
Distributed Biconnectivity Testing in Wireless Multi-hop
Networks

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Dipl.-Ing. Bratislav Milic

24.07.1978 in Belgrad

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Christoph Markschies

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Peter Frensch

Gutachter:
1. Prof. Dr. Edgar Nett
2. Prof. Dr. Alexander Reinefeld
3. Prof. Dr. Miroslaw Malek

eingereicht am: 01.09.2009
Tag der mündlichen Prüfung: 04.12.2009

First and foremost I would like to thank my supervisor, Professor Miroslaw Malek, for
his continued support throughout my work at the Humboldt University. My thanks also

go to all the colleagues for useful comments and fruitful discussions.
This work would not be possible without the understanding, patience, support and love

of my family.

Abstract

Wireless multi-hop network (WMN) is a distributed communication system com-
posed of autonomous processing nodes that is known for its ability to automatically
adjust to rapidly changing conditions in the surrounding environment. Connectivity
is one of the basic properties of a network. Removal of a bridge or an articulation
point partitions a network. Biconnectivity testing identifies bridges and articula-
tion points in a network, and once they are known corrective actions can be per-
formed in order to improve network’s reliability. Numerous biconnectivity testing
algorithms are successfully applied in graphs, wired networks and multiprocessor
systems. However, they are inadequate for application in wireless networks since
the frequent packet losses introduce uncertainty in the system which these algo-
rithms cannot handle. The stochastic analysis shows that errors in decision-making
in WMNs are considerable even for seemingly simple tasks such as the detection of
links.
The main contribution of this work is to provide means for accurate binary

decision-making under uncertainty within the context of biconnectivity testing in
WMNs. A distributed algorithm is developed that successfully handles the faults
caused by message losses and simultaneously utilizes benefits of wireless commu-
nication to reduce message complexity from O(e) to O(n). Based on stochastic
analysis of WMN topologies and a comprehensive analysis of impact of communi-
cation faults on algorithm’s behavior, the algorithm is extended by voting theory
to reduce probability of erroneous decisions.
The WMNs in Berlin and Leipzig are used as the case study. Topological data col-

lected in them demonstrates that real networks are composed of dense and sparse
parts, and confirms existence of numerous bridge and articulation points. The
known node-placement algorithms are unable to recreate these properties so a new
node placement algorithm for realistic topologies in WMN simulation was devel-
oped.
The algorithm and the voting rules are evaluated in experiments in Motelab

testbed and in the event-based simulator Jist/SWANS. The algorithm is accurate
under various conditions which demonstrates its applicability in reality and capa-
bility of successful operation in presence of packet losses.

v

Zusammenfassung

Ein drahtloses Multihop-Netzwerk (DMN) ist ein verteiltes Kommunikationssys-
tem aus autonomen Verarbeitungsknoten, welches vor allem die Fähigkeit zur au-
tomatischen Anpassung an sich ständig änderne Umgebungsbedingungen hat. Eine
zentrale Fragestellung in DMNen ist, ob das Netzwerk partitioniert ist, ob also nicht
mehr jeder Knoten mit jedem anderen Knoten kommunizieren kann. Um festzu-
stellen, ob eine Partitionierung droht werden mit Hilfe von 2-Zusammenhangstests
Brücken und Artikulationspunkte im Kommunikationsgraphen gesucht. Daraufhin
können anschließend korrektive Aktionen eingeleitet werden um die Partitionierung
zu verhindern und somit die Netzwerkverfügbarkeit zu erhöhen. Eine Vielzahl von
2-Zusammenhangstestverfahren wurde bereits erfolgreich bei drahtgebundenen Net-
zen eingesetzt. Allerdings sind diese Verfahren ungeeignet für drahtlose Netze, da
die Ungenauigkeiten durch den häufigen Paketverlust in solchen Systemen bisher
nicht berücksichtigt wurden. Mit Hilfe von stochastischen Modellen wird gezeigt,
dass Fehler in der Entscheidungsfindung für DMNen bereits bei sehr einfachen Pro-
blemen wie der Link-Erkennung signifikant sein können.
In dieser Arbeit werden daher verschiedene Verfahren präsentiert, die auch auf

Grundlage unsicherer Informationen noch eine verlässliche Entscheidungsfindung
ermöglichen. Die Arbeit präsentiert einen neuen verteilten Algorithmus zum Test
auf 2-Zusammenhang, welcher Fehler durch Nachrichtenverlust berücksichtigt und
gleichzeitig die Anzahl an Nachrichten reduziert. Basierend auf einer umfassenden
Analyse der Einflüsse von Kommunikationsfehlern auf den Algorithmus, wurden
Abstimmungsprozeduren entwickelt, die die Wahrscheinlichkeit von Fehlentschei-
dungen nochmals reduzieren.
Eine Fallstudie mit öffentlichen DMNen in Berlin und Leipzig hat die Existenz

zahlreicher Brücken und Artikulationspunkte in echten Netzwerken bestätigt. Da
keiner der bekannten Algorithmen zur Erzeugung von Topologien in simulierten
DMNen zu annähernd realistischen Ergebnissen führt, wird ein neuer Algorithmus
vorgestellt.
Zur weiteren Analyse werden die Algorithmen erstens in der Motelab-Umgebung

und zweitens mit Hilfe von Simulationen untersucht. Die präsentierten Algorithmen
zeigen überzeugende Ergebnisse unter variierenden Bedingungen, was ihre Anwend-
barkeit in realen Szenarien unterstreicht.

vii

Contents

1. Introduction 1
1.1. Wireless Multi-hop Networks . 1
1.2. Motivation . 3
1.3. Problem Statement and Goals . 5
1.4. Structure of the Thesis . 8

2. Background 11
2.1. Modeling of Wireless Multi-hop Networks 11

2.1.1. Node Placement Models . 12
2.1.2. Mobility Models . 14
2.1.3. Wireless Signal Propagation Models 16
2.1.4. Medium Access Control Sublayer 18

2.2. Graph as a Wireless Multi-hop Network Model 19
2.2.1. What is Topology of a Wireless Multi-hop Network? 20
2.2.2. Graph Theory Basics . 21
2.2.3. Random Geometry Graphs . 22
2.2.4. Planarization of Random Geometric Graphs 23

2.3. Simulators, Emulators and Testbeds - Their Benefits and Drawbacks . . 26
2.4. Accuracy Metrics of Biconnectivity Testing Algorithm 27

3. Related Work 31
3.1. Biconnectivity Testing in Wireless Multi-hop Networks 32
3.2. Other Approaches for Circumvention of Network Partitioning or Its Effects 33

3.2.1. Topology Control . 33
3.2.2. Partitioning Prevention by Mobility 36
3.2.3. Disruption-Tolerant Networks . 36

3.3. Proactive Topology Management in WMNs 37
3.3.1. Link Detection in Wireless Multi-hop Networks 39
3.3.2. Local Topology Dissemination 41

3.4. Summary . 42

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks 45
4.1. Heartbeat Link Detector Model . 45
4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks 47

4.2.1. Heartbeat Link Detector at a Link without Node Failures 48
4.2.2. Heartbeat Link Detector Behavior in a Network 51

4.3. Node Failures and Limited Duration of Link Existence 56
4.4. Effects of HLD Errors on Proactive Topology Management Protocols . . 63
4.5. Summary . 64

ix

Contents

5. Distributed Bridge and Articulation Point Detection Algorithm for Wireless
Networks (DIBADAWN) 67
5.1. Introduction . 67
5.2. Biconnectivity Testing Algorithms in Context of Wireless Multi-hop Net-

works . 70
5.3. Adaptation of the Echo Algorithms for Application in WMNs 74
5.4. Distributed Biconnectivity Testing in WMNs 76

5.4.1. Execution Issues of Echo Algorithms in WMNs 83
5.4.2. Analysis of the Communication Overhead 85

5.5. Algorithm Behavior in Presence of Packet Losses and Node Failures . . 87
5.5.1. Analysis of Faults, Errors and Failures of the Detection Algorithm 88
5.5.2. Explicit Reduction of Effects of Errors 93

5.6. Improving Algorithm’s Accuracy by Voting 95
5.6.1. Voters, Votes and Voting Rules 96
5.6.2. The First Round of Voting . 98
5.6.3. The Second Voting Round . 103

5.7. Summary . 107

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle
Size 109
6.1. Estimation of the Expected Face Size in Gabriel and Relative Neighbor-

hood Graphs . 110
6.1.1. The Ratio of Removed Edges in Planarization Process 110
6.1.2. The Expected Number of Faces and the Expected Face Size . . . 112
6.1.3. Simulation Results . 112
6.1.4. Interpretation of the Results – the Average Face Size in Limit . . 114

6.2. Estimation of the Shortest Cycle Size . 115
6.3. Summary . 120

7. Case Study: Measurements from Community Wireless Multi-hop Networks 123
7.1. Data Sampling and Simulation Methodology 123

7.1.1. Data Sampling Methodology . 124
7.1.2. Validity of Measurements . 127
7.1.3. Evaluation Methodology of Artificial Topologies 131

7.2. Data Analysis . 132
7.2.1. Node Degree Distributions . 132
7.2.2. Bridges and Articulation Points Analysis 133
7.2.3. Link Quality Analysis . 135

7.3. Summary . 137

8. NPART - Node Placement Algorithm for Realistic Topologies in Wireless
Multi-hop Network Simulation 139
8.1. Algorithm Description . 140
8.2. Topology Quality Metrics . 142
8.3. Evaluation of Characteristics of Topologies Created by NPART 146

8.3.1. Properties of Generated Topologies 148

x

Contents

8.3.2. Offsetting the Imprecision Brought by Simplified Environment
and Signal Propagation Modeling 150

8.3.3. Analysis of Algorithm’s Execution Time 153
8.3.4. Effects of Network Topology on Simulation Results 154

8.4. Summary . 156

9. Implementation and Verification of the Approach 157
9.1. Overview of the Evaluation Methodology 157
9.2. Issues of Proactive Topology Management for Bridge and Articulation

Point Detection . 160
9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor

Testbed . 166
9.3.1. Overview of Existing Testbeds and Selection Criteria 167
9.3.2. TinyOS and TOSSIM . 169
9.3.3. Testbed Setup and Data Collection 170
9.3.4. Implementation of the DIBADAWN Algorithm and the Evalua-

tion Procedure . 173
9.3.5. Detection Results . 173

9.4. Implementation of the Approach in Jist / SWANS Simulator 177
9.4.1. Jist/swans Simulator Setup . 178
9.4.2. Evaluation Results in Static Topologies 179
9.4.3. Assessing the Effects of Environmental Changes to Accuracy of

Approach . 183
9.5. Locality Characteristics of Wireless Multi-hop Networks and DIBADAWN191
9.6. Notes on Bayesian Rules . 196
9.7. Application of DIBADAWN for Improvement of Route Discovery Rates 198
9.8. Overview of Voting rules . 202
9.9. Summary . 205

10.Summary and Outlook 207
10.1. Contributions . 207
10.2. Outlook . 210

10.2.1. Improvements of DIBADAWN and Voting Procedures 210
10.2.2. Improvements of NPART . 212
10.2.3. DIBADAWN Application Scenarios 213

A. Analysis of the Exact Approach to Counting of Components in Random Ge-
ometric Graphs 217

B. Detailed Proof of the Distributed Bridge and Articulation Point Detection
Algorithm for Wireless Networks 219
B.1. Bridge Detection . 220
B.2. Detection of Articulation Points . 223

C. Precision and Recall of Random Markings 225

D. Detailed Evaluation Results 227

xi

Contents

List of Figures 257

List of Tables 263

xii

1. Introduction

1.1. Wireless Multi-hop Networks

Wireless multi-hop networks (WMN) are composed of autonomous processing nodes
that use wireless network adapters for communication and share common set of com-
munication protocols. In case that two nodes are unable to communicate directly, a
subset of network nodes is responsible for message relaying, hence they are called multi-
hop. They form a distributed system that is primarily used for communication, although
other distributed or centralized applications and services may be deployed in it. It is
usually implied that WMNs act in accordance with general guidelines that are defined
for best-effort networks [45].
WMNs are praised for their ability to automatically adjust to rapidly changing condi-

tions in the surrounding environment, as well as for reduction of deployment duration,
network setup and operational costs. In ideal case, effort invested in node configuration
before their deployment is minimal, nodes may move, join and leave network freely,
message routing is performed in a distributed manner with negligible overhead, and no
central administrative body is required. Unfortunately, that does not come for free.
When compared to widespread wired (LAN/WAN) or base station oriented wireless
networks (WiMAX, UMTS) WMNs may have deficiencies in throughput, security, QoS
guarantees, scalability, and billing mechanisms.
At the time of their introduction, they were envisioned as general purpose networks,

applicable in wide class of scenarios. However, some of the proposed application sce-
narios, such as the communication in a general purpose mobile ad hoc network, did
not match actual user needs [61], and have not been used in practice despite numerous
developed protocols. Research community has realized the need for application-oriented
protocols. The current trend is to focus on concrete scenarios and application areas,
reusing the knowledge obtained in research of general purpose WMNs. Exemplary ap-
plication scenarios include:

• Communication infrastructure is not available, deployment and operational costs
of traditional (wired or wireless with base stations) infrastructure are not accept-
able. Typical examples are general purpose community networks [7] [8] [10] [164]
[2] [151], industry and logistics networks [20][89][92].

• Considerable node mobility imposes immense costs for fixed infrastructure since it
must cover huge area. Examples are sensor networks for animal behavior tracking
in wilderness [97], or vehicular wireless networks (VANETs) [1] [17] [18]. VANETs
also possess inherent locality of data and services that are required by users.
This locality is important argument in favor of WMNs and enables creation of
interesting and useful applications.

1

1. Introduction

(a) OSI basic refer-
ence model.

(b) TCP/IP stack.

Figure 1.1.: OSI and TCP/IP protocol stacks. Some text. Some text. Some text. Some
text. Some text. Some text. Some text. Some text.

• Pre-deployment of network infrastructure is not possible because it is unknown
where it will be required (equivalently: extremely fast setup is needed) or environ-
ment is extremely hostile to deployed infrastructure like in military applications
[139] [115].

• Existing infrastructure may be damaged or destroyed by external factors so self-
reconfigurable WMNs are used as backup (or even primary) communication op-
tion. Disaster monitoring and management are prominent application fields [9]
[86].

In all scenarios, the primary functional requirement of a WMN is clear – it should
enable communication between pairs of nodes in the network. This complex task is
divided into subtasks and consigned to a set of network protocols.
Traditionally, the network protocols are placed in layers of communication stack that

isolate sets of common functionalities, provide clear interfaces between them and im-
prove understanding of the whole system. Two most common protocol stacks are OSI
(Open Systems Interconnection) reference model [182] and TCP/IP stack (Figure 1.1).
The division to layers, with a crisp-clear division of responsibilities among them, has

been criticized for a while so they are often taken more as guidelines than as manda-
tory standards. In order to provide better utilization of scarce resources, considerable
number of WMN protocols are developed as cross-layer: they combine functionality and
improve quality of more than one layer simultaneously. Even if the cross-layer tech-
nique is not fully applied, it is common to (re)use information from surrounding layers
for improvement of the targeted one.
In addition to mandatory correctness of functional behavior of WMN protocols, which

is a complex task on its own, applications and network services require various additional
non-functional properties. For instance, a general purpose wireless mesh network aims
at throughput increase, latency reduction, and traffic fairness while the energy efficiency
is of limited concern (most of nodes have permanent power sources). A typical large
scale sensor network focuses on extreme energy efficiency in order to extend node and

2

1.2. Motivation

Figure 1.2.: Distribution of topics in WMN research [58].

network lifetime, data volumes that it transports are low to moderate, occasionally going
to zero if no events of interest are observed. Fairness may be deliberately excluded to
give priority to certain, more important events over others. Additionally, some sort of
node localization is needed – usually it is important to know the event coordinates in
space-time, not only in time. Obviously, the same routing protocol cannot fulfill the
conflicting requirements imposed by sensor and mesh networks, so dedicated protocols
must be employed.
Even if a single application scenario is of concern, different layers of communication

stack may be targeted for improvement. Cinque et al. [58] have analyzed 114 papers
from prominent IEEE and ACM journals and differentiated them by research topics.
As it can be seen in Figure 1.2 majority of WMN research is focused on functional im-
provement of OSI layers two (data link) and three (network). There are some proposals
for transport protocol improvement. Some parameters of physical layer are manipu-
lated for topology control, but its core functionality is rarely addressed. Dependability1
topics are rather neglected and majority of developed protocols assume one of the most
important features of each network – its connectivity.

1.2. Motivation

The connectivity can be compromised and network partitioned by removal of a single
bridge or an articulation point (communication link or node, respectively, whose removal
disconnects a network). In a wireless multi-hop network (mobile or stationary), removal
of links can be caused by changes in the environment that affect the properties of wireless
channel, node movement or reduced transmission power of nodes. Removal of nodes can
be a consequence of node software/hardware failure, user-initiated shutdown, physical
destruction of a node, battery failure, etc.
A node or communication link failure does not necessarily partition a network. There-

fore, it is important to detect nodes and links that are critical for the connectivity. If
it is possible to perform biconnectivity testing (i.e., to identify bridges and articulation
points in the network), various corrective or preventive actions can be performed in the

1reliability, availability, real time and security

3

1. Introduction

network in order to improve its reliability or dependability of services deployed in it.
If corrective actions are not performed and bridge or articulation point is removed,

the network partitions. It compromises the most important functionality of a network:
communication between nodes from different partitions is no longer possible. Side effects
of partitioning include dissatisfied users and unavailability of services offered by the
network, in particular, if composite services are deployed. If density of nodes and
their rejuvenation rate is low, or movement patterns unfavorable, the network may
remain disconnected for prolonged time periods, considerably reducing availability of
its services.
The existence of bridges and articulation points in a WMN additionally increases

probability of network disconnection if compared with a wired network. In wired net-
works, it is possible that a node or an edge fails due to hardware or software errors and
this probability is approximately the same for all nodes in the network. Such failure
mode applies to WMN nodes as well. However, the energy constraints of WMNs (e.g.,
mobile or sensor networks) introduce additional node failure mode – the battery failure.
Since the articulation points are the only gateways between biconnected components of
a network, they tend to forward more traffic than other nodes in network. Thus, it is
more likely for articulation points to deplete their energy sources than ordinary nodes,
fail, and partition the network.
Furthermore, it is demonstrated in Section 9.7 that even if there exists a route between

two nodes, the routing layer occasionally cannot find it and declares the destination node
as unreachable (logical partitioning). Analysis has been performed and its outcome is
that the main source of problems are bridges which connect large network components.
Route-request messages that are lost on bridges do not reach whole components of the
network since there is no alternative path connecting the components. In denser parts
of network, losses of individual route-request messages are masked by redundancy of
their dissemination mechanism.
The issues of weak connectivity have been largely overlooked by the research commu-

nity, who instead devoted its attention either to dense and (almost always and at least)
2−connected networks or extremely sparse, almost always disconnected networks.
In a dense network, bridge and articulation point are either non-existent or extremely

rare, thus their impact is negligible and their detection brings minuscule benefits. Wide
spread artificial node placement algorithms have created the unawareness of fragile
connectivity encountered in real WMNs and its effects on deployed protocols. They are
incapable of creating connected low-density topologies so in order to produce connected
topologies, researchers are forced to use high node densities. If such setups are used in
simulation studies, they eliminate bridges and articulation points from network topology
and the issues which bridges and articulation points create in evaluated protocols.
The other extreme - Delay Tolerant Networks (DTN) operate under so harsh con-

ditions that existence of bridges as a direct communication channel is observed as a
favorable condition for network and its protocols. The protocols deployed in DTNs
deliberately sacrifice interactiveness of applications and dramatically increase commu-
nication latency. However, reach and usability of DTN protocols is limited since most
of applications are interactive – it is difficult to imagine an Internet user that is satisfied
with an outdated weather forecast or a sensor network that reports a fire in a forest
after it has been spreading several hours.
The measurements from Berlin’s and Leipzig’s mesh networks show that the truth

4

1.3. Problem Statement and Goals

may be between these extremes: the networks are connected, but with lower average
node density than in the typical artificial models used for analysis and simulation of
WMNs. The real networks exhibit high inhomogeneity – there exist exceptionally dense
sections of network but also very sparse parts. Finally, the sampled topologies have high
share of bridges and articulation points.
The reasons for lack of the detailed approach to bridge and articulation point detection

can be summarized in following four points:

• The need for detection and corrective actions was obscured by low number of
bridges and articulation points that are observable in existing artificial topology
generators [121].

• The protocols to be deployed in WMNs are evaluated in small testbeds [3] [4] or
in simulators that use dense topologies. In such environments it is not possible to
observe severity of issues that are created by bridges and articulation points.

• The absolute trust in network topology control has been established. It is assumed
that node density in a network or their transmission power can be arbitrarily in-
creased until k−connected network is obtained [36] [107]. This ignores cost factors
(a set of nodes is available for the whole network and it cannot be doubled or tripled
just to guarantee k−connectivity), physical node limitations (there is a maximum
transmission power output of a node), environment factors (world is not flat, three
dimensional objects can dramatically influence signal propagation) and most im-
portantly the dynamics of the network: nodes fail during network’s lifetime. Even
if k−connectivity of a network was established during its deployment, this prop-
erty may be invalidated by failure of several nodes. If node failures disconnect the
network, it is no longer possible to execute the procedure of transmission power
assignment for k-connectivity since it requires synchronization of node actions in
all partitions (that can no longer communicate).

• In rare cases when bridges and articulation points have been observed as a po-
tential issue, it has been taken for granted that proactive routing protocols are
capable of delivering very accurate network topology information, that is required
for biconnectivity testing by algorithms known from the graph theory [158]. This
property of proactive routing protocols has been ”confirmed” through simulation
of dense topologies, using unrealistic signal propagation models. In reality, packet
losses caused by channel fading decrease quality of topologies delivered by proac-
tive topology dissemination. Typically, it is sufficient for routing but it is not
precise enough for accurate biconnectivity testing.

1.3. Problem Statement and Goals
It may be said that it is better to eliminate bridges and articulation points from the net-
work, instead attempting to discover them. However, the general approaches proposed
in research that increase node density in a network or regulate node transmission power
in order to improve network’s connectivity have found limited application in reality.
The arbitrary increase in node density, as it was proposed in [36] [107], is not used in

practical WMN planning and management. Instead, realistic assumptions of a limited

5

1. Introduction

set of network resources with limited capabilities (e.g. transmission power) are used
[92].
In example of community networks, users are located all over a city and will not move

the nodes far away from their apartments just to improve network connectivity (the
network exists because of users not the other way around). Every additional, non-user
node imposes costs on hardware, setup, electricity, so such approach is used rarely or
never.
The main assumption in this thesis is that network shape, density and node properties

cannot be considerably changed. The involvement of human users must be minimized.
They might not possess adequate technical skill, resources, or simply they have no
desire to follow guidelines proposed by a networking protocol. It is difficult to imagine
that these intrinsic human characteristics will change so that they will act as a protocol
requires of them in order to eliminate weak network connectivity. Instead, it is proposed
in this work to detect bridges and articulation points in order to be able to apply
corrective actions to network, its services and data.
The existing approaches for bridge and articulation point detection rely on generous

assumptions regarding capabilities of nodes and communication links. They introduce
centralized servers [168], require global topology knowledge at each node [34] [57], de-
pend on precise node localization [57] [80], perfectly circular communication radius [34]
[80], instantaneous topology data dissemination [63], etc. They use biconnectivity test-
ing algorithms known from the graph theory. These algorithms are optimized for fast
execution and reduced memory consumption but assume perfectly accurate topology
knowledge or no message losses if they are executed in the distributed manner. They
are widely used in wired networks but they are not suitable for fast changing topologies
that are encountered in WMNs, where packet losses are common, communication chan-
nels are unreliable, with rather low throughput and high latency. Proactiveness required
for such algorithms does not scale and significantly increases contention on channel and
energy consumption, while the distributed versions of biconnectivity testing algorithms
encounter various data and control flow problems because of lost messages.
A network with unreliable message delivery creates considerable issues for all dis-

tributed algorithms executed in it. Since message delivery is no longer guaranteed,
algorithms that are correct if no messages are lost, may behave erroneously. Even the
”simple” tasks, such as the provision of complete system status2 between two correct
nodes is no longer possible in systems with unreliable communication [27].
Of particular importance for this work are limitations of link detection protocols im-

posed by unreliable communication in WMNs. It will be proven later that it is not pos-
sible to guarantee accurate link detection due to message losses. The accurate topology
knowledge is the precondition of successful and accurate application of biconnectivity
testing algorithms. This precondition no longer holds in WMNs because of the errors in
link detection, biconnectivity testing algorithms are applied to incorrect topologies and
their output may be erroneous.
The message losses in WMNs have their origins in physical laws, so they cannot be

removed from the system by choosing a different biconnectivity testing algorithm or
improving an existing one. The root-cause of issue is not in algorithms but in nature of

2In Section 3.1 of [27], the complete status is defined as ”both parties know outcome of transaction
and agree what happened”.

6

1.3. Problem Statement and Goals

the system, and as a consequence it is no longer possible to guarantee correct outcomes.
In this work, a probabilistic approach is taken instead – the goal is to minimize effects
of errors and to maximize the number of correct decisions in the system.
This work provides a distributed algorithm for bridge and articulation point detec-

tion in WMNs, capable of delivering the same or better accuracy of decisions as the
proactive counterparts, but with considerable reduction in communication overhead. It
is capable of operating in presence of message losses, accepting some decision errors but
guaranteeing some key properties such as the termination of the detection process.
The major issues of the existing detection approaches in real WMNs teach us that

idealization of network conditions, although a nice abstraction for theoretical analysis,
can be severely punished in reality. The networks where the algorithm is to be deployed
are dynamic, nodes fail and rejuvenate, environment changes, no messages exchanged
in the network are safe from losses and the area where communication is possible does
not have the circular shape.
All these real-life factors influence the biconnectivity testing algorithm, occasionally

causing faults in it. Most of the fault causes are inherent properties of nature. They
are experienced everywhere and they cannot be completely corrected in closed world of
computer science by abstractions that are derived from it. Therefore, a comprehensive
analysis of the impact of faults, how they are translated to errors in algorithm, and
eventually to failures of detection process was performed.
The analysis of faults and errors provides the guidelines where and how to correct

operation of the detection algorithm in order to reduce probability of erroneous decisions.
The existing theoretical model had to be extended so that it can operate in reality. As
already said, it cannot be expected that introduced changes, abstractions, and heuristics
can eliminate all errors, but they have to improve quality of decisions sufficiently so that
they can be used by network protocols, applications and services.
To summarize, the main contributions of this work are:
• A distributed protocol for bridge and articulation point detection that operates

successfully under uncertainty, in presence of faults caused by inevitable physical
laws of wireless communication. The detection algorithm fully utilizes benefits
of broadcasting nature of wireless network adapters, so its message complexity is
reduced to O(n) from O(e) (which is common in graph algorithms).

• A methodology for evaluation of accuracy of link-detection algorithms in pres-
ence of message losses. The methodology shows that the errors in link detection
process are inevitable. They are particularly numerous if parameters of the link
detection algorithm are improperly chosen. The methodology also serves as an
efficient framework for parameterization of the link-detection algorithms so that
the probability of errors in link detection is minimized.

• Measurement case study of community networks in Berlin and Leipzig, the anal-
ysis of existing topology generators, their comparison with measurements, and
demonstration that their topologies do not correspond to reality. In particular,
measurement study shows that bridges and articulation points are common in real
networks.

• Development of a new node placement algorithm that is capable to create realistic
topologies.

7

1. Introduction

• The evaluation of the algorithm indicated the existence of strong locality within
network topology. It was important to determine if it was just a stroke of luck in
the evaluation or a more general property. Mathematical analysis confirmed the
existence of an interesting characteristics of WMNs – if an alternative path between
nodes incident to a link exists, its length tends to be very short. This property is
utilized by the developed detection algorithm. It uses local searches and obtains
comparable accuracy to the complete network searches, which is particularly useful
in mobile networks.

The contributions of the thesis are not limited only to theory. If a solution of a
problem is to be successful and applicable, it should be devised so that it reuses existing
code and easily integrates with existing protocols. In the thesis, the implementation of
biconnectivity testing algorithm has been integrated with AODV (Ad hoc On-demand
Distance Vector) [137] routing protocol for its evaluation in the Jist/SWANS (Java in
Simulation Time / Scalable Wireless Ad hoc Network Simulator). Integration with
AODV brings benefit of further reduction of communication overhead – the algorithm
cooperates with underlying protocol and reuses information that is already available in
it. Finally, a sample application scenario is presented where decisions of the developed
distributed biconnectivity testing algorithm are used to improve success rates of route
discovery in a reactive routing protocol.
The key challenge encountered during the work was the necessity to step away from

the convenience of certainty. Often it seemed effective and easy to apply the existing
results known from the graph, multiprocessor or network theory to WMNs. After all,
a WMN is also a network with independent nodes which communicate with each other
and it can be abstracted as a graph. But again and again the uncertainty appeared,
and every time it had profound effects on the existing approaches.
The effects of uncertainty were particularly expressed each time the task in question

is to make a binary (dichotomous) decision: it is not possible to reach the consensus
necessary for correct transfer of control flow in distributed algorithms; a trivial task
of link existence detection in wired networks has turned into an error prone activity,
loaded with uncertainty, state changes and conflicting outputs. A location-aware bridge
detection protocol has been developed in [123], but it could not cope with unreliable
messaging and irregularities in communication, so its development had to be stopped.

1.4. Structure of the Thesis

The structure of the thesis is shown in Figure 1.3. Chapter 2 provides general intro-
duction to WMNs and describes how they are modeled in literature and in this thesis.
Chapter 3 addresses existing work that was performed on bridge and articulation point
detection, prevention of their occurrence through topology control, and protocols that
are resilient to network partitioning.
Stochastic models for analysis of link-detection algorithms are developed in Chapter

4, for static and for mobile WMNs. The results show inevitability of errors in link
detection. The probability of errors may be surprisingly high if parameters of link
detection algorithm are improperly chosen, so the methodology is also used for HLD
parameterization with the goal of error probability minimization.

8

1.4. Structure of the Thesis

Chapter 5
Detection Algorithm and Voting Rules

Chapter 9
Verification of approach and
dependability improvements

Chapter 4
Link Detection Analysis

Chapter 7
Case Study

Chapter 8
NPART

Topology Generator

Chapter 6
Locality in WMNs

Chapter 1
Introduction

Chapter 3
Related Work

Chapter 2
Background

Chapter 10
Conclusions
and Outlook

The hypothesis of bridge and
articulation point existence and
 impact is confirmed by

Known topology generators
are compared with case study
 and NPART

Efficiency of algorithm
is analyzed in

Generated
topologies are
used for

Are verified and
applied in

Provides input for

Proposed algorithm
 is compared with
existing
approaches

Issues of Link
Detection are
confirmed in

Figure 1.3.: Structure of the thesis.

Chapter 5 describes the developed approach to biconnectivity testing. The detection
algorithm is based on the Echo algorithms [55][67], introducing changes that allow the
execution in WMNs [120]. Its details are described in Sections 5.3 and 5.4. Faults in
the system and failure modes of the algorithm are described in Section 5.5. The method
for circumvention of errors, based on the voting theory, is presented in Section 5.6.
Chapter 6 explores locality of topology in order to evaluate performance of algorithm.

A mathematical model is developed that provides upper limits for the average minimum
cycle size in random geometry graphs as a function of network parameters. Based on
the mathematical results, the localized version of the detection algorithm is proposed:

9

1. Introduction

instead of searching the whole network, nodes search only in their neighborhood. It
is confirmed in Section 9.5 that mathematically predicted local searches in random
geometric graphs are valid and cause only a minor deterioration of detection accuracy
if applied in WMNs.
Case study from large community wireless multi-hop networks in Berlin and Leipzig

is presented in Chapter 7. It shows that bridges and articulation points are numerous in
reality, giving plausibility to this work. It also demonstrates that well-known theoretical
node placement algorithms cannot reproduce characteristics of real networks [119][121].
Chapter 8 describes Node Placement Algorithm for Realistic Topologies (NPART)

that was developed in order to improve topological modeling of WMNs and quality of
WMN simulations [122]. Comparison with the case study measurements shows that
NPART topologies are similar to real topologies with respect to multiple properties.
Chapter 9 evaluates the proposed detection algorithm and demonstrates that it can

be used to improve dependability in WMNs. Section 9.2 demonstrates that existing
approaches based on the global topology knowledge cannot provide expected quality of
decisions despite huge traffic overhead they impose on network. The behavior of the
developed approach to distributed biconnectivity testing and voting rules is evaluated
in two different environments:

• Section 9.3: approach is implemented and deployed in Motelab testbed [12]. Nu-
merous experiments are performed to evaluate its accuracy.

• Sections 9.4 and 9.5: Approach is evaluated in the event-based simulator SWANS
using different topology types, signal propagation models, for various algorithm
parameters, in presence of node mobility, using localized searches.

The algorithm’s accuracy in simulation is similar to that of experiments, showing
that the proposed biconnectivity testing approach is not over-optimized for a certain
environment. The algorithm is neither resource nor computation intensive as it was suc-
cessfully run in the Motelab network whose nodes are equipped with 8 MHz processors
and only 10 KB of operating memory.
The ultimate goal of biconnectivity testing is improvement of functional and non-

functional properties of WMNs. Section 9.7 provides a sample application scenario
where data from the biconnectivity testing algorithm is used to improve dependability
of route searches in reactive routing protocols for WMNs.
Chapter 10 concludes the thesis. It summarizes the achieved results and discusses

possible extensions of this work.

10

2. Background

This chapter provides an introduction to various topics that are used in the thesis.
It describes models of WMNs (Section 2.1), how to abstract WMNs as graphs and
random geometric graphs (Section 2.2). Section 2.3 provides overview of evaluation
methodologies used in WMN research: simulators, emulators and testbeds. Section 2.4
describes the accuracy metrics used for evaluation of bridge and articulation detection
algorithms.

2.1. Modeling of Wireless Multi-hop Networks

Simulation and theoretical studies of WMNs require detailed model as a starting point.
Due to the complexity of WMNs we can distinguish six major sub-models:

• Node model describes node properties such as: type of radio, available energy
source, memory capacity, processing capabilities, whether node knows its geo-
graphic location (GPS module), duty cycling, existence of nodes with extended
capabilities (”super-nodes”), etc.

• Node deployment and node mobility models. Deployment (placement) mod-
els describe shape and properties of placement area, and distribution of nodes in
the area. They provide node position in case of static networks or initial node
positions for mobile networks. Some of the most popular deployment models are
uniform and grid models. Mobility models describe movement patterns of nodes.
Node movement creates dynamic network topologies – because of mobility, links
between nodes are created and broken.

• Radio model defines the characteristics of the radio used by the node: its oper-
ating frequency, bandwidth, output power, reception thresholds, error correction,
MAC layer functionality, energy consumption in idle mode, for packet reception
and transmission, etc.

• Wireless signal propagation model describes the signal propagation through
the air and influence of environment on its quality. In simulators this model is used
to calculate the signal to noise and interference ratio (SNIR) at the receiver1. It is
then typically assumed that if the SNIR is higher than some prescribed threshold
(defined in the wireless radio model) the packet is successfully received. Frequently
used models for the signal propagation in WMNs are path loss, two-ray ground,
shadowing, and Rice/Rayleigh fading models.

1Bit error rate derived from SNIR is more precise but it is computationally too intensive for most of
simulation studies, so SNIR threshold is preferred

11

2. Background

• Packet loss model. The losses may be caused only by wireless channel properties
and packet collisions on channel or additional packets can be dropped, for instance
in accordance with uniform or Markov error models [70]. These models were
mostly used to offset the effects of low packet losses created by the unrealistic
path-loss-only models. With realistic wireless radio and signal propagation models
the need for them is substantially reduced.

• Traffic models define which nodes send (sources) and which receive (destinations)
traffic in the network as well as the properties of traffic flows. These properties
are defined in layers three (transport) and four (application) of the TCP/IP stack.
Usually, the transport protocol is either UDP or TCP. The application layer is
usually modeled as a constant bit rate (CBR) flow or a file transport protocol
(FTP) transfer. The application layer traffic also determines the used transport
layer (CBR flows are associated with UDP, FTP with TCP).

The joint model is then built by selecting individual sub-models: e.g., a static wireless
ad-hoc network is composed of 100 nodes placed uniformly on a square kilometer area;
in addition to path loss, there exists Rayleigh fading on the wireless channel; nodes use
ZigBee radios; nodes are unaware of their geographical locations; no additional packets
at nodes are lost; there are 10 FTP flows transferring 10MB file between randomly
selected source-destination pairs.
Some of listed sub-models are built from real data measurements (e.g., wireless signal

propagation in telecommunication research, see [25] for a detailed survey). Other like
topological and traffic models are synthetic or borrowed from wired network’s research.
There exists a notable lack of topological measurements in WMNs and researchers are
forced to use artificial node placement models in simulation and emulation of their
protocols.
The importance of real data sets for WMN research has been already noticed. The

CRAWDAD site [6] is the WMN community archive of various measurements. However,
in all CRAWDAD data sets observed network has either a single wireless hop or it was
collected from a testbed, leaving the problem of topological analysis of real, user initiated
networks open.

2.1.1. Node Placement Models
In order to build a connectivity graph of a WMN, it is needed to place the nodes in an
area, to determine the existence of a link between each pair of nodes and its quality.
There exists a number of different deterministic and random placement models that
shape the connectivity graphs. Three sample topologies created by these models are
shown in Figure 2.1. It is obvious that they differ substantially from one another. It is
shown in Chapter 7 that they are different from real topologies as well.
In WMN research, the most frequent node placement models are uniform, chain and

grid.
The chain placement model places nodes on a line. They may be located on equal or

random distance. The grid placement model deterministically places nodes at intersec-
tions of a rectangular grid. Usually, the grid has quadratically shaped cells with cell edge
length that is close to the communication radius of a node: e.g., distance between nodes
is 200m and the communication radius is 250m. It creates networks that are regular in

12

2.1. Modeling of Wireless Multi-hop Networks

Figure 2.1.: Sample topologies created by grid (left), uniform (central) and RWM (right)
models.

shape and provides excellent connectivity (there are no bridges nor articulation points
in this model), good resilience to node and link failures (in particular in the central
parts of the grid), and large set of disjoined paths between node pairs. Its structure
limits interference and node degree, in particular if the grid parameters are chosen so
that all nodes that are not on the grid border have a degree equal to four.
In the uniform placement model a placement area (rectangular or circular) of size
|A| is chosen and n nodes are placed inside of it with uniform probability λ = n

|A| . If
placement area is rectangular ((0, xmax), (0, ymax)), this is typically achieved by sampling
x coordinate of a vertex from U(0, xmax)2 and y from U(0, ymax).
Analytical and simulation studies have proven that it is particularly difficult to create

connected low-density topologies with existing randomized models. To ensure connec-
tivity of simulated network, node density is increased. Bettstetter shows in [36] that in
uniform placement model, nodes must have average degree of 10.8 to create a network
that is connected with probability of 0.99. Li et al. [107] provide even higher estimation
– they claim that obtaining of the same connectivity probability requires that network
nodes have 13.78 neighbors on the average. Such dense networks have strong impact on
simulation results since:

• For the same number of placed nodes, dense networks have smaller diameter than
sparse networks.

• Numerous independent paths between each pair of nodes exist

• Failures of individual nodes do not impact the connectivity nor the functionality
of the network

The need for improved node placement model in WMNs has been noticed and several
non-homogeneous models have been proposed [40] [110] [134]. It is claimed that such
inhomogeneous models improve quality of simulation results, and that they capture the
reality, but there exists no experimental proof for such claims.
Bettstetter et al. [40] place nodes in accordance with the uniform homogeneous

process and then apply thinning to it. The thinning operation removes nodes from a
2U(a, b) is the uniform distribution.

13

2. Background

network that have less than k neighbors within radius r (denoted as tr in [40]). The
parameters k and r are specified by the user and they control the level of inhomogeneity
of the topology. Bettstetter et al. also calculate several statistics for the obtained
model, such as probability of nearest neighbor survival and distance to closest neighbor.
However, authors of [40] discuss only the node placement, ignoring the properties and
connectivity of topologies that can be obtained from it.
Liu and Haenggi [110] propose two quasiregular placement models. In the first, vertex

coordinates are Gaussian distributed with the mean given by regular grid points. The
second selects vertices from a uniform placement model such that every selected vertex
is closest to a regular grid point. The obtained topologies resemble the grid structure
but they are not as regular as grids. Various other variations and inhomogeneity models
exist: in [71], two-dimensional Gaussian distribution is used to determine location of
sensor nodes. This idea can be extended so that there are multiple vertex focal points,
each of the focal points having a non-uniform distribution attached to it.
Onat and Stojmenovic [134] propose considerably different approach. They have de-

veloped several algorithms for creation of topologies that are connected with a high
probability, and allow user to choose the average node degree. The shape of topologies
primarily depends on the selected algorithm. The algorithms do not guarantee connec-
tivity of their output - if the end result is not connected, the algorithm is restarted.
Their analysis focuses on algorithm complexity and probability that created graph is
connected. The probability density function for node degree for each of algorithms is pre-
sented and the differences among placement topologies created by different algorithms
is informally (visually) demonstrated.

2.1.2. Mobility Models

Movement models change the connectivity graph over time: because of movement, node
distance varies which in turn changes communication link quality, breaks and establishes
them. Mobility may also alter the initial distribution of nodes.
One of the most frequently used movement models is RWM. In this model user de-

fines the minimum (vmin) and maximum (vmax) allowed speeds of nodes, and the pause
time between two movements. A node chooses a uniformly random point in the place-
ment area and heads towards it with a speed selected from U(vmin, vmax). Once the
destination is reached, the node waits for pause time and then repeats the whole process.
When this model was proposed, it was believed that RWM preserves uniform dis-

tribution and that the average speed of nodes is arithmetical mean of minimum and
maximum speed vavg = (vmin)+(vmax)

2 . Both of these assumptions were false. The aver-
age speed is substantially lower than the arithmetic mean [177]. RWM also increases
node density in central parts of the placement area and decreases it in vicinity of area
borders. This occurs because nodes choose the straight-line shortest path to the selected
destination and this shortest path tends to cross the central section of the placement
area. The precise stationary node density probability distribution function can be found
in [39]. These properties of RWM do not make it ”good” or ”bad”, but they are different
from the original assumptions.
Other movement models are not so ubiquitous as RWM and they are used to model

specific situations and scenarios: In Reference Point Group Mobility (RPGM) model
[168] nodes are divided in groups. Each group has a logical ”center” and geographic

14

2.1. Modeling of Wireless Multi-hop Networks

From/To Home Gathering place Elsewhere
Home - 0.8 0.2

Elsewhere 0.9 - 0.1

Table 2.1.: The parameters of the community mobility model [109]

scope. Trajectory of the group is determined by control of center’s path. Group’s (and
center’s) trajectory is defined by location, speed, direction, and acceleration. Nodes
are uniformly distributed within the geographic scope of a group. Each node has a
reference point which follows the group movement. A node is randomly placed in the
neighborhood of its reference point at each step, allowing independent random motion
behavior for each node within the group.
Group path is explicitly defined by an ordered sequence of check points and expected

arrival times. As the group center arrives at a check point, it computes the new group
velocity vector v from current and next check point locations and the required arrival
time for the next check point.
General framework of RPGM can be specialized for more concrete scenarios. In-place

Model divides the placement area into several adjacent regions, each having a group
assigned to it. Nodes do not move out of the assigned regions and interact only at region
boundaries. Convention model attempts to describe interaction between exhibitors and
attendees on a fair. Several groups present their products in separate rooms. Rooms
are connected and a group of attendees visits them, one by one. Attendees either stop
in one room for a while (pause) or they pass through it quickly (no pause).
Community model [109] defines placement area that is divided into s subareas, so

called ”communities” and there exists a ”gathering place”. Each node has one home
community. A node is more likely to visit its home community than other places. In
each community, and at the gathering place, there is a fixed (non-mobile) node. Nodes
select a destination and moves toward it with speed uniformly selected from (vmin, vmax).
At the destination it makes a pause (user defined), and selects next destination and
speed. If a node is at home, it goes with high probability to the gathering place. If it is
away from home, it is very likely that it will return home. Table 2.1 shows transition
probabilities that are defined in [109].
The authors argue that this model captures human mobility where the communities

are for example villages, and sensor network applications for animal tracking – the
gathering place may be a feeding ground, and the communities can be herd habitats or
pastries.
Node placement and mobility models are used on their own or combined. For instance:

Wei and Zakhor [171] use 7x7 grid to evaluate a multipath selection algorithm; Souryal
and Moayeri [152] simulate a routing algorithm which adapts itself to link fading in 8x8
grid scenario, combined with uniform placement and RWM scenarios; Jansen et al. [93]
have developed a proactive multipath distance-vector routing algorithm and evaluated
it in 10x10 grid and RWM scenarios. Aad et al. [23] combine two placement models - a
subset of nodes forms a static grid and a subset is moving within the grid in accordance
with RWM. Community and Inplace movement models are used in [159] for evaluation
of DTN protocols. Other examples of uniform, RWM and grid placement model usage
can be found, for example, in [24] [57] [179].

15

2. Background

2.1.3. Wireless Signal Propagation Models

Once nodes are placed, it is required to determine existence of links in the network,
interference patterns, their quality, etc. Although the signal propagation and the packet
loss are different phenomena, packet loss probabilities in simulation are calculated based
on the wireless signal propagation models. Other effects that affect successful packet
reception are ignored, unless the link layer is simulated (this is extremely rare in WMN
research). For instance, a popular simulator ns2 [70], if used with shadowing propagation
model, calculates SNIR ratio at the receiver at the start of a packet reception. If that
value is higher than a threshold, the packet is received. The redundancy bits in the
packet and individual bit errors are ignored. This is done in order to reduce computation
complexity and simulation run-time. In real systems even if SNIR was high at the start
the packet can be dropped due to SNIR decrease later on, or due to coding redundancy
a packet can be successfully received even if some of its bits were garbled by noise.
If a sender transmits the signal of strength pt and if received signal has strength pr,

the attenuation of the wireless channel is a = pt
pr
. It is assumed that the packet is

successfully received if the channel attenuation is less than some threshold attenuation
at. The channel attenuation has different components and can be expressed as a =
aPL + aSH + aFA[dB] where aPL represents attenuation due to the path loss, aSH due
to the shadowing and aFA is the attenuation due to the fading. Path loss is deterministic
while shadowing and fading are stochastic processes.
In the path loss model the signal strength decreases with inter-node distance δ in

proportion to 1
δα where α stands for path loss factor. Parameter α is two for vacuum

and it is higher if there are obstacles between sender and receiver. At certain distance,
the signal strength falls below the reception threshold at and the link is considered to
be not functional. This breaking point is called the communication radius R.
If path loss is used exclusively as signal propagation model, a link exists with proba-

bility one if node distance is less than or equal to the communication radius R and with
probability zero if the distance is larger than the communication radius. Link quality,
assuming rather low traffic in the network, is close to one even for nodes on inter-node
distances close to the R.
Measurement study [29] has shown that for fixed transmitter-receiver pair (constant

distance, frequency, and transmission power) the received signal power is not determin-
istic but varies due to the objects in and around the signal path. Figure 2.2 shows the
idealized path-loss model, where the signal strength is monotonously reduced as the
distance to transmitter grows, and measurements inside a warehouse [88]. Because of
the obstacles and reflection, signal strength is no longer monotonically reduced with
increase in distance δ but forms a highly complex patterns.
The shadowing propagation model abstracts different phenomena affecting the wire-

less signal propagation that can increase or decrease signal strength: diffraction, re-
flection, self-interference, scattering, absorbtion. The shadowing variations (in dB) are
given by the normal distribution with zero mean, path loss α and shadowing variance
σ2:

aSH(α, σ) = 1
σ
√

2π
exp(− α2

2σ2) (2.1)

Consequence of Equation 2.1 is that communication does not have the Heaviside-

16

2.1. Modeling of Wireless Multi-hop Networks

Figure 2.2.: Comparison of the mean signal strength predicted by the path-loss propa-
gation model and measurement results [88].

function dependability on distance like in path-loss-only models – even if two nodes are
close, they may experience problems on the communication link and even if they are
far away, they may be able to communicate. For instance, a high and thick concrete
building impacts all communication links that traverse it, substantially shortening the
communication range of nodes, increasing packet loss or even disabling communication.
Simultaneously, in proximity of same building large open space may exist, enabling
excellent long-range communication over it.
The shadowing model from Equation 2.1 has its limitations as well. One of the most

important is that it cannot correlate shadowing (all nodes that communicate through
the building from previous example are affected by it). A correlated shadowing model
that partially solves this issue has been proposed in the literature but it is intended for
single sender-multiple receivers scenarios, not for WMNs.
The last component of attenuation is fading aFA. The effects of fading are observed

as rapid and hectic changes of the strength and phase of received signal. The signal
variations are experienced in a fraction of a second or shorter. The fading is caused
by the multipath signal propagation: receiver’s antenna receives multiple copies of the
transmitted signal, each having followed a different path. The objects (the scatterers)
at and around the propagation paths are reflecting the transmitted radio signal (Figure
2.3).
Paths have different lengths. Because of the finite propagation speed of light, signals

traveling along different paths are delayed differently at the receiver. Additionally, each
signal copy has its attenuation, since it encounters different obstacles on its way.
At the receiver, multiple copies of a transmitted radio wave result in an interference

pattern, where at certain points the waves interfere constructively while at other points
they interfere destructively. If the propagation environment is absolutely static (trans-

17

2. Background

Figure 2.3.: Multipath signal propagation.

mitter, all scatterers, receiver), the interference stays constant and the channel is time
invariant. If there exists any kind of movement in the environment, the propagation
paths will be time variant, and as a consequence the wireless channel also becomes time
variant.
Because of the large number of reflection paths and unknown attenuation coefficients

of paths, it is not possible to derive deterministic expressions that fully describe fading.
Instead, a statistical description is used as a way of characterization of the phenomenon.
If there exists no dominating path (no line of sight between transmitter and receiver),

the Rayleigh fading model is to be used and the amplitude of the received signal varies
according to Rayleigh distribution. The attenuation distribution is Ricean if there
exists line of sight component of signal. The line of sight component dominates other
components, its reception power is stronger than of the reflected paths and its delay
shorter. Depending on the ratio between power of the direct path and power of the
reflected paths, the Rice distribution can model different line-of-sight scenarios.
More details and precise mathematical models of signal propagation may be found in

[25][51][144].

2.1.4. Medium Access Control Sublayer
Medium access control provides channel access control mechanisms and node addressing.
Each network adapter has a unique (within a network or globally) physical address.
Addressing allows data packet delivery to targeted destinations. Medium access control
is used to avoid and/or detect packet collisions packet-contention channel is used (e.g.,
CSMA/CA) or to use only the channel resources which are reserved for the network
adapter (e.g., sending of data only within the assigned time slot in TDMA scheme).
For implementation of the proposed biconnectivity testing algorithm it is important

that MAC layer supports two different means of communication:

• MAC Broadcast: packet is intended for all nodes that receive it. The recipient
does not send an acknowledgement on reception of a broadcast packet.

• MAC Unicast(or just unicast): packet is intended for a single recipient. Upon
reception of a unicast packet, recipient must acknowledge it. If sender does not

18

2.2. Graph as a Wireless Multi-hop Network Model

(a) Example of a connectiv-
ity graph, t = 0.

(b) Example of a connectiv-
ity graph, t = 0.3.

(c) Example of a connectiv-
ity graph, t = 0.6.

Figure 2.4.: Graph models of a wireless network.

receive the acknowledgement, the packet is sent again. If recipient receives mul-
tiple copies of the same packet, redundant copies of a packet are dropped but
acknowledgements are sent. Sender initiates transmission up to retry times be-
fore it drops a packet.

Unicast messages may be received by multiple nodes because of the broadcasting
nature of wireless medium, but the network adapter filters them out by receiver address.
Some protocols (e.g., 802.11) use higher signaling speed for unicasts than for broadcasts,
making unicast packets more susceptible to losses.
If a message is intended for all nodes in the network, MAC layer functionality is no

longer sufficient and the network-wide broadcasts (or just broadcast) is used. In large
wireless networks recipients are not directly reachable over MAC layer so a higher layer
protocol is used for multi-hop broadcasting. One of the most common network-wide
broadcasting algorithms is the flooding: every node that receives a message intended
for broadcasting, sends it once using the MAC Broadcast and ignores the subsequent
receptions of the same message. In order to reduce packet collisions on the air node
randomly decides how long should it wait before starting the MAC broadcast.

2.2. Graph as a Wireless Multi-hop Network Model

The complexity of individual WMN sub-models and their interplay in the composite
WMN model impose insuperable difficulties for analytical solvers. In order to contem-
plate on general properties of network behavior, precision of the composite model is
sacrificed and a model of higher abstraction level is introduced.
Graphs are commonest mathematical models of communication networks. Network

nodes are represented as vertices and communication links as arcs. In the thesis the
weighted graphs are used to model WMNs. If node A is able to communicate with node
B there exists an edge AB in the communication graph. Edge may be annotated with
weights. The weights can represent throughput, bandwidth, distance of nodes, delay,
quality of a link, etc. Unless specified differently, the weight wAB represents the link
quality. Link quality wAB is the probability that a packet successfully traverses the link
in direction from A to B. Edge also has the weight wBA assigned to it to describe the
probability of traversal in direction from B to A. Weights need not be the same (as
shown in Figure 2.4), but they must be larger than zero (no unidirectional links are
allowed in the model). A pair of arcs between two nodes forms an edge.

19

2. Background

ETX 10 30 50 100
Link quality 0.312 0.182 0.141 0.1

Correct reception (U) 0.952 0.8 0.703 0.569

Table 2.2.: Relation between ETX metric, link quality and probability of successful
packet reception if MAC unicast (U) (1+7 retries) is used.

2.2.1. What is Topology of a Wireless Multi-hop Network?
Intuitively, the transformation from a real instance of a WMN to a graph is a bijection:
every network node is mapped to a graph vertex and every communication link to an
edge in the graph.
Such mapping is natural in wired networks – cabling provides the needed information

on link existence. In a wireless network the link existence is not so clearly defined.
In a wireless network, whether two nodes are capable of communicating and what

is the quality of their communication depends on node characteristics, network traffic,
and environmental factors. Signal attenuation, noise on channel and at the receiver
radio, and contention on the shared communication medium cause that some packets
are received and some lost.
In such an environment a metric is needed that defines which node pairs can communi-

cate in an acceptable manner. What is acceptable is application dependant – applications
have different requirements with regard to allowed packets losses, packet delay and jitter.
In this work, the probability of packet loss/successful reception is chosen as the metric

of link acceptance. The packet loss also strongly relates to other application-relevant
metrics. Packet losses lead to communication retries. Most of the wireless MAC layers
use exponential backoff between successive retries, so with each successive loss the packet
experiences longer delay. Since the length of loss sequence is stochastic, consecutive
packets at receiver may be delayed differently, thus the packet losses also influence the
jitter.
The packet loss probability (equivalently the probability of successful packet recep-

tion) between nodes A and B is often different from loss probability in direction B to
A. A metric that joins these probabilities in a single value, the so-called ETX, was
proposed in [64].

Definition 2.1 The estimated number of packet retransmissions (ETX) for wireless
link between nodes A and B is calculated as ETX = 1

wAB ·wBA .

Table 2.2 illustrates dependency between ETX value and a successful transmission of a
packet if MAC broadcast or unicast is used. The values in the table are approximative
since they are calculated under assumption that packet loss probability is symmetric
(wAB = wBA = ploss = 1√

ETX
).

It is not possible to determine one link acceptance threshold that suffices to all ap-
plications and network services. Obviously, applications prefer higher link quality, but
some of them also accept (may function without major issues) lower link quality. We
leave the selection of the link acceptance threshold to user. In context of bridge and
articulation point detection (in particular, during the evaluation in Chapter 9) the pro-
posed approach is evaluated with different thresholds, to demonstrate that its accuracy
is almost independent of the threshold value.

20

2.2. Graph as a Wireless Multi-hop Network Model

Figure 2.4(a) shows the graph of a WMN with all its links. Its shape would remain
the same if the link acceptance threshold t is below 0.18. If the acceptance threshold
t is set to 0.3 some of the links in the graph are eliminated and the resulting topology
can be seen in Figure 2.4(b). Number of edges in topology is further reduced if the link
acceptance threshold increases to 0.6 (Figure 2.4(c)).

2.2.2. Graph Theory Basics

In this section are defined some of the important notions that are used later in the
text [173]. The terms ”connectivity graph” and ”network”, ”vertex” and ”node”, ”edge”
and ”link” are used interchangeably so the definitions from text apply to graphs and
networks equally.

Definition 2.2 In communication graph G(V,E) physical nodes are represented as ver-
tices V (G) and communication links as edges E(G).

Definition 2.3 Walk of length k is a sequence v0, e1, e2, ..., ek, vk of vertices and edges
such that ei = vi−1vi for all i. A trail is a walk with no repeated edge. A path is a walk
with no repeated vertex. A u, v walk is a walk with first vertex u and last vertex v.

Definition 2.4 Cycle is ordered list of vertices v1, ..., vn such that vi−1vi and v1vn are
edges in G.

Definition 2.5 Graph G(V,E) is connected if for each pair of vertices a and b there
exists a path (a, b). Otherwise the graph is disconnected. The components of a graph
are its maximally connected subgraphs.

Definition 2.6 Two vertices a and b are adjacent if there exists an edge between them
(ab ∈ E(G)). If vertex a belongs to an edge e, e and a are incident.

Definition 2.7 The degree of a vertex v in a graph G, written dG(v) or d(v) is the
number of edges incident on v.

Definition 2.8 A pendant vertex is vertex of degree 1.

Definition 2.9 A bridge in a graph is an edge whose deletion increases the number of
components. An articulation point in a graph is a vertex whose deletion increases the
number of components in the graph.

It is clear from Definition 2.9 that vertices incident to a bridge are also articulation
points if they are not pendant vertices. If a pendant vertex is removed from G, the re-
moval does not affect other nodes in the network – the number of connected components
in the graph does not change.

Lemma 2.1 An edge e = xy in graph G is a bridge if and only if G − e has no x, y
path.[173]

21

2. Background

Corollary An edge in a undirected graph G is a bridge if and only if it does not belong
to a cycle.[173]
Let us assume the opposite: "an edge belongs to a cycle if and only if it is not a

bridge." It is clear that e = xy belongs to a cycle if and only if G− e has an x, y path,
which by Lemma 2.1 is true if and only if e is not a cut edge.♦
This corollary will be extensively used in Chapter 5, where the edges are checked

whether they belong to a cycle, and if not, they are declared as bridges.

Definition 2.10 Let the expression d(a, b) denote the length of the shortest path between
two vertices in a graph. Then the diameter of a graph G is maxu,v∈V (G)d(u, v).

Definition 2.11 Length of a cycle C is number of edges that compose it. Shortest cycle
over an edge is cycle Cs(e) whose length is minimal of all possible cycles in which the
edge can participate.

Definition 2.12 A graph without cycles is acyclic. Tree is a connected acyclic graph.

If a tree is constructed in a cyclic graph, edges that are not included in the tree are
called cross-edges.

Definition 2.13 A spanning subgraph Gs of G has all vertices as G. Spanning tree is
a spanning subgraph that is also a tree.

Definition 2.14 Level of a vertex in a tree is its distance from the root.

Definition 2.15 In a tree T, a common ancestor of nodes A and B is every vertex
which descendants are both A and B.

Definition 2.16 Highest common ancestor (HCA) of two vertices in a tree is vertex
HCAAB that has highest level of all their common ancestors.

2.2.3. Random Geometry Graphs

In graph theory, we are often interested in behavior of certain properties on a whole class
of graphs, without predefining concrete graphs. The random graph theory is introduced
to avoid determinism of studies on predefined graphs.

Definition 2.17 Random graph is a graph created by a random process.

Existence of vertices and edges in a random graph is defined by a random process.
Thanks to this randomness, instances of random graphs can be considerably different.
Simultaneously, they have common properties (e.g., probability distribution of edge
existence), allowing analytical and simulation study of their characteristics. One of the
most popular random graph models is the Erdos-Renyi graph, where each of the

(n
2
)

possible edges exists with a constant probability p.
Such models, where edge existence is predefined and does not depend on node location

are inappropriate for modeling and analysis of wireless networks. Instead, random
geometry graphs are used.

22

2.2. Graph as a Wireless Multi-hop Network Model

Definition 2.18 Random geometric graph is created by random placing of vertices in
a predefined finite or infinite space. An edge exists between two vertices only if their
Euclidean distance is less than a predefined threshold R.

This model is not ideal: it does not account for all properties of wireless communi-
cation such as signal shadowing or interference. Still, it is more precise and applicable
than pure random graphs.
The Definition 2.18 does not specify the random process used in graph creation, so

further refinement and specialization to a specific class of random geometric graphs is
required. Usual approach in WMN research is to observe a set of vertices uniformly dis-
tributed in two dimensions in a bounded rectangular or an unbounded area. Stationarity
and homogeneity of the placement process are also assumed.
Uniform point distribution of nodes over an area can be seen as an approximation of

the homogeneous Poisson point process and vice versa. In the uniform node distribution,
the number of nodes in the placement area has always the same value n. In the Poisson
point process, the number of nodes in placement area is distributed in accordance with
the Poisson distribution with a mean value n. For large n variation around it is relatively
small so the results obtained for Poisson point process are applicable to the uniform node
distribution scenarios.
Detailed theory of Poisson point processes can be found in [62]. The theory of Poisson

point processes is generalized to d-dimensional spaces but of our interest are only two
dimensional processes.
In text, the following notation is used: The intensity of the point process is marked as

λ, observed area in the plane is marked as A, size of the area A is |A|, expected number
of nodes n in the observed area is n = λ|A|, the Euclidean distance of two nodes A and
B is δ(A,B).
A graph has e edges and c(G) components. If a graph is planar it has f faces and

a face has size s (s edges are forming the face). During planarization process, a set of
edges ed has been removed (deleted) from the starting graph.

2.2.4. Planarization of Random Geometric Graphs

It has been noted in wireless networks that dense graphs experience communication
issues (e.g., due to interference on wireless channel) and unnecessary energy expen-
diture. To tackle the problem, topology control techniques are used, simplifying the
connectivity graph. A set of edges is logically removed from it if they will not be used
for communication although the nodes can physically communicate. It is claimed that
such simplification of connectivity graph can improve properties of the network (e.g.,
scalability [95], energy consumption [50] or even reliability of communication [44]).
One of approaches used for topology control is planarization of the connectivity graph.

Gabriel Graphs (GG) and Relative Neighborhood Graphs (RNG) are particularly prac-
tical for the planarization because the algorithms are distributed and they preserve the
graph connectivity.

