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Summary  
 

AP-1 transcription factor is a general name for multiple dimers formed by the 

association of Fos (or ATF) and Jun proteins. AP-1 acts as a sensor of changes in the 

cellular environment and thus, it is implicated in the modulation of cell proliferation, 

differentiation, transformation and cell death. Besides the well-documented role of c-Fos 

protein in oncogenesis, where this gene can function as a tumor promoter,   AP-1 

proteins are being recognized as regulators for mesenchymal stromal cell development 

and as regulators of immune cells. The mesenchymal stromal cells are the common 

progenitors for various mesenchymal lineages such as adipocytes, osteoblasts, 

chondrocytes, myocytes and fibroblasts. AP-1 seems to play a key role in the control of 

mesenchymal cell fate decision and differentiation. This is suggested by phenotypes of 

mice with a genetic modifications in either the Jun or the Fos component of AP-1. In 

particular, mice overexpressing the Fos-related antigen-1 (Fra1) or the short isoform of 

FosB (delta[Δ]FosB) have been found to develop osteosclerosis due to an accelerated 

differentiation of osteoblasts. Interestingly, mice overexpressing ΔFosB also developed 

less fat tissue. The activity of Fos proteins can be regulated by post-transcriptional 

modification. Based on knockout mouse model, a role for the growth factor regulated 

kinase Rsk2 was proposed in the differentiation of mesenchymal stromal cells to 

osteoblasts as well as in fat tissue development. Goal in this study was to identify the 

molecular mechanisms explaining the differences between the wild type, fra1-tg, rsk2-

deficient and fra1-tg/rsk2-deficient phenotypes. 

The comparison of the bones of the different mice genotypes revealed, that Fra1 

and Rsk2 were independently regulating bone metabolism. Quantitative analysis of 

adipocyte markers expressions, like PPARγ and C/EBPα, revealed, that Fra1 

overexpression was blocking adipocyte maturation in vivo and in vitro. Moreover, the in 

vivo results show that the fra1-tg/rsk2-/y mice develop a severe lipodystrophy. A milder 

phenotype was observed in the parental fra1-tg strain but not in the Rsk2 knockout 

strain. Additionally, it was been observed, that mesenchymal cells overexpressing Fra1 

were resistant to glucocorticoid-induced growth inhibition. This effect can most likely be 

explained by Fra1-mediated downregulation of the glucocorticoid receptor. Furthermore, 

Fra1 overexpression influenced spleen development. Liver and heart analyses showed 

that Fra1 overexpression induced collagen tissue. Diseases like cholangitis and fibrosis 

were the outcome. 
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Zusammenfassung  
 

Aktivator Protein-1 (AP-1) ist ein kollektiver Terminus für dimerische 

Transkriptionsfaktoren, die sich aus Fos- und Jun- Proteinen zusammensetzen. Diese 

Untereinheiten binden an eine gemeinsame, spezifische DNA-Sequenz, die AP-1 

Bindungsstelle. Zusätzlich zu der gut dokumentierten Rolle des c-Fos Proteins in der 

Tumorgenese, wo dieses Gen als ein Aktivator beschrieben ist, übt AP-1 einen Einfluss 

auf mesenchymale Stromazellen und Immunzellen aus. Mesenchymale 

Knochenmarkszellen sind die Vorläuferzellen für Adipozyten, Osteoblasten, 

Chondrozyten, Myozyten und Fibroblasten. Die molekularen Mechanismen, welche die 

Differenzierungen regeln, sind noch weitgehend unerforscht. Der heterodimere 

Transkriptionsfaktor AP-1 übt eine wichtige Rolle in der Kontrolle der Zelldifferenzierung 

aus. Verschieden genetisch veränderte Mausmodelle untermauerten dies. Mäuse, 

welche das Fos-related antigen-1 (Fra1) oder eine kürzere Protein-Isoform von FosB 

(delta[Δ]FosB) überexpremieren, entwickelten, durch eine beschleunigte Differenzierung 

der Osteoblasten, eine Osteosklerose. Interessanterweise konnte gezeigt werden, dass 

die transgenen ΔFosB Mäuse weniger Fett haben. Die Stabilität und Aktivität von Fos 

Proteinen kann durch post-transkriptionale Modifizierungen geregelt werden. Basierend 

auf knockout Mausmodellen, wurde eine tragende Rolle für das wachstumsregulierende 

Enzym Rsk2 postuliert. Rsk2 spielt eine mögliche Rolle bei der Ausdifferenzierung von 

mesenchymalen Vorläuferzellen zu Osteoblasten und Adipozyten. Das Ziel dieser Arbeit 

war es molekulare Mechanismen zu finden, welche die unterschiedlichen Phänotypen 

(wild typ, fra1-tg, rsk2-defizient und fra1-tg/rsk2-defizient) charakterisieren.  

Die Knochenuntersuchungen der verschiedenen Genotypen zeigten, dass Fra1 

und Rsk2, unabhängig voneinander, tragende Rollen im Knochenmetabolismus spielen. 

Quantitative Analysen von Adipozytenmarker, wie PPARγ und C/EBPα, zeigten, dass 

das Protein Fra1 die Adipozytenreifung in vivo und in vitro reguliert. Zusätzlich 

entwickelten die „doppel-mutierten“ fra1-tg/rsk2-/y Mäuse einen Lipodystrophy. Ein 

milderer Phänotyp wurde in den fra1-tg Tieren beobachtet, jedoch nicht in den Rsk2-

knockout Mäusen. Zusätzlich wurde beobachtet, dass mesenchymale Zellen, welche 

Fra1 überexprimieren, gegen Glucocorticoid-induzierte Wachstumshemmung resistent 

waren. Diese Wirkung kann am wahrscheinlichsten durch die Fra1-vermittelte 

Suppression des Glucocorticoidrezeptors erklärt werden. Außerdem beeinflusste die 

Überexpression von Fra1 die Milzentwicklung. Leber und Herzanalysen zeigten, dass 

Fra1 collagenhaltiges Gewebe induziert. Krankheiten wie Cholangitis und Fibrosen 

waren die Folge. 
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Abbreviation 
 

Ab Antibody 
Ag Antigen 
ag. bidest´  aqua bidest´ 
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AP-1 Activator protein-1 
APC Antigen-presenting cell 
APS Ammoniumperoxydisufat 
ATF Activating transcription factor 
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BAT Brown adipose tissue 
BCA Bicinchoninic acid 
BMP Bone morphogenetic protein 
bp Base pair 
BSA Bovine serum albumin 
C region constant region of Ig 
cAMP cyclic AMP 
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CD cluster of differentiation/ determination 
CD4+ T cell cytotoxic T cells 
CD8+ T cell cytotoxic T cells 
cDNA complementary DNA 
C/EBP CCAAT/enhancer binding protein 
CF Cystic Fibrosis 
CNS Central nervous system 
CoA Coenzyme A 
cpm Counts per minute 
CREB cAMP response element binding protein 
cRNA complementary RNA 
CSF Colony-stimulating factor 
d deoxy; distilled (as in dH2O) 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
DNase Deoxyribonuclease 
DNP Dinitrophenyl 
dNTP 2´-Deoxynucleoside 5´-triphosphate 
ds double-stranded 
DTT 1,4- Dithiothreitol 
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h Hour 
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Ig Immunoglobulin 
IKK Inhibitor of nuclear factor kappa B kinase 
IL Interleukin 
INF-γ Interferon γ 
IP Immunoprecipitation/kinase assay 
IκB Inhibitory NF-κB 
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LPS Lipopolysaccharide 
mAb monoclonal antibody 
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MAPK Mitogen-activated protein kinase; syn. ERK, JNK/SAPK, 
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MAPKAPK2 Mitogen-activated protein kinase 2 
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NF-κB Nuclear factor kappa B 
NK Natural killer cell 
NO Nitric oxide 
NOD Nonobese diabetic 
NP-40 Nonidet P-40 
OCT Octamer-binding factor 
P Phosphorylation 
PAGE Polyacrylamide gel electrophoresis 
PBMC Peripheral blood mononuclear cell 
PBS Phosphate-buffered saline 
r recombinant 
RANTES regulated upon activation, normal T cell expressed and secreted 
RNA Ribonucleic acid 
RNase Ribonuclease 
rpm Revolutions per minute 
RPMI 1640 synthe tic cell culture medium 
rRNA ribosomal RNA 
RT Roomtemperature (20 - 24 °C) 
SCID Severe combined immunodeficiency 
SD Standard deviation 
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SE Standard error 
STAT Signal transducer and activator of transcription 
TBS Tris-buffered saline 
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tRNA transfer RNA 
U Unit 
UV Ultraviolet 
WAT White adipose tissue 
WB Western blot analysis 
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1. Introduction 
 
1.1 Activator protein 1 (AP-1) 
 

In order to survive, all organisms must be able to respond rapidly and effectively to 

changes in their environment. These changes might include externally applied stresses 

[e.g. radiation, ultraviolet (UV) light, shear stress], the presence of infectious agents (e.g. 

viruses, bacteria, parasites and their cellular by-products) or increased concentrations of 

signalling molecules (e.g. hormones, cytokines or growth factors). Most types of 

signalling molecules induce cellular responses by binding to specific cell-surface 

receptors that respond to occupancy by undergoing structural or biochemical changes 

that can be transmitted to the interior of the cell. One of the most common responses to 

receptor ligation is the synthesis of new proteins through alteration of the pattern of gene 

expression. Consequently, the relatively few transcription factors that regulate inducible 

gene expression can be the targets for many distinct signal transduction pathways 

triggered by a wide variety of stimuli. 

One important and widely used transcription factor that plays a pivotal role in many 

cellular responses to environmental changes is activator protein-1 (AP-1). Although AP-1 

was initially discovered and characterized as a transcription factor encoded by viruses 

causing tumours, subsequent studies demonstrated that it is ubiquitously expressed and 

serves as a critical regulator of the inducible expression of many genes. 

 
1.1.1. AP-1 transcription factor family 
 

Transcription factor AP-1 is a dimer composed by DNA-binding proteins. The 

main AP-1 proteins in mammalian cells are the Fos family members and the Jun family 

members. All AP-1 proteins are characterised by a basic leucine zipper region (bZIP). 

They dimerize through the leucine zipper motif and contain a basic domain for interaction 

with the DNA backbone [1, 2]. AP-1 were originally known as a 12-O-tetradecanoylphorbyl-

13-acetate (TPA) inducible transcription factor, since the TPA response element (TRE: 

TGACTCA) was identified as a binding site for AP-1 in many cellular and viral genes [3]. 

This element was identified in the promoters and enhancers of the metallothionein I gene 

and Simian Virus 40 (SV40). AP-1 recognition sequences were found in many other 

promoters and enhancers of cellular and viral genes, including collagenase, stromelysin, 

metallothionein-2a (MT-2a), interleukin-2 (IL-2), transforming growth factor β  (TGFβ), 

polyomavirus and papillomavirus. 
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Figure1.1.AP-family 
Fos proteins do not form homodimers but can heterodimerize with members of the Jun family, the Jun proteins 
can both homodimerize and heterodimerize ass well with other transcription factors (e.g. ATF or MyoD). 

 

While the Fos proteins (c-Fos, FosB, Fra1, and Fra2) do not form homodimers but 

can heterodimerize with members of the Jun family, the Jun proteins (c-Jun, JunB, and 

JunD) can both homodimerize and heterodimerize with other Jun or Fos members to 

form transcriptionally active complexes [4]. In addition to Fos proteins, Jun proteins can 

also heterodimerize efficiently with other transcription factors, such as members of the 

activator transcription factor family (ATF) and other basic zipper containing transcription 

factors such as calcium binding protein (CBP), myoblast differentiation factor (MyoD), 

nuclear factor of activated T-cells (NFAT) or c-Rel [5, 6] (possible interactions are 

summarized in Figure 1.1). Fos–Jun heterodimers are more stable than Jun 

homodimers, and are believed to be the prevalent, and biologically most relevant, forms 

of Jun in vivo [7, 8, and 9]. Whereas four Fos-like genes have been identified in mammals, 

Drosophila seems to possess only one Fos homologue, D-Fos (also referred to as D-Fra) 
[4, 10]. Drosophila Jun and Fos have been characterized biochemically, and have been 

shown to act similarly to their mammalian counterparts [11, 12, 13, and 14].  

AP-1 mediates cell response to growth factors, cytokines, neurotransmitters and 

other intercellular signalling molecules. G-proteins, adapter proteins, MAP kinases and 

other elements of cellular signalling systems mediate AP-1 activity (Figure 1.2). AP-1 

dependent genes play a pivotal role in regulation of cell proliferation, morphogenesis, 

apoptosis, and differentiation. 
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Figure1.2.NetworkofAP-1field 
Overview of signal transduction pathways affecting AP-1 activity. AP-1 cell signalling pathways leading to 
apoptosis, survival and proliferation. ERK1/2, p38 and JNK have been shown to activate transcription factor like 
SRF, C/EBPß or Elk and AP-1 by itself, which control the transcription of the Fos and Jun members. AP-1 dimers 
are phosphorylated and stabilised by kinase, e.g. ERK, JNK, p38 and Rsk2 (Refer to text for explanation). 

 

Transcription from both the Fos and Jun promoters is rapidly and transiently 

induced in cells that are treated with serum or peptidic growth factors via oncogene-

mediated signal transduction networks [15]. Growth factor-induced signal transduction 

cascades also regulate the activity of pre-existing AP-1 dimers. Both Fos and Jun are 

phosphorylated and activated by the MAPK, RSK and JNK kinase system [16, 17, 18, and 19] 

(Figure 1.2). This ubiquitous response to extra cellular signals highlights a role for AP-1 

in converting transient biochemical signals into permanent changes in gene expression 

that effect a cellular response to external stimuli. Numerous in vitro studies have 

suggested that the different AP-1 dimers may act as tissue-specific and signal-specific 

transcriptional activators. Indeed, each individual targeted deletion of an AP-1 gene 

reported so far leads to specific phenotype, especially the c-Fos family, indicating that 

the different AP-1 subunits, although highly homologous, are not fully redundant in vivo.  
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1.1.2. Characteristics of Fos family members and related mice models 
 

The cytogenetic locations of three of the human Fos genes are known: c-Fos 

maps to 14q24.3 (5), FosB to 19q13.3 (11), and Fra1 to 11q13 (17) and Fra2 to 2p22–

p23 [20].  

 

1.1.2.1. Structure and function of c-Fos 
 

An important step in defining the AP-1 transcription factor came with the discovery 

that the viral oncoprotein v-Fos binds to the same DNA sequence as c-Jun [21]. c-Fos was 

originally identified in the FBJ (Finkel, Biskis, Jinkins) and FBR (Finkel, Biskis, Reilly) 

murine sarcoma viruses [22]. c-Fos is an immediate-early proto-oncogene with rapid and 

transient transcriptional activation following mitogenic stimuli and is involved in numerous 

cellular processes such as proliferation, differentiation, transformation, and apoptosis [23].  

The 4 kb mammalian c-Fos gene has four exons and transcribes a 2.2 kb mRNA. 

The protein is composed of 381 amino acids and contains a more recently discovered 

ERK-docking site or DEF domain in the C-terminus [18] (Figure 1.3) . The c-Fos mRNA 

and protein are very unstable. Stabilisation and regulation by kinases like Rsk2 playing 

an important biological role in some diseases, e.g. osteosarcoma. David and colleagues 

(2005) could show that in the absence of Rsk2, c-Fos-dependent osteosarcoma 

formation is impaired [19]. The lack of c-Fos phosphorylation leads to reduced c-Fos 

protein levels, which are thought to be responsible for decreased proliferation and 

increased apoptosis of transformed osteoblasts. Therefore, Rsk2-dependent stabilization 

of c-Fos was essential for osteosarcoma formation. In addition, the protein is degraded 

by ubiquitination, but also by ubiquitin-independent mechanisms through two distinct 

regions in the C- and N-terminus, called destabilizers [24, 25, and 26].  
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Figure1.3 Phosphorylation sites for the stabilisation and regulation of c-Fos protein 
The c-Fos protein is composed of 381 amino acids and contains an ERK-docking site, Rsk2-docking site, and the 
DEF domain, in the C-terminus. c-Fos is phosphorylated at Ser (serine) 374, Thr (threonine) 325 and Thr 332 by 
ERK1/2 and at Ser 362 by its downstream kinase, Rsk2, and that phosphorylation of c-Fos by these kinases bring 
about its stabilization. 

 

 

The c-Fos protein is expressed at low or undetectable levels in most cell types, 

but is rapidly and transiently induced in response to various stimuli, such as growth 

factors, and environmental and physical stress. Furthermore, c-Fos is associated with a 

variety of biological processes, from cell-cycle progression and cell differentiation to cell 

transformation and tumorigenesis [27]. 

The c-Fos-deficient mice are viable, fertile but develop osteopetrosis and are 

lacking teeth due to a block in osteoclast differentiation [28, 29]. High levels of c-Fos can be 

found in developing bone, the central nervous system, and in some haematopoietic cells, 

such as megakaryocytes [30, 31, 32, and 33]. Tumorigenic properties of c-Fos have been 

demonstrated by overexpression, which causes osteosarcoma by transforming 

chondroblasts and osteoblasts [34]. 

 

 

1.1.2.2. Structure and Function of Fra1 
 

Fos-related antigen-1 or Fra1 is an immediate-early gene and a constituent of the 

AP-1 complex discovered by Cohen and Curran in 1988. Fra1 appear as a candidate for  
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central regulatory functions that will in turn modulate the expression of other genes. The 

protein lacks the C-terminal transactivation domain and has therefore been proposed to 

be a negative regulator of AP-1 activity (Figure 1.4). However, the Ras-induced 

stabilisation and activation of Fra1 is well understood but nothing is known about Rsk2-

dependend regulation of this AP-1 member. Therefore, Fra1 can either increase or 

decrease total AP-1 activity depending on the status of the other Fos and Jun proteins in 

the cell and on its phosphorylation, and has been proposed to function as a negative-

feedback regulator of AP-1 [35, 36, 37, 38, 39, 40, and 41].  

Overexpression of Fra1 has a growth inhibitory effect and induces apoptosis in 

glioma cells [42]. The oncogenic potential of Fra1 is significantly weaker than that of c-

Fos. Nevertheless, overexpression of Fra1 in established rat fibroblasts leads to 

anchorage-independent growth and tumour development in nude mice [44]. Furthermore, 

neoplastic transformation of rat thyroid cells requires induction of Fra1 and JunB [43]. Fra1 

expression is subject to positive control by AP-1 in several cell types [34, 37, 44, and 45]. Fra1 

is involved in Ras-induced transformation of NIH 3T3 cells, and it stimulates 

transformation, and increases invasiveness and motility of epithelioid adenocarcinoma 

cells, reflecting cases where Fra1 does not act as a negative regulator of AP-1 [46, 47]. 

 

 

Figure 1.4 Phosphorylation sites for the stabilisation and regulation of Fra1 protein 
The Fra1 protein is composed of 274 amino acids and contains an ERK-docking site, the DEF domain, but no 
transactivation domain.  Following ERK1/2 phosphorylation (at Ser 209 and Ser269, Thr 231 and Thr 244) Fra1 is 
stabilized in cells and interacts with AP-1 family partners. 
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The mouse Fra1 gene, which consists of four exons and three introns at positions 

also found in the other members of the Fos gene family. Fra1 is expressed rather highly 

in the brain and testes of adult mice, and at low levels in most other tissues. Absence of 

c-Fos leads to significantly reduced serum stimulation of fra1 expression in gene 

targeted mouse fibroblasts, demonstrating that mitogen induction of Fra1 is partially 

mediated by c-Fos/ AP-1. As Fra1 expression appears to be at least in part controlled by 

c-Fos, it is conceivable that Fra1 might contribute to the phenotypic effects of 

overexpression or deletion of c-Fos. Overexpression of Fra1 can substitute for c-Fos, in 

overcoming the differentiation block of osteoclasts lacking c-Fos in in vitro co-culture 

assays [48]. Fra1-deficient mice die at E 9.5 due to defects in the placenta and yolk sac. 

Mutated placentas display morphologic alterations, have reduced size and lack of 

vascularization. The embryonic lethality can be overcome by crossing conditional Fra1 

knockout mice with the MORE-cre mouse. MORE-cre mice express Cre ubiquitously 

except in extraembryonal tissues [49]. These mice are viable and fertile and develop 

osteopenia due to decreased osteoblast differentiation [50]. Ectopic Fra1 expression can 

also rescue the embryonic lethality of Fra1 knockout mice [51]. Similar to ΔFosB, 

overexpression of Fra1 from a ubiquitous promoter result in osteosclerosis due to 

accelerated osteoblast differentiation with splenomegaly as secondary effect [52]. 

Therefore, Fra1 plays an important role in skeletogenesis and is proposed to influence 

mesenchymal stromal cell and myeloid linage differentiation.  

 

1.1.2.3. Structure and Function of Fra2 
 

The Fos-related AP-1 transcription factor Fra2 (encoded by Fosl2) was originally 

identified as a chicken gene whose product was recognized by a c-Fos antiserum [53]. 

cDNA sequences, covering the protein coding parts only, have been reported for the 

human and rat Fra2 genes [54]. For the chicken and mouse homologs, the genomic 

structure has been determined, showing that the overall organization (four exons and 

three introns) is conserved between c-Fos and Fra2 [53]. However, both the Fra2 introns 

and the untranslated parts of the mRNA are considerably larger than those of other Fos 

family members. Fra2 is expressed at high levels in ovary, stomach, intestine, brain, lung 

and heart and in differentiating epithelia, the central nervous system and developing 

cartilage [64, 65, and 66]. Overexpression of Fra2 induces tumour formation in pancreas, 

thymus and lung. Transgenic overexpression from the CMV promoter results in ocular 

malformations [67]. The absence of Fra2 in embryos and newborns leads to reduced 

zones of hypertrophic chondrocytes and impaired matrix deposition in femoral and tibial 



Introduction 
______________________________________________________________________ 

 26  

growth plates, probably owing to impaired differentiation into hypertrophic chondrocytes. 

In addition, hypertrophic differentiation and ossification of primordial arches of the 

developing vertebrae are delayed in Fra2-deficient embryos. Primary Fosl2–/– 

chondrocytes exhibit decreased hypertrophic differentiation and remain in a proliferative 

state longer than wild-type cells. Pups lacking Fra2 die shortly after birth. The coll2a1-

Cre, Fosl2f/f mice die between 10 and 25 days after birth, are growth retarded and 

display smaller growth plates similar to Fosl2–/– embryos. In addition, these mice suffer 

from a kyphosis-like phenotype, an abnormal bending of the spine. Hence, Fra2 is a 

transcription factor important for skeletogenesis by affecting chondrocyte differentiation 
[68]. 

 

1.1.2.4. Structure and Function FosB and delta(Δ)-FosB 
 

Zerial and colleagues identified FosB, encoding a nuclear protein of 338 amino 

acids presenting a 70 % homology with c-Fos, whose expression is activated during G0 / 

G1 transition, in 1989. Growth factor stimulation of quiescent cells leads to a rapid and 

transient accumulation of FosB mRNA, with kinetics similar to those of c-Fos. The 

induction of FosB mRNA levels is in part due to a dramatic increase in the transcription 

of the gene. The half-life of FosB mRNA is in the order of 10 - 15 min. Both 

transcriptional activation and mRNA stability are substantially increased in the presence 

of protein synthesis inhibitors. FosB forms a complex with c-Jun and JunB in vitro [59]. 

The expression of FosB has been localized to neuronal tissue and bone during 

embryonic development, although no known essential function during embryonic 

development has been identified [60]. FosB-deficient mice develop normally but have a 

nurturing defect [61].  

ΔFosB, first identified in cultured cells, is a truncated product of the fosB gene, 

which lacks the C-terminal 101 amino acids of the full-length FosB protein [61, 62, 63, and 64]. 

ΔFosB triggers one round of proliferation in quiescent rat embryo cell lines, followed by a 

different cell fate such as morphological alteration or delayed cell death. Interestingly, 

transgenic mice over-expressing ΔFosB, under the control of the neuron-specific enolase 

(NSE) promoter show markedly increased bone formation and decreased adipogenesis 

but OG2-ΔFosB mice [ΔFosB is under the control of the osteocalcin (OG2) promoter] 

demonstrated increased osteoblast numbers and an osteosclerotic phenotype but normal 

adipocyte differentiation. This result firmly establishes that the skeletal phenotype in 

OG2-ΔFosB mice is cell autonomous to the osteoblast lineage and independent of 

adipocyte formation. Although the increased bone formation in the NSE-ΔFosB mice was 
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shown to be due, at least in part, to a cell autonomous effect on cells of the osteoblast 

lineage. The dramatic decrease in adipogenesis observed in these mice, as revealed by 

decreased abdominal fat, low leptin levels in serum, and reduced number of adipocytes 

in the bone marrow, could be independently cell autonomous to the adipocyte lineage or 

secondary to the alteration in osteoblast differentiation. This uncertainty is due to the fact 

that the NSE promoter directs ΔFosB transgene expression in several tissues in addition 

to the brain, including bone and white adipose tissue [65, 66].  

 

1.2 From mesenchymal stromal cell to a tissue forming organ 
 

Bone marrow (BM) was for many years primarily regarded as the source of 

haematopoietic stem cells (HSCs). Today it is known that BM contains not only 

haematopoietic but also heterogeneous non-haematopoietic stem cells. It is likely that 

similar or overlapping populations of primitive non-haematopoietic stem cells in BM were 

detected by different investigators using different experimental strategies and hence 

were assigned different names (e.g. mesenchymal stromal cells, multipotent adult 

progenitor cells, or marrow-isolated adult multilineage inducible cells). Mesenchymal 

stromal cells (MSCs)  — a mixed cell population that generates bone, cartilage, fat, 

fibrous connective tissue, and the reticular network that supports blood cell formation—

were described shortly after the discovery of HSCs [67, 68, and 69]. The biology and 

properties of mesenchymal stromal cells has expanded dramatically over the last years. 

The notion that tissue repair with mesenchymal stromal cells is related to 

transdifferentiation has been re-evaluated. Mesenchymal stromal cells are a biologically 

important cell population that are able to support haematopoiesis, can differentiate along 

mesenchymal and non-mesenchymal lineages in vitro, are capable of suppressing 

alloresponses and appear to be non-immunogenic. These properties underline the 

potential roles for mesenchymal stromal cells in cell therapy. 

 

1.2.1. Historical background of MSCs  
 

Ernest A. McCulloch and James E. Till first revealed the clonal nature of marrow 

cells in the 1960s [70, 71]. An ex vivo assay for examining the clonogenic potential of 

multipotent marrow cells was later reported in the 1970s by Friedenstein and colleagues 
[72, 73]. In this assay system, stromal cells were referred to as colony-forming unit-

fibroblasts (CFU-f). Subsequent experimentation revealed the plasticity of marrow cells 

and how their fate could be determined by environmental cues. Culturing marrow stromal 
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cells in the presence of osteogenic stimuli such as ascorbic acid, inorganic phosphate, 

and Dexamethasone could promote their differentiation into osteoblasts. In contrast, the 

addition of TGFβ could induce chondrogenic markers. Today it is clear that MSCs are 

multipotent stem cells that can differentiate into a variety of cell types. Cell types that 

MSCs have been shown to differentiate into in vitro or in vivo include osteoblasts, 

chondrocytes, myocytes, adipocytes, and, as described lately, into beta-pancreatic islets 

cells. They can also transdifferentiate into neuronal cells [74].  

 

1.2.2. Differentiation markers for mesenchymal stromal cells 
 

MSCs are less well characterized and their functional role in the bone marrow is 

not as well understood as that of HSCs. They comprise a heterogeneous group of cells 

thought to be crucial to maintenance of an environment conducive to survival and 

maturation of HSCs. Several groups have isolated MSCs by exploiting their capacity to 

adhere to plastic tissue culture dishes and proliferate in response to serum [75, 76]. 

Unfortunately, there is currently no clear consensus on how many individual cell types 

constitute MSCs, how MSCs should be isolated and purified, or even which MSCs are 

actually stem cells capable of asymmetric division. The mesenchymal stromal progenitor 

cells are committed to the differentiation into different lineages by the activation of a set 

of transcription factors. These factors are often used as markers for the different lineages 

(Figure 1.5). MSCs are typically described as expressing no lineage-specific markers 

and they are c-kit-negative, but do moderately express Sca-1, and highly Stro-1, on their 

surface. Individual cells from the stromal population can differentiate into other cell types 

such as bone, adipose and muscle and bone [77, 78, and 79].  

http://en.wikipedia.org/wiki/Chondrocyte�
http://en.wikipedia.org/wiki/Myocyte�


Introduction 
______________________________________________________________________ 

 29  

 

 

Figure 1.5 Transcriptional controls of osteoblastic, chondrocytic, adipocytic and myocytic 
differentiation  

MSCs are a heterogeneous group of adherent cells that can be cultured from bone marrow aspirates. These cells 
are believed to contribute to the HSC niche in bone marrow, but can also differentiate to express markers typical 
of osteoblasts, chondrocytes, adipocytes and myocytes. Osteoblasts differentiate from mesenchymal progenitor 
cells that also give rise to myocytes, under the control of MyoD, to adipocytes under the control of C/EBPα, β, 
δ and PPARγ, and to chondrocytes, under the control of Sox4, -6 and -9 and STAT1. Runx2 is essential for 
osteoblast differentiation and is involved in chondrocyte maturation. Osterix (Osx) acts downstream of Runx2 to 
induce mature osteoblasts that express osteoblast markers, including osteocalcin.  

 

1.2.2.1. Markers of osteoblast differentiation 
 

Osteoblasts (OB) are the bone-forming cells. The osteoblasts are cell types of 

mesenchymal origin that are responsible for bone matrix deposition, or bone formation. 

They synthesize and secrete most of the proteins of the bone matrix, including type I 

collagen and non-collagenous proteins. They express high levels of alkaline 

phosphatase (AP), which participates in mineralization. Proteins, produced by 

osteoblasts and secreted into the blood, are used as indicators of bone formation. In 

addition to the matrix-forming ability, cells of the osteoblastic family (osteocytes, lining 

cells, and maybe other cells) participate in the regulation of bone turnover. They respond 

to Parathyroid hormone (PH), glucocorticoids (GC), vitamin D (VD3), sex steroids, 

Insulin, prostaglandins, and growth factors (GF) [79, 80, 81, and 82].   
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There are two stages in the development of osteoblasts. In the first step, 

mesenchymal progenitor become pre-osteoblasts and in the second step pre-osteoblasts 

become mature osteoblasts (i.e. mineralizing cells). Molecular markers of the first step 

are Type I Collagen, alkaline phosphatase and above all the transcriptions factor Runx2 

that is absolutely require for osteoblast commitment. Osteocalcin and high expression of 

Osterix (Osx), a zinc finger containing transcription factor, downstream of Runx2, serves 

as markers for the second step of osteoblast differentiation [83, 84]. 

A central regulator of bone formation is the Runx2 transcription factor. It is a 

master regulatory switch through unique properties for mediating the temporal activation 

and/or repression of cell growth and phenotypic genes as osteoblasts progress through 

stages of differentiation. Runx2 is a transcription factor that belongs to the runt-domain 

gene family. Three runt-domain genes (Cbfa1/ Pebp2αA, Cbfa2/ Pebp2αB, and Cbfa3/ 

Pebp2αC) have been identified [85, 86, and 87]. They have a DNA binding domain, runt, 

which is homologous with the Drosophila pair-rule gene runt, and form heterodimers with 

co-transcription factor Cbfb/Pebp2β and acquire enhanced DNA-binding capacity in vitro 
[88, 89, and 90]. In recent studies, Cbfa-related factors were shown to interact with the 

promoter region of the Osteocalcin gene [91, 92, and 93]. Genetic inhibition of the Runx2/ 

Cbfa1 gene causes developmental defects in osteogenesis and hereditary mutations in 

this gene are linked to specific ossification defects as observed in cleidocranial 

dysplasia. Runx2-deficient mice showed multiple defects in bone formation, by affecting 

the three major cellular components of the bone: osteoblasts, chondrocytes, and 

osteoclasts. The mutanted mice completely lacked both endochondral and 

intramembranous ossification, and mature osteoblasts were absent throughout the body. 

Runx2 functions as a "platform protein" that interacts with a spectrum of co-regulatory 

proteins to provide a combinatorial mechanism for integrating cell signalling pathways 

required for osteoblast differentiation and the tissue-specific regulation of gene 

expression [94, 95, 96, and 97].  

Osterix (Osx) is a transcription factor that was identified in a subtractive 

hybridization screen in extracts of C2C12 cells treated with bone morphogenetic protein-

2 (BMP-2) [98]. Milona and colleagues (2003), recently isolated two cDNAs for human 

homologues of Osx, referred to as Sp7 alpha and beta isoforms [99, 100]. A phenotype 

similar to the Runx2 knockout was observed with knockout of Osx. Osx-deficient mice do 

not form a bony skeleton, forming only cartilage. In addition, Osx induces OB 

differentiation of dispersed embryonic stem cells. Runx2 is expressed in Osx knockouts, 

suggesting that Osx functions downstream of Runx2 in the differentiation pathway. 

Therefore, Osx may be involved in the segregation of osteoblast and chondrocyte 
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lineages where Runx2 is expressed by bi-potential precursor cells where expression of 

Osx would suppress chondrocyte lineage. 

Besides Runx2 and Osx, transcription factors of the AP-1 complex are involved in 

osteoblast differentiation and transformation. Overexpression of Fra1 and ΔFosB, the 

truncated version of FosB, results in enhanced differentiation of osteoblasts possibly 

caused by altered progenitor cell differentiation and increased osteoblast activity [96, 101, 

102, and 103]. In contrast, c-Fos overexpression results in osteoblast transformation and 

osteosarcoma development [104].  

 

1.2.2.2. Markers of chondrocyte differentiation 
 

Chondrocytes (from Greek chondros cartilage + kytos cell) are the only cells 

found in cartilage. They produce and maintain the cartilaginous matrix, which consists 

mainly of collagen and proteoglycans. Although chondroblast is still commonly used to 

describe an immature chondrocyte, use of the term is discouraged since the progenitor 

of chondrocytes (which are MSCs) can also differentiate into osteoblasts. Chondrocyte 

differentiation is a precisely regulated process that involves proliferation, hypertrophic 

differentiation, mineralization and apoptosis. Disruption of these events can result in 

various skeletal diseases and growth disorders [105]. The control of chondrocyte 

differentiation involves multiple extra cellular and intracellular signalling molecules [106, 107, 

108, and 109]. The key transcription factor requires for the mesenchymal condensation 

necessary for chondrocyte commitment is Sox9. It is expressed in all chondrocyte 

progenitors and is required for cartilage formation [110]. Sox9, together with Sox5 and 

Sox6, regulates differentiation of chondrocytes Maturation of chondrocytes to 

hypertrophy is controlled positively by Runx2 and negatively by Sox9 [111, 112]. 

 

1.2.2.3. Markers of adipocyte differentiation 
 

Adipocyte is the fat cell, which has differentiated and become specialized in the 

synthesis and storage of fat. The adipocyte is important to maintain proper energy 

balance, to store calories in the form of lipids, to mobilize energy sources in response to 

hormonal stimulation, and to command changes by signal secretions. Under the 

microscope, the adipocyte appears bloated with triglycerides. The nucleus of the cell is 

displaced to one side by the fat. The cytoplasm of the cell looks like a thin line 

surrounding the pool of fat. Studies of mesenchymal adipocyte precursor have shown 

that the expression of markers for mature adipocytes is elevated when they are cultured 
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in adipocyte differentiation medium composed of  Insulin, Dexamethasone and IBMX [113, 

114, 115, 116, 117, 118, and 119] (Figure 1.6).  

Pref-1 (Preadipocyte factor-1) and PPARγ (peroxisome proliferator activated 

receptor gamma) are key regulators in the early stage of preadipocyte differentiation.  

Pref-1 is an inhibitor of adipocyte differentiation and is synthesized as a plasma 

membrane protein containing six epidermal growth factor (EGF)-repeats in the 

extracellular domain. Pref-1 is highly expressed in 3T3-L1 preadipocytes, but is not 

detectable in mature fat cells.  

PPARγ regulate storage and catabolism of fats and carbohydrates. PPARγ is 

regarded as a "master regulator" of adipocyte differentiation and is abundantly expressed 

in adipose [120, 121, 122, 123, 124, and 125]. Furthermore, C/EBPα/ β/ δ (CCAAT-enhancer binding 

protein alpha, beta, and delta) are members of a family of transcription factors that are 

integral to adipogenesis. C/EBPα regulates terminal adipocyte differentiation, turning on 

the battery of fat-specific genes required for the synthesis, uptake, and storage of long 

chain fatty acids [126, 127, 128, 129, 130, 131, 132, and 133]. There are evidences that C/EBPδ and 

C/EBPβ plays early catalytic roles in the differentiation pathway, relaying the effects of 

the hormonal stimulant Dexamethasone in a cascade-like fashion, leading to the 

activation of the gene encoding C/EBPα [134, 135, 136, 137, 138 and 139]. C/EBP and other 

C/EBP-like proteins play a critical role in regulating the transcription of the fat-specific 

gene [140, 141, 142, and 143]. C/EBP binding sequences are present in genes regulated during 

adipocyte differentiation that can directly be regulated by C/EBPs [144].  

