
Mining Relations from the Biomedical Literature

D I S S E R TAT I O N

zur Erlangung des akademischen Grades

Dr. Rer. Nat.
im Fach Informatik

eingereicht an der
Mathematisch-Wissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Dipl. Inf. Jörg Hakenberg

Düren, 15. Juli 1975

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Dr. h.c. Christoph Markschies

Dekan der Mathematisch-Wissenschaftlichen Fakultät II:
Prof. Dr. Peter Frensch

Gutachter:
1. Prof. Dr. Ulf Leser
2. Prof. Dr. Hans-Dieter Burkhard
3. Prof. Dr. Udo Hahn

eingereicht am: 11. März 2009
Tag der mündlichen Prüfung: 11. September 2009

Abstract

Text mining deals with the automated annotation of texts and the extraction of
facts from textual data for subsequent analysis. Such texts range from short arti-
cles and abstracts to large documents, for instance web pages and scientific arti-
cles, but also include textual descriptions in otherwise structured databases. This
thesis focuses on two key problems in biomedical text mining: relationship extrac-
tion from biomedical abstracts —in particular, protein–protein interactions—, and
a pre-requisite step, named entity recognition —again focusing on proteins.

This thesis presents goals, challenges, and typical approaches for each of the
main building blocks in biomedical text mining. We present out own approaches
for named entity recognition of proteins and relationship extraction of protein-
protein interactions. For the first, we describe two methods, one set up as a classifi-
cation task, the other based on dictionary-matching. For relationship extraction, we
develop a methodology to automatically annotate large amounts of unlabeled data
for relations, and make use of such annotations in a pattern matching strategy. This
strategy first extracts similarities between sentences that describe relations, stor-
ing them as consensus patterns. We develop a sentence alignment approach that
introduces multi-layer alignment, making use of multiple annotations per word.
For the task of extracting protein-protein interactions, empirical results show that
our methodology performs comparable to existing approaches that require a large
amount of human intervention, either for annotation of data or creation of models.

ii

Zusammenfassung

Textmining beschäftigt sich mit der automatisierten Annotierung von Texten und
der Extraktion einzelner Informationen aus Texten, die dann für die Weiterver-
arbeitung zur Verfügung stehen. Texte können dabei kurze Zusammenfassungen
oder komplette Artikel sein, zum Beispiel Webseiten und wissenschaftliche Artikel,
umfassen aber auch textuelle Einträge in sonst strukturierten Datenbanken. Die-
se Dissertationsschrift bespricht zwei wesentliche Themen des biomedizinischen
Textmining: die Extraktion von Zusammenhängen zwischen biologischen Entitä-
ten —das Hauptaugenmerk liegt dabei auf der Erkennung von Protein-Protein-
Interaktionen—, und einen notwendigen Vorverarbeitungsschritt, die Erkennung
von Proteinnamen.

Diese Schrift beschreibt Ziele, Herausforderungen, sowie typische Herangehens-
weisen für alle wesentlichen Komponenten des biomedizinischen Textmining. Wir
stellen eigene Methoden zur Erkennung von Proteinnamen sowie der Extrakti-
on von Protein-Protein-Interaktionen vor. Zwei eigene Verfahren zur Erkennung
von Proteinnamen werden besprochen, eines basierend auf einem Klassifikations-
problem, das andere basierend auf Suche in Wörterbüchern. Für die Extraktion
von Interaktionen entwickeln wir eine Methode zur automatischen Annotierung
großer Mengen von Text im Bezug auf Relationen; diese Annotationen werden
dann zur Mustererkennung verwendet, um anschließend die gefundenen Mus-
ter auf neuen Text anwenden zu können. Um Muster zu erkennen, berechnen wir
Ähnlichkeiten zwischen zuvor gefundenen Sätzen, die denselben Typ von Rela-
tion/Interaktion beschreiben. Diese Ähnlichkeiten speichern wir als sogenannte
‘consensus patterns’. Wir entwickeln eine Alignmentstrategie, die mehrschichtige
Annotationen pro Position im Muster erlaubt. In Versuchen auf bekannten Bench-
marks zeigen wir empirisch, dass unser vollautomatisches Verfahren Resultate er-
zielt, die vergleichbar sind mit existierenden Methoden, welche umfangreiche Ein-
griffe von Experten voraussetzen.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 3
1.3. Outline of this Thesis . 4

2. Text Mining 5
2.1. Information Extraction . 7

2.1.1. Named Entity Recognition . 7
2.1.2. Named Entity Identification . 12
2.1.3. Word Sense Disambiguation . 13
2.1.4. Relation Mining . 15

2.2. Machine Learning . 16
2.2.1. Classification . 21
2.2.2. Clustering . 25
2.2.3. Sequence Learning . 29

2.3. Natural Language Processing . 32
2.3.1. Sentence Splitting . 32
2.3.2. Tokenization . 34
2.3.3. Part-of-Speech Tagging . 34
2.3.4. Stemming . 36
2.3.5. Sentence Chunking . 37
2.3.6. Shallow Parsing . 37
2.3.7. Full Sentence Parsing . 37

3. Named Entity Recognition 41
3.1. Token-based Named Entity Recognition 42

3.1.1. Classification task . 42
3.1.2. Post-processing to find multi-word terms 46
3.1.3. Evaluation . 48

3.2. Dictionary-Based Named Entity Recognition 53
3.3. Extension of Dictionary-Based Approaches to Named Entity Identification 55
3.4. Related Work . 56

3.4.1. Dictionary-based approaches . 58
3.4.2. Rule-based approaches . 60
3.4.3. Classification-based approaches 61
3.4.4. Sequence-based approaches . 62

v

Contents

3.4.5. Hybrid approaches . 63
3.5. Conclusions . 65

4. Language Patterns 67
4.1. Pattern representation . 69

4.1.1. Consensus patterns . 70
4.1.2. Multi–layer patterns . 70
4.1.3. Weighted multi–layer patterns . 73

4.2. Matching patterns against text . 73
4.2.1. Patterns as regular expressions . 74
4.2.2. Pattern matching with sentence alignment 76
4.2.3. Substitution matrices . 77
4.2.4. Dynamic programming to solve the alignment problem 79
4.2.5. Weighted multi–layer alignment 79

4.3. Learning patterns with multiple sentence alignment 81
4.3.1. Clustering of initial patterns . 81
4.3.2. Multiple sentence alignment . 83

4.4. Pattern generation by pairwise alignment 84
4.5. Optimization using genetic algorithms . 85

5. Applications and Evaluation 89
5.1. Collecting a large pattern sample . 89

5.1.1. Curated data bases to find examples 89
5.1.2. Protein–protein interaction patterns using IntAct 90

5.2. Assigning attributes to relations . 91
5.2.1. Predicting directed relations . 91

5.3. Mining protein-protein interactions . 92
5.3.1. Hand–crafted patterns . 92
5.3.2. Optimized patterns . 92
5.3.3. Patterns learned from large samples 97

5.4. Related Work . 103
5.4.1. Evaluation corpora for relationship extraction 104
5.4.2. Co–occurrence–based approaches 106
5.4.3. Classification . 107
5.4.4. Pattern–based approaches . 107
5.4.5. Sentence parsing and graph kernels 109
5.4.6. Sentence alignment . 112
5.4.7. Learning patterns for information extraction 112

5.5. Conclusions . 113

6. Visualization of networks — AliBaba 115
6.1. Case studies . 117

7. Summary and Outlook 125

vi

Contents

7.1. Summary . 125
7.2. Contribution . 126
7.3. Future directions . 127

A. Data sets 131
A.1. Corpora . 131
A.2. Databases and terminologies . 133
A.3. Interaction-indicating words . 135
A.4. Part-of-speech tags . 137
A.5. Substitution matrix for part-of-speech tags 138

B. Algorithms 141
B.1. Hidden Markov Models . 141

vii

1. Introduction

1.1. Motivation

The field of molecular biology has experienced a shift from experiments to collect data
to experiments to test hypotheses in recent years [Blagosklonny and Pardee, 2002]. Yet,
biological databases grow rapidly in information vital to experimental research in the
life sciences. They provide access to vast amounts of data that can be queried and
narrowed down in manageable ways, extracting pieces of information sought by each
particular user. Such pieces help raising or rejecting hypotheses, and lead to further
experiments if necessary. The number of biological databases and entries therein grow
steadily, but first and foremost, most of the information are added by database cura-
tors and not the original researchers. The reason is that still, the choice for publishing
experimental findings are journal articles. This comes with the reputation gained by
publishing results in articles, as opposed to databases, the unfamiliarity of researchers
with databases, and the difficulties that come with trying to express complex results
in structured form. Although some journals require authors to submit their data to
renowned databases, a study by Noor et al. [2006] showed that up to 15% (depending
on the journal) of DNA sequence data was never submitted. Many authors submitted
data described in their paper, but did not mention accession numbers, for instance, for
retrieving the data in GenBank.

Information contained in publications outnumber data deposited in databases by
far. As an example, consider databases on protein-protein interactions, such as IntAct,
MINT, and DIP [Hermjakob et al., 2004, Chatr-aryamontri et al., 2007, Xenarios et al.,
2001]. The number of entries contained in either one lies between 56,000 (DIP) and
110,000 (IntAct). In contrast, Fundel et al. [2007] found 150,000 protein-protein interac-
tions in one million PubMed abstracts1 (this number includes duplicates). This number
might grow to over 600,000 for all circa 9.6 million abstracts available, and even more
if one considers full-text publications2. These estimates are roughly consistent with ex-
periments by Donaldson et al. [2003], who predicted that in PubMed abstracts, 269,000
protein-protein interactions were discussed for human, mouse, and yeast alone (out of
1.88 million abstracts containing proteins from either species). Despite sheer numbers,
another factor when it comes to hypothesis-driven experimental research is the relia-
bility of data. Regarding the aforementioned databases, as much as 70% of the data
(IntAct) originate from large-scale, high-throughput screening assays (such as yeast-

1PubMed is a major resource for literature searches, indexing more than 4500 journals, with citations for
almost 18 million life scientific articles.

2Currently, more than 2.3 million full-text articles are open-access; an additional 6 million are linked from
PubMed citations.

1

1. Introduction

two hybrid screens and bimolecular fluorescence complementation), which are much
less reliable than small-scale experiments (for instance, co-immunoprecipitation and
tandem affinity purification). Regarding peer-reviewed journal articles, however, one
can assume that only reliable information is discussed in an abstract; data from large-
scale experiments tends to appear in tables, figures, or as supplementary information
only.

In addition to abstracts and full-text articles, highly informative fields in database
often contain pieces of text or references to publications. However, accessing the infor-
mation in text and extracting data is very effort intensive when done manually. Any
form of automated systems helping database curators and researchers to access recent
developments can lead to improvements in terms of time and costs. Even modest im-
provements in efficiency are potentially significant [Berleant et al., 2003, Kerrien, 2007].

Applications of text mining to molecular biology are among the most studied dur-
ing the last years. A large quantity of systems proposed focused on the recognition
of protein (or gene) names in texts, the extraction of protein–protein and protein–gene
interactions from texts, or the functional annotation of proteins based on evidences
found in texts. These applications help researchers and database curators to access
data provided in publications in an automated way. Tasks for text mining systems
include finding relevant literature for a given gene or protein, finding relevant infor-
mation on a gene, and extracting data on complex relationships [Altman and Klein,
2002]. Information about relationships and full pathways are required to understand
intra- and inter–cellular processes at a system level and are substantial to the develop-
ment of biological models [Kitano, 2002]. An important component for most biolog-
ical functions are interactions between proteins, which are the focus for applications
of methods discussed in this thesis. Protein-protein interactions govern signal trans-
duction, molecular transportation, help form the structure of a cell, among others, and
thus are crucial to almost every process in living cells. Huge efforts are focusing on
the detection of protein-protein interactions, with a multitude of detection methods
available. However, the most reliable among those methods (mainly small–scale exper-
iments such as co–immunoprecipitation) are quite costly, whereas comparatively cheap
large–scale experiments yield high false positive rates (yeast two–hybrid screens are an
example). Findings of such detection experiments are published in journal articles; and
only slowly the data find their way into databases by manual curation, where they can
be found by other researchers. One of the goals in biomedical text mining thus is to
help speeding up this curation process. Ultimate goals in molecular biology are quan-
titative modeling of processes, were also enzymes and other substances are involved,
understanding co–expression of genes, deeper understanding of signal transduction
pathways, and interdependencies of various pathways. A further task for text mining
would thus be to not only annotate proteins with functions, processes, and locations
(categories from the Gene Ontology [Gene Ontology Consortium, 2006]), but to find
experimental data supporting such annotations, as well as information on the type of
experiment, species, experimental conditions, among others.

As mentioned before, most recent results in molecular biology and related fields are
published in written language: publications in journals, books, conference contribu-

2

1.2. Contribution

tions, and web pages. In contrast, even renowned biological databases lack these data
for some time after they are published: to ensure quality, most databases are manu-
ally curated, at the cost of quantity and recentness. While databases present an easy
access and enable complex querying, the access to facts in publications is hindered
by several problems. The huge amount of publications would require researchers to
monitor a large list of journals, pick all relevant articles, and read these to learn about
important facts discussed therein. Also, complex queries over natural language text,
as compared to structured databases, is still impossible for the lack of methods to au-
tomatically identify facts in text. Certain facts are hard to express in predefined, struc-
tured ways, while it is comparatively easy to explain them in natural language. This is
reflected by databases organized in a way that important fields contain mere textual de-
scriptions; for instance, descriptions of a protein’s implications in diseases or functions
in UniProt.

Complexity and variability of natural language complicate accessing facts in publi-
cations. Although parsers for sentences gain in quality of their predictions, is is still a
hard problem to relate objects to each other in a precise and well–defined way (which
would be the pendant to structured databases.) Objects in biomedical texts can refer to
proteins, genes, diseases, and so on, and we will show in Chapter 2 (see Section 2.1.1)
why finding such named entities is a difficult task. Relations between objects (an inter-
action between proteins, a protein’s association with a disease, etc.) can be expressed in
an infinite number of ways using. Section 2.1.4 in Chapter 2 will present the difficulties
for the task of extracting such relations from text.

1.2. Contribution

As main contribution of this thesis, we present a method to automatically extract and
refine sets of language patterns from unannotated data. We introduce the idea of mul-
tiple sentence alignment to find commonalities between similar patterns and express
these in consensus patterns. As alignment strategy, we propose multi–layer alignment
that takes into account not only part–of–speech tags (as other systems do), but also
includes tokens and word stems to ensure precision.

• As a prerequisite for subsequent components, we first introduce two methods
for named entity recognition, focusing on protein and gene names. One is based
on a model learned from training data and solves the general problem; the other
works with a pre–defined dictionary and is useful when lists of named entities are
known beforehand. The later approach also implicitly helps in solving the prob-
lem of mapping recognized entities to database identifiers, which is necessary for
our subsequent components. We further discuss our successful approach to gene
mention normalization.

• We introduce sentence alignment as an inexact matching strategy to compute the
similarity between two sentences. Most work shown previously transforms pat-
terns into regular expressions for matching, resulting in binary decisions rather

3

1. Introduction

than quantitative measures.

• We show a new method to extract language patterns from unannotated data. Sys-
tems proposed previously were based on hand–crafted pattern sets or needed
annotated data to extract patterns.

• As these initial patterns do not generalize well, we present a novel method to re-
fine sets of language patterns to allow for larger coverage. We therefore introduce
a clustering method based on sentence similarity.

• We introduce multiple sentence alignment to find commonalities between groups
of similar sentences. Such commonalities can then be expressed in consensus
patterns, reflecting observation frequencies to aid alignment at application time.

• We present an adapted implementation of alignment; it is the first of its kind (to
our knowledge) to take into account not only a single type of information (such
as amino acids for protein sequences, or part–of–speech tags for sentences), but
has access to multiple annotation layers (that is, part–of–speech tags, tokens, and
word stems).

1.3. Outline of this Thesis

Chapter 2 introduces goals for and techniques in text mining. The main task in this
thesis is information extraction, and we focus on methods in machine learning and
natural language processing that contribute to this task as major building blocks.
Chapter 3 presents two approaches to the recognition and identification of proteins
names. We discuss related work on named entity recognition, for protein names and
other biomedical named entities.
Chapter 4 introduces the concept of language patterns. We show how they can be
represented, generated, and compared to each other and to arbitrary text.
Chapter 5 presents our approach to relation mining for protein–protein interactions
based on language patterns. We show how we extract patterns from unannotated cor-
pora. We discuss comparable approaches to relation mining (for protein interactions
and other tasks).
Chapter 6 presents the evaluation of the overall system for relation mining. We start
with an introduction to evaluation metrics and strategies. The system was evaluated
on three different external corpora, and we also present a comparison to a system that
uses hand–curated patterns instead of automatically generated patterns.
Chapter 7 describes AliBaba, a tool for visualization of extracted associations by means
of browsing a graph constructed from binary relations found in a document collection.
Chapter 8 summarizes this thesis and its main contributions and concludes with an
outlook to future work.

4

2. Text Mining

Text mining aims at the extraction of knowledge from written language in the form of
books, reports, journal publications, conference contributions, and so on. We refer to
written language as semi-structured, as it follows a syntax, but allows for such a huge
variety that it is deemed infeasible to formalize this syntax with current techniques.
It is thus not an easy task to access the information given in texts automatically, and
we need sophisticated techniques to analyze natural language and exploit as much of
its structure as possible. It will become clear in the remainder of this thesis that it
is not sufficient to analyze a text by itself. On the contrary, we need to acquire and
integrate knowledge even from external sources to grasp contents properly, adding to
the complexity.

The data contained in texts (we will focus on scientific texts in the following) are
of different granularities. For one, each text deals with one or more topics, and we
can thus categorize it by them. Next, each text provides information on certain ob-
jects, which we can try to find, and which fall into categories as well. Then, each text
describes different types of associations between such objects. Associations can form
transitive chains, which we can find (almost) only across multiple texts. Combined, all
these facts finally might contain hidden or unknown information, such as unexpected
connections between distant objects. The different levels of granularity are as follows
(with examples):

• topic/category: epidemiology, molecular biology; yeast-2-hybrid assay, gene ex-
pression analysis
• objects/entities: genes, DNA, RNA, proteins, species, tissue, cells
• associations/interactions: gene-gene product, protein-protein, gene-disease asso-

ciations
• interdependencies/cascades: metabolic networks, signaling pathways

Text mining falls into several steps for the extraction of information on different lev-
els. Horizontally grouping text mining into steps, we can directly assign the aforemen-
tioned levels of information. Each respective step has to identify the corresponding
information in texts, relying on information found during former steps:

• information retrieval: texts relevant to a topic
• information extraction: objects/entities, relations between objects
• collection-wide analysis: chains of relations, networks
• knowledge discovery: previously unknown knowledge

We will explain these steps in more detail in the following.

5

2. Text Mining

Information retrieval

We use information retrieval (IR) as a filter to identify texts relevant to the given task,
prior to information extraction. Filtering out irrelevant documents not only reduces the
data quantity to be analyzed in complex and time-consuming, subsequent steps. It also
narrows down the number of different topics discussed in the remaining texts to rele-
vant and related ones. Word sense and synonymity complexities (see next section) also
get reduced. Ultimately, relevance filters lead to much less false positive identifications
of terms. A conservative information retrieval strategy, on the other hand, reduces the
recall of texts, objects, and relations discussed therein. What is lost in an early step
cannot be recovered later.

Information extraction

This thesis focuses on information extraction (IE): relation mining, and, as a prerequi-
site, named entity recognition (NER). Named entity recognition focuses on extracting
and identifying words that refer to relevant objects. This provides an overview of the
content, and feeds into subsequent steps that deal with the extraction of facts on these
objects (relation mining). We will motivate each sub-task of NER, show problems, and
describe basic concepts in the following Section 2.1. Chapter 3 presents our own ap-
proaches for recognizing named entities, and Chapter 5 describes our approaches for
relation mining.

Collection-wide analysis

Collection-wide analysis (CWA) brings together information extracted from large quan-
tities of texts. Information extraction steps in CWA are quite similar to those used on
single texts. Objects and relations between these objects have to be identified. Transi-
tive relations, that ultimately yield complex networks of associations, mostly are spread
over multiple texts. Main problems for CWA arise from ambiguities in word senses, as
well as synonymies. Different authors, different communities and topics, even differ-
ent publication formats, bring different usage of nomenclatures with them. In most
books, one will find a proper explanation for an abbreviation, but in abstracts, you
might not. While one author uses a certain name to refer to an object, other authors
might use quite different synonyms for the same object. As CWA tries to bring together
facts spread over many texts, techniques to identify the exact object behind a name are
necessary. For CWA in the biomedical domain, PubMed1 is the primary resource. This
citation index contains information (abstracts, authors, links to full texts) on almost 17
million publications since the 18652. Circa 9.5 million citations have abstracts, and 8.3
million have links to full-texts, with 2.3 million of these being open-access and thus
freely available for text mining.

1Available at http://www.pubmed.org
2See http://www.nlm.nih.gov/bsd/licensee/baselinestats.html

6

2.1. Information Extraction

Knowledge discovery

Knowledge discovery (KD) analyzes large sets of data to find patterns, to deduce pre-
viously unknown aspects, or to generate hypotheses. Currently, there are few solutions
and applications concerning text mining, but are well known in other fields (market
basket analyses as a prominent example). Proper organization of knowledge extracted
from text collections is a mandatory requirement for discovering new structures. A way
to analyze disjoint sets of texts (for instance, on two different topics) was introduced
by Swanson [1986, 1988]. Co-occurrence calculations of words in article titles lead to
intermediate concepts that in some cases are real and not only random links. They ulti-
mately connect concepts from each disjoint set to each other using these links. Swanson
was able to find a correlation between, for instance, magnesium and migraine, that was
previously unknown but later confirmed in experiments. Logic reasoning over ontolo-
gies is becoming a focus of interest. Text mining helps to automatically assign actual
facts to the concepts (or vice versa) or even to extract the ontologies automatically from
large textual repositories.

As opposed to the horizontal grouping of text mining components according to tasks,
vertical grouping shows the techniques that we use at various levels, mainly, machine
learning and natural language processing. We introduce both in Sections 2.2 and 2.3,
respectively. We present the main concepts and define important terms. We will use
these techniques in the remainder of this thesis.

2.1. Information Extraction

Information extraction is concerned with finding facts in texts. For our purposes, such
facts are either single objects mentioned in a text, or associations between these objects.
Named entity recognition, named entity identification, and word sense disambiguation
all deal with the identification and instantiation of such objects, in the following called
entities. Named entity recognition tries to find all words that refer to entities of a rele-
vant class (for instance, genes) in a text. Named entity identification maps all entities
not only to a class, but to exact instances of this class (a particular gene). Word sense
disambiguation tries to resolve cases in which multiple classes or instances are possible
(as happens with homonyms and acronyms). Finally, relation mining brings entities
together by searching for associations between these entities, in the underlying text.
In this section, we focus on introducing named entity recognition and relation mining.
Chapters 3 and 5 will pick up these subjects and explain our own strategies as well as
related work in more detail.

2.1.1. Named Entity Recognition

A prerequisite of all sophisticated approaches towards information extraction is the
recognition of named entities. Named entities refer to the objects of interest discussed in
a text. In life scientific publications, these entities may stem from different vocabularies

7

2. Text Mining

used by scientific communities. We can group most entities together into entity classes,
which assign a semantic role to them, such as

• anatomy,
• cells, cell types, cell lines,
• compounds,
• DNA, RNA, amino acid sequences,
• drugs,

• enzymes,
• genes,
• organism and subspecies,
• proteins, or
• tissues.

Other entities describe instances of these classes and their current states and functions:

• (biological) process,
• (cellular) location,
• diseases,

• (molecular) function,
• phenotypes, or
• symptoms.

In addition, publications contain information on how these data were gathered, in gen-
eral referring to:

• conditions,
• environment,
• settings,

• techniques/equipment, or
• treatments.

Only upon recognizing these entities (instances of classes) correctly, one can start to ex-
tract information on how they relate to each other. Named entity recognition (NER) in-
cludes finding (”spotting”) each term as well as classifying it into (one or more) classes
(protein, cell, etc.).

Definition 2.1 (Named entity).
A named entity is a classified instance of a given terminology.

Definition 2.2 (Entity class).
An entity class is a semantic role that a named entity can have.

Named entity recognition has to deal with the immense variety of names for all in-
stances from all entity classes. For multiple reasons, it is not possible to simply list all
names that belong to each entity class and report every matching occurrence in a text:

• lack of naming conventions: no standardized nomenclature/syntax that points to
specific instances/classes
• no exhaustive collection of all names for all instances of a class is available
• variations: many terms refer to the same instance
• ambiguity: names might, taken for themselves, be valid for more than one entity

class
• abbreviations: might have different long forms that refer to different meanings

8

2.1. Information Extraction

Naming conventions and collections

For many domains and sub-domains in biomedicine, there are no established naming
conventions. This is especially true for domains with continuous new developments
and discoveries, and a high knowledge transfer between research areas. Such domains
and their sublanguages both are highly productive, as new entities (even classes) are
discovered permanently and new terms are formed ad hoc (see later in this section).
In addition, usage of terms in or across communities is discontinuous. Better fitting
terms occur, for instance describing the function of an entity more properly. Formerly
symbolic names turn into illustrative, spoken language terms, for example when gene
functions are determined years after their discovery (example: ”inhibitor of apopto-
sis”), or when names describe phenotypes (”dickkopf”, ”wingless”, ”lethal”). In other
domains, such conventions exist, and only few deviations occur. For instance, main
research in anatomy was done decades ago, there appear almost no new discoveries,
and the community has agreed on a vocabulary, consisting mainly of Latin words. One
could measure the productiveness (concerning discovery of objects and functions) and
degree of naming conventions of a community by looking at university lectures: lec-
tures in anatomy cover topics established about a hundred years ago, compared to
around five to ten years in molecular biology.

Naming conventions often appear as vocabularies or nomenclatures for specific sub-
domains. The HGNC/HUGO3 nomenclature contains approved symbols for human
genes [Wain et al., 2002, Eyre et al., 2006] and is coordinated with corresponding data
from mouse, MGI4 [Eppig et al., 2005]. The Saccharomyces Genome Database, SGD

[Issel-Tarver et al., 2002], proposes a standard for systematic naming of genes and pro-
teins from yeast. This naming standard encodes the exact locus, open reading frame,
and even strain of Saccharomyces cerevisiae. However, such names are hardly human
readable, and most genes also have additional gene names. SGD urges all researchers
to adhere to their guidelines using abbreviations for phenotypes when searching for
more memorizable gene names.

The Saccharomyces Genome database5 proposes a syntactic naming convention for
genes and proteins. Such gene symbols contain three italic lower case letters and a
number, corresponding proteins are non-italic, begin with an upper case letter and have
the suffix ’p’ (cyp27, Cyp27p). This standard even includes specifications for naming
alleles and phenotypes, helping to immediately identify them [Cherry, 1995]. However,
there are multiple proteins produced from one gene, resulting from splice variants with
(slightly or completely) different functions, thus representing different entities, which
should be distinguishable from others. This turns out to be problematic in particular
for collection-wide analyses, where entities need to be distinguished exactly.

Naming guidelines remain useless until they are accepted by the respective research
communities. Some publishers decided to accept manuscripts for publication only if

3HUGO Gene Nomenclature Committee, see http://www.gene.ucl.ac.uk/nomenclature/
4Mouse Genome Informatics, see http://www.informatics.jax.org
5SGD, see http://www.yeastgenome.org

9

2. Text Mining

Figure 2.1.: Usage of two different names for ”Intestinal trefoil factor 3”, official name
”TFF3”, over time. After the introduction of the standardized forms, the
form that occurred first still prevailed. Taken from Tamames and Valencia
[2006], Figure 2a.

the naming of genes etc. concurs with standards. PLoS journals6 ensure during re-
viewing that publications adhere to strict guidelines: for instance, publications have to
present unique identifiers for all proteins discussed. Tamames and Valencia [2006] con-
ducted an experiment where they checked for synonym usage and usage of proposed
standard names. They compared gene names found in MEDLINE to names proposed
by HUGO to evaluate the relative success of HUGO guidelines. Even ten years after the
proposal of HUGO standard names in 1994, only 44% of the official names predominate
other aliases (1994: 35%). In addition, Tamames and Valencia found that only 38% of
highly cited genes (occurring in more than 50 publications) were preferentially named
according to the standard. Figure 2.1 shows an example for the usage of two differ-
ent names over time. 14% of the official names have still not been used at all. Even if
nomenclatures tend to get used more often, there is still a large amount of publications
that was published before these conventions; therefore, they do not adhere to these
standards.

Variations, abbreviations, and ambiguity

While some entity classes might essentially be broken down to name lists (including
spelling variations and known synonyms, but still excluding overly exotic variations
and uncommon names), this is not true for all entity classes. In particular, it is hard
to recognize ’functional entities’ (see list on page 8), such as phenotypes and symp-
toms. These instances most often appear as complex descriptions rather than a few,

6Public Library of Science, see http://www.plos.org

10

2.1. Information Extraction

concise words; an example is the Gene Ontology [Gene Ontology Consortium, 2006].
One often encounters ad hoc names for one and the same instance, with different types
of variations, which we can group as follows:

• orthographic: IFN-gamma, IFN-γ; IL-1, IL1
• morphological: Fas ligand, Fas ligands
• lexical: hepatitic leukaemia, liver leukemia
• structural: cancer in humans, human cancers
• acronyms/abbreviations: FADD; TFF3
• synonyms: neoplasm, tumor, cancer, carcinoma
• eponyms: Addison’s disease, Addisonian syndrome

Many of these deviations underly no recognizable rules, even simple ones such as or-
thographic variations. All of the above types first add to the variations in which an
object might occur. Alterations of existing names or creation of new names occur con-
stantly over time once an object has been introduced (see Figure 2.1). Names altered by
paragrammatical phenomena, often orthographic errors, still refer to objects and thus
ideally need be solved to spot this object (see Table 2.1). The problem of homonymity
arises in particular from names that resemble or (in case of multi word names) consist
of common words from English or other languages: ”Bride of sevenless”, ”boss”, ”Ken
& Barbie”, ”Dickkopf”; some names even resemble frequent common English words,
such as ”the”, ”a”, ”of”, ”Who”. Also, abbreviations for different compound nouns
often are identical and thus hard to discern. Synonymity decreases the recall of infor-
mation extraction, as many objects cannot be recognized in texts where they occur with
other names. Homonymity, on the other hand, decreases the precision, as names cannot
be resolved properly to an exactly identified entity.

To grasp the full extent of possible variations, one has to analyze names by their term
formation patterns. This deals with discovering typical affixations, forms of compound-
ing, composition of acronyms, and influences like foreign imports. Kageura [2002] dis-
cusses such aspects in greater detail.

fuction 59 funtion 31 functon 12 fnction 4
proten 25 potein 11 rotein 10 fanction 2
cerevisae 142 cervisiae 67 cerivisiae 15 cerevisie 3
posphatase 8 nuceotide 5 knase 1 fator 6
recptor 33 expresson 12 expressin 11 fctor 2
desease 116 theraputic 42 cencer 12 clasification 5
beast cancer 14 brestfeeding 4 beast-feeding 2
polymerase chain rection 6 polymerase chain reation 6

Table 2.1.: Exemplary orthographic errors observed, with number of occurrences in
MEDLINE (February 2006). The largest amount did not occur in new ab-
stracts pending indexing, but rather in old ones.

11

2. Text Mining

2.1.2. Named Entity Identification

Named entity identification (NEI) tries to spot names and find the exact real world
instance behind each name. Problems NEI deals with arise from homonymity and syn-
onymity. A spotted name might refer to several instances of multiple classes (genes, dis-
eases, medical terms, etc.) and thus, first the right class has to be identified. Next, there
often are ambiguities even within a single class. Abbreviations in particular are a source
of such ambiguities. The name ”PSA” potentially refers to two different genes/proteins
(protein S alpha, prostate specific antigen), a disease (psoriatic arthritis), an organiza-
tion (Poultry Science Association), etc. Different instances (of the same or different
classes) share one name and multiple aliases exist for one and the same instance, most
times creating more ambiguities. NEI tries to map all variations of a name to a unique
identifier for the referenced instance. Such identifiers would originate from represen-
tative databases that hold information on the given class. Examples are databases with
protein–centered content, such as UniProt [Bairoch et al., 2005], or OMIM for heredi-
tary disease–centered information [OMIM, 2000]. For collection-wide analyses (see in-
troduction to this chapter) and for building association networks, this task constitutes
a prerequisite to gain useful results.

Named entity identification overlaps to a great extent with word sense disambigua-
tion, which we discuss in more detail in the following section. While WSD deals with
finding the right entity class for a term, NEI tries to find the exact instance within a
given class. Often, one method helps to solve the other. An initial identification that
spots names and provides potential candidates helps further disambiguation, and dis-
ambiguation of words to assign general classes reduces the problem of spotting terms.

A common way to tackle named entity identification is to first spot all potential terms
and to resolve them afterwards. Named entity recognition finds all candidate instances
for a term. For this task, very high recall rates are necessary. NEI subsequently narrows
down the set of candidates. Ultimately, this leads to the right instance and makes up
for the precision lost during NER. Background information on each entity instance and
the current context provide useful input for identification. For example, knowing the
organism discussed in a text narrows down the set of potential candidates for a gene
name by large. Other data available from knowledge repositories are annotations, func-
tional descriptions, keyword lists, literature references, and so on. All of them contain
valuable information that helps decide which exact instance was meant.

In addition, other strategies that exploit the immediate context of spotted names help
improve performance. Most names appear multiple times in a text; if one occurrence
is solved, this helps to solve other occurrences (other spelling variations, abbreviated
forms, and so on), and even occurrences of other entities. Long names often are not as
ambiguous as their abbreviations, and finding an acronym that abbreviates an already
identified long form makes an immediate assignment possible (see also the remark in
the next section).

12

2.1. Information Extraction

2.1.3. Word Sense Disambiguation

Despite the productiveness of scientific language, ”novelties” in naming objects (real
or conceptual) get less probable and appear in fewer variations. A name for a new
object is very likely to have a different meaning in a different context – or a related, but
not the same meaning in a related context. Thus, many words, especially in scientific
texts, appear as homonyms across multiple areas and objects of research (in particular,
homographs are problematic for text mining).

In the life sciences, objects often get named according to observations: for instance
a phenotype or a symptom, which are influenced by the studied object. For example,
a gene often is named for a phenotype observed, especially when a (natural or delib-
erate) mutation or knock-out of a gene results in a phenotype different from the wild
type (”hairy”, ”red eyes”, ”lethal”); or as a function of a protein encoded by this gene
(”alcohol dehydrogenase”, ”spindle pole body protein”). In text mining, it is not a triv-
ial task to identify the true meaning of a word in a given text, for example whether the
authors refer to a gene or a phenotype. There are gene names for many corresponding
phenotypes, such as ”black” or ”minus”, which also are common English words, where
most times the later is the appropriate meaning. Genes are also often named for dis-
eases (for instance caused by a mutation of this gene), such as ”multiple sclerosis” or
”neurofibromatosis.” Other words very seldom appear as common words, like ”wing-
less”, but it is still hard to decide whether a gene, protein, mutation, or phenotype is
the true meaning in the current text.

Word sense disambiguation (WSD) refers to the association of a sense (a meaning) to
a word. It is related to entity mention normalization, which maps synonymous entities
appearing within the same entity class to one unique instance (its ”sense”). In contrast,
WSD potentially considers every sense a word has within and across multiple classes,
or senses not bound to any class at all. Building a WSD system requires the identifica-
tion of all possible senses for every word and the assignment of the correct sense to any
occurrence. In the life sciences, WSD is necessary mainly to distinguish different entity
classes (as shown in the previous paragraphs) and entities within the same class.

Different categories for senses result from the different entity classes under consider-
ation, together with other techniques commonly discussed in biomedical publications,
and common English (or other language) words. Table 2.2 lists the number of iden-
tical names some categories share. The names stem from dictionaries extracted from
UniProt (gene/protein names), MeSH (cells, diseases, tissues), MedlinePlus (drugs),
NCBI Taxonomy (species), and the 10,000 most frequent common English words. We
find the largest overlap between gene/protein names and common English words (1423
homonyms). As the protein name dictionary is the largest (199,693 different names),
these are 0.7% of all protein names. Even these 0.7% might introduce many errors, be-
cause some protein names occur quite frequently as common words (“of”, “the”). As
mentioned above, these homonyms mostly result from names that are phenotypic or
functional descriptions using common words. On the other hand, most names from
the overlap of cells and tissues (46% of cell names also appear as tissues) actually have
a very similar meaning, as cells form tissues. Overlaps within each class (figures not

13

2. Text Mining

shown) are also very large. For proteins, there exist 74,321 entries with multiple IDs;
many of those, however, are cases where an entry has no real second meaning, but
there exists a second but identical instance (secondary IDs in UniProt). Multi-word
names tend to decrease the ambiguity of the overall name, as every word adds more
information pointing to a particular definition.

Class Cell Disease Drug Organism Protein Tissue Common Σ
Cell – 5 2 0 0 123 0 130
Disease 5 – 5 18 4 3 3 37
Drug 2 5 – 9 67 1 15 99
Organism 0 18 9 – 175 4 38 239
Protein 0 4 67 175 – 2 55 300
Tissue 123 3 4 2 2 – 2 134
Common 0 3 15 38 55 2 – 108
#Entries 709 12,401 12,390 208,138 199,964 1356 10,000

Table 2.2.: Number of names appearing in multiple entity classes and number of syn-
onymous names per class. Figures include plural forms and disregard case
sensitivity. Common refers to the 10,000 most frequent English words. #En-
tries gives the number of different names in each class. See text on page 13
for sources.

For highly specific domains of discourse (such as scientific/biomedical texts) it is
sufficient to restrict the number of senses to only relevant ones, instead of trying to in-
clude all potential senses. A number of early studies confirm this observation [Gould,
1957, Panov, 1960]. The percentage of polysemous words in scientific texts was ap-
proximated to lie in the range of 30 to 43% [Harper, 1957b,a]. In a more recent study,
Chen et al. [2005] found that 13.10% of all gene names have ambiguities with UMLS
concepts and 1.77% with common English words (total amounts of UMLS terms and
common English words considered were 1,728,455 and 74,550, respectively). This was
not quite confirmed by our own study, where we found that only 0.15% of all protein
names overlap with terms from five other entity classes and common English words
(see Table 2.2). Overall, we found 1047 terms out of 444,958 as ambiguous (0.24%).

In essence, word sense disambiguation for restricted domains often functions as a
step of false positive filtering. It is necessary to associate a name with only one of few
possibilities of the few relevant senses or exclude it entirely. For example, when search-
ing for proteins, it is sufficient to exclude any occurrence of ”PCR” from the class pro-
tein, disregarding its potential meaning in other categories. Gale et al. [1992] observed
that in most cases there is only ”one sense per discourse”, which shows that complexity
is reduced on restricted sets. The meaning of a particular word seldom changes within
a given text. Once an encountered word is disambiguated with a high confidence, its
sense can be transferred to other, unsure occurrences.

Disambiguation often is simpler for abbreviations, because in most cases, the corre-
sponding long forms are different and easy to distinguish. The aforementioned exam-

14

2.1. Information Extraction

ple, ”PCR”, can have (among others) the long forms ”polymerase chain reaction” (a
common technique in molecular biology) and ”protochlorophyllide reductase” (a pro-
tein). As long forms are likely to appear at least once in a text (to introduce the abbre-
viation, or sometimes as a list of abbreviations at the end of the text), each abbreviation
can be resolved to its particular long form if the mapping between both is certain; a
typical pattern for such an occurrence is ”long form (abbreviation).”

On the other hand, sometimes short and long forms of different objects are identical,
but have different meanings. For instance, the term ”Nf2” can either refer to a gene, its
product, a particular mutation in the gene, or to a disease resulting from this mutation.
The same is true for the long form, in all cases ”Neurofibromatosis type 2”. In such
cases it is hard to distinguish the different meanings from each other.

Gaudan et al. [2005] proposed a system to resolve abbreviations to their senses. They
first try to detect the long form, for instance using the algorithm proposed by Schwartz
and Hearst [2003]. Only in cases where no long form could be found, a machine learner
tries to disambiguate the abbreviation according to a classification of the context. Thus,
for every single meaning of an abbreviation known to the system, a model was trained
on positive (text where the abbreviation had the right meaning) and negative (texts
where the abbreviation had other meanings) contexts. Given an abbreviation and its
context, the most confident decision from all relevant models decides on the meaning.
This method was evaluated to achieve 98.9% precision at 98.2% recall.

Relevance filters (see introduction to this chapter) help to reduce the complexities of
synonyms, homonyms, acronyms, and word senses. Especially for word sense disam-
biguation, filtering texts prior to named entity recognition reduces the number of dif-
ferent discourses, and thus meanings, of potentially ambiguous terms. While ”NER”
in a publication on text mining probably refers to ”named entity recognition”, the same
term would abbreviate ”nucleotide excision repair” (gene or pathway) in papers dis-
cussing oncology, or ”nitrogen efficiency ratio” in texts on nutrition science.

2.1.4. Relation Mining

Relation mining deals with extracting facts in which multiple objects take part. For the
remainder of this theses, we consider relations as interactions and associations between
various types of entities. Relations in the biomedical domain come in manifold ways,
among them

• interactions between proteins
• interactions between proteins and genes
• drugs related to (protein) targets or associated with diseases
• drugs related to side effects and contra-indications
• reactions at the molecular level involving chemicals and proteins/enzymes
• genes and mutations/SNPs associated with phenotypes
• genes/proteins assigned with functions, processes, locations
• observations (on above interactions) made in particular experiments
• experimental evidences for the above

15

2. Text Mining

In particular, we will focus on interactions between proteins that are expected or ver-
ified and described textually. Chapter 5 presents our own and related approaches to
relation mining and discusses various techniques. Types of interactions of proteins
with other substances can be summarized as follows:

• spatial interactions: proteins are part of the same complex
• proteins occur in the same metabolic pathway
• genes occur within the same operon structure
• dependent reactions
• proteins interact with proteins from other organisms
• proteins interact with other substances
• paralogous proteins: proteins with similar function that can replace each other
• proteins with similar properties and characteristics7

• immune complexes: antigen–antibody interactions

”Complexes” include different types, such as homodimeric and heterodimeric proteins,
enzyme–inhibitor, and antibody–protein complexes [Jones and Thornton, 1996].

On top of developing systems to extract various kinds of relationships between bio-
medical objects, challenges are

• distinguishing between coincidental mentions and actual relations,
• finding the exact subject–object relationship,
• finding the type of interaction,
• identifying negations, hedges, and moods, as well as
• finding the method used to detect the interaction.

Regarding subject–object relationships, not all protein–protein interactions can be di-
vided into active and passive components (agents and targets). They also include auto-
interactions, where a protein regulates itself, or multiple copies of the protein form a
complex. Negations, hedges, and moods add another level of complexity, where a writ-
ten statement has to be re-evaluated. Consider the example “Our results do not con-
firm that protein A interacts with protein B.” This basically means that someone else
concluded from their experiments, A and B do interact, but potentially under different
conditions. In addition to moods, the interaction detection method provides valuable
insights into the reliability of an experimental finding. Large–scale experiments typ-
ically yield high false-positive rates; for an overview, see Shoemaker and Panchenko
[2007]. Deane et al. [2002] and Schlicker et al. [2007] have proposed different techniques
to asses the reliability of high-throughput data.

2.2. Machine Learning

In this section we introduce the machine learning techniques that are commonly used as
components for building text mining systems. We explain the basic ideas and concepts
and present those algorithms used later in this thesis in detail.

7Such as: pH induced, heat-shock induced, antigens, virulence factors

16

2.2. Machine Learning

Machine learning builds on statistical analysis of data to infer general rules. Data in
machine learning consists of sets of objects that represent the considered (real-world
or imaginative) instances. In text mining, most times such objects are texts, sentences,
phrases, or single words. The task of machine learning is either to extract rules from
such representations that explain the structure of the underlying data, or to help dis-
tinguish objects from each other. Thus, the outcome is either the rules themselves or
the result from applying the rules to data of unknown content so that they can be com-
pared to known data. In text mining, an example would be the analysis of a set of
words with known meaning (for instance, names of diseases). One outcome would be
rules that explain the (typical) composition of such names (for instance, discovering
common suffixes such as "-itis"), which bears interesting insights for linguists. Another
outcome would be the application of such rules to decide whether a previously unseen
name might actually belong to the same group of words (depicting diseases).

There are two main types of machine learning: inductive and deductive. Induction
identifies similarities within a group of given objects, while deduction identifies an
object by its resemblance to a set of other objects. Inductive learning is used to extract
general rules from few specific examples. Deductive learning extracts specific rules
inherent in a large population. Examples for either are

Induction given two example names for diseases; both end with
"-itis", so a new name that ends with "-itis" is very
likely another disease name

Deduction all disease names appear as nouns; if a new name is
not a noun, it cannot refer to a disease.

Machine learning handles objects of either known or unknown content. Objects that
are used for learning rules are called examples. The actual process of learning is often
called the training phase. The outcome of training is a model that describes the exam-
ples seen during training. After training, thorough testing should take place in order to
evaluate the learned model before finally applying it to new data.

Definition 2.3 (Example). An example is an object that is used for training or testing.

Often, the meaning of such examples are known previously.

Definition 2.4 (Sample). A sample is a set of examples used for training or testing.

Many machine learning techniques model objects as sets of characteristic properties
and their respective values. Such properties are called features. The idea is that objects
from each class have more features in common than objects from different classes. Such
features should help to decide whether an object might belong to a specific class or not.
They should thus capture the typical characteristics inherent in examples representing
the different classes.

Definition 2.5 (Feature). A feature is a typed property of an object that helps to describe this
object.

17

2. Text Mining

For each object, the value of a feature can be different. A feature value captures
the importance of the given feature to describe the given object. The simplest form
of feature values are binary features, stating if or not a certain feature applies to an
object. Feature values can also reflect the relative importance of a feature, measuring
the information a feature holds for distinguishing the given object from others. One
such measure is the TF*IDF measure, see page 20.