Definition 2.19 A drawing of a graph G(V,E) maps vertices V to points in a plane
and each edge AB in polynomial curve A,B. A polynomial curve U, V is union of finite
number of line segments that share only their endpoints and that starts at U and ends

23

2. Background

in V . A graph is planar if no two polynomial curves intersect, except at vertices of the
graph.

Definition 2.20 An open set in the plane is a set U ∈ R2 such that for every P ∈ U ,
all points within some small distance from P belong to U. A region is an open set U
that contains a polygonal U, V path for every pair U, V ∈ U . Face of a planar graph is
the maximal region of the plane that is disjoint from the drawing.

Gabriel and Relative Neighborhood Graphs are created from a graph by deciding
whether an edge is removed from the graph G. The following rules are used:

Definition 2.21 An edge AB exists in Relative Neighborhood Graph if the distance
between the nodes δ(A,B) is less than or equal to the distance between every other node
W in the graph and the further of the nodes A and B:

∀W 6= A,B : δ(A,B) ≤ max(δ(A,W), δ(B,W)).

Equivalent claim is that if there is at least one node (a witness node)W in the shaded
lens shaped area in Figure 2.5(a), the edge AB is eliminated from the starting graph,
otherwise it remains in the Relative Neighborhood Graph.

Definition 2.22 An edge AB exists in Gabriel Graph if there is no witness node W in
the circle whose diameter is δ(A,B) and to whom both nodes A and B belong to:

∀W 6= A,B : δ2(A,B) < δ2(A,W) + δ2(B,W).

In Figure 2.5(b) the edge AB will be removed if there is at least one witness node W
in the shaded circle.
GG and RNG contain the minimum spanning tree (MST) of the starting graph so they

guarantee preservation of the connectivity. In case that the starting graph is discon-
nected, the resulting graph remains disconnected but the number of graph components
does not change. It has been proven in [163] and [132] that MST⊂RNG⊂GG. This also
means that |MST | ≤ |RNG| ≤ |GG| and consequently n−1 ≤ |RNG| ≤ |GG| ≤ 3n−6
(the lower bound represents the MST size and the upper bound is the maximal number
of edges in a planar graph).
In survey [94], Jaromczyk and Toussaint list graph properties, bounds on the graph

size as well as algorithms for construction of proximity graphs (GG and RNG are proxim-
ity graphs). Devroye in [66] provides asymptotic lower bounds on graph size independent
of the node placement density λ. However, in [66] the existence of a link in a graph
depends solely on the presence/absence of witness nodes. That is as if setting threshold
R from Definition 2.18 to infinity, which is beyond acceptable approximation for WMN
study.
In estimation of cycle sizes in random geometric graphs (Section 6.1), the following

definitions and notational conventions are used:

Definition 2.23 Circular segment is a portion of a disk whose upper boundary is a
(circular) arc and whose lower boundary is a chord making a central angle θ < π. In
text it is marked as _.

24

2.2. Graph as a Wireless Multi-hop Network Model

(a) Relative neighborhood graph. (b) Gabriel graph.

Figure 2.5.: Witness area and construction of neighborhood graphs.

Definition 2.24 Circular sector is obtained by taking a portion of a disk with central
angle θ < π. In text it is marked as 5.

Definition 2.25 Lens is union of two identical circular segments that share the same
chord. In text it is marked as G.

The area of a circular segment is:

A_(r) = R2 arccos r
R
− r

√
R2 − r2. (2.2)

where r is the distance of circle center to the chord. The area of lens is twice the
area of a circular segment. The area of the circular sector is trivially calculated as
A5(θ) = 1

2R
2θ.

Traditionally, RNG and GG have been used in areas such as computational morphol-
ogy, spatial analysis or pattern classification. Recently, they are applied to the domain
of wireless communication and wireless ad hoc networks. Both are used for various ap-
plications, but due to its higher density (as derived later in Section 6.1), Gabriel Graphs
are preferred to Relative Neighborhood Graphs.
Cartigny et al. in [50] use RNG and its subgraph LMST (local minimum spanning

tree) to provide energy efficient broadcast in ad hoc networks. Wang et al. in [169] use
Gabriel, Relative Neighborhood, Yao and Delaunay triangulation graphs for efficient
Bluetooth scatternet formation. Johansson and Carr-Motyčková [95] use a variation of
Gabriel graph to reduce the interference in ad hoc networks.
Bose et al. [44] and Karp and Kung [98] proposed usage of planarized graphs for rout-

ing in location aware WMNs. Both routing protocols use greedy strategy to approach
the destination as fast as possible and switch to routing along faces of planarized graph
in order to avoid local minimums. In [44] is proved that this strategy ensures message
delivery. Kuhn et al. [103] propose geometrical routing algorithm GOAFR+ which uses
Gabriel graphs and prove that it is asymptotically optimal in the worst case.
These studies claim that planarization may provide desirable properties, but they are

incomplete: errors introduced by localization equipment are not discussed, nor effects
of shadowing and fading on their properties (e.g., greedy geometrical protocols prefer
longest links that usually have poor quality and high probability of packet losses).

25

2. Background

2.3. Simulators, Emulators and Testbeds - Their Benefits and
Drawbacks

Usually it is not possible to analytically solve detailed models presented in Section 2.1.
Even if simplified graph models are used, complexity of their solving may be too high
(e.g., exponential complexity for calculation of partition distribution from Appendix A)
and for complex protocols no analytical solving methods are known. Instead, protocols
are tested in simulators, emulators and testbeds.
Network simulators, such as ns2 [70], OMNET++ [15], SWANS [19], TOSSIM [106]

are favored for their fast prototyping and cost efficiency so they are preferred to emula-
tors and testbeds in early stages of protocol implementation.
An additional and important benefit of simulations is their repeatability: same simu-

lator engine and the identical simulation setup must lead to the same outcome (within
margins of statistical error). The repeatability is scientifically important since it enables
verification of the algorithm by independent researchers and fair comparison with other
approaches.
Simulators require careful modeling of the end system if realistic and meaningful

results are to be obtained. The worst that can happen is to come to a conclusion that
a protocol is good enough to be implemented and deployed in real systems, just to find
out that important aspects have been omitted within the simulation study and that
protocol is actually unusable.
The discrepancy between model and reality can be very subtle as noticed in an IBM

study of Mote nodes [160]. The IEEE 802.15.4 has been implemented on Mote nodes.
It was planned to build a WMN for logistics management out of them. Testing revealed
that the Mote nodes do not have sufficient processing power to timely respond to all
interrupts created by MAC layer. As soon as the traffic in network grows above certain
limit (which was very low - one packet per node per second), the nodes cannot operate
MAC layer and the network collapses. Such behavior is untraceable in most of simulators
which do not account for processing speed of individual nodes.
Emulators are at the border-line between simulators and reality. Nodes in emulator

are real, they can run real software instead of simulation code, protocols built for them
are deployable to real networks without or with minor modifications. However, the
packets are not sent but packet delivery is calculated, like in simulation. Emulators can
be large and flexible - for instance, the ORBIT emulator [16] consists of an indoor radio
grid emulator consisting of 400 nodes in a 20x20 grid. The grid can be dynamically
configured to form differently shaped topologies.
Network testbeds are the best choice for protocol testing because there are no hidden

assumptions in them like in simulators and emulators. They are widely used for MAC,
networking/routing or transport protocols verification. However, testbeds are limited
spatially and in node count. WLAN based testbed do not scale to hundreds of nodes
like real networks: MIT Roofnet has between 30 and 40 active nodes [3]; wireless mesh
testbed at University of California in Santa Barbara [4] has 25 nodes in one building
distributed over five floors; Kotz et al. [100] created a 33 node mobile testbed at
University of Darmouth. Wireless sensor testbeds like Motelab [12] or TWIST [84] have
more nodes but due to limited communication capabilities of sensor nodes, they are
spatially limited to a single building.

26

2.4. Accuracy Metrics of Biconnectivity Testing Algorithm

Data sampling in testbeds is easy. The complete control of nodes allows detailed
logging of events of interest and their forwarding to a central collection server. Still,
testbeds are not universally applicable. For instance, if considered for analysis of topo-
logical properties, testbeds have several serious drawbacks:

• Network topology in testbeds does not originate from user behavior but from
designers assumptions such as initial node placement. It may or may not follow
the real user behavior.

• Limited size of a testbed may restrict it to a single type of propagation environment
(e.g., an office building in [4]) that in turn creates topologies specific for that type
of propagation environment.

• In order to reduce the maintenance effort and costs, it is common to use the same
equipment for the whole testbed. In real networks, with the growth of a network
grows the diversity of propagation environment and of the equipment deployed in
it.

Other measurements in testbeds can be influenced, but to a smaller degree. For
instance, traffic patterns and testbed’s topology are related with interference patterns
in the testbed, providing partially synthetic link quality data.

2.4. Accuracy Metrics of Biconnectivity Testing Algorithm
If a correct algorithm is executed in a deterministic environment with accurate system
state knowledge it performs its task correctly (if there are no errors in its implemen-
tation). If only a partial system state information is known, if the knowledge is not
completely accurate, or if heuristics are used to improve performance of an algorithm,
its output may be incorrect. In context of this work, communication and node faults
in WMNs introduce errors in the biconnectivity testing algorithms, so the algorithms
make erroneous decisions.
If an event occurs and an algorithm decides that the event has occurred, such com-

posite event is a true positive; if the algorithm decided that event did not happen, but
it happened, the composite event is false negative, etc. The confusion matrix in Table
2.3 lists all four possibilities.
An algorithm with correct output does not produce false positives and false nega-

tives. If they are produced (for any of the previously listed reasons), they should be
few. The absolute count of events from the confusion table is impractical for compar-
ison of different algorithms since they may be tested on different number of samples.

actual positive actual negative
decided positive true positive false positive

TP FP
decided negative false negative true negative

FN TN

Table 2.3.: Confusion matrix.

27

2. Background

Instead, precision and recall are used as accuracy metrics. Precision and recall were
originally introduced for evaluation of performance (quality) of machine learning algo-
rithms. Later, they have been used for evaluation of algorithms in failure modeling.
In the thesis they are used for accuracy evaluation of the bridge and articulation point
detection algorithms.
Precision is the ratio between the number of correct decisions and all decisions:

precision = TP

TP + FP
. (2.3)

Precision is the probability of correct marking of an observed event. For instance, if
an algorithm decides that an event has occurred ten times and its decision was correct
in nine cases, its precision is 0.9. However, precision does not capture the ratio of
successfully identified events. The recall represents the probability of identification of
event of interest:

recall = TP

TP + FN
. (2.4)

For the previous example, if out of 30 events only nine were correctly identified, the
algorithm has recall of 9/30 = 0.3.
These two measures are typically observed together since each of them alone is not

sufficient to describe the efficiency of a decision algorithm. For instance, a bridge de-
tection algorithm which decides that every edge in a graph is a bridge has a recall rate
of 1 (perfect) but its precision is equal to share of bridges in the graph, which can be
very low. Other extreme case would be a very conservative algorithm which decides
that an edge is a bridge only when the edge is incident to a pendant node – precision
of such algorithm is 1 (perfect) but it fails to recognize all other bridges in the graph,
thus having a small recall. Both values can be easily depicted on precision-recall plots:
the x axis is precision of the algorithm and the y axis is its recall. A correct algorithm,
that does not make errors, is located at (1,1) in the precision-recall plot.
The Fα measure is the weighted mean of precision and recall and it is used to transform

precision and recall into one numerical value:

Fα = (1 + α) · precision · recall
α · precision+ recall

. (2.5)

The parameter α defines the weight in favor of one or other metric. For instance, F 1
3

weights recall three times more as precision and F2 weights precision twice as much as
recall. The user of the metric must decide on value of parameter α. In some scenarios
it is difficult to exactly determine relevance of metrics and equal importance is assigned
to both. If both values are weighted equally (α = 1), the traditional F-measure or F1
measure is obtained:

F = 2 · precision · recall
precision+ recall

. (2.6)

In context of bridge and articulation point detection and its applications, it is also
important to capture the relative location of a cut-edge or -vertex within the graph. A
bridge incident to a pendant node is usually less important than a bridge that divides
a network in half.

28

2.4. Accuracy Metrics of Biconnectivity Testing Algorithm

To illustrate the importance of bridge position in a network, let us assume that there
exists a single bridge in a network, forming 2 subgraphs connected over it. Each of
the subgraphs is either at least 2-connected or consists of a single node. If one of the
subgraphs consists of k nodes, the other has n− k nodes.
In such a network, number of node pairs that avoid bridge traversal during communi-

cation is k(k−1)
2 + (n−k)(n−k−1)

2 . Number of node pairs which have to use the bridge while
communicating is k(n− k). The probability that two nodes selected randomly from the
network will have the bridge as a part of their communication path is (probability of
bridge traversal Pbt): Pbt(k) = 2k(n−k)

n(n−1) .
If the bridge is placed at the border of the network, connecting a single node with

the rest of the network, its impact will be negligible Pbt(1) = 2
n . If a bridge divides

network in two equal parts, it creates the maximum number of paths traversing the
bridge: Pbt(n2) = n

2(n−1) ∼
1
2 . This can seriously impact the global functionality of the

network – even with moderate traffic, the centrally placed bridge is likely to be heavily
congested. Not only that this congestion reduces the available throughput per flow,
but it can compromise other properties: for instance due to the long waiting times of
packets to traverse a bridge, delivery deadlines for the real time traffic may not be met.
In order to quantify the relative position of a bridge/an articulation point in network,

the reward metric is used. Reward is defined as the number of paths that must use the
bridge or articulation point.
The reward assigned to a bridge/an articulation point is calculated in the following

way. First, the total number of paths that are possible in a graph is calculated. Then, a
bridge or an articulation point is removed from the graph, and the number of all possible
paths is calculated for the new graph. The reward is the absolute difference of the two
path-counts.
Depending on the edge/vertex location the metric takes different values. For instance,

in a connected network of n nodes, a bridge incident to a pendant node has reward of
n(n−1)

2 − ((n−1)(n−2)
2 + 1) = n − 2. If another bridge divides network into two equal

parts, the reward for its detection is n(n−1)
2 − 2

n
2 (n2−1)

2 = n2

4 . The metric is expressive
and vividly differentiates between peripheral and central bridges/articulation points. If
network from the example has 100 nodes, the reward for detection of a bridge incident
to a pendant is 98, while the centrally placed bridge has reward of 2500.
For a given simulation setup, the average value of reward is calculated over all decisions

that are made on all bridges/articulation points. For example, if biconnectivity testing
algorithm was executed three times in network described in the former example, so that
the peripheral bridge was detected all three times, the central only twice, the average
reward equals to 3·98+2·2500

3·2 = 882.33.

29

3. Related Work

Biconnectivity testing is a well-known and researched problem in graph and algorithm
theory. The simplest mean of testing is the systematic iteration through all edges and
vertices, their individual removal and counting of graph components. If the number of
components increases, the tested edge or vertex is critical for connectivity. Although
simple to understand and implement such testing is inefficient due to its high run-time
complexity.

Tarjan [158] has shown that the extended Depth First Search (DFS) algorithm ac-
curately detects cut edges and vertices in O(n + e) time under the assumption that
the graph structure is known at a single computation node. The algorithm has been
altered afterwards for use in parallel computing environments, where its run-time com-
plexity can be further reduced. Due to these favorable properties of DFS it is one of
the commonest methods for articulation point and bridge detection.

BFS search for detection of biconnected components and cycles has been mostly used
in parallel computing. Liang and Rhee [108] provide BFS algorithm for biconnectivity
testing, but their algorithm is applicable only to permutation graphs and cannot be
generalized. Barnat [32] uses BFS for state space generation and controlled DFS for cycle
detection in process of linear temporal model checking. Thurimella in [162] provides
a distributed BFS based algorithm for biconnectivity testing, however the algorithm
cannot be adopted for application in WMNs since the optimization goals and starting
assumptions are completely different: each processor can communicate directly (over
shared memory or a bus) with all other processors and each processor knows the graph
topology. Such processing model allows state synchronization between processors that
are necessary for this algorithm. The algorithm also requires total preordering of node
visits which does not fit with the broadcasting nature of wireless medium where all
neighbors of a node are visited simultaneously.

The existing algorithms are well suited for application in wired telecommunication and
computer networks. In such networks, communication links are rather stable and their
status (existence) can be accurately determined without1 or with low communication
overhead relative to total link communication capacity. Additionally, communication
links are decoupled, allowing extensive, message-based testing of a link without influence
to other communication links in its vicinity. Thus, the data on link status is highly
accurate. Due to properties of wired networks, nodes in the network can safely assume
that the topology they are aware of is accurate. Then, a node simply applies one of the
known biconnectivity testing algorithms to the collected topology data.

1Using carrier sensing.

31

3. Related Work

3.1. Biconnectivity Testing in Wireless Multi-hop Networks

Good performance of biconnectivity testing based on the global topology knowledge
in wired communication networks has inspired adoption of the same approach in the
WMNs. Common assumption is that a proactive routing protocol is executed in a
network, and that it provides accurate topology knowledge to all nodes in the network.
Cut-edges and vertices are then detected, usually by Tarjan’s DFS algorithm. Some
authors additionally attempt to predict behavior of nodes in the network and to perform
corrective actions that, for instance, prevent partitioning of the network.
Goyal and Caffery [80] offer a location aware method to bridge detection. All nodes are

location aware and periodically update their neighbors with current locations. The al-
gorithm uses depth first search (DFS) to find the cut-edges based on the global topology
knowledge. After detection of a potential partitioning, the algorithm offers prevention
mechanisms, either by changing the trajectories of critical nodes, or by adding a helper
node to reinforce the link.
Hauspie et al. [85] use global topology knowledge to construct all disjoint paths

between a source and a destination node. For each path in the network, robustness is
calculated based on probabilities that some of the links constituting the path will break.
They offer two metrics: first is a function of number of disjoint paths. It says that if
there is only one disjoint path between two nodes, it is highly probable that a graph will
become disconnected if some link on that path breaks. The second metric states that
the longer the path is, the weaker it is in the sense of robustness, meaning that all paths
do not contribute evenly to the robustness. The problem with this approach, however, is
that it does not guarantee correctness, because the network can get partitioned without
this algorithm detecting it. The second problem is that it requires global knowledge of
the network topology in order to generate all disjoint paths and calculate link robustness.
The benefit is that it does not require any information about positions of mobile nodes.
Wang and Li [168] claim that by knowing only local node positions and based on the

individual node mobility model, global scale topology changes such as network partitions
cannot be predicted nor prevented. They introduce a model for group mobility. Instead
of grouping nodes by location, they employ a clustering algorithm that groups nodes
by their velocity vectors. A group is then characterized by mean group velocity. They
argue that clustering by velocities provides a clearer characterization and separation
of mobility groups. Separation of groups leads to the network partition. A central
server must exist to which all nodes report their positions and speeds. The server runs
clustering algorithm and attempts to predict network partitioning. Thus, the server is
the single point of failure of the approach. Another issue are assumptions that velocities
of mobility groups and their composition are time invariant, the identical circular shape
of all groups and the circular communication radius.
Chen et al. [57] propose an algorithm that determines whether a movement pattern

of two mobile nodes leads to network partitioning, assuming location awareness of nodes
and the circular transmission range. Each node must maintain an information table,
where it stores updates from all other network nodes. If the partitioning is predicted,
the algorithm offers data duplication techniques that logically prevent partitioning.
Probably the weakest point of proposed algorithms is their trust proactive routing

protocols deliver ideally accurate topology information in presence of shadowing and
fading on communication channel. Wireless communication channels impose certain

32

3.2. Other Approaches for Circumvention of Network Partitioning or Its Effects

restrictions on topology discovery and dissemination process as it will be described in
Section 3.3.
Such assumption were supported by evaluation of proactive routing protocols under

unrealistic and idealized communication channel properties. It will be shown in Sec-
tion 9.2 that proactive global topology management suffers greatly if a more realistic
simulation setup is used.
All listed approaches require global topology knowledge and three of them additionally

rely on location information and circular communication range. None of them seriously
treats problems introduced by obstacles and signal interference (Figure 2.2), packet
losses, topology inaccuracies, errors in determining node location (e.g., GPS introduces
errors of up to 15 meters). Only in [57] scalability of global knowledge management
is noted as an important problem. Even with the idealized communication model, all
location-aware approaches are limited to two-dimensional space. In scenarios where
node elevation is important or GPS signal is unavailable (as it was in the office-building
where Motelab is deployed and where our detection algorithm has been tested) they
cannot be used.
Summarizing all the facts that are in favor and against existing models, it is difficult

to envision that the related approaches may operate in reality as they were presented
in related work considering the level of abstraction they have assumed, unrealistic as-
sumptions, presentation shallowness, and incompleteness of evaluation.

3.2. Other Approaches for Circumvention of Network
Partitioning or Its Effects

Detection of nodes and edges critical for network connectivity and application of cor-
rective actions to them (or to a network in order to avoid negative effects if they are
removed) is not the only solution to the problem of network partitioning, bridge and
articulation point existence. It is also possible to prevent formation of partitions by
controlling topology or to treat disconnection as a valid state of the network.

3.2.1. Topology Control

By changing node and network parameters, such as node density, location or transmis-
sion power, it is possible to shape topology of the network so that certain optimization
goal is achieved. Typical optimization goal is to build a k-connected network while
minimizing the sum of transmission energies at individual nodes. The same theoretical
framework can be used for other topology optimization purposes such as construction
of spanning trees under same, minimum energy condition.
Depending on a parameter that is being changed and additional constraints, numerous

topology control algorithms and protocols have been developed. Some of the algorithms
require to be applied before network deployment as they require increased node density
or careful positioning of certain nodes. Others are applicable to deployed networks since
they require only parameter tuning at individual nodes.

33

3. Related Work

Optimal Energy Assignments at Nodes in a Network

This class of algorithms attempt to solve the following problem: Given a set of nodes
and their locations on a line, in a plane or in a three dimensional space, set the individual
transmission power of nodes so that a pre-defined topological property is guaranteed,
simultaneously minimizing the sum of transmission powers over all nodes in the network.
The desired topological property differs depending on the application scenario (e.g.,
multicast, broadcast and convergecast trees, k-connectivity).
The problem of transmission energy minimization while guaranteeing k − node con-

nectivity is NP-hard. Kirousis et al. [99] proved it for 3-dimensional Euclidean space,
while Clementi et al. [60] have proven it for 2-dimensional space. Problem of finding
minimal transmission energy allocation for k − edge-connectivity is also NP hard [47],
even for bidirectional communication links.
As the consequence of NP hardness, approximations and heuristics must be used

for all non-trivial network sizes. Some of heuristics, distinguishable by approximation
factors, can be found in [47], [49], [60], [99], etc.

Probabilistic Topology Control

For large networks it may be too energy expensive to guarantee k-connectivity and it
is difficult to tune parameters of every node in a network. The guarantees are relaxed.
Instead, the probability that a network is k-connected for a given set of node and
network parameters is calculated. The probability functions usually can be inverted to
calculate the network and node parameter which provide the desired connectivity within
predefined probability threshold.
The continuum percolation theory is used in statistical physics to model flow in porous

media, state transition in polymers, etc. The main topic of interest in the continuum
percolation theory is to determine the critical placement intensity of points λc in a
random geometric graph such that ∀λ, λ > λc there is an unbounded component of the
underlying graph. The closed form expression for the λc is not known for spaces with
more than one dimension and only rough boundaries and certain properties have been
derived so far.
Gilbert [78] was one of pioneers that introduced percolation theory to networking. He

attempted to answer the question if there exists the critical node density that enables
long range, multiple-hop communication in a wireless multi-hop network whose nodes
have circular transmission range R.
In [41] is analyzed the empirical distribution function of the lengths of edges in a

minimal spanning tree on a graph created by a Poisson point process on a lattice in
a d-dimensional bounded space. Knowing the distribution of edge lengths in minimal
spanning tree would straightforwardly lead to various other statistical properties (e.g.,
the average number of partitions, probability of graph connectivity for a given R) but
unfortunately, the exact distribution has not been derived. The authors only prove
existence of the upper bound function for the distribution of the number of edges such
that their length is shorter than the communication range R.
Bettstetter [36] investigates the impact of minimum node degree in ad hoc networks

on their connectivity. A relation between the two can be used to determine the minimum
communication range or the minimum node density at which the network will be k −

34

3.2. Other Approaches for Circumvention of Network Partitioning or Its Effects

node-connected with a high probability. The model is developed for the unbounded
area of placement and does not take into account the boundary effects (nodes close to
the border of placement area have fewer neighbors than nodes in the central part of the
placement area). As it was observed in [36], the area-boundary effects can introduce
a considerable difference between expected and observed connectivity level in bounded
networks. Bettstetter and Hartmann [37] extend this approach to environments with
shadowing on the channel using almost identical methodology.
Booth et al. in [43] and Franceschetti et al. [73] show that the presence of non-

circular communication range may increase the overall connectivity of the network pro-
vided that the average number of functioning connections per node is maintained. As
the consequence, networks with irregular communication patterns need lower values
of point-process intensity (lower node density) compared with the networks where the
communication is within circular disks.
Bates [35] derives the so called ”magical number” – the average node degree that

produces connected network with a high probability and proposes an algorithm for
construction of connected networks. The uniform node placement and circular commu-
nication radius are assumed.
Fault-tolerant placement of nodes and k − node-connectivity in wireless ad hoc net-

works with boundary effects is studied by Li et al. in [107]. They provide an expression
for the communication radius R that creates k-connected network with a high proba-
bility in the bounded placement area. The results are used to create a localized method
for network topology control. The method reduces the number of maintained links and
preserves the fault-tolerant topology.

Summary

The common point for all described algorithms is the power-function for modeling of
dependency between energy used for signal transmission and communication radius.
The implication of this functional dependency is the capability of nodes to communicate
within the communication radius, with a sharp transition to state of impossibility of
communication at inter-node distances greater than the communication radius.
While acceptable for theoretical discussion and early protocol development, such as-

sumptions are not applicable in real networks. It is rare that authors attempt to the-
oretically or practically tackle the differences in communication links that are imposed
on network by the environment as it is performed in [43] and [73].
Even if models are general enough to capture reality, the main prerequisite for appli-

cation of these algorithms and protocols is the possibility of providing sufficient number
of nodes in the area, or capability to increase their communication range. Often that is
not the case:

• The number of nodes cannot be significantly increased in an area due to their cost,
increase of channel contention or unwillingness of new nodes to join the network.

• Communication capabilities of nodes are bounded by limitations of radio equip-
ment, electromagnetic radiation standards in used frequency bands, environment
and physical laws.

• Node failures during network lifetime may compromise the calculated properties.

35

3. Related Work

3.2.2. Partitioning Prevention by Mobility

Basu and Redi [34] propose two heuristics for node movement in a mobile network for
preserving of 2-connectivity. The goal is to minimize the sum of node travel distances
which are required for creation of a 2-connected network. Both heuristics require precise
global topology knowledge, node locations and assume circular communication range.
The first heuristics is simple – it just moves all nodes towards the geometrical center of

the network. The network contraction parameter α regulates the relative location offset
towards the center. In turn, network density is increased and connectivity improved.
The algorithm tends to group nodes too much, in particular if the parameter α is not
properly chosen: as parameter α approaches zero, network may be transformed into a
complete graph, or it may even contract to a single point.
Second heuristics divides nodes in so called blocks (2-connected subgraphs) and at-

tempts to move the blocks until 2-connectivity is established. Nodes are required to
travel less than in the first case, and fewer nodes are required to move.
Das et al. [63] propose a localized algorithm for detection of articulation points

and for deciding which nodes are to be moved in order to create at least 2-connected
network. Instead of the complete network topology a node continuously tracks only
its k-hop neighborhood. The main contribution is that decisions are made based on
partial topological information, accepting the tradeoff that faulty decisions are possible
but with benefit of reduced communication overhead.
The authors of [63] make series of unrealistic assumptions: absolute node obedience,

circular communication range, no errors in location estimation, instantaneous link break
detection and instantaneous topology updates dissemination, without communication
overhead. In such favorable conditions the approach is highly successful in very dense
networks (average node degree of at least 10) but its accuracy reduces as node density
is lowered.
The authors claim that 3-hop neighborhood knowledge already provides almost ideal

decisions, but their conclusion must be taken with consideration: the network in their
study is small (100 nodes) and very dense, so 3-hop neighborhood actually captures
most of the network topology. Prompt deterioration of the algorithm performance in
sparse networks confirms that algorithm requires considerable topology knowledge after
all.

3.2.3. Disruption-Tolerant Networks

In an extremely sparse network, it may remain disconnected even if node transmission
power is pushed to upper limits. If some of nodes are mobile and applications deployed
in network are delay tolerant, like for instance non-real-time sensing, e-mail, voluminous
data transfer, it is possible to create data exchange mechanisms. A simple example of
the technology is the Wizzy Digital Courier project [2] that provides Internet access to
remote schools by carrying them data on a digital device attached to a motor vehicle.
At a remote school, incoming and outgoing data is exchanged and taken to a point with
Internet access where it is uploaded, responses collected and brought back to the school.
The process is then repeated.
Core idea of all protocols from this category is that source of information forwards

data to one or more mobile nodes that will eventually come in contact with data destina-

36

3.3. Proactive Topology Management in WMNs

tion. Existence of mobile nodes is mandatory and crucial for such protocols, since they
allow data exchange between distant and independent network components. There exist
multiple strategies for selection of nodes to forward the data. The forwarding strategy is
always a tradeoff since improving of one performance parameter makes negative impact
on another (e.g., reducing communication latency increases communication overhead).
Data replication improves delivery ratios and reduces latency. Source node distributes

multiple copies of the same data to nodes it contacts. Thanks to mobility, either the data
source or one of nodes that possesses the copy of it will eventually contact destination
node and deliver the data to it. As number of replicas increase, the contact probability
increases as well. Drawback of data replication is considerably increased traffic overhead
and energy consumption. If data buffers at intermediate nodes are overloaded, they have
to disregard some of the messages. It means that energy used for transmission of such
copies was wasted. Epidemic protocol [166] is an extreme example of the data replication
approach: each message is flooded through the network, creating excessive traffic. Data
source is the only node allowed to create replicas in approach of Spyropoulos et al.
[153]. The source produces number of replicas proportional to network size, reducing
the overhead.
Zhao et al. [180] introduce so called ”ferry” nodes: they have predictable mobility and

can be used for message exchange in highly disconnected networks with stable partitions.
In conditions of higher mobility is beneficial to discover and manage groups: within a

group messages can be exchanged using some of known reactive or proactive protocols
and between groups a protocol customized for DTNs is employed. Thomas et al. [159]
use DSDV for in-group routing and develop BLOB for inter-group routing and group
management. However, their work is highly reliant on underlying node mobility models
(Community and Inplace) where node interactions are frequent and highly predictable.
If group existence is unknown or groups do not exist, a more general framework is

needed. Lindgren et al. [109] propose Probabilistic ROuting Protocol using History of
Encounters and Transitivity (PROPHET). In PROPHET nodes track the connection
history and calculate from it how likely it is that a node will be able to deliver a message
to a destination (they call it delivery predictability). When two nodes a and b meet, a
message is sent from a to b if b has higher delivery predictability for the message than a.
If applications deployed in network are interactive or real-time, DTN routing protocols

cannot be used. Unfortunately, most of applications require interactive traffic, so the
applicability of DTN approaches is rather limited.

3.3. Proactive Topology Management in WMNs

Proactive topology management is used by a wide class of protocols that require global
topology knowledge at each node in a network. Its primary application is for the proac-
tive routing protocols. Increased overhead introduced by the topology dissemination is
compensated by the reduced latency: since each node in network is able to calculate
path to any other node, thus avoiding the delay introduced by route discovery process
in reactive routing protocols.
Low latency for route calculation comes at a price – even without traffic in the net-

work, routing traffic and energy consumption is considerable. Topology dissemination
messages compete for the access to the wireless channel with user generated traffic, re-

37

3. Related Work

Send new local
information to
all neighbors

Remove link
from topology

table

Update
topology table

Link
operational

Link broken

Link
operational

Dissemination
timer running

Link
operational

Receive
topology
update

Link
operational

Add link to
topology table,
reset its timer

Local topology
change

Node reports link
existence

Heartbeat not
received Dissemination timer

 expired

Timer expired

Node reports link
failure

Restart
dissemination timer

Initiate topology
dissemination / Set
timer to zero

Heartbeat
received

Figure 3.1.: Proactive topology management.

ducing bandwidth available to users and increasing probability of packet losses through
collisions.
In order to detect and disseminate topology in a wireless network, three processes must

be executed concurrently at each node: management of local neighborhood set (link
discovery), dissemination of local topology data and management of global topology
data.
The commonest implementation of link detection is through exchange of heartbeat

messages (also called beacons or hello messages) with neighbors. A heartbeat link de-
tector (HLD) recognizes link as active after a successive heartbeat receptions. If a node
observes r successive heartbeat omissions on an active link, it declares the link failure
due to neighbor removal (movement, failure or shutdown). Such heartbeat link detec-
tor will be referred as HLD(a, r) in the text. Figure 3.1 illustrates the processes for
HLD(1, 3).
Dissemination of local topology is periodically initiated even if no changes in local set

are observed. Nodes new to the network may receive it and build network’s topological
structure. Some proactive implementations initiate topology update as soon as a change
in the local topology has been sensed. Others attempt to preserve bandwidth through
periodical dissemination, with the goal of capturing of a set of topological changes in a
single message.
Type and detail of disseminated data depends on application scenario and developer’s

decision. Distance vector routing protocols do not share topology information directly,
but hop distance to other destinations. Such information is specialized for routing
and cannot be used for other purposes (e.g. calculation of the minimum spanning
tree). Others disseminate local neighbor set, allowing route as well as other topological
calculations at network nodes.
Dissemination informs all network participants of the observed local topology at a

single node. Usually it is implemented as flooding, but other approaches are possible.
For instance, in OLSR [59] routing protocol only a subset of nodes in the network, the so

38

3.3. Proactive Topology Management in WMNs

called multipoint relay (MPR) nodes2 are responsible for forwarding of topology traffic,
reducing the contention on the wireless channel.
The dissemination process is further complicated since some proactive topology man-

agement protocols allow dissemination of various topological subsets. For instance, in
the OLSR protocol, the TC_REDUNDANCY parameter regulates which information
is exchanged in a network:

• If the TC_REDUNDANCY parameter of a node is 0, only MPR selector set is
disseminated.

• If the TC_REDUNDANCY parameter of a node is 1, node advertises union of its
MPR set and its MPR selector set.

• If the TC_REDUNDANCY parameter of a node is 2, node shares its complete
neighborhood.

Once a node receives information of distant topology subgraph, it stores links in its
topology table and assigns to each of them a validity timer. Each time a node receives
an update on link existence, the corresponding timer is reset.
Information on link existence is removed from the topology table if its timer expires

(information in the topology table is stale) or if a node incident to the link disseminates
message that the link in question is no longer operational.
Theoretically, if all nodes in the network behave in presented manner, all nodes will

have precise topology information, or excellent approximation of it, even in presence of
node mobility. However, proactive topology management faces difficulties if it is applied
in networks with communication links that cannot guarantee message delivery, which is
exactly the situation encountered in WMNs. The detailed functionality of link detection
and dissemination is described in more detail in the next two sections, with particular
focus on issues introduced by the unreliable communication channel.

3.3.1. Link Detection in Wireless Multi-hop Networks
The heartbeat link detectors are widely used in WMNs in protocols that need some sort
of topological knowledge since there does not exist another approach to link detection
that is as universally applicable as an HLD. One alternative approach to HLD uses MAC
feedback to decide upon link existence and it may provide more accurate decisions since
it utilizes information which is invisible to the network layer where an HLD resides.
However, it has several drawbacks:

• Its accuracy advantage may be result of technology specific details and it cannot
be used in other technologies although the network layer protocol which needs the
results of link detection is technology independent.

• Dependance on support from hardware vendor. Even if MAC-layer link detection is
intended for use in a single networking technology, it may not be possible to access
the needed data from MAC layer of a network adapter since it is not supported by
drivers of network adapter, or it is not possible to perform changes in the firmware
of the network adapter.

2Detailed description and definition of MPR nodes and selector set can be found in [59].

39

3. Related Work

• MAC feedback is not necessarily better. In [113] heartbeat and MAC-feedback
link detection are compared in simulations facilitated by the ns2 simulator. It
is concluded that MAC feedback is better suited to low-traffic scenarios while
heartbeat detection is better for scenarios with intensive traffic.

In order to decouple protocols from technology type and to reduce dependance of
a protocol on hardware vendor, protocols from the network layer use the heartbeat
link detectors, or at least support them (e.g., AODV can be configured to use either
heartbeat or MAC-feedback link detector).
The WMN routing protocols that reached RFC status support heartbeat link detec-

tion in their default configuration. For instance, AODV uses HLD(1, 2) [137], DSR
(Dynamic Source Routing) is approximately HLD(1, 8) since it accepts a link after a
successful broadcast and rejects it on unicast failure [96]. OLSR introduces a compli-
cated hysteresis detection scheme, whose functionality can be reduced to an HLD: a link
is rejected after two successive heartbeat omissions, and accepted after two or three suc-
cessive heartbeat receptions. Thus, the OLSR with default parameters [59] uses either
HLD(2, 2) or HLD(3, 2).
As it can be seen on example of the RFC routing protocols, no consensus on HLD

parameterization has been reached in community yet, despite their simplicity. But the
importance of HLD parameterization has been noted in research community. In [87]
was shown through experiments that common configurations of heartbeat link detectors
may not function appropriately in practice because of the shadowing and fading on
the channel. It is proposed to divide links into two categories: stable (high quality
links, desirable use) and weak (detected but with low quality). Based on simulation
and experimental evaluation, HLD(12, 3) is proposed for acceptance of stable links. An
experimental study of AODV was performed in [52] in order to compare HLD(1, 2) and
HLD(1, 3). HLD(1, 3) resulted in better performance of AODV which was attributed
to smaller number of false negatives in link detection.
Some WMN simulation studies investigated other HLD parameters, in particular the

heartbeat frequency. The location-aware algorithm developed in [56] aims to reduce the
routing overhead of AODV through link availability prediction in mobile WMNs. The
frequency of heartbeats is not fixed as in AODV [137] but is a function of internode
distance: as the node distance increases and approaches the communication radius
R, heartbeat frequency is increased. If the distance is small, frequency is reduced.
Simulation results demonstrate overhead reduction, but since they are based on the two-
ray ground propagation model they do not take the presence of obstacles and channel
shadowing into account. Three versions of the heartbeat link detection protocol are
compared in GloMoSim simulator in [79]: periodic, adaptive (node moving with greater
speed emits heartbeats more frequently, similar to [56]) and reactive (sending heartbeats
as reaction to demand coming from upper layers of communication stack). Protocols are
integrated in AODV and GPSR protocols, and a simulation study is performed in order
to evaluate effects of the proposed link detection protocols on the average throughput
and end-to-end communication delay. Same as in [56], the communication range R is
used as the clear delimiter between perfect communication and no communication at
all, but at least there exists awareness of false positives in link detection caused by node
mobility.

40

3.3. Proactive Topology Management in WMNs

The simulation studies provide only a partial insight in HLD behavior, and a com-
parison of a limited number of their configurations. Additional drawback of simulation
studies in [56][79][113] is the simplified communication model resulting in unawareness
of HLD issues observed in experiments [52][87]. The effects of shadowing and fading are
completely ignored in [56][79][113], assuming that nodes are able to communicate if their
distance is less than R and that all losses within this communication range originate
from the collisions on the channel. This eliminates most of the HLD issues and they
behave as it is expected of them.
Considering the widespread use of heartbeat link detectors in WMN protocols, it is

surprising that only studies of characteristics of HLD(1,∞) exist. A time slotted model
where nodes either listen or transmit is used in [114] for analytic analysis of link detection
under assumption that packets are lost only due to collisions. The tradeoffs between
energy expenditure, probability of neighbor discovery and delay to link discovery are
analyzed. The same model is used in [28] to evaluate a slightly different link detection
protocol (link AB is detected after successive exchange of heartbeats between nodes
A and B in both directions). An important metric is introduced in [28] – the time
to detection which is defined as the number of protocol executions (rounds) to link
detection. This model is extended in [83] by a sleeping mode of a node where it neither
sends nor receives messages, and a similar analysis as in [28] and [114] is performed.
All three papers analyse HLD(1,∞). They are not concerned with detection of link

failure nor with the issues in higher layers of communication stack caused by detection
of links with exceptionally poor quality. The HLD(1,∞) can be modeled as series of
Bernoulli trials with the success probability p. The probability of detecting a link after
k attempts is then 1− (1−p)k. As long as p > 0, regardless of how small the probability
p is, the probability of link detection asymptotically approaches one after sufficient
number of execution rounds, despite the fact that such links may not be suitable for
operation of a communication protocol.
Another area where heartbeats are frequently applied is the node failure detection

in multiprocessor systems [26][42][156], allowing operational processors to detect the
failed processors. The algorithms for processor failure detection differ with regard to
their assumptions (e.g., by applicability in different network topologies, synchronous or
asynchronous systems, whether message delivery is delayed or instantaneous) but the
majority of algorithms share the assumption of reliable message delivery, as in [42][156].
A notable exception is [26] where nodes may fail and messages may be lost at com-
munication links. The algorithm guarantees processor failure detection and tolerates
arbitrarily high heartbeat losses if for an infinite number of sent messages by an oper-
ational node to another operational node, intended destination also receives an infinite
number of messages. As such, it is applicable for detection of node failures in a WMN
but it still faces the identical issues in link detection as the HLD(1,∞) – after large
but finite number of attempts it will accept links to all operational neighbors if the link
quality is larger than zero.

3.3.2. Local Topology Dissemination

The information on detected links is disseminated through network, using some of exist-
ing network-broadcast mechanisms. It has been observed in simulations with simplistic
propagation and node placement models that common network-broadcasting mecha-

41

3. Related Work

nisms such as flooding produce undesirable overhead, and most of the effort in commu-
nity was directed at the overhead reduction.
For instance, Mukherjee et al. [125] assume that links are broken only due to energy

depletion or network mobility, and that heartbeats are successfully exchanged with
a very high probability. They come to a conclusion that the heartbeat period may
be longer than 10 seconds and the topology dissemination period can be up to 90
seconds without compromising the routing protocol capability of data delivery. Under
similar assumptions Williams and Camp [174] and Ni et al. [129] through simulation
study found that flooding has excellent coverage (reaches majority of nodes even in high
mobility networks) and that it produces unnecessary and undesirable overhead, inspiring
considerable amount of work on reduction of its redundancy. The simplest approach,
presented in [129] is to broadcast a packet with fixed probability p or to drop it with
probability 1−p. Same authors extend their ideas, introducing adaptivity and location-
based schemes in [165]. Naserian and Tepe [127] propose a game theory approach to
selection of nodes that participate in flooding as an extension of probabilistic selection
approaches.
They all assume dense networks, high probability of packet delivery and circular

communication pattern if localization is used. The communication overhead is reduced,
but also the robustness of dissemination. Contrary to these simulation studies, the
experience from large scale community networks [7][8] calls for considerable increase
in frequency of local link information dissemination as well as higher robustness of
dissemination protocols in order to reduce errors in global topology view at nodes.

3.4. Summary
This section has reviewed approaches for biconnectivity testing and dependability im-
provements in WMNs. Three classes of approaches can be distinguished in the literature.
Topology control aims at creation of k-connected topologies (k ≥ 1) and simultane-

ously attempts to minimize the transmission energy expenditure in the network. Typi-
cally, the goal is to produce at least a 2-connected network. The problem is NP-complete
so various heuristics are developed.
The second class does not guarantee a topological property, but it is achieved with

a certain probability. Usually, the goal is to calculate the minimum node density that
establishes the desired topological characteristics with a target probability.
The third class attempts to discover bridges and articulation points and then to

apply the corrective actions at network level (e.g., to move nodes into area with reduced
connectivity). Biconnectivity testing is performed through application of DFS on a
topology that was delivered by a proactive topology management protocol.
The basic ideas of all proposed approaches are sound and well motivated. The em-

ployed mathematical models are powerful and give important insights in topological
properties of WMNs. However, some important characteristics of WMNs and their
environment are ignored in related work:

• Links in WMNs do not have behavior of Heaviside function (ideal communication
within communication range, no communication outside of it). Providing a barely
functional link brings little in practice – packet losses may be unacceptable for
network services and applications. This has the largest effect on topology control

42

3.4. Summary

algorithms, since they deliberately reduce transmission power of nodes so that the
received signal strength is barely over reception threshold. Even in presence of
mild noise on the communication channel, such links may become unusable.

• Signal strength is not monotonically reduced with increase in node distance and the
communication range is not circular (Figure 2.2, page 17). Thus, it is not possible
to calculate connectivity of a network from node locations. This affects the topol-
ogy control algorithms which calculate transmission power as a power-function
of distance, and the proactive approaches that attempt to reinforce bridges and
articulation points.

• Obstacles cannot be ignored. They may reduce quality of communication, com-
pletely block it, or prevent node placement and movement.

• Shadowing and fading affect link discovery and local topology data dissemination.
Global topology view at nodes may be erroneous.

• Location-aware methods ignore errors in the node-localization process, or location-
service unavailability due to technical and environmental factors (e.g., GPS cannot
operate inside buildings).

• Networks are three-dimensional. Methodologies operating exclusively in a plane
may fail in presence of node elevation.

• Nodes may ignore the orders of algorithm, in particular if demanded action is
movement. All approaches that employ node mobility assume absolute node obe-
dience.

The differences between assumptions in related work and reality are huge. This is
acceptable in the modeling phase of protocol development since models need to be
abstract, sacrificing details in order to become tractable and solvable. However, the
results obtained in such abstract models must be evaluated in realistic conditions in
order to verify their usefulness and applicability.
Unfortunately, the evaluation methodology of described protocols was as imprecise as

the starting assumptions. None of the presented topology control, probabilistic property
estimation, or biconnectivity testing protocols and algorithms has been experimentally
evaluated. Instead, various simulation methodologies have been employed for protocol
testing. But the simulation setup was as imprecise as the starting assumptions: path-
loss and two-ray ground propagation models were used without stochastic attenuation
components, localization services have perfect accuracy, the world is flat and there are
no obstacles in the environment.
Summarizing all the facts that are in favor and against existing models, it is difficult

to envision that the related approaches may operate in reality as they were presented
in related work considering the level of abstraction they have assumed, unrealistic as-
sumptions, presentation shallowness, and incompleteness of evaluation.

43

4. Heartbeat-Based Link Status Detection
in Wireless Multi-hop Networks

This chapter evaluates existing approaches for link detection in wireless networks that
are based on heartbeats. Stochastic models are derived, which describe their behavior
as functions of detector parameters and network characteristics. The obtained results
allow simple and efficient assessment of heartbeat link detector (HLD) properties for a
wide set of parameters in different network types.
The stochastic nature of wireless communication channels is one of the main sources

of uncertainty for heartbeat link detectors. Unreliability of communication introduces
omissions in heartbeat receptions, and a heartbeat detector cannot distinguish between
losses caused by the unreliable channel and omissions caused by link or node failure.
The situation is further complicated for HLDs since they are to accept only links with
a sufficient quality which is not implicitly supported by them, but it is nevertheless
required by the application layer, as explained in Section 2.2.1 (page 20).
Unreliable communication results in errors in the link detection. Errors in the link

detection process are false positives and false negatives. A false positive in link detection
occurs if an HLD declares a link as active although its quality is below the link acceptance
threshold t. A false negative occurs if an HLD declares a link as inactive although its
quality is equal to or better than the link acceptance threshold.
The goal of the presented evaluation is to model HLDs (in particular those defined

in RFCs) in static and dynamic networks and to determine the probability of errors in
the detection process. The existence of these errors is not surprising, but an important
result of this chapter is that these errors are inevitable, no matter to which value detector
parameters are set, and irrespective of the link acceptance threshold t. The developed
models are then applied to two real networks in order to determine the optimal HLD
parameters that yield the minimal error probability.
The chapter is organized as follows. The HLD model is introduced in Section 4.1.

The behavior of heartbeat protocols at a single unreliable link is analyzed in Section
4.2.1 under assumption that neither of nodes incident to the link fails. The single-link
analysis is extended in Section 4.2.2 and it provides an efficient methodology for HLD
evaluation at the network level. Node failures and limited link existence duration are
introduced in Section 4.3 in order to evaluate effects of mobility on HLDs. Effects of
errors in link detection process on biconnectivity testing are discussed in Section 4.4.

4.1. Heartbeat Link Detector Model
For evaluation of accuracy of heartbeat link detection, the graph model of a network
from Section 2.2 (page 19) is used: a pair of nodes is connected over a communication
channel which does not guarantee message delivery. Instead, messages are delivered
with probability p (term "link quality" is also used) and lost with probability q = 1− p.

45

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

Probability of message delivery
(link quality) p

Packet loss probability q

Probability density function of link quality fp(p)
Heartbeats needed for acceptance of a link a

Omissions needed for rejection of a link r

Link acceptance threshold t

Rate of the link existence duration µ

Table 4.1.: Parameters used for evaluation of heartbeat protocols and their symbols.

Figure 4.1.: Heartbeat link detector.

It is assumed that the probability of heartbeat collision and resulting message losses is
already included in the probabilities p and q. The probability density function of the
random variable p is fp(p).
A link between two nodes exists if its quality is higher than a link acceptance threshold

t. Equivalently, a node B is recognized as a neighbor of node A only if quality of link
between A and B is higher than t. In dynamic networks, links between nodes exist for
a limited time. The average duration of link existence is 1/µ. In static networks it is
assumed that neither nodes nor links fail. The parameters of the developed model are
listed in Table 4.1.
Nodes incident to a link exchange heartbeat messages in regular intervals, which

allows the detection of heartbeat omissions. The task of a HLD is to determine if there
exists a link to another node based on the exchanged heartbeats. Essentially, a HLD
is estimating the value of random variable p, which is unknown to it. The strategy to
decide whether a link has sufficient quality (estimated p is larger than t) consists of two
rules: one for acceptance and one for rejection of the hypothesis of link existence.
It is common for HLDs [96] [137] to start with the hypothesis that link does not

exist (state 00 in Figure 4.1). If a is larger than one, there exist intermediate states
01, 02, ...0(a−1) in which node supports the hypothesis that no link exists. Intermediate
states are reached by successive heartbeat receptions (e.g., state 01 is reached after
one, state 02 after two receptions, etc.). A single heartbeat omission in any of these
intermediate states is sufficient for transition to state 00.
If a HLD observers a successive heartbeat receptions starting from state 00, it en-

ters state 10 and accepts the hypothesis of link existence. If r > 1 there exist states
11, 12, ..., 1(r − 1) in which node also supports the hypothesis of link existence. These
intermediate states are reached by successive heartbeat omissions. If system is in these
intermediate states, a single heartbeat reception returns it to state 10. If r successive
heartbeat omissions are observed from state 10, it is interpreted as a failure of a link,

46

4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks

(a) Ideal link detector. (b) Imperfect link detector.

Figure 4.2.: Comparison of transition curves of ideal and imperfect link detector and
errors in detection process.

leading to transition into state 00.
Such decision strategy is denoted by HLD(a, r). The function that maps probability

of declaring a link with quality p as operational by the HLD(a, r) is denoted as the
transition curve P1(a, r, p). P0(a, r, p) is the probability of rejecting the hypothesis of
link existence, P0 = 1− P1.
The ideal link detector (detector which does not make errors) declares a link existence

if and only if link quality p is higher than or equal to a threshold t. Its characteristics
has the shape of step function, as shown in Figure 4.2(a).
Due to the fact that the true link quality p is not known, the step function of ideal

link detector cannot be achieved based on a finite number of samples by a HLD(a, r).
A sample characteristics of a real detector is shown in Figure 4.2(b). It is possible that
P1(p) > 0 for p < t (a false positive in link detection may occur), and P0(p) > 0 for
p ≥ t (a false negative in link detection may occur), which leads to errors in the link
detection process. The probability of detection error for a link with quality p can be
calculated as:

PE(p, t) =
∫ t

0
P1(p)dp+

∫ 1

t
P0(p)dp (4.1)

4.2. Analysis of Heartbeat Link Detector Behavior in Static
Networks

In this section the HLD behavior in static networks is analyzed – namely, links are
assumed to exist for infinite time (i.e., nodes incident to them do not fail). Since it
is assumed that links exist for an infinite duration, the transition curve is sufficient to
describe behavior of a HLD(a, r). The analysis of behavior of HLDs at a single link is
performed in Section 4.2.1. It is extended to the whole network in Section 4.2.2.

47

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

states 00 01 02 ... 0(a-1) 10 11 12 ... 1(r-1)
00 q p
01 q p
02 q p
... q p

0(a-1) q p
10 p q
11 p q
12 p q
... p q

1(r-1) q p

Table 4.2.: The transition matrix of HLD state machine from Figure 4.1.

4.2.1. Heartbeat Link Detector at a Link without Node Failures

The complete behavior of the automata in Figure 4.1 can be described by a transition
matrix from Table 4.2 and then solved in some of the existing tools, such as SHARPE
[147]1. The matrix is easily derived for arbitrary a, r and p. However, the closed form
solutions for the transition curve of a HLD(a, r) are developed here in order to provide
better insight into its behavior and discussion of its properties.
Let P00 denote probability that automata is in state 00. It can be calculated as the

sum of probabilities of all transitions that lead to this state:

P00 = P00q + P01q + P02q + ...+ P0a−1q + P10q
r

Knowing that P01 = P00p, P02 = P00p
2, ..., P0a−1 = P00p

a−1, the probability P00 can
be expressed as:

P00(1− q(1 + p+ p2 + ...+ pa−1)) = P10q
r

Using 1 + p+ p2 + ...+ pa−1 =
∑a−1
i=0 p

i = 1−pa
1−p = 1−pa

q yields:

P00p
a = P10q

r (4.2)

Furthermore, the sum of probabilities of all states of the automata must be one:

a−1∑
i=0

P0i +
r−1∑
j=0

P1j = 1

a−1∑
i=0

P00p
i +

r−1∑
j=0

P10q
j = 1 (4.3)

1The automata is represented as a Markov chain and it is solved for steady-state probabilities of its
states.

48

4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Link quality p

P
(l
in

k
 i
s
 f

u
n

c
ti
o

n
a

l)

HLD(1,1)

HLD(3,3)

HLD(9,9)

HLD(1,5)

HLD(5,1)

Figure 4.3.: Probability of declaring a link functional by a HLD.

Substituting Equation 4.2 in 4.3 and solving for the probability of state 00 yields:

P00(a, r, p) = qr

qr−1(1− pa) + pa−1(1− qr) (4.4)

Subsequently, the probability that automata declares the link as not functional is
P0(a, r, p) =

∑a−1
i=0 P0i =

∑a−1
i=0 P00p

i, or:

P0(a, r, p) = P00

a−1∑
i=0

pi = P00
1− pa

q
= qr−1(1− pa)
qr−1(1− pa) + pa−1(1− qr) (4.5)

Probability of declaring link as functional is P1 = 1− P0:

P1(a, r, p) = pa−1(1− qr)
qr−1(1− pa) + pa−1(1− qr) (4.6)

The Equations 4.5 and 4.6 lead to several conclusions (illustrated in Figure 4.3):

• If a < r, HLD(a, r) is more likely to accept weaker links. HLD(a, r) is more likely
to accept links with higher quality if a > r.

• P0 and P1 are strictly larger than zero on 0 < p < 1, so the errors in detection
are inevitable regardless of the threshold t and parameter selection (the direct
consequence of Equation 4.1).

• Higher values of a and r result in steeper transition curves. Steeper transition
curve is closer to the ideal link detector (Figure 4.2(a)) and it results in smaller
error probabilities (assuming combination of a and r is chosen so that the transition
is close to the acceptance threshold t). Thus, it can be concluded that for links
with infinite duration, high values for a and r are preferable.

• If p is close to one, selection of parameters (a, r) is of limited importance – even if
they have low values, P1 is very close to one and error probabilities are negligible.

49

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance d

P
(l
in

k
 i
s
 f

u
n

c
ti
o

n
a

l)

HLD(1,1)

HLD(2,2)

HLD(1,2)

HLD(1,8)

(a) α = 4, σ = 3.

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance d

P
(l
in

k
 i
s
 f

u
n

c
ti
o

n
a

l)

HLD(1,1)

HLD(2,2)

HLD(1,2)

HLD(1,8)

(b) α = 4, σ = 7.

Figure 4.4.: Heartbeat parameters and probability of link detection as function of node
distance in presence of signal shadowing.

If two-ray-ground propagation model is used in WMN simulation, links are either
of high quality (losses originate only from contention) or nonexistent. From such
assumptions follows that HLDs operate exactly in the best part of their transition
curve, in the consequence offering unrealistically high detection accuracy.

Equations 4.5 and 4.6 can also be used to describe behavior of heartbeat link detec-
tors as a function of distance if shadowing is present on communication channel. In
accordance with [155], the average probability of successful packet reception at distance
d with propagation coefficient α and shadowing coefficient σ is:

p(d) = 1
2 −

1
2erf(10α√

2σ
log10

d

r0
)

where losses caused by contention on the channel are ignored.
This probability can be substituted in Equations 4.5 and 4.6, providing the transition

curve of an HLD on the wireless channel with shadowing as a function of distance.
Examples of transition curves are shown in Figure 4.4 for two combinations of parameters
α, σ.
The probability P1(1, 1, p) is equal to p as can be derived from Equation 4.6. It can

be used as the reference point for comparison of the link acceptance probability P1 with
link quality p. Several important conclusions can be drawn:

• Smaller values of σ reduce the effects of shadowing and the variation of signal
strength thus improving the characteristics of the transition curve (making it
steeper). If σ is set to zero, there are no variations in link quality – it is one
if distance is less than R and zero if it is larger than it. As the consequence,
all HLDs have the same transition curve regardless of the parameters a and r:
P1 = 1 − H(R). Potential losses caused by contention are typically limited, so
already HLD(1,2) is sufficient to provide stable and correct link detection (within

50

4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks

this context), which partially explains selection of these parameters in RFCs (ad-
ditional reasons are provided in Section 4.3). As σ increases, transition curves
of HLDs with low values of a and r flatten, increasing the error probability and
issues of HLDs observed in practice.

• Behavior of an HLD is no longer dependant only on its parameters, but also on
parameters of the environment. Higher values of parameter σ (more pronounced
shadowing) reduce steepness of transition curve. For instance, if σ = 3 all HLDs
shown in Figure 4.4(a) reject links if internode distance is 500 units, but if σ = 7
HLD(1, 8) accepts the link to a node on same distance with probability of 0.3.
At the same time, more conservative detectors such as HLD(2, 2) reject almost
all potential links already at 400 distance units. As the consequence, selecting the
appropriate parameters of HLD has much higher importance than in the simplified
two-ray ground propagation.

4.2.2. Heartbeat Link Detector Behavior in a Network

The transition curve which describes the behavior of an HLD on a single link has lim-
ited expressiveness – its analysis allowed us to derive important conclusions on HLDs.
However, a network consists of tens, hundreds or thousands of links, each having its
own quality, so it is important to assess the HLD performance at a network level and
optimize its parameters for accurate detection at the network level.
The transition curve of a HLD(a, r) depends only on values of a and r, but the

probability of errors in the link detection process additionally depends on characteristics
of the network, in particular on the distribution of link qualities. Probability that there
exists a link with quality p in a network is fp(p)dp. If p < t, a false positive occurs with
probability P1(a, r, p). Thus, the probability of false positives in the whole network is
calculated as:

PFP (a, r, t) =
∫ t

0
P1(a, r, p)fp(p)dp (4.7)

The probability of false negatives is calculated analogously as:

PFN (a, r, t) =
∫ 1

t
P0(a, r, p)fp(p)dp =

∫ 1

t
(1− P1(a, r, p))fp(p)dp (4.8)

Since false positive and false negative events are mutually independent, the error
probability is calculated as a sum of these two factors:

PE(a, r, t) = PFP∪FN = PFP (a, r, t) + PFN (a, r, t) (4.9)

The necessary precondition for the error assessment is to know the link quality distri-
bution. In simplest case, it can be assumed that it is uniformly distributed: fp(p) = 1.
For HLD(1, r), HLD(a, 1) and HLD(2, 2) the closed form expressions for the error

probability exist. For other combinations of (a, r), the error probabilities have to be
calculated numerically. The case where a = 1 is of particular interest since AODV and
DSR use HLD(1, 2) and HLD(1, 8) respectively. The error probability of HLD(1, r)
is:

51

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)
HLD(1,1)

HLD(1,2) − AODV

HLD(1,3)

HLD(1,8) − DSR

HLD(2,2) − OLSR

(a) Error probability.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(F

P
),

 P
(F

N
)

HLD(1,1) − FP

HLD(1,1) − FN

HLD(1,8) − FP

HLD(1,8) − FN

(b) Probability of false positives and false neg-
atives.

Figure 4.5.: The probability of error, false positives and negatives of a heartbeat link
detector in a network with uniformly distributed link quality.