The aP2 (adipocyte lipid-binding protein) belongs to a family of intracellular lipid-

binding proteins involved in the transport and storage of lipids. The aP2 protein has 

important effects on Insulin and lipid metabolism. The aP2-deficient mice developed 

dietary obesity but, they did not develop Insulin resistance or diabetes. Rather it seems 

to in a way such as, that  aP2 is central to the pathways that links obesity to Insulin 

resistance, possibly by linking fatty acid metabolism [145, 146, 147, and 148]. The blood glucose 

homeostasis can be controlled, in part, by a family of structurally related glucose 

transporter proteins (Glut) composed of at least five isoforms [149, 150]. One of these 

isoforms, Glut4 is of particular importance because it is a major Insuline-regulated 

glucose transporter. Glut4 is selectively expressed in Insuline-sensitive tissue such as 

adipose cells [151]. Therefore, the impairment of Glut4 expression, Glut4 translocation, 

and/ or Insuline signalling in adipocytes may affect basal and Insulin-stimulated glucose 

uptake. Both, Glut4 and aP2 are important markers for adipocytes differentiation. 
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Enzymes are also important in a wide variety of cellular processes, including 

intracellular trafficking, organization of the cytoskeleton, cell growth and transformation, 

and prevention of apoptosis [152, 153]. The Raf/ MEK/ extracellular signal-regulated kinase 

(ERK) kinase cascade is a pathway involved in the determination of cell fate [154, 155]. In 

mammalian cells, signaling through the Raf/ MEK/ ERK/ RSK kinase cascade has been 

implicated in multiple aspects of cell fate determination, including the regulation of 

senescence, proliferation, transformation, differentiation, and apoptosis [156]. While a 

positive role for ERK signaling is well established in proliferation, transformation, and 

oncogene-induced senescence [155, 157, 158, and 159], its role in cell differentiation programs 

remains controversial. In adipogenic conversion of 3T3-L1 preadipocytes, inhibition its 

activity reveals a positive role for ERKs [160, 161, and 162], whereas constitutive activation of 

the pathway suggests a negative role for ERKs [163, 164]. Phosphorylation and activation of 

the ERK downstream of ERK kinase Rsk2 plays an important role in Insuline and lipid 

metabolism. However, the role of Rsk2 in adipocyte differentiation and, more specifically, 

at which level in the differentiation process it might act during adipogenesis remain 

largely unknown. 

 

Figure1.6Adipocytedifferentiation 
Preadipocyte differentiation is influenced by endocrine and autocrine factors that promote or constrain 
adipogenesis by intracellular mechanisms that induce the synthesis and activation of adipogenic transcription 
factors. Upon treatment of mesenchymal stromal cells with an adipocyte cocktail of methylisobutylxanthine, 
Dexamethasone, and Insulin(AD), there is a rapid induction of C/EBPβ and C/EBPδ (1 to 2 h) lasting 2 to 3 days. 
With the expression of C/EBPβ/δ, postconfluent, growth-arrested preadipocytes reenter the cell cycle and 
undergo multiple rounds of cellular division, a process termed mitotic clonal expansion (MCE). C/EBPβ/δ then 
induce the expression of C/EBPα and peroxisome proliferator-activated receptor gamma (PPARγ). C/EBPα and 
PPARγ terminate MCE and together induce the expression of genes involved in triglyceride storage and 
metabolism that lead to formation of a mature adipocyte. 
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Growth of the adipose tissue results from both the enlargement of mature 

adipocytes and the formation of new adipocytes from adipocyte precursor cells (mitotic 

clonal expansion) [138, 162]. The differentiation process of adipocyte precursor cells is 

controlled by a variety of hormones. Leptin is one of the main hormones, which play a 

role in adipocyte differentiation. Leptin is synthesized and secreted primarily by 

adipocytes, and is present in serum in direct proportion to the amount of adipose tissue 

and involved in the central control of body weight, energy homeostasis, sexual 

maturation and exerts its action on hypothalamus, modifying eating behavior and 

inhibiting the lust for food consumption [165, 166, 167, and 168].  

 

1.2.2.4. Markers of myocyte differentiation 
 

A muscle fiber, also known as a myocyte, is a single cell of a muscle. Muscle fibers 

contain many myofibrils, the contractile unit of muscles. Muscle fibers can be grouped 

according to what kind of tissue they are found in skeletal muscle, smooth muscle, and 

cardiac muscle. The formation of skeletal muscle in vertebrates involves a family of 

myogenic regulatory genes encoding the basic-helixloop-helix (bHLH) transcription 

factors Myf-5, myogenin, MyoD, and MRF-4. Each of these genes can activate 

myogenesis in a variety of transfected tissue culture cells in vitro, suggesting that they 

may play an important role in muscle cell determination and differentiation. Interestingly, 

all established muscle cell lines express MyoD in committed myoblasts and activate 

transcription of myogenin only when induced to differentiation. This interpretation of 

these was that MyoD might define the myoblasts stage [169, 170, and 171].  

 

1.3 Bone or fat development – is that the question? 
 

Bones are rigid organs that form part of the endoskeleton of vertebrates. Bones 

function to move, support, and protect internal organs, such as the skull protecting the 

brain or the ribs protecting the heart and lungs. Bone also serves as a storage site for 

minerals, most notably calcium and phosphorus and provides the medium - marrow - for 

the development and storage of blood cells. Blood production located within the 

medullary cavity of long bones and the interstices of cancellous bone is a process called 

haematopoiesis [172, 173, and 174].  
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Bones come in a variety of shapes and have a complex internal and external 

structure, allowing them to be lightweight yet strong and hard, while fulfilling their many 

other functions. Other types of tissue found in bones include marrow, endosteum and 

periosteum, nerves, blood vessels and cartilage. Bone buffers the blood against 

excessive pH changes by absorbing or releasing alkaline salts. Bones are important in 

the mechanical aspect of hearing.  

The primary tissue of bone, osseous tissue, is a relatively hard and lightweight 

composite material, formed mostly of calcium phosphate in the chemical arrangement 

termed calcium hydroxylapatite (this is the osseous tissue that gives bones their rigidity). 

It has relatively high compressive strength but poor tensile strength, meaning it resists 

well to pushing forces, but not pulling forces. While bone is essentially brittle, it does 

have a significant degree of elasticity mainly contributed by collagen. All bones consist of 

living cells embedded in the mineralised organic matrix that makes up the osseous tissue 
[175]. 

 

1.3.1. Cellular structure of bone: osteoblast, osteocytes, osteoclast and 
chondrocytes 

 

Two different tissues form most of the skeletal elements, bone and cartilage, and 

each of these two tissues have its own specific cell types: the osteoblasts, osteocytes 

and osteoclasts in bone; the chondrocytes in cartilage. Finally, each of these cell types 

has its own differentiation pathway, physiological functions, and therefore pathological 

conditions. Bone at the tissue level undergoes remodelling: it is continuously being 

resorbed and rebuilt (or formed). 

 

1.3.1.1. Osteblast - the bone forming cell 
 

Osteoblasts are responsible for bone formation. Osteoblasts are specialized 

mesenchymal cells that undergo a process of maturation where genes like core-binding 

factor alpha1 (Cbfa1/ Runx2) and osterix (Osx) play an important role. There are 

important pathways which are closely related to the osteoblast environment. Recently, 

both human genetic and animal studies have pointed to the role of the Wnt/ LRP5 

pathway as a major regulator of bone mass formation. Wnts are a family of 19 secreted 

glycoproteins that bind to receptor complexes including low-density lipoprotein receptor-

related protein (LRP)-5/ 6 as well as frizzled proteins. A subsequent intracellular cascade 

of events stabilizes β-catenin, leading to its translocation into the nucleus where,  
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associated with Tcf/ Lef transcription factors, it triggers gene expression. During the last 

decade, canonical Wnt signaling has been shown to play a significant role in the control 

of osteoblastogenesis and bone formation. In several clinical cases, mutations have 

been found in the Wnt receptor complexes that are associated with changes in bone 

mineral density and fractures. Loss-of-function mutations in LRP5 receptors cause, 

osteoporosis-pseudoglioma syndrome, while gain-of-function mutations lead to high 

bone mass phenotypes. Furthermore, osteocytes secrete proteins such as sclerostin, 

which blocks the membrane complex activation by Wnt, resulting in inhibition of bone 

formation. Studies of knockout and transgenic mouse models for Wnt pathway 

components have demonstrated that canonical signaling regulates most aspects of 

osteoblast physiology including commitment, differentiation, bone matrix 

formation/mineralization and apoptosis as well as coupling to osteoclastogenesis and 

bone resorption. 

Osteoblast have also a role in regulating  bone resorption through the production 

of receptor activator of nuclear factor-kappa (RANK) ligand (RANKL), that binds to its 

receptor, RANK, on the surface of pre-osteoclast cells, inducing their differentiation and 

fusion. On the other hand, osteoblasts secrete a soluble decoy receptor 

(osteoprotegerin, OPG) that blocks RANK/ RANKL interaction by binding to RANKL and, 

thus, prevents osteoclast differentiation and activation. Therefore, the balance between 

RANKL and OPG determines the formation and activity of osteoclasts [176, 177, and 178]. 

Another factor that influences bone mass is leptin, a hormone produced by adipocytes 

that have a dual effect. It can act through the central nervous system and diminish 

osteoblasts activity, or can have an osteogenic effect by binding directly to its receptors 

on the surface of osteoblast cells. 

 

1.3.1.2. Osteocyte  
 

Osteocyte is the most abundant cell found in bone. Many individuals view the 

osteocyte as being a passive, inactive cell that merely acts as a ‘place holder’ in bone. It 

has been proposed decades ago that the osteocyte is not a passive cell, but has several 

potential functions [179, 180, 181, and 182]. The proposed functions of osteocytes include the 

translation of mechanical strain into signals of bone formation or of bone resorption, as 

modifiers of their microenvironment thereby modifying the properties of bone and the 

magnitude of shear stress in the bone fluid, as regulators of mineralization and as 

regulators of phosphate homeostasis. Osteocytes, with their distribution throughout the 

bone matrix and their high degree of interconnectivity, are ideally positioned within the 
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bone matrix to sense mechanical strain and translate that strain into biochemical signals 

of resorption or formation related to the intensity and distribution of the strain signals [183]. 

Although osteocytes have reduced synthetic activity and, like osteoblasts are not capable 

of mitotic division, they are actively involved in the maintenance of bony matrix, through 

various mechanosensory mechanisms. 

 

 

1.3.1.3. Osteoclast - the bone resorbing cell 
 

Osteoclasts, first named by Kölliker (1873), are multinucleated cells (1 - 50 nuclei 

per cell depending of the species). Their function is to resorb and remove unwanted 

bone. Bone resorption takes place at a specialized area of the osteoclast cell membrane 

called "ruffled border," which comprises a sealed lysosomal compartment where the 

acidic pH solubilizes the mineral and the proteolytic enzymes digest the matpic 

characteristics with circulating monocytes and tissue macrophages [184, 185]. rix [187, 188, 189, 

190, and 191]. Osteoclasts are derived from haematopoietic stem cells (CFU-GM) and share 

phenotyThe osteoclast belongs to the monocyte/ macrophage cell lineage [186]. The PU.1 

transcription factor increases as macrophages assume an osteoclastic phenotype. 

Factors that induce the formation of osteoclasts (Dexamethasone and 1, 25-

Dihydroxyvitamin D3) also cause the increase in PU.1. Mice born with homozygous 

deficiency of the PU.1 genes lack both macrophages and osteoclasts. They die (of 

infection due to the lack of macrophages) shortly after birth, and autopsies show that 

their bones have an osteopetrotic phenotype.  

The presence of stromal cells or pre-osteoblasts within the bone 

microenvironment appears to be essential for the differentiation and subsequent 

functional activation of osteoclasts. These cells respond to osteotrophic factors such as 

Vitamin D3, Parathyroid hormone (PTH), and Parathyroid hormone related protein 

(PTHrP) and are responsible for the production of M-CSF (macrophage colony 

stimulating factor) and RANKL, factors that play direct roles in osteoclast proliferation, 

survival, and differentiation. Thus, the osteoblast precursors help the differentiation of the 

osteoclasts. The binding of RANKL to its receptor on the osteoclast leads to the 

activation of the transcription factor NF-κB, which is involved in increasing the expression 

of genes that play a role in the differentiation and/or function of the osteoclast. The 

expression of other important transcription factors involved in osteoclast differentiation 

includes at least one of the c-Fos family members [192, 193, 194 and 195]. 
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1.3.1.4. Chondrocyte and chondrogenesis 
 

The formation of the skeleton in vertebrates involves the differentiation of 

mesenchymal cells to cartilage. This process, called chondrogenesis, is a tightly 

regulated event involving multiple steps, including condensation of the precartilagineous 

mesenchyme, commitment to the chondrogenic lineage, and differentiation into 

chondroblasts and, eventually, into chondrocytes. All these events are regulated by the 

concerted action of extracellular and intracellular cues, including extracellular factors 

specific for cartilage differentiation (e.g.  type IIa1 Collagen and Aggrecan). Other 

pathways that, while not being exclusively specific to this process, play an important role 

at various stages of chondrogenesis are for example the bone morphogenetic protein 

(BMP), Hedgehog, Wnt and fibroblast growth factor pathways. The intracellular events 

elicited by the activation of these and other pathways lead to the transcriptional 

regulation of chondrogenesis-specific genes (e.g. the gene for Sox9), enabling the 

differentiation of mesenchymal cells towards chondrocytes.  

Chondrogenesis or the development of a cartilage template is essential for proper 

formation of endochondral bones. The intermediary cartilage anlagen, which result from 

chondrogenesis, provide the template on which bone is laid down [196]. The control of 

chondrogenesis is best understood in the context of the long bones of the limbs. In the 

developing limbs, cells originating from the lateral plate mesoderm are stimulated to 

aggregate (‘condense’) without an increase in proliferation, creating increased cell 

density and cell–cell interactions [197]. These interactions are most likely involved in 

propagating signal transduction events.  

 

1.3.2. How does bone formation work? 
 

The skeleton is established by two different ways (Figure 1.7): intra-membranous 

ossification, whereby mesenchymal cells differentiate directly into osteoblasts, and 

endochondral ossification (intracartilage ossification), during which a cartilage template is 

replaced by bone.  

The process called intra-membranous ossification generates most bones of the 

skull and flat bones, and cartilage is not involved or present in this process. The 

condensations of mesenchymal cells assemble at the site of the future bone. These 

mesenchymal cells directly differentiate into osteoblasts, which in turn depose the 

mineralized bone matrix.  
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The steps in intra-membranous ossification are:  

1. Development of ossification center  

2. Calcification 

3. Formation of trabeculae  

4. Development of periosteum  

 

On the other hand, long bones and most of the other skeletal elements are formed 

by endochondral ossification. Endochondral ossification requires the formation of a 

transient cartilage template. Chondrocytes in the most central region of the template 

differentiate to the terminal stage of the hypertrophic chondrocyte. Chondrocytes located 

between the resting/ reserve zone and the hypertrophic zone proliferate in an 

unidirectional manner, resulting in characteristic columns. Hypertrophic chondrocytes 

mineralize the matrix surrounding them, undergo apoptosis, and are invaded by blood 

vessels. The mineralized cartilage is degraded by osteoclasts and replaced with bone 

tissue through the activity of osteoblasts. The regions on either side of the bone tissue 

are termed the growth plates and responsible for longitudinal growth. This developmental 

process, which requires the orchestrated interaction of all bone cells, will be reviewed in 

Figure 1.7.  

 

The steps in endochondral ossification are:  

1. Development of cartilage model (anlagen)  

2. Growth of cartilage model (anlagen) 

3. Development of the primary ossification center 

4. Development of medullary cavity 

5. Development of the secondary ossification center  

6. Formation of articular cartilage and epiphyseal plate (growth plate)  
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Figure 1.7 Skeleton developments through intramembranous or endochondral ossification  

 

Endochondral ossification begins with points in the cartilage called "primary 

ossification centres". They mostly appear during fetal development.  They mostly appear 

during fetal development, though a few short bones begin their primary ossification after 

birth. They are responsible for the formation of the diaphyses of long bones, short bones 

and certain parts of irregular bones. Secondary ossification occurs after birth, and forms 

the epiphyses of long bones and the extremities of irregular and flat bones. The 

diaphysis and both epiphyses of a long bone are separated by a growing zone of 

cartilage (the epiphyseal plate). When the child reaches skeletal maturity (18 to 25 years 

of age), all of the cartilage is replaced by bone, fusing the diaphysis and both epiphyses 

together (epiphyseal closure). 

 

1.3.3. Function and characteristics of adipocytes tissue – BAT and WAT 
 

Mammals have two types of adipocyte, the brown and the white adipocyte. Brown 

adipocytes (BAT) store less lipids and have more mitochondria than white adipocytes. 

Brown adipocytes express almost all the genes that are expressed in white adipocytes, 

but they also express some distinctive one, including uncoupling protein-1 (UCP-1),  

which allows energy to be dissipated as heat without generating ATP. Most brown 
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adipose tissue in rodents is localized to the interscapular region. Humans have large 

depots of brown adipose tissue in infancy, but only small amounts that are dispersed 

throughout depots of white adipose tissue persist in adults. Brown adipogenesis is similar 

to white adipogenesis as both cell types require PPARγ and CCAAT-enhancer-binding 

proteins (C/EBPs). However, although ablation of C/EBPα blocks the development of 

most of the white adipose tissue, effects on brown-adipose tissue are less marked, with 

delayed expression of UCP1. Conversely, the loss of both C/EBPβ and C/EBPδ results 

in significantly reduced amounts of UCP1 in brown adipose tissue despite the normal 

amounts of C/EBPα. Unlike white adipocyte differentiation, most of which occurs in the 

postnatal period in mice, brown adipocyte differentiation occurs before birth. This 

temporal sequence has led to speculation that brown adipocytes represent a partially 

differentiated form of white adipocytes, but this proven not to be true [226].  

White adipocytes tissue (WAT) occurs in virtually all vertebrates and the 

physiological basis for its presence has never been investigated thoroughly. Conversely, 

because of its diverse nature, WAT had been considered to occur almost universally in 

the animal body and had not been fully recognized as an anatomically organized tissue 

with site-specific properties until the past few decades. Although large variability in 

relative masses of depots and large individual and taxonomical differences are evident, a 

common pattern of a dozen or so adipose tissue depots can be found in all eutherian and 

metatherian mammals. Unilocular white adipocytes are simple by their structure, store 

large amounts of triacylglycerols (TAGs) during periods of energy excess and deliver 

fatty acids to other tissues as required. Despite of its simple structure, WAT performs 

numerous functions in the body that are related with its anatomical locations, such as the 

provision for lactation [205] . 

The recently discovered secretory product of white adipocytes, leptin, has been 

proposed to play a role in the regulation of body weight and the total amount of adipose 

tissue in the body [206, 207]. Leptin is expressed by the ob gene, which has extensive 

homology among vertebrates [206]. The original ‘lipostatic’ concept states that leptin is a 

hormonal substance that circulates in the blood and provides the brain with a signal 

about the amount of stored adipose tissue, thereby acting as a satiety factor [208]. Fasting 

and weight loss decrease the level of leptin in circulation, and weight gain and 

overfeeding increase it [206, 207, and 208]. The sympathetic nervous system plays a key role in 

the regulation of leptin levels, possibly by down-regulating leptin production via β3-

adrenoceptors [209]. Reduced blood leptin and Insulin levels presumably increase the 

activity of anabolic neural pathways in the brain to boost appetite and feed intake, and 

thereby aim to restore energy homeostasis. Although WAT seems to be the main site of 
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leptin production, leptin is also produced in other tissues, including BAT and placenta, 

and may have versatile functions in the body.  

Besides leptin, WAT also secretes a large number of other signals that affect 

energy homeostasis. These include pro-inflammatory cytokines, regulators of lipoprotein 

metabolism and growth factors, among others. Catecholamines, Insuline and the 

sympathetic nervous system that modulate the adipocyte function also influence efferent 

signalling of adipose tissue. WAT is thus increasingly being recognised as an active 

endocrine and paracrine organ, which closely interacts with other organs and tissues, 

and enables the organism to adapt to a wide range of metabolic challenges [209].  

The relationship between bone and fat formation within the bone marrow 

microenvironment is complex and remains an area of active investigation. Classical in 

vitro and in vivo studies strongly support an inverse relationship between the 

commitment of bone marrow-derived mesenchymal stromal cells to the adipocyte and 

osteoblast lineage pathways [210, 211, 212, and 213]. The clinical fact that a decrease in bone 

volume (BV) of age-related osteoporosis is accompanied by an increase in marrow 

adipose tissue also implies the possible reciprocal relationship that is postulated to exist 

between the two differentiation pathways [214, 215, 216, and 217]. Several key transcription 

factors that function in the complex transcriptional cascade during adipocyte 

differentiation have been identified, including PPAR  and CCAAT enhancer-binding 

proteins (C/EBPs). PPARγ plays requisite and sufficient roles in the regulation of 

adipocyte differentiation, because its overexpression in fibroblast cell lines initiates 

adipogenesis and ES cells and embryonic fibroblastic cells from mice lacking PPAR  

were unable to differentiate into adipocytes [218, 219, 220, 221, and 222]. 

Today it is supposed, that the amount of adipocytes and the amount of 

osteoblasts in the body are regulated in a reciprocal manner. The first evidence of this 

came from the analysis of the effect of leptin on bone and fat formation. The amounts of 

Leptin in the blood have been reported to correlate with the total amount of fat in the 

body. Recently it has been shown that leptin is mediating the protective effects of fat on 

bone tissue. Indeed, mice lacking leptin develop obesity and are protected against bone 

loss. How leptin is controlling bone metabolism is still controversial. On the one hand, a 

direct stimulation of osteoblast function by the leptin secreted by the adipocytes present 

in the bone marrow has been proposed. On the other hand it was suggested that Leptin 

decreases bone remodelling in the mature skeleton by establishing a negative feedback 

loop involving the hypothalamus [223, 224]. 

In addition to Leptin, other pathways have been shown to co-regulate 

adipogenesis and ostoegenesis. One example of this is that activation of the mitogen-
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activated protein kinase (ERK) cascade has been shown to stimulate osteoblast 

differentiation but also the phosphorylation of PPARγ that inhibits adipogenesis [225]. The 

lineage determination of mesenchymal stromal cells can be regulated by a transcription 

factor named TAZ (transcription activator with PDZ binding motif). Both, Runx2 and 

PPARγ are reported to be regulated by TAZ [226].  

An other potential candidate is Rsk2. Rsk2, also named p90 ribosomal S6 kinase 

2 or mitogen-activated protein (MAP) kinase-activated protein kinase 1 (MAPKAP-K1b) is 

a serine theronine kinase. Rsk2 is composed of two kinase domains which are activated 

by ERK and by PI3K-dependent kinase PDK1 [19]. Mutations that inactivate Rsk2 are the 

cause of an X-linked mental retardation disease in humans called Coffin-Lowry 

Syndrome (CLS). The Coffin-Lowry Syndrome is associated with abnormalities in the 

skeleton which leads to the conclusion, that Rsk2 may be playing an important role in 

bone development. Indeed, Rsk2 was recently identified as a positive regulator of bone. 

Mice lacking Rsk2 develop osteopenia, due to impaired function of osteoblasts. The 

absence of Rsk2 also reduced the formation of c-Fos induced osteosarcoma. While, 

Rsk2 effect on tumour formation was attributed to a lack of phosphorylation of c-Fos, the 

osteopenia seemed to be independent on AP-1 protein c-Fos [19]. Rsk2 phosphorylation 

sites are also present in Fra1 suggesting that Fra1 could be a substrate of Rsk2 in bone. 

Interestingly, Rsk2 is highly expressed in adipose tissue. One of the Rsk2 knockout mice 

line, was shown to waste weight with age, a phenotype proposed to be caused by a loss 

of adipose tissue associated with reduced levels of Leptin. Rsk2 knockout mice have 

also decreased Insuline sensitivity. It was therefore concluded that Rsk2 would play a 

role in the regulation of the mass of adipose tissue by regulating the response to Insulin.  

 

The signal transduction pathways implicated in osteogenic and adipogenic 

processes are therefore evaluated as potential targets for therapeutic intervention of 

bone diseases (e.g. osteoporose or osteosclerose) and metabolic diseases (e.g. 

diabetes, obesity and lipodystrophy). The molecular mechanisms underlying the 

reciprocal relationships are not yet well understood. This work was aimed to providing 

better understanding in the role of Rsk2 in the control of Fra1 osteogenic/ adipogenic 

function. 
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2. Aims and Plan 
 

2.1 Aims 
 

Bone integrity depends on the proper coupling between the activity of the bone 

forming cells, osteoblast and the activity of the bone resorbing cells, osteoclast. 

Osteoclasts are specialized bone polynuclear macrophages, which differentiate from 

bone morrow macrophage precursors, while osteoblasts differentiate from the bone 

marrow stromal stem cells. The bone marrow stromal stem cells are common progenitors 

for many mesenchymal lineages including fibroblasts, chondrocytes, myoblasts and 

adipocytes. Genetic studies in mouse, have demonstrated the central role of the family of 

transcription factors AP-1 in controlling decision fate of mesenchymal cells. The 

functional differences between AP-1 members are well illustrated by the analysis of bone 

phenotypes, e.g. mice overexpressing c-Fos develop osteosarcoma, tumours affecting 

the osteoblasts while the mice overexpressing Fra1 develop osteosclerosis, a bone 

disease characterized by an increase bone formation due to an acceleration of 

osteoblast differentiation. David and colleagues could show how import AP-1 

transcriptional activity is, in part regulated by post-transcriptional modifications of c-Fos. 

Phosphorylation of c-Fos by ERK1/2 and ERK/ PI3-kinase dependent kinase Rsk2 can 

stimulate its transcriptional activity and thereby modulating c-Fos-induced cell 

transformation. Reported was that c-Fos-dependent osteosarcoma formation is impaired 

in absence of Rsk2. The lack of c-Fos phosphorylation leads to reduced c-Fos proteins 

levels, decreased proliferation and increased apoptosis of transformed osteoblasts. 

Therefore, Rsk2-dependent stabilisation of c-Fos was essential for osteosarcoma 

formation [19]. Thus, c-Fos is most likely not the only substrate mediating Rsk2 function in 

osteoblasts. Indeed, it has been suggested that some of the skeletal phenotypes 

observed in Coffin-Lowry Syndrome (CLS) are caused by the lack of phosphorylation of 

the transcription factor ATF4 by Rsk2 [35]. Moreover, several arguments suggest that 

Fra1 could also be a substrate for RSk2 in bone. First, the two-phosphorylation sites in 

the c-terminal domain of c-fos (Ser 362 and Ser 374) are also present in Fra1. Second, 

similar to c-Fos, Fra1 stability and activity is known to be post-transcriptional regulated in 

an ERK-dependent manner [36, 37]. Finally, while increased osteoblast activity was 

observed in fra1 transgenic mice [52], Fra1-deficiency was leading to osteopenia due to a 

decreased osteoblast function [50]. Therefore, it is important to investigate the role of Fra1 

phosphorylation by Rsk2 in the development of Fra1-induced osteosclerosis. 
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2.2 Plan 
 

a) Role of Rsk2 in Fra1-induced osteosclerosis 

To determine whether Fra1 could be a substrate of Rsk2 in bone, fra1 transgenic mice 

were intercrossed with Rsk2-deficent mice. Since Rsk2 is an X-linked gene, F1 males 

were used to analyse the bone phenotypes.  

 

b) Role of Rsk2 and Fra1 in controlling decision fate of mesenchymal cells  

Fra1 and ΔFosB that are sharing common features, such as the absence of 

transactivation domain are both positively regulating bone formation. In addition, ΔFosB 

overexpressing mice have shown markedly decreased adipogenesis, suggesting that the 

increased osteoblasts differentiation occurred at the expense of adipogenesis. Based on 

these observations, I analysed the role of Rsk2 and Fra1 in adipogenesis in vivo. In 

addition, in vitro culture conditions to differentiate primary osteoblasts into adipocytes 

were set up and the differentiation properties of cells overexpressing Fra1 were 

analysed.  

 

c) Role of Rsk2 in Fra1-induced splenomegaly 

Spenomegaly is often associated with osteosclerotic conditions including in Fra1 

overexpressing mice. I analysed the spleen phenotype of Fra1 transgenic mice. 

 

d) Role of Fra1 overexpression in organs such as heart and liver 

Little is known about the role of Fra1 overexpression in organs such as heart and liver. I 

additionally analysed these organs to look if AP-1 member Fra1 can influences cell 

populations where precursor cells are mesenchymal stromal cells.
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3. Material 
 

 

3.1 Mice animals 
 

 

C57/Bl6 wild type (wt) mice for male and female 

Rsk2-/y Rsk2-deficient or knockout mice for male; rsk2 is a X-

linked gene 

Rsk2-/x Rsk2-deficient heterozygote mice, female 

Rsk2-/- Rsk2-deficient or knockout homozygote mice, female 

H2-fra1-LTR fra1-tg (fra1 transgenic) mice for male and female; Fra1

transgene is expressed under the control of the H2Kb

promoter, and Fra1 is therefore widely expressed in

various cell types in these mice 

H2-fra1-LTR/rsk2-/y fra1-tg mice deficient for rsk2 (duple muted mice for male) 

H2-fra1-LTR/rsk2-/x fra1-tg mice heterozygote for rsk2 (duple muted mice for

female) 

 

All mice are on a C57Bl/6 background and were maintained under specific 

pathogen-free conditions. All experiments were performed in accordance with the 

guidelines for the care and use of laboratory animals of Humboldt - University zu Berlin 

and LAGetSi.  

 

 

3.2 Cell material for ex vivo and in vitro experiments 
 

 

mPOBswt primary wild type osteoblasts were isolated from mice 
calvarias; cells were used for ex vivo experiments 

mPOBsrsk2-/y primary Rsk2-deficient osteoblasts were cells isolated 
from mouse calvarias; cells were used for ex vivo 
experiments 

mPOBsfra1-tg primary fra1-tg osteoblasts were cells isolated from 
mouse calvarias; cells were used for ex vivo 
experiments 

mOBsrsk2-/y murine OBs cell line derived from rsk2-/y mice by 
sequentially passaging mPOBs for at least 12 
passages; cells were used for in vitro experiments 
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mOBsrsk2-/y - pBabe-empty infected mOBsrsk2-/y cell line with pBabe-empty (Puro-
2) vector (control vector) 

mOBsrsk2-/y - pBabe-fra1 infected mOBsrsk2-/y cell line with pBabe-fra1 
retrovirus vector overexpressing Fra1 

mOBsrsk2-/y - pMSCV-Neo infected mOBsrsk2-/y cell line with pMCSV-Neo 
retrovirus vector (control vector) 

mOBsrsk2-/y - pMSCV-FraER infected mOBsrsk2-/y cell line with retrovirus vector 
overexpressing the fusion protein estradiol receptor 
ligand binding domain with Fra1 

Phoenix cells packaging cell line used to produce the retrovirus 
particles 

 

 

3.3 Cell culture media and supplements 
 

 

Culture or α-MEM medium 
 500 ml α-MEM (PAA Laboratories GmbH) 
 10 % FCS (PAN) 
 1% Penicillin/ Streptomycin (Gibco BRL) 
 2 mM L-Glutamin (Gibco BRL) 
 

 

 

Adipocyte medium 
 500 ml α-MEM (PAA Laboratories GmbH) 
 10 % FCS (PAN) 
 1 % Penicillin/ Streptomycin (Gibco BRL) 
 2 mM L-Glutamin (Gibco BRL) 
 10 µg/ ml Insulin (Sigma) 
 1 µM Dexamethasone (Sigma) 
 0.5 mM IBMX (Sigma) 
 

 

 

Calvaria isolation medium 
 500 ml α-MEM (PAA Laboratories GmbH) 
 0.1 % Collagenase (Sigma) 
 0.2 % Dispase (Boehringer Mannheim) 
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3.4 Buffer 
 

 

Tail preparation Buffer 
 50 ml 10 % SDS 
 25 ml Tris-HCL, pH 8.0 [1M] 
 100 ml EDTA [0.5 M] 
 10 ml NaCl [5 M] 
 315 ml dH2O 
SDS Sample Buffer 
 600 µl Tris-HCL, pH 7.2 [1 M] 
 4 ml 20 % SDS 
 4.8 g Glycerol 
 510 µl ß-Mercaptoethanol 
 1 % Bromophenol blue 
 

 

Frakelton Buffer 
 5 ml Tris-HCL, pH 7.5 [1 M] 
 5 ml NaCl [5 M] 
 6.69 g Na-Pyrophosphate 
 450 ml dH2O 
  set pH to 7.05 
 5 ml Triton X 100 
 Before use, Frakelton buffer is completed with: 
  1 mM PMSF or 1x protease inhibitor cocktail 
  100 mM Na3 VO4 
  100 nM Okadaic Acid 
 

 

Buffer A for cytosolic extraction 
 500 µl HEPES pH 7.6 [1 M] 
 250 µl KCl [2 M] 
 25 µl EDTA [0.2 M] 
 50 µl EGTA [0.1 M] 
 37.5 µl Spermidine [1 M] 
 15 µl Spermine [0.5 M] 
 0.4 % IGEPAL 
 48.92 m dH2O 
 Before use, the Buffer A is completed with: 
  1 M DTT (10 µl/ 10ml) 
  100x Protease inhibitor cocktail (100 µl/ 10ml) 
  100 mM PMSF (100 µl/ 10ml) 
  1M Na3 MoO4 (100 µl/ 10ml) 
  10 % NonidetP-40 (NP-40) 
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Buffer B for nuclear extraction 
 1 ml HEPES pH 7.6 [1 M] 
 4 ml NaCl [5 M] 
 250 µl EDTA [0.2 M] 
 500 µl EGTA [0.1 M] 
 44.25 ml dH2O 
 Before use, the Buffer B is completed with: 
  1 M DTT (10 µl/ 10ml) 
  100x Protease inhibitor cocktail (100 µl/ 10ml) 
  100 mM PMSF (100 µl/ 10ml) 
  1M Na3 MoO4 (100 µl/ 10ml) 
  10 % NonidetP-40 (NP-40) 
Upper - Tris Buffer (4x) 
 15.1 g Tris-HCl, pH 6.8 
 10 ml 10 % SDS 
 250 ml dH20 
 
 
Lower - Tris Buffer (4x) 
 90.8 g Tris-HCl, pH 8.8 
 20 ml 10 % SDS 
 500 ml dH2O 
 
 
4 % Stacking gel 
 2.0 ml Upper-Tris-Buffer (4 x) 
 800 µl 40 % Acrylamid 
 10 µl TEMED 
 50 µl 10 % APS 
 5.14 ml dH2O 
 
 
8 % Running ge l 
 3.0 ml Lower – Tris Buffer (4 x) 
 2.40 ml 40 % Acrylamid 
 10 µl TEMED 
 120 µl 1 0 % APS 
 6.47 ml dH2O 
 
 
Loading - Buffer (1x) 
 2.5 ml Upper – Tris Buffer (4 x) 
 2.3 ml 87 % Glycerol 
 4.0 ml 10 % SDS 
 1.0 ml 2-Mercapto-ethanol 
 5.0 mg Bromophenol blue 
 20 ml dH2O 
 
 
Running - Buffer (10x) 
 30.25 g Tris 
 144 g Glycine 
 10 g SDS 
 1000 ml dH2O 
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Blotting - Buffer (10x) 
 30.25 g Tris 
 144 g Glycine 
 1000 ml dH2O 
 

 

TBS - Buffer (20x) 
 121 g Tris-HCl, pH 7.4 
 175.3 g NaCl 
 1000 ml dH2O 
 

 

TBS - 0.1 % Tween (TBS-T) 
 50 ml TBS - Buffer (20x) 
 1 ml Tween 20 
 950 ml dH2O 
 

 

Stripping - Buffe r 
 3.85 g DTT 
 10 g SDS 
 3.78 g Tris-HCl, pH 6.7 
 500 ml dH2O 
 

 

3.5 Staining solutions 
 

 

Eosin solution 
 25 g Eosin in 
 600 ml dH2O 
 Add 1400 ml absolut ethanol 
 Directly prior usage: 3 – 5 ml pure acetic acid 

per 300 ml Eosin solution 
 

 

Mayer´s Hematoxylin 
 8 g Hematoxylin 
 1 g Sodiumiodat 
 250 g Aluminiumkalisulfat 

 250 g Chloralhydrat 
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Oil Red O 
 0.5 g Oil Red O 
 100 ml Isopropanol 
 

 

Ponceau S solution 
 0.1 % Ponceau S in 5 % acetic acid 
 

 

3.6 Oligonucleotide 
 

 

All primers were ordered from TIB Molbiol Syntheselabor GmbH. The primers were 

diluted in dH2O to a stock solution of 100 µM. The stock solution was applied as a 10fold 

dilution for PCR reaction mixes. 