A feature set represents all potential features encountered in a training sample. Single
examples do not necessarily fulfill all of these features. A feature vector represents the
set of features that describe a single example. When the feature vector is reduced to
such features that apply to an example, it is called a sparse vector.

Definition 2.6 (Class). A class is a group of objects that belong together.

Definition 2.7 (Label). A label assigns a class to an example. Examples from the same class
all have the same label.

A labeled example is an example of known class. A label can be either pre-assigned
prior to training, or be the outcome of applying a model to an object.

Definition 2.8 (Cluster). A cluster is a set of objects that have been grouped together based on
their similarity.

Machine learning algorithms try to find the set of features and their values with the
most discriminative power to distinguish all classes (defined by the objects they con-
tain) from each other. They try to find rules that include features, values, and combi-
nations of features. Such rules may be used to assign classes to new objects. As rules
model characteristics of a sample and thereby the sample itself, we also refer to rule
sets as models.

Definition 2.9 (Model). A models is a set of rules learned by a machine learning algorithm
from examples, and that we can apply to new objects.

There are multiple strategies in machine learning, depending on the set of objects at
hand. Supervised learning learns a model from a set of labeled examples; such labels
are pre-defined, thus the term supervision. and assigns labels to new objects, according
to a this model. Unsupervised learning groups together similar objects out of a (larger)
set into clusters. Semi-supervised learning is a mixture where only some examples in
the overall sample are labeled. Techniques in supervised learning are classification and
regression (decision trees, perceptron algorithms, support vector machines), generative
models (expectation maximization), sequence learning (Markov modeling), and induc-
tive transfer. Clustering is the most common form of unsupervised learning. Meta-
learners (voting, bagging, boosting, random forest) constitute a set of techniques that
enhance or combine other learning strategies. We describe classification, clustering,
and sequence learning strategies in Sections 2.2.1 to 2.2.3.

18

2.2. Machine Learning

Evaluation metrics

In this section we will show the metrics we use for evaluating system performance.
We will first introduce some terminology, in continuation of the previous section. A
positive example is an example that belongs to the current class of interest. A negative
example thus is an examples does not belong to this class. An example predicted by the
model to belong to the positive class is a true positive when it also belongs to the positive
class in reality. An example predicted by the model to belong to the negative class is
a true negative when it also belongs to the negative class in reality. We call an example
false positive when the model predicted that it belongs to the positive class, but it does
not in reality. An example predicted by the model to belong to the negative class is a
false negative when it does belong to the positive class in reality. Table 2.3 summarizes
these definitions in a confusion matrix.

Real
positive negative

Prediction
positive TP FP
negative FN TN

Table 2.3.: Definition of true and false positive and negative predictions; this matrix
if often called confusion matrix, when filled with actual figures depicting
predictions of an experiment versus perfect outcome.

To measure the performance of a predictor (a model), two main indicators are used
in information retrieval and extraction. The precision of a predictor measures the per-
centage of examples correctly assigned to the positive class (also known as specificity
or positive predictive value, PPV, Equation 2.1). It indirectly states the number of errors
made among all positive predictions. The recall of a predictor states the percentage
of correctly recognized positive examples among all positive examples (also known as
sensitivity, Equation 2.2). In general, most predictors can be tuned towards either higher
precision or higher recall, but not both. To combine both measures, it is standard to use
the f-measure in Equation 2.3 [van Rijsbergen, 1979]. In particular, we use the F1-measure
(also known as harmonic mean), with β = 1, resulting in Equation 2.4. We plot the preci-
sion against recall in precision/recall curves, an example is shown in Figure 2.2; it also
shows the F1-measure at several fixed percentages.

precision =
TP

TP + FP
(2.1)

recall =
TP

TP + FN
(2.2)

f-measure =
(1 + β2)precision · recall

β2precision + recall
(2.3)

F1-measure =
2 · precision · recall
precision + recall

(2.4)

19

2. Text Mining

Figure 2.2.: Example for a precision/recall characteristic also showing the F1-measure
(blue lines) for various fixed percentages (80, 85 and 90%). Source: Fundel
et al. [2005].

Feature vectors and bag-of-words representation

The vector space model assumes that each example can be represented by a vector.
The dimensions of a vector correspond to the features occurring in the example. Given
the overall sample, identical features map to the same dimension of the feature space.
Examples are thus distinguished by their exact respective coordinates, corresponding
to feature values. Two examples can be discerned by comparing their feature vectors.
We can visualize a vector space as a hyper-dimensional space were axes correspond to
features and coordinates to feature values.

In text mining, examples correspond to documents. A sample thus is a collection
of documents, also called a corpus. Features of documents often represent words or
character n-grams such as suffixes encountered in a document collection. Sometimes,
previously identified concepts that have been identified by grouping words of the same
meaning together, are also used. Such concepts can be lemmata (to allow for morpho-
logical variations of a word: “protein”, “proteins”) or more complex concepts, such as
Gene Ontology terms (to allow for lexical variations: “apoptosis”, “programmed cell
death”). In both cases, each of the terms representing the same concept gets mapped to
the same feature, instead of having multiple features for conceptually identical terms.

To measure the relevance of a single feature to an example in text mining, the idea of
TF*IDF is most often used [Jones, 1972]. This takes into account the overall number of
occurrences of a feature in a text (called term frequency, TF), normalized by the number

20

2.2. Machine Learning

of texts that also contain this feature (inverse document frequency, IDF). The more often
a term appears in a text, the more relevant it is. On the other hand, if a term occurs very
often throughout the text collection, this lowers its relevance for each single text. Given
the term frequency t f (d) of term t in the current document d, we calculate TF*IDF as

TF*IDF(t, d) = log(t f (d) + 1) · log
|D|

|{d∈D | t f (d) > 0}| , (2.5)

where D is the document collection and d a document in D.
The information on the original ordering of terms in a text is completely lost when

reducing terms to frequencies. This approach is called a bag-of-words representation,
throwing all terms together [Mitchell, 1997]. To retain ordering, special sequence fea-
tures that represent consecutive terms rather than single ones can be extracted. This
strategy, however, is seldom applied.

2.2.1. Classification

We distinguish between two main groups of classification methods, where the problem
is transformed into a problem of estimation or partitioning. Estimation determines a
function that calculates probabilities for each class for a given example and its feature
vector. For instance, Bayesian approaches belong to this group of methods. Partitioning
subdivides a sample represented in a vector space into parts of similarity and assigning
a class label to each part. Note the distinction from clustering, which we introduce in
Section 2.2.2. An example for methods that solve the partitioning problem are k-nearest
neighbor approaches.

The equivalent of partitioning is to determine mappings from feature spaces to class
labels. The training examples appear in the form (xi, ci), where xi represents a feature
vector from the vector space X , and ci is the class label of xi from C. In binary classi-
fication, this label is either −1 or 1. The classifier then has to learn a mapping f from
these training examples,

f (q)→ C, (2.6)

that assigns any representation x ∈ X for a new object q to its class c. Support vector
machines try to solve exactly this problem, and we will introduce them in the following.

Support Vector Machines

The approach we use in our systems for classification tasks are support vector machines
(SVMs; Vapnik, 1995). SVMs have been shown to outperform other techniques, both in
terms of time performance and prediction quality (for example, see Joachims [1998]).
The main idea behind SVMs is to find a hyperplane that separates all objects that be-
long to one class from all objects of the other class (in the following, we consider only
binary SVMs as opposed to multi-class SVMs). Such a hyperplane is learned from a
set of training examples. To classify new objects, an SVM checks on which side of the
hyperplane a new object resides.

21

2. Text Mining

Figure 2.3.: Linear SVM with a hyper-
plane separating two classes
of objects in a 2D space.

Figure 2.4.: Support vector machine with
margin hyperplanes. Dark
examples: support vectors.

From a training sample {(xi, ci)} an SVM learns a hyperplane that best separates the
two classes c−1 and c1: The closest examples of both classes should be as far away from
the hyperplane as possible. This introduces a margin around the hyperplane, which we
then call a (maximum-) margin hyperplane. The examples that are closest to the hyper-
plane, and which ultimately define the hyperplane itself (see later), are called support
vectors. A linear hyperplane is of the form

〈w, x〉 − b = 0, (2.7)

with the normal vector w and the input vector x, while the two margins are

〈w, x〉 = −1 and (2.8)
〈w, x〉 = 1, respectively. (2.9)

To ensure that no examples lie between these two margins, we need any example xi to
satisfy either

〈w, xi〉 − b ≤ −1 or (2.10)
〈w, xi〉 − b ≥ 1. (2.11)

Using the class labels ci ∈ {−1, +1}, this transforms into

∀i : |ci(〈w, xi〉 − b)| ≥ 1 . (2.12)

To guarantee maximum-margin hyperplanes, we need to maximize the distance be-
tween both margins. The margin m is

m =
1
||w||2 , (2.13)

22

2.2. Machine Learning

and we thus minimize
min
w,b

1
2
||w||2 (2.14)

subject to Equation 2.12, called primal optimization problem. This minimization results
in a very large quadratic programming optimization problem, depending on |X |. In
text mining, both the amount of documents and features are usually large. Some algo-
rithms have been proposed, sequential minimal optimization (SMO) being the most com-
mon [Platt, 1998a,b]. SMO breaks the large optimization problem into a series problems,
each as small as possible. The worst case complexity for SMO is quadratic.

To classify a new query instance q, we need a decision function f , dependent on w
and b:

fw,b(q) = sgn(〈w, q〉+ b) (2.15)

With Lagrange multipliers αi, we can transform the minimization function into a dual
form that depends only on these multipliers:

min
α

1
2 ∑
∀i

∑
∀j

αiαjcicj〈xi, xj〉∑
∀i

αi, (2.16)

subject to the two constraints
∀i : αi ≥ 0 (2.17)

and
∑
∀i

αici = 0. (2.18)

To calculate w and b from the training data xi, we derive them from the Lagrange mul-
tipliers using

w = ∑
∀i

αicixi (2.19)

and
b = 〈w, xj〉 − cj for some αj > 0, (2.20)

respectively.

Extending the decision function 2.15 leads to dot products between a query instance
q and all training examples xi, which yield the class of q:

q 7→ f (q) = sgn(∑
∀i

αici〈q, xi〉+ b) (2.21)

It is not always possible to find a linear separation for a sample set. There are two
methods to circumvent this problem. One is to allow for some examples to lie between
the two margins, the other to transform the problem into a higher-dimensional space
where a linear solution exists.

23

2. Text Mining

Slack variables

A modification of the minimization problem defined in 2.14 was proposed by Cortes
and Vapnik [1995]. This modification allows for some examples to lie within the two
margins instead beyond (or on) them. Each such error, called margin failure, gets penal-
ized using slack variables ξi and a penalty parameter C in an error term. Altering 2.14
and 2.12 accordingly, we now have to minimize

min
w,b

1
2
||w||2 + C ∑

∀i
ξi (2.22)

subject to
ci(〈w, xi〉 − b) ≥ 1− ξi ∀i. (2.23)

Kernel trick

Another method called kernel trick transforms the linear algorithm into a non-linear one;
it generalizes SVMs to non-linear classifiers, even further than slack variables [Aizer-
man et al., 1964]. This method maps the initial observations into a non-linear space
of higher dimensionality. The linear algorithm in this higher-dimensional space is the
equivalent to a non-linear algorithm in the initial space. To do so, we need a kernel
that replaces the dot product between two vectors in the original algorithm (see Equa-
tion 2.21). Such a kernel functions as a similarity function, or, conversely, a distance
measure. comparing two vectors, and returns a real value reflecting this similarity:

κ : X ×X → R, where (x, y) 7→ κ(x, y). (2.24)

Note that the original dot product also is a distance measure. When normalized, it mea-
sures the cosine angle between two objects. A function Φ performs the actual mapping
of vectors, so that a kernel κ for two vectors x and y can be written as

κ(x, y) = Φ(x)Φ(y). (2.25)

A number of kernels have been proposed, ranging from general to user-defined ker-
nels. While general kernels are applicable to arbitrary problems, user-defined kernels
incorporate domain knowledge to best suit specific applications. There are two main
design principles for kernels: model and syntax driven. Model driven kernel directly
incorporate domain knowledge (protein sequences, speech recognition, etc.), syntax
driven kernels are fitted for the structure of a problem (strings, graphs, etc.). Among
the more general kernels are

• linear kernel: κ(x, y) = x · y
• polynomial kernel: κ(x, y) = (γx · y + r)d

• radial basis function: κ(x, y) = exp(−γ||x− y||2), γ > 0
• gaussian radial basis function: κ(x, y) = exp(− ||x−y||2

2σ2)
• sigmoid kernel: κ(x, y) = tanh(k〈x, y〉+ c), for some k > 0 and c < 0

24

2.2. Machine Learning

Figure 2.5.: Hyperplane resulting from an RBF kernel that separates two classes (cir-
cles and dots). Dotted lines correspond to the margins, with some support
vectors on them. Adopted from Schölkopf and Smola [2003].

with kernel parameters γ, d, r. Figure 2.5 shows a margin hyperplane classifier for a
radial basis function kernel (RBF kernel).

For specific applications in computational biology, Leslie et al. proposed combinato-
rial string kernels that measure protein or DNA sequence similarity [Leslie et al., 2002,
Leslie and Kuang, 2004]. Vishwanathan and Smola [2003] presented fast string ker-
nels for matching discrete objects, such as strings and trees, in linear time. Solutions
to predict class memberships of enzymes and non-enzymes use graph kernels using
sequence, structure, and chemical information on proteins [Borgwardt et al., 2005].

Support vector machines are well suited for our classification tasks for two main
reasons. Typically, text categorization uses large feature spaces as inputs. Not only
can every single token represent a feature, but also n-grams, suffixes and prefixes, and
other additional information. Features can easily add up to hundreds of thousands.
SVMs are able to handle these large feature spaces. While the input space may have
a very high dimensionality, the vector for each example is sparse. For any particular
example, only a few features are different from zero. In practice, only non-zero features
are stored and used for the computation of models. SVMs (using SMO in particular)
can be adopted quite well for sparse inputs [Platt, 1998b]. Algorithms like SVMs have
been shown, both theoretically and empirically, to suit problems with sparse input very
well [Kivinen et al., 1995].

2.2.2. Clustering

In clustering there are no predefined labels to assign to an examples. Instead, clustering
groups together the examples that are most similar to each other into clusters. Similar-
ity is defined using a similarity (or distance) measure (see next paragraph). To deter-

25

2. Text Mining

mine the similarity of clusters (rather than single objects) in order to combine multiple
clusters into one, there exist several linkage rules (see later in this section). Only after
the clustering we see which examples belong to the same cluster. In principle, there
are two ways to cluster a data set: agglomerative or divisive. Agglomerative clustering
starts at the point where there is a cluster for each single example. Iteratively, the most
similar examples (and later, clusters), are joined together. Divisive clustering works
in the opposite way: given a data set where all examples belong to one cluster, this
strategy iteratively divides the cluster into sub-clusters.

Clustering does not depend on predefined labels, but we can perform a clustering on
a data set that includes at least some labeled examples. By doing so, we can automati-
cally assign a label to all the clusters that contain at least one such pre-labeled example.
On the other hand, using some pre-labeled examples allows us to quantify the quality
of a clustering, either per cluster or over all clusters. This is done by testing how many
examples of the same label appear in the same cluster, and how many different labels
occur in a cluster. Clustering with labeled examples also helps to identify multi-modal
clusters, where clusters can have multiple (spatially distant) parts (see bi-clusters in
Figure 2.7).

Similarity functions

We define similarity measures for examples represented as feature vectors, as intro-
duced at the beginning of Section 2.2. Every example x has several features, each noted
as xi. A similarity function assigns two vectors from a vector spaceX a similarity value:

sim: X ×X → R (2.26)

Several similarity functions have been proposed. The cosine similarity (2.27) of two
examples x and y is the most used similarity function. It is sensitive to the relative
importance of each feature [Chen et al., 2004]. The Euclidean distance (2.28) is the
normed distance of two vectors in a vector space. The Dice coefficient (2.30) expresses
similarity as the proportion of features two objects share to all features of both objects.
In Jaccard coefficients (2.31), similarity is the proportion of features that two objects
share, normalized with the features they do not share [van Rijsbergen, 1979]. Other
similarity/distance measures are the Manhattan, Chebychev, and Power distances, and
the percentage disagreement.

Cosine coefficient =
∑
∀i

xi · yi√
∑
∀i

x2
i ×∑

∀i
y2

i

(2.27)

Euclidean distance =
√

∑
∀i

(xi − yi)2 (2.28)

(2.29)

26

2.2. Machine Learning

Dice coefficient =
2 ∑
∀i

xi · yi

∑
∀i

xi + ∑
∀i

yi
(2.30)

Jaccard coefficient =
∑
∀i

xi · yi

∑
∀i

xi + ∑
∀i

yi −∑
∀i

xi · yi
(2.31)

Lewis et al. [2006] evaluated the performance of different similarity coefficients on
TREC data (cosine, Jaccard, dice). They showed that for text data, represented by
stemmed words and excluding stop words, the cosine coefficient with a variant of
TF*IDF (see earlier in this chapter) performs best among these. They also found that
sentence alignment yields a slightly better precision in their data (29% as compared to
27% for cosine similarity), but is not applicable for real-time computations as required
in their overall system. Later in this thesis, we will use clustering to group together sim-
ilar sentences. We propose a measure for sentence similarity that is based on sequence
alignment, using a normalized alignment score (see Section 4.3.1 on page 81).

Linkage rules

Linkage rules (also called amalgamation rules) define how to determine the similarity
of two clusters, in order to decide whether to combine them into one (“link” them) if
they are sufficiently close to each other. The cluster distance can be determined using
either

• single linkage, nearest neighbor: distance of the nearest objects from the different
clusters determine cluster distance
• complete linkage, furthest neighbor: distance of the furthest objects
• unweighted pair-group centroid: distance of cluster centroids
• weighted pair-group centroid: distance of cluster centroids, weighted with cluster

sizes
• unweighted pair-group average: average distance of all pairwise distances of any

two objects in the different clusters
• weighted pair-group average: average distance of all pairwise distances, weighted

with cluster sizes

Best known representatives of pair-group distances are UPGMC, WPGMC, UPGMA,
and WPGMA, introduced as (un)weighted pair-group methods using the centroid average or
arithmetic averages, respectively [Sneath and Sokal, 1973].

Most clustering algorithms fall into either of three fundamental concepts: tree clus-
tering, block clustering, or k-means clustering, which we fill discuss in the following.

Tree clustering, joining

Tree clustering recursively clusters all object into larger and larger clusters. This algo-
rithm starts with each object representing one single cluster, and potentially ends with

27

2. Text Mining

Figure 2.6.: Illustration for a cluster analysis of expression vectors of genes in various
tissues. The tree was constructed using Euclidean distances between vec-
tors with the neighbor-joining method. Taken from Yanai et al. [2006], Fig-
ure 1, in parts. c©2006 Elsevier Ltd. All rights reserved.

one cluster containing all objects when no prior termination takes place (see Figure 2.6).
At the beginning, the two objects most similar to each other get combined into one
cluster. This similarity is defined using pairwise similarity measures between objects.
Thresholds on the outcome of the similarity function are used to determine whether
two objects should be regarded as similar or not. Iteratively lowering this threshold
leads to more and more objects clustered into larger and larger clusters, until only one
cluster remains.

Block clustering, two-way joining, biclustering

In many cases, a set of objects is described using a set of variables rather than only a sin-
gle variable. Block clustering takes place on both sets simultaneously [Hartigan, 1972,
Mirkin, 1996]. In principle, when the data is arranged as a two-dimensional matrix of
objects (rows) and variables (columns), permutations of both rows and columns rear-
range the data. The goal is to derive a correspondence structure on the combined sets.
Cheng and Church [2000] introduced biclustering of gene expression data. Microarray

28

2.2. Machine Learning

data often shows set of genes and their expression levels given different conditions. A
row in the matrix would correspond to a gene, a column to a condition, and a spot to
the gene expression level. Figure 2.7 shows an example for a two-way clustering of a
gene/tissue data set.

Figure 2.7.: Example for a block clustering of genes and conditions/tissues. The figure
shows expression patterns in two related clusters (biclusters; marked by
yellow frames). Image taken from Tanay et al. [2002].

k-Means clustering

In contrast to other methods, k-means clustering assumes a predefined number k of
clusters. k-Means assign each object to one of the k clusters in a way that all clusters
are sufficiently distinct from each other. Most implementations start with a random
assignment of objects to clusters. Based on this initial clustering, k-Means recursively
moves objects from one cluster to another in order to maximize the dissimilarity be-
tween clusters and maximize the quality of each cluster. The means of the final clusters
on each feature can be seen as the outcome of a k-means clustering. These data help
find representative values for each cluster, and also to assess the degree of dissimilarity
between clusters. Figure 2.8 illustrates the iterative reassignment of examples to clus-
ters and recalculation of cluster means. An extension of the k-means clustering uses
expectation maximization (EM; see later in this section). It calculates probabilities for
cluster memberships for each object, instead of fixed assignments.

2.2.3. Sequence Learning

As we have seen in Section 2.2.1, classification assigns a label to objects given its set
of features. Sequence models, on the other hand, assign a sequence of labels to a cor-
responding sequence of objects, all at the same time. The output is the most proba-
ble sequence of labels given the sequence of objects and their respective descriptions.
This also means that, in contrast to a bag–of–words view of data, the sequence of ob-
jects plays an important role. Each sub–sequence (and its probability) influences the

29

2. Text Mining

(a) Random assignment of examples to three clus-
ters with calculated initial cluster means.

(b) Eventually visible clusters and means evolve af-
ter several iterations of reassigning clusters and re-
calculating the means.

Figure 2.8.: Example for a k-means clustering. The initial assignment (a) is obviously
very indistinct. After only six steps, solution (b) emerges. Circles: examples;
colors: clusters; stars: cluster means.

30

2.2. Machine Learning

Figure 2.9.: Simple hidden Markov model with two states (q1, q2) and an end state (E).
State q1 emits labels ’N’ and ’V’ with probabilities b1(N) and b1(V). After-
wards, the model stays in q1 with probability a1,1, or goes into state q2 with
probability a1,2. Start probabilities for q1/q2 omitted.

probability of the overall sequence. Hidden Markov models (HMMs), which had their
first applications in speech recognition: the probability of a sequence of ‘basic’ sounds
determined the sequence of words spoken. HMMs also have applications in natural
language processing, for instance as part–of–speech taggers, which predict sequences
of POS tags.

Hidden Markov models

Hidden Markov models (HMMs) are a form of sequence models that describe a prob-
ability distribution over all potential sequences. This distribution always sums up to
one, so probabilities of sequences have a high influence on each other. This fundamen-
tal constraint of probabilistic modeling was described by Jaynes [2003]. Hidden Markov
models are defined using two sequences: a sequence of outputs (called emissions cor-
responding to the observed objects), and a sequence of states, which is not observable
(“hidden”). The sequence of states models the combined probability for the sequence
of labels at hand. Beginning at a start state, we proceed through the set of states until
an end state is reached. Along the sequence of states, each state potentially emits any
label, so that ultimately a sequence of labels is generated. Each transition from one state
to another and each emission have certain probabilities assigned to them, so that in the
end, an overall probability of a sequence of states and emissions can be determined.
Because every state can emit any label, it is not possible to tell in which state the model
was when observing a particular label.

Figure 2.9 illustrates a simple example for a hidden Markov model. Here, the model
has two emitting states, q1 and q2, and an end state, E. The model first stays in q1 with a
certain transition probability, a1,1, at every step emitting a label ’N’ or ’V’ with a certain
probability, b1. With probability a1,2 the model transits into state q2, where it behaves
similar as in q1, emitting labels ’N’ and ’V’ with probabilities b2. With probability a2,E,
it goes from q2 into the end state. Given a state sequence "1, 2, 2", the model emits three
labels, one observed sequence of labels could be "N, V, N". The same state sequence

31

2. Text Mining

could produce other label sequences, as the label sequence "N, V, N" could be generated
by other state sequences. All potential variations, however, potentially have different
overall probabilities.

There are three key problems that need to be solved in computing HMMs. In the
scoring problem, the probability of the observed sequence given a model is computed.
The decoding problem involves the computation of a state sequence that best explains an
observed sequence given a model (this is also called alignment problem). The estimation
problem deals with adjusting the parameters in a model to maximize the probability
for the observed sequence. We present algorithms that solve either problem in Ap-
pendix B.1.

2.3. Natural Language Processing

Natural language processing (NLP; NL understanding, computational linguistics) de-
scribes the process (and science) of analyzing texts in natural language for syntactic
and semantic structures contained therein. Syntactic analyses determine the structure
of a sentences, the dependencies and references between subjects and objects. Semantic
analyses determine the meaning of a sentence, of sub-phrases, and of individual terms.
Lexical, syntactic, and semantic knowledge of a language are involved in these analy-
ses [Hahn and Wermter, 2006]. Natural language processing is not restricted to written
language (as presented in this thesis) but includes the processing of spoken language as
well. Here, additional information on phonology and speech becomes necessary. NLP
includes from various research fields: linguistics, computer science, psychology, cogni-
tive science, statistics, and many more [Mitchell, 1997]. For sentence analysis, the three
levels of NLP refer to different subtasks:

• lexical level: tokenization, morphological analysis, lexical characterization,
• syntactic level: part-of-speech tagging, chunking, parsing, and
• semantic level: lexical semantic interpretation, composite meaning analysis, dis-

ambiguation.

After an introduction to sentence splitting, we will discuss the lexical and syntactic level
in the following sections, as they provide basic input for our subsequent text mining
tasks. Analysis on the semantic level is discussed in Chapters 3 to 5: for named entity
recognition on Chapter 3, and for mining relationships in Chapters 4 and 5.

2.3.1. Sentence Splitting

One of the first tasks in processing natural language is to recognize sentence bound-
aries to split a text into single sentences. Complexity of natural language necessitates
this step in order to alleviate – sometimes facilitate – further processing. It breaks down
texts into smaller components of connected information, which can be sufficiently han-
dled by NLP techniques; an example are parsers to understand the dependency struc-
ture in a sentence, as we will discuss later in this section. Each sentence boundary gives

32

2.3. Natural Language Processing

important information about the probability of the current sequence of POS tags or de-
pendencies in a dependency graph. In addition, each start of a new sentence defines
the start of a new POS tag sequence, chunk, parse structure, and so on, resetting the
processing despite possible uncertainties in the previous sentence.

Sentence splitting is not as trivial a task as it might appear. A naïve approach is to
split a text at every occurrence of either ‘.’, ‘;’, ‘!’, or ‘?’ (followed by a white space and an
uppercase letter); problems arise from this strategy, though. Most sentences end with
a full stop, this symbol is also used to mark abbreviations and proper names, occurs as
a decimal point, or may actually be a part of a word. Such problems arise especially
in scientific texts. The following examples present some of the difficulties (critical sites
underlined):

• abbreviations: “..different from the spectra of P. aeruginosa and E. coli. We find
that..” – no split after “P.” and “E.”;
“..anti-TNF-alpha antibodies and cyclosporin A. In the recent past, ..” – split;
“..(c) 2005 S. Karger AG, Basel..”
• parts of terms: “..and discovered that 5’-3’; exonuclease activity of RecJ..”
• within brackets: “..CD95 system (FasL, CD95L; FasR, CD95R) and..”
• within citations: “..referred to here as the “hairpin model.” More recently,..”
• paragrammatical phenomena: “..and history of past attempts.Conclusions. Both

psychosocial and clinical factors..” – split despite a lacking white space

In most cases, it is better to follow a conservative strategy and prefer to not split
a sentence when in doubt. Subsequent processing takes part on the sentence level,
and thus might loose information whenever a single sentence is split into two. For in-
stance, a wrong split affects approaches that try to match patterns against sentences.
On the other hand, when sentence splitting misses a boundary and combines two sen-
tences into one, this is still an acceptable input for many subsequent tasks. Further NLP
processing, in particular part–of–speech (POS) tagging and chunking, helps to recover
some of such errors by begin able to retain the correct sequence of tags/chunks. Note
that most POS models are trained on single sentences, so that errors prevail, especially
for infrequent start (POS) sequences in a sentence. Sentence parsing relies on preced-
ing POS tagging and sometimes chunking, and depends on the correctness of the input
from all three subtasks.

Most approaches for sentence splitting are based on hand-crafted rules, sometimes
with lexica for typical abbreviations (“Dr.”, “et al.”). Candidate split sites and their
respective surrounding text is analyzed further to identify sentence boundaries. A
number of techniques based on machine learning have been proposed. Reynar and
Ratnaparkhi [1997] presented a maximum entropy model that learned to split at ‘.’, ‘!’,
and ‘?’, respectively. MXTERMINATOR achieved an error rate of 1.2% on the Wall Street
Journal corpus (WSJ). The caveat was that such complex modeling for a “minor” sub-
task increased computation time substantially for the overall task of mining full texts or
text collections. Mikheev [1998] proposed a similar method, but used simplified param-
eter estimation for candidate features. This ultimately produced very compact models

33

2. Text Mining

(in terms of hundreds instead of tens of thousands of features). On the same corpus
of 27,294 sentences from WSJ, they achieved an accuracy of 99.2477% (error <0.8%),
which was the best performance reported so far. Schmid [2000] proposed an unsuper-
vised learning for period disambiguation, which achieved an accuracy of 99.56% on
WSJ and 99.79% on the Brown corpus. An approach proposed by Tomanek et al. [2007]
uses using conditional random fields for sentence splitting and tokenization. On a com-
bination of the GENIA and PennBioIE corpora, they achieve an accuracy of 99.8% for
sentence splitting and 96.5% for tokenization (see next section). Tomanek et al. also
argue that missing a split is preferable to introducing a false split; optimizing their tool
to minimize false positives resulted in an FP rate of 30%.

2.3.2. Tokenization

After splitting a text into its sentences, information extraction requires the identifica-
tion of the smallest units of information, that is, tokens. They are separated by white
spaces from each other and, in most cases, resemble words. Inter-punctuation and
other symbols (brackets, slashes) are proper tokens that often are connected to another
token without an intermediate white space; for instance, the full stop at the end of a
sentence is single token; alternative names separated by a slash: “TBA1/Rap1” form
three tokens altogether. Hyphens can either connect two tokens (and thus are tokens
themselves) or the hyphenated word can be seen as a single token. Multiple tokens
might form a multi–word name or term. Most times, a multi–word term syntactically
is a composite noun.

Definition 2.10 (Token). A token is the smallest unit of information that is formed by consec-
utive characters, figures, or inter-punctuation.

Definition 2.11 (Word). A word is a token that bears not only syntactic information (like
inter-punctuation), but also semantic information.

Definition 2.12 (Term). A term consists of a single or multiple, consecutive tokens that all
together refer to a unit of information.

2.3.3. Part-of-Speech Tagging

Tagging assigns labels to terms and words. Part-of-speech tagging, in particular, recog-
nizes the syntactic behavior of a word in a given sentence. It identifies the grammat-
ical form of the word given the word and its surrounding context. Such grammatical
forms are verbs, nouns, adjectives, adverbs, prepositions, pronouns, conjunctions, and
interjections. These eight basic categories of part-of-speech in the English language
sub-divide into more categories. A noun has singular and plural as well as possessive
forms, a verb appears in different tenses and aspects. For computer linguistics, it is
typical to distinguish up to 160 part-of-speeches (again, for English). There are sev-
eral proposed standards to annotate words with part-of-speech tags. In the following
chapters, we use the Brown tags [Greene and Rubin, 1981]; Table 2.4 shows the most
common examples.

34

2.3. Natural Language Processing

Tag Meaning Tag Meaning
NN noun, singular NNS noun, plural
NP proper noun NPS proper noun, plural
VB verb, base form VBD verb, past tense

VBG verb, gerund; present participle VBN verb, past participle
VBZ verb, present, 3rd person singular MD modal auxiliary
DT determiner WDT which-determiner
RB adverb RBR adverb, comparative

RBS adverb, superlative * not
JJ adjective JJR adjective, comparative

JJS adjective, superlative FW foreign word
IN preposition TO infinitive marker "to"

Table 2.4.: Examples for Brown part-of-speech tags to annotate words.

Named entities are another form of tags, and every named entity also appears in a
grammatical form. Proteins and genes, for instance, most times occur as (proper) nouns
in a text. Organism names sometimes appear as adjectives that specify a gene (“human
protein kinase α”). While some words can only have one part-of-speech tag ("strongly"
always is an adjective), others depend on their context (“form” can be a noun or a verb).

Various methods have been proposed for part-of-speech tagging. The Trigrams’n’Tags
(TnT) tagger is a statistical tagger based on the Viterbi algorithm for second order
Markov models [Brants, 2000]. Whenever it encounters unknown words, which did
not occur in the training data, is guesses the POS from abstractions of words based on
common suffixes. For instance, an unknown word ending with “–ing” almost certainly
is either a verb (gerund) or a noun (singular). On the Penn Treebank corpus, the TnT
tagger achieves an accuracy of 96.7%. The probabilistic TreeTagger that uses decision
trees was described by Schmid [1994]. It uses a second order Markov modeling of tri-
grams, but tries to overcome data sparseness (where not enough training data is avail-
able to include every potential trigram) with a decision tree on likely tag sequences. On
data from the Penn Treebank corpus, TreeTagger yields 96.36% accuracy. The Brill tag-
ger Brill [1992] applies transformation–based error–driven learning. Predictions of an
initial model are compared with the known solution and rules are extracted that trans-
form initial output to better fit the training data. It also uses default lexica and contex-
tual rules learned from unspecific data, namely the Wall Street Journal and the Brown
corpus [Marcus et al., 1993, Francis, 1964], with no special markup for biology-related
entities. On the WSJ corpus, the last version of the Brill tagger achieves an accuracy of
96.6%. A POS tagger designed for handling biomedical text is the HMM-based Med-
Post [Smith et al., 2004]. It includes a lexicon of the 10,000 most frequently occurring
words in Medline (accounting for 92.7% of the tokens in Medline as of 2004). Med-
Post was trained on a set of 5700 manually tagged sentences (155,980 tokens), which
where picked randomly from various subsets of Medline. On a test set of 1000 manu-
ally tagged sentences from PubMed abstracts, MedPost achieved an accuracy of 96.9%
using the Penn-Treebank POS tagset, where Brill’s tagger achieves an accuracy of 86.7%.
Using a native tag set of 60 POS tags, MedPost achieves 97.4% accuracy.

35

2. Text Mining

All these POS taggers except for MedPost have been trained and evaluated on ‘tra-
ditional’ texts such as the Wall Street Journal or the Brown corpus, but not on domain
specific texts. Their performances cannot be transferred directly to the life science do-
main, where slightly different sub–languages are used. Smith et al. [2004] found that al-
most 60% of the word types in Medline did not occur in either the Brown or Associated
Press (AP) corpora (based on the 92.7% most-frequent tokens only). Paragrammati-
cal phenomena occur more often, especially in texts written by non-native speakers.
Long multi–word terms, for instance protein names, hinder a successful tagging, since
they often contain adjectives and verbs (“TNF–related apoptosis inducing ligand-like
(TRAIL–LIKE)”). Such names should rather be treated as long noun phrases (by pre–
or post–processing stages) in order to retain the correct sentence structure. Parsers that
use such identified chunks as input are then more robust towards complex sentences;
they can analyze noun phrases and dependencies therein separate from building the
overall parse.

2.3.4. Stemming

Stemming refers to the reduction of a word to root or stem [Baeza-Yates and Ribeiro-
Neto, 1999]. For example, the words “localize”, “localized”, and “localization” all have
the same stem, namely “local”. A lemma, which is often used synonymously for stem,
is the morphological stem of a word. In the example, the lemma would be “localize”,
hinting not only on the stem, but also on a process (“–iz”). A lemma thus contains more
information to distinguish the exact sense of a word.

Porter [1980] proposed the algorithm that is most commonly used for stemming. Its
original form was for stemming English words, but adaptations to many other lan-
guages exist. Porter’s heuristic rule set reduces a word to its stem by iteratively alter-
ing the affix. An affix is the suffix added to a word stem to form a valid derivative of
the word, called morpheme; in contrast to word stems, affixes cannot stand alone. of
a word, most times shortening it. For examples, plural forms get reduced to singular
forms by removing either "ss" or "s", or reducing "sses" or "ies" to "ss" and "i", respec-
tively. Porters’ rules also take into account some elongations that lead to more general
forms of the affix; for example, words ending with "at" or "iz" get an extra "e" to form
"ate" or "ize". Ultimately, the rules leave only the words’ stem. Though there are many
rules involved, the algorithm reduces every English word in only eight steps.

Stemming helps to reduce the dimensionality of a learning problem by mapping
many different words to only one stem. This helps to make commonalities of these
words (and thus sentences, paragraphs, and texts) more apparent to the machine learn-
ing algorithm. On the other hand, especially in specific domains like biology and
medicine, stemming might introduce errors by removing valuable information. Stem-
ming reduces both “organ” and “organization”, which represent entirely different con-
cepts, to “organ”, while the respective lemmata, “organ” and “organize”, differ. This
might be the reason that common stemming algorithms, which do not use knowledge
on a specific sub–language, often do not help to improve the accuracy of text classifica-
tion, as shown by Nenadic et al. [2003].

36

2.3. Natural Language Processing

2.3.5. Sentence Chunking

Chunking refers to splitting sentences into smaller subunits, single units of information,
also called syntactic groups. It identifies noun and verb chunks. Chunking first tries
to identify potential chunk heads. These are words that identify the actual object (in
case of noun chunks) or predicate (in case of verbs). Other words in the chunk specify
(modify or qualify) the object/predicate. For example, in the sentence

“We always used adjacent normal kidney tissue”,
the noun and verb chunks (NP and VP) are:

“We [VP always used] [NP adjacent normal kidney tissue]”.
In “adjacent normal kidney tissue”, “tissue” is the chunk head, specified as "kidney
tissue", and so on. Chunk heads, which can be resolved using part-of-speech tags
and positions in the chunk, then determine the types of objects/predicates involved.
Chunking is a helpful preprocessing step before parsing a sentence completely (see the
following sections). In the preceding example, the information content can be broken
down to

“We used tissue”,
which is much easier to parse then the initial full sentence. Chen and Chen [1993]
showed that a probabilistic approach can reach a ‘correct chunk rate’ of around 98%
(with 94% of all sentences chunked correctly) on the Susanne corpus (a part of the
Brown corpus). There are currently no results for assessment of chunking algorithms on
biomedical corpora available. They used a tagger to pre–annotate each sentence with
POS tags. The model is then trained on word bi–grams. Given a sequence of words,
the system searches for the maximum probability over each candidate solution for the
parse tree.

2.3.6. Shallow Parsing
Shallow parsing is another preliminary stage (as chunking) to full sentence parsing.
In shallow parsing, the structure of a sentence is not resolved to the level of all single
elements. A shallow parse often deals only with identifying the structure using nom-
inal, verbal, and adjectival phrases. An example system for shallow parsing is Sun-
dance [Riloff and Phillips, 2004], which is also used in several relation mining systems
(see Chapter 5). This system builds on preprocessing steps as mentioned previously
(sentence splitting, segmentation, part-of-speech tagging) and other modules (for in-
stance, morphological analyses and dictionary lookups). The Collins parser achieves
an f-measure of 89.5% on the WSJ corpus [Collins, 2000]. This system re-ranks the most
likely initial parses of a sentence with additional information by boosting.

2.3.7. Full Sentence Parsing
Full sentence parsing refers to analyzing a sentence for its syntactical structure. In ad-
dition, the morphology of each word is resolved. A sentence structure can be seen
as a syntax tree (parse tree) that shows the phrase structures and how they relate to
(dominate) each other. In general, parsing finds the subject–predicate–object triples

37

2. Text Mining

in a sentence that present the overall information. Figure 2.10 shows an example for
a parse tree. In this example, a verbal phrase (“detected”) connects a subject (“we”)
and an object (“gangliosides”), where the object is further specified in the remainder of
the sentence. We will discuss approaches for relation mining that make use of (partial
or full) dependency parsing in Chapter 5. Though sentences in scientific publications
often are more complex than general sentences, Rinaldi et al. [2005, 2006] conclude
that full parses can be as successfully applied to the biomedical domain when chunk-
ing, POS tagging, and NER are solved properly. Miyao et al. [2008] compare different
parsers and their influence on the task of protein-protein interaction extraction, finding
similar performances ranging from 55.9 to 58.3% F1 for eight different parsers on this
task.

We distinguish between different types of sentence parsing: dependency parsing,
phrase structure parsing, and deep parsing. 1) Dependency parsing generates a struc-
ture of the sentence where tokens are the constituents and edges may exist between
tokens to depict relationships. Such relationships would, for instance, connect a pred-
icate to its object with a (directed) ‘subject’ edge. Relationships thus represent an ap-
proximation of the semantics of a sentence (connecting subject to predicate to object,
for instance). An example for a dependency parser is the Maximum Spanning Tree
parser (MST; McDonald and Pereira, 2006). Another representative is the LinkGram-
mar parser [Sleator and Temperley, 1993], which is based on the original link grammar
theory of English. 2) Phrase structure parsing results in a constituent tree, most of-
ten in Penn-Treebank notation (PTB), which ranges from the tokens in the bottom level
over word categories, chunk information, to the sentence level. Charniak and Johnson’s
Reranking parser and the Stanford parser are often used implementations of this frame-
work [Charniak and Johnson, 2005, Klein and Manning, 2003]. 3) Deep parsing com-
putes theory-specific syntactic and semantic structures as well as predicate-argument-
structures. Compared to dependency parses, a deep parse contains more in-depth and
also long-distance relations between constituents. A recent implementation of deep
parsers is Enju, which is also available in a biomedical version, retrained on the GENIA
corpus [Miyao and Tsujii, 2008]. Examples for parses generated with LinkGrammar
and Enju can be found in Figures 2.11 and 2.12 for comparison.

38

2.3. Natural Language Processing

Figure 2.10.: Example for dependency relations in a sentence. Generated from PubMed
citation 99423690 using OntoGene [Rinaldi et al., 2006].

Figure 2.11.: Example of a LinkGrammar parse (sentence from PubMed 1313226). Out-
put shows the constituent tree on top, and the linkages on the bottom.

39

2. Text Mining

Figure 2.12.: Example of a deep parse using the Enju parser (sentence from PubMed
1313226).

40

3. Named Entity Recognition

Solving the problem of recognizing named entities in texts is a prerequisite for infor-
mation extraction systems. In this chapter, we will present our approaches to solve
this problem for gene and protein names. First, we present different strategies to han-
dle this task, and then discuss the two approaches we use for NER in detail. We will
present the methods and data needed for both approaches. The focus is on recognition
and identification of gene and protein names, as this has been one of the most studied
applications in bioinformatics in the last years. The chapter finishes with a discussion
of related work and conclusions drawn from our evaluations.

Most approaches for NER fall into either of the following categories:

• token– or term–based classification,
• sequence modeling,
• dictionary–based approaches,
• rule–based approaches, or
• hybrid approaches.

Token-based classification takes into account information on the token and its context
(for instance, the surrounding text) to decide whether it belongs to a given class or
not. In most cases, this information are surface clues, which refer to the composition
of a token or a whole term (that is, the sequence of letter and symbols). Such clues
could be affixes of a token — for instance, “-ase” or “-tor” are typical for protein names
like in “kinase”, “factor”, or “receptor.” A large variety of classification techniques
(for example, support vector machines) can be used to learn models based on such
information.

Sequence models (for instance, hidden Markov models) calculate the most probable
sequence of class labels (that is, part–of–speech tags and/or entity classes) given a se-
quence of tokens. While token-based classification decides on the label of each token
separately, sequence modeling assigns the respective labels to all tokens of a sequence
at once by deciding on the most probable sequence. Again, the input mostly consists of
properties referring to the characteristics of tokens.

Both approaches rely on learning their respective models from a training set. Such
a set has to contain (manually) labeled examples for all types of entities that are of
interest. A training set consists of tokens, whole names, or sentences (depending on the
type of input the approach takes into account). Most strategies not only need positive
examples for a given class, but also counter-examples. Only then the learner can extract
characteristics that point towards or away from a decision, both having strong influence
on the final outcome.

41

3. Named Entity Recognition

The third category, dictionary-based approaches, consists of systems that match text
against pre-compiled dictionaries (sometimes referred to as gazetteers). Mainly, there
are two different strategies for such an approach. The first is to collect an exhaustive list
of names referring to entities of the given class. To also find variations of these names,
inexact string matching identifies all occurrences of these names in arbitrary text. The
other strategy is to extend an initial list of names by adding variations for each name,
which are then searched exactly.

Rule-based approaches take into account either typical features of entities of a given
type, as well as contextual information, similar to token-based classification. They use
mainly hand-crafted rules that refer to the composition of a name and its surrounding
context. For instance, the word sequence "the X protein" directly hints at "X" referring
to a protein, regardless of the exact token(s) for "X".

Hybrid approaches try to incorporate different strategies into one system. They try to
profit from the respective beneficiary properties of either technique. Another approach
to integrate multiple systems is to use different techniques in parallel and finally com-
bine their independently achieved results, for instance, with voting schemes.

Processing pipelines enrich the annotation for each word and sentence step-by-step,
for example with part-of-speech tags or sentence structure. Such information provide
important additional input for subsequent steps. As we will show in Section 3.1, post-
processing stages help to refine candidate terms once they have been identified.

The next two sections present two different approaches in more detail, namely token–
based classification and a dictionary–based approach. Finally, Section 3.4 discusses
related work and achievements in the field of biomedical named entity recognition.

3.1. Token-based Named Entity Recognition

Token-based classification transforms the problem of recognizing entity names into one
decision for each single token in a sentence. A classifier decides whether a token is
(part of) a name belonging to the given entity class (in our case, proteins and genes), or
not. A decision function, trained on a set of examples for either class, determines class
membership for new tokens.

Our system for token-based named entity recognition consists of two stages. The
first tries to predict for each single token in a sentence if it is part of a protein name or
not. The second stage combines multiple tokens into one compound term and expands
these names to previously misclassified trailing or leading tokens, whenever necessary.

3.1.1. Classification task

Building a classification–based system starts with finding a suitable representation of
each token. The idea is to describe each token not only using the token itself, but also
helpful other features (see Section 2.2 for details on features). In this section we present
our ideas for features and feature classes. We then describe how to eliminate useless
features and features having a bad influence on the prediction performance.