PFP (1, r, t) =
∫ t

0
P1(1, r, p)dp = p− qr+1r + 1|t0 = t+ (1− t)r+1 − 1

r + 1 ,

PFN (1, r, t) =
∫ 1

t
P0(1, r, p)dp =

∫ 1

t
(1− P1(p))dp = −(1− p)r+1

r + 1 |1t = (1− t)r+1

r + 1 ,

PE(1, r, t) = PFP (1, r, t) + PFN (1, r, t) = t(r + 1)− 1 + 2(1− t)r+1

r + 1 (4.10)

Figure 4.5(a) shows the probability of errors for several HLD(1, r) detectors. It can
be seen that with increase in r, errors are smaller for lower threshold values but increase
considerably if threshold is set to high values. Figure 4.5(b) shows the probability of
false positives and false negatives. For higher r, the false negatives are rare even for low
threshold values (probability of a false negative for HLD(1, 1) at t = 0.1 is 0.405 while
it is only 0.043 for HLD(1, 8)). Most of the errors of HLD(1, r) detectors with higher
r originate from the false positives, which sharply increase for higher values of t. So for
instance, HLD(1, 1) has PFP of 0.18 at t = 0.6 while HLD(1, 8) has 0.488 – almost
three times higher.
The link quality p and the link acceptance threshold t are defined for a single packet

transmission. Due to MAC unicasts and its retries, most of the standard non-real time
transport protocols (such as FTP or HTTP) can operate even on links of rather low
quality (thus the value of t is also rather low). This is exactly the threshold range where
higher r results in smaller error probability in the link detection process, which explains
the improved performance of AODV with HLD(1, 3) over HLD(1, 2) in experiments
performed in [52].
Real networks need not to have the uniform link quality distribution but if there exist

measurements of link qualities in a network, it is possible to derive empirical probability

52

4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks

α λ k
Leipzig {0.287, 0.187, 0.15, 0.374} {16.241, 14.153, 21.732, 24.094} {1, 4, 8, 16}
Motelab {0.0904, 0.0581, 0.0916, {50.529, 73.981, 38.808, {2, 8, 10, 18, 35, 150}

0.0768, 0.1883, 0.4948} 41.638, 51.265, 159.137}

Table 4.3.: Parameters of the hyper-Erlang distribution for approximation of link quality
distributions in Leipzig community network and Motelab testbed.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Link quality p

C
D

F
(p

)

Leipzig

Leipzig Approximation

Motelab

Motelab Approximation

Figure 4.6.: Distribution of link quality in real network and its approximation with a
hyper-Erlang distribution.

density function from them. A variety of methods exist for approximation of an empirical
distribution with a (set) of closed-form distributions, such as exponential or Weibull
distributions. In this work, the measured link quality distribution is approximated by
hyper-Erlang distribution [161] which is frequently used in networking [145][161][135].
The hyper-Erlang distribution is actually a weighted sum of Erlang distributions:

f(x, k, µ, α) =
∑
i

αi
λkii x

ki−1e−λix

(ki − 1)! (4.11)

where the weights αi sum to one.
The measurements from a community network in Leipzig and Motelab testbed (the

measurement methodology is explained in Chapter 7 on page 123 and in Section 9.3
on page 166 respectively) are used as the reference real networks. The differences in
probability density functions are notable due to different environment properties, node
placement and characteristics of network adapters.
In Figure 4.6 it can be seen that the link quality distribution in Leipzig network has

slightly more weight for low values of p, while Motelab samples have most of their weight
focused in higher ranges of p. The G-FIT tool [161] was used for fitting and the obtained
parameters of the hyper-Erlang distribution are shown in Table 4.3. As it can be seen
in Figure 4.6, the hyper-Erlang approximations of the measured distributions provide
almost a perfect fit.
The hyper-Erlang distribution (Equation 4.11) with parameters from Table 4.3 is

53

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)
HLD(1,1)

HLD(1,2) − AODV

HLD(1,8) − DSR

HLD(2,2) − OLSR

(a) Leipzig.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)

HLD(1,1)

HLD(1,2) − AODV

HLD(1,8) − DSR

HLD(2,2) − OLSR

(b) Motelab.

Figure 4.7.: Errors in heartbeat link detection in real networks.

substituted in Equations 4.7, 4.8 and 4.9. The integrals are numerically evaluated and
the calculated error probability is shown in Figure 4.7 as a function of the threshold t.
If compared with HLD behavior in a network with the uniform distribution of p in

Figure 4.5, the error probability curves have different shape and they are generally
smaller in both real networks. Additionally, due to prevalence of links with rather high
quality in the Motelab testbed, the error probabilities in it are considerably smaller than
in Leipzig network where a considerable number of links has low quality.
It is particularly important to notice in Figures 4.5 and 4.7 that errors in link detection

process are present regardless of the parameters a, r, t, and the link quality distribution.
Errors are not only inevitable but also far from negligible. For instance, the lowest error
probability of all HLDs shown in Figure 4.7(a) is PE(1, 8, 0.08) = 0.105. However, if
unfavorable parameters a and r are selected for a given network type and threshold
value, error probability can be considerably higher. For the same HLD(1, 8), the error
probability is larger than 0.74 for t > 0.9.
The large variations in error probability of the same HLD, depending on the needed

link acceptance threshold t, make the selection of an appropriate HLD a necessity.
Assuming that t is known, an adequate HLD should be selected in order to minimize
the error probability of the link detection process in a network.
The presented methodology for assessment of PE enables to select optimal values for a

and r so that the probability of errors is minimized. The threshold t, probability density
function fp(p), the set Ac of candidate values for a and set Rc for candidates of r are
provided as the input to the evaluation routine. The evaluation routine applies Equation
4.9 to each of members of set Ac × Rc and finds the best combination from this set.
Thanks to the efficient numeric integration algorithms the computational complexity is
manageable and the whole process is executed swiftly. For instance, the results in Table
4.5 where a, r ∈ {1..10} have been calculated in the R statistics tool [143] in less than
a second per table entry (one hundred possible combinations of (a, r) are evaluated for
each table entry) on a commodity PC.

54

4.2. Analysis of Heartbeat Link Detector Behavior in Static Networks

fp(p) t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7
Uniform (a,r) (1,5) (1,5) (2,5) (4,5) (5,5) (5,4) (5,2)

PE 0.11 0.12 0.11 0.1 0.08 0.1 0.11
Leipzig (a,r) (1,5) (2,5) (2,5) (4,5) (5,5) (5,3) (5,2)

PE 0.13 0.14 0.11 0.1 0.08 0.1 0.09
Motelab (a,r) (1,5) (2,5) (2,5) (4,5) (5,5) (5,4) (5,2)

PE 0.07 0.06 0.05 0.04 0.04 0.05 0.06

Table 4.4.: Optimal HLD(a,r) for a given threshold and network type. a, r ∈ {1..5}

fp(p) t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7
Uniform (a,r) (1,10) (2,10) (4,10) (6,10) (10,10) (10,6) (10,4)

PE 0.06 0.07 0.06 0.05 0.04 0.05 0.06
Leipzig (a,r) (1,10) (2,10) (4,10) (6,10) (10,10) (10,6) (10,4)

PE 0.1 0.07 0.06 0.05 0.04 0.05 0.05
Motelab (a,r) (1,10) (2,10) (4,10) (6,10) (10,10) (10,7) (10,4)

PE 0.06 0.04 0.03 0.02 0.02 0.03 0.04

Table 4.5.: Optimal HLD(a,r) for a given threshold and network type. a, r ∈ {1..10}

The optimal combinations of parameters a and r are presented in Table 4.4 if a, r ∈
{1..5} and in Table 4.5 if a, r ∈ {1..10} for three link quality distributions: the uniform,
and the two hyper-Erlang approximations from Table 4.3. In this example, it can be
seen that the minimum achievable probability of errors in link detection varies consid-
erably between network types (link quality distributions). For instance, the minimum
probability of errors in Leipzig-type of network is two times higher than in the Motelab.
As it was already explained in Section 4.2.1, higher values of a and r reduce the errors,
so the probability of errors if a, r ∈ {1..10} is up to 0.1. If we compare the optimal
HLDs for a given threshold and network type with an arbitrary combination of (a,r),
the range of PE is large: for instance, HLD(1, 8) has PE at t=0.7 of 0.626 which is 12.5
times more than HLD(10, 4) or 6.95 times more than HLD(5, 2) which are optimized
for this threshold.
An interesting property which can be observed in the examples from Tables 4.4 and

4.5 is that for the same threshold, the identical parameter combinations are selected
almost always for all three distribution types. Only in three cases there exists a mis-
match in parameter selection between distribution types (marked by bold typeface in
Tables 4.4 and 4.5). Let us observe the case where t=0.2 in Table 4.4. The optimal
HLD configuration for uniform distribution is (1,5) while the optimum for Motelab and
Leipzig networks is at (2,5). But even if HLD(2, 5) is chosen in network with uniform
distribution of p instead of HLD(1, 5), the PE is increased from 0.121 to 0.132 or ap-
proximately 10% only. The differences are even smaller in other cases: for t=0.6, if
HLD(10, 6) (optimal for uniform and Leipzig distributions) is applied in Motelab in-
stead of HLD(10, 7), the change in error probability is negligible – only 0.6%. The
consequence of this observation is that even if link quality distribution of a network
is unknown, it is worth to determine the values for a and r on a known distribution,
knowing that the variation from optimum is acceptable.

55

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

4.3. Node Failures and Limited Duration of Link Existence

In addition to the steady state HLD behavior evaluated in the previous section, it is
important to address HLD behavior in presence of node failures when the duration of
link existence is limited. If link exists for a limited time, transient behavior of heartbeat
link detectors needs to be considered.
Limited link existence duration can be used as a model of topological changes intro-

duced by node mobility, where links are created and destroyed as nodes move. It has
been derived in [148] that the duration of link existence in a mobile WMNs can be mod-
eled with the exponential distribution µe−µd where µ is the rate and 1

µ is the average
link existence duration. For typical mobile WMNs, 1

µ is in range of tens of seconds.
Instead of explicitly working with time, this section adopts the approach of heartbeat

ticks (or rounds): if a link exists for duration d and heartbeats are sent with frequency
fhb, the number of heartbeats exchanged during link existence is b d

fhb
c ticks. Such

approach simplifies the presentation of models without loss in detail or quality of the
developed models.
As soon as the link duration is limited, the number of rounds an HLD needs to

recognize this existence starts affecting the probability of declaring the link as active.
In the simplest case of a perfect link which exists for duration d, aHLD(a, r) can declare
it as active only for d− a ticks, resulting in probability of link acceptance of P1 = d−a

d
(obviously, for finite a, as d→∞, P1 → 1). For p < 1 the probability of link acceptance
will be further reduced, since a longer sequence of attempts may be necessary before a
series of a heartbeat receptions is observed.
Let us define a ”successful run” as a series of a successive heartbeat receptions on a

link. The length of sequence of reception and loss events on a link before the successive
run occurs is the waiting time (WT) of a successful run. Feller [72] has applied renewal
theory to show that the average waiting time of a successful run is:

E(WT (a, p)) = 1− pa

(1− p)pa (4.12)

Figure 4.8 shows the average waiting times for different values of parameter a as the
function of link quality p. As the parameter a is increased, the waiting time sharply rises
for low values of link quality p. For instance, if a = 9, the waiting time for acceptance
of a link with quality p = 0.5 is 1022 rounds which renders its detection practically
impossible in a mobile network. For the same link and a = 5, the waiting time is 62
which is still long but it may be acceptable under low mobility.
If the waiting time for acceptance of a link is longer than its existence, it prevents

its detection. This property of HLDs in mobile networks may have both positive and
negative effects on the detection process, depending on the selected threshold:

• If threshold t is low, mobility has negative effects since the probability of false
negatives increases due to the long detection waiting times of links with low quality.

• If threshold t is high, mobility effects are positive. Probability of false negatives
is low anyway (see Figure 4.5(b)) but the waiting times reduce probability of false
positives and thus the total error probability.

56

4.3. Node Failures and Limited Duration of Link Existence

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Link quality p

W
a
it
in

g
 t
im

e
 (

s
te

p
s
)

a=1

a=2

a=5

a=9

a=20

Figure 4.8.: The average waiting time of a successful run for link acceptance.

The average waiting time for the rejection of link existence hypothesis can be cal-
culated from Equation 4.12 by replacing p with q, and a with r. However, the effects
of link rejection waiting times to HLD behavior are not the same as for its detection.
At the start of link existence, the acceptance waiting time depends on a and p as it is
defined in Equation 4.12, but the rejection waiting time of a link that was marked as
active at the time of its failure is up to r ticks.
An important consequence of long waiting times for a successful run is that it may

not be feasible to construct heartbeat detectors with a sharp transition curve in mobile
WMNs. As explained in the previous section, parameters a and r should be set to
rather high values in order to obtain sharp transition and reduce probability of errors.
However, the Equation 4.12 clearly describes the strong bias against the hypothesis
of link existence made by a heartbeat detector with the sharp transition curve if it is
applied on a link of limited duration.
The analysis of the average waiting time indicates additional issues in link detection

in presence of mobility, but it cannot be used for exact error analysis. In order to assess
HLD characteristics in a mobile network, a similar analysis as in the previous section
will be performed, starting with calculation of P1.
Let the vector S0 be the vector of initial probabilities of states and let P be the

transition matrix of a Markov chain. Based on the theory of Markov chains [72], it is
known that the vector S(k) of state probabilities after k transitions in the chain is:

S(k) = S0 · P k (4.13)

The transition matrix of an HLD is given in Table 4.2 and the vector S0 is [1 0 0 .. 0]
since a HLD always starts from state 00. Assuming that a link exists for exactly d ticks,
we can calculate the probability P0(a, r, p, d) of rejection of link existence hypothesis as:

P0(a, r, p, d) = 1
d

d∑
i=0

a−1∑
j=0

P
(i)
0j (4.14)

where P (i)
X is the probability of state X after i transitions in the chain, X ∈ {00, 01, ...

, 0(a − 1), 10, 11, ..., 1(r − 1)}. The first sum iterates through all ticks during link exis-

57

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

tence.2 The second sum adds the probabilities of states that reject the link existence
hypothesis – states 00 to 0(a− 1). Additionally, it is assumed that ticks are equidistant
so the result is multiplied by the factor 1

d . Since the transition matrix P of an HLD and
vector of initial state probabilities S0 are known, Equation 4.13 allows us calculation of
P

(k)
0j , which after substitution in Equation 4.14 yields:

P0(a, r, p, d) = 1
d

d∑
i=0

a−1∑
j=0

(S0 · P k)0j (4.15)

The probability of link acceptance is:

P1(a, r, p, d) = 1− P0(a, r, p, d) = 1
d

d∑
i=0

r−1∑
j=0

(S0 · P i)1j (4.16)

The behavior of HLDs in presence of mobility from Equation 4.16 are shown in Fig-
ure 4.9. Figure 4.9(a) compares the behavior of different HLDs if they are applied to
a permanent link and to a link which exists for ten ticks. The differences induced by
limited link existence duration are particularly large for the HLDs which are excellent
for detection of permanent links (i.e., with high values of a and r,as explained in Section
4.2.1). For instance, the HLD(7, 9) detects practically all permanent links with quality
larger than 0.5, but if a link exists for ten ticks, HLD(7, 9) can only detect links of
exceptional quality, with a rather low probability. Since it needs seven successive heart-
beat receptions for acceptance of link existence hypothesis, even if link is ideal with
quality one, HLD(7, 9) declares it as functional in only three ticks out of ten, resulting
in P1(7, 9, 1, 10) = 0.3.
Figure 4.9(b) demonstrates behavior of HLD(5, 5) if it is applied on links of various

duration and compares it with the transition curve of HLD(5, 5) at a permanent link.
As expected, longer link existence brings the transition curve of P1(a, r, p, d) closer to
the transition curve of P1(a, r, p) derived for the permanent link. The improvements
(in terms of getting closer to the transition curve of a permanent link) are much more
pronounced at the beginning – notice the huge difference between curves for 10 and 40
ticks, and much smaller improvement between curves for 40 and 100 ticks.
The error probability is defined at time segment [0, d + r] and consists of two com-

ponents. The first component originates from errors occurring during HLD operation
while the link is still active. It is defined on time interval [0, d]. It is similar as in static
networks (Equation 4.9) and can be caused both by false positives and negatives. The
second component is caused by false positives that can occur after failure of the link – if
link is recognized as active at dth tick, an HLD will continue supporting this hypothesis
until it observes r successive heartbeat omissions. The number of ticks needed for re-
jection of link existence hypothesis after its failure depends on the state in which HLD
was at the time of dth tick. For instance, if HLD was in state 12 in dth tick, it needs
r − 2 additional ticks to declare it as failed.

2For presentation simplicity, it is assumed that frequency of heartbeats fhb = 1Hz. It is easy to
generalize developed models for fhb 6= 1Hz.

58

4.3. Node Failures and Limited Duration of Link Existence

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Link quality p

P
(o

n
)

HLD(2,2)

HLD(2,2) − duration 10

HLD(5,5)

HLD(5,5) − duration 10

HLD(7,9)

HLD(7,9) − duration 10

(a) P1 of different HLDs for link existence du-
ration of ten ticks.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Link quality p

P
(o

n
)

Unlimited ticks

10 ticks

20 ticks

40 ticks

100 ticks

(b) P1 of HLD(5,5) for varying link existence
duration.

Figure 4.9.: The probability of link acceptance P1 for links with limited duration of
existence.

Thus, probability of these additional false positives after link failure PFP−f is:

PFP−f (a, r, t, d) = 1
d+ r

r−1∑
i=0

P
(d)
1i (r − i) (4.17)

where the sum counts the number of false positives and the factor 1
d+r normalizes it to

a probability.
The probability of erroneous link detection for a network with distribution of link

qualities fp(p) for link duration d is:

PE(a, r, t, d) = PFP∪FN∪FP−f = d

d+ r
(
∫ t

0
P1(a, r, p, d)fp(p)dp

+
∫ 1

t
(1− P1(a, r, p, d))fp(p)dp) + 1

d+ r

r−1∑
i=0

P
(d)
1i (r − i) (4.18)

where P1(a, r, p, d) is defined in Equation 4.16.
The empirical distribution of link qualities can be determined in the same manner as

in Section 4.2.1 from the measurement set from a mobile network.
In this section are used the uniform and the link quality distribution from the Leipzig

network. Although the Leipzig network is static, its link quality distribution is con-
sidered acceptable in this analysis because packet losses at a link are caused by en-
vironmental effects (e.g., obstacles, multipath signal propagation) that is captured in
fp(p) while the effects of link breaking due to increase of internode distance are already
modeled by the limited duration of link existence.
Figure 4.10 shows effects of limited link existence duration on the error probability

59

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)
Unlimited ticks

10 ticks

40 ticks

100 ticks

(a) The uniform distribution of link quality.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)

Unlimited ticks

10 ticks

40 ticks

100 ticks

(b) The Leipzig-network distribution of link
quality.

Figure 4.10.: The probability of errors under mobility for HLD(5,5).

for uniform and Leipzig-like distribution of link quality. In both cases, two clear trends
are observable: if the link acceptance threshold is low, the probability of errors for links
with short existence increases considerably if compared with PE of a permanent link.
However, for high values of threshold, the limited link existence duration has positive
effects on the error probability and reduces it. This feature is particularly pronounced
for links with a short duration. The reasons for this can be seen in Figure 4.11. For high
values of the threshold t, the probability of false negatives is small regardless of the link
duration and most of the errors originate from false positives. The limited link duration
reduces the probability of false positives since it is more difficult for a link with lower
quality to be recognized as active in such a short time (Equation 4.12, Figures 4.8 and
4.9(a)) and PE is reduced.
Equation 4.18 provides the error probability only for links with the duration d. In

a dynamic network, links have varying existence duration, which can be described by
probability density function fd(d). The distribution of link existence durations in mobile
WMNs fd(d) was derived in [148], which can be used for calculation of error probability
in link detection process:

PE(a, r, t, µ) =
∫ ∞

0
PE(a, r, t, d)fd(d)dd (4.19)

If we set fd(d) = µe−µd and replace continuous time for discrete ticks, the integral is
transformed into a sum, yielding:

PE(a, r, t, µ) =
∞∑
d=0

(PE(a, r, t, d))µe−µd (4.20)

where PE(a, r, t, d) is defined in Equation 4.18 under assumption that the link duration
and the link quality distributions are independent.

60

4.3. Node Failures and Limited Duration of Link Existence

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)
FP − Unlimited ticks

FN − Unlimited ticks

FP − 10 ticks

FN − 10 ticks

FP − 40 ticks

FN − 40 ticks

(a) The uniform distribution of link quality.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)

FP − Unlimited ticks

FN − Unlimited ticks

FP − 10 ticks

FN − 10 ticks

FP − 40 ticks

FN − 40 ticks

(b) The Leipzig-network distribution of link
quality.

Figure 4.11.: The probability of false positives and false negatives under mobility for
HLD(5,5).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o

r)

Permanent links

The average link duration=200 ticks

The average link duration=50 ticks

The average link duration=12.5 ticks

(a) The uniform distribution of link quality,
variation of link duration rate, HLD(5, 5).

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 10 20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

d

P
(l
in

k
 d

u
ra

ti
o

n
)

The average link duration=200 ticks

The average link duration=50 ticks

The average link duration=25 ticks

The average link duration=12.5 ticks

(b) The distribution of link duration d by [148].

Figure 4.12.: HLD behavior in a mobile network. The uniform distribution of link qual-
ity, varying link duration rate.

The important difference between Equations 4.18 and 4.20 is that the former calculates
the error probability as a function of a single duration d, while the later is calculated
for the whole probability distribution function of duration, capturing the HLD error
probability in a mobile WMN.
Figure 4.12(a) shows the error probability of HLD(5, 5) if applied to networks with

varying degrees of mobility. The distribution of link existence duration for these net-

61

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Threshold t

P
(e

rr
o
r)

HLD(1,1)

HLD(1,2) − AODV

HLD(1,8) − DSR

HLD(2,2) − OLSR

Figure 4.13.: The error probability of different HLDs for the average link duration of 25
ticks.

t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7
µ = 0.08 (a,r) (1,5) (1,5) (1,4) (1,2) (1,1) (2,2) (3,2)

PE 0.19 0.17 0.19 0.21 0.24 0.23 0.2
µ = 0.04 (a,r) (1,5) (1,5) (1,4) (1,2) (2,3) (3,2) (4,2)

PE 0.17 0.16 0.18 0.21 0.22 0.21 0.18
µ = 0.02 (a,r) (1,5) (1,5) (1,4) (2,4) (3,4) (4,3) (5,2)

PE 0.145 0.143 0.17 0.19 0.2 0.18 0.16

Table 4.6.: Optimal HLD(a,r) in mobile networks for a given threshold and link duration
ratio. a, r ∈ {1..5}.

works is shown in Figure 4.12(b). The error probability of a mobile WMN follows
conclusions drawn from Equation 4.18. So, if the link acceptance threshold is low, the
probability of errors for links of short duration is higher than the PE of a permanent
link, and the roles are reversed for high values of the threshold.
The error probabilities depend both on link existence duration distribution and the

parameters of HLD as it can be seen in Figure 4.13.
The derived expressions allow us to determine the optimal HLD configurations in the

same manner as in Section 4.2.2. The optimal values of HLD parameters for networks
with the different link duration rates are shown in Table 4.6. If we compare the results
of optimization in mobile (Table 4.6) and in static networks (Table 4.4), the error
probabilities are higher in mobile networks. The second and more important difference
is in parameter values. In static networks, it is always beneficial to put either a or r to
the maximum (value 5 in this example) but in a mobile network this is no longer the case:
with increasing mobility of nodes, the values of a and r are reduced. This characteristics
can be clearly seen for t=0.5 where HLD(1, 1) is optimal for µ = 0.08, HLD(3, 4) is
optimal for µ = 0.02 while HLD(5, 5) provides the optimum for static networks. As

62

4.4. Effects of HLD Errors on Proactive Topology Management Protocols

the link duration rate decreases and their average existence time increases, the optimal
HLD values are moving toward values determined for the static network, and the error
probability of link detection decreases.
Table 4.6 sheds light on the selection of HLD parameters of routing protocols from

RFCs which have been criticized in the previous section. The analysis of HLD behavior
in mobile WMNs has shown that the values from RFCs which were unsuitable for static
networks are much closer to the optimal values of mobile networks.

4.4. Effects of HLD Errors on Proactive Topology
Management Protocols

In proactive topology management protocols, HLDs are applied in a network consisting
of hundreds of edges. The probability of erroneous detection of eerr edges in a net-
work of |e| edges with a HLD(a, r) with error probability PE(a, r, t) has the binomial
distribution B(|e|, PE(a, r, t)), assuming the independence of errors in link detection.
Since the number of edges in a network is rather large even in middle sized networks

and the error probability in detection of as single link is far from trivial, it is possible
to approximate the binomial distribution B(|e|, PE(a, r, t)) with the normal distribution
N(|e| · PE(a, r, t), |e| · PE(a, r, t) · (1− PE(a, r, t)).
The approximation is the consequence of the central limit theorem. The precision

of the approximation depends on the parameters of the Binomial distribution. The
approximation of B(n, p) with N(np, np(1 − p)) is considered accurate if both np and
np(1 − p) are larger than five which is fulfilled even for medium sized networks. For
instance, if a HLD with p = PE = 0.05 is applied in a network with 50 nodes with the
average node degree of five, |e| = 50 · 5/2 = 125, yielding np = 6.25 and np(1 − p) =
5.9375.
Let us observe HLDs from Table 4.4: HLD(2, 5) for t = 0.3 and HLD(5, 5) for

t = 0.5. The probability of having no errors in link detection in a network where they
are used is very low: if |e| = 50 edges and PE(5, 5, 0.5) = 0.11, the probability of having
all edges correctly detected is 0.006, if |e| = 200 this probability is 3.3 · 10−7. Despite
the optimally selected HLDs, the number of erroneous link detection is considerable. Its
mean value is |e| ·PE and grows linearly with increase in number of edges. In a network
with 600 edges there will be 48 erroneous detections on the average for t = 0.5 and 66
errors for t = 0.3. This behavior is depicted in Figure 4.14 which shows the cumulative
distribution function of number of edges which are erroneously detected in networks
which consist of 300 or 600 edges.
HLDs are one of the building blocks of proactive management protocols and HLD

errors are directly transferred to them. The inaccuracies in topology discovered by a
proactive topology management protocol have important consequences for all topological
algorithms applied in WMNs which require accurate global topological knowledge. Most
of the existing algorithms that operate on topologies were not developed to operate under
uncertainty and they assume correctness of the topology on which they operate. So,
although the algorithms are correct itself, their decisions are incorrect since they are
applied to a topology that is incorrect (different than the topology seen by an omniscient
observer).

63

4. Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of erroneously detected edges

C
D

F
|e|=300, t=0.3, HLD(2,5)

|e|=300, t=0.5, HLD(5,5)

|e|=600, t=0.3, HLD(2,5)

|e|=600, t=0.5, HLD(5,5)

Figure 4.14.: Effects of HLD induced errors on proactive topology management in net-
works of different size. Optimal HLD parameters are used for each of
thresholds.

4.5. Summary

In this chapter, the behavior of heartbeat link detectors in presence of heartbeat losses
has been evaluated with the goal of estimating the probability of erroneous link detec-
tion. A model applicable to static and dynamic (mobile) networks has been developed.
It is shown that errors in link detection inevitably exist no matter which HLD is applied
in a network.
The definition of the link acceptance threshold in Section 2.2.1 has been left deliber-

ately vague as ”application dependant”. As such, it left some open questions with regard
to its impact on topology detection and whether its choice may eliminate the errors in
the link detection process. Important result of the analysis performed in this chapter is
that the threshold selection cannot eliminate errors in link detection process.
The evaluation methodology developed in this chapter allows the optimal selection of

HLD parameters so that the errors in the link detection process are minimized. The
methodology is more efficient than simulation. It is flexible and has been demonstrated
how to apply it to two real network datasets.
Even with the optimally selected parameters, the probability of erroneous detection

of a link remains non-negligible. For example, in a static network, within the candidate
set (a, r) ∈ {1..5} × {1..5} for t = 0.3 the optimal detector is HLD(2, 5) and its error
probability is 0.11. In the same example for threshold t = 0.5 the optimal detector
is HLD(5, 5) and its error probability is 0.08. The HLD used in DSR routing proto-
col provides a good example of improvements brought by optimal parameterization of
HLDs – its error probability can be more than 12 times larger for some link acceptance
thresholds than of a designated HLD with optimized parameters for the threshold and
network type.
If errors in output of an HLD are to be kept within acceptable range, its parame-

ters have to be selected appropriately to fit the network characteristics and the link

64

4.5. Summary

acceptance threshold. This necessity of using the optimal HLD parameters can result in
undesirable consequences. Optimal parameters for one network type and link acceptance
threshold may be completely inappropriate for a network with different characteristics.
For instance, it was observed that the optimal HLD parameters for mobile networks
produce high probability of errors in link detection in static networks. So, even if a
network uses optimally configured HLDs, its functionality and performance may get
compromised if characteristics of the network change during its lifetime (e.g., a subset
of its nodes become mobile) or if an application with a different link quality demands
(and acceptance threshold) is deployed in the network. Optimal values from the previ-
ous setup may render network unusable in the new setup, a new combination of optimal
parameters has to be derived, and network nodes reconfigured.
The effects of HLD errors on behavior of proactive topology management protocols are

profound. In proactive topology management protocols, HLDs are applied in a network
consisting of hundreds of edges. The probability of erroneous detection of eerr edges in
a network has the normal distribution N(|e| ·PE(a, r, t), |e| ·PE(a, r, t) · (1−PE(a, r, t)).
The mean value of the number of erroneous link in a network consisting of e edges is
|e| · PE and it grows linearly with increase in number of links in network.
The inaccuracies of HLDs are transferred to proactive topology management protocols

so the topologies they deliver to network protocols are inaccurate. Such inaccurate
topologies have important consequences for all topological algorithms applied in WMNs.
Vast majority of the existing algorithms that operate on topologies are not created to
operate under uncertainty – precondition for their application is the accurate topological
knowledge of a graph on which they are executed. In context of this work, decisions of
the existing biconnectivity testing algorithms which are applied on topology delivered
by a proactive topology management protocol will be erroneous as the consequence of
erroneous topologies provided by HLDs and proactive topology management protocols.

65

5. Distributed Bridge and Articulation
Point Detection Algorithm for Wireless
Networks (DIBADAWN)

An approach to detection of bridges and articulation points in wireless multi-hop net-
works is described in this chapter. A distributed algorithm is presented that combines
the approach of the Echo algorithms [55][67][68] and Tarjan’s DFS. The algorithm in-
troduces numerous modifications in order to utilize the advantages provided by WMNs
and to comply with limitations imposed by them.
DIBADAWN algorithm detects all bridges and articulation points in a network under

ideal conditions (nodes and links do not fail, messages are delivered reliably). However,
node failures and message losses are inevitable in wireless networks and they cause
faults in the algorithm. The faults and their effects have been analyzed in detail and
the detection algorithm was extended in order to reduce impact of faults. The changed
algorithm is able to guarantee some properties in presence of packet losses such as the
termination, but due to unpredictability of message losses and node failures it cannot
guarantee correctness of decisions. Since it is not possible to eliminate effects of all faults
caused by the environment, voting theory is applied in order to improve the accuracy
of the detection algorithm.
An important characteristic of the approach proposed in this chapter is rejection of

the notion of having the same perception of the network topology at each of its nodes,
which is a precondition for bridge and articulation point detection algorithms which rely
on global topology knowledge. The global knowledge is powerful and useful paradigm
in networks with reliable communication, but it is counterproductive in systems loaded
with uncertainty such are the WMNs. The proposed voting schemes exploit the diversity
of knowledge about network’s topology obtained from successive searches at each of
network’s nodes in order to reduce probability of erroneous decisions.

5.1. Introduction

Numerous solutions for biconnectivity testing have been proposed in graph theory in
the past [55][67][108][158][162]. In a graph or in an omniscient1 network, the search for
biconnected components is very efficient – for instance, a slightly modified depth first
search identifies bridges and articulation points in O(n+e) time, where n is the number
of nodes and e is a number of edges. Biconnectivity testing performance has been further
improved in parallel systems. For instance, [130] proposes an algorithm that is capable
of biconnectivity testing in O(log2n) time using O((n+ e)/log2n) processors.

1Perfectly accurate topology knowledge. The cost of obtaining it is disregarded.

67

5. DIBADAWN

If biconnectivity testing is applied in WMNs, the main concern is no longer its effi-
ciency in terms of execution complexity. The major issue is that omniscient communi-
cation networks do not exist. Providing up-to-date topology information is costly and
daunting task in a large distributed system, not always possible to accomplish even in
wired networks [102].
Obtaining accurate topology of a WMN is particularly challenging: wireless links are

instable, they have higher delay, lower throughput and an order of magnitude higher
unreliability than their wired counterparts. Unpredictability of communication link
characteristics caused by environment, physical limitations of the channel and receiver,
unreliability and mobility of nodes, all put high strain on a topology management pro-
tocol. Furthermore, dissemination of topology data consumes resources, increases con-
tention on the air and does not scale well. For instance, the authors of [57] have noticed
scalability issues of their method for partitioning prediction which relies on the central-
ized bridge detection algorithm and global topology knowledge.
It was shown in the previous chapter that the existing link detection mechanisms are

unable to accurately detect links to other nodes in a WMN because of the uncertainty
introduced by unreliable wireless communication channel, Thus, the local topology data
which is disseminated through the network may be already erroneous at a node which
initiates the dissemination.
Combination of issues in link detection and information dissemination in WMNs cre-

ates serious issues for proactive topology management protocols and the topology they
deliver to nodes is inaccurate with high probability (Section 4.4, page 63). The existing
biconnectivity testing algorithms are intended to be applied to the global topology view
of the network and they are not made to operate under uncertainty or in inaccurate
topologies. If they are applied to partially incorrect topology, they deliver incorrect de-
cisions on bridge and articulation point existence. So, instead of having correct decisions
like in traditional biconnectivity testing algorithms from graph theory, the decisions in
algorithms applied to WMNs are correct only with a certain probability. This is not a
particular characteristics of a biconnectivity testing algorithm but the consequence of
unreliable communication in WMNs.
The simulation study in Section 9.2 confirms that proactive topology management

cannot provide sufficiently accurate topology knowledge for bridge and articulation point
detection. As a consequence of inaccuracies in topology knowledge only the decisions
local to a node2 are of some practical importance.
In this work, a distributed approach to biconnectivity testing is chosen. The goal is to

create less communication overhead than its proactive counterparts, and simultaneously
to detect bridges and articulation points with similar or better accuracy.
Figure 5.1 shows the complete proposed approach to bridge and articulation point

detection. In its core is DIBADAWN. It combines the ideas of Echo algorithms and of
Tarjan’s DFS biconnectivity testing, and extends them in order to produce a distributed
biconnectivity testing algorithm that is capable of operation in WMNs. The algorithm
builds a tree from the connectivity graph and detects the cross-edges in it. If it encoun-
ters a cross-edge, it has found a cycle in the graph. All edges that belong to that cycle
are subsequently marked as ordinary edges (they are not bridges). Articulation point
detection is somewhat different since a node may belong to multiple cycles and still be

2A node decides whether it is an articulation point and if its incident links are bridges in the network.

68

5.1. Introduction

Figure 5.1.: Overview of the proposed approach.

an articulation point. Similar as in work of Tarjan [158], equivalence classes of rela-
tion "edge belongs to a cycle" are used to detect them [31]. An example of algorithm’s
execution can be found at page 82.
The algorithm is tailored so that it is suitable for use in wireless networks. For

instance, in graph theory is taken for granted that immediate neighbors of a node are
known, while in WMNs they may be unknown prior to execution of the algorithm.
Finally, algorithm can detect some communication faults and reduce their effects on
detection accuracy.
The inevitable packet losses and node failures in WMN environment cause the algo-

rithm to deviate from its correctness. Two voting rounds are introduced in order to
improve accuracy of decisions. A small set S of latest algorithm decisions is preserved
and used as the input to the first voting round. Various voting rules are applied to this
set S, such as the unanimous, single-for, and majority rule. For instance, the unanimous
voting rule requires of all markings in the set Sap to agree that a node is an articulation
point in order to support that hypothesis. The voting procedures and rules from this
round are described in detail in Section 5.6.
Voting rules from the first round produce results that differ one from another and

consequently have different precision and recall. In Section 5.6.3 is explained how the
second voting round profits from these differences and further improves the accuracy
of decisions through increase in utilization of information delivered by the detection
algorithm. For instance, majority voting can be applied to outcome of the unanimous,
weighted and trusted voting rules in order to produce the final decision whether an edge
is a bridge.

69

5. DIBADAWN

In addition to the majority rule, the Bayes classifier [72] and the weighted voting
rule [131] can be used in the second voting round. Such rules require certain apriori
knowledge (they require execution of a learning phase before they can be used) but their
decisions should provide even higher increase in precision and recall.
The chapter is organized as follows. Applicability of existing biconnectivity testing

algorithms in WMNs is assessed in Section 5.2. It is shown that in addition to the issue
of compromised correctness of their decisions, there exist control flow and termination
issues in some of the approaches. In Section 5.3 are introduced the necessary changes
to the Echo algorithm in order to enable its execution in WMNs. The changes are
presented in detail in Section 5.4. The proof of correctness of DIBADAWN can be found
in Appendix B. The issues introduced by unreliable communication channel, which are
unavoidable in reality, are analyzed in detail in Section 5.5. Since fault removal is not
possible in a system where decision makers have such a limited knowledge about the
system as they have it in this case, a fault masking mechanism in form of voting rules
is proposed in Section 5.6.

5.2. Biconnectivity Testing Algorithms in Context of Wireless
Multi-hop Networks

Most of the biconnectivity testing algorithms can be adapted for distributed execution
in a network which provides reliable communication even if they are not originally
envisioned for such use: method calls, checking a state of an adjacent node and returning
values to the caller are performed by inter-node message passing; the remainder of the
code is executed unchanged at nodes. However, not all of the candidates are equally
adept at operation in wireless environment.
The wireless communication channel has the following characteristics which influence

execution of distributed algorithms:

1. Neighbors of a node are not necessarily known. Either an additional algorithm
for their detection must be employed (e.g., a HLD), or the distributed algorithm
itself must perform the discovery.

2. A MAC broadcast visits all neighbors simultaneously, even the already visited
neighbors.

3. If algorithm requires visits of neighbors in a specified order, it is implemented as
a series of MAC unicasts.

4. Message exchange may be overheard by a subset of neighbors of nodes that com-
municate. While one node is sending a message, its neighbors should be silent. If
they also transmit, messages may be lost.

5. It is not possible to guarantee message delivery, even if retries in message delivery
are employed. As a consequence, inconsistent algorithm states may develop in the
network.

The distributed biconnectivity testing algorithm should maximize the utilization of
the MAC broadcast (2) in order to reduce number of sent packets. Proactive discovery

70

5.2. Biconnectivity Testing Algorithms in Context of Wireless Multi-hop Networks

of links to neighbors is to be avoided due to its communication overhead. MAC unicasts
(3) and ordered node visits in the exploration phase of the algorithm are undesirable due
to increase in number of sent messages and contention on the channel.3 The state in-
spection between nodes should be also minimized in order to reduce channel contention
and probability of packet losses (4) caused by it. Even if the number of messages gen-
erated by the detection algorithm is kept at minimum, it is still possible that messages
are lost (5) either because of the collisions on the channel or because of the shadowing
and fading of the channel, so the algorithm must possess certain resilience to message
losses.
DFS and BFS are taken as two primary candidates. DFS is one of the best-known

algorithms for bridge and articulation point detection in graphs so it is tempting to
adapt it for distributed execution in WMNs. Breadth First Search (BFS) also produces
a tree in its execution and detects all cross edges. Additionally, it is frequently used in
existing WMN protocols4 where it is also known as flooding: each node in the network
rebroadcasts the message exactly once, upon its first reception.
dBFS fully utilizes the broadcasting nature of wireless medium: it is not necessary to

know whether there are any nodes in the neighborhood – a MAC broadcast reaches them
all (assuming that packet is not lost on the channel). This simultaneously transfers the
flow control and discovers neighbors.
dDFS needs to select exactly one node that will continue the algorithm execution.

Regardless of the neighbor selection method, a node that executes dDFS must know its
1-hop neighborhood, introducing mandatory proactivity to the tree-construction phase.
Detection of 1-hop neighborhood can be easily performed by HLDs, but as it has been
shown in Chapter 4, HLDs cannot guarantee correctness of their decisions. HLDs pro-
duce both false positives and false negatives in link detection. Thus, dDFS may ignore
existing neighbors due to false negatives in link detection, possibly causing false positives
in bridge and articulation point detection. A node may also attempt to communicate
with a neighbor over a link with insufficient quality (link quality is below acceptance
threshold) possibly causing false negatives in bridge and articulation point detection. A
false positive in link detection caused by a failed node (HLD did not realize the failure
at the moment of link’s use) is not an issue since a node will recognize its failure once
it attempts to communicate with such non-existent neighbor. dBFS may also produce
false positives and negatives in the detection process due to similar reasons.
A much more serious issue for the dDFS are the effects of packet losses on its control

flow. DFS blocks a node in the forward phase (tree discovery), and node remains
blocked until its parent in DFS tree returns control of the algorithm to it. If applied
distributively in a network with unreliable communication channels, control sequences
can be lost and the node can remain in the blocked state.
Let us observe two dDFS walkthrough orders rooted at node A in Figure 5.5(a) (page

82): ABHCEFGD and ABCEFGDH, and assume that no messages are lost. If the
node B first visits its neighbor H, it gets a response immediately. However, if it visits
the node C first, waiting time before it unblocks and visits the node H will be longer

3A single MAC broadcast of a node A reaches d(A) nodes. At least d(A) transmissions are required
to reach the neighbors of node A by MAC unicasts.

4To avoid possible confusion in the text, general functionality of algorithm and the centralized (applica-
ble to complete topology knowledge) implementations are named DFS and BFS and their distributed
counterparts are dBFS and dDFS.

71

5. DIBADAWN

since dDFS visits five nodes instead of one. If there would exist a subnetwork with
hundreds of nodes beyond node G, it would increase the waiting time for unblocking
of node B proportionally. If communication is reliable, a node patiently waits until it
eventually receives an answer from its tree-child. In a real network, messages can be lost
in either forward (parent to child) or backward phase (child to parent) of the dDFS and
a node may remain blocked indefinitely long, preventing termination of the algorithm’s
execution. MAC unicast of dDFS messages reduces the occurrence of such events at a
cost of increased contention on the channel and communication overhead, but it still
cannot resolve the problem completely nor provide adequate robustness.
For example, if dDFS starts at node B and decides to visit node H as the first one

in the whole search and that message is lost, it remains blocked and cannot continue
searching through the larger part of the network. In dBFS, if the nodeH does not receive
message, the search will be continued in remainder of the network independently of the
loss event at the link BH, assuming that at least one of the nodes A, C, or D have
received the message.
The correctness of dDFS can be sacrificed in order to ensure its termination by intro-

duction of a timeout mechanism: if no response from a successor in DFS tree is received
for a long time, a node reclaims the control over dDFS execution and continues it at
some other neighbor. However, it is unclear when to select a different neighbor (how
to determine the timeout duration) and resume with the execution of dDFS based on
local information that is accessible to node – it does not know the size and structure of
the network beyond its immediate neighbors. Use of dDFS timeouts would introduce
additional complexity to dDFS algorithm, since a methodology would have to be devised
that resolves conflicts if two or more execution flows exist in the network instead of one:
in case that a node interrupts one execution flow and starts an additional flow although
the first execution flow is still successfully executing somewhere in the network.
There exists additional control flow issue which is not limited only to dDFS but it

affects every distributed algorithm applied in networks with unreliable communication
channel if the algorithm requires transfer of exclusive right to continue execution of the
algorithm between pair of nodes.
In order to perform the control flow transfer from node A to node B, both nodes

must reach consensus on the transfer of control. Let us assume that node A is supposed
to transfer the control to node B. It sends a message to B initiating the transfer, and
pauses the execution. Node A needs a confirmation (acknowledgement) from B, since
the message to B may have been lost, or node B may be failed. If A would stop the
execution and B has not received the message, the execution of the algorithm would
break since A would remain blocked, believing that B executes the algorithm further.
Upon reception of the request for control flow transfer, node B is ready to start

the execution but it must notify node A that it is ready to execute the algorithm.
It is necessary to send this acknowledgement to A because if A is unaware that B
has received the message, it may assume failure of B and transfer control to another
neighbor, creating two flows instead of one. After node B has sent its acknowledgement,
it is ready to execute algorithm, but it must wait for confirmation from A, otherwise
both of them may continue executing the algorithm. If A has received the notification
from B, it has to send notification on notification, and it expects confirmation from B
on reception of this second notification.
Same as in two-general problem [27], A and B are involved in infinite message ex-

72

5.2. Biconnectivity Testing Algorithms in Context of Wireless Multi-hop Networks

dDFS dBFS (+ DIBADAWN)
messages 2e 2n− 1

sent + proactive 1-hop neighborhood
message 2e 2n− 1 or
overhead + proactive state n− 1 if assisted

+ no use of search data by the network layer
detection in presence causes causes
of message losses errors errors

robustness very low high

Table 5.1.: Comparison of dDFS and dBFS for bridge and articulation point detection
in WMNs.

change, otherwise they risk that either the search stops, or that two flows are executed
instead of one. If link between nodes is of sufficient quality, probability of erroneous exe-
cution termination or undesired parallelization of execution is small, but the correctness
guarantees cannot be established within a finite messaging sequence.
dBFS is implemented with the help of MAC broadcasts and its control flow issues in

the forward phase are less pronounced. It creates parallel execution flows by its definition
so this error source does not exist. Same as dDFS it may stop the execution prematurely
because of message losses. Probably the biggest advantage of dBFS over dDFS in WMNs
is that dBFS does not mix backtracking phase with the forward (exploration) phase of
the algorithm. It is either in forward phase, when it explores the network, or backward
when it routes the collected information on network toward the root of the search tree.
This enables construction of simple and efficient timeout schemes at nodes.
Additional advantage of dBFS over dDFS for tree construction in WMNs is the us-

ability of data directly obtained by each of the search strategies. In an operational and
used network, dBFS is executed regularly by network layer protocol: e.g., for route dis-
covery in reactive protocols [54] [137], localization service in geo-routing protocols [48],
or dissemination of interests of sinks to sensor nodes in wireless sensor networks [91].
If dBFS is used as basis of bridge and articulation point detection, the communication
overhead is reduced since network is already performing dBFS for its own purposes and
the biconnectivity testing algorithm can reuse data obtained from the search.
Contrary to dBFS, applications of dDFS in WMNs are rare and not accepted in prac-

tice. As a rare example, Stojmenovic et al. [154] have performed a pure topological
study of DFS applicability in reactive routing protocols – they have compared path
lengths produced by dDFS and dBFS. It seems that authors of [154] are unaware of
control-flow issues caused by packet losses and they did not use simulations nor experi-
ments to demonstrate that it is possible to operate distributed DFS on a communication
channel with packet losses.
Table 5.1 summarizes this discussion. dDFS imposes higher overhead for its execution

than dBFS since it requires neighbor detection and discovers one edge per transmis-
sion. Since it traverses all tree edges two times, its message complexity is 2e. Message
complexity of dBFS is 2n − 1 since every node broadcasts exactly one message in the
forward phase while in backward phase all nodes except the root send one message to
their parents. dBFS has even greater advantage (lower overhead) if we consider that it

73

5. DIBADAWN

is frequently executed by other protocols, and biconnectivity testing algorithm can use
this data. Both in dDFS and dBFS message losses may result in incorrect decisions so
neither has the advantage. Depending on topology of the network and location of the
loss, effects on detection accuracy can be more or less severe. Robustness of dDFS is
very low. In addition to data flow, it has control flow and termination issues. Because
of the weak coupling between execution phases of algorithm, dBFS terminates even in
presence of packet losses. It can be concluded that a dBFS-based biconnectivity testing
algorithm outperforms the dDFS in almost every category in the wireless environment.

5.3. Adaptation of the Echo Algorithms for Application in
WMNs

The echo algorithms [55][67] are a class of distributed network algorithms that fulfills
the requirements that are placed upon the biconnectivity testing algorithm which is to
be executed in a WMN (they are listed in the previous section). Most importantly:

• They have separated forward (exploration) and backward phase (processing of
data from the forward phase) so they do not face the backtracking problems like
DFS.

• They operate on various tree types so the dBFS can be used in their forward
phase. Instead of sending one-by-one explorer as in [55][67], a MAC broadcast
sends a set of explorers saving node energy and reducing channel contention.

Echo algorithm has already been adopted for biconnectivity testing in multiprocessor
networks [55]. However, the direct application of it in WMNs is not possible and several
crucial changes had to be made:

• The algorithm which is described in [55] relies on direct reply (echo) after detec-
tion of a cross-edge. A node that sends an explorer over a cross edge immediately
obtains an echo which indicates that the discovered edge is a cross-edge. This infor-
mation is used for construction of sets which contain INT(ernal) and TERM(inal)
nodes5. In WMNs such implementation is inappropriate since it creates peaks in
contention intensity. This issue does not exist in wired networks where links are
mutually independent, but communication medium in WMNs is shared by a group
of nodes.
For instance, let us assume that node A in Figure 5.11 (page 96) starts the search,
and that node C is the second node which explores the graph further. As it sends
its message to neighbors, it discovers three cross edges CE, CD, CF. By [55] every
node at a cross edge must respond with an echo to notify node C of cross edge
existence. They must not do it immediately, otherwise echoes will collide at C
and will not be received. Furthermore, if node E sends an explorer immediately
after node C, it is received by nodes B,C,D,F . They are all visited so they are
supposed to send echoes to node E, further increasing the probability of packet
collision in vicinity of node C.

5INT and TERM are the names of sets used in [55].

74

5.3. Adaptation of the Echo Algorithms for Application in WMNs

A node X of degree d(X) can trigger up to d(X) − 1 echoes from its neighbors.
In real networks (as it will be demonstrated in the case study in Chapter 7),
nodes have degree of up to 20 and some network sections are much denser than
in the small example from Figure 5.11. The discussed issues in the cross-edge
discovery would escalate in such dense network sections. The issues caused by
echo messages are similar to the so-called "ACK implosion" problem [90][133] that
occurs if acknowledgements are used for reliability improvement of network-wide
multicast and broadcast protocols.
In addition to the issue of increased packet collision probability created by these
echo message storms, the message complexity of such an approach is high. For a
network consisting of n nodes and e edges, total number of transmission by this
scheme is n (each node in the network performs one MAC broadcast to discover
the tree and/or cross edges) plus e−n+ 1 echoes for the cross edges (the number
of network edges reduced by n− 1 edges which belong to the tree), yielding e+ 1
messages in the forward phase of the algorithm.
In this work is introduced cross-edge detection based only on MAC broadcasts,
without echoes at cross-edges. The detection of cross-edges is performed inde-
pendently at nodes incident to them which enabled reduction of the number of
sent messages in the forward phase of the algorithm to the minimum: n packet
transmissions.

• Construction of the INT and TER sets as it is demanded in [55] requires the total
ordering of node visits. This can be achieved by ordered node visits, utilizing
a neighbor discovery protocol and MAC unicasts. Such approach in undesirable
(as explained in Section 5.2) and deprives the detection algorithm of advantages
brought by the MAC broadcasts in the forward phase. It is possible to implement
the total ordering with MAC broadcasts if nodes have globally synchronized clocks.
However, the uncertainty of wireless communication confronts us again: results
of [74] and [81] show that it is not possible to perform global synchronization of
drifting clocks in WMNs. It is possible to reduce the difference between clocks to
order of hundred of microseconds [124] but the clock precision required for total
ordering in this application scenario is in range of nanoseconds.

• In order to resolve termination issues in presence of packet losses, the implicit
detection of tree-leaves had to be eliminated and substituted by a timeout mech-
anism. If network offers reliable message delivery, it is possible to execute the
algorithm until tree-leaves have been reached and then to roll the execution of
the algorithm backwards: a node executes its backward phase only after all its
children have executed it and responded to the node. However, in presence of
message losses this approach is ineffective and incorrect. More details on its issues
can be found in Section 5.4.1.

The independent cross-edge detection and association of a separate marking to each
cross-edges not only resolved some of issues of [55] in WMNs, but it also enabled in-
troduction of important classes of voting rules. As it will be shown in the evaluation,
the direct decisions of DIBADAWN achieve limited accuracy in WMNs, but with the
extensions provided by the decision rules, its accuracy is considerably improved.

75

5. DIBADAWN

Field Name Data Type Forward Phase Backward Phase
searchId unique ID

√ √

msg. type boolean
√ √

TTL integer
√ √

treeParrent node ID
√

×
forwardedBy node ID

√ √

payload variable × BRIDGE or NOBRIDGE
unique identification

Table 5.2.: DIBADAWN message format.

5.4. Distributed Biconnectivity Testing in WMNs

In this section are presented changes introduced to Echo and DFS algorithms that
are necessary for the distributed bridge and articulation point detection in WMNs, in
accordance with the previous discussion. The derived algorithm accounts for issues
that are present in a distributed, asynchronous systems with unreliable communication
channels such are wireless multi-hop networks. Since the changes considerably alter the
functionality of the detection algorithms that inspire it [55][158], the proof of correctness
of this new version of the algorithm is presented in Appendix B (for networks with
reliable message delivery)6.
The bridge and articulation point detection is preformed through message exchange.

The messages are used both for information exchange and control of execution flow.
Their format is shown in Table 5.2. Most of message fields are used in both execution
phases with few exceptions (e.g., treeParrent is used only for forward phase).
More than one DIBADAWN instance may be executing simultaneously in the network

so it is necessary to distinguish between search instances (field searchId). For each of
searches, its data structures are managed independently. The identifier of a search is
unique. For instance, it may be composed as concatenation of initiator node’s MAC
address (unique) and hash value of the search start time. The message-type field is used
to determine whether a message belongs to forward or backward phase of algorithm, so
that it can be correctly decoded by a node that receives it.
The searches are initiated in method start_search (Figure 5.2). Time to live field of

the first message is set to a value maxTTL. The value should not be considerably larger
than network’s diameter but it must not be smaller than it. Since this is the first message
to be sent within the search, its tree parent field is set to null. The forwardedBy field
is set to a node that sends the packet. The distributed execution of the algorithm starts
after the message is MAC broadcasted.
Upon reception of a forward search message by a node, it is handled in the method

receive_forward_message. If a node has not been visited by this search instance and
if the TTL (time-to-live) field of the message has not reached zero, the message should be
re-broadcasted (construction of the BFS tree). The node updates treeParent, TTL, and
forwardedBy fields in the message. Before it performs MAC broadcast of the message

6A pseudo code of the simplified version of algorithm can be found in Appendix B. Algorithm func-
tionalities are the same, but the version from the appendix may be easier to understand since it does
not include implementation details.

76

5.4. Distributed Biconnectivity Testing in WMNs

list of variables shared across searches:
list edgeMarkings;
list APdecisions;
//these lists contain tuples (time, search ID, decision, edge, competence)

each search has following data structures:
boolean visited, isArticulationPoint;
list crossEdges;
node parent; integer myTTL
backward message buffer messageBuffer;
list of message-sets for each neighbor msgi
//(created dynamically upon neighbor first discovery and set to BRIDGEni);

start_search():
create empty message;
msg.initiator=this; parent=null;
msg.id=this::hash(time)
msg.ttl=maxTTL; msg.forwardedBy=this;
visited=true; MAC broadcast the message msg;
start timeout

receive_forward_message(message msg):
if(not visited) {

visited=true;parent=msg.forwardedBy;
start timeout;
myTTL=ttl;
if(myTTL>0) {

msg.ttl=ttl-1; msg.forwardedBy=this;
msg.parent=parent;
MAC broadcast the message after U(0,jitterMax) seconds;

}
} else if(msg.parent!=this) // ignore edges belonging to tree

crossEdges.add((msg.forwardedBy));
on timeout:

detect_cycles;
forwardMsg;
execute APdetection(), add decision to list APdecisions
execute voting rules for bridge and articulation point detection

Figure 5.2.: Implementation of the DIBADAWN (1).

it waits for random time, drawn from U(0, jitterMax). Jitter reduces probability of
simultaneous MAC broadcast of several neighbor nodes that causes packet collisions
and losses.
If a node has already participated in the search instance, incoming message may

indicate a discovery of a cross-edge. Detection of cross-edges is simple: they belong to
connectivity graph but do not belong to the tree. Tree messages are easily identified
thanks to the treeParent field:

• The first forward message received by a node belongs to the tree and leads to its
parent.

• If a node receives a forward message and the field treeParent in the message is
equal to its identification, the message originates from its child and it is ignored.

• If a node receives subsequent forward messages (after the first message) and its
identifier is not in the treeParent field, it has discovered a cross-edge.

The field treeParent is added to the forward message in order to avoid queries to
neighbor nodes on their parent status that are necessary for the cross-edge detection.
This field is not necessary in a wired network, since a node is able to control over which

77

5. DIBADAWN

detect_cycles():
for each m in crossEdges {

if(this<m.forwardedBy) cycleId=m.id::this::m.forwardedBy;
else cycleId=m.id::m.forwardedBy::this;
add (time, m.id, NOBRIDGE, (this,m.forwardedBy), 1) to edgeMarkings;
msgm.forwardedBy = msgm.forwardedBy ∪ {NOBRIDGEcycleId}
bufferBackMsg(parent, cycleId);

}
}
receive_backmessage(backward message m):

if(m.payload=BRIDGE)
add (time, m.id, BRIDGE, (this,m.forwardedBy), BR− competence) to edgeMarkings;
msgm.forwardedBy = msgm.forwardedBy ∪ {BRIDGEm.payload}

else if messageBuffer.contains(m.payload) {
removedMsg=messageBuffer.remove(m.payload);
add (time, m.id, NOBRIDGE, (this,m.forwardedBy), 1) to edgeMarkings;
add (time, removedMsg.id, NOBRIDGE, (this,removedMsg.forwardedBy), 1)

to edgeMarkings;
} else messageBuffer.enqueue(m);

}
bufferBackMsg (node destination, identifier cycleId):

create new backward packet m;
m.forwardedBy=this; m.ttl=maxTTL;
m.payload=NOBRIDGE; m.id=cycleId;
messageBuffer.add(m);

forward_msg ():
if(messageBuffer = �) {

add (time, msg.id, BRIDGE, (this,parent), BR− competence) to edgeMarkings
send BRIDGE message to parent;

} else {
for each message m in messageBuffer

update message fields: msg.ttl–, forwardedBy=this, etc.
if(m is in possibleTrustedVotes)

add (time, msg.id, NOBRIDGE, (this,parent), 1) to edgeMarkings
else {

add (time, msg.id, NOBRIDGE, (this,parent), msg.ttl) to edgeMarkings
add (time, msg.id, NOBRIDGE, (this,msg.forwardedBy), msg.ttl) to edgeMarkings
msgm.forwardedBy = msgm.forwardedBy ∪ {NOBRIDGEm.cycleId}

}
msgparent = msgparent ∪ {NOBRIDGEm.cycleId}

}
group messages from messageBuffer in packets and send them to parent

APdetection() {
create zero filled matrix closure[|adj()|][|adj()|]
for all pairs (i,j) from adj()× adj()

if(msgi ∩msgj 6= �) closure[i][j] = 1;
for all pairs (i,j) from adj()× adj()

if(closure[i][j] == 1)
for k in adj()

if(closure[j][k] == 1) closure[i][k] = 1;
if (closure is not 1-matrix) isArticulationPoint=true;

Figure 5.3.: Implementation of the DIBADAWN (2).

link the outgoing message is sent. In a WMN, a node uses the MAC broadcast, the
message reaches all neighbors, including its tree-parent. Without this field, parent node
would erroneously conclude that the link to its child in the tree is actually a cross-edge
(parent as an already visited node is visited again). Other option for parent would be
to initiate additional message exchange in order to determine whether a message it just
received came from its child or over a cross-edge but it would increase communication
overhead. These changes enable the exclusive use of MAC broadcasts in the forward

78

5.4. Distributed Biconnectivity Testing in WMNs

phase, so instead of individual neighbor visits and direct echo replies that are required
in graph version of echo algorithm, cross-edges are detected independently and without
explicit notifications (echoes).
Nodes are using timeout mechanism to ensure the proper execution order in the

backward phase: after reception of the first message in the forward phase, a node starts
a timeout that will trigger the backward phase. The timeout at a node on ith tree level
is reduced proportionally to the reduction of TTL of forward packets:

timeouti = TTLi ∗maxTraversalT ime (5.1)

This ensures that nodes closer to the root of the tree enter the backward phase later
than the nodes higher in the tree, and the correct execution order of backward phase.
The parameter maxTraversalT ime should be sufficiently large to include the packet
transfer time, jitter, queuing and processing delays. Some routing protocols already
include similar parameters: for instance, the maximum traversal time per node can be
taken from NODE_TRAVERSAL_TIME of AODV (default value in [137] is 40ms).
The backward phase is activated by expiration of the timeout. The mutual func-

tionality of methods detect_cycles, forward_msg, and receive_backmessage is
detection of HCA cycles. Once the cross edge is discovered, it is forwarded towards the
HCA where it gets paired, ”closing” its cycle. The algorithm does not discover all cycles
in a network but only the HCA cycles. This characteristics is actually beneficial for
its performance, since redundant cycle detection causes unnecessary message exchange
between nodes, increasing the contention on the communication channel. The proof
that it is sufficient to discover only HCA cycles in order to mark all edges in a network
as NOBRIDGE can be found in Section B.1 at page 220.
As the first step of the backward phase, a node executes the method detect_cycles.

Each cross-edge identifies a cycle. The identifier of a cycle is created by concatenation of
the pair of identifiers of nodes incident to the cross-edge (node with the higher identifier
is always placed first, as a rule of creation of identical identifier at both nodes incident
to a cross-edge). Since the unique searchId field is included in the backward packet, all
cross-edge markings are also unique.
The markings are not sent instantaneously down the tree but they are buffered at a

node in order to reduce traffic overhead: the amount of useful data that is sent remains
the same but if more markings are placed in one MAC frame, the total overhead on the
communication channel (e.g., MAC header, interframe spaces) is reduced.
Markings of an edge are added to the list edgeMarkings in order to support the

voting rules. Each marking in the list is represented as a tuple that consists of the local
time of marking, search identifier, edge identifier, marking and its competence. The
competence of a marking is probability that it is correct, as it will be defined in Section
5.6.2, where it is shown that some markings have higher competence than others and
that marking differentiation may be beneficial for detection accuracy.
A non-leaf node receives backward messages through the method

receive_backmessage. The BRIDGE markings are directly stored in the edgeMark-
ings list. NOBRIDGE messages are queued in backQueue if they are encountered for
the first time. If pairing occurs, both paired messages are deleted and markings for
both of them are added to the edgeMarkings list. The pairing guarantees existence
of a cycle so competence of such markings is one. The pairing is key part of backward

79

5. DIBADAWN

Figure 5.4.: Message sets used for articulation point detection (after transitive closure).

phase, since it prevents cycle-marking messages to escape from their cycles.
If there are no messages to be forwarded to the tree parent, the link to the parent

obtains BRIDGE marking and the parent in the tree is notified of it by an appropriate
BRIDGE message.
Buffered NOBRIDGE messages, if they exist, are sent at the end of the method

forward_messages. An appropriate tuple is added to the list edgeMarkings for each
forwarded message. Finally, voting decision rules are applied on collected markings to
decide which links are bridges.
After it has forwarded markings from the backward phase, node processes all messages

it has received in this execution instance of the algorithm in order to calculate whether
it is an articulation point. Bridge detection and articulation point detection are related,
but a simple reuse of bridge detection (assuming that all vertices incident on a bridge
are articulation points) is incorrect since:

• It does not include all articulation points: an articulation point may belong to
multiple cycles (nodes E and P in Figure 5.4)

• It may include vertices that are not articulation points: edge incident to a pendant
node is a bridge but a pendant node is not an articulation point (nodes H, N, O
in Figure 5.4).

Therefore, additional functionality is required in the algorithm to detect them.

Definition 5.1 Let E′ be the set of edges of graph G(V,E) that are incident to a node
P . Edges PQ and PR from E′ are in relation } if there exists a common cycle in
G(V,E) to which they both belong.

The relation } is an equivalence relation and it divides edges of G in equivalence
classes that correspond to bicomponents [31] (Lemma B.4, page 223). As it is common
in literature [158], the relation is used for detection of articulation points. The proof
that the implementation proposed in Figures 5.2 and 5.3 is correct and that algorithm
delivers sufficient amount of data to nodes in order to correctly identify articulation
points can be found in Section B.2 (page 223).

