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Abstract

This thesis consists of four essays of independent interest which make empirical
and methodological contributions to the fields of financial economics and macroe-
conomics. The first essay deals with the proper specification of investors” infor-
mation set in tests of conditional asset pricing models. In particular, it advances
the use of dynamic factors as conditioning variables. By construction, dynamic
factors summarize the information in a large number of variables and are there-
fore intuitively appealing proxies for the information set available to investors.
The essay demonstrates that this approach substantially reduces the pricing er-
rors implied by conditional models with respect to traditional approaches that
use individual indicators as instruments. Following previous evidence that the
central bank uses a large set of conditioning information when setting short-term
interest rates, the second essay employs a similar insight in a model of the term
structure of interest rates. Precisely, the dynamics of the short-term interest rate
are modelled using a Factor-Augmented Vector-Autoregression. Based on this dy-
namic characterization of monetary policy, the term structure of interest rates is
derived under the assumption of no-arbitrage. The resulting model is shown to
provide superior out-of-sample forecasts of US government bond yields with re-
spect to a number of benchmark models. The third essay analyzes the predictive
information carried by the yield curve components level, slope, and curvature
within a joint dynamic factor model of macroeconomic and interest rate data.
The model is estimated using a Metropolis-within-Gibbs sampling approach and
unexpected changes of the yield curve components are identified employing a
combination of zero and sign restrictions. The analysis reveals that the curvature
factor is more informative about the future evolution of the yield curve and of
economic activity than has previously been acknowledged. The fourth essay pro-
vides a monthly business cycle chronology for the Euro area. A monthly series of
Euro area real GDP is constructed using an interpolation routine that nests previ-
ously suggested approaches as special cases. Then, a dating routine is applied to
the interpolated series which excludes business cycle phases that are short and
flat.

Keywords:
Financial economics, macroeconomics, applied econometrics, asset pricing, term
structure of interest rates, dynamic factor models, business cycle dating



Zusammenfassung

Diese Arbeit besteht aus vier Essays, die empirische und methodische Beitriage zu
den Gebieten der Finanzmarktokonomik und der Makrockonomik liefern. Der
erste Essay beschiftigt sich mit der Spezifikation der Investoren verfiigbaren In-
formationsmenge in Tests bedingter Kapitalmarktmodelle. Im Speziellen schlagt
es die Verwendung dynamischer Faktoren als Instrumente vor. Diese fassen per
Konstruktion die Information in einer Vielzahl von Variablen zusammen und
stellen daher intuitive Mafle fiir die Investoren zur Verfiigung stehenden Infor-
mationen dar. Es wird gezeigt, dass so die Schatzfehler bedingter Modelle im
Vergleich zu traditionellen, auf einzelnen Indikatoren beruhenden Modellvarian-
ten substantiell verringert werden. Ausgehend von Ergebnissen, dass die Zentral-
bank zur Festlegung des kurzfristigen Zinssatzes eine grofie Menge an Informa-
tionen berticksichtigt, wird im zweiten Essay im Rahmen eines affinen Zinsstruk-
turmodells eine dhnliche Idee verwandt. Speziell wird die Dynamik des kurzfris-
tigen Zinses im Rahmen einer Faktor-Vektorautoregression modelliert. Aufbau-
end auf dieser dynamischen Charakterisierung der Geldpolitik wird dann die
Zinsstruktur unter der Annahme fehlender Arbitragemdglichkeiten hergeleitet.
Das resultierende Modell liefert bessere Vorhersagen US-amerikanischer Anlei-
henzinsen als eine Reihe von Vergleichsmodellen. Der dritte Essay analysiert die
Vorhersagekraft der Zinsstrukturkomponenten “level”, “slope” und “curvature”
im Rahmen eines dynamischen Faktormodells fiir makrookonomische und Zins-
daten. Das Modell wird mit einem Metropolis-within-Gibbs Sampling Verfahren
geschitzt, und Uberraschungsinderungen der drei Komponenten werden mit
Hilfe von Null- und Vorzeichenrestriktionen identifiziert. Die Analyse offenbart,
dass der "curvatureFaktor informativer in Bezug auf die zukiinftige Entwicklung
der Zinsstruktur und der gesamtwirtschaftlichen Aktivitat ist als bislang vermu-
tet. Der vierte Essay legt eine monatliche Chronologie der Konjunkturzyklen im
Euro-Raum vor. Zunichst wird mit Hilfe einer verallgemeinerten Interpolations-
methode eine monatliche Zeitreihe des europdischen BIP konstruiert. Anschlie-
end wird auf diese Zeitreihe ein Datierungsverfahren angewandt, das kurze
und flache Konjunkturphasen ausschliefst.

Schlagworter:

Finanzmarktokonomik, Makrookonomik, angewandte Okonometrie,
Aktienbewertungsmodelle, Zinstrukturmodelle, dynamische Faktormodelle,
Datierung von Konjunkturzyklen
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1 Introduction

1.1 Scope of the Study

Ever since I started studying economics, I wanted to understand how financial
markets work and how they interact with the macroeconomy. Over the last three
and a half years, I have had a first chance to explore this topic. This thesis is a
progress report of my exploration.

Financial and macroeconomic theory have developed independently of one an-
other for a long time. As a consequence, the benchmark models put forth by
the two strands of economic research are strikingly disconnected. In macroeco-
nomics, this is mainly reflected by the fact that models which successfully repli-
cate the dynamics of key economic aggregates largely fail to explain observed
patterns of asset prices. A popular example for such a failure is the equity pre-
mium puzzle which denotes the problem of standard macroeconomic models to
explain the high average returns of stocks as compared to bonds. In financial
economics, the separation from macroeconomic theory is most obviously notable
from the fact that traditional asset pricing models completely ignore the informa-
tion carried by non-financial variables. Famous witnesses of this disregard still
build the core of most finance textbooks: the Capital Asset Pricing Model, the
Arbitrage Pricing Theory, and various latent factor models of the term structure
of interest rates.

Lately, the strict demarcation between pure finance and pure macro models has
somewhat broken up. In particular, a number of recent studies have successfully
employed macroeconomic variables in models of the cross-section of stock re-
turns and models of the term structure of interest rates. Macroeconomic informa-
tion enters both types of models via different channels. On the one hand, state



of the art cross-sectional asset pricing models assume a time-varying relationship
between the stochastic discount factor and the pricing factors that summarize
the fundamental sources of risk faced by investors. The time-variation in the
discount factor specification is inherently linked to investors” conditional expec-
tations about future returns. As these expectations are unobservable, they are
commonly modeled to depend on macroeconomic variables which are assumed
to proxy for the information set available to investors. The recent term structure
literature, on the other hand, mainly incorporates macroeconomic information
via a formulation of monetary policy. In particular, affine term structure models
use no-arbitrage arguments to develop the yield curve starting from a specifica-
tion of the short-term interest rate. The latter is adopted from benchmark macroe-
conomic models which map the short rate to output and inflation via some mone-
tary policy reaction function. Accordingly, the macroeconomic indicators that are
used to summarize the central bank’s information set become state variables in
the term structure model. In sum, the assumptions made about the information
employed by investors or the central bank define which macroeconomic variables

enter the two types of models.

The particular structure of state of the art models of the cross-section of returns
and the term structure of interest rates allows to include only few indicators as
proxies for the information set available to investors or the central bank. Find-
ing sensible instruments therefore represents a common theme in much of the
current macro-finance literature. Yet, both investors and the central bank have
access to huge amounts of information. As a consequence, asset pricing stud-
ies that employ only few instruments neglect potentially important information
and are thus prone to the risk of misspecification. In my dissertation, I therefore
go beyond this common practice by suggesting ways to explicitly incorporate
broad macroeconomic information sets in the two types of asset pricing mod-
els. My approach is based on dynamic factor analysis for large datasets which
attracts a good deal of interest in contemporary empirical macroeconomics. Re-
cent research on dynamic factor models has shown that the information in a large
number of economic time series can efficiently be summarized by a few factors.
Accordingly, these factors are natural and intuitively appealing proxies for the
information set available to investors or the central bank. In Chapters 2 and 3 of
my thesis, I exploit this feature and show that the use of large macroeconomic
datasets can substantially improve the performance of asset pricing models.
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The information linkages between macroeconomic and financial variables are
not unidirectional. While macroeconomic variables have only recently found
their way into asset pricing, financial variables are traditionally employed as
forward-looking indicators of economic activity. For example, spreads between
long-term and short-term interest rates are often used to predict recessions. How-
ever, the yield curve carries more information than what is captured by interest
rate spreads. Indeed, the financial literature commonly decomposes the term
structure of interest rates into three factors - “level”, “slope”, and “curvature” -
which together summarize almost all of the variation across yields. Although
this factor decomposition is extensively used in asset pricing applications, there
is only scattered evidence on the predictive content of the three factors for future
economic activity. Therefore, Chapter 4 of my thesis analyzes the information
carried by the three yield curve components. In particular, I study whether unex-
pected changes of the factors capture important news about the future evolution

of output and other economic variables.

On a more general basis, forecasting the beginning and end of recessions is one of
the most prominent tasks of economists in applied research and practice. Other
than the use of interest rate spreads, there exists a variety of different methods
to predict economic turning points. Compared to the comprehensive repertory
of recession prediction models, however, surprisingly little research effort has
been devoted to the proper definition of business cycle phases and what marks
their beginning and end. In the US, an official chronology of business cycle turn-
ing points is maintained by the National Bureau of Economic Research, NBER.
The dating decision is reached by a group of economists in a judgmental pro-
cess based on the evolution of different economic indicators. The introduction
of the Euro has created a similar need for the Euro area economy. The Centre
for Economic Policy Research, CEPR, has therefore recently started to publish a
chronology of business cycle turning points, employing a procedure akin to the
one used by the NBER. Different from the NBER, however, the CEPR announces
the beginning and end of recessions only on a quarterly basis. Yet, since a wide
range of empirical analyses employ the state of the economy as an indicator, it is
useful to have a monthly chronology of business cycle turning points available.

Chapter 5 of my thesis derives such a chronology for the Euro area.



Altogether, much of my thesis ties in with three popular themes in the contem-
porary financial and macroeconomic literature: the cross-section of stock returns,
the term-structure of interest rates, and dynamic factor models for large datasets.
In the following, I provide a brief review of the literature on these three issues. I

then summarize the results of my thesis in relation to the previous work.

1.2 Literature Review

This section reviews the existing literature on the cross-section of stock returns,
the term structure of interest rates, and dynamic factor models for large datasets.
As there are almost no intersections between the three fields of research, I treat
them separately. For ease of exposition, I report on the main contributions to each

theme in a chronological order.

1.2.1 The Cross-Section of Stock Returns

It is a well-documented fact that returns differ across stocks and across portfo-
lios. A vast literature tries to identify the systematic patterns behind these cross-
sectional return differences. In the following, I provide a brief chronological re-

view of the main contributions to this literature.

The Capital Asset Pricing Model (CAPM) of Sharpe [1964], Lintner [1965] and
Black [1972] was the first model that provided a quantitative explanation of cross-
sectional return differences. The main result of the CAPM is that if all investors
hold mean-variance efficient portfolios in the sense of Markowitz [1952], then the
market portfolio is also mean-variance efficient. A consequence of this finding is
that expected returns of individual stocks or portfolios depend on their exposure
to the market risk. The latter is commonly measured as the coefficient in a lin-
ear regression of the individual stock return on the market return and is mostly
labeled the market beta. According to the CAPM, the expected return of a stock
therefore depends on the expected return of the market portfolio and the stock’s
beta.

The CAPM has been derived under the assumption that investors choose their
mean-variance efficient portfolios within a static framework where asset returns
have constant means and variances. In its original form, the CAPM thus abstracts
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from changes in the investment opportunity set. This critique was first pointed
out by Merton [1973] who in response developed a dynamic model of asset allo-
cation, commonly labeled the Intertemporal CAPM (ICAPM). Solving his model,
Merton derived an asset pricing formula which implies that the expected return
of an asset depends on two components: its exposure to the market risk and
its comovement with a portfolio that hedges against future changes of the set
of investment opportunities. Merton assumes the latter to be captured by some
unspecified state variables. Therefore, Fama [1991] referred to the ICAPM as a
“fishing license”. Indeed, Merton’s theory has given rise to various ad-hoc pric-
ing models that are based on empirical risk factors which are assumed to proxy
for changes in investment opportunities. One early example for such an ad-hoc
approach was the article by Chen, Roll, and Ross [1986]. These authors showed
that macroeconomic indicators such as the term spread, the default spread, un-
expected inflation, and production growth have incremental explanatory power

over the market return in cross-sectional regressions.

Breeden [1979] provided an important simplification of Merton’s (1973) model.
He showed that the pricing formula of the ICAPM can be transformed into a
single-beta representation where the beta captures the asset’s comovement with
aggregate consumption. Breeden’s model is therefore known as the Consump-
tion Capital Asset Pricing Model (CCAPM). Yet, while the CCAPM represents an
important milestone in asset pricing theory, it has largely failed empirical tests
(see e.g. Lettau and Ludvigson 2001).

Another strand of research on the cross-section of stock returns has taken a statis-
tical approach. The Arbitrage Pricing Theory (APT) of Ross [1976] represents the
seminal contribution in this field. The central idea of the APT is that in equilib-
rium, idiosyncratic risk will not be priced since investors can diversify it away by
holding portfolios. Therefore, only systematic risk shared by all assets in the mar-
ket will carry premia. If there are such systematic sources of risk, asset returns
will have a factor structure. As a consequence, expected returns of individual
assets are approximately linear functions of factor loadings. Chamberlain and
Rothschild [1983] showed that Ross” (1976) result prevails when returns have an
approximate factor structure, i.e. when their idiosyncratic components are mildly
cross-correlated. Connor and Korajczyk [1986] extended these results and devel-
oped a procedure for factor extraction based on principal components that ac-



commodates approximate factor structures. More recently, Jones [2001] provides
an extension of Connor and Korajczyk’s method which is robust to heteroskedas-
ticity of returns. While potentially delivering good in-sample estimates of the
common factors underlying asset returns, the APT does not provide economic
explanations for the observed cross-sectional return differences. It has therefore

received little attention in recent years.

The empirical failure of the CCAPM, the purely statistical nature of the APT,
and the adhocness of empirical specifications of the ICAPM have bestowed a
long life upon the standard CAPM. In the 1990s, however, the model as been seri-
ously challenged by the work of Fama and French. First, Fama and French [1992]
showed that a firm’s market capitalization and the ratio of a firm’s book to its
market value together capture an important share of the cross-sectional variation
in average stock returns. Their analysis was inspired by previously documented
“CAPM anomalies”, i.e. failures of the CAPM when applied to portfolios sorted
by firm characteristics. For example, Basu [1977] reported that firms with low
price-earnings ratios tend to have higher returns than their market betas would
suggest. Furthermore, Banz [1981] documented that small capitalization stocks
on average earn returns that are higher than what the CAPM would predict. After
noting that size and book-to-market play the most prominent role in explaining
these anomalies, Fama and French [1993] constructed a set of portfolios designed
to mimic the two factors. Together with the market return, these mimicking port-
folios exhibit a strikingly good ability to explain average stock returns. Conse-
quently, the Fama-French three-factor model has lately succeeded the CAPM as

the benchmark asset pricing model.

Yet, the model is only empirically motivated and provides no insight about the
economic foundations of the size and book-to-market factors. Recent research has
therefore tried to give the Fama-French factors an economic interpretation. Liew
and Vassalou [2000], for example, show that the size and book-to-market factors
help forecast GDP growth. Vassalou [2003] finds that much of the information
in the two factors is news related to future GDP growth. More recently, Petkova
[2005] provides empirical evidence that the Fama-French factors are correlated
with innovations of a set of variables that describe investment opportunities, e.g.
the dividend yield, the term spread, and the default spread. Altogether, though,
the two Fama-French factors still lack a clear-cut economic interpretation.
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As a consequence, the CAPM has lately attracted renewed interest. In particu-
lar, many authors have focused on conditional formulations of the model. In this
framework, an asset’s expected return in period t depends on the expected re-
turn on the market portfolio and its expected market beta in period t+1, where
the expectations are formed based on all information available up to period t.
Jagannathan and Wang [1996] were the first to suggest a conditional version of
the CAPM. They showed that their conditional model implies an unconditional
model with an additional risk factor. Cochrane [1996] more generally demon-
strated how conditioning information can be included in asset pricing models
and how such models translate into unconditional models that can be estimated
using standard statistical methods. Employing Cochrane’s setup, Lettau and
Ludvigson [2001] more recently find strikingly strong support for conditional
versions of the CAPM and the CCAPM. Based on prior evidence that the log
consumption-wealth ratio forecasts excess returns, they use this variable as a
proxy for investors’ information set. Subsequent to Lettau and Ludvigson’s in-
fluential study, a number of different conditioning variables have been proposed.
Two examples are Santos and Veronesi [2006] who show that the labor income
to consumption ratio is a useful instrument and Lustig and Van Nieuwerburgh
[2005] who suggest the housing wealth to human wealth ratio as conditioning
variable.

Despite the recent popularity of conditional pricing models in the spirit of Let-
tau and Ludvigson [2001], the approach suffers from the fundamental problem
of employing individual variables as proxies for the information set available to
investors. This is obviously a strong assumption. In Chapter 2 of my thesis, I
therefore suggest a new strategy of testing conditional asset pricing models on

the basis of large sets of conditioning information.

1.2.2 The Term-Structure of Interest Rates

The term structure of interest rates commonly denotes the cross-section of zero-
coupon government bond yields ordered by maturity. Plotting combinations of
maturities and yields at a given point in time usually reveals a curve-shaped func-
tional link. Accordingly, “yield curve” is often used as a synonym for term struc-
ture of interest rates. The following section provides a brief review of the main

cornerstones of term structure research over the last three decades.



A central result of asset pricing theory is that the price of a financial asset must
equal its discounted expected future payoff. This general principle translates into
a specific relationship between the prices of bonds of different maturity. In par-
ticular, it implies that the price of an n-periods to maturity zero-coupon bond in
period t equals the discounted expected price of an (n—1)-periods to maturity
bond in t+1. Hence, only two ingredients are needed to derive the prices of
bonds of all maturities: the formulation of a time-series process for the stochastic
discount factor, and a specification of the one-month interest rate.

Vasicek [1977] was the first who suggested a model that has these two features.
In the Vasicek model, the stochastic discount factor is driven by the short-term
interest rate as the only state variable. Accordingly, it belongs to the class of one-
factor models of the term structure. The short-rate itself is modeled as a diffusion
with parameters chosen such that closed-form solutions for bond prices of all ma-

turities can be derived.

Cox, Ingersoll, and Ross [1985] suggested two important extensions to the Va-
sicek model. First, by inserting square root terms in the volatility of the short rate,
they accounted for the observation that higher interest rates are more volatile.
Second, their specification keeps the short rate from falling below zero, a feature

that is obviously desirable since nominal interest rates cannot be negative.

Although providing a good starting point, the models by Vasicek [1977] and Cox
et al. [1985] turned out to be inconsistent with a number of empirical facts. For ex-
ample, if the model parameters are calibrated so as to match the auto-correlation
of the short rate, then the implied average yield curve is considerably less con-
cave than in the data. As one strategy to better fit observed yield curves, Ho
and Lee [1986] introduced additional time-dependent adjustment terms in the
discount factor specification. Heath, Jarrow, and Morton [1992] further extended
this approach, allowing for state variables with time-varying volatility. This fea-
ture made their model particularly useful for the evaluation of interest rate sensi-

tive contingent claims such as bond options.

Despite these generalizations, one-factor models appear to be unable to replicate
the rich dynamic patterns of the yield curve, see Backus, Foresi, and Telmer [1998]
for a nice review. Therefore, term structure research has recently focussed on
multi-factor models of the yield curve. Duffie and Kan [1996] developed a gener-
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alized class of models which nests multi-factor versions of the models by Vasicek
[1977] and Cox et al. [1985] as special cases. In this model class, yields are linear
functions of a vector of state variables and hence its members are commonly re-
ferred to as “affine” models of the term structure. Dai and Singleton [2000] and
Duffee [2002] complement Duffie and Kan’s (1996) framework by providing use-

ful results on the specification and estimation of multi-factor affine models.

Apart from the modeling approaches based on no-arbitrage principles, another
strand of research has taken a statistical approach to term structure analysis. In
particular, a number of authors have employed factor analysis techniques to de-
compose the variation across yields into a few components. Nelson and Siegel
[1987], for example, approximated the forward curve using a three-factor decom-
position with loadings given by exponential functions of the time-to-maturity
and a shape parameter. Litterman and Scheinkman [1991] and Knez, Litterman,
and Scheinkman [1994] performed classical factor analysis of yields and also
found that three factors explain almost all of their cross-sectional variation. Ac-
cording to the shape of the factor loadings, Litterman and Scheinkman [1991]
identified the three factors as the “level”, “steepness”, and “curvature” of the
yield curve. This nomenclature has largely survived, with “steepness” nowadays

mostly being replaced by “slope”.

The preceding summary reveals that traditional term structure analysis completely
neglects the information carried by observable macroeconomic variables. On the
one hand, affine models commonly assume exogenous time series processes for
the state variables. On the other hand, statistical factor decompositions focus on
the estimation of unobserved components that explain as much as possible of the
cross-sectional variation of yields. Yet, since the short-rate is set by the central
bank in response to economic fluctuations, there must be some link between the
term structure and the macroeconomy. In a widely recognized paper, Ang and
Piazzesi [2003] explicitly model this transmission channel by specifying the short-
term interest rate in the spirit of a Taylor-type monetary policy reaction function.
Accordingly, output and inflation become observable states which complement
the three latent factors of the standard affine model. Quite strikingly, Ang and
Piazzesi find that the two macroeconomic variables account for a large share in

the cross-sectional variation of yields.
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This result has triggered a lot of ongoing research in the macro-finance term struc-
ture literature. So far, only few papers have been published, but the number of
studies is constantly growing. Two prominent contributions are due to Hordahl,
Tristani, and Vestin [2006] and Diebold, Rudebusch, and Aruoba [2006]. Hordahl
et al. [2006] build a small structural model that describes the joint evolution of out-
put, inflation, and the short rate, and add the term structure using no-arbitrage
restrictions. In contrast to the study by Ang and Piazzesi [2003], their model
comprises only one latent state variable which they structurally interpret as the
inflation target pursued by the central bank. Hordahl et al. [2006] provide evi-
dence that their model delivers better out-of-sample forecasts of yields than Ang
and Piazzesi’s approach. A common feature of the models by Ang and Piazzesi
[2003] and Hordahl et al. [2006] is the unidirectional link between macroeconomic
variables and the yield curve. Diebold et al. [2006] therefore study a model which
allows for interaction in both directions. Adopting the decomposition of yields
suggested in Diebold and Li [2006], they find evidence for a bidirectional feed-

back between the yield curve and a set of macroeconomic variables.

This result is in line with a strand of the literature that highlights the usefulness
of interest rate spreads as predictors of economic activity. Estrella and Hardou-
velis [1991], Estrella and Mishkin [1998] and a number of other authors provide
regression-based evidence that yield spreads can successfully be employed to
forecast recessions. Yet, the previously documented factor structure of the term
structure suggests that the yield curve carries more information than what is cap-
tured by its slope alone. So far, however, little effort has been devoted to inves-
tigating the predictive information contained in the other components, in partic-
ular curvature. In Chapter 4, I therefore perform a systematic analysis of the

informational content of each of the three yield curve factors.

Similar to factor models of the cross-section of stock returns, degrees of freedom
problems restrict the number of factors that can be incorporated in state-of-the-art
term structure models. Accordingly, much of the recent term structure literature
deals with model specification issues such as the selection of appropriate macroe-
conomic state variables. As discussed above, the choice of states is determined by
the specification of the short-rate. A recent literature finds evidence that central
banks set interest rates in response to the information contained in many vari-

ables. Accordingly, term structure models built upon short-rate equations that
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are based on only few macroeconomic indicators are potentially misspecified. In
Chapter 3 of my thesis, I therefore suggest a term structure model which parsimo-
niously incorporates a large macroeconomic information set. My approach builds
on recent advances in dynamic factor analysis. The next section provides a brief

review of the main contributions in this domain of macroeconomic research.

1.2.3 Dynamic Factor Models for Large Datasets

Factor models are statistical tools that can be used to decompose a set of observed
variables into unobserved common and idiosyncratic components. The term “dy-
namic factor model” has different usages. It mostly denotes a factor model for
time series variables. However, it is also sometimes used to highlight the inclu-
sion of lagged factors in the observation equation in contrast to “static” factor

models which only have contemporary factor values in the observation equation.

While factor models have a long tradition in other social sciences, they have only
recently become a popular tool among macroeconomists. Yet, a few early contri-
butions have inspired much of the subsequent work, in particular the studies by
Geweke [1977] and Sargent and Sims [1977] who analyze the common dynam-
ics among a small number of economic time series using frequency domain ap-
proaches. Engle and Watson [1981], Sargent [1989], and Stock and Watson [1991]
estimate dynamic factor models for small sets of variables in the time domain
using maximum likelihood methods. Based on the EM algorithm, Quah and Sar-
gent [1993] extend this approach in order to accommodate as much as 60 time
series. A common feature of these studies is the assumption of an “exact” factor
structure meaning that the idiosyncratic components are modeled to be uncorre-

lated across variables.

As has been mentioned above in the context of the Arbitrage Pricing Theory
(APT), a branch of financial research has developed techniques to extract factors
from a cross-section of returns under the assumption of an “approximate” factor
structure, i.e. allowing for some mild cross-correlation of the idiosyncratic com-
ponents. The main contribution in this field is Connor and Korajczyk [1986] who
show that the factors in an approximate factor model are consistently estimated
by the first principal components of the data when the number of cross-sectional
elements N goes to infinity and when the number of time series observations T is
fixed.
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Recently, Stock and Watson [1998] have attracted a great deal of attention among
empirical macroeconomists with a working paper that has subsequently been
published in the twin articles Stock and Watson [2002a,b]. Their contribution is
twofold. First, they provide a number of methodological refinements of the prin-
cipal components approach of Connor and Korajczyk. In particular, they show
consistency of the estimated factors when both the number N of cross-sectional
observations and the number T of time series observations tend to infinity, as-
suming T/N — 0 and allowing for time-varying factor loadings. As a second
main contribution, Stock and Watson use factors extracted from a large dataset to
forecast various economic time series. Strikingly, they find that factor-based fore-
casts deliver significantly better out-of-sample predictions of measures of output
and inflation than various benchmark forecasting models. Note that the principal
components estimates are similar to cross-sectional averages of many variables
with weights chosen so as to minimize the sum of squared idiosyncratic com-
ponents. Accordingly, Stock and Watson label them “diffusion indexes”, a term
that remains a common synonym for factors extracted from large cross-sections

of time series.

The strong forecast performance of diffusion indexes has raised a lot of interest in
dynamic factor modeling. Besides the many empirical applications of Stock and
Watson’s estimation approach, there are a number of recent methodological ad-
vances. Most importantly, Bai and Ng [2002] show consistency of the estimated
factors without imposing a restriction on the relation between N and T. They fur-
ther propose some panel information criteria to estimate the number of common
factors in a large dataset. More recently, Bai [2004] extends the methodology to
accommodate nonstationary data, and Bai and Ng [2006] derive asymptotic con-

fidence intervals for diffusion index forecasts.

While Stock and Watson analyze comovement of economic variables in the time
domain, a parallel literature has taken a frequency domain approach. Forni and
Reichlin [1998] show that the number of common factors in a panel of economic
time series can be determined by applying principal components analysis to the
spectral density matrix of the cross-sectional averages of all variables in the panel.
Yet, they estimate the common shocks using a structural VAR technique. Forni,
Hallin, Lippi, and Reichlin [2000] demonstrate that the common factors in an ap-
proximate dynamic factor model can be consistently estimated by the first prin-
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cipal components of the spectral density matrix of the data. An important draw-
back of their method is that the estimated factors are infeasible for forecasting
purposes since they are obtained using two-sided filters. To overcome this prob-
lem, Forni, Hallin, Lippi, and Reichlin [2005] develop an estimation technique
that is based on one-sided filtering. However, due to its computational simplicity
the method suggested by Stock and Watson remains more widely used in prac-

tice.

Factor models allow to predict individual economic time series using the infor-
mation contained in a large cross-section of data. Bernanke and Boivin [2003] first
note that this qualifies dynamic factors for application in monetary policy analy-
sis. In particular, they argue that central banks actively monitor a large number
of economic variables, and therefore likely set the short-term interest rate based
on information beyond output and inflation. In empirical tests, Bernanke and
Boivin find evidence that monetary policy reaction functions based on estimated
factors outperform standard Taylor-rule specifications. This result is confirmed
by Favero, Marcellino, and Neglia [2005] who employ different datasets and fac-
tor extraction methods. Moreover, Giannone, Reichlin, and Sala [2004] show that
forecasts of the federal funds rate are significantly improved by using a factor

model approach.

Dynamic factor models can in principle be estimated using the Kalman filter and
maximum likelihood. Yet, this approach becomes infeasible when the number
of variables in the dataset is large. As a consequence, Stock and Watson and
other authors apply principal components techniques. However, this approach
does not allow joint determination of the common factors and the parameters
governing their dynamics. Recently, some authors have therefore suggested to
use Markov Chain Monte Carlo (MCMC) techniques - a branch of Bayesian statis-
tics - to estimate dynamic factor models. The seminal contributions in this field
are Otrok and Whiteman [1998] and Eliasz [2002]. While Otrok and Whiteman
consider a model with only one factor but serially correlated idiosyncratic com-
ponents, Eliasz studies a model with multiple factors and no autocorrelation
in the error terms. Both authors estimate their factor models using Gibbs sam-
pling techniques. The Gibbs sampler allows approximation of the unknown joint
posterior distribution of a set of parameters by alternately sampling from their

conditional posteriors. As dynamic factor models can be written in state-space
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form, derivation of conditional distributions of the latent factors and the param-
eters governing their dynamics is straightforward. Lately, a vast literature has
emerged that applies Bayesian factor model techniques to a variety of economic
and financial questions, but so far only a few papers have been published. Kose,
Otrok, and Whiteman [2003], for example, use a generalization of the model in
Otrok and Whiteman [1998] to identify the common factors among macroeco-
nomic time series on a global, regional and country level. Bernanke, Boivin, and
Eliasz [2005] extend the approach of Eliasz [2002] to accommodate observable
variables as additional factors, a technique which they label “Factor-Augmented
Vector-Autoregression” (FAVAR).

In Chapter 3 of my thesis, I employ the FAVAR approach by Bernanke et al. [2005]
as the state equation of an affine term structure model which I estimate using clas-
sical statistical methods. In Chapter 4, I set up a dynamic factor model of macroe-
conomic and interest rate data to study the informational content of yield curve
news about the future evolution of key macroeconomic variables. This model is

estimated using a Gibbs sampling approach.

1.3 Qutline of the Thesis

My thesis consists of four main chapters each of which represents a study of inde-
pendent interest. In Chapter 2, I propose a strategy to incorporate a broad set of
conditioning information in tests of conditional asset pricing models. I document
that my approach substantially reduces the pricing errors implied by such mod-
els. In Chapter 3, I suggest an affine term structure model that parsimoniously
exploits a large macroeconomic information set and show that this model signif-
icantly outperforms a number of benchmarks in out-of-sample forecasts of the
yield curve. In Chapter 4, I then study the informational content of yield curve
surprises within a Bayesian dynamic factor model. The main finding of this analy-
sis is that the curvature factor carries important predictive information about the
future course of the economy. Finally, Chapter 5 contains an exercise in dating the
Euro area business cycle. The following paragraphs provide a fast guide to the
main contributions made in each of the four chapters. Details on the employed
estimation approaches and on implementation issues are given in the Technical
Appendix.
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Conditional asset pricing models relate the observed prices of financial assets
to investors” conditional expectations about future payoffs. Accordingly, they re-
quire the specification of investors” expectations and hence of their information
set. Since this information set is intrinsically unobservable, it is common to use
proxies that are known to predict returns, for example the dividend yield, the
term spread or the log consumption-wealth ratio. Conditional pricing models
are thus traditionally tested on the basis of very little conditioning information

and are therefore potentially misspecified.

In Chapter 2, I suggest a solution to this problem which explicitly exploits a broad
macroeconomic information set. My approach, outlined in Section 2.2, is based on
dynamic factor analysis for large datasets which allows to efficiently summarize
the information in many variables by a few estimated factors. Sections 2.3 and 2.4
summarize the methodology and the data that I use to empirically assess my ap-
proach. Section 2.5 documents the outcomes of various tests which show that the
pricing errors implied by the conditional CAPM are substantially reduced when
dynamic factors instead of commonly used conditioning variables are employed
as instruments. This is a strong result which casts doubt upon the common prac-
tice of testing conditional models on the basis of individual instruments. The
findings summarized in Table 2.4 in Section 2.5.3 underscore this conclusion by
showing that diffusion indexes exhibit incremental explanatory power over the
best-performing benchmark instruments while the latter are found to be insignif-

icant when added to diffusion index based specifications.

Some benchmark instruments are only available at the quarterly frequency, most
importantly the log consumption-wealth ratio suggested by Lettau and Ludvig-
son [2001]. Comparing dynamic factors extracted from a quarterly panel with this
popular conditioning variable in Section 2.5.4, I also find that diffusion indexes
imply substantially smaller pricing errors. This indicates that the log consumption-
wealth ratio - similar to all other studied benchmark instruments - misses impor-
tant variation in conditional moments of returns. Finally, Section 2.5.5 documents
that my approach withstands a number of robustness tests. Altogether, the results
of Chapter 2 show that dynamic factors are better proxies for investors” informa-
tion set than previously suggested individual instruments. This finding carries
important implications for the specification of conditional pricing models in ap-

plied research and practice.
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In Chapter 3, I apply dynamic factor model techniques in a different asset pric-
ing context. In particular, I incorporate a large macroeconomic information set
in an affine term structure model which I use to forecast the yield curve. The
background of this analysis is the following. On the one hand, a recent literature
includes individual macroeconomic indicators, in particular measures of output
and inflation, as state variables in term structure models. These variables en-
ter the models via a Taylor-rule formulation of monetary policy. On the other
hand, specifications of monetary policy that exploit large macroeconomic infor-
mation sets have recently been shown to empirically outperform reaction func-
tions based on output and inflation alone. Quite intuitively, this result has a bear-
ing on term structure analysis. In Chapter 3, I elaborate on this insight and show
how a large macroeconomic information set can be incorporated in a yield curve
model. Specifically, I use a Factor-Augmented Vector-Autoregression (FAVAR)
suggested in Bernanke et al. [2005] as the state equation in an affine model. The
FAVAR model describes the evolution of the short-term interest rate conditional
on a large information set. Based on this dynamic short rate specification, my
model builds up the yield curve using parameter restrictions implied by no ar-
bitrage. Accordingly, I label my approach a “No-Arbitrage Factor-Augmented
VAR”.

An earlier version of Chapter 3 has appeared as No. 544 in the ECB Working Paper
Series. The chapter is organized as follows. In Section 3.2, I outline the details of
my term structure model and show how it is estimated in Section 3.3. The estima-
tion results are summarized in Section 3.4. Some preliminary evidence that diffu-
sion indexes contain useful information about the federal funds rate and yields of
higher maturity is provided in Section 3.4.4. I then show in Section 3.4.5 that my
model captures the cross-sectional variation of interest rates well in-sample.The
main focus of the chapter is on yield curve prediction, however. In Section 3.5, I
document the results of an out-of-sample forecast exercise for yields of various
maturities at horizons from one to twelve months ahead. Strikingly, my approach
produces significantly better out-of-sample forecasts of government bond yields
than a number of successful competitor models which are summarized in Section
3.5.1. This important result becomes most apparent from Tables 3.4 and 3.5. As
a partial explanation for the strong predictive power of my model, Section 3.5.3
documents a close link between the yield curve components level and slope and

the macroeconomic factors of my model.
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Chapter 4 studies the linkages between the term structure and the macroeconomy
from a reverse angle by analyzing the predictive content of the yield curve for key
macroeconomic variables. The motivation for this analysis is as follows. While
interest rate spreads are often used as predictors of recessions, the traditional de-
composition of yields into the three factors level, slope, and curvature suggests
that the term structure carries more information than what is captured by yield
differentials. However, there is yet little evidence about the predictive content of
each of the three yield curve components. Chapter 4 therefore seeks to provide a
systematic analysis of the information carried by unexpected changes of the three
factors. To this end, I set up a dynamic factor model of macroeconomic and inter-
est rate data that is outlined in Section 4.2. T adopt the decomposition of yields
into level, slope, and curvature recently suggested by Diebold and Li [2006]. The
three yield components share unrestricted dynamics with a set of factors that
summarize the comovement in a number of macroeconomic variables. Hence
my model setup allows to study the interaction between the yield curve and the
macroeconomy within a rich parametric framework. This represents a major im-
provement over the existing literature on the joint dynamics of macroeconomic

variables and interest rates, in particular the study by Diebold et al. [2006].

Estimation of my model is via a Metropolis-within-Gibbs sampling algorithm.
A Metropolis step needs to be added to the standard Gibbs sampling procedure
in order to draw from the nonstandard distribution of the shape parameter in the
yield factor loadings. Section 4.3 briefly discusses the general operating mode
of my approach. A detailed treatment of the individual steps carried out in the
estimation process is provided in Appendix 6.3. For reasons broadly discussed
in Chapter 4, a recursive identification of the yield curve shocks is inappropriate
for the problem at hand. To identify unexpected changes of the individual term
structure components, I therefore employ sign restriction techniques similar to
those suggested by Uhlig [2005] and Mountford and Uhlig [2005]. My approach,
outlined in detail in Section 4.4, allows to identify surprise changes of each of the
three yield factors that are not accompanied by simultaneous responses of the re-
maining two factors. Accordingly, term structure movements are dissected into
unexpected changes of the three components level, slope, and curvature. Since
the yield and the macro factors share common dynamics, the future evolution of
key economic indicators subsequent to yield curve surprises can be studied.

The results of my impulse response analysis are summarized in Section 4.5. The
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most important finding is that surprise changes of the curvature factor carry im-
portant news about the future evolution of the term structure and of output. In
particular, unexpected increases of the curvature factor announce a strong and
persistent response of the yield curve slope and a significant decline of the yield
curve level. Together, these two features imply a successive flattening of the yield
curve which is commonly associated with an upcoming recession. Consistent
with this interpretation, output growth exhibits a pronounced hump-shaped re-
sponse following an unexpected increase of curvature, eventually falling below
zero about one year after the shock occurs (see Figures 4.9 and 4.18). This result
is surprising since curvature has previously been documented to be unrelated to
macroeconomic variables (e.g. Diebold et al. 2006, Dewachter and Lyrio 2006).

While the curvature factor displays strong predictive power, I find the yield curve
slope to be less informative than the regular use of interest rate spreads as predic-
tors of recessions would suggest. In particular, an unexpected increase of the
slope factor - tantamount to diminishing yield spreads - is followed by an al-
most immediate but not very pronounced decline of output (see Figures 4.8 and
4.17). According to these results, a rising slope factor is therefore associated with
a decline of output, but appears to be announced by the curvature factor. This
might qualify curvature as a forward-looking indicator. Finally note that consis-
tent with conventional wisdom, surprise surges of the level factor are followed
by a pronounced subsequent rise of inflation. Altogether, Chapter 4 provides a
systematic analysis of the predictive content of the level, slope, and curvature of
the term structure. My results indicate that the yield curve carries more predic-

tive information than what is captured by interest rate spreads alone.

The paper underlying Chapter 5 is joint work with Harald Uhlig and has been
published in the Journal of Business Cycle Measurement and Analysis, Volume 2 No.
1 in May 2005. It contains an exercise in dating the Euro area business cycle on a
monthly basis. Much of the chapter deals with the construction of monthly time
series of real GDP. We suggest an interpolation routine that nests some popular
temporal disaggregation models which have been proposed in previous studies.
Our model takes into account information from related monthly indicators and is
cast in state-space form. Appendix 6.5.1 provides a detailed discussion of the ap-
proach. Based on our constructed monthly series of real GDP, we obtain business

cycle turning points using a modified version of the nonparametric dating routine
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suggested by Bry and Boschan [1971] which we discuss in Section 5.2. The variant
of the Bry-Boschan algorithm that we consider adds a combined amplitude/phase-
length criterion to the original procedure so as to rule out business cycle phases
that are short and flat. Applied to our constructed series of monthly real GDP
for the US and the Euro area, we show in Section 5.3 that the algorithm closely
replicates the dating decisions of the NBER and the CEPR.



