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Abstract

In this dissertation we consider the topic of derivation, analysis and numerics of reduced ODE
models corresponding to a family of one-dimensional lubrication equations derived in Münch
et al. [1]. This family describes the dewetting process of nanoscopic thin liquid films on
hydrophobized polymer substrates due to the presence of the long-range attractive van der
Waals and short-range Born repulsive intermolecular forces and takes account of all possible
ranges of slip-lengths at the polymer substrate interface. The final stages of the dewetting
process are characterized by a slow-time coarsening dynamics of the remaining droplets that
are separated and interact with each other through a nanoscopic ultra thin liquid layer of
thickness ε. Reduced ODE models derived from underlying lubrication equations allow for
an efficient analytical and numerical investigation of the coarsening process. One of our main
interests in this study is to investigate the influence of slip-length on the coarsening dynamics
using the derived reduced ODE models.
In the first part of this study using asymptotic methods we derive reduced ODE models for

lubrication equations that describe the evolution without slippage (no-slip equation) small
slip-lengths (weak-slip equation), intermediate slip-lengths (intermediate slip equation) and
large slip-lengths (strong-slip equation). By that we generalize the results of Glasner and
Witelski [2], where a reduced ODE model for the no-slip lubrication equation was derived.
The resulting reduced ODE model describes the evolution in time for a set of pressures and
positions for an array of droplets. We find that the difference between the reduced models
for the no-, intermediate- and weak-slip equations, and the one for the strong-slip equation
lies in their dependence on the slip-length. In the strong-slip case we find a unique critical
slip-length, which decides the direction of migration of droplets. If the slip-length is smaller
than this critical value the droplet migrates opposite to the direction of the applied effective
flux. If the slip-length is bigger than the critical value the droplet migrates in the direction of
the flux. This result is new and establishes an interesting property especially in the light of a
recent work of Glasner et al. [3], where it was established that migration of droplets is opposite
to the applied effective flux in the no- and intermediate-slip cases. Next, we numerically solve
the system of reduced ODE models and find a good agreement of their results with those
given by numerical solutions of the corresponding lubrication equations.
The second part of this study is devoted to a new method for derivation and justifica-

tion of reduced ODE models based on a center-manifold reduction approach recently applied
by Mielke and Zelik [4] to a certain class of semilinear parabolic equations. We first give an
alternative derivation of the reduced ODE model for the no-slip case using a formal reduction
onto an ’approximate invariant’ manifold parameterized by a set of pressures and positions of
droplets in an array. Then we find a good agreement of the new reduced ODE model with the
previously asymptotically derived one. One of the main problems for the rigorous justification
of this formal approach is the description of the asymptotics for the spectrum of the no-slip
lubrication equation linearized at the stationary solution, which corresponds physically to
a single droplet, with respect to the small parameter ε tending to zero. We find that the
corresponding eigenvalue problem (EVP) turns out to be a singularly perturbed one. For its
spectrum we show rigorously the existence of an ε-dependent spectral gap, which may happen
to be an important property for the rigorous justification of our formal reduction approach
in future. Besides, using a modified implicit function theorem first suggested by Recke and
Omel’chenko [5] we show the existence of eigenvalues with prescribed asymptotics, in partic-
ular of an exponentially small one, for the above linearized singularly perturbed EVP. Here
our results offer a new technique for solving of a certain type of singularly perturbed EVPs.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Herleitung, Analyse und Numerik von reduzier-
ten Systemen gewöhnlicher Differenzialgleichungen (bezeichnet als reduzierte Modelle), die
einer Familie von eindimensionalen Schmierfilmgleichungen (lubrication equations) entspre-
chen. Diese Familie wurde von Münch et al. [1] hergeleitet und beschreibt den Entnetzungs-
prozess von nanoskopischen dünnen Flüssigkeitsfilmen auf hydrophoben Polymersubstraten
als Folge von anziehenden van der Waals und abstoßenden Born Intermolekularkräften. Dabei
wurden verschiedene Regime von Schlupf-Längen (slip-length) auf der Grenzfläche zwischen
Flüssigkeit und Polymersubstrat betrachtet. Zur obengennanten Familie gehören Gleichun-
gen, die die Entwicklung ohne Schlupf, für kurze Schlupf-Längen, für intermediäre Schlupf-
Längen und für große Schlupf-Längen beschreiben. Die entsprechenden Gleichungen werden
als „no-slip“, „weak-slip“, „intermediate-slip“ und „strong-slip“ Gleichungen bezeichnet. Die
letzte Phase des Entnetzungsprozesses ist durch eine sehr langsame Vergröberungsdynamik
(coarsening dynamics) der verbleibenden Tropfen charakterisiert. Die verbleibenden Tropfen
sind isoliert und interagieren miteinander durch eine nanoskopisch dünne flüssige Schicht der
Dicke ε. Reduzierte Modelle, hergeleitet aus den zugrunde liegenden Schmierfilmgleichungen,
ermöglichen die effiziente analytische und numerische Untersuchung des Vergröberungsprozes-
ses. Ein der Hauptinteressen dieser Studie ist die Frage, wie unterschiedliche Schlupf-Längen
die Dynamik von Vergröberungsprozessen beeinflussen. Hier erforschen wir diese Frage an-
hand der hergeleiteten reduzierten Modelle.
Im ersten Teil dieser Studie leiten wir unter Verwendung von asymptotischen Methoden

reduzierte Modelle für „no-slip“, „weak-slip“, „intermediate-slip“ und „strong-slip“ Schmier-
filmgleichungen ab. So verallgemeinern wir die Ergebnisse von Glasner und Witelski [2], die
ein reduziertes Modell für die „no-slip“ Gleichung hergeleitet haben. Diese reduzierten Mo-
delle beschreiben die wesentliche Dynamik eines Arrays von Tropfen durch die Angabe von
Gleichungen, die die Entwicklung der Position und des Druckes jeweils in jedem Tropfen
beschreiben. Unsere Erkenntnis ist, dass der Unterschied zwischen den reduzierten Model-
len für „no-slip“, „intermediate-slip“ und „weak-slip“ Fälle und demjenigen für „strong-slip“
Schmierfilmgleichung in ihrer Abhängigkeit von der Schlupf-Länge liegt. Im „strong-slip“ Fall
stellen wir eine eindeutige kritische Schlupf-Länge fest, die die Richtung der Tropfenmigration
beeinflusst. Ist die Schlupf-Länge kleiner als dieser kritische Wert, so migriert der Tropfen
entgegengesetzt der Richtung des angewendeten effektiven Flusses. Wenn die Schlupf-Länge
größer als dieser kritische Wert ist, dann migriert der Tropfen in die Richtung des Flusses.
Dieses Ergebnis ist neu und begründet eine interessante Eigenschaft, besonders angesichts
der neuesten Forschung von Glasner et al. [3]. Dort wurde es ermittelt, dass die Tropfenmi-
gration entgegengesetzt der Richtung des angewendeten effektiven Flusses in „no-slip“ und
„intermediate-slip“ Fällen erfolgt. Im nächsten Schritt lösen wir das System von reduzierten
Modellen numerisch und finden eine gute Übereinstimmung mit den numerischen Lösungen
der entsprechenden Schmierfilmgleichungen.
Der zweite Teil dieser Studie widmet sich einer neuen Methode für die Herleitung und die

Begründung solcher reduzierter Modelle. Diese Methode basiert auf der Idee der Reduktion
auf eine Zentrumsmannigfaltigkeit, wie sie auch vor kurzem für eine bestimmte Klasse von
semilinearen parabolischen Gleichungen von Mielke und Zelik [4] angewendet wurde. Zuerst
beschreiben wir eine formale Reduktion auf eine sogenannte „approximative invariante“ Man-
nigfaltigkeit, die durch den Druck und durch die Position von Tropfen in einem Tropfenarray
parametrisiert ist. Aus dieser Reduktion ergibt sich ein neues reduziertes Modell. Später fin-
den wir eine gute Übereinstimmung dieses Modells mit den vorher asymptotisch abgeleiteten
reduzierten Modellen.
Danach betrachten wir die Linearisierung der „no-slip“ Schmierfilmgleichung um eine sta-

tionäre Lösung. Diese stationäre Lösung beschreibt physikalisch einen einzelnen Tropfen. Hier
geben wir eine rigorose Herleitung für das asymptotische Verhalten des Spektrums bezuglich
des kleinen Parameters ε. Für die Schmierfilmgleichung erweist sich das entsprechende Eigen-
wertproblem als singulär gestört (singularly perturbed). Für dieses Eigenwertproblem belegen
wir die Existenz von einer von ε abhängigen Lücke im Spektrum, die eine wichtige Eigenschaft
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für die strenge Begründung unserer formalen Reduktion auf die „approximative invariante“
Mannigfaltigkeit ist. Außerdem beweisen wir anhand eines modifizierten Satzes über implizite
Funktionen, der in dieser Form zuerst von Recke und Omel’chenko [5] vorgeschlagen wurde,
die Existenz von Eigenwerten mit einem bestimmten asymptotischen Verhalten, insbesondere
die Existenz von einem exponentiell kleinen Eigenwert für das singulär gestörte Eigenwertpro-
blem. Unsere Ergebnisse schlagen hier eine neue Technik für das Auflösen bestimmter Arten
von gestörten Eigenwertproblemen vor.
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Chapter 1

Introduction

1.1 General Description of the Coarsening Process

The last several decades showed considerable interest and intensive research among scientists and
engineers on topics concerning such physical processes and phenomena as dewetting in micro and
nanoscopic liquid films on a solid polymer substrate. There is a large number of applications
of dewetting processes in several brunches of physics, chemistry and material sciences. Among
them are the evolution of free liquid surface during coating and printing processes, see e.g. Oron
et al. [6], development of Lab-on-chip devices and liquid crystal displays, see e.g. Granick et al.
[7], Jacobs et al. [8]. In general, such dewetting processes can be divided into three stages (see
experimental observations in Figure 1.1).

Figure 1.1: Experimental observations of the dewetting process from Green and Limary [9]. Reprinted
with permission of P. F. Green.

During the first stage a liquid polymer film of nanometer thickness interacting with a hy-
drophobically coated solid substrate is susceptible to instability due to small perturbations of
the film profile. Typically such films rupture, thereby initiating a complex dewetting process, see
e.g. Reiter et al. [10], Redon et al. [11], Seemann et al. [12]. The influence of intermolecular forces
play an important part in the rupture and subsequent dewetting process, see e.g. Oron et al.
[6], de Gennes [13], Williams and Davis [14] and references therein. Typically the competition
between the long-range attractive van der Waals and short-range Born repulsive intermolecular
forces reduces the unstable film to an ultra-thin layer that connects the evolving patterns and is
given by the minimum of the corresponding intermolecular potential, i.e. the film settles into an
energetically more favorable state, see Erneux and Gallez [15], Bertozzi et al. [16]. The second
stage is associated with the formation of regions of this minimal thickness, bounded by moving
rims that connect to the undisturbed film, see e.g. Sharma and Reiter [17], Brochard-Wyart and
Redon [18], Münch and Wagner [19].
In this study we are interested in the third and the last stage of the dewetting process, namely

the long-time coarsening process that originates in the breaking up of the evolving patterns into
small droplets and is characterized by its subsequent slow-time coarsening dynamics, which has
been observed and investigated experimentally by Limary and Green [20, 21]. In the mathemat-
ical modeling of thin films it has been shown to be of great advantage to reduce the governing
equations to an equation for the free surface h(x, t) using lubrication theory (see a geometrical
sketch on Figure 1.2). On Figure 1.3 experimental observations from Limary and Green [20]
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Chapter 1 Introduction

Figure 1.2: Geometrical sketch for a two-dimensional liquid film on a solid substrate with the free surface
described by function h(x, t).

of the coarsening process in three-dimensional case are presented. They show that during the
coarsening the average size of droplets increases and the number of droplets decreases. The
coarsening mechanisms that were observed in such films are typically collapse of the smallest
droplets and collision of neighboring ones. During collapse the size of a droplet shrinks in time

Figure 1.3: Experimental observations Limary and Green [20] of the coarsening process. Reprinted with
permission of P. F. Green.

and its mass is distributed in the ultra-thin layer. Collisions among droplets occur due to the
mass transfer through the ultra-thin layer between them that causes a translation movement
of them, droplet migration, eventually leading to the formation of new droplets. A numerical
example of the coarsening dynamics in two-dimensional case is shown in Figure 2.2. Besides
intermolecular forces and surface tension at the free surface it has been shown by Fetzer et al.
[22] that the dewetting of polymer films on hydrophobic substrates also involves such boundary
effect as slippage on a solid substrate. The measure of slip is a so-called slip length, which is
defined as an extrapolated distance relative to the wall where the tangential velocity component
u vanishes, see Figure 1.4. A commonly used expression for it is given by the Navie-slip boundary
condition

b := uz
u
, (1.1)

where uz is the derivative of u in the direction normal to the solid substrate. As it is illustrated in
Figure 1.4 the slip length determines physically a type of the velocity profile in the liquid. In the
no-slip case b = 0 it is assumed that the liquid does not move at the contact points with the solid
surface and a typical flow is parabolic. In another limiting case b = ∞ the tangential velocity
does not change in the normal direction to the solid substrate (plug flow profile). For finite
values of b the velocity profile with partial slip changes continuously between above limiting
ones. Recently, it has been shown experimentally and theoretically that the early stages of
the dewetting process and the evolving morphology depend markedly on the magnitude of the
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1.2 Lubrication Models and their Reduction

Figure 1.4: Three different flow profiles corresponding to the no-slip situation (left), partial-slip case
with a finite slip length (middle) and plug flow (right), when the effective slip length becomes
infinite.

effective slip length, which can be of the size of the height of the liquid film or even larger for
nanoscale systems, see e.g. Münch and Wagner [19], Neto et al. [23], Redon et al. [24], Reiter and
Sharma [25], Fetzer et al. [26]. As was stated in Münch et al. [1] the order of magnitude of the
effective slip length value influences the choice of an appropriate mathematical model describing
the coarsening process. One of the aims of this study is an analysis of the influence of slippage
on the late stage long-time coarsening process.

1.2 Lubrication Models and their Reduction

Throughout our study we deal with two-dimensional films on a one-dimensional solid substrate
as in Figure 1.2. The general mathematical model describing the evolution of such films is given
by the two-dimensional Navier-Stokes equations coupled with conservation of mass together with
appropriate boundary conditions on the solid and free surface. As was mentioned in the previous
section the complicated behavior of liquid films is conditioned by such physical effects as surface
tension at the free boundary, intermolecular interactions with solid substrate and an effective
slip length on the latter one. In order to understand this behavior, and using an obvious vertical
to horizontal scale separation in such films, in Münch et al. [1], Kargupta et al. [27] closed-
form one-dimensional lubrication models over a wide range of slip lengths were derived from the
underlying equations for conservation of mass and momentum, together with boundary conditions
for the tangential and normal stress, as well as the kinematic condition at the free boundary,
impermeability and Navier-slip condition at the liquid-solid interface. Asymptotic arguments,
based on the magnitude of the slip length show that within a lubrication scaling there are two
distinguished limits, see Münch et al. [1].
These are the well-known weak-slip model

∂th = −∂x
(
(h3 + b h2)∂x (∂xxh−Πε(h))

)
(1.2)

with b denoting the slip-length parameter, and the strong-slip model

Re (∂tu+ u∂xu) = 4
h
∂x(h∂xu) + ∂x (∂xxh−Πε(h))− u

βh
, (1.3a)

∂th = − ∂x (hu) , (1.3b)

respectively. Here, u(x, t), h(x, t) denote the average velocity in the lateral direction and height

3



Chapter 1 Introduction

profile for the free surface, respectively. The slip-length parameters b and β are related by orders
of magnitude via b ∼ ν2β, where the parameter ν with 0 < ν � 1 refers to the vertical to
horizontal scale separation of the thin film. The high order of the lubrication equations (1.2) and
(1.3a)–(1.3b) is a result of the contribution from surface tension at the free boundary, reflected
by the linearized curvature term ∂xxh. A further contribution to the pressure is denoted by
Πε(h) and represents one from the intermolecular forces, namely long-range attractive van der
Waals and short-range Born repulsive intermolecular forces. A commonly used expression for it
is given by

Πε(h) = ε2

h3 −
ε3

h4 , (1.4)

It can be written as a derivative of the potential function Uε(h),

Uε(h) = − ε2

2h2 + ε3

3h3 , (1.5)

where parameter 0 < ε� 1 is the global minimum of the latter function and gives to the leading
order thickness of the ultra-thin layer (see Figure 1.5). The terms Re (∂tu+ u∂xu), with Re

Figure 1.5: Plots of intermolecular pressure Πε(h) (blue) and potential function Uε(h) (green) for ε = 0.1

denoting the Reynolds number, and (4/h)∂x(h ∂xu) in (1.3a)–(1.3b) are called the inertial and
Trouton viscosity terms, respectively.

Additionally, the weak-slip and the strong-slip models contain as limiting cases three further
lubrication models. One of them is the no-slip model, which is obtained setting b = 0 in the
weak-slip model:

∂th = −∂x
(
h3∂x (∂xxh−Πε(h))

)
. (1.6)

The second one is obtained from the strong-slip model in the limit β → ∞ and describes the
dynamics of suspended free films, see e.g. Brenner and Gueyffier [28]:

Re (∂tu+ u∂xu) = 4
h
∂x(h∂xu) + ∂x (∂xxh−Πε(h)) , (1.7a)

∂th = − ∂x (hu) , (1.7b)

For the third limiting case derived in Münch et al. [1] the slip-length parameter βI is of order of
magnitude lying in between those that lead to the weak and the strong-slip model, i.e.

4



1.2 Lubrication Models and their Reduction

b� βI � β. The corresponding intermediate-slip model is given by

∂th = −∂x
(
h2∂x (∂xxh−Πε(h))

)
. (1.8)

It can be obtained by rescaling time in (1.2) by b and letting b → ∞ or by rescaling time and
the horizontal velocity by β in (1.3a)–(1.3b) and taking the limit β → 0.
The no-slip, weak-slip and intermediate slip lubrication models are given by a parabolic equa-

tions for the height profile h(x, t), which degenerates as h→ 0. For convenience of our analytical
investigation of these models we write them below in a general form, which we call general
mobility model:

∂th = −∂x
(
M(h)∂x (∂xxh−Πε(h))

)
. (1.9)

This equation incorporates the three former lubrication models for particular cases of the non-
linear mobility term M(h). For example in the no-slip case M(h) = h3. In this study we often
describe (1.9) on a bounded interval (−L, L) with boundary conditions

∂xxxh = 0, and ∂xh = 0 at x = ±L, (1.10)

which incorporate zero flux at the boundary and as a consequence imply the conservation of
mass law:

hc = 1
2L

∫ L

−L
h(x, t) dx, ∀t > 0, (1.11)

where hc = const is the average of the height profile. It has been shown by Bertozzi et al. [16]
that the general mobility model (1.9) with boundary conditions (1.10) and initial data h0(x) has
a unique strong positive solution, provided that h0(x) ∈ H1(−L,L), positive for all x ∈ (−L, L)
and ∫ L

−L

1
2 |∂xh0(x)|2 + Uε(h0(x)) dx <∞,

where Uε(h) is defined in (1.5).
In this study we consider systems (1.3a)–(1.3b) and (1.7a)–(1.7b) on interval (−L,L) with the

following boundary conditions. We put velocities (or fluxes) at the boundary to zero

u = 0 at x = ±L. (1.12)

i.e. we require conservation of mass (1.11). For the profile h(x, t) we assume that

∂xh = 0 at x = ±L. (1.13)

The same boundary conditions were used by Peschka [29] for analytical and numerical investi-
gation of rupture processes driven by (1.3a)–(1.3b).
Within the context of thin liquid films one of the first studies of the coarsening dynamics can

be found in Glasner and Witelski [2] and Glasner and Witelski [30]. These authors consider
the one-dimensional no-slip lubrication model (1.6) with (1.10). They confirmed numerically the
existence of two coarsening driven mechanisms discussed in the previous section, namely collision
and collapse. Our numerical investigations (see section 2.7) of particular cases of the model (1.9)
and of the strong-slip model (1.3a)–(1.3b) with sufficiently small Re number all identified also
that the coarsening dynamics is driven by these two coarsening mechanisms. Nevertheless, in
applications the number of droplets can be very large, of order 103. For example, one of the
typical problems considered also in this study is the calculation of the coarsening rates, i.e. how
fast the number of droplets decreases during the coarsening dynamics depending on different
physical parameters. Often in order to identify the characteristic dependence for coarsening rates

5



Chapter 1 Introduction

one needs to model very large arrays of droplets. But due to the presence of the ultrathin-layer
with order ε between each pair of droplets the problem of numerical solution for any lubrication
model becomes very stiff in time and demands high space resolution as the number of droplets
increases. Therefore, in the mathematical modeling of such thin films there exists a need for
further reduction of lubrication models to more simple, possibly finite-dimensional ones.
Within a different context of phase separation of binary alloys, coarsening dynamics is a

well-known widely studied process and is typically described by the Cahn-Hilliard equation, see
e.g. Cahn and Hilliard [31]. For the late phases of this process the existence of near-equilibrium
solutions was first shown by Alikakos et al. [32]. After that reduced ODE models have been
derived and investigated by Bates and Xun [33, 34], San and Ward [35] that allow to determine
properties such as coarsening rates, which can be time consuming using the underlying partial
differential equations. These studies have recently been extended to describe phase separation
under the influence of an external driving field by Emmott and Bray [36], Watson et al. [37].
The driven mechanisms in this case is given by Ostwald ripening. As was recently pointed out
by Glasner et al. [3] in the case of thin liquid films the collapse component of the coarsening
dynamics is analogous to Ostwald ripening in binary alloys. But the additional coarsening
component in thin films, namely collisions and migration effect of droplets, makes the dynamics
in some sense richer.
In Glasner and Witelski [2] and Glasner and Witelski [30] for the first time a reduced ODE

model was derived from the lubrication no-slip equation. This model was used for an effective
analysis of the coarsening rates. Additionally, using essentially a mixture of the gradient flow
structure approach and asymptotic analysis, reduced ODE models for the one as well as two-
dimensional case for the general mobility model with M(h) = hq, q > 0 were recently derived
in Glasner et al. [3]. Within the different context of Darcy’s equation for the case M(h) = h
coarsening rates on the basis of the gradient flow structure for the corresponding equation were
derived by Otto et al. [38]. Moreover, for this case they showed that the analysis can be made
rigorous. One focus of the work of Glasner et al. [3] concerned migration and its underlying
causes, where results of Pismen and Pomeau. [39] on the relation of the direction of the droplet
motion and mass flux were discussed and clarified, i.e. that, indeed, in the systems governed
by a type of the general mobility model the direction of the migration of droplets is opposite to
the applied mass flux. In a recent paper by Glasner [40] results of Glasner and Witelski [2] were
extended to the two-dimensional general mobility model with M(h) = hq, q > 0 and comparison
with the alternative derivation from Glasner et al. [3] was given.
In view of the above developments, in this study we consider several new questions concerning

the coarsening dynamics in thin liquid films. The general aim is to generalize previous results in
the one dimensional case and derive a complete set of reduced ODE models for all lubrication
models stated above. Next, we would like to understand the effects of slippage on details of
the coarsening mechanisms via the reduced ODE models. Finally, we would like to look at the
methods for rigorous mathematical justification of such reduced models, the question to which
up to date there is no a complete answer.

1.3 Outline of the Thesis
In this thesis the topic of derivation, analysis and numerics of reduced ODE models correspond-
ing to the set of lubrication equations stated in the previous section is addressed. Besides their
asymptotical derivation we give an analytical and numerical investigation of these models. In
particular, the influence of slippage on the coarsening dynamics is analyzed via the reduced ODE
models. Some new methods for the rigorous justification of these models are suggested.
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1.3 Outline of the Thesis

For this purpose the thesis is divided in six parts. In Chapter 2 we begin with the derivation of
special type of positive stationary solutions for lubrication equations considered on the whole real
line R . In section 2.3 using formal asymptotical analysis we derive a reduced finite dimensional
models for the general mobility model (1.9) (covering by that weak, no- and intermediate-slip
cases) and for the strong-slip model (1.3a)–(1.3b) with sufficiently small Re number. The reduced
ODE models describe the effective dynamics of droplets in an array and govern the evolution
of their pressures and positions in time. It turns out that in the case of the general mobility
model (1.9) the derivation of the corresponding reduced ODE model can be obtained by following
the ideas of Glasner and Witelski [2], so that we only briefly summarize our results here and
focus mainly on the strong-slip model in paragraph 2.3.2. In section 2.5 to make reduced ODE
models complete we derive asymptotically approximations for the fluxes between droplets in an
array. In comparison with results of Glasner and Witelski [2] the new here are approximations
for the intermediate and strong-slip case. Finally, in section 2.7 we present numerical schemes
for the solution of lubrication equations and corresponding reduced ODE models. Whereas
our numerical scheme for lubrication equations is based on the one developed by Münch et al.
[1], Münch [41] and Peschka [29], new schemes are constructed for the integration of reduced
ODE models and applied later to numerical simulations of coarsening rates. In section 2.7 we
also compare numerical results for the lubrication equations and the corresponding ODE reduced
models and give general observations concerning validity and properties of the latter ones. We
conclude the second chapter with a preliminary numerical analysis for the coarsening dynamics
governed by the strong-slip model (1.3a)-(1.3b) with a moderate Re numbers. We identify here
new interesting coarsening effects in comparison with already known for the case of a small Re
number.
In Chapter 3 analyzing the reduced model for the strong-slip model (1.3a)–(1.3b) we show

that in contrast to the general mobility model, which was treated by Glasner et al. [3] with
mobility M(h) = hq, q > 0, in the strong-slip case a droplet does not necessarily migrate in the
direction opposite to the applied mass flux. There is a critical value of the slippage β = βcrit
such that for slip-lengths bigger then βcrit droplets migrate in the direction of the flux. As a
further consequence of that we find that collisions of two droplets are possible for some range
of slip parameter β in the equation (1.3a)-(1.3b), while for the cases described by (1.6), (1.2)
and (1.8) as was shown by Glasner et al. [3], Glasner and Witelski [30] collisions involve at least
three droplets. In section 3.2 we investigate numerically using derived reduced ODE models the
resulting coarsening patterns with increasing slippage. Simulating numerically large arrays of
droplets we identify another new effect for the strong-slip case. We observe that, due to the
existence of βcrit changing the slip length β influences considerably the coarsening scenario and
relative proportion of coarsening events (collapse or collision). For the general mobility model
(1.9) with M(h) = hq, q > 0, it was shown in Glasner et al. [3] that the collision component of
the coarsening process is negligible in comparison with the collapse component for q < 3 and
becomes comparable only in the case q = 3. In contrast to that we observe in the strong-slip case
that the collision component increases, when β increases starting from β = βcrit, and becomes
the dominant mechanism of the coarsening process. Finally, using reduced ODE models we carry
out numerical simulations of coarsening rates in the strong-slip case and analyze the influence of
slippage on them.
In Chapter 4 we give an alternative formal derivation of the reduced ODE model corre-

sponding to the no-slip equation (1.6). This derivation is motivated by a recent article of Mielke
and Zelik [4] where a center invariant manifold approach was applied to a rather general type
of semilinear parabolic equations in order to obtain reduced ODE systems for them. Following
formally this approach we end up finally with an alternative reduced ODE model. Our approach
is based on two steps. In section 4.1 we construct a so called ’approximate invariant’ manifold
parameterized by a set of positions and pressures in a droplet array. In the next two sections we
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do a formal reduction of (1.6) onto this manifold and derive an alternative reduced ODE model.
We compare it in section 4.4 with the one derived asymptotically in Chapter 1 and by Glasner
and Witelski [2] for the no-slip case and find a good agreement between them. Nevertheless, the
rigorous justification of a center-manifold reduction in the case of the no-slip equation is a more
complicated problem than those described by Mielke and Zelik [4], because (1.6) is a quasilinear
equation, which additionally degenerates as h→ 0. In section 4.5 we discuss more precisely some
open questions that are needed to be solved for justification of the above approach and formulate
a so called spectral problem.
Motivated by this problem inChapter 5 we derive rigorously the asymptotics for the spectrum

of the no-slip model (1.6) linearized at a stationary droplet solution in the limit ε → 0, where
the small parameter ε > 0 appears in all lubrication models through the intermolecular pressure
function (1.4). It turns out that the resulting linear eigenvalue problem (5.12) is singularly
perturbed as ε→ 0. The main results on its spectrum asymptotics are given in Theorems 5.10-
5.12. They state that in the spectrum of the above linear eigenvalue problem there exists a set
of algebraically small eigenvalues and an exponentially small one as ε→ 0. Between the former
set and the latter eigenvalue there exists an ε-dependent spectral gap. The main ingredients
for proving Theorem 5.10-5.12 in sections 5.3–5.7 are approximate eigenvalue problems and
the modified implicit function Theorem 5.30, first introduced by Magnus [42] and Recke and
Omel’chenko [5]. We conclude this chapter with a numerical solution of the linearized eigenvalue
problem (5.12) and a comparison of it with the analytical results of Theorems 5.10-5.12. In
Chapter 6 the summary and outline for the thesis are stated.

1.4 Asymptotic Symbols
In this study we often describe asymptotical processes with respect to the small parameter ε
introduced first in (1.4). Many of the functions in the text depend on it. In order to escape
from any ambiguity in the treatment of asymptotical processes and the corresponding symbols
we give below the definition for the latter ones, which is used everywhere in this text. Note that
it corresponds to the definition of the asymptotical symbols from section 1.1 of Erdelyi [43] in
the case ε→ 0 and holding uniformly in a parameter set D.
Definition 1.1. Let ε0 > 0, functions f, g : (0, ε0)× Rm → R with m ≥ 0 and a set D ⊂ Rm

be given.

(i) We write f = O(g) for all x in D if and only if there exist numbers M > 0 and ε1 ∈ (0, ε0)
such that

|f(ε, x)| ≤M |g(ε, x)| for all x ∈ D and ε ∈ (0, ε1). (1.14)

(ii) We write f = o(g) for all x in D if and only if for any given δ > 0 there exists
ε1(δ) ∈ (0, ε0) such that

|f(ε, x)| ≤ δ |g(ε, x)| for all x ∈ D and ε ∈ (0, ε1). (1.15)

(iii) We write f ∼ g for all x in D if and only if f − g = o(g).

In Appendix we collect a list of other main symbols and notation used in this text.
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Chapter 2

Asymptotical Derivation of Reduced ODE
Models

2.1 Stationary Solutions on R

2.1.1 Stationary Solutions for the General Mobility Model

In Bertozzi et al. [16], Glasner and Witelski [30] a special kind of positive stationary solutions to
the no-slip model (1.6) was described. For our subsequent analysis it will be useful to generalize
their results for the general mobility model (1.9) in the following theorem.

Theorem 2.1. Equation (1.9) considered on the whole real line R has a family of positive
nonconstant steady state solutions ĥε(x, P ) parameterized by a constant (a so called pressure)
P ∈ (0, Pmax(ε)), where

Pmax(ε) := 27
256ε, (2.1)

which satisfy

∂xxĥε(x, P ) = Πε(ĥε(x, P ))− P, (2.2a)
ĥε(x, P ) = ĥε(−x, P ), (2.2b)
∂xĥε(0, P ) = 0 and ∂xĥε(x, P ) < 0 for x > 0. (2.2c)

For fixed positive numbers P ∗ > P∗ > 0 the following asymptotics holds for all P ∈ (P∗, P ∗):

ĥ−ε (P ) := min
x∈R

ĥε(x, P ) = ε+ ε2P +O(ε3). (2.3a)

ĥ+
ε (P ) := max

x∈R
ĥε(x, P ) = 1

6P +O(ε). (2.3b)

Proof: For each ε > 0 it is simple to deduce that any solution to equation

h′′ = Πε (h)− P, (2.4)

with P being a number gives a stationary solution to (1.9) on R . The rest of the proof can
be done via a phase plane analysis for equation (2.4) described in Bertozzi et al. [16] (see also
Figure 2.1). It shows that for any fixed P ∈ (0, Pmax(ε)) there exists a homoclinic loop ĥε(x, P )
for equation (2.4). The value (2.1) for Pmax(ε) is given by the global maximum of Πε(h), which
is attained at hmax = 4/3ε. Moreover, there exists a phase shift such that ĥε(x, P ) satisfy also
(2.2b)–(2.2c). The asymptotics (2.3a)–(2.3b) were derived in Glasner and Witelski [30]. The
smallest real root of algebraic equation Πε(h) = P is a saddle-point to equation (2.4) and gives
us ĥ−ε (P ). Expanding identity Πε(ĥ−ε (P )) = P in ε one obtains (2.3a). An elliptic center point
ĥcε(P ) of equation (2.4) is the other real root of Πε(h) = P and has asymptotics:

ĥcε(P ) = ε(εP + o(ε))−1/3. (2.5)
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Once ĥ−ε (P ) is determined, the first integral to equation (2.2a) can be written as

1
2
(
∂xĥε(x, P )

)2
+ Uε(ĥε(x, P ), P ) = 0, (2.6)

where
Uε(h, P ) := −Uε(h) + Uε(ĥ−ε (P )) + P (h− ĥ−ε (P )) . (2.7)

By (2.2b)–(2.2c) ĥε(x, P ) attains its maximum at x = 0, and therefore ĥ+
ε (P ) is determined by

the condition Uε
(
ĥ+
ε (P ), P

)
= 0. Again, after expansion of the last identity in ε one obtains

(2.3b). �

More detailed asymptotic analysis of ĥε(x, P ) as ε → 0 (see Glasner [40]) shows that it can
be described by a parabola connected to a thin layer of order ε and looks like a droplet. ĥ−ε (P )
gives to the leading order in ε the thickness of the thin layer and ĥ+

ε (P ) the peak of the droplet
(see Figure 2.1).

Figure 2.1: Phase plane portrait for the equation (2.4) (left) and plot of stationary solution ĥε(x, P )
(right).

The next proposition states additional asymptotic properties for ĥε(x, P ), which are used during
derivation of reduced ODE models in sections 2.3 and 4.1.