80

5.4. Distributed Biconnectivity Testing in WMNs

Within every algorithm execution, every node P has a set msgPQ attached to each
edge PQ discovered in that execution of the algorithm. Initially the set consists of
markingsmsg′PQ that the algorithm has sent over the edge PQ. The algorithm associates
the markings also with cross-edges for completeness and correctness reasons, although
it actually does not send them. As a consequence, each edge PQ incident to the node
P has a non empty set msg′PQ.
Note: Relation } from Definition 5.1 is defined for all edges in the graph. Since the

DIBADAWN is distributed, it is not even aware of all edges in the graph. So, a node
can calculate it only for its incident edges.

Definition 5.2 (Implementation of the relation } in DIBADAWN) The rela-
tion P }Q holds in DIBADAWN if msgP ∩msgQ 6= �.

If message sets remain as they are initialized (containing only messages that are sent
over them) the relation is incomplete. For instance, in Figure 5.4 the message sets are
msg′PQ = TQ (node Q delivered marking that reports existence of cross-edge TQ) and
msg′PS = TS (node S reports existence of cross-edge TS) so based on them edges PQ and
PS are not in relation although there exists cycle PQTS. In order to correctly calculate
the relation, transitive closure of the relation } is implemented in the algorithm and
applied to the initial message sets msg′. Only after the closure, the implementation of
the relation (Definition 5.2) can be used for articulation point detection.
The transitivity closure places edges incident to a node into same equivalence class if

and only if there exists a common cycle to which they both belong, or equivalently if
they have a common NOBRIDGE message. So, in the previous example, msg′PQ = TQ,
msg′PS = TS and msg′RP = TS, TQ (node R forwarded markings originating from T
that report existence of cross-edges TQ and TS). After transitive closure, they are all
in relation } since (PQ}RP)&(PS}RP) => (PQ}PS). In method APdetection,
the well known and theoretically proven Warshall’s algorithm [170] for transitive closure
of relation } is used. If its output is 1-matrix, node is not an articulation point (all
edges belong to a single equivalence class).
In Figure 5.4 can be seen that node D is not an articulation point since both of

its edges belong to the same class. Node C has an incident bridge that creates two
equivalence classes, so it is articulation point. Node E is an articulation point although
it does not have incident bridges – its edges are divided into two equivalence classes
of relation }: one equivalence class contains edges GE, FE and CE while the other
contains edges IE and JE.
The Lemma B.4 [31][158] shows that the equivalence class calculation correctly detects

the articulation points. However, DIBADAWN does not operate on all cycles, but only
on the HCA cycles. Additionally, this data is propagated through the network and some
of it is deleted through pairing of markings. The Theorem B.2 (page 223) proves that
DIBADAWN has sufficient data for correct calculation of equivalence classes.
Note: The articulation point detection in method APdetection may seem to be a

local decision of a node since it is made based on the markings of edges incident to it.
However, the data may originate from distant nodes in the network and captures the
general graph structure.

81

5. DIBADAWN

(a) dBFS tree with TTL values. Cross-edges
are marked with dotted lines.

(b) Backward phase of the algorithm and pair-
ing of messages.

Figure 5.5.: Example of bridge detection in DIBADAWN execution on a BFS tree.

Event Methods
1 A.start_search()->A.MACbroadcast(), B.receive_forward_message();
2 B.MACbroadcast(), {A, C, D, H}.receive_forward_message()
3 H.MACbroadcast(), B.receive_forward_message()
4 C.MACbroadcast(), {B, D, E, F}.receive_forward_message(), DC is cross-edge
5 D.MACbroadcast(), {B, C, F, G}.receive_forward_message(), CD and FD are cross-edge
6 E.MACbroadcast(), {C, F, G}.receive_forward_message(), FE and GE are cross-edges
7 G.MACbroadcast(), {E, F, D}.receive_forward_message(), EG and FG are cross-edges
8 F.MACbroadcast(), {C, D, E, G}.receive_forward_message(), DF, EF, GF are cross-edges
9 E.timeout(), C.receive_backmessage({NBR-EG, NBR-EF})
10 G.timeout(), D.receive_backmessage({NBR-EG, NBR-FG})
11 F.timeout(), C.receive_backmessage({NBR-DF, NBR-EF, NBR-FG})

C pairs NBR-EF
12 H.timeout(), B.receive_backmessage({BRIDGE-BH})
13 D.timeout(), B.receive_backmessage({NBR-CD, NBR-EG, NBR-FG, NBR-DF})
14 C.timeout(), B.receive_backmessage({NBR-CD, NBR-EG, NBR-FG, NBR-DF})

B pairs NBR-CD, NBR-EG, NBR-FG, NBR-DF
15 B.timeout(), A.receive_backmessage({BRIDGE-AB})
16 A.timeout()

Table 5.3.: Sequence of method invocations for the example in Figure 5.5.

Example of DIBADAWN Execution

Figure 5.5 and Table 5.3 provide an example of execution of the detection algorithm,
if it is coupled with dBFS as the tree construction algorithm. In the first phase of the
algorithm (Figure 5.5(a)), tree is constructed. The number next to a node represents
TTL of sent packets.
The timeouts expire in reverse order to the order of visits in the forward phase.

Timeout order in the second phase of algorithm (Figure 5.5(b)), is shown by events nine
to sixteen in Table 5.3. Each node marks all cross-edges that it observed and sends
corresponding markings to its parent. A single packet to the parent in a tree may carry
more than one NOBRIDGE marking: e.g., three NOBRIDGE messages are transported
over link CF (11th event in Table 5.3).
Beside the cross-edge detection, the nodes perform pairing and forwarding of unpaired

82

5.4. Distributed Biconnectivity Testing in WMNs

messages. For instance, node C first receives messages from nodes E (event 9) and F
(event 11), pairs two EF markings (event 11), then it detects cross-edge CD and forwards
remaining three messages to its parent B (event 14).
If no messages are to be forwarded, either because node had no children nor incident

cross-edges (node H) or because all messages have been paired (node B), node informs
its parent of bridge existence. Once the root finishes execution of its backward phase,
the execution of this algorithm instance is terminated.

When to execute algorithm

There exist two opposing constraints for timing of DIBADAWN executions. In order to
capture possible topology changes in the network (e.g., a node has failed), DIBADAWN
has to be occasionally executed.
The algorithm executions must not be too frequent, otherwise DIBADAWN overhead

may approach the overhead of proactive topology management protocols. The follow-
ing, non-obligatory recommendations should be used to determine when to execute the
DIBADAWN:

• Concurrently with execution of dBFS by other network protocols. The overhead
of forward phase does not exist since data from routing protocol is reused.

• Each time a new node is added to network or when existing node reboots. Every
new node changes the topology and requires update of bridge and articulation
point decisions. A node is aware of its status change and executes DIBADAWN.

• If a node does not observe any DIBADAWN-related activity in the network for
time tinactive, it executes DIBADAWN with a certain probability (to avoid simul-
taneous execution by all nodes in a network).

5.4.1. Execution Issues of Echo Algorithms in WMNs
Beside the global timeout scheme described in Equation 5.1 a version of the algorithm
that operates as in [55][67] was tested in [120] (with regard to algorithm rules that
regulate the execution order in the backward phase). The idea is to detect the leaves
in the tree and to start the backward phase from leaves. Since a leaf has no children,
it receives only one message in the forward phase from its tree parent. If a node does
not receive a response from its possible children within jitterMax seconds, it is a leaf
in the tree. A non-leaf node is supposed to track existence of its children in the tree.
Once all of its children responded, it can process back-messages and perform necessary
communication with its parent in the tree.
The issues of such execution-flow control in WMNs are:

• A node may erroneously conclude that it is a leaf (e.g., node B in Figure 5.6(a)).
DIBADAWN continues execution at its child(ren), but due to message losses, the
node is unaware of its children, concludes it is a leaf and immediately starts the
backward phase.

• A node may correctly conclude that it is not a leaf but it can be still unaware of
all its children if some of messages from its children are lost (node C is unaware

83

5. DIBADAWN

(a) Erroneous detection of a leaf in search tree. (b) Premature execution of backward phase at
a non-leaf node.

Figure 5.6.: Issues of echo algorithms introduced by channel fading and message losses.

of its child E in Figure 5.6(b)). The node may start the backward phase earlier
than it should. As the consequence, pairing of markings may be erroneous. Back-
tracking and correction of errors in pairing is possible but considerably increases
communication overhead and unnecessarily complicates the algorithm.

• Propagation of errors to lower tree levels: premature execution of the backward
phase at a node may trigger the same premature reaction at its parent. This may
trigger a chain reaction of premature backward phase executions in the network.
For instance, node B in Figure 5.6(b) is unaware of its child D and executes its
backward phase as soon as node C responds even ifD has not responded yet. Since
B is the only child of A, node A will also execute its backward phase prematurely.

• Gain in execution speed is seldom noticed: it is sufficient that a node does not
receive the backward-phase message from just one of its children which it has
detected in forward phase (e.g., node D does not get backward phase message
from node G in Figure 5.6(b)). By the original idea the node remains blocked
in this state indefinitely. An additional timeout has been introduced in [120] to
resolve this termination issue (similar to the timeout defined in Equation 5.1)
and once it expires, the node executes its backward phase, assuming that its non-
responding child has failed. This second timeout delay is propagated all the way
to the root since node’s parent cannot execute its backward phase before it gets
answer from this, blocked node.

This approach has been implemented and evaluated in [120]. All of the listed issues
have been observed in simulation. Particularly often has been observed that a node
completes the backward phase, sends results to its parent and then receives messages
from its (up to that point in time unknown) children. Some of these new backward phase
messages may have been paired with other messages that are already passed down the
tree. Such ”late” messages were ignored causing significant information loss without
any gain in contention level reduction: already delivered messages are not used by the
recipient.

84

5.4. Distributed Biconnectivity Testing in WMNs

The implementation of bridge detection in [120] was unclear and complicated. The
accuracy of detection results was worse than in implementation with the timeout from
Equation 5.1 (see Figure 5.10, page 95). The timeout scheme from Equation 5.1 simpli-
fies implementation, increases the information usage and reduces number of erroneous
decisions.

5.4.2. Analysis of the Communication Overhead

In this section, the communication overhead produced by proactive topology manage-
ment is compared with the overhead produced by DIBADAWN and the Echo algorithms.
The proactive topology management protocols which are used in WMNs need to be

executed periodically in order to be able to react to changes in the network topology.
Since DIBADAWN also requires this periodicity for the same reasons, its message com-
plexity should be multiplied by frequency of its execution in network fD in order to get
the communication overhead in [packets/s]. For a single execution round, the commu-
nication overhead is equal to the message complexity (the number of messages sent by
a single execution of an algorithm [38][46]).

Overhead of Proactive Topology Management

A proactive topology management protocol has two components of communication over-
head. The first component is caused by detection of communication links. The heart-
beats are the commonest approach to link detection (Section 3.3, page 37). Each node in
a network sends a heartbeat with a frequency fH , producing overhead of n · fH packets
per second.
The second component is caused by the dissemination of the local link information

through the network. Assuming periodic dissemination of local link information, each
node in the network initiates it with frequency fB. If flooding is used, total number
of generated packets is fB · n2 (each of fB · n broadcasts is repeated by n nodes in the
network).
Due to packet losses, only a portion of the whole network may be covered by a

broadcast, and the constant ccoverage captures this reduction (depending on quality of
links and network topology 0 ≤ ccoverage ≤ 1). The coverage of individual disseminations
is time and topology dependant and the parameter ccoverage represents the average
coverage of the individual disseminations.
The sum of these two components is the overhead of a proactive topology management

protocol with flooding as the dissemination method:

OHproactive−flooding[packets/s] = n · fH + n2 · fB · ccoverage (5.2)

Definition 5.3 A dominating set of a graph G = (V,E) is a subset V ′ of V such that
every vertex in G is either in V ′ or it is adjacent to a member of V ′.

Definition 5.4 A connected dominating set of a graph G(V,E) is a set of vertices
V ′ ⊂ V such that V ′ is a dominating set of G, and the subgraph induced by V ′ is
connected.

85

5. DIBADAWN

If the minimal connected dominating node set of a network is known, it can be used for
reduction of data dissemination overhead. It is no longer necessary that all nodes forward
messages of the local topology information as in flooding. Instead, only the initiator of
the broadcast and the nodes from the dominating set are required to broadcast messages
in order to cover the whole network (assuming no messages are lost). This reduces the
number of sent messages by a factor cDS .

OHproactive−DS = n · fH + n2 · cDS · fB · ccoverage−DS (5.3)

Identification of the minimal connected dominating set is a NP problem [76] and
various heuristics have been proposed for its calculation. The overhead reduction cDS
depends on the graph topology7, quality of heuristic that is used for creation and main-
tenance of the connected dominating set and overhead induced by the heuristics. For
instance, the multipoint relaying (used in OLSR), reduces number of retransmitted
packets to approximately one third.
This reduction of overhead does not come for free. The robustness of dissemination

protocol is reduced. In presence of packet losses it has considerably lower coverage than
the flooding (Figure 8 in [141]), reducing its applicability in WMNs where packet losses
are common. Furthermore, the evaluation in [141] shows that overhead in WMNs is
reduced by a constant factor (probably caused by WMN topologies that are inherently
spatial and spread, without connectivity hubs as in, for instance, random graphs with
power-law node distribution), so the complexity of data dissemination remains O(n2).

DIBADAWN Overhead

Communication overhead of DIBADAWN has two components. The first component is
caused by tree construction and cross-edge detection. If no packets are lost, all n nodes
participate in the forward phase. Same as in the dissemination of local link information
in proactive topology management, the coverage of a search may not be ideal, which is
captured by the factor ccoverage, yielding overhead of n · ccoverage packets.
In the backward phase of DIBADAWN, all nodes which participated in the forward

phase are participating in forwarding of backward messages. Instead of MAC broadcast,
which is used in the first phase, MAC unicast is used for forwarding of BRIDGE and
NOBRIDGE markings. On the average, each node has to send a packet snd times
during its MAC unicast. Thus, the DIBADAWN communication overhead is:

OHDIBADAWN = ccoverage · n+ ccoverage · (n− 1) · snd (5.4)

If MAC broadcasts are used in the forward phase but the direct echo replies (as
in [55][67]) are used for tree and cross-edge discovery, the message complexity of the
forward phase is e + 1 (page 75). In the backward phase, each of tree edges sends a
message using the MAC unicast. Thus, the message complexity is:

OHdirect−echo = ccoverage(e+ 1 + (n− 1) · snd) (5.5)

7In a chain of n nodes, the minimal connected dominating set has n−2 nodes and provides insignificant
improvement. In a complete graph, the size of the minimal dominating set is one, providing huge
overhead reduction.

86

5.5. Algorithm Behavior in Presence of Packet Losses and Node Failures

In an ideal network (without message losses) there are no retries, so the parameter
snd in Equations 5.4 and 5.5 is one, as well as the ccoverage. The message complexity
of DIBADAWN is then 2n − 1. The detection which utilizes MAC broadcast for edge
discovery and direct echo messages for cross-edge detection has message complexity of
e + n. If edges would be individually visited as in [55][67] the biconnectivity testing
complexity would be 2e plus additional overhead needed for edge discovery (heartbeat
exchange), yielding total overhead of 2e+ fH · n.

Summary

It can be seen from Equation 5.2 that the proactive topology management protocols
have message complexity of O(n2) even if they use minimal connected dominating sets
for topology dissemination. The original echo algorithms have message complexity of
O(e). DIBADAWN uses the independent cross-edge detection and benefits provided by
the wireless communication medium (MAC broadcast) which enabled us to reduce its
message complexity to O(n).
The advantage of proactive topology management is that once the topology is discov-

ered and disseminated, nodes may execute various topological algorithms at the obtained
topology without additional communication overhead. However, since WMNs are dy-
namic and unpredictably changing, the dissemination has to be executed periodically
in order to be able to track the changes in network topology. Of course, DIBADAWN
also has to be executed periodically with frequency fD in order to detect the changes
in the topology. The absolute number of messages sent by the periodic invocation of
algorithms grows linearly with the frequency of their invocation so it cannot change the
advantage of the smaller communication overhead produced by DIBADAWN.

5.5. Algorithm Behavior in Presence of Packet Losses and
Node Failures

In an ideal communication network, without internal and external faults, the presented
algorithm detects all bridges in a single pass. In reality, messages are lost and nodes fail,
introducing errors in the detection algorithm. The issues created by the faults cannot be
ignored, so this section analyses classes of faults present in the system and their effects
on detection of bridges and articulation points.
Message losses are particularly frequent in WMNs and they are the main source

of faults. Due to the message losses, network topology perceived by a node may be
different from the actual topology, visible to the omniscient observer. For example, let
us observe a simple network consisting of three nodes A,B,C and links AB,AC,BC
(Figure 5.7(a)). The links have qualities PAB, PAC , PBC ∈ [t, 1] where t is the link
acceptance threshold. Let us further assume that node A initiates the graph traversal
using the flooding. There exist several important implications of the fact that the link
qualities belong to interval [t,1] to the graph traversal, perceived node topology and
biconnectivity testing.
In a network with reliable message delivery (Pab = Pac = Pbc = 1) tree edges to nodes

B and C are always discovered (marked with continuous line in Figure 5.7(b)) as well
as the cross edge BC (marked with a dotted line).

87

5. DIBADAWN

Figure 5.7.: Example outcomes of network traversal in presence of unreliable communi-
cation channel.

In presence of message losses, there are no longer guarantees on order of node visits
(cases (c),(d)). For instance, if MAC broadcast initiated by node A is not received by
node C, but node C receives broadcast from B, and node A receives broadcast from C,
the resulting perceived topology is presented in case (c).
The completeness of traversal is also jeopardized as shown in cases (e) to (j). For

instance, if neither node B nor C receive message from node A, the perceived topology
is shown by case (j) and node A concludes that it is isolated. It can be seen that already
in this simple network with only three nodes and three communication links, there exists
nine different traversals if flooding is started from A. If the directed traversal is observed
(e.g. node B received message from C, but C did not receive message from B), number
of possible traversals is even larger.
It is particularly important for bridge and articulation point detection to notice that

out of eight traversals, only three have detected the cycle ABC. In the remaining five
cases, topologies perceived by node A and obtained trees would result in erroneous
bridge and/or articulation point markings. For instance, in case (e), node A would be
erroneously marked as articulation point and edges AB and AC as bridges.
The presented issues of network exploration can also occur if heartbeat link detec-

tors are used. Since HLDs cannot guarantee correctness of their decisions in wireless
environment, the perceived topology may deviate from the correct topology.

5.5.1. Analysis of Faults, Errors and Failures of the Detection Algorithm

In order to improve understanding of DIBADAWN’s behavior in reality, in this section
are discussed faults in the system, error states caused by them and detection failures.
The methodology from [30] is applied. The methodology requires the definition of
system, its function, and service provided to the end users.
The system consists of computing nodes in a wireless multi-hop network, and imple-

mentation of the DIBADAWN algorithm that is executed at every node. It is assumed

88

5.5. Algorithm Behavior in Presence of Packet Losses and Node Failures

that there are no errors in implementation of DIBADAWN algorithm so nodes either
operate it correctly or they are silent. This is a safe assumption since DIBADAWN
implementation is fairly small. There are no malicious nodes that propagate random or
deliberately incorrect information through the network.
The function of the system is to timely and distributively detect bridges and artic-

ulation points in a wireless multi-hop network. The behavior of the system is described
by the algorithm and presented in Figures 5.2 and 5.3.
A service is correct if it implements the system function. Service can be observed in

the system as a whole, and it operates correctly if all bridges and articulation points are
detected. For a single user (node) service is functional if the node correctly detects the
bridges on its incident links and whether it is an articulation point. In presence of faults,
some users will receive correct service while some will not. Faults and errors induced by
them are time-dependant – in one execution of DIBADAWN node may perform correct
detection but in the next it may reach erroneous decisions because of packets losses in
the network.
Service failure (or just failure), occurs when a service deviates from its specified

functionality. The service failure modes distinguish different types of deviation from
correct service execution. For biconnectivity testing, failure modes of the algorithm are
the incorrect decisions. There exist four failure modes of DIBADAWN in the system:

1. A bridge is marked as an ordinary edge.

2. An ordinary edge is marked as a bridge.

3. An articulation point is not marked (it is marked as an ordinary node).

4. A ordinary node is marked as an articulation point.

The service of bridge and articulation point detection is described by a set of states
defined in Section 5.4 – nodes keep track of tree structure, cross-edges, adjacent nodes
and exchanged messages. In case of an error, one of the states deviates from its correct
state. Whether an error produces a service failure depends on behavior of the system
and type of error: some errors may be eliminated before they cause failures (e.g., in
Mode 2 an edge is not marked as NOBRIDGE due to error in cross-edge detection,
but if the edge belongs to a detected cycle, it is correctly marked and the first error is
masked) or they do not influence system’s capability to deliver service (e.g., Case 5 in
Table 5.4). An error need not be restricted to a single node as it can be propagated
between nodes in the network (e.g., Case 7 in Table 5.5).
The cause of an error is called a fault. Same as for errors that do not always cause

failures, faults can be active (causing an error – for instance all faults in Table 5.5) or
dormant (not causing an error – like Cases 12 and 14 in Table 5.6). A fault for the
algorithm is not restricted to faults of node or its software. As it is shown later, a fault
may be even the rejuvenation of previously failed node. Faults can be internal or external
to the system. Node failures are internal faults for service of bridge and articulation
point detection. The most frequent faults in WMNs are external communication faults.
The communication faults cause loss of packets in the network and errors in the al-

gorithm. A packet can be lost because of a natural fault (physical signal propagation
properties, increased white noise on receiver) or caused by node behavior (high con-
tention on the wireless channel). For DIBADAWN, reasons of communication faults are

89

5. DIBADAWN

Case Fault Error Failure Severity (Bridge) Severity (AP)
1 Message

losses in
the forward
phase

Search may stop
completely. It can
be caused by a single
packet loss (traversal
of a bridge) or by si-
multaneous multiple
packet losses in the
network

Modes 1,
2, 3, 4

Very High: parts of the network are not
searched by the algorithm. In the worst
case, n − 1 out of n nodes in the network
could be affected.

2 Double mes-
sage loss in
the forward
phase

A cross-edge is not
detected at either of
its incident nodes.

Modes 2,
4

Medium: Cross-
edge is not discovered
thus it receives no
marking. Some of
tree edges belonging
to the cycle may be
marked as BRIDGE.
Severity is limited
since tree edges fre-
quently belong to
more than one cycle,
allowing their correct
marking.

Medium: Although
a cycle is not de-
tected, equivalence
class may be calcu-
lated correctly (due
to redundancy of
cycles).

3 Message loss
in the for-
ward phase

Asymmetrical cross-
edge detection (one
node detects the
cross-edge, the
other node does
not). Node that
detected it is not
aware of asymmetric
detection.

Modes 1,
2, 3, 4

High: some edges
that belong to a cycle
may not be marked as
NOBRIDGE. Addi-
tionally, NOBRIDGE
message may go be-
low HCA of the cycle,
marking bridges as
NOBRIDGE

High: Some nodes
may conclude that
they are articulation
points although they
are not (because of
failure mode 2). If
NOBRIDGE message
is forwarded lower
than its HCA, some
nodes may falsely
calculate equivalence
classes and declare
themselves as ordi-
nary nodes although
they are articulation
points.

4 Message loss
in the for-
ward phase

Asymmetrical cross-
edge detection.
Node is aware of
asymmetric detec-
tion.

Modes 2,
4

Medium: Failure modes are same as in
Case 2. Since this event is detectable, cor-
rective actions may be taken.

5 Order of
node visits
in for-
ward phase
changes due
to jitter

All edges in graph
are covered but tree
is no longer BFS.

none None: Although this is a deviation from
expected behavior of dBFS, it does not
impact functionality of the detection algo-
rithm – DIBADAWN can operate on any
tree construction algorithm that traverses
each edge at least once, which is satisfied
in this case.

Table 5.4.: Errors and failures introduced to the algorithm by communication faults (1).

not important. Two communication fault classes are distinguished: loss of message(s)
in forward phase of the algorithm and loss of message(s) in backward phase of the al-
gorithm. Each of faults may create different errors, depending on message type, its
payload and the fault timing.
The losses in both phases of algorithm result in incorrect edge and node markings

(Tables 5.4 and 5.5). Due to message buffering in backward phase of the algorithm and
simultaneous transmission of them in a single packet, burst losses (multiple faults) may
occur. They are treated as series of independent, successive faults, since they together

90

5.5. Algorithm Behavior in Presence of Packet Losses and Node Failures

Case Fault Error Failure Severity (Bridge) Severity (AP)
6 Message loss

in the back-
ward phase

Bridge message is
lost.

Modes 1,
3

Medium: the edge
obtains no marking
which is better than
obtaining false mark-
ing.

Medium: A sin-
gle articulation point
may be declared as
ordinary node due to
bridge marking loss.

7 Message loss
in the back-
ward phase

Out of two NO-
BRIDGE messages,
one is lost before
HCA, other after
HCA (or it is not
lost and reaches
root).

Modes 1,
2, 3, 4

High: same as in Case 4 both types of fail-
ures occur.

8 Message loss
in the back-
ward phase

Out of two NO-
BRIDGE messages,
one is lost before
HCA, other at HCA.
Although the mes-
sage pairing is im-
possible the message
gets lost in attempt
of HCA to send it
down the tree.

Modes 2,
3, 4

Low: Only part
of the cycle is not
marked as NO-
BRIDGE. Same as
in case 3 it is likely
that these edges
will be marked by
other NOBRIDGE
messages.

Medium: same as in
Case 2.

9 Message loss
in the back-
ward phase

Out of two NO-
BRIDGE messages,
both are lost before
reaching HCA.

Modes 2,
4

Low: Same as in
Case 8.

Medium: Same as in
Case 2.

10 Message
losses in
both phases

After asymmetric
cross-edge detection
in case 3, NO-
BRIDGE message
is lost before or at
HCA.

Modes 2,
3, 4

Low: Same as in
Case 8.

Medium: Same as in
Case 2.

11 Message
losses in
both phases

After asymmetric
cross-edge detection
in case 3, NO-
BRIDGE message is
lost after HCA.

Modes 2,
3

High: The message
may be propagated
down to the root.
Some bridges may be
falsely marked as NO-
BRIDGE.

High: Articula-
tion points may be
marked as ordinary
nodes.

Table 5.5.: Errors and failures introduced to the algorithm by communication faults (2).

do not change effects of individual faults.
The detection algorithm runs an equivalent of HLD(1, 1) for the implicit link dis-

covery: it accepts links after a single successful packet reception (MAC broadcast) and
rejects it as soon as the execution of the execution round is finished. The algorithm is
memory-less with regard to topology discovery because it does not utilize the knowledge
from the previous executions in successive rounds8.
This choice of link detection strategy has both positive and negative effects to the

detection process. Accepting a link after one successful MAC broadcast resolves the
termination issues of link-state based biconnectivity testing algorithms (explained in
Section 5.2) and reduces communication overhead (it is not necessary to execute HLDs
prior to biconnectivity detection algorithm execution) but it also introduces additional
errors in the biconnectivity testing. It was demonstrated in Chapter 4 that the prob-
ability of erroneous link detection of HLD(1, 1) is considerable for all values of link

8It is explained later that decisions are preserved and used by voting rules in order to provide higher
accuracy of the detection, but in a single decision round no information outside of the round is
utilized.

91

5. DIBADAWN

Case Fault Error Failure Severity (Bridge) Severity (AP)
12 Search has

started, node
fails before it
is visited by
algorithm.

Topology of network
is changed.

none None: the node is not visited yet, so the
algorithm will be executed in new topology,
providing accurate markings.

13 Search is
not active, a
node fails.

Topology of network
is changed.

Modes 1
and 4

High: node failure has changed the net-
work topology. Some of ordinary edges may
become bridges and ordinary nodes articu-
lation points.

14 Search is ac-
tive, a node
fails after it
has been vis-
ited by the
algorithm

Topology of network
is changed but al-
gorithm operates
under assumption
that topology has
not changed.

Modes 1,
2, 3, 4

Very high: consequences are numerous
and difficult to estimate. It can be expected
that multiple errors from Tables 5.4 and
5.5 are simultaneously encountered. Con-
trol flow of algorithm is not affected.

15 Search is ac-
tive, a node
is restored,
but the al-
gorithm has
not reached
it yet.

Topology of network
is changed.

none None: same as in case 12.

16 A node is
restored,
search has
passed
through its
area.

Topology is changed
and some bridges
may have become
ordinary edges. The
node can eliminate
errors by initiat-
ing new algorithm
execution.

Modes 2,
4.

Low: Some of edges
may be marked as
BRIDGE although
they are no longer
a bridge. Restored
node does not partic-
ipate in search, so it
cannot compromise
functionality of the
algorithm.

Low: a node be-
lieves that it is articu-
lation point although
it now belongs to a 2-
connected subgraph.

17 A node is
restored,
search is not
active.

Topology is changed
and some of edges
are no longer
bridges.

Modes 2,
4.

Very low: The node can eliminate errors
by initiating new algorithm execution.

Table 5.6.: Error and failures introduced to the algorithm by node restoration and
failures.

Search ID 1 2 4 6 7 8 11 12 15 16 16 16
Bridge true true true false false true true false true false false false
Hops 1 1 1 3 2 1 1 4 1 6 4 1

Table 5.7.: Example of successive contradictory markings of a link.

acceptance threshold t.
Errors caused by internal faults are described in Table 5.6. Node failure and recovery

change the topology of the network, possibly invalidating the system state: new bridges
and articulation points can be created by node failure or their number can be reduced by
a recovered node. A node failure is particularly dangerous if it occurs during algorithm’s
execution: such event combines impossibility of determining effects of node’s failure on
network topology with communication issues – its children in the tree expect that node
forwards the messages down the tree.
As a result of internal and external faults, a node may receive different markings for

an edge in successive DIBADAWN executions, as the example in Table 5.7 shows (note
that node may be excluded from an execution because of packet losses, and multiple

92

5.5. Algorithm Behavior in Presence of Packet Losses and Node Failures

(a) If there are no packet losses, order of node
visits plays no role.

(b) Asymmetric loss may result in incorrect
message pairing. If BFS tree is used, this fault
case is detectable.

Figure 5.8.: Effects of asymmetric losses on DIBADAWN (1).

NOBRIDGE markings within an execution).

5.5.2. Explicit Reduction of Effects of Errors

It may seem that effects of the communication faults may be reduced, assuming that
every message can be delivered after large enough number of retries. Such solution is
acceptable in presence of low latency, high bandwidth, low error rate, dedicated com-
munication channels between nodes. However, in WMNs it is absolutely unacceptable
since communication channel is shared among nodes. Repeated transmissions increase
contention on the channel thus increasing packet loss probability in surrounding area
and reducing quality or even compromising other services in the network. Furthermore,
it is not difficult to envision a scenario where a sender attempts to send a message to a
recipient node that has failed or moved away, so the recipient cannot receive the message
regardless of the number of retries.
Thus, it is not possible to completely eliminate the faults from the system, but some

of their effects can be reduced.
Case 1 errors can be reduced through repeated broadcast of forward phase messages

by nodes that are incident to bridges. Same as for the route request messages (it will
be discussed in Section 9.7), the bridges are the critical points for search propagation.
Situation shown in Figure 5.8(a) is an excellent example of an error that cannot be

observed if algorithm is studied under the idealized conditions. If communication is
fault-free, node B simply waits that a cross-edge marking BF reaches it over nodes E,
D and C, it executes pairing and continues correct operation of the algorithm.
In presence of message losses, asymmetric cross-edge detection may occur. Their

impact can be decreased if DIBADAWN is used with dBFS tree construction algorithm.
In a dBFS tree, TTL values of adjacent nodes in the tree can differ only by one. If this
difference is higher, it indicates a forward message loss and the asymmetric cross-edge
detection.
An example of such situation is presented in Figure 5.8(b). A forward message from

node B did not reach node F. Instead, it had reached node F over nodes C, D and E.

93

5. DIBADAWN

(a) Asymmetric cross-edge detection that pro-
duces both correct and incorrect markings.

(b) The undetectable asymmetric cross-edge de-
tection in forward phase.

Figure 5.9.: Effects of asymmetric losses on DIBADAWN (2).

Node B can detect this irregularity in behavior by comparison of TTL values received
from F (it should be eight, but B receives a packet with TTL of five) and acts in
accordance with encountered situation. The node has three choices in this situation:

• Node B adds a NOBRIDGE message that marks cross-edge BF to its queue. Such
message cannot be paired since its pair does not exist. Once it is transmitted, it
can cause errors in lower tree levels. In this example, the message would mark the
bridge AB as NOBRIDGE.

• Another broadcast by node B may lead to detection of cross-edge BF and generate
the pair of the cross-edge marking at node F, but there are no guarantees that
this additional broadcast reaches node F. These subsequent broadcasts may also
invalidate the timeout schemes.

• Node B only marks the edge BF as cross-edge but it does not send a message
down the tree. The node utilizes the available topology data but prevents possible
errors.

In case that loss location is slightly different, like in Figure 5.9(a) sending of message
down the tree provides both good and bad consequences: it marks correctly the edge
CB but the edge AB is still erroneously marked as NOBRIDGE. In WMN topologies,
cycle detection messages are numerous if compared with bridge messages, so a small
gain in cycle marking is not worth the error on link AB.
In both cases, node B cannot influence markings of a set of edges (edges FE, ED, DC

and CB in Figure 5.8(b)), but if it does not send a NOBRIDGE message of asymmetri-
cally detected cycle it prevents error propagation to lower tree-levels. This is considered
to be favorable behavior and implementation of the algorithm supports it.
An example of Case 3 error from Table 5.4 is shown in Figure 5.9(b). The loss occurs

during cross-edge detection but the BFS tree is correctly formed, so the error cannot be
detected. Also, the error cases from Table 5.5 are undetectable. They result in incorrect
markings and degrade the accuracy of the algorithm.

94

5.6. Improving Algorithm’s Accuracy by Voting

0.4 0.5 0.6 0.7 0.8

0
.6

0
.7

0
.8

0
.9

1
.0

Precision

R
e

c
a

ll

backTTL=0

backTTL=1

backTTL=2

backTTL=3

(a) Precision-Recall plot.

5 10 15 20 25 30

0
.5

5
0

.6
0

0
.6

5
0

.7
0

Window Size

F
−

M
e

a
s
u

re

backTTL=0

backTTL=1

backTTL=2

backTTL=3

(b) F-measure.

Figure 5.10.: Accuracy of bridge detection in DIBADAWN if limited propagation of
NOBRIGDE messages us used.

It seems that the major sources of faulty decisions are the erroneous NOBRIDGE
markings, that are forwarded below their HCAs. When such a marking travels down
the tree, it marks all the links it traverses as non-bridges, even if some of them are
actually bridges. Additionally, it causes errors in the transitive closure of relation },
creating errors in the articulation point detection.
In order to reduce effects of erroneous NOBRIDGE marking forwarding, TTL value

of backward messages was reduced to several hops in [120]. In that version of the
algorithm, only unanimous voting rule was supported. The parameter w took values
{5, 10, 20, 30}. The results of this approach are presented in Figure 5.10. It can be seen
that a choice must be made – either to choose high recall and very low precision, or
to choose very low recall and to obtain acceptable precision. In [120] the parameter w
takes rather large values, limiting algorithm’s capability to adapt to topology changes.
These results were not satisfying and it was obvious that a more subtle, less invasive

solution for resolving the effects of faults to the algorithm is required, with a shorter
reaction time to topology changes (i.e., smaller sets of votes from previous algorithm
executions should be sufficient). The consequence of evaluation results in [120] was
rejection of concept that messages in backward phase of algorithm should be restricted
in their forwarding. The idea that more than one algorithm execution can be used for
decision making demonstrated its potential, and in the next section it is developed in
more detail.

5.6. Improving Algorithm’s Accuracy by Voting

The goal of the algorithm can be described as follows: from a set of markings it has
received, a node decides if it is an articulation point, and for each of its incident edges
if it is a bridge. As explained in the previous section, the stochastic properties of com-
munication channel impact the algorithm’s functionality, so it is possible that some of
the markings are incorrect. Thus, a node faces a set of binary choices under uncertainty
[131] [150].

95

5. DIBADAWN

Figure 5.11.: Utilizing different network views for accuracy improvement.

It was shown by Marquis de Condorcet [111] in 1785 that if the majority voting is
used by a set of voters with identical probability of selecting the correct hypothesis,
their joint decision has a higher probability of being correct than decision of a single
voter (assuming that the probability of selecting the correct hypothesis of a voter is
larger than 0.5).
The strategy of multiple voters is adopted in this work and extended by introduc-

tion of other decision strategies/voting rules. The votes are delivered by successive
DIBADAWN executions and various voting rules are applied to them in addition to the
majority voting.
The successive votes in bridge and articulation point detection are do not have iden-

tical accuracy as it is assumed in [111]. The successive searches in which a node par-
ticipates may originate from different nodes, so the perceived topology and resulting
decisions may be different.
This property may work in favor of the detection process. Let us observe an example

network in Figure 5.11. If search originates at nodes G or H, a single improper NO-
BRIDGE message pairing at node A will result in its marking as an ordinary node (a
false negative in articulation point detection). Due to high node density in part of the
network which is depicted right from node A, collisions and asymmetric detection of
cross-edges is likely, as well as the subsequent erroneous marking of node A. However,
if search is started by one of nodes A, B, C, D, E, it is more likely that the short cycle
AFG is detected and its messages properly paired at A, resulting in correct marking of
node A as an articulation point. Thus, depending on the source of the search, node A
observes the network from different perspectives through backward-phase messages it
gets. The probability of correct detection varies among perspectives, so if A makes a
decision based on several perspectives (observations), it may increase the probability of
making a correct decision.

5.6.1. Voters, Votes and Voting Rules

There exists a set of voters (also called decision makers) {1, .., n}. They are supposed to
make a binary decision under uncertainty. Each of the voters selects an option out of two
that are offered, in accordance with its understanding of the problem. It is assumed that
all voters share the same view of the decision task (share a common utility function),
i.e., there are no malicious voters that deliberately act against consensus and selection of
correct option. In the general choice-under-uncertainty model, voters may be undecided

96

5.6. Improving Algorithm’s Accuracy by Voting

(undecided voters give a neutral vote), but in case of DIBADAWN, neutral votes do
not exist. There is no difference in terms of cost between incorrect decisions – the same
penalty applies to false positives and false negatives.

Definition 5.5 Let us name the options available to voters as a and b. If voter i chooses
option a, its vote is xi = 1 and if it chooses option b, its vote is xi = −1.

In this work, the set of voters is the set of latest executions of DIBADAWN algo-
rithm. They deliver votes for node participating in a DIBADAWN execution (if it is an
articulation point) and for edges incident to it (whether they are bridges). The votes
are then used by voting rules to deliver the final decision on status of a node and its
incident edges. As it is shown in Figure 5.1, the votes may originate directly from the
DIBADAWN algorithm (in the first voting round) or the decisions of the first voting
round can be forwarded to a new set of voting rules (in the second voting round).

Definition 5.6 Hypotheses in the bridge/articulation point detection process are asso-
ciated as follows:{

a edge is not a bridge / node is not an articulation point
b edge is a bridge / node is an articulation point

In a concrete situation, at a time t, each of the voters in the voter set supports a hy-
pothesis. The function which maps the voters to the set of all possible vote combinations
is called a voting profile.

Definition 5.7 A voting profile x = {x1, x2, .., xn} is a function that maps a finite set
of voters {1, 2, .., n} to set {−1, 1}n.

Definition 5.8 A decisive voting rule f is a function that maps set of all voting profiles
to the set {−1, 1}.

A rule is indecisive if for a given set of voters it cannot always select one of hypotheses.
For instance, a rule that requires that more than half of votes support a hypothesis in
order to select that hypothesis (the majority rule) is indecisive if applied in voter sets
consisting of even number of voters – it may happen that voters are divided into two
equally sized sets. The same rule is decisive in odd-sized voter sets. The indecisive
rules are usually resolved by a tie-breaker, or they are simply not applied in scenarios
unsuitable to them.
In this work, the constant ε is used as tie-breaker for majority rules. ε should be a small

positive number if default behavior of rules is to decide against the bridge/articulation
point hypothesis (approach that is chosen in this thesis due to higher probability that
an edge is not a bridge) or a small negative number if voting rules should decide in favor
of bridge/articulation point hypothesis.
Only one of options a or b is correct with regard to the output of detection algorithm

applied to ideal global topology knowledge9. Due to uncertainty in the system, a voter
may support the correct answer or vote against it.

9Of course, this is unknown to voters nor to node that manages markings, votes and decisions.
The correct markings are known only to the omniscient observer who is completely detached from
DIBADAWN.

97

5. DIBADAWN

Definition 5.9 There exists a random variable yi associated with voter i such that
it takes value 1 if it selects correct option and -1 if it selects incorrect option. The
competence of a voter i is probability that it votes for the correct hypothesis: pi = p(yi =
1). Vector of abilities is defined as p = (p1, p2, .., pn) and it is associated to the set of
voters {1, 2, .., n}.

There are numerous strategies for decision making under uncertainty. They start
from different assumptions in order to minimize the probability of erroneous decisions.
However, minimization of error probability requires deep and precise knowledge of the
system, such as the apriori probability of hypotheses, vectors of abilities, constant voter
abilities in time and space, etc.
The WMN environment is not as controlled as it is required for direct and accurate

application of these known results. Additionally, the required apriori probabilities can
only be estimated for an application scenario. If new nodes are added or some of
them fail, the apriori probabilities of hypotheses occurrence may be changed. Changes
in network’s environment may affect the voters’ abilities. The shared communication
medium invalidates common assumption of voter independence. This is obvious, but it
is extremely difficult to capture and quantify these dependencies and their influence on
the algorithm.
Due to these uncertainties, a set of rules is proposed both for bridge and articulation

point detection. Some of them are taken from the decision theory, and some are extended
with the knowledge of algorithm’s functionality (the so-called trusted rules). The goal
of the whole voting procedure is to maximize the utilization of the available information
contained in DIBADAWN’s markings and to reduce the error probability.
The voting rules are executed at individual nodes. They do not require inter-node

synchronization or any other type of message exchange since their input originates from
already finished algorithm executions. Thus, their execution does not put additional
communication load on the network, but they may improve accuracy of decisions (as
their evaluation in Chapter 9 shows). Finally, their implementation is not complex, so
the additional processing load for nodes is very low.

5.6.2. The First Round of Voting

In order to compensate for the uncertainty in the algorithm caused by communication
and node faults, decisions are not made based only on one algorithm execution, but on
the set of last k algorithm executions.
For bridge detection, voters are equivalent to edge markings. A marking of a node

used for articulation point voting is the output of the method APdetection.
The voter set is the set of last algorithm executions with size k. The voter set is not

constant in time and its composition and vector of abilities changes in time. As a new
voter arrives (output of latest execution of DIBADAWN) it replaces the oldest voter
in the voter-set. Value of k is a parameter of the protocol and it can be varied. The
number of voters in a profile is v. For articulation point voting rules, v is the same as
k. For bridge voting it may be larger than k, since an edge may belong to more than
one cycle, receiving multiple NOBRIDGE markings in one algorithm execution.
Increasing the value of parameter k improves accuracy of decisions in static topologies.

However, it should not be excessive because even in static networks the topology may

98

5.6. Improving Algorithm’s Accuracy by Voting

change because of node failures and rejuvenation, and the outdated decisions valid in the
old topology can influence the decisions in new, changed topology, resulting in prolonged
incorrect decisions.

Voting Rules for Bridge Detection

For bridge detection, voters are associated with edge markings. Detailed study of
DIBADAWN functionality enables classification of the markings into four categories:

1. Cross-edge detection in method detect_cycles can be trusted. The cross-edge
and the tree edge over which the cycle was detected are not bridges (e.g., edges
EG and EC in Figure 5.5).

2. If a node pairs two markings in the method forward_msg, the edges over which
they have arrived are not bridges. This decision can be also trusted (e.g., edges
BC and BD in Figure 5.5).

3. For all other cases of non-bridge markings, the competence belongs to interval
(0, 1).

4. Bridge markings competence belongs to interval (0, 1).

The messages from categories one and two are easily identified and they are used by
the trusted rules. Strictly speaking, competence of trusted votes is not always one, since
the detected cycle may contain edges with quality below the link acceptance threshold.
Still, the evaluation in Chapter 9 will show that trusted rules have highest accuracy of
all bridge voting rules, despite these errors. The competence of messages from category
three and four can be statistically estimated on a set of known topologies.
The following voting rules have been selected for implementation and evaluation:

1. Unanimous: an edge is considered a bridge only if all votes support the bridge
hypothesis.

f1(x) = Sign(
v∑
i=1

xi + (v − ε)) (5.6)

2. Plain Majority: votes for bridges and non-bridges are equally valued. The
hypothesis with more votes is chosen. If both proposals have the equal number of
votes, the edge is declared as a non-bridge (the tie-breaker constant ε > 0).

f2(x) = Sign(
v∑
i=1

xi + ε) (5.7)

3. Single-for: this rule is the opposite of the unanimous rule. It is sufficient that a
single vote supports the bridge hypothesis to declare the edge as a bridge.

f3(x) = Sign(
v∑
i=1

xi − (v − ε)) (5.8)

99

5. DIBADAWN

4. Intelligent Majority: if none of the votes is a trusted vote, the plain majority
rule is applied. If there is a trusted vote, the edge is declared to be a non-bridge.

f4(x) = Sign(
v∑
i=1

wixi + ε) (5.9)

where

wi =
{
v if xi is trusted vote
1 otherwise

5. Trusted non-bridge rule: unless a trusted NOBRIDGE vote exists, the edge is
declared to be a bridge.

f5(x) = Sign(
v∑
i=1

wixi − ε) (5.10)

and
wi =

{
1 if xi is trusted vote
0 otherwise

6. Weighted rule: a weight is assigned to each vote, based on the competence of
voters. It is further assumed that the apriori probability α of non-bridge occur-
rence in a network in known. The competence of votes is a function of number
of hops a marking has been forwarded in the network. In order to maximize the
probability of making the correct decision, weight of a vote of a decision maker
with competence pi should be wi ∼ log pi

1−pi [150]:

f6(x) = Sign(
n∑
i=1

wixi + ln α

1− α) (5.11)

The results of [150] imply that weight of a single vote is independent of all other votes,
which is a consequence of the assumption that voters are independent.
Notes on the weighted rule: Figure 5.12 shows the voter competence as a function

of the hop-number. The competencies are derived from simulation results of four differ-
ent simulation setups, using Rayleigh and Ricean propagation models on topologies that
resemble community networks in Berlin and Leipzig, in accordance with the simulation
methodology described in Section 9.4. The values shown in the Figure 5.12 are used for
evaluation of voting rules in Chapter 9.
The behavior of vote competence has two distinguishable parts. At the very beginning

(if hop count is less than two), the influence of incorrect bridge markings results in overall
competence of 0.9-0.95. It returns to almost ideal competence if hop count is equal to
two and then it slowly decreases as the number of hops increases.
The role of a voter in a weighted rule may vary, depending on the composition of a

voting profile. In some voting profiles a voter is dominant (its vote is decisive) while the
same voter may have absolutely no impact on voting outcome in another voting profile
(it provides the "dummy" vote). For instance, the first voter dominates in a set of three

100

5.6. Improving Algorithm’s Accuracy by Voting

0 5 10 15 20

0
.7

5
0
.8

5
0
.9

5

0 5 10 15 20

0
.7

5
0
.8

5
0
.9

5

0 5 10 15 20

0
.7

5
0
.8

5
0
.9

5

0 5 10 15 20

0
.7

5
0
.8

5
0
.9

5

Berlin−topology, Rayleigh

Berlin−topology, Rician

Leipzig−topology, Rayleigh

Leipzig−topology, Rician

Hops

V
o
te

r
C

o
m

p
e
te

n
c
e

Figure 5.12.: Competence of DIBADAWN markings as a function of number of hops it
was forwarded.

Competence 0.6 0.61 0.7 0.71 0.85
Weight 0.4055 0.4473 0.8472 0.8953 1.7346

Table 5.8.: Example of optimal weight assignment based on [150].

voters {x1, x2, x3} with the vector of abilities {0.7, 0.6, 0.6}. But the pair voters x1 and
x2 are dominated by the voter x3 if the vector of abilities is {0.7, 0.7, 0.85}. In both cases
the rule is reduced to expert voting – the sum of weights of lower competence voters is
lower than the weight of the single expert so they cannot overrule it. However, even a
slight increase in competence of a single voter may return control to the whole group.
For instance, the ability vectors {0.7, 0.61, 0.6} and {0.7, 0.71, 0.85} require participation
of all voters in order to minimize the probability of decision errors. Similar behavior
can be observed in larger voter sets, where a subset of voters may dominate the whole
set.
The competence of voters is estimated on a limited set of algorithm executions on a

limited set of known topologies (training phase) and they are applied in later algorithm
evaluation. The learning phase should be executed for each new deployment scenario: for
instance, the competencies obtained from sparse topologies of Freifunk Berlin network
may be inappropriate in a dense uniform topology. Additionally, real network is changing
and evolving in time, so competence values require constant upkeep since they may be
invalidated after several months or years of use. The effects of inaccurate weights on
accuracy of weighted decision rules will be evaluated in Section 9.4.3.

Voting Rules for Articulation Point Detection

The unanimous, single-for, plain majority, two weighted, and two trusted rules
are proposed for the articulation point detection.
The first three rules are exactly the same as for the bridge voting. Weighted rules

follow the same principles as the weighted rule in Equation 5.11. The weights are no
longer differentiated by hop count of markings (it is not applicable in this context) but
by:

• Number of bridges incident to a node.

• Node degree.

101

5. DIBADAWN

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Berlin−topology, Rayleigh
Berlin−topology, Rician
Leipzig−topology, Rayleigh
Leipzig−topology, Rician

Bridges incident to node

V
o

te
r

C
o

m
p

e
te

n
c
e

(a) Competence as a function of number of per-
ceived incident bridges.

0 2 4 6 8

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8

0
.4

0
.6

0
.8

1
.0

Berlin−topology, Rayleigh
Berlin−topology, Rician
Leipzig−topology, Rayleigh
Leipzig−topology, Rician

Perceived Node Degree

V
o

te
r

C
o

m
p

e
te

n
c
e

(b) Competence as a function of perceived node
degree.

Figure 5.13.: Competence of voters for articulation point detection.

Figure 5.14.: Trusted rule for articulation point detection.

If a node has bridge markings on links incident to it, it is more likely that it is an
articulation point. In the deterministic, loss-free detection algorithm a bridge incident
to a node rises suspicion that the node is articulation point (pendant nodes are not
articulation points although they are incident to a bridge) and a node with two or more
incident bridges is an articulation point. Due to packet losses, there is no guarantee
that a bridge observed in DIBADAWN is an actual bridge, so this is only a probabilistic
metric even if a node observes two or more bridges incident to it.
This competence metric has a two-fold and unexpected behavior (Figure 5.13(a)):

competence of voter that observed one bridge is higher than the voter that observed
two bridges. If a node observes more than three bridges the competence grows with
increase in number of observed bridge markings. The competencies that are assigned to
voters may be very low as in simulation scenario where a topology similar to a WMN
in Leipzig is used and the Rayleigh propagation model.
The competency of a voter that is represented as a function of perceived node degree

has a clear trend – as expected with node degree increase, the probability that a node
is an articulation point decreases (Figure 5.13(b)). It is important to notice that for a
given environment, shape of network topology does not play an important role in shaping
of competence: two simulation cases with Ricean and two with Rayleigh propagation
model exhibit surprisingly similar behavior. This is important for later application of
the approach – shape and properties of network topology may change during network
growth, but the Figure 5.13(b) indicates that changes will have only a limited influence
to this competence metric.
The trusted rule for articulation point detection performs the equivalence class calcu-

lation based only on the trusted NOBRIDGE markings. All other markings are ignored

102

5.6. Improving Algorithm’s Accuracy by Voting

in the transitive closure. In the left example in Figure 5.14, node A is declared as a
trusted non-articulation point: a pair of trusted messages is forwarded from node B to
node D over A (BA}AD) while messages delivered over edges BA and CA were paired
at A (BA} CA). The transitive closure deduces that AD } CA, thus all edges belong
to the same class, and node A is a trusted no-AP (outcome of the trusted rule is false).
The counter example is given at the right side of the figure. If standard procedure for

calculation of equivalence classes is used, we have BA}AD, CA}AD ⇒ BA}CA and
the node is not an articulation point. However, if only trusted NOBRIDGE markings
are considered, BA } AD and the link CA belongs to another equivalence class (since
it has no trusted markings). Node A is thus declared as an articulation point by the
trusted rule.
The rule is extremely conservative and eager to tag a node as an articulation point.

In particular if the node is distant from cross-edges and if it is not a HCA (thus it lacks
the trusted NOBRIDGE markings like for instance node B in Figure 5.4, at page 80).
Because of this, the rule produces numerous false positives and its precision is reduced.
It may also fail to detect articulation points if there exists a subset of edges unknown
to the node (no markings were delivered over it), thus its recall, although high, is not
ideal.

5.6.3. The Second Voting Round
The definition of rules from the first voting round indicates that they have different
characteristics: for example, the single-for rule reacts promptly to the possibility that
a node is an articulation point – it is to expect that it will have high recall and low
precision; the unanimous rule requires that all votes agree before it decides that an
edge is a bridge or a node an articulation point – it is to expect that its precision will be
high with a questionable recall. Other rules (e.g., trusted and weighted) have completely
different logic and it is difficult to predict their behavior – their characteristics depend
on topology shape and environmental factors.
The second voting round is introduced in order to:

• Obtain the balance between precision and recall. Instead of polarized rules with
exceptional precision or exceptional recall, decisions with good precision and good
recall are desirable.

• Obtain stable rules. Second voting round rules should provide accurate decisions
independent of topology or environment. The behavior of some rules may be
extremely variable: in one type of scenario the rule performs well but it under
performs in another. For instance, the weighed-bridge rule for articulation point
detection has decent characteristics in simulations with Ricean propagation model
and very poor if Rayleigh fading is introduced (Appendix D).

• Improve one characteristic while preserving the other. For instance, keep the recall
constant and improve the precision.

• If possible, extract additional bits of information from existing markings and de-
cisions, and use them to further improve accuracy of decisions. Even if no major
improvements are obtained, every improvement is valuable since it comes ”for free”
(without additional communication overhead).

103

5. DIBADAWN

In order to achieve these goals, the voting process is repeated, analogously to the first
round: a set V1 (Votes from the 1st voting round) is selected and a rule is applied to
it. The second voting round rules belong to one of three categories and each category
needs progressively more information for its operation:

• The simplest strategy is to use the majority voting on set V1. No learning phase
for the second voting round is required.

• Apply the weighted voting [150] to decisions from the first round. The compe-
tence of rules from the set V1 (Definition 5.9) must be evaluated under controlled
conditions (learning phase).

• Apply the Bayes classifier to the set V1.

Note on the Bayes classifier:
During the learning phase, two probabilities must be estimated for each rule r that

belongs to the set V1: the probability that voter r has selected a (voted 1) if a is the
correct hypothesis Pr(vr = 1|a), and the probability that voter r has selected b (voted
-1) if b is the correct hypothesis Pr(vr = −1|b) (a, b and values associated to them
are explained in Definition 5.5). Since a and b are mutually exclusive, the probabilities
Pr(vr = −1|a) and Pr(vr = 1|b) are also known. The apriori probabilities of hypotheses
P (a) and P (b) are estimated in the learning phase.
Voter profile from the first voting round V1(t) is a function of time. It is updated

with new values at the end of each DIBADAWN execution. Each time V1(t) changes,
Bayesian classifier is applied to it. Probabilities P (a|V1(t)) and P (b|V1(t)) are calculated
and the more-probable hypothesis is chosen. These probabilities are obtained using the
Bayes rule:

P (a|V1(t)) = P (V1(t)|a)P (a)
P (V1(t)) P (b|V1(t)) = P (V1(t)|b)P (b)

P (V1(t)) (5.12)

If we apply approximation that voters are mutually exclusive, the so-called naive Bayes
classifier is obtained. In practical applications of Bayes classification this assumption
is frequently applied despite the fact that in vast majority of cases the input variables
are not independent. It is proven in [104] and [178] that the naive Bayes classifier may
provide the optimal decisions (least probability of misclassification) in some cases, and
that the dependence among variables may cancel each other, explaining why it often
provides surprisingly accurate classification.
The Equation 5.12 is then transformed into:

P (a|V1(t)) =
P (a)

∏
vi∈V1 P (vi(t)|a)
P (V1(t)) P (b|V1(t)) =

P (b)
∏
vi∈V1 P (vi(t)|b)
P (V1(t)) (5.13)

In order to perform the classification, the node only has to calculate the probabilities
P (a|V1(t)) and P (b|V1(t)) and choose the hypothesis with a higher probability. The
probability P (V1(t)) is not important for the comparison and it needs not be calculated
since it is the divisor in both expressions. Calculating the naive Bayes classifier is not
computationally intensive (requires only several floating point operations) and can be
used even by nodes in a sensor network.

104

5.6. Improving Algorithm’s Accuracy by Voting

Composition Intended purpose
U, M, T, wB, wD Use input from all distinctive rules to improve overall

stability and if possible, F-measure of the rule. Slight
preference to precision.

Sf, M, T, wB, wD Use input from all distinctive rules to improve overall
stability and if possible, F-measure of the rule. Slight
preference to recall (compared with the previous voter
set, the unanimous is replaced by the single-for rule).

Sf, M, wD Balanced rule, envisioned for use in weighted voting
or Bayes classifier. Slight preference to recall improve-
ment.

Sf, T, wD Balanced rule, envisioned for use in weighted voting
or Bayes classifier. Trusted and weighted-degree rules
improve precision, single-for balances with its excep-
tional recall.

Table 5.9.: Rules in the second round of articulation point voting.

Full rule name Short name Full rule name Short name
Unanimous U Single-for Sf
Majority M Trusted T

Weighted-bridge wB Weighted-degree wD

Table 5.10.: Rule legend.

The Bayes classification, as presented here assumes equal penalty for misclassification
of both of hypotheses. If it is not the case in application scenario10, the classifier may be
extended to the ”Bayes classifier with costs” that assigns misclassification costs to each
of hypotheses. The cost is always dependant on the application scenario and cannot be
generally assigned. Since the goal of this thesis is the general framework for bridge and
articulation detection we have not included this version of the classifier in discussion. ♦
The last, and maybe the most important question is how to form the voter set V1. Its

composition should be chosen to meet the desired goal: if the goal is maximization of
precision, the rules with high precision are to be included in V1. The same principle ap-
plies for recall maximization. A mix of rules with heterogenous characteristics provides
the best results if the goal is balancing of rule characteristics.
Some combinations of voter sets and voting rules may degenerate into expert voting.

An example how a weighted voting rule may degenerate to the expert voting has been
already presented in this section (page 101). Analogous cases may be constructed for
the Bayesian classification. The second-round majority rules may be affected by this
phenomenon as well. For instance, if V1 comprises of unanimous, single-for and majority
votes, decision of second-round majority voter is always equal to decision of the majority
voter. Thus, it is important to avoid such membership of the set V1.

10A classical example is the medical diagnostics, where the cost of error of not diagnosing an illness is
very high (it endangers a patient), while raising a false alarm results in additional tests (it slightly
increases financial costs of the diagnostics).

105

5. DIBADAWN

Figure 5.15.: An example of the second voting round.

The general framework supports second-round voting both for bridge and articulation
point deciding process. Low gains are expected if the second round voting is applied
in bridge detection, since there already exist rules that use information on internal
algorithm functionality (trusted and intelligent-majority). Also, there exists insufficient
variability of bridge-voting rules: single-for, majority and unanimous are vote-count
based, two expert voting strategies (trusted and intelligent-majority), and one weighted
rule. Thus, the number of possibilities for improvement is drastically reduced (e.g., there
is no point in joining majority and trusted rule, when they are already ”joined” in the
intelligent-majority rule). Several second-round voting strategies for bridge detection
have been implemented and evaluated but the gains they provide are minor so they are
excluded from this work.
Articulation point voting brings more possibilities for vote building so the possible

gains obtained by it are more pronounced and worth of further investigation. Table 5.9
shows the rules which bring concrete benefits and which are evaluated in detail. The
legend of rule abbreviations is in Table 5.10.
Due to partial unpredictability of outcomes of the second voting round, more input

sets have been evaluated than it is shown in Table 5.9. The sets which did not bring

106

5.7. Summary

significant improvements in decision accuracy are not included in Table 5.10 nor in
Chapter 9.
Figure 5.15 shows an example of the proposed two-round voting scheme for articula-

tion point detection. DIBADAWN delivers a set of last decisions to a queue that (in this
example) keeps only the three freshest decisions. Based on these decisions, voting rules
from the first round calculate their decisions. It can be seen that the trusted (trusted-
flags are part of the vote queue), majority and single-for rule support the hypothesis of
articulation point existence, while the unanimous rule votes against it (one false vote
in the queue).
In the second voting round, output of these four rules is used in two different combi-

nations.
The voter set A in the second voting round consists of the output of the unanimous,

single-for and majority rules from the first round. If majority voting is applied to the
voter set A, the hypothesis that node is an articulation points is supported. If weighted
rule or Bayes classifier are used on it, it is decided against this hypothesis.
The voter set B consists of the output of the trusted, single-for and majority rules from

the first round. If majority or weighted voting rules are applied to it, the hypothesis
that node is an articulation points is supported. If Bayes classifier is applied to it, it
decides against this hypothesis.

5.7. Summary

The existing bridge and articulation point detection algorithms for WMNs [57] [80]
[168] require global topology knowledge. They are simple, fast, and efficient if accurate
network topology is known. However, the probability of obtaining precise topology
information in a wireless multi-hop network is extremely low as it was shown in Section
4.4. Under realistic conditions where packet losses are frequent, the ability of proactive
management protocols to deliver topology data of adequate quality for biconnectivity
testing degrades sharply, despite the large communication overhead of O(n2) they create.
DIBADAWN is a distributed bridge and articulation point detection algorithm for

wireless networks, where nodes are cooperating through message exchange. It does
not depend on the global topology knowledge so it scales better than the proactive
approaches and has message complexity of O(n).
The algorithm combines ideas of algorithms from [55], [67], and [158]. It is altered

so that it can operate in presence of packet losses and node failures, that are inevitable
in reality. These events cause errors in the algorithm and it may produce incorrect
decisions. The effects of these faults have been studied and major error cases have been
identified. Based on the analysis, it was concluded that the explicit error detection
procedures in the algorithm are only partially possible.
A set of two-tier voting rules is proposed as a mechanism for improvement of accuracy

of decisions. The rules are applied to a set of latest decisions of DIBADAWN, thus they
do not increase the communication overhead. Special care has been taken to create
dissimilar voting rules – some of them aim at high precision, such as the unanimous,
while others aim at high recall. This provides an exceptional flexibility to the detection
approach – without any changes in DIBADAWN and without any additional commu-
nication overhead, it is possible to obtain decisions with different characteristics. Since

107

5. DIBADAWN

rules are mutually independent, they can be executed simultaneously, providing their
decisions to network, transport or application layer in accordance with their needs. So
for instance, the network layer can obtain high-precision decisions, while the application
layer simultaneously utilizes high-recall decisions.
The proposed two-round voting mechanism has potential for improvement of accuracy

of decisions but it also puts burden of increased parameter space that has to be searched
in order to obtain stable and high-quality decisions. Size of sets Sap and Sb, identification
of potent rules in the first voting round, combining output results from the first round
for the second round must evaluated and compared under various conditions before
reaching a conclusion on their capabilities. The evaluation results in Chapter 9 will
show that the development and management of voting rules are worth the effort since
the voting rules increase accuracy of detection and provide stability of the behavior of
the detection approach over various scenarios.

