values and absence of phosphorescence of DMABN-F4 suggest that the high rate of 

non-radiative decay takes place through internal conversion rather than intersystem crossing. 

A possible intersystem crossing reaction path could be the folding (butterfly motion) of the 

benzene ring either towards a Dewar or a prefulvene deformation. Results from time-resolved 

measurements indicate that the emission of DMABN-F4 is strongly forbidden consistent with 

the formation of a twisted intramolecular charge transfer state (TICT) with high dipole 

moment. The relatively small solvatochromic slope for this CT emission, as compared to 

expectations from quantum chemical calculations, indicates the possibility for a breakdown of 

the Onsager point dipole approximation for highly fluorinated CT compounds. 
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5 Excited State Properties of Fluorinated Analogues of DMABN 
and PBN 

Abstract 
 The excited state characteristics of fluorinated derivatives of N,N-

dimethylaminobenzonitrile and N-pyrrolobenzonitrile have been  characterized by both 

absorption and emission spectroscopy and the fluorinated have been compared with the 

corresponding nonfluorinated compounds.  The low fluorescence quantum yield values 

observed in these compounds are not due to intersystem crossing (no phosphorescence 

observable) and have been rationalized in terms of the fluoro atom substitution which can 

enhance the benzene channel III nonradiative pathways. It is tentatively proposed that the 

non-radiative pathway in the excited state of these compounds can be either bending (Dewar 

path) or folding (prefulvene path) of the benzene ring. 

 

5.1 Introduction 

Electronically excited molecules are known to undergo a variety of decay 

processes. In addition to the radiative decay (fluorescence or phosphorescence), the non-

radiative decay takes place either by internal conversion (IC) or by intersystem crossing 

(ISC). An ISC mechanism from S1 to T1 can be evidenced through phosphorescence. For the 

other non-radiative channel (IC to the ground state), formation of dark transient structures 

such as conical intersections and excited state chemical reactions such as fragmentation and 

isomerisation have been discussed in this type of molecules. In a simple molecule like 

benzene, very low fluorescent quantum yields have been observed and interpreted by the 

existence of a very efficient photochemical pathway (channel III photochemistry) [57, 58, 59, 

60, 61, 62] to the electronic ground state.  
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Figure 5.1: Structures of the molecules 

 

 

The motivation of this chapter arises from the fact that the fluoro analogues of 

DMABN, namely DMABN-F4 possess a benzonitrile group with strongly increased acceptor 

properties as compared to DMABN. By increasing the acceptor strength by introducing F-

atoms into the donor-acceptor systems, the energy of the intramolecular charge transfer (ICT) 

state will be preferentially stabilized.  This should therefore lead to enhanced charge transfer 

(CT) formation. But on the other hand, the literature indicates that this substitution will lead to 

an increased efficient non-radiative decay. Druzhinin [45] reported that F-substitution into the 

corresponding azetidinyl benzonitriles creates an efficient internal conversion channel. It is 

possible that the IC channels will be further increased by higher fluoro-substitution.  In order 

to investigate this behaviour of fluorinated compounds, further aniline derivatives such as 

ABN-F4, A-F5 and PBN-F4 are spectroscopically investigated here by means of both 

absorption and fluorescence spectroscopy. 

 

5.2 Experimental 

Technical details about the measurement of absorption and fluorescence spectra 

and quantum yields are reported in section 3.3 

 
5.2.1 Synthesis of the Compounds used in this Study 

The compounds were a gift of Prof. A.I. Tolmachev, Institute for Organic 

Chemistry of the National Academy of Sciences of Ukraine, Kiew, Ukraine. 
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5.3 Results and Discussion 

5.3.1 Absorption and Emission Spectroscopy 

Fig. 5.2 shows the absorption and emission spectra of all the compounds 

investigated, and the photophysical data are compiled in Table 5.1. The absorption spectrum 

of ABN-F4 in polar solvents is slightly red shifted when compared to that in non-polar 

solvent. The absorption spectra of all the compounds in solvents of various polarity are 

independent of concentration effects. There is no emission observable for ABN-F4 in any of 

the solvents. Even though, the acceptor strength in ABN-F4 is considerably stronger than in 

the parent compound ABN, the absorption spectrum in hexane is slightly shifted to the blue as 

compared to ABN in hexane [63]. The latter phenomenon was also taking place in the case of 

PBN-F4 with respect to p-PBN. The absorption spectra of DMABN-F4 in all solvents are 

slightly red shifted with respect to DMABN. The difference between the behaviour of p-PBN 

and DMABN-F4 with respect to their tetrafluorinated derivative can be linked to the different 

influence of solvent polarity on the absorption spectra (large for DMABN-F4, negligible for 

p-PBN), which is a sign of the smaller contribution of the quinoidal resonance structure in p-

PBN. 
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Figure 5.2: Normalised Absorption and fluorescence spectra of ABN-F4, A-F5 and PBN-F4 in 
various solvents of different polarity (Hex – n-hexane, EOE – diethylether, ACN - acetonitrile). 
Abs. spectra are superimposed in the case of PBN-F4. 
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TABLE 5.1: Photophysical parameters of fluorinated analogues of DMABN and aniline in various solvents at 
room temperature and comparison to nonfluorinated derivatives 
 

Compounds Solvent λabs 
(nm) 

λflu 
(nm) φf 

DMABN-F4 Hex 300 456 0.0006 
 EOE 304 501 0.0010 
 ACN 308 537 0.0001 

DMABN Hex 282 341  
 ACN 292 365(B), 

476(A) 
0.0016(B),  
0.0162(A) 

     
ABN-F4 Hex 256  <10-4 

 EOE 275  ,, 
 Hex:EOE 

(4:1) 
267  ,, 

 ACN 276  ,, 
ABN Hex 261 - - 

     
A-F5 Hex 272 409 0.0149 

 EOE 277 447 0.0056 
 Hex:EOE 

(4:1) 
274 440 

- 
 ACN 275  <10-4 
     

PBN-F4 Hex 280 477 0.0016 
 EOE 282  <10-4 
 ACN 280  ,, 

p-PBN Hex 287 332 0.077 
 ACN 287 460 0.024 

 
  
  

For A-F5, the absorption spectra do not show much variation in their maximum in 

the solvents studied. In contrast to ABN-F4, this compound shows emission in n-hexane and 

diethyl ether, and the spectra are very broad and show a strong solvatochromic redshift 

indicating an emissive CT state. Moreover, they are blue shifted when compared to DMABN-

F4, which indicates that the donor is probably the amino and dimethylamino group. The 

emission spectra of A-F5 in hexane and diethyl ether also show broad spectra and significant 

solvatochromic shifts indicating CT emission. The quantum yield values of A-F5 are 

drastically decreasing from n-hexane, and the compound eventually is non-fluorescent in 

acetonitrile. This could be a polarity effect energetically favouring a polarity-sensitive non-

radiative channel.  Apart from the investigations of fluorinated anilines, the fluorinated 

analogue of PBN, namely PBN-F4 is also investigated. The absorption spectra do not change 



 55

with the polarity of the solvent. Emission is only observable in n-hexane. The compound is 

non-emissive in medium and highly polar solvents. The fluorescence behaviour of ABN-F4, 

A-F5 and PBN-F4 has also been studied at 77 K in EOE. Neither fluorescence nor 

phosphorescence was observed in such conditions.  

 

Regarding the nature of the CT state, it is well-known, that DMABN populates a 

Twisted Intramolecular Charge Transfer TICT state [9], and this has also been verified for 

DMABN-F4 [64] The strongly increased TICT formation tendency for DMABN-F4 as 

compared to DMABN can be explained on the basis of two facts: a) the increased acceptor 

strength b) a change of equilibrium conformation in the ground state. In the ground state, 

DMABN assumes a planar equilibrium conformation. The addition of fluorine atoms into the 

ring considerably increases the twisting of the acceptor moiety as evidenced by quantum 

chemical calculations [64]. Due to the fluoro substituents on the benzene moiety, PBN-F4 is 

also expected to be more strongly twisted in the ground state than the parent compound PBN.  
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Figure 5.3: Plot of log knr of DMABN against the number of fluorine atoms. The numbers in the 

brackets represent the position of the fluorine atoms with respect to the cyano group. The knr values for 
the monofluorinated DMABN-derivatives have been extrapolated for labels F1(2) and F1(3) from the 
compounds (ref.7) P4CF2 and P4CF3 in Fig. 5.1.   

 

The low fluorescence quantum yield values can be explained in terms of the 

fluorine substitution operating as an additional photochemical pathway such as butterfly 

folding of the benzene ring. The non–fluorescent behaviour of ABN-F4 can be compared to 

1,2,4,5-tetrafluorobenzene where laser-induced fluorescence spectra have evidenced a folding 

(butterfly motion) resulting in a double minimum excited-state potential [57]. An additional 

question one can ask is whether the increase of the non-radiative rate constant of DMABN 

shows a linear dependence on the number of fluorine atoms. This is conceptually represented 

in Fig. 5.3 by plotting log knr DMABN versus the number of fluorine atoms. It can be seen 
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that already one fluoro atom can be as efficient as four fluorine atoms in enhancing knr. The 

detailed nature of this fluoro effect necessitates further experimental and theoretical studies. 

 

5.4 Conclusion 

The excited state characteristics of fluorinated aniline and phenylpyrrole 

derivatives have been analysed by absorption and emission spectroscopy at room temperature. 

The high solvatochromic effect of the emission spectra of DMABN-F4 and A-F5 points to the 

formation of a CT state. The increase in non-radiative rate constant by the addition of fluorine 

atoms can be tentatively rationalised on the basis of the benzene channel III pathways [57, 58, 

60]. The reaction pathway for non-radiative decay in the excited state of these compounds 

might be either bending (Dewar path) or folding (prefulvene path) of the benzene ring. 

Introduction of fluorine atoms into the acceptor part strongly lowers the energy of the CT 

state and enhances and enhances its population efficiency. But it also lowers the energy of 

possible conical intersections related with the channel III pathways and therefore induces a knr 

pathway efficiently competing with CT formation. 
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6 TICT Formation and Antiquinoid Distortion in para- and meta-
Derivatives of N-Phenyl Pyrrole 

Abstract 
 

The photophysical properties of meta- and para-cyano N-phenyl pyrrole (m- and p-

PBN) are compared. Both compounds show highly red-shifted and strongly forbidden 

emission in polar solvents, assigned to a charge transfer state. The forbidden nature is 

indicative of very weak coupling between the two π-systems, and a twisted emissive structure 

is suggested (TICT state). Comparison to quantum chemical calculations indicates that the 

twisted structure possesses an antiquinoid distortion of the benzonitrile group, i.e. the bonds 

in the ring are lengthened instead of shortened, as in the quinoid state, which is reached in 

nonpolar solvents. m-PBN is the first meta compound which shows TICT emission. It differs 

from p-PBN by a less exergonic formation of the TICT state from the LE/ICT quinoid state. It 

therefore shows only single LE/ICT fluorescence in nonpolar alkane solvents, whereas p-PBN 

shows dual fluorescence in this solvent (LE/ICT and TICT). 

 

6.1 Introduction 

Since the ‘‘Twisted intramolecular charge transfer’’ (TICT) concept has been 

developed some two decades ago, the investigation of charge transfer (CT) in donor-acceptor 

systems, especially substituted benzenes, unraveled many processes occurring in their excited 

states. Particularly, this has led to the understanding of the dual fluorescence of 4-cyano-N,N-

dimethylaniline (DMABN) which was discovered by Lippert in 1959 [52]. In many 

compounds, TICT states are formed via an adiabatic photoreaction: If a TICT forming 

molecule possessing a planar ground state is electronically excited, it relaxes spontaneously in 

the excited state towards a twisted conformation from where it decays by emission or 

nonradiatively. The rate of reaching the TICT state with its twisted conformation is 

determined, at least for compounds similar to DMABN and apart from other factors, by the 

initial (Franck-Condon) twist angle which is reached directly after light absorption from the 

ground state. The closer this initial twist angle is to the final one (about 90o), the faster is the 

TICT population kinetics. In that respect, CT can be explored by variation of the donor and 

acceptor groups on either side of the benzene moiety stabilizing the CT transfer state. 

Surprisingly, the dual fluorescence has not been observed in the case of meta derivatives of 
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DMABN [65]. This is in part due to the larger energy gap between the first two excited states 

(1La, 1Lb) for the meta as compared to the para derivatives, and therefore the driving force for 

the adiabatic photoreaction is strongly reduced for m-DMABN as compared to p-DMABN 

[9]. 
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Figure 6.1: Structures of the molecules 

 
  

Pyrrolobenzonitriles constitute a group of donor-acceptor systems in which the 

dimethlyamino group is replaced by a better donor moiety, namely pyrrole. The absorption 

and fluorescence properties of N-pyrrolylbenzonitrile (p-PBN), its ester derivative PBAEE, 

and a more twisted model compound DPBN with stronger donor-acceptor propeties have been 

compared by Gude et al. [66].  Recently, Yoshihara et al [67] reported on the determination of 

excited state dipole moments of N-phenylpyrroles and DMABN from solvatochromic and 

thermochromic measurements. Both the para and meta PBN derivatives were shown to 

populate a CT excited state but the conformational nature remained unclear as transition 

moments were not determined. This is to be contrasted with the recent investigation of a 

planar model compound (FPP) of phenyl pyrrole [68] as compared to phenyl pyrrole (PP) 

itself. In both cases, a red-shifted CT fluorescence band could be shown to be present. This 

leaves two possibilities: (i) either both FPP and PP possess a planar structure for the relaxed 

CT state corresponding to a “ Planar Intramolecular Charge Transfer ” PICT state [69, 70, 71, 

72] or (ii) FPP has a planar structure and PP a twisted one. In this case, different emissive 

properties are expected. Unfortunately, the experimental investigation of transition moments 

in PP and FPP has not been reported [68]. 