 

Genotyping 
 

RSK2-/y WL112 5´ TTG TTG GTT TAC TTT CTT TCG GTC TG 3´ 
 WL113 5´ AAG ATG ATT GCT TTG CTT AGT TTA 3´ 
H2K-fra 1-LTR CE4  5´ GGG ATT AAA TGC ATG CCA AGC T 3´ 
 H2kB 5´ CGA TCA CCA GAG ACC AAT CAG 3´ 
 

qPCR and QRT - PCR 
 

HPRT forward 5´ GTT AAG CAG TAC AGC CCC AAA 3´ 
 reverse 5´ AGG GCA TAT CCA ACA ACA AAC TT 3´ 
   
PPARγ forward 5´ CAT AAA GTC CTT CCC GCT GA 3´ 
 reverse 5´ GAA ACT GGC ACC CTT GAA AA 3´ 
   
Pref-1 forward 5´ CTG GAG AAA GGC CAG TAC GA 3´ 
 reverse 5´ GG GGT ACA GCT GTT GGT TG 3´ 
   
Fra1 forward 5´ GAG ACG CGA GCG GAA CAA G 3´ 
 reverse 5´ CTT CCA GCA CCA GCT CAA GG 3´ 
   
Runx2 forward 5´ TGT TCT CTG ATC GCC TCA GTG 3´ 
 reverse 5´ CCT GGG ATC TGT AAT CTG ACT CT 3´ 
   
Sox9 forward 5´ CTG AAG GGC TAC GAC TGG AC 3´ 
 reverse 5´ TAC TGG TCT GCC AGC TTC CT 3´ 
Pref-1 forward 5´ CTG GAG AAA GGC CAG TAC GA 3´ 
 reverse 5´ AGG GGT ACA GCT GTT GGT TG 3´ 
   
C/EBPα forward 5´ CCT ACC GAG TAG GGG GAG CA 3´ 
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 reverse 5´ TGT AGC TGG GGG TGA GGA CA 3´ 
   
MyoD forward 5´ GGT TCT TCA CGC CCA AAA G 3´ 
 reverse 5´ GGT GCA GCC AGA GTG CAA GT 3´ 
   
aP2 forward 5´ TGC AGC TTC CTT CTC ACC TGA 3´ 
 reverse 5´ TCC TGG CCC AGT ATG AAG GAA ATC 3´ 
   
Glut4 forward 5´ GAA CAG CCT GGG GAA CT 3´ 
 reverse 5´ GAG TCT GGG AGG GGC AGG A 3´ 
 

 
Antibodies 
 
 

Fra1 (rabbit), sc-605 Santa Cruz Biotechnology 
PPARγ (rabbit), 2492 Cell Signalling Technology 
GR (rabbit), sc-1004 Santa Cruz Biotechnology 
β – Actin (mouse), AC-15 Sigma 
Mouse IgG HRP (goat) Promega 
Rabbit IgG HRP (goat) Promega 
B 220 : Alexa 488 DRFZ 
B 220 : dig DRFZ 
CD 41 Dako 
FDC - M2 : bio ImmunoKontakt 
MOMA-1 Southern Biotech 
SA - Rhodamin Moleculare Probes 
SA - Alexa 488 Moleculare Probes 
Anti-dig – cy5 DRFZ 
Anti-dig – Alexa 546 DRFZ 
DAPI  Moleculare Probes 
BP3 Present by Max Cooper 
SA - Alkalic phosphatase Sigma 
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3.7 Molecular weight marker 
 

 

RainbowTM coloured protein molecular weight marker (Code RPN 755) 

Amersham Pharmacia Biotech 

 

peqGOLD Prestained Protein Marker (27-1110) 

peqLab Biotechnologie GmbH 

 

peqGOLD 1 kp DNA-Leiter (25-2030) 

 

peqLab Biotechnologie GmbH 

 

3.8 Kits and enzymes 
 

 

Trizol ® Reagent Invitrogen 
ECL® Western Blot Amersham Biosciences 
TaqMan® Kit Roche 
LightCycler® 480 SYBR Roche 
LSAB+ System - HRP DakoCytomation 
HistoRed AP – Kit Linaris 

 

 

3.9 Chemicals  
 

 

Acrylamid 40 % Biozym Diagnostics 

APS Roth 

Brome-phenol blue Promega 

DMSO Sigma 

EDTA Roth 

Eisen-Haematoxylin A + B Chroma 

Ethanol Merck 

Ethidiumbromid Merck 

Eosin Sigma 

Flouromount – G SouthernBiotech 

Formalin Wako Pure Chemical 
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Glycerine Roth 

Glycerol Merck 

HCL Merck 

Isopropanol Merck 

KCl Roth 

KH2PO4 Merck 

Kaisers Glyceringelatine Merck 

Lichtgrün Chroma 

MgCl2 Roth 

Mercaptoethanol Bio-Rad 

Methanol Roth 

Milk Powder Heirler 

NaCl Sigma 

Orange G Chroma 

Okadaic acid Merck 

Parafin Sigma 

PMSF Sigma 

Pikro - Fuchsin van Gieson Chroma 

Ponceau S Sigma 

Proteinkinase K Roth 

Resorcin-Fuchsin 

“Elastica” 

Chroma 

SDS   Serva Electrophoresis GmbH 

Sodium vanadate Sigma 

TEMED Roth 

Tris Roth 

Triton X 100 Sigma 

Trypsin PAA Laboratories GmbH 

Tween 20 Sigma 

Xylol Merck 
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3.10 Consumables 
 

 

0.2 ml Thermo – Strip ABgene 

1.8 ml CryoTubeTM vials Nunc 

Cell lifter Costar 

0.2 µm Filtropur S 0.2 Sarstedt 

Microtube EASY CAP Sarstedt 

Safe Seal Tips 10 - 1000µl Biozym 

Flasks, dishes and plates Greiner Bio One 

Slides (76 x 26 mm) Roth 

Trans-blot®, 0.2 µm Bio-Rad 

X-OMAT LS Kodak 

 

 

3.11 Laboratory Instruments 
 

 

Agilent 2001 Bionalyzer 

Autoklave 2540 EL Tuttnauer 

Blotting machine Pharmacia Biotech, Nava Blot, Multiphor II 

Centrifuge type 5403 Eppendorf 

Centrifuge type 5415 C Eppendorf 

Centrifuge type Biofuge Heraeus Instruments 

Bench type HeraSafe Hereaus Instruments 

Colour digital camera Scion Corporation 

Optimax 2010 Protec 

Gel Dryer Model 583 Bio-Rad 

Gel Wrap®* C.B.S. Scientific 

Imaging caption computer Cybertech 

Incubator Hereaus 6000 Hereaus Instruments 

Microscope Diaphot 300 Nikon 

Large White Spring Clamp C.B.S. Scientific 

Light Cycler® 2.0 System Roche 

Microplate reader Max 190 Molecular devices 

Microscope type ID 03 Zeiss 
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Microscope type IX50 Olympus 

Minishaker MS2 IKA 

NanoDrop® ND-1000 NanoDrop 

pH - Meter 761 Calimatic Knick 

Photometer Spectra Fluor Tecan 

T3 Themocycler Biometra 

Thermo Block DRI DB2A Techne 

Transfer Chamber 

Multiphor 

Pharmacia Biotech 
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4. Methods 
 

 

4.1 Cell culture  
 

 

4.1.1. Splitting cells and cell density 
 

Cells were grown in flasks or 6-well culture plates at 37 °C in an atmosphere of 5 

% CO2 and an atmospheric humidity of 95 %. The cells were trypsined and replated in 

new flasks or dishes when reaching a confluence of 80 %. For this, the old α-MEM media 

was removed, the cells were washed two times with PBS without Ca2+ and Mg2+) and 

coated with pre-warmed with a 0.25 % Trypsin/ EDTA - solution. After an incubation of 2 

min at 37 °C the cells were collected and carefully resuspended to get a single cell 

suspension. After centrifugation (5 min, 1000 rpm), the pellet was resuspended in new α-

MEM media and the cells were counted in a Neubauer haemocytometer. 1 x 105 cells per 

6-well culture plates were used for differentiation experiments.  

 

 

4.1.2. Freezing and thawing of cells 
 

Cells were harvested, washed in ice cold medium and resuspended in pre-cooled 

freezing medium [20 % (v/v) FCS, 10 % (v/v) DMSO]. The resuspended cells were 

aliquotted in screw-top tubes and cooled in a freezing box to - 70 °C. The aliquots were 

stored in liquid nitrogen. To thaw one of these aliquots, the screw-top of the tube was 

loosened and the cell suspension was thawed by holding the tube in a 37 °C water bath. 

The cells were then transferred into a 15 ml Falcon tube and slowly resuspended in 

medium. The cells were then washed once and plated on cell plates. 

 

 

4.1.3. Isolation of murine primary osteoblast cells (mPOBs) 
 

Five calvariae from newborn mice (up to six days of age) were dissected, cleaned 

in 70 % Ethanol and in PBS. They were subsequently transferred into a solution for bone 

digestion containing 0.1 % Collagenase and 0.2 % Dispase II α-MEM without FCS and 

were shaken for 10 min at 37 °C. After incubation the liquid phase, the fraction 1, was 
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discard. To the calvaria were added again 1 ml of digestion medium. The calvaria were 

incubated again, but this time the liquid phase (fraction 2) was recovered and collected. 

This step was repeated 4 times. The cells from the combined fraction 2 to 5 were polled 

by centrifugation (5 min, 2000 rpm). The supernatant was discarded and the pellet was 

resuspended in 1 ml α-MEM. The cells were seeded and cultured in 6-well plates. 1.5 ml 

of α-MEM culture medium containing 10 % FCS and antibiotics (P/ S) was added to each 

well before 1 ml of cell suspension was added. The cells were grown at 37 °C in an 

atmosphere of 5 % CO2 in air. The medium was replaced every 3 day. The medium was 

pre-warmed to 37 °C before changing. The cells were grown until sub-confluences, 

trypsinized and replaced from 1 dish into 5 new dishes. The cells were grown again until 

sub-confluences, trypsinized and plated in 6-well cell culture plates with a density of 1x 

105 cells per well to conduct adipocyte differentiation experiments. 

 

 

4.1.4. Differentiation and analysis of mPOBswt and mPOBsfra1-tg to adipogenic 
cells (ex vivo analysis) 

 

Adipocyte differentiation ex vivo was performed as follow: after genotyping, the 

cells were seeded in 6-well tissue culture plates with a cell number of 1x 105 cells per 

well. One 6-well plate per genotype was used for RNA isolation and another 6-well plate 

for Oil Red O staining for every time point when the adipocyte differentiation had to be 

analyzed (day 0 and day 21). The cells were cultured in 2 ml culture media for mPOBs 

per well. The culture media was changed every 2 to 3 days. At confluence that is referred 

as day 0 the cells were treated with the adipogenic cocktail (IBMX, Dexamethasone and 

Insulin). In the experiments samples made from mPOBs, mRNA and Oil Red O staining 

was conduct at day 0 and day 21 post-stimulation. 

 

 

4.1.5. Differentiation of mPOBs to an immortalized murine osteoblast cell line 
(mOBs) 

 

Murine primary osteoblast cells (mPOBs passage 1 – 4/ ex vivo) were cultured 

and trypsinated when sub-confluent. First, the cells were washed with 5 – 10 ml PBS 

according to the culture vessel size. 2.5 – 5 ml Trypsin/ EDTA (1x) was added followed 

by an incubation at 37 °C / 5 % CO2 until all cells were detached. 2.5 – 5 ml culture 

media was put to neutralize the Trypsin. The solution was put in a centrifuge tube with a 

conic end (cells of same genotype and passage coming from different flasks were 
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merged). The solution was spun down for 5 min at 500 g (centrifuge type 5403 - 

Eppendorf). The supernatant was taken off and the pellet was resuspended in 1 ml of 

culture media. 200 µl of the suspension was shared to a new flask splitting the cell 

number 1: 5. Cells were cultured and trypsinated again and experiments were done with 

mOBs on passage 27 (in vitro). 

 

 

4.1.6. Retrovirus infection of mOBs with constitutive overexpression of Fra1 
 

The system for constitutive over-expression of Fra1 in mesenchymal cells used in 

this work consists of the vector pBabe with a cDNA insert of the gene encoding rat Fra1 

(pBabe-fra1) and the empty vector (pBabe-empty) as control. The vector pBabe based 

on the Moloney Murine Leukaemia Virus (MoMuLV). It is a system for transfer and 

express exogenous genes in mammalian cells. The pBabe retroviral vector expresses 

inserted genes from the Mo MuLV Long Terminal Repeat (LTR). Moreover, the vector 

includes a gene for Ampicillin resistance for selection in bacteria culture and a gene 

encoding for Puromycin resistance for selection in cell culture. The expression of the 

Puromycin resistance gene is driven by a Simian virus 40 promoter (SV40) (Morgenstern 

and Land, 1990). 

 

 

4.1.7. Retrovirus infection of mOBs with inducible overexpression of Fra1 
 

In the following work the empty vector pMSCV-Neo was used as control for cells 

that are infected with the vector pMSCV-Fra1Er. The LTR used in these vectors is 

derived from the murine stem cell virus PCMV. A gene of interest can be cloned in the 

multiple cloning site (MSCV) which is downstream of the LTR. To construct the vector 

pMSCV-Fra1Er (a gift from Dr. M. Busslinger, IMP, Vienna, Austria), a 1900 bp long 

HindIII EcoRI partial of the vector pRK-fra1-er was cloned into the vector pMV-8 which 

contains the same LTR and resistance gene that the pMSCV-Neo. The fragment which 

was cloned in pMV-8 consists of the coding part of cDNA of the rat fra1 gene fused to the 

coding part of the hormone binding domain of the human oestrogen receptor. The 

advantage of this Fra1 system of over-expression, which is inducible by Estradiol 

treatment, is that Fra1 activity can be switched on or off in the infected cell line. This 

system was used in the following work as an additional tool to investigate the effect of 

Fra1 over-expression at particular times in mesenchymal cell differentiation.  
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4.1.8. Production of vector containing virus particles by transfection of Phoenix 
cells 

 

Phoenix cells were cultured in a 75 cm2 cell culture flask until confluence, 

trypsinized and counted using a Neubauer haemocytometer. 8x 10 5 cells were seeded 

in a 6 wells tissue culture plate per well. The cells were cultured until confluence. Two 

wells of the six wells plate were used for the transfection of each vector construct. For 

the transfection, 5 µg of plasmid DNA were mixed with 20 µl MetafectenTM and 100 µl α-

MEM Eagle media without additives to get a total volume of 200 µl per vector construct. 

The solution was mixed well and left at RT for 20 min. Subsequently, the 200 µl mix was 

added to the culture media in the chosen well of the six well plate. The Phoenix cells 

were cultured in this mix at 5 % CO2 and 37 ºC for one day. The culture media was 

changed on the next day and replaced by 2 ml of α-MEM Eagle culture media containing 

10 % FCS and 1 x Penicillin/ Streptomycin. After 24 h incubation at 5 % CO2 and 37 ºC, 

the culture media was filtered with a filter of a pore size of 45 µm diameter allowing the 

virus particles to go through but not the cells. These virus supernatants were collected 

each in a sterile 15 ml tube and frozen at -80 ºC until their use.  

 

4.1.9. Retrovirus infection of mOBsrsk2-/y 
  

Murine osteoblast cells derived from rsk2-/y mice were cultured in a 75 cm2 cell 

culture flasks until confluence. Subsequently, the cells were trypsinized and counted 

using a Neubauer haemocytometer. The cells were plated at 2 different densities, 2.5 

x105 and 5x 105 cells in 100 mm diameter tissue culture. The cells were then cultured at 

5 % CO2 and 37 ºC in 10 ml α-MEM Eagle culture media containing 10 % FCS and 1x 

Penicillin/ Streptomycin. After 24 hours, 5 ml of the culture media was removed. 1ml of 

defrosted virus supernatant was added. To increase the efficiency of the retrovirus 

infection, 10 μg/ ml Polybrene were added (stock solution: 10 mg/ ml stored at –20 °C). 

Eventually, one cell culture plate containing 2.5x 105 cell and one cell culture plate 

containing 5x 105 was infected with retroviruses containing either the vector constructs 

pBabe-empty, pBabe-Fra1, pMSCV-Neo or pMSCV-Fra1Er. The culture media was 

changed on the next day. The cells were now cultured in 10 ml α-MEM Eagle culture 

media containing 10 % FCS and 1x Penicillin/ Streptomycin until confluence.  
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4.1.10. Selection of infected cells  
 

The infected cells were harvested and counted. Two 100 mm diameter tissue 

culture dishes were plated using 6x 105 cells each per vector construct. Non-infected 

cells of the same genotype and passage number as the infected ones were cultured in 

parallel. These cells were harvested, counted and plated with the same cell number to 

serve as control in the following selection step. To select the cells successfully infected 

by the vector constructs pBabe-empty or pBabe-Fra1, the cells were cultured in 10 ml α-

MEM Eagle culture media containing 10 % FCS, 1x Penicillin/ Streptomycin and 2.5 µg/ 

ml Puromycin. To select for the cells successfully infected by the vector constructs 

pMSCV-Neo or pMSCV-Fra1Er that also encoded for Neomycin resistance, the cells 

were cultured in 10 ml α-MEM Eagle cell culture media containing 50 µg/ ml G418 

antibiotic. As control for the efficiency of the selection, non infected cells of the same 

genotype and passage number were treated with the antibiotics, i.e. one culture dish 

containing the same cell number was treated with 2.5 µg/ ml Puromycin or 50 µg/ ml 

G418, respectively. In parallel, one tissue culture dish was cultured without the used 

antibiotics to determine the specificity of the effect of the antibiotic on the control. The 

cells were cultured in 10 ml selection culture media until all cells in the non-infected 

control dishes died. Subsequently, every two culture dishes containing the cells infected 

with the same vector construct were merged in the following passage of the cells. The 

cells were then plated in two 175cm2 cell culture flasks, were cultured under selective 

condition until confluence and detached by trypsinisation. Cells from the two flasks were 

merged and samples of each cell line containing the different vectors were frozen and 

stored at -80 ºC. 

 

4.1.11. Differentiation and analysis of mOBsrsk2-/y-pBabe-empty and mOBsrsk2-/y-
pBabe-fra1 to adipogenic cells (in vitro analysis) 

 

Adipocyte differentiation in vitro was performed as follow: at passage 27, the cells 

were seeded in 6-well plates with a cell number of 1x 105 cells per well. One 6-well plate 

per genotype was used for RNA isolation and another 6-well plate for Oil Red O staining 

for every time point when the adipocyte differentiation had to be analyzed. In the 

experiments conducted with the generated cell lines with either pBabe-empty (Puro-2) or 

pBabe-fra1 the cells were treated with adipocyte differentiation culture media or control 

culture media, the samples were isolated on day 0 and day 21 post-stimulation. From 

day 0 the half the wells were cultured in 2 ml adipocyte differentiation culture media. The 
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other half part served as control and was treated with control culture media. RNA 

isolation and Oil Red O staining were conducted at day 15 or day 21 of treatment with 

adipocyte differentiation media or control media. 

 

 

4.1.12. Differentiation and analysis of mOBsrsk2-/y-pMSCV-Neo and mOBsrsk2-/y-
pMSCV-FraER to adipogenic cells (in vitro analysis) 

 

In experiments comparing cells infected with the vector constructs pMSCV-Neo 

and pMSCV-FraER, four different treatments were compared: culture of cells in control 

culture media containing 0.099 % Ethanol, culture medium containing 1 µM β-Estradiol, 

adipocyte differentiation culture media or adipocyte differentiation culture media 

containing 1 µM β-Estradiol. Adipocyte differentiation in vitro was performed as follow: at 

passage 27, the cells were seeded in 6-well plates with a cell number of 1x 105 cells per 

well. One six well plate per genotype was used for RNA isolation and another six well 

plate for Oil Red O staining for every time point when the adipocyte differentiation had to 

be analyzed. 

 

 

4.2 Isolation, quantification and characterisation of nucleic acid 
 

 

4.2.1. Isolation of genomic mouse DNA 
 

A small piece of tail (~ 2 mm) was cut and incubated overnight at 55 °C in 750 μl 

tail preparation buffer containing 0.5 mg/ ml Proteinase K. After complete digestion 250 

μl of saturated NaCl was added and tubes were shaken vigorously for 5 min. Samples 

were centrifuged at full speed in a table centrifuge (Heraeus Biofuge) for 20 min, the 

supernatant was transferred to a new tube and DNA was precipitated with 500 μl 

Isopropanol. DNA was harvested at full speed, supernatant was discarded and DNA 

dissolved in 500 μl Tris - EDTA (10 mM Tris, 1 mM EDTA). 
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4.2.2. Isolation of RNA 
 

To get RNA, cells were harvested at day 0, day 15 and/ or day 21 during 

adipocyte differentiation. Total RNA was isolated from cultured cells by using Trizol® 

Reagent. Homogenized samples in Trizol® Reagent were separated by adding 0.5 ml 

chloroform. After centrifugation, the aqueous phase contain RNA was removes, and the 

RNA was precipitated with 1 ml Isopropanol. After washing the RNA pellet with 2 ml 75 

% Ethanol and centrifugation, the RNA was solubilised in diethylpyrocarbonate-treated 

water (DEPC-water). Furthermore, total RNA was also isolated from mice fat pads. The 

tissue samples were homogenized in 2 ml of Trizol® Reagent by using a power 

homogenizer. After an incubation of the homogenized samples of 5 min, 0.4 ml 

Chloroform was added and probes were centrifuged for 35 min with 5000 rpm. The 

aqueous phase was mixed with 1 ml Isopropanol and centrifuged again for 35 min, 5000 

rpm. The RNA pellet was washed with 2 ml 75 % Ethanol. At the end the pellet was dried 

on air and resuspended in DEPC-water. 

 

 

4.2.3. Quantification of RNA 
 

The RNA quality was analysed using UV absorbance: 260/ 280 ratios ranged from 

1.8 - 2.0. The RNA concentration in the isolated RNA samples was measured using a 

Spectrophotometer type NanoDrop® ND-1000. 

 

 

4.2.4. Digestion of DNA 
 

The digestion of the DNA was reached by a treatment of the 1 µg RNA with 1 µl 

DNAse and 1 µl buffer. The reaction mixture was incubated 30 min at 37 °C. The 

inactivation of the DNAse was reached by incubation with 1 µl EDTA at 65 °C for 15 min. 
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4.2.5. Reverse Transcription (RT-PCR) 
 

cDNA synthesis was performed with the Reverse Transcription Kit from Roche as 

follow: 

 4 μl RNA [100 ng/ μl] 
 2 μl TaqMan 10x buffer 
 4.4 μl MgCl2 [25 mM] 
 4 μl dNTP [10 mM] 
 0.5 μl Random hexamer [50 μM] 
 0.5 μl Oligo dT [50 μM] 
 0.5 μl RNase inhibitor [20 U/ μl] 
 0.5 μl Reverse Transcriptase [50 U/ μl] 
 3.6 μl dH2O 
 

The samples were incubated for 10 min at 25 °C, followed by 40 min at 48 °C and 

a final step at 95 °C for 5 min. 

 

 
4.2.6. PCR - Analysis of mouse genotype  
 

All Polymerase chain reactions were carried out in 0.2 ml Thermo stripe reaction 

tubes using a Themocycler Type T3 (Biometra) and according to the following 

temperature profile:  

 

Rsk2-/y PCR: initial denaturation, 94 °C, 2 min  35 cycles of PCR amplification: 

denaturation, 94 °C, 30 s  annealing, 60 °C, 45 s  elongation, 65 °C, 2.5 min  final 

elongation, 65 °C, 15 min  cool off, 4°C, ∞ 

 

Fra1-tg PCR: initial denaturation, 94 °C, 2 min  35 cycles of PCR amplification: 

denaturation, 94 °C, 30 s  annealing, 58 °C, 45 s  elongation, 65 °C, 2.5 min  final 

elongation, 65 °C, 15 min  cool off, 4°C, ∞ 

 

Genotyping for rsk2-/y mice was carried out using the primers WL 112 and 

WL113: 

 2.5 µl 10x GenTherm buffer without MgCl2 (Rapidozym) 
 0.5 µl dNTPs [10 mM] 
 0.75 µl  MgCl2 [50 mM] 
 2.5 µl WL 112 [100 µM] 
 2.5 µl WL 113 [100 µM] 
 0.25 µl 50 U/ µl Taq DNA Polymerase GenTherm (Rapidozym) 
 2.6 µl dH2O  
 1 µl DNA 
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The DNA fragments amplified by this PCR have the size 230 bp or 320 bp. The 

230 bp DNA fragment will be amplified if at least one allele of the genome in the 

analyzed DNA corresponds to a wild type Rsk2 gene. In case that at least one of the 

alleles corresponds to a knockout rsk2 genotype, the 320 bp fragment will be amplified. 

The amplified PCR products were analyzed by electrophoresis using a 2 % agarose gel.  

 

Genotyping for fra1-tg mice was carried out using the primers primers CE4 and 

H2kB: 

 2.5 µl 10x GenTherm buffer without MgCl2 (Rapidozym ) 
 0.5 µl dNTPs [10 mM] 
 0.75 µl  MgCl2 [50 mM] 
 2.5 µl CE4 [100 µM] 
 2.5 µl H2kB  [100 µM] 
 0.25 µl 50 U/ µl Taq DNA Polymerase GenTherm (Rapidozym) 
 1 µl DNA  
 10 µl dH2O 
 

The use of the primers CE4 and H2kB leads to the amplification of a DNA 

fragment with the size of 1200 bp in case the DNA derives from a fra1-tg mouse. The 

amplified PCR Products were analyzed by electrophoresis using a 1 % agarose gel.  

 

 

4.2.7. PCR - Semi-quantitative PCR (qPCR) 
 

Semi-quantitative PCR (qPCR) was utilized to analyze the cDNA obtained from 

reverse transcription of RNA isolated during adipocyte differentiation experiments or 

isolated from mouse fat pads. The analyzed cDNA samples were diluted to obtain a 

dilution series consisting of a 0, 101, 102, 103, 104 and 105 fold dilutions, respectively. The 

cDNA was diluted in autoclaved and distilled water. Subsequently, a mastermix was 

prepared consisting of the same volumes for a reaction mix of one sample as described 

for the PCR used for genotyping. For the analysis of HPRT, PPARγ, C/EBPα and Fra1 a 

forward and a reverse primer were used at a time for the PCR analysis of one single 

gene per PCR reaction. 19 µl of the mastermix were transferred into a 0.2 ml reaction 

tube for use in PCR and 1 µl of each cDNA dilution was added on top. The polymerase 

chain reaction for HPRT, PPARγ, C/EBPα and Fra1 was conducted under following 

conditions:  
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qPCR: initial denaturation, 94 °C, 2.5 min  35 cycles of PCR amplification: 

denaturation, 94 °C, 30 s  annealing, 62 °C, 40 s  elongation, 72 °C, 1 min  

final elongation, 72 °C, 10 min  cool off, 4°C, ∞ 

 

The PCR products were loaded according to the dilution step from left to right onto 

a 2 % agarose gel beginning with undiluted sample and ending with the most diluted 

sample. To analyze the expression level of PPARγ, C/EBPα and Fra1 the last dilution 

step that shows a visible band in the gel in the dilution series for HPRT was compared 

with the last dilution step that shows a visible band in the gel in the dilution series for the 

analyzed gene. It is therefore possible to compare in two samples the relative expression 

level of a given gene compared to the housekeeping gene HPRT. 

 

 

4.2.8. Agarose gel electrophoresis  
 

To prepare a 1 % agarose gel 1 g agarose were dissolved in 100 ml 1x TAE 

buffer. The solution was boiled using a microwave until it got clear. The solution was left 

to cool down for several min and 3.5 µl Ethidiumbromid were added. The solution was 

mixed and subsequently filled into an agarose gel tray. Finally, combs with 20 teeth each 

were put into the liquid gel solution. 2 µl of an Orange G loading buffer were added to 

each sample and the agarose gel was loaded with 20 µl of this mix. 1x TAE buffer was 

used as separation buffer per gel tank. The gels were run at 120 V and 90 mA for 

approximately 20 min or longer depending on the size of the PCR product and the pore 

size of the agarose gel. After the PCR products were separated in the agarose gel, 

intercalated Ethidiumbromid was visualized by UV light using a gel documentation 

system consisting of a camera, an imaging caption computer (Cybertech) and an UV 

light table (PeqLab). A print of the gel pictures was taken with a Type P90 printer 

(Mitsubischi). 

 

 

4.2.9. PCR - Quantitative Real-Time PCR (QRT - PCR) 
 

To determine the expression of HPRT, PPARγ, C/EBPα, Pref-1, Sox9, Runx2, 

Osx1, aP2, Glut4 and MyoD in more detail, QRT-PCR were conducted using a Roche 

LightCycler® 2.0 System. The kit LightCycler® 480 SYBR Green I Master was used for 

this method. It comprises of a ready to use master mix containing FastStart TaqDNA 
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polymerase, reaction buffer, dNTPmix (with dUTP instead of dTTP), SYBR Green I dye 

and MgCl2. The used primers (TIB Molbiol Syntheselabor GmbH) were applied as 100 

µM stock solution and diluted 40 fold in the reaction mix to a final concentration of 2.5 

µM. Reaction mix for one sample using QRT-PCR: 

 5 µl ready to use master mix 
 0.25 µl forward primer [100 µM] 
 0.25 µl reverse primer [100 µM] 
 1 µl cDNA sample   
 3.5 µl H2O PCR grade 
 

The ready to use mastermix and the water of the kit as well as the primers were 

mixed together according to the number of samples. Every sample was measured with 

one replicate. The required numbers of LightCycler capillaries (Roche) were put into 

centrifuge adapters on an aluminium cooling block (Roche). 9 µl of the previous prepared 

reaction mix solution was transferred into each capillary 1 µl cDNA sample was added on 

top. For the negative control 1 µl of PCR grade water was added instead of cDNA. The 

capillaries were closed with appropriate lids and transferred into a centrifuge type 

Biofuge Fresco (Hereaus). The reaction mixes were spun down at 2000 g for 1 min. and 

measured in the LightCycler. The QRT-PCR for HPRT, PPARγ, C/EBPα, Pref-1, Sox9, 

Runx2, Osx1, aP2, Glut4 and MyoD was conducted under the following conditions using 

the software LightCycler 3 (Roche): 

 

QRT-PCR: Initial denaturation: 95 °C; hold time 10 min; slope 20 °C/ sec, 

amplification: 45 cycles comprised of denaturation step 95 °C; hold time 10 sec; slope 20 

°C/ sec, primer annealing step: 64 °C; 10 sec; slope 20 °C/ sec; elongation step: 72 °C; 

10 min, melting of PCR products: 1 cycle comprised of 2 steps first 95 °C 10 sec; slope 

20 °C/ sec and second 50°C 20 sec; slope 20 °C/ sec, cooling step: 40 °C for 30 sec; 

slope 20 °C/ sec. 

 

Primer sequences for the analysis of the genes PPARγ, C/EBPα, Pref-1, Glut4 and 

MyoD using the described LightCycler protocol were generated using the NCBI 

Nucleotide database and the online program Primer 3 created by Steve Rozen and 

Helen Skaletsky from Whitehead Institute for Biomedical Research. 
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4.3 Protein chemistry 
 

4.3.1. Isolation of total protein using SDS Sample buffer  
 

The cells were cultured in 100 mm tissue culture dishes. 6 x 105 cells were 

seeded per dish and cultured until confluence. The culture media was sucked off and the 

cells were washed twice with cold PBS. 0.5 ml SDS sample buffer was added, the cell 

were scraped with a cell lifter and transferred into a 1.5 ml reaction tube. The samples 

were boiled while shaking at 95 oC for 10 min. Subsequently, the samples were spun 

down at room temperature at 13000 g for 1 min. 40 µl of the total extract were separated 

by means of SDS PAGE each time. The samples were loaded on SDS gel and Western 

Blot analysis was carried out. The supernatant can also be stored at - 20 °C.  

 

 

4.3.2. Isolation of total protein with Frakelton Buffer  
 

The cells were cultured in 100 mm tissue culture dishes. 6 x 105 cells were 

seeded per dish and cultured until confluence. The culture media was removed and the 

cells were washed twice with cold PBS. 0.75 ml of complemented Frakelton Buffer was 

put onto the cells. The cells were scraped using a cell lifter and the suspension was 

transferred into a 1.5 ml reaction tube. After 30 min incubation on ice at 4 °C room 

temperature, the suspension was spun down for 20 min at 13000 g and 4 °C. The 

supernatant was transferred into a fresh 1.5 ml reaction tube and stored at - 20 °C until 

measurement of protein concentration and Western Blot analysis were carried out. 40 µl 

of the total extract were separated by means of SDS Page each time.  

 

 

4.3.3. Extraction of cytoslic and nuclear proteins  
 

The necessary volume of Buffer A and Buffer B was calculated and the 

supplements PMSF, Protease inhibitor cocktail, Sodium vanadate, Okadaic acid, 

Spermine and Spermidine were added. The cells were cultured in 100 mm tissue culture 

dishes. 6x 105 cells were seeded per dish and cultured until confluence. The culture 

media was sucked off and the cells were washed twice with cold PBS. The cells were 

scraped using a cell lifter and transferred to a 1.5 ml reaction tube. Afterwards, the cells 

were spun down shortly at 4 oC and the supernatant was removed. Cells were 
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resuspended in 450 µl Buffer A and incubated on ice at 4 °C for 15 min. Afterwards, 25 µl 

of 10 % NP-40 were added to each tube. The tubes were mixed using a vortex mixer for 

10 sec and spun down for 30 sec at 12000 g and 4 °C (centrifuge 5415 C, Eppendorf). 

The supernatant that contains the cytosolic fraction was transferred into another tube. 

The remaining pellet was resuspended in 50 µl Buffer B, vortexed for 15 min at 4 °C and 

spun down with 12000 g at 4 °C for 5 min using the same centrifuge. The supernatant 

that contains the nuclear fraction was transferred to a new tube. All protein extracts were 

stored at -80 °C until their analysis. 40 µl of the cytosolic and nuclear extract were 

separated by means of SDS Page each time.  

 

 

4.3.4. Measurement of protein concentration with Micro BCA™- working reagent  
 

The following formula was used to specify the total volume of working reagent 

required: (Number of standards + number of unknown samples) × (number of replicates) 

× (150 μl of working reagent per sample) = total volume working reagent required. Two 

replicates of each standard dilution and of each sample were measured. The working 

reagent was prepared by mixing 25 parts of Micro BCA™ Reagent MA and 24 parts 

Reagent MB with 1 part of Reagent MC (25:24:1, Reagent MA:MB:MC). The working 

reagent is stable for one day when stored in a closed container at room temperature. 150 

μl of each standard or unknown sample were pipette into 96 wells microplate. Altogether 

two replicates were measured of each sample. 150 μl of the working reagent were added 

to each well and mixed thoroughly on a plate shaker for 30 seconds. Subsequently, the 

plate was covered and incubated at 37 °C for 2 hours. The plate was cooled down to 

room temperature and the absorbance was measured at 562 nm using a microplate 

reader type Spectra Max 190 (Molecular devices). The average 562 nm absorbance 

reading of the Blank standard replicates were subtracted from the 562 nm reading of all 

other individual standard and unknown sample replicates. A standard curve was 

prepared by plotting the average Blank-corrected 562 nm reading for each BSA standard 

vs. its concentration in μg/ ml. 

 

 

4.3.5. Preparation of SDS Page 
 

The glass plates were cleaned with 70 % Ethanol. The slab gel unit of the used 

Gel Wrap® Casting System (C.B.S. Scientific) was assembled with the glass sandwich 
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set in the casting mode using 1.5 mm spacers. The ingredients for an 8.5 % or 10 % 

running gel were put together, mixed and transferred into the gel casting chamber using 

a glass pipette. The glass chamber was gently filled with the solution by allowing the 

solution to run down the side of one of the spacers without introducing air bubbles. To 

equalize the surface and remove bubbles on the top of the gel, water was added at the 

side of the chamber. A comb was added to prevent oxygen reaching the gel. The 

solution was left to polymerize for 30 min and the water was poured off and left to dry for 

15 min. A 4 % stacking gel was prepared using the ingredients listed in the materials part 

and added on top of the running gel. A comb was added to form sample wells and the 

gel was left to polymerize for another 30 min. A comb with 15 teeth forming sample wells 

of 80 µl volume was used. 

