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ABSTRACT 

Modern multi-level theories claim that emotion may be generated by different ways using 

different processes. The dual memory model of emotion refers to these processes as schematic 

processing (automatic) and propositional processing (controlled). The model further integrates 

emotion regulatory strategies, such as re-direction of attention and emotional elaboration as 

essential components of emotion processing. However, research on the neurobiological 

correlates of the different processing modes is scarce. Hence, the present work focuses on the 

identification of behavioral and neural correlates of the hypothesized processing modes and how 

these are modulated by individual differences in affectivity and in the cognitive processing of 

emotions. 

Individual differences in state negative affect were associated with altered activity in the insula 

during schematic processing of negative emotional information. This may indicate increased 

processing of the hedonic dimension of aversive stimuli in individuals with high state negative 

affect. Individual differences in state anxiety and in the cognitive processing of emotions 

modulated behavioral and neural correlates of propositional processing of emotional information. 

Specifically, in individuals with high state anxiety and with difficulties to cognitively process 

emotions, re-direction of attention was associated with increased cognitive effort. Findings at the 

neural level indicate that re-direction of attention as compared to elaboration of emotional 

information may represent a less effective emotion regulatory strategy in individuals with 

difficulties to cognitively process emotions.  
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ZUSAMMENFASSUNG 

Moderne Mehr-Ebenen-Ansätze gehen davon aus, dass Emotionen auf unterschiedlichen 

Ebenen der Informationsverarbeitung und durch unterschiedliche Prozesse erzeugt werden. Im 

Rahmen des ‘dual memory model of emotion’ werden diese Prozesse als schematische 

(automatische) und propositionale (kontrollierte) Verarbeitungsprozesse bezeichnet. Darüber 

hinaus integriert das Modell Strategien zur Emotionsregulation, wie Aufmerksamkeitslenkung 

und semantische Elaborierung emotionaler Information. Über die zugrundeliegenden neuronalen 

Korrelate weiß man bisher allerdings noch wenig. Die vorliegende Arbeit konzentriert sich auf 

die Identifizierung behavioraler und neuronaler Korrelate der schematischen und propositionalen 

Verarbeitungsprozesse und wie diese durch interindividuelle Differenzen in der Affektivität und 

in der kognitiven Verarbeitung von Emotionen moduliert werden. 

Interindividuelle Differenzen im aktuellen negativen Affekt waren mit Aktivitätsveränderungen in 

der Insula während der schematischen Verarbeitung negativer Stimuli assoziiert. Dies kann als 

verstärkte Verarbeitung des hedonischen Wertes negativer Stimuli in Individuen mit hohem 

aktuellen negativen Affekt interpretiert werden. Interindividuelle Differenzen in der 

Zustandsangst und im kognitiven Verarbeiten von Emotionen modulierten behaviorale und 

neuronale Korrelate propositionaler Verarbeitungsprozesse. Hohe Zustandsangst und 

Schwierigkeiten im kognitiven Verarbeiten von Emotionen waren assoziiert mit erhöhtem 

kognitiven Aufwand, wenn der emotionale Gehalt der Stimuli ignoriert werden musste. Die 

neuronalen Befunde deuten darauf hin, dass für Individuen mit Schwierigkeiten im kognitiven 

Verarbeiten von Emotionen Aufmerksamkeitslenkung im Vergleich zu Elaborierung emotionaler 

Informationen eine weniger effektive Strategie zur Emotionsregulation darstellt. 
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GLOSSAR 

 

ACC anterior cingulate cortex 

ANS autonomous nervous system 

BOLD blood-oxygen-level dependent 

dACC dorsal anterior cingulate cortex 

dlPFC dorsolateral prefrontal cortex 

fMRI functional magnetic resonance imaging 

PANAS Positive and Negative Affect Schedule 

PFC prefrontal cortex 

PPI psychophysiological interaction analysis 

SCL skin conductance level 

SNA state negative affect 

STAI State-Trait Anxiety Inventory 

TAS Toronto Alexithymia Scale 

vlPFC ventrolateral prefrontal cortex 
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1 INTRODUCTION 

 

Emotions represent a fundamental aspect of human experience and consciousness and have a 

significant impact on health and psychological well-being. They embody the hedonic tone of an 

event for the individual and motivate goal-oriented behavior by prompting adaptive actions. 

By initiating approach- or withdrawal-related behavior emotions keep an organism’s homeostatic 

equilibrium (Damasio, 1994; Panksepp et al., 1997; Damasio, 1999). As a genetically coded 

automatism they involve changes at the physiological level (e.g. secretion of hormones, changes 

in muscle tension), at the expressive-motor level (e.g. changes in mimic and body posture) and 

changes at the level of subjective experience. Subjectively experienced emotional states can be 

characterized by the dimensions valence and arousal1 (Wundt, 1924; for a review see Feldman-

Barrett & Russell, 1999). Valence represents the hedonic tone of an emotion 

(i.e., pleasure - displeasure), whereas activation or arousal refers to the energy level of the 

emotion (i.e., sleep - arousal). However, it is still a matter of debate which dimension has a 

greater influence on information processing.  

Recent approaches in cognitive psychology, namely multi-level theories of emotions, 

conceptualize emotions as a result of both controlled cognitive appraisal and automatic, 

reflex-like processes that provide the organism with quick physiological and behavioral responses 

appropriate to the situation (Leventhal, 1980; Leventhal & Scherer, 1987; Power & Dalgleish, 

1999; Teasdale, 1999; Smith & Kirby, 2000; Philippot & Schaefer, 2001; Philippot et al., 2004). 

However, these theories have barely been tested on neurobiological grounds (but see Schaefer et 

al., 2003). Moreover, when investigating emotional processing one has to bear in mind that there 

is considerable variability in the nature and strength of emotional responses among individuals. 

For this reason, the precise nature of behavioral and neural mechanisms of emotion processing 
 

1 A third dimension of emotional experience defined by Wundt is activation which is characterized by the poles 

tension vs. relief.  
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may only be revealed when such interindividual variability is considered (Davidson & Irwin, 

1999; Davidson, 2003a; Hamann & Canli, 2004; Canli et al., 2004; Dalgleish, 2004; Thompson-

Schill et al., 2005; Fitzgerald et al., 2006). 

Hence, the present work aims at elucidating behavioral and neurobiological correlates of how 

individual differences in affectivity or cognitive processing of emotions modulate automatic and 

controlled emotion processes as characterized by multi-level theories. Considering how automatic 

and controlled processes affect human emotional well-being and social behavior it is valuable to 

elucidate its behavioral and neural basis. 
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1.1 Cognitive Theories of Emotion 

 

Early cognitive theories of emotion (Schachter & Singer, 1962; Lazarus, 1966) defended the 

notion that no emotion can arise without a cognitive appraisal process that evaluates the 

significance of a stimulus for the organism. More recent multi-level theories of emotion, 

however, suggest that emotions may be generated by various ways using different processes 

(Leventhal, 1980; Leventhal & Scherer, 1987; Power & Dalgleish, 1999; Teasdale, 1999; Smith & 

Kirby, 2000; Philippot & Schaefer, 2001; Philippot et al., 2004). They propose that emotions may 

not only be generated by cognitive appraisal but also by automatic, reflex-like processes. The 

need for such a ‘second route’ (Power & Dalgleish, 1999) to emotion is based on evidence that 

emotions have an innate and genetically anchored component that works independently of 

controlled appraisal processes. For instance, the biological preparedness that renders humans 

more vulnerable to develop phobias towards spiders or snakes than to cars or footballs supports 

the notion that biologically anchored mechanisms mediate (aversive) emotional experience 

(Seligman, 1971). Similarly, the fact that basic emotions have universal mimic expressions argues 

for an innate component of emotion generation (Ekman, 1992).  

Within multi-level theories, the different processes by which emotions can be generated are 

typically integrated in a hierarchical processing system that consists of different levels of varying 

degrees of abstraction. Most theories specify processes of emotion generation, but do neglect 

processes of emotion regulation that maintain, accentuate, or attenuate an emotional response. 

However, as they constitute an essential part of emotion processing, a complete account of 

emotion should consider emotion regulatory mechanisms. In this regard, the dual memory model 

of emotion by Philippot et al. (2001, 2004) is the most comprehensive multi-level model of 

emotion as it integrates a process model of emotion with processes of emotion regulation. 

The following chapter gives detailed insight into this multi-level model of emotion.  

 



1.1.1 The Dual Memory Model of Emotion 

The model distinguishes between type of memory activated, so-called structure, and the type of 

processes operating at these levels.  

At the structural level, two types of emotional memory systems are proposed: the schematic 

system and the propositional system (Philippot & Schaefer, 2001; Philippot et al., 2004). These 

two types represent a distinction common to all multi-level models of emotions: the schematic 

system refers to an automatic and implicit memory that conveys the emotional meaning of a 

situation to an individual, the propositional systems pertains to declarative conceptual knowledge 

about emotions. They receive their input from different systems and in turn feed into different 

output systems (see Figure 1 for the schematic and the propositional system as well as other 

structures defined by the dual memory model of emotion). 

 

 

Figure 1: Architecture of the Dual Memory Model of Emotion. In the perceptual system 
the raw sensory input is analyzed to extract basic perceptual features in a modality-
dependent manner. Perceptual systems represent innate structures and have an innate 
output to the body response system thereby automatically triggering autonomic and 
behavioral body responses. The schematic system refers to an implicit memory that conveys 
immediate emotional meaning of a situation for a given individual. Perceptual features are 
fed into the object recognition system which allows for the construction of discrete mental 
representation, the concepts that are the building blocks of the propositional system. The 
propositional system consists of declarative knowledge about emotion. In contrast to the 
schematic system, the propositional system is specific and has “truth validity”, that is, can be 
declared true or false (adapted from Philippot et al., 2004). 

 

The schematic system is based on schemata. A schema is an implicit memory that integrates 

sensory, perceptual, and semantic information of a given category of emotional experiences, on 

the one hand, and their relation to the activation of specific body response systems, on the other 

 4
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hand. The authors suggest that a schema may be conceptualized as the records of an individual’s 

emotional classical conditioning. Repeated activation of perceptual features and their innate 

connections to body response systems (see Figure 1) become integrated in an abstract 

representation to form a schema. The schema is not directly available to consciousness and 

information can only enter consciousness by direct experience. However, the content of a 

schema can be inferred by the feelings and body responses induced upon activation of a schema. 

Put briefly, the schema represents the core of emotional activation and provides the organism 

with wholly prepared, immediate response modes to situations in the environment. 

In contrast, the propositional system consists of declarative knowledge about emotion. 

Knowledge at the propositional level is accessible to consciousness and can be activated willfully. 

Consequently, information can enter this cognitive structure through conversation, reading and 

so forth. It constitutes the basis for conscious identification of emotion, for verbal 

communication about emotion, and for willful coping in emotional situations. 

 

As outlined above, different processes operate on these levels and they differ with regard to 

automaticity and with regard to consciousness. Processes at the schematic level are by definition 

automatic and unconscious, that is, they are effortless, fast and difficult to stop or regulate; they 

consume minimal attentional or processing capacity and utilize low levels of cognitive processing 

with minimal analysis. Once a schema is activated this leads to activation of the related body 

responses. This activation is bi-directional, meaning that activation of specific body responses 

may also activate a related schema. That is, activation of a body state can feed back positively in 

the activation of a schema. At the neurological level this may occur 1) centrally, by direct 

association between the schema and the body response system; and 2) peripherally, via the 

production of actual body responses that feed into the schema via the perceptual system. 

At the propositional level both automatic (i.e., priming effects) and conscious or controlled 

processes occur. Controlled processes are strategic, intentional, voluntary and effortful, they 
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consume attentional and processing resources and use higher levels of cognitive processing, such 

as semantic analysis (Logan, 1988; McNally, 1995; Sternberg, 1996). Controlled processes activate 

information stored at the propositional level such as knowledge on emotional states, and allow 

their transmission into working memory. Once the knowledge is represented in working memory 

it allows us to deliberately identify and talk about emotions (Philippot et al., 2002). 

 

Multi-level theories of emotion have barely been tested on neurobiological grounds. Using 

positron emission tomography, Schaefer at al. (2003) investigated the neural correlates of the 

schematic and propositional emotion processing modes. Subjects performed a mental imagery 

task to induce emotional experiences of different qualities (i.e., happiness, anger, affection, 

sadness and neutral) while simultaneously repeating sentences that encouraged emotional 

processing according to the schematic or propositional mode. For the schematic mode, 

metaphoric sentences reflected a holistic, spontaneous way of appraising the situation (e.g. 

‘Everything collapses around me’, thought to reflect ‘hot’ processing of emotions). For the 

propositional mode, explicit, analytical questions about specific elements of the scenario were 

used (‘Is this situation important for me?’, thought to reflect ‘cold’ processing of emotions) 

(Schaefer et al., 2003). Schematic processing was associated with increased activity in the 

ventromedial prefrontal cortex, whereas propositional processing was associated with activation 

of the anterolateral prefrontal cortex involved in explicit and voluntary processing of emotions. 

However, a potential shortcoming of this study is the triggering of the schematic processing 

mode. First, it differed from the propositional processing in that schematic sentences were 

statements, whereas the propositional ones were questions adding a systematic confound to the 

study. Second, and more importantly, processing at the schematic level is automatic by definition. 

However, repeating preconceived sentences implies effortful cognitive processing which is a 

characteristic of the propositional processing mode. 
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As has been outlined before, most multi-level theories of emotion characterize processes of 

emotion generation but do neglect processes of emotion regulation, although they constitute an 

essential part of emotion processing. In this regard, the dual memory model of emotion by 

Philippot et al. (2001, 2004) is exceptional as it integrates a process model of emotion with 

processes of emotion regulation. 

A comprehensive model of emotion regulation has been developed by Gross (Gross, 1998a; 

Gross, 1998b; Gross, 2001; Gross, 2002). He defines emotion regulation as processes by which 

we influence which emotions we have, when we have them, and how we experience and express 

them (Gross, 1998a). In his process model of emotion regulation strategies are distinguished with 

regard to the time of their occurrence (Gross, 2001). Antecedent-focused emotion regulation 

strategies occur before the emotion response tendencies have become fully activated, whereas 

response-focused strategies occur once an emotion response tendency has already been activated 

(see Figure 2). 



 

Figure 2: A Process Model of Emotion Regulation. Gross’ model illustrates how different 
strategies may occur along the time line of the unfolding emotional response. According to 
this model, emotion may be regulated at five points in the emotion generative process: 
a) selection of the situation, b) modification of the situation, c) deployment of attention, 
d) change of cognitions, and e) modulation of experiential, behavioral, or physiological 
responses (adapted from Gross, 2002). 

 

The cognitive emotion regulation strategies formulated within the dual memory model of 

emotion tie up to what Gross defines as attentional deployment (see Figure 2). They represent 

attentional top-down processes that modulate the (bottom-up) emotional activation that rests 

within a schema. Thus, emotion regulation becomes a question of regulating the activation of the 

schema and its related body responses. This can be achieved by re-direction of attention away 

from or elaboration of emotional information2. The automatic activation of a schema by 

emotional stimuli may be overridden by a willful attentional focus on elements that are 

incongruent with the schema. However, these processes may not be as straightforward as they 

first appear. Automatic activation operates quickly and requires few resources whereas the 

voluntary processes of re-directing one’s attention are relatively slower and require more 

cognitive resources as they involve much inhibition. Consequently, a conflict may arise between 

the two response modes. 

                                                 

2 A third mean to regulate activation of a schema is by regulation of the peripheral feedback, e.g. facial muscle 

manipulation. 
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An alternative to the re-direction of attention towards elements that are not associated with the 

schema would be to focus willfully on the emotional content by elaborating it. The authors 

propose that willful elaboration uses executive processes that have an inhibitory action on the 

activated schema and thereby regulate emotional activation.  

However, to date little is known about how these processes operate at the neural level. Schaefer 

et al. (2003) investigated the neural correlates of the propositional and schematic processing 

mode using positron emission tomography but did not distinguish between the two cognitive 

regulation strategies they specify within their framework. Moreover, implementation of schematic 

processing is critical. The present work goes beyond the study by Schaefer et al. (2003) by testing 

behavioral as well as neural correlates of the hypothesized processing modes. The schematic 

processing mode is realized by a passive viewing paradigm to allow for the automatic activation 

of the schema without inhibition by controlled processes. The propositional processing mode is 

achieved by task instructions that engage either re-direction of attention from or willful 

elaboration of emotional information. Individual differences measures were taken into account to 

investigate their influence on the behavioral and neural correlates of the schematic and 

propositional processing modes. 



1.2 Neuroanatomy of Emotion 

 

Recently, there has been a convergence in lesions and neuroimaging data in the identification of 

neural circuits underlying emotions in the brain that goes beyond the view that emotions are 

represented exclusively subcortical (Davidson, 2003b). Rather, emotions consist of differentiated 

components, that is, physiological arousal, behavioral expression, subjective feeling, as well as 

regulatory mechanisms that are instantiated in a distributed network of subcortical and cortical 

brain regions. The brain regions implicated in emotion processing comprise the dorsolateral, 

ventromedial, and orbitofrontal prefrontal cortices, as well as the anterior cingulate cortices, the 

amygdalae and the insular cortices (see Figure 3; Damasio et al., 2000; for reviews see Davidson 

& Irwin, 1999; Dolan, 2002). 

