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Abstract

Optical microcavities play an important role in a manifold of optical pro-
cesses, ranging from Cavity Quantum Electrodynamics (QED) to photonics
and sensing. A very efficient way to trap light is by means of total internal
reflection inside a rotational symmetric geometry.

This work presents an extensive study of the physical properties of silica
microsphere resonators. Microspheres with diameters ranging from 30 to
100 µm have been produced. These resonators support so called whispering-
gallery modes. These modes feature Q-factors as high as 109, corresponding
to a finesse of 3 × 106 for spheres with a diameter of about 80 µm. These
are to date among the highest available Q-factors, leading to cavity lifetimes
of up to few µs. A near-field microscope and a confocal microscope are used
as tools to unequivocally identify the mode structure related to the sphere
topography, and for excitation and detection of single quantum emitters. A
procedure has been developed to optimize the coupling of light by means of
frustrated total internal reflection in a prism to a single mode selectively (in
particular the so called fundamental mode).

In a next step the high field enhancement of the cavity modes can be
exploited to observe ultra-low threshold nonlinear phenomena in silica glass.
Here, stimulated Raman scattering is studied. A record ultra-low threshold
of 4.5 µW could be observed, for a sphere with a Q-factor exceeding 109. The
mode structure of the laser is investigated by means of a near-field probe. The
interaction of the probe itself with the lasing properties is investigated in a
systematic way: quenching of the lasing activity by enhancement of scattering
losses through the tip was observed. This opens up new possibilities for
detection of small particles.

Microcavities also constitute one of the building blocks of Cavity QED,
where the basic system is a single dipole interacting with a single mode of
the electromagnetic field. In this thesis the coupling of a radiative dipole to
the whispering-gallery modes has been intensively studied, both theoretically
and experimentally. The controlled coupling of a single nanoparticle to the
whispering-gallery modes is demonstrated, then first results in coupling a
single quantum emitter to a microsphere are reported. Since the experiments
are performed at room temperature, there is always a manifold of modes
involved in the optical processes. The resonant interaction with these modes,
predominantly the whispering-gallery modes, is exploited to enhance photon
exchange between two nanoparticles.



Finally a novel analogy between a system composed of a single atom in-
teracting with one cavity mode on one side and intramodal coupling in micro-
sphere resonators induced by a near-field probe on the other side is presented
and experimentally explored. It is found that the induced coupling regimes
reflect the different regimes of weak and strong coupling typical of Cavity
QED. The transition between the two coupling regimes is observed, and a
previously observed unexpectedly large coupling rate is explained.
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Zusammenfassung

Optische Mikrokavitäten spielen eine wichtige Rolle in einer Vielzahl von
optischen Prozessen, von der Resonator-Quantenelektrodynamik über An-
wendungen in der Photonik bis hin zur optischen Detektion von Nano- und
Mikroteilchen. Licht kann sehr effizient durch totale interne Reflektion, z.B.
in rotationsymmetrischen Anordnungen, gespeichert werden.

Diese Arbeit beschreibt eine ausführliche Untersuchung der physikali-
schen Eigenschaften von Mikrokugelresonatoren aus Quarzglas. Hierfür wur-
den Mikrokugeln mit Durchmessern zwischen 30 und 100 µm hergestellt.
Die gemessene Güte dieser Mikroresonatoren überstiegen 109, was bei einer
Kugelgröße von 80 µm einer Finesse von mehr als 106 entspricht. Bis heute
sind diese Güten die höchsten gemessenen Güten in optischen Resonatoren
überhaupt: die Speicherzeit der Photonen im Resonator erreicht Mikrosekun-
den. Als experimentelle Hilfsmittel wurden in dieser Arbeit ein Nahfeld- und
ein Konfokalmikroskop benutzt, um die Struktur der Moden bezüglich der
Topographie des Resonators eindeutig zu identifizieren. Gleichzeitig wurden
diese Instrumente eingesetzt, um einzelne Quantenemitter zu detektieren und
anzuregen. Eine Prozedur zur Optimierung der Kopplung von Licht mittels
frustrierter totaler interner Reflektion an einzelne Moden des Resonators,
insbesondere an die sogenannte fundamentale Mode, wurde entwickelt.

In einem nächsten Schritt wurde die starke resonante Überhöhung des
elektromagnetischen Feldes in den Moden des Resonators ausgenutzt, um
nichtlineare Prozesse mit extrem niedrigem Schwellenwert im Quarzglas zu
beobachten. Speziell wurde in dieser Arbeit die Raman-Streuung untersucht.
Ein Schwellenwert von 4.5 µW für Raman-Lasing wurde für eine Kugel mit
einer Güte von über 109 gemessen, was einen Rekordwert darstellt. Mittels ei-
ner Nahfeldsonde wurde die Modenstruktur eines solchen Mikro-Ramanlasers
gemessen und der Einfluß der Nahfeldsonde auf die Lasereigenschaften sy-
stematisch untersucht. Ein Quenching der Laseraktivität aufgrund der Ver-
stärkung der Streuverluste durch die Nahfeldsonde wurde beobachtet. Dieser
Effekt eröffnet potentiell neue Möglichkeiten für die Detektion kleiner Teil-
chen.

Mikroresonatoren stellen auch einen Grundbaustein der Resonator-Quan-
tenelektrodynamik dar, in der das fundamentalste System ein einzelner Emit-
ter in Wechselwirkung mit einer einzelnen Resonatormode ist. In dieser Ar-
beit wurde die Kopplung von einem einzelnen strahlenden Dipol an die Mo-
den von einemMikrokugelresonator sowohl theoretisch als auch experimentell
untersucht. Die kontrollierte Kopplung von einem einzelnen Nanoteilchen an



die sogenannten whispering-gallery Moden eines Mikrokugelresonators wur-
de nachgewiesen. Erste Ergebnisse in der Kopplung eines einzelnen Emitters
an die Moden des Resonators wurden erzielt. Die resonante Wechselwirkung
mit Resonatormoden wurde ausgenutzt, um den Photonentransfer zwischen
zwei einzelnen Nanoteilchen dramatisch zu verstärken.

Schließlich wurde die bislang unbeachtete Analogie zwischen dem Quan-
tensystem eines einzelnen Emitters in Wechselwirkung mit einer einzelnen
Resonatormode und dem klassischen System zweier gekoppelter Moden expe-
rimentell untersucht. Es stellte sich heraus, dass die aus der Resonatorquan-
tenelektrodynamik bekannten Kopplungsregime der starken und schwachen
Kopplung in Analogie auch an einem klassischen System beobachtet werden
können. Der Übergang von schwacher zu starker Kopplung wurde beobach-
tet, und bislang gemessene unerwartet hohe Kopplungsraten konnten in der
neuen Interpretation einfach erklärt werden.

Schlagwörter:
QED in Mikroresonatoren, Nanooptik, Nahfeldoptik, Mikroskopie
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Chapter 1

Introduction

Optical microcavities confine light to microscale volumes. This ability can
be exploited in many fields in engineering as well as in fundamental physics.
In quantum information a long storage time of photons and a strong inter-
action of light with tiny amounts of matter - down to the single atom level
- is essential. In microcavities, nonlinear optical effects can be tremendously
enhanced due to a strong field amplification. The narrow linewidth of reso-
nances opens the way to small and robust filters and optical sensors. Today
microcavities are already build-in elements for every day life: for instance in
the narrow-spot laser in a CD or a DVD player. The confinement of light in
optical microcavities can typically be provided by three effects: Bragg scat-
tering, total internal reflection and the photonic bandgap effect. A number
of different forms and materials are used to implement these effects. Semi-
conductor micropillars, which are formed by sandwiching two small Bragg
mirrors, play an important role in efficient single photon sources, as they offer
a geometry suitable to incorporate single quantum emitters [Ger96, SPY00].
In 1991 a new type of microlaser was presented, which exploited a resonant
structure in the form of a disk, where light was confined by total internal
reflection [MLS+91]. Photonic crystal cavities are gaining more and more
terrain particularly in the field of quantum communication and information
[VLMS01, VY03]. Figure 1.1 sketches these cavities.

Optical microcavities also constitute one of the building blocks for Cavity
Quantum Electrodynamics (QED) experiments. Ever since Purcell’s seminal
work [Pur46], in 1946, it has been clear that the spontaneous emission rate of
a radiating dipole is not an intrinsic property of the dipole itself, but depends
on its environment. A change in the density of state of the electromagnetic
field in the medium surrounding the dipole (for instance due to the presence
of a cavity) will affect its decay lifetime, enhancing or inhibiting it. This
phenomenon is known as the Purcell effect [Pur46]. If the interaction between

1
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Figure 1.1: Different types of optical microcavities: a) micropillar cavity
[PVZ+02], b) microdisk cavity [MKB+00], and c) photonic crystal cavity
[YSH+04]

the dipole and the cavity is further enhanced by a resonant structure, a
regime may be entered in which the dipole and the cavity exchange one
energy quantum in a periodical way. This is the so called Rabi-oscillation.
In this case the irreversible spontaneous decay process is transformed into an
oscillatory behavior [SKV02].

In Cavity QED, the most basic system is given by a single dipole interact-
ing with a single mode of a cavity [SK89, Ber94]. The first experiments were
performed in the field of atomic physics, mainly by using Rydberg atoms in
Fabry-Perot microcavities [Kle81, GRGH83, RTB+91, MWM85]. All these
experiments suffer from the difficulty to position the emitter in a controllable
way into a certain cavity mode [GKHW01]. Experiments that use solid state
quantum emitters allow positioning of the emitter within the cavity with sub-
wavelength precision by exploiting microstructuring techniques [BHA+05].
Single quantum dots, for instance, can be grown inside many solid state mi-
crocavities, e.g. in micropillar cavities [PVZ+02, VY03, SPY01]. Recently
the regime of strong coupling has been reached in these systems [RSL+04].
Microdisks offer higher Q-factors, and coupling of quantum dots to these cav-
ities has been reported [MKB+00], also here the regime of strong coupling
has been reached [PSM+05]. The disadvantage is that once the emitter has
been positioned it cannot be moved any longer, so that it is impossible to
change or optimize its coupling to the modes of the cavity. This is even more
difficult when envisioning positioning of more then one emitter.

Another special type of microcavity also relying on total internal reflection
exploits a spherical form. Light is trapped along a path close to the equator,
as shown in figure 1.2.

This principle has an acoustical analogy: in the cathedral of St. Paul in
London, at the base of the dome, there is a circular gallery with a diameter of
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Figure 1.2: a) Photograph of a silica microsphere taken via an optical micro-
scope. b) Sketch of a light ray guided by total internal reflection along the
equator of a microsphere

about 33 m. If a person whispers along the gallery, the sound can be heard at
any point close to the wall, even on the opposite side. If one speaks directly
to the center of the gallery, nothing can be heard. It was realized that the
sound waves are guided by the walls of the gallery: i.e. a whisper along the
gallery can excite the acoustic eigenmodes of the circular dome, which are
called whispering-gallery modes [Ray78, Ray10]. In 1989 a Russian group
managed for the first time to observe an optical analog to whispering-gallery
modes in small spheres melted from silica glass [BGI89]. There, first hints
of possible uses of these cavities, like microoptic filtering or microlaser, were
given. Much of the early research on spherical microcavities even before that
time was performed on liquid droplets systems, motivated by the need of
understanding light scattering from clouds or colloidal suspensions. These
efforts led Gustav Mie to a classification of a family of resonances, called Mor-
phology Dependent Resonances, that emerge when observing light scattering
from small particles [Mie08, BW64]: for certain dimensions of the particles
and certain wavelengths of the incoming light, the scattered light presented
strong resonances. The whispering-gallery modes can be classified as a spe-
cial class of these resonances: their distinguishing characteristic is that they
feature extremely high quality factors exceeding 109, combined with mode
volumes as small as 100 µm3 [RA96, GMS+06]. In such a situation the elec-
tric field per photon in a cavity mode is strongly enhanced: an input power
of 1 mW can result in a circulating power of up to 1 GW/cm2. This strong
field enhancement makes these cavities ideal to study non-linear phenomena.
Effects like stimulated Raman and Brillouin scattering at very low thresholds
(on the order of 1 mW of input power) were first observed in liquid micro-
droplets by Richard Chang and Anthony Campillo [QC86, LHEC90, ZC90].
Already, this threshold was comparable to or less than other nonlinear de-
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vices, such as nonlinear silica fiber lasers [Agr01] and hydrogen-filled laser
cavities [MPARaC01].

In this work an effort is made to study the physics of optical microcavities
with techniques developed in scanning near-field optical microscopy. A ver-
satile system has been developed, which allows to study enhanced nonlinear
optical phenomenon, to control the coupling of a single nanoparticle to single
modes of the electromagnetic field and also to highlight analogies between
cavity QED and scattering in optical microresonators. Figure 1.3 shows a
simplified sketch of the experimental setup.

Figure 1.3: Schematic depiction of the experimental setup used in this work.
Light is coupled to the whispering-gallery modes of a microsphere via a prism.
The coupling of active material and the mode structure of the microsphere
can be investigated by means of a confocal microscope or a near-filed micro-
scope.

This work is divided into seven chapters. Following is a short description
of each chapter:
• Chapter 2. In this chapter the optical properties of microsphere

resonators are depicted. An analytical introduction to the whispering-
gallery modes is given, and the important parameters of the resonators
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are introduced and explained. Finally, two possibilities of coupling light
to the whispering-gallery modes are described.

• Chapter 3. In this chapter the experimental tools are described and
the principles of confocal and near-field microscopy are reviewed. The
procedure for the production of silica microspheres is illustrated. In
this work a novel method for optimization of the coupling of light to
whispering-gallery modes via a prism coupler has been developed, and
is presented here.

• Chapter 4. In this chapter a first application of microsphere res-
onators is given: Raman lasing of a glass microresonator with a record
ultra-low threshold. Scanning near-field optical microscopy is applied
to investigate the mode structure of the laser, the relation between
pump and lasing mode, and to prove single mode operation. The inter-
action between the near-field probe and the laser can lead to quenching
of the lasing activity, resulting in a net force acting on the probe it-
self. A theoretical model for this interplay is developed. Additionally,
a possible use of the system for detection of small particles is described.

• Chapter 5. This chapter is divided in two parts. First, the cou-
pling of a single radiating dipole to the high-Q modes of a microsphere
resonator is investigated theoretically. Detailed calculations of the cou-
pling efficiency to a single mode of the microcavity are performed. The
controlled coupling of a single nanoparticle attached at the end of a
near-field probe to a microsphere is then demonstrated. In the sec-
ond part of the chapter, the first experimental realization of cavity en-
hanced long-distance energy transfer between two single nanoparticles
via shared whispering-gallery modes is demonstrated.

• Chapter 6. A near-field probe introduced into the evanescent field of
one mode can scatter light back into the sphere in the counterpropa-
gating mode, or in a continuum of lossy modes. In this chapter a so far
unexplored analogy to a single dipole coupled to a microcavity is high-
lighted. The different coupling regimes are investigated and described
in terms of Purcell effect and in terms of strong coupling regime typical
in Cavity QED.

• Chapter 7. In this final chapter, first results in the controlled coupling
of a single molecule to the high-Q modes of a microsphere resonator are
shown. Follow-up experiments with single molecules and microcavities
are proposed.



Chapter 2

Whispering-Gallery Modes

In this chapter a theoretical overview of the properties of a spherical mi-
crocavity and of whispering-gallery modes (WGMs) is given. Microsphere
resonators offer optimal optical properties and are easy to fabricate. Their
Quality factors are among the highest observed to date, and the mode vol-
umes can be exceedingly small, approaching λ3. The first indirect evidence
of coupling of light to the WGMs dates back to 1961, where the stimulated
emission of Sm++ ions embedded in spherical samples of CaF2 was observed
[GKL61]. By means of polarization analysis and time resolved measurement
the contribution of the WGMs could be established. Since then, scattering
of light by small spheres has been extensively studied, both theoretically and
experimentally [BC88, BH98]. WGMs can be analytically described as a
subgroup of morphology dependent resonances [BW64]. Alternatively, in a
simple geometrical picture WGMs arise due to constructive interference of
light rays trapped by total internal reflection within a microcavity. A number
of different forms and materials can be used to produce cavities supporting
WGMs [NKR+04, PC03].

2.1 Optical Properties of Microsphere Res-
onators

In this section an overview of the main properties of optical microcavities is
given. References for a more detailed mathematical description will be given
in the discussion.

6



7

2.1.1 Quality factor
The Quality factor, or Q-factor, is generally defined as the ratio of stored
energy to the power loss [Jac89]:

Q = 2πStored energy
Power loss . (2.1)

It is a measure for how long a photon can be stored inside the cavity.
Microsphere resonators can offer Q-factors as high as 109. The Q-factor can
be also defined as the width of the resonance ∆λ divided by the resonant
wavelength λ0, or equivalently as:

Q = λ0

∆λ = ω0τ (2.2)

where ω0 is the angular frequency (ω0 = 2πc/λ0) and τ is the photon life time
in the cavity. Thus, for optical frequencies in the visible range a photon can
remain confined in the cavity for up to a few microseconds. To give a sense
of the performance of these cavities, one can make an acoustic analogy. The
human ear can best hear frequencies between 1 kHz and 3.5 kHz: at such
frequencies a cavity with an Q-factor comparable to the optical example
would resonate the sound for almost one week!

In a real cavity the Q-factor is given by the sum of the Q-factors deter-
mined by all the possible loss channels:

1
Q

=
∑
i

1
Qi

. (2.3)

The main limitations to the Q-factor originate from absorption and sur-
face scattering as well as from the in- and outcoupling device, when the sphere
radius is greater then 5 µm. For smaller spheres radiation losses present in
a curved dielectric cavity dominate [GPI00, BK03].

2.1.2 Free Spectral Range and Finesse
The Free Spectral Range (FSR) of a cavity is usually defined as the frequency
spacing of its axial cavity modes [BW64]. In a microsphere resonator, where
there are no axial modes and where the mode spectrum is more complex, the
FSR can be defined as the spacing between modes with the same transverse
structure. In analogy with a Fabry-Perot cavity, where the FSR is given by
the speed of light divided by the length of the optical path of one round trip,
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for a microsphere resonator with radius R one can say:

∆νFSR = c

2πNR (2.4)

∆λFSR = λ2

2πNR

where N is the refractive index of the dielectric. For a silica microsphere
resonator with a radius of R = 20 µm and a refractive index N = 1.46 this
would correspond to a FSR of ∆λFSR = 2.1 nm at a wavelength λ = 620nm.

Related to the FSR and to the Q-factor is the Finesse, which can be
defined as the ratio of the FSR and the resonance linewidth δν:

F = FSR

δν
= 2πQFSR

ω0
. (2.5)

The finesse of a cavity is a parameter which provides much information. It
is related to the number of round-trips of the photon in the cavity, and it is
used to describe the ability of the cavity to discriminate between two different
modes. It also allows to calculate the amount of energy amplification in a
resonant system: if ρ is the ratio of circulating power left after one round-trip
(without an incident field) the the finesse is given by:

F ≈ 2π
1− ρ. (2.6)

2.1.3 Mode Volume
The mode volume of a cavity is, together with the Q-factor, one of the
most important parameters to pay attention to when observing nonlinear
phenomena and studying Cavity QED effects. A small mode volume means
that the energy of the electromagnetic field is stored in a small portion of
space and results in a high optical energy density. The mode volume is
defined as [BGI89, GPI00]:

Vmode ≈
(
∫
VQ
ε(~r)|E|2d3~r)2∫
VQ
|E|4d3~r

(2.7)

where ε(~r) = N2(~r) is the dielectric constant of the material at ~r, ~E is the
cavity field and VQ is the integration volume. For a microsphere with a radius
of 25µm the mode volume is about 400µm3.



9

2.2 Analytical Expression for WGMs
The intent of this section is to summarize the analytical expressions for the
modes of the electromagnetic field inside a microsphere resonator. The math-
ematical basis was developed by Gustav Mie in 1908, to explain the variety
in colors of absorption and scattering exhibited by small gold particles sus-
pended in water [Mie08]. Here a slightly different approach will be used,
developed by Born and Wolf [BW64]. The problem can be set in this way:
one has to solve Maxwell’s equation when a plane monochromatic wave is
incident upon a spherical surface. This solution also applies to diffraction
by any number of identical spheres which are separated by a distance which
is large compared to the wavelength. This theory also finds application in
solving problems like the theory of rainbows, solar corona, the effect of clouds
and fogs etc.

2.2.1 Representation of the Field in Terms of Debye’s
Potential

The problem to be solved is that of a plane, linearly polarized, monochro-
matic wave incident on a dielectric homogeneous sphere of radius R with a
dielectric constant ε(II). The geometry of the problem is sketched in figure
2.1. The problem will be solved in an appropriate coordinate system (spher-
ical polar coordinates), and the fields will be represented as the sum of two
"subfields": one, such that the electric vector has no radial component, the
other such that the magnetic vector has no radial component.

Figure 2.1: Diffraction of light by a small sphere. This figure displays the
geometry of the problem.

The sphere is immersed in a homogeneous medium of dielectric constant
ε(I) and both the medium and the sphere are non-magnetic. Assuming a
time dependence eıωt for the electric and for the magnetic field, the time-
independent parts of the electric and magnetic vectors are related to each
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other in the following way:

∇× H = −k1 E (2.8)
∇× E = −k1E = k2 H

where

k1 = iω

c

(
ε+ i

4πσ
ω

)
k2 = iω

c
(2.9)

where σ is the conductivity. The square of the wave number k is given by
k2 = −k1k2. All quantities which are related to the medium 1 are denoted
by the superscript (I), while the quantities of medium 2 are denoted by
the superscript (II). As the medium surrounding the sphere is assumed to
be nonconducting, one has σ(I) = 0. Assuming that the amplitude of the
incoming electric field is normalized to unity |E(i)| = |eik(I)z| = 1 and with
reference to figure 2.1 for the definition of the axis, the six components of
the electric and magnetic field vectors can be written as:

E(i)
x = eik

(I)z, (2.10)

H(i)
y = ik(I)

k
(I)
2
eik

(I)z,

E(i)
y = E(i)

z = H(i)
x = E(i)

z = 0.

The boundary conditions require the tangential component of the field to
be continuous across the surface of the sphere, i.e. at r = a:

E
(I)
tang = E

(II)
tang (2.11)

H
(I)
tang = H

(II)
tang.