Proposition 2.2. There exist positive numbers d, P ∗ > P∗ and Ck, k = 0, 1 such that for all
|x| > d, P ∈ (P∗, P ∗) and sufficiently small ε > 0 one has∣∣∣ĥε(x, P )− ĥ−ε (P )

∣∣∣ ≤ C0 exp
(
d− x√

2ε

)
, (2.8a)∣∣∣∣∣∂kĥε(x, P )

∂xk

∣∣∣∣∣ ≤ C0
εk

exp
(
d− x√

2ε

)
for k = 1, 2, 3, 4, (2.8b)

∂ĥε(x, P )
∂P

≤ C1 ε (x− d). (2.8c)

Proof: Let us define a function

F (v) := −Uε(v + ĥ−ε (P ), P ),

where Uε(h, P ) is defined by (2.7). From the proof of Theorem 2.1 it follows that
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Π(ĥ−ε (P ))− P = 0. Using this and (2.7) one obtains

F (0) = −Uε(ĥ−ε (P ), P ) = 0,
F ′(0) = 0,
F ′′(v) = Π′ε(v + ĥ−ε (P )).

Therefore, applying Newton-Leibniz formula to F (v) and integrating once by parts one gets

F (v) =
∫ 1

0
(1− t)Π′ε(t(v + ĥ−ε (P )) dt v2

Substituting in the last expression vε(x, P ) := ĥε(x, P ) − ĥ−ε (P ) and using (2.6), (2.2c) one
obtains that

∂xvε(x, P )
vε(x, P ) = −

√
2
(∫ 1

0
(1− t)Π′ε

(
tĥε(x, P )

)
dt

)
for x > 0. (2.9)

By (1.4) and (2.3a) function Π′ε(h) monotonically decays on [ĥ−ε (P ), 4/3 ε] to zero and

Π′ε(ĥ−ε (P )) ∼ 1/ε2. (2.10)

Using this and (2.2c) let us define uniquely νε(P ) > 0 such that

Π′ε
(
ĥε(νε(P ), P )

)
:= 1

2 ε2 (2.11)

Next, we fix some positive numbers P ∗ > P∗ > 0 and show using a contradiction argument that
there exists a number d > 0 such that d > νε(P ) for all sufficiently small ε > 0 and P ∈ (P∗, P ∗).
Suppose inverse then there should exist sequences {Pn}, {εn} with Pn ∈ (P∗, P ∗) for all n ∈ N
and εn → 0 such that νεn(Pn) → +∞ as n → +∞. Using asymptotics (2.3a), (2.5) and (2.2c)
one obtains that there exists a positive number ε̃ such that

ĥε(x, P )− ĥ−ε (P )→ 0 as x→∞ uniformly in ε ∈ (0, ε̃) and P ∈ (P∗, P ∗),

and hence using (2.10) one concludes

Π′ε
(
ĥεn(νεn(Pn), Pn)

)
1/ε2

n

→ 1 as n→∞.

But the last expression gives a contradiction to definition (2.11). Therefore, number d > 0 with
above properties exists.

Let us now fix any x > d. Using monotonicity of Π′ε(h), (2.2c), (2.3a) and definition of d one
obtains

1
2ε2 < Π′ε(ĥε(d, P )) ≤ Π′ε(ĥε(x, P )) < Π′ε(ĥ−ε ) ≤ 1

ε2 (2.12)

for sufficiently small ε > 0 and P ∈ (P∗, P ∗). Integrating (2.9) on (νε(P ), x) and using (2.12)
one estimates

vε(x, P )
vε(νε(P ), P ) = exp

− ∫ x

νε(P )

√
2
∫ 1

0
(1− t)Π′ε(t ĥε(x, P )) dt dx


≤ exp

[
d− x√

2ε

]
.
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From (2.11) and definition of vε(x, P ) it follows that

vε(νε(P ), P ) ≤ ĥε(νε(P ), P ) ≤ C0,

where constant C0 does not depend on ε and P , and therefore∣∣∣ĥε(x, P )− ĥ−ε (P )
∣∣∣ ≤ C0 exp

[
d− x√

2ε

]
. (2.13)

Next, by (2.9) and (2.12) one obtains∣∣∣∂xĥε(x, P )
∣∣∣ ≤ 1

ε

∣∣∣ĥε(x, P )− ĥ−ε (P )
∣∣∣ ≤ C0

ε
exp

[
d− x√

2ε

]
. (2.14)

For the second derivative using (2.2c) and Peano formula one obtains∣∣∣∂xxĥε(x, P )
∣∣∣ =

∣∣∣Πε(ĥε(x, P ))− P
∣∣∣ ≤ ∣∣∣Π′ε (θε(P )) (ĥε(x)− ĥ−ε (P ))

∣∣∣ ,
where θε(P ) is a point in interval

(
ĥ−ε , ĥε(x, P )

)
. Therefore, using again (2.12) one arrives at

|∂xxĥε(x, P )| ≤ C0
ε2 exp

[
d− x√

2ε

]
.

Analogously, one can derive estimates for |∂kx ĥε(x, P )| with k = 3, 4. This together with (2.13)–
(2.14) implies (2.8a)–(2.8b) in the case x > d.

Next, integrating the first integral (2.6) on a interval (η, x) with 0 < η < x one obtains

x− η =
∫ ĥε(η, P )

ĥε(x, P )

dh√
−2Uε(h, P )

.

Differentiation of the last expression with respect to P , using of (2.6) and subsequent taking
η = xcε(P ), where a point xcε(P ) is defined by

ĥε(xcε(P ), P ) := ĥcε(P ),

yields

∂P ĥε(x, P ) = ∂P ĥε(xcε(P ), P )
∂xĥε(xcε(P ), P )

∂xĥε(x, P )+

+ ∂xĥε(x, P )
∫ ĥcε(P )

ĥε(x, P )

(h− ĥ−ε (P )) dh√
(−2Uε(h, P ))3

(2.15)

Using that Uε(h, P ) decreases for fixed ε, P on (ĥ−ε (P ), ĥcε(P )) and again (2.12) one estimates

∣∣∣∂xĥε(x, P )
∫ ĥcε(P )

ĥε(x, P )

(h− ĥ−ε (P )) dh√
(−2Uε(h, P ))3

∣∣∣ =
∫ ĥcε(P )

ĥε(x, P )

(h− ĥ−ε (P ))
−2Uε(h, P )

√√√√Uε(ĥε(x, P ), P )
Uε(h, P ) dh

≤
∫ ĥcε(P )

ĥε(x, P )

dh

2Π′ε (θε(P ))
(
h− ĥ−ε (P )

) ≤ ε2 ln
(

ĥcε(P )− ĥ−ε (P )
ĥε(x, P )− ĥ−ε (P )

)

≤ −ε2 ln
(
ĥε(x, P )− ĥ−ε (P )

)
≤ C2 ε(x− d),
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where constant C2 does not depend on ε, P . In the last expression we also used asymptotics
(2.3a), (2.5) and estimate (2.13). Next, using Πε(ĥcε(P ))− P = 0 one obtains

∣∣∣∂P ĥε(xcε(P ), P )
∂xĥε(xcε(P ), P )

∣∣∣ ≤ C3

where constant C3 does not depend on ε, P . Therefore, using (2.14) one obtains

∣∣∣∂P ĥε(xcε(P ), P )
∂xĥε(xcε(P ), P )

∂xĥε(x, P )
∣∣∣ ≤ C3C0

ε
exp

[
d− x√

2ε

]
The last three estimate imply (2.8c) in the case x > d. The case x < −d for (2.8a)–(2.8c) can
be shown analogously using that ĥε(x, P ) and ∂P ĥε(x, P ) are odd functions in x. �

2.1.2 Stationary Solutions for the Strong-slip and Free Films Models

Here we derive a new result on stationary solutions of model (1.3a)–(1.3b), which turn out to be
analogous to ones of Theorem 2.1 above.

Proposition 2.3. System (1.3a)–(1.3b) considered on the whole real line R has a family of
steady states parameterized by a parameter P ∈ (0, Pmax), where Pmax is defined in (2.1), with
positive nonconstant height profile given by ĥε(x, P ) and identically zero velocity.

Proof: Steady states to (1.3a)–(1.3b) with a positive height profile are described by

Rehu ∂xu = 4∂x(h∂xu) + h ∂x
(
∂xxh−Πε(h)

)
− u

β
,

0 = − ∂x (hu) .

By direct substitution and using (2.2a) one can check that [ĥε(x, P ), 0] with P ∈ (0, Pmax) form
a family of stationary solutions to (1.3a)–(1.3b) on R . �

Remark 2.4. Following the lines of the proof for Proposition 2.3 one can easily see that all the
assertions of it hold for the suspended free films model (1.7a)–(1.7b) as well, what is natural,
because as it was stated in Chapter 1 the later one is a limiting case for (1.3a)–(1.3b) as slip
length β → 0. Finally, Theorem 2.1 and Proposition 2.3 together state that all lubrication models
considered on R possess similar families of positive nonconstant stationary solutions. �

2.2 Near-equilibrium Solutions and Generalized Gradient Flow

It is well-known that the driving forces that underly the initial dewetting scenario of a thin film,
from rupture towards formation of complex fluid patterns, are intermolecular forces. This has
been shown in the framework of the no-slip or weak-slip lubrication models, see e.g. Williams and
Davis [14]. In fact other lubrication models show similar phases of the initial dewetting scenario,
where now interfacial slip has an important influence on the morphology of the resulting patterns
and the time scale on which they evolve, see Münch et al. [1], Peschka [29], Peschka et al. [44]
for detailed analysis. However, as has been discussed by Glasner and Witelski [2] intermolecular
forces are also important in the late phases when arrays of near-equilibrium droplets have formed,
connected by a thin layer whose height is determined by competition between van-der-Waals
attractive and Born repulsive forces. Here, the small flux across this layer plays an important
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Figure 2.2: Numerical solution to (1.3a)–(1.3b) with ε = 0.1, β = 2.5 showing an example of a coarsening
process (collapse of the 4th small droplet and collision of 2nd and 3rd ones) in the array of
five quasiequilibrium droplets.

role in the coarsening dynamics of these arrays of droplets, where the central part of each droplet
is nearly an equilibrium solution we have just discussed in the previous paragraphs. When Re is
sufficiently small, two components of the coarsening regime can be identified, see Glasner et al.
[3], Glasner and Witelski [30], namely collapse and collision (see example in Figure 2.2). One can
qualitatively explain the driving effects for collapse and collision using presence of a generalized
gradient flow structure. As it is found by Bertozzi et al. [16] the functional

E(h) =
∫ L

−L
Uε(h) + (∂xh)2

2 dx (2.16)

is a Lyapunov functional for (1.6) with the boundary conditions (1.10), where Uε(h) is given by
(1.5). Following the proof in Bertozzi et al. [16] one can easily generalize the result, i.e. (2.16) is
a Lyapunov functional for the general mobility model (1.9) with the boundary conditions (1.10).
Analogously, we find here a Lyapunov functional for the strong-slip system (1.3a)–(1.3b) and its
limiting case (1.7a)–(1.7b), namely we prove the following proposition.

Proposition 2.5. A functional

E(u, h) =
∫ L

−L
Uε(h) + Re

2 hu2 + (∂xh)2

2 dx (2.17)

is a Lyapunov functional for the system (1.3a)–(1.3b) (and for (1.7a)–(1.7b) as well) with bound-
ary conditions (1.12)–(1.13).

Proof: To prove that E(h, u) is a Lyapunov functional we show that for any solution [h(x, t),
u(x, t)] of (1.3a)–(1.3b) with (1.12)–(1.13) one has dE(h(x, t), u(x, t))/dt ≤ 0.
We note that from integration by parts and using (1.13) one obtains

dE

dt
= Re

∫ L

−L
uh ∂tu dx+

∫ L

−L
(Πε(h)− ∂xxh) ∂th dx+ Re

∫ L

−L

u2

2 ∂th dx .

14



2.3 Asymptotical Derivation of Reduced Model for One Droplet

Substitution of ∂th from (1.3b), integration by parts of the second and third term and noting
the velocity boundary conditions result in

dE

dt
= Re

∫ L

−L
uh ∂tu dx+

∫ L

−L
hu ∂x (Πε(h)− ∂xxh) dx+ Re

∫ L

−L
(hu)u ∂xu dx . (2.18)

Recall that from equation (1.3a)

−∂x (∂xxh−Πε(h)) = −Re (∂tu+ u∂xu) + 4
h
∂x(h∂xu)− u

βh
.

Using this in (2.18) we obtain

dE

dt
=
∫ L

−L

(
4∂x (h∂xu)u− u2

β

)
dx .

Integration by parts of the first term and noting (1.12) gives

dE

dt
= −

∫ L

−L
4h (∂xu)2 dx−

∫ L

−L

u2

β
dx ≤ 0 for all t > 0, (2.19)

provided h(x, t) > 0. �

Lyapunov functionals (2.16) and (2.17) induce a generalized gradient flow structure for (1.8)
and (1.3a)–(1.3b), respectively. During the coarsening process in an array of droplets driven by
(1.3a)–(1.3b) the energy (2.17) dissipates with the rate given by (2.19). As discussed in detail
in Glasner and Witelski [2] and Otto et al. [38] in such a framework the collapse component of
the coarsening process is driven by the dissipation of energy because the energy of two droplets
before collapse is greater than one of the remaining after it droplet and its surrounding thin
layer. In turn the migration of droplets can be explained by the presence of the Raleigh principle
associated with the generalized gradient structure. It implies the non-zero mass flux between
droplets in an array and in fact gives a rise for the motion of droplets and consequently for the
collision component of the coarsening process. The same description of the two coarsening effects
hold for system governed by the general mobility model (1.9), but now with (2.16).

2.3 Asymptotical Derivation of Reduced Model for One Droplet

2.3.1 Derivation for the General Mobility Model

The description of the slow motion of near-equilibrium droplets in terms of the equilibrium
solutions, like those we have discussed in section 2.1, with parameters characterizing the position
of the center of the droplet and its pressure that vary on that slow time scale, was first shown
by Glasner andWitelski [2] for the no-slip lubrication equation. Based on their work we generalize
and briefly describe the corresponding asymptotical approach for the general mobility model and
cover in this way, besides no-slip, also weak and intermediate-slip cases.
The flux in the case of the general mobility model is defined as as

J = M(h)∂x (∂xxh−Πε(h)) .

We consider the evolution of one droplet governed by the model (1.8) on the interval [−L̃, L̃] at
the boundary of which fluxes

J(−L̃, t) = J−(t), J(+L̃, t) = J+(t),

15



Chapter 2 Asymptotical Derivation of Reduced ODE Models

are imposed, where J±(t) = σJ̄±(t) and σ � 1. The fourth-order boundary value problem is
complete by requiring two more boundary conditions

∂xh(−L̃, t) = 0, ∂xh(L̃, t) = 0. (2.20)

Since the flux is very small, i.e. of order σ � 1, one can assume the solution h(·, t) (at every
fixed time t) to have the form of a perturbed stationary solution from Theorem 2.1, initially
centered at x = ξ0 with initial pressure P0, i.e h(x, 0) ≈ ĥε(x− ξ0, P0) restricted to the interval
(−L̃, L̃), and evolving on a slow-time scale

τ = σt. (2.21)

Following Glasner and Witelski [2] we make an asymptotical ansatz

h(x, τ) = ĥε (x− ξ(τ), P (τ)) + σh1(x, τ) +O(σ2), (2.22)

where the position ξ(τ) and the pressure P (τ) of the droplet vary slowly in time. Below every-
where in this and the next section we denote

ĥε := ĥε (x− ξ, P ) , ĥ−ε := ĥ−ε (P ), ĥ+
ε := ĥ−ε (P ). (2.23)

Substituting (2.22) in (1.9) we obtain to the leading order in σ

− ∂xĥε
dξ

dτ
+ ∂P ĥε

dP

dτ
= Lh1, (2.24)

where L is a linear differential operator given by

Lh := ∂x
(
M(ĥε)∂x

[
Π′ε(ĥε)h− ∂xxh

])
,

and the perturbation h1 satisfies boundary conditions (2.20) and flux conditions

−M(ĥε)
(
∂x
[
Π′ε(ĥε)h1(−L̃)− ∂xxh1(−L̃)

])
= J̄−,

−M(ĥε)
(
∂x
[
Π′ε(ĥε)h1(L̃)− ∂xxh1(L̃)

])
= J̄+. (2.25)

We introduce then formally an adjoint operator L∗,

L∗g :=
(
Π′ε(ĥε)− ∂xx

) [
∂x(M(ĥε)∂xg)

]
,

the kernel of which is spanned by two functions

g1(x) := 1, and g2(x) :=
∫ x

0

ĥε − ĥ−ε
M(ĥε)

dx′.

Using these functions and a suitable change of variables so that the linear problem with non-
homogeneous boundary conditions (2.25) is transformed to one with homogeneous boundary
conditions, one can impose two necessary conditions (similar to that used in Fredholm alterna-
tive) on the solvability of (2.24), which result in the system of ODEs for the pressure and position
of the droplet, written in the original time scale as

dP

dt
= CP (J+ − J−), dξ

dt
= −Cξ(J+ + J−), (2.26)
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2.3 Asymptotical Derivation of Reduced Model for One Droplet

where
CP = 1

−
∫ L̃

−L̃
∂P ĥε dx

. (2.27)

The only difference to the no-slip case described in Glasner and Witelski [2] and the dependence
on the mobility M(h) is found in the motion coefficient

Cξ =

∫ L̃

−L̃

ĥε − ĥ−ε
M(ĥε)

dx

∫ L̃

−L̃

(
ĥε − ĥ−ε

)2

M(ĥε)
dx

. (2.28)

In the next section we propose algorithm for the integration of (2.27) and (2.28), along with
coefficients for the dimension-reduced model for the strong-slip case given in the next paragraph.

2.3.2 Derivation for the Strong-slip and Free Suspended Films Models

Here we modify the asymptotical approach from the previous paragraph to make it applicable
to two equation systems like (1.3a)–(1.3b) and its limiting case (1.7a)–(1.7b). Let us start from
the strong-slip model. We again describe the evolution of one droplet on an interval [−L̃, L̃]
governed now by the system (1.3a)–(1.3b). We restrict our derivation to the regime where

σ2Re << 1, (2.29)

i.e. for sufficiently small Re numbers in (1.3a)–(1.3b), and assume that again a single droplet
behaves on a slow time scale τ given by (2.21) and can be parameterized by slow evolution of its
pressure P (τ) and position ξ(τ). We make the following asymptotic ansatz:

h(x, τ) = ĥε(x− ξ(τ), P (τ)) + σh1(x, τ) +O(σ2),
u(x, τ) = σu1(x, τ) +O(σ2). (2.30)

At the boundary of the interval we impose flux conditions, which can be written in terms of
velocity at the boundary:

u(±L̃, τ) = σu±(τ). (2.31)

In this case we define the fluxes J± imposed on the droplet as,

J± := σĥ−ε u±. (2.32)

Below we use again notation (2.23). After substitution of (2.22) into (1.3a)–(1.3b) and noting
(2.29) to the first order in σ we obtain (in matrix notation) 0

−∂xĥε
dξ

dτ
+ ∂P ĥε

dP

dτ

 = L
[
h1
u1

]
, (2.33)

where L is a linear differential operator given by

L
[
h
u

]
=

 4 ∂x(ĥε∂xu) + ĥε∂x(∂xxh− hΠ′ε(ĥε))−
u

β
−∂x(ĥεu)

 .
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Chapter 2 Asymptotical Derivation of Reduced ODE Models

The velocity correction term u1(x, τ) satisfies according to (2.31)

u1(±L̃, τ) = u±(τ). (2.34)

Formally, the adjoint operator to L is

L∗
[
g
v

]
=

 4 ∂x(ĥε∂xg)− g

β
+ ĥε ∂xv(

Π′ε(ĥε)− ∂xx
)
∂x(ĥεg)

 .
It is easy to see that the kernel of it is spanned by two functions,[

g1
v1

]
:=
[

0
1

]
(2.35)

and [
g2
v2

]
:=


ĥε − ĥ−ε
ĥε∫ x

0

ĥε − ĥ−ε
βĥ2

ε

− T (ĥε, ∂x′ ĥε, ∂x′x′ ĥε) dx′

 , (2.36)

where
T (ĥε, ∂xĥε, ∂xxĥε) := 4 ĥ−ε

(
ĥε∂xxĥε − (∂xĥε)2

ĥ3
ε

)
. (2.37)

Again using (2.35)–(2.36) and a transformation of the linear problem (2.33) with nonhomoge-
neous boundary conditions (2.34) to a problem with homogeneous boundary conditions, one can
impose two necessary conditions on the solvability of (2.24) which result in ODEs (2.40a)–(2.40b).
Our derivation below is equivalent to this procedure. In transformations below by Proposition
2.2 several boundary terms arising after subsequent applications of integration by parts are tran-
scendentally small as ε → 0. Therefore, we skip them and write an equivalence sign ∼ (see
Definition 1.1) instead of =.

To derive an equation for P (τ) we multiply the second line in the matrix equation (2.33) by v1
and integrate over the interval [−L̃, L̃]. We can make use of the fact that ∂xĥε is an odd function
in x and

∫ L̃
−L̃ ∂x(u1ĥε) dx ∼ ĥ−ε (u+ − u−). This leads us to the equation

dP

dτ
∼ −

(∫ L̃

−L̃
∂P ĥε dx

)−1

ĥ−ε (u+ − u−),

the leading order of which, written in the original time scale and using (2.32), gives (2.40a) with
the coefficient (2.41).

Similarly, we multiply the second line in the matrix equation (2.33) by v2 and integrate over
the interval [−L̃, L̃]. Again using odd or even symmetry we get

−dξ
dτ

∫ L̃

−L̃
v2 ∂xĥε dx = −

∫ L̃

−L̃
v2 ∂x(ĥεu1) dx,

which transforms to
dξ

dτ
=
∫ L̃
−L̃ v2 ∂x(ĥεu1) dx∫ L̃
−L̃ v2 ∂xĥε dx

. (2.38)

Next, we calculate integrals in the denominator and numerator in the last expression. Denote
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2.3 Asymptotical Derivation of Reduced Model for One Droplet

the numerator as
I1 =

∫ L̃

−L̃
v2 ∂x(ĥεu1) dx.

Using definition (2.37), two times integration by parts and the fact that v2(x) is an odd function,
one obtains

I1 ∼ ĥ−ε v2(L̃)(u+ + u−)−
∫ L̃

−L̃
u1

(
ĥε − ĥ−ε
βĥε

− ĥεT (ĥε, ∂xĥε, ∂xxĥε)
)
dx

∼ ĥ−ε v2(L̃)(u+ + u−)−
∫ L̃

−L̃
u1

(
ĥε − ĥ−ε
βĥε

)
dx− 4

∫ L̃

−L̃

∂xu1 ∂xĥε ĥ
−
ε

ĥε
dx.

Once more integration by parts and making use of the first line from (2.33) gives us

I1 ∼ ĥ−ε v2(L̃)(u+ + u−)−
∫ L̃

−L̃
u1

(
ĥε − ĥ−ε
βĥε

)
dx−

[
4∂xu1(ĥε − ĥ−ε )

]
x=±L̃

+
∫ L̃

−L̃

ĥε − ĥ−ε
ĥε

4∂x(ĥεu1) dx

∼ ĥ−ε v2(L̃)(u+ + u−) +
∫ L̃

−L̃

ĥε − ĥ−ε
ĥε

(
4∂x(ĥε∂xu1)− u1

β

)
dx

∼ ĥ−ε v2(L̃)(u+ + u−)−
∫ L̃

−L̃
(ĥε − ĥ−ε ) ∂x

(
∂xxh1 −Π′ε(ĥε)h1

)
dx.

Integrating further by parts three times one obtains finally

I1 ∼ ĥ−ε v2(L̃)(u+ + u−) +
∫ L̃

−L̃
∂xĥε

(
∂xxh1 −Π′ε(ĥε)h1

)
dx

∼ ĥ−ε v2(L̃)(u+ + u−) +
∫ L̃

−L̃
h1
(
∂xx −Π′ε(ĥε)

)
∂xĥε dx

∼ ĥ−ε v2(L̃)(u+ + u−).

Hence, using the odd symmetry of v2(x), we can write
∫ L̃

−L̃
v2 ∂x(ĥεu) dx = 1

2

(∫ L̃

−L̃

ĥε − ĥ−ε
βĥε

− ĥεT (ĥε, ∂xĥε, ∂xxĥε) dx
)
ĥ−ε (u+ + u−). (2.39)

The denominator of (2.38) can be written as
∫ L̃

−L̃
v2 ∂xĥε dx ∼ −

∫ L̃

−L̃
ĥε ∂xv2 dx+ ĥ−ε (v2(L̃)− v2(−L̃)) ∼ −

∫ L̃

−L̃
(ĥε − ĥ−ε ) ∂xv2 dx .

Substituting this and (2.39) with v2(x) given by (2.36) into (2.38) and taking the leading order of
the latter one as ε→ 0 results in equation (2.40b) with (2.42). We summarize that two evolution
equations for droplet’s pressure P (t) and position ξ(t), written in original time scale, finally take
form
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Chapter 2 Asymptotical Derivation of Reduced ODE Models

dP

dt
= CP (J+ − J−), (2.40a)

dξ

dt
= −Cξ (J+ + J−), (2.40b)

where
CP := 1

−
∫ L̃

−L̃
∂P ĥε dx

(2.41)

and a so called mobility coefficient

Cξ :=

∫ L̃

−L̃

(
ĥε − ĥ−ε
ĥ2
ε

− β T (ĥε, ∂xĥε, ∂xxĥε)
)
dx

2
∫ L̃

−L̃


(
ĥε − ĥ−ε

)2

ĥ2
ε

− β T (ĥε, ∂xĥε, ∂xxĥε)(ĥε − ĥ−ε )

 dx

. (2.42)

Coefficients (2.41)–(2.42) depend on droplet pressure P and position ξ through the given sta-
tionary height profile ĥε(x − ξ, P ), its minimum ĥ−ε (P ) and function T (ĥε, ∂xĥε, ∂xxĥε) defined
in (2.37). We observe that (2.42) differs from the corresponding coefficient (2.28) for the general
mobility model and depends now on the slip-length β. In the next section we introduce an al-
gorithm for integration of the integrals in (2.42). Moreover, we derive asymptotics for them in
the limit ε → 0, which implies that the denominator in of (2.42) is positive for all slip-lengths
β ≥ 0, but the numerator can change its sign with β.
Remark 2.6. For the case of negligible Trouton viscosity (when β → 0) the function
βT (ĥε, ∂xĥε, ∂xxĥε) → 0 and we recover reduced ODE model (2.26)–(2.28) for the intermediate
slip case. On the other hand when β → ∞, we obtain a reduced ODE system for lubrication
model (1.7a)–(1.7b) describing free suspended films for which the coefficient (2.42) is replaced
by

Cξ =

∫ L̃

−L̃
T (ĥε, ∂xĥε, ∂xxĥε) dx

2
∫ L̃

−L̃
T (ĥε, ∂xĥε, ∂xxĥε)(ĥε − ĥ−ε ) dx

.

�

We conclude that we derived in this section reduced finite-dimensional models describing evo-
lution of one droplet for the complete set of lubrication equations stated in section 1.2. Whereas
the pressure coefficient CP is the same in all reduced models, the difference between them lies
in the mobility coefficient Cξ. Moreover, in contrast to slip cases described by general mobility
model (1.9), in the strong-slip case the mobility coefficient (2.42) depends on the slip-length β.
The consequences of this fact we investigate in Chapter 3.

2.4 Integration and Asymptotics for Coefficients CP and Cξ
First we suggest algorithm for a numerical integration of coefficients (2.27), (2.28), (2.42). Below
Ki, i = 1, .., 12 denote constants. We use notation (2.23) also here.
The contribution to the coefficient CP to the leading order comes from the droplet core and we

can neglect the contribution from the ultrathin film when ε << 1. Therefore, it can be calculated
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as was suggested first by Glasner and Witelski [2]:

CP = 1

−
∫ L̃

−L̃
∂P ĥε dx

∼ −3P 3

4A3 , (2.43)

where
A :=

√
2|Uε(ε)| = 1/

√
3 (2.44)

defines a so called droplet contact angle.

In contrast to this main contributions to coefficients Cξ given by (2.28) or (2.42) comes from
the ultra-thin layer. Below we describe integration of (2.42). In the same way coefficient (2.28)
can be integrated. Using estimate (2.8a) from Proposition 2.2 we extend intervals in definition
of (2.42) from [−L̃, L̃] to [−∞, ∞]. After this (2.42) is given by ratio of two improper integrals.
In order to show that they converge we need to prove that integrals

I1,n =
∫ ∞
−∞

(
ĥε − ĥ−ε

)n
ĥ2
ε

dx, I2,m =
∫ ∞
−∞

T (ĥε, ∂xĥε, ∂xxĥε)(ĥε − ĥ−ε )m dx (2.45)

converge for n = 1, 2 and m = 0, 1.

Let us start with I1,n. Using the first integral (2.6) with (2.7) for the stationary solution ĥε
and (2.2b) one can change variables in (2.45) and integrate both integrals over interval
ĥ−ε ≤ h ≤ ĥ+

ε :

I1,n = 2
∫ ĥ+

ε

ĥ−ε

(
h− ĥ−ε

)n
h2
√
−2Uε(h, P )

dh.

These integrals are improper at both ends of the integration interval because Uε(ĥ−ε , P ) =
Uε(ĥ+

ε , P ) = 0. One can see that Uε(h, P ) is of a form:

Uε(h, P ) = K1(h− ĥ−ε )2(h− ĥ+
ε )(h− hnε )

h3 , (2.46)

where hnε < 0 is the third negative zero of Uε(h, P ). Cancellation of h− ĥ−ε in the denominator
and the numerator makes I1,n improper only at the end ĥ+

ε

I1,n = K2

∫ ĥ+
ε

ĥ−ε

(
h− ĥ−ε

)n−1√
h(h− ĥ+

ε )(h− hnε )
dh,

We assure that I1,n converges by making a second change of variables:

h = ĥ+
ε cos(θ). (2.47)

Substituting this in I1,n yields

I1, n = K3

∫ acos(ĥ−ε /ĥ+
ε )

0

(
ĥ+
ε cos(θ)− ĥ−ε

)n−1
cos(θ/2)√

cos(θ)(cos(θ)− hnε /ĥ+
ε )

dθ.

The last integral is proper and can be integrated by the three-point Gaussian quadrature.

Let us now calculate the second type of integrals, namely I2,m in (2.45). As before we use (2.6)
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with (2.7) to change variables and integrate over ĥ−ε ≤ h ≤ ĥ+
ε :

I2,m = 2
∫ ĥ+

ε

ĥ−ε

T (h, ∂xh, ∂xxh)(h− ĥ−ε )m√
−2Uε(h, P )

dh (using (2.37), (2.2a)-(2.2b) and (2.7))

= 8
∫ ĥ+

ε

ĥ−ε

ĥ−ε (h− ĥ−ε )m(Πε(h)− P )
h2
√
−2Uε(h, P )

dh− 8
∫ ĥ+

ε

ĥ−ε

ĥ−ε

(
h− ĥ−ε

)m√
−2Uε(h, P )

h3 dh.

=: 8ĥ−ε
(
I1

2,m + I2
2,m

)
(2.48)

The second integral I2
2,m in (2.48) is a proper integral at both ends of the integration interval

and therfore converges. But the first integral I1
2,m is improper at the both ends. Note that the

term Πε(h)− P has the following form:

Πε(h)− P = K4(h− ĥ−ε )(h− ĥcε)(h2 + (haε)2)
h4

where ĥcε has asymptotics (2.5) and haε is the modulus of two conjugate complex roots of algebraic
equation Πε(h) = P . Using (2.46) and the last expression one can simplify I1

2,m as follows:

I1
2,m = K5

∫ ĥ+
ε

ĥ−ε

(h− ĥ−ε )m(h− ĥcε)(h2 + (haε)2)√
h9(h− ĥ+

ε )(h− hnε )
dh.

Hence I1
2,m becomes proper at ĥ−ε . To make it proper at the right end ĥ+

ε we use again trigono-
metric change of variables (2.47) and proceed exactly as in case of I1,n above. This transforms
I1

2,m to a proper integral that can be integrated by the three-point Gaussian quadrature. We
have in summary that both integral in (2.45) converge, and therefore mobility coefficients (2.28)
or (2.42) can be calculated numerically.

Besides the direct calculation of (2.45) one can estimate these integrals asymptotically in a
limit ε → 0 following the similar approach in Appendix of Glasner and Witelski [30]. Such
asymptotics we use in section 3.1 to estimate a critical slip-length βcrit. For these purposes we
derive here the leading order asymptotics of integrals I1,1 and I2,m for m = 0, 1 and prove that
I2,0 > 0 and I2,1 < 0 for all sufficiently small ε.

Applying Taylor expansion to (2.7) in some neighborhoods O−ε and O+
ε of ĥ−ε and ĥ+

ε , respec-
tively, one obtains:

− Uε(h, P ) ∼


1
2U
′′
ε (ĥ−ε )(h− ĥ−ε )2 for all h ∈ O−ε[

P − U ′ε(ĥ+
ε )
]
(ĥ+
ε − h) for all h ∈ O+

ε

. (2.49)

Analogously, one can show:

Πε(h)− P ∼ Πε(ĥ−ε )(h− ĥ−ε ) for all h ∈ O−ε . (2.50)

To estimate I1,1, we note from (2.49) that the ratio (h− ĥ−ε )/
√
−2Uε(h, P ) ∼ const > 0 in O−ε .

Next, for ĥ−ε ∼ ε, the factor 1/h2 makes the integrand relatively large in O−ε . This contribution,
along with the contribution from O+

ε leads to an estimate

I1,1 ∼
1√

U ′′ε (ĥ−ε )

∫ ĥcε

ĥ−ε

dh

h2 + 1√
2|P − U ′ε(ĥ+

ε )|

∫ ĥ+
ε

ĥ−ε

h− ĥ−ε
h2
√
ĥ+
ε − h

dh, (2.51)
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where the elliptic center point ĥcε yields an effective cut-off for the influence of the behavior near
ĥ−ε . Both integrals in (2.51) can be integrated analytically. Denoting them as I1

1,1 and I2
2,1,

respectively, and using asymptotics (2.3a), (2.3b), (2.5) one obtains

I1
1,1 = K6 +O(ε); I2

1,1 = K7 ln
( 2

3εP

)
+K8 +O(ε), K6, K7 > 0.