  

 

Figure 3: Brain Regions Implicated in Emotional Experience. Upper left, lateral view: 
dorsolateral prefrontal cortex (blue). Upper right, medial view: anterior cingulate cortex 
(yellow). Lower left, inferior view: bilateral orbitofrontal (green) and ventromedial cortices 
(red). Lower right, coronal view: bilateral anterior cingulate cortices (yellow), insular cortices 
(pink) and amygdalae (orange) (adapted from Davidson et al., 2000). 
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1.2.1 The Prefrontal Cortex 

The prefrontal cortex is a brain region critically involved in affect processing and its subdivisions 

underlie different functions in emotion processing. As outlined above, the schematic and 

propositional processing modes of emotions as hypothesized by the dual memory model of 

emotion (Philippot et al., 2004) are associated with changes in activity in the ventromedial and 

anterolateral prefrontal cortex, respectively (Schaefer et al., 2003). Similarly, Baumgartner et al. 

reported that processing of emotional pictures activates the ‘cognitive part’ of the prefrontal 

cortex, namely the dorsolateral prefrontal cortex, whereas a combined stimulation of emotional 

pictures with emotional music rather recruits brain regions that are associated with intense 

emotional experience, such as the amygdala, the insula, and the ventromedial prefrontal cortex 

(Baumgartner et al., 2006b). Moreover, the different dimensions of emotion, valence and 

intensity, are differentially correlated with activity in the ventromedial and dorsolateral prefrontal 

cortex and with activity in the ventrolateral and dorsomedial prefrontal cortex, respectively 

(Grimm et al., 2006). This indicates segregated neural representation of different emotion 

dimensions in different prefrontal cortical regions. 

 

1.2.2 The Anterior Cingulate Cortex 

Papez noted that tumors pressing on the anterior cingulate cortex produced ‘loss of spontaneity 

in emotion, thought and activity’ (Papez, 1937). Building on Papez work McLean proposed that 

the cingulate cortex elaborates on the emotional experience by transmitting it to higher order 

cognitive brain areas, such as the prefrontal cortex (McLean, 1949). Interestingly, recent 

neuroimaging studies indeed related activation of the anterior cingulate cortex to the conscious 

experience of emotion (Lane et al., 1998). Of particular importance for the present work is 

McLean’s suggestion that a discommunication between the limbic system and neocortical areas 

due to impaired function of the cingulate cortex represents the neurobiological basis for the 

psychological construct of alexithymia, which involves difficulties in identifying and describing 
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one’s own emotions (McLean, 1949; Sifneos, 1973; see chapter 1.3.3. and 4.3. for detailed 

information on alexithymia and its behavioral and neural correlates). 

The anterior cingulate cortex has also been related to regulatory functions. For instance, it has 

been implicated in the intentional modulation of bodily arousal suggesting that this structure 

integrates cognitive states with bodily responses (Critchley et al., 2001). Moreover, it has been 

associated with the regulation of higher cognitive processes, such as monitoring of errors and 

conflict and with the implementation of adaptive behavioral responses by recruiting, for instance, 

the prefrontal cortex (Bush et al., 2000; Botvinick et al., 2004; Kerns et al., 2004; Ullsperger et al., 

2004).  

Most importantly for the present study, the anterior cingulate cortex together with the prefrontal 

cortex has been associated with the cognitive regulation of emotion (Posner & Rothbart, 1998). 

Functional imaging studies in that domain focused either on attentional deployment or on 

cognitive change or reappraisal (Hariri et al., 2000; Beauregard et al., 2001; Ochsner et al., 2002; 

Hariri et al., 2003; Levesque et al., 2003; Ochsner et al., 2004; for a review see Ochsner & Gross, 

2005), however, the focus of the present work is attentional deployment. Attentional deployment 

either refers to selective attention to non-emotional aspects of stimuli (implicit processing) or 

conscious interpretation and elaboration of the emotional content (explicit processing). Implicit 

processing of emotional stimuli as compared to explicit processing is associated with increased 

responses in emotion processing regions, such as the amygdala or insular cortex (Liberzon et al., 

2000; Critchley et al., 2000), whereas limiting attention to emotional stimuli by implementing a 

cognitive task as compared to passive viewing conditions activates prefrontal regions (Lange et 

al., 2003) and simultaneously decreased activation in limbic regions (Taylor et al., 2003). More 

specifically, when subjects judged emotional compared to perceptual characteristics of stimuli, 

that is, elaborated on emotional content, a reciprocal relationship between prefrontal and limbic 

regions was found (Hariri et al., 2000; Hariri et al., 2003). This implies that explicit processing of 

emotions, such as elaborating or labeling emotions, recruits neocortical regions, such as the 
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prefrontal and the anterior cingulate cortex, that presumably exert a regulatory effect on 

emotional responses mediated by limbic regions. 

However, there is considerable variability in the ability to cognitively elaborate on and regulate 

emotions that need to be taken into account when investigating the neural correlates of emotion 

regulatory strategies. To date, only one study has investigated how individual differences in trait 

rumination (i.e., the tendency to focus on negative aspects of one’s self or one’s life) modulate 

the neural systems supporting cognitive regulation of emotion (Ray et al., 2005), but none has 

investigated the effects of a general impairment of cognitively processing emotions in a healthy 

sample during cognitive regulation of emotion. However, see chapter 1.3.3. for the current 

literature about the effects of alexithymia on neural correlates of emotion processing in clinical 

samples. 

 

1.2.3 The Amygdala 

The amygdala is a key emotion-processing region and is activated during exposure to aversive 

stimuli from multiple sensory modalities. The amygdala is engaged in the automatic processing of 

negatively valenced faces (schematic processing mode; Morris et al., 1998; Whalen et al., 1998), 

but also plays a significant role during conscious evaluation of emotional faces, even when 

subjects are engaged in making other than emotional judgments, e.g. gender judgments 

(propositional processing mode; Critchley et al., 2000; Gorno-Tempini et al., 2001; Vuilleumier et 

al., 2001; Pessoa et al., 2002). Thus it is clear that one need not attend to the emotional valence of 

faces in order to observe amygdala activation, but it remains unclear to what extent the amygdala 

responses is modulated by different task demands. While some studies report on greater activity 

during explicit than implicit coding (Gur et al., 2002), others report greater activity during implicit 

relative to explicit conditions (Hariri et al., 2000; Critchley et al., 2000) or found no difference 

between explicit vs. implicit processing of facial emotions (Gorno-Tempini et al., 2001). Thus, 

activation of the amygdala may be task specific. 
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1.2.4 The Insular Cortex 

This structure is one of the key brain regions in a theoretical framework of emotion that primarily 

emphasizes the bodily experience or ’embodiment’ of emotion. Within this framework emotions 

are perceived as a multi-tiered and evolutionary shaped mechanism aimed at maintaining the 

organism’s homeostasis. Therefore, the insular cortex is richly interconnected with sensory, 

prefrontal, motor and limbic brain regions to execute adaptive actions between the organism and 

its environment, that is, facial and other bodily expressions via the musculo-skeletal system, and 

changes in the internal visceral milieu (Cechetto & Chen, 1990; Augustine, 1996; Craig, 2003; 

Critchley et al., 2004). The insula is also associated with the processing of taste information and 

with the experience of the emotion of disgust (Phillips et al., 1997). 

The current view is that the perception of feelings from the entire body represented in the insula 

constitutes the basis for an image of the physical self, which is a characteristic of human 

consciousness and self-awareness (Damasio, 1994; Damasio, 1999; Craig, 2002; Craig, 2003; 

Craig, 2004). 
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1.3 Individual Differences in Affectivity 

 

One of the most salient features of emotion processing is the variability among individuals in 

how they experience and express emotions (Frijda, 1986; Ekman & Davidson, 1994; Scherer, 

1999). For affect, individual differences in both quality and magnitude of the response are rather 

the rule than the exception. This variability has been termed affective style and refers to individual 

differences in temporary emotional states as well as to consistent individual differences in 

dispositional mood or stable personality traits (Davidson & Irwin, 1999; Davidson, 2004).  

Conventional neuroimaging studies have relied on group analyses in identifying common regions 

of activation across subjects and treated variance between individuals as noise. However, using 

the information of such variation will aid in understanding how specific processes are realized in 

the brain. For instance, recent approaches in affective neuroscience demonstrate how individual 

differences in affectivity relate to differences at the structural (Gundel et al., 2004; Hadjikhani et 

al., 2006; Iidaka et al., 2006; Barros-Loscertales et al., 2006; Wright et al., 2007) and functional 

level (Davidson & Irwin, 1999; Canli et al., 2002; Etkin et al., 2004; Canli et al., 2004; Meriau et 

al., 2006, for reviews see Hamann & Canli, 2004; Thompson-Schill et al., 2005) by incorporating 

measures of individual differences into statistical functional magnetic resonance imaging (fMRI) 

analyses. Nevertheless, correlational approaches merely establish a relation between variables and 

do not implicate causal mechanisms. 

For the most part, the present work is concerned with the processing of aversive stimuli. 

Therefore, individual differences in anxiety and negative affect were investigated because these 

individual differences measures may be especially related to altered processing of negative 

information. Furthermore, the present work investigates the neural correlates of cognitively 

processing emotional stimuli, referred to as propositional processing by Philippot et al. (2004). 

Because there is considerable variability with regard to how individuals process emotions, 
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individual differences in the ability to identify and describe emotional states in oneself and others 

were also assessed. 

 

1.3.1 Anxiety 

Individual differences in anxiety are associated with an attentional bias in the processing of 

threatening stimuli (Fox et al., 2005; Bar-Haim et al., 2005; Bar-Haim et al., 2007) and influence 

memory performance (Dobson & Markham, 1992; Hock & Egloff, 1998; Shackman et al., 2006). 

A useful tool to investigate the influence of anxiety on processing of emotional stimuli is the 

emotional stroop test, whereby subjects have to name the ink color of a presented emotional or 

neutral word while ignoring the word meaning (Williams et al., 1996). Typically, response times to 

name the ink color are longer when the word to be ignored is emotional compared to when it is 

neutral. This is explained by increased allocation of attentional resources towards the emotionally 

salient information due to automatic bottom-up processes and has been termed emotional 

interference effect (Pratto & John, 1991; Williams et al., 1997). The emotional interference effect 

is more robust and pronounced in clinical populations suffering from anxiety disorders (Williams 

et al., 1996). The interference effect of emotional stimuli in healthy individuals is less marked, but 

also moderated by individual differences in state and trait anxiety (Richards et al., 1992; Teasdale 

& Barnard, 1993; Egloff & Hock, 2001). The effect of trait anxiety has been more thoroughly 

investigated than the effect of state anxiety (Bar-Haim et al., 2007). Broadbent and Broadbent 

suggest that the two factors interact with state anxiety having a much greater impact in 

individuals with high trait anxiety than in those with low trait anxiety (Broadbent & Broadbent, 

1988). Others suggest that both trait anxiety (irrespective of state anxiety) and state anxiety 

(irrespective of trait anxiety) are sufficient to produce an attentional bias (Mogg et al., 1990). 

However, the exact relationship of trait and state anxiety and their effects on emotional 

interference remain unclear. 
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1.3.2 Negative Affect 

Negative affect is a common factor of both anxiety and depression (Clark & Watson, 1991). As 

with anxiety negative affect can be differentiated into trait and state negative affect. Whereas trait 

negative affect represents a stable personality trait reflecting a general tendency to react with a 

downbeat attitude to challenging events in the environment, state negative affect is a rather 

short-lived and acute emotional response associated with intense bodily reactions. Consequently, 

the neural representation of trait and state negative affect may differ. At the neural level 

individual differences in trait negative affect have been associated with increased cerebral blood 

flow during resting state in the bilateral ventromedial prefrontal cortex (Zald et al., 2002) and in 

the amygdala (Abercrombie et al., 1998). Moreover, individual differences in trait negative affect 

are associated with increased amygdala activity during maintenance of a negative emotional state 

(Schaefer et al., 2002). However, so far it remains unclear how individual differences in state 

negative affect are instantiated at the neural level during the passive perception of emotional 

stimuli. As outlined above, negative affect is a common factor of both anxiety and sadness. It has 

recently been proposed that the insula plays a key role in anxiety proneness (Paulus & Stein, 

2006). Accordingly, anxiety–prone healthy subjects show greater responses in the bilateral insulae 

during anticipation of aversive pictures compared to non-anxious subjects (Simmons et al., 2006). 

Sadness, the other major constituent of negative affect, also modulates insular activity. Transient 

sadness induced by autobiographical memory scripts of past sad events in healthy female subjects 

activates the left insula, amongst other regions (Liotti et al., 2000). Similarly, in females, transient 

sadness is associated with increased activation in the left insula and left amygdala (Levesque et al., 

2003). Two PET studies also report on insular activation during self-induced sadness (George et 

al., 1995; Mayberg et al., 1999). Moreover, individual differences in sadness correlate positively 

with activity in the right insula and the right temporal pole (Eugene et al., 2003). To summarize, 

the there is ample evidence that state negative affect as a common factor of both anxiety and 

sadness may modulate insular activity. 
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1.3.3 Impairment in the Cognitive Processing of Emotions (Alexithymia) 

Cognitive processing of emotions refers to the ability to identify and verbalize one’s emotions. 

This ability represents a continuous personality dimension with individuals having pronounced 

difficulties in this domain are said to suffer from alexithymia (Sifneos, 1973). Alexithymia is 

considered to be a disorder of affect regulation (Taylor et al., 1997). There is evidence that the 

ability to communicate one’s own emotional state strongly relates to the ability to process 

external verbal or non-verbal emotional markers (Taylor, 2000). For example, individuals with 

higher levels of alexithymia are less accurate in identifying facial expressions of emotions than 

individuals with lower levels of alexithymia (Parker et al., 1993; Mann et al., 1994). Other studies 

using verbal and non-verbal emotional stimulus material, such as sentences, facial expressions, or 

emotional scenes, found impaired affect recognition in high-alexithymic compared to low-

alexithymic subjects (Lane et al., 1996; Lane et al., 2000). For the underlying neural network 

McLean postulated a discommunication between the limbic system and neocortical areas 

(McLean, 1949). In this model, the limbic system is concerned with visceral and emotional 

functions, while the neocortex is involved in the more abstract and complex representation of 

emotions. Lane et al. found that conscious perception of emotion is associated with increased 

activity of the anterior cingulate cortex in healthy subjects and concluded that alexithymia may 

result from insufficient participation of this region in the neural circuitry processing emotional 

information (Lane et al., 1997; Lane et al., 1998). Functional activation studies relying on changes 

in blood flow (Berthoz et al., 2002; Huber et al., 2002; Kano et al., 2003) or electrophysiological 

signals (Aftanas et al., 2003) reported functional alterations of the anterior cingulate cortex in 

alexithymic subjects. Moreover, structural studies described anatomical alterations (Gundel et al., 

2004) of the anterior cingulate cortex in alexithymic subjects. Thus, there is ample support for the 

hypothesis that impaired ability to identify and communicate one’s emotional state may result from 

a discommunication between the limbic system and the neocortex due to malfunction of the 

anterior cingulate cortex.  
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2 OPEN QUESTIONS AND HYPOTHESES 

 

As pointed out before, a complete account of emotion should make reference to the different 

levels of analysis, that is, bridge the gap between psychological models of emotion and how 

emotions are processed at the level of brain structures and systems and, furthermore, how these 

give rise to individual differences. 

According to the dual memory model, emotion processing can be differentiated with regard to 

the processes applied to the emotional stimuli, that is, the schematic and propositional processing 

mode (Philippot & Schaefer, 2001; Philippot et al., 2004). The schematic mode is characterized 

by automatic and effortless processes, whereas the propositional mode is characterized by 

voluntary and resource-consuming processes. 

At the behavioral level the schematic and propositional processing mode is best tested using the 

emotional stroop task (Williams et al., 1996). Here, presentation of emotional words triggers 

schematic processing, whereas propositional processing is triggered by top-down cognitive 

strategies to re-direct one’s attention to non-emotional characteristics of the stimuli, that is, the 

ink color of the words. 

For the investigation of the schematic processing mode at the neural level, a passive viewing 

paradigm was chosen. It was assumed that the automatic schematic processing mode, or initial 

emotional response, is triggered by mere presentation of emotional stimuli (International 

Affective Picture System, IAPS, Lang et al., 1999), and may develop more naturally without any 

top down cognitive processes interfering. In a second neuroimaging study, the propositional 

processing mode is triggered using different task instructions that engage different cognitive 

regulation strategies (attentional re-direction or emotional elaboration). Here, the automatic 

activation of an emotional schema through the presentation of facial expression (Pictures of 

Facial Affect, Ekman & Friesen, 1976) is overridden by top-down influences. 
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However, special focus of the present work is how the schematic and propositional processing 

modes are modulated by individual differences in emotional processing. Thus, individual 

differences in anxiety and state negative affect were assessed as well as individual differences in 

the ability to cognitively process emotions. 

 

The present thesis addresses the following questions: 

 

1. How are the behavioral correlates of  schematic and the propositional emotion 

processing modes modulated by individual differences in anxiety? Is emotional 

processing modulated by state or trait anxiety or an interaction of  both? How do 

the emotional dimensions of  valence and arousal influence emotional 

processing?  

 

2. How are the neural correlates of  the schematic processing mode of  emotions as 

triggered by passive viewing of  aversive pictures modulated by individual 

differences in state negative affect? 

 

3. How are the neural correlates of  the propositional processing mode as triggered 

by cognitive regulation strategies (attentional re-direction and emotional 

elaboration) modulated by individual differences in cognitive processing of  

emotions? 

 

Hypotheses 

I. The activation of  emotional schemata is automatic and operates very quickly. During the 

processing of  emotional compared to neutral stimuli the fast and automatic activation of  the 

schematic processing system interrupts the slower and controlled top-down cognitive 

processes representing the propositional processing mode (e.g. naming of  ink-color of  

words). Hence, ink color naming of  emotional as compared to neutral words results in longer 

response times. When controlling for arousal the emotional interference is independent of  
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valence. Within the dual memory model of  emotion it is assumed that anxiety lowers the 

perceptual threshold for perceptual features congruent with the schema. Hence, it is 

hypothesized that individual differences in either state or trait anxiety or an interaction of  

both further increase emotional interference for negative stimuli. 

II. Passive viewing of  emotional stimuli automatically activates emotional schemata. Such 

automated processing of  emotional information is consistent with the schematic processing 

mode, which may be modulated by individual differences in affectivity. For instance, anxious 

individuals show an attentional bias for threat-related stimuli (Christianson, 1992). This bias is 

observed without conscious perception of  threat-relevant information (Mogg & Bradley, 

1999) and thus would be the consequence of  automatic processes (Philippot & Schaefer, 

2001; Philippot et al., 2004). This indicates that the schematic processing mode may be 

modulated by the individual’s emotional state. Emotional states are by definition rather short, 

but intense episodes of  synchronized responses of  the body response system (Scherer, 2000). 

These autonomic and expressive body responses feed back into the perceptual system via a 

feedback loop and re-activate the relevant schema. Thus, individuals with high state negative 

affect would show an attentional bias towards schema-congruent aversive information. The 

output of  the body response system would feed back via the perceptual system into the re-

activation of  the schema thereby enhancing its activation level. The feedback of  physiological 

body responses is represented in the insula. Hence, neurobiological theories have associated 

the insula with interoception to provide a neural basis for a ’basic feeling state’ or ‘sentient 

self ’. It is hypothesized that individual differences in state negative affect would modulate 

schematic processing as to enhance activation of  the schema and related body responses. The 

association of  individual differences in state negative affect with schematic processing during 

passive viewing of  aversive pictures would be represented in the insular cortex, the cortical 

site for representation of  body responses and ‘sentient self ’. 
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I. Aversive emotional stimuli automatically activate a related schema and associated body 

responses, which together represent the emotional response of  an individual. In the second 

neuroimaging experiment the schematic processing mode is triggered by the presentation of  

aversive emotional faces. To trigger a propositional processing mode, subjects were presented 

with task instructions that engaged top-down cognitive processes, that is, re-direction of  

attention or willful elaboration of  facial expressions. These processes can be subsumed under 

emotion regulatory strategies. Controlled emotion regulatory strategies imply executive 

processing that inhibit the activation of  the schema and thereby reduce emotional experience. 

The main focus of  this experiment was on how individual differences in the cognitive 

processing of  emotions modulate the propositional processing mode. That is, individual 

differences in cognitive processing of  emotions are hypothesized to modulate the neural 

correlates of  re-direction of  attention or willful elaboration of  facial expressions. Impaired 

ability to cognitively process emotions (alexithymia) has been associated with changes in 

activity of  the anterior cingulate cortex (see chapter 1.3.3.). Hence, it is hypothesized that 

individual differences in the ability to cognitively process emotions in a healthy sample 

modulate activity in the anterior cingulate cortex during both re-direction of  attention from 

and willful elaboration of  emotional stimuli. Furthermore, following McLean’s theoretical 

model (1949) for the underlying neural network of  alexithymia, it is hypothesized that the 

ability to cognitively process emotions relies on the functional integration of  brain regions 

associated with emotional and cognitive processing. This functional integration of  specialized 

brain regions is best understood in terms of  effective connectivity. Hence, it is predicted that 

individual differences in the ability to cognitively process emotions is reflected in differential 

effective connectivity of  the anterior cingulate cortex with the prefrontal cortex and the 

limbic system, respectively. 
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3 METHODS 

 

3.1 Psychophysics 

 

At the behavioral level reaction time data and error rates were measured to assess information 

processing speed and task difficulty. In a behavioral study individual valence and arousal ratings 

were obtained for emotional stimuli to assess emotional meaning of stimuli to participants. 

Behavioral data from a memory and recognition surprise test were collected as a manipulation 

check. 

 

3.2 Psychometrics 

 

Psychometrics is the field concerned with the differences between individuals or group of 

individuals. To assess individual differences in emotional states and in personality standardized 

and validated questionnaires were administered. Individual differences in emotional states were 

measured using the Positive And Negative Affect Schedule (PANAS, Watson et al., 1988; 

Krohne et al., 1996) and State-Trait Anxiety Inventory (STAI, Laux et al., 1981; Spielberger, 

1983). Individual differences in cognitive processing of emotions were investigated using the 

Toronto Alexithymia Scale-26 (TAS, Bagby et al., 1994a; Bagby et al., 1994b; Kupfer et al., 2001).  

 

3.2.1 The Positive and Negative Affect Schedule 

This questionnaire serves a global assessment of subjective emotional experience. The Positive 

and Negative Affect Schedule consists of 20 adjectives of positive and negative mood states, 

respectively. To assess state affect subjects rate their current affective state on the basis of these 

adjectives using a 5-point rating scale, whereas rating of the same adjectives with regard to the 

subject’s general experience assesses trait aspects of affectivity. High positive affect reflects 

enthusiasm, activity and alertness, whereas low positive affect reflects lethargy and sadness. High 
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negative affect indicates petulance, nervousness, and anxiety, whereas low negative affect reflects 

quietude and stability. Higher scores are indicative of increased (state or trait) positive or negative 

affect. 

 

3.2.2 The State-Trait Anxiety Inventory 

The State-Trait Anxiety Inventory is a self-report questionnaire, which includes separate 

measures of state and trait anxiety. State anxiety reflects a ‘transitory emotional state or condition 

of the human organism that is characterized by subjective, consciously perceived feelings of 

tension and apprehension, and heightened autonomic nervous system activity.’ State anxiety may 

fluctuate over time and can vary in intensity. In contrast, trait anxiety denotes ‘relatively stable 

individual differences in anxiety proneness’ and refers to a general tendency to respond with 

anxiety to perceived threats in the environment (Spielberger, 1983). Higher scores indicate 

increased levels of state or trait anxiety. 

 

3.2.3 The Toronto Alexithymia Scale-26 

This self-report rating scale assesses a) difficulty identifying feelings and distinguishing between 

feelings and the bodily sensations of emotional arousal; b) difficulty communicating feelings; and 

c) externally oriented thinking. For the German version of the TAS-26 questionnaire a cut-off 

point of ≥54 has been suggested (Kupfer et al., 2001), however, in addition to identifying a 

clinical category, the TAS is also thought to measure a continuum of alexithymia in the general 

population (Bagby et al., 1994b). Higher scores on each of these sub-scales are indicative of poor 

ability to cognitively process emotions. 
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3.3 Psychophysiology 

 

3.3.1 Principles and Technique 

Skin conductance activity is a valid and sensible marker of emotional arousal and an objective 

index of emotional behavior (Boucsein, 1992). It exclusively reflects activity of the sympathetic 

axis of the autonomic nervous system. Eccrine sweat glands are the major contributors to skin 

conductance activity (Boucsein, 1992). While their primary function is thermoregulation, they are 

also responsive to emotional stimuli. Because eccrine sweat glands are most densely situated on 

the palmar and plantar surfaces, emotion-evoked sweating is usually most evident in these areas.  

Assessment of skin conductance activity within the electromagnetically hostile MRI may cause 

distortion or noise in the data collected. In the present experiments, MRI compatible devices 

were used to reduce electromagnetical interference to a minimum (SC5, Psylab, Contact 

Precisions Instruments, Boston, USA). A double-shielded cable protected the analog signal from 

scanner-related artifacts. The analog signal was transferred out of the scanner room using a low 

pass filter (Minicircuits; Model BLP-1.9) at the scanner penetration panel to remove scanner-

related high frequency noise. 

 

3.4 Functional Magnetic Resonance Imaging 

 

FMRI is a non-invasive technique to visualize changes in blood oxygenation in the human brain. 

Regional changes in brain activation can be mapped with a spatial resolution of 2-3 mm and a 

temporal resolution of a few seconds.  

 

3.4.1 Principles and Technique  

The hemodynamic-metabolic approach is based on the fact that neuronal activity is coupled to 

energy metabolism (Sokoloff, 1989). Active neurons consume oxygen, which leads to an increase 

in deoxygenated blood (deoxyhemoglobin). This is immediately followed by an increase in 
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regional cerebral blood flow, which over-compensates the increased oxygen demand. This 

overcompensation leads to an increase in oxygenation and a decrease in local deoxyhemoglobin 

concentration. Due to the paramagnetic properties of deoxyhemoglobin (Pauling & Coryell, 

1936) and its relative change in concentration, the fMRI signal intensity increases. The blood 

oxygen level dependent contrast, termed BOLD by Ogawa (Ogawa et al., 1990) is a complex 

function of cerebral blood flow, blood volume and oxygen consumption and represents an 

indirect measurement of neuronal activity. 

The BOLD contrast was used to image the activated human brain for the first time in 1991 and 

first results using the BOLD contrast for imaging brain function were published in 1992 (Ogawa 

et al., 1992; Kwong et al., 1992; Bandettini et al., 1992; Frahm et al., 1992). However, to date, the 

exact relationship between the measured fMRI signal and the underlying neural activity is still a 

matter of debate. To date it is accepted, that 

the BOLD contrast directly and monotonically reflects neural activity (Logothetis et al., 2001) 

specifically, the BOLD contrast correlates highly with single unit spiking activity as well as local 

field potentials (Mukamel et al., 2005) 

negative BOLD responses are associated with a reduction in neuronal activity and/or 

hemodynamic changes independent of local changes in neuronal activity (Shmuel et al., 2002) 

 

3.4.2 Data Acquisition and Analysis 

For the acquisition of structural and functional images the different relaxation times T1 and T2* 

of different tissues in the head are exploited. T1- and T2*-weighted images are achieved by 

altering two fundamental sequence-timing parameters: the repeat time between subsequent radio 

frequency excitation pulses (TR), and the time to echo following the excitation pulse (TE). A 

high-resolution anatomical image (up to 1 mm3) with good gray-white matter discrimination is 

typically acquired using a gradient echo sequence (e.g. 3D-FLASH). The BOLD contrast used for 

functional images exploits the fact that T2*-relaxation time of brain tissue with reduced 



deoxyhemoglobin concentration is enhanced and the signal strength increased. Rapid acquisition 

of multi-slice whole brain volumes with echo planar imaging allows for fine temporal mapping of 

the dynamics of the BOLD signal change (see Figure 4 for schematic presentation of fMRI 

analysis). 

 

 

Figure 4: FMRI Analysis. The data is analysed based on general linear modelling (GLM), 
known as multiple regression. First row: A general linear model consisting of a number of 
predictor variables denoting the experimental conditions (model) is fitted to individual fMRI 
time series data from T2*-weighted functional images. A weighted sum of these predictor 
variables that produces the closest match to the actual data time series is computed and 
individually fit for every voxel. This gives a unique set of weights (beta coefficients) for each 
voxel which are converted to a Z statistics and thresholded. The statistical map is then 
registered to an average functional image. Second row: To increase spatial resolution an 
high resolution structural image is acquired to which the functional image is registered. 
When single subject analyses are fed into a higher-level group analysis the average high-
resolution image from all subjects is registered to a standard brain (MNI). The transformation 
parameters used are then applied for the registration of the group’s statistic maps to take 
them into standard space (not shown).  
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4 EXPERIMENTS 

 

4.1 The influence of word valence, word arousal, and individual differences in anxiety 

on emotional interference 

 

“Emotional Stroop Test: Effect of Word Arousal and Subject Anxiety on Emotional Interference”. 

Dresler T, Mériau K, Heekeren HR, van der Meer E, 2007. (Submitted) 

 

Introduction and Purpose 

The schematic processing mode is triggered by mere presentation of emotional stimuli using the 

emotional stroop test. The propositional processing mode is triggered by the voluntary 

processing strategy of naming the ink color and is consistent with the emotion regulatory strategy 

of re-directing one’s attention to non-emotional characteristics of a stimuli or situation. 

Consequently, a conflict arises between the two processing modes: bottom-up activation of 

schematic processing interferes with top-down propositional processing. The voluntary 

propositional processing mode requires increased cognitive resources to inhibit powerful and 

automatic bottom-up processes. This conflict is mirrored in longer response times (in naming the 

ink color) when the word to be ignored is emotional compared to when it is neutral (McKenna & 

Sharma, 1995; Sharma & McKenna, 2001; Koven et al., 2003). 

It has been a matter of date whether emotional interference is influenced by valence or arousal. 

Pratto and John (1991) found that negative words lead to longer color naming latencies than 

positive words. The authors argued that negative stimuli attract more attentional resources 

relative to positive stimuli as they are of higher saliency for the individual (Pratto & John, 1991). 

Evidence for an interference effect of positive words is scarce (Pratto & John, 1991; Martin et al., 

1991; Dalgleish, 1995) but has led to the notion that emotional interference may be rather 

explained by arousal and not by valence (Anderson, 2005; Schimmack, 2005). 
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As has been pointed out before (see chapter 1.3.1.) the emotional stroop interference effect of 

emotional stimuli in healthy individuals is further modulated by individual differences in anxiety 

(Richards et al., 1992; Teasdale & Barnard, 1993; Egloff & Hock, 2001). However, it remains 

unclear whether state or trait anxiety or an interaction modulates the emotional interference effect 

(Martin et al., 1991; Egloff & Hock, 2001; Bar-Haim et al., 2007). 

The present study investigates the effects of word valence and arousal, and of individual 

differences in anxiety on emotional interference in a healthy sample. The emotional Stroop test is 

employed while controlling for confounding factors, such as word arousal and individual 

differences in trait and state anxiety. Subsequent to the experiment, subjects were presented with 

a surprise memory task where they had to recall the displayed words. It was hypothesized that the 

emotional interference effect is mediated by arousal and not valence as long as arousal level of 

positive and negative stimuli is kept constant. Similarly, it was predicted that emotional words are 

better remembered than neutral words. It was furthermore hypothesized that trait or state anxiety 

or an interaction increase emotional interference of negative words.  

 

Results and Discussion 

Consistent with the hypothesis (Nr. I, p. 20/21) analyses of response times indicated an 

emotional interference effect for emotional words, independent of word valence. Furthermore, 

interference in color naming was associated with better recall of the emotional as compared to 

neutral words. A regression analysis revealed that not attention but arousal of words predicted 

better memory performance. 

The results support the ‘emotionality hypothesis’, which postulates that both negative and 

positive stimuli cause interference (Martin et al., 1991; Schimmack, 2005). Consequently, 

activation of an emotional schema does not primarily depend on the stimulus’ valence, but on the 

arousal associated with it. The influence of arousal over valence has also been demonstrated for 

memory enhancement for emotional words (Kensinger & Corkin, 2003). Emotionally arousing 
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(pleasant and unpleasant) words had a grater modulating influence on the ‘attentional blink’ 

during rapid serial word presentation as compared to emotional words that were rated low in 

terms of arousal indicating that arousal is a crucial parameter in mediating emotional processing 

(Keil & Ihssen, 2004). More specifically, a study investigating electroencephalographic event-

related brain-potentials during reading of emotional words showed that emotion-related 

enhancement of cortical activity along the dominant processing pathway is due to arousal, rather 

than valence of the stimuli (Kissler et al., 2007).  

Individual differences in state anxiety were associated with emotional interference, that is, 

subjects with higher state anxiety showed increased response times when naming the ink color of 

emotional as compared to neutral words. This is only partially consistent with the hypothesis as 

an effect of trait anxiety or interactive effects of state and trait anxiety were also expected. 

However, the results are in line with a study reporting that state and not trait anxiety modulated 

components of event-related potentials related to attentional processes (Mercado et al., 2006). 

The absence of an effect of trait anxiety may be also due to the overall low trait anxiety level in 

the healthy sample investigated. It was predicted that emotional interference is increased by 

individual difference in anxiety for negative words only. However, inconsistent with the 

hypothesis, emotional interference was increased by individual differences for both negative and 

positive words. How can this finding be explained? According to the dual memory model of 

Philippot et al. (2001, 2004) anxiety lowers the perceptual threshold for perceptual characteristics 

of stimuli that are congruent with the schema, that is, for negative or anxiogenic stimuli features. 

Alternatively, it has been postulated that anxiety generally lowers the perceptual threshold for 

socially relevant signals or cues, independent of their valence (Bradley et al., 1999; Rossignol et 

al., 2005; Bar-Haim et al., 2007). The present findings support the latter notion. 

To conclude, the findings indicate that arousal and not valence of emotional stimuli determines 

emotional interference. Moreover, individual differences in state anxiety enhance emotional 
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interference for emotional words regardless of valence indicating an attentional bias in state 

anxious individual for positive as well as neutral words. 
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4.2 The influence of individual differences in state negative affect on neural correlates 

of passive viewing of aversive stimuli 

 

“Insular activity during passive viewing of aversive stimuli reflects individual differences in state negative 

affect”. Mériau K, Wartenburger I, Prehn K, Kazzer P, Villringer A, van der Meer E, 

Heekeren HR, 2007. (Submitted) 

 

Introduction and Purpose 

The dual memory model of emotion postulates that perceptual processing of negative stimuli 

activates a related emotional schema that triggers autonomic and behavioral body responses 

related to the schema. The model further assumes that, at the neural level, the linkage between 

the schema and its related body responses feed back positively via the perceptual system resulting 

in re-activation of the schema. Furthermore, the individual’s emotional state is known to bias 

attention towards aspects of stimuli or situations that are emotionally relevant or congruent with 

the already activated schema thereby further enhancing activation of the schema (Christianson, 

1992). In other words, the attentional bias in individuals with increased negative affect to 

schema-congruent aversive aspects might feedback in continuous processing of these aspects, 

and might bias the evaluation of the situation toward the already activated emotion (McNally, 

1995). Indeed, such feedback loops among the activation of a fear schema, the production of 

bodily responses, and their positive feedback on the schema have been documented in clinical 

samples (Ehlers et al., 1988; Kenardy et al., 1990). As outlined before, the insula is the neural site 

for the representation of physiological feedback and as a neural basis for a ‘basic feeling state 

(such as negative affect) and the ‘sentient self’ (Craig, 2002; Craig, 2003). 

23 female subjects were monitored using fMRI while passively viewing negative emotional 

stimuli. Individual differences in state negative affect were assessed using the PANAS. To control 

for changes in autonomic arousal associated with the processing of negative emotional material 

skin conductance level was assessed simultaneously. Skin conductance level reflects a general 
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arousal level in contrast to rapid, transient skin conductance responses that occur to novel or 

otherwise salient stimuli and reflect complex attentional processes (Dawson et al., 2000).  

 

Results and Discussion 

Skin conductance level increased in response to aversive relative to neutral pictures. This is in line 

with other studies reporting increased skin conductance activity in response to aversive relative to 

neutral stimuli (Greenwald et al., 1998; Amrhein et al., 2004; Baumgartner et al., 2006a). There 

was no association between skin conductance level and state negative affect in either condition. 

This is contrary to the hypothesis predicting that increased state negative affect is associated with 

enhanced activation of the schema and increased output of the body response system (Nr. II, 

p. 21). Supposedly, the failure to demonstrate an association between state negative affect and 

body responses relates to the scale used to measure state negative affect, since there was little 

range in state negative affect scores. However, consistent with the hypothesis (Nr. II, p. 21), 

individual differences in state negative affect were associated with changes in activity in the insula 

during passive viewing of aversive relative to neutral stimuli. 

The present findings go well together with the results of a recent meta-analysis that found 

negative emotions to activate the left mid insula at coordinates corresponding accurately to the 

location of insular activity found in the present study (Wager et al., 2003). Another meta-analysis 

by Wager & Feldmann-Barrett on the functional specialization of the insula also revealed a 

stronger bias towards left mid insular activation for withdrawal-related emotions (Wager & 

Barrett, 2004). Similarly, individual differences in state anxiety correlate with activity in the left 

mid insula, again, with coordinates of peak activation that correspond to the coordinates of peak 

activation of left mid insula in the present study (Chua et al., 1999). Taken together, these 

findings support our interpretation of a valence-dependent modulation of left middle insular 

activity. 
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How can the finding of covariation of left insular activity with individual differences in state 

negative affect be interpreted? The insula has been implicated in the representation of autonomic 

arousal or more generally in interoception. The physiological feedback of the whole body is 

integrated in the insula, which makes this structure an autonomic and homeostatic center 

(Augustine, 1996; Craig, 2002). Hence, increased activity of the insula in individuals with high 

state negative affect may represent increased output of the body response system, that is, 

autonomic arousal. However, individuals with high state negative affect as compared to 

individuals with low state negative affect did not show increased autonomic arousal in response 

to aversive relative to neutral stimuli. 

So what then is it that is represented in the insula? Insular activity may reflect representation of 

visceral changes other than sympathetically induced changes in skin conductance level, that is, 

representation of parasympathetically induced changes that occur in coordinated opponent 

interaction with sympathetic changes. For instance, stimulation of the left insula results in 

parasympathetic effects (bradycardia and decreases in blood pressure; Oppenheimer et al., 1992). 

Likewise, Craig proposed a forebrain emotional asymmetry whereby the left forebrain is 

associated predominantly with parasympathetic activity, and the right forebrain is associated with 

sympathetic activity (Craig, 2005). In the present study no measures of parasympathetic activity, 

such as deceleration of heart rate were taken. Therefore, it cannot be ruled out the possibility that 

the finding of covariation of left insular activity with individual differences in state negative affect 

may be driven by associated changes in parasympathetic activity. 

Autonomic arousal is only one dimension characterizing emotional experience. Emotional 

experience may also be defined by valence indicating pleasure-displeasure, or hedonic tone 

(Wundt, 1924; Lang et al., 1993; Feldman-Barrett & Russell, 1999). Hence, increased activity of 

the insula in individuals with high state negative affect as compared to individuals with low state 

negative affect may reflect increased processing of hedonic information of the emotional stimuli. 

Studies specifically investigating the neural correlates of valence showed that reports of valence 
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of emotional pictures is associated with left insular activity, that is, insular activity increases with 

reported negative valence (Anders et al., 2004). However, in the present study, converging 

behavioral evidence such as individuals’ ratings of the valence dimension of presented stimuli 

would have provided stronger evidence for the engagement of the insula in valence-dependent 

processing of emotion. 

The dual memory model of emotion assumes that the emotional state of an individual may lower 

the perceptual threshold for stimuli characteristics that are congruent with the already activated 

schema. This is clearly evident in anxious subjects that show an attentional bias towards negative 

information (Mathews & MacLeod, 1985; MacLeod et al., 1986; Mogg et al., 1993; Mercado et al., 

2006). This attentional bias is particularly high in conditions of high state anxiety (Mercado et al., 

2006). Similarly, in the study reported here, individuals with high state negative affect may show 

an attentional bias towards schema-congruent aversive aspects that might feedback in continuous 

processing of these aspects, and biasing the evaluation of the situation toward the already 

activated emotion (McNally, 1995). 

In conclusion, greater recruitment of the insula in response to aversive relative to neutral stimuli 

in individuals with high state negative affect may represent increased processing of the hedonic 

dimension of salient aversive stimuli.  
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4.3 The influence of individual differences in cognitive processing of emotions on 

neural correlates of perceptual decision-making on emotional stimuli 

 

“A neural network reflecting individual differences in cognitive processing of emotions during perceptual 

decision-making” Mériau K, Wartenburger I, Kazzer P, Prehn K, Lammers CH, van der Meer E, 

Villringer A, Heekeren HR, 2006. Neuroimage 33(3), 1016-27. 

 

Introduction and Purpose 

The dual memory model of emotion by Philippot provides an extensive and complex theoretical 

framework that integrates cognitive strategies of emotion regulation into a process model of 

emotion (Philippot & Schaefer, 2001; Philippot et al., 2004). The main focus of this experiment 

was to investigate how individual differences in the ability to cognitively process or regulate 

emotions modulate neural correlates of emotion regulatory strategies.  

The dual memory model of emotion assumes that schematic processing of emotional stimuli as 

well related body responses are triggered automatically through presentation of emotional stimuli 

(Philippot & Schaefer, 2001; Philippot et al., 2004). The authors further postulate that these 

automatic processes may be over-ridden by an effortful propositional processing mode that may 

involve either re-direction of attention to non-emotional characteristics of the emotional stimulus 

or by elaboration of the emotional content of the stimulus. However, these processes may not be 

as straightforward as it first appears. Voluntary re-direction of attention requires increased 

cognitive resources as it involves inhibition of the activation of the schema and hence a conflict 

occurs between automatic schematic processing and the voluntary propositional processing. An 

alternative is to focus willingly on the emotional characteristics of the stimulus and to elaborate 

or label them. Such willful elaboration implies executive processing known to inhibit the 

activated schema and therefore regulates emotional experience. As individuals differ with regard 

to how they regulate or elaborate emotions these individual differences have to be taken into 

account when investigating neural correlates of emotion regulatory strategies. 
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Using fMRI, we investigated the neural correlates of different emotion regulation strategies in 23 

healthy female subjects which differed in their ability to cognitively process emotions as assessed 

using the TAS-26 self-report questionnaire. We employed a perceptual decision making paradigm 

during which subjects had to either re-direct their attention away from the emotional content of a 

stimulus (i.e., making gender decisions on aversive facial expressions) or to elaborate on the 

emotional content of the same stimulus (i.e., making emotion decisions on facial expressions). 

There is behavioral evidence that individuals with impaired ability to cognitively process 

emotions have an affect recognition deficit and are specifically less accurate in identifying 

emotional expressions (Parker et al., 1993; Mann et al., 1994; Lane et al., 1996; Lane et al., 2000). 

To identify brain regions associated with individual differences in the ability to cognitively 

process emotions TAS scores were used as a covariate in the fMRI analysis. TAS scores were 

correlated with activity in the dorsal anterior cingulate cortex during gender decisions, that is, 

individuals with impaired ability to cognitively process emotions showed increased activation of 

the dorsal anterior cingulate cortex during gender decisions. To investigate whether individual 

differences in the ability to cognitively process emotions depend on differences in the functional 

integration of emotional and cognitive brain regions, task-dependent changes in effective 

connectivity of the dorsal anterior cingulate cortex were investigated using a psychophysiological 

interaction analysis (Friston et al., 1997). A psychophysiological interaction analysis accounts for 

the brain’s connectional structure and network functioning by exploring the functional 

interaction of a chosen region (here, the dorsal anterior cingulate cortex) across the whole brain 

and models the contextual modulation of this connectivity (Stephan, 2004). 
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Results and Discussion 

Response times between the two experimental conditions differed with faster response times 

during gender decisions compared to emotion decisions. Error rates did not differ between the 

two experimental conditions. 

At the neural level individual differences in the ability to cognitively process emotions were 

associated with increased activity of the dorsal anterior cingulate cortex during re-direction of 

attention (gender decision). This is partly consistent with our hypothesis (Nr. III, p. 22) 

predicting that individual differences in the ability to cognitively process emotions covary with 

activity in the anterior cingulate cortex during both emotion regulatory strategies. Because neither 

response times nor error rates correlated with TAS score, the covariation of TAS scores with 

activation of the dorsal anterior cingulate cortex cannot be attributed to behavioral effects. 

Analyses of effective connectivity of the dorsal anterior cingulate cortex with regard to individual 

differences in cognitive processing of emotions revealed differences in the coupling of the dorsal 

anterior cingulate cortex with limbic and prefrontal regions, respectively, in subjects with high vs. 

low ability to cognitively process emotions (median split). 

Alteration of anterior cingulate cortex activity in alexithymic subjects in response to emotional 

stimuli has been reported in other neuroimaging studies (Berthoz et al., 2002; Huber et al., 2002; 

Kano et al., 2003). But how can the differential effect of individual differences in the ability to 

cognitively process emotions on emotion and gender decisions be explained? During gender 

decisions only the gender characteristics of the stimulus are task-relevant, however, the emotional 

content of the stimulus carried by the automatically activated schema has higher saliency and 

interferes with the propositional processing of re-directing the attention. A conflict occurs 

between automatic schematic processing and the voluntary propositional processing mode that is 

reflected in increased activity of the dorsal anterior cingulate cortex which has been associated 

with conflict monitoring and cognitive control. The data imply that individuals with difficulties in 

cognitive processing of emotions engage in greater cognitive control to warrant allocation of 
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attentional resources to task-relevant information, i.e. gender characteristics. Indeed, alexithymia 

has been associated with good cognitive control (Keltikangas-Jarvinen, 1987). In contrast, during 

emotion decisions the automatically activated schema carries the emotional information that 

corresponds with the content of the propositional processing mode (elaboration of emotional 

information) and therefore no conflict occurs. 

Consistent with the hypothesis (Nr. III, p. 22), the psychophysiological interaction analysis 

revealed task-dependent changes in effective connectivity of the dorsal anterior cingulate cortex 

with prefrontal and limbic areas, respectively. Most importantly, the dorsal anterior cingulate 

cortex was coupled with the right ventrolateral prefrontal cortex during emotion but not during 

gender decisions. Likewise, activity in the right ventrolateral prefrontal cortex was increased 

during affect labeling as compared to gender labeling suggesting that this regions plays a critical 

role when putting emotions into words (Lieberman et al., 2007). 

Connectivity measures were modulated by individual differences in the ability to cognitively 

process emotions. Individuals with impaired ability to cognitively process emotions show 

decreased connectivity of the dorsal anterior cingulate cortex with prefrontal areas, especially 

with the right ventrolateral prefrontal cortex during both emotion and gender decisions. Activity 

in the ventrolateral prefrontal cortex has been associated with evaluative judgments (Cunningham 

et al., 2003) and is sensitive to individual differences in how subjects typically try to reflectively 

control their responses towards emotionally laden social concepts (Cunningham et al., 2004). 

Thus, decreased connectivity of the dorsal anterior cingulate cortex with the right ventrolateral 

prefrontal cortex may implicate reduced reflective processes, which may give rise to difficulties in 

cognitively processing emotions. 

In contrast, connectivity of the dorsal anterior cingulate cortex with the left amygdala was 

increased in individuals with impaired ability to cognitively process emotions. The amygdala plays 

a significant role during conscious evaluation of emotional faces (Critchley et al., 2000; Gorno-

Tempini et al., 2001; Vuilleumier et al., 2001; Pessoa et al., 2002). For instance, intact amygdala 
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activation is necessary for enhanced activation in visual sensory cortex during processing of 

fearful faces, indicating that increased activation of the visual sensory areas results from 

emotional evaluation of the stimuli by the amygdala (Vuilleumier et al., 2004; Adolphs, 2004). 

This suggests a more general role for the amygdala in directing attention to perceptual 

characteristics needed for accurate evaluation of emotional faces (Anderson & Phelps, 2002; 

Vuilleumier et al., 2004; Adolphs, 2004; Vuilleumier, 2005; Adolphs et al., 2005). Increased 

effective connectivity between the dorsal anterior cingulate cortex and the left amygdala in 

individuals with impaired ability to cognitively process emotions may reflect increased affective 

influence on the dorsal anterior cingulate cortex to enhance information processing by guiding 

attention to salient emotional characteristics. 

In conclusion, neural correlates of re-directing attention to non-emotional characteristics of 

emotional stimuli, but not elaboration of the same stimuli were modulated by individual 

differences in the ability to cognitively process emotions. Moreover, the ability to cognitively 

process emotions relies on the functional integration of brain regions associated with emotional 

and cognitive processing. These data support a theoretical model postulating that impaired ability 

to cognitively process emotions is reflected by a discommunication between prefrontal and 

limbic regions (McLean, 1949). 
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5 DISCUSSION AND CONCLUSION 

  

Whereas the investigation of the neural correlates of dimensions of emotions such as valence has 

received much interest, the study of different processing modes is relatively underexplored 

(Schaefer et al., 2003; Kalisch et al., 2006). What is more, there is considerable variability among 

the experience and expression of emotions (Hamann & Canli, 2004). Studies investigating the 

neural correlates of emotion processing have only recently begun to take these individual 

differences into account. 

The present work aimed at bringing together these two aspects of emotion processing and 

investigated how individual differences in affectivity and in the cognitive processing of emotions 

modulated the behavioral and neural correlates of the schematic and propositional processing 

mode as defined by the dual memory model of emotion (Philippot & Schaefer, 2001; Philippot et 

al., 2004). 

 

The neural correlates of the schematic and propositional processing mode have been investigated 

before in a study using positron emission tomography (Schaefer et al., 2003). Subjects performed 

an emotional mental imagery task while mentally repeating sentences that were assumed to trigger 

schematic and propositional processing of emotions. The results supported the hypothesized 

distinction between the two processing modes: schematic processing was associated with 

increased activity in the ventromedial prefrontal cortex, while propositional processing was 

associated with activity in the anterolateral prefrontal cortex. Similarly, an fMRI study 

investigated the neural correlates of so-called high- and low-level appraisal mechanisms that 

closely correspond to the processing modes defined by Philippot et al. (Kalisch et al., 2006). 

Low-level appraisal (of aversive emotions) was triggered by anticipation of impending pain, 

whereas varying cognitive load through a concurrent, unrelated memory task indirectly 

modulated high-level appraisal of emotion. High-level appraisal was related to activity in the 
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dorsal medial prefrontal cortex/anterior cingulate cortex, whereas in the study by Schaefer et al. 

(2003) corresponding propositional processing was associated with activity in the anterolateral 

prefrontal cortex. The conflicting findings may be explained by the different paradigms used and 

point towards a key difficulty in the identification of the neural correlates of emotional 

processing modes. The triggering of the different processes, particularly the schematic processing 

mode is not straightforward and its operationalization, if feasible at all, may not clearly distinguish 

between processing modes. For instance, although schematic processing is often seen as implicit 

and automatic it does contain stored sensory-type representations and therefore draws on 

working memory resources (Scherer, 2001). No cognitive task triggered propositional processing 

of emotional stimuli, however, propositional processing can also occur automatically. For 

instance, some propositions can be activated at an unconscious level and influence subsequent 

processing of emotional information (Philippot et al., 2004). Moreover, it has been suggested that 

emotion regulatory strategies may be invoked voluntarily as well as automatically as soon as an 

emotional response is elicited (Jackson et al., 2003; Goldsmith & Davidson, 2004). In the 

respective experiment in the present work, subjects were able to freely associate on the contents 

of the emotional stimuli, which may implicate both the activation of propositional processes as 

well as voluntary or automatically evoked emotion regulation strategies. Subliminal presentation 

of stimuli would clearly circumvent the overlap of controlled and automatic processes (LeDoux, 

1996; Ohman, 2005), however such an experimental manipulation would not represent 

naturalistic processing. 

 

Therefore, in the present work schematic processing of emotional information was triggered 

using a passive viewing paradigm to allow the emotional response to develop as naturally as 

possible without top-down interference through propositional processing. Consistent with the 

hypothesis, individuals with high state negative affect showed increased activity in the left insula 

during passive viewing of aversive relative to neutral stimuli. However, inconsistent with the 
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hypothesis state negative affect was not associated with increased autonomic arousal. This 

renders the explanation of insular activity as reflecting increased autonomic arousal rather 

unlikely. Therefore it should rather be interpreted as reflecting increased representation of 

valence or hedonic tone of the emotional experience. In individuals with high state negative 

affect activation of the left insula may represent increased salience or value of aversive stimuli by 

establishing a link between the sensory information of the stimuli with a representation of how 

the stimulus affects the individual’s experiential feeling state. 

 

The core of emotional activation rests within the schema. Hence, regulation of emotion becomes 

a question of modulating the activation of the schema. The dual memory model of emotion 

postulates that schema activation can be regulated by re-direction of attention or elaboration of 

emotional information, emotion regulatory strategies that require controlled processing at the 

propositional level (Philippot et al., 2004). 

At the behavioral level color naming of emotional words as compared to neutral words resulted 

in prolonged response times referred to as emotional interference. This effect was independent 

of valence, but was mainly driven by arousal of stimuli. Emotional interference indicates a 

conflict between the automatic processing of the emotional information at the schematic level 

and the controlled processing of ink color naming at the propositional level. In other words, the 

re-direction of attention from the salient emotional content of the word to non-emotional 

aspects is associated with increased cognitive effort as reflected by prolonged response times. 

Emotional interference, again independent of valence, was modulated by individual differences in 

state anxiety, that is, individuals with increases state anxiety showed increased emotional 

interference. Anxiety is assumed to lower the perceptual threshold for stimuli characteristics 

associated with the anxiogenic schemata resulting in an attentional bias for schema-relevant 

stimuli (Philippot et al., 2004). However, the findings of the present study speak against this 

notion, as emotional interference in high anxious subjects was independent of valence. Rather, it 
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seems that anxiety generally affects the perceptual threshold for arousing stimuli, not only for 

schema-relevant, that is, negative stimuli. 

Alternatively, it may be that increased emotional interference in anxious subjects is not mediated 

by lowered perceptual thresholds but by difficulties in willfully disengaging attention from 

emotional stimuli (Koster et al., 2004). In other words, subjects with increased state anxiety may 

have to expend more cognitive effort to voluntarily execute propositional mechanisms to re-

direct attention to stimuli characteristics such as ink color. A reduced ability to exert top-down 

attentional control on emotional processing has been stated for anxiety (Derryberry & Reed, 

2002). Likewise, high state-anxious individuals or individuals with high negative affect exhibit 

greater difficulties in disengaging attention from emotional stimuli (Compton, 2000; Fox et al., 

2001) or show an reduced ability to inhibit the processing of emotional information (Fox, 1994; 

Yiend & Mathews, 2001; Fox et al., 2005; Koster et al., 2006).  

 

At the neural level the propositional processing mode was triggered by asking the subjects to 

either re-direct their attention or to elaborate emotional information, note that both are strategies 

of emotion regulation. Impaired ability to cognitively process emotions is considered to be a 

disorder of emotion regulation. In the respective experiment of the present study it was therefore 

predicted that individual differences in cognitive processing of emotions would covary with 

regional brain activity during both re-direction of attention or elaboration of facial expression. 

However, contrary to the expectations individual differences in cognitive processing of emotions 

only covaried with dorsal cingulate cortex activity during re-direction of attention. This region 

has been implicated in conflict monitoring (Carter et al., 1998; van Veen & Carter, 2002) and 

signals a need to intensify or re-direct attention or control (Botvinick et al., 2004). In the present 

experiment a conflict occurred between the bottom-up processing at the schematic level (salient 

emotional faces) and the top-down processing at the propositional level (gender decision). The 

findings suggest that individuals with impaired ability to cognitively process emotions engage in 
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greater cognitive control to warrant allocation of attentional resources to task-relevant 

information, i.e. gender characteristics. Indeed, alexithymia has been associated with good 

cognitive control (Keltikangas-Jarvinen, 1987). 

In contrast, during elaboration of emotional information individual differences in cognitively 

processing emotions did not covary with activity in the dorsal anterior cingulate cortex. This is 

because the perceptual information processed at the schematic level (emotional characteristics) 

corresponded to the perceptual information processed at the propositional level and thus no 

conflict occurs. 

 

The findings both at the behavioral and at the neural level indicate that emotion regulatory 

strategies are differentially modulated by individual differences in state anxiety and in the 

cognitive processing of emotions. Re-direction of attention is associated with increased cognitive 

effort both in state anxious individuals and in individuals with difficulties in cognitive processing 

of emotions. In contrast, elaboration of emotional information appears not to be associated with 

increased cognitive effort. However, this has only been established at the neural level. At the 

behavioral level, it would be interesting to investigate the effect of emotional elaboration on 

response times during an emotional stroop task, that is, to ask the subjects to label emotional 

words in terms of valence (positive vs. negative). Shortened response times during emotional 

elaboration as compared to color labeling would represent a facilitation effect, devoid of conflict. 

The findings point towards a qualitative difference in the effectiveness of emotion regulatory 

strategies. Findings at the neural level indicate that re-direction of attention as compared to 

elaboration of emotional information may represent a less effective emotion regulatory strategy in 

individuals with difficulties to cognitively process emotions.  

Indeed, experimental and individual difference studies found various strategies to be differently 

effective (Gross, 1998b; Jackson et al., 2000). At the neural level, cognitive distraction during 

anticipation of emotional states effectively down-regulates aversive emotion processing but is not 
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equally effective during actual emotion processing (Erk et al., 2006). This indicates that emotion 

regulatory strategies may be differentially effective at different time points of the unfolding 

emotional response. 

Future research will have to address the methodological issues raised so far. Emotional processes 

consist of automatic and controlled processes that operate in isolation or simultaneously 

depending on the level of processing, the time line of the emotional response and the 

experimental condition. Thus, one has to carefully think about how to trigger schematic and 

propositional processing to be able to clearly differentiate them, if this is possible at all. For 

instance, with regard to controlled processes it should be noted that levels of abstractness and 

complexity of propositional processing of emotions (e.g. affect labeling vs. reappraisal, denial, 

suppression) may have different consequences on behavioral outcomes and brain activations 

(Gross, 1998b; Gross, 2002; Ochsner et al., 2002; Ochsner & Gross, 2005; Lieberman et al., 

2007). 

Research on the effectiveness of different emotion regulatory strategies and its behavioral and 

neural correlates should directly compare various regulation strategies (e.g., elaboration of 

emotion, reappraisal, re-direction of attention). Combining psychophysiological and 

neuroimaging methods with individual differences measures in emotion regulation may certainly 

yield valuable information on emotion regulation and its subcomponents. 

Moreover, for a complete account of emotion processing the inclusion of positive emotional 

stimuli should be considered as there is evidence showing that positive and negative emotions 

may be processed differently with regard to hemisphere (right vs. left) (for reviews see Davidson, 

1993; Davidson & Irwin, 1999) and gray matter (cortical vs. subcortical) (Paradiso et al., 1999). 

Also, emotion regulation processes appear to depend on different neural circuits when regulating 

positive or negative emotions (Kim & Hamann, 2007; Erk et al., 2007). 

As the emotional experience is characterized by changes at i) the physiological level, ii) the 

expressive-motor level, and iii) the level of subjective experience, controlling for variables such as 
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autonomic arousal, motor-response tendencies and individual differences is essential not to relate 

brain activations to idiosyncratic demands of the experimental design employed but rather to the 

emotional state induced (Barrett & Wager, 2006). For instance, individual differences in 

affectivity such as positive affect, extraversion/neuroticism (Canli et al., 2002; Canli et al., 2004; 

Eisenberger et al., 2005), or in the cognitive processing of emotions (e.g., reappraisal 

mechanisms, repression/sensitization and rumination; Siegle et al., 2002; Ray et al., 2005; Rauch 

et al., 2007) as well as individual differences in self-relevance or salience of emotional stimuli may 

differentially affect behavioral and neural correlates of emotion processing and should be 

carefully distinguished and systematically investigated. With regard to individual differences a 

gender balanced approach is indispensable as gender differences in the processing of emotions 

have been shown at the behavioral, psychophysiological and neural level (George et al., 1996; 

Killgore & Yurgelun-Todd, 2001; Bradley et al., 2001; Piefke et al., 2005, for a review see Cahill, 

2006). 

 

In conclusion, the present work identified the behavioral and neural correlates of the schematic 

and propositional processing mode and how these are modulated by individual differences in 

affectivity and in the cognitive processing of emotions. The approach to test hypotheses derived 

from psychological frameworks of emotions with neuroscientific methods is a promising 

approach to improve our understanding of human emotional experience. 
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Abstract 

 

Inconsistent findings regarding the emotional Stroop effect in healthy subjects may be explained 

by confounding effects of stimulus valence and arousal, and individual differences in anxiety. 

Here, we examined reaction time data in a healthy sample using the emotional Stroop task while 

carefully matching arousal level of emotional words. Independent of valence, emotional words 

elicited emotional interference, indicating that arousal determines emotional interference. 

Furthermore, independent of valence, emotional words were better recalled and recognized than 

neutral words. With regard to individual differences in anxiety we found that state anxiety was 

associated with emotional interference, that is, subjects with high state anxiety showed greater 

interference than subjects with low state anxiety. There was no influence of trait anxiety. These 

findings indicate that the emotional Stroop interference effect is mediated by word arousal and 

not word valence. Furthermore, subjects’ state anxiety influences emotional interference of highly 

arousing words by biasing attentional resources. 



  

Introduction 

 

Emotional processes have an essential influence on cognitive processes (e.g., Oatley & Jenkins, 

1996). One experimental procedure to investigate interference effects of emotional material on 

cognitive processing is the emotional Stroop test (e.g., Williams, Mathews & MacLeod, 1996), a 

modified version of the classical Stroop Test (Stroop, 1935). Here, subjects have to name the ink 

colour of emotional and neutral words as fast and accurately as possible, while at the same time 

ignoring the meaning of the word. A slowing of naming the ink colour of emotional words 

compared to naming the ink colour of neutral words has been labeled the emotional Stroop 

interference effect. Longer colour-naming latencies for emotional relative to neutral words are 

proposed to indicate allocation of attentional resources towards the emotionally salient 

information (Williams, Watts, MacLeod & Mathews, 1997). Such an attentional bias for 

emotional stimuli was also shown with pictures (Schimmack, 2005) and other tasks used in 

attention research, e.g. the dot probe task and the spatial cueing task (see Bar-Haim, Lamy, 

Pergamin, Bakermans-Kranenburg & van IJzendoorn, 2007). 

However, there is some inconsistency in the literature on which parameter determines 

interference of emotional material. For instance, it is not clear whether the interference effect 

depends on valence or arousal of emotional material (Schimmack, 2005). 

With regard to valence, Pratto and John (1991) found that negative words led to longer colour-

naming latencies than positive words. The authors argued that negative stimuli attract more 

attentional resources relative to positive stimuli (Pratto & John, 1991) and thereby interfere with 

cognitive processes. This so-called attentional negativity bias has been confirmed by a number of 

studies using the emotional Stroop test (e.g., McKenna & Sharma, 1995; Sharma & McKenna, 

2001). However, there is less consistent evidence for an interference effect of positive words 

(Dalgleish, 1995; Martin, Williams & Clark, 1991; Pratto & John, 1991). A study by Pratto (1994) 

revealed that also highly arousing positive words elicited emotional interference. Similarly, 



  

Schimmack (2005) reported that interference elicited by emotional pictures could only be 

explained by arousal level and not by valence. A study by Anderson (2005) using the attentional 

blink paradigm also indicates that arousal may be of greater importance in determining 

interference than valence of emotional stimuli. For instance, subjects tend to focus longer on 

arousing pictures than on less arousing ones, independently of their valence (Lang, Greenwald, 

Bradley & Hamm, 1993).  

To summarize, there is evidence, that arousal of emotional stimuli is of greater importance than 

valence in determining interference effects of emotional stimuli. 

However, when investigating the effects of valence and arousal on emotional interference, one 

has to control for the confounding factor of (inherently) higher arousal levels of negative stimuli 

(Compton, Banich, Mohanty, Milham, Herrington, Miller, Scalf, Webb & Heller, 2003; Martin et 

al., 1991). A study by Compton et al. (2003) controlling arousal level of positive and negative 

word stimuli showed that highly arousing stimuli elicited greater interference than stimuli with 

low arousal, however, the effect was more pronounced for negative words. To further elucidate 

whether the emotional Stroop interference effect in healthy subjects is mediated by valence or 

arousal, we used negative and positive words that were comparable in arousal level in an 

emotional Stroop experiment. 

Furthermore, individual differences in affectivity, such as trait or state anxiety may also account 

for inconsistent findings concerning the emotional interference effect in healthy subjects. 

Interestingly, the emotional Stroop interference effect is more robust and pronounced in clinical 

populations suffering from anxiety disorders compared to healthy subjects (Sharma & McKenna, 

2001, Williams et al., 1996). However, there is evidence that anxiety may also be an important 

factor in moderating the emotional interference effect in healthy subjects (Bar-Haim et al., 2007; 

Egloff & Hock, 2001; Richards, French, Johnson, Naparstek & Williams, 1992). Anxiety can be 

differentiated in trait and state anxiety whereas trait anxiety reflects a more general and relatively 

stable tendency to respond with anxiety, while state anxiety represents a more transitory and 



  

temporary condition of anxiety that can differ between situations (Laux, Glanzmann & 

Spielberger, 1981). With regard to trait anxiety, Richards et al. (1992) showed that healthy 

subjects with a high trait anxiety displayed a higher emotional interference effect than subjects 

with low trait anxiety. Similar findings were obtained by Dawkins & Furnham (1989), Dalgleish 

(1995) and others (see Williams et al., 1996 for a review), whereas Martin et al. (1991) and Egloff 

and Hock (2001) did not find an effect of trait anxiety. Only few studies examined the influence 

of subjects’ state anxiety. They report an association of state anxiety with emotional interference 

similar to that found for trait anxiety (Bar-Haim et al., 2007). A study investigating the interactive 

effects of both trait and state anxiety did not find a direct effect of trait or state anxiety on the 

emotional interference effect in a healthy sample, but reported a significant interaction between 

trait and state anxiety on emotional interference such that high state anxiety potentiates 

interference in high trait anxious subjects but reduces it in low anxious subjects (Egloff & Hock, 

2001). 

 

The present study aimed at further elucidating whether the emotional interference may be 

explained by word valence or word arousal. Furthermore, we investigated the influence of 

individual differences in anxiety on emotional interference in a healthy sample. We therefore 

conducted an experimental study using the emotional Stroop test controlling for potentially 

confounding factors, such as word arousal and individual differences in trait and state anxiety. 

We hypothesize that the emotional interference effect is mediated by arousal and not valence, 

that is, colour-naming latencies for negative and positive words will not differ when controlling 

for word arousal. Furthermore, we predict an influence of trait and state anxiety on emotional 

interference. 



  

Methods 

 

Subjects 

Fifty university students (30 female, 20 male, age: 25.2 ± 3.3 years (mean ± standard deviation, 

SD) participated in the study. All subjects were enrolled at university or had already graduated. 

Female and male subjects did not differ with regard to age (female: 25.4 ± 3.3; male: 24.9 ± 3.4; 

t(48) = 0.604, p = 0.549). Individual differences in state and trait anxiety were assessed using the 

German version of the State-Trait Anxiety Inventory (STAI, Laux et al., 1981). Female and male 

subjects did not differ with regard to trait (female: 37.4 ± 6.2; male: 37.0 ± 5.1, t(48) = 1.421, 

p = 0.126) or state anxiety (female: 33.9 ± 7.4; male: 33.1 ± 4.9, t(48) = 0.404, p = 0.688). Based 

on self-reports forty-six subjects were right-handed, four female subjects were left-handed and 

one female ambidextrous.  

 

Stimulus Material 

In a pilot study (n = 47; age: 27.0 ± 7.6 years) 300 selected nouns were rated with regard to 

valence and arousal using seven point rating scales. Out of these 300 nouns 20 negative words 

(e.g., burglary, victim; valence: –2.21 ± 0.38; arousal: 4.26 ± 0.12), 20 positive words (e.g., humour, 

party; valence: 1.81 ± 0.58; arousal: 4.27 ± 0.34) and 20 neutral words (e.g., oats, coil; 

valence: 0.12 ± 0.25; arousal: 1.66 ± 0.35) were chosen for the emotional Stroop test. Positive 

and negative words did not differ with regard to arousal (Bonferroni corrected t-tests: 

t(38) = 0.105, p = 1.0), however, they were more arousing than neutral words (negative vs. 

neutral: t(38) = 31.068, p <.001; positive vs. neutral: t(38) = 23.795, p <.001). Negative, positive, 

and neutral words were comparable for number of letters (F(2, 57) = 1.139, MSE = 2.648, 

p = 0.327), syllables (F(2, 57) = 0.064, MSE = 0.262, p = 0.938) and frequency (The CELEX 

database, F(2, 57) = 0.058, MSE = 2313.390, p = 0.943), respectively. 

  



  

Procedure 

Emotional and neutral words in red, green, yellow, and blue colour were displayed separately on a 

black computer screen. Subjects were seated in a chair in approximately 70 cm distance to the 

screen. The luminance of colours of words was comparable (3 Candela/m2) as measured with a 

luminance meter (Gossen company, type MAVOLUX digital). Subjects had to bimanually 

indicate the ink colour of the presented words using four keys of a standard computer keyboard 

(left hand: Z & X; right hand: . & <), while ignoring the meaning of the word. Words were 

presented on the screen until a response was given. Assignment of colours to keys was 

counterbalanced across subjects. 

The experiment consisted of two runs, with each run containing four blocks of neutral, positive 

and negative words, respectively (in total twelve blocks). A block design was chosen, because it 

proved to be the best method to elicit emotional interference in healthy non-anxious subjects in 

comparison to a random and event-related stimulus presentation (Bar-Haim et al., 2007). Order 

of blocks was pseudo-randomised in an ABCBAC fashion (A = neutral, B = positive, 

C = negative) to avoid consecutive presentation of blocks of the same valence. Within each block 

ten words (trials) were presented. Order of trials was pseudo-randomised to avoid that 

consecutive trials elicited the same manual response. In total, subjects were exposed to 80 

negative, 80 positive and 80 neutral words. Before each block a fixation cross was presented for 

6 s, trials were separated by a fixation cross displayed for 1.5 s. 

As a training phase, subjects performed the classical Stroop task prior to the experiment. The 

classical Stroop task consisted of two blocks: during the first block 60 congruent items (twelve 

practice trials, 48 test trials, e.g., the word “red” written in red colour), whereas during the second 

block 48 incongruent items (e.g., the word “red” written in blue colour) were displayed. 

Subsequent to the emotional Stroop test, subjects were asked to recall and recognize the 

presented words in a surprise memory and recognition test (there was no instruction before the 

experiment to memorize the words). In the surprise memory test they were asked to write down 



  

all the words they remembered. In the surprise recognition test, each of the 60 word stimuli from 

the experiment were presented with a distractor item and subjects had to indicate which one was 

originally presented in the experiment (e.g., oats vs. boat). Presentation of word pairs was pseudo-

randomized, as was the screen position (top or bottom) of the target word. Distractor items were 

matched with target items in terms of valence and grammatical category (noun). Target and 

distractor items did not differ for number of letters (t(118) = .277, p = 0.782), syllables (t(118) = 

.173, p = 0.782) and frequency (The CELEX database, t(112) = 1.550, p = 0.124). 

 

 

Results 

 

Reaction time data and error rates 

Colour-naming errors (1.8%) and consecutive trials were eliminated from the data set. Individual 

reaction times of more than two standard deviations from a subject’s mean were also excluded 

from further analysis (4.9%). Mean reaction times and error rates for negative, positive and 

neutral words, respectively are displayed in Table 1. 

 

Insert Table 1 

 

Reaction time data and error rate data were submitted to a repeated measure ANOVA. An alpha 

level of 0.05 was set throughout for all statistical tests. Reaction times were influenced by the 

experimental conditions (F(2, 98) = 7.074, MSE = 591.410, p = 0.001). Emotional words elicited 

longer reaction times than neutral words (t(49) = 3.106, p = 0.003). With regard to valence, post-

hoc comparisons (Bonferroni corrected) revealed that reaction times for positive and negative 

words were significantly longer than for neutral words (positive: t(49) = 2.488, p = 0.049; 

negative: t(49) = 3.431, p = 0.004). Reaction times did not differ significantly between negative 



  

and positive words (t(49) = 0.769, p = 1.0). There was no effect of experimental conditions on 

error rates (F(2, 98) = 1.306, MSE = 1.690, p = 0.276), that is, there was no speed-accuracy trade-

off. 

To investigate the magnitude of the emotional Stroop effect, we calculated an emotional 

interference score, defined as the difference between mean reaction times for neutral and 

negative words (RTnegative - RTneutral = 14.25 msec, SD = 40.49) and for neutral and positive words 

(RTpositive -RTneutral = 17.06 msec, SD = 35.16), respectively (see Table 1). The mean interference 

score for emotional words independent of valence was RTemotional - RTneutral = 15.65 msec 

(SD = 35.63). All interference scores were significantly different from zero (t(49) = 2.488, 

p = 0.016; t(49) = 3.431, p = 0.001; t(49) = 3.3106; p = 0.003) and did not differ significantly 

from each other (p = 0.446). We used Cohen’s formula for dependent measures (d = M1-

M2/SDDifference*√2) to calculate the effect sizes of interference scores (Cohen, 1988). The effect 

sizes were d = 0.49 for negative vs. neutral, d = 0.68 for positive vs. neutral and d = 0.61 for 

emotional vs. neutral words and are comparable to those reported by Bar-Haim et al. (2007). 

Reliability of emotional interference scores was tested using the split-half method. Interference 

scores from the first half of each run were correlated with the interference scores from the 

second half. Split-half reliability amounts to 0.76 (Spearman-Brown corrected), which is above 

the reliability scores for interference scores using a retest design with a one-week interval (Eide et 

al., 2002). 

To summarize, reaction times did not differ between negative and positive words that were equal 

in arousal. However, reaction times for negative and positive words were both longer than for 

neutral words. 

 

Individual differences in trait and state anxiety 

Individual differences in trait and state anxiety were assessed using the STAI (Laux et al., 1981). 

The mean trait anxiety score in our sample was 36.42 (SD = 5.83), the mean state anxiety score 



  

33.56 (SD = 6.53). Trait anxiety scores were normally distributed (Kolmogorov- Smirnov-

Test = 0.659, p = 0.778), however, state anxiety scores were not (Kolmogorov-Smirnov-

Test = 1.373, p = 0.046). Trait anxiety did not correlate with emotional interference (Pearson 

correlation r(50) = 0.24, p = 0.089). Conversely, state anxiety correlated with emotional 

interference (Spearman’s rho ρ(50) = 0.41, p = 0.003). 

To investigate effects of both trait and state anxiety on emotional interference we conducted a 

regression analysis with state and trait anxiety and its interaction term (after standardization) as 

continuous predictors of emotional interference. This regression model was significant 

(F(3, 46) = 3.643, p = 0.019, R2 = 0.192), and revealed a significant effect of state anxiety 

(ß = 0.41, p = 0.024), but no effect of trait anxiety or the interaction term (both ß < .05, ns). 

To summarize, individual differences in state anxiety influenced emotional interference, however 

trait anxiety did not and there were no interactive effects of state and trait anxiety. 

 

Memory data 

There was a significant effect of experimental conditions on free recall (F(2, 98) = 31.042, 

MSE = 2.141, p < 0.001). Bonferroni corrected post-hoc t-tests revealed that negative (M = 3.44, 

SD = 1.85) und positive words (M = 3.88, SD = 2.23) were better recalled than neutral words 

(M = 1.70, SD = 1.74) (negative vs. neutral: t(49) = 6.127, p < 0.001; positive vs. neutral: 

t(49) = 6.888, p < 0.001). There was no difference between negative and positive words 

(t(49) = 1.596, p = 0.351). 

Recognition of negative, positive and neutral words was above chance (t(49) > 24.000, p < 0.001). 

There also was a significant effect of experimental conditions on recognition (F(2, 98) = 16.224, 

MSE = 2.714, p < 0.001). Post-hoc t-tests revealed that negative (M = 17.50, SD = 1.94) and 

positive words (M = 17.06, SD = 2.07) were better recognized than neutral words (M = 15.70, 

SD = 2.72) (negative vs. neutral: t(49) = 4.950, p < 0.001; positive vs. neutral: t(49) = 4.131, 



  

p < 0.001). There was no difference between negative and positive words with regard to memory 

performance (t(49) = 1.509, p = 0.413). 

To control for the possibility of attention-mediated (instead of arousal-mediated) memory effects 

we conducted a regression analysis with a combined memory score for each word (sum of free 

recall and recognition score) as the to-be-predicted variable, and with words’ mean reaction times 

and arousal scores as predictors (Lang et al. 1993). The regression model was significant 

(F(2, 57) = 8.827, p < 0.001, R2 = 0.236). However, only arousal scores predicted memory 

performance (ß = 0.38, p = 0.002) indicating that attention-mediating effects were irrelevant with 

regard to memory performance. There were no significant gender differences in the memory 

tasks. 

 

 

Discussion 

 

In this experiment we investigated whether the emotional Stroop interference effect is 

determined by either word valence or word arousal. Furthermore, we investigated the influence 

of individual differences in anxiety on emotional interference. 

Consistent with our hypothesis we found an emotional interference effect for emotional words, 

independent of word valence. The surprise memory and recognition test revealed that emotional 

words were better recalled and recognized as compared to neutral words and this effect was not 

mediated by attention, but by arousal. With regard to individual differences in anxiety, we found 

that state anxiety was associated with emotional interference, that is, emotional interference was 

increased in subjects with high state anxiety. Trait anxiety had no influence on emotional 

interference. 

 



  

The results of the present study revealed a significant emotional interference effect for both 

negative and positive words, which were controlled for arousal. Ink colour-naming latencies did 

not differ between negative and positive words, thus, emotional interference occurred when word 

arousal was high, independent of word valence. Our results are in line with the findings by 

Compton et al. (2003) showing an arousal effect for negative and, albeit to a lesser degree, for 

positive words. Moreover, the effect sizes for the interference effects (about .50) in the present 

study are in line with the effect sizes reported in a recently published meta-analysis on emotional 

interference (Bar-Haim et al., 2007). This meta-analysis (including 172 studies) examined the 

conditions of threat-related attentional biases in anxious and non-anxious subjects under a variety 

of experimental conditions. They report a reliable attentional bias for different paradigms in 

anxious subjects. Interestingly, with regard to the emotional Stroop task they report that only 

blocked presentation of emotional words elicits emotional interference in non-clinical control 

subjects whereas mixed presentation did not. Similarly, in our study emotional interference 

occurred with a blocked presentation of emotional words of the same valence. 

 

The emotional interference effect may be explained by the ‘threat hypothesis’, which postulates 

that only threatening (i.e., negative) material causes interference (Pratto & John, 1991; Martin et 

al., 1991; Schimmack, 2005). Alternatively, the ‘emotionality hypothesis’ postulates that emotional 

material, that is, both negative and positive stimuli cause interference (Martin et al., 1991; 

Schimmack, 2005). Here, emotionality is defined as an intensity aspect of emotion, that is, arousal 

(Martin et al., 1991). The interference effect may reflect increased allocation of attentional 

resources to emotional stimuli (Pratto & John, 1991). More specifically, it has been argued that an 

increase in arousal in response to a relevant emotional stimulus reflects the increase in processing 

capacity that facilitates further processing of a relevant stimulus. Thus, the interference effect 

reflects the reallocation of attentional resources to the emotional stimulus to allow for a more in-



  

depth processing of stimuli that may be of relevance for adaptive behaviour of an individual 

(Schimmack, 2005; Scherer, 2001, Pratto & John, 1991).  

 

Individual differences in state anxiety were associated with the magnitude of the emotional 

interference effect, that is, subjects with higher state anxiety showed increased emotional 

interference. Anxiety is associated with an automatic allocation of attentional resources to threat-

related stimuli (Williams et al., 1997) and thereby binds cognitive resources. Our findings indicate 

that state anxiety, as a stimulus limited and a temporally acute emotional state has an essential 

influence on emotional interference in healthy subjects. This is in accordance with other studies 

investigating the effect of state anxiety on emotional interference (for a review see Bar-Haim et 

al., 2007). 

In contrast, individual differences in trait anxiety had no influence on the emotional interference 

effect in the present study. This is in line with the findings by Martin et al (1991) and by Egloff 

and Hock (2001) who did not report an effect of trait anxiety on emotional interference in a 

healthy sample (Egloff & Hock, 2001; Martin et al., 1991; but see Bar-Haim et al., 2007; Richards 

et al., 1992; Williams et al., 1996). The failure to demonstrate an association between trait anxiety 

and emotional interference may relate to the scale used to measure anxiety, since there was little 

range in trait anxiety scores in our sample (SD in t norm equivalent: 5.98) compared to the 

representative norm sample (Laux et al., 1981).  

 

During the free recall and recognition memory tests, significantly more emotional words than 

neutral words were recalled and recognized. There was no difference in the number of recalled 

and recognized emotional words with regard to valence, which is in line with the reaction time 

data confirming an influence of arousal and not valence on processing of emotional information. 

An ‘emotional memory enhancement effect’ has been shown for a wide range of emotional 

material including pictures, words, and narrative tales (e.g., Hamann, 2001). Arousal level of 



  

emotional words was higher than for neutral words, which may account for this memory 

enhancement effect. Indeed, arousing stimuli increase memory performance, that is, pictures that 

were rated as highly arousing are better remembered than less arousing pictures (Bradley, 

Greenwald, Petry & Lang, 1992). Alternatively, the memory effect may be explained by an 

attentional bias for emotional words in the emotional Stroop test, meaning that emotional words 

were better remembered and recognized because they were processed in more depth. However, 

the regression analysis revealed that only the arousal scores but not the different word reaction 

times were significant predictors of the combined memory score, indicating that memory 

performance is mediated by word arousal and not attention. 

Further research on the interference effect of emotional material should consider subject 

characteristics (e.g. affectivity) and stimuli characteristics (e.g. arousal, dominance). For instance, 

it remains to be elucidated how individual differences in affectivity, such as negative or positive 

affect, depressive symptomatology and individual differences in coping styles (repression, 

sensitization) contribute to emotional interference effects (Bar-Haim et al., 2007). With regard to 

stimulus associated arousal, the additional assessment of psychophysiological changes (e.g., skin 

conductance, Lang et al., 1993) may aid to reveal the influence on arousal in cases where self-

reported and objectively measured arousal dissociate as they do in repression (Asendorpf & 

Scherer, 1983). 
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Table 1. Reaction times (in milliseconds) and error rates for negative, positive and neutral word (N = 50). 
 

 Negative Positive Neutral 

Mean reaction times (± SD) 733.59 (±132.70) 736.41 (±126.07) 719.35 (±109.37) 

Mean error rates (± SD) 1.68 (±1.91) 1.26 (±1.32) 1.48 (±0.85) 

 

SD = standard deviation 
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Abstract 

 

Background 

People differ with regard to how they perceive, experience, and express negative affect. While 

trait negative affect reflects a stable, sustained personality trait, state negative affect represents a 

stimulus limited and temporally acute emotion. So far, little is known about the neural systems 

mediating the relationship between negative affect and acute emotion processing.  

Methodology/Principal Findings 

To address this issue we investigated how individual differences in state negative affect are 

reflected in changes in blood oxygen level-dependent responses during passive viewing of 

emotional stimuli in a healthy female sample. To assess autonomic arousal we simultaneously 

recorded changes in skin conductance level. At the psychophysiological level we found increased skin 

conductance level in response to aversive relative to neutral pictures. However, there was no 

association of state negative affect with skin conductance level. At the neural level we found that 

high state negative affect was associated with increased left insular activity during passive viewing 

of aversive stimuli.  

Conclusions/Significance 

The insula has been implicated in interoceptive processes and in the integration of sensory, 

visceral and affective information thus contributing to subjective emotional experience. Greater 

recruitment of the insula in response to aversive relative to neutral stimuli in subjects with high 

state negative affect may represent increased processing of salient aversive stimuli. 



  

Introduction 

 

Perception, experience, and expression of emotions are subject to great interindividual variability. 

The identification of the neural correlates of these aspects of emotions may therefore crucially 

depend on the specific sample and their characteristics in emotion processing [1,2]. Accordingly, 

findings from neuroimaging studies concerning the neural correlates of emotions are often 

inconsistent. Relating individual differences in emotional reactivity or emotional experience to 

brain imaging data derived from group analyses will not only aid to clarify conflicting findings but 

may reveal the precise nature of neural mechanisms involved in emotion processing [3–7]. 

When individuals are asked to report on their emotional states, negative affect emerges as a 

higher order factor in factorial analyses and generally reflects subjective distress [8]. Negative 

affect can be differentiated into trait and state negative affect and is a common factor of both 

anxiety and depression [9]. Trait negative affect reflects a stable personality trait, that is, a negative 

emotional activation, which is sustained and not bound to discrete cues. In contrast, state negative 

affect is stimulus limited and a temporally acute emotion.  

At the neural level individual differences in trait negative affect have been associated with 

increased cerebral blood flow during resting state in the bilateral ventromedial prefrontal cortex 

[10] and in the amygdala [11]. Greater increases in amygdala response during active maintenance 

of a negative mood are associated with subjects’ self-reported trait negative affect [12]. Trait 

negative affect may be implemented by plastic changes of the brain, whereas a momentary 

change of mood (i.e., state negative affect) allowing for short-lived cognitive, behavioral, and 

physiological adaptation may be differentially represented. However, so far it remains unclear 

how individual differences in state negative affect are instantiated at the neural level. 

 

As outlined above, feelings such as anxiety and sadness/depression can be subsumed under 

negative affect [9]. Several imaging studies have reported insular activation to be modulated by 



  

negative affect. In healthy subjects, individual differences in anxiety modulate activity of the 

amygdala during unconscious processing of threat-related stimuli [13], as well as during conscious 

processing of fearful faces [14]. It has recently been proposed that the insula plays a key role in 

anxiety proneness [15]. For instance, anxiety–prone healthy subjects show greater responses in 

the bilateral insulae during anticipation of aversive pictures compared to non-anxious subjects 

[16]. 

Sadness, the other major constituent of negative affect, also modulates insular activity. Sadness 

induced by autobiographical memory scripts of past sad events in healthy female subjects 

activates the left insula, amongst other regions [17]. Moreover, individual differences in sadness 

correlate positively with activity in the right insula and the right temporal pole [1]. In females, 

transient sadness is associated with increased activation in the left insula and left amygdala [18]. 

Two PET studies also report on insular activation during self-induced sadness [19,20].  

Altered insula functioning has also been shown in both patients with manifest anxiety disorders 

and clinical depression. For instance, patients with social phobia show increased insular activity 

during anticipation of a public speaking task as compared to healthy controls [21]. Another fMRI 

study reports increased activation in the right insula and right amygdala, amongst other regions, 

during down-regulation of sadness in patients with major depressive disorder [22]. Moreover, in 

these patients remission of a depressive episode after pharmacological treatment is characterized 

by metabolic decreases in the bilateral insulae and subgenual cingulate cortex [20,23].  

 

In sum, both in healthy and clinical populations altered insula activation seems to play a crucial 

role in anxiety and sadness, that is, in negative affect. As outlined above, negative affect can be 

differentiated into state and trait negative affect. Therefore, the goal of the present study was to 

investigate how individual differences in state negative affect are represented at the neural level 

during exposition to aversive stimuli. To address this issue, we monitored blood oxygen level-

dependent (BOLD) responses in a healthy female sample during passive viewing of aversive 



  

stimuli. To investigate changes in autonomic arousal, we simultaneously measured skin 

conductance level. Individual differences in state negative affect were assessed using the Positive 

and Negative Affect Scale (PANAS) [24]. Based on the findings cited above, we hypothesized 

that individual differences in state negative affect correlate positively with activity in limbic and 

paralimbic regions, such as the insular cortex and the amygdala during exposition to aversive 

stimuli. At the psychophysiological level we found increased skin conductance level in response 

to aversive relative to neutral pictures. However, there was no association between skin 

conductance level and state negative affect, or difference in skin conductance level between 

subjects with high and low state negative affect, respectively. Furthermore, we found that 

individual differences in state negative affect were associated with activity in the left insula. 

 

 

Methods 

 

Subjects 

Gender differences in emotion processing have been reported at the psychophysiological level. 

Women show greater reactivity in response to aversive stimuli compared to men [25] and they 

also show differential activation patterns at the neural level [26–28] (for a review see [29]). 

Therefore, only female subjects were included in the present study. 23 healthy female subjects 

without any history of neurological or psychiatric disorders participated in the experiment 

(27.1 ± 4.7 years, mean ± SD). They were all right-handed as assessed by the Edinburgh 

Handedness Inventory [30]. The study was approved by the local ethics committee of the Charité 

University Medicine Berlin, and participants gave written informed consent prior to investigation. 

 



  

Psychometric Assessment 

Before subjects went into the scanner we assessed individual differences in state and trait negative 

affect using the Positive and Negative Affect Scale (PANAS) [24]. The Negative Affect scale 

consists of ten adjectives of mood states (e.g., nervous, afraid or upset). To assess state negative 

affect subjects rated their current affective state on the basis of these adjectives using a 5-point 

rating scale.  

 

Stimuli 

Neutral and aversive pictures were selected from the standardized International Affective Picture 

System (IAPS, [31]). Neutral stimuli consisted of pictures of household objects and scenes or 

abstract three-dimensional figures. Aversive pictures displayed threatening scenes, objects, 

animals or wounded people (65% of the aversive pictures were threat-related, sad and disgust 

pictures represented 35%). Hence, the two sets of stimuli were not matched with regard to 

human forms and figures. Mean normative ratings for pleasure, arousal, and dominance (taken 

from the technical manual of the IAPS) for selected neutral and aversive pictures, and results of 

t-test are provided in Table 1. The ratings differed significantly for neutral and aversive pictures 

[31]. 