108

6. Locality in Wireless Multi-hop Networks
and Estimation of the Average Cycle
Size

Discussion of errors in algorithm caused by message losses in the previous chapter indi-
cates that short cycles are beneficial for the accuracy of the algorithm – in long cycles
it is more likely that a marking that travels toward the HCA of the cycle gets lost.
This chapter assesses the average cycle size in random geometry graphs. The the-

ory of random geometrical graphs (RGG) and homogeneous Poisson point processes are
cornerstones of evaluation of topological properties in WMNs (e.g., [36] [78] [107]). The
RGG theory cannot capture all characteristics of WMNs like packet losses or effects of
obstacles on network topology. Yet, with all its drawbacks, it still gives us deeper un-
derstanding of underlying topological processes and more general conclusions on studied
properties than pure simulation studies, where certain combinations of parameters may
drive us to wrong conclusions.
Despite these simplifications, the theory of random geometric graphs is very expressive

and may result in unsolvable models that provide only high-level conclusions. Although
they are valuable, such results often cannot be applied in practice. For instance, Penrose
[136] provides a detailed percolation model of RGGs that can be used for calculation of
their connectivity properties. However, the model cannot be solved analytically and it is
burdened with redundancies. Even after simplifications that are proposed by Quintanilla
and Torquato [142] the number of integrals to solve grows exponentially with number
of vertices in a graph1, so it cannot be applied in practice where networks may have
hundreds or thousands of nodes.
A more practical approach to the problem is chosen in this chapter. Instead of unsolv-

able models, upper bounds of studied characteristics are calculated. The approximations
are frequently used in models developed in this chapter: the differences between reality
and the starting assumptions of random geometric graphs are obvious, so even if ideal
RGG model is developed and solved, it inescapably deviates from values encountered in
reality.
Two approaches are used for estimation of the average cycle size in RGGs. The

expression for the expected average face size in planarized graphs is the firm upper bound
on the average shortest cycle size. The bounds are derived for Gabriel and Relative
Neighborhood Graphs in Section 6.1. A more detailed model that accounts for area-
boundary effects has been presented in [118]. In this chapter only the unbounded model
is presented since its results are comparable to the results of the complex boundary-
aware model.
The bounds of the average face size are further improved in Section 6.2. The prob-

ability of occurrence of shortest cycles of size three and four is calculated, allowing
1Appendix A contains additional details.

109

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

estimation of the worst-case average shortest cycle size. The Gabriel graph model is
better in sparse graphs while the later model provides stricter bounds in dense graphs.

6.1. Estimation of the Expected Face Size in Gabriel and
Relative Neighborhood Graphs

The average face size after planarization of a geometric graph is estimated in this section.
Faces are cycles by definition, and since planarization process transforms connectivity
graph G(V,E) in G′(V,E′) with E′ ⊂ E, the average minimum cycle size in the original
graph cannot be larger than the average face size in the planarized graph.
Since RNG ⊂ GG [132] [163], the average face size in Gabriel graphs provides tighter

bounds and is of higher importance for this work. The results for RNGs are derived for
completeness since the process is analogous to the GGs.

6.1.1. The Ratio of Removed Edges in Planarization Process

Let us observe an arbitrary node C within a homogeneous Poisson point process with
intensity λ. Let Pneigh(r, φ) be the probability that there exists a neighbor node D at
distance r from the node C under the angle φ measured from an arbitrary but fixed
axis, and let W be the witness area (as defined in Section 2.2.4). Let PW (r, φ) be the
probability that there exists a witness node WCD in W .
Edge CD is removed with probability Premove if there exists a neighbor node D on

distance r from C and there is a witness node WCD in the area W :

Premove(r, φ) = Pneigh(r, φ) · PW (r, φ). (6.1)

Integration of this probability over the whole area in which the node C can commu-
nicate, provides the expected number of deleted edges ēd for a single node:

ēd =
∫ R

0

∫ 2π

0
Pdrop(r, φ)drdφ (6.2)

In order to calculate the ratio of removed links η at the node C, the number of deleted
edges is divided by the expected vertex degree d(C) of the node C:

η =
∫ R

0
∫ 2π

0 Pdrop(r, φ)drdφ∫ R
0
∫ 2π

0 λ(r, φ)drdφ
(6.3)

The vertex C is arbitrarily chosen and placement process is homogeneous λ(r, φ) =
λ = const, thus the Equation 6.3 is valid for every node in the graph and to the whole
graph. Since λ is constant in a homogeneous Poisson Point Process, the equations 6.1,
6.2 and 6.3 do not depend on the angle φ. The probability Pneigh(r) is in this case:

Pneigh(r) = 2πrλ (6.4)

In order to calculate the ratio of removed links we need to determine the probability
that there is at least one node in the witness area W .
Let us observe the homogeneous placement process of n nodes in an area A. The

probability that a node is placed in an area B within the area A is PB = |B|
|A| . The

110

6.1. Estimation of the Expected Face Size in Gabriel and Relative Neighborhood Graphs

probability Pk(B) that exactly k nodes are in B is:

Pk(B) =
(
n

k

)
P kB · (1− PB)n−k (6.5)

If the probability PB is small and number of nodes n large, the binomial distribution
can be approximated with the Poisson distribution:

Pk(B) = (n · PB)k · e−n·PB
k! (6.6)

Let the size of area A grow to infinity, keeping the ratio λ = n
|A| constant. Then,

n · PB = n·|B|
|A| = λ|B|. The probability that there exists at least one node in B is:

PW (B) =
n∑
k=1

Pk(B) =
∞∑
k=1

(λ|B|)k

k! · e−λ|B| = (eλ|B| − 1) · e−λ|B| = 1− e−λ|B| (6.7)

where we have used the power series of ex =
∑∞
k=0

xk

k! .

Gabriel Graphs

For Gabriel graph, witness area W is defined as the circle placed between the nodes A
and B (Figure 2.5(b), page 25). For δ(A,B) = r, the circle has radius of r

2 and the
probability that at least one witness node WAB is present within it is:

PW (r) = 1− e−λπ
r2
4 (6.8)

By combining the expressions 6.4 and 6.8 with 6.3 we get:

ηGG =
∫ R

0 2πλr(1− e−λπ
r2
4)dr∫ R

0 2πλrdr
= −4 + 4e−λπ

R2
4 +R2πλ

R2πλ
(6.9)

Relative Neighborhood Graphs

As shown in Figure 2.5(a) the witness areaW has the shape of a symmetrical lens defined
as the intersection of two circles whose centers are at distance r = δ(A,B). Area of
a lens is equal to the doubled circular segment area (Equation 2.2) with a distance to
chord of r2 :

AG(r) = 2(r2 arccos r

2r −
r

4
√

4r2 − r2) = 2πr2

3 − r2

2
√

3 (6.10)

knowing that r ≥ 0 and arccos 1
2 = π

3 .
In order to get the ratio of removed edges in Relative Neighborhood Graphs, Equations

6.4 and 6.10 are substituted in 6.3:

ηRNG =
∫ R

0 2πλr(1− e−λ(2πr2
3 − r

2
2
√

3))dr∫ R
0 2πλrdr

= 1 + −6π(−1 + e−
1
6λR

2(3
√

3−4π))
(3
√

3− 4π)R2πλ
. (6.11)

111

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

6.1.2. The Expected Number of Faces and the Expected Face Size

In order to calculate the average face size (number of edges belonging to a face), we
start from Euler’s Formula for number of faces in a planar graph:

f = 1 + c(G)− n+ e (6.12)

The expected number of edges in the connectivity graph is (we count all neighbors of
each node in the graph, thus counting all edges in the graph twice):

ē = n · d
2 = λ|A|d

2 (6.13)

where the average degree of a node d = λR2π. The ratio of eliminated edges η is
defined in Equation 6.9 for Gabriel Graphs and in Equation 6.11 for Relative Neighbor-
hood Graphs. The expected number of edges in the planarized graph is: e = ē(1− η).
Roach has proposed in [146] an approximation for the average number of graph com-

ponents in a unit region of plane:

c(G)unit = λp0 ln p0
p0 − 1 (6.14)

where p0 = e−R
2πλ is the probability that a node is isolated. If graph is finite, the

absolute number of components in it is:

c(G) = |A|λp0 ln p0
p0 − 1 + 1 (6.15)

The Equations 6.14 and 6.15 are valid for non-planarized graphs. Since the pla-
narization process to GG and RNG does not increase number of graph components,
Equations 6.14 and 6.15 are applicable to them as well. Substituting 6.15 in 6.12 we get
the expected number of faces in the planarized graph:

f = 1 + |A|λp0 ln p0
p0 − 1 + 1− λ|A|+ ē(1− η) = 2 + |A|λ(p0 ln p0

p0 − 1 + d

2(1− η)− 1). (6.16)

The average face size can be approximately calculated as:

s = 2 · ē(1− η)
f

. (6.17)

The expression 6.17 is approximate because it assumes that each edge in the planar
graph belongs to two different faces: e.g., the edge PQ in Figure 6.1 belongs to faces
A1 and A2. However a bridge belongs only to one face: e.g., the edge XY in Figure 6.1
belongs to face A2 only.

6.1.3. Simulation Results

The analytical expressions are compared with output of a topology simulator that places
vertices in an area, creates the underlying connectivity graph and measures the ratio of
removed edges and the average face size for Gabriel and Relative Neighborhood Graphs.

112

6.1. Estimation of the Expected Face Size in Gabriel and Relative Neighborhood Graphs

Figure 6.1.: Bridges in a planarized graph.

4 5 6 7 8 9 10 11

0
.4

0
.5

0
.6

0
.7

0
.8

Average Neighbors

E
lim

in
a
te

d
 E

d
g

e
s

GG−Simulation

GG−Model

RNG−Simulation

RNG−Model

(a) Ratio of removed edges.

4 5 6 7 8 9 10 11

5
1

0
1

5
2

0
2

5

Average Neighbors

A
v
e

ra
g

e
 F

a
c
e
 S

iz
e

GG−Simulation

GG−Model

RNG−Simulation

RNG−Model

(b) Average face size.

Figure 6.2.: Comparison of graph planarization model and simulation results.

The simulations were run 1000 times per deployment configuration. In all placement
scenarios, number of nodes is fixed to 2752 and they are placed uniformly in a quadratic
area. Communication radius is set to 250 units. Size of area is varied to allow different
node and graph density (expressed in figures the expected number of neighbors d).
Instead of approximate value for average face size from Equation 6.17, in simulation

is used the correct expression that differentiates bridges (b) and ordinary edges (e):

s = 2 · e− b
f

Figure 6.2(a) shows the ratio of removed edges in process of graph planarization
for different node densities and different communication radii. The errors of analyti-
cal model are rather small – the maximal difference between it and the simulation is
approximately 2.5%.
The approximation for the expected face size is acceptable although it ignores the

existence of bridges, as it can be seen in Figure 6.2(b). The mathematical prediction
follows the shape of the simulation curves, accurately representing the behavior of the
average face size.
For a study of behavior of non-homogeneous vertex placement processes vertices are

2Average number of nodes present in main component of Berlin’s WMN, as explained in Chapter 8.

113

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

40 50 60 70 80 90 100 110

4
.0

4
.5

5
.0

5
.5

6
.0

Gauss, 250 nodes

Model, 250 nodes

Gauss, 500nodes

Model, 500 nodes

Radius

A
v
g

.
E

d
g

e
s
 p

e
r

F
a

c
e

(a) Average face size.

40 50 60 70 80 90 100 110

−
0
.1

5
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

Relative error, 250 nodes

Relative error, 500 nodes

Radius

R
e

la
ti
v
e

 e
rr

o
r

(b) Relative error of the model.

Figure 6.3.: Comparison of graph planarization model and simulation results for non-
uniform node placement.

placed in accordance with normal distribution so that the highest density of nodes is
at the central part of the placement area (500x500 units). Communication radius and
node count are varied to change the graph density.
The Figure 6.3(a) shows the average face size in non-homogeneous placement process.

As expected, the differences between the model and simulation are more pronounced
than for the uniform node placement, in particular for very sparse graphs (less than
four neighbors on the average). The maximal relative error of model is less than 15%
and for most of studied deployment configurations it is close to 5% which is an excellent
result taking into consideration that the model has not been developed for such node
placement models.

6.1.4. Interpretation of the Results – the Average Face Size in Limit

In this section we determine the behavior of obtained expressions in limit and verify
their conformance to results of Devroye [66]. In limit, the communication radius R is
increased to infinity. The placement area is infinite as well as the number of nodes but
their ratio is kept constant λ = n

|A| .
As the consequence of communication radius increase, grows the expected number of

neighbors - d = R2πλ and the overall graph connectivity [36]. It can be safely assumed
that the underlying graph is connected (c = 1 in Equation 6.12):

f = 2− n+ nR2πλ

2 · (1− η).

Division of both sides by |A| and knowing that n = λ|A| gives the expected face
density F – the number of faces per surface measurement unit:

F = f

|A|
= 2
|A|
− λ+ R2πλ2

2 · (1− η)

114

6.2. Estimation of the Shortest Cycle Size

Since the observed area A is infinite, the factor 2
|A| can be ignored:

F = −λ · (1− R2πλ

2 · (1− η)) (6.18)

Accordingly, based on expression 6.17 the expected face size in the limit is:

s∞ = lim
R→∞

λ|A| ·R2πλ(1− η)
F |A|

= lim
R→∞

R2πλ2(1− η)
F

(6.19)

Substitution of Equations 6.9 and 6.11 in 6.18 gives the expected face densities for
Gabriel and Relative Neighborhood Graphs:

F∞GG = lim
R→∞

−λ+ R2πλ2

2 · (1− −4 + 4e−λπ
R2
4 +R2πλ

R2πλ
) = λ (6.20)

and

F∞RNG = lim
R→∞

R2πλ2

2 · 6π(−1 + e−
1
6λR

2(3
√

3−4π))
(3
√

3− 4π)R2πλ
− λ = π − 3

√
3

3
√

3− 4π
· λ ≈ 0.278λ (6.21)

Using these expressions in 6.19 and applying once more the Equations 6.9 and 6.11
we get the expected faces’ size for Gabriel and Relative Neighborhood Graphs:

s∞GG = lim
R→∞

λ ·R2πλ(1− −4+4e−λπ
R2
4 +R2πλ

R2πλ)
λ

= 4 (6.22)

and

s∞RNG = lim
R→∞

λ ·R2πλ6π(−1+e−
1
6λR

2(3
√

3−4π))
(3
√

3−4π)R2πλ

π−3
√

3
3
√

3−4π · λ
= −6π
π − 3

√
3
≈ 9.1745 (6.23)

Our results in limit are identical to results from [66] – there exist only minor differences
in notation. The added value of our approach is that it provides the model of Gabriel
and Relative Neighborhood Graphs’ properties not only in limit but for the large set of
values.

6.2. Estimation of the Shortest Cycle Size
The average face size in Gabriel graphs in limit converges to four for large complete
graphs (Equation 6.22). It is obvious that for complete graphs, the average shortest
cycle size is three since every pair of nodes shares a neighbor. Thus, the improvement
of the upper bound of the average shortest face size is possible and in this section it is
further reduced.
Probability that a node A has a neighbor B on distance r is given by Equation 6.4.

Such pair of nodes AB form a 3-cycle3 if they have a common neighbor, i.e., if there
exists a node at a distance smaller than R from both of nodes. Geometrically, such

3Cycle consisting of three edges, also called a triangle.

115

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

Figure 6.4.: Cycle consisting of three edges in a random geometric graph.

area is defined as intersection of two circles with radii R whose centers are at distance r
(Figure 6.4). The probability that there exists at least one node in the area is 1−e−λ|GAB |.
Thus, the probability P3c of 3-cycle existence is:

P3c = 1
λπR2

∫ R

0
2λπr(1− e−λ(2(R− r2)2·arccos

R− r2
2R −

R− r2
2
√

4R2−(R− r2)2))dr (6.24)

The integral cannot be analytically solved and has to be numerically calculated.
It is now possible to provide an upper estimate of the average shortest cycle size: If

P3c edges form 3-cycles, remaining (1 − P3c)nd2 edges are in cycles longer than three.
The largest possible average cycle size is obtained if all edges that do not belong to
3-cycles form one large cycle, consisting of (1 − P3c)nd2 + 1 edges. It follows that the
average cycle size cannot exceed the value of C̄3−max:

C̄3−max(n, d, P3c) =
3nd·P3c

2 + ((1− P3c)ē+ 1) · (1− P3c)ē
ē

≈ 3P3c + (1− P3c)2 (6.25)

For brevity, instead of repeating the expression for expected number of edges ē = nd
2

only its symbolic name is used. For large n or d, the additive factor of one can be
ignored and the approximating equation is obtained. As expected, with increase in
graph’s density, average cycle size converges toward three.
Although strict, this upper bound is unlikely to be met, in particular in sparse graphs

where the effect of assumed longest-possible cycle is strongest (in a sparse graph, fewer
edges belong to 3-cycles than in a dense graph). Such a long cycle is a complex structure,
and probability of its formation is very low. Also, a considerable number of edges in
sparse graphs are bridges that do not participate in cycle formation.
Unfortunately, we cannot assess the probability of a maximal cycle nor bridges occur-

rence, so this remains only an intuitive interpretation of Equation 6.25). However, it is
possible to account for possible components in the graph and improve Equation 6.25.
The components are common in sparse graphs and awareness of their existence should
improve the calculated bounds.

116

6.2. Estimation of the Shortest Cycle Size

In context of estimation of the average length of the shortest cycle, graph components
can be treated in two possible ways:
Network is divided into the set of single node components and one con-

nected component, containing all remaining nodes. The single-node components
do not have any edges attached to them. Their effect is the reduction of the node count
in the connected component n′ = n − c + 1 (their average number c is calculated by
Equation 6.15) and consequently of the number of edges in it e′ = n′d

2 . Now we can
substitute new values of n′ and e′ in Equation 6.25 (the probability P3c does not depend
on number of nodes in network/component, so it remains the same as before.)

C̄1
3−max(n, d, P3c) = C̄3−max(n− c+ 1, d, P3c) (6.26)

This approach does not compromise the strict bounds used in derivation of Equation
6.25. It includes the effects of disconnected network but it still creates the maximal
possible cycle in the connected component of the graph since it does not take edges
from the connected component.
Network is divided into c equally sized components. Each of c components

has n′′ = n
c nodes and ē′′ = n′′d

2 . The average shortest cycle size in calculated similarly
as in with Equation 6.25:

C̄
n
c

3−max =
c(3n′′d·P3c

2 + ((1− P3c)ē′′ + 1) · (1− P3c)ē′′)
c · ē′′

= C̄3−max(n
c
, d, P3c) (6.27)

The numerator of the fraction in Equation 6.27 sums the lengths of shortest cycle sizes
same as in Equation 6.25 over all components (since they are identical, the numerator
is simply multiplied by c). The denominator is the total number of edges in the graph -
c ·e”. The main difference between 6.26 and 6.27 is that the later calculates the maximal
possible cycle in components that are much smaller than the original graph. Smaller
components mean smaller maximal possible cycle, which in turn reduces the estimate
of the average.
Because of that, estimate from Equation 6.27 provides very low estimate of the average

length of shortest cycles in graph. However, its assumption that network is divided in
equal components is also its biggest weakness. The assumption of such component
composition minimizes the estimate of the average length of shortest cycles, but it also
breaks correctness of the bound – if composition of components of a graph is different,
the metric will underestimate the average. Thus, it cannot be used as a strict bound,
but as an approximate estimate and its value must be interpreted with care.
The upper bound of the average shortest cycle size can be further reduced by calcu-

lating probabilities of occurrence of 4-cycles, 5-cycles, etc. Calculating probability of
their existence is extremely difficult as node location interplay and determining of the
integration limits gets increasingly complicated with each added node, similar as for the
connectivity analysis from [136] and [142]. Figure 6.5 demonstrates the existence of two
valid configurations in which a 4-cycle exist over an edge: the edge AB belongs to the
cycles ABDC and ABFE.
In Figure 6.5(b), Ax marks the largest possible area where a node C can be placed

so that it is neighbor with node A, but not a neighbor of node B, and that it is still
possible to place another node D within area Ay so that it is neighbor of node B but
not a neighbor of node A.

117

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

(a) 4-cycle example (b) Possible location of a node if it belongs to a
4-cycle.

Figure 6.5.: Cycles consisting of four edges in a random geometric graph.

The size of area Ax is calculated by subtraction of the non-shaded part in Figure
6.5(b) from area of lens GZY . The unshaded area consists of two circular segments XW
and YW and two overlapping circular sectors XWB and AWY (we subtract them both
from lens GZY and add to it the overlapping area of sector AWB, in accordance with
inclusion-exclusion principle):

Ax(r) =GZY −((5XWB +5AWY −5AWB)+ _XW + _YW) =

2R2π

3 −
√

3R2

2 − (2 · R
2π

6 + 2(π6 −
√

3
4)R2 −R2arcsin

r

2R) = R2arcsin
r

2R (6.28)

(the definitions of lens, circular sector and circular segment are on page 25).
The precise approach would require integration of probability of existence of node C

over area Ax and of existence of a node D within area Ay so that distance between C and
D is less than R. Such process is highly complex and we employ approximation instead
of it – it is assumed that nodes in whole area Ax may communicate with nodes that are
placed anywhere in area Ay. So, P 1

4c approximates probability of 4-cycle existence:

P 1
4c ≈

1
λπR2

∫ R

0
2λπr(1− e−λR2arcsin r

2R)dr (6.29)

The integral in Equation 6.29 is analytically solvable and it is resolved to a complex
polynomial, consisting of more that thirty terms. For brevity, it is not shown here, but
it can be easily obtained in any analytical solver, such as Mathematica.
This probability accounts only for one possible 4-cycle around pointW , but one more

may be formed in proximity of point V , with the same probability. For our analysis,
it is not important which cycle is formed, but whether there exists at least one. The
probability that at least one 4-cycle is formed, in proximity of a pair of neighbor nodes

118

6.2. Estimation of the Shortest Cycle Size

4 5 6 7 8 9 10 11

3
4

5
6

7
8

9

Average Neighbors

A
v
e
ra

g
e
 C

y
c
le

 S
iz

e

GG estimator

tC estimator

tC + fC estimator

tC estimator with 1−partitions

tC estimator with equal partitions

Figure 6.6.: Estimators of the average size of shortest cycles.

is obtained as sum of probabilities that at least one 4-cycle exists:

P4c = 2P 1
4c(1− P 1

4c) + (P 1
4c)2 = P 1

4c(2− P 1
4c) (6.30)

A 4-cycle is shortest cycle over an edge if there exists at least a single 4-cycle and
there does not exist a 3-cycle on that edge:

P4c−shortest = P4c(1− P3c) (6.31)

If approximate probability of occurrence of 4-cycles is included, the upper bound on
maximal average shortest cycle size is stricter and converges faster to its limit value.
However, in contrary to the Equation 6.25, P4c is not the strict upper limit because of
the approximation that is made during calculation of P 1

4c. Due to reasons presented in
the introduction of this chapter, it is still of considerable practical value and it can be
calculated as:

C̄4−max = 3P3cē+ 4P4c(1− P3c)ē+ ((1− P3c − P4c(1− P3c))ē)2

ē
(6.32)

Since graphs of interest are of considerable size and P4c is already an approximation,
the additive factor of one in expression for the largest-possible cycle formed of edges
that do not belong to 3- and 4-cycles is ignored.
Figure 6.6 shows the modeled bounds4. Estimator 6.25 provides the highest values for

sparse graphs. Its improved version, estimator 6.26 provides slightly smaller estimate
but the average face size of Gabriel graph provides smaller upper bound and it is better
for sparse graphs.
As the density of a graph increases, estimator 6.25 prevails over GG estimator and

converges fast toward expected value of three. The change occurs approximately once
4tC is the C̄3−max estimator from Equation 6.25, tC+fC is C̄4−max estimator from Equation 6.32, and
they are followed by C̄1

3−max and C̄
n
c

3−max estimators

119

6. Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size

the average node degree reaches five. It is remarkable that already for graphs with
average vertex degree of ten, shortest cycle size is negligibly different from three (such
simulation setups are common in the literature as it will be shown in Table 8.1, page
140).
The estimator from Equation 6.32 is tighter than both Gabriel and 3-cycle estimators

(Equations 6.25 and 6.26) but as already explained, its predictions must be taken with
reserve since it needs not provide the guaranteed bound.
Of all estimators, the estimator in Equation 6.27 gives the smallest values, very close

to three, but it is highly approximate as already explained. For extremely sparse graphs
(d<2) its value even falls below three which is obviously wrong. If the problem of
calculation of component size distribution in RGGs (its issues are explained in Appendix
A) is resolved, the estimator has potential to be the best of all presented on the whole
range of possible node degrees.

6.3. Summary
This chapter has studied the locality properties in RGGs. It has been shown that if a
cycle exists in the connectivity graph, it tends to be short.
The analytical results for estimation of the average shortest cycle size have been

obtained, using different approximations. All approximations show that the shortest
cycle size converges to three already in networks of moderate density. Even in rather
sparse networks, the average shortest cycle size will not be over eight.
This information can be used for further reduction of communication overhead in

DIBADAWN: instead of full searches that cover whole network, it may be possible to
employ localized searches that cover only the k-neighborhood of a node. The performed
shortest cycle-size analysis indicates that bridge detection should be accurate even with
a small local search radius, but the effects of such partial searches on accuracy of the
articulation point detection are unclear and have to be evaluated.
The detailed evaluation of localized searches in DIBADAWN will be performed in

Chapter 9. Evaluation is necessary since the RGG model which is used in this chapter
introduces considerable simplifications: real networks are not uniformly distributed, the
model does not include stochastic behavior of wireless channel, HCA cycles that are
discovered by DIBADAWN may not be equally sized/shaped as the shortest cycles.
The applicability of results of this section is not limited only to DIBADAWN, its anal-

ysis and proposed changes in its functionality. They also enable better understanding of
existing protocols, and easier estimation of performance of new protocols prior to their
implementation. For instance:

• Gabriel and Relative Neighborhood Graphs are used in various WMN protocols.
The obtained equations on the ratio of removed edges in planarization process
and the average face size simplify the theoretical analysis of functionality and
performance of such protocols. For instance, Karp and Kung [98] and Bose et
al. [44] propose combination of greedy geographical and perimeter routing for
guaranteed delivery of packets in a location aware network. A packet is greedily
forwarded towards its destination (with regard to its geographical location) until
it reaches the destination, or a local minimum of the distance function. To avoid
local minimum, the packet is forwarded over the edges of a face of Gabriel Graph

120

6.3. Summary

(perimeter routing). It has been observed that the length of path selected by the
protocol is close to the optimal (Figure 11 in [98]). The developed face-size model
easily explains this behavior: dense networks in simulations in [98] create small
faces so the variations introduced by perimeter routing are almost negligible.

• The probabilistic three- and four-cycle analysis in Section 6.2 explains good per-
formance of local route repair protocols [176]. The presented model predicts high
probability of having a short alternative path between a pair of nodes and conse-
quently the high success rate of local route repair if a node in a network has more
than seven neighbors on the average (as it was defined in simulation scenarios in
[176]).

121

7. Case Study: Measurements from
Community Wireless Multi-hop
Networks

In this chapter are compared topological properties of community wireless multi-hop
networks in Berlin (Berliner Freifunk Netzwerk [7]) and Leipzig (Freifunk Leipzig, [8])
with common theoretical and simulation node placement and mobility models such as
uniform, grid and the random waypoint model.
Four topology metrics have been selected for comparison in this chapter: degree

distribution, bridge and articulation point count and relative component size after bridge
removal. These topological metrics directly influence properties of protocols that are
simulated.
The node degree distribution is correlated to the congestion on the wireless channel

and probability of packet loss.
Bridges are only communication links between potentially large, 2- (or better) con-

nected network components. If these components are of a considerable size, bridges
that connect them tend to get congested, reducing the available throughput per flow
and increasing packet latency, thus reducing quality of services deployed in network. In
addition to bridge count it is important to capture the size of components that bridges
connect.
Articulation points are gateways between different network components. The network

gets disconnected if an articulation node is turned off, node’s software fails or its energy
source is depleted. The articulation points tend to route more traffic than other nodes
in the network so they are more prone to energy exhaustion and critical failure that
partitions the network. Due to limited operating memory and processing power of
wireless nodes, packet buffers at articulation points are more prone to overloading,
introducing additional packet losses.
The analysis of these four topological characteristics shows that properties observed in

reality are different than in common theoretic models. For this thesis it is of particular
importance that articulation points and bridges are much more frequent in reality than
in the known theoretical models. The effects imposed by them on a real network and
protocols deployed in it are more accentuated than in studies based on purely theoretical
models. This fact provides additional motivation for development and application of
DIBADAWN.

7.1. Data Sampling and Simulation Methodology

This section explains the methodology used for data sampling from real networks and
simulation of artificial topologies.

123

7. Case Study: Measurements from Community Wireless Multi-hop Networks

Avg. Min-Max Avg. Min-Max
Scenario Samples Nodes Nodes Edges Edges Area R α σ

Berlin 1465 315.29 199-419 633.79 291 - 951 - - - -
Leipzig 1589 586.66 452-615 1277.91 1006-1396 - - - -
Uniform 1500 400 400-400 1061 945-1188 1000 x 1000 67 4 0

Uniform (S) 1500 400 400-400 1063.33 958-1190 1000 x 1000 40 4 7
RWM 1500 400 400-400 1524.48 1337-1799 1000 x 1000 40 4 7
Grid - 400 400-400 2560 2560-2560 684 x 684 40 4 7

Table 7.1.: Network characteristics and simulation parameters used for comparison of
topological properties.

For data sampling, we were limited by the existing, built-in capabilities of Berlin and
Leipzig networks. We had no control over the networks and no knowledge what tran-
spires in the network at the sampling moment: some users might be experimenting with
protocol parameters, testing new equipment, or deploying new and possibly incorrect
protocol versions. The implication of this uncertainty is that a single measurement sam-
ple cannot be trusted. Instead, large series of measurements are needed to reason about
topological properties. The same, stochastic methodology is applied to simulation to
eliminate effects of outliers in individual simulation executions.
Table 7.1 shows important parameters of measurements and simulation. Number of

samples in all cases was approximately 1500. In real networks number of participating
nodes varies over time as shown in column with minimal and maximal number of nodes
encountered over all samples. All simulation scenarios had 400 nodes. Characteristics
of wireless channel σ and α and their meaning have been explained in Section 2.1.3.

7.1.1. Data Sampling Methodology
Data collection in real networks does not allow high intrusion level that would be ideal
for sampling purposes: users are unwilling to modify the software running on nodes
so that it collects and sends the captured data to a repository. The data had to be
extracted from running protocols, as they were.
Networks in Berlin and Leipzig used an extended variant of the Optimized Link

State Routing (OLSR) routing protocol [14]. Due to several issues of OLSR in urban
environment, discussed on networks’ websites ([7], [8]), the protocol used in networks
does not comply with the OLSR standard defined in RFC 3626:

• Multipoint relays are not used. Instead, each node is disseminating its local topol-
ogy knowledge, using plain network flooding.

• In order to reduce the overhead produced by dissemination of TC (topology con-
trol) packets, fisheye algorithm is applied for information dissemination: each TC
packet has time to live (TTL) field which specifies how many hops a TC packet
should be forwarded. Nodes send TC packets every 0.5 to 2 seconds (configurable
parameter of the protocol) setting the following values in TTL field: 255, 3, 2, 1,
2, 1, 1, 3, 2, 1, 2, 1, 1.

• In order to improve utilization of network resources, ETX metric (Definition 2.1)
is used for packet routing [64] – packets are not routed by minimizing the hop
count, but by minimizing the ETX.

124

7.1. Data Sampling and Simulation Methodology

Table: Topology
Destination IP Last hop IP LQ ILQ ETX
10.14.1.125 10.14.0.200 0.44 0.84 2.71
10.14.1.43 10.14.0.137 0.90 0.96 1.16
10.14.0.189 10.14.0.225 0.00 0.59 0.00

Figure 7.1.: A section of topology sample taken at an OLSR node.

• The topology control (TC) packages disseminate the link quality data (ETX), not
just the topology information.

The described proactivity of OLSR version 0.4.10 and its differences to OLSR stan-
dard were beneficial for sampling purposes. In the meantime, the protocol has been
officially differentiated from OLSR and is known as Better Approach to Mobile Ad-Hoc
Networking - B.A.T.M.A.N. [5].
TC packets are also used for link quality estimation. A node knows that it should

receive a TC packet from a neighbor every 0.5s, with some small jitter. At each node
A there exists a sliding window mechanism that counts how many packets should have
been sent by node B and how many actually reached node A. Based on these values,
node A estimates the link quality wBA as #received

#expected . Neighbor B estimates the link
quality wAB using the same approach. TC packets include link quality information
and through their exchange both nodes obtain two directional information on quality of
the link that connects them. Although this method has some drawbacks (e.g., it does
not capture burstiness of losses, it is unaware of reasons of packet losses) it provides
acceptable estimation of link quality and improves network throughput [64].
Frequent topology updates and static nodes allow us to take samples from a single

node. The samples are taken every ten minutes in Berlin and every fifteen minutes in
Leipzig network. The extracted samples include topology and ETX data. Successive
samples differ from one another since nodes are joining and leaving network, and network
traffic is changing which in turn generates different interference patterns and different
link quality data. Additional changes in link quality are created by interference with
network unrelated wireless access points and environment changes.
In Berlin, a node was installed in the network to collect the data. Taking of topology

samples from a node running the OLSR daemon, version 0.4.10 is rather simple, since
the protocol daemon can output the topology table to a textual file. Figure 7.1 shows
a section of the topology sample.
The later analysis of topology samples showed some inconsistencies: name NLQ

(neighbor link quality) in documentation is written as ILQ in the output; if a link
is not operational but it has not been deleted from the topology table yet, instead of
marking ETX as infinite, ETX is set to zero. Since it is impossible to have ETX value
less than one (that would mean that for one sent packet more than one are received), it
indicated existence of an error in the implementation of the routing protocol. Through
inspection of the code it was determined that the ”error” (or just an undocumented
convention) was in the output routine which wrote 0.00 instead of infinity.
We were unable to install a node that directly participates in the network in Leipzig.

The data available from web-site of the network is used instead. The network in Leipzig

125

7. Case Study: Measurements from Community Wireless Multi-hop Networks

Figure 7.2.: Part of Berlin’s network.

has several components. Since it is used for Internet access, each of the components
can forward the topology data to the central server that builds the joint topology. The
topology data available at the server is in .dot format [75] and each link is weighted
with the ETX value. The topology file includes the non-existing links from network
components to the central server as well. Such links do not have ETX values associated
with them. They are recognized and ignored in the analysis.
The measurement has captured lots of important aspects that are not supported in

popular simulators [70] [19] [106]. The Figure 7.21 shows a small portion of the network
in Berlin. It can be seen that between nodes are buildings, streets, parks, even a river,
creating a very complex propagation environment. Nodes are placed in buildings of
different heights, some of them are on roofs and some are inside apartments. Small part
of network is planned and uses custom-built, high gain, carefully directed antennas that
provide high quality links over large distances (several kilometers) while other nodes
are end-user (their location is determined by users), using off-the-shell components. All
this influences the signal propagation and resulting network topology as it can be seen
in the Figure 7.2 where some of the links are very short, while some reach over long
distances.
The topological and link quality data were parsed and placed in a relational database

[13]. The data processing (e.g., calculating which links in the network are bridges) was
performed in a custom Java application. Statistical processing has been performed in
R-Environment [143].

1The Figure does not show all the nodes and links in the area since coordinates of approximately 1
3 of

nodes in Berlin’s network are unknown and cannot be shown on the map. Due to it, it seems that
network is substantially sparser than it really is.

126

7.1. Data Sampling and Simulation Methodology

7.1.2. Validity of Measurements

It must be noted that the presented analysis is not perfect. For instance, the existence
of ”tunnels”2 in the network is confirmed. They can establish connections between
otherwise disconnected network components and alter perceived topology. All such
systematic errors which have been recognized have been removed, but it is not possible
to guarantee that all of them were covered since networks are community based and we
had no control over tunnels.
Additionally, the results of Chapter 4 send a clear message that the link existence

detection is not a trivial task. The HLD detectors have a considerable probability
of errors in link detection, in particular if they are not configured properly. As it is
predicted by the developed HLD error models, the developers in Freifunk community
experienced numerous issues with the hysteresis mechanism3 for local link detection
because of the numerous false positives and negatives.
The OLSR version deployed in Freifunk networks does not use hysteresis-based neigh-

bor detection as in the original OLSR. Instead of HLDs, a heartbeat mechanism which
estimates link quality is used.
The link quality estimator LQE(l) operates on sequence of l heartbeats. LQE(l) uses

the sliding window for heartbeat management: the oldest entry in the window is replaced
with the newest outcome of heartbeat transmission (success or omission). It receives
r heartbeats and observes o omissions during this sequence (r + o = l) and estimates
the link quality pest = r/l. The hypothesis of link existence is accepted if estimated
link quality is greater or equal than the link acceptance threshold t and rejected if it is
smaller than the threshold.
LQE(l) is applied to a link of quality p, p ∈ [0, 1]. The estimation of link qual-

ity asymptotically approaches the quality p if the observation sequence has an infinite
length. Within a sequence of finite length l, stochastic behavior of communication chan-
nel causes the variations in estimation and deviation from the correct values. Additional
errors are introduced by LQE(l) since for finite l, it can assign link quality only in steps
of fixed size 1

l .
In order to evaluate probability of errors in link detection process in community net-

works of Berlin and Leipzig, the overall evaluation methodology of HLDs from Chapter
4 is utilized. According to the methodology, the first step is to calculate the probability
of link acceptance P1(l, t, p) and rejection P0(l, t, p).
It can be safely assumed that heartbeat transmissions are mutually independent. The

period between successive heartbeats is measured in seconds so it is considerably longer
than the correlated changes of signal strength of communication channel with fading
(measured in tens of milliseconds).
Thus, the probability of receiving r heartbeats on a sequence of l attempts can be

modeled by the binomial distribution:

PLQE(r, l, p) =
(
l

r

)
pr(1− p)l−r (7.1)

2wired communication channels that forward wireless traffic
3Discussed in user and developer forums, such as https://lists.open-
mesh.net/pipermail/b.a.t.m.a.n/2008-June/001999.html

127

7. Case Study: Measurements from Community Wireless Multi-hop Networks

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

t

P
(e

rr
o

r)
LQE(5)

LQE(10)

LQE(20)

LQE(50)

(a) Probability of error.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

t

P
(f

p
,

fn
)

FP of LQE(5)

FN of LQE(5)

(b) Probability of false positives and false neg-
atives for LQE(5).

Figure 7.3.: Behavior of LQE(l) link detectors for the uniform distribution of link
quality.

The link is accepted if at least dt ∗ le heartbeats are received. So the probability of
declaring the link with quality p as active is:

P1(l, t, p) =
l∑

i=dt∗le

(
l

i

)
pi(1− p)l−i (7.2)

and

P0(l, t, p) = 1− P1(l, t) (7.3)

The probability of an erroneous link estimation is the sum of probabilities of a false
positive and of a false negative (they are mutually exclusive, same as in Equation 4.1,
page 47):

PE(l, t, p) =
∫ t

0
P1(l, t, p)fp(p)dp+

∫ 1

t
P0(l, t, p)fp(p)dp (7.4)

The probabilities of errors, false positives and false negatives can be seen in Figure
7.3 for the uniform distribution of link quality. The effects of step-wise increase in
link quality estimation of LQE detectors are clearly visible and, as expected, more
pronounced for shorter observation sequences.
The error probability has a distinguishable shape, with series of local minima that

are located within intervals [il ,
i+1
l], i ∈ {0..(l − 1)} and local maxima at i

l , i ∈ {0..l}.
The reasons of such peculiar shape of the error probability are clearer if we observe

the components of the error probability in Figure 7.3(b). As a threshold t is approaching
from left (grows toward) the points i

l , the probability of false positives increases: it is
more difficult for LQE(l) to distinguish whether a link is above or under the threshold.

128

7.1. Data Sampling and Simulation Methodology

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fraction

C
D

F

Berlin

Berlin 2/3

Leipzig

Leipzig 2/3

Figure 7.4.: Probability that an link in a network is repeatedly a bridge.

For example, if we observe LQE(5) and the threshold t is set to 0.39, in order to
correctly reject links with quality below 0.39, LQE(5) should have less than two heart-
beat receptions for all links in network that are in interval [0, 0.39). The probability of
having two or more receptions out of five attempts is considerable for links just below
the threshold, which results in increased number of false positives. If threshold is set
just a little bit higher, for instance to 0.41, the probability of false positives drops signif-
icantly: in order to create false positives, links with quality below 0.41 need to observe
event "more than three heartbeat receptions out of five" which is an event with lower
probability than the event "at least two receptions out of five" on interval [0, 0.39). If
the threshold is increased toward 0.6 the probability of false positives increases, due to
the same reasons explained for threshold of 0.39.
Probability of a false negative follows the reversed logic: if threshold is just below

step i
l of a LQE(l), in order to produce a false negative LQE(l) has to observe less than

i heartbeats for all links above the threshold which is not very likely (in example of
LQE(5), links with quality over 0.39 have to observe zero or one heartbeat receptions).
As threshold is reduced, probability of a false negative increases: it is more probable
that links just above threshold of 0.21 experience zero or one heartbeat reception.
In Freifunk networks, the local link timeout value is set to 20 seconds, during which

one heartbeat message per second is exchanged (default configuration parameters), so
it uses the LQE(20). By Equation 7.4 LQE(20) has the error probability of 0.049
for threshold set to 0.1. Compared with the error probability of LQE(20), the error
probability of OLSR and its combination ofHLD(2, 2) andHLD(3, 2) is 0.401 and 0.307
respectively, for the same threshold. The error probability of LQE(20) link detection
strategy in static networks is acceptable for performed measurements. Additionally, we
believe that the measurements can be trusted because:

• Timeout values for link removal from global topology tables in Freifunk version
of OLSR are considerably larger than in the default OLSR. It can be said that
Freifunk version of OLSR is even prone to create false negatives in context of
bridge and articulation point detection since links in global topology table are
held for 30 seconds. For comparison, the default OLSR removes links after only
six seconds. It was possible to choose such conservative link removal times in
Freifunk version of the OLSR since the operating conditions of this version were

129

7. Case Study: Measurements from Community Wireless Multi-hop Networks

t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7
HLD(a,r), (a,r) (1,5) (1,5) (2,5) (4,5) (5,5) (5,4) (5,2)
a, r ∈ {1..5} PE 0.11 0.12 0.11 0.1 0.08 0.1 0.11
LQE(5) PE 0.11 0.12 0.146 0.16 0.156 0.175 0.146
HLD(a,r), (a,r) (1,10) (2,10) (4,10) (6,10) (10,10) (10,6) (10,4)

a, r ∈ {1..10} PE 0.06 0.07 0.06 0.05 0.04 0.05 0.06
LQE(10) PE 0.066 0.092 0.108 0.118 0.12 0.124 0.121

Table 7.2.: Comparison of optimal HLDs and LQEs for same length of observed se-
quences. Link quality fp(p) is uniformly distributed.

known (a static mesh network). The default parameters of OLSR [59] are selected
so that it can be used in mobile networks.

• Analysis of repeatability of bridge existence shows that certain links have clear
preference to be a bridge, while others rarely belong to the bridge set. The Figure
7.4 shows the cumulative distribution function of event Eb ”a link is observed in a
topology and it is a bridge”. It can be seen that a subset of links is permanently
in the bridge set (sharp raise at the end of the distribution). A large subset of
links rarely belongs to the bridge set (sharp raise at the start of the distribution)
which can be attributed to transient changes in network topology: as some of
nodes move, fail or rejuvenate they may alter the status of a small subset of
links in the network. Such behavior is even more pronounced if we observe only
links that occur in at least two thirds of sampled topologies. In presence of a
considerable systematic error caused by improper data sampling, distribution of
the event Eb would be more uniformly distributed (consequently having a more
linear cumulative distribution function).

Note on LQE and HLD link detectors:
Comparison of the optimal HLD detectors in static networks and their error proba-

bilities from Tables 4.4 and 4.5 with the behavior of LQE detectors on the same length
of observation sequence (i.e., HLD(a, r), a, r ∈ {1..l} is compared with LQE(l)) reveals
a surprising and partially counterintuitive property: HLDs which do not measure link
quality have lower error probability than LQEs which explicitly measure link quality.
This is explained by two facts:

• A HLD provides less information than a LQE and it is less flexible than a LQE – in
order to obtain low error probability in link detection, HLD has to be configured
especially for a single threshold. LQE delivers its estimation on link quality which
is then interpreted by other participants in communication. This is particularly
important if multiple applications are operated in a network, each with a different
demand on acceptable link quality.

• The HLDs presented in Table 7.2 are optimized for a given threshold. If network
application needs a different threshold value, the same HLD may produce error
probabilities for order of magnitude higher (e.g., example of HLD(1, 8) at page
55) which is not the case for LQEs. Changes in error probability of LQEs exist,
but the variation is considerably smaller as it can be seen in Figure 7.3(a) – even
for highly variable LQE(5) they are confined in interval (0.11, 0.175).

130

7.1. Data Sampling and Simulation Methodology

7.1.3. Evaluation Methodology of Artificial Topologies

A custom-built application is used for analysis of artificial node placement algorithms,
specialized for topology creation and analysis. The following node placement and mo-
bility scenarios are compared to the measurements:

• Uniform: nodes are placed uniformly in the area. The path-loss propagation
model is used.

• Uniform (S): nodes are placed uniformly but there exists shadowing on the
channel.

• RWM: nodes are initially uniformly placed and then they move in accordance
with the RWM. Minimum speed is 0.5 m/s, maximum is 10 m/s, pause time is
zero. Nodes are initially uniformly placed and then they move in accordance with
the RWM. Topology snapshot is taken after 2000s of movement which is enough
to reach the steady state node distribution [39].

• Grid: nodes are placed in a quadratically shaped grid, 20 by 20 nodes. Internode
distance is slightly smaller (36m) than the nominal communication radius (40m).
Because of the shadowing and the large internode distance, usable links exist only
with direct neighbors in the grid. Due to simplicity of its regular shape, the grid
placement is not simulated but properties of interest are calculated.

Except in the first scenario with the path-loss propagation model, link qualities are
calculated based on the shadowing model (Section 2.1.3). The path loss exponent for
shadowing model is four and standard deviation is seven which is in accordance with
measurements in urban areas, for low height antennas [25].
For the sake of simplified presentation, instead of defining the threshold at and the

sending power pt, the nominal communication radius of a node R is used in Table
7.1 - communication radius that would exist in presence of path loss attenuation only
(σ = 0). Simulation of shadowing imposes the log-normal variations to this nominal
communication radius in order to determine the existence and quality of a link between
two nodes.
We can calculate the nominal communication radius in the following manner: It is

known that the attenuation of the wireless signal depends on the distance which the
signal travels d and the path loss coefficient α: aPL ∼ 1

dα . The threshold attenuation
value at is then at = 10log prpt [dB] = 10log pr

pr·Rα0
[dB]. Finally, we get R0 = 10−

at
10·α .

In order to obtain referent topology for metric calculation, all links with ETX value
higher than 100 (link quality below 0.1) are removed from the connectivity graph. The
same threshold is applied to measurement samples, in order to eliminate the links that
are not functional but the routing protocol has not realized it yet (a node on a link has
left the network, but the link still remains in the topology table).
In order to create a connected network for the uniform node placement model, the

communication radius of nodes has to be rather large, increasing the average node
degree throughout the graph. The results of [36] and [107] show that in order to have
a connected network with high probability, the average degree of nodes should be more
than ten. This increases the number of disjoint paths and decreases the number of

131

7. Case Study: Measurements from Community Wireless Multi-hop Networks

Freifunk Berlin Freifunk Leipzig Uniform (S) Uniform RWM
Node degree 4.0204 4.3565 5.3167 5.3049 7.6222
Bridge share 0.1506 0.07943 0.0212 0.0212 0.01249
Art. points 75.9338 93.3285 32.7673 32.8905 21.3662
Bridge ETX 5.8824 4.0795 28.4579 ∼ 1 27.3775

No-bridge ETX 17.5832 18.2664 20.4782 ∼ 1 20.8674
Pbt 0.743 0.468 0.352 0.35 0.127

Table 7.3.: Mean values of selected characteristics in measured and artificial topologies.

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Degree

C
D

F

Berlin

Leipzig

Uniform (S)

Uniform

RWM

Figure 7.5.: Cumulative node degree distribution in real networks and artificial place-
ment models.

bridges and articulation points in the network. We have selected simulation parameters
for both uniform scenarios such that the average node degree is approximately 5.5. This
does not guarantee the connectivity and there exist isolated nodes or smaller groups of
nodes. The number of nodes that do not belong to the main partition is small and it
its impact on presented results is minor. By trial and error it has been observed that
further reduction of the average node degree is not acceptable. It increases the bridge
count but also completely disconnects the network, creating partitions consisting of less
than ten nodes. The same parameters as for the uniform scenario with shadowing are
used in RWM scenario for configuration of nodes and signal propagation.

7.2. Data Analysis

In this section, the measured data is analysed and compared with the artificially pro-
duced topologies. The summary of measurement and simulation results can be found in
Table 7.3. Even from mean values it is clear that properties between reality and com-
mon artificial models differ significantly. The following sections analyze the differences
in more detail and provide insight in distributions of the studied metrics.

7.2.1. Node Degree Distributions

This section analyses the degree distribution of nodes in a network. The node degree
distribution is correlated to the congestion on the wireless channel and probability of
packet loss – higher density of nodes increases the contention, lower density reduces it.
The node degree distribution also affects connectivity of a network [36].

132

7.2. Data Analysis

The cumulative node degree distribution function is shown in Figure 7.5. It can be
seen that artificial placement models have substantially fewer low degree nodes than real
networks. The tail of the real node degree distributions is more pronounced (nodes with
large number of neighbors are not uncommon) than in the uniform and grid scenarios.
The RWM distribution has a very heavy tail, thus protocols simulated with use of
this model are more prone to suffer from contention issues than protocols simulated
with other models or deployed in reality. So, neither of artificial models possesses
characteristics that are aligned with characteristics of real networks.
Grid, as the non-randomized placement model has the most peculiar properties. For

comparison purposes, let us assume that the node and wireless propagation parameters
are set so that the topology of the grid reassembles the one shown in Figure 2.1 (page
13). Let the nodes be organized in 20 by 20 grid. The grid is square-shaped with
n = 400 nodes and a =

√
n = 20 nodes form the edge of the square. The grid has four

corners, so the share of nodes with degree 3 is P3 = 4
n = 1%. Nodes belonging to the

outside edge but not in the corners have degree 5 and their share is P5 = 4
√
n−8
n = 18%.

Remaining nodes have degree 8 and their share is P8 = n−4
√
n+4

n = 81%. The average
node degree is: 8 − 12

√
n−4
n = 7.46. Additionally, the grid guarantees connectivity (the

presented example is 3-connected because of diagonal links) and it is resilient to node
failures. Grid simultaneously eliminates high degree nodes – the high contention points
in the network, reducing the issues created by it.
Furthermore, in literature grid placement model is frequently combined with path-

loss models where communication range is slightly larger than the internode distance.
That further reduces the experienced contention since node degrees may be two, three
or four. In example of 20 by 20 grid, it would result in probabilities of P2 = 1%, P3 =
18%, P4 = 81% and the average node degree of 3.8.

7.2.2. Bridges and Articulation Points Analysis

This section analyses the frequency of bridge and articulation point occurrence in dif-
ferent types of networks. Figure 7.6(b) shows the distribution of articulation points’
count. Community networks have considerably more articulation points than the ar-
tificial placement scenarios. The network in Leipzig has more nodes than simulation
scenarios, but the increase in number of articulation points is disproportional to in-
crease in the total node count. If we observe it relatively to the network size, Berlin’s
network has the highest share of articulation nodes - 23.8% on the average.
Fraction of bridge edges in the network is shown in Figure 7.6(a). Again, real networks

exhibit poorer connectivity and their bridge fraction is considerably larger than in the
artificial placement models. Berlin’s network has the largest bridge fraction: most of
the samples from Berlin have between 12% and 20% of bridges. Although the fraction of
bridges in Leipzig network is half the share of Berlin’s network, it is still 3.8 times larger
than for the uniform and 6.5 times than for the RWM scenarios. The grid placement
model produces neither bridges nor articulation points.
The node degree distribution in Figure 7.5 indicates that real topologies have high

share of pendant nodes - resulting in reduced connectivity on borders of the network.
However, bridges are also present in central parts of the network where their impact on
network functionality is even more emphasized.

133

7. Case Study: Measurements from Community Wireless Multi-hop Networks

0.00 0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Share of Bridges

S
h

a
re

 o
f

s
a

m
p

le
s

Berlin

Leipzig

Uniform (S)

Uniform

RWM

(a) Bridge share.

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Articulation Points

C
D

F

Berlin

Leipzig

Uniform (S)

Uniform

RWM

(b) Articulation points.

Figure 7.6.: Cumulative distributions of bridge fraction and articulation point count.

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF

P
a

rt
it
io

n
 s

iz
e

Berlin

Leipzig

Uniform(S)

Uniform

RWM

Figure 7.7.: Weighted distribution of network components obtained by bridge removal.

For Berlin’s network, the probability of bridge traversal (Pbt, defined in Section 2.4,
page 27) is particularly high – almost 0.75 (Table 7.3). The probability in Leipzig is
smaller than in Berlin but larger than in the artificial scenarios and it indicates the
existence of bridges in the central parts of network.
In order to study the size and relation of subnetworks that are connected over bridges,

the connectivity graph is divided through removal of bridges in it, thus obtaining dis-
connected graph components. Each of components obtained in such a way is either at
least 2-connected or it consists of a single node.
The vast majority of components has size smaller than five and distribution directly

obtained from component count would be difficult to present. To offset this effect and
get clearer picture of their size and count, component count is weighted by its size,
relatively to the network size: Crel = Ccount·|C|

n . For instance, if a network has 100
nodes and 12 of them are in three node components, weighted impact of three-node
components is: Crel(3) = 3·12

100 = 0.36.
The distribution of relative component size can be seen in Figure 7.7. RWM distri-

bution is skewed to the right because of its property to group nodes in central part of

134

7.2. Data Analysis

Figure 7.8.: Map of Hannover Freifunk.

the placement area. So not only that it has few bridges, but they are all placed on
network borders. The uniform placement scenarios have rather uniformly distributed
component size, with a slight preference for very small (below 20) and large (300 to 350)
components.
Berlin network’s distribution is bimodal: one part of distribution weight is placed

around 110 and most of the remaining distribution weight belongs to the small compo-
nents, composed of 1 to 5 nodes. Since samples from Berlin have more than 300 nodes
on the average this means that for most of the time the network has two well connected
components connected over one or more bridges.
The distribution of Leipzig samples has to be taken with caution. Since network in

Leipzig is disconnected from the start (elimination of traffic-tunnel links), this distribu-
tion cannot tell us much except for sizes of these components (three components with
sizes of approximately 80, 210 and 270). However, as the network in Leipzig grows, it is
to expect that it will get connected and that the internal component structure will not
change substantially, creating a structure similar to the structure of network in Berlin.
The similar properties are encountered in Hannover Freifunk [10] although it is smaller

than networks in Berlin and Leipzig. We did not make measurements of it, but the
topology visualization on web site of the network clearly shows clustering of nodes as
well as the weak connectivity among three clusters (Figure 7.8).
Based on all the observations made in this study, it can be concluded that only

parts of real networks provide multiple disjoint paths between nodes. Such network
components are mutually connected over bridges and articulation points resulting in
loosely connected structure. The structure is in particular contrast with grid placement
scenarios that does not have a single bridge and with RWM which has few but only on
the network periphery.

7.2.3. Link Quality Analysis

The Figure 7.9 shows cumulative distribution of ETX values for bridges and ordinary
links. The ETX distributions for ordinary links in Berlin and Leipzig are almost iden-
tical, while bridge ETX distributions are slightly different.

135

7. Case Study: Measurements from Community Wireless Multi-hop Networks

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ETX

C
D

F
Berlin

Leipzig

Uniform (S)

RWM

o − Bridge

 x − Ordinary link

Figure 7.9.: ETX cumulative distributions.

The distributions from real networks incline to lower ETX values (which means higher
link quality) than the artificial placement models. Also, in real networks, bridges have
higher quality than ordinary links. In artificial placement models the situation is op-
posite - ordinary links have better quality. This goes in hand with typical theoretical
assumption that bridges are always long, stretched communication links and due to their
length, their quality suffers. In an obstacle-free model, it is more likely that a bridge
existence implies larger distance between nodes that create it. But in reality, if a user
is bound to use a bridge to access the network, unless the link provides certain quality
of service (e.g., throughput, delay), the user will not participate in the network at all.
This way, users prune bridge links with low quality at network periphery. Additionally,
existence of obstacles influences communication link establishment so an edge may be
a bridge despite existence of nodes in its vicinity (an example can be found in Figure
8.12 at page 151).
Important characteristics of samples is that non-negligible number of links have high

ETX values, larger than 40. The probability of successful packet transmission over such
links is very low. To make situation worse, some of these links are bridges.
This network characteristic may have negative influence on optimistic routing and

broadcasting schemes which rely on the presence of multiple nodes in vicinity. Once
they receive a packet they are supposed to forward it further so even if some packets
are lost in intermediate steps, the message will be eventually delivered to destination
over different path. In case of bridge traversal, it is impossible to avoid its usage since
it is the only link connecting two subnetworks. If the message is not delivered over the
bridge, it is lost for the adjacent subnetwork.
This similarity establishes trust in accuracy of measurements: as already described in

Section 7.1.1, users are able to alter node configuration so that the node reports user-
defined ETX value instead of the measured. Big differences in the ETX distribution
would indicate that such user behavior is prevalent, and consequently disqualify the ETX
measurements. The similarity shows that fair nodes are dominant and false reports on
link quality rare.

136

7.3. Summary

7.3. Summary
This section has presented measurement results from community networks in Berlin and
Leipzig and compared them with typical node placement models found in literature. The
presented analysis is of particular importance from topological perspective since node
placement and behavior is not pre-determined like in simulation and testbeds, but user
initiated and controlled.
The measured topological and link quality characteristics can be attributed to a com-

bination of sociological and technical factors that should be valid in other user-initiated
multi-hop networks:

• New participants in the network are more likely to join the network in areas
where the connectivity is already good. Improved connectivity (several links to
the network) increases resilience to individual node failures and provides higher
uptime of a connection to a user.

• Information about the network existence is spread through word of mouth, at-
tracting new participants in areas where network is already established.

• The stochastic nature of the uniform, RWM and other random models makes
occurrence of isolated nodes possible and sometimes even common. In real world
a typical user is not interested to operate an isolated node without connectivity
to other parts of the network.

• A participant in the network expects to have at least a single communication link
to the remainder of the network.

• A pendant node may become a seed for a new, larger and well connected subnet-
work.

The real networks exhibit high inhomogeneity – there exist exceptionally dense sec-
tions of network but also very sparse parts. The degree distribution observed in reality
is different than the degree distribution of placement models which are widely used
in theory and simulation of WMNs. Bridges and articulation points are much more
numerous in reality than in artificial models.
The observed topological inhomogeneity is of high relevance for development of pro-

tocols that are to be deployed in general purpose WMNs, and in networks whose topo-
logical shape cannot be predetermined or fully controlled. Because of inhomogeneity of
real networks, it can be particularly dangerous to adjust the protocol functionality for
a certain node density in a network. Such protocol will operate very well in network
sections that fit its assumptions, but it may face serious drawbacks elsewhere. Thus, a
truly universal protocol must be able to operate in highly heterogeneous networks.
The analysis of measurements has shown that the artificial node placement models

should not be used exclusively in evaluation of network protocols because of large dis-
crepancies between properties observed in reality and characteristics of artificial topolo-
gies. The observed differences should inspire measurements in other types of WMNs and
verification to measurements of other common modeling and simulation assumptions.
Measurements are the only possibility to determine to which extent can we trust the
artificial models, and learn the limits of their applicability.

137

8. NPART - Node Placement Algorithm
for Realistic Topologies in Wireless
Multi-hop Network Simulation

The main approach in natural sciences such as physics or biology is to observe reality
and create a model that reflects it. Most of the node placement models for WMNs do not
belong to this class: they have not been inspired by reality nor verified by the measure-
ments. The disparity between existing node placement models and field measurements
has been confirmed through the topological analysis performed in the previous chapter.
In order to correct this fundamental issue, the Node Placement Algorithm for Realistic
Topologies (NPART) has been developed.
The detailed model of a WMN is complex and it consists of six submodels: node,

radio, signal propagation, node placement and mobility, packet loss, and traffic models
(Chapter 2, page 11). Most of these WMN sub-models are based on real data mea-
surements (e.g., wireless signal propagation [25], traffic models [167]) but the topology
generators/node placement models are artificial and somewhat arbitrary. Thus, it was
not very surprising that despite a considerable number of existing topology generation
algorithms for simulation of wireless multi-hop networks it was not possible to find a
single algorithm that creates output with properties similar to those observed in real
networks.
The differences between characteristics of topologies of simulation setups found in

literature and properties observed in measurement are illustrated in Table 8.11. The
predominant uniform placement model has issues in reproducing reality: in order to
produce connected topologies, node density must be increased. High density may create
higher channel contention in simulation studies than it will be encountered in proto-
col deployments. Simultaneously, the higher node density also reduces the number of
bridges and articulation points in a network (or completely eliminates them), improving
network’s reliability and providing multiple independent paths between traffic sources
and destinations.
If a networking protocol is developed for such dense environment and tested in simu-

lation with same characteristics, its weaknesses may remain hidden from its developers
and the protocol can face serious issues once it is deployed in reality. In order to perform
realistic simulation, all aspects of the simulation model should agree with the observa-
tions made in real systems. NPART fills the existing gap in realistic modeling of WMN
topologies.