This implies that outside the sphere one has not only the incoming field E(i),
H(i), but also a scattered field E(s), H(s), so that the field outside the sphere
is given by E = E(i) + E(s) (and analog for the magnetic field), while the
field inside the sphere is denoted as E(w). The problem can then be written
in spherical polar coordinates:

x = r sin θ cosφ (2.12)
y = r sin θ sinφ
z = r cos θ



11

so that the fields expressions 2.8 can be transformed into:

−k1Er = 1
r2 sin θ

[
∂(rHφ sin θ)

∂θ
− ∂(rHθ)

∂φ

]
(2.13)

−k1Eθ = 1
r sin θ

[
∂Hr

∂φ
− ∂(rHφ sin θ)

∂r

]

−k1Eφ = 1
r

[
∂(rHθ)
∂r

− ∂Hr

∂θ

]

for the electric field, and

k2Hr = 1
r2 sin θ

[
∂(rEφ sin θ)

∂θ
− ∂(rEθ)

∂φ

]
(2.14)

k2Hθ = 1
r sin θ

[
∂Er
∂φ
− ∂(rEφ sin θ)

∂r

]

k2Eφ = 1
r

[
∂(rEθ)
∂r

− ∂Er
∂θ

]

for the magnetic field. The boundary conditions are now:

E
(I)
θ = E

(II)
θ (2.15)

E
(I)
φ = E

(II)
φ

for r = a, and analog equations hold for the magnetic field components. The
solutions of the field equations 2.13 and 2.14 will be written as superposition
of two linearly independent fields (e E, e H) and (m E, m E) each satisfying
2.13 and 2.14 so that:

eEr = Er, (2.16)
eHr = 0

mEr = 0,
mHr = Hr

It is clear that these solutions are consistent with the equations 2.13 and
2.14, and that they represent orthogonal fields. For the solutions to represent
physical fields, an additional condition has to be satisfied, namely ∇·eH = 0.
The solution with vanishing radial magnetic field is called transverse electric
wave and that with vanishing radial electric field is the transverse magnetic
wave. These solutions can be derived from two scalar potentials eΠ and mΠ
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respectively, called Debye’s potentials (for a proof of this see [BW64]). In
terms of these potentials the electric and magnetic fields are given by:

Er =e Er + mEr = ∂2(r eΠ)
∂r2 + k2r eΠ (2.17)

Eθ =e Eθ + mEθ = 1
r

∂2(r eΠ)
∂r∂θ

+ k2
1

r sin θ
∂(r mΠ)
∂φ

Eφ =e Eφ +m Eφ = 1
r sin θ

∂2(r eΠ)
∂r∂φ

− k2
1
r

∂(r mΠ)
∂θ

for the electric field and

Hr =m Hr + eHr = k2r mΠ + ∂2(r mΠ)
∂r2 (2.18)

Hθ =m Hθ + eHθ = −k1
1

r sin θ
∂(r eΠ)
∂φ

+ 1
r

∂2(r mΠ)
∂r∂θ

Hφ =m Hφ + eHφ = k1
1
r

∂(r eΠ)
∂θ

+ 1
r sin θ

∂2(r mΠ)
∂r∂φ

where both potentials eΠ and mΠ are solutions of the wave equation

∇2Π + k2Π = 0. (2.19)

To ensure that the fields are continuous at the boundary of the spherical sur-
face one must impose that the following components of the Debye potentials
have to be continuous over this surface:

k1r
eΠ, k2r

mΠ, ∂(r eΠ)
∂r

,
∂(r mΠ)
∂r

. (2.20)

To find a solution for equations 2.17 and 2.18 on can make the Ansatz
that the solution has the form

Π = R(r)θ(θ)Φ(φ) (2.21)

where the functions R, Θ and Φ are solutions of the following set of equations:

d2(rR)
dr2 +

(
k2 − α

r2

)
rR = 0

1
sin θ

d

dθ

(
sin θdΘ

dθ

)
+
(
α− β

sin2 θ

)
Θ = 0

d2Φ
dφ2 + βΦ = 0 (2.22)
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where α and β are integration constants. As the field has to be a single-
valued function of the position, certain conditions on Π have to be imposed,
and these conditions will result in some constraints on the functions R, Θ
and Φ. For the equation on Φ in 2.22 the most general solution is given by:

a cos(
√
βφ) + b sin

√
βφ (2.23)

with the constraint that
β = m2 (2.24)

with m an integer number, so that the solution can be written as:

Φ(φ) = am cos(mφ) + bm sinmφ. (2.25)

The equation for Θ(θ) is the equation for spherical harmonics. Since the
solution has to be single-valued the condition α = l(l+ 1) has to be satisfied.
The solution is given by Legendre-polynomials:

Θ(θ) = P
(m)
l (cos(θ)). (2.26)

Only the part R(r) remains: this can be transformed into the Bessel equation.
The most general solution is:

rR(r) = clψl(kr) + dlχl(kr). (2.27)

where the ψ(kr) and χ(kr) are proportional to the spherical Bessel’s functions
Jl+1/2(kr) and to the Neumann’s functions Nl+1/2(kr):

ψl(kr) =
√
πkr

2 Jl+1/2(kr), χl(kr) = −
√
πkr

2 Nl+1/2(kr). (2.28)

The complete solution for Π(r, θ, φ) is then given by:

rΠ(r, θ, φ) =
∞∑
l=0

+l∑
m=−l

[clψl(kr) + dlχl(kr)]× (2.29)

×[P (m)
l (cos(θ))][am cos(mφ) + bm sinmφ]

where am, bm, cl and dl are arbitrary constants that have to be determined
on the basis of the boundary conditions. From this expression the electric
and the magnetic field inside and outside the sphere can be calculated. With
regard to an incoming plane, linearly polarized wave, the incident field can
be expressed as:

r eΠ(i) = 1
k(I)2

∞∑
l=1

il−1 2l + 1
l(l + 1)ψl(k

(I)r)P (1)
l (cos θ) cosφ

r mΠ(i) = 1
k(I)2

∞∑
l=1

il−1k
(I)

k
(I)
2

2l + 1
l(l + 1)ψl(k

(I)r)P (1)
l (cos θ) sinφ (2.30)
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The boundary conditions 2.20 can be written in a more explicit way as:

∂

∂r
[r(eΠ(i) + eΠ(s))r=a] = ∂

∂r
[reΠ(w)]

∂

∂r
[r(mΠ(i) + mΠ(s))r=a] = ∂

∂r
[rmΠ(w)]

k
(I)
1 [r(eΠ(i) + eΠ(s))r=a] = k

(II)
1 [reΠ(w)]

k
(I)
1 [r(mΠ(i) + mΠ(s))r=a] = k

(II)
1 [rmΠ(w)]. (2.31)

This leads to the following expressions for the potentials from which one
can derive the scattered field and the field inside the sphere. If ζl(kr) =
ψl(kr)− iχl(kr):

reΠ(s) = 1
k(I)2

∞∑
l=1

eBlζ
(1)
l (k(I)r)P (1)

l (cos θ) cos(φ)

rmΠ(s) = 1
k(I)k

(I)
2

∞∑
l=1

mBlζ
(1)
l (k(I)r)P (1)

l (cos θ) sin(φ)

reΠ(w) = 1
k(II)2

∞∑
l=1

eAlψl(k(II)r)P (1)
l (cos θ) cos(φ)

rmΠ(w) = 1
k(II)k

(II)
2

∞∑
l=1

mAlψl(k(II)r)P (1)
l (cos θ) sin(φ) (2.32)

The coefficient Bl can be expressed in a convenient form by using the so
called "sphere parameter" q and a complex refractive index of the sphere with
respect to its surrounding medium N̂ defined as:

q = 2π
λ(I)a

N̂ = k(II)k
(I)
2

k(I)k
(II)
2

(2.33)

By denoting with a prime the derivative of a function with respect to its
argument the coefficients Bl take the form:

eBl = il+1 2l + 1
l(l + 1)

N̂ψ′l(q)ψl(N̂q)− ψ(q)ψ′l(N̂q)
n̂ζ(1)′(q)ψl(N̂q)− ζ(1)

l (q)ψ′l(N̂q)

mBl = il+1 2l + 1
l(l + 1)

N̂ψl(q)ψ′l(N̂q)− ψ′(q)ψl(N̂q)
n̂ζ(1)(q)ψ′l(N̂q)− ζ

(1)′
l (q)ψl(N̂q)

(2.34)

and the coefficients eAl and mAl can be derived by the boundary conditions.
In this way, the fields arising from the scattering of a plane wave by a small
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particle can be completely calculated. From this derivation an important
feature of the fields can be pointed out: they depend on two integer num-
bers l and m, and resonances can be found. The resonances come from the
fact that the denominator in the coefficient Bl has zeros at any root of the
transcendental equation

N̂ζ(1)′(q)ψl(N̂q)− ζ(1)
l (q)ψ′l(N̂q) = 0 (2.35)

The roots of this equation are numbered by a third integer number n =
1, 2, 3 . . . A set of natural frequencies corresponds to the allowed set of values
of the sphere parameter q, known as the modes of oscillation. The mode
with n = 1 is the mode with the lowest frequency. It is also interesting
to note that for large l the function ζl(kr) can be approximated by eikr,
where k ≈ 2π

λ

√
1−N2, where N is the refractive index of the sphere. Since

N > 1 k is complex, the field is no longer a propagating field, but decays
exponentially. Such a field is called evanescent. The typical decay length of
an evanescent field is about a wavelength. This is the field that allows access
to the modes inside the sphere

At this point, having calculated the field expression of the whispering-
gallery modes, one can calculate the mode volume using formula 2.7. This
is quite a cumbersome calculation, and an approximation formula has been
obtained [GPI00, BGI89]:

Vmode ≈ 3.4π3/2 λ

2πN

3
l11/6√l −m− 1 (2.36)

This expression is valid only if n = 1. For a silica microsphere resonator
(where N=1.46) with a radius of 22 µm, assuming n = 1, l = 300, m = l
and λ = 670 nm, this formula delivers a mode volume of 250 µm3. This can
be compared to the total volume of the sphere is 44602 µm3 to have a good
example of the strong field confinement in microsphere resonators.

2.3 Approximate Expressions for WGMs
The expressions of the electromagnetic fields in a microsphere resonator de-
rived in the former section are rather complicated. It was shown that one
has two main classes of solutions, either transverse magnetic or transverse
electric, and that the modes are univocally identified by three quantum num-
bers n, l,m, in analogy with atomic bound states. Only a special class of the
derived modes belongs to the so called whispering-gallery modes, and present
high Q-factors. The intent of this section is to give a more intuitive picture
of the WGMs and of the meaning of the three quantum numbers, n, l,m.
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2.3.1 Radial Intensity Distribution
The best way to give a more heuristical picture of the WGMs is to exploit
geometrical optics. Consider a light ray of wavelength λ traveling inside a
microsphere of refractive index N and radius a� λ as depicted in figure 2.2
a). If the ray hits the surface with an angle γ bigger than γcritical = arcsin( 1

N
)

then the ray will be totally internally reflected. Because of the spherical
symmetry all successive reflections will also occur under the same angle,
and leakage will occur only though diffractive effects (although leakage is
expected to be exponentially small, and it becomes evident only in a wave-
optics picture).

Figure 2.2: Geometrical representation of the WGMs. In a) the ray is trapped
consistently, in (b) the ray only superimposes after 10 round trips.

If the number of reflections is an integer multiple l of the wavelength the
light is trapped inside the sphere and constructive interference will result
in build-up of a resonant mode. For large spheres where a � λ the ray
travels close to the sphere’s surface, so that the total covered distance is
approximately 2πa. It is thus possible to give an approximated condition for
the wavelength of a resonator mode: the phase must match after one round
trip. This can be expressed as:

2πa ≈ l
λ

N
(2.37)

since in the resonator the ray has the wavelength λ/N . In terms of the size
parameter q = 2πa

λ
defined in section 2.2, the resonance condition is

q ≈ l/N. (2.38)

This can also be understood in another way. Considering the light ray in
figure 2.2 as a photon, its momentum is given by

p = ~k = ~
2πN
λ

(2.39)
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If the ray strikes the surface at near-glancing incidence (γ ≈ π/2), and is
reflected l times, then the angular momentum is given by

~l ≈ ap = ~a
2πN
λ

(2.40)

which is identical to q ≈ l/N . This l is the same quantum number that
appears in the previous section. Here it has an intuitive meaning, and can
be associated with the angular momentum in the usual sense. The quantum
number m can now immediately be interpreted as the z-component of this
angular momentum, in a reference system where the photon propagates along
the equator identified by the x− y plane. Then it is:

m = l cos θ (2.41)

It is intuitive to understand that for perfect spheres the modes are degenerate
with respect to m, and this degeneracy is lifted when the resonator deviates
from a perfect sphere.

If the light ray has a smaller angle of incidence on the sphere surface,
then two round trips may be needed to have phase match. This means that
the mode is deeply penetrating inside the sphere, and creates a different set
of resonances, with a different wavelength but the same l. This is related
to the radial component of the photon momentum, and can be connected
to the quantum number n, which correspond to the roots of equation 2.35.
The higher n, the more the intensity peak in the radial intensity distribution
moves towards the center of the sphere. In figure 2.3 the radial intensity
distributions for different n are sketched. It can be seen that the higher n,
the more the mode leaks out of the sphere. This will correspond to lower
Q-factors for modes with higher n.

2.3.2 Angular Intensity Distribution
The angular intensity distribution in the azimuthal direction (identified by
φ) is rather simple, and can be directly deduced by the field expressions,
which is either sinmφ or cosmφ. The number of maxima in the φ direction
is thus simply 2m. This explains also the meaning of the quantum number
m. In figure 2.4 a plot of the azimuthal intensity distribution is plotted for
a whispering-gallery mode with n = 1 and m = l = 9.

In the polar direction, identified by θ the intensity distribution is a bit
more complicated, the field being described by angular spherical functions.
If the resonator is big enough (i.e. if the radius a� λ) then it is possible to
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Figure 2.3: Radial intensity distribution for a whispering-gallery mode in a
sphere of radius a with a) n=1, b) n=2, c) n=3 and d) n=7. The black line
depicts the interface glass/air.

use a quasi-classical approach [GI94b]. The case l −m = 0 is the simplest
situation, in which one can approximate [AS72]:

Pl(cos θ)
(2l − 1)!! = sinl θ ≈ exp[− l(θ − π/2)

2 ] (2.42)

If l is large this can be interpreted as a Gaussian beam having l/n reflections
on the surface during one round trip inside the sphere. This Gaussian beam
could be, for a perfect sphere, inclined at different angles. Due to the spheri-
cal symmetry this would result in a degeneration of the modes in m. In reality
the spheres are never perfect, so that an equatorial plane can be defined. This
also implies that the degeneracy in m is lifted. As a result, as the difference
between l and m grows, the polar intensity distribution becomes a rapidly
oscillating function of θ with a sharp cutoff at θmax = π/2±arccos(m/l). An
approximation can be made for large l and m ' l [KDS+95]:

Ilm(θ, φ) ∝ |Hl−|m|(l1/2 cos θ) sin|m| θ exp(imφ)|2 (2.43)



19

Figure 2.4: Azimuthal intensity distribution for a whispering-gallery mode
with n=1 and m=l=9. The radius of the sphere is normalized to 1[Col94].

where Hl−|m| is an Hermite polynomial of order l−|m|. From this equation, a
mode with quantum numbers n, l,m has l−|m|+1 lobes in the polar intensity
distribution. This distribution is centered around θ = 0, being defined by
the symmetry axis of the deformed spheroid. A plot for some l−m values is
reported in figure 2.5.

The quantum number m varies in the range −|l| ≤ m ≤ +|l|. The modes
having m < 0 are simply propagating in the opposite direction as the modes
with m > 0. Usually modes with the same and opposit m are degenerate.
However, a scatterer can induce a coupling between these modes: as a re-
sult, the degeneracy is lifted, and the coupled modes behave like two coupled
oscillators. The resonance is splitted to a doublet, with a frequency spacing
between the two peaks which is proportional to the coupling rate. Chapter 6
is dedicated to the study of the properties of intramodal coupling. The mode
with n = 1 and m = l has the smallest mode volume, and is called funda-
mental whispering-gallery mode (FWGM) of a microsphere resonator. This is
the most interesting mode since it presents the highest field per photon: this
means that nonlinear phenomena are most pronounced in the fundamental
mode.
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Figure 2.5: Polar intensity distribution for different l −m values.

2.3.3 Spectral Properties of the Whispering-Gallery
Modes

The former approximations have some disadvantages. On the one hand,
the geometric optics approximation is valid only for big sphere parameters
q →∞. On the other hand, all polarization information is lost. Additionally
the rate of leakage is not available. It is possible, however, to gain some more
information through an asymptotic analysis [SB91] to express the condition
q ≈ l/N as an inverse series expansion in L−1/3, where L = l + 1/2. If qn,l is
the size parameter q associated to the resonance identified by the quantum
numbers n and l [SB91]:

Nqn,l = L+ 2−1/3αnL
1/3 − P

(N2 − 1)1/2 +
( 3

102−2/3
)
α2
nL
−1/3

−2−1/3P (N2 − 2P 2/3)
(N2 − 1)3/2 αnL

(−2/3) +O(L−1) (2.44)

where P = N (1/N) for transverse electric (transverse magnetic) modes, and
αn are the roots of the Airy function Ai(−z) for n = 1, 2, . . .

In [Sch93] it’s shown that the accuracy of this series expansion can be
better than 10−4 for n = 1 and l > 50. From the formula 2.44 an expression
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for the free spectral range (FSR) of the resonator can be deduced:

FSR = c

2πa [qn,l+1 − qn,l] ≈
2

2πaN . (2.45)

The total internal reflection process is also responsible for a frequency shift
between the TE and the TM modes. Different polarizations experience dif-
ferent phase-shifts under reflection on an interface. This shift can be ex-
pressed as [SB91]:

cTE/TM = an,l − bn,l
FSR

≈
√
N2 − 1
N

(2.46)

where an,l (bn,l) is the sphere parameter for a TE (TM) mode. The constant
cTE,TM depends only on the refractive index of the sphere N , and relates
TE and TM modes with the same n and l. The TE mode has the higher
frequency (or lower wavelength).

At this point, only one more approximation is needed to have a full pic-
ture of the whispering-gallery modes: modes with the same l but different
m would be degenerate for a perfect sphere. In the real world, however, mi-
crosphere resonators are never perfectly spherical. This lifts the degeneracy.
This problem is addressed in [GI94a], where it is shown that an arbitrary
spherical function can be described as an inclined fundamental mode which
is preceding. Modes with different m will then have a different frequency as
they run over different perimeter lengths of the inclined ellipse of elipticity
ε. A first order of approximation for this frequency shift leads to [SB91]:

∆ω
ω

= ±ε
2(l2 −m2)

4l2 (2.47)

where ∆ω denotes the difference in frequency between a mode with a certain
m and the fundamental mode of the same family (same n and l). The positive
sign in equation 2.47 denotes an oblate spheroid, the negative sign denotes a
prolate one.

2.4 Efficient Coupling to Whispering-Gallery
Modes

As shown in section 2.2 the natural modes of a sphere are well confined inside
the sphere itself. The reciprocity theorem holds that if no light is coupled out
of the sphere, then there is no trivial way to couple light into it. The solution
to this hurdle is offered by the evanescent field (see the end of section 2.2).
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If a light ray is grazing the sphere’s surface, and it has the same k vector
as the k vector of the evanescent field of the modes, than light can tunnel
into the modes. In other words, an efficient coupling to the modes requires
matching of the k vectors. There are several ways to obtain this: prism cou-
plers [BGI89], fiber tapers [KCJB97], eroded monomode fibers [DKL+95],
angle polished single mode fibers [IYM99] and pedestal antiresonant reflect-
ing waveguides [LLL+00]. In this work two possibilities have been exploited:
the prism coupler or the angle polished single mode fiber. In the following
section, both coupler devices are described and their advantages and limita-
tions are pointed out.

2.4.1 Prism Coupler
In a prism coupler an evanescent field can be created by launching a light ray
under an angle Ψ bigger than the total internal reflection angle defined by
Ψtot = arcsin 1

Nprism
, where Nprism is the index of refraction of the prism (see

figure 2.6). In air, close to the interface where the light ray is totally internally
reflected, there is an evanescent field, whose k vector can be decomposed into
two components perpendicular and parallel to the surface [CMD72]:

k⊥ = 2π
λ

(1− (Nprism sin Ψ)2)1/2

k‖ = 2π
λ

(Nprism sin Ψ). (2.48)

If the incidence angle Ψ > Ψtot, then the perpendicular component of k is
purely imaginary, and the electric field E(r)∝ ei(kr−ωt) is no longer propagat-
ing in the direction perpendicular to the prism surface, but decays exponen-
tially with the increasing distance from the surface. In order to couple light
to the whispering-gallery modes of a microsphere the component k‖ of the
evanescent field has to be matched to the same component of the evanescent
field of the modes:

2π
λ
Nprism sin Ψ = 2π

λ
Nsphere sin γ, (2.49)

where γ is the angle depicted in figure 2.2. This angle is for whispering-gallery
modes of almost π/2, so one can approximate sin γ ≈ 1 and the condition
2.49 for the launching angle Ψ becomes:

sinψ ' Nsphere

Nprism

. (2.50)

For this condition to be satisfied, the refractive index of the prism has to be
bigger than the refractive index of the sphere. In this work a prism made of
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flint glass was used. At a wavelength of about 620 nm, Silica has a refractive
index of 1.46, while Flint glass has 1.72. Therefore, the optimal angle for
coupling to the high-Q modes is given by ψ = 59◦.

Figure 2.6: Efficient coupling to the whispering-gallery modes of a micro-
sphere resonators by means of a prism coupler.

A prism with an internal angle of 60◦ is then chosen, so that the light
ray can be launched almost perpendicularly to the prism surface. This fact,
and an antireflection coating on the prism surface minimize the reflection
losses. The condition 2.49 holds only for the fundamental mode as was proven
in [GI99] and [GI94b], where the optimal coupling conditions for different
whispering gallery modes were studied. From symmetry considerations it
can be seen that the inclination angle with respect to the equatorial plane
should be 0◦.

The efficiency of the coupling depends not only on the incidence angle,
but also on the distance between the sphere and the prism. The transmitted
signal is a superposition of the incoming photons with the photons that are
resonating into the whispering gallery modes. At the in- and output port
they can interfere. On the other end the prism itself will introduce losses
in the cavity. Three different regimes are usually distinguished, depending
on the ratio of the internal losses of the sphere (characterized by the cavity
decay rate τ−1

0 ) to the losses induced by the coupler (described by the cavity
coupling rate τ−1

k ):

• If τ−1
0 > τ−1

k , the system is said to be in under-coupled regime,
and the amplitude of the cavity leakage field is much smaller than the
amplitude of the field transmitted by the prism;

• In the so called over-coupled regime, the rate of cavity coupling
exceeds the cavity decay rate: τ−1

0 < τ−1
k . Then the amplitude of the

cavity decay field is larger than the transmitted pump field, and in
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the case of strong over-coupling can reach a value of up to twice the
waveguide amplitude;

• when τ−1
0 = τ−1

k , the system is said to be in the critical coupling
condition: the entire incoming signal is transferred to the resonator.

2.4.2 Polished Fiber Coupler
The prism coupler is a stable and practical device, but still may have some
limitations. It is a quite bulky object compared to the microspheres and it
requires collimating optics, which makes it less flexible. Therefore, in some
experiments a polished fiebr coupler has been used, where the fiber has been
polished under a specific angle. The first evidence of coupling to whispering-
gallery modes of a microsphere resonator via a polished fiber and a theoretical
description of the process can be found in [IYM99]. Since light is transported
in the core of an optical fiber by total internal reflection, one can consider
exploiting the evanescent field that is generated at the core’s surface. First
attempts to do this using an eroded optical fiber [DKL+95] could not offer
small dimensions and flexibility. If one polishes a fiber, however, the field
at the tip will also be totally internally reflected and then escape from the
fiber. If the microsphere is positioned in the range of the evanescent field
from the core area, then an efficient energy exchange between the single mode
fiber and the whispering-gallery modes of the microsphere can take place. A
sketch of the setup is shown in figure 2.7.