2 Conditional Asset Pricing with a

Large Information Set

Dynamic factors summarize the information in a large number of variables and are there-
fore intuitively appealing proxies for the information set available to investors. This chap-
ter demonstrates that conditioning on dynamic factors instead of commonly used instru-
ments substantially reduces the pricing errors implied by conditional models. Dynamic
factors are further shown to exhibit incremental explanatory power over benchmark condi-
tioning variables. The results withstand a number of robustness tests and carry important
implications for the specification of conditional asset pricing models in applied research

and practice.

2.1 Introduction

While the Capital Asset Pricing Model (CAPM) of Sharpe [1964], Lintner [1965],
and Black [1972] has long been the workhorse asset pricing model, it is now a
widely accepted fact that it fails to explain the cross-section of portfolio returns
ordered by firm characteristics such as size and book-to-market. The empirical
failure of the CAPM has given rise to different interpretations, however. Some
authors have argued that the comovement with the market portfolio is not the
only source of risk faced by investors, and hence factors that capture additional
hedging concerns need to be added in order to explain cross-sectional return
differences (e.g. Merton 1973, Chen et al. 1986, Campbell 1996). In contrast, a
number of studies have emerged recently which state that the model holds in a
conditional sense. Accordingly, some authors have suggested to “resurrect” the
CAPM by taking into account time-variation in assets” exposure to the market
risk and the associated risk premium. Indeed, various conditional versions of the

CAPM have been shown to explain the cross-section of returns better than the un-

20
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conditional CAPM and not worse than the Fama-French three-factor model (e.g.
Jagannathan and Wang 1996, Lettau and Ludvigson 2001, Santos and Veronesi
2006).!

This chapter also adopts the view that the CAPM holds conditionally. In contrast
to previous studies, however, I test the model using a broad set of conditioning in-
formation rather than individual instruments. To do so, I build on recent research
in dynamic factor analysis for large datasets which has shown that the informa-
tion contained in many time series can parsimoniously be summarized by a few
factors. In particular, I extract factors from a large panel of macroeconomic time
series using the methodology of Stock and Watson [2002a,b] and employ them as
conditioning variables in tests of the CAPM. I show that this approach substan-
tially reduces the pricing errors with respect to specifications based on individual
benchmark instruments. Therefore, the main conclusion of this chapter is that dy-
namic factors are better proxies for the information set available to investors than

commonly used individual instruments.

More precisely, the results of my study are the following. I first show in tests
of the conditional CAPM based on a single instrument that dynamic factors im-
ply substantially smaller pricing errors than commonly used conditioning vari-
ables such as the term spread, the dividend yield or the log consumption-wealth-
ratio. Second, specifications of the conditional CAPM using two dynamic fac-
tors as instruments strongly outperform specifications based on two benchmark
conditioning variables. They are also shown to price the 25 Fama-French size
and book-to-market sorted stock portfolios more precisely than the Fama-French
three-factor model. Third, dynamic factors have strong incremental explanatory
power over commonly used instruments when they are jointly used as condition-
ing variables. In contrast, no benchmark instrument carries useful conditioning
information in addition to the two best-performing diffusion indexes. The results
are robust to the change of test assets and variations of the sample period. More-
over, they prevail in tests of the conditional Consumption-CAPM. Altogether, the
empirical evidence strongly supports the hypothesis that factors extracted from
a large macroeconomic data panel are more useful conditioning variables than

individual instruments commonly employed in the literature. This result carries

Note that in a recent paper, Lewellen and Nagel [2005] generally question the ability of the condi-
tional CAPM to explain cross-sectional asset pricing anomalies.
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important implications for the specification of conditional asset pricing models
in applied research and practice.

My analysis bears some relationship with a recent study by Ludvigson and Ng
[2005]. They show that adding dynamic factors to a set of commonly used instru-
ments, one can significantly improve out-of-sample forecasts of the time-varying
mean and volatility of excess stock returns. Since the time-varying parameters
in conditional pricing models are inherently linked to the conditional moments
of returns, their finding provides another argument for using dynamic factors as
instruments in conditional asset pricing models. As the results in this chapter
document, dynamic factors have explanatory power for returns not only in the

time-series but also in the cross-sectional dimension.

The remainder of this chapter is organized as follows. In Section 2.2, I show
how conditional asset pricing models can be tested using a large conditioning
information set. Section 2.3 briefly summarizes the estimation methodology that
is used to assess the performance of the different model specifications. A more
detailed treatment of the estimation and test methodology as well as some imple-
mentation issues is provided in Appendix 6.1.2. Section 2.4 documents the data
used and in Section 2.5 I summarize the empirical results of my study. Section 2.6
concludes the chapter.

2.2 Conditioning on a Large Information Set

It has become common practice to formulate asset pricing models in the particu-
larly tractable stochastic discount factor language. I follow this convention and
start with the basic pricing equation which states that in the absence of arbitrage
opportunities, there exists at least one pricing kernel m that prices all assets in the

payoff space correctly, i.e.
E{[Rji1misq] =1 Vi=1...N (2.1)

where E; denotes the expectation conditional on all information available in pe-
riod t, m;;1 denotes the stochastic discount factor, and R;;; the return on the
i-th asset. A large class of empirical asset pricing models assume a linear rela-

tionship between the discount factor and the pricing factors f which capture the
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fundamental sources of risk faced by investors, i.e.

M1 = ar + by fei1, (2.2)

where 4; is a scalar and b; a k X 1 vector of pricing parameters. Unconditional
pricing models assume constant parameters a and b. However, one can show
that the parameters in any multi-factor pricing model depend on the conditional
means and variances of the pricing factors and therefore must be time-varying
(see Cochrane 2001 or Wang [2004]). Since conditional moments are not observed,
the time-dependence is commonly modeled by assuming a; and b; to be linear
functions of conditioning variables Z; that are in investors” information set in
period ¢, i.e.
ay = ag+ayZ; and by =by+biZ,

where ag, by, a1, and by are constant coefficients and where Z; is a M x 1 vector of
the conditioning variables. As Cochrane [2001] shows, this specification of a con-
ditional pricing model implies an unconditional model with pricing factors given
by the lagged instruments Z;, the risk factors f;.1, and all products Z; f;,; of fac-
tors and lagged instruments. Obviously, this results in a large number of factors.
For example, a two-factor pricing model scaled with five instruments yields a to-

tal of 17(!) factors that must in principle be included in the unconditional model.

Consequently, in order to avoid degrees of freedom problems, most conditional
pricing models are tested using only one instrument at the same time. The partic-
ular choice of conditioning variable is commonly motivated either by its capacity
to forecast returns or by its relevance as a cyclical indicator since expected returns
have been shown to vary over the business cycle. For example, based on its pre-
viously documented predictive power for excess returns, Lettau and Ludvigson
[2001] advocate the use of the log consumption-wealth ratio as an instrument in
conditional asset pricing tests. Jagannathan and Wang [1996] suggest to use the
default spread as a proxy for the time-varying market risk premium. Other au-
thors use the cyclical component of industrial production or GDP (Hodrick and
Zhang 2001), or the term spread, a short-term interest rate, and the dividend
yield (Ferson and Harvey 1999) as conditioning variables. Overall, there is yet
little agreement on which variables should be used as instruments in tests of con-
ditional asset pricing models. Moreover, taking into account that market partici-
pants have access to a huge amount of information, single indicators more princi-

pally appear to be inadequate proxies for investors” information sets. Ideally, one



24

should therefore use as much information as possible when testing conditional
pricing models. However, as shown above, simply adding instruments does not

do the trick as one quickly runs into degrees of freedom problems.

The solution to this problem which I consider in this chapter employs dynamic
factor analysis for large datasets. Research on dynamic factor models has shown
that the information in many time series can effectively be summarized by a few
common factors (Stock and Watson 2002a,b, Forni et al. 2005). Under the assump-
tion that investors process a large amount of information about the state of the
economy, dynamic factor analysis quite intuitively should prove beneficial also
in asset pricing applications. Indeed, there is recent empirical evidence support-
ing this conjecture. In Monch (2005, Chapter 3) I show that combining a Factor-
Augmented VAR (Bernanke et al. 2005) with no-arbitrage restrictions significantly
improves out-of-sample forecasts of government bond yields. Moreover, Ludvig-
son and Ng [2005] employ factors extracted from two large macroeconomic and
financial data panels to forecast stock returns. Adding these factors to a set of
commonly used instruments, they show that forecasts of the conditional mean

and volatility of the market return are significantly improved.

In this chapter, I test whether dynamic factors represent useful conditioning vari-
ables. In order to keep the analysis tractable, I focus on the conditional CAPM,
i.e. I test models of the form

M1 = ar + bRy 141,

where the return on the market portfolio R, is the only relevant pricing factor. As
before, let the time-varying parameters a; and b; depend on some conditioning
variables available in period ¢. I assume that there is a large number of condition-

ing variables {x; ... xp;} which have the following factor structure:
xii = MF+ei, (2.3)

where x;; denotes the time-t observation of the i-th instrument, F; is the g x 1
vector of common factors, A; denotes the corresponding vector of factor loadings

and €;; an idiosyncratic component.2 Hence, the common variation of the M

Note that the estimation approach of Stock and Watson [2002a,b] that is employed here allows for
some mild serial and cross-correlation of the idiosyncratic components. The setup thus describes
an approximate factor model.
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variables in the panel is summarized by a small number g of factors where it
is assumed that g4 < M. As a consequence, dynamic factor analysis allows to
substantially reduce the dimensionality of the problem that is posed by choosing
a set of conditioning variables. I therefore study the empirical performance of
conditional versions of the CAPM where the pricing parameters a; and b; are
assumed to be linear functions of time-t observations of the factors F extracted

from a large set of macroeconomic variables,
ar = ag-—+ LlllFt and bt = b() + biFt/

This specification of the time-varying pricing coefficients implies an uncondi-

tional factor model of the form
1 = E[Ryy1 (a0 +aiF +boRyes1 + b1 FiRpy11)]

with pricing factors F;, Ry, 1+1, and FtR,, ;11 and constant coefficients ag, a1, by, and
by. Stacking the coefficients and the scaled pricing factors into the vectors b =
(ag,a1,bo,b1) and f;11 = (F/,Rpss1, F/Rysy1)" and letting fiq = (1,f.1), the
model becomes

1=E [b'fir1Riq] .- (2.4)

Based on this formulation, I carry out tests of the conditional CAPM using uncon-
ditional moments.

2.3 Test Methodology

Before specifying the empirical strategy used to test the conditional factor pricing
models, I briefly describe the estimation approach used to extract the common fac-
tors from a large panel of economic time series variables. As Ludvigson and Ng
[2005], I employ the method popularized by Stock and Watson [2002a,b]. Using
the standardization F'F/T = Iy, Stock and Watson show that for large M and T
the space spanned by the common factors is consistently estimated by the first
g principal components of the cross-sectional variance-covariance matrix XX'. I
provide more details on how the Stock-Watson procedure is implemented in ap-
pendix 6.1.1. Since the true number of common components is not known, I em-
ploy the panel information criteria developed by Bai and Ng [2002] to determine
the number of factors that summarize the common variation among the variables

X. Note that Stock and Watson label the factors extracted from a large panel of
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macro time series “diffusion indexes”. In order to clearly keep apart the notion
“factor” in the sense of risk factor in an asset pricing model and “factor” denoting
the common component of a large number of macro variables, I adopt Stock and
Watson’s terminology throughout the chapter and refer to the factors extracted

from the large panel of macro time series as diffusion indexes.

2.3.1 The SDF Method

Factor pricing models formulated in the stochastic discount factor language give
rise to a set of moment conditions that can be used for estimation via the Gen-
eralized Method of Moments (GMM). In particular, any model of the form (2.4)

implies a vector of pricing errors

g(b) = E[VfiR¢ — 1] (2.5)

If the model is valid, g(b) must be zero. The GMM procedure uses this condi-
tion to choose parameter estimates b which minimize a weighted sum of squared
pricing errors. Different weighting matrices are commonly employed in the liter-
ature. Hansen [1982] suggested to weight the pricing errors with the inverse of
their sample variances in order to obtain efficient estimates of the coefficients b.
Moreover, he proposed a [-statistic to assess whether the pricing errors implied
by the model are jointly zero. As the optimal GMM weights are model-dependent,
Hansen and Jagannathan [1997] have suggested to instead use the inverse of the
second moment matrix of returns E[RR’]~!. This approach allows direct compar-
ison of different models by assessing their pricing errors. In the empirical results
below, I denote [y the J-statistic obtained using the Hansen-Jagannathan weight-

ing matrix.

Hansen and Jagannathan [1997] provide another test statistic that is directly suit-
able for model comparisons. Noting that any true stochastic discount factor
prices all assets in the payoff space correctly, they argue that a false asset pric-
ing model will give rise to a strictly positive minimum distance between the pric-
ing kernel implied by the model and the set of true stochastic discount factors.
In my empirical results summarized below, I provide estimates of the Hansen-
Jagannathan distance measure (HJ-distance) for all compared models. Jagan-
nathan and Wang [1996] derive the asymptotic sampling distribution of this statis-
tic which equals a weighted sum of (N — k) x2(1)-distributed random variables.
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To obtain the p-value for the HJ-distance, I simulate this weighted sum 100,000

times.

A recurrent theme throughout this chapter is to study how well different speci-
fications of conditional pricing models compare to each other. The tests depicted
above allow to investigate these questions. It is also of interest, however, to di-
rectly assess whether some conditioning variables drive out others when they si-
multaneously enter a model. More precisely, I am interested in studying whether
instruments commonly used in asset pricing tests describe the time-variation in
the pricing relationship of the CAPM sufficiently well or whether adding factors
extracted from a large panel of macro data improves the fit of the model. Con-
versely, it is important to assess whether conditioning on a large information set
by using diffusion indexes as instruments is sufficient or whether individual in-
struments capture additional useful pricing information. These questions can
easily be tested in the GMM framework. In particular, let the time-varying coeffi-
cients of the conditional CAPM be given by

ar = ag+apF+ayZ

by = by+bpF+b,7, (2.6)

where F denotes the vector of factors summarizing the variation in a large macroe-
conomic dataset and Z some additional conditioning variables. Now stack the
pricing factors and constants into the vectors f; 1 = (F/, F/ Ry, 41 ), 241 =(Z), Z{Ry 141 ),
br=(ar,br),and b; = (az, bz), respectively. Moreover, let f; 11 = (1, Ry 411, fii1,Zi41)

and b = (ag, by, b Iz b;). Then, the model can again be written in the form

1= E¢[b fi11R11], (2.7)

and testing by = 0 or b, = 0 allows to assess whether one set of conditioning
variables drives out the other. Following Cochrane [2001], I employ two different

strategies to do so. The first is a simple Chi-square test of the form
lAﬂj/ COU(Bj)_l B] ~ )(2(](]'), (2.8)

where k; denotes the number of elements in b; and where j = {f,z} . Second, a X2
difference test can be applied by estimating both the unrestricted model (2.7) and
a restricted version setting e.g. by = 0. Computing for both models the J-statistic
defined above using the same weighting matrix, the statistic

A =T J(bg, b)) = T J(bs) ~ x°(ke) (2.9)
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can be used to assess whether imposing the restriction leads to a significant in-

crease of the sum of squared pricing errors or not.

Ghysels [1998] has noted that the out-of-sample performance of conditional pric-
ing models may be impaired by parameter instability in the relationship between
the pricing factors and the returns on the test assets. In order to assess for each
model specification whether this is a concern, I report as another diagnostic An-
drews’ (1993) supLM test for structural breaks. To be more precise, I compute
the L M-statistic at increments of 0.05 over the interval [0.15 ; 0.85] and report as
supLM the supremum of these statistics. The judgment whether a model fails or
passes the supLM test is based on the distribution tables provided in Andrews
[1993].

2.3.2 The Beta Method

Pricing models of the form (2.4) imply an unconditional multifactor beta repre-

sentation for returns given by
E[R;] = E[Ro] + Binv1+--- + Bijvrs (2.10)

where E[Ry] is the average return of a zero-beta portfolio that is uncorrelated with
the pricing kernel and where B, ; denotes the exposure of return R; to variation in
the pricing factor f; and +y; the associated price of risk. Models of this form can be
consistently estimated using the cross-sectional regression methodology of Fama
and MacBeth [1973]. Since it is intuitively appealing and easy to implement, this
estimation approach remains a widely used tool in empirical tests of asset pricing
models.?> The Fama-MacBeth procedure works in two steps. First, estimates of the
betas are obtained by regressing individual returns on the pricing factors. Second,
the market prices of risk are estimated by running cross-sectional regressions of
returns on the betas. As the betas are estimated, the Fama-MacBeth method suf-
fers from an errors in variables problem. A popular adjustment method for the
resulting bias has been proposed by Shanken [1992]. I report Fama-MacBeth and
Shanken-corrected t-statistics for the estimated factor risk premia below. To eval-
uate the overall model performance in the Fama-MacBeth setup, I report the cross-

sectional R-square suggested by Jagannathan and Wang [1996]. Moreover, I test

Some recent applications of the method are Lettau and Ludvigson 2001, Li, Vassalou, and Xing
2004, and Lustig and Van Nieuwerburgh 2005.
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whether the average pricing errors are jointly zero using the Chi-Square statistic*
k=& Cov(@)ta~x>(N-1), (2.11)

where & denotes the vector of model-implied average pricing errors.

2.4 Data

Since the influential paper by Fama and French [1992], it is common practice to
evaluate asset pricing models based on their ability to explain the returns on port-
folios sorted by size and book-to-market ratio. I follow this practice and use as
test assets the returns on Fama-French’s 25 size and book-to-market sorted US

stock portfolios.”

I extract factors from a large panel of monthly macroeconomic time series for the
US which has been compiled by Stock and Watson [2005]. The dataset comprises
132 variables from various economic categories: real output and income, employ-
ment and hours, real retail, manufacturing and trade sales, consumption, hous-
ing starts and sales, real inventories, orders, stock prices, exchange rates, interest
rates and spreads, money and credit quantity aggregates, price indexes, average
hourly earnings, and miscellaneous. As in Stock and Watson [2005], the series
are subjected to some preliminary transformations in order to achieve stationar-
ity.> Moreover, prior to extracting the factors, all series have been standardized

to have zero mean and unit variance.

I compare the usefulness of the extracted factors as instruments in conditional
asset pricing models with five benchmark conditioning variables that have been
employed in previous studies. These are the term spread between a ten-year US
government bond yield and the three-month Treasury bill yield, “TERM”, the de-
fault spread between Moody’s Baa and Aaa corporate bond yields, “DEF”, the

See Cochrane [2001], p. 246.
5 1 thank Kenneth French for making the return data available on his website.
I am grateful to Mark Watson for making these data available on his website. For details on the

exact composition of the panel and the data transformations, the reader is referred to Stock and
Watson’s (2005) paper. Notice that I slightly modify their preadjustment approach by computing
annual inflation rates instead of monthly growth rates of inflation for the price series in the panel.
As documented in Monch (2005, Chapter 3), this increases the persistence of the estimated factors

and possibly enhances their ability to explain risk premia.
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one-month Treasury bill yield, “TB1”, the spread between the three-month and
the one-month Treasury bill yield, “TB31”, and the dividend yield of the S&P 500
index, “DIV”. These are exactly the same instruments that have been selected by
Ferson and Harvey [1999] on the basis of their previously documented ability to
forecast returns or to proxy for time-variation in risk premia. Note that Wang
[2004] includes the lagged market return as a sixth instrument whereas Petkova
[2005] only considers TERM, DEF, TB1, and DIV.

Recently, some conditioning variables have received attention which by construc-
tion capture investors’ expectations about future excess returns. Two examples
for such instruments are the log consumption wealth ratio, suggested by Lettau
and Ludvigson [2001] who denote this variable cay, and the labor income to con-
sumption ratio, sy, proposed by Santos and Veronesi [2006]. Both variables have
been shown to be valuable instruments in cross-sectional tests of asset pricing
studies. I therefore use them as two additional benchmarks to assess the relative
usefulness of diffusion indexes as conditioning variables. Since cay and s, are
only available on a quarterly basis, I transform all series in the monthly panel
by Stock and Watson [2005] into the quarterly frequency and then extract factors
from the resulting quarterly dataset.”

I estimate the different CAPM specifications over the time period 1963:01-2003:12.
The sample thus covers 41 years of data and a total of 492 observations.

2.5 Empirical Results

In this section, I present the results obtained from estimating different specifica-
tions of the conditional CAPM based on individual instruments, dynamic factors
or both. As stated above, I extract factors from the large panel of macroeconomic
time series using the methodology of Stock and Watson [2002a,b]. The panel in-
formation criteria by Bai and Ng [2002] indicate that a total of 8 factors captures
the bulk of common variation among the 132 time series in the dataset.®

I thank Sydney Ludvigson and Martin Lettau for providing the cay series and its components on
their website. Notice further that I compute s, using the same consumption and labor income

series that have been employed to construct cay.
Note that Stock and Watson [2005] find an optimal number of 7 factors to summarize the same

dataset. The small difference either owes to the fact that I use a shorter sample period or that I
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I start with GMM tests of the conditional CAPM where only a single condition-
ing variable is employed. This gives a first impression of whether the factors
extracted from the large panel of macro series capture useful pricing information
and how they compare to instruments commonly used in conditional asset pric-
ing tests. I then confront specifications of the conditional CAPM where two bench-
mark instruments are used as conditioning variables with specifications based on
two diffusion indexes. To facilitate comparison with previous studies, I relate the
best-performing specification using two diffusion indexes to the unconditional
CAPM and the Fama-French three-factor model on the basis of Fama-MacBeth
regressions. In a next step, I use the GMM framework to test whether the diffu-
sion indexes have additional explanatory power over the benchmark instruments.
This is important to check before one can confidently argue that the factors ex-
tracted from a large dataset incorporate useful pricing information that is not
captured by the benchmark instruments. As an additional test of how the dif-
fusion indexes relate to individual conditioning variables, I then extract factors
from a quarterly dataset and compare their usefulness with the log consumption
wealth ratio suggested by Lettau and Ludvigson [2001] and the labor income to
consumption ratio recently proposed by Santos and Veronesi [2006]. Finally, I
carry out a set of robustness tests to demonstrate that the strong relative perfor-
mance of diffusion indexes as conditioning variables is not sensitive to the choice

of test assets, variations of the sample period, or the choice of pricing factors.

2.5.1 Conditional CAPM with One Instrument

I first estimate specifications of the conditional CAPM using the diffusion indexes
one by one as conditioning variables. I compare their performance with the vari-
ables TERM, DEF, TB1, TB31, and DIV described above, which are often used as
instruments in asset pricing studies. Table 2.1 summarizes the results of GMM es-
timations obtained for the eight diffusion indexes and the five benchmark condi-
tioning variables. Several conclusions can be drawn from these results. First, all
benchmark instruments imply a Hansen-Jagannathan distance of 0.13 and thus
perform about equally well. Second, five out of the eight diffusion indexes also
give rise to a HJ-distance of 0.13. However, the fourth, sixth, and eighth index im-
ply values of 0.11 and 0.12, respectively, and thus perform better than all bench-

mark instruments. This is reflected also by the J-statistics, summarized in the

apply a slightly different set of preadjustments to the individual series.
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third column of Table 2.1. Four out of the eight diffusion indexes imply a value of
JHj smaller than the one obtained for the term spread which performs best among
the benchmark instruments. Hence, most diffusion indexes imply smaller pricing
errors than the commonly used conditioning variables. The results obtained from
optimal GMM estimations confirm this finding. The J-statistic is not significantly
different from zero for five out of the eight diffusion indexes. In contrast, among
the benchmark instruments this only holds true for the default spread. Overall,
these results indicate that it is beneficial to exploit a large information set when
testing the conditional CAPM. Finally notice that the supLM statistics indicate
parameter instability for some model specifications. In particular, this is the case
for the diffusion indexes Fs, Fs, and Fg, and the dividend yield DIV. The latter
result is somewhat consistent with the instability of the dividend-price ratio as
a predictor of returns that has been documented by e.g. Lettau, Ludvigson, and
Wachter [2006].

2.5.2 Conditional CAPM with Two Instruments

The results documented above show that some diffusion indexes outperform
benchmark instruments in tests of the conditional CAPM based on a single condi-
tioning variable. I now study whether this result prevails when more than one in-
strument is used. In particular, I compare specifications of the conditional CAPM
based on two diffusion indexes or benchmark instruments, respectively. In order
to restrict the total number of different specifications to estimate, I focus on com-
binations which comprise the single best performing diffusion index, F4, and the
best benchmark instrument, TERM, according to the results above. Moreover, I
only consider the first five diffusion indexes which together explain about 60%
of the total variance of the 132 series in the macro dataset. Overall, eight dif-
ferent specifications of the conditional CAPM are compared, four using pairs of
diffusion indexes as conditioning variables and four using pairs of benchmark

instruments.

Table 2.2 summarizes the GMM estimation results obtained for these eight speci-
fications. Several remarks need to be made. First and most importantly, the best
performing model using two individual instruments, which combines the term

spread and the dividend yield, prices the 25 Fama-French portfolios less correctly
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Table 2.1: GMM Tests of the Conditional CAPM with One Instrument

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on a single conditioning variable. The 25 Fama-French portfolios are used as test
assets. The estimation period is from 1963:01 to 2003:12. HJ-dist denotes the Hansen and Jagan-
nathan [1997] distance measure, | is Hansen’s (1982) test on the overidentifying restrictions of
the model, [; the equivalent test statistic based on the Hansen-Jagannathan weighting matrix
E[RR']7!, and supLM denotes Andrews’ (1993) test for structural breaks with unknown change
point. p-values are provided in parentheses below the estimates. I indicate that a model does not
pass Andrews’ stability test at the 10%, 5%, and 1% level of significance with one, two, and three

asterisks.

Zi 1 HJ-dist J JH) supLM

F 0.13 19.05 70.06 2.52
(.81) (.58) (.00)

K 0.13 1758 47.75 3.08
(.66) (.68) (.00)

F3 0.13  59.19 69.90 6.87
(.15) (.00) (.00)

F, 0.11 21.60 38.85 5.50
(.90) (.42) (.01)

F5 0.13 16.83 82.82 **18.05
(.69) (.72) (.00)

Fs 0.12 57.62 40.03  ***71.39
(.08) (.00) (.01)

F, 0.13 38.10 76.36 4.72
(49)  (01)  (.00)

Fg 0.12  20.01 4248  ***2298
(.77) (.52) (.00)

TERM 0.13 4857 57.39 6.57
(.24) (.00) (.00)

DEF 0.13 2857 77.66 7.88
(.75) (.12) (.00)

TB1 0.13 51.08 70.96 8.61
(.30) (.00) (.00)

TB31 0.13 3844 7025 9.64
(.60) (.01) (.00)

DIV 0.13 64.05 68.76 **18.63

(.14) (.00) (.00)

than the worst performing specification based on two diffusion indexes. While
the point estimates of the HJ-distance and the Jyj-statistic are 0.13 and 39.07 for
the (TERM, DIV)-specification, all model versions based on pairs of diffusion in-

dexes give rise to values of the HJ-distance measure of 0.11 and 0.10, respectively,
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and to values of the [yj-statistic ranging from about 17.4 to 38.4. Hence, diffusion
index-based models imply considerably smaller pricing errors than model specifi-
cations using individual conditioning variables. According to the J-statistics and
the corresponding p-values reported in the second column of Table 2.2, the opti-
mal GMM estimates for none of the diffusion index specifications imply pricing
errors that are significantly different from zero. This is only true for two of the
models using benchmark instruments. Moreover, the estimates obtained using
the Hansen-Jagannathan weighting matrix give rise to pricing errors that are sig-
nificantly different from zero for all specifications based on individual variables.
In contrast, two combinations of diffusion indexes yield values of the Jy;-statistic
that are not significantly different from zero.

Finally note that all diffusion index-based specifications of the conditional CAPM
price the 25 size and book-to-market sorted portfolios considerably better the
unconditional CAPM and the Fama-French three-factor model. This is remark-
able since the Fama-French model has become an important benchmark in recent
years.” Altogether, these results provide pervasive evidence that conditioning on
a large information set by using diffusion indexes as instruments considerably
enhances the fit of the CAPM.

Fama-MacBeth Regressions

Traditionally, asset pricing models have often been tested using the cross-sectional
regression methodology of Fama and MacBeth [1973]. To facilitate comparison
with previous studies, I also report results obtained from applying this estimation
strategy. To conserve space, I restrict the analysis to the conditional CAPM speci-
fications which have been shown to perform best in the GMM tests documented
above. Recall that these are the combination of the term spread and the dividend
yield, and the combination of the fourth and fifth diffusion index. Table 2.3 sum-
marizes the outcomes of cross-sectional regressions of these two CAPM specifica-
tions, the static CAPM and the Fama-French three-factor model. For each model,
the risk premia estimates for the individual pricing factors, the corresponding -
values and their Shanken-adjusted counterparts are reported. Further, two model

diagnostics are provided: the cross-sectional R? and the J,-statistic which allows

Notice, however, that the specifications using two instruments imply a total number of five un-

conditional factors whereas the Fama-French model only comprises three factors.



2. CONDITIONAL ASSET PRICING WITH A LARGE INFORMATION SET 35

Table 2.2: GMM Tests of the Conditional CAPM with Two Instruments

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on two conditioning variables. The 25 Fama-French portfolios are used as test assets.
The estimation period is from 1963:01 to 2003:12.

thl H]—dist ] ]H] supLM

F, E 0.11 22.61 38.38 13.19
(.84) (.25) (01)

F, Fy 0.10 18.23 25.92 14.05
(.85) (51) (13)

F, Fy 0.11 19.14 34.35 7.37
(.86) (.45) (02)

Fy, F5 0.10 10.19 17.73 8.79
(.98) (.95) (.54)

TERM, DEF 0.13 33.87 50.01 *18.30
(37) (.02) (.00)

TERM, TB1 0.12 22.66 40.79 17.06
(.46) (.25) (.00)

TERM, TB31 0.13 44.26 56.97 15.33
(.29) (.00) (.00)

TERM, DIV 0.12 21.57 39.07 17.27
(58) (31) (.00)

CAPM 0.14 61.76 70.89 2.78
(.00) (.00) (.00)

FF 0.12 57.23 56.13 10.92
(.00) (.00) (.00)

to test whether the model-implied average pricing errors are jointly equal to zero.
Consistent with the evidence in many previous studies, the CAPM with constant
coefficients explains only a small share, 16%, of the variation of average returns
across the 25 size and book-to-market sorted stock portfolios. Likewise consis-
tent with previous studies, the Fama-French three-factor model performs consid-
erably better than the static CAPM, explaining about 80% of the cross-sectional
variation of average returns. According to the J,-statistic, however, the Fama-
French model implies average pricing errors significantly different from zero at
the 5% confidence level. As one would expect from the GMM estimation results
documented above, the conditional versions of the CAPM perform better than
the unconditional Fama-French model. The specification employing TERM and
DIV as instruments explains about 85% of the cross-sectional variation of the test
assets and implies average pricing errors which are not statistically different from

zero. Strikingly, the fit of the conditional CAPM is even better using the diffusion
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Table 2.3: Fama-MacBeth Tests of the Conditional CAPM with Two Instruments

This table summarizes results from Fama-MacBeth regressions for the unconditional CAPM, the
Fama-French three-factor model, and different specifications of the conditional CAPM based on
two benchmark instruments or diffusion indexes, respectively. The models are of the form

E[R;] = E[Ro] + Bi; 71 + -+ Bif Yk

The second and third row of each panel provide the Fama-MacBeth and Shanken-adjusted ¢-
statistics for these estimates. R? and J, refer to the cross-sectional R-square and the test for zero
average pricing errors defined in (2.11). The 25 Fama-French portfolios are used as test assets.
The estimation period is from 1963:01 to 2003:12.

Model Pricing Factors R%(R?) J
CAPM cst Ry,

¥ 1.81 -0.57 0.16 56.58
t-value 473 -1.31 0.12 0.00
Shanken-t 4.69 -1.18

FF cst Ry, SMB HML

0% 1.84 -0.86 0.21 0.47 0.79 45.01
t-value 597 -231 1.42 3.45 0.76 0.01
Shanken-t 578 -1.97 1.00 242

cond CAPM (Z) cst R, TERM DIV  RuxTERM R,;xDIV

¥ 145 -0.10 1.88  -2.68 0.57 -5.56 0.85 31.51
t-value 529 -0.27 5.02 -347 041 -1.99 0.81 0.14
Shanken-t 271 -0.13 2.55 -1.75 0.21 -0.99

cond CAPM (F) cst Ry Fy Fs Ry xFy Ry xFs

0%t 197 -1.04 0.21 0.60 4.07 -2.00 091 25.04
t-value 429 -2.15 0.53 2.92 3.78 -3.13 0.88 0.40
Shanken-t 270 -1.31 0.33 1.82 2.36 -1.93

indexes F; and F; as instruments. In particular, this specification implies a cross-
sectional R? of 91% and even smaller pricing errors than the conditional CAPM

based on individual instruments.

Figure 2.1 visualizes these results, providing plots of average realized returns
against fitted expected returns for the 25 Fama-French portfolios. These are de-
noted by two digits where the first corresponds to the size quintile and the second
to the book-to-market quintile. Visibly, the static CAPM fails to explain the cross-
section of 25 portfolios. The other three models price the test assets much more
precisely although with some differences. Most importantly, the Fama-French
three-factor model implies relatively large pricing errors for portfolios with a very
low or very high book-to-market ratio (second digit equal to 1 or 5, respectively).
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The (TERM, DIV)-specification of the conditional CAPM appears to explain av-
erage returns of low value firms better than the Fama-French model, but still
implies relatively large pricing errors for high value firms. In contrast, the CAPM
conditional on two diffusion indexes prices both groups of assets more precisely
than the competitor models. The performance is particularly remarkable for the
small growth portfolio that previous studies (e.g. Lettau and Ludvigson 2001)
have documented to be difficult to price. Overall, the outcomes of the Fama-
MacBeth regressions confirm that diffusion indexes capture conditioning infor-
mation which enhances the fit of the CAPM.

2.5.3 Do Factors Have Incremental Explanatory Power?

The tests documented above show that specifications of the conditional CAPM
using diffusion indexes as instruments outperform specifications based on tra-
ditionally used conditioning variables. While these results indicate that it is ad-
vantageous to employ a large information set, they do not in general allow to
conclude that diffusion indexes have incremental explanatory power over bench-
mark instruments. As discussed in Section 2.3, the hypothesis that some added
instrument is useless can explicitly be tested in the GMM framework. In this sec-
tion, I employ the two tests stated in (2.8) and (2.9) to evaluate whether the best
performing pairs of benchmark conditioning variables and diffusion indexes cap-
ture the relevant pricing information or whether adding instruments significantly

improves the model fit.

Table 2.4 summarizes the outcomes of these tests. The upper panel shows esti-
mation results of conditional CAPM specifications based on the term spread and
the dividend yield, to which the first five diffusion indexes are added one by one.
The lower panel reports the estimation outcomes of conditional CAPM versions
using the fourth and fifth diffusion index as conditioning variables to which the
tive benchmark instruments are added individually. The last two columns of Ta-
ble 2.4 provide the statistics A] and x?(bj = 0) on the basis of which I assess
whether the added instruments are useless or not.

The results of these tests can be summarized as follows. First, despite the strong
explanatory power of the instruments TERM and DIV documented above, the

hypotheses br; = 0 can be rejected at the 5% significance level for three out of
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Figure 2.1: Plots of Model-Fit Based on Fama-MacBeth Regressions

This figure plots average realized returns of the 25 Fama-French portfolios against the fitted re-
turns implied by four different models: the unconditional CAPM, the Fama-French three-factor
model, and two specifications of the conditional CAPM using two benchmark instruments or dif-
fusion indexes as conditioning variables. The portfolios are denoted by two digits where the first
corresponds to the size quintile (1=small, 5=large) and the second to the book-to-market quintile
(1=low, 5=high).
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the first five diffusion indexes. This implies that these three factors incorporate
useful pricing information that is not already captured by the two benchmark
instruments. Not surprisingly, these useful conditioning variables are the diffu-
sion indexes F,, F, and F5 which have been documented particularly powerful in
tests of the conditional CAPM using only one instrument. Second, as the results
in the lower panel of Table 2.4 show, the hypotheses bz, = 0 cannot be rejected
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for any of the added instruments. Hence, none of the five benchmark condition-
ing variables adds useful information to the best-performing model specification
based on diffusion indexes. One can therefore conclude that factors extracted
from a large panel of macroeconomic data have incremental explanatory power
over commonly used instruments, while the reverse is not true. This underlines
that the information set available to investors is better captured by factors ex-

tracted from a large macroeconomic data panel than by individual variables.

2,54 Comparison with Quarterly Conditioning Variables

The results above show that conditioning on a large information set leads to a bet-
ter fit of the conditional CAPM. In this section, I provide additional evidence for
this finding by comparing diffusion indexes with two other popular instruments.
These are the log consumption wealth ratio cay suggested by Lettau and Lud-
vigson [2001] and the labor income to consumption ratio s, proposed by Santos
and Veronesi [2006]. Both variables have been shown to have strong explanatory
power for the cross-section of returns. Since they are only available on a quar-
terly basis, I transform all monthly series in the panel of macro times series into
the quarterly frequency and extract diffusion indexes from the resulting quarterly
dataset.!”