 

Zilberg et al. [73] performed theoretical calculations on N-phenyl pyrroles. The 

calculations support the possible existence of two distinct structures for the CT state. One of 
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them has a quinoid structure with characteristically shortened bonds in the benzene ring, and 

the two rings are coplanar at the energy minimum. The other one is of anti-quinoid structure 

(where the quinoid bonds in between are lengthened instead of shortened), has a larger dipole 

moment than the quinoid one, and has an energy minimum with the pyrrolo group twisted by 

90° with respect to the benzene ring. 

 Only the antiquinoid state is expected to possess forbidden emissive properties. Our 

results reveal that the CT emission is strongly forbidden in both compounds investigated. The 

combination of experiment and theory therefore leads to the conclusion of antiquinoid 

properties and twisted structure of the emitting CT state in both compounds. 

The meta isomer of p-PBN, m-PBN is the first compound where a m-substituted 

cyano derivative shows TICT formation. Like m-DMABN, m-PBN also shows a red-shift in 

the absorption maximum of S1. This reduces the exothermicity of CT formation for meta-

compounds in general. On the other hand, when comparing p-PBN with DMABN, there is a 

large exothermicity from LE to TICT formation due to the better donor. As a matter of fact, 

already nonpolar solvents like n-hexane induce the appearance of dual fluorescence for p-

PBN. The combined effect of both factors can achieve that both para isomers DMABN and p-

PBN show CT formation whereas only m-PBN populates a CT state, but m-DMABN emits 

from an LE state. 

 

6.2  Experimental 

6.2.1  Materials 

The compounds were synthesized according to the procedures described in refs. [29, 

30] and sublimed. The experimental details about the absorption, fluorescence, lifetime and 

quantum yield measurements are described in chapter 3.  

 

6.2.2 Quantum Chemical Calculations 

The ab initio calculations were performed with GAMESS [74] using the cc-pVDZ 

basis set [75]  in collaboration with Dr. Shmuel Zilberg at Department of Physical Chemistry 

and the Farkas Center for Light Induced Processes, The Hebrew University of Jerusalem, 

Jerusalem, Israel. Full geometry optimization was performed for the doublet ground state of 

benzonitrile radical anion by using CASSCF calculations (CAS(11/10)/cc-pVDZ (11electrons 

on 10 orbitals)). 
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6.3 Results  

6.3.1 Room Temperature Spectroscopy 

The absorption and emission spectra of p-PBN and m-PBN in various solvents of 

different polarity are compared in Fig. 6.2. The main absorption band of m-PBN is shifted to 

the blue region compared to p-PBN in n-hexane. There is also a weak shoulder in the red edge 

of the absorption spectrum of m-PBN, which can be interpreted as a weak transition, which is 

red-shifted when compared to the corresponding one in p-PBN. All the emission spectra 

exhibit a strong red-shift of their maxima increasing from weakly polar to strongly polar 

solvents. The emission of p-PBN in n-hexane is broad as compared to the narrower band in 

m-PBN. Yoshihara et al. [67] reported dual fluorescence for m-PBN dissolved in the medium 

polar solvent diethyl ether (EOE). This is has been verified here by comparing an aerated and 

a deaerated solution, and the shoulder in the fluorescence spectrum is not present for both 

freshly prepared solutions but rises for the aerated solution only for a prolonged stay of the 

sample in the dark. The shoulder reported in ref. [67] is therefore assigned to the appearance 

of a thermal oxidation product. No shoulder appeared on photolysis of the deaerated solution. 

Emission maxima observed in this work differ somewhat from the previous work of Gude et 

al. [66] and Yoshihara et al. [67] due to the use of different fluorescence spectrometers and 

correction curves. The quality of the emission correction curve is especially important for 

broad and structureless CT spectra as observed for m-PBN and p-PBN in polar solvents. We 

have verified the quality of the correction curve used here by comparing to spectra measured 

on a freshly calibrated fluorimeter.  
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Figure 6.2: Normalised Absorption and fluorescence spectra of p-PBN and m-PBN in various solvents of 
different polarity (HEX- n-hexane, EOE – diethylether, ACN - Acetonitrile).  

 

Comparison of the spectra of m-PBN with p-PBN exhibits rather similar features 

except in nonpolar solvents such as n-hexane where the emission spectrum is narrower for m-

PBN than for p-PBN in n-hexane. The solvatochromic red-shift in going from low to high 

polar solvents is a substantial indication of the charge transfer (CT) nature of the emitting 

state in both compounds. (see section 6.3.2) 
 

The molar extinction coefficient values determined for p-PBN and m-PBN in n-

hexane are ε (λ max
287 ) = 25747 and ε (λ max

258 ) = 25400 respectively. In the case of p-PBN, the 

bands due to the S1 and S2 states are strongly overlapping (see below), whereas the redshift of 

the S1 absorption in m-PBN leads to the appearance of the shoulder with small extinction 

coefficient in the absorption spectrum (Fig. 6.2). The blue shift of the main absorption band 

(see Fig. 6.2) and the small absorption shoulder at ca. 300nm for m-PBN is a consequence of 
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the meta-effect [76]. As the calculations described below show, the single main absorption 

band of p-PBN hides a weak band which can be assigned to the 1Lb state in Platt’s 

nomenclature. Due to the meta-effect, the S1 state of m-PBN is therefore at lower energy than 

for p-PBN.  

 
 
 
 
TABLE 6.1: Photophysical Characteristics of m-PBN and p-PBN in Solvents of Different Polarity at Room 
Temperature 
 

 Sol  λflu 
(nm) 

∆νst
b 

(103cm-1) φf 
τf

c 

(ns) 
kf 

(107s-1) 
knr 

(108s-1) 
 Mf 
(D) 

p-PBNa         
 Hex 332 4.722 0.077 2.42 3.18  3.8  3.77 
 EOE 393 9.397 0.023 3.80 0.61  2.6 2.18 
 THF 422 11.146 0.024    -- 
 DCM 412 10.571 0.022 3.10 0.71 3.2 2.35 
 ACN 460 13.104 0.024 8.20 0.29 1.2  1.93 
         

m-PBNd,e Hex 327 2.752 0.155 3.31 4.68  2.5  4.47 
 BOB 369 6.233 0.023 - - -  
 EOE 397 8.144 0.019 3.76 0.47  2.6  1.94 
 THF 429 10.023 0.016 5.01 0.32  1.9  1.70 
 DCM 415 9.236 0.013  -- -  
 ACN 476 12.324 0.013 5.35 0.24  1.8 1.85 

a λ
abs

max  = 287nm used as the excitation wavelength for all solvents (absorption maximum is independent of 

polarity).  bThe Stokes shift is measured from the weak absorption shoulder at 300nm. c from ref. 4. . d λ
abs

max  

= 258nm used as the excitation wavelength for all solvents (absorption maximum is independent of polarity). e S1 
corresponds to the shoulder at 300nm in the absorption spectrum . 
 

 
Stokes shift values with reference to the first absorption band have been calculated and 

tabulated for both m-PBN and p-PBN in Table 6.1. It is found that they are slightly smaller 

for m-PBN due to the red-shift of S1. But, in the case of highly polar solvents, the Stokes shift 

values are large in number for both compounds indicating emission from a CT state. The 

fluorescence decay curves are monoexponential, allowing the evaluation of radiative and 

nonradiative rate constants according to equations 6.2 and 6.3. In eq. 6.3, k tot
nrn

 corresponds to 

the sum of all nonradiative processes including triplet formation. The emission transition 

dipole moments were calculated using (eq. 6.4) [77] and are the characteristics of the excited 

states. The measured data and calculated photophysical values are collected in Table 6.1. 

 

    kf  = φf /τf                                     (6.2) 
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    k tot
nrn

 = kf(φf
-1-1)                             (6.3) 

    Mf 
2 = (3hkf /64π4n3νf

 3)               (6.4) 
 

The kf values decrease when going from hexane to polar solvents in parallel to the 

quantum yield values for both p-PBN and m-PBN. In the case of m-PBN, the kf values in the 

more polar solvents are even smaller than in p-PBN, indicating the enhancement of forbidden 

character present in the emitting state.  

 

6.3.2 Solvatochromic Measurements 

The solvatochromic slopes were analysed to get quantitative information on the 

dipole moments for both compounds, by applying the Mataga equation (eq. 6.5) [52, 53, 54] 

and the resulting values are collected in Table 6.2. The plot of the emission maximum versus 

the polarity parameter, f ′∆  is shown in Fig. 6.3. Similarly, a new type of Mataga plot has 

also been made by using low temperature fluorescence spectra: In this case, the emission 

maxima at different temperatures in diethylether were plotted versus the temperature 

dependent f ′∆  values (fig. 6.4) In this case, f ′∆  was calculated by taking dielectric constant, 

ε and refractive index, n as a function of temperature [36]. The plots show a linear 

relationship in both cases. It is found that the solvatochromic slope values (Table 6.2), which 

are determined from the second type of Mataga plot at different temperatures, are somewhat 

larger than from the room-temperature Mataga plot, but in both types of Mataga plots, the 

slope values are slightly higher for m-PBN than for p-PBN. The Onsager radius, a= 4.1 Å for 

p-PBN [66] and m-PBN was calculated by the mass-density formula (eq. 6.5) [55] by taking 

an average density ρ = 0.95g/cm [66]. This approach neglects the different molecular shapes 

of p-PBN and m-PBN. 

 

 
TABLE 6.2: Results of the Solvatochromic Measurements at Room Temperature and Low Temperature 
(Solvatochromic slopes, assumed Onsager factor a, µg(D) and derived µe(D) for the 2 methods) 
 

 a (Å) Slope (103cm-1)a Slope (103cm-1)b µg(D)c µe(D) 
p-PBN 4.1 -27.501d -27.500 2.09 14.8 
 4.1 -35.489e  2.09 16.6  
m-PBN 4.1 -30.306d -28.000 2.78 15.8 
 4.1 -40.067e  2.78 18.0 

 

a Error less than 10%. bBased on crystal density; ref. 5 cCalculated by AM1. d from the Mataga plot at room 
temperature. e from the Mataga plot in diethyl ether at low temperatures. 
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Figure 6.3: Solvatochromic fluorescence plot of a) m-PBN and b) p-PBN derived from differently polar solvents 
at room temperature. (HEX- n-hexane, BOB- dibutyl ether, EOE – diethyl ether, THF- tetrahydrofuran, DCM- 
dichloromethane, ACN - acetonitrile).  
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Figure 6.4: Solvatochromic fluorescence plot of a) m-PBN and b) p-PBN derived from measurements in diethyl 
ether at variable temperature 

 

 
 
 

νf = − ehca
f µ

π 3
04

2
∈

′∆
( eµ − gµ ) + const              (6.5) 

  
  where f ′∆ = (ε-1)/(2ε+1) − 1/2(n2-1)/(2n2+1)          
    
 a = 3

AN4/M3 ρπ                                                             (6.6)       
 
In the above equations, µe and µg are the excited and ground state dipole moments 

respectively, h is Planck’s constant, c is the velocity of light, and n and ε are the refractive 

index and dielectric constant, respectively. The resulting excited state dipole moments are 

determined using the calculated ground state dipole moments are very close for both 
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solvatochromic methods and are even slightly larger for m-PBN as compared to p-PBN 

(Table 6.2). These large µe values suggest that the emissive state is of CT nature and is similar 

in both compounds regardless of the position of the cyano substituent.  

    

6.3.3 Spectroscopic Measurements at Low Temperatures 

 Fluorescence measurements at low temperatures were done in the nonpolar 

solvent mixture methylcyclohexane – isopentane (1:4), and in the medium polar solvent 

diethyl ether. For m-PBN in EOE, with the lowering of temperature, a red-shift of the 

emission maxima is observed (Fig. 6.5) and analyzed using the Mataga equation. A red-shift 

of the emission has also been observed for p-PBN in EOE. This thermochromic red-shift is 

mainly due to the enhancement of the dielectric constant and the refractive index with the 

lowering of temperature and can be ascribed to the stabilization of the CT state.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Low temperature fluorescence spectra of a) m-PBN and b) p-PBN in diethyl ether (EOE). For Fig. 
4b, the second order Rayleigh scattering in the spectral region 560-585 nm has been omitted. 

 

 

 

 

 

 

 

 

   
Figure 6.6: Low temperature fluorescence spectra of a) m-PBN and b) p-PBN in the non-polar solvent mixture 
methylcyclohexane:isopentane, MCH/IP (1:4) 
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Neither for p-PBN nor for m-PBN, the low temperature spectra in EOE (Fig. 6.5) 

show an indication of dual fluorescence. But a more complex spectral behavior is exhibited by 

the development of the vibrational structure for p-PBN and m-PBN in the non polar solvent 

mixture (MCH-IP), upon cooling (Fig. 6.6). 

Upon cooling, the behavior of m-PBN and p-PBN in the alkane solvent is 

opposite: Whereas the highest energy vibronic band is enhanced in m-PBN upon cooling, this 

spectral feature diminishes for p-PBN at low temperature. Moreover, the spectra are 

significantly broader for p-PBN. The behavior of m-PBN can be understood as the normal 

behavior at low temperature, where the structuring of vibronic bands is enhanced upon 

cooling. The diminishing of the vibronic feature at around 305 nm for p-PBN at low 

temperature can then be understood on dual fluorescence, with an LE/CT excited state 

equilibrium and a thermodynamically more stable CT state [66].  

 Upon closer inspection, the 0-0 vibronic band is seen to be situated at lower 

energy in m-PBN (~316 nm) than in p-PBN (~305 nm) reflecting the decreased energy of the 

emitting LE state for m-PBN (meta-effect), as is already visible in the absorption spectrum 

(see section 6.3.1 above). 

 

6.4 Computational Results 

6.4.1 AM1 Calculations 

The ground state optimized geometries of the benzonitrile radical anion, p-PBN 

and m-PBN as calculated by using the AM1 method are shown in Fig. 6.7. Table 6.3 shows 

the equilibrium twist angles, rotational barriers to planarity and perpendicularity as well as 

dipole moments, which were calculated for the ground state. These values are compared with 

the parent compound, N-phenyl pyrrole (PP). The twist angle and rotational barrier for m-

PBN are slightly higher than for p-PBN, but comparable with PP. The rotational barrier for m-

PBN and PP to reach the perpendicular geometry is less than for p-PBN due to their more 

twisted nature in the equilibrium geometry and smaller intermoiety mesomeric contribution. 
 
TABLE 6.3: Equilibrium Twist angles, Rotational barriers to each the Planar and the Perpendicular Geometry 
and Dipole moments in the S0 state as Calculated by AM1. 
 

Molecules Eq. twist angle 
    (degrees) 

∆Eplanar 
(kcal/mol) 

∆Eperpendicular 
(kcal/mol) 

µ0(D) 

p-PBN 23.3 0.27 2.59 2.09 
m-PBN 26.4 0.40 2.05 2.78 

PP 26.5 0.39 2.01 1.77 
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Figure 6.7: Equilibrium structures of benzonitrile (BN), BN radical anion, p-PBN and m-PBN in the S0 

state. 
 

The three ground state optimized conformations (equilibrium twist angle, as well 

as planar and perpendicular one) were also analysed regarding excited-state energies and 

properties. Configuration interaction (CI) for the excited states was used. The calculated 

values of transition energy, relative energy, dipole moments and oscillator strengths of the 

low lying excited states are collected in Table 6.4 and are discussed below. 

      

6.4.2 CASSCF Calculations  

The results on para-PBN have been given in detail previously [73]. The most 

important observation was that the charge transfer excited state of A symmetry has two 

minima on the hypersurface which involve both changes in the twist angle α between the 

pyrrole and the benzene ring as well as characteristic bond length changes in the benzene ring. 

The so-called quinoid minimum is situated at α=0° (planarity), and the central bonds in the 

benzene ring are shortened, characteristic for a quinoid distortion. On the other hand, the so-

called antiquinoid minimum AQ is characterized by a perpendicular structure (α=90°) and by 
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long central benzene bonds, which are longer than the adjacent ones. It is called an 

antiquinoid structure [73]. 

 

 
 

Figure 6.8: The highest four occupied and lowest two unoccupied molecular orbitals for p-PBN and m-PBN in 
the equilibrium S0 geometry as calculated by AM1. The corresponding molecular orbitals for benzonitrile are 
also shown and arranged such that the coupling pattern with the orbitals of the pyrrole group becomes visible. 
The lower indices a and b denote subgroup orbitals transforming as symmetry species a and b in the symmetry 
point group C2. As can be seen, only the subgroup orbitals of b-symmetry can couple leading to the a+ (bonding) 
and a– (antibonding) combination. The position of the cyano group is not important here: Even for m-PBN, the 
orbitals correspond approximately to the a and b symmetry species. 
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In the AQ minimum, the orbitals involved in the charge transfer state of symmetry 

A (HOMO-1 Pb to LUMO Bb, see Table 6.4 and Fig. 6.8), are localized on the subunits (Fig. 

6.8 shows the near-planar equilibrium conformation where HOMO-1 is somewhat 

delocalized), so that the dipole moment is very high (16 D from the AM1 calculations 

reported in Tab. 6.4; the dipole moment value from the CASSCF calculations is 16.2 whereas 

for the quinoid minimum Q, the HOMO-1 is strongly delocalized over both rings (see Fig. 

6.8: PbBb), and the calculated dipole moment is smaller (4.9 D from AM1 and 11.0 D from 

CASSCF). Note that according to the AM1 calculations (without geometry optimization in the 

excited state, the energy of the AQ state is very high (S7), but the Q state is the lowest CT 

state (S2). The CASSCF calculations with geometry optimization lower especially the AQ 

state, so that its minimum becomes lower lying than the minimum of the quinoid state Q, and 

the energy difference between Q and AQ states has been found to be -0.55 eV in the gas 

phase.  

 
TABLE 6.4 Results of Semiempirical AM1-CI Calculations for the BN radical anion, and for p-PBN and m-

PBN in the Planar and Perpendicular Geometry. 

 

Compo
unds Geometry Sta

te 

Exc. 
energy 
(eV) 

Dipole 
moment 

(D) 
f C.I. 

analysis 

Orbital 
notation 

with 
symmetry 

p-PBN Planar (0°)  S0 2.18  
  S1 3.89 4.03 0.0002 31--33(48%)  
      29--32(36%)  
  S2 3.94 5.23 0.4222 31--32(76%)  
  S3 4.45 10.76 0.0237 30--32(74%)  
  S4 4.64 6.88 0.0000 30--32(90%)  
  S5 4.83 2.79 0.0195 30--37(32%)  
      31--34(30%)  

p-PBN eq.(23.3°) S0  2.08    
  S1 3.99  3.92 0.0000 29--32(38%)  
      30--33(46%)  
  S2 4.02 4.78 0.3525 30--32(68%)  
  S3 4.47    11.65 0.0239 31--32(76%)  
  S4 4.73 7.13 0.0053 31--35(80%)  
  S5 4.74 3.78 0.0561 31--38(28%)  
      31--35(12%)  

p-PBN (90°)  S0  1.11    
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  S1 4.17 1.21 0.0030 28--32(48%)  
      29--33(44%)  
  S2 4.47 0.83 0.0108 30--34(36%)  
      31--38(44%)  
  S3 4.79 17.97 0.0009 31--32(88%) Pb->Bb 
  S4 4.81 7.04 0.0000 31--37(92%)  
  S5 4.91 1.39 0.1565 29--32(66%)  
      28--33(30%)  
  S6 5.12 0.72 0.0705 31--34(78%)  
  S7 5.14 16.02 0.0000 30--32(86%) Pb->Bb 
  S8 5.26 6.32 0.0223 30--32(86%)  
  S9 5.46 17.21 0.0025 31--33(90%) Pa->Ba 
  S10 5.93 15.02 0.0011 30--33(84%) Pb->Ba 

m-PBN Planar (0°) S0 2.85  
  S1 3.72 4.03 0.0123 31--32(30%)  
      31--33(22%)  
  S2 4.08 3.70 0.2562 31--32(32%)  
      31--33(38%)  
  S3 4.53 7.21 0.0269 30--33(34%)  
      30--32(38%)  
  S4 4.79 3.15 0.0230 30--38(22%)  
      31--34(26%)  
  S5 4.98 7.38 0.0000 30--35(54%)  
      30--36(40%)  

m-PBN eq.(26.4°) S0  2.75    
  S1 3.80 3.67 0.0073 30--32(28%)  
      29--32(14%)  
  S2 4.15 3.64 0.2233 30--33(38%)  
      30--32(28%)  
  S3 4.59 7.47 0.0306 31--33(32%)  
      31--32(38%)  
  S4 4.77 3.01 0.0159 31--38(24%)  
      30--34(24%)  
  S5 4.95 7.22 0.0003 31--36(52%)  
      31--35(42%)  

m-PBN (90°)  S0  2.73    
  S1 4.18 2.74 0.0013 28--32(44%)  
      29--33(40%)  
  S2 4.45 2.87 0.0063 31--38(46%)  
      30--34(36%)  
  S3 4.91 2.63 0.0187 29--32(50%)  
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 C  N 

a2 ( πx*) 
     [a] 

 b1( πx*) 
     [b] 

 C  N 

 b2( πy*) 
     [b] 

      28--33(36%)  
  S4 4.93 5.56 0.0005 31--37(70%)  
  S5 4.94 14.79 0.0004 31--32(52%)  
      31--33(34%)  
  S6 5.09 2.87 0.0722 31--34(78%)  

  S7 5.29 16.55 0.0010 31--32(36%)  
      31--33(54%)  

 

 

The calculations in Tab. 6.4, and also the results of Parusel [78] indicate that for 

the (rigid) perpendicular geometry (as optimized in the ground state), AQ is not the lowest CT 

state but a state B(90°) of B symmetry (S3, involving HOMO and LUMO orbitals Pa and Bb. 

The dipole moments are very large in both perpendicular (18 D) and planar conformation 

(1B(0°) state with 11.7 D) because the orbitals are rather localized even for the planar 

geometry. Of course, geometry relaxation is again expected to lead to changes in the relative 

ordering of 1B(0°) and 1B(90°). The energetics of this B-CT state have not yet been calculated 

with CASSCF geometry optimization. But the arguments and results given below indicate, 

that the same Q and AQ isomers should be expected for this state. 

Because of the decoupled orbitals in the perpendicular conformation, the CT state 

can be regarded as the combination of an anion radical of benzonitrile and a cation radical of 

pyrrole. We can therefore expect to get a deeper insight by having a closer look on the 

benzonitrile anion radical alone, which is of doublet electronic structure but can be calculated 

as open-shell ground state molecule with somewhat simpler geometry optimization than for 

the excited state of PBN, and it can readily be treated with the CASSCF calculations. 

The electronic structure of the benzonitrile anion radical is determined by the occupancy of 

the doubly occupied and one singly occupied orbital: 

Benzonitrile has three low-lying LUMO’s, which provide its acceptor ability: 
 
 

 
 

  
 
 

 
Figure 6.9: The lowest unoccupied MOs of benzonitrile, labelled according to C2v symmetry. The corresponding 

symmetry species in the C2 point group is given in square brackets (see also the lower indices of the orbitals 

shown in Fig. 7). 
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The first two MOs in Fig. 6.9 are normal π orbitals perpendicular to the benzene 

plane, corresponding to Bb
L and Ba

L in Fig. 7. If the lone electron occupies the b1 MO, this 

leads to a  

 

 

 
Figure 6.10: Optimized structure with bond lengths given, and Mulliken charges (italic numbers in 

square brackets) of three states of the benzonitrile radical anion with different orbital occupation patterns. The 

12B1 state is the global minimum on the PES of the anion radical. The relative energies in kcal/mol are given in 

round brackets. 

 

12B1 electronic state of the anion-radical, which has some delocalization of the 

additional electron on the benzene ring and on the cyano group leads to a 12A2 electronic state 

of the anion radical and shows the acceptor activity of the benzene ring, without participation 

of the substituent.  Occupation of MO b2 with one electron leads to a 12B2 electronic state of 

the anion radical and shows the pure acceptor activity of the cyano substituent.   

 

The choice of the active space for CASSCF calculations was dictated by the needs 

to take into account all three possible situations. The active space includes four occupied πx 

and four unoccupied πx* orbitals, and also the orthogonal πy-system of the CN group: one 

occupied πy and one unoccupied πy*. The results of the CAS(11/10)/cc-pVDZ calculations 

(11electrons on 10 orbitals) show the expected changes:  
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a) the optimized 12B1 state has a quinodal structure (see Fig 6.10 for the bond lengths, with 

the atomic charges given in square brackets (Lowdin atomic populations) distributed between 

the benzene ring and the CN group,  

b) The 12A2 state has an anti-quinodal structure with the additional electron delocalized on the 

benzene ring, 

c) the 12B2 state has a lengthened CN bond with charge localized on the CN group. 

 
 

The 12A2 electronic state crosses the 12B1 state along the relaxation coordinate 

connecting these two states, but it is situated 13.3 kcal/mol above the global minimum. The 

12B2 state is an excited state of the anion radical and 67.4 kcal/mol above the global 

minimum.  

 

6.5 Discussion 

6.5.1 Absorption 

 Excited states of para donor-acceptor substituted benzenes possess two close lying 

π,π∗ excited states: the long axis polarized 1La-type constituting the main long wavelength 

absorption band and a perpendicularly polarized 1Lb-type state with much weaker absorption 

intensity which can cause some structural features in the long wavelength tail of the 

absorption spectra or which may be completely hidden underneath the much stronger 1La-type 

band. Depending on the substituents, the role of 1Lb- and 1La- states as S1 and S2 can 

interchange [79, 80, 81]. For both m-PBN and p-PBN, the main absorption band can be 

assigned to the 1La-state. The latter is blue shifted in the meta compound because resonance 

contributions are disfavoured. The 1Lb band, on the other hand, is slightly red shifted for m-

PBN due to the meta-effect [76]. The weak shoulder around 300 nm in the absorption 

spectrum for m-PBN can therefore be attributed to the well-separated 1Lb absorption band.  

 

6.5.2 Dual Fluorescence at Room Temperature 

The fluorescence maxima of p-PBN and m-PBN show a continuous red shift from 

non-polar solvents to highly polar solvents indicating that a highly polar CT state is emitting 

in both compounds. The fluorescence spectrum of m-PBN in n-hexane appears structured 

fluorescence, and is assigned to an LE emission band (∆ν1/2 = 4064 cm−1). In the case of p-

PBN, however there is a significant broadening (∆ν1/2 = 6233 cm−1) of the emission spectrum, 
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which arises due to the overlapping of two emission bands. The corresponding emitting states 

can be assigned as LE and CT, the former one with a structured spectrum, the latter one with 

completely structureless emission. The low-temperature experiment (Fig. 6.6) shows that the 

CT band is enhanced upon cooling. This corresponds to a situation, where CT is situated 

energetically below LE [66]. In the more polar solvents, this energetic preference is enhanced 

such that no trace of structured LE emission remains visible.  

 

     
 
 
Figure 6.11: Energy differences between the LE State (broken line) and the CT State (full line) of p-PBN and 
m-PBN in the Gas Phase as calculated by AM1 and Schematic Energy Ordering of these States in Alkane 
Solvents.  