Figure 2.7: Efficient coupling to the whispering-gallery modes of a micro-
sphere resonator by means of a polished fiber coupler.
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Analog to the prism coupler the condition to match the evanescent field
of the coupler to the evanescent field of the modes is:

Φ = arcsin
(
Nsphere

Nfiber

)
(2.51)

where Nfiber(sphere) is the refractive index of the fiber (sphere). The refractive
index of the sphere is known, but the definition of the refractive index of
the fiber is a bit more cumbersome, since the guided wave in the core no
longer exists after it is reflected out of the fiber at the interface with the
sphere. Nevertheless, as confirmed by the experiments´, one can make a
simple approximation and consider Nfiber to be equal to that of a regular
fiber, given by [IYM99]:

Nfiber = β

k
= N2

[
1 + ∆( ν

V
)2
]

(2.52)

where k = 2π/λ is the wave vector, ∆ = (N2−N1)/N1 is the relative refractive
index difference between the index of the cladding (N1) and that of the fiber
(N2), V is the normalized frequency and ν the transverse decay constant.

This kind of coupler will be useful when working with single molecules,
where a greater flexibility in the system is required.



Chapter 3

Experimental Setup: Methods
and Instruments

This chapter provides a brief overview of the instruments and methods used in
the experiments. Since the main goal of this work is the controlled coupling
of radiating dipoles to the high-Q modes of a microsphere resonator, the
requirements for the experimental instrumentation are quite stringent. The
interaction of the high-Q modes with the external world is strongly dependent
on the geometry of the system, for instance on the relative position between
the sphere and the coupler. Nanometer precision is thus required to optimize
all the parameters. The ability to work with single molecules is required,
and tools to interact with the evanescent field of the high-Q modes of the
resonators are essential for performing any experiment. Further details of
the experimental tools can be found in [Göt04].

3.1 The Microsphere Spectroscopy Unit
In figure 3.1 a photograph of the experimental setup is shown.

The core of the setup is constituted by the microsphere itself. A prism
has been chosen as an output coupler. The prism has the advantage of being
a stable and robust coupler. The coupling geometry is fixed and optimized
once, and does not require constant readjustment. Since working with sin-
gle nanoparticles constitutes on of the main part of this work, the ability to
identify, excite and detect single emitters down to the single molecule level
is essential. The optimal tool to offer this performances is a confocal micro-
scope. Finally, the need of unequivocal mode identification and the evanes-
cent nature of the modes outside the sphere require the implementation of a
Scanning Near-field Optical Microscope (SNOM), which also revealed itself

26
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Figure 3.1: A photograph of the experimental setup.

as a powerful tool in the manipulation of single nanoparticles.

3.2 The Confocal Microscope
An important part of this work requires the ability to work with single
molecules as emitters. An optimal tool to excite and detects single nanoparti-
cles as single molecules or single quantum dots is a confocal microscope. The
idea of confocal microscopy is to isolate the signal coming from one specific
point from the contribution of the overlaying or nearby positioned scatterers.

The peculiar geometry of the microsphere spectroscopy unit, composed
of the microsphere itself, the coupler and the multimode fiber necessary to
detect photons scattered out of the microsphere imposes several conditions
on the design of the confocal microscope. The microscope must be set up in
an horizontal arrangement with a defined height, moveable with µm precision
in all three spatial directions. For this reason commercial microscopes do not
fit in the experimental setup, and a hand-made microscope was used. The
details of the setup can be found in [Göt04]. A brief overview of the principles
of confocal microscopy is given here, and the experimental setup is described.

3.2.1 Principles of Confocal Microscopy
A schematic depiction of confocal microscopy is shown in figure 3.2. The
selection of light from one point and the rejection of light from all other points
leads to very high contrast images in confocal microscopy. The disadvantage
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of this selectivity is the loss of the ability to look at a bigger portion of the
sample at one time. Gaining information on a bigger area requires scanning
the sample (or the excitation beam through the sample, as in the case here
described) and an extenisive experimental time frame for the formation of a
complete image.

Figure 3.2: The principle of confocal microscopy [Göt04].

A point source is focussed on the object plane (e.g. on particle 1 in figure
3.2) of a microscope objective within the sample. The objective will form
an image of the sample on a pinhole in the conjugated plane of the sample.
The pinhole has the function of selecting out the light coming from different
scatterers (e.g. particle 2 in figure 3.2) which is focussed on a different point
and can thus not be transmitted through the pinhole. The point spread
function (PSF) is the intensity pattern from a point source created by an
optical system, e.g. a lens at its focal plane. This function determines the
resolution of the optical system. For instance, for a circular aperture, the
PSF is given by an Airy disk [Web96], so that the distance between the
intensity maximum and the first dark fringe is

∆x = 0.61 λ

NA
(3.1)

where λ is the wavelength and NA the numerical aperture of the objective.
Two objects are then just resolved if the intensity maximum of one falls into
the first dark fringe of the other. Another advantage of confocal microscopy
is that both illumination and detection are described by the same PSF, so
that the the resolution becomes [Web96]:

∆xconf = 0.44 λ

NA
, (3.2)

which shows the better performance of confocal microscopy.
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3.2.2 Image Generation
The image generation is done by scanning the confocal spot across the sample.
There are two possibilities: either one scans the sample itself or scans the
excitation beam across the sample while leaving the sample fixed. Here, due
to the complexity of the system studied, the second option is chosen.

A schematic depiction of the setup is shown in figure 3.3. A telecentric
lens system is used to let the beam pivot around the back focal plane of the
microscope objective. This results in a lateral movement of the excitation
beam. For more details see [Göt04, Paw95, GC97].

Figure 3.3: Beam scanning configuration: the x- and y-scanner mirrors
(mounted on galvo drives) let the excitation beam pivot around a fixed point
in the back focal plane (BFP) of the objective. This movement is transformed
in a lateral displacement of the beam on the sample.

To show the performance of the confocal microscope the fluorescence im-
age of single terrylene molecules embedded in a p-terphenyl crystalline matrix
is shown in figure 3.4. Here the single molecules are oriented perpendicularly
to the observation plane, so that the dipole emission pattern is clearly visible
(this is also a typical signature of a single dipole emission) [PZH+04].

3.3 The Scanning Near-field Optical Micro-
scope

In this work a very important role is played by the near-field of the modes
of the resonator. Therefore it is essential to have an instrument capable
of interacting with this near-field in a controllable manner. The ideal tool
is a Scanning Near-field Optical Microscope (SNOM). It is a very powerful
tool: not only in the detection of the near-field of the high-Q modes, but



30

Figure 3.4: a) Confocal scan of a coverslip covered by spin coated terrylene
molecules in a p-terphenyl film. The dipole emission pattern of a z-dipole of
a single molecule is clearly recognizable. b) Confocal excitation of a single
molecule.

also as a tool to position single nanoparticles in the evanescent field of the
modes. Here, a very brief introduction to near-field microscopy is given.
More details are provided in [Göt04]. The first realization of a SNOM was
in 1984 ([LIHM84, PDL84]). A SNOM consists of a glass fiber tip which can
be held at a fixed distance of few nanometers from a surface, which allows
to simultaneously obtain optical and topographical information about the
scanned sample. The optical resolution can be as good as a few tenths of
nm [BT92], while the topographical resolution is determined by the diameter
of the glass fiber tip. A second, powerful use for the SNOM is as a tool to
position nanoparticles at will into a mode’s field. As shown in [Kal02] it is
possible to use a SNOM as a needle to pick up small particles from a surface.

3.3.1 Application of the Scanning Near-field Optical
Microscope

As seen in paragraph 3.2 conventional optical imaging has a resolution re-
stricted to about λ/2 because of diffraction. An oscillating dipole, however,
not only promotes propagating waves, but also non-propagating evanescent
waves [LK77]. These waves decay exponentially with growing distance from
the radiating dipole. Access to the near-field with a subwavelength probe
can transform evanescent photons into propagating photons through scatter-
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ing, allowing thus to obtain information on an otherwise unaccessible region.
In this work the near-field probe is a tapered glass fiber tip with an end-
diameter of about 100 nm. The tip can be coated with aluminium, with a
narrow aperture with subwavelength dimensions at the end. This is known
as aperture SNOM: the aperture can be used as a nanoscopic light source to
illuminate the sample through the evanescent field created at the aperture
[BT92]. On the other hand the aperture can be used to collect scattered pho-
tons. In this work non-coated tips are used (known as apertureless SNOM
[Oht98]).

Figure 3.5: Different possible configurations of apertureless SNOM: (a) scat-
tering SNOM, (b) photon tunneling SNOM, (c) active probe SNOM

Both aperture and apertureless SNOMs can be used in different configu-
rations as shown in figure 3.5. One can globally illuminate the sample and
use the tip as a detector, as in figure 3.5 a): in this case the near-field probe
scatters the evanescent field created by the excitation light on the sample
[ZMW95]. Modulation and lock-in techniques are needed to discriminate the
true near-field signal from the background of excitation light. Another pos-
sibility is to illuminate the sample via total internal reflection as shown in
figure 3.5 b). This configuration produces very low background, since only
the light scattered in the junction between the tip and the sample can enter
the fiber and be collected by a detector [CBB94]. This is the configuration
exploited in this work to identify the whispering-gallery modes, as shown in
section 3.5.

There are many other possible SNOM tips and SNOM configurations.
An ultimate limit is active probe SNOM using a fluorescent nanoparticle
[KHS+01] or a single molecule [MHMS00], as shown in figure 3.5 c). If the
nanoparticle is excited under far field illumination, then only the red-shifted
fluorescence of the nanoparticle contributes to the image formation. The
result is a high signal-to-noise ratio.
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The distance between the SNOM tip and the scanned surface has to be
stabilized with nanometer precision. This can be done by exciting the tip
to oscillations of a few nanometers in amplitude. When the tip approaches
a surface these oscillations are damped and phase-shifted. The oscillations
can be detected optically as in atomic force microscopy, or electrically us-
ing piezoelectric elements. A feedback can be fed back to a piezoelectric
positioning element. In this experiment the oscillations are excited and de-
tected through a segmented ceramic piezo tube. A schematic depiction of
the shearforce control loop is shown in figure 3.6. More details can be found
in [Göt04].

Figure 3.6: Block diagram of the shear-force control loop [Göt04].

For production of the SNOM tip used here a glass fiber tip was glued
inside a micropipette held by a segmented ceramic piezo. When one of the
segments is driven at the tip’s resonance frequency its oscillation amplitude
is strongly enhanced. The obtained signal is detected by another segment of
the piezo tube. It is then amplified, filtered and demodulated with a lock-in
amplifier, triggered by the driving function generator. A PI-controller is used
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to control the distance between the tip and the scanned surface. This signal
also delivers the information about the surface’s topography with a precision
in the nanometer range.

3.3.2 Active Nano-probes
As pointed out in the previous section there is an additional use for SNOM
probes. Attaching a single nanoparticle to the end of the tip allows for
positioning of the same particle with nanometer precision. There are different
methods to produce active nano-probes. The simplest one works well with
particles that are larger than the tip, and is sketched in figure 3.7 a). In
this case one starts with a coverslip with some nanoparticles dispersed on
it, then by active positioning the tip can be moved above a single particle
and then stuck through it. This was the optimal method to pick up single
beads, polystyrene spheres which can be doped with dye molecules, with
dimensions down to 200 nm. For smaller particles, or hard particles such as
gold nanospheres, electrostatic bond or covalent bond to let the particle stick
to the tip can be exploited [Kal02].

3.4 Production and Characterization of Sil-
ica Microspheres

Here the production and characterization of silica microspheres is briefly
described. Silica microspheres with diameters ranging between 20 and 150
µm were produced, with Q-factors up to 1 × 109. It is most important to
use silica glass with the lowest contamination possible. Metallic impurities
will absorb in the ultraviolet region, whereas water contamination will spoil
the Q-factor in the infrared region. Suprasil 300 glass rods (produced by
Heraeus Quarzglas GmbH) with extremely low ion contamination are used
(e.g. OH− ≤ 1 ppm). The rods are cleaned in a 3-step process: first the rods
are immersed in a solution of KOH-isopropanol to dissolve organic material
present on the surface. In a second step the rods are put in a 40% nitric acid
solution, to remove residual chemicals. The last step consists in immersion
in a 40 % solution of hydrofluoric acid, to etch the outer layers of glass which
still could be water contaminated. The longer the rods remain immersed in
the acid, the more will be removed. A 30 minute immersion has consistently
given good results. At this point the rods can be pulled into thin fibers (with
a diameter of about 100 to 300 µm) with an oxy-hydrogen torch. The fibers
are then cut into small pieces and glued into copper pipes by means of a
superglue. The copper pipes will later have the important role of improving
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Figure 3.7: Different methods for picking up single nanoparticles with a
near-field probe. In a) the stick-through method is shown. b) represent the
pick-up method that exploits electrostatic force to let the particle stick to
the SNOM tip, while in c) the tip is coated with a nano-glue before bringing
it in touch with the nanoparticle.

thermal conduction for the temperature stabilization of the microsphere. The
copper pipes are held horizontally in a 3-dimensional translation stage. A
CO2 laser is then focussed on the glass rod to melt it. First, the rod is pulled
thinner with tweezers, then bent into a hook under gravity. Finally, the lower
part of the rod melts and takes a spherical form because of surface tension.
The setup is sketched in figure 3.8. Depending on how thin the rod is pulled,
and on the speed with which the sphere is melted (which can be increased
with laser power) the dimension of the sphere can be tuned with a precision
of about 10 µm.

At the end of this process one will have a sphere attached to a thin stem.
Care has to be taken during the melting process to ensure that the sphere
sits in a good position on the stem, i.e. not too inclined or skew. This is
because any inclination makes the coupling to the fundamental whispering-
gallery mode more difficult. In the next section a method for optimizing the
coupling to the high-Q modes will be presented.



35

Figure 3.8: Setup for the production of silica microspheres

3.5 Optimizing Coupling to the Whispering-
Gallery Modes

In a controlled experiment it is desirable to be able to optimize the coupling
of light to a single WGM, specifically the fundamental mode in a routine
and efficient manner. This allows for investigation of non-linear effects at
extremely low pump powers, as all pump light is funneled into a single,
highly confined mode. On the other hand, in experiments aiming at coupling
of single quantum emitters to a single mode of an optical cavity, all photons
in that particular mode should be coupled out with highest efficiency.

One main obstacle of spherical resonators (microspheres as well as mi-
crodiscs or toroids) compared to e.g. Fabry-Perot-type cavities is that there
is no preferred direction into or out of which light can be coupled. Nev-
ertheless, different methods have been developed to couple light to WGMs
in spherical resonators. It was shown in chapter 2.4 how external couplers
made from tapered fibers [KCJB97, LMSF01] as well as frustrated total in-
ternal reflection at a prism surface [GI94a] or at angle polished fibers [IYM99]
have been used successfully. Also directional emission from nearly spherical
resonators was demonstrated [LWFN03]. The theory of prism coupling to
WGM’s in spherical resonators was analyzed in detail in [GI99]. In most
of the experiments in this work a prism coupler is used: this is the most
flexible device, as it provides the ability for fine adjustment by convenient
manipulation of the incident free beams [GI99]. Also, it allows one to control
the Q-factor of the WGM over several orders of magnitude by varying the
distance between the microsphere and the prism surface. External couplers,
mandatory for spherical resonators, have to be aligned actively with respect
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to the geometrical symmetry axis of the resonators. Due to the produc-
tion process, which is usually a melting procedure, there is always a small
ellipticity (of a few %) and thus a well defined symmetry axis. Mismatch
of the spatial alignment with respect to this a priori unknown axis rapidly
decreases the efficiency of coupling.

A method determining the symmetry axis of a slightly non-spherical mi-
crosphere resonator and, hence, optimizing the coupling of light to the fun-
damental whispering-gallery mode (FWGM) when using a prism coupler is
needed. In this work such a method was developed by mapping the intensity
distribution of WGM’s on the sphere’s surface and the sphere’s topography
simultaneously with the use of a near-field probe. The basic experimen-
tal setup for SNOM mapping of whispering-gallery modes in a microsphere
resonator is sketched in fig. 3.9. A microsphere of radius r = 59 µm is
fabricated as described in the previous section. The microsphere is mounted
on a translation stage combined with a goniometer and a rotation stage. As
a first step the sphere is coarsely aligned with respect to the prism coupler.
The beam from a narrow-band tunable diode laser (wavelength λ = 670 nm,
linewidth δλ < 300 kHz, tuning range ≈ 60 GHz) is focussed to a small spot
on the surface of the prism. A photodiode and a multimode fiber leading
to a photomultiplier detect the transmitted light of the probe laser and the
light which was scattered in resonance off the WGM’s, respectively. The
SNOM probe (similar to that used in [GBS01, GBS02]) is connected to a
second photomultipier, which recorded the signal when mode mapping was
performed.

With the help of the translation stages the microsphere is positioned into
the evanescent field produced by total internal reflection from a diode laser
beam at the prism coupler. The symmetry axis of the slightly non-spherical
resonator is oriented approximately parallel to the stem. However, the exact
orientation is not known a priori. An "optical equator" can be defined as the
plane in which the FWGM propagates with a ring-like intensity distribution.
If the optical equator is not exactly aligned with respect to the prism, the
FWGM will not couple efficiently. Besides, the area on the sphere surface
which is closest to the focal spot of the diode laser on the prism does not
necessarily coincide with the position of the fundamental mode, as sketched
in figure 3.10.

Coupling to higher order modes with l 6= m is favorable in this configu-
ration. Thus, two rotational degrees of freedom (characterized by the angle
α and β in figure 3.10) are needed to adjust the sphere’s optical equator.

Figure 3.11 a) shows the measured spectrum of the light detected by the
multimode fiber when the diode laser is tuned over a range of 10 GHz. The
photomultiplier, PMT1, (see figure 3.9) registers a spectrum with a set of
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Figure 3.9: Schematic depiction of the experimental setup for SNOM map-
ping of the whispering-gallery modes of a microsphere resonator. The beam
from a diode laser is focussed on the prism with a lens. A photodiode and
a photomultiplier (PMT1) behind a multimode fiber allow recording spectra
of the microsphere resonator which is mounted on a translation stage com-
bined with a goniometer. The SNOM probe is connected to an additional
photomultiplier (PMT2).

Figure 3.10: Schematic side and front view of the microsphere-prism system.
The fundamental mode is inclined with respect to the horizontal plane due to
the fabrication process and therefore does not couple efficiently to the prism.

equally spaced modes belonging to the same family, sharing the same l mode
number, but differing in their m numbers.
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Figure 3.11: a) Recorded spectrum of modes with m ≤ l before optimization.
The fundamental mode is hardly visible. b) Topographical-spectral (left,
polar scan range 28 µm) and a spatial-spectral (right, spatial scan range
28 µm, spectral scan range: ∼ 1.2 GHz) mode map of the FWGM.

The splitting ∆ω of the modes with different m is a function of the mi-
crosphere’s ellipticity ε. It breaks the symmetry and separates the initially
degenerate modes with different m numbers as described in section 2.3. In
a non-spherical microsphere resonator (oblate spheroid) the lowest energy
mode of a given family is the FWGM [GBS01]. The observed splitting of
1.6 GHz for this sphere of radius 59 µm is in agreement with an ε ' 0.04.
No further modes of the same family appear in the lower frequency side (not
shown in figure 3.11 a). Obviously, in this measurement modes with a larger
value of l−m couple more efficiently than the FWGM, which can hardly be
seen in the scattering signal recorded by the photomultiplier.

In order to optimize the coupling to the FWGM a mode mapping with
the SNOM probe is performed. The distance between the probe and the mi-
crosphere is actively stabilized to approximately 10 nm using the shear-force
method as explained in section 3.5. When scanning the probe across the
surface of the sphere an optical signal is recorded. This is given by photons
scattered into the near-field probe off the evanescent field of the WGM’s. In
addition, topographical information provided by the signal extracted from
the control loop of the shear-force stabilization is obtained. The topograph-
ical information defines the "geometrical equator" (see figure 3.10), which is
the cross-section of the horizontal plane (defined by the incident plane of the
diode laser beam, which is parallel to the optical table) and the microsphere
resonator. Next the SNOM probe was scanned in the direction perpendicular
to the geometric equator along the sphere surface. At each point the laser
frequency was tuned across the resonance of the FWGM and both the optical
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and topography signals were recorded. The resulting topographical-spectral
and spatial-spectral maps are shown in figure 3.11 b). The topographical
signal does not depend on the frequency of the diode laser as expected, but
an optical signal from the FWGM is only detected in resonance. The single
maximum of the measured intensity distribution of the WGM proves that
the fundamental mode has been detected. White lines in the insets are plot-
ted to highlight the geometric equator (topographical map) and the optical
equator (spatial map). From the shift of the two lines with respect to each
other it is possible to directly determine the angle α (see figure 3.10). Then,
the microsphere is tilted with the rotation stage to annul the shift.

Figure 3.12: Two dimensional mode map. On the left the two-dimensional
topography map of the microsphere is shown, while on the right a two-
dimensional mode map showing the mode with m = l − 2 can be seen.
The scan range for both figures is 15 µm along the polar direction, and 6 µm
along the azimuthal one, from which β is calculated to be 3◦. During the
measurements the laser was continuously scanned around the resonance of
the WGM.

The alignment of the second rotational degree of freedom (angle β in
figure 3.10) can be done with the mode mapping technique. In order to do
this a two-dimensional mode map similar to the one described in [GDBS01]
is performed. Figure 3.12 shows a two dimensional map of the topography
(left) together with a two dimensional map of the optical near-field (right). In
this case the laser frequency was continuously scanned around the resonance
of a WGM with l −m = 2, which explains the three maxima in the vertical
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direction of the intensity distribution. The derivation of the tilting angle β
with respect to the horizontal axis is straightforward. By using the goniome-
ter of the spectroscopy unit the microsphere can be tilted to compensate for
the angle β.

Figure 3.13 shows a spectrum after the optimization procedure, i.e., the
correction of the two tilting angles α and β. Insets again show a topograph-
ical-spectral and a spatial-spectral map. This figure has to be compared to
figure 3.11: first, both white lines which indicate the geometrical and optical
equator, respectively, are now collinear. This means that the microsphere
resonator is perfectly aligned with respect to the prism coupler. Second, the
spectrum shows that the coupling is now optimized for the FWGM, which
is by far stronger than modes with l 6= m. An improvement of the coupling
efficiency of the FWGM by at least two orders of magnitude was obtained.
The fundamental mode is now symmetrically centered around the geometrical
equator of the microsphere, and this position maximizes the overlap between
the FWGM and the evanescent spot at the surface of the prism coupler.
With prism couplers it was possible to obtain coupling efficiencies to high-Q
WGM’s exceeding 70 %. However, this is still not the ultimate limit of a
prism coupler as mode matching could be further improved [GI99]. Besides,
as is demonstrated by the comparison between figures 3.11 a) and 3.13 a),
it is evident that in general identifying the fundamental mode only from the
spectral information is not a simple process.

Figure 3.13: a) Recorded spectrum of modes with m ≤ l after optimiza-
tion. Coupling to the fundamental mode is now strongest. b) Topographical-
spectral (left, polar scan range 28 µm) and a spatial-spectral (right, spatial
scan range 28 µm, spectral scan range: ∼ 1.2 GHz) mode map of the FWGM.