Table 2.5 provides GMM estimation results obtained for different specifications
of the conditional CAPM using quarterly diffusion indexes and the two quarterly
benchmark conditioning variables as instruments. These results can be summa-
rized as follows. First, cay and s both give rise to a Hansen-Jagannathan dis-
tance of 0.65 and thus seem to perform about equally well. According to the
JHj-statistic, however, the log consumption-wealth ratio implies slightly smaller
pricing errors (Ji; = 123.28) than the labor income to consumption ratio (Jy; =
154.25). Second and most importantly, the first two factors extracted from the
large panel of quarterly time series strongly outperform cay and s;,. The first dif-
fusion index implies a HJ-distance of 0.62 and a [;-statistic of 67.28, which shows
that this factor produces considerably smaller pricing errors than the two bench-

10 Note that different strategies of temporal aggregation have been employed for various groups of
time series. In particular, for all interest rate series, exchange rates, monetary aggregates, stock
market indices, and business outlook indices I have defined the last monthly observation in a
quarter as the quarterly figure. For all other series, the average of three consecutive monthly

observations has been used as the quarterly figure.
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Table 2.4: GMM Tests of Incremental Explanatory Power

This table summarizes GMM estimation results for tests of incremental explanatory power of
single instruments. In the first panel, diffusion indexes are added to a conditional CAPM spec-
ification using the term spread and the dividend yield as conditioning variables. In the second
panel, benchmark instruments are added to a specification based on the fourth and fifth diffusion
index. For each specification, estimates of the pricing coefficients are provided in the first row and
the corresponding f-values are given in parentheses below. x? (bj=0) denotes the Chi-square test
for the hypothesis b; =0 for j = {F, Z} defined in (2.8), A] refers to the x> difference test defined in
(2.9). The 25 Fama-French portfolios are used as test assets. The sample period is 1963:01-2003:12.

cst Rint ‘ Zi1 Rt~ Zp—q Fr1 Rut-F ‘ A] - X(bp=0)
TERM DIV | TERM DIV F
039 003 | -018 004| 001 001| 017 0.00 | 1.30 2.05
111)  -30) | (169 (72| (43) (73)| @.15) 07 | (52) (.36)
TERM DIV | TERM DIV F
0.24 -0.19 -0.25 0.09 0.02 0.03 0.27 0.06 | 10.78 6.09
(.75) (-1.81) | (-2.02) (1.77) (.82) (2.06) (1.07) (1.78) (.00) (.05)
TERM DIV | TERM DIV F
0.63 -0.18 -0.33 0.07 0.04 0.02 0.15 -0.02 4.13 4.05
(2.07)  (-1.72) | (-292) (1.54) (1.68) (1.83) (1.38) (-.70) (.13) (.13)
TERM DIV | TERM DIV Fy
0.13 0.04 -0.01 0.02 -0.00 -0.00 0.01 -0.07 8.78 8.41
(.47) (.53) (--07) (.68) (-.06) (-.03) (.07) (-2.65) (.01) (.01)
TERM DIV | TERM DIV Fs
0.78 -0.23 -0.29 0.04 0.05 0.03 -0.28 0.01 8.05 6.85
(2.39) (-2.17) | (-2.99) (.87) (2.11) (2.25) | (-2.04) (.31) (.02) (.03)
cst Rt ‘ Fr Rt - Frq Zi1  Rmp-Zi ‘ A]  x*(bz=0)
r, I r, Fs TERM
0.38 0.03 -0.19 -0.29 -0.06 -0.01 -0.03 -0.00 | 4.58 0.11
(2.28) (1.15) (-95) (-2.08) | (-1.75) (-.23) (-.29) (-.04) | (.10) (.95)
Fy Fs Fy Fs DEF
0.26 -0.00 -0.13 -0.23 -0.07 0.01 0.10 0.03 | 4.62 0.34
(90)  (-02) | (-65) (-1.62) | (238) (22)| (37 (38) | (10) (.84)
[ Fs [ Fs TBI
0.37 -0.05 -0.21 -0.33 -0.07 0.01 0.07 0.13 | 4.53 1.14
(1.22)  (-66) | (-1.00) (-1.97) | (-2.15) (.54) (.11) (1.05) | (.10) (.57)
Fy Fs Fy Fs TB31
0.94 -0.01 -0.12 -0.45 -0.08 0.02 -0.18 0.01 | 4.31 2.29
(2.22) (-.16) (-54) (-2.34) | (-2.33) (.73) | (-1.46) (.61) | (112) (.32)
Fy Fs Fy F DIV
0.40 -0.06 -0.21 -0.32 -0.07 0.02 0.01 0.01 | 4.48 1.44
(1.15)  (-.79) (-95) (-1.80) | (-2.09) (.66) (.09) (1.14) | (.11) (:49)
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Table 2.5: Conditional CAPM with One Instrument, Quarterly Data

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on one conditioning variable using quarterly data. The 25 Fama-French portfolios
are used as test assets. The estimation period is from 1963:Q1 to 2003:Q4.

thl H]—dist ] ]H] supLM

F 0.62 35.12 6728  ***18.28
(.67) (.04) (.00)

F 0.49 19.02 48.49 9.31
(95)  (64)  (.00)

K 0.64 4489 14548 3.70
(.87) (.00) (.00)

Fy 0.64 999 17325  **21.19
(96)  (99)  (.00)

Fs 0.64 2093 189.81  ***20.80
(.76) (.53) (.00)

Fe 0.63 103.37 152.66  **25.71
(71)  (00)  (.00)

F; 0.64 4752  134.23 *15.39
(.50) (.00) (.00)

cay 0.65 6030 123.28  **24.28
(.07) (.00) (.00)

Sw 0.65 7853  154.25 11.68

(.31) (.00) (.00)

mark instruments. Strikingly, the second diffusion index implies even smaller
pricing errors, as it gives rise to a HJ-distance of 0.49 and a [p-statistic of 49.49.
The relative performance of the remaining factors in comparison with the two
benchmark instruments is somewhat less pronounced. The diffusion indexes
F,...,F; imply smaller Hansen-Jagannathan distance measures than the two
variables cay and s;,. Yet, they give rise to Jp-statistics that are larger than the one
implied by cay and smaller than the corresponding value of s, only for F3, Fs, and
F;. Overall, however, the diffusion indexes strongly withstand the comparison
with the two quarterly benchmark conditioning variables. The results obtained
using quarterly data thus underscore the main conclusion drawn before: condi-
tioning on a large information set significantly improves the fit of the conditional

CAPM with respect to specifications based on individual conditioning variables.
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2.5.5 Robustness Tests

In this section, some of the results documented above are subjected to three types
of robustness tests. The first one regards the choice of test assets, the second the
stability of the results across different sample periods, and the third investigates
whether the strong relative pricing performance of diffusion indexes is limited to
the CAPM or whether this result extends to other conditional models.

Scaled Returns

Following Cochrane [1996], one can test whether an asset pricing model is able
to price a different set of assets by considering managed portfolios, i.e. portfo-
lios that are reweighed period by period according to new information about
expected returns. To construct such managed portfolios, he proposes to scale the
returns of the test assets with conditioning variables that captures news about
future returns. I follow this suggestion and scale the 25 Fama French portfolios
with the term spread, the default spread, the short rate, and the dividend yield,
respectively. All variables have previously been used to construct managed port-
folios (see e.g. Li et al. 2004). Table 2.7 summarizes the results of GMM tests of
the conditional CAPM with two instruments using the scaled portfolio returns
as test assets. A comparison of these results with Table 2.2 shows that the strong
relative performance of the conditional CAPM using diffusion indexes as instru-
ments prevails when the model is called to price alternative sets of assets. Indeed,
both in terms of the HJ-distance and the [yj-statistic, the worst performing spec-
ification using diffusion indexes as conditioning variables outperforms the best
performing conditional CAPM based on benchmark instruments for all four sets
of scaled portfolios. This is a striking result since the employed scaling variables
should by construction capture the variation of expected returns across the scaled

test assets pretty well.

Subsample Analysis

The second robustness check aims at detecting whether the strong ability of diffu-
sion indexes to proxy for investors” information sets is specific to the sample used
in the previous tests. I thus repeat the tests documented in Tables 2.1 and 2.2 us-
ing different sample periods. To keep things simple, I split the estimation period
in two subsamples of about the same length, 1963:01-1983:12 and 1984:01-2003:12.
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The outcomes of GMM tests for these two subsamples are reported in Tables 2.8
and 2.9. Several remarks are in order. First, in the early subsample 1963-1983,
the panel information criteria by Bai and Ng [2002] indicate that seven factors are
sufficient to summarize the common variation in the panel of macro time series.
Hence, I extract seven diffusion indexes using the method by Stock and Watson.
When only one conditioning variable is employed, five out of these seven dif-
fusion indexes imply smaller pricing errors for the conditional CAPM than all
benchmark instruments. The same holds true for the subsample 1984-2003 for
which eight factors capture the common variation in the macroeconomic dataset.
Hence, the conclusion drawn before that individual diffusion indexes represent
better proxies for investors’” information sets than individual instruments is not
sample-specific. Note that different conditioning variables may in principle be
most useful in different subsamples. According to the results in Table 2.8, this
is the case here. While the fourth common factor is the best performing single
diffusion index in the early sample period, the fifth diffusion index clearly stands
out in the subsample 1984-2003. Equivalently, the default spread implies smaller
pricing errors over the second subsample than the term spread which performs
best over the period 1963-1983. Combining the single best conditioning variables
with each of the four remaining instruments, one can see from the results in Table
2.9 that pairs of diffusion indexes strongly outperform pairs of individual bench-

mark indicators in both subsamples.

Tests of the Conditional Consumption-CAPM

The results presented so far show that diffusion indexes outperform commonly
used conditioning variables in tests of the conditional CAPM. A potential con-
cern with respect to these results might point at the usefulness of dynamic fac-
tors as instruments in other conditional pricing models. Indeed, as the results
in Hodrick and Zhang [2001] and Wang [2005] show, specific conditioning vari-
ables must not be equally useful in combination with different pricing factors.
The Consumption-CAPM (CCAPM henceforth) originally due to Breeden [1979]
has recently been revived by the work of Lettau and Ludvigson [2001] who have
shown that conditional versions of the model explain the cross-section of returns
well. To underscore my previous results, I therefore compare the fit of the condi-

tional CCAPM using diffusion indexes as instruments with specifications based



44

on benchmark conditioning variables. Hence, I compare models of the form
M = ap + biAcyq,

where Ac; 1 denotes the growth rate of aggregate consumption and where a; and

b; are linear functions of the conditioning variables as before.

Table 2.10 documents the outcomes of GMM estimations of the conditional CCAPM
based on different instruments. The left and right panel summarize the results
obtained using monthly and quarterly data, respectively. According to the esti-
mates of the HJ-distance and the Jy-statistic, the conditional CCAPM implies
slightly larger pricing errors than the corresponding specifications of the condi-
tional CAPM, reported in Tables 2.1 and 2.5. More importantly, however, the over-
all pattern found before that most diffusion indexes perform better than bench-
mark instruments extends to the CCAPM. This holds true both for monthly and
quarterly instruments. Hence, the strong relative performance of dynamic factors
as conditioning variables is not specific to tests of the conditional CAPM. Alto-
gether, the robustness checks carried out in this section provide strong evidence
that the usefulness of dynamic factors as instruments in tests of conditional as-
set pricing models is independent from the set of test assets, the sample-period

considered, and the particular choice of pricing factors.

2.5.6 What Information Do the Factors Summarize?

Table 2.6: Correlation of Diffusion Indexes and Benchmark Instruments
This table reports sample correlations between the diffusion indexes extracted from the panel
of 132 monthly time series for the US and the five monthly benchmark conditioning variables
introduced in Section 2.4. The sample period is 1963:01-2003:12.

TERM DEF TB1  TB31 DIV

F 009 -052 -036 -034 -0.33
) 058 -006 -059 -056 -0.64
F 0.41 0.53 0.09 0.34 0.13
F4 0.16 0.18 -0.09 0.10 -0.10
Fs -0.02 -000 -005 -032 -0.04
Fs 043 -0.04 -0.19 0.12 -0.18
F; 0.08 0.25 0.33 0.08 0.31
Fg -0.19 0.13 0.18 0.16 0.17

So far, this chapter has shown that factors which by construction summarize

the information in a large number of macroeconomic time series imply signifi-
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cantly smaller pricing errors than commonly used information variables when
they are employed as instruments. Since not all diffusion indexes are equally use-
ful, though, it is interesting to investigate which dimensions of conditioning infor-
mation are more important than others. The factors extracted via the method by
Stock and Watson [2002a,b] are only identifiable up to a nonsingular g x g rotation.
Hence, a detailed interpretation is unwarranted. Nevertheless, it may be instruc-
tive to briefly characterize those diffusion indexes which have been found to be
particularly useful instruments. Consider first the sample correlations between
the extracted factors and the benchmark conditioning variables, summarized in
Table 2.6. There is some substantial correlation between individual factors and
benchmark conditioning variables. For example, the second diffusion index is
strongly correlated with the term spread, the short-term interest rate, and the
dividend yield. However, the fourth and fifth diffusion index which have also
been shown to be useful conditioning variables are largely uncorrelated with the
benchmark instruments. This indicates that both sets of instruments only partly

capture similar conditioning information.

For a more detailed investigation of the economic underpinnings of the extracted
factors, Table 2.11 lists those variables which are most highly correlated with the
tirst five diffusion indexes. According to the results from the various tests of the
conditional CAPM documented above, the diffusion indexes I, F;, and F5 stand
out. I therefore focus on discussing these factors. The second factor is clearly
an inflation-related index since it is most highly correlated with various price
indices.!! This is interesting since inflation has not previously been used as a
conditioning variable.!?> Next consider the fourth factor which has individually
implied the smallest pricing errors, strongly outperforming all benchmark con-
ditioning variables. According to Table 2.11, this factor is mainly driven by vari-
ables related to the housing industry. This is an interesting result because a recent
literature identifies housing risk as a factor that influences agents’ investment de-

cisions (see e.g. Lustig and Van Nieuwerburgh 2005, and Piazzesi, Schneider, and

11 This is consistent with the results in Stock and Watson [2002a] who also find the second diffusion

index extracted from a similarly constructed dataset to be an inflation factor.
12 Notice, however, that some link between unexpected inflation and stock returns has previously

been documented. Using different model setups and empirical approaches, Chen et al. [1986],
Kelly [2003], and more recently Aretz, Bartram, and Pope [2006] find (weak) evidence that unex-
pected inflation is related to the Fama-French factor SMB or is itself a factor in the cross-section of
stock returns.
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Tuzel 2006). Both studies show that valuation ratios based on housing wealth or
housing consumption forecast stock returns. My result that a housing factor is a
highly useful conditioning variable thus provides additional evidence for the im-
portant role of housing-related information in stock returns. Notice finally that
the fifth diffusion index is mainly driven by interest rate series and thus bears
a natural relation with benchmark instruments such as the term spread or the

default spread.

2.6 Conclusion

Tests of conditional asset pricing models require the specification of proxies for
the information set available to investors. Degrees of freedom problems restrict
to very few the number of conditioning variables that can be used at the same
time. It is therefore a common practice to employ individual variables as instru-
ments. Consequently, most tests of conditional pricing models are based on very

limited amounts of conditioning information.

This chapter suggests to exploit a broad conditioning information set by using
dynamic factors as instruments. Dynamic factors by construction summarize the
information in many economic variables and are therefore intuitively appealing
proxies for the information set available to investors. I show that dynamic fac-
tors imply substantially smaller pricing errors than commonly employed condi-
tioning variables when they are used as instruments in tests of conditional mod-
els. Moreover, dynamic factors exhibit significant incremental explanatory power
over benchmark instruments. The obtained results strongly support the hypoth-
esis that dynamic factors represent better proxies for investors” information set
than individual indicators. The results withstand a number of robustness tests
and carry important implications for the specification of conditional asset pricing

models in applied research and practice.



2. CONDITIONAL ASSET PRICING WITH A LARGE INFORMATION SET 47

A.2 Additional Tables and Figures
Table 2.7: GMM Tests Using Scaled Returns

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on two conditioning variables, respectively. The test assets are the 25 Fama-French
portfolios scaled by different conditioning variables. The upper left panel provides results for
portfolios scaled by the term spread, the upper right panel by the default spread. the lower left
panel by the 1-month Treasury Bill and the lower right panel by the dividend yield.

Returns Scaled by TERM Returns Scaled by DEF

Zi 1 HJ-dist ] JHy supLM ‘ HJ-dist ] JH) supLM

F,E 011 22,61  38.38 13.19 011 3266 4141 13.97
(0.84)  (0.25)  (0.01) (.63) (.03) (.00)

b, F 010 1823 2592 14.05 010 2235 29.02 *18.95
(0.85)  (0.51)  (0.13) (.64) (.27) (.07)

F,F 0.11 19.14  34.35 7.37 011 2773 4173 12.87
(0.86)  (0.45)  (0.02) (.59) (.09) (.00)

Fy, F5 010 1019 1773 8.79 010 1631 2344 10.14
(098)  (0.95) (0.54) (.95) (.64) (.22)

TERM, DEF 0.13  33.87  50.01 *18.30 012 3496  49.57 16.85
(0.37)  (0.02)  (0.00) (.36) (.01) (.00)

TERM, TB1 012 2266  40.79 17.06 012 2424 4620 *+24.08
(047)  (0.25)  (0.00) (.50) (.19) (.00)

TERM, TB31 0.13 44.26 56.97 15.33 013 41.74 5841 **%33.16
(0.29)  (0.00)  (0.00) (.29) (.00) (.00)

TERM, DIV 012 2157  39.07 17.27 012 2204 4555  ***30.12
(0.59)  (0.31)  (0.00) (.59) (.28) (.00)

Returns Scaled by TB1 Returns Scaled by DIV

Zi 1 HJ-dist ] Juy  supLM | HJ-dist ] Juj  supLM

Fi,F 022 2469  36.38 12.95 0.04 3529 46.84 14.29
(.68) (.17) (.01) (.52) (.01) (.00)

b, E 016 1760  21.07 10.31 0.03 2748  33.70 8.14
(.96) (.55) (.33) (.56) (.09) (.02)

F, 023 2727 4093 10.88 0.04 2030  36.69 9.35
(.57) (.10) (.00) (.74) (.38) (.01)

Fy, Fs 021 2727 3296 13.73 0.03 1810  27.66 11.37
(68)  (10)  (.02) (87)  (52) (.09

TERM, DEF 025 4419  77.58 8.63 0.04 3469 6498 13.42
(.25) (.00) (.00) (42) (.02) (.00)

TERM, TB1 025 3681  67.64 7.12 0.04 3246  59.33 16.61
(.39) (.01) (.00) (43) (.03) (.00)

TERM, TB31 025 45.09 70.86 16.26 0.04 3560  68.09 11.30
(.26) (.00) (.00) (.24) (.01) (.00)

TERM, DIV 025 3719 64.61 7.56 0.04 3151 58.71 16.88
(.39) (.01) (.00) (.51) (.04) (.00)
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Table 2.8: Subsample Analysis - Conditional CAPM with One Instrument

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on one conditioning variable, respectively. The left-hand panel provides results
for the sample period 1963:01-1983:12, and the right-hand panel for the period 1984:01-2003:12.
The 25 Fama-French portfolios are used as test assets.

1963:01 - 1983:12 1984:01 - 2003:12

Zi1 HJ-dist i Juy  supLM | Hj-dist ] Juj  supLM

3 021 37462 23041  **79.64 015  66.86 96.15 9.11
(.00) (.00) (.00) (12) (.00) (.00)

F 019 4487 28647 8.42 015 4457 96.03  **20.68
(.63) (.00) (.00) (23) (.00) (.00)

= 020 2840 14458  *20.69 015 6129  **0448 3.17
(.49) (13) (.00) (43) (.00) (.00)

F 019  39.84 100.61 8.95 016  98.64 14074 **78.32
(.40) (01) (.00) (01) (.00) (.00)

Fs 020 9513 16822  **20.96 0.13  36.86 69.07  **23.54
(17) (.00) (.00) (.63) (.02) (.00)

Fs 021 6217 159.73 13.42 015 6593  130.02 11.24
(.31) (.00) (.00) (07) (.00) (.00)

F 020 6656 12633  **%26.07 016 8485 11650 13.18
(.07) (.00) (.00) (.05) (.00) (.00)

Fs - - - - 015 4071 69.64 8.93
(.20) (01) (.00)

TERM 018 3609 172.79 9.58 0.15 9583 12146  **58.27
(.82) (.02) (.00) (.09) (.00) (.00)

DEF 019 4356 19894 **71.32 015 7230  101.09  **67.96
(.50) (.00) (.00) (.23) (.00) (.00)

TB1 021  83.88 22546 8.65 015 4658 10661  **27.36
(17) (.00) (.00) (.10) (.00) (.00)

TB31 021 3746 20611 **24.24 016 11491  137.92  **38.22
(.24) (01) (.00) (01) (.00) (.00)

DIV 021 8462 22524 12.78 015 4760  113.06 **22.35
(.03) (.00) (.00) (.10) (.00) (.00)
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Table 2.9: Subsample Analysis - Conditional CAPM with Two Instruments

This table summarizes GMM estimation results for different specifications of the conditional
CAPM based on two conditioning variables, respectively. The left-hand panel provides results
for the sample period 1963:01-1983:12, and the right-hand panel for the period 1984:01-2003:12.
Notice that due to their superior individual performance over the second subsample, the instru-
ments F5 and DEF in parentheses are used instead of Fy and TERM in tests using data for the
period 1984-2003. The 25 Fama-French portfolios are used as test assets. For comparison, the
last two panels provide the estimation results for the unconditional CAPM and the Fama-French
(1993) three-factor model, respectively.

1963:01 - 1983:12 1984:01 - 2003:12

Zi 1 HJ-dist i Juy  supLM | HJ-dist ] Juy  supLM

Fy, Eo(Fs) 0.19 2574 **77.02 6.62 0.11 1684 3369  *21.08
(59)  (14) (.00) (96)  (60)  (.02)

Fy, Ey(Fs) 017 5440  122.00 115 013 2729 6138 **4524
(40)  (.00) (.00) (58)  (10)  (.00)

Fs, Ey(Fs) 0.18  26.00 56.25 11.2 0.13 6118  61.22 15.49
(44)  (13) (.00) (48)  (00)  (.00)

Fy, Fs 0.18 3723 67.78 7.27 0.13 3097 6266 **49.39
(39)  (01) (.00) (59)  (04)  (.00)

TERM, DEF 0.18 3549 17751 ***42.88 0.15 6555 110.86 ***70.46
(71)  (01) (.00) (00)  (00)  (.00)

TERM (DEF), 0.18 29.86  153.94  *23.36 0.15 53.00 10190 ***34.49

TB1 (60)  (.05) (.00) (00)  (00)  (.00)

TERM (DEF), 0.18 3769  163.12  *+257 0.15 4442 7217 **2538

TB31 (57)  (01) (.00) (00)  (00)  (.00)

TERM (DEF), 017 2594 14085  *21.94 015 4873 10127 **26.14

DIV (74)  (13) (.00) (00)  (00)  (.00)

CAPM 021 31078 21544 3.99 016 5634 126.60 1.58
(00)  (.00) (.00) (11)  (00)  (.00)

FF 0.16 7826 72.42 437 014 8672 8324 17.70
(00)  (.00) (.00) (00)  (00)  (.00)
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Table 2.10: Conditional CCAPM with One Instrument

This table summarizes GMM estimation results for different specifications of the conditional
Consumption-CAPM based on a single conditioning variable. The 25 Fama-French portfolios
are used as test assets. The estimation period is from 1963:01 to 2003:12.

Monthly Data Quarterly Data
Zi 1 | Hj-dist ] Jw | Za| Hy-dist ] Ty
F 0.18 26.41 80.90 F 0.67 26.70 256.25
(75)  (19) (.00 (80)  (22) (.00)
F 0.16 19.24 45.26 F 0.53 24.07 59.84
(71)  (57)  (.00) (89)  (34) (.00)
F 0.17 20.60 64.02 F 0.68 13.48 329.74
(.82) (.48) (.00) (1.00) (.92) (.00)
Fy 0.17 18.85 50.73 Fy 0.63 33.74 100.75
(86)  (59)  (.00) (71)  (.05) (.00)
Fs 0.15 20.00 50.04 Fs 0.67 26.88 369.62
(68)  (52)  (.00) (80)  (22) (.00)
Fe 0.17 25.14 82.15 Fg 0.67 43.35 325.74
(73)  (24)  (.00) (29)  (.00) (.00)
F; 0.15 10.90 30.65 F; 0.64 43.58 167.82
(.90) (.96) (.08) (.62) (.00) (.00)
Fg 0.16 31.87 67.93
(50)  (06) (.00
TERM 0.17 10.74 58.92 cay 0.67 14.65 306.60
(97)  (97) (.00 (97)  (.88) (.00)
DEF 0.17 35.02 79.39 Sw 0.67 5.75 347.98
(31)  (03)  (.00) (99)  (.99) (.00)
TB1 0.18 15.06 86.72
(84) (82  (.00)
TB31 0.17 25.46 75.25
(75)  (23) (.00
DIV 0.18 12.74 89.51
(89)  (92)  (.00)
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Table 2.11: Factor Variance Decomposition
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This table summarizes R-squares of univariate regressions of the first five factors extracted from

the macroeconomic dataset on all individual variables. I report the variables that are most highly

correlated with the individual factors, respectively. Notice that the series have been transformed

to be stationary prior to extraction of the factors, i.e. for most variables the regressions correspond

to regressions on growth rates. The five diffusion indexes together explain more than 60% of the

total variation in the panel.

Mnemonic Description R?
Factor 1 (27.3% of total variance)
1PS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 0.80
IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 0.80
PMP NAPM PRODUCTION INDEX 0.77
CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 0.77
CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 0.73
Factor 2 (15.9% of total variance)
PUC CPI-U: COMMODITIES 0.67
GMDCN PCE,IMPL PR DEFL:PCE; NONDURABLES 0.67
PWFCSA  PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS 0.61
PWFSA PRODUCER PRICE INDEX: FINISHED GOODS 0.60
PUXHS CPI-U: ALL ITEMS LESS SHELTER 0.60
Factor 3 (7.3% of total variance)
AOMO77 Ratio, mfg. and trade inventories to sales 0.35
PU85 CPI-U: MEDICAL CARE 0.30
AOMO70 Manufacturing and trade inventories 0.29
LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS  0.26
aom001 Average weekly hours, mfg. 0.26
Factor 4 (5.7% of total variance)
HSFR HOUSING STARTS:TOTAL FARM&NONFARM( 0.45
HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS 0.41
HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS:WEST 0.40
HSSOU HOUSING STARTS:SOUTH 0.39
HSWST HOUSING STARTS:WEST 0.36
Factor 5 (4% of total variance)
HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH 0.26
FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR. 0.23
FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO. 0.22
FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR. 0.22
FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO. 0.21




3 Forecasting the Yield Curve in a

Data-Rich Environment

This chapter suggests a term structure model which parsimoniously exploits a broad
macroeconomic information set. The model does not incorporate latent yield curve factors,
but instead uses the common components of a large number of macroeconomic variables
and the short rate as explanatory factors. Precisely, an affine term structure model with
parameter restrictions implied by no-arbitrage is added to a Factor-Augmented Vector
Autoregression (FAVAR). The model is found to strongly outperform different benchmark
models in out-of-sample yield forecasts, reducing root mean squared forecast errors rela-

tive to the random walk up to 50% for short and around 20% for long maturities.

3.1 Introduction

Traditional models of the term structure of interest rates are built upon decom-
positions of yields into latent factors using one or another statistical method (e.g.
Nelson and Siegel 1987, Knez et al. 1994, Duffie and Kan 1996). While the fit of
these models is usually rather good, their economic meaning is somewhat limited
since they have relatively little to say about the relationship between observable
economic variables and interest rates of different maturities. To explore this issue,
one therefore needs to construct models which jointly describe macro and term

structure dynamics.

In a seminal paper, Ang and Piazzesi [2003] augment a standard latent factor
affine term structure model with two macroeconomic factors. They find that the
included macroeconomic variables improve yield forecasts, accounting for up to
85 % of the variation in interest rates. Inspired by this finding, a vivid literature
has emerged lately which explores different approaches of jointly modelling the

52
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term structure and the macroeconomy. Hordahl et al. [2006], for example, build a
small structural model that describes the joint evolution of output, inflation, and
the monetary policy instrument, and add the term structure using no-arbitrage
restrictions. Diebold et al. [2006] estimate a model which allows for correlated la-
tent and observed macroeconomic factors and find that macroeconomic variables
have strong effects on future movements of the yield curve, while latent interest
rate factors have a relatively small impact on macroeconomic variables. Further
examples of recent papers which jointly model term structure and macro dynam-
ics are e.g. Dewachter and Lyrio [2006], Wu [2002], Rudebusch and Wu [2003],
and Dai and Philippon [2005].

Based on different model setups and methodologies, these papers consistently
argue that macroeconomic variables are useful for explaining and/or forecasting
government bond yields. However, only very small macroeconomic information
sets are commonly exploited in these studies. The main reason for this informa-
tional limitation is that state-of-the-art affine term structure models imply the
estimation of a large number of parameters, thereby considerably restricting the
number of explanatory variables one can include. Yet, by limiting the analysis
to only a few variables, other potentially useful macroeconomic information is

being neglected.

A recent strand of the macroeconomic literature advances the use of dynamic
factor models in order to exploit large information sets in economic analysis (e.g.
Stock and Watson 2002a,b, Forni et al. 2005). Such models break down the cross-
sectional information contained in large panels of time series into common and
series-specific components, and thereby enable the researcher to separate out ag-
gregate and idiosyncratic shocks. A number of studies have found that dynamic
factor models are particularly powerful in forecasting economic time series, espe-
cially measures of output and inflation (e.g. Stock and Watson 2002a, Giannone
et al. 2004).

In this chapter, I examine the usefulness of factors extracted from a large macroe-
conomic dataset for explaining and forecasting the term structure of interest rates.
The exercise is motivated by three previously documented results. First, it has
been argued by some authors that central banks actively monitor a large num-

ber of macroeconomic time series, and that monetary policy decisions are thus
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based on the information contained in not only a few key aggregates but many
economic variables. Loosely speaking, the central bank sets interest rates in a
“data-rich environment” (Bernanke and Boivin 2003). Accordingly, dynamic fac-
tors which effectively summarize the information contained in a large number of
time series should prove useful in explaining interest rates set by central banks.
Bernanke and Boivin [2003], Favero et al. [2005] and Belviso and Milani [2005]
consistently provide empirical evidence supporting this claim. By comparing
standard Taylor rules with specifications based on dynamic factors, these papers
show that the latter exhibit information beyond output and inflation that helps to
explain monetary policy. Moreover, Giannone et al. [2004] show that factor-based
forecasts of the federal funds rate perform as good as market-based forecasts.
Overall, short-term interest rates are thus well explained by dynamic factors. Sec-
ond, factor models have been shown to perform well in forecasting measures of
output and inflation (see, e.g. Stock and Watson 2002a). Since both expected out-
put and expected inflation are likely to have an impact on bond yields, this deliv-
ers another argument for using them in a term structure model. Finally, in Ménch
(2006, Chapter 2) I show that dynamic factors are highly useful instruments in
tests of conditional pricing models which implies that they capture well the time-
variation of risk premia. Altogether, since the prices and yields of non-defaultable
government bonds are driven by expectations about future short-term interest
rates, expected future inflation and risk premia, the evidence pointed to above
suggests that factors extracted from large panels have explanatory power also for
the yield curve.

What is the appropriate model setup for incorporating a broad macroeconomic in-
formation set into term structure analysis through the use of dynamic factors? In
a recent paper, Bernanke et al. [2005] suggest to combine the advantages of factor
modeling and structural VAR analysis by estimating a joint vector-autoregression
of factors extracted from a large cross-section of time series and the short-term in-
terest rate, an approach which they label “factor-augmented VAR” (FAVAR). The
FAVAR model provides a dynamic characterization of short-term interest rates
set by the central bank in response to the main economic shocks which are sum-
marized by a few common factors. As a by-product, it delivers a path of expected
future short rates conditional on a broad macroeconomic information set. On the
other hand, given a short rate equation, affine term structure models provide a

tool to build up the entire yield curve subject to no-arbitrage restrictions. It is
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thus an obvious next step to combine a factor-augmented VAR model with the
standard affine setup by using the FAVAR as the state equation in an essentially

affine term structure model. This is done in the present chapter.

Estimation of my model is in two steps. First, I extract common factors from a
large macroeconomic dataset using principal components and estimate the pa-
rameters governing their joint dynamics with the monetary policy instrument in
a VAR. Second, I estimate a no-arbitrage vector autoregression of yields on the
exogenous pricing factors. Specifically, I obtain the price of risk parameters by
minimizing the sum of squared fitting errors of the model following the nonlin-
ear least squares approach suggested by Ang, Piazzesi, and Wei [2006]. Since
my model does not include latent yield curve factors, the parameters governing
the dynamics of the state variables can be estimated separately by standard OLS.
Hence, estimation is fast which makes the model particularly useful for recursive

out-of-sample forecasts which are the main focus of this study.

The results of the chapter can be summarized as follows. A model including
as factors the short rate and four common components which together explain
the bulk of variation in a large panel of monthly macroeconomic time series vari-
ables for the US, provides a good in-sample fit of the term structure of interest
rates. Preliminary regressions show that factors extracted from a large macroe-
conomic dataset contain information useful for explaining the federal funds rate
beyond output and inflation. Moreover, the model factors are highly significant
explanatory variables for yields. Compared to a model which incorporates the
short rate and four individual measures of output and inflation as factors, there
is a clear advantage in using the larger macroeconomic information set. The
results from out-of-sample forecasts of yields underpin this finding. The term
structure model based on common factors clearly outperforms the model based
on individual variables for all maturities at all horizons. More importantly, the
No-Arbitrage FAVAR model shows a striking superiority with respect to a num-
ber of benchmark models in out-of-sample yield forecasts. At forecast horizons
beyond one month ahead, the model outperforms the random walk, a standard
three-factor affine model and the model recently suggested by Diebold and Li
[2006], reducing root mean squared forecast errors relative to the random walk

up to 50% for short and around 20% for long maturities
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The remainder of this chapter is summarized as follows. In Section 3.2, the affine
term structure model based on common dynamic macro factors is motivated and
its exact parametrization discussed. Section 3.3 briefly sketches the method used
to estimate the model. Additional details on the estimation and on the implemen-
tation of a test of relative forecast performance are given in Appendix 6.2. In Sec-
tion 3.4, I first provide some preliminary evidence on the usefulness of dynamic
macro factors to explain yields and then discuss the results of the out-of-sample

forecasts in Section 3.5. Section 3.6 concludes the chapter.

3.2 The Model

Monetary policy decisions are likely based on the information contained in not
only a few key aggregates but many economic variables. Yet, it is infeasible to
empirically model the short-term interest rate set by the central bank as a function
of a large number of individual variables. Economists therefore customarily map
the monetary policy instrument to a few variables, including mostly a measure of
the output gap and a measure of inflation. A convenient way of keeping track of
a plethora of information without including too many variables into a model, is
to think of all macroeconomic variables as being driven by a few common factors
and an idiosyncratic component. In such a setup, the reaction of the monetary
policy maker to shocks affecting different categories of economic variables can be
modeled by relating the short-term interest rate to factors which by construction
capture the common response of a large number of individual variables to the
economy-wide shocks. This framework thus allows to considerably reduce the
dimensionality of the policy problem in a “data-rich” environment (Bernanke and
Boivin 2003).

3.2.1 State Dynamics and Short Rate Equation

More formally, assume there is a large number of macroeconomic time series that
are each driven by the monetary policy instrument 7, a small number of unob-

served common factors F and an idiosyncratic component e, i.e.
Xt = Ath + Aﬂ"t + ey, (31)

where X; is a M x 1 vector of period-t observations of the variables in the panel,

Ag and A, are the M x k and M x 1 matrices of factor loadings, r; is the short-term
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interest rate, F; is the k x 1 vector of period-t observations of the common factors,
and e; is an M x 1 vector of idiosyncratic components.!® Note that equation (3.1)
can also be written in a way that allows X; to depend on current and lagged val-
ues of the fundamental factors. Stock and Watson [2002b] show, however, that
the static formulation is not restrictive since F; can be interpreted as including an
arbitrary number of lags of the fundamental factors. Accordingly they refer to

the model above - without the observable r; - as a dynamic factor model.

Economists typically think of the economy as being affected by monetary pol-
icy through the short term interest rate, r;. On the other hand, the central bank is
assumed to set interest rates in response to the overall state of the economy, char-
acterized e.g. by the deviations of inflation and output from their desired levels.
As has been discussed by Bernanke et al. [2005], theoretical macroeconomic ag-
gregates as inflation and output might not be perfectly observable neither to the
policy-maker nor to the econometrician. More realistically, the macroeconomic
time series observed by the central bank or the econometrician will in general
be noisy measures of broad economic concepts such as output and inflation. Ac-
cordingly, these variables should be treated as unobservable in empirical work so
as to avoid confounding measurement error or idiosyncratic dynamics with fun-
damental economic shocks. Bernanke et al. [2005] therefore suggest to extract a
few common factors from a large number of macroeconomic time series variables
and to study the mutual dynamics of monetary policy and the key economic ag-
gregates by estimating a joint VAR of the factors and the policy instrument, an
approach which they label “Factor-Augmented VAR” (FAVAR).

The term structure model suggested here is built upon the assumption that yields
are driven by movements of short term interest rates as well as the main shocks
hitting the economy. The latter are proxied for by the factors which capture the
bulk of common variation in a large number of macroeconomic time series vari-
ables. The joint dynamics of these factors and the monetary policy instrument are
modelled in a vector autoregression. I thus employ the FAVAR model suggested
by Bernanke et al. [2005] as a central building block for my term structure model.
In addition, restrictions are imposed on the parameters governing the impact of

the state variables on the yields in order to ensure no-arbitrage. Accordingly, I

13 The idiosyncratic components may display some slight cross- and serial correlation, see Stock and

Watson (2002a,b) for a detailed discussion of this issue.
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will term the approach pursued here a “No-Arbitrage Factor-Augmented Vector
Autoregression”. Overall, the dynamics of the economy are described by

( b > = i+ ®(L) ( b1 ) + @y, (3.2)
Tt Tr—1

where i = (fi, fir)isa (k + 1) x 1 vector of constants, d(L)isa (k+1) x (k+1)
matrix of order-p lag polynomials and @; is a (k+ 1) x 1 vector of reduced form
shocks with variance covariance matrix Q). To summarize, equation (3.2) says
that the factors capturing the common variation in many economic time series
variables are driven partly by their own dynamics, partly by monetary policy
through the short term rate, and partly by exogenous shocks.

Let us have a closer look at the policy reaction function implied by this model.
Since the short term interest rate is included in the state vector, the dynamics
of the policy instrument are completely characterized by the last equation in the
VAR above, i.e.

re = iy + ¢r(L)Fr—1 + §r(L)ri-1 + @ (3.3)
Hence, in the FAVAR model the short-term interest rate set by the central bank
is characterized by a response to the lagged observations of the main economic
driving forces, ¢¢(L)F;_1, by some interest rate smoothing element ¢, (L)r; 1, and
by a monetary policy shock orthogonal to the former two components. The pol-
icy reaction function is thus purely backward looking. Yet, since the evolution
of r and the main economic driving forces are jointly characterized by a Factor-
Augmented VAR model, the implied dynamics of the short term interest rate
are potentially much richer than in standard affine term structure models where
the short rate is an affine function of contemporaneous observations of the fac-
tors whose dynamics are described independently of changes in monetary policy.
Hence, the No-Arbitrage FAVAR model studied here explicitly allows for feed-
back from monetary policy to the macroeconomy, a feature missing e.g. from the
model in Ang and Piazzesi [2003] who assume macroeconomic and term struc-
ture factors to be orthogonal. The approach pursued in this chapter is thus closer
in spirit to the work by Hordahl et al. [2006] who describe the joint evolution
of output, inflation, and short-term interest rates within a structural economic
model. As in their paper, I expect the richer dynamic structure of the FAVAR

model to improve forecast performance.
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To facilitate notation in the sequel, I rewrite the VAR in equation (3.2) in com-
panion form as
Zi =u+PZi_q+ wy, (3.4)

where Zy = (F/,r, Fl_1, 711, ..., Ft/—p+1/ 7’t—p+1)/, and where j denotes a vector of
constants and zeros, ® the respective companion form matrix of VAR coefficients,
and () the companion form variance covariance matrix of the reduced form in-
novations w. Accordingly, the short rate r; can be expressed in terms of Z; as

ry = 5’Zt where ' = (01 xkr 1, 01><(k—|—1)(p—1))'

In the present model, the vector of state variables Z only comprises the macro
driving factors, F, and the short term rate, ». Notice that this assumption could in
principle be relaxed by augmenting the state vector with latent yield factors as in
Ang and Piazzesi [2003]. In this case, however, the two-step estimation method
would no longer be feasible, and one would have to resort to standard maximum-
likelihood techniques that are commonly employed in the affine term structure
literature. Moreover, the number of parameters to estimate jointly would be con-
siderably higher and thus estimation speed lower. After all, the results below
show that no latent factors are needed to obtain a satisfactory in-sample fit of the

model.

3.2.2 Pricing Kernel

To model the dynamics of the pricing kernel, I follow the arbitrage-free term struc-
ture literature initiated by Duffie and Kan [1996] which has also been applied,
among others, by Ang and Piazzesi [2003] and Hordahl et al. [2006]. These au-

%, where ¢; de-

thors define the nominal pricing kernel as m;1 = exp(—7¢)
notes the Radon-Nikodym derivative which converts the risk-neutral into the
true data-generating distribution. ¢ is assumed to follow the lognormal process
i1 = Prexp(—1 AfQA; — Ajwyy1) and is thus driven by the innovations w of

the state variables. Accordingly, the nominal pricing kernel m is given by
1
M1 = exp(—rt — E)\;Q)\t — A;wtﬂ),

1
= exp(—d0Zi— 5/\20& — AMwii1)- (3.5)

The vector A; denotes the market prices of risk. Following Duffee [2002], these

are commonly assumed to be affine in the underlying state variables Z, i.e.

At = Ao+ A Ze. (3.6)
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In order to keep the model parsimonious, I restrict the prices of risk to depend
only on current observations of the model factors. Obviously, there is some arbi-
trariness in this restriction. In principle, one can also think of theoretical models
that give rise to market prices of risk which depend on lagged state variables.
However, since the dimensionality of the problem requires to make some identi-
fication restrictions, assuming that market prices of risk depend only on current
observations of the states seems to be a plausible compromise.!# In an arbitrage-
free market, the price of a n-months to maturity zero-coupon bond in period ¢
must equal the expected discounted value of the price of an (n-1)-months to ma-
turity bond in period ¢ + 1:

Pt(n) = Et [mt_;’_l Pt(-lril_l)]

Assuming that yields are affine in the state variables, bond prices Pt(n) are expo-
nential linear functions of the state vector:

Pt(”) = exp (An+ B, Zy),

where the scalar A, and the coefficient vector B, depend on the time to maturity
n. Closely following Ang and Piazzesi [2003], I show in appendix 6.2.1 that no-
arbitrage is guaranteed by computing coefficients A, and B, according to the

following recursive equations:
1
Ay = Ay1+ B,y (n—QAg) + EB;—1QBn—1/ 3.7)
B, = B, 1 (®—QA) -7 (3.8)

Given the price of an n-months to maturity zero-coupon bond, the corresponding
yield is thus obtained as

Jo — o p"
t n

= ay—+ b1/1Zt/ (39)
where a, = —A,/nand b), = —B),/n.