 

Insert Table 1 

 

Thirteen blocks of neutral pictures [A] and 12 blocks of aversive pictures [B] were presented in 

an ABA fashion. Within a block, four pictures of the same valence were presented. Each picture 

was shown only once, resulting in the presentation of 52 neutral and 48 aversive pictures. Each 

picture was displayed for 4.3 s resulting in a block duration of 17.5 s. The whole experiment 

lasted 7.5 min. To allow the future application in clinical populations, we kept the experiment as 

short as possible; therefore no rest periods (fixation periods) were included in the experiment. 



  

Stimuli were displayed using the experimental control software Presentation (Neurobehavioral 

Systems Inc, Albany, CA). Subjects were instructed to pay attention to the pictures [32,33]. 

 

Data Acquisition 

Psychophysiological data. Autonomic arousal can be assessed by measuring skin conductance activity, 

which reflects activity within the sympathetic axis of the autonomic nervous system. Skin 

conductance activity is a sensitive index of emotion-related sympathetic activity; it is thus a 

specific measure of arousal during evaluation of emotional pictorial stimuli and closely 

corresponds to subjective arousal ratings [34,35]. In the scanner, skin conductance activity was 

continuously monitored using silver electrodes taped to the palmar surface of the left hand to 

investigate changes in autonomic arousal during the aversive and the neutral condition. A double-

shielded cable protected the analog signal from scanner-related artifacts. The analog skin 

conductance signal was displayed online and recorded digitally using a skin conductance 

processing unit (SC5, Psylab, Contact Precisions Instruments, Boston, USA) outside the scanner 

room. Skin conductance activity was directly measured in conductance (micro-Siemens, μS) and 

recorded at a sample rate of 600 Hz using Psylab software. 

FMRI data. Whole brain MRI data were collected on a 1.5 T Siemens Vision (Erlangen, 

Germany). Axially oriented echoplanar scans were acquired using standard parameters (TE, 

40 ms; TR, 2500 ms; flip angle, 90°; FOV, 256 mm; matrix, 64 x 64; voxel size, 4 x 4 x 4.6 mm; 

26 slices). A sagittally oriented T1-weighted volume (TE, 5 ms; TR, 20 ms; flip angle, 30°; matrix, 

256 x 256; voxel size, 1 x 1 x 1 mm) and a proton-density-weighted volume (TE, 15 ms; TR, 

4350 ms; flip angle, 180°; matrix, 252 x 256; voxel size, 1 x 1 x 4.6 mm) were acquired for 

registration of the functional images. 

 



  

Data Analysis 

Psychophysiological data. For 18 subjects skin conductance data were useable and analyzed with 

Matlab® 7.0.4. (The MathWorks, Inc., MA, USA). Skin conductance data were detrended, 

normalized using z-transformation ([36], p.155), and sampled down to 60 Hz. Data were 

averaged across experimental blocks, baseline corrected across the first 50 time points and 

averaged across subjects. Because we used short stimulus presentations (3.75 sec) in combination 

with a block design, phasic changes such as skin conductance responses could not be analyzed. 

Rather, we analyzed the data with regard to tonic changes. A skin conductance level (SCL) index 

(SCLaversive - SCLneutral/SCLaversive+ SCLneutral) was computed as a proxy for autonomic arousal. The 

SCL index represents information with regard to the relative change across the conditions, 

whereas indices such as area under the curve or peak signal represent only condition specific 

values. The skin conductance level index was subjected to an analysis of variance (ANOVA) to 

investigate changes in autonomic arousal during the aversive and the neutral condition.  

 

FMRI data. FMRI data were analyzed using a mixed effects approach within the framework of 

the general linear model as implemented in FSL (FMRIB’s Software Library, 

http://www.fmrib.ox.ac.uk/fsl, [37]) and AFNI (http://afni.nimh.nih.gov, [10]). Slice-time and 

motion corrected volumes were spatially smoothed using a Gaussian kernel of FWHM 8 mm and 

high-pass filtered (sigma = 50.5 s). Time series were modeled using a box-car function convolved 

with a hemodynamic response function (gamma variate). Registration to high resolution and 

standard images was carried out using FLIRT [38,39]. Contrast images were computed for the 

main effect of task (aversive vs. neutral) and transformed, after spatial normalization, into 

standard MNI space [38]. Group effects were computed using the transformed contrast images in 

a mixed effects model treating subjects as random. In the higher-level analysis, 

Z (Gaussianized T) statistic images were thresholded at Z > 3.09, corresponding to p < 0.001, 

uncorrected. We report those clusters that survived this threshold and had a size of at least 12 

http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/


  

voxels. Demeaned state negative affect scores were used as a covariate to identify brain regions, 

in which fMRI signal changes in response to aversive pictures covaried with individual 

differences in state negative affect. We found significant covariation of demeaned state negative 

affect scores with activity in the left insula (see results section). To further explore the covariation 

of the left insula with state negative affect scores we used the cluster of activated insula voxels 

(peak voxel x = -40, y = 0, z = -4, cf. Table 2) in a region of interest (ROI) analysis. From the 

contrast images for the main effect of task (aversive vs. neutral) parameter estimates were 

extracted from this insula ROI and were correlated with individual state negative affect scores. 

Because of the positive skew of state negative affect scores we used a non-parametric measure of 

correlation, Spearman’s rho. 

Because we simultaneously acquired skin conductance level data we were interested in the neural 

network representing skin conductance changes. For each subject, we set up a new GLM analysis 

with individual SCL-times series to identify the SCL-related network.  

Skin conductance level time series acquired during MR scanning were down-sampled to match 

the number of acquired volumes and were convolved with a hemodynamic response function 

(gamma variate). Slice-time and motion corrected volumes were spatially smoothed using a 

Gaussian kernel of FWHM 5 mm and high-pass filtered (sigma = 50.5 s). Group effects were 

computed using the transformed contrast images in a mixed effects model treating subjects as 

random. In the higher-level analysis, Z (Gaussianized T) statistic images were thresholded at 

Z > 3.09, corresponding to p < 0.001, uncorrected. Again, we report only those clusters that 

survived this threshold and had a size of at least 12 voxels. 



  

Results 

 

Psychometric Assessment and Psychophysiological Data

The mean state negative affect score in our sample was 11.7 ± 1.7 (mean ± sd), which is similar 

to a previous report of negative affect in a healthy sample (11.78 ± 2.33; 118). State negative 

affect scores in our sample were not normally distributed (Kolmogorov-Smirnov-Z = 0.235, 

p = 0.002) because of positive skew. This is consistent with normative data on the distribution of 

negative affect in a general adult population (N = 1,003) [40]. Furthermore, state and trait 

negative affect scores were uncorrelated (r = 0.373, p = 0.80) in the present sample, thereby 

supporting the independence of state and trait negative affect. 

Skin conductance level index did not correlate with state negative affect scores (for n = 18: 

11.9 ± 1.7) in either condition (aversive: r = 0.08, p = 0.762; neutral: r = 0.12, p = 0.633). This 

was confirmed by a more lenient approach where the group was median-split into two subgroups 

with high and low state negative affect, respectively. The two subgroups differed significantly 

with regard to state negative affect (t = -7.012, p < 0.001). However, with respect to SCL 

repeated measures ANOVA indicated a significant effect of condition (F = 8.977; p = 0.005), but 

no effect of group (F = 0.339; p = 0.564) or group by condition interaction (F = 0.120; 

p = 0.731). 

 

Functional MRI Data 

 

Main effects of condition 

A mixed effects group analysis (n = 23, Z > 3.09, p < 0.001, uncorrected) comparing the aversive 

to the neutral condition revealed activation in right frontal regions (BA 9/10), the bilateral 

amygdalae, the bilateral precuneus (BA 19), right parietal cortex (BA 7) and middle occipital gyrus 

(BA 37) (see Table 2). 



  

Covariation of BOLD responses with state negative affect scores during passive viewing of aversive relative to 

neutral pictures  

State negative affect scores covaried with changes in BOLD responses during the aversive 

condition relative to the neutral condition in the left insula (BA 13) (see Table 2 and Fig. 1, left 

panel). An ROI analysis of the left insula confirmed that state negative affect scores correlated 

positively with BOLD responses in this region during passive viewing of aversive stimuli (see 

Fig. 1, right panel). That is, subjects with high state negative affect showed an increased BOLD 

response in the left insula during the aversive relative to the neutral condition. 

 

Insert Table 2 about here 

Insert Fig. 1 about here 

 

Representation of changes in skin conductance level  

Representation of changes in skin conductance level was associated with predominantly right 

hemispheric activations in the inferior frontal gyrus (BA 10/47) extending into the anterior 

insula, the Precuneus (BA 39) and cuneus (BA 19) (n = 18, Z > 3.09, p < 0.001, uncorrected). In 

the left hemisphere representation of changes in skin conductance level was associated with 

activations in the middle frontal gyrus (BA 10), the caudate tail extending into thalamus with 

pulvinar and putamen (see Table 3 and Fig. 2). That is, increased autonomic arousal was 

associated with predominantly right lateralized activations in frontal, limbic, and parietal regions. 

 

Insert Table 3 about here 

Insert Fig. 2 about here 

 



  

Discussion 

 

In the present study, we investigated how individual differences in state negative affect are 

represented at the neural level during exposure to aversive stimuli. At the psychophysiological 

level we found increased skin conductance level in response to aversive relative to neutral 

pictures. However, there was no association between skin conductance level and state negative 

affect, or difference in skin conductance level between subjects with high and low state negative 

affect, respectively. At the neural level we found that individual differences in state negative affect 

were associated with differences in left insular activity during passive viewing of aversive relative 

to neutral stimuli. 

 

At the psychophysiological level we found a significantly increased skin conductance level in 

response to aversive relative to neutral pictures in the overall group. This is in line with other 

studies reporting on increased skin conductance activity in response to aversive relative to neutral 

pictures of the IAPS [41,42]. This association may also be mediated by increased arousal 

associated with aversive pictures as indicated by the normative ratings on valence and arousal of 

stimuli of the IAPS material set [34,35]. We did not find an association of state negative affect 

with psychophysiological measures as indicated by the ANOVA and the non-significant 

correlation between skin conductance level index and state negative affect scores. The missing 

association between these two measures might relate to the scale used to measure state negative 

affect, because there was little range in state negative affect scores (11.7 ± 1.7).  

Consistent with previous findings on neural processing of aversive stimuli we found that passive 

viewing of aversive relative to neutral pictures activated the amygdala [43–46] as well as frontal 

[43,47], parietal [43,47] and occipital [43,44,46] regions. 

In an additional analysis we found changes in skin conductance level to be correlated with activity 

in a set of brain regions comprising frontal regions extending into the anterior insula, the caudate 



  

body and tail extending into the posterior insula and the thalamus, and parietal, temporal and 

occipital cortices. These results are in line with previous studies examining skin conductance 

related neural activity [48–50]. Bearing in mind that entire time series were included as regressors, 

neural representation may not only represent changes across conditions but also phasic changes 

to single stimuli [51]. Moreover, differences in habituation across the experiment may have 

influenced our findings. In this regard, it has been shown that reduced habituation of autonomic 

arousal across the experiment is associated with increased BOLD activation in females [52]. 

 

Individual differences in state negative affect 

In our sample of healthy female subjects increased state negative affect correlated positively with 

activity in the left insula during passive viewing of aversive relative to neutral pictures. 

The insula has been implicated in the representation of visceral changes and more generally in the 

representation of interoceptive processes [53–57]. Interoception can be defined as the sense of 

the physiological condition of the entire body, comprising interoceptive sensations such as 

muscular and visceral sensations, vasomotor activity, hunger, thirst, air hunger, and 

somatosensory feelings, such as temperature, itch, pain and sensual touch (for reviews see 

[54,55]). According to Craig, the objective physiological condition of the entire body (physical 

self) is represented in the dorsal posterior insula. This representation provides the basis for a 

meta-representation of the state of the body in the middle and anterior insula that is associated 

with emotional self-awareness [1,58,59]. 

Thus, the literature suggests a strong involvement of the insula in the representation of visceral 

changes of the body that are associated with any emotional engagement. In the present study, 

insular activity was correlated with state negative affect. Hence, insular activity may reflect not 

only arousal or intensity associated with emotions, but also the representation of emotional 

aspects such as valence or hedonic tone. However, because we did not find an association 



  

between autonomic arousal and state negative affect we argue for a valence-dependent 

modulation of insular activity. 

 

Autonomic arousal is only one dimension characterizing emotional experience. Psychological 

theories have proposed that the affective space can be described as a space formed by two 

bipolar, but independent dimensions: arousal or activation indicating the intensity of the felt 

emotion, and valence, indicating pleasure or displeasure, or hedonic tone [35,60,61]. Indeed, at 

the neural level valence and arousal for odors and taste can be dissociated, with intensity of odors 

and taste represented in the amygdala and valence represented in the orbitofrontal cortex [62–64].  

The covariation of left insular activity with individual differences in state negative affect found in 

our study may reflect the valence or hedonic tone of the affective experience. For instance, the 

bilateral anterior insula is activated during the anticipation of and exposure to aversive pictures 

[65,66]. Studies specifically investigating the neural correlates of valence showed that reports of 

valence of emotional pictures are associated with left insular activity, that is, insular activity 

increases with reported negative valence [67]. Beside the left insula, valence-dependent 

modulation of activity was also reported for the medial prefrontal cortex [68]. 

 

In the present study, activity in the left insula reflected individual differences in negative affect. A 

recent meta-analysis found that negative emotions/withdrawal activate the insula and the 

cerebellum [69]. A density analysis (i.e., calculating the density distribution of activation foci 

throughout the brain) showed a focal withdrawal-related density in the left mid insula 

(x = -40, y = -2, z = 3, in the MNI coordinate system; [69]); notably, these coordinates 

correspond nicely to the location of insular activity maximally covarying with individual 

differences in state negative affect (x = -40, y = 0, z = -4, MNI) reported in our study. The 

findings were confirmed by another meta-analysis by Wager & Feldmann-Barrett [70] on the 

functional specialization of the insula, which also revealed a stronger bias towards left insular 



  

activation during emotion processing. Of special importance for the present study is that left (and 

right) mid insula activations were highly predictive of withdrawal-related emotions [70,71]. Most 

importantly, individual differences in state anxiety correlate with activity in the left mid insula (as 

well as left orbitofrontal, left inferior frontal gyrus, and left anterior cingulate), with coordinates 

of peak activation (x = -40, y = -6, z = -15, MNI) [72] that also correspond to the coordinates of 

peak activation of left mid insula covarying with state negative affect in the present study 

(x = -40, y = 0, z = -4, MNI). Taken together, these findings support our interpretation of a 

valence-dependent modulation of left middle insular activity. 

 

What is the functional meaning of covariation of activity in the left insula with individual 

differences in state negative affect? The salience of an aversive context is especially strong in 

anxious subjects, as revealed by their attentional bias towards negative information [73–76]. This 

attentional bias is particularly high in conditions of high state anxiety [73]. Similarly, in the study 

reported here, the aversiveness of the stimuli might have been of special significance or value to 

subjects with high state negative affect. Because of the interconnectedness of the insula with the 

amygdala, the orbito- and prefrontal cortex, the insula is well positioned to integrate information 

about the salience (both appetitive and aversive) and relative value of a stimulus (depending on 

the homeostatic body state of an individual) and to predict how it might affect the body state 

[15]. With regard to our findings, increased insular activity in individuals with high state negative 

affect may thus reflect increased processing of salient aversive stimuli, resulting in altered 

interoceptive feedback processes that indicate a specific body reaction when exposed to aversive 

relative to neutral stimuli. This saliency may then be instantiated in a bodily sensation, such as 

changes in heart rate, blood pressure, respiration rate, gastrointestinal interoceptive processes 

[77–79], as well as muscle tension, temperature or vasomotor activity [54,55], which is reflected in 

increased activity in the insula. 

 



  

With the goal in mind to use the present paradigm in clinical populations, we kept the experiment 

as short as possible. As a consequence, we did not include rest periods (fixation periods) in the 

experiment. The brevity of the experimental design comes at a cost: By contrasting the aversive 

relative to the neutral condition one cannot determine the relative influence of the two 

conditions on the correlation of BOLD responses with individual differences in state negative 

affect. Behavioral and fMRI studies have suggested that interpretation of neutral stimuli can be 

affected by anxiety level [80,81]. Nevertheless, there also is behavioral evidence that interpretation 

of neutral faces can vary depending on the presence of other primary expressions in the 

experimental context [82]. Accordingly, Somerville et al. argued that the observed amygdala 

response to neutral faces is not surprising given the fact, that in comparison with the positive 

faces shown, neutral faces represented the most negative stimuli in their paradigm [80]. In the 

present study neutral stimuli were presented in the context of aversive stimuli. Therefore, it is 

rather unlikely that correlations of BOLD responses with individual differences in state negative 

affect are dictated by differences in activations to neutral stimuli. 

 

In conclusion, at the psychophysiological level we found increased skin conductance level in 

response to aversive relative to neutral pictures. However, there was no association between skin 

conductance level and state negative affect, or difference in skin conductance level between 

subjects with high and low state negative affect, respectively. At the neural level we found that 

individual differences in state negative affect were associated with differences in left insular 

activity during passive viewing of aversive relative to neutral stimuli. Because subjects with high 

and low state negative affect did not differ with regard to autonomic arousal, we cannot ascribe 

insular activity to the representation of autonomic arousal. This finding implicates that state 

negative affect is represented in the insular cortex in terms of hedonic tone. 



  

References 

 

1. Eugene F, Levesque J, Mensour B, Leroux JM, Beaudoin G et al. (2003) The impact of  
individual differences on the neural circuitry underlying sadness. Neuroimage 19: 354-364. 

2. Lundh LG, Simonsson-Sarnecki M (2001) Alexithymia, emotion, and somatic complaints. J 
Pers 69: 483-510. 

3. Hornak J, Bramham J, Rolls ET, Morris RG, O'Doherty J et al. (2003) Changes in emotion 
after circumscribed surgical lesions of  the orbitofrontal and cingulate cortices. Brain 126: 
1691-1712. 

4. Thompson-Schill SL, Braver TS, Jonides J (2005) Individual differences. Cogn Affect Behav 
Neurosci 5: 115-116. 

5. Canli T, Amin Z, Haas B, Omura K, Constable RT (2004) A double dissociation between 
mood states and personality traits in the anterior cingulate. Behav Neurosci 118: 897-904. 

6. Hamann S, Canli T (2004) Individual differences in emotion processing. Curr Opin Neurobiol 
14: 233-238. 

7. Davidson RJ, Irwin W (1999) The functional neuroanatomy of  emotion and affective style. 
Trends Cogn Sci 3: 11-21. 

8. Watson D, Tellegen A (1985) Toward A Consensual Structure of  Mood. Psychological Bulletin 
98: 219-235. 

9. Clark LA, Watson D (1991) Tripartite model of  anxiety and depression: psychometric evidence 
and taxonomic implications. J Abnorm Psychol 100: 316-336. 

10. Cox RW (1996) AFNI: software for analysis and visualization of  functional magnetic 
resonance neuroimages. Comput Biomed Res 29: 162-173. 

11. Phan KL, Fitzgerald DA, Nathan PJ, Moore GJ, Uhde TW et al. (2005) Neural substrates for 
voluntary suppression of  negative affect: a functional magnetic resonance imaging study. 
Biol Psychiatry 57: 210-219. 

12. Schaefer SM, Jackson DC, Davidson RJ, Aguirre GK, Kimberg DY et al. (2002) Modulation 
of  amygdalar activity by the conscious regulation of  negative emotion. J Cogn Neurosci 
14: 913-921. 

13. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R et al. (2004) Individual 
differences in trait anxiety predict the response of  the basolateral amygdala to 
unconsciously processed fearful faces. Neuron 44: 1043-1055. 

14. Bishop S, Duncan J, Brett M, Lawrence AD (2004) Prefrontal cortical function and anxiety: 
controlling attention to threat-related stimuli. Nat Neurosci 7: 184-188. 

15. Critchley HD, Daly EM, Bullmore ET, Williams SC, Van AT et al. (2000) The functional 
neuroanatomy of  social behaviour: changes in cerebral blood flow when people with 
autistic disorder process facial expressions. Brain 123 ( Pt 11): 2203-2212. 



  

16. Simmons A, Strigo I, Matthews SC, Paulus MP, Stein MB (2006) Anticipation of  aversive 
visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biol 
Psychiatry 60: 402-409. 

17. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A et al. (1998) Neural correlates of  levels 
of  emotional awareness. Evidence of  an interaction between emotion and attention in the 
anterior cingulate cortex. J Cogn Neurosci 10: 525-535. 

18. Levesque J, Eugene F, Joanette Y, Paquette V, Mensour B et al. (2003) Neural circuitry 
underlying voluntary suppression of  sadness. Biol Psychiatry 53: 502-510. 

19. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P et al. (1995) Brain Activity 
During Transient Sadness and Happiness in Healthy Women. Am J Psychiatry 152: 341-
351. 

20. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK et al. (1999) Reciprocal limbic-
cortical function and negative mood: converging PET findings in depression and normal 
sadness. Am J Psychiatry 156: 675-682. 

21. Lorberbaum JP, Kose S, Johnson MR, Arana GW, Sullivan LK et al. (2004) Neural correlates 
of  speech anticipatory anxiety in generalized social phobia. Neuroreport 15: 2701-2705. 

22. Iancu I, Dannon PN, Poreh A, Lepkifker E, Grunhaus L (2001) Alexithymia and suicidality in 
panic disorder. Compr Psychiatry 42: 477-481. 

23. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK et al. (2000) Regional metabolic 
effects of  fluoxetine in major depression: serial changes and relationship to clinical 
response. Biol Psychiatry 48: 830-843. 

24. Krohne HW, Egloff  B, Kohlmann C-W, Tausch A (1996) Untersuchung mit einer deutschen 
Version der "Positive and Negative Affect Schedule" (PANAS). Diagnostica 42: 139-156. 

25. Bradley MM, Codispoti M, Sabatinelli D, Lang PJ (2001) Emotion and motivation II: sex 
differences in picture processing. Emotion 1: 300-319. 

26. Piefke M, Weiss PH, Markowitsch HJ, Fink GR (2005) Gender differences in the functional 
neuroanatomy of  emotional episodic autobiographical memory. Hum Brain Mapp 24: 
313-324. 

27. Killgore WD, Yurgelun-Todd DA (2001) Sex differences in amygdala activation during the 
perception of  facial affect. Neuroreport 12: 2543-2547. 

28. George MS, Ketter TA, Parekh PI, Herscovitch P, Post RM (1996) Gender differences in 
regional cerebral blood flow during transient self-induced sadness or happiness. Biol 
Psychiatry 40: 859-871. 

29. Cahill L (2006) Why sex matters for neuroscience. Nature Reviews Neuroscience 7: 477-484. 

30. Oldfield RC (1971) The assessment and analysis of  handedness: the Edinburgh inventory. 
Neuropsychologia 9: 97-113. 

31. Lang PJ, Bradley MM, Cuthbert BN (1999) The International Affective Picture System 
(IAPS): Technical Manual and Affective Ratings. In: Gainesville, FL: NIMH Center for 
the Study of  Emotion and Attention, University of  Florida.



  

32. Hutcherson CA, Goldin PR, Ochsner KN, Gabrieli JD, Barrett LF et al. (2005) Attention and 
emotion: Does rating emotion alter neural responses to amusing and sad films? 
Neuroimage 27: 656-668. 

33. Schafer A, Schienle A, Vaitl D (2005) Stimulus type and design influence hemodynamic 
responses towards visual disgust and fear elicitors. Int J Psychophysiology 57: 53-59. 

34. Lee TM, Liu HL, Hoosain R, Liao WT, Wu CT et al. (2002) Gender differences in neural 
correlates of  recognition of  happy and sad faces in humans assessed by functional 
magnetic resonance imaging. Neurosci Lett 333: 13-16. 

35. Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures: affective, 
facial, visceral, and behavioral reactions. Psychophysiology 30: 261-273.

36. Pardo JV, Pardo PJ, Raichle ME (1993) Neural correlates of  self-induced dysphoria. Am J 
Psychiatry 150: 713-719. 

37. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE et al. (2004) Advances in 
functional and structural MR image analysis and implementation as FSL. Neuroimage 23 
Suppl 1: S208-S219. 

38. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and 
accurate linear registration and motion correction of  brain images. Neuroimage 17: 825-
841. 

39. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of  
brain images. Med Image Anal 5: 143-156. 

40. Crawford JR, Henry JD (2004) The Positive and Negative Affect Schedule (PANAS): 
Construct validity, measurement properties and normative data in a large non-clinical 
sample. Br J Clin Psychol 43: 245-265. 

41. Baumgartner T, Esslen M, Jancke L (2006) From emotion perception to emotion experience: 
Emotions evoked by pictures and classical music. Int J Psychophysiology 60: 34-43. 

42. Amrhein C, Muhlberger A, Pauli P, Wiedemann G (2004) Modulation of  event-related brain 
potentials during affective picture processing: a complement to startle reflex and skin 
conductance response? Int J Psychophysiology 54: 231-240. 

43. Bermpohl F, Pascual-Leone A, Amedi A, Merabet LB, Fregni F et al. (2006) Dissociable 
networks for the expectancy and perception of  emotional stimuli in the human brain. 
Neuroimage 30: 588-600. 

44. Britton JC, Taylor SF, Sudheimer KD, Liberzon I (2006) Facial expressions and complex 
IAPS pictures: common and differential networks. Neuroimage 31: 906-919. 

45. Hariri AR, Tessitore A, Mattay VS, Fera F, Weinberger DR (2002) The amygdala response to 
emotional stimuli: a comparison of  faces and scenes. Neuroimage 17: 317-323. 

46. Liberzon I, Taylor SF, Fig LM, Decker LR, Koeppe RA et al. (2000) Limbic activation and 
psychophysiologic responses to aversive visual stimuli. Interaction with cognitive task. 
Neuropsychopharmacology 23: 508-516. 

47. Taylor SF, Phan KL, Decker LR, Liberzon I (2003) Subjective rating of  emotionally salient 
stimuli modulates neural activity. Neuroimage 18: 650-659. 



  

48. Critchley HD (2002) Electrodermal responses: What happens in the brain. Neuroscientist 8: 
132-142. 

49. Critchley H, Daly E, Phillips M, Brammer M, Bullmore E et al. (2000) Explicit and implicit 
neural mechanisms for processing of  social information from facial expressions: a 
functional magnetic resonance imaging study. Hum Brain Mapp 9: 93-105. 

50. Fredrikson M, Furmark T, Olsson MT, Fischer H, Andersson J et al. (1998) Functional 
neuroanatomical correlates of  electrodermal activity: A positron emission tomographic 
study. Psychophysiology 35: 179-185. 

51. Williams LM, Brown KJ, Das P, Boucsein W, Sokolov EN et al. (2004) The dynamics of  
cortico-amygdala and autonomic activity over the experimental time course of  fear 
perception. Cogn Brain Res 21: 114-123. 

52. Williams LM, Barton MJ, Kemp AH, Liddell BJ, Peduto A et al. (2005) Distinct amygdala-
autonomic arousal profiles in response to fear signals in healthy males and females. 
Neuroimage 28: 618-626. 

53. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting 
interoceptive awareness. Nat Neurosci 7: 189-195. 

54. Craig AD (2003) Interoception: the sense of  the physiological condition of  the body. Curr 
Opin Neurobiol 13: 500-505. 

55. Craig AD (2002) How do you feel? Interoception: the sense of  the physiological condition of  
the body. Nat Rev Neurosci 3: 655-666. 

56. Augustine JR (1996) Circuitry and functional aspects of  the insular lobe in primates including 
humans. Brain Res Brain Res Rev 22: 229-244. 

57. Cechetto DF, Chen SJ (1990) Subcortical sites mediating sympathetic responses from insular 
cortex in rats. Am J Physiol 258: R245-R255.

58. Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ et al. (2004) Empathy for pain 
involves the affective but not sensory components of  pain. Science 303: 1157-1162. 

59. Craig AD (2004) Human feelings: why are some more aware than others? Trends Cogn Sci 8: 
239-241. 

60. Feldman-Barrett L, Russell JA (1999) The structure of  current affect: controversies and 
emerging consensus. Curr Dir Psychol Sci 8: 10-14.

61. Wundt W (1924) An introduction to psychology. London: Allen & Unwin.  

62. Anderson AK, Sobel N (2003) Dissociating intensity from valence as sensory inputs to 
emotion. Neuron 39: 581-583. 

63. Anderson AK, Christoff  K, Stappen I, Panitz D, Ghahremani DG et al. (2003) Dissociated 
neural representations of  intensity and valence in human olfaction. Nat Neurosci 6: 196-
202. 

64. Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM et al. (2003) Dissociation of  
neural representation of  intensity and affective valuation in human gustation. Neuron 39: 
701-711. 

65. Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ (2006) Functional 
neuroanatomy of  aversion and its anticipation. Neuroimage 29: 106-116. 



  

66. Schienle A, Schafer A, Stark R, Walter B, Vaitl D (2005) Gender differences in the processing 
of  disgust- and fear-inducing pictures: an fMRI study. Neuroreport 16: 277-280. 

67. Anders S, Lotze M, Erb M, Grodd W, Birbaumer N (2004) Brain activity underlying 
emotional valence and arousal: A response-related fMRI study. Hum Brain Mapp 23: 200-
209. 

68. Heinzel A, Bermpohl F, Niese R, Pfennig A, Pascual-Leone A et al. (2005) How do we 
modulate our emotions? Parametric fMRI reveals cortical midline structures as regions 
specifically involved in the processing of  emotional valences. Cogn Brain Res 25: 348-358. 

69. Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of  
functional brain anatomy in emotion: a meta-analysis of  findings from neuroimaging. 
Neuroimage 19: 513-531. 

70. Wager TD, Barrett LF (2004) From affect to control: Functional specialization of  the insula 
in motivation and regulation. Published online at PsycExtra 

71. Barrett LF, Wager TD (2006) The structure of  emotion - Evidence from neuroimaging 
studies. Curr Dire Psychol Sci 15: 79-83. 

72. Chua P, Krams M, Toni I, Passingham R, Dolan R (1999) A functional anatomy of  
anticipatory anxiety. Neuroimage 9: 563-571. 

73. Mercado F, Carretie L, Tapia M, Gomez-Jarabo G (2006) The influence of  emotional context 
on attention in anxious subjects: neurophysiological correlates. J Anx Dis 20: 72-84.

74. Mogg K, Bradley BP, Williams R, Mathews A (1993) Subliminal Processing of  Emotional 
Information in Anxiety and Depression. J Abnorm Psychol 102: 304-311. 

75. MacLeod C, Mathews A, Tata P (1986) Attentional Bias in Emotional Disorders. J Abnorm 
Psychol 95: 15-20. 

76. Mathews A, MacLeod C (1985) Selective Processing of  Threat Cues in Anxiety-States. Behav 
Res Ther 23: 563-569. 

77. Holzl R, Erasmus LP, Moltner A (1996) Detection, discrimination and sensation of  visceral 
stimuli. Biol Psychol 42: 199-214. 

78. Vaitl D (1996) Interoception. Biol Psychol 42: 1-27. 

79. Steptoe A, Vogele C (1992) Individual differences in the perception of  bodily sensations: the 
role of  trait anxiety and coping style. Behav Res Ther 30: 597-607. 

80. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S et al. (2004) For better or for 
worse: neural systems supporting the cognitive down- and up-regulation of  negative 
emotion. Neuroimage 23: 483-499. 

81. Schaefer A, Collette F, Philippot P, van der LM, Laureys S et al. (2003) Neural correlates of  
"hot" and "cold" emotional processing: a multilevel approach to the functional anatomy 
of  emotion. Neuroimage 18: 938-949. 

82. Russell JA, Fehr B (1987) Relativity in the Perception of  Emotion in Facial Expressions. J 
Exp Psychol Gen 116: 223-237. 



  

Fig. 1. Brain regions showing covariation of BOLD responses with state negative affect 

scores. Left panel: State negative affect (SNA) scores covaried significantly with BOLD 

responses in the left insula during the aversive condition relative to the neutral condition. The 

figure shows activations from higher-level analysis thresholded at Z > 3.09, corresponding to 

p < 0.001, uncorrected, that were used as a mask for subsequent region of interest (ROI) analysis. 

Right panel: Covariation of state negative affect scores and BOLD responses in the left insula 

(ROI) during the aversive relative to the neutral condition (ρ = Spearman’s rank correlation 

coefficient rho, p = p-value). Parameter estimates are displayed in 1/10,000 signal change. 

 

Fig. 2. Brain regions related to representation of skin conductance level independent of 

state negative affect. Representation of skin conductance level activated regions predominantly 

in the right hemisphere, including the ventrolateral prefrontal cortex (VLPFC), the anterior and 

posterior insula (aIns/pIns), the middle temporal gyrus (MTG) (upper panels) as well as the 

thalamus (Th) with the putamen (Put), and insula (Ins) (lower panels). In the left hemisphere 

afferent representation of skin conductance level covaried with activation in the thalamus 

extending into the putamen (Put), and the pulvinar (Pul)(lower panels). Figure shows activations 

from higher-level analysis (n = 18) thresholded at Z > 3.09, corresponding to p < 0.001, 

uncorrected. 



  

 

Table 1: Mean normative ratings for pleasure, arousal and dominance for neutral (N = 52) and aversive 
(N = 48) pictures 
 

 Neutral Aversive t, p 

Pleasure 5.15 (± 0.66) 2.49 (± 0.86) 17.23, p < 0.001 

Arousal 2.97 (± 0.59) 6.27 (± 0.81) -23.06, p < 0.001 

Dominance 5.95 (± 0.58) 3.43 (± 0.82) 17.58, p < 0.001 

Mean (± standard deviations), t = t-value, p = p-value 

 



  

 

Table 2: Anatomical locations and coordinates of activations (p < 0.001, uncorr., n = 23)* 
 

Anatomical region Hemisphere Brodmann Area Z score 
Cluster 

size 
MNI (x, y, z) 

 

Main effect: aversive vs. neutral 

Superior frontal gyrus R 9 3.58 33 2, 58, 40 

Medial frontal gyrus L 10 3.39 28 -2, 62, 24 

Amygdala L  3.32 13 -16, -4, -14 

Amygdala R  3.89 98 16, -4, -16 

Precuneus L 19 3.6 15 -14, -92, 42 

Precuneus R 19 3.87 53 10, -88, 42 

Superior parietal lobule R 7 3.28 16 30, -56, 58 

Middle occipital gyrus R 37 6.39 15241 52, -74, 0 

 

Covariation of BOLD responses with state negative affect scores during the aversive vs. neutral condition  

Insula L 13  3.41 29 -40, 0, -4 

* with cluster size ≥ 12 voxels 

 



  

 

Table 3: Anatomical locations and coordinates of activations associated with skin conductance level 
during the aversive relative to the neutral condition controlling for state negative affect (p < 0.001, uncorr., 
n = 18) 
 

Anatomical region Hemisphere Brodmann Area Z score 
Cluster 

size 
MNI (x, y, z) 

 

Middle frontal gyrus R 10 3.96 181 50, 52, -4 

Middle frontal gyrus L 10 3.4 84 -36, 54, 2 

Inferior frontal gyrus/ 

anterior insula R 47 3.26 65 42, 18, -6 

Inferior frontal gyrus R 47 3.27 22 40, 24, -18 

Thalamus/ Pulvinar L  3.11 15 -12, -32, 2 

Caudate Tail L  3.88 2279 -34, -36, 2 

Precuneus R 39 4.24 2896 38, -70, 32 

Cuneus R 19 3.42 40 4, -92, 22 

* with cluster size ≥ 12 voxels 
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