 

 

4.3.6. SDS Page electrophoresis  
 

The silicone gasket and the comb were removed from the used gel casting 

chamber. The SDS PAGE slab gel system (C.B.S. Scientific) was assembled fixing the 

gel casting chamber to the slab unit with the designated clamps following the 

manufacturer's directions for assembly. 1x SDS running buffer was filled in the two 

chambers above and below the fixed slab gel. To prepare protein samples, the volume of 

the protein extract to load a given amount of protein was calculated. This volume was 

transferred into 1.5 ml reaction tubes and topped up with protein extraction buffer and 10 

µl of 6x loading buffer to a final volume of 70 µl. The samples were then boiled at 95 °C 

for 5 min and spun down shortly and loaded into the wells of the stacking gel as well as 8 

µl Molecular weight marker pre stained protein. 10 µl 6x loading buffer were transferred 

into the 2 wells at each extremity of the gels in order to get a regular running of the 

samples. The separation of the samples was conducted over night at 32 V. The 

application of the current was continued until the tracking dye reached the bottom of the 

running gel. The stacking gel was cut off as well as the band of the tracking dye. The gel 

was transferred to a container filled with distilled water and was subsequently used for 

western blot.  
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4.3.7. Semi-dry transfer of SDS Page 
 

The separated proteins transferred from the SDS Page onto a nitrocellulose 

membrane using a transfer chamber for Western Blot type Multiphor II (Pharmacia 

Biotech). The electrodes were gently cleaned with a water soaked tissue. The gel was 

washed in water while four layers of Whatman filter papers grade 1F/ 200 x 250 were 

soaked in transfer buffer and put on the anode electrode. The nitrocellulose membrane 

was soaked with water, afterwards with Transfer Buffer and was put on the stack of 

soaked filter paper. The gel was put on top. Another four layers of filter papers were 

soaked in transfer buffer and put on the gel. A little amount of transfer buffer was poured 

onto the stack. The device was closed by putting the cathode electrode on the top and 

closing the lid. The transfer chamber was connected to the power supply and the transfer 

was conducted using a constant current of 110 mA for 2 hours. 

 

 

4.3.8. Western Blot 
 

After the semi-dry transfer, the membrane was washed gently in distilled water to 

get rid of the SDS. The marker bands were marked with a pen. The proteins on the 

membrane were then visualized by incubation in Ponceau S (0.2 % in 3 % TCA) solution 

for 5 min in order to detect any defect in the quality of the transfer (bubbles or irregular 

transfer). The Ponceau S solution was washed off in distilled water. The membrane was 

then incubated in 50 ml TBS-T washing solution containing 10 % milk powder (blocking 

solution) for one hour to saturate unspecific binding sites on the membrane. The 

membrane was washed in TBS-T washing solution for 15min and subsequently 

incubated with the primary antibody diluted in TBS-T solution over night at 4 °C, under 

mild agitation. The primary polyclonal Fra1 antibody was used in a 1000 fold dilution; the 

primary monoclonal β-Actin antibody was used in a 5000 fold dilution and the primary 

polyclonal antibody to detect Glucocorticoid receptor proteins was used in a 500 fold 

dilution. After the incubation with the primary antibody, the membrane was washed in 

TBS-T for 30 min. Followed by incubation with the appropriate secondary antibody 

diluted in TBS-T for one hour at room temperature. For the detection of the polyclonal 

Anti-Fra1 and Anti-Glucocorticoid receptor antibodies, an Anti Rabbit IgG HRP 

Conjugate was used as a 20000 fold dilution. For the detection of the monoclonal β-Actin 

antibody, an Anti-Mouse IgG HRP Conjugate was used as a 10000-fold dilution. This 

step was followed by three washing steps in TBS-T, the first one for about 1 hour and the 
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other times for 15 min. The identification of the proteins the primary antibody reacted with 

was carried out using the ECL Western Blot Detection Reagent Kit (Amersham 

Biosciences). 1 ml of Reagent 1 and Reagent 2 was pipette on a piece of cling film and 

mixed. The membrane was put on the solution the proteins facing the ECL. The solution 

was equally distributed by capillarity between the cling film and the membrane. After an 

incubation of 1 min the excess of ECL was quickly removed, the membrane was 

enwrapped in dry cling film and transferred to a Hypercassette TM for Western Blot 

detection (Amersham). The chemiluminescence is stable for about 30 min. In a darkroom 

a Scientific Imaging Film X-OMATTM 18x24cm was exposed for 1 min on the membrane 

while in the closed HypercassetteTM. The film was processed using a film processing 

device type Optimax 2010 (Protec). Depending on the determined signal strength, 

another film was exposed for longer or shorter time until the wished intensity of the 

protein band was reached. The bands of the molecular weight marker were copied onto 

the exposed film for the analysis of the molecular weight of the detected protein bands. 

The membrane was enwrapped in cling foil to prevent it from running dry. It was stored at 

4 °C. 

 

 

4.3.9. Stripping of the Western Blot 
 

The amount of the protein β-Actin served as loading control in the Western Blot 

analysis. For the detection of β-Actin it was necessary to get rid of the antibodies of the 

previous protein detection by stripping them off. The stripping was carried out with a pre-

warmed Stripping Buffer to 50 °C in a water bath. The nitrocellulose membrane was 

incubated in the warm stripping buffer for 5 min shaking. After this step the Western Blot 

detection protocol was preceded starting from the blocking step.  

 

 

4.4 Histology 
 

4.4.1. Bone and tissue collection  
 

The mice were sacrificed by cervical dislocation and subsequently the fat pads, 

the spleens, the hearts and the livers were dissected. Bone and organ tissues were fixed 

in 3.7 % formaldehyde/ PBS at 4 °C. After fixation, the bone samples were decalcified 

with 5 % EDTA (pH 7.25) for 10 days at room temperature. Decalcified sampled were 
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dehydrated according standard protocols in increasing alcohol gradients and Xylol and 

finally embedded in paraffin. Samples were cut with a microtome (Leica) to obtain 2 - 4 

μm thick sections. 

 

4.4.2. Bone histomorphometry 
 

For bone histomorphometry vertebral bodies were fixed overnight at 4 °C in 3.7 % 

formaldehyde. Samples were dehydrated as mentioned above and subsequently treated 

with infiltration solution. Acrylatpolymerization was performed overnight at 4 °C. Sections 

of 3 - 12 μM thickness were obtained by using a microtome. Prior staining, sections were 

incubated 3x 10 min with 2-(Methoxyethy)-acetate (Sigma) and afterwards re-hydrated. 

Von Kossa staining was performed according the following protocol: 

 

 

 5 min in Silvernitrate (3 %) 
 10 min in dH20 
 5 min in Sodaformol 
 10 min in tap water 
 5 min in Sodiumthiosulfate (5 %) 
 10 min in tap water 
 20 min in van Gieson solution 
 Dehydration in alcohol gradients with final step in Xylol 
 Mounting in DPX (Sigma) 
 

 

Bone mineral density and trabecular thickness were quantified according 

standardized protocols with the OsteoMeasure histomorphometry system 

(OSTEOMETRICS Inc.), 

 

4.4.3. Oil Red O staining 
 

Oil Red O staining dissolved in Isopropanol was kept overnight at room 

temperature, filtered, mixed with distilled water, kept overnight in the cold, and finally 

filtered twice before use. The final staining solution was 0.2 % Oil Red O in 60 % 

Isopropanol (working solution). Cells were washed twice with PBS and fixed with 10 % 

neutral formalin for at least 1 h at room temperature. The cells were washed twice with 

water, and then stained for 2 h with the Oil Red O working solution. The cells were 

washed, counterstained with Mayer’s Hematoxylin solution, washed exhaustively with 

water, and the excess water was evaporated by placing the stained culture at room 
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temperature. The stained cells were observed under a microscope and photographed 

using phase contrast microscopy. 

 

4.4.4. Hematoxylin and Eosin (H&E) staining of paraffin sections 
 

The prepared paraffin sections were dried in a 70 °C incubator for 15 min. The 

paraffin was unhinged in Xylol for 5 min and the sections were washed in Xylol. After 

that, the sections were washed in absolute Ethanol, then in 95 % and 70 % Ethanol and 

finally twice in aqua dest. The sections were covered with Mayer´s Hematoxylin staining 

solution for 4 min. After the staining the sections were washed in warm tap water for 4 

min. Following, they were stained in Eosin for 4 min and washed again in warm tap 

water. In conclusion, the sections were washed twice in aqua dest, in alcohol (70 % and 

95 % absolute) and in Xylol. The sections were mounted before taking a photo. 

 

4.4.5. Masson–Goldner–Tricolor (MGT) staining 
 

The prepared parafin sections were dried in a 70 °C incubator for 15 min. The 

paraffin was unhinged in Xylol for 5 min and the sections were washed in Xylol. After 

that, the sections were washed in absolute Ethanol, then in 96 % and 70 % Ethanol and 

finally twice in aqua dest. The sections were covered with Weigert staining solution 

(Chroma; Eisenhematoxylin nach Weigert) for 1 min and differentiate in 0.5 % HCl - 

Ethanol. After the staining the sections were washed in warm tap water. Following, 

sections were stained in Ponceau S for 15 min and twice in 1 % Acetic acid.  Followed by 

Orange G 5 min, twice in 1 % Acetic acid, Lichtgruen (Chroma) 1 – 2 min, twice in 1 % 

Acetic acid and  fixed with a brief wash 96 % Ethanol. The tissue was cleared by 

incubation in Xylol and coverslipping with Kanadabalsam. 

 

4.4.6. Elastica van Gieson (EvG) staining 
 

The prepared parafin sections were dried in a 70 °C incubator for 15 min. The 

paraffin was unhinged in Xylol for 5 min and the sections were washed in Xylol. After 

that, the sections were washed in absolute Ethanol and 80 % Ethanol. The sections were 

covered with Resorcin - Fuchsin staining solution (Chroma) for 30 min and destained 

with 0.5 % HCl in ethanol. After the staining the sections were washed in warm tap 

water. Following, they were stained in Weigert´s staining solution (Chroma) for 1 min and 

destained with 0.5 % HCl in ethanol. Sections were washed for 5 min in tap water and 



Methods 
______________________________________________________________________ 

 76  

stained in Pikrofuchsin (Chroma) for 2 min. In conclusion, the sections were washed 

twice in 96 % Ethanol, twice in absolute Ethanol and in Xylol. The sections were 

mounted with Kanadabalsam. 

 

4.4.7. Cryosection of spleen tissue 
 

Cryosection was performed applying a Microm HM 500 OM cryostat adjusted to a 

box temperature of - 20 °C and an object temperature of - 17 °C. Frozen tissue samples 

were first allowed to adjust to the box temperature by leaving them untouched in the box 

for about fifteen minutes. Cryosections of a thickness of 7 – 9 μm were cut and picked up 

onto Superfrost Plus glass slides (Roth). Tissue sections were air-dried for about one 

hour at room temperature and subsequently fixed in fresh cold acetone for ten minutes. 

After complete evaporation of acetone, slides were stored at - 70 °C. 

 

4.4.8. Standard protocol for immunofluorescence staining 
 

Splenic cryosections were allowed to thaw at room temperature for about five to 

10 minutes before they were encircled with a grease pen (Dako pen, Dako). Prior to 

staining with various antibody combinations (Table 3.1), unspecific binding was 

prevented by blocking the sections in PBS/ 3 % BSA. Likewise, all antibodies were 

diluted in PBS/ 3 % BSA. For direct immunofluorescence staining sections were 

incubated with diluted fluorescent dye conjugated primary antibodies for about 30 min, 

extensively washed in PBS and then mounted with Fluoromount-G (Southern Biotech). In 

case of indirect immunofluorescence staining, un-conjugated antibodies were detected 

using fluorescent dye conjugated secondary antibodies and incubated in the dark for 

another 30 min. Sections were washed in PBS and coverslips were mounted with 

Fluoromount-G (Southern Biotech). Before examination mounted sections were allowed 

to air-dry for at least two hours. 

 
Specificity Source Dilution 
B 220 : Alexa 488 rat, clone RA3.6 B2 (DRFZ)x 1:50 
B 220 : dig rat, clone RA3.6 B2 (DRFZ)x 1:100 
CD 41 rat (Dako) 1:50 
FDC - M2 : bio rat, clone FDC-M2 (ImmunoK) 1:200 
MOMA-1 rat (Southern Biotech) 1:100 
SA-Rhodamin Moleculare Probes 1:500 
SA-Alexa 488 Moleculare Probes 1:500 
Anti-dig – cy5 DRFZ 1:500 
Anti-dig – Alexa 546 DRFZ 1:300 
DAPI  Moleculare Probes 1:10000 
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Survey of antibodies applied for immunofluorescence staining. The x labelled 

antibodies were purified from B cell hybridoma culture supernatants and conjugated to 

fluorescent dyes in the DRFZ. 

 

4.4.9. Standard protocol for immunohistochemistry  
 

For immunohistochemistry staining with the DakoCytomation LSAB+System-HRP, 

sections were re-hydrated in decreasing alcohol gradients. Epitopes were unmasked by 

boiling the samples in citrate buffer (10 mM, pH 6.0) for 10 min. After cooling down, 

samples were blocked in 3 % hydrogen peroxide for 5 min at room temperature. Sections 

were washed in PBS and incubated with primary antibody in PBS/ 0.1 % Triton X 100 + 1 

% FCS for 30 min at room temperature. After 3 times washing in PBS, linker solution was 

added and incubated for 15 min at room temperature. Sections were washed 3 times 

with PBS and incubate with substrate solution for 5 min. Negative controls included 

omission of primary antibodies. The samples were coverslipped in Kaisers 

Glyceringelatine (Merck) and examined by microscopy at 400x magnification.  

Specificity Source Dilution 
Fra1 (R-20) rabbit, sc-605 (Santa Cruz) 1:10 
BP3 Present by Max Cooper 1:50 
B 220 : bio rat, clone RA3.6 B2 (DRFZ) 1:200 
FDC - M2 : bio rat, clone FDC-M2 (ImmunoK) 1:400 
MOMA-1 rat (Southern Biotech) 1:200 
SA-alkalic phosphatase Sigma 1:500 
HistoRed AP - Substrate Kit Linaris  
 

 

4.5 Statistics 
 

 

The statistical significance of the difference between different data sets was tested 

using an unpaired two tailed t-test with a threshold chosen for statistical significance of p 

= 0.05. Statistical significance is indicated by asterisks using one asterisk for low 

significance and three asterisks for high significance. All listed data are derived from 

three independent experiments and are expressed as mean + SD unless otherwise 

noted.
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5. Results 
 

Several genetic studies in mice have demonstrated the central role of the 

transcription factor AP-1 in the control of both osteoblast and osteoclast differentiation. 

Thus, the various components of transcription factor AP-1 play specific roles in bone 

cells differentiation. In particular, mice overexpressing the Fos-related protein-1 (Fra1) 

develop osteosclerosis due to accelerated osteoblast differentiation. Furthermore, 

specific posttranscriptional modifications like phosphorylation through kinases modulate 

the activities of each AP-1 member. As already shown by David et al., 2005, in c-Fos 

overexpressing mice the kinase Rsk2 plays an essential role in c-Fos-dependent 

osteosarcoma development [19]. In addition, Rsk2 is an important regulator of osteoblast 

biology [19, 35]. To analyze the role of Rsk2 in regulating Fra1 functions in bone cells, mice 

overexpressing Fra1 and Rsk2-deficient mice were crossed. 

 

 

5.1 Mice nomenclature 
 

In the following text, the C57/Bl6 control wild type mice are designated wt for both 

males and females. Mice with genetic inactivation of the Rsk2, which is located on X-

chromosome, are designated rsk2-/y for rsk2 knockout males and rsk2-/x for 

heterozygote deletion of Rsk2 in females; the fra1 transgenic mice (H2-fra1-LTR) are 

designated fra1-tg for males and females. The double mutated mice produced from the 

crossing between fra1-tg males and rsk2-/x females with are designated fra1-tg/rsk2-/y 

for the males or fra1-tg/rsk2-/x for the females. 

 

 

5.2 Vital parameter analysis: body growth, body weight and lifespan 
 

 

5.2.1. Decreased genotype frequency of fra1-tg mice lacking Rsk2 
 

In order to analyse the role of Rsk2 in the development of Fra1-induced 

osteosclerosis, mice overexpressing Fra1 and rsk2-/x mice were crossed. The 

distribution of the genders was well balanced. From a total off 248 littermates were born 

137 males and 111 females. That makes a ratio of 55 % off males and 45 % off females. 

The various genotypes (wt, rsk2-/y, rsk2-/x, fra1-tg, fra1-tg/rsk2-/y and fra1-tg/rsk2-/x) 
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resulting from the crossing were born with different frequency. A mild discrepancy 

appeared between the frequencies of the female genotypes. Clear differences were 

observed when male offspring were compared. A mild reduction for fra1-tg male and 

female newborns, but mice carrying the double mutation, fra1-tg/rsk2-/y or fra1-tg/rsk2-

/x, were born in a clear decreased frequency. This phenomenon was pronounced in fra1-

tg/rsk2-/y male (Table 5.1). 

 

Table 5.1 Statistical distribution from crossing fra1-tg males with rsk2-/x females 

 
 

 

5.2.2. Rsk2 modulates Fra1-dependent suppression of body growth  
 

Figure 5.1 A shows representative pictures of wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-

/y males at the age of 7 weeks. The growth of fra1-tg/rsk2-/y mice was severely retarded. 

To analyze the growth retardation of fra1-tg/rsk2-/y mice the vertebral body size was 

employed as a measurement of the longitudinal growth. The size study was based on the 

analysis of 6 wt, 5 rsk2-/y, 8 fra1-tg and 4 fra1-tg/rsk2-/y littermates. Significantly smaller 

vertebral bodies were observed in fra1-tg/rsk2-/y mice in comparison to all the other 

genotypes, indicating a decrease in longitudinal growth of the body: wt vs. fra1-tg/rsk2-/y 

**P=0.0018, rsk2-/y vs. fra1-tg/rsk2-/y **P=0.0022 and fra1-tg vs. fra1-tg/rsk2-/y 

***P=0.0006 (Figure 5.1 B).  
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These data show that the absence of Rsk2 combined to Fra1 overexpression 

causes a drastic decrease of the longitudinal growth of the body in mice. 

 

5.2.3. Rsk2 modulates Fra1-dependent suppression of body weight 
 

The body weight was measured as an evaluation of the growth of the mice. The 

body weight study of 7 weeks old males was based on the analysis of 24 wt, 39 rsk2-/y, 

22 fra1-tg and 19 fra1-tg/rsk2-/y mice. While no significant difference was found between 

wt and rsk2-/y mice at this age, a mild but significant reduction in the body weight was 

observed in the fra1-tg mice confirming previous published observations [19, 52]. At 

seven weeks of age, the weight of fra1-tg/rsk2-/y mice was approximately half of the 

weight of the wt littermates and so significantly reduced (Figure 5.1 C).  
 

 

Figure 5.1 Decreased body growth and body weight and in mice overexpressing Fra1 
Picture of 7 weeks old male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice; B) Measurement of vertebral size of 7 
weeks old male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice; C) Body weight measurement of 7 weeks old male wt, 
rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice; D) Body weight measurement of 7 weeks old female wt, rsk2-/x, fra1-tg  
and fra1-tg/rsk2-/x mice; Results represent the mean value and error bars indicate standard deviations. Asterisks 
indicate statistically significant differences. 
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Figure 5.1 D shows body weight analysis off females based on the analysis of 15 

wt, 37 rsk2-/x, 15 fra1-tg and 16 fra1-tg/rsk2-/x 7 weeks old mice. When compared to the 

wt, the rsk2-/x females showed no difference in body weight. In contrary, the weight of 

fra1-tg and fra1-tg/rsk2-/x mice were significantly decreased in comparison to the weight 

of the wt littermates.  

 

These data confirmed that the growth of Fra1 overexpressing mice was retarded. 

Furthermore, this effect was enhanced in the absence of Rsk2. 

 

5.2.4. Fra1 overexpression induced weight loss and decreased lifespan 
 

To get a more complete picture of the effect of deleting Rsk2 on the body weight 

of fra1-tg mice, mice were weighted after weaning (3 weeks old) once a week until the 

age of 63 weeks. The weight curves and the survival curves were drawn and compared 

between the different genotypes. The weight and survival data are based on the analysis 

of 9 wt, 27 rsk2-/y, 12 fra1-tg and 17 fra1-tg/rsk2-/y males and 9 wt, 30 rsk2-/x, 11 fra1-tg 

and 13 fra1-tg/rsk2-/x females. 

In Figure 5.2 A and Figure 5.2 B the weight curves of the male and female 

parental lines were compared. A slightly but not significant decreased of body weight 

could be observed in rsk2-/y mice when compared to wt males. Males overexpressing 

Fra1 displayed a mild but significant reduction in their body weight during their lifespan. 

In addition, they stopped growing and began to lose weight at the age of 17 to 18 weeks. 

Males overexpressing Fra1 survived until 28 weeks, and their half-life was approximately 

26 weeks (Figure 5.2 C). A mild but not significant mortality was also observed in rsk2-/y 

mice, whose half-life could not be deduced from the period studied.  

The reduction of body weight was more pronounced in fra1-tg/rsk2-/y mice. Their 

weight was, all along their life, significantly less than all other genotypes. After 12 weeks, 

the body weight of the fra1-tg/rsk2-/y was drastically dropping until death. Analysing the 

survival curve of the different strains indicated that none of the fra1-tg/rsk2-/y mice 

survived more than 20 weeks (Figure 5.2 C). These mice died in three distinct time 

intervals, the early interval between 3 to 5 weeks of age (25 % of mortality), the second 

one between 5 to 7 weeks (35 % of mortality) and a late one after 17 weeks of age. The 

half-life of fra1-tg/rsk2-/y (i.e. the time when 50 % of the mice are dead) was around 9 

weeks.  

Comparable data were obtained when analysing the wt, rsk2-/x, fra1-tg and fra1-

tg/rsk2-/x survival curves of the different female strains in Figure 5.2 D. The females 
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rsk2-/x weight curve was indistinguishable from the weight curve of the wt (Figure 5.2 B). 

Similar to the males, Fra1 overexpressing females displayed a mild but significant 

reduction in their body weight during all their lifespan. Mice stopped growing and began 

to lose weight at the age of 14 to 16 weeks and their half-life was around 21 weeks. No 

fra1-tg females survived after 26 weeks. Based on the survival curve of the female fra1-

tg/rsk2-/x strains, these mice were comparable to the fra1-tg females. Fra1-tg/rsk2-/x 

mice did not survived more than 23 weeks and there half-life was 20 weeks. 

 

 

 

Figure 5.2 Body weight analyses of wt, rsk2-deficient, fra1-tg and fra1-tg/rsk2-deficient mice 
through lifespan of 63 weeks 

A) Body weight analysis of male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice; B) Body weight analysis of female wt, 
rsk2-/x (n=30), fra1-tg (n=11) and fra1-tg/rsk2-/x (n=13) mice; C) Mean survival of male wt (n=9), rsk2-/y (n=27), 
fra1-tg (n=12) and fra1-tg/rsk2-/y (n=17) littermate mice; D) Mean survival of male wt (n=9), rsk2-/x (n=30), fra1-tg 
(n=11) and fra1-tg/rsk2-/x (n=13) littermate mice. Error bars indicate standard deviations.  

 



Results 
______________________________________________________________________ 

 83  

Absence of Rsk2 in fra1-tg/rsk2-/y mice or mosaic expression in some fra1-

tg/rsk2-/x littermates affected the body weight, body growth and the survival rate. Thus, 

Rsk2-deficient mice, which are fra1 transgenic, were severely growth-retarded and 

succumbed prematurely. Mosaic expression of Rsk2 in fra1-tg/rsk2-/x littermates seemed 

to affect the weight and growth rate but not survival. The phenotype was already present 

in the fra1-tg mice albeit milder and not observed in wt or rsk2-/y mice.  

 

These data are indicating that Fra1 overexpression resulted in weight loss and a 

decreased lifespan, two Fra1-dependet phenomenons (events) that may be regulated by 

Rsk2.  

 

 

5.3 Bone and fat analyses 
 

 

The separates roles of Fra1 and Rsk2 in bone cell differentiation and development 

has been established. Therefore, further question aroused as to whether Fra1 and Rsk2 

could regulate the function of each other in bone. The opposite bone phenotypes 

between the two mice models, whereby fra1 transgenic mice develop osteosclerosis [52] 

and Rsk2-deficient mice develop osteopenia [19], supported a potential interaction 

between Fra1 and Rsk2.  

 

5.3.1. Fra1 induced osteosclerosis is independent of Rsk2  
 

The histology of the bones of 7 weeks old mice were analyzed by Von Kossa 

staining of un-decalcified sections of spine (upper panel) and tibia (lower panel) (Figure 

5.3 A). In this method, the mineralized bone matrix was stained in black, whereas the not 

yet mineralized osteoid was stained in pink using counterstaining with Hematoxylin. More 

mineralized matrix could be observed in sections of spine and tibia of bones isolated 

from fra1-tg mice or fra1-tg/rsk2-/y compared to wt or rsk2-/y mice. No clear difference 

could be observed when wt and rsk2-/y or when fra1-tg and fra1-tg/rsk2-/y mice were 

compared, respectively. Histomorphometric analysis for bone volume/total volume 

(Figure 5.3 B) and osteoid volume/bone volume (Figure 5.3 C) were performed to get a 

quantitative measurement of the phenotypes. Mild but not significant reductions in rsk2-/y 

mice BV/TV (15.4±2.0 %) were found compare to wt mice (18.4±1.7 %). The drastic 

increase of fra1-tg BV/TV (47.4±3.4 %) confirmed the previously published data [52] and 
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illustrated the strong osteosclerosis that developed in fra1-tg mice. The BV/TV of fra1-

tg/rsk2-/y mice (47.4±3.3 %) indicated that Rsk2 inactivation did not correct the increase 

in bone mass induced by Fra1 overexpression. The OV/BV levels of wt (1.85±1.70 %) 

and fra1-tg (2.34±0.32 %) were similar. In rsk2-/y mice, the OV/BV levels (3.28±1.45 %) 

were increased confirming the mineralization defect that was previously described (David 

et al., 2005). Furthermore, Fra1 overexpression did not correct but rather increased the 

mineralization defect induced by Rsk2-deficiency (OV/BVrsk2-/y 3.28±1.45 % vs. 

OV/BVfra1-tg/rsk2-/y 6.87±2.30 %) (Figure 5.3 C) as shown by the increased osteoid 

areas in fra1-tg/rsk2-/y mice (Figure 5.3 D). 

 

The results show that Fra1 induced osteosclerosis is independent of Rsk2 activity 

and suggest that Rsk2 and Fra1 are acting independently in bone.  
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Figure 5.3 Fra1 induced osteosclerosis in bone is Rsk2 independent 
Picture of Von Kossa stained bone sections of 7 weeks old male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice, 
mineralized bone is stained in black, top: sections of the spine, bottom: section of the tibia; B) Histomorphological 
analysis of the bones: index of bone volume (BV) (stained black) rapport to the total volume (TV) and index of 
osteoid volume (OV) (non mineralized bone matrix) rapport to bone volume (BV);  C) Picture of trabecular bone 
sections, osteoids stained in pink are indicated by the blue arrows;  Error bars indicate standard deviations. 
Asterisks indicate statistically significant differences.  
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5.3.2. Mice overexpressing Fra1 developed a progressive lipodystrophy 
 

In order to gain insight about the origin of the growth defect and lethality, mice 

were sacrificed and dissected at 7 weeks or at 18 weeks of age. Surprisingly, the 

abdominal fat pads were completely absent in 7 weeks old male fra1-tg/rsk2-/y mice. 

This phenotype was not observed in all of the other age-matched males (Figure 5.4 A). 

Interestingly, a complete absence of fat pads could also be observed but not in all 

sacrificed fra1-tg female mice at age of 18 weeks (Figure 5.4 B). These observations 

indicate that Fra1 overexpression was leading to progressive lipodystrophy, again the 

phenotype was seen earlier in the absence of Rsk2. 

To study the effect Fra1 overexpression and the absence of Rsk2 on the 

development of fat in more detail, the fat weight/ body weight ratio were calculated in 

both males and females at 7 weeks and at 18 weeks of age. The fat to body weight 

comparison data were based on the analysis of 16 wt, 15 rsk2-/y, 12 fra1-tg and 8 fra1-

tg/rsk2-/y males at age of 7 weeks; 11 wt, 6 rsk2-/y and 7 fra1-tg males at age of 18 

weeks. The female data were generated by analyses of 7 wt, 8 rsk2-/x, 4 fra1-tg and 3 

fra1-tg/rsk2-/x females at age of 7 weeks and 12 wt, 5 rsk2-/x, 5 fra1-tg and 2 fra1-

tg/rsk2-/x females at age of 18 weeks. 

No significant difference in this ratio was observed when 7 weeks wt, rsk2-/y and 

fra1-tg males were compared (wt: 0.0101±0.0018; rsk2-/y: 0.0110±0.0036; fra1-tg: 

0.0089±0.0028; Figure 5.4 C, left panel). A total absence of abdominal fat pad was found 

in all of the fra1-tg/rsk2-/y mice and, therefore, the fat weight/ body weight ratio could not 

be calculated and was set to 0 (Figure 5.4 A). At 18 weeks of age, no significant 

difference could be observed between wt and rsk2-/y males (wt: 0.0174±0.0063; rsk2-/y: 

0.0126±0.0067; Figure 5.4 C, right panel). However, a significant difference could be 

measured between the fat pad weight/ body weight ratio of wt vs. fra1-tg males (wt: 

0.0174±0.0063; fra1-tg: 0.0045±0.0038, ***P<0.0001).  

Similar analyses have been done with females at different ages. No significant 

difference in this ratio was observed when 7 weeks or 18 weeks old wt and rsk2-/x 

females were compared (7 weeks/ wt: 0.0090±0.0012; rsk2-/x: 0.0091±0.0034; 18 

weeks/ wt: 0.0119±0.0033; rsk2-/x: 0.0120±0.0045; Figure 5.4 D). Nevertheless, the 

wide dispersion of the measurement data was remarkable in 18 weeks of age rsk2-/x 

offspring mice. This may be due to the mosaic expression of Rsk2 in the heterozygote 

females. When fra1-tg females were analyzed, a significant decrease in fat weight/body 

weight ratio was observed in the 7 weeks old fra1-tg mice (fra1-tg: 0.0056±0.0004, 

***P<0.0001). When compared to female wt, this difference drastically increased with 
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age. Indeed, most of the sacrificed fra1-tg females did not have any analyzable fat pads 

at age of 18 weeks (fra1-tg: 0.0000±0.0000, ***P<0.0001; Figure 5.4 D, right panel). 7 

and 18 weeks old fra1-tg/rsk2-/x mice (7 weeks/ fra1-tg/rsk2-/x: 0.0063±0.0072; 18 

weeks/ fra1-tg/rsk2-/x: 0.0027) showed the same trend as the fra1-tg females (Figure 5.4 

D). Fat pads were drastically reduced or absent in the analyzed mice.  

 

These data indicate that the mice overexpressing Fra1 develop a progressive 

lipodystrophy, which is more pronounced in females.  
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Figure 5.4 Absence of fat pad in Fra1 overexpressing mice lacking Rsk2 
A)Dissected abdomen of 7 weeks old male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y mice, arrow indicated white 
fat pad; B) Abdomen of 18 weeks old females wt and fra1-tg littermates, arrow indicated white fat pad; C) 
Ration between fat weight and body weight of 7 weeks old and 18 weeks old males wt, rsk2-/y, fra1-tg and 
fra1-tg/rsk2-/y mice; D) Ratio between fat weight and body weight of 7 weeks old and 18 weeks old females 
wt, rsk2-/x, fra1-tg and fra1-tg/rsk2-/x mice; Asterisks indicate statistically significant differences. 
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5.4 Adipocytes analyses in vivo, ex vivo and in vitro 
 

 

Mesenchymal cells can differentiate in osteoblast, myocytes, chondrocytes and 

adipocytes. Fra1 overexpressing mice developed progressive lipodystrophy. To 

determine the cause of the lipodistrophy, the role of Fra1 in adipogenesis was analyzed 

by in vivo, ex vivo and in vitro experiments. Adipogenesis is a process by which 

pluripotent mesenchymal cells are differentiating into mature adipocytes. This process 

involves several steps including an increase in the size of the adipocytes in function of 

the stage of maturity. 

 

5.4.1. Adipocytes analyses in vivo 
 

5.4.1.1. In vivo: Effect of Fra1 overexpression and absence of Rsk2 on adipocytes 
size 

 

Histological analyses of cell sizes are an indication of phenotypes that could affect 

maturity of the cells. To analyze the cell size Hematoxylin and Eosin (H&E) stains of 

paraffin embedded fat pad sections of 7 weeks and 18 weeks old male and female 

littermates were done. The following genotypes where analyzed wt mice, rsk2-deficent 

mice, fra1 overexpressing mice and fra1-tg mice lacking Rsk2.  

Figure 5.5 A shows sections of fat pads from males of the various genotypes. While no 

obvious differences in the size of H&E stained adipocytes were seen between 7 and 18 

weeks old wt and rsk2-/y males, a clear decrease in the cell size of 7 weeks old fra1-tg 

male mice could be observed (Figure 5.5 A). Fra1-tg mice lacking Rsk2 did not have any 

fat pad that could be analysed. No changes in cell dimensions could be ascertained in 18 

weeks old wt and Rsk2-deficient male mice optically. However, the reduction induced by 

Fra1 was significantly more pronounced in 18 weeks old Fra1 overexpressing mice 

(Figure 5.5 A). 

The cell density was calculated to quantify the decrease of the size of the 

adipocytes in fra1-tg fat pads. For this, cells contained in define surface were counted 

(Figure 5.5). The cell densities reported to the wt were expressed in percent (wt = 100 

%). No significant differences between 7 weeks old wt fat pads and rsk2-/y fat pads were 

measured (rsk2-/y = 108.36 %) and between the fat pads of wt  and rsk2-/y at 18 weeks 

of age (rsk2-/y = 88.64 %). A significant increase of 52.60 % at age of 7 weeks and of 



Results 
______________________________________________________________________ 

 90  

107.11 % at age of 18 weeks in the cell densities were observed for fra1-tg males 

(Figure 5.5 B).  

 

Figure 5.5 Fra1 overexpression reduced adipocyte size and cell density in fat pad of male mice 
A) Hematoxylin & Eosin (H&E) staining of paraffin embedded fat pad sections of 7 and 18 weeks old male wt, 
rsk2-/y and fra1-tg mice (phase contrast microscopy, 100x magnifications); B) Cell density in fat tissue of 7 weeks 
and 18 weeks old male wt , rsk2-/y, fra1-tg and fra1-tg/rsk2-/y (7 weeks = no fat pads; 18 weeks = no survival)  
mice; Asterisks indicate statistically significant differences.  

 

 

The adipocytes were also analysed in females at age of 7 and 18 week. The wt, 

rsk2-/x, fra1-tg and fra1-tg/rsk2-/x mice were compared. In wt and rsk2-/x mice, no 

differences were visible in the H&E staining but adipocytes also appeared smaller in 7 

weeks females fat pad mice of fra1-tg mice (Figure 5.6 A). Analysis of fat pad sections of 

18 weeks old females overexpressing Fra1 were not possible, because of a complete 

absence of fat pads in the ageing fra1-tg females (Figure 5.6 A). 

The cell density was calculated in 7 and 18 weeks old females. No significant 

changes in the density of the cells were measured when wt and rsk2-/x were compared 
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(wt = 100 %; rsk2-/x = 108.36 %). A significantly increased density was calculated in 7 

weeks old fra1-tg females (fra1-tg = 152.60 %; Figure 5.6 B). The data derived from fra1-

tg/rsk2-/x mice indicates substantial difference between the littermates (7 weeks = 

152.60 % and 18 weeks = 59.77 %). From two 18 weeks old fra1-tg/rsk2-/x mice which 

were analyzed only one owned fat pads. 

 

These data suggested that Fra1 overexpression in male and female mice led to 

progressive lipodystrophy most likely due to a block in adipocyte maturation.  