14 Note that since the state vector Z; includes current and lagged observations of the macro factors
and the short rate, this choice implies a set of obvious zero restrictions on the parameters Ay and
A1. In particular, Ag = (Af, 01, (k+1)(p—1)) Where Ao is a vector of dimension (k 4 1) and

A= ( M Okt 1)< ety (p-1) > where Ay isa (k+ 1) x (k + 1) matrix.
Ok 1) (p-1)x(k+1)  Ok1) (p—1) x (k1) (p—1)
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3.3 Estimation of the Term Structure Model

Prior to estimating the term-structure model, the common factors have to be ex-
tracted from the panel of macro data. This is achieved using standard static
principal components following the approach suggested by Stock and Watson
(2002a,b). Precisely, let V denote the eigenvectors corresponding to the g largest
eigenvalues of the T x T cross-sectional variance-covariance matrix XX’ of the
data. Then, subject to the normalization F'F/T = I, estimates F of the factors

and A the factor loadings are given by

E = \/TV and
A = VTXV,

i.e. the common factors are estimated as the g largest eigenvalues of the variance-
covariance matrix XX’. Given the factor estimates, estimation of the term struc-
ture model is performed using a consistent two-step approach following Ang
et al. [2006]. First, estimates of the parameters (i, , L) governing the dynamics
of the model factors are obtained by running a VAR(p) on the estimated factors
and the short term interest rate. Second, given the estimates from the first step,
the parameters Ao and A; which drive the evolution of the state prices of risk, are
estimated by minimizing the sum of squared fitting errors of the model. That
is, for a given set of parameters the model-implied yields gﬁ”) = G4y + b}, Z; are

computed and then the sum

S ()
S=Y. Y @" -w") (3.10)

is minimized with respect to Ag and A; given the estimates of the VAR parame-
ters 1, ®, and (). Although being possibly less efficient than a joint estimation of
all model parameters in a one-step maximum likelihood procedure, the two-step

approach has the clear advantage that it is fast and thus much better suited for

15 To account for the fact that r is an observed factor which is assumed unconditionally orthogonal to
the unobserved factors F in the model (3.1), its effect on the variables in X has to be concentrated
out prior to estimating F. Here, this is achieved by simply regressing all variables in X onto r
and extracting principal components from the variance-covariance matrix of residuals of these
regressions. Note that Bernanke et al. [2005] use a slightly a slightly more elaborate approach in
order to identify monetary policy shocks within their FAVAR model.
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the recursive out-of-sample forecast exercise carried out in this chapter.'®

Due to the recursive formulation of the bond pricing parameters, the sum of
squared fitting errors is highly nonlinear in the underlying model parameters.
It is thus helpful to find good starting values to achieve fast convergence. This is
done in the following way. I first estimate the parameters Ay under the assump-
tion that risk premia are constant but nonzero, i.e. I set to zero all elements of
the matrix A; which governs the time-varying component of the market prices
of risk. Then, I take these estimates as starting values in an estimation step that
allows for variation in the market prices of risk, i.e. I let all elements of Ay and
A1 be estimated freely. Finally, to enhance tractability of the model, I follow the
common practice in the affine term structure literature and re-estimate the model
after setting to zero those elements of A; which are insignificant. Standard errors
of the prices of risk parameters, reported in section 3.4 are computed via the nu-
merical gradient of the sum of squared fitting errors function S. The standard

errors of the state equation parameters are unadjusted OLS standard errors.!”

3.4 Empirical Results

3.4.1 Data

I estimate the model using the following data. The macroeconomic factors are
extracted from a dataset which contains about 160 monthly time series of vari-
ous economic categories for the US. Among others, it includes a large number
of time series related to industrial production, more than 30 employment-related

variables, around 30 price indices and various monetary aggregates. It further

16 Nonetheless, it would be interesting to estimate the latent macro factors and the parameters
characterizing their impact on yields jointly within a one-step estimation procedure. The cross-
equation restrictions of the yield curve model would then put additional structure on the estima-
tion of the factors, thereby potentially sharpening up our understanding of the macroeconomic
driving forces behind the yield curve. In a recent paper, Law [2004] uses a similar idea to study
the extent to which variation in bond yields can be explained by macroeconomic fundamentals.

17 Notice that Ang et al. [2006] compute standard errors using GMM to adjust for the two-stage

estimation process. However, since the No-Arbitrage FAVAR model involves estimation of a VAR
of lag order higher than 1, a large number of moment conditions would be needed to identify the
state equation parameters via GMM and thus computation would be burdensome. Hence, since
the focus here is on forecast performance rather than in-sample fit, I do not follow the approach
of Ang et al. [2006].
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contains different kinds of survey data, stock indices, exchange rates etc. This
dataset has been compiled by Giannone et al. [2004] to forecast US output, in-
flation, and short term interest rates.!® Stock and Watson’s (2002a,b) principal
components estimation of the common factors in large panels of time series re-
quires stationarity. I therefore follow Giannone et al. [2004] in applying different
preadjustments to the time series in the dataset.’” Finally, I standardize all series

to have mean zero and unit variance.

I use data on zero-coupon bond yields of maturities 1, 3, 6, and 9 months, as well
as1,2,3,4,5 7, and 10 years. All interest rates are continuously-compounded
smoothed Fama-Bliss yields and have been constructed from US treasury bonds
using the method outlined in Bliss [1997].2° T estimate and forecast the model
over the post-Volcker disinflation period, i.e. from 1983:01 to the last available
observation of the macro dataset, 2003:09.

3.4.2 Model Specification

In the first step of the estimation procedure, I extract common factors from the
large panel of macroeconomic time series using static principal components fol-
lowing Stock and Watson (2002a,b). Together, the first 10 factors explain about
70% of the total variance of all variables in the dataset. The largest contribution
is accounted for by the first four factors, however, which together explain more
than 50% of the total variation in the panel. Interestingly, a look at the correlation
patterns of all 10 factors with yields of all maturities and their lags, reveals that it

is the first four factors that are most highly correlated with yields.

The number of factors I can include in my term-structure model is limited due to

parameterization constraints imposed by the market prices of risk specification. If

18] am grateful to Lucrezia Reichlin who generously provided me with this dataset. Note that I
exclude all interest rate related series from the original panel and instead include the zero-coupon
yields used in the term structure model. For a detailed description of the data, the reader is

referred to the paper by Giannone et al. [2004].
19 Though with a slight difference as regards the treatment of price series: instead of computing first

differences of quarterly growth rates, I follow Ang and Piazzesi [2003] and compute annual infla-
tion rates. The resulting increase in persistence of the estimated factors appears to help explain

the persistence of yields.
20T am grateful also to Robert Bliss who provided me with the programs and raw data to construct

the Fama-Bliss yields.
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no additional restrictions are imposed on the market prices of risk, the number of
parameters to estimate in the second step of the estimation procedure increases
quadratically with the number of factors. For the sake of parsimony I thus re-
strict the number of factors to the first four principal components extracted from
the large panel of monthly time series and the short rate. Unreported results with
smaller and larger number of factors have shown that this specification seems to
provide the best tradeoff between estimability and model fit. A similar choice
has to be made regarding the number of lags to include in the factor-augmented
VAR which represents the state equation of my term structure model. Standard
information criteria indicate an optimal number of four lags for the joint VAR of
factors and the short rate. Therefore, I employ this particular specification of the

state equation.

3.4.3 Factor Estimates

As stated before, I extract factors from the large panel of macro time series using
the method of Stock and Watson (2002a,b). According to their approach, factors
are estimated as /T times the eigenvectors corresponding to the g largest eigen-
values of XX’ in descending order. This identifies the common factors against
any rotations. Implicitly, one can think of the factors as cross-sectional averages
of many time series with weights chosen such that the sum of squared idiosyn-
cratic components in equation (3.1) is minimized. In order to get some under-
standing of what type of economic information the estimated factors capture, it
is instructive to regress them onto the individual variables in the panel. Table
3.7 lists for each of the four factors those five series with which it exhibits the
strongest correlation. It turns out from these results that the first factor is closely
linked to business cycle variables such as measures of employment and indus-
trial production. In contrast, the second factor is most strongly correlated with
different measures of consumer price inflation. Hence, there is a clear dichotomy
between a real and a nominal factor as the two main driving forces behind a large
number of various economic time series.?! The third factor loads most strongly
on leading indicators of the business cycle such as M1, inventories and loans
and securities series. Finally, the fourth factor is most strongly correlated with

measures of money supply and producer prices. A plot of the factor time-series

21 Using the same dataset, Giannone et al. [2004] find that the dynamic dimension of the US economy
is two, i.e. they identify a real and a nominal shock which explain the bulk of variation in all time

series contained in the panel.
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together with some important real and nominal variables is provided in Figure
3.5 in Appendix A.3.

3.4.4 Preliminary Evidence

Before estimating the term structure model subject to no-arbitrage restrictions, I
run a set of preliminary regressions to check whether the extracted macro factors
are potentially useful explanatory variables in a term structure model. First, [ use
a simple encompassing test to assess whether a factor-based policy reaction func-
tion provides a better explanation of monetary policy decisions than a standard
Taylor-rule based on individual measures of output and inflation. I then perform

unrestricted regressions of yields on the model factors.

Test of “Excess Policy Response”

The use of dynamic factors instead of individual macroeconomic variables to fore-
cast yields has been justified with the argument that central banks react to larger
information sets than individual measures of output and inflation. Whether this
conjecture holds true empirically can be tested by comparing the fit of a standard
Taylor-rule policy reaction function with that of a policy reaction function based
on dynamic factors. Bernanke and Boivin [2003] present evidence for an “excess
policy reaction” of the Fed by showing that the fitted value of the federal funds
rate from a factor-based policy reaction function is a significant additional regres-
sor in an otherwise standard Taylor-rule equation. Alternatively, one can sepa-
rately estimate the two competing policy reaction functions and then perform
an encompassing test a la Davidson and MacKinnon [1993]. This is the strategy
adopted by Belviso and Milani [2005]. I follow these authors and compare a stan-
dard Taylor rule with partial adjustment,??

re = pri-1+ (1= 0)(Pn7te + Pyyt),

22 Inflation 7t is defined as the annual growth rate of the GDP implicit price deflator (GDPDEF).
The output gap is measured as the percentage deviation of log GDP (GDPC96) from its trend
(computed using the Hodrick-Prescott filter and a smoothing parameter of 14400). Both quarterly
series have been obtained from the St. Louis Fed website and interpolated to the monthly fre-
quency using the method described in Monch and Uhlig (2005, Chapter 5). For the interpolation
of GDP, I have used industrial production (INDPRO), total civilian employment (CE160V) and
real disposable income (DSPIC96) as related monthly series. CPI and PPI finished goods have
been employed as related monthly series for interpolating the GDP deflator.
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with a policy reaction function based on the four factors which I use as state vari-

ables in my term structure model,

re = pri—1+ (1 —p)¢rF.

The results from both regressions are summarized in Tables 3.8 and 3.9 in Ap-
pendix A.3. Asindicated by the regression R%s of 0.967 and 0.970, the factor-based
policy rule seems to fit the data slightly better than the standard Taylor rule. The
Davidson-MacKinnon (1993) encompassing test can now be used in order to asses
whether this improvement in model fit is statistically significant. I thus regress
the federal funds rate onto the fitted values from both alternative specifications.

This yields the following result:

~Taylor ~
re = af, 4 (1—a) # 4o

= 0.119 7™ 4 0.881 pfectors
= (0.173) (0.173)

Hence, the coefficient on the standard Taylor rule is insignificant whereas the
coefficient on the factor-based fitted federal funds rate is highly significant.?> I
interpret this result as evidence supporting the hypothesis that the Fed reacts to

a broad macroeconomic information set.

Unrestricted Estimation

To obtain a first impression whether the factors extracted from the panel of macro
variables also capture predictive information about yields of higher maturities,
Table 3.10 summarizes the mutual correlations between the yields and various
lags of the four factors used for estimating the model. As one can see in this table,
the short-term interest rate (y(1)) shows strongest contemporaneous correlation
with yields of any other maturity. Yet, all four macro factors extracted from the
panel of monthly US time series, are also strongly correlated with yields of differ-
ent maturities. The first factor, which closely tracks the business cycle (see also
Table 3.7), is positively correlated with yields. The second factor, which clearly
captures inflation movements, is also strongly positively correlated with yields of

all maturities. The third factor which is most closely related to leading indicators,

23 Unreported results have shown that this is robust to alternative specifications of both reaction
functions using a larger number of lags of the policy instrument and the macro variables or fac-

tors.
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Table 3.1: Unrestricted VAR of Yields on Factors

This table summarizes the results of an unrestricted VAR of yields of different maturities on the
four macro factors extracted from the panel of economic time series, and the short term interest
rate. The estimation period is 1983:01 to 2003:09. t-values are in brackets.

ORI JE 06 @8 60 6 )

cst  1.084 1697 2458 3735 4683 5348 5825 6452 6985
[12.081] [14.331] [16.281] [19.931] [22.204] [23.459] [24.178] [24.818] [24.955]

F1 0253 0429 0614 0792 0885 0947 0992  1.055  1.113
[13.252] [17.038] [19.097] [19.853] [19.728] [19.520] [19.353] [19.073] [18.680]

F2 0314 0470  0.626 0824 0957 1052  1.124 1225 1319
[10.966] [12.444] [12.974] [13.762] [14.210] [14.455] [14.610] [14.758] [14.759]

F3 0026 0045  0.108 0285 0435 0540 0615 0710  0.787
[1.806] [2.399] [4.470] [9.505] [12.878] [14.811] [15.945] [17.056] [17.577]

F4 0091 0149 0217 0309 0369 0409 0438 0476 0510
[5.189] [6.418] [7.312] [8.389] [8.905] [9.137] [9.251] [9.324]  [9.278]

yO 0861 0795 0718 0574 0459 0376 0315 0235  0.166
[58.071] [40.613] [28.766] [18.529] [13.164] [9.965] [7.909] [5.460] [3.592]

R? 0.99 0.98 0.98 0.96 0.95 0.94 0.93 0.92 0.91

(12)

is uncorrelated with yields of shorter maturities, but positively correlated with
longer maturity yields. Finally, the fourth factor is also positively correlated with
yields of all maturities. Correlating lagged factors with yields, one can see that
the strong impact of the short rate on yields of all maturities decreases for the
benefit of the macro factors. In particular, the correlation between yields and the
lagged observations of the business cycle related first and third factor increases
with the lag length. This gives a first indication that the macro factors should be
good predictors of yields.

To explore further the question whether the models’ factors have explanatory
power for yields, Table 3.1 provides estimates of an unrestricted VAR of yields of
different maturities onto a constant, the four macro factors and the federal funds

rate, i.e. it estimates the pricing equation for yields,
Y; = A+ BZ; + uy,

where no cross-equation restrictions are imposed on the coefficients A and B. The
first observation to make is that the R? of these regressions are all very high. To-

gether with the short rate, the four factors explain more than 95% of the variation
in short yields, and still about 90% of the variation in longer yields. Not surpris-
ingly, the federal funds rate is the most highly significant explanatory variable for

short maturity yields. However, in the presence of the macro factors its impact
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Table 3.2: In-sample Fit: Observed and Model-Implied Yields and Returns

This table summarizes empirical means and standard deviations of observed and fitted yields
and model-implied 1-year holding period returns. Yields are reported in percentage terms and
holding period returns are stated in basis points. The first and second row in each panel report
the respective moment of observed yields and fitted values implied by the No-Arbitrage FAVAR
model. The third and fourth row in each panel report the respective moment of observed and

model-implied 1-year holding period returns.

yO 4O 0 0 06 @) 60 65 020

FCIYE)

Mean
y(”) 5.22 5.44 5.62 5.77 5.90 6.31 6.58 6.76 6.89 7.04 717
(n)

7 522 545 561 575 590 633 657 676 690  7.04 7.17
rax(m) - - - - - 691 775 835 885 17.00 11.08
() - - - - - 692 767 837 895 1684 10.78

Standard Deviation
y(") 2.12 2.18 2.26 2.30 2.33 2.31 2.28 2.25 2.24 2.23 2.24
(1)

i 212 212 218 224 228 231 226 221 218 216 217
rx(m) - - - - - 279 393 508 623 873 1245
() - - - - - 267 344 411 476 6.80 8.62

decreases strongly towards the long end of the maturity spectrum. This shows
that the factors extracted from the large panel of macro variables exhibit strong
explanatory power for longer yields and thus represent potentially useful states

in a term structure model.

3.4.5 Estimating the Term Structure Model

In-Sample Fit

In this section, I report results obtained from estimating the FAVAR model sub-
ject to the cross-equation restrictions (3.7) and (3.8) implied by the no-arbitrage
assumption as outlined in Section 3.2. The model fits the data surprisingly well,
given that it does not make use of latent yield curve factors. Table 3.2 reports the
tirst and second moments of observed and model-implied yields and one-year
holding period returns, respectively. These numbers indicate that on average
the No-Arbitrage FAVAR model fits the yield curve almost exactly. Figure 3.1
provides a visualization of this result by showing average observed and model-
implied yields across the entire maturity spectrum. Notice that the model seems
to be missing some of the variation in longer maturities since the standard devia-

tions of fitted interest rates are slightly lower than the standard deviations of the
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Figure 3.1: Observed and Model Implied Average Yield Curve

This figure plots average observed yields against those implied by the No-Arbitrage FAVAR
model.

7.2
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observed yields, especially at the long end of the curve. This can also be seen
in Figure 3.2 which plots the time series for a selection of observed and model-

implied yields.

While the fit is very good at the short end of the yield curve, the model does not
perfectly capture all the variation at the long end of the maturity spectrum. Look-
ing at the lower panel of Table 3.2, one can see that observed and model-implied
holding period returns are almost identical on average whereas the fitted returns
exhibit standard deviations slightly smaller than the observed returns. Yet, the
difference amounts to only a few basis points and is thus fairly small.

Overall, the No-Arbitrage FAVAR model is able to capture the cross-sectional vari-
ation of government bond yields quite well, with a slightly better in-sample fit at
the short end of the curve. As we will see further below, this has an impact also
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Figure 3.2: Observed and Model-Implied Yields

This table provides plots of the observed and model-implied time series for four selected interest
rates, the 6-months yield, the 12-months yield and the 3-and 10-years yields.
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12 T T T T 12 T T
+=0= " Observed ﬁ +=0= " Observed
& Model Y Model
Q. O
(@

10950 1 5;85 1 9‘90 1 9‘95 2(;00 2005 10980 1 9‘85 1 9‘90 1 9‘95 20‘00 2005
3-years yield 10-years yield
Realized and fitted annualized 36 months yields 1983 2003 Realized and fitted annualized 120 months yields 1983 2003
14 T T T T 16 T T T T

+ =0~ Observed + =0~ Observed
e Model Model

4 14}

0 L L 2 L L L L
1980 1985 1990 1995 2000 2005 1980 1985 1990 1995 2000 2005

on the forecast results obtained from the model. Indeed, the improvement over
latent-factor based term structure models is more pronounced at the short than
at the long end of the yield curve. Yet, as has been discussed above, estimating a
TSM without latent yield factors considerably facilitates estimation of the model

and thus makes recursive out-of-sample forecasts feasible.
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Parameter Estimates

Table 3.11 in Appendix A.3 reports the parameter estimates and associated stan-
dard errors of the No-Arbitrage FAVAR model. The upper panel shows param-
eter estimates of the Factor-Augmented VAR that represents the state equation
of the model, the second panel provides the estimates of the state prices of risk
which constitute the remaining components of the recursive bond pricing param-
eters A and B.

As the diagonal elements of the first lag’s coefficient matrix indicate, all five
model factors are relatively persistent, a feature that seems to be needed to ex-
plain time-variation in yields which are themselves highly persistent time series
processes. Since the model factors are by construction unconditionally uncorre-
lated only few of the off-diagonal elements of the autoregression coefficients in ®

are significant.

As the second panel of Table 3.11 shows, all elements of the vector Ay governing
the unconditional mean of the market prices of risk are large and highly signifi-
cant. This suggests that risk premia are characterized by a large constant compo-
nent. As indicated by the size and significance of the estimates A;, there is also
some significant amount of time variation in risk premia over the sample period
considered. It is difficult to interpret individual elements in the estimated prices
of risk matrix, however. Indeed, unreported results from alternative model speci-
fications varying e.g. the number of factors, the number of lags in the state equa-
tion or the sample period, have shown that the price of risk estimates are quite
sensitive to changes in model specification. Hence, economic reasoning based on
the significance of individual parameters governing the state prices of risk is un-
warranted. Instead, in order to visualize the relation between risk premia and the
model factors, Figure 3.3 provides a plot of model-implied term premia for the
1-year and 5-year yield. As indicated by these plots, term premia at the short end
of the yield curve are more closely related to the business cycle as proxied by the
tirst macro factor whereas premia for longer yields seem to track inflation which

is represented by the second factor.

Figure 3.4 shows a plot of the loadings b, of the yields onto the contemporane-

ous observations of the model factors. The signs of these loadings are consistent
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Figure 3.3: Risk Premia Dynamics

This figure provides a plot of the term premia for 2-year and 5-year yields as implied by the No-
Arbitrage FAVAR model. For comparison, they are related to the first and second model factor,

respectively.
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with those obtained from regressing yields onto the model factors without im-
posing no-arbitrage restrictions, summarized in Table 3.1. By construction of my
arbitrage-free model, the loading of the 1-month yield onto the short rate fac-
tor equals unity and those for the macro factors are zero. However, the impact
of the short rate on longer yields strongly decreases with maturity and is close
to zero at the very long end of the maturity spectrum. Hence, movements in
the short-term interest rate only have a marginal direct effect on long-term in-
terest rates. These are almost entirely driven by macroeconomic factors. Most
importantly, the inflation-related second factor has a strongly increasing impact
on yields going up the maturity spectrum. In contrast, the business cycle related
tirst factor has an equally strong impact on yields of medium and longer matu-
rities. The third factor which is leading the business cycle with a reversed sign
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Figure 3.4: Implied Yield Loadings

This figure provides a plot of the yield loadings b, implied by the No-Arbitrage FAVAR model.
The coefficients can be interpreted as the response of the n-month yield to a contemporary shock
to the respective factor.
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has an increasingly positive impact on yields of longer maturities and a negative
but small impact on very short maturities. This result is consistent with the well-

documented procyclicality of the slope of the yield curve.

3.5 Out-of-Sample Forecasts

In this section, I compare the out-of-sample forecast performance of the No-Arbitrage
FAVAR with that of the no-arbitrage VAR model, a VAR(1) on yield levels, the
Diebold-Li (2006) version of the Nelson-Siegel (1987) three-factor model, an es-
sentially affine latent factor only model (A (3)), and a simple random walk. The
latter three models are expected to be the most challenging competitors. Diebold
and Li [2006] have shown their model to outperform a variety of yield forecast-

ing models including different specifications of forward regressions, AR and VAR
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models for yields and the random walk. Moreover, Duffee [2002] has shown that
the essentially affine latent factor only model has strong out-of-sample forecast
performance. Finally, the random walk is often reported to be difficult to beat in

out-of-sample forecasts of interest rates.

3.5.1 The Competitor Models

Precisely, the forecasts for the different competitor models are computed as fol-
lows.

1. No-Arbitrage FAVAR model:

~(n) 5 7 5FAVAR
Veinpe = n + bnZy Ly
where ZFAVAR contains the four factors explaining the bulk of variation in

the panel of monthly time series for the US, and the 1-month yield. The coef-
ficients 4, and b, are obtained recursively according to equations (3.7) and
(3.8), using as input the estimates i, ®, and ¥ obtained by running a VAR(1)

on the states, as well as the estimates Ay and A; obtained by minimizing the

FAVAR
t+ht

from a VAR(1) fitted to the companion form state vector, i.e.

sum of squared fitting errors of the model. Forecasts Z are obtained

h—1

5 FAVAR __ & FAVAR &8s

Zivwe =94 +)_ '
i=0

2. No-Arbitrage VAR:

5 _ s f HVAR
yt+h|t = dn + b"Zt+h|t
where ZVAR contains the quarterly growth rate of IP, the help-wanted in-

dex, the annual growth rates of CPI and PPI, and the 1-month yield. The
coefficients 4, and b, are obtained recursively according to equations (3.7)
and (3.8) and guarantee the absence of arbitrage opportunities. The spec-

ification and estimation of the model is the same as for the No-Arbitrage
FAVAR model.

3. VAR() on Yield Levels:
Gipnp =C+ Ty,
where y; = {yM),y®), ..., y(120} and ¢ and I are obtained by regressing the
vector y; onto a constant and its #-months lag.
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4. Diebold-Li (2006):

. . A 1—e™™ A 1—e ™ _
yfi)h“ = Brinjt T Boisnt <—) + B3 tht (— —e T”)

™ ™

where

;BH-h\t =+ 1B
Diebold and Li [2006] obtain estimates of the factors B by fixing T to 0.0609
and then simply regressing yields onto the factor loadings 1, (1’e_m ), and

™m

(1= _ ¢=™).24 Note that Diebold and Li find better forecasting perfor-

™m

mance of their model when the factor dynamics are estimated by fitting
simple AR(1) processes instead of a VAR(1). With the data and sample pe-
riod used here, however, I find that their model performs better when the

latent factor dynamics are estimated using a VAR as specified above.

5. Essentially Affine Latent Factor Only Model (A (3)):

A(n) s 5A03)
Yighe =+ b”ZtJroh\t

where Z403) is composed of three latent yield factors, backed out from the
yields using the method by Chen and Scott [1993]. In particular, it is as-
sumed that the 1-month, 1-year and 10-year yield are observed without er-
ror. Otherwise the model setup is the same as for the No-Arbitrage FAVAR
model, but only one lag of the state vector enters the state equation. More-
over, the transition matrix @ in the state equation is assumed to be lower-
triangular and the variance-covariance matrix () to be an identity matrix so
as to ensure exact identification of the model (see Dai and Singleton [2000]
for a discussion of the identification issue in affine TSM). Following Duf-
fee [2002], prices of risk are affine in the state variables Z403) and not as-
sumed to be driven by the factor volatility. Duffee [2002] provides evidence
that this “essentially affine” model yields the best out-of-sample forecast
results among a set of different affine term structure model specifications.
Moreover, Dai and Singleton [2002] show that risk premia are best captured
by the essentially affine model. Notice that since estimating the model in-
volves backing out the latent factors from the yields, estimation is tedious

and takes considerably longer than estimation of the No-Arbitrage FAVAR

24 The particular value of T chosen by Diebold and Li maximizes the curvature loading for a ma-
turity of 30 months. For more details on this choice, the reader is referred to Diebold and Li’s

paper.
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and VAR models where the parameters of the state equation are estimated
in a first stage of the estimation via OLS.

6. Random Walk:

sn) _(n)
Yerne = Yt

Assuming a random walk model for interest rates implies a simple “no-
change” forecast of individual yields. Hence, in this model the s-months
ahead prediction of an n-maturity bond yield in period ¢ is simply given by

its time f observation.

3.5.2 Forecast Results

The forecasts are carried out over the time period 2000:01-2003:09. The affine
models are first estimated over the period 1983:01 - 1999:12 to obtain starting
values for the parameters. All models are then estimated recursively using data
from 1983:01 to the time that the forecast is made, beginning in 2000:01. Table 3.3
summarizes the root mean squared errors obtained from these forecasts. Three
main observations can be made. First, the No-Arbitrage FAVAR model clearly
outperforms the no-arbitrage VAR model for all maturities at all forecast hori-
zons. This implies strong support for the use of a broad macroeconomic infor-
mation set when forecasting the yield curve based on macroeconomic variables
only. Second, at the one month horizon, the essentially affine latent factor only
model and the random walk outperform the macro-based FAVAR and VAR mod-
els for yields of all maturities, with the random walk being slightly superior for
medium and longer maturities and the Ay (3) model performing best for short ma-
turities. Third and most importantly, however, the No-Arbitrage FAVAR model
exhibits a strikingly strong superiority with respect to all considered benchmark
models in yield forecasts six months and twelve months ahead. As the first col-
umn of panels B and C of Table 3.3 document, the FAVAR model outperforms the
benchmark models across the entire maturity spectrum. This indicates that the
combination of a large information set, the rich dynamics of a fourth-order VAR,
and the parameter restrictions implied by no-arbitrage delivers a model which is

particularly powerful in out-of-sample predictions.

Table 3.4 reports RMSEs of all considered models relative to the random walk

forecast. These results show that the improvement in terms of root mean squared
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Table 3.3: Out-of-sample Yield Forecasts : RMSEs

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts.
The models have been estimated using data from 1983:01 until 1999:12. The forecasting period is
2000:01-2003:09. “FAVAR” refers to the essentially affine term structure model using as states four
factors extracted from a large macro panel and the short rate; “VAR” refers to an essentially affine
model with IP growth, the index of help-wanted adds in newspapers, CPI growth, PPI growth
and the short rate in the state vector. “VAR yields” refers to a VAR(1) on yield levels, “Diebold-
Li” denotes the Diebold-Li (2006) version of the three-factor Nelson-Siegel model, “A((3)” the
essentially affine three latent factor only model, and “RW"” refers to a simple random walk forecast.

FAVAR VAR VAR yields  Diebold-Li  Ag(3) RW

Panel A: 1-month ahead forecasts
y(M) 0.759 0.784 0.340 0.363 0.336 0.412
y©®) 0.650 0.607 0.223 0.298 0.218 0.267
y(©) 0.654 0.667 0.231 0.353 0.207 0.255
y©) 0.619 0.659 0.263 0.410 0.237 0.268
y(12) 0.624 0.669 0.289 0.436 0.270 0.282
y(2 0.612 0.844 0.332 0.394 0.351 0.313
y(30) 0.587 0.963 0.351 0.367 0.434 0.331
y(48) 0.596 0.957 0.367 0.371 0.460 0.347
y(60) 0.609 0.952 0.383 0.385 0.451 0.361
y(84) 0.564 0.907 0.410 0.419 0.422 0.384
y120 0532 0.895 0.441 0.464 0.407 0.407

Panel B: 6-month ahead forecasts
y) 0.561 0.699 1.065 1213 0.789 1.202
y©) 0.493 0.698 1.123 1.240 0.851 1.147
y(©) 0.565 0.777 1.219 1.316 0.916 1.127
y©) 0.645 0.884 1.288 1.369 0.973 1.112
y(12) 0.692 0.989 1.322 1.383 1.001 1.095
y(2) 0.711 1.116 1.262 1.262 0.930 1.012
y(30) 0.721 1.195 1.164 1.144 0.856 0.955
y(48) 0.736 1.236 1.105 1.091 0.841 0.929
y(60) 0.735 1.251 1.075 1.073 0.848 0.921
y(84) 0.740 1.252 1.051 1.073 0.848 0.924
y120 0716 1.203 1.045 1.088 0.950 0.937

Panel C: 12-month ahead forecasts
y) 0.995 1.343 2.116 2.095 1.626 2.093
y©®) 1.056 1.508 2.301 2.141 1.730 2122
y(©) 1.185 1.587 2.476 2.267 1.816 2.140
y©) 1.321 1.735 2.561 2.346 1.867 2.120
y(12) 1.345 1.850 2.572 2.366 1.873 2.069
y(24) 1.226 1.860 2.321 2.178 1.641 1.787
y(30) 1.181 1.802 2.054 1.976 1.419 1.584
y(48) 1.139 1.804 1.887 1.859 1.324 1.478
y(©0) 1.086 1.810 1.788 1.796 1.302 1.425
y(89) 1.120 1.808 1.688 1.742 1.280 1.386
y120 1,098 1.780 1.627 1.715 1.417 1.376
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forecast errors implied by the FAVAR model is particularly pronounced for short
and medium term maturities. At the one-month forecast horizon, all yield-based
models outperform the affine models based on macro variables. However, at
forecast horizons beyond one month, the No-Arbitrage FAVAR model strongly
outperforms all other models across the entire spectrum of maturities. Relative
to the random walk, the No-Arbitrage FAVAR model reduces root mean squared
forecast errors up to 50% at the short end of the yield curve and still improves
forecast performance of long yields about 20%. Compared to the best performing
competitor model, the essentially affine latent factor model Ay (3), the improve-
ment is still of a remarkable order of 15%.% One can formally assess whether the
improvement of the FAVAR model over the benchmark models in terms of fore-
cast error is significant by applying White’s (2000) “reality check” test. This test
can be used to evaluate superior predictive ability of a model with respect to one
or more benchmark models. Here, I test whether the No-Arbitrage FAVAR model
has superior predictive accuracy with respect to the five considered benchmark
models. The test statistics are reported in Table 3.5. Negative figures indicate that
the average squared forecast loss of the No-Arbitrage FAVAR model is smaller
than that of the respective competitor model while positive test statistics indicate
the opposite. White [2000] shows how to derive the empirical distribution of the
test statistic by means of a block bootstrap of the forecast error series. I perform
1,000 block-bootstrap resamples from the prediction error series to compute the

significance of the forecast improvement.

We have seen above that the FAVAR model outperforms the VAR model at the
one-month forecast horizon. As the first column of panel A in Table 3.5 shows, the
improvement over the VAR model is significant at almost all maturities. Yet, the
FAVAR model is outperformed by all yield-based predictions at the one-month
horizon. In sharp contrast, the No-Arbitrage FAVAR model beats all benchmark
models at all maturities in forecasts 6-months ahead. As the results in panel B of
Table 3.5 show, the improvement in terms of root mean squared forecast errors is

significant at the 5% level for all maturities with respect to all benchmark mod-

2 Note that unreported results from a version of the No-Arbitrage FAVAR model including only one
lag in the transition equation have shown a slightly worse performance. In particular, this model
specification has been outperformed by the random walk and the latent factor affine model at the
very long end of the yield curve. Hence, allowing for a relatively rich specification of the joint

dynamics of macro factors and the short rate appears to considerably enhance forecast accuracy.
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Table 3.4: RMSEs Relative to Random Walk

This table summarizes the root mean squared errors of out-of-sample yield forecasts relative to
the simple random walk forecasts. The models have been estimated using data from 1983:01 until
1999:12. The forecasting period is 2000:01-2003:09. “FAVAR” refers to the essentially affine term
structure model using as states four factors extracted from a large macro panel and the short rate;
“VAR” refers to an essentially affine model with IP growth, the index of help-wanted adds in
newspapers, CPI growth, PPI growth and the short rate in the state vector. “VAR yields” refers
to a VAR(1) on yield levels, “Diebold-Li” denotes the Diebold-Li (2006) version of the three-factor
Nelson-Siegel model and “A((3)” the essentially affine three latent factor only model.

FAVAR VAR VAR vyields Diebold-Li Ao(3)

Panel A: 1-month ahead forecasts
yM) 1.842 1.904 0.827 0.881 0.816
y©®) 2.437 2.277 0.837 1.117 0.818
y(©) 2.559 2.611 0.904 1.381 0.811
y®) 2.307 2.456 0.978 1.526 0.883
y12) 2.210 2.369 1.024 1.544 0.957
y( 1.959 2.698 1.063 1.260 1.123
y(30) 1.773 2.910 1.061 1.108 1.310
y(48) 1.717 2.758 1.057 1.069 1.326
y(©0) 1.685 2.637 1.059 1.064 1.247
y(84) 1.467 2.361 1.067 1.090 1.097
y(120) 1.309 2.202 1.084 1.142 1.000

Panel B: 6-month ahead forecasts
y) 0.467 0.582 0.886 1.009 0.656
y®) 0.430 0.608 0.979 1.082 0.742
y(©) 0.501 0.689 1.081 1.168 0.812
y©) 0.579 0.795 1.158 1.230 0.874
y12) 0.632 0.904 1.208 1.264 0.914
y(24) 0.702 1.103 1.248 1.247 0.919
y(30) 0.755 1.252 1.219 1.199 0.897
y(48) 0.792 1.330 1.189 1.174 0.905
y(60) 0.798 1.359 1.167 1.165 0.920
y(84) 0.801 1.354 1.137 1.161 0.918
y(120) 0.764 1.284 1.115 1.161 1.014

Panel C: 12-month ahead forecasts
yM) 0.476 0.642 1.011 1.001 0.777
y©®) 0.498 0.711 1.085 1.009 0.816
y(©) 0.554 0.742 1.157 1.059 0.848
y©) 0.623 0.818 1.208 1.107 0.881
y(12) 0.650 0.894 1.243 1.143 0.905
y(24) 0.686 1.041 1.299 1.219 0.918
y(30) 0.746 1.138 1.297 1.247 0.896
y(48) 0.771 1.221 1.277 1.258 0.896
y(60) 0.762 1.270 1.255 1.261 0.914
y(84) 0.808 1.305 1.218 1.257 0.923
y(120) 0.799 1.294 1.183 1.247 1.030
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Table 3.5: White’s Reality Check Test

This table summarizes “White’s Reality Check” test statistics based on a squared forecast error
loss function. I choose the no-arbitrage FAVAR model as the benchmark model and compare it
bilaterally with the competitor models. Negative test statistics indicate that the average squared
forecast loss of the FAVAR model is smaller than that of the respective competitor model. Bold
figures indicate significance at the 5% interval. Significance is checked by comparing the average
forecast loss differential with the 5% percentile of the empirical distribution of the loss differen-
tial series approximated by applying a block bootstrap with 1,000 resamples and a smoothing
parameter of 1/12. Bold figures highlight significance at the 5% level.

VAR VARylds DL Ao(3) RW

Panel A: 1-month ahead forecasts
y() -0.218 3.064 2.967 3.088 2.708
y©®) 0.401 2.537 2.276 2.554 2.392
y(©) -0.091 2.543 2.063 2.611 2.462
y©) -0.292 2.177 1.515 2.259 2.154
y(12) -0.355 2.108 1.397 2.175 2.130
y -2.244 1.812 1.515 1.728 1.892
y(30) -3.862 1.553 1.478 1.134 1.640
y(48) -3.710 1.554 1.534 1.057 1.645
y(©0) -3.563 1.566 1.554 1.204 1.667
y(84) -3.340 1.091 1.038 1.028 1.224
y(120) -3.417 0.671 0.520 0.856 0.859

Panel B: 6-month ahead forecasts
y) -1.064 -4.996 -7.109 -1.881 -6.938
y©) -1.491 -6.198 -7.971 -2.944 -6.570
y(©) -1.747 -7.102 -8.705 -3.184 -5.825
y©) -2.245 -7.578 -8.969 -3.253 -5.022
y(12) -3.070 -7.725 -8.818 -3.209 -4.395
y(2) -4.574 -6.621 -6.639 -2.194 -3.156
y(30) -5.606 -5.066 -4.798 -1.285 -2.369
y(48) -6.079 -4.121 -3.930 -0.984 -1.939
y(60) -6.324 -3.729 -3.701 -1.071 -1.863
y(84) -6.279 -3.386 -3.656 -1.031 -1.858
y(120) -5.748 -3.537 -4.081 -2.371 -2.229

Panel C: 12-month ahead forecasts
y() -4.491 -19.400 -19.110 -9.214 -18.973
y©®) -6.448 -23.301 -19.471 -10.487 -18.904
y(©) -6.236 -26.380 -20.876 -10.553 -17.702
y©) -7.098 -26.890 -20.971 -9.717 -15.335
y(12) -9.065 -26.910 -21.130 -9.487 -13.841
y(24) -11.105 -21.837 -18.076 -6.705 -9.563
y(30) -10.617 -15.928 -13.999 -3.519 -6.357
y(48) -11.224 -12.776 -12.047 -2.614 -5.073
y(60) -12.038 -11.404 -11.446 -2.961 -4.884
y(84) -11.619 -9.019 -9.949 -2.191 -3.840
y(120) -11.323 -8.159 -9.711 -4.536 -3.954




3. FORECASTING THE YIELD CURVE IN A DATA-RICH ENVIRONMENT 81

els. This underlines the observation made above that the model predicts yields
considerably better than the best performing competitor, the essentially affine la-
tent factor model, Ap(3). The same pattern is found for the 12-months ahead
predictions for which the forecast loss of the No-Arbitrage FAVAR model is also
significantly smaller than those of the considered benchmarks at all maturities.
Altogether, the evidence shows that the No-Arbitrage FAVAR model is particu-
larly useful in predicting yields at forecast horizons beyond one month, the im-
provement over benchmark models being particularly strong at the short end of
the curve. Thus, augmenting a Factor-Augmented VAR model with tight param-
eter restrictions implied by no-arbitrage may lead to significantly improved yield
forecasts. The fact that the No-Arbitrage FAVAR model outperforms a model
based on a VAR of four individual macro variables plus the short rate which is
otherwise identically specified, further underscores the usefulness of incorporat-

ing a broad macroeconomic information set into term structure analysis.