1R is communication radius, n number of nodes, d̄ is the average node degree, b̄ and āp are average
number of bridges and articulation points. The average number of network partitions is c̄.

139

8. NPART

n Area R d̄ b̄ āp c̄

Berlin 315 / / 4.02 93.59 75.93 1
Leipzig 586 / / 4.35 101.39 93.32 1

Ngai et al. [128] 100 200x200 40 10.34 0.24 0.43 1.09
Zhu et al. [181] 100 1500 250 7.54 1.54 2.38 1.39

150 x1500 11.19 0.35 0.49 1.08
Wu and Li [175] 100 100x100 25 15.49 0.07 0.09 1

300 46.67 0 0 1

Table 8.1.: Comparison of network characteristics in representative simulation setups to
community networks in Berlin and Leipzig.

8.1. Algorithm Description
The goal is to develop a node placement / topology generating algorithm with the
following characteristics:

• Flexible – it is capable to create more than one type of node placement.

• Realistic – if algorithm receives input based on measurements from a real net-
work, the topologies that it produces should have similar properties as the original
networks.

• Random – the algorithm does not merely re-create a sampled topology from
measured node locations, wireless device parameters (power, receiving threshold),
signal to noise ratio. It is capable to create new, random topologies while preserv-
ing its flexibility and realism.

The starting point for NPART development are the following sociological and tech-
nological factors that shape topologies of real networks (described in Chapter 7):

• It is more likely that new participants join the network in areas where connectivity
is already good.

• A participant in the network expects to have at least a single communication link
to the remainder of the network.

• A pendant node may become a seed for a new, larger and well connected subnet-
work.

• It is the network that specifies the area it occupies, not the other way around.

The core idea behind the algorithm is that the network should be allowed to grow.
Node by node should be added to the network, imitating user behavior. Instead of
defining the node placement area like in most of the existing placement algorithms,
nodes can expand it as long as they have connectivity with already established network
topology.
The algorithm which follows these ideas is presented in Figure 8.1. As input param-

eters, it accepts the number of vertices to be placed n, and the communication radius
R.

140

8.1. Algorithm Description

NPART(nodes n, comm.radius R, candidates to evaluate in iteration retries):
placedNodes = place first node arbitrarily at (x,y)
minX=maxX=x
minY=maxY=y
repeat
minMetric=∞
repeat
repeat
x-coordinate=U(minX-r, maxX+r)
y-coordinate=U(minY-r, maxY+r)
create node candidateN from coordinates

until (candidateN ∪ placedNodes is connected)
m=apply metric on placedNodes ∪ candidateN
if(m < minMetric)
bestCandidate = candidateN
minMetric = m

endif
until(retries different candidates are evaluated)
if required, update minX,maxX,minY,maxY based on bestCandidate
placedNodes = placedNodes ∪ bestCandidate

until(all n nodes are placed)

Figure 8.1.: NPART pseudo-code.

In the first iteration of the algorithm, the first vertex is placed at an arbitrary point
(x,y) in two-dimensional space. The variables minX and maxX are initialized to x,
minY and maxY to y. Values of these variables from iteration Ik are used to determine
the placement area of nodes in the next iteration: in iteration Ik+1, x coordinate of
candidate nodes is uniformly sampled from (minX − R, maxX + R), y coordinate is
chosen from (minY −R, maxY +R). This enables the network to grow, without need
to predetermine its placement area.
It is possible that in an iteration Ik a vertex placed in rectangle ((minX−R, minY −

R), (maxX + R, maxY + R)) is not connected to topology from iteration Ik−1. For
instance, in the iteration I4, the Vertex 0 in Figure 8.2 is disconnected from nodes placed
in the iteration I3. Such vertices are ignored and a new candidate vertex is generated.
This ensures connectivity of produced topology (functionality is implemented in the
innermost loop of the algorithm presented in Figure 8.1).
Once the candidate vertex is connected with the existing topology, a user-defined

metric is applied to it. Section 8.2 describes four metrics that we have implemented and
tested. If the candidate vertex has lower metric than previous candidates, it is stored
as the bestCandidate and minimal metric value is updated. After evaluation of retries
connected candidates, the best candidate is added to the topology, and if needed the
variables minX, maxX, minY , maxY are updated. For example, if Vertex 3 is the best
candidate out of three candidate nodes in Figure 8.2, the variables maxX and minY
must be updated. Number of evaluated candidates per algorithm iteration retries is a
parameter of the algorithm. As the number of evaluated candidates grows, the chance

141

8. NPART

Figure 8.2.: Placement area and the candidate vertices in NPART.

that the produced topology is closer to the predefined goal is increased.
After placement of all n nodes their locations can be translated so that they are in

rectangle ((0, 0), (|maxX −minX|, |maxY −minY |)). This step is optional and does
not influence the functionality of the algorithm nor the properties of obtained topology.
Note: The algorithm calculates topologies based on the path-loss model. The user

should specify the additional propagation models in the simulation (shadowing and
Rayleigh fading [25]) to create realistic simulation results. Also, users can also customize
the algorithm by specifying appropriate metrics that take propagation models in account
(e.g., number of edges in the graph with expected packet loss higher than 0.5 in presence
of shadowing on the wireless channel).

8.2. Topology Quality Metrics

A metric that evaluates quality of topology candidates is as important as the algorithm
itself. An inappropriate metric results in unsatisfactory topologies. Unfortunately,
there does not exist the universal metric. User must define them and perform tests to
check whether the algorithm and the metric produce desired topologies. The desired
topology characteristics for a user may be arbitrary, but our goal are topologies that
have properties observed in real, user-initiated networks.
In the process selection of the input for algorithm and its metrics, it was obvious

from experience with existing placement models that generic parameters such as the
average node degree do not capture sufficient level of detail. Realistic topologies can be
produced only with input parameters that originate from measurements.
Capturing spatial node distribution and link quality metrics (e.g., signal to noise

ratio, bit error ratio, packet loss probability) in real network would be an excellent
input for a vertex placement algorithm but impossible to implement. For instance, due
to privacy concerns not all participants in a real network are willing to disclose their
geographical locations. Even if location data is collected and its usage allowed at a
research institution, dissemination of such data to wider research audience (prerequisite
for cross-validation of results) would not be possible.

142

8.2. Topology Quality Metrics

Additionally, quality of antennas cannot be automatically collected, signal propaga-
tion environment is heterogenous and its impact on link quality cannot be accurately
measured with of-the-shelf components that are commonly used. In rare cases when it
is possible to take samples from user initiated networks, typically only the topological
information is available, without node location data.
We have implemented several NPART metrics based on the node degree frequencies.

Definition 8.1 Given an undirected graph, a degree sequence is a monotonic nonin-
creasing sequence of the vertex degrees (valencies) of its graph vertices. A degree set is
a set of integers that make up a degree sequence.

Definition 8.2 The frequency of an event i is the number ni of times the event occurred
in the experiment. The frequency can be absolute, when the counts ni are given and
relative, when counts are normalized by the total number of events.

The degree frequency is a compromise between detail level, data anonymity and feasi-
bility of sampling. It is easily extracted from networks, regardless of the routing protocol
type (proactive or reactive) and it is anonymous by its definition. In proactive protocols,
it is trivial to calculate it. In case of reactive routing protocols where no global topology
view exists, node degrees can be easily obtained assuming that nodes in the network
are cooperative: each node samples its degree and shares it with the central repository.
Additionally, small errors in sampling (e.g., a node erroneously measures its degree) are
hidden by the larger set of correct data.
The implemented metrics are described in Figure 8.3. As the input for distance and

adaptive metrics, the relative node degree frequency is calculated from degree sequences
from measurements. The relative node degree frequency of real network is multiplied
by number of nodes that should be placed by the algorithm, creating absolute vertex
degree frequency of the target topology target. For each evaluated candidate vertex,
absolute degree frequency candidate of topology that it creates with already placed
nodes is calculated and compared with the target frequency.
The simplest, distance metric is a variation of the Manhattan metric [101]:

d∑
degrees

(1targetd−candidated>0 · (targetd − candidated)

+1targetd−candidated<0 · p · (candidated − targetd)) (8.1)

where 1A(x) is indicator function, returning one if x ∈ A, zero otherwise. The metric
sums the differences between proposed and target vertex frequency if the difference is
positive. If it is negative (candidate topology has more nodes of certain degree than
the target topology), the absolute value of difference is multiplied by a penalty factor
p. The penalty factor reflects user’s tolerance for overloading of degrees: with decrease
in tolerance, user increases the factor p. If p = 1, the distance metric is identical to the
Manhattan metric.
The drawback of the distance metric is its impossibility to detect stronger need for

creation of vertices with certain degree. Some degrees are more frequent in the target
degree frequency, so topologies that produce vertices with such degrees should obtain
greater reward. For instance, if the algorithm should create 20 vertices with degree

143

8. NPART

distance metric(target frequency target, candidate frequency candidate, penalty p):
metric = 0;
for (i in degrees of target)

if(target[i]-candidate[i]<0)
metric = metric+ |target[i]− candidate[i]| · p

else metric = metric+ target[i]− candidate[i]
return metric

adaptive metric(target frequency target, candidate frequency candidate,
frequency of already placed placed, penalty p):

weights = normalize_to_one(|target− placed|)
metric = 0;
for (i in degrees of target)

if(target[i]-candidate[i] < 0)
metric = metric+ |target[i]− candidate[i]| · p

else metric = metric+ (target[i]− candidate[i]) · weights[i]
return metric

secondary-distribution metric(candidate graph topology topology,
secondary degree relative frequency secondary_target)

Initiate list of empty absolute degree frequencies list
for each node n in topology

select frequency based on current node degree
current_freq = list[degree(n)]
for each neighbor ng of n
current_freq[degree(ng)] + +

endfor
endfor
list=calculate relative frequencies from absolute frequencies
metric = 0
for i in 1:length(secondary_target)
metric = metric+ |secondary_target[i]− list[i]|

return metric
combined(target frequency target, candidate frequency candidate,
frequency of already placed placed, penalty p, secondary weight s,
secondary degree relative frequency secondary_target, candidate graph topology topology)

return adaptive metric(target, candidate, placed, p) +
secondary-distribution metric(target,topology) ·s
quality(target frequency target, generated frequency generated)

quality = 0
for (i in degrees of target)
quality = quality + |target[i]− generated[i]|

return quality

Figure 8.3.: Implemented metrics.

two and three vertices with degree four, the metric should give greater reward (smaller
metric value) to topologies that increase the number of vertices with the degree of two
in early iterations of the algorithm. The adaptive metric resolves this issue through
introduction of weights that capture this generation need:

d∑
degrees

(1targetd−candidated>0 · (targetd − candidated) · wd

+1targetd−candidated<0 · p · (candidated − targetd)) (8.2)

and

wd = |targetd − placedd|∑d
degrees |targetd − placedd|

(8.3)

144

8.2. Topology Quality Metrics

Degrees 1 2 3 4 5 Distance metric Adaptive metric
Absolute Target degree frequency 2 5 3 2 1 0 0
Absolute Placed degree frequency 0 3 0 0 0 10 2

Weights wd 0.2 0.2 0.3 0.2 0.1
Candidate 1 0 2 2 0 0 9 1.8
Candidate 2 0 0 4 0 0 15 6.9
Candidate 3 1 2 1 0 0 9 1.9

Table 8.2.: Metric values for example in Figure 8.2. Penalty is set to five.

1 5 10 100

0
2
0

4
0

6
0

8
0

Penalty p

Q
u

a
lit

y

retries=10

retries=100

retries=500

(a) Distance metric.

1 5 10 100

0
2
0

4
0

6
0

8
0

Penalty p

Q
u

a
lit

y

retries=10

retries=100

retries=500

(b) Adaptive metric.

Figure 8.4.: The average Manhattan distance to target degree distribution of topologies
produced by distance and adaptive metrics of NPART (lower value is better).

where placed is the absolute degree frequency of vertices that are already placed by
the algorithm.
Table 8.2 illustrates the application of distance and adaptive metrics to the example

from Figure 8.2. Nodes A, B and C are already placed. Topology obtained in I3 defines
the weights wd for the I4. In fourth iteration three candidate vertices are successively
evaluated.
For each candidate vertex we calculate metric values by Equations 8.1 and 8.2. The

distance metric has the equal value for candidate vertices 1 and 3, so either of them can
be selected as the best candidate vertex. Adaptive metric correctly chooses candidate
vertex 1 as better, since it satisfies greater need to create node of degree three (after I3,
three more nodes with degree three are required) than to create node of degree one like
the candidate vertex 3 (after I3 two more nodes of degree one are needed to reach the
absolute target degree frequency).
Figure 8.42 compares the behavior of the placement algorithm if it is used with the

distance and adaptive metrics, for different combinations of parameters p and retries.
As the input of the algorithm, the degree frequencies from Freifunk Berlin and Freifunk
Leipzig networks are used. The Manhattan metric between targeted and produced
absolute degree frequencies is used as the quality measure of the produced topologies
(lower value is better).

2Solid line represents Leipzig-like topologies while dashed is used for topologies similar to the network
in Berlin.

145

8. NPART

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Neighbor Degree

C
D

F

Joint

Degree=1

Degree=2

Degree=3

Degree=4

(a) Berlin.

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Neighbor Degree

C
D

F

Joint

Degree=1

Degree=2

Degree=3

Degree=4

(b) Leipzig.

Figure 8.5.: Conditional degree distributions.

The topologies produced with the adaptive metric are considerably better (have lower
distance to target) than the topologies produced with the distance metric. The distance
metric is invariant of the penalty parameter. The adaptive metric is sensitive to the
penalty parameter, but if penalty parameter is equal to or larger than five, the quality
of produced topologies stabilizes. As expected, an increase in number of retries improves
quality of produced topologies for both metrics. However, the quality is not drastically
improved (Manhattan distance to target distribution reduced) if number of retries is
increased from 100 to 500. Based on this evaluation, we conclude that adaptive metric
is better, and it will be analyzed in more detail in Section 8.3.
It is possible to refine the degree data distributions and extract some additional data

from topologies. Let us observe relative degree frequency of neighbors of a node A under
condition that degree of A is i. As Figure 8.5 shows, the conditional relative frequencies
differ among themselves and to the joint relative frequency.
The metric secondary-distribution utilizes these differences. First, it calculates set of

conditional relative degree frequencies for candidate topology and then compares them
(using Manhattan metric) with the target conditional relative degree frequency.
The combined metric is a linear combination of the secondary-distribution and adap-

tive metrics. It allows user to vary the penalty factor p in the adaptive metric and the
weight s for the secondary-distribution metric.

8.3. Evaluation of Characteristics of Topologies Created by
NPART

This section compares properties of topologies produced by the NPART algorithm with
properties of real networks. The quality of the algorithm is demonstrated through
similarity of its topologies and measurements. Different combinations of algorithm pa-
rameters are tested, in order to find those that produce topologies similar to reality.
The data that is used to provide input degree distributions for the algorithm and for

later comparison is taken from Berlin and Leipzig networks. There is a small change in
datasets if compared with data presented in Chapter 7: only the main partition (largest

146

8.3. Evaluation of Characteristics of Topologies Created by NPART

Figure 8.6.: Visual comparison of topologies created by the uniform node placement
model.

maximally connected subnetwork) is considered for algorithm’s degree data input and
later result comparison. The main partition in Berlin has 275 and in Leipzig 346 nodes
on the average.
To illustrate the improvements brought by the NPART, the analysis includes charac-

teristics of topologies created by the uniform placement model. The uniform placement
algorithm is set to create topologies with the average node degree of six. The average
node degree is substantially lower than proposed in [36] and [107] for networks that
are to be connected with a high probability so it is possible that such a graph is parti-
tioned. Increasing the average node degree above six improves connectivity but creates
even greater discrepancy with measurement results (e.g. bridges do not exist in gener-
ated topologies), while decreasing it creates highly partitioned graphs (Figure 8.6). So,
the selected average node density provides a compromise between these two opposing
trends3.
Since the size of Berlin’s and Leipzig’s main partition differs there are also two uniform

placement scenarios with 275 and 346 nodes respectively. The data for comparison is
collected in 500 executions of each scenario.
The NPART is run with two basic setups: 275 vertices and degree data input from

Berlin’s network (NPART/Berlin), and 346 vertices and data input from Leipzig’s net-
work (NPART/Leipzig). The parameter retry is set to 150 while parameters for penalty
p and secondary metric weight are varied to take values from set {0, 1, 5}×{0, 1, 5}. Not
all results are presented since some parameter combinations do not create reasonable
results: as soon as the weight of secondary-distribution s is higher than the penalty p,
the algorithm becomes unstable and creates almost fully connected graphs. We conclude
that the secondary-distribution metric is excellent for refinement of the adaptive metric,
but it should not be used on its own.
Figures 8.6 and 8.7 informally illustrate differences between topologies created by the

uniform placement model, sample real topology and topologies created by NPART. None
of uniform placements resemble the shape of real topology from Figure 8.7. Although
visual representation of topologies in Figures 8.6 and 8.7 gives valuable insight in shape

3In the previous chapter, a slightly sparser uniform node placement has been used with the average
node degree of 5.5 but there was no major increase in bridge or articulation point count. Only the
number of graph components was slightly increased.

147

8. NPART

Figure 8.7.: Visual comparison of a real and a NPART generated topology.

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Degree

P
M

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Degree

P
M

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.8.: Comparison of node degree distributions.

and characteristics of generated topologies, such informal comparison is not sufficient.
The next section statistically compares the properties of uniform, NPART generated
and real topologies.

8.3.1. Properties of Generated Topologies

For comparison of real, NPART, and uniform node placement model topologies we use
the metrics from Chapter 7: degree distribution, articulation point count, share of bridge
edges and relative component size after bridge removal.
These metrics are easily quantified and they relate to characteristic of networks (e.g.,

network with more articulation point is more likely to disconnect if a node fails) and
protocols deployed in them (e.g., bridges get easily congested with traffic).
Figure 8.8 shows the vertex degree probability mass function (PMF). As it can be seen,

for all parameter combinations, the degree distribution of topologies created by NPART
precisely follows the distribution of measurements. The algorithm adapts with ease to
both distributions. The uniform distribution has its own shape that is considerably

148

8.3. Evaluation of Characteristics of Topologies Created by NPART

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bridge Ratio

C
D

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0.00 0.05 0.10 0.15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bridge Ratio

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.9.: Cumulative distributions of bridge to edge ratio for real samples and
NPART generated topologies.

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Articulation Points

C
D

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Articulation Points

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.10.: Cumulative distributions of articulation point count for real samples and
NPART generated topologies.

different from real distributions. It also has zero-degree nodes, indicating existence of
partitioned topologies.
The bridge to edge ratio (Figure 8.9) and articulation point count (Figure 8.10) show

that NPART topologies follow the properties of real networks. However, the proposed
algorithm creates slightly more bridges and articulation points than it should. The
uniform placement model is unable to adapt nor to represent the reality: its topologies
have less than 1% of bridges and a few articulation points.
Figure 8.11 shows the cumulative distribution of the relative component size obtained

by removal of bridges. NPART is again considerably better than the uniform placement
model, in particular for the Berlin’s network. Topologies produced with the assistance
of secondary-distribution metric have distributions more aligned with real measurements
than samples produced exclusively by the adaptive metric, both for Leipzig and Berlin
distributions.

149

8. NPART

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Partition size

C
D

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Partition size

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.11.: Cumulative distribution of relative size of network components obtained
by bridge removal.

8.3.2. Offsetting the Imprecision Brought by Simplified Environment and
Signal Propagation Modeling

Although considerably better than existing topology generators, the algorithm can be
further improved since it creates more bridges and articulation points than it should.
We have carefully investigated the input data and the original topology samples. It

has been revealed that some nodes with high degree have several pendant nodes attached
to them. In reality it is possible because of:

• The correlated shadowing on wireless channel.

• Heterogeneous node equipment.

• Directional antennas and partial network planing.

The correlated shadowing on wireless channel may cause that nodes which are physi-
cally close cannot communicate (as shown in Figure 8.12(a), because of obstacles, links
AB and AC do not exists despite the small distance between them). Correlated shadow-
ing model exists for single-wireless-hop analysis [82] but it is not supported in discrete
event simulators for multi-hop networks. The propagation models supported by simu-
lators create links as a function of internode distance (Figure 8.12(b)). As the conse-
quence, there are less pendant nodes in simulator than in reality for identical placement
of nodes.
If high number of pendants is requested from placement generator, it cannot fulfil

this request without affecting other characteristics of generated topology: it creates
the requested number of pendant nodes, but it also increases number of bridges and
articulation points more than it should.
To overcome this issue, there exists an option in NPART tool, so that a user may

reduce the number of generated pendant nodes. The user has freedom to decide which
topology characteristic is more important for him/her: accurate degree distribution, or
better fit with bridge and articulation point distributions. We have performed numerous

150

8.3. Evaluation of Characteristics of Topologies Created by NPART

(a) Correlated shadowing. (b) No correlated shadowing.

Figure 8.12.: Effects of correlated shadowing on network topology.

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Degree

P
M

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Degree

P
M

F
Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.13.: Comparison of node degree distributions after reduction of pendant node
count by 20%.

tests and empirically found that the 20% reduction ratio of pendant node count provides
good results.
The effects of reduction of bridge and articulation point count are to be seen in

Figures 8.14 and 8.15 since topology characteristics are closer to real distributions than
in Figures 8.9 and 8.10. The degree distribution (Figure 8.13) follows closely the real
distribution, except of course for nodes of degree one.
The relative component size distribution in Figure 8.16 retains good fit with reality

as for the original distribution. It also demonstrates the importance of secondary-
distribution metric: in Figure 8.16(a) the topologies created without it have poorer
alignment with reality than in Figure 8.11(a), while topologies that have used the sec-
ondary metric remain as good as they were.
In order to summarize and quantify the differences between uniform placement model,

NPART algorithm and reality, we have calculated Mean Square Error (MSE) between
characteristics of the measurement results and the generated topologies. The value of

151

8. NPART

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bridge Ratio

C
D

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0.00 0.05 0.10 0.15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bridge Ratio

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.14.: Cumulative distributions of bridge to edge ratio for real samples and gen-
erated topologies after reduction of pendant node count by 20%.

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Articulation Points

C
D

F

Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Articulation Points

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.15.: Cumulative distributions of articulation point count for real samples and
generated topologies after reduction of pendant node count by 20%.

the mean square error of a single approach is difficult to interpret: although it is known
that a better approach has smaller value of MSE, it is not possible to determine a MSE
threshold that guarantees acceptable approach. However, MSE is an excellent metric
for mutual comparison of multiple approaches since it provides their relative ordering
when compared to measurements. Tables 8.3 and 8.4 show MSE values for distributions
of node degree, bridges and articulation points with and without reduction in pendant
vertex count. The advantage of NPART is clear as it has by order of magnitude smaller
MSE values than the uniform node placement model.
Based on MSE values and Figures 8.11 and 8.16 we conclude that the parameter

combination of p = 5, s = 1 provides the best compromise between bridge share and
articulation point count (fit with reality decreases with increase in s) and relative com-
ponent size (fit with reality improves with increase in s).

152

8.3. Evaluation of Characteristics of Topologies Created by NPART

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Partition size

C
D

F
Berlin

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(a) NPART/Berlin

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Partition size

C
D

F

Leipzig

NPART, p=0, s=0

NPART, p=1, s=0

NPART, p=1, s=1

NPART, p=5, s=1

NPART, p=5, s=5

Uniform

(b) NPART/Leipzig

Figure 8.16.: Cumulative distribution of relative size of network components obtained
by bridge removal after reduction of pendant node count by 20%..

Degree Bridges Art.Points Degree Bridges Art.Points
Berlin Berlin Berlin Leipzig Leipzig Leipzig

NPART, p=0, s=0 7.254e-06 0.001295 0.000924 4.042e-06 0.001185 0.001108
NPART, p=1, s=0 2.779e-06 0.002929 0.001768 2.307e-06 0.002959 0.002368
NPART, p=1, s=1 7.370e-06 0.002221 0.001311 2.084e-05 0.002156 0.000625
NPART, p=5, s=1 7.558e-06 0.002298 0.001155 1.233e-05 0.002436 0.000761
NPART, p=5, s=5 9.028e-06 0.002363 0.001650 4.334e-06 0.002334 0.002004

Uniform 3.85e-03 0.007200 0.003224 1.775e-03 0.005367 0.003199

Table 8.3.: Comparison of mean square errors.

Degree Bridges Art.Points Degree Bridges Art.Points
Berlin Berlin Berlin Leipzig Leipzig Leipzig

NPART, p=0, s=0 9.187e-05 0.001191 0.002057 2.805e-05 0.000416 0.000461
NPART, p=1, s=0 7.701e-05 0.000580 0.001250 2.281e-05 0.001812 0.001607
NPART, p=1, s=1 8.531e-05 0.000647 0.000865 8.906e-05 0.001258 0.000251
NPART, p=5, s=1 8.422e-05 0.000547 0.000720 4.342e-05 0.001622 0.000629
NPART, p=5, s=5 8.491e-05 0.000828 0.000811 2.580e-05 0.002210 0.001641

Uniform 3.85e-03 0.007200 0.003224 1.775e-03 0.005367 0.003199

Table 8.4.: Comparison of mean square errors after pendant node count reduction.

8.3.3. Analysis of Algorithm’s Execution Time

The complexity of the algorithm is difficult to calculate because it includes a stochastic
deciding process in it: the innermost loop is repeated until a connected graph is pro-
duced. The probability of generating a connected topology depends not only on number
of nodes, but on metric type, user preferences and choices from previous algorithm it-
erations. Still, it is necessary to evaluate the time algorithm needs to create a topology
in order to demonstrate the algorithm behavior that can be experienced by a user.
For evaluation we measure the time needed to generate a topology. The test server has

32GB memory and 8 Dual-core AMD Opteron processors working at 2.6GHz. The algo-
rithm is implemented in Java programming language and run in Sun’s Java 2 Runtime
Environment Standard Edition (build 1.5.0_06-b05). However, the algorithm imple-

153

8. NPART

mentation uses only one processor core at a time and up to 256MB of memory4. The
measurements in this section are based on 500 executions of the algorithm.
As a reference point for the execution time of the algorithm, we have also implemented

the uniform placement algorithm and run it on the same test computer under identical
conditions. The task was to produce a connected graph consisting of 275 vertices with
the average vertex degree of 4.17 (the values are equal to the average degree and the
average number of nodes in the main partition of Berlin’s network). The time required
to place nodes and to create connectivity graph is measured. Connectivity testing is not
included in the measured time. At first, the time required for fully connected graph,
where all 275 vertices belong to the same graph component, was measured. However,
after several hours of attempts, the uniform placement algorithm did not produce even
a single fully connected topology. The connectivity condition was then weakened, and
the time required for creation of topologies whose biggest partition contains at least
97.5% of placed nodes was measured.
With the weaker condition the uniform placement algorithm needs 489.8 seconds

per topology on the average. The uniform placement algorithm is substantially faster
for a single node placement execution, but for low-degree networks its topologies are
partitioned, and in our tests the average 66623 retries were required to meet the 97.5%
connectivity condition. These numerous retries increase the total execution time of the
uniform node placement algorithm.
NPART is considerably faster for such sparse graphs. If only adaptive metric is used,

topology is created in only 2.84 seconds on the average. The combined metric is more
demanding and its average execution time grows to 288.56 seconds. Still, that is 41.1%
faster than the uniform placement algorithm with the 97.5% connectivity constraint.
For sparser graphs or tighter connectivity conditions it is to expect that difference
increases in favor of NPART. Also, if user needs a connected topology produced by the
uniform node placement generator, the connectivity testing would have to be performed,
increasing total execution time (connectivity testing has O(n2) complexity), and further
increasing the execution time difference in favor of NPART.
If some user prefers to create topologies faster, we have implemented a version of

the algorithm that does not necessarily execute all retries: Once the best-candidate is
added to current topology in iteration Ik, its metric mk is memorized and transferred
in next algorithm iteration Ik+1. Instead of testing retries candidates in iteration Ik+1,
the process is broken as soon as the current candidate has lower metric value than mk.
This provides a speed-up of four to five times but the quality of produced topology is
reduced by the same order.

8.3.4. Effects of Network Topology on Simulation Results
This section demonstrates the effects of node placement algorithm to simulation results.
For this purpose, we have used ns2 simulator [70], version 2.29 with Rayleigh-Ricean
fading extension [140]. Nominal communication range of nodes is set to 250m. There
are six distinct simulation setups:

• Grid node placement and path-loss propagation model

• Grid node placement and Rayleigh propagation model
4It is determined by the parameter Xmx of the Java virtual machine.

154

8.3. Evaluation of Characteristics of Topologies Created by NPART

• Uniform node placement and path-loss propagation model

• Uniform node placement and Rayleigh propagation model

• NPART/Berlin node placement and path-loss propagation model

• NPART/Berlin node placement and Rayleigh propagation model

Grid consists of 272 nodes, put in 16 rows and 17 columns. Internode distance is
200m. For uniform node placement, 275 nodes are placed in 2700x2700m area, producing
average node degree of 7.4. Such parameter selection creates network that is not too
dense but connected with rather high probability. NPART algorithm generates 275-node
topologies, using data input from Berlin’s network and combined metric (s=1, p=5).
The radius for NPART was also set to 250m. Routing protocol is AODV [137]. Its
default parameters have not been changed except increase in the network diameter (the
parameter NET_DIAMETER in [137]).
The average throughput per flow is the observed characteristic. TCP flows are created

between randomly selected pairs of nodes. The number of TCP flows is varied (4,6,8,10)
in each of simulation setups in order to test protocol’s behavior under different network
loads. In order to avoid counting of unsuccessful flows (their average throughput is
always zero) that are caused by a partitioned network, uniform placement topologies
are tested for connectivity before they are accepted for simulation. Simulations are
performed on 50 different topologies except for grid where all topologies are identical.
Warm up phase is set to 30s and simulation is executed for 250s. Warm up phase of

30s is sufficient because AODV is a reactive routing protocol with aggressive purging
of inactive routes. Prolonging the warm up time cannot change results: nodes that
are required to maintain the local connectivity have enough time to execute neighbor
detection process (Section 6.10 in [137]) because of frequent heartbeats. Inactive routes
are deleted from route cache in less time than the duration of the warm up phase
(depending on implementation, route deletion from a cache may vary between three
and six seconds as proposed Section 10 in [137], to ten as it is set in ns2, up to 30
seconds as it is set in Jist/SWANS) so the extension of the warm up phase cannot
change the routing efficiency. Runtime of 250s is sufficient for TCP (that is used as
transport protocol for FTP traffic) to leave initial slow-start phase: the total simulation
time is much longer than the packet round-trip times in networks that were simulated.
Increasing this value to larger values provides consistent results: we have performed a
test, increasing simulation run time to 500s for uniform placement scenario with 10 flows
under two-ray-ground propagation model. Average throughput with 95% confidence
intervals was 5708.2 [4932.3, 6484.0] which is very close to 5657.1429 [4980.2, 6334.1]
obtained for 250s runs.
As expected and already shown in research studies [126] [157], there exists a consid-

erable difference in simulation results between over-simplistic, over-optimistic path-loss
propagation model and realistic Rayleigh model: obtained throughput is considerably
higher and number of unsuccessful flows is considerably lower for the path-loss model.
Also, within the same propagation model there exist differences in throughput between
grid, uniform node placement, and NPART produced topologies: in NPART topologies
throughput is lower than in both artificial placements.

155

8. NPART

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

4 6 8 10

Flows

T
h

ro
u

g
h

p
u

t
[B

/s
]

Grid, two−ray−ground

Uniform, two−ray−ground

NPART/Berlin, two−ray−ground

Grid, two−ray−ground + Rayleigh

Uniform, two−ray−ground + Rayleigh

NPART/Berlin, two−ray−ground + Rayleigh

Figure 8.17.: The average throughput per flow for different topology types and signal
propagation models.

8.4. Summary
NPART - Node Placement Algorithm for Realistic Topologies has been developed and
evaluated in this chapter. Statistical analysis has been applied in order to compare
NPART-produced topologies with the uniform placement algorithm and with real net-
works in Berlin and Leipzig. The properties of topologies produced by NPART fit closely
to measurements of real networks. Based on the detailed literature review performed
in Section 2.1.1 (page 12) it can be claimed that this is the first node placement algo-
rithm for wireless multi-hop networks capable of creating topologies that have properties
observed in user initiated networks.
The importance of accurate WMN models has been shown in literature (e.g., signal

propagation models in [126] [157]) but the impact of topology generators on simulation
outcome is often overlooked. In order to demonstrate importance of node placement
models in simulation, the average throughput per flow in topologies produced by the
grid, uniform placement model and NPART algorithm under simplistic path-loss and
Rayleigh signal propagation models has been compared. Simulation results show that
node placement model plays as important role in simulation outcome as the wireless
signal propagation model.
Implementation of NPART is available at project’s webpage5. User can specify type

of input data, number of retries, penalty p, weight for the secondary-distribution metric,
and output format. The tool currently supports ns2 and .dot output formats. An
importer of ns2 topologies for Jist/SWANS simulator is also available for download.
Hopefully, the presented analysis and the developed tool will encourage the research

community to use realistic modeling in all segments of simulation setup, thus increasing
the simulation quality and narrowing the gap between simulation and reality.

5www.rok.informatik.hu-berlin.de/rok/npart

156

9. Implementation and Verification of the
Approach

The correctness of DIBADAWN was proven under assumption that no packets are lost
in network. However, reality of wireless communication teaches us that message losses
and node failures are imminent. Packet losses cause faults in the detection process. The
algorithm was tailored in Chapter 5 in order to make it operable in such environment.
The changes guarantee termination, accurate order of execution of algorithm’s steps,
and recognize some faults, but they cannot eliminate all decision errors.
The effects of losses on algorithm’s accuracy have been discussed in Section 5.5. In

Section 5.6 a two-round voting scheme as a mechanism for reduction of effects of packet
losses has been proposed. This chapter evaluates the proposed approach in presence
of packet losses, improvements brought by the proposed voting rules, and compares
DIBADAWN with solutions from related work.
The chapter is organized as follows: Section 9.1 describes overall evaluation method-

ology. Section 9.2 analyzes existing approaches that use proactive topology management
for biconnectivity testing [57] [80] [168] on example of the OLSR routing protocol. The
results of proactive approach are used as a reference point for DIBADAWN’s results.
DIBADAWN and voting strategies are verified in experiments on Motelab testbed

(Section 9.3) and in Jist/swans simulator (Section 9.4).
In simulator, DIBADAWN is evaluated in different static topologies and environments

in Section 9.4.2, while Section 9.4.3 analyses sensitivity of approach with regard to mo-
bility of nodes, link acceptance threshold, and use of inaccurate weights in the weighted
voting rules. In Section 9.5 DIBADAWN is applied only locally (forward search radius
of the algorithm is limited), in accordance with the analytical results derived in Chapter
6 and the accuracy of algorithm is evaluated. Section 9.7 provides a sample application
of DIBADAWN for success rate improvement of route searches of reactive routing pro-
tocols. Overview of voting rules and summary of their characteristics is presented in
Section 9.8.

9.1. Overview of the Evaluation Methodology
The proposed approach is evaluated by simulation and through experiments. A common
misconception in literature is to confuse simulation with experiments (in particular, to
claim that a simulation outcome is an experiment), or to create even more nebulous
expression: ”simulation experiment”. In this work, clear distinction between them is
made, and their natural definitions [11] are followed:

Definition 9.1 Experiment is an operation or procedure carried out under controlled
conditions in order to discover an unknown effect or law, to test or establish a hypothesis,
or to illustrate a known law.

157

9. Implementation and Verification of the Approach

Definition 9.2 Simulation is the imitative representation of the functioning of one
system or process by means of the functioning of another.

Both simulation and experiments are used in the evaluation in order to obtain good
coverage of the modeling space and to avoid over-fitting of the approach to a particular
testing environment:

• DIBADAWN is verified in Motelab wireless testbed. In a testbed, there are no hid-
den assumptions with regard to signal propagation, node, and radio performance.
Even the small details which are essentially irrelevant for algorithm’s verification
may influence experiment results1. The issues of validation in testbed are its lim-
ited size and fixed position of participating nodes. The topology shape is rather
stable so it may systematically improve or degrade the measured accuracy.

• Jist/swans simulator enables testing of the algorithm in considerably larger net-
works and in various topologies. In simulator it is easy to study the effects of
parameter selection to algorithm performance and accuracy. Also, node mobility
can be introduced (impossible in testbeds with remote access). The main weakness
of Jist/swans simulator is homogeneity of its signal propagation model (the same
issue applies to other simulators such as ns2 or OPNET). As explained in Chap-
ter 7, large networks are deployed in highly inhomogeneous environment where
propagation parameters vary. In Jist/swans one type of propagation environment
has to be chosen and it applies to all participating nodes. For instance, Rayleigh
fading2 correctly models signal propagation without line of sight between sender
and receiver. However, in a large network, consisting of several hundreds of nodes
it is unlikely that there does not exist even a single pair of nodes in line-of-sight
setup.

Both evaluation environments have their good sides and weaknesses. Together they
form comprehensive testing suite that covers various situations in which the devised
approach may be deployed and applied. Agreement among their results ensures us that
the algorithm is independent of particular simulation or testbed setup, and that pitfall
of over-optimization for a certain use-case is avoided. The results of experimental eval-
uation are presented before simulation studies, since the experimental results are used
as a reference point for simulation, allowing selection of realistic simulation parameters.
All voting rules presented in Section 5.6 are implemented and evaluated. However, not

all of them are presented in detail. One of the main purposes of the evaluation process
is to select the promising voting rules so rules that underperform are not analyzed in
detail. For brevity, in this section can be found only a digest of complete evaluation
results which can be found in Appendix D.
For each experiment/simulation setup three different result types are presented: pre-

cision, recall, and F-measure (the detailed description of metrics can be found in Section
2.4, page 27).

1For instance, memory management must be implemented with care since a node that depletes its
complete memory due to mismanagement, cannot allocate it for DIBADAWN message manipulation
in the following executions of the algorithm.

2In simulation, Ricean or Rayleigh fading are superimposed on the two-ray-ground propagation model,
creating a realistic propagation model. For brevity, in text is written only Ricean or Rayleigh, instead
of ”two-ray ground with Ricean fading” and ”two-ray ground with Rayleigh fading”.

158

9.1. Overview of the Evaluation Methodology

Precision, recall and F-measure of a rule in a simulation setup are calculated using
Equations 2.3, 2.4 and 2.6. They are jointly calculated for all nodes/edges in a network.
For instance, precision of a rule for articulation point detection is calculated as:

∑samples
l=1

∑decisions
j=1

∑nodes
i=1 TP (i, j, l)∑samples

l=1
∑decisions
j=1

∑nodes
i=1 TP (i, j, l) +

∑samples
l=1

∑decisions
j=1

∑nodes
i=1 FP (i, j, l)

. (9.1)

So, the value of precision is jointly calculated for all decision rounds made in a network
(i = 1..decisions) over all nodes (j = 1..nodes) over all experiments/simulations (l =
1..samples).
The reward metric helps us quantify the relative position of a bridge or an articulation

point within a network, since for applications of the detection approach it is not the
same whether it successfully detects bridges and articulation points only at network
periphery or it is capable of detecting them in central parts of a network. For a given
simulation setup, voting rule and value of parameter k, the average value of reward is
calculated over all decisions that are made on all bridges/articulation points (see page
29).
Typically, recall and reward metrics are correlated: e.g., an approach that detects

more bridges has higher recall, and its average reward should also grow. However, there
are exceptions as it will be demonstrated later. On some occasions, recall of majority
rule for bridge detection is higher than of the trusted rule, but its reward is smaller.
In that scenario, majority rule failed to detect bridges in central parts of network, so
despite larger number of bridges that are detected, its reward was limited.
For brevity, the reward metric is presented in this section only when there exists a

notable difference between it and the recall. Detailed graphs of reward for all analyzed
scenarios can be found in Appendix D.
Plots are used as one of technical means for presentation of the precision, recall, and

F-measure. Each of the points in a plot is jointly calculated from all decisions as it was
shown on example of precision in Equation 9.1.
Still, the possible differences between individual samples within a simulation scenario

cannot be ignored. In order to assess these differences, confidence intervals have been
calculated. Instead of iterating through all samples of a given scenario as in Equation
9.1, precision is calculated for each individual sample and the average value with 95%
confidence intervals is calculated from this set. Table 9.1 provides an excerpt of this
evaluation. It can be seen that confidence intervals are tight and that there are no
notable deviations from the average value. Interesting property of the approach is
that recall is considerably less variable than the precision, regardless of value, rule, or
detection purpose.
The link acceptance thresholds were set to t = 0.1 and to 0.316. The link acceptance

threshold of t = 0.1 (equivalent to ETX=100) demonstrates network behavior in extreme
conditions when network protocols are forced to use links even if they are of very low
quality. Such scenarios may occur in sensor networks after long periods of activity,
after some nodes have failed without replacement. The acceptance threshold of 0.1 may
be inappropriate for some applications if they cannot tolerate so frequent packet and
message losses. Thus, the tests are repeated for a more strict link acceptance threshold
t = 0.316 (equivalent to ETX=10).

159

9. Implementation and Verification of the Approach

Bridge detection
Rule name Precision Recall
Unanimous 0.904154 [0.8809450, 0.92736297] 0.805756 [0.79398500, 0.81752699]
Single-for 0.563678 [0.5205635, 0.60679241] 0.996890 [0.99527644, 0.99850355]
Majority 0.753996 [0.7100893, 0.79790265] 0.979602 [0.97410130, 0.98510269]
Trusted 0.816026 [0.7735757, 0.85847630] 0.933764 [0.92894478, 0.93858322]

Articulation point detection
Rule name Precision Recall
Unanimous 0.904190 [0.88635794, 0.92202205] 0.554758 [0.54218586, 0.56733014]
Single-for 0.408792 [0.39374432, 0.42383967] 0.971802 [0.96851312, 0.97509087]
Majority 0.682968 [0.65743871, 0.70849729] 0.851512 [0.84208421, 0.86093978]
Trusted 0.551382 [0.52528226, 0.57748174] 0.853888 [0.84148349, 0.86629251]

Table 9.1.: 95% confidence intervals of precision and recall of selected rules. Simulation
setup: NPART/Berlin node placement, Ricean propagation, link acceptance
threshold t = 0.1.

1 2 3 4 5 6 7

0
.6

0
.7

0
.8

0
.9

1
.0

1 2 3 4 5 6 7

0
.6

0
.7

0
.8

0
.9

1
.0

1 2 3 4 5 6 7

0
.6

0
.7

0
.8

0
.9

1
.0

k

F
−

M
e

a
s
u

re

Majority

Intel.Majority

Trusted

(a) Bridge detection.

1 2 3 4 5 6 7

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

1 2 3 4 5 6 7

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

1 2 3 4 5 6 7

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

1 2 3 4 5 6 7

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

k

F
−

M
e

a
s
u

re

Majority

Trusted

Sf,M,T,wB,wD − Majority

Sf,M,wD − Weighted

(b) Articulation point detection.

Figure 9.1.: Effects of parameter k on detection accuracy of voting rules (Motelab ex-
periments example).

The rules can be applied on various sizes k of the set of latest decisions. In this
chapter are presented the evaluation results for k = 5. It has been noticed in all
evaluation scenarios that voting rules reach the saturation point of F-measure rather
early, so already at k = 5 the rules are close to their limits. This characteristics can be
clearly seen in Figure 9.1 which shows evaluation results of a subset of results obtained
in the Motelab experiments. There exists evident increase in accuracy if k is increased
from one to five, but if k grows above five, the improvements are minor. The complete
evaluation results, that include other values of parameter k are presented in Appendix
D.

9.2. Issues of Proactive Topology Management for Bridge and
Articulation Point Detection

The distributed approach is not the only possibility for bridge and articulation point
detection. Section 3.1 (page 32) presents numerous contributions in literature which

160

9.2. Issues of Proactive Topology Management

propose proactive collection of topology data or reuse of the topology data of a proac-
tive routing protocol in order to run Tarjan’s DFS detection algorithm [158] on the
collected topology. The crucial assumption in the literature is that proactive topology
dissemination provides sufficiently good topology information so that it can be used for
bridge and articulation point detection.
The simulation evaluation presented in this section demonstrates that belief in accu-

rate topology knowledge was created mostly by the imprecise simulator configuration:
the exclusive use of the two-ray ground propagation model. In reality and in simulation
with improved propagation models, it is experienced that network topology view at in-
dividual nodes can be different from the accurate network topology, resulting in faulty
decisions in bridge and articulation point detection.
Two main reasons for imprecise topology view at individual nodes have been identified:

• Impossibility of precise detection of communication link existence. As
explained in Section 3.3, heartbeat messages are commonly used for link existence
detection in proactive topology management protocols. The analysis performed
in Chapter 4 demonstrated the issues of link detection if communication channel
is unreliable. It was shown that even with the optimal link detector parameters,
errors in link detection process are notable.
A false negative in link detection may exhibit itself in occurrence of false positives
in context of bridge and articulation point detection – the topology seems to be
sparser than it is and some links may be declared as bridges and some nodes
as articulation points although they are not. A false positives in link detection
may result in false negatives for bridge and articulation point detection (since the
perceived topology seems to be denser than it actually is).

• Issues of accurate and timely dissemination of the local topology infor-
mation through the network. The second component of proactive topology
management is the dissemination of local topological information through the net-
work. It also faces challenges in presence of channel fading. Flooding is one of
simplest yet widely used approaches in WMNs for dissemination of local data.
Some studies [125] [174] consider it highly redundant with huge unnecessary over-
head and propose various means of redundancy reduction [129] [174]. Such claims
are true in very dense networks or if exceptional link quality is assumed, but in
reality neither of these claims is true.
As the analysis in Chapter 7 shows, real networks are neither very dense as there
exists considerable number of bridges, nor all links in them are of high quality (in
Berlin, 5.3% of bridges have packet delivery ratio less than 0.1 and 22.6% of them
less than 0.5). Correlated packet losses and bridge presence may seriously affect
flooding’s ability to deliver local data to all nodes in the network.
The coverage of flooding was analysed in [120]. It was demonstrated that the
flooding does not reach large parts of the network. Successive retries improve its
delivery ratio but they also increase the delay in message delivery, in particular
for nodes that are distant from a node that reports the changes.
The effects of the dissemination issues may be reduced through higher frequency of
topology updates. However, each dissemination cycle is costly in terms of scarce

161

9. Implementation and Verification of the Approach

resources such as node energy and channel bandwidth so the update frequency
increase must be limited in order to prevent bandwidth starvation of other services
in the network, and node failures due to energy depletion.

Interplay between issues in local link detection and global topology dissemination
may be particularly devastating: if a false information reaches wide audience and it is
followed by correct but short-lived dissemination cycles, the erroneous global topology
views at multiple nodes in the network exist for long time periods. Thus, there exist
differences between topology perceived by a node and accurate topology that is seen by
an omniscient observer.
In order to assess the effects of unreliable communication channel on proactive topol-

ogy management protocols and their impact on bridge and articulation point detection
approaches which were proposed in the literature, ns2 simulations of OLSR routing pro-
tocol was performed. The parameter TC_REDUNDANCY of OLSR was set to 2, so
that complete local link information is shared throughout the network. Other protocol
parameters have been set as defined in its RFC [59].
Traffic is deliberately excluded from simulations – in presence of traffic, the topology

management issues can only escalate due to more frequent collisions between user-
generated traffic packets and topology dissemination packets. Two sets of referent
topologies are used for simulation with link acceptance thresholds of 0.1 and 0.316.
Simulations are performed for two-ray ground, Rayleigh, and Ricean fading propaga-
tion models.
After warm-up phase that lasts for 200 seconds, every 30 seconds in the next 360

seconds, nodes calculate articulation points and bridges in the network from the topology
information that is available to them. This information is then compared with the actual
bridges and articulation points, calculated from precise topology (known only to the
omniscient observer) and precision, recall and F-measure are derived.
The decisions are divided in two classes:

• Decisions at node level (local decisions) include only decisions of a node on
links incident to it and whether the node declares itself as an articulation point.

• Decisions at network level (global decisions) are derived by a node for all links
and nodes of the network.

Tables 9.2 and 9.3 show the simulation outcomes. If two-ray ground model is exclu-
sively used for signal propagation, almost complete topology is available at each node,
as it was assumed in literature [57] [80] [168]. It is not surprising that the precision and
recall are exceptional, both for local and global decisions. The two-ray ground propa-
gation model completely eliminates the false positives in link detection process and it
can only result in false negatives (omission of some links from the topology). Thus,
detection recall is always one (if node/edge exists in perceived topology) while precision
may be slightly lower.
If fading is introduced, the issues of proactive topology detection and dissemination

become clearly visible: the perception of topology at individual nodes is significantly
different from the topology visible to the omniscient observer. Table 9.4 presents the
average ratio between number of perceived edges at a node and edges in the accurate
topology. As it can be seen, even with false positives in link detection that are included

162

9.2. Issues of Proactive Topology Management

Simulation Local Local Global Global
scenario Precision Recall Precision Recall

Uniform, two-ray ground 1 1 0.9516 1
NPART/Berlin, two-ray ground 0.9992 1 0.9663 1
NPART/Leipzig, two-ray ground 0.9996 1 0.9772 1
NPART/Berlin, Ricean(7), t = 0.1 0.602 0.79 0.14 0.258

NPART/Berlin, Ricean(7), t = 0.316 0.903 0.397 0.307 0.187
NPART/Berlin, Rayleigh, t = 0.1 0.348 0.565 0.054 0.035
NPART/Berlin, Rayleigh, t = 0.316 0.824 0.31 0.1832 0.028
NPART/Leipzig, Ricean(7), t = 0.1 0.822 0.775 0.247 0.335

NPART/Leipzig, Ricean(7), t = 0.316 0.951 0.495 0.347 0.256
NPART/Leipzig, Rayleigh, t = 0.1 0.504 0.678 0.025 0.084
NPART/Leipzig, Rayleigh, t = 0.316 0.897 0.324 0.082 0.073

Table 9.2.: Precision and recall for bridge detection under proactive topology
management.

Simulation Local Local Global Global
scenario Precision Recall Precision Recall

Uniform, two-ray ground 1 1 0.9653 0.9737
NPART/Berlin, two-ray ground 1 0.9972 0.9743 0.9254
NPART/Leipzig, two-ray ground 1 0.9987 0.9802 0.9473
NPART/Berlin, Ricean(7), t = 0.1 0.671 0.79 0.254 0.249
NPART/Berlin, Ricean(7), t = 0.316 0.931 0.461 0.504 0.208
NPART/Berlin, Rayleigh, t = 0.1 0.404 0.486 0.114 0.037

NPART/Berlin, Rayleigh, t = 0.316 0.807 0.286 0.384 0.04
NPART/Leipzig, Ricean(7), t = 0.1 0.87 0.771 0.412 0.336

NPART/Leipzig, Ricean(7), t = 0.316 0.97 0.57 0.542 0.292
NPART/Leipzig, Rayleigh, t = 0.1 0.713 0.634 0.063 0.072

NPART/Leipzig, Rayleigh, t = 0.316 0.958 0.342 0.162 0.075

Table 9.3.: Precision and recall for articulation point detection under proactive topology
management.

t = 0.1 t = 0.316
NPART Berlin, Rayleigh 0.234 0.361
NPART Berlin, Ricean (7) 0.627 0.774

NPART Berlin, two-ray ground 0.979
NPART Leipzig, Rayleigh 0.484 0.764
NPART Leipzig, Ricean (7) 0.789 0.98

NPART Leipzig, two-ray ground 0.986

Table 9.4.: The average ratio of number of captured edges (including false positives) to
accurate number of edges by OLSR protocol.

163

9. Implementation and Verification of the Approach

in samples with fading, topology dissemination under fading captures only a portion of
the total number of edges. This trend is particularly notable for scenarios with Rayleigh
fading.
Obviously, the introduction of Ricean and Rayleigh fading influences the accuracy and

availability of topology information, and the quality of detection results is reduced. Dis-
semination of local topology knowledge through network is particularly difficult. Nodes
receive infrequent and possibly inaccurate updates from distant nodes which drastically
reduces the availability of topology information on distant parts of the network resulting
in very inaccurate biconnectivity testing decisions at the network level.
As explained in Chapter 4, HLDs used by OLSR are prone to create false positives

in link detection for higher link acceptance thresholds. More false positive links results
in higher false negative ratio in bridge and articulation point detection and reduction
in recall (for t = 0.316). Since false negatives are less probable, higher link acceptance
threshold results in higher precision.
Lower link acceptance threshold (t = 0.1) reduces number of false positives and in-

creases false negatives in link detection, which results in reduction of precision and
improvement in recall (relative to detection outcomes if t = 0.316). These processes are
easily observable in Tables 9.2 and 9.3.
Rayleigh fading:
Local decisions: The accuracy of detection is far from the impressive achievements

obtained with the unrealistic two-ray ground model. F-measure of bridge detection in
NPART/Berlin topology is around 0.48, while F-measure of articulation point detection
is between 0.41 and 0.43. Detection in NPART/Leipzig topologies achieves a bit better
results, in particular for the lower link acceptance threshold. Results are of practical
use with F-measure of 0.578 for bridge detection but far from idealized values observed
with two-ray ground propagation model. If link acceptance threshold is increased, recall
drops sharply and reduces F-measure to 0.476.
Global decisions: Large parts of the global network topology are unknown at decision-

making nodes resulting in numerous false negatives. If a decision-making node is un-
aware of a node/edge in topology it cannot mark it as an articulation point/bridge, so it
is interpreted as a false negative. The known parts of topology are perceived as sparse
and partially disconnected. The first issue reduces recall and the second precision of
the detection, so the obtained accuracy may be very low – for NPART/Berlin topology
and t = 0.1, F-measure of bridge detection is only 0.042, and the highest obtained F-
measure for Rayleigh fading and NPART/Berlin topologies is 0.0723 (for articulation
point detection and t = 0.316). Results in NPART/Leipzig topologies are a bit better,
but the improvement is still insufficient: F-measure of bridge detection is up to 0.77,
and for articulation point detection it is up to 0.102.
Ricean fading:
Ricean fading generally provides better communication in the network due to smaller

variations in signal strength. This results in better accuracy of the detection than in
Rayleigh-fading scenarios.
Local decisions: Quality of local decisions has considerably improved, in particular

for the lower link acceptance threshold. Bridge detection in NPART/Berlin topologies
has high F-measure of 0.683 for t = 0.1 which is increase of 58% to the scenario with the
same topology type, link acceptance threshold and Rayleigh fading. In NPART/Leipzig
topologies improvements are also considerable – F-measure is up to 0.82 which is an

164

9.2. Issues of Proactive Topology Management

improvement of 38.6% over Rayleigh scenarios. Articulation point detection is partic-
ularly accurate in NPART/Leipzig topologies for t = 0.1 where its F-measure is 0.871,
but unfortunately detection is not particularly stable. If link acceptance threshold is in-
creased to t = 0.316, F-measure of articulation point detection falls to 0.71 and of bridge
detection to 0.65. Important characteristics of the proactive approach is its excellent
precision but low recall for this higher link acceptance threshold.
Global decisions: The quality of perceived network topology at nodes is improved

and larger part of network is captured. For biconnectivity testing this results in better
accuracy than for Rayleigh fading, but the global detection results are still of very
limited value.
In NPART/Berlin scenarios, F-measure of global bridge detection is between 0.18

and 0.23. So, for the more accurate case, only 18.7% of bridges are detected and out
of all bridge-markings only 30.7% are correct. Such uncertainty would confuse most
(if not all) of the higher-layer algorithms that are to utilize this information, such are
the approaches for reinforcement of bridges by mobile nodes [80]. In NPART/Leipzig
topologies, results are better, but the F-measure does not even reach 0.3.
Articulation point detection results are also better in both topologies compared with

Rayleigh scenarios, with higher improvement for NPART/Leipzig, where F-measure
reaches 0.379 for t = 0.316, but even in this best case more than two thirds of articulation
points remain undiscovered.
Summary
The approach which is described in related work [57] [80] [168] was directly applied

in this section: topology information is taken from a proactive routing protocol and
it is used for biconnectivity testing. Related work assumed the two-ray ground propa-
gation model. With such propagation model, OLSR routing protocol indeed provides
excellent quality of captured topologies, and consequently the detection results are also
exceptional. Realistic channel modeling introduces topology inaccuracies that cause
numerous faulty decisions in bridge and articulation point detection process.
It can be concluded that combination of difficulties encountered in reality in link

detection and topology dissemination processes obstructs the fulfillment of high re-
quirements for topology accuracy for 2-connectivity testing and invalidates the assumed
absolute correctness of proactive approaches [57] [80] [168]. The extensive overhead that
is produced for the topology dissemination brings meager and highly varying (highly de-
pendant on the link acceptance threshold) detection results at node level and practically
unusable results at the network level.
The local accuracy of biconnectivity testing based on the proactive topology manage-

ment approaches may be improved by more careful selection of HLD parameters, but
the issues of local link information dissemination remain. In practice (community net-
works presented in Chapter 7), the issues of link detection have been partially resolved
through increase in heartbeat frequency and the observation period of a link is pro-
longed, making such protocol more stable in static but rather difficult to use in mobile
and semi-mobile networks.
The major concern in open communities is the protocol robustness, while provision

of optimal parameter selection is left to researchers. Unfortunately, some models in
research are still based on unrealistic assumptions, completely ignoring the practical
issues. For instance, in [125] optimal parameters for proactive protocols are derived
for the unrealistic two-ray ground propagation model. So, the heartbeat frequency is

165

9. Implementation and Verification of the Approach

reduced, which indeed reduces communication overhead of the protocol, but the authors
did not perform additional tests to verify if a protocol with such configuration can
function at all if deployed in environment with signal fading.
Note on OLSR, proactive topology management and detection approaches

described in related work. The parameters of the OLSR protocol have been taken
from its RFC as it is envisioned for use by their authors. The analysis of heartbeat
link detectors in Chapter 4 indicates the suboptimal default parameter combination of
OLSR, but the parameters have not been changed in this evaluation for two reasons:

• The outcome of simulations is so surprising and reduction in accuracy so notable
that it would not be clear if such behavior of OLSR is consequence of the new
parameter set or of topology management issues introduced by fading.

• The evaluation results as they are presented confirm the finding of Chapter 4 on
issues of improperly parameterized HLDs.

Finally, this study does not disqualify the proactive routing protocols. Amount of
topology information that is needed for routing is considerably lower than for bicon-
nectivity testing. Also, even if a suboptimal route has been initially envisioned by
a node that initiates the traffic, packets may get rerouted by nodes which are closer
to destination and have more accurate information on current network state at their
disposal.

9.3. Implementation and Evaluation of DIBADAWN in a
Wireless Sensor Testbed

The simulations are a useful tool for development of protocols and tuning of various
parameters but the ultimate verification test of every network protocol is a real network.
It exposes the protocol to various limitations that are not supported by simulator or that
have been inadvertently omitted from it. Experiments may also expose weaknesses and
hidden assumptions of protocols such as high memory overhead, intensive computation,
algorithm and protocol instabilities caused by environmental changes, etc.
This section explains experiences from deployment and execution of the DIBADAWN

approach in a wireless testbed. Four tasks have been necessary for verification of the
approach:

• Finding a suitable testbed: due to high development and maintenance costs
of establishing a new testbed, it was decided to use one of existing testbeds. Out
of numerous possibilities, Motelab testbed at Harvard University [12] was selected
due to its size, accessibility, deployment environment and control facilities.

• Implementation of the algorithm: the DIBADAWN algorithm has been cus-
tomized for deployment on TMoteSky nodes that are used in Motelab testbed. The
nodes operate the TinyOS event-based operating environment. TinyOS applica-
tions are written in nesC [77], a dialect of the C programming language optimized
for the memory and processing limitations of wireless sensor nodes.

166

9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed

• Setup of the testbed: Adequate setup had to be determined so that it creates
topologies with sufficient number of bridges and articulation points located both
in central parts and periphery of the network.

• Data collection, processing and evaluation of results: data is collected
from nodes and sent to a central repository server. Low processing power of nodes
and their confined memory limits data that can be collected and sent from them.
Motelab nodes send data from the first phase of DIBADAWN (building a tree
and detection of cross-edges) to the server. This information is used later by
the omniscient observer to determine referent topology. Edge markings from the
second phase of DIBADAWN are sent to the server for evaluation of algorithm’s
accuracy. Postprocessing of collected data is performed offline in a custom Java
application, derived from Jist/swans simulator code.

9.3.1. Overview of Existing Testbeds and Selection Criteria

The testbed in which the algorithm is to be deployed and verified has to be of consider-
able size. Small testbeds, consisting of several nodes cannot create sufficiently complex
topologies, the algorithm’s accuracy would be exceptionally high and verification results
would be doubtful. Option of building a large testbed at the Institute for Informatics
has been rejected due to high financial costs and resource overhead required for its
setup and maintenance. Instead, it was decided to use one of numerous existing wireless
testbeds, used for scientific purposes. They vary in size, capabilities, accessability, and
support. The following criteria has been applied in selection process:

• Testbed size: large testbeds are preferable. Testbeds with less than 20 nodes
have not been considered. As explained later, in order to produce adequate3
topologies some nodes in the selected testbed had to be excluded from the evalu-
ation process, further reducing its effective size.

• Topology and environment: testbeds with regular node placement patterns
(e.g., grids or chains) are undesirable because their topologies are not diverse
enough. Signal propagation in the testbed should be combination of line-of-sight
situations and propagation through obstacles. Three-dimensional node placement
(i.e., building) is desirable while open-space and large hall environments are un-
desirable.

• Remote access and control: The access rights to the testbed during exper-
iments must be exclusive, in order to have controllable experiments. Setup of
experiments, their execution and data collection must be performed without in-
site human assistance. The implementation and testing is a lengthy process and
any reliance on testbed’s maintenance crew can considerably prolong it.

Nodes in a testbed have two interfaces: one wireless for actual tests, and one wired for
control, upload of software and download of collected data. It is necessary that a node

3Topology with significant number of bridges and articulation points, but also with dense network
sections.

167

9. Implementation and Verification of the Approach

Testbed Motelab [172] Kansei [69] TWIST [84]
Declared Nodes 190 TMote Sky 210 Pairs of XSM and XSS 102 TMote Sky, 102 eyesIFX
Active Nodes 121 77 unknown
Remote Access ++++ +++ ++
Topology and + - +

Prop. Environment

Table 9.5.: Overview of testbed characteristics.