Hence the final asymptotics for I1,1 is of the form

I1,1 = K7 ln
( 2

3εP

)
+O(1). (2.52)

Let us now estimate the integral I2,0. To this end one needs to estimate integrals I1
2,0 and I2

2,0
in (2.48). Analogously to (2.51), using (2.49), (2.50) and definitions (1.4), (1.5) one writes

I1
2,0 =

∫ ĥ+
ε

ĥ−ε

Πε(h)− P
h2
√
−2Uε(h, P )

dh ∼
√

Π′ε(ĥ−ε )
∫ ĥcε

ĥ−ε

dh

h2

+ 1√
2|P − U ′ε(ĥ+

ε )|

∫ ĥ+
ε

ĥ−ε

Πε(h)− P

h2
√
ĥ+
ε − h

dh,

where both integrals at the right-hand side can be integrated analytically. Again using asymp-
totics (2.3a), (2.3b), (2.5) one gets

I1
2,0 = K9

ε2
+O(ε), K9 > 0.

For the proper integral I2
2,0 one obtains:

I2
2,0 =

∫ ĥ+
ε

ĥ−ε

√
−2Uε(h, P )

h3 dh ≤
√
−Uε(ĥcε, P )/2

 1(
ĥ−ε
)2 −

1(
ĥ+
ε

)2


= K10

ε2
+O

(1
ε

)
K10 > 0.

Finally, last two asymptotics and (2.48) yield that integral I2,0 is positive for sufficiently small ε
and has the following asymptotics:

I2,0 = K11
ε

+O(1), K11 > 0. (2.53)

One should notice that a similar estimation can be applied to integral I2,1. The only difference
here is that the integrand of I1

2,1 is improper only at the end h = ĥ+
ε . Hence the main contribution

to I1
2,1 comes from a neighborhood of h = ĥ+

ε . The final asymptotics for I2,1 is of the form:

I2,1 = K12 +O(ε), K12 < 0, (2.54)

and hence I2,1 is negative for sufficiently small ε > 0. We conclude that asymptotics (2.54)
together with the fact that integrals I1,n, n = 0, 1 defined in (2.45) are positive, because ĥε >
ĥ−ε > 0, imply that denominator of the mobility coefficient (2.42) is positive for all sufficiently
small ε > 0.
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Chapter 2 Asymptotical Derivation of Reduced ODE Models

2.5 Approximation for the Fluxes between Droplets

In this and next sections we consider evolution of an array of several droplets governed by one of
lubrication models on a fixed interval (−L, L) with boundary conditions (1.10) or (1.12)–(1.13)
in the case of the general mobility model or the strong-slip model, respectively. By results of
section 2.3 for each j-th droplet in such array correspond two ODEs which describe evolution of
its pressure Pj(t) and position ξj(t) in time (see Figure 2.3). In order to couple equations for all

Figure 2.3: Geometric sketch for an array of several droplets

droplets in one ODE system and to describe coarsening process in droplet arrays we derive in
this section asymptotic expressions for the fluxes Jj−1, j and Jj, j+1 that j-th droplet experiences
due to its neighbors. We start first with the intermediate-slip model (1.8). After deriving flux
approximation in this case we state the result for no and weak slip models, which was already
derived in Glasner and Witelski [2], but differs from one for the intermediate-slip model. Finally,
we derive flux approximations for the strong-slip model (1.3a)–(1.3b).

2.5.1 Intermediate-slip Case

As for the no-slip case in Glasner and Witelski [2], we note first that the fluxes occur through the
thin film of height h = O(ε), connecting droplets, which are assumed to have a typical distance
of 1/δ. Similarly, we obtain expression for the fluxes in the thin film by first scaling the variables
to this inner region as follows

z = δx, H = h

ε
, τ = σt,

where σ was introduced first in (2.21). For the intermediate-slip case one takes it as

σ = ε2δ.

Substitution of this scaling in (1.8) yields

ε2δ−1Hτ = ∂z
(
H2∂z(U ′(H)− ε2δ2∂zzH)

)
,
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2.5 Approximation for the Fluxes between Droplets

with U(H) := Uε(h/ε). Hence, to leading order as ε→ 0 the quasi stationary problem is

0 = ∂zz[V(H)] ,

where V(H) is defined by

dV
dH

= H2 d
2U

dH2 which is, in unscaled variables dV

dh
= h2d

2Uε
dh2 . (2.55)

One has V (h) = εV(h/ε), so that the flux between droplets is J = −∂xV (h).

Solving the outer boundary value problem ∂xxV (h) = 0 with V = V (ĥ−ε ) at the apparent
contact line, i.e. where the droplet merges into the ultrathin layer, we observe that as in Glasner
and Witelski [2] for the no-slip case, also here we obtain that the flux between two neighboring
droplets, labeled by j and j + 1 is constant and given by their positions and pressures as

Jj,j+1 = − V (ĥ−ε (Pj+1))− V (ĥ−ε (Pj))
[ξj+1 −A/Pj+1]− [ξj +A/Pj ]

, (2.56)

where A is defined in (2.44) and A/Pk is approximation for the droplet half-width (see Glasner
and Witelski [2]). Note, that from (2.55) one has an explicite formula for function V (h):

V = 3ε2

h
− 2ε3

h2 . (2.57)

Approximation in the no-slip and weak-slip cases can be derived in a similar way. The formula
(2.56) is still valid in these cases, but in contrast to the intermediate-slip one the corresponding
function V (h) has a form:

V = −3ε2 log(h)− 4ε3

h
.

2.5.2 Strong-slip Case

As we did throughout this chapter we neglect the inertial terms in the strong-slip model to obtain

0 = 4
h
∂x(h∂xu) + ∂x (∂xxh−Πε(h))− u

βh
,

∂th = − ∂x (hu) .

In the derivation below we do not put any restrictions on the distance between droplets, because,
in general, the reduced ODE system (2.40a)–(2.40b) should describe also dynamics of droplets,
which not necessary locate far from each other (e.g. in order to approximate well migration
towards collision). Therefore, we introduce only two scalings for the inner variables:

H = h

ε
, τ = σt.

These scalings then automatically imply the scaling for the velocity

W = γu = ε

σ
u,
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Chapter 2 Asymptotical Derivation of Reduced ODE Models

because u = J/h and flux scales like 1/σ. The equations in inner scalings introduced above
become

0 = 4σ
H
∂z(H∂zW ) + ∂z

(
ε2∂zzH − U ′(H)

)
− σ

εβ

W

H
, (2.58a)

ε ∂τH = − ∂z (HW ) , (2.58b)

where again U(H) := Uε(h/ε). From (2.58a) it is clear that surface tension term is negligible
in comparison with other ones. Additionally, as for the no-slip and intermediate slip cases, we
consider only the situation with constant flux, i.e. we neglect term ε ∂τH in the second equation.
Therefore, the leading order equations for (2.58a)–(2.58b) are

0 = 4σ
H
∂z(H∂zW )− ∂z(U ′(H))− σ

εβ

W

H
, 0 = ∂z (HW ) ,

Note that during derivation of the strong-slip model (1.3a)–(1.3b) in Münch et al. [1] the slip
length β does not depend on ε > 0, so we need to consider only possible relations between scaling
parameters σ and ε. Let us write

σ = ελ. (2.59)

Then the leading order system above transforms to

0 = 4ελ

H
∂z(H∂zW )− ∂z(U ′(H))− ελ−1

β

W

H
,

0 = ∂z (HW ) ,

Moreover, noting that in the inner region by asymptotics (2.3a) holding in the ultrathin layer
between quasiequilibrium droplets, one has

H ∼ 1 + const ε. (2.60)

Substituting this in U(h) and applying Taylor expansion yield that U ′(H) ∼ const ε as ε → 0.
Let us introduce

Ũ ′(H) := U ′(H)/ε = O(1).

The the system transforms to

0 = 4ελ

H
∂z(H∂zW )− ε∂z

(
Ũ ′(H)

)
− ελ−1

β

W

H
, (2.61a)

0 = ∂z (HW ) , (2.61b)

Looking at the last system one can distinguish three cases for balancing terms in (2.61a):
Case I(λ = 2):

In this case Trouton term is negligible and the leading order system becomes

0 = ∂z(Ũ ′(H))− W

βH
,

0 = ∂z (HW ) ,

This implies
HW = −βH2∂z

(
Ũ ′(H)

)
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2.5 Approximation for the Fluxes between Droplets

and
0 = ∂z

(
H2∂z

(
U ′(H)

))
.

If we define V(H) and V (h) as in the intermediate-slip case and note that in outer scales

dV

dh
∂xh = h2d

2Uε
dh2 ∂xh , (2.62)

then we can express the flux as

J = uh = −βh2d
2Uε
dh2 ∂xh = −β∂xV . (2.63)

Note, that by (2.62) we have the same expression (2.57) for V (h) as in the intermediate case.
Case II(λ > 2):
In this case both Trouton and the last term in (2.61a) are negligible in comparison with inter-
molecular potential. Therefore, the leading system becomes

0 = U ′′(H)∂zH,
0 = ∂z (HW ) ,

where U ′′(H) = −3/H4 + 4/H5. By (2.60) in the inner region U ′′(H) ∼ 1 as ε→ 0. Therefore,
solving the leading order system one obtains H = const and W = const, but this contradicts to
the matching with outer layer boundary conditions (see details below). Therefore, Case II is not
possible.
Case II(λ < 2):
In this case Trouton term and the intermolecular potential are negligible and we end up with a
system

0 = W

H
,

0 = ∂z (HW ) ,

which leads again obviously to a contradiction.

We conclude that only Case I is possible. To give an explicit quasistationary formula for
the fluxes between droplets it remains to get values of function (2.57) at the boundary of the
contact line region. Here comes out the main difference between the strong-slip case and other
slip regimes. Namely, in the formula (2.56) for other slip cases we matched directly the height
profile h in the inner layer between droplets with its value ĥ−ε given by (2.3a) at the border of the
outer layer (i.e. parabolic droplet core) assuming that in passing the small contact line region
function h and corresponding pressure profile to the leading order does not change. That means
one just skips the contact line region in these cases. But as our numerical simulations show it is
not allowed to do in the strong-slip case. Whereas in this case as in other slip-cases the pressure

p(x) := Πε(h(x))− ∂xxh(x)

is constant inside of droplet core (outer layer) and linear between droplets (inner layer) (see
Figure 2.4), increasing slip-length from zero value one can observe additional pressure kinks in
the contact line region between above layers. These pressure kinks obviously indicate changes in
height profile h(x) at the contact line region, and therefore the latter one should be incorporated
in the matching process. If one denotes the contact line region corresponding to j-th droplet as
[aj , bj ] (see Figure 2.4) then (2.63) holding in the inner layer [bj , bj+1] and matching with the
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Chapter 2 Asymptotical Derivation of Reduced ODE Models

Figure 2.4: Upper row:Numerical example with ε = 0.25, β = 10, L = 50 of array of four droplets(left)
and corresponding pressure profile(right). Lower row: Zoom of the interval between
droplets(left) and corresponding pressure profile with kinks at contact lines(right)

boundary conditions at x = bj and x = bj+1 results in the flux formula

Jj,j+1 = −βV (h(bj+1))− V (h(bj))
bj+1 − bj

, (2.64)

where V (h) is given by (2.57). Although one knows, that at the end point of the outer layer
height profile to the leading order is given by (2.3a), i.e. h(aj) ∼ ĥ−ε (Pj), nevertheless the
formula for h(bj) is not yet known, i.e. how height profile changes passing the contact line region
[aj , bj ], and we can not use formula (2.64) so far for the flux approximation in the reduced
ODE (2.40a)–(2.40b). The answer to this problems is out of the dissertation content and lies in
appropriate scalings, asymptotical simplification and matching process for the strong-slip model
in the contact line region, like those we did already in the inner layer. In the next sections for
numerical simulations of the reduced ODE (2.40a)–(2.40b) we use approximation for fluxes

Jj,j+1 = −β V (ĥ−ε (Pj+1))− V (ĥ−ε (Pj))
[ξj+1 −A/Pj+1]− [ξj +A/Pj ]

. (2.65)

as the closest one to the not fully determined strong-slip one (2.64). Comparison between reduced
and lubrication models shows that when the slip length β increases the size of pressure kinks in
the contact line region increases as well and flux approximation (2.65) works bad (see observation
(iv) in paragraph 2.7.2). The fact that the reduced ODE works well for any value of slippage
and the problem lies just in numerical approximations of fluxes between droplets is confirmed by
observation (v) in paragraph 2.7.2.
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2.6 Final Form of Reduced ODE Systems
We summarize here results of the previous three sections. Given an array of N + 1 droplets (see
Figure 2.3) on a bounded interval [−L, L], coarsening process in which is governed by one of
the lubrication equations defined in section 1.2 with boundary conditions (1.10) or (1.12)–(1.13),
the evolution of pressures Pj(t) and positions ξj(t) for j = 0, ..., N of droplets in the array is
described by the following ODE system:

dPj
dt

= CP,j(Jj,j+1 − Jj−1,j),
dξj
dt

= −Cξ,j(Jj,j+1 + Jj−1,j), j = 0, ...N. (2.66)

For each j = 0, ..., N coefficients CP,j and Cξ,j in (2.66) are given by (2.27), (2.28) in the cases
corresponding to general mobility model (1.9) and by (2.27), (2.42) in the strong-slip case. For
each j = 1, ..., N−1 fluxes Jj−1, j and Jj,j+1 are given by formula (2.56) in the case of the general
mobility model and by (2.65) in the case of the strong slip model. In numerical simulations of
lubrication equations in the next section due to the boundary conditions (1.10) or (1.12)–(1.13)
positions of the first and the last droplet in the array are fixed at the points x = −L and x = L,
respectively. Therefore, in order to complete the corresponding reduced models (2.66) we assume
in them

J−1, 0 := −J0, 1, JN,N+1 := −JN−1, N .

2.7 Numerical Solutions and Comparison

2.7.1 Numerical Methods

The numerical methods used in the dissertation are summarized here. For the numerical treat-
ment of the lubrication models we used the scheme, developed in Münch et al. [1], Münch [41]
and Peschka [29]. It solves the lubrication models (1.6), (1.8) and (1.2) with the boundary condi-
tions (1.10), and the strong-slip model (1.3a)–(1.3b) with the boundary conditions (1.12)–(1.13).
It is a fully implicit finite difference scheme on a general nonuniform staggered grid in space with
adaptive time step. At each time step the corresponding nonlinear systems of algebraic equations
is solved using Newton-Raphson method. At each Newton iteration the resulting linear system of
algebraic equations is solved using effective solvers for sparse systems implemented in LAPACK
library.
The numerical solutions for the reduced ODEs models (2.66) corresponding to the general

mobility and strong-slip models were obtained using a fourth-order adaptive time step Runge-
Kutta method in Matlab. The main difficulty was to integrate numerically coefficients (2.27),
(2.28) and (2.42). The algorithm of their integration is explained already in section 2.4.

2.7.2 Numerical Solutions: Comparison and General Observations

The numerical simulations of the lubrications equations all confirmed the formation and the
existence of a coarsening process for the array of quasiequilibrium droplets and supports its
treatment via reduced ODE models. In this section we explain how one can iteratively solve
reduced ODE models describing coarsening dynamics in large arrays of droplets and compare
these results with numerical solutions of corresponding lubrication equations. We also give
general for all slip cases qualitative analysis of the observed numerical results. In the next chapter
we will demonstrate several important differences for the coarsening process in the strong-slip
case in comparison to the slip-cases described be a type of general mobility model.
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Summary of General Observations

(i) We start with explaining a strategy for simulation of coarsening dynamics in large arrays of
droplets using reduced ODE models. Similarly to an algorithm introduced first in Glasner
and Witelski [2], Glasner and Witelski [30] starting with an array of droplets after each
subsequent coarsening event (i.e a collapse of one droplet or its collision with another) one
can model the coarsening process further by reducing the dimension of the model by two.
Practically we say that a collapse event occurs at a moment when pressure of one droplet
increases the value 0.8Pmax(ε), where Pmax(ε) is defined in (2.1). Then we take the final
pressures and positions for remaining droplets from the previous run as initial conditions
for the next one. In the case of collision in Glasner and Witelski [30] was suggested to say
that coarsening event occurs when the distance between two neighboring droplets becomes
smaller then some δ = O(ε), i.e. when

(ξ2 −A/P2)− (ξ1 −A/P1) ≤ δ, (2.67)

where ξ1 ξ2 and P1 P2 are positions and pressures of two colliding droplets, respectively,
and A is the droplet contact angle defined in (2.44). After that we calculate the position
and the pressure for the new formed droplet by formulae

ξnew = 1/2(ξ2 −A/P2 + ξ1 −A/P1),

Pnew =
( 1
P 2

1
+ 1
P 2

2

)−1/2
. (2.68)

The last formula for Pnew is based on the observation that mass of the new droplet is
approximately sum of masses of colliding droplets (see Glasner and Witelski [30]). After
reducing its dimension by two the ODE model still gives a good approximation for a next
collapse or collision event. Example for the strong-slip case is presented in Figure 2.5 (the
subsequent collapse of two droplets). We look there on the evolution of droplet pressure and
compare results from lubrication and reduced ODE models. In the case of lubrication model
the corresponding pressure Πε(h)−∂xxh was calculated using finite-difference discretization.
In the situation as on Figure 2.5 the migration of droplets is negligible, they almost do not
move and collapse component dominates coarsening dynamics. Examples of subsequent
modeling of collision events can be founded in the next chapter.

(ii) Next, (see Figure 2.6) we show a comparison of both pressure and position evolutions for
the intermediate (1.8) and strong-slip models (1.3a)–(1.3b) for an initial profile consisting of
four droplets (as in Figure 2.10). For such parameter combinations as in Figure 2.6 collapse
gives again a dominant contribution to the coarsening process and collision is negligible for
both models.

(iii) On Figure 2.7 we check numerically the fact that the intermediate-slip model is a limiting
case of the strong-slip model as β → 0. There we plot pressure curves for intermediate-slip
model with β = 1 and show ones corresponding to the strong-slip model with a very small
β = 0.0001. The initial profile is again as in Figure 2.10. One can see that if one scales the
time axis in Figure 2.7 (right) by β one will have a very similar curve to those in Figure
2.7 (left).

(iv) In Figure 2.8 the validity of ODE model for the strong-slip case with flux approximation
given by (2.65) is checked for different slip lengths β with fixed ε, Re, L. There are two
general facts here that can be observed from numerical simulations. Firstly, indeed (as
discussed in previous section) flux approximation (2.65) is valid only for β = O(1). Already
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Figure 2.5: Comparison of the results of the ODE model (dotted line) and the lubrication model (solid
line) for the strong-slip case with ε = 0.01, L = 100, Re = 0. Lower row: evolution of
droplet position and pressure until collapse of the second droplet (left), and until the collapse
of the fourth droplet (right). Upper row: Corresponding initial profiles for two subsequent
iterations.

Figure 2.6: Comparisons of the ODE model and lubrication models with ε = 0.025, L = 50 in the
intermediate-slip and strong-slip cases with Re = 0, β = 1 for the initial profile given at Fig
2.10. Collapse of the smallest (second) droplet. Lubrication model (solid line), ODE model
(dotted line). Upper row: Pressure and position evolution in the intermediate-slip case. Low
row: Pressure and position evolution in the strong-slip case.
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Figure 2.7: Intermediate-slip, strong-slip comparison for ε = 0.025, L = 50. Intermediate-slip(left) and
strong-slip with Re = 0, β = 0.0001 (right). Lubrication model (solid line), ODE model
(dotted line).

when β = 5 this approximation is bad. Secondly, increasing β (starting from value 1 in
this case) causes change in coarsening event from collapse to collision. The more precise
analytical and numerical investigation for influence of slippage on coarsening mechanism
can be found in the next chapter.

(v) Understanding that flux approximation (2.65) works well only for relative small β (see
paragraph 2.5.2), to check independently on a kind of such approximations the validity of
reduced ODE models for the whole range 0 < β <∞, we made the following simulations.
Figure 2.9 illustrates the numerical simulation of the coarsening process for an array of four
droplets with the initial profile as in Figure 2.10 In cases β = 10 and β = 100 we solved first
lubrication model (1.3a)–(1.3b). Then for every time step t = tn of the numerical solver the
constant fluxes Jk,k±1(tn), k = 1, 2, 3 were calculated and interpolated for time in between,
resulting in the interpolated fluxes Jk,k±1(t). Finally, we solved the ODE system (2.66)
corresponding to the strong-slip case for the same droplet array and slippage parameter β,
evaluating the flux values Jk,k±1 at every ODE time step using known interpolated curves
for them. As a result we obtained an excellent agreement between (1.3a)–(1.3b) and its
reduced model see Figure 2.9 (the cases β = 10 and β = 100). Comparison of these cases
with case β = 1 (which was calculated using (2.65)) clearly indicates that a large numerical
error in the case of reduced ODEs sits in the quasistationary approximation of fluxes (2.65).

(vi) Additional numerical errors for reduced ODEs come in approximation of pressure coefficient
(2.27) by (2.43) and due to approximation of maximum ĥ+

ε and minimum ĥ−ε of the droplet
height profile by the leading order terms in their expansions in powers of ε (2.3b) and (2.3a)
(during the integration of (2.28) and (2.42)). These observations suggest that numerical
approximation of the lubrication models by corresponding ODEs increases when ε decreases.
This influence of ε is justified by numerical results presented at the Figure 2.10. The
solution of strong-slip ODE model is given for three different values of ε for the same
initial configuration of four droplets as before.

(vii) Another interesting fact demonstrated by Figure 2.10 is as follows. When ε decreases the
dominant coarsening mechanism changes from collapse to collision. For ε = 0.1 we have
pure collapse, for ε = 0.025 collapse is dominant, but the motion is considerable also,
for ε = 0.01 collision becomes dominant. This behavior is characteristic not only for the
strong-slip case but also for all cases of general mobility model. For the no-slip case it was
observed already before (see Bertozzi et al. [16], Glasner and Witelski [30]).
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Figure 2.8: Comparison for the strong-slip case with different β. L = 50, ε = 0.025 Re = 0. Upper
row–collapse of the second droplet: β = 0.0001 (left) and β = 1 (right). Lower row–collision
of the second droplet: β = 2 (left) and β = 5 (right). Lubrication model (solid line), ODE
model (dotted line).
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Figure 2.9: Comparison of droplet position and pressure evolution for the strong-slip case with different
β. L = 50, ε = 0.025 Re = 0. a) β = 1, b) β = 10, c) β = 100. PDE result (solid line), ODE
model (dotted line).
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Figure 2.10: Strong-slip comparisons for different ε. L = 50, β = 1 Re = 0. Evolution of the smallest
second droplet. Upper left: initial profile of four droplets. Pressure evolution plots (collapse
is dominant) for ε = 0.1 (upper right) and ε = 0.025 (bottom left). Evolution of positions
for ε = 0.01 (collision is dominant, bottom right). Lubrication model (solid line), ODE
model (dotted line).
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Figure 2.11: Strong-slip case for moderate Re = 10000, ε = 0.025, L = 50 and β = 1. Initial profile of four
droplets (left) and comparison of pressure evolution given by (1.3a)–(1.3b) (solid line) and
the corresponding reduced model (dotted line) for the collapse of the second droplet(right).
From the numerical observation the characteristic time scale of the coarsening process
σ ∼ 10−5.

2.8 Numerical Investigation of Inertia Influence
In this dissertation we made preliminary numerical investigations of the influence of the inertia
term in (1.3a)–(1.3b) and order of Re number on the coarsening dynamics in the strong-slip case.
Figure 2.11 shows validity of (2.66) with (2.27), (2.42) for rather moderate Reynolds numbers.
In general, determining numerically the characteristic time scale of the coarsening dynamics σ
we observe, that if condition (2.29) holds then the ODE model gives a good approximation.
Our numerical simulations show that for very high Re, which do not satisfy (2.29) the reduced
ODE (2.40a)–(2.40b) does not approximate (1.3a)–(1.3b) anymore. When σ2Re = O(1) we
observe some new qualitative dynamics. The pressure inside droplets is not constant anymore
and has a complicated nonlinear structure. The two components of coarsening process (collision
and coarsening) still exists, but in numerical simulations one can observe oscillation behavior in
droplet height profile (in particularly in ultra-thin layer) during the coarsening process. These
oscillations increase, when ε increases (compare Figure 2.12 and Figure 2.13). Moreover, we
observe a strange new effect induced by these oscillations: coming closer to collapse moment a
droplet can several time disappear in the unstable UTF and then recover again to a considerable
size (see example in Figure 2.13). This indicates that oscillations influence also the character
of coarsening events (i.e. collapse and collision) in a new way, which is not possible for general
mobility type models and the strong-slip one with σ2Re << O(1). Although a preliminary
consideration on a physical adequacy of the lubrication model (1.3a)–(1.3b) with very high Re
numbers such that σ2Re = O(1) is needed, nevertheless a possibility of ODE reduced model
describing such a complicated coarsening dynamics could be an interesting problem for future
investigations.
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2.8 Numerical Investigation of Inertia Influence

Figure 2.12: Screen-shots of the coarsening dynamics governed by the strong-slip equation with ε = 0.1,
L = 50, β = 1 Re = 1010. The characteristic time scale is σ = 10−5.

Figure 2.13: Screen-shots of the coarsening dynamics governed by the strong-slip equation with ε = 0.025,
L = 50, β = 1 Re = 1010. The characteristic time scale is again σ = 10−5.
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Chapter 3

Slippage as a Control Parameter for
Migration

3.1 Critical Value of Slippage

One of the characteristic properties of the weak-slip model (1.2) along with (1.6) and (1.8) is the
following fact: the droplet migrates always opposite to the effective applied flux, see in particular
the detailed discussion in Glasner et al. [3]. In the case of the j-th droplet in the array of N + 1
droplets the effective flux applied on it is

Jeff = Jj,j+1 + Jj−1,j . (3.1)

The explanation of the property is straightforward from the migration equation (2.26) and the
expression for the motion coefficient (2.28). One observes that the integrands of numerator and
denominator of (2.28) are always positive, because ĥε(x, P ) > ĥ−ε for all x ∈ R and hence Cξ > 0.
Then from (2.26) it follows that the sign of dξ/dt is always opposite to the sign of Jeff .
In contrast, in the case of the strong-slip model the analysis of (2.40b) and (2.42) shows, that a

droplet can migrate opposite or in the same direction of the applied effective flux (3.1) depending
on the value of the slip-length β. This fact is explained by the influence of the new term (2.37)
in the expression for the mobility coefficient (2.42), which is connected with the presence of the
Trouton viscosity term in the system (1.3a)–(1.3b).

Proposition 3.1. There exist positive numbers P ∗ > P∗ and ε1, K such that for any P ∈
(P∗, P ∗) and ε ∈ (0, ε1) there exist a unique zero β = βcrit(P, ε) of (2.42), considered as a
function of β. Moreover,

βcrit(P, ε) = Kε ln
( 2

3εP

)
+ o(ε) for all P ∈ (P∗, P ∗) (3.2)

and Cξ > 0 (Cξ < 0), i.e direction of droplet migration is opposite to (in the direction of) the
flux when β < βcrit(P, ε) (β > βcrit(P, ε)).
Proof: We use here again the notation (2.23). In section 2.4 we derived asymptotics (2.54) and
(2.53) for integrals

I2,m =
∫ L̃

−L̃
T (ĥε, ∂xĥε, ∂xxĥε)

(
ĥε − ĥ−ε

)m
dx, m = 0, 1.

and (2.52) for the integral

I1,1 =
∫ L̃

−L̃

(
ĥε − ĥ−ε

)
ĥ2
ε

dx

as ε → 0 holding uniformly for P ∈ (P∗, P ∗). The first asymptotics (2.54) shows that integral
I2,1 is negative for sufficiently small ε. This in turn implies that the denominator of the mobility

39



Chapter 3 Slippage as a Control Parameter for Migration

Figure 3.1: Migration of the middle droplet in the array of three droplets (upper-left) for different β.
L = 80, ε = 0.01, Re = 0, P2 = 0.4.

coefficient (2.42) is positive. The second asymptotics shows that integral I2,0 is positive for
sufficiently small ε. From this and the fact that integral I1,1 is positive, because ĥε > ĥ−ε > 0,
follows the existence and uniqueness of βcrit given as

βcrit :=

∫ L̃

−L̃

ĥε − ĥ−ε
ĥ2
ε

dx∫ L̃

−L̃
T (ĥε, ∂xĥε, ∂xxĥε) dx

. (3.3)

This definition together with asymptotics (2.52) and (2.53) for integrals I1,1 and I2,m imply
(3.2). Moreover, from (2.42) and (3.3) it follows that Cξ > 0 for β < βcrit(P, ε) and Cξ < 0 for
β > βcrit(P, ε). �

This migration effect is illustrated numerically in Figure 3.1. For a given initial array of three
droplets βcrit for the middle one was calculated and then solutions of the reduced ODEs (2.66)
with coefficients (2.27) and (2.42) for three different values for the slip parameter β1 < β2 =
βcrit < β3 were obtained. Note that in the case β = βcrit the middle droplet almost does not
move. Using the formula (2.56) and given parameters of the droplet array one can calculate
that the effective flux applied on the middle droplet in all three cases is negative. So in the case
β < βcrit it moves opposite to the flux and in the case β > βcrit in the direction of the flux.
Additionally, we recall that for the no-slip model it was shown in Glasner and Witelski [30] that

collisions are typically observed for a system of at least three droplets, when two bigger droplets
are attracted by a smaller droplet in between. For the strong-slip model (1.3a)–(1.3b) two-
droplet collisions are typically admitted when β > βcrit. An example of a two-droplet collision
is shown in Figure 3.2 with β = 1. It is a consequence of the fact that a droplet can migrate
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3.2 Coarsening Patterns for Increasing Slippage

Figure 3.2: The evolution of three droplets for three different β with initial profile and parameters as in
Figure. 3.1. The first and second column correspond to middle and the end of the evolution
of the droplets, respectively.

in the direction of the applied flux. We remark that in the case β < βcrit (see Figure 3.2 with
β = 0.1 ) a two-droplet collision is not possible and the strong-slip model behaves just as the
intermediate-slip one (1.8).

3.2 Coarsening Patterns for Increasing Slippage

In this section we try to analyze how the presence of critical slip-length βcrit given by (3.2),
(3.3) influences on the coarsening dynamics on a macro-level, that is on the coarsening of large
arrays of droplets. We consider a modeling example from Glasner and Witelski [30] of coarsening
process of initially ten droplets (see Figures 1 and 10 in Glasner and Witelski [30]) and look how
the coarsening scenario changes with slippage in comparison to the no-slip case analyzed in the
latter article. Starting from an initial array of ten droplets as shown in Figure 3.3 we follow the
paths of the first eight droplets in time in Figure 3.4, where we vary slippage while keeping ε = 0.1
fixed. First simulating intermediate-slip regime and then increasing slippage in the strong-slip
regime we observe several changes in coarsening behavior, first due to the existence of different
βcrit for each droplet in the array, and second (also as a consequence of the first fact) because
migration and hence collision rates change with slippage in comparison with collapse ones.
For every droplet in the array with initial pressure Pj one can calculate βcrit,j = βcrit(Pj).

In the example we chose, the values for βcrit,j do not differ much from each other and are
approximately contained in the interval I = [1.18, 1.3]). When slippage is below 1.18 all droplets
move opposite to the flux, but the value of their mobility coefficient in the reduced ODE (2.66)
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Chapter 3 Slippage as a Control Parameter for Migration

Figure 3.3: Initial profile used for all the coarsening simulations in figure 3.4

with (2.27), (2.42) tends to zero as β → 1.18, and therefore migration rates also approach zero.
This effect can be seen in Figure 3.4 for β = 0.3 and β = 0.5. In the former case the first two
coarsening effects are the same as for the intermediate-slip case, namely first collapse of the 6th
droplet and then collision of the 2nd and 3rd ones. But in the case β = 0.5 migration becomes
so slow that the 2nd and the 3rd drops can not collide, instead the former one collapses first.

The next qualitative change in the coarsening behavior occurs when passing the critical interval
I. We observe that one droplet after another change their migration direction from opposite to
the flux to the same direction of the flux. For example in the case β = 1.25 smaller droplets
(like the 2nd, 3rd, 6th and 7th) have already changed their migration direction, but the bigger
ones not. Nevertheless, we do not observe any change in coarsening events in comparison with
the case β = 0.5.

To see new events we need to increase slippage further. As a consequence the migration
coefficients in the reduced model increase and hence the migration rates as well. This, together
with the fact that now all droplets migrate in the same direction as the flux, considerably changes
the coarsening events in our example. For example, when β = 2 we see that both the 5th and
6th droplets migrate to the left. In contrast, in the intermediate-slip case they moved to each
other together with the 4th droplet, which now migrates to the right. Moreover, the 2nd and 3rd
droplets do not attract each other anymore, rather, the former one collides with the first droplet
and this becomes the second coarsening event in our system. The first one is collapse of the 6th
droplet.

Increasing slippage even higher, here up to β = 3.5, we see that migration rates increase further,
so that now the 4th and 5th droplet collide (first coarsening event) before the 1st and 2nd ones,
and the 6th collapses (second coarsening event). In principle, one could increase slippage further,
so that one after the other coarsening event should change from collapse to collision.

In summary we demonstrated that increasing slippage, here in the interval [0, 3.5], several dif-
ferent coarsening behaviors for an initial droplet array can be distinguished. They illustrate that
the existence of βcrit influences the coarsening dynamics by changing the direction of migration
and as well as migration rates. They decrease to zero, when β approaches the critical slippage
interval I, and collisions become dominant after further increase of the slip-length. The latter
effect is new and characteristic only for the strong-slip and free-suspended models, because as it
was shown in Glasner et al. [3] in all other slip cases the migration of droplets either negligible
or at most comparative with collapse component of the coarsening process. In contrast to that,
in strong-slip case with sufficiently large slip-lengths migration strongly dominates the process.
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3.3 Coarsening Rates

Figure 3.4: First two coarsening events in the initial array of eight droplets for six different slip values:
Intermediate-slip model, strong-slip model with β = 0.3, β = 0.5, β = 1.25, β = 2, β = 3.5
(arranged from left to right and from top to bottom). In black evolution of droplet cores is
plotted.
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Chapter 3 Slippage as a Control Parameter for Migration

Figure 3.5: Coarsening rates for the intermediate-slip regime, strong-slip regime with β = 0.2, β = 0.05
and β = 0.01. Log-log plot for the dependence of number of droplets N(t) on time.