 

In m-PBN, the LE state is energetically lowered, but the CT state remains 

approximately at the same energy such that the energetic order is reversed in non-polar 

solvents, and CT emission only appears in the more polar solvents due to the preferential 

lowering of the CT state. Moreover, the energy difference between the LE and CT state of m-

PBN is only 1.1 eV which is slightly higher than that of p-PBN (0.8 eV) in the gas phase. The 

latter observations support the evidence for the appearance of a single fluorescence band of 

m-PBN in n-hexane (fig. 6.11). 
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6.5.3 Radiative rates and Dipole Moments 

  The fluorescence rate constant, kf is significantly larger in alkane solvents as 

compared to polar solvents indicating a more allowed character of the emission for m-PBN 

and p-PBN in alkanes, and the values were found to be similar (Table 6.1). With increasing 

solvent polarity, there is a sudden drop in kf values corresponding to the change to a forbidden 

transition. This forbidden character present in medium and highly polar solvents for both 

compounds is most readily explainable by the population of a CT state with a twisted 

geometry (TICT state) due to the complete decoupling of the subgroup molecular orbitals [82, 

83]. This can also be concluded from sterically hindered model compounds like p-PBN with 

two ortho methyl groups [66] where the structured LE-features observed for p-PBN are 

absent. p-PBN and m-PBN behave similar, with kf values being around 3x106 s-1 (radiative 

lifetimes longer than 300ns), quite comparable to the TICT state of DMABN and derivatives 

[9]. The excited state dipole moment values (Table 6.2) for m-PBN and p-PBN resulting from 

room temperature and low temperature emission spectra are found to be similar (see ref.4). 

This gives additional evidence that both m-PBN and p-PBN possess the same highly polar 

TICT state. Yoshihara et al. [67] calculated the excited state dipole moment values for p-PBN 

and m-PBN by taking the Onsager radii derived from the molecular crystal density. Their 

values are in good agreement with the values obtained in this work. 

      

Recently, dual fluorescence has been reported also for a rigidized planar derivative 

of p-PBN [68], however without giving any indication of the associated kf values. Two 

models can be discussed for the CT fluorescence in this case: 

Model A would associate the CT state with the so-called PICT state [69] with 

strong mesomeric coupling and preferred planar geometry corresponding to the 1La-type state 

according to Platt’s nomenclature. In this case, the subgroup orbitals (both of symmetry 

species b in C2) are strongly coupled, and the resulting kf values should be larger and the 

excited state dipole moment should be smaller than for the perpendicular twisted TICT state. 

The transition moment should be approximately in the long molecular axis (state with 

symmetry species A in C2) 

Model B would be associated with an electronic configuration with full orbital 

decoupling available also for the planar geometry. In the case of PP and PBN [29, 55, 79, 80, 

81], the donor orbitals on pyrrole should possess a node (this is actually the HOMO in all 

pyrrole derivatives studied here, see the calculational results), with symmetry species a in C2, 

and the acceptor orbital on benzonitrile should also possess a node through the carbon atom 
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linking the benzene to the pyrrolo group, with symmetry species a, resulting again in an 

emissive state of A symmetry, but large dipole moment and very small kf value. According to 

CASSCF calculations [73] on p-PBN, this state prefers to be in the perpendicular 

conformation and has an antiquinoid distortion at 90° (and a quinoid one in the planar 

minimum, see below). Chemical bridging enforcing planarity could allow this state to be 

populated provided that the CT state of B symmetry or an LE state are not lower in energy. 

Clearly further studies reporting kf values and polarization results are necessary to clarify this 

question. 

  

6.6 Theoretical Investigations  

6.6.1 AM1 Calculations 

The twist angles of m-PBN (26.4°) and PP (26.5°) are similar in values (Table 

6.3), and both compounds have the same rotational barriers towards both planar and 

perpendicular geometries. In both compounds, the mesomeric interactions stabilizing the 

planar geometry are similarly weak. In contrast, p-PBN has a smaller twist angle (23.3°), 

leading to a smaller rotational barrier to planarity: 0.27 kcal/mol as compared to m-PBN 

(0.40kcal/mol) and PP (0.39 kcal/mol). On the other hand, the rotational barrier (2.59 

kcal/mol) of p-PBN towards perpendicularity is considerably higher than for m-PBN (2.05 

kcal/mol) and PP (2.01 kcal/mol). This can be directly correlated with the increased 

importance of the quinoid resonance structure for p-PBN stabilizing the planar geometry. The 

increased quinoid contribution can also be seen from the S0 equilibrium structures calculated 

for both compounds. The benzene bond lengths are very similar for m-PBN, whereas in p-

PBN, the middle benzene bonds are clearly shortened with respect to the adjacent ones. The 

quinoid stabilization becomes even more important in the excited state. Based on valence 

bond theory,  Zilberg et al. [73]  have proposed two excited state structures on the potential 

energy surface for donor-acceptor substituted benzene derivatives such as p-PBN. One has the 

quinoid form, in which the central C-C bond of the benzene ring is shorter than the adjacent 

bonds and which possesses a planar geometry at the energy minimum. The other excited state 

conformer possesses central C-C bonds, which are longer than the adjacent ones. This 

conformer was called the antiquinoid form or AQ state, and it has an energy minimum with 

the pyrrolo group twisted at 90° with respect to the benzene ring. Attempts to reproduce these 

results for p-PBN with excited-state optimization in AM1 did not lead to stable AQ 

geometries and were abandoned. AM1-geometries also did not converge for the AQ-
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minimum of ground-state benzonitrile radical anion (see however the next section on ab initio 

CASSCF calculations), whereas the minimum reached for neutral p-PBN showed a clear 

quinoid bond length distribution (Fig. 6.7) 

     

Fig. 6.8 and Table 6.4 contain results for single-point calculations of the excited 

state of p-PBN and m-PBN for three selected optimized ground state geometries which 

performed in order to understand and assign the various excited states for differently twisted 

conformations. The calculations include configuration interaction between single and multiple 

excited configurations and are considered to contain a large part of dynamic correlation, 

approaching quite closely the experimental absorption energies consistent with the 

experiment, the main absorption band (S2) is shifted to the blue when going from p-PBN to 

m-PBN (testifying for the smaller quinoid stabilization in m-PBN), but the S1 state shifts to 

the red, as is typical for meta-substituted donor-acceptor benzenes. In m-PBN, S1 and S2 are 

clearly separated (0.4 eV) and can therefore be seen as separate bands, whereas in p-PBN, 

both states are calculated to be nearly degenerate, therefore appearing as one of the single 

absorption band in the experimental spectrum. 

According to the calculations (p-PBN, 0°) [84], S1 is the forbidden 1Lb-type state 

(Platt nomenclature) with b-symmetry in C2, closely followed by S2 (a-symmetry, 1La-type 

state) which possess some CT character and is allowed. It is equivalent to the “PICT” state in 

literature [69]. It is followed by a further state S3 of b-symmetry with stronger CT (11 D) but 

forbidden character, which corresponds to the HOMO to LUMO transition (orbital Pa
H to Bb

L 

in Fig. 6.8). The high dipole moment and forbidden character derives from the localized 

nature of Pa
H (pure HOMO of pyrrole, Fig. 6.8), whereas the reduced dipole moment (5-6 D) 

and allowed character of S2 (PICT) can be traced back to the delocalized nature of the 

corresponding occupied orbital (Pa
H Bb

L) in Fig.7. At 90° twist, S1 and S2 develop into pure 

LE states with a small dipole moment (1Lb
 and 1La of benzonitrile) whereas S3 develops into 

the TICT state of b-symmetry (18 D dipole moment). 

 

6.6.2 CASSCF Calculations 

When comparing the structures of the benzonitrile anion from AM1 (Fig. 6.7) and 

from CASSCF ab initio (Fig. 6.10), it is seen, that AM1 only converges to the Q form for 

AM1, although effort was given to find the minimum of the AQ conformer also with AM1. In 

the neutral benzonitrile, the Q deformation is very small, but significantly larger, if benzene 

possesses both a donor and an acceptor substituent (p-PBN, Fig. 6.7).  
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The CASSCF calculations show that the charge distribution in the Q and AQ 

conformers is quite different. In the former, much charge is localized on the atoms linking the 

substituent, whereas in the AQ conformer, most negative charge is concentrated on the four 

central carbon atoms. The Q conformer (12B1) is more stable than the AQ (12A2) one. In terms 

of orbital involvement, the Q (12B1) state possesses a singly occupied orbital with an antinode 

through the linking atoms (Bb
L in Fig. 6.8), the AQ (12A2) state a singly occupied orbital with 

a node through the linking atoms (Ba
L in Fig. 6.8). 

When the AQ radical anion conformer of benzonitrile is linked to a π-system at 

any twist angle such that a CT state is formed, (e.g. linkage to the pyrrolo radical cation in p-

PBN), the overall symmetry point group is reduced to C2, and Q and AQ states of benzonitrile 

radical anion are of A and B symmetry, respectively, and the singly occupied orbitals 

similarly. The CT transition from pyrrole to benzonitrile can involve orbitals of the same or of 

different symmetry on the pyrrolo unit. In the Q state of A symmetry (as calculated in ref. 11), 

the singly occupied orbital on pyrrole must have an antinode through the linking atom (Pb
H in 

Fig. 6.8) in order to yield an overall symmetry species A. In the AQ state of A symmetry, 

both singly occupied orbitals on the two units must have B symmetry in order to yield the 

overall symmetry A. This means that the planar Q-CT state of A symmetry in PBN involves 

the transition between orbitals Pb
HBb

H and Bb
L in Fig. 6.8, but the AQ-CT state of A 

symmetry involves the orbitals Pa
H and Ba

L. This can be nicely followed by the CASSCF 

calculation, which shows that for intermediate twist angles, these two conformation mix 

through configuration interaction. The single occupancy of Ba
L in the AQ state explains both 

the long central bonds in benzene (orbital node between the central atoms) and the 

accumulation of negative charge on the adjacent atoms (orbital coefficients only on these 

atoms in Ba
L). 

There are, of course, further CT states present which can most readily be identified 

at 90° twist. There is a further A state with CT between Pb
H and Bb

L which corresponds in 

nature to the TICT state in DMABN. And there are two further CT states of B symmetry, 

combining the orbital pairs Pb
H with Ba

L and Pa
H with Bb

L (see Fig. 6.8). All these states have 

been calculated for the rigid ground state geometry with AM1 and are contained in Table 6.4 

(last column).  

The main discrepancy between the CASSCF optimized excited state energies (ref 

[73]) and the semiempirical (this work) or DFT/MRC results for the rigid geometries [78] is 

that the A-CT of AQ character is the lowest CT state at 90° after geometrical relaxation [73] 

whereas for the Franck Condon situation, the CT state of B symmetry (and Q character 
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involving Bb
L and Pa

H) is the lowest one. We conclude that the excited-state geometrical 

relaxation must switch these two CT states.  

We can also conclude on the two CT states present in DMABN for 90° twist: 

Because the amino group possesses a donor orbital of B symmetry, two of the CT states in 

PBN (involving Pa
H) must be absent in DMABN. The lowest TICT state is of A symmetry 

involving the Bb
L orbital on benzonitrile. We therefore expect that this state has the Q bond 

length pattern in benzonitrile, as found by all calculations until now [9]. But the second TICT 

state, somewhat higher lying in energy, will be of B symmetry and involve Ba
L as accepting 

orbital and is therefore expected to possess the AQ bond length pattern. 

Finally, due to the localized LUMO for meta-PBN (Fig. 6.8) we can likewise 

expect that the geometry-relaxed lowest CT state at 90° will be an AQ state of A symmetry, 

similarly as in para-PBN. 

 

6.7 Conclusion 

The photophysical properties of meta- and para-cyano-N-phenylpyrrole (m- and p-

PBN) have shown that both compounds show highly red shifted and strongly forbidden 

emission in polar solvents, assigned to a TICT state. It is concluded that m-PBN differs from 

p-PBN by a less exergonic formation of the TICT state from the LE/ICT quinoid state, and it 

therefore shows only single LE/ICT fluorescence in nonpolar alkane solvents, whereas p-PBN 

shows dual fluorescence (LE/ICT and TICT). 
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7 Meta- positioning effect in DPBN: a photophysical study 

Abstract 
 

The photophysical properties of the dimethyl derivative of N-Pyrrolo-4-

benzonitrile (DPBN), with a change in the position of the acceptor moiety (m-DPBN), have 

been investigated and compared with the parent compound (p-DPBN). The values of the 

Stokes shift and of the excited-state dipole moment indicate that both meta- and para-DPBN 

possess similar excited-state properties regardless of the meta-positioning of the cyano group. 

The low values for the radiative rate constant suggest the presence of a strongly forbidden 

transition supporting the model of twisted intramolecular charge transfer (TICT) states. 

 
7.1 Introduction 

The charge transfer (CT) states occurring in donor-acceptor systems essentially are 

driven by two forces: (1) mesomeric forces which involve the resonance interaction between 

the donor-acceptor moieties. The corresponding states are usually called mesomeric 

intramolecular charge transfer (MICT) states [40]. (2) A second factor is dipolar solvation, 

which preferentially stabilizes the largest dipole, hence twisted conformations in CT systems. 

The CT is therefore often connected with twisting between donor and acceptor leading to so-

called twisted intramolecular charge transfer (TICT) states [1, 9, 16, 85]. In this latter 

process, donor and acceptor moieties are completely decoupled in the CT excited state due to 

their perpendicular arrangement. The mesomerically stabilized CT state (MICT) always tends 

to be planar due to this mesomeric interaction, and it is also associated with a smaller dipole 

moment as compared to the TICT state [40]. This gives the possibility for observing two 

stable CT minima on the excited state hypersurface, and this can lead to dual fluorescence. 

The most well known compounds showing dual fluorescence are 4-N,N-

dimethylaminobenzonitrile (DMABN) and its derivatives. It is also observed in other donor-

acceptor molecules such as phenyl pyrroles with different substituents on the donor-acceptor 

part [29, 66, 82, 83]. According to the TICT model, the short wavelength fluorescence 

originates from the primarily excited “Locally Excited” (LE) state, from where the charge 

transfer (CT) state is accessible by an adiabatic photoreaction including a rotational motion 

around the bond linking the donor and acceptor moieties and leading to the long wavelength 

fluorescence band.  
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In previous work [67, 86] the excited state properties of N-Pyrrolo-4-benzonitrile 

(p-PBN) have been compared with those of its meta derivative, namely m-PBN. It was found 

that both compounds possess similar and very large excited state dipole moments. This 

emission from the excited CT state is of forbidden nature, consistent with the complete 

decoupling of the donor and acceptor orbitals. 

 

N

CN

N

CN  
m-DPBN             p-DPBN 

 
                    Figure 7.1: Structures of the molecules investigated 

 

Theoretical calculations by Zilberg et al [73] on N-Phenyl pyrroles also helped to 

interpret the experimental findings. These calculations support two distinct geometrical 

structures for two different states of CT nature. One has a quinoid (Q) structure and a planar 

geometry for the energy minimum consistent with the PICT model [69]. The other CT state is 

of anti-quinoid (AQ) nature, i.e., has lengthened central bonds and its dipole moment is larger 

than that of the quinoid state. The AQ state has an energy minimum with the pyrrolo group 

twisted by 90° with respect to the benzene ring.  

In the present work, we can ask the question, how the two different CT states will 

be affected by a) increasing the donor strength b) introducing sterical hindrance to planarity in 

the ground state. This is achieved by comparing the dimethyl analogues of m- and p-PBN, 

namely m- and p-DPBN (see Fig. 7.1). The results show that the emissive ICT states of the 

PBN and DPBN are very similar (forbidden, with large dipole moment) indicating a 

decoupled ICT nature. Moreover, these properties are similar for meta and para substitution. 

 

7.2 Experimental Section 

 Technical details about the measurement of absorption and fluorescence spectra 

and quantum yields are reported in chapter 3. 
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7.3 Results and Discussion 

7.3.1 Absorption and Emission Spectra 
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Figure 7.2: Normalised Absorption and fluorescence spectra of p- DPBN and m-DPBN at room temperature in 
various solvents of different polarity (HEX = n-hexane; BCl = n-butyl chloride; THF = tetrahydrofuran). 
 
Table 7.1: Spectral and photophysical data of p-DPBN  and m-DPBN in various solvents at room temperature.  
 

Sol  λ em
max  

(nm) 
∆νst 

(103cm-1) φf 
τf  

(ns) 

kf  
(106 s-1) 

 

kf 
(106 s-1) 

 

knr  
(108 s-1) 

p-DPBNa           
Hex 406 11.7 0.026 2.92 8.90 31.8c 3.33 
EOE 479 15.7 0.019 8.79 2.16 6.1c 1.12 
BCl 480 15.8 0.035 8.76 3.99  1.10 
THF 501 16.7 0.025 7.00 3.57  1.39 
DCM 517 17.3 0.033 9.55 3.45 7.1c 1.01 
ACN -- - <10-4     

m-DPBNb        
Hex 403 10.9 0.004 3.56 1.21 46.8d 2.80 
BOB 444 13.2 0.006     
EOE 477 14.7 0.004 8.46 0.53 4.7d 1.17 
BCl 481 14.9 0.006 6.67 0.91  1.48 
THF 504 15.8 0.003 9.51 0.36 3.2d 1.05 
ACN -- - <10-4     

aλ
abs

max  = 275nm, solvent independent (used for excitation) ; bλ
abs

max  = 259nm, solvent independent  (280nm is used 

for excitation); Percentage of error in the measurement: 10% in φf  and  5% in τf . c for p-PBN; d for m-PBN 
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The absorption and emission spectra of p-DPBN and m-DPBN are almost identical 

regarding the Stokes shift but the absorption maximum is slightly blue shifted in the case of 

m-DPBN. The spectra of the two compounds in solvents of varying polarity are shown in 

Fig.7.2. The corresponding photophysical parameters are collected in Table 7.1. The 

fluorescence spectra of both compounds show a significant solvatochromic effect, indicating a 

high charge transfer (CT) character of the emitting state. However, the absorption bands do 

not show any shift in their maximum in solvents of increasing polarity. The molar absorption 

coefficients were determined for both p-DPBN and m-DPBN in n-hexane as  ε (λ max
275 ) = 

10350  M-1cm-1 and  ε (λ max
259 ) = 6369 M-1cm-1 respectively. Donor-acceptor substituted 

benzenes in para position possess two close lying excited states. One is the long axis 

polarized, 1La- type state, and the other one is the perpendicularly polarized, 1Lb- type state 

with much weaker intensity which may be completely hidden under the main 1La band 

although the 1Lb- type state is often the lower one. The main absorption bands for p-DPBN 

and m-DPBN are 275 nm and 259 nm respectively. For p-PBN, the main absorption band at 

287 nm can be assigned to the 1La-type excited state (S2) [66]. In the case of m-PBN [86], the 

main absorption band was observed at 258 nm, which was the similar case in m-DPBN. In 

going from the para-substituted to the meta-substituted compound, m-DPBN, the weak 

shoulder around 310 nm is blue shifted to around 285 nm.  

The blue shift of the absorption maximum of p-DPBN as compared to p-PBN can 

be rationalized in terms of the partial CT character of this band connected with a quinoidal 

resonance structure, which is lowered in energy for the compound with the better donor (p-

DPBN). In contrast, the red shifted CT band for p-PBN signifies that that the quinoidal 

contribution is higher in p-PBN than in p-DPBN. This is probably due to the twisted ground 

state structure in p-DBPN which disfavours the quinoid contribution. In contrast, for both m-

DPBN and m-PBN, the quinoid contribution is less predominant or completely absent. 

Therefore, the main absorption band is observed at nearly the same energy. 

The Stokes shift is also very large in nonpolar solvents indicating that it is not 

emission from the S1 state, which is visible in absorption but necessitates a photochemical 

reaction.  

 
7.3.2 Fluorescence Quantum Yields and Rate Constants 

The measurements of fluorescence quantum yields and lifetimes for the 

investigated compounds were done in various solvents of different polarity. The fluorescence 
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decay curves are monoexponential, which allows the evaluation of radiative and nonradiative 

rate constants according to equations 7.1 and 7.2. In eqn. 3, k tot
nrn

 corresponds to the sum of all 

nonradiative processes including triplet formation. The measured data and calculated 

photophysical values of p-DPBN and m-DPBN are collected in Table 7.1. 

    kf  = φf /τf                                       (7.1) 
     
             k tot

nrn

 = kf (φf
-1-1)                              (7.2) 

 
As one can see from this Table 7.1, the fluorescence quantum yield values show 

only a small variation in the range of solvents from low to high polarity for both compounds 

investigated. However, for p-DPBN, the quantum yield values in alkane solvents are 

significantly larger. For m-DPBN, the value in most other solvents does not differ from n-

hexane. For p-PBN [66] and p-DPBN in n-hexane, the quantum yield values are comparable 

in contrast to m-DPBN as compared to m-PBN with a much larger quantum yield of 0.155 

[86]. This latter observation suggests that all compounds except for m-PBN possess a similar 

electronic structure in this non-polar solvent, namely CT character, whereas the emission of 

m-PBN is of LE type n-hexane [86]. In highly polar solvents like acetonitrile, m-DPBN 

becomes non-fluorescent.  

The kf values for both compounds decrease from alkanes to polar solvents by a 

factor of around 3, indicating a less allowed emission in solvent of high polarity. For both p-

DPBN and m-DPBN, the significant decrease of kf values as compared to p-PBN and m-PBN 

(see Table 7.1) in going from low- to high-polarity solvents points to a change of the average 

emitting conformation of the CT state from a less twisted to or more twisted one in the excited 

state. For TICT systems this can occur with broad (hexane) and narrower angular distribution 

around the perpendicular minimum of the CT state [9].  

 

7.3.3 Low Temperature Studies 

Fluorescence measurements of m-DPBN at lower temperatures were done in the 

alkane mixture methylcyclohexane/isopentane (1:4), and in the medium polar solvent 

diethylether in order to study the temperature dependence of the emission maxima and the 

possibility of dual fluorescence. For the medium polar solvent EOE, with a lowering of 

temperature, a red shift of the emission maxima is observed (Fig. 7.3a). This thermochromic 

redshift can be explained by the enhancement of the dielectric constant with a lowering of 
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temperature and can be ascribed to the solvent stabilization of the CT state. The emission 

maxima and the associated quantum yields are collected in Table 7.2.  

 
Table 7.2: Temperature dependence of the photophysical data of m-DPBN in the solvent mixture 
Methylcyclohexane:Isopentane (1:4) and in diethylether. 
 

Solvent  298 K 273 K 253 K 233 K 213 K 193 K 173 K 

MCH/IP 
 

λ
em

max  
(nm) 

418 422 423 422 422 422 423 

     φf 0.0350 0.0336 0.0329 0.0345 0.0375 0.0418 0.0487

EOE 
 

λ
em

max  
(nm) 

477 491 498 504 508 511 515 

     φf 0.0045 0.0028 0.0026 0.0024 0.0025 0.0029 0.0036
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Figure 7.3: Temperature effects on the fluorescence spectra of m-DPBN in a) diethyl ether and in b) 
methylcyclohexane and isopentane mixture (1:4) 

 

    

In the case of m-DPBN in the non-polar solvent mixture (MCH:IP), the emission 

maxima observed do not show a noticeable shift (Fig. 7.3b). A similar behaviour has been 

observed in the case of p-DPBN [66]. For p-PBN, a dual fluorescence was observed in the 

non-polar solvent mixture [66, 67, 86]. In this case, there is a continuous red shift of the 
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maximum in going down from higher to lower temperature with the disappearance of the 

short-wavelength shoulder [86]. Neither for m-DPBN in the alkane solvent mixture or in EOE 

nor for p-DPBN [66] in the alkane mixture and in the highly polar solvent ethanol in the fluid 

range, there is any dual fluorescence detected upon cooling. The latter observation can be 

rationalized by the strong donor nature of the ortho-dimethyl pyrrolo part as compared to 

pyrrole, which leads to a corresponding stabilization of the CT band even in alkanes such that 

the LE state is considerably higher in energy than the CT state. The temperature dependent 

quantum yield values do not show any significant trend in both measurements for different 

polarity. There does not seem to be a strong temperature dependent fluorescence quenching 

channel in m-DPBN. 

 

7.3.4 Excited State Dipole Moments 

The excited state dipole moments µe are calculated from a plot of the 

solvatochromic shift of the emission maxima versus solvent polarity (see Fig. 7.4), and are 

calculated using the Mataga equation (eq. 7.3), where gµ and eµ are the ground and excited 

state dipole moments, respectively. 
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Figure 7.4: Mataga plot of p-DPBN and m-DPBN in various solvents of different polarity. 
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Table 7.3: Dipole moments for the ground and excited states derived for p-DPBN and m-DPBN  from the 
Mataga plot (see fig. 7.4). 
 

 a 
(Å)a 

Slope 
(103cm-1) 

µg 
(D)b 

µe 
(D) 

p-DPBN 4.3 -21.1 1.68 13.8 
m-DPBN 4.3 -20.6 2.72 14.3 

a) from eq. (7.4) by assuming equal densities;  b) calculated from AM1 calculation 
  
 
     
 

νf = − ehca
f µ

π 3
04

2
∈

′∆
( eµ − gµ ) + const            (7.3) 

  
with  f ′∆ = (ε-1)/(2ε+1) − 1/2(n2-1)/(2n2+1)          
    
 a = 3

AN4/M3 ρπ                                                          (7.4)      
 

where h is the Planck’s constant, 0∈  is permittivity constant of vacuum and c is the velocity 

of light. f ′∆  is the solvent polarity parameter, consisting of dielectric constant ε and 

refractive index n. The Onsager radii ‘a’ for p-DPBN and m-DPBN were calculated from the 

mass-density formula eq. (7.4) by assuming equal densities for both compounds, and the 

ground state dipole moments, µg, are calculated by using the AM1 semiempirical method 

embedded in the Ampac software package [44]. The resulting µe values of p-DPBN and m-

DPBN are shown in Table 7.3. By taking similar Onsager radii for both compounds, the 

calculated excited state dipole moments values are close to 14 D. The high dipole moment 

values in the excited state indicate that CT state exist in these compounds. This value is 

comparable to the parent compound PBN (14.8 D) [86]. These observations suggest that the 

o-dimethyl pyrrole derivatives of PBN possess similar CT excited state properties. 

 

7.4 Discussion 

The lower fluorescence quantum yield values of m-DPBN as compared to p-

DPBN are linked to significantly lower kf values (Table 7.1) whereas the non-radiative rates 

are similar. This strong difference between meta and para substitution is not present for the 
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corresponding PBN pair of compounds [86]. At present, the reason for this different 

behaviour is unclear.  

In principle, another type of CT state can also be discussed, namely the highly 

coupled and mesomerically stabilized CT state with a preference for the planar conformation 

(mesomeric intramolecular charge transfer (MICT) state [40]). In this case, high kf values 

would be expected, and the population of a MICT state can therefore be ruled out. A further 

possibility is the so-called planar intramolecular charge transfer (PICT) state [69]. This model 

has been formulated in conjunction with a crossing of both S1 (1Lb-type) and S2 (1La-type) 

states, and is thought to possess a planar quinoid structure with high coupling and allowed 

emissive character. These expectations are not supported by our observations on kf. Zilberg et 

al [73] proposed a model where the most stable CT state is twisted and is of antiquinoid 

nature and decoupled. This latter model is consistent with the findings in this work. 