Node TMote Sky XSM - Extreme XSS - Extreme eyesIFX
Scale Mote Scale Stargate

Processor TI MSP430F1611 Atmel AT-mega128L XScale PXA55 TI MSP430F1611
Frequency 8MHz 4MHz 400MHz 8MHz

48kB ROM, 128kB ROM, 32MB ROM, 48kB ROM,
Memory 10 kB RAM, 4kB RAM, 64MB RAM 10 kB RAM,

1MB Flash 512kB Flash 512kB Flash
Radio Chipcon CC2420, Chipcon CC1000, SMC2532W-B, TDA5250,

Frequency 2.4GHz 916MHz 802.11b WLAN 870MHz
Development TinyOS TinyOS Linux TinyOS

Table 9.6.: Characteristics of nodes.

possess the wired interface, since wireless transmission of control data and collected
results would interfere with the measurements.
It is common that there exists at least one more supernode in the testbed that actuates

and instruments nodes, controls software that is executed on nodes, and acts as central
repository for data collection. It should be possible to upload an application for nodes
to it, and the rest of node software update process is automatized by the supernode. At
the end of execution of an experiment, the data collected from nodes can be accessed
and downloaded from it.
Not all evaluated testbeds implement these control mechanisms in full extent and some

that did, imposed special constrains on them. For instance, Sensornets4 project from
University of California at Berkeley (UCB) developed three testbeds, using different
technologies, but it is accessible only to UCB affiliates.
Table 9.5 lists characteristics of evaluated testbeds and Table 9.6 of nodes that are

used in them. The data has been collected at the beginning of year 2008 during the
search for a suitable testbed.
Kansei testbed [69] from University of Utah provides two node types: processing-

weak XSM nodes and XSS as nodes with highest processing potential of all evaluated.
It supposed to be the largest testbed of all, but out of 210 nominal nodes, only 77
were functional. The information which is available about this testbed is confusing.
The data in Table 9.5 originates from project’s homepage, while its online help system
claims presence of 112 XSM/XSS nodes, additional 432 Tmote nodes and 104 Intel
Imote2 nodes. The main issue of the testbed is that nodes form a dense grid in a large
hall – both topology and propagation environment are regular.
TWIST (TKN Wireless Indoor Sensor network Testbed) [84] is located on Technical

University (TU) Berlin. The network is considerable in size, has two types of nodes and
supports TinyOS. Unfortunately, at the moment of testbed selection, control interfaces
were still under development (or at least not accessible for general public) so deeper
understanding of its capabilities and overview of topology has not been possible.

4https://www.millennium.berkeley.edu/sensornets/

168

9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed

Figure 9.2.: A sample Motelab topology, first floor of the building.

Emulab5 offers interesting combination of simulation, emulation and real networking.
It has 25 wireless nodes in an unclear formation. Similar as in Kansei testbed, infor-
mation offered through website is unclear and often contradicting: on some web pages
are photographs showing regular node placement, while other pages claim semi-random
placement in an office building. Due to uncertainty on its structure and small size of
the network, this testbed has not been evaluated in detail like others.
Motelab [12] [172] is a testbed located at the Harvard university. It nominally consists

of 190 nodes, located on three floors of an office building. Most of nodes can communi-
cate only within a floor. A small subset of fortunately placed nodes provide connectivity
between floors. Figure 9.2 shows snapshot of topology from the first floor of building
where Motelab is located. The propagation environment is dynamic and heterogenous
since humans working in it create constant and notable changes in the environment. It
is sufficient that several doors are opened or closed to get different conditions in the
testbed. People also act as signal reflectors and scatterers. TMoteSky nodes use ISM
2.4GHz band, that is shared with other devices that use the same band, such as WLAN,
so the effects of interference with wireless terminals that do not belong to the testbed
are also present in the experiments.
The testbed is open without fees for all researchers. Its usage is allocated in slots of

30 minutes. Usability of its management software is excellent: account management,
slot allocation, upload and download of data are performed through a web-interface. Its
biggest issue is the mandatory use of TinyOS version 1.x 6.
Since it offers best compromise between the three selection criteria, Motelab testbed

has been chosen for experiments.

9.3.2. TinyOS and TOSSIM

Nodes in Motelab use TinyOS. TinyOS is an event based operating environment designed
for use with embedded networked sensors. Although its name suggests otherwise, it is
not a traditional operating system, but a component oriented, programming framework.

5www.emulab.net
6Testbed is TinyOS 2.x compliant since February 2009.

169

9. Implementation and Verification of the Approach

It supports rudimentary concurrency that is required in embedded networked systems
with limited hardware resources.
TinyOS programs are built of components. Components are connected through inter-

faces. Interfaces and components abstract both hardware (e.g., packet communication,
sensing, actuation) and software resources (e.g., routing, data storage). The interface
of a component is the functional specification of a service provided by the component
to its users. Interface is obligatory for both sides: the service provider must implement
all specified commands and the user must implement the event handlers defined in the
interface. Specification of non-functional requirements is not supported by the TinyOS.
Components interact through commands and events. A command is a request to

a component to perform a service. An event is component’s confirmation that the
service has been performed. Commands and events are not blocking. They provide the
concurrent behavior of TinyOS, in particular if a component provides an interface to a
hardware resource. For instance, reading of a sensor value may be a lengthy operation,
so the main program invokes reading command and continues its execution until an event
originating from hardware is triggered, indicating the completion of read operation.
Component can also specify tasks – functions that are scheduled for execution at a

later time. Tasks improve responsiveness of programs by postponing time and resource
intensive tasks for later execution. The TinyOS uses a non-preemptive, FIFO scheduler
for management of tasks. Hardware interrupts are treated separately so they have
preemptive behavior.
Components are written in nesC, scale-down derivative of C. In nesC it is not possible

to use function pointers or global variables. Components can be only statically allocated
(at compile time). The nesC compiler transforms nesC code to a standard C code that
can be afterwards compiled to executable code using the tools for a target hardware
platform.
TinyOS component model allows easy switchover between real, hardware resources

and its software emulators. This characteristic is utilized by TOSSIM – a simulator
for TinyOS-based wireless sensor networks. The hardware interrupts are emulated by
simulator events that are forwarded through simulator’s event queue to target compo-
nents. The official claim of TOSSIM’s developers is that except for these hardware
components, remainder of code stays unchanged. However, TOSSIM’s interrupts are
not preemptive which in turn means that all tasks are atomic in simulation. If imple-
mentation depends on atomicity, this can lead to serious and difficult to understand
problems once a protocol is deployed in real networks.
TOSSIM’s abstraction of network communication is probably its weakest point: the

network is a directed graph, where each edge has a bit error probability. The error
probability of a link can be randomized or loaded from measurement studies but there
does not exist explicit support for correlated error rates between links. The main purpose
of TOSSIM is to accelerate development process and enable easier debugging of TinyOS
applications so such network model is usually sufficient – the developed code is eventually
deployed to a wireless network where it is tested under real conditions.

9.3.3. Testbed Setup and Data Collection

Motelab testbed is managed through a Web interface. It is used to upload the software
and download the experiment results. Experimental data is saved in a local database.

170

9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed

Figure 9.3.: Motelab infrastructure.

Multiple users are supported, as it can be seen in Figure 9.3. A user has exclusive access
to the testbed during its time slot.
Nodes in the testbed use only their radios for experiments. Limited node memory

prevents storing of measurements on a node during an experiment. Instead, the mea-
surements are exported during experiments to the database through serial port that
exists on every node. A dedicated component of TinyOS – the ”Serial Forwarder” (SF
in Figure 9.3) acts as a gateway between the serial port of a node and a TCP/IP port
of the central server. DBLogger is a software component at server which collects data
from TCP/IP ports and writes it to the database.
During message write to the serial port, a node is unable to send data over radio.

Fortunately this issue does not affect the reception of messages – the radio operates
autonomously and once the packet is ready, the radio generates an interrupt to the
processor.
This issue required careful selection of data that is sampled by a node for later anal-

ysis – intensive data collection combined with computational weakness of nodes may
impair their capability to timely execute algorithm steps. This is particularly danger-
ous for later analysis of algorithm’s efficiency and detection accuracy – such events may
be misinterpreted as algorithm’s high computational overhead, or even worse as its in-
capability of accurate bridge and articulation point detection. To offset these effects,
processing time per tree level in the second phase of the algorithm has been increased
to allow execution of both native detection code and data collection facilities.
After the technical issues of data collection have been resolved, appropriate topology

had to be selected. This includes selection of a node subset that operates the algorithm
and setting their transmission power.
First step was removal of pairs of nodes. As it can be seen in Figure 9.2 nodes in

the testbed are deployed in pairs, probably to reduce the wiring (needed for serial port
communication) and to increase network’s resiliency to node failures. Their presence
eliminates bridges and articulation points in the network. To circumvent this issue, only
one node in each pair has been selected for use in experiments.
Ideally, the topology in which DIBADAWN is tested has combination of dense and

sparse parts, with bridges located both on network periphery and in its central parts.
In order to achieve this, topology probes have been taken from the testbed for differ-

171

9. Implementation and Verification of the Approach

(a) Topology that increases
DIBADAWN accuracy.

(b) Topology chosen for test-
ing – there is no advantage for
DIBADAWN accuracy.

Figure 9.4.: Various topology types encountered in Motelab in preparation of
experiments.

Edges Bridges Ratio
50.9811 [50.0118, 51.9503] 6.6603 [6.1592, 7.1615] 0.1306

Nodes Art. points Ratio
31.6981 [31.3174, 32.0787] 7.0188 [6.7060, 7.3316] 0.22

Table 9.7.: Properties of Motelab topologies for link acceptance threshold t = 0.1.

ent transmission power of nodes. TinyOS allows easy manipulation of it through con-
stant CC2420_DEF_RFPOWER that can be set to values between one (equivalent to
-25dBm) when only node pairs can communicate, and 31 (equal to 0 dBm) when testbed
is extremely dense: without pair removal, nodes have between 20 and 30 neighbors.
Through trials and errors it has been determined that if CC2420_DEF_RFPOWER is
set to eight, the satisfying topology is obtained.
If node pairs are eliminated and CC2420_DEF_RFPOWER is set to eight, the topol-

ogy has few bridges and articulation points, almost exclusively on network outskirts
(Figure 9.4(a)). Testing in such topology would produce favorable conditions for the
detection algorithm: it is rather easy to detect articulation points and bridges incident
to pendant nodes so algorithm’s precision and recall rates would be unrealistically high.
To avoid this unfairness, additional nodes have been removed so that bridges and ar-
ticulation points are placed both on network outskirts and in its central parts, creating
topologies similar to one shown in Figure 9.4(b).
The algorithm tests lasted for several days and due to unknown reasons some nodes

were occasionally unavailable, resulting in varying topologies but the overall structure of
the testbed remained qualitatively the same with bridges and articulation points located
both in central part of network and on its periphery.
Table 9.7 shows characteristics of Motelab topologies used for the experiments. It can

be seen that the studied Motelab topologies have similar properties as the topologies of
Berlin’s and Leipzig’s open networks.

172

9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed

9.3.4. Implementation of the DIBADAWN Algorithm and the Evaluation
Procedure

In order to evaluate the algorithm, two parallel processes had to be supported. One
implements the detection of bridges and articulation points. The edge markings are
collected and send to server for postprocessing. The second process gathers information
from the forward phase of DIBADAWN execution. This is necessary for later evalu-
ation of results – the reference topology of network has to be determined in order to
calculate precision, recall, F-measure and reward metrics. Reference topology detection
had to be performed simultaneously with the execution of DIBADAWN because of the
unpredictable behavior of environment where Motelab is located.
The reference topology is created using the following steps: node set of the refer-

ence (omniscient) topology comprises all nodes that have participated in DIBADAWN.
Messages that were exchanged in the forward phase of DIBADAWN were preserved by
sending and receiving nodes. If a message was successfully received by a node, a link to
the sender of the message is added. Number of messages that successfully traversed link
is counted and divided by the number of transmissions that were initiated on that link.
Thus, the link traversal probabilities are obtained. Finally, the topology is pruned. Only
links which exceed the acceptance threshold remain in the reference topology. Tarjan’s
DFS is executed on this referent topology and information on cut edges and vertices
is preserved for later accuracy evaluation and comparison with decision provided by
DIBADAWN.
Each network node is emulated in a Java application so that it can process the mark-

ings which were delivered to, or sent by its counterpart in testbed (log files provide this
information). The emulated node fully implements the decision making in DIBADAWN
and the voting rules with the only difference that markings originate from log file, not
from a network interface. Emulated node has a confusion matrix (Table 2.3, page 27)
where it keeps track of accuracy of its decisions.
The timestamped markings are loaded from log files and forwarded to corresponding

emulated nodes. An emulated node recreates individual algorithm executions, derives
decisions, and executes voting rules. The output of rules is compared with the correct
decisions (provided by omniscient observer) and confusion matrices of a node and links
incident to it are updated. After processing of all markings, at all nodes, the confusion
matrices are saved in database.
The implementation demonstrates that DIBADAWN is not demanding with regard

to memory consumption and processing resources. Nodes that executed it have 10KB
of memory that was shared between DIBADAWN, its voting rules (a set of voting rules
was also implemented and deployed in testbed), and the serial forwarder. DIBADAWN
was able to operate on 8MHz processors and the voting procedure does not produce
considerable memory nor computational overhead.

9.3.5. Detection Results

This section evaluates the accuracy of DIBADAWN and voting rules from experiments
in Motelab testbed, for different link acceptance thresholds (t = 0.316 and t = 0.1).
Unfortunately, we were unable to find Motelab-ready implementation of a proactive
routing protocol capable of complete-topology delivery. Instead, the results of evaluation

173

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.5.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.1.

of the OLSR approach (Section 9.2) are used as reference for comparison of Motelab
experiment results. Due to considerable differences between the evaluation procedures,
the behavior comparison is more important than the exact values of accuracy metrics.

Bridge Detection

The evaluation results are shown in Figures 9.5 and 9.6. The biggest disappointment
in evaluation was the weighted voting rule, since it brings limited benefits despite its
requirements for the learning phase. Its precision is almost identical to the unanimous
rule with slightly improved recall, and F-measure.
The trusted and the intelligent majority rule have precision that is comparable to

precision of the weighted rule and much higher recall and F-measure. Since trusted and
intelligent majority rules do not require learning phase, their advantage over weighted
is even greater. Thus, they are preferred over other rules unless precision is of utter
importance when weighted is to be selected. The trusted rule performs better than the
intelligent majority in Motelab experiments, regardless of the link acceptance threshold
(in other scenarios, this is not always the case as it will be shown in Section 9.4.2).
Compared with the original (single-vote) decision making, introduced voting rules

bring improvement and rise in F-measure, in particular the trusted voting rule which
improves F-measure by 37.8% for t = 0.1 and 26% for t = 0.316. Other rules (except the
Single-for rule) improve precision by increase in voter set size, but they simultaneously
experience reduction in recall which results in similar levels of F-measure for higher
link acceptance threshold (t = 0.316) and slight improvements for the lower (0.1) link
acceptance threshold.
Behavior of DIBADAWN and voting rules is independent of the link acceptance

threshold – the changes in accuracy are in range of several percent, which is an ex-
cellent characteristics of the proposed voting rules. Such behavior is opposite to the
behavior of the proactive approaches. They are very sensitive to choice of link accep-
tance threshold and as it was shown on example of OLSR-based detection, lower link

174

9.3. Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.6.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.316.

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.7.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.1.

acceptance thresholds result in acceptable precision and good recall while the higher
link acceptance thresholds result in excellent precision but and very low recall. The
F-measure of rules in Motelab is higher than in OLSR based detection – F-measure of
bridge detection in Motelab is 0.883 while the best OLSR achievement has F-measure
of 0.82 and it goes as low as 0.43 for simulations with Rayleigh fading.

Articulation Point Detection

Experiment results are shown in Figures 9.7 for t = 0.1 and 9.8 for t = 0.316. The
unanimous rule offers the best precision but its recall is by far the worst of all. It can
be seen in the Appendix D that its recall is monotonously reducing with increase of
parameter k. The reduction of recall cannot be compensated by increase in precision,

175

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.8.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.316.

so its F-measure also reduces with growth of k (Figure D.6, page 229).
Other rules provide rather balanced accuracy, without outstanding winners: the dif-

ference in F-measure is up to 0.05. Common tradeoff between precision and recall is
also present – rules with higher precision have smaller recall and vice versa.
Majority voting is particularly effective in the experiments, but in other evaluation

scenarios (shown later) its accuracy is reduced, in particular its precision. The trusted
rule has best recall of all rules that are evaluated in this section, but it also has the worst
precision, that barely overcomes 0.4 mark. This is in contrast to trusted rule which was
used for bridge detection, and which was clearly the best rule of all evaluated. Recall
of the trusted rule is bested by the single-for rule. The single-for rule is not shown in
figures since it behaves very similarly to single-for voting in bridge decision process – it
has excellent recall, but its precision falls sharply if parameter k is increased.
Same as for bridge detection, voting brings improvements. Compared with a single

round execution of detection algorithm, it can be seen that voting rules provide increase
in F-measure of up to 13.4%. Most of them provide increase both in precision and recall.
Compared with the OLSR-based biconnectivity testing, DIBADAWN and voting rules

are much more stable. The differences in precision, recall and F-measure between ex-
periments with different link acceptance thresholds are measured in percents, while
OLSR completely changes its behavior. For instance, recall of the Sf,M, T,wB,wD −
Majority rule and t = 0.1 is 0.747 and it changes to 0.744 if t = 0.316. In OLSR-
based detection, the best detection results are achieved in NPART/Leipzig scenario
with Ricean fading but even there the change in the threshold lowers recall from im-
pressive 0.771 to meager 0.57. If Rayleigh fading is used in same topology type, the
changes are even larger – recall is almost halved and it falls from 0.634 to 0.342.
Table 9.8 provides more detail on voting rule behavior. It shows that rules from the

first voting round are good choice if either excellent precision or recall are needed. The
second voting round balances them and provides some improvements in F-measure. The
rule Sf,M, T,wB,wD−Majority has the best F-measure if link acceptance threshold
is set to 0.1. The Sf,M,wD−Weighted rule that has best F-measure if link acceptance

176

9.4. Implementation of the Approach in Jist / SWANS Simulator

Acceptance link threshold t = 0.1
Best in Rule Precision Recall F-measure Reward
Precision Unanimous 0.89 0.44 0.59 10
Recall Single-for 0.43 0.94 0.6 27.2

F-measure Sf,M,T,wB,wD-Majority 0.77 0.74 0.76 19.9

Acceptance link threshold t = 0.316
Best in Rule Precision Recall F-measure Reward
Precision Unanimous 0.96 0.4 0.57 9.29
Recall Single-for 0.52 0.96 0.67 26.9

F-measure Sf,M,wD-Weighted 0.82 0.76 0.79 19.9

Table 9.8.: Best rules for articulation point detection in Motelab experiments. Values
are taken for k=5.

threshold is set to 0.316 but it is closely followed by the Sf,M, T,wB,wD −Majority
rule that has F-measure of 0.787.
Table 9.8 also demonstrates adaptivity and flexibility of the developed approach. A

user can easily choose a rule that suites its needs: excellent precision (0.96), excel-
lent recall (0.94) or balance of two (F-measure close to 0.8) without changes in core
DIBADAWN functionality or increase in communication overhead. Nodes in network
may choose to use decisions of different rules, according to their needs. Multiple rules
may be also used simultaneously at a single node if applications deployed at it require
it (e.g., one application needs high recall, other high precision). Each of the applica-
tions may use the rule that fulfills its needs since voting rules deliver their decisions
simultaneously.

9.4. Implementation of the Approach in Jist / SWANS
Simulator

The previous section has shown that the proposed approach operates accurately in
reality. However, some aspects of verification could not be performed in testbed due to
technical limitations. In this section, Jist/swans simulator is used to evaluate algorithm
behavior in large networks (comprising hundreds of nodes), in presence of mobile nodes
and to evaluate its sensitivity if incorrect weights are used in voting rules.
JiST is a general purpose discrete event simulation engine that runs in a standard

Java virtual machine. The resulting simulation platform is easy to use and program,
and it is highly portable due to platform independence provided by Java. Development
of new protocols is expedite since a developer may use all existing Java libraries within
the simulation code. For instance, it was possible to directly save simulation results to
a database, which would be rather difficult from other popular simulation engines, such
as ns2.
SWANS is a wireless network simulator that uses the JiST platform and extends

it with networking- and wireless-related constructs. The test that are performed by
its developers clearly show that it out-performs existing simulation runtimes (ns2 and

177

9. Implementation and Verification of the Approach

GloMoSim) in time and memory consumption [33]. Also, Jist/swans natively supports
Rayleigh and Ricean signal propagation models, unlike ns2 that requires custom software
components7.
Jist/swans is rather new simulator engine so the number of supported protocols is

rather limited. For instance, OLSR evaluation had to be performed in ns2 because there
does not exist an OLSR implementation for Jist/swans. The question that inevitably
follows is whether it is possible to compare results derived from two different simulation
environments as it is done in this thesis. The study [149] showed that ns2 and Jist/swans
agree in evaluation results for protocols that are supported by both of them. Thus, we
expect that the comparison of bridge and articulation detection approaches that is
performed in this work is fair.
The complete approach that is described in Chapter 5 is implemented. As proposed

in Section 5.3, the search in the forward phase of the algorithm is integrated with a
reactive routing protocol. AODV was used as the basis of DIBADAWN in this work.

9.4.1. Jist/swans Simulator Setup
High-quality simulator is just one segment of appropriate simulation methodology. The
simulation setup is equally important and it must be chosen so that it resembles re-
ality. An inappropriate setup leads to unrealistic behavior of protocols and to wrong
conclusions, as it was shown in Section 9.2.
There are numerous aspects of simulation setup that may influence simulation results.

In order to ensure validity of conclusions, a set of different setups is used during evalu-
ation process. The approach is evaluated in setups that use Ricean (with Ricean factor
K set to seven) and Rayleigh fading, in NPART/Berlin and NPART/Leipzig topologies,
with link acceptance thresholds of 0.1 and 0.316.
The simulation outcomes are compared to the outcomes of Motelab experiments and

results from Section 9.2. It was observed in evaluation of biconnectivity testing algo-
rithms based on proactive topology management protocols that the accuracy of results
is generally better for lower link acceptance threshold of t = 0.1. If threshold is set to
t = 0.316, the precision is high (often over 0.9) but the recall is considerably reduced as
well as the F-measure of the decisions.
That prompted us to present the results of the weaker link acceptance threshold in

highest detail, and only a subset of results of other simulation setups. The reasoning
behind this decision is to compare DIBADAWN to scenarios where proactive performs
better. The evaluation performed in Motelab has already demonstrated the stability of
the proposed distributed algorithm and associated voting rules with respect to changes
in the link acceptance threshold. This stability is also present in Jist/swans simulation,
so the advantage of the distributed approach is only larger for the higher link acceptance
threshold.
Each of the simulation setups has been studied on 50 different topologies. In the

preparation phase of the simulation, it was determined which links in the network pass
the acceptance threshold and this topology is used to calculate the set of bridges and
articulation points. The DIBADAWN decisions are compared against this set. There
exist five constant bit rate flows between random pairs of nodes in the network.

7The components are not compatible with all ns2 versions, and their integration in supported versions
requires numerous and tedious manual corrections of unsupported source code.

178

9.4. Implementation of the Approach in Jist / SWANS Simulator

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.9.: Voting rules for bridge detection. NPART/Berlin placement, Rayleigh fad-
ing. Link acceptance threshold t = 0.1.

A DIBADAWN search is initiated every 5 seconds in static topologies, and in every
topology 2000 searches are executed. Every 30 seconds (same as in the OLSR evaluation
in Section 9.2) all nodes in the network are queried on their decisions and those decisions
are compared against the correct decisions.
Nodes are configured to purge their histories of decisions, so that only the decision

from last 60 seconds are preserved (the implementation also supports keeping of a fixed
number of decisions, regardless of their timestamp, but that option has not been used
in simulation). This may result in situation that a node does not have enough votes to
execute a class of voting rules: e.g., if a node has participated in six searches within last
60 seconds, it cannot participate in voting that requires set of ten last voters. The node
simply does not execute such rules. In an application of the detection algorithm where
decision is needed a node would rely on decisions based on smaller voter sets until voter
set reaches desired size.

9.4.2. Evaluation Results in Static Topologies

This section evaluates accuracy of proposed approach in static topologies that are cre-
ated by the NPART topology generator, described in Chapter 8. Same as in Section 9.2,
Rayleigh or Ricean fading are used as signal propagation model. This section contains
the summary of results for the NPART/Berlin topologies. Detailed simulation results
of NPART/Berlin and NPART/Leipzig topologies can be found in Appendix D.

Bridge Detection

Same as in the Motelab experiments, trusted and intelligent-majority rules are the best,
and difference between them is minor. The unanimous rule is one of best rules with
regard to F-measure which is unexpected and opposing to results of Motelab experi-
ments. However, its reward is lower by approximately 30% if compared with the reward
of trusted and intelligent majority rules (Figures D.10(b) and D.14(b), page 230). Thus,

179

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.10.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.

the unanimous rule mostly detects the bridges at network periphery. If compared with
Motelab experiment results, the weighted rule has slightly lower precision, but it im-
proves recall. In simulation evaluation it has better F-measure than in experiments, but
still not as useful as the trusted and intelligent majority rules because of its need for
learning phase.
In Rayleigh scenarios, the direct decisions of the algorithm have excellent recall but

their precision is among the lowest (worse is only the Single-for rule). Voting rules
provide considerably better precision (32.9% for the intelligent majority rule) with mi-
nor compensation in recall, resulting in increase of F-measure of up to 14.1% (for the
intelligent majority rule). In Ricean fading, the improvements are also notable. For
instance, the intelligent majority rule provides improvement in precision of 19.7% and
in F-measure of 8.9%. It should be noted that if the accuracy of one-round decision
is already high, the relative improvement is smaller in its absolute and relative value.
However, with overall increase in accuracy, improvements are more difficult to achieve8.
If we compare results of DIBADAWN to results of proactive approach from Section

9.2, DIBADAWN has clear advantage. In presence of Rayleigh fading, both approaches
experience reduced accuracy, but DIBADAWN with intelligent-majority and trusted
rules still has F-measure that is over 0.8. OLSR in Leipzig placement achieves F-measure
that is 0.578 while in NPART/Berlin scenarios its F-measure is only 0.43. If there exists
Ricean fading on the channel, DIBADAWN preserves its advantage in accuracy: F-
measure of OLSR-based detection is 0.68 in NPART/Berlin scenarios and goes up to
0.82 in NPART/Leipzig scenarios while F-measure of DIBADAWN is above 0.99.

8With regard to this improvement, accuracy is similar to availability. For instance, an increase in avail-
ability from 0.99 to 0.999 may seem minor (relative improvement is only 0.9%) but it is considered
as an order of magnitude improvement due to tenfold reduction in system downtime.

9Detailed results of DIBADAWN evaluation in NPART/Leipzig topologies can be found in Appendix
D, Figures D.9 to D.12, page 230

180

9.4. Implementation of the Approach in Jist / SWANS Simulator

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.11.: Voting rules for articulation point detection. NPART/Berlin placement,
Rayleigh fading. Link acceptance threshold t = 0.1.

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.12.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.1.

Articulation Point Detection

In articulation point detection, there exists rather large group of rules with similar
F-measure. They provide the common tradeoff between precision and recall, keeping
the F-measure almost constant. The rules from the second voting round are clearly
established as leaders in individual categories. The rule Sf,M, T,wB,wD −Majority
has decent precision and very good recall and reward, which makes it one of our favorites
(it also achieved good results in Motelab experiments). Rules Sf,M,wD −Weighted
and Sf, T, wD −Weighted have preference to high precision, sacrificing some recall in
turn, but they stay close to rule Sf,M, T,wB,wD−Majority with regard to F-measure
in Rayleigh scenarios and even outperform it slightly in Ricean scenarios.
Same as for the bridge detection, the direct output from the algorithm has good

181

9. Implementation and Verification of the Approach

recall and low precision. In comparison with it, the proposed voting rules provide both
improvements in recall (e.g., the Sf,M, T,wB,wD−Majority has 28.3% better recall
in Rayleigh fading scenario) and in precision (e.g., Sf, T, wD −Weighted has 40.7%
better precision in Ricean fading scenario). This results in improvements of F-measure
of up to 12% in Rayleigh and 16.9% in Ricean fading scenarios.
Compared to OLSR, DIBADAWN is particularly advantageous if Rayleigh fading is

present on the communication channel. DIBADAWN’s F-measure is better for 45% or
more: for t = 0.1, DIBADAWN in NPART/Berlin has F-measure of 0.65 versus 0.44
of OLSR. In NPART/Leipzig topology, for t = 0.1 OLSR and DIBADAWN both reach
F-measure of approximately 0.6.
It was already noted that in presence of Ricean fading OLSR-based detection dras-

tically improves its performance. For NPART/Leipzig and t = 0.1 it even outperforms
accuracy of DIBADAWN – its F-measure is 0.82 which is better than DIBADAWN’s
0.76 (Sf, T, wD−Weighted rule). However, in NPART/Berlin topologies, DIBADAWN
is better than OLSR for both link acceptance thresholds. The Sf, T, wD −Weighted
rule is the best for link acceptance threshold t = 0.1. Its F-measure is 0.8 which is
higher than OLSR’s 0.7210.
This comparison of DIBADAWN and OLSR-based biconnectivity testing emphasizes

the importance of introduced voting rules. Without them, the detection accuracy would
be worse than for OLSR-based biconnectivity testing. But the introduction of rules
greatly increases the accuracy of decisions without additional communication overhead.

Discussion of Simulation Results

Despite its lower communication overhead, accuracy of DIBADAWN outperforms OLSR
in all but one simulation scenario. DIBADAWN is particularly advantageous for bridge
detection where thanks to its intelligent rules, it is constantly better than the OLSR
based detection. Also, it has better resilience to high variations of signal strength
(Rayleigh fading), where it bests the OLSR-approach in every category.
The voting rules are crucial for this advantage of DIBADAWN. Without them, deci-

sions of distributed bridge and articulation point detection are the same or worse than
the decisions made with support of OLSR. The voting rules bring clear improvements
in accuracy so it was possible to improve precision of single-round decisions up to 40.7%
and recall up to 28.3% (improvements may differ, depending on the scenario and the
voting rule).
The results of Jist/swans evaluation are comparable with Motelab experiments. Be-

havior of DIBADAWN and voting rules in simulation is similar to their behavior in
experiments, and the values of accuracy metrics show reasonable fit. A partial surprise
is that simulations with Rayleigh fading have worse fit to experiments than those with
the Ricean fading, although Motelab is located in a building where most of nodes are
not placed in line-of-sight. Such behavior is explainable if we consider that in a building
there are obstacles which are impenetrable by the wireless signal. In such situations, the
fading plays diminutive role and shadowing is dominant – links that penetrate through
multiple walls are of exceptionally poor quality and remain so. The experimental im-
plementation of DIBADAWN has been able to profit from this sort of stability in the
10Detailed results of DIBADAWN evaluation in NPART/Leipzig topologies can be found in Appendix

D, Figures D.17(a) to D.20, starting from page 232

182

9.4. Implementation of the Approach in Jist / SWANS Simulator

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.13.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.316.

network since such links are unlikely to be observed and included in search tree nor
recognized as cross-edges. Fading is implemented in simulation as a stochastic process
and it may produce very unstable links that introduce faults in the detection algorithm
providing contradicting decisions to the voting rules, reducing their effectiveness.
Finally, it must be noted that differences in accuracy of second round rules in static

networks are small. It is difficult to appreciate the need for their evaluation and use,
but their role will become clearer in the following sections when node mobility or local
searches are introduced.

9.4.3. Assessing the Effects of Environmental Changes to Accuracy of
Approach

So far, the effectiveness and accuracy of the algorithm in static topologies for a single
link acceptance threshold has been evaluated. This section assesses behavior of approach
and accuracy of its decisions for different link acceptance thresholds, if weights for voting
rules are incorrect, and with node mobility.
Through comparison of the simulation results with the experiments in the testbed, it

has been concluded that simulation setups with Ricean fading possess better resemblance
to the experiences from experiments.
The results of evaluation for NPART/Berlin placement model with Ricean fading are

presented in detail in order to avoid tedious repetition of similar diagrams. Additional
advantage of NPART/Berlin as a node placement scenario is its lower node density,
where node mobility produces larger topological changes than in denser NPART/Leipzig
topology.

Detection Results for Different Link Acceptance Threshold

In this section, the link acceptance threshold is set to 0.316. The Figures 9.13 and 9.14
show the evaluation results.

183

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.14.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316.

For link acceptance threshold of t = 0.316, the trusted rule for bridge detection
experiences issues with detecting cycles over links that should not have been accepted
to topology. As predicted in Chapter 4, the number of false positives in link detection
rises with increase of link acceptance threshold. The effects are more pronounced for
larger k since effects of false positives in link detection are cumulative for the trusted
rule. The majority rule achieves best F-measure in this scenario, exceptional recall
and decent precision. The weighted rule has better accuracy in this scenario than in
simulations for t = 0.1 and Motelab experiments, reaffirming previous judgement that
it is not particularly stable.
Evaluation of rules for this threshold demonstrates the importance of the reward

metric. If we compare recall of the majority and the trusted rule, the majority rule is a
clear winner (for k=5, the majority rule has recall of 0.945, the trusted rule has 0.84).
However, in terms of reward, the trusted rule is actually better: its average reward (for
k = 5) is 161 versus 155.1 of the majority rule (Figures D.25(b), and Figure D.26(b) on
page 235). So, trusted rule fails to detect some bridges on network outskirts but detects
more bridges in network core, which is a better option in most of application scenarios.
The improvements of the voting rules over direct detection results are modest – five

to six percent in F-measure of trusted and intelligent majority rules, and eight for the
majority rule. Same as before, improvements are more notable for precision – precision
of the intelligent majority rule is 23.7% higher than of the direct decisions. The trusted
rule retains the advantage with regard to reward over direct algorithm outcome: the
direct decisions have higher recall than trusted rule (0.892 to 0.839) but the average
reward of the trusted rule is 16.7% higher (161.1 to 138.5).
Tables 9.9 and 9.10 compare selected DIBADAWN rules with the OLSR-based bicon-

nectivity testing.
The accuracy of OLSR-based detection for link acceptance threshold t = 0.1 were

comparable with results obtained by DIBADAWN, but if the threshold is changed to
t = 0.316, DIBADAWN has important advantages. In bridge detection (Table 9.9),
DIBADAWN has slightly lower precision (maximum difference in favor of OLSR is 8.2%

184

9.4. Implementation of the Approach in Jist / SWANS Simulator

Decision System Precision Recall F-measure
NPART/Leipzig, Rayleigh

OLSR 0.897 0.324 0.473
Trusted 0.8565 0.7502 0.7998

Intelligent Majority 0.8784 0.7359 0.8008
Majority 0.6587 0.9522 0.7787

NPART/Leipzig, Ricean(7)
OLSR 0.951 0.495 0.651
Trusted 0.9066 0.8635 0.8845

Intelligent Majority 0.9291 0.8426 0.8837
Majority 0.7986 0.9628 0.8730

NPART/Berlin, Rayleigh
OLSR 0.824 0.31 0.45
Trusted 0.7556 0.7042 0.7289

Intelligent Majority 0.8016 0.6860 0.7393
Majority 0.6554 0.9280 0.7682

NPART/Berlin, Ricean(7)
OLSR 0.903 0.397 0.551
Trusted 0.8523 0.8393 0.8457

Intelligent Majority 0.8985 0.8084 0.8510
Majority 0.7984 0.9448 0.8654

Table 9.9.: Comparison of proactive and DIBADAWN-based bridge detection algo-
rithms. Link acceptance threshold t = 0.316, DIBADAWN parameter k=5.

for NPART/Berlin topology with Rayleigh fading) but much better recall, in particu-
lar for the majority voting rule. The least advantage of recall of majority voting over
OLSR is 0.467 (the absolute difference between achieved recalls, which is improvement
of 94%) for NPART/Leipzig scenario with Ricean fading and the improvement factor is
almost three for both scenarios with Rayleigh fading. This advantage of DIBADAWN
is consequently transferred to improvements in F-measure where DIBADAWN has im-
provements of 0.23 to 0.32 in absolute difference which translates to improvements of
36% to 69%.
OLSR-based approach has advantage over DIBADAWN in precision for articulation

point detection. In three out of four studied cases, its precision is over 0.93 which is
impressive. However, this high precision comes at the price of its reluctance to declare
a node as an articulation point, so it detects only a small portion of the articulation
points which are detected by DIBADAWN. The advantage of DIBADAWN in recall is
substantial, so even the second-voting round rules with lowest recall of all second-voting
round rules clearly outperform OLSR by at least 30% (the Sf, T, wD −Weighted rule
in NPART/Berlin topology with Rayleigh fading). This is reflected in F-measure metric
and DIBADAWN with the associated voting rules is clearly better than OLSR in all
evaluated scenarios.
The comparison with OLSR-based detection stresses once more the importance of

voting rules and in particular the second-voting round. If direct DIBADAWN decisions
are taken, its accuracy fares worse than the OLSR, even in Rayleigh scenarios where

185

9. Implementation and Verification of the Approach

Decision System Precision Recall F-measure
NPART/Leipzig, Rayleigh

OLSR 0.958 0.342 0.504
U,M,T,wB,wD-Majority 0.6106 0.6758 0.6415
Sf,M,T,wB,wD-Majority 0.5804 0.8054 0.6746

Sf,M,wD-Weighted 0.7645 0.6035 0.6745
Sf,T,wD-Weighted 0.8404 0.5384 0.6563

NPART/Leipzig, Ricean(7)
OLSR 0.97 0.57 0.718

U,M,T,wB,wD-Majority 0.7205 0.8276 0.7703
Sf,M,T,wB,wD-Majority 0.6986 0.9029 0.7877

Sf,M,wD-Weighted 0.7379 0.8137 0.7739
Sf,T,wD-Weighted 0.8845 0.7400 0.8058

NPART/Berlin, Rayleigh
OLSR 0.807 0.286 0.42

U,M,T,wB,wD-Majority 0.7112 0.7262 0.7186
Sf,M,T,wB,wD-Majority 0.6416 0.8120 0.7168

Sf,M,wD-Weighted 0.7412 0.6183 0.6741
Sf,T,wD-Weighted 0.8282 0.5185 0.6377

NPART/Berlin, Ricean(7)
OLSR 0.931 0.461 0.616

U,M,T,wB,wD-Majority 0.7062 0.8605 0.7757
Sf,M,T,wB,wD-Majority 0.6595 0.9308 0.7720

Sf,M,wD-Weighted 0.7843 0.8522 0.8168
Sf,T,wD-Weighted 0.8819 0.7664 0.8201

Table 9.10.: Comparison of proactive and DIBADAWN-based articulation point detec-
tion algorithms. Link acceptance threshold t = 0.316, DIBADAWN param-
eter k=5.

it has biggest advantage if voting rules are applied. For instance, F-measure of direct
DIBADAWN decisions in NPART/Leipzig with Rayleigh fading is mere 0.43, which is
14% worse than the OLSR. First round voting rules improve it a bit, so majority rule
with k = 5 has F-measure of 0.51 which is equal to OLSR-based detection. The second
voting rules is decisive in improvement of DIBADAWN accuracy and with it F-measure
reaches range between 0.64 and 0.67 which is a clear improvement.

Same as in Motelab experiments voting rules do not change their behavior signifi-
cantly and as the consequence DIBADAWN experiences less issues with changed link
acceptance threshold than OLSR. It is particularly advantageous in presence of Rayleigh
fading, where it is better than the proactive-topology-management option by margin of
50% or more. Its decisions are also more balanced and it is capable of detecting consider-
able number of bridges and articulation points with substantial precision, unlike OLSR
which in this evaluation scenario has excellent precision but poor recall and F-measure.

186

9.4. Implementation of the Approach in Jist / SWANS Simulator

NPART/Leipzig, Ricean(7)
Correct weights Incorrect weights

Voting rule Precision Recall F-measure Precision Recall F-measure
wD 0.6774 0.7674 0.7195 0.6493 0.7977 0.7158

U,M,T,wB,wD-Majority 0.7205 0.8276 0.7703 0.6363 0.8071 0.7115
Sf,M,T,wB,wD-Majority 0.6986 0.9029 0.7877 0.6172 0.8849 0.7271

Sf,M,wD-Weighted 0.7379 0.8137 0.7739 0.6493 0.7975 0.7158
Sf,T,wD-Weighted 0.8845 0.7400 0.8058 0.7955 0.7393 0.7663

NPART/Berlin, Ricean(7)
Correct weights Incorrect weights

Voting rule Precision Recall F-measure Precision Recall F-measure
wD 0.7187 0.8229 0.7672 0.7984 0.8144 0.8063

U,M,T,wB,wD-Majority 0.7062 0.8605 0.7757 0.7836 0.8281 0.8052
Sf,M,T,wB,wD-Majority 0.6595 0.9308 0.7720 0.7356 0.8968 0.8082

Sf,M,wD-Weighted 0.7843 0.8522 0.8168 0.7987 0.8143 0.8064
Sf,T,wD-Weighted 0.8819 0.7664 0.8201 0.8619 0.7631 0.8094

Table 9.11.: Comparison of DIBADAWN-based articulation point detection for correct
and incorrect weight assignments. Link acceptance threshold t = 0.316,
DIBADAWN parameter k=5.

Weight Assignment and Its Effects on Accuracy

DIBADAWN actively uses weighted rules for articulation point detection. It has been
shown so far that second-round voting rules produce better results than simple rules
from the first voting round. However, all rules that achieved good results in the second
voting round used some sort of weights:

• Second-round majority rules include weighted rules from the first round.

• Second-round weighted rules include weighted rules from the first round and ad-
ditionally use weights that quantify accuracy of these rules from the first round.

It was explained in Chapter 5 that a learning phase must be executed in order to
estimate the values of weights. In previous sections weights were obtained for a given
deployment scenario: e.g., a learning phase was performed on five NPART/Berlin topolo-
gies for Ricean propagation model and these weights have been used in simulation of all
subsequent NPART/Berlin topologies with Ricean fading.
It has to be considered, as pointed out in Chapter 5, that network or its environment

may change during the lifetime, possibly invalidating the weights and influencing the
accuracy of rules. In order to evaluate effects of such changes to detection accuracy,
weights are derived from a mixed learning set in this section. Learning phase was
executed on five topologies created by NPART/Berlin, five created by NPART/Leipzig,
using both Ricean and Rayleigh fading propagation (20 different simulations have been
used to provide data for learning set).
The non-optimal weights derived from the mixed learning set are used to evaluate

detection accuracy in individual networks/propagation models. Table 9.11 shows the
results of evaluation if such incorrect weights are used. The accuracy remains good, in
particular of the weighted-degree rule from the first voting round and the second-round
majority rules. The weighted rules in second-voting round experience larger loss in
accuracy that goes up to 0.05 in NPART/Leipzig scenario. In NPART/Berlin scenarios
are even observed small accuracy improvements for some rules.

187

9. Implementation and Verification of the Approach

The effects of weight change are minor and they do not compromise the weighted
rules. The learning set which was used in this section was not optimized for a specific
topology and propagation model, yet the accuracy remained good. We believe that the
reasons for such behavior lie in fact that dominant factor for application of weighted
rules for bridge and articulation point detection is not in the absolute value of assigned
weights but in the relative ordering of weights, which remain rather constant.

Effects of Contention with Network Traffic on Accuracy of DIBADAWN

In the presented simulation results, DIBADAWN is competing for access to the wire-
less channel with five independent flows in the network. Additional network traffic in-
creases probability of collisions and packet losses both in forward and backward phases
of DIBADAWN. These losses are translated to algorithm faults, as described in Sec-
tion 5.5 and they may increase the number of false positives and false negatives in the
detection process.
In order to evaluate sensitivity of DIBADAWN to this additional traffic, additional

simulations with higher number of traffic flows have been executed.
Figure 9.15 shows the performance of selected rules as function of number of back-

ground traffic flows. As it can be seen, the reduction in accuracy for bridge detection is
scarcely noticeable. Decrease of accuracy for articulation point detection rules is slightly
larger, but the difference is still minute.

Introducing Mobility and Assessing its Effects on Accuracy

For evaluation of mobility effects on the DIBADAWN, the static placement from Berlin
is combined with a subset of moving nodes. A city-alike scenario is obtained where a set
of nodes forms static part of the network, and a smaller subset roams the city. RWM
model has been used for mobile nodes. Pause time between successive movement stages
of a node is set to 15 seconds. Node speed is selected from interval (7.2km/h, 18km/h).
The lower speed-limit is approximately pedestrian walking velocity, and the upper limit
is comparable with the average speed of a car in central city areas (a statistical study
[65] performed by the Department of transport in Great Britain determined that the
average speed of a car in central London area is 10.5m/h=16.8km/h).
Since the available mobility models in Jist/swans simulator do not provide accurate

modeling of the car movement (they tend to move faster in some sections, to move
slowly or experience a stall in other sections of the network/city), it has been decided
to use their average speed as the upper speed limit of RWM. In order to compensate
for topological changes produced by node mobility, DIBADAWN is executed every four
seconds instead of every five like in static scenarios. Since topologies are dynamic,
the omniscient observer recalculates connectivity graph before it evaluates quality of
DIBADAWN decisions.
Due to the sparse topology of the static part of the network, the topological changes

introduced by this mobility model are considerable. For instance, the average difference
∆ap in set of articulation points between successive 30-second sampling intervals is 10.83
(95% confidence interval is [9.96, 11.7]).

∆ap = |(APi\APi−1) ∪ (APi−1\APi)| (9.2)

188

9.4. Implementation of the Approach in Jist / SWANS Simulator

Unanimous Majority Intel.Majority

5 flows

10 flows

20 flows

F
−

m
e

a
s
u

re

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) Bridge detection.

Majority Sf,M,T,wB,wD−Maj. Sf,M,wD − Weigh.

5 flows

10 flows

20 flows

F
−

m
e

a
s
u

re

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Articulation point detection.

Figure 9.15.: Comparison of F-measure of selected voting rules in presence of increased
network traffic. NPART/Berlin placement, Ricean fading. Link accep-
tance threshold t = 0.1.

This difference includes both nodes that were not articulation points at the previous
sampling point (APi−1), but they are in the current (APi); and the nodes which were
articulation points at the previous sampling point but are no longer.
The effects of mobility on accuracy reduction are more pronounced for bridge than

for the articulation point detection. This was to expect since the best rules for bridge
detection were trusted and intelligent majority rules. They rely on trusted messages
and in presence of mobility, trusted markings start working against rule accuracy: a
single outdated trusted marking claiming that a link is not a bridge may overrule whole
set of recent markings that claim otherwise.
Other rules are affected as well and Figure 9.16 demonstrates this trend. It can be

seen that the detection has lower accuracy than in the static NPART/Berlin topology
with Ricean fading (Figure 9.10). For instance, the majority rule has excellent recall
but its precision is low and cannot be even compensated by increase in parameter k
(Figure D.29, page 236).
The voting rules are still capable of improving accuracy of direct decisions of the

189

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.16.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobile nodes. Link acceptance threshold t = 0.1.

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.17.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobile nodes. Link acceptance threshold t = 0.1.

algorithm. The changing topology and the wireless channel fading introduce numerous
faults into the algorithm. So it cannot properly detect bridges neither in the more
static parts of the network nor where the mobility is more expressed. The voting rules
considerably improve decisions of the detection algorithm, up to 38% for the intelligent
majority rule. The relative improvements are even larger for precision, where the single
round detection precision of 0.3 is increased to 0.54 (or 77.6%) by the intelligent majority
rule.
The weighted rules for articulation point detection show their importance in mobil-

ity scenarios. Due to their ability to differentiate between decision quality of voting
rules from the first voting round, they provide excellent detection results. The second-
round weighted voting rules are particularly effective. Rules Sf,M,wD − Weighted

190

9.5. Locality Characteristics of Wireless Multi-hop Networks and DIBADAWN

and Sf, T, wD −Weighted reach F-measure of 0.7. As usual, rule Sf,M, T,wB,wD −
Majority has best recall and reward but its precision is low (close to 0.5) and thus its
F-measure suffers.
The highest improvement in F-measure over direct algorithm decision of 27.4% is

provided by the Sf,M,wD −Weighted which is followed closely by the Sf, T, wD −
Weighted rule and its improvement of 26.8%. These improvements are caused by their
exceptional precision. The Sf, T, wD − Weighted rule improves the precision of the
direct decisions by 75.7%. If recall maximization is important, Sf,M, T,wB,wD −
Majority rule improves it by 8.2%, simultaneously increasing precision by 18.8%.

9.5. Locality Characteristics of Wireless Multi-hop Networks
and DIBADAWN

The average cycle size in random geometric graphs was analyzed in Chapter 6 in order
to estimate efficiency of DIBADAWN. The developed models show that the average
cycle size is rather small even for sparse graphs and that it has rather fast convergence
to three.
Based on this observation it was proposed to apply searches of limited forward ra-

dius (limited TTL of messages in the forward phase of DIBADAWN) with the goal of
communication overhead reduction. According to Equations 6.17, 6.25 and 6.32, and
Figure 6.6 (page 119) the average cycle size in a network with the average node degree
that is close to four (average degree of NPART/Berlin is 4.17) is below 7.3 (firm limit,
in accordance to Equation 6.17) and it may be as low as 6.59 (if approximation from
Equation 6.32 is applied). Thus, a forward search with TTL=4 covers all average and
below-average sized cycles (cycle is closed from two sides) and it should already provide
quite accurate detection results.
Some doubts on direct applicability of obtained results have been expressed in Chapter

6 because of simplifications that were used in the mathematical model:

• Real networks are not uniformly distributed.

• There exists non negligible impact of stochastic communication on biconnectivity
testing that was not included in model that was used in Chapter 6

• HCA cycles that are discovered by DIBADAWN may not be equally sized nor
shaped as the shortest cycles.

In order to answer these questions and resolve whether local searches can be used
for biconnectivity testing, this Section evaluates the accuracy of the algorithm a with
limited search radius. In addition to the mathematically predicted search radius of
four, the behavior of the algorithm for TTL=2 is evaluated (two is the smallest possible
forward search radius which is able to detect a cycle in a network).
Searches with limited forward radius produce less overhead but they also cover less of

network. In order to counter this, searches have to be executed more frequently. Instead
of executing a search every five seconds as it was done in Section 9.4.2, a node in network
starts a limited search every three seconds. Other parameters of the simulation setup
remain the same as it was described in Section 9.4.1.

191

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.18.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=2. Link acceptance threshold t = 0.1.

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.19.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=4. Link acceptance threshold t = 0.1.

Bridge detection results
Figures 9.18 shows the behavior of the algorithm if forward search radius is limited

to two. The recall of bridge detection is excellent if such a small forward radius is used.
The reasons are simple – probability of incorrect pairing of markings and false negative
in bridge detection is reduced due to extremely short path that markings travel in the
backward phase of DIBADAWN.
However, small search radius also reduces precision – edges that belong to cycles

longer than four are unaware of this fact and may be declared as bridges (unless they
also belong to another cycle that can be discovered with this small forward radius).
As the result, number of false positives grows and precision of all rules is considerably
smaller than for the complete search (compare Figure 9.10 with Figure 9.18). Precision

192

9.5. Locality Characteristics of Wireless Multi-hop Networks and DIBADAWN

of majority rule is close to 0.4. The weighted rule is slightly better, but it cannot develop
its potentials due to limited set of weights: all markings travel either one or two hops
down the search tree. Unanimous, trusted and intelligent-majority rules have acceptable
precision. Their F-measure is decent due to exceptional recall they all have. Still, it is
notably smaller than F-measure of rules in Figure 9.10.
If TTL of packets in the forward phase is increased to four, as suggested by the

developed mathematical model, the bridge detection process behaves almost identically
to the standard search where the whole network is covered by a single search. Precision,
recall, and F-measure of trusted and intelligent majority rules with TTL=4 in Figure
9.19 are very close to values in Figure 9.10.
The improvements of the voting rules are much more expressed for searches with

smaller search radius. Without application of voting rules, for TTL=2 the results are
of minor importance: the precision is only 0.36. Precision is increased by intelligent
majority rule to 0.667, or 82% with a minor loss in recall (recall is reduced by 2.7%).
The voting rules provide improvement of F-measure by 47.3%.
For TTL=4 improvements are considerable, although not so drastic as for the local

search with TTL=2 since the direct decisions of the algorithm are more accurate, and
the intelligent majority rule improves precision by 56.4% and F-measure by 30.6%. The
trusted rule provides similar improvement levels.
Articulation point detection:
Limited forward search for articulation point detection with TTL=2 causes consider-

able drop in accuracy and reward of almost all rules. This was expected, considering all
the errors in decision process that are caused by such a small search radius. The effects
of small search radius can be seen in Figure 9.20. The unanimous rule behaves more ex-
tremely than usual: disparity between its precision and recall has sharply increased. The
Sf,M, T,wB,wD −Majority rule has good recall and acceptable precision. If higher
precision is needed, the best is the Sf, T, wD−Weighted rule (the unanimous rule has
higher precision, but its recall is absolutely unacceptable). The Sf,M,wD−Weighted
rule has similar precision but smaller recall than the Sf, T, wD−Weighted rule. Max-
imal obtained F-measure is 0.69 for the Sf,M, T,wB,wD − Majority rule which is
mostly result of its high recall (0.82). Sf, T, wD −Weighted rule has better precision
(0.76) but lower recall (0.53) and F-measure of 0.63.
The characteristics of rules considerably improve if forward search radius is increased

to four, and it almost reaches accuracy that was obtained in full searches. The best
F-measure has the rule Sf,M,T,wB,wD - Majority – over 0.75. Other rules follow the
improvement, and the reward metric is particularly increased. The rules applied on
DIBADAWN decisions with search radius of two have reward between 300 and 400
(Figure D.38(b), page 239), while rules applied on DIBADAWN results with search
radius of four (Figure D.40(b), page 240) improve their reward to over 400 and some of
them approach 500.
For small search radius of two, the improvements of the voting rules are noticeably

high both for precision and recall. So for instance, the Sf, T, wD − Weighted rule
improves precision by 50.3% but also recall for 7.8%. The Sf,M, T,wB,wD−Majority
rule increases recall by 65.6% and precision by 18.4%. This results in overall increase
in F-measure which is up to 38.4% for the Sf,M, T,wB,wD −Majority rule.
Importance of voting rules remain high also for the searches with TTL=4. The

193

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.20.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2. Link acceptance threshold t =
0.1.

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.21.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4. Link acceptance threshold t =
0.1.

precision is increased up to 38.1% for Sf, T, wD − Weighted rule 11, recall of the
Sf,M, T,wB,wD−Majority rule is higher by 36.7% which brings F-measure improve-
ments of up to 25.4%.

Local searches for mobile networks

The evaluation of DIBADAWN application for mobile networks in Section 9.4.3 demon-
strated that using the same set of parameters for DIBADAWN as in static networks
11Unanimous rule provides even higher increases in precision of localized searches but it is disregarded

due to its minute recall.

194

9.5. Locality Characteristics of Wireless Multi-hop Networks and DIBADAWN

Precision Recall F−measure

No voting

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.22.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobile nodes. Link acceptance threshold t = 0.1. Forward search
TTL=4.

results in accuracy reduction, in particular for bridge detection. Node mobility creates
and breaks communication links so the DIBADAWN execution once per four seconds
results in operation on outdated information.

Mobile networks require more frequent DIBADAWN executions in order to compen-
sate for constant topology changes. However, frequent searches increase communication
overhead. The good detection results of DIBADAWN with limited forward search ra-
dius seem to provide excellent basis for resolution of issues introduced by node mobility:
searches are local and reduce communication overhead, thus they can be executed more
frequently, and frequent searches capture the actual network state more accurately.

Figures 9.22 and 9.23 show evaluation results of localized search in mobile scenario
that was defined in Section 9.4.3. TTL of messages in the forward phase of DIBADAWN
is limited to four, and searches are initiated once per second.

Increased search frequency brings improvements for bridge detection. Using com-
plete searches, F-measure of bridge detection was approximately 0.6 while now it is
over 0.7. The articulation point detection stays at the same level – F-measure of the
Sf,M, T,wB,wD −Majority rule reaches 0.7.

Similar as in the previous evaluations of the localized search capabilities, the voting
rules are crucial for its applicability. The bridge detection without voting rules would
have minute practical importance with its poor precision and low F-measure. With
voting rules, the results show remarkable improvement, so for instance the intelligent
majority rule improves precision 267% and F-measure 119%. Improvements in artic-
ulation point detection are not as huge as for bridge detection but still notable and
important. For instance, the Sf,M, T,wB,wD −Majority rule increases precision by
30.6%, recall by 22.4% and F-measure by 26.9%.

195

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Unanimous

Majority

Trusted

Weigh.−Degree

U,M,T,wB,wD−Maj.

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.23.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobile nodes. Link acceptance threshold t = 0.1. Forward
search TTL=4.

Summary of localized searches

It can be concluded from presented results that localized searches show great potential.
Localized search with TTL=4 imposes a loss of approximately 0.05 in the F-measure,
which is balanced by considerably smaller overhead per search. Using TTL smaller than
four is not recommended. Due to very high recall, their F-measure may be acceptable,
but they also introduce considerable number of false positives (reduced precision). If
best accuracy of decisions is required, DIBADAWN users should employ full searches.
Local search is excellent solution for bridge and articulation point detection in mobile

networks. It can be executed more frequently since a single search produces less commu-
nication overhead than a complete network search, thus capturing accurate topological
information in the network. Supported by voting rules it then achieves comparable or
better detection accuracy than the complete network searches.
The usefulness of information delivered by localized searches is rather limited with-

out voting rules. They thrive on diversity of topological information delivered by the
successive searches and provide accuracy that is comparable with those established by
complete network searches. The voting rules are particularly important for the searches
with minimal TTL of two, where they improve accuracy up to 47.3% for bridge detection
(F-measure of the intelligent-majority rule).

9.6. Notes on Bayesian Rules
Bayes classification has been described in Section 5.6.3, but so far it has been omitted
from the presentation of evaluation results. It is treated separately in this work since
it has shown very peculiar properties. In the evaluation, it has been noticed that its
accuracy strongly depends of the evaluation setup:

• Motelab experiments: the results were similar to those of weighted voting rule.

196

9.6. Notes on Bayesian Rules

Precision Recall F−measure

No voting

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

U,M,wD−Bay.

U,M,T,wB,wD−Bay.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.24.: Comparison of majority, weighted and Bayesian voting rules for articula-
tion point detection. NPART/Berlin placement, Rayleigh fading. Link
acceptance threshold t = 0.1.

Good precision, good recall, good F-measure.

• NPART/Berlin: they achieve excellent precision, in particular for higher values of
k. For example, the U,M,wD−Bayes rule with k = 10 reaches precision of 0.986
in Ricean fading environment. Recall is average in Ricean fading, but due to the
excellent precision value of F-measure remains good. In Rayleigh scenarios, recall
experiences considerable reduction.

• NPART/Leipzig: In presence of Rayleigh fading, Bayes classification constantly
votes against acceptance of articulation point hypothesis. In Ricean fading envi-
ronment it provides excellent precision and reduced recall (similar as in NPART
/ Berlin scenarios).

Bayesian rules also experience reduction in reward due to their reduced recall. This
property is not considered as the major issue – if DIBADAWN users are in need of a
very precise decision strategy, they would willingly accept such a trade-off. The key
problem of Bayesian rules is their instability: not a single rule in NPART/Leipzig setup
with Rayleigh fading was operational while in NPART/Berlin node placement with
the same propagation model and in the Motelab experiments they provided excellent
precision. Such behavior is opposite to behavior of majority-second-voting-round and
weighted-second-voting-round rules that exhibit constant performance over all evalua-
tion scenarios.
Because of this unpredictability, Bayesian rules have been removed from detailed

evaluation in this work. Still, their good performance in Motelab experiments cannot
be ignored. It is planned to test them in different testbeds and to determine whether
Motelab setup was accidentally beneficial for them, or they are indeed applicable in real
deployments.

197

9. Implementation and Verification of the Approach

Precision Recall F−measure

No voting

Sf,M,T,wB,wD−Maj.

Sf,M,wD − Weigh.

Sf,T,wD − Weigh.

U,M,wD−Bay.

U,M,T,wB,wD−Bay.

V
o

ti
n

g
 r

u
le

 m
e

tr
ic

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 9.25.: Comparison of majority, weighted and Bayesian voting rules for articu-
lation point detection. NPART/Berlin placement, Ricean fading. Link
acceptance threshold t = 0.1.

9.7. Application of DIBADAWN for Improvement of Route
Discovery Rates

This section provides a simple but illustrative example of DIBADAWN’s applicability
in WMNs: bridge detection can be used for success rate improvement of route discovery
in reactive routing protocols.
Reactive routing protocols have a threshold defining how many times a route search

is performed. If destination is not found within these attempts, it is declared as un-
reachable. For instance, unless a route reply is received after three route discovery
attempts, AODV protocol declares the destination node unreachable. Failure of a rout-
ing algorithm to discover an existing route can be abstracted as a logical partitioning
of a network – the source node which initiates route search believes that destination is
unreachable because the network has partitioned or because the destination has failed.
AODV additionally uses the technique named ”expanding ring search”. It should

limit the overhead of route searches by gradually increasing the TTL of successive route
requests. The route search starts with low TTL value and if destination is not found,
TTL of route request packets is gradually increased and searches repeated until the
whole network is searched, followed by two more attempts if needed12.
AODV uses network flooding as the route discovery mechanism.Numerous network-

wide broadcasting methods have been devised in the past, but flooding remains the
main route discovery mechanism in reactive routing protocols (e.g., [54] [96] [137]). It
retains its importance in protocols since it is robust, simple to implement, usually finds
the shortest path between nodes, and does not require specific additional information
such as the location awareness of nodes or additional assumptions such as the circular
communication range [129].
The flooding as a route discovery mechanism performs well in dense parts of a network

12More details can be found in Section 6.4 in [137]

198

9.7. Application of DIBADAWN for Improvement of Route Discovery Rates

where packet losses cannot significantly influence the search quality – the destination is
reached through other available paths. The worst consequence of a packet loss to the
route discovery in a dense network is that the shortest path is not found, but a route
with suboptimal length.
As already discussed in context of topology dissemination, the flooding is considered

overly redundant in dense networks and considerable efforts have been put in order to
reduce this redundancy [129] [174]. For instance, [129] proposes that a node should
not always participate in broadcast but with a certain probability. Articulation point
existence has particularly negative influence to the success ratio of such probabilistic
broadcasting scheme – an articulation point may decide not to forward the message,
believing it will reach the remainder of the network through other paths, although they
do not exist.
The issues of flooding in context of route discovery may arise when it reaches a bridge

in the network. If a route request packet is lost at a bridge, the search will not reach
a potentially large set of nodes in the network that are positioned beyond the bridge.
In consequence, the search has to be restarted after its timeout expires. New attempt
covers the already visited nodes, just to attempt the bridge traversal one more time.
This is not just a hypothetical scenario since it is exactly what was observed in the
community networks: they have numerous bridges, some of them with high packet loss
rates (in Berlin, 5.3% of bridges had probability of packet loss higher than 0.9 and 22.6%
of them higher than 0.5).
We can conclude that the flooding is highly redundant in dense sections of a network,

but insufficiently effective in sparse sections of the network. As a remedy for its reduced
coverage in presence of bridges, we propose repeated transmission of route request mes-
sages by nodes that are incident to bridges. In [155] was proposed to perform multiple
MAC broadcast at every node in the network as countermeasure to the effects of packet
losses. Such approach is simple for implementation and helpful in sparse parts of a
network but it may work against the improvement in dense sections because it increases
the packet collision probability. The idea in this work is to re-transmit the packets only
where it is really needed and where it brings highest benefits – at nodes incident to
bridges. Such scheme protects the dense parts of the network from unnecessary retries
and contention increase.
DIBADAWN is the obvious choice for bridge detection in this application scenario –

it is distributed and it can reuse information from route searches in its forward phase.