3.3 Coarsening Rates

As was shown in previous paragraphs the value of the slip-length parameter β in the strong slip
regime considerably influences the coarsening behavior of an initial system of droplets and the
contribution of collision component, depending on how close this value is to the mean critical
slip-length of the system (at which all droplets almost do not move and just collapse). Naturally,
this fact should imply some dependence of the collision dominated coarsening rates on the value
of the slip-length, i.e. of the coarsening rates in the systems where collisions are dominant,
and collapses constitute fewer then 10% of the total amount of coarsening events. In Glasner
and Witelski [2] the coarsening dynamics of initially well-separated systems of droplets which
experience in general only collapse coarsening effects (so called collapse dominated coarsening
rates), was investigated, and it was shown that the statistical number of droplets N(t) in such a
system changes in time according to

N(t) ∝ t−2/5. (3.4)

Furthermore, Otto et al. [38] considered the lubrication model (1.9) with mobility termM(h) = h
and derived the law (3.4) on the basis of the gradient flow structure of the equation. As the
equation for the evolution of droplet pressures is the same in the reduced models for all slip-
regimes, it is natural to expect that the coarsening rate law for collapse dominated systems
does not depend on the chosen slip regime and is always given by (3.4). Moreover, in Glasner
and Witelski [30] it was shown, that for the 1D no-slip regime any initial system of droplets
will coarsen according to (3.4) independent of the proportional number of collision and collapse
events during the coarsening process.
In this paragraph we try to investigate collision dominated coarsening rates numerically in the

intermediate and strong-slip regimes. We made simulations of coarsening rates in these cases for
various initial configurations and initial numbers of droplets N0. For this purpose we developed a
Matlab program that solves effectively corresponding to above cases reduced ODE models (2.66)
starting from large number of droplets around N0 ≈ 103 and modeling the coarsening process
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3.3 Coarsening Rates

up to only several droplets remain (see Figure 3.5). As a typical initial profile we took arrays
of droplets with equal small distance between them (to enforce collision dominated coarsening)
and a normally distributed pressures around some Pmean = 0.07. At every iteration, in order to
determine numerically a moment when coarsening event occur and the initial configuration for
the next iteration after subsequent reduction of the dimension of the ODE model by two, we
used stop criterion and rules for collision and collapse introduced in section 2.6.2, observation
(i). In the simulations a typical dimension of ODE system is high and calculation of the mobility
coefficient CX(P ) is rather expensive (see details for its integration in section 2.4). Therefore, we
used a multi-step variable order Adams-Bashforth-Moulton algorithm implemented in Matlab to
solve ODE model at every iteration (see algorithm in Shampine and Gordon [45]). As any multi-
step method it has an advantage of minimizing number of expensive evaluation of the right-hand
side of the ODE system.
During simulations we always used the approximation for fluxes (2.65). It causes a certain

numerical difficulty for modeling of collision events. More precisely, when the distance between
two colliding droplets becomes small, i.e. near stopping criterion (2.67), the denominator of
(2.56) becomes very small. This implies that one needs to solve system (2.66) in a neighborhood
of a point, at which its right-hand side is singular. In this case usual error estimates (which
normally use some smoothness of ODEs right-hand side) control the error of numerical solution
very badly, and we needed to introduce special adaptive time step algorithm to determine the
collision moment and dynamics just before it with a sufficient accuracy.
In our simulations we started first with the coarsening rates for the intermediate-slip case and

found (as was expected from the results of Glasner et al. [3]) that the percentage of collisions
is very small. As it is claimed in Glasner et al. [3] the intermediate-slip regime is essentially
collapse dominated and hence coarsening rates for it are given again by (3.4). We then solved
the reduced model (2.66) corresponding to the strong-slip lubrication equation with similar initial
distributions of droplets and slip-length parameters β = 0.2, β = 0.05 and β = 0.01, respectively.
Here looking at the coarsening curves in Figure 3.5 one can observe typically three time regions.
After the starting one (a so called transition period) a droplet system passes to a self-similar
region two, which is characterized by a straight slope of the coarsening curve. Finally, when
the number of droplets becomes order of 10 a so called big size effect comes into the play and
coarsening statistics becomes chaotic and not reliable.
Next, we analyzed a particular influence of slip-length β on the coarsening slope in the second

self-similar time region. Firstly, we observed that the proportion of collisions is dominant and
increases with slippage. Secondly, the corresponding coarsening rates have slopes ∼ t−1/3 for
β = 0.2 and decrease to ∼ t−2/5 as β → 0 as shown in Figure 3.5. This fact stays in agreement
that the intermediate-slip regime is a limiting case for the strong-slip one as β → 0. Note that
for the chosen parameters ε and Pmean the formula (3.2) entails that the mean critical slip-length
parameter βcrit ≈ 0.01. Our chosen slip-lengths β = 0.05, β = 0.2 are beyond this value. Figure
3.5 shows, that close to βcrit the coarsening dynamics is as in the intermediate-slip case, but
increasing the slip-length further changes continuously the coarsening slope.
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Chapter 4

Formal Reduction onto an ’Approximate
Invariant’ Manifold

In this chapter we give a new derivation of the reduced ODE model corresponding to the no-slip
lubrication equation, alternative to the asymptotical one first derived by Glasner and Witelski [2]
(and then generalized for other lubrication models in Chapter I), but still formal. This derivation
was inspired by a recent paper of Mielke and Zelik [4], in which authors prove rigorously a center
manifold reduction theorem for a general class of semilinear parabolic equations possessing a
so called multipulse solutions, i.e. solutions that in some sense are very close for all times to
certain combinations of finite or even infinite number of stationary solutions (so called pulses)
parameterized by a discrete set of parameters. For example in the case of lubrication equations
one could understand stationary solution ĥε(x, P ) on R under such a pulse. Trying to apply
and modify the approach of Mielke and Zelik [4] to the no-slip lubrication equation we saw
several differences and difficulties in comparison with their case (see section 4.5). Nevertheless,
following main steps of the approach of Mielke and Zelik [4] and adopting several constructions
to the no-slip lubrication equation, we arrived formally to a reduced ODE model, which governs
the evolution of the above discrete set of parameters. Further, we compared this ODE model
with the one derived by Glasner and Witelski [2].

We present this alternative derivation here for several reasons. Firstly, the invariant manifold
based approach given below is quite different to that one of Glasner and Witelski [2] and gives
a nice geometric interpretation for the reduced dynamics. Secondly, results of Mielke and Zelik
[4] and our application of them in this chapter suggest that this derivation can be made rigorous
after solving difficulties arising in the case of lubrication equation (see section 4.5).

The structure of this chapter is as follows. In section 4.1 we introduce an ’approximate invari-
ant’ manifold Pε , prove that every point m of it is ’almost stationary’ with respect to the no-slip
equation and define a special projection operator Pm on Pε . In section 4.2 we prove that in a
sufficiently small neighborhood of the ’approximate invariant’ manifold every solution h(·, t) of
(1.6) can be decomposed into the sum of some point m (t) on the manifold and a reminder func-
tion v(t), which is ’orthogonal’ to the manifold, i.e Pm v(t) = 0 for t > 0. Next, we decompose
(1.6) into a system of two equations: an ODE which describes an evolution on the ’approximate
invariant’ manifold for m (t) and a quasilinear equation for the reminder v(t). Up to this moment
we proceed rigorously. Nevertheless, for the reasons explained in section 4.5, further we make
a formal assumption on the smallness of remainder function v(t) and obtain by this a formal
leading order equation for m (t) on Pε in section 4.3, which gives us a reduced ODE model. Then
we compare it with reduced ODE model (2.66) corresponding to the no-slip lubrication equation
in section 4.4 pointing out a good agreement between them and certain advantages of the just
derived one. In section 4.5 we discuss a possible approach to make the above derivation rigorous
and introduce a so called spectral problem, analytical treatment of which is the subject of the
next chapter.
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Chapter 4 Formal Reduction onto an ’Approximate Invariant’ Manifold

4.1 ’Approximate Invariant’ Manifold: Definition and Properties

Let us write the no-slip lubrication model (1.6) in the form

∂th+ Fε (h) = 0 (4.1)

and define the corresponding to it quasilinear elliptic operator as

Fε (h) := ∂x
(
h3∂x (∂xxh−Πε(h))

)
. (4.2)

As before we put on (4.1) Neumann boundary conditions on a fixed interval (−L, L):

∂xxxh = 0, and ∂xh = 0 at x = ±L. (4.3)

Let ĥε(x, P ) be the stationary solution to (4.1) on R defined in Theorem 2.1. Note that a
shifted function ĥε(x− ξ, P ) for every ξ ∈ R gives also a solution to (4.1) on R . Recall that by
Proposition 2.2 there exists positive numbers d and P ∗ > P∗ such that for |x| > d, P ∈ (P∗, P ∗)
and sufficiently small ε > 0 estimates (2.8a)–(2.8c) hold

Let us next define a set Bε ⊂ R 2N as

Bε =
{

s = (P0, P1, ..., PN , ξ1, ξ2..., ξN−1) ∈ R 2N : Pj ∈ (P∗, P ∗), j = 0, ..., N ;

−L < ξ1 < ... < ξN−1 < L; ξi − ξi−1 − 4 d > 2
√
ε, i = 1, ..., N

}
, (4.4)

where we assumed ξ0 := −L and ξN := L. Throughout the whole chapter we fix positive numbers

Figure 4.1: Plot of function χj(s )(x).

ε1 and L so that set Bε is not empty for all ε ∈ (0, ε1). The boundary of the open set Bε in
R 2N topology is given by

∂Bε =
{

s ∈ R 2N : ∃j ∈ {0, ..., N} : Pj = P∗
}

∪
{

s ∈ R 2N : ∃j ∈ {0, ..., N} : Pj = P ∗
}

∪
{

s ∈ R 2N : ∃i ∈ {1, ..., N}, ξi − ξi−1 − 4 d = 2
√
ε
}
.
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Let us define for each s ∈ Bε and j ∈ {1, ..., N} points

Mj := ξj + ξj−1
2 (4.5)

and functions χ, χj(s ) ∈ C∞(R ) (see Figure 4.1 ) as

χ(x) :=


0, x ≤ −

√
ε

1
2

(
1 + tanh

(
tan

(
π

2
√
ε
x

)))
, −

√
ε < x <

√
ε

1, x ≥
√
ε

, (4.6)

χj(s )(x) = χj(ξj−1, ξj , ξj+1, Pj−1, Pj , Pj+1, x) :=

:=


χ(x−Mj), x < Mj +

√
ε

1, Mj +
√
ε ≤ x ≤Mj+1 −

√
ε

1− χ(x−Mj+1), x > Mj+1 −
√
ε

, j = 1, ..., N − 1;

χ0(s )(x) = χ0(ξ1, P0, P1, x) :=

:=
{

1, 0 ≤ x ≤M1 −
√
ε

1− χ(x−M1), x > M1 −
√
ε

;

χN (s )(x) = χ0(ξN−1, PN−1, PN , x) :=

:=
{
χ(x−MN ), x ≤MN +

√
ε

1, x > MN +
√
ε
. (4.7)

One can see that for all x ∈ [0, L] and s ∈ Bε it holds
∑N
j=0 χj(s )(x) ≡ 1. Define next a

mapping m ε : Bε → L∞(−L, L), which maps a point s ∈ Bε to a function m ε(s ) ∈ C∞(−L, L)
satisfying boundary conditions (4.3) as follows:

∀s ∈ Bε m ε(s )(x) :=
N∑
j=0

χj(s )(x)ĥε(x− ξj , Pj), (4.8)

where again ξ0 = −L, ξN = L. The image of m ε defines a smooth 2N -dimensional submanifold
in L∞, which we denote as Pε . Like in Mielke and Zelik [4] we define a boundary of Pε as
∂Pε := m ε(∂Bε ). From (4.8) it follows that every point m (s ) ∈ Pε is a composition of N + 1
stationary solutions to the lubrication model (4.1). Following to Mielke and Zelik [4] we call
such a composition as a multi-droplet or a multi-pulse structure (see example in Figure 4.2). The
mapping m ε is an diffeomorphism between Bε and Pε , and therefore below in this chapter for
each m ∈ Pε we associate a unique s ∈ Bε such that m ε(s ) := m .

The tangent space TmPε of manifold Pε at a point m ∈ Pε is given by span of functions
{φ0(s ), φ1(s ), ..., φ2N−1(s )}, where φj(s ) ∈ C∞c (−L, L) are defined as follows:

φj(s ) := ∂m ε(s )
∂Pj

for j = 0, ..., N ;

φN+j(s ) := ∂m ε(s )
∂ξj

for j = 1, ..., N − 1. (4.9)

Using definitions (4.5)–(4.8) one can see that for j ∈ {1, ..., N − 1} functions φj(s )(x) and
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Figure 4.2: Example of a multi-droplet structure, four truncated pulses χj(s )(x)ĥε(x − ξj , Pj), j =
0, 1, 2, 3 (left) and their sum m ε(s )(x) (right).

φN+j(s )(x) have a compact support on an interval

Ij := (Mj −
√
ε, Mj+1 +

√
ε) (4.10)

and can be represented as:

φj(s )(x) =



∂ĥε(x− ξj , Pj)
∂P

χ(x−Mj) , x < Mj +
√
ε

∂ĥε(x− ξj , Pj)
∂P

, x ∈ [Mj +
√
ε, Mj+1 −

√
ε] ;

∂ĥε(x− ξj , Pj)
∂P

(1− χ(x−Mj+1)) , x > Mj+1 −
√
ε

φN+j(s )(x) =



1
2χ
′(x−Mj)

(
ĥε(x− ξj−1, Pj−1)− ĥε(x− ξj , Pj)

)
−

− ∂ĥε(x− ξj , Pj)
∂x

χ(x−Mj), x < Mj +
√
ε

− ∂ĥε(x− ξj , Pj)
∂x

, x ∈
[
Mj +

√
ε, Mj+1 −

√
ε
]
.

1
2χ
′(x−Mj+1)

(
ĥε(x− ξj , Pj)− ĥε(x− ξj+1, Pj+1)

)
−

− ∂ĥε(x− ξj , Pj)
∂x

(1− χ(x−Mj+1)), x > Mj+1 −
√
ε
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The remaining two functions have a representation:

φ0(s )(x) =


∂ĥε(x+ L,P0)

∂P
, x ∈ [0, M1 −

√
ε]

∂hε(x+ L, P0)
∂P

(1− χ(x−M1)) , x > M1 −
√
ε;

φN (s )(x) =



∂ĥε(x− L, PN )
∂P

χ(x−MN ) , x < MN +
√
ε

∂ĥε(x− L, PN )
∂P

, x ∈ [MN +
√
ε, L].

The next proposition shows that the right-hand side (4.2) of the lubrication equation (4.1) is small
on the manifold Pε (due to the fact that it is formed by compositions of stationary solutions).
This explains why we call Pε as ’approximate stationary’ or ’approximate invariant’.

Proposition 4.1. For every m ∈ Pε and sufficiently small ε > 0 one has∣∣∣∣∣∣Fε (m )
∣∣∣∣∣∣
L∞(−L,L)

≤ Kε3/2,

where constant K > 0 does not depend on m , ε.

Proof: Let us fix below any m ∈ Pε . Due to definitions (4.7)–(4.8) for all
x ∈ [0, M1 −

√
ε] ∪ [MN +

√
ε, L] one has Fε (m )(x) ≡ 0. Let us estimate Fε (m )(x) on the

interval Ij from (4.10) for every j ∈ {1, ..., N − 1}. Due to (4.7)–(4.8) one has a representation:

Fε (m )(x) =



Fε
(
(1− χ(x−Mj))ĥε(x− ξj−1, Pj−1)+

+ χ(x−Mj)ĥε(x− ξj , Pj)
)
, x ∈

[
Mj −

√
ε, Mj +

√
ε
]

0, x ∈ [Mj +
√
ε, Mj+1 −

√
ε].

Fε
(
(1− χ(x−Mj+1))ĥε(x− ξj , Pj)+

+ χ(x−Mj+1)ĥε(x− ξj+1, Pj+1)
)
, x ∈

[
Mj+1 −

√
ε, Mj+1 +

√
ε
]

(4.11)
Let us first estimate Fε (m )(x) for x ∈ [Mj −

√
ε, Mj +

√
ε]. Due to asymptotics (2.3a) and

definitions (4.6), (4.8) for sufficiently small ε > 0 it holds

ε ≤ min
{
ĥε(x− ξj , Pj), ĥε(x− ξj−1, Pj−1)

}
≤ |m (x)| ≤

≤ max
{
ĥε(x− ξj , Pj), ĥε(x− ξj−1, Pj−1)

}
≤ ε+ 2P ∗ε2, (4.12)

where min and max are taken in x ∈ [Mj −
√
ε, Mj +

√
ε]. Therefore, for such x and sufficiently
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small ε > 0 one obtains

|Πε(m (x))| =
∣∣∣ε−1

((
ε

m

)3
−
(
ε

m

)4
) ∣∣∣ ≤

≤
∣∣∣ε−1

(
1−

( 1
1 + 2P ∗ε

)4
) ∣∣∣ ≤ K0.

In the same manner one obtains

|Π′ε(m (x))| ≤ K1/ε
2 and |Π′′ε(m (x))| ≤ K2/ε

3,

where constants Ki, i = 0, 1, 2 do not depend on m ∈ Pε , ε > 0 and x ∈ [Mj −
√
ε, Mj +

√
ε].

Using definition (4.6) one obtains

∣∣∣dkχ
dxk

∣∣∣ ≤ ( π

2
√
ε

)k
, for k ∈ N 0 uniformly in x ∈ R . (4.13)

By estimate (2.8b) and definition (4.4)

∣∣∣∂kĥε(x− ξj , Pj)
∂xk

∣∣∣ ≤ C0
εk

exp
(
− d√

2ε

)
for all s ∈ Bε , j = 0, ..., N , x ∈ [Mj −

√
ε, Mj +

√
ε] and k = 1, ..., 4. Therefore, using also

(4.12) one obtains ∣∣∣∂km (x)
∂xk

∣∣∣ ≤ K3 ε
1−k/2, k = 0, 1, ..., 4,

where constant K3 > 0 does not depend on m ∈ Pε , ε > 0 and x ∈ [Mj −
√
ε, Mj +

√
ε].

Finally, using last five estimates one obtains for all x ∈ [Mj −
√
ε, Mj +

√
ε]

|Fε (m )(x)| ≤ |m 3m xxxx|+ |m 3Π′ε(m )m xx|+ |m 3Π′′ε(m )m 2
x|

+|3m 2m xm xxx|+ |3m 2m xΠ′ε(m )m x| ≤ K5 ε
3/2.

In the same manner analogous estimate on |Fε (m )| can be obtained for
x ∈ [Mj+1 −

√
ε, Mj+1 +

√
ε], and therefore using (4.11) one ends up with∣∣∣∣∣∣Fε (m )
∣∣∣∣∣∣
L∞(Ij)

≤ K ε3/2 for every j ∈ {1, ..., N − 1}.

This finishes the proof. �

Next, for each m ∈ Pε we would like to define a projection on TmPε in L∞(−L, L) using
a so called “adjoint functions” ψj(s ) ∈ C∞c (−L, L), j = 0, ..., 2N − 1. Namely, define

ψj(s )(x) := Cj(s )χj(s )(x), j = 0, ..., N ;

ψN+j(s )(x) := CN+j(s )χj(s )(x)
∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds, j = 1, ..., N − 1,

(4.14)
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where we denoted

Cj(s ) := 1/
∫ Mj+1−

√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂P

dx,

CN+j(s ) := 1/
∫ Mj+1−

√
ε

Mj+
√
ε

(
ĥε(x− ξj , Pj)− ĥ−ε (Pj)

)2

ĥε(x− ξj , Pj)3
dx, for j = 1, ..., N − 1 (4.15)

and
C0(s ) := 1/

∫ M1−
√
ε

−L

∂ĥε(x+ L, P0)
∂P

dx,

CN (s ) := 1/
∫ L

MN+
√
ε

∂ĥε(x− L, PN )
∂P

dx.

Again for j ∈ {1, ..., N−1} functions ψj(s )(x) and ψN+j(s )(x) have compact supports on interval
Ij given by (4.10).

Remark 4.2. Recall that formal adjoint Fε ′(m )∗ to the operator obtained by differentiation of
Fε (m ) at a point m ∈ Pε , due to definitions (4.2), (4.8), acts as:

Fε ′(m )∗[ψ(s )](x) =
(
Π′ε
(
ĥε(x− ξj , Pj)

)
− ∂xx

) [
∂x
(
ĥε(x− ξj , Pj)3ψ(x)

)]
for x ∈ [Mj +

√
ε, Mj+1 −

√
ε]. From this it follows that Fε ′(m )∗[ψj(s )](x) ≡ 0 for x ∈

[Mj +
√
ε, Mj+1−

√
ε]. Therefore, we call functions ψj(s ) as ’adjoint’. Similar functions we have

used already during the asymptotical derivation of reduced models in section 2.3. �

Before defining a projection on TmPε we prove two helpful propositions.

Proposition 4.3. There exists a positive number K > 0 such that for all m ∈ Pε , sufficiently
small ε > 0 and j, k ∈ {0, ..., 2N − 1} one has∣∣∣ (ψj(s ), φk(s ))− δj, k

∣∣∣ ≤ K ε3/2, (4.16)

where (·, ·) denotes the standard inner product in L2(−L, L).

Proof:
a) Let us first consider (ψj(s ), φj(s )) for j ∈ {1, ..., N − 1}. By definitions (4.9) and (4.14) one
has:

(ψj , φj)
Cj(s ) =

∫ Mj+1−
√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂P

dx+

+
∫ Mj+

√
ε

Mj−
√
ε

(∂ĥε(x− ξj , Pj)
∂P

χ(x−Mj)
)
χ(x−Mj) dx+

+
∫ Mj+1+

√
ε

Mj+1−
√
ε

(∂ĥε(x− ξj , Pj)
∂P

χ(x−Mj+1)
)
(1− χ(x−Mj+1)) dx.

By (2.8c) and (4.4) there exists a positive number K0 such that for all s ∈ Bε ,
x ∈ [ξj−1 + 2d, ξj − 2d] with j = 1, ..., N and sufficiently small ε > 0 it holds

∂ĥε(x− ξj , Pj)
∂P

≤ K0 ε. (4.17)

53



Chapter 4 Formal Reduction onto an ’Approximate Invariant’ Manifold

From the last two expressions and estimate (4.13) one obtains:

|(ψj(s ), φj(s ))− 1| ≤ K1 ε
3/2Cj(s ).

By definition (4.15) Cj(s ) is bounded uniformly in s ∈ Bε and j = 0, ..., N . Therefore, estimate
(4.16) for this case follows.

b)Let us consider (ψj(s ), φN+j(s )) for j ∈ {1, ..., N−1}. By definitions (4.5), (4.6) and (4.9),
(4.14) one has:

(ψj , φN+j)
Cj(s ) = −

∫ ξj+2d

ξj−2d

∂ĥε(x− ξj , Pj)
∂x

+

+
∫ ξj−2d

Mj−
√
ε

(1
2χ
′(x−Mj)

(
ĥε(x− ξj−1, Pj−1)− ĥε(x− ξj , Pj)

)
−

− ∂ĥε(x− ξj , Pj)
∂x

χ(x−Mj)
)
χ(x−Mj) dx+

+
∫ Mj+1+

√
ε

ξj+2d

(1
2χ
′(x−Mj+1)

(
ĥε(x− ξj , Pj)− ĥε(x− ξj+1, Pj+1)

)
−

− ∂ĥε(x− ξj , Pj)
∂x

χ(x−Mj+1)
)
(1− χ(x−Mj+1)) dx.

The first integral in the last expression is identically zero because of (2.2b). By (2.8a) and (2.3a)
for x ∈ [ξj−1 + d, ξj − d] one has

|ĥε(x− ξj−1, Pj−1)− ĥε(x− ξj , Pj)| ≤ (P ∗ − P∗)ε2 +O(ε3). (4.18)

Using this, (4.13) and (2.8b) one obtains

|(ψj(s ), φN+j(s ))| ≤ K2 ε
3/2,

where constant K2 > 0 does not depend on s ∈ Bε , j = 1, ..., N − 1 and ε.

c) Let us estimate inner products for ’neighbors’ (ψj(s ), φj−1(s )) for j ∈ {1, ..., N − 1}. By
definitions (4.9) and (4.14) one has

∣∣∣(ψj(s ), φj−1(s))
Cj(s )

∣∣∣ =
∣∣∣ ∫ Mj+

√
ε

Mj−
√
ε

(
(1− χ(x−Mj))

∂ĥε(x− ξj , Pj)
∂P

)
χ(x−Mj) dx

∣∣∣ ≤ K3 ε
3/2,

where we used again estimates (4.13), (4.17).
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d) Let us estimate (ψj+N (s ), φj+N (s )) for j ∈ {1, ..., N − 1}.

(ψj+N , φj+N )
Cj+N (s ) = −

∫ Mj+1−
√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂x

∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds dx+

+
∫ Mj+1+

√
ε

Mj+1−
√
ε

(1
2χ
′(x−Mj+1)

(
ĥε(x− ξj , Pj)− ĥε(x− ξj+1, Pj+1)

)
− ∂ĥε(x− ξj , Pj)

∂x
(1− χ(x−Mj+1))

) ∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds dx+

+
∫ Mj+

√
ε

Mj−
√
ε

(1
2χ
′(x−Mj)

(
ĥε(x− ξj−1, Pj−1)− ĥε(x− ξj , Pj)

)
− ∂ĥε(x− ξj , Pj)

∂x
χ(x−Mj)

) ∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds dx. (4.19)

Let us integrate by parts the first integral at the right-hand side of (4.19):

−
∫ Mj+1−

√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂x

∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds dx = 1
CN+j(s )−

−
(
ĥε(Mj+1 −

√
ε− ξj , Pj)− ĥ−ε (Pj)

) ∫ Mj+1−
√
ε

ξj

ĥε(x− ξj , Pj)− ĥ−ε (Pj)
ĥε(x− ξj , Pj)3

dx+

+
(
ĥε(Mj +

√
ε− ξj , Pj)− ĥ−ε (Pj)

) ∫ Mj−
√
ε

ξj

ĥε(x− ξj , Pj)− ĥ−ε (Pj)
ĥε(x− ξj , Pj)3

dx.

Using this and estimates (2.8a), (2.3a)–(2.3b) one obtains

∣∣∣ ∫ Mj+1−
√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂x

∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

ds dx+1/CN+j(s )
∣∣∣ ≤ K4

ε3 exp
(
− d√

2ε

)
.

The rest terms in (4.19) one can estimate as in point b) using (4.13), (4.18) and (2.8b) by
O(ε3/2). Therefore, from (4.19) one ends up with

|(ψj+N (s ), φj+N (s ))− 1| ≤ K5 ε
3/2.

e) The rest of inner products (ψj(s ), φj(s )), which were not considered yet, can be estimated
in a similar way to one in points b)-c). �

Proposition 4.4. For every s ∈ Bε there exist functions

ψ̄0(s ), ψ̄1(s ), ..., ψ̄2N−1(s ) ∈ C∞(−L, L),

such that for all sufficiently small ε > 0 and every j, k ∈ {0, ...2N − 1} one has(
ψ̄j(s ), φk(s )

)
= δj, k. (4.20)

Moreover, there exists a positive number K not depending on s , ε, j such that∣∣∣∣∣∣ψj(s )− ψ̄j(s )
∣∣∣∣∣∣
L∞(−L,L)

≤ K ε3/2. (4.21)
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Proof: Let us search ψ̄j(s ) in the form

ψ̄j(s ) =
2N−1∑
i=0

Bj
i (s )ψi(s )

From (4.20) it necessarily follows that the vector
[
Bj

0, B
j
1, ..., B

j
2N−1

]T
is the solution to a linear

system of 2N algebraic equations given as
(ψ0, φ0) (ψ1, φ0) ... (ψ2N−1, φ0)

... ... ... ...
(ψ0, φj) (ψ1, φj) ... (ψ2N−1, φj)

... ... ... ...
(ψ0, φ2N−1) (ψ1, φ2N−1) ... (ψ2N−1, φ2N−1)




Bj

0
...

Bj
j

...

Bj
2N−1

 =


0
...
1
...
0

 . (4.22)

By Proposition 4.3 for sufficiently small ε > 0 matrix A(s ) of the system (4.22) has a diagonal
dominance, and therefore invertible. Hence there exists a unique solution to (4.22) and existence
of ψ̄j(s ) satisfying (4.20) is proved. Moreover, one has A(s ) = Id +D(s ), where by Proposition
4.3 ||D(s )||2 ≤ const ε3/2 uniformly in s . Expanding the inverse to Aε as a Neumann series

A−1 =
∞∑
k=0

(−1)kDk,

one obtains from (4.22) that
|Bj

i (s )− δi,j | ≤ const ε3/2.

Estimate (4.21) follows from this and uniform bounds in s ∈ Bε by definition (4.14) for
||ψj(s )||L∞(−L,L), j = 0, ..., 2N − 1. �

Let us now for every m ∈ Pε define a linear operator Pm acting on v ∈ L∞(−L, L):

Pm v :=
2N−1∑
j=0

(
ψ̄j(s ), v

)
φj(s ). (4.23)

From the definition it is clear that the image of Pm belongs to TmPε and from orthogonality
conditions (4.20) it follows that Pm

2 = Pm . Thus, Pm are indeed projections on the tangent
space TmPε . From definitions (4.9), (4.14) one can deduce that ||Pm ||L(L∞(−L,L), L∞(−L,L)) is
bounded uniformly in m ∈ Pε , and Pm is Fréchet differentiable with respect to m .

4.2 Decomposition in a Neighborhood of the Manifold
We start this section by showing that in a sufficiently small L∞(−L, L) neighborhood of the
’approximate invariant’ manifold Pε every function h(x) can be decomposed into the sum of
some point m ∈ Pε and the remainder function v such that Pm v = 0. Everywhere below
Oδε(Pε ) and Oδ1,ε(∂Pε ) denote L∞ neighborhoods with diameters δε and δ1,ε of Pε and its
boundary ∂Pε , respectively.

Theorem 4.5. There exists a positive constant ε1, such that for all ε ∈ (0, ε1) there exist positive
functions δε, δ1,ε and a nonlinear differentiable function πε : Oδε(Pε ) \ Oδ1,ε(∂Pε )→ Pε , which
satisfies

Pπε(h)(h− πε(h)) ≡ 0, for all h ∈ Oδε(Pε ) \ Oδ1,ε(∂Pε ).
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Proof: Let us first show that the required projector can be constructed locally, for Oδε(m0),
a neighborhood of each point m 0 ∈ Pε . If h ∈ Oδε(m0) then h = m 0 +w with ||w||L∞ ≤ δε and
the required m = πε(h) should be find from equation

Pm (m 0 + w −m ) = 0. (4.24)

Recall that Pε = m ε(Bε ) where m ε is a diffeomorphism between open set Bε given by (4.4)
and Pε . Therefore, there exist points s , s 0 ∈ Bε , such that m 0 = m ε(s 0) and m = m ε(s ).
Moreover, using definition (4.23) one can rewrite (4.24) as:(

m ε(s 0) + w −m ε(s ), ψ̄j(s )
)

= 0, for j = 0, ..., 2N − 1. (4.25)

Define now a function Fε : R 2N × L∞(−L, L)→ R 2N as

Fε(s , w)j :=
(
m ε(s 0) + w −m ε(s ), ψ̄j(s )

)
, j = 0, ..., 2N − 1.

Then one has Fε(s 0, 0) = 0 and

(∂sFε(s 0, 0)δs )j = −(m ′
ε(s )δs , ψ̄j(s 0)) =

= −
i=2N−1∑
i=0

(
φi(s )δsi, ψ̄j(s 0)

)
= −δsj ,

where we denoted δs = [δs0, δs1, ..., δs2N−1] and used orthogonality relations (4.20), which hold
for sufficiently small ε > 0. From this it follows DsFε(s 0, 0) = −Id, and therefore by the
implicit function theorem there exist constant δε > 0 such that for all w with ||w||L∞ ≤ δε,
equation Fε(s , w) = 0 has a unique solution s = s̃ ε(w) or, what is the same, there exists unique
m = m̃ ε(w) satisfying equation (4.25). Moreover, there exists a positive function δ1,ε, such
that one can choose δε not depending on a choice of m 0 ∈ Pε \ Oδ1,ε(∂Pε ). Therefore, one can
construct the required projector πε globally on Oδε(Pε ) \ Oδ1,ε(∂Pε ). The differentiability of
πε(h) follows follows also from the implicit function theorem. Theorem is proved. �

In Bertozzi et al. [16] was shown that for every positive initial data h0 ∈ H1(−L, L) with∫ L

−L

1
2 |∂xh0|2 + U(h0) dx <∞,

for all t > 0 there exists a unique positive smooth solution h(x, t) to (4.1) with boundary
conditions (4.3) such that h(x, 0) = h0(x). We restrict ourself to consider (4.1) in a small
neighborhood Oδε(Pε )\Oδ1,ε(∂Pε ) of ’approximate invariant’ manifold Pε . Taking δε sufficiently
small and using definition of Pε one obtains that any h0 ∈ Oδε(Pε )∩H1(−L, L) is positive, and
therefore any solution to (4.1) with (4.3) such that h(x, 0) = h0(x) exists for all t > 0. According
to Theorem 4.5 such solution can be uniquely decomposed as follows:

h(t) = m (t) + v(t), m (t) ∈ Pε (4.26a)
Pm(t) v(t) ≡ 0. (4.26b)

Inserting this into equation (4.1) one can write it in an equivalent form

∂tv + Fε ′(m (t))v(t) = −Fε (m (t))− Fε (v(t),m (t))−m ′(t), (4.27)

where Fε (v,m ) := Fε (v+m )−Fε (m )−Fε ′(m )v. Let us now differentiate (4.26b) with respect
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to time:
P ′m (t)[m

′(t)]v(t) + Pm(t) ∂tv(t) ≡ 0.

Applying now projection Pm(t) to (4.27) and noting the last expression one gets a differential
equation for m (t) on manifold Pε in the following form:

(Id− D (m (t))[·]v(t))m ′(t) = Pm(t) (−Fε (m (t))− Fε (v(t),m (t)))− S (m (t))v(t), (4.28)

where

D (m )[δm ]v := P ′m [δm ]v,
S (m )v := Pm (Fε ′(m )v). (4.29)

Let us also denote
M (m , v)w := (Id− D (m )[·]v)−1w (4.30)

Then for each v ∈ L∞(−L, L) such that ||v||L∞ is sufficiently small and each m ∈ Pε one has
that operator M (m , v) : L∞(−L, L)→ Pε is well defined and can be represented as Neumann
series:

M (m , v) =
∞∑
i=0

(D (m )[·]v)i .