42

3.1. Token-based Named Entity Recognition

Feature generation

There are various ways to represent a token and its context in a sentence using a set of
features. We use classes for features that refer to the surface of a token or its occurrence
in a dictionary. The surface of a token describes its overall syntactic composition, for
example the sequence of letters and their capitalization, or existence of special sym-
bols and digits. This is also referred to as the canonical form of a token. As capital
letters, symbols, and digits typically do not appear in common English words, these
bear important hints on distinguishing protein names from common words. Examples
for surface features are

• A surface feature represented by “Xxxxd” captures names like “Smad2”, “Esat6”,
and “Brca2”: words that start with a capital letter ("X"), followed by three lower
case letters ("xxx") and end with a digit ("d"). This feature is unlikely to fit “com-
mon” English words but most times hint at some "special" word instead.
• A surface feature “xxxxx” captures words such as “which”, “refer”, and “token”

and most often represents “common” English words that have many (in this case,
five) consecutive lower case letters. However, such tokens might still be part of
longer, more complex compound names.

Surface features can be derived from nomenclature guidelines (see Section 2.1.1) or
word lists (dictionaries). Nomenclature guidelines explicitly describe the composition
of proper names and their distinction. However, not all authors adhere to these stan-
dards, and texts might have been published long before a standard existed. Further-
more, it is hard to derive such surface features for long, descriptive names ("Tumor
necrosis factor alpha"), as they use many common words. Statistical analyses of dic-
tionaries help. This enables the detection of terms or letter sequences common even
in compound names. Examples are typical endings of a compound name, like "1" or
"alpha"; words at or close to the ending, like "receptor" or "factor"; words initiating a
name, like "coupled" or "tumor". Such words might refer to other entity classes them-
selves, like tissues, diseases, or tissues ("Liver X receptor alpha", "Tumor protein D52",
"heat shock protein 70").

The immediate context of a token could bear further clues, such as trailing words
directly pointing to the type of entity ("PLOD1 gene", "PLOD1 allele", "CD8+ T cell").
Such tokens can also be part of the actual name itself ("uncoupling protein 1"). Table 3.1
shows the keywords we use as indicators for protein names, extracted manually from
examples in the BioCreative 1 training data.

The different classes of features used in our system can be described as follows:

• token: all tokens from the training set (positive and negative examples) are rep-
resented as single features;
• unseen token: new texts will contain tokens that were not encountered in the

training set; randomly, tokens from the training set are treated as ’unseen’, to not
over-fit the model towards known tokens;
• character n-grams of tokens: substrings of length n occurring in the training data

(n = 1..4);

43

3. Named Entity Recognition

adaptor factor protease nucleus
antibody gene protein surface
antigen inhibitor receptor receptor
disease kinase strand regulator
domain ligand cell upregulator
effector pathogen compartment

Table 3.1.: Keywords that are strong indicators for a gene or protein name when they
appear before/after an unknown token. These are the most frequent key-
words observed in the BioCreAtIvE corpus, see Chapter A.

• dictionary: tokens and compound words matching a dictionary of protein names;
we take these tokens from the training corpus, and enrich the set by including
names from HUGO, SGD, MGD, and Flybase; the dictionary ignores capitalization,
white spaces, hyphens, and slashes, and replaces digits with wild cards;
• surface clues: these features are based on the composition of tokens, representing

matches against various patterns consisting of letters, digits, and special charac-
ters;
• keyword distance: distance in words of a token to the nearest keyword.

Tokens and n-grams are weighted using TF*IDF weights, where the set of tokens rep-
resents the document collection. All other features are binary features (0 or 1). For the
full listing of features and feature classes, see Table 3.2.

Recursive feature selection

Introducing feature classes is a random procedure, especially where surface clues are
concerned. We tried to find the best set of feature classes manually in a trial–and–error
approach. This is unsatisfactory for a couple of reasons. First, it was infeasible to test
every possible set of feature classes, but any combination could yield the best overall re-
sults. Second, we were only able to test the influence of complete feature classes, rather
then single feature within this classes. It might be that only some members of some fea-
ture class ultimately would lead to the best overall performance. The last reason was
that for very large feature sets (including all but some classes), time performance got
worse, which made the task of testing all combinations complicated.

With recursive feature elimination (RFE) we iteratively removed the worst perform-
ing single features. We started with a model containing all features from all feature
classes, as described in Table 3.2. From that model, we selected and removed those
features that had the lowest weight assigned to them by the SVM. Afterwards, we re-
trained the model and calculated the overall performance of the reduced feature set.
RFE should ultimately remove all features (and entire feature classes) that decreased
the overall performance. In addition, RFE should lead to a more concise and informa-
tive model. Feature elimination and retraining should lead to a small set of relevant

44

3.1. Token-based Named Entity Recognition

Feature Example Short name Impact
Token * Sro7 Token =54% - baseline -
Unseen token * UToken
n-grams of token * (n=1..4) 1G, 2G, .. +15% P+, R++

(n=1..3) +14%
Previous & next tokens ([1,1]) P/NToken -5% P+, R-

[2,2]-window -6%
n-grams of tokens in window 2PG/2NG/..
Prefixes, suffixes (length=1..4) 1P,2P,3P,1S.. ±0%
Stop word (10,000 words) the, or Stop -5% P+, R-

(1000) -1% P+, R-
(100) -0.5% P+, R-

Initial upper case * Msp initCap +0.5% P=, R+
All chars are upper case * MMTV allCaps +0.5% P=, R+
Upper case letters * InlC, GUS Upper
Upper case (skip first) * MsPRP2 Upper2
Single capital A singleCap +0.5% P+, R+
Two capitals RalGDS twoCaps +0.5% P+, R+
Capital, then mixed letters ◦ IgM capMix
Lower case, then mixed ◦ kDa lowMix +1% P-, R+
Special symbols * ICAM-1 special ±0% P-, R+
Characters and numbers * p50 CharNum
Numbers * p50, HSF1 Number
Letters, digits, letters ◦ H2kd ldl ±0%
Digit, dot, digit ◦ 5.78 ddd -0.1% P-, R-
Greek letter ◦ alpha greek +0.5% P+, R-
Roman numeral ◦ II, xii roman ±0% R+, R-
Number followed by ’%’ ◦ 75.0 % percentage -0.1% P-, R-
DNA, RNA sequences ◦ ACCGT DNA, RNA -0.1% P-, R-
Length of longest consonant chain * Sro7→ 2 LCC -2% P-, R-
Keyword distance * keyDist -20% P+, R-
Dictionary * Dict -3% P-, R-
Prev./next token is PROTEIN PTG, NTG -18% Prev.: P+, R-

Table 3.2.: Feature classes used in our experiments with influence on performance (4th
column). Impact of each single feature class compared to the baseline (only
tokens). Figures include post-processing. The fifth column shows how pre-
cision and recall are affected. *: classes used in the initial BioCreAtIvE sub-
mission that together comprise the best performing feature set, ◦: classes
implemented afterwards.

features that may be beneficial for further investigations. Another advantage is an eas-
ier interpretation of the computed solution, due to the reduced dimensionality.

Recursive feature elimination was described, for example, by Guyon et al. [2002].
Recall the introduction to support vector machines in Section 2.2.1 and the decision
function 2.15. Disregarding the additive threshold, b, the inner product denotes a lin-
ear combination of all features of x, where each feature’s weight is its corresponding

45

3. Named Entity Recognition

component in w. Since we allow only positive feature values, the sign of each compo-
nent of w determines if the corresponding feature is an indicator for the decision. A
positive sign points towards, a negative sign away from a protein name. The absolute
values correspond to the features’ impact on the inner product and thus on the decision.

In each iteration of RFE, we start with training and evaluating the SVM classifier.
We then remove all features having a zero component in w. Afterwards, we eliminate
either a fixed percentage or a fixed number of the remaining features. These features
are chosen according to their lowest weights in w. Retraining the SVM on the reduced
feature set starts a new iteration of the RFE procedure.

3.1.2. Post-processing to find multi-word terms

We noticed that many protein names are multi-word terms: in the BioCreative 1 Task
1A training set, 4781 out of 8876 gene names consist of two or more tokens (53.8%).
Our initial classification very often misses full names, but instead marks only some
(often vital) parts of the name. Most frequently, nouns and nondescript adjectives not
appearing in the training examples are missing from the full names. Thus, using a
token–based classification necessitates merging and perhaps expanding tokens to full
names. In our system, consecutive tokens classified as protein names get merged into
one multi-word term directly. To include parts of a protein name that were not initially
recognized as such, we use a set of heuristic rules based on part-of-speech information.
Whenever we find an initial token classified as (part of) a protein name, we apply rules
involving the immediate context (surrounding tokens) of this token. These rules either
extend sequences of tokens to full phrases, or they remove markup from some isolated
(single) tokens. Table 3.3 list all these rules, found by manual inspection of predictions
by the SVM on the training and development data. Note that these rules fit the anno-
tations observed in the BioCreAtIvE corpus, task 1A (see Chapter A). Thus, they might
be highly specific and not applicable to other corpora without adaptation.

All rules use the tokens themselves, their respective labels generated by the SVM,
and their part-of-speech tags. For the latter, we use POS tags as predicted by the Brill
tagger [Brill, 1992]. In general, the rules works as follows. Whenever a noun phrase
—defined as a consecutive sequence of nouns, potentially following an adjective— con-
tains a protein name (one or more tokens), then the whole noun phrase is typically a
gene name. Exceptions include a number of special nouns and adjectives that never
or rarely occur as part of a protein name. Such nouns and adjectives were collected
from the training corpus using collocations. Every word appearing more frequently as
a part of a protein name than preceding a protein name (and not being part of it) gets
included in the expanded name (and vice versa). This leads to two exclusion lists for
nouns – we expand a name, if the noun is none of 372 or 222 particular terms, respec-
tively. We decided to use a negative list, as we found much more nouns included in
protein names than preceding or trailing protein names. We do the opposite for adjec-
tives, including an unmarked adjective in the expanded name if it appears in a list of
778 particular terms. This list was also collected from the training examples. The rules
consider formations of protein names around slashes and parentheses, too.

46

3.1. Token-based Named Entity Recognition

As an additional false positive filter, our system removes some particular words that
rarely represent protein names when occurring by themselves (see Table 3.4). These
often get predicted as protein names because they are used in the same way protein
names are, or their immediate context matches that of protein names. Some additional
rules, shown in Table 3.5, remove false markup when the surrounding tokens are pre-
dicted as protein names.

Initial sequence Expanded sequence Limitation
NN* PROTEIN ⇒ PROTEIN PROTEIN all but 222
PROTEIN NN* ⇒ PROTEIN PROTEIN all but 372

PROTEIN DT NN* ⇒ PROTEIN PROTEIN PROTEIN all but 372
NN* DT PROTEIN ⇒ PROTEIN PROTEIN PROTEIN all but 222

JJ PROTEIN ⇒ PROTEIN PROTEIN only 778
PROTEIN JJ ⇒ PROTEIN PROTEIN only 778
PROTEIN CD ⇒ PROTEIN PROTEIN

PROTEIN . CD ⇒ PROTEIN PROTEIN PROTEIN
DT .+ PROTEIN ⇒ DT PROTEIN PROTEIN

PROTEIN / PROTEIN ⇒ PROTEIN PROTEIN PROTEIN
/ PROTEIN ⇒ PROTEIN PROTEIN
PROTEIN / ⇒ PROTEIN PROTEIN

(PROTEIN , NN) ⇒ (PROTEIN , PROTEIN)
(NN , PROTEIN) ⇒ (PROTEIN , PROTEIN)

NN* / PROTEIN ⇒ PROTEIN PROTEIN PROTEIN
PROTEIN / NN* ⇒ PROTEIN PROTEIN PROTEIN

Table 3.3.: Post-expansion rules to extend protein names based on a single hit in a multi-
word term. PROTEIN: tags that mark single tokens as part of a protein name.
We exclude 372/222 particular nouns from the expansion for the first four
rules; we include only 778 adjectives for rules five and six; all six such rules
recognize noun phrases. NN*: nouns, proper nouns, plurals; JJ: adjective;
CD: cardinal digit; DT: determiner; ’/’ refers to a slash appearing in the text;
’.’: a single character; ’.+’: one ore more arbitrary characters, no white space.

activator, domain, factor, family, gene, heavy, kinase, locus, mRNA, protease,
protein, receptor, reductase, ribosome, SNP, subunit, tRNA; alpha, beta, gamma, ...

Table 3.4.: Wrongly predicted words that never occur as a protein name by themselves;
observed in the BioCreAtIvE data.

47

3. Named Entity Recognition

PROTEIN agonist !PROTEIN ⇒ PROTEIN NN !PROTEIN
PROTEIN antagonist !PROTEIN ⇒ PROTEIN NN !PROTEIN
PROTEIN binding !PROTEIN ⇒ PROTEIN VBG !PROTEIN

PROTEIN DNA binding ⇒ PROTEIN NN VBG
PROTEIN nucleotide sequence ⇒ PROTEIN NN NN
!PROTEIN intron PROTEIN ⇒ !PROTEIN NN PROTEIN
!PROTEIN exon PROTEIN ⇒ !PROTEIN NN PROTEIN

cell types PROTEIN ⇒ NN NNS PROTEIN
!PROTEIN [number] !PROTEIN ⇒ !PROTEIN CD !PROTEIN

Table 3.5.: Additional rules for filtering false positives that contain specific words.
Whenever "agonist" is predicted as a protein, as is the previous token but
not the following one, then we reset "agonist" to noun. !PROTEIN: any tag
other than PROTEIN; VBG: verb, gerund.

3.1.3. Evaluation

Table 3.2 shows the influence on performance of all single feature classes compared to a
baseline. For the baseline, we use only the tokens as features, which achieves a perfor-
mance of 54% after post-processing. For all other results in Table 3.2, we use the token
feature and the respective other feature class only. Table 3.6 shows the performance of
different (manually picked) combinations of feature classes.

We found that many false positives were due to predicting very generic terms, such
as "transcription factor" or "rat gene". Indeed, some of these names depicted protein
families rather then members. Those also counted as false hits, because the information
gained was insufficient. In addition, some names depicting families might get specified
further, sometimes immediately following the family name ("Transcription factor AP-2
gamma"). We counted such errors as boundary-errors (see later in this section).

Feature Impact
Tokens + letter surface clues +2% P+, R-
Tokens + 1,2,3-grams + greek +

roman + letter surface clues +14% P+, R++
Tokens + 1,2,3-grams + keyDist +

Dict + LCC + special + combi +
allCaps + initCap * +16% P+, R++

Tokens + 1,2,3,4-grams + keyDist +
Dict + LCC + special + combi +
allCaps + initCap + lowMix ◦ +18% P+, R++

Table 3.6.: Influence of combinations of feature classes on the prediction performance
(including post-processing). "Letter surface clues" (bottom part) refers to the
following features from Table 3.2: {special, allCaps, initCap, capMix, lowMix,
ldl, ddd}.

48

3.1. Token-based Named Entity Recognition

Recursive feature elimination

Two setups should reveal the worst performing features and also the most informative
and best ones. Overall, we had more than 150,000 features, depending on the set of
feature classes. For the first setup, we iteratively removed the 10% of all features that
had the lowest weights. Figure 3.1 shows the corresponding curve of removed features
and performance. Overall, the performance dropped constantly after each iteration.
Removing more than 95% of the initial features still left a model that performed only
slightly less then the initial one (−2.3%). With a reduced removal rate of 1000 fea-
tures instead of 10% (plus all features with weight zero), the maximum F1-measure of
71.1% could be achieved with about 23,000 remaining features, see Figure 3.1. After
we removed all but 150 features, we looked deeper into their composition and mean-
ing, as they should be the most discriminating ones. In general, the 150 features can
be grouped as follows. About 70 features referred to different three- and four-grams.
Around 70 other feature depicted single tokens, and ten surface clue features. Table 3.7
contains examples for either group.

Examples for the 70 remaining three- and four-grams are common suffixes such as
"ing" and "ese", but also highly specific ones, such as "76-k", "Stai", and "GTTA", oc-
curring with only a low frequency. An evidence that points towards the effectiveness
of RFE was that very few three- and four-grams overlapped each other, which would
share potentially redundant correlations.

To find patterns in the most important n-grams (regarding a positive decision), we
stopped a new RFE run as soon as only 500 n-grams remained. We then counted their
occurrences in the whole corpus, finding that most of them occur more often in protein
names than outside or vice versa. For example, the 4-gram "nRNP" occurs 20 times
(denoting an abbreviation for "nuclear ribonucleoprotein") in words like "hnRNP" or
"snRNP-specific", all of which are (parts of) protein names. Behind most highly ranked
token features we can find biological meanings, as in the previous example. On the
other hand, the 4-gram "oped" (for example in "developed") has a negative weight and
occurs exclusively outside protein names (55 times).

We can split the 70 single token features mainly into three groups: common stop
words receiving a high negative weight (such as "the" or "are"), common important key-
words receiving a high positive weight ("kinase", "protein"), and abbreviations ("Gnt",
"ZII") with either positive or negative weights.

Post-processing for name expansion

Post-processing improves the performance of our system by 12% precision and 10%
recall. It corrects about 300 previously incomplete gene names (more than 20% of the
former false negative predictions). It additionally removes 120 false positives (10%) by
explicitly deleting generic single word names (like "protein"). By manual inspection
we found the post-processing never makes a mistake in the latter cases. In Figure 3.2,
we present the impact of the post-expansion on recall and precision. The best setting
achieved an overall precision of 71.4% at 72.8% recall (f-measure: 72.1%).

49

3. Named Entity Recognition

Figure 3.1.: Correlation between feature set size and performance. Left: percentages of
remaining features and their corresponding precision/recall curve. Right:
numbers of remaining features with corresponding performance rates.
Evaluation without post–processing.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

re
c
a

ll

precision

without expansion
with expansion

Figure 3.2.: Recall and precision with and without post-expansion. We use the full fea-
ture set (100% in Figure 3.1) for this evaluation. We obtain the different
spots by parallel shifts of the hyperplane.

50

3.1. Token-based Named Entity Recognition

Feature Class Weight Feature Class Weight
Dict 1.497386 AACC 4-gram 0.088738

insulin Token 0.632708 D2-m 4-gram -0.022443
protein Token 0.628168 Stai 4-gram -0.082046
kinase Token 0.608392 mig 3-gram -0.083135
human Token 0.536695 Reve 4-gram -0.096548
proteins Token 0.535368 ing 3-gram -0.099499

greek 0.498111 GnT Token -0.099619
combi 0.489201 owl 3-gram -0.100996

serum Token 0.480326 231 Token -0.104751
lowerUpper 0.457806 ZII Token -0.105133
singleCap 0.438028 had Token -0.106545

factor Token 0.438028 we Token -0.107104
wild-type Token 0.389359 [..]

initCaps 0.366269 that Token -0.174203
mutants Token 0.340689 scre 4-gram -0.175351
genes Token 0.340352 OH Token -0.179445
promoter Token 0.327395 ims 3-gram -0.182513
receptor Token 0.323412 be Token -0.186265
polymerase Token 0.305972 . Token -0.188904
complex Token 0.292019 To Token -0.189576
receptors Token 0.292019 acyc 4-gram -0.191766
c-myc Token 0.292019 the Token -0.192838
sites Token 0.243349 off Token -0.197588
mutant Token 0.243349 rank Token -0.198915
domain Token 0.231541 Dar Token -0.205479
sequence Token 0.216691 (Token -0.206405
sequences Token 0.216683 omit 4-gram -0.220064
domains Token 0.215116 nost 4-gram -0.223077

special+number 0.205077 spit 4-gram -0.238335
isoforms Token 0.194679 allCaps -0.243183

special+upperCase 0.179926 oped 4-gram -0.246457
capMixLetters 0.179394 The Token -0.246535

[..] aged Token -0.253814
lare 4-gram 0.105354 are Token -0.267228
bicu 4-gram 0.103185 ssif 4-gram -0.272211
bea 3-gram 0.100539 encoding Token -0.447471
[Token 0.097113 which Token -0.535368
ntei 4-gram 0.093310 activate Token -0.535368
GTTA 4-gram 0.088738 contain Token -0.640844

Table 3.7.: Examples for features and feature classes remaining after 64 iterations of re-
cursive feature elimination. We show features with highest, medium, and
lowest weights and omit others. Higher weighted features are more likely
to apply to positive examples (protein names), lower weighted features to
common words. Names in bold indicate binary orthographic features and
the dictionary (Dict), in contrast to single features, like a particular 3-gram.
The feature named special in Table 3.2 consists of four sub–features that all
state if the token contains special symbols together with other characters;
two of these are present in the list of top ranking features: special+number
and special+upperCase.

51

3. Named Entity Recognition

Evaluation on other corpora

We noticed a strong bias toward the underlying corpus. The post–expansion step does
not work properly on, for example, the GENIA corpus [Ohta et al., 2002]. We achieved
an f-measure of 61.7% using our system trained on 75% of the corpus’ sentences and
tested on 25%. After the post-processing, the f-measure dropped down to 55.5%, mainly
loosing precision performance. The GENIA corpus contains different labels for more
than one class of entities, however. It separates proteins from protein families, protein
complexes, peptides, substructures of proteins, DNA, RNA and many other sources.
The evaluation we ran on GENIA took only into account the protein class, but other
names would have been labeled as gene or protein names in BioCreAtIvE. Our system
additionally made errors where GENIA annotates nested compound names.

On the YAPEX corpus [Franzén et al., 2002], our systems performed even worse. The
f-measure is 37.8% before post-processing, and 37.3% afterwards. 200 abstracts com-
prise this corpus (970 sentences for training and 941 sentences for testing). In many
complete abstracts, a gene name appears more often than only once. If our system
was not able to predict this name correctly, the evaluation led to multiple errors. Thus,
for corpora that do not consist of isolated sentences but larger discourses, our method
should include a feature depicting previous predictions; we could also scan the same
piece of text twice, the second time including all previous predictions to also consider
tokens following the current position.

However, for the experiments on other corpora, we used the feature set and param-
eters tuned on the BioCreAtIvE corpus. For the other corpora, the matches had to be
exact, without any alternative gene name compositions like in the BioCreAtIvE corpus.
This means that in the BioCreAtIvE data set, some names had variable boundaries, for
instance, “Her2B” and “Her2B protein” both were valid matches. A thorough analy-
sis, especially of the post-processing step, should reveal the main sources of errors the
system makes on other corpora.

Kernel parameter optimization

During feature engineering, we made use of the default linear kernel setting of the Sup-
port Vector Machine. However, applying other types of kernels to this specific problem
might improve the classifier to some extent. We evaluated the performance of differ-
ent kernels on the best selection of feature classes identified during the engineering
described above.

Disappointingly, all other kernels lead to decreasing classifying abilities. Using poly-
nomial kernels of degree two and three, and a radial-basis-function kernel reduced
the F1-measure to 67.1%, 62.2%, and 36.0%, respectively (compared to 70.6% of a linear
kernel). Especially the figures for recall dropped significantly using these other kernels.
All these experiments were done with the respective default kernel parameters.

52

3.2. Dictionary-Based Named Entity Recognition

Boundary detection

We found that 25% of all errors were caused by imprecise recognition of compound
names. This means that our NER procedure finds only parts of a name, or identifies
too many consecutive tokens as a compound name. Most times, the post-processing
stage did not extent all initial hits to full names properly, adding too many tokens into
a name or falsely removing (or not adding) tokens. Only about 1% of boundary-related
errors originated from the SVM, were post-processing did not remove initial hits. This
happened, for instance, when tokens directly adjacent (but not part of) a protein name
were classified wrongly. In 27% of all boundary errors, the tagged sequence exceeded
the real boundary to the left, and in 28% the real phrase started left of the predicted
boundary. In 32% of the cases, the tagged sequence exceeded the real boundary to the
right, and in 31% the real phrase ended after the predicted boundary on the right. In
some cases, errors at the left and right happened at the same time. Errors introduced by
the post-processing were almost balanced regarding the position (left/right) and also
the type (exceeding/insufficient tagging).

3.2. Dictionary-Based Named Entity Recognition

Another approach we explored to recognize named entities is based on matching texts
against dictionaries. This method used pre-compiled name lists of instances that belong
to the given entity class. The name lists most times originate from renowned databases
that explicitly curate data on such entities. For instance, the UniProt database lists
(among detailed information on each protein) protein names, gene names, and syn-
onyms for each entry [Bairoch et al., 2005]. Each of these can be taken as a name variant
that refers to the respective entity.

We observed that many variations of names exist that are not explicitly curated in
the database. We encountered many orthographic, morphological, and structural vari-
ations. Nevertheless, these were quite similar to each other, so that a database would
curate only one variation as an overall representative (like for "IFN-gamma", "IFN-γ",
and "Ifn γ"; see Section 2.1.1). In addition, it is impossible to collect or guess all (existing
and future) spelling variations to include in a list of names, as discussed in Chapter2.

There are two main strategies to deal with orthographic, morphological, and struc-
tural variations in dictionary-based approaches. The first is to compile a concise dic-
tionary with names as gathered from the database. Recognizing names than relies on
inexact string matching. The second strategy is to generate a “loose” dictionary that
already includes typical deviations of spelling. These terms then are searched for using
exact matching.

In our dictionary-based approach, we follow a hybrid strategy. Starting with a list
of terms reflecting names for entries in a biological database, we compile regular ex-
pressions that allow for variations such as plural forms, hyphenation, and capitaliza-
tion. Variations for obvious abbreviations (“IFN”) are introduced as well. For example,
the following regular expression covers many variations of the protein name “IFN-

53

3. Named Entity Recognition

gamma”:

(I(FN|fn)|ifn)[\-_]?(g(amma)?|{gamma})s?

(with {gamma} depicting the Greek letter γ).
We built a finite state automaton covering all expressions that we generated in the

described way, using the Monq package [Kirsch et al., 2005]. Arbitrary text is then
streamed against this automaton. We applied the same strategy for multiple types of
entities, in addition to protein and gene names as described before. Table 3.8 lists the
data sources we exploit to compile dictionaries for different entity classes. We use all
these different dictionaries in the AliBaba tool, fully described in Chapter 6.

Entity class Database Number of entries
Cells MeSH, tree A11 709
Compounds KEGG 22,635
Diseases MeSH, tree C 12,401
Drugs MedlinePlus 15,341
Enzymes KEGG 23,063
Nutrients -various- ca. 90
Proteins and genes UniProt 199,964
Species NCBI Taxonomy 208,138
Tissues MeSH, tree A2-10 1356

Table 3.8.: Data sources that comprise the dictionaries for each entity class. The number
of entries does not coincide with the number of entities: synonyms count as
different entries, one synonym might represent multiple entities.

Most databases adhere to some nomenclature and use standardized names, while
names in literature in much more varieties. In particular, this addresses the problem of
lexical and structural variations (see Section 2.1.1). For instance, generating spelling
variations for the previously mentioned “IFN-gamma” would not include the long
form of the abbreviation “IFN”, “interferon”. As another example, the collection of
Medical Subject Headings1 prefers the term “lymphocytes”, while most authors prefer
to use "cells" (“B-lymphocytes” versus “B-cells”). Such problems can only be tackled
when synonyms of essential naming components (different for each entity class) are
known to the system, for instance using (domain-specific) ontologies or comparable
manually compiled resources. An evaluation of our system to recognize (and subse-
quently identify) human gene names revealed a maximum recall of 91.7% using con-
version to regular expressions, as compared to 72% using exact matches on the BioCre-
AtIvE 2006/07 GN task data [Morgan et al., 2008].) Using the whole set of proteins
available in UniProt (see Table 3.8), we obtained 73% precision at 54% recall (f–measure
of 62%) on the BioCreative 2006/07 GM task [Smith et al., 2008].

1MeSH, see http://www.nlm.nih.gov/mesh/

54

3.3. Extension of Dictionary-Based Approaches to Named Entity Identification

3.3. Extension of Dictionary-Based Approaches to Named Entity
Identification

An extension to dictionary-based approaches for named entity recognition results from
the implicit mapping of names (entries in the dictionary) to their origin (entry in the
database(s) used to compile the dictionary). If such a mapping exists, namely in the
form of identifiers associated with each name, it poses as a step towards named entity
identification, which aims at not only spotting entity names, but attempting to resolve
them to unique identifiers. This process is often also called normalization or grounding;
find an introduction to this task in Section 2.1.2. Note that this step is independent
of whether regular expressions are generated from dictionary entries to allow for vari-
ations, or the dictionary is used in an inexact matching strategy. However, for each
recognized mention, usually a set of candidates remains, so the mention has to be dis-
ambiguated further.

The task of gene mention normalization was first pursued in the BioCreAtIvE chal-
lenge held in 2003/04 (as Task 1B) for genes from the three organisms mouse, fruit
fly, and yeast [Hirschman et al., 2005]. A dataset for human genes became available
with BioCreative II in 2006/07 (GN Task, see Morgan et al. [2008]). We extended our
approach of dictionary-based protein name recognition with a step for the disambigua-
tion of candidates found by the dictionary matcher. Previous approaches all attempted
to solve the disambiguation problem based on the string level, picking the name in a
dictionary that was most similar to a recognized name. Limitations of such approaches
arise from identical names shared among multiple genes (ambiguity). This is most
often the case for homologous genes from different species, but intra-species ambigu-
ities exist also. In a set of 3.5 million genes (EntrezGene, comprising ca. 4700 differ-
ent species/strains), we found an average of 1.83 genes per name (case–insensitive, no
symbols). The average number of species per name was 1.4. If we add names of the
referenced proteins, we get an average of 2.13 genes and 2.23 species per name. Fun-
del and Zimmer [2006] presented a more exhaustive study of inter-species ambiguities,
finding, for instance, an overlap of 15.1% between human and mouse genes.

Our approach thus took into consideration not only names of genes, but largely
makes use of background information known for each gene [Hakenberg et al., 2008b].
We obtained such background information from various databases, such as Entrez-
Gene, UniProt, and GOA, which all curate different aspects of genes and gene prod-
ucts, and compiled a gene context profile for each gene. We compared the profile for
each candidate gene with the discourse under consideration (in the case of BioCre-
ative GM, an abstract) and picked the gene which context best fitted the current text.
We collected external knowledge from EntrezGene, UniProt, and GOA (EntrezGene:
summary, GO terms, GeneRIFs, chromosomal location, interaction partners; UniProt:
diseases, keywords, functions, protein mutations, protein length, protein domains, GO
terms, interaction partners, tissue specificity; GOA: GO terms.)

For calculating the similarity based on Gene Ontology terms, we searched for GO
terms in the current abstract and compared them to the set of GO terms assigned to

55

3. Named Entity Recognition

each gene candidate. For each potential tuple taken from the two sets (text and gene
annotation), we calculated a distance of the terms in the ontology tree. These distances
yielded a similarity measure for two terms, even if they did not belong to the same
sub–branch or were immediate parents/children of each other. The distance took into
account the shortest path via the lowest common ancestors, as well as the depth of this
lowest common ancestor in the overall hierarchy (comparable to Schlicker et al. [2006]).
The distances for the closest terms from each set then defined a similarity between the
gene and the text.

We compared the other annotations from each gene’s context model according to
their type (terms or full texts.) For terms (such as keywords), we calculated the fraction
of terms occurring in the abstracts among all terms. For texts (for instance, descriptions
of a gene’s implications in diseases), we calculated the cosine distance of both bag–
of–word representations (TF–weights) and the normalized overlap (fraction of tokens
from the disease description that also occur in the abstract.) We excluded 154 stop
words and other, non–discriminative tokens such as “protein”, “observe”, “detected”
(see supplementary information.)

All such comparisons yielded likelihoods stating the similarity of the current text
with the knowledge available on each gene. For each type of annotation, we normalized
all likelihoods for all genes (where applicable) with the highest score, so all values were
between 0 and 1. We combined all likelihoods for each gene into confidence measures
(between 0 and 1), and picked the EntrezGene ID with the highest likelihood, if this
was above a certain threshold. Some annotations (protein mutations and chromosomal
locations), if they occur literally in the text, triggered a confidence of 1.0. This was
due to the fact that such annotations were sufficient to immediately identify a gene;
identical annotations for different genes/proteins were highly unlikely.

In the BioCreative II GN challenge, our approach reached an f-measure of 81%, out-
performing all other 20 such systems (statistically significant improvement over the 3rd
best, p < 0.05); note the challenge was for human genes only. As a recent extension,
we not only target genes of a single species, which was the case for the corresponding
BioCreative 1 and 2 tasks, but formulate the problem of inter-species gene normaliza-
tion [Hakenberg et al., 2008a]. As an initial result on a small benchmark adapted from
BioCreative 1 and 2 we achieve an f-measure of 81.2% for the overall task of recogniz-
ing and normalizing genes from any species. Other modifications in that same system
pushed the f-measure for human genes to 86.4%, an improvement of ca. 5% over pre-
vious results (measured on the BioCreative II GN test data).

3.4. Related Work

In this section, we will discuss related work in the field of biomedical named entity
recognition. We start with descriptions of various systems, sorted by the main strategies
underlying each system. We conclude with a comparison of all strategies in general,
regarding performance, manual workload, manageability, and insights into predictive
models.

56

3.4. Related Work

Entity type Studied in
cell lines JNLPBA’04, see Kim et al. [2004]
cell types JNLPBA’04, see Kim et al. [2004]
diseases Rosario and Hearst [2004]
DNA, RNA Nobata et al. [1999]; JNLPBA’04, see Kim et al. [2004]
enzymes Schmeier [2005]
genes and proteins Song et al. [2004b], Mitsumori et al. [2004], Zhou et al. [2004b],

Mika and Rost [2004], Krauthammer et al. [2000], Nobata et al.
[1999]; Hsu et al. [2008]; also see the overviews regarding
BioCreAtIvE, see Yeh et al. [2005]; JNLPBA’04, see Kim et al.
[2004]; and BioCreative II, see Smith et al. [2008]

GO terms Survey in Blaschke et al. [2005], Camon et al. [2005]
proteins Hanisch et al. [2005]
species Gaizauskas et al. [2003], Schmeier [2005], Kappeler et al. [2009]
sources (cell [-line], nucleus) Nobata et al. [1999]

Table 3.9.: Overview of systems proposed for the recognition of various types of named
entities. Some systems consider multiple types at once.

The first systems for biomedical named entity recognition have been proposed since
1998 [Fukuda et al., 1998, Nobata et al., 1999]. Systems started with the recognition
of protein names in text, which still is one of the most studied tasks, and soon were
expanded to gene names, DNA, and RNA. To distinguish between these four types is
not trivial, and sometimes even human experts can not decide between either. Thus,
very often, all four get combined into a single category. Table 3.9 shows systems for the
recognition of different kinds of entities.

For the recognition of protein names, Table 3.10 lists systems by their reported per-
formance. We give performance measures as presented by the authors; however, most
system were evaluated on different, often proprietary corpora, and performance mea-
sures are not comparable. Some systems try to recognize different classes of entities,
where some types might be easier than others, and a system might yield completely
different results for different entity classes. Even the definition of an entity class varies
from system to system. Evaluation procedure most times is strict, meaning entire names
have to be recognized, but sometimes loose, where detection of any part of a name is
regarded sufficient for successful recognition. Other systems try to solve not only NER,
but also normalization of named entities, which poses a much harder challenge.

Published values for the performance of biomedical NER range from 40% to up to
95% in f-measure. The best performing systems in the BioCreAtIvE challenge 2003/04
achieved an f-measure around 83% for gene and protein names [Zhou et al., 2004a, Mc-
Donald and Pereira, 2004]. The best system in the BioNLP/NLPBA competition 2004
reached about 70% f-measure, combined for the recognition of proteins, DNA, RNA,
cell types, and cell lines [Zhou and Su, 2004]. Published systems for identification of
protein names (EMN) yield up to 92% F1-measure, strongly depending on the species
associated with a name. High performance is only achieved for species for which highly
standardized and well-used nomenclatures exists, for instance yeast (also evaluated in
the BioCreAtIvE challenge 2003/04; see Hirschman et al., 2005). The most recent and

57

3. Named Entity Recognition

largest benchmark, which is now used in most studies, was prepared for the BioCre-
ative II Gene Mention task [Smith et al., 2008]. Among 19 participants, the best per-
forming system [Ando, 2007] reached an f-measure of 87.2%, a statistically significant
improvement over the 4th best system (p < 0.05). Since 2007, other systems have been
evaluated on BioCreative II GM, currently achieving an f-measure of 88.3% [Hsu et al.,
2008].

Studied in Basic method F1 Test collection
Fukuda et al. [1998] Rule sets 95.9 80 abstracts
Gaizauskas et al. [2003] Rule sets 85.7 1513 abstracts
Nobata et al. [1999] C4.5 87.5 100 abstracts
Nobata et al. [1999] naïve Bayes 70.3 100 abstracts
Chang et al. [2004] naïve Bayes ≈82 Yapex
Krauthammer et al. [2000] BLAST 75.1 1162 gene names
Chang et al. [2004] SVM 82.5 Yapex
Takeuchi and Collier [2003] SVM 79.0 100 abstracts
Mitsumori et al. [2004] SVM 78.1 BioCreAtIvE’03/04
Song et al. [2004b] SVM 73.8 BioCreAtIvE’03/04
Zhou et al. [2004a] 2 SVMs + HMM 82.6 BioCreAtIvE’03/04
*Hakenberg et al. [2005a] SVM 72.4 BioCreAtIvE’03/04
Zhou and Su [2004] 2 SVMs + HMM 72.6 JNLPBA’04
Mika and Rost [2004] 4 SVMs + Dict. 75.5 Yapex, biased
Mika and Rost [2004] 4 SVMs + Dict. 70.8 GENIA, biased
Ando [2007] ASO 87.2 BioCreAtIvE II GM
Kuo et al. [2007] CRF + Dict. 86.8 BioCreAtIvE II GM
Klinger et al. [2007] CRF 86.3 BioCreAtIvE II GM
Hsu et al. [2008] CRFs 88.3 BioCreAtIvE II GM
Leaman and Gonzalez [2008] CRF 86.4 BioCreAtIvE II GM
*Our approach Dictionary 73.1 BioCreAtIvE II GM
Song et al. [2004a] SVM & CRF 66.3 JNLPBA’04
Friedrich et al. [2006] CRF 71.5 JNLPBA’04
McDonald and Pereira [2004] CRF 82.4 BioCreAtIvE’03/04
Seki and Mostafa [2003] Prob. model 81.4 Yapex
Finkel et al. [2004] MaxEnt 70.1 JNLPBA’04
Chang et al. [2004] MaxEnt 82.1 Yapex
Hanisch et al. [2003] Dictionary 92.4 470 abstracts

Table 3.10.: Performances (F1-measure in %) reported for different systems for named
entity recognition of protein and/or gene names. The JNLPBA’04 test col-
lection is a subpart of GENIA. Because evaluation methods and corpora
differ by large, most results are not comparable, but only give hints on the
effectiveness of approaches. Studies marked * refer to our own approaches,
as discussed in this chapter.

3.4.1. Dictionary-based approaches
Dictionaries provide large collections of exemplary names for an entity class. Exactly
matching dictionary entries against text is a simple and very precise NER method, but
generally yields only very poor recall. To compensate, one can either use inexact match-
ing techniques, try to loosen the syntax of entries in a dictionary, or try to integrate

58

3.4. Related Work

more and more data sources into the dictionary (cmp. Section 3.2). The latter approach
refines the dictionary by automatically generating typical spelling variants for every
entry. The extended dictionary is then used for exact matches against the text [Hanisch
et al., 2003, 2004]. When dictionaries are extracted from biological databases, such ap-
proaches bear the important advantage that they are able to recognize and normalize
each name in a single step. Homonyms in a dictionary of course lead to ambiguities
even within an entity class. At least the set of possible instances is reduced to very few
candidates, which might be refined further (see 2.1.3 in Chapter 2).

Hanisch et al. [2003] proposed a dictionary-based approach that relies on a large,
curated dictionary and a token-based search algorithm. They observed that the or-
dering of tokens in a compound name is only semantically significant up to a cer-
tain limit. Thus, re-orderings of tokens appear quite frequently. Tokens are grouped
into six categories that bear different semantic significances. They can either be com-
mon ("and"), non-descriptive ("precursor"), modifiers ("receptor"), specifiers ("alpha"),
standards ("TNF"), or delimiters ("."). Based on match and mismatch values for either
group, the system analyzes a sliding window for candidate names. When a candidate
term gets above or below certain threshold, it gets compared against the full dictionary
or pruned, respectively. The dictionary extracted from HUGO, OMIM2, SWISSPROT and
TREMBL3. Exhaustive curation generated new synonyms (spelling variations) and re-
moved ambiguities and irrelevant entries. The final dictionary consisted of 151,700
synonyms for 38,200 entries. On a set of 470 abstracts with 147 different objects derived
from TRANSPATH4, a maximum precision of 90% at 95% recall was reported.

The WHATIZIT system uses a pre-compiled list of names that all refer to one entity
class [Kirsch et al., 2005, Rebholz-Schuhmann et al., 2005]. From each entry, it gener-
ates a regular expression recognizing this entry and common spelling variations using
heuristic rules (mostly rules that involve variations in suffixes, capitalization, and Ro-
man vs Arabic numbering). All such regular expressions taken together are represented
as a finite state automaton that parses arbitrary text. All initial entries are taken from
the UniProt database [Wu et al., 2006], and the automaton maps matching strings in a
text to the respective UniProt-IDs. We extended this approach by adding more rules
to create typical spelling variations of proteins, such as generating structural variations
(‘CD95 receptor’ ↔ ‘receptor of CD95’) and lexical/morphological variations (‘R’ ↔
‘receptor’), which are not included in Whatizit (see described in Section 3.2).

Inexact matching using BLAST

An approach using BLAST has been proposed by Krauthammer et al. [2000]. This sys-
tem encodes the English alphabet, together with numbers and special symbols, as four-
tuples of DNA bases. In this way, a dictionary of named entities (derived from Gen-
Bank [Benson et al., 1998]) and the text get encoded as DNA sequences. The original
BLAST algorithm [Altschul et al., 1990, 1997], an inexact string matching algorithm,

2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
3http://www.expasy.org/sprot/ for SwissProt and TrEMBL
4http://transpath.gbf.de

59

3. Named Entity Recognition

searches similarities between the encoded phrases and named entities in the dictionary.
This approach yields a precision of 71.7% and a recall of 78.8% on a review article with
1162 genes by two human annotators.

3.4.2. Rule-based approaches

Rule-based approaches use hand-crafted heuristic rules or machine-learned rules to
describe the composition of named entities and their immediate context. Compared to
other approaches, rule-based systems are often not robust towards unseen names and
unseen surrounding contexts. Another severe drawback is the time-consuming process
of manually deducing and tuning patterns from examples, and the substantial amount
of interference between rules. Sophisticated rule-based systems often reach very high
precision; but the more specific the chosen rules are, the lower the achieved recall is.

Fukuda et al. [1998] use surface clues (capital letters, symbols, digits) to extract can-
didates for protein names. In a subsequent step, these candidates are connected to sur-
rounding terms using syntactic rules. For example, candidates get expanded to contain
functional trailing terms such as "domain", "kinase" or "receptor". This expansion in-
cludes previously unconnected terms appearing between the initial candidate and the
new functional term. Non-adjacent candidates get connected if all terms in between
them are only nouns, adjectives, or numerals. The system even deals with enumer-
ations and occurrences in parentheses. No additional information other than surface
clue rules are needed for finding candidates. Fukuda et al. use the Brill part-of-speech
tagger trained on common English texts to obtain syntactical information for the rule-
based term expansion [Brill, 1992]. The approach achieves a precision of 94% at 97.7%
recall, as evaluated on 80 abstracts. Main false positives errors were due to virus and
cell names. The authors noticed that about 95% of all names actually include a candi-
date core term (meaning a term with capital letters, numbers, etc.) or a functional term,
and that the remainder are common simple protein names such as "insulin".

PASTA combines heuristic with machine-learned rules [Gaizauskas et al., 2003]. The
system ultimately tries to fill a set of templates for twelve different entity classes (rang-
ing from "protein" to "quarternary structure"). This is done in two major steps, one
for the initial terminology identification and the second for the actual template filling.
A subset of the rules are terminological rules. These rules identify head term (for in-
stance based on a frequent affix, such as "-ase", or by look-up in a dictionary). A set
of subsequently applied grammar rules then incorporates expansions of head terms,
for instance using modifiers or numerals, to also find compound names. PASTA learns
some rules from a rather small training corpus. However, combining learned rules and
heuristic rules to one set overcomes the incompleteness of the small sample. For protein
names, this approach achieves a precision of 91% at 81% recall,

One system presented at BioCreAtIvE 2003/2004 used a basic set of four patterns in
which protein names frequently occur in text [Kirsch and Rebholz-Schuhmann, 2004].
Very often, a protein/gene name is embedded in a sentence structure like
• "the X protein" or
• "a Y-like gene".

60

3.4. Related Work

Such methods works quite well when the recognition of one occurrence of a name in
a whole text is sufficient. Given a large amount of occurrences, it gets highly probable
that at least one occurrence will be embedded in a frequent pattern. As we will see in
the later part of this thesis, for relation mining and language patterns, it is thus the hard
task to find the "right" (precise enough, general enough) set of patterns (see Chapter 4).

3.4.3. Classification-based approaches
The most popular technique in biomedical NER is to transform the NER task into a
classification problem, either for single words or for multi-word phrases. Applying a
naïve Bayes classifier, Nobata et al. [1999] trained a model to distinguish between four
different categories of named entities: source, protein, DNA, and RNA. They took terms
occurring in names taken from SwissProt and GenBank as features for their model.
Nobata et al. also applied there system to a decision tree learner, C4.5., and report that
the latter outperformed the Naïve Bayes model. On a test collection containing 4248
protein names, naïve Bayes achieved an F-measure of 70.3%, while C4.5 reached 87.5%.
They also studied different strategies for term identification, and report an F-measure
of 72.1% on proteins using a decision tree similar to that used for term classification.