 

7.5 Conclusion 

Both p-DPBN and m-DPBN have similar values in the amount of Stokes shift and 

polarity induced red shifts evidencing their large excited-state dipole moments. The lower kf 

values of m-DPBN and p-DPBN as compared to the PBN pair give evidence that the 

transition is more forbidden in the DPBN pair. Since the introduction of the two methyl 

groups in ortho position considerably increases the average twist angle of the donor moiety 

both in the ground and the excited state, this sterical influence will also narrow the rotational 

distribution function around the perpendicular TICT minimum and therefore lead to the 

reduced transition moment values [1, 9]. In summary, it is concluded that the DPBN 

compounds possess similar excited state properties irrespective of the position of the cyano 

group in the acceptor moiety and similarly as the PBN pair form a TICT state of forbidden 

emissive properties and very large dipole moment. 
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8 Photophysical Properties of Pyrrolobenzenes with Different 
Linking Pattern: The Transition Between Large (MICT) and 
Small (TICT) Charge Transfer Interaction behaviour 

Abstract 
 

Pyrrolobenzenes with different substitution patterns, MP2BN and MP2-B25CN, 

are investigated by using steady-state and time-resolved optical spectroscopy. The absorption 

and fluorescence spectra of these compounds are red shifted with respect to the parent 

compound p-PBN, indicating a stabilisation of the Franck-Condon (FC) excited state by 

mesomeric interaction. Both the position and strength of the electron acceptor moiety 

influence the emission characteristics of these molecules. The large radiative rate constant of 

MP2BN indicates an allowed emission due to mesomeric interaction between the donor and 

acceptor moieties, (MICT), whereas in the case of p-PBN and MP2-B25CN, the reduced 

radiative rate constant indicates a forbidden emission from a twisted intramolecular charge 

transfer (TICT) state.  

 

8.1 Introduction 

The photophysics of donor-acceptor substituted benzenes are of great interest in 

the study of intramolecular charge transfer (ICT) states. ICT states are commonly observed in 

N-phenylpyrrole (see Fig. 8.1) and several sterically hindered derivatives [29, 66, 82] and are 

identified by their large fluorescence red shift in medium and strongly polar solvents. ICT 

compounds either have an allowed emission (high transition dipole moment, Mf) or a 

forbidden emission (small Mf). The difference between the two types of CT states is the 

mesomeric interaction between the molecular subsystems [40]. ICT states with allowed 

emission are generally found in nearly coplanar compounds with high mesomeric interaction 

(mesomeric ICT state, MICT). For planar systems, this corresponds to the so-called PICT 

(Planar Intramolecular Charge Transfer) state as introduced by Zachariasse et al [69], but is 

more general and can also be used for compounds which cannot become planar but 

nevertheless show dual fluorescence [87]. ICT states with forbidden emission in nearly 

perpendicular compounds with small mesomeric interaction are commonly called TICT 

(Twisted Intramolecular Charge Transfer) states [1, 9]. 
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Fig. 8.1 Molecular structures of the investigated compounds and their abbreviated formulas. 

 

 Phenyl pyrroles contain an sp2 hybridized nitrogen, thus the inter-moiety twist 

angle α is better defined than in dimethylanilino derivatives with a pyramidal nitrogen, and 

these compounds can in principle populate an ICT state in the twisted geometry [29, 66, 82]. 

In other cases, the population of nonfluorescent TICT-like states has been identified as the 

cause for intramolecular fluorescence quenching in many commonly used dyes [88, 89] and 

even laser dyes [90, 91, 92]. According to the TICT model, the fluorescence can originate 

from the primarily excited ‘locally excited’ (LE) state as well as from the charge transfer (CT) 

state accessible only by an adiabatic photoreaction from the LE state, which includes a 

torsional motion around the bond linking the donor and acceptor moieties. The relative 

amount of TICT fluorescence depends on the height of the barrier separating the LE and CT 

states and on their energy difference. If there is no barrier between these two excited states 

and their energy difference is large enough, the LE state population is rapidly converted into 

the TICT state and only the long wavelength emission from the charge transfer state is 

observable. This TICT emission probability is usually small, i.e. with a reduced value of the 

transition moment, due to the small π overlap in the strongly twisted arrangement of 

chromophores [16, 19, 93]. 

Recently, theoretical studies on N-pyrrolobenzene (PB), N-pyrrolobenzonitrile 

(PBN) and 4-N,N-dimethylaminobenzonitrile (DMABN) for the ground and excited states 

were done by Parusel [78] using a DFT/MRCI approach. It was found that the TICT state of 

PB is stabilized only in polar solvents whereas in the case of p-PBN, the TICT state is more 

stable than the LE state even in non polar solvents. 
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Zilberg et al. [73] calculated the energies, dipole moments and molecular 

structures of the locally excited (LE) and charge transfer (CT) states of DMABN, PP and p-

PBN by DFT (used only for optimization), CASSCF and CASPT2 methods (for calculating 

energies). Their calculations support the existence of two distinct structures for the CT states. 

One possesses a quinoid structure that has a coplanar arrangement of the chromophores at the 

energy minimum, corresponding to the MICT [40] or PICT model [69, 71] (in both cases a 

planar intramolecular charge-transfer state with large interchromophoric coupling). The other 

one has an antiquinoid bond length distribution in the benzene ring and an energy minimum 

for the twisted structure connected with a larger dipole moment consistent with the TICT 

model [9]. 

Recently, Yoshihara et al. [67] experimentally determined the excited state dipole 

moments of both ICT and LE states for dual fluorescent molecules such as N-phenylpyrrole, 

N-(4-methylphenyl)pyrrole, N-(4-cyanophenyl)pyrrole and N-(3-cyanophenyl)pyrrole from 

solvatochromic and thermochromic measurements. They also compared the experimental ICT 

state dipole moments with theoretical values from the literature calculated for both coplanar 

(PICT) and twisted (TICT) conformations of the phenyl pyrrole and cyanophenyl pyrroles. It 

was found that for N-phenylpyrrole and N-(4-methylphenyl)pyrrole the main fluorescence is 

of LE character, while N-(4-cyanophenyl)pyrrole and N-(3-cyanophenyl)pyrrole exhibit 

major emission from the ICT state. 

 

In the PICT and TICT states of pyrrolobenzenes, the pyrrole unit acts as the donor 

moiety and benzonitrile as the acceptor, and electron transfer (ET) takes place from the 

pyrrolo group to the center of the phenyl ring, or still farther toward the acceptor substituent. 

The aim of the present study is to investigate whether the CT nature (either allowed 

(MICT/PICT or forbidden (TICT)) can be influenced by changing the position of the acceptor 

moiety on the pyrrole unit, and also how it depends on the acceptor strength. For this purpose, 

the pyrrolo benzonitrile derivatives 2-(4-cyanophenyl)pyrrole (MP2BN) and 2-(2,5-

cyanophenyl)pyrrole (MP2-B25CN) have been synthesized with a linkage in 2-position of 

pyrrole, and their photophysical characteristics have been compared with those of p-PBN. 

 

8.2 Experimental Section 

The experimental details about the absorption, fluorescence, lifetime and quantum 

yield measurements are described in chapter 3. 
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8.3 Results and Discussion 

8.3.1 Absorption and Fluorescence Spectra 

The absorption and fluorescence spectra of p-PBN, MP2BN and MP2-B25CN in solvents of 

varying polarity are shown in Fig. 8.2. The corresponding photophysical parameters are 

collected in Table 8.1. The absorption spectrum of p-PBN is a single and broad band whereas 

in the case of MP2BN and MP2-B25CN, a slightly structured band can be observed. For all 

three compounds, the absorption maximum changes very little with the polarity of the solvent. 

In nonpolar hexane, the absorption and fluorescence maxima of MP2BN and MP2-B25CN are 

significantly red-shifted with respect to the parent compound (p-PBN), indicating the 

stabilization of both their excited and ground states by the larger mesomeric interaction. 
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Figure 8.2: Normalised Absorption and fluorescence spectra of p-PBN, MP2BN and MP2-B25CN in solvents of 

different polarity (Hex – n-hexane, BOB – dibutylether, EOE – diethylether, THF – tetrahydrofuran, ACN – 

acetonitrile. 
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Table 8.1: Spectral and photophysical data of p-PBN, MP2BN and MP2-B25CN in various solvents at room 
temperature. 
 
 

Sol   λabs 
(nm) 

λflu (nm) a ∆νst 
(103cm-1) 

 φf
b, a  φf

c τf  (ns)d, a krad  
(107s-1) 

k tot
nr  

(107s-1) 

p-PBN 
      

4.72 0.077 0.028 2.42 1.16 40 Hex 
EOE 

287 
287 

332 
393 9.39 0.023 0.022 3.80 0.57 26 

THF 287 422 11.15 0.024 -  - - 
DCM 287 412 10.57 0.022 0.022 3.10 0.72 32 
ACN 287 460 13.10 0.024 0.036 8.20 0.43 12 

MP2BN 
      

Hex 317 357 3.53 0.92  1.8 51.1 4.44 
BOB 321 367 3.90 1.03  - - - 
EOE 321 371 4.35 0.98  5.21 18.8 0.38 
THF 326 383 4.70 0.94     
ACN 322 407 6.49 0.51  5.4 9.4 9.03 

MP2-B25CN 
      

Hex 366 423 3.68 0.378  7.47 5.06 8.33 
BOB 370 455 5.05 0.281  11.43 2.45 6.26 
EOE 364 463 6.15 0.206  12.60 1.63 6.28 
THF 370 489 6.91 0.139  13.12 1.05 6.50 
ACN 359 524 9.27 0.024  2.78 0.86 34.9 

 

a Excitation wavelength was fixed at the absorption maximum. berror in the measurement: 10%. c,d from ref.66. 
 
 

On the other hand, the solvatochromic shift of the fluorescence of these compounds is 

much smaller (3400 and 4700cm-1) than for p-PBN (8500 cm-1) indicating smaller changes in 

their dipole moment from ground to excited state. The fluorescence quantum yield decreases 

from solvents of low to high-polarity for all three compounds investigated in this work. 

However one notes that p-PBN is weakly fluorescent with a yield smaller than 8%, MP2-

B25CN exhibits a yield smaller than 40%, whereas MP2BN, has a yield close to 1 in all 

solvents except in acetonitrile where it drops to 50%. As pointed out below, these differences 

can mainly be traced back to changes in the radiative rate constant krad.  
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8.3.2 Potential Energy Surfaces 

The schematic excited-state hypersurfaces for p-PBN, MP2BN and MP2-B25CN as a 

function of the twist angle are shown in Fig. 8.3. It explains the relative energetic position of 

the excited states both in the planar (0°) and perpendicular (90°) geometries. In going from 0° 

to 90° there is a stabilization of the TICT state (twisted geometry) for p-PBN and MP2-

B25CN.  

 

 

 
 
Figure 8.3:. Schematic representation of the excited state hypersurfaces for p-PBN, MP2BN and MP2-B25CN 
in the planar and perpendicular geometry. (LE0 - locally excited state; CT0 - charge transfer state, both without 
mesomeric interaction; Emes- Mesomeric energy – zero for the perpendicular, of varying size for the planar 
geometry resulting in the TICT (perpendicular) and the MICT states (planar geometry; ∆EM-T - energy difference 
between MICT and TICT states; ∆E0- energy difference LE0 and CT0 states) 
 

 
On the other hand, for MP2BN as compared to p-PBN, the MICT state (planar form) is more 

stable than the TICT state due to the increased mesomeric interaction between the two 

submoieties. This is a consequence of the different size of the coefficients of the donor orbital 

on the pyrrole, with a large value on carbon atom 2 (MP2BN) and a node on the nitrogen (p-

PBN). In MP2-B25CN, the TICT state is lower than the MICT state in spite of the larger 

mesomeric interaction, due to the increased energy gap ∆E0 between the zero order LE and 

TICT states. 
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8.3.3 Dipole Moments and Radiative and Nonradiative Rate Constants 

In Table 8.2, the ground and excited state dipole moments of all three compounds 

are collected. The excited state dipole moments, µe are calculated from the plot of the 

solvatochromic shift of the emission maxima (νf) versus the solvent polarity function f ′∆  

(see fig. 8.4a and fig. 8.4b), and are calculated from the following equation [53, 54]: 

 νf = − ehca
f µ

π 3
04

2
∈

′∆
( eµ − gµ ) + const            (8.1) 

  
with  f ′∆ = (ε-1)/(2ε+1) − 1/2[(n2-1)/(2n2+1)] 
       
  where ε  is the dielectric constant and n the refractive index of the solvent 
  and a is the Onsager radius, a= 3

AN4/M3 ρπ                       (8.2)      
 with ρ the density of the compound, M its molecular weight and NA Avogadro's 
number. 
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Figure 8.4a: Fluorescence maxima of p-PBN, MP2BN and MP2-B25CN at room temperature versus the solvent 
polarity parameter ∆f’ (see text). 
 
Table 8.2:  Onsager radius (a), ground state equilibrium twist angles (α) , solvatochromic slopes, ground (µg) 
and excited-state (µe) dipole moments derived for p-PBN, MP2BN and MP2-B25N from the Mataga plot 
[ref.21,22] (Fig 4a and Fig 4b). 
 
 a (Å) α Slope (cm-1) µg (D)c µe (D) 

p-PBN 4.1a 23.3 -27.501 2.09 14.8 
 4.1a  -35.489 2.09 16.6d 

MP2BN 4.2b 37.5 -10.823 3.87 11.0 
MP2-B25CN 4.3b 46.1 -15.441 1.96 12.3 
a from ref. 8.2. b Calculated from eq. (1) relative to p-PBN. c Calculated from AM1 calculation. d From the 
Mataga plot [ref.53,54] in diethyl ether at low temperatures  
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Figure 8.4b: Fluorescence maxima of p-PBN in diethylether versus ∆f’at different temperatures, indicated in 
Kelvin on the curve. 