To summarize, the No-Arbitrage FAVAR model exhibits strong relative advan-
tages over a variety of benchmark models which have been documented pow-
erful tools in forecasting the yield curve. The improvement is particularly pro-
nounced for short and medium term maturity yields. Notice that I have not com-
pared the model to alternative affine term structure models which incorporate
macro factors such as the models by Ang and Piazzesi [2003] or Hordahl et al.
[2006]. Simultaneously including macro and latent yield curve factors, these mod-
els are considerably more cumbersome to estimate than the model presented in
this chapter and thus a comparison based on recursive out-of-sample forecasts is
infeasible. As has already been discussed above, the No-Arbitrage FAVAR model
has the advantage that the state equation parameters are obtained in a separate
step of the estimation procedure, a feature that considerably enhances estimation
speed and thus also might make the approach more suitable for application in

practice.

3.5.3 How are the Macro Factors Related to Latent Yield Factors?

In order to better understand the source of the strong forecast performance of
the No-Arbitrage FAVAR model, it is interesting to relate the macro factors to the
traditional latent decomposition of yields into level, slope, and curvature. In this

section, I thus regress estimates of latent factors onto the macro factors and the
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Table 3.6: Regression of Latent Yield Factors on the Model Factors

This table summarizes the results obtained from a regression of level, slope, and curvature yield
factors onto the factors of the FAVAR model. Level, slope, and curvature are computed as the first
three principal components extracted from the yields used to estimate the term structure model.
They explain 90.8%, 6.4% and 1.6% of the total variance of all yields, respectively. The sample
period is 1984:01-2003:9. t-statistics are in brackets.

Level Slope Curvature

cst 0,040 0,244 -0,145
[22.769] [18.712] [-7.103]

F1 0,007 0,032 -0,058
[20.133] [11.828] [-13.783]

F2 0,008 0,038 -0,049
[14.400] [9.215] [-7.491]

F3 0,004 0,037 0,009
[13.880] [16.737] [2.431]

F4 0,003 0,016 0,017
[8.832] [6.309] [-4.245]

y() 0,005 -0,041 0,024
[15.617] [-18.643] [7.011]

R? 0,959 0,786 0,481

short rate. The latent yield factors are computed as the first three principal com-
ponents of the yields used to estimate the term structure model. Similar to results
from previous studies, the first three principal components explain about 90.8%,
6.4% and 1.6% of the total variance of the panel. Following the conventional no-
tation, I label them “level”, “slope”, and “curvature”. The first three columns of
Table 3.6 summarize the results of these regressions. The four macro factors and
the short-term interest rate explain almost all of the variation in the yield level.
The main contribution comes from the short rate, the business cycle related first
factor and the inflation-related second factor, but the remaining macro factors are
also significant explanatory variables for the yield level. Almost 80% of the vari-
ation in the slope of the yield curve is explained by the macro factors. Both the
business cycle related first and the inflation-related second factor are positively
linked with the slope of the yield curve. This is consistent with the fact that short-
term interest rates are expected to rise relative to long-term interest rates in an
inflationary environment. Moreover, the short rate has a strongly significant neg-
ative coefficient in the slope equation which is consistent with the intuition that

rises in the short rate lead to a decreasing yield curve slope. Finally note that
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only about 48% of the variation in the curvature of the yield curve are explained
by the macro factors. Hence, variations in the relative size of short, medium and

long-term yields seem to be the least related to macroeconomic news.

3.6 Conclusion

This chapter presents a model of the term structure of interest rates which is en-
tirely built upon observable macroeconomic information. Instead of relying on a
latent factor-based decomposition of interest rates, yields are modelled as affine
functions of the short rate and a few factors which capture the bulk of variation
in a large number of macroeconomic time series variables. This particular mod-
elling approach which I label a “No-Arbitrage Factor-Augmented Vector Autore-
gression” is motivated by recent evidence which suggests that factors extracted
from large macro panels are powerful predictors of short-term interest rates and
measures of output and inflation. Moreover, since monetary policy decisions
are likely based on the developments in a variety of economic time series, it is
straightforward to model interest rates as a function of the factors which by con-

struction summarize the main sources of economic fluctuation.

The model is estimated in two steps. First, the factors are extracted from a large
panel of macroeconomic time series using the principal components-based ap-
proach suggested by Stock and Watson (2002a,b) and the parameters governing
their joint dynamics with the short-term interest rate are estimated in a VAR. In a
second step, the price of risk parameters of the affine term structure model specifi-
cation are obtained by minimizing the sum of squared fitting errors of the model.
This consistent two-step approach makes estimation fast and allows to carry out

a recursive out-of-sample forecasting exercise.

Preliminary regressions show that the factors of the model contain information
for explaining the monetary policy instrument which is not captured by indi-
vidual measures of output and inflation. Moreover, unrestricted regressions of
yields on the model factors show that common components extracted from the
large panel of macroeconomic time series are highly significant explanatory vari-
ables for yields. Accordingly, an affine term structure model built upon these
factors and the short rate provides a good in-sample fit of the term structure of

interest rates. Compared to a model which incorporates the short rate and four
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individual measures of output and inflation as factors, there is an advantage in
using the larger macroeconomic information set. The results from out-of-sample
forecasts of yields underpin this finding. The term structure model based on com-
mon factors clearly outperforms the model based on individual variables for all
maturities at all horizons. Moreover, in forecasts beyond one month ahead the
model strongly outperforms a set of yield-based forecast models including the
model recently suggested by Diebold and Li [2006], a standard three latent factor
essentially affine model, and the random walk. At forecast horizons of six and
twelve months ahead, the reduction in terms of root mean squared forecast er-
rors relative to the random walk amounts up to 50% for short yields and still is
about 20% for very long yields. The improvement in forecast accuracy is shown

to be statistically significant for all maturities.

A number of potential extensions to the work carried out in this chapter are
conceivable. First, since financial markets are assumed to respond quickly to
macroeconomic news, the forecast exercise could be done using real-time data.
Unfortunately, however, real-time macroeconomic datasets of the size necessary
for the use of large-scale factor models are still scarce. Second, to improve on the
interpretability of the model, a more structural factor model approach could be
applied. Instead of extracting factors from a large cross-section of macroeconomic
time series, Belviso and Milani [2005] have recently suggested to extract factors
from groups of variables of the same economic category and to use this structural
factor-augmented FAVAR model to assess the effect of monetary policy. In such
a framework, particular emphasis could be given to factors summarizing agents’
expectations of inflation and output developments which have been documented
important determinants of long-term yields (see e.g. Dewachter and Lyrio 2006).
Finally, the model setup employed in this chapter can in principle also be used
as a tool to disentangle the effects of specific economic shocks on risk premia and

on the risk-adjusted future path of expected short-term rates.
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A.3 Additional Tables and Figures

Table 3.7: Factor Loadings

This table summarizes R-squares of univariate regressions of the factors extracted from the panel
of macro variables on all individual variables. For each factor, I list the five variables that are
most highly correlated with it. Notice that the series have been transformed to be stationary prior
to extraction of the factors, i.e. for most variables the regressions correspond to regressions on
growth rates. The four factors together explain more than 50% of the total variation in the large
panel of macroeconomic time series.

Factor 1 - 24.9 % of total variance R?
Employment on nonag payrolls: Manufacturing 0.79
Employment on nonag payrolls: Goods-producing 0.77
Capacity Utilization: Total (NAICS) 0.76
Index of IP: Non-energy excl CCS and MVP (NAICS) 0.76
Index of IP: Total 0.76
Factor 2 - 13.3 % of total variance

CPL all items (urban) 0.79
CPL all items less medical care 0.76
CPL all items less food 0.74
CPL: all items less shelter 0.69
PCE chain weight price index: Total 0.69
Factor 3 - 7.6 % of total variance

M1 (in mil of current $) 0.49
CPI: medical care 0.47
Inventories: Mfg and Trade: Mfg, durables (mil of chained 96%) 0.41
Loans and Securities @ all comm banks: Securities, U.S. govt (in mil of $) 0.36
Inventories: Mfg and Trade: Mfg (mil of chained 96%) 0.36
Factor 4 - 5.4 % of total variance

Employment on nonag payrolls: Financial activities 0.33
PPI: finished goods excl food 0.27
PPI: finished consumer goods 0.24
CPI: transportation 0.23

M3 (in mil of current $) 0.23
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Table 3.8: Policy Rule Based on Individual Variables

This table reports estimates for a policy rule with partial adjustment based on individual

measures of output and inflation, i.e.

re=c+pri1+ (1 —p)(Pyy: + Pnrtr),

where r denotes the federal funds rate, y the deviation of log GDP from its trend, and
7t the annual rate of GDP inflation. The sample period is 1983:01 to 2003:09. Standard
errors are in parentheses. The R? of this regression is 0.967.

¢ 1Y by Pn
-0.011 0.955 1.332 2.592
(0.078) (0.017) (0.627) (0.850)

Table 3.9: Policy Rule Based on Factors

This table reports estimates for a policy rule with partial adjustment based on the four

factors extracted from a large panel of macroeconomic variables, i.e.
re=c+pri—1+ (1 — ) (@r1FLe + PraF2t + PraF3; + praFdy),

where r again denotes the federal funds rate and F1 to F4 the four macro factors extracted
from a panel of about 160 monthly time series for the US. The sample period is 1983:01 to
2003:09. Standard errors are in parentheses. The R? of this regression is 0.97.

c P $r1 $r2 ¢r3 PFa
0.564 0.902 0.174 0.160 -0.004 0.050
(0.152)  (0.025)  (0.031)  (0.049)  (0.025)  (0.030)
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Table 3.10: Correlation of Macro Factors and Yields

This table summarizes the mutual correlation patterns between the yields and factors used for

estimating the term structure model. F1,F2, F3 and F4 denote the macro factors extracted form

120)

the large panel of monthly economic time series for the US, y(1) to y(129) denote the yields of

maturities 1-month to 10-years, respectively.

y) y(©) y(12) y(30) y(©0) y(120)
Correlation of observable factors and yields
F1 0.392 0.478 0.514 0.545 0.546 0.541
F2 0.723 0.725 0.712 0.688 0.671 0.649
F3 0.025 0.014 0.031 0.151 0.223 0.289
F4 0.296 0.272 0.266 0.254 0.241 0.223
Correlation of 1-month lagged observable factors and yields
F1(-1) 0.441 0.520 0.550 0.567 0.562 0.551
F2(-1) 0.706 0.701 0.688 0.668 0.654 0.634
F3(-1) 0.004 0.001 0.020 0.145 0.220 0.288
F4(-1) 0.272 0.250 0.248 0.242 0.231 0.215
Correlation of 3-months lagged observable factors and yields
F1(-3) 0.515 0.577 0.596 0.589 0.573 0.552
F2(-3) 0.661 0.651 0.638 0.629 0.623 0.611
F3(-3) -0.024 -0.015 0.008 0.139 0.216 0.283
F4(-3) 0.244 0.228 0.228 0.227 0.216 0.198
Correlation of 6-months lagged observable factors and yields
F1(-6) 0.576 0.627 0.638 0.616 0.589 0.556
F2(-6) 0.591 0.567 0.555 0.566 0.575 0.580
F3(-6) -0.057 -0.035 -0.008 0.125 0.201 0.267
F4(-6) 0.221 0.218 0.217 0.209 0.195 0.175
Correlation of 9-months lagged observable factors and yields
F1(-9) 0.638 0.675 0.679 0.641 0.606 0.568
F2(-9) 0.514 0.473 0.460 0.493 0.517 0.536
F3(-9) -0.066 -0.019 0.014 0.140 0.209 0.271
F4(-9) 0.177 0.181 0.182 0.175 0.157 0.127
Correlation of 12-months lagged observable factors and yields
F1(-12) 0.656 0.676 0.671 0.621 0.583 0.540
F2(-12) 0.431 0.384 0.375 0.436 0.475 0.502
F3(-12) -0.073 -0.009 0.024 0.129 0.192 0.255
F4(-12) 0.169 0.178 0.189 0.191 0.173 0.146




Table 3.11: Parameter Estimates for No-Arbitrage FAVAR Model

State dynamics : Z; = fi+ ®1Z;_1 +... PsZi_s + @, E[@i@}) = Q)

Dy D
F1 | 1149 0211 0025 0039 -0007 | 0132 -0271 0.034 0.148  0.078
(0.108) (0.153) (0.114) (0.062) (0.053) | (0.165) (0.237) (0.145) (0.083) (0.072)
F2 | 0179 1200 0.007 -0.057 0006 | -0.235 -0.238 -0.053 0.025 0.023
(0.070)  (0.099) (0.074) (0.040) (0.035) | (0.107) (0.154) (0.095) (0.054) (0.047)
F3 | 0213 -0.056 0900 0.023 -0.054 | 0.040 -0.098 0158 0.017 -0.023
(0.079) (0.113) (0.084) (0.045) (0.039) | (0.122) (0.174) (0.107) (0.061) (0.053)
F4 | 0384 -0.792 -0.142 0.893 0.041 | 0058 0650 0057 -0268 -0.139
(0.138) (0.197) (0.146) (0.079) (0.069) | (0.212) (0.304) (0.187) (0.107) (0.093)
yM | 0341 0451 0075 0045 0929 | -0.094 -0581 -0361 0.057 -0.120
(0.125) (0.177) (0.132) (0.071) (0.062) | (0.192) (0.274) (0.169) (0.096) (0.084)
D3 Dy
F1 | -0621 0113 -0.055 -0.119 0035 | 0251 -0.046 0.062 -0.018 -0.120
(0.163) (0.235) (0.146) (0.084) (0.072) | (0.122) (0.158) (0.103) (0.059) (0.052)
F2 | 0142 -0.018 0.128 -0.033 -0.047 | -0.016 -0.000 -0.102  0.027  0.037
(0.106) (0.153) (0.095) (0.054) (0.047) | (0.079) (0.103) (0.067) (0.038) (0.034)
F3 | 0217 0235 -0432 0053 0066 | -0.120 0.034 0299 -0.014 -0.018
(0.120) (0.173) (0.108) (0.062) (0.053) | (0.090) (0.116) (0.076) (0.044) (0.039)
F4 | 0283 -0309 0139 -0129 -0.020 | 0206 0367 -0.067 0329  0.153
(0.210) (0.302) (0.187) (0.108) (0.093) | (0.156) (0.203) (0.132) (0.076) (0.067)
yD | 0038 0368 0246 -0.007 -0.130 | -0.117 -0.097 -0.024 -0.049  0.233
(0.189) (0.272) (0.169) (0.097) (0.084) | (0.141) (0.183) (0.119) (0.069) (0.061)
0 i
F1 | 0.086 0.084
(0.008) (0.128)
F2 | 0036  0.036 -0.104
(0.004)  (0.003) (0.083)
F3 | 0036 -0.027  0.047 0.132
(0.005)  (0.003) (0.004) (0.094)
F4 | -0.062 0.009 -0.013 0.142 -0.216
(0.008)  (0.005) (0.005) (0.013) (0.164)
yM | 0005 -0.000 -0.002 -0.003 0.116 | 0.428
(0.006) (0.004) (0.005) (0.008) (0.011) | (0.148)
Market prices of risk : Ay = Ag + A1 Z;
Ao A
-29.535 1536 -1.241 -1.701 - -3.701
0.038) | (0.724)  (0.172)  (0.624) - (1.550)
-290.060 -1.420 -4.239 -1.202 -0.347 -1.076
0.034) | (0.266)  (0.044)  (0.113)  (0.076)  (0.061)
-141.987 -2.407 - 1217 - 3.649
(0.018) |  (1.078) - (0.266) - (0.964)
-52.033 - - -1.821 1.090 -5.523
(0.013) - - (0.146)  (0.712)  (0.010)
-3.113 - - - - -
(0.081) - - - - -
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Figure 3.5: Plot of Model Factors

This figure provides plots of the factors used in the No-Arbitrage FAVAR model. Each factor is
confronted with an individual macroeconomic variable in order to show the close correspondence
to the real and the nominal side of the economy.

F1 and quarterly IP growth (dashed) F2 and annual CPI inflation (dashed)
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4 Term Structure Surprises:
The Predictive Content of Curvature,

Level, and Slope

This chapter analyzes the predictive content of the term structure components level, slope,
and curvature within a dynamic factor model of macroeconomic and interest rate data.
Surprise changes of the three components are identified using sign restrictions, and their
macroeconomic underpinnings are studied via impulse response analysis. The curvature
factor is found to carry predictive information both about the future evolution of the yield
curve and of output. In particular, unexpected increases of the curvature precede a flatten-
ing of the yield curve and announce a significant decline of output about one year ahead.
Surprise surges of the yield curve level anticipate large persistent increases in inflation
and a hump-shaped response of output growth. Somewhat contrary to conventional wis-
dom, positive slope surprises are followed by an immediate though not very pronounced
decline in output.

4.1 Introduction

It is widely accepted that the yield curve carries information about the prospec-
tive evolution of economic activity, inflation, and monetary policy. Interest rate
spreads, for example, are often used as predictors of recessions and inflation.
Since the yield curve assumes similar shapes over time, it is common to think of
it in terms of the three factors level, slope, and curvature which together explain
almost all of the cross-sectional variation of interest rates. However, despite the
factor structure of the yield curve and its informational richness, there is only
scattered evidence about the predictive content of each of its components. There-

fore, this chapter provides a systematic analysis of the economic underpinnings

90
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of level, slope, and curvature by studying the evolution of key macroeconomic
variables subsequent to surprise changes of the three components. While partly
confirming conventional wisdom, the most important result is that unexpected
changes of the curvature factor are more informative about the future evolution

of the yield curve and of output than has previously been acknowledged.

To carry out this exercise I use a Bayesian factor model of macroeconomic and
interest rate data that has the following properties. Yields are decomposed into
three factors as recently suggested by Diebold and Li [2006]. Their approach is a
variant of the Nelson and Siegel [1987] functional form and allows a straightfor-
ward interpretation of the latent factors as level, slope, and curvature. Macroe-
conomic variables are also assumed to have a factor structure. This has two
advantages. On the one hand, it allows to study the dynamic effects of yield
curve shocks on various macroeconomic variables. On the other hand, it repre-
sents a remedy to the problem caused by the use of revised data in studies of the
macro-finance link. Finally, both sets of factors - macro and term structure - share
common dynamics within a VAR. Together, these features of the model allow an
unrestricted set of interactions between the term structure and the real economy.
In this respect, the model goes beyond previous macro-finance models of the term
structure such as Ang and Piazzesi [2003] or Hordahl et al. [2006] who only offer

a unidirectional linkage from macroeconomic variables to the yield curve.

My model is similar in spirit to the one studied in Diebold, Rudebusch, and
Aruoba (2006, DRA henceforth). These authors also allow for a bidirectional link-
age between macroeconomic variables and use the same factor decomposition of
yields. Although related, my model differs in a number of important dimensions
from the one studied in DRA. First, DRA include only three individual economic
variables in their macro-finance model of the term structure. Employing a factor
structure, my model in contrast incorporates a broad macroeconomic informa-
tion set. Second, while the joint dynamics of macro variables and term structure
factors in DRA is limited to a VAR of order one, my model includes more lags.
Overall, the model in this chapter exhibits a richer structure and therefore allows
a more comprehensive analysis of macro-term structure dynamics than previous

studies.

The additional generality comes at the cost of computational complexity. To es-

timate the model, I therefore build on recent advantages in Bayesian dynamic
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factor model analysis. As has been recognized by Kim and Nelson [1999] and oth-
ers, Gibbs sampling algorithms are well-suited to approximate the joint posterior
distribution of parameters and unobserved factors in state-space models. In the
application of such methods to my model, a complication arises due to the non-
standard distribution of the exponential decay parameter in the Nelson-Siegel

spline functions. This is solved by adding a Metropolis step to the Gibbs sampler.

The third crucial difference with respect to the study by DRA regards the iden-
tification of shocks. In order to dissect the informational content of yield curve
innovations into level, slope, and curvature, it is important to properly identify
the surprise changes of the three components. This is an intricate issue. As has
been pointed out by Sarno and Thornton [2004], zero restrictions on impulse re-
sponses of financial variables to contemporaneous macroeconomic shocks are in-
consistent with the efficient market hypothesis. Hence, an appropriate identifica-
tion scheme must allow the yield curve factors to contemporaneously react to all
macroeconomic shocks. This is not the case in the recursive identification scheme
employed by DRA who order the yield curve factors first. It could be achieved
by ordering the yield factors last. Yet, this identification would preclude macroe-
conomic variables from contemporaneously responding to yield curve surprises,
an assumption that is quite restrictive. I solve this problem by using identifica-
tion schemes which make use of sign restriction techniques as recently suggested
by Uhlig [2005] and Mountford and Uhlig [2005]. Precisely, to identify a positive
surprise change of, say, the curvature factor, the impulse responses of the level
and slope are restricted to be zero on impact while the response of the curva-
ture is required to be positive over some periods after the shock occurs. At the
same time, the impulse responses of the macroeconomic variables remain unre-
stricted. Imposing zero restrictions on individual yield curve factors might be an
unrealistically strong restriction. Therefore, I also study a variant of the above
identification scheme in which initial responses to the two remaining factors are
required to be small but not necessarily zero. Technically, this is achieved using a

penalty function approach.

The results of this chapter can be summarized as follows. Most importantly, I
find unexpected changes of the curvature factor to be more informative about the
future evolution of the yield curve and macroeconomic variables than has previ-

ously been recognized. In particular, positive surprise changes of the curvature
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factor announce a strongly significant and very persistent hump-shaped move-
ment of the yield curve slope and a significant decline of the yield curve level. To-
gether, these two features imply a successive flattening of the yield curve which
is commonly associated with an upcoming recession. This is paralleled by a pro-
nounced hump-shaped response of output. In particular, the growth rate of indus-
trial production increases sharply for about three months, then slowly declines,
and eventually falls below zero one year after the initial surprise. Hence, unex-
pected rises of the curvature factor - not accompanied by simultaneous changes
of the yield curve level or slope - appear to announce economic slowdowns. This
result is surprising since the curvature factor has previously been documented
to be unrelated to macroeconomic variables. DRA, for example, report negligi-
ble responses of macro variables to shocks in the curvature factor, an observa-
tion restated in Diebold, Piazzesi, and Rudebusch [2005]. Yet, their results are
based on a recursive identification inconsistent with the efficient market hypothe-
sis. Dewachter and Lyrio [2006] estimate latent yield factors within an essentially
affine term structure model and find evidence suggesting that the curvature fac-
tor is related to real interest rate movements that are uncorrelated with macroe-
conomic variables. However, they base their results on regression analysis and
do not investigate the information carried by yield curve innovations. Evans and
Marshall [2004] study the responses of yield curve factors to specific macroeco-
nomic shocks which they obtain based on estimations of theoretical models. They
conclude that the curvature is largely unaffected by macroeconomic shocks. How-
ever, their approach does not allow to study the evolution of macroeconomic vari-
ables subsequent to surprise changes of the yield curve factors which is the focus

of this chapter.

Somewhat more consistent with conventional wisdom, surprise surges of the
level factor - not paralleled by simultaneous changes of the slope or curvature
- announce strong and persistent movements in inflation. They also anticipate
real effects: positive level surprises are followed by a significant hump-shaped
response of output growth. In contrast, slope surprises are followed by an im-
mediate decline of output.?® Yet, the responses are of moderate size and not

statistically significant across all different identification schemes applied. Alto-

26 Note that according to the Diebold-Li formulation of the factor loadings, a positive slope shock is
associated with a strong increase of short-term rates and a small increase of long maturities, i.e. a

flattening of the yield curve.
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gether, unexpected rises of the slope factor seem to announce economic down-
turns shortly before they start, but the connection is surprisingly decent given

that yield spreads are popular predictors of recessions.

The chapter is organized as follows. I present the empirical model that has been
used to study the joint dynamics of the yield curve and the macroeconomy in Sec-
tion 4.2. Section 4.3 briefly discusses identification of the model and its estimation
via a Metropolis-within-Gibbs sampling algorithm. In Section 4.4, I present the
different approaches used to identify surprise changes of the yield curve compo-
nents and summarize the main empirical results obtained in Section 4.5. Section
4.6 concludes the chapter. Details on the Metropolis-within-Gibbs sampling algo-

rithm used to estimate the model are provided in Appendix 6.3.2.

4,2 The Model

Assume that yields of different maturities are driven by three common factors

and an idiosyncratic component,
Y, = AyF +¢f, 4.1)

where Y; is a Ny x1 vector of yields of different maturity, Ay is a N, x 3 matrix of
factor loadings, Fty is a 3x 1 vector of factors, and e‘lt/ isa N, x1 vector of idiosyn-
cratic components or pricing errors. The common factors explicitly represent the
level, slope, and curvature of the yield curve. Recently, Diebold and Li [2006]
have suggested the following variant of the well-known Nelson-Siegel (1987) de-
composition of yields. In their model, the factor loadings are given by

- [1 (ﬂ) (ﬂ _emﬂ ) (4.2)
™ ™

where T denotes a shape parameter and n maturity. Hence, the loading on the
first factor equals 1 for all yields. A shock to this factor therefore results in a si-
multaneous upward or downward shift of yields of all maturities. Accordingly, it

has a clear-cut interpretation as a level factor. The loadings on the second factor

1_371-”

are given by the functions (=%,

). Independently of the value of 7, this function
assumes its maximum at n = 0 and then decays towards zero as n increases. The
exponential decay parameter T governs the speed of convergence. Shocks to the

second factor thus affect short yields much stronger than long-term interest rates
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Figure 4.1: Diebold-Li Loadings

This figure plots the Diebold and Li [2006] loadings corresponding to the level, slope, and curva-

ture factor. The exponential decay parameter has been set to T = 0.0609.

0 20 40 60 80 100 120

and it therefore has a straightforward interpretation as a slope factor. Finally, load-
ings of yields on the third factor are given by functions of the form ( # —e” ™).
For n = 0, this function has a value of zero. As Figure 4.1 shows, the function
value increases with maturity and eventually reverts towards zero. Accordingly,
the third factor mainly captures movements in medium-term maturities and can
be interpreted as a curvature factor.”” Applying the Diebold-Li setup has several
advantages. First, it provides a very parsimonious way of decomposing yields
into few common factors. Indeed, Diebold and Li [2006] have shown that their
model reproduces different yield curve shapes and fits the term structure well
over time. Second, as movements of the term structure of interest rates are often
stated in terms of the level, slope, and curvature, these factors have become eco-
nomic concepts of independent interest. It is thus appealing to separately study
their predictive content. Note that the no-arbitrage assumption is not explicitly
taken into account in this setup. However, as it explains yields of all maturities
very precisely, the model should approximately capture no-arbitrage to the extent

that it is satisfied in the data.

27 Note that the shape parameter T determines for which maturity the function assumes its maxi-
mum. Diebold and Li [2006] set T = 0.0609 which implies a maximum at n = 30 months that the

authors choose as a reference maturity for the “medium term”.
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Assume further that macroeconomic variables in the model are driven by a few

common factors and an idiosyncratic component, i.e.
Xi = AcFf +¢f, (4.3)

where X; is a Ny x 1 vector of period-t observations of the variables in the panel,
Ay is a Ny xky matrix of factor loadings, F}' is the ky x 1 vector of period-t obser-
vations of the common factors, and e} is an Ny x 1 vector of idiosyncratic compo-
nents. By construction, the factors F* capture the common variation in a large
number of economic times series. Accordingly, impulse responses of different
macroeconomic time series to surprise changes of the yield curve factors can be
studied. Another reason for employing a factor model approach instead of using
individual macro variables relates to the problem of data revisions. In fact, a com-
mon objection against empirical macro-finance models is that data revisions im-
ply that the information set available to the econometrician is different from the
information set available to investors. Hence, estimates of the parameters gov-
erning the mutual interactions between macroeconomic and financial variables
may be biased. Studying the interaction of financial variables with the common
components of many macro variables represents one way to address this critique.
Indeed, assuming that data-revision errors are series-specific (see e.g. Bernanke
and Boivin 2003, Giannone et al. 2004), the common factors extracted from differ-
ent vintages of the same macroeconomic dataset will be the same. Thus, factor
estimates obtained from revised data span the space of information available to

investors in real-time.

Obviously, equations (4.1) and (4.3) have the same structure. I therefore consider
the unified framework

X; Ax 0 FY ef
= +
Y; 0 Ay F/ e/

or Zt = A Ft + e (44)

I assume that the idiosyncratic disturbances are mutually orthogonal and not
auto-correlated, i.e. E[e¢’] = Ris a diagonal N x N matrix where N = Ny+N,.2% A

central feature of my model is the assumption that a few structural shocks cause

28 The orthogonality assumption is traditionally made in exact factor models. Relaxing it in order
to encompass approximate factor structures is possible in the framework studied here, but would

introduce additional complexity to the model.
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the common variation in both sets of variables. By construction, the comovement
is captured by the two sets of factors, F* and FY. Their common dynamics are
modeled within a VAR, i.e.

FX FX X
F F_4 Wy
or FE = ®[L) F1 + w:. (4.5)

/ / . .
The reduced-form errors w; = (w}'wy{ )’ are assumed to have non-diagonal variance-

covariance matrix E[ww’] = Q. Furthermore, the idiosyncratic disturbances of
individual variables and the shocks driving the common factors are assumed to
be mutually independent.

4.3 Estimation of the Model

Before estimating the model, it needs to be ensured that its parameters and latent
factors are uniquely identified. Exact identification is crucial since observation-
ally equivalent sets of factors and parameters may give rise to the same likelihood
but lead to different economic conclusions. Hence, assumptions need to be made
which exclude such indeterminacies. A standard identification approach in factor
models of the form (4.4)-(4.5) is due to Geweke and Zhou [1996]. These authors
show that restricting the upper k xk block of A to be lower-triangular with posi-
tive diagonal elements uniquely determines the factors and loadings. A variant
of this “hierarchical” identification approach is employed here. A complication
arises due to the fact that two separate groups of factors drive the common dy-
namics of the variables Z. However, as shown in appendix 6.3.1, it is sufficient to
restrict the upper ky xky block of the submatrix A* to be lower-triangular in order

to ensure unique identification of the model.

Estimation of the model via maximum likelihood techniques is infeasible due to
the large number of model parameters. An alternative would be to independently
extract factors from both sets of variables via e.g. principal components and to
study their joint dynamics within a VAR. This two-step estimation approach is in-
efficient, however, as it does not permit to jointly estimate the factors and model
parameters. Recently, some authors have started estimating large-scale dynamic
factor models via likelihood-based Markov Chain Monte Carlo (MCMC) meth-
ods (see e.g. Eliasz 2002, Bernanke et al. 2005, Kose et al. 2003). In particular
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the Gibbs sampling algorithm has is an useful estimation device. The Gibbs sam-
pler is based upon iterative draws from the conditional posterior distributions of
the individual model parameters given the data and the remaining parameters.
Gibbs sampling for dynamic factor models involves an additional step for draw-
ing the unobserved factors conditional on the model parameters and the data.
Kim and Nelson [1999] provide a nice introduction to the estimation of dynamic
factor models using the Gibbs sampler. In this chapter, I take advantage of the
recent methodological developments and set up an MCMC algorithm to estimate
the model presented above. As will be discussed in more detail below, posterior
conditional distributions cannot be derived for all parameters of the model and
thus a Metropolis-within-Gibbs algorithm is employed.

Estimation of dynamic factor models via Gibbs sampling requires a state-space
formulation of the model. For notational simplicity, I thus rewrite the model (4.4)-

(4.5) in companion form as
Z = AF+¢g (4.6)
Ft = & Ft—l + Wy 4.7)

where F; = (F,...,F_p11) and where A,é,®, and @; denote the companion
form equivalents of A, ¢;, &, and wy, respectively, and R and Q) the corresponding

variance covariance matrices.

Let 6 = (A*,AY,R,®,Q) denote the set of model parameters. Moreover, let
Xr = {Xq,...,Xr} and Y7 = {Yq,..., Y7} be all T observations on yields and
macro variables and let Zr = {Xr,Yr}. Analogously, let Fr = {F,...,F} de-
note all observations of the factors F. The objective is to generate samples from
the joint posterior distribution p(6, Fr|Zr) of model parameters and unobserved
factors. If this distribution is not given or is not standard so that drawing from
it is infeasible, the Gibbs sampler allows to approximate it by the empirical dis-
tributions of simulated values from the conditional posteriors p(0|Zr, Fr) and
p(Fr|Zr,0). After finding starting values 6°, any iteration of the Gibbs sampler

involves the following two steps:
Step 1: Draw lfg) from p(Fr|Zr,001).

Step 2: Draw 6 from p(6|Zr, ﬁp).
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The exact procedures to sample from the conditional distributions of factors and
individual parameters are described in appendix 6.3.2. The crucial result em-
ployed in the Gibbs sampler is that the empirical distribution of draws from the
conditional posterior densities converges to the joint marginal posterior distribu-
tion as the number of iterations goes to infinity. Accordingly, after discarding an
initial number of draws (the “burn-in”), sampling from the known conditional
posterior densities of factors and parameters is equivalent to sampling from their

unknown joint posterior distribution.

4.4 Identification of Shocks

The main focus of this chapter is to analyze the information that surprise changes
of level, slope, and curvature convey about the future evolution of key macroe-
conomic variables. To answer this question, it is crucial to properly disentangle
shocks to the three components. As has been pointed out by Sarno and Thornton
[2004], there is a fundamental problem related to the identification of shocks to
financial variables in structural VARs. In particular, they argue that zero restric-
tions on impulse responses of financial variables to macroeconomic shocks are
inappropriate under the assumption of efficient markets. Assume that US gov-
ernment bond yields are efficient market variables, i.e. variables which reflect
all information relevant for their determination. Then, the critique by Sarno and
Thornton implies that an identification scheme needs to be found which allows
the yield curve components to contemporaneously react to all macroeconomic
shocks. In principle, this could be achieved by ordering the term structure factors
last in recursive structural VARs. However, the yield curve shocks so identified
would not have contemporaneous effects on the macro factors. Having in mind
a structural interpretation of shocks, this could be an appropriate assumption. In
this chapter, though, I seek to analyze the predictive content of surprise changes
of the yield curve. Unexpected movements of interest rates are likely associated
with simultaneous changes of macroeconomic variables. I therefore allow the lat-

ter to contemporaneously move when a yield curve surprise occurs.

I employ two different approaches to carry out this identification. Both impose
restrictions on the sign of impulse responses of one of the three yield factors and
the initial impact of the other two factors and draw on previous work in Uhlig
[2005] and Mountford and Uhlig [2005]. In the following, I briefly describe the
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general operating mode of identification via sign restrictions. I then discuss the

two main identification procedures used to generate the results in this chapter.

4.4.1 Identifying Surprise Changes with Sign Restrictions

Identifying shocks via sign restrictions is based upon prior assumptions about
the impact of a certain type of shock on different economic variables. Uhlig
[2005], for example, uses prior restrictions on the responses of prices, the federal
funds rate and nonborrowed reserves to identify contractionary monetary policy
shocks. The economic reasoning behind this approach is that a monetary policy
shock should be characterized by a rise of the federal funds rate and a decline of
prices and nonborrowed reserves. In this chapter, I apply similar methods in or-
der to identify surprise changes of the latent yield curve factors, without however
attributing a structural interpretation to these surprises. In contrast, I investigate
their informational content by studying the subsequent dynamic responses of
the macro variables stacked in X. I start by introducing some useful notation and

then turn to explaining the different identification strategies in detail.

Notation

For convenience, I restate the VAR in (4.5) which represents the state equation of
my model:
Fr=®1F_1+$yF r+...+ CI)th,p + wy,

where F, = (F¥',F/ "Y'isa k = (ky+3) vector of common factors and where
Q) = E[w;w}] is the constant unconditional variance-covariance matrix of the one-
step ahead prediction errors. The aim is to identify structural shocks v that are
mutually uncorrelated and standardized to have unit variance, i.e. E[v;v]] = .
In order to trace impulse responses of the factors F to the structural shocks v, one
needs to find a matrix A that satisfies w; = Av;. Obviously, this implies ) = AA’.
Following Uhlig [2005], I define an impulse vector as the column of some matrix
A that has this property. As he shows, any such impulse vector a can be obtained
by performing a Cholesky decomposition Q) = AA’ and multiplying A with some
kx 1 vector g of unit length, i.e. 2 = Ag.

To compute impulse responses of the factors F, stack (4.5) as

F=Fd+w, (4.8)
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whereF= [F,... Fr|, B =[F_,,.... F_ |, F=[F,... F|, ® = [®,...,®],
and w = [wy,...,wr]". For any k x 1 impulse vector a, leta = [/, 0; ¢ (,—1)]" and

/
r:[ @ ]
k(p-1) Ok(p-1)k

Then, the impulse response r, ;(1) of factor i to an impulse a at horizon h can be
computed as
roi(h) = (T"a); for h=0,...,H (4.9)

In this chapter, a joint dynamic factor model of macro and yield data is set up.
This modeling framework allows to trace responses to the impulses driving the
factors F to the individual variables in Z. Hence, the economic interpretation of a
given shock can be based on a much broader information set than in usual VAR
studies. Denoting r,(h) the vector of impulse responses of the factors F to an
impulse a at horizon £, the response of the n-th variable in Z to that impulse a,
denoted r!(h), can be computed as

(h) = A,ry(h) for h=0,...,H, (4.10)

where A, is the n-th row of the factor loading matrix A.

Combination of Zero and Sign Restrictions

I identify shocks that have a positive impact on the yield curve level, slope, or
curvature.? This is achieved by imposing a positive response of one of the three
factors over a given interval after the shock occurs. In order to separate out the
initial effects on level, slope, and curvature, additional zero restrictions are in-
troduced which ensure that only one of the three components moves on impact.

These restrictions are summarized in the following definition:

Definition 1 A “pure” level impulse vector is an impulse vector a such that the response
of the level factor is positive at horizons h = 0, ..., H and such that the responses of the
slope and the curvature factor are zero on impact.

Similar definitions apply to the slope and curvature factor. How are the zero

restrictions imposed in practice? Recall from (4.9) that the response on impact to

2 The positivity assumption is made for normalization reasons and is not restrictive. Since the
model is linear, all reported results equivalently apply to negative surprise changes after flipping
signs of the impulse responses.
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an impulse vector is given by the impulse vector itself. Hence, in order to identify
shocks which produce a pre-specified zero response on impact of e.g. factors i and

j, one needs to find vectors g of unit length such that

a; - _ 0
()-fe()

where A(i) and A( j) denote the i-th and j-th row of the lower-triangular Cholesky

A
Ag)

factor A, respectively. Finding such vectors g is a straightforward numerical ex-
ercise that can be eased by parameterizing the space of k-dimensional vectors of
unit length. In the application studied in this chapter, the total number of factors

is k = 7 and thus the parameterization

[ cos(a1) cos(ap) cos(az) cos(ay)

cos(aq) cos(ap) cos(az) sin(ayg)
cos(aq) cos(ap) sin(ag)

q= cos(aq) sin(ap) (4.12)

sin(aq) cos(as) cos(ag)

sin(aq) cos(as) sin(ag)

i sin(ay ) sin(as) ]

can be used. According to this parameterization, any 7 x 1 vector of unit length
is characterized by a set of six angles {a1, ..., ag } defined over the interval [0, 27].

In the first step of the identification procedure, I use numerical optimization rou-
tines to find vectors g which - for a given draw of the parameters (®,}) - fulfil
the zero restrictions in (4.11). In a second step, I discard those impulse vectors a
that do not satisfy the sign restriction imposed on the impulse responses of the
factor of interest. From the draws that are retained, I then compute median im-

pulse responses and the corresponding confidence intervals.>

Imposing Orthogonality

Structural shocks are commonly assumed to be exogenous orthogonal distur-
bances hitting the economy. Yields are prices of financial assets that mainly re-

flect market expectations about future monetary policy and inflation. Therefore,

30 To enhance the speed of the algorithm, I keep candidate impulse vectors which satisfy the restric-
tion for the opposite sign and multiply them by minus one.
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in this chapter I take the stand that surprise changes of the yield curve summarize
term structure reactions to structural shocks rather than representing exogenous
disturbances themselves. Accordingly, they need not necessarily be orthogonal.
In order to analyze whether the results obtained above are robust to the assump-
tion that the surprise changes to the three components are independent, one can
additionally impose orthogonality restrictions. Using the parameterization (4.12),
this amounts to finding a vector q; that satisfies the zero and sign restrictions for,
say, the level factor. In a subsequent step, one then has to find a vector g, that
tulfils the zero restriction for, say, the slope factor. In addition, it is required that
q1 and g, be orthogonal, i.e. 44> = 0. Similar to the approach in Mountford and
Uhlig [2005], this is achieved by stacking the zero and orthogonality restrictions,

i)

A
A) qz

~

(
( (4.13)
!/

7

~

where again A(i) and A(j) denote the i-th and j-th row of the lower-triangular
Cholesky factor A. All candidates g, that fulfil these restrictions are then sub-
jected to the sign restriction test and discarded if they do not meet them. In that
case, the entire procedure is restarted by drawing a pair (®, Q0) from the joint pos-
terior of the model parameters, finding a vector q; that satisfies the zero and sign
restrictions for the level factor and so on. Once two vectors g1 and g2 have been
found that fulfil all requirements, the third shock can be identified by finding vec-
tors g3 that meet the according zero restrictions and which are orthogonal to both
g1 and g. These candidates are then kept or discarded depending on whether
they pass the sign restriction test.

Penalty Function Approach

The identification approach discussed above allows to clearly separate out shocks
which on impact move only one of the three yield curve factors. Yet, surprise
changes of the yield curve that translate into unilateral movements of one of the
three factors may be rare events in reality and thus the imposed restrictions not
supported by the data. Still, a thorough analysis of term structure dynamics re-
veals that many yield curve changes are largely driven by movements of one of
its three components. In order to accommodate this behavior, I employ a second
identification routine which eases the strong restriction of zero contemporaneous

impact. In particular, using sign restrictions as above, I identify positive surprises
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of the three yield curve factors which exert as little as possible an effect on the re-
maining two components. This is achieved by applying the following penalty
function identification approach which draws on the approach in Uhlig [2005].

I identify a surprise as, say, a “strong” level surprise if it implies a strong re-
sponse of the level factor, but has as little as possible an impact on the slope and
the curvature factor over a certain period of time after the initial impact. That is,
for each draw of parameters (¥, )) from equation (4.5), I find impulse vectors a
that imply a large response of one yield curve factor while the responses of the
other two factors are required to be close to zero. This is achieved by minimizing
a function that accordingly rewards and penalizes the impulse responses of the

three yield factors. An intuitive penalty function satisfying these requirements is

H ro H, o 2
¥i(a) = Z[%- ”’;(.h)]+2 2%’( ’](h)) (4.14)

h=0 i h=0 | jZi 0j

where i defines “level”, “slope”, or “curvature” and j the remaining two yield
factors. Further, 0; and o0 denote the standard deviations of the first difference
of the respective factors and are included in order to normalize the impulse re-
sponses. The weights ; and +y; can be chosen such that particular emphasis is
put on one of the potentially conflicting objectives.With this functional form, pos-
itive (negative) responses of one yield curve factor are rewarded and at the same
time responses of the remaining two factors different from zero over a fixed num-
ber of periods after the shock occurs are penalized.?! More formally, with the
penalty function approach I have the following definition of a level shock:

Definition 2 A “strong” level impulse vector is an impulse vector a that maximizes the
penalty function Y.

Again, similar definitions apply to the slope and curvature factor.

4.4.2 Impulse Responses to “Typical” Yield Curve Shocks

The identification schemes discussed above allow to study the economic implica-
tions of shocks to the yield curve which mainly or exclusively can be attributed

31 Obviously, the choice of weights v attributed to the responses of the three factors is arbitrary. As
will be discussed further below, I report results for v = [—1,100, 100]. Hence, positive responses
of the factor of interest are rewarded while any responses of the remaining two factors that deviate
from zero are penalized with a much stronger weight.
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Figure 4.2: Innovations of Level, Slope, and Curvature

This figure provides scatter plots of the model-implied one-step ahead forecast errors of the three
yield curve factors level, slope, and curvature. The estimation period is 1983:01-2003:09.
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to one of its three components level, slope, and curvature. While this helps to
dissect the information in the term structure, it does not allow to study the eco-
nomic implications of yield curve surprises that affect all three components. Yet,
this might be a relevant scenario. Figure 4.2 relates the model-implied one-step
ahead forecast errors of the level, slope, and curvature factors. As these scatter
plots show, the forecast errors of level and slope, and those of level and curvature
are indeed noticeably correlated. This indicates that there is a strong common
component in the innovations to the three yield curve factors. By identifying
this common component one can thus, roughly speaking, study the impulse re-

sponses of macroeconomic variables to a “typical” yield curve shock.
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How can this be done? One needs to perform an eigen decomposition of the
variance-covariance matrix of forecast errors of the yield factors. Then, by con-
struction, the eigenvector corresponding to the largest eigenvalue explains most
of the common variation in the forecast errors.’> In my model, the yield factors
constitute a subgroup of the state variables. Hence, the variance-covariance ma-

trix of all forecast errors needs to be decomposed into blocks. In particular, let

Oy Q
Q= ( Qi‘x Q"y ) (4.15)
xy Ay

where Qyy, Qyy, and () are of dimension ky X ky, ky X3, and 3x 3. Define D as
the 3 x 3 diagonal matrix with entries given by the eigenvalues of (), in descend-
ing order and V' as the matrix of corresponding eigenvectors. Then, (), can be
written as
Quy = Aydy,
where A, = VD2 (4.16)

Now the task at hand is to find a matrix A that has Ay, as the lower-right block
and which further satisfies O = AA’. One possible decomposition fulfilling this

A = [ A Aw (4.17)

condition is given by

where Ayy and Ay, are of dimension ky Xk, and k, X3, respectively. Then, together
with the condition Q) = AA’, (4.15) and (4.17) imply

Qxy — AxyA;/Vy
and thus Ay, = Oy (A},)"" (4.18)
Moreover, we have
Oy = ApAl, + AxyA;y.
Hence, AAly = Que — Quy(A}) 7 (Ayy) T Qe (4.19)
One solution to this equation is given by the Cholesky decomposition of the term

Oy — Qxy(A]’/y)_1 (Ayy) 1033 Altogether, the (ky+1)-st column of any decom-

32 Notice that similar approaches of shock identification have been employed in Uhlig [2004] and

Giannone et al. 2004.
33 Notice that an infinite number of orthogonal rotations of the Cholesky factor Ayy can be found

which equally solve equation (4.19). Being only interested in shocks to the yield curve factors
corresponding to the last three columns of A, this does not, however, affect the results of my

analysis.
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position of the form (4.17), with Ayy, Ay, and Ay, as given above, represents
the impulse vector which explains the largest share of the common variation of
one-step ahead forecast errors of the three yield curve factors. It can thus be
interpreted as a “typical” yield curve shock. Note that this decomposition also
allows to study the share of variance of individual macroeconomic variables ex-
plained by those shocks which together capture all of the variation in the three
yield curve factors. This may serve as a rough measure of how much of the varia-

tion in macroeconomic variables is anticipated by movements in the yield curve.

4.5 Empirical Results

This section summarizes the results of the chapter. First, I describe the data used
and discuss the empirical specification. Then, I document the fit of the joint factor
model of macro and yield data before I finally turn to the results of the impulse

response analysis.

4.5.1 Data and Model Specification

I estimate the model using monthly data for the US from 1983:01 until 2003:09.
This time span covers the post-Volcker disinflation period and can thus be seen
as a consistent monetary policy regime. The interest rate data used in this study
are unsmoothed Fama-Bliss yields for maturities 1, 3, 6, 9, 12, 15, 18, 21, 24, 30
months and 3, 4, 5, 6, 7, 8, 9, and 10 years.34 Hence, the term structure infor-
mation is extracted from a wide range of maturities. I have further selected 25
variables of different economic categories in order to exploit the information in
a variety of different macroeconomic time series. Table 4.1 lists these variables.
Note that they are taken from a more comprehensive macroeconomic data panel
for the US that has been compiled by Giannone et al. [2004].3°

As discussed above, the model decomposes yields into three factors which have
a straightforward interpretation as level, slope, and curvature. The true number
of factors driving the macroeconomic variables in the panel X is not known, how-

ever. Bai and Ng [2002]have developed formal tests for the optimal number of

34T am grateful to Robert Bliss for sharing these data with me.
%1 thank Lucrezia Reichlin for letting me use these data. For further details on the origin of these

data, the reader is referred to the paper by Giannone et al. [2004].
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Table 4.1: Macro Variables and Share of Variance Explained by Factors

This table lists the 25 macro variables that have been used to estimate the dynamic factor model
for macro and yield data. As is common in the literature, most series have been subjected to
some transformation prior to the estimation, provided in the second column of the table. The
transformation codes are: 0 = no transformation, 1 = logarithm, 2 = monthly differences, 3 =
quarterly growth rate, 4 = annual growth rate. The third column provides for each of the 25

variables the share of variance explained by the four estimated factors.

Series Transf. R?
Index of IP: Total 3 0.724
Capacity Utilization: Total 2 0.805
Purchasing Managers Index 0 0.901
Index of help-wanted advertising 3 0.618
Employment on nonag payrolls: Total 3 0.573
Avg weekly hrs. of production or nonsupervisory workers 3 0.158
Personal Cons. Expenditure: Total 3 0.084
Construction put in place: Total 3 0.344
Inventories: Mfg and Trade: Total 3 0.203
ISM mfg index: new orders 0 0.831
NYSE composite index 3 0.989
S&P composite 3 0.990
Nominal effective exchange rate 3 0.036
M1 3 0.085
M2 3 0.981
M3 3 0.656
Loans and Securities @ all commercial banks: Total 3 0.191
CPL all items (urban) 4 0.940
PPI: finished goods 4 0.608
PCE chain weight price index: Total 4 0.960
Avg hourly earnings: Total nonagricultural 4 0.235
Philadelphia Fed Business Outlook: General activity 0 0.746
Outlook: Prices paid 0 0.556
Outlook: Prices received 0 0.531
Federal govt deficit or surplus 3 0.013

factors in large-scale factor models estimated using static principal components
analysis. Model choice is a much more intricate issue in Bayesian factor analysis,
at least from a computational point of view. Justiniano [2004] discusses methods
for selecting the optimal number of factors in Bayesian factor models that allow
for lags in the observation equation. I present results for a model which extracts

four factors from the set of 25 macroeconomic time series.3®

36 Unreported results have shown that model specifications using different numbers of factors
yielded qualitatively very similar results.
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Another choice to make regards the number of lags in the joint VAR of macro
and yield factors which represents the state equation of my model. As in stan-
dard VAR studies, there exists a tradeoff between parsimony and richness of the
dynamic structure. I document results for a model with p = 6 lags which seems

to be a good compromise between the two conflicting objectives.

4.5.2 Convergence of the Metropolis-within-Gibbs Sampler

The results reported below are based on 8,000 simulations of the Metropolis-
within-Gibbs sampler summarized in appendix 6.3.2. In order to ensure conver-
gence to the ergodic distribution, the first 3,000 iterations have been discarded as
a burn-in. The remaining 5,000 draws have been used to compute median esti-
mates and standard errors of the model factors and parameters. Figures 4.3 and
4.4 provide plots of factor estimates and their 95% confidence bands. As one can

see from these plots, all factors are sharply estimated.

It has been discussed above that specific restrictions on the elements of A* are
imposed to ensure exact identification of the model. As a cross-check on whether
the model is uniquely identified and as another test of convergence, I executed
the sampler several times using different sets of randomly generated starting val-
ues. Figures 4.12 and 4.13 in Appendix A.4 show that the factor estimates are
highly similar across the different initializations of the sampler. I interpret this as
additional evidence for convergence of the algorithm. Finally note that to com-
pute impulse responses, I randomly selected pairs (P, (}) from the stored draws
of their posterior conditional distributions. The random selection is important
since MCMC draws are usually autocorrelated and therefore error bands might
be understated using consecutive draws. To address this problem, once could
alternatively employ e.g. every 10 draws (see also Law 2004).

4.5.3 Assessing the Model Fit

In this section, I provide a set of results that allow to assess how well the factor
model fits the data. Table 4.1 lists for all macro variables in the panel the shares
of variance explained by the four estimated factors. According to these figures,
most variables exhibit a rather large common component. In particular, variables
related to output and inflation are well explained by the four factors. About 74%
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Figure 4.3: Estimated Macro Factors and 95%-Confidence Intervals

This figure provides plots of the estimated macro factors together with their 95%-confidence in-
tervals. The estimates have been obtained as the median of the factor draws kept after the initial
burn-in period of the Metropolis-within-Gibbs sampler. The estimation period is 1983:01-2003:09.
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of the growth rate of industrial production, for example, is captured by the macro
factors. Moreover, about 90% of the variation of annual CPI inflation is explained
by the common components. Monetary aggregates, stock indices, and other vari-
ables are equally well explained by the four factors. However, the variation of
some time series such as personal consumption expenditure, the nominal effec-
tive exchange rate, and the federal government deficit is largely attributable to
variation not captured by the common factors. Obviously, impulse responses of
these variables to shocks driving the common factors would be more or less mean-
ingless. Hence, the results shown below are exclusively based only on variables
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Figure 4.4: Estimated Yield Factors and 95%-Confidence Intervals

This figure provides plots of the estimated yield factors together with their 95%-confidence inter-

vals. The estimates have been obtained as the median of the factor draws kept after the initial

burn-in period of the Metropolis-within-Gibbs sampler. The estimation period is 1983:01-2003:09.

Level

Estimate of Level Factor ~ with 95% error bands
T T

4 L L L L
1980 1985 1990 1995 2000 2005

Curvature

Estimate of Curvature Factor with 95% error bands
T T

8 L L L L
1980 1985 1990 1995 2000 2005

Slope

Estimate of Slope Factor  with 95% error bands
T T

L L L L
1985 1990 1995 2000 2005

that have an important common component. Figure 4.5 provides plots of some

selected macro variables and how well they are explained by the common factors.

As has already been documented in previous studies (e.g. Diebold and Li 2006,

Diebold et al. 2006), the Nelson-Siegel decomposition of yields almost perfectly

explains the cross-sectional variation of interest rates of different maturities over

time. Table 4.2 shows that this result is confirmed by the analysis conducted here.

Indeed, except for a few maturities at the very short and the very long end of the
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Figure 4.5: Model Fit - Macro Variables

This figure provides plots of observed (dashed) and fitted (solid) values for a selection of macro

variables.
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curve, all yields are nearly perfectly matched by the three factors. This implies
that very little information about the yield curve dynamics is lost by restricting
the analysis to surprise changes of its three components. Figure 4.6 highlights
this result visually by providing plots of observed and fitted yields for selected

maturities.

4.54 Impulse Response Analysis

The main focus of this chapter is to shed light on the question what informa-

tion surprise changes of the term structure level, slope, and curvature convey
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Table 4.2: Yields and Share of Variance Explained by Factors

This table lists the 18 maturities of unsmoothed Fama-Bliss government bond yields that have
been used for the estimation. The second to fourth column provides, for each maturity, the cumu-
lative shares of variance explained by the level (L), slope (S), and curvature (C) factor.

Maturity L LS LS,C
1-month 0.499 0.986 0.986
3-months 0.542 0.993 0.998
6-months 0.589 0.980 0.999
9-months 0.622 0.966 0.999
12-months 0.636 0.951 0.999
15-months 0.665 0.942 0.999
18-months 0.694 0.937 0.999
21-months 0.720 0.934 0.999
24-months 0.742 0.933 0.999
30-months 0.776 0.933 0.999
3-years 0.806 0.937 0.999
4-years 0.858 0.946 0.999
5-years 0.889 0.954 0.999
6-years 0.918 0.964 0.999
7-years 0.933 0.970 0.999
8-years 0.948 0.977 0.998
9-years 0.957 0.981 0.998
10-years 0.964 0.984 0.997

about the future evolution of the economy. As extensively discussed above, this
is achieved by studying the impulse responses of macroeconomic variables to
shocks which on impact exclusively (mainly) move one of the three components.
In this section, I summarize the results obtained from these exercises. I start by
presenting impulse responses to “pure”yield curve surprises which exclusively
move one of the three components on impact. I then turn to the discussion of
results obtained from the penalty function approach which identifies surprise
changes that strongly move one of the three yield curve factors while the remain-
ing two are restricted to move only little on impact. For the sake of brevity, I
only report impulse responses for industrial production, CPI inflation, and M2.
These three variables represent important economic categories and are all well

explained by the common factors.

Combination of Zero and Sign Restrictions

The results documented in this section are based on a value of H =5. Hence, re-
sponses of the yield curve factors to the impulses defined above are required to be
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Figure 4.6: Model Fit - Yields

This figure provides plots of observed (dashed) and fitted (solid) yields for different maturities.
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positive for half a year after the initial surprise. Since all three yield curve compo-

nents are persistent time series processes, this restriction is not very strong. Unre-

ported results have shown that the conclusions remain qualitatively unchanged

when different sign restriction lengths are imposed.

Surprise Changes of the Level

Figure 4.7 plots impulse responses to a positive surprise change of the level fac-

tor for the three yield curve components and the three macro variables referred to

above. Several remarks are in order. First, consistent with conventional wisdom,

positive surprise changes of the yield curve level indicate a significant subsequent
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Figure 4.7: Impulse Responses - “Pure” Level Surprise

This figure plots impulse responses of some selected macro variables and the three yield curve
components after a “pure” level surprise as defined in Section 4.4.1. Hence, the response of the
level factor is restricted to be positive over the first six periods after the shock occurs while the
responses of the slope and curvature factors are restricted to be zero on impact. Dash-dotted lines

indicate the 16% and the 84% quantiles of the posterior distribution of impulse responses.
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increase of inflation. As the upper right panel of Figure 4.7 reveals, inflation rates
rise for about five months after a level surprise and then slowly revert towards
their initial level. Second, unexpected surges of the yield curve level also an-
nounce significant changes in output growth. According to the upper left panel
of Figure 4.7, the growth rate of industrial production increases for about three
months and then quickly reverts towards zero, eventually turning negative about
seven months after the initial level surprise. While the response is not highly
significant, it still indicates that positive surprise changes of the level factor an-
nounce a decline of output about six months to one year ahead.?” Third, as the
right middle panel of Figure 4.7 shows, a positive surprise change of the level fac-
tor is followed by a persistent upward shift of the yield curve level. In contrast,
both slope and curvature show hump-shaped but not very pronounced responses

to an unexpected rise of the level factor.

Surprise Changes of the Slope

Before turning to the impulse responses following a surprise change of the yield
curve slope, it is worth recalling that term spreads are considered to be strong
predictors of recessions. Indeed, as has been documented by Estrella and Hardou-
velis [1991], Estrella and Mishkin [1998] and many others, spreads between long-
term and short-term interest rates forecast recessions better than most other lead-
ing indicator variables. There are different mechanisms which may explain this
fact. One is monetary policy. If the central bank raises short-term interest rates
in order to avoid an overheating of the economy, long-term yields will typically
increase by a smaller amount since inflation is assumed to be lower in the fu-
ture. Hence, the yield curve becomes flatter or even inverted. A decreasing yield
curve slope therefore announces an economic slowdown. A second explanation
why the term spread should anticipate recessions is related to the expectations hy-
pothesis of the term structure. If long-term interest rates equal average expected
future short rates, then increasing (declining) long rates must indicate a monetary
policy tightening (easing) which in turn is associated with a decrease (increase)
of output growth. Finally, agents” savings decisions represent another channel
to explain the link between the term spread and economic activity. In fact, if

agents expect a recession to occur, they might decide to save more and invest in

57 Note that somewhat consistent with this result, Ang et al. [2006] find that the short rate forecasts
GDP growth better than term spreads.
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Figure 4.8: Impulse Responses - “Pure” Slope Surprise
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This figure plots impulse responses of some selected macro variables and the three yield curve

components to a “pure” slope surprise as defined in Section 4.4.1. Hence, the response of the

slope factor is restricted to be positive over the first six periods after the shock occurs while the

responses of the level and curvature factors are restricted to be zero on impact. Dash-dotted lines

indicate the 16% and 84% quantiles of the posterior distribution of impulse responses.
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long-term bonds. Accordingly, the demand for long-term debt would increase,
long-term yields would fall, and thus the term spread would decline. Altogether,
one would expect that positive changes of the slope factor announce a decline of
economic activity.>®

Studying the responses of different economic variables to surprise changes of the
yield curve slope, the exercises conducted in this chapter complement the mostly
regression-based evidence on the link between the term spread and real activ-
ity. Figure 4.8 summarizes impulse responses to an unexpected increase of the
slope factor when both level and curvature do not initially move. The upper left
panel shows the impulse response of IP growth. At first sight, the conventional
view that a rising slope factor (a decreasing spread between long-term and short-
term bonds) announces an economic downturn seems to be confirmed since the
growth rate of industrial production - after a brief initial rise - falls below zero.
Yet, the link is surprisingly weak. Indeed, the downturn is little pronounced
and the response of output is almost insignificant. This is a striking result given
that the term spread is known to be a strong predictor of output growth. More-
over, the almost immediate decline of the growth rate of industrial production
does not match the common view that declining spreads announce the beginning
of a recession four to six quarters ahead. When discussing the effects of unex-
pected curvature shocks further below, I provide evidence that partly reconciles
these findings with previous results. The reaction of inflation to an unexpected
increase of the slope factor looks qualitatively similar to the response to a level
shock. Also note that an unexpected increase of the slope factor is followed by
an initial decline of the yield curve level for about five months and a subsequent
rise above its initial level. The curvature factor instead increases for about ten
months before it slowly reverts towards zero. Yet, neither of the two responses

are significant implying that these patterns can hardly be regarded as systematic.

Surprise Changes of the Curvature

By contrast, the impulse responses following a surprise change of the curvature

factor are strikingly pronounced. As the middle right and lower left panel of

38 Recall that an increase of the slope factor in my model corresponds to a lower spread between
long-term yields and short-term yields. This is because the loading of the slope factor decreases
with maturity.
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Figure 4.9: Impulse Responses - “Pure” Curvature Surprise
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This figure plots impulse responses of some selected macro variables and the three yield curve

components to a “pure” curvature surprise as defined in Section 4.4.1. Hence, the response of the
curvature factor is restricted to be positive over the first six periods after the shock occurs while
the responses of the level and slope factors are restricted to be zero on impact. Dash-dotted lines

indicate the 16% and 84% quantiles of the posterior distribution of impulse responses.
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Figure 4.9 show, unexpected increases of the curvature factor are followed by a
strong hump-shaped response of the yield curve slope. More precisely, the slope
factor increases for about 15 months subsequent to a curvature surprise, and then
gradually declines towards its initial level. At the same time, the level factor
features a persistent decrease for about one year after the shock, before it slowly
reverts towards its initial level. Hence, following a surprise surge of the curvature
factor, long rates fall and short rates strongly increase which implies a flattening
of the yield curve. As has been argued above, this is commonly associated with
an upcoming recession. This interpretation is clearly mirrored in the response of
output growth. In particular, subsequent to a curvature surge, the growth rate
of industrial production rises sharply for about five months and then slowly re-
verts, eventually falling below zero about one year after the shock. Hence, an
unexpected increase of the curvature factor anticipates a pronounced increase of
the yield curve slope (a fall of the term spread) and at the same time announces a
significant decline of output about one year ahead. This might call for the curva-
ture instead of the slope as an early predictor of recessions.

Altogether, these results challenge conventional wisdom by providing evidence
that unexpected changes of the yield curve slope do not anticipate significant de-
clines of economic activity whereas unexpected changes of the curvature factor
are more informative about the future evolution of output than has previously
been acknowledged. Note that these results are not qualitatively altered by im-
posing the restriction that surprise changes of the three yield curve factors be or-
thogonal. As Figures 4.14 and 4.15 in Appendix A.4 show, the impulse responses
follow identical patterns as for the case of non-orthogonal shocks, but exhibit
slightly wider error bands.

Penalty Function Approach

I'have argued above that the zero restrictions on the initial responses of the yield
curve factors may be implausibly restrictive. I therefore also study scenarios
where one of the three components strongly moves on impact while the initial
responses of the other two are small. This is achieved with the penalty function
approach described in Section 4.4.1 and the surprise changes so identified are la-

beled “strong” level, slope, and curvature shocks, respectively.* Figures 4.16 to

% The results reported refer to H=>5 and H, =0, i.e. the response of the factor of interest is maxi-
mized over the first six months and the response of the remaining two components is restricted
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4.18 in Appendix A.4 summarize the results obtained using the penalty function
approach. Three remarks are in order. First, the impulse responses are qualita-
tively very similar to those obtained using the identification approach with zero
restrictions. Second, individual impulse responses show a more clear-cut behav-
ior. In particular, the hump-shaped pattern of output growth following a “strong”
curvature surprise, and the decline of output subsequent to a strong slope surge
are more pronounced than before. Third, the median impulse responses are esti-
mated with higher precision than using the pure sign restriction approach as the
relatively tight confidence bands indicate. This is not surprising since the penalty
function algorithm selects impulse vectors from a subset of those captured with
the pure sign restriction approach if one abstracts from the small nonzero initial

responses that it allows.

4.5.5 Comparison to Recursive Identification

It has been discussed above that recursive identification schemes common in the
SVAR literature are not appropriate to study the question pursued in this chap-
ter. Nevertheless, it might be instructive to compare the impulse responses ob-
tained using the sign restriction approaches with those from recursive identifica-
tion schemes. Figure 4.19 in Appendix A .4 plots responses of IP growth and CPI
inflation after shocks to the yield curve level, slope, and curvature, respectively.
Solid lines represent the median estimate resulting from the pure sign restriction
approach and dashed lines show estimates from the recursive identification with
the factor of interest ordered last. The confidence intervals are those of the sign re-
striction approach. According to these plots, both approaches yield rather similar
results. The most notable differences are the following. First, with the recursive
identification IP growth turns negative earlier than what is implied by the sign
restriction identification subsequent to shocks on all three yield curve factors. Sec-
ond, the negative response of IP growth subsequent to a slope shock is more pro-
nounced in the recursive identification scheme. Yet, the timing is similar to what
has been found using the sign restriction approach which contradicts previous
regression-based evidence that a decrease of the yield spread announces the be-
ginning of a recession four to six quarters ahead. Finally, subsequent to a positive
curvature shock the recursive method implies a less pronounced response of out-

put growth and a persistent decline of inflation rates below zero.

to be close to zero on impact.
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4.5.6 Impulse Responses to “Typical” Yield Curve Shocks

The last set of results relates to the identification of shocks discussed in Section
4.4.2 above. These shocks have been labeled “typical” in the sense that they ex-
plain as much as possible of the one-step ahead forecast error variance of the
three yield curve components. Figure 4.2 shows that the one-step ahead forecast
errors of level and slope and level and curvature are indeed visibly correlated. Ac-
cordingly, the first eigenvector explains about 70% of the variance of the model-
implied yield curve innovations captured in (). Figure 4.10 provides plots of
impulse responses following the shock that is represented by this eigenvector.
On impact, both level and curvature respond positively while the slope factor
is driven downwards. Hence, longer and medium-term maturities are shifted
up while short maturities fall. Together, these responses imply an initial steepen-
ing of the yield curve. As one would expect, this steepening is paralleled by a
strongly significant increase of output growth. Rising for about four months af-
ter the shock occurs, the growth rate of industrial production then slowly reverts
towards zero and eventually turns negative about one year later. This behavior is
consistent with the subsequent dynamics of the yield curve components. In fact,
after their strong initial reactions, level and the curvature decrease sharply while
the slope factor rises. The yield curve thus becomes successively flatter. Interest-
ingly, inflation does not significantly change subsequent to a typical yield curve
surprise. This indicates that news about the future evolution of output might be

more important for the dynamics of the yield curve than inflationary concerns.

Figure 4.11 reports for some macroeconomic variables and the 5-year yield the
shares of variance explained by the three shocks corresponding to the eigenvec-
tors of ()y,. By construction, the one-step ahead prediction error variance of the
5-year yield is entirely captured by these three shocks. The macroeconomic vari-
ables exhibit similar variance decompositions. Only small fractions of the fore-
cast error variance are explained a few months ahead, but the shares increase
strongly with the forecast horizon, attaining median levels of about 40% to 50%
three years ahead. Altogether, about half of the long-run variation in different
macroeconomic variables is explained by the shocks which summarize the varia-
tion of one-step ahead yield curve surprises. This shows that term structure news
capture important information about the dynamics of macroeconomic aggregates
in the long-run.
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Figure 4.10: Impulse Responses - “Typical” Yield Curve Shock
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This figure plots impulse responses of some selected macro variables and the three yield curve

components to a “typical” curvature shock as defined in Section 4.4.2. Hence, by construction

the shock explains the largest share of the one-step ahead forecast error variance of the three

yield curve factors. Dash-dotted lines indicate the 16% and the 84% quantiles of the posterior

distribution of impulse responses.
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Figure 4.11: Forecast Error Variance Decompositions

This figure plots for some selected macro variables the shares of forecast error variance explained
by the three shocks corresponding to the eigenvectors of (). These shares can be interpreted
as measures of how much information about the future evolution of macroeconomic variables is
embodied in the yield curve. The solid line denotes the median estimate, while dash-dotted lines

indicate the 16% and the 84% quantiles of the posterior distribution of variance decompositions.
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4.6 Conclusion

The yield curve is known to convey information about the future course of the
economy. Moreover, most of the yield curve variation can be described by the
three factors level, slope, and curvature. Although interest rate spreads are com-
monly used as predictors of recessions, the informational content of innovations

of the three yield curve components is largely unstudied. In this chapter, I have
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therefore systematically analyzed the predictive information carried by surprise
changes of the yield curve level, slope, and curvature.

The main result of my study is surprising: unexpected changes of the curvature
are quite informative about the future evolution of the term structure and the
prospective dynamics of output. In particular, surprise surges of the curvature
factor precede a pronounced flattening of the yield curve. At the same time, out-
put growth follows a hump-shaped pattern, significantly falling below zero about
one year after the shock. In contrast, unexpected increases of the slope factor -
tantamount to diminishing yield spreads - are followed by an immediate but not
very pronounced decline of output. According to these findings, a rising slope
factor is associated with a future decline of output, but is announced by changes
of the curvature factor. This qualifies curvature as a forward-looking indicator.
The results obtained for the level factor are more consistent with conventional
wisdom. In particular, surprise surges of the yield curve level are followed by a
strong and persistent increase of inflation rates. All results remain qualitatively
unchanged when different identification schemes are applied.

My findings suggest a few promising lines of future research. First and foremost,
a regression analysis should be carried out to assess whether the curvature fac-
tor can indeed be used as a forward-looking indicator and how it compares to
term spreads. Second, the model can be employed to forecast yields making use
of the common dynamics of term structure and macroeconomic factors. In par-
ticular, it would be interesting to compare its forecast performance with that of
models which exclusively employ term structure (Diebold and Li 2006) or macroe-
conomic dynamics (Monch 2005, Chapter 3). Third, including the federal funds
rate as an additional factor, one could disentangle expected and unexpected mon-

etary policy actions and study their effects on macroeconomic variables.
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Additional Tables and Figures

This figure provides plots of the estimated macro factors obtained using five different sets of

randomly generated starting values.
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Figure 4.13: Yield Factors - Different Starting Values

This figure provides plots of the estimated yield factors obtained using five different sets of ran-
domly generated starting values.
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Figure 4.14: Orthogonal Yield Surprises and Subsequent Yield Dynamics

This figure plots impulse responses of the yield factors level (upper row), slope (middle row), and

curvature (lower row) to orthogonal surprises identified with the “pure” sign restriction approach.

Hence, in addition to imposing the sign and zero restrictions discussed above, the three identified
shocks are required to be orthogonal. Dash-dotted lines indicate the 16% and the 84% quantiles

of the posterior distribution of impulse responses.
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Figure 4.15: Orthogonal Yield Surprises and Subsequent Macro Dynamics

This figure plots impulse responses of the quarterly growth rate of industrial production (upper
row), annual CPI inflation (middle row), and the quarterly growth rate of M2 (lower row) to
orthogonal yield curve surprises. Dash-dotted lines indicate the 16% and the 84% quantiles of the

posterior distribution of impulse responses.
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Figure 4.16: Impulse Responses - “Strong” Level Surprise

This figure plots impulse responses of some selected macro variables and the three yield curve
components to a “strong” level surprise as defined in Section 4.4.1. Hence, the response of the
level factor is restricted to be positive over the first six periods after the shock occurs while the
responses of the slope and curvature factors are restricted to be small on impact. Dash-dotted
lines indicate the 16% and the 84% quantiles of the posterior distribution of impulse responses.
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Figure 4.17: Impulse Responses - “Strong” Slope Surprise
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This figure plots impulse responses of some selected macro variables and the three yield curve

components to a “strong” slope surprise as defined in Section 4.4.1. Hence, the response of the

slope factor is restricted to be positive over the first six periods after the shock occurs while the

responses of the level and curvature factors are restricted to be small on impact. Dash-dotted lines

indicate the 16% and the 84% quantiles of the posterior distribution of impulse responses.
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Figure 4.18: Impulse Responses - “Strong” Curvature Surprise

This figure plots impulse responses of some selected macro variables and the three yield curve
components to a “strong” curvature surprise as defined in Section 4.4.1. Hence, the response
of the curvature factor is restricted to be positive over the first six periods after the shock occurs
while the responses of the level and slope factors are restricted to be small on impact. Dash-dotted
lines indicate the 16% and the 84% quantiles of the posterior distribution of impulse responses.
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Figure 4.19: Sign Restriction (solid) vs. Recursive Identification (dashed)

This figure contrasts impulse responses of selected macro variables and the three yield curve

components to shocks identified using different approaches. Red solid lines indicate median

responses to “pure” yield curve surprises as defined above whereas blue (dashed) lines show

median impulse responses obtained using a recursive identification scheme with the respective

yield factor ordered last. Dash-dotted lines refer to the 16% and 84% quantiles of the posterior

distribution of the sign restriction approach.
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5 Towards a Monthly Business Cycle
Chronology for the Euro Area

with Harald Uhlig

This chapter is an exercise in dating the Euro area business cycle on a monthly basis. Us-
ing a quite flexible interpolation routine, we construct several monthly series of Euro area
real GDP, and then apply the Bry-Boschan (1971) procedure. To account for the asymme-
try in growth regimes and duration across business cycle phases, we propose to extend
this method with a combined amplitude/phase-length criterion ruling out expansionary
phases that are short and flat. Applying the extended procedure to US and European data,
we are able to replicate approximately the dating decisions of the NBER and the CEPR.

5.1 Introduction

Official dating of business cycles has a long tradition in the United States. The
dates of peaks and troughs in the US economy’s activity are officially announced
by the Business Cycle Dating Committee of the National Bureau of Economic Re-
search (NBER). According to the committee, a peak in activity determines the
beginning of a recession which is defined as “a significant decline in economic activ-
ity spread across the economy, lasting more than a few months, normally visible in real
GDP, real income, employment, industrial production, and wholesale-retail sales”, see
“The NBER’s Business-Cycle Dating Procedure”, Business Cycle Dating Commit-
tee, National Bureau of Economic Research, October 2003. In accordance with
this definition, the Business Cycle Dating Committee is predominantly basing
its judgment on the behavior of four monthly observable economic time series:
total employment, real personal income less transfer payments, price-adjusted
total sales of the manufacturing and wholesale-retail sectors, and industrial pro-

duction. Since real GDP is only measured quarterly, it plays a minor role in the

134
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judgment of the Business Cycle Dating Committee. Information from other eco-
nomic time series may also influence the decision of the committee, albeit with

less weight.

Although the Business Cycle Dating Committee does not specify in more detail
the method employed to date peaks and troughs, it seems to be following the tra-
ditional NBER view of business cycle behavior as described in Burns and Mitchell
[1946]. Their approach of measuring business cycles consisted in first identifying
turning points in a variety of individual economic time series which usually tend
to cluster around certain dates. In a second step, reference cycle dates for ag-
gregate economic activity were selected from within these clusters on the basis of
different criteria as, for example, bounds on the length and amplitude of business

cycles.

With the creation of the Euro area on January 1st, 1999 and a single currency
in circulation as of January 1st, 2002, it has become of greater urgency to establish
such an official tradition in Europe as well. Therefore, the Centre for Economic
Policy Research (CEPR) has recently formed a committee to set the dates of the
Euro area business cycle in a manner similar to the NBER. Taking into account the
particular features of the Euro area as a group of national economies, the Commit-
tee defines a recession as a significant decline in the level of economic activity, spread
across the economy of the euro area, usually visible in two or more consecutive quar-
ters of negative growth in GDP, employment and other measures of aggregate economic
activity for the euro area as a whole, and reflecting similar developments in most coun-
tries, see “Business Cycle Dating Committee of the Centre for Economic Policy
Research”, CEPR, September 2003. To make sure that expansions or recessions
are widespread over the countries of the area, the CEPR bases its judgment on
euro area aggregate statistics as well as country statistics. Further, the committee
has decided to date the Euro area business cycle in terms of quarters rather than
months, arguing that the most reliable European data for dating purposes are
available only on a quarterly basis. However, being well aware of the scarcity of
appropriate historical monthly time series for most of the European countries, we
think that it is nevertheless useful to establish a monthly business cycle chronol-
ogy also for the Euro area. In fact, if the figures in some quarterly time series are
viewed as the average or sum of the three consecutive months in a quarter, then

dating on the quarterly level amounts to identifying turning points in a filtered
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monthly series. Monthly and quarterly dating of the same underlying monthly
series might therefore lead to different results. Hence, dating business cycles at
the monthly level is likely to provide a more precise information about the exact
turning points than quarterly dating. Furthermore, since the state of the econ-
omy is an important variable in empirical models, applications are conceivable
which would require knowledge about the business cycle turning points of the
Euro area on a monthly basis. Thus, applying the highest diligence in interpret-
ing the available data, this chapter aims at filling the gap of a monthly business

cycle chronology for the Euro area.

To arrive at such a chronology, two difficulties must be overcome. First, rather
than examining a plethora of data for each of the months of the last 30 years, an
econometric methodology needs to be found which successfully finds the NBER
dates, and then apply that methodology to European data. Second, appropriate
Euro area data needs to be found. For solving both of these difficulties, we can

build on existing research.

For an econometric methodology, we build on the research which has tried to
reverse-engineer a time-series based methodology replicating the dates chosen
by the NBER. The methodology by Bry and Boschan [1971] is generally consid-
ered to be quite successful at that. We will show that this is indeed the case
in Section 5.3.1, although with some caveats: the Bry-Boschan procedure some-
times finds the exact NBER date, but sometimes only comes close to the official
dates within a few months. Furthermore, the Bry-Boschan treats business cycle
expansions and contractions symmetrically, thus not taking into account differ-
ences in terms of growth and duration across regimes. As a consequence, the
procedure may identify business cycle phases that are implausibly flat. To avoid
this, we therefore propose to augment the Bry-Boschan procedure with a suitable
amplitude/phase-length criterion in Section 5.2.1, ruling out business cycle ex-

pansions that are both short and flat.