 

 

 

Figure 5.6 Fra1 overexpression reduced adipocyte size and cell density in the fat pad of female 
mice 

A) Hematoxylin & Eosin (H&E) stains of paraffin embedded fat pad sections of 7 and 18 weeks old female wt, 
rsk2-/x, fra1-tg and fra1-tg/rsk2-/x mice (phase contrast microscopy, 100x magnifications); B) Cell density in fat 
tissue of 7 weeks and 18 weeks old female wt, rsk2-/x, fra1-tg and fra1-tg/rsk2-/x mice; Asterisks indicate 
statistically significant differences. 
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5.4.1.2. In vivo: Fra1 overexpression in abdominal fat pad affects adipogenesis 
 

To determine the cause of the phenotype (fra1-induced inhibition of 

adipogenesis), markers for fat cell differentiation were analysed by Polymerase Chain 

Reaction (PCR). The mRNAs were isolated and amplified to cDNA in order to look at 

Fra1 expression in abdominal fat pads isolated from wt and fra1-tg mice (Figure 5.7 A). 

Reverse Transcription - PCR (RT-PCR) in fat tissue of 7 weeks old male mice evaluated 

the expression of endogenous (endo) and exogenous (exo) Fra1 genes. Fra1 (endo) was 

found to be expressed in the fat pad of wt mice. Fra1 expression was increased in the fat 

pad of fra1-tg mice due to the expression of the transgenic (exo) gene as revealed by the 

use of primers specifically amplifying the transgene (Figure 5.7 A).  

Expression of adipocyte markers were analysed using mRNAs from abdominal fat 

pads isolated from 7 weeks, 9 weeks and 18 weeks old wt and fra1-tg mice. Figure 5.7 B 

show the relative expression of total Fra1 cDNA levels of 7 weeks, 9 weeks and 18 

weeks old wt and fra1-tg mice. Very low levels of Fra1 were detected in 18 weeks old wt 

fat pad, a highest cDNA level was found in 18 weeks old fra1-tg fat pad. Thus, Fra1 

expression was increasing with age.  

Adipocyte differentiation is associated with expression of several adipocyte-

specific genes including Glut4 and aP2. The levels of expression of Glut4 and aP2 were 

determined in the fat pad of fra1-tg mice compared to wt mice. The expression of both 

was found to be decreased in fra1-tg mice (Figure 5.7 C) confirming that Fra1 

overexpression was decreasing fat maturation.  
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Figure 5.7 Increased expression of Fra1 in the fat of fra1-tg mice and reduced expression of 
adipocyte differentiation markers 

A) Expression of the Fra1 transgene (exo) and expression of total Fra1 (transgene and endogen) in 7 weeks old 
male wt and fra1-tg mice; B) Relative expression of total Fra1 related to HPRT in 7, 9 and 18 weeks old wt and 
fra1-tg mice measured by real time PCR; C) Relative expression of the adipocyte markers Glut4 and aP2 related 
to HPRT in 18 weeks old littermates measured by real time PCR; Results represent one animal experiment. 

 

 

 

5.4.1.3. In vivo: Fra1 overexpression decreased C/EBPα mRNA and PPARγ mRNA 
expression 

 

The potential inhibitory actions of Fra1 on adipocyte differentiation were further 

characterized by determining its effect on expression of genes known to control 

adipocytes maturation such as PPARγ and C/EBPα. Their expression was quantified by 

semi-quantitative PCR analysis of samples derived from the fat pads of 7 weeks and 18 

weeks old male wt and fra1-tg mice. 
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Figure 5.8 A shows cDNA analysis from 7 weeks old fra1-tg and wt males. In the 

fat pad of fra1-tg overexpressing mice PPARγ cDNA band were visible until the dilution 3 

(1:100) compare to bands from wt, that could be followed until the dilation 4 (1:1000) 

(panel 1). The limiting dilution of the cDNA to detect HPRT were found to be 1:10 for 7 

weeks old fra1-tg mice and 1:100 for 7 weeks old wt mice (panel 2). Thus, PPARγ mRNA 

expression was decreased in fra1-tg fat pads compare to the wt. 

At 18 weeks, the expression of Fra1 transgene was analyzed. Figure 5.8 B panel 

1 shows that Fra1 (exo) was as expected only detectable in the fat pad of fra1-tg mice. 

The limiting dilution to detect PPARγ and C/EBPα was 1:10. Both adipocytes markers 

were increased in these fra1-tg samples compared to wt PPARγ at 1:100 and C/EBPα at 

1:100 (panel 2 and 3). The limiting dilutions of the cDNA to detect HPRT were found to 

be 1:100 fold or both mice phenotypes (panel 4). These results indicate that Fra1 

overexpression resulted in a decreased expression of C/EBPα and PPARγ in the fat pad 

of mature mice. 

 

 

 

 

Figure 5.8 Fra1 overexpression reduced marker genes of mature adipocytes 
Expression of PPARγ related to HPRT in the fat pad of wt and fra1-tg mice analyzed by semi-quantitative PCR; B) 
Expression of PPARγ, C/EBPα and Fra1 related to HPRT in the fat pad wt and fra1-tg mice analyzed by semi-
quantitative PCR; PPARγ, C/EBPα, Fra1 and HPRT cDNA were amplified with PCR program described in 
methods. Probes for each amplified were diluted in followed steps: 1 = 1µl of original cDNA amplified, 2 = 1:10 of 
original cDNA amplified, 3 = 1:100 of original cDNA amplified, 4 = 1:1000 of original cDNA amplified, 5 = 1:10000 
of original cDNA amplified and 6 = H2O. 
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5.4.2. Adipocytes analyses ex vivo 
 

The data obtained from in vivo experiments by histology and the decreased 

expression of markers for mature adipocytes, such as C/EBPα and PPARγ indicated that 

the phenotype observed could be due to a decreased differentiation of adipocytes in 

fra1-tg mice. The question arose whether Fra1 could directly interfere in a cell 

autonomous manner with adipocyte differentiation.  

 

5.4.2.1. Ex vivo: Fra1 overexpression reduces adipocytes differentiation  
 

Ex vivo experiment with isolated murine primary osteoblast cells (mPOBs) 

obtained by digestion of calvarias from newborn mice can be use as an adipocyte 

differentiation model. To investigate the effect of Fra1 overexpression on adipocyte 

differentiation, mPOBs were isolated from wt and fra1-tg littermates and their capacity to 

differentiate into adipocytes was compared ex vivo. The cells were grown until 

confluence and then induced to differentiate by adding an adipogenic cocktail (AD). The 

adipocyte solution includes Insulin, Dexamethasone and IBMX. The differentiation was 

monitored by Oil Red O staining that revealed the adipose content of vacuoles included 

in adipocytes, as well as by measuring the expression of adipocyte markers by 

Quantitative Real-Time PCR (QRT-PCR).  

Adipocyte differentiation was efficiently induced by the treatment of wt mPOBs 

(mPOBswt) by the adipogenic cocktail confirming that the cell preparation contained 

adipogenic progenitor cells (Figure 5.9). A clear inhibition of adipocyte differentiation was 

observed when mPOBsfra1-tg isolated from fra1-tg mice were used (Figure 5.9). 
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Figure 5.9 Fra1 overexpression decreased lipid filling of mPOBs cultured in the absence or 
presence of an adipogenic cocktail  

A) wt and fra1-tg mPOBs where cultured over 15 days in absence or presence of Insulin, Dexamethasone and 
IBMX (AD cocktail) in six-well plates. Cells were fixed and cellular lipids were stained with Oil Red O.  B) 200x 
magnification of Oil Red O stained mPOBswt and mPOBsfra1-tg. Experiments were repeated three times. 
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5.4.2.2. Ex vivo: Fra1 overexpression reduces the expression of adipogenic 
markers  

 

Early mesenchymal progenitor cells are pluripotent cells, which are expressing all 

key genes involved in mesenchymal cell fate decision, i.e. Runx2 and its target Osx1 for 

osteoblastogenesis, MyoD for myocytes differentiation, Sox9 for chondrocytes, PPARγ 

and C/EBPα for adipocytes as well as Pref-1, a secreted protein that can block both 

adipogenesis and osteoblastogenesis. 

To determine whether the block in adipocyte differentiation observed in Fra1 

overexpressing cells could be caused by a change in the expression of these key genes, 

Quantitative Real-Time PCR (QRT-PCR) were performed at day 0 (when the cells are 

reaching confluence) of the cultures and after day 15 where wt cells are fully differentiate 

to adipocytes. The levels of expression of mRNA coding for proteins that characterized 

fully mature adipocytes were quantified in two independent experiments.  

 

Quantitative Real-Time PCR analysis – day 0 
 

QRT-PCR analysis confirmed that Fra1 was expressed in wt and fra1-tg mPOBs 

(Figure 5.10 diagram 1). The level of expression was greatly increased and stable in the 

mPOBs isolated from fra1-tg mice. 

Expressions of Runx2, Osx1, MyoD, PPARγ, Pref-1 and Sox9 were not clearly 

affected by Fra1 overexpression (Figure 5.10 diagram 2, 3, 4, 5, 6 and 7). Only C/EBPα 

was found to be downregulated (Figure 5.10 diagram 8).  

This data suggested that Fra1 overexpression had no influence on Runx2 or Osx1 

expression and therefore no effect on the commitment to osteoblast. Furthermore, 

myogenesis and chondrogenesis were not favoured in fra1-tg mPOBs. However, Fra1 

may be able to impair adipogenesis by blocking C/EBPα expression. 
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Figure 5.10 Effect of Fra1 overexpression on cell fate decision in mPOBs at day 0 
Expression of total Fra1, Runx2, Osx1, MyoD, PPARγ, Pref-1, Sox9 and C/EBPα, related to HPRT in mPOBs 
analyzed by Quantitative Real-Time PCR; The samples were taken when the mPOBswt and mPOBsfra1-tg 
reached confluence (day 0 of the treatment). The graph shows the data of two experiments indicated by 1 and 2. 
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Quantitative Real-Time PCR analysis – day 15 
 

The relative expression levels of the Fra1 (total), Sox9, Runx2, Pref-1, PPARγ and 

C/EBPα were also measured by QRT-PCR on samples isolated on day 15 of the culture 

in the absence (minus) or the presence (plus) of the adipogenic cocktail. 

Low levels of Fra1 RNA expression were found in untreated mOBswt. Fra1 

expression was found to be slightly increased in response to adipogenic stimulation in 

treated mOBswt (Figure 5.11 diagram 1). High levels of Fra1 expression were found in 

cells isolated from fra1-tg mice in both untreated and treated experiments.  

In wt and fra1-tg mPOBs expression of Sox9 and Runx2 were not effected in 

absence or presence of adipocytes differentiation cocktail (Figure 5.11 diagram 2 and 

diagram 3). 

Although, in the first experiment, Pref-1 was found to be highly upregulated in 

Fra1 overexpressing cells after 15 days AD stimulation, the second experiments did not 

confirm these data. In both experiments, a highest level of Pref-1 expression was found 

in the un-treated control group of fra1-tg cells compared to the wt control group (Figure 

5.11 diagram 4).  

In vivo results showed decreased PPARγ expression in fra1-tg fat pad. Ex vivo 

contradictory data were obtained when comparing the two experiments. The AD 

treatment could strongly induced PPARγ expression in wt mPOBs in both experiments. 

While, a similar effect was seen in one of the experiment using fra1-tg mPOBs, a 

decreased expression for PPARγ was observed in the second experiment (Figure 5.11 

diagram 5).  

A decreased expression of C/EBPα was found in the fat pad of wt and fra1-tg 

mice. Ex vivo, the expression of C/EBPα RNA was found to be increased in response to 

AD stimulation of mPOBswt. While an increased C/EBPα expression was also found in 

stimulated cells overexpressing Fra1, the effect was greatly reduced. Thus, a clear 

change in the expression level of C/EBPα could be measured in cells overexpressing 

Fra1 induced to differentiate to adipocytes. These data suggest that downregulation of 

C/EBPα may be the mechanism by which Fra1 impairs adipogenesis of mPOBs (Figure 

5.11 diagram 6). 



Results 
______________________________________________________________________ 

 100  

 

Figure 5.11 Effect of Fra1 overexpression on cell fate decision in absence or presence of 
adipocyte cocktail AD at day 15 

Expression of total Fra1, Sox9, Runx2, Pref-1, PPARγ, C/EBPα, and related to HPRT in mPOBs analyzed by 
Quantitative Real-Time PCR; The samples were taken when the mPOBswt and mPOBsfra1-tg reached 
adipogenic character (day 15 of the treatment). The graph shows the data of two experiments indicated by 1 and 
2. 
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5.4.3. Adipocytes analyses in vitro 
 

5.4.3.1. In vitro: Derivation of adipogenic cell line used for retrovirus infection  
 

A cell line with adipogenic potential was derived by successive passage of murine 

mesenchymal cells isolated from rsk2-/y mouse calvaria. The isolated cells, derived from 

three calvarias of rsk2-/y mice, were merged and cultured until passage 27 to obtain an 

immortalised mesenchymal cell line that are called mOBsrsk2-/y (described in methods). 

Before infecting the cells with different vectors for Fra1 overexpression, their capacity to 

differentiate to adipocytes was tested in vitro. Adipocyte differentiation experiments were 

conducted which have shown by Oil Red O staining that these mPOBsrsk2-/y were able 

to differentiate into adipocytes (Figure 5.12). Thus, the retrovirus infection could be 

carried out using this cell line. 

 

Figure 5.12 Equal lipids filling of mPOBswt vs. mPOBsrsk2-/y cultured in the absence or 
presence of adipogenic cocktail  

wt and rsk2-/y mPOBs where cultured over 15 days in absence or presence of Insulin, Dexamethasone and IBMX 
(AD cocktail) in six-well plates. Cells were fixed and cellular lipid was stained with Oil Red O. 200x magnification. 
Experiments were repeated three times. 
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Two different strategies were used to generate mOBsrsk2-/y overexpressing Fra1. 

First, mOBsrsk2-/y were infected with an empty vector as control called pBabe-empty 

and a vector pBabe, which contains fra1 cDNA (pBabe-Fra1) (gift from M. Bussilinger´s 

laboratory, IMP Vienna, Austria). After puromycine selection, a population of cells that 

may constitutively expressing Fra1 were isolated and further characterised by 

comparison with selected cells infected with the empty vector. Successful expression of 

Fra1 from the constructs could be observed in pBabe-Fra1 transfect mOBsrsk2-/y cells 

(Figure 5.13 A and B).  

In the second study, a retroviral vector was used to express a hybrid protein 

consisting of the fusion of the rat Fra1 with the oestrogen receptor ligand-binding 

domain. The expression of the fusion protein was under the control of the Moloney 

murine sarcoma virus long terminal repeat (MSCV). The vector includes a neomycin 

phosphotransferase gene driven by the Simian virus 40 early promoter enabling 

selection for transduced cells. This virus vector (pMSCV-FraER) should produce a form 

of Fra1, which was kept into the cytoplasm and was therefore transcriptional inactive. 

Upon addition of estradiol (E2), the fusion protein was transferred into the nucleus and 

was now becoming transcriptional active. This setting would allow to tightly controlling 

the time when Fra1 was activated. After selection, a population of cells that may express 

FraER were isolated and further characterised by comparison with selected cells infected 

with the control vector pMSCV-Neo. Successful expression of Fra1 can be observed in 

Figure 5.13 A and Figure 5.13 B. 

 

5.4.3.2. In vitro: Fra1 expression in transfect mOBsrsk2-/y  
 

The mOBsrsk2-/y were infected with the various vectors and cultured under 

selection pressure until resistant population of cells could be expanded. Subsequently, 

the level of expression of Fra1 was controlled in the selected populations. An increase 

level of Fra1 was detected by PCR in cells infected with pBabe-Fra1 (Figure 5.13 A) as 

well as pMSCV-FraER (Figure 5.13 A) when compared to the empty vector. 

Western blot analyses were performed to determine whether the increased 

amounts of RNA were resulting in increased expression of the protein. An increase in the 

amount of a 45 kDa protein was detected in the nuclear extract from mOBsrsk2-/y-

pBabe-Fra1 when compared to mOBsrsk2-/y-pBabe-empty (5.13 B). Thus, Fra1 was 

expressed at low level in mOBsrsk2-/y and a clear increase in Fra1 expression was seen 

in nuclear extract (NE) isolated from mOBsrsk-2/y infected with pBabe-Fra1. Detection of 

ß-Actin was used as loading control.  
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The estradiol-inducible expression of Fra1 was clearly seen in nuclear extracts 

(NE) isolated from mOBsrsk2-/y infected with pMSCV-FraER stimulated with E2 over a 

time of 3 hours (Figure 5.13 B).  A band of 70 kDa corresponding to the size of the fusion 

protein was detected in the nuclear extracts of the cells infected with the pMSCV-FraER 

even in the absence of estradiol, but not in the control vector pMSCV-Neo. In addition, 

the intensity of the band was increasing upon addition of estradiol (Figure 5.13 B). To 

better characterize the kinetic of induction of the fusion protein nuclerar extracts were 

isolated from mOBsrsk2-/y - pMSCV-Neo and mOBsrsk2-/y-pMSCV-FraER following 

treatment with 1µM β-estradiol (E2) for an increasing time between 0 and 30 minutes. 

The expression of Fra1 was analysed by Western blot. The nuclear accumulation of 

Fra1-ER fusion protein was first seen after five minutes of treatment with β-estradiol in 

mOBsrsk2-/y-pMSCV-FraER but not in mOBsrsk2-/y-pMSCV-Neo (Figure 5.13 C). The 

nuclear accumulation of Fra1-ER fusion protein was increasing with time after 10 min, 15 

and 30 min of 1µM β-estradiol treatment.  

 

The data demonstrated that Fra1 was overexpressed in mOBsrsk2-/y-pBabe-

Fra1. Furthermore, the infection with the retrovirus vectors encoding Fra1 resulted in 

efficient increase in Fra1 expression in mOBsrsk2-/y-pMSCV-FraER treated with 

estradiol. Some leakiness was also observed when the Fra1-ER system was used most 

likely due to the presence of an oestrogen agonists in the media or serum 

complementing the media. 
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Figure 5.13 Constitutive and estradiol-inducible overexpression of Fra1 in mOBsrsk2-/y 
A) Expression of total Fra1 relative to HPRT in mOBsrsk2-/y  infected with vectors pBabe-Fra1, pMSCV-FraER 
and mean of the relative Fra1 expression in mOBsrsk2-/y infected with pBabe-empty (V) and pMSCV-Neo (V), 
relative expression measured using PCR; B) Fra1 detection by Western blot analysis in nuclear extracts of 
mOBsrsk2-/y infected with pBabe-empty and pBabe-Fra1; bottom: expression of nuclear Fra-1-estradiol receptor 
fusion protein (Er-Fra1) measured by Western Blot analysis in mOBsrsk2-/y infected with pMSCV-Neo and 
pMSCV-FraER, cells were treated for 0, 1 and 3 hours with 1µM β-estradiol (E2); loading control: β-Actin; C) 
Kinetic of induction of ER-Fra1 in mOBsrsk2-/y infected with pMSCV-FraER, Western Blotting of nuclear extracts 
isolated from mOBsrsk2-/y infected with pMSCV-Neo or mOBsrsk2-/y infected with pMSCV-FraER after 
stimulation with 1µM β-estradiol (E2) for the indicating time, loading control: β-Actin. 
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5.4.3.3. In vitro: Characterisation of growth and shape differences in transfected 
mOBsrsk2-/y cell lines  

 

The growth properties of the transfected mOBsrsk2-/y with pBabe-empty, pBabe-

Fra1, pMSCV-Neo and pMSCV-FraEr were compared. The cells were plated in six-well 

plates and counted once per day over a period of 8 days. Three phases could be 

distinguished in the growth curves, in the first one (from day 1 to 3), the cells were 

growing very slowly, in the second one, and (between day 3 and day 5) a typical log 

phase was observed. Finally, the cells stop to grow at day 6 (Figure 5.14 A). The growth 

curves of the four different cell lines were similar all along the time course. Therefore, 

neither the process of selection nor the overexpression of Fra1 had an effect on the 

growth of the mOBsrsk2-/y. 

 

Figure 5.14 Characterisation of Fra1 transfected murine Rsk2-deficient cells 
A) mOBsrsk2-/y were infected with different retrovirus vectors and growth were measured; B) Picture of treated or 
untreated pMSCV-Neo or pMSCV-FraER transfected mOBsrsk2-/y; only transfected mOBsrsk2-/y with pMSCV-
FraER and stimulated with 1µM ß-estradiol (+E2) leads to change in the morphology (picture 5.14 B/ d – pMSCV-
FraER(+E2)). Cellular lipids were stained with Oil Red O staining, 200x magnification. 
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The morphology of the cells were analysed to look if Fra1 overexpression has an 

effect on cell shape. It could be observed, that Fra1 overexpression was leading to 

changes in the morphology of the mOBsrsk2-/y transfected with pMSCV-FraER. When 

treated with estradiol, the mOBsrsk2-/y-pMSCV-FraER cells but not the mOBsrsk2-/y-

pMSCV-Neo acquired a longer and thinner shape similar to myocytes. This observation 

could be made in the absence of adipogenic stimulation. These morphological changes 

were always connected to Fra1 overexpression since they were not observed in 

mOBsrsk2-/y-pMSCV-FraER not stimulated by estradiol (mOBsrsk2-/y-pMSCV-FraER(-E2) 

(Figure 5.14 B). The same observation could be made comparing mOBsrsk2-/y-pBabe-

empty to mOBsrsk2-/y-pBabe-Fra1. 

 

5.4.3.4. In vitro: Effect of pBabe-Fra1 overexpression on mOBsrsk2-/y 
differentiation – Fra1 is inhibiting adipogenesis 

 

The mOBsrsk2-/y-pBabe-Fra1 cell line and the control cell line mOBsrsk2-/y-

pBabe-empty were cultured until confluence and treated every third day without or with 

Insulin, Dexamethasone and IBMX over 21 days. The cells were fixed and stained with 

Oil Red O to monitor the efficiency of the differentiation. 

No Oil Red O positive colonies were seen in mOBsrsk2-/y-pBabe-empty or 

mOBsrsk2-/y-pBabe-Fra1 in absence of adipogenic cocktail (Figure 5.15 B/ a and b). Oil 

Red O positive colonies were seen in mOBsrsk2-/y-pBabe-empty cultured in the 

presence of the adipogenic cocktail over 21 days (Figure 5.15 B/ c) but not in mOBsrsk2-

/y-pBabe-Fra1 cultured in the same condition (Figure 5.15 B/ d). 

Thus, Fra1 overexpression was decreasing the capacity of cells to differentiate 

into adipocytes. These results were comparable to those obtained with ex vivo cultures 

of Fra1 overexpressing primary osteoblast. 
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Figure 5.15 Fra1 overexpression blocks triglyceride accumulation in mOBsrsk2-/y cell 
Infected mOBsrsk2-/y with pBabe-empty vector (picture 5.15 a and 5.15 c) or pBabe-Fra1 vector (picture 5.15 b 
and 5.15 d) where cultured over 21 days in absence or presence of Insulin, Dexamethasone and IBMX (AD 
cocktail), cellular lipid was stained with Oil Red O, 200x magnification. 

 

 

5.4.3.5. In vitro: Effect of estradiol-induced pMSCV-FraER expression on 
mOBsrsk2-/y differentiation 

 

Similar experiments were performed using the mOBsrsk2-/y-pMSCV-Neo and 

mOBsrsk2-/y-pMSCV-FraER cell lines. Again, no Red Oil positive colonies were seen in 

any of the cultures in the absence of adipogenic cocktail independently of the addition of 

estradiol (Figure 5.16/ a - d). Red Oil positive colonies were seen in mOBsrsk2-/y-

pMSCV-Neo and mOBsrsk2-/y-pMSCV-FraER cultured in the presence of the 

adipogenic cocktail (Figure 5.16/ e and f). 

Addition of estradiol did not affect the formation of adipocytes in mOBsrsk2-/y-

pMSCV-Neo culture (Figure 16/ g). Red Oil positive colonies were also seen in 

mOBsrsk2-/y-pMSCV-FraER cultured in the presence of the adipogenic cocktail (Figure 

16/ f) but this effect was totally blocked by addition of estradiol which activated Fra1 

(Figure 5.16/ h). Thus, Fra1 overexpression seemed to direct inhibit adipocyte 

differentiation of mesenchymal progenitors. 
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Figure 5.16 Estradiol induced Fra1 overexpression blocks triglyceride accumulation in 
mOBsrsk2-/y cell infected with pMSCV-FraER 

Infected mOBsrsk2-/y with pMSCV-Neo vector (picture 5.31 a, c, e and g) or pMSCV-FraER vector (picture 5.31 
b, d, f and h) where stimulated with (+E2) or without (-E2) estradiol over 21 days in absence (control) or presence 
of Insulin, Dexamethasone and IBMX (AD cocktail). Cellular lipids were stained with Oil Red O, 200x 
magnification. 
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To confirm these observations, the level of expression of markers for adipocyte 

differentiation (C/EBPα, PPARγ and Glut4) as well as markers for osteoblast 

differentiation (Runx2 and Osx1) or chondrocytes (Sox9) were measured at day 0 and at 

day 21. All three markers for adipocytes were found to be downregulated in cells 

overexpressing Fra1; this effect was dependent on Fra1 activation by estradiol in the 

case of mOBsrsk2-/y-pMSCV-FraER (Figure 5.17).  

These data indicated that Fra1 is indeed inhibiting adipocyte differentiation. While 

no correlation between Fra1 overexpression and the level of Runx2 expression could be 

established, the adipogenic stimulation combined with Fra1 overexpression was 

decreasing Osx1 expression (Figure 5.17 B). In these conditions, Sox9 expression was 

not affected. Thus, Fra1 overexpression seems to specifically block adipogenesis by a 

mechanism that does involve increased osteoblastogenesis or chondrogenesis. 

Next, the expression levels of markers for commitment of mesenchymal cells to 

osteoblasts (Runx2 and Osx1), as well to chondrocytes (Sox9), or to adipocytes (PPARγ 

and C/EBPα) were measured in samples isolated at day 0 of the treatment (e.g. when 

the cells reached confluence) in order to determine whether Fra1 overexpression could 

affect cell fate decision. Fra1 overexpression did not clearly affect the expression of 

Runx2, Osx1 or Sox9, but did increase the expression of PPAR� and decreased 

C/EBPα (Figure 5.17 A)  

 

These data indicated that Fra1 overexpression might be inhibiting adipogenesis 

by directly downregulating C/EBPα, without affecting the other lineage decisions. 
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Figure 5.17 Effect of constitutive and induced Fra1 overexpression on mesenchymal cell fate decision 
(day 0) and on differentiation after 21 days of treatment with adipogenic stimuli  

A) Day 0 and B) Day 21 expression of Glut4, PPARγ, C/EBPα, Runx2, Osx1 and Sox9 in Fra1 infected cells 
relative to the level in vector infected cells measured by  PCR ; blue columns: mOBsrsk2-/y infected with pMSCV-
FraER (-E2) without Estradiol treatment, light blue columns: mOBsrsk2-/y infected with pMSCV-FraER (+E2) with 
estradiol treatment,  red columns: mOBsrsk2-/y infected with pBabe-Fra1. 
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5.4.3.6. In vitro: Analysis of the inhibitory mechanism of action of Fra1 on 
adipogenesis 

 

Adipogenesis in murine osteoblast (mOBsrsk2-/y) was induced in vitro by the 

stimulation of progenitor cells with cocktail containing Insulin, the glucocorticoid agonist 

Dexamethasone and IBMX. All three molecules are acting via different pathways.  

Insulin is a growth factor which is binding to a surface transmembrane receptor 

that activates downstream cascades including the PI3K pathway and the MAPK/ ERK 

pathway. Dexamethasone is binding to a cytosolic steroid receptor, which is then 

transferred to the nucleus where it can act as a transcription factor. IBMX is a non-

specific inhibitor of cAMP and cGMP phosphodiesterases, which leads to an increased 

cAMP level. This increase activates PKA and contributes to adipogenesis by inducing the 

expression of CREB protein. Therefore, it was postulated that Fra1 overexpression might 

interfere with one of this pathways in order to inhibit adipogenesis. 

 

5.4.3.6.1. Fra1 overexpression prevents Dexamethasone-induced growth inhibition  
 

Glucocorticoids are known to block the growth of murine osteoblast cells. 

Therefore the effect of Dexamethasone on the growth of mOBsrsk2-/y-pBabe-empty and 

mOBsrsk2-/y-pBabe-Fra1 was compared. The cells were plated in six-well plates, grown 

with or without addition of 10-6 M Dexamethasone for 5 days and counted. 

As expected, a 40 % decrease in the number of cells was measured when 

mOBsrsk2-/y-pBabe-empty were treated with Dexamethasone. The decrease was only 

of 10 % when mOBsrsk2-/y-pBabe-Fra1 were cultured with the hormone (Figure 5.18 A). 

Thus, overexpression of Fra1 was protecting against the effect of glucocorticoids 

on the growth of the cells. 

 

5.4.3.6.2. The glucocorticoid receptor is downregulated in cells overexpressing 
Fra1 

 

To gain insight into the mechanism by which Fra1 is protecting the cells against 

corticoid-induced growth inhibition, the levels of expression of the glucocorticoid receptor 

in mOBsrsk2-/y-pBabe-empty and mOBsrsk2-/y-pBabe-Fra1 were compared. Western 

blot analyses were performed to detect the glucocorticoid receptor with an antibody 

directed against it and β-Actin was used as a loading control. Three different cell extracts 

were prepared. First, a separation of the cytosolic and nuclear protein fraction (Figure 

5.18 B), second using a denaturating buffer (SDS buffer) to prepare total cell extract 
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(Figure 5.18 C), and third using a non-denaturating buffer (Frakelton) to prepare total 

extract (Figure 5.18 C). A band with the size of the glucocorticoid receptor was found to 

be expressed at a lower level in all extracts isolated from mOBsrsk2-/y-pBabe-Fra1 

(Figure 5.18 B and C). 

Thus, the decreased response to glucocorticoids observed in cells overexpressing 

Fra1 was likely to be cause by the decreased expression of the glucocorticoid receptor. 
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Figure 5.18 Fra1 overexpression prevents Dexamethasone-induced growth inhibition and 
glucocorticoid receptor is downregulated in cells overexpressing Fra1 

A) Reduced sensitivity to Dexamethasone treatment of OBs infected with pBabe-fra1 (Fra-1) compared to OBs infected with 
pBabe (Vector), treatment with 10µM Dexamethasone (+) and without Dexamethasone (-) statistical significant differences 
are indicated by asterisks. B) WB analysis of glucocorticoid receptor protein in OBs infected with pBabe-fra1 (Fra-1) and 
pBabe (Vector), NE= Nuclear extract, CE= Cytosolic extract. C) WB analysis of total amount of glucocorticoid receptor 
protein. Left: total protein extraction by Frakelton buffer, right: total protein extraction by SDS sample buffer, loading control 
in both western blots: β-Actin. 
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5.5 Spleen analyses 
 

The spleen is both, a major lymphoid organ and an efficient blood filtration system. 

As already described fra1 transgenic mice develop splenomegaly [52]. This was probably 

due to a bone mass increase, which causes a severe reduction of space in the bone 

cavity harbouring the bone marrow, the major site of haematopoiesis. The reduction of 

space in the bone effects the cellular composition in secondary lymphoid organs. To 

assess whether combined Fra1 overexpression and Rsk2-deficiency not only affects the 

longitudinal growth of bone [Chapter 5.2.2.] and fat tissue [Chapter 5.3.2.], but also the 

spleen morphology and function, comparative spleen analyses of wt, rsk2-/y, rsk2-/x, 

fra1-tg, fra1-tg/rsk2-/y and fra1-tg/rsk2-/x mice were performed.  

 

5.5.1. Rsk2-deficiency can rescue Fra1 overexpression induced splenomegaly  
 

Representative photographs of spleens isolated from 7 weeks old male wt, rsk2-

/y, fra1-tg and fra1-tg/rsk2-/y mice are shown in Figure 5.19 A. Whereas spleens of fra1-

tg male mice showed a significant increase of organ size compared to wt mice, no sign of 

splenomegaly was observed in the case of rsk2-/y and fra1-tg/rsk2-/y mice. However, 

spleens of male fra1-tg/rsk2-/y mice appeared to be rather anaemic when compared to 

wt and rsk2-/y spleens, this may indicate a disturbance of the red blood cell compartment 

in these mice.  

In common with the analysis of male mice, female fra1-tg mice showed signs of 

splenomegaly at both 7 and 18 weeks of age, whereas spleens of rsk2-/x mice were 

rated normal when compared to wt mice (Figure 5.19 B). In the case of female mice, 

splenomegaly was additionally observed for 7 weeks old fra1-tg/rsk2-/x mice and 

occasionally also for 18 weeks old fra1-tg/rsk2-/x mice. 
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Figure 5.19 Rsk2-deficiency can rescue Fra1-induced splenomegaly  
A) Picture of 7 weeks old male rsk2-/y, fra1-tg and fra1-tg/rsk2-/y spleens; B) Picture of 18 weeks old female wt 
and fra1-tg spleens; C) Ratio between spleen weight and body weight of 7 weeks old and 18 weeks old males wt 
(7weeks/ n=16; 18weeks/ n=11), rsk2-/y (7weeks/ n=15; 18weeks/ n=6), fra1-tg (7 weeks/ n=12; 18 weeks/ n=7) 
and fra1-tg/rsk2-/y (7 weeks/ n=8; 18 weeks/ n=0) mice; D) Ratio between fat weight and body weight of 7 weeks 
old and 18 weeks old females wt (7 weeks/ n=7; 18 weeks/ n=12), rsk2-/x (7 weeks/ n=8; 18 weeks/ n=5), fra1-tg 
(7 weeks/ n=4; 18 weeks/ n=5) and fra1-tg/rsk2-/x (7 weeks/ n=3; 18 weeks/ n=2) mice. Standard deviations are 
indicated by error bars. Statistically significant differences are indicated by asterisks.  

 

 

In order to quantify the degree of organ enlargement, the spleen weight/ body 

weight ratios were calculated for the same mice as used for the fat pad/ body weight 

analyses [Chapter 5.3.2]. The median spleen weight/ body weight ratios of 7 weeks old 

male wt, rsk2-/y and fra1-tg/rsk2-/y mice turned out to be similar. They ranged between 

0.0037 and 0.0041 (wt: 0.0038±0.0006; rsk2-/y: 0.0037±0.0007; fra1-tg/rsk2-/y: 

0.0041±0.0006; Figure 5.19 C, left panel). Contrary, the median spleen weight/ body 
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weight ratio of 7 weeks old male fra1-tg mice (fra1-tg: 0.0057±0.0008, ***P<0.0001) was 

found to be significantly increased when compared to wt mice (Figure 5.19 C, left panel).  

The same results were obtained when male mice were analyzed at an age of 18 

weeks, except for fra1-tg/rsk2-/y mice that did not survive to this age (wt: 0.0036±0.0008; 

rsk2-/y: 0.0032±0.0010; fra1-tg: 0.0071±0.0012; Figure 5.19 C, right panel). Apparently, 

male fra1-tg mice suffer from progressing splenomegaly, since the median spleen 

weight/ body weight ratio was shown to increase with age (7 weeks: 0.0057±0.0008 vs. 

18 weeks: 0.0071±0.0012). The intra-strain variance was constantly low for all tested 

groups of male mice.  

The results obtained through analysis of female mice resembled the findings in 

male mice in that median spleen weight/ body weight ratios of 7 and 18 weeks old wt and 

rsk2-/x mice were similar (7 weeks/ wt: 0.0042±0.0004; rsk2-/y: 0.0044±0.0008 and 18 

weeks/ wt: 0.0039±0.0005; rsk2-/y: 0.0036±0.0005). On the other hand the ratios of fra1-

tg mice were significantly increased (7 weeks/ 0.0087±0.0012, ***P<0.0001; 18 weeks/ 

0.0092±0.0021, ***P<0.0001) when compared to wt mice (Figure 5.19 D). Both 7 weeks 

old and 18 weeks old female fra1-tg/rsk2-/x mice showed significantly increased median 

spleen weight/ body weight ratios (7 weeks/ 0.0090±0.0038, ***P<0.0001; 18 weeks/ 

0.0099) when compared to wt mice (Figure 5.19 D). The median spleen weight/ body 

weight ratios did neither increase with age in female fra1-tg nor in female fra1-tg/rsk2-/x 

mice. In addition, the spleen weight/ body weight ratios of 7 weeks old female fra1-tg 

mice (Figure 5.19 D) were already above the ratios calculated for 18 weeks old male 

fra1-tg mice (Figure 5.19 C), which may indicate a more severe and faster progression of 

splenomegaly in the females.  

 

Altogether, these data indicate that Fra1 induced splenomegaly can be 

counteracted by total rsk2-deficiency such as present in male fra1-tg/rsk2-/y mice but not 

partial depletion of Rsk2 as existent in the female fra1-tg/rsk2-/x mice. 