Thus, equation (4.28) can be written in the following more convenient form:

m ′(t) = f(m (t), v(t)), (4.31)

where
f(m , v) := M (m , v) (−Pm (Fε (m ) + Fε (v, m ))− S (m )v) . (4.32)

We conclude that if h(t) solves (4.1) and h(t) ∈ Oδε(Pε )\Oδ1,ε(∂Pε ) on [0, T ] then the associated
functions m (t) and v(t) satisfy on [0, T ] the following system:{

∂tv + Fε ′(m (t))v(t) = h(m (t), v(t), m ′(t))
m ′(t) = f(m , v) , (4.33)

where we denoted h(m , v, w) := −Fε (m )−Fε (v,m )−w. Vice versa, any solution (m (t), v(t))
to (4.33) on [0, T ] with sufficiently small v(t) satisfying Pm(0)v(0) = 0 generates a unique solution
u(t) := m (t) + v(t) to equation (4.1). Therefore, instead of the initial lubrication equation (4.1)
we can consider the associated system (4.33).

4.3 Formal Leading Order for Equation on the Manifold

In this section we formally assume that for any solution to (4.1) having at t = 0 an initial value
in the neighborhood Oδε(Pε ) \ Oδ1,ε(∂Pε ) defined in Theorem 4.5, the norm of reminder v(t)
(obtained via decomposition (4.26a)) is negligible small for all t > 0 in comparison with that of
m (t) ∈ Pε . Then putting formally v(t) ≡ 0 for t > 0 we obtain a formal leading order

m ′(t) = f(m (t), 0) (4.34)

for equation (4.31), which describes evolution of m (t) on manifold Pε . Below we transform
(4.34) to an ODE system describing evolution of pressures Pj(t) and positions ξj(t) of multi-
pulse structure m (t).
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4.3 Formal Leading Order for Equation on the Manifold

Putting v(t) ≡ 0 into definitions (4.29)–(4.30), (4.32) one writes (4.34) as

m ′(t) = −Pm Fε (m ).

Let us rewrite the last equation in a coordinate form on manifold Pε . Denoting as before

s = (s0, ..., s2N−1) := (P0, ..., PN , ξ1, ..., ξN−1)

such that m = m ε(s ) and taking the standard scalar product in L2(−L, L) of m ′(t) with ψ̄j(s )
for j = 0, ..., 2N − 1 one gets

(m ′(t), ψ̄j(s )) =
i=2N−1∑
i=0

(
φi(s )dsi

dt
, ψ̄j(s )

)
= dsj

dt
, (4.35)

where we used definition (4.9) and orthogonality conditions (4.20). On the other hand

(Pm Fε (m ε(s )), ψ̄j(s )) = (Fε (m ε(s )), ψ̄j(s ))

By Proposition 4.4 for all s ∈ Bε and j = 0, ..., 2N − 1 one has

(Fε (m ε(s )), ψ̄j(s )) ∼ (Fε (m ε(s )), ψj(s )) as ε→ 0. (4.36)

Next, by definition (4.14) and representation (4.11) one has for j = 1, ..., N − 1

(Fε (m ε(s )), ψj(s )) = Cj(s )
( ∫ Mj+

√
ε

Mj−
√
ε
χ(x−Mj)Fε (m )(x) dx+

+
∫ Mj+1+

√
ε

Mj+1−
√
ε

(1− χ(x−Mj+1))Fε (m )(x) dx
)

=

= Cj(s )
(∫ Mj+

√
ε

θj

Fε (m )(x) dx+
∫ θj+1

Mj+1−
√
ε
Fε (m )(x) dx

)

= J(s )(θj+1)− J(s )(θj)∫Mj+1−
√
ε

Mj+
√
ε

∂ĥε(x−ξj , Pj)
∂P dx

,

where we used the second mean-value theorem for integration (see paragraph 1.13 in Jeffreys and
Jeffreys [46]) with θj being some point in (Mj −

√
ε, Mj +

√
ε) and introduced for each s ∈ Bε

a flux function J(s ) ∈ C∞(−L, L) as

J(s ) := m ε(s )3∂x (−Πε(m ε(s )) + ∂xxm ε(s )) . (4.37)
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Chapter 4 Formal Reduction onto an ’Approximate Invariant’ Manifold

Analogously, by definition (4.14) for j = 1, ..., N − 1:

(Fε (m ε(s )), ψj+N (s )) =

= CN+j(s )
( ∫ Mj+

√
ε

Mj−
√
ε
χ(x−Mj)

∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

dsFε (m )(x) dx+

+
∫ Mj+1+

√
ε

Mj+1−
√
ε

(1− χ(x−Mj+1))
∫ x

ξj

ĥε(s− ξj , Pj)− ĥ−ε (Pj)
ĥε(s− ξj , Pj)3

dsFε (m )(x) dx
)

=

= CN+j(s )
( ∫ Mj+

√
ε

ξj

ĥε(x− ξj , Pj)− ĥ−ε (Pj)
ĥε(x− ξj , Pj)3

dx

∫ Mj+
√
ε

θj

Fε (m )(x) dx+

+
∫ Mj+1−

√
ε

ξj

ĥε(x− ξj , Pj)− ĥ−ε (Pj)
ĥε(x− ξj , Pj)3

dx

∫ θj+1

Mj+1−
√
ε
Fε (m )(x)

)
dx =

=

∫Mj+1−
√
ε

Mj+
√
ε

ĥε(x−ξj , Pj)−ĥ−ε (Pj)
ĥε(x−ξj , Pj)3 dx

2
∫Mj+1−

√
ε

Mj+
√
ε

(ĥε(x−ξj , Pj)−ĥ−ε (Pj))2

ĥε(x−ξj , Pj)3 dx
(J(s )(θj+1) + J(s )(θj)). (4.38)

Finally, denoting

Jj−1, j := J(s )(θj), j = 1, ..., N − 1
J−1, 0 := −J0, 1, JN,N+1 := −JN−1, N (4.39)

and combining (4.35), (4.36), (4.38) together one obtains the following coordinate form for the
leading order of equation (4.34) as ε→ 0:

dPj
dt

= CP,j · (Jj, j+1 − Jj−1, j),

dξj
dt

= −Cξ,j · (Jj, j+1 + Jj−1, j), j = 0, ..., N (4.40)

where we denoted for j = 1, ..., N − 1:

CP,j := −1
/∫ Mj+1−

√
ε

Mj+
√
ε

∂ĥε(x− ξj , Pj)
∂P

dx,

Cξ,j :=

∫Mj+1−
√
ε

Mj+
√
ε

ĥε(x−ξj , Pj)−ĥ−ε (Pj)
ĥε(x−ξj , Pj)3 dx

2
∫Mj+1−

√
ε

Mj+
√
ε

(ĥε(x−ξj , Pj)−ĥ−ε (Pj))2

ĥε(x−ξj , Pj)3 dx

;

and

CP,0 := −1
/(

2
∫ M1−

√
ε

−L

∂h0
∂P

dx

)
,

CP,N := −1
/(

2
∫ L

MN+
√
ε

∂hN
∂P

dx

)
. (4.41)

We conclude that (4.40)–(4.41) gives us a new reduced ODE model describing evolution of pres-
sures and positions in multi-pulse structures (droplet arrays) governed by the no-slip lubrication
model (1.6) In the next section we discuss a correspondence between the new reduced ODE
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(4.40) model and previously asymptotically derived (2.66) corresponding to the no-slip lubrica-
tion equation.

4.4 Comparison of Reduced ODE Models
Comparing (4.40)–(4.41) with ODE reduced model (2.66) considered with coefficients (2.27)–
(2.28) and mobility term M(h) = h3 one can see that formally they have the same form. Dif-
ferences between them sit in the formulas for coefficients CP,j , Cξ,j and fluxes Jj−1, j . Below
we state these differences and point out some advantages of system (4.40) in comparison with
asymptotically derived one (2.66).

• In definitions (4.41) interval of integration [Mj+
√
ε, Mj+1−

√
ε] corresponds to one [−L̃, L̃]

from section 2.3.1, the support of the j-th droplet in an array of N+1 ones. But in contrast
to the latter one given positions ξj , j = 1, ..., N − 1 of droplets in the array the interval
[Mj+

√
ε, Mj+1−

√
ε] can be calculated explicitly using formula (4.5). In the case of system

(2.66) it is not clear how to estimate the droplet support [−L̃, L̃].

• Fluxes Jj−1, j between neighboring droplets in system (4.40) are defined using explicit
formula (4.37), (4.39). In the case of system (2.66) fluxes Jj−1, j are not defined explicitely
and we can use only asymptotic approximations for them given by (2.56). Although points
θj ∈ (Mj −

√
ε, Mj +

√
ε) in definition (4.39) arise after the application of a mean-value

type theorem and are not given explicitely, nevertheless definitions (4.37), (4.39) are more
suitable for a rigorous analysis of the reduced ODE models.

• Both reduced ODE models give us in some sense a leading order approximation for the
evolution of solutions to the no-slip equation, but derivation of system (4.40) based on
the ’approximate invariant’ manifold approach gives new possibilities for analytical error
estimates of such approximations. Namely, using Propositions 4.1, 4.4 and formula (4.36)
one can estimate that passing from equation (4.34) to system (4.40) one skips terms which
are O(ε3). Moreover, having a rigorous estimate on the smallness of remainder function
v(t) from decomposition (4.26a) one could similarly estimate the smallness of terms, which
one skips during passing from the exact equation (4.31) on the ’approximate invariant’
manifold Pε to its leading order (4.34).

4.5 Discussion and Spectral Problem
The above derivation of the reduced ODE model (4.40) is inspired by a recent article of Mielke
and Zelik [4] which proves a center manifold reduction theorem for a general class of semilinear
parabolic equations which posses multi-pulse solutions. Proceeding similar to it and writing
formally the leading order for the reduced system corresponding to (4.1) with (4.3) we do not
prove here a center-manifold existence theorem. The reason for that are additional difficulties
for applying the approach of Mielke and Zelik [4] to the no-slip lubrication model. The most
important are:

• The operator (4.2) is not semi-linear but rather quasilinear and what is more difficult to
handle is, that it degenerates as h→ 0.

• Preliminary asymptotical (see Glasner [40]) and our numerical analysis in paragraph 2.6.2
showed that the reduced ODE models are valid in the limit ε → 0. In this case one
of the main assumption for proving a type of a center-manifold existence theorem is one
concerning the spectrum of operator (4.2) linearized at a point m ∈ Pε as ε → 0. In
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Chapter 4 Formal Reduction onto an ’Approximate Invariant’ Manifold

the next chapter we derive rigorously the spectrum asymptotics for (4.2) linearized at the
stationary solution h0, ε, which describes physically a droplet on a bounded interval. It
turns out that the corresponding linearized eigenvalue problem is a singular perturbed
one and the spectrum of it tends to zero as ε → 0. Such behavior of the spectrum of
the linearized problem is quite different from the main spectrum assumption used in the
approach of Mielke and Zelik [4] (see assumptions (2.20) and (2.25) there).

• Moreover, we expect due to observations above that the construction of a center-manifold
will be singular-perturbed problem as well. Up to our knowledge there are no many re-
sults on the rigorous existence of singularly perturbed center-manifolds, except for Fenichel
theory for ODEs (see Fenichel [47] and Jones [48]) and several partial examples for PDEs.

Nevertheless, the good correspondence between reduced models (4.40) and (2.66) indicates an
applicability of a center-manifold reduction approach for the rigorous justification of them in
future. An important analytical result pointing out such a possibility is derived in the next
chapter and states existence of ε dependent gap in the spectrum of the no-slip lubrication equation
linearized at the stationary solution h0, ε (see Remark 5.15).
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Chapter 5

Spectrum Asymptotics in a Singular Limit

In this chapter we describe linear stability properties for the no-slip equation (1.6) with boundary
conditions (1.10) at a stationary solution which corresponds physically to a single droplet on a
bounded interval. It turns out that the underlying linearized eigenvalue problem (EVP) is a
singularly perturbed one. Up to our knowledge here for the first time rigorous results by means
of a singularly perturbed analysis for the spectrum of a linearized thin film type equation such
as (1.6) in the limit ε → 0, where the parameter ε appears in the pressure function (1.4), are
derived. The main result of this chapter–existence of an ε dependent spectral gap is derived using
a combined application of three analytical approaches. The first one establishes the rigorous
asymptotics for the droplet stationary solution above as ε → 0 and is summarized in Lemmata
5.8 and 5.23. The second approach concerns with approximate eigenvalue problems. Asymptotics
for the spectra of these problems as ε → 0 is investigated here using construction and analysis
of corresponding characteristic determinants (in a way similar to that described by Kamke [49],
second part, paragraph I.2.1). A typical application of this approach is the proof of Theorem
5.24. The third approach is based on applications of a modified implicit function theorem first
introduced by Magnus [42] and Recke and Omel’chenko [5] to the proof of existence of eigenvalues
with prescribed asymptotics as ε→ 0, in particular of a unique exponentially small one. Typical
applications of this approach are proofs of Theorems 5.12 and 5.29. We hope also that the last
approach can be used in future for showing existence of solutions to a certain class of singularly
perturbed eigenvalue problems.

5.1 Scalings and Linearized Eigenvalue Problems

In this chapter we introduce a scaling for the no-slip lubrication model, and therefore use a
slightly different notation for its variables in comparison with previous chapters. Let us write
the no-slip lubrication model defined in (1.6) in the form:

∂th = −∂x
(
h

3
∂x
(
∂xxh−Π

(
h
)) )

, (5.1)

with boundary conditions on a fixed interval [−L, L]

∂xxxh = 0, and ∂xh = 0 at x = ±L, (5.2)

which incorporate zero flux at the boundary and imply conservation of mass law

hc ≡
1

2L

∫ +L

−L
h(x, t) dx for all t > 0,

and the potential function

Πε

(
h
)

= ε2

h
3 −

ε3

h
4 .
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Chapter 5 Spectrum Asymptotics in a Singular Limit

We call (5.1) with (5.2) a unscaled (physically relevant) version of the no-slip lubrication equation.
Note that in this chapter (in contrast to previous ones) the unscaled variables and functions are
denoted with a overline sign. Next theorem summarizes results from Bertozzi et al. [16], Glasner
and Witelski [30] on stationary solutions to (5.1) considered on a bounded interval with boundary
conditions (5.2).

Theorem 5.1. Equation (5.1) with (5.2) has a family of positive nonconstant steady state so-
lutions h0, ε(x, P ) parameterized by a constant (a so called pressure) P ∈ (0, Pmax(ε)), where
Pmax(ε) is defined in (2.1), which satisfy

∂xxh0, ε(x, P ) = Πε

(
h0, ε(x, P )

)
− P, (5.3a)

h0, ε(x, P ) = h0, ε(−x, P ), (5.3b)
∂xh0, ε(0, P ) = 0 and ∂xh0, ε(x, P ) < 0 for x ∈ (0, L). (5.3c)

Proof: It is simply to deduce that a solution to (5.1) with (5.2) is stationary if and only if it
satisfies (5.3a) with (5.2). The rest of the proof can be done via a phase plane analysis as in the
proof of Theorem 2.1. It shows that for a fixed P ∈ (0, Pmax(ε)) there exists a family of periodic
orbits to the equation h′′(x) = Πε

(
h(x)

)
− P nested into a homoclinic loop. The family can be

parameterized by the least period T = 2L. For any orbit there exists a phase shift such that
the corresponding periodic solution restricted to the interval [−L, L] gives a smooth stationary
solution h0,ε(x, P ) to (5.1)–(5.2) satisfying (5.3b)–(5.3c). �

In this chapter we fix P and L so that

L−A/P > 0 with A := 1√
3
. (5.4)

Assumption (5.4) allows us below to distinguish three different asymptotic regions for the sta-
tionary solution as ε→ 0 (see Lemma 5.8 and Remark 5.9) and is important for all results of this
chapter. Define next a linear operator Lε acting in L2(−L, L) and induced by the linearization
of (5.1)–(5.2) at the steady state h0,ε(x, P ),

Lε = − d

dx

[
h

3
0,ε

d

dx

(
d2

dx2 · −Π′ε(h0,ε)·
)]

,

where
D
(
Lε
)

:=
{
η ∈W 4,2(−L, L) : η′′′(±L) = η′(±L) =

∫ L

−L
η dx = 0

}
.

The integral constraint in the last definition is induced by conservation of mass (i.e. we are
practically interested only in such perturbations η(x) of the steady state h0,ε(x, P ) that preserve
its mass). The eigenvalue problem associated with Lε we write as

Lεη = −λη, η ∈ D
(
Lε
)
. (5.5)

Let us next introduce scalings

x = x

ε
, h = h

ε
, t = t

ε
, (5.6)

and apply them to the variables of (5.1)–(5.2). These scalings were first used for (5.1) in section
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5.2 of Glasner [40]. In the new variables the no-slip lubrication equation has a form

∂th = −∂x
(
h3∂x (∂xxh−Π(h))

)
, (5.7)

where
Π(h) := εΠε(h ε) = 1

h3 −
1
h4 . (5.8)

On solution of (5.7) the following boundary conditions are imposed:

∂xxxh = 0, and ∂xh = 0 at x = ±L/ε, (5.9)

which incorporate zero flux at the boundary and imply again the conservation of mass law

hc ≡
ε

2L

∫ L/ε

−L/ε
h(x, t) dx, ∀t > 0.

Let us define a function
h0,ε(x) := h0,ε(εx, P )

ε
. (5.10)

Proposition 5.2. For each ε > 0 function h0,ε(x) is a stationary solution to (5.7) with (5.9)
and satisfies

h′′0,ε(x) = Π (h0,ε(x))− ε P, (5.11a)
h0,ε(x) = h0,ε(−x), (5.11b)
h′0,ε(0) = 0 and h′0,ε(x) < 0 for x ∈ (0, L/ε). (5.11c)

Proof: The validity of (5.11a)–(5.11c) one checks by the direct substitution of definition (5.10)
for h0,ε(x) into above expressions and using (5.3a)–(5.3c). Similarly using that h0,ε(x, P ) satisfies
boundary conditions (5.2) one shows that h0,ε(x) satisfies (5.9). Finally, any solution to (5.11a)
satisfies also (5.7). �

Remark 5.3. Note that the parameter pressure P is fixed throughout the whole chapter and all
asymptotics are considered with respect to the parameter ε→ 0. This explains the choice of the
scaling (5.10) for the stationary solution and an appearance of the term ε P in (5.11a). �

The corresponding to (5.7) right-hand side operator linearized at the scaled stationary solution
h0,ε is given by

Lε = − d

dx

[
h3

0,ε
d

dx

(
d2

dx2 · −Π′(h0,ε)·
)]

,

where

D (Lε) =
{
η ∈W 4,2(−L/ε, L/ε) : η′′′(±L/ε) = η′(±L/ε) =

∫ L/ε

−L/ε
η dx = 0

}
.

The scaled EVP associated with operator Lε one writes again as

Lεη = −λη, η ∈ D (Lε) . (5.12)

One can easily derive the following relation between solutions of (5.5) and its scaled version
(5.12):
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Chapter 5 Spectrum Asymptotics in a Singular Limit

- the relation between eigenfunctions of (5.5) and (5.12):

η(x) := η(εx)
ε

;

- the relation between eigenvalues of (5.5) and (5.12):

− λ = −λε. (5.13)

For a fixed ε > 0 operator Lε is a particular case of a general class of linear operators associated
with linearized thin film type equations. For such operators qualitative properties of their spectra
were investigated by Laugesen and Pugh [50]. For our subsequent purposes we summarize them
here applied to Lε. Firstly, we use a transformation of the EVP (5.12) to a symmetric one.
Define functions

rε(x) := −Π′(h0,ε(x)), (5.14a)
fε(x) := (h0,ε(x))−3. (5.14b)

In Appendix B of Laugesen and Pugh [50] was shown that if a pair [η, λ] is a solution to the
initial EVP (5.12), then a pair [h, λ] with

h(x) :=
∫ x

−L/ε
η(s) ds

satisfies

h(4)(x) +
(
rε(x)h′(x)

)′ = λfε(x)h(x), (5.15a)
h′′(±L/ε) = h(±L/ε) = 0. (5.15b)

Vice versa any solution [h, λ] to (5.15a)–(5.15b) gives a solution [η, λ] to (5.12) with
η(x) := h′(x).
We define next Hilbert spaces

Wε := H2(−L/ε, L/ε) ∩H1
0 (−L/ε, L/ε) (5.16)

equipped with the standard H2(−L/ε, L/ε) inner product and L2(−L/ε, L/ε) with a weighted
one:

(h, w)ε :=
∫ L/ε

−L/ε
hw fε dx. (5.17)

The next theorem is a reformulation of Theorem 23 of Laugesen and Pugh [50] for our case.

Theorem 5.4. Consider a symmetric EVP

h ∈Wε, λ ∈ R :
∫ L/ε

−L/ε
(h′′w′′ − rεh′w′ − λfεhw) dx = 0, ∀w ∈Wε. (5.18)

For a fixed ε > 0 there exist sequences {λ∗ε, λ0
ε, λ

1
ε, λ

2
ε, ...}, {h∗ε, h0

ε, h
1
ε, h

2
ε, ...} such that:

(i) for each j ∈ {∗, 0, 1, 2, ...} the pair [hjε, λjε] is a solution to (5.18);

(ii)
λ∗ε ≤ λ0

ε ≤ λ1
ε ≤ λ2

ε ≤ ...→∞;
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(iii) the set of eigenfunctions hjε, j ∈ {∗, 0, 1, 2, ...} forms an orthonormal basis in
L2(−L/ε, L/ε) with respect to the weighted inner product (5.17). Moreover hjε are C4

smooth on [−L/ε, L/ε] and the corresponding pair [hjε, λjε] satisfies (5.15a)–(5.15b).

Remark 5.5. As in Laugesen and Pugh [50] the transformation procedure stated above and the
last theorem make it natural for us to investigate equivalent symmetric EVP problem (5.18)
instead of the initial one (5.12). For the unscaled thin film equation (5.1)–(5.2) it is known
that it is not uniformly elliptic as h → 0 and degenerates in this limit. As a consequence the
scaled system (5.7)–(5.9) and corresponding EVPs (5.12) and (5.18) have a singularity at ε = 0.
When ε = 0 the assertions of the Proposition 5.2 are not valid anymore and one can not define
a linearization of (5.7)–(5.9) at h0,ε, because the latter even does not exists. This implies that
the EVPs (5.12) and (5.18) are essentially singularly perturbed ones. �

Remark 5.6. Finally, an application of Theorem 4 of Laugesen and Pugh [50] and Proposition
5.2 above to EVP (5.12) states that for any ε > 0 its largest eigenvalue is equal to −λ∗ε (where
λ∗ε is defined in Theorem 5.4) and positive. Using relation (5.13) between eigenvalues of EVPs
(5.12) and (5.5) one concludes that the unscaled (physically relevant) equation (5.1) with (5.2)
is linear unstable at the stationary solution h0,ε. Nevertheless, we show in this chapter that for
sufficiently small ε > 0 EVP (5.5) has exactly one positive eigenvalue. �

Remark 5.7. In Lemma 5.17 we derive asymptotics for functions (5.14a) and (5.14b) as ε→ 0,
using asymptotics for h0,ε(x) stated in Lemma 5.8. In particularly, there we show that fε(x)
is positive, bounded and bounded from below away from zero, and that rε(x) is bounded, as
functions of x uniformly in ε > 0. Here we prefer to work with the scaled version of the no-
slip equation (5.7) with (5.9) and corresponding EVPs because of an advantage of L∞ bounds,
holding uniformly in ε, for the coefficients of the symmetric eigenvalue problem (5.18). This uni-
formity is explored often in the proofs below. We should also point out that the no-slip lubrication
model in the form (5.7) with pressure function (5.8) was already considered by Glasner et al. [3].�

5.2 Summary of Main Results and Discussion
First we formulate our main result concerning rigorous asymptotics for stationary solution h0,ε(x)
as ε→ 0.

Lemma 5.8. There exist ε̃ > 0 and functions aε, bε : (0, ε̃) → R such that the following
assertions hold:

(i) for all ε ∈ (0, ε̃) one has 0 < aε < bε < L;

(ii) aε, bε → A/P and bε − aε = O(ε1/4)→ 0 as ε→ 0, where A is defined in (5.4);

(iii) for all x ∈ [0, aε/ε] it holds: ε−3/4 ≤ h0,ε(x) = O(1/ε) and

h0,ε(x) ∼ Pε

2

((
A

P ε

)2
− x2

)
;

(iv) for all x ∈ [bε/ε, L/ε] it holds: 1 ≤ h0,ε(x) = 1 +O(ε1/6).

The proof of this lemma is given in section 5.4.
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Remark 5.9. In this chapter we call three intervals (0, aε/ε), (aε/ε, bε/ε), (bε/ε, L/ε) as
droplet core, contact line and outer layer, respectively. This notation formally corresponds
to the physical relevant notions used by Glasner and Witelski [2] and is justified by the fact that
on such defined droplet core and outer layer stationary solution h0,ε(x) is given to the leading
order as ε → 0 by parabola and constant 1, respectively. The maximum of h0,ε(x) is O(1/ε), is
attained at x = 0 and gives a so called “peak” of the droplet (see Figure 5.1). The value A/P
is commonly called as the droplet half-width (see Glasner and Witelski [2]). The main result of
the lemma given by assertion (ii) is that the ratio of the length of contact line region defined
as (aε/ε, bε/ε) to that one of whole interval [−L/ε, L/ε] tends to 0 as ε → 0. For the unscaled
physical version of the no-slip equation(5.1) with (5.2) this means that the length of the contact
line region (aε, bε) tends to zero as ε→ 0. From the proof of the lemma in section 5.4 it is clear
that the three intervals (0, aε/ε), (aε/ε, bε/ε), (bε/ε, L/ε) with above asymptotical properties
are not uniquely defined. In this chapter in order to escape from unnecessary technicalities we
fix one possible definition for functions aε and bε. Once it is fixed then asymptotical bounds on
the stationary h0,ε(x) stated in assertions (iii) and (iv) of the lemma are determined uniquely.
This in turn determines asymptotical bounds for the functions rε(x)and fε(x) (see Lemma 5.17).
�

Figure 5.1: Stationary solution h0,ε(x) obtained numerically for ε = 0.1, P = 0.1, L = 20.

Next, let us state our main results (Theorems 5.10–5.12) about the asymptotics for the spec-
trum of EVP (5.18) as the singular parameter ε→ 0. Define a discrete countable set

M =
{( π(2j + 1)

2(L−A/P )

)2
, j ∈ N0

}
∪ {0}, (5.19)

with constant A given by (5.4). For a fixed ε > 0 denote also by σε the spectrum of EVP (5.18).

Theorem 5.10. (existence of a spectrum gap)

(i) If {λl} ∈ σεl , (l = 1, 2, ...) is a sequence of eigenvalues to (5.18) corresponding to a sequence
{εl} → 0 and there exists a number K∗ > 0 such that∣∣∣λl

ε2
l

∣∣∣ ≤ K∗ for all l ∈ N
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then
dist

(
λl
ε2
l

,M

)
:= inf

K∈M

∣∣∣∣∣K − λl
ε2
l

∣∣∣∣∣→ 0 as l→∞.

(ii) For sufficiently small ε > 0 and any eigenvalue λ ∈ σε one has

λ /∈
(

0,
[

π

4(L−A/P )ε
]2
)
. (5.20)

Theorem 5.11. (existence of eigenvalues with prescribed asymptotics)
For every j ∈ N0 there exist positive numbers εj , δj and functions λjN , λ

j
D ∈ C1((0, εj), R ) such

that for all ε ∈ (0, εj) the following holds:

(i) λjN (ε) ∈ σε and λjD(ε) ∈ σε,

(ii)
∣∣∣λjN (ε)−

(
π(2j + 1)

2(L−A/P )ε
)2 ∣∣∣ = o1(ε2) and

∣∣∣λjD(ε)−
(

π(2j + 1)
2(L−A/P )ε

)2 ∣∣∣ = o2(ε2),

(iii) If λ ∈ σε and
∣∣∣λ− ( π(2j + 1)

2(L−A/P )ε
)2 ∣∣∣ ≤ δjε2 then λ = λjN (ε) or λ = λjD(ε).

Let us for each ε > 0 denote by h−ε the minimum of stationary solution h0,ε, which by (5.11b)–
(5.11c) is attained in points x = ±L/ε. From assertion (iii) of Theorem 5.4 it follows that any
solution to EVP (5.18) solves classically (5.15a)–(5.15b). Vice versa any solution to (5.15a)–
(5.15b) gives a solution to (5.18). Using (5.11a) and definitions (5.14a)–(5.14b) one can easily
deduce that for each ε > 0 the pair [h0,ε(x)− h−ε , 0] satisfies (5.15a), but not (5.15b) because

h′′0,ε(±L/ε) 6= 0.

Indeed, if e.g. h′′0,ε(L/ε) = 0 then from h0,ε(L/ε) = h−ε and the fact that stationary solution
h0,ε(x) satisfies boundary conditions (5.9) it follows that at the point x = L/ε function
h0,ε(x) − h−ε and its first three derivatives should be zero. Next, by uniqueness of solution to
equation (5.15a) with λ = 0 and given initial condition h(k)(L/ε) = 0 for k = 0, 1, 2, 3 it
follows that h0,ε(x) − h−ε ≡ 0. But this contradicts with the fact that for each ε > 0 stationary
solution h0,ε(x) by its definition is not a constant. Consequently, using (5.11b) one concludes
that h′′0,ε(−L/ε) = h′′0,ε(L/ε) 6= 0.
Nevertheless, in Lemma 5.23, section 5.4 we show that h′′0,ε(±L/ε) tends to zero exponentially

as ε→ 0. In view of above observations, naturally arises a question if there exists an eigenvalue
of EVP (5.18) which exponentially tends to zero as ε → 0. The next theorem answers this
question.

Theorem 5.12. (existence of exponentially small eigenvalue)
There exist positive constants c∗, α, ε∗, δ∗ and function λ∗ ∈ C1((0, ε∗), R ) such that for all
ε ∈ (0, ε∗) the following holds:

(i) λ∗(ε) ∈ σε

(ii) |λ∗(ε)| ≤ c∗ε1/2 exp
(
− α

ε2/3

)
,

(iii) If λ ∈ σε and |λ| ≤ δ∗ε2 then λ = λ∗(ε).
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Chapter 5 Spectrum Asymptotics in a Singular Limit

We should point out that the form of exponential small term exp
(
− α
ε2/3

)
in the assertion (ii)

of this theorem is strongly connected with estimate (5.47) which we obtain for h′′0,ε(±L/ε) in
Lemma 5.23.
Remark 5.13. The last three theorems together give a result which could be interesting for
applications. Namely, in the spectrum of EVP (5.18) a set of positive eigenvalues Rε :=
{λjD(ε), λjN (ε) j ∈ N 0} is separated from exactly one exponentially small negative eigenvalue
λ∗(ε) by a spectrum gap given in (5.20). Note that the right end of it we choose as K1ε2/4
where K1 is the smallest positive element of the set M from (5.19).
Remark 5.14. Elements of the above set Rε have asymptotics of O(ε2). In this study we do not
state any results on the existence of eigenvalues with asymptotics � O(ε2) , but their possible
presence by no-means influences the spectral gap property described above. �

Remark 5.15. Using relation (5.13) the results of Theorems 5.10–5.12 can be easily reformulated
for the unscaled (physically relevant) EVP (5.5). We remain this to the reader and just want to
point out that the spectrum gap analog of (5.20) in this case will be given by

−λ /∈
(
−
[

π

4(L−A/P )

]2
ε, 0

)
.

�

The structure for the rest of this chapter is as follows. In section 5.3 we decompose EVP
(5.18) to two EVPs on the half-interval [0, L/ε], which we call Dirichlet and Neumann half-
droplet problems, respectively. In section 5.4 we prove Lemmata 5.8, 5.17 stating asymptotics
for stationary solution h0,ε(x) and coefficient functions rε(x) and fε(x) of the symmetric EVP
(5.18) as ε → 0. In the sections 5.5-5.6 we describe two approximate problems the spectra of
which are approximations from below and above for the spectrum of the Dirichlet half droplet
problem in a sense stated in Proposition 5.20. The analogous analysis can be applied also
to the Neumann half-droplet problem (see Remarks 5.16 and 5.25). In section 5.5 we prove
Theorem 5.24, an analog of Theorem 5.10 for the approximate problems. In section 5.6 we prove
Theorem 5.29, an analog of Theorem 5.11 for one of the approximate problems. To this end we
apply a modified implicit function Theorem 5.30 first introduced in Magnus [42] and Recke and
Omel’chenko [5]. In section 5.7 we prove Theorems 5.10–5.12 together. In section 5.8 we give a
numerical confirmation of the spectral properties stated in Theorems 5.10–5.12.

5.3 Half-droplet Problem and its Approximations

By (5.11b) for each ε > 0 stationary solution h0, ε(x) is an even function. Hence functions (5.14a)–
(5.14b) are also even. Therefore, if [h(x), λ] is an eigenpair of EVP (5.18) then [h(−x), λ] is also
an eigenpair of it. If h(x) is not an even or odd function, then the multiplicity of λ is at least
two. Indeed, numerical solutions from section 5.8 give us pairs of very close eigenvalues, which
indicate that there could be eigenvalues of (5.18) with multiplicity 2 (see also the formulation
of Theorem 5.11). But for application of a modified implicit function theorem (Theorem 5.30)
we would like to work with simple eigenvalues. To this end and also to simplify subsequent
calculations we introduce a decomposition of (5.18) to two EVPs on the half-interval [0, L/ε].
Every eigenfunction h(x) of (5.18) defines an eigensubspace which is spanned by even eigenfunc-
tion he(x) := (h(x) + h(−x))/2 and odd one ho(x) := (h(x) − h(−x))/2 (one of them may be
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5.3 Half-droplet Problem and its Approximations

identically zero). This decomposition one can actually apply to any function in Hilbert space
Wε defined in (5.16). Therefore, one can decompose Wε into a direct sum of the closed subspace
of even functions W e

ε and the closed subspace of odd functions W o
ε :

Wε = W e
ε ⊕W o

ε .

Analogously, any eigensubspace for EVP (5.18) can be decomposed in two, one of which belongs
to W e

ε and another to W o
ε . Using this and again even property of functions rε(x), fε(x) one

obtains that the set of solutions to EVP (5.18) is the union of the sets of solutions of two
symmetric EVPs:

h ∈W o
ε , λ ∈ R :

∫ L/ε

−L/ε
(h′′w′′ − rεh′w′ − λfεhw) dx = 0 for all w ∈W o

ε ,

and
h ∈W e

ε , λ ∈ R :
∫ L/ε

−L/ε
(h′′w′′ − rεh′w′ − λfεhw) dx = 0 for all w ∈W e

ε .