 

The Onsager radii a given in Table 8.2 for MP2BN and MP2-B25CN were 

calculated relative to p-PBN from the mass-density formula (eq. 8.2) by assuming equal 

densities ρ. The ground-state dipole moments, µg, are calculated by using the AM1 (Austin 

model 1) semiempirical method [42] of the AMPAC software package [44]. As can be seen 

from Table 8.2, the µg values for p-PBN and MP2-B25CN are found to be similar and about 

half that of MP2BN. The equilibrium twist angle is found to increase from p-PBN (α = 

23.3°), to MP2BN (α = 37.5°) and to MP2-B25CN (α = 46.1°), which normally leads to a 

decrease of the dipole moment. The increased ground-state dipole moment for MP2BN is 

therefore due to a better electronic coupling between the two moieties, because the pyrrole 

group is linked in 2-position where the orbital coefficient is large. In MP2-B25CN, the dipole 

moment is decreased with respect to MP2BN by two sources: the increased twist angle and 

the CN substituents in positions where they will keep any transferred charge near the center of 

the benzene ring whereas in MP2BN this charge is pulled towards the CN substituent and 

hence moved further away from the donor pyrrole group. 

 

Similar arguments hold for the excited state. In contrast to the ground state dipole 

moments, however, the µe values of MP2BN and MP2-B25CN are smaller than for the 

reference compound p-PBN. This can be rationalized by the assumption, supported by the 

experimental krad values, that two different CT states are populated. As detailed above, 

MP2BN can be assumed to populate a state with maximal mesomeric interaction, close to 
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planarity. In this MICT state, the dipole moment must be lower than for the extreme situation 

of the 90° twisted TICT state [9, 19], because mixing between the pure CT and nonpolar 

states occurs. As supported by the very low krad values (see below), p-PBN and MP2-B25CN 

both populate a TICT state, which differs however by the center of charge distribution in the 

LUMO of the acceptor moiety. For p-PBN, the center of negative charge of the acceptor 

orbital is located further away from the donor pyrrole group, whereas for MP2-B25CN, since 

the cyano groups are located in the ortho and meta positions with respect to the donor group, 

the center of negative charge is positioned in the middle of the acceptor orbital. This must 

lead to a smaller value of µe for the TICT state in MP2-B25CN. Thus, the MICT character of 

MP2BN is characterized by two observables: the somewhat reduced value of the dipole 

moment when compared to the other two compounds in the excited state, and the increased 

radiative rate constant. 

The fluorescence decay curves are monoexponential, which allows the evaluation 

of radiative and nonradiative rate constants, krad  and knr respectively, according to equations 

8.3 and 8.4. In eqn. 8.4, knr corresponds to the sum of all nonradiative processes including 

triplet formation. The measured data and calculated photophysical values for p-PBN, MP2BN 

and MP2-B25CN are collected in Tables 8.1. 

 

    krad  = φf /τf                                       (8.3) 
     
    k tot

nrn

 = krad  (φf
-1-1)                             (8.4) 

 
The krad values for all three compounds decrease from non-polar to polar solvents, 

indicating a less allowed emission in solvents of higher polarity. For both p-PBN and MP2-

B25CN, krad values in highly polar solvents are about one order of magnitude smaller as 

compared to MP2BN. Particularly, the krad   values (see Table 8.1) in acetonitrile are 

below107 s-1 in p-PBN and MP2-B25CN indicating a forbidden emission from a TICT state 

whereas in the case of MP2BN the CT emission is tenfold more allowed. We assign this 

emission to a CT state with near planar geometry, i.e. partial twisting and mesomeric 

stabilization (MICT state).  
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8.4 Strength and Position of the Acceptor Part 

By changing the position of the acceptor part, and also by increasing its acceptor 

strength by introducing two cyano substituents from MP2BN to MP2-B25CN, interesting 

changes in the photophysical properties are observed. As discussed above, the nature of the 

emissive state can be judged from the magnitude of the radiative rate constant (Tables 8.1). 

The spectra are also affected: as can seen from fig. 8.2, for MP2BN, where the acceptor has 

been substituted in 4-position with respect to the donor part of methyl-pyrrole, a blue shift of 

the emission in both hexane and acetonitrile is observed with respect to the emission of MP2-

B25CN. On the other hand, the absorption and emission maxima of MP2-B25CN are both 

red-shifted with respect to those of p-PBN and MP2BN. This can be attributed to the 

increased acceptor strength in MP2-B25CN because CT transitions vary with the donor 

acceptor properties of the constituents.  

 

8.5 Transient  Absorption Studies 

The transient absorption spectra measured for MP2BN in medium (THF) and 

strongly polar (ACN) solvents by subpicosecond transient absorption spectroscopy show a 

dominant absorption band below 400 nm and a residual gain band in the red-wing of the 

fluorescence spectrum (see fig.8.5). The absorption band is similar to that of the benzonitrile 

radical anion [94] but is somewhat blue shifted due to the overlap with the gain band. The 

observation of a gain band indicates that the stimulated-emission cross section is large 

enough, which is consistent with the allowed MICT-nature of the excited-state. Such a gain 

band is indeed not observed for DMABN [94] although one cannot exclude that for this latter 

compound the excited state absorption is only slightly dominant so that the sum of gain and 

absorption yields a relatively weak transient absorption signal.  
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Figure 8.5 : Transient absorption spectra of MP2BN in acetonitrile (red) and in THF (black) measured 50 ps 
after excitation with a subpicosecond laser pulse. The stimulated emission of the MICT state is observed in the 
red-wing of the fluorescence spectra, (the maxima of which are indicated by the vertical arrows) due to the 
overlap with the transient absorption band. 
 
 

8.6 Conclusion 

Steady-state and time-resolved spectroscopy yielded evidence that the excited state 

CT character in the phenyl pyrrole derivatives p-PBN, MP2BN and MP2-B25CN is different. 

The MICT character (large mesomeric interaction for near-planar geometries) of MP2BN as 

compared to the TICT character of p-PBN and MP2-B25CN is supported by its reduced 

excited-state dipole moment, the enhanced radiative rate constant krad  values and by the 

observation of stimulated emission in pump-probe experiments. The reason for the increased 

mesomeric interaction in MP2BN can be traced back to a more efficient orbital interaction for 

the phenylpyrroles linked in the 2-position. Because the HOMO of the pyrrole has a node on 

the nitrogen, the HOMO of planar p-PBN is localised on the pyrrole, but delocalised for near-

planar MP2BN where the linkage of the molecular moieties involves two carbon atoms with 

large orbital coefficients. In MP2-B25CN we also expect a MICT state, but the TICT state is 

energetically lowered much more strongly due to the increased acceptor strength (lower 

reduction potential) of dicyano-benzene in comparison with mono-cyano benzene, so that it 

may be the only minimum in polar solvents.  
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9 Final Conclusion 

The investigations of the donor-acceptor DMABN derivatives have been 

characterized by absorption and fluorescence at both room- and low-temperature, as well as 

time-resolved absorption and fluorescence spectroscopic methods. Besides, additional 

supporting evidence has been gained by performing quantum chemical calculations mainly 

using the semiempirical method with AM1 method. In most of the compounds investigated in 

this work, intramolecular charge transfer (ICT) formation could well be explained by twisted 

intramolecular charge transfer (TICT) state through the decoupling of the donor-acceptor 

moieties in the excited state.  

Although, the tetrafluoro analogue of DMABN, DMABN-F4, is closely related to 

the parent compound spectroscopically, the short wavelength B-band is not observed in the 

fluorescence spectrum even at 77 K in this compound. This has been explained by the fact 

that there is an ultrafast access to the CT conformation in the excited state. This could 

possibly be linked to the pretwisted ground state geometry and the increased acceptor 

strength. The analysis of the time-resolved measurements indicates that the emission of 

DMABN-F4 is strongly forbidden and is consistent with the formation of a TICT state with 

high dipole moment.  

New insight was gained by the investigation of other fluorinated derivatives of 

aniline and phenyl pyrrole. The low fluorescence quantum yield values and the absence of 

phosphorescence in all of these fluorinated derivatives suggest that the high rate of non-

radiative decay takes place through internal conversion rather than intersystem crossing. A 

possible internal conversion photochemical reaction path could be the folding (butterfly 

motion) of the benzene ring either towards a Dewar or a prefulvene deformation. It is 

tentatively concluded that the F-atoms increase this photoreaction tendency already present in 

the parent benzene (channel III). 

From the studies on the photophysical properties of meta- and para-cyano-N-

phenylpyrrole (m- and p-PBN), it has been found that both compounds show highly red 

shifted and strongly forbidden emission in polar solvents, assigned to a TICT state. 

Comparison to quantum chemical calculations indicates that the twisted structure is connected 

with an antiquinoid distortion of the benzonitrile group. It has been concluded that m-PBN 

differs from p-PBN by a less exergonic formation of the TICT state from the LE/ICT quinoid 

state, and it therefore shows only single LE/ICT fluorescence in nonpolar alkane solvents, 
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whereas p-PBN shows dual fluorescence (LE/ICT and TICT). 

Furthermore, the investigation on dimethyl derivatives of N-phenylpyrrole such as 

p-DPBN and m-DPBN gave additional insight into the way the photophysical properties 

would be affected by changing the position of the acceptor group and by increasing the donor-

strength and the ground state twist angle. The results led to the conclusion that they emit from 

a TICT state similarly to the nonmethylated PBN pair, but that this emission is even more 

strongly forbidden. 

 

Finally, a new perspective regarding the CT state has been gained from 

compounds with a different linkage position on the donor such as MP2BN and additionally by 

changing the orientation of the acceptor part and by increasing its strength such as MP2-

B25CN. The mesomeric interaction between donor and the different acceptor units has been 

investigated, and it was found that the behaviour could switch between ICT states with large 

mesomeric interaction (MICT -Mesomeric Intramolecular Charge Transfer) such as in 

MP2BN, and with a minimum mesomeric interaction (TICT – Twisted Intramolecular Charge 

Transfer) states such as in p-PBN and MP2-B25CN. The important factors, such as the 

relative energies of LE/ICT (MICT) and TICT state and the strength of the mesomeric 

interaction in the MICT state have been mainly considered. 

 

As a whole, this dissertation mainly deals with the investigation on the 

photophysical properties of donor-acceptor molecules. All the observations help to understand 

the ICT processes taking place in the excited state. Throughout this study, the TICT/MICT 

model could reasonably well explain the CT processes occurring in these molecules. The low 

fluorescence quantum yields of the fluorinated derivatives of DMABN should be further 

explored by other techniques such as transient absorption and photo-acoustic spectroscopy as 

well as preparative photochemistry to get a clear idea on the non-radiative decay pathways 

involved. A possible clue for this non-radiative decay pathway can also be obtained by 

performing higher-level quantum chemical calculations such as ab initio and time-dependent 

density functional theory (DFT) calculations with bending, folding or twisting as a reaction 

coordinate. Concerning the N-phenylpyrrole compounds, fluorescence polarisation 

spectroscopy can further help to clarify the nature of the CT excited states observed.  



 102

References and Notes 

 

[1] Rettig, W. (1986), Angew. Chem. Int. Ed. (vol. 25), p. 971. 

[2] Rettig, W. (1991), Nachr. Chem. Tech. Lab. (vol. 39), p. 298. 

[3] Al-Hassan, K. A. and Rettig, W. (1986): Free volume sensing fluorescent probes, 

Chemical Physics Letters (vol. 126), No. 3-4, pp. 273-9. 

[4] Rettig, W.; Fritz, R. and Springer, J. (1991): p. 61, Elsevier, Amsterdam. 

[5] Rettig, W. (1993), Wolfbeis, O.S, Fluorescence spectroscopy- New methods and 

applications p. 31, Springer, Berlin. 

[6] Plaza, P.; Jung, N. D; Martin, M. M.; Meyer, Y. H.; Vogel, M. and Rettig, W. (1992), 

Chem. Phys. (vol. 168), p. 365. 

[7] Habib Jiwan, J. L. and Soumillion, J. P. (1992), J. Photochem. Photobio. A (vol. 64), 

p. 145. 

[8] Lippert, E.; Lüder, W. and Boos, H. (1962), Adv.  Mol.  Spectrosc. Proc. Int. Meet. 

4th (vol. 1959), p. 443. 

[9] Grabowski, Z. R.; Rotkiewicz, K and Rettig, W (2003), Chem. Rev. (vol. 103), No. 

10, pp. 3899-4031. 

[10] Turro, N. J.; Mc Vey, J.; Ramamurthy, V. and Lechtken, P. (1979), Ang. Chem (vol. 

91), p. 597. 

[11] Marcus, R. A. (1956), J. Chem. Phys. (vol. 24), pp. 979-89. 

[12] Marcus, R. A. (1956), J. Chem. Phys. (vol. 24), pp. 966-78. 

[13] Marcus, R. A. (1959), Canad. J. Chem. (vol. 37), pp. 155-63. 

[14] Marcus, R. A. and Sutin, Norman (1985), Biochim. Biophys. Acta (vol. 811), No. 3, 

pp. 265-322. 

[15] Kavarnos, G. J (1993): Fundamentals of photoinduced electron transfer, VCH 

Publishers, Weinheim. 

[16] Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, D. J. and Baumann, W. 

(1979), Nouv. J. Chim. (vol. 3), No. 7, pp. 443-54. 

[17] Rotkiewicz, K.; Grellmann, K. H. and Grabowski, Z. R. (1976), Chem. Phys. Lett. 

(vol. 19), p. 315. 

[18] Grabowski, Z. R. and Dobkowski, J (1983), Pure App. Chem. (vol. 55), No. 2, pp. 

245-52. 

[19] Rettig, W. (1994): Top. Curr. Chem. (vol. 169) p. 253. 