To use the Bry-Boschan procedure, one needs a monthly time series for real GDP.
Even for the US, such a time series is not officially available, although one can
construct a pretty good time series with the help of an interpolation procedure
which is described in detail in appendix 6.5.1. We have done so for the exercise
in Section 5.3.1 and discuss the resulting series in Appendix 6.5.2.
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For the Euro area, building a good monthly real GDP time series is more difficult
than for the US for a number of reasons. First, quarterly real GDP for the Euro
area has only been recorded officially as of January 1991. Since our aim is to de-
termine the Euro area business cycle turning points for at least the last 30 years,
we have proceeded to construct a Euro area monthly real GDP series by interpo-
lating and then aggregating appropriate country time series.*’ Even there, data
availability is a serious problem. The details on available data and our construc-
tion are provided in appendix 6.5.3. To check the dating results obtained using
our series we have additionally determined the turning points of two different
monthly interpolations of the Euro area quarterly real GDP series constructed by
Fagan, Henry, and Mestre [2001]. For all three series, the results are very similar,

see Section 5.3.2 for a comparison.

Section 5.4 finally provides a summary of the challenges in improving on this
exercise, discusses limitations and provides the key conclusions.

5.2 Bry-Boschan’s Method and an Extension

Bry and Boschan [1971] provide a nonparametric, intuitive and easily implemen-
table algorithm to determine peaks and troughs in individual time series. Al-
though the method is quite commonly used in the literature, we briefly sketch
its main constituents here. For a detailed description, the reader is referred to
Bry and Boschan’s paper. The procedure consists of six sequential steps. First,
on the basis of some well-specified criterion, extreme observations are identified
and replaced by corrected values. Second, troughs (peaks) are determined for a
12-month moving average of the original series as observations whose values are
lower (higher) than those of the five preceding and the five following months. In
case two or more consecutive troughs (peaks) are found, only the lowest (highest)
is retained. Third, after computing some weighted moving average, the highest
and lowest points on this curve in the +5 months-neighborhood of the before
determined peaks and troughs are selected. If they verify some phase length cri-

teria and the alternation of peaks and troughs, these are chosen as the intermedi-

40 Eurostat has recently launched a project whose aim is the construction of a historical monthly
time series for Euro area real GDP. However, this series has not yet been made officially available.
Moreover, since their approach seems to differ somewhat from ours in terms of methodology;, it

would be interesting to compare the time series propoerties of both series.
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ate turning points. Fourth, the same procedure is repeated using an unweighted
short-term moving average of the original series. Finally, in the neighborhood of
these intermediate turning points, troughs and peaks are determined in the un-
smoothed time series. If these pass a set of duration and amplitude restrictions,

they are selected as the final turning points.

5.2.1 A Simple Combined Amplitude/Phase-Length Criterion for

the Bry-Boschan Procedure

Obviously, as a univariate procedure the Bry-Boschan turning point selection
method is unsuited to take into account information from more than one time
series as is done by the business cycle dating committees of the NBER and the
CEPR. Despite this shortcoming, we would like to stick to the Bry-Boschan algo-
rithm instead of using a multivariate methodology since it is both intuitive and
transparent. In its original form, the method incorporates a minimum cycle and
phase length criterion, restricting business cycles and phases to last at least 15 and
5 months, respectively. Turning points corresponding to cycles or phases that do
not fulfil these criteria are simply deleted. As we will see further below, with the
minimum phase length criterion switched off, the Bry-Boschan procedure identi-
ties two recessions in Euro area real GDP in the early 1980s. On the contrary, with
the minimum phase length criterion switched on it censors the shorter of the two
downturns without taking into account that there has been only a brief period
(19 months) of very moderate growth (annualized growth rate of less than 1.4%)
in between the two phases of declining GDP. Considering also information from
other economic indicators, the CEPR has defined the period starting in the first
quarter of 1980 and ending in the third quarter of 1982 as a long recession, see
5.3.2. During the same time, US monthly real GDP has shown a similar behavior,
tirst falling shortly from January to June 1980, then rising until August 1981 and
declining again until February 1982. Yet, both recessions and the intermediate up-
turn were more pronounced in the US than in the Euro area. For example, US real
GDP grew at an annual rate of 3.3 % in between the trough in June 1980 and the
peak in August 1981. Accordingly, the NBER has dated two distinct recessions

interrupted by a short intermediate upturn.

It is our view that the different patterns that real GDP followed in the US and
in the Euro area in the early 1980s suffice to explain the dating decisions of the
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NBER and the CEPR, without having to take into account further measures of ac-
tivity. We therefore would like to augment the univariate Bry-Boschan procedure
with a combined amplitude/phase-length criterion that embraces both types of
pattern. Such a rule should ensure that business cycle phases that are both short
and flat are suppressed while phases that are short but pronounced are retained.
Hence, it remains to appropriately define what is “short” and what is “flat” in
the present context, and whether the criterion shall apply to business cycle ex-

pansions or contractions.*!

As has already been noted above, the original Bry-Boschan procedure provides
for a minimum phase-length criterion of five months, i.e. once the turning points
in the time series to be dated are determined, business cycle expansions or con-
tractions that are shorter than five months are deleted, independently of their
amplitude. Notice, however, that due to the widely documented asymmetry of
business cycles that is associated with much longer booms than recessions, this
criterion in practice exclusively applies to business cycle contractions. Having
studied the time series behavior of GDP for different countries, it is our view that
episodes shorter than five months occur which can be classified as business cy-
cle contractions without any doubt. In contrast, the length of expansions seems
to be a more distinctive feature of business cycles at least in the postwar period.
In fact, there is a comprehensive literature on the stabilization of business cy-
cles in the US and other industrialized countries in the postwar period (see, e.g.,
Diebold and Rudebusch 1992 and Romer 1994). Our reading of this literature is
that there is widespread agreement that business cycle expansions have been sig-
nificantly longer in the postwar than in the prewar period, while it is not so clear
that business cycle contractions have become shorter over time. We therefore base
our combined amplitude/phase-length criterion that is designed to date postwar

data on the growth rate and length of expansions rather than contractions.

Given this decision, it appears intuitive to designate a “short” business cycle ex-

41 Artis, Kontolemis, and Osborn [1997] suggest a turning point selection procedure similar to the
Bry-Boschan algorithm which incorporates a minimum amplitude criterion. According to their
criterion, phases (peak to trough or trough to peak) are excluded that have an amplitude of less
than one standard deviation of log changes of the series to be dated. This rule is obviously aimed
at use for rather volatile series such as industrial production which Artis et al. [1997] employed
for their dating exercise. However, applied to our (comparatively smooth) monthly real GDP
series for the US and the Euro area, it did not yield the desired exclusion of flat expansions.
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pansion as one that is significantly shorter than the average expansion. We there-
fore define a short expansion as one whose length is outside the one-standard
deviation interval around the average expansion length. Based on the official
NBER business cycle dates, the average length of expansions in the US has been
57 months in the postwar period, with a standard deviation of 36 months. Given
these numbers, the threshold below which a business cycle upturn would be de-

fined as short according to the above criterion is thus 21 months or 7 quarters.*?

By similar reasoning we define a “flat” expansion as an upturn in which the annu-
alized growth rate is significantly lower than the average positive annual growth
rate, i.e. which is outside the one-standard deviation interval around the aver-
age positive annual growth rate.*> Computing this indicator for the US, we find a
value of 2.1 %, whereas for the Euro area it amounts to 1.5 %. In order not to make
our rule excessively restrictive, we take the lower of both values as our threshold
for minimum annual growth in a short business cycle upturn. Altogether, our
combined amplitude/phase-length criterion thus excludes expansions that are
not longer than 21 months and during which the annualized growth rate is lower
than 1.5 %. In practice, applying this criterion amounts to deleting the trough
and peak which mark the beginning and the end of a short and flat expansion,

respectively, in the ultimate step of the Bry-Boschan procedure.

It might be worth noting that Artis, Marcellino, and Proietti [2003] make a similar
point. These authors discuss the usefulness of amplitude restrictions as a censor-
ing device for dating algorithms. Analogously to our reasoning, they conclude
that since expansions are usually longer and characterized by a lower average
drift rate than recessions, different threshold values for amplitude restrictions
should be used for booms and contractions. However, they do not investigate

this issue further and do not provide such a phase-dependent amplitude rule.

42 Obviously, there is some arbitrariness in this choice. Using European data or a longer time span
of US data might have led to a slightly different threshold. Yet, given the well-documented busi-
ness cycle stabilization after world war II and the close correspondence between US and Euro
area business cycle characteristics (see Agresti and Mojon 2001), this choice appears by all means
appropriate.

43 We restrict this indicator to positive annual growth rates since including contractions would ob-

viously result in a biased threshold for low growth during expansions.
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Figure 5.1: Official NBER Dates and Bry-Boschan Dates for the US

This plot allows a visual comparison of official NBER dates and the turning points found by the
Bry-Boschan algorithm. The recessions identified by the NBER are indicated by shaded areas, the
peaks and troughs determined by the Bry-Boschan procedure by vertical bold lines.
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5.3 Monthly Business Cycle Chronologies for the US

and the Euro Area

In this section, we apply the original and augmented Bry-Boschan algorithm to

our monthly real GDP series for the US and the Euro area and compare the results.

5.3.1 The US Dates

As a first check on our procedure and for comparison, we apply the programmed
turning point selection algorithm to US data. To that end, we construct a monthly
time series for real US GDP for the period 1967:1 to 2002:09 (see appendix 6.5.1
for details on the interpolation method) to which we then apply the Bry-Boschan

procedure as well as our augmented version of it.

The results can be seen in a ”birds eye view” in Figure 5.1. The NBER recessions
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Table 5.1: NBER and Bry-Boschan Dates for the US

This table compares business cycle turning points defined by the NBER with those obtained using
the Bry-Boschan algorithm based on our series of monthly real GDP for the US.

Peaks:

Bry-Boschan 69M8  73M11 80M1 81M8 90M3 00M12
Augmented Bry-Boschan 69M8 73M11 80M1 81M8 90M3 00M12
NBER 69M12 73M11 80M1 81M7 90M7  01M3
Troughs:

Bry-Boschan 70M1 75M3 80M6 82M1 91M3 01M7
Augmented Bry-Boschan 70M1 75M3 80Mé6 82M1 91M3 01M7
NBER 70M11 75M3 80M7 82M11 91M3 01M11

have been indicated by shaded areas, whereas the peaks and troughs determined
by the Bry-Boschan procedure are shown as vertical bold lines. As expected, the
dating results for the US do not change by augmenting the Bry-Boschan proce-
dure with our amplitude/phase-length criterion since the short recovery in be-

tween the two recessions in the early 1980s was rather pronounced.

A comparison of the dates is given in Table 5.1. Note that the Bry-Boschan proce-
dure sometimes finds the exact NBER date, but sometimes only comes close to the
official dates within a few months. Further, for those dates that do not coincide,
the Bry-Boschan dates tend to lead the NBER dates slightly, the only exception
being the peak in July 1981. Employment is one of the main four monthly time
series the Business Cycle Dating Committee of the NBER bases its judgement on.
Since employment is known to lag output, this might partly explain the slight
lead in the Bry-Boschan dates. Notice further that when the moving average win-
dow parameter in the first step of the procedure is set to twelve months as in Bry
and Boschan [1971], the procedure misses two complete business cycles towards
the beginning and the end of the sample. However, since our objective has been
to come as close as possible to the NBER dates, we have set the window parame-
ter for the pre-smoothing to eight months. The business cycle dates we propose

for the Euro area have been obtained using the same setting.
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5.3.2 A Monthly Business Cycle Chronology for the Euro Area

The term “Euro area” in this chapter refers to the area of the 12 member countries
of the European monetary union as of January 1st, 2002, including in particular
Greece and Eastern Germany. As already noted above, we perform our business
cycle dating exercise on different monthly time series for Euro area real GDP. The
construction of these series is briefly sketched in Section 5.3.2, and in more de-
tail in appendix 6.5.3. In Section 5.3.2 we present the dating results obtained by
applying the Bry-Boschan turning point selection procedure to these series, and
compare them with the quarterly dates obtained by other authors and those re-
cently published by the CEPR. We discuss the monthly business cycle dates tak-
ing into consideration further aggregate measures of Euro area business activity
in Section 5.3.2 and finally apply the Bry-Boschan procedure augmented with our
amplitude/phase-length criterion in Section 5.3.2.

Monthly GDP Series for the Euro area

For our business cycle dating experiment, we use three different time series for
monthly Euro area real GDP. Our benchmark series is our own series for the pe-
riod 1970:1 to 2002:12. Although the details about the construction of this series
are provided in appendix 6.5.3, we shall briefly outline the main steps here. First,
we have constructed monthly time series for GDP volume for all twelve Euro
area member countries from interpolating appropriate quarterly and annual time
series. For each country separately, we choose the “best” interpolation procedure
among a set of possible specifications of a general model which nests some of the
most commonly used interpolation methods such as the ones suggested by e.g.
Chow and Lin [1971], Fernandez [1981], or Mitchell, Smith, Weale, Wright, and
Salazar [2005]. The general model treats monthly figures of real GDP as the un-
observed component in a state-space model, employing the observation equation
to ensure that quarterly (annual) figures are the averages of three (twelve) con-
secutive monthly observations. We use the Kalman filter to estimate the model
and maximum likelihood ratio tests to select the best specification. As related
variables, we employ monthly series for industrial production, real retail sales,
employment or exports, depending on availability, see Table 6.2. Finally, we ag-
gregate these series to obtain a measure of Euro area real GDP using the same
aggregation method and weights as Fagan et al. [2001], FHM in short, in their
latest update of the ECB’s area wide model dataset.
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Table 5.2: Turning Points for Different Monthly Series of Euro Area Real GDP

This table compares turning points identified by the Bry-Boschan algorithm when applied to our
monthly series of Euro area GDP, a linear interpolation of the quarterly FHM series, and a monthly
interpolation of the FHM series constructed using a chained volume index of aggregate Euro area

industrial production as related series.

Peaks:

Our series 74MS8(QIII)  80M3(QI) 82M4(QII) 92M2(QI)
FHM IP 74AMS(QII)  80M3(QI) 82M4(QIl) 92M2(QI)
FHM lin  74M8(QII)  80M2(QI) 82M5(QII) 92M2(QI)
CEPR 74QI1I 80QI 92Q1
Troughs:

Our series  75M4(QII) 80M9(QIII) 82M7(QII) 93M1(QI)
FHM IP 75M1(QI) 80M9(QIM) 82MS§(QII) 93M4(QII)
FHM lin 75M2(QI) 80MS(QII) 82MS8(QIII)  93M2(QI)
CEPR 75QI1 82QIII 93QIII

The other two series are based on interpolations of the quarterly real GDP series
constructed by FHM which has recently been updated. The first is a linear interpo-
lation, viewing the quarterly data as referring to the middle of the three months in
a quarter. The second has been constructed by interpolating the quarterly FHM
series employing the interpolation method described in appendix 6.5.1. As re-
lated series, we have used an aggregate monthly chained volume index series
for Euro area industrial production, which we have constructed using the same

weights and aggregation method as FHM for their area-wide model dataset.**

The Euro Area Dates

Applying the original Bry-Boschan procedure, we obtain the results listed in Ta-
ble 5.2. As can be seen from the dating results, the original programmed turn-

ing point selection procedure finds four business cycles for all three series.*® A

% Since there is no such series for Ireland covering the entire sample period, we have omitted Ireland
from this aggregate.

45 Notice that the minimum phase length criterion included in the original Bry-Boschan procedure
has been set off here. In case this criterion is put on, the third cycle is censored for all three series
since the corresponding recession is always shorter than 5 months.
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visual “birds-eye” view of the dates obtained for our own monthly time series
is provided in Figure 5.2. Concerning the exact dates of the identified turning
points, there is a surprising agreement between the three series: three out of four
peaks found in our series coincide exactly with those obtained from the monthly
interpolation of the FHM series using aggregate industrial production as related
variable, and the dates of the third peak only differ by one month. Further, in
terms of quarterly business cycle peaks, those dates are fully consistent with the
ones obtained using the linear interpolation of the FHM series. There are only
slight differences when the identified business cycle troughs are concerned, the
maximum deviation between our series and the instrumental variable interpola-
tion of the FHM series being three months. For the first and the fourth trough,

however, this deviation results in a different quarterly turning point.

The quarterly turning points can be compared with the dating results obtained
by other authors and the turning points recently provided by the CEPR. Let us
begin the comparison by considering first the findings of other authors. Krolzig
[2001] employs a univariate Markov-switching model for Euro area quarterly
GDP growth using the time series constructed by Beyer, Doornik, and Hendry
[2001] which covers the post-1979 period. Over that time span, he identifies two
business cycles with peaks in 1980QI and 1992QI, and troughs in 1981QI and
1993Q, respectively. Hence, for the identified cycles, there is a close correspon-
dence with our results, the only difference being the trough in 1980. Interestingly,
however, Krolzig’s (2001) procedure indicates that the Euro area has experienced
only one complete cycle in the 1980s.%® As will be discussed in Section 5.3.2 below,
we come to the same conclusion by studying the time series behavior of further

business-cycle related variables.

Employing a business cycle dating method called “ABCD approach”, Anas and
Ferrara [2004] determine business cycle turning points for the Euro area using
Eurostat’s aggregate GDP series starting in 1995 and own backward calculations
before. They find their method to deliver similar results as e.g. Krolzig [2001] and
Anas, Billio, Ferrara, and Duca [2003]. The latter paper, using the same method-

46 Note that Krolzig [2001] finds very similar results using a multivariate Markov-switching model
for GDP growth rates of eight Euro area member countries. Notice further that Anas and Ferrara
[2002] find a very recent business cycle peak in 2001QI by extending the univariate analysis in
Krolzig [2001] up to 2002QI1.
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Figure 5.2: Real GDP and Business Cycle Turning Points for the Euro Area

This figure shows turning points for the Euro area business cycle based on our monthly series
for real Euro area GDP. The recessions identified by the CEPR are indicated by shaded areas,
the peaks and troughs determined by the original Bry-Boschan procedure by vertical bold lines.
The quarterly CEPR dates have been interpreted as monthly turning points by taking the middle
month of the respective quarter as the monthly date. Notice further that the five month minimum

phase length rule in the original Bry-Boschan algorithm has been set off here.
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ology and time series as Anas and Ferrara [2004], identifies four business cycles
over the 1970-2003 period. Although they do not correspond exactly, the quar-
terly turning points found by Anas et al. [2003] are rather similar to the ones

identified in this chapter, differing by one quarter at the most.

Applying a quarterly version of the Bry-Boschan procedure to the previous re-
lease of the quarterly FHM series, Harding and Pagan (2001b) and Artis et al.
[2003] both obtain slightly different results as we do using interpolations of the
latest update of the FHM series.*” However, applying the Bry-Boschan algorithm
to the linear interpolation of the previous version of the quarterly FHM series,

47 The latest update of the ECB’s area-wide model database has been made available in November
2003 and differs from the previous one in a number of respects : the inclusion of Greece, new
availability of data including ESA95 data, revisions to historical data and the interpolation of

quarterly historical data using a methodology similar to the one employed here.
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we obtain exactly the same dates as Harding and Pagan (2001b) and Artis et al.
[2003]. In fact, dating the old version of the FHM series results in business cycle
troughs in 1981Q1 instead of 1980QIII and 1982QIV instead of 1982QIIL*® This
difference emphasizes the importance which exerts the construction method of
the employed time series on the dating result. Moreover, the fact that the latest
update of the FHM series exhibits turning points which are much more similar to
the ones obtained using our series than those of the previous FHM release, clearly

underscores the usefulness of our series as a measure of monthly Euro area real
GDP.

Examining the Individual Dates

According to the dating results discussed so far, all measures of Euro area GDP
that are available to us seem to support the view that the Euro area has experi-
enced four cycles since 1970. Interestingly, however, the CEPR has only identi-
tied three business cycles over the same period, considering the short cycle in the
early 1980s as a long recession, see Table 5.2. In its inaugural release, the business
cycle dating committee of the CEPR notes:

The third recession, in the 1980s, exhibits different and specific characteristics. The re-
cession in terms of aggregate output is milder but longer. GDP does not decline sharply
but rather stagnates for almost three years. Our dating is thus based on the behaviour of
employment and investment which, unlike GDP, declined sharply during the period. In
this episode, we also observe more heterogeneity in output dynamics across the three large
economies than in the other two recessions. That affects our designation of the date of the
trough, in particular.

To assess whether there have been one or two cycles in the 1980s, we therefore
follow the business cycle dating committee by examining further relevant time
series. Figure 5.3 provides plots of Euro area aggregates for industrial produc-
tion, real retail sales, employment, and investment, the latter two being linear
interpolations of the quarterly series constructed by Fagan et al. [2001] for the

ECB’s area wide model.* Eye-ball checking is sufficient to see that Euro area

8 It may be worth noting that Artis et al. [2003] find the same turning points for the post-1979 period,
employing the quarterly real GDP series for the Euro area provided by Beyer et al. [2001] which
only covers the post-EMU period.

49 Notice that due to the limited data availability, the aggregate IP series does not include Ire-
land. The aggregate retail sales series is constructed using data from Belgium, Finland, Germany,

Greece, Ireland, and the Netherlands. The aggregation method is the same as the one that has
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Figure 5.3: Related Monthly Indicators for the Euro Area

This figure plots the aggregate related monthly series for the Euro area. The shaded areas indicate
the recession periods identified by the Bry-Boschan procedure based on our monthly series of
aggregate GDP. The IP series is obtained from aggregating monthly IP series for all Euro area
member countries except Ireland. The aggregate retail sales series is constructed using data from
Belgium, Finland, Germany, Greece, Ireland, and the Netherlands. The aggregation method is the
same as the one that has been used to construct the GDP series.
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employment, investment, and retail sales clearly have exhibited one pronounced
cycle in the 1980s instead of two short cycles. The aggregate IP series shows a
slightly less clear-cut behavior, declining sharply from March 1980 to September
1980, remaining almost constant until April 1982, and then falling again sharply.
A central feature of business cycles is the common movement of different mea-
sures of economic activity. Given that three such variables in the Euro area clearly

exhibit only one cycle in the 1980s instead of two, and that industrial production

been used to construct the GDP series.
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does not regain its pre-March 1980 level until 1985, it thus appears appropriate
to consider the period between early 1980 and mid 1982 as a long recession even
though GDP has recovered slightly in between these dates.>

Interestingly, although Euro area industrial production and investment clearly
have experienced a peak towards the end of 2000 (see Table 5.3), the Bry-Boschan
procedure does not identify a business cycle peak in real GDP around that time.
Indeed, all three monthly time series of Euro area real GDP remain more or less
constant in 2001 and start rising again in early 2002. Accordingly, the short-term
moving averages of the respective series are rather flat, hence explaining why the
Bry-Boschan procedure does not identify a turning point. Thus further data ob-
servations will have to be awaited before it can doubtlessly be decided whether

there has been a business cycle peak in Euro area real GDP around 2001.
Applying the Augmented Bry-Boschan Method

To assess whether our combined amplitude/phase-length criterion is able to iden-
tify this feature of the data, we now apply the augmented Bry-Boschan procedure
to the three monthly time series of Euro area real GDP. A visual representation
of the outcome of this exercise is provided in Figure 5.4, while the corresponding
business cycle chronologies are stated in Table 5.3. As can be seen from these
results, the extended algorithm identifies the two short recessions in the 1980s
connected by a very brief and moderate upturn as a long recession, and thus

matches very closely the dating decision of the CEPR.

Rather than dating the Euro area business cycle, some recent studies have fo-
cussed on the European business cycle, thus also considering countries that are
not member of the European Monetary Union, as for example the UK. Apply-
ing a multivariate Markov-Switching model to quarterly GDP growth rates of
six European countries including the UK, Krolzig and Toro [2002] identify three
cycles over the 1970-1996 period, with business cycle peaks in 1974QI, 1980QlI,
and 1992Q]II, and troughs in 1975QII, 1982QIV and 1993QlI]I, respectively. These

dates are rather similar to our findings when we apply the amplitude/phase-

%0 According to our measure of monthly GDP for the Euro area, output grew only about 2.2 % in
between the two peaks identified by the Bry-Boschan procedure in September 1980 and April
1982. This corresponds to an annual rate of less than 1.4 % which appears unusually low for
a business cycle upturn. During the same period, the quarterly FHM series grew about 1.45 %
corresponding to an annual rate of less than 1%.
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Figure 5.4: Monthly Real GDP and Turning Points for the Euro Area

This figure shows the turning points of the Euro area business cycle based on our monthly se-
ries for Euro area real GDP. The Bry-Boschan algorithm has been augmented with the combined
amplitude/phase-length criterion discussed above. The recessions identified by the CEPR are
indicated by shaded areas, the peaks and troughs determined by the Bry-Boschan procedure by
vertical bold lines. The quarterly CEPR dates have been interpreted as monthly turning points by
taking the middle month of the respective quarter as the monthly date.
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length criterion. This might indicate that UK GDP has experienced a more pro-
nounced downturn in the early 1980s whereas Euro area member countries such
as Belgium and the Netherlands that are excluded from Krolzig and Toro’s (2002)
dataset, contributed to the long and flat expansion distinctive for Euro area GDP
in the early 1980s.

5.4 Conclusion

We have performed an exercise in dating the business cycle in the Euro area from
1970 to 2002 on a monthly basis. We construct several monthly European real
GDP series, and then apply the Bry-Boschan (1971) procedure. The Bry-Boschan
procedure comprises a censoring rule which treats business cycle expansions and
contractions symmetrically without taking into account the differences in aver-

age drift rate and duration across regimes. To overcome this shortcoming, we



5. A MONTHLY BUSINESS CYCLE CHRONOLOGY FOR THE EURO AREA 151

Table 5.3: CEPR Dates and Modified Bry-Boschan Dates for the Euro Area

This table summarizes the turning points identified by the augmented Bry-Boschan algorithm
when applied to our monthly series of Euro area GDP. Further, the quarterly turning points deter-

mined by the CEPR are provided.

Peaks:

Our series  74MS8(QIII) 8OM3(QI)  92M2(QI)
FHMIP  74MS(QII)  80M3(QI)  92M2(QI)
FHM lin 74M8(QIII) 8OM2(QI)  92M2(QI)

CEPR 74QI1I 80QI 92Q1
Troughs:

Our series  75M4(QI)  82M7(QII)  93M1(QI)
FHM IP 75M1(QI)  82MS§(QIII)  93M4(QII)
FHM lin 75M2(QI)  82MS(QIII)  93M2(QI)
CEPR 75Q1 82QIII 93QIII

propose a combined amplitude/phase-length criterion for the Bry-Boschan pro-

cedure that rules out expansionary phases which are short and flat.

For US data, we show that this procedure comes close to replicating the official
NBER dates. For European data, a number of additional issues needed to be re-
solved. In particular, a monthly real GDP series had to be constructed, to which
to apply the Bry-Boschan procedure. We have constructed such a series by first
interpolating quarterly and annual GDP series for individual countries, using
different monthly available variables as instruments. In a second step, we have
aggregated the individual interpolated series to obtain a monthly real GDP series

for the Euro area.

As a cross-check on the dating results obtained using our series of monthly Euro
area real GDP, we have constructed two alternative series. We find a surprising
agreement between the dating results obtained from the three different series.
However, since our benchmark series has been constructed using information
contained in a number of different monthly available instruments, we think this
series reflects the monthly variation of business activity in the Euro area most ap-

propriately.
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The original Bry-Boschan dating procedure has identified four peaks and four
troughs over the period 1970 to 2002, see Table 5.2. Yet the two contractions and
the interjacent expansion identified in the early 1980s are not very pronounced.
We have therefore examined other measures of business activity in order to as-
sess whether the Euro area has experienced one or two cycles in that period. As
all these series do exhibit only one complete cycle during that time, we consider
the period of very low GDP growth in the early 1980s as a long recession. Apply-
ing the Bry-Boschan procedure augmented with our combined amplitude/phase-
length criterion to the different monthly GDP series for Euro area, we are able
to replicate this feature and match the turning point decision of the CEPR quite
closely.

It is important to keep in mind that the Bry-Boschan procedure cannot detect
peaks and troughs very close to the beginning or the end of the sample. In par-
ticular, the procedure may have missed turning points in the Euro area since mid
2002. However, the methodology applied in this chapter can be easily used to
determine more recent turning points of the Euro area business cycle when new
data becomes available. Moreover, the flexibility of our approach to construct a
monthly time series of real GDP for the Euro area makes it readily applicable in

case of future enlargements of the European Monetary Union.
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6.1 Technical Appendix to Chapter 2

6.1.1 Estimation of the Common Factors

To extract the common factors from the panel of 132 macroeconomic time series
for the US, I employ the method popularized by Stock and Watson [2002a,b]. Un-
der the normalization F'F/T = I, Stock and Watson show that for large M
and T the space spanned by the common factors can be consistently estimated
by the principal components of the cross-sectional variance-covariance matrix of
the data. Precisely, let V denote the eigenvectors corresponding to the g largest
eigenvalues of the TXT cross-sectional variance-covariance matrix XX’. Then,

estimates F of the factors and A of the factor loadings are given by

= VTV
and A = VTXV,

T

i.e. the common factors are estimated as /T times the g largest eigenvalues of the

variance-covariance matrix XX'.

In practice, the true number g of common components is not known and there-
fore needs to be estimated. This is done using the panel information criteria de-
veloped by Bai and Ng [2002]. Using the MATLAB code provided by Serena Ng on
her website,”! I obtain an estimate of the true number of factors. Precisely, I em-
ploy the BICj3 criterion considered by Bai and Ng [2002] which the authors note
to be useful in practice since it has particularly good properties in the presence
of cross-correlations. This criterion delivers an estimate of § = 8 for the panel of

monthly time series and of § = 7 for the quarterly panel.

6.1.2 Estimation of the Pricing Model and Diagnosis Tests

After the factors are extracted from the panel of macro time series, they are indi-
vidually used as instruments in tests of the conditional CAPM. In this section, I
provide details on the estimation of the model and on the test statistics based on
which the performance of different model specifications has been compared. The
models are estimated using Hansen’s (1982) Generalized Method of Moments

5T http:/ /www-personal.umich.edu/~ngse/research.html
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(GMM) which I describe in some detail in Section 6.1.2. To facilitate compari-
son with previous studies, I also provide results from cross-sectional regressions.
These are briefly sketched in Section 6.1.2.

GMM Estimation

Factor pricing models formulated using the SDF terminology give rise to a set of
moment conditions that can be used for estimation via the Generalized Method of
Moments (GMM). To obtain parameter estimates of my conditional pricing mod-
els, I closely follow Cochrane (2001, chapter 13) who provides a nice overview of
how the GMM procedure can be applied in practice. Any model of the form (2.4)

implies a vector of pricing errors
g(b) = E [V'fiRs —1]

with sample analog
T

gr(b) =) (V'fiRi —1).

t=1
If the model is valid, the pricing errors must be zero. The GMM procedure uses
this condition to choose parameter estimates b which minimize the weighted sum
of squared pricing errors
Jr = gr(b)' Wrgr(b),

where Wr is some weighting matrix. Hansen [1982] shows that estimates b are
efficient if the weighting matrix Wy = S ! is used, where St is a consistent esti-
mator of S = [T Cov(g7)]. As St is a function of gr which depends on b, estima-
tion of the parameters in optimal GMM proceeds in two steps. In the first stage,
the weighting matrix Wr = I is used and the second stage has Wy = S~1. The

corresponding parameter estimates are given by
First stage :b; = (d'd)"'d'Er(p) (6.1)
Second stage :b, = (d'S7'd)"'d'ST'Er(p), (6.2)
where E7(p) = 1n is a N x 1 vector of ones and where d’ = 1 (f'R) is the sample

mean of the product of returns R and the pricing factors f of the unconditional
model.%? To obtain an estimate of S, I follow Cochrane (2001, p- 221) and use the

52 Recall that the expected discounted value of a gross return is always equal to one, hence E7(p) =
1N. In case excess returns are used to estimate the models, Er(p) would equal a vector of zeros.
This in turn would result in an identification problem and the procedure would have to be slightly
adjusted. See Cochrane (2001, pp. 256-258) for details.
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Bartlett estimate
£ k— ’] | 1 L /
St = Z — U} = Z(”f”t—j)r (6.3)
& k T =
j=—k t=1
with a window size of k=12. Here, u denotes the vector of pricing errors implied

by the first stage parameter estimates b;.

Based on the second-stage estimates, a test for the null hypothesis that the pricing

errors are jointly zero is given by the J-statistic:
TJ(b) =T gr(b)' S7' gr(b) ~ x*(N—k), (6.4)

where N denotes the number of moment conditions, equal to the number of test

assets, and k the number of parameters to estimate.

The weighting matrix Wr=S !is model-dependent since it assigns bigger weights
to assets with small variances in their pricing errors and smaller weights to as-
sets with large variances in their pricing errors. Hence, comparisons of model
fit based on the statistic J1 are infeasible. Hansen and Jagannathan [1997] have
therefore suggested to employ a weighting matrix that is identical across different
models. In particular, they propose to use as weighting matrix the inverse of the
second moments of asset returns Wy = E[RR’]~! which implies bigger weights
for assets with small variance and smaller weights for assets with large variance.
Using the HJ weighting matrix, I obtain estimates by; of the model coefficients
from

by = (d’E[RR’]_1d>_1 d'E[RR']"E7(p). (6.5)

The J-test then becomes
Jry = gr(bay)’ Cov(gr(buy)) " gr(buy) ~ X*(N —k), (6-6)

where g7 (by 7) denotes the vector of average pricing errors implied by @H] and
Cov(gr(bpy)) their sample covariance. The latter is given by

COU(gT(I;H])) = %(IN —d(d/WTd)_lleT)ST(IN —d(dIWTd)_ld/WT),, (6.7)

where ST now denotes the Bartlett estimate of the spectral density matrix of the
pricing errors implied by by (see e.g. Cochrane 2001, p. 255 or Hodrick and
Zhang 2001, p. 335).

Another test statistic suitable for model comparisons is the Hansen-Jagannathan
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distance measure which denotes the minimum distance between the pricing ker-
nel implied by a model and the set of true stochastic discount factors. The H]J-

distance is given by

5 = (gr(bry)’ EIRR™ gr(bp)) " 6.8)

Jagannathan and Wang [1996] show that the asymptotic sampling distribution
of the HJ-distance equals a weighted sum of (N — k) x?(1)-distributed random

variables. The weights are given by the N —k nonzero eigenvalues of the matrix
A = SYPWYY (1 - WY 2d(d wrd) w2 ) WYY, (69)

where W%/ % and S%r/ 2 denote the upper-triangular Choleski factors of the weight-
ing matrix Wr and the spectral density matrix of the model-implied pricing er-
rors St. To obtain the p-value for the HJ-distance, I simulate this weighted sum
100,000 times.

To test for parameter instability in the relationship between the pricing factors
and the returns on the test assets, I apply Andrews’ (1993) supLM test for struc-
tural breaks. More precisely, I compute Andrews’ L M-statistic at increments of
0.05 over the interval [0.15 ; 0.85] and report as supLM the supremum of these
statistics. The L M-statistic is given by

T

MM = 2

gr(m)'Spld(d'sy'd) " 1d'S g (), (6.10)

where g7 (7) denotes the pricing errors implied by the optimal GMM estimator
averaged over the period t = {1, ..., T} and where St denotes the correspond-
ing spectral density matrix. The judgment whether a model fails or passes the
supLM test is based on the distribution tables provided in Andrews [1993].

Cross-Sectional Regressions

Pricing models of the form (2.4) imply an unconditional multifactor beta represen-
tation for returns as given in (2.10). Based on this formulation, the model can be
consistently estimated using the cross-sectional regression methodology of Fama
and MacBeth [1973]. The Fama-MacBeth procedure works in two steps. First,
estimates of the risk exposures f3; f, are obtained from time-series regressions of

individual returns on the pricing factors, i.e.

R; = ,Bz',flfl +...+ ﬂBi/fkfk + «;. (6.11)
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In a second step, the price of risk parameters 7, are estimated by running for
each time period a cross-sectional regression of the vector of returns on the betas,
ie.

R = vfiBif + -+ ViiBis, + €t (6.12)
Estimates and standard errors of the unconditional factor risk premiay = (74, ..., 75)
are obtained by computing time series averages and the associated sample vari-

ances of the 4y, i.e.

1 T
(A PO (613)
A 1<
Bro = @ L) (614)

Since the regressors f3; f, are estimated in the first step, the Fama-MacBeth method
suffers from an errors in variables problem. Shanken [1992] derives a correction
term for the variance estimate that is designed to adjust for the bias. In particular,
he shows that

VT(4—7) ~N (o, (1+4'8:19) - £y + zf) , (6.15)

where % r denotes the sample covariance of the pricing factors.

To evaluate the overall model performance in the Fama-MacBeth setup, one can

compute the cross-sectional R-square following Jagannathan and Wang [1996] as

Varc(R;) — Varc(a;)
Var,. (Rz) '

where Var. denotes the cross-sectional variance, &; is the time-series average of

R? = (6.16)

the pricing error for asset i, and R; is the time series average of the return on asset
i. I report the R? statistic as well as its degrees of freedom-adjusted counterpart

for each of the tested models.

I further test whether the average pricing errors are jointly zero. Following Cochrane
(2001, p. 246), let

1T T
&:Tt;“t and Cov(a ;at—zx V(o — &)

denote the vector of model-implied average pricing errors and its sample covari-

ance matrix. Then, the Chi-square statistic

Jo =& Cov(&) ta~ xy}(N—1) (6.17)
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can be used to assess whether the average pricing errors are jointly equal to zero.
I report J,-statistics and the corresponding p-values as a complementary model

diagnosis to the cross-sectional R?.
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6.2 Technical Appendix to Chapter 3

6.2.1 Derivation of the Bond Pricing Parameters

The absence of arbitrage between bonds of different maturity implies the exis-

tence of the stochastic discount factor m such that

Pt(n) = Et[mt+1 Pt(—tl_l)]’

i.e. the price of a n-months to maturity bond in month ¢ must equal the expected
discounted price of an (n—1)-months to maturity bond in month (f+1). Follow-
ing Ang and Piazzesi [2003], the derivation of the recursive bond pricing param-

eters starts with assuming that the nominal pricing kernel m takes the form
_ L /
myy1 = eXp(—T"t — E)LtQ)\t — /\tCUt_l’_l)

and by guessing that bond prices P are exponentially affine in the state variables
Z,1.e.
Pt(”) = exp(Ay + B, Z).

Plugging the above expressions for P and m into the first relation, one obtains

Pt(n) = Et[mt+1 Pf(—tl_l)]

1
= E; exp(—rt—i)\;QAt — AMpwyy1) exp(An_1+B),_1Zi41)
1
= eXp(—T’t—E/\QQ)\H'An—l) E; [exp(—AthH—i—B;_l(y + D7 + wt—l—l))]

1
= exp(—ri =5 MO+ A, 1 +B, 14 +B,_ PZe) Er[exp((—At+By_1)wpi1)]

Since the innovations w of the state variable process are assumed Gaussian with

variance-covariance matrix (), it is obvious that

Iy [exp((—Af + By _y)or1)] = B [In(exp((—Af + B _)eor )] +
SVar, (In(exp((—Af + B_1)wri1))

1
= 5 [MOQA —2B, 1OM + B, 0B, 1]
1 1

= SMOA =B, QA+ 5B 108, 1.



6. TECHNICAL APPENDIX TO CHAPTER 3 173

Hence, E; [exp((—A; + B, )wii1)] = exp(3A1QA; — B, QA + B!, [ QB,_1)
and thus

1
Pt(n) = exp(—rt — E)\;Q/\t +A 1+ Bizfl.u + B;lflq)ziL RIEEE
1 1

+§/\£Q)\t — B, _1OA + EB;_lﬂBn,l).
Using the relations ry = 6’Z; and Ay = Ag + A1 Z;, and matching coefficients finally
yields
P\ = exp(An + BLZ)),
where

1
A, = A1+ B;_l(}l — Q)\()) + EB;[—lQanll
and B, = B, {(®—-QA;) -7

These are the recursive equations of the pricing parameters stated in (3.7)-(3.8).

6.2.2 Estimation of the No-Arbitrage FAVAR Model

Estimation of the No-Arbitrage Factor-Augmented VAR model proceeds in three
consecutive steps. First, I extract the common factors from the panel of 160
monthly time series using the method of Stock and Watson [2002a,b] which has
been described in detail in Section 6.1 above. The extracted factors are then
treated as if they were data, and estimation of the term structure model is per-
formed using the consistent two-step approach suggested by Ang et al. [2006].
This method involves first the estimation of the parameters (y, ®, %) by running
OLS regressions individually on each of the equations of the VAR(p) in (3.4). In
a second step, then, the market price of risk parameters (Ao, A1) are estimated by
minimizing the sum of squared pricing errors implied by the model. Precisely, I
compute the model-implied yields %n) = 4, + b/, Z; based on the recursive for-
mulae in (3.7) and (3.8) holding the FAVAR parameters (y, ®, %) fixed, and mini-
mize the sum of squared pricing errors stated in (3.10) with respect to Ag and A;.
Computationally, this is achieved using the MATLAB function Isgnonlin which im-
plements a subspace trust region method that is based on the interior-reflective
Newton algorithm.>

53 See the MATLAB documentation for more details.



174

Due to the recursive formulation of the parameters of the affine model, the mini-
mization problem is highly nonlinear. It is therefore helpful to find sensible start-
ing values to initialize the algorithm. I achieve this using the following strategy.
First, I set to zero all elements of the matrix A; to obtain initial estimates of the
parameters in Ag. Then, I take these estimates as starting values in a second es-
timation step, i.e. I let all elements of Ay and A; be estimated freely. Finally, to
enhance tractability of the model, I follow an approach common in the affine term
structure literature, and re-estimate the model after setting to zero those elements
of A1 which are insignificant. To assess significance, I compute standard errors of
the prices of risk parameters via the numerical gradient of the sum of squared

titting errors that is delivered by the function Isgnonlin.

6.2.3 Implementation of White’s “Reality Check”

White’s (2000) “Reality Check” test is based on a bootstrap resampling from the
forecast errors implied by different forecast models. It can be used to evalu-
ate whether some model has superior predictive ability with respect to one or
more benchmark models. In my application, I use the No-Arbitrage FAVAR
model as the benchmark and compare it with each of the competitor models.
White’s algorithm is based on the stationary block bootstrap of Politis and Ro-
mano [1994a,b]. Given a smoothing parameter g between 0 and 1 and a forecast
period {Tj, ..., T»}, the bootstrap procedure of Politis and Romano involves the

following steps.

(i) Sett = Ty. Draw 6(T;) independently and uniformly from {T1, ..., T>}.

(ii) Increment t. If t > T, stop. Otherwise, draw a random variable U from the
uniform distribution with support [0,1]. If U < g, draw 6(t) independently
and uniformly from {Ty,..., Tp}. If U > g,set0(t)=0(t — 1)+ 1;if0(¢t) > T,
reset to 0(t) = Ty.

(iii) Repeat (ii).

This algorithm delivers blocks of indexes between T; and T, which are of random
length and distributed according to the Geometric distribution with mean block
length equal to 1/g. I follow Hordahl et al. [2006] and use a smoothing parameter
of g =1/12.
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White’s “Reality Check” algorithm proceeds in the following steps:

1. Generate M sets of random indexes using the block bootstrap algorithm
described above. Denote them with {6;(¢),t =Ty,..., T»},i=1,..., M.

2. Compute the series of squared forecast errors of the benchmark model as
fzo,t = —(§t —y1)%t = Tq,...,To. Do the same for the competitor model
and denote the resulting series of squared forecast errors as /1.

3. Form the difference of forecast losses ﬁ = fll,t — fzo,t,t = Ti,..., T, and
compute their average f = % ZtTiTl fi where m = T, — Ty +1.

4. Perform the same for each of the M sets of bootstrapped indexes. For each
i={1,..., M}, denote the average of the forecast loss difference series as fl*
Furthermore, set V = m!/2f and compute V* = m/2(f — f).

5. Compare the sample value of V to the percentiles of V.

I repeat this procedure for each of the competitor models and report the corre-
sponding test statistics V in Table 3.5. Negative figures obviously indicate that
the average squared forecast loss of the benchmark model is smaller than that of
the respective competitor model while positive test statistics indicate the oppo-
site. I perform M = 1,000 block-bootstrap resamples from the prediction error

series to compute the significance of the forecast improvement.
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6.3 Technical Appendix to Chapter 4

This appendix discusses in detail identification and estimation of the Bayesian
factor model suggested in Chapter 4, as well as the methods used to identify the

shocks to the yield curve factors.

For convenience, I restate the main equations of the joint factor model of macroe-

F¥ e
v + v
E €}

conomic and interest rate data.

i) [Ac 0
Yi 0 Ay

or Zt = A Pt —+ e (618)
F¥ F¥ w¥
F F_4 Wy

or F; = CI)(L) F 1 + w:. (6.19)

In a nutshell, a set of N, macro time series stacked in the vector X and a set of
N, yields stacked in the vector Y are driven by two different groups of factors,
F¥ and FY of dimension ky X1 and 3 x 1, respectively. Furthermore, all variables
exhibit idiosyncratic components e¢* and ¢¥ that are assumed to be mutually and
serially uncorrelated, i.e. R = E[e¢'] is a diagonal N x N matrix where N = N;+Nj,.
The two groups of factors are modeled to share common dynamics within a VAR.
The innovations of this VAR are assumed to be contemporaneously correlated, i.e.

QO =EJww'] is a symmetric matrix of dimension (ky+3) x (ky+3).

6.3.1 Identification of the Factor Model

Before discussing how the model (6.18)-(6.19) can be estimated, the restrictions
needed to ensure unique identification of the model parameters and the unob-
served factors have to be stated. Factor models suffer from the well-known prob-
lem of rotational indeterminacy meaning that different rotations of the factors
and model parameters may be observationally equivalent. To illustrate this point,
rewrite model (6.18)-(6.19) as

Z: = APTIPE + ¢
PF, = P®(L)PT'PF_; + Pw;

where P is some non-singular k x k matrix.
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Denoting A=AP!,®=Pd(L)P~ !, F; = PF, and @&; = Pw;, the model can be

rewritten as

Zy = Aﬁt + et (6.20)

F = &)(L)ﬁt_l + ;. (6.21)

This model gives rise to the same likelihood as model (6.18)-(6.19), but implies dif-
ferent parameter and factor estimates. To ensure that one can uniquely identify
the model parameters and the latent factors, one therefore has to impose restric-
tions such that no nonsingular rotation P is feasible. This can be done in the
following way. First, fixing the unconditional variance of the latent factors to be

an identity matrix implies
Var(F;) = I = Var(E;) = PVar(F;)P' = PP

Hence, P has to be orthogonal. Further restrictions on P can be derived from the

structure of the factor loading matrix A. As we have seen above,

Ao A0
0 Ay

which implies a set of zero restrictions. Hence, any rotation A = AP’ must be of

A:(M 9) (6.22)
0 Ay

where A, and [\y are of dimension ky X ky and 3 x 3, respectively. This partic-

the same form

ular structure implies that the orthogonal rotation matrix P must also be block-
diagonal. Accordingly, identification of the joint factor model reduces to separate
identification problems for each subset of factors. For convenience, denote the
upper-left ky x ky block of P with Py, and the lower-right 3 x3 block Py, Consider
first the lower N,, equations of (6.18) corresponding to the observation equations
for the yields. We know from equation (4.2) that the yield loadings are given
by A = [1 (1_€_Tn> (1_€_Tn — e‘T”>] . Any rotation Py, of the yield factors

™m ™m

must preserve this particular structure. It is straightforward to show that this
only holds true for an identity matrix P,,. Hence, the tight parametric structure
imposed by the Nelson-Siegel decomposition of yields ensures unique identifica-
tion of the level, slope, and curvature factors. It thus remains to fix Ay such that

a unique orthogonal rotation matrix Py, of the macro factors is implied. Here, I
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can built on existing results by Geweke and Zhou [1996] who show that in case
the variance covariance matrix of the factors is identity, exact identification is en-
sured by restricting the upper left k, X ky block of Ay to be lower-triangular with
positive diagonal elements. Aguilar and West [2000] extend this “hierarchical”
identification scheme to the case where the factor variances are left unrestricted
but instead the diagonal elements of the the upper left k, x k, block of A, are set
to unity. In the sequel, I stick to that latter identification scheme, i.e. I estimate the
factor variances and restrict the diagonal elements of the upper left k, x ky block

of Ay to be unity.

6.3.2 Estimation using a Metropolis-within-Gibbs Sampler

The Metropolis-within-Gibbs Sampling Algorithm used to estimate the joint dy-
namic factor model of macroeconomic and interest rate data of Chapter 4 involves
several consecutive steps that are briefly sketched in Section 4.3. The objective of
the present section is to describe in greater detail the implementation of the dif-

ferent steps.

For convenience, I restate the notation introduced in Section 4.3. Let§ = (A¥, AY, R, ®, )
denote the set of model parameters. Furthermore, stack all T observations on

yields and macro variables in the vectors Xt = {Xy,..., Xr}and Yr = {Y1,..., Y71},

and let Zr = {Xr, Yr}. Analogously, let Fr = {Fy,..., F;} denote all observations

of the factors F.

The Gibbs sampling algorithm approximates the joint posterior distribution p(6, Fr|Zr)
of the model parameters and the unobserved factors by sampling from the con-
ditional posteriors p(68|Zr, Fr) and p(Fr|Zr,0). The state-space form of dynamic
factor models allows straightforward derivation of the latter. In the model stud-

ied here, a complication arises due to the nonstandard distribution of the expo-
nential decay parameter 7. To overcome this problem, I introduce a Metropolis
algorithm. The details are discussed further below.
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The Gibbs sampler proceeds as follows.
Step 0: Find starting values 6°.
Step 1: Draw P}i) from p(Fr|Z7,001).

Step 2: Draw 6) from p(6|Zr, 1:"#.)).

Steps 1 and 2 constitute one iteration of the sampler, and are repeated until the em-
pirical distributions of ?}i) and 0() converge. The crucial result employed in the
Gibbs sampler is that these empirical distributions converge to the joint marginal
posterior distribution as the number of iterations goes to infinity. Accordingly,
after discarding an initial number of draws (the “burn-in”), sampling from the
known conditional posterior densities of factors and parameters is equivalent to
sampling from their unknown joint posterior distribution. I provide more details

on each of the three steps below.

Find Starting Values 6°

If the model is exactly identified, the algorithm should converge to the ergodic
distribution of the model parameters independently of the choice of initial pa-
rameter values. The estimation results reported in Section 4.5.3 confirm that the
factor estimates are identical for different sets of randomly chosen starting values.
However, to achieve fast convergence of the sampler, it is advisable to choose a
meaningful set of initial parameter values. In the following, I document in de-
tail the individual steps carried out to find starting values for the different model

parameters.

1. I use principal components estimates as starting values for the factors F*
driving the macro variables. That is, I use the method depicted in Section
6.1.1 above to extract the first k, =4 principal components from the panel of

macro time series stacked in X.

2. 1 obtain starting values for the latent yield factors F¥ by setting T = 0.0609
which is the value chosen by Diebold and Li [2006]. The entries of A are
completely determined by 7 and the maturities n of the yields stacked in
Y. Given the loadings, estimates of the factors can therefore be obtained
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by regressing period by period the vector of yield observations onto the
loadings Ay, ie. B = (A/Ay) 'AY: Vi=(1,...,T).

3. I get starting values of the parameters ® and () in the joint VAR of macro
and yield factors by performing OLS estimation of the VAR equation by

equation.

4. T obtain starting values of the parameters A, by running OLS regressions of
the variables in X onto the principal components estimates of the factors F*
equation by equation. Moreover, I use the sample variances of the regres-
sion residuals and the residuals of the yield regressions as starting values
for the entries of R.

Sample from p(Er|Z7,00~1))

This section provides additional details on the algorithm that I employ to sample
from the posterior distribution of the latent factors. My approach closely follows
the exposition in Kim and Nelson [1999]. Based on a result of Carter and Kohn
[1994], Kim and Nelson show that draws from the conditional posterior distribu-
tion of the latent factors in a state-space model can be obtained by performing the
following steps. First run the Kalman filter forward to obtain estimates Fr|r of the
factors in period T and their variance covariance matrix Prr based on all avail-
able sample information. For convenience, I restate the Kalman filter formulae
here:
Ft|t71 = @ Ft71|t71
Py = @P_q1 9 +0
-1 = Zt— Ly =2i— /_\Ft—l\t—l
Opo1 = AP_qp A+ R

K = Pﬂt_lz‘\’vtj}_l
Fyy = Fpoq+Keypq
Pt\t = Pt\t—l —K [\Pt|t—1/

where K denotes the Kalman gain. The Kalman filter needs to be initialized with
starting values Fy and Py of the unconditional mean and variance of the latent
factors. I follow a common practice in Bayesian dynamic factor models and let
Fybeak(p+1)x1 vector of zeros and Py an identity matrix of the corresponding
dimension.
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Running the Kalman filter forward delivers estimates FT|T of the latent factors
and their variance covariance matrix Pr|r in the last sample period. Given these
estimates, Kim and Nelson [1999] show that draws of the latent factors F for all
previous observations can be obtained by performing the following procedure.

Fort=T-1,...,1 proceed backwards to generate draws Ft|T from

Ft|T|Ft+1|T/ Zr,0 ~ N(Ft|t,1:"t+1‘T/Pt\t,l:"t+1‘T) (6.23)
where F, Foar = Fyy + Pyy® (® Py & + Q)7 (Fra — @ Fyy)
and Pt‘tlpt+1|T — Pt|t_Pt|f @I (é pt|t @l Q)il q_)Pt“"

As Kim and Nelson show, this algorithm needs to be slightly modified if Q) is
singular. This is the case here since the state equation includes more than one
lag and the model is written in companion form. Denote ()* the upper left k x k
block of Q) which is positive-definite and let F;* and ®* be the first k rows of F;
and ®;. As before, run the Kalman filter forward to obtain FT‘T and Prj7. Then,

fort=T-1,...,1 proceed backwards to generate draws Ft‘T from

Ft|T|Ff11|T’ZT’9 ~ N(F:‘LFHHT’P;Tt/FHHT)

Sample from p(01)|Z7, Fp)

Conditional on the data and draws of the unobserved factors, the observation
equation (6.18) of the state-space model amounts to a set of Ny+ N, regressions.
Since the errors are assumed to be mutually orthogonal, one can sample each
equation’s parameters independently using standard results from Bayesian re-
gression analysis. Moreover, conditional on the factor draws, equation (6.19) is
just a VAR(p) in the factors. Hence, the distributional theory from Bayesian VARs
can be applied to estimate the parameters of the state equation. I start with a
description of the algorithm to sample from the parameters of the observation
equation and then move to the procedure used to draw the parameters of the

state equation.
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Sampling A and R

Consider first the set of equations characterizing the decomposition of the macroe-
conomic variables X into common components F* and idiosyncratic components
e*. Since the idiosyncratic components are assumed to be independent (R is di-
agonal), the parameters of the macro observation equations can be obtained by
estimating N, independent univariate linear regression models. Using natural

conjugate priors
p (AfIRi) = N(A{ RiVy')
and p (Ry) = iG(vio/2,vi0 079/2),

standard Bayesian results (see e.g. Bauwens, Lubrano, and Richard 1999) show
that the conditional posterior distributions of A7 and R;; are given by

p (Af|Riy, X1, Fr,6_)x) = N(Af, R; Vi 1) (6.24)
and p (Rii|XT/ FT, 9_127.1.) = iG(l/i/Z, 1/1‘0'12/2) (6.25)
where AY = V! <Via1 AX + FY'FY ﬁf) ,
Vi = Vio+FYF,
vi = v+ T, and
viop = vioig+ (T —kx) 57 +
A x 1 -1 wpy—1] 71 ax
+(AF =AY Vgt + (PP (A = Ai)

where §? = T_ka (x; — F*AY)!(x; — F*AY') is the sum of squared fitting errors of the
i-th equation estimated via OLS. Moreover, }L?C denotes the estimated coefficient
from that regression. I use uninformative priors (Aj; = Oy 1, Vio =0, Vial = 1) for
the estimation. Computationally, I draw from the normal and inverse Gamma
distributions using MATLAB’s mounrnd and gamrnd functions.>* Finally, recall that
the upper left k, X ky block of Ay is restricted to be lower-triangular with ones on
the diagonal in order to ensure exact identification of the factors. I impose this

restriction by setting to zero or to one the respective elements of each draw from
the posterior of Ay.

54 Regarding the latter, note that one has to hand over the inverse of the scale parameter
of the gamma distribution, i.e. I sample from the inverse gamma using the command
“1/gamrnd(v;/2,2/ (v;o?))".
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Matters are more complicated when it comes to estimating A,. Recall that the
Diebold-Li loadings of the yield of maturity n on the three factors FY are given

by 1, (1*;; TH) , and (1*;; = e_T”>. Hence, the exponential decay parameter T
is the only unknown parameter in A,. The observation equations related to the
N, yields therefore amount to a nonlinear least squares problem that has to be
solved for T. As a consequence, the distribution of T is non-standard and cannot
be sampled from directly. To solve this problem, I set up the following random

walk Metropolis algorithm to draw from t:
1. Conditional on 7/, generate a proposal from 7 = 70~ + ce, where € ~

N(0,1), i.e. draw T from N (U=, c2).

2. Accept 7" with probability

¢ = min{1, 21200 a0 D)
0=D|Zr, Fr,0_1) q(t(=D|7*)

p(
— min{l, p(T |ZY:/FT~/9—T) }
p (T(1_1)|ZTIFT/6—T)

p (Zr|Fr, *,0_<) p(T*) }

= min Lo E L - 6.26
mm{ p (Zr|Fr,70=1,6_¢) p(z(-D) (6:26)

where 6_+ denotes the vector of all parameters except for 7.

Note that the g-terms drop since the proposal density is symmetric around 701,
Hence, with a flat prior, drawing T amounts to generating a proposal value from
anormal distribution centered around the last iteration’s value, and to accept that
proposal with probability given by the ratio of likelihoods implied by the two can-

- p (Zr|Fr,T* f—x)
didates, S CrlEr T8 1)

Ay(t*) and Ay(tl~1). The scaling parameter c is calibrated so that acceptance

. This ratio can easily be computed using factor loadings

ratios between 0.2 and 0.5 are obtained.>®. Further, as mentioned above, I initial-

ize the sampler using the value of T = 0.0609.

Conditional on a draw of T and the latent yield factors FY, the variances RZ- of the
pricing errors represent mutually independent regression residuals that can be
drawn individually. Specifying a flat (v;) = 0) natural conjugate inverse-Gamma
prior distribution, the posterior is given by a conjugate inverse Gamma distribu-
tion as in (6.25).

% The reported results are based on a value of ¢ = 0.02
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Sampling ® and )

The state equation of the model (6.18)-(6.19) is a VAR(p) in the factors F. To es-
timate the parameters of this VAR, I follow Bernanke et al. [2005] by imposing a

diffuse conjugate Normal-Wishart prior,

p (vec(@)|Q2) = N(0,Q® Qo)
p(Q) = iW(Qo,Vo),

where diagonal elements of () are set so as to equal the residual variances of the
corresponding p-lag univariate autoregressions, ¢?. Further, in the spirit of the
Minnesota prior, diagonal elements of Qg are set so that the prior variance of the
I-lagged jth variable in equation i equals 07/ (10]2). Using a result from Kadiyala

and Karlsson [1997], the conditional posterior distributions are then given by

p (vec(®)| O, Z1,Fr,0_¢) = N (vec(®),Q® Q) (6.27)

p (Ql ZT/ ﬁT/ O—Q) = iW (O/T+V0) (628)

where

O = Op+alo+d (FF)d - & [Qp" + (FiFr)| &,

& = O (EF)d
and Q = [ + (F7 )]_1,

and where @ denotes the matrix of OLS residuals. Stationarity of the VAR parame-
ters is enforced by discarding draws of ® that have eigenvalues greater than 1.001
in absolute value. To draw from the posterior inverse Wishart iW (Q, T + 1), I
follow Cogley, Morozov, and Sargent [2003] and use the following shortcut. First,

I draw (T + 1)k random numbers from the standard normal distribution and ar-
range them in a matrix u of dimension (T + 1) xk. I thenset Q) = (Q_l/zuu’()—l/z/) -

where Q=12 = chol (O~ 1) is the Choleski factor of the inverse of (). This is equiv-
alent to drawing ) from the inverse Wishart with parameters Q and T + .
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Identification of Shocks with Sign Restrictions

The objective of Chapter 4 is to identify surprise changes of the yield curve com-
ponents level, slope, and curvature and to study the subsequent evolution of key
macroeconomic aggregates. As stated before, the identification is achieved using
sign restriction techniques as in Uhlig [2005] and Mountford and Uhlig [2005].
While the approach has been generally discussed in Section 4.4, I provide some
details on the implementation of the different variants in this section.

Combination of Zero and Sign Restrictions

I define as a “pure” surprise change any rise of one of the three yield curve com-
ponents that is not accompanied by simultaneous responses of the remaining two
factors. Computationally, these surprise changes are identified using a combina-

tion of zero and sign restrictions. Precisely, I adopt the following strategy.

(i) Randomly and uniformly select an index n from {1,...,N;}, where Nj is
the number of saved draws from the posterior distribution of the model

parameters.

(ii) Compute the Choleski decomposition of Q) Denote the lower-triangular
Choleski factor with A" and let Af") and A](.n) be the rows corresponding

to the two remaining yield factors.

(iii) Randomly select a vector of starting values & = (a1, . .., &g ) from the uniform
distribution with support [0, 7t]. Using the MATLAB function fsolve and the
parameterization (4.12), find a vector g(«) of unit length which implies

i= (1)

(iv) Compute the corresponding impulse vector a = Aq. Check whether it satis-
ties the sign restrictions for the factor of interest. If it does, compute impulse

responses for all factors and save them. If it doesn’t, discard g and restart

A

Agj)

the procedure at step (i). If a fulfils the sign restriction with reversed sign,

multiply it with minus one and save it.

This algorithm is repeated until a total of n = 250 combinations of parameter
draws and vectors g are found that satisfy the sign restrictions. Using the corre-

sponding draw A of the factor loading matrix, I compute impulse responses
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for individual macro variables according to (4.10). I finally compute the median
estimate and the 16% and 84% quantiles from these impulse responses and report

the results in Section 4.5.

I also consider orthogonal impulse vectors for the three yield factors. To obtain
these, I extend the above algorithm to incorporate an extra loop over the three
factors. Precisely, the algorithm is first carried out for the level factor. Denote the
resulting vector of unit length q;. Second, I search a vector g, of unit length for
the slope factor that is orthogonal to g;. This additional restriction can easily be

incorporated replacing the zero restriction in step (iii) with

i)
) q2

A
A

~

/

7

If the resulting impulse vector a(g;) satisfies the sign restriction for the slope fac-
tor, it is retained and the procedure is carried out for the curvature factor.”® Oth-
erwise, the entire procedure is started again for the level factor.

Penalty Function Approach

In addition to the “pure” yield curve surprises identified with the procedure de-
scribed above, I also study surprise changes which imply a strong reaction of one
of the three yield factors and at the same time allow for a small contemporaneous
reaction of the remaining two components. This is achieved using a penalty func-
tion approach that draws on previous work by Uhlig [2005] and Mountford and
Uhlig [2005]. Precisely, I identify a “strong” level surprise as an impulse vector a
that minimizes the function (4.14) which I restate here for convenience:

Hy ro 2
|« & [ (")

h=0 | j#i

T = 3 [l

h=0 !

where i defines “level”, j the remaining two yield factors, 7y the weights attributed
to the different factors, and H and Hj the time horizons over which the responses
shall be restricted. Computationally, I perform the minimization using the MAT-
LAB function fminsearch to which I hand over the value of ¥; for a given a, where
a= Aq as above and where q is a 7 x 1 vector of unit length, computed using the

% Orthogonality of the curvature shock to the level and slope shock then obviously implies two

additional zero restrictions.
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parameterization (4.12). That is, I search for the set of angles (a1, ..., a) which
minimize the function ¥;. To initialize the procedure, I randomly draw starting
values from a uniform distribution with support [0, 7r]. Moreover, as discussed in
the text, I set v = [—1,100, 100]. Hence, positive responses of the factor of interest
are rewarded while any responses of the remaining two factors that deviate from
zero are penalized with a much stronger weight. I further set H = 5 and Hp = 0,
i.e. the response of the factor of interest is maximized over the first six months
after the shock and the response of the remaining two components is restricted to

be close to zero on impact.

“Typical” Yield Curve Shocks

As a final exercise, I study impulse responses of key economic variables subse-
quent to a “typical” yield curve shock, i.e. a shock that explains most of the
variance of the one-step ahead forecast errors of the three yield curve factors. My
approach to identifying this shock has been described in detail in Section 4.4.2. In

the following, I discuss some implementational questions related to this method.

As stated above, my identification method requires a decomposition of the variance-

covariance matrix ) into blocks corresponding to the macro and the yield factors,

o ( Qe Oy >

where Qyy, Q)yy, and )y, are of dimension ky X ky, ky X3, and 3 x 3, respectively.

i.e.

My approach implies finding a matrix
A — Ay Axy
0 Ay

— 1/2
Ay = VD

with A,y and A,y given by

D and V denote the diagonal matrix of eigenvalues and the matrix of correspond-
ing eigenvectors of (), respectively. The “typical” yield curve shock is given
by the column of A that corresponds to the largest eigenvalue of (). To obtain
estimates of impulse responses subsequent to this shock, I perform this decompo-

sition for 250 randomly selected draws from the saved posteriors of ® and ().
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6.4 Technical Appendix to Chapter 5

6.5 Constructing monthly time series for real GDP

6.5.1 Interpolation

A variety of different interpolation methods has been suggested in the litera-
ture. While some methods estimate higher frequency representations of a low
frequency time series on the basis of a time series model, others explicitly take
into account the information in related series and thus perform interpolation on
the basis of a regression model. Here, we focus on this second class of models
since we would like to derive monthly estimates of real GDP using the informa-
tion in economically related time series which are available at the monthly fre-

quency.

A very prominent and often applied interpolation model that makes use of re-
lated high frequency information is the method suggested by Chow and Lin
[1971]. These authors assume the high frequency observations of the series to be
interpolated as being generated by a linear regression model in the related series
with first-order autocorrelated residuals. Depending on the time series proper-
ties of both the interpoland and interpolator variables, however, different speci-
fications might be more appropriate. For example, Fernandez [1981] suggests a
regression model in first differences to take account of potential non-stationarity
of the data. A somewhat more general formulation has been used by e.g. Gregoir
(1995) and Mitchell et al. [2005] who suggest to perform the interpolation using
dynamic regression models, i.e. they incorporate lagged observations of the inter-

poland in the regression equation.®’

Since there is no a priori criterion to decide upon the superiority of any of these
approaches, we derive here a unified framework which nests a few of the promi-
nent interpolation methods. This allows us to gauge the relative performance of
different models for a given set of series and we will choose the one that is most

appropriate on the basis of likelihood ratio tests. Following the work by Bernanke,

57 For a more exhaustive overview on different interpolation methods, the reader is referred to the
nice reviews provided in Di Fonzo [2003] and Proietti [2004], respectively.
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Gertler, and Watson [1997] and Proietti [2004], we cast the models in a state-space
setup in which it is particularly straightforward to handle the aggregation restric-
tions implied by the interpolation problem. We will now describe the most gen-
eral interpolation method considered and then show how different approaches
suggested in the literature can be obtained by imposing simple restrictions on
individual parameters of the model. Consider the following dynamic regression

model

(1T—=¢(L))y: = xf+u,
up = pu;_1+e, €~ N(0,0?),

where y; is the high frequency observation of the variable to interpolated, ¢(L)
is a lag polynomial of order p,?® x; are the time t observations of a set of related
series, and u; is the regression residual which is assumed to follow an AR(1) pro-

cess.

We assume here that the quarterly GDP figures are the average of the unobserved
three consecutive monthly observations. Hence, defining the quarterly indicator

variable yT as
y"=00y; 00y, 00 yg...),

we obtain the following measurement equation:

1 2
vi = Yy t=369,...
3i:0

y7 = 0 otherwise.

Notice that there is no error term in this equation since the mean of three consecu-
tive months shall exactly equal the quarterly observation. Moreover, the Kalman
tilter proves particularly useful in such a setup since it can easily handle missing

observations by letting the Kalman update be zero in the periods where no new

%8 For simplicity, we assume p = 1 since otherwise the number of different models to compare to
one another would be quite large. Unreported results based on higher order values of p showed
that in most cases, higher order autoregressive parameters were insignificant.
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information becomes available. Cast in state-space form, the model is

yi = H{ & (6.29)
Yi ¢ 00 p Yi1 X} €t
_ 100 0 _ 0 0
T L Ye=2 |4 4 (6.30)
Yi2 0100 Vi3 0 0
Uy 0 00 p Up_q 0 €t

where

;L [%%%O] for t =3,6,9,...
o { [0000] otherwise }

Notice that due to the limited data availability in the Euro area, for our purpose
of constructing monthly GDP series for all member countries of the Euro area, the
interpolation method needed to be generalized to incorporate the possibility of
using also annual data for interpolation. This is easily done by letting the indica-
tor variable contain observations in annual frequency. As a matter of course, the

measurement equation has to be adapted accordingly.>

We now briefly show how different interpolation models suggested in the lit-
erature can be obtained by fixing either the ¢ or the p parameter in the above
model. Chow-Lin (1971) suggest a regression model without lagged dependent
variables, but autoregressive errors, hence the Chow-Lin model obtains by fixing
¢ to be zero and by letting p be estimated freely. Fernandez [1981] suggests a
model in first differences to take account of nonstationarity in the data. As the
reader will easily notice, this model is obtained by letting the regression residu-
als be a random walk, i.e. p = 1 and ¢ = 0. Note also that one can generalize
this model to become a dynamic regression model in first differences by allowing
¢ to be nonzero. As noted above, Mitchell et al. [2005] suggest a dynamic regres-
sion model with IID errors, i.e. they let ¢ be nonzero, but have p = 0. Again,

this model can be generalized to have autocorrelated residuals.®’ Table 6.1 sum-

% The countries for which the adapted algorithm had to be used were Belgium, Greece, Ireland, Lux-
embourg, and Portugal. Since those five countries only have a total weight of 6.7 % in our series
of Euro area GDP, the uncertainty introduced by performing annual to monthly interpolations is
rather small.

60Tt is important to note that the model we refer to here effectively is only a simplified version
of the model suggested by Mitchell et al. [2005] who in addition allow the dependent variable
to be stated in logarithms and also allow lagged observations of the related series to enter the

regression.
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Table 6.1: Parameter Restrictions in the Interpolation Model

This table summarizes the parameter restrictions that have to be imposed on the model (6.29)-

(6.30) in order to obtain a particular type of interpolation model.

Model ¢ 1Y
Static model in levels with IID residuals 0 0
Static model in levels with AR(1) residuals (Chow-Lin) 0 free
Static model in 1st differences with IID residuals (Fernandez) 0 1
Dynamic model in levels with IID residuals (Mitchell et al) free 0
Dynamic model in 1st differences with IID residuals free 1
Dynamic model in levels with AR(1) residuals free free

marizes the different interpolation methods and their corresponding parameter

restrictions.

In our interpolation exercise, we estimate for all countries the six models summa-
rized above via Maximum Likelihood using the Kalman filter. We then perform
country by country a set of bilateral likelihood ratio tests to discover whether the
imposed restrictions are borne by the data or not and select the most appropriate
model accordingly. We then aggregate the corresponding series using the method
described below to obtain our benchmark series of monthly real GDP for the Euro

area.

To assess the quality of interpolation, we follow Bernanke et al. [1997] by using
R? measures of fit. Denoting Yy the expected value of monthly GDP in period ¢
conditional on the estimated model parameters and the full information set, this

measure of fit is given by

o Vel
els = Var(yyr) + Var(ugr)

As we will see below, when both the interpoland and interpolator variables are
upward trending, this measure of fit will be very close to unity in most cases.

Hence, it appears more informative to report the R? in first differences:

o Varlau)
diffs — Var(Ayyr) + Var(Auy )
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6.5.2 A monthly time series for real US GDP

This appendix documents the monthly real GDP series from 1967:1 to 2002:09,
used for the US in Section 5.3.1. It is based on time series for quarterly real
GDP, industrial production, the total civilian employment, and real disposable
personal income, which have all been obtained from the Federal Reserve Bank of
St. Louis web site. The interpolation is done using the procedure described above.
According to the results of bilateral likelihood ratio tests, the best interpolation
method for the set of series used is the Chow-Lin model, i.e. the static model in
levels with autocorrelated residuals. Values of 0.99 and 0.58 for Rlzw .15 and Rfﬁ Ffs
indicate a good overall interpolation quality. Figure 6.1 provides a plot of the
resulting series and a comparison of the implied quarterly growth rates with the

actual quarterly growth rates.

Figure 6.1: Constructed Monthly Series for US Real GDP

This figure plots our monthly series of US real GDP, based on the four time series GDP96, IN-
DPRO, CE160V, and DSPIC96, which have all been obtained from the Federal Reserve Bank of
St. Louis web site. The interpolation is done using the procedure described above. The upper
panel shows the level, and the lower panel the the quarterly growth rates of the original and the

interpolated series, respectively.
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6.5.3 A monthly time series for real Euro area GDP

Difficulties

Official data covering the Euro area as a whole only exist from 1991 on. Hence,
to obtain Euro area aggregates that cover a longer time span, one has to perform
some aggregation of individual countries” real GDP series. However, since ex-
change rate changes have to be taken into account in the pre-Euro period, ag-
gregation of real GDP series across the Euro area member countries is not a triv-
ial task. Competing methods with different merits and shortcomings have been
proposed in the literature, and the choice of an appropriate aggregation method
seems largely to depend on the requirements one wants it to fulfil. Two often cited
references for constructing Euro area aggregates from the individual countries’ se-
ries are Fagan et al. [2001] and Beyer et al. [2001]. To be used for estimation in the
area-wide econometric model of the ECB, Fagan et al. [2001] have constructed
a dataset of quarterly Euro area aggregates covering the period from 1970q1 to
2000g4 and including a series of real GDP.?! They adopt an aggregation method
with fixed weights that are computed as the countries’ respective shares in total
GDP at market prices in 1995. Beyer et al. [2001] propose an aggregation method
with time-varying weights that are computed on the basis of exchange rates for
converting into a common currency (i.e. the ECU in applications to the Euro area).
The authors claim their method to be more general than the one adopted by Fa-
gan et al. [2001]. However, it only delivers estimates of euro area aggregates from
1979 onwards when the European monetary system was constituted. Beyer et al.
[2001] provide aggregated Euro area time series for real GDP, nominal GDP, and
M3 over the post-1979 period.

The availability of historical quarterly real GDP time series varies considerably
across the Euro area member countries. While, for example, real GDP data for
Italy is available from 1960 onwards, the equivalent time series for Ireland only
covers the post 1997 period. For most of the Euro area countries, chained indices
of GDP volume are available over longer time spans than real GDP series. Since

volume indices can be directly transformed into ‘constant price” level data, we

61 The authors note that to construct the dataset they have used data from different sources, some
of which are not publicly available. Further, when only annual data were available, quarterly
time series were constructed by means of some interpolation method similar to the one used in
Chapter 5.
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use these to generate our aggregate monthly time series of real GDP for the Euro
area on the basis of which we then perform the business cycle dating exercise. Yet,
since such series are not available for all Euro area countries on a quarterly basis
from 1970 onwards, annual series had to be used for some countries, namely Bel-

gium, Greece, Ireland, Luxembourg, and Portugal.

The availability of related monthly series that can be used for interpolating quar-
terly real GDP is also very limited. While monthly series for industrial production
and are available from 1970 onwards for all Euro area member countries except
for Ireland, additional variables that are potentially useful for interpolating real
GDP are rather scarce. For some countries, a chained index of real retail sales is
available from the OECD. For others, if available, monthly employment or export

series have been used as additional related series.
The Approach Employed

This section describes our approach to constructing a monthly real GDP series
for the Euro area subject to the requirements and limitations mentioned above,

especially the problem of data availability for the individual member countries.

1. Interpolation of the individual countries” GDP volume series via the method
described above, using industrial production, and, if available, real retail
sales, and/or employment as related series. The instrumental variables
have been obtained from the OECD and the IMF database, respectively, the
chained indices of GDP volume are from the OECD database. All country
data is seasonally adjusted before aggregating.®? Table 6.2 summarizes for
all countries the set of related series that have been used for interpolation,
the method that has been found to perform best, as well as R? statistics as

measures of interpolation quality.

2. Next, we compute a weighted average of the interpolated GDP volume
series using the so-called “index method” for aggregation (see Fagan and

62 There clearly is a potential sensitivity of the dating outcome with respect to the seasonal adjust-
ment method employed. Lommatzsch and Stephan [2001] study this issue in detail and find that
for quarterly Euro area real GDP series, the dating of the classical cycle is almost completely un-
affected by the choice of seasonal adjustment method. Although we expect this issue to be more
relevant for the monthly dating exercise that we perform, it is not the focus of Chapter 5 to study
the sensitivity of our results to different seasonal adjustment methods. We instead rely on the
seasonal adjusted data from official sources to make our procedure as transparent as possible.
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Table 6.2: Interpolation Specifications of Individual GDP Series

This table summarizes for each country the particular specification used for the interpolation of
quarterly and annual GDP volume series into monthly series. The third to sixth column report the
related series used for interpolation, the goodness of fit, and the weights in the aggregate series
corresponding to the countries’ shares in total Euro area GDP in 1995.

Country Interpolation Method ~ Rel. Series R2,_ . RZ s w;(%)
Austria Dynamic, levels, AR(1) 1P, Empl 0.99 0.49 3.0
Belgium Static, 1st diffs, IID IP, Rsal 0.99 0.89 3.6
Finland Static, levels, AR(1) IP, Rsal 0.99 0.72 1.7
France Static, levels, AR(1) P 0.99 0.69 20.1
Germany Static, levels, AR(1) IP, Rsal 0.99 0.81 28.3
Greece Static, levels, AR(1) IP, Rsal 0.98 0.89 2.5
Ireland Dynamic, levels, IID Rsal, Expts 0.99 0.24 15
Italy Static, levels, AR(1) 1P 0.99 0.57 19.5
Luxembourg Dynamic, levels, IID IP, Empl 0.99 0.13 0.3
Netherlands  Static, levels, AR(1) IP, Rsal 0.99 0.70 6.0
Portugal Static, levels, AR(1) P 0.99 0.69 24
Spain Static, levels, AR(1) 1P 0.99 0.55 111

100.0

Henry 1998). According to this method, the log level index for aggregate
monthly GDP is given by
log(Y Z w;log (Y,

We use the weights provided by Fagan et al. [2001] in their latest update of
the ECB’s area-wide model dataset for the aggregation.®®

Since the OECD’s GDP volume series for unified Germany only starts in 1991,
we have used the West-German series as the historical German series, rescaled to

%3 To see whether the weighting scheme used for aggregation has an impact on the business cycle
dating results, we have also constructed an aggregate series using time-varying weights com-
puted as linear interpolations of the annual shares of total GDP at market prices. This series has
a peak in 1975:5 instead of 1975:4, all other turning points being equal. Moreover, it exhibits an
additional peak in 2001:5. However, since this method of computing time-varying weights is un-
usual in the literature, we do not rely on this series for the dating exercise. Notice that the OECD’s
methodology of constructing international area aggregates with time-varying weights for volume
indices requires data on the corresponding value series (see OECD 2002 and Schreyer 2001). How-
ever, as Schreyer [2001] notes, in case such information is missing, value-added shares at exchange
rates or PPPs of a fixed base-year should be used. This is exactly the approach adopted here. As
already note above, we could not adopt the aggregation method suggested by Beyer et al. [2001]
since this approach can only be used for constructing aggregates in the post 1979-period.
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the whole German series by multiplying it with the ratio of the two series in the
first quarter of 1991. This is the approach that has also been used by FHM for the

construction of their area-wide model dataset.
Result

The resulting time series is available from the authors upon request. A visual
comparison to the latest update of the time series by Fagan et al. [2001] is given
in Figure 6.2. The upper panel plots our series (solid) against the FHM series
(dash-dotted) in levels, whereas the lower panel plots the quarterly growth rates
of both series. Obviously, our monthly series is close to the quarterly series, with
a slightly more jagged appearance (as desired) due to the interpolation using re-
lated series. On the other hand, the FHM series exhibits slightly more volatile
quarterly growth rates.

Figure 6.2: Our Monthly Series vs the Series by FHM

This figure compares our monthly series of Euro area real GDP (solid) to the quarterly series of
Euro area real GDP constructed by Fagan et al. [2001] (dash-dotted). The upper panel shows the
levels and the lower panel the quarterly growth rates of the two series, respectively.
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