Simulation setup

The emphasis of simulation evaluation is on the measurement of the raw route discovery
success rate so the route caching is disabled. The route caching may (or may not)
improve route discovery success rates depending on previous requests, caching strategy
and configuration parameters. In presence of caching, the route request success rates
are highly dependant on the time an entry is preserved in route cache and on traffic
patterns (location of traffic sources, destinations and route-request frequency). But if
the raw (without caching) success rate is improved, it also increases the route discovery
success rate of protocols that employ caching.
AODV is used as the sample reactive routing protocol due to its wide use, numerous

implementations [21] [22] [53] and a formal description in RFC 3561 [137].

199

9. Implementation and Verification of the Approach

The effects of route cashing are eliminated through simulation setup. Route searches
are initiated every 200 seconds, which gives more than enough time for removal of all
entries from cache ([137] recommends cache hold time for routes to be 30 seconds).

The expanding-ring search of simulation of AODV is disabled. Expanding-ring strat-
egy was devised for use in small- and medium-sized, dense networks. Such network
properties increase the probability that a route is found in vicinity of the search source,
indeed reducing the number of disseminated route requests. The default protocol pa-
rameter values for expanding ring search are set for use in small dense networks: route
request TTL starts at one and increases by two until it reaches seven [137]. In Jist/swans
version of the protocol the network diameter (TTL_THRESHOLD) has been increased
to 19 but the incremental factor (TTL_INCREMENT) remains two.

The issues of the expanding ring search are notable if network is not so dense and/or
if it has larger diameter. Successive short-ranged searches cannot reach the destination
node if it is on a larger distance than the TTL value of RREQ packets. The AODV
protocol calculates the RREQ timeout as

2NODE_TRAV ERSAL_TIME(TTL_V ALUE + TIMEOUT_BUFFER)

which by its default parameter values equals to 80ms(TTL_V ALUE + 2). Thus, the
successive short-ranged searches and their timeouts may considerably increase the delay
between the initial route request performed by an application and the route discov-
ery. Some implementations of AODV introduce additional fixed delay between route
discovery retries (up to 2 seconds) further escalating the delay issue. The undesirable
consequences of such behavior have been observed by AODV’s developers so in its suc-
cessor (the DYMO routing protocol [54]) they no longer recommend the use of the
expanding-ring search.

For this application scenario of DIBADAWN, only bridge detection is required. Thus,
localized searches may be used without significant loss in detection accuracy, but with
benefit of the overhead reduction. DIBADAWN searches are initiated every eight sec-
onds at a random node in network with forward search radius of four. If DIBADAWN
determines that a node is incident to a bridge, route request message will be broadcasted
three times at such a node.

The forward search radius of two would be sufficient for this application of the de-
tection algorithm and it would further reduce the communication overhead of bridge
detection process. However, the higher TTL value is deliberately chosen in order to
simultaneously obtain reasonably accurate articulation point detection results (see Sec-
tion 9.5), so that they may be utilized by other applications and services in the network.
Although it creates higher communication overhead, such setup is more realistic.

Four different topology types are used in the evaluation process: NPART/ Berlin
and NPART/Leipzig with link acceptance threshold set to 0.1 and 0.316. The link
acceptance threshold is important in this scenario in order to determine which paths
exist in the referent topology – the nodes are asked to route test messages only to nodes
from the same network component. Combination of two-ray ground and Ricean fading
is used as the signal propagation model.

200

9.7. Application of DIBADAWN for Improvement of Route Discovery Rates

Simulation results

As a prelude, AODV was evaluated in a simulation setup that uses only the two-ray
ground propagation model. In NPART/Berlin topologies, 0.992 of routes are found, and
0.997 of route searches are successful in NPART/Leipzig topologies. In [129] [174] the
same behavior was demonstrated for uniformly placed nodes, so it can be concluded that
node placement model and bridge existence is irrelevant if such idealized propagation
model is employed.
In presence of Ricean fading, the behavior of route discovery process drastically

changes (Table 9.12). If link acceptance threshold is set to be t = 0.1 and NPART/Berlin
placement is used, its success ratio falls to be barely over half. As predicted in discussion
of the problem, high bridge share and unreliable links have drastically reduced search
success rate. The effects are less pronounced if link acceptance threshold is higher
(t = 0.316) so the success rate grows to 0.67. NPART/Leipzig topologies are less af-
fected than NPART/Berlin because of smaller ratio of bridges in such topologies and
in particular because the bridges are not as centrally placed as in NPART/Berlin (see
Figure 7.7, page 134). Still, with success rate below 0.78 they are far away from the
ideal values which are obtained with the idealized propagation model.
DIBADAWN-assisted route discovery outperforms the traditional AODV for both

link acceptance thresholds and in both topology types. The difference is particularly
remarkable for NPART/Berlin node placement with link acceptance threshold t = 0.1,
where the improvement of the search success rate reaches 40%. The success rate im-
provements in NPART/Leipzig topologies is lower because of the lower bridge share but
DIBADAWN-assisted searches still improve the discovery ratio by more than 10%.
Due to the low frequency of searches, a considerable number of packet transmissions

are caused by AODV’s local-neighborhood detection through heartbeats. Thus, the
average number of sent packets per initiated search (columns TX/search in Table 9.12)is
not drastically larger in case of DIBADAWN if compared with the plain AODV.
The overhead-per-success metric (it is shown in columns TX/success in Table 9.12)

is more relevant than the overhead-per-search metric, since only the successful route
discoveries are relevant for a user. It is defined as the average number of packet trans-
missions per successful route discovery.
If this metric is used, the DIBADAWN-assisted discovery shows clear advantage over

plain AODV – despite the overhead introduced by DIBADAWN, the number of sent
packets per successful route discovery is either the same or lower than in case of the
RFC-compliant AODV. In the standard AODV, numerous searches are unsuccessful
but they also contribute to the communication overhead, while DIBADAWN is more
efficient, discovers more routes with less retries, compensating for its initial additional
overhead.
In the simulation setup route request frequency has been deliberately set to a very

low value: there are 18 searches per hour in a network with 275 nodes which means
that a node initiates a route search once per 15.27h on the average. Such low frequency
increases the relative overhead of DIBADAWN per route search. If nodes are more
active, the communication overhead per search introduced by DIBADAWN is much
smaller and its advantage larger.

201

9. Implementation and Verification of the Approach

t = 0.1
AODV DIBADAWN(trusted)+AODV

Succ. ratio TX/search TX/success Succ. ratio TX/search TX/success
Berlin 0.514 5939.78 11544.0 0.69 7782.26 11269
Leipzig 0.745 9446.8 12637.38 0.826 9836.43 11904.29

t = 0.316
AODV DIBADAWN(trusted)+AODV

Succ. ratio TX/search TX/success Succ. ratio TX/search TX/success
Berlin 0.671 7573.27 11250.15 0.884 8657.54 9793.89
Leipzig 0.778 10088.7 12972.19 0.875 9988.36 11419.77

Table 9.12.: Success ratios for AODV with and without bridge awareness.

Summary

Results of this section demonstrate that bridges impact not only network’s reliability
but also the behavior of routing protocols and their route discovery success rates.
In presence of bridges in topology, the route discovery mechanism might not be able

to find a route between two nodes even if a valid route exists. Evaluation of AODV
routing protocol has shown that the probability of discovery of a route can be as low as
0.51.
The DIBADAWN-assisted route request forwarding brings clear improvements in suc-

cess ratio – depending on the node placement model and link acceptance threshold,
the improvements are between 10% and 40%. Because of their higher success rate,
DIBADAWN-assisted searches produce smaller communication overhead than the tra-
ditional AODV, if the average number of sent packets per successful route discovery is
used as a metric. If nodes in a network use DIBADAWN for improvements of the route
discovery process, they have at their disposal the DIBADAWN detection results ”for
free” and can use them for other purposes and applications, such as the traffic shaping
or replica management.

9.8. Overview of Voting rules

DIBADAWN is evaluated in experiments and in various simulation setups: static and
mobile networks, complete and local search, accurate and faulty voting weights, etc.
The number of voting rules and evaluation cases makes it difficult to track their overall
behavior so this section summarizes the behavior of voting rules through all of these
setups.
The overview of rule behavior is presented in Tables 9.13 and 9.14. Instead of numer-

ical quantification of rule accuracy that was used so far, descriptive quantifiers are used
in order to provide a quick guide to rule characteristics and their applicability. The rules
are compared by six categories: precision, recall and reward that are obtained in static
topologies (they summarize rule behavior in Motelab experiments, different topologies,
propagation models and link acceptance thresholds), rule behavior in presence of node
mobility, rule applicability for localized detection, and rule stability – is the rule sta-
ble over all evaluated scenarios, or its accuracy fluctuates from one evaluation setup to
another.

202

9.8. Overview of Voting rules

Rule name Precision Recall Reward Mobility Local Search Stability
Unanimous ++ - - - - - +
Single-for - - ++ ++ - - ++
Majority + ++ ++ + - +

Int.majority ++ + + ++ ++ +
Trusted + ++ ++ + ++ ++
Weighted + - - + + -

Table 9.13.: Summary of characteristics of voting rules for bridge detection.

Rule name Precision Recall Reward Mobility Local Search Stability
Unanimous ++ - - - - - - - ++
Single-for - - ++ ++ - - ++
Majority - + + + +/- -
Trusted - ++ ++ - + -

Weighted B. - - - - - - + - - -
Weighted D. + + + + + ++

U,M,T,wB,wD - Maj. + + + + + ++
Sf,M,T,wB,wD - Maj. + ++ ++ + ++ ++
Sf,M,wD - Weighted + + + ++ - +
Sf,T,wD -Weighted ++ + - ++ ++ +

Table 9.14.: Summary of characteristics of voting rules for articulation point detection.

Voting rules for bridge detection

The unanimous rule offers excellent precision. Its recall is acceptable in some scenarios
but its reward is constantly one of the worst, or the worst of all. Its accuracy is not
affected much by mobility, but reward remains low, indicating that it detects mostly
bridges on network outskirts. Similar behavior is obtained for localized searches.
Single-for rule is the opposite of the unanimous: its recall and reward are exceptional,

but its precision and F-measure are very low. It preserves this (rather undesirable)
behavior over all evaluation scenarios, earning excellent stability.
The majority rule offers good recall and reward and its precision is acceptable. It

adapts itself rather well to the topological changes in mobility scenarios. For localized,
in particular for TTL=2 it falls behind best rules.
The intelligent majority and trusted rules offer good to excellent precision (the in-

telligent majority rule has slight advantage), and high recall and reward (the trusted
rule has advantage, in particular in Motelab experiments). In presence of node mobility
intelligent majority is slightly better. For localized searches they achieve almost iden-
tical accuracy. The differences between them are small, and which one is to be applied
depends on user preferences for precision or recall.
The weighted rule is the biggest disappointment with its good precision but mea-

ger achievements in all other categories. Also, it is not particularly stable because of
differences in its accuracy in Motelab experiments and simulation results.

Voting rules for articulation point detection

The unanimous rule has exceptional precision in all scenarios, but its recall and reward
are very low. Unlike the unanimous rule for bridge detection, its performance is partic-
ularly bad for mobile scenarios and local searches. The single-for rule follows the same
pattern as in bridge detection and it should be avoided even if user needs high recall

203

9. Implementation and Verification of the Approach

– there are rules with comparable recall and reward but much better precision (e.g.,
Sf,M, T,wB,wD −Majority rule).
The majority rule has decent recall and reward rates in static scenarios but its pre-

cision is not particularly good. It is one of better performers in mobility scenarios.
It belongs to better rules for localized search with TTL=2 but already for TTL=4 is
overcome by other rules.
The trusted rule has exceptional recall and reward, but its precision is very low. There

exists differences in its precision between Motelab experiments and simulator studies so
the rule is considered unstable.
The weighted-Bridge voting performed poorly in all studied scenarios: low precision,

low recall, low reward. Such behavior has been suspected already at its definition: the
weights in Figure 5.13(a) do not show clear trends like the weights based on perceived
degrees from Figure 5.13(b). The rule tends to be unstable even within a single evalu-
ation scenario (e.g., hectic changes of F-measure in Figure D.8(a), page 229).
Thus, it is a bit surprising that both the trusted and the weighted-bridge rules belong

to some of the successful second-round voting rules. The reason behind it may be caused
by diversity they bring in decision process – their internal decision logic is different than
in other rules used in the second round of voting, so they capture important additional
information.
The weighted-degree rule is the best of all the first-voting round rules. Its precision,

recall and reward are balanced, and it participates in all presented second-voting-round
rules. The Sf,M,wD−Weighted rule has almost identical precision like the weighted-
degree rule, but higher recall and F-measure. In some scenarios the improvement in
recall is minor, but occasionally it goes up to 10.8%, like in mobility scenario (Figure
9.17). This rule demonstrates capability of second-round voting to improve one property
(in this case recall) without reduction in another (precision).
The Sf,M, T,wB,wD−Majority rule provides excellent recall and reward in static

and mobile scenarios while its precision is good. Its accuracy for TTL=2 is exceptional,
considering the extremely limited search radius (F-measure is close to 0.7). If search
TTL is set to four, its F-measure reaches 0.75.
The U,M, T,wB,wD −Majority rule has slightly higher precision and lower recall

than the Sf,M, T,wB,wD−Majority rule, with similar F-measure. Both of these rules
provide excellent stability – no matter in which scenario they are used, they preserve
the same behavior and belong to top performers.
The Sf, T, wD − Weighted rule has very good precision and decent recall. It is

particularly good in mobile networks and one of better in localized search with TTL=4
(its precision is second only to the unanimous rule but its recall is much higher). Its
main issue is rather low reward.
We can conclude that majority second-round voting provides excellent results with

rather small additional effort (it is not necessary to evaluate accuracy of the first-round
voting rules as for the second-round weighted voting). Their recall and reward rates are
higher than precision, so they are to be used in scenarios where this is more important.
If precision is more important than recall, the weighted second-voting-round rules should
be used.

204

9.9. Summary

9.9. Summary

The evaluation of DIBADAWN and voting rules was performed in Motelab wireless
testbed and in the Jist/swans simulator. One of the evaluation goals was to test the
stability of the algorithm and voting rules under various conditions, so they were evalu-
ated in setups that combine different topology types, link acceptance thresholds, prop-
agation models. Additional test were performed to evaluate behavior of DIBADAWN
in presence of mobile nodes, inaccurate voting weights, and varying traffic rates.
The results of both evaluation methodologies are consistent and ensure us that the

proposed approach may be effectively deployed in practice. The implementation expe-
riences from the Motelab experiments confirm that DIBADAWN may be successfully
executed even by nodes with very limited processing capabilities, using less than 10KB
of operating memory.
The approach which was proposed in the literature was also evaluated in this chapter:

proactive topology management and application of Tarjan’s DFS for biconnectivity test-
ing to the obtained topology. The simulation results confirmed that the proactive routing
protocols cannot adapt to harsh conditions which are encountered in reality, as it was
predicted in Chapter 4. Proactive topology management approach provides excellent,
almost perfect detection results in scenarios with the idealized two-ray-ground propa-
gation model, but in presence of signal fading, the optimal detection results promptly
vanish, and only the decisions at the node level are acceptable.
Channel fading introduces numerous faults to DIBADAWN as well. Empowered with

the extensions from the voting theory, accuracy of DIBADAWN decisions outperforms
the proactive approach although DIBADAWN has smaller communication overhead.
DIBADAWN advantage is particularly large in no-line-of-sight scenarios (Rayleigh fad-
ing), and in all scenarios where higher link acceptance threshold is needed.
The localized searches (searches with radius smaller than the network diameter) were

proposed in Chapter 6. They are based on the mathematical model founded upon the
uniform node placement and it had to be determined if it is applicable in non-uniform
node placement which are common in real networks. Evaluation in Section 9.5 has
shown that it performs well despite simplifications and approximations that were used in
deriving of equations for the average cycle size. The evaluation performed in this chapter
closes the engineering cycle: it is common to use simplifications during system modeling,
but conclusions derived from model must be evaluated under realistic conditions in order
to ensure the agreement of model predictions with the actual behavior of system.
The complete-network searches are recommended if detection accuracy is the major

priority. If communication overhead minimization is more important (e.g., in resource
constrained networks such as wireless sensor networks), localized searches provide better
option: their accuracy is slightly lower than of the complete searches, but the commu-
nication overhead per search is considerably lower.
As expected, node mobility reduces the accuracy of approach and demands for higher

frequency of DIBADAWN execution in order to capture new state of network topology.
Increase in search frequency improves the detection results but it also produces higher
communication overhead. A local DIBADAWN search produces substantially less over-
head than the complete search, thus local searches may be executed more frequently
than complete searches. Frequent localized searches improve DIBADAWN accuracy so
that it approaches the accuracy observed in the static scenarios. These characteristic

205

9. Implementation and Verification of the Approach

make localized searches exceptionally well-suited for mobility scenarios.
The characteristics of voting rules were also evaluated in this chapter. Not all of the

rules proposed in Chapter 5 have desirable characteristics and high accuracy. The best
rules for bridge and articulation point detection have been recognized in this chapter.
The rule accuracy was not the only selection criteria. It has been observed in experi-
ments and simulation that some rules provide very good accuracy in several evaluation
setups, but disappoint in others. Such rules are considered unstable and they are not
recommended for application in practice.
The evaluation has demonstrated that voting rules provide three major benefits:

• Voting rules improve decision accuracy at zero communication overhead. Without
voting rules, DIBADAWN was constantly outperformed by the OLSR-based bi-
connectivity testing. The successive searches capture different information on net-
work topology and provide different views of the topology to the decision making
nodes. Nodes are able to utilize this information, improve the accuracy of deci-
sions and outperform OLSR-based approach. The increase in accuracy brought by
the voting rules is confirmed both in simulation and experiments. For instance,
the F-measure of direct DIBADAWN decisions for bridge detection in Motelab
experiments is 0.69, while the trusted rule with k = 5 provides F-Measure of 0.87.

• Voting rules provide better adaptivity of the biconnectivity testing in WMNs to
application needs, without changes in core functionality of the detection algorithm.
The bridge and articulation point detection algorithm is executed as it is described
in Section 5.3, but voting rules enable a user to choose the detection characteristics
that are best suited for the needs of its application. A good example of this
capability of the approach can be found in Table 9.8 which evaluates experimental
results. User may choose a rule with excellent precision (0.96), excellent recall
(0.94) or balance of two (F-measure close to 0.8).

• Voting rules deliver their decisions simultaneously so it is possible to concurrently
use more than one rule. Due to the tradeoff between precision and recall, it is often
impossible to produce decisions that excel in both categories, while it is possible to
increase one metric at the expense of the other. Two application that have mutu-
ally contradicting needs (the first application needs high precision, the second high
recall) can both get decision outcomes that suite their needs. Proactive detection
approaches may be configured for a given property (e.g. improved precision) but
they cannot simultaneously deliver decisions that possess an opposing property
(excellent recall).

206

10. Summary and Outlook

This Chapter summarizes the contributions of the thesis, discusses the benefits and
issues of the approach, and points out several promising extensions of the presented
work.

10.1. Contributions

At the beginning of the work on this topic, there were several common assumptions in
the literature: proactive topology management provides absolutely accurate topology
information at every node in static networks with a minor reduction of accuracy in
presence of node mobility, bridges and articulation points are rare in connected networks
(equivalently – networks are dense and almost always 2-connected), the artificial node
placement models provide acceptable approximation of real networks (Table 10.1).
In this thesis each of these claims was verified and it was shown that they cannot

be taken for granted, or that they are plainly incorrect. The principal reason for in-
correctness of related approaches was improper modeling of WMNs and lack of model
comparison to measurements.
Probably the most astonishing revelation in course of this work was that the related

approaches for biconnectivity testing in WMNs are completely unaware of issues in
topology recognition process introduced by unreliable message delivery in wireless net-
works. All of them have been blindly accepting the on-off communication link model
that has been established in wired networks (where it is accurate), ignoring the stochas-
tic nature of the wireless communication. This is best illustrated by the fact that none of
the related approaches attempts to define network topology for communication channel
with the stochastic behavior, as it was done in Section 2.2.1. Such rough approximation
of wireless link behavior in literature has resulted in numerous unrealistic assumptions
in protocol development, improper parameter selection and unawareness of difficulties in

State-of-the-art This work
Uniform and grid placement, NPART and Uniform placement,

Network models Path loss propagation Rayleigh and Ricean propagation,
Measurements

Occurrence of bridges Low / Numerous
and articulation points non-existent unavoidable in practice

General approach Proactive topology management, Distributed algorithm, hybrid activation,
DFS for detection decision making under uncertainty

Evaluation Simulation Simulation and
methodology experiments
Accuracy of At node level: acceptable,

proactive approach Excellent accuracy At network level: no added value

Table 10.1.: Comparison of state-of-the-art for bridge and articulation point detection
and findings of this work.

207

10. Summary and Outlook

obtaining the detailed global system state in a large distributed system with loss-prone
communication channels.
One of the commonest assumptions in literature is that a proactive topology man-

agement protocol can deliver accurate topological information to nodes in a WMN. In
Chapter 4, stochastic models of heartbeat link detectors have been developed. The
probability of erroneous link-detection caused by unreliable communication channel was
derived. The results show that errors in link detection inevitably exist no matter which
HLDs are applied in a network, or which link acceptance threshold is used.
If errors in output of an HLD are to be kept within acceptable range, its parame-

ters have to be selected appropriately to fit the network characteristics and the link
acceptance threshold. However, parameters that are optimal for one network type and
link acceptance threshold may be completely inappropriate for a network with different
characteristics. The optimally configured HLDs can provide error probability of 0.05
to 0.1 (depending on network characteristics and threshold t), while the link-detection
error probability of misconfigured HLDs reaches 0.7.
The effects of HLD errors on behavior of proactive topology management protocols

are profound. The mean value of the number of erroneously detected links grows linearly
to the number of network links: |e| · PE (PE is the probability of erroneous detection
of a link). The possibly inaccurate output of HLDs is propagated through a network
by proactive topology management protocols. The topology delivered by a proactive
topology management protocol to network nodes is inaccurate with high probability and
the results of biconnectivity testing may also be erroneous. For instance, in a network
with 200 edges and optimally configured HLDs for link acceptance threshold t = 0.5,
the probability of having all link correctly detected is 3.3 · 10−7.
At the beginning of work on biconnectivity testing in WMNs, it was difficult to ac-

cept this uncertainty and the fact that correctness of decisions cannot be guaranteed.
This stands in particular contrast to known graph-theory approaches for biconnectivity
testing where correctness of decisions is not questioned but taken as a mandatory char-
acteristic of biconnectivity testing algorithms. The differentiation with graph theory
with regard to correctness guarantees had to be made in order to create an approach
capable of operation in wireless multi-hop networks. The goal of biconnectivity testing
in WMNs is no longer to guarantee correctness but to maximize accuracy of decisions.
DIBADAWN is a distributed bridge and articulation point detection algorithm for

wireless networks, where nodes are cooperating through message exchange. It is based
on a class of Echo protocols that were altered so that they are better adapted to issues
(in particular, the packet losses) encountered in WMNs but also to some of the benefits
of wireless medium (e.g., the broadcasting nature of the communication channel). The
articulation point detection is inspired by Tarjan’s DFS.
The introduced changes improve the resilience of the algorithm to message losses and

reduce its communication overhead. The original Echo algorithms have O(e) message
complexity of an execution round while DIBADAWN’s message complexity is O(n).
Biconnectivity testing based on the proactive topology management protocols does not
create communication overhead itself since it is executed at a single node, but the
topology management as its prerequisite creates high overhead of O(n2).
Message losses and node failures cause faults in DIBADAWN and it may produce

incorrect decisions, reducing its accuracy. The systematic treatment of failure modes has
simplified the identification of possible corrective actions and analysis of their benefits

208

10.1. Contributions

and drawbacks. Based on this analysis, DIBADAWN was extended to recognize some
of the faults and to prevent their conversion to erroneous algorithm states.
Although beneficial, the detailed fault-error-failure analysis is seldom seen in WMN

research. It provides clearer view at capabilities of an algorithm in presence of faults,
it is easier to determine the usability limits of the algorithm as well as to develop its
improvements.
It is difficult, if not impossible, to recognize all faults and remove all erroneous states

from the algorithm. A set of voting rules organized in two tiers is proposed as fault
masking mechanism for improvement of the accuracy of decisions. The voting rules
operate on a set of latest outputs of DIBADAWN. The rules improve decision accuracy
but they do not increase the communication overhead.
The approach developed in this work does not require the same perception of the

network topology at each of its nodes, which is a precondition for bridge and articulation
point detection algorithms which rely on accurate topology knowledge. The global
knowledge is powerful and useful in networks with reliable communication, but it is
counter-productive in systems loaded with uncertainty such are the WMNs. Its ideal is
to know all about the network, while our approach aims to know much less, yet sufficient
for biconnectivity testing. In a system loaded with uncertainty, this second approach
is brings more benefits. In particular, the proposed voting rules exploit the diversity
of knowledge about network’s topology obtained from successive searches at each of
network’s nodes.
Without voting rules, DIBADAWN was constantly outperformed by the OLSR-based

biconnectivity testing. This is expected since DIBADAWN uses HLD(1, 1) which in
static networks has higher probability of errors in link detection than the combination
of HLD(2, 2) and HLD(3, 2) that are used by OLSR (Figure 4.5(a) at page 52 and
4.7(a) at page 54).
The successive searches in DIBADAWN capture different information on network

topology and provide different views of the topology to the decision-making nodes. Vot-
ing rules are able to utilize this information, to considerably improve the accuracy of
decisions, and to outperform OLSR-based biconnectivity testing. The increase in accu-
racy brought by the voting rules is confirmed both in simulation and experiments. So for
instance, the F-measure of direct DIBADAWN decisions for bridge detection in Motelab
experiments is 0.69 while the trusted rule applied on last five algorithm execution results
in F-Measure of 0.87. Similar improvements are observed in simulation. For instance, if
Rayleigh fading is used and link acceptance threshold set to 0.316, DIBADAWN clearly
outperforms OLSR-based detection: its F-measure for bridge detection is 36% to 69%
higher, and F-measure of articulation point detection is about 30% higher than the
F-measure of the OLSR.
In addition to the overall improvement in accuracy, voting rules provide adaptivity and

flexibility to the presented approach. Without changes in functionality of DIBADAWN,
a user can easily choose a rule that suites the needs of its applications. For example,
the evaluation of DIBADAWN in Motelab experiments shows that users may choose
between excellent precision (0.96), excellent recall (0.94) or balance of two (F-measure
close to 0.8). Since DIBADAWN functionality remains unchanged, different nodes in a
network may choose to use decisions of different rules without fear that it may affect
other users of DIBADAWN. More than one application may be concurrently deployed
at a single node and each of the applications may be using the rule that fulfills its needs,

209

10. Summary and Outlook

because voting rules deliver their decisions independently and simultaneously.
The acceptance of the uncertainty in the system and possible inaccuracies in detection

provided us considerable freedom in algorithm design and canceled some bounds that
were imposed on the deterministic detection approaches. The analytical results for
estimation of the average shortest cycle size in random geometry graphs have been
obtained in Chapter 6. The average length of shortest cycle in RGGs converges to three
already in networks of moderate density and it is less than eight in rather sparse networks
(the average node degree of four). This information is used for further reduction of
communication overhead in DIBADAWN: instead of searches that cover whole network,
it may be possible to employ localized searches that cover only the k-neighborhood of a
node. The developed RGG models are used to calculate the appropriate forward search
radius for a network so the accuracy of bridge and articulation point detection remains
comparable to accuracy of complete searches. The localized searches are particularly
useful in mobile networks, where they can be executed with higher frequency, capturing
topological changes faster and providing high accuracy of decisions.
Development of DIBADAWN as a biconnectivity testing algorithm that operates un-

der uncertainty would remain a pure academical exercise if the common assumption
in related work, that artificial topologies (such as uniform and grid placement) cap-
ture characteristics of real wireless multi-hop networks, would hold. This assumption
was challenged through a series of measurements in community networks of Berlin and
Leipzig.
The degree distribution observed in reality is considerably different than the degree

distribution of placement models which are widely used in theory and simulation of
WMNs. Particularly important for this work is that bridges and articulation points are
much more numerous in reality than in artificial models. Comparison of topological
properties between the measurements and the artificially generated topologies showed
substantial differences, demonstrating that the models described in literature are not
always sufficiently precise.
Various existing node placement generators for WMNs have been tested in unsuc-

cessful attempts to recreate the topological characteristics of community networks from
the case study. No matter which parameter combination was chosen, the properties of
topologies produced by existing node placement algorithms could not match the prop-
erties of measured topologies. In order to fill the observed gap between theory and
measurements, a node placement algorithm for realistic topologies (NPART) was devel-
oped and implemented as a freely available tool.

10.2. Outlook
This thesis enables research in three main directions: improvements of DIBADAWN,
extension of NPART capabilities so that it becomes a universal node placement and mo-
bility modeling tool, and applications of DIBADAWN for dependability improvements
in WMNs.

10.2.1. Improvements of DIBADAWN and Voting Procedures
The proposed approach to distributed bridge and articulation point detection has been
studied in detail. Its capability to operate in environments with channel fading was

210

10.2. Outlook

demonstrated and as well as its flexibility in fulfilling needs of its users. Its flexibility and
adaptivity to various deployment scenarios open numerous possibilities for its extension
and further research.
Bayes classification rules from the second voting round form a potentially powerful rule

set but they have not been presented in detail in this work because of their poor stability
over different evaluation scenarios. Their good performance in Motelab experiments
cannot be ignored so it is planned to perform additional tests of Bayes rules in
other testbeds in order to determine whether Motelab setup was accidentally beneficial
for them, or they are indeed applicable in real deployments.
The proposed approach relies on cooperative nodes and fault-free implementation

of the algorithm. The experiences from implementation of the algorithm for Motelab
experiments taught us that maintaining correct implementation is a tedious process,
requiring numerous tests after every change in source code. Testing process is very
complex since the errors in algorithm execution may originate from its implementation
but also from faults caused by the packet losses. It is easy to envision that some of
the implementations may not be as thoroughly tested as the implementation for the
Motelab testbed, creating an additional source of faults for the biconnectivity testing.
Finally, faults need not only occur because of packet losses and inadvertent implemen-
tation errors, but they may be deliberately injected by malicious users and nodes. Thus
it is necessary to evaluate the effect of Byzantine node behavior to detection
accuracy (this work has evaluated the detection accuracy in case of unpredictable and
loss-prone behavior of communication channel).
Peronne [138] has studied several well-known routing algorithms and shown that all

of them are highly susceptive even to very primitive attacks (such as antenna manipula-
tion). DIBADAWN should be tested in presence of nodes with faulty implementation,
primitive attacks from [138] and in presence of malicious nodes that deliberately target
its functionality, attempting to maximize errors in detection process.
The preliminary studies indicate that DIBADAWN may successfully recognize nodes

with inadvertent software errors: e.g., a node that does not directs messages to its parent
in backward phase of algorithm is easily identified. Some other unintentional coding
errors may be difficult or impossible to detect by other nodes (e.g., inaccurate pairing
of backward messages, not participating in backward phase occasionally). DIBADAWN
should be able to operate in presence of such faults since similar faults are caused by
the unreliable communication channel. It is unclear at the moment what would be the
behavior of DIBADAWN in presence of attackers that attempt to maximize the damage
in detection process. It is planed to assess their impact on decision quality, and to
develop countermeasures if possible (identify the faulty nodes).
Localized searches have been proposed in Chapter 6 and evaluated in Section 9.5

where it was shown that locality search has minor effects to the accuracy of decisions.
In the evaluation, the search radius was calculated from the average node degree for all
nodes in a network, regardless of the local node density.
Such application of the locality principle from Chapter 6 brings two implications.

First, it is necessary to know the average node degree in the network in order to calculate
the appropriate search radius. This requires a certain apriori knowledge that can be
obtained through degree sampling. But as the time passes and network changes, this
estimation may deviate from the actual state of the network. Second, averaging the
node degree over whole network obscures the accurate local information. Thus, an

211

10. Summary and Outlook

adaptive and localized approach to calculation of local-search radius should
be developed.
Nodes are supposed to independently estimate their degree and use Equations 6.17,

6.25 or 6.32 to estimate the TTL value for DIBADAWN forward messages. Thus,
in dense part of the network nodes should use smaller search radius and in sparser
sections the search radius should be higher. Not only that this should improve search
characteristics, but it also eliminates the apriori estimation of the average node degree
in the network.
In presented version of the detection approach, nodes are exclusively using their own

decisions, without cooperation with adjacent nodes: nodes cooperate in the exchange
and forwarding of edge markings but each node keeps decision of its voting rules for
itself. The cooperation of nodes in the decision making process and exchange
of decisions may provide accuracy gains and open possibilities for development of a
new class of cooperative voting rules.
Self-estimation of competencies. It has been explained in Chapter 5 that learning

phase is necessary if algorithm is to use any of its weighted voting rules. The evalu-
ation of sensitivity of the approach to altered weights in Section 9.4.3 has shown that
DIBADAWN obtains good accuracy even with sub-optimal weight assignments. How-
ever, it would be beneficial to develop an online process that would be capable of weight
estimation. It is likely that such approach would include intensive testing of links to
assess which acceptance thresholds they pass and a partial proactiveness that exchanges
the obtained link information in its k−neighborhood and utilizing the locality of WMNs.
That would decouple DIBADAWN from learning phase, increase its independence and
speed-up its deployment into new environments. Additionally, the self-estimation of
vote competence would enable weight assignment on node basis, instead of the glob-
ally determined and applied weights. Such autonomous node-centric weight assignment
should improve accuracy of weighted voting rules.

10.2.2. Improvements of NPART

The node placement algorithm NPART provides clear improvements if compared with
most of the existing artificial topology generators: its topologies are realistic and it
is very flexible – changes in the input data suffice to alter the properties of created
topologies.
NPART and accompanying metrics are suitable for generation of topologies that re-

semble community wireless mesh networks, but they may be unsuitable for other topol-
ogy types. If NPART is to become universal, it must be capable of generating vari-
ous classes of topologies such as the wireless sensor networks or industrial-application
WMNs. We believe that NPART core is general enough to support generation of other
topology classes, but it may be necessary to introduce new topology-quality metrics.
NPART guarantees the connectivity of generated topologies. In wireless mesh or

sensor networks, this is a common property. In some application scenarios, such as
Disruption Tolerant Networks, complete network connectivity is not encountered. For
such scenarios, NPART may be used to produce connected subnetworks of a globally
disconnected network.
NPART should be integrated with realistic node-mobility generators. In Chapter 9

NPART topologies were combined with the RWM applied to a subset of nodes to produce

212

10.2. Outlook

a mobile network, but the quality of resulting model would have been better if we were
able to introduce a realistic movement model. Mobility traces and measurements can
be found in the CRAWDAD archive [6] so the basis for this extension exists.
Each of the possible extensions must preserve the process which was used during

the development of NPART: measure a real system, analyze its properties, compare
properties of the system with properties of the output of existing modeling tools. If
they disagree, the algorithm has to be improved and evaluated until a new version of
the tool is developed, capable of reproducing the properties observed in reality.

10.2.3. DIBADAWN Application Scenarios

Flexibility of DIBADAWN detection methodology with regard to its accuracy, easy
selection of rules so that high precision, recall or F-measure are delivered, and its low
overhead make it applicable in various scenarios. The low resource consumption allows
it to operate even in networks with highly constrained resources.
Information on bridge and articulation point existence can provide considerable ben-

efits to other communication protocols as it was demonstrated on the example of the
reactive route discovery in Section 9.7. We believe that DIBADAWN can be used for
other purposes as well:
Real-time traffic support: limited bandwidth of communication links and limited

processing power of wireless nodes restrict the traffic throughput in a network. These
limitations apply for all nodes and communication links in the network, but in absence
of bridges and articulation points, even if some paths are congested another path with
sufficient performance may be discovered (because of the shared communication medium
and contention, the uncongested path may not be always found, even if network is 2-
connected). However, if a traffic flow must traverse a bridge or use articulation point
as a router on its path, alternative path does not exist and the congestion issues may
escalate – bridges and articulation points are possible bottlenecks for the traffic that
traverse them.
If there is no limitation on number of flows that share a congested communication

link or overloaded node, they may all miss their arrival deadlines because of the long
waiting times that are created at the congestion site. Rejection of incoming flows once
an articulation point reaches its capacity limits may be beneficial for already existing
flows. In order to preserve the traffic fairness in the network, a reservation or a priority
system needs to be employed.
Partitioning prevention: decisions of DIBADAWN could be used for connectiv-

ity preservation of WMNs as it was already proposed for other biconnectivity testing
algorithms [57] [80] [85] [123] [168]. If bridges and articulation points are detected,
various corrective actions may be performed, depending on network type, its task, and
willingness of a node to act in order to prevent the partitioning:

• Mobile agents for link strengthening: as it was proposed in [34] [63] nodes are
ordered to move to specific locations in order to minimize the time intervals in
which the network is 1-connected. Both [34] and [63] require location awareness
and assume path-loss propagation model (so that it is easy to calculate if there
will be a link between two nodes from their distance δ). It is questionable if these
results can be applied in real mobile networks for three principal reasons:

213

10. Summary and Outlook

– Signal propagation and link existence do not follow the on-off pattern which
is assumed in [34] [63]. Thus, even if nodes reach the desired location, they
may not improve network connectivity because of obstacles that prevent es-
tablishment of a link.

– Node may not be able to reach the target location.
– Node cooperativeness may not be ideal. A node may reject to move to a

requested location because the utility of preserving network connectivity is
smaller than utility of action that it is already performing: e.g., it cannot
be expected that a person (in a general purpose mobile WMN) remains at
a given location for an hour in order to prevent network partitioning, if it
will cause him/her to miss an appointment or to be late for work. Even in
task-oriented networks, where such mundane concerns of day-to-day life can
be ignored, it may be dangerous for nodes to go to, or to stay at the location
which was proposed by the network management software (e.g., a fire fighter
should not stay in a burning building if evacuation order has been issued).

Obviously, an approach that includes node utility and effects of environment
should be developed. Due to numerous external limitations that are imposed
on a network, connectivity preservation cannot be guaranteed but a probabilistic
metric should be associated with a given corrective action set.

• Instead of depending on external-to-network actions which may not perform as
a partitioning prevention protocol expects, it may be better to use more pre-
dictable, technology oriented approaches, even if their benefits are somewhat lim-
ited. For instance, survivability of static networks may be improved through
traffic/workload limitation at articulation points. Since they are the only connec-
tion between 2-connected network components, articulation points tend to spend
their energy faster than ordinary nodes which can distribute the load. Thus, in
order to extend network lifetime, an articulation point should select the traffic
flows that are to be forwarded and those that are to be rejected. Idea is similar
to the real-time traffic shaping, but instead of timeliness, the property of interest
is energy preservation.

• If node energy is not an issue (e.g., nodes have permanent energy sources), articu-
lation points and nodes incident to bridges may coordinate increase in transmission
power in vicinity of the critical point in attempt to provide (at least) 2-connectivity
of network. The basic idea is simple but it requires that a set of nodes reaches a
common decision on used transmission power in order to avoid unidirectional links
(most of routing protocols cannot operate with unidirectional links). Reaching a
group consensus in a network with unreliable communication channel is complex
and communication intensive task [105].

Replication of services and data in network: often it is not possible to prevent
partitioning of a network, despite all the effort that is put in avoidance of such events.
Hardware and software failures, energy depletion, or even physical destruction of nodes
cannot be fully resolved by communication protocols.
Replication of critical data or network services in the network may reduce or even

eliminate the effects of partitioning. Replication seems to be particularly beneficial in

214

10.2. Outlook

networks that are to be used for the disaster management [9]. In disaster management,
a network is typically used for tracking of rare-events. The network must be operational
for prolonged periods of time during which nodes may fail because of hardware failures
or energy depletion. Additionally, the event of interest (e.g., a forest fire or earthquake)
may destroy some of the participating nodes.
In such conditions, it is beneficial to spatially replicate crucial network services and

data, so that a failure of a subset of network nodes does not compromise execution of
key tasks of a network. Random replication of resources over the network may not be
satisfactory, as they may be placed in 1-connected network subcomponents. Information
on bridge and articulation point existence may provide useful input not only for better
placement of replicas (e.g., place replicas so that a node failure cannot create a network
partition without an operational copy) but also for determining the number of replicas
that are necessary in order to reach the desired robustness.
Improvement of service availability in logistic networks: The project Smart-

Kanban [89] uses wireless technology in order to improve efficiency of processes and
services in large warehouse and logistics centers. The containers used in the system are
equipped with sensors (e.g., weight, acceleration) that capture state changes of items
and transmit them to servers running the logistics software. The up-to-date knowledge
of the system state allows server to initiate and coordinate various operations in logistics
network. For instance, if a worker places a wrong (not requested by a customer) item
to the container which is to be delivered to the customer, error may be detected by
inappropriate weight of the packet and a corrective action can be immediately applied.
In a traditional logistics system, error would be detected at customer’s site, resulting in
increased transportation costs and dissatisfaction of the customer.
The logistics is supported by a heterogeneous network: a wired backbone has limited

coverage, so it is extended by a WLAN mesh network. Smart containers use IEEE
802.15 radios in order to improve their energy efficiency. Some of mesh nodes serve as
gateways between 802.15 and 802.11 networks.
In order to make timely and accurate decisions in process runtime, the logistics soft-

ware needs accurate and timely input from smart containers. Also, it needs to reliably
deliver instructions on corrective actions to actors in the network. Node failures in this
scenario are frequent. Smart containers may fail due to battery failure, nodes in the
WLAN mesh have a high failure rate due to high oscillations in power network in in-
dustry. This errors are typically transient and require either reboot of a node or update
of its software, but while the failed nodes are unavailable, network may be disconnected
and servers may not get the data from smart containers.
It is envisioned to apply the automatic IT service availability assessment process

[112][116][117] for offline evaluation of logistics services and processes. The availability
assessment will be primarily used in wired part of the network and if target service-
availability is not met, network structure should be changed in order to improve it. The
presented biconnectivity testing algorithm will be applied in the wireless part of the
network in order to increase efficiency of maintenance process. A maintenance worker
is to be urgently dispatched to repair a node that provides 2-connectivity, while a non-
critical node in dense part of the network may be repaired later. The combination
of offline availability assessment and online detection of nodes and edges critical for
network connectivity should result in increased network reliability and availability of
services deployed in it, while keeping the maintenance costs within acceptable margins.

215

A. Analysis of the Exact Approach to
Counting of Components in Random
Geometric Graphs

Penrose provided in [136] integral expression for the probability pk that a node belongs
to the k-sized partition for unbounded Poisson point process, with intensity λ and for
generalized connectivity function g(x) where x is a distance vector. In the case where
the connectivity function is indicator function 1|x|≤R, the expression for pk is:

pk(λ) = λk−1

(k − 1)!

∫
...

∫
e−λV (0,x1,x2,...,xk−1)dx1...dxk−1.

where the integral is over all x1, ..., xk−1 such that the union of the radius R balls
centered at 0, x1, ..., xk−1 is connected, and V (0, x1, x2, ..., xk−1) is the volume of that
union.
This integral cannot be solved analytically, its calculation is complex and burdened

with redundancies. Quintanilla and Torquato use in [142] a constructive paradigm to
increase efficiency of numerical integration. They have shown that probability pk that
a node is part of a k-sized partition is:

pk =
∑

1=k0<...<ki=k
pk(k0, ..., ki) (A.1)

where

pk(k0, ..., ki) = c(k0, ..., ki)
∫
B
k1−k0
1

dx2...dxk1

∫
C(k0,k1)k2−k1

dxk1+1...dxk2 ·

∫
C(ki−2,ki−1)ki−ki−1

dxki−1+1...dxk e−λVk(0,...,xk−1) (A.2)

and

c(k0, ..., ki) = λk−1

(k1 − k0)!...(ki − ki−1)! (A.3)

where Bi = BR(xi) is the ball with radius R centered at xi and C(k, l) = (Bk+1∪ ...∪
Bl)\(B1 ∪ ... ∪Bk).
However, the authors note that it is inherently difficult to parameterize the domains

of integration (even in unbounded case) and this problem is even more acute in the
bounded case with possible interactions between boundaries and Vk(0, ..., xk−1). But
even if it would be possible to automatize the whole process, the overall complexity of
it would prevent the application of the model to networks with large number of nodes.

217

A. Analysis of the Exact Approach to Counting of Components in RGGs

In [142] was noted that the number of integrals grows fast with increase of N . It is
proven here that the number of integrals has exponential growth:
First, we need to determine the number of solutions of the equation:

x1 + x2 + ...+ xu = z (A.4)

where xi are integers, xi > 0 and z ∈ N. Solutions are ordered, so for example the
solution 1 + 2 + 3 + 4 = 10 is not equal to the solution 2 + 1 + 3 + 4 = 10. The number
of solutions for this equation is equal to the number of different ways we can place u−1
breaks among z figures. For instance, the equation 1 + 2 + 3 + 4 = 10 corresponds to
the following ordering of z = 10 figures and u− 1 = 3 breaks :

O | OO | OOO | OOOO

The number of possible solutions is the number of different ways to choose u − 1
locations out of z − 1, i.e.,

(z−1
u−1
)
.

In our problem of counting the number of integrals one node is always fixed to be at
the origin, therefore, we deal with z = k− 1 nodes. It can be seen from Equation (A.1)
that the total number of such integrals can be obtained as the sum of the number of
solutions of the Equation (A.4) where the number u is varied from 1 (corresponding to
the complete graph) to k − 1 (the chain-like structure).

k−1∑
i=1

(
k − 1− 1
i− 1

)
=

k−1∑
i=1

(
k − 2
i− 1

)
= 2k−2, k ≥ 2.

In order to accurately calculate the partition distribution function for N nodes, every
pk has to be computed individually. The number of numerical integrals to compute in
order to obtain the complete distribution function is:

N∑
k=2

2k−2 = 2N−1 − 1, N ≥ 2. (A.5)

As the calculation of an integral is already a complex operation and the total number
of nodes in a wireless network can be measured in hundreds, it is necessary to use
approximations instead of the exact solution for expected number of components of a
RGG.

218

B. Detailed Proof of the Distributed
Bridge and Articulation Point Detection
Algorithm for Wireless Networks

This appendix provides a proof of correctness for the Distributed Bridge and Articula-
tion Point Detection Algorithm for Wireless Networks. Figures B.1 and B.2 show the
algorithm, written in pseudo-code.
The algorithm described in this appendix is simplified and as such it is not directly

applicable to WMNs (e.g., it uses two global variables). However, it is devised for that
application area and it can be easily adjusted for operation in WMNs. The global stack
for node ordering which is used in this Appendix is exchangeable with the timeout
scheme presented in Chapter 5, and the queue for processing order is implicitly known
by nodes in a WMN by the time they are visited.
The version of the algorithm with higher message complexity is used in proofs for clar-

ity reasons – it excludes the buffer management as performance improvement technique
from the core functionality of the algorithm. There is no difference for the functionality
of algorithm whether markings are sent one by one, or all in the same packet. Buffering
of markings in the backward phase of detection algorithm is supported in its implemen-
tation in Section 5.3 and it was used both in simulations and experiments in Chapter
9. Also, instead of sending explicit BRIDGE markings as in Chapter 5 it is assumed
here that all edges are pre-marked as bridges, and the algorithm removes markings from
those that belong to cycles of the graph.

Lemma B.1 The algorithm terminates.

Proof:
The algorithm has two phases. We show that both of them cannot enter deadlocks or
infinite loops.
Forward phase (method constructTree) is a generalized tree construction and cross-

edge detection algorithm. If a vertex was not visited before, it is marked as visited and it
adds all its adjacent nodes to the processing queue in an arbitrary order. Depending on
the processing order of neighbors of a node, different trees may be constructed (e.g., DFS
or BFS). A node initiates invocation of the constructTreemethod of its neighbors only if
it has not been already visited. Therefore, the expanding part of the tree construction
method of each vertex is invoked only once. Thus, forward phase of the algorithm
finishes, each node p is visited d(p) times and the list of cross-edges crossEdges is finite
(due to finite number of edges in the graph).
In the backward phase, the methods detectCycles and forwardMsg are called once for

each node in the graph (line 30, Figure B.1). The order of invocations is the opposite
of order in which vertices were visited in the first phase. The ordering is guaranteed by
the stack nodeOrder. The detectCycle method iterates through a finite list crossEdges

219

B. Detailed Proof of DIBADAWN

1 list of global variables used by the algorithm:
2 global stack nodeOrder;
3 global queue processing;
4 each vertex has following data structures:
5 list crossEdges;
6 boolean visited, isArticulationPoint;
7 queue backQueue;
8 list of message-sets for each neighbor msgi
9 //(created dynamically upon neighbor first discovery and set to BRIDGEni);
10 list of adjacent nodes adj; //equivalent with list of incident edges

vertex parent;
11 messages contain:
12 message initiator: source;
13 message unique id: id;
14 message forwarder from last hop: forwardedBy;
15 global:
16 for all v in V {
17 v.resetNodeFields(); each edge obtains unique BRIDGE mark;
18 visited=isArticulationPoint=false;
19 }
20 while(at least one node is not visited) {
21 select a node v that is not visited;
22 processing.enqueue(null, v, 0);
23 while (processing not empty)
24 (caller, callee, depth)=processing.dequeue();
25 calee.constructTree(caller, depth);
26 }
27 }
28 reorder stack nodeOrder by descending tree depths of nodes
29 while (nodeOrder not empty) {
30 v=nodeOrder.pop(); v.detectCycles(); forwardMsg();
31 }
32 constructTree(vertex visitor, integer treeDepth) {
33 if(not visited) {
34 visited=true;parent=visitor;
35 nodeOrder.push(this,treeDepth);
36 depth=treeDepth;
37 insert all w from adj() in arbitrary order in processing queue as tuple (this,w,depth+1);
38 } else if(visitor.parent!=this) // ignore edges belonging to tree
39 crossEdges.add((visitor));
40 }

Figure B.1.: DIBADAWN algorithm (1).

of a node and enqueues messages for its tree parent. For each detected cross-edge,
a message is propagated down the constructed tree until it its pair is found (method
receiveBackMsg). In worst case, there is no message pairing before root of the tree, so
each message is propagated by the method forwardMsg down to the root. The distance
to root is finite as well as the number of cross-edges, thus this phase of algorithm will
finish in finite time. ♦

B.1. Bridge Detection
Lemma B.2 Once a cross-edge (p, q) is detected, all edges belonging to cycle p, ...,
HCApq, ..., q, p are marked as NOBRIDGE. Status of edges that do not belong to this
cycle is not changed.

Proof:
This functionality is implemented in methods detectCycles, receiveBackMsg and for-

220

B.1. Bridge Detection

41 detectCycles() {
42 for each crossEdge in crossEdges {
43 if(this<crossEdge) uniqueCycleId=this::crossEdge;
44 else uniqueCycleId=crossEdge::this;
45 mark (this,crossEdge) as NOBRIDGE;
46 msgcrossEdge = msgcrossEdge ∪ {NOBRIDGEuniqueCycleId}
47 receiveBackMsg(this, new backMessage(this, uniqueCycleId));
48 }
49 }
50 receiveBackMsg(vertex notifier, message msg) {
51 mark(this,notifier) as NOBRIDGE;
52 msgnotifier = msgnotifier ∪ {NOBRIDGEthis,notifier}
53 if backQueue.contains(msg) backQueue.remove(msg);
54 else backQueue.enqueue(msg);
55 }
56 forwardMsg() {
57 if(not backQueue.empty()) {
58 mark(this,parent) as NOBRIDGE;
59 for each msg in backQueue {
60 msgparent = msgparent ∪ {NOBRIDGEuniqueCycleId}
61 parent.receiveBackMsg(this,msg);}
62 }
63 APdetection() {
64 create zero filled matrix closure[|adj()|][|adj()|]
65 for all pairs (i,j) from adj()× adj()
66 if(msgi ∩msgj 6= �) closure[i][j] = 1;
67 for all pairs (i,j) from adj()× adj()
68 if(closure[i][j] == 1)
69 for k in adj()
70 if(closure[j][k] == 1) closure[i][k] = 1;
71 if (closure is not 1-matrix) isArticulationPoint=true;

Figure B.2.: DIBADAWN algorithm (2).

wardMsg. HCA cycles (Highest Common Ancestor, Definition 2.16) consist of edges
that belong to the constructed tree: p, ..., HCApq, ..., q and a single cross-edge pq. Two
vertices independently detect cross-edge in the forward phase of the algorithm and mark
it as a NOBRIDGE, and each of them enqueues a message for corresponding tree par-
ents that describes the event (Line 47). The cross-edge has a unique identification that
is used to determine the stopping point of the forwarding of corresponding NOBRIDGE
marking.
A node that receives a NOBRIDGE marking message (method receiveBackMsg), re-

acts by marking the edge that delivered the message as NOBRIDGE. It either stores the
message in internal queue backQueue if it is encountered for the first time. If the same
marking already exists in the queue, both messages are deleted (the method ”pairs”
them). During cycle detection in method detectCycles both edges use the same rule to
create cycle’s identification so it will be identical, enabling its recognition and pairing.
Pairing indicates that two identical messages that were traveling over different cycle
segments have met. The pairing occurs only on HCApq and the whole HCA cycle is
marked as NOBRIDGE since:

• Pairing is not possible higher than HCA in the tree: messages are forwarded
only over tree edges (Line 61) resulting in disjoint tree paths for two copies of
same message: p, ...,HCApq and q, ...,HCApq. Also, as the message is forwarded
down the path, the method forwardMsg marks edges that belong to paths as
NOBRIDGE (Lines 51 and 58). The edge pq is marked in detection process, thus

221

B. Detailed Proof of DIBADAWN

whole cycle is marked. The statement is valid even if one of nodes is HCA of
the cycle (an example is shown in Figure 5.8(a), page 93) since all messages pass
through the queue backQueue where they can be paired.

• Messages cannot travel lower than HCApq since first time they meet, they are
deleted (Line 53). The stack nodeOrder guarantees the accurate pairing of mes-
sages: level k in the tree is processed before any vertex at level k− 1 can forward
its messages. Thus, message cannot move lower than HCApq and mark edges
outside the detected cycle. ♦

Comment on Lemma B.2: The crucial component of the algorithm is the stack
that tracks node visits and orders the nodes by depth in the tree. It enforces the
execution of backward phase in descending order of tree levels. It thus guarantees the
correct pairing of NOBRIDGE messages and prevents their propagation to tree levels
lower than the HCA of the corresponding cross-edge.
If execution order of backward phase is invalidated, a node may prematurely forward

NOBRIDGE message down the tree invalidating in turn the correctness of the algorithm.
Although it is possible to detect them, cycles with two or more cross-edges are ignored

in process of detection (e.g., cycle PQTS in Figure 5.4, page 80). Since each of cross-
edges forms a cycle with a tree edge, inclusion of cycles with more than one cross-edge
is not necessary and it would only increase number of messages in the backward phase.

Lemma B.3 If an edge belongs to a cycle it is always marked as NOBRIDGE.

Proof:
Let us observe a graph G(V,E) and a tree T in it, constructed by DIBADAWN. Three
types of cycles can be distinguished in it:

1. Cycles consisting only of cross-edges

2. Cycles consisting of one cross-edge and two or more tree edges

3. Cycles consisting of two or more cross-edges and at least one tree edge

By definition, cross-edges are edges in the graph G that do not belong to the tree T
and they close a cycle. The tree construction algorithm traverses each edge at least once,
therefore all cross-edges are discovered and marked as NOBRIDGE by the algorithm.
As the direct consequence, cycles consisting only of cross-edges are successfully marked
as NOBRIDGE.
If a cycle consists of tree edges and only one cross-edge, all edges belonging to the

cycle are marked as NOBRIDGE according to Lemma B.2.
The remaining case is that cycle C consists of multiple cross-edges and one or more

tree edges:
Let us start from the tree T and add to it, one by one, only the cross-edges that are

in C. For each cross-edge that is added, its whole HCA cycle is marked as NOBRIDGE
(Lemma B.2). Once all cross-edges of the cycle C are added to the tree, the set of tree
edges in the cycle C is a subset of all tree edges that are marked as NOBRIDGE by
HCA cycles.
Let us assume the opposite: there exists an edge pq so that it belongs to the tree T

and to the cycle C but it has not been marked as NOBRIDGE. That means it has no

222

B.2. Detection of Articulation Points

cross-edge (that also belongs to cycle C) higher in the tree than itself nor incident in
the tree (otherwise Lemma B.2 would not hold). It further means that the cycle C is
closed only over edges that belong to the tree T , which is contradiction by the definition
of a tree. ♦

Theorem B.1 The algorithm marks each edge that belongs to a cycle as NOBRIDGE
and each edge that does not belong to a cycle as BRIDGE.

Proof:

Theorem B.1 is direct consequence of Lemma B.2 and B.3. In Lemma B.2 it is shown
that if an edge belongs to a detected HCA cycle, it gets marked as NOBRIDGE while
Lemma B.3 proves that sufficient number of cycles is detected by the algorithm so that
an edge that belongs to a cycle cannot be left unmarked. Since all edges are marked as
BRIDGE at the start of the algorithm, and after its termination all non-bridge edges
are marked as NOBRIDGE, obviously all markings are correct.♦

B.2. Detection of Articulation Points
The relation } (Definition 5.2, page 81) as implemented in DIBADAWN algorithm is
equivalence relation since it fulfills three conditions required of equivalence relations:

• Reflexivity: p} p since msgp 6= � => msgp ∩msgp 6= �

• Symmetry is consequence of associativity of ∩

• Transitivity is consequence of the transitive closure in method APdetection.

Lemma B.4 If and only if edges incident to a node n belong to more than one equiva-
lence class of relation }, n is an articulation point [31].

Proof:
The lemma is a consequence of the transitivity of relation }: All edges that belong
to one equivalence class are able to form cycles. Therefore, nodes that are adjacent to
a node n and have edges that belong to same equivalence class of } must have paths
that connect them independently of n (due to cycle existence). Thus, removal of node
n cannot compromise connectivity of G. Opposite is valid for the same reason – since
edges from different equivalence classes cannot form a cycle, they are not 2-connected
and removal of n disconnects the graph G. ♦
Comment on Lemma B.4:
It was important to assign unique identification to bridges in DIBADAWN (Figure

B.1, line 17) to prevent faulty calculation of equivalence classes: if all bridge markings
are identical, the transitive closure unites them to a single equivalence class. If a node
is incident only to bridges in the graph - result would be a single equivalence class,
declaring that node is not an articulation point, which is obviously false (e.g., node M
in Figure 5.4).

Theorem B.2 Algorithm delivers sufficient information to a node so that it can cor-
rectly calculate equivalence classes of the relation }. Thus, it also correctly detects
articulation points.

223

B. Detailed Proof of DIBADAWN

Proof:
The proof relies on Theorem B.1 which states that DIBADAWN provides the correct
information whether a link is a bridge or not.
Depending on tree structure and node location in it, different cases may occur during

algorithm execution. DIBADAWN resolves correctly each of the cases:
1) Pendant nodes send only one BRIDGE marking over the single link, resulting in

one equivalence class and correct decision that node is not an articulation point.
2) If degree of a node is larger than one and at least one of incident edges has a

BRIDGE marking, node is declared as an articulation point since it has at least two
equivalence classes: one or more formed by NOBRIDGE markings (if they exist), and
one for each of the incident bridges.
3) If a node is not an HCA and has no incident bridges (e.g., node B in Figure 5.4), it

forwards all messages that it receives down the tree. Since all messages are forwarded,
message sets form a single equivalence class for relation } (transitive closure over the
down-tree edge).
4) If a node has no incident bridges and it is an HCA (e.g., node E in Figure 5.4),

four subcases can be distinguished:
A node is not an articulation point, DIBADAWN declares it as an articulation point:

This statement is equivalent to statement: there exists a cross-edge, higher in the tree
than the node, that connects two (as calculated by DIBADAWN) equivalence classes,
but DIBADAWN is unaware of it. Since every edge in the graph is traversed at least
once, that hypothetical cross-edge is detected and NOBRIDGE messages are generated
and sent down the tree towards HCA of the cycle. If the node is not aware of these
NOBRIDGE markings, that means they were paired higher in the tree than this node.
Since Lemma B.2 has shown that DIBADAWN does not pair the NOBRIDGE messages
prematurely, this is a contradiction and DIBADAWN does not create false positives.
A node is an articulation point, DIBADAWN does not declare it as an articulation

point: similar to the previous subcase – it can only occur if there has been incorrect
message pairing, so that a NOBRIDGE message escapes down the tree (below its HCA),
joining the edges from different equivalence classes to a single (erroneous) equivalence
class over the link to the tree parent. This would require that DIBADAWN does not
pair NOBRIDGE messages at their HCA, which impossible by Lemma B.2.
A node is an articulation point, DIBADAWN declares it as an articulation point: the

method APdetection reuses well known and theoretically proven Warshall’s algorithm
[170] for transitive closure of relation } and for derivation of its equivalence classes.
Thus, if DIBADAWN has the information which leads to conclusion that a node is
articulation point, it will declare it. Also, it is already shown (Subcase 2) that it is not
possible that an articulation point is not discovered, thus DIBADAWN has sufficient
information to correctly execute the detection.
A node is not an articulation point, DIBADAWN does not declare it as an articula-

tion point: The transitive closure allocates the edges incident to the node to a single
equivalence class since they share a common cycle. The transitive closure is correctly
implemented, so this is the desired and correct behavior. ♦

224

C. Precision and Recall of Random
Markings

Instead of implementing, deploying and running a detection or decision algorithm, de-
cision makers can instead decide randomly. Such approach is tempting since does not
produce overhead and its implementation is trivial.
Let us assume that there are two mutually exclusive hypotheses h0 and h1 of which

one is correct, according to some objective criterium. The probability of occurrence of
hypothesis h0 is p0 and of h1 = 1− p0. Each decision maