
Numerical Treatment of the Black-Scholes Variational
Inequality in Computational Finance

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach Mathematik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Frau Dipl.Ing. Karin Mautner

geboren am 17.07.1979 in Wien

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Christoph Markschies
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Wolfgang Coy
Gutachter:

1. Prof. Dr. Carsten Carstensen
2. Prof. Dr. Ralf Kornhuber
3. Prof. Dr. Martin Brokate

eingereicht am: 22. Mai 2006
Tag der mündlichen Prüfung: 15. Dezember 2006

Abstract

Among the central concerns in mathematical finance is the evaluation of American options.
An American option gives the holder the right but not the obligation to buy or sell a certain
financial asset within a certain time-frame, for a certain strike price. The valuation of
American options is formulated as an optimal stopping problem. If the stock price is modelled
by a geometric Brownian motion, the value of an American option is given by a deterministic
parabolic free boundary value problem (FBVP) or equivalently a non-symmetric variational
inequality on weighted Sobolev spaces on the entire real line R.

To apply standard numerical methods, the unbounded domain is truncated to a bounded
one. Applying the Fourier transform to the FBVP yields an integral representation of the
solution including the free boundary explicitely. This integral representation allows to prove
explicit truncation errors.

Since the variational inequality is formulated within the framework of weighted Sobolev
spaces, we establish a weighted Poincaré inequality with explicit determined constants. The
truncation error estimate and the weighted Poncaré inequality enable a reliable a posteriori
error estimate between the exact solution of the variational inequality and the semi-discrete
solution of the penalised problem on R.

A sufficient regular solution provides the convergence of the solution of the penalised problem
to the solution of the variational inequality. An a priori error estimate for the error between
the exact solution of the variational inequality and the semi-discrete solution of the penalised
problem concludes the numerical analysis.

The established a posteriori error estimates motivates an algorithm for adaptive mesh re-
finement. Numerical experiments show the improved convergence of the adaptive algorithm
compared to uniform mesh refinement. The choice of different truncation points reveal the
influence of the truncation error estimate on the total error estimator.

This thesis provides a semi-discrete reliable a posteriori error estimates for a variational
inequality on an unbounded domain including explicit truncation errors. This allows to
determine a truncation point such that the total error (discretisation and truncation error)
is below a given error tolerance.

Keywords:
American options, variational inequality, Finite Element discretisation, error analysis

Zusammenfassung

In der Finanzmathematik hat der Besitzer einer amerikanische Option das Recht aber nicht
die Pflicht, eine Aktie innerhalb eines bestimmten Zeitraums, für einen bestimmten Preis zu
kaufen oder zu verkaufen. Die Bewertung einer amerikanische Option wird als so genanntes
optimale stopping Problem formuliert. Erfolgt die Modellierung des Aktienkurses durch eine
geometrische Brownsche Bewegung, wird der Wert einer amerikanischen Option durch ein
deterministisches freies Randwertproblem (FRWP), oder eine äquivalente Variationsunglei-
chung auf ganz R in gewichteten Sobolev Räumen gegeben.

Um Standardmethoden der Numerischen Mathematik anzuwenden, wird das unbeschränkte
Gebiet zu einem beschränkten Gebiet abgeschnitten. Mit Hilfe der Fourier-Transformation
wird eine Integraldarstellung der Lösung die den freien Rand explizit beinhaltet hergeleitet.
Durch diese Integraldarstellung werden Abschneidefehlerschranken bewiesen.

Da die Variationsungleichungin gewichteten Sobolev Räume formuliert wird, werden gewich-
tete Poincare’ expliziten Konstanten bewiesen. Der Abschneidefehler und die gewichtete
Poincare’ Ungleichung ermöglichen einen zuverlässigen a posteriori Fehlerschätzer zwischen
der exakten Lösung der Variationsungleichung und der semidiskreten Lösung des penalisier-
ten Problems auf R herzuleiten.

Eine hinreichend glatte Lösung der Variationsungleichung garantiert die Konvergenz der
Lösung des penaltisierten Problems zur Lösung der Variationsungleichung. Ein a priori Feh-
lerschätzer für den Fehler zwischen der exakten Lösung der Variationsungleichung und der
semidiskreten Lösung des penaltisierten Problems beendet die numerische Analysis.

Die eingeführten a posteriori Fehlerschätzer motivieren einen Algorithmus für adaptive Netz-
verfeinerung. Numerische Experimente zeigen die verbesserte Konvergenz des adaptiven Ver-
fahrens gegenüber der uniformen Verfeinerung. Die Wahl von unterschiedlichen Abschneide-
punkten illustrieren den Anteil des Abschneidefehlerschätzers an dem Gesamtfehlerschätzers.

Diese Arbeit präsentiert einen zuverlässigen semidiskreten a posteriori Fehlerschätzer für
eine Variationsungleichung auf einem unbeschränkten Gebiet, der den Abschneidefehler be-
rücksichtigt. Dieser Fehlerschätzer ermöglicht es, den Abschneidepunkt so zu wählen, daß
der Gesamtfehler (Diskretisierungsfehler plus Abschneidefehler) kleiner als einer gegebenen
Toleranz ist.

Schlagwörter:
Amerikanische Optionen, Variationsungleichung, Finite Elemente Diskretisierung,
Fehleranalysis

To my parents and Christof

Contents

1 Introduction 1

2 Option Pricing 8
2.1 Pricing European Options . 8

2.1.1 The Black-Scholes Model . 9
2.1.2 Options on Dividend Paying Assets 11

2.2 Pricing American Options . 11
2.2.1 An Optimal Stopping Problem . 12
2.2.2 A Free Boundary Value Problem . 12
2.2.3 A Linear Complimentary Formulation 13
2.2.4 Some Properties of American options 13

3 Mathematical Analysis 15
3.1 European Options . 15

3.1.1 Black-Scholes Equation . 15
3.1.2 Existence and Uniqueness of the Solution 16

3.2 American Options . 21
3.2.1 The Black-Scholes inequality . 22
3.2.2 Variational Formulation . 22
3.2.3 Existence and Uniqueness . 22

3.3 Fourier Transform . 24
3.3.1 American Put . 24
3.3.2 American Call . 31

3.4 Truncation Error Estimates . 35
3.4.1 Some Calculus . 35
3.4.2 Decay Behaviour for American Put Options 38
3.4.3 Decay Behaviour of the First and Second Spatial Derivative 42
3.4.4 Decay Behaviour for American Call Options 50

4 Transformations 52
4.1 The Black-Scholes Equation . 52
4.2 The Black-Scholes Inequality . 58

4.2.1 First Approach – Homogenous Initial Condition 59
4.2.2 Second Approach – Obstacle ψ ≡ 0 60

5 Numerical Analysis 62
5.1 Continuous Model . 62
5.2 Semi-discrete Model . 64

ix

x Contents

5.2.1 American Put Options . 66
5.2.2 American Call Options . 66
5.2.3 Summary . 67

5.3 Approximation in H1
η . 68

5.4 A posteriori Error Estimates . 77
5.5 A priori Estimates . 87

5.5.1 Penalisation Error . 87
5.5.2 Discretisation Error . 88

6 Numerics 95
6.1 Method of Lines . 95
6.2 Adaptive Mesh Refinement . 97

6.2.1 Refinement Indicator . 98
6.2.2 Adaptive Finite Element Method . 99

6.3 Numerical Experiments . 100
6.3.1 Truncation Error . 101
6.3.2 Convergence of adaptive versus uniform mesh refinement 102
6.3.3 Discretisation Error versus Truncation Error 104
6.3.4 The Influence of the parameter η . 111

A Notation 119

B Matlab Implementation 122
B.1 Data Structures . 122
B.2 Short Progamme Description . 124
B.3 Matlab Files . 124

C Maple Code 138

List of Figures

1.1 The value V (S, t) of an American call option 2
1.2 The value V (S, t) of an American call option in log-prices 2
1.3 The value V (S, t) of an American put option 3
1.4 The value V (S, t) of an American put option in log-prices 3

2.1 The pay-off function h(S) = (K − S)+ for call options. 9
2.2 The pay-off function h(S) = (K − S)+ for put options. 9

5.1 The smoothed weight function pδ . 70
5.2 The weight function p with extension p̂ and f with extension f̂ 71

6.1 Pointwise truncation error. 102
6.2 Adaptive vs. uniform Refinement (spatial degrees of freedom) 103
6.3 Adaptive vs. uniform Refinement (total number degrees of freedom) 103
6.4 Adaptive refinement with Refinement Strategy 1 104
6.5 Spatial mesh for adaptive refinement with Refinement Strategy 1 104
6.6 Adaptive refinement with Refinement Strategy 2 107
6.7 Spatial mesh adaptive refinement with Refinement Strategy 2 107
6.8 Adaptive refinement with truncation point xN = 4 108
6.9 Spatial mesh for each refinement level for truncation point xN = 4 108
6.10 Adaptive refinement with truncation point xN = 5 109
6.11 Spatial mesh for adaptive refinement with truncation point xN = 5 109
6.12 µd for different values of η . 112
6.13 µ and µN for different values of η . 112
6.14 Spatial mesh for η = 0.0001 and xN = 4 . 113
6.15 Spatial mesh for η = 0 and xN = 4 . 113
6.16 Spatial mesh for η = 0.1 and xN = 4 . 113
6.17 Spatial mesh for η = 0.5 and xN = 4 . 113

xi

List of Tables

5.1 Remarks on x0, xN , uεh, and V̄h . 67
5.2 Properties of u, uεh, Ã, and Ãε,h . 68

6.1 Parameters for the American put option . 100
6.2 Pointwise truncation error . 101
6.3 Convergence of µd using uniform refinement with xN = 3.5 102
6.4 Convergence of µd using adaptive refinement with xN = 3.5 103
6.5 Convergence of µd with Refinement Strategy 1 105
6.6 Convergence of µd with Refinement Strategy 2 108
6.7 Convergence of µd with xN = 4 and η = 0.0001 109
6.8 Convergence of µd with xN = 5 and η = 0.0001 110
6.9 Convergence of µd with xN = 4 and η = 0 112

A.1 Mathematical symbols . 120
A.2 Some abbreviations . 120
A.3 Notation for options . 120
A.4 Function spaces and norms . 121
A.5 Notation for Chapter 5 . 121

B.1 p.params.* . 122
B.2 p.problem.* . 123
B.3 p.level(j).* . 123
B.4 p.level(j).geom.* . 123
B.5 p.level(j).enum.* . 124

xii

Chapter 1

Introduction

In their celebrated paper Black and Scholes [1973] showed, that the pricing of options, which
is a stochastic problem, can be formulated as a deterministic partial differential equation
(PDE). Since then, the pricing of options by means of partial differential equations has
become a standard device in quantitative finance.

An option gives the right but not the obligation to buy or sell a certain financial asset by a
certain date T , for a certain strike price K. There are two main type of options, namely call
options, which are options to buy, and put options which give the right to sell. Moreover,
one distinguishes between European and American options. While an European option can
only be exercised at the expiration date T , an American option may be exercised during the
whole life time of the option. The theory of option pricing deals with the question of finding
a fair price of an option.

On the exercise day, the value of an option can be easily calculated, since it only depends
on the strike price K and the value S of the share on that day. Assume, for example, that
the strike price of a call option is K = 10 and the share value equals S = 15. The holder of
the call option exercises the option and has a gain of S−K = 5, because he buys the option
for K and may sell it immediately for S. However, if S = 8, the (rational) holder would
never exercise the option and so he gains 0. In other words, the pay-off function of a call
option reads h(S) = max(0, S − K) =: (S − K)+, illustrated in Figure 1.1. In the case of
put options it is the other way around: if the value of the share S is below the strike price
K, the holder will exercise and gain K −S, otherwise the holder would not exercise and has
a gain of 0, i.e. the pay-off function reads h(S) = (K − S)+. Consequently, the value V of
an option is known on the exercise day T and given by V (S, T) = h(S) for American put
options, illustrated in Figure 1.3 .

The question arises how to find a fair price for an option before the exercise day. Since the
value of an option on the exercise day depends on the value of the share on the exercise day,
which is a priori unknown, the stock price needs to be modelled by a stochastic process.
Using geometric Brownian motion to modell the stock price, Black and Scholes [1973] prove
that the value of an European option can be expressed by a deterministic parabolic PDE,
the famous and Nobel-price awarded Black-Scholes equation.

1

2 Chapter 1. Introduction

0 K
0

Value V(S,t) of an American call option

V(S,0)
V(S,T)

Figure 1.1: The value V (S, t) of an Amer-
ican call option for t = 0 and t = T .

0

Value u(x,t) of an American call option in log−prices

log(K)x
0

x
N

u(x,0)
u(x,T)

Figure 1.2: The value V (S, t) of an Amer-
ican call option in log-prices, i.e. S = ex

for t = 0 and t = T .

The valuation of American options is more involved, since the holder may exercise the option
before the expire date T , which is called early exercise in the financial terminology. Due
to this early exercise possibility and the so-called no-arbitrage assumption, the value of an
American option can never be less than the pay-off function, i.e V (S, t) ≥ h(S).

The valuation of American options is formulated as an optimal stopping problem because of
the possibility of early exercise. As in the case of European option, there exist deterministic
formulations to describe the value of the option. The condition that the value must not be
below the pay-off function already indicates that the deterministic formulation is an obstacle
problem. Indeed, if the stock prices is modelled by geometric Brownian motion the value of
an American option is described by a parabolic free boundary value problem (FBVP), cf.
McKean [1965], Van Moerbeke [1976], Dewynne et al. [1993], Wilmott et al. [1995], Karatzas
and Shreve [1998]. A formulation analogue to the Black-Scholes equation for European option
is the linear complimentary formulation (LCF), cf. Wilmott et al. [1995], Lamberton and
Lapeyre [1996]. The LCF can be considered as the strong form of a variational inequality,
cf. Achdou and Pironneau [2005], Wilmott et al. [1995]. Figure 1.1 and Figure 1.3 show the
value of an American call and put option for t = 0 and t = T , respectively. Recall that for
t = T the value is equal to the pay-off function h.

The spatial differential operator appearing in the Black-Scholes equation and in the three
formulations for the evaluation of American options is a degenerated operator of Euler type.
It is a standard procedure, cf. Wilmott et al. [1995], Seydel [2004] applying the transforma-
tion S = ex which yields to a non-degenerated operator. In financial terminology one speaks
of transformation to log-prices. Figure 1.2 and Figure 1.4 show the value of American call
and put options u(x, t) for log-prices, i.e., x = log(S) at times t = 0 and t = T . The trans-
formed pay-off functions in log-prices read ψ(x) = (K−ex)+ and ψ(x) = (ex−K)+ for a put
and call option, respectively. Since the pay-off functions do not belong to L2(R), weighted
Sobolev spaces are required to formulate a variational inequality for American options. In
Jaillet et al. [1990] it is directly proved that the solution of the optimal stopping problem
satisfies a non-symmetric variational inequality on weighted Sobolev spaces in an unbounded
domain.

Chapter 1. Introduction 3

0 K
0

K
Value V(S,t) of an American put option

V(S,0)
V(S,T)

Figure 1.3: The value V (S, t) of an Amer-
ican put option for t = 0 and t = T .

0

K
Value u(x,t) of an American put option in log−prices

log(K)x
0

x
N

u(x,0)
u(x,T)

Figure 1.4: The value V (S, t) of an Amer-
ican put option in log-prices, i.e. S = ex

(right) for t = 0 and t = T .

Since an analytical solution is only available in the case of perpetual options, cf. Kwok
[1998], which means that the expiry date is at infinity, numerical methods are necessary to
evaluate American options for finite T . One difficulty in the numerical solution of an option
evaluation problem is the unbounded domain. In the majority of the publications and books
on numerical method for option pricing, cf. Wilmott et al. [1995], Seydel [2004], Achdou and
Pironneau [2005] the unbounded domain is truncated to a bounded one to apply standard
tools of numerical mathematics. Suitable boundary conditions are set by heuristic financial
arguments. Mathematical justification of this procedure by identifying truncation errors
for European options is given in Kangro and Nicolaides [2000] and Matache et al. [2004].
In Kangro and Nicolaides [2000] the truncation error for European basket options, i.e., a
multi-dimensional Black-Scholes equation, are proved. To be precise, the authors bound
the truncation error in the supremum norm in the computational domain by the maximum
error on the artifical boundary. In Matache et al. [2004] the authors prove truncation error
estimates for European options on Lévy driven assets in the computational domain in the
L2-norm. For American options in the Black-Scholes setting, the convergence of the solution
of the truncated problem to the solution to the untruncated problem is proven in Jaillet
et al. [1990]. Allegretto et al. [2001], Han and Wu [2003], Ehrhardt and Mickens [2006],
Achdou and Pironneau [2005] use transparent (also called artificial) boundary conditions for
the truncated domain, which are mathematically exact. However, these boundary conditions
are non-local and therefore their computation is costly.

Since the variational inequality is non-symmetric, energy techniques cannot be applied. Con-
sequently, we cannot formulate an equivalent minimisation problem and apply standard tools
for solving variational inequalities via minimisation techniques such as monotone multigrid,
cf. Kornhuber [1997]. If the variational inequality with constant coefficients is formulated
for a bounded domain with suitable boundary condition, it can be transformed to a varia-
tional inequality with a symmetric bilinear form, cf. Wilmott et al. [1995]. In Holtz [2004]
monotone multigrid for American options is applied to such a transformed formulation. Such
transformations are not possible with unbounded domains, because of non-smooth weighting
functions. Since we are interested in analysing truncation errors and deriving error estimates
on R, there is no possibility to transform our problem to a symmetric variational inequality.

4 Chapter 1. Introduction

In the case of finite time horizon, i.e., T <∞, reference solutions do not exists and the error
between the exact solution and the numerical solution is unknown. Consequently, reliable
a posteriori error estimates are important in order to determine the quality of the numerical
solution.

At the heart of this thesis is the derivation of a priori and a posteriori error estimates on
the whole domain R for American options. Since weighted Sobolev spaces are necessary to
formulate the variational inequality, the error estimates are proved in corresponding weighted
Sobolev norms. In the course of the analysis it becomes apparent that the interpolation error
estimates in these weighted norms are a main difficulty in the derivation of the error bounds.
The proof of a suitable weighted Poincare inequality is at the centre of the numerical analysis
provided in this thesis. To apply efficient numerical methods, the unbounded domain is
truncated to a bounded one. Consequently, truncation errors are part of the error bounds.
Using the Fourier transform yields an integral representation of the solution of the FBVP
incorporating the free boundary explicitely. This integral representation allows to prove
explicit truncation error bounds, which complete the proof of the error bounds on the whole
domain.

This thesis is organised as follows. Chapter 2 gives an introduction to the theory of option
pricing. The presentation of the financial concept of options is followed by a stochastic
formulation for the fair price of an option. For European options the fair price is given as an
conditional expectation whereas for American options the fair price is defined by an optimal
stopping problem. If the underlying stock is modelled by geometric Brownian motion, the
value of an European options satisfies a deterministic PDE. For American options, however,
the price is described by a deterministic FBVP or equivalently by an deterministic LCF.
Finally, we give some properties of American options, which play an important role in the
numerical analysis of this thesis.

Chapter 3 models European and American options in the framework of weighted Sobolev
spaces, cf. Section 3.1 and 3.2. Starting from the strong formulation, we derive a variational
formulation by means of weighted Sobolev spaces. The weights p are chosen such that the
pay-off functions ψ satisfy ψ√p ∈ L2(R). Since the pay-off functions include the exponential
function, it is straight forward to choose p(x) = exp(−2η|x|) for some η > 0. This weighted
Sobolev spaces build a Gelfand triple and the bilinear form of the variational inequality is
continuous and satisfies a Gårding inequality. These properties are essential to analyse the
existence of a unique solution for time-dependent variational equalities and inequalities.

Section 3.3 is devoted to the derivation of an integral representation of the solution of
American put and call options. The FBVP is transformed to a parabolic PDE on R, with
coefficients including the free boundary, which allows to apply the Fourier transform. Ap-
plying the Fourier transform to this PDE yields a first-order initial value problem, which can
be solved by the variation of constants. Then, applying the inverse Fourier transform yields
an integral representation for the solution of American options including the free boundary
explicitely. Moreover, we provide a regularity result for the solution of parabolic PDEs on
R by means of the Fourier transform. The first main result is established in Section 3.4. We
provide an explicit pointwise truncation error estimate depending on given financial data.
We show the exponential decay of the solution beyond a fully determined treshold using
the integral representation derived by applying the Fourier transform to the FBVP. More

Chapter 1. Introduction 5

precisely, there exists a treshold xpN for put options and xc0 for call options (fully determined
by given financial data) and some κ > 0, such that the solution u satisfies

|u(x, t) exp(x2/κ)| ≤ C <∞

for x > xpN for put options and x < xc0 for call options, i.e., the solution decreases expo-
nentially to zero. A refined analysis yields the constant C explicitly. This truncation error
estimates are essential to prove reliable a posteriori error estimates on R.

In Matache et al. [2004] the authors prove truncation errors for European options by trans-
forming the Black-Scholes PDE which requires weighted Sobolev spaces, to a PDE which
solution decreases exponentially. In Chapter 4 we analyse such transformations and show un-
der which conditions on the coefficients such transformation are possible for general parabolic
PDEs on unbounded domains. For American options, however, we prove, that such trans-
formations are not possible, i.e., weighted Sobolev spaces are required in the (numerical)
analysis. For constant coefficients, however, we proved the exponential decay of the exact
solution. This and using that the solution equals the pay-off function ψ beyond a known
treshold yields that non-weighted Sobolev spaces are admissible in the case for constant
coefficients. We still consider the formulation with weighted Sobolev spaces, which allows
to consider time- and space-dependent coefficients as in formulations with local volatility.
Numerical experiments show that the a posteriori error estimate and the adaptive mesh-
refinement are not sensitive on changes of η.

Chapter 5 concentrates on the numerical analysis for American options. Since the variational
inequality is non-symmetric, we cannot formulate an equivalent minimisation problem and
apply standard tools to solve variational inequalities via minimisation techniques. Instead of
solving the variational inequality directly, penalisation techniques applied to the variational
inequality yield a non-linear PDE. This is described in Section 5.1.

Since the spatial domain is unbounded, we split it into an inner domain (x0, xN) and two
outer domain T0 = (−∞, x0) and TN+1 = (xN ,∞), cf. Figure 1.4 and 1.2. The truncation
points x0 and xN , the ansatz functions and the discrete solution uεh on the outer domains
T0 and TN+1 are determined in Section 5.2 by means of the truncation error estimates of
Section 3.4, the FBVP, and properties of the free boundary. The inner domain (x0, xN) is
approximated by P1 finite elements. The time integration is done by the method of lines,
i.e., we solve a system of ODEs. For the error analysis we assume that the time-integration
is done sufficiently exact by proper chosen ODE solvers, i.e., we analyse the semi-discrete
problem.

The variational inequality is formulated within the framework of weighted Sobolev spaces,
hence we require interpolation error estimates in this weighted norms for the error analysis.
The second main result is the proof of a weighted Poincare inequality for the non-smooth
weights p(x) = exp(−2η|x|), η ≥ 0 with explicit determined constants. More precisely, we
extend a weighted Poincare inequality (for C2-functions f with weighted integral mean zero)
to our non-smooth weight. Then, by means of reflexion principles this estimates for functions
f with weighted integral mean zero is extended to functions f with zero boundary values.
Eventually, for f ∈ H1

η (a, b) and the nodal interpolation operator I there holds the next

6 Chapter 1. Introduction

error estimate
‖f − If‖L2

η(a,b) ≤ hC(η, h) ‖f ′‖L2
η(a,b)

with h = b− a and the constant C(η, h) → 2
π

for ηh→ 0 and the explicit representation

C(η, h) :=
2

π

√
cosh(2ηh)− 1

2η2h2
.

Then, we extend this estimate to functions f ∈ H1
η (a, b) which vanish at least at one point

in (a, b). For such functions there holds

‖f‖L2
η(a,b) ≤ hC(η, h) ‖f ′‖L2

η(a,b) (1.1)

with constant

C(η, h) :=

√√√√(1

π
+
(cosh(2ηh)− 1

2η2h2)

)1/2
)2

+
4

π2
. (1.2)

The third main result is a residual-based a posteriori error estimate for the error e = u−uεh
on R, i.e., the error between the exact solution u of the variational inequality and the semi-
discrete solution uεh of the penalised problem provided in Section 5.4. The special choice of
the ansatz functions and the semi-discrete solution uεh on the outer domains T0 and TN+1

yield an estimate in which the right-hand side only depends on the semi-discrete solution uεh
and given data on inner domain (x0, xN) and terms including the truncation error for u at the
truncation point. Since we determine an explicit truncation error in Section 3.4 we proved
a fully computable reliable error bound consisting of a standard residual, penalisation error
terms and the truncation error. By means of this a posteriori error estimator the error can be
divided into the error involving through the truncation of the interval and discretisation error.
The truncation point can be determined such that the order of magnitute of the truncation
error is neglectable compared to the order of magnitute of the discretiasation error. Hence,
artifical boundary conditions (which are non-local and costly in their computation) are not
necessary to guarantee that the error is below a given tolerance.

In Section 5.5 we prove that for sufficient regular solution the penalisation error e = u− uε,
i.e., the error between the exact solution of the variational inequality and the exact solution uε
of the penalised problem, is of order

√
ε as ε→ 0. An a priori error estimator for sufficiently

regular solutions for the error e = u − uεh on R constitutes the fourth main result. This
estimate consits of three error types, namely the discretisation error, the penalisation error
and the truncation error. An additional difficulty in the proof of the a priori and a posteriori
error estimates is that the bilinear form is not elliptic, it only satisfies a Gårding inequality.
We overcome this problem by using the L∞-norm in time instead of the L2-norm in time on
the left hand side of the estimators. This leads to a priori and a posteriori error estimates
for sufficiently small time T , depending on the parameters in the Gårding inequality.

Chapter 6 is devoted to the implementation of the finite element solution of the semi-discrete
solution of the penalised problem. We derive a system of ODEs which yields the semi-
discrete solution. Then we formulate an adaptive algorithm for the mesh refinement based
on the a posteriori error estimate proved in Chapter 5. Although the convergence of the
adaptive mesh refinement cannot be proved, numerical experiments show the convergence

Chapter 1. Introduction 7

of the adaptive algorithm. We compare the rates of convergence of uniform and adaptive
mesh refinement. Since the problem does not contain any singularity, the convergence rate
of adaptive and uniform mesh refinement is asymptotically equal. However, during the
first refinement levels the adaptive algorithm refines more efficiently, so that it is superior
to uniform mesh refinement. The a posteriori estimate contains truncation error terms.
Hence we systematically carry out numerical experiments with different truncation points
and compare the influence of the truncation error estimator on the total error estimator.
Finally we investigate on the effect of different choices of the parameter η in the weight
function on the error estimator and the refined meshes.

The numerical experiments show, that the pointwise truncation error derived in Section
3.4 is sufficiently sharp to be useful in practice. The truncation point can be chosen such
that the total error is below a given error tolerance. From the numerical experiments it
becomes evident that a simple penalisation technique combined with a standard ODE solver
for the semi-discrete system leads to satisfactory results. For more evolved real time scientific
computing a more sophisticated time discretisation has to be developed.

Frequently used notation and abbreviations are explained in Appendix A. Appendix B con-
cisely describes the data structures and programme code of the FE implementation. Ap-
pendix C lists the maple code used for calculating the pointwise truncation error.

In this thesis we considered a one-dimensional Black-Scholes model for the evaluation of
American put and call options. Several extentions for the model are possible and give an
outlook on open questions beyond the scope of this thesis.

Introducing local volatility make the volatility space- and time dependent. For sufficient
regular and bounded volatility functions, the numerical analysis from this thesis is transfer-
able, with exception the derivation of truncation errors. This relies on the Fourier analysis,
which is not applicable for PDEs with space dependent coefficients.

Modelling the asset with Lévy processes yields an partial integro differential equation. Hence,
instead applying the Fourier transform, the theory of pseudo-differential operators needs to
applied and it is totally unclear, if truncation errors can be derived in such way. Moreover,
the problem is non-local, which means that the numerical analysis is much more intricate
and the numerical solution requires special tools such as wavelets, cf. Matache et al. [2004]
or H-matrices to reduce the complexity resulting from the non-locality.

Basket options, which are options on more than one asset, are valued as a multi - dimen-
sional Black-Scholes problem. It remains unclear, if in this generalised context the truncation
error estimates can be still proved by applying the Fourier transform. However, a FE im-
plementation with adaptive mesh refinement returns very encouraging for up to three space
dimensions. For higher dimension, which are standard in the evaluation of basket options,
other methods such as sparse grids for dimension reductions need to be applied, cf. Reisinger
and Wittum [2004].

Chapter 2

Option Pricing

This chapter briefly introduces the theory of option pricing. For a more detailed treatment
we refer to Lamberton and Lapeyre [1996], Karatzas and Shreve [1998] with emphasis on
stochastic analysis and to Kwok [1998], Wilmott et al. [1995] more in tune with applied
mathematics and PDEs. The first section treats European options. After explaining the
concept of options, a stochastic model for option pricing is introduced, mainly following
Lamberton and Lapeyre [1996]. In this often called Black-Scholes model the assets follow a
geometric Brownian motion. Finally, we establish the famous results of Black and Scholes
[1973] and Merton [1973], for which Scholes and Merton received the Nobel price in economics
in 1997. The second section deals with American options. We start with explaining the
concept of American options. Then we introduce the stochastic formulation as an optimal
stopping problem. Finally we present deterministic models for pricing American options.

2.1 Pricing European Options

An option is a contract that gives the holder the right but not the obligation to buy or sell a
certain financial asset by a certain date T , for a certain strike price K. There are two main
type of options, namely a call option, which is a option to buy, and a put option, which gives
the right to sell. In the contract the following features need to be specified:

(i) the type of the option, i.e. call or put,

(ii) the underlying asset, usually shares, bonds or currencies,

(iii) the amount of the underlying asset,

(iv) the expiration date or maturity T , and

(v) the exercise price, or strike price K.

The question arises how to obtain a fair price of an option. On the exercise day the holder
must decide if he exercises the option. First we consider a call option, i.e. an option to buy,

8

2.1. Pricing European Options 9

K
0

K
h(

S
)

Pay−off function of a Call Option

Figure 2.1: The pay-off function h(S) =
(K − S)+ for call options.

K

K

h(
S

)

Pay−off function of a put option

Figure 2.2: The pay-off function h(S) =
(K − S)+ for put options.

with strike price K = 10. Assume that the share value equals S = 15 on the exercise day.
The holder will exercise the option and has a gain of S −K = 5, because he buys the share
for K and may sell it immediately for S. If the value of the share is 8, the (rational) holder
would not exercise and he does not gain anything. In other words, if the strike price K is
greater than the value S of the share, the holder will exercise and gain S −K, if the strike
price K is greater than the share value S, he would not exercise. Hence, the pay-off function
reads h = (S −K)+ := max(S −K, 0), illustrated in Figure 2.1. In the case of put options
it is the other way around: if the value of the share S is below the strike price K, the holder
will exercise and gain K − S, else he would not exercise and consequently gain nothing, i.e.,
the pay-off function reads h(S) = (K − S)+, illustrated in Figure 2.2.

We aim to find a fair price for an option before the exercise day.

Since the value of the option depends on the share value at the exercise day, which is a
priori unknown, the stock price needs to be modelled by a stochastic processes. If the stock
price follows a geometric Brownian motion, Black and Scholes showed, that the value of an
European option is described by a deterministic backward parabolic PDE.

2.1.1 The Black-Scholes Model

The classical option pricing theory of Black and Scholes (1973) is based on a continuous time
model with one risky asset (with price St at time t) and a risk-less asset with price S0

t at
time t satisfying the ordinary differential equation

dS0
t = rS0

t dt, t ≥ 0,

where r > 0 is the risk-less interest rate.

Remark 2.1. In the financial literature it is common to denote the time dependence of a
stochastic process in the subscript, i.e., one writes St instead of S(t), while in PDE literature
the subscript t denotes the time derivative.

10 Chapter 2. Option Pricing

To model the stock price we fix a probability space (Ω,F ,P) with a filtration (Ft)t≥0 satis-
fying the so-called usual conditions , i.e. it is right continuous and complete, cf. Karatzas
and Shreve [1991]. A filtration (Ft)t≥0 is an increasing family of σ-algebras included in F .
The σ-algebra Ft represents the information available at time t. Let (Bt)t≥0 be a standard
Brownian motion on that propability space. With the drift µ and the volatility σ the stock
price is determined by the following stochastic differential equation (SDE)

dSt = St(µdt+ σdBt), t ≥ 0. (2.1)

Applying Itô’s formula yields the explicit representation of the unique solution of the SDE
(2.1)

St = S0 exp
(
µt− σ2/2 t+ σBt

)
, t ≥ 0.

A formal definition of a Brownian motion is given in the subsequent definition, cf. Lamberton
and Lapeyre [1996].

Definition 2.2 (Brownian motion). A stochastic process (Bt)t≥0 is called a Brownian
motion (or a Wiener process) with respect to the filtration (Ft)t≥0 if the conditions (i)-(v)
hold:

(i) B0 = 0 almost surely;

(ii) (Bt)t≥0 has independent increments, i.e. if t1 < t2 ≤ t3 < t4 then Bt4 − Xt3 and
Bt2 −Bt1 are independent stochastic variables.;

(iii) Bt −Bs has the Gaussian distribution N(0, t− s) for s < t;

(iv) Bt is Ft measurable;

(v) Bt has continuous trajectories almost surely.

The classical option pricing theory relies on the fact that the pay-off of every option can
be duplicated by a portfolio consisting of an investment in the underlying stock and in the
riskless asset. In this so-called complete markets there exists a unique probability measure
Q equivalent to the measure P (the ‘real world’ measure) under which the discounted stock
price S̃t := exp(−rt)St is a martingale, cf. Lamberton and Lapeyre [1996]. A process (Xt)t≥0

is called a martingale under Q if EQ(Xt|Fs) = Xs for all s ≤ t. An European option which
is defined by a non-negative, FT -measurable random variable h(ST), the pay-off function, is
replicable and the value at time t is given by

V (St, t) = EQ
(
e−r(T−t)h(ST)|Ft

)
. (2.2)

The model of Black and Scholes is based on the subsequent set of assumptions:

- trading takes place continuously in time;

- the riskless interest rate r is known and constant over time;

- the asset pays no dividends;

2.2. Pricing American Options 11

- there are no transaction costs in buying or selling the asset or the option and no taxes;

- the assets are perfectly divisable, i.e., it is possible to trade fractions of assets;

- there are no penalties to short selling and the full use of proceeds is permitted;

- there are no riskless arbitrage possibilities;

- the asset follows the geometric Brownian motion (2.1).

Then, the price V = V (S, t) of an European option satisfies the backward parabolic PDE

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 for (S, t) ∈ (0,∞)× [0, T). (2.3)

With the pay-off function h(S) the terminal condition reads

V (S, T) = h(S). (2.4)

The derivation can be found in Black and Scholes [1973] and many finance books, e.g.
Karatzas and Shreve [1998], Lamberton and Lapeyre [1996], Wilmott et al. [1995], Kwok
[1998].

2.1.2 Options on Dividend Paying Assets

Dividends are payments from the company, that issued the shares, to the share holders.
Typically dividends are paid once or twice a year. Since dividend payments effect the stock
price (note that on the day of the dividend payment the stock price decreases by the amount
of the dividend), dividends need to be included in the evaluation for options. In this thesis
we only consider deterministic dividends, i.e. that the amount is a priori known. This is a
reasonable assumption since many companies try to maintain a similar payment from year
to year. Although dividends are paid at discrete times we modell them by a continuous
dividend yield, cf. Wilmott et al. [1995], Kwok [1998]. The dividend yield d is defined as the
ratio of the dividends to the asset price. Merton [1973] extended the Black-Scholes equation
to options on dividend paying shares, which reads

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV = 0 for (S, t) ∈ (0,∞)× [0, T),

V (S, T) = h(S) for S ∈ (0,∞).
(2.5)

2.2 Pricing American Options

In contrast to European options which can only be exercised at the expiration date T ,
American options can be exercised at any time until expiration. Due to this early exercise
possibility the value of an American option is at least the same of the price of an European
option with the same contract attributes. Moreover, due to the no-arbitrage assumption the

12 Chapter 2. Option Pricing

value of an option must always be greater than the pay-off function, i.e. V (S, t) ≥ h(S).
This is easily understood by the following argument. Assume that the value of an American
put option is less than its pay-off function, i.e., 0 ≤ V (S, t) < (K − S)+. Since we deal
with an American option, it can be exercised immediately. If we buy now the option for V ,
exercise the option by selling the share for K and repurchasing the share at the market for
S. Thus, we make a riskless profit of −V +K − S > 0, which contradicts the no-arbitrage
assumption. Hence, the value of an American option satisfies V (S, t) ≥ h(S).

Since the evaluation of European options leads to a deterministic PDE, the condition V (S, t)
≥ h(S) indicates, that the valuation of American options may be written as an obstacle
problem. Indeed, we will show later in this section, that American options can be formulated
as free boundary value problems (FBVP) or linear complimentary formulations (LCP). Since
the option holder has to decide if he exercises the option early, the evaluation is formulated
as an optimal stopping problem in stochastics. From an economic point of view the holder
has to decide if his gain by exercising the option immediately exceeds the current value of
the option.

2.2.1 An Optimal Stopping Problem

In this thesis we concentrate on American option where the asset is modelled by a geometric
Brownian motion, cf. Subsection 2.1.1 for European options. Again, the evaluation relies
on finding an equivalent probability measure Q under which the discounted price process St
is a martingale. With the definitions and notations from Subsection 2.1.1 the value V (St, t)
of an American option at time t is given by the following optimal stopping problem, cf.
Lamberton and Lapeyre [1996] with stopping time τ

V (St, t) = sup
t≤τ≤T

EQ
(
e−r(τ−t)h(Sτ)|Ft

)
.

As in the case of European options in the Black-Scholes setting, there exists a deterministic
formulation to evaluate American options. The next subsections deal with deterministic
formulations for the evaluations of American options.

2.2.2 A Free Boundary Value Problem

Let S denote the value of the underlying share, and V (S, t) the value of an American put
option at time t ∈ [0, T) and share value S. Further, let γ(t) ≥ 0 be the early exercise
curve (or free boundary). Given the positive constants T (exercise date), K (strike price),
r (riskless interest rate), d (dividend yields), and σ (volatility), the value V (S, t) of an
American put option satisfies (cf. Karatzas and Shreve [1998], Wilmott et al. [1995])

Vt + σ2/2S2VSS + (r − d)SVS − rV = 0 for γ(t) < S <∞, t ∈ [0, T),

V (S, T) = (K − S)+ for γ(T) ≤ S <∞,

V (γ(t), t) = K − γ(t) and lim
S→∞

V (S, t) = 0 for t ∈ [0, T),

VS(γ(t), t) = −1 for t ∈ [0, T).

(2.6)

2.2. Pricing American Options 13

The condition VS(γ(t), t) = −1 is called high contact condition. It arises from the no-
arbitrage assumption, cf. Kwok [1998], Wilmott et al. [1995]. Note that if the holder
exercised the option, the value equals its pay-off function, i.e., V (S, t) = K − S if S ≤ γ(t).

The value V (S, t) of an American call is given by (cf. Karatzas and Shreve [1998], Wilmott
et al. [1995])

Vt + σ2/2S2VSS + (r − d)SVS − rV = 0 for 0 ≤ S ≤ γ(t), t ∈ [0, T),

V (S, T) = (S −K)+ for 0 ≤ S ≤ γ(T),

V (γ(t), t) = γ(t)−K and V (0, t) = 0 for t ∈ [0, T),

VS(γ(t), t) = 1 for t ∈ [0, T).

(2.7)

The no-arbitrage assumption (cf. Kwok [1998], Wilmott et al. [1995]) yields the so-called
high contact condition VS(γ(t), t) = 1 . Note that if the holder exercised the option, the
value equals its pay-off function, i.e., V (S, t) = S −K if S ≥ γ(t).

2.2.3 A Linear Complimentary Formulation

The FBVP can be written as a LCF by using that an American option satisfies the Black-
Scholes inequality (cf. Wilmott et al. [1995]), namely,

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV ≤ 0 for (S, t) ∈ (0,∞)× [0, T). (2.8)

Together with the fact, that either the Black-Scholes equation holds or the option value
equals the pay-off function h, the value V (S, t) of an American Option is given by Wilmott
et al. [1995], Lamberton and Lapeyre [1996]

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV ≤ 0 in [0, T)× R+,(

V − h
)(∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV

)
= 0 in [0, T)× R+,

V (·, t) ≥ h(·) in [0, T)× R+,

V (·, T) = h(·) in R+.

(2.9)

Multiplying (2.9) by appropriate test functions and using the complimentary conditions
yields a variational inequality, cf. Wilmott et al. [1995], Friedman [1982], Baiocchi and
Capelo [1984]. Since the initial condition h for call and put options does not belong to
L2(R), weighted Sobolev spaces are required, cf. Section 3.1. Therefore we postpone the
formulation as a variational inequality to Section 3.2 where we will introduce the necessary
functional analytic background.

2.2.4 Some Properties of American options

In this subsection we state some properties of American options from Kwok [1998]. Let
τ = T − t denote the time until expiry and γ(τ) the early exercise curve. Recall that r
denote the risk-less interest rate and d the constant dividend yield.

14 Chapter 2. Option Pricing

American call options

The early exercise curve γ(τ) of an American call option is a continuous increasing function
of τ for τ > 0. In Kwok [1998], Karatzas and Shreve [1998] it is proved that

lim
τ→0+

γ(τ) = max
(r
d
K,K

)
. (2.10)

In particular, when d = 0, i.e., no dividends are paid, it follows that γ(τ) →∞ as τ → 0+.
Since γ(τ) is monotonically increasing this implies that γ(τ) →∞ for all τ . In order words,
early exercise is never optimal if d = 0. Consequently, we will assume throughout this thesis
that dividends are paid, i.e., the constant dividend yield is d > 0, when American call options
are under consideration. By means of perpetual options (which are options with an infinite
horizon), one proves that the early exercise curve of an American call option is bounded
above. With

µ+ =
−(r − d− σ2/2) +

√
(r − d− σ2/2)2 + 2rσ2

σ2
≥ 1

there holds for all τ > 0
γ(τ) ≤ µ+

µ+ − 1
K. (2.11)

Note that µ+ = 1 if and only if d = 0. With (2.10) and (2.11) we see that the free boundary
is bounded by explicit bounds. This property will be uses for the numerical analysis.

American put options

The early exercise curve γ(τ) of an American put option is a continuous monotone decreasing
function of τ for τ > 0. Moreover, there holds

lim
τ→0+

γ(τ) = min
(r
d
K,K

)
. (2.12)

In particular, when r = 0, γ(τ) → 0 as τ → 0+. Since γ(τ) is monotone decreasing, we
conclude that γ(τ) = 0 for all τ > 0 if the risk-less interest rate r = 0. In order words, it is
never optimal to exercise an American put option early, if the risk-less interest rate r = 0.
Hence, we always assume that r > 0 if we deal with American put options. As in the case
of American call options it is possible to give a lower bound of the early exercise curve by
means of perpetual put options. In Kwok [1998], Karatzas and Shreve [1998] it is proved
that with

µ− =
−(r − d− σ2/2)−

√
(r − d− σ2/2)2 + 2rσ2

σ2
≤ 0

there holds for all τ ≥ 0

γ(τ) ≥ µ−
µ− − 1

K. (2.13)

Note that µ− = 0 if and only if r = 0. The lower bound is important if log-prices are
considered, i.e., we set x = logS, which yields constant coefficient in the FBVP and LCF.

Remark 2.3. The free formulations of the evaluation of American options, i.e., the free
boundary value problem, the linear complimentary formulation and the variational inequality
are equivalent, cf. Wilmott et al. [1995], Friedman [1982].

Chapter 3

Mathematical Analysis for European
and American Options

The proof of the existence of a unique weak solution of the Black-Scholes equation and in-
equality opens this chapter. First, certain transformations applied to the strong formulation,
yield a forward parabolic PDE (European options) or VI (American options) with constant
coefficients. The weak formulation with properly chosen weighted Sobolev spaces allows for
a weak solution within this framework. The Fourier transform yields an integral representa-
tion of the solution including the free boundary. Starting from this integral representation
we prove a truncation error for American options.

3.1 European Options

3.1.1 Black-Scholes Equation

The Black-Scholes equation (2.5) on page 11, is a backward PDE with space-dependent
coefficients of Euler type. It is a well known fact that a transformation of the form S = ex

removes the space-dependence of the coefficients, cf. Wilmott et al. [1995]. The financial
interpretation is that the option value is considered in logarithmic prices, i.e. w(x, t) :=
V (ex, t).

Transformation 3.1 (leading to constant coefficients). Let V solve (2.5) and set S =
ex, w(x, t) := V (ex, t), and h(ex) =: ψ(x). Then the partial derivatives satisfy

∂tV = ∂tw, ∂SV = S−1∂xw, ∂SSV = S−2(∂xxw − ∂xw). (3.1)

Inserting this in (2.5) yields

∂w

∂t
+
σ2

2

∂2w

∂x2
+
(
r − d− σ2

2

)∂w
∂S

− rw = 0 for (x, t) ∈ R× [0, T),

w(x, T) = ψ(x) for x ∈ R.
(3.2)

15

16 Chapter 3. Mathematical Analysis

The next step is to transform (3.2), a PDE in backward-time, to a PDE in forward-time.

Transformation 3.2 (leading to forward time). In order to obtain a forward parabolic
equation, set τ = T − t and u(x, τ) := w(x, T − t). Then, ∂tw = −∂τu and (3.2) reads

∂u

∂τ
− σ2

2

∂2u

∂x2
−
(
r − d− σ2

2

)∂u
∂x

+ ru = 0 for (x, t) ∈ R× (0, T],

u(x, 0) = ψ(x) for x ∈ R.
(3.3)

Remark 3.3. The transformations also apply for time-dependent coefficients r(t) and σ(t)
in Transformation 3.1 and 3.2.

From now on, we will always use the formulation in forward time and log-prices. For brevity
we write t instead of τ . Financially speaking, time t means now time till expiration. We
denote the spatial derivative ∂u

∂x
by u′ and the time derivative ∂u

∂t
by u̇.

3.1.2 Existence and Uniqueness of the Solution

This subsection aims to provide existence and uniqueness for a weak solution for the evalua-
tion of European options. Since the pay-off functions for call and put options do not belong
to L2(R) we introduce weighted Sobolev spaces to formulate a variational problem.

Problem 3.4 (Strong formulation). To simplify notation we define the operator A :
H2(R) → L2(R) by

A[u] := −σ
2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru. (3.4)

Then (3.3) reads

u̇+A[u] = 0 for (x, t) ∈ R× (0, T],

u(·, 0) = ψ(·) for x ∈ R.
(3.5)

Since typical pay-off functions (e.g., ψ(x) = (ex−K)+ for a call option, ψ(x) = (K−ex)+ for
a put option) do not belong to L2(R), we introduce weighted Lebesgue and Sobolev spaces
H1
η and L2

η, cf. Jaillet et al. [1990].

Definition 3.5 (Weighted Sobolev spaces). The weighted Sobolev spaces L2
η and H1

η

are defined for η ∈ R by

L2
η := L2

η(R) :=
{
v ∈ L1

loc(R)|ve−η|x| ∈ L2(R)
}
, (3.6)

H1
η := H1

η (R) :=
{
v ∈ L1

loc(R)|ve−η|x|, v′e−η|x| ∈ L2(R)
}
. (3.7)

The respective norms are defined by

‖u‖2
L2

η
:=

∫
R
u2e−2η|x| dx and ‖u‖2

H1
η

:= ‖u‖2
L2

η
+ ‖u′‖2

L2
η
. (3.8)

3.1. European Options 17

The L2
η-scalar product is denoted by

(u , v)L2
η

:=

∫
R
uv e−2η|x| dx. (3.9)

Sometimes we abbreviate the weight p(x) := e−2η|x| and the weighted scalar product (u , v)L2
η

by (u, v)η. Then there holds
∥∥f√p∥∥

L2 = ‖f‖L2
η
.

Lemma 3.1. The space D(R) is dense in H1
η .

Before proving this lemma, we show that a function f ∈ L2
η convolved with a mollifier ϕε

converges strongly to f in L2
η as ε→ 0.

Lemma 3.2. Let f ∈ L2
η. For ϕ ∈ C∞0 , suppϕ = (−1, 1),

∫
R ϕdx = 1, and ϕε := 1

ε
ϕ(x

ε
) we

have
ϕε ∗ f −→ f in L2

η as ε→ 0.

Proof. For brevity set q :=
√
p = e−η|x|. We make the following decomposition

(ϕε ∗ f) · q = ϕε ∗ (f · q) +
(
(ϕε ∗ f) · q − ϕε ∗ (f · q)

)
.

Since f · q ∈ L2 and ϕε ∗ (f · q) −→ f · q in L2 it suffices to show that

‖gε(x)‖L2 := ‖(ϕε ∗ f) · q − ϕε ∗ (f · q)‖L2 −→ 0 for ε→ 0.

The Fundamental Theorem of Calculus for absolutely continuous q yields

gε(x) =

∫
R
ϕε(x− y)f(y)

(
q(x)− q(y)

)
dy =

∫
R
ϕε(x− y)f(y)

∫ x

y

q′(z) dz dy.

Since suppϕε = (−ε, ε),

|gε(x)| ≤
∫

R
ϕε(x− y) |f(y)|

(
2ε sup

z∈(x,y)

|q′(z)|
)
dy

= 2ε

∫
R
ϕε(x− y) |f(y)|

(
sup
|s|≤ε

|q′(y + s)|
)
dy︸ ︷︷ ︸

=:g̃ε(x)

.

Since |q′(x)| = |η| exp(η|x|) there holds

sup
|s|≤ε

|q′(y + s)| = |η|

{
1 if |y| ≤ ε,

eη|y|−ηε if |y| > ε.

Then, for some constant C > 0

sup
|s|≤ε

|q′(y + s)| ≤ Cp(y) for all ε < ε0

and so
sup
|s|≤ε

|q′(y + s)| |f(y)| ∈ L2(R).

Since g̃ε ∈ L2 uniformly and |gε(x)| ≤ 2ε|g̃ε(x)| there holds ‖gε‖L2 ≤ Cε→ 0 as ε→ 0. �

18 Chapter 3. Mathematical Analysis

Proof (of Lemma 3.1). Let f ∈ H1
η and the truncation function Φ ∈ C∞ such that

Φ(x) :=

{
1 if |x| ≤ 1,

0 if |x| ≥ 2.

We show now that fε :=
(
f · Φ(ε(·))

)
∗ ϕε ∈ C∞0 with ϕε from Lemma 3.2

fε −→ f in H1
η ,

i.e., fε −→ f and ∇fε −→ ∇f in L2
η, holds true. Since

∇fε =
(
∇f · Φ(ε(·))

)
∗ ϕε + ε

(
f · (∇Φ)(ε(·))

)
∗ ϕε

it suffices to show (
f · Φ(ε(·))

)
∗ ϕε −→ f in L2

η.

The Lebesgue Dominated Convergence Theorem yields

f · Φ(ε(·))√p −→ f
√
p in L2

and consequently
f · Φ(ε(·)) −→ f in L2

η.

Thus Lemma 3.2 concludes the proof. �

Definition 3.6. We define the dual of H1
η with respect to the pivot space L2

η, i.e., for
u ∈ (H1

η)
∗ =: H−1

η and v ∈ H1
η the dual pairing 〈· , ·〉H−1

η ×H1
η

is defined by

〈u , v〉η := 〈u , v〉H−1
η ×H1

η
:=

∫
R
uve−2η|x| dx.

Remark 3.7. The density of the test functions D(R) in H1
η and the definition of 〈· , ·〉η

allows to interpret the operator A as a mapping from H1
η → H−1

η .

Definition 3.8 (aη(·, ·)). We define the bilinear form aη(·, ·) : H1
η ×H1

η → R as

aη(u, v) :=

∫
R
A[u]v exp(−2η|x|) dx

=
σ2

2

∫
R
u′v′ exp(−2η|x|) dx+ r

∫
R
uv exp(−2η|x|) dx

−
∫

R

(
ησ2 sign(x) + r − d− σ2

2

)
u′v exp(−2η|x|) dx.

(3.10)

Remark 3.9. Since D(R) is dense in H1
η (R), the boundary terms vanish in the integration

by part in (3.10).

Before we formulate the weak problem we introduce the so-called Bochner spaces, cf. Zeidler
[1990], Dautray and Lions [1992].

3.1. European Options 19

Definition 3.10. Let X be a Banach space and a, b ∈ R with a < b, 1 ≤ p < ∞. Then
L2(a, b;X) and L∞(a, b;X) denote the spaces of measurable functions u defined on (a, b)
with values in V such that the function t → ‖u(·, t)‖X is square integrable, respectively,
essentially bounded. The respective norms are defined by

‖u‖L2(a,b;X) =
(∫ b

a

‖u(·, t)‖2
X dt

)1/2

,

‖u‖L∞(a,b;X) = ess. supa≤t≤b ‖u(·, t)‖X

For details on this function spaces we refer to Zeidler [1990], Dautray and Lions [1992].
By means of the introduced weighted norms and the bilinear form aη(·, ·) we give a weak
formulation of Problem 3.4.

Problem 3.11 (Weak formulation). The weak formulation of Problem 3.4 reads: Given
ψ ∈ H1

η seek u ∈ L2(0, T ;H1
η) with u̇ ∈ L2(0, T ; (H1

η)
∗) such that u(·, 0) = ψ(·) almost

everywhere in R and for almost all times t ∈ (0, T],
∂

∂t
(u(·, t), v)L2

η
+ aη(u(·, t), v) = 0 for all v ∈ H1

η (R). (3.11)

The main theorem on first-order linear evolution equations in Zeidler [1990] proves existence
of a unique solution of problem (3.11). The next definition explains the concept of a Gelfand
triple which is used in the main theorem.

Definition 3.12 (Gelfand Triple). V ⊆ H ⊆ V ∗ is called Gelfand triple if V is a real
separable and reflexive Banach space while H is a real separable Hilbert space and V is
dense in H with continuous embedding V ⊆ H, i.e. for some C <∞,

‖v‖H ≤ C ‖v‖V for all v ∈ V.

The following theorem is the main theorem on first-order linear evolution equations.

Theorem 3.3 (Zeidler IIa, Chapt. 23). Suppose u0 ∈ H, f ∈ L2(0, T ;V ∗) and the con-
ditions (H1)-(H3).

(H1) V ⊆ H ⊆ V ∗ is a Gelfand triple with dimV = ∞, 0 < T < ∞; H and V are real
Hilbert spaces.

(H2) The mapping a : V × V → R is bilinear, bounded and strongly positive.

(H3) (w1, w2, . . .) is a basis in V , and (un0) is a sequence in H with un0 ∈ span{w1, . . . , wn}
for all n and

(un0) → u0 in H as n→∞.

Then there exists a unique solution u ∈ W 1
2 (0, T ;V,H) := {u ∈ L2(0, T ;V) : ut ∈

L2(0, T ;V ∗)} satisfying
∂

∂t
(u(·, t), v(·))H + a(u(·, t), v(·)) = 〈f(·, t), v〉V ∗×V for all v ∈ V,

u(·, 0) = u0(·),
(3.12)

20 Chapter 3. Mathematical Analysis

Remark 3.13. The existence of a basis in condition (H3) follows directly from (H1) and
u0 ∈ H.

Corollary 3.4. H1
η ⊆ L2

η ⊆ H−1
η form a Gelfand triple.

Proof. The density of the test functions D(R) in H1
η and L2

η implies the separability of L2
η

and H1
η and also the density of H1

η in L2
η. The continuity of the embedding H1

η ⊆ L2
η is easily

seen because the H1
η -norm is by definition stronger then the L2

η-norm. �

To apply Theorem 3.3 to the weak formulation (3.11), the bilinear form aη(·, ·) defined in
(3.10) needs to be bounded and elliptic. The next proposition proves boundedness and a
Gårding inequality of aη. This proposition can be found for d = 0 in Matache et al. [2004]
where most of the proof is left to the reader. Therefore we give a more detailed proof
including the explicit determination of the constants α and λ which play a crucial part in
the error analysis in Chapter 5.

Proposition 3.5 (Gårding inequality and ellipticity of aη(·, ·)). The bilinear form
aη(·, ·) : H1

η ×H1
η → R is continuous and satisfies a Gårding inequality: with

C := max
{
|r − d− σ2/2 + ησ2|, |r − d− σ2/2− ησ2|

}
(3.13)

and
M = max(σ2/2, r) + C > 0, α = σ2/4 > 0, λ = C2/σ2 + σ2/4− r

there holds

|aη(u, v)| ≤ M ‖u‖H1
η(R) ‖v‖H1

η(R) for all u, v ∈ H1
η (R); (3.14)

aη(u, u) ≥ α ‖u‖2
H1

η(R) − λ ‖u‖2
L2

η(R) for all u ∈ H1
η (R). (3.15)

Proof. Some straight-forward estimates lead to

|aη(u, v)|

=

∣∣∣∣σ2

2

∫
R
u′v′e−2η|x| dx+ r

∫
R
uve−2η|x| dx−

∫
R

(
ησ2 sign(x) + r − d− σ2/2

)
u′ve−2η|x| dx

∣∣∣∣
≤ max(σ2/2, r)

∫
R

∣∣(u′v′ + uv) e−2η|x|∣∣ dx+

∥∥∥∥ησ2 sign(x) + r − d− σ2

2

∥∥∥∥
L∞

∫
R

∣∣u′ve−2η|x|∣∣ dx
≤M ‖u‖H1

η
‖v‖H1

η
.

Conversely, with C := max(|r − d − σ2

2
+ ησ2|, |r − d − σ2

2
− ησ2|) and ε := σ2/(4C) one

estimates

aη(u, u) ≥
σ2

2
‖u′‖2

L2
η
+ r ‖u‖2

L2
η
− C ‖u′u exp(−2η| · |)‖L1

≥ σ2

2
‖u′‖2

L2
η
+ r ‖u‖2

L2
η
− C

(
ε ‖u′‖2

L2
η
+

1

4ε
‖u‖2

L2
η

)
=
σ2

4
‖u′‖2

L2
η
+ (r − C2/σ2) ‖u‖2

L2
η

= α ‖u‖2
H1

η
− λ ‖u‖2

L2
η
. �

3.2. American Options 21

Remark 3.14 (Ellipticity vs. Gårding inequality for European Options). Although
Theorem 3.3 demands the strict positivity of the bilinear form a(·, ·), it is sufficient that a(·, ·)
satisfies the Gårding inequality; i.e. there exists α > 0, λ ∈ R such that

a(u, u) ≥ α ‖u‖2
V − λ ‖u‖2

H for all u ∈ V. (3.16)

Proof. The transformation u = eλtw in equation (3.12) and setting a1(w, v) := a(w, v) +
λ(w, v)H , f1 := e−λtf leads to

∂

∂t
(w(·, t), v(·))H + a1(w(·, t), v(·)) = 〈f1(·, t), v〉V ∗×V for all v ∈ V,

w(0) = u0 ∈ H.

Note that the bilinear form a1(·, ·) is strictly positive. Since this transformation only effects
the time-derivative, it can be applied as well to the weak form without changing the solution
spaces. �

The next theorem provides the unique existence of a weak solution of Problem 3.11, the
variational formulation of the transformed Black-Scholes equation.

Corollary 3.6. Problem 3.11 has a unique solution

u ∈
{
u ∈ L2(0, T ;H1

η) : ut ∈ L2(0, T ; (H1
η)
∗)
}
.

Proof. Since the weighted Sobolev spaces H1
η and L2

η form a Gelfand triple, cf. Corollary
3.4, and the bilinear form aη(·, ·) is bounded and a Gårding inequality is applicable, cf.
Proposition 3.5, (H1) and (H2) of Theorem 3.3 are satisfied; which implies Corollary 3.6. �

3.2 American Options

As already explained in Chapter 2 the optimal stopping problem for the evaluation of Amer-
ican options corresponds to a determinitstic system of partial differential (in)equalities, also
called linear complimentary formulation (LCF), cf. Lamberton and Lapeyre [1996], Wilmott
et al. [1995]. In this section we will derive the weak formulation, namely the variational
inequality. This formulation can be found in Wilmott et al. [1995]. In Jaillet et al. [1990]
it is directly shown that the solution of the optimal stopping problem can be written as a
deterministic variational inequality in weighted Sobolev spaces. The formulation as a free
boundary value problem (FBVP) can be found in McKean [1965], Van Moerbeke [1976],
Karatzas and Shreve [1998], Dewynne et al. [1993], Wilmott et al. [1995]. We will use this
formulation to derive an integral representation of the value of an American option and
truncation error estimates.

22 Chapter 3. Mathematical Analysis

3.2.1 The Black-Scholes inequality

In the original variables S and t the LCF for the valuation of American options, cf. (2.9) on
page 13, is a backward time formulation with space-dependent coefficients. As in the case
of European option we transform the problem to forward time and log-prices, cf. Transfor-
mation 3.1 on page 15 and 3.2 on page 16.

Problem 3.15 (Strong formulation / Linear complementary formulation (LCF)).
Recall the definition of the operator A : H2(R) → L2(R) from (3.4) on page 16,

A[u] := −σ
2

2
u′′ −

(
r − d− σ2

2
)u′ + ru. (3.17)

Set S = ex, τ = T − t, u(x, τ) := V (ex, T − t), and ψ(x) := h(ex), cf. Transformation 3.1
and 3.2. Then, with t instead of τ , (2.9) reads

u̇+A[u] ≥ 0 in (0, T]× R,(
u− ψ

)(
u̇+A[u]

)
= 0 in (0, T]× R,

u(·, t) ≥ ψ(·) in (0, T]× R,
u(·, 0) = ψ(·) in R.

(3.18)

3.2.2 Variational Formulation

As for the European option case we introduce weighted Sobolev spaces L2
η and H1

η as in
Definition 3.5 on page 16. The bilinear form aη(·, ·) corresponding to the space operator A
is defined in (3.10) on page 18. Define the set of admissible solutions

Kψ := {v ∈ H1
η (R)|v ≥ ψ a.e.}. (3.19)

Note that Kψ is a closed, convex, and non-empty subset of H1
η .

Problem 3.16 (Weak formulation). The variational formulation of problem (3.18) reads:
Find u ∈ L2(0, T ;H1

η), u̇ ∈ L2(0, T ;L2
η) such that u ∈ Kψ almost everywhere in (0, T],

(u̇, v − u)L2
η
+ aη(u, v − u) ≥ 0 for all v ∈ Kψ

u(·, 0) = ψ(·).
(3.20)

Remark 3.17 (Variational formulation vs. complimentary formulation). If a solu-
tion
u ∈ L2(0, T ;H2

η) solves the variational inequality (3.20) then it is also a solution of the LCF
(3.18), cf. Bensoussan and Lions [1982].

3.2.3 Existence and Uniqueness

To prove the existence of a unique solution of the variational inequality (3.20) we cite the
main theorem on evolution variational inequalities of first order from Zeidler [1985].

3.2. American Options 23

Theorem 3.7 (Zeidler III. Chapt 55). We consider the following problem

(u̇, v − u)H + a(u, v − u) ≥ 0 for all v ∈M and almost all t ∈ [0, T],

u(0) = u0 ∈ V.
(3.21)

This problem has exactly one solution {u ∈ L2(0, T ;V) : u̇ ∈ L2(0, T ;H)} if the following
hold true.

(i) ”V ⊆ H ⊆ V ∗” is a Gelfand triple.

(ii) M is a closed convex nonempty set in V .

(iii) The bilinear form a : V ×V → R is bounded, and there exist real numbers ω and β > 0
such that

a(u, v) + ω ‖u‖2
H ≥ β ‖u‖2

V for all v ∈ V.

(iv) For a fixed g ∈ H and for all v ∈M there holds

a(u0, v − u0) ≥ (g, v − u0)H .

Corollary 3.8. With M := Kψ, H := L2
η(R), V := H1

η (R), a(·, ·) := aη(·, ·), and u0 := ψ
problem (3.20) has exactly one solution.

Proof. Since (i), (ii), and (iii) are satisfied (cf. Corollary 3.4 on page 20, the definition of
Kψ (3.19) on page 22, and Proposition 3.5 on page 20), it remains to show that (iv) holds
true. In case of a put option, i.e. u0 = (K − ex)+, define g ∈ L2

η by

g(x) :=

{
−σ2/2K − dex + rK for −∞ < x ≤ logK,

0 for x > logK.

Set ṽ := v − u0. Since v ∈ Kψ there holds 0 ≤ ṽ ∈ H1
η ; then one obtains for all ṽ ≥ 0

aη(u0, ṽ) = −σ
2

2

∫ logK

−∞
exṽx exp(−2η|x|) dx+ r

∫ lnK

−∞
(K − ex)ṽ exp(−2η|x|) dx

+

∫ logK

−∞
(r − d− σ2/2 + ησ2 sign(x))exṽ exp(−2η|x|) dx

=
σ2

2

∫ logK

−∞
(1− 2σ2 sign(x))exṽ exp(−2η|x|) dx

+

∫ logK

−∞
(r − d− σ2/2 + ησ2 sign(x))exṽ exp(−2η|x|) dx

+ r

∫ logK

−∞
(K − ex)ṽ exp(−2η|x|) dx− σ2

2
Kṽ(lnK) exp(−2η| lnK|)

=

∫ logK

−∞

(
− σ2/2KδlogK − dex + rK)ṽ exp(−2η|x|) dx

≥
∫ logK

−∞

(
− σ2/2K − dex + rK)ṽ exp(−2η|x|) dx

=

∫
R
gṽ exp(−2η|x|) dx = (g, ṽ)L2

η
.

24 Chapter 3. Mathematical Analysis

For a call option, i.e. u0 = (K − ex)+, we choose g ∈ L2
η

g(x) :=

{
−σ2/2K + dex − rK for logK ≤ x <∞,

0 for x < logK.

Similar calculations show that there holds aη(u0, ṽ) ≥ (g, ṽ)L2
η

for all 0 ≤ ṽ ∈ H1
η . �

3.3 Solving American Options via the Fourier Trans-
form

The derivation of an integral representation formula for the value of an American option
is the main task of this section. Using the Fourier transform to solve the free boundary
value problem (FBVP) arising in the evaluation of American options, cf. Wilmott et al.
[1995], yields an integral representation depending on the free boundary. This approach can
be found for American call options in Underwood and Wang [2002]. Since we need this
representation also for put options and in the transformed spaces for the error analysis in
Chapter 5 we give a detailed derivation.

3.3.1 American Put

Recall that early exercise of an American put option is never optimal for the riskless interest
rate r = 0, cf. Subsection 2.2.4. Therefore we assume that r > 0 to guarantee the existence
of a contact region, i.e. γ(τ) > 0. This assumption makes perfectly sense because if it is
a priori known that there does not exist a free boundary, the evaluation problem can be
considered as a PDE. Note that the value of an American put option is V (S, τ) = K −S for
S < γ(τ) and τ ∈ [0, T).

A Problem formulation

Let S denote the value of the underlying share, τ ∈ [0, T) the ‘backward’ time, and V (S, τ)
the value of an American put option at time τ and share value S. Further, let γ(τ) ≥ 0 be
the early exercise curve (or free boundary). Given the positive constants T , K, r, d, and σ2,
the value V (S, τ) of an American put option satisfies (cf. Subsection 2.2.2)

Vτ + σ2/2S2VSS + (r − d)SVS − rV = 0 for γ(τ) < S <∞, τ ∈ [0, T),

V (S, T) = (K − S)+ for γ(T) ≤ S <∞,

V (γ(τ), τ) = K − γ(τ) and lim
S→∞

V (S, τ) = 0 for τ ∈ [0, T),

VS(γ(τ), τ) = −1 for τ ∈ [0, T).

(3.22)

3.3. Fourier Transform 25

B Transformations to a formulation which admits Fourier transformation

Note that the Fourier transform cannot be applied directly to (3.22) owing to the space
dependent coefficients and the time-dependent domain. The forthcoming Transformations
3.18-3.20 lead to formulation (3.25) with constant coefficients and spatial domain R.

Transformation 3.18 (leading to forward time and constant coefficients). A loga-
rithmic price and forward time transformation in formulation (3.22), i.e. S = ex, t = T − τ ,
u(x, t) := V (ex, T − τ), and xf (t) := log(γ(t)) yields

ut − σ2/2uxx − (r − d− σ2/2)ux + ru = 0 for xf (t) ≤ x <∞, t ∈ (0, T],

u(x, 0) = (K − ex)+ for xf (0) ≤ x <∞,

u(xf (t), t) = K − exf (t) and lim
x→∞

u(x, t) = 0 for t ∈ (0, T],

ux(xf (t), t) = −exf (t) for t ∈ (0, T].

(3.23)

Transformation 3.19 (leading to a time-invariant domain). A shift y := x − xf (t)
leads to a time-invariant domain in (3.23). Moreover, the left boundary lies at the origin.
Then, w(y, t) := u(x− xf (t), t) satisfies

wt − σ2/2wyy − (r − d− σ2/2 + ẋf (t))wy + rw = 0 for 0 ≤ y <∞, t ∈ (0, T],

w(y, 0) = (K − ey+xf (0))+ for 0 ≤ y <∞,

w(0, t) = K − exf (t) and lim
y→∞

w(y, t) = 0 for t ∈ (0, T],

wx(0, t) = −exf (t) for t ∈ (0, T].

(3.24)

Transformation 3.20 (leading to homogeneous boundary conditions at zero). The
extension from (0,∞) to R in (3.24) requires homogeneous boundary conditions at zero. De-
compose w(y, t) = v(y, t) + g(y, t) such that v(0, t) = vy(0, t) = 0 for all t, i.e. g(y, t) =
(K − ey+xf (t))+. Then, v satisfies

vt − σ2/2 vyy − (r − d− σ2/2 + ẋf (t))vy + rv = f(y, t) for 0 ≤ y <∞, t ∈ (0, T],

v(y, 0) = 0 for 0 ≤ y <∞,

v(0, t) = 0 and lim
y→∞

v(y, t) = 0 for t ∈ (0, T],

vy(0, t) = 0 for t ∈ (0, T],

(3.25)

with

f(y, t) = −gt + σ2/2gyy + (r − d− σ2/2 + ẋf (t))gy − rg. (3.26)

Remark 3.21. Note that an extension of v(y, t) and f(y, t) by zero for y < 0 and all
t ∈ [0, T], yields that the extended v satisfies (3.25) for all y ∈ R and all 0 ≤ t ≤ T .

26 Chapter 3. Mathematical Analysis

C Calculation of the right-hand side f

Since g(y, t) is continuous, gt(y, t), gy(y, t), and gyy(y, t) are understood in the weak sense.
Then,

gt =

{
−ẋf (t)ey+xf (t) if y ≤ logK − xf (t),
0 otherwise;

gy =

{
−ey+xf (t) if y ≤ logK − xf (t),
0 otherwise;

gyy =

{
KδlogK−xf (t) − ey+xf (t) if y ≤ logK − xf (t),
0 otherwise;

with the Dirac measure δ, i.e. 〈δa, ϕ〉 := ϕ(a) for all ϕ ∈ D(R).

Inserting gt, gy, and gyy in (3.26) yields for y ≤ logK − xf (t)

f(y, t) = ẋf (t)e
y+xf (t) + σ2/2(KδlogK−xf (t) − ey+xf (t)) + (r − d− σ2/2 + ẋf (t))(−ey+xf (t))

− r(K − ey+xf (t))

= σ2/2KδlogK−xf (t) − rK + dey+xf (t).

(3.27)

Since f is extended by zero for y < 0, the measure f reads

f(y, t) =

{
σ2/2KδlogK−xf (t) − rK + dey+xf (t) if 0 ≤ y ≤ logK − xf (t),
0 otherwise. (3.28)

Remark 3.22. Note that f has compact support because xf (t) ≥ C > −∞. Since, in addi-
tion, the Dirac measure δ ∈ L∞(0, T ;H−s(R)) for s > 1/2 there holds f ∈ L∞(0, T ;H−s(R))
for all s > 1/2.

D Fourier Transformation

Throughout the remainder of this section, any reference to (3.25) is understood in the sense
of Remark 3.21. Before solving (3.25) via the Fourier transform, we give a formal definition
of the Fourier transform and state some of its properties. An introduction on the Fourier
transform can be found for example in Yosida [1995].

Definition 3.23 (Fourier transform). Let S(R) denote the space of rapidly decreasing
smooth functions, i.e., f ∈ C∞(R) such that supx∈R |xkf (α)(x)| <∞ for all k, α ∈ N. Then,
the Fourier transform F : S(R) → S(R) is defined by

(Ff)(x) =
1√
2π

∫ ∞

−∞
f(x)e−iξx dx =: f̂(ξ). (3.29)

3.3. Fourier Transform 27

The inverse Fourier transform F−1 : S(R) → S(R) reads

(F−1f)(ξ) =
1√
2π

∫ ∞

−∞
f(ξ)eiξx dx =: f̃(x). (3.30)

Theorem 3.9 (Properties of the Fourier transform). The Fourier transform F maps
S(R) linearly and continuously into S(R). The same holds for the inverse Fourier transform.
Moreover,

ˆ̃f = f,
˜̂
f = f, f̂ ∗ g =

√
2πf̂ ĝ,

√
2πf̂g = f̂ ∗ ĝ. (3.31)

Proof. The proof can be found in Yosida [1995].

Remark 3.24. The Fourier transform can be extended to S ′(R), the space of tempered
distributions, and to L2(R). Theorem 3.9 holds literally.

E Fourier transform to solve parabolic PDEs

Consider the following abstract PDE with an elliptic operator A[u] := −auxx + b(t)ux + cu
(a > 0, b(t) ∈ L1(0, T), c ∈ R) and right-hand-side f ∈ L∞(0, T ;H−s(R)) for s > 1/2,

ut +A[u] = f,

u(0) = 0.
(3.32)

Since f ∈ L∞(0, T ;H−s(R)) for s > 1/2 there holds f̂ ∈ L∞(0, T ;L1
`oc(R)) and

(1 + |ξ|2)−s/2f̂(ξ, t) ∈ L∞(0, T ;L2(R)).

Then, applying the Fourier transform on (3.32) yields the ODE

ût + p(ξ, t)û = f̂ . (3.33)

Note that û(0) = 0 and
p(ξ, t) = a|ξ|2 + b(t)iξ + c.

The solution û of (3.33) reads

û(ξ, t) = e−
R t
0 p(ξ,s) ds

∫ t

0

f̂(ξ, s)e
R s
0 p(ξ,r) dr ds. (3.34)

Lemma 3.10 (Regularity of u). Let u be a solution of (3.32). Given that f(ξ, t) ∈
L∞(0, T ;Hs(R)) there holds u(x, t) ∈ L2(0, T ;Hs+2(R)).

Proof. Recall that by definition of v ∈ Hs(R), the Fourier transform v̂ of v satisfies

(1 + |ξ|2)s/2v̂(ξ) ∈ L2(R).

28 Chapter 3. Mathematical Analysis

Then,

‖u‖2
L2(0,T ;Hs+2(R)) =

∫ T

0

∫
R
(1 + |ξ|2)s+2û2(ξ) dξ dt

=

∫ T

0

∫
R
(1 + |ξ|2)s+2

(∫ t

0

f̂(ξ, ·)e−
R t

s p(ξ,r) dr ds
)2

dξ dt.

Set
∫ t
s
b(r) dr = B(t)−B(s). Hölder’s inequality in the inner time integral yields

‖u‖2
L2(0,T ;Hs+2(R))

≤
∫ T

0

∫
R
(1 + |ξ|2)s+2

∥∥∥f̂(ξ, ·)
∥∥∥2

L∞(0,t)

(∫ t

0

|e−a|ξ|2(t−s)−c(t−s)−iξ(B(t)−B(s))| ds
)2

dξ dt.

Observe |e−iξ(B(t)−B(s))| = 1 and |e−c(t−s)| ≤ C(T) with C(T) := e−cT for some c < 0 and
C(T) = 1 for c ≥ 0. This yields

‖u‖2
L2(0,T ;Hs+2(R)) ≤ C(T)

∫ T

0

∫
R
(1 + |ξ|2)s+2

∥∥∥f̂(ξ, ·)
∥∥∥2

L∞(0,T)

(1− e−at|ξ|
2

a|ξ|2
)2

dξ dt

= C(T)

∫ T

0

∫
R

(1 + |ξ|2)2

a2|ξ|4
(
1− e−at|ξ|

2)2(
1 + |ξ|2

)s ∥∥∥f̂(ξ, ·)
∥∥∥2

L∞(0,t)
dξ dt.

Since (1 + |ξ|2)s/2
∥∥∥f̂(ξ, ·)

∥∥∥
L∞(0,t)

∈ L2(R) it suffices to show that g(ξ, t) := (1+|ξ|2)2

a2|ξ|4
(
1 −

e−at|ξ|
2)2 is bounded. Note that

lim
|ξ|→∞

g(ξ, t) = 0

for all t ∈ [0, T]. To analyse the limit |ξ| → 0 write g in the form

g(ξ, t) = t2(1 + |ξ|2)2
(1− e−at|ξ|

2

at|ξ|2
)2

.

The rule of l’Hospital yields

lim
|ξ|→0

1− e−at|ξ|
2

at|ξ|2
= e−at|ξ|

2

.

It follows that g(ξ, t) is uniformly bounded which finishes the proof. �

F Solving (3.25) by Fourier transformation

Applying the Fourier transform on both sides of equation (3.25) and setting F(v(y, t)) =:

v̂(ξ, t) and F(f(y, t)) =: f̂(ξ, t) yields

v̂t(ξ, t) + p(ξ, t)v̂(ξ, t) = f̂(ξ, t), (3.35)

with initial condition
v̂(ξ, 0) = F(v(x, 0)) = 0,

and
p(ξ, t) := σ2/2 ξ2 −

(
r − d− σ2/2 + ẋf (t)

)
iξ + r.

3.3. Fourier Transform 29

Inserting∫ t

0

p(ξ, s) ds =
(
σ2/2 ξ2 −

(
r − d− σ2/2

)
iξ + r

)
t− iξ

(
xf (t)− xf (0)

)
(3.36)

in (3.34) yields

v̂(ξ, t) =

∫ t

0

f̂(ξ, s)e−
(
σ2/2 ξ2−

(
r−d−σ2/2

)
iξ+r
)
(t−s)+iξ

(
xf (t)−xf (s)

)
ds. (3.37)

Applying the inverse Fourier transformation on V (ξ, t) gives the solution v(y, t) of equation
(3.25). For brevity set

P (ξ, t, s) := e−
(
σ2/2 ξ2−

(
r−d−σ2/2

)
iξ+r
)
(t−s)+iξ

(
xf (t)−xf (s)

)
.

Then v̂ can be written as

v̂(ξ, t) =

∫ t

0

f̂(ξ, s)P (ξ, s) ds.

Hence, the inverse Fourier transform of v̂ reads

F−1(v̂(ξ, t)) =

∫ t

0

F−1
(
f̂(ξ, s)P (ξ, s)

)
ds =

1√
2π

∫ t

0

F−1(f̂(ξ, s)) ∗ F−1(P (ξ, t, s)) ds.

(3.38)
The next step is to calculate the inverse Fourier transform of P . Note that P has the form
P (ξ, t) = e−aξ

2+biξ+c with a = σ2/2 (t− s), b =
(
r− d− σ2/2

)
(t− s) + (xf (t))− xf (s)), and

c = −r(t− s). Then,

√
2πF−1(P (ξ, t)) =

∫ ∞

−∞
e−aξ

2+biξ+ceiξy dξ = ec−
(b+y)2

4a

∫ ∞

−∞
e
−
(√

aξ+
(b+y)i√

2a

)2

dξ =

√
π

a
ec−

(b+y)2

4a .

Consequently the inverse Fourier transform of P (ξ, t) reads

F−1(P (ξ, t, s)) =
e−r(t−s)

σ
√
t− s

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)+(xf (t)−xf (s))+y

)2

. (3.39)

Inserting (3.39) in (3.38) yields the solution v(y, t) = F−1(v̂(ξ, t)) of (3.25), namely

v(y, t) =
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

∫ ∞

−∞
e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)+(xf (t)−xf (s))−w+y

)2

f(w, s) dw ds.

(3.40)

G Solution and backward transformation

The next step is to insert f from (3.28) in (3.40). Applying the inverse transformations
of Transformation 3.18 and 3.19 yields u(x, t), the solution of (3.23), i.e. the value of an

30 Chapter 3. Mathematical Analysis

American put option in logarithmic prices and forward time. Using u(x, t) − (K − ex)+ =
v(x− xf (t), t) (cf. Transformation 3.18 and 3.19) and f from (3.28) in (3.40) yields

u(x, t)− (K − ex)+ = v(x− xf (t), t)

=
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

∫ logK−xf (s)

0

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

f(w, s) dw ds

=
σK

2
√

2π

∫ t

0

e−r(t−s)√
t− s

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−logK+x

)2

ds

− rK
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

∫ logK−xf (s)

0

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

dw ds

+ d
1

σ
√

2π

∫ t

0

e−r(t−s)+xf (s)

√
t− s

∫ logK−xf (s)

0

ewe
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

dw ds.

(3.41)

To simplify (3.41) note that the two spatial integrals are of the form

I1 :=

∫ c

0

e−
1
b
(a−w)2 dw, I2 :=

∫ c

0

e−
1
b
(a−w)2+w dw.

Integral I1 can easily be computed by using the transformation z = 1/
√
b(a−w) and the error

function erf(x) := 2√
π

∫ x
0
e−t

2
dt,

I1 = −
√
b

∫ 1/
√

b(a−c)

a/
√

b

e−z
2

dz =

√
bπ

2

(
erf
(a√

b

)
− erf

(1√
b
(a− c)

))
. (3.42)

To calculate I2 substitute z = y√
b
− 2a+b

2
√
b

. Then

I2 =
√
bea+

b/4

∫ b+2a−2c/2
√

b

b+2a/2
√

b

e−z
2

dz =

√
bπ

2
ea+

b/4
(

erf
(b+ 2a

2
√
b

)
− erf

(b+ 2a− 2c

2
√
b

))
. (3.43)

Using I1 and I2 with a = (r−d−σ2/2)(t−s)−xf (s)+x, b = 2σ2(t−s), and c = logK−xf (s)
in (3.41) yields the solution u of (3.23), namely

u(x, t)− (K − ex)+ =

=
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−logK+x

)2

ds

− rK

2

∫ t

0

e−r(t−s)
(

erf
((r − d− σ2/2)(t− s)− xf (s) + x√

2σ2(t− s)

)
− erf

((r − d− σ2/2)(t− s) + x− logK√
2σ2(t− s)

))
ds

+
d

2

∫ t

0

e−d(t−s)+x
(

erf
((r − d)(t− s)− xf (s) + x√

2σ2(t− s)

)
− erf

((r − d)(t− s)− logK + x√
2σ2(t− s)

))
ds.

(3.44)

Remark 3.25. Note that this integral representation for u only holds for x > xf (t). For
x ≤ xf (t) the solution u satisfies u(x, t) = K − ex.

3.3. Fourier Transform 31

Remark 3.26. The free boundary xf (t) is given as a solution of an integral equation. Its
derivation can be found in Goodman and Ostrov [2002], Karatzas and Shreve [1998], Kwok
[1998]. In Kwok [1998] the early exercise boundary for American put options is given as the
following integral equation, where N(x) denotes the distribution function of the standard
normal distribution,

N(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt. (3.45)

Then, γ(t) = exp(xf (t)) satisfies

K − γ(t) = Ke−rtN(−d2)− γ(t)e−dtN(−d1) +

∫ t

0

(
rKe−rξN(−dξ,2)− dγ(t)e−dξN(dξ,1)

)
dξ.

The parameters d1, d2, dξ,1, and dξ,2 are given by

d1 =
log
(
γ(t)/K

)
+ (r − d+ σ2/2)t

σ
√
t

, d2 = d1 − σ
√
t,

dξ,1 =
log
(
γ(t)/γ(t− ξ)

)
+ (r − d+ σ2/2)ξ

σ
√
ξ

, dξ,2 = dξ,1 − σ
√
ξ.

(3.46)

3.3.2 American Call

This subsection aims at deriving an integral representation for American call options. The
procedure is the same as for American put option. Note that the American call and put
option differ in the domain, the initial and boundary conditions whereas the differential
operator is the same. In contrast to American put options, where early exercise is only
optimal in case of a strictly positive interest rate r, American calls are only exercised early,
if dividends are paid, i.e. d > 0, cf. Subsection 2.2.4. Therefore, we assume that d > 0 and
consequently γ(τ) ≤ C <∞ for all τ . The value of an American call for S ≥ γ(τ) is known,
namely V (S, τ) = S −K.

A Problem formulation

Let S denote the value of the underlying share, τ ∈ [0, T) the time, and V (S, τ) the value
of an American call option at time τ and share value S. Further, let γ(τ) ≥ K be the early
exercise curve (or free boundary). Given the positive constants T , K, r, d, and σ2/2, the
value V (S, τ) of an American call option satisfies

Vτ + σ2/2S2VSS + (r − d)SVS − rV = 0 for 0 ≤ S ≤ γ(τ), τ ∈ [0, T),

V (S, T) = (S −K)+ for 0 ≤ S ≤ γ(T),

V (γ(τ), τ) = γ(τ)−K and V (0, τ) = 0 for τ ∈ [0, T),

VS(γ(τ), τ) = 1 for τ ∈ [0, T).

(3.47)

32 Chapter 3. Mathematical Analysis

B Transformations to a formulation which admits Fourier transformation

As in the case of the American put options the Fourier transform cannot be applied directly
to (3.47) owing to the space dependent coefficients and the time-dependent domain. The
forthcoming Transformations 3.27-3.29 lead to formulation (3.50) with constant coefficients
and spatial domain R.

Transformation 3.27 (leading to forward time and constant coefficients). A loga-
rithmic price and forward time transformation in formulation (3.47), i.e. S = ex, t = T − τ ,
u(x, t) := V (ex, T − τ), and xf (t) := log(γ(t)) yields

ut − σ2/2uxx − (r − d− σ2/2)ux + ru = 0 for −∞ < x ≤ xf (t), t ∈ (0, T],

u(x, 0) = (ex −K)+ for −∞ < x < xf (0),

u(xf (t), t) = exf (t) −K and lim
x→−∞

u(x, t) = 0 for t ∈ (0, T],

ux(xf (t), t) = exf (t) for t ∈ (0, T].

(3.48)

Transformation 3.28 (leading to a time-invariant domain). A shift y := x − xf (t)
leads to a time-invariant domain in (3.48). Moreover, the left boundary lies at the origin.
Then, w(y, t) := u(x− xf (t), t) satisfies

wt − σ2/2wyy −
(
r − d− σ2/2 + ẋf (t)

)
wy + rw = 0 for −∞ < y ≤ 0, t ∈ (0, T],

w(y, 0) = (ey+xf (0) −K)+ for −∞ < y ≤ 0,

w(0, t) = exf (t) −K and lim
y→−∞

w(y, t) = 0 for t ∈ (0, T],

wx(0, t) = exf (t) for t ∈ (0, T].

(3.49)

Transformation 3.29 (leading to homogeneous boundary conditions at zero). The
extension from (0,∞) to R in (3.49) requires homogeneous boundary conditions at zero. De-
compose w(y, t) = v(y, t) + g(y, t) such that v(0, t) = vy(0, t) = 0 for all t, i.e. g(y, t) =
(ey+xf (t) −K)+. Then, v satisfies

vt − σ2/2 vyy −
(
r − d− σ2/2 + ẋf (t)

)
vy + rv = f(y, t) for −∞ < y ≤ 0, t ∈ (0, T],

v(y, 0) = 0 for −∞ < y ≤ 0,

v(0, t) = 0 and lim
y→−∞

v(y, t) = 0 for t ∈ (0, T],

vy(0, t) = 0 for t ∈ (0, T],

(3.50)

with
f(y, t) = −gt + σ2/2 gyy + (r − d− σ2/2 + ẋf (t))gy − rg. (3.51)

Remark 3.30. Note that an extension of v(y, t) and f(y, t) by zero for y > 0 and all
t ∈ [0, T], yields that the extended v satisfies (3.50) for all y ∈ R and all 0 ≤ t ≤ T .

3.3. Fourier Transform 33

C Calculation of the right-hand side f

Since g(y, t) is continuous, gt(y, t), gy(y, t), and gyy(y, t) are understood in the weak sense,

gt =

{
ẋf (t)e

y+xf (t) if y ≥ logK − xf (t),
0 otherwise; (3.52)

gy =

{
ey+xf (t) if y ≥ logK − xf (t),
0 otherwise; (3.53)

gyy =

{
KδlogK−xf (t) + ey+xf (t) if y ≥ logK − xf (t),
0 otherwise. (3.54)

Inserting gt, gy, and gyy in (3.51) one obtains for logK − xf (t) ≤ y that

f(y, t) = −ẋf (t)ey+xf (t) + σ2/2(KδlogK−xf (t) + ey+xf (t)) + (r − d− σ2/2 + ẋf (t))e
y+xf (t)

− r(ey+xf (t) −K)

= σ2/2KδlogK−xf (t) + rK − dey+xf (t).

(3.55)

Note that f was extended by zero for y > 0, so the measure f reads

f(y, t) =

{
σ2/2KδlogK−xf (t) + rK − dey+xf (t) if logK − xf (t) ≥ y ≥ 0,

0 otherwise.
(3.56)

Remark 3.31. Note that f has compact support because xf (t) ≤ C < ∞. Since, in addi-
tion, the Dirac measure δ ∈ L∞(0, T ;H−s(R) for s > 1/2 there holds f ∈ L∞(0, T ;H−s(R))
for all s > 1/2 and t fixed.

D Solution and backward transformation

Note that after the extension to the spatial domain R problems (3.25) and (3.50) only differ
in the right-hand side f . Hence, the representation of the solution v (3.40) holds literally.
Using the backward transformation u(x, t)− (ex−K)+ = v(x− xf (t), t) cf. Transformation
3.28 and 3.29 , the representation of v from (3.40), and the right-hand side f from (3.56)

34 Chapter 3. Mathematical Analysis

yields

u(x, t)− (ex −K)+ = v(x− xf (t), t)

=
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

∫ ∞

−∞
e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

f(w, s) dw ds

=
Kσ

2
√

2π

∫ t

0

e−r(t−s)√
t− s

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−logK+x

)2

ds

+
rK

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

∫ 0

logK−xf (s)

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

dw ds

− d

σ
√

2π

∫ t

0

e−r(t−s)+xf (s)

√
t− s

∫ 0

logK−xf (s)

ewe
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−xf (s)−w+x

)2

dw ds.

(3.57)

Note that the two spatial integrals of (3.57) are almost the same as in the integral represen-
tation of the American put (3.41), only the upper and the lower bounder are interchanged.
Consequently using (3.42) and (3.43) in (3.57) yields the solution u of (3.48), namely

u(x, t)− (ex −K)+ =

=
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

e
− 1

2σ2(t−s)

(
(r−d−σ2/2)(t−s)−logK+x

)2

ds

− rK

2

∫ t

0

e−r(t−s)
(

erf
((r − d− σ2/2)(t− s)− xf (s) + x√

2σ2(t− s)

)
− erf

((r − d− σ2/2)(t− s) + x− logK√
2σ2(t− s)

))
ds

+
d

2

∫ t

0

e−d(t−s)+x
(

erf
((r − d)(t− s)− xf (s) + x√

2σ2(t− s)

)
− erf

((r − d)(t− s)− logK + x√
2σ2(t− s)

))
ds.

(3.58)

Remark 3.32. Note that this integral representation for u only holds for x < xf (t). For
x ≥ xf (t) the solution u satisfies u(x, t) = ex −K.

Remark 3.33. The free boundary xf (t) is given as a solution of an integral equation. Its
derivation can be found in Goodman and Ostrov [2002], Karatzas and Shreve [1998], Kwok
[1998]. In Kwok [1998] the early exercise boundary for an American call option is given as the
following integral equation with N(x) defined in (3.45) on page 31. Then, γ(t) = exp(xf (t))
satisfies

γ(t)−K = γ(t)e−dtN(d1)−Ke−rtN(d2) +

∫ t

0

(
dγ(t)e−dξN(dξ,1)− rKe−rξN(dξ,2)

)
dξ.

The parameters d1, d2, dξ,1, and dξ,2 are given in (3.46) on page 31.

3.4. Truncation Error Estimates 35

3.4 Truncation Error Estimates for American Options

In this section we prove truncation error estimates for American call and put options. Recall
that the value of an American option is given on an unbounded spatial domain (cf. the
variational formulation (3.20) on page 22 and the FBVP (3.23) on page 25 for American put
options). For efficient numerical simulation it is necessary to truncate the unbounded domain
to a bounded computational domain. Hence an estimation of the truncation error is essential
for a relaible a posteriori error analysis in Chapter 5. We investigate the exact quantitative
decay behaviour in terms of all involved parameters. Indeed, we explicitely determine a
treshold xN depending only on given financial data which guarantees the exponential decay
for x > xN . In other words, we prove the existence of xN = xN(r, d, σ2, K, T) such that for
all κ > 2σ2t and x > x0

|u(x, t)ex2/κ| ≤ C <∞. (3.59)
All details may be found in Theorem 3.20 below. To prove this result we proceed as follows.
First we prove some preliminary estimates. Then we prove (3.59) for each integral terms in
the solution u from (3.44) on page 30. Finally we combine these estimates to obtain (3.59).

3.4.1 Some Calculus

In this subsection we prove some preliminary estimates which we need throughout this
section. The first lemma provides sufficient conditions on the coefficients α, β, and γ such
that a function f : R>0 × [0, T] → R with

f(x, t) := α(t) +
β(t)

x
+
γ(t)

x2
(3.60)

is bounded from below by a positive constant C for x sufficiently large.

Lemma 3.11. Let α(t) ≥ α0 > 0, β(t) ≥ β0 ∈ R, γ(t) ≥ γ0 ≥ 0, and f as in (3.60). Then
there exists a constant Cp such that

f(x, t) ≥ Cp > 0 (3.61)

for all t ∈ [0, T] and x ≥ xN > max(0, xp), with

xp :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 +

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.62)

Moreover, with x∗ = −2 γ0
β0

and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cp in (3.61) reads

Cp :=

α0 for β0 ≥ 0,

f̃(xN) for β0 < 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 < 0, f̃(x∗) > 0, xN ≤ x∗,

f̃(xN) for β0 < 0, f̃(x∗) > 0, xN > x∗.

(3.63)

Remark 3.34. Note that the condition γ0 ≥ 0 is not necessary for the result. Since we only
require this bound for non-negative functions γ(t) we use this condition for simplicity.

36 Chapter 3. Mathematical Analysis

Remark 3.35. The subscript p in xp and Cp stands for put options, because these constants
are required in the estimates for American put options.

Proof. Since the coefficients of f are bounded below there holds

f(x, t) ≥ α0 +
β0

x
+
γ0

x2
=: f̃(x).

Since f̃ is continuous for x > 0 and limx→∞ f̃(x) = α0 > 0, f̃ is positive for x sufficiently
large. Note that f̃ vanishes at x1,2 =

−β0±
√
β2
0−4α0γ0

2α0
. Consequently, if β2

0 − 4α0γ0 ≥ 0, f̃ is

positive for x > max(x1, x2) =
−β0+

√
β2
0−4α0γ0

2α0
=: xp. Otherwise f̃ is positive for all x > 0.

Consequently, f̃(x) > 0 for x ≥ xN > max(0, xp) holds true. It remains to prove (3.63).
Since f̃ ′(x) = −β0

x2 − 2γ0
x3 , f̃ is monotone-decreasing for β0 ≥ 0 and therefore f̃ > α0 =: Cp.

If β0 < 0, f̃ has a minimum at x∗ = −2γ0
β0

. We distinguish three cases:
(i) f̃(x∗) ≤ 0. Then, f̃ is strictly positive for x > xN and there holds f̃ > f̃(xN) =: Cp for
all x > xN .
(ii) f̃(x∗) > 0 and xN ≤ x∗, i.e. the minima x∗ ∈ [xN ,∞). Then, f̃ ≥ f̃(x∗) =: Cp for all
x > xN .
(iii) f̃(x∗) > 0 and xN > x∗. Then f̃(x) ≥ f(xN) =: Cp for all x > xN . �

The next lemma gives a similar result for the function (3.60) for strictly negative x.

Lemma 3.12. Let f : R<0 × [0, T] → R be defined by

f(x, t) := α(t) +
β(t)

x
+
γ(t)

x2
. (3.64)

If α(t) ≥ α0 > 0, β(t) ≤ β0 ∈ R, and γ(t) ≥ γ0 ≥ 0 there exists a constant Cc such that

f(x, t) ≥ Cc > 0 (3.65)

for all t ∈ [0, T] and x ≤ xN < min(0, xc) with

xc :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 −

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.66)

Moreover, with x∗ = −2 γ0
β0

and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cc is given by

Cc :=

α0 for β0 ≤ 0,

f̃(xN) for β0 > 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 > 0, f̃(x∗) > 0, xN ≥ x∗,

f̃(xN) for β0 > 0, f̃(x∗) > 0, xN < x∗.

(3.67)

Proof. Since β(t) is bounded from above and α(t) and γ(t) are bounded from below there
holds

f(x, t) ≥ α0 +
β0

x
+
γ0

x2
=: f̃(x).

Using the same arguments as in the proof of Lemma 3.11 and taking into account that we
consider now x < 0 leads to (3.66) and (3.67). �

3.4. Truncation Error Estimates 37

Remark 3.36. The subscript c in xc and Cc stands for call options, because these constants
are required in the estimates for American call options.

The next two lemmas bound the difference of two error functions by the exponential function.
The first one plays an important rule in the analysis for American put option.

Lemma 3.13. Let 0 < α < β ∈ R and

erf(x) :=
2

π

∫ x

0

e−t
2

dt.

Then,

erf(β)− erf(α) ≤ 2e−α
2

πα
. (3.68)

Proof. The assertion follows from

erf(β)− erf(α) =
2

π

∫ β

α

e−t
2

dt ≤ 2

π

∫ ∞

α

e−αt dt =
2e−α

2

πα
. �

The subsequent lemma is required in the analysis of the decay behaviour of American call
options.

Lemma 3.14. Let β < α < 0 ∈ R, erf(x) := 2/π
∫ x

0
e−t

2
dt. Then,

erf(α)− erf(β) ≤ −2e−α
2

πα
. (3.69)

Proof. The assertion follows from

erf(α)− erf(β) =
2

π

∫ α

β

e−t
2

dt ≤ 2

π

∫ α

−∞
e−αt dt = −2e−α

2

πα
. �

The next lemma states explicit formulae of some integrals arising below.

Lemma 3.15. For t > 0 there holds∫ t

0

√
τe−

x2

τ dτ =
2

3

√
te−

x2

t (t− 2x2) +
4
√
π

3
x3
(
1− erf(

x√
t
)
)
, (3.70)∫ t

0

e−
x2

τ

√
τ
dτ = 2

√
te−

x2

t + 2x
√
π
(

erf
(x√

t

)
− 1
)
, (3.71)∫ t

0

e−
x2

τ

τ 3/2
du =

√
π

x

(
1− erf(

x√
t
)
)
, (3.72)∫ t

0

e−
x2

τ

τ 5/2
dτ =

√
π

2x3

(
1− erf(

x√
t
)
)

+
1√
tx2

e−
x2

t . (3.73)

Proof. The above integrals can be evaluated by suitable substitutions or using maple. �

38 Chapter 3. Mathematical Analysis

The next lemma will be frequently used to show that some constants are uniformly bounded.

Lemma 3.16. For any positive integer k holds

lim
x→±∞

xk
(
erf(x)− 1) = 0

Proof. The rule of l’Hospital yields

lim
x→±∞

xk
(
erf(x)− 1) = lim

x→±∞

erf(x)− 1

x−k
= lim

x→±∞
− 2

kπ

e−x
2

x−k−1
= 0. �

3.4.2 Decay Behaviour for American Put Options

This section aims at analysing the behaviour of u(x, t) for x→∞ for American put options.
Recall that the integral representation (3.44) on page 30 only holds for x > xf (t). For brevity
we split the integral representation for the option value into

u(x, t)− (K − ex)+ =:
1

σ
√

2π
I1(x, t)−

rK

2
I2(x, t) +

d

2
I3(x, t). (3.74)

With a := 2σ2 > 0, b := r − d− σ2/2 , c := r − d, and e := logK there holds

I1(x, t) :=

∫ t

0

e−r(t−s)√
t− s

e−
1

a(t−s)

(
b(t−s)−e+x

)2

ds, (3.75)

I2(x, t) :=

∫ t

0

e−r(t−s)
(

erf
(b(t− s)− xf (s) + x√

a(t− s)

)
− erf

(b(t− s) + x− e√
a(t− s)

))
ds, (3.76)

I3(x, t) :=

∫ t

0

e−d(t−s)+x
(

erf
(c(t− s)− xf (s) + x√

a(t− s)

)
− erf

(c(t− s)− e+ x√
a(t− s)

))
ds. (3.77)

Note that r > 0 and d ≥ 0.

The next three propositions prove for j = 1, 2, 3 that

|Ij(x, t) exp(x2/κ)| ≤ C. (3.78)

Remark 3.37. The proofs are organised as follows.

(i) Bound the difference of two error functions appearing in I2 and I3 in terms of the
exponential function by using Lemma 3.13 on page 37.

(ii) Factorise −x2

u
in the exponent.

(iii) Bound the remainder by means of Lemma 3.11 on page 35 .

(iv) The resulting integral is such that Lemma 3.15 on page 37 applies.

3.4. Truncation Error Estimates 39

For brevity we introduce the following notation. These constant will always appear in con-
nection with I1 and I2 as in the two Propositions 3.17 and 3.18 and later in Theorem 3.20.

Notation 3.38. Let α(1)
0 , β(1)

0 , and γ
(1)
0 be defined by

α
(1)
0 =

κ− at

aκ
, β

(1)
0 = min

(
− 2e

a
,

2(bt− e)

a

)
, γ

(1)
0 = min

(e2
a
,
(bt− e)2 + art2

a

)
.

(3.79)
Then, with α0 = α

(1)
0 , β0 = β

(1)
0 , and γ0 = γ

(1)
0 we recall that

x(1)
p :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 +

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.80)

With some xN > 0, x∗ = −2 γ0
β0

, and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cp from (3.63) reads

Cp,1 :=

α0 for β0 ≥ 0,

f̃(xN) for β0 < 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 < 0, f̃(x∗) > 0, xN ≤ x∗,

f̃(xN) for β0 < 0, f̃(x∗) > 0, xN > x∗.

(3.81)

With Notation 3.38 and I1(x, t) from (3.75) we are able to formulate the decay behaviour
for I1.

Proposition 3.17 (I1(x, t)). Let

x
(1)
N > max

(
0, x(1)

p

)
. (3.82)

Then, there is a universal constant C > 0 so that there holds for x ≥ x
(1)
N , t > 0, and each

κ > at

|I1(x, t) exp(x2/κ)| ≤ C. (3.83)

.

Remark 3.39. More precisely, the proof shows that for I1 = I1(x, t) with xN := x
(1)
N and

C := Cp,1 as defined in (3.81)

|I1(x, t) exp(x2/κ)| ≤ 2
√
te−

Cx2

t + 2x
√
Cπ
(

erf
(√Cx√

t

)
− 1
)
, (3.84)

which is uniformely bounded in x and t.

For the sake of completeness we give a detailed proof for the decay behaviour of I1. Since
all the proofs in this section follow the same scheme, cf. Remark 3.37, we will later omit
details.

40 Chapter 3. Mathematical Analysis

Proof. Use the definition of I1 , substitute τ = t − s and factorise −x2

τ
in the exponent.

This yields

|I1(x, t) exp(x2/κ)| =
∫ t

0

1√
τ

exp
(
−
(
bτ − e+ x

)2
aτ

+
x2

κ
− rτ

)
dτ

=

∫ t

0

1√
τ

exp
(
− x2

τ

(κ− aτ

κa
+

2(bτ − e)

ax
+

(bτ − e)2 + arτ 2

ax2

))
dτ.

(3.85)

Set f(x, τ) = κ−aτ
κa

+ 2(bτ−e)
ax

+ (bτ−e)2+arτ2

ax2 and α(τ) = κ−aτ
κa

, β(τ) = 2(bτ−e)
a

, and γ(τ) =
(bτ−e)2+arτ2

a
. Note that α(τ), β(τ), and γ(τ) are bounded from below by α(1)

0 , β(1)
0 , and γ

(1)
0

from Notation 3.38, respectively. By means of Lemma 3.11 f(x, τ) ≥ Cp,1 for x ≥ x
(1)
N holds

true. Using this and (3.71) in (3.85) yields for κ > at and x ≥ x
(1)
N with C := Cp,1

|I1(x, t) exp(x2/κ)| ≤
∫ t

0

e−
Cx2

τ

√
τ

dτ = 2
√
te−

Cx2

t + 2x
√
πC
(

erf
(√Cx√

t

)
− 1
)

(3.86)

which is uniformly bounded since Cp,1 > 0 and Lemma 3.16 applies. �

Next we show (3.78) for I2. Since the exponential part in the integral in the second line in
(3.90) is the same as the exponential part in the first line in (3.85) we may apply Lemma
3.11 with the same constants as in Notation 3.38.
Proposition 3.18 (I2(x, t)). Let x(1)

N > max(0, x
(1)
p). Then, there is a universal constant

C > 0 so that there holds for all

x ≥ max(x
(1)
N , e+ |b|t+ ε) (3.87)

with ε > 0, t > 0, and each κ > at

|I2(x, t) exp(x2/κ)| ≤ C. (3.88)

Remark 3.40. More precisely, the proof shows that for I2 = I2(x, t) with xN := x
(1)
N and

C := Cp,1 as defined in (3.81)

|I2(x, t) exp(x2/κ)| ≤ 2
√
a

επ

(2

3

√
te−

Cx2

t (t− 2Cx2) +
4
√
πC3

3
x3
(
1− erf(

√
Cx√
t

)
))
, (3.89)

which is uniformly bounded in x and t.

Proof. Use the definition of I2, substitute τ = t−s and apply Lemma 3.13. Then factorising
−x2

τ
in the exponent and applying Lemma 3.11 to the remainder yields for κ > at and

x > e+ |b|t+ ε, ε > 0 with C := Cp,1

|I2(x, t) exp(x2/κ)|

=

∫ t

0

exp
(
− r(t− s) + x2/κ

)(
erf
(b(t− s)− xf (s) + x√

a(t− s)

)
− erf

(b(t− s)− e+ x√
a(t− s)

))
ds

≤ 2
√
a

π

∫ t

0

√
τ

bτ + x− e
exp

(
−
(
bτ − e+ x

)2
aτ

+
x2

κ
− rτ

)
dτ

≤ 2
√
a

επ

∫ t

0

√
τe−

Cx2

τ dτ.

(3.90)

3.4. Truncation Error Estimates 41

With (3.70) from Lemma 3.15 one obtains (3.89), which is uniformly bounded since Cp,1 > 0
and Lemma 3.16 applies. �

Since the constants appearing in the error function in I3 differ from those appearing in the
error function in I2 we need other constants in Lemma 3.11. Therefore, we introduce some
notation which is used always in connection with I3 as in the next Proposition 3.19 and later
in Theorem 3.20.

Notation 3.41. Let α(3)
0 , β(3)

0 , and γ
(3)
0 be defined by

α
(3)
0 =

κ− at

aκ
, β

(3)
0 = min

(
− 2e

a
,

2(ct− e)

a

)
, γ

(3)
0 = min

(e2
a
,
(ct− e)2 + adt2

a

)
.

(3.91)
Then, with α0 = α

(3)
0 , β0 = β

(3)
0 , and γ0 = γ

(3)
0 we recall that

x(3)
p :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 +

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.92)

With some xN > 0, x∗ = −2 γ0
β0

, and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cp from (3.63) by

Cp,3 :=

α0 for β0 ≥ 0,

f̃(xN) for β0 < 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 < 0, f̃(x∗) > 0, xN ≤ x∗,

f̃(xN) for β0 < 0, f̃(x∗) > 0, xN > x∗.

(3.93)

With Notation 3.41 and I3(x, t) from (3.77) we formulate the decay behaviour for I3.

Proposition 3.19 (I3(x, t)). Let

x
(3)
N > max

(
0, x(3)

p

)
. (3.94)

Then, there is a universal constant C > 0 so that there holds for x ≥ max(x
(3)
N , e+ |c|t+ ε)

with ε > 0, t > 0, and each κ > at

|I3(x, t) exp(x2/κ)| ≤ C. (3.95)

Remark 3.42. More precisely, the proof shows that for I3 = I3(x, t) with xN := x
(3)
N and

C := Cp,3 as defined in (3.93)

|I3(x, t) exp(x2/κ)| ≤ 2
√
a

πε

(2

3

√
te−

Cx2

u (t− 2x2) +
4
√
πC3

3
x3
(
1− erf(

√
Cx√
t

)
))

(3.96)

which is uniformly bounded in x and t.

Proof. Use the definition of I3, substitute τ = t−s and apply Lemma 3.13. Then, factorising
−x2

τ
in the exponent and applying Lemma 3.11 to the remainder yields for κ > at and

42 Chapter 3. Mathematical Analysis

x > e+ |c|t+ ε, ε > 0 with C := Cp,3

|I3(x, t) exp(x2/κ)|

=

∫ t

0

exp
(
− d(t− s) + x+ x2/κ

)(
erf
(c(t− s)− xf (s) + x√

a(t− s)

)
− erf

(c(t− s)− e+ x√
a(t− s)

))
ds

≤ 2
√
a

π

∫ t

0

exp
(
−
(
cτ − e+ x

)2
aτ

+ x+
x2

κ
− dτ

) √
τ

cτ + x− e
dτ

≤ 2
√
a

πε

∫ t

0

√
τ exp

(
− x2

τ

(κ− aτ

κa
+

2(cτ − e)− au

ax
+

(cτ − e)2 + adτ 2

ax2

))
dτ

≤ 2
√
a

πε

∫ t

0

√
τe−

Cx2

τ dτ.

With (3.70) one obtains (3.96), which is bounded since Cp,3 > 0 and Lemma 3.16 applies.�

Combining the last three propositions which gave a decay behaviour for I1, I2, and I3 yields
an estimate for u(x, t) of the form (3.59). With Notation 3.38 and 3.41, the definition of
u(x, t) from (3.74), and x

(1)
N and x

(3)
N from (3.82) and (3.94), respectively, we formulate the

theorem describing the rate of decay for the solution u(x, t) of an American put option.

Theorem 3.20. There exists a universal constant C > 0 so that there holds for all

x > max
(
x

(1)
N , x

(3)
N , e+ max

(
(|c|+ |b|)t

)
+ ε
)

=: xPN , (3.97)

ε > 0, t > 0 and each κ > at that

|u(x, t) exp(x2/κ)| ≤ C. (3.98)

Proof. Since e = logK there holds x > logK (cf. (3.97)) and therefore (K − ex)+ = 0 in
the representation for u (3.74). Combining the estimates for I1, I2, and I3 from Proposition
3.17, 3.18, and 3.19, respectively yields (3.98). �

Remark 3.43. The constant C in (3.98) can be explicitely determined on behalf of Remark
3.39, 3.40, and 3.42.

3.4.3 Decay Behaviour of the First and Second Spatial Derivative

In the last subsection we proved the decay behaviour for solutions u(x, t) for American put
options as x→∞. Theorem 3.20 provides an explicit threshold xN depending only on given
financial data which guarantees exponential decay for the solution for x > xN . This suggests
to set the numerical solution u(x, t) = 0 for x > xN . Given an error tolerance ε > 0 we
determine an explicit xN such that some norm of truncation error is smaller than ε, i.e.
‖u‖(xN ,∞) ≤ ε. Since we need in Chapter 5 Sobolev norms of the solution u on (xN ,∞) this
subsection aims to determine the decay behaviour for the first and second spatial derivative,
i.e. we prove that for j = 1, 2 there exists some xN fully determined by given financial data
so that there holds for x > xN ∣∣∣∂ju

∂xj
exp(x2/κ)

∣∣∣ ≤ C. (3.99)

3.4. Truncation Error Estimates 43

Consequently the first and second spatial derivatives of I1, I2, and I3 are required. First we
verify that we are allowed to interchange the order of differentiation and integration.

Remark 3.44. The class of integrands we consider is covered by functions Φ1(x, t) and
Φ2(x, t) defined below. For a smooth function g(x, t) satisfying g(x, t) ≥ λ0 > 0 and
|gx(x, t)| ≤ Λ0 < ∞ for 0 ≤ t ≤ u0 and r0 ≤ x ≤ R0 and a smooth function h(x, t)
satisfying |h(x, t)| ≤ C1 and |hx(x, t)| ≤ C2 for r0 ≤ x ≤ R0 define Φ1(·, t) ∈ C1(r0, R0) by

Φ1(x, t) = h(x, t)
exp

(
− 1

t
(g(x, t))

)
tα

.

Then,

|∂xΦ1(x, t)| =
∣∣∣hx(x, t)exp

(
− 1

t
(g(x, t))

)
tα

+ h(x, t)
exp

(
− 1

t
(g(x, t))

)
tα+1

gx(x, t)
∣∣∣

≤ C2

exp(−λ0

t
)

tα
+ C1Λ0

exp(−λ0

t
)

tα+1
∈ L1(0, u0).

Take g(x, t) and h(x, t) as above. Define Φ2(·, t) ∈ C1(r0, R0) by

Φ2(x, t) = h(x, t) erf
(g(x, t)

tα

)
.

Then,

|∂xΦ2(x, t)| =
∣∣∣ 2√
π
h(x, t)tα exp

(
− g(x, t)2

t2α
)

+ hx(x, t) erf
(g(x, t)

tα

)∣∣∣
≤ C

(
t−α exp

(
− λ2

0

t2α

)
+ erf

(g(x, t)
tα

))
∈ L1(0, u0).

Consequently, there holds for j = 1, 2

∂

∂x

∫ u0

0

Φj(x, t) dt =

∫ u0

0

∂

∂x
Φj(x, t) dt,

i.e., we are allowed to interchange integration and differentiation for r0 ≤ x ≤ R0.

The proofs follow the same scheme as in the last subsection, cf. Remark 3.37. Since the
exponents in I1 and ∂xI1 are equal (cf. Φ1 and ∂xΦ1 in Remark 3.44), we may apply Lemma
3.11 with the same constants α(1)

0 , β(1)
0 , and γ

(1)
0 defined in Notation 3.38 on page 39. With

I1 from (3.75) we formulate the decay behaviour for ∂xI1(x, t) as follows.

Proposition 3.21 (∂xI1(x, t)). Let

x
(1)
N > max

(
0, x(1)

p

)
. (3.100)

Then, there exists a universal constant C > 0 so that there holds for x ≥ max(x
(1)
N , e+ |b|t),

t > 0, and each κ > at ∣∣∣∂I1
∂x

exp(x2/κ)
∣∣∣ ≤ C. (3.101)

44 Chapter 3. Mathematical Analysis

Remark 3.45. More precisely, the proof shows that for I1 = I1(x, t) with xN := x
(1)
N and

C := Cp,1 defined in (3.81), the weighted derivative∣∣∣∂I1
∂x

exp(x2/κ)
∣∣∣ ≤ 2

a

(
2|b|

√
te−

Cx2

t +
(
2|b|

√
Cπx− π|x− e|√

Cx

)(
erf(

√
Cx√
t

)− 1
))

(3.102)

is uniformly bounded in x and t.

Proof. Since g(x, τ) = (bτ − e+ x)2 and h(x, τ) = exp(−rτ) satisfy all the conditions on g
and h in Remark 3.44 for r0 > e − bτ and arbitrary R0 > r0 we may interchange the order
of integration and differentiation for x > e + |b|t. Taking the derivative of I1 from (3.75),
substituting τ = t−s, factorising −x2

τ
in the exponent and applying Lemma 3.11 yields with

C := Cp,1∣∣∣∂I1
∂x

exp(x2/κ)
∣∣∣ =

∣∣∣2
a

∫ t

0

bτ − e+ x

τ 3/2
exp

(
−
(
bτ − e+ x

)2
aτ

+
x2

κ
− rτ

)
dτ
∣∣∣

≤ 2

a

∫ t

0

|bτ − e+ x|
τ 3/2

e−
Cx2

τ dτ.

Using the triangle inequality and (3.71) and (3.72) yields (3.102), which is uniformly bounded
since Cp,1 > 0 and Lemma 3.16 on page 38 holds true. �

Since we consider now ∂xI2 we make use of Notation 3.38 on page 39 .

Proposition 3.22 (∂xI2(x, t)). Let

x
(1)
N > max

(
0, x(1)

p

)
. (3.103)

Then, there is a universal constant C > 0 so that there holds for x > max(x
(1)
N , e + |b|t),

t > 0, and each κ > at

∣∣∣∂I2
∂x

exp(x2/κ)
∣∣∣ ≤ C. (3.104)

Remark 3.46. More precisely, the proof shows that for I2 = I2(x, t) with xN := x
(1)
N and

C := Cp,1 defined in (3.81), the weighted derivative∣∣∣∂I2
∂x

exp(x2/κ)
∣∣∣ ≤ 8√

aπ

(√
te−

Cx2

t + x
√
πC
(

erf
(√Cx√

t

)
− 1
))

(3.105)

is uniformly bounded in x and t.

Proof. According to Remark 3.44 we may interchange the order of differentiation and inte-
gration for x > e+ |b|t to calculate ∂xI2(x, t),

∂I2(x, t)

∂x

=

∫ t

0

2e−r(t−s)

π
√
a(t− s)

(
exp

(
− (b(t− s)− xf (s) + x)2

a(t− s)

)
− exp

(
− (b(t− s) + x− e)2

a(t− s)

))
ds.

3.4. Truncation Error Estimates 45

Since xf (s) ≤ logK = e for all s ∈ [0, t], we may bound the absolute value of the difference
of the two exponential functions by twice the exponent containing e. Substituting τ = t− s,
factorising −x2

τ
in the exponent and applying Lemma 3.11 to the remainder yields with

C := Cp,1 ∣∣∣∂I2
∂x

exp(x2/κ)
∣∣∣ ≤ 4√

aπ

∣∣∣ ∫ t

0

1√
τ

exp
(
− (bτ − e+ x)2

aτ
+
x2

κ
− rτ

)
dτ
∣∣∣

≤ 4√
aπ

∫ t

0

1√
τ
e−

Cx2

τ dτ.

Using (3.71) yields (3.105), which is uniformly bounded since Cp,1 > 0 and Lemma 3.16
applies. �

Since I3 is under consideration, Notation 3.41 on page 41 is used.

Proposition 3.23 (∂xI3(x, t)). Let

x
(3)
N > max

(
0, x(3)

p

)
. (3.106)

Then, there is a universal constant C > 0 so that there holds for x ≥ max(x
(3)
N , e+ |c|t+ ε)

with ε > 0, t > 0, and each κ > at ∣∣∣∂I3
∂x

exp(x2/κ)
∣∣∣ ≤ C. (3.107)

Remark 3.47. More precisely, the proof shows that for I3,2 = I3,2(x, t) with xN := x
(3)
N and

C := Cp,3 defined in (3.93),

|I3,2 exp(x2/κ)| ≤ 4√
a

(√
te−

Cx2

t + x
√
Cπ
(

erf
(√Cx√

t

)
− 1
))

(3.108)

is uniformly bounded in x and t.

Proof. Remark 3.44 shows that we may interchange the order of differentiation and inte-
gration for x > e+ |c|t. Thus, the first partial derivative ∂xI3(x, t) for I3 defined in (3.77) is
given by

∂I3(x, t)

∂x
=

∫ t

0

e−d(t−s)+x
(

erf
(c(t− s)− xf (s) + x√

a(t− s)

)
− erf

(c(t− s) + x− e√
a(t− s)

))
ds

+

∫ t

0

e−d(t−s)+x√
a(t− s)

(
exp

(
−
(
c(t− s)− xf (s) + x

)2
a(t− s)

)
− exp

(
−
(
c(t− s) + x− e

)2
a(t− s)

)
ds

:= I3,1(x, t) + I3,2(x, t).

Note that I3,1 = I3 and apply Proposition 3.19. To estimate the difference between the two
exponential functions in I3,2 we use the same argument as in the proof of Proposition 3.22.

46 Chapter 3. Mathematical Analysis

As before, substitute τ = t− s, factorise −x2

τ
in the exponent and apply Lemma 3.11 to the

remainder. This yields with C := Cp,3

|I3,2(x, t) exp(x2/κ)| ≤ 2√
a

∫ t

0

1√
τ

exp
(
−
(
cτ − e+ x

)2
aτ

+
x2

κ
+ x− dτ

)
dτ

≤ 2√
a

∫ t

0

1√
τ
e−

Cx2

τ dτ.

With (3.71) one obtains (3.108), which is uniformly bounded since Cp,3 > 0 and Lemma 3.16
holds true. �

Combining the Propositions 3.21, 3.22, and 3.23 lead to the next theorem describing the
decay behaviour for ux(x, t). Note that x(1)

p and x(3)
p are always the same in the propositions

for Ij and ∂xIj, j = 1, 2, 3. Hence we use the same notation for Theorem 3.24 as in Theorem
3.20, i.e. Notation 3.38 on page 39 and 3.41 on page 41.
Theorem 3.24. There exists a universal constant C > 0 so that there holds for all

x > max
(
x

(1)
N , x

(3)
N , e+ max

(
(|c|+ |b|)t

)
+ ε
)
, (3.109)

ε > 0, t > 0 and each κ > at

|ux(x, t) exp(x2/κ)| ≤ C. (3.110)
Proof. Since e = logK there holds x > logK (cf. (3.109)) and therefore (K − ex)+ = 0
in the representation for u (3.74). Combining the estimates for ∂xI1, ∂xI2, and ∂xI3 from
Proposition 3.22, 3.22, and 3.22, respectively yields (3.110). �

Remark 3.48. The constant C in (3.110) can be explicitely determined on behalf of Remark
3.45, 3.46, 3.42, and 3.47.

After determining the decay behaviour of u and ux we study now uxx. With Notation 3.38
we state the decay behaviour for ∂xxI1.
Proposition 3.25 (∂xxI1(x, t)). Let

x
(1)
N > max

(
0, x(1)

p

)
. (3.111)

Then, there exists a universal constant C so that there holds for x ≥ xN , t > 0, and each
κ > at ∣∣∣∂2I1

∂x2
exp(x2/κ)

∣∣∣ ≤ C. (3.112)

Remark 3.49. More precisely, the proof shows that for I1 = I1(x, t) with xN := x
(1)
N and

C := Cp,1 defined in (3.81), the weighted second derivative∣∣∣∂2I1
∂x2

exp(x2/κ)
∣∣∣ ≤ 8b2

a2

(√
te−

Cx2

t + x
√
πCp,1

(
erf(

√
Cx√
t

)− 1
))

+
2
√
π|a− 4b(x− e)|√

Ca2x

(
1− erf(

√
Cx√
t

)
+

4(x− e)2

a2

(√
π

2C3/2x3

(
1− erf(

√
Cx√
t

)
)

+
1√
t
e−

Cx2

t

)
,

(3.113)

is uniformly bounded in x and t.

3.4. Truncation Error Estimates 47

Proof. According to Remark 3.44 we may interchange the order of differentiation and in-
tegration for x > |b|t + e. Then, the second partial derivative ∂xxI1(x, t) for I1 defined in
(3.75) is given by

∂2I1(x, t)

∂x2

= −2

a

∫ t

0

(1

(t− s)3/2
− 2(b(t− s)− e+ x)2

a(t− s)3/2

)
exp

(
−
(
b(t− s)− e+ x

)2
a(t− s)

− r(t− s)
)
ds.

Substituting τ = t − s, factorising −x2

τ
in the exponent and applying Lemma 3.11 yields

with C := Cp,1∣∣∣∂2I1
∂x2

exp(x2/κ)
∣∣∣
≤ 2

a

∫ t

0

∣∣∣− 2b2

aτ 1/2
+
a− 4b(x− e)

aτ 3/2
− 2(x− e)2

aτ 5/2

∣∣∣
exp

(
− x2

τ

(κ− aτ

κa
+

2(bτ − e)

ax
+

(bτ − e)2 + arτ 2

ax2

))
dτ

≤ 2

a

∫ t

0

∣∣∣− 2b2

aτ 1/2
+
a− 4b(x− e)

aτ 3/2
− 2(x− e)2

aτ 5/2

∣∣∣e−Cx2

u dτ.

Using the triangle inequality and (3.71)-(3.73) one obtains (3.113), which is uniformly
bounded since Cp,1 > 0 and Lemma 3.16 applies. �

To state the decay behaviour for ∂xxI2 we apply Notation 3.38 on page 39.

Proposition 3.26 (∂xxI2(x, t)). Let

x
(1)
N > max

(
0, x(1)

p

)
. (3.114)

Then, there is a universal constant C > 0 so that there holds for x ≥ max(xN , e + b|t| + ε)
with ε > 0, t > 0, and each κ > at ∣∣∣∂2I2

∂x2
exp(x2/κ)

∣∣∣ ≤ C. (3.115)

Remark 3.50. More precisely, the proof shows that for I2 = I2(x, t) with xN := x
(1)
N and

C := Cp,1 defined in (3.81), the weighted second derivative

∣∣∣∂I2
∂x

exp(x2/κ)
∣∣∣ ≤ 8√

a3π

(
2|b|

√
te−C

x2

t +
(
2|b|

√
Cπx− π(x+ |e|)√

Cx

)(
erf
(√Cx√

t

)
− 1
))

(3.116)

is uniformly bounded in x and t.

Proof. By means of Remark 3.44 interchange the order of integration and differentiation
for x > |b|t+ e. Then, the second partial derivative ∂xI2(x, t) for I2 defined in (3.76) is given

48 Chapter 3. Mathematical Analysis

by

∂2I2(x, t)

∂x2
=

2√
aπ

∫ t

0

e−r(t−s)√
(t− s)

(
− 2(b(t− s)− xf (s) + x)

a(t− s)
exp

(
− (b(t− s)− xf (s) + x)2

a(t− s)

)
+

2(b(t− s) + x− e)

a(t− s)
exp

(
− (b(t− s) + x− e)2

a(t− s)

))
ds.

(3.117)

Substituting τ = t−s, using that x > e+ |b|t and xf (s) ≤ e for s ∈ [0, t] and then factorising
−x2

τ
in the exponent yields together with bounding the remainder by means of Lemma 3.11

with C := Cp,1

∣∣∣∂2I2(x, t)

∂x2
exp(x2/κ)

∣∣∣ ≤ 8√
a3π

∫ t

0

|bτ + |e|+ x|
τ 3/2

exp
(
− (bτ − e+ x)2

aτ
− rτ +

x2

κ

)
dτ

≤ 8√
a3π

∫ t

0

|bτ + |e|+ x|
τ 3/2

e−C
x2

τ dτ.

(3.118)

With the triangle inequality and (3.71) and (3.72) one obtains (3.116), which is uniformly
bounded since Cp,1 > 0 and Lemma 3.16 applies. �

To state the decay behaviour for ∂xxI3 we apply Notation 3.41 on page 41.

Proposition 3.27 (∂xxI3(x, t)). Let

x
(3)
N > max

(
0, x(3)

p

)
. (3.119)

Then, there is a universal constant C > 0 so that there holds for x ≥ max(xN , e + |c|t + ε)
with ε > 0, t > 0, and each κ > at

|∂
2I3
∂x2

exp(x2/κ)| ≤ C. (3.120)

Remark 3.51. More precisely, the proof shows that for I3,3 = I3,3(x, t), xN := x
(3)
N and

C := Cp,3 defined in (3.93),

|I3,3(x, t) exp(x2/κ)| ≤ 8|c|
a3/2

(√
te−C

x2

t +x
√
Cπ
(

erf
(√Cx√

t

)
−1
))

+
4
√
π(|e|+ x)

a3/2C1/2x

(
1−erf(

√
Cx√
t

)
)

(3.121)
is uniformly bounded in x and t.

Proof. By means of Remark 3.44 we may interchange the order of integration and differen-
tiation for x > |c|t+ e. Then the second partial derivative ∂xxI3(x, t) for I3 defined in (3.77)

3.4. Truncation Error Estimates 49

is given by

∂2I3(x, t)

∂x2
=

∫ t

0

e−d(t−s)+x
(

erf
(c(t− s)− xf (s) + x√

a(t− s)

)
− erf

(c(t− s) + x− e√
a(t− s)

))
ds

+2

∫ t

0

e−d(t−s)+x√
a(t− s)

(
exp

(
−
(
c(t− s)− xf (s) + x

)2
a(t− s)

)
− exp

(
−
(
c(t− s) + x− e

)2
a(t− s)

)
ds

+

∫ t

0

e−d(t−s)+x√
a3(t− s)3

(
− 2
(
c(t− s)− xf (s) + x

)
exp

(
−
(
c(t− s)− xf (s) + x

)2
a(t− s)

)
+ 2
(
c(t− s) + x− e

)
exp

(
−

2
(
c(t− s) + x− e

)
a(t− s)

))
ds

= I3,1(x, t) + 2I3,2(x, t) + I3,3(x, t).

(3.122)

Note that we have already considered I3,1 and I3,2 in Proposition 3.23. Substitute τ = t− s

in I3,3, take into account xf (s) ≥ e, factorise −x2

τ
in the exponent and bound the remainder

by means of Lemma 3.11. This yields with C := Cp,3

|I3,3(x, t) exp(x2/κ)| ≤ 4

a3/2

∫ t

0

|cu+ |e|+ x|
u3/2

exp
(
−
(
cu− e+ x

)2
au

− du+
x2

κ
+ x
)
dτ

≤ 4

a3/2

∫ t

0

|cu+ |e|+ x|
u3/2

e−
Cx2

τ dτ.

(3.123)

Using the triangle inequality, (3.71) and (3.72) yields (3.121) which is uniformly bounded
since Cp,3 > 0 and Lemma 3.16 applies. �

By combining the Propositions 3.25, 3.26, and 3.27 we state the decay rate for uxx(x, t) by
making use of Notation 3.38 on page 39 and 3.41 on page 41.

Theorem 3.28. There exists a universal constant C > 0 so that there holds for all

x > max
(
x

(1)
N , x

(3)
N , e+ max

(
(|c|+ |b|)t

)
+ ε
)
, (3.124)

ε > 0, t > 0 and each κ > at

|uxx(x, t) exp(x2/κ)| ≤ C. (3.125)

Proof. Since e = logK there holds x > logK (cf. (3.97)) and therefore (K − ex)+ = 0
in the representation for u(x, t) (3.74). Combining the estimates for ∂xxI1, ∂xxI2, and ∂xxI3
from Proposition 3.25, 3.26, and 3.27, respectively, yields (3.125). �

Remark 3.52. The constant C in (3.125) can be explicitely determined on behalf of Remark
3.49, 3.50, 3.42, 3.47, and 3.51.

50 Chapter 3. Mathematical Analysis

3.4.4 Decay Behaviour for American Call Options

In the previous subsection we proved the decay behaviour for American put options. We
give a similar result for American call options. In contrast to put options the integral rep-
resentation for the value of American call options (3.58) holds for x < xf (t). Consequently,
we are interesteted in the behaviour of the solution for small values of x. For brevity set
a := 2σ2 > 0, b := r − d − σ2/2 , c := r − d, and e := logK. Then the value u(x, t) for an
American call is given by

u(x, t)− (ex −K)+ =

=
1

σ
√

2π

∫ t

0

e−r(t−s)√
t− s

e−
1

a(t−s)

(
b(t−s)−e+x

)2

ds

− rK

2

∫ t

0

e−r(t−s)
(

erf
(b(t− s)− xf (s) + x√

a(t− s)

)
− erf

(b(t− s) + x− e√
a(t− s)

))
ds

+
d

2

∫ t

0

e−d(t−s)+x
(

erf
(c(t− s)− xf (s) + x√

a(t− s)

)
− erf

(c(t− s)− e+ x√
a(t− s)

))
ds

=
1

σ
√

2π
I1(x, t)−

rK

2
I2(x, t) +

d

2
I3(x, t).

(3.126)

Similar to the previous subsection we introduce some notation, cf. Notation 3.38 on page
39 and 3.41 on page 41. Instead of referring to Lemma 3.11 on page 35 we refer to Lemma
3.12 on page 36. The next notation is the counterpart to Notation 3.38, i.e. the constants
are connected with the integrals I1 and I2.

Notation 3.53. Let α(1)
0 , β(1)

0 , and γ
(1)
0 be defined by

α
(1)
0 =

κ− at

aκ
, β

(1)
0 = max

(
− 2e

a
,

2(bt− e)

a

)
, γ

(1)
0 = min

(e2
a
,
(bt− e)2 + art2

a

)
.

(3.127)
Then, with α0 = α

(1)
0 , β0 = β

(1)
0 , and γ0 = γ

(1)
0 we recall that

x(1)
c :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 −

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.128)

With some xN < 0, x∗ = −2 γ0
β0

, and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cc from (3.67) reads

Cc,1 :=

α0 for β0 ≤ 0,

f̃(xN) for β0 > 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 > 0, f̃(x∗) > 0, xN ≥ x∗,

f̃(xN) for β0 > 0, f̃(x∗) > 0, xN < x∗.

(3.129)

The subsequent notation is the counterpart to Notation 3.41 on page 41, i.e., the constants
are connected with the integral I3.

Notation 3.54. Let α(3)
0 , β(3)

0 , and γ
(3)
0 be defined by

α
(3)
0 =

κ− at

aκ
, β

(3)
0 = max

(
− 2e

a
,

2(ct− e)

a

)
, γ

(3)
0 = min

(e2
a
,
(ct− e)2 + adt2

a

)
.

(3.130)

3.4. Truncation Error Estimates 51

Then, with α0 = α
(3)
0 , β(3)

0 = β
(3)
0 , and γ

(3)
0 we recall that

x(3)
c :=

{
0 if β2

0 − 4α0γ0 < 0,

(2α0)
−1(−β0 +

√
β2

0 − 4α0γ0) if β2
0 − 4α0γ0 ≥ 0.

(3.131)

With some xN < 0, x∗ = −2 γ0
β0

, and f̃(x) = α0 + β0

x
+ γ0

x2 the constant Cc from (3.67) reads

Cc,3 :=

α0 for β0 ≤ 0,

f̃(xN) for β0 > 0, f̃(x∗) ≤ 0,

f̃(x∗) for β0 > 0, f̃(x∗) > 0, xN ≥ x∗,

f̃(xN) for β0 > 0, f̃(x∗) > 0, xN < x∗.

(3.132)

We state the decay behaviour for the value of an American call option u = u(x, t) and its
first and second spatial derivative by making use of Notation 3.53 and 3.54.

Theorem 3.29. Suppose x(j)
N < min(0, x

(j)
c) for j = 1, 3 and u = u(x, t) from (3.126) be the

value of an American call option. Then there exists a universal constant C > 0 so that there
holds for t > 0,

x < min
(
x

(1)
N , x

(3)
N , e−max(|b|, |c|)t

)
=: xC0 ,

and each κ > at ∣∣∣∂ku
xk

exp(x2/κ)
∣∣∣ ≤ C for k = 0, 1, 2. (3.133)

Proof. The proof follows exactly the proofs for the propositions and theorems in Subsection
3.4.2 and 3.4.3 where we treated American put options. The only difference is that instead
of applying Lemma 3.11 and 3.13, we apply Lemma 3.12 and 3.14, respectively. Moreover,
we do not require some ε > 0 as for example in Proposition 3.18, since we can easily bound

1
x+bτ−e < 0 < C for x < e− |b|t. �

Chapter 4

Transformations

This chapter concerns the analysis of the Black-Scholes equation and the Black-Scholes
inequality in a general parabolic framework. We show that suitable transformations applied
to the Black-Scholes equation yield a formulation which admits a solution in non-weighted
Sobolev spaces. For the Black-Scholes inequality, however, it turns out that the strong
formulation cannot be transformed to a non-weighted setting. This underlines the necessity
of weighted Sobolev spaces in the (numerical) analysis of American options.

4.1 The Black-Scholes Equation

Recall that the Black-Scholes Equation, cf. (3.3) on page 16, is a parabolic PDE with
constant coefficients and inhomogeneous initial conditions. We proved that the spatial op-
erator satisfies a Gårding inequality and that the solution belongs to a weighted Sobolev
space. In this section we will prove that the Black-Scholes equation can be transformed
to a parabolic problem with an elliptic spatial operator whose solution lies in a standard
Sobolev space. This transformations are used in Matache et al. [2004] to identify trunca-
tion errors for the solution in the computational domain. However, we consider a general
parabolic PDE on weighted Sobolev spaces H1

η with weight p(x) = exp(2ξ|x|), ξ ∈ R, i.e.,
f ∈ H1

η (R) if f exp(ξ|x|), f ′ exp(ξ|x|) ∈ L2(R). Note, that in this chapter we define the
exponent in the weight function p without a negative sign. Moreover, we allow weights that
grow exponentially which means that a solution that belongs to such spaces must decrease
exponentially. We prove necessary and sufficient conditions on the coefficients of the PDE
so that the solution belongs to H1

η for some ξ ∈ R given.

Let a, b, c ∈ R and a > 0 be given and consider the following parabolic PDE in abstract
form

u̇+A[u] = 0 in R× (0, T],

u(0, x) = h(x) for all x ∈ R,
(4.1)

where
A[u] := −au′′ + bu′ + cu. (4.2)

52

4.1. The Black-Scholes Equation 53

Recall that the initial condition for a call option reads hC(x) = (ex − K)+ and for a put
option hP (x) = (K − ex)+.

The initial condition h for evaluating call or put options requires weighted Sobolev spaces
to guarantee the existence of a weak solution as in Chapter 3. Recall that the solution
space depends on the initial condition h and the right-hand side f . Consequently we need
to transform (4.1) to a problem with initial condition in H1(R). A natural choice is to
transform to homogenous initial conditions.

Transformation 4.1. Let u be a solution of (4.1) and set v(x, t) = u(x, t)− h(x). Then v
satisfies

v̇ +A[v] = −A[h] =: f,

v(0, x) = 0.
(4.3)

It remains to show that the right-hand side f is contained in H−1(R) = (H1(R))∗. First we
calculate f for call and put options, i.e., fC := −A[hC] and fP = −A[hP], respectively.

Lemma 4.1. With A from (4.2), hC = (ex −K)+, and hP (x) = (K − ex)+ there hold

fC := −A[hC] = aKδ(logK) +
(
(a− b− c)ex + cK)

)
χ[logK,∞)(x) (4.4)

and
fP := −A[hP] = aKδ(logK) −

(
(a− b− c)ex + cK)χ(−∞,logK](x). (4.5)

Proof. Since the pay-off functions hC and hP are continuous, the first and second derivatives
are understood in the distributional sense and read

h′C(x) =

{
ex for x ≥ logK,

0 otherwise
, h′P (x) =

{
−ex for x ≤ logK,

0 otherwise;

and

h′′C(x) =

{
KδlogK + ex for x ≥ logK,

0 otherwise,
h′′P (x) =

{
KδlogK − ex for x ≤ log(K),

0 otherwise.

Inserting the derivatives of hC and hP into A proves (4.4) and (4.5). �

In the next two propositions we give sufficient and necessary conditions on the coefficients
a, b, and c in A[u] such that fP and fC belongs to (H1

η)
∗ for certain ξ ∈ R in the weight

p(x) = exp(2ξ|x|).

Proposition 4.2. With fP from (4.5) it holds that

fP ∈ (H1
η)
∗ for if and only if

ξ < 0 a− b+ c 6= 0, c 6= 0
ξ < 1 a 6= b, c = 0
ξ ∈ R a = b, c = 0

(4.6)

54 Chapter 4. Transformations

Proof. By definition f ∈ (H1
η)
∗ if for all v ∈ H1

η

〈f , v〉H−1
η ×H1

η
≤ C ‖v‖H1

η
. (4.7)

First we prove that the conditions (4.6) on a, b, and c are sufficient. Using the definition of
fP from (4.5) yields for all v ∈ H1

η

〈fP , v〉H−1
η ×H1

η
= aKv(logK) exp(2ξ| logK|)−

∫ logK

−∞
(a− b− c)exve2ξ|x| dx

−K

∫ logK

−∞
cve2ξ|x| dx

≤
∥∥aKve2ξ|x|∥∥

L∞(logK−ε,logK+ε)

+ |a− b− c|
∥∥ex+ξ|x|∥∥

L2(−∞,logK)
‖v‖L2

η

+K|c|
∥∥eξ|x|∥∥

L2(−∞,logK)
‖v‖L2

η
.

(4.8)

Note that
∥∥aKve2ξ|x|∥∥

L∞(logK−ε,logK+ε)
is bounded for all ξ ∈ R. The second term

|a− b− c|
∥∥ex+ξ|x|∥∥

L2(−∞,logK)
‖v‖L2

η

is bounded if
∥∥ex+ξ|x|∥∥

L2(−∞,logK)
< ∞ which holds for ξ < 1, otherwise a − b − c = 0 is

necessary. The third term
K|c|

∥∥eξ|x|∥∥
L2(−∞,logK)

‖v‖L2
η

is bounded if
∥∥ex+ξ|x|∥∥

L2(−∞,logK)
< ∞ which holds for ξ < 0, otherwise c = 0 is required.

This proves that the conditions (4.6) are sufficient.

We turn to necessity next and aim to find a function v ∈ H1
η such that (4.7) is violated. Note

that the term aKv(logK)e2ξ| logK| in (4.8) is bounded for all ξ ∈ R. It remains to consider
the last two terms. We split the integral from (−∞, logK) into

I1 + I2 := −
∫ R

−∞

(
(a− b− c)ex +Kc

)
ve2ξ|x| dx−

∫ logK

R

(
(a− b− c)ex +Kc

)
ve2ξ|x| dx.

Note that the integral I2 is bounded for all ξ ∈ R. To analyse I1 set f(x) := αex + β where
α := −(a− b− c) and β := −Kc, i.e.,

I1 =

∫ R

−∞

(
αex + β

)
ve2ξ|x| dx.

Given R < min(0, logK) and ν ∈ {−1, 1} define a function v ∈ H1
η

v :=

ν
x
e−ξ|x| x < R,
νx
R2 e

−ξ|R| R ≤ x < 0,

0 x ≥ 0.

(4.9)

Then,

v′ =

−ν(1

x2 + ξ
x
)e−ξ|x| x < R,

ν
R2 e

−ξ|R| R ≤ x < 0,

0 x ≥ 0.

(4.10)

4.1. The Black-Scholes Equation 55

First we prove that v ∈ H1
η , i.e.,∥∥veξ|x|∥∥2

L2(R)
=

∫ R

−∞

1

x2
dx+

1

R2

∫ 0

R

x2e2ξ(R−x) dx <∞

and ∥∥v′eξ|x|∥∥2

L2(R)
=

∫ R

−∞

(1

x2
+
ξ

x

)2

dx+
e2ξR

R2

∫ 0

R

e−2ξx dx <∞.

Hence v ∈ H1
η .

For each of the cases in (4.6) we determine R and ν in (4.9) so that (4.7) does not hold,
i.e., fP /∈ (H1

η)
∗. We start with the case where α = −a + b + c 6= 0 and β = −Kc 6= 0

and ξ ≥ 0. Note that f(x) = αex + β only contains a zero if αβ < 0. Then the sign
changes at x = log(−β

α
). Consequently, sign(f(x)) is constant for x < log(−β

α
). Moreover,

sign(f(x)) = sign(β) for x < log(−β
α
). Hence, we choose R < min(0, logK, log(−β

α
)) for

αβ < 0 and R < min(0, logK) for αβ > 0 in (4.9). Set ν = sign(−β) in (4.9). Then, the
integrand is positive and since ξ ≥ 0 there holds

I1 =

∫ R

−∞
(αex + β)

ν

x
eξ|x| dx ≥ C

∫ R

−∞
−1

x
dx

with the constant

C =

{
|β| if αβ > 0,

|αeR + β| if αβ < 0.

Hence I1 is divergent and for c 6= 0 and a− b− c 6= 0 there holds fP /∈ (H1
η)
∗ for ξ ≥ 0, i.e.,

the condition ξ < 0 is necessary.

To complete the proof, we consider the case where c = 0 but a, b ∈ R. We show that (4.7)
does not hold for ξ ≥ 1. Inserting v from (4.9) in I1 yields

I1 = −(a− b− c)

∫ R

−∞

ν

x
e−(ξ−1)x dx.

Choose R < min(0, logK) and ν = sign(a − b − c) . Then the integrand is positive and I1
can be estimated from below by

I1 > |a− b− c|
∫ R

−∞

−1

x
dx.

However, the right-hand side diverges. We constructed for each case in (4.6) a function
v ∈ H1

η so that (4.7) is violated and consequently the conditions (4.6) are also necessary. �

The subsequent proposition provides a simular result for call options.

Proposition 4.3. With fC from (4.4) there holds

fC ∈ (H1
η)
∗ for if and only if

ξ < −1 a, b, c ∈ R
ξ < 0 c ∈ R, a− b− c = 0
ξ ∈ R a = b, c = 0

(4.11)

56 Chapter 4. Transformations

Proof. First we prove that the conditions (4.11) on a, b, and c are sufficient. Using the
definition of fC from (4.4) yields for all v ∈ H1

η

〈fC , v〉H−1
η ×H1

η
= aKv(logK)e2ξ| logK| +

∫ ∞

logK

(a− b− c)exve2ξ|x| dx

+ cK

∫ ∞

logK

ve2ξ|x| dx

≤
∥∥aKve2ξ|x|∥∥

L∞(logK−ε,logK+ε)

+ |a− b− c|
∥∥ex+ξ|x|∥∥

L2(logK,∞)
‖v‖L2

η

+K|c|
∥∥eξ|x|∥∥

L2(logK,∞)
‖v‖L2

η
.

(4.12)

Note that the term
∥∥aKve2ξ|x|∥∥

L∞(logK−ε,logK+ε)
is bounded for all ξ ∈ R. The second term

|a− b− c|
∥∥ex+ξ|x|∥∥

L2(logK,∞)
‖v‖L2

η

is bounded if ξ < −1 or vanishes if there holds a− b− c = 0. The third term

K|c|
∥∥eξ|x|∥∥

L2(logK,∞)
‖v‖L2

η

is bounded if ξ < 0 or vanishes if c = 0. Consequently, the conditions (4.11) are sufficient.

It remains to show that the conditions on a, b, and c are also necessary. We proceed as in
the proof of Proposition 4.2, finding functions v ∈ H1

η that violate (4.7). Since the first term
in (4.12) is bounded we consider the last two terms. With R > max(0, logK) there holds∫ ∞

logK

(
(a− b− c)ex + cK

)
ve2ξ|x| dx

=

∫ R

logK

(
(a− b− c)ex + cK

)
ve2ξ|x| dx+

∫ ∞

R

(
(a− b− c)ex + cK

)
ve2ξ|x| dx = I1 + I2,

I1 is bounded so it remains to consider I2. For brevity set α = a− b− c and β = cK. Then,

I2 =

∫ ∞

R

(αex + β)ve2ξ|x| dx. (4.13)

First we consider the case where α 6= 0 and β 6= 0 and show that for ξ ≥ −1, (4.7) does not
hold. We start with ξ = −1 and take the test function v from (4.9). Then,

I2 =

∫ ∞

R

ν

x
(α+ βe−x) dx.

The function f(x) := α + βe−x only vanishes if αβ < 0. Then, the root is located at x =
log(−β

α
), i.e. sign(f(x)) = sign(α) for x > log(−β

α
). Choosing R > max(0, logK, log(−β

α
)

for αβ < 0 and R > max(0, logK) for αβ > 0, together with ν = sign(α) yields

(α+ βe−x)
ν

x
> 0 for x > R.

4.1. The Black-Scholes Equation 57

With

C := min
x≥R

(
(α+ βe−x)ν

)
=

{
|α| αβ > 0,

|α+ βe−R| αβ < 0,

I2 is bounded below by

I2 =

∫ ∞

R

ν

x
(α+ βe−x) dx ≥ C

∫ ∞

R

1

x
dx.

Again the right-hand side is divergent.

Let now ξ > −1 and take again v from (4.9). Then,

I2 =

∫ ∞

R

ν

x
(αex + β)eξx dx.

Set f(x) := (αex + β)eξx, then f ′(x) = eξx(α(ξ + 1)ex + β). As ξ + 1 > 0 only α determines
the sign and the monotony of f for R > max(0, logK, log(−β

α
), log(−β

α(1+ξ)
)) for αβ < 0 and

R > max(0, logK) for αβ > 0. To be precise, with ν = sign(α) there holds

νeξx(αex + β)
1

x
> 0 for x > R,

and νeξx(αex + β) 1
x

is monotonically increasing for x > R. Consequently,

I2 =

∫ ∞

R

ν

x
(αex + β)eξx dx ≥ |αeR + β|eR

∫ ∞

R

1

x
dx.

Again the right-hand side is divergent. Consequently, we have shown that for a− b− c 6= 0
and c 6= 0 there holds that fC 6= (H1

η)
∗ for ξ ≥ −1.

Finally we consider the case a− b− c = 0, i.e. α = 0 and show that for ξ ≥ 0 condition (4.7)
does not hold. With α = 0 and v from (4.9) with ν = sign(β) I2 reads

I2 =

∫ ∞

R

β
ν

x
ve2ξ|x|) dx = |β|

∫ ∞

R

1

x
eξx dx ≥ |β|

∫ ∞

R

1

x
dx,

which again is divergent. Consequently, we showed that the conditions (4.11) are necessary
and sufficient. �

Proposition 4.2 and 4.3 demonstrated that fP and fC belong to H−1
η for ξ ≥ 0 if and only

if a = b and c = 0. Hence, before applying Transformation 4.1 we need to transform the
spatial operator to an operator with a = b and c = 0. The next two transformations show
how this can be established.

Transformation 4.2 (leading to b = b̃b = b̃b = b̃). For given b̃ ∈ R, let u(x, t) = v(x+(b̃−b)t, t) =
v(y, t). Then, we obtain with u-terms evaluated at (x, t) and v-terms evaluated at (x+ (b̃−
b)t, t)

u̇ = v̇ + (b̃− b)wy, u′ = vy, u′′ = vyy,

and thus v satisfies,

v̇ − avyy + b̃vy + cv = 0,

v(0, y) = h(y).
(4.14)

58 Chapter 4. Transformations

Transformation 4.3 (leading to c = c̃c = c̃c = c̃). For given c̃ ∈ R, set u(x, t) = e(c̃−c)tv(x, t).
This transformation yields

u̇ = e(c̃−c)t(v̇ + (c̃− c)v), u′ = e(c̃−c)tv′, u′′ = e(c̃−c)tv′′.

Therefore v satisfies,

v̇ − av′′ + bv′ + c̃v = 0

v(0, x) = h(x) for all x ∈ R.
(4.15)

Finally, we are able to transform Problem (4.1) to a PDE with an elliptic spatial operator.
Moreover, the solution u belongs to the space

{u ∈ L2(0, T ;H1(R)) : ut ∈ L2(0, T ;H−1(R))}.

The subsequent remark summerises the necessary transformations.

Remark 4.4. To transform the PDE (4.1) to a PDE which operator is elliptic in the spatial
variable and a solution that belongs to standard Sobolev spaces, the following transforma-
tions can be applied. Note that the order of the transformations is essential.

(i) Apply Transformation 4.2 with b̃ = 0 and Transformation 4.3 with c̃ = 0. This yields
a spatial operator A with a = b and c = 0.

(ii) Then, applying Transformation 4.1 yields

u̇− au′′ + bu′ = f in R× (0, T],

u(·, 0) = 0 in R,
(4.16)

with f ∈ H−1(R). The solution u belongs to

u ∈ {u ∈ L2(0, T ;H1(R)) : ut ∈ L2(0, T ;H−1(R))},

cf. Theorem 3.3 on page 19.

(iii) A transformation u = eλtw where λ is the constant from the Gårding inequality,
cf. Remark 3.14 on page 21, yields an elliptic spatial operator without changing the
solution spaces.

4.2 The Black-Scholes Inequality

We consider the LCP in abstract form, cf. (3.18) on page 22,

u̇+A[u] ≥ 0,

(u− ψ)(u̇+A[u]) = 0,

u(·, t) ≥ ψ(x),

u(·, 0) = ψ(x).

(4.17)

4.2. The Black-Scholes Inequality 59

with a general elliptic operator A as in the last section

A[u] = −au′′ + bu′ + cu (4.18)

where a > 0, b, c ∈ R.

We want to transform system (4.17) such that the solution lies in unweighted Sobolev spaces,
cf. Section 4.1. To guarantee the existence of a unique solution in unweighted Sobolev spaces,
the following conditions must be satisfied, cf. Bensoussan and Lions [1982], Duvaut and Lions
[1976], Zeidler [1985]:

(i) the right-hand side f ∈ H1(0, T ;H−1(R)),

(ii) the transformed obstacle ψ(x, t) ∈ L2(0, T ;L2(R)),

(iii) the initial condition u0 ∈ H1(R).

4.2.1 First Approach – Homogenous Initial Condition

The first approach is the same as in the case of parabolic PDEs in the last subsection. First we
transform the spatial operator such thatA[ψ] ∈ H−1(R). Then, we transform to homogenous
initial conditions, which guarantees that condition (i) and (iii) are satisfied. It remains to
show that the transformed obstacle satisfies ψ1(x, t) ∈ L2(0, T ;L2(R)). Unfortunately this
fails, due to the following argument.
Consider the pay-off function of an American call option, i.e., ψ(x) = (ex − K)+. We
transform the spatial operator A such that a = b and c = 0, i.e., b̃ = 0 and c̃ = 0 in
Transformation 4.2 and 4.3, respectively. This means with y = x− bt set

u(x, t) = e−ctv(y, t).

Hence, v(y, t) ≥ ectψ(y + bt) =: ψ1(y) and the transformed obstacle reads

ψ1(y) = ect(ey+bt −K)+.

Moreover, the initial condition reads v(y, 0) = ψ(y). If we then transform to homogenous
initial conditions, i.e., w(y, t) = v(y, t)− ψ(y), the new obstacle reads

ψ2(y) = ψ1(y)− ψ(y) = ect(ey+bt −K)+ − (ey −K)+.

We show now, that ψ2 /∈ L2(R). with C := max(logK, logK − bt) there holds∫
R
ψ2(y)

2 dy ≥
∫ ∞

C

(
K(1− ect) + ey+bt − ey

)2
dy.

Since this integral only exists for b = 0 and c = 0 in (4.18), ψ2 /∈ L2(0, T ;L2(R)) for an elliptic
operator with b 6= 0 and c 6= 0 and consequently weighted Sobolev spaces are necessary.
Similarly, for American put options with ψ(x) = (K − ex)+ the transformed obstacle ψ2

reads
ψ2(y) = ψ1(y)− ψ(y) = ect(K − ey+bt)+ − (K − ey)+.

60 Chapter 4. Transformations

Then, with C := min(logK, logK − bt) there holds∫
R
ψ2(y)

2 dy ≥
∫ C

−∞

(
K(ect − 1)− ey+bt + ey

)2
dy.

This integral only exists for c = 0 and consequently weighted Sobolev spaces are necessary.

4.2.2 Second Approach – Obstacle ψ ≡ 0

In the last subsection we showed, that a transformation to homogenous initial condition
is not sufficient for the solution to be in a non-weighted Sobolev space. Here, we aim at
problem formulation with homogenous initial conditions and obstacle ψ(x) = 0. Again it
turns out that such transformations result in a problem that does not admit a solution in
non-weighted Sobolev spaces.

Define the spatial operator Ã by

Ã[v] := −avyy + b̃vy + c̃v. (4.19)

Applying Transformation 4.2 and 4.3 to (4.17) yields with u(x, t) = e(c̃−c)tv(y, t), and y =
x+ (b̃− b)t, that v solves

v̇ + Ã[v] ≥ 0,

(v − ψ1)(v̇ + Ã[v]) = 0,

v(y, t) ≥ ψ1(y, t),

v(y, 0) = ψ(y).

(4.20)

The transformed obstacle ψ1 is given by

ψ1(y, t) = e−(c̃−c)tψ
(
y − (b̃− b)t

)
.

A transformation w(y, t) = v(y, t) − ψ1(y, t) yields a homogenous initial condition and a
zero-obstacle. It remains to calculate the resulting right-hand side f := −(ψ̇1 + Ã[ψ1]). We
show this for a put option, namely ψ(x) = (K − ex)+. Note that the transformed obstacle
ψ1 reads, with β := b− b̃ and γ = c− c̃

ψ1(y) = eγt(K − ey+βt)+.

The first and second derivatives are understood in the distributional sense and read

ψ′1(y, t) =

{
−eγtey+βt for x ≤ logK − βt,

0 otherwise;

and

ψ′′1(y, t) =

{
eγt
(
KδlogK − ey+βt

)
for y ≥ logK − βt,

0 otherwise.

4.2. The Black-Scholes Inequality 61

The first time derivative reads

ψ̇1(y, t) =

{
eγt
(
γ(K − ey+βt)− βey+βt

)
for y ≤ logK − βt,

0 otherwise.

Hence f = −(ψ̇1 + Ã[ψ1]) reads

f(y, t) = −eγt
(
(γ + c̃)K + (−γ − β + a− b̃− c̃)ey+βt − aKδlogK

)
χ(−∞,logK−βt](y)

= −eγt
(
cK + (a− b− c)ey+βt − aKδlogK

)
χ(−∞,logK−βt](y).

(4.21)

Since a, b, and c are given data, f(·, t) /∈ L2(R) for arbitrary coefficients. Hence we cannot
find the parameters ã, b̃, and c̃ in Transformation 4.2 and 4.3 so that Problem (4.17) can be
tranformed to a problem which admits a solution in unweighted Sobolev spaces.
For call options where ψ(x) = (ex −K)+ similar calculations show that the resulting right-
hand side f does not belong to L2(R). Hence, also in the case of American call options,
weighted Sobolev spaces are necessary to guarantee the existence of weak solutions on R.

Chapter 5

Numerical Analysis for American
Options

This chapter is devoted to the numerical analysis of American options. The unbounded do-
main in combination with the pay-off functions require weighted Sobolev spaces to guarantee
existence of a unique solution as in Chapter 3. This chapter first recalls the formulation of
the variational inequality in the weighted spaces from Chapter 3. Then we transform the
variational inequality to a non-linear PDE (with solution uε) using penalisation techniques.
We discretise the penalised problem with P1 finite elements in space and do the time inte-
gration with the method of lines to obtain a semi-discrete solution uεh. To prove a priori and
a posteriori error estimates, interpolation estimates in the weighted norms are proved by a
theorem from Payne and Weinberger [1960]. Then we prove an a posteriori error bound for
the error e = u−uεh and an a priori error estimates for the penalisation error e = u−uε and
the discretisation error u−uεh. For an introduction on a posteriori finite element analysis we
refer to the books, cf. Ainsworth and Oden [2000], Bangerth and Rannacher [2003], Babuška
and Strouboulis [2001], Johnson [1987].

5.1 Continuous Model

For the convenience of the reader we recall some formulations and results from Chapter 3.
Definition 5.1. Let H1

η and L2
η denote weighted Sobolev spaces defined as

H1
η := H1

η (R) :=
{
v ∈ L1

loc(R)|v exp(−η|x|), v′ exp(−η|x|) ∈ L2(R)
}
,

L2
η := L2

η(R) :=
{
v ∈ L1

loc(R)|v exp(−η|x|) ∈ L2(R)
}
.

Definition 5.2. Given the volatility σ > 0, the risk less interest rate r ≥ 0, and the constant
dividend yield d ≥ 0 we define the bilinear form aη : H1

η ×H1
η → R by

aη(u, v) :=
σ2

2

∫
R
u′v′ exp(−2η|x|) dx+ r

∫
R
uv exp(−2η|x|) dx

−
∫

R

(
ησ2 sign(x) + r − d− σ2

2

)
u′v exp(−2η|x|) dx.

(5.1)

62

5.1. Continuous Model 63

Proposition 5.1. The bilinear form aη(·, ·) : H1
η × H1

η → R is continuous and satisfies a
Gårding inequality, i.e. with

C := max
{
|r − d− σ2/2 + ησ2|, |r − d− σ2/2− ησ2|

}
there exist some

M = max(σ2/2, r) + C > 0, α = σ2/4 > 0, λ = C2/σ2 + σ2/4− r

such that

|aη(u, v)| ≤ M ‖u‖H1
η(R) ‖v‖H1

η(R) for all u, v ∈ H1
η (R), (5.2)

aη(u, u) ≥ α ‖u‖2
H1

η(R) − λ ‖u‖2
L2

η(R) for all u ∈ H1
η (R). (5.3)

Recall that the pay-off functions are ψ(x) = (K−ex)+ for a put option and ψ(x) = (ex−K)+

for a call option. With η > 0 and η > 1, respectively, it holds that ψ ∈ H1
η . With the

admissible set
Kψ := {v ∈ H1

η (R)|v ≥ ψ a.e.},

the valuation of American options leads to an unsymmetric variational inequality on an
unbounded domain (cf. Jaillet et al. [1990]).

Problem 5.3 (P). Find u ∈ L2(0, T ;H1
η), u̇ ∈ L2(0, T ;L2

η) such that u ∈ Kψ almost
everywhere in (0, T] and there holds(

u̇, v − u
)
L2

η
+ aη(u, v − u) ≥ 0 for all v ∈ Kψ,

u(·, 0) = ψ(·) =: u0(·).
(5.4)

Theorem 5.2. Given the constants r, σ, and d, the pay-off function ψ(x) and η such that
ψ ∈ H1

η . Then there exists a unique solution u ∈ L2(0, T ;H1
η), u̇ ∈ L2(0, T ;L2

η) of problem
(5.4).

Instead of solving the variational inequality directly, we apply the Yosida approximation to
obtain a nonlinear PDE as in Bensoussan and Lions [1982], Carstensen et al. [1999]. We
define the penalisation term as follows.

Definition 5.4 (c+
η). For u, v ∈ H1

η define u+ := (ψ − u)+ and set c+η : H1
η ×H1

η → R by

c+η (u, v) := −1

ε

∫
R
u+v exp(−2η|x|) dx. (5.5)

Problem 5.5 (Pε). The problem (Pε) consists in finding uε ∈ L2(0, T ;H1
η) with ∂uε

∂t
∈

L2(0, T ; (H1
η)
∗), uε(·, 0) = ψ(·), and

(u̇ε, v)L2
η
+ aη(uε, v) + c+η (uε, v) = 0 for all v ∈ V. (5.6)

Theorem 5.3. Problem (5.6) has a unique solution uε ∈ L2(0, T ;H1
η) such that u̇ε ∈

L2(0, T ; (H1
η)
∗).

64 Chapter 5. Numerical Analysis

Proof. With the above properties of u0, Kψ, ψ, and aη(·, ·), Theorem 2.3 in Chapter 3,
Section 2 of Bensoussan and Lions [1982] leads to the assertion. �

Proposition 5.4. The mapping c+η : V × V → R is linear in the second component and
monotone in the sense that there holds for all u, v ∈ V

1

ε

∫
R
(u+ − v+)2 exp(−2η|x|) dx ≤ c+η (u, u− v)− c+η (v, u− v). (5.7)

Proof. The linearity of the second component follows directly from the definition. To prove
(5.7) note that the right hand side of inequality (5.7) can be written as

−1

ε

∫
R
(u+ − v+)(u− v) exp(−2η|x|) dx.

Therefore it remains to show that (u+ − v+)2 ≤ −(u+ − v+)(u − v). Set a := ψ − u,
b := ψ − v, a+ := max(a, 0), and a− = min(a, 0) and note that a = a+ + a− and a+a− = 0.
Using b− a = u− v and a− ≤ 0 ≤ b+ one obtains

−(a+ − b+)(b− a) = (a+ − b+)2 − (a+b− + b+a−) ≥ (a+ − b+)2. �

5.2 Semi-discrete Model

To solve Problem 5.5 we discretise the space by P1 finite elements corresponding to the basis
functions ϕj, j = 0, . . . , N , defined below.

Definition 5.6 (FE-Basis). Set−∞ < x0 < x1, . . . , < xN <∞ where the interval (x0, xN)
is chosen sufficiently large. The basis functions ϕ0, . . . , ϕN are defined by

ϕk(x) :=

(x− xk−1)/hk for x ∈ (xk−1, xk],
(xk+1 − x)/hk+1 for x ∈ (xk, xk+1],
0 elsewhere,

(5.8)

for k = 1, · · ·N − 1 while, for k = 0 and k = N ,

ϕ0(x) :=

fx0(x) for x < x0,
(x1 − x)/h1 for x ∈ [x0, x1],
0 elsewhere;

(5.9)

ϕN(x) :=

fxN

(x) for x > xN ,
(x− xN−1)/hN for x ∈ [xN−1, xN],
0 elsewhere.

(5.10)

with fx0 ∈ H1
η (−∞, x0) and fxN

∈ H1
η (xN ,∞) and satisfy fx0(x0) = 1 = fxN

(xN). Further let
hj := xj − xj−1 and Tj := (xj−1, xj) for j = 1, . . . , N , T0 := (−∞, x0), and TN+1 = (xN ,∞).
Finally, we define the discrete space V̄h by

V̄h = span{ϕ0, . . . , ϕN}. (5.11)

5.2. Semi-discrete Model 65

The determination of the truncation points x0 and xN is the main concern of Subsection
5.2.1 and 5.2.2. We fix the semi-discrete solution uεh on the intervals T0 and TN+1 according
to information available from the free boundary value problem, cf. Subsection 5.2.1 and
5.2.2. Hence we seek the solution uεh of Problem 5.5 on the inner nodes x1, . . . , xN−1, i.e.,
we define the space of test functions by

Vh = span{ϕ1, . . . , ϕN−1}.

Then, the solution uεh in the inner domain (x0, xN) is determined by the following problem.
Extending uεh by uεh(x) = ψ(x) for x < x0 and x > xN (cf. Subsection 5.2.3) yields a
semi-discrete solution uεh on R given by the subsequent problem.

Problem 5.7 (Pεh). The semi discrete problem (Pεh) reads: Find uεh ∈ H1(0, T ; V̄h) such
that uεh(·, 0) = ψ(·), uεh(x) = ψ(x) for x < x0 and x > xN , and

(u̇εh, vh)L2
η
+ aη(uεh, vh) + c+η (uεh, vh) = 0 for all vh ∈ Vh. (5.12)

Finally we define the semi-discrete solution uεh in terms of the basis functions ϕj and time-
dependent coefficients cj(t).

Definition 5.8. Given the time-dependent coefficients c0(t), . . . , cN(t) ∈ H1(0, T) the semi-
discrete solution uεh ∈ V̄h is written by

uεh(x, t) =
N∑
j=0

cj(t)ϕj(x). (5.13)

Given the basis functions ϕj, j = 1, . . . , N − 1, from Definition 5.6 we define a nodal
interpolation operator I : H1

η (R) → Vh.

Definition 5.9 (Nodal Interpolation). Given a partition −∞ < x0 < · · · < xN < ∞
and subordinated nodal basis functions ϕj from Definition 5.6. Then, for a function f ∈ H1

η ,
the nodal interpolant If : H1

η (R) → Vh is defined by

If(x) :=
N−1∑
j=1

f(xj)ϕj(x). (5.14)

Remark 5.10. Note that If(x) = 0 if x < x0 or x > xN .

Finally, we define a nodal interpolation operator Ī : H1
η → V̄h. Given the basis functions ϕj,

j = 0, . . . , N from Definition 5.6 we define a nodal interpolation operator Ī : H1
η (R) → V̄h

by

Īf(x) :=
N∑
j=0

f(xj)ϕj(x). (5.15)

The next two subsections discuss appropriate truncation points x0 and xN to define the
computational domain for American call and put options. Moreover, we define suitable
functions fx0 and fxN

and the coefficients c0(t) and cN(t).

66 Chapter 5. Numerical Analysis

5.2.1 American Put Options

This subsection aims to find the truncation points x0 and xN as well as fx0 and fxN
for

American put options. Recall that for American put options we always assume that r > 0
since early exercise is never optimal if r = 0, cf. Subsection 2.2.4. In Section 3.4 we proved
that for x > xPN = xPN(r, σ2, d,K, T) (with xPN defined in Theorem 3.20 on page 42) and all
κ > σ2t there holds for the value u(x, t) of an American put option

|u(x, t) exp(−x2/κ)| ≤ C.

This indicates to choose xN > xPN and set the discrete solution uεh = 0 for x ∈ TN+1.
Finding the truncation point x0 is based on properties of the free boundary xf (t). In Subsec-
tion 2.2.4 we cited some properties of the free boundary from Kwok [1998]. Here, we repeat
the main result in log-prices. The free boundary xf (t) is bounded for all t ∈ [0, T] by

log
(µ−
µ− − 1

K
)
≤ xf (t) ≤ log

(
min

(
K,

r

d
K
))
,

where
µ− = −

(r − d− σ2/2) +
√

(r − d− σ2/2)2 + 2rσ2

σ2
< 0.

Since the solution u equals the pay-off function ψ(x) = (K−ex)+ for x < xf (t), cf. (3.23), we
choose the truncation point x0 < log

(
µ−
µ−−1

K
)

and set the semi-discrete solution uεh = K−ex

on T0.
It remains to find fx0 and fxN

. Since the semi-discrete solution uεh = 0 on TN+1 we set
fxN

= 1 and cN(t) = 0. Note that fxN
∈ H1

η (TN+1). On T0 the semi-discrete solution
uεh = K − ex. Thus, fx0(x) = K−ex

K−ex0
and c0(t) = K − ex0 . Note that fx0 ∈ H1

η (T0) and
fx0(x0) = 1.

5.2.2 American Call Options

This subsection aims to determine x0, xN , fx0 , and fxN
for American call options. Recall

that we assume d > 0, since early exercise is never optimal if d = 0 for American call options.
In Section 3.4 we proved that there exists a treshold xC0 = xC0 (r, d, σ2, K, T) (with xC0 defined
in Theorem 3.29 on page 51) such that there holds for x < xC0 , t > 0, and κ > 2σ2t that

|u(x, t) exp(x2/κ)| ≤ C.

This indicates to choose x0 < xC0 and set the semi-discrete solution uεh = 0 in T0. To find the
truncation point xN we state a main property of the free boundary for American call options,
cf. Subsection 2.2.4. Here, we repeat the main result in log-prices. The free boundary xf (t)
is bounded for all t ∈ [0, T] by

log
(

max
(
K,

r

d
K
))

≤ xf (t) ≤ log
(µ+

µ+ − 1
K
)
,

where
µ+ =

−(r − d− σ2/2) +
√

(r − d− σ2/2)2 + 2rσ2

σ2
> 1.

5.2. Semi-discrete Model 67

Since the value of an American call equals its pay-off function ψ(x) = (ex−K)+ for x > xf (t),
cf. (3.48), we choose xN > log

(
µ+

µ+−1
K
)

and set the semi-discrete solution uεh = ex −K on
TN+1. Finally we define the functions fx0 and fxN

. Since uεh = 0 on T0 we choose fx0 = 1 and
c0(t) = 0. On TN+1 the solution uεh = ex−K, hence fxN

(x) = ex−K
exN−K and cN(t) = exN −K.

Note that fxN
∈ H1

η (TN+1) and fxN
(xN) = 1.

5.2.3 Summary

Table 5.1 summaries the truncation points x0 and xN , the functions fx0 and fxN
, the coef-

ficients c0(t) and cN(t), as well as the semidiscrete solution uεh on (−∞, x0) ∪ (xN ,∞) for
American put and call options from Subsection 5.2.1 and 5.2.2, respectively.

American put option American call option
pay-off function ψ(x) (K − ex)+ (ex −K)+

x0 x0 < log(µ−
µ−−1

K) xC0 from Theorem 3.29
xN xPN from Theorem 3.20 xN > log(µ+

µ+−1
K)

fx0

K−ex

K−ex0
1

fxN
1 ex−K

exN−K

c0(t) K − ex0 0

cN(t) 0 exN −K

uεh for x < x0 ψ(x) = K − ex ψ(x) = 0

uεh for x > xN ψ(x) = 0 ψ(x) = ex −K

Table 5.1: Summary of the critical values for x0 and xN , the semi-discrete solution uεh on
the outer domain, and the corresponding basis functions of V̄h.

Let u be the solution of the variational inequality 5.4 and uεh the semi-discrete solution of
the penalised problem 5.12. Define Ãε,h on each interval Tj, j = 0, . . . , N + 1 by

Ãε,h[u] := u̇− σ2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru− 1

ε
u+,

cf. (5.64), with u+ := (ψ − u)+, i.e. u ≥ ψ implies u+ = 0. Note that the operator Ãε,h

corresponds to the weak penalised formulation (5.6). Since ψ(x) = 0 for x > logK for a
American put option and ψ(x) = 0 for x < logK for a American call option, u+

εh = 0 holds
for x > xN and x < x0, respectively, from Table 5.1. Consequently, Ãε,h[uεh] = 0 for x > xN
for American put options and Ãε,h[ueh] = 0 for x < x0 for American call options.
Recall the operator Ã from (5.86),

Ã[u] := u̇− σ2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru.

68 Chapter 5. Numerical Analysis

Note that there holds
Ã[u] = u̇+A[u]

with the operator A of the Black-Scholes equation in forward time and log-prices (3.4) on
page 16. Since u is also a solution of the FBVP (3.23) on page 25 and FBVP (3.48) on page
32 for American put and call options, u satisfies the Black-Scholes equation, i.e. Ã[u] = 0
for x > xN and x < x0, respectively. Recall that we choose x0 for an American put option
and xN for an American call option, such that x0 < xf (t) and xN > xf (t), respectively. We
summerise the results from above, which are required in the proof of Theorem 5.22, in Table
5.2.

American put option American call option
u = ψ(x) for x ≤ x0 for x ≥ xN

uεh = ψ(x) for x ≤ x0 for x ≥ xN

uεh = 0 for x ≥ xN for x ≤ x0

e = u− uεh = 0 for x ≤ x0 for x ≥ xN

Ãε,h[uεh] = 0 for x ≥ xN for x ≤ x0

Ã[u] = 0 for x ≥ xN for x ≤ x0

(5.16)

Table 5.2: Some properties of u, uεh, Ã, and Ãε,h required in the proof of Theorem 5.22.

5.3 Approximation in the Weighted Sobolev Space H1
η

This section establishes an approximation error estimate in the L2
η-norm of the form

‖f − If‖L2
η
≤ C ‖f ′‖L2

η
. (5.17)

Estimate (5.17) is required in the residual based a posteriori error estimates in Section 5.4.
Especially the determination of the constant C (or an upper bound) is of great importance.
We proceed as follows. First we extend a weighted Poincare inequality (for function with
integral mean zero) for smooth weights from Payne and Weinberger [1960] to weights be-
longing to W 2,1(a, b). Then we approximate our weights p(x) = exp(−2η|x|) by a weight
pδ ∈ W 2,1(a, b) satisfying all condition such that the extended Payne and Weinberger The-
orem is applicable. By applying a reflection argument the estimate may be extended to
functions f ∈ H1

0 (a, b). The last step is to estimate the gradient (f−If)′ by the gradient f ′.
The next theorem from Payne and Weinberger [1960] gives a weighted Poincare inequality
for smooth weights.

Theorem 5.5 (Payne & Weinberger). Suppose that p ∈ C2(a, b) is strictly positive on
(a, b) with (p′/p)′ ≤ 0 on (a, b). Let m(f) := ‖p‖−1

L1(a,b)

∫ b
a
pf dx denote the weighted integral

mean of f ∈ H1(a, b). Then∥∥√p(f −m(f)
)∥∥

L2(a,b)
≤ b− a

π
‖√pf ′‖L2(a,b) .

5.3. Approximation in H1
η 69

Proof. The proof of the theorem can be found in Payne and Weinberger [1960]. �

The assumption p ∈ C2(a, b) can be immediately weakened since in the proof of Theorem
5.5 is crucial that there holds for some v ∈ H1

0 (a, b) ∩H2(a, b)∫ b

a

(p′
p

)′v2

2
dx ≤ 0. (5.18)

Consequently it suffices that p ∈ W 2,1(a, b) which leads to the next corollary.

Corollary 5.6. Let p ∈ W 2,1(a, b) with (p′/p)′ ≤ 0 almost everywhere. Then, there holds
for all f ∈ H1(a, b) ∥∥√p(f −m(f)

)∥∥
L2 ≤

b− a

π
‖√pf ′‖L2 . (5.19)

Remark 5.11. We will sometimes refere to Corollary 5.6 as the extended Theorem of Payne
& Weinberger.

Since p = exp(−2η|x|) does not belong to W 2,1(a, b) we need to find a strictly positive
approximation pδ ∈ W 1,2(Ω) which satisfies (p′/p)′ ≤ 0 almost everywhere. Note that
p = exp(−2η|x|) satisfies (p′/p)′ = 0 for all x ∈ (a, b) \ {0}. Since p′′/p − (p′/p)2 ≤ 0 for
concave functions p, we constructed pδ as follows. Given a ball with centre at the y-axis,
choose the radius δ > 0 arbitrary small such that ball touches both branches of p. Let
M = (0, yM) denote the centner, and −x̂ and x̂ the two points where the ball touches p.
Then the ball k is given as k : x2 + (y − yM)2 = δ2. By p̃ we refer to the upper half of the
ball for x ∈ (−δ, δ). Now define pδ (illustrated in Figure 5.1) by,

pδ :=

{
p for x ∈ [a,−x̂] ∪ [x̂, b],
p̃ for x ∈ (−x̂, x̂). (5.20)

Note that pδ ∈ C1([a, b]) and that −x̂ and x̂ satisfy |x̂| < δ by construction. Since p ∈
C2([a,−x̂]∪ [x̂, b]) and p̃ ∈ C2([−x̂, x̂]) it follows by means of Lemma 5.7 that pδ ∈ W 2,1(a, b)
holds true. Since (p′δ/pδ)

′ ≤ 0 almost everywhere (note that (p′δ/pδ)
′ = 0 for x /∈ [−x̂, x̂] and

that p̃′′ < 0), (5.18) holds true. The next lemma justifies pδ ∈ W 2,1(a, b).

Lemma 5.7. Suppose f ∈ C0([a, b]) is defined for c ∈ (a, b) by

f(x) =

{
g(x) for x ≥ c,

h(x) for x < c,
(5.21)

with g ∈ C1([a, c]) and h ∈ C1([c, b]). Then, the weak derivative f ′ exists in L∞(a, b), i.e.
f ∈ C0,1([a, b]).

Proof. For all ϕ ∈ D(a, b) holds∫ b

a

fϕ′ dx = g(x)ϕ(x)
∣∣∣c
a
−
∫ c

a

h′(x)ϕ(x) dx+ h(x)ϕ(x)
∣∣∣b
c
−
∫ b

c

g′(x)ϕ(x) dx

= −
∫ b

a

(
H(c− x)g′(x) +H(c+ x)h′(x)

)
ϕdx.

Consequently, the weak derivative f ′(x) = H(c− x)g′(x) +H(c+ x)h′(x) ∈ L∞(a, b). �

70 Chapter 5. Numerical Analysis

p

pδ

δ

−x̂ 0 x̂

Figure 5.1: The smoothed weight function pδ

Remark 5.12. If h′ ∈ Lq(0, a) and g′ ∈ Lq(0, b) it follows directly from the proof that
f ′ ∈ Lq(a, b) for 1 ≤ q ≤ ∞.

Remark 5.13. Corollary (5.6) also holds for a smoothed version of p̂(·) = α exp(−2η| ·−β|)
for α > 0 and β ∈ R, (i.e. p is shifted by β and scaled with α) since the smoothed p̂δ also
satisfies (p̂′δ/p̂δ)

′ ≤ 0.

The next step is to prove an estimate for functions f ∈ H1
0 (a, b), which is done by using

some reflexion trick, so that the extended theorem of Payne & Weinberger is applicable.

Proposition 5.8. For p = exp(−2η|x|) with η ≥ 0, f ∈ H1
0 (a, b), (a, b) bounded, and

a · b ≥ 0 there holds
‖√pf‖L2(a,b) ≤ 2(b− a)/π ‖√pf ′‖L2(a,b) .

Proof. First we consider an interval (a, b) with a, b ≥ 0. Let b′ = a− (b−a) be the reflexion
of b in a. Reflect now the weight function p in a and define as p̂ the extension of p in (b′, b).
Likewise reflect the function f in a and afterward at the x-axis. Let f̂ in (b′, b) denote
the resulting extension of f illustrated in Figure 5.2. Since the extended weight function
p̂ has again a corner (this time in a), we apply the same trick with the smoothing ball as
before. Let p̂δ denote the smoothed p̂. With elementary geometric arguments one proves∫ b
a
p̂δf̂ dx = −

∫ a
b′
p̂δf̂ dx, and consequently

∫ b
b′
p̂δf̂ dx = 0 holds true. Hence the weighted

integral mean of f̂ satisfies

m(f̂) = ‖p̂δ‖−1
L1

∫ b

b′
p̂δf̂ dx = 0.

5.3. Approximation in H1
η 71

p̂

f̂

ba0b′

Figure 5.2: The weight function p and its extension p̂ and f ∈ H1
0 (a, b) with extension f̂ as

used in the proof of Proposition 5.8.

Note that f̂ ∈ H1
0 (b′, b) by means of Remark 5.12 for q = 2. Then there holds for p̂δ and for

all f̂ ∈ H1
0 (b′, b), cf. Corollary 5.6,∥∥∥√p̂δf̂

∥∥∥
L2(b′,b)

≤ b− b′

π

∥∥∥√p̂δf̂
′
∥∥∥
L2(b′,b)

. (5.22)

Now we show that (5.22) also holds for the unsmoothed extension p̂. Note that p̂δ(x) ≤ p̂(x)
for all x ∈ (b′, b). Therefore there holds∥∥∥√p̂δf̂

′
∥∥∥
L2(b′,b)

≤
∥∥∥√p̂f̂ ′

∥∥∥
L2(b′,b)

. (5.23)

The next step is to prove that there holds∥∥∥√p̂f̂
∥∥∥
L2(b′,b)

≤
∥∥∥√p̂δf̂

∥∥∥
L2(b′,b)

. (5.24)

Using the triangle inequality yields∥∥∥√p̂f̂
∥∥∥
L2(b′,b)

≤
∥∥∥(√p̂−

√
p̂δ)f̂

∥∥∥
L2(b′,b)

+
∥∥∥√p̂δf̂

∥∥∥
L2(b′,b)

. (5.25)

Applying Hölders inequality on the first term of the right-hand-side of (5.25) yields∥∥∥(√p̂−
√
p̂δ)f̂

∥∥∥
L2(b′,b)

≤
∥∥∥(√p̂−

√
p̂δ)

2
∥∥∥1/2

L1(b′,b)

∥∥∥f̂ 2
∥∥∥1/2

L∞(b′,b)
.

72 Chapter 5. Numerical Analysis

With b′ ≤ x̂1 < x̂2 ≤ b, where x̂1 and x̂2 denote the two points where the ball touches p̂,
there holds∥∥∥(√p̂−

√
p̂δ)

2
∥∥∥1/2

L1(b′,b)
≤
∥∥∥√p̂−

√
p̂δ

∥∥∥
L2(b′,x̂1)

+
∥∥∥√p̂−

√
p̂δ

∥∥∥
L2(x̂1,x̂2)

+
∥∥∥√p̂−

√
p̂δ

∥∥∥
L2(x̂,b)

.

(5.26)

Since p̂ = p̂δ on (b′, x̂1) ∪ (x̂2, b) the first and the third term of the right-hand-side of (5.26)
vanish. For the second term there holds for any arbitrary ε > 0 there exists some δ > 0 such
that ∥∥∥√p̂−

√
p̂δ

∥∥∥
L2(x̂1,x̂2)

≤ ε. (5.27)

As ε may be arbitrarily small we conclude that (5.24) holds. Combining (5.22), (5.23), and
(5.24) yields the estimate for p̂ and f̂ ,∥∥∥√p̂f̂

∥∥∥
L2(b′,b)

≤ b− b′

π

∥∥∥√p̂f̂ ′
∥∥∥
L2(b′,b)

. (5.28)

Recall the definition of p̂ and f̂ and note that 2
∥∥√pf∥∥2

L2(a,b)
=
∥∥∥√p̂f̂∥∥∥2

L2(b′,b)
. Using (5.28)

one obtains

‖√pf‖2
L2(a,b) = 1/2

∥∥∥√p̂f̂
∥∥∥2

L2(b′,b)
≤ 4(b−a)2/(2π2)

∥∥∥√p̂f̂ ′
∥∥∥2

L2(b′,b)
= 4(b−a)2/π2 ‖√pf ′‖2

L2(a,b) .

(5.29)
Taking the square root on both sides of inequality (5.29) concludes the proof. If a, b ≤ 0,
reflect f and p at b (instead of a) to obtain the extended functions p̂ and f̂ as before. Then,
the same arguments as above apply. �

Up to now we have shown that there holds for f ∈ H1
0 (a, b)

‖√pf‖L2(a,b) ≤
2(b− a)

π
‖√pf ′‖L2(a,b) . (5.30)

With the definition of the nodal interpolation operator I, i.e., f − If vanishes at a and b,
and the definition of the L2

η-norm, (5.30) may be written

‖f − If‖L2
η(a,b) ≤

2(b− a)

π
‖(f − If)′‖L2

η(a,b) .

In order to obtain (5.17) we need to show that there exits a constant C such that

‖(f − If)′‖L2
η
≤ C ‖f ′‖L2

η
.

The next proposition determines this constant C = C(h, η).

Proposition 5.9. For h := b− a and a · b ≥ 0 define

C(η, h) :=

√
cosh(2ηh)− 1

2η2h2
.

Then, there holds for all f ∈ H1
η (a, b) that

‖(f − If)′‖L2
η(a,b) ≤ C(η, h) ‖f ′‖L2

η(a,b) . (5.31)

5.3. Approximation in H1
η 73

Proof. Recall the definition of the weighted integral meanm(f) := ‖p‖−1
L1(a,b)

∫ b
a
pf dx. Using

the orthogonality of (f ′ −m(f ′)) and (m(f ′)− (If)′) in the L2
η sense, i.e.

〈f ′ −m(f ′),m(f ′)− (If)′〉L2
η(a,b) =

∫ b

a

(
f ′ −m(f ′)

)(
m(f ′)− (If)′

)
exp(−2η|x|)) dx = 0

one obtains

‖(f − If)′‖2
L2

η(a,b) =
∥∥(f ′ −m(f ′)

)
+
(
m(f ′)− (If)′

)∥∥2

L2
η

= ‖f ′ −m(f ′)‖2
L2

η
+ ‖m(f ′)− (If)′‖2

L2
η
.

Note that ‖f ′ −m(f ′)‖L2
η
≤ ‖f ′‖L2

η
. So it remains to show that ‖m(f ′)− (If)′‖L2

η(a,b) is
bounded above in terms of C ‖f ′‖L2

η(a,b). Note that (If)′ = −
∫ b
a
f ′ dx and set p̄ := −

∫ b
a
p dx.

Then,

‖m(f ′)− (If)′‖2
L2

η(a,b) =

∫ b

a

(
−
∫ b

a

f ′(x) dx−
(∫ b

a

p(x) dx
)−1

∫ b

a

f ′(x)p(x) dx

)2

p(y) dy

= (b− a)p̄

(
−
∫ b

a

f ′(x) dx− p̄−1 −
∫ b

a

f ′(x)p(x) dx

)2

= (b− a)−1

(√
p̄

∫ b

a

f ′(x) dx− p̄−1/2

(∫ b

a

f ′(x)
(
p(x)− p̄

)
dx+ p̄

∫ b

a

f ′(x) dx

))2

= (b− a)−1

(
p̄−1/2

∫ b

a

f ′(x)
(
p̄− p(x)

)
dx

)2

=
(
p̄(b− a)

)−1

(∫ b

a

f ′(x)
√
p(x)

(p̄√
p(x)

−
√
p(x)

)
dx

)2

≤
(
p̄(b− a)

)−1

(∫ b

a

(p̄√
p(x)

−
√
p(x)

)2

dx

)(∫ b

a

f ′(x)2p(x) dx

)
= C ‖f ′‖2

L2
η(a,b) .

The constant C can be calculated for b > a ≥ 0 as follows.

C =
(
p̄(b− a)

)−1
∫ b

a

(p̄p−1/2 − p1/2)2 dx =
(
p̄(b− a)

)−1
∫ b

a

p−1(p̄2 − 2pp̄+ p2) dx

=
exp(−2ηb)− exp(−2ηa)

−2η(b− a)2

exp(2ηb)− exp(2ηa)

2η
− 1

=
cosh(2η(b− a))− 1

2η2(b− a)2
− 1.

For a < b ≤ 0 the calculation holds as above and one obtains the same constant C. �

Finally we can formulate the interpolation error estimate in the L2
η norm by combining

Proposition 5.8 on page 70 and 5.9 on page 72.

74 Chapter 5. Numerical Analysis

Theorem 5.10 (L2
η Interpolation Error). For p = exp(−2η|x|), η ≥ 0, f ∈ H1

η (a, b), I
the nodal interpolation operator, h := b− a, (a, b) bounded, and a · b ≥ 0 there holds

‖f − If‖L2
η(a,b) ≤ hC(η, h) ‖f ′‖L2

η(a,b) (5.32)

with

C(η, h) :=
2

π

√
cosh(2ηh)− 1

2η2h2
. (5.33)

Proof. Proposition 5.8 and 5.9 yield (5.32). �

Remark 5.14. Note that there holds

lim
η→0

C(η, h) =
2

π
= lim

h→0
C(η, h).

The a priori error analysis in Section 5.5 requires an estimate of the form

‖f‖L2
η(a,b) ≤ C ‖f ′‖L2

η(a,b)

for f ∈ H1
η (a, b) which vanishes at least at one point in (a, b). The proof is simular as the

proof of Theorem 5.10. However, this time we need to split the interval (a, b) into (a, ξ) and
(ξ, b) with f(ξ) = 0. If 0 ≤ a < b it turns out that the reflexion technique only applies
on (ξ, b). Hence, to estimate f on (a, ξ) another technique is required. For a < b ≤ 0, the
reflexion principle may be applied on (a, ξ), while on (ξ, b) another technique is required.

Corollary 5.11. Let p(x) = exp(−2η|x|) with η ≥ 0, h := b− a, a · b ≥ 0 and define

C(η, h) :=

√√√√(1

π
+
(cosh(2ηh)− 1

2η2h2)

)1/2
)2

+
4

π2
. (5.34)

Suppose f ∈ H1(a, b) vanishes at least at one point in [a, b]. Then there holds

‖√pf‖L2(a,b) ≤ hC(η, h) ‖√pf ′‖L2(a,b) . (5.35)

Proof. Assume 0 ≤ a < b, let ξ ∈ (a, b) with f(ξ) = 0. Let us first consider the interval
(ξ, b). Extend f point symmetric in ξ and p symmetric in ξ, denote f̂ and p̂ the extension
of f and p, respectively and b′ the reflexion of b in ξ, i.e b′ = ξ− (b− ξ). Since the extended
weight p̂ has a corner in ξ we apply the same trick with the smoothening ball as before
to obtain the smooth extended weight function p̂δ. By means of Remark 5.12 with q = 2
f̂ ∈ H1(b′, b) holds true. Elementary geometric arguments prove∥∥∥f̂√p̂δ

∥∥∥2

L2(b′,b)
= 2 ‖f√pδ‖2

L2(ξ,b) .

Since ∫ ξ

b′
f̂ p̂δ dx = −

∫ b

ξ

f̂ p̂δ dx

5.3. Approximation in H1
η 75

it follows ∫ b

b′
f̂ p̂δ dx = 0,

and therefore also the weighted integral mean m(f̂) = 0. This allows to apply the extended
Theorem of Payne and Weinberger to the smoothed weight function p̂δ. Then,∥∥∥√p̂δf̂

∥∥∥
L2(b′,b)

≤ b− b′

π

∥∥∥√p̂δf̂
′
∥∥∥
L2(b′,b)

. (5.36)

As in the proof of Proposition 5.8, (5.23) and (5.24) hold true. This yields the desired
estimate on (ξ, b), namely

‖f√p‖L2(ξ,b) =
1√
2

∥∥∥f̂√p̂
∥∥∥
L2(b′,b)

≤ 1√
2

2(b− ξ)

π

∥∥∥f̂ ′√p̂
∥∥∥
L2(b′,b)

=
2(b− ξ)

π
‖f ′√p‖L2(ξ,b) .

(5.37)
Considering the interval (a, ξ) we cannot apply the reflecting trick as before, because if we
reflect p in b Payne and Weinberger cannot be applied to the smoothed weight function
pδ since the condition p′′

p
− (p

′

p
)2 ≤ 0 is not satisfied. Instead, by adding and subtracting

m(f)
√
p and applying the triangle inequality on obtains

‖f√p‖L2(a,ξ) ≤
∥∥(f −m(f)

)√
p
∥∥
L2(a,ξ)

+ ‖m(f)
√
p‖L2(a,ξ) . (5.38)

The first term can be estimated by directly applying the extended Theorem of Payne &
Weinberger to the smoothed p. Then, together with (5.23) and (5.24) there holds

‖(f −m(f))
√
p‖L2(a,ξ) ≤

ξ − a

π
‖f ′√p‖L2(a,ξ) ≤

b− a

π
‖f ′√p‖L2(a,b) . (5.39)

Now we consider the remaining term
∥∥m(f)

√
p
∥∥
L2(a,ξ)

. Using that f(ξ) = 0 one obtains
f(x) = −

∫ ξ
x
f ′(y) dy. Then,

|f(x)|

≤
∫ ξ

x

∣∣f ′(y) exp(−ηy) exp(ηy)
∣∣ dy ≤ (∫ ξ

x

f ′(y)2 exp(−2ηy) dy
)1/2(∫ ξ

x

exp(2ηy) dy
)1/2

≤ ‖f ′√p‖L2(a,ξ)

(∫ ξ

a

exp(2ηy) dy
)1/2

.

With the definition of the weighted integral mean m(f) = ‖p‖−1
L1(a,b)

∫ b
a
fp dx there holds

|m(f)| ≤

∥∥f ′√p∥∥
L2(a,ξ)

‖p‖L1(a,b)

(∫ ξ

a

exp(2ηy) dy
)1/2

∫ b

a

p dx =
(∫ ξ

a

exp(2ηy) dy
)1/2

‖f ′√p‖L2(a,ξ) ,

and consequently

‖m(f)
√
p‖L2(a,ξ) = |m(f)|

(∫ ξ

a

p dx
)1/2

≤
(∫ b

a

exp(2ηy) dy
)1/2(∫ b

a

p dx
)1/2

‖f ′√p‖L2(a,b)

=

√
cosh(2η(b− a))− 1

2η2(b− a)2
(b− a) ‖f ′√p‖L2(a,b) .

(5.40)

76 Chapter 5. Numerical Analysis

Using the estimates (5.39) and (5.40) in (5.38) yields

‖f√p‖L2(a,ξ) ≤

(
1

π
+

√
cosh(2η(ξ − a))− 1

2η2(ξ − a)2

)
(ξ − a) ‖f ′√p‖L2(a,ξ) . (5.41)

Using
∥∥f√p∥∥2

L2(a,b)
=
∥∥f√p∥∥2

L2(a,ξ)
+
∥∥f√p∥∥2

L2(ξ,b)
, (5.37) and (5.41) yields

‖f√p‖2
L2(a,b) ≤

(
4

π2
+

(
1

π
+

√
cosh(2η(b− a))− 1

2η2(b− a)2

)2)
(b− a)2 ‖f ′√p‖2

L2(a,b) ,
�

which proves 5.35. If a < b ≤ 0 holds, let ξ be a root in (a, b). Then, take the interval (a, ξ)
and apply the reflection and extension principle as before, while for the interval (ξ, b) one
has to consider the estimate with adding and subtracting m(f) and applying the triangle
inequality, cf. (5.38).

The proof of Theorem 5.22 requires for f ∈ H2
η approximation error estimates of ‖f − If‖L2

η

and ‖(f − If)′‖L2
η
. The next Corollary establishes such estimates using Theorem 5.8 on

page 70 and Corollary 5.11 on page 74.

Corollary 5.12. Let the constant C1 = C1(η, h) and C2 = C2(η, h) be defined by

C1(η, h) :=
2

π
C(η, h), C2(η, h) := C(η, h)

√
4

π
h2 + 1 (5.42)

where C(η, h) is defined in (5.34). Assume that there holds a · b ≥ 0 and set h := b − a.
Suppose f ∈ H2

η (a, b). Then,

‖f − If‖L2
η(a,b) ≤ C1(η, h)h

2 ‖f ′′‖L2
η(a,b) (5.43)

and
‖f − If‖H1

η(a,b) ≤ C2(η, h)h ‖f ′′‖L2
η(a,b) . (5.44)

Proof. In Theorem 5.8 we proof that there holds for f ∈ H1
η (a, b)

‖f − If‖L2
η(Tj)

≤ 2/πhj ‖(f − If)′‖L2
η(Tj)

. (5.45)

Since ∫ b

a

(f − If)′dx = (f − If)(b)− (f − If)(a) = 0

(f −If)′ contains at least a root in (a, b), which allows to apply Corollary 5.11 with C from
(5.34), i.e.

‖(f − If)′‖L2
η(a,b) ≤ hC(η, h) ‖f ′′‖L2

η(a,b) . (5.46)

Combining the estimates (5.45) and (5.46) yields (5.43) and (5.44). �

Up to now we always assumed that 0 /∈ (a, b). The trick with adding and subtracting m(f)
to f as in the last proof also applies for some f ∈ H1(a, b) which vanishes at a or b. The
next corollary gives the Poincare type inequality for such functions f .

5.4. A posteriori Error Estimates 77

Corollary 5.13. Let f ∈ H1(a, b) with a < 0 < b, vanish either at a or b. Then,

‖f√p‖L2(a,b) ≤

(
1

π
+

√
2
(
cosh(2ηb) + cosh(2ηa)

)
− cosh(2η(b+ a))− 3

2η2(b− a)2

)
(b−a) ‖f ′√p‖L2(a,b) .

Proof. We proceed as in the second part of the proof of Corollary 5.11. Using the triangle
inequality

‖f√p‖L2(a,b) ≤ ‖(f −m(f))
√
p‖L2(a,b) + ‖m√p‖L2(a,b) . (5.47)

We consider the second term
∥∥m(f)

√
p
∥∥
L2(a,b)

. Using the same calculations as in the second
part of the proof of Corollary 5.11, just note that this time a < 0 < b, one obtains

‖m(f)
√
p‖L2(a,b) ≤

(∫ b

a

exp(2η|x|) dx
)1/2(∫ b

a

exp(−2η|x|) dx
)1/2

‖f ′√p‖L2(a,b)

=

√
2
(
cosh(2ηb) + cosh(2ηa)

)
− cosh(2η(b+ a))− 3

2η2(b− a)2
(b− a) ‖f ′√p‖L2(a,b) .

(5.48)

The first term of (5.47) can be estimated by directly applying the extended Theorem of
Payne & Weinberger to the smoothed p which yields with (5.23) and (5.24) from the proof
of Proposition 5.8

‖(f −m(f))
√
p‖L2(a,b) ≤

b− a

π
‖f ′√p‖L2(a,b) . (5.49)

The use of the estimates (5.48) and (5.49) in (5.47) proves the corollary. �

5.4 A posteriori Error Estimates

This section establishes an a posteriori error estimate of the solution u of the variational
inequality (5.4) and the semidiscrete solution uεh of the penalised problem (5.12). The finite
element discretisation is based on the basis functions from Definition 5.6 on page 64. Recall
that the finite element space Vh = span{ϕ1, . . . , ϕN−1} ⊂ H1

0 (x0, xN) ⊂ V := H1
η (R). First

we define the residual R originating from the semidiscrete formulation (5.12).

Definition 5.15. With aη(·, ·) and c+η (·, ·) from (5.1) and (5.5) on page 62, the linear func-
tional R ∈ V ∗, called residuum, is defined by

〈R, ·〉 := −
∫ T

0

(
(u̇εh, ·)L2

η
+ aη(uεh, ·) + c+η (uεh, ·)

)
dt. (5.50)

The next proposition shows the Galerkin orthogonality of the residual.

Lemma 5.14. Let I : V → Vh be a nodal interpolation operator defined in Definition 5.9
on page 65. Then, there holds for all v ∈ V that

〈R, v〉 = 〈R, v − Iv〉 = −
∫ T

0

(
(u̇εh, v − Iv)L2

η
+ aη(uεh, v − Iv) + c+η (uεh, v − Iv)

)
dt.

(5.51)

78 Chapter 5. Numerical Analysis

Proof. Set vh := Iv in (5.12) and integrate the equation from 0 to T . This yields

〈R, Iv〉 = −
∫ T

0

(
(u̇εh, Iv)L2

η
+ aη(uεh, Iv) + c+η (uεh, Iv)

)
dt = 0. �

The linear functional ρ defined in the next definition plays an important part in the proof
of the a posteriori error bound.

Definition 5.16. Let ρ ∈ V ∗ denote the linear functional defined by

〈ρ, ·〉 :=

∫ T

0

(
(u̇, ·)L2

η
+ aη(u, ·)

)
dt. (5.52)

The next lemma formulates an error representation, which is the starting point for the
derivation of the a posteriori error estimate.

Lemma 5.15 (Error Representation). Set e := u − uεh where u and uεh denotes the
solution of variational inequality (5.4) and the semi-discrete penalised problem (5.12), re-
spectively. With R and ρ from (5.51) and (5.52) there holds for all vh ∈ Vh∫ T

0

(ė, e)L2
η
dt+

∫ T

0

aη(e, e) dt+

∫ T

0

(
c+η (u, e)− c+η (uεh, e)

)
dt = 〈R, e− vh〉+ 〈ρ, e〉 .

(5.53)

Proof. The definition of e = u− uεh, the fact that c+η (u, ·) = 0, and the Galerkin orthogo-
nality of the residual (5.51) followed by elementary calculation yields∫ T

0

(
(ė, e)L2

η
+ aη(e, e)

)
dt

= 〈ρ, e〉+ 〈R, u− uεh〉+

∫ T

0

c+η (uεh, u− uεh) dt

= 〈ρ, e〉+ 〈R, e− vh〉 −
∫ T

0

(
c+η (u, u− uεh)− c+η (uεh, u− uεh)

)
dt. �

Remark 5.17. Let u be a solution of the variational inequality (5.4). Then there holds for
all v ∈ Kψ that ρ(v − u) ≥ 0.

The following two lemmas show important properties of the linear functional ρ. They play
a crucial part in the proof of Proposition 5.18.

Lemma 5.16. The linear functional ρ from (5.52) is positive, i.e.,

〈ρ, w〉 ≥ 0 for all w ≥ 0.

Proof. For brevity define the bilinear form ãη(u, v) := (u̇, v)η + aη(u, v). Let u ∈ K be a
solution of the variational inequality (5.4), i.e., there holds

ãη(u, v − u) ≥ 0 for all v ∈ Kψ. (5.54)

5.4. A posteriori Error Estimates 79

Note that by definition 〈ρ, ·〉 =
∫ T

0
ãη(u, ·) dt. For ṽ ∈ Kψ set v = ṽ + u− ψ ∈ Kψ. Inserting

this in (5.54) yields
ãη(u, ṽ − ψ) ≥ 0 for all ṽ ∈ Kψ. (5.55)

�

With w = ṽ − ψ ≥ 0 (since ṽ ∈ Kψ) there holds ρ(w) ≥ 0.

Lemma 5.17. With ρ defined in (5.52), u the solution of (5.4), uεh the solution of (5.12),
and e = u− uεh there holds

ρ(e) ≤ ρ(u+
εh).

Proof. With v = ψ ∈ Kψ in (5.54), ãη(u, ψ−u) ≥ 0, holds true. Since u ∈ Kψ it follows from
(5.55) that ãη(u, u−ψ) ≥ 0 and consequently there holds ãη(u, ψ−u) = 0, i.e., ρ(u) = ρ(ψ).
This and ρ ≥ 0 , cf. Lemma 5.16, yield

ρ(e) = ρ(u− uεh) = ρ(ψ − uεh) ≤ ρ((ψ − uεh)+) = ρ(u+
εh). �

Definition 5.18 (Jump Terms). The jumps of the derivative of uεh at some node x of
the triangulation is defined by

[u′εh]x := u′εh(x
+)− u′εh(x

−) (5.56)

where
u′εh(x

±) := lim
y→x±

u′εh(y). (5.57)

The next proposition provides estimates for the error terms in (5.53) and bounds the residual
R and the functional ρ from above. This estimates immediately lead to the a posteriori error
estimate in Theorem 5.20. For brevity set L2(V) := L2(0, T ;V) and L2

η := L2
η(R). Recall the

the definitions of Tj := (xj−1, xj) and hj := xj − xj−1 for j = 1, . . . , N . We use the following
notation.

Notation 5.19. Let x0,N be defined by

x0,N :=

{
x0 for an American call option,
xN for an American put option.

(5.58)

In other words, x0,N denotes the point, where the truncation error occurs.
Define x1,N−1 by

x1,N−1 :=

{
x1 for an American call option,
xN−1 for an American put option;

(5.59)

the interval T1,N by

T1,N :=

{
(x0, x1) for an American call option,
(xN−1, xN) for an American put option.

(5.60)

80 Chapter 5. Numerical Analysis

Then, h1,N , the length of the length of the interval T1,N , reads

h1,N :=

{
h1 for an American call option,
hN for an American put option.

(5.61)

Finally, define the index set J by

J :=

{
{2, . . . , N} for an American call option,
{1, . . . , N − 1} for an American put option.

(5.62)

The constants α, λ, and M originate from the Gårding inequality and the continuity estimate
and are given in Proposition 5.1 on page 63.

Proposition 5.18. Let u be the solution of the variation inequality (5.4) on page 63, uεh
the discrete solution of the penalised problem (5.12) on page 65 , and vh ∈ Vh arbitrary.
Then,

1

2
‖e(T)‖2

L2
η
+ α ‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η)

≤ 1

2
‖e(0)‖2

L2
η
+ 〈R, e− vh〉+ 〈ρ, e〉+

∫ T

0

c+η (uεh, u
+
εh) dt. (5.63)

Given the discrete operator Ãε,h operating on each space interval Tj, j = 0, . . . , N+1, defined
as

Ãε,h[u] := u̇− σ2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru− 1

ε
u+, (5.64)

and the constant C(η, h) from (5.33) on page 74

C(h) = C(η, h) =
2

π

√
cosh(2ηh)− 1

2η2h2
, (5.65)

the residual R is bounded above by

〈R, e− vh〉 ≤
α

6
‖e′‖2

L2(L2
η(R)) +

3

2α

∑
j∈J

h2
jC(hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N |u(x1,N−1)| exp

(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2(L2

η(T1,N))

+
σ2

2

∫ T

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

(5.66)

The functional ρ is bounded by

〈ρ, e〉 ≤ 1/4 ‖e(T)‖2
L2

η(R) +
∥∥u+

εh(T)
∥∥2

L2
η(R)

−
(
e(0), u+

εh(0)
)
η
+
α

6
‖e‖2

L2(L2
η(R))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η(R))

+
α

6
‖e‖2

L2(H1
η(R)) +

(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(H1
η(R))

+
N∑
j=1

h2
jC(hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

−
∫ T

0

c+η (uεh, u
+
εh) dt.

(5.67)

5.4. A posteriori Error Estimates 81

The proof of Proposition 5.18 requires estimates of ‖e− Ie‖L2
η(Tj)

, j = 0, . . . , N+1. Since the
interpolation error I maps onto Vh, five cases are under consideration, namely, the interior
intervals Tj, j = 2, . . . , N−1, the intervals (x0, x1) and (xN−1, xN), as well as the unbounded
intervals (−∞, x0) and (xN ,∞).

Lemma 5.19. Let u be a solution of the variational inequality 5.4 and uεh a solution of the
semi-discrete problem (5.12). Then, the term e−Ie is bounded above in the following way.

interval Tj American put option American call option

j = 0 ‖e−Ie‖L2
η(Tj)

= 0 ‖e−Ie‖L2
η(Tj)

= ‖u‖L2
η(Tj)

j = 1 ‖e−Ie‖L2
η(Tj)

. hj ‖e′‖L2
η(Tj)

‖e−Ie‖L2
η(Tj)

.
√
hj|u(xj)|e−η|xj |

j = 2, . . . , N−1 ‖e−Ie‖L2
η(Tj)

. hj ‖e′‖L2
η(Tj)

‖e−Ie‖L2
η(Tj)

. hj ‖e′‖L2
η(Tj)

j = N ‖e−Ie‖L2
η(Tj)

.
√
hj|u(xj−1)|e−η|xj−1| ‖e−Ie‖L2

η(Tj)
. hj ‖e′‖L2

η(Tj)

j = N+1 ‖e−Ie‖L2
η(Tj)

= ‖u‖L2
η(Tj)

‖e−Ie‖L2
η(Tj)

= 0

Remark 5.20. The terms ‖u‖L2
η(TN) and u(xN−1) for American put options and ‖u‖L2

η(T1)

and u(x1) for American call options are bounded by means of the truncation error estimates
of Section 3.4.

Proof. First we consider American put options. Since u(x) = uεh(x) for x ∈ (−∞, x0) for
American put options, cf. Table 5.2, (e − Ie) = 0 on (−∞, x0). By definition of I and
u(x0) = uεh(x0) there holds (e − Ie)(xj) = 0 for j = 0, . . . N − 1. Hence, the interpolation
error estimate 5.32 on page 74 is applicable, i.e.,

‖e− Ie‖L2
η(Tj)

. hj ‖e′‖L2
η(Tj)

for j = 1, . . . , N − 1.

Taking into account that uεh = 0 on (xN ,∞), there holds ‖e− Ie‖L2
η(xN ,∞) = ‖u‖L2

η(xN ,∞).
Finally, we consider the interval (xN−1, xN), where xN−1 > 0. Recall that uεh(xN) = 0,
consequently there holds uεh = Iuεh. Taking into account that

‖u‖2
L2

η(TN) =

∫
TN

u2 exp(−2η|x|) dx ≤ hN |u(xN−1)|2 exp(−2η|xN−1|), (5.68)

and

‖Iu‖2
L2

η(TN) ≤
|u(xN−1)|2

h2
N

exp(−2η|xN−1|)
∫
TN

(xN − x)2 dx ≤ hN
3
|u(xN−1)|2 exp(−2η|xN−1|),

(5.69)

yields
‖e− Ie‖L2

η(TN) ≤
(
1 +

1√
3

)√
hN |u(xN−1)| exp(−η|xN−1|). (5.70)

This finishes the proof for American put options.
For American call options there holds u(x) = uεh(x) for x ≥ xN , consequently e − Ie = 0

82 Chapter 5. Numerical Analysis

on (xN ,∞). By definition of I and u(xN) = uεh(xN) there holds (e − Ie)(xj) = 0 for
j = 1, . . . N . Hence, the interpolation error estimate 5.32 on page 74 is applicable, i.e.,

‖e− Ie‖L2
η(Tj)

. hj ‖e′‖L2
η(Tj)

for j = 2, . . . , N.

Since uεh = 0 on (−∞, x0), ‖e− Ie‖L2
η(−∞,x0) = ‖u‖L2

η(−∞,x0). Finally, we consider the
interval (x0, x1), where x1 < 0. Recall that uεh(x0) = 0, consequently there holds uεh = Iuεh.
Taking into account that

‖u‖2
L2

η(T1) =

∫
T1

u2 exp(−2η|x|) dx ≤ hN |u(x1)|2 exp(−2η|x1|), (5.71)

and

‖Iu‖2
L2

η(T1) ≤
|u(x1)|2

h2
1

exp(−2η|x1|)
∫
T1

(x− x1)
2 dx ≤ h1

3
|u(x1)|2 exp(−2η|x1|), (5.72)

yields
‖e− Ie‖L2

η(T1) ≤
(
1 +

1√
3

)√
h1|u(x1)| exp(−η|x1|). (5.73)

�

Proof (of Proposition 5.18). First we prove inequality (5.63) starting from the error rep-
resentation (5.53) on page 78. An integration by part in time in the first term of (5.53) and
the Gårding Inequality of aη shows that, the left-hand side of (5.53) is greater or equal to

1/2 ‖e(T)‖2
L2

η
− 1/2 ‖e(0)‖2

L2
η
+ α ‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η) . (5.74)

With the monotony (5.7) of c+η and u+ = 0 there holds

−
∫ T

0

(
c+η (u, e)− c+η (uεh, e)

)
dt ≤ −1

ε

∫ T

0

∫
R
(u+ − u+

εh)
2e−2η|x| dx dt =

∫ T

0

c+η (uεh, u
+
εh) dt.

which proves inequality (5.63).
The next step is to show that the residual 〈R, e− vh〉 is bounded above, i.e. inequality
(5.66) holds true. Using the Galerkin orthogonality of the residual (5.51), and elementwise
integration by part yields

〈R, e− vh〉 = 〈R, e− Ie〉 = −
∫ T

0

(
(u̇εh, e− Ie)L2

η
+ aη(uεh, e− Ie) + c+η (uεh, e− Ie)

)
dt

=

∫ T

0

N∑
j=1

∫ xj

xj−1

(
− Ãε,h[uεh]

)
(e− Ie) exp(−2η|x|) dx dt

+

∫ T

0

∫ x0

−∞

(
− Ãε,h[uεh]

)
(e− Ie) exp(−2η|x|) dx dt

+

∫ T

0

∫ ∞

xN

(
− Ãε,h[uεh]

)
(e− Ie) exp(−2η|x|) dx dt

− σ2

2

∫ T

0

N∑
j=0

[u′εh]xj
(e− Ie)(xj) exp(−2η|xj|) dt.

(5.75)

5.4. A posteriori Error Estimates 83

Note that (e−Ie)(xj) = 0 for all j = 1, . . . , N − 1, hence all jump-terms on the inner nodes
x1 . . . xN−1 vanish in the last term in (5.75). Moreover, e(x0) = 0 for American put options
and e(xN) = 0 for American call options, cf. Table 5.2, hence the only jump term arises at
x0,N . We consider now the second and third integral in (5.75). Take into account that for
American call and put options the following hold true, cf. Table 5.1,

Ãε,h[uεh](e− Ie) = 0 on (−∞, x0) ∪ (xN ,∞).

Hence, the second and third integral in (5.75) vanish.
Using Cauchy inequality on each space interval and then applying the interpolation error
estimate from Theorem 5.10 on page 74, (5.70), and (5.73) yields

〈R, e〉 ≤
∫ T

0

N∑
j=1

∥∥∥Ãε,h(uεh)
∥∥∥
L2

η(Tj)
‖e− Ie‖L2

η(Tj)
dt

+
σ2

2
[u′εh]x0,N

|u(x0,N)| exp(−2η|x0,N |) dt

≤
∫ T

0

∑
j∈J

(
2hjC(η, hj)

∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(Tj)
‖e′‖L2

η(Tj)

)
dt

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

Using Young’s inequality with ε and Cauchy’s inequality in time one obtains

〈R, e〉 ≤ α

6
‖e′‖2

L2(L2
η(R)) +

3

2α

∑
j∈J

h2
jC(hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

(5.76)

This proves (5.66).
Finally we show that inequality (5.67) holds. Since 〈ρ, e〉 ≤ ρ(u+

εh), cf. Lemma 5.17 on page
79 and uεh solves the semi-discrete equation 5.89, there holds

〈ρ, e〉 ≤
〈
ρ, u+

εh

〉
=

∫ T

0

(
(ė, u+

εh)η + aη(e, u
+
εh) + (u̇εh, u

+
εh)η + aη(uεh, u

+
εh)
)
dt

=

∫ T

0

(
(ė, u+

εh)η + aη(e, u
+
εh)
)
dt−

∫ T

0

c+η (uεh, Iu+
εh) dt

+

∫ T

0

(
(u̇εh, u

+
εh − Iu

+
εh)η + aη(u̇εh, u

+
εh − Iu

+
εh)
)
dt

=

∫ T

0

(
(ė, u+

εh)η + aη(e, u
+
εh)
)
dt−

〈
R, u+

εh − Iu
+
εh

〉
−
∫ T

0

c+η (uεh, u
+
εh) dt.

(5.77)

84 Chapter 5. Numerical Analysis

An integration by parts in time in the first term on the right-hand-side of (5.77) yields

∫ T

0

(
(ė, u+

εh)η dt =
(
e(T), u+

εh(T)
)
η
−
(
e(0), u+

εh(0)
)
η
−
∫ T

0

(e, (u+
εh)̇)η dt.

Using the continuity of aη, Cauchy’s and Young’s Inequality with ε lead to

∫ T

0

(
(ė, u+

εh)η + aη(e, u
+
εh)
)
dt ≤ 1

4
‖e(T)‖2

L2
η
+
∥∥u+

εh(T)
∥∥2

L2
η
− (e(0), u+

εh(0))η +
α

6
‖e‖2

L2(L2
η)

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η)

+
α

6
‖e‖2

L2(H1
η) +

3

2α
M2

∥∥u+
εh

∥∥2

L2(H1
η)
.

(5.78)

An element-wise integration by parts in the residual in (5.77) (note that u+
εh(x0) = u+

εh(xN) =
0), using the interpolation error estimate (5.32) on page 74, and Young’s inequality yields

−
〈
R, u+

εh − Iu
+
εh

〉
=

∫ T

0

(
(u̇εh, u

+
εh − Iu

+
εh)η + aη(uεh, u

+
εh − Iu

+
εh) + c+η (uεh, u

+
εh − Iu

+
εh)
)
dt

=

∫ T

0

N∑
j=1

∫ xj

xj−1

(
Ãε,h[uεh](u

+
εh − Iu

+
εh) exp(−2η|x|)

)
dx dt

≤
∫ T

0

N∑
j=1

(
2hjC(hj)

∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(Tj)

∥∥(u+
εh)

′∥∥
L2

η(Tj)

)
dt

≤
N∑
j=1

h2
jC(hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

+
∥∥(u+

εh)
′∥∥2

L2(L2
η)
.

(5.79)

Inserting estimate (5.78) and (5.79) in (5.77) proves (5.67), which finishes the proof. �

Remark 5.21. Note that the last estimate in (5.79) could be sharpend by only taking
the sum of elements where the semi-discrete solution uεh is below the obstacle, i.e., where
u+
εh > 0 instead of taking the sum over all elements. However, the sum over all elements

already appears in the estimate of the residual, cf. (5.76) on page 83, so the effect on the
error estimate would only be minimal.

Finally we can formulate an a posteriori error estimate by means of Proposition 5.18.

Theorem 5.20 (A posteriori estimate for e = u − uεh). Let u be the solution of the
variation inequality (5.4), uεh the discrete solution of the penalised problem (5.12). Then,

5.4. A posteriori Error Estimates 85

an a posteriori error bound for the error e = u− uεh is given by

1

4
‖e(T)‖2

L2
η(R) +

α

2
‖e‖2

L2(0,T ;H1
η(R)) − λ ‖e‖2

L2(0,T ;L2
η(R)) +

(
e(0), u+

εh(0)
)
L2

η

≤ 1

2
‖e(0)‖2

L2
η(R) +

∥∥u+
εh(T)

∥∥2

L2
η(R)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(R)

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(0,T ;L2
η(R))

+
(3

2α
M2 + 1

) ∥∥u+
εh

∥∥2

L2(0,T ;H1
η(R))

+
N∑
j=1

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
3

2α
M2

∑
j∈J

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

(5.80)

Remark 5.22. Note that the terms on the right-hand side in (5.80) are only supported in
the computational domain (x0, xN), since on the outer domain there holds uεh(x) = ψ(x).

Proof. Inserting the estimates of 〈R, e〉, (5.66), and 〈ρ, e〉, (5.67), in (5.63), and absorbing
the error terms yields the a posteriori error estimate (5.80). �

Remark 5.23. For an problem with H1-elliptic, continuous bilinear form a(·, ·) and f ∈ L2

of the form
a(u, v) = 〈f, v〉 for all v ∈ H1

0 (Ω), (5.81)

L2-error estimates can be proved using duality arguments. The Aubin-Nitsche Lemma guar-
antees the following error estimate for e = u− uh with mesh-size h,

‖e‖L2 . h ‖e‖H1 . (5.82)

For variational inequalities, however, such error estimates are much more involved. Natterer
[1976] proved such an estimate (5.82) for variational inequalities of the form

a(u, v − u) = 〈f, v − u〉 for all v ∈ K, (5.83)

where a(·, ·) is a symmetric, continuous and elliptic bilinear form. According to the author it
is unclear how to weaken these assumptions. On the other hand we deal with parabolic non-
symmetric variational inequalities on unbounded domains. Hence, these standard method
does not apply to bound α/2 ‖e‖2

H1
η
−λ ‖e‖2

L2
η

on the left-hand side of (5.80) from below. This
would allow for suitable mesh-sizes hj to obtain a strictly positive bound of the left-hand
side in (5.80).

Hence we need to bound α/2 ‖e‖2
H1

η
− λ ‖e‖2

L2
η

from below by other means. Using the L∞-
norm in time instead of the L2-norm yields an lower bound for the left-hand side of (5.80)
which is strictly positive for sufficient small final time T , cf. the subsequent remark.

86 Chapter 5. Numerical Analysis

Remark 5.24. Up to now we have shown that (5.80) holds for an arbitrary T > 0 Choose
now some T̃ ∈ (0, T] such that

∥∥∥e(T̃)
∥∥∥2

L2
η

gets maximal. Then

∥∥∥e(T̃)
∥∥∥2

L2
η

= ‖e‖2
L∞(0,T ;L2

η)

and therefore
1

4
‖e‖2

L∞(0,T ;H1
η) +

α

2
‖e‖2

L2(0,T̃ ;H1
η) − λ ‖e‖2

L2(0,T̃ ;L2
η) +

(
e(0), u+

εh(0)
)
η

≤ 1

2
‖e(0)‖2

L2
η(R) +

∥∥∥u+
εh(T̃)

∥∥∥2

L2
η(R)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(R)

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(0,T ;L2
η(R))

+
(3

2α
M2 + 1

) ∥∥u+
εh

∥∥2

L2(0,T ;H1
η(R))

+
N∑
j=1

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
3

2α
M2

∑
j∈J

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T̃

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T̃

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

Note that there holds

‖e‖2
L2(0,T̃ ;L2

η) ≤ ‖e‖2
L2(0,T ;L2

η) ≤ T ‖e‖2
L∞(0,T ;L2

η) . (5.84)

Taking into account that
(
e(0), u+

εh(0)
)
L2

η
≥ 0 there holds(1

4
− λT

)
‖e‖2

L∞(0,T ;L2
η)

≤ 1

2
‖e(0)‖2

L2
η(R) +

∥∥u+
εh

∥∥2

L∞(0,T ;L2
η(R))

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(R)

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(0,T ;L2
η(R))

+
(3

2α
M2 + 1

) ∥∥u+
εh

∥∥2

L2(0,T ;H1
η(R))

+
N∑
j=1

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
3

2α
M2

∑
j∈J

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T

0

∣∣[u′εh]x0,N

∣∣|u(x0,N)| exp(−2η|x0,N |) dt.

(5.85)

Consequently, this a posteriori error estimator makes perfectly sense if λ ≤ 0 or T < (4λ)−1.

Remark 5.25. The a posteriori estimate (5.85) indicates, that not only the truncation
points x0 for American call options and xN for American put options must be located beyond

5.5. A priori Estimates 87

the thresholds xC0 and xPN given in Table 5.1, rather the whole interval T1,N must be located
beyond the corresponding treshold. Consequently the exact solution u satisfies the Black-
Scholes equation not only for x > xN (American put options) and x < x0 (American call
options), cf. Table 5.2 on page 68 but for x > xN−1 (American put options) and x < x1

(American call options).

Remark 5.26. No efficient a posteriori error bounds error are known for penalised station-
ary variational inequalities. Even for simpler time-dependent problems lower bounds has
been established only in the sense of sharp a priori bounds, cf. Eriksson et al. [1996].

5.5 A priori Estimates

5.5.1 Penalisation Error e = u− uε

In this subsection we suppose that the solution u of the variational inequality (5.4) satisfies
u ∈ L2(0, T ;H2

η) ∩ H1(0, T ;L2
η) and that uε is a solution of the penalised problem (5.6).

The main result is that the penalisation error e = u − uε is proportional to
√
ε as ε → 0.

Again, we abbreviate L2(H) := L2(0, T ;H). The constants α, λ, and M originate from the
Gårding inequality and the continuity estimate and are given in Proposition 5.1 on page 63.

Theorem 5.21 (Penalisation error). Suppose u ∈ L2(0, T ;H2
η) ∩ H1(0, T ;L2

η) solves the
variational inequality (5.4) and uε the penalised problem (5.6). Set e := u− uε and

Ã[u] := u̇− σ2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru. (5.86)

Then,
1

2
‖e(T)‖2

L2
η(R) + α ‖e‖2

L2(H1
η(R)) − λ ‖e‖2

L2(L2
η(R)) +

1

2ε

∥∥u+
ε

∥∥2

L2(L2
η(R))

≤ ε

2

∥∥∥Ã[u]
∥∥∥2

L2(L2
η(R))

.

Proof. Recall that V := H1
η and that uε solves

(u̇ε, v)η + aη(uε, v) + c+η (uε, v) = 0 for all v ∈ V. (5.87)

As e = u− uε ∈ V and c+η (u, v) = 0 for all v ∈ V one obtains∫ T

0

(u̇− u̇ε, u− uε)η + aη(u− uε, u− uε) + c+η (u, u− uε)− c+η (uε, u− uε) dt

=

∫ T

0

(u̇, u− uε)η + aη(u, u− uε) dt.

Integration by parts in time of the first term in the left hand side, using the Gårding in-
equality for aη, and the monotony of c+η , cf. (5.1) and (5.7), respectively, and integration by
part in the second term of the right hand side yields

1/2 ‖e(T)‖2
L2

η
+ α ‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η) + 1/ε

∥∥u+
ε

∥∥2

L2(L2
η)
≤
∫ T

0

∫
R
Ã[u](u− uε)e

−2η|x| dx dt.

88 Chapter 5. Numerical Analysis

Using the complementary conditions from (3.18) on page 22 we obtain

∫ T

0

∫
R
Ã[u](u− uε)e

−2η|x| dx dt =

∫ T

0

∫
R
Ã[u](ψ − uε)e

−2η|x| dx dt.

Using Cauchys inequality, Youngs inequality, and ψ − uε ≤ (ψ − uε)+ = u+
ε yields

1

2
‖e(T)‖2

L2
η
+ α ‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η) +

1

ε

∥∥u+
ε

∥∥2

L2(L2
η)

≤
∫ T

0

∫
R
Ã[u]u+

ε e
−2η|x| dx dt ≤ ε

2

∥∥∥Ã[u]
∥∥∥2

L2(L2
η)

+
1

2ε

∥∥u+
ε

∥∥2

L2(L2
η)

which proves the result. �

Remark 5.27. The same arguments as in Remark 5.24 yields

(1

2
− λT

)
‖e‖2

L∞(0,T ;L2
η) ≤

ε

2

∥∥∥Ã[u]
∥∥∥2

L2(0,T ;L2
η)
. (5.88)

5.5.2 Discretisation Error e = u− uεh

In this subsection we prove an a priori error estimate for the the error e := u − uεh of the
the exact solution u of the variational inequality (5.4) and the semi-discrete solution uεh of
the penalised problem (5.12). Since Vh ⊂ H1

0 (x0, xN) the extended solution uεh ∈ V̄h solves
the weak formulation

(u̇εh, vh)L2
η
+ aη(uεh, vh) + c+η (uεh, vh) = 0 for all vh ∈ Vh. (5.89)

Recall the definition of x0,N , x1,N−1, h1,N , T1,N , and J from Notation 5.19 on page 79.
Further, define T0,N+1 by

T0,N+1 :=

{
T0 for an American call option,
TN+1 for an American put option.

(5.90)

As before, we abbreviate L2(H) := L2(0, T ;H) and L2
η := L2

η(R) and use the constants α,
λ, and M from Proposition 5.1 on page 63. The operator Ã is defined in Theorem 5.21 on
page 87.

Theorem 5.22. Suppose u ∈ L2(H2
η) ∩ H1(H1

η) solves the variational inequality (5.4) and

5.5. A priori Estimates 89

uεh ∈ H1(V̄h) solves the semi-discrete problem (5.12). Then ,

1

4
‖e(T)‖2

L2
η
+
α

2
‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η) +

1

2ε

∥∥u+
εh

∥∥2

L2(L2
η)

+
1

2
‖e(0)‖2

L2
η(R)

≤ ε
∥∥∥Ã[u]

∥∥∥2

L2(L2
η)

+
3

2α

∑
j∈J

C2(hj)
2h2

j ‖u′′‖
2
L2(L2

η(Tj))
+

1

ε

∑
j∈J

C1(hj)
2h4

j ‖u′′‖
2
L2(L2

η(Tj))

+
∑
j∈J

h4
jC1(hj)

2 ‖u′′(T)‖2
L2

η(Tj)
+

3

2α

∑
j∈J

h2
jC1(hj)

2 ‖(u̇)′‖2
L2(L2

η(Tj))

+

∫ T

0

∑
j∈J

C1(hj)h
2
j

∥∥∥Ã[u]
∥∥∥
L2

η(Tj)
‖u′′‖L2

η(Tj)
dt

+
(3

2α
M2 +

1

ε

)(
1 +

1√
3

)2

h1,N ‖u(x1,N−1)‖2
L2(0,T) exp

(
− 2η|x1,N−1|

)
+
(
1 +

1√
3

)2

h1,N |u(x1,N−1, T)|2 exp
(
− 2η|x1,N−1|

)
+

3

2α
M2 ‖u‖2

L2(H1
η(T0,N+1)) + ‖u(T)‖2

L2
η(T0,N+1) +

3

2α
‖u̇‖2

L2(L2
η(T0,N+1))

+
3

2α
M2
(
h1,N + h−1

1,N

)
max

{
‖u(x1,N−1)

′‖2

L2(0,T) , ‖u(x1,N−1)‖2
L2(0,T)

}
exp(−2η|x1,N−1|).

(5.91)

with

C1(hj) = C1(hj, η) :=
2

π
C(hj, η), C2(hj) = C2(hj, η) :=

√
1 +

4

π2
h2
j C(hj, η)

2.

The constant C(h, η) is given in (5.34) on page 74.

Remark 5.28. The terms on the right-hand side of (5.91) can be subdivided into three
groups. The first term is the penalisation error, the next seven terms are all discretisation
errors, and the last four terms control to the truncation error. An estimation of the truncation
error is given in Section 3.4.

Remark 5.29. In the last term in (5.91) the term h1,N+ 1
h1,N

represents a valid upper bound
which does not reflect the different decay of u and u′. In fact, one may expect that a refined
analysis of the constants in Section 3.4 discovers an improved upper bound in terms of the
interval length h1,N .

Remark 5.30. The last error term in (5.91) indicates that not only the truncation point x0

for American call options and xN for American put options determines the truncation error,
rather the whole ‘critical’ interval T1,N is important. In other words, there is a trade-off
between the length h1,N of the interval T1,N and its position on the real line. If the length of
T1,N gets to small, the interval T1,N need to be shifted further out to reduce the truncation
error of u(xN−1) so that the last error term decreases.

90 Chapter 5. Numerical Analysis

Remark 5.31. The same arguments as in Remark 5.24 yield(1

4
− λT

)
‖e‖2

L∞(0,T ;L2
η)

≤ ε
∥∥∥Ã[u]

∥∥∥2

L2(L2
η)

+
3

2α

∑
j∈J

C2(hj)
2h2

j ‖u′′‖
2
L2(L2

η(Tj))
+

1

ε

∑
j∈J

C1(hj)
2h4

j ‖u′′‖
2
L2(L2

η(Tj))

+
∑
j∈J

h4
jC1(hj)

2 ‖u′′‖2
L∞(L2

η(Tj))
+

3

2α

∑
j∈J

h2
jC1(hj)

2 ‖(u̇)′‖2
L2(L2

η(Tj))

+

∫ T

0

∑
j∈J

C1(hj)h
2
j

∥∥∥Ã[u]
∥∥∥
L2

η(Tj)
‖u′′‖L2

η(Tj)
dt

+
(3

2α
M2 +

1

ε

)(
1 +

1√
3

)2

h1,N ‖u(x1,N−1)‖2
L2(0,T) exp

(
− 2η|x1,N−1|

)
+
(
1 +

1√
3

)2

h1,N ‖u(x1,N−1)‖2
L∞(0,T) exp

(
− 2η|x1,N−1|

)
+

3

2α
M2 ‖u‖2

L2(H1
η(T0,N+1)) + ‖u‖2

L∞(L2
η(T0,N+1)) +

3

2α
‖u̇‖2

L2(L2
η(T0,N+1))

+
3

2α
M2
(
h1,N + h−1

1,N

)
max

{
‖u(x1,N−1)

′‖2

L2(0,T) , ‖u(x1,N−1)‖2
L2(0,T)

}
exp(−2η|x1,N−1|).

(5.92)

In the proof of Theorem 5.22 the term ‖e− Ie‖L2
η(Tj)

for j = 0, . . . , N+1 need to be bounded
above by suitable a priori terms. Since the interpolation error I maps onto Vh, five cases are
under consideration, namely, the interior intervals Tj, j = 2, . . . , N − 1, the intervals (x0, x1)
and xN−1, xN , as well as the unbounded intervals (−∞, x0) and (xN ,∞).

Lemma 5.23. Suppose u ∈ L2(H2
η) ∩ H1(H1

η) solves the variational inequality 5.4 and
uεh ∈ H1(V̄h) solves the semi-discrete problem (5.12). Then, the error e = u− uεh satisfies

interval Tj American put option American call option

j = 0 ‖e−Ie‖L2
η(Tj)

= 0 ‖e−Ie‖L2
η(Tj)

= ‖u‖L2
η(Tj)

j = 1 ‖e−Ie‖L2
η(Tj)

. h2
j ‖u′′‖L2

η(Tj)
‖e−Ie‖L2

η(Tj)
.
√
hj|u(x1)|e−η|x1|

j = 2, . . . , N−1 ‖e−Ie‖L2
η(Tj)

. h2
j ‖u′′‖L2

η(Tj)
‖e−Ie‖L2

η(Tj)
. h2

j ‖u′′‖L2
η(Tj)

j = N ‖e−Ie‖L2
η(Tj)

.
√
hj|u(xj−1)|e−η|xj−1| ‖e−Ie‖L2

η(Tj)
. h2

j ‖u′′‖L2
η(Tj)

j = N+1 ‖e−Ie‖L2
η(Tj)

= ‖u‖L2
η(Tj)

‖e−Ie‖L2
η(Tj)

= 0

Proof. Taking into account that u(x0) = uεh(x0) for American put options and the definition
of the nodal interpolation operator I there holds

(e− Ie) ∈ H1
0 (Tj) ∩H2

η (Tj) for j = 1, . . . N − 1,

Hence, the interpolation error estimate (5.43) on page 76 is applicable, i.e.,

‖e− Ie‖L2
η(Tj)

. h2
j ‖u′′‖L2

η(Tj)
for j = 1, . . . N − 1

5.5. A priori Estimates 91

.
The estimates for j = 0, j = N , and j = N + 1 were already proved in Lemma 5.19 on page
81. This finishes the proof for American put options.
Since u(xN) = uεh(xN) for American call options there holds

(e− Ie) ∈ H1
0 (Tj) ∩H2

η (Tj) for j = 2, . . . N,

Hence, the interpolation error estimate (5.43) on page 76 is applicable, i.e.,

‖e− Ie‖L2
η(Tj)

. h2
j ‖u′′‖L2

η(Tj)
for j = 2, . . . N

.
The estimates for j = 0, j = 1, and j = N + 1 were already proved in Lemma 5.19 on page
81. �

Proof (of Theorem 5.22). Step (i) aims at an error representation for all v ∈ K, vh ∈ Vh:

∫ T

0

(
aη(e, e) + (ė, e)L2

η
+ c+η (u, e)− c+η (uεh, e)

)
dt+ 〈ρ, v − u〉 =

∫ T

0

〈
Ã[u], v − uεh

〉
η

)
dt

+

∫ T

0

(〈
Ã[u], vh − e

〉
η
+ aη(u− uεh, e− vh) + (u̇− u̇εh, e− vh)η + c+η (uεh, vh − e)

)
dt.

(5.93)

In fact, with ρ from (5.52) and (5.89) there holds∫ T

0

(
aη(e, e) + (ė, e)η

)
dt

=

∫ T

0

(
aη(u, e)− aη(uεh, e) + (u̇, e)η + (u̇ε,h, vh)η + aη(uεh, vh) + c+η (uεh, vh)

)
dt

= −〈ρ, v − u〉+

∫ T

0

(
aη(u, v) + (u̇, v)η − (u̇, uεh)η − aη(u, uεh)

)
dt

+

∫ T

0

(
(u̇ε,h, vh − e) + aη(uεh, vh − e) + c+η (uεh, vh)

)
dt

=

∫ T

0

(〈
Ã[u], v − uεh

〉
η
+
〈
Ã[u], vh − e

〉
η
+ (ė, e− vh)η + aη(e, e− vh)

)
dt

+

∫ T

0

c+η (uεh, vh) dt− 〈ρ, v − u〉 .

Taking into account c+η (u, ·) = 0 there holds

c+η (uεh, vh) = c+η (uεh, vh − e) + c+η (uεh, u− uεh)− c+η (u, u− uεh),

which proves (5.93) .
Step (ii) consists of bounding the left-hand side of (5.93) from below. Note that v ∈ K and
vh ∈ Vh can be chosen arbitrarily in the error representation (5.93). Set v := u and vh = Iu
the nodal interpolation operator from (5.14). Then, the monotony of c+η (5.7), the Gårding

92 Chapter 5. Numerical Analysis

inequality for aη (5.2), ρ(v − u) ≥ 0, and an integration by parts in time on the left-hand
side of (5.93) yield

1

2
‖e(T)‖2

L2
η
+ α ‖e‖2

L2(H1
η) − λ ‖e‖2

L2(L2
η) +

1

ε

∥∥u+
εh

∥∥2

L2(L2
η)

≤ 1

2
‖e(0)‖2

L2
η
+

∫ T

0

〈
Ã[u], u− uεh

〉
η
+
〈
Ã[u], Ie− e

〉
η
+ aη(e, e− Ie) dt

+

∫ T

0

(
(ė, e− Ie)η + c+η (uεh, Ie− e)

)
dt

=:
1

2
‖e(0)‖2

L2
η
+ I1 + I2 + I3 + I4 + I5.

(5.94)

Step (iii) aims to bound each term I1 to I5 from above.
To bound I1 :=

∫ T
0

〈
Ã[u], u− uεh

〉
η
dt proceed as in the proof of Theorem 5.21 by using the

complimentary conditions (3.18), ψ − uεh ≤ u+
εh, and Youngs inequality. In fact,

I1 =

∫ T

0

〈
Ã[u], u− uεh

〉
η
dt =

∫ T

0

∫
R
Ã[u](u− uεh)e

−2η|x| dx dt

=

∫ T

0

∫
R
Ã[u](ψ − uεh)e

−2η|x| dx dt

≤ ε
∥∥∥Ã[u]

∥∥∥2

L2(L2
η)

+ (4ε)−1
∥∥u+

εh

∥∥2

L2(L2
η)
.

In the upcoming estimates for I2, I3, and I4 we use that for American put options there
holds for x ≥ xN−1 that Ã[u] = 0 and for x ≤ x0 that e = 0. For American call options there
holds for x ≤ x1 that Ã[u] = 0 and for x ≥ xN that e = 0, cf. Remark 5.25 on page 86 and
Table 5.2 on page 68. By using Chauchys inequality and the interpolation error estimate
(5.43) the term I2 :=

∫ T
0

〈
Ã[u], Ie− e

〉
η
dt is bounded by

I2 =

∫ T

0

〈
Ã[u], Ie− e

〉
η
dt =

∫ T

0

∫
R
Ã[u](Ie− e)e−2η|x| dx dt

≤
∫ T

0

N+1∑
j=0

∥∥∥Ã[u]
∥∥∥
L2

η(Tj)
‖e− Ie‖L2

η(Tj)
dt

≤
∫ T

0

∑
j∈J

C1(hj)h
2
j

∥∥∥Ã[u]
∥∥∥
L2

η(Tj)
‖u′′‖L2

η(Tj)
dt.

Using the continuity of aη(·, ·) (5.2), Youngs inequality, and the interpolation error estimate

5.5. A priori Estimates 93

(5.44), (5.70), and (5.73), the term I3 :=
∫ T

0
aη(e, e− Ie) dt is bounded by

I3 =

∫ T

0

aη(e, e− Ie) dt ≤M

∫ T

0

(N+1∑
j=0

‖e‖H1
η(Tj)

‖e− Ie‖H1
η(Tj)

)
dt

≤ α

6
‖e‖2

L2(H1
η(R)) +

3

2α
M2

N∑
j=1

‖e− Ie‖2
L2(H1

η(Tj))

≤ α

6
‖e‖2

L2(H1
η(R)) +

3

2α
M2 ‖u‖2

L2(H1
η(T0,N+1)) +

3

2α
M2

∑
j∈J

C2(hj)h
2
j ‖u′′‖

2
L2(L2

η(Tj))

+
3

2α
M2
(
1 +

1√
3

)2

h1,N ‖u(x1,N−1)‖2
L2(0,T) exp

(
− 2η|x1,N−1|

)
+

3

2α
M2 ‖(u− Iu)′‖2

L2(L2
η(T1,N)) .

To estimate the term ‖(u− Iu)′‖2
L2

η(T1,N) note that on T1,N

∣∣Iu(x)∣∣ =
∣∣∣u(x1,N−1)

(x− x1,N−1)

h1,N

∣∣∣ and
∣∣(Iu)′(x)∣∣ =

∣∣∣u(x1,N−1)

h1,N

∣∣∣.
Then,

‖(u− Iu)′‖2
L2

η(T1,N) ≤ exp(−2η|x1,N−1|) ‖(u− Iu)′‖2
L2(T1,N)

≤ exp(−2η|x1,N−1|))
(
‖u′‖2

L2(T1,N) + ‖(Iu)′‖2
L2(T1,N)

)
≤ exp(−2η|x1,N−1|) max

{
|u(x1,N−1)

′|2, |u(x1,N−1|)
}(
h1,N + h−1

1,N

)
.

An integration by parts in time yields

I4 =

∫ T

0

(u̇− u̇εh, e− Ie)η dt =

∫ T

0

∫
R
ė(e− Ie)e−2η|x| dt

= (e(T), (e− Ie)(T))η − (e(0), (e− Ie)(0))η −
∫ T

0

∫
R
e(ė− I ė)e−2η|x| dt.

By using Cauchys inequality, Youngs inequality and (5.43) the first term on the right-hand
side is bounded by

(e(T), (e− Ie)(T))η =

∫
R
e(T)

(
(e− Ie)(T)

)
e−2η|x| dx

≤ 1

4
‖e(T)‖2

L2
η
+ ‖u(T))‖2

L2
η(T0,N+1) +

∑
j∈J

h4
jC1(hj)

2 ‖u′′(T)‖2
L2

η(Tj)

+
(
1 +

1√
3

)2

h1,N |u(x1,N−1, T)|2 exp
(
− 2η|x1,N−1|

)
.

94 Chapter 5. Numerical Analysis

Similarly, −
∫ T

0

∫
R e(ė− I ė)e

−2η|x| dt is bounded by

−
∫ T

0

∫
R
e(ė− I ė)e−2η|x| dt ≤

∫ T

0

N+1∑
j=1

‖e‖L2
η(Tj)

‖ė− I ė‖L2
η(Tj)

dt

≤ α

6
‖e‖2

L2
η
+

3

2α
‖u̇‖2

L2
η(T0,N+1) +

3

2α

∑
j∈J

h2
jC1(hj) ‖(u̇)′‖2

L2
η(Tj)

+
(
1 +

1√
3

)2

h1,N ‖u̇(x1,N−1)‖2
L2(0,T) exp

(
− 2η|x1,N−1|

)
.

Note that Iu(0) = uεh(0), and therefore 〈e(0), (u− Iu)(0)〉 = ‖e(0)‖2
L2

η
.

Using Cauchys inequality, u+
εh = 0 on (−∞, x0) ∪ (xN ,∞), Youngs inequality, and the in-

terpolation error estimate (5.43), the penalty term I5 := −
∫ T

0
c+η (uεh, e− Ie) dt is bounded

by

I5 = −
∫ T

0

c+η (uεh, e− Ie) dt =
1

ε

∫ T

0

∫
R
(u+

εh)(e− Ie)e
−2η|x| dx dt

≤ 1

ε

∫ T

0

N∑
j=1

∥∥u+
εh

∥∥
L2

η(Tj)
‖e− Ie‖L2

η(Tj)
dt

≤ 1

4ε

∥∥u+
εh

∥∥2

L2(L2
η(R))

+
1

ε

∑
j∈J

C1(hj)
2h4

j ‖u′′‖
2
L2(L2

η(Tj))

+
1

ε

(
1 +

1√
3

)2

h1,N ‖u(x1,N−1)‖2
L2(0,T) exp

(
− 2η|x1,N−1|

)
.

Inserting all estimates for I1 − I5 in (5.94), absorbing the error terms yields (5.91). �

Chapter 6

Numerics

This chapter establishes a finite element (FE) implementation of the semi-discrete solution
of the non-linear problem (5.12) on page 65. Further, we introduce an algorithm for adaptive
mesh refinement based on the a posteriori error estimator from Theorem 5.20 on page 84.
Numerous numerical experiments close this chapter.

For the FE implementation we assume, that we already determined the computational in-
terval (x0, xN), as well as the discrete solution uεh on the outer domain according to Sub-
section 5.2.3. Hence, we deal with standard finite-elements in space and the method of lines
in time. The implementation only differ in using weighted scaler products from standard
finite-element implementation. The code is general in the sense that we allow a non-linearity
depending on uεh (but not of its derivatives), space dependend coefficients a(x), b(x) and
c(x) of the bilinear form aη(·, ·). However, we assume that the coefficients and the Dirichlet
boundary are constant in time. The implementation in Matlab is given in the Appendix B.
In Section 6.1 we derive the system of ODEs which describe the semi-discrete solution. An
algorithm for adaptive mesh refinement is introduced in Section 6.2. Numerical experiments
indicate the convergence of the adaptive algorithm, compare adaptive versus mesh uniform
refinement, and investigate the effect of the truncation error, and finish this chapter.

6.1 Method of Lines

Since the solution uεh equals the obstacle ψ from Table 5.1 on page 67 on (−∞, x0] and
[xN ,∞), we only need to calculate the discrete solution in (x0, xN). Therefore, we define
the nodal basis functions ϕ1, . . . , ϕN−1 on (x0, xN), in contrast to Chapter 5, Definition 5.6,
where the basis functions are defined on R.

Definition 6.1 (Vh). With −∞ < x0 < x1 < · · · < xN < ∞ the P1-FEM nodal basis
functions ϕ0, . . . , ϕN are defined on (x0, xN) for k = 0, · · ·N by

ϕk(x) :=

(x− xk−1)/hk for x ∈ (xk−1, xk],
(xk+1 − x)/hk+1 for x ∈ (xk, xk+1],
0 elsewhere.

(6.1)

95

96 Chapter 6. Numerics

Define the length of each space interval by hj := xj−xj−1 and each element by Tj := (xj−1, xj)
for j = 1, . . . , N . Let Vh = span{ϕ1, . . . , ϕN−1}.

We consider the bilinear form a(·, ·)Ω,η defined on Ω := (x0, xN) with p := p(x) = e−2η|x|,
and the space dependent coefficients a ∈ L∞(Ω), b ∈ L2(Ω), and c ∈ L1(Ω) by

a(u, v)Ω,η := (au′, v′)Ω,η + (bu′, v)Ω,η + (cu, v)Ω,η, (6.2)

where
(u, v)Ω,η :=

∫
Ω

u(x)v(x)p(x) dx. (6.3)

For brevity we set (·, ·) := (·, ·)Ω,η and formulate the semi-discrete problem on the bounded
interval (x0, xN).

Problem 6.2 (Pεh). The semi discrete problem (Pεh) reads: Find uεh ∈ H1(0, T ;Vh) such
that uεh(·, 0) = ψ(·), uεh(x0, t) = ψ(x0), uεh(xN , t) = ψ(xN) and

(u̇εh, vh)Ω,η + a(uεh, vh)Ω,η + (g(uεh), vh)Ω,η = 0 for all vh ∈ Vh. (6.4)

The Lipschitz continuous function g(uεh) = −ε−1u+
εh, i.e. g ∈ C0,1(Ω) denotes the penalisa-

tion term.

Finally we define the semi-discrete solution uεh in terms of the basis functions ϕj and time-
dependent coefficients cj(t).

Definition 6.3. Given the time-dependent coefficients c0(t), . . . , cN(t) ∈ H1(0, T) the semi-
discrete solution uεh ∈ V̄h is written by

uεh(x, t) =
N∑
j=0

cj(t)ϕj(x). (6.5)

The time independent coefficients c0 and cN and the basis functions ϕ0 and ϕN are given in
Table 5.1 on page 67.

The next step is to derive the system of ODEs which yields the semi-discrete solution uεh.

With (6.5), (6.4) reads for k = 1, . . . N − 1

N∑
j=0

ċj(t) (ϕj, ϕk) +
N∑
j=0

cj(t)
(
a(x)ϕ′j, ϕ

′
k

)
+

N∑
j=0

cj(t)
(
b(x)ϕ′j, ϕk

)
+

N∑
j=0

cj(t)
(
c(x)ϕj, ϕk

)
+
(
g
(N∑
j=0

cj(t)ϕj
)
, ϕk

)
= 0. (6.6)

6.2. Adaptive Mesh Refinement 97

Since c0 and cN are given Dirichlet data, we rewrite (note that ċ0(t) = ċN(t) = 0) (6.6) as

N−1∑
j=1

ċj(t) (ϕj, ϕk) +
N−1∑
j=1

cj(t)
(
a(x)ϕ′j, ϕ

′
k

)
+

N−1∑
j=1

cj(t)
(
b(x)ϕ′j, ϕk

)
+

N−1∑
j=1

cj(t)
(
c(x)ϕj, ϕk

)
+
(
g
(N∑
j=0

cj(t)ϕj
)
, ϕk

)
+ c0

(
(a(x)ϕ′0, ϕ

′
k) + (b(x)ϕ′0, ϕk) +

(
c(x)ϕ0, ϕk

))
+ cN

(
(a(x)ϕ′N , ϕ

′
k) + (b(x)ϕ′N , ϕk) +

(
c(x)ϕN , ϕk

))
= 0.

(6.7)

Define the matrices M , A, B, and C ∈ R(N−1)×(N−1) for j, k = 1, . . . , N − 1 by

Mkj := (ϕj, ϕk),

Akj := (a(x)ϕ′j, ϕ
′
k),

Bkj := (b(x)ϕ′j, ϕk),

Ckj := (c(x)ϕj, ϕk).

(6.8)

With the solution vector c(t) :=
(
c1(t), c2(t), . . . , cN−1(t)

)T the components k = 1, . . . , N −1
of the vector G are defined by

Gk(c(t)) :=
(
g
(N∑
j=0

cj(t)ϕj
)
, ϕk

)
+
∑
j=0,N

cj
((
a(x)ϕ′j, ϕ

′
k

)
+
(
b(x)ϕ′j, ϕk

)
+
(
c(x)ϕj, ϕk

))
.

(6.9)
Hence, we can write Problem (6.4) as: seek c(t) with [c0(0), . . . , cN(0)] = [u0(x0), . . . , u0(xN)]
such that

Mċ(t) + (A+B + C)c(t) +G(c(t)) = 0 (6.10)

with ċ(t) :=
(
ċ1(t), ċ2(t), . . . , ċN−1(t)

)T
Remark 6.4. Note that the mass-matrix M is regular and that we assumed g ∈ C0,1(Ω).
Hence, the Theorem of Picard-Lindelöf, cf. Heuser [1989] yields the existence of a unique
solution

c ∈ [C1,1/2(0, T)]N−1

of Problem (6.10).

6.2 Adaptive Mesh Refinement

This section introduces an adaptive finite element method to solve the semidiscrete problem
5.89 on page 88. The a posteriori error estimator from Theorem 5.20 on page 84 motivates
local refinement indicators for adaptive mesh refinement.

98 Chapter 6. Numerics

6.2.1 Refinement Indicator

The adaptive mesh refinement is based on the a posteriori error estimator for the error
e = u− uεh from Theorem 5.20 on page 84 given by

(
1

4
− λT) ‖e‖2

L∞(0,T ;L2
η(R)

≤ 1

2
‖e(0)‖2

L2
η(R) +

1

2

∥∥u+
εh(0)

∥∥2

L2
η(R)

+
∥∥u+

εh

∥∥2

L∞(0,T ;L2
η(R))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(0,T ;L2
η(R))

+
(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(0,T ;H1
η(R))

+
N∑
j=1

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
3

2α
M2

∑
j∈J

h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(0,T ;L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt

+
σ2

2

∫ T

0

[u′εh]x0,N
|u(x0,N)| exp(−2η|x0,N |) dt.

(6.11)
The first two terms on the right-hand side are errors regarding the interpolation of the
initial condition. The next three terms measure the penalisation error, i.e., if the semi-
discrete solutions uεh lies below the obstacle. The next three terms are residual terms. The
last of the three looks different to standard residual terms, because of the truncation of the
unbounded domain. The last term incorporates the truncation error. For brevity we denote
by µN the truncation error estimator

µN :=
σ2

2

∫ T

0

[u′εh]x0,N
|u(x0,N)| exp(−2η|x0,N |) dt. (6.12)

The elementwise error estimators µTj
are defined for j ∈ J by

µTj
:=

1

2
‖e(0)‖2

L2
η(Tj)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(Tj)

+
∥∥u+

εh

∥∥2

L∞(L2
η(Tj))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η(Tj))

+
(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(H1
η(Tj))

+
(3

2α
M2 + 1

)
h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

,

(6.13)
and for T1,N , i.e., j = 1 for American call options and j = N for American put options by

µTj
:=

1

2
‖e(0)‖2

L2
η(Tj)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(Tj)

+
∥∥u+

εh

∥∥2

L∞(L2
η(Tj))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η(Tj))

+
(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(H1
η(Tj))

+ h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(Tj))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(x1,N−1)| exp
(
− η|x1,N−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(T1,N)
dt.

(6.14)

The sum over all elementwise (or local) error estimator is called discretisation error estimator
and denoted by µd, i.e.,

µd :=
N∑
j=1

µTj
. (6.15)

6.2. Adaptive Mesh Refinement 99

Finally, we define the total error estimator µ = µd + µN , so that there holds (6.11)

(1/4− λT) ‖e‖2
L∞(0,T ;L2

η(R)) ≤ µ. (6.16)

Remark 6.5. In this chapter we always consider the error estimator µ which bounds

(1/4− λT) ‖e‖2
L∞(0,T ;L2

η(R))

from above as well as its components µd and µN . Hence in all figures and tables, the error
estimators are not divided by (1/4− λT).

6.2.2 Adaptive Finite Element Method

A typical adaptive finite element method (abbreviated by AFEM in the following) after
Dörfler [1996], Morin et al. [2002], Brenner and Carstensen [2004] consists of consecutive
loops of the steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

The proof of convergence of AFEM is neither trivial nor implied by the convergence of the
finite element method since, in general, the mesh-size in the automatic mesh-refinement is
not guaranteed to shrink to zero. A first proof of the convergence of AFEM is given in
Babuška and Vogelius [1984], where the authors prove convergence for a simple 1D elliptic
boundary value problem using the maximum criterion for mesh refinement. The extension
to higher dimensions and the convergence speed, however, is still unclear with some work in
progress according to an Oberwolfach Miniworkshop in September 2005. By introducing a
new marking strategy, namely the so called bulk criterion, and assumptions on the ‘finess’
of the mesh, Dörfler [1996] proved the convergence of AFEM for the Poisson problem. With
the concept of small data oscillation, Morin et al. [2002] guarantee convergence of adaptive
algorithm without any further assumptions on the data. For the non-linear Laplacian the
convergence of AFEM is guaranteed in Veeser [2002]. For a large class of degenerated convex
minimisation problems convergence of local mesh refinement is analysed in Carstensen [2006].
All convergence proofs so far relied on energy principles which are not available in our
case due to the non-symmetric bilinear form. Another important tool in the convergence
proofs are discrete local efficency estimates and the concept of data oscillation, cf. Morin
et al. [2002], Carstensen and Hoppe [2006a,b]. Data oscillations are weighted norms of
the difference of data functions and their approximation through piecewise polynomials.
Within this setting, one may expect that in the problem of this thesis the pay-off function,
namely the obstacle, possibly generates oscillations terms. In the current literature of spatial
discretisation errors one key argument is a local discrete efficiency estimate. Even simpler
global efficiency estimates are unknown for time-dependent problems, cf. Verfürth [2003].
The subsequent Algorithm 6.6 adapts the adaptive algorithm for Problem 5.89 on page 88.
Although Algorithm 6.6 is not a priori known to converge, there is numerical evidence that
the adaptive algorithm does so in Subsection 6.3.2.

100 Chapter 6. Numerics

parameter abrivation value
expiry date T 1
strike price K 10
risk-less interest rate r 0.25
dividend yield d 0
volatility σ 0.6

Table 6.1: Parameters for the American put option

Algorithm 6.6 (AFEM). Input: A corse triangulation T0.
For ` = 0, 1, 2, . . . (until termination) do SOLVE, ESTIMATE, MARK, REFINE:

SOLVE: Compute the semi-discrete solution uεh in V
(`)
h with the method of lines.

ESTIMATE: Compute µTj
defined in (6.13), (6.14) for each Tj ∈ T`.

MARK: Sort Tj such that there holds µT1 ≤ · · · ≤ µTN
and choose minimal k such that

1

2

√
µ

(`)
d ≤

(N∑
j=k

µTj

)1/2

,

where µ(`)
d is the discretisation error estimate defined in (6.15) for current level `. Set

the set of marked elements M` := {Tk, . . . , TN}.

REFINE: Generate refined triangulation T`+1 with subordinated finite element space
V

(`+1)
h = P1(T`+1) ∩ V ⊃ V

(`)
h such that every marked interval Tk is bisected.

6.3 Numerical Experiments

In the subsequent numerical experiments we consider an American put option on non-
dividend paying share with strike price K = 10 and expiry date T = 1. The risk-less
interest rate is r = 0.25 and the volatility σ = 0.6. These values are summarised in Table
6.1. Since the a posteriori error analysis relies on the constant C from the pointwise trun-
cation error (3.98) on page 42, which we explicitely determined for American put options,
cf. Remark (3.84), (3.89), and (3.96) we restrict our numerical experiments to American
put options. We choose the exponent of the weight function η = 0.0001. Recall that for
American put options η > 0 guarantees the existence of a unique solution on R.
The value of the parameter λ from the Gårding inequality in Proposition 5.1 on page 63 in
this setting reads λ = −0.14637, hence the error estimate (6.16) is reasonable for estimating
the a posteriori error for all T > 0. The following numerical experiments are accomplished
in this section.

- In Subsection 6.3.1 the pointwise truncation error is under consideration. Using the
truncation error estimates from Section 3.4 we explicitely calculate the truncation error
for different truncation points.

6.3. Numerical Experiments 101

xN trunc. error xN trunc. error
2.68 2.625 4.0 0.445e-02
3.0 0.592 4.1 0.245e-02
3.1 0.387 4.2 0.132e-02
3.2 0.251 4.3 0.696e-03
3.3 0.161 4.4 0.358e-03
3.4 0.102 4.5 0.179e-03
3.5 0.636e-01 4.6 0.879e-04
3.6 0.389e-01 4.7 0.420e-04
3.7 0.234e-01 4.8 0.196e-04
3.8 0.137e-01 4.9 0.890e-05
3.9 0.791e-02 5.0 0.396e-05

Table 6.2: Pointwise truncation error

- Subsection 6.3.2 examines uniform versus adaptive refinement. We compare the con-
vergence rate of discretisation error estimator µd, i.e., we exclude the truncation error
estimator µN . This makes perfectly sense, since in the adaptive algorithm only the
discretisation error estimator is used as refinement indicator. This subsection gives
numerical evidence of the convergence of the adaptive Algorithm 6.6.

- The main concern of Subsection 6.3.3 is to analyse the total error estimator µ, i.e., the
truncation error estimator µN is considered. We test two different refinement strategies
and compare the influence of the discretisation error µd and the truncation error µN
for different truncation points xN .

- Since the parameter η > 0 can be chosen arbitrarily, Subsection 6.3.4 considers different
values of η and compares the outcome of the numerical experiments.

6.3.1 Truncation Error

In Section 3.4 we derived an truncation error for American call and put option. Recall that
we proved that there exists some threshold xN (fully determined by given financial data) so
that there holds for all x > xN and κ > 2σ2t that

|u(x, t)| ≤ C exp(−x2/κ).

The constant C can be explicitely determined by means of Remark 3.39, 3.40, and 3.40 of
page 39, 40, and 41, and the representation of the solution of an American put option (3.74)
of page 38. Note that the smallest truncation point and the constant C depend on κ and t.
In our example the smallest possible value for xN is xN > 2.673 for T = 1. However, the
truncation error is not acceptable. Table 6.2 gives the truncation error for different values
xN for an American put option with the financial input data from Table 6.1. Figure 6.1
illustrates the pointwise truncation error. The truncation error bounds are calculated with
maple. The corresponding program is listed in Appendix C.

102 Chapter 6. Numerics

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

po
in

tw
is

e
tru

nc
at

io
n

er
ro

r

Figure 6.1: Pointwise truncation error.

level no. elements number time steps total no. dof µd
1 100 1,400 1.386 · 105 0.1433
2 200 2,211 4.400 · 105 0.0865
3 400 3,583 1.430 · 106 0.0509
4 800 6,205 4.958 · 106 0.0279
5 1600 11,386 1.821 · 107 0.0152

Table 6.3: Convergence of the discretisation error estimator µd using uniform refinement
with truncation point xN = 3.5.

6.3.2 Convergence of adaptive versus uniform mesh refinement

This subsection establishes the experimental convergence of the adaptive algorithm defined
in Algorithm 6.6 on page 100. Since the adaptive algorithm only uses the elementwise
discretisation error µTj

as a refinement indicator, the truncation error is excluded in this
subsection. The effect of the truncation error on the total error estimator is investigated
in the subsequent subsection. Then we compare the convergence rate of adaptive mesh
refinement with uniform mesh refinement. Since we only consider adaptivity in space and
use the method of lines for the time integration, it is interesting to compare

- the convergence of the error against the spatial degrees of freedon and

- the convergence of the error against the total number of degree of freedom.

By the total number of degree of freedom we mean the number of spatial degrees of freedom
times the number of time steps used by the Matlab routine ode15s to solve the system of
ODEs.

According to the bounds of the free boundary in Subsection 2.2.4 the truncation point
is chosen as x0 = 1.6. The pointwise truncation error in Table 6.2 is acceptable for the

6.3. Numerical Experiments 103

102 103

10−2

10−1

number of spatial degrees of freedom

di
sc

re
tis

at
io

n
er

ro
r e

st
im

at
or

1

1

uniform

adaptive

Figure 6.2: Convergence of the discretisa-
tion error estimator µd versus spatial de-
grees of freedom with xN = 3.5. Adap-
tive refinement (—∗—), uniform refine-
ment (—o—).

105 106 107

10−2

10−1

total number degrees of freedom

di
sc

re
tis

at
io

n
er

ro
r e

st
im

at
or

1

1

0.5

uniform
adaptive

Figure 6.3: Convergence of the discretisa-
tion error estimator µd versus total num-
ber degrees of freedom with xN = 3.5.
Adaptive refinement (—∗—), uniform re-
finement (—o—).

level no. elements no. time steps total no. dof µd
1 100 1400 1.386 · 105 0.1433
2 106 1606 1.686 · 105 0.1146
3 119 1890 2.230 · 105 0.0897
4 135 2351 3.150 · 105 0.0697
5 152 2581 3.897 · 105 0.0531
6 184 3095 5.664 · 105 0.0397
7 221 3984 8.765 · 105 0.0306
8 271 4151 1.121 · 106 0.0233
9 339 5568 1.882 · 106 0.0181
10 421 6676 2.804 · 106 0.0139
11 537 7822 4.193 · 106 0.0108
12 678 11057 7.486 · 106 0.0085
13 837 11972 1.001 · 107 0.0066
14 1091 15150 1.651 · 107 0.0051
15 1373 19439 2.667 · 107 0.0040

Table 6.4: Convergence of the discretisation error estimator µd using adaptive refinement
with truncation point xN = 3.5.

104 Chapter 6. Numerics

101 102
10−2

10−1

100

number spatial degrees of freedom

er
ro

r e
st

im
at

or

discr. err.

trunc. err.

total err.

Figure 6.4: Truncation error estimator µN
(—–), the discretisation error estimator
µd (—o—), and the total error estimator
µ (—∗—). Adaptive refinement with Re-
finement Strategy 1 and truncation point
is xN = 3.5.

1.6 log K 3.5

1

5

10

15

18

x

le
ve

ls

Figure 6.5: Spatial mesh for each level.
Adaptive refinement using Refinement
Strategy 1 and truncation point xN = 3.5.
As soon as the discretisation error reaches
the order of magnitude of the truncation
error estimator, the algorithm only refines
at the right interval boundary.

truncation point xN = 3.5; used in this numerical experiment. Different truncation points
are considered in the subsequent subsections.

The a priori estimator in Theorem 5.22 on page 88 proposes the choice ε ∝ h2
j , in order to

obtain optimal convergence. Hence, we set the penalisation parameter ε = 0.1h2
j . We start

the calculations with 100 spatial elements and refined until 1373 elements in the adaptive
case and 1600 in the uniform case. Table 6.3 and 6.4 show the number of spatial elements,
the number of time steps, the total number of degrees of freedom (total no. dof), and
the discretisation error estimator µd (discr. err. est.) for uniform and adaptive mesh
refinement. Figure 6.2 shows a loglog-plot of the spatial degrees of freedom versus the global
discretisation error µd. Using adaptive mesh refinement yields the optimal convergence rate
of one, whereas uniform mash-refinement yields a slightly worse convergence rate, illustrated
in Figure 6.3. With uniform refinement, 1600 elements are necessary to obtain an error of
less than 0.0152, using adaptive refinement, however, this error bound is reach with 421
elements, illustrated in Table 6.3 and 6.4. Figure 6.3 shows the discretisation error estimate
versus the total number of degrees of freedom (no. dof). The total number of degrees of
freedom is the product of the number of spatial freenodes and the number of time steps used
by the ODE solver. It turns out that the convergence rate in the loglog plot is one half,
illustrated in Figure 6.3. The ODE solver requires more time steps when using adaptive
mesh refinement than uniform refinement, cf. the column ‘no. time steps’ in Table 6.3 and
6.4. It is reasonable to assume that the unstructured mesh causes this effect.

6.3.3 Discretisation Error versus Truncation Error

In this subsection we investigate the influence of the truncation error estimator µN on the
total error estimator µ. Note that the pointwise truncation error is a part of the a posteriori

6.3. Numerical Experiments 105

level no. freenodes no. time steps total no. dof µd µN µ
1 18 482 8676 0.65941 0.03331 0.69273
2 23 898 20654 0.41769 0.03331 0.45100
3 30 1142 34260 0.26244 0.03329 0.29573
4 40 1441 57640 0.18485 0.03329 0.21815
5 53 1600 84800 0.12349 0.03337 0.15687
6 70 2118 148260 0.09463 0.02801 0.12264
7 90 2190 197100 0.07071 0.02721 0.09795
8 119 2517 299523 0.05469 0.02707 0.08176
9 141 3058 431178 0.04493 0.02694 0.07188
10 163 3404 554852 0.03823 0.02696 0.06519
11 185 3411 631035 0.03342 0.02692 0.06034
12 210 3609 757890 0.02956 0.02691 0.05647
13 221 3831 846651 0.02810 0.02689 0.05500
14 231 3892 899052 0.02714 0.02689 0.05403
15 236 4060 958160 0.02670 0.02689 0.05359
16 238 4003 952714 0.02670 0.02689 0.05359
17 240 4005 961200 0.02670 0.02689 0.05359
18 242 4034 976228 0.02670 0.02689 0.05359

Table 6.5: Convergence of the error discretisation error estimator µd with adaptive mesh
refinement using Refinement Strategy 1. After level twelve the truncation error estimator
µN and the discretisation error µd are of the same order of magnitude and the algorithm
only refines elements on the right boundary, cf. the column with the total error estimator
µ. The truncation point is xN = 3.5

106 Chapter 6. Numerics

error estimator (6.11) on page 98, where it bounds |u(x0,N)| and |u(x1,N−1)| from above.

This subsection is organised as follows. We start with discussing if the truncation error
estimator µN should be used as a part of the refinement indicator µTN

of the interval TN =
(xN−1, xN) or not. It turns out, that the truncation error estimator µN should not be added
to the refinement indicator µTN

. Then, we investigate the effect of the truncation error
estimator µN on the total error estimator µ for different truncation points xN .

The question arises, if the truncation error estimate µN should be added to the local error
estimator µTN

. Since the truncation error estimate evolves trough integration by parts on
the element TN , cf. the proof of Theorem 5.20 on page 84, it is consequent to consider it as
a part of the local error estimator of the interval TN which leads to the following refinement
strategy.

Refinement Strategy 1. The refinement indicator for the interval TN is defined as

µTN
:=

1

2
‖e(0)‖2

L2
η(Tj)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(TN)

+
∥∥u+

εh

∥∥2

L∞(L2
η(TN))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η(TN))

+
(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(H1
η(TN))

+ h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(TN))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(xN−1)| exp
(
− η|xN−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(TN)
dt

+ µN .

(6.17)

Numerical experiments, however, show that an adaptive mesh refinement based on Refine-
ment Strategy 1, does not work properly, since the adaptive algorithm only refines elements
on the right boundary if the discretisation error reaches the order of magnitude of the trun-
cation error estimator. This effect is shown in Table 6.5, Figure 6.4, and Figure 6.5. To
be precise, Figure 6.4 shows that as soon as the discretisation error reaches the order of
magnitude of the truncation error estimator, the algorithm only refines elements on the
right boundary of the computational boundary. Table 6.5 reveals that after level 15 only
two freenodes per refinement level are added. Figure 6.5 indicates that the new intervals
are added on the right boundary of the computational domain. Hence, the truncation error
should not be included in the error indicator of the element TN which leads the the following
refinement strategy which excludes this term from the refinement indicator.

Refinement Strategy 2. The refinement indicator for the interval TN is defined as

µTN
:=

1

2
‖e(0)‖2

L2
η(Tj)

+
1

2

∥∥u+
εh(0)

∥∥2

L2
η(TN)

+
∥∥u+

εh

∥∥2

L∞(L2
η(TN))

+
3

2α

∥∥(u+
εh)̇
∥∥2

L2(L2
η(TN))

+
(3

2α
M2 + 1

)∥∥u+
εh

∥∥2

L2(H1
η(TN))

+ h2
jC(η, hj)

2
∥∥∥Ãε,h[uεh]

∥∥∥2

L2(L2
η(TN))

+
(
1 +

1√
3

)√
h1,N

∫ T

0

|u(xN−1)| exp
(
− η|xN−1|

) ∥∥∥Ãε,h[uεh]
∥∥∥
L2

η(TN)
dt

(6.18)

Figure 6.6 and Table 6.6 show that Refinement Strategy 2 works satisfactorily. The total
error converges to the truncation error, which is not reduced, since the truncation point
xN is fixed. Figure 6.7 shows the mesh for each refinement level. Note that in contrast
to the first refinement strategy, not only elements on the right boundary are refined. The

6.3. Numerical Experiments 107

101 102 103

10−2

10−1

100

number spatial degrees of freedom

er
ro

r e
st

im
at

or

discr. err.
trunc. err.
total err.

Figure 6.6: Truncation error estimator µN
(—–), the discretisation error estimator
µd (—o—), and the total error estimator
µ (—∗—). Adaptive mesh refinement us-
ing Refinement Strategy 2 and truncation
point xN = 3.5.

1.6 log K 3.5

1

5

10

15

18

x

le
ve

ls

Figure 6.7: Spatial mesh for each level
for adaptive mesh refinement using Re-
finement Strategy 2 and truncation point
xN = 3.5.

effect, that there is a cluster point of refined intervals on the right boundary is caused by the
artificial truncation of the domain: Note that in the proof of the a posteriori error estimator
in Theorem 5.20 on page 84 this non-standard residuum term, cf. the last line in (6.14),
enters the error bound.

From now on we always use Refinement Strategy 2 and turn our attention to the influence of
the truncation point xN on the total error estimator µ. Choosing the truncation point xN = 4
yields an pointwise truncation error less than 0.45·10−2, cf. Table 6.2 on page 101. Figure 6.8
shows that the total error is only influenced slightly by the truncation error estimator which
is of magnitude 10−3. Figure 6.9 shows the spatial meshes for each refinement level. Note
that in level twelve, the adaptive algorithm starts refining the elements on the right-hand
side of the computational domain. Table 6.7 shows the convergence of the discretisation
error estimator µd.

The pointwise truncation error for a truncation point xN = 5 is less than 0.4 · 10−5, cf.
Table 6.2 on page 101. One may expect, that the truncation error is neglectable in the error
estimate µ. Indeed, a numerical experiment showed, that also the truncation error estimator
µN is of magnitude 10−6, cf. Table 6.8. Figure 6.10 shows the convergence of the total error
estimator which is almost equal to the discretisation error estimator. Figure 6.11 shows that
no refinement is necessary on the right-hand side of the computational interval.

108 Chapter 6. Numerics

level no.freenodes no. time steps total no. dof µd µN µ
1 18 482 8676 0.65941 0.03331 0.69273
2 23 898 20654 0.41769 0.03331 0.45100
3 30 1142 34260 0.26244 0.03330 0.29573
4 40 1441 57640 0.18486 0.03329 0.21815
5 53 1600 84800 0.12349 0.03337 0.15687
6 74 2177 161098 0.08814 0.03352 0.12166
7 93 2140 199020 0.06628 0.02812 0.09439
8 126 2840 357840 0.05706 0.02826 0.08532
9 151 3298 497998 0.04384 0.02738 0.07123
10 186 3351 623286 0.03497 0.02713 0.06210
11 240 4176 1002240 0.02761 0.02710 0.05471
12 297 5516 1638252 0.02102 0.02704 0.04805
13 371 5595 2075745 0.01611 0.02701 0.04312
14 487 7591 3696817 0.01242 0.02699 0.03942
15 601 9183 5518983 0.00968 0.02699 0.03667
16 765 10329 7901685 0.00752 0.02699 0.03451
17 972 14264 13864608 0.00589 0.02699 0.03288
18 1199 15413 18480187 0.00462 0.02699 0.03162

Table 6.6: Convergence of the error discretisation error estimator µd using adaptive refine-
ment which excludes the truncation error estimator µN from the refinement indicator of TN .
The truncation error estimator µN slightly decreases for finer meshes. The truncation point
is xN = 3.5.

101 102 103
10−3

10−2

10−1

100

number of spatial degrees of freedom

er
ro

r e
st

im
at

or

1

1

discr. err.

trunc. err.

total err.

Figure 6.8: The discretisation error esti-
mator µd (—o—), and the total error es-
timator µ (—∗—). Since the truncation
error estimator (xN = 4) is of magnitude
10−3, cf. Table 6.7 both estimators are
almost on the same line.

1.6 log K 4

1

5

10

15

18

x

le
ve

ls

Figure 6.9: Spatial mesh for each refine-
ment level for truncation point xN = 4.
In level twelve the refinement on the right-
hand side of the interval becomes neces-
sary.

6.3. Numerical Experiments 109

level no.freenodes no. time steps total no. dof µd µN µ
1 23 495 11385 0.65951 0.00170 0.65952
2 28 877 24556 0.41699 0.00170 0.41700
3 35 1137 39795 0.26176 0.00170 0.26177
4 45 1438 64710 0.18388 0.00170 0.18389
5 58 1608 93264 0.12206 0.00171 0.12207
6 79 2216 175064 0.08609 0.00172 0.08612
7 97 2113 204961 0.06529 0.00172 0.06531
8 127 2826 358902 0.05680 0.00174 0.05683
9 150 3255 488250 0.04398 0.00174 0.04402
10 186 3365 625890 0.03489 0.00176 0.03494
11 238 4205 1000790 0.02761 0.00176 0.02767
12 298 5598 1668204 0.02079 0.00171 0.02087
13 379 5698 2159542 0.01589 0.00173 0.01599
14 491 7592 3727672 0.01230 0.00172 0.01242
15 607 9415 5714905 0.00962 0.00172 0.00977
16 777 10381 8066037 0.00751 0.00174 0.00771
17 971 14551 14129021 0.00597 0.00174 0.00622
18 1183 15351 18160233 0.00477 0.00173 0.00508

Table 6.7: Convergence of the discretisation error estimator µd using adaptive refinement.
The truncation error estimator µN is almost independent of the refinement level. The trun-
cation point is xN = 4.

101 102 103
10−3

10−2

10−1

100

number of spatial degrees of freedom

er
ro

r e
st

im
at

or

1

1

discr. err.

total err.

Figure 6.10: The discretisation error esti-
mator µd (—o—), and the total error es-
timator µ (—∗—). Since the truncation
error estimator (xN = 5) is of magnitude
10−6, cf. Table 6.8 both estimators are on
the same line.

1.6 log K 5

1

5

10

15

18

x

le
ve

ls

Figure 6.11: Spatial mesh for each refine-
ment level. No refinement near the trun-
cation point xN = 5 is necessary for all
the 18 levels displayed.

110 Chapter 6. Numerics

level no.freenodes no. time steps total no. dof µd µN µ
1 33 486 16038 0.65928 9.659e-07 0.65928
2 38 876 33288 0.41699 9.677e-07 0.41699
3 45 1135 51075 0.26176 9.655e-07 0.26176
4 55 1431 78705 0.18388 9.649e-07 0.18388
5 68 1629 110772 0.12206 9.892e-07 0.12206
6 89 2196 195444 0.08608 1.005e-06 0.08608
7 107 2147 229729 0.06527 1.009e-06 0.06526
8 137 2793 382641 0.05678 1.047e-06 0.05678
9 160 3246 519360 0.04395 1.049e-06 0.04395
10 196 3362 658952 0.03485 1.078e-06 0.03485
11 247 4137 1021839 0.02769 1.085e-06 0.02769
12 303 5587 1692861 0.02099 1.085e-06 0.02099
13 383 5583 2138289 0.01598 1.132e-06 0.01598
14 494 7657 3782558 0.01233 1.133e-06 0.01233
15 611 9324 5696964 0.00959 1.137e-06 0.00959
16 785 10410 8171850 0.00743 1.183e-06 0.00743
17 995 14186 14115070 0.00581 1.183e-06 0.00581
18 1235 15526 19174610 0.00454 1.187e-06 0.00455

Table 6.8: Convergence of the discretisation error estimator µd using adaptive refinement.
The truncation error estimator µN is almost independent of the refinement level and has no
impact on the total error estimator µ. The truncation point is xN = 5.

6.3. Numerical Experiments 111

6.3.4 The Influence of the parameter η

Recall that the parameter η is chosen such that the pay-off function belongs to H1
η to

guarantee the existence of a unique solution. For American put options η > 0 is sufficient.
Note that in the case of constant coefficients we proved the exponential decay of the exact
solution by using the Fourier transform . Since the solution equals the pay-off function
beyond a treshold x0, it is sufficient to consider it on the interval (x0,∞) for numerical
computation. This together with the exponential decay yields that η = 0, i.e., standard
Sobolev spaces, are applicable. However, the Fourier transform does not work for space
dependent coefficients, hence it is not possible to prove the exponential decay of the solution
via the Fourier transform. Although in the case of constant coefficients the weighted spaces
are not necessary we used them to be as general as possible. In the previous experiments
we choose η = 0.0001. This subsection investigates the influence of the parameter η on the
error estimator.

In this subsection we choose xN = 4 since the influence of the truncation error is neglectable,
cf. Figure 6.8. We compare η = 0.5, η = 0.1, η = 0.0001, and η = 0. Recall that the constant
λ from the Gårding inequality depends on η. The corresponding λ for different η and 1/4−λT
for T = 1 are listed in the tabular below.

η λ 1/4− λ
0 -0.14639 0.39639
0.0001 -0.14637 0.39637
0.1 -0.12879 0.37879
0.5 0.013611 0.23639
1 0.35361 -0.10361

Note that for all η up to η = 0.5 the corresponding λ satisfies 1/4 − λT > 0 for T = 1
which means, that the error estimator (6.16) on page 99 makes sense. For η = 1, however,
T < (4λ)−1 = 0.707 need to be satisfied.

It turns out that η = 0 and η = 0.0001 yield almost the same results. The discretisation
error µd cannot be distinguished in Figure 6.12 and comparing Table 6.7 for η = 0.0001 and
Table 6.9 for η = 0 reveals that the number of spatial degrees of freedom are the same in
each refinement level. Figure 6.14 for η = 0.0001 and Figure 6.15 for η = 0 show that the
refined meshes look the same. Note that the total error estimator µ, the discretisation error
estimator µd and the truncation error estimator µN are almost equal, cf. Table 6.7 and Table
6.9. Only the number of time steps vary a little.

To show the effect of bigger changes of η, we set η = 0.1 and η = 0.5. Figure 6.12 and
Figure 6.13 compare the different convergence curves for different η. As mentioned before,
η = 0.0001 and η = 0 can not be distinguished; for η = 0.1 the difference is visable but not
too big. For η = 0.5, however, the value of the error estimator is considerable lower, but
the order of convergence is the same. In contrast to η = 0, η = 0.1, and η = 0.0001, where
at level twelve the intervals on the right boundary of the interval are refined, this is not the
case for η = 0.5, illustrated in Figure 6.14, Figure 6.15, Figure 6.16, and Figure 6.17.

112 Chapter 6. Numerics

101 102 103
10−3

10−2

10−1

100

number of spatial degrees of freedom

er
ro

r e
st

im
at

or

1

1

discr.err., η=0.5
discr.err., η=0.1
discr.err., η=0.0001
discr.err., η=0

Figure 6.12: The discretisation error es-
timator µd for η = 0.5 (—×—), η = 0.1
(—∗—), η = 0.0001 (—+—) and η = 0
(—o—). Note that the curves for η = 0
and η = 0.0001 overlap.

101 102 103
10−4

10−3

10−2

10−1

100

number of spatial degrees of freedom

er
ro

r e
st

im
at

or

total err., η=0.5

total err., η=0.1

total err., η=0.0001

trunc. err., η=0.5

trunc. err., η=0.1

trunc. err.,η=0.0001

Figure 6.13: The total error estimator µ
for η = 0.5 (—×—), η = 0.1 (—∗—), and
η = 0.0001 (—+—) and the truncation
error estimator µN for η = 0.5 (- -×- -),
η = 0.1 (- -∗- -), and η = 0.0001 (- -+- -
).

level no.freenodes no. time steps total no. dof µd µN µ
1 23 484 11132 0.65936 0.00170 0.65935
2 28 878 24584 0.41710 0.00170 0.41710
3 35 1143 40005 0.26184 0.00170 0.26184
4 45 1420 63900 0.18389 0.00170 0.18390
5 58 1628 94424 0.12209 0.00171 0.12210
6 79 2183 172457 0.08612 0.00172 0.08613
7 97 2138 207386 0.06530 0.00172 0.06532
8 127 2805 356235 0.05681 0.00174 0.05684
9 150 3270 490500 0.04399 0.00174 0.04403
10 186 3398 632028 0.03489 0.00176 0.03494
11 238 4195 998410 0.02761 0.00176 0.02767
12 298 5473 1630954 0.02079 0.00172 0.02087
13 379 5695 2158405 0.01589 0.00173 0.01599
14 491 7820 3839620 0.01231 0.00172 0.01242
15 607 9159 5559513 0.00962 0.00172 0.00977

Table 6.9: Convergence of the discretisation error estimator µd using adaptive refinement.
The truncation error estimator µN is almost independent of the refinement level. The trun-
cation point is xN = 4 and η = 0.

6.3. Numerical Experiments 113

1.6 log K 4

1

5

10

15

x

le
ve

ls

Figure 6.14: Spatial mesh for each refine-
ment level for η = 0.0001 and truncation
point xN = 4.

1,6 log K 4

1

5

10

15

x

le
ve

ls

Figure 6.15: Spatial mesh for each refine-
ment level for η = 0 and truncation point
xN = 4.

1,6 log K 4

1

5

10

15

x

le
ve

ls

Figure 6.16: Spatial mesh for each refine-
ment level for η = 0.1 and truncation
point xN = 4.

1.6 log K 4

1

5

10

15

x

le
ve

ls

Figure 6.17: Spatial mesh for each refine-
ment level for η = 0.5 and truncation
point xN = 4 .

114 Chapter 6. Numerics

Outlook

The numerical analysis in this thesis considers spatial discretisation and truncation errors.
A next step is to analyse a fully discretized problem, including time discretisation errors and
develop error estimates and adaptive mesh refinement in time and space.

So far we implemented an adaptive algorithm for adaptive mesh-refinement for a fixed trun-
cation point xN . We analysed different choices of xN and compered the influence of the
truncation error estimator to the total error estimator. An fully adaptive algorithm, which
enlarges the computational interval if the order of magnitude of the discretiastion error
estimate reaches the order of the truncation error estimates requires

- a automatisation of the maple code given in Appendix C and

- a coupling of the matlab code given in Appendix B and the maple code.

Since there are no reference solutions known, the error e = u− uεh is unknown. It would be
interesting to approximate an reference solution using the integral representation derived in
Section 3.3. This requires

- solving the non-linear integral equations which yields the free boundary and

- evaluation the integral representation including the error function.

Both need to be done in an almost exact way, to give an reliable approximation of the exact
solution and to compare the exact error with the derived error estimator and truncation
error.

Bibliography

Y. Achdou and O. Pironneau. Computational methods for option pricing, volume 30 of Fron-
tiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2005. ISBN 0-89871-573-3.

M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Pure
and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York,
2000. ISBN 0-471-29411-X.

W. Allegretto, Y. Lin, and H. Yang. Finite element error estimates for a nonlocal problem
in American option valuation. SIAM J. Numer. Anal., 39(3):834–857 (electronic), 2001.
ISSN 1095-7170.

I. Babuška and T. Strouboulis. The finite element method and its reliability. Numerical
Mathematics and Scientific Computation. The Clarendon Press Oxford University Press,
New York, 2001. ISBN 0-19-850276-1.

I. Babuška and M. Vogelius. Feedback and adaptive finite element solution of one-
dimensional boundary value problems. Numer. Math., 44(1):75–102, 1984. ISSN 0029-
599X.

C. Baiocchi and A. Capelo. Variational and quasivariational inequalities. A Wiley-
Interscience Publication. John Wiley & Sons Inc., New York, 1984. ISBN 0-471-90201-2.
Applications to free boundary problems, Translated from the Italian by Lakshmi Jayakar.

W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations.
Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003. ISBN 3-7643-7009-
2.

A. Bensoussan and J.-L. Lions. Applications of variational inequalities in stochastic control,
volume 12 of Studies in Mathematics and its Applications. North-Holland Publishing Co.,
Amsterdam, 1982. ISBN 0-444-86358-3. Translated from the French.

F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Polit. Econ.,
81:637–659, 1973.

S. Brenner and C. Carstensen. Finite element methods. In Encyclopedia of Computational
Mechanics. John Wiley and Sons, 2004.

C. Carstensen. On the convergence of adaptive fem for uniformely convex minimization
problems. Submitted., 2006.

115

116 Bibliography

C. Carstensen and R. Hoppe. Convergence analysis of an adaptive nonconforming finite
element method. Numer. Math., 103:251–266, 2006a.

C. Carstensen and R. Hoppe. Error reduction and convergence for an adaptive mixed finite
element method. To appear in Math. Comp., 2006b.

C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in
contact. SIAM J. Sci. Comput., 20(5):1605–1626 (electronic), 1999. ISSN 1095-7197.

R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and
technology. Vol. 5. Springer-Verlag, Berlin, 1992. ISBN 3-540-50205-X; 3-540-66101-8.
Evolution problems. I, With the collaboration of Michel Artola, Michel Cessenat and
Hélène Lanchon, Translated from the French by Alan Craig.

J. N. Dewynne, S. D. Howison, I. Rupf, and P. Wilmott. Some mathematical results in
the pricing of American options. European J. Appl. Math., 4(4):381–398, 1993. ISSN
0956-7925.

W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.,
33(3):1106–1124, 1996. ISSN 0036-1429.

G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag, Berlin,
1976. ISBN 3-540-07327-2. Translated from the French by C. W. John, Grundlehren der
Mathematischen Wissenschaften, 219.

M. Ehrhardt and R. Mickens. Discrete artificial boundary conditions for the black-scholes
equation of american options. Submitted., 2006.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational differential equations.
Cambridge University Press, Cambridge, 1996. ISBN 0-521-56312-7; 0-521-56738-6.

A. Friedman. Variational principles and free-boundary problems. Pure and Applied Math-
ematics. John Wiley & Sons Inc., New York, 1982. ISBN 0-471-86849-3. A Wiley-
Interscience Publication.

J. Goodman and D. N. Ostrov. On the early exercise boundary of the American put option.
SIAM J. Appl. Math., 62(5):1823–1835 (electronic), 2002. ISSN 1095-712X.

H. Han and X. Wu. A fast numerical method for the Black-Scholes equation of American
options. SIAM J. Numer. Anal., 41(6):2081–2095 (electronic), 2003. ISSN 1095-7170.

H. Heuser. Gewöhnliche Differentialgleichungen. Mathematische Leitfäden. [Mathematical
Textbooks]. B. G. Teubner, Stuttgart, 1989. ISBN 3-519-02227-3. Einführung in Lehre
und Gebrauch. [Introduction to theory and use].

M. Holtz. Konstruktion B-Spline-basierter monotoner Mehrgitterverfahren zur Bewertung
Amerikanischer Optionen. Diplomarbeit, Institut für Angewandte Mathematik, Univer-
sität Bonn, Bonn, Germany, 2004.

P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of Amer-
ican options. Acta Appl. Math., 21(3):263–289, 1990. ISSN 0167-8019.

Bibliography 117

C. Johnson. Numerical solution of partial differential equations by the finite element method.
Cambridge University Press, Cambridge, 1987. ISBN 0-521-34514-6; 0-521-34758-0.

R. Kangro and R. Nicolaides. Far field boundary conditions for Black-Scholes equations.
SIAM J. Numer. Anal., 38(4):1357–1368 (electronic), 2000. ISSN 0036-1429.

I. Karatzas and S. E. Shreve. Methods of mathematical finance, volume 39 of Applications
of Mathematics (New York). Springer-Verlag, New York, 1998. ISBN 0-387-94839-2.

I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. ISBN
0-387-97655-8.

R. Kornhuber. Adaptive monotone multigrid methods for nonlinear variational problems.
Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1997. ISBN 3-519-02722-
4.

Y. K. Kwok. Mathematical models of financial derivatives. Springer Finance. Springer-Verlag
Singapore, Singapore, second edition, 1998. ISBN 981-3083-25-5.

D. Lamberton and B. Lapeyre. Introduction to stochastic calculus applied to finance. Chap-
man & Hall, London, 1996. ISBN 0-412-71800-6. Translated from the 1991 French original
by Nicolas Rabeau and Francois Mantion.

A.-M. Matache, T. von Petersdorff, and C. Schwab. Fast deterministic pricing of options
on Lévy driven assets. M2AN Math. Model. Numer. Anal., 38(1):37–71, 2004. ISSN
0764-583X.

H. P. McKean, Jr. Appendix: A free boundary problem for the heat equation arising from
a problem of mathematical economics. Industrial Management Review, 6:32–39, 1965.

R. C. Merton. Theory of rational option pricing. Bell J. Econom. and Management Sci., 4:
141–183, 1973. ISSN 0741-6261.

P. Morin, R. H. Nochetto, and K. G. Siebert. Convergence of adaptive finite element methods.
SIAM Rev., 44(4):631–658 (electronic) (2003), 2002. ISSN 0036-1445. Revised reprint of
“Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000),
no. 2, 466–488 (electronic); MR1770058 (2001g:65157)].

F. Natterer. Optimale L2-Konvergenz finiter Elemente bei Variationsungleichungen. In
Finite Elemente (Tagung, Inst. Angew. Math., Univ. Bonn, Bonn, 1975), pages 1–12.
Bonn. Math. Schrift., No. 89. Inst. Angew. Math. Univ. Bonn, Bonn, 1976.

L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains.
Arch. Rational Mech. Anal., 5:286–292 (1960), 1960.

C. Reisinger and G. Wittum. On multigrid for anisotropic equations and variational in-
equalities: pricing multi-dimensional European and American options. Comput. Vis. Sci.,
7(3-4):189–197, 2004. ISSN 1432-9360.

R. Seydel. Tools for computational finance. Universitext. Springer-Verlag, Berlin, second
edition, 2004. ISBN 3-540-40604-2.

118 Bibliography

R. Underwood and J. Wang. An integral representation and computation for the solution of
American options. Nonlinear Anal. Real World Appl., 3(2):259–274, 2002. ISSN 1468-1218.

P. Van Moerbeke. On optimal stopping and free boundary problems. Arch. Ration. Mech.
Anal., 60:101–148, 1976.

A. Veeser. Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math.,
92(4):743–770, 2002. ISSN 0029-599X.

R. Verfürth. A posteriori error estimates for finite element discretizations of the heat equa-
tion. Calcolo, 40(3):195–212, 2003. ISSN 0008-0624.

P. Wilmott, J. Dewynne, and S. Howison. Option pricing: mathematical models and com-
putation. Oxford: Financial Press. xii , 1995.

K. Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
ISBN 3-540-58654-7. Reprint of the sixth (1980) edition.

E. Zeidler. Nonlinear functional analysis and its applications. II/A. Springer-Verlag, New
York, 1990. ISBN 0-387-96802-4. Linear monotone operators, Translated from the German
by the author and Leo F. Boron.

E. Zeidler. Nonlinear functional analysis and its applications. III. Springer-Verlag, New
York, 1985. ISBN 0-387-90915-X. Variational methods and optimization, Translated from
the German by Leo F. Boron.

Appendix A

Notation

Standard notations and abbreviations frequently used in this thesis are listed for convenient
reading in the tables below.

119

120 Appendix A. Notation

R>0 = {x ∈ R |x > 0}

R<0 = {x ∈ R |x < 0}

erf(x) = 2
π

∫ x
0
e−t

2
dt

(f)+ = max(f, 0)

f̂(ξ) = 1√
2π

∫∞
−∞ f(x)e−iξx dx

f̃(x) = 1√
2π

∫∞
−∞ f(ξ)eiξx dx

u′ = spatial derivative

u̇ = temporal derivative

Table A.1: Mathematical symbols

PDE partial differential equation
VI variational inequality
FBVP free boundary value problem
LCF linear complementary formulation
ODE odenary differential equation
FE finite elements
FEM finite element method
AFEM adaptive finite element method

Table A.2: Some abbreviations

parameter description
t time
S price of underlying asset

V (S, t) value of an option
T expiry date
K strike price
r risk-less interest rate
d dividend yield
σ volatility
ψ pay-off function

Table A.3: Notation for options

121

L1
loc(Ω) = space of locally integrable functions on Ω

L2(Ω) = space of square integrable functions on Ω

H1(Ω) = {f ∈ L1
loc(Ω) | f, f ′ ∈ L2(Ω)}

D(R) = class of smooth functions with compact support

S(R) = Schwartz class of rapidly decreasing smooth functions

D′(R) = Schwartz distributions, topological dual of D(R)

S ′(R) = tempered distributions, topological dual of S(R)

Hs(R) = {f ∈ S ′(R) | (1 + |ξ|2)s/2f̂(ξ) ∈ L2(R)}

L2
η(R) =

{
v ∈ L1

loc(R) | ve−η|x| ∈ L2(R)
}

H1
η (R) =

{
v ∈ L1

loc(R) | ve−η|x|, v′e−η|x| ∈ L2(R)
}

(u, v)η =
∫

R uv e
−2η|x| dx

‖u‖L2
η

= (u, u)
1/2
η

‖u‖H1
η

=
(
‖u‖2

L2
η
+ ‖u′‖2

L2
η

)1/2
‖u‖L2(a,b;X) =

(∫ b
a
‖u(·, t)‖2

X dt
)1/2

‖u‖L∞(a,b;X) = ess. supa≤t≤b ‖u(·, t)‖X

Table A.4: Function spaces and norms

u = solution of the VI

uε = solution of the penalised problem

uεh = solution of the semi-discrete penalised problem

u+ = max(u− ψ, 0)

A[u] = −σ2

2
u′′ −

(
r − d− σ2

2

)
u′ + ru

Ã[u] = u̇− §2u′′ −
(
r − d− §2

)
u′ + ru

Ãε,h[u] = u̇− §2u′′ −
(
r − d− §2

)
u′ + ru− 1

ε
u+

I = nodal interpolation operator

Table A.5: Notation for Chapter 5

Appendix B

Matlab Implementation

This chapter presents an implementation in Matlab of the finite element solution of (6.10).
Section B.1 outlines the data structure of the FE implementation while Section B.2 gives a
brief overview over the program structure. In Section B.3 all m.files are listed.

B.1 Data Structures

All required data is stored in the structure p, which is organised as follows. In p.problem.*
the data required to define the problem is stored. In p.params.* the number of initial
nodes, the number of refinement levels, and θ, the parameter from the bulk criteria, is
stored. In p.level(j).* all data for the j-th level is stored. It contains two substructures
p.level(j).geom.* and p.level(j).enum.*. In p.level(j).geom.* data regarding the
mesh geometry of each level is stored. In p.level(j).enum.* constants that are often re-
quired are stored. The subsequent tables give a detailed description of these data structures.

p.params.initialNodes number of initial modes in space
p.params.nrLevels number of refinement levels
p.params.theta θ ∈ [0, 1]

Table B.1: p.params.*

122

B.1. Data Structures 123

p.problem.x0 x0 truncation point x0

p.problem.xN xN truncation point xN
p.problem.T T final time
p.problem.K K strike price
p.problem.r r riskless interest rate
p.problem.sigma σ volatility
p.problem.d d dividend yield
p.problem.epsilon ε penalisation parameter
p.problem.a a(x) coefficient a as in (6.6) on page 96
p.problem.b b(x) coefficient b as in (6.6) on page 96
p.problem.c c(x) coefficient c as in (6.6) on page 96
p.problem.m m = 1 coefficient of the mass matrix
p.problem.weight p(x) = e−2η|x| weight function
p.problem.eta η exponent of the weight function
p.problem.ux0 u(x0) Dirichlet boundary at u(x0)
p.problem.uxN u(xN) Dirichlet boundary at u(xN)
p.problem.psi ψ(x) obstacle
p.problem.penalty g(x) non-linear term
p.problem.truncEstxN max0≤t≤T |u(xN)| truncation error at xN
p.problem.knownValues max0≤t≤T |u(xN)| matrix of truncation errors for several xN

Table B.2: p.problem.*

p.level(j).geom data regarding the mesh geometry
p.level(j).enum several constants
p.level(j).error4e refinement indicator ηTj

as in (5.80)
p.level(j).error4timeStep error estimator for each time step
p.level(j).U discret solution uεh
p.level(j).refineElems refined elements
p.level(j).markedElems marked elements
p.level(j).D D = A+B + C, global FE-matrix from (6.8)
p.level(j).M global mass matrix
p.level(j).totalError global error estimator

Table B.3: p.level(j).*

p.level(j).geom.c4n coordinates for nodes
p.level(j).geom.n4e nodes for element
p.level(j).geom.Db Dirichlet nodes
p.level(j).geom.timesteps time steps

Table B.4: p.level(j).geom.*

124 Appendix B. Matlab Implementation

p.level(j).enum.alpha constant α from the Gårding inequality (3.15)
p.level(j).enum.const2 constant C from (3.13)
p.level(j).enum.constEll continuity constant M from (3.14)
p.level(j).enum.lambda constant λ from the Gårding inequality (3.15)
p.level(j).enum.nrFreenodes number of freenodes
p.level(j).enum.nrElems number of elements
p.level(j).enum.length4e length of each element
p.level(j).enum.midPoint4e midpoints of each element
p.level(j).enum.freeNodes free nodes
p.level(j).enum.length4timeStep length of each timestep
p.level(j).enum.const interpolation constant C(η, h) from (5.33)
p.level(j).enum.nrTimeSteps number of time steps
p.level(j).enum.nrDoF total degrees of freedom
p.level(j).enum.e4n element for nodes
p.level(j).enum.eps4e element dependent penalisation parameter ε
p.level(j).enum.newNode4e nodes of new elements

Table B.5: p.level(j).enum.*

B.2 Short Progamme Description

This sections gives a short description of the m.files listed in the next section. The main
file is fem1d.m. It calls the other procedures and contains the loop for the adaptive mesh
refinement. The procedure solve.m solves the non-linear system of ODEs using the Matlab
routine ode15s. In problemDefinition.m the users enters all the necessary problem data
described in Table B.2 on page 123. The procedure initializeProblem.m configurates the
geometry and boundary data from the given initial data. The procedure mark.m realises the
MARKing procedure from Algorithm 6.6 on page 100. The procedure refine.m bisects all
marked elements. The routine enum.m calculates all necessary constants and data structures
that are required in the program. The procedure createSystem.m determines the finite
element matrices A, B, C, and M from (6.8) on page 97. The procedure estimate.m
implements the element-wise error estimator (6.12) (6.13) (6.14) on page 98. The code of
these file are in the following section.

B.3 Matlab Files

fem1d.m
clear p;
clc

% problem initialization
5 p = problemDefinition;

p = parameters(p);
p = initializeProblem(p);

B.3. Matlab Files 125

% Loop for each refinement levels
10 nrLevels = p.params.nrLevels;

for curLevel = 1 : nrLevels
curLevel
p = mark(p);
p = refine(p);

15 p = enum(p);
p = createSystem(p);
p = solve(p);
p = estimate(p);

end
20

% update the data of the final level
c4n = p.level(end).geom.c4n;
timeSteps = p.level(end).geom.timeSteps;
U = p.level(end).U;

25 psi = p.problem.psi;
nrTimeSteps = p.level(end).enum.nrTimeSteps;

fem1d.m

solve.m
function p = solve(p)

% load data
nrTimeSteps = p.level(end).enum.nrTimeSteps;
nrNodes = p.level(end).enum.nrNodes;

5 ux0 = p.problem.ux0;
uxN = p.problem.uxN;
freeNodes = p.level(end).enum.freeNodes;
T = p.problem.T;
c4n = p.level(end).geom.c4n;

10 u0 = p.problem.u0;
Db = p.level(end).geom.Db;
nrFreeNodes = p.level(end).enum.nrFreeNodes;
M = p.level(end).M;
freeNodes = p.level(end).enum.freeNodes;

15

% initialize U
U = zeros(nrNodes,nrTimeSteps);

% set initial condition
20 U(:,1) = u0(c4n,p);

% ODE solver
options=odeset(’Mass’, M(freeNodes, freeNodes), ...

’MStateDependence’, ’none’, ’MassSingular’, ’no’,...
25 ’RelTol’,1e-8,’AbsTol’,1e-9);

[t2, X]=ode15s(@rhs, [0,T], U(freeNodes,1), options, p);
X = X’;
t = t2’;
p.level(end).geom.timeSteps = t;

30 p = enum(p);
nrTimeSteps = p.level(end).enum.nrTimeSteps;
U = zeros(nrNodes,nrTimeSteps);

126 Appendix B. Matlab Implementation

U(freeNodes,:) = X;
U(Db,:) = [ux0(t,p); uxN(t,p)];

35

% save solution
p.level(end).U = U;

end

40 %%

function val = rhs(t,U,p)
% load data
D = p.level(end).D;

45 freeNodes = p.level(end).enum.freeNodes;
length4e = p.level(end).enum.length4e;
nrNodes = p.level(end).enum.nrNodes;
midPoint4e = p.level(end).enum.midPoint4e;
ux0 = p.problem.ux0;

50 uxN = p.problem.uxN;
epsilon =p.level(end).enum.eps4e;
Db = p.level(end).geom.Db;
n4e = p.level(end).geom.n4e;

55 % set dirichlet data
dummy = zeros(nrNodes,1);
dummy(freeNodes) = U;
dummy(Db) = [ux0(t,p);uxN(t,p)];
U = dummy;

60

% one point gauss integration to evaluate the non-linear term g
penalty4e = penalty(midPoint4e’,U,p);
dummy = 1./epsilon.*length4e.*penalty4e’;
S = [dummy;dummy];

65 I = n4e(:);
G = accumarray(I,S);

% right hand side
val = -D(freeNodes,:)*U + G(freeNodes);

70 end

%%

function val = penalty(x, U,p)
75 %load data

n4e = p.level(end).geom.n4e;
c4n = p.level(end).geom.c4n;
psi = p.problem.psi; ;
eta = p.problem.eta;

80 K = p.problem.K;

U = U(n4e);
U1 = U(:,1)’;
U2 = U(:,2)’;

85 psiX = psi(x,p);
vertices = c4n(n4e);
val1 = psiX-(U1.*(vertices(:,2)’-x)./(vertices(:,2)’-vertices(:,1)’)...

+U2.*(x-vertices(:,1)’)./(vertices(:,2)’-vertices(:,1)’)) ;
val = max(val1’,0)’;

B.3. Matlab Files 127

90 end solve.m

problemDefinition.m
function p = problemDefinition

% set problem data
p.problem.x0 = 1.6;
p.problem.xN = 3;

5 p.problem.T = 1;
p.problem.K = 10;
p.problem.eta = 0.0001;
p.problem.truncEstxN = 0.00636;
p.problem.r = 0.25;

10 p.problem.sigma = 0.6;
p.problem.d = 0;
p.problem.epsilon = 0.1;
p.problem.a = @a;
p.problem.b = @b;

15 p.problem.c = @c;
p.problem.m = @m;
p.problem.weight = @weight;
p.problem.ux0 = @ux0;
p.problem.uxN = @uxN;

20 p.problem.u0 = @u0;
p.problem.psi = @psi;
p.problem.penalty = @penalty;
p.problem.knownValues = [2.9 0.90721; ...

2.95 0.770748; ...
25 2.975 0.709669;...

2.9925 0.669476;...
3 0.591722;...
3.1 0.386659;...
3.2 0.251089;...

30 3.3 0.16126;...
3.4 0.10211;...
3.45 0.08248;...
3.475 0.07398;...
3.4875 0.06722;...

35 3.49375 0.06539;...
3.496875 0.6449;...
3.4984375 0.064047;...
3.49921875 0.063825;...
3.5 0.06360;...

40 3.6 0.038911;...
3.7 0.02335;...
3.8 0.01373;...
3.9 0.0079066;...
3.95 0.00602189;...

45 3.975 0.0052436;...
3.9875 0.00489; ...
4 0.0044548;...
4.1 0.0024546;...
4.2 0.001322;...

50 4.3 0.0006957;...

128 Appendix B. Matlab Implementation

4.4 0.0003576;...
4.5 0.00017948;...
4.6 0.00008793;...
4.7 0.000042036;...

55 4.8 0.000019607;...
4.9 0.0000089;...
5 0.000003959];

end

60 %%

function val = a(x,p)
sigma = p.problem.sigma;
val = sigma^2/2;

65 end

%%

function val = b(x,p)
70 sigma = p.problem.sigma;

eta = p.problem.eta;
r = p.problem.r;
K = p.problem.K;
val = -r+sigma^2/2-eta*sigma^2*sign(x);

75 end

%%

function val = c(x,p)
80 r = p.problem.r;

val = r;
end

%%
85

function val = m(x,p)
val = ones(size(x));

end

90 %%

function val = weight(x,p)
K = p.problem.K;
eta = p.problem.eta;

95 val = exp(-2*eta*abs(x));
end

%%

100 function val = ux0(t,p)
K = p.problem.K;
r = p.problem.r;
x0 = p.problem.x0;
val = K-exp(x0)+0.*t;

105 end

%%

B.3. Matlab Files 129

function val = uxN(t,p)
110 K = p.problem.K;

r = p.problem.r;
xN = p.problem.xN;
d = p.problem.d;
val = 0.*t;

115 end

%%

function val = u0(x,p)
120 val = psi(x’,p);

end

%%

125 function val = psi(x,p)
K = p.problem.K;
val = max((K-exp(x)),0);

end problemDefinition.m

parameters.m
function p = parameters(p)
% set proplem paramters
p.params.nrInitialNodes =20;
p.params.nrLevels =8;

5 p.params.theta=0.5;
parameters.m

initializeProblem.m
function p = initializeProblem(p)
% initialize Problem
u0 = p.problem.u0;
T=p.problem.T;

5

% space discretisation
c4n = linspace(p.problem.x0, p.problem.xN, p.params.nrInitialNodes)’
p.level(1).geom.c4n = c4n;
nrNodes = length(c4n);

10 n4e = [1:nrNodes-1;2:nrNodes]’;
p.level(1).geom.n4e = n4e;
Db = [1, nrNodes];
p.level(1).geom.Db = Db;
p.level(1).geom.timeSteps = linspace(0, T, 0.1) ;

15

% calculation of serval constants
p = enum(p);

%set the error to 0

130 Appendix B. Matlab Implementation

20 p.level(1).error4e = zeros(p.level(end).enum.nrElems,1);
p.level(1).error4timeStep = zeros(length(p.level(end).geom.timeSteps)-1,1);

% Initializing U
U = zeros(length(c4n), length(linspace(0, T, 0.1)));

25 U(:,1) = u0(c4n,p);
p.level(1).U = U;

initializeProblem.m

mark.m
function p = mark(p)

% load data
error4e = p.level(end).error4e;
nrElems = p.level(end).enum.nrElems;

5 refineElems = false(nrElems,1);
theta=p.params.theta;

% mark elements with Bulk criteria
[sortedError4e,I] = sort(error4e,’descend’);

10 sumError4e = cumsum(sortedError4e);
J = find(sumError4e > theta * sum(error4e),1,’first’);
refineElems(I(1:J)) = true;
p.level(end).refineElems = refineElems;

15 % closure algorithm
p = closure(p);

%%

20 function p = closure(p)

nrElems = p.level(end).enum.nrElems;
e4n = p.level(end).enum.e4n;
n4e = p.level(end).geom.n4e;

25 refineElems = p.level(end).refineElems ;

markedNodes = n4e(refineElems,:);
markedNodes = markedNodes(:);
dummy = e4n(markedNodes,:);

30

markedElems = false(nrElems,1);
markedElems(dummy(:)) = true;

p.level(end).markedElems = markedElems;
mark.m

refine.m
function p = refine(p)

% load data
c4n = p.level(end).geom.c4n;

B.3. Matlab Files 131

n4e = p.level(end).geom.n4e;
5 Db = p.level(end).geom.Db;

level = length(p.level);
markedElems = p.level(end).markedElems;
midPoint4e = p.level(end).enum.midPoint4e;
nrElems = p.level(end).enum.nrElems;

10 nrNodes = p.level(end).enum.nrNodes;
timeSteps = p.level(end).geom.timeSteps;

newC4n = midPoint4e(markedElems);
c4n = [c4n;newC4n];

15 newNode4e = zeros(nrElems,1);
newNode4e(markedElems) = (nrNodes + 1):(nrNodes + nnz(markedElems));

n4e = [n4e(~markedElems,:);
[n4e(markedElems,1),newNode4e(markedElems)];

20 [newNode4e(markedElems),n4e(markedElems,2)]];

[Y,I] = min(c4n);
Db(1) = I;

25 [Y,I] = max(c4n);
Db(2) = I;

% update n4e, c4n
p.level(level+1).geom.c4n = c4n;

30 p.level(level+1).geom.n4e = n4e;
p.level(level+1).geom.Db = Db;
p.level(level).enum.newNode4e = newNode4e;
p.level(level+1).geom.timeSteps = timeSteps;

end refine.m

enum.m
function p = enum(p)

% load data
c4n = p.level(end).geom.c4n;
n4e = p.level(end).geom.n4e;

5 timeSteps = p.level(end).geom.timeSteps;
eta = p.problem.eta;
Db = p.level(end).geom.Db;
sigma = p.problem.sigma;
d = p.problem.d;

10 r = p.problem.r;
eps= p.problem.epsilon;

% determination of constants or data structures
nrNodes = size(c4n,1);

15 length4e = c4n(n4e(:,2))-c4n(n4e(:,1));
const = 2*length4e/pi.*((cosh(2*eta*length4e)-1)./(2*eta^2.*length4e.^2)).^0.5;
alpha = sigma^2/4;
const2 = max(abs(r-d-sigma^2/2+eta*sigma^2),abs(r-d-sigma^2/2-eta*sigma^2));
constEll = max(sigma^2/2,r)+const2;

20 lambda = r-const2^2-sigma^2/4;

132 Appendix B. Matlab Implementation

nrElems = size(n4e,1);
midPoint4e = (c4n(n4e(:,1)) + c4n(n4e(:,2)))/2;
length4timeStep = timeSteps(2:end)-timeSteps(1:end-1);
freeNodes = setdiff(1:nrNodes, unique(Db));

25 nrFreeNodes = length(freeNodes);
nrTimeSteps = length(timeSteps);
nrDoF = nrTimeSteps * nrFreeNodes;
e4n = zeros(nrNodes,2);
e4n(n4e(:,1),1) = 1:nrElems;

30 e4n(n4e(:,2),2) = 1:nrElems;
e4n = sort(e4n,2);
[I,dontUse] = find(e4n == 0);
e4n(I,1) = e4n(I,2);
eps4e=eps.*length4e.^2;

35

% save data
p.level(end).enum.alpha = alpha;
p.level(end).enum.const2 = const2;
p.level(end).enum.constEll = constEll;

40 p.level(end).enum.lambda = lambda;
p.level(end).enum.nrFreeNodes = nrFreeNodes;
p.level(end).enum.nrElems = nrElems;
p.level(end).enum.nrNodes = nrNodes;
p.level(end).enum.length4e = length4e;

45 p.level(end).enum.midPoint4e = midPoint4e;
p.level(end).enum.freeNodes = freeNodes;
p.level(end).enum.length4timeStep = length4timeStep;
p.level(end).enum.const = const;
p.level(end).enum.nrTimeSteps = nrTimeSteps;

50 p.level(end).enum.nrDoF = nrDoF;
p.level(end).enum.e4n = e4n;
p.level(end).enum.eps4e=eps4e;

end enum.m

createSystem.m
function p = createSystem(p)
% load data

nrNodes = p.level(end).enum.nrNodes;
nrElems = p.level(end).enum.nrElems;

5 c4n = p.level(end).geom.c4n;
n4e = p.level(end).geom.n4e;

% (phi_k, phi_j)
M = sparse(nrNodes,nrNodes);

10

% d = a(gradPhi_k, gradPhi_j) + b(gradPhi_k, phi_j) + c(phi_k, phi_j)
D = sparse(nrNodes,nrNodes);

% determination of the FE-matrices A, B, C, and M
15 for curElem = 1:nrElems

curNodes = n4e(curElem,:);
curCoords = c4n(curNodes,:);
M(curNodes,curNodes) = M(curNodes,curNodes) + coeffM(curCoords,p);

B.3. Matlab Files 133

D(curNodes,curNodes) = D(curNodes,curNodes) + coeffA(curCoords,p) ...
20 + coeffB(curCoords,p) + coeffC(curCoords,p);

end

p.level(end).D = D;
p.level(end).M = M;

25 end

%%

function val = coeffA(x,p)
30 a = p.problem.a;

weight = p.problem.weight;
dummy = quad(@integrand, x(1), x(2), [],[],a, weight, 0, 1,0,1,p);
val = [1 -1;-1 1] .* dummy /(x(2)-x(1))^2;

end
35

%%

function val = coeffB(x,p)
b = p.problem.b;

40 weight = p.problem.weight;
dummy1 = quad(@integrand, x(1), x(2), [],[],b, weight, 1, -x(2),0,1,p);
dummy2 = quad(@integrand, x(1), x(2), [],[],b, weight, 1, -x(1),0,1,p);
val = [1 -1;-1 1] .* [dummy1, dummy1; dummy2, dummy2]/(x(2)-x(1))^2;

end
45

%%

function val = coeffC(x,p)
c = p.problem.c;

50 weight = p.problem.weight;
dummy1 = quad(@integrand, x(1), x(2), [],[],c, weight, 1, -x(2),1,-x(2),p);
dummy2 = quad(@integrand, x(1), x(2), [],[],c, weight, 1, -x(2),1,-x(1),p);
dummy3 = quad(@integrand, x(1), x(2), [],[],c, weight, 1, -x(1),1,-x(2),p);
dummy4 = quad(@integrand, x(1), x(2), [],[],c, weight, 1, -x(1),1,-x(1),p);

55 val = [1 -1;-1 1] .* [dummy1, dummy2; dummy3, dummy4]/(x(2)-x(1))^2;
end

%%

60 function val = coeffM(x,p)
m = p.problem.m;
weight = p.problem.weight;
dummy1 = quad(@integrand, x(1), x(2), [],[],m, weight, 1, -x(2),1,-x(2),p);
dummy2 = quad(@integrand, x(1), x(2), [],[],m, weight, 1, -x(2),1,-x(1),p);

65 dummy3 = quad(@integrand, x(1), x(2), [],[],m, weight, 1, -x(1),1,-x(2),p);
dummy4 = quad(@integrand, x(1), x(2), [],[],m, weight, 1, -x(1),1,-x(1),p);
val = [1 -1;-1 1] .* [dummy1, dummy2; dummy3, dummy4]/(x(2)-x(1))^2;

end

70 %%

function val=integrand(x, func, weight, c1, c0, d1, d0, p)
val = func(x,p).*(c1*x+c0).*(d1*x+d0).*weight(x,p);

end createSystem.m

134 Appendix B. Matlab Implementation

estimate.m
function p = estimate(p)

% Implementation of the residual based error estimate

% load data
5 n4e = p.level(end).geom.n4e;

c4n = p.level(end).geom.c4n;
length4timeStep = p.level(end).enum.length4timeStep;
const = p.level(end).enum.const;
nrTimeSteps = p.level(end).enum.nrTimeSteps

10 nrElems = p.level(end).enum.nrElems;
Res = zeros(nrTimeSteps-1,nrElems)’;
U = p.level(end).U;
weight = p.problem.weight;
epsilon=p.level(end).enum.eps4e;

15 sigma = p.problem.sigma;
truncEstxN = p.problem.truncEstxN;
% initialize elementwise error
error4e = zeros(nrElems,nrTimeSteps-1);

20 % loop over all spatial elements
for curElem = 1:nrElems

n1 = n4e(curElem,1);
n2 = n4e(curElem,2);
x1 = c4n(n1);

25 x2 = c4n(n2);

% midpoint of each time step
U1L = (U(n1,1:end-1) + U(n1,2:end))/2;
U1R = (U(n2,1:end-1) + U(n2,2:end))/2;

30 U1 = [U1L; U1R];

% approximated time derivative
U2L = (U(n1,2:end) - U(n1,1:end-1))./length4timeStep;
U2R = (U(n2,2:end) - U(n2,1:end-1))./length4timeStep;

35 U2 = [U2L; U2R;];

% values of U at x1 and x2
U3=[U(n1,:);U(n2,:)];

40 % U at time 0
U0=[U(n1,1);U(n2,1)];

% epsilon on current element
curEps=epsilon(curElem);

45

% integration over current element, for all time steps simultanuously
integral = ...

quadv(@integrandfehler,x1,x2,[],[],U1,[x1 x2],U2,U3,curEps,curElem,p);

50 % integration over current element, for time 0
integral2 = ...

quad(@integrandfehler2,x1,x2,[],[],U0,[x1 x2],curEps,curElem,p);

error4e(curElem,:) = integral;

B.3. Matlab Files 135

55 error4e(curElem,1) = error4e(curElem,1)+integral2;
end

% truncation error
60 TruncNode=find(c4n==xN); % find truncation point

[TruncElem, tmp] = find(n4e==TruncNode);
% find element belonging to truncation point
curElem = TruncElem ; % set current element
n1 = n4e(curElem,1);

65 n2 = n4e(curElem,2);
x1 = c4n(n1)
x2 = c4n(n2)

% find truncation error at x_{N-1}
70 knownValues_x=p.problem.knownValues(:,1);

knownValues_u=p.problem.knownValues(:,2);
truncEstxN_1= knownValues_u(max(find(knownValues_x<=x1)))
p.level(end).enum.xn_1=x1;
p.level(end).enum.u_xn_1=truncEstxN_1;

75

% midpoint of each time step
U1L = (U(n1,1:end-1) + U(n1,2:end))/2;
U1R = (U(n2,1:end-1) + U(n2,2:end))/2;
U1 = [U1L; U1R];

80

% approximated time derivative
U2L = (U(n1,2:end) - U(n1,1:end-1))./length4timeStep;
U2R = (U(n2,2:end) - U(n2,1:end-1))./length4timeStep;
U2 = [U2L; U2R;];

85

% values of U at x1 and x2
U3=[U(n1,:);U(n2,:)];

% slope
90 slope = (U1(2,:)-U1(1,:))./(x2-x1);

% calculation of the truncation error terms
truncErr1=sigma^2/2*abs(slope)*truncEstxN*gewicht(x2,p).*length4timeStep;
integral1= ...

95 quadv(@integrandfehler4,x1,x2,[],[],U1,[x1 x2],U2,U3, curEps,curElem,p);
integral = ...

quadv(@integrandfehler3,x1,x2,[],[],U1,[x1 x2],U2, curEps,curElem,p);
L2Res = sqrt(integral);
truncErr2= sqrt(x2-x1)*(1+3^(-0.5))*abs(truncEstxN_1)*sqrt(gewicht(x1,p))...

100 .*L2Res.*length4timeStep;
ResErr= integral1;

% calculate and save the different error terms
error4e(curElem,:) = truncErr2+ResErr;

105 p.level(end).discrError = sqrt(sum(sum(error4e,2)));
error4e(curElem,:) = truncErr1+truncErr2+ResErr;
p.level(end).totalError = sqrt(sum(sum(error4e,2)));
p.level(end).error4e = sum(error4e,2);
p.level(end).error4timeStep = sum(error4e,1)’;

110 p.level(end).truncErrorxN = sqrt(sum(truncErr1));
end

136 Appendix B. Matlab Implementation

%%

115 function val = integrandfehler(x, U, vertices, U2, U3, curEpsilon,curElem,p)
% error terms that are evaluated on (0,T), time integration via one-point
% Gauss quadrature

eta = p.problem.eta;
120 sigma = p.problem.sigma;

alpha = p.level(end).enum.alpha;
r = p.problem.r;
weight = p.problem.weight;
psi = p.problem.psi;

125 d = p.problem.d;
u0 = p.problem.u0;
length4timeStep = p.level(end).enum.length4timeStep;
const = p.level(end).enum.const;
constEll = p.level(end).enum.constEll;

130

x1 = vertices(1);
x2 = vertices(2);
slope = (U(2,:)-U(1,:))./(vertices(2)-vertices(1));
uhU1 = slope.*x+U(1,:)-slope*vertices(1);

135 uhU2 = slope.*x+U2(1,:)-slope*vertices(1);
slopeU3 = (U3(2,:)-U3(1,:))./(vertices(2)-vertices(1));
uhU3 = slopeU3.*x+U3(1,:)-slopeU3*vertices(1);
uhPrime = slope;
uhPlus = max(psi(x,p)-uhU1, 0);

140 weight = weight(x,p);

h = 1e-9;
uhU1dx = slope.*(x+h)+U(1,:)-slope*vertices(1);
Udx = max(psi(x+h,p)-uhU1dx, 0);

145 z = diff([uhPlus;Udx],1,1)/h;
uhPlusH1 = uhPlus.^2.*weight + z.^2.*weight;
uhPlusH1 = length4timeStep.*uhPlusH1;

uhPlusDot = (max(psi(x,p)-uhU3(2:end), 0)-max(psi(x,p)-uhU3(1:end-1), 0));
150 uhPlusDot = uhPlusDot.^2.*weight;

uhPlusInfinity = max(uhPlus).^2.*weight;

resError = (r.*uhU1-(r-d-sigma^2).*uhPrime - 1./curEpsilon.*uhPlus + uhU2)...
155 .^2.*weight;

resError = const(curElem).^2.*length4timeStep.*resError;

val = 3/(2*alpha)*(uhPlusDot+constEll^2*(uhPlusH1+resError))+uhPlusInfinity;
end

160

%%

function val = integrandfehler2(x, U, vertices, curEpsilon,curElem,p)
% terms of the error estimate that are considered at time t=0

165

eta = p.problem.eta;
sigma = p.problem.sigma;
alpha = p.level(end).enum.alpha;

B.3. Matlab Files 137

r = p.problem.r;
170 weight = p.problem.weight;

psi = p.problem.psi;
d = p.problem.d;
u0 = p.problem.u0;
length4timeStep = p.level(end).enum.length4timeStep;

175 const = p.level(end).enum.const;
constEll = p.level(end).enum.constEll;

x1 = vertices(1);
x2 = vertices(2);

180 slope = (U(2)-U(1))./(vertices(2)-vertices(1));
uhU1 = slope.*x+U(1)-slope*vertices(1);
uhPlus = max(psi(x,p)-uhU1, 0);
weight = weight(x,p);

185 initialError = (u0(x’,p) - uhU1).^2.*weight;
initialPenaltyError = uhPlus.^2.*weight;

val= 1/2*(initialError+initialPenaltyError) ;
end estimate.m

Appendix C

Maple Code

This chapter displays the maple code which is used to calculate the pointwise truncation
errors.

maple file
> r:=0.25; K:=10; sigma:=0.6; T:=1; d:=0; t:=T; xN:=3;
> a:=2*sigma^2; b:=r-d-sigma^2/2; c:=r-d; e:=log(K); kappa:=10^20;
> alpha1:=(kappa-a*t)/(a*kappa); beta1:=min(-2*e/a,2*(b*t-e)/a);
> gamma1:=min(e^2/a, (b*t-e)^2/a+r*t^2);
> xp1:=evalf(1/(2*alpha1)*(-beta1+sqrt(beta1^2-4*alpha1*gamma1)));
> if (evalf(xp1) > xN) then print(’Warnung’) else print(’ok’) end if;
> tildef:=x->alpha1+beta1/x+gamma1/x^2;
> xstar:=-2*gamma1/beta1;
> evalf(xstar);
> if (evalf(beta1)>=0) then C1:=alpha1 end if;
> if (evalf(beta1)<0 and evalf(tildef(xstar)) <=0) then C1:=tildef(xN) end if;
> if (evalf(beta1)<0 and evalf(tildef(xstar)) >0 and evalf(xN)<=evalf(xstar))

then C1:=tildef(xstar) end if;
> if (evalf(beta1)<0 and evalf(tildef(xstar)) >0 and evalf(xN)>evalf(xstar))

then C1:=tildef(xN) end if;
> evalf(C1);
> constI1:=(x)->2*sqrt(t)*exp(-C1*x^2/t)+2*x*sqrt(C1*Pi)*(erf(sqrt(C1)*x/sqrt(t))-1);
> evalf(constI1(xN));
> CI1:=evalf(constI1(xN)*exp(-xN^2/kappa));
> eps:=0.6;
> xtest:=evalf(e+abs(b)*t+eps);
> if (xN<evalf(xtest)) then print(’Warnung’) else print(’ok’) end if;
> constI2:=(x)->2*sqrt(a)/(eps*Pi)*(2/3*sqrt(t)*exp(-C1*x^2/t)*(t-2*C1*x^2)

+4/3*x^3*sqrt(C1^3*Pi)*(1-erf(sqrt(C1)*x/sqrt(t))));
> CI2:=evalf(constI2(xN)*exp(-xN^2/kappa));
> constU:=CI1/(sigma*sqrt(2*Pi))+CI2*r*K/2;
> evalf(CI1); evalf(CI2);
> evalf(constU);

maple file

138

Acknowledgements

I thank Carsten Carstensen for his guidance, his ongoing support and encouragement as
mentor and supervisor during my doctoral studies.

I also greatly acknowledge many fruitful discussions with my colleagues Sören Bartels, Evelyn
Buckwar, Max Jensen, Antonio Orlando, Dirk Praetorius and Markus Riedle. Special thanks
to Cristof Melcher for very elucidating discussions and important suggestions.

I would like to thank David Günther and Jan Reininghaus for an excellent improvement of
my Matlab code.

139

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbstständig ohne fremde Hilfe verfaßt und nur
die angegebene Literatur und Hilfsmittel verwendet zu haben.

Karin Mautner
Berlin, 22. Mai 2006

140

	Introduction
	Option Pricing
	Pricing European Options
	The Black-Scholes Model
	Options on Dividend Paying Assets

	Pricing American Options
	An Optimal Stopping Problem
	A Free Boundary Value Problem
	A Linear Complimentary Formulation
	Some Properties of American options

	Mathematical Analysis
	European Options
	Black-Scholes Equation
	Existence and Uniqueness of the Solution

	American Options
	The Black-Scholes inequality
	Variational Formulation
	Existence and Uniqueness

	Fourier Transform
	American Put
	American Call

	Truncation Error Estimates
	Some Calculus
	Decay Behaviour for American Put Options
	Decay Behaviour of the First and Second Spatial Derivative
	Decay Behaviour for American Call Options

	Transformations
	The Black-Scholes Equation
	The Black-Scholes Inequality
	First Approach -- Homogenous Initial Condition
	Second Approach -- Obstacle psi identically zero

	Numerical Analysis
	Continuous Model
	Semi-discrete Model
	American Put Options
	American Call Options
	Summary

	Approximation in H1eta
	A posteriori Error Estimates
	A priori Estimates
	Penalisation Error
	Discretisation Error

	Numerics
	Method of Lines
	Adaptive Mesh Refinement
	Refinement Indicator
	Adaptive Finite Element Method

	Numerical Experiments
	Truncation Error
	Convergence of adaptive versus uniform mesh refinement
	Discretisation Error versus Truncation Error
	The Influence of the parameter eta

	Notation
	Matlab Implementation
	Data Structures
	Short Progamme Description
	Matlab Files

	Maple Code