 103

[20] Zachariasse, K. A.; von der Haar, T.; Hebecker, A.; Leinhos, U. and Kuehnle, W. 

(1993), Pure App. Chem. (vol. 65), No. 8, pp. 1745-50. 

[21] Leinhos, Uwe; Kuehnle, Wolfgang and Zachariasse, Klaas A. (1991), J. Phys. Chem. 

(vol. 95), No. 5, pp. 2013-21. 

[22] Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.; Kuehnle, W. and 

Zachariasse, K. A. (1992), J. Phys. Chem. (vol. 96), No. 26, pp. 10809-19. 

[23] Sobolewski, A. L. and Domcke, W. (1996), Chem. Phys. Lett. (vol. 250), p. 428. 

[24] Sobolewski, A. L. and Domcke, W. (1996), Chem. Phys. Lett. (vol. 259), p. 119. 

[25] Rotkiewicz, K.; Grabowski, Z. R.; Krowczynski, A and Kuehnle, W. (1976), J. Lumin. 

(vol. 12-13), pp. 877-85. 

[26] Grabowski, Z. R.; Rotkiewicz, K; Rubaszewska, W and Kirkor-Kaminska, E (1978), 

Acta Phys. Pol. A (vol. 54), p. 767. 

[27] Grabowski, Z. R.; Rotkiewicz, K and Siemiarczuk, A (1979), J. Lumin. (vol. 18-19), 

No. Pt. 1, pp. 420-4. 

[28] Rettig, W. and Lippert, E. (1980), J. Mol. Struc. (vol. 80), p. 17. 

[29] Rettig, W. and Marschner, F. (1983), Nouv. J. Chim. (vol. 7), No. 7, pp. 425-31. 

[30] Pinto, D. J. P; Orwat, M. J; Wang, S; Fevig, J. M; Quan, M. L; Amparo, E; Cacciola, 

J; Rossi, K. A; Alexander, R. S; Smallwood, A. M; Luettgen, J. M; Liang, L; Aungst, 

B. J; Wright, M. R; Knabb, R. M; Wong, P. C; Wexler, R. R and Lam, P. Y. S (2001), 

J. Med. Chem. (vol. 44), p. 566. 

[31] Felstead, E.; Fielding, H. C. and Wakefield, B. J. (1966): Reactions of metal cyanides 

with polyfluorobenzenes, J. Chem. Soc., C. Org., No. 7, pp. 708-11. 

[32] Fischer, H. and Orth, H. (1934): Die chemie des pyrrols, Bd. I., Akademishe 

Verlagsgessellschaft, Leipzig, 1934. 

[33] Penieres, G.; Soto, V.; Alvarez, C.; Garcia, O. and Garcia, J. G. (1998), Heterocyc. 

Comm. (vol. 4), No. 1, pp. 31-32. 

[34] Meech, S. R. and Phillips, D. (1983), J. Photochem. (vol. 23), p. 193. 

[35] Heisel, F. and Miehé, J. A. (1985), Chem. Phys. (vol. 98), p. 233. 

[36] Riddick, J. A.; Bunger, W. B. and Sakano, T. K. (1986): Organic Solvents, John Wiley 

& Sons. 

[37] O' Connor, D. V. and Phillips, D. (1984): Time Correlated Single Photon Counting, 

Academic Press: London. 

[38] Beechen, J. M.; Gratton, E. and Mantulin, O. M. (1992): Globals Unlimited, Urbana, 

Laboratory of Fluorescence Dynamics at the University of Illinois 



 104

[39] Vogel, M. and Rettig, W. (1987), Ber. Bunsen-Ges. Phys. Chem. (vol. 91), No. 11, pp. 

1241-7. 

[40] Weigel, W.; Rettig, W.; Dekhtyar, M.; Modrakowski, C.; Beinhoff, M. and Schlueter, 

A. D. (2003), J. Phys. Chem. A (vol. 107), No. 31, pp. 5941-5947. 

[41] Dai Hung, N.; Plaza, P.; Martin, M. M and Meyer, y. H (1992), Appl. Opt (vol. 31), p. 

7046. 

[42] Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.  and Stewart, J. J. P. (1985), J. Am. 

Chem. Soc. (vol. 107), p. 3902. 

[43] Dewar, M. J. S. and Dieter, K. M. (1986), J. Am. Chem. Soc. (vol. 108), p. 8075. 

[44] (1997): AMPAC 6.0 and AMPAC 6.55, Shawnee, USA, Semichem, Inc. 

[45] Druzhinin, S. I.; Jiang, Yun-B.; Demeter, A. and Zachariasse, K. A. (2001), Phys. 

Chem. Chem. Phys. (vol. 3), No. 23, pp. 5213-5221. 

[46] Felstead, E.; Fielding, H. C. and Wakefield, B. J. (1966), J. Chem. Soc., C. Org., No. 

7, pp. 708-11. 

[47] Frisch, M. J; Trucks, G. W; Schlegel, H. B; Gill, P. M.W; Johnson, B. G; Robb, M. A; 

Cheeseman, J. R; Keith, T; Petersson, G.A; Montgomery, J. A; Raghavachari, K; Al-

Laham, M. A; Zakrzewski, V. G; Ortiz, J. V; Foresman, J. B; Cioslowski, J; Stefanov, 

B. B; Nanayakkara, A; Challacombe, M; Peng, C. Y; Ayala, P. Y; Chen, W; Wong, 

M. W; Andres, J. L; Replogle, E. S; Gomperts, R; Martin, R. L; Fox, D. J; Binkley, J. 

S; Defrees, D. J; Baker, J; Stewart, J. P; Head-Gordon, M; Gonzalez, C and Pople, J. 

A (1998), Gaussian 98, Pittsburgh, PA, Gaussian,Inc 

[48] Grabowski, Z. R.; Rotkiewicz, K.; Rubaszewska, W. and Kirkor-Kaminska, E. (1978), 

Acta Phys. Polon (vol. 54A), p. 767. 

[49] Rotkiewicz, K. and Rubaszewska, W. (1982), J. Lumin. (vol. 27), p. 221. 

[50] Murali, S; Changenet-Barret, P; Ley, C; Plaza, P; Rettig, W; Martin, M.M and 

Tolmachev, A.I (2004): FEMTOCHEMISTRY and FEMTOBIOLOGY: Ultrafast 

Events in Molecular Science, FEMTOCHEMISTRY and FEMTOBIOLOGY: 

Ultrafast Events in Molecular Science p. 323, Elsevier. 

[51] Köhler, G. and Rotkiewicz, K. (1986), Spectrochim. Acta (vol. 42 A), p. 1127. 

[52] Lippert, E. (1955), Z. Naturforsch. (vol. 10a), p. 541. 

[53] Mataga, N.; Kaifu, Y. and Kazumi, M. (1955), Bull. Chem. Soc. Jpn. (vol. 690), p. 

690. 

[54] Mataga, N.; Kaifu, Y. and Kazumi, M. (1956), Bull. Chem. Soc. Jpn. (vol. 29), p. 465. 

[55] Rösch, N. and Zerner, M. C. (1994), J. Phys. Chem. (vol. 98), p. 5817. 



 105

[56] Köhn, A. and Hättig, C. (2004), J. Am. Chem. Soc. (vol. 126), p. 7399. 

[57] Okuyama, K.; Kakinuma, T.; Fujii, M.; Mikami, N. and Ito, M. (1986), J. Phys. Chem. 

(vol. 90), p. 3948. 

[58] Tsuda, M.; Oikawa, S. and Kimura, K. (1980), Int. J. Quant. Chem. (vol. 18), p. 157. 

[59] Kato, S (1988), J. Chem. Phys. (vol. 88), p. 3045. 

[60] Sobolewski, A.L.; Woywod, C. and Domcke, W. (1993), J. Chem. Phys. (vol. 98), p. 

5627. 

[61] Birks, J. B (1970): Photophysics of Aromatic Molecules, Wiley, New York. 

[62] Lim, E. C (1977), Excited States (vol. 3) p. 305, Academic press, New York. 

[63] Yokoyama, T.; Taft, R. W. and Kamlet, M.  J (1983), Aus. J. Chem. (vol. 36), No. 4, 

pp. 701-709. 

[64] Murali, S.; Kharlanov, V.; Rettig, W.; Tolmachev, A. I. and Kropachev, A. V. (2005), 

Accepted in J. Phys. Chem. A. 

[65] Rettig, W.; Bliss, B. and Dirnberger, K. (1999), Chem. Phys. Lett. (vol. 305), p. 8. 

[66] Cornelissen-Gude, C. and Rettig, W. (1998), J. Phys. Chem. A (vol. 102), No. 40, pp. 

7754-7760. 

[67] Yoshihara, T.; Galievsky, V. A.; Druzhinin, S. I.; Saha, S. and Zachariasse, K. A. 

(2003), Photochem. Photobiol. Sci. (vol. 2), No. 3, pp. 342-353. 

[68] Yoshihara, T.; Druzhinin, S. I. and Zachariasse, K. A. (2004), J. Am. Chem. Soc. (vol. 

126), No. 27, pp. 8535-8539. 

[69] Zachariasse, K. A. (2000), Chem. Phys. Lett. (vol. 320), pp. 8-13. 

[70] Il'Ichev, Y. V.; Kuehnle, W. and Zachariasse, K. A. (1998), J. Phys. Chem. A (vol. 

102), No. 28, pp. 5670-5680. 

[71] Zachariasse, K. A.; Grobys, M.; von der Haar, Th.; Hebecker, A.; Il'ichev, Yu V.; 

Jiang, Y. B.; Morawski, O. and Kuehnle, W. (1996), J. Photochem. Photobiol., A (vol. 

102), No. 1, pp. 59-70. 

[72] Zachariasse, K. A.; Grobys, M.; von der Haar, Th; Hebecker, A.; Il'ichev, Yu V.; 

Jiang, Y. B.; Morawski, O. and Kuehnle, W. (1996), Erratum: J. Photochem. 

Photobiol., A (vol. 102), No. 1, pp. 59-70. 

[73] Zilberg, S. and Haas, Y. (2002), J. Phys. Chem. A (vol. 106), No. 1, pp. 1-11. 

[74] Schmidt, M. W.; Baldrige, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. 

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M. 

and Montogery, J. A. (1993), J. Comp. Chem. (vol. 14), p. 1347. 



 106

[75] Dunning, T.H., Jr. J. Chem. Phys. 1989, 90, 1007; basis sets were obtained from the 

Extensible Computational Chemistry Environment Basis Set Database, Version 

02/25/04, as developed and distributed by the Molecular Science Computing Facility, 

Environmental and Molecular Sciences Laboratory which is part of the Pacific 

Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded 

by the U.S. Department of Energy. 

[76] Grinter, R.; Heilbronner, E.; Godfrey, M. and Murrell, J.N. (1961), Tetrahed. Lett. 

(vol. 21), p. 771. 

[77] Maus, M.; Rettig, W.; Bonafoux, D. and Lapouyade, R. (1999), J. Phys. Chem. A (vol. 

103), No. 18, pp. 3388-3401. 

[78] Parusel, A. B. J. (2000), Phys. Chem. Chem. Phys. (vol. 2), p. 5545. 

[79] Rettig, W.; Wermuth, G. and Lippert, E. (1979), Ber. Bunsen-ges. Phys. Chem. (vol. 

83), p. 692. 

[80] Wermuth, G. (1983), Z. Naturforsch. (vol. 38a), p. 368. 

[81] Wermuth, G. and Rettig, W. (1984), J. Phys. Chem. (vol. 88), No. 13, pp. 2729-35. 

[82] Rettig, W. and Marschner, F. (1990), New J. Chem. (vol. 14), No. 11, pp. 819-24. 

[83] Rettig, W. (1982), J. Mol. Struc. (vol. 84), p. 303. 

[84] It is assumed here, that the increased mesomeric interaction in the excited states leads 

to a planar minimum for the lowest excited states. This is supported by the very low 

barrier to the planarity. 

[85] Sarkar, A. and Chakravorti, S. (1995), Chem. Phys. Lett. (vol. 235), pp. 195-201. 

[86] Murali, S.; Rettig, W. and Zilberg, S. Submitted 

[87] Maus, M. and Rettig, W. (2002), J. Phys. Chem. A (vol. 106), p. 2104. 

[88] Rettig, W.; Vogel, M.; Lippert, E. and Otto, H. (1986), Chem. Phys. (vol. 108), No. 3, 

pp. 381-90. 

[89] Vogel, M. and Rettig, W. (1985), Ber. Bunsenges. Phys. Chem. (vol. 89), No. 9, pp. 

962-8. 

[90] Jones II, G.; Jackson, W. R; Choi, C. Y and Bergmark, W. R (1985), J. Phys. Chem. 

(vol. 89), p. 294. 

[91] Rettig, W. and Klock, A. (1985), Canad. J. Chem. (vol. 63), No. 7, pp. 1649-53. 

[92] Vogel, M.; Rettig, W.; Sens, R. and Drexhage, K. H. (1988), Chem. Phys. Lett. (vol. 

147), No. 5, pp. 461-5. 

[93] Van der Auweraer, M.; Grabowski, Z. R. and Rettig, W. (1991), J. Phys. Chem. (vol. 

95), No. 5, pp. 2083-92. 



 107

[94] Okada, T.; Uesugi, M.; Kohler, G.; Rechthaler, K.; Rotkiewicz, K.; Rettig, W. and 

Grabner, G. (1999), Chem. Phys. (vol. 241), No. 3, pp. 327-337. 

 

 



 108

  

List of Abbreviations and Symbols 
 
                            

ET Electron Transfer 

CT Charge Transfer 

TICT  Twisted Intramolecular Charge Transfer 

LE Locally excited  

ICT Intramolecular Charge Transfer 
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kBA Rate constant of the reaction from B* to A* 
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0
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