Song et al. [2004b] use a modification of the classes separating gene names from other
words to the BIO-markup. This includes not only the differentiation between tokens in-
side and outside a gene name (I/O), but they add a class for tokens at the beginning
of a compound gene name (B). This distinction transforms the binary decision (named
entity or not) into a three-class problem, distinguishing the first word of a named en-
tity from following words. Our own system presented in Section 3.1 uses the I and
O classes only. A significant contribution to the feature space is a gazetteer lookup
for tokens and phrases based on edit-distances. The edit-distance does consider lex-
ical variations. In our own approach, we use exact matches of candidate terms, but
against a gazetteer containing spelling variants. Song et al. try to enlarge the training
sample artificially. The system reuses sentences from the training corpus with replaced
gene names. Assuming that every named entity appears only in base noun phrases, all
tokens outside noun-phrases plus determiners are excluded completely. The method
achieves 73.8% F1 without and 66.7% with the additional training examples, both on
the BioCreAtIvE’03/04 data set, and 66.3% on the JNLPBA’04 data. This indicates that
the restriction to noun-phrases does not improve the overall performance. The recall
is about 1-2% higher when using artificial examples, but the predictions contain much
more false positives (precision drops by 17%).

YAMCHA uses the same extension to BIO [Mitsumori et al., 2004]. The method uses
a context window to extract features for training a support vector machine (surface
clues and morphosyntactic properties). SWISS-PROT and TrEMBL provide data for a
dictionary-lookup feature. This feature matches token n-grams against phrases in the
dictionary. YAMCHA achieves 78.1% f-measure on the BioCreAtIvE 2003/04 data set.
The context window accounted for 3% of the overall performance of the system.

GAPSCORE scores single words based on a statistical model of gene and protein
names that quantifies their appearance, morphology and context [Chang et al., 2004].

61

3. Named Entity Recognition

The systems expands detected words using part-of-speech information. GAPSCORE

computes individual weights for features by measuring differences in frequency of ap-
pearance in positive examples and arbitrary MEDLINE words, respectively. The authors
compared naïve Bayes, maximum entropy, and SVM classifiers, and found that the lat-
ter outperforms the others slightly. GAPSCORE achieved an f-measure of 57.6% on the
YAPEX corpus for exact matches, and 82.5% for sloppy matches. A false positive filter,
accounting for 11.8% of the overall performance, removed common non-gene names
("alpha", "1") from the initial words. Such terms are recovered in the subsequent expan-
sion again. Chang et al. found that the contextual features had the lowest impact on
the overall performance.

The system described by Seki and Mostafa [2003] uses surface clues to detect poten-
tial protein name fragments and applies an additional false positive filter. A probabilis-
tic model expands single names to compounds. For exact matches, the system achieves
63.6% f-measure on the YAPEX corpus, and 81.4% for sloppy evaluation.

Takeuchi and Collier [2003] propose another approach that uses four different sets of
features to train an SVM classifier for multiple classes (Protein, DNA, RNA, and various
sources). Starting with orthographic, POS, head noun, and surface word level features,
the combination of orthographic and head-noun features proved to perform best. A 10-
fold cross-validation yielded an f-measure of 74.2% (combined-class performance); for
proteins, the system scored 79% f-measure, both on a corpus of 100 journal abstracts.

As we saw already in Section 3.1, classification-based approaches highly depend on a
careful selection of features to represent both (or even more) classes. Choosing the best
performing set of features breaks down in a time-consuming and error-prone process.
This hardly identifies sufficiently enough and distinctive single features and feature
classes. Classification-based approaches sequentially classify each token, but mostly
do not take into account the order in which features (or tokens) occur. Features gen-
erated from a token or a context window are represented as an order-independent bag
of tokens. Some systems differentiate between features seen before, inside, or after a
named entity [Mitsumori et al., 2005]. We discuss methods gaining information from
the sequential order of tokens the next section.

3.4.4. Sequence-based approaches
In contrast to classification-based approaches working on words or phrases, sequence-
based systems predict the complete sequence of part-of-speech tags and classes of named
entities for each sentence. Such systems perform a statistical analysis of the training
corpus and deduce the most probable sequence of tags for the given word sequence.

Retraining part-of-speech taggers
Kinoshita et al. [2005] use a simple but efficient way of including sequential information
by retraining the TnT-Tagger on a biomedical corpus using standard POS tags and tags
for entity names. Some post-processing stages are added for correcting errors. Rules-
based alterations of the names predicted by TnT make up for word boundary-related
errors. In addition, abbreviation resolution detects missed hits when either the long or
short form is tagged, but not the other.

62

3.4. Related Work

Conditional random fields

Conditional random fields (CRFs) are another probabilistic sequence tagging frame-
work [McDonald and Pereira, 2005]. While the TnT HMM uses its built-in feature gen-
eration methods tested on non-scientific text, using generic implementations enables
the use of tuned feature sets. McDonald et al. extract features for words, orthography,
and n-grams, all from a context window, to represent each token. On the BioCreAtIvE
corpus, CRFs proved to be one of the best performing systems for NER of gene and
protein names.

Friedrich et al. [2006] compare conditional random fields and support vector ma-
chines trained on similar sets of features. On the JNLPBA’04 corpus, CRFs outper-
formed SVMs by 6.3% in f-measure (71.5% over 65.2%). Surface clue features, 3-gram
prefixes and suffixes, word stems (Porter), part-of-speech tags, begin delimiters (“the”),
and different dictionaries for other classes of entities (tissues, amino acids) comprise the
feature set. Like we also discovered in our token-based approach, integrating POS in-
formation decreased the overall performance. Friedrich et al. [2006] also tested other
techniques, namely instance based learning (TiMBL), naïve Bayes, and maximum en-
tropy markov modeling (MEMM). CRF was found to outperform all of these.

BANNER [Leaman and Gonzalez, 2008] is an attempt to provide a portable NER
system using a second-order CRF and a feature set that is not specific to any (biomed-
ical) task. Features include, however, dictionary–lookups; this may have an influence
on performance at it depends on the availability of such dictionaries for the required
entity types. The system supports setting up multiple, distinct dictionaries that result
in distinct features; this allows users to include dictionaries for common entity types,
providing features with a negative weight for entity types for which no exhaustive dic-
tionary is available. For protein name recognition, BANNER runs with an overall set of
500,876 features (protein name dictionary only) and achieves an f-measure of 86.4% on
BioCreative II GM test data.

Hsu et al. [2008] recently presented a system that combines multiple CRF models:
first, second, and third order CRFs, one each for reading a sentence in forward or back-
ward direction (as a union of six models), and an intersection of two models gener-
ated by two different CRF implementations. Hsu et al. do not give time estimates for
training and application; however, each model consists of slightly more than 5 mil-
lion features. Their method achieves an f–score of 88.30% on the BioCreative II GM
test data, which outperforms systems previously proposed by about 1%. Recent results
suggest that backward parsing outperforms the more common form of forward parsing
by around 1% for the task of protein name recognition [Li et al., 2009].

3.4.5. Hybrid approaches
Very recent NER systems often do not only rely on a single technique, but use process-
ing pipelines with multiple stages. Pre-processing prepares and enriches texts, using
NLP methods for proper sentence-splitting and POS tagging, and adds annotation from
external resources. Later, several machine learning techniques are applied in parallel to
mark entities. Post-processing stages deal with refinement of predicted candidates, res-

63

3. Named Entity Recognition

olution of abbreviations, and exploitation of multiple occurrences of the same named
entity within the text.

Whenever more than one classifier is used in parallel, post-processing must also
take decisions in case of conflicting results. This may be implemented using meta-
learners, which are based on the predictions of other models. The simplest forms of
meta-learners are voting schemes, based on simple majority voting or weighting of the
single predictions. The POWERBIONE system, presented in the following section, uses
an ensemble of two HMMs and one SVM classifier with majority voting. NLProt uses
three SVMs trained on different feature sets. A forth SVM functions as a meta-learner
to combine the result of the three initial predictions and a dictionary.

Combination of HMMs and SVMs in a voting scheme

Zhou et al. [2004a,b] propose an ensemble methods of two HMM and one SVM classi-
fier. The two HMMs are trained on different corpora (BioCreAtIvE and GENIA). This
seems to enable the system to adapt to different corpus properties. The SVM uses a fea-
ture set similar to ours (see Table 3.2). Rather than having one feature representing the
appearance of a candidate token in a vocabulary, POWERBIONE has one dimension for
each word in the vocabulary. Orthographic features for the representation of tokens are
comparable to ours, but include checks for parentheses, punctuation, and stop words
as well. Our own implementation removes the 100, 1,000, and 10,000 most common
English words (parameterizable), but the composition of POWERBIONE’s stop word
list was not reported. Zhou et al. distinguish two kinds of triggers indicating whether
a token is included in two separate lists of words. One consists of words typically oc-
curring inside gene names, and the other contains words typically found in the local
context of gene names. Our own system measures the distance to such keywords and
sets the value for one single feature according to this distance. However, as the authors
propose an ensemble method, the exact difference in prediction performance compared
to our system is not known. The same is true for the influence of different feature sets.

Meta-learning over SVMs and dictionaries

Another hybrid approach was proposed by Mika and Rost [2004]. This system uses
three different SVMs that were trained on on different inputs: the protein names, their
environment, and on both information, respectively. A fourth SVM then takes the deci-
sions of the other former SVMs as input, plus an additional score derived from match-
ing strings against a protein-dictionary. From these values, a final model is learned
that outperforms each single SVM. Mika and Rost report a performance of 75.5% F1
(balanced precision and recall) on the Yapex corpus, and 70.8% (63% precision at 81%
recall) on GENIA [Franzén et al., 2002, Kim et al., 2003]. Dropping the protein name in-
formation resulted in 6% lower F1-measure, dropping the information taken from the
environment decreased F1 by 12%. Without the dictionary matches, F1 dropped to 60%
on Yapex and 53% on GENIA.

64

3.5. Conclusions

3.5. Conclusions

Many ideas showed up in the last years that help tackle the problem of biomedical
named entity recognition. Influenced by the field of computational biology, systems
proposed focused primarily on the recognition of protein names. Balanced perfor-
mances around 85% for precision and recall are state of the art when solving the prob-
lem in general. For specific subtasks and restricted domains, systems can get as precise
as 98%.

Conditional random fields [Sutton and McCallum, 2006] have come out as the method
of choice for modeling NER problems. The best performing system at BioNLP/JNLPBA
[Zhou and Su, 2004] used a combination of SVM and CRF, and two methods relying
only on CRFs came close behind [Friedrich et al., 2006, Settles, 2005]. The BioCreative 1
and 2 protein NER tasks led to basically the same insights, although a semi-supervised
learning strategy [Ando, 2007] was the best system during the BioCreative challenge
in 2006/07. The currently best performing system on this benchmark was proposed
by Hsu et al. [2008], again based on CRFS, achieving an f-measure of 88.3%.

There are some reasons to use dictionary-based approaches rather than classification
of words. The first is the inherent mapping of names to identifiers, when a dictionary is
derived from a database. This helps when not only recognition is needed, but a proper
identification. Classification-based systems initially are not able to solve this problem,
though Mika and Rost [2004] showed a hybrid approach that included identification.
The second reason is their quick adaptation to include more terms or to build systems
for entirely different sets. Most strategies for inexact matching and generation of poten-
tial synonyms for terms can directly be transferred to other domains. Third, we have
to consider the time performance necessary to train classifiers on large features sets,
or apply models to new texts. Especially for on-demand queries, one cannot always
afford to build large feature sets out of terms and texts, which takes a comparably large
amount of time.

The disadvantages of dictionary approaches originate from their reduced flexibility
and restricted possibilities to exploit context information. Unknown synonyms and
overly exotic variations cannot be detected even by inexact matching strategies such
as alignment and Levenshtein distances. Classification-based approaches also draw
valuable information from the immediate context of a candidate term ("A kinase phos-
phorylates B").

It shows that systems have to be robust towards unseen names. We saw that sys-
tems are able to deal with orthographic variations, exotic variants, and even paragram-
matical phenomena such as spelling errors. Regarding these, refined dictionaries and
n-gram features (characters and tokens) provide the best resources, in particular with
respect to named entity identification. Entirely new names that appear rather ad hoc
and do not follow any nomenclature convention (like some abbreviations) can be rec-
ognized only when systems pay attention to the immediate context (surrounding sen-
tence structure). Only after new names get adopted by the community they will occur
in knowledge repositories. This, on the other hand, necessitates a permanent curation
of dictionaries over time; again, this is needed to track arising data on exactly identified

65

3. Named Entity Recognition

entities. Hybrid approaches involving dictionaries and machine learning seem to pro-
duce the best performing systems so far, especially when trained and tested on various
sources.

Identifying names can not rely on the analysis of single passages of text only. It
necessitates the integration of external knowledge to distinguish terms from different
vocabularies. Such knowledge stems from annotation stores curated for the objects of
interest, for instance knowledge repositories such as UniProt or OMIM. These provide
facts than can be compared with the current text and an occurrence of a name to draw
conclusions concerning relevance, exact meaning, and further facts (entity class, entity
identifier, entity variations).

Design of named entity recognizers acts in accordance with the definition of the ex-
act task to tackle. More general systems that shall provide overviews over a broader
field of knowledge typically work on large text collections. The output leans towards
a collection of more basic information. In such cases, systems should ensure very high
precision rates in order to distinguish different (classes of) entities from each other.
However, domain experts are able to spot obvious mistakes immediately and quickly
remove falsely extracted entities. The principle idea is that recall comes with the huge
amount of texts to analyze. To loose a single occurrence of an entity is not at all a prob-
lem, because large text collections, even in very specific sub-domains, tend to be very
redundant concerning basic facts. Introductions and discussions (of related work) in
published articles always roll-up previously gained knowledge, and always use a dif-
ferent form of presentation (names, grammar, sentences). Such information is relatively
easy to extract from collections.

The other direction is building very specific text mining systems (starting with NER)
that are concerned with restricted sub-domains only. Domain experts want to know ev-
erything about a very small set of objects. Predominately, of course, they are interested
in new and exotic facts. Text mining needs to incorporate background knowledge to
catch up with the experts, and often will produce "boring" and well established facts.
By exploiting the experts’ knowledge and interest in specific subsets helps to design
systems. Good starting points (knowledge sources like annotation databases and dic-
tionaries for synonyms) are already given; these are much easier to maintain when
only restricted sets are involved. We see that for such systems it is mandatory to en-
sure a high recall, so no single –however peculiar– fact will slip through, but is instead
recovered from existing publications and retrieved immediately when appearing as a
novelty.

66

4. Language Patterns

Written scientific language usually is rather complex. For instance, the average number
of words in a sentence from a biomedical abstract is about 26.51. Authors explain exper-
imental setups, describe results, and assess known and new information in the context
of complex interrelationships. Even human readers are not always able to grasp all in-
formation and their meaning at first passage. Deeply nested sentences, many relative
clauses, and rather decorative attachments hinder quick and easy parsing of sentences.
However, we observe basic sentence structures that occur quite often across scientific
texts of a particular domain. Descriptions of similar types of observations often follow
a certain pattern, which we refer to as language patterns.

In the simplest case, language patterns are sequences of terms that are commonly
used to describe similar facts, in our case, protein-protein interactions. Words are com-
bined with annotations into placeholders; such annotations include

• positions of entities (protein names),
• type of a relation (activation, bond), and
• dependency between the partners (agent and target, if any), also called direction.

Note that the terms in a pattern need not be words as they appear in natural language,
but can also be formed by linguistic tags. An example for a simple language pattern
consisting only of natural words is the following sequence; each single term is enclosed
in brackets to separate it from the others, and annotation is omitted:

‘(FADD) (activates) (the) (procaspase-8)’.
Once we have identified a pattern, we can match it against arbitrary text. If the text
(usually, a sentence) looks similar to the pattern, we assume a similar meaning – in this
case, a protein-protein interaction being described in the text.

A pattern matches a new sentence if the sequence of terms in the pattern is similar to a
sub–sequence of terms in the sentence. This similarity can be defined and computed in
various ways. One example are patterns encoded as regular expressions, which yield a
binary decision (match, non–match); another example are metrics that calculate a quan-
tified similarity of two sentences, and the matching criteria is defined using a threshold
(also see similarity measures discussed in Section 2.2.2). These sentence-similarity met-
rics originate from string–similarity; for instance, Levenshtein or Hamming distance,
or alignment score. We also distinguish between exact and inexact matching: using
regular expressions, a sentence has to match a pattern exactly, although the regular
expression might allow for some variations (e.g., wild cards); using string–similarity
measures, mismatches within the sentence are allowed, but result in penalty scores. If a

1Statistics on the GENIA corpus, also see http://www.ifi.unizh.ch/cl/kalju/download/depgenia/.

67

4. Language Patterns

pattern of known meaning, for instance, a protein–protein interaction, matches a given
sentence, we deduce that a protein–protein interaction is described also in this sen-
tence. In many cases, a pattern will not match the whole sentence, but rather a part of
it. This is especially, but not only, true when sentences contain decorative attachments
like "Our experiments show that .." only after which the actual statements occur.

The previous pattern matches only in very specific cases, because it requires the ap-
pearance of four concrete terms in a given sequence (plus it will never retrieve new in-
formation). To generalize the pattern, we may replace terms comprising protein names
with a special terms:

‘(PROTEIN) (activates) (the) (PROTEIN)’.
This pattern bears no constraints towards the exact name of the proteins any more. In
the same manner, we may generalize other words with their respective part-of-speech
tags (POS tags) as terms:

‘(PROTEIN) (VERB) (DETERMINER) (PROTEIN)’.
The inner part of this pattern matches any verb followed by any determiner. Thus, the
following (parts of) sentences both match this pattern:

‘TGF-alpha binds the EGF receptor’ (a different verb is used) and
‘IL-1 activated an NF-kappaB’ (different tempus and determiner).

However, we do not want to allow for any verb, because not every verb indicates a
protein-protein interaction. To avoid such false positives, we use sets of tokens that
describe as many examples from a reference corpus as possible, while keeping the pre-
cision of each pattern on a high level. Lists of verbs, nouns, adjectives, and adverbs that
we use to describe types of protein-protein interactions can be found in Appendix A.3.
We will distinguish such verbs, nouns, etc. from ordinary ones with a preceding ‘I’, for
example, IVERB indicates a verb that indicates a protein-protein interaction.

In a similar manner, we may generalize tokens by using their respective word stems.
This allows us to find similarities when the part-of-speech tag (for instance, the tempus)
differs, but the basic word is the same.

‘(PROTEIN) (activates) (the) (PROTEIN)’
and

‘(PROTEIN) (activated) (the) (PROTEIN)’
in principle describe the same situation, so a generalization could be

‘(PROTEIN) (activat*) (the) (PROTEIN)’,
which would also capture the token ’activating’, for example. Note that in principle,
the noun ‘activation’ would also match the given word stem. This might make sense
only in a longer sentence. We have identified three different types of annotations for
terms:

• token: surface words as they appear in the text
• stem: surface word reduced to its stem (if any)
• tag: part-of-speech annotation or entity class (if any)

While token and stem define the meaning of a term, tags define the dependencies. Pat-
terns contain terms and from their sequence and annotations, we are able to deduce the
meaning of and dependencies within matching sentences.

68

4.1. Pattern representation

We can view language patterns as regular expressions using tokens, word stems, and
part-of-speech tags, which include semantic types (here: proteins). Similar patterns
may be combined, so that the combination of the initial patterns

‘(PROTEIN) (activates) (the) (PROTEIN)’ and
‘(PROTEIN) (activated) (PROTEIN)’

results in the pattern
‘(PROTEIN) (activates|activated) (the)? (PROTEIN)’,

where ‘?’ indicates the now optional term ‘the’.
This example already shows one of the advantages of using language patterns. The

resulting pattern now recognized the (partial) sentence
‘PMA activated the PKC’,

which would not have been found using the single initial patterns (and exact matching).
In the following, we first explain how patterns can be represented in Section 4.1, in-

troducing consensus patterns and multi-layer annotations. We then describe how to
match patterns against new text, see Section 4.2. Lastly, we explain strategies for in-
exact matching of sentences, and for computing consensus patterns via sentence align-
ment. Section 4.2.2 proposes sentence alignment as a strategy that allows for additional
variations (as compared to other string–similarity measures; alignment allows for pre–
defined mismatches that do not or only minimally decrease the matching score), and
yields a confidence score rather than a boolean expression depicting matches and non–
matches. In an actual application scenario discussed in Chapter 5, we show how to
identify and refine sets of patterns from a large, unannotated corpus in Section 5.1. Ex-
periments and results will also be discussed in Chapter 5, focusing on the extraction of
protein-protein interactions.

4.1. Pattern representation

Formally, a pattern P consists of a sequence S of terms, a set R of relations, and a set
C of conditions. In the sequence of terms, each term ti has multiple annotations from a
fixed set A assigned to it. For our experiments, the set of possible annotations consists
of tokens, word stems, part–of–speech tags, and entity classes. To distinguish between
each of these types, we introduce annotations layers. Each layer contains the informa-
tion on one particular type of annotation. We assign to each term of pattern the values
allowed at this position for each possible type of annotation. For example, a term anno-
tation might contain all tokens allowed at its particular position in the “token”–layer.
The set of relations for each pattern stores the positions of the interaction partners in
the sequence S, the positions of interaction types, and the direction (the agent–target
dependency, if any). The set of conditions contains parameterized thresholds that de-
termine if a new sentence matches the pattern or not. For the sentence alignment, this
would be a minimum alignment score, for instance (see Sentence alignment section,
4.2.2).

69

4. Language Patterns

4.1.1. Consensus patterns

As described above, patterns result from observations in typical sentences describing
the required kind of information. Comparing observations, that is, multiple evidences
that share the same meaning, yields variations typical to certain positions among simi-
lar patterns. In the above examples, patterns might differ only in that they allow for the
tokens ‘activates’ or ‘activated’ at the same position, or include an optional determiner.
The comparison of multiple similar patterns will identify such variations, which we
may all encode in a single pattern that generalizes these original patterns. We call the
resulting patterns consensus patterns, as they reflect the commonalities and differences
of all initial patterns. This is conform with the naming in sequence alignment, where
multiple sequence alignment (MSA) ultimately defines consensus sequences. We will
discuss MSA in Section 4.3.

Figure 4.1 presents an example (using part-of-speech tags instead of actual tokens for
simplicity) that combines five patterns into one pattern. In the last row, CP represents
the resulting consensus pattern, showing possible variations at two of the five positions;
it also assigns weights according to occurrence frequencies to each single observation
(in this case, a particular part-of-speech tag). Figure 4.2 shows another representation
of a consensus pattern, as a sequence logo showing the information content (bits) per
position.

Figure 4.1.: Combination of five initial patterns (1–5) into one pattern (CP) for POS and
entity class tags. Weights represent POS tag frequencies for each position.

1 PTN SYM PTN IVBD PTN
2 PTN CC PTN IVBD PTN
3 PTN SYM PTN IVB PTN
4 PTN CC PTN IVBD PTN
5 PTN CC PTN IVBD PTN

CP PTN5/5 CC3/5|SYM2/5 PTN5/5 IVB1/5|IVBD4/5 PTN5/5

4.1.2. Multi–layer patterns

A pattern can be represented in different ways. In the previous examples, the repre-
sentation was one–dimensional: a pattern was a sequence of terms, and each term was
either an entity class (PROTEIN), a part–of–speech tag (DETERMINER, IVERB), a token
(activates), or a stem (activat*); these examples thus reduced the representation
of a pattern to a single layer of mixed content. A scheme including POS tags and entity
classes only has been proposed by many other systems so far (for instance, Blaschke
and Valencia [2002], Huang et al. [2004], Hao et al. [2005]; also see Section 5.4). Note
that often tags for POS and entity classes are collapsed into a single layer, tags for entity
classes replacing POS tags; e.g., a noun that is also a protein is replaced with the tag for
protein.

70

4.1. Pattern representation

Figure 4.2.: Sequence logo of a consensus pattern, with original phrases on top. P, pro-
tein; D, determiner; E, preposition; I, i-verb or i-noun; A, adverb. Created
with WebLogo, http://weblogo.berkeley.edu/.

P binds P
P interacts with the P
P strongly binds to the P
P bound to P
P immediately associates with the P
P strongly binds the P
P never bound the P

weblogo.berkeley.edu

0

1

2

3

4

b
it

s

N

1

P

2

A

3

I
4

E

5

D

6

P
C

Let us consider the latter scheme from two perspectives relevant to effectiveness:
precision and recall. As we have mentioned in the previous section, it is not advisable
to allow any noun (verb, adjective, adverb) at a position of a pattern that requires the
mention of a specific type of interaction (for example, ‘interaction’). Restricting each
pattern (or all patterns at once) to limited lists of potential interaction–indicating nouns
etc. helps to rule out ’random’ mentions of two proteins that do not point to a specific
interaction. A pattern

‘(INOUN) (PREP) (PROTEIN) (CC) (PROTEIN)’
would match

‘interaction of IL-1 and NF-kappaB’,
but also

‘analysis of IL-1 and NF-kappaB’,
which is not (necessarily) an evidence for an interaction between these two proteins. A
restriction in this case yields an increased precision. Also, not every noun is suitable for
every pattern (‘A-B binding’, but not ‘A-B phosphorylation’), the same holds for verbs
(‘A is activated by B’, but not ‘A is interacted by B’); thus, large and unspecific lists can
decrease the precision. On the other hand, such restricted lists have to include every
possible form of all nouns, and are not easy to define manually. With respect to the
automated collection of language patterns (see Section 5.1), we propose a way to allow
for variations of a pattern that were not observed before, and maintain precision at the
same time.

Representing a pattern only as a sequence of part–of–speech tags looses valuable
information. We have shown previously the problem of allowing for too many verbs,
nouns, and adjectives. In the same manner, prepositions often are specific to a certain

71

4. Language Patterns

position in a pattern and cannot be exchanged with each other. Using tokens to describe
a position in a pattern might be too strict; this could be loosened using word stems as
shown before. We propose to capture different aspects of a single position of a pattern
using multiple annotation layers:

• one layer defines the sequence of possible part–of–speech tags, and thus resem-
bles traditional approaches;
• one layer stores tags of entity classes (empty when a term does not belong to any

entity class under consideration);
• one layer contains all tokens allowed at each position;
• one layer contains all word stems or lemmata.

We may merge the first two layers, POS tags and entity tags, into a single layer; all
following examples will use this convention.

When comparing a new text to a pattern, all layers of a term contribute to the decision
(match or mismatch) for this position, and thus influence the overall decision for the
whole pattern. Whenever a token in a sentence does not match the proposed position
in the pattern, at least the word stem or POS tag might fit. This would result in a lower
score of the decision function. Figure 4.3 shows an example for a multi-layer pattern. It
resulted from two different initial observations (described as patterns):

‘(PROTEIN) (blocks) (PROTEIN)’ and
‘(PROTEIN) (regulated) (PROTEIN)’.

The combination of both patterns enlarges the list of observed tokens for the verb-
position, as shown before. It also introduces variability of a different kind by com-
bining word stems and part-of-speech tags: this consensus pattern accepts tokens that
were not observed before, but the word stem of which was observed, and also the part-
of-speech tag fits any tag observed. The multi-layer pattern in Figure 4.3 recognizes the
sentence

‘UPI regulates 11beta-HSD2,
because the stem of ‘regulates’ was observed in an initial pattern, and also the tempus
of this verb (present tense) was observed before – but not in this exact combination.
Note that to make this example work, an inexact matching strategy is needed. At least,
a vote for each considered position is necessary: in the example, two of the three layers
would report a match for ‘regulates’, namely the stem and POS tag layer.

Figure 4.3.: Example for a multi-layer language pattern. IVBZ, verb in present tense;
IVBD, simple past; *, arbitrary tokens/stems; definitions of POS tags used
in this thesis are given in Appendix A.4.

Token layer * blocks|regulated *
Word stem layer * block|regulat *
POS layer PROTEIN IVBZ|IVBD PROTEIN

72

4.2. Matching patterns against text

4.1.3. Weighted multi–layer patterns

The pattern presented in Figure 4.3 represents observations (tokens, stems, POS tags
seen at each position) without dealing with their actual occurrence frequencies. How-
ever, some tokens, stems, or POS tags are more likely to occur at a given position (of an
arbitrary sentence) than others. To refine a pattern (again, to increase precision while
maintaining recall), we assign weights to each observation that reflect frequencies for
their respective occurrences. When a pattern resulted from two sentences, like in the
example of the previous section, only observations that occurred in both sentences are
treated as perfect matches if they also occur in the new sentence. We showed an initial
example of weights in Figure 4.1 for the case of POS tag patterns. Here, we extend the
idea of combining patterns to multiple layers, as shown in Figure 4.4.

Figure 4.4.: Multi–layer consensus pattern (CP) combining five patterns (1–5). Three
layers, represented in the different rows of each pattern, are used in this
example: tokens, stems, and POS tags, where entity class tags replace POS
tags. The weights represent the distributions per position and layer.

* / * blocked *
1 * / * block *

PTN SYM PTN IVBD PTN
* and * regulated *

2 * and * regulat *
PTN CC PTN IVBD PTN

* / * binds *
3 * / * bind *

PTN SYM PTN IVB PTN
* and * regulated *

4 * and * regulat *
PTN CC PTN IVBD PTN

* and * blocked *
5 * and * block *

PTN CC PTN IVBD PTN
*5/5 and3/5|/2/5 *5/5 binds1/5|blocked2/5|regulated2/5 *5/5

CP *5/5 and3/5|/2/5 *5/5 bind1/5|block2/5|regulat2/5 *5/5
PTN5/5 CC3/5|SYM2/5 PTN5/5 IVB1/5|IVBD4/5 PTN5/5

4.2. Matching patterns against text

It is impossible to list all patterns that may capture a certain fact, as this would mean
to list all possible variations of natural language. It would require to not only include
all textual descriptions that can be found in publications already, but would imply to
forecast all other deviations, minor or major. Thus, it is necessary to find a way to apply
a limited number of patterns to arbitrary text and still cover as many variations as pos-
sible. Two main strategies have been applied to fulfill this requirement. The first uses

73

4. Language Patterns

regular expressions as pattern. Terms and gaps between terms get parameterized, al-
lowing for repetitions and arbitrary new terms. Any deviation from the given sequence
results in a mismatch of the whole expression. The second strategy is to have patterns
with fixed terms and length, but apply an inexact matching against new text. Here,
the matching technique accepts parameterizable deviations. In the next two sections,
we will present regular expression matching and inexact matching using alignment,
respectively.

4.2.1. Patterns as regular expressions

The classical approach to pattern matching is to encode each pattern as a regular ex-
pression. All regular expressions are then subsequently matched against new text and
each reports a match or mismatch. The aforementioned frequencies of observations will
be disregarded using a default formulation of regular expressions. Benefits from using
regular expressions are their simple encoding and potentially reduced testing time, be-
cause mismatches in early stages of the test directly lead to non–match decisions. A
usual way to implement regular expressions and matching them to new text is to use
finite state automata (FSAs). In these automata, each position in a matched sentence
is represented by a transition from one state to another. Transitions thus model the
sequence of allowed terms in a sentence.

Definition 4.1 (Finite state automaton, FSA). A finite state automaton is given by the tuple
(S, s0, F, Σ, δ), where

• S is a non-empty set of states,
• s0 is a start state,
• F is a set of end-states, F ⊂ S
• Σ is an input alphabet, a non-empty and finite set of symbols, and
• δ is a state transition function, δ : S× Σ→ S.

[Definition adapted from Wikipedia.] An FSA has a dedicated start state, depicting
the position before the first term in a sentence. Each allowed transition between two
states, consuming an input symbol from the alphabet Σ, is stored in a matrix for δ. For
each state in the FSA, this matrix contains all transitions possible to a new state using
the next term in the sentence. Figure 4.5 shows an example, where columns represent
the alphabet (in this case, POS tags, with additional tags for a protein and interaction-
indicating verbs), and rows the states. Each cell denotes whether a transition from the
current state along a particular POS tag to a new state is possible or not; a transition
might also lead to the same state.

To build an FSA from a set of patterns, we start with one pattern and add states and
transitions according to its sequence of terms. After the last term, we add a transi-
tion to an end state of the automaton. Iteratively, we go through all other examples
and expand the automaton to finally fit all patterns. As we use wildcards in the pat-
terns/regular expressions to depict optional additional words, the resulting FSA will
be non-deterministic. That means that from some states, different transitions to different

74

4.2. Matching patterns against text

Figure 4.5.: Finite state automaton for an input sentence of part-of-speech tags (top) and
transition matrix (bottom). Σ = {DT, IN, INT, PTN, POS}; DT, determiner;
IN, preposition; PTN, protein; INT, interaction verb; POS, arbitrary part-of-
speech tag. Transition matrix for the states ∈ S (first column) and symbols
∈ Σ (first row), ‘x’ marks disallowed transitions. From state 1, a transition
is possible either to state 2 along ’PTN’, or back to state 1 consuming any
POS tag. State 4 is the only final state.

states are possible using the same symbol. An example is given in Figure 4.5, where
from state 1, the automaton can consume a ‘PTN’ or an arbitrary part-of-speech tag,
leading to state 2 or back to state 1, respectively. Note that in our case, all patterns have
a fixed minimum sequence of transitions, none of which can be skipped; additional
transitions are possible, as mentioned before,

Each non-deterministic FSA (NFA) can be converted into a deterministic FSA (DFA),
as shown, for instance, by Salomaa and Yu [1997]. However, the set of resulting states
in the DFA potentially is (2n−1) when the NFA has n states. In case patterns are very
diverse, it is possible to use a set of automata rather than encoding all regular expres-
sions with a single automaton. Hopcroft et al. [2001] shows how an automaton can be
optimized with respect to finding the minimal number of states so that the resulting
FSA accepts exactly the same language. In contrast, we will show how to optimize
automata with respect to precision and recall of the underlying patterns in Section 4.5.
Such optimizations will alter the language that the resulting FSA accepts. We can re-
strict each automaton using an upper limit for states and/or transitions, or by using a
fixed number of states/transitions each.

To parse complete sentences, we test all sub–phrases starting at the first word, the
second word, the third word, and so on. If an FSA matches a sub–phrase of a sentence,

75

4. Language Patterns

then index positions define the interaction partners and its type.

4.2.2. Pattern matching with sentence alignment

Sequence alignment techniques are methods long established in traditional bioinfor-
matics and play a key role to sequence analyses in molecular biology [Gusfield, 1997].
Their main purpose is to search large databases for homologues protein or DNA/RNA
sequences and to perform sequence comparisons. An alignment shows how and how
well two or more sequences fit together. For every pair of aligned positions, a score
specific to the amino acids or nucleotides occurring at this position is pre–defined in
a substitution matrix (see next section). This score contributes to an overall alignment
score. An optimal alignment maximizes (or minimizes, depending on alignment strat-
egy) this alignment score. Section 4.2.4 presents the standard solution to this problem
using dynamic programming.

The alignment function align maps two sequences s and t to their aligned forms s′

and t′, a consensus sequence c, and an alignment score a ∈ R. The alphabet A used
by s and t is extended to A′ for s′ and t′ and includes an additional character ’-’ that
depicts a gap:

align(s, t) 7→ s′, t′, c, a. (4.1)

In later sections, we will need direct access to the consensus pattern of two sequences s
and t (see Section 4.1.1), as computed via alignment. For simplicity, we thus define the
function consensus as

consensus(s, t) 7→ c. (4.2)

Different algorithms for pairwise alignment have been proposed. Most commonly
used are (variations of) the Smith-Waterman algorithm for global alignment, and the
Needleman-Wunsch algorithm for local alignment. In global alignment, the goal is to
match every position in one sequence to a position (or gap) in the other sequence. This
strategy is most useful for sequences of similar length, when the goal is to find whether
the two sequences have similar content. In contrast, local alignment assumes that one
sequences will occur as a subsequence of the other, and large parts of the other se-
quence are thus not used. (Note that subsequence corresponds better with the substring
concept in computer science). An alignment of sequences is recursively defined over
the comparison of positions within the sequences. Comparing positions (that is, two
nucleotides or residues in DNA or protein sequences, or two terms in sentences) re-
quires the definition of a scoring function, depicting the similarity for every possible
pair. This similarity score is detailed in the section on substitution matrices.

Alignment may also be used in computing the similarity between sentences, an ap-
proach we will detail in the following. When aligning a pattern against a sentence, we
allow for differences between them in the same manner as sequence alignment intro-
duces insertions, deletions, and mismatches between DNA or protein sequences. Fur-
thermore, the decision whether or not a term of a pattern matches a term of a phrase

76

4.2. Matching patterns against text

Figure 4.6.: Extract from our substitution matrix for part–of–speech tags. NN, noun;
CC, conjunction, —, gap.

— PTN NN VBZ VBD IVBZ IVBD DT CC
— ∞ -10 -6 -7 -7 -10 -10 -1 -10

PTN -10 4 -8 -10 -10 -10 -10 -10 -10
NN -6 -8 2 -3 -3 -5 -5 -2 -5
VBZ -7 -10 -3 2 1 -1 -2 -2 -2
VBD -7 -10 -3 1 2 -2 -1 -2 -2
IVBZ -10 -10 -5 -1 -2 3 2 -10 -10
IVBD -10 -10 -5 -2 -1 2 3 -10 -10

DT -1 -10 -2 -2 -2 -10 -10 2 -2
CC -10 -10 -5 -2 -2 -10 -10 -2 2

is not binary. Instead, the specific term pair is assigned a score by looking up a sub-
stitution matrix, which we will discuss in the next section. Thus, in contrast to regular
expressions that either match or do not match a sentence, an alignment yields an over-
all score that provides a confidence measure. Setting or lowering thresholds for this
confidence score influences the method towards higher precision or recall, respectively.
Later in this section, we will explain how to derive consensus patterns from a set of
initial patterns. Therefore, we use local alignment, assuming the initial patterns have
roughly the same length. When matching patterns against a sentence, however, we
would prefer global alignment, as the sentences are usually longer than the patterns,
and we want to find the subsequence of the sentence best matching the pattern.

4.2.3. Substitution matrices

For every pair of terms of any annotation layer, a substitution matrix determines the
costs for this particular substitution. It can be a perfect match, imperfect match (re-
placement of one term with another), or a deletion or insertion. Sequence alignment
uses scoring matrices, such as BLOSUM [Henikoff and Henikoff, 1992], that define costs
for every possible pair of amino acids (nucleotides), including gap penalties for in-
serted/deleted amino acids. In the same manner, we use substitution matrices that con-
tain costs for term substitutions. A substitution matrix thus gives the costs for aligning
two terms or a term and a gap. Figure 4.6 shows an example for a substitution ma-
trix containing some important part–of–speech tags. The full matrix we use for our
experiments is given in Appendix A.5.

These costs are combined with the observed frequencies of annotations of terms in
all initial patterns, and stored for every position p in each consensus pattern, in the
following presented for the single-layer case:

freq(i, p) =
#occurrences of i at p
#all observations at p

. (4.3)

For substituting a term j at the position p of the pattern P with a term i in a sentence,

77

4. Language Patterns

the cost is calculated as follows:

c(i, j, p) = score(i, j) ∗ penalty(i, p), (4.4)

where score(i, j) refers to the score from the scoring matrix. Penalty(i, p) penalizes a
term i according to its observation frequency and is defined as

pen(i, p) =

{
freq(i,p), if i∈ p
mint∈p freq(t, p), otherwise.

(4.5)

This penalty includes a smoothing for cases where i was never observed at p in P. When
aligning two consensus patterns, Equation 4.4 changes to

c(i, j, p1, p2) = score(i, j) ∗ pen(i, p2) ∗ pen(j, p1). (4.6)

We estimated the substitution values in Figure 4.6 by trial–and–error. These values
should reflect certain constraints we observe when matching patterns with arbitrary
sentences for information extraction. Certain key positions cannot be replaced with
other values; for instance, the alignment should always map proteins (PTN) to each
other, and disallow replacing proteins with any other word category. As the initial
NER to recognize protein names might fail sometimes, but the part–of–speech tagger
may still finds such names as proper nouns (NNP) or foreign words (FW), the matrix
should reflect these potential substitutions. Replacing interaction–indicating words in
a pattern with other words from the sentence should be reflected in high costs, as such a
substitution might alter the meaning of the sentence (compare “LRP6 and Wnt interact
in the WNT–signaling pathway” and “LRP6 and Wnt appear in the WNT–signaling
pathway”). An extension of substitution costs could include the observed entropy for
each position in P; this would better reflect the variability than selecting the lowest
frequency in Equation 4.5.

Deciding on the right costs for matches and replacements is certainly crucial to the
overall approach. However, as Huang [2004] mentioned, it is sufficient to encode the
overall tendencies, while searching for optimal values has only a minor impact on per-
formance. Aforementioned crucial tendencies can also be observed in derived matrices
such as BLOSUM62. Substitution costs range from -4 to 11, the majority between -2 and
1, with lower/higher values reflecting untypical replacements and enforced matches.
Joachims [2003] showed an approach to learn the cost parameters for scoring an align-
ment of two sequences. Solving the optimization problem

Dω(s1, s2) = maxa[ωTφ(s1, s2, a)] (4.7)

then finds the optimal alignment a for two sequences s1 and s2 with the cost vector ω
and φ the feature vector generated for s1, s2, and a. While this problem has an exponen-
tial number of constraints, Joachims presented an algorithm that returns an arbitrarily
close approximation.

78

4.2. Matching patterns against text

4.2.4. Dynamic programming to solve the alignment problem

First algorithms to efficiently solve the alignment problem using dynamic program-
ming were proposed in the 1970s, see Gusfield [1997] for an overview. We also use
this technique in our approach. Figure 4.7 shows a solution for the alignment of a pat-
tern with a sentence given as a dynamic programming matrix. Figure 4.8 shows the
alignment of two sentences with the pattern from Figure 4.1, where only POS tags were
used.

Figure 4.7.: Dynamic programming matrix resulting from aligning a pattern (vertical)
with a sentence (horizontal). Arrows indicate possible trace-back paths, the
best spanning from 14.4 to 4. For simplicity, only POS tags are shown in the
first row/column.

4.2.5. Weighted multi–layer alignment

If a term contains multiple annotations in different layers (see earlier in this chapter),
the scoring function has to consider all these values(tokens, stems, tags) for comparing
terms and combine them properly into one value. We calculate the multi–layer align-
ment like single–layer alignments shown previously. For each pair of terms, a scoring

Figure 4.8.: Alignment of the pattern CP, from Figure 4.1 with two sentences, S1 and S2.
This example uses only the POS sequences, given in bold. For the fourth po-
sition (underlined), matching two ‘IVBD’ (S1) yields a score of 3 according
to Figure 4.6 and ‘IVBD’ has a frequency of 4

5 in CP. In sentence S2, ‘IVBD’
yields the score 2, multiplied with a penalty of 1

5 .

CP PTN5/5 CC3/5|SYM2/5 PTN5/5 IVB1/5|IVBD4/5 PTN5/5
hCDC20 and hCDH1 bound APC

S1 PTN CC PTN IVBD PTN
4 * 5/5 2 * 3/5 4 * 5/5 3 * 4/5 4 * 5/5 Σ=15.6

hCDC20 and hCDH1 binding APC
S2 PTN CC PTN IVBG PTN

4 * 5/5 2 * 3/5 4 * 5/5 2 * 1/5 4 * 5/5 Σ=13.6

79

4. Language Patterns

function determines the substitution score. The only difference is that this scoring func-
tion considers not only one substitution matrix, but several. For each layer, there is a
dedicated substitution matrix. The overall score for each pair of terms is a linear com-
bination of all scores for the different layers. We use weights wl for each layer to control
their respective influences on the overall score. The score s for substituting two terms i
and j with each other are determined by an extension of Equation 4.4:

s(i, j, p) = ∑
l∈layers

wl ∗ scorel(i, j) ∗ penl(i, p), (4.8)

where wl refers to the weight of layer l, and scorel(i, j) is the score in the respective
scoring matrix for l. When we set the weight for the token and stem layers in the
examples from Figure 4.9 to zero, we would exclude these layer completely. This would
resemble the examples from above, where we use only POS tags to annotate a term.
Figures 4.8 and 4.9 show examples for aligning the consensus pattern from Figures 4.1
and 4.4, respectively, with a given sentence. The first is an example for single–layer
alignment, the second for multi–layer alignment.

To decide whether or not a sentence pattern matches a new sentence, each consen-
sus pattern is assigned a minimum alignment score as a threshold. We calculate this
based on the maximum alignment score possible for each respective pattern, that is,
the highest score achievable for this pattern; essentially, this refers to normalizing over
the length of the pattern. It is computed by aligning each consensus pattern with itself.
From this maximum score, we subtract a (globally) parameterizable value to obtain the
final threshold. This value can be adjusted either by exhaustive search or optimization
procedures (see Section 4.5).

Figure 4.9.: Alignment of the consensus pattern CP from Figure 4.4 (top) with a new
sentence (middle). The score for each layer (token, stem, and tag) is shown
at the bottom. The overall score is 22.9 if we assume a weight of 1 for every
layer. This alignment also contains an example for mismatches: ‘bound’
was not observed in the token layer and gets a score -1. The penalty of 1

5
reflects the variability at this position, so the overall cost is weighted down
to - 1

5 . In contrast, a mismatch at a position with a single observation would
thus result in a cost of -1.

∗5/5 and3/5|/2/5 *5/5 binds1/5|blocked2/5|regulated2/5 *5/5
∗5/5 and3/5|/2/5 *5/5 bind1/5|block2/5|regulat2/5 *5/5

PTN5/5 CC3/5|SYM2/5 PTN5/5 IVB1/5|IVBD4/5 PTN5/5
hCDC20 and hCDH1 bound APC
hCDC20 and hCDH1 bind APC

PTN CC PTN IVBD PTN
1 * 5/5 1 * 3/5 1 * 5/5 -1 * 1/5 1 * 5/5 3.5
1 * 5/5 1 * 3/5 1 * 5/5 1 * 1/5 1 * 5/5 3.8
4 * 5/5 2 * 3/5 4 * 5/5 3 * 4/5 4 * 5/5 15.6

22.9

80

4.3. Learning patterns with multiple sentence alignment

4.3. Learning patterns with multiple sentence alignment

As we have shown with the previous examples, combining similar patterns (that orig-
inate from partial sentences bearing the same meaning) helps to represent commonali-
ties as well as variation among initial patterns. Finding variable terms across patterns
and assigning scores based on occurrence frequencies increases the recall as compared
to using only single patterns, while keeping the precision at a high level by restricting
the potential noise. In this section we will describe how we can automatically derive
consensus patterns given a set of initial patterns. There are two mandatory steps: i)
identification of all patterns that are sufficiently similar to each other and that should
thus be combined; ii) computation of the consensus pattern for each set of similar pat-
terns. For the first step, we perform a clustering of the initial input set into groups of
similar patterns. For the second step, we use multiple sentence alignment to compute
the consensus pattern.