Moreover, it is easy to see that the first EVP above is equivalent to one called in this chapter as
Dirichlet half-droplet problem:

h ∈ Vε, λ ∈ R :
∫ L/ε

0
(h′′w′′ − rεh′w′ − λfεhw) dx = 0 for all w ∈ Vε; (5.21)

and the second EVP to one called in this chapter as Neumann half-droplet problem

h ∈ Qε, λ ∈ R :
∫ L/ε

0
(h′′w′′ − rεh′w′ − λfεhw) dx = 0 for all w ∈ Qε, (5.22)

where Hilbert spaces Vε and Qε are defined as

Vε = H2(0, L/ε) ∩H1
0 (0, L/ε),

Qε =
{
h ∈ H2(0, L/ε) : h′(0) = h(L/ε) = 0

}
, (5.23)

and both are equipped with the standard inner product of H2(0, L/ε).
Remark 5.16. Below we introduce two approximate EVP problems for the Dirichlet half-droplet
problem (5.21) and prove several results about their solutions in this and next two sections. In
section 5.7 we will use the fact that analogous approximate problems can be defined for the Neu-
mann half-droplet problem (5.22) and analogs of Propositions 5.18–5.20, Theorems 5.24, 5.29
and Lemma 5.27 can be proved for them in the exact the same manner. �

The next lemma, which proof is given in section 5.4, determines asymptotics for functions
(5.14a)–(5.14b) as ε→ 0.

Lemma 5.17. For sufficiently small ε > 0 the following holds:

(i)
0 ≤ rε(x) ≤ 2ε3, for x ≤ aε/ε, −1 ≤ rε(x) = −1 +O

(
ε1/6

)
, for x ≥ bε/ε;

ε3 ≤ fε(x) ≤ ε9/4, for x ≤ aε/ε, 1−O
(
ε1/6

)
≤ fε(x) ≤ 1, for x ≥ bε/ε.

(ii) There exists a unique point xmε and a number k1 > 0 such that aε/ε < xmε < bε/ε and
rε(xmε ) = k1 gives the maximum of rε(x) on [0, L/ε].
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Chapter 5 Spectrum Asymptotics in a Singular Limit

(iii) The function fε(x) monotonically increases on [0, L/ε], and function rε(x) is monotonically
increases on [0, xmε ] and decreases on [xmε , L/ε].

Next, we define four functions (see also Figure 5.2):

r1
ε(x) =


2ε3, 0 ≤ x ≤ aε/ε
k1, aε/ε < x ≤ bε/ε
−1 + ε1/12, bε/ε < x ≤ L/ε

, r2
ε(x) =

{
0, 0 ≤ x ≤ aε/ε
−1, aε/ε < x ≤ L/ε ; (5.24a)

f1
ε (x) =

{
ε9/4, 0 ≤ x ≤ aε/ε
1, aε/ε < x ≤ L/ε , f2

ε (x) =
{
ε4, 0 ≤ x ≤ bε/ε
1− ε1/12, bε/ε < x ≤ L/ε . (5.24b)

where aε, bε and k1 are defined in Lemmata 5.8, 5.17. Using (5.24a)–(5.24b) one can define for
the Dirichlet half-droplet problem two approximate EVPs replacing functions (5.14a)-(5.14b) in
(5.21) by their approximations riε(x), f iε(x) with either i = 1 or i = 2.

Figure 5.2: Function rε(x) and its approximations (left), function fε(x) and its approximations (right),
obtained numerically for L = 20, P = 0.1 and ε = 0.1. Approximations r1

ε(x), f1
ε (x) are

plotted in red and r2
ε(x), f2

ε (x) in blue..

Define now Hilbert space
Hε = L2(0, L/ε), (5.25)

with an inner product

(h, h̃)Hε :=
∫ L/ε

0
hh̃f2

ε dx. (5.26)

The next proposition is an analog of Theorem 5.4 for the approximate EVPs.

Proposition 5.18. Consider two approximate EVPs,

h ∈ Vε, λ ∈ R :
∫ L/ε

−L/ε
(h′′w′′ − riεh′w′ − λf iεhw) dx = 0, ∀w ∈ Vε. (5.27)

with i = 1 or i = 2. For fixed i and ε > 0 there exist sequences {λi,jε }, {hi,jε }, where j ∈ N 0 such
that:

(i) for each j ∈ N 0 the pair [hi,jε , λi,jε ] is a solution to (5.27);
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5.3 Half-droplet Problem and its Approximations

(ii)
λi,0ε ≤ λi,1ε ≤ λi,2ε ≤ ...→∞; (5.28)

(iii) the set {hi,jε , j ∈ N 0} forms an orthonormal basis in (5.25) with respect to inner product
(5.26).

The next proposition describes regularity for the solutions of (5.27) and introduces an important
property of them, namely connection conditions (5.29)–(5.30b).

Proposition 5.19. Let ε > 0 be fixed and [h, λ] be a solution to (5.27) for i = 1, [h̃, λ̃] be a
solution to (5.27) for i = 2. Then the following properties hold:

(i) On each of three intervals (0, aε/ε), (aε/ε, bε/ε) and (bε/ε, L/ε)

h̃(4)(x) +
(
r2
ε(x)h̃′(x)

)′
= λ̃f2

ε (x)h̃(x) and h(4)(x) +
(
r1
ε(x)h′(x)

)′
= λf1

ε (x)h(x).

(ii) At the point x = bε/ε the function h̃(x) is smooth, h(x) is twice continuously differentiable
and satisfies

h′′′(bε/ε− 0) + k h′(bε/ε) = h′′′(bε/ε+ 0), (5.29)

where k := k1 + 1− ε1/12 and k1 is defined in assertion (ii) of Lemma 5.17.

(iii) At the point x = aε/ε both h and h̃ are twice continuously differentiable and satisfy:

h̃′′′(aε/ε− 0) + h̃′(aε/ε) = h̃′′′(aε/ε+ 0). (5.30a)
h′′′(aε/ε− 0)− k1 h

′(aε/ε) = h′′′(aε/ε+ 0). (5.30b)

(iv) Both functions h and h̃ satisfy Dirichlet boundary conditions, namely

h′′(0) = h(0) = h′′(L/ε) = h(L/ε) = h̃′′(0) = h̃(0) = h̃′′(L/ε) = h̃(L/ε) = 0.

Proof: We prove assertions (i)–(iv) only for solutions [h̃, λ̃]. In the exact the same way the
remaining assertions for [h, λ] can be proved. From (5.27) with i = 2 it follows∫ aε/ε

0
(h̃′′w′′ − r2

ε h̃
′w′ − λ̃f2

ε h̃w) dx+

+
∫ L/ε

aε/ε
(h̃′′w′′ − r2

ε h̃
′w′ − λ̃f2

ε h̃w) dx = 0, ∀w ∈ C∞c (0, L/ε).

Integrating each integral in the last expression separately two times by parts and using definitions
(5.24a)–(5.24b) gives∫ aε/ε

0

(
h̃(4) +

(
r2
ε h̃
′
)′
− λ̃f2

ε h̃

)
w dx+

∫ L/ε

aε/ε

(
h̃(4) +

(
r2
ε h̃
′
)′
− λ̃f2

ε h̃

)
w dx

+
(
h̃′′w′

) ∣∣∣aε/ε+0

aε/ε−0
−
(
h̃′′′ + r2

ε h̃
′
)
w
∣∣∣aε/ε+0

aε/ε−0
= 0, ∀w ∈ C∞c (0, L/ε),

From this it follows that∫ aε/ε

0

(
h̃(4) +

(
r2
ε h̃
′
)′
− λ̃f2

ε h̃

)
w dx = 0, ∀w ∈ C∞c (0, aε/ε)∫ L/ε

aε/ε

(
h̃(4) +

(
r2
ε h̃
′
)′
− λ̃f2

ε h̃

)
w dx = 0, ∀w ∈ C∞c (aε/ε, L/ε).
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Hence assertion (i) for [h̃, λ̃] is true and
(
h̃′′w′

) ∣∣∣aε/ε+0

aε/ε−0
−
(
h̃′′′ + r2

ε h̃
′
)
w
∣∣∣aε/ε+0

aε/ε−0
= 0, ∀w ∈ C∞c (0, L/ε),

Taking in the last expression consequently test functions w(x) such that w′(a/ε) = 0 or w(a/ε) =
0 the connection condition (5.30a) follows. The proof of assertion (iv) is completely analogous
to that for the natural boundary conditions in Theorem 23 of Laugesen and Pugh [50]. �

The next proposition is a reformulation of minimax and monotonicity principles (see section
I.6.10 of Kato [51]) for our case.

Proposition 5.20. Let the spectra of approximate problems (5.27) with i = 1, 2 be given in the
form (5.28) and analogously the spectrum of the Dirichlet half-droplet problem (5.21) be given in
the form:

λ0
D,ε ≤ λ1

D,ε ≤ λ2
D,ε ≤ ...→∞. (5.31)

Then for every j ∈ N 0 and i = 1, 2 it holds

λjD,ε = max
Mj

min
h∈Mj

∫ L/ε
0 (h′′)2 − (h′)2 rε dx∫ L/ε

0 h2fε dx
,

λi,jε = max
Mj

min
h∈Mj

∫ L/ε
0 (h′′)2 − (h′)2 riε dx∫ L/ε

0 h2f iε dx
, (5.32)

where Mj is any subspace of codimension j of Vε defined in (5.23). Moreover, for all j ∈ N 0 and
sufficiently small ε > 0 it holds

λ1,j
ε ≤ λ

j
D,ε ≤ λ

2,j
ε . (5.33)

Proof: The proof for (5.32) is the same as one from the section I.6.10 of Kato [51] for the
minimax principle. Let us now prove (5.33). By Lemma 5.17 for sufficiently small ε and all
x ∈ [0, L/ε] it holds:

r2
ε(x) ≤ rε(x) ≤ r1

ε(x), f2
ε (x) ≤ fε(x) ≤ f1

ε (x),

From this and (5.32) for all j ∈ N 0 and sufficiently small ε > 0 relation (5.33) follows. �

Remark 5.21. Proposition 5.18 states that eigenvalues of the approximate EVPs (5.27) for
i = 1 and i = 2 give approximations from below and above, respectively, for the corresponding
eigenvalues of the Dirichlet eigenvalue problem (5.21). In the next sections one often explores
relation (5.33). Below we call EVPs (5.27) for i = 1 and i = 2 as the approximate problems
“from below” and “from above”, respectively.

5.4 Asymptotics for Stationary Solutions

In this section we prove important Lemmata 5.8, 5.17. Let us consider equation

h′′(x) = Π (h(x))− εP. (5.34)

By results of Appendix A of Glasner and Witelski [30] (see also Figure 5.3) there exists a hyper-
bolic saddle point ĥ−sc, ε and an elliptic center point ĥcsc, ε of equation (5.34), which are two real
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roots of the algebraic equation Π (h)− εP = 0 and have the following asymptotics:

ĥ−sc, ε = 1 + εP +O(ε2), ĥcsc, ε ∼ (εP )−1/3. (5.35)

Corresponding to this there exists a homoclinic solution ĥsc, ε(x) to (5.34), minimum of which is
given by ĥ−sc, ε, and its maximum ĥ+

sc, ε (see Glasner and Witelski [30]) has asymptotics

ĥ+
sc, ε = 1

6εP + 1 +O(ε). (5.36)

One can define a first integral for ĥsc, ε(x) as

1/2
(
ĥ′sc, ε(x)

)2
+ Uε

(
ĥsc, ε(x)

)
= 0,

where

Uε(h) := −U(h) + U
(
ĥ−sc, ε

)
+ εP (h− ĥ−sc, ε), (5.37a)

Uε
(
ĥ−sc, ε

)
= U ′ε

(
ĥ−sc, ε

)
= Uε

(
ĥ+
sc, ε

)
= 0. (5.37b)

The function U(h) in (5.37a) (see its plot in Figure 5.4 is such that dU/dh = Π(h) and

U(h) := 1
3h3 −

1
2h2 . (5.38)

The next proposition is used in the proof of Lemma 5.8 below.

Figure 5.3: Phase plane portrait for the equation (5.34) (left) and plot of function Uε(h) (right).

Proposition 5.22. For each sufficiently small ε > 0 and δ ∈ (0, −Uε(ĥcsc, ε)) there exists a
unique number hε(δ) ∈ (ĥ−sc, ε, ĥcsc, ε) such that

δ = −Uε(hε(δ)).

Moreover, there exist positive numbers ε̃, δ̃ such that for all ε ∈ (0, ε̃) and δ ∈ (0, δ̃) one has

hε(δ)− ĥ−sc, ε < 2
√
δ. (5.39)

Proof: The existence and uniqueness of hε(δ) follows from the fact that ĥ−sc, ε and ĥcsc, ε are
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double zero and local minimum of Uε(h) (see also Figure 5.3). Moreover, using (5.37a)–(5.37b)
and Peano formula one obtains

hε(δ)− ĥ−sc, ε =
√

2δ
Π′(θε(δ))

, (5.40)

where θε(δ) ∈ [ĥ−sc, ε, hε(δ)]. From (5.8) it follows that that function Π′(h) monotonically de-
creases for h ∈ [1, 5/3]. By (5.35) one has Π′(ĥ−sc, ε) → 1 as ε → 0 and Π′(ĥcsc, ε) < 0 for
sufficiently small ε > 0. Therefore, one can choose sufficiently small ε̃ > 0 and δ̃ > 0 such that

Π′(hε̃(δ̃)) := 1/2. (5.41)

Next, from (5.37a) and definition of ĥ−sc, ε it follows that

∂Uε(h)
∂ε

= (Π(ĥ−sc, ε)− ε P )
∂ĥ−sc, ε
∂ε

+ P (h− ĥ−sc, ε) =

= P (h− ĥ−sc, ε) > 0 for all h > ĥ−ε̃ and ε ∈ (0, ε̃). (5.42)

Let us fix any 0 < ε < ε̃ and 0 < δ < δ̃. Define a number h∗ > ĥ−sc, ε̃ such that Uε̃(h∗) := −δ. If
we suppose that h∗ ≤ hε(δ) then we arrive to the following contradiction:

−δ = Uε̃(h∗) ≥ Uε̃(hε(δ)) > Uε(hε(δ)) = −δ,

where we used (5.42) and that function Uε̃(h) decreases for h ∈ (ĥ−sc, ε̃, ĥcsc, ε̃). Therefore, h∗ >
hε(δ). On the other hand

Uε̃(h∗) = −δ > −δ̃ = Uε̃(hε̃(δ̃))

and therefore again by monotonicity of Uε̃(h) one gets h∗ < hε̃(δ̃). Combining all together one
obtains hε(δ) < hε̃(δ̃). Finally, using again monotonicity of Π′(h) and definition (5.41) one ob-
tains that Π′(hε(δ)) > 1/2, and therefore from (5.40) estimate (5.39) follows. �

Next, we define h+
ε and h−ε as the maximum and the minimum of the stationary solution

h0,ε(x) which are attained at x = 0 and x = ±L/ε by (5.11b)–(5.11c). A first integral for h0,ε(x)
is determined by

1/2(h′0,ε(x))2 + Uε(h0,ε(x))− Uε(h−ε ) = 0, (5.43a)
Uε(h+

ε )− Uε(h−ε ) = 0 (5.43b)

In the next lemma we state asymptotics for h+
ε , h

−
ε and h′′0, ε(±L/ε) as ε→ 0. We should point

out that an appearance of the term α
ε2/3 in estimates (5.44) and (5.47) is strongly connected with

the fact that by asymptotics (5.35), (5.36)

ĥ+
sc, ε

ĥcsc, ε
= O(ε−2/3).

Lemma 5.23. There exist a positive constant α such that for all sufficiently small ε > 0 it holds

(i)
h−ε − ĥ−sc, ε ≤ exp

(
− α

ε2/3

)
, (5.44)
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(ii)
h−ε = 1 + ε P + o(ε), (5.45)

(iii)
h+
ε ∼

1
6ε P . (5.46)

(iv) ∣∣∣h′′0, ε(±L/ε)∣∣∣ ≤ exp
(
− α

ε2/3

)
, (5.47)

Proof: a) Integrating (5.43a) with respect to x on (0, L/ε) and using h0,ε(0) = h+
ε , h0,ε(L/ε) =

h−ε one obtains
L

ε
=
∫ h+

ε

h−ε

dh√
2
(
Uε(h−ε )− Uε(h)

) . (5.48)

From (5.37a) and (5.43b) one obtains

Uε(h−ε )− Uε(h) = U(h)− U(h−ε )− ε P (h− h−ε ), (5.49a)
U(h+

ε )− U(h−ε )− ε P (h+
ε − h−ε ) = 0. (5.49b)

By (5.37a), (5.38) for a fixed ε > 0 function Uε(h) monotonically increases on (0, ĥ−sc, ε) from
−∞ to 0, decreases on (ĥ−sc, ε, ĥcsc, ε) and increases on (ĥcsc, ε, ĥ+

sc, ε) (see Figure 5.3). Using this
and (5.49a) one arrives to the following representation:

Uε(h−ε )− Uε(h) = ε P (h− h−ε )(h− h∗ε)(h− h∗∗ε )(h+
ε − h)

h3 , (5.50)

where four real zeros of function Uε(h−ε ) − Uε(h) for each fixed ε > 0 fulfill the following con-
straints:

h∗∗ε < 0, 0 < h∗ε < ĥ−sc, ε,

ĥ−sc, ε < h−ε < ĥcsc, ε, ĥ
c
sc, ε < h+

ε < ĥ+
sc, ε. (5.51)

b) Let us prove using a contradiction argument that there exists positive numbers ε1 and α1
such that

h−ε ≤ α1 for all ε ∈ (0, ε1). (5.52)

Suppose inverse then without loss of generality h−ε → +∞ as ε → 0. Using (5.48), (5.50) and
(5.51) one estimates

L

ε
≤ 1√

2ε P

∫ h+
ε

h−ε

√
h+
ε√

(h− h−ε )(h+
ε − h)

√
h

h− ĥ−sc, ε
dh.

From h−ε → +∞ and asymptotics (5.35) it follows that there exists ε̃ > 0 such that√
h

h− ĥ−sc, ε
≤

√√√√ h−ε̃
h−ε̃ − ĥ

−
sc, ε̃

≤
√

2
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for all h ∈ (h−ε̃ , +∞) and ε ∈ (0, ε̃). Using last two estimates one obtains for all ε ∈ (0, ε̃)

L

ε
≤ 1√

ε P

∫ h+
ε

h−ε

√
h+
ε√

(h− h−ε )(h+
ε − h)

dh =

√
h+
ε

ε P
π.

On the other hand by h−ε → +∞ and (5.49b) one has ε P h+
ε = o(1) as ε → 0. Using this and

the last estimate one obtains that
L

ε
≤ o(1)

ε P
π,

which obviously gives a contradiction. Therefore, (5.52) holds with some positive numbers ε1, α1.
Next, let us show using a contradiction argument that there exists positive numbers α2 and ε2
such that

h+
ε ≥

α2
ε

for all ε ∈ (0, ε2). (5.53)

Suppose inverse then without loss of generality ε P h+
ε → 0 as ε→ 0. On the other hand (5.51)

Figure 5.4: Plot of function U(h).

and asymptotics (5.35) yield h+
ε → +∞ as ε → 0. Substituting all this in (5.49b) and using

(5.52), (5.38) one obtains
U(h−ε )→ 0.

From this by h−ε > ĥ−sc,ε > 1 and (5.38) it follows that h−ε → +∞, which gives a contradiction to
(5.52). Therefore, estimate (5.53) holds with some positive numbers ε2, α2.
c) We write now formula (5.48) as

L

ε
= I1 + I2 :=

∫ ĥcsc, ε

h−ε

dh√
2
(
Uε(h−ε )− Uε(h)

) +
∫ h+

ε

ĥcsc, ε

dh√
2
(
Uε(h−ε )− Uε(h)

) (5.54)

and estimate each of the integrals Ik, k = 1, 2 separately. Using again (5.51) and (5.52) one
estimates

I2 =
∫ h+

ε

ĥcsc, ε

dh√
2
(
Uε(h−ε )− Uε(h)

) ≤ 1√
2ε P

∫ h+
ε

ĥcsc, ε

h√
(h− α1)(h− ĥ−sc, ε)(h+

ε − h)
dh.

By (5.35) and (5.51) both ĥcsc, ε and h+
ε tend to +∞ and ĥ−sc, ε → 1 as ε → 0. Therefore, there
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exists ε∗ > 0 such that

h√
(h− α1)(h− ĥ−sc, ε)

≤ (1 + C) with C := LP

2A − 1/2 (5.55)

holds for all h ∈ (ĥcsc, ε∗ , +∞) and ε ∈ (0, ε∗). Note that number C in (5.55) by condition (5.4)
is positive. Using now last two estimates, again (5.51) and asymptotics (5.36) one obtains

I2 ≤
1 + C√

2ε P

∫ h+
ε

ĥcsc, ε

dh√
h+
ε − h

≤

≤

√
2ĥ+

sc, ε

ε P
(1 + C) =

(
L+A/P

2

) 1
ε

+ o

(1
ε

)
. (5.56)

d) Let us now estimate integral I1 from (5.54). Using again (5.51) one obtains

I1 =
∫ ĥcsc, ε

h−ε

dh√
2
(
Uε(h−ε )− Uε(h)

) ≤
≤ 1√

2ε P
ĥcsc, ε√

h+
ε − ĥcsc, ε

∫ ĥcsc, ε

h−ε

dh√
(h− h−ε )(h− ĥ−sc, ε)

.

This, asymptotics (5.53) and (5.35) yield that there exist positive numbers ε3 and α3 such that
for all ε ∈ (0, ε3) the following estimate holds:

I1 ≤
α3
ε1/3

∫ ĥcsc, ε

h−ε

dh√
(h− h−ε )(h− ĥ−sc, ε)

≤

≤ α3
ε1/3

(
− log

(
h−ε − ĥ−sc, ε

)
+ 2 log

(
2
(
ĥcsc, ε − ĥ−sc, ε

)))
. (5.57)

Finally, combining estimates (5.56), (5.57) together with formula (5.54) and using asymptotics
(5.35) one obtains

log(h−ε − ĥ−sc, ε) ≤ −
(
L−A/P

2α3

) 1
ε2/3 + o

( 1
ε2/3

)
.

This together with condition (5.4) imply that estimate (5.44) holds for sufficiently small ε > 0
with positive constant

α := L−A/P
4α3

.

e) Asymptotics (5.45) follows from (5.44) and (5.35). In turn asymptotics (5.46) follows from
(5.45) and (5.49b), (5.38).
f) Let us finally show estimate (5.47). Using (5.11a) and Peano formula one obtains

h′′0,ε(±L) = Π
(
h−ε
)
− εP = Π′(ĥ−sc, ε)(h−ε − ĥ−sc, ε) + Π′′(θε)(h−ε − ĥ−sc, ε)2,

where θε ∈ [ĥ−sc, ε, h−ε ]. Asymptotics (5.35) and (5.45) yield that Π′′(θε) < 0 and Π′(ĥ−sc, ε) < 1
for sufficiently small ε > 0. Therefore, applying estimate (5.44) one obtains (5.47). �

Let us now prove Lemmata 5.8, 5.17.
Proof of Lemma 5.8: Using estimates (5.45)–(5.46) and (5.11c) for each sufficiently small
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ε > 0 define uniquely aε as
L > aε > 0 : h0,ε(aε/ε) := ε−3/4 (5.58)

Then by (5.8) and (5.58) one has

Π(h0,ε(x)) = O(ε9/4) and d2h0,ε(x)
dx2 = −P ε+O(ε9/4), for x ∈ [0, aε/ε].

Integrating two times and using h′0,ε(0) = 0 by (5.11c) one obtains

h′0,ε(x) ∼ −P εx,

h0,ε(x) ∼ P ε

2

((
C

ε

)2
− x2

)
for all x ∈ [0, aε/ε].

Taking x = 0 in the last expression and using (5.46) one obtains

C = A

P
.

Taking next x = aε gives
aε ∼

A

P
and h′0,ε(aε/ε) ∼ −A. (5.59)

The estimate ε−3/4 ≤ h0,ε(x) = O(1/ε) for all x ∈ [0, aε/ε] follows from asymptotics (5.46),
definition (5.58) and monotonicity of h0,ε(x) for x > 0 by (5.11c). Therefore, assertion (iii) of
the lemma is proved.
Next, for each ε > 0 by definition of ĥcsc, ε there exists a unique xcε ∈ (0, L) such that

h0,ε(xcε/ε) = ĥcsc, ε and h′′0,ε(xcε/ε) = 0. (5.60)

For each ε > 0 function h0,ε(x) decreases on [0, L/ε], therefore one can define its inverse function
xε(h) decreasing on [h−ε , h+

ε ] as

xε (h0,ε(x)) := x and x′ε(h) = 1
h′0,ε(xε(h)) . (5.61)

Figure 5.5: Plot of h′0,ε(x) obtained numerically for ε = 0.1, P = 0.1, L = 20 and corresponding to
h0,ε(x) from Figure 5.1.

80



5.4 Asymptotics for Stationary Solutions

By this and (5.35), (5.58) and (5.59) one obtains∣∣∣xcε − aε∣∣∣
ε

≤
∫ 1

0

∣∣∣x′ε (t ĥcsc, ε − (1− t)ε−3/4
) ∣∣∣ dt ∣∣∣ĥcsc, ε − ε−3/4

∣∣∣ ≤
max

ĥcsc, ε≤h≤ε−3/4

∣∣∣x′ε(h)
∣∣∣∣∣∣ĥcsc, ε − ε−3/4

∣∣∣ =

∣∣∣ĥcsc, ε − ε−3/4
∣∣∣

|h′0, ε(aε/ε)|
= O(ε−3/4),

where we also use that
∣∣∣h′0,ε(x)

∣∣∣ increases for x ∈ [0, xcε/ε] by (5.11a) and (5.60) (see also Figure
5.5). Therefore, using (5.59) one obtains

xcε ∼ aε ∼
A

P
,

h′0,ε(xcε/ε) ∼ −A,
xcε − aε = O(ε1/4). (5.62)

Using this and that
∣∣∣h′0,ε(x)

∣∣∣ decreases for x ∈ [xcε/ε, L/ε] (see Figure 5.5), we define for each
sufficiently small ε > 0 a unique bε as

L > bε > xcε : h′0,ε(bε/ε) := −ε1/6. (5.63)

Using this, first integral (5.43a), definition (5.37a)–(5.37b), Peano formula and asymptotics (5.44)
one obtains

− Uε(h0, ε(bε/ε)) = 1
2ε

1/3 − Uε(h−ε ) + Uε(ĥ−sc, ε) =

= 1
2
(
ε1/3 + Π′(θε)(h−ε − ĥ−sc, ε)2

)
≤ 1

2

(
ε1/3 + exp

(
− α

ε2/3

))
=

= O(ε1/3),

where θε ∈ [ĥ−sc, ε, h−ε ] and by (5.35), (5.45) Π′(θε) ≤ Π′(ĥ−sc, ε) ≤ 1. Applying Proposition 5.22
to the last inequality one gets

h0,ε(bε/ε) = 1 +O(ε1/6) (5.64)

Now, the assertion (iv) of the lemma follows from the last asymptotics, (5.45) and (5.11c).

Finally, we show bε − aε = O(ε1/4). Using the inverse function xε(h) defined in (5.61) one
writes ∣∣∣xcε − bε∣∣∣

ε
≤
∫ 1

0

∣∣∣x′ε (t ĥcsc, ε − (1− t)h0,ε(bε/ε)
) ∣∣∣ dt ∣∣∣ĥcsc, ε − h0,ε(bε/ε)

∣∣∣ ≤
≤ max

h0,ε(bε/ε)≤h≤ĥcsc, ε

∣∣∣x′ε(h)
∣∣∣∣∣∣ĥcsc, ε −O(1)

∣∣∣ =

∣∣∣ĥcsc, ε −O(1)
∣∣∣

ε1/6 = O(ε−1/2),

where we also used definition (5.63) and asymptotics (5.64), (5.35). From the last estimate one
obtains bε − xcε = O(ε1/2). Combining this with (5.62) yields bε − aε = O(ε1/4), which in turn
noting (5.59) implies assertion (ii) of the lemma. This concludes the proof of the lemma. �

81



Chapter 5 Spectrum Asymptotics in a Singular Limit

Proof of Lemma 5.17: By definition (5.14a)

rε(x) = − 4
(h0,ε(x))5 + 3

(h0,ε(x))4 (5.65)

By assumption (iii) of Lemma 5.8 and (5.65), (5.14b) it follows

O(ε4) ≤ rε(x) = ε3 + o(ε3), O(ε3) ≤ fε(x) ≤ ε9/4 for all x ∈ [0, aε/ε]

By assumption (iv) of Lemma 5.8 and (5.65), (5.14b) it follows

−1 ≤ rε(x) = −1 +O(ε6), 1−O(ε6) ≤ fε(x) ≤ 1 for all x ∈ [bε/ε, L/ε].

Therefore, assertion (i) follows. Stationary points of the function rε(x) are given by equation

r′ε(x) =
(

20
(h0,ε(x))6 −

12
(h0,ε(x))5

)
h′0,ε(x) = 0

Using asymptotics (5.45)–(5.46) and that h′0,ε(x) < 0 for all x ∈ (0, L/ε) one obtains that
for each sufficiently small ε > 0 there exists a unique xmε at which rε(x) attains its maximum
k1 := (3/5)5 > 0 such that h0,ε(xmε ) = 5/3. Therefore, by (5.58), (5.64) and again h′0,ε(x) < 0
for all x ∈ (0, L/ε) it follows that aε/ε < xmε < bε/ε, and hence the assertions (ii) and (iii) are
proved. �

5.5 Spectrum Asymptotics for the Approximate Problems

In this section we prove an analog of Theorem 5.10 for the two approximate problems of Dirichlet
half-droplet problem. Recall that set M is defined in (5.19).

Theorem 5.24. (i) If {λl}, l = 1, 2, ..., is a sequence of eigenvalues to EVP (5.27) considered
for either i = 1 or i = 2 corresponding to a sequence {εl} → 0 and there exists a number
K∗ > 0 such that ∣∣∣λl

ε2
l

∣∣∣ ≤ K∗ for all l ∈ N , (5.66)

then
dist

(
λl
ε2
l

,M \ {0}
)

:= inf
K∈M\{0}

∣∣∣∣∣K − λl
ε2
l

∣∣∣∣∣→ 0.

(ii) Moreover, for sufficiently small ε > 0 and any eigenvalue λ of EVP (5.27) considered for
either i = 1 or i = 2 one has

λ /∈
(

0,
[

π

4(L−A/P )ε
]2
)
.

Proof: We show the proof only for the approximate problem “from below”. In the exact the
same way one can show it for the approximate problem “from above”. Let us fix ε̃ > 0 and a
family [hε, λε] of solutions to (5.27) with i = 1 for ε ∈ (0, ε̃). Then by assertion (i) of Proposition
5.19 and definitions (5.24a)–(5.24b) in the droplet core region one has

h(4)
ε (x) + 2ε3h′′ε(x) = ε9/4λεhε(x) for x ∈ (0, aε/ε), (5.67)
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Let us denote by φi(x, λε) a fundamental system to (5.67) such that

φ
(k)
i (0, λε) = εkδi, k; i, k = 0, 1, 2, 3.

One can easily deduce that

φ1(x, λε) = ε

(
z2

1,− sinh(z1,+x)
z1,+(z2

1,− + z2
1,+)

+
z2

1,+ sin(z1,−x)
z1,−(z2

1,− + z2
1,+)

)
,

φ3(x, λε) = ε3
(

sinh(z1,+x)
z1,+(z2

1,− + z2
1,+)
− sin(z1,−x)
z1,−(z2

1,− + z2
1,+)

)
,

where we denote

z1,− := 1
2

√
4ε3 + 2

√
4ε6 + 4λεε9/4, z1,+ := 1

2

√
−4ε3 + 2

√
4ε6 + 4λεε9/4.

By assertion (iv) of Proposition 5.19 hε(0) = h′′ε(0) = 0, and therefore

hε(x) = C1
εφ1(x, λε) + C2

εφ3(x, λε) for x ∈ (0, aε/ε), (5.68)

where Cpε , p = 1, 2 do not depend on x. By Proposition 5.19 and definitions (5.24a)–(5.24b) in
the contact line region one has

h(4)
ε (x) + k1h

′′
ε(x) = λεhε(x) for x ∈ (aε/ε, bε/ε).

If one denotes by ψi(x, λε) a fundamental system to the last equation such that

ψ
(k)
i (aε/ε, λε) = δi, k; i, k = 0, 1, 2, 3,

then one has

hε(x) =
3∑
i=0

h(i)
ε (aε/ε+ 0)ψi(x, λε) for x ∈ (aε/ε, bε/ε). (5.69)

It is easy to check that

ψ0(x, λε) =
z2

2,− cosh(z2,+(x− aε/ε))
(z2

2,− + z2
2,+)

+
z2

2,+ cos(z2,−(x− aε/ε))
(z2

2,− + z2
2,+)

,

ψ1(x, λε) =
z2

2,− sinh(z2,+(x− aε/ε))
z2,+(z2

2,− + z2
2,+)

+
z2

2,+ sin(z2,−(x− aε/ε))
z2,−(z2

2,− + z2
2,+)

,

ψ2(x, λε) = cosh(z2,+(x− aε/ε))
(z2

2,− + z2
2,+)

− cos(z2,−(x− aε/ε))
(z2

2,− + z2
2,+)

,

ψ3(x, λε) = sinh(z2,+(x− aε/ε))
z2,+(z2

2,− + z2
2,+)

− sin(z2,−(x− aε/ε))
z2,−(z2

2,− + z2
2,+)

,

where we denote

z2,− := 1
2

√
2k1 + 2

√
k2

1 + 4λε, z2,+ := 1
2

√
−2k1 + 2

√
k2

1 + 4λε.

Finally, in the outer interval [hε, λε] satisfies

h(4)
ε (x)− (1− ε1/12)h′′ε(x) = λεhε(x) for x ∈ (bε/ε, L/ε).
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Using this and hε(L/ε) = h′′ε(L/ε) = 0 one can write

hε(x) = −C3
ε sin (z3,−(x− L/ε))− C4

ε sinh (z3,+(x− L/ε)) for x ∈ (bε/ε, L/ε), (5.70)

where Cpε , p = 3, 4 do not depend on x and

z3,− := 1
2

√
−2(1− ε1/12) + 2

√
(1− ε1/12)2 + 4λε,

z3,+ := 1
2

√
2(1− ε1/12) + 2

√
(1− ε1/12)2 + 4λε.

Let us denote ψ(k)
i,bε

:= ψ
(k)
i (bε/ε, λε) and φ

(k)
i,aε

:= φ
(k)
i (aε/ε, λε) for i, k = 0, 1, 2, 3. Then using

representations (5.68), (5.69), (5.70) as well as connection conditions (5.29), (5.30b) for hε(x)
at the points x = aε/ε and x = bε/ε one can construct a system of linear algebraic equations
imposed for each ε ∈ (0, ε̃) on Cpε , p = 1...4 in the following form:

γ1,1 γ1,2 sin (z3,−(aε − L)/ε) sinh (z3,+(aε − L)/ε)
γ2,1 γ2,2 z3,− cos (z3,−(aε − L)/ε) z3,+ cosh (z3,+(aε − L)/ε)
γ3,1 γ3,2 −z2

3,− sin (z3,−(aε − L)/ε) z2
3,+ sinh (z3,+(aε − L)/ε)

γ4,1 γ4,2 −z3
3,− cos (z3,−(aε − L)/ε) z3

3,+ cosh (z3,+(aε − L)/ε)



C1
ε

C2
ε

C3
ε

C4
ε

 = 0, (5.71)

where we denoted

Γε =


γ1,1 γ1,2
γ2,1 γ2,2
γ3,1 γ3,2
γ4,1 γ4,2

 := Ψε · Φε, (5.72a)

Ψε :=


ψ

(0)
0,bε ψ

(0)
1,bε ψ

(0)
2,bε ψ

(0)
3,bε

ψ
(1)
0,bε ψ

(1)
1,bε ψ

(1)
2,bε ψ

(1)
3,bε

ψ
(2)
0,bε ψ

(2)
1,bε ψ

(2)
2,bε ψ

(2)
3,bε

ψ
(3)
0,bε + kψ

(1)
0,bε ψ

(3)
1,bε + kψ

(1)
1,bε ψ

(3)
2,bε + kψ

(1)
2,bε ψ

(3)
3,bε + kψ

(1)
3,bε

, (5.72b)

Φε :=


φ

(0)
1,aε φ

(0)
3,aε

φ
(1)
1,aε φ

(1)
3,aε

φ
(2)
1,aε φ

(2)
3,aε

φ
(3)
1,aε − k1φ

(1)
1,aε φ

(3)
3,aε − k1φ

(1)
3,aε

, (5.72c)

and k = k1 + 1 − ε1/12 is defined in (5.29). The homogeneous linear system of equations (5.71)
has a nontrivial solution for each ε ∈ (0, ε̃) if and only if its determinant is zero identically in ε.
Expanding its determinant in the third column this implies

0 ≡ sin (z3,−(aε − L)/ε)Nε − z3,− cos (z3,−(aε − L)/ε)Dε,
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where we denoted two minors as

Nε :=

∣∣∣∣∣∣∣∣
γ2,1 γ2,2 z3,+ cosh (z3,+(aε − L)/ε)

γ3,1 + z2
3,−γ1,1 γ3,2 + z2

3,−γ1,2
(
z2

3,+ + z2
3,−

)
sinh (z3,+(aε − L)/ε)

γ4,1 + z2
3,−γ2,1 γ4,2 + z2

3,−γ2,2 z3,+
(
z2

3,+ + z2
3,−

)
cosh (z3,+(aε − L)/ε)

∣∣∣∣∣∣∣∣ ,

Dε :=

∣∣∣∣∣∣∣∣
γ1,1 γ1,2 sinh (z3,+(aε − L)/ε)

γ3,1 + z2
3,−γ1,1 γ3,2 + z2

3,−γ1,2
(
z2

3,+ + z2
3,−

)
sinh (z3,+(aε − L)/ε)

γ4,1 + z2
3,−γ2,1 γ4,2 + z2

3,−γ2,2 z3,+
(
z2

3,+ + z2
3,−

)
cosh (z3,+(aε − L)/ε)

∣∣∣∣∣∣∣∣ .

Therefore, one obtains
cot (z3,−(aε − L)/ε) ≡ Nε

z3,−Dε
(5.73)

Next, we denote Kε := λε/ε
2. Let us first describe the case K∗ ≥ Kε > 0 for all ε ∈ (0, ε̃),

where constant K∗ does not depend on ε. Using this and definition of z3,± one obtains

z3,− ∼
√
Kεε and z3,+ ∼ 1. (5.74)

Using this and the assertion (ii) of Lemma 5.8 one obtains

cot (z3,−(aε − L)/ε) ∼ cot
(√

Kε(aε − L)
)

coth (z3,+(aε − L)/ε) ∼ tanh (z3,+(aε − L)/ε) ∼ 1. (5.75)

Applying last three asymptotics to (5.73) results in

cot
(√

Kε(aε − L)
)
∼

∣∣∣∣∣∣∣
γ2,1 γ2,2 1

γ3,1 +Kεε
2γ1,1 γ3,2 +Kεε

2γ1,2 1
γ4,1 +Kεε

2γ2,1 γ4,2 +Kεε
2γ2,2 1

∣∣∣∣∣∣∣
√
Kεε

∣∣∣∣∣∣∣
γ1,1 γ1,2 1

γ3,1 +Kεε
2γ1,1 γ3,2 +Kεε

2γ1,2 1
γ4,1 +Kεε

2γ2,1 γ4,2 +Kεε
2γ2,2 1

∣∣∣∣∣∣∣
. (5.76)

Let us now derive the asymptotics for matrix Γε as ε → 0. Below we apply symbol ′ ∼′ for
matrices to denote their element-wise asymptotic equivalence in the sense of Definition 1.1.
Analogously to (5.74) by definitions of z1,±, z2,± one obtains

z1,− ∼ z1,+ ∼ K1/4
ε ε and z2,− ∼

√
k1, z2,+ ∼

√
Kε

k1
ε.

This and definition of φi, i = 1, 3 imply that for all x ∈ (0, aε/ε)

φ1(x, λε) ∼ εx, φ3(x, λε) ∼ ε3x3/6;
φ′1(x, λε) ∼ ε, φ′3(x, λε) ∼ ε3x2/2;
φ′′1(x, λε) ∼ ε6constx3/6, φ′′3(x, λε) ∼ ε3x;
φ′′′1 (x, λε) ∼ ε5Kε, φ′′′3 (x, λε) ∼ ε3. (5.77)

85



Chapter 5 Spectrum Asymptotics in a Singular Limit

Therefore, by definition (5.72c) one has

Φε ∼


aε

a3
ε

6
ε εa

2
ε

2
ε3const ε2aε

−εk1 −εk1
a2
ε

2


Similarly using definition (5.72b) and assertion (ii) of Lemma 5.8 one obtains

Ψε ∼



1 sin ρε√
k1

1−cos ρε
k1

√
Kερε

k
5/2
1

ε

Kερε

k
3/2
1

ε2 cos ρε sin ρε√
k1

√
Kε(1−cos ρε)

k2
1

ε

Kε(1+cos ρε)
k1

ε2 −
√
k1 sin ρε − cos ρε

√
Kε sin ρε
k

3/2
1

ε

Kερε(1+k1)
k

3/2
1

ε2 cos ρε sin ρε√
k1

√
Kε(1+k1−cos ρε)

k1
ε


,

where we denoted
ρε :=

√
k1(bε − aε)/ε. (5.78)

Using the simple rule

f1(ε) ∼ f2(ε), g1(ε) ∼ g2(ε) ⇒ f1(ε) · g1(ε) ∼ f2(ε) · g2(ε),

definition (5.72a) together with asymptotics for Φε, Ψε and the fact bε−aε = O(ε1/4) one obtains

Γε ∼


aε

a3
ε

6
ε cos ρε εa

2
ε

2 cos ρε
−ε
√
k1 sin ρε −ε

√
k1

a2
ε

2 sin ρε
ε cos ρε εa

2
ε

2 cos ρε

 . (5.79)

Finally, from this and (5.72a), (5.76) one gets:

cot
(√

Kε(aε − L)
)
∼ O(ε)√

Kε(cos ρε +
√
k1 sin ρε)

. (5.80)

The last asymptotics prohibits sequences {εl} → 0 and {Kεl} such that Kεl → 0 and K∗ > Kεl >
0 for all l ∈ N , because in such case cot

√
Kεl(aεl − L) ∼ 1/

√
Kεl and this would contradict

to (5.80). Therefore, without loss of generality (see also Remark 5.26 below) one obtains that
cot
√
Kε(aε − L) → 0 as ε → 0. From this one concludes that Kε → M \ {0}, where set M is

defined in (5.19).

Next, we consider the case −K∗ ≤ Kε < 0 for all ε ∈ (0, ε̃) and substitute it again in expression
(5.73). As before after derivation of the leading order asymptotics for (5.73) for this case one
obtains that asymptotic balance (5.80) transforms to

coth
(√
−Kε(aε − L)

)
∼ O(ε)√
−Kε(cos ρε +

√
k1 sin ρε)

. (5.81)

Again firstly we obtain from it that sequences {εl} → 0 and {Kεl} such that Kεl → 0 and
−K∗ < Kεl < 0 for all l ∈ N are not possible. But then right-hand side of (5.81) tends to zero as
ε→ 0 and we arrive to a contradiction because function coth

(√
−Kε(aε − L)

)
is bounded away

from 0. Therefore, the case −K∗ ≤ Kε < 0 for all ε ∈ (0, ε̃) is not possible. Proceeding similarly
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one can show that the case Kε ≡ 0 for all ε ∈ (0, ε̃) is not possible as well.

We conclude that if there exists a constant K∗ > 0 such that |Kε| ≤ K∗ for all ε ∈ (0, ε̃) then
one has Kε > 0 for sufficiently small ε > 0 and Kε → M \ {0} as ε → 0. This in fact implies
both assertions of the theorem. �

Remark 5.25. Let us point out the difference between Dirichlet (5.21) and Neumann (5.22) half-
droplet problems. Analogously to the proof of Theorem 5.24 one can show that all assertions
of Theorem 5.10 hold for the approximate problems for Neumann half-droplet problem (5.18).
The difference between approximate Neumann and Dirichlet half-droplet problems lies in the
fact that for the former ones there may exists sequences of eigenvalues {λl} and {εl} → 0 that
satisfy condition (5.66) and have

λl
ε2
l

→ 0 as l→∞.

Indeed, proceeding analogously to the proof above one obtains that analogs of asymptotic bal-
ances (5.80)–(5.81) in the case of approximate Neumann half-droplet problems are

cot
(√

Kε(aε − L)
)
∼ O(ε)√

K3
ε (cos ρε +

√
k1 sin ρε)

and
coth

(√
−Kε(aε − L)

)
∼ O(ε)√

(−Kε)3(cos ρε +
√
k1 sin ρε)

,

respectively. Analyzing them one can easily check that in this case there could exists sequences
{εl} → 0 and {Kεl} such that Kεl → 0 as l→∞. This result stays in agreement with Theorem
5.12 which asserts that symmetric EVP (5.18) possesses one exponentially small eigenvalue as
ε→ 0, which turns out to satisfy Neumann half-droplet problem (5.22). �

Remark 5.26. One can wonder what happens for asymptotics (5.80)–(5.81) if one takes a se-
quence {εl} → 0, such that sin(ρεl + ϕ)→ 0 as l→∞, where

ϕ := arcsin 1/
√

1 + k1 ∈ (0, π/2).

Clearly, in this case it may happen that cot
√
Kεl(aεl−L) does not tend to zero and the assertions

of Theorem 5.24 become unclear. To escape from this situation one should recall definition (5.78)
and use that there exists a certain freedom in defining functions aε and bε with properties stated
in Lemma 5.8. One can redefine the contact line region (aε/ε, bε/ε) for all ε belonging to a
special set O ⊂ R so that for any sequence {εl} → 0 one would have

| sin(
√
k1(bεl − aεl)/εl + ϕ)| ≥ const > 0 for all l ∈ N . (5.82)

and all the assertions of Lemmata 5.8, 5.17 would hold with redefined aε, bε as well without any
changes for results of this chapter. Namely, let aε = a(ε) and bε = b(ε) satisfy assertions of
Lemma 5.8. Set O can be defined for example as follows:

O =
{
ε > 0 : ∃n ∈ N ,

√
k1(b(ε)− a(ε))

ε
∈ (−7/6ϕ+ πn,−5/6ϕ+ πn)

}
. (5.83)
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Next, redefine functions aε, bε as

aε :=

 a(ε), ε /∈ O

a(ε)− b(ε)− a(ε)
2 , ε ∈ O

, bε :=

 b(ε), ε /∈ O

b(ε) + b(ε)− a(ε)
2 , ε ∈ O

(5.84)

and fix any sequence {εl} → 0. It can be decomposed into two subsequences {εlk}, {εlm} → 0
(one of which may be empty or finite) such that εlk ∈ O for all k ∈ N and εlm /∈ O for all m ∈ N .
Then by definitions (5.83) and (5.84) one obtains

| sin(
√
k1(bεlk − aεlk )/εlk + ϕ)| = | sin(2

√
k1(b(εlk)− a(εlk))/εlk + ϕ)| ≥ sin(2/3ϕ) > 0,

| sin(
√
k1(bεlm − aεlm )/εlm + ϕ)| = | sin(

√
k1(b(εlm)− a(εlm))/εlm + ϕ)| ≥ sin(1/6ϕ) > 0

for all k, m ∈ N . We conclude that new definition (5.84) makes all assertions of Lemmata 5.8,
5.17 to be fulfilled again and (5.82) holds for any sequence {εl} → 0. Therefore, (5.80)–(5.81)
really imply all assertions of Theorem 5.24. �

At the end of this section we prove a lemma which we use in section 5.7 for the proof of unique-
ness assertion (iii) of Theorem 5.11. Besides it gives leading orders as ε → 0 for eigenfunctions
of approximate problems.

Lemma 5.27. Let numbers k, m ∈ N 0 and corresponding λi, kε and λi,mε be k-th and m-th
eigenvalues, respectively, from the ordering (5.28) for the approximate eigenvalue problem (5.27)
with fixed i = 1 or i = 2. If there exists a number K∗ > 0 such that∣∣∣∣∣λi, kεε2

∣∣∣∣∣ ≤ K∗ and
∣∣∣∣∣λi,mεε2

∣∣∣∣∣ ≤ K∗
for all sufficiently small ε > 0 then there exist positive numbers K∗∗ and ε̃ such that∣∣∣λi, kε − λi,mε ∣∣∣ ≥ K∗∗ε2

for all ε ∈ (0, ε̃).

Proof: Let us prove the lemma using a contradiction argument. We do it again only for the case
(5.27) with i = 1. For the case i = 2 the proof is analogous. Suppose that the assertion of the
lemma is not true. Then by assertion (i) of Theorem 5.24 it follows that there exist a positive
number K ∈M \ {0} and sequences {εl} → 0, {λεl}, {λ̃εl} such that

λεl := λ1, k
εl
, λ̃εl := λ1,m

εl
for each l ∈ N ,

λεl
ε2
l

→ K,
λ̃εl
ε2
l

→ K as l→∞. (5.85)

Let {hεl} be the sequence of eigenfunctions hεl corresponding to λεl for each l ∈ N . Following
the lines of the proof for Theorem 5.24 one obtains that there exist Cpεl , p = 1, 2, 3, 4 such that
representations (5.68), (5.69), (5.70) hold for hεl on the droplet core, contact line and outer layer
intervals, respectively. Moreover, Cpεl are solutions of the homogeneous linear system (5.71) with
the notation defined in the proof of Theorem 5.24. Let

Mεl :=

 γ1,2 sin (z3,−(aεl − L)/εl) sinh (z3,+(aεl − L)/εl)
γ2,2 z3,− cos (z3,−(aεl − L)/εl) z3,+ cosh (z3,+(aεl − L)/εl)
γ3,2 −z2

3,− sin (z3,−(aεl − L)/εl) z2
3,+ sinh (z3,+(aεl − L)/εl)

 .

88



5.5 Spectrum Asymptotics for the Approximate Problems

We claim that there exists a subsequence {λεl} (to avoid technicalities we denote all subsequences
below also as {λεl}) such that det Mεl 6= 0 for all l ∈ N . Suppose inverse then one can fix a
subsequence {λεl} such that det Mεl ≡ 0 for all l ∈ N . Expanding the determinant of Mεl in the
second column and dividing the resulting expression by sin (z3,−(aεl − L)/εl) one obtains:

cot(z3,−(aεl − L)/εl)=

∣∣∣∣∣ γ2,2 z3,+ cosh (z3,+(aεl − L)/εl)
γ3,2 + z2

3,−γ1,2
(
z2

3,+ + z2
3,−

)
sinh (z3,+(aεl − L)/εl)

∣∣∣∣∣
z3,−

∣∣∣∣∣ γ1,2 sinh (z3,+(aεl − L)/εl)
γ3,2 + z2

3,−γ1,2
(
z2

3,+ + z2
3,−

)
sinh (z3,+(aεl − L)/εl)

∣∣∣∣∣
.

One can check that asymptotics (5.74), (5.75) and (5.79) hold in the current case with Kεl → K
as l → ∞ by (5.85). From these asymptotics it follows that the right hand side of the last
expression is O(1) and the left hand side tends to zero as l→∞. This gives a contradiction, and
therefore, indeed, we can fix a subsequence {λεl} such that det Mεl 6= 0 for all l ∈ N . For such a
subsequence the matrix of the linear system of algebraic equations (5.71) has the rank equal 3.
Therefore, using Cramer’s rule and fixing C1

εl
for each l ∈ N one gets uniquely Cpεl , p = 2, 3, 4 as

the solution of a linear system:γ1,2 sin (z3,−(aεl − L)/εl) sinh (z3,+(aεl − L)/εl)
γ2,2 z3,− cos (z3,−(aεl − L)/εl) z3,+ cosh (z3,+(aεl − L)/εl)
γ3,2 −z2

3,− sin (z3,−(aεl − L)/εl) z2
3,+ sinh (z3,+(aεl − L)/εl)


 C2

εl
C3
εl

C4
εl

 = −C1
εl

 γ1,1
γ2,1
γ3,1

 .
This allows us to obtain asymptotics for Cpεl , p = 2, 3, 4 as l→∞. For example, due to Cramer’s
rule

C2
εl

C1
εl

= −

∣∣∣∣∣∣∣
γ1,1 sin (z3,−(aεl − L)/εl) sinh (z3,+(aεl − L)/εl)
γ2,1 z3,− cos (z3,−(aεl − L)/εl) z3,+ cosh (z3,+(aεl − L)/εl)
γ3,1 −z2

3,− sin (z3,−(aεl − L)/εl) z2
3,+ sinh (z3,+(aεl − L)/εl)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
γ1,2 sin (z3,−(aεl − L)/εl) sinh (z3,+(aεl − L)/εl)
γ2,2 z3,− cos (z3,−(aεl − L)/εl) z3,+ cosh (z3,+(aεl − L)/εl)
γ3,2 −z2

3,− sin (z3,−(aεl − L)/εl) z2
3,+ sinh (z3,+(aεl − L)/εl)

∣∣∣∣∣∣∣
.

Expanding the nominator and the denominator of the last expression and again using asymp-
totics (5.74)–(5.75), (5.79) one gets that C2

εl
/C1

εl
= −2/a2

εl
+ o(1). Analogously, one can ob-

tain that C3
εl
/C1

εl
= −2aεl/3 + o(1) and C4

εl
/C1

εl
is exponentially small, namely C4

εl
/C1

εl
∼

o(εl) exp ((aεl − L)/εl).

Next, let {h̃εl} be the sequence of eigenfunctions h̃εl corresponding to λ̃εl from (5.85) for each
l ∈ N . By assertion (iii) of Proposition 5.18 one has

(hεl , h̃εl)Hεl ≡ 0 for all l ∈ N , (5.86)

where we use inner product (5.26). Denote for each l ∈ N by C̃pεl for p = 1, 2, 3, 4 the solutions
of the linear system corresponding to the eigenfunction h̃εl . We can fix C1

εl
≡ C̃1

εl
for all l ∈ N

so that (5.86) still holds. Then by considerations above and (5.85) it follows that Cpεl ∼ C̃pεl for
p = 2, 3, 4 as l→∞. From this, again (5.85) and representations (5.68), (5.69), (5.70) for hεl(x)
and h̃εl(x) one gets

(hεl , h̃εl)Hεl → 1 as l→∞.

But the last asymptotics contradicts to (5.86). Therefore, we arrive to a contradiction and the
assertion of the lemma is true. �
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Remark 5.28. (about leading orders for eigenfunctions) Results of Theorem 5.24 and
Lemma 5.27 allow us for constructing approximations for eigenvalues and eigenfunctions of ap-
proximate EVPs (5.27), which are helpful when one wants to show existence of solutions with pre-
scribed asymptotics for these problems. Indeed, Theorem 5.24 allows for eigenvalues λε ∼ Kε2,
where K ∈M \ {0}. Suppose such an eigenvalue exists for the EVP “from below”. Then for the
corresponding eigenfunction hε representations (5.68), (5.69), (5.70) should hold. Moreover, by
the proof of Lemma 5.27 it follows that hε can be normalized so that

C1
ε ≡ 1, C2

ε ∼ −2/a2
ε, C3

ε ∼ −2aε/3, C4
ε ∼ o(ε) exp ((aε − L)/ε) (5.87)

From this, representation (5.68) and asymptotics (5.77) it follows that on the droplet core interval
(0, aε/ε) to the leading order hε(x) is a linear combination of polynomials and does not depend
on K. One can explain this fact looking at equation (5.67) for hε on the droplet core. The term
2ε3h′′ε(x) − ε9/4λεhε(x) is small enough, so that the leading orders for the fundamental system
on this interval are given by the solutions of the equation h

(4)
ε (x) = 0, i.e. by polynomials.

Such property of (5.67) in turn takes place because defining the approximate problems (5.27) we
explored asymptotics derived in Lemma 5.17 for the coefficients rε(x), fε(x) of the symmetric
EVP (5.18).
Taking next the leading order as ε→ 0 in representation (5.69) one can see that on the contact

line region (aε/ε, bε/ε) to the leading order hε(x) is constant and its derivatives actually oscillate
with a high frequency proportional to (bε−aε)/ε. Such oscillations can make problems to resolve
numerically derivatives of eigenfunctions in this region (see details in section 5.8). Finally, on
the outer layer (bε/ε, L/ε) due to (5.70) and asymptotics (5.74), (5.87) holding with Kε → K
as ε→ 0 one obtains that

hε(x) ∼ C3
ε sin

(√
K(εx− L)

)
and essentially depends on K. If we consider instead of the approximate problem “from below”
the one “from above” we end up with the same leading orders on the droplet core and the outer
layer for the eigenfunctions hε corresponding to λε ∼ Kε2 with K ∈ M \ {0}. This fact we
explore in the next section. �

5.6 Existence of Eigenvalues with Prescribed Asymptotics
In this section we prove an analog of Theorem 5.11 for the approximate problem “from above”.
Theorem 5.29. For every j ∈ N 0 there exists a positive constant εj and a smooth map λj ∈
C1((0, εj), R ) such that for all ε ∈ (0, εj) the following holds:
(i) λj(ε) is an eigenvalue of approximate EVP (5.27) with i = 2,

(ii)
∣∣∣λj(ε)− ( π(2j+1)

2(L−A/P )ε
)2 ∣∣∣ = o(ε4).

For the proof of Theorem 5.29 we use a certain modification of a implicit function theorem
developed in Recke and Omel’chenko [5] which has minimal assumptions concerning continuity
with respect to the control parameter.
Theorem 5.30. Let K1, K2, K3, ν1, ν2 be positive numbers with ν1 > ν2 and for all ε ∈ (0, ε0)
be given Banach spaces Yε and Zε and maps Fε ∈ C1 (Yε, Zε) such that

||Fε(0)|| ≤ K1 ε
ν1 , (5.88)

||F ′ε(u)− F ′ε(0)|| ≤ K2
||u||
εν2

(5.89)
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and operators F ′ε(0) are invertible with

||F ′ε(0)−1|| ≤ K3. (5.90)

Then there exists ε1 ∈ (0, ε0) and δ > 0 such that for all ε ∈ (0, ε1) there exists exactly one
u = uε with ||u|| < δεν2 and Fε(u) = 0. Moreover,

||uε|| ≤ 2K3||Fε(0)||. (5.91)

Proof: For ε ∈ (0, ε0) one has Fε(u) = 0 if and only if

Gε(u) := u− F ′ε(0)−1Fε(u) = u. (5.92)

Moreover, for such ε and all u, v ∈ Yε one has

Gε(u)−Gε(v) =
∫ 1

0
G′ε(su+ (1− s)v)(u− v) ds =

= F ′ε(0)−1
∫ 1

0

(
F ′ε(su+ (1− s)v)− F ′ε(0)

)
(v − u) ds.

Assumptions (5.89) and (5.90) imply that there exists ε1 ∈ (0, ε0) and δ > 0 such that for all
ε ∈ (0, ε1)

||Gε(u)−Gε(v)|| ≤ 1
2 ||u− v|| for all u, v ∈ Rε := {w ∈ Yε : ||w|| ≤ δεν2}.

Using this and (5.88), (5.90) for all ε ∈ (0, ε1) and u ∈ Rε one gets

||Gε(u)|| ≤ ||Gε(u)−Gε(0)||+ ||Gε(0)|| ≤ 1
2 ||u||+K3||Fε(0)|| ≤ δ

2ε
ν2 +K1K3 ε

ν1 . (5.93)

From this and condition ν1 > ν2 it follows that Gε maps Rε into Rε for all ε ∈ (0, ε1), if one
chooses ε1 sufficiently small. Now, Banach’s fixed point theorem gives a unique in Rε solution
u = uε to (5.92) for all ε ∈ (0, ε1). Moreover, (5.93) yields

||uε|| ≤
1
2 ||uε||+K3 ||Fε(0)||,

i.e. (5.91). �

The next lemma (see Magnus [42] or Recke and Omel’chenko [5]) allows sometimes to prove
assumption (5.90).

Lemma 5.31. Let F ′ε(0) be Fredholm of index zero for all ε ∈ (0, ε0) . Suppose that there do
not exist sequences ε1, ε2, ... ∈ (0, ε0) and u1 ∈ Uε1, u2 ∈ Uε2 ... with ||un|| = 1 for all n ∈ N and
|εn|+ ||F ′ε(u)un|| → 0 for n→ 0. Then assumption (5.90) is satisfied.

Proof of Theorem 5.29:
Step1–reformulation of EVP (5.18) with i = 2 into the framework of Theorem 5.30:
Define a bilinear form

gε(h,w) :=
∫ L/ε

0
(h′′w′′ − r2

εh
′w′) dx for h, w ∈ H2(0, L/ε) ∩H1

0 (0, L/ε). (5.94)
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Chapter 5 Spectrum Asymptotics in a Singular Limit

EVP problem “from above” can be reformulated as

h ∈ Vε, λ ∈ R : gε(h,w) = λ (h,w)Hε , ∀w ∈ Vε,

where (h,w)Hε is the inner product (5.26) in Hilbert space Hε defined in (5.25) and Hilbert space
Vε is defined in (5.23). Recall that Vε is equipped with the inner product

(h,w)Vε :=
2∑

k=0

∫ L/ε

0
h(k)(x)w(k)(x) dx.

We define for each ε > 0 Hilbert space Uε := H2(0, L/ε) ∩H1
0 (0, L/ε) equipped with an inner

product

(h,w)Uε :=
∫ L/ε

0

(
h′′w′′ + ε4 hw

)
dx. (5.95)

Note that two norms that are induced by inner products of Uε and Vε are equivalent in
H2(0, L/ε) ∩H1

0 (0, L/ε), more precisely for all sufficiently small ε > 0 one has√
2
3ε

2||h||Vε ≤ ||h||Uε ≤ ||h||Vε . (5.96)

The second inequality in (5.96) is trivial. Let us show the first one. Using integration by parts
one obtains

||h||2Vε =
2∑

k=0

∫ L/ε

0
(h(k))2 dx =

=
∫ L/ε

0

(
h′′
)2
dx−

∫ L/ε

0
h′′h dx+

∫ L/ε

0
h2 dx

≤ 3
2

(∫ L/ε

0

(
h′′
)2
dx+

∫ L/ε

0
h2 dx

)
.

From this and (5.95) one obtains the first inequality in (5.96).

Proposition 5.32. For each ε > 0 there exist operators Aε, Bε ∈ L(Uε, Vε) such that

(Aεh,w)Vε := gε(h,w), (Bεh,w)Vε := (h,w)Hε ,

for all h, w ∈ H2(0, L/ε) ∩H1
0 (0, L/ε).

Proof: Using definitions (5.94), (5.26), (5.24a)–(5.24b) and Cauchy-Schwarz inequality one ob-
tains

|gε(h,w)| ≤ ε−2||h||Uε ||w||Vε and |(h,w)Hε | ≤ ε
−2||h||Uε ||w||Vε . (5.97)

Therefore, for any ε > 0 and h ∈ Uε functionals gε(h, ·) and bε(h, ·) defined on Vε are linear and
continuous. Next, from the Riesz theorem it follows that there exists vε(h), zε(h) ∈ Vε such that

(vε(h), w)Vε = gε(h,w), (zε(h), w)Vε = (h,w)Hε .

Define then Bεh := zε(h) and Aεh := vε(h). Operators Aε, Bε are linear and from (5.97) it
follows that

||Aε||L(Uε, Vε) ≤ ε
−2 and ||Bε||L(Uε, Vε) ≤ ε

−2.

�
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5.6 Existence of Eigenvalues with Prescribed Asymptotics

Note that for all h, w ∈ H2(0, L/ε) ∩H1
0 (0, L/ε) one has

(Aεh, w)Vε = (h, Aεw)Vε and (Bεh, w)Vε = (h, Bεw)Vε .

Now, we can write EVP problem “from above” as a generalized EVP

h ∈ Uε, λ ∈ R : Aεh = λBεh.

The set of solutions
[
hjε, λ

j(ε)
]
of this EVP coincides with that one of (5.27) with i = 2. Motivated

by Remark 5.28 let us define for each j ∈ N 0 approximations for
[
hjε, λ

j(ε)
]
as

Hj
ε (x) = Cε


εx− ε3

3a2
ε

x3 + pjε(x), x ≤ aε/ε
2aε
3 sin

(√
Kj(εx− L)

)
, x ≥ aε/ε

, Λjε = Kjε2, (5.98)

where
Kj :=

(
π(2j + 1)
2(L− bε)

)2
.

Constant Cε in (5.98) is chosen to fulfill a normalization condition

||Hj
ε ||Hε ≡ 1 for all ε > 0.

Using definitions (5.98) and (5.26) it is easy to check that

Cε = O(ε1/2). (5.99)

The polynomial correction term pjε(x) = O (εs) , s > 0 for all x ∈ [0, aε/ε] and j ∈ N 0 is chosen
so that Hj

ε ∈ Vε (in particularly Hj
ε (x) is continuously differentiable on [0, L/ε]) and to provide

the control on the first three derivatives of Hj
ε (x) at the point x = a/ε:∣∣∣∣∣dHj

ε

dx
(a/ε)

∣∣∣∣∣+
3∑

k=2

∣∣∣∣∣d(k)Hj
ε

dx(k) (a/ε− 0)− d(k)Hj
ε

dx(k) (a/ε+ 0)
∣∣∣∣∣ ≤ const ε4+s, k = 2, 3. (5.100)

Next, take the Banach spaces in the formulation of Theorem 5.30 as

Yε := R × Uε and Zε := R × Vε

with the following norms:

||(z, µ)||Yε := ||z||Uε + |µ|, ||(z, µ)||Zε := ||z||Vε + |µ|,

and define for each j ∈ N 0 an operator function

F
j
ε : Yε → Zε, F

j
ε

(
h, λ

)
:= 1

ε2

[
Aεh− λBεh(
h,Hj

ε

)
Hε
− 1

]
. (5.101)

Finally, the operator implicit function from Theorem 5.30 corresponding to the sought eigenpair
[hjε, λj(ε)] is defined by an appropriate shift of the variables in (5.101)

F jε (h, λ) = F
j
ε

(
h+Hj

ε , ε
2λ+ Λjε

)
. (5.102)
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Step2–proof of the assumption (5.88):

We show here that for sufficiently small ε > 0

||F jε (0, 0)||Zε ≤ const εν1 with ν1 := 2 + s. (5.103)

Using (5.102) and ||Hj
ε ||Hε ≡ 1 one obtains

||F jε (0, 0)||Zε = ||F jε(Hj
ε ,Λjε)||Zε = sup

||w||Vε=1

∣∣∣ 1
ε2

(
AεH

j
ε − ΛjεBεHj

ε , w
)
Vε

∣∣∣
= sup
||w||Vε=1

1
ε2

∣∣∣gε(Hj
ε , w)− Λjε(Hj

ε , w)Hε
∣∣∣

Let us show
sup

||w||Vε=1

∣∣∣gε(Hj
ε , w)− Λjε(Hj

ε , w)Hε
∣∣∣ ≤ const ε4+s. (5.104)

Using definitions (5.24a)–(5.24b) and two times integration by parts one obtains

∣∣∣gε(Hj
ε , w)− Λjε(Hj

ε , w)Hε
∣∣∣ =

∣∣∣ ∫ aε/ε

0

(
d4Hj

ε

dx4 − ε
4ΛjεHj

ε

)
w dx

+
∫ L/ε

aε/ε

(
d4Hj

ε

dx4 −
d2Hj

ε

dx2 − Λjε(1− ε1/12)Hj
ε

)
w dx

+
(
d2Hj

ε

dx2 (aε/ε− 0)− d2Hj
ε

dx2 (aε/ε+ 0)
)
w′(aε/ε)

−
(
d3Hj

ε

dx3 (aε/ε− 0)− d3Hj
ε

dx3 (aε/ε+ 0) + dHj
ε

dx
(a)
)
w(aε/ε)

∣∣∣. (5.105)

Let us estimate every term in the last expression separately. By (5.98), (5.99) and Cauchy-
Schwarz inequality one has: ∣∣∣∣∣

∫ aε/ε

0

d4Hj
ε

dx4 w dx

∣∣∣∣∣ ≤ const ε4+s||w||Vε∣∣∣∣∣
∫ aε/ε

0
ε4ΛjεHj

εw dx

∣∣∣∣∣ ≤ const ε6||w||Vε .