These results demonstrate that a near-field probe is a very versatile tool
when investigating confined light in microresonators, but also makes it pos-
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sible to implement a reliable procedure to align and optimize the coupling
to the whispering-gallery modes. This is of paramount importance for ex-
periments aiming to observe non-linear effects at extremely low pump pow-
ers [SKV02] or at the coupling of single quantum emitters to single modes
[GdSMM+03], where optical signals are on the single photon level. These
two processes are discussed in chapters 4 and 5.



Chapter 4

Ultra-low Threshold Raman
Laser

In this chapter the peculiar optical properties of a microsphere resonator,
namely the extreme enhancement of non-linear effects, are studied. The
lasing properties of an ultra-low threshold Raman laser made only from a
glass microsphere are investigated. In addition, the influence of a scatterer
on the lasing activity is studied. When studying non-linear phenomenon
such as Raman scattering, silica would definitely be one of the least suitable
material to choose: its second order nonlinearity coefficient χ2 is zero due
to the inversion symmetry, and the third order coefficient χ3 is up to two
orders of magnitude smaller than that of most other materials. On the other
hand, silica has a very low absorption in the visible range, compensating for
the low nonlinear coefficients. Additionally, nonlinear processes in a cavity
can change radically. The high-Q of the modes combined with the small
mode volumes lead to strong field enhancement and ultra-low thresholds for
nonlinear phenomena. For a process such as stimulated Raman scattering
thresholds on the order of a few µW could be observed. Here the relation
between pump and lasing mode is investigated with the help of a near-field
probe. The probe itself leads to an intricate interplay between lasing and
scattering processes that is studied as well.

4.1 Stimulated Raman Scattering in Micro-
cavities

Raman scattering was first observed by C.V. Raman in 1928 [RK28]. When
detecting light scattered from a sample material, one generally finds that
it contains frequencies different from those of the excitation source [BH98].

42
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Incoming photons are inelastically scattered on the vibrational level of the
molecule of the sample, or in other words a photon-phonon interaction occurs,
and the scattered photon can loose or gain energy in this interaction [Boy92].
The phenomenon is usually described by taking advantage of the energy
level system described in figure 4.1: in the Raman Stokes scattering there
is a transition from the ground state g to a vibrational excited state n, via
a virtual level n′. In this transition a photon with energy lower than the
incoming photon is emitted.

Figure 4.1: Energy level scheme describing the Stokes (in a)) and anti-Stokes
(in b)) Raman scattering

In the anti-Stokes Raman scattering the molecule is initially in a higher
vibrational level, and the photon emitted after excitation has a higher en-
ergy than the incoming photon, leaving the molecule in the ground state.
Stokes radiation is easier to observe, since the Stokes process starts from a
less energetic level than the anti-Stokes process. Raman scattering leads to
both forward and backward scattered fields, since the momentum conserva-
tion in the process is intrinsically satisfied (the phonon dispersion relation is
basically flat), and an optical phonon carrying the difference in wave-vector
∆k = kp − ks can be found for both backward and forward scattered light
[Boy92]. This is quite important, since in a microcavity this leads to coupling
of the Stokes radiation to both clockwise and counterclockwise propagating
modes (as also observed in section 6). In a cavity, stimulated Raman scatter-
ing is favored. An important parameter for Raman scattering in microcavities
is the gain spectrum, shown in figure 4.2: for glass this is very broad, about
10 THz, and has two maxima shifted by 13.9 and 14.3 THz from the pump
frequency. This insures that there will be Stokes radiation resonant with the
cavity, which has a typical FSR in the range of some hundreds of GHz. The
gain coefficient of silica is very low, on the order of 10−11 cm/W. This is,
however, compensated by the high Q-factors and the resulting strong field
enhancement of the WGMs.
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Figure 4.2: Raman gain Spectrum for silica glass [Sto89]. The blue lines
show the free spectral range for a sphere with a diameter of 100 µm. The
broadness of the gain spectrum ensure that there will always be a part of the
Raman signal in resonance with the cavity.

The regime of Raman lasing is reached when the cavity roundtrip gain
equals the cavity losses. A steady-state analysis of the equation describing
the pump and the Stokes fields in the cavity leads to the following expression
for the threshold of Raman lasing [KSM+04]:

PT = Γ4π2N2Vm
gλpλs

Qκ

Q3
tot

. (4.1)

In this formula PT is the threshold power inside the cavity, Vm is the mode
volume, λp(S) is the pump (Stokes) wavelength, N is the index of refraction
of the sphere, Γ a factor taking into account the coupling between clockwise
and counterclockwise propagating modes (whose value ranges between 1 and
2), g is the Raman gain in glass, Qk is the coupling-limited Q factor of the
sphere, and Qtot the total Q-factor. This equation gives some important
information about the process. The threshold value is proportional to the
mode volume, and inversely proportional to the square of the Q-factor, which
consequently plays a fundamental role. As a result it is desirable to work
with small spheres and with low order modes to observe ultra-low thresholds.
The same analysis also gives a formula for the intensity of the Stokes field
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[KSM+04]:

Iout ∝
√
Qtot

Qk

(
√
Pin −

√
PT ))U(Pin − PT ) (4.2)

The step function U(Pin−PT (θ)) ensures that when the pump power Pin
is below threshold no lasing occurs. It should be stressed at this point that
this is a complete classical analysis, where any possible gain enhancement
due to cavity electrodynamics is neglected. A more detailed analysis of the
Raman scattering process in microsphere resonators can be found in [Kra05].

4.2 Observation of Ultra-low Threshold Ra-
man Lasing

To observe Raman lasing, silica microspheres are produced, with diameter in
the range of few tens of micrometers. A prism is used to in- and out-couple
light to the microsphere. The outcome of the prism is collimated via a lens,
and sent to a spectrometer (Acton Research Spectra Pro 500i). A multi-
mode fiber is held close to the microsphere to control the coupling between
sphere and prism, and to measure the Q-factor. A schematic depiction of the
experimental setup is shown in figure 4.3.

Figure 4.3: Scematic depiction of the experimental setup used for the obser-
vation of Raman lasing in a microsphere resonator.

A Ti:saphhire laser with a bandwidth of 500 kHz is used to pump the
resonance. The laser is continuously scanned across the resonance. With a
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pump wavelength at λp =785 nm, the wavelength of the Stokes emission is
expected to be at λS =814 nm. Filters are used to separate the pump light
from the Stokes emission at the entrance slit of the spectrometer. First, a
spectrum below and over threshold is recorded to make sure that the signal
from the Stokes radiation is observable. While recording this spectrum an
optical long-pass filter is used to select out the pump light. This is quite
important to avoid artifacts in the spectrum which might be caused by the
pump light. The result is shown in figure 4.4

Figure 4.4: Spectrum of Raman lasing, recorded with pump power below
(red curve) and above threshold (black curve). The spectrum taken at pump
power below threshold is 1000 times amplified.

If the pump power is above threshold a distinct peak shifted by 13.4 THz
from the pump frequency is observed. Below threshold only some scattered
light is detected. The threshold behavior of the stimulated scattering process
is then studied: the pump power is raised in small steps, and at each step
a spectrum is recorded. The intensity of the lasing signal is then calculated
from the area under the spectrum, while the pump power is measured just
behind the prism (while the sphere is pulled away from the prism). A typical
result of a threshold behavior is shown in figure 4.5.

For a sphere with a diameter of 70 µm and a Q-factor of 3 × 108 a
threshold of only 7.5 µW could be observed. For spheres with Q-factors
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Figure 4.5: Stokes emission as function of the absorbed pump power. The
signal is outcoupled via a prism and sent to a spectrometer. The imput pump
power is measured just behind the prism. The used sphere has a diameter of
70 µm and a Q-fator of 3× 108

exceeding 109, thresholds as low as 4.3 µW were detected. This value is the
lowest threshold observed so far 1. Next, the dependency of the threshold on
the Q-factor of the sphere is measured. The sphere is moved closer and closer
to the prism in order to change its Q-factor, and for each position the laser
threshold is measured. The data are shown in figure 4.6, and show a very
good superposition to the theoretical prediction calculated with the formula
4.1, shown by the red line in figure 4.6.

The lasing mode is found to have a well defined linear polarization, which
follows the polarization of the pump laser. This was checked by inserting a
polarizer at the entrance of the spectrometer when pumping above threshold,
as shown in figure 4.7

In order to prove single mode operation of the laser, a mode mapping
is performed following the procedure described in section 3.5. The setup is
slightly modified, as shown in figure 4.8 in order to provide access to the
microsphere for a SNOM probe.

Again, the laser is continuously scanned across a single WGM. The res-
onance is kept under control either by detecting the absorption dip in the
transmitted pump beam, or by detecting the scattered light via the multi-

1Later, thresholds in the order of nW were observed in crystalline CaF2 cavities [GM06]
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Figure 4.6: Threshold power as a function of the Q factor. The Q-factor is
reduced by moving the microsphere towards the prism, and measured from
the linewidth of the light detected by a multimode fiber held close to the
microsphere.

Figure 4.7: The lasing mode is linearly polarized, and has the same polariza-
tion as the pump mode (which is set to 0◦). Red curve: spectrum with the
polarizer set at 0◦. Black curve: Polarizer set at 90◦.

mode fiber. While scanning the laser a mode map is performed as described
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Figure 4.8: Setup for mapping the pump and lasing modes of a microsphere
ultra-low threshold Raman laser.

in section 3.5. By using appropriate filters it is possible to detect the mode
profile of the pump mode as well as of the lasing mode. Both the fundamen-
tal and the first order mode are investigated, and the results are shown in
figure 4.9.

The first important result that one can observe from this measurement is
that lasing is indeed single mode. In part a) and c) of figure 4.9 a mode map
is shown with pump power below threshold. It is easy to identify scan a)
with the fundamental mode, and scan c) with the first order mode, for which
l-m=1. The red curve is the theoretical prediction for the polar intensity
distribution obtained from the mode expression given in section 2.1, for the
fundamental and for the first order mode respectively. Part b) and d) of
figure 4.9 are mode maps detected by scanning the laser with a power of
respectively 20 and 130 times the threshold pump power of 7.5 µW. It was
carefully checked that all the pump light was filtered out in this measurement.
As can be seen from the mode map shown in figure 4.9 the mode profile of the
lasing mode is the same as of the pump mode which is expected by considering
maximum mode overlap. Lasing mode profiles differing from the pump have
never been detected, even for very high pump power. The only deviation
that can be observed is at the intensity maximum of the lasing mode in the
case of the fundamental mode. This deviation is due to the perturbation
introduced in the mode by the near-field probe. In the following section
this complicate interplay is theoretically modeled and compared to further
experimental results.
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Figure 4.9: a) and c): mode maps of the pump modes; b) and d): mode
maps of the lasing modes. In a) and b) one has l −m = 0 while in c) and
d) one has l−m = 1. The pump power was 20 and 130 times PT = 7.5µW ,
respectively. Red lines are theoretical fits.

4.3 Influence of a Controllable Scatterer on
the Lasing Properties

4.3.1 Lasing Properties
Introducing a scatterer in the evanescent field of the WGMs automatically
increases the losses in the cavity. This leads to a degradation of the Q factor,
dependent on the dimension of the scatterer [GBS02] and on its position
with respect to the mode profile. The total Q-factor of a microsphere can be
calculated from all the different contributions to the losses as pointed out in
section 2.1.1:

1/Qtot = 1/Q0 + 1/Qκ + 1/Qs(θ) (4.3)

In formula 4.3, Qtot is the total Q-factor, Q0 the intrinsic (absorption limited)
Q-factor, Qκ represents the contribution of the coupler, and Qs is due to the
scattering by the SNOM-probe. The dependence of Qs on the probe position
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is easily inferred as Qs(θ) = Qs/[H(l − m,
√
l cosθ)sin(θ)l], with H(n, x)

being the normalized Hermite polynomial of order l − m (which describes
the intensity profile of the WGM in polar direction) and Qs is the maximum
reduction of the Q-factor. This means that the tip will influence the Q-
factor mostly when it is positioned in the maximum of the mode, and will
produce no effect if it is out of the evanescent field of the mode (Qs = ∞).
The threshold pump power given in equation 4.1 can be rewritten with an
explicit dependence on θ in the following way [Kra05]:

PT (θ) = Γ4π2N2Vm
gλpλs

Qκ

Qtot(θ)3 (4.4)

since the coupling-limited Q-factor Qκ does not depend on the position of
the tip. In an analog way, the intensity of the Stokes emission given in
formula 4.2 has to be modified in the following way to take into account the
position-dependent influence of the scatterer:

Iout(θ) ∝
√
Qtot(θ)
Qk

(
√
Pin −

√
PT (θ))× (4.5)

×H(l −m,
√
lcos(θ))sin(θ)lU(Pin − PT (θ)).

From these expressions one can see that the scatterer induced degrading
of the Q-factor may have a great influence on the system. In fact, the Q-
lowering will increase the threshold. This can even result in total quenching
of the lasing activity. Plots of the expected lasing mode profile done with
equation 4.5 are shown in figure 4.10 for the fundamental mode and for the
first order mode.

To further investigate this phenomenon the pump power is reduced to only
5 times the threshold for the fundamental mode and 10 times the threshold
for the first order mode. A mode map is then performed, the results being
shown in figure 4.11. The red lines show the theoretically expected intensity
profile, and fit very well to the experimental data. As one can see, the
quenching of lasing activity occurs quite abruptly, with the intensity going
to zero within a 0.5 µm shift of the tip.

4.3.2 SRS for Detecting Small Particles
The produced quenching of laser oscillation may be exploited for the detec-
tion of small particles. From the quenching intensity it is possible to derive
the scattering rate of the quencher, and this gives information on the dimen-
sions of the scatterer. Assuming a spherical scatterer with a radius r, the
scattering cross section is given by
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Figure 4.10: Expected fundamental (left) and first order (right) lasing mode
profile for different pump powers when the tip is scanned through the mode.
The quenching of the lasing intensity is caused by the Q-factor reduction
induced by the tip itself.

Figure 4.11: Quenching of the lasing activity caused by the controllable
scatterer. In a) a mode map of the fundamental lasing mode is shown, at
pump power 5 times the threshold power. In b) a mode map of the first order
lasing mode is shown, at pump power 10 times the threshold.

σ(r) = 8π
3

(2π
λS

)4
r6
∣∣∣∣ε− 1
ε+ 2

∣∣∣∣2 (4.6)

A model has been developed to estimate how much a spherical scatterer
with a radius r would spoil the Q-factor of a microsphere in [Göt04], giving a
qualitative understanding for the order of magnitude and for the dependen-
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cies of the quantities involved. It is assumed that the incident wave on the
scatterer is a plane monochromatic wave. In a round trip the light travelling
in a great circle around the equator will lose the energy ∆E when passing
the scatterer. The loss can be expressed as the ratio of the areas:

∆E
E0

=
σ I(d)

I0

Amode
(4.7)

where E0 is the energy stored inside the resonator, Amode is the cross
section through the mode volume, I(d) is the radial intensity distribution as
described in section 2.3.1, normalized to the total intensity I0. With some
simple calculation one obtains the scattering decay constant τsct as

τsct = trt
−ln(1− σ

Amode
e−2d/r∗) (4.8)

where r∗ is the typical decay-length of the evanescent field and is given by the
approximate expression r∗ ≈ λ/2π×

√
1−N2. To account for this additional

loss the Q-factor of the microsphere is modified by addition of the term

Qsct(r, θ) = ωτsct. (4.9)

This can be combined with the formula 4.4 which provides the lasing
threshold power. The threshold will be dependent also on the distance of
the scatterer to the sphere’s surface through the Q-factor induced by the
scatterer:

PT (θ, r) = Γ4π2N2Vm
gλpλs

Qκ

Qtot(θ, r)3 . (4.10)

The intensity of the laser emission will thus be reduced by a factor which
is dependent on the distance of the scatterer from the surface in the following
way:

Iout(θ, r) ∝
√
Qtot(θ, r)

Qk

(
√
Pin −

√
PT (θ, r))× (4.11)

×H(l −m,
√
lcos(θ))sin(θ)lU(Pin − PT (θ))

Assuming a Poissonian statistics for the emitted Stokes photons, a reduc-
tion of intensity of 10% is greater than the least uncertainty, given by

√
I.

With a microsphere with a Q-factor exceeding 108 it would possible to detect
easily particles as small as 30 nm.
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4.3.3 Estimation of Opto-mechanical Force
The strong intensity gradient observed when the laser is quenched by the in-
sertion of a SNOM probe into the mode results in an opto-mechanical force
acting on the probe itself. In figure 4.12 the change of the laser intensity
versus the SNOM tip’s position ∂I(θ)/∂(rθ) for the measurement of the fun-
damental mode (data in figure 4.12) is plotted. Due to the extension of the
tip and the spatial mode profile the number of photons incident on the tip
surface from either side per unit time is not equal. Thus, the recoil of the
scattered photons produces a net force perpendicular to the optical equator
of the sphere. The large intensity gradient due to quenching of laser emission
therefore also gives rise to a large force gradient.

Figure 4.12: The intensity gradient as derived by derivation of the exper-
imental data in figure 4.11 (a) is plotted. The data have been smoothed
before derivation by application of a FFT filter to reduce noise fluctuations.

One can give an order-of-magnitude estimation of the light-induced force
gradient or force rigidity [HMK04] ∂F (θ)/∂(rθ) by estimating the number
of photons which are scattered from the SNOM tip per second: If the tip
reduces the initial Q-factor by a factor of two, then approximately 50% of
the incident power is scattered. Then the force acting on the tip can be
expressed as

F = ∆pR = 2~kR = 4π~
λ
R (4.12)
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where R is the scattering rate. This rate can be derived from the scattered
power

R = P/~ω (4.13)

so that one obtains
F = 4π~

λ

P

~ω
= 2P

c
. (4.14)

Most of these photons hit the tip from the side facing the maximum
of the mode profile. For our experiment, which was performed 30 times
above threshold power, this corresponds to ∂F (θ)/∂(rθ) = 1.5 pN/µm. This
rather large value should provide a significant mechanical back action on the
mechanical oscillation of the tip. Our system may thus be used to study tiny
opto-mechanical interaction, which have recently attracted much interested
[HMK04].



Chapter 5

Photon Transfer via Shared
Whispering-Gallery Modes

Spontaneous emission is the decay of an atomic excitation into the modes
of the electromagnetic fields in the surrounding environment. If an excited
atom or a classical dipole emitter is located on the surface of a microsphere
its lifetime will be influenced by two main factors: the presence of the di-
electric itself, which canalizes the emission along preferred directions, and
the presence of a high-Q cavity with well defined modes. In this chapter the
coupling of a single dipole to the high-Q modes of a microsphere resonator
is investigated, and first experimental results concerning coupling of a sin-
gle emitter are reported. Additionally, an application of the coupled system
nanoparticle-resonator is demonstrated, where the whispering-gallery modes
are used as an optical path for controlled photon transfer between two indi-
vidual nanoparticles.

5.1 Emission of a Dipole on a Dielectric In-
terface: Geometric Approach

A first approach in considering the coupling of a dipole to the WGMs of
a microsphere is based on simple geometrical considerations. Only photons
which are emitted in directions which overlap to the WGMs will be able to
resonate. One can try to define a maximum acceptance angle around the
direction of propagation of the WGMs.

Geometrical Considerations on the Whispering-Gallery Modes

The geometry of the problem is described by the figure 5.1.

56
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Figure 5.1: a): polar acceptance angle ∆θ; b): azimuthal acceptance angle
∆α

First, let’s consider the polar direction: in a precessional mode approach
for modes with l −m > 0, the acceptance angle is the same for all modes,
and can be described as Gaussian beams having l/n reflections on the surface
during one evolution inside the sphere, as shown in section 2.3.1. A simple
approximation of the acceptance angle in the polar direction θ is the angular
width of the Gaussian beam, which is approximated by [BS91]:

∆θ ≈
√

8
l
. (5.1)

For example, for a sphere with a diameter of 35 µm it is ∆θ = 10.5◦.
Slightly more difficult to define is an acceptance angle for the azimuthal

direction (along φ). The condition necessary for a WGM to exist is that the
number of reflections is a multiple of the wavelength, so that constructive
interference can take place. Let γ be the angle defined by the mode: a photon
which is launched into the sphere with an angle deviating by a quantity ∆α
by γ will undergo a phase shift kδ, where k = 2π

λ
is the wave vector and δ is

the optical path difference. This can easily be calculated as:

δ = λ( 1
cos ∆α − 1)

⇒ kδ = 2π( 1
cos ∆α − 1) (5.2)

In a round trip, that is after a number of reflection equal to l, the total phase
shift ∆φ = lδ should be lower than π, otherwise the mode will interfere
destructively. So in a round trip the following condition must be satisfied:

∆φ = 2πl( 1
cos ∆α − 1) ≤ π (5.3)

It follows
cos(∆α) ≥ 2l

2l + 1 (5.4)
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which defines the acceptance angle in the azimuthal direction φ. Next,
one has to calculate the overlap of the emission pattern of the dipole with
the angular window defined above.

Emission Characteristics of a Dipole Close to an Interface

The problem of a dipole emitting close to a surface was treated first by
Drexhage [Dre70], Tews [Tew74] and Silbey [CPS75], and was then extended
by Lukosz [LK77]. Consider a dipole embedded in a loss-free medium 1, with
an index of refraction N1, located at a distance z0 from the plane interface
to a homogeneous medium 2, with an index of refraction N2. Both media
are linear, isotropic and nonmagnetic. The dipole orientation is described by
the angle θ0 between its axis and the z axis as sketched in figure 5.2.

Figure 5.2: The dipole D in front of a plane interface between medium 1 and
2. The unit vector n̂ lies in the x− z plane.

The goal is to find the electromagnetic field of the dipole, which is os-
cillating at a fixed angular frequency ω. One can describe the field emitted
by the dipole using two scalar functions, which are one component electric
and magnetic Hertz vectors, and from which the field strengths derive. Both
these functions have to be solutions of the Helmholtz wave equation with
the proper boundary conditions. Without going too much into detail, which
can be found in [LK77], one finds out that the dipole field is represented
as a superposition of s- and p-polarized waves, and evanescent waves. In
the medium 1 the dipole field is a superposition of the field emitted in the
infinite medium 1 with the field reflected at the interface. In medium 2 the
field is a superposition of plane waves which decay in direction −z, if the
medium is absorbing. If the medium 2 is loss-free the waves are either ho-
mogeneous plane waves or evanescent waves. The evanescent waves emitted
by the dipole decay exponentially in the half-spaces z ≥ z0 and z ≤ z0,
and are thus present only in the dipole near-field. The energy transported
by these waves is zero, since in the pointing vector < S >=< E × H >
there are contributions from two waves with equal and opposite wave vectors.



59

However, this holds only if the distance z0 from the interface is larger than
the decay length of the evanescent wave. If z0 ≤ λ1 (where λ1 is the emis-
sion wavelength of the dipole) and N = N2/N1 > 1, then evanescent waves
with the proper k−vector can reach the interface. The refracted transmitted
waves are then propagating plane waves with angle of refraction α exceeding
the critical angle αc = arcsin(1/N): in this way the dipole can effectively
radiate energy into the denser medium 2.

Let the unit vector in the observation direction be k̂ with the components:

k̂x = sinα cosφ
k̂y = sinα sinφ
k̂z = − cosα, (5.5)

with α the angle between k̂ and the z axis, and φ the azimuth angle. The
power emitted in the solid angle element dΩ = sinαdαdφ is denoted by
P s,p(α, φ)dΩ, and is given by the sum of the s- and p-waves (since they do
not interfere their contributions just sum up). The integration over the solid
angle 4π yields the total power L(z0) radiated by the dipole at a distance
z0 from the interface, in units of the power L∞ emitted by the dipole in the
unbounded medium 1:∫

(4π)
[P (s)(α, φ) + P (p)(α, φ)]dΩ = L(z0)/L∞. (5.6)

With this normalization one derives the final expression for the radiation
pattern of dipoles in front of an interface, which are reported in [LK77]. Here
only the plots of the expressions are shown in figure 5.3 in the case that the
two media at the interface are air and silica glass.

It is apparent that there is a maximum in the emission along the critical
angle αc for total internal reflection. This is due to the presence of the inter-
face, that transforms the evanescent waves emitted with the proper k-vector
into propagating waves in the denser half-space. In the case of particular
interest to the experiments of this work, where the interface is between air
and glass, this critical angle is at αc = 43.2◦. When determining the superpo-
sition of the emission with the whispering-gallery modes this plays a crucial
role, as will become clear later. This effect, due to the evanescent part of
the emission, also influences the total radiated power. The dipole will now
radiate more than it would without interface. One can calculate this quantity
for a dipole randomly oriented in space and close to the interface simply by
integrating the area under the curves of figure 5.3. The result is

L(z0 = 0)/L∞ = 2.1 (5.7)
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Figure 5.3: a) Black Curve: emission pattern of an ensemble of randomly
oriented dipoles sitting at the interface. Green curve: emission pattern of
the same ensemble of atoms in free space. b): same plot as in a) but in polar
representation

The emitter would thus totally radiate 2.1 times more power than it would
in free space.

5.1.1 Overlap of the Emission Pattern of a Dipole with
the WGMs Profile

In the preceding section the geometry of the problem was discussed. By in-
tegrating over the acceptance angles defined in the former section it becomes
possible to calculate how much of the power emitted by the dipole is emitted
into the WGMs. First the overlap with the fundamental mode is calculated.
There are two main orientations for the dipole, parallel or perpendicular to
the sphere’s surface. They are calculated separately. All the integrals are
calculated with the help of Mathcad Professional.

For a dipole which is perpendicular to the surface there is an additional
symmetry since the system is invariant under rotation around the φ angle.
It is also easy to understand that in this case there will be no contribution
from the s-polarized waves, since they correspond neither to TM nor to TE
modes. Thus the fraction β⊥ of power emitted into the WGMs, P⊥,WGM
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normalized to the total emitted power P⊥,tot (for a perpendicular dipole) is:

β⊥ = P⊥,WGM

P⊥,tot

=
2
∫ γ
γ−∆α P⊥,2(α)dα∫ αc

0 P⊥,1(α)dα +
∫ π

2
αc
P⊥,2(α)dα +

∫ π
π
2
P⊥,out(α)dα

· ∆θ
2π (5.8)

Where following notation is used:

• γ is the propagating angle of the whispering-gallery mode (see figure
5.1)

• αc is the critical angle of total internal reflection defined as αc =
arcsin( 1

N
) with N refraction index of the sphere;

• P⊥,1(α) is the power emitted by the dipole inside the sphere, under the
critical angle;

• P⊥,2(α) is the power emitted by the dipole inside the sphere, above the
critical angle;

• P⊥,out(α) is the power emitted by the dipole outside the sphere.

To get an idea of the orders of magnitude let’s consider a sphere with a
radius of 25 µm, and look at the overlap of a dipole emitting at a wavelength
of 610 nm. The geometrical restrictions are then ∆θ ≈ 8.4◦ and ∆α ≈ 3◦,
while γ = 89.5◦. This gives β⊥ ≈ 2.8× 10−5.

If the dipole is oriented parallel to the surface, one has to separate the
contribution of s-waves and p-waves as P‖(α, φ) = 2cos2(φ)P‖,p+2sin2(φ)P‖,s,
where φ is the angle between the dipole and the plane defined by the sphere’s
equator. Then one has for β‖:

β‖ = P‖,in
P‖,tot

(5.9)

=
2
∫ ∆θ

2
−∆θ

2

∫ γ
γ−∆α P‖,2(α, φ)dαdφ∫ 2π

0
∫ αc

0 P‖,1(α, φ)dαdφ+
∫ 2π

0
∫ π

2
αc
P‖,2(α, φ)dαdφ+

∫ 2π
0
∫ π
pi
2
P‖,out(α, φ)dαdφ

where the notation is used in analogy to 5.8. A calculation with the same
sphere parameters gives a value of β‖ = 5.1× 10−6.

The contributions of these two orientations have to be weighted to ob-
tain the geometrical overlap of a dipole with an arbitrary orientation to the
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sphere’s surface. This gives the following result for the fraction of power
emitted by a dipole located at the interface to a microsphere resonator with
arbitrary orientation:

β = 1
3β⊥ + 2

3β‖ = 1.3 · 10−5. (5.10)

5.2 Emission of a Dipole on a Dielectric In-
terface: Modal Approach

The former analysis is an underestimation of the coupling efficiency. In fact,
any influence of resonant enhancement due to the presence of the cavity is
neglected. Since the WGMs form a complete basis, it is possible to expand
the function expressing the dipole emission as a superposition of WGMs. This
method was first used by R. Ruppin and [R.R82] to calculate the transition
rates of molecules close to a small metal sphere. A few years later H. Chew
and successively J.P Barton extended the method to dielectric sphere[Che87,
BAS88]. This procedure has also been exploited to calculate the relative
frequency shift and linewidth of an atom near a dielectric sphere by V.V.
Klimov et. al in [KDL96]. Also based on this method is a proposal of
M. Pelton [PY99] for the realization of an ultra-low threshold laser with a
single quantum dot coupled to a spherical microcavity. The basic idea is
to calculate the coupling factor based on the ratio of the power radiated by
one single whispering-gallery mode to the total radiated power of a dipole
in free space. The emitter finds itself at a distance d from the sphere, and
is considered to emit spherical waves (this is equivalent to saying that the
dipole has a random orientation). Then the electric field of the dipole can
then be written as

E0 = ξ0
1
|~r|
ei
~k·~r (5.11)

with ξ0 amplitude of the field. The radiated power in this case is just

P0 = 1
2c0ε0

∫
|E0|2d~r = 1

2ε0|ξ0|24πc0 (5.12)

where ε0 is the dielectric constant in vacuum and c0 the speed of light in
vacuum (see for instance [Jac89]). Following the procedure given in the
paper of J.P. Barton [BAS88] one can calculate which WGMs are excited
by such a field. The approach is to represent the electric and the magnetic
fields E(r, θ, φ) andH(r, θ, φ) via a single respective scalar potential Π(r, θ, φ)
which satisfies the Helmholtz equation

∇2Π + k2Π = 0 (5.13)
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in a similar way as was done in section 2.2.1. The difference is that now the
excitation is a spherical wave. The most general solution to this problem is
given by [BAS88]:

rΠ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[Almψl(kr) +Blmχl(kr)]Ylm(θ, φ) (5.14)

where k is the wave vector, Alm and Blm are arbitrary constants, ψl and
χl are the Riccati-Bessel functions and Ylm(θ, φ) is the spherical harmonic
function (see for example [BW64]). From this expression one can calculate
the scattered and the internal electric field. The field of a resonator mode is
given by:

Ems(r, θ, φ) = 1
r2 l(l + 1)cllψl(kintr)Yll(θ, φ) (5.15)

where the k-vector outside the sphere kext is related to the k-vector inside
the sphere by kint = Nkext (with N being the index of refraction of the
sphere). The coefficient cll can be written as cll = F ·Cll, where F is a linear
combination of spherical Bessel functions:

F = ζ
(1)′
l (kexta)ψ(kexta)− ζ(1)

l (kexta)ψ′(kexta)
n2ψ(kinta)ζ(1)′

l (kexta)− nψ′(kinta)ζ(1)
l (kexta)

(5.16)

where ζl = ψl− ıχl. Similar as in section 2.2.1, this factor F derives from the
matching conditions of the electromagnetic field at the interface between the
sphere and the surrounding medium, in this case air (similar as in section 2.2).
The factor F determines the resonances of the WGM (the primes indicate
derivation with respect to the argument), and Cll is a coefficient which takes
into account the incident field:

Cll = a2

l(l + 1)ψl(kexta)
∫ 2π

0

∫ π

0
sin θE0(a, θ, φ)Y ∗lm(θ, φ)dθdφ. (5.17)

In calculating F the imaginary part of the refractive index plays an important
role, since it is the parameter that accounts for the losses of the sphere, i.e.
the resonator Q-factor.

The power loss Pms by a whispering-gallery mode in a microsphere res-
onator of Q-factor Q is given by the loss rate 2πc0

λQ
(where c0 is the speed of

light in vacuum and λ the propagating wavelength) times the energy density.
Thus:

Pms = 1
2ε0ε

2πc0

λQ

∫
|Ems|2d~r. (5.18)
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For a microsphere of radius a this will lead to the following expression for
the fraction β of power radiated into one whispering-gallery mode:

β = Pms
P0

= 1
2λ0Q

a4

|ψl(kextr)|2
|F|2

∣∣∣∣∣∣
∫ ei

~k(~r−~d)

|~r − ~d|
ξ0Y

∗
ll d

3r

∣∣∣∣∣∣
2 ∫ |ψl(kintr)|2

|r2|
dr

(5.19)
While the factor F can be calculated with mathematica, the integrals of
equation 5.17 are a bit more cumbersome, and were evaluated with a Pascal
numerical integration recipe. The dependency of the separation of the dipole
to the sphere surface d enters into this term. It can be calculated for different
values of d. The result is shown in figure 5.4.

Figure 5.4: Calculated dependence of the β-factor for the fundamental
whispering-gallery mode (FWGM) on the emitter separation from the mi-
crosphere

It is apparent that the closer the dipole is to the sphere, the more it
will emit into the mode of the cavity. It is also clear that the coupling
efficiency decays exponentially with increasing distance from the surface. It
is important to stress at this point that this calculation holds only for a
narrow-band emitter, which spectrally matches the mode of the cavity.
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5.3 Controlled Coupling of a Single Nanopar-
ticle to the Whispering-Gallery Modes

The previous calculations show that to efficiently couple a dipole to the
modes of a resonator it is very important to have as much control as possible
over the position of the dipole itself with respect to the resonator. Coupling
of active material to high-Q whispering-gallery mode resonators has already
been reported [VFG+98, FLW99], and even lasing [STH+96, CMA+01] or
strong coupling of a single atom has been reported [ADW+06]. These exper-
iments, however, all suffered from the deficiency of not being able to control
the position of the emitter in the cavity. An ideal tool to have nanometer
precision in the positioning of small particles is a near-field probe, where a
particle can be attached at the very end of the tip. Such an active probe
can be produced in a relatively easy way depending on the dimensions of
the particle, as described in section 3.3.2. In this section, active probes with
beads (polystyrene spheres, which can be doped with dyes) with diameter
down to 100 nm have been produced, and the controlled coupling of these
particles to the high-Q WGMs was studied. Some results have been already
shown and discussed in [Göt04]. There it is shown how an active probe can
be controllably coupled to the high-Q modes of a microsphere by positioning
it in the evanescent field of the modes. Here, the goal is to have a better
understanding how an ensemble of dipoles localized to sub-wavelength di-
mension couples to the whispering-gallery modes: for instance to how many
modes the bead will couple, and if it is possible to experimentally determine
the β factor (as it was defined in section 5.1.1).

In this experiment a dye-doped bead of 200 nm in diameter (doped with
Red Fluorescent dye molecules, Molecular Probes Inc.) is used, attached to
the end of a near-field probe as described in section 3.3.2. The active probe
is then brought into proximity with a microsphere resonator with a diameter
of 30 µm, which is coupled to a prism. The experimental setup is shown in
figure 5.5.

The bead is excited via the SNOM fiber. Its fluorescence can be detected
either via the confocal microscope or, if it couples to the whispering-gallery
modes, via the prism.

The following experiment is performed: with the tip far away from the
sphere, the bead is pumped and its spectrum is recorded via the microscope.
Then, the excitation is turned off, the tip is approached and positioned in
the maximum of the fundamental mode. The excitation is now turned on
again and a spectrum is recorded, again via the microscope. The result is
shown in figure 5.6.
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Figure 5.5: Experimental setup for studying the coupling of a single na-
noemitter to the high-Q modes of a microsphere resonator

Figure 5.6: Spectrum of a dye doped bead far from the sphere (black curve)
or brought close to its surface (blue curve). It is clear that the emission of
the nanoparticle undergoes a dramatic change when approached to a micro-
sphere.

It is apparent that when the bead is in proximity of the microsphere the
spectrum undergoes a dramatic change. First, there is a reduction of the
overall intensity emitted into the free space, as can be also observed in figure
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5.6: this can be understood in terms of interference of the dipole emission
with the emission of an image-dipole sitting inside the sphere. Second, a
modulation appears. The origin of this modulation is the interaction with
resonant modes of the microsphere. An enhanced intensity is observed from
the light that is stored inside the modes of the resonator and scattered back in
the direction of the objective by the bead itself. It is important to note that
the emitter used in this experiment has a broad fluorescence spectrum. Thus,
it can couple to any mode within the spectral range. The previous chapter
has also shown that the geometrical coupling efficiency to an individual mode
such as the fundamental whispering-gallery mode is quite small. Therefore it
is important to consider also the coupling efficiency to lower order modes. A
first hint that the dipole could also couple to other modes becomes clear if one
looks at the emission pattern which has been calculated in section 5.1 (figure
5.3). Most of the emission is directed in a cone around the critical angle
(defined by the refractive index N : αc = arcsin( 1

N
)). In the case of silica

glass, which was used in this case, the critical angle is αc = 43.2◦: one might
expect the particle to emit preferentially into modes which propagate along
this angle αc. Since this modes have an angle of ≈ 45◦ with respect to the
sphere, they could form a closed square mode in one round trip, as depicted in
figure 5.7. One can calculate the percentage of dipole emission which would

Figure 5.7: In a microsphere cavity not only high-Q whispering-gallery modes
can exist, but also modes which are given by a very low number of reflections,
e.g. modes propagating along a square trajectory, or a pentagon.

couple to these modes by using the simple geometrical approach similar as
that used in 5.1. It is found that about 7% of the dipole emission would couple
to these modes. Due to the low Q of these modes resonant enhancement is
weak. The FSR for such modes can be calculated as FSRsquare = c

LN
, where

L is the perimeter of the square. Since L = 4R
√

2, one can compare this to
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the FSR of the "normal" whispering-gallery modes, and it is:

FSRWGM

FSRsquare

= c

2πRN
4R
√

2
c

= 0.9 (5.20)

To gain a better understanding of the coupling process to different modes
an additional measurement is performed: the bead is brought again close to
the microsphere, pumped, and a spectrum is recorded via the prism and via
the microscope. Since the prism is optimized to couple to the high-Q modes,
one can be sure that the light detected via the prism is fluorescence of the
bead which has coupled to the high-Q whispering-gallery modes. The result
is shown in figure 5.8. The blue curve is the spectrum recorded via the prism,
while the black curve shows the spectrum recorded via the microscope. Both
spectra are recorded while the bead is pumped with the same intensity.

Figure 5.8: Black line: spectrum of a nanoparticle close to the surface of
a microsphere resonator recorded via the confocal microscope. Blue line:
same spectrum as it appears when the fluorescence is detected via the prism
coupler.

The spectrum detected via the prism shows a 100% modulation, as ex-
pected since the prism extracts only light coming from the whispering-gallery
modes. The spectrum recorded via the microscope shows a similar modu-
lation. With a Fourier-transform one can calculate the FSR of fluorescence
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light detected via the prism of the peaks to be 2.24 nm, while the FSR of
fluorescence light detected via the microscope objective is 2.49 nm. Their
ratio is 2.24

2.49 = 0.9, which fits well with the expected value. This means that
the nanoparticle will couple not only to the high-Q modes, but also to a
large number of modes which cannot be ascribed to the whispering-gallery
mode family. An important result of this measurement is that the dynamics
of a broad-band nanoemitter will not be influenced significantly by high-
Q WGMs. Rather, dominant coupling occurs to geometrical modes, which
feature a lower Q-factor. In order to obtain coupling only to the high-Q
WGMs, e.g. to observe CQED effects, a narrow-band emitter is required,
e.g. molecules at cryogenic temperature.

5.4 Controlled Photon Transfer via Shared
High-Q Modes

Somewhat unexpectedly after the conclusions of the previous chapter, high-
Q WGMs may very well play an important role in optical processes involv-
ing broad-band emitters even at room temperature. Here an experiment is
demonstrated, where the whispering-gallery modes are used as an optical
link to let two nano-particles interact with each other. The motivation for
this experiment derives from fluorescence resonant energy transfer processes
(FRET): consider two dipoles, the emission spectrum of the first (called
donor) overlapping the absorption spectrum of the second (called acceptor):
the ideal situation is shown in figure 5.9. If the distance between the dipoles
is on the order of few nanometers, significantly less than the transition wave-
length λ, then the excitation of the donor can be transferred directly to the
acceptor via dipole-dipole interaction (i.e. in a non-radiative way). The
acceptor then relaxes radiative emission of the absorbed energy. The effi-
ciency of such an energy transfer process depends on the spectral overlap of
the two emitters, and in a very critical way on the distance between donor
and acceptor, since it decays as (1 + r

r0
6)−1 and falls to 50% at a distance

r0 = 10 nm [F6̈5]. If the two particles are taken apart at a distance r > λ,
a transfer process can still take place, but a real photon is transferred: the
donor emits a photon, which can be absorbed by the acceptor. The coupling
efficiency in this case drops as 1

r2 . At a distance of 50 nm, the efficiency
of one emitter absorbing a photon radiated by another emitter is as low as
merely 3 × 10−13, considering a typical room-temperature absorption cross
section of σA ≈ 10−16 cm2. Even by using optical elements such as lenses or
waveguides in order to increase the transfer rate, one still has the disadvan-
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Figure 5.9: Ideal situation for a donor/acceptor couple: the spectral overlap
is enough to result in efficient energy transfer, and it is possible to excite the
donor at a frequency which is not absorbed by the acceptor, as indicated by
the black line.

tage that the photon emitted by the donor flies by the acceptor only once. A
resonant structure, however, can then be exploited to provide longer effective
interaction times. In a naive picture, consider a microsphere with a Q-factor
of 107 and Finesse of 106 . This means that a photon in the cavity travels
106 round trips before escaping the cavity. If the photon has been emitted
by a donor, and an acceptor is also interacting with the cavity, this would
mean that the photon passes the acceptor 106 times - and one could expect
the transfer rate to be increased by a factor of 107! In addition, the presence
of the cavity modifies the density of states of the electromagnetic field, which
may further enhance the transfer rate.

Experimental Setup for Photon Transfer

A controlled experiment to study energy transfer via shared modes of
an optical microresonator is depicted in figure 5.10. The donor particle is a
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Figure 5.10: Setup for photon transfer experiment. A donor bead is attached
to the end of a near-field probe and hold close to a microsphere resonator,
which is coated by acceptor particles. The donor is pumped via the SNOM-
fiber, its fluorescence couples to the high-Q modes of the resonator and can
be absorbed by the acceptor. The detection is done confocally at the position
of a single acceptor nanoparticle via a confocal microscope.

bead of 500 nm in diameter, attached at the end of a near field probe, and
excited via the fiber by a frequency doubled Nd:YAG laser. A microsphere
resonator of 35 µm in diameter is coated with a solution of acceptor beads
(Crimson, Molecular Probes, Inc.) of 200 nm in diameter. After coating
there was a total of less than 10 particles on the surface of the microsphere.
This is important because one wants to avoid having more than one acceptor
in the evanescent field of the modes. In figure 5.11 spectra of the naked donor
and acceptor molecules are shown. They constitute a good donor-acceptor
pair since they are well distinguishable but at the same time have a good
spectral overlap. A single nanoparticle close to the sphere equator is located

Figure 5.11: Left: spectrum of a Red Fluorescent bead when pumped at
a wavelength of λ = 532 nm. Right: spectrum of a Crimson bead when
pumped at a wavelength of λ = 532 nm.
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and centered in the confocal detection path of the spectrometer (see Figure
5.10).

The experiment proceeds as follows: the tip with the donor bead is
brought within a distance of a few nanometers from the sphere’s surface, and
excited via the SNOM-fiber by the frequency doubled Nd:Yag laser emitting
at λ = 532 nm. The emitted photons that couple to the WGMs can be
absorbed by the acceptor. To detect this the fluorescence emitted at the
position of the acceptor is detected confocally. First, the signal is sent to an
avalanche photodiode: the tip is then pulled back while recording the signal.
As can be seen in fig. 5.12 the intensity of the fluorescence decreases expo-
nentially. This is a typical signature for evanescent coupling to the WGMs.

Figure 5.12: In this measurement the evanescent nature of the coupling of
the two beads is shown. The tip with the donor bead is pulled away from
the resonator, while the donor bead is kept under constant excitation. The
signal detected confocally at the position of the acceptor is detected via an
avalanche photodiode and plotted as a function of the distance of the donor
bead to the sphere’s surface.

The tip is then brought close to the sphere’s surface again, but this time
the signal is sent to a spectrometer. The recorded signal is shown by the red
curve in figure 5.13. The spectrum shows a fast modulation, with a period
which fits the FSR of the WGMs of the microsphere (2.3 nm for a sphere
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diameter of 35 µm). This is also a typical signature of coupling to the WGMs.
The red curve is the sum of three contributions:

Figure 5.13: Left: Red curve: the recorded spectrum when the donor is
brought close to the sphere’s surface. Blue curve: the same measurement
when the tip is pulled away from the sphere. Right: red curve: the recorded
spectrum when the donor is brought close to the sphere’s surface. Blue curve:
the same measurement after bleaching of the donor

1. Photons emitted by the donor bead which have coupled to the modes
and are directly scattered by the acceptor and detected via the micro-
scope;

2. Photons emitted by the acceptor bead after absorption of photons emit-
ted by the donor into the WGMs;

3. Photons emitted by the acceptor bead after direct excitation by some
spurious green light from the excitation laser for the donor.

When the tip is at a distance of about 800 nm from the sphere’s surface
and the pump laser is turned on, only the signal shown by the blue curve in
fig.5.13 a) is detected. Together with the measurement shown in figure 5.12,
this confirms that the acceptor bead is pumped only through the modes of
the microsphere. To distinguish the contribution in point 2 (which is the
photon transfer process), from the one on point 3, the following control mea-
surement is performed: the donor bead is taken away from the microsphere
and then bleached by pumping at high intensity until fluorescence can be no
longer detected. The tip with the photobleached donor is then approached
again to the sphere and the pump light is turned on. The measured spectrum
is shown by the blue curve in figure 5.13 b): it is clear that this contribution
can be neglected in comparison with the red spectrum. As a last control, a
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normalized spectrum of the donor bead is subtracted form the red curve in
figure 5.13: this results in the green spectrum of figure 5.14. In this figure
a spectrum of the naked acceptor (brown curve) is also shown for compari-
son: the good overlap is evident. This controls prove that othe fluorescence
emitted by the acceptor was truly excited by the donor’s fluorescence which
coupled to the WGMs and was guided to the acceptor.