4.3.1. Clustering of initial patterns

Clustering of a data set relies on a similarity function, as discussed in Section 2.2.2 on
page 25. This similarity function determines how similar (or dissimilar) two examples
from the input sample are. In this work, we use the alignment score, as described in
the previous sections, as the similarity function. In this scenario, we assume that the
two input patterns are roughly of the same length, and we thus use a global alignment
strategy. The alignment score at first yields only the score of the optimal alignment.
Aligning two long patterns usually yields a higher score than aligning two short pat-
terns, though the short patterns might be more similar to each other. To transform the
alignment score into a similarity measure, we have to adjust for the variable length of
patterns; also, because we use a complex substitution matrix (for POS tags), costs for
matches/replacements vary a lot. We propose the following normalized scheme as the
similarity function:

Definition 4.2 (Pairwise pattern similarity). The similarity of two patterns is defined by
their pairwise alignment score, normalized with the maximum of the alignment score one of the
patterns can potentially yield. This maximal alignment score results from an alignment of each
pattern with itself.

sim(p1, p2) =
align(p1, p2)

max{align(p1, p1), align(p2, p2)}
(4.9)

The strategy for clustering that we chose is an agglomerative, single-linkage cluster-
ing, which defines the similarity of two clusters by the minimum similarity between
patterns p1 and p2 from clusters C1 and C2, respectively:

sim(C1, C2) = min{sim(p1, p2) : p1 ∈ C1, p2 ∈ C2} (4.10)

Clustering starts with each pattern implicitly assigned to its own cluster. Clusters are

81

4. Language Patterns

then subsequently joined using the single-linkage criterion. In a first step, we need
to compute all pairwise similarities between all initial patterns; this leads to a pair-
wise alignment library (PAL). Sorting these pairwise similarities in a descending order
yields a so–called guide list, with the most similar pairs of patterns on top, and the
most dissimilar patterns on the bottom. Pairs occurring at the top of the list should be
clustered together, while pairs at the bottom should not end up in the same cluster. The
algorithm, adapted from Jain et al. [1999], is explained in pseudocode in Figure 4.10.

Let us consider the following example, where we have a set of patterns, {A,B,. . . ,G}.
Assume pairwise alignment yields the similarities for the pairs of patterns as follows:

A B C D E F G
A 1.0 1.0 0.9 0.8 0.5 0.4 0.2
B 1.0 0.9 0.8 0.5 0.4 0.2
C 1.0 1.0 0.6 0.3 0.1
D 1.0 0.6 0.3 0.1
E 1.0 0.8 0.6
F 1.0 0.7
G 1.0

The corresponding guide list would be

1.0 (A,B) (C,D)
0.9 (A,C) (B,C)
0.8 (A,D) (B,D) (E,F)
0.7 (F,G)
0.6 (C,E) (D,E) (E,G)
0.5 (A,E) (B,E)
0.4 (A,F) (B,F)
0.3 (C,F) (D,F)
0.2 (A,G) (B,G)
0.1 (C,G) (D,G)

Using this guide list as input, the clustering proceeds as follows. Going down the guide
list, each pair either i) forms a new cluster (if neither of the patterns was assigned to a
cluster before), ii) assigns one of the patterns to a cluster the other already belongs to,
iii) combines two clusters into one, if both patterns belong to different clusters, or iv) is
skipped because the similarity is below a certain clustering threshold (called guide-list
cutoff). Note that this example differs slightly from the algorithm in Figure 4.10: we do
not start at the level of one cluster per pattern. For the shown guide list, the example
continues in the following way (for a guide-list cutoff of 0.7):

82

4.3. Learning patterns with multiple sentence alignment

Figure 4.10.: Pseudocode for agglomerative, single-linkage clustering of initial patterns.

Input: set of annotated patterns, P;
minimum pairwise similarity ts;
guide-list cut-off tg;

create matrix m: |P|×|P|, Pi,j =0 ∀ i, j
∀i: create cluster Cpi with pi as only element
for all pi, pj ∈ P, i < j do

if sim(pi, pj) ≥ ts then
mi,j = mj,i = sim(pi, pj)

end if
end for
sort mi,j in descending order→ guide-list G
for all g ∈ G, g ≥ tg do

get the corresponding pair(s) (pi, pj)
for all such pairs (pi, pj) do

if Cpi 6= Cpj then
join clusters Cpi , Cpj

end if
end for

end for
Output: set of clusters C

pairwise alignment library m

(A,B) new cluster U
(C,D) new cluster V
(A,C) combine clusters U and V
(B,C) already in same cluster, UV
(A,D) already in same cluster, UV
(B,D) already in same cluster, UV
(E,F) new cluster W
(F,G) assign F to W
Result: clusters UV = {A,B,C,D} and W = {E,F,G}

4.3.2. Multiple sentence alignment

Once all clusters have been identified, all patterns in each cluster are combined to form
a consensus pattern. We use a technique frequently used in bioinformatics called mul-
tiples sequence alignment (MSA), adopted to sentence alignment. For first algorithms
proposed to solve MSAs, refer to Gusfield [1997]. For performing MSA on clusters of
patterns, we iteratively go through all pairs of patterns in the cluster (again sorted by
similarity). The alignment of the most similar pair in a cluster defines the initial consen-

83

4. Language Patterns

Figure 4.11.: Pseudocode for multiple sentence alignment to identify consensus
patterns.

Input: set of clusters C containing similar patterns;
pairwise alignment library: matrix m

for all cluster ci ∈ C do
get patterns P ∈ ci
get list of pattern pairs pri, sorted by pairwise similarity, from m
consensus pattern cpi = align(pr11 , pr12)
for all pairs prj, j>1 do

if prjk /∈ cpi, k ∈ {1, 2} then
cpi = align(cpi, prjk)

end if
end for
add cpi to set of consensus patterns CP

end for
Output: set of consensus patterns, CP

sus pattern. Progressively, all other pairs define which pattern(s) next to combine with
the current consensus pattern. This is achieved by aligning the current consensus pat-
tern with the next pattern from the initial set. The alignment itself thus defines the ex-
tended consensus pattern. Each round potentially introduces new deletions/insertions
and replacements into the resulting consensus pattern; the frequencies of tokens, stems,
and POS tags also get adjusted according to the observations in the next pattern. Fig-
ure 4.12 shows the result of an MSA with five initial patterns. The introduction of gaps
is an important feature of our approach, because it allows skipping terms at a low cost
(in particular, we want to achieve a low cost for replacing certain types of terms, such as
determiners, adjectives, and adverbs). The pseudocode for this procedure is shown in
Figure 4.11, in part derived from standard algorithms for multiple sequence alignment;
see, e.g., Hirosawa et al. [1995].

4.4. Pattern generation by pairwise alignment

Apart from multiple sentence alignment, another strategy to generate consensus pat-
terns from an initial set of patterns is based on pairwise alignment. The method we use
is comparable to the one described in Huang et al. [2004] and uses annotated examples.
Subsequent pairwise alignment of sentences ultimately yields patterns with as much
support in the training data as possible. The pattern generating algorithm iterates over
all pairs of sentences and calculates the best alignment for each pair. Each consensus
sentence from the optimal alignment of these two sentences then forms a pattern. We
count the occurrences of all such patterns in the training data to calculate the support
for each pattern. The maximum number of patterns for n sentences is n(n−1)/2, but in

84

4.5. Optimization using genetic algorithms

Figure 4.12.: Consensus pattern (CP) resulting from MSA of five initial patterns (1–5).
The consensus pattern reflects the occurrences of adverbs (RB) and de-
terminers (DT), though they were not observed in all initial patterns. —:
potential gap position.

* blocked *
1 * block *

PTN IVBD PTN
* regulated the *

2 * regulat the *
PTN IVBD DT PTN

* strongly binds *
3 * strong bind *

PTN RB IVB PTN
* regulated *

4 * regulat *
PTN IVBD PTN

* blocked the *
5 * block the *

PTN IVBD DT PTN
*5/5 —4/5|strongly1/5 binds1/5|blocked2/5|regulated2/5 —3/5|the2/5 *5/5

CP *5/5 —4/5|strong1/5 bind1/5|block2/5|regulat2/5 —3/5|the2/5 *5/5
PTN5/5 —4/5|RB1/5 IVB1/5|IVBD4/5 —3/5|DT2/5 PTN5/5

practice not all are generated, since a set of different alignments can lead to the same
consensus sequence. On the other hand, in case there were multiple optimal align-
ments, all alignments were taken to form (different and/or identical) patterns. The
algorithm in Figure 4.13 shows the pattern generating algorithm as pseudo-code; see
Plake et al. [2005]. To distinguish patterns from each other, is is also necessary to store
the positions of agent, target, and interaction type with each consensus, in addition to
the consensus sentence. Two consensus sentences might contain different relations.

This method searches for the most similar sentences, and subsumes these with a more
general expression, if necessary. As we take alignments for this step, we use the respec-
tive consensus sentence as generalized sentence. This general expression is then added
to a set. This set functions as a model to explain the training data, and can also be
seen as a set of patterns. Only patterns with at least two proteins and one interaction-
indicating word (specific verb or noun) are included in the final set. From the final set,
all patterns below a minimum support (that is, the number of aligned sentence pairs
producing this pattern) are removed.

4.5. Optimization using genetic algorithms

In cases where a set of patterns (regular expressions, single patterns, or consensus pat-
terns) was computed from a small initial sample, we need ways to improve it. For small

85

4. Language Patterns

Figure 4.13.: Pseudocode of the pattern generating algorithm. It loops over all pairs of
initial patterns and builds their consensus pattern using alignment. Pat-
terns with low support in the training data get removed afterwards.

Input: set of annotated patterns, S;
threshold d

for all si, sj ∈ S, i < j do
ci,j = consensus(si, sj)
K = (posa, posb, posi) = positions of

partners a, b, and interaction-word i in ci,j
p = (ci,j, K)
if p /∈ P then

add p to P; occp = 1
else

occp++
end if

end for
remove all p ∈ P with occp < d

Output: set of patterns, P

samples, this most often means to generalize the patterns, as they over-fit on this sam-
ple and do not recognize previously unseen examples. When given a training set, it is
possible to use this set for optimization. We can learn the patterns from one part, and
optimize them on the other part. Optimization often means tuning to a specific quality
measure, to enhance the patterns’ precision and recall, or the balance between both (see
Section 2.2). When a training set was manually annotated, this results in tuning the set
to the specific annotator’s opinion.

We performed an optimization of patterns represented as regular expressions (en-
coded in finite state automata). Optimization included, for instance, finding the opti-
mal size of word gaps in between fixed positions. The strategy was to optimize the set
of automata on a training sample using a genetic algorithm to achieve optimal results.
We introduced word gaps of variable length between states (that is, between positions
in a sentence). The FSA thus contains not only sentences fitting phrases exactly, but al-
lows for insertions (for example, short subordinate clauses or expressions in brackets);
see Figure 4.14 for examples. Intuitively, a more “strict” FSA (no word gaps) would
yield more precise results, while a “loose” FSA (word gaps of infinite length) would
gain a higher recall, by fitting more sentences.

We encoded the transition matrix of an FSA in a single array. The value in each cell
was transformed into a binary representation, depicting the index of a new state, when
the transition using a particular POS tag was possible, or zero otherwise. In addition,
we added a bit to this cell value. Whenever this bit was set to one, the transition led
not only to a next state, but in addition, this state was an end-state. Table 4.1 shows an

86

4.5. Optimization using genetic algorithms

example for the binary representation of state 3 from Figure 4.5 on page 75. In addition,
the positions for agent(s), target(s), and interaction type(s) in the sentences had to be
encoded. Taken together, this led to a binary representation of FSAs, which we refer
to as a genome. In such a genome, all positions for the states, and all positions for
transitions and end-states were fixed. Translations from a matrix to a genome and back
are unambiguous.

The task now was to find one or more good FSAs encoded by such genomes. We
first started with a set of random genomes, representing a population, where each indi-
vidual encoded an FSA with six states; the number of states was evaluated in further
experiments; data not shown. Initially, most of the individual members of a popula-
tion would encode a valid, but certainly a “bad performing” matrix. We optimized this
population on the training sample using a genetic algorithm, see Plake et al. [2005]. For
this approach, we could use either precision, recall, or f-measure as a fitness function to
measure the performance of every individual FSA in the population. Choosing the best
25% of a population to form the basis for a new generation, we filled the missing 75%
using recombinations, cross-overs, and mutations of the preceding generation. Ultimately,
this led to an FSA (the “best” genome in the population) covering at least some positive
examples from the training sample (a positive example contains at least one interac-
tion). As soon as no further improvements could be achieved, we removed all training
sentences covered by this FSA. On the remaining sample, we started over with a com-
pletely new random population. We followed this divide-and-conquer strategy, until no
positive sentences were left in the training sample, or a certain number of finite state
automata was found.

Figure 4.14.: Finite state automata with word gaps. (A) shows the original transitions
between two states, with a protein tag in the middle. In (B), the FSA is
extended with an additional transition from the left state, using any POS
tag, to the same state. This transition could be used multiple times. (C)
shows an extension for a maximum of two, instead of multiple, optional
POS tags.

87

4. Language Patterns

POS new end- possible transition
tag state state
DT 000 0 “no transition possible”
IN 011 0 “possible to state 3”

PTN 100 1 “to state 4⇒ end-state”
INT 000 0 “no transition possible”
POS 000 0 “no transition possible”

Table 4.1.: Binary representation of state 3 from the matrix in Figure 4.5. The table
shows all possible transitions, and to which new state each transition leads.
Using ‘PTN’, the transition from 3 to 4 would lead to an end-state.

88

5. Applications and Evaluation

As we have shown in the previous chapter, language patterns can be applied to infor-
mation extraction tasks. A pattern encoded to capture a particular kind of information
—protein–protein interactions, gene–disease associations, etc.— can be compared with
an arbitrary sentence. If it matches, one may assume that the sentence contains the
same kind of information — the meaning can be transferred from the pattern to the
sentence. The patterns we described in the last chapter contain information on the in-
teractors, their dependency, the (sub)type of the interaction, plus the exact evidence
and positions of all objects. Thus, comparing pattern to sentence allows to extract the
same information from a matching sentence. In this chapter, we will describe and eval-
uate our approaches for generating sets of patterns from previously unlabeled data and
matching them against new text. We focus on the application of identifying protein–
protein interactions, and discuss results of our and related approaches for this task.

5.1. Collecting a large pattern sample

As we have mentioned in the previous chapter, the quality of a pattern set is highly
dependent on the size of the initial sample. Patterns generated from manually col-
lected sets of sentences describing interactions, for example, presented by Hao et al.
[2005] and Berleant et al. [2003], yield low recall values when applied to external texts
[Hakenberg et al., 2005b]. Blaschke and Valencia [2002] showed that the same is true
for manually defined patterns. In most cases, patterns are over-fitted towards the small
sample they originate from, and are not general enough to recognize previously unseen
examples (see our results on the LLL corpus, Section 5.3). Therefore, we developed a
new strategy, in which we start with a large set of precise initial patterns. As it is infea-
sible to create such large sets manually, we show how to collect such sets automatically
in Sections 5.1.1 and 5.1.2.

5.1.1. Curated data bases to find examples

One idea we pursue to automatically collect large samples for extracting patterns is
based on information contained in hand-curated databases. Databases that store pre-
cise information on relations between objects can be exploited for this approach; for
instance, protein-protein interactions are stored in IntAct and DIP [Hermjakob et al.,
2004, Xenarios et al., 2001]; gene ontology annotations of proteins are contained in GOA
[Camon et al., 2004]. All such databases map objects to unique entries (in the same or
other databases): IntAct has UniProt IDs for all proteins, GOA has UniProt IDs and GO

89

5. Applications and Evaluation

term IDs. Our assumption is that when we take a large number of such pairs and search
for their occurrences in a large enough text corpus, we will come up with a large sample
of sentences, each of which are likely to explain the relation between the objects. This
approach relies on a properly solved named entity normalization (EMN; see Chapter 3)
to successfully identify objects in texts. A similar strategy would be to search for all
pairs of synonyms of proteins known to interact, where we would essentially skip the
disambiguation component. Even if EMN produces false positives (single objects), it is
less likely that a pair of false positives predicted in a single sentence also maps to a pair
in the database. To increase the probability that an extracted sentence indeed describes
a relation of the requested type, one can improve the search with further constraints.
For each relation, one could require the occurrence of specific words typically used to
describe such relations. For protein–protein interactions, this would be words indicat-
ing interactions, as shown in the previous chapter. However, it is clear that restricting
the sample in this way might result in an over–specification of the resulting patterns.

5.1.2. Protein–protein interaction patterns using IntAct

The IntAct database [Hermjakob et al., 2004] provides data and analysis tools for pro-
tein interactions. Data are derived manually from literature or come from user submis-
sions. IntAct contains 68,269 interactions identified in 3585 distinct experiments (as of
early 2006). Most data come from large-scale data sets for few organisms, for instance
Saccharomyces cerevisiae [Ho et al., 2002], Drosophila melanogaster [Giot et al., 2003], and
Homo sapiens [Bouwmeester et al., 2004] (containing ≈30,000, 20,000, and 1700 interac-
tions, respectively). More than 75% of interaction identifications stem from two hybrid
methods (two hybrid, array, pooling, fragment pooling)1, which need not necessarily
occur in vivo (also applies to other identification methods).

From IntAct, we extracted all pairs of interacting proteins. Using the dictionary-
based named entity recognition (and partial identification) described in Chapter 3, we
scanned all of MEDLINE for any co–occurrences of each pair in a single sentence. This
NER with partial identification assigned UniProt IDs to each recognized protein name.
We treated protein names with multiple candidate IDs (same protein shared, for in-
stance, among different species) as hits, not further disambiguating the recognized
name. Whenever a sentence contained a pair of interacting proteins, we considered
it for further use.

We restricted all resulting sentences further by requiring an interaction–indicating
word (see Appendix A.3). From each sentence, we extracted the core–phrase that men-
tions both proteins and the interaction word, plus a parameterizable boundary to the
left and right. This restriction should reduce the phrase to the actual statement (de-
scription of a protein–protein interaction).

The generation of a pattern set from these initial phrases followed the strategy we
discussed in Section 4.3. All initial phrases were clustered using their pairwise sen-
tence alignment score as a similarity function. On each cluster, we performed a multi-

1See http://www.ebi.ac.uk/intact/statisticView/do/statistics

90

5.2. Assigning attributes to relations

ple sentence alignment to identify representative consensus patterns. We distinguished
between initial phrases that were restricted using interaction–indicating words depend-
ing on their respective general POS category: nouns, verbs, adverbs, and adjectives.

5.2. Assigning attributes to relations

The assignment of attributes to predicted relations provides additional important infor-
mation to the user. Attributes refer to quantifications and qualifications of each relation,
conditions under which relations were observed, and so on. For protein-protein inter-
actions, it is interesting to know about the cellular location where an interaction took
place, the experimental methods used to identify the interaction, the organism used in
the experiment, and the duration (transient or permanent) of spatial bindings.

To extract attributes for every relation, there are mainly two possibilities. Patterns
can include additional information themselves, or rule-based approaches are used. En-
coded in a pattern, the occurrence of an attribute could be exactly specified (position
in the pattern), or it could be given relatively to certain other fixed terms. In case of
protein-protein interactions, relative positions could refer to the interaction type: an ad-
jective occurring before an interaction noun specifies this type further (“strong bond”);
adjective preceding a protein specify this protein further, for example when mentioning
the organism (“human protein Cdk3”).

Rule-based approaches, on the other hand, encode information on where to look for
additional information if a pattern fits the current text. We observed that the organism
for which a certain relation was studied often is mentioned in the title of a publication,
or the very first sentence of its abstract [Schmeier, 2005].

5.2.1. Predicting directed relations

For many relations, it is possible to identify the direction of an interaction, that is, the
exact agent-target dependency. For protein-protein interactions, this is not always im-
plicitly given, like for drug-target associations. For PPI, we use a small set of rules that
have been compiled manually and can be applied to other tasks. For some interaction
types, we assign a bi-directed relation: bonds, attachments, interactions, formations
of complexes, and so on. For others, like phosphorylations, inhibitions, or cleavages,
we determine the relation using information on conjugation of the verb and possible
prepositions. For example, a phrase like

‘(PROTEIN1) (is) (VERB: passive) (by) (PROTEIN2)’
suggests ‘PROTEIN2’ as agent, while

‘(PROTEIN1) (VERB: 3rd pers. sing.) (PROTEIN2)’
suggests ‘PROTEIN1’.

91

5. Applications and Evaluation

5.3. Mining protein-protein interactions

For the task of protein–protein interaction extraction from text, we evaluated the per-
formance of three approaches: hand–crafted regular-expression patterns, optimized
regular-expression patterns, and alignment-based patterns learned from large, unan-
notated samples. For this purpose, we used six benchmark set:

• SPIES, consisting of 893 sentences [Hao et al., 2005];
• 1000 sentences derived from the BioCreative I task 1A data; this set contains an-

notations for gene/protein names, and we added annotations for protein–protein
interactions [Plake et al., 2005];
• the LLL’05 challenge corpus, which contains sentences describing genic interac-

tions, i.e., gene–gene, gene–protein, and protein–protein interactions [Nédellec,
2005];
• IEPA, a set of 400 abstracts [Berleant et al., 2003];
• a set of abstracts and full texts (where available) that we derived from known

interactions in the DIP database;
• the BioCreative 2 challenge corpus, consisting of full text articles [Krallinger et al.,

2007].

Note that for the first three benchmark sets, exact positions of the interacting pro-
teins/genes are known. The other three sets annotate interactions per text, that is,
although the (standardized) names of all involved proteins are known, the evidence
for the interaction can be anywhere in the text. Appendix A.1 shows detailed on each
corpus. We will present results for each of the three approaches in the following.

5.3.1. Hand–crafted patterns
Our first approach to extract protein-protein interactions from text was based on manu-
ally designed patterns, as described in Section 4.2.1 and 4.4. Table 5.1 shows our initial
set of 22 hand–crafted patterns. These were derived from example sentences occurring
in the BioCreative I task 1A data set and are partly based on Blaschke and Valencia
[2002]. Performances of this pattern set, taken as–is or after optimization (see next sec-
tion) are given in Table 5.2.

5.3.2. Optimized patterns
Optimizing a pattern set
We optimized hand-crafted patterns using a genetic algorithm on Mealy finite state
automata. All potential parameters were encoded as a genome (as described in Sec-
tion 4.5 on page 85). Table 5.1 shows all these parameters for 22 patterns in more detail
(up to six variables per pattern). As fitness functions, we chose either the precision,
recall, or F1-measure, as achieved on a test set. The changes of results for these func-
tions depending on evolution are shown in Figure 5.1. We found that an optimization
using genetic algorithms could improve the overall performance: precision by up to
16%, recall 5%, F1-measure 8%, respectively, depending on the optimization strategy.

92

5.3. Mining protein-protein interactions

(1) ProteinA Word*1.1 IVerb Word*1.2 ProteinB
(2) ProteinA Word*2.1 IVerb Word*2.2 by Word*2.3 ProteinB
(3) IVerb of Word*3.1 ProteinA Word*3.2 by Word*3.3 ProteinB
(4) IVerb of Word*4.1 ProteinA Word*4.2 to Word*4.3 ProteinB
(5) INoun of Word*5.1 ProteinA Word*5.2 [by|through] Word*5.3 ProteinB
(6) INoun of Word*6.1 ProteinA Word*6.2 [with|to|on] Word*6.3 ProteinB
(7) INoun between Word*7.1 ProteinA Word*7.2 and Word*7.3 ProteinB
(8) ProteinA Word*8.1 ProteinB Word*8.2 [Complex]
(9) ProteinA Word*9.1 ProteinB Word*9.2 INoun

(10) complex formed between Word*10.1 ProteinA Word*10.2 and Word*10.3 ProteinB
(11) [complex|complexes] of Word*11.1 ProteinA Word*11.2 and Word*11.3 ProteinB
(12) ProteinA Word*12.1 [form|forms] Word*12.2 complex with Word*12.3 ProteinB
(13) [complex|complexes] containing Word*13.1 ProteinA Word*12.2 and Word*13.3 ProteinB
(14) ProteinA Word*14.1 ProteinB Word*14.2 [form|formed] Word*14.3 ProteinC
(15) ProteinA Word*15.1 ProteinB Word*15.2 IVerb Word*15.3 with each other
(16) ProteinA Word*16.1 [inhibitor|repressor] of Word*16.2 ProteinB
(17) ProteinA Word*17.1 IVerb Word*17.2 but not Word*17.3 ProteinB
(18) ProteinA Word*18.1 cannot Word*18.2 IVerb Word*18.3 ProteinB
(19) ProteinA Word*19.1 [does|did|was] not Word*19.2 IVerb Word*19.3 ProteinB
(20) ProteinA Word*20.1 not Word*20.2 IVerb Word*20.3 by Word*20.4 ProteinB
(21) ProteinA Word*21.1 not required for Word*21.2 IVerb Word*21.3 ProteinB
(22) ProteinA Word*22.1 failed to Word*22.2 IVerb Word*22.3 ProteinB

Table 5.1.: Set of hand-crafted patterns. Markup: fixed anchor entities, fixed
constraint words. Word*18.2 refers to the maximum length of the
second word gap in pattern 18. [Complex] in pattern (8) is short for:
[complex|complexes|dimer|heterodimer|homodimer]

All results are shown in Table 5.2. Additionally, the search for optimal parameters with
genetic algorithms proved to be very fast on this small pattern set. Individual results
for the BC1-PPI (BioCreAtIvE), DIP, and LLL’05 benchmarks are discussed in detail in
the following paragraphs.

BioCreAtIvE — evaluation on single sentences

Results on the BioCreative 1 PPI corpus (BC1-PPI) are shown in Table 5.2, compar-
ing hand-crafted to optimized patterns; results were obtained using a 10-fold cross-
validation. The best averaged precision of 75% was achieved at a recall level of 21%,
ranging from 63% to 84% in the 10 runs (recall: 16–32%). Compared to the manual
refinement of patterns, the genetic algorithm was able to find a solution which yields
about 16% higher precision. The best recall found was 51% (42–58%), about 5% better
than a manual refined pattern set. For this configuration, the precision ranged from
37–52%, with an average of 43%. When the fitness was determined by F1–measure,
the optimization yielded 52% in the ultimate parameter setting, a manual definition
performs about 8% worse. The optimal pattern set could be found after 21–160 steps.

The evaluation on BioCreAtIvE set included the impact of named entity recognition.
When we excluded the NER from the evaluation, we took the answer key as a ‘perfect’
NER system. We compared this approach to an ensemble including our own protein

93

5. Applications and Evaluation

Data set Fitness function P R F-m
BioCreAtIvE optimization, f-measure 60% 46% 52%
perfect NER optimization, precision 75% 21% 33%

optimization, recall 43% 51% 47%
BioCreAtIvE optimization, f-measure 43% 36% 39%
imperfect NER optimization, precision 58% 19% 29%

optimization, recall 30% 39% 34%
BioCreAtIvE no optimization, word gaps: 0-2 59% 26% 36%
perfect NER no optimization, word gaps: 0-5 48% 40% 44%

no optimization, word gaps: 0-10 40% 46% 43%
no optimization, word gaps: 0-15 37% 46% 41%

BioCreAtIvE no optimization, word gaps: 0-5 33% 29% 30%
imperfect NER no optimization, word gaps: 0-10 26% 33% 29%
DIP, all data optimization, recall n/a 50% n/a
DIP, abstracts optimization, recall n/a 23% n/a
DIP, all data no optimization, word gaps: 0-2 n/a 40% n/a
DIP, all data no optimization, word gaps: 0-10 n/a 52% n/a
DIP, all data no optimization, word gaps: 0-15 n/a 53% n/a
DIP, abstracts no optimization, word gaps: 0-2 n/a 14% n/a
DIP, abstracts no optimization, word gaps: 0-10 n/a 25% n/a
DIP, abstracts no optimization, word gaps: 0-15 n/a 27% n/a

Table 5.2.: Results for hand-crafted patterns versus optimized patterns; for optimiza-
tion, the fitness-function for the genetic algorithm is also given. Two bench-
marks are used: BioCreative and DIP. Optimization on different fitness func-
tions (f-measure, precision, recall) is also given. The best results achieved
with and without optimization are underlined.

name recognition method (see Section 3.1). When the system included the recognition
of protein names, the precision dropped about 17% (14% recall, 13% F1-measure).

DIP — full texts versus abstracts

For the evaluation on the DIP corpus, we used the parameter settings evolved during
optimization on the BioCreAtIvE corpus. In the DIP database, information for inter-
actions are curated. These information contain references to publications that discuss
these interactions. The references do not contain the exact textual evidence, however.
Starting from one DIP interaction, we can determine only that a publication discusses
this interaction somewhere. We cannot determine where exactly the interaction appears
in the text, and we can not know about additional interactions that might be discussed
somewhere else in the same text. Training on DIP full papers would thus include many
interactions not marked as positive examples, and would lead to a very conservative
model. Correspondingly, we aim at a high recall for this test scenario, and chose recall
as the fitness function, because we cannot evaluate the precision.

Results are shown in Figure 5.2, with and without optimization of hand-crafted pat-
terns. The recall on full papers regarding all 297 interactions was 50%. When using

94

5.3. Mining protein-protein interactions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200

fi
tn

e
s
s

generations

(a) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

fi
tn

e
s
s

generations

(b) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

fi
tn

e
s
s

generations

precision, without NER
recall, without NER

f-measure, without NER

(c) F-measure

Figure 5.1.: Evolution progress for the three fitness-functions used: (a) precision, (b)
recall, and (c) F1-measure, all without NER. Each figures show the other
two corresponding measures as well, though these had no influence on the
respective fitness.

manual refined patterns, we could achieve a recall of 53%. When we took only the
PUBMED abstracts of references for the evaluation, only 23% of all 297 interactions
could be detected. For one, more interactions are discussed somewhere in the full text
than in the abstract of a paper. On the other hand, descriptions appearing in the abstract
are repeated in the full text, sometimes more than once. If evidences in the abstract are
not covered by patterns, the evidences in the full text –expressed in different ways–
might be detected instead. The detection of one of these appearances is sufficient to ex-
tract an interaction correctly. We noticed that the genetic algorithm could not improve
the performance in both cases, it yielded about 4% less recall.

LLL’05 corpus

For evaluation on the LLL’05 corpus, we chose different generation and matching strate-
gies: sentence alignment and finite state automata with different parameters. The pat-
terns were generated from two different corpora (or their combination): 1000 sentences
derived from BioCreative I Task 1a and the training sample provided with the LLL’05
data set. In Table 5.3, these corpora are named C1000 (BioCreative), C55 (LLL training),
and C86 (LLL test), respectively. The LLL’05 had two different type of annotations, one

95

5. Applications and Evaluation

with, one without using co-references. All results result from training/testing without
incorporating the co-references. In this category, our method proved best among three
systems. Including annotated co-references, the best system achieved an F1-measure of
52.4%, which was 0.6% higher than our best result.

Method Corpus Precision Recall F1 (%)
Alignment C1000 57.1 7.8 13.7

C55
Alignment C55 63.6 8.1 14.4

C86
Mealy C1000 64.3 17.5 27.5
(2 FSAs) C55
Mealy C1000 42.9 9.2 15.2
(2 FSAs) C86
Mealy C55 28.1 31.4 29.6
(4 FSAs) C86
Mealy C1000+55 50.0 53.8 51.8
(5 FSAs) C86

Table 5.3.: Results on the LLL corpus using alignment or regular expressions. Upper
corpus in each row was taken for training, lower for test; C1000: corpus of
1000 sentences; C55: genic_interaction_data; C86: basic_test_data.

Our method often predicted the interaction partners correctly, but an incorrect agent-
target dependency. This could have been solved exploiting the provided co-references.
Syntactic relations could help to generate more specific patterns that contain whole
phrases instead of single tags (“expression of rsfA”). For this specific phrases, certain
positions could even be restricted to particular tokens, instead of general POS tags.
Combinations of verbs and prepositions, for instance, contain linguistic information
clearly stating the exact role of a gene/protein appearing before or after this verb phrase
(“was phosphorylated by”). Grouping particular interaction types together (for exam-
ple, “phosphorylation” and “methylation” refer to the creation of bonds, while “reduc-
tion” and “repression” imply an inactivation) and restricting patterns to these particu-
lar types might further help to exploit nomenclature usages.

We saw that the performance of our approach is clearly dependent on the size of the
training set. Our system was able to detect only interactions for which it encountered
a quite similar example in the training data. Using only 55 sentences for generating
patterns proved insufficient, as many relations in the test set did not resemble any of
these. The training corpus of 1000 sentences from BioCreative I Task 1a contained 256
different protein-protein interactions, but these were in general quite dissimilar from
the genic interactions in the LLL’05 data. For instance, our training sample did not in-
clude any descriptions of regulon family memberships. Most of our example sentences
describe actions and bindings, and our system performed best in these categories (see
Table 5.4).

96

5.3. Mining protein-protein interactions

action bind regulon nothing all
TP 19 7 2 0 28
FN 17 (36) 5 (12) 2 (4) 0 (0) 24 (52)
FP 10 (29) 4 (11) 1 (3) 13 (13) 28 (56)

Table 5.4.: Performance on different types of interactions contained in the LLL’05 cor-
pus. Numbers in brackets give the total number of existing interactions (row
FN), and predicted interactions (row FP), respectively.

5.3.3. Patterns learned from large samples

Results for protein-protein interactions using the IntAct Sample

Information on the size of the corpus and pattern sets derived from MEDLINE and In-
tAct using the method described in Section 5.1 are presented in Table 5.7. Out of almost
120,000 sentences that contained at least one pair of interacting proteins according to
IntAct, we filtered different sets of initial patterns, dependent on word boundaries and
interaction types. Not all of the 120,000 sentences contained one of the required in-
teraction types (see Appendix A.3). Some sentences contained multiple interactions, in
most cases in different core-phrases, so that they were represented multiple times in the
initial phrases. We show the support of initial phrases in Figure 5.2. Table 5.5 shows
the initial phrases that have the highest support in the sample. We discuss some core-
phrases with uncertain veracity in Table 5.6. We clustered all phrases that shared the
same POS class of the interaction type (noun, verb, adjective), and computed consensus
patterns on each subset. Ultimately, this lead to more than 9,500 consensus patterns.

SPIES corpus

We performed our initial experiments on the SPIES corpus [Hao et al., 2005], described
in the Appendix A. Table 5.8 shows the performance of various methods in detail. The
experiments were done with different sets of initial patterns: different word bound-
aries for the core-phrases, different guide-list cut-offs, and different maximal lengths of
phrases in a cluster. All experiments included the full set of IntAct pairs and resulting
phrases from MEDLINE. To tune the system towards a potential bias in the annota-
tions in the SPIES corpus, we additionally ran experiments were we sampled 70% of
the sentences for optimization and used the remaining 30% for the test (10-fold cross-
validated). For the optimization –either towards precision or recall– we adjusted the
thresholds of the minimum alignment scores using the training set.

BioCreative II IPS corpus

BioCreative (Critical Assessment of Information Extraction systems in Biology) is a
community effort aimed at “evaluating text mining and information extraction sys-

97

5. Applications and Evaluation

Supp. Initial phrase
246 */*/PTN receptor/receptor/n:e */*/PTN
55 */*/PTN -dependent/-dependent/adj:b */*/PTN
43 */*/PTN binding/binding/n:e to/to/prep */*/PTN
40 */*/PTN -mediated/-mediated/adj:b */*/PTN
37 */*/PTN interacts/interact/v:G3e with/with/prep */*/PTN
31 */*/PTN phosphorylation/phosphorylation/n:e and/and/cnj:K */*/PTN
31 */*/PTN binds/bind/v:G3e to/to/prep */*/PTN
27 */*/PTN bound/bind/v:P to/to/prep */*/PTN
27 */*/PTN expression/expression/n:e on/on/prep */*/PTN
25 */*/PTN associated/associate/v:P with/with/prep */*/PTN
23 */*/PTN inhibitor/inhibitor/n:e */*/PTN
22 */*/PTN expression/expression/n:e and/and/cnj:K */*/PTN
21 */*/PTN receptor/receptor/n:e ,/,/pun */*/PTN
19 */*/PTN activity/activity/n:e and/and/cnj:K */*/PTN
18 */*/PTN binds/bind/v:G3e */*/PTN
18 */*/PTN regulates/regulate/v:G3e */*/PTN
17 */*/PTN associates/associate/n:m with/with/prep */*/PTN
15 */*/PTN activation/activation/n:e and/and/cnj:K */*/PTN
14 */*/PTN -induced/-induced/adj:b */*/PTN
14 */*/PTN interacts/interact/v:G3e */*/adv:b with/with/prep */*/PTN
13 */*/PTN enhances/enhance/v:G3e */*/PTN
13 */*/PTN activates/activate/v:G3e */*/PTN
13 */*/PTN is/be/v:G3e required/require/v:P for/for/prep */*/PTN
12 */*/PTN induces/induce/v:G3e */*/PTN
11 */*/PTN phosphorylation/phosphorylation/n:e of/of/prep */*/PTN
11 */*/PTN association/association/n:e with/with/prep */*/PTN
11 */*/PTN binding/binding/n:e ,/,/pun */*/PTN
11 */*/PTN receptor/receptor/n:e for/for/prep */*/PTN
11 */*/PTN interaction/interaction/n:e with/with/prep */*/PTN
11 */*/PTN in/in/prep */*/det regulation/regulation/n:e of/of/prep */*/PTN
11 */*/PTN activity/activity/n:e of/of/prep */*/PTN
11 */*/PTN binding/binding/adj:b domain/domain/n:e of/of/prep */*/PTN
11 */*/PTN -mediated/-mediate/v:V */*/PTN
11 */*/PTN binding/binding/n:e site/site/n:e on/on/prep */*/PTN
10 */*/PTN degradation/degradation/n:e ,/,/pun */*/PTN
10 */*/PTN binding/binding/adj:b */*/PTN (/(/pul */*/PTN
10 */*/PTN binding/binding/adj:b activity/activity/n:e and/and/cnj:K */*/adj:b */*/PTN
10 */*/PTN inhibits/inhibit/v:G3e */*/PTN
10 */*/PTN -induced/-induced/adj:b activation/activation/n:e of/of/prep */*/PTN
10 */*/PTN activity/activity/n:e ,/,/pun */*/PTN
10 */*/PTN)/)/pur receptor/receptor/n:e (/(/pul */*/PTN
10 */*/PTN in/in/prep */*/n:e to/to/prep */*/PTN
10 */*/PTN activated/activated/adj:b */*/PTN
10 */*/PTN form/form/n:e of/of/prep */*/det */*/PTN

Table 5.5.: Initial phrases extracted from MEDLINE using IntAct data; shown are
phrases with a support of at least the ten, that is, the number of sentences
that result in the same initial phrase after replacing nouns, adjectives, ad-
verbs, verbs (as long as they are none of the interaction words from Ta-
ble A.3), modal verbs, determiners, numbers, punctuation, conjunctions, and
protein names with *, applying to token and stem. Format of each word:
token/stem/POS-tag.

98

5.3. Mining protein-protein interactions

Core phrase Comment
PTN bind PTN unusual phrasing (list of proteins on the left)
PTN despite its ability to bind PTN interspersed qualification
PTN mutant inhibited PTN interspersed modifier
PTN) bound to PTN interspersed abbreviation for the protein name
PTN / PTN blocks PTN interspersed synonym of the protein name,

might also refer to a protein complex
PTN to PTN and then activate PTN complex formation, A+B activate C
PTN binding sites for PTN synonymous expressionsPTN binding domain of PTN
PTN suppressed PTN extended noun phrasePTN suppressed the effects of the PTN
PTN also specifically binds to PTN extended verbal phrase
PTN –independent forms of PTN suggesting that there is a dependent form
PTN were defective in binding PTN → normally an effective interaction
PTN can affect PTN goes together with other modal verbs
PTN is required in PTN not necessarily a physical interaction, few FPs
PTN + T–lymphocytes expressing PTN uncertain veracity as pattern→ some FPsPTN -negative cells expressing PTN
PTN but did not affect PTN refers to a protein left of the snippet, but the

mentioned pair might still interact
PTN expression was reduced while PTN suggests a study of a potential relationship

between the two proteins→ some FPs
PTN was not affected by the PTN negation in contrast to IntAct data, different

behavior under different conditions; “not”
treated as adverb, thus matches “always” etc.

Table 5.6.: Sample of the core phrases extracted from MEDLINE. The top half shows typ-
ical examples, some with unusual phrasing, to demonstrate the high variabil-
ity (might be missed during manual pattern engineering). Some core phrases
that might lead to false positives (FPs) when used as patterns are shown in
the bottom half. Protein names have been replaced with PTN.

99

5. Applications and Evaluation

 1

 10

 100

 1 10 100 1000 10000

S
u
p
p
o
rt

Initial phrases

Figure 5.2.: Distribution of the support of initial phrases extracted from the IntAct data,
being close to an expected Zipfian distribution.

proteins in IntAct 31.471
protein pairs from IntAct 41.748
sentences with at least one IntAct pair 67.870
IntAct pairs in the sentences 117.460
phrases with IntAct pair + interaction verb

0/0 word boundary * 20.439
1/1 word boundary 23.573

phrases with IntAct pair + interaction noun
0/0 word boundary 19.954
1/0 word boundary * 19.972
0/1 word boundary * 21.932
1/1 word boundary 24.284
2/0 word boundary 24.498

phrases with IntAct pair + interaction adjective
0/0 word boundary * 2.413

phrases with IntAct pair + interaction verb, noun, or adjective
0/0 word boundary 29.285

final set of consensus patterns from (*) 9.640

Table 5.7.: Statistics for MEDLINE sentences and interaction pairs from IntAct (May
2005). Duplicate sentences are removed. Boundaries refer to additional to-
kens to the left/right. The final set of patterns consists of the individual sets
indicated by *.

100

5.3. Mining protein-protein interactions

Method Precision Recall F1 (in %)
Initial pattern set 85.8 15.2 25.8
CP, single layer (POS tag incl. entity) 76.6 47.1 58.3
CP, multi layer (token, POS tag, stem, entity) 78.7 51.9 62.6
CP, optimized for precision +1 -4 60.1
CP, optimized for recall -5 +5 63.9
Current best system: Hao et al., 2005 79.8 59.5 68.1

Table 5.8.: Impact of different parameters for collection and refinement of patterns. For
optimized sets, we use 70% of SPIES to adjust thresholds for each single
pattern.

tems applied to the biological domain”2. Two rounds of this competition were held in
2003/04 and 2006/07, respectively, with a third starting in mid-2009. The first round
focused on the tasks of protein named entity recognition and gene mention normal-
ization (mouse, fruit fly, and yeast genes), as well as functional annotation of proteins
using Gene Ontology terms3. The second round was concerned with protein NER,
EMN of human genes, and four tasks concerning protein-protein interactions: classi-
fication of abstracts and sentences (each for containment of PPIs), extraction of pro-
tein interaction pairs, and extraction of protein interaction identification methods (such
as yeast-2-hybrid). BioCreative is held as a competition-like task, where participating
teams are first provided with training data to develop their respective systems, and
later with test data on which predictions have to be made and then submitted to the
organizers for evaluation (typically within a week upon release). The BioCreative task
relevant to our analysis in this chapter is the interaction pair extraction subtask (IPS),
aiming at the extraction of pairs of interacting proteins from full-text articles. Extraction
includes mapping of all proteins to their respective UniProt identifiers. We described
the recognition and identification of protein names in Chapter 3, and briefly summa-
rize our approach to the IPS task in the following (details are provided earlier in this
chapter and in Chapter 4).

We ran four kinds of experiments on the BioCreAtIvE II IPS corpus. For the relation
mining component, we used consensus patterns identified using clustering and multi-
ple sentence alignment (Section 4.3) on the aforementioned IntAct collection of initial
phrases. As a variation of the test performed on SPIES, we did not generalize preposi-
tions to arbitrary tokens, which should result in more precise consensus patterns. The
experiments differed in five parameters, which should tune either precision or recall of
the overall system, and influence the named entity identification or pattern matching.

1. For each protein interaction and publication, we set a minimum number of pre-
dicted interactions resulting from different evidences in the text. That means, an
interaction that was predicted too few times was removed from the final predic-

2BioCreAtIvE: see http://biocreative.sourceforge.net/
3GeneOntology: see http://geneontology.org/

101

5. Applications and Evaluation

tion.
2. When clustering initial phrases from the IntAct sample, a cut-off specifies how far

the computed guide list if pursued. This means, the cut-off defines the minimum
similarity of initial phrases that occur in one cluster.

3. For clustering initial phrases, we also set a maximal length difference for phrases
in the same cluster.

4. As named entity identification influences the recall (and precision) quite strongly,
we also tested results for the top two predicted identifiers per protein, the top
three, and so on.

5. To resolve proteins to species, we used different scopes. First, we analyzed the
abstract, and compared the organism name(s) found therein with the species as-
signed to each remaining UniProt ID; if nothing was found or still multiple IDs
remained, we took the most likely ID. Another scheme, resulting from frequency
counts, was to first look in the abstract, but then take the best human, mouse, or
yeast protein (in this order) before deciding on another species.