Analogously ∣∣∣∣∣d4Hj
ε

dx4 −
d2Hj

ε

dx2 − Λjε(1− ε1/12)Hj
ε

∣∣∣∣∣ ≤ const ε4+s for all x ∈ (aε/ε, L/ε],

by the direct substitution of (5.98), (5.99) in it. Finally, using Cauchy-Schwarz inequality and
the fact that ||w||Vε = 1 one can show that∣∣w′(aε/ε) + w(aε/ε)

∣∣ ≤ ||w||Vε = 1.

Applying last three estimates and (5.100) to expression (5.105) one arrives at (5.104). The latter
in turn implies estimate (5.103). Therefore, assumption (5.88) is shown with ν1 = 2 + s.
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5.6 Existence of Eigenvalues with Prescribed Asymptotics

Step3–proof of the assumption (5.89):
The differential of the function F jε (λ, h) is of the form,

(F jε )′(h, λ)
[
z
µ

]
= 1
ε2

[
Aεz − λε2Bεz − ΛjεBεz − µε2Bε

(
h+Hj

ε

)
(z,Hj

ε )Hε

]
.

From this it follows that[
(F jε )′(h, λ)− (F jε )′(0, 0)

] [ z
µ

]
=
[
−λBεz − µBεh

0

]
.

Assumption (5.89) is satisfied with ν2 := 2 if one proves that there exists a constant K2 > 0 such
that for all z ∈ Uε, µ ∈ R

||λBεz + µBεh||Vε ≤ K2
||h||Uε + |λ|

ε2 (||z||Uε + |µ|) . (5.106)

This follows from the following estimate:

||λBεz + µBεh||Vε = sup
||v||Vε=1

∣∣∣(Bε(λz + µh), v
)
Vε

∣∣∣
= sup
||v||Vε=1

∣∣∣ ∫ L/ε

0
f2
ε (x)(λz + µh)v dx

∣∣∣
≤ ||f2

ε ||∞ sup
||v||Vε=1

∫ L/ε

0
|λz + µh|v dx ≤

≤ ||λz + µh||Vε ≤
max{|λ|, ||h||Uε}√

2/3 ε2 (||z||Uε + |µ|),

where we used Cauchy-Schwarz inequality, definition (5.24b) and estimate (5.96). Assumption
(5.89) is proved with ν2 = 2.
Step4–proof of the assumption (5.90):
One can prove that

(
F jε
)′ (0, 0) is Fredholm of index zero by decomposing it into the sum of bijec-

tive operator plus the rest and then applying Relich-Kondrachov compactness theorem (Theorem
6.2 of Adams [52]) in order to prove that the latter one is compact. Let us prove that there are
no sequences εn > 0, zn ∈ Uεn and µn ∈ R such that

||zn||Uεn + |µn| = 1 (5.107)

and
|εn|+

∣∣∣∣∣∣ (F jεn)′ (0, 0)
[
zn
µn

] ∣∣∣∣∣∣
Zεn
→ 0 as n→∞.

The last expression is equivalent to
|εn|+

∣∣∣∣∣∣∣∣ 1
ε2
n

Aεnzn −Bεn
(
Kjzn + µnH

j
εn

)∣∣∣∣∣∣∣∣
Vεn

→ 0

1
ε2
n

(
zn, H

j
εn

)
Hεn
→ 0

.

Let us use a contradiction argument. Suppose that there exist sequences εn, zn and µn that
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satisfy expressions above. Then the last expression yields

sup
||w||Vεn=1

∣∣∣∣( 1
ε2
n

Aεnzn −Bεn
(
Kjzn + µnH

j
εn

)
, w

)∣∣∣∣
Vεn

→ 0 as n→∞. (5.108)

a) In (5.108) take a sequence

wn :=
Hm
εn

||Hm
εn ||Vεn

corresponding to a fixed m ∈ N 0. By (5.98) and (5.99) for all m ∈ N 0 there is a constant K > 0
such that

||Hm
εn ||Vεn ≤ K

From this and (5.108) it follows( 1
ε2
n

Aεnzn −Bεn
(
Kjzn + µnH

j
εn

)
, Hm

εn

)
Vεn

→ 0 for all m ∈ N 0. (5.109)

Taking m = j in the last expression, using definitions of operators Aεn , Bεn and ||Hj
εn ||Hεn ≡ 1

one obtains (
zn,

1
ε2
n

AεnH
m
εn −K

mBεnH
m
εn

)
Vεn

− µn → 0.

Let us estimate the first term in the last expression(
zn,

1
ε2
n

AεnH
m
εn −K

mBεnH
m
εn

)
Vεn

≤ ||z||Vεn ||
1
ε2
n

AεnH
m
εn −K

mBεnH
m
εn ||Vεn

≤ const
||z||Uεn
ε2
n

ε2+s
n ≤ const εsn → 0 as n→∞, (5.110)

where we used (5.107), estimate (5.96) and approximation property (5.103). Therefore, it follows
that

µn → 0 as n→∞. (5.111)

Consequently by (5.107) one obtains

||zn||Uεn → 1 as n→∞. (5.112)

Taking now m 6= j in (5.109) and using again (5.110) one obtains∣∣∣ (Km −Kj
) (
zn, H

m
εn

)
Hεn
− µn

(
Hj
εn , H

m
εn

)
Hεn

+O(εsn)
∣∣∣→ 0. (5.113)

Using definitions (5.98), (5.26), (5.24b) one gets:

(
Hj
εn , H

m
εn

)
Hεn

=
∫ bεn/εn

0
Hj
εnH

m
εn ε

4 dx+
∫ L/εn

bεn/εn

(
1− ε1/12

)
Hj
εnH

m
εn dx =

=
∫ bεn/εn

0
Hj
εnH

m
εnε

4 dx.

From (5.98) and (5.99) it follows that∫ bεn/εn

0
Hj
εnH

m
εn dx ≤ const for all n ∈ N uniformly in m,
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and therefore one has (
Hj
εn , H

m
εn

)
Hεn
→ 0 uniformly in m. (5.114)

Using this and (5.111) one obtains from (5.113) that∣∣∣(Km −Kj)
(
zn, H

m
εn

)
Hεn

∣∣∣→ 0 uniformly in m.

Further by (5.96) and (5.107) one obtains

∣∣∣ ∫ bεn/εn

0
ε4znH

m
εn dx

∣∣∣ ≤ √3/2ε2||zn||Uεn

√∫ bεn/εn

0
Hm
εnH

m
εn dx→ 0.

From this and (5.115) using again definitions (5.26), (5.24b) one arrives at

(Km −Kj)
∫ L/εn

bεn/εn
znH

m
εn dx→ 0 uniformly in m ∈ N 0. (5.115)

Using definition (5.98) and the fact that trigonometric system sin((2m+ 1)x) for m ∈ N 0 forms
an orthogonal basis in L2(0, π/2) one can show that the system {Hm

εn(x)}, m ∈ N 0 restricted to
(bεn/εn, L/εn) forms an orthogonal basis in L2(bεn/εn, L/εn) for all n ∈ N . One can also show
that there exist a constant K̃ > 0 such that

Km :=
√∫ L/εn

bεn/εn
(Hm

εn)2 dx ≥ K̃ for all m ∈ N 0.

Next, using Parseval’s identity for the orthonormal basis formed by the restriction of the system
{Hm

εn(x)/Km} to the interval (bεn/εn, L/εn) and (5.115) one obtains that∫ L/εn

bεn/εn
z2
n dx→ 0 as n→∞.

From this using for the third time definitions (5.26), (5.24b) one obtains

(zn, zn)Hεn → 0 as n→∞. (5.116)

b) Take in (5.108) a sequence of test functions wn := ε2 zn with ||wn||Vε ≤ 1 by (5.96). Then by
(5.111), (5.114), (5.116) it follows,

(Aεnzn, zn)Vεn → 0 as n→∞.

In particularly, using definition of operator Aεn one gets∫ L/εn

0

(
z′′n
)2
dx→ 0 as n→∞. (5.117)

c)We are going to show ε4
n||zn||2L2(0, L/εn) → 0 as n→∞. Define functions pn(x̄) := ε

3/2
n zn(x̄/εn),

where x̄ := εn x. Then for every n ∈ N it follows that pn(x̄) ∈ H2(0, L) ∩H1
0 (0, L). Moreover,

by (5.117) it follows ∫ L

0
(p′′n(x̄))2dx̄ =

∫ L/εn

0

(
z′′n(x)

)2
dx→ 0 as n→∞.
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By the fact that Laplacian forms an isomorphism between L2(0, L) and H2(0, L)∩H1
0 (0, L) (see

Theorem 8.12 of Gilbard and S.Trudinger [53]) it follows that∫ L

0
(pn(x̄))2 dx̄→ 0 as n→∞

and hence using definition of pn(x̄) one obtains

ε4
∫ L/εn

0
(zn(x))2 dx→ 0 as n→∞. (5.118)

Finally, combining this and (5.117) and using definition (5.95) we conclude that
||zn||Uεn → 0 as n→∞. But this contradicts to (5.112) and hence the assumption of Lemma 5.31
holds. Then Lemma 5.31 implies the assumption (5.90) and we conclude that three assumptions
of Theorem 5.30 hold applied to function (5.102).
Step5–results of the modified implicit function theorem:
Theorem 5.30 implies that for every j ∈ N 0 there exist εj > 0 and functions [hjε, λj(ε)] such that

F
j
ε(hjε, λj(ε)) ≡ 0 for all ε ∈ (0, εj),

where function F
j
ε is defined in (5.101). Therefore [hjε, λj(ε)] is a solution of the approximate

EVP “from above”. Moreover, by (5.91) and the approximation property (5.103) it follows that
there exists a constant cj > 0 such that for all ε ∈ (0, εj)

||hjε −Hj
ε ||Uε ≤ cjε2+s, |λj(ε)− Λjε| ≤ cjε4+s.

Therefore, function λj(ε) satisfies both assertions of the theorem. �

5.7 Proof of the Main Theorems

In this section we prove Theorems 5.10–5.12.
Proof of Theorem 5.12: We proceed analogously to the proof of Theorem 5.29 based on
application of the modified implicit function Theorem 5.30. We transform first EVP (5.18) to
an operator form. Define operators Aε ∈ L(Wε) and Bε ∈ L(Wε) by

(Aεh,w)Wε :=
∫ L/ε

−L/ε
h′′w′′ − rε h′w′ dx,

(Bεh,w)Wε :=
∫ L/ε

−L/ε
hw fε dx for all h, w ∈Wε,

where Hilbert space Wε is defined in (5.16) and equipped with a standard H2(−L/ε, L/ε) inner
product. Analogously to Proposition 5.32 one can show that for all ε > 0

||Aε||L(Wε) ≤ 1 and ||Bε||L(Wε) ≤ 1.

Next, we write (5.18) as a generalized EVP

h ∈Wε, λ ∈ R : Aεh = λBεh.

Now for each ε > 0 consider a function h0,ε(x) − h−ε , where h0,ε(x) is the stationary solution
from Proposition 5.2, and h−ε is its minimum value attained at the points x = ±L/ε by (5.11c).
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Motivated by observations stated before formulation of this theorem we define an approximation
for the sought solution [h∗ε, λ∗(ε)] of EVP (5.18) as

H∗ε (x) := Cε(h0,ε(x)− h−ε ) and Λ∗ε := 0. (5.119)

Again Cε in (5.119) is chosen to fulfill a normalization condition

||H∗ε ||ε :=
√

(H∗ε , H∗ε )ε ≡ 1 for all ε > 0,

where we use a scalar product (5.17) in L2(−L/ε, L/ε). Using definitions (5.14b), (5.119) and
asymptotics for h0, ε(x) given in Lemma 5.8 it is easy to check that again

Cε = O(ε1/2). (5.120)

Further, H∗ε (x) ∈ C∞(−L/ε, L/ε). Similar to the proof of Theorem 5.29 define next an operator
function

F
∗
ε : Wε × R →Wε × R , F

∗
ε

(
h, λ

)
:= 1

ε2

[
Aεh− λBεh(
h,H∗ε

)
ε
− 1

]
. (5.121)

Finally, the operator function to which we want to apply Theorem 5.30 is defined by

F ∗ε (h, λ) := F
∗
ε

(
h+H∗ε , ε

2λ
)
.

The Banach spaces in the formulation of Theorem 5.30 we take both as

Yε = Zε := R ×Wε.

Let us now prove the first assumption of Theorem 5.30 for function F ∗ε . Below we show that
there exists a constant c > 0 such that∣∣∣∣∣

∫ L/ε

−L/ε

d2H∗ε
dx2

d2w

dx2 − rε
dH∗ε
dx

dw

dx
− Λ∗εfεH∗εw dx

∣∣∣∣∣ ≤ c√ε exp
(
− α

ε2/3

)
, (5.122)

for all w ∈ Wε with ||w||Wε = 1. Analogously to the proof of Theorem 5.29 this in turn implies
approximation property (5.88) with any ν1 > 0, namely

||F ∗ε (0, 0)||Wε×R ≤ cε−3/2 exp
(
− α

ε2/3

)
. (5.123)

Let us then show (5.122). Applying two times integration by parts one obtains∣∣∣∣∣
∫ L/ε

−L/ε

d2H∗ε
dx2

d2w

dx2 − rε
dH∗ε
dx

dw

dx
− Λ∗εfεH∗εw dx

∣∣∣∣∣ =

=
∣∣∣∣∣
∫ L/ε

−L/ε

(
d4H∗ε
dx4 + d

dx

(
rε
dH∗ε
dx

)
− Λ∗εfεH∗ε

)
w dx−

(
d2H∗ε
dx2

dw

dx

) ∣∣∣L/ε
−L/ε

∣∣∣∣∣ =

= |Cεh′′0,ε(L/ε)(w′(L/ε)− w′(−L/ε))| ≤ c
√
ε exp

(
− α

ε2/3

)
,

where we also use definitions (5.119), (5.14a)–(5.14b), equation (5.11a) and estimates (5.47),
(5.120). Therefore, for any ν1 > 0 there exists ε̃ > 0 such that assumption (5.88) holds with ν1
for all ε ∈ (0, ε̃).

Next, an analog to crucial estimate (5.106) in Theorem 5.29 for the proof of assumption (5.89)
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of Theorem 5.30 in this case has a form:

||λBεz + µBεh||Wε ≤ K2(||h||Wε + |λ|) (||z||Wε + |µ|) .

Therefore, we conclude that assumption (5.89) holds with ν2 := 0. The proof of assumption
(5.90) proceeds again using Lemma 5.31 and the contradiction argument as in the Step 4 of the
proof of Theorem 5.29. We should just point out that in the current case linearized operator
(F ∗ε )′(0, 0) has a more simple form

(F ∗ε )′(0, 0)
[
z
µ

]
= 1
ε2

[
Aεz − ε2µBεH

∗
ε

(z,H∗ε )Hε

]
,

and therefore in the points corresponding to a)–b) of Step 4 of the proof of Theorem 5.29 one
needs to consider only two test sequences

wn =
H∗εn

||H∗εn ||Wεn
and wn = zn

||zn||Wεn
.

Finally, Theorem 5.30 implies that there exists ε∗ > 0 and for each ε ∈ (0, ε∗) functions
[h∗ε, λ∗(ε)] such that

F
∗
ε(h∗ε, λ∗(ε)) ≡ 0.

Therefore, [h∗ε, λ∗(ε)] is a solution to the symmetric EVP (5.18). Moreover, by (5.91) and ap-
proximation property (5.123) there exists a number c∗ > 0 such that

||h∗ε −H∗ε ||Wε ≤ c∗ε−3/2 exp
(
− α

ε2/3

)
, |λ∗(ε)| ≤ c∗ε1/2 exp

(
− α

ε2/3

)
.

Theorem 5.30 also gives that there exists δ∗ > 0 such that for each ε ∈ (0, ε∗) one has λ∗(ε) is
unique eigenvalue of EVP (5.18) in the band |λ| ≤ δ∗ε2. The theorem is proved. �

Proof of Theorem 5.11: Let us first for each j ∈ N 0 show the existence of eigenvalues λjD(ε)
from the assertions of the theorem. By Theorem 5.24 and Theorem 5.29 there exists ε0 > 0 such
that for all ε ∈ (0, ε0)

λ2,0
ε =

(
π

2(L−A/P )ε
)2

+ o(ε2)

is the smallest eigenvalue of the EVP “from above” (i.e. of (5.27) for i = 2). Recall that the
spectrum of (5.27) is ordered for each ε > 0 as stated in (5.28). From Proposition 5.20 and
relation (5.33) it follows that for sufficiently small ε > 0

λ2,0
ε ≥ λ0

D,ε ≥ λ1,0
ε ,

where λ0
D,ε is the smallest eigenvalue of Dirichlet half-droplet EVP (5.21), which spectrum is

ordered as stated in (5.31), and λ1,0
ε is the smallest eigenvalue of the EVP “from below” (i.e. of

(5.27) for i = 1). From this and Theorem 5.24 applied to the EVP “from below” it follows that

λ1,0
ε =

(
π

2(L−A/P )ε
)2

+ o(ε2),

and therefore also
λ0
D,ε =

(
π

2(L−A/P )ε
)2

+ o(ε2).
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5.7 Proof of the Main Theorems

Next, let us consider eigenvalue λ2,1
ε from the ordering (5.28). Theorem 5.24, Theorem 5.29 and

Lemma 5.27 yield that there exists ε1 > 0 such that for all ε ∈ (0, ε1)

λ2,1
ε =

( 3π
2(L−A/P )ε

)2
+ o(ε2).

Using this and again relation (5.33) for j = 1, i.e.

λ2,1
ε ≥ λ1

D,ε ≥ λ1,1
ε ,

and applying Lemma 5.27 to eigenvalues λ1,0
ε and λ1,1

ε one obtains that also

λ1,1
ε =

( 3π
2(L−A/P )ε

)2
+ o(ε2)

λ1
D,ε =

( 3π
2(L−A/P )ε

)2
+ o(ε2).

Proceeding further by induction one obtains that for every j ∈ N 0 there exists a mapping λjD(ε)
satisfying assertions (i) and (ii) of the theorem. Here we use that every eigenvalue of the Dirichlet
half-droplet EVP (5.21) is also eigenvalue of the initial EVP (5.18).
Analogously, using Remarks 5.16, 5.25 and Theorem 5.12 one can show the existence of eigen-

values of the Neumann half-droplet problem (5.22)

λjN (ε) =
(

π(2j + 1)
2(L−A/P )ε

)2
+ o(ε2), j ∈ N 0

and
λ∗(ε) = O

(
ε1/2 exp

(
− α

ε2/3

))
.

Therefore, they are also eigenvalues of the initial EVP (5.18) and satisfy assertions (i) and (ii)
of Theorem 5.11.
Finally, let us prove assertion (iii) of the theorem. From asymptotics

λjD(ε) =
(

π(2j + 1)
2(L−A/P )ε

)2
+ o(ε2)

and eigenvalue ordering (5.31) it follows that for every j ∈ N 0 there exists δj > 0 and εj > 0
such that for each ε ∈ (0, εj) one has if λ is an eigenvalue of the Dirichlet half-droplet EVP with∣∣∣∣∣λ−

(
π(2j + 1)

2(L−A/P )ε
)2∣∣∣∣∣ ≤ δjε2

then λ = λjD,ε. The analogous rule, in general with different δ̃j > 0, ε̃j > 0 for j ∈ {∗, 0, 1, 2, ...},
should hold for eigenvalues of the Neumann half-droplet problem. Taking when necessary the
minimum of δj , δ̃j and of εj , ε̃j and using the fact that any eigenvalue of the EVP (5.18) is either
eigenvalue of the Dirichlet (5.21) or Neumann (5.22) half-droplet EVPs implies assertion (iii) of
the theorem. �
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Chapter 5 Spectrum Asymptotics in a Singular Limit

Proof of Theorem 5.10 is based on the proofs of Theorem 5.11–5.12 above. Following the
former one for each j ∈ N 0 function

λjD(ε) =
(

π(2j + 1)
2(L−A/P )ε

)2
+ o(ε2). (5.124)

gives j-th eigenvalue of the Dirichlet half-droplet problem (5.21). Moreover, for sufficiently small
ε > 0 there are no eigenvalues of (5.21) on the interval (λjD,ε, λ

j+1
D,ε ) and λ0

D,ε is the smallest one.
Take now a sequence {εl} → 0 and let {λεl} be a sequence of eigenvalues of the Dirichlet

half-droplet EVP (5.21) such that there exists a positive number K∗ with∣∣∣∣∣λεlε2
l

∣∣∣∣∣ ≤ K∗ for all l ∈ N .

There exists j ∈ N such that (
π(2j + 1)

2(L−A/P )

)2
≥ K∗

Therefore, by eigenvalue ordering (5.31) for all sufficiently large l ∈ N there exists jl ∈ N 0 such
that λεl = λjlD,εl . Then asymptotics (5.124) implies that

dist
(
λεl
ε2
l

,M \ {0}
)
→ 0.

Completely analogously one can show that

dist
(
λεl
ε2
l

,M

)
→ 0

given a sequence {εl} → 0 and a corresponding sequence {λεl} of eigenvalues of the Neumann
half-droplet problem (5.22) with |λεl/ε2

l | ≤ K∗ for all l ∈ N .
Now assertion (i) of the theorem follows from the fact that any eigenvalue of (5.18) is either

eigenvalue of EVP (5.21) or one of EVP (5.22). The assertion (ii) of the theorem follows from
the facts that

λ0
D,ε, λ

0
N,ε ∼

(
π

2(L−A/P )ε
)2

and that the smallest eigenvalue of EVP (5.18) λ∗ε is negative, see Remark 5.6. �

5.8 Numerical Solutions and Comparison

Here we describe numerical solution of the EVP (5.12) and compare it with the leading order
approximations (5.98), (5.119) for the set of eigenvalues of symmetric EVP (5.18), existence of
which was proved in Theorems 5.11–5.12.
Our algorithm of numerical solution consists of three steps. Firstly, for fixed P, L and suffi-

ciently small ε > 0 we solve (5.11a) with boundary conditions

h′0, ε(±L/ε, P ) = 0

numerically and calculate the stationary solution h0, ε(x). Using h0, ε(x) we then calculate the
coefficient functions for the linear operator Lε. Secondly, we apply a finite difference discretization
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5.8 Numerical Solutions and Comparison

j 0 1 2 3 4 5
λappr/ε

2 0.1381 1.2431 3.4532 6.7682 11.1883 16.7134
λnum/ε

2 0.1437 1.2926 3.5843 7.0068 11.5425 17.1675

Table 5.1: Comparison of the first 6 eigenvalues for the Dirichlet eigenvalue problem (5.21) with
P = 0.1, L = 10, ε = 10−6.

on a uniform mesh on the interval [−L/ε, L/ε] to linear operator Lε including also boundary
conditions (5.9). The resulting approximation of our finite-difference scheme is O(1/N2), where
N is a mesh size. Finally, the problem transforms to one of finding eigenvalues and eigenfunction
of the matrix A ∈M(N ×N) corresponding to discretized operator Lε. We calculate them using
Implicitly Restarted Arnoldi Method, which was developed in Lehoucq and Sorensen [54] for
the cases of large sparse matrices and implemented in the Fortran library ARPACK. The set of
eigenpairs of matrix M give us a numerical approximation for the smallest eigenpairs of EVP
(5.12). In Table 5.1 we compare first six eigenvalues calculated numerically (second row) for
the Dirichlet half-droplet problem (5.21) and using analytical approximations (5.98) (first row).
Similar agreement between numerical results and analytical approximations (5.98), (5.119) were
obtained for eigenvalues of Neumann half-droplet problem (5.22). Our numerics also shows that
for fixed ε > 0 and j ∈ N0 the corresponding λjD,ε and λjN,ε are very close. In Figure 5.6 two
numerically obtained eigenfunctions corresponding to eigenvalues −λ2

D,ε and −λ2
N,ε of initial EVP

(5.12) are presented. As was stated in section 5.1 eigenfunctions of EVP (5.12) are derivatives
of corresponding eigenfunctions of symmetric EVP (5.18). According to this and that the set of
solutions to the latter problem is the union of solutions to Dirichlet and Neumann half-droplet
EVPs (see section 5.3) Figure 5.6 shows that the left numerical eigenfunction is an even function
and corresponds to the derivative of the eigenfunction for the Dirichlet half-droplet problem.
The right one is an odd function and corresponds to the derivative of the eigenfunction for the
Neumann half-droplet problem.

Figure 5.6: Eigenfunctions corresponding to eigenvalues −λ2
D,ε (left) and −λ2

N,ε (right) of EVP (5.12),
P = 0.1, L = 10, ε = 10−6.

Figure 5.6 shows clearly two regions in the interval [−L/ε, L/ε]. In the outer interval both
eigenfunctions are represented by trigonometric functions and in the inner one corresponding to
the droplet core by polynomials. This stays in a good correspondence with the approximation
for eigenfunctions from Remark 5.28 and (5.98). Due to chosen very small ε = 10−6 and the
fact that the relative length of the contact line interval between those regions tends to zero as
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ε → 0 (see Lemma 5.8) numerically on Figure 5.6 we observe this interval as a point. Another
observation concerns smoothness of the numerical eigenfunctions. In Figure 5.6 one can see
that the first derivative of eigenfunctions is discontinuous at this point. This can be explained
using the analytical result that we obtained for the approximate problem “from below” (see
Remark 5.28), namely in the contact line region the derivative of eigenfunctions for the above
problem oscillates fast proportionally to the negative power of ε. Therefore, it is a challenging
numerical problem to resolve derivatives of eigenfunctions in this very small contact line region.
Nevertheless numerical eigenfunctions from Figure 5.6 are continuous and this stays also in the
correspondence with our analytical result (see Remark 5.28) which predicts that in the contact
line region to the leading order in ε an eigenfunction itself is determined by a constant and do
not possesses oscillations.
Finally, Figure 5.7 shows the numerical eigenfunction of EVP (5.12) corresponding to the

exponentially small eigenvalue−λ∗ε . Comparing Figures 5.5 and 5.7 one can see that this function
is close to h′0,ε(x). This stays in a agreement with approximation (5.119) for the corresponding
eigenfunction of the symmetric EVP (5.18).

Figure 5.7: Eigenfunction corresponding to eigenvalue −λ∗ε of EVP (5.12), P = 0.1, L = 20, ε = 10−2.

104



Chapter 6

Summary and Outlook

In this study we considered the topic of derivation, analysis and numerics of reduced ODE
models corresponding to lubrication equations (1.2), (1.3a)–(1.3b) describing physically weak-
slip regime and strong-slip regime and their limiting cases (1.6), (1.8), (1.7a)–(1.7b) describing
no-slip, intermediate and free suspended films regimes, respectively. The analysis of the reduced
ODE models was geared towards the investigation of the influence of slippage on the coarsening
dynamics of thin liquid polymer droplets. We summarize our results in detail in a list below.

• Asymptotical derivation of reduced ODE models. We derived asymptotically re-
duced ODE models (2.66) corresponding to the whole family of lubrication equations cited
above. The reduced ODE models describe evolution in time for the set of pressures and
positions of the droplets in an array. For each droplet in an array corresponds two equa-
tions, which are coupled with others through nonlinear functions corresponding to the mass
fluxes that the droplet experiences due its neighbors. We found that the difference between
the reduced model for general mobility model (1.9) which generalize no-, intermediate- and
weak-slip cases, and the one for strong-slip model (1.3a)-(1.3b) lies in the mobility
coefficients (2.28) and (2.42). Moreover, in the latter case the mobility coefficient essentially
depends on the slip-length β.

• Numerical investigation of reduced ODE models. We proposed a numerical algo-
rithm for the solution of the reduced systems, compared their results with those given by
numerical solutions of initial lubrication equations and found a good agreement between
them.

• Influence of slippage on migration. After derivation of the asymptotics for the mobility
coefficient (2.42) of the reduced ODE model corresponding to the strong-slip equation
(1.3a)–(1.3b) with respect to the small parameter ε, which appears in the pressure function
(1.4), we found a unique critical slip-length βcrit, which decides the direction of migration
of droplets. If the slip-length is smaller than above critical value the droplet migrates
opposite to the direction of applied effective flux. If the slip-length is bigger than the
critical value the droplet migrates in the direction of applied effective flux. We investigated
then numerically the influence of this effect on the coarsening scenarios for arrays of many
droplets and showed that the collision dominated coarsening rates depend on the value of
slip-length.
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• Alternative derivation of reduced models using formal reduction onto an “ap-
proximate invariant” manifold. Motivated by a center-manifold reduction approach
of Mielke and Zelik [4] for semilinear parabolic equations we applied it formally for the
derivation of the reduced ODE model for the case of the no-slip lubrication model. After
that we compared the new reduced system with previously asymptotically derived one and
found a good agreement. This formal approach could admit in future a rigorous justifica-
tion via center-manifold reduction technique. We stated main open questions, which are
needed to be solved for the rigorous justification of our formal approach and in the next
point solved rigorously one of them.

• Derivation of the spectral gap property. We described asymptotics for the spectrum
of the no-slip lubrication equation linearized at the stationary solution h0, ε introduced in
Proposition 5.2 with respect to the small parameter ε tending to zero. This eigenvalue
problem turned out to be a singular perturbed one. We showed rigorously the existence of
an ε dependent spectral gap.

• Existence of eigenvalues with prescribed asymptotics for singular perturbed
eigenvalue problem. Besides spectral gap property using a modified implicit function
theorem first suggested by Recke and Omel’chenko [5] we showed the existence of eigen-
values with prescribed asymptotics, in particular of exponentially small one. These results
offer a new technique for solving certain type of singular perturbed eigenvalue problems.

Finally, we would like to suggest three topics which could be considered as an extension of this
study and interesting for an investigation in future.

• In section 2.5.2 we suggested a flux approximation in the reduced ODE model corresponding
to strong-slip lubrication model (1.3a)–(1.3b). As we found there this approximation is valid
only for relative small slip-lengths. In future we plan to derive an approximation which
will satisfactory for all slip-lengths. This would allow us to simulate collision dominated
coarsening rate with moderate β and put more light on analytical dependence of them on
the slip-length.

• In section 2.7 we made preliminary numerical investigation of influence of inertia on the
evolution governed by strong-slip lubrication model(1.3a)–(1.3b). They showed that for
high Re numbers, which do not satisfy condition (2.29), the validity of reduced ODE
models breaks down. Moreover, the height profile of the solution experiences oscillations.
The possibility of new ODE reduced models which cover above mentioned effects is an
interesting topic for future investigations.

• The spectral gap property shown in Chapter 5 indicates for a possibility of making the for-
mal reduction approach of Chapter 4 rigorous by proving an existence of a center invariant
manifold in a neighborhood of the ’approximate’ one, at least in the case of one migrating
droplet. This problem seems to be at the same rate interesting as difficult because it inher-
its the singular perturbed nature of linearized eigenvalue problem considered in Chapter
5. The next possible step in rigorous justification of it could be the proof of an analog
of Theorem 8.5 of Mielke and Zelik [4], which states the existence of the center-manifold,
using already known spectral gap property.
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List of main symbols

Derivatives

h′ε(x), h′′ε(x), h(k)
ε (x) derivatives w.r.t. x of function h with variables ε and x

∂x, ∂xx, ∂
k
x partial derivatives with respect to variable x

Constants

Re Reynolds number
b, β different scalings of the slip-length, page 4
A droplet contact angle, page 64
k1 maximum of function rε(x), page 71
d, P∗, P

∗ positive numbers introduced in Proposition 2.2, page 10

Functions and Operators

aε, bε functions introduced in Lemma 5.8, page 67
βcrit(ε, P ) critical value of slippage, page 39
E(h) Lyapunov functional (2.16) for (1.9), page 14
E(u, h) Lyapunov functional (2.17) for (1.3a)–(1.3b), page 14
Fε quasilinear elliptic operator (4.2), page 48
M(h) mobility term in (1.9), page 5
m ε diffeomorphism between Bε and Pε , page 49
Π(h) scaled intermolecular pressure function (5.8), page 65
Pm projection on the tangent space TmPε , page 56
rε(x), fε(x) coefficient functions in EVP (5.18), page 66
r1
ε(x), f1

ε (x) approximations from above for rε(x), fε(x), page 72
r2
ε(x), f2

ε (x) approximations from below for rε(x), fε(x), page 72

T (ĥε, ∂xĥε, ∂xxĥε) Trouton term (2.37), page 18
Uε(h) potential function (1.5), page 4
U(h) scaled potential function (5.38), page 75
Uε(h, P ) function (2.7), page 10
Uε(h) function (5.37a), page 75
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List of main symbols

χ(x) characteristic function, page 49
χj(s ), j = 0, ..., N partitions of unity on interval (−L, L), page 49
φj(s ), j = 0, ..., 2N − 1 functions spanning the tangent space TmPε , page 49
ψj(s ), j = 0, ..., 2N − 1 ’adjoint’ functions, page 52
ψ̄j(s ), j = 0, ..., 2N − 1 functions defined in Proposition 4.4, page 55

Stationary solutions

ĥε(x, P ) stationary solution to (1.9) on R , page 9

ĥ−ε (P ), ĥ+
ε (P ) minimum (2.3a) and maximum (2.3b) of ĥε(x, P ), page 9

ĥcε(P ) elliptic center point to equation (2.4), page 9
h0, ε(x, P ) stationary solution to (5.1) with (5.2), page 64
h0 ε(x) stationary solution to (5.7) with (5.9), page 65
h−ε , h

+
ε minimum and maximum of h0 ε(x), page 76

ĥsc, ε(x) homoclinic solution to equation (5.34), page 75

ĥ−sc, ε, ĥ
+
sc, ε minimum and maximum of ĥsc,ε(x), page 75

ĥcsc, ε elliptic center point of equation (5.34), page 75

Sets and Spaces

Bε open set (4.4) in R 2N , page 48
M discrete countable set (5.19), page 68
Hε L2(0, L/ε) with weighted inner product (5.26), page 72
Pε ’approximate invariant’ manifold , page 49
∂Pε boundary of manifold Pε , page 49
σε spectrum of EVP (5.18) for a fixed ε > 0, page 68
TmPε tangent space to manifold Pε at a point m , page 49
Wε H2(−L/ε, L/ε) ∩H1

0 (−L/ε, L/ε) with the
standart inner product of H2(−L/ε, L/ε), page 66

Vε H2(0, L/ε) ∩H1
0 (0, L/ε) with the

standart inner product of H2(0, L/ε), page 71
Uε H2(0, L/ε) ∩H1

0 (0, L/ε) with inner product (5.95), page 92
(h, w)ε weighted inner product (5.17) in L2(−L/ε, L/ε), page 66
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