Figure 5.14: The green spectrum is obtained subtracting the spectrum of a
donor as shown in figure 5.11 from the red spectrum of figure 5.13. This
overlaps very well the spectrum of the naked acceptor (brown curve). The
modulation comes from coupling to the whispering-gallery modes

Considerations on the Efficiency

It is interesting now to estimate the transfer efficiency, ηi, of the process.
This can be defined as the product of the probability, βi, of emitting a pho-
ton from the donor into the i-th WGM and the probability of subsequently
absorbing it from the acceptor. This probability βi has been calculated as
in the previous section for the fundamental WGM. This efficiency, ηi, for a
photon that is emitted by the donor to be absorbed by the acceptor can be
written as

ηi = βi
σA,abs

σA,abs + σA,scat + σD,abs + σD,scat + σi,Q
(5.21)

where the quotient stands for the probability of a cavity photon being ab-
sorbed by the acceptor before getting lost in other channels. Note that
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because the emission and absorption processes are independent, a simple
multiplication of probabilities is appropriate. The parameter σA,abs denotes
the absorption cross section of the acceptor, and σA,scat denotes the scatter-
ing cross section of the acceptor, whereas cross sections σD,abs and σD,scat
quantify losses out of the mode due to respectively absorption and scattering
of a photon by the donor. Finally, σi,Q is a cross section signifying all losses
associated with the measured Q of the microsphere, including those caused
by scattering from the acceptor. The crucial role of the high-Q modes in this
experiment is to increase the absorption probability by storing the photon
for a long time. Such an effect is absent if light is transferred merely by
a waveguide or optical fiber. The cross sections used in equation 5.21 are,
strictly speaking, defined for evanescent illumination, and differ from those
commonly quoted for plane wave excitation. The deviation between the two
quantities can be notable, but it has been shown that it remains well within
a factor of 3, even for strongly scattering silver particles of 200 nm diameter
at plasmon resonance [QPW99]. Thus, in this case it is appropriate to use
the conventional values of the cross sections to obtain an order of magnitude
estimate.

The absorption cross section of the acceptor particle can be taken as
σA,abs = 10−11 cm2, assuming σA,abs = 10−16 cm2 per molecule and 105

molecules per particle. Since, due to the Stokes shift of molecular fluores-
cence, the donor does not absorb its own emission very efficiently, we can
neglect σD,abs. In addition, we obtain σi,Q = 10−12 cm2 for a fundamental
mode based on a Q-factor of 3× 107 (here also σA,scat is taken into account).
Because in this experiment the measured Q remained unchanged as the tip
approached the microsphere, it can be concluded that σD,sca was negligible
compared to σQ. One finds, therefore, that for a fundamental mode the quo-
tient in equation 5.21 is about 10−4 with regard to a single molecule acceptor.

In the weak coupling regime, the spontaneous emission rate Γ can be
written as Γ = 2π

~2 |〈e| E · D|g〉|2ρ(ω), where E is the fluctuating vacuum
field at the location of the emitter, D is the dipole operator associated with
the optical transition at hand, and ρ is the density of photon states. Hence,
the strength of emission into different WGMs and consequently βi are pro-
portional to the projection of each mode’s field intensity, |Ei|2, at the sphere
surface onto the dipolar axis. This enhancement is reduced if the line width
of the dipole is broadened to Γb, greater than the cavity line width, Γcav, as
is the case for Γcav = 6× 10−5 nm and Γb = 20 nm in this experiment. The
ratio, β, of the emission into the cavity mode to the total emitted power is
thus given by β = β0(Γcav/Γb) [YU85] whereby β0 represents the fraction for
a narrow-band emitter. Note that because β0 ∝ Q, in this case β becomes
independent of Q. An estimate for β0 can be taken from the previous section:
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it was found that β0 = 0.5 at a distance of 50 nm from the sphere’s surface,
leading to βi = 1.5 × 10−6. For other WGMs, higher n and l −m result in
an increase of the mode volume and lower |Ei|2 values. By computing the
mode functions of the various WGMs, one can determine |Ei|2 on the sphere
surface normalized to its value for the fundamental mode. Furthermore, by
calculating the diffraction limited Q for various n, the dependence of the
quotient in equation 5.21 on this parameter can be determined. Combining
these results it is found that for each l the contribution to η = ∑

i ηi of modes
with n > 10 drops by an order of magnitude. It is also found that the first
40 modes with different l −m values account for half the contribution of all
modes. Considering that the fluorescence spectrum of a bead spans about
20 FSRs (FSR=2.3 nm for 2R = 35 µm) and taking into account both TE
and TM modes, one can conclude that η is about 10× 40× 20× 2 = 2× 104

times larger than that of a single fundamental mode. Putting all of the
above mentioned information together, one arrives at the conclusion that
η = (1.5 × 10−6) × 10−4 × (2 × 104) = 10−6 for a single molecule acceptor,
which is more than 6 orders of magnitude larger than the free-space rate for
absorbing a photon emitted at a distance of about 35 µm.

This experiment was the first experimental realization of the possibility of
coupling different nanoparticles via shared high-Q modes of a microresonator.



Chapter 6

Scattering in Microsphere
Resonators: an Analogy to
Strong Coupling and Purcell
Effect

In this chapter an analogy between scattering in a microsphere resonator and
Cavity QED is presented. A SNOM tip is used as a controllable scatterer,
which can be inserted in the evanescent field of the high-Q modes at will with
nanometer precision, and induce a coupling between two counterpropagating
modes. This system is analogous to an atom interacting with a single mode
of an optical cavity. The analogy in terms of Cavity QED effects, also gives
an explanation for the surprisingly large mode splitting observed before.

6.1 Role of a Scatterer in an Evanescent Field
In chapter 5.1 the emission properties of a radiating dipole close to an in-
terface have been explored with the intent of determining which fraction of
the emission of a dipole couples to the WGMs. It was indicated that an
ensemble of dipoles which emit inhomogeneously broadened light, will not
experience an overall resonant amplification. A single narrow-band radiat-
ing dipole can, however, be simulated by a near field probe: when a probe
tip with sub-wavelength curvature radius at the apex is introduced into the
evanescent field of the WGMs, a dipole is induced. This induced dipole will
spectrally match the cavity resonance as well as its polarization. Introducing
the tip into the evanescent field of the mode has two main effects: on the
one hand it constitutes an additional loss channel, so that the Q-factor of the
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microsphere is reduced; on the other hand the tip will introduce a coupling
between two counterpropagating degenerate whispering-gallery modes. The
result is a splitting of the resonance to a doublet, where the frequency spac-
ing between the two peaks is given by twice the coupling rate of the modes.
This is analogous to an atom strongly interacting with a single mode of a
cavity in the Jaynes-Cumming model. This analogy is sketched in Fig. 6.1.

Figure 6.1: Schematic depiction of the two analogous systems with micro-
sphere resonators as optical cavity. In a) a single atomic dipole couples to one
WGM of the microsphere resonator. In b) two counterpropagating WGMs
are coupled through Rayleigh scattering induced by a single dipole

In 6.1 a) an atom couples coherently to a single cavity mode with a cou-
pling constant gcav as well as to a continuum of propagating modes with
spontaneous emission rate ΓSE. κ is the damping rate of the cavity mode.
In 6.1 b) a microsphere resonator coupled to a dielectric scatterer is shown.
The arrows indicate the two counterpropagating modes. Light in one of the
modes, for instance the clockwise (cw) propagating one, induces a dipole in
the SNOM tip, which acts as a Rayleigh scatterer. The dipole radiation can
couple into the counterclockwise (ccw) propagating mode or into a contin-
uum of propagating modes. The scatterer will thus couple the cw and ccw
propagating modes with rate gR, and also couple these two modes to the
continuum with a coupling rate ΓR. In this sense, a classical optical system
shows features typically associated to quantum physics. This kind of analogy
is a topic with a long history that has been investigated in many different
contests [Kru87, PF89, SW91]. A macroscopic system offers the important
advantage that every parameter is accessible and can be experimentally con-
trolled. This kind of analogy-thinking may also lead to new experimental
possibilities for investigating current issues in quantum optics and Cavity
QED.

First observations of intramodal coupling in microspheres date back to
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1995 [WSH+95], where its relation to scattering was pointed out. There it
was demonstrated that the modal coupling is due to backscattering of light
from impurities in the glass matrix of the resonator. In [GPI00] a more
detailed analysis of this scattering was performed. This kind of coupling
was also observed in toroidal WGM resonators [KSV02], where the relation
to a coupler device for the whispering-gallery modes was investigated. In
both cases, the splitting was induced by a collective scattering of a great
number of scatterers, distributed inside the whole modal volume. A strong
intramodal coupling can however also be obtained by use of a single scatterer,
e.g. composed of a great number of atoms all localized in a small portion of
the mode volume as addressed in [KLNH06]. Also, in [SP06], an analysis of
the intramodal coupling in a microdisk cavity caused by a two-level system
has been done.

Coupled Modes Model

The system can be described in a coupled mode model [GPI00], where
one can write down the following set of equations for the mode amplitudes
ak:

dak
dt

+ iωkak =
∑
j 6=k

igR,kjaj. (6.1)

In this equation ωk is a frequency, and gR,kj is the coupling rate between the
modes ak and aj. The electric field of the modes is given by:

~Ej(r, θ, φ, t) = e−iω0t
∑
j

ãj(t)~ej(r.θ, φ). (6.2)

The coupling rate gR,kj can be then written as [GPI00]:

gR,kj = ω0

2N2

∫
~ejδε~e

∗
kdV∫

|~ej|2dV
. (6.3)

Here, δε describes variations in the dielectric constant ε of the sphere and is
responsible for the intramodal coupling [GPI00]. This system can be solved in
two different regimes. On the one hand, there is the so called strong coupling
regime, where the intramodal coupling rate dominates over the losses:

gR,kj � max(ΓR, κ). (6.4)

Coupling lifts the degeneracy of the two counterpropagating modes: the
resonance will be a doublet with a mode splitting ∆ω of twice the coupling
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constant ∆ω = 2gR. On the other hand, there is the weak coupling regime
defined by:

gR,kj � (ΓR, κ). (6.5)
The equation system is first solved in the weak coupling regime [MI98]. Since
the mode amplitude can be written as:

ãj = eiωjtaj (6.6)

the equation 6.1 will be transformed to:

dãj
dt

= i
∑
k

ei(ωk−ωj)tãkgkj (6.7)

and can be integrated in time to obtain an integral-equation for the mode
amplitude ãk:

ãj =
∫ t

0
iei(ωk−ωj)t

′
ãkgkjdt

′. (6.8)

This can be inserted into equation 6.1 to calculate the transition rate to
all modes of the reservoir:

dãk
dt

= −
∑
j

g2
kj

∫ t

0
iei(ωk−ωj)(t−t

′)ãk(t′)dt′. (6.9)

The main point of the theory is that the sum in 6.9 can be replaced by
an integral over all the modes of the electromagnetic field in the free space:

∑
j

→ V N3

(2πc)3

∫
dΩΩ2

∫ π

0
sin θdθ

∫ 2π

0
dφ (6.10)

where N is the refractive index of the medium and the density of states D(ω)
in the quantization volume V is given by:

D(ω) = ω2V

π2(c/N)3 . (6.11)

The integral equation for ãk then becomes (evaluating the integration over
the whole solid angle as 4π):

dãk
dt

= − V N3

(2πc)3 g
2
kj4π

∫
dωj

∫
dt′e−i(ωk−ωj)(t−t

′)ω2
j ãk(t′). (6.12)

Since the frequency ωj varies little in the interval for which the integral over
t′ has appreciable value, another approximation can be made, i.e. that the
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amplitude of the mode ãk(t) varies slowly in the time, so that in the interval
[0, t] it is almost constant and can be evaluated at t = t′ and factored outside
the integrals. The remaining integral in 6.12 has the highly peaked value:

lim
t→∞

∫ t

0

∫
dt′e−i(ωk−ωj)(t−t

′) = πδ(ωj − ωk)− P
[

i

ωj − ωk

]
(6.13)

where δ(ωj − ωk) is a delta function and P
[

i
ωj−ωk

]
is the principal value of

the integral (which represent a frequency shift). Then the equation 6.12 can
be evaluated to find (neglecting the frequency shift):

dãk
dt

= V

2π
N3g2

kjω
2
k

c3 ãk(t′). (6.14)

This means that the mode is damped at a rate:

ΓR,free = V

2π
N3ω2

k

c3 g2
kj (6.15)

proportional to the coupling constant g2
kj. This result is obtained in complete

analogy to the spontaneous decay of a dipole ~p interacting with a contin-
uum of vacuum modes ~Ei, as described within the Weisskopf-Wigner theory
[MI98]. For the spontaneous emission rate in the free space this delivers a
rate:

ΓR = V

2π
N3ω2

k

c3 | ~E · ~p|
2 (6.16)

in analogy to 6.15.

Resonant Enhancement of the Radiating Rate

Now, if a cavity is present, the density of states 6.11 is modified and has
to be replaced with the density of states of the cavity:

Dcav(ω) = 2
π(ω/Q)

(ω/Q)2

4(ω − ωc)2 + (ω/Q)2 . (6.17)

The result is that the damping rate in presence of the cavity ΓRcav is given
by by:

ΓRcav = 3
4π2

Q(λ/N)3

V
ΓR,free = FΓR,free (6.18)

where the Purcell factor F = 3
4π2

Q(λ/N)3

V
has been introduced. The Purcell

effect was first introduced by Purcell [Pur46] in 1946, who pointed out that
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the spontaneous emission probability of magnetic moments can be strongly
enhanced by the presence of a resonant circuit, due to the change in the den-
sity of states of the electromagnetic field surrounding the magnetic moment.

Solution of the Coupled Mode System: New Eigenmodes

In the case here presented it is possible to reduce the system 6.1 to only
two equation. In fact, coupling between modes with different n or l due to
scattering has never been observed in this work. Thus, only two counterprop-
agating modes identified by the same n and l and opposite m are considered,
since these are the modes showing the strongest overlap. The equation sys-
tem 6.1 can thus be written for the amplitudes a+ and a− in the following
way [Hau84]:

da+

dt
= −i∆ωa+ −

1
τ
a+ + iga− + κBin

da−
dt

= −i∆ωa− −
1
τ
a− + iga+ (6.19)

where the indices of the intramodal coupling rate g have been dropped for
simplicity. Here the phenomenological loss rate 1/τ accounts for scattering
in a continuum of lossy modes (as described in the weak coupling regime).
Additionally, a pump field Bin has been introduced. κ is the coupling rate
between the pump field and the mode a+, which is set to be the mode excited
by the coupler and the incoming field. The system can be solved in the
stationary case. The following solutions are found:

a+ = κ
1
τ

+ i∆ω
1
τ2 + g2 −∆ω2 + 2i∆ω

τ

Bin

a− = κ
ig

1
τ2 + g2 −∆ω2 + 2i∆ω

τ

Bin. (6.20)

The system presents now two new eigenmodes, which are given by the
symmetric and anti-symmetric linear combination of the modes a+ and a−,
and can be written as:

s+ = 1√
2

(a+ + a−)

s− = 1√
2

(a+ − a−). (6.21)

At this point the physics of the system is known. In the following section
an experiment is described where a Rayleigh scatterer is inserted into the
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evanescent field of the WGMs at will, so that the coupling between cw and
ccw propagating modes can be changed in a controllable manner.

6.2 Observation of Mode Splitting due to In-
tramodal Coupling

The experimental setup to study controlled coupling of two counterpropagat-
ing modes is shown in figure 6.2. Light from a tunable diode laser (emitting
at λp = 670 nm, linewidth ∆λ < 500 KHz, tuning range ≈ 60 GHz) can be
coupled to the whispering-gallery modes of a microsphere resonator with a
radius of 15 µm via a prism. Using the procedure described in 3.5 the system
can be optimized to efficiently couple light into the fundamental mode.

Figure 6.2: Schematic depiction of the experimental setup to study in-
tramodal coupling in a microsphere resonator.

Light scattered from the whispering-gallery modes is detected via a mul-
timode fiber held close to the microsphere. A near-field probe is used as a
controllable scatterer: the tip can be modeled as a small sphere with a radius
of around 50 nm (which is the radius of the tip at the apex). Exploiting active
stabilization via a shear-force control, the tip can be held at a constant dis-
tance of a few nanometers from the sphere’s surface. The tip is then scanned
across the fundamental mode along the polar direction, while the resonance
is constantly monitored via the multimode fiber. The result is shown in figure
6.3 as a spatio-spectral map. Figure 6.3 a) shows the resonance for different
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Figure 6.3: Spatio-spectral mode map shpwing the transition from the weak
to the strong coupling regimes when scanning a SNOM tip through a funda-
mental mode along the polar direction. a): Mapping of spectra versus the
tip’s position. b) to e): Spectra with the tip away from the mode, in two
intermediate position, and in the field maximum, respectively.

positions of the tip. The horizontal axis indicates the frequency scan, while
the vertical axis is the position of the tip relative to the sphere’s equator,
which is in the center of the picture. The intensity of the signal detected on
PMT1 is shown in gray-scale. As long as the tip is outside the mode one can
see a single peak resonance, as shown in the cross section displayed in figure
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6.3 b). This means that the coherent coupling between the cw and ccw mode
is very weak. But, as the tip enters the mode, the resonance broadens due
to enhanced incoherent scattering into the continuum (figure 6.3 c)). This
corresponds to the weak coupling regime. Moving the tip further towards
the mode intensity maximum gradually increases the coupling constant gR
between the cw and the ccw propagating modes, until the coherent coupling
rate exceeds the inhomogeneous loss rate: at this point a splitting is observed
(figure 6.3 d) and e)). These two peaks correspond to two new eigenmodes s+
and s−: they are symmetric and anti-symmetric linear combinations of waves
propagating in opposite directions and represent standing waves [SvDEW90].
An asymmetry between the two peaks can be observed. This derives from
the fact that the scatterer introduces not only an intramodal coupling, but
also an additional loss channel. Thus, the coupling constant can be written
as:

g = gκ + iRtip (6.22)
where gκ takes into account the scattering into the counterpropagating mode,
while Rtip is the rate of the scattering into the continuum of lossy modes
induced by the tip. The function that describes the new eigenmodes can be
derived from equations 6.20 and 6.21. After some simplification one obtains
for the intensity:

I(ω) = |s+(ω) + s−(ω)|2 =
2
τc
× | 1

gκ − iRtip − i
τ
− 2ω

|2 + | 1
gkappa − iRtip + i

τ
+ 2ω

|2. (6.23)

From the last equation one can see that there is an asymmetry between
s+ and s−, due to the fact that the tip induced losses are added to the
internal losses for s+, while they are subtracted from the internal losses for
s−. This derives from the fact that the tip will pin the phase between the
two eigenmodes to minimize the total energy. The curves of figure 6.3 b) to
e) were fitted with equation 6.23. The fitting parameters for the scattering
(Rtip)and intramodal coupling (gκ) rates are reported in the following table,
where the first column refers to figure 6.3:

Data gκ (Hz) Rtip (Hz) 1/τ (Hz)
(c) 4.0× 106 6.5× 105 5.4× 106

(d) 6.4× 106 7.6× 105 5.6× 106

(e) 13.5× 106 9.6× 105 5.9× 106

The slight increase of R0 is due to the fact that during the measurement,
the sphere has drifted slightly towards the prism: as a consequence the total
Q-factor decreases. One can see that the intramodal coupling rate increases
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by a factor of 3.4, thus overcoming thus the total loss rate given by the sum
of Rtip and R0. When the tip is in the maximum of the mode the coupling
rate is actually about twice the scattering rate.

Numerical considerations

The observation of splitting induced by a single local scatterer is remark-
able. It requires most of the photons scattered out of the cw mode to be
re-injected into the ccw mode and vice versa. This is surprising as the tightly
confined fundamental WGM has a very narrow acceptance range for scattered
photons, as shown in section 5.1, in particular compared to propagating free
space modes. The expected fraction of photons which are re-injected into the
ccw mode can be estimated, following a geometrical consideration as in sec-
tion 5.1, by calculating the modified emission pattern for an induced dipole
on the sphere’s surface (assuming a planar interface as in [LK77]) and then
calculating its superposition with the WGM’s mode profile. It is found that
only a fraction of η = 1.5× 10−5 of the complete radiated power should cou-
ple to the mode. The maximum total scattering rate of the SNOM tip can
be determined experimentally by the tip-induced reduction of the Q-factor
when the tip is in the maximum of the mode profile. The Q-factor is propor-
tional to the life-time of a photon in the cavity Qtotal = ωτtotal, and is related
to the scattering rate by:

Q = ω

Γtot
= ω

Γsphere + Γtip
(6.24)

where Γsphere is the loss rate of the sphere without the tip, and Γtip is the
additional scattering rate of the tip.

From the change of the Q-factor induced by the tip, one can calculate
Γtip. With reference to the measurement shown in figure 6.4, one finds Γtip
to be about 60 MHz. This multiplied by η yields a maximum scattering
rate between the cw and ccw mode on the order of 1 kHz. This would be
far too small to reach the condition for strong coupling (equation 6.4) which
requires that the photon exchange between the cw and ccw mode has to
be the dominant process. As a result, mode splitting by a single scatterer
should not occur. However, a resonant enhancement by the Purcell factor
F (equation 6.18) increases the scattering between cw and ccw mode in
our case by a factor of F = 4 × 103. The large enhancement of almost
four orders of magnitude resulting from the small mode volume of 130µm3

(sphere diameter 30µm) and the high Q factor of 5× 107 of the microsphere
resonator compensates the small purely geometrical coupling efficiency η. It
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establishes the coupling between the cw and ccw mode as a process on the
same order as photon loss, which in the experiment is observed as the onset
of mode splitting. Including the Purcell enhancement factor the value for the
modal splitting is 4 MHz. This is still a factor of 5 smaller than the observed
splitting induced by the tip, which is 20 MHz. The deviation can easily be
corrected by considering that the definition of the acceptance angles given in
section 5.1 is very stringent. The geometrical consideration presented there
is an estimation. Compared to the exact calculation as shown in section 5.2
it underestimates the coupling efficiency. An agreement within a factor of 5
is therefore satisfactory.

To gain a better understanding in the problem, another experiment is
performed, where both the splitting and the Q-factor (derived from the in-
duced broadening of the resonance lines) are simultaneously recorded while
the SNOM tip is scanned across the fundamental WGM in polar direction.
As can be seen in figure 6.4 an increasing splitting (figure 6.4 a) is accompa-
nied by a decreasing Q-factor (figure 6.4 b). In this measurement an intrinsic
splitting of ∆ω/2π = 11.5 MHz is present. Solid red lines are results of fit-
ting the experimental data with Hermite polynomials of order l, which reflect
the spatial mode profile of the fundamental WGM. The mode number l is
related to the radius of the sphere (in this experiment r = 30µm) and the
wavelength λ of the mode by l = 2πrN/λ with the refractive index N = 1.46
of the sphere. The coupled mode analysis in analogy to cavity QED predicts
that the splitting is proportional to the coupling constant gR and that the
Q-factor is inversely proportional to the loss rate ΓR and thus to g2

R (equation
6.15). Thus, one expects ∆ω = 2gR ∝ Q−1/2.

Figure 6.4: Induced splitting a) and Q-factor b) of the fundamental WGM
when a SNOM tip is scanned along the polar direction. 90◦ correspond to
the sphere’s equator. Red lines are theoretical fits to Hermite polynomials.
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In order to further investigate this relation gR can be changed by con-
trollably pulling back the SNOM tip (initially in the field maximum of the
WGM corresponding to 90◦ in figure 6.4) from the sphere’s surface. Figure
6.5 a) shows a logarithmic plot of the measured splitting (∆ω = 2gR) versus
the measured Q-factor. Figure 6.5 b) shows the Q-factor as a function of
the tip-to-surface distance. The linear fit has the exponent of −0.53 which
agrees very well with the expected value of −0.50. This again proves that
analogous effects of the weak and strong coupling regimes in CQED can be
controllably studied in these experiments.

Figure 6.5: a) Splitting of the fundamental WGM as a function of the Q-
factor when a tip is inserted in the maximum of the fundamental mode and
then pulled back. b) Splitting as a function of the distance of the tip to the
sphere’s surface.

In fact, coupling of two high-Q modes in a microsphere resonator by a
local scatterer can be described in analogy to cavity QED systems. The ex-
perimentally observed Purcell enhancement of local Rayleigh scattering also
explains previous observations of surprisingly large mode coupling [WSH+95,
BKB+01, KSV02].

6.3 Scattering-Interference
In some situations the following phenomenon can be observed: as the tip
enters the mode while being scanned along the polar direction, the splitting
is first reduced, and then increased until it reaches a maximum when the tip
is in the intensity maximum of the mode.

Figure 6.6 shows this for a sphere with a diameter of 70 µm, when the tip is
scanned through the fundamental mode. This phenomenon can be explained
by assuming coupling by two scatterers in the following way: one scatterer is
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Figure 6.6: Induced splitting of a fundamental WGM when a tip is scanned
through the fundamental WGM along the polar direction. 90◦ defines the
optical equator of the sphere. As the tip enters the mode the intramodal
coupling is first quenched, then enhanced to reach a maximum in a position
corresponding to the intensity maximum of the mode.

present even in absence of the SNOM tip. It can be regarded as an effective
scatterer summarizing the effect of the local dielectric inhomogeneities, and it
accounts for the observed intrinsic mode splitting. The other scatterer is the
SNOM tip. As previously outlined, the new coupled eigenmodes (sine and
cosine standing waves) are spatially pinned with respect to a local scatterer
to minimize the energy of the system. The scatterer is in the maximum
of one mode and thus in the minimum of the other. If an additional local
scatterer is now introduced, it contributes coherently to the scattering and an
interference phenomenon can be observed There is thus a well defined phase
relationship between the tip and the equivalent internal scatterer, and this
phase can be controlled by simply moving the tip along the sphere’s equator.
For this reason one has to introduce a coherent sum of the two coupling rates
γi due to the internal scatterers plus γtip due to the tip:

gR = γi + eıφγtip(θ), (6.25)

The red curve in Fig.6.6 is the theoretical curve according to the previously
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written coupling rate. The phase φ depends on the position of the tip.
To further investigate this interference effect the near-field probe is scanned
along the sphere’s equator, being constantly in the maximum of the mode in
the polar direction. At the same time, the resonance is detected through the
multimode fiber. As one can see in Fig 6.7 the coupling rate (and accordingly
the splitting) oscillates with a period of 467 nm, which is a clear signature
of the interference effect.

Figure 6.7: a): Scattering interference between a near-field probe and the
equivalent internal scatterer. The near-field probe is scanned along the equa-
tor, being always in the maximum of the fundamental WGM. Depending on
the position of the tip the intramodal coupling rate is either enhanced or
reduced. b) Peak amplitudes of the two new eigenmodes formed by sym-
metrical superposition of the cw and ccw propagating waves. The modes are
shifted by π/2, so that when the tip interacts at maximum with one mode it
leaves the other unperturbed.

The oscillation period fits the intensity distribution of the WGM in the
azimuthal direction well, as the distribution is proportional to exp(−ımφ),
where m is the azimuthal quantum number. This has a period of 2π

m
= λ

n
=

465 nm. In addition to the oscillation in the coupling rate one can also see
how the amplitudes of the two new eigenmodes of the sphere oscillate. This
derives from the fact that the two new eigenmodes are shifted by π/2 [SP06]:
when the tip is in the maximum of one mode, it is in the minimum of the
other. So the tip will scatter photons from one mode, and reduce its Q-factor,
while leaving the other mode unperturbed.

To prove this, the tip is scanned along the equator. For different positions
of the tip the laser is scanned and the resonance is recorded. In figure 6.8
b) to d) single frequency scan across the resonance are shown for different
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Figure 6.8: Asymmetry of the peak amplitudes: a) A near field probe is
scanned along the optical equator while the resonance is detected via a mul-
timode fiber hold close to the sphere. b) to d): spectra recorded for different
positions of the tip.

positions of the tip. This means that it is possible to controllably quench or
enhance the coupling between the two counterpropagating waves at will. To
show this, the tip is scanned in the polar direction through the fundamental
mode. The tip is then moved half an interference period to the side and
the polar scan is repeated. In figure 6.9 (a) the tip is positioned so that
when it enters the mode the interaction with the other scatterer is only a
destructive interference, and intramodal coupling is quenched. In (b) the tip
is shifted about 230 nm to the side, so that now when it enters the mode the
interaction will result in a constructive interference.

In summary, a novel analogy between a classical scattering system and
the basic system of Cavity QED has been introduced here. The transition
between the regimes of weak and strong coupling was observed, as well as a
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Figure 6.9: Controlled quenching or enhancing of the intramodal coupling
with a near-field probe. Both in a) and b) the tip is scanned through the
fundamental whispering gallery mode along the polar direction, but in two
different azimuthal positions.

resonant enhancement of scattering in microsphere resonators. This might
be of crucial importance in devices based on microresonators.



Chapter 7

Conclusions and Outlook

In this work different optical properties and applications of microsphere res-
onators were studied and demonstrated.

First, a microsphere resonator was used to observe ultra-low threshold
Raman lasing, and the effect of a scatterer on the lasing properties has been
investigated.

Second, the dynamics of a single dipole coupling to the whispering-gallery
modes of a microsphere resonator has also been depicted. It was pointed out
that if the emitter emission is much broader than the cavity linewidth, then
no cavity modification of the lifetime or no Cavity QED effects will be observ-
able. However, one can still use the cavity to observe resonant enhancement
of photon exchange between two emitters. The controlled coupling of two
nanoparticles via shared high-Q modes of a microsphere resonator has been
then demonstrated as an application of microsphere resonators.

Last, a novel analogy between a quantum system composed by an atom
interacting with a single mode of a cavity and a classical system composed
by two coupled modes of a microsphere resonator was introduced. A near-
field probe was used as a tool to controllably induce a coupling between
two counterpropagating whispering-gallery modes. The transition from the
weak to strong coupling regime was studied. An interesting interference
effect between two scatterers interacting via the whispering-gallery modes
was observed and theoretically modeled.

This work opens the way to various new experiments, where one would
work with single quantum emitters. However, in order to be able to observe
Cavity QED effects, a cryogenic setup is needed. Before doing this, it is
important to test at room temperature the feasibility of such an experiment.
Next, first experimental results going in this direction are reported. As an
outlook, a further system to be implemented in a cryogenic setup is proposed,
and some possible experiments are suggested.

93



94

7.1 Coupling of a Single Molecule to theWhi-
spering-Gallery Modes

In section 5.3 results on the coupling of a single radiating dipole to the
whispering-gallery modes were reported. In this section, the possibility of
reducing the number of emitters to only one is exploited. This is the ulti-
mate limit of the experiment performed in section 5.3, where the number of
molecules in the nanoparticle was as large as 105.

Single terrylene molecules are chosen as the emitter. These molecules
can be spin-coated on a glass coverslip, and they are embedded in a crys-
talline matrix of para-terphenyl (p-terphenyl). This prevents the molecules
from photo-bleaching and from blinking [PZH+04], processes that are com-
mon when dealing with single emitters at room temperature such as single
molecules or nanocrystal quantum dots. The procedure for the production of
this kind of probe has been developed at the ETH in Zürich and is described
in [PZH+04]. A second advantage of the spin-coating recipe is that within
the crystalline matrix the molecules have an orientation that is perpendic-
ular to the coverslip. This is optimal for coupling to the whispering-gallery
modes, as was shown in section 5.1.

The experimental setup to investigate single molecule coupling is similar
to the one used in section 5.3, but was slightly modified. Since the molecules
are spin-coated on a coverslip, the dimension of a prims coupler are too big to
allow positioning of a sphere between the prism and the coverslip. To solve
this problem a polished fiber is used as coupler instead of a prism. The setup
is sketched in figure 7.1. The terrylene molecules are pumped by an argon

Figure 7.1: a) Wide field image of a coverslip covered by spin coating with
terrylene molecules embedded in a p-terphenyl crystalline matrix. b) Setup
to couple single molecules to the high-Q modes of a microsphere resonator

laser (emission at λ = 514 nm) via a high NA immersion oil microscope
objective (NA=1.4). By looking at the sample via the same microscope
objective a single molecule can be identified and selectively pumped. The
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fluorescence of the molecule couples to the whispering gallery modes and is
collected by a multimode fiber. The fiber output is collimated, the pump
light is filtered out with a Raman long-pass filter (cut-off wavelength 538
nm) and the fluorescence is finally analyzed with a spectrometer.

First, a control is made to test the performance of the polished fiber. A
sphere is first coupled to a prism while a diode laser is scanned over a wide
frequency range (≈ 60 GHz). A multimode fiber is held close to the sphere
to detect photon scattered out of the modes, as described in chapter 3.5.
Then the sphere is taken away from the prism, and the same laser is coupled
into the polished fiber, which approaches the sphere. The laser frequency is
scanned over the same frequency range, and again a spectrum is recorded via
the multimode fiber. The results for the two situations are shown in figure
7.2. The recorded spectra are basically identical, apart from a slightly higher

Figure 7.2: Spectrum of whispering-gallery modes detected through a multi-
mode fiber held close to the microsphere. In a) the modes are excited via a
polished fiber coupler, in b) via a prism coupler. The two spectra show the
same modes, only the noise is higher in the case of the polished fiber.

noise level for the fiber coupler. This means that the polished fiber will in-
or outcouple light with the same selectivity as the prism.

The following experiment is then performed: a microsphere with a diame-
ter of 40 µm is brought in proximity with a coverslip prepared with terrylene
molecules. On the other side of the coverslip the confocal microscope is used
to identify and excite a single molecule, as shown in figure 7.1. The fluores-
cence of the molecule can be detected either via the microscope objective or
via the polished fiber, which is brought in proximity with the microsphere
from the side opposite to the microscope. The recorded spectra are shown
in figure 7.3.
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Figure 7.3: a): spectrum of a single terrylene molecule coupled to a mi-
crosphere resonator detected via the microscope. b): spectrum of the same
molecule detected via the polished fiber. Dotted lines are inserted as a visual
aid.

fiber can be interpreted similarly as in section 5.3 for a bead containing
a large number of molecules. The distance between the peaks is 2.01 nm, as
one would expect for a sphere with a 40 µm diameter for which the FSR is
2.03 nm. These are first results for controlled coupling of a single quantum
emitter to a microsphere resonator.

7.2 Further Experiments

A Low Temperature Setup

The observation of Cavity QED effects in a system composed by a dipole
and a single mode of a cavity requires precise experimental parameters: long
photon storage time, a narrow-band emitter, a strong coupling constant and
the ability to control the coupling. While a long storage time can be al-
ready achieved at room temperature, there are no emitters which are big
enough to allow controlled positioning with respect to the cavity, and at the
same time have an emission bandwidth of only a few MHz. For this reason,
a low-temperature setup is required if one wants to perform Cavity QED
experiments.

Toroidal Resonators

In a cavity, a high Q-factor and a small mode volume produce a strong
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field enhancement for the modes of the cavity. This results in a stronger
coupling constant. In the last few years a new kind of whispering-gallery
modes resonator has been produced, which exploits a toroidal form instead
of a spherical one [AKSV03]. These resonators offer two main advantages
with respect to spherical resonators: they have smaller mode volumes and
can be fabricated in a reproducible way on a chip, while offering Q-factors as
high as those of silica microsphere. A prerequisite for a reliable experiment
setup is an efficient coupling of light to the cavity modes. Different from
microspheres, when using toroidal cavities a tapered fiber represent a better
choice. It is smaller and more versatile, since it does not define a fixed
geometry as a prism coupler does. Besides, it offers the advantage that the
light outcoupled from the cavity propagates in a fiber. These couplers have
already shown coupling efficiency up to 95 % [CPV00]. The coupled system
toroid-tapered fiber is also easier to build in a cryostat, because of its smaller
dimensions and bigger versatility. The cavity together with the fiber coupler
can be mounted on a low-temperature three-axis stage and a long distance
high NA microscope objective can be used to selectively pump emitters on
the cavity. Pre-alignemnt can be done at room temperature.

Single Emitters

In the last few years there has been a growing interest around the use of
solid state quantum emitters in Cavity QED. Semiconductor quantum dots
features nearly lifetime limited spectral width, and can be grown directly
into cavities such as micropillars formed by Brag reflectors, or in microdisks
[PVZ+02]. In these cases, strong coupling was also observed [RSL+04]. The
main problem that remains, however, is the controlled positioning of the
dots inside the cavity [GKHW01]. An alternative in order to realize robust
systems is offered by quantum emitters embedded in micro- or nanoparticles:
examples are nanocrystal quantum dots, terrylene molecules in p-terphenyl,
or defects in diamond nanoparticles such as nitrogen vacancies (NV). The
advantage in this case is that these emitters can show a stable behavior
even at room temperature, where nanomanipulation techniques, e.g. for the
positioning on a cavity, are easier to apply. NV defect centers are the most
interesting possibility, since they are stable emitters at room temperature,
and have a lifetime limited linewidth at low temperature (1.8 K) [BBG+01].
Additionally, tuning of these emitters by DC Stark effect is possible: this
is a prerequisite for matching the radiating transition to the cavity modes
[TGR+06].

From Weak to Strong Coupling and Single Emitter Lasing
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The controlled coupling of an NV center to a toroidal microcavity will
provide the possibility for studying the different regimes of weak and strong
coupling, as they were described in section 6. In the weak coupling regime,
changes in the lifetime of the excited level as described by Purcell are ex-
pected. Considering a lifetime of the first excited level of NV defect centers
in diamond nanocrystals of 25 ns, for a toroid with a main radius of 50 µm
and a Q-factor of 107 lifetime changes up to 10% can be expected. Reduc-
ing the dimensions of the cavity will increase the coupling constant, since
a small mode volume implies a stronger electric field per photon inside the
mode. This allow to enter the strong coupling regime, where the interaction
between the emitter and the cavity becomes coherent, and a constant energy
exchange between the cavity mode and the emitter can be observed. This
phenomenon is known as Rabi oscillations, and can be observed as anticross-
ing of the cavity resonance and the emitter resonant transition when the two
are tuned to overlap. The high collection efficiency of the tapered fiber will
also allow photon statistics measurements. It is interesting to note at this
point that when the conditions for strong coupling are satisfied, the lasing
conditions are also fulfilled for this system, so that a single quantum emitter
laser can be realized.

Controlled Coupling of two Quantum Emitters via Shared Modes

Finally, a low temperature system also makes cavity QED experiments
with two quantum emitters possible. Here, pre-selection of the emitters at
room temperature, and positioning and tunability of the quantum emitters
will permit a controlled interaction between the two emitters via shared
modes of the cavity. First, one will need to perform experiments similar
to the ones described above for the two individual emitters. Then, a first
proof of the coupling should be done by selectively pumping one of the two
emitters and confocally detecting at the position of the second emitter. Fi-
nally, performing photon statistics on the signal outcoupled via the tapered
fiber it will be possible to observe weak-coupling regime, while strong cou-
pling will be identified by a doubled mode splitting as in the case of a single
emitter. This system also offers a potential scalability: on the one hand, one
can increase the number of emitters interacting with the cavity; on the other
hand the tapered fiber can also be exploited to let different cavities interact
with each other.



Bibliography

[ADW+06] Aoki, Takao; Dayan, Barak; Wilcut, E.; Bowen, W. P.;
Parkins, A. S.; Kippenberg, T. J.; Vahala, K. J.; Kimble,
H. J.: Observation of strong coupling between one atom and
a monolithic microresonator. In: Nature, volume 443:pp. 33–
35, 2006.

[Agr01] Agrawal, G. P.: Nonlinear Fiber Optics. Academic Press Inc.,
2001.

[AKSV03] Armani, D. K.; Kippenberg, T. J.; Spillane, S. M.; Vahala,
K. J.: Ultra-high-q toroid microcavity on a chip. In: Nature,
volume 421:pp. 925–929, 2003.

[AS72] Abramowitz, M.; Stegun, I.A.: Handbook of mathematical
functions. Dover Publications Inc., 1972.

[BAS88] Barton, J.P.; Alexander, D.R.; S.A.Schaub: Internal and near
surface electromagnetic fields for a spherical particle irradiated
by a focused laser beam. In: J. Appl. Phys, volume 64(4):pp.
1632–1639, 1988.

[BBG+01] Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Poizat,
Jean-Philippe; ; Grangier, Philippe: Nonclassical radiation
from diamond nanocrystals. In: Phys. Rev. A, volume 64:p.
61802, 2001.

[BC88] Barber, P. W.; Chang, R. K.: Optical Effects Associated With
Small Particles. World Scientific, Singapore, 1988.

[Ber94] Berman, P. R.: Cavity Quantum Electrodynamics. Ed. Aca-
demic Press, San Diego, 1994.

[BGI89] Braginsky, V. B.; Gorodetsky, M. L.; Ilchenko, V. S.: Quality-
factor and nonlinear properties of optical whispering-gallery

99



100

modes. In: Physics Letters A, volume 137(7):pp. 393–397,
1989.

[BH98] Bohren, C.F.; Huffman, D.R.: Absorption and Scattering of
Light by Small Particles. Wiley Science, Paperback Series,
1998.

[BHA+05] Badolato, Antonio; Hennessy, Kevin; Atatüre, Mete; Dreiser,
Jan; Hu, Evelyn; Petroff, P. M.; Imamoglu, Atac: Deter-
ministic coupling of single quantum dots to single nanocavity
modes. In: Science, volume 308:pp. 1158–1161, 2005.

[BK03] Buck, J. R.; Kimble, H. J.: Optimal sizes of dielectric micro-
spheres for cavity QED with strong coupling. In: Phys. Rev.
A, volume 67:p. 033806, 2003.

[BKB+01] Balistreri, M. L. M.; Klunder, D. J. W.; Blom, F. C.; Driessen,
A.; Korterik, J. P.; Kuipers, L.; van Hulst, N. F.: Experimen-
tal analysis of the whispering-gallery modes in a cylindrical
optical microcavity. In: J. Opt. Soc. Am. B, volume 18(4):pp.
465–471, 2001.

[Boy92] Boyd, R.W.: Nonlinear Optics. Academic Press Inc., 1992.

[BS91] Bronstein, I. N.; Semendjajew, K. A.: Taschenbuch der Math-
ematik. Teubner Verlagsgesellschaft, Stuttgart, 25th edition,
1991.

[BT92] Betzig, E.; Trautman, J. K.: Near-field optics: microscopy,
spectroscopy and surface modification beyond the diffration
limit. In: Science, volume 257:pp. 189–195, 1992.

[BW64] Born, M.; Wolf, E.: Principles of Optics. Pergamon Press,
1964.

[CBB94] Courjon, D.; Bainier, C.; Baida, F.: Seeing inside a fabry-
perot resonator by means of a scanning tunneling optical mi-
croscope. In: Optics Communications, volume 110:pp. 7–12,
1994.

[Che87] Chew, H.: Transition rates of atoms near spherical surfaces.
In: J. of Chem. Phys., volume 87(2):pp. 1355–1360, 1987.



101

[CMA+01] Choi, Y.-S.; Moon, H. J.; An, K.; Lee, S.-B.; Lee, J.-H.;
Chang, J.-S.: Ultrahigh-Q microsphere dye laser based on
evanescent-wave coupling. In: Journal of the Korean Phys-
ical Society, volume 39(5):pp. 928–931, 2001.

[CMD72] Carniglia, C. K.; Mandel, L.; Drexhage, K. H.: Absoption and
emission of evanescent photons. In: Journal of the Optical
Society of America, volume 62(4):pp. 479–486, 1972.

[Col94] Collot, L.: Etude théorique et expérimentale des résonances
de galerie de microsphère de silice: pièges à photons pour des
expériences délectrodynamique en cavité. Ph.D. thesis, Lab-
oratoir Kastler Brossel de l’École Normale Supérieur, Paris,
1994.

[CPS75] Chance, R.R.; Prock, A.; Silbey, R.: Frequency shifts of an
electric dipole treansition near a partially reflecting surface.
In: Phys. Rev. A, volume 12(4):pp. 1448–1492, 1975.

[CPV00] Cai, M.; Painter, O.; Vahala, K.: Observation of critical cou-
pling in a fiber taper to a silica-microsphere whispering-gallery
mode system. In: Phys. Rev. Lett., volume 85:pp. 74–77, 2000.

[DKL+95] Dubreuil, N.; Knight, J. C.; Leventhal, D. K.; Sandoghdar,
V.; Hare, J.; Lefèvre, V.: Eroded monomode optical fiber
for whispering-gallery mode excitation in fused-silica micro-
spheres. In: Optics Letters, volume 20(8):pp. 813–815, 1995.

[Dre70] Drexhage: Influence of a dielectric interface on fluorescence
decay time. In: J. of Lum., volume 1(2):pp. 693–701, 1970.

[F6̈5] Förster, T.: Modern Quantum Chemistry, Vol. III (O.
Sinanoglu, ed.) 93-137. Academic Press, N.Y., 1965.

[FLW99] Fan, X.; Lacey, S.; Wang, H.: Microcavities combining a semi-
conductor with a fused-silica microsphere. In: Optics Letters,
volume 24(11):pp. 771–773, 1999.

[GBS01] Götzinger, S.; Benson, O.; Sandoghdar, V.: Towards con-
trolled coupling between a high-q whispering-gallery mode and
a single nanoparticle. In: Appl. Phys. B, volume 73(8):pp.
825–828, 2001.



102

[GBS02] Götzinger, S.; Benson, O.; Sandoghdar, V.: Influence of a
sharp fiber tip on high-q modes of a microsphere resonator.
In: Opt. Lett., volume 27(2):pp. 80–82, 2002.

[GC97] Greffet, J.-J.; Carminati, R.: Image formation in near-field
optics. In: Progress in Surface Science, volume 56(3):pp. 133–
237, 1997.

[GDBS01] Götzinger, S.; Demmerer, S.; Benson, O.; Sandoghdar, V.:
Mapping and manipulating whispering-gallery modes of a mi-
crosphere resonator with a near-field probe. In: J. Microsc.,
volume 202(1):pp. 117–121, 2001.