All results for different parameters settings are shown in Table 5.9, together with
the currently best-performing system (Huang et al., 2007). Results of the other top-
performing systems can be found in the section on Related Work, see in particular
Table 5.10 on page 105. The parameters are abbreviated m (minimum of required evi-
dences), gl (guide list cut-off), ld (maximum length difference), ids (submitted IDs per
protein), and sr (order of species resolution), respectively. As BioCreative provided
training data for the protein-interaction extraction task, and our patterns were extracted
independently from PubMed abstracts, we could use the whole training set for param-
eter optimization. Given the set of patterns that performed best on SPIES, parameter
tuning focused on the aforementioned, task-specific parameters. For one, those are pa-
rameters that are decoupled from the actual relationship extraction, but instead focus
on the task-specific needs for mapping proteins to species, protein normalization, de-
tection of novel interactions, and so on. Second, the guide list cut-off and maximum
length difference of initial phrases were adapted to the BioCreative training set. All
four parameters were carefully manually chosen, according to trial-and-error runs on
the training data. Regarding the relationship-extraction parameters (guide list, max.
length), note that these were specifically tuned to BioCreative data, which are full-text
publications rather than abstracts. It can be expected that on different tasks, these pa-
rameters will have to be adjusted. Regarding the non-relationship extraction specific
parameters (species, number of submitted interactions), the submission of multiple IDs
per protein has a drastic impact on the precision of the overall system. Predicting two
IDs per protein results in four potential pairs, three of which are certain false positives;
this limits the maximal achievable precision to an upper bound of 25% (not including
the precision of the EMN itself).

On the BioCreAtIvE II GN corpus, our system for gene name identification yielded a
maximal F1-measure of 81% (precision 78.9% at 83.3% recall). This GN tasks included
30,000 human genes from EntrezGene only. For the IPS task, named entity identifica-
tion included more than 325,000 protein names from UniProt. We can thus estimate an

102

5.4. Related Work

Short description Precision Recall F1 (in%)
m=2; gl=0.83; ld=3; ids=2; sr=ahmy* 0.2 43.7 0.3
m=1; gl=0.83; ld=3; ids=1; sr=a* 25.2 23.3 21.1
m=1; gl=0.75; ld=5; ids=1; sr=a* 22.8 21.6 19.7
Current best system: Huang et al., 2007 37.0 32.7 30.4

Table 5.9.: Results for different strategies using the IntAct pattern collection on the
BioCreAtIvE II test set. m, minimum of identified interactions per pair and
article required for a prediction; gl, guide list cut-off; ld, max. length dif-
ference; ids=number of submitted IDs per protein; sr=species resolution (see
text for explanations).

upper bound for the precision for named entity identification alone; this bound is ex-
pected to be lower than 78.92% = 62.3% for any pair of two proteins. This bound holds
for statistical independence, which might not be given for protein pairs (note, however,
that interacting proteins do not always originate from the same species). Our maximum
recall for recognizing single proteins on the IPS set was 69%, being the highest among
all other participating systems.

When we required only one identified evidence pair, precision dropped significantly.
One reason is the occurrence of non-important interactions in the article, which are
not annotated in the corpus. Such interactions often occur in the introduction of an
article, where it becomes clear that this particular protein-protein interaction is not one
of the main conclusions of the current article, but rather a repetition of known facts.
The bibliography of an article is also prone to contain interactions —in titles of cited
publications—, which provide additional background information. All these are actual
protein-protein interactions taken for themselves, but count as false positives according
to the definition of the BC2 IPS task. Another, similar reason for low precision is the
occurrence of protein–protein interactions in dangling text; that is, articles that end on
the same page on which the current articles begins, or vice versa. Automated systems
thus identify interactions in parts that do not belong to the current text.

5.4. Related Work

Methods for relation mining mostly fall into either of the four categories

• statistical methods, machine learning,
• rule-based approaches, linguistic frames,
• methods based on syntactic parsing, and
• hybrid approaches.

Statistical methods range from approaches calculating co–occurrence frequencies to
classification-based approaches. The later apply machine learning to infer models from
annotated data, using words, word order, part-of-speech tags, and information on link-
ages. Predictions range from relevance ranking of sentences and paragraphs to detect-

103

5. Applications and Evaluation

ing the actual objects in a relation. Rule-based approaches mostly use a form of regular
expressions/language patterns to detect relations, and often include ‘basic’ syntactic
information such part-of-speech tags. Such rules are extracted from labeled data, and
applied to new text. Depending on the approach, predictions can be either binary (e.g.,
pattern matches) or result in a score (e.g., edit distance). Parsing involves syntactic
analysis of sentences to find verb and noun phrases, constituent trees, subject-object
dependencies, and other linkage structures. Until recently, sufficiently well perform-
ing parsers have not been available for the biomedical domain, which made it difficult
to assess approaches building on parsers (compare Daraselia et al., 2004, and Miyao
et al., 2008) — as opposed to the other two categories, where implementations of ma-
chine learning algorithms, part-of-speech taggers, etc., are readily available. Hybrid
approaches combine some of these techniques: including POS tags or parse tree infor-
mation as features in machine learning, using linkages in patterns, or defining entire
patterns over parse trees (instead of words and POS tags).

In this section, we will discuss the most prominent approaches, separated by cate-
gory; we also present related work on sentence alignment and pattern–based relation
extraction other than for protein–protein interactions. We compare different systems
qualitatively and, where possible, quantitatively; in many publications, systems have
been tested on in-house corpora only, making a meaningful comparison based on pure
numbers impossible. An overview of approaches and quantitative results is shown in
Table 5.10. This section ends with conclusions drawn from our and related work.

5.4.1. Evaluation corpora for relationship extraction

The evaluation presented in this section focuses on the extraction of protein-protein
interactions. Several such corpora have been made available, refer to Section A for a
list with statistics and references. Pyysalo et al. [2008] proposed to use a set of five
corpora, consisting of AIMed, BioInfer, HPRD50, IEPA, and LLL’05, for evaluating sys-
tems for protein interaction extraction. They provided a unified format, together with
conversion tools for each of these corpora, so experiments can be conducted without
having to parse different formats. The corpus annotation guidelines and sizes differ
vastly. AIMed, BioInfer, HRPD50, and IEPA are based on PubMed abstracts, and an-
notate only protein-protein interactions. LLL’05 contains annotations not only for PPIs,
but also genic interactions such as genes occurring in the same operon structure. For
both reasons, the type of text and annotation guidelines, which also differ between the
first four corpora, results cannot be directly compared to each other. LLL’05 is the only
corpus that has a fixed split of training and test data, where the actual test data is not
publicly available. Instead, LLL’05 offers a web service, where predictions can be sub-
mitted and scores are returned. Thus, it is guaranteeed that no parameter tuning can
be done on the test data (although by repeated querying, the actual gold standard for
the test data could be reconstructed). Critique regarding the LLL’05 corpus concerns
its size: there are only 52 interactions in the test set and 103 in the training set. That
means that for each evaluation, a single additional true positive leads to an increase
by 2% in precision (recall and f-score correspondingly). Thus, close results for differ-

104

5.4. Related Work

Studied in Underlying method F1 Test collection
Daraselia et al. [2004] syntactic parsing, mapped to frames P:91 361 pairs
Blaschke and Valencia [2002] 31 hand-crafted patterns 42.3 300 abs.
Stapley and Benoit [2000] co–occurrence >R 2524 abs.
Marcotte et al. [2001] text classification + co–occurrence n/a 260 abs.
Friedman et al. [2001] ≈3000 patterns P:95
Saric et al. [2006] hand–crafted rules 44 6640 abs.
Huang et al. [2004] pattern set from annotated corpus 60.7 SPIES
Hao et al. [2005] pattern set from annotated corpus + MDL 68.1 SPIES
*Hakenberg et al. [2005b] refined hand–crafted patterns 51.8 LLL’05
Riedel and Klein [2005] clauses based on discourse representation 52.6 LLL’05
Fundel et al. [2007] parse tree–patterns 72 LLL’05
Kim et al. [2008a] Tree kernel SVM 77.5 LLL’05
Katrenko and Adriaans [2008] Local alignment kernel 80.5 LLL’05

Local alignment kernel 78 BC1-PPI
*Plake et al. [2005] patterns learned from annotated corpus 39 BC1-PPI
Jang et al. [2006] parse tree patterns 56.0 BC1-PPI
Sun et al. [2007a] pairwise classification >80 BC1-PPI
Miyao et al. [2009] Reranking parser, subset tree kernel 59.5 AIMed
*Plake et al. [2005] patterns learned from annotated corpus R:53 DIPPPI
Huang et al. [2007] pattern set from annotated corpus + MDL 30.4 BC2 IPS
Rinaldi et al. [2007] co-occurrence + lexico-syntactic filtering 23.5 BC2 IPS
Baumgartner et al. [2007] semantic parsing with 67 rules 25.3 BC2 IPS
*Hakenberg et al. [2007] consensus patterns from IntAct+PubMed 21.1 BC2 IPS

Table 5.10.: Performances reported for different systems for extraction of protein–
protein interactions from text. BioCreAtIvE II IPS data (BC2 IPS) addition-
ally required protein name normalization, so numbers are lower in general;
BC2 numbers refer to the data set restricted to UniProt proteins. Note that
evaluation methods and corpora differ by large, and most results are not
comparable, but give only hints on the effectiveness of approaches. F1–
measure in % if not indicated otherwise, P: precision, R: recall, >R means
high recall, abs: abstracts, *: systems presented in this thesis, all other ap-
proaches are discussed in more detail in Section 5.4.

ent systems or parameter tuning within the same system have to be analyzed properly
to exclude performances differing due to pure chance. For example, as we see in Ta-
ble 5.10, the two systems ranked first during the actuall LLL competition 2005 differ
only by 0.8% in f-score, so no conclusions can be drawn. It showed that our system
(see previous section) had almost balanced precision and recall, and the recall in Riedel
and Klein [2005] was 9% lower with a corresponding 9% higher precision. Therefore,
conclusions on the performance of different approaches to PPI extraction are more reli-
able when drawn from larger corpora such as AIMed and BioInfer. The BioCreative IPS
corpus is a large-scale and full-text corpus, with the training set consisting of 740 and
the test set of 358 publications. However, the task for BioCreative IPS differs from the
aforementioned corpora in two major ways: a) Evaluation is done on a per-document
level, which means that only a single occurrence per PPI/document has to be found; all
other corpora require the extraction of each individual interaction. b) The task also in-

105

5. Applications and Evaluation

clude the identification of proteins and the detection of physical and novel interactions
for which a document provides experimental support; other corpora do not require to
identify proteins (i.e., map them to UniProt identifiers), which in itself is not a solved
task. Filtering all predictions by novelty and physical evidence poses an additional
challenge, here related to information retrieval. Thus, performances as evaluated on
BioCreative IPS are lower in general, because these sub-tasks and their respective indi-
vidual performances yield a lower bound for the protein extraction task.

5.4.2. Co–occurrence–based approaches

The first attempts for relationship extraction from biomedical text used co–occurrences
of entity names in a sentence or larger discourse. The granularity of discourses in-
tuitively has a large impact on precision versus recall. Co–occurrences in headings,
titles, or figure caption will be more reliable indication for an actual relation than co–
occurrence in arbitrary phrases or sentences; these in turn yield higher precision than
abstracts, or any other paragraph in an article. On the other hand, the larger the
discourse, the higher the recall will be. In general, co–occurrence–based approaches
achieve very high recall values, but low precision (compare Stapley and Benoit [2000],
Marcotte et al. [2001], Stephens et al. [2001]. Ding et al. [2002] studied the impact of
choosing the text unit for extracting interactions between biomedical terms (such as
‘flavonoid’ and ‘cholesterol’) based on co–occurrences; they focused on the question
whether to consider phrases, sentence pairs, sentences, or abstracts. In that order, recall
increased from 62 to 100%, while precision dropped from 74 to 57%. The highest f-
measure could be achieved choosing abstracts or sentences (both 73%), phrases follow
with 68%, and sentence pairs are worst with only 50% (thus improvement of perfor-
mance on abstracts and sentences was significantly better, p < 0.05). Rinaldi et al.
[2007] experimented with distances between two protein mentions, either limited to
single sentences or allowing pairs to cross sentence boundaries. The former increased
precision, recall, and f-measure (f-measure from 7.3 to 8% on BioCreative II IPS).

When large corpora are available, like the set of all 18 million PubMed abstracts,
one can try to improve the reliability of co–occurrence–based predictions by aggregat-
ing over the entire collection. Another strategy is to measure whether a particular co–
occurrence is more significant than simple chance. Bunescu et al. [2006] compare these
two approaches, studying both different aggregation functions and different statisti-
cal distributions. Regrettably, the study lacks a direct comparison of baseline methods
(simple co–occurrence, or using subsequence kernels) to aggregation and corpus–level
statistics, and only report results for integrated models (subsequence kernel plus aggre-
gation, or adding point-wise mutual information statistics). Gathering such statistics,
however, requires to solve one fundamental task, namely named entity identification
(discussed in 2.1.2), so that interacting pairs where authors used different names can be
mapped together, or separated in case of ambiguous names.

Jenssen et al. [2001] built a gene–gene co–occurrence network (‘PubGene’) for 13,712
human genes names, from ca. 10 million PubMed abstracts (and enriched the network
with available MeSH and Gene Ontology annotations). Taking into consideration the

106

5.4. Related Work

co–occurrence frequency of each pair, they found a precision of 71% for pairs occurring
at least five times, and 60% for pairs occurring at least once; estimations were done by
cross–checking 500 random pairs of each category. Note, however, that the task was
not to find protein-protein interactions, but any kind of valid relations, including gene
homology and expression correlation. A comparison to the Database of Interacting
Proteins (DIP, Xenarios et al., 2001) that contained 169 human protein pairs revealed
that the PubGene network covered 51% of those (DIP database as of 2001; pairs that
had references to articles indexed by PubGene).

In the OntoGene system, plain protein co–occurrences are filtered further to identify
actual interactions [Rinaldi et al., 2007]. To deal with the specific task of BioCreative II
IPS, Rinaldi et al. add a ‘novelty filter’ constructed from training data to distinguish
between interactions relevant to the curation task or not. This step increased the f-
measure from 8 to 12.8%. Actual filters for interactions versus coincidental mentions
of two proteins in OntoGene are based on hand-crafted lexical, morphological, and
syntactic filters, for instance taking into account the (potential) syntactic dependencies
between two proteins. Such filtering results in a final performance of 21.7% on the
BioCreative II IPS test set for all proteins.

5.4.3. Classification

Sun et al. [2007a] use maximum entropy modeling (MEMM) to first judge sentences for
relevance to discussing protein-protein interactions, and then classify each candidate
pair of proteins in such sentences to find interacting pairs. The first step takes only the
number of proteins and interaction-indicating words as features. Arguing that shallow
lexical features contribute most to the performance, as compared to parse of chunk
information (also see Xiao et al. [2005]), Sun et al. use the tokens in a window of two to
the left and right of both protein names as the only features (despite the binary output
of the first step). Using ca. 50% of the BC1-PPI corpus each for training and testing, the
approach yields an accuracy of 81.9% when using both steps, and 81.2% when using
the second step only. Maximum per-class precision and recall were 86.8%/80.1% for
negative instances (non-interacting protein-pair) and 81.6/72.7 for positive instances,
respectively, so the joint f-measure would be around 80%.

5.4.4. Pattern–based approaches

The probably most popular approach to find PPI is by matching the text against prede-
fined patterns, that is, regular expressions over words or word stems, pre–recognized
tokens, linguistic information, or combinations of those [Blaschke and Valencia, 2002,
Hao et al., 2005, Hakenberg et al., 2005b, Saric et al., 2006]. Given the “right” set of pat-
terns, pattern matching can yield both good precision and good recall. However, the
major problem of pattern matching approaches is the creation of this “right” set of pat-
terns. There are two options: Either a very large pattern base is created, covering many
sentences, which is very time-consuming. Second, a smaller set of patterns is somehow
generalized, which increases recall, but might lower precision.

107

5. Applications and Evaluation

We described our pattern–based approaches in Chapter 4 and previously in this chap-
ter. Apart from ours, there are a number of other systems that use pattern matching.
The SUISEKI system [Blaschke and Valencia, 2002] used a set of 31 hand–crafted patterns
including eight negations and yielded 45% precision at a 40% recall level, evaluated on
300 abstracts. Patterns allowed for gaps between anchor positions and contained some
fixed positions, for example, prepositions. The GENIES system can be considered as a
mixture between pattern matching and natural language processing (NLP), as it used
patterns over linguistic information [Friedman et al., 2001]. It reached precision of more
than 95%, but required a very large set of hand–crafted patterns. Saric et al. [2006] cre-
ated sets of rules for gene expression and (de)phosphorylation relations, achieving an
accuracy of 83 and 95% for the two types of relations, respectively. In former work,
we used manually created patterns that were optimized in a second step using genetic
optimization [Plake et al., 2005, Hakenberg et al., 2005b]. Results for precision were
encouraging, but, as for all systems based on manually created rules, recall was a prob-
lem.

The system that is most similar to our current approach is SPIES [Hao et al., 2005].
It is a semi–automatic system that generates patterns automatically from a manually
annotated corpus. Patterns in Hao et al. [2005] use POS tags and word lists to describe
observations at each position. From an annotated corpus, a pattern set is generated by
removing redundant patterns. Redundancy is defined by the existence of a more gen-
eral pattern that covers the same (or more) of the initial sentences. Hao et al. refine pat-
terns using the minimum description length (MDL) method. MDL compresses groups
of sentences by finding similar regions in the sentence and generalizing them (e.g., us-
ing regular expressions to describe the disjunction). MDL is given by the sum of the
description lengths of all patterns and the number of false positives and false negatives
the set produces. SPIES reduces a set of 192 initial patterns to only 14 merged patterns,
increasing the f–measure from 60 to 68% on the SPIES corpus, which accompanies the
system. Note, however, that this corpus contains only sentences that contain at least one
interaction, which both helps in generating minimal patterns as well as during their ap-
plication on the same kind of data. The approach we propose in Section 4.3 also starts
with an initial set of patterns, which is by far larger because it originates from a vastly
larger document collection (it is based on unannotated texts, an abundance of which
exists). Instead of removing redundant patterns, we combine similar patterns into con-
sensus patterns to express variability. Concerning alignment as a matching strategy,
adapting the principle of Occam’s razor [Thorburn, 1918], the best alignment is the one
with the least edit operations. Conery [2007] use MDL to realign DNA sequences. They
compare their results to a prediction by ClustalW, finding a disagreement of 38%, and
conclude that only a comparison with known alignments would determine which was
better.

Saric et al. [2006] hand–crafted two sets of rules, one for extracting gene expression
relations, the other for phosphorylation events. Such rules are derived from argument
structures of relevant predicates (e.g., ‘phosphorylated’ or ‘participates’), where argu-
ments can be filled by fixed words that also act as triggers. As an example, observing
the noun ‘phosphorylation’ in a sentence triggers all rules that allow for this noun as

108

5.4. Related Work

an argument of their predicate. A phosphorylation event then requires two more argu-
ments, namely two proteins, to be present in the same sentence. Saric et al. estimated
performance on a set of 6640 PubMed abstracts that discuss yeast and mention two
genes/proteins. For gene expression, the system achieves an accuracy of 83%, and for
phosphorylation, 95%. They obtained similar performances for three other species. An
f-measure of 44% was estimated by cross-checking 250 sentences.

Baumgartner et al. [2007] use a form of semantic parsing following the Direct Mem-
ory Access Parsing paradigm (DMAP; see Riesbeck, 1986). All major components com-
puting to the extraction of relations are performed in a single process and thus are
directly interdependent. The system builds on 67 rules that were manually created
together with domain experts. These rules resemble regular expressions and include
entity classes, fixed words, and conceptualized word categories. Such concepts refer
to pre-defined lists of words observed for a given position. In general, interaction-
indicating verbs are grouped by conjugation, the same holds for interaction nouns, and
some basic categories such as prepositions etc. Certain positions in each rule can be
expanded using a fixed grammar. For instance, single protein names in a pattern can
be expanded to a list of proteins (separated by commas or other conjunctions). Each
rule thus also captures sentences that include such enumerations. On the BioCreAtIvE
II IPS test set, this system achieved an f–measure of about 28%. OpenDMAP is backed
by concepts sorted in an ontology of default and problem specific word categories, and
can easily be maintained by the ontology editor Protégé. In our approach using con-
sensus pattern, we generate position-specific word lists, as defined by alignment; these
lists differ from position to position, as well as from pattern to pattern. As a future per-
spective, we may try to combine word lists observed in different patterns (e.g., when
they overlap to a certain extent in tokens, stems, and/or part-of-speech tags), and ex-
tend existing patterns with new word lists to make up for potential occurrences not
observed even in a large corpus.

5.4.5. Sentence parsing and graph kernels

Until recently, systems using linguistic parsing suffered from insufficient results from
underlying parses, as many sentences cannot be parsed unambiguously using current
techniques [Daraselia et al., 2004, Yakushiji et al., 2001, Friedman et al., 2001]. The
ARIZONA RELATIONAL PARSER was reported to reach very good precision and recall
values, but it required the creation of 1778 grammar rules and was evaluated on a very
small corpus only, without cross validation McDonald et al. [2004]. The PREBIND sys-
tem reached an f–measure around 90% for the task of predicting whether or not a a
sentence contains a protein-protein interaction, without actually extracting it [Donald-
son et al., 2003]. Fundel et al. [2007] use dependency parse trees to extract PPIs from
text, resolving local dependencies of recognized objects. This leads to an increase in
precision (exact dependency resolved, independent objects skipped) and also recall (de-
pendency of objects that are ‘far’ away in a sentence). They use three rules to extract
matching paths in the dependency tree; these rules reflect constructs commonly used
to expression PPIs: “effector–relation–effectee”, “relation–of–effectee–by–effector”, and

109

5. Applications and Evaluation

“relation–between–effector–and–effectee”. Fundel et al. [2007] evaluated the system on
the LLL’05 data set and achieved an f–measure of 72%.

Daraselia et al. [2004] employ a context-free grammar to parse sentences in their Med-
Scan system. As the syntactic parser yields a set of possible structures, they further
analyze each candidate and transform it into a semantic tree. This transformation uses
the identified predicate structure and prepositional patterns. MedScan then maps ar-
guments to an ontology, trying to fill slots in a predefined concept frame for protein
interactions. One set of frames corresponding to biomedical objects (proteins, cells),
the other to protein functions (regulation). Daraselia et al. thus searched for triplets
linking two proteins by a function. They extracted 2976 human protein-protein in-
teractions from a collection of ca. 3.5 million sentences (Medline after 1988); manual
cross-checking revealed a high precision of 91% at 21% recall. They also compared
their predictions to the DIP and BIND databases, and found that 96% of the data could
be considered new, as it appeared in neither one.

AKANE [Sætre et al., 2007] parses sentences with the Enju HPSG parser [Yakushiji,
2006]. It recognizes pairs of proteins and finds the smallest connected parse tree that
includes two proteins. The system builds on such partial trees and extracts them as
patterns from a training set (AImed or any other corpus). These patterns are then com-
pared to parse trees of arbitrary sentences, which are also reduced to smallest connected
parse trees covering two recognized proteins. On the AImed corpus, AKANE achieved
an f–measure of 42% (70% precision at 30% recall). On the BioCreAtIvE II IPS test set,
the f–score was 15.8% (equal precision and recall).

Jang et al. [2006] use the full sentence parse and analyze the path between (protein)
leaf nodes. In most of the cases, two proteins are connected via a noun phrase and
verb phrase (NP+VP: the first protein is in the noun phrase, the second protein occurs
as an object in the verb phrase), a noun phrase and a prepositional phrase (NP+PP),
or a conjugating conjunction (NP+CC+NP). Jang et al. search for these three patterns
in each sentence parse, and apply two additional templates to find interactions de-
scribed as is-a relations (“JAB is a regulator of JAK2 phosphorylation”) and adjectival
phrases (“CD38-associated Lck”), which are not covered with the three patterns. Us-
ing pre-defined lists of interaction-indicating verbs and nouns, the system decides on
interactions when these occur along the path connecting two proteins. To obtain the
syntactic structure of a sentence, Jang et al. use the Stanford parser with part-of-speech
tags from a Brill tagger trained on GENIA. On the BC1-PPI corpus, they achieve a pre-
cision of 81.3% at 42.7% recall (F1: 56.0%). Their system extracts 44% of the interactions
in the DIP-PPI corpus. Jang et al. also found that simplification of sentences by sub-
stituting named entities and noun phrases with single nouns, and removing bracketed
expressions boost the initial parsing performance by 12%.

Instead of full sentence parsing, Park et al. [2001] use shallow parse information in
their system to find functionally related proteins. Such parsers identify phrasal compo-
nents, finding noun and verbal phrases, and dependencies between adjacent phrases.
Starting with a search for interaction-indicating verbs, the system tries to identify ver-
bal phrases that include two proteins as noun phrases. Parsing is done with a combi-
natory categorial grammar parse (CCG) in both directions starting from the verb. Out

110

5.4. Related Work

of 250,000 abstracts discussing “cytokines”, the system identified 492 that have rele-
vant keywords, and extracted 182 relations from these sentences. On this set, manual
assessment showed a precision of 80% at 48% recall.

Another category of algorithms, only recently introduced, are convolution kernels,
also graph kernels. Convolution kernels essentially calculate the similarity between
parse trees. Tsochantaridis et al. [2005] presented one of the first implementations,
SVMstruct, that is able to predict structured output, such as trees or sequences4. For pre-
dicting sequence in named entity recognition, Tsochantaridis et al. [2005] were able to
demonstrate errors rates decreasing from 9.17% (HMM) and 5.17 (CRF) to 5.08 (struc-
tured SVM). For predicting parse trees, their structured SVM outperformed a proba-
bilistic context–free grammar parser (PCFG) by 2.5%, achieving an f–score of 88.5%.
However, such methods have not yet been largely studied for information extraction
tasks. Kim et al. [2008a] studied four different formulations of tree kernels. The best
performing kernel takes as features “walks” connecting two named entities in a parse
tree, using positive and negative examples. They achieve 77.5% on the LLL’05 data
and show that more complex formulations —such as a dependency kernel that takes
into account information on the types of linkages connecting two entities, which at first
looked more promising—, where outperformed by up to 17%.

Katrenko and Adriaans [2008] presented a local alignment kernel, based on the Smith-
Waterman algorithm Smith and Waterman [1981]. The later defines the distance be-
tween two sequences as the local alignment score resulting from their best alignment;
by summing up over the contributions of each possible alignment, Katrenko and Adri-
aans could derive a valid kernel. Of particular interest then is the definition of a sub-
stitution matrix. Katrenko and Adriaans compare different distributional smiliarity
measures, namely Dice, Cosine, and Euclidean (also cmp. Section 2.2.2 on page 26).
Experiments included the BC1-PPI and LLL’05 corpora (see Appendix A); the first was
parsed using the Stanford parsers, for the second, parse information comes with the
data set (Link parser). On LLL’05 data, the local alignment kernel using Dice or Cosine
achieves an F-measure of 80.5%, as compared to a baseline of 56%. Best results on the
BC1-PPI were achieved with the Euclidean distance metric, slightly outperforming the
other two metrices (78% F-measure, 10-fold cross-validation).

Miyao et al. [2009] compare various dependency and phrase structure parsers (MST,
KSDEP; Stanford, Berkeley, etc.) used as input for subset tree kernels Sætre et al. [2008],
Moschitti [2006]. They also evaluate the contributions of different representations, such
as predicate-argument-structure (PAS), Penn-treebank (PTB), or Co-NLL-X. On AIMed
data (protein-protein interactions), a hybrid approach combining Charniak & Johnson’s
reranking parser Charniak and Johnson [2005] with a PAS representation performed
best, with an F-score of 59.5%, as compared to a bag-of-words-baseline at 51.1% and
also outperforming approaches previously evaluated on the same data set. Another
interesting conclusion drawn by Miyao et al. [2009] is that a 1% improvement in parser
accuracy corresponded to a .25% increase in relationship extraction performance.

4See http://svmlight.joachims.org/svm_struct.html

111

5. Applications and Evaluation

5.4.6. Sentence alignment

Conery (2007; also see discussion of pattern-based approaches) propose a sequence
alignment strategy that divides (pairs of) sequences into variable regions, aligning
amino acids within these regions, but not across regions. Such a region can have vari-
able length and content in either of the sequences. The alignment at first is a sequence
of regions with high similarity instead of single letters. Conery uses the minimum
description length (MDL) principle on the encoding of blocks, where blocks with sim-
ilar letters require shorter encodings. In a single experiment, Conery compared their
predictions on aligning two sequences to ClustalW. He showed a discrepancy of 38%
between both predictions; further analysis would require a study involving a set of
known alignments.

Och and Ney [2000] compare different statistical alignment models for statistical ma-
chine translation. Among two fertility models [Brown et al., 1993] and four hidden
Markov models, a fertility model that models a jump distance for target words per-
forms best. These model the alignment probabilities p(i|i−1, I) and translation proba-
bility p(f |e) for target position i, target current target sequence I, and source and target
strings f and e, respectively. They find the Viterbi alignment (the alignment for the
maximum translation probability) using traditional dynamic programming. Och and
Ney also modeled the distance relative to the diagonal in the alignment matrix in a
diagonal-oriented HMM model, outperforming all other HMM models. In machine
translation, where source and target sentences usually are of equal length, this refers to
the main diagonal. In our approach of aligning (typically shorter) patterns with (typi-
cally longer) sentences, this technique may be adapted to allow for the diagonal to start
at any position within the longer of the two. Och and Ney conclude that using word
groups instead of single words could improve their method; for pattern/sentence align-
ment, this would mainly refer to noun phrases and other chunks (e.g., from a shallow
parse) mapping to single word nouns etc. In addition, Och and Ney argue that making
use of cognates could result in better alignments. We identify such groups of related
terms during the computation of consensus patterns in the token and word stem lay-
ers, although they include only single word terms, and make use of these groups during
application.

5.4.7. Learning patterns for information extraction

Hearst [1992] used six manually defined patterns to extract hypernym–hyponym pairs
from arbitrary text. These pattern consisted of fixed words, word lists, optional words,
punctuation, and shallow parse information (noun phrases). An example is the pattern

“NP0 such as {NP1, NP2, ..., (and|or)} NPn”,
where the NPi depict noun phrases, and the part in curly brackets is optional. A match-
ing sentence will have the hypernym as NP0, with its hyponyms NP1 through NPn.
Hearst also proposed a scheme to iteratively extend the sets of known patterns and
hypernyms/hyponyms. Starting from a small set, instances are extracted from a large
document collection. Other sentences that contain the same instances could then be

112

5.5. Conclusions

analyzed to extract new patterns; these could be applied to find more and different in-
stances, and so on. Hearst concluded that the only underdetermined part was to find
commonalities between new sentences, in order to extract precise enough patterns (and
exclude sentences that discuss instances coincidentally).

In a related approach, McCrae and Collier [2008] generated patterns to find domain-
specific synsets from literature, focusing on terms related to disease outbreaks. From
seed sets of high coverage patterns, they subsequently identify more precise patterns;
each predicted synonym relation is classified further using feature vectors depicting
matches with individual patterns and a score inherent to the pattern. Predicted synsets
were compared to a manually created epidemiology ontology (for infectious diseases
and outbreaks). The system achieves 73.2% precision at 29.7% recall for synsets that
map to concepts in this ontology, giving an estimate for the task of finding synsets.

5.5. Conclusions
Four main strategies for collecting patterns for information extraction exist. Apart from
manual pattern engineering (e.g., Hunter et al., 2008), automated methods have been
proposed that use manually labeled training samples (Hao et al.), bootstrapping from
very few labeled examples (e.g., Hearst, 1992), or do not require any labeled data (the
method proposed in this thesis). While no evaluation was done on the problem of
protein-protein interaction extraction for bootstrapping, experiments using the other
three methods suggest that their results are comparable to each other. It might also be
possible to use automatically generated patterns sets as input for manual refinement.
Subsequently relaxing the constraints for clustering and multiple sentence alignment
will result in different sets of concordances for positions across consensus patterns); this
helps linguists to grasp the underlying language and its variability (sentence structure,
interjections, cognates) to generalize/restrict the initially generated patterns further.

Approaches that include parse tree information, such as Kim et al. [2008b], currently
seem to outperform pattern-based approaches, although the later were the top systems
presented for BioCreative 2. This particular data set relies on input from previous tasks
such as NER and EMN, however, so the influence of relation extraction itself is hard
to estimate. Kabiljo et al. [2009] showed that excluding the problem of NER results
an performance increase of ca. 20%, independent of the underlying corpus (protein-
protein interactions). Regarding sentence parsing at input to information extraction,
Miyao et al. [2008] showed that most recent parser perform on par; and that an increase
of 1% in parsing performance corresponds to a 0.25% increase in relation extraction
performance (again for protein-protein interactions). A major advantage of parse trees
and other kinds of linkage structures is information on dependencies between objects.
In most kinds of relations, there exists a subject-object dependency conveyed in a sen-
tence, which is included in parse tree-based models, but which is missing in all current
pattern-based methods. Such dependencies mostly influence the precision of a method,
as it may discard objects that do not correlate to each other in an agent–target relation-
ship. Note that some protein-protein interactions, such as complex formation, cannot
be split into active and passive component. Methods using convolution kernels to com-

113

5. Applications and Evaluation

pare sentences based on their parse trees look particularly promising (but have not been
extensively studied), because they combine precisely structured information with the
advantage of machine learning. A disadvantage of parsing methods results from the
long time required for parsing large corpora. Approximately 20% of the sentences still
have incorrect parse trees [Clegg and Shepherd, 2007].

Experiments show that our current implementation of aligning patterns with sen-
tences is not suited for online computations, where time is essential. Processing the
IPS test data (70,000 sentences) takes in the order of 100h. After translating the set of
initial patterns into OpenDMAP grammar, parsing the same data with these patterns
requires less than 10 minutes. One reason for this difference is the quadratic complexity
just to obtain the alignment score; another the sequential processing of patterns. Pars-
ing with OpenDMAP, in contrast, is on average linear in the length of the sentences
(but has a quadratic worst-case complexity), plus it searches for all patterns in parallel,
as they are encoded in a finite state automaton, as discussed in Section 4.2.1. Runtime
may be reduced by pre-selection of patterns for each sentence or vice versa, for instance
by indexing patterns and sentences by the order of selected word categories. Just us-
ing POS tags for proteins and interaction-indicators, sentences that follow the structure
“PTN IVBD PTN” do not have to be compared to patterns with different structures, like
“INN PTN PTN”. However, as alignment is an inexact matching strategy, such index-
ing may reduce the recall rate of the overall pattern set. An improved implementation
of the method for alignment, which also includes parallel processing of distinct por-
tions of the data to be annotated, as well as an indexing strategy, resulted in a speed-up
of around 10,000 [Palaga and Leser, unpublished].

So far, none of the techniques based on alignment of sentences has been reported to
support groupings of words to be aligned, but work on single words only. Such group-
ings make sense in natural language processing, as they might refer to noun phrases,
reflected by few words in one and a single corresponding word in the other sentence.
Other examples are intermediate clauses, relative sentences, bracketed expressions, etc.
in one sentence that might not have any corresponding part in the other sentence. One
way to address this problem is to introduce dedicated functions for gap costs, making
gaps less cost-intensive when aligning two noun phrases of different length or aligning
a whole bracketed expression with a gap, and expensive when aligning only a part of a
bracketed expression with a gap. We have not addressed this problem in our work.

It is often enough to detect one occurrence of a fact in a text. Especially the basic facts
and main contributions of a publication get repeated quite often, and with different
levels of complexity. A repetition of a once established fact often occurs in a much
simpler form than the initial statement. This can in particular be observed by looking
at the complexity of such sentences when they occur in the abstract of a paper, the
main thrust, and the discussion with conclusions drawn. In the introductory parts of a
publications, long established facts get repeated in a much simpler and more condensed
way than in the original publication first to describe this fact.

114

6. Visualization of networks — AliBaba

In the previous chapters and sections, we discussed methods to pre-process text, rec-
ognize named entities, and finally find relationships between entities. We have imple-
mented all these components and combined them to act together as an overall system
for information extraction. Especially, we are interested in steps towards collection
wide analyses (also see Chapter 2, page 6). A typical application for a text mining sys-
tem in the biomedical domain would be to process the entire set of PubMed abstracts.
A component being able to map all extracted information, by means of linking together
identical entities referred to with different names, then becomes mandatory.

With ALIBABA1, we developed a tool to visualize information extracted from subsets
of PubMed [Plake et al., 2006]. In ALIBABA, users select a set of abstracts by keyword
queries. We use PubMed’s own information retrieval system, based on query expan-
sion, automated term mapping, and including Medical Subject Headings (MeSH) anno-
tations [Nahin, 2008], so the set of abstracts is identical to the one a user would receive
from the Entrez PubMed interface. Citations in PubMed are semi-automatically in-
dexed with ca. 40,000 MeSH terms, which is organized in a structured vocabulary; note
that indexing includes full-texts, so citations are also indexed with terms not necessar-
ily found in the freely available abstract. On this set of abstracts, ALIBABA, by means
described in Section 3.2, searches for entities of the classes

• protein/gene,
• disease,
• drug,
• species,
• tissue,
• cell type/cell line,and optionally
• enzyme,
• compound, and
• nutrient.

The dictionary-based approach to named entity recognition allows to get a list of can-
didate identifiers per entity mention, which helps mapping entities to a single instance
when authors used different names/spelling variations across texts. All IDs refer to
entries in databases such as UniProt (proteins), NCBI Taxonomy (species), DrugBank
(drugs), etc. ALIBABA then extracts relationships of the following kinds:

• protein-protein interactions,
• (sub)cellular location of proteins,

1Available at http://alibaba.informatik.hu–berlin.de

115

6. Visualization of networks — AliBaba

• proteins/genes discussed with drugs,
• proteins/genes discussed with species,
• proteins/genes discussed with tissues,
• relations between drugs and diseases,
• proteins/genes and diseases, and
• nutrients associated with proteins, diseases, or tissues.

For the first two kinds, protein-protein interactions and sub-cellular locations of pro-
teins, we employ a pattern-based approach, discussed in Chapter 4, using alignment
as matching strategy. We use the pattern set as described in the previous chapter for
protein-protein interactions, and a hand-crafted set of 22 patterns for sub-cellular loca-
tions. For all other kinds, we rely on co-occurrence of entities in sentences; relations
of the first two kinds are also ‘enriched’ using co-occurrence. We observed that for
most relations, co-occurrence gives a sufficiently high precision, as opposed to protein-
protein interactions, where many proteins are coincidentally mentioned. Each relation
gets assigned a confidence score; for alignment, this refers to the alignment quality, as
defined in Definition 4.2 on page 81; for co-occurrences, we measure the number of
words between two entities, and normalize it with the number of entities of the same
kind in between. Users can thus decide to view only the most confident relations.

ALIBABA displays the extracted information in three ways. A graph consisting of all
entities as nodes and (binary) relations as edges summarizes the information found in
the whole collection. A sorted list of entities allows for quick searches. These two are
backed with a display of the original texts, with inline markup of entities and relations.
Figure 6.1 shows an example summarizing 20 abstracts returned for the query “gene
cause of parkinson”.

As ALIBABA caches the results for each query (abstracts with annotations, recognized
entities and relations), it becomes possible to extend PubMed’s information retrieval. A
first step is to allow queries for entity IDs instead of entity names. Users thus do not
have to write large queries that contain known synonyms for the entities they want to
search for. ALIBABA currently supports queries that include UniProt IDs; each such ID
gets i) looked up in the cache to pre-select corresponding abstracts, and ii) expanded
according to our own synonym list to relieve the user of this task and then sent to
PubMed to retrieve additional abstracts. Note that for queries that include keywords
and UniProt IDs, ALIBABA currently retrieves abstracts from PubMed only, rewriting
the query by replacing UniProt IDs with lists of synonyms. As an example, the query
“Q14790” gets expanded to (“Caspase-8 precursor” OR “EC 3.4.22.61” OR CASP-8 OR
MACH OR “FADD-like ICE” OR FLICE OR “Apoptotic protease Mch-5” OR CAP4
OR CASP8 OR MCH5), where originally PubMed users themselves had to provide the
extended synonym list, resulting in a more complete set of abstracts discussing this
protein.

The overall system architecture of ALIBABA is shown in Figure 6.2. The major com-
ponents are the user interface (upper left), sending queries to the server (lower right).
The server routes the query to PubMed (upper right) to obtain PubMed IDs. If the
corresponding abstracts are not yet in the local repository (lower left), they are fetched

116

6.1. Case studies

Figure 6.1.: Query for “gene cause of parkinson” in ALIBABA. Shown is only the core
graph that includes the node for Parkinson’s disease (blue border). Nodes
with a red border are directly connected to Parkinson’s disease, all others
have at least one intermediary step. The upper right shows a list of all
proteins connected to Parkinson’s, according to the information found in 20
abstracts. The lower right shows the evidence for each relations, with links
to the original texts and a link from each entity to a corresponding database
for detailed information (middle right).

from PubMed. The server also handles the processing of text if annotations are not yet
in the local cache. The processing falls into ‘basic’ natural language processing, named
entity recognition, and relation extraction. NER includes word sense disambiguation
(using SVM models, see Schiemann et al. [2008]). The server sends all annotated ab-
stracts back to the client, which handles the parsing of annotations from XML and puts
together the resulting graph.

6.1. Case studies

In this section we demonstrate how to use ALI BABA to find answers for questions
typical to biomedical and related research. Such questions may refer to the formation
of protein complexes, the regulation of gene expression, signaling cascades, metabolic
pathways, or genetic linkage of diseases. Clinicians might seek for explanations of

117

6. Visualization of networks — AliBaba

Figure 6.2.: System architecture and workflow in ALIBABA.

symptoms or for new therapies and drugs for diseases.
We chose the following case studies and show how to handle them ALI BABA:

• What are the risk factors of treating G6PD-deficient malaria patients with pri-
maquine?
• Which proteins are involved in the activation or recognition mechanism for PmrD?
• Given the Wnt signaling pathway from KEGG, how can it be extended using the

latest findings on the relevant protein dickkopf discussed in the literature?

What are the risk factors of treating G6PD-deficient malaria patients with
primaquine?

Figure 6.3 shows the resulting graph for the PubMed query “primaquine malaria g6pd
deficiency”. The graph shows a connection between G6PD (deficiency), vivax malaria
(patients), and their treatment with primaquine. The risk factors hemolytic anemia/hemolysis
and methemoglobinemia are directly connected to G6PD and primaquine. Other nodes in
the graph present more information on studied populations, the viral origin, infected
cells, and information on the disease. Each object recognized by ALI BABA is linked
to an appropriate external resource or database. In the upper part of the Text view,
objects selected in either the graph or tree are shown by name and by all synonyms

118

6.1. Case studies

Figure 6.3.: AliBaba graph for query “primaquine malaria g6pd deficiency”.

encountered in the abstracts. A mouse click on one of the names opens the database
entry page for this particular object in the web browser. We select the node primaquine
and click on its name, appearing as a link in the Text view, which brings us to its
entry page in DrugBank, a comprehensive database that combines drug data and drug
target information. We follow the same procedure for the protein G6PD and the disease
hemolytic anemia, which opens the UniProt/SwissProt page and the entry page from the
Medical Subject Headings of the National Library of Medicine, respectively. The three
pages together with the network and annotated texts in ALI BABA offer a lot of back-
ground information on this particular question. ALI BABA can thus serve as a starting
point for information retrieval in biology and biomedicine.

Which proteins are involved in the activation or recognition mechanism for
PmrD?

To find an answer we first have to translate this question into the PubMed query lan-
guage. In this case, we formulate the query as “PmrD (activation OR recognition)” and
enter it into ALI BABA’s query field located at the top of the application window. This
results in a graph of nodes (representing entities) in different colors connected by edges
(representing interactions and other associations) displayed on the large main panel –
the Graph view (Figure 6.4). Pressing the F9 key or the Play/Pause button on the

119

6. Visualization of networks — AliBaba

bottom of the application window toggles the animation of the graph on or off.
In the upper right hand panel (Objects) all entities are shown as a tree, sorted by

their categories (protein, drug); each category has its unique color that is used through-
out the ALI BABA application – proteins in green, diseases in pink, cells in light blue,
tissues in orange, drugs in brown, and species are colored in blue. The number in brack-
ets next to each category name tells us how many instances of this category were found
in the PubMed result. A left click with the mouse on the node for PmrD in the graph
also opens this protein in the tree and shows the different categories its direct neighbors
in the graph belong to: proteins, drugs, species etc. These categories contain objects that
are related to PmrD. In the lower right panel, all sentences from the PubMed abstracts
that mention protein PmrD are shown in the Text view. Opening a category below
PmrD in the tree and clicking on one of the objects listed shows all sentences from the
abstracts that are evidence for a relation between this object and PmrD. The same effect
can be seen when clicking on the edge between the two objects in the graph.

Proteins related to PmrD are PhoP, PhoQ, ugd, PmrA, and PmrB2. Reading the text
snippets we can quickly verify that each of the proteins is indeed involved in either
activation or recognition of PmrD or closely related to it. Figure 6.4 shows all proteins
found in the texts. The selected node PmrD is highlighted with a blue and its direct
neighbor nodes with a red border showing the answer to the question also graphically.

Extending the Wnt signaling pathway

The Wnt signaling pathway is a complex network of proteins well known for their roles
in embryogenesis and cancer, but also involved in normal physiological processes in
adult animals Lie et al. [2005]. To load the pathway for the first time, we open the File
menu and select Update KEGG files. After the update process is complete we go
to the File menu again and select Open KEGG file. In the next dialog, all available
pathways are shown. The list is downloaded directly from the KEGG server and is
therefore always up-to-date. Note that the list needs to be downloaded only once or
when significant changes KEGG are expected. Selecting, for instance, the Wnt signal-
ing pathway, will display the corresponding graph. KEGG pathways have a distinct
layout that helps to get a better overview on the network. To view the pathway in its
original presentation as known from KEGG, we open the View menu and choose the
Coordinates layout.

Figure 6.5 shows the resulting Wnt signaling pathway of protein interactions. One
of the proteins involved is Dickkopf, which functions as an inhibitor of the Wnt signal-
ing pathway. The literature contains many references to this protein. From January to
March 2008 about 30 articles have been published already that mention Dickkopf or one
of its synonyms. To append a graph for Dickkopf from the literature to the Wnt signaling
pathway from KEGG, we enable the option Append queries from the Preferences
menu and then enter the query “dickkopf”. The result is shown in Figure 6.6. The ap-
pended graph does not come with distinct layout and is thus just scrambled around the
upper left of the pathway, but we can see clearly many new relations for protein Dick-
kopf and other proteins from the pathway. Furthermore, textual evidences are added

120

6.1. Case studies

Figure 6.4.: Result for the PubMed query ”PmrD (activation OR recognition)” as shown
by ALI BABA. The selected node PmrD is framed in blue and all its direct
neighbors in red.

to some of the pathway proteins and relations as they were found in the abstracts.
This can be repeated with other queries to PubMed, though the resulting network will
quickly become too complex to oversee. For such cases, users may either use the var-
ious Display filter options, or simply go to the View menu and switch to Tree
View only, which hides the graph and shows only the tree (that contains the same
information as the graph) and the texts.

121

6. Visualization of networks — AliBaba

Figure 6.5.: Wnt signaling pathway loaded into ALI BABA and presented using the orig-
inal KEGG layout.

122

6.1. Case studies

Figure 6.6.: Graph from the literature query “dickkopf” appended to the Wnt signaling
pathway. Most of these appended texts discuss entities (upper left) related
to dickkopf and catenin beta-1, as indicated by the large number of edges
towards either protein. Textual evidence for such relations can be viewed
in the right panel, after selecting an entity node from the graph.

123

7. Summary and Outlook

7.1. Summary

In this thesis, we presented our approaches to a number of tasks in biomedical text min-
ing, with the ultimate goal to extract relationships between entities from text. Biomedi-
cal text mining is concerned with searching for pieces of information in large text collec-
tions, summarizing them, allowing for collection-wide analyses, and help extract facts
for further analysis. The numbers of entities, relationships, and (sub-)networks present
in the literature dwarf information currently present in databases: compare the size of
IntAct (May 2008), with less than 30,000 protein-protein interactions verified in small-
scale experiments, to the number of almost 270,000 interactions contained in PubMed
abstracts estimated by Donaldson et al. [2003], where interactions in abstracts mostly
refer to small-scale experiments (but also include duplicate mentions, which decreases
the total amount and increases reliability). This motivates the need to make them ac-
cessible despite their unstructured natural language representation, to researchers and
database curators.

We presented goals, typical approaches, and challenges for each of the main building
blocks in biomedical text mining. The building blocks in our overall approach fall into
four categories: i) ‘Basic’ natural language processing components that handle tasks
such as sentence splitting and part-of-speech tagging. ii) Named entity recognition
finds mentions of biomedical entities (proteins, diseases) in text; focusing on recogni-
tion of protein names. iii) Extraction of relations between entities, focusing on finding
protein-protein interactions. iv) We combined the approaches into a tool for visualiza-
tion of networks extracted from the literature, ALIBABA, as a first step in collection-
wide analysis.

Both NER and relation extraction draw from output of the first component, namely
POS tags. We use the TnT part-of-speech tagger to analyze text [Brants, 2000], and
implemented methods for sentence splitting and tokenization. We developed two ap-
proaches for NER. The first transforms the NER task into a classification problem, deriv-
ing features from tokens and context windows; we use an SVM as classifier and add a
post-expansion phase to find multi-word terms [Hakenberg et al., 2005a]. Our second
approach to NER builds on dictionaries; starting from initial lexica drawn from databases
specific to each particular class of entity, we developed a method for term expansion
and generation of spelling variations. These variations are then encoded in a finite state
automaton, provided by Monq [Kirsch et al., 2005]. We use the later approach for the
nine entity types recognized by ALIBABA, as the main advantage of dictionary-based
approaches is their ability to instantly provide candidate identifiers for each mention
found. For relation mining, our approaches build on pattern-matching; we developed

125

7. Summary and Outlook

two main methods, the first building on patterns generated from a small training set and op-
timized using a genetic algorithm. The second approach is split into two phases. We make
use of information on relations in a database (in this case, IntAct for protein-protein
interactions) and map them to a large text collection (PubMed abstracts). This step
requires NER and entity mention normalization (EMN) and finds candidate sentences
that potentially discuss the sought relation [Hakenberg et al., 2006]. These automatically
labeled data can feed into subsequent methods to generate patterns. After filtering
likely false positive sentences (mere coincidental mention of entities), we build a pair-
wise alignment library (PAL) to identify similar sentences. We transform this PAL into
a guide list for clustering sentences by similarity. On each such cluster, we perform
multiple sentence alignment, which identifies the commonalities of the sentences, repre-
sented in consensus patterns. Finally, we align these consensus pattern with new text to
recognize instances of the relations encoded in the patterns [Hakenberg et al., 2008b,a].

We compare our approaches for NER and relation mining with methods presented
by others. It shows that the most successful methods for named entity recognition
currently build on sequential learning, conditional random fields the most prominent
representative. Hsu et al. [2008] currently achieve an f–measure of 88.3% on the BioCre-
ative 2 GM data, while our dictionary-based approach yields 73.1%. However, our
approach implicitly handles the mapping of mention to identifiers, which allows us
to use it as a building block in automatically collecting large training samples. While
other approaches (using pattern-matching) for relation mining build on hand-crafted
patterns or learn patterns from manually labeled data, we combine the collection of a
training sample with an approach to learn patterns. On the BioCreative 2 IPS data, the
current best system achieves 30.4% in f–measure, and our own approach yields 24.2%.
On the SPIES corpus, these two systems result in of 68.2% and 63.9% f–measure, re-
spectively. We see advantages for our own methodology when training samples do not
exist, which is still the case for most kinds of relations of biomedical entities. However,
it remains to be seen if methods like the one presented by Hsu et al. or Hunter et al.
[2008] can draw from the collection of training samples we propose.

7.2. Contribution

The focus of this thesis is the extraction of interactions between proteins from text.
As our main contribution, we present a method to automatically extract and refine
sets of language patterns from unannotated data. We introduce the idea of multiple
sentence alignment to find commonalities between similar patterns and express these
in consensus patterns. As alignment strategy, we propose multi–layer alignment that
takes into account not only part–of–speech tags (as other systems do), but also includes
tokens and word stems to ensure precision.

As a prerequisite for subsequent components, we first introduce two methods for
named entity recognition, focusing on protein and gene names (Chapter 3.) One is
based on a model learned from training data and solves the general problem; the other
works with a pre–defined dictionary and is useful when lists of named entities are

126

7.3. Future directions

known beforehand. The later approach also implicitly helps in solving the problem of
mapping recognized entities to database identifiers, which is necessary for our subse-
quent components. We presented an approach for gene mention normalization, which
is currently the best performing on the four BioCreative benchmarks, and extended it
to the problem of inter-species gene mention normalization, a task for which no other
methods have been proposed.

We apply sentence alignment as an inexact matching strategy to compute the simi-
larity between two sentences. Most work shown previously transforms patterns into
regular expressions for matching, resulting in binary decisions rather than quantitative
measures.

We show a method to extract language patterns from unannotated data. Systems pro-
posed previously were based on hand–crafted pattern sets or needed annotated data to
extract patterns. As these initial patterns do not generalize well, we present a method
to refine sets of language patterns to allow for larger coverage. We therefore intro-
duce a clustering method based on sentence similarity. We introduce multiple sentence
alignment (MSA) to find commonalities between groups of similar sentences. Such
commonalities can then be expressed in consensus patterns. Using MSA, we are able
to determine the fourth step in Hearst’s (1992) methodology of pattern induction by
repeatedly searching for instances of relations and generating new patterns from these.

To improve both ability to generalize and render more precise a set of patterns,
we present an adapted implementation of alignment. We take into account not only
a single type of information (such as amino acids for protein sequences, or part–of–
speech tags for sentences), but incorporate multiple annotation layers (these are, part–
of–speech tags, tokens, and word stems). On one hand, this method together with
MSA increases the recall of patterns by drawing from multiple observations in a train-
ing sample. Precision is increased by restricting matches, as opposed to wild-cards or
too general annotations such as POS tags only, but allowing for partial deviations, for
instance in the token layer. Alignment as an inexact matching strategy allows —by
setting thresholds on positional and overall scores and influencing the weight of indi-
vidual layers— to tune our method to specific tasks.

7.3. Future directions

As natural language parsers become more and more reliable, a logical consequence is
building a system based on sentence parsing rather than mere part-of-speech tagging.
For initial parsing to get the phrase structure of a sentence, systems presented by Lease
and Charniak [2005] and Bikel [2002] currently yield the best results (80.2 and 79.4% f–
score for constituent trees), as evaluated by Clegg and Shepherd [2007] on the GENIA
treebank. de Marneffe et al. [2006] proposed a method to generate dependency graphs
from sentence parses. Both combinations yield an f–score for dependency graphs of
77.0% [Clegg and Shepherd, 2007]. Sætre et al. [2007] parse sentences with the Enju
HPSG Yakushiji [2006] and finds the smallest connected parse tree that includes two
interacting proteins. The system builds on patterns extracted from a training set, which

127

7. Summary and Outlook

has to be manually annotated for PPIs. Our method for collecting such sets might
function as an input to a similar approach.

Tsochantaridis et al. [2005] and Kim et al. [2008a] presented kernel methods for struc-
tured input and output. While Tsochantaridis et al. apply their method to parse sen-
tences and achieve and improvement over a probabilistic context-free grammar parser,
Kim et al. predict relationships based on features drawn from parse tree information.
The later system slightly outperforms an approach that builds on patterns over parse
trees [Fundel et al., 2007]. Research in this direction is still ongoing, and more theoreti-
cal foundations and applications can be expected in the near future.

A useful extension of our method might be to compute profile hidden Markov mod-
els (Profile HMMs) to explain patterns in multiple sequence alignments [Eddy, 1998].
Such a method complements standard pairwise comparison methods, providing an-
other approach for inexact matching by transforming the problem of matching into a
sequence classification. In addition, profile HMMs output the probability of a sequence
to match the given model (an MSA).

A logical extension of our approach to increase the speed of pattern alignment is the
indexing of patterns to pre-select patterns. While the computation of a pattern set can
occur offline, alignment as matching strategy is too complex to handle large sets of pat-
terns on large text collections at runtime. Indexing may map patterns (and sentences)
to a generalized sequence, for instance, restricting a pattern to fixed data types, such as
POS tags for interaction-indicating words, named entities, and prepositions. An ongo-
ing study led to an improvement in time performance by a factor of >10,000 (Palaga
and Leser, data not shown). Sun et al. [2007b] pre-filter sentences by classification,
grouping them into sentences that likely discuss a protein-protein interaction or not.
When large enough training samples are available, an extension of this method could
treat each pattern (or groups of patterns) as a category of its own, using the support
of a pattern in the training sample, and classifying new sentences using these multiple
labels.

Future text mining systems may also draw from efforts such as the BioCreative Meta-
Service (BCMS; Leitner et al., 2008). BCMS is a framework to combine methods for
the various sub-tasks in text mining, such as NER or EMN. Currently, BCMS gov-
erns twelve originally independent systems, all presented and evaluated in BioCreative
2007, and joins the predictions made by either tool into a single representation1. While
in the past, building a text mining system for sophisticated analyses meant to first build
each of the necessary sub-components from scratch (although some off-the-shelf solu-
tions exist), it is now possible to use such services —taking advantage of the joint and
thus oftentimes better predictions— for feeding into larger projects.

We are currently working on adopting our methodology to the extraction of other
(protein-centered) types of associations. The overall approach already allows to swap
the input we use to collect a labeled sample from protein-protein interaction databases
to databases storing any other kinds of tuples. Many of these databases provide ref-
erences for each entry to PubMed articles, potentially improving the accuracy of the

1See http://bcms.bioinfo.cnio.es

128

7.3. Future directions

method to find initial sentences, as such referenced articles are more likely not to con-
tain mere coincidental mentions. On the other hand, exploiting references narrows
down the size of the input significantly. Initial studies showed that entity mention nor-
malization becomes easier for some other types of entities (especially diseases, drugs
and species). The first adaptation of our approach thus works on data from the Genetic
Association Database (GAD, Becker et al. [2004]) to find associations between genes,
drugs, and diseases (data not shown). Another source for the same kinds of relations
is the Therapeutic Target Database (TTD, Chen et al. [2002]). Both include references to
the literature and/or paraphrased summaries that can be used to extract initial patterns
and, more importantly, function as a gold standard for evaluation.

Now that sufficiently well performing tools for extracting relations from literature
become available, next tasks include the extraction of attributes and background infor-
mation on each such relation [Krallinger et al., 2007]. For protein-protein interactions,
users are interested in experimental conditions (which species, which cell line) and lab-
oratory methods used for detection (Y2H, CoIP), see, for instance, Schmeier [2005].

As the analysis of large collections such as PubMed —roughly 10 million abstracts
and 2.5 million open–access full–texts— leads to an abundance of extracted informa-
tion, it becomes more and more important to find means to point users to significant
facts. Reporting an association between the tumor suppressor protein “p53” and any
type of neoplasms will hardly surprise any researcher. Still, text mining systems cannot
afford ignore such highly repeated facts, because users will grow suspicious when such
“basic facts” are missing. Golden nuggets might hide in hardly noted publications, or
where information retrieval using keyword queries fails. Yet, information discussed
in only a few abstracts might not always be correct, despite peer-review processes, and
such errors might accumulate in significant amounts, as Krauthammer et al. [2002] have
observed. Approaches for prioritization [of gene lists] have been discussed recently [Yu
et al., 2008, Gonzalez et al., 2007], which may be used to rank extracted knowledge.
In addition to verification, knowledge integration presents another challenge resulting
from the availability of large amounts of automatically extracted data.

129

A. Data sets

A.1. Corpora

In this section, we provide information on the corpora used in our studies to evalu-
ate the performance of named entity recognition and relationship extraction, as well
as related corpora. A comparative analysis of five often-used corpora was presented
by Pyysalo et al. [2008].

BioCreative 1, Task 1A — NER of gene names
Size: 15,000 sentences in three fixed parts for training, testing during develop-
ment, and evaluation;
Split: training set contains 7500, development test set 2500, evaluation set 5000
sentences;
Annotations: ca. 55% sentences that contain at least one gene name; inline as
POS-tags;
Note: Training and development test set used for the GM task in BioCreative 2 as
well;
Reference: Yeh et al. [2005];
URL: http://biocreative.sourceforge.net

BioCreative 2, IPS — protein-protein interaction extraction
Size/split: 740 full text articles for training, 358 for test;
Annotations: stand-off on a per-document level, given as UniProt ID pairs;
Note: task includes NER, EMN, relevance ranking;
Reference: Krallinger et al. [2007];
URL: http://biocreative.sourceforge.net

SPIES — protein-protein interaction extraction
Size: 893 sentences, no fixed split into training/test;
Annotations: 1550 protein-protein interactions, no negative sentences, stand-off;
Reference: Hao et al. [2005];
URL: http://spies.cs.tsinghua.edu.cn — offline as of May 2008

LLL’05 — genic interaction extraction
Size/split: 55 sentences as training data, 87 as test;
Annotations: 103/52 interactions in training/test; stand-off; includes coreference
information;
Reference: Nédellec [2005]
URL: http://genome.jouy.inra.fr/texte/LLLchallenge/

IEPA — protein-protein interactions
Size: 400 abstracts;

131

A. Data sets

Annotations: stand-off, at least one interaction per abstract;
Reference: Berleant et al. [2003]
URL: http://class.ee.iastate.edu/berleant/home/me/cv/papers/
corpuspropertiesstart.htm

DIPPPI — protein-protein interaction extraction
Size: 170 full-text articles in ASCII format
Annotations: 297 interactions for 165 articles; stand-off;
URL: http://www2.informatik.hu-berlin.de/˜hakenber/corpora

BC1-PPI — protein-protein interactions
Size: 1000 sentences;
Annotations: 255 interactions in 173 sentences; stand-off;
Note: derived from BioCreative 1 task 1A data, additional annotations for PPIs
Reference: Plake et al. [2005]
URL: http://www2.informatik.hu-berlin.de/˜hakenber/corpora

BioInfer — protein-protein interactions
Size: 836 abstracts, no fixed split into training/test;
Annotations: 2531 interactions in 1100 sentences;
Reference: Pyysalo et al. [2007]
URL: http://mars.cs.utu.fi/BioInfer

CGDCP — Cancer Gene Data Curation Project Size: various;
Entity types: genes, diseases, drug compound;
Relations: gene-disease and gene-drug compound; in two different data sets;
Annotations: plain text, stand-off (same file), negations
Note: comes in multiple phases, starting with a set of 1000 genes that have a
moderate citation count (less than 1000 sentences in Medline), and ranging to a
set that covers 4658 genes total;
URL: http://ncicb.nci.nih.gov/NCICB/projects/cgdcp

REmerge — Merging Relation Extraction resources This project aims at providing a
common format for annotating entities and relations; multiple corpora have al-
ready been converted or are about to be converted into this format (LLL’05, HPRD50,
BC1PPI, AIMed, BioInfer, GeneReg, GENIA, IEPA);
Annotations: currently focused on molecular interactions; XML, stand-off;
URL: http://remerge.wikidot.com

132

A.2. Databases and terminologies

A.2. Databases and terminologies

In the following, we provide information on databases (such as IntAct for protein-
protein interactions) and terminologies (such as the Gene Ontology) that were used
in our experiments.

DIP — Database of Interacting Proteins
As a member of the IMEX Consortium (International Molecular Exchange), DIP
adheres to standards shared by other similar databases; also, DIP cooperates with
other protein-protein interaction databases (IntAct, MINT, etc.) to not curate re-
dundant data.
Size: 57,683 interactions involving 20,728 proteins, taken from 65k experiments
(Oct 2009);
Reference: Xenarios et al. [2001]
URL: http://dip.doe-mbi.ucla.edu

Entrez Gene — Database of genes from RefSeq genomes
Entrez Gene curates information on genes, including sequence, taxa, names and
synonyms, chromosomal location, Gene Ontology annotations, gene products,
functional descriptions found in PubMed abstracts (GeneRIFs), interactions, path-
ways, etc.
Size: 5,784,479 genes from 6584 taxa (Oct 2009); among those, 45,301 are human
genes and loci;
URL: http://www.ncbi.nlm.nih.gov/sites/entrez/?db=gene

Gene Ontology — Standardization of gene and gene product annotations
The Gene Ontology (GO) is a collaborative effort to standardize descriptions of
genes and gene products. GO is organized as an ontology, divided into the major
categories: biological process, molecular function, and cellular component. Each con-
cept contains a specific term, synonyms, definition, and further description, as
well as links to related concepts. The actual annotation of genes and gene prod-
ucts is available via the AmiGO! project, and annotations are also curated in gene-
and protein-centered databases such as EntrezGene and UniProt.
Size: GO contains 28,594 terms (17.5k for biological process, 8.6k for molecular
function, 2.5k for cellular component; Oct 2009); currently, 376,451 gene products
are annotated with GO terms;
Reference: Ashburner et al. [2000]
URL: http://www.geneontology.org

IntAct — Protein-protein interaction database
As a member of the IMEX Consortium (International Molecular Exchange), IntAct
adheres to standards shared by other similar databases; also, IntAct cooperates
with other protein-protein interaction databases (MINT, DIP, etc.) to not curate
redundant data.
Size: 201,652 binary interactions involving 60k proteins, taken from 11k experi-
ments (Oct 2009).
Reference: Hermjakob et al. [2004]

133

A. Data sets

URL: http://www.ebi.ac.uk/intact
NCBI Taxonomy — Species organized in a taxonomic structure

The NCBI Taxonomy organizes taxa in a structured way, depicting the lineage
from kingdoms to higher taxa, genus, species, and lower taxa. It also stores in-
formation on names and synonyms, and names used in common English, other
languages, and colloquially.
Size: in total, there are 346,615 taxa organized in the taxonomy, relating to 212k
species (Oct 2009);
URL: http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy

UniProt — Protein sequence and functional information
UniProt provides a wealth of sequence and functional annotations of proteins.
Two parts of the UniProt knowledge base are available: Swiss-Prot, maintained
by UniProt personnel, containing manually curated data; and TrEMBL, a pub-
lic submission stage for automatic curation, which contains proteins and anno-
tations that yet have to be verfied, curated, and possibly merged with SwissProt
data. Thus, SwissProt can be considered the high-quality part in the UniProtKB.
Annotations in UniProt include sequence and sequence features, isoforms, names
and synonyms, Gene Ontology annotations, interactions, SNPs, domains, homol-
ogy, associations with diseases, tissue specificity, catalytic activity, enzymatic re-
actions, encoding genes, among many others.
Size: UniProt/Swiss-Prot has 510,076 sequence entries; TrEMBL has 9,501,907 se-
quence entries (Oct 2009).
Reference: Bairoch et al. [2005]
URL: http://www.uniprot.org

134

A.3. Interaction-indicating words

A.3. Interaction-indicating words

In the language patterns and alignment algorithms, we use markup for certain words
that indicate interactions between proteins. Note that the same words also might refer
to interactions between all other types of molecules. These lists, presented in Table A.1
through 3, originated from a collection by Temkin and Gilder [2003], as well as a set
used by Huang et al. [2004]. During our studies, we expanded them to 95 nouns, 129
verbs, and eight adjectives. The overall lists contain all conjugations for verbs, numbers
for nouns, and adjectives with or without a trailing hyphen (“-mediated”). Hatzivas-
siloglou and Weng [2002] showed how to learn anchor verbs for biological interactions
from scratch.

abolishment catalyzator down-regulator mono-ubiquitination replacement
abrogation cluster effect multi-ubiquitination repression
acceleration complex elevation mutation repressor
accelerator complexes expansion obstruction requirement
acceptor conjugation exposion participation sequestration
accumulation control formation phosphorylation stabilization
acetylation conversion inactivation poly-ubiquitination stimulation
activation deconjugation increase precipitation stimulator
activator deconjugator induction production substitution
activity degradation influence promotion sumoylation
addition demethylation inhibition promotor suppression
affection dephosphorylation inhibitor proteolysis suppressor
amplification depletion interaction reaction synthesis
assembly destabilization interactor receptor transacetylation
association destruction mediation recognition transactivation
attachment detachment methylation recruitment transcription
augmentation disassembly modification reduction ubiquitination
binding disruption modifier regulation up-regulation
bond down-regulation modulation regulator up-regulator

Table A.1.: Nouns that typically indicate interactions between proteins (and/or other
molecules); shown are only the singular forms.

-dependent -mediated inhibitory regulatory
-derived -induced -reactive stimulatory

Table A.2.: Adjectives that typically indicate interactions between proteins (and/or
other molecules).

135

A. Data sets

abolish comprise encompass link repress
abrogate conjugate enhance localize require
absorb consist evoke mediate respond
accelerate contact exhibit methylate restrict
accept contain express modify severe
accumulate control form modulate stabilize
acetylate deacetylate fuse mono-ubiquitinate stain
activate deconjugate hasten multi-ubiquitinate stimulate
add decrease immunoblot overexpress substitute
affect degrade immunoprecipitate participate sumoylate
amplify demethylate immunoreact phosphorylate suppress
anchor depend impair poly-ubiquitinate synthesize
antagonize dephosphorylate inactivate potentiate target
arrest deplete incite precipitate tether
assemble derive include prevent transacetylate
assist destabilize increase produce transactivate
associate destruct induce promote transcribe
attach detach infect react transduce
augment dimerize influence recognize transfer
bind direct inhibit recruit transform
block disassemble initiate reduce treat
break discharge inject regulate trigger
catalyze disrupt interact relate ubiquitinate
cleave down-regulate interfere remove up-regulate
co-immunoprecipitate elevate interplay repair yield
coinfect encode ligate replace

Table A.3.: Verbs that typically indicate interactions between proteins (and/or other
molecules); shown are infinitive forms only.

136

A.4. Part-of-speech tags

A.4. Part-of-speech tags

Brown tag CIS tag Description Example
CC cnj:K coordinating conjunction and
CD adj:4 cardinal number 1, third
DT det determiner the
FW xinc foreign word d’hoevre
IN prep preposition/subordinating conjunction in, of, like
JJ adj:b adjective green
JJR adj:c adjective, comparative greener
JJS adj:s adjective, superlative greenest
MD v:D:h modal could, will
NN n:e noun, singular or mass table
NNS n:m noun plural tables
NNP en proper noun, singular John
NNPS en:m proper noun, plural Vikings
PDT cnj predeterminer both the boys
PRP pron:q personal pronoun I, he, it
PRP$ det:o possessive pronoun my, his
RB adv adverb however, usually, here, good
RBR adv:c adverb, comparative better
RBS adv:s adverb, superlative best
TO infp to to go, to him
UH intj interjection uhhuhhuhh
VB v:I verb, base form take
VBD v:V verb, past tense took
VBG v:C verb, gerund/present participle taking
VBN v:P verb, past participle taken
VBP v:G verb, sing. present, non-3d take
VBZ v:G3e verb, 3rd person sing. present takes
WDT det:w wh-determiner which
WP pron:w wh-pronoun who, what
WP$ pron:w possessive wh-pronoun whose
WRB adv:w wh-abverb where, when
PTN protein name FADD, tumor necrosis factor α
IVB*, INN*, IJJ* interaction-indicating words binds, attachment, -mediated

Table A.4.: List of part-of-speech tags, in Brown notation as used throughout this the-
sis. In some related projects, we use the CIS notation (in which abbrevi-
ations originate from German words, thus ‘n:m’ refers to nouns in plural
[‘Mehrzahl’]).

137

A. Data sets

A.5. Substitution matrix for part-of-speech tags

Figures A.1 and A.2 show the substitution matrix used in our experiments, split into
two parts for readability. The cost of aligning a determiner (DT) with a gap (‘-’) is
very small, as determiners can be removed/inserted without affected the meaning of a
sentence much. Skipping a protein, however, often completely changes the meaning, so
this assigned a high penalty (-10). Shifts in verb tense (VBZ↔VBD) slightly reduce the
score (1 instead of 2). In the same manner, placement of prepositions is not arbitrary.
Certain prepositions make sense (this also means, keeping the meaning of a pattern)
only at certain positions within patterns. While the preposition in the pattern ‘PROTEIN
binds to PROTEIN’ can also be replaced by ‘with’, the preposition in ‘activation of A by
B’ cannot be exchanged with ‘and’. Usually, altering or skipping of prepositions has an
effect of the meaning of a sentence (e.g., in passive forms: ‘A is phosphorylated by B’
versus ‘A phosphorylated B’ — note that here, the auxiliary verb is also missing).

138

A.5. Substitution matrix for part-of-speech tags

Figure A.1.: Substitution matrix used in our experiments for substituting POS tags dur-
ing alignment; first half.

139

A. Data sets

Figure A.2.: Substitution matrix used in our experiments for substituting POS tags dur-
ing alignment; second half.

140

B. Algorithms

B.1. Hidden Markov Models

Hidden Markov Models (HMMs) were introduced in the section on sequence learning,
see page 29. Here, we present algorithms to solve the scoring, decoding, and estimation
problems, respectively. First order hidden Markov models are fully described using:

• a finite set of states: Q = {qi},
• an output alphabet: V = {vi},
• start probabilities of being in state qi at time t=0: Π = {πi},
• transition probabilities: A = {aij}

A = {aij | aij = P(qt+1 = j|qt = i)},

• emission probabilities: B = {bj(k)}

B = {bj(k) | bj(k) = P(vk at t|qt = j)}

There are three key problems for hidden Markov models that need to be solved. In
the scoring problem, the probability of the observed sequence given a model (also called
evaluation problem) is computed. To compute the probability of an observed sequence,
O, being emitted by a model M, we have to sum over all possible state sequences:

P(O|M) = ∑
q1,..,ql∈Ql

l+1

∏
t=1

at,t+1 · bj(Ok), (B.1)

where q1, .., ql is the state sequence from 1 to l, and ql+1 is the end state. This problem
is solved using the Forward-Backward algorithm (see later in this section).

The decoding problem involves the computation of a state sequence that best explains
an observed sequence given a model (also called alignment problem). To recover the state
sequence S that has the highest probability to produce the observed output, we have to
solve

V(O|M) = argmax
q1,..,ql∈Ql

l+1

∏
t=1

at,t+1 · bj(Ok), (B.2)

This is computed using the Viterbi algorithm (see later).
Finally, the estimation problem deals with adjusting the parameters in a model to max-

imize the probability for the observed sequence (also called training problem). Expecta-
tion maximization algorithms, Baum-Welch, or Viterbi solve this problem.

141

B. Algorithms

Forward-backward and Baum-Welch

The direct approach for calculating the probability of an observation sequence given a
model would be a simple enumeration of all state sequences having the same length.
This would require, however, O(N ∗ TN) (where T = |O| is the number of observations
l and N = |Q| the number of states in the model). The Forward-backward algorithm
solves this problem in O(N2 ∗ T) using a dynamic programming approach [Rabiner,
1989].

Forward-backward introduces a forward variable, αt(i), that stores the probability of
observing the partial sequence O1, .., Ot and being in state i at step t (t≤T). Recursively,
Forward-backward computes the αt(j) for every partial observation sequence and all
states j.

Forward-Backward

1. Initialization:α1(i) = πibi(O1), 1≤ i≤N
2. Recursion:for t = 1,..,T−1, 1≤ j≤N:

αt+1(j) =

[
N

∑
i=1

αt(i)αij

]
bj(Ot+1)

3. Termination:P(O|M) =
N

∑
i=1

αT(i)

Based on the Forward-backward procedure, Baum-Welch re-estimates the HMM pa-
rameter values Π, A, and B in an additional step [Baum et al., 1970]. It calculates the
frequency of each transition/emission pair. Divided by the overall probability of the
given sequences, this results in new expected values for each transition/emission pair.
The probability to be in state qi at time t is

γt(i) =P(it = qi|O, M) (B.3)
=αt(i)βt(i) / P(O|M), (B.4)

and the probability to be in state qi and make a transition to state qj from time t to time
t+1 is

ξt(i, j) =P(it = qi, it+1 = qj) (B.5)

=αt(i)aijβt+1(j)bj(Ot+1) / P(O|M) (B.6)

142

B.1. Hidden Markov Models

To re-estimate Π, A, and B, we use the Baum-Welch formulas

Π′ ={πi = γ1(i), 1 ≤ i ≤N } (B.7)

A′ ={ ai,j =
T−1

∑
t=1

ξt(i, j) /
T−1

∑
t=1

γt(i) } (B.8)

B′ ={ bj(k) =
T

∑
t=1, Ot=k

γt(j) /
T

∑
t=1

γt(j) } (B.9)

As an example, let us consider a set of multiple sequences, for which we search the
best model (parameters) to explain all sequences. We can see the evaluation problem
also as a scoring problem. Given one model, we score each sequence by computing its
respective probability to have been generated by the model. This results in an overall
likelihood for all sequences to originate from the given model. Among all scorings, we
pick the model that best explains all sequences.

Expectation maximization
In Expectation maximization (EM) is a general framework for a group of related al-
gorithms. In a parameterized probabilistic model, EM solves the problem of finding
maximum likelihood estimates for all parameters. This is achieved by alternating be-
tween two steps. (i) The expectation step (E) estimates the respective expected values of
the latent variables. (ii) The maximization step (M) calculates the maximum likelihood
estimates of all parameters (according to some training data), satisfying the expected
values of the latent variables. The next E step then uses the parameters from the M step,
which again computes an expectation of the likelihoods.

For a probability model p, the parameters are given in a vector Θ : p(y, x|Θ). Expec-
tation maximization starts with an initial estimate for Θ, Θ0. Each new estimation is
derived using

Θn+1 = argmax
Θ

Q(Θ), (B.10)

where the expectation Q(Θ) is

Q(Θ) = ∑
x

p(x, y|Θn) log p(y, x|Θ). (B.11)

Apart from estimating parameters for hidden Markov models, EM is applied to solve
a variety of other problems, for example unsupervised learning (clustering) [Mak et al.,
2004] or fitting mixture density models [Aitkin and Rubin, 1985]. The Baum-Welch
algorithm is one special case of expectation maximization.

143

B. Algorithms

Viterbi
In contrast to Forward-Backward, the Viterbi algorithm calculates the most likely path
in a model, together with its probability [Viterbi, 1967]. That is, is determines the align-
ment of a sequence with the model.

Viterbi

1. Initialization:δ1(i) = πibi(O1), 1≤ i≤N
ψ1(i) = 0

2. Recursion:for t=2,..,T, 1≤ j≤N:
δt(j) = max

1≤i≤N

[
δt−1(i)aij

]
bj(Ot)

ψt(j) = argmax
1≤i≤N

[
δt−1(i)aij

]
3. Termination:P(O|M) =

N

∑
i=1

αT(i)

4. Backtracking:P(O|M) =
N

∑
i=1

αT(i)

Viterbi typically is used to solve the training problem, that is, to estimate the param-
eters of a model so that it best explains a set of given sequences, called training data.
Solving this problem is important for most applications of hidden Markov models.

The algorithmic complexity for training and applying hidden Markov models is the
same for both Baum-Welch and Viterbi algorithms. The worst-case time complexity is
O(NM2), and storage complexity is O(NM) (where N is the length of the sequence
and M is the number of states in the HMM). More storage efficient implementations
of HMMs have been proposed that need only O(M) or O(M1.5), respectively [Hughey
and Krogh, 1996, Tarnas and Hughey, 1998].

144

Abbreviations

ASO alternating structure optimization
BC BioCreAtIvE
CCG combinatory categorial grammar
CP consensus pattern
CRF conditional random field
CWA collection–wide analysis
EM expectation maximization
EMN entity mention normalization
FSA finite state automaton
HMM hidden Markov model
IDF inverse document frequency
IE information extraction
IR information retrieval
KD knowledge discovery
kNN k-nearest neighbor
MSA multiple sequence/sentence alignment
NEI named entity identification
NER named entity recognition
NLP natural language processing
POS part–of–speech (tag)
PPI protein–protein interaction
RBF radial basis function
SMO sequential minimal optimization
SVM support vector machine
TF term frequency
UMLS Unified Medical Language System
UPGMA unweighted pair–group methods using the arithmetic average
WSD word sense disambiguation
WSJ Wall Street Journal (̃ corpus)
Y2H yeast two-hybrid (̃ screen,˜experiment)

145

Bibliography

M. Aitkin and D. B. Rubin. Estimation and hypothesis testing in finite mixture models.
Journal of the Royal Statistical Society B, 47(1):67–75, 1985.

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:
821–837, 1964.

Russ B. Altman and Teri E. Klein. Challenges for biomedical informatics and phar-
macogenomics. Annual Review of Pharmacology and Toxicology, 42:113–133, 2002. doi:
10.1146/annurev.pharmtox.42.082401.140850.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. J. Mol. Biol., 215(3):403–10, 1990.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Res., 25:3389–3402, 1997.

Rie Kubota Ando. Biocreative ii gene mention tagging system at ibm watson. In Proc
2nd BioCreative Challenge Evaluation Workshop, pages 101–103, 2007.

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Mi-
dori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis,
John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin
Sherlock. Gene ontology: Tool for the unification of biology. Nature Genetics, 25:
25–29, 2000.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.

Amos Bairoch, Rolf Apweiler, Cathy H. Wu, Winona C. Barker, Brigitte Boeckmann,
Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez, Michele Ma-
grane, Maria J. Martin, Darren A. Natale, Claire O’Donovan, Nicole Redaschi, and
Lai-Su L. Yeh. The universal protein resource (uniprot). Nucleic Acids Res., 33
(Database issue):D154–D159, Jan 2005.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. Annals of the
Mathematical Statistics, 41:164–171, 1970.

147

Bibliography

William A. Baumgartner, Zhiyong Lu, Helen L. Johnson, J. Gregory Caporaso, Jesse Pa-
quette, Anna Lindemann, Elizabeth K. White, Olga Medvedeva, K. Bretonnel Cohen,
and Lawrence Hunter. An integrated approach to concept recognition in biomedical
text. In Proc 2nd BioCreative Challenge Evaluation Workshop, pages 257–271, 2007.

Kevin G. Becker, Kathleen C. Barnes, Tiffany J. Bright, and Alex Wang. The genetic
association database. Nature Genetics, 36:431–432, 2004.

D. A. Benson, M. S. Boguski, D. J. Lipman, J. Ostell, and B. F. Ouellette. Genbank.
Nucleic Acids Res., 26:1–7, 1998.

Daniel Berleant, Jing Ding, and Andy W. Fulmer. Corpus properties of protein interac-
tion descriptions in medline. unpublished, 2003.

Daniel M. Bikel. Design of a multi-lingual, parallel-processing statistical parsing en-
gine. In Proc Human Language Technology Conference 2002 (HLT2002), San Diego, 2002.

Mikhail V. Blagosklonny and Arthur B. Pardee. Unearthing the gems. Nature, 416:373,
2002.

Christian Blaschke and Alfonso Valencia. The frame-based module of the suiseki infor-
mation extraction system. IEEE Intelligent Systems, 17:14–20, 2002.

Christian Blaschke, Eduardo Andres Leon, Martin Krallinger, and Alfonso Valencia.
Evaluation of biocreative assessment of task 2. BMC Bioinformatics, 6(Suppl. 1):S16,
2005.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,
Alex J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels.
In Proc. Int. Conf. on Intelligent Systems for Molecular Biology, ISMB, Detroit, USA, 2005.

Tewis Bouwmeester, Angela Bauch, Heinz Ruffner, Pierre-Olivier Angrand, Giovanna
Bergamini, Karen Croughton, Cristina Cruciat, Dirk Eberhard, Julien Gagneur, Sonja
Ghidelli, Carsten Hopf, Bettina Huhse, Raffaella Mangano, Anne-Marie Michon,
Markus Schirle, Judith Schlegl, Markus Schwab, Martin A. Stein, Andreas Bauer,
Georg Casari, Gerard Drewes, Anne-Claude Gavin, David B. Jackson, Gerard Joberty,
Gitte Neubauer, Jens Rick, Bernhard Kuster, and Giulio Superti-Furga. A physical
and functional map of the human tnf-alpha/nf-kappab signal transduction pathway.
Nat Cell Biol, 6(2):97–105, 2004.

Thorsten Brants. Tnt – a statistical part-of-speech tagger. In Proc. Conf. on Applied Natu-
ral Language Processing, ANLP, Seattle, USA, 2000.

Eric Brill. A simple rule-based part of speech tagger. In Proc. Conf. on Applied Natural
Language Processing, ANLP, pages 152–155, Trento, Italy, 1992.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263–311, 1993.

148

Bibliography

Razvan Bunescu, Raymond Mooney, Arun Ramani, and Edward Marcotte. Integrat-
ing co-occurrence statistics with information extraction for robust retrieval of protein
interactions from medline. In ACL Workshop, 2006.

Evelyn Camon, Michele Magrane, Daniel Barrell, Vivian Lee, Emily Dimmer, John
Maslen, David Binns, Nicola Harte, Rodrigo Lopez, and Rolf Apweiler. The gene
ontology annotation (goa) database: sharing knowledge in uniprot with gene ontol-
ogy. Nucleic Acids Res., 32(Database issue):D262–D266, Jan 1 2004.

Evelyn B. Camon, Daniel G. Barrell, Emily C. Dimmer, Vivian Lee, Michele Magranea,
John Maslen, David Binns, and Rolf Apweiler. An evaluation of go annotation re-
trieval for biocreative and goa. BMC Bioinformatics, 6(Suppl 1):S17, 2005.

Jeffrey T. Chang, Hinrich Schütze, and Russ B. Altman. Gapscore: finding gene and
protein names one word at a time. Bioinformatics, 20(2):216–225, 2004.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent dis-
criminative reranking. In Proc ACL, pages 173–180, Ann Arbor, USA, June 2005.

Andrew Chatr-aryamontri, Arnaud Ceol, Luisa Montecchi Palazzi, Maria Victo-
ria Schneider Giuliano Nardelli, Luisa Castagnoli, and Gianni Cesareni. Mint: the
molecular interaction database. Nucleic Acids Research, 35(Database issue):D572–
D574, 2007. doi: 10.1093/nar/gkl950.

J. Chen, R. Chau, and C. Yeh. Discovering parallel text from the world wide web. In Proc
ACM Workshop on Australasian Information Security, Data Mining and Web Intelligence,
and Software Internationalisation, pages 157–161, 2004.

Kuang-Hua Chen and Hsin-Hsi Chen. A probabilistic chunker. In ROCLING-93, 1993.

Lifeng Chen, Hongfang Liu, and Carol Friedman. Gene name ambiguity of eukaryotic
nomenclatures. Bioinformatics, 21:248–256, 2005.

Xin Chen, Zhiliang Ji, and Yuzong Z. Chen. Ttd: Therapeutic target database. Nucleic
Acids Res., 30(1):412–415, 2002.

Yizong Cheng and George M. Church. Biclustering of expression data. In Proc. Int. Conf.
on Intelligent Systems for Molecular Biology, ISMB, pages San Diego, USA, 2000.

J. M. Cherry. Genetic nomenclature guide. saccharomyces cerevisiae. Trends in Genetics,
pages 11–12, 1995.

Andrew B. Clegg and Adrian J. Shepherd. Benchmarking natural-language parsers for
biological applications using dependency graphs. BMC Bioinformatics, 8:24, 2007. doi:
10.1186/1471-2105-8-24.

Michael Collins. Discriminative reranking for natural language parsing. In ICML, pages
175–182, Standford, USA, 2000. Morgan Kaufmann, San Francisco, CA.

149

Bibliography

John S. Conery. Aligning sequences by minimum description length. EURASIP Journal
on Bioinformatics and Systems Biology, 2007. doi: 10.1155/2007/72936.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

Nikolai Daraselia, Anton Yuryev, Sergej Egorov, Svetlana Novichkova, Alexander
Nikitin, and Ilya Mazo. Extracting human protein interactions from medline using a
full-sentence parser. Bioinformatics, 20(5):604–611, 2004.

Marie-Catherine de Marneffe, Bill MacCartney, , and Christopher D. Manning. Gener-
ating typed dependency parses from phrase structure parses. In Proc LREC, pages
449–454, Genoa, Italy, 2006.

Charlotte M. Deane, Łukasz Salwinski, Ioannis Xenarios, and David Eisenberg. Protein
interactions. Molecular & Cellular Proteomics, 1:349–356, 2002.

Jing Ding, Daniel Berleant, Dan Nettleton, and Eve S. Wurtele. Mining medline: Ab-
stracts, sentences, or phrases? In Proc. Pac. Symp. Biocomput., PSB, pages 326–337,
Kaua’i, Hawaii, USA, Jan. 3-7 2002.

Ian Donaldson, Joel Martin, Berry de Bruijn, Cheryl Wolting, Vicki Lay, Brigitte Tuekam,
Shudong Zhang, Berivan Baskin, Gary D. Bader, Katerina Michalickova, Tony Paw-
son, and Christopher W.V. Hogue. Prebind and textomy – mining the biomedical
literature for protein-protein interactions using a support vector machine. BMC Bioin-
formatics, 4:11, 2003.

Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.

J.T. Eppig, C.J. Bult, J.A. Kadin, J.E. Richardson, J.A. Blake, A. Anagnostopoulos, R.M.
Baldarelli, M. Baya, J.S. Beal, S.M. Bello, W.J. Boddy, D.W. Bradt, D.L. Burkart, N.E.
Butler, J. Campbell, M.A. Cassell, L.E. Corbani, S.L. Cousins, D.J. Dahmen, H. Dene,
A.D. Diehl, H.J. Drabkin, K.S. Frazer, P. Frost, L.H. Glass, C.W. Goldsmith, P.L. Grant,
M. Lennon-Pierce, J. Lewis, I. Lu, L.J. Maltais, M. McAndrews-Hill, L. McClellan, D.B.
Miers, L.A. Miller, L. Ni, J.E. Ormsby, D. Qi, T.B. Reddy, D.J. Reed, B. Richards-Smith,
D.R. Shaw, R. Sinclair, C.L. Smith, P. Szauter, M.B. Walker, D.O. Walton, L.L. Wash-
burn, T.T. Witham, and Y. Zhu; Mouse Genome Database Group. The mouse genome
database (mgd): from genes to mice–a community resource for mouse biology. Nu-
cleic Acids Res., 33(Database issue):D471–D475, 2005.

T.A. Eyre, F. Ducluzeau, T.P. Sneddon, S. Povey, E.A. Bruford, and M.J. Lush. The hugo
gene nomenclature database, 2006 updates. Nucleic Acids Res., 34(Database issue):
D319–D321, 2006.

Jenny Finkel, Shipra Dingare, Huy Nguyen, Malvina Nissim, Gail Sinclair, and Christo-
pher D. Manning. Exploiting context for biomedical named entity recognition: From
syntax to the web. In Proc. Joint Workshop on Natural Language Processing in Biomedicine
and its Applications, JNLPBA, pages 88–91, 2004.

150

Bibliography

W. Nelson Francis. A standard sample of present-day english for use with digital com-
puters. Report to the U.S. Office of Education on Cooperative Research Project, No. E-007,
1964.

Kristofer Franzén, Gunnar Eriksson, Fredrik Olsson, Lars Asker, Per Lidén, and Joakim
Cöster. Protein names and how to find them. International Journal of Medical Informat-
ics, 67(1-3):49–61, Dec 2002.

Carol Friedman, Pauline Kra, Hong Yu, Michael Krauthammer, and Andrey Rzhetsky.
Genies: A natural-language processing system for the extraction of molecular path-
ways from biomedical texts. Bioinformatics, 17(Suppl. 1):S74–82, 2001.

Christoph M. Friedrich, Thomas Revillion, Martin Hofmann, and Juliane Fluck.
Biomedical and chemical named entity recognition with conditional random fields:
The advantage of dictionary features. In Proc. Int. Symp. on Semantic Mining in
Biomedicine, SMBM, pages 85–88, Jena, Germany, April 9-12 2006.

Ken’ichiro Fukuda, Tatsuhiko Tsunoda, Ayuchi Tamura, and Toshihisa Takagi. Toward
information extraction: Identifying protein names from biological papers. In Proceed-
ings of the Pacific Symposium on Biocomputing, pages 705–716, 1998.

Katrin Fundel and Ralf Zimmer. Gene and protein nomenclature in public databases.
BMC Bioinformatics, 7(7):372, 2006. doi: 10.1186/1471-2105-7-372.

Katrin Fundel, Daniel Güttler, Ralf Zimmer, and Joannis Apostolakis. A simple ap-
proach for protein name identification: prospects and limits. BMC Bioinformatics, 6
(Suppl 1):S15, 2005. 10.1186/1471-2105-6-S1-S15.

Katrin Fundel, Robert Küffner, and Ralf Zimmer. Relex—relation extraction us-
ing dependency parse trees. Bioinformatics, 23(3):365–371, 2007. doi: 10.1093/
bioinformatics/btl616.

R. Gaizauskas, G. Demetriou, P. J. Artymiuk, and P. Willett. Protein structures and
information extraction from biological texts: The pasta system. Bioinformatics, 19(1):
135–143, 2003.

W. Gale, K. Church, and D. Yarowsky. One sense per discourse. In Proc. DARPA Speech
and Natural Language Workshop, pages 233–237, 1992.

Sylvain Gaudan, Harald Kirsch, and Dietrich Rebholz-Schuhmann. Resolving abbrevi-
ations to their senses in medline. Bioinformatics, 21(18):3658–3664, 2005.

Gene Ontology Consortium. The gene ontology (go) project in 2006. Nucleic Acids Res.,
34:D322–D326, 2006.

L. Giot, J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y.L. Hao, C.E. Ooi,
B. Godwin, E. Vitols, G. Vijayadamodar, P. Pochart, H. Machineni, M. Welsh, Y. Kong,
B. Zerhusen, R. Malcolm, Z. Varrone, A. Collis, M. Minto, S. Burgess, L. McDaniel,

151

Bibliography

E. Stimpson, F. Spriggs, J. Williams, K. Neurath, N. Ioime, M. Agee, E. Voss, K. Fur-
tak, R. Renzulli, N. Aanensen, S. Carrolla, E. Bickelhaupt, Y. Lazovatsky, A. DaSilva,
J. Zhong, C.A. Stanyon, Jr. R.L. Finley, K.P. White, M. Braverman, T. Jarvie, S. Gold,
M. Leach, J. Knight, R.A. Shimkets, M.P. McKenna, J. Chant, and J.M. Rothberg. A
protein interaction map of drosophila melanogaster. Science, 302(5651):1727–1736,
Dec 3 2003.

Graciela Gonzalez, Juan C Uribe, Luis Tari, Colleen Brophy, and Chitta Baral. Mining
gene-disease relationships from biomedical literature: weighting protein-protein in-
teractions and connectivity measures. Pacific Symposium on Biocomputing. Pacific Sym-
posium on Biocomputing, pages 28–39, 2007. ISSN 1793-5091. doi: 17992743. PMID:
17992743.

R. Gould. Multiple correspondence. Mechanical Translation, 4(1/2):14–27, 1957.

B.B. Greene and G.M. Rubin. Automatic grammatical tagging of english. Technical
report, Department of Linguistics, Brown University, Providence, RI, 1981.

Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir N. Vapnik. Gene selec-
tion for cancer classification using support vector machines. Machine Learning, 46
(1-3):389–422, 2002.

Udo Hahn and Joachim Wermter. Levels of natural language processing for text mining.
In Sophia Ananiadou and John McNaught, editors, Text Mining in Biology. Artech
House Books, 2006.

Jörg Hakenberg, Steffen Bickel, Conrad Plake, Ulf Brefeld, Hagen Zahn, Lukas
Faulstich, Ulf Leser, and Tobias Scheffer. Systematic feature evaluation for gene name
recognition. BMC Bioinformatics, 6(Suppl 1):S9, 2005a.

Jörg Hakenberg, Conrad Plake, Ulf Leser, Harald Kirsch, and Dietrich Rebholz-
Schuhmann. Lll’05 challenge: Genic interaction extraction with alignments and fi-
nite state automata. In Proc Learning Language in Logic Workshop (LLL05) at the 22nd
Int Conf on Machine Learning, Bonn, Germany, August 2005b.

Jörg Hakenberg, Ulf Leser, Harald Kirsch, and Dietrich Rebholz-Schuhmann. Collect-
ing a large corpus from all of medline. In Proc. Int. Symp. on Semantic Mining in
Biomedicine, SMBM, pages 89–92, Jena, Germany, April 9-12 2006.

Jörg Hakenberg, Loic Royer, Conrad Plake, Hendrik Strobelt, and Michael Schroeder.
Me and my friends: gene mention normalization with background knowledge. In
Lynette Hirschman, Martin Krallinger, and Alfonso Valencia, editors, Proc 2nd BioCre-
ative Challenge Evaluation Workshop, pages 141–144, Madrid, Spain, April 23-25 2007.

152

Bibliography

Jörg Hakenberg, Conrad Plake, Robert Leaman, Michael Schroeder, and Graciela Gon-
zalez. Inter–species normalization of gene mentions with gnat. Bioinformatics, 24,
September 2008a. doi: 10.1093/bioinformatics/btn299. To appear.

Jörg Hakenberg, Conrad Plake, Loic Royer, Hendrik Strobelt, Ulf Leser, and Michael
Schroeder. Gene mention normalization and interaction extraction with context mod-
els and sentence motifs. Genome Biology, 9(S2):S14, 2008b.

Daniel Hanisch, Juliane Fluck, Heinz Theodor Mevissen, and Ralf Zimmer. Playing bi-
ology’s namen game: Identifying protein names in scientific text. In Russ B. Altman,
A. K. Dunker, Lawrence Hunter, T. A. Jung, and T. E. Klein, editors, Proc Pac Symp
Biocomput, pages 403–414, 2003.

Daniel Hanisch, Katrin Fundel, Heinz Theodor Mevissen, Ralf Zimmer, and Juliane
Fluck. Prominer: Organism-specific protein name detection using approximate string
matching. In BioCreAtIvE Workshop, Granada, Spain, March 2004.

Daniel Hanisch, Katrin Fundel, Heinz Theodor Mevissen, Ralf Zimmer, and Juliane
Fluck. Prominer: rule-based protein and gene entity recognition. BMC Bioinformatics,
6(Suppl 1):S14, 2005.

Yu Hao, Xiaoyan Zhu, Minlie Huang, and Ming Li. Discovering patterns to extract
protein-protein interactions from the literature: Part ii. Bioinformatics, 21(15):3294–
3300, 2005.

Kenneth E. Harper. Semantic ambiguity. Mechanical Translation, 4(3):68–69, 1957a.

Kenneth E. Harper. Contextual analysis. Mechanical Translation, 4(3):70–75, 1957b.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical
Association, 67(337):123–129, 1972.

Vasileios Hatzivassiloglou and Wubin Weng. Learning anchor verbs for biological in-
teraction patterns from published text articles. Int. J. Med. Inform., 67:19–32, 2002.

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proc.
COLING, pages 539–545, Nantes, August 23–28 1992.

S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci., PNAS, 89:10915–10919, 1992.

Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington, Sugath Mudali,
Samuel Kerrien, Sandra Orchard, Martin Vingron, Bernd Roechert, Peter Roepstorff,
Alfonso Valencia, Hanah Margalit, John Armstrong, Amos Bairoch, Gianni Cesareni,
David Sherman, and Rolf Apweiler. Intact: an open source molecular interaction
database. Nucleic Acids Res., 32(Database issue):D452–D455, 2004.

M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study on itera-
tive algorithms of multiple sequence alignment. Comput Appl Biosci, 11:13–18, 1995.

153

Bibliography

Lynette Hirschman, Marc Colosimo, Alexander Morgan, and Alexander Yeh. Overview
of biocreative task 1b: normalized gene lists. BMC Bioinformatics, 6(Suppl 1):S11,
2005. doi: 10.1186/1471-2105-6-S1-S11.

Yuen Ho, Albrecht Gruhler, Adrian Heilbut, Gary D. Bader, Lynda Moore, Sally-Lin
Adams, Anna Millar, Paul Taylor, Keiryn Bennett, Kelly Boutilier, Lingyun Yang,
Cheryl Wolting, Ian Donaldson, Søren Schandorff, Juanita Shewnarane, Mai Vo,
Joanne Taggart, Marilyn Goudreault, Brenda Muskat, Cris Alfarano, Danielle Dewar,
Zhen Lin, Katerina Michalickova, Andrew R. Willems, Holly Sassi, Peter A. Nielsen,
Karina J. Rasmussen, Jens R. Andersen, Lene E. Johansen, Lykke H. Hansen, Hans
Jespersen, Alexandre Podtelejnikov, Eva Nielsen, Janne Crawford, Vibeke Poulsen,
Birgitte D. Sørensen, Jesper Matthiesen, Ronald C. Hendrickson, Frank Gleeson,
Tony Pawson, Michael F. Moran, Daniel Durocher, Matthias Mann, Christopher W.V.
Hogue, Daniel Figeys, and Mike Tyers. Systematic identification of protein com-
plexes in saccharomyces cerevisiae by mass spectrometry. Nature, 415:180–183, 2002.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, Mass., 2 edition, 2001.

Chun-Nan Hsu, Yu-Ming Chang, Cheng-Ju Kuo, Yu-Shi Lin, Han-Shen Huang, and I-
Fang Chuang. Integrating high dimensional bi-directional parsing models for gene
mention tagging. In Proc ISMB, Toronto, Canada, 2008.

Minlie Huang. Note on learning substitution matrices, 2004. Personal communication.

Minlie Huang, Xiaoyan Zhu, Yu Hao, Donald G. Payan, Kunbin Qu, and Ming Li. Dis-
covering patterns to extract protein-protein interactions from full texts. Bioinformatics,
20(18):3604–3612, 2004.

Minlie Huang, Shilin Ding, Hongning Wang, and Xiaoyan Zhu. Mining physical
protein-protein interactions by exploiting abundant features. In Lynette Hirschman,
Martin Krallinger, and Alfonso Valencia, editors, Proc 2nd BioCreative Challenge Eval-
uation Workshop, pages 237–245, 2007.

R. Hughey and A. Krogh. Hidden markov models for sequence analysis: Extension
and analysis of the basic method. Comput. Applic. Biosci., 12:95–107, 1996.

Lawrence Hunter, Zhiyong Lu, James Firby, William A. Baumgartner Jr, Helen L. John-
son, Philip V. Ogren, and K. Bretonnel Cohen. Opendmap: An open source, ontology-
driven concept analysis engine, with applications to capturing knowledge regarding
protein transport, protein interactions and cell-type-specific gene expression. BMC
Bioinformatics, 9:78, 2008. doi: 10.1186/1471-2105-9-78.

L. Issel-Tarver, K.R. Christie, K. Dolinski, R. Andrada, R. Balakrishnan, C.A. Ball,
G. Binkley, S. Dong, S.S. Dwight, D.G. Fisk, M. Harris, M. Schroeder, A. Sethura-
man, K. Tse, S. Weng, D. Botstein, and J.M. Cherry. Saccharomyces genome database.
Methods Enzymol, 350:329–346, 2002.

154

Bibliography

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys (CSUR), 31(3):264–323, 1999.

Hyunchul Jang, Jaesoo Lim, Joon-Ho Lim, Soo-Jun Park, Kyu-Chul Lee, and Seon-Hee
Park. Finding the evidence for protein-protein interactions from pubmed abstracts.
Bioinformatics, 22(14):e220–e226, 2006. doi: 10.1093/bioinformatics/btl203.

Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,
2003.

T K Jenssen, A Laegreid, J Komorowski, and E Hovig. A literature network of human
genes for high-throughput analysis of gene expression. Nat Genet, 28(1):21–28, May
2001. doi: 10.1038/88213.

Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proc. ECML. Springer, 1998.

Thorsten Joachims. Learning to align sequences: A maximum-margin approach. Tech-
nical report, Department of Computer Science Cornell University, August 28 2003.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28:11—21, 1972.

Susan Jones and Janet M. Thornton. Principles of protein-protein interactions. Proc Natl
Acad Sci, 93(1):13–20, January 9 1996.

Renata Kabiljo, Andrew B. Clegg, and Adrian J. Shepherd. A realistic assessment of
methods for extracting gene/protein interactions from free text. BMC Bioinformatics,
2009. To appear.

Kyo Kageura. The Dynamics of Terminology – A descriptive theory of term formation and
terminological growth. John Benjamins Publishing Company, Amsterdam, 2002.

Thomas Kappeler, Kaarel Kaljurand, and Fabio Rinaldi. Tx task: Automatic detec-
tion of focus organisms in biomedical publications. In Proceedings of the BioNLP 2009
Workshop, pages 80–88, Boulder, Colorado, June 2009. Association for Computational
Linguistics.

Sophia Katrenko and Pieter Adriaans. A local alignment kernel in the context of nlp. In
Proc COLING, 2008.

Samuel Kerrien. Intact — serving the text–mining community with high quality molec-
ular interaction data. In 2nd BioCreative Challenge Evaluation Workshop, 2007.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. Genia corpus - a seman-
tically annotated corpus for bio-textmining. Bioinformatics, 19(Suppl. 1):i180–i182,
2003.

155

Bibliography

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka Tateisi, and Nigel Collier. In-
troduction to the bio-entity task at jnlpba. In Proc. Joint Workshop on Natural Language
Processing in Biomedicine and its Applications, JNLPBA, pages 70–75, 2004.

Seonho Kim, Juntae Yoon, and Jihoon Yang. Kernel approaches for genic interaction
extraction. Bioinformatics, 24(1):118–126, 2008a. doi: 10.1093/bioinformatics/btm544.

Sun Kim, Soo-Yong Shin, In-Hee Lee, Soo-Jin Kim, Ram Sriram, and Byoung-Tak
Zhang. Pie: an online prediction system for protein-protein interactions from text.
Nucleic Acids Res, 2008b. doi: 10.1093/nar/gkn281.

Shuhei Kinoshita, K. Bretonnel Cohen, Philip V. Ogren, and Lawrence Hunter. Biocre-
ative task1a: entity identification with a stochastic tagger. BMC Bioinformatics, 6
(Suppl 1):S4, 2005.

Harald Kirsch and Dietrich Rebholz-Schuhmann. Method used for biocreative task 1a.
In Proc. BioCreAtIvE Workshop, Granada, Spain, March 2004.

Harald Kirsch, Sylvain Gaudan, and Dietrich Rebholz-Schuhmann. Distributed mod-
ules for text annotation and ie applied to the biomedical domain. Int. J. Med. Inform.,
75:496–500, 2005.

Kiroaki Kitano. Systems biology: A brief overview. Science, 295:1662–1664, 2002.

J. Kivinen, M.K. Warmuth, and P. Auer. The perceptron algorithm vs. winnow: Linear
vs. logarithmic mistake bounds when few input variables are relevant. In Proc. Conf.
on Computational Learning Theory, pages 289–296, Santa Cruz, USA, 1995.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proc ACL,
pages 423–430, July 2003.

Roman Klinger, Christoph M. Friedrich, Juliane Fluck, and Martin Hofmann-Apitius.
Named entity recognition with combinations of conditional random fields. In Proc
2nd BioCreative Challenge Evaluation Workshop, pages 89–91, 2007.

Martin Krallinger, Florian Leitner, and Alfonso Valencia. Assessment of the second
biocreative ppi task: Automatic extraction of protein–protein interactions. In Proc
2nd BioCreative Challenge Evaluation Workshop, pages 41–54, Madrid, Spain, 2007.

M. Krauthammer, P. Kra, I. Iossifov, S.M. Gomez, G. Hripcsak anfd V. Hatzivassiloglou,
C. Friedman, and A. Rzhetsky. Of truth and pathways: chasing bits of information
through myriads of articles. Bioinformatics, 18(Suppl 1):S249–S257, 2002.

Michael Krauthammer, Andrey Rzhetsky, Pavel Morozov, and Carol Friedman. Using
blast for identifying gene and protein names in journal articles. Gene, 259:245–252,
2000.

156

Bibliography

Cheng-Ju Kuo, Yu-Ming Chang, Han-Sheng Huang, Kuan-Ting Lin, Bo-Hou Yang, Yu-
Shi Lin, Chun-Nan Hsu, and I-Fang Chung. Rich feature set, unification of bidi-
rectional parsing and dictionary filtering for high f-score gene mention tagging. In
Proceedings of the Second BioCreative Challenge Evaluation Workshop, pages 105–107,
Madrid, Spain, April 23–25 2007.

Bob Leaman and Graciela Gonzalez. Banner: An executable survey of advances in
biomedical named entity recognition. In Proc Pac Symp Biocomput, 2008.

Matthew Lease and Eugene Charniak. Parsing biomedical literature. In R. Dale et al.,
editor, IJCNLP 2005, LNAI 3651, pages 58–69. Springer-Verlag, 2005.

Florian Leitner, Martin Krallinger, Carlos Rodriguez-Penagos, Jörg Hakenberg, Conrad
Plake, Cheng-Ju Kuo, Chun-Nan Hsu, Richard Tzong-Han Tasi, Hsi-Chuan Hung,
William W. Lau, Calvin A. Johnson, Rune Sætre, Kazuhiro Yoshida, Yan Hua Chen,
Sun Kim, Soo-Yong Shin, Byoung-Tak Zhang, William A. Baumgartner, Lawrence
Hunter, Barry Haddow, Michael Matthew, Xinglong Wang, Patrick Ruch, Frédéric
Ehrler, Arzucan Özgür, Günes Erkan, Dragomir R. Radev, Michael Krauthammer,
ThaiBinh Luong, Robert Hoffmann, Chris Sander, and Alfonso Valencia. Introducing
meta-services for biomedical information extraction. Genome Biology, 9(S2):S6, 2008.

Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for protein
sequences. J. Mach. Learn. Res., 5:1435–1455, 2004.

Christina Leslie, Eleazar Eskin, , and William Stafford Noble. The spectrum kernel:
A string kernel for svm protein classification. In Proc. Pac. Symp. Biocomput., PSB,
volume 7, pages 566–575, 2002.

James Lewis, Stephan Ossowski, Justin Hicks, Mounir Errami, and Harold R. Garner.
Text similarity: an alternative way to search medline. Bioinformatics, 22(18):2298–
2304, 2006. doi: 10.1093/bioinformatics/btl388.

Yanpeng Li, Hongfei Lin, and Zhihao Yang. Incorporating rich background knowledge
for gene named entity classification and recognition. BMC Bioinformatics, 2009. To
appear.

Dieter-Chichung Lie, Sophia A. Colamarino, Hong-Jun Song, Laurent Dèsirè, Helena
Mira, Antonella Consiglio, Edward S. Lein, Sebastian Jessberger, Heather Lansford,
Alejandro R. Dearie, and Fred H. Gage. Wnt signalling regulates adult hippocampal
neurogenesis. Nature, 437(7063):1370–1375, 2005.

M.W. Mak, S.Y. Kung, and S.H. Lin. Expectation-Maximization Theory, chapter 3. Prentice
Hall, 2004.

Edward M. Marcotte, Ioannis Xenarios, and David Eisenberg. Mining literature for
protein interactions. Bioinformatics, 17(4):359–363, April 2001.

157

Bibliography

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: the penn treebank. Computational Linguistics, 19:313–
330, 1993.

John McCrae and Nigel Collier. Synonym set extraction from the biomedical litera-
ture by lexical pattern discovery. BMC Bioinformatics, 9:159, 2008. doi: 10.1186/
1471-2105-9-159.

D.M. McDonald, H. Chen, H. Su, and B.B. Marshall. Extracting gene pathway relations
using a hybrid grammar: the arizona relation parser. Bioinformatics, 20(18):3370–3378,
2004.

Ryan McDonald and Fernando Pereira. Identifying gene and protein mentions in text
using conditional random fields. In BioCreAtIvE Workshop, Granada, Spain, March
2004.

Ryan McDonald and Fernando Pereira. Identifying gene and protein mentions in text
using conditional random fields. BMC Bioinformatics, 6(Suppl 1):S6, 2005. doi: 10.
1186/1471-2105-6-S1-S6. 10.1186/1471-2105-6-S1-S6.

Ryan McDonald and Fernando Pereira. Online learning of approximate dependency
parsing algorithms. In European Association for Computational Linguistics, 2006.

Sven Mika and Burkhard Rost. Protein names precisely peeled off free text. Bioinfor-
matics, 20(Suppl 1):i241–i247, 2004.

Andrei Mikheev. Feature lattices for maximum entropy modelling. In Proc. COLING-
ACL, pages 848–854, 1998.

Boris Mirkin. Mathematical Classication and Clustering. Kluwer Academic Publishers,
1996.

Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

Tomohiro Mitsumori, Sevrani Fation, Masaki Murata, Kouichi Doi, and Hirohumi
Doi. Gene/protein name recognition using support vector machine after dictionary
matching. In BioCreAtIvE Workshop, Granada, Spain, March 2004.

Tomohiro Mitsumori, Sevrani Fation, Masaki Murata, Kouichi Doi, and Hirohumi Doi.
Gene/protein name recognition based on support vector machine using dictionary
as features. BMC Bioinformatics, 6(Suppl 1):S8, 2005.

Yusuke Miyao and Jun’ichi Tsujii. Feature forest models for probabilistic hpsg parsing.
Computational Linguistics, 34:35–80, 2008.

Yusuke Miyao, Kenji Sagae, Rune Sætre, Takuya Matsuzaki, and Jun’ichi Tsujii. Evalu-
ating contributions of natural language parsers to protein–protein interaction extrac-
tion. Bioinformatics, 25(3):394–400, 2008. doi: 10.1093/bioinformatics/btn631.

158

Bibliography

Yusuke Miyao, Kenji Sagae, Rune Sætre, Takuya Matsuzaki, and Jun’ichi Tsujii. Evalu-
ating contributions of natural language parsers to protein–protein interaction extrac-
tion. Bioinformatics, 25(3):394–400, 2009. doi: 10.1093/bioinformatics/btn631.

Alexander A. Morgan, Zhiyong Lu, Xinglong Wang, Aaron A. Cohen, Juliane Fluck,
Patrick Ruch, Anna Divoli, Katrin Fundel, Robert Leaman, Jörg Hakenberg, Chenjie
Sun, Heng-Hui Liu, Rafael Torres, Michael Krauthammer, William W. Lau, Hong-
fang Liu, Chun-Nan Hsu, Martijn Schuemie, and Lynette Hirschman. Overview
of biocreative ii gene normalization. Genome Biology, 9(S2):S3, 2008. doi: 10.1186/
gb-2008-9-s2-s3.

Alessandro Moschitti. Making tree kernels practical for natural language processing.
In Proc EACL, pages 113–120, Trento, Italy, 2006.

Annette M. Nahin. Boost for pubmed search results: New atm & citation sensor intro-
duced. NLM Tech Bull, 362(e10), May-June 2008.

Claire Nédellec. Learning language in logic – genic interaction extraction challenge. In
Proc 4th Learning Language in Logic Workshop (LLL05) at the 22nd Int Conf on Machine
Learning, Bonn, Germany, August 2005.

Goran Nenadic, Simon Rice, Irena Spasic, Sophia Ananiadou, and Benjamin J. Stapley.
Selecting text features for gene name classification: from documents to terms. In
Proc. ACL 2003 Workshop on Natural Language Processing in Biomedicine, pages 121–
128, Sapporo, Japan, 2003.

Chikashi Nobata, Nigel Collier, and Jun’ichi Tsujii. Automatic term identification and
classification in biology texts. In Proceedings of the Natural Language Pacific Rim Sym-
posium, pages 369–374, 1999.

Mohamed A. F. Noor, Katherine J. Zimmerman, and Katherine C. Teeter. Data sharing:
How much doesn’t get submitted to genbank? PLoS Biology, 4(7):e228, 2006.

Franz Josef Och and Hermann Ney. A comparison of alignment models for statistical
machine translation. In Proc. Int. Conf. on Computational Linguistics, COLING, pages
1086–1090, Saarbrücken, Germany, August 2000.

Tomoko Ohta, Yuka Tateisi, Hideki Mima, and Jun’ichi Tsujii. Genia corpus: an anno-
tated research abstract corpus in molecular biology domain. In Proc. of the Human
Language Technology Conference (HLT), pages 73–77, 2002.

OMIM. Online mendelian inheritance in man, omimTM. McKusick-Nathans Institute
for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Cen-
ter for Biotechnology Information, National Library of Medicine (Bethesda, MD),
2000.

D. Panov. La traduction mécanique et l’humanité. Impact, 10(1):17–25, 1960.

159

Bibliography

Jong C. Park, Hyon Sook Kim, and Jung Jae Kim. Bidirectional incremental parsing for
automatic pathway identification with combinatory categorical grammar. In Proc Pac
Symp Biocomput, volume 6, pages 396–407, 2001.

Conrad Plake, Jörg Hakenberg, and Ulf Leser. Optimizing syntax patterns for discov-
ering protein-protein interactions. In Proc ACM Symposium for Applied Computing
(ACM SAC), Bioinformatics track, pages 195–201, Santa Fe, USA, March 2005. doi:
10.1145/1066677.1066722.

Conrad Plake, Torsten Schiemann, Marcus Pankalla, Jörg Hakenberg, and Ulf Leser.
ALIBABA: Pubmed as a graph. Bioinformatics, 22(19):2444–2445, 2006. doi: 10.1093/
bioinformatics/btl408.

J. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, USA,
1998a. MIT Press.

J. Platt. Sequential minimal optimization: A fast algorithm for training of support vec-
tor machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998b.

Martin F. Porter. An algorithm for suffix stripping. Program, pages 130–137, 1980.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Bjorne, Jorma Boberg, Jouni Jarvinen,
and Tapio Salakoski. Bioinfer: a corpus for information extraction in the biomedical
domain. BMC Bioinformatics, 8:50, 2007. doi: 10.1186/1471-2105-8-50.

Sampo Pyysalo, Antti Airola, Juho Heimonen, Jari Bjorne, Filip Ginter, and Tapio
Salakoski. Comparative analysis of five protein-protein interaction corpora. BMC
Bioinformatics, 9 Suppl 3:S6, 2008. doi: 10.1186/1471-2105-9-S3-S6.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE, 77(2):257–286, 1989.

Dietrich Rebholz-Schuhmann, Harald Kirsch, and Francisco Couto. Facts from text–is
text mining ready to deliver? PLoS Biology, 3(2):e65, 2005.

Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to iden-
tifying sentence boundaries. In Proceedings of the 5th conference on Applied Natural
Language Processing, pages 16–19, Washington DC, USA, 1997.

Stefan Riedel and Ewan Klein. Genic interaction extraction with semantic and syntactic
chains. In Claire Nédellec, editor, Proc Learning Language in Logic Workshop (LLL05) at
the 22nd Int Conf on Machine Learning, pages 69–74, 2005.

C.K. Riesbeck. From conceptual analyzer to direct memory access parsing: An
overview. In N.E. Sharkey, editor, Advances in Cognitive Sciences, pages 237–258. Ellis
Horwood Limited, 1986.

160

Bibliography

Ellen Riloff and William Phillips. An introduction to the sundance and autoslog sys-
tems. Technical Report UUCS-04-015, University of Utah, November 8 2004.

Fabio Rinaldi, Gerold Schneider, Kaarel Kaljurand, Michael Hess, Christos Andronis,
Andreas Persidis, and Ourania Konstanti. Relation mining over a corpus of scientific
literature. In Proc. AIME, pages 550–559. Springer Verlag, LNAI 3581, July 2005.

Fabio Rinaldi, Gerold Schneider, Kaarel Kaljurand, Michael Hess, and Martin Ro-
macker. An environment for relation mining over richly annotated corpora: the case
of genia. In Proc. Int. Symp. on Semantic Mining in Biomedicine, SMBM, pages 68–75,
April 9-12 2006.

Fabio Rinaldi, Thomas Kappeler, Kaarel Kaljurand, Gerold Schneider, Manfred Klen-
ner, Michael Hess, Jean-Marc von Allmen, Martin Romacker, and Therese Vachon.
Ontogene in biocreative ii. In Proc. 2nd BioCreative Challenge Evaluation Workshop,
pages 193–198, Madrid, Spain, April 23-25 2007.

Barbara Rosario and Marti A. Hearst. Classifying semantic relations in bioscience texts.
In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics,
ACL, Barcelona, Spain, July 2004.

Rune Sætre, Kazuhiro Yoshida, Akane Yakushiji, Yusuke Miyao, Yunichiro Matsub-
ayashi, and Tomoko Ohta. Akane system: Protein-protein interaction pairs in the
biocreative 2 challenge, ppi-ips subtask. In Lynette Hirschman, Martin Krallinger,
and Alfonso Valencia, editors, Proc 2nd BioCreative Challenge Evaluation Workshop,
pages 209–211, Madrid, Spain, April 23-25 2007.

Rune Sætre, Kenji Sagae, and Jun’ichi Tsujii. Syntactic features for protein-protein in-
teraction extraction. In Christopher J.O. Baker and Su Jian, editors, Proc Int Symp
Languages in Biology and Medicine (LBM 2007), pages 6.1–6.14, Singapore, 2008.

Kai Salomaa and Sheng Yu. Nfa to dfa transformation for finite languages. In Automata
Implementation, volume 1260/1997 of Lecture Notes in Computer Science, pages 149–158.
Springer Berlin/Heidelberg, 1997. doi: 10.1007/3-540-63174-7_12.

Jasmin Saric, Lars Juhl Jensen, Rossitza Ouzounova, Isabel Rojas, and Peer Bork. Ex-
traction of regulatory gene/protein networks from medline. Bioinformatics, 22(6):
645–650, 2006.

Torsten Schiemann, Ulf Leser, and Jörg Hakenberg. Word sense disambiguation in
biomedical applications: A machine learning approach. In Violaine Prince and Math-
ieu Roche, editors, Information Retrieval in Biomedicine: Natural Language Processing for
Knowledge Integration, pages 141–162. IGI Global, 2008.

Andreas Schlicker, Francisco S. Domingues, Jörg Rahnenführer, and Thomas Lengauer.
A new measure for functional similarity of gene products based on gene ontology.
BMC Bioinformatics, 7:302, 2006.

161

Bibliography

Andreas Schlicker, Carola Huthmacher, Fidel Ramirez, Thomas Lengauer, and Mario
Albrecht. Functional evaluation of domain–domain interactions and human pro-
tein interaction networks. Bioinformatics, 23(7):859–865, 2007. doi: 10.1093/
bioinformatics/btm012.

Sebastian Schmeier. Automated recognition and extraction of entities related to enzyme
kinetics from text. Master’s thesis, Freie Universität Berlin, October 31 2005.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc. Int.
Conf. New Methods in Language Processing, pages 44–49, Manchester, UK, 1994.

Helmut Schmid. Unsupervised learning of period disambiguation for tokenisation.
Internal report, IMS, University of Stuttgart, May 2000.

Bernhard Schölkopf and Alex J. Smola. Support vector machines and kernel algorithms.
In Encyclopedia of Biostatistics. John Wiley and Sons, 2003.

Ariel S. Schwartz and Marti A. Hearst. A simple algorithm for identifying abbreviation
definitions in biomedical text. In Proc. Pac. Symp. Biocomput., PSB, pages 451–462,
2003.

Kazuhiro Seki and Javed Mostafa. A probabilistic model for identifying protein names
and their name boundaries. In Proc. Computational Systems Bioinformatics Conference
(CSB), 2003.

Burr Settles. Abner: an open source tool for automatically tagging genes, proteins
and other entity names in text. Bioinformatics, 21(14):3191–3192, 2005. doi: 10.1093/
bioinformatics/bti475.

Benjamin A. Shoemaker and Anna R. Panchenko. Deciphering protein-protein interac-
tions. part i. experimental techniques and databases. PLoS Computational Biology, 3
(3):e42, March 2007. doi: 10.1371/journal.pcbi.0030042.

Daniel Sleator and Davy Temperley. Parsing english with a link grammar. In Third In-
ternational Workshop on Parsing Technologies, Tilburg, NL, and Durbuy, B, 10-13 August
1993.

L Smith, T Rindflesch, and W J Wilbur. Medpost: a part-of-speech tagger for biomedical
text. Bioinformatics, 20(14):2320–2321, Sep 2004. doi: 10.1093/bioinformatics/bth227.

Larry Smith, Lorraine K. Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-Fang
Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M. Friedrich, Kuzman
Ganchev, Manabu Torii, Hongfang Liu, Barry Haddow, Craig A. Struble, Richard J.
Povinelli, Andreas Vlachos, William A. Baumgartner, Lawrence Hunter, Bob Car-
penter, Richard Tzong-Han Tsai, Hong-Jie Dai, Feng Liu, Yifei Chen, Chengjie
Sun, Sophia Katrenko, Pieter Adriaans, Christian Blaschke, Rafael Torres, Mariana
Neves, Preslav Nakov, Anna Divoli, Manuel Mana-Lopez, Jacinto Mata-Vazquez,
and W. John Wilbur. Overview of biocreative ii gene mention recognition. Genome
Biology, 8(Suppl. 2):S2, 2008.

162

Bibliography

T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J.
Mol. Biol., 147(1):195–197, 1981.

P.H.A. Sneath and R.R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1973.

Yu Song, Eunju Kim, Gary Geunbae Lee, and Byoung kee Yi. Posbiotm-ner in the shared
task of bionlp/nlpba 2004. In Proc. Joint Workshop on Natural Language Processing in
Biomedicine and its Applications, JNLPBA, 2004a.

Yu Song, Eunji Yi, Eunju Kim, and Gary Geunbae Lee. Posbiotm-ner: A machine learn-
ing approach. In Proc. BioCreAtIvE Workshop, Granada, Spain, March 2004b.

Benjamin J. Stapley and Gerry Benoit. Biobibliometrics: information retrieval and visu-
alization from co-occurrences of gene names in Medline abstracts. In Proc. Pac. Symp.
Biocomput., PSB, pages 526–537, Hawaii, USA, 2000.

Mathew J. Stephens, Mathew J. Palakal, Snehasis Mukhopadhyay, Rajeev Raje, and
Javed Mostafa. Detecting gene relations from medline abstracts. In Proc Pac Symp
Biocomput, volume 6, pages 483–496, 2001.

Chengjie Sun, Lei Lin, Xiaolong Wang, and Yi Guan. Using maximum entropy model
to extract protein-protein interaction information from biomedical literature. In Ad-
vanced Intelligent Computing Theories and Applications, LNCS, pages 730–737. Springer,
2007a. doi: 10.1007/978-3-540-74171-8_72.

Jingchun Sun, Yan Sun, Guohui Ding, Qi Liu, Chuan Wang, Youyu He, Tieliu Shi,
Yixue Li, and Zhongming Zhao. Inpreppi: an integrated evaluation method based on
genomic context for predicting protein-protein interactions in prokaryotic genomes.
BMC Bioinformatics, 8:414, 2007b. doi: 10.1186/1471-2105-8-414.

Charles Sutton and Andrew K. McCallum. An introduction to conditional random
fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to
Statistical Relational Learning, chapter 4, pages 93–128. MIT Press, 2006.

D. R. Swanson. Fish oil, raynaud’s syndrome, and undiscovered public knowledge.
Perspectives in Biology and Medicine, 30(1):7–18, 1986.

D. R. Swanson. Migraine and magnesium: eleven neglected connections. Perspectives
in Biology and Medicine, 31(4):526–557, 1988.

Koichi Takeuchi and Nigel Collier. Bio-medical entity extraction using support vector
machines. In Proc. ACL Workshop on Natural Language Processing in Biomedicine, 2003.

Javier Tamames and Alfonso Valencia. The success (or not) of hugo nomenclature.
Genome Biol, 7:402, 2006.

Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant bi-
clusters in gene expression data. Bioinformatics, 18(Suppl 1):S136–S144, 2002.

163

Bibliography

C. Tarnas and R. Hughey. Reduced space hidden markov model training. Bioinformatics,
14, 1998.

Joshua M. Temkin and Mark R. Gilder. Extraction of protein interaction information
from unstructured text using a context-free grammar. Bioinformatics, 19(16):2046–
2053, 2003.

W. M. Thorburn. The myth of ockham’s razor. Mind, XXVII(3):345–353, 1918. doi:
10.1093/mind/XXVII.3.345.

Katrin Tomanek, Joachim Wermter, and Udo Hahn. Sentence and token splitting based
on conditional random fields. In Pac Assoc for Comp Ling, pages 49–57, 2007.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.
Large margin methods for structured and interdependent output variables. Journal
of Machine Learning Research, 6:1453–1484, 2005.

C.J. van Rijsbergen. Information Retrieval. Butterworth, London, 1979.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

S.V.N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In
K. Tsuda, B. Schölkopf, and J.P. Vert, editors, Kernels and Bioinformatics, Cambridge,
MA, USA, 2003. MIT Press.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymtotically optimum
decoding algorithm. IEEE Trans. on Information Theory, 13:260–267, 1967.

H.M. Wain, M. Lush, F. Ducluzeau, and S. Povey. Genew: The human nomenclature
database. Nucleic Acids Res., 30:169–171, 2002.

Cathy H. Wu, Rolf Apweiler, Amos Bairoch, Darren A. Natale, Winona C. Barker,
Brigitte Boeckmann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo
Lopez, Michele Magrane, Maria J. Martin, Raja Mazumder, Claire O’Donovan, Nicole
Redaschi, and Baris Suzek. The universal protein resource (uniprot): an expanding
universe of protein information. Nucleic Acids Res., 34(Database issue):D187–D191,
2006.

Ioannis Xenarios, Esteban Fernandez, Lukasz Salwínski, Xiaoqun Joyce Duan,
Michael J. Thompson, Edward M. Marcotte, and David Eisenberg. Dip: the database
of interacting proteins: 2001 update. Nucleic Acids Res., 29(1):239–241, 2001.

Juan Xiao, Jian Su, GuoDong Zhou, and ChewLim Tan. Protein-protein interaction
extraction: A supervised learning approach. In Proc. Symp. Semantic Mining in
Biomedicine (SMBM), pages 51–59, Hinxton, UK, April 10-13 2005.

Akane Yakushiji. Relation Information Extraction Using Deep Syntactic Analysis. PhD
thesis, University of Tokyo, 2006.

164

Bibliography

Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and Jun’ichi Tsujii. Event extraction from
biomedical papers using a full parser. In Proc. Pac. Symp. Biocomput., PSB, pages 408–
419, Hawaii, USA, 2001.

Itai Yanai, Jan O. Korbel, Stephanie Boue, Shannon K. McWeeney, Peer Bork, and Mar-
tin J. Lercher. Similar gene expression profiles do not imply similar tissue functions.
Trends in Genetics, 22(3):132–138, 2006. doi: 10.1016/j.tig.2006.01.006.

Alexander Yeh, Alexander Morgan, Marc Colosimo, and Lynette Hirschman. Biocre-
ative task 1a: gene mention finding evaluation. BMC Bioinformatics, 6(Suppl 1):S2,
2005. doi: 10.1186/1471-2105-6-S1-S2.

Shi Yu, Steven Van Vooren, Leon-Charles Tranchevent, Bart De Moor, and Yves Moreau.
Comparison of vocabularies, representations and ranking algorithms for gene prior-
itization by text mining. In Proc ECCB, Cagliari, Italy, 2008.

GuoDong Zhou and Jian Su. Exploring deep knowledge resources in biomedical name
recognition. In Proc. Joint Workshop on Natural Language Processing in Biomedicine and
its Applications, JNLPBA, pages 96–99, 2004.

GuoDong Zhou, Dan Shen, Jie Zhang, Jian Su, SoonHeng Tan, and ChewLim Tan.
Recognition of protein/gene names from text using an ensemble of classifiers and ef-
fective abbreviation detection. In Proc. BioCreAtIvE Workshop, Granada, Spain, March
2004a.

GuoDong Zhou, Jie Zhang, Jian Su, Dan Shen, and ChewLim Tan. Recognizing names
in biomedical texts: a machine learning approach. Bioinformatics, 20(7):1178–1190,
2004b. doi: 10.1093/bioinformatics/bth060.

165

List of Figures

2.1. Change in usage of gene names over time 10
2.2. Example for a precision/recall characteristic also showing f-measure . . 20
2.3. Linear SVM with a hyperplane separating two classes 22
2.4. Support vector machine with margin hyperplanes 22
2.5. Hyperplane resulting from an RBF kernel that separates two classes . . . 25
2.6. Cluster analysis of expression vectors of genes in various tissues 28
2.7. Example for a block clustering of genes and conditions/tissues 29
2.8. Example for a k-means clustering . 30
2.9. Simple hidden Markov model with two states and an end state 31
2.10. Example for dependency relations in a sentence 39
2.11. LinkGrammar parse of a sentence . 39
2.12. Enju deep parse of a sentence . 40

3.1. Correlation between feature set size and performance 50
3.2. Recall and precision with and without post-expansion 50

4.1. Combination of five initial patterns into one consensus pattern 70
4.2. Sequence logo of a consensus pattern . 71
4.3. Example for a multi-layer language pattern 72
4.4. Multi–layer consensus pattern, extracted from five initial patterns 73
4.5. Finite state automaton for an input sentence of part-of-speech tags . . . 75
4.6. Examples for part-of-speech substitutions 77
4.7. Dynamic programming matrix resulting from pattern–sentence alignment 79
4.8. Alignment of a consensus pattern with two sentences. 79
4.9. Alignment of a consensus pattern with a new sentence 80
4.10. Pseudocode for the clustering algorithm 83
4.11. Pseudocode for MSA to identify consensus patterns 84
4.12. Consensus pattern resulting from MAS of initial patterns 85
4.13. Pseudocode of the pattern generation algorithm 86
4.14. Finite state automata with word gaps . 87

5.1. Evolution progress for the three fitness-functions used 95
5.2. Distribution of the support of initial phrase 100

6.1. AliBaba graph for the query “gene cause of parkinson” 117
6.2. System architecture and workflow in AliBaba 118
6.3. AliBaba graph for the query “primaquine malaria g6pd deficiency” . . . 119

167

List of Figures

6.4. AliBaba graph for the query “PmrD (activation OR recognition)” 121
6.5. Wnt signaling pathway from KEGG, displayed in AliBaba 122
6.6. Wnt signaling pathway enriched with query for dickkopf 123

A.1. Substitution matrix used in our experiments; first half 139
A.2. Substitution matrix used in our experiments; second half 140

168

List of Tables

2.1. Typical orthographic errors in Medline, with frequencies 11
2.2. Names appearing in multiple entity classe; synonyms per class 14
2.3. Definition of true and false positive and negative predictions 19
2.4. Examples for Brown part-of-speech tags to annotate words 35

3.1. Keywords that are strong indicators for a gene or protein name 44
3.2. Feature classes used in our NER experiments; influence on performance 45
3.3. Post-expansion rules to extend protein names based on a single hit . . . 47
3.4. Wrongly predicted words that never occur as protein names 47
3.5. Additional rules for filtering false positives that contain specific words . 48
3.6. Influence of combinations of feature classes on performance 48
3.7. Features remaining after 64 iterations of recursive feature elimination . . 51
3.8. Data sources that comprise the dictionaries for each entity class 54
3.9. Systems proposed for the recognition of various types of named entities 57
3.10. Performances reported for different systems for protein NER 58

4.1. Binary representation of state 3 from the matrix in Figure 4.5 88

5.1. Set of hand-crafted patterns . 93
5.2. Results for different evaluation sets and fitness-functions 94
5.3. Results on the LLL corpus using alignment or regular expressions 96
5.4. Performance on different types of interactions contained in LLL’05 . . . 97
5.5. Initial phrases extracted from MEDLINE using IntAct data 98
5.6. Sample of the core phrases extracted from MEDLINE 99
5.7. Statistics for MEDLINE sentences and interaction pairs from IntAct . . . 100
5.8. Impact of different parameters for collection and refinement of patterns 101
5.9. Results for different strategies using the IntAct pattern collection 103
5.10. Performance of protein–protein interaction extraction systems 105

A.1. Nouns that typically indicate interactions between proteins 135
A.2. Adjectives that typically indicate interactions between proteins 135
A.3. Verbs that typically indicate interactions between proteins 136
A.4. List of part-of-speech tags used throughout this thesis 137

169

Selbstständigkeitserklärung

Hiermit erkläre ich, dass

(i) ich die vorliegende Dissertationsschrift selbstständig und ohne unerlaubte Hilfe
verfasst habe;

(ii) ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder
einen solchen besitze; und

(iii) mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät
II der Humboldt-Universität zu Berlin gems̈ßdes amtlichen Mitteilungsblattes Nr.
34/2006 bekannt ist.

Jörg Hakenberg

Berlin, 9. März 2009

	Introduction
	Motivation
	Contribution
	Outline of this Thesis

	Text Mining
	Information Extraction
	Named Entity Recognition
	Named Entity Identification
	Word Sense Disambiguation
	Relation Mining

	Machine Learning
	Classification
	Clustering
	Sequence Learning

	Natural Language Processing
	Sentence Splitting
	Tokenization
	Part-of-Speech Tagging
	Stemming
	Sentence Chunking
	Shallow Parsing
	Full Sentence Parsing

	Named Entity Recognition
	Token-based Named Entity Recognition
	Classification task
	Post-processing to find multi-word terms
	Evaluation

	Dictionary-Based Named Entity Recognition
	Extension of Dictionary-Based Approaches to Named Entity Identification
	Related Work
	Dictionary-based approaches
	Rule-based approaches
	Classification-based approaches
	Sequence-based approaches
	Hybrid approaches

	Conclusions

	Language Patterns
	Pattern representation
	Consensus patterns
	Multi--layer patterns
	Weighted multi--layer patterns

	Matching patterns against text
	Patterns as regular expressions
	Pattern matching with sentence alignment
	Substitution matrices
	Dynamic programming to solve the alignment problem
	Weighted multi--layer alignment

	Learning patterns with multiple sentence alignment
	Clustering of initial patterns
	Multiple sentence alignment

	Pattern generation by pairwise alignment
	Optimization using genetic algorithms

	Applications and Evaluation
	Collecting a large pattern sample
	Curated data bases to find examples
	Protein--protein interaction patterns using IntAct

	Assigning attributes to relations
	Predicting directed relations

	Mining protein-protein interactions
	Hand--crafted patterns
	Optimized patterns
	Patterns learned from large samples

	Related Work
	Evaluation corpora for relationship extraction
	Co--occurrence--based approaches
	Classification
	Pattern--based approaches
	Sentence parsing and graph kernels
	Sentence alignment
	Learning patterns for information extraction

	Conclusions

	Visualization of networks --- AliBaba
	Case studies

	Summary and Outlook
	Summary
	Contribution
	Future directions

	Data sets
	Corpora
	Databases and terminologies
	Interaction-indicating words
	Part-of-speech tags
	Substitution matrix for part-of-speech tags

	Algorithms
	Hidden Markov Models