 

5.5.2. Rsk2-deficiency cannot rescue the abnormal spleen morphology observed 
in fra1-tg mice 

 

To investigate whether overexpression of Fra1 and Rsk2-deficiency not only have 

an impact on the size of the spleen but also affects its structure, various 

histomorphological analyses were done. At first, spleens were analyzed with respect to 

segregation of red and white pulp and the overall density of cells within both (of these) 
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compartments. For this purpose, spleen sections of all mice strains (wt, rsk2-/y, fra1-tg, 

fra1-tg/rsk2-/y and fra1-tg/rsk2-/x) were subjected to H&E stainings.  

Representative series of photomicrographs of H&E stainings obtained at different 

magnifications are illustrated in Figure 5.20. The H&E staining of wt spleen is shown on 

Figure 5.20 a – c. A normal spleen structure was observed in rsk2-/y mice (Figure 5.20 d 

- e), including clear separation of red pulp (arrow) and white pulp regions (asterisk). The 

erythrocyte-rich red pulp regions were demarcated by intense Eosin staining (pink-red). 

On the other hand, the lymphocyte-rich areas corresponding to the white pulp were 

highlighted by distinctive nuclear Hematoxylin staining (blue).  

However, clear separation of red and white pulp regions was lost in the case of 

spleens isolated from fra1-tg (Figure 5.20 i - l) and fra1-tg/rsk2-/y mice (Figure 5.20 m - 

p). This most likely attributes due to an extension of the lymphocyte compartment and 

subsequent infiltration of lymphocytes in the red pulp as indicated by diffuse Hematoxylin 

staining. 

 

 
 

 

Figure 5.20 Fra1 overexpression induced structure changes in fra1-tg and fra1-tg/rsk2-/y 
spleens 

Hematoxylin and Eosin (H&E) staining of paraffin embedded spleen parenchyma with red and white pulp of 7 
weeks old wt (a – d), rsk2-/y (e – f), fra1-tg (i – l) and fra1-tg/rsk2-/y (m – p) mice (microscope magnifications: 20x 
– 100x – 200x - 400x). The arrow indicates red pulp; the asterisk indicates white pulp. The staining represents 
means cross section from more than three independent colourings. 
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5.5.3. Fra1 overexpression causes structural changes of the spleen by inducing 
connective tissue remodelling 

 

The connective tissue framework of the spleen is formed by a spider-web like 

network of reticulum fibres that are composed of thin fibrils of Collagen and Elastin. In 

order to study, if Fra1 overexpression and Rsk2-deficiency also affect the connective 

tissue remodelling of the spleen, reticulum fibre networks were visualized and analyzed 

by Mason-Goldner-Tricolor (MGT) stainings. 

Representative series of photomicrographs of MGT stainings obtained at different 

magnifications are illustrated in Figure 5.21. As already shown by H&E staining [Chapter 

5.5.2.], wt (Figure 5.21 a - d) and rsk2-/y mice (Figure 5.21 e - h) showing clear 

separation of red and white pulp regions that are tinged red and yellow in MGT stainings, 

respectively. In addition, MGT staining revealed normal arrangement of the connective 

tissue in these mice, in that both the collagen containing splenic capsule and the 

marginal zone (MZ), that was rich in collagen-containing endothelial/ epithelial cells, 

could be identified (tinged light-blue in MGT). Likewise, MGT staining indicated the loss 

of clear red and white pulp segregation in spleens of fra1-tg (Figure 5.21 k – l) and fra1-

tg/rsk2-/y mice (Figure 5.21 m – p), which was already a result of the H&E staining 

[Chapter 5.5.2.]. Moreover, the MGT staining supported the hypothesis that the red pulp 

was infiltrated by cells from the white pulp in these mice, as the density of erythrocytes 

seems to be diminished due to intermingling with other cells. Surprisingly, the regions 

occupied by connective tissue were enlarged in the spleens of fra1-tg and fra1-tg/rsk2-/y 

mice, a result that might be a sign for commencing fibrosis. Besides being enlarged, the 

network of reticular fibres in spleens of fra1-tg and fra1-tg/rsk2-/y mice diverged from the 

normal arrangement of the connective tissue, in that splenic capsules and the MZ could 

be hardly identified. The network of reticular fibres rather appeared to be loosely 

dispersed in fra1-tg and fra1-tg/rsk2-/y mice. 

 

Taken together, these data suggest that the observed aberrant morphology of 

spleens derived from fra1-tg and fra1-tg/rsk2-/y mice might be due to connective tissue 

remodelling triggered by Fra1 overexpression. Most interestingly, although Rsk2-

deficiency was shown to counteract Fra1 induced splenomegaly [Chapter 5.4.1.] it did 

not rescue spleens from connective tissue remodelling. 
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Figure 5.21 Loss of normal spleen structures in Fra1 overexpression spleens 
Masson–Goldner-Tricolor (MGT) staining of paraffin embedded spleen parenchyma of 7 weeks old wt, rsk2-/y, 
fra1-tg and fra1-tg/rsk2-/y mice (microscope magnifications: 20x – 100x – 200x - 400x); one asterisk indicates the 
white pulp; the arrows indicate the red pulp, two asterisk indicates capsule and point lines indicates marginal zone 
(MZ) around the red pulp. The staining represents means cross section from more than three independent 
colourings. 

 

 

5.5.4. Fra1 overexpression causes changes of the stromal tissue of the splenic 
white pulp that affect the homing of B cells 

 

H&E and MGT stainings have demonstrated that fra1-tg and fra1-tg/rsk2-/y mice 

show perturbed morphology of the spleen, particularly regarding its 

compartmentalization. To assess, whether Fra1 overexpression and Rsk2-deficiency 

have effects beyond interfering with the basic structure of the spleen as for instance by 

affecting the cellular composition of white pulp and MZ, spleen sections were additionally 

immunostained using antibodies against MOMA-1, B220, FDC-M2 and BP-3 (Figure 

5.22).  

The MOMA-1 antibody stains the ring of metallophilic macrophages (MM) that 

surrounds the splenic white pulp and forms the inner border of the MZ. Since B220 is 

expressed on all B cells, resting and activated, it allows the visualization of B cell zones/ 

follicles and marginal zone (MZ) B cells. The FDC-M2 epitope is constitutively expressed 

on follicular dendritic cells (FDCs) in primary and secondary B cell follicles and can 

therefore be used to localize FDC networks. The BP-3 antibody reacts with splenic 

reticular cells of the white but not red pulp. 
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Immunostainings of spleen sections derived from wt mice attested normal cellular 

composition of white pulp regions and the MZ in these mice (Figure 5.22 a - d). Briefly, 

white pulp regions were shown to comprise marked B cell zones (Figure 5.22 b) that 

were found in contiguity to FDC-networks (Figure 5.22 c). Furthermore, white pulp 

regions were both traversed by a network formed by BP-3 positive reticular cells (Figure 

5.22 d) and demarcated from the MZ by the ring of MOMA-1 expressing MM (Figure 5.22 

a).  

In spleens of fra1-tg (Figures 5.22 e - h) and fra1-tg/rsk2-/y mice (Figures 5.22 i - 

l) white pulp and MZ architecture was found to be altered. Most notably, white pulp 

regions of fra1-tg and fra1-tg/rsk2-/y mice lack fully developed and compact FDC 

networks (Figures 5.22 g and k) although, faint FDC-M2 staining was observed at the 

outer border of white pulp regions. Likewise, the BP-3 staining pattern was different in 

these mice compared to wt mice in that the BP-3 positive cells were concentrated in ring-

like structures that rather seem to overlap with or/ extend into the MZ (Figures 5.22 h and 

l). MOMA-1 stainings further revealed expanded rings of MM in spleens of fra1-tg and 

fra1-tg/rsk2-/y mice (Figures 5.22 e and i) when compared to wt mice.  

More importantly, the homing and formation of regular B cells to B cell zones was 

affected in spleens of fra1-tg and fra1-tg/rsk2-/y mice. B cells accumulated forming a ring 

overlapping with the MZ as indicated by double immunofluorescent stainings of B220 

and MOMA-1 (Figures 5.23 f and i). Moreover, the localization of B cells correlated with 

the staining patterns of BP-3 and FDC-M2 in both fra1-tg and fra1-tg/rsk2-/y spleen 

sections. Since homing of B cells to B cell zones/ follicles is known to rely on the 

expression of the chemokine (C-X-C motif) ligand 13 (CXCL-13) by FDCs [344], 

dislocation of B cells in spleens of fra1-tg and fra1-tg/rsk2-/y mice was likely to be 

secondary to the changes regarding the stromal tissue of the white pulp (FDC and 

reticular cells).  
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Figure 5.22 Effect of Fra1 overexpression in spleens with different Rsk2 expression 
Immunohistochemistry staining of spleen parenchyma of 7 weeks old wt, fra1-tg and fra1-tg/rsk2-/y mice. MOMA-
1 for metallophilic macrophages, B220 for B cells follicles, FDC-M2 for follicular dendritic cells clusters, and BP-3 
for splenic reticular cells of the white pulp. (Microscope magnifications: 200x). The staining represents means 
cross section from more than three independent colourings. 

 
 

 

Figure 5.23 B cell accumulations in the splenic marginal zone in Fra1 overexpression spleens 
Immunofluorescence staining of spleen parenchyma of 7 weeks old wt, fra1-tg and fra1-tg/rsk2-/y mice. MOMA-1 
for metallophilic macrophages, B220 for B cells follicles; MOMA-1/ B220 overlay pictures. (Microscope 
magnifications: 200x). The staining represents means cross section from more than three independent colourings. 
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5.5.5. Fra1 overexpression induces accumulation of megakaryocytes in the spleen 
 

Megakaryocytes derive from the myeloid lineage of haematopoietic stem cells and 

are responsible for platelet production. Several severe diseases including 

thrombocythemia and thrombocytopenia are directly connected to megakaryocytes 

malfunction [67]. Others like myelofibrosis, osteosclerosis and Hepatitis C are ascribed to 

increased numbers of megakaryocytes [68, 69, and 70]. Overexpression of Fra1 in mice was 

previously shown to lead to osteosclerosis of the full skeleton [52]. So far, several results 

of this study as for instance splenomegaly, reduced density of erythrocytes in the splenic 

red pulp and changes in the spleen parenchyma suggest that it may be also related to 

the development of other diseases such as myelofibrosis. Common to the mentioned 

diseases is that their aetiology is thought to be linked to megakaryocytes development.  

To assess, whether the observed abnormalities regarding the spleens of fra1-tg 

mice also include changes regarding splenic megakaryocytes, additional H&E and 

Immunostainings were performed on spleen sections derived from paraffin embedded 

specimens (Figure 5.24). Megakaryocytes were detected by an antibody directed against 

CD41 in combination with DAPI nuclear counterstained. CD41 is a glycoprotein that is 

typically expressed on the surface of megakaryocytes. 

Megakaryocytes could be identified in spleens of wt, fra1-tg and fra1-tg/rsk2-/y 

mice by both H&E stainings (Figure 5.24 a - c) and CD41 Immunostainings (Figure 5.24 

d - f). However, the stainings collectively pointed at an increased number of 

megakaryocytes in the spleens of fra1-tg and fra1-tg/rsk2-/y mice. This observation was 

subsequently verified by statistical counting of CD41 positive megakaryocytes, in that the 

number of megakaryocytes per observation field (HIM) turned out to be increased about 

20- and 28-fold in case of fra1-tg and fra1-tg/rsk2-/y mice, respectively (Table 5.2). 

According to this, Fra1 overexpression seems to induce the accumulation of 

megakaryocytes in the spleen through extramedullary haematopoiesis.  
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Figure 5.24 Induced megakaryocytes in spleens of Fra1 overexpressing mice 
Hematoxylin and Eosin (H&E) staining of paraffin embedded spleen parenchyma of 7 weeks old wt (a), fra1-tg (b) 
and fra1-tg/rsk2-/y (c) mice (microscope magnifications: 400x) and Immunofluorescence staining of spleen 
parenchyma of 7 weeks old wt (e), fra1-tg (f) and fra1-tg/rsk2-/y (g) mice. CD41 for platelets or megakaryocytes, 
DAPI for nucleus, CD41/ DAPI overlay pictures. (Microscope magnifications: 400x). The staining represents 
means cross section from more than three independent colourings. 

 

 

Table 5.2 Enumeration of megakaryocytes in wt, fra1-tg and fra1-tg/rsk2-/y spleens  

 
 spleen section were counted 5 fields per slide in HIM 

 * megakaryocytes ** high image magnification (400x) 
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5.6 Heart analyses 
 

As shown in fat and spleen analyses, Fra1 overexpression influences cells, which 

are derived from the mesenchymal lineage. Heart cells or cardiomyocytes are cells, 

which are coming from the mesenchymal lineage. Therefore, the heart of Fra1 

overexpressing mice was analysed. 

 

5.6.1. Deleting of Rsk2 induced heart abnormality in Fra1 overexpressing mice 
 

The heart size of 7 weeks old wt, rsk2-/y, fra1-tg and fra1-tg/rsk2–/y mice are 

shown in Figure 5.25 A. The wt, rsk2-/y and fra1-tg male hearts were the same in size at 

age of 7 and 18 weeks. The size of the heart of fra1-tg/rsk2–/y mice at age of 7 weeks 

appeared to be increased (Figure 5.25 A). Figure 5.26 B is comparing female hearts 

between the wt, rsk2-/x, fra1-tg mice and the mutated fra1-tg/rsk2-/x female mice at age 

of 18 week. Only the 18 weeks old mutated fra1-tg/rsk2-/x female mice showed 

differences in size of the heart. 

To quantify a potential heart enlargement the ratio of the heart weight to the body 

weight were measured for wt, rsk2-deficent, fra1-tg, fra1-tg/rsk2-/y and fra1-tg/rsk2-/x 

littermates at ages of 7 and 18 weeks. The heart weight/ body weight ratio at age of 7 

weeks of wt male and fra1-tg male mice were nearly the same and no significant 

difference was measured between these two groups (wt: 0.0054±0.0005; fra1-tg: 

0.0057±0.0009;  Figure 5.25 C, left panel). However, while a significant decrease in the 

heart weight/ body weight ratio was measured in 7 weeks old rsk2-/y mice 

(0.0049±0.0006, **P<0.0088), and an increase was measured for fra1-tg/rsk2-/y mice 

(0.0072±0.0016, ***P<0.0003). Analysis of 18 weeks old male mice did not show any 

noticeable difference (wt: 0.0050±0.0011; rsk2-/y: 0.0048±0.0005; fra1-tg: 

0.0057±0.0009; fra1-tg/rsk2-/y: no survival; Figure 5.25 C, right panel). 

When comparing 7 weeks old female littermates no significant difference in their 

heart weight/ body weight ratio was measured (wt: 0.0052±0.0004; rsk2-/x: 

0.0065±0.0029; fra1-tg: 0.0052±0.0011; fra1-tg/rsk2-/x: 0.0059±0.0007; Figure 5.25 D, 

left panel). However, the ratios were found to be significantly increased in 18 weeks old 

females overexpressing Fra1 (0.0056±0.0009, ***P=0.0055) and fra1-tg/rsk2-/x mice 

(0.0062) when compared to wt mice 18 weeks old and rsk2-/x mice 18 weeks old (wt: 

0.0047±0.0003; rsk2-/x: 0.0048±0.0004; Figure 5.25 D, right panel). 
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The analyses of the heart weight/ body weight ratio showed that Fra1 

overexpression induce change of the heart in vivo. The differences in the ratio were 

found to be more pronounced in females than in males. Furthermore, deleting of Rsk2 

induced heart abnormalities in Fra1 overexpressing mice. 

 

 

 

Figure 5.25 Deleting of Rsk2 induced heart abnormality in Fra1 overexpressing mice 
A)Picture of 7 weeks old male wt, rsk2-/y, fra1-tg and fra1-tg/rsk2-/y hearts; B) Picture of 18 weeks old female wt, 
rsk2-/x, fra1-tg and fra1-tg/rsk2-/x hearts; C) Ratio between heart weight and body weight of 7 weeks old and 18 
weeks old males wt (7weeks/ n=16; 18weeks/ n=11), rsk2-/y (7weeks/ n=15; 18weeks/ n=6), fra1-tg (7 weeks/  
n=12; 18 weeks/ n=7) and fra1-tg/rsk2-/y (7 weeks/ n=8; 18 weeks/ n=0) mice; D) Ratio between heart weight and 
body weight of 7 weeks old and 18 weeks old females wt (7 weeks/ n=7; 18 weeks/ n=12), rsk2-/x (7 weeks/ n=8; 
18 weeks/ n=5), fra1-tg (7 weeks/ n=4; 18 weeks/ n=5) and fra1-tg/rsk2-/x (7 weeks/ n=3; 18 weeks/ n=2) mice. 
Error bars indicate standard deviations. Asterisks indicate statistically significant differences.  

5.6.2. Fra1 overexpression induced heart fibrosis 
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To look at morphological changes of hearts H&E staining of heart sections were 

done in 18 weeks old male wt, rsk2-/y and fra1-tg mice and 18 weeks old female fra1-

tg/rsk2-/x mice (Figure 5.26). The wt cardiomyocytes were packed into highly-regular 

arrangements of bundles. Cardiac muscle connects at branching, irregular angles. The 

cells were connecting net-like and the nucleus lies centrally (Figure 5.26 a & b). When 

compared to wt, no difference could be detected with this staining in rsk2-/y mice (Figure 

5.26 c & d). Visible morphological changes of muscle cells could be seen on H&E 

stained section of fra1-tg male mice and mutated fra1-tg/rsk2-/x female hearts. Smaller 

fibrotic cells were detected between the bigger myocardial cells in fra1-tg heart sections 

(Figure 5.26 e & f) as well as in fra1-tg/rsk2-/x heart sections (Figure 5.26 g & h). 
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Figure 5.26 Fra1 overexpression induced smaller fibrotic cells between bigger myocardial cells 
Hematoxylin and Eosin (H&E) staining of paraffin embedded hearts sections  of 18 weeks old wt,   rsk2-/y, fra1-tg 
male mice and fra1-tg/rsk2-/x female mice (phase contrast microscopy: 20x – 400x magnifications) arrow indicate 
fibrotic cells. The staining represents means cross section from more than three independent colourings. 

 

To identify the smaller cells MGT and EvG staining were performed to look at 

fibrosis or at the presence of collagen in the tissue off these mice. After staining of wt 

(Figure 5.27 A/ a - b and 5.27 B/ a - b) male heart sections no morphological alteration 

was observed.  Only pure muscle tissue was found in this staining. Using MGT or EvG 

staining on sections of 18 weeks old mice, extensive focal interstitial fibrosis were found 

in fra1-tg heart sections (Figure 5.27 A/ c - d and Figure 5.27 B/ c - d).  

 



Results 
______________________________________________________________________ 

 128  

Thus, the heart enlargement could be explained by additional collagen producing 

fibrotic cells between the muscle cells in fra1 transgenic mice. 

 

 

Figure 5.27 Fra1 overexpression increased collagen-inducible tissue in hearts  
Masson-Goldner-Tricolor (MGT) staining of paraffin embedded hearts of 18 weeks old wt and fra1-tg male mice; 
B) Elastica van Gieson (EvG) staining of paraffin embedded hearts of 18 weeks old wt and fra1-tg male mice; 
phase contrast microscopy: 20x – 400x magnifications; arrow indicate collagen; The staining represents means 
cross section from more than three independent colourings 
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5.7 Liver analyses 
 

The liver plays a major role in metabolism. Damages in the liver are often life 

threatening. Influences of Fra1 overexpression could already show in changes of spleen 

stoma components, and increased fibrotic cells. By analyzing sections from different 

littermates the question, arise whether Fra1 could also affect the liver function. 

 

5.7.1. Fra1 overexpression induced fibrosis and inflammation in liver parenchyma 
 

Freshly isolated liver obtained from fra1-tg/rsk2-/x mice were notably paler than  

the one from wt mice (Figure 5.28) indicating that Fra1 overexpression or Rsk2 deletion 

could have impaired liver function. Therefore histological analyses of the livers were 

performed. 

 

 

 

Figure 5.28 Picture of fresh dissect livers of 18 weeks old female wt and fra1-tg/rsk2-/x mice 

 

The paler appearance of the liver can be explained by a disturbance of the blood 

flow or through a deterioration of the blood transport in the vessels or a disturbance in 

the liver tissue. Liver fibrosis, for example, results in an excessive deposition of extra 

cellular matrix in the liver tissue leading to lethality. Histomorphological analyses were 

done to determine, if the structures of liver tissue between wt and fra1-tg mice are 

different. 
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Figure 5.29 Fra1 overexpression induced liver fibrosis 
Hematoxylin and Eosin (H&E) staining of paraffin embedded liver sections of 18 weeks old wt and fra1-tg mice; 
arrow indicate Fra1 induced liver fibrosis; CLV - centrolobular vein, PV - portal vein, A - arteries, BD - bile ducts, 
HC - hepatocytes, DS - disse space, (phase contrast microscopy: 20x – 100x – 200x - 400x magnifications). The 
staining represents means cross section from more than three independent colourings. 

 

 

 

Figure 5.29 shows wt tissue and fra1-tg tissue of a formalin-fixed paraffin-

embedded liver stained through H&E staining. Typical liver structures were seen in wt 

and fra1-tg sections: a centrolobular vein (CLV), a portal vein (PV), arteries (A), the bile 

ducts (BD) and numerous hepatocytes (HC). The wt parenchyma was marked by a 

constant distribution of the H&E colours (Figure 5.30  a – d). The area between 

endothelial cells of the blood, the bile vessels transport system and the hepatocytes, 

called disse space (DS) was stained differently in Fra1 overexpressing liver. Fibroblasts, 

neutrophilic granulocytes macrophages, hepatic stellate cells and lymphoid cells 

surrounded the fra1-tg disse space. These are cell populations, which are typically 

associated with inflammation reaction and by replacement of liver tissue by fibrotic scar 

tissue as well as regenerative nodules, leading to progressive loss of liver function. 

Hepatic fibrosis, which is characterised by the transformation of normal extra cellular 

matrix into a reticulated and dense matrix (fibrillar type), was visible in H&E stained fra1-

tg liver sections (Figure 5.29 e – h; arrow indicate the fibrotic scar tissue stained dark 

purple).  

 

Thus, Fra1 overexpression increased fibrotic tissue and plays a role in liver 

inflammation. 
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5.7.2. Fra1 overexpression induced accumulation of collagen between 
hepatocytes and portal triad vessels 

 

To visualise fribroctic tissue in liver, Masson–Goldner-Tricolour (MGT) and 

Elastica van Gieson (EvG) stainings were done. Both staining methods were used to 

mark extra cellular matrix like collagen I and III in the liver tissue. Figure 5.30 A shows 

formalin-fixed paraffin-embedded liver section stained by MGT. On the wt liver section 

enlarged capillaries are observed between the hepatocytes. These sinusoids are lined by 

an endothelium (EM). The liver parenchyma was homogenous and erythrocytes were 

detected in blood vessels (Figure 5.30 A/ a - c). 

 

 

 

 

Figure 5.30 Fra1 overexpression in liver induced fibrotic tissue 
Masson–Goldner-Tricolor (MGT) staining of paraffin embedded liver sections of wt and fra1-tg mice. B) Elastica 
van Gieson (EvG) staining of paraffin embedded liver sections of 18 weeks old wt and fra1-tg mice, arrows 
indicate Fra1 induced connective tissue; PD – portal vein, BD – bile duct, DC – disse space, HC – hepatocytes 
(phase contrast microscopy: 20x – 200x - 400x magnifications); The staining represents means cross section 
from more than three independent colourings. 
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In section of liver from Fra1 overexpressing mice areas between hepatocytes and 

the portal triad vessels were stained green to blue by MGT staining. This green to blue 

colour stained extra cellular collagen. Blood vessel (PV) and bile duct (BD) were 

detected between the collagen deposits. 200 fold magnification showed that the stained 

areas are located in the disse space (DC) (Figure 5.30 A/ d - f).  

Figure 5.30 B shows Elastica van Gieson staining. The wt sections did not show 

any extra cellular stained matrixes. The liver parenchyma was homogenous with some 

vessels for blood transport detected (Figure 5.30 B/ a – c). In Fra1 overexpressing liver 

extra cellular matrix was stained red by EvG staining. Again this collagen was detected in 

the disse space around the blood vessel and bible duct up to the hepatocytes (Figure 

5.30 B/ d – f). 

 

These data show that Fra1 overexpression induced collageneous fibrotic scar 

tissue between hepatocytes and the portal triad vessels. Furthermore, Fra1 

overexpression increased cells, which are typical for inflammation and diseases like 

primary biliary cirrhosis or primary sclerosing cholangitis. 

 

5.7.3. Fra1 detection in simple cuboidal epithelium cells of portal triad vessels 
induced cholangitis 

 

To identify the cells which could be responsible for the induced inflammation in 

fra1-tg mice immunofluorescent staining with Antibody (Ab) for Fra1 where done on liver 

sections. Figure 5.31 shows in wt and fra1-tg littermates the liver organization of a portal 

triad: 1) branches of the hepatic artery (A), 2) branches of the hepatic portal vein (PV), 3) 

small bile ducts (BD) and 4) disse space (DC). Several profiles of bile duct were lined by 

simple cuboidal epithelium while the blood vessels were lined by endothelium (simple 

squamous epithelium). Cords of hepatocytes (HC) were also shown in these images. 

Immunofluorescence staining was done to assess the expression of Fra1 in the liver 

cells.  
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Figure 5.31 Fra1 detection in simple cuboidal epithelium cells of portal triad vessels        
Fra1 staining of paraffin embedded liver sections of 18 weeks old wt and fra1-tg mice. PV – portal vein, BD – bile 
duct, DC – disse space, HC – hepatocytes (phase contrast microscopy: 20x – 200x - 400x magnifications).  

 

 

Figure 5.31 shows section of liver incubated with Ab-Fra1 (Antibody recognising 

Fra1). No positive signals were found in control staining (Figure 5.31 a – c) and Ab-Fra1 

incubated section of wt liver (Figure 5.31 d – f). However, a specific signal was detected 

when sections of fra1-tg liver were incubated with Ab-Fra1. High level of expression of 

Fra1 was detected in simple cuboidal epithelium of the portal triad (Figure 5.31 j – l).  

 

Sustained activation of AP-1 may be a critical factor in determining the outcome of 

chronical inflammation in liver, and could explain the primary biliary cirrhosis or primary 

sclerosing cholangitis in fra1-tg mice. 
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6. Discussion 
 

In the 21th century, the mouse has developed into the premier mammalian model 

system for genetic research. Scientists from a wide range of biomedical fields have 

gravitated to the mouse because of its close genetic and physiological similarities to 

humans, as well as the ease with which its genome can be manipulated and analysed. 

Although yeasts, worms and flies are excellent models for studying the cell cycle and 

many developmental processes, mice are far better tools for probing the skeletal, 

immune, cardiovascular, metabolic, nervous and other complex physiological systems 

that mammals share. Like humans and many other mammals, mice naturally develop 

diseases that affect these systems, including osteosclerosis, splenomegaly, heart and 

liver failure, diabetes or lipodystrophy. In addition, certain diseases that afflict humans 

but normally do not strike mice, such as cystic fibrosis or Alzheimer's, can be induced by 

manipulating the mouse genome and environment. Adding to the mouse's appeal as a 

model for biomedical research is the animals relatively low cost of maintenance and its 

ability to quickly multiply, reproducing as often as every nine weeks. Mouse models 

currently available for genetic research include thousands of unique inbred strains and 

genetically engineered mutants. 

One of the topic biomedical research areas is bone development. With knockout 

(KO) and transgenic (tg) mice it was possible to study the function of genes in skeletal 

environment [106]. One major emphasis is the genetic analysis of the transcription factor 

AP-1 complex with regard to its role in normal and pathological bone and also organ 

development. Scientists also made important contributions in defining the role of AP-1 

proteins in developmental processes, e.g. at bone or liver biology and tumor formation.  

 

 

6.1 AP-1 family member Fra1 regulates bone and fat differentiation and the role 
of the kinase Rsk2  

 

6.1.1. Fos-related protein-1 (Fra1) and Rsk2 act independently on bone formation 
 

The growth and the maintenance of the skeleton is depend on the coordinated 

function of osteoblasts and osteoclasts, the two principal cell types of bone tissue [79, 106]. 

Osteoblasts, which like adipocytes, chondrocytes and myocytes derive from 

mesenchymal progenitors, produce the extracellular matrix of the bone that later 

undergoes mineralisation. In contrast, osteoclasts belong to the monocyte/ macrophage 
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lineage and they reduce bone mass by resorbing the mineralized extracellular matrix. 

Genetic studies have shown that components of the transcription factor AP-1, mainly 

members of the Fos family such as c-Fos and Fra1, have important functions in both of 

these cell types [13, 106].  

Transgenic mice expressing c-Fos develop osteosarcoma through transformation 

of the osteoblast lineage. This phenotype is specific for c-Fos, because mice expressing 

c-Jun, JunB or FosB do not develop a bone phenotype despite high transgene 

expression in bone tissue [28]. In contrast, mice lacking c-Fos develop osteopetrosis due 

to an early differentiation block in the osteoclast lineage [29]. This differentiation block is 

rescued by Fra1, a Fos-related protein-1 encoded by the c-Fos target gene Fosl1 

(referred to as Fra1) [34, 103]. Owing to a lack of transactivation domains, Fra1 has 

reduced transforming potentials compared with c-Fos [51]. In agreement, ectopic Fra1 in a 

broad range of organ, e.g. bone and fat tissue resulted in the development of a 

progressive increase in bone mass leading to osteosclerosis of the entire skeleton. The 

phenotype was due to a cell-autonomous increase in the number of mature osteoblasts 

in vivo [52]. Moreover, osteoblast differentiation, but not proliferation, was enhanced and 

osteoclastogenesis was also elevated in vitro. These data indicated that, unlike c-Fos, 

which causes osteosarcoma, Fra1 specifically enhances bone formation, which may be 

exploited to stimulate bone formation in pathological conditions. A similar skeletal 

phenotype was described in transgenic mice expressing another Fos protein deltaFosB 

(ΔFosB) [103]. ΔFosB is a naturally occurring truncated form of FosB that lacks the C-

terminal transactivation domain, and its overexpression gives a strikingly similar 

osteosclerotic phenotype. Again, the increased bone mass appears to be the result of 

increased osteoblast differentiation, rather than proliferation, and leads to significant 

increases in bone formation rates and increased radio density of bone tissues throughout 

the entire skeleton [51, 103]. These results add Fra1 and ΔFosB to a growing list of proteins 

implicated in regulating the bone balance. The models are interesting as they involve 

increased bone formation, compared with the more commonly observed defects in bone 

resorption. 

How can the specificity of action of the various Fos members be explained? Being 

transcription factors, they simply may be regulating different set of genes. In agreement 

with this hypothesis, the analysis using mouse embryonic fibroblast indicated that Fra1 

can switch on some but not all the c-Fos target genes in response to serum stimulation 
[102]. Fra1 and ΔFosB proteins are small Fos proteins that in contrary to c-Fos are lacking 

detectable transactivation domains, these differences may explain the difference in the 

pattern of regulated genes. It remains to be seen which AP-1 target genes are involved 
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in osteoblast differentiation and transformation or in other mesenchymal derived cells. A 

second possibility is a consequence of the heterodimeric structure of AP-1. Indeed, it is 

accepted that the transcriptional potential may depend on their heterodimerizing 

partners, their co-activators. Finally, being intensively regulated by post-transcriptional 

modification, phosphorylation through different kinases, e.g. ERK, JNK and p38 may 

explain the phenotypic differences. Two phosphorylation sites located on the C-terminal 

domain of c-Fos have been shown to regulate its transforming activity in vitro [18, 298]. 

These sites, serine 362 and 374 are respectively phosphorylated by Rsk2 and ERK. It 

was shown that mice lacking Rsk2 developed a progressive skeletal disease, osteopenia 

due to impaired osteoblast function and normal osteoclast differentiation. The phenotype 

was associated with decreased expression of Phex, an endopeptidase regulating bone 

mineralisation. This defect was probably not mediated by Rsk2-dependent 

phosphorylation of c-Fos on serine 362 in the C-terminus as shown by lack of phenotype 

affecting the osteoblast lineage in mice lacking c-Fos. However, in the absence of Rsk2, 

c-Fos–dependent osteosarcoma formation was impaired. The lack of c-Fos 

phosphorylation leads to reduced c-Fos protein levels, which are thought to be 

responsible for decreased proliferation and increased apoptosis of transformed 

osteoblasts. Therefore, Rsk2-dependent stabilisation of c-Fos was essential for 

osteosarcoma formation in mice [19]. Interestingly, mice lacking Rsk2 or lacking Fra1 are 

both osteopenic due to decreased bone formation by osteoblasts suggesting that Fra1 

function in bone could have been regulated by phosphorylation and stabilisation by Rsk2 
[19, 52].  

This study investigated this hypothesis by generating mice overexpressing Fra1 

but lacking Rsk2. The results showed that inactivation of Rsk2 did not rescue the 

osteosclerosis induced by Fra1 overexpression. In addition, the mineralisation defect 

caused by downregulation of Phex observed in Rsk2-deficient mice was also not 

corrected by Fra1 overexpression. In contrary, the volume of non-mineralised bone 

matrix was found increased in the double mutant mice. These data indicate that both 

proteins are acting independently on bone formation. They also indicate that, while Fra1 

is mainly regulating bone matrix deposition. Rsk2 is involved in its mineralisation [19, 50 and 

52]. These data are in agreement with the role previously proposed for Fra1 in bone [50]. 

Fra1 not being downstream of Rsk2 in bone. A study by Elefteriou et al., 2006 

demonstrated that the mineralisation activity of Rsk2 is most likely mediated via the 

phosphorylation of ATF4 [227]. 
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6.1.2. Fos-related protein-1 (Fra1) and Rsk2 reduce white adiposite tissue (WAT) 
 

Previous studies already showed that inactivation of Fra1, resulted in embryonic 

lethality around day 10 of development because of defects in the placenta [51]. The 

labyrinth layer of mutant placentas was reduced in size and was largely avascular 

suggesting that the invasion of allantoic vessels into the chorionic plate was impaired in 

the absence of Fra1. The development of mutant fetuses could be rescued up to birth by 

providing wild type extra-embryonic tissues using tetraploid blastocyst injection [228]. 

Moreover, the lethality of Fra1-deficient mice was fully rescued by the ectopic expression 

of Fra1 from transgenic mice demonstrating that AP1/ Fra1 activity during development 

does not have to be tightly regulated. These rescued mice still developed osteosclerosis, 

which was indistinguishable from the disease observed in the fra1 transgenic mice. 

These data suggested that Fra1 was dispensable for the differentiation of most, if not all, 

cell lineages in the fetus [51, 228]. However, my observations that fra1-tg mice lacking Rsk2 

are more severely growth retarded than the parental lines still indicated that both proteins 

may act together in tissues other than bone.  

A similar osteosclerotic phenotype was observed in transgenic mice expressing 

FosB in osteoblasts, interestingly these mice also showed reduced white adipose tissue 

(WAT) that has not been reported in Fra1 transgenic mice [64, 52]. A mild lipodystrophy has 

been described in one of the mouse line lacking Rsk2 [230]. My data did not confirm these 

observations. Whether the differences could be due to differences in the diet given to the 

mice remain to be tested. Nevertheless, I now uncovered that fra1 transgenic mice also 

developed a severe progressive lipodystrophy that was enhanced by deleting Rsk2. 

Histological analysis as well as the analysis of fat specific genes expression indicated 

that the phenotype was associated with decreased maturation of the adipocytes. 

Alterations of cell volume participate in the machinery regulating cell proliferation and 

apoptotic cell death. Deranged cell volume regulation significantly contributes to the 

pathophysiology of several disorders such as liver insufficiency, diabetic ketoacidosis, 

hypercatabolism, fibrosing disease, sickle cell anaemia, and infection. 

 

6.1.3. Fos-related protein-1 (Fra1) and Rsk2 regulate body growth, body weight 
and lifespan 

 

The first hints for metabolic disruptions were noted when the various genotypes 

were analysed by medallion frequency. Later, metabolism disturbances became more 

evident when the body growth, body weight and lifespan were analysed. The fra1-tg 
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male and female offspring were mildly reduced in their birthrate, but mice carrying the 

double mutation, fra1-tg/rsk2-/y or fra1-tg/rsk2-/x, were born with a pronounced 

decreased frequency. Furthermore, the fra1-tg/rsk2-/y mice had a drastic reduction of 

their lifespan and were severely growth-retarded along their life. Their weight was 

reduced up to 50 % compared to wt and Rsk2-deficient littermates at 7 weeks of age. In 

contrary to previously published data [230, 305] no significant difference was found between 

the body weights of wt and rsk2-/y mice, whereas a mild reduction in the body weight 

was already observed in the fra1-tg mice confirming previously published data [19, 52] . In 

addition, the lifespan of fra1-tg mice was also reduced although to a lesser extend. Thus, 

it appeared that Rsk2 inactivation amplified the effects of Fra1 overexpression on the 

survival and the growth of mice.  

The p90 ribosomal S6 kinase (Rsk), a cytosolic substrate for the extracellular 

signal-regulated kinase (ERK), is involved in transcriptional regulation, and one isoform 

(Rsk2) has been implicated in the activation of glycogen synthase by Insulin. To 

determine Rsk2 function in vivo, mice lacking a functional Rsk2 gene were generated by 

Dufresne and colleagues and studied in response to Insulin and exercise, two potent 

stimulators of the ERK cascade in skeletal muscle [229]. Rsk2 knockout mice weighed 10 

% less and were 14 % shorter than wt mice. They also showed impaired learning and 

coordination. Dufresne’s conclusions were that Rsk2 likely played a major role in 

feedback inhibition of the ERK pathway in skeletal muscle. Furthermore, Rsk2 was not 

required for activation of muscle glycogen synthase by Insulin but may indirectly 

modulate muscle glycogen synthesis activity and/ or glycogen content by other 

mechanisms. In 2003 the group published in more detail how Rsk2 can influence the 

mice body [230]. They showed that Rsk2-deficiency in mice resulted in reduced body 

weight, largely because of a specific loss of WAT. Furthermore, the mice were resistant 

to development of obesity and hyperleptinemia when fed a high fat diet (HFD). The Rsk2 

KO mice were mildly diabetic and Insulin resistant and have fatty livers. Dufresne´s 

group speculated that the dysregulation of glucose homeostasis was secondary to loss 

of fat tissue because administration of recombinant leptin, a fat-derived hormone, 

normalises glucose and Insulin parameters [229, 230]. This conclusion was consistent with 

other reports about the Insulin-sensitising effects of leptin in both normal mice and mice 

with partial or total lipodystrophy that were hypoleptinemic and severely Insulin resistant 
[231, 232, and 233]. But it was also possible that altered expression of other adipocyte-derived 

factors involved in the regulation of Insulin sensitivity, including adiponectin and tumor 

necrosis factor alpha (TNF-α) may play a role in the decreased Insulin sensitivity in the 

Rsk2-deficient mice [234, 235, and 236]. Although they did find several phenotypic similarities 
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to the rare cases of humans lacking functional Rsk2 proteins, the lean and diabetic 

phenotypes of the Rsk2 KO mice have not been reported in Coffin–Lowry syndrome 

(CLS). These differences therefore appear species dependent, and possible 

explanations include differential tissue distribution of Rsk2 and/ or differential 

compensatory mechanisms between humans and mice, including upregulation of other 

Rsk family members, e.g. Rsk1, Rsk3 or Rsk4.  

In contrast to these data, I could not see any difference between the wt and rsk2-

/y in growth, in weight, even a specific loss of WAT or decreased adipocyte cell size with 

age as observed in Fra1 overexpressing mice. However, I showed here that the Fra1-

anti-adipogenic effect can be amplified by Rsk2-deficiency in vivo. The data clearly 

demonstrating that Rsk2 is require for proper adipocytes differentiation in case of Fra1 

overexpression.  Although all mice were backcrossed onto a similar background, the 

C57/Bl6 background for more than nine generations. I cannot exclude that differences in 

feeding and the environment of the mice contribute to the difference in the phenotype, 

but all animals were housed with food and water available ad libitum, in a light- and 

temperature-controlled environment. 

 

6.1.4. Consequence of lipodystrophy and mechanisms of action of Fra1 in fat 
 

In contrast to Dufresne and colleagues, two studies by Moitra (1998) and 

Shimomura (1999) similar to our in vivo (WAT) and ex vivo (mPOB) findings have been 

published [237, 238]. Moitra and colleagues generated a transgenic mouse with no white fat. 

These mice expressed a dominant-negative protein, termed A-ZIP/F, under the control of 

the adipose-specific aP2 enhancer/ promoter. The aP2 belongs to a large family of 

intracellular lipid carrier proteins that includes adipocytes, liver, intestine, kidney, and 

heart fatty acid-binding proteins, as well as myelin P2, and the cellular retinol- and 

retinoic acid-binding proteins. The precise function of aP2 is believed to play a role in 

fatty acid transport or protection against the detergent-like effects of fatty acids [239]. The 

adipocyte P2 gene has served as a model for differentiation-dependent gene expression 

in this cell type. The gene was transcriptionally activated during adipocyte differentiation 
[240, 241]. Several cis- and trans-acting regulatory components of the gene have been 

identified, including an AP-1 sequence at -120, where Moitra and colleagues have 

identified sequence-specific interactions between Fos-containing protein complexes and 

DNA [242, 243]. In addition, a binding site for the CAAT/enhancer-binding protein (C/EBP) 

located 140 base pairs upstream of the start of transcription, has been described [244, 245]. 

The differentiation dependence and tissue specificity of the aP2 gene and its relatively 
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high level of expression appear to be determined by a potent fat-specific enhancer 

located 5.4 kilo bases upstream of the start of transcription, which functions in both 

cultured adipocytes and transgenic mice [246, 247]. A binding site for a member of the 

nuclear factor 1 family (NF1) and several other nuclear factors play an important role in 

this enhancer [247]. The aP2 protein prevents the DNA binding of bZIP transcription 

factors of both the C/EBP and AP-1 family members. Moitra´s A-ZIP/F-1 transgenic mice 

had 99 % less white adipose tissue and dramatically reduced amounts of brown adipose 

tissue, which was inactive. They were initially growth-delayed. The mice ate, drunk, and 

urinated copiously, had decreased fecundity and premature death. The physiological 

consequences of having no white fat tissue were profound. The liver was engorged with 

lipid, and the internal organs were enlarged. Furthermore, the mice were diabetic, with 

reduced leptin (20-fold) and elevated serum glucose (3-fold), Insulin (50- to 400-fold), 

free fatty acids (2-fold), and triglycerides (3- to 5-fold).  

The second study was published by Shimomura and colleagues [238]. They 

produced transgenic mice that overexpressed nSREBP-1c in adipose tissue under the 

control of the adipocyte-specific aP2 enhancer/ promoter. These mice exhibited many of 

the features of lipodystrophy. The white fat failed to differentiate fully, and the size of 

white fat depots was markedly decreased. The mice had disordered differentiation of 

adipose tissue. Levels of mRNA encoding adipocyte differentiation markers (C/EBPα and 

PPARγ) were reduced, but levels of Pref-1 were increased. A marked Insulin resistance 

with 60-fold elevation in plasma Insulin was observed. In diabetes mellitus with elevated 

blood glucose levels (>300 mg/dl) failed to decline when Insulin was injected. Fatty liver 

from birth and elevated plasma triglyceride levels later in life.  

However, when comparison these two mice models with the fra1-tg and fra1-

tg/rsk2-/y mice, there are common characteristics. In fra1-tg/rsk2-/y mice the white fat 

failed to differentiate to 100 %. The adult fra1-tg mice contain decreased WAT (fat pad) 

and the size of white fat depots was markedly decreased. The fra1-tg WAT expressed 

exogenous and endogenous Fra1. In the wt fat pad only small amount of endogenous 

Fra1 was detectable. Detailed mRNA analyses of fra1-tg WAT showed significant 

reduction of adipocyte markers, such as PPARγ, C/EBPα, Glut4, and aP2. WAT growth 

and differentiation is known to be regulated by sequence-specific DNA binding proteins 

of C/EBP bZIP families. Furthermore, AP-1 factors promoted precursor cells proliferation 
[242, 248]. C/EBP factors mediate adipocyte differentiation via a sequential pattern of 

expression beginning with C/EBP� and C/EBPβ and followed by C/EBPα [249]. The Fra1 

protein contains a basic leucine zipper region, which can heterodimerize with either Jun 

or C/EBP family members. We do not know today, which of these families is critical for 
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the phenotype observed in fra1-tg mice. The use of established preadipose cell lines 

(e.g. the 3T3-L1, 3T3-F442A, Ob17 lines or our own mOBrsk2-/y-pBabe-fra1 and 

mOBrsk2-/y-pMSCV-FraER) may allow answering this question. Indeed, when 

appropriately induced in culture, these cells undergo differentiation and acquire the 

biochemical and morphological phenotype of adipocytes [250, 251, 252, and 253]. Their 

differentiation can be induced by adding Insulin, glucocorticoid, and an agent that 

increases intracellular cAMP level (IBMX). The adipocyte differentiation program is 

regulated by transcriptional activators such as CCAAT/enhancer binding protein alpha 

(C/EBPα), peroxisomal proliferator activated receptor gamma (PPARγ), and 

transcriptional repressors such as preadipocyte factor-1 (Pref-1), originally identified in 

mouse 3T3-L1 preadipocytes, and known to play a key role in inhibiting the adipose 

conversion. These transcription factors coordinate the expression of genes involved in 

creating and maintaining the adipocyte phenotype including the Insulin-responsive 

glucose transporter (Glut4), and the fatty acid binding protein (aP2). I could not detect in 

my in vivo and ex vivo studies enhanced levels of Pref-1 in adipocytes. Indeed, Pref-1 

was abundantly expressed in fra1-tg preadipocytes, and its expression was 

downregulated during adipocyte differentiation. In agreement, adipogenesis was not 

completely blocked in fra1-tg mice but the cell size and their maturation was effected as 

shown by the downregulation of adipocyte differentiation markers, e.g. C/EPBα, PPARγ, 

Glut4 and aP2.  

Furthermore, the CAAT/enhancer-binding protein (C/EBP) family of transcription 

factors plays a major role in the regulation of adipocyte differentiation. These factors are 

proteins of the bZIP class, with a basic domain that mediates DNA binding and a leucine 

zipper dimerization domain [254]. Two members of this family, C/EBPβ and C/EBPδ likely 

play a role early in differentiation. Their expression is induced shortly after initiation of the 

differentiation program and decreases in the terminal phase [255]. Two of the agents 

employed to induce differentiation, IBMX and glucocorticoid, appeared to be directly 

responsible for the induction of C/EBPβ and C/EBPδ respectively. Conditional ectopic 

expression of C/EBPβ in NIH-3T3 fibroblasts led to commitment of these cells to the 

adipose lineage [256, 257, and 258]. Treatment with Dexamethasone, fetal bovine serum, and 

Insulin led to differentiation of these cells into adipocytes and induction of PPARγ. 

Peroxisome proliferator activated receptors (PPARs) are a class of nuclear hormone 

receptors, originally identified based on their activation by agents that induce peroxisome 

proliferation. Evidence has accumulated over the past few years, which suggested that 

this group of transcription factors plays a role in adipocyte differentiation. Activators of 
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PPARs promoted adipose differentiation of preadipocytes, myoblasts and the multipotent 

C3H10T cells, and ectopic expression of certain PPARs in the presence of such 

activators can induce differentiation of NIH-3T3 fibroblasts. Members of the PPAR family 

bind as heterodimeric complexes with the retinoid X receptors (RXRs) to PPAR response 

elements (PPRE/ DR-1; direct repeats of the sequence RGGTCA separated by one 

base) [259]. Such elements have been identified in a number of adipocyte genes, including 

the adipocyte fatty acid–binding protein aP2 [260]. Studies by Liao and colleagues (2007) 

showed that PPAR�action was mediated by both Glut4 and Glut1 [261]. Interestingly, 

PPARγ-depleted cells displayed enhanced inflammatory responses to TNF-α stimulation, 

consistent with a chronic anti-inflammatory effect of endogenous PPARγ. The strong 

effect of PPAR in promoting adipocyte differentiation is consistent with its abundant and 

specific expression in adipose tissue. The transactivation potential of all the PPARs is 

stimulated synergistically by Insulin [262, 263]. Insulin stimulation is dependent on the 

RAF/MAP/ERK/p90 ribosomal S6 kinase (Rsk2) kinase cascade pathway but has not 

been demonstrated to require direct phosphorylation of PPAR by Rsk2 kinase. MAP 

kinase phosphorylates a consensus MAP kinase site in the N-terminal region of PPAR in 

response to various growth factors that are known to block differentiation, leading to 

inhibition of PPAR transactivation [264]. Mutation of this site does not abolish Insulin 

stimulation but does block the inhibitory effects of growth factors on PPAR 

transactivation and promotion of adipocyte differentiation [264, 265]. How Rsk2 regulating 

adipogenesis is remain to be analysed, but our data indicate that Fra1 overexpression 

negatively controls adipocyte differentiation by downregulating PPARγ and C/EBPα, and 

consequently their known target genes Glut4 and aP2. 

 

6.1.5. Fra1 downregulate the glucocorticoid receptor (GR)  
 

Adipocyte differentiation can be induced by adding Insulin, Dexamethasone, and 

an agent that increases intracellular cAMP level like IBMX. I already could show that ex 

vivo Fra1 overexpressing cells less differentiated to adipocytes compared to wt cells. 

Moreover, adipocyte differentiation markers such as C/EBPα and PPARγ, as well as 

Glut4 and aP2 were decreased in vivo (WAT) and ex vivo (mPOBfra1-tg). Additional 

adipocyte differentiation experiments with retroviral vectors encoding for a constitutive or 

an inducible form of Fra1 have shown that Fra1 overexpression was directly responsible 

for the inhibition of adipogenesis. All these data clearly demonstrated that Fra1, in 

addition to promoting osteoblast differentiation was decreasing adipocytes differentiation 

in a cell autonomous manner. This phenotype was similar to the one described for the 
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transgenic mice overexpressing another Fos-related protein: ΔFosB [65, 66, and 103]. In the 

case of ΔFosB, the increased osteoblastogenesis has been shown to be independent on 

the decreased adipogenesis. The independence of the bone and the fat phenotype in 

ΔFosB transgenic mice was shown by osteoblast specific overexpression of ΔFosB using 

the ostreocalcin (OG2) promoter. These mice developed osteosclerosis without any 

evidence of lipodystrophy. All ex vivo and in vitro analyses converged to a Fra1-mediated 

downregulation of one of the key transcription factors controlling adipocyte differentiation, 

namely C/EBPα. So far, adipocytes differentiation is understood as follow. Adipogenic 

stimulation by Insulin, IBMX and the corticosteroid agonist Dexamethasone activates 

C/EBPβ and C/EBPδ both known to upregulate C/EBPα that in turn switch on PPARγ 

transcription. Finally, PPARγ activation upregulates C/EBPα establishing a positive 

regulatory loop [139, 141 and 160]. A connection between corticosteroid and C/EBPα in the 

regulation of adipogenesis has been demonstrated. Binding of Dexamethasone to the 

glucocorticoid receptor was shown to stimulate C/EBPα synthesis and thereby 

adipogenesis [266]. In the GR pathway, the receptor interacts with its steroid hormone 

ligand in the cytoplasm and undergoes an allosteric change that enables the hormone 

receptor complex to bind a specific DNA-responsive element (glucocorticoid responsive 

element [GRE]) and modulate transcription [267]. Regulation of physiological processes by 

glucocorticoids is achieved by ligand binding to the GR and subsequent modulation of 

gene expression. GR modulation of gene expression can occur by either direct DNA 

binding or by protein-protein interaction with other transcription factors, revealing the in 

vivo relevance of GR activities that are independent of DNA binding [268]. Studies in 

humans have observed GR polymorphisms associated with high blood pressure, 

increased visceral fat, variations in tissue-specific steroid sensitivity, and alterations in 

Insulin sensitivity and BMI [269, 270, 271, and 272]. There is evidence that GR in the nervous 

system can affect energy balance [273], but recent studies also suggest that central GR 

and the peripheral GR in adipose tissue can contribute to abdominal obesity [274]. The 

ability of glucocorticoids (GCs) to regulate cell proliferation plays an important role in 

their therapeutic use. The canonical Wnt pathway, which promotes the proliferation of 

many cancers and differentiated tissues, is an emerging target for the actions of GCs, 

albeit existing links between these signaling pathways are indirect. By screening known 

Wnt target genes for their ability to respond differently to GCs in cells whose proliferation 

is either positively or negatively regulated by GCs, scientists identified c-myc, c-Jun, and 

cyclin D1, which encode rate-limiting factors for G(1) progression of the cell cycle. In 

other cell system, activation of C/EPBα was shown to be involved corticosteroid-induced 
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growth arrest [275]. Interestingly, it has been found, that mesenchymal cells 

overexpressing Fra1 were expressing lower level of the glucocorticoid receptor and were 

protected against corticosteroid-induced growth arrest. Glucocorticoids are known to 

inhibit bone formation most likely by decreasing the proliferation of the osteoblastic cells 

and by increasing the apoptosis of mature osteoblasts [276]. Therefore, downregulation of 

the glucocorticoid receptor might be one of the mechanisms by which Fra1 is inducing 

bone formation. In conclusion, I demonstrated that, in addition to promoting 

osteogenesis, Fra1 is blocking adipogenesis by directly inhibiting adipocyte 

differentiation. The mechanism seems to involve the downregulation of the glucocorticoid 

receptor that results in a decreased expression of C/EPBα (Figure 6.1).  

 

 

Figure 6.1 Fra1 downregulates important adipocytes differentiation markers  

 

 

6.1.6. Connection between fat metabolism and immune diseases such as diabetes 
and ketoacidosis 

 

Many diseases have multifactorial origins. The Fra1 overexpressing phenotype 

includes poor fertility (observation experience), splenomegaly (spleen weight/ body 

weight ratio analysis), lipodystrophy (Red O Oil staining), and early death (survival 

analysis). The phenotype is may be attributed to the lack of WAT, disrupting energy 



Diskussion 
______________________________________________________________________ 

 145  

storage and communication among the tissues of the body, including signals from both 

WAT and the rest of the body to WAT. Without WAT, to take up and store free fatty 

acids/ triglycerides, derived mainly from diet and hepatic production, blood levels 

become elevated. Increased circulating free fatty acids have been proposed to cause 

increased blood glucose via the glucose-fatty acid cycle, in which muscle uses free fatty 

acids as a fuel in preference to glucose [277, 278]. The resulting increased blood glucose 

levels, in turn, lead to more Insulin secretion and pancreatic islet �-cell hypertrophy and 

hyperplasia. Free fatty acids, known ligands for transcription factors, might also cause 

Insulin resistance via transcriptional mechanisms. The resulting extraordinarily high 

Insulin levels are sufficient for cross-talk activation of IGF-1 receptors [279]. IGF-1 receptor 

stimulation could explain the enlarged organs and continued adult growth of the fra1-tg 

mice. However, fatty liver could not be observed in fra1-tg ever fra1-tg/rsk2-/y mice. In 

contrast to the A-ZIP/F-1 and nSREBP-1c mice, liver of fra1-tg and fra1-tg/rsk2-/y mice 

were anaemic and Red Oil staining of liver sections did not showed any accumulation of 

fatty acids/ triglycerides.  

Fatty acids play a critical role in both normal metabolism and certain metabolic 

diseases. They serve as the primary energy source for skeletal muscle and also 

represent the major carrier of metabolic energy, which is ultimately stored in adipose 

cells in periods of nutritional abundance. In fasted states, fatty acids are exported from 

fat at an elevated rate to spare glucose, e.g. for the brain or other ATP-energy using 

processes. This major glucose-utilizing tissue can also adapt to a prolonged fast to utilize 

ketone bodies derived from fatty acids by oxidation in the liver. In addition to these 

obviously beneficial functions of fatty acids, they also are an integral part of certain 

pathological conditions. In poorly treated diabetic states, as well as I suppose it in the 

fra1-tg and more in the fra1-tg/rsk2-/y mice, fatty acids can reach extremely high levels 

and cause significant medical problems. Data have suggested that elevated levels of 

fatty acids themselves (which frequently occur in both obese and diabetic individuals) 

might play a role in the generation of an Insulin-resistant state [280, 281]. One disease could 

explain the non-fatty liver, the decreased differentiation/ maturation of adipocytes or 

increased lipolysis in existing adipocytes, the reduced lifespan, and the prematurely 

death in our mice models of Fra1 overexpression. These conditions are known as 

ketoacidosis. Insulin-deficiency leaves the muscle, fat, and liver cells unable to use 

glucose (sugar) in the blood as fuel. Other hormones such as glucagon, growth 

hormone, and adrenaline cause fat to break down within the cells of these tissues into 

glucose and fatty acids. These fatty acids are converted to ketones by a process called 

oxidation. The body is literally consuming muscle, fat, and liver cells for fuel. Diabetic 
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ketoacidosis (DKA) is a state of inadequate Insulin levels resulting in high blood sugar 

and accumulation of organic acids and ketones in the blood [282, 283, 284, and 285]. It is also 

common in DKA to have severe dehydration and significant alterations of the body’s 

blood chemistry. DKA is usually seen in humans who have type 1 (Insulin-

dependent) diabetes. Most often, these are diabetics younger than 25 years, but the 

condition may occur in diabetics of any age. Males and females are equally affected. 

DKA is characterized by hyperglycemia, acidosis, and high levels of circulating ketone 

bodies. The pathogenesis of DKA is mainly due to acidosis. Excessive production of 

ketone bodies lowers the pH of the blood; a blood pH below 6.7 is incompatible with life. 

Onset of DKA may be fairly rapid, often within 24 hours. A key component of DKA is that 

there is no or very little circulating Insulin so it occurs mainly (but not exclusively) in type 

1 diabetes (because type 1 diabetes is characterized by a lack of Insulin production in 

the pancreas). It is much less common in type 2 diabetes that is closely related to cell 

insensitivity to Insulin, not shortage or absence of Insulin. Some type 2 diabetics have 

lost their own Insulin production and must take external Insulin; they have some 

susceptibility to DKA. Although glucagon plays a role as an antagonistic hormone to 

Insulin when there are low blood glucose levels, mainly by stimulating the process of 

glycogenolysis in hepatocytes (liver cells), Insulin is the most important hormone with the 

most widespread effects throughout the body. Its presence or absence can by itself 

regulate most of DKA's pathological effects; notably, it has a short half-life in the blood of 

only a few minutes (typically about six), short time is needed between cessation of 

Insulin release internally and the reduction of Insulin levels in the blood. Most cells in the 

body are sensitive to one or more of Insulin's effects; the main exception being 

erythrocytes, neurons, hepatocytes, some intestinal tissue, and pancreatic beta-cells 

which do not require Insulin to absorb glucose from the blood. The difference is due to 

different glucose transporter (Glut) proteins. Most cells contain only Glut4 proteins which 

move to the cell surface membrane when stimulated by a second messenger cascade 

initiated by Insulin, thus enabling uptake of glucose. Conversely, when Insulin 

concentrations are low, these transporters dissociate from the cell membrane and so 

prevent uptake of glucose. Other effects of Insulin include stimulation of the formation of 

glycogen from glucose and inhibition of glycogenolysis; stimulation of fatty acid (FA) 

production from stored lipids and inhibition of FA release into the blood; stimulation of FA 

uptake and storage; inhibition of protein catabolism and of gluconeogenesis, in which 

glucose is synthesized (mostly from some amino acid types, released by protein 

catabolism). A lack of Insulin therefore has significant effects, all of which contribute to 
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increasing blood glucose levels, to increased fat metabolism and protein degradation. 

Fat metabolism is one of the underlying causes of DKA. 

 

6.1.7. Are Fra1 overexpressing mice a model for lipoatrophic diabetes?  
 

The Fra1 overexpressing phenotype was similar to that of humans with severe 

lipoatrophic diabetes (total lipodystrophy, the Seip-Berardinelli syndrome, ketoacidosis). 

The human lipodystrophies are a heterogenous group of disorders characterized by 

decreased fat mass, Insulin resistance, and elevated triglycerides [284, 286]. Both genetic 

and acquired forms (presumably autoimmune) are known. Lipodystrophic diabetes was 

recently recognized as a complication of protease inhibitor treatment of HIV infection [285]. 

The similarities of our own phenotype and lipoatrophic diabetes include cardiovascular 

disease and splenomegaly. Humans with severe lipoatrophic diabetes often die from 

complications of diabetes. Fra1 overexpressing mice also die prematurely, possibly as a 

result of high glucose causing a hyperosmolar state (hypothetical). In addition to the 

similarities above, both lipoatrophic humans and fra1-tg mice have an increased 

metabolic rate, which attribute to their splenomegaly. Fra1-tg lipoatrophic diabetes is a 

consequence of the absence of fat, suggesting that a lack of fat is causative for the 

human disease. Lipodystrophy is paradoxical, with the lack of fat causing diabetes. The 

usual scenario is that obesity causes type 2 diabetes. Thus it is important to examine the 

similarities between lipoatrophic and type 2 diabetes. As postulated above, increased 

free fatty acids may cause lipoatrophic diabetes and a role for free fatty acids has also 

been proposed in type 2 diabetes [289]. Alternatively, lack of WAT in fra1-tg mice may 

cause diabetes by a different mechanism from that which occurs in obese mice. Lack of 

adipose tissue in Fra1 overexpression mice could also causes leptin deficiency. Low 

leptin levels contribute to the Insulin resistance, since leptin-deficient ob/ob mice are 

diabetic [290]. Leptin also increases muscle glucose utilization, enhances Insulin's 

inhibition of hepatic glucose production, and is required for sexual maturation and fertility 
[291, 292, and 293]. Other lean mouse models exist, but none of the previous models and my 

own model (fra1-tg/rsk2-/y) produced viable mice lacking WAT throughout development, 

suggesting that WAT is essential for life.  
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6.2 Fra1´s immune modulation role in the spleen   
 

The largest secondary lymphatic organ of mammals derived from mesenchyme is 

the spleen. This organ is located on the left side of the abdomen and has a role initially in 

blood and then immune system development. The spleen's haematopoietic function 

(blood cell formation) is lost with embryonic development and lymphoid precursor cells 

migrate into the developing organ. After birth the bone marrow haematopoietic 

microenvironment occupies the medullary cavities of bones throughout the skeleton and 

provides support for haematopoiesis and immune cells development. The work on c-Fos 

by Erwin Wagner and co-workers identified this proto-oncogene, as a primary factor 

which directs effect cell differentiation along the osteoclast/ macrophage lineages, and 

thus regulates bone remodelling [19, 29, 34, 34, 44, 45 and 48]. Their studies support a link 

between skeletogenesis, marrow formation and haematopoiesis, and may help to 

delineate mechanisms underlying the oncogenic transformation of skeletal and 

haematopoietic. Furthermore, Jochum and colleagues showed that overexpression of 

Fra1 in mice results in an elevation in the number of mature osteoblasts, and the supra-

physiological bone formation without increased bone resorption resulting in 

osteosclerosis [52]. Moreover, splenomegaly in fra1 transgenic mice was observed. 

 

6.2.1. Fra1 overexpression induce splenomegaly but not in the absence of Rsk2 
 

As already previously described, fra1 transgenic mice develop in addition to 

osteosclerosis splenomegaly [52]. This may be due to a bone mass increase, which 

causes a severe reduction of space in the bone cavity harbouring the bone marrow, the 

major site of haematopoiesis. In this study I showed that the fra1-tg/rsk2-/y mice 

developed a comparable Fra1 increase in bone mass with a severe reduction of space in 

the bone cavity, which causes osteosclerosis. Surprisingly the fra1-tg/rsk2-/y mice did 

not show any visible spleen enlargement compare to Fra1 overexpression mice. In order 

to quantify the degree of organ enlargement, spleen weight/ body weight ratios were 

calculated for al phenotype. Summarised, the data indicate that Fra1 overexpression 

induced splenomegaly can be counteracted by total Rsk2-deficiency but not following 

partial depletion of Rsk2 (such in fra1-tg/rsk2-/x spleens). However, spleens of male fra1-

tg/rsk2-/y mice appeared to be rather anaemic when compared to wt and rsk2-/y 

spleens.  

Not much is known about the role of Rsk2 in spleen morphology or function. The 

family of the 90 kDa ribosomal S6 kinases have multiple cellular functions [296]. They are 
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involved in the phosphorylation of histone H3 and remodelling of chromatin in response 

to epidermal growth factor (EGF) and can regulate gene expression by phosphorylation 

of transcription factors, including c-Fos [18, 297, and 298], cAMP-response element-binding 

protein (CREB) [299, 300 and 301], CREB-binding protein [302, 303], Estrogen receptor [304], ATF4 
[35], NFATc4 [305] and NF-κB/IκBα[306, 307]. p90Rsk2 was also reported to phosphorylate the 

p34cdc2 inhibitory kinase Myt1 in frog oocytes, leading to activation of the cyclin-

dependent kinase p34cdc2 that then promotes cell-cycle progression of oocytes through 

the G2/M phase of meiosis [308]. Phosphorylation of the proapoptotic protein, Bcl-XL/Bcl-

2–associated death promoter (Bad) by p90Rsk2 suppresses Bad-mediated apoptosis in 

neurons [309]. In addition, phosphorylation of the Ras GTP/ GDP-exchange factor, SOS, 

by p90Rsk2 in response to EGF may be involved in negative feedback regulation of the 

MAP kinase signalling pathway [310]. Furthermore, Rsk2 appears to play an essential role 

in T-cell activation at least for cellular growth/ survival [311]. Finally, loss-of-function 

mutations of p90Rsk2 in humans cause the Coffin-Lowry syndrome, an X-linked form of 

mental retardation that is associated with delayed bone age, delayed closure of 

fontanelles, and a short stature [312, 313, and 314]. Although, Rsk2 plays a major role in the 

cell communication. The results in this study do not provide clear information about a 

possible “spleen-dwarfism-syndrome” in fra1-tg/rsk2-/y mice which would be caused by 

the absence of phosphorylation of Fra1 by Rsk2. 

 

6.2.2. Fra1 overexpression affects the red pulp, white pulp and marginal zone 
compartimentalization 

 

I investigate whether the consequence of the reduction the bone marrow space on 

the cellular composition and organization of the one secondary lymphoid: the spleen. For 

this purpose, spleen sections of all mice strains were subjected to Hematoxylin & Eosin 

staining. I demonstrated that a clear separation of red and white pulp regions was lost in 

the spleens isolated from fra1-tg and fra1-tg/rsk2-/y mice. In control (wt) mice the spleen 

was normally divided into two types of pulp which correspond to the two most important 

functional roles of the spleen – the red pulp and the white pulp. The splenic red pulp is 

characterized by a specialized network of open sinuses that facilitates mechanical 

filtration of the blood and removes unwanted materials from the blood, including 

senescent red blood cells (erythrocytes). Due to the high abundance of erythrocytes, it is 

macroscopically tinged red - to which the red pulp owes its name. Reticular fibers 

crosslink to form a fine meshwork (reticulum) in the red pulp (splenic cords). This 

network is composed of type I and III collagen and acts as a supporting mesh in soft 
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tissues [315]. The red pulp was separated from the white pulp by the so-called marginal 

zone (MZ). It is composed of cells derived primarily from the myeloid compartment of 

bone marrow like specialized macrophages, dendritic cells and a particular subset of B 

lymphocytes [316].  Within the marginal zone, the blood leaks from the terminal arterioles 

into the open sinuses resulting in a slow-down of the blood flow. This facilitates the 

marginal zone, in particular its residing macrophages. Finally, the white pulp of the 

spleen was organized around a central arteriole and is demarcated from the surrounding 

red pulp by the marginal sinus defining the marginal zone. The red pulp was intermingled 

with white pulp cords that lack erythrocytes but instead mostly consist of white blood 

cells such as lymphocytes (B and T cells), macrophages and dendritic cells (FDC). 

Within the white pulp, B and T lymphocytes accumulate in well separated compartments. 

Whereas T lymphocytes are located within the periarteriolar sheaths (PALS) surrounding 

the incoming central arterioles, B lymphocytes reside in adjacent B cell follicles [317, 318, 319, 

and 320].  

In this study the clear separation of red and white pulp regions in Fra1 

overexpressing mice was lost due to an extension of the lymphocyte compartment and 

subsequent infiltration of lymphocytes in the red pulp as indicated by diffuse Hematoxylin 

staining. Furthermore, the H&E staining let me suppose that the connective tissue 

framework of the spleen, which is formed by a spider-web like network of reticulum fibres 

and composed of thin fibrils of collagen and elastin was modified in Fra1 overexpressing 

mice and fra1-tg mice lacking Rsk2.  

In order to answer the question whether Fra1 overexpression and Rsk2-deficiency 

may also affect connective tissue remodelling of the spleen, reticulum fiber networks 

were visualized and analysed by Mason-Goldner-Tricolor (MGT) staining. Using a 

combination of three different staining solutions, muscle fibers, collagenous fibers, fibrin 

and erythrocytes can be selectively visualized. The original methods were primarily used 

to differentiate collagenous and muscle fibers. The stains used have different molecular 

sizes and enable the individual tissues to be stained differentially. As already shown by 

H&E staining, wt and rsk2-/y mice show clear separation of red and white pulp regions 

that are tinged red and yellow in MGT staining, respectively. In addition, MGT staining 

revealed normal arrangement of connective tissue in these mice - both the collagen 

containing splenic capsule and the marginal zone (MZ) that is rich in collagen-containing 

endothelial/ epithelial cells could be identified. Likewise, MGT staining showed the loss of 

clear red and white pulp segregation in spleens of fra1-tg and fra1-tg/rsk2-/y mice 

already noticed by H&E staining. Moreover, the MGT staining supported the hypothesis 

that the red pulp was infiltrated by cells from the white pulp in these mice, as the density 
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of erythrocytes seems to be diminished due to intermingling with other cells. Strikingly, 

the regions occupied by connective tissue are enlarged in spleens of fra1-tg and fra1-

tg/rsk2-/y mice, a finding that might point at commencing fibrosis. Besides being 

enlarged, the network of reticular fibres in spleens of fra1-tg and fra1-tg/rsk2-/y mice 

diverged from the normal arrangement of connective tissue. Here, the splenic capsules 

and the MZ could be hardly identified. The network of reticular fibres appeared to be 

rather loosely dispersed in fra1-tg and fra1-tg/rsk2-/y mice. Histological evaluation 

including H&E staining as well as MGT staining did indicate a Fra1-related increase of 

connective tissue formation or fibrosis.  Altogether, these data could be signs of systemic 

or organ-specific inflammation.  

 

6.2.3. Fra1 overexpression causes changes in marginal zone 
compartimentalization, affects FDC network, B cell homing and 
formation of B cell zones  

 

Like NF-κB, AP-1 is minimally activated by physiological stimuli, but is 

dramatically activated by many pathophysiological stimuli, including LPS, cytokines, and 

reactive oxygen species [321]. AP-1 is a ubiquitous regulatory protein complex that 

interacts with AP-1 binding sites of target genes to regulate transcription under 

pathophysiological conditions. Members of the mitogen-activated protein kinase (MAPK) 

family, c-Jun N-terminal kinase (JNK) and p38 MAPK are important in the regulation of 

AP-1 to mediate expression of inducible genes. The inducible transcription factor AP-1 

appears to play key roles in the transcription of a number of inflammatory genes strongly 

involved in the pathophysiology of T and B cell related diseases or systematic 

inflammatory response syndrome (SIRS), including sepsis. For example, the promoter 

regions of ICAM-1 and COX-2 genes contain several putative AP-1 binding sites, 

suggesting that initiation of the signal pathway for activation of AP-1 leads to the 

induction of these genes [322, 323]. The spleen functions as a blood-filtering system that is 

capable of removing particulate matter such as bacteria from the circulation [324]. It also 

functions as a lymphatic organ and facilitates the generation of immune responses to 

blood-borne Ags [325]. There are three segregated areas of the spleen: the white pulp, the 

red pulp, and the marginal zone (MZ) [326].  The MZ forms a distinctive border between 

the red and white pulp and is the entry point for blood entering the splenic circulation. In 

addition to trafficking leukocytes, four types of cells are constitutively present in the MZ of 

murine spleen: MZ B cells, MZ dendritic cells, MZ macrophages (MZMs), and marginal 

metallophilic macrophages (MMMs). MMMs are located on the inner border of the MZ 



Diskussion 
______________________________________________________________________ 

 152  

directly adjacent to the white pulp, whereas MZM are located on the outer border of the 

splenic MZ, at the border with the red pulp.  

MMMs are not considered to be highly phagocytic, but are essential for the 

initiation of an immune response to T-dependent particulate Ags and T-independent type 

2 Ags [327, 328, and 329]. MMMs are capable of migrating from the MZ, into a developing 

germinal center during the course of an immune response, suggesting that MMMs are 

involved in the transport of unprocessed Ag from the MZ into the B cell follicles, and are 

thus thought to be important in the generation of immune responses [330, 331]. Because 

spleen inflammation induces spleen injury, I assessed the degree of spleen injury and 

the inflammatory response in wt, fra1-tg and fra1-tg/rsk2-/y mice. To analyse an 

inflammation I focused my research on cell markers which are responsible for spleen 

injury. 

Many markers are known to describe the B cell compartments of the white pulp. 

MOMA-1 is a useful marker for the identification of macrophage subpopulations, mostly 

characterised by a high level of non-specific esterase expression [332]. The marginal 

metallophilic macrophages are recognized by using either the MOMA-1 mAb or the 

marginal zone macrophages were identified using the ERTR-9 mAb. Double 

immunocytochemical staining of spleen sections clearly revealed the two distinct 

macrophage populations of the marginal zone, with metallophilic macrophages (MMMs) 

forming a continuous layer outlining the white pulp area and marginal zone macrophages 

(MZMs) scattered outside this layer. In addition, MOMA-1 detects macrophages at 

inflammatory sites. In this study immunostainings of spleen sections derived from wt 

mice attested normal cellular composition (white pulp regions, MZ) but this was not 

observed for Fra1 overexpressing spleen sections.  

B220, a B cell marker in mice, is expressed by B cells that do not express the 

memory B cell marker CD 27 [333, 334, and 335]. In reactive lymphoid tissues, B220 is 

expressed by B cells occupying the mantle zones and by a subpopulation of germinal 

center cells, but, in contrast, marginal zone B cells in the spleen do not express B220. 

Furthermore, B cell lymphoproliferative disorders are positive for B220, including most 

cases of marginal zone lymphoma, follicular lymphoma, and lymphoplasmacytic 

lymphoma. In contrast, all cases of precursor B lymphoblastic leukemia/ lymphoma, 

mantle cell lymphoma, and chronic lymphocytic leukemia/ small lymphocytic lymphoma 

are negative for B220 [336]. B220 is expressed in a select subset of normal, reactive B 

cells in a pattern that is consistent with a marker of naive B cells. However, this restricted 

expression pattern is not seen in B cell lymphoproliferative disorders. Discordance 

between the B220 expression patterns of normal mantle and marginal zone B cells and 
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their respective neoplastic counterparts may aid in the distinction between normal and 

neoplastic proliferations at these anatomical sites. The BP-3 antigen expression by B 

lineage cells extends from the earliest detectable progenitors in the bone marrow to 

immature B cells in the periphery [337]. A discrete subpopulation of reticular cells in the 

peripheral lymphoid organs also expresses the BP-3 antigen [338]. The splenic BP-3 

positive reticular cells are confined to the white pulp areas and their expression of the 

BP-3 antigen begins when the neonatal spleen becomes a secondary tymphoid organ, 

thus raising the possibility that the BP-3 molecule could be involved in lymphocyte-

stroma interactions. In contrast to the pattern of BP-3 antigen expression by lymphoid 

cell lineages, BP-3 antigen expression on myeloid cells increases as a function of 

maturation.  

A marker for follicular dendritic cells (FDCs) is named FDC-M2 [339, 340]. FDCs are 

cells of the immune system found in B cell follicles. They are probably not of 

haematopoietic origin, but simply look similar to true dendritic cells. They share their 

appearance and function with the other types of dendritic cells and assist in B cell 

maturation by the presentation of intact antigen to the B cells and induce class switching 

and proliferation. FDC-M2 is localized on FDCs, independently of the presence of 

germinal centers (GC). The GC was first described in 1884 by Walther Flemming, who 

observed a site of large lymphocytes undergoing mitosis in the follicles of lymph nodes 

and other secondary lymphoid organs and proposed this site to be a major source of all 

lymphocytes in the body. Today, the GC is now known to be associated with T cell 

dependent immune responses, and experimental evidence indicates that it is the main 

site in which high-affinity antibody-secreting plasma cells and memory B cells are 

generated. 

Furthermore, the MZ, which surrounds B cell follicles in the spleen, contains a 

specialized subset of B cells. MZ B cells participate in T cell independent (TI) “innatelike” 

immune response to microbial pathogens, and can rapidly proliferate and differentiate 

into IgM or even switch to other isotype-secreting plasma cells, producing the bulk of the 

primary antibody response [341, 342, and 343]. TI responses do not generate memory B cells, 

consistent with a relatively short-lived antibody production. MZ B cells can be viewed as 

a bridge between the innate and adaptive immune responses to pathogens invading the 

host and barrier between red and white pulp. 

In this study the H&E and MGT stainings have demonstrated that fra1-tg and fra1-

tg/rsk2-/y mice have disturbed morphology of the spleen, particularly regarding its 

compartmentalisation. Immunostainings of spleen sections derived from wt mice 

revealed normal cellular composition of white pulp regions and the MZ in these mice. 
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Briefly, white pulp regions were shown to comprise marked B cell zones that were found 

in contiguity to FDC-networks. Furthermore, white pulp regions were both traversed by a 

network formed by BP-3 positive reticular cells and demarcated from the MZ by the ring 

of MOMA-1 expressing MM. In spleens of fra1-tg and fra1-tg/rsk2-/y mice white pulp and 

MZ architecture was found to be altered. Most notably, white pulp regions of fra1-tg and 

fra1-tg/rsk2-/y mice were not fully developed and lacked compact FDC networks 

although, faint FDC-M2 staining was observed at the outer border of white pulp regions. 

Likewise, the BP-3 staining pattern was different in these mice compared to wt mice in 

that the BP-3 positive cells were concentrated in ring-like structures that rather seem to 

overlap with or/ extend into the MZ. MOMA-1 staining further revealed the expanded 

rings of MMs in spleens of fra1-tg and fra1-tg/rsk2-/y mice when compared to wt mice. 

More importantly, regular B cell homing and formation of B cell zones were strikingly 

affected in spleens of fra1-tg and fra1-tg/rsk2-/y mice. Accumulated B cells formed a ring 

overlapping with the MZ as indicated by double immunofluorescent stainings of B220 

and MOMA-1. Moreover, the localisation of B cells correlated with the staining patterns of 

BP-3 and FDC-M2. Since homing of B cells to B cell zones/ follicles is known to rely on 

the expression of the chemokine (C-X-C motif) ligand 13 (CXCL-13) by FDCs [344], 

dislocation of B cells in spleens of fra1-tg and fra1-tg/rsk2-/y mice is likely to be 

secondary to the changes regarding the stromal tissue of the white pulp (FDC and 

reticular cells). Taken together, these data showing a total disorganisation of an immune 

defence organ, in this case the spleen, in fra1-tg mice and fra1-tg/rsk2-/y mice, allow me 

to assume that the AP-1 member Fra1 plays an pivotal role in the immune modulation. 

 

6.2.4. Fra1 overexpression influences the myeloid cells lineages 
 

While the bone marrow is the primary site of haematopoiesis in the adult, up until 

the fifth month of gestation, the spleen has important haematopoietic functions. After 

birth, no significant haematopoietic function is left in the spleen except in some 

haematological disorders which affect mostly the myeloid stem cells and also lymphoid 

stem cell. 

The myelodysplastic/ myeloproliferative diseases (MDS/ MPD) are clonal myeloid 

disorders that possess both dysplastic and proliferative features but are not properly 

classified as either myelodysplastic syndromes (MDS) or chronic myeloproliferative 

disorders (CMPD). The prefix "myelo-" refers to marrow. Bone marrow, known as a 

reddish substance in the middle of some bones, produces blood cells. In the 

myeloproliferative diseases, the body makes too many blood cells. Blood contains red 
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blood cells to carry oxygen, white blood cells to fight infections, and platelets to initiate 

blood clotting. Myeloproliferative diseases develop when a myeloid progenitor cell 

becomes overactive (e.g. chronic myelocytic leukemia, thrombocythemia, myelofibrosis). 

The abnormal progenitor cell continues to make normal blood cells, but makes too many 

of them. This excess of blood cells results in varying symptoms, depending on the 

progenitor cell involved. Other problems develop when some of the abnormal myeloid 

progenitor cells travel to the spleen, liver, or lymph nodes and begin making blood cells 

there. Most often, they migrate to the spleen. An enlarged spleen can crowd other 

organs in the abdomen and cause discomfort or digestive troubles. It is also susceptible 

to painful damage by blocking arteries. Massively swollen spleens can use large 

amounts of energy and cause muscle wasting and weight loss. Splenomegaly is usually 

associated with increased workload (such as in haemolytic anaemia), which suggests 

that it is a response to hyperfunction and is associated with any disease process that 

involves abnormal red blood cells being destroyed in the spleen. Other common causes 

include congestion due to portal hypertension and infiltration by leukaemia and 

lymphomas. In the later stages of myeloproliferative diseases, the bone marrow can 

become scarred. This may leave no space for progenitor cells. As a result, blood cell 

production can drop to dangerously low levels. The abnormal progenitor cells may also 

mutate and develop into leukaemia (B and T cell leukaemia). These two serious 

complications are rare in some myeloproliferative diseases but very common in others. 

In this report, I have provided evidence that Fra1 could mediates its immune 

modulatory effect (increased megakaryocytes) by downregulation of C/EBPα (as shown 

for mPOBfra1-tg and mOBfra1-tg). C/EBPα is a key regulator of early myeloid 

development [345, 346]. Mice lacking C/EBPα have reduced granulocytes and monocytes. 

C/EBPα increases monocytic lineage commitment from bipotential myeloid progenitors. 

In addition to C/EBPα, AP-1 proteins also have the capacity to induce monocytic 

maturation. The initial suggestion that AP-1 proteins favor monocytic development 

comes from the finding that c-Jun or c-Fos can induce monocytic differentiation when 

expressed in myeloid cell lines and from the observation that phorbol esters rapidly 

induce AP-1 proteins and direct myeloid cell maturation to monocytes [347, 348, and 349]. 

C/EBPalpha:c-Jun or C/EBPalpha:c-Fos leucine zipper heterodimers induce 

monopoiesis more potently than C/EBPalpha or c-Jun homodimers or c-Fos:c-Jun 

heterodimers. C/EBPs and NF-kappaB cooperatively regulate numerous genes during 

the inflammatory response. The C/EBPα basic region interacts with NF-kappaB p50, but 
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not p65, to induce Bcl-2, and this interaction may be relevant to myeloid cell survival and 

development [350, 351, 352 and 353]. 

Overexpression of Fra1 in mice was previously shown to lead to osteosclerosis of 

the full skeleton [52]. Thus far, several findings of this study as for instance splenomegaly, 

reduced density of erythrocytes in the splenic red pulp and changes in the spleen 

parenchyma suggest that it may be also related to the development of other diseases 

such as myelofibrosis. A common feature of these diseases is that their aetiology is 

thought to be linked to megakaryocytes development. Megakaryocytes derive from the 

myeloid lineage of haematopoietic stem cells and are responsible for platelet production. 

Several severe diseases including thrombocythemia and thrombocytopenia are directly 

attributable to megakaryocytes malfunction [354, 355]. Others like myelofibrosis, 

osteosclerosis and Hepatitis C are ascribed to increased numbers of megakaryocytes 
[356, 357, and 358]. To assess, whether the observed abnormalities regarding the spleens of 

fra1-tg mice also include changes regarding splenic megakaryocytes, additional H&E 

and immunostainings were performed on spleen sections. Megakaryocytes were 

detected by an antibody directed against CD41 in combination with DAPI nuclear 

counterstained. CD41 is a glycoprotein that is typically expressed on the surface of 

megakaryocytes [354]. In this study megakaryocytes could be identified in spleens of wt, 

fra1-tg and fra1-tg/rsk2-/y mice by both H&E staining and CD41 immunostaining. 

However, the staining collectively implied an increased number of megakaryocytes in the 

spleens of fra1-tg and fra1-tg/rsk2-/y mice. This observation was subsequently verified 

by statistical counting of CD41 positive megakaryocytes, in which the number of 

megakaryocytes per observation field turned out to be increased about 20- and 28-fold in 

case of fra1-tg and fra1-tg/rsk2-/y mice, respectively. Based on this observation, Fra1 

overexpression seems to modulate the immune system trough differentiation defects of 

haemapoetic stem cell line. Moreover, the Bethesda proposal for the classification of 

non-lymphoid haematopoietic neoplasms in mice provides precise criteria for accurate 

diagnosis [359]. The disease that developed most often in fra1 transgenic and fra1-tg/rsk2-

/y mice meets several of the criteria that define a non-lymphoid leukaemia. The disease 

diffusely involved haematopoietic tissues with an increase in myeloid cells in the spleen, 

and was accompanied by anemia and megakaryocytopenia. Altogether, these criteria 

would define the disease as a potential myeloproliferative disease–like myeloid leukemia.  
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6.3 Fra1´s immune modulation role in heart  
 

The heart is a specialised muscle that contracts regularly and continuously, 

pumping blood to the body and the lungs. The function of the right side of the heart is to 

collect de-oxygenated blood, in the right atrium, from the body and pump it, via the right 

ventricle, into the lungs (pulmonary circulation) so that carbon dioxide can be dropped off 

and oxygen picked up (gas exchange). The left side collects oxygenated blood from the 

lungs into the left atrium. From the left atrium the blood moves to the left ventricle which 

pumps it out to the body. On both sides, the lower ventricles are thicker and stronger 

than the upper atria. The muscle wall surrounding the left ventricle is thicker than the wall 

surrounding the right ventricle due to the higher force needed to pump the blood through 

the systemic circulation.  

The most common cause of heart disease is a narrowing of or blockage in the 

coronary arteries supplying blood to the heart muscle itself (coronary artery disease). 

Some heart diseases are present at birth (congenital heart disease). Other causes 

include hypertension, abnormal heart valve function, abnormal heart rhythm and 

weakening of the heart's pumping ability caused by infection or toxins. Diseases such as 

hypertension and heart failure can cause fibrosis, a hardening or stiffening of the heart 

tissue. This condition arises when heart cells called cardiac fibroblasts are activated. 

These cells secrete collagen, a protein that provides structural support for the heart and 

an enlargement. Cardiac fibroblasts are recognized as the cell type primarily responsible 

for homeostatic maintenance of extracellular matrix (ECM) in the normal heart. Myocytes 

are surrounded by a basement membrane whose principal structural component is non-

filamentous type IV collagen. Collagen fibrils composed primarily of collagen I with 

smaller amounts of collagen III are arranged in successive layers of organization [360]. 

 

6.3.1. Heart abnormality in Fra1 overexpressing mice and fra1-tg mice lacking 
Rsk2 

 

In this study, experiments including heart weight to body weight analysis were 

carried out to explain the observed heart enlargement. Furthermore, stainings (H&E, 

MGT and EvG) were performed in order to get hinds about the cell environment and to 

find out the cells, which are responsible for the induced fibrotic tissue. However, the in 

vivo role of Fra1 and Rsk2 in heart physiology remains unknown. In contrast, Fra1 

conditional knockout mice have a normal hypertrophic response, whereas hearts from 

fra1 transgenic mice decompensate prematurely [51, 52, and 361]. Moreover, fra1-tg as well 
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fra1-tg/rsk2-/y mice developed reduced body size and body weight, had defects in fat 

pad development, became splenomegaly, and died earlier.  

Importantly, it could be shown that the analyses of heart weight/ body weight ratio 

of Fra1 overexpression mice induced change of the heart in vivo. The difference in these 

heart enlargements was found to be more pronounced in females than in males. 

Furthermore, deletion of Rsk2 induced heart abnormalities in Fra1 overexpression mice 

as well. There are already conflicting data regarding Fra1 expression could influence 

heart development and function. Bergman et al., 2003 demonstrated that defined 

members of the Fos and Jun transcription-factor families specifically regulate genes, like 

MMP-2, under conditions relevant to critical pathophysiological processes for heart 

failure [362]. Moreover, it has been reported that Fra1seems to regulate the cardiac 

hypertrophy gene ANF [363]. How Fra1 modulates genes through which the pool of active 

cardiac fibroblasts is expanded remains to be explained. 

 

6.3.2. Fra1 overexpression changes the cellular environment of the heart 
 

This study sought to elucidate Fra1 overexpression can activate cardiac 

fibroblasts or myofibroblast. However, the nonmyocyte cell populations of the heart are 

increasingly appreciated to contribute to the performance of the normal and failing heart. 

In particular, cardiac fibroblasts have been recognized to constitute the major 

nonmyocyte cell type of the heart numerically and to contribute importantly to multiple 

aspects of myocardial function and pathophysiology. Myofibroblasts have been 

described as a specialized phenotype of activated fibroblasts [360]. These cells have big 

spindle-shape nucleus, express contractile proteins, including smooth muscle α-actin, 

vimentin, and desmin; effectively contract collagen gels in vitro; and are postulated to be 

important for wound closure and structural integrity of healing scars. In addition to normal 

wound healing, myofibroblasts are associated with hypertrophic fibrotic scars in injury 

models from multiple organ systems, and differentiation to the myofibroblast phenotype 

is strongly promoted by the fibrogenic growth factor TGFβ. Myofibroblast apoptosis has 

been associated with progression of granulomatous tissue to a mature scar, whereas 

failure of myocyte apoptosis has been suggested to drive the progression to fibrosis. 

Cardiac myofibroblasts were shown to persist in mature infarct scars.  

In this report, I have provided evidence that Fra1 overexpression mediate immune 

modulatory effects by induction of cell population, such as myofibroblast. The 

histopathology analyses revealed difference in the cell environment of the heart. Firstly, 

the heart size of adult fra1-tg and fra1-tg/rsk2–/y mice was markedly increased, which 
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was confirmed by the increased heart-to-body weight ratios in fra1-tg and fra1-tg/rsk2–/y 

mice compared to mice with all other genotypes. Secondly, the histological H&E 

analyses showed induction of cells with smaller spindle-shape nucleus in sections of 

fra1-tg mice. 

 

6.3.3. Fra1 overexpression induces heart fibrosis 
 

Histologically, hypertensive myocardial fibrosis is defined through following 

characteristics: an initial excessive deposition of type III collagen fibers, followed by type 

I as the process progresses; the fibers are arranged as bundles lining the interstices and 

around the intramyocardial vessels; fiber accumulation is mostly limited to the left 

ventricle but sometimes also present in the other cardiac chambers; the amount of fiber 

accumulation is inversely related to the number of cardiomyocytes and directly related to 

their degree of hypertrophy [364, 365, and 366]. The histological analysis of mice section 

showed visible morphological changes of muscle cells on H&E stained section of fra1-tg 

male mice. Smaller fibrotic cells were detected between the bigger myocardial cells in 

fra1-tg heart sections. Furthermore, to identify these smaller cells MGT and EvG 

stainings were performed. Staining of wt male heart sections showed no morphological 

alteration. Only pure muscle tissue was found in this staining. Using MGT or EvG 

staining on sections of 18 weeks old mice, extensive focal interstitial fibrosis were found 

in fra1-tg heart sections. Finally, the heart enlargement could be explained by additional 

collagen producing fibrotic cells between the muscle cells in fra1 transgenic mice.  

 

 

6.4 Fra1´s immune modulation role in liver 
 

The liver plays a major role in metabolism, digestion, detoxification and elimination 

of substances from the body. The liver is the principal metabolic factory in the body: it is 

supplied with molecules derived from food by the intestine, which it then modifies to 

various extents; it breaks down ammonia to produce urea and supplies the body with the 

sugar (glucose) it needs, together with many other essential substances, including the 

blood coagulation factors that protect us from haemorrhage. The production of the bile 

acts as a detergent to facilitate the digestion of fat. The liver is also involved in hormone 

production and storage of Vitamin A.  

Branches of the portal vein, the hepatic artery and the bile ducts run embedded in 

connective tissue along the longitudinal axis in between adjacent lobules in the portal 



Diskussion 
______________________________________________________________________ 

 160  

spaces. There are three to six portal spaces per lobule each containing one branch of 

the portal vein, the hepatic artery and a bile duct forming the portal triad. The branch of 

the portal vein is characterized by the largest lumen, whereas the branch of the bile duct 

can be distinguished by its cuboidal epithelium. In addition, lymph vessels are found in 

the portal spaces. The vessels send distributing branches along the periphery of each 

lobule. Inlet venues and arterioles branch from these and spill their blood into sinusoids. 

The sinusoids drain into the central vein. From the bile canaliculi located in between the 

plates of hepatocytes bile drains into the branches of the bile ducts. The individual 

lobules function in parallel with one another, not in series. Thus, if the vascular supply or 

drainage for one lobular unit is damaged the adjacent units will continue to function. 

However, at last serious malfunctions of the liver can lead to a decrease of the synthesis 

function, the decontamination function and to the increase of the portal pressure.  

 

6.4.1. Fra1 overexpression induces anaemia in liver and Fra1 overexpressing mice 
develope a typical autoimmune liver disease 

 

The first signs that Fra1 overexpression can also influence an organ like the liver 

have been observed in the livers from Fra1 overexpression mice lacking Rsk2. Their 

livers showed evidence for an anaemic character. Actually, anaemia goes mostly 

undetected, and symptoms can be vague. Very severe anaemia prompts the body to 

compensate by increasing cardiac output, and failed to heart failure. Through 

comparison of the different mice phenotypes the liver of Fra1 overexpressing mice looks 

pale-faced than wt. The change of color may be caused by anaemia. A disturbance of 

the blood flow or anaemia can be caused through a deterioration of the blood transport in 

the vessels or also by disturbance in the tissue.  

There are five different types of liver injuries are known. Hepatitis implies injury to 

liver characterised by presence of inflammatory cells in the liver tissue [367, 368, 369, and 370]. 

The condition can be self limiting, healing on its own or can progress to scarring 

(cicatrisation) of liver. There are several forms of viral hepatitis; A, B, C, D, E, F and 

more recently G. Hepatitis B and hepatitis C are the most significant. Acute hepatitis is 

when it lasts less than 6 months and chronic hepatitis is when it persists longer. A group 

of viruses known as the hepatitis viruses cause most liver damages worldwide. The 

diseases can also be due to toxins (notably alcohol), other infections or from 

autoimmune process. It may run a subclinical course when the affected person may not 

feel ill. The patient becomes unwell and symptomatic when the disease impairs liver 
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functions that include among other things, screening of harmful substances, regulation of 

blood composition and production of bile to help digestion.  

The second form of liver disease is cirrhosis [371, 372, 373, 374 and 375]. This term means 

that the liver has been damaged more severely, its normal architecture is disturbed, 

there is an increase in scar tissue and the liver mass is often reduced. Cirrhosis may be 

the consequence of long-standing injury from alcohol, certain viruses, bile duct injury or 

metabolic disorders including lipid metabolism distributions. Pimary biliary cirrhosis 

(PBC) is an autoimmune disease of unknown etiology leading to progressive destruction 

of intrahepatic bile duct, with cholestasis, cirrhosis, and eventually liver failure. 

Epidemiological data indicate that environmental factors trigger autoimmunity in 

genetically susceptible individuals, although no definitive association of PBC with specific 

genes has been found. In addition, no convincing explanation has been provided for the 

strong female predominance observed in the prevalence of PBC. It would suggested that 

the enhanced monosomy X in peripheral white blood cells, and particularly in 

lymphocytes, of affected women might play a role in the induction of PBC. The major 

paradox of PBC is that the damage is highly localized and targets biliary epithelium cells 

(BECs) lining only the small and medium-sized intrahepatic bile ducts (and the salivary 

gland epithelial cells in patients with also Sjogren's syndrome) despite the ubiquitous 

expression of the autoantigens. The epithelium of affected bile ducts presents a distinct 

morphology when compared to their larger counterparts also presenting different 

reactivity patterns when challenged with proinflammatory cytokines.  

Thirdly, the liver can be affected by infiltrations from many different substances. 

The most common is fat which often occurs in patients who are overweight and in 

diabetics. Tumours that spread from other parts of the body often invade the liver. At this 

stage cancer is usually wide spread [376, 377 and 378].  

Fourthly, certain disorders effect the circulation in the liver such as heart failure, or 

vascular shock [379, 380]. Finally many liver disorders result from abnormalities in the bile 

ducts both within and outside the liver that drain bile into the intestine. These disorders 

may occur secondary to gall stone or pancreatic disorders, from autoimmune damage of 

the bile duct tissue (Primary Biliary Cirrhosis, Sclerosing Cholangitis) or to tumours of the 

biliary ducts.  

In this study, I hypothized the existence of a connection between the 

lipodystrophy and the anaemic liver in fra1-tg/rsk2-/x and in Fra1 overexpressing 

animals. Due to limited material only fra1-tg and wt livers were histologically analysed. 

The typical liver structures were observed in wt and fra1-tg sections: a centrolobular vein, 

a portal vein, arteries, the bile ducts and numerous hepatocytes. The wt parenchyma 
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was marked by a steady distribution of the H&E colors. However, the disse space was 

stained differently in Fra1 overexpressing liver and was surrounded by fibroblasts, 

neutrophilic granulocytes macrophages, hepatic stellate cells and lymphoid cells. These 

cell populations are typically associated with inflammation reaction and by replacement 

of liver tissue by fibrotic scar tissue, leading to progressive loss of liver function.  

A special role in liver inflammations is played by hepatic stellate cells [381, 382 and 

383]. In vitro studies performed in the early 1980s clearly demonstrated that the collagen 

found in cultures of primary hepatocytes was due to contaminating HSCs within the cell 

monolayers [384]. Further studies confirmed that cultured HSCs synthesize and secrete 

large amounts of collagen and other ECM proteins, whereas other cells types (i.e. 

hepatocytes, sinusoidal endothelial cells) only secrete modest amounts of these proteins. 

Studies using immunocytochemistry and in situ hybridization identified collagen 

expression in damaged livers in activated HSCs rather than in parenchymal cells. 

Studies in rat HSCs showed that quiescent HSCs express low levels of messenger RNA 

(mRNA) encoding procollagen I and III, whereas HSCs activated both in culture or in vivo 

show a marked up-regulation of these genes and secrete large amounts of collagen. A 

dramatic increase in the mRNA stability of pro-collagen in activated HSCs plays an 

important role in its increased gene expression [385, 386]. HSCs isolated from fibrogenic 

livers markedly overexpress genes encoding ECM proteins, which is not observed in 

other hepatic cell types [387]. Studies assessing both experimental models of liver fibrosis 

and human fibrogenesis have demonstrated a positive correlation between the degree of 

fibrosis and the accumulation of activated HSCs in the damaged liver [388, 389]. 

Substances that inhibit the activation or proliferation of HSCs also attenuate the 

progression of hepatic fibrosis in experimental models of chronic liver injury [390, 391]. 

Hepatic stellate cells (HSCs) are vitamin A-storing pericytes in the subendothelial space 

of the liver. Upon injury to the liver, HSCs become transdifferentiated into myofibroblastic 

cells to participate in wound healing [392]. This transdifferentiation is characterized by 

reduced vitamin A content, increased cell proliferation and migration, enhanced matrix 

protein expression, and induced expression of α-smooth muscle actin [393]. This response 

of HSCs constitutes the normal, reparative homeostatic response of the liver to injury. 

However, dysregulation of HSCs leads to excessive accumulation of extracellular 

matrices, resulting in liver fibrosis and cirrhosis. Investigative effort has been made to 

characterize transcriptional regulation that underlies HSCs transdifferentiation. Such 

examples include identification of Kruppel-like factor 6, a differentially expressed zinc 

finger protein in activated HSCs in vitro and in vivo. This transcription factor binds to the 

GC box sites of TGFβ1, TGFβ receptor type I and II, urokinase-type plasminogen 
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activator, and α1 (I) procollagen and induces transcription of these fibrogenic genes [394, 

395]. The myofibroblastic phenotype seen in activated HSCs is best characterized by 

induction of α-smooth muscle actin that is mediated by c-Myb binding to an E-box 

element in its promoter [396]. The significance of this mode of regulation is supported by 

the demonstration of prevention of the myofibroblastic phenotypic switch by the 

treatment of HSCs with antisense oligonucleotides for c-Myb. Sustained NF-κB activation 

confers activated HSCs their proliferative and antiapoptotic status that may be important 

in progressive liver fibrogenesis [397]. NF- B may also mediate inflammatory responses by 

HSCs via induction of chemokines and adhesion molecules [398, 399]. Increased AP-1 

activity is essential for induction of matrix metalloproteinase, tissue inhibitor of matrix 

metalloproteinase-1, and interleukin-6 gene transcription in activated HSCs, where JunD 

was shown to play a pivotal role [400].  During liver fibrogenesis profound changes occur 

in the normal liver extracellular matrix most notably an accumulation of interstitial 

collagens type I and III. It is well recognised that perisinusoidal hepatic stellate cells, 

which become activated to α-smooth muscle actin (α-SMA)-positive myofibroblastic 

phenotype following liver injury, are major producers of this neomatrix of fibrosis. In vitro 

studies suggest that the accumulation of interstitial collagens affects the proliferation, 

survival and biosynthetic activities of liver cells including endothelial cells, hepatocytes 

and HSCs. There is increasing awareness that key facets of HSCs biology are regulated 

by their pericellular ECM.  

To analyse whether the fra1-tg disse space, which was surrounded by hepatic 

stellate cells, fibroblasts, macrophages and lymphoid cells, is replaced by fibrotic scar 

tissue (ECM), Masson–Goldner-Tricolour (MGT) and Elastica van Gieson (EvG) 

stainings were done. Both staining methods were used to mark extracellular matrices like 

collagen I and III in the liver tissue. Finally, the results showed clear fibrotic tissues. In 

section of liver from Fra1 overexpression mice areas between hepatocytes and the portal 

triad vessels were stained green to blue by MGT staining. This green to blue colour 

stained extracellular collagen (ECM). Blood vessel (PV) and bile duct (BD) were detected 

between the collagen deposits. Moreover, the Elastica van Gieson staining did not show 

any extracellularly stained matrix in wt sections. The liver parenchyma was homogenous 

with some vessels for blood transport detected. In Fra1 overexpression liver extracellular 

matrix was stained red by EvG staining. Again, this collagen was detected in the 

subendothelial space or disse space - around the blood vessel and bible duct up to the 

hepatocytes. It is known that ECM can directly influence the function of surrounding cells 

through interaction with cell surface receptors, including integrins and nonintegrin matrix 

receptors (such as discoidin domain receptor 2). ECM can also indirectly affect cell 
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function via release of soluble cytokines, which in turn are controlled by local 

metalloproteinases. As already described the HSCs are the primary source of ECM 

fibrotic liver and these cells are resident perisinusoidal cells in the subendothelial space 

between hepatocytes and sinusoidal endothelial cells called disse space. These data 

showed that in Fra1 overexpressing mice extracellular matrix is induced between 

hepatocytes and the portal triad vessels and cells which are typical for inflammation and 

diseases like fibroses/ cirrhosis in liver tissue are activated.  

To understand why HSCs could be activated through Fra1 overexpression topical 

mental attempts are discussed in the following:  Are there any connections between the 

metabolic syndrome (Lipodystrophy) and the fibroses? Which local problems could still 

be a cause of the activation on HSCs?  A complexity in the understanding of HSCs 

differentiation is underscored by different cellular phenotypes that are expressed by 

HSCs. In addition to the myofibroblastic phenotype, HSCs also express MyoD, the 

myogenic transcription factor specific for skeletal muscle [401]. Neuronal markers such as 

GFAP, N-CAM, nestin, and synaptophysin are also expressed in HSCs, suggesting the 

neural phenotype and that N-CAM and nestin are induced in activated HSCs [402, 403, and 

404]. Activated HSCs express leptin, an adipocyte-specific gene, raising an intriguing 

possibility that HSCs may also share the adipocytic phenotype [405]. In fact, the quiescent 

HSCs is laden with lipids including triglycerides, cholesterol, and phospholipids in 

addition to retinyl esters [406, 407]. In support of this notion, PPARγ, one of the key 

transcription factors for adipocyte differentiation, is expressed in the quiescent HSCs, 

and its expression and activity decrease in HSCs activation in vitro and in vivo [408, 409,  410, 

and 411]. Further, the treatment of culture-activated HSCs with the natural or synthetic 

ligands for PPARγ suppresses many functional parameters of the cell activation, 

including cell proliferation, expression of collagen, TGFβ, α-smooth muscle actin, 

monocyte chemotactic protein-1 genes, and chemotaxis [412]. More importantly, the 

treatment of the animal models of liver fibrosis with the PPARγ ligands ameliorates not 

only induction of fibrosis but also progression of preexisting fibrosis. It may not be also 

forgotten that the liver is the major target organ of glucocorticoid action where it 

modulates a large number of metabolic functions. Their genomic action is mediated by 

an intracellular receptor, the glucocorticoid receptor (GR), which belongs to the steroid 

receptor family. The hormone receptor complex regulates expression of target genes via 

binding to glucocorticoid response elements (GRE) of certain promoter regions. 

Corticosteroids are common prescribed antiphlogistic steroids which were used in 

several therapies, e.g. chronic active liver disease and it is supposed that 

mineralcorticoid antagonists are candidates for antifibrogenic drugs [412, 413]. TGFβ, a key 
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factor in activation of hepatic stellate cells (HSCs), induces production of extracellular 

matrix, this being a prerequisite for the development of liver fibrosis. Glucocorticoid s and 

their receptors may provide a crosstalk with the TGFβ-Smad signalling pathway by 

antagonizing TGFβ effects. Dexamethasone treatment reduces TGFβ mRNA 

transcription in a time-dependent manner. Activated HSCs produce TGFβ and secrete it 

into the cell culture medium. After Dexamethasone treatment, TGFβ secretion is reduced 
[414]. Finally there is a high likelihood that MSC could differentiate into hepatic stellate that 

are cells of mesenchymal origin [415, 416]. The data about the Fra1-induced lipodystrophy 

through a PPARγ-decreased effect and downregulation of the glucocorticoid receptor 

might be one of the mechanisms that provide further evidence that the Fra1 

overexpression affects also HSCs. Thus, these findings support the hypothesis that the 

maintenance of the quiescent state of HSCs requires PPARγ and depletion of this 

adipogenic transcription factor underlies activation of HSCs. 

 

6.4.2. High Fra1 expression can be localized in simple cuboidal epithelium cells of 
portal triad vessels of fra1-tg mice 

 

To identify the cells which could be responsible for the induced inflammation/ 

(activation of HSCs) in fra1-tg mice, immunofluorescent staining with Antibody (Ab) for 

Fra1 was done on liver sections. No positive signals were found in control staining and 

Ab-Fra1 incubated section of wt liver. However, a specific signal was detected when 

sections of fra1-tg liver were incubated with Ab-Fra1. High expression level of Fra1 was 

detected in simple cuboidal epithelium of the portal triad. Simple cuboidal epithelium, as 

their name implies, are roughly square or cuboidal in shape. Each cell has a spherical 

nucleus in the centre. Cuboidal epithelium is found in glands and in the lining of the 

kidney tubules as well as in the ducts of the glands. They also constitute the germinal 

epithelium which produces the egg cells in the female ovary and the sperm cells in the 

male testes. 

One hypothesis was that a sustained activation of AP-1 may be a critical factor in 

determining the outcome a chronical inflammation in liver and this could explain the 

primary biliary cirrhosis in fra1-tg mice. Primary biliary cirrhosis (PBC) is one of the most 

common forms of chronic cholestatic liver disease. PBC is a disorder primarily involving 

the smallest bile duct branches. The liver parenchyma, including hepatocytes, is involved 

by chronic inflammatory and biliary obstructive processes often leading to ascending 

cholangitis, biliary degenerative changes, fibrosis and cirrhosis [417, 418]. It has classically 

been assumed that the liver parenchyma and sinusoids are involved only as a secondary 
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response to the cholestatic process and those changes in these “extraductular” sites are 

not seen as critical primary events. However, researcher recently surveyed the 

perisinusoidal spaces (disse space) in PBC [419] and described a significant increase in 

the number of macrovesicular hepatic stellate cells in patients. The pathogenesis of this 

abnormality and its significance remains unclear. The importance of cytokines in chronic 

inflammation may be related also to the hepatocyte apoptosis triggered by natural 

substances such as chemokines and other endogenous molecules and foreign toxins 
[420]. Cytokines implicated in fibrogenesis (i.e. TGFβ) and those involved in the initiation of 

inflammation (i.e. interferon gamma, interleukin-1 and tumor necrosis factor-a TNF-β) 

also stimulated recognition of apoptotic neutrophil. Endotoxin and IL1β up regulate the 

mannose receptor expression of liver cells and consequently the phagocytic activity of 

sinusoidal cells. The importance of the phagocytosis of dying cells as a process in itself 

is important especially in inflammation [421]. The recognition and ingestion of apoptotic 

cells by Kupffer cells and by other liver cells shows clearly those human liver 

macrophages are active participants in the removal of apoptotic cells and that this 

removal is efficient in inflammatory/ immune response.  

Taken together Fra1 overexpressing mice suffer from liver injuries like fibrosis 

through activation of HSCs, possibly due to the close relationship to MSCs and there 

downregulation of the GR and PPARγ by Fra1. Moreover, the high level of Fra1 

expression in simple cuboidal epithelium of the portal could induce an inflammation 

which is responsible for (auto)immune diseases like primary biliary cirrhosis, primary 

sclerosing cholangitis or autoimmune hepatitis. 
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