[GdSMM+03] Götzinger, S.; de S. Menezes, L.; Mazzei, A.; Benson, O.;
Talapin, D.V.; Gaponik, N.; Weller, H.; Rogach, A.L.; San-
doghdar, V.: Controlled coupling of a single emitter to a single
mode of a microsphere: where do we stand? In: Proc. SPIE,
volume 207:pp. 4969–4977, 2003.

[Ger96] Gerard, J. M.: Quantum boxes as active probes for photonic
microstructures: The pillar microcavity case. In: Appl. Phys.
Lett, volume 69:pp. 449–451, 1996.

[GI94a] Gorodetsky, M. L.; Ilchenko, V. S.: High-q optical whispering-
gallery microresonators: precession approach for spherical
mode analysis and emission patterns with prism couplers. In:
Optics Communications, volume 113:pp. 133–143, 1994.

[GI94b] Gorodetsky, M.L.; Ilchenko, V.S.: High-q optical whispering-
gallery microresonators: precession approach for spherical
mode analysis and emission patterns with prism couplers. In:
J. Opt, Soc. Am. A, volume 113:pp. 133–143, 1994.

[GI99] Gorodetsky, M. L.; Ilchenko, V. S.: Optical microsphere
resonators: optimal coupling to high-Q whispering-gallery
modes. In: Journal of the Optical Society of America B, vol-
ume 16(1):pp. 147–154, 1999.

[GKHW01] Guthöhrlein, G. R.; Keller, M.; Hayasaka, K.; Walther, W.
Langem H.: A single ion as a nanoscopic probe of an optical
field. In: Nature, volume 414:pp. 49–51, 2001.



103

[GKL61] Garret, C. G. B.; Kaiser, W.; Long, W. L.: Stimulated emis-
sion into optical whispering modes of spheres. In: Phys. Rev.,
volume 124:pp. 1807–1809, 1961.

[GM06] Grudinin, I. S.; Maleki, L.: Ultralow-threshold raman lasing
with caf2 resonators. In: Opt. Lett., volume 32(2):p. 166, 2006.

[GMS+06] Grudinin, I. S.; Matsko, A. B.; Savchenkov, A. A.; Strekalov,
D.; Ilchenko, V. S.; Maleki, L.: Ultra high-q crystalline micro-
cavities. In: Opt. Comm., volume 265:p. 33, 2006.

[Göt04] Götzinger, S.: Controlled Coupling of a Single Nanoparticle
to a High-Q Microsphere Resonator. Logos Verlag, 2004.

[GPI00] Gorodetsky, M. L.; Pryamikov, A. D.; Ilchenko, V. S.:
Rayleigh scattering in high-q microspheres. In: J. Opt. Soc.
Am. B, volume 17(6):pp. 1051–1057, 2000.

[GRGH83] Goy, P.; Raimond, J. M.; Gross, M.; Haroche, S.: Observa-
tion of cavity-enhanced single-atom sponaneous emission. In:
Physical Review Letters, volume 50(24):pp. 1903–1906, 1983.

[Hau84] Haus, H: Waves and fields in Optoelectronics. Prentice-Hall,
Englewood Cliffs, 1984.

[HMK04] Höhberger-Metzger, C.; Karrai, K.: Cavity cooling of a mi-
crolever. In: Nature, volume 432:pp. 1002–1005, 2004.

[IYM99] Ilchenko, V.S.; Yao, X.S.; Maleki, L.: Pigtailing the high-q mi-
crosphere cavity: a simple fibercoupler for optical whispering-
gallery modes. In: Opt. Lett., volume 24(11):pp. 723–725,
1999.

[Jac89] Jackson, J.D.: Classical Electrodynamics. Jhon Wiley and
Sons, 1989.

[Kal02] Kalkbrenner, T.: Charakterisierung und Manipulation der
Plasmon-Resonanz eines einzelnen Gold-Nanoparticles. Dis-
sertation, Universität Konstanz, 2002.

[KCJB97] Knight, J.C.; Cheung, G.; Jacques, F.; Birks, T.A.: Phase-
matched excitation of whispering-gallery mode resonances by
a fibertaper. In: Opt. Lett., volume 22(15):pp. 1129–1131,
1997.



104

[KDL96] Klimov, V.V.; Ducloy, M.; Letokhov, V.S.: Radiative fre-
quency shift and linewidth of an atom dipole in the vicin-
ity of a dielectric microsphere. In: J. Modern Opt., vol-
ume 43(11):pp. 2251–2267, 1996.

[KDS+95] Knight, J.C.; Dubreil, N.; Sandoghdar, V.; Hare, J.; Lefévre-
Seguin, V.: Mapping whispering-gallery modes in micro-
spheres with a near-field probe. In: Opt. Lett., vol-
ume 20(14):pp. 1515–1517, 1995.

[KHS+01] Kühn, S.; Hettich, C.; Schmitt, C.; Poizat, J.-Ph.; Sandogh-
dar, V.: Diamond color centres as a nanoscopic light source
for scanning near-field optical microscopy. In: Journal of Mi-
croscopy, volume 202:pp. 2–6, 2001.

[Kle81] Kleppner, D.: Inhibited spontaneous emission. In: Phys. Rev.
Lett., volume 47(4):pp. 233–236, 1981.

[KLNH06] Klinner, J.; Lindholt, M.; Nagorny, B.; Hemmerich, A.: Nor-
mal mode splitting and mechanical effects of an optical lattice
in a ring cavity. In: Phys. Rev. Lett., volume 96:pp. 23002–
23005, 2006.

[Kra05] Krauter, Hanna: Diplomarbeit - Ramanlasing in einem
Mikrokugelresonator. Humboldt Universität zu Berlin, 2005.

[Kru87] Krug, Joachim: Optical analog of a kicked quantum oscillator.
In: Phys. Rev, Lett., volume 59(19):pp. 2133–2136, 1987.

[KSM+04] Kippenberg, T. J.; Spillane, S. M.; Min, Bumki; ; Vahala,
K. J.: Theoretical and experimental study of stimulated and
cascaded raman scattering in ultrahigh-q optical microcavi-
ties. In: IEEE Journal of selected topics in quantum electron-
ics, volume 10(5):pp. 1219–1228, 2004.

[KSV02] Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J.: Modal cou-
pling in travelling wave resonators. In: Opt. Lett., vol-
ume 27(9):pp. 1669–1671, 2002.

[LHEC90] Lin, H. B.; Huston, A. L.; Eversol, J. D.; Campillo, A. J.:
Double-resonance stimulated raman scattering in micrometer-
sized droplets. In: J. Opt. Soc. Am. B, volume 7:pp. 2079–
2089, 1990.



105

[LIHM84] Lewis, A.; Isaacson, M.; Harootunian, A.; Muray, A.: Devel-
opment of a 500 A spatial resolution light microscope. In:
Ultramicroscopy, volume 13(3):pp. 227–231, 1984.

[LK77] Lukosz, W.; Kunz, R. E.: Light emission by magnetic and elec-
tric dipoles close to a plane interface. i. total radiated power.
In: J. Opt. Soc. Am., volume 67:p. 1607, 1977.

[LLL+00] Little, B. E.; Laine, J.-P.; Lim, D. R.; Haus, H. A.; Kimerling,
L. C.; Chu, S. T.: Pedestal antiresonant reflecting waveg-
uides for robust coupling to microsphere resonators and for
microphotonic circuits. In: Optics Letters, volume 25(1):pp.
273–75, 2000.

[LMSF01] Lissillour, F.; Messager, D.; Stéphan, G.; Féron, P.:
Whispering-gallery mode laser at 1.56 m m excited by a fiber
taper. In: Opt. Lett., volume 26(14):pp. 1051–1053, 2001.

[LWFN03] Lacey, S.; Wang, H.; Foster, D.H.; Nöckel, J.U.: Directional
tunneling escape from nearly spherical optical resonators. In:
Phys. Rev. Lett., volume 91:pp. 033902–033905, 2003.

[MHMS00] Michaelis, J.; Hettich, C.; Mlynek, J.; Sandoghdar, V.: Opti-
cal microscopy using a single-molecule light source. In: Nature,
volume 405:pp. 325–328, 2000.

[MI98] Meystre, P.; III, M. Sargent: Elements of Quantum Optics.
Springer Verlag, 1998.

[Mie08] Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler
Metalllösungen. In: Annalen der Physik, volume 25(4):pp.
377–445, 1908.

[MKB+00] Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff,
P. M.; Zhang, Lidong; Hu, E.; Imamoglu, A.: A quantum dot
single photon turnstile device. In: Science, volume 290:pp.
2282–2285, 2000.

[MLS+91] McCall, S. L.; Levi, A. F. J.; Slusher, R. E.; Pearton, S. J.;
Logan, R. A.: Whispering-gallery mode microdisk lasers. In:
Appl. Phys. Lett., volume 60(3):pp. 289–291, 1991.

[MPARaC01] Meng, L. S.; P. A. Roos and, K. S. Repasky; ; Carlsten, J. L.:
High-conversion-efficiency, diode-pumped continuous-wave ra-
man laser. In: Opt. Lett., volume 26(7):pp. 426–429, 2001.



106

[MWM85] Meschede, D.; Walther, H.; Muller, G.: One-atom maser. In:
Phys. Rev. Lett., volume 54:pp. 551–554, 1985.

[NKR+04] Nobis, T.; Kaidashev, E.M.; Rahm, A.; Lorenz, M.; Grund-
mann, M.: Whispering-gallery modes in nanosized dielectric
resonators with hexagonal cross section. In: Physical Review
Letters, volume 93(10):pp. 103903–103906, 2004.

[Oht98] Ohtsu, M.: Near-Field Nano/Atom Optics and Technology.
Springer Verlag Tokyo„ 1998.

[Paw95] Pawley, J.B.: handbook of confocal biological microscopy.
Plenum Press, New York, 1995.

[PC03] Pan, Yong-Le; Chang, R.K.: Highly efficient prism coupling
to whispering gallery modes of a square µ-cavity. In: Appl.
Phys. Lett., volume 82(4):pp. 487–489, 2003.

[PDL84] Pohl, D. W.; Denk, W.; Lanz, M.: Optical stethoscopy: Im-
age recording with resolution λ/20. In: Appl. Phys. Lett.,
volume 44(7):pp. 651–653, 1984.

[PF89] Prange, R.E.; Fishman, S.: Experimental realizations of
kicked quantum chaotic systems. In: Phys. Rev. Lett., vol-
ume 63:pp. 704–707, 1989.

[PSM+05] Peter, E.; Senellart, P.; Martrou, D.; Lemaitre, A.; Hours, J.;
Gerard, J. M.; ; Bloch, J.: Exciton-photon strong-coupling
regime for a single quantum dot embedded in a microcavity.
In: Phys. Rev. Lett., volume 95:pp. 067401–067404, 2005.

[Pur46] Purcell, E. M.: Spontaneous emission probabilities at radio
frequencies. In: Phys. Rev., volume 69:p. 681, 1946.

[PVZ+02] Pelton, M.; Vuckovic, C. Santoriand J.; Zhang, B.; Solomon,
G. S.; Plant, J.; Yamamoto, Y.: Efficient source of single
phtons: a single quantum dot in a micropost microcavity. In:
Phys. Rev. Lett., volume 89:pp. 233602–233605, 2002.

[PY99] Pelton, M.; Yamamoto, Y.: Ultralow threshold laser using a
single quantum dot and a microsphere cavity. In: Phys. Rev.
A, volume 59(3):pp. 2418–2421, 1999.



107

[PZH+04] Pfab, R.J.; Zimmermann, J.; Hettich, C.; Gerhardt, I.; Renn,
A.; Sandoghdar, V.: Aligned terrylene molecules in a spin-
coated ultrathin crystalline film of p-terphenyl. In: Chem.
Phys. Lett., volume 387:pp. 490–495, 2004.

[QC86] Qian, S.-X.; Chang, R. K.: Multiorder stokes emission
from micrometer-size droplets. In: Phys. Rev. Lett., vol-
ume 56(9):pp. 926–929, 1986.

[QPW99] Quinten, M.; Pack, A.; Wannemacher, R.: Scattering and ex-
tinction of evanescent waves by small particles. In: Appl. Phys.
B, volume 68:pp. 87–92, 1999.

[RA96] R.K.Chang; A.J.Campillo: Optical Processes in Microcovities.
World Scientific Press, Singapore, 1996.

[Ray78] Rayleigh, J.W.S.: Theory of sound. Macmillan and co., 1878.

[Ray10] Rayleigh, J.W.S.: The problem of the whispering gallery. In:
Phylosophical magazine, volume XX:pp. 1001–1004, 1910.

[RK28] Raman, C. V.; Krishnan, K. S.: Temporal behavior of
radiation-pressure-induced vibrations of an optical microcav-
ity phonon mode. In: Phys. Rev., volume 121:pp. 3048–3051,
1928.

[R.R82] R.Ruppin: Decay of an excited molecule near a small metal
sphere. In: J. Chem Phys., volume 76(4):pp. 1681–1684, 1982.

[RSL+04] Reithmaier, J.R.; Sek, G.; Löffler, A.; Hoffmann, C.; Kuhn, S.;
Reitzenstein, S.; Keldysh, L. V.; Reinecke, T. L.; Forchel, A.:
Strong coupling in a single quantum dot-semiconductor mi-
crocavity system. In: Nature, volume 432:pp. 197–199, 2004.

[RTB+91] Rempe, G.; Thompson, R. J.; Brecha, R. J.; Lee, W. D.;
Kimble, H. J.: Optical bistability and photon statistics in
Cavity Quantum Electrodynamics. In: Phys. Rev. Lett., vol-
ume 67(13):pp. 1727–1730, 1991.

[SB91] Schiller, S.; Byer, R. L.: High-resolution spectroscopy of
whispering-gallery modes in large dielectric spheres. In: Op-
tics Letters, volume 16(15):pp. 1138–1140, 1991.



108

[Sch93] Schiller, S.: Asymptotic expansion of morphological reso-
nance frequencies in Mie scattering. In: Appl. Optics, vol-
ume 32(12):pp. 2181–2185, 1993.

[SK89] S.Haroche; Kleppner, D.: Cavity quantum electrodynamics.
In: Phys. Today, volume 42(1):p. 24, 1989.

[SKV02] Spillane, S.M.; Kippenberg, T.J.; Vahala, K.J.: Ultralow-
threshold raman laser using a spherical dielectric microcavity.
In: Nature, volume 415(6872):pp. 621–623, 2002.

[SP06] Srinivasan, K.; Painter, O.: Mode coupling and cavity-
quantum-dot interactions in a fiber-coupled microdisk cavity.
In: quant-ph/0606142, 2006.

[SPY00] Solomon, G.S.; Pelton, M.; Yamamoto, Y.: Modification of
spontaneous emission of a single quantum dot. In: Phys. Sta-
tus Solidi, volume 178:pp. 341–344, 2000.

[SPY01] Solomon, G. S.; Pelton, M.; Yamamoto, Y.: Single-mode
spontaneous emission from a single quantum dot in a three-
dimensional microcavity. In: Phys. Rev. Lett., volume 86:pp.
3903–3906, 2001.

[STH+96] Sandoghdar, V.; Treussart, F.; Hare, J.; Lefèvre-Seguin, V.;
Raimond, J.-M.; Haroche, S.: Very low threshold whispering-
gallery mode microsphere laser. In: Physical Review A, vol-
ume 54(3):pp. R1777–R1780, 1996.

[Sto89] Stolen: Raman response function of silica-core fibers. In: J.
Opt. Soc. Am. B, volume 6:pp. 1159–1161, 1989.

[SvDEW90] Spreeuw, R. J. C.; van Druten, R. Centeno Neelenand N. J.;
Eliel, E. R.; Woerdman, J. P.: Mode coupling in a he-ne ring
laser with backscattering. In: Phys. Rev. A, volume 42:pp.
4315–4324, 1990.

[SW91] Spreeuw, R. J. C.; Woerdman, J. P.: The driven optical ring
resonator as a model system for quantum optics. In: Physica
B, volume 1752:pp. 96–110, 1991.

[Tew74] Tews, K. H.: On the variation of luminescence lifetimes. the
approximations of the approximative methods. In: J. of Lum.,
volume 9(3):pp. 223–239, 1974.



109

[TGR+06] Tamarat, Ph.; Gaebel, T.; Rabeau, J. R.; Khan, M.; Green-
tree, A. D.; Wilson, H.; Hollenberg, L. C. L.; Prawer, S.;
Hemmer, P.; Jelezko, F.; Wrachtrup, J.: Stark shift control
of single optical centers in diamond. In: J. Opt. Soc. Am. B,
volume 97:pp. 83002–83005, 2006.

[VFG+98] Vernooy, D. W.; Furusawa, A.; Georgiades, N. Ph.; Ilchenko,
V. S.; Kimble, H. J.: Cavity qed with high-q whispering-
gallery modes. In: Physical Review A, volume 57(4):pp.
R2293–R2296, 1998.

[VLMS01] Vuckovic, Jelena; Loncar, Marko; Mabuchi, Hideo; Scherer,
Axel: Design of photonic crystal microcavities for cavity qed.
In: Phys. Rev. E, volume 65:pp. 16608–016618, 2001.

[VY03] Vuckovic, Jelena; Yamamoto, Y.: Photonic crystal microcavi-
ties for cavity quantum electrodynamics with a single quantum
dot. In: Appl. Phys. Lett., volume 82(15):pp. 2374–2376, 2003.

[Web96] Webb, R. H.: Confocal optical microscopy. In: Reports on
Progress in Physics, volume 59:pp. 427–471, 1996.

[WSH+95] Weiss, D. S.; Sandoghdar, V.; Hare, J.; V. Lefèvre-Seguin,
J.-M. Raimond; Haroche, S.: Splitting of high-q mie modes
induced by light backscattering in silica microspheres. In: Op-
tics Letters, volume 20(18):pp. 1835–1837, 1995.

[YSH+04] Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs,
H.; Rupper, G.; Ell, C.; Schenkin, Q.; ; Deppe, D.: Vacuum
rabi splitting with a single quantum dot in a photonic crystal
nanocavity. In: Nature, volume 432:pp. 200–203, 2004.

[YU85] Yokoyama, H.; Ujihara, K.: Spontaneous Emission and Laser
Oscillation in MicrocaVities. CRC Press: Boca Raton, 1985.

[ZC90] Zhang, J. Z.; Chang, R. K.: Double-resonance stimulated ra-
man scattering in micrometer-sized droplets. In: J. Opt. Soc.
Am. B, volume 7:pp. 2079–2089, 1990.

[ZMW95] Zenhausern, F.; Martin, Y.; Wickramasinghe, H. K.: Scanning
interferometric apertureless microscopy: Optical imaging at
10 Angstrøm resolution. In: Science, volume 269:pp. 1083–
1086, 1995.



Danksagung

So finally the end! And it would never be a respectable end without thanking
all the people who supported and helped me in these years: without them
this work would have never been possible.

First of all I would like to thank Prof. Dr. Oliver Benson for giving me
the opportunity to work in his group. His tutorship was extremely helpful
in all these years, and I can say that without his help many of the problem
that had to be faced, would not have found a solution.

Stephan Götzinger will remain in my heart as the father of the experi-
ment. His "pfälzische" precision was a very good example for the experimental
work. Thanks to him, I’ve learned never to trust the experimental results,
and to measure everything twice!

Leonardo Menezes was a great motivator. Not only his knowledge in
nonlinear optics, but also his creativity and perseverance made everyday life
in the lab much more interesting. His ability to keep in touch Berlin with
Recife was and will be really helpful for this experiment.

A thank you goes also to Prof. Dr. Vahid Sandoghdar. He kept in-
teresting himself for the experiments, and I was always welcomed in Zürich
whenever I had questions and problems. A thank you goes also to Ilja and
Robert, who answered all my obsessive questions with a lot of patience.

I sure can say that in the berliner laboratory I’ve met not only colleagues,
but also friends. My life here was definitely influenced by the Pfalz: through
Stefan Schietinger I’ve got to know the front side of the Pfalz, and together
we repeatedly explored the south side of Hausvogteiplatz. He also let me use
his setup to pick up the small stuff, or to do this and that whenever I wanted.
Thomas Aichele taught me how to think "schwäbisch" - and how to cook the
best Käsespätzle! The Pascal knowledge of Matthias Scholz was essential to
solve some cumbersome problems!

Diplom Ingenieur Klaus Palis was always there, and his help has been de-
terminant for the success of the experiments. Dr. Gerd Zumofen at the ETH
Zürich contributed consistently to the understanding of scattering problems
in microcavities.

110



111

Holger always found the right words to say whenever I was frustrated or
depressed. His presence was very special in these years. Through this work
I came to know a very special person, Nina, who found the time to read and
correct my very Italian English! A big thank you goes to all the people of
Hausvogteiplatz, who contributed to create a really pleasant working envi-
ronment, not only during the coffee breaks. Finally, I should really thank my
family, who always took care of me, providing from time to time that special
Italian touch in my life during these years in Berlin.

Grazie!!!



Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe ver-
fasst und nur die angegebene Literatur und Hilfsmittel verwendet zu haben.

Ich habe mich anderwärts nicht um einen Doktorgrad beworben und be-
sitze einen entsprechenden Doktorgrad nicht.

Ich erkläre die Kenntnisnahme der dem Verfahren zugrunde liegenden
Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät I
der Humboldt-Universität zu Berlin.

Berlin, den

Andrea Mazzei

112


	Introduction
	Whispering-Gallery Modes
	Optical Properties of Microsphere Resonators
	Quality factor
	Free Spectral Range and Finesse
	Mode Volume

	Analytical Expression for WGMs
	Representation of the Field in Terms of Debye's Potential

	Approximate Expressions for WGMs
	Radial Intensity Distribution
	Angular Intensity Distribution
	Spectral Properties of the Whispering-Gallery Modes

	Efficient Coupling to Whispering-Gallery Modes
	Prism Coupler
	Polished Fiber Coupler


	Experimental Setup: Methods and Instruments
	The Microsphere Spectroscopy Unit
	The Confocal Microscope
	Principles of Confocal Microscopy
	Image Generation

	The Scanning Near-field Optical Microscope
	Application of the Scanning Near-field Optical Microscope
	Active Nano-probes

	Production and Characterization of Silica Microspheres
	Optimizing Coupling to the Whispering-Gallery Modes

	Ultra-low Threshold Raman Laser
	Stimulated Raman Scattering in Microcavities
	Observation of Ultra-low Threshold Raman Lasing
	Influence of a Controllable Scatterer on the Lasing Properties
	Lasing Properties
	SRS for Detecting Small Particles
	Estimation of Opto-mechanical Force


	Photon Transfer via Shared Whispering-Gallery Modes
	Emission of a Dipole on a Dielectric Interface: Geometric Approach
	Overlap of the Emission Pattern of a Dipole with the WGMs Profile

	Emission of a Dipole on a Dielectric Interface: Modal Approach
	Controlled Coupling of a Single Nanoparticle to the Whispering-Gallery Modes
	Controlled Photon Transfer via Shared High-Q Modes

	Scattering in Microsphere Resonators: an Analogy to Strong Coupling and Purcell Effect
	Role of a Scatterer in an Evanescent Field
	Observation of Mode Splitting due to Intramodal Coupling
	Scattering-Interference

	Conclusions and Outlook
	Coupling of a Single Molecule to the Whispering-Gallery Modes
	Further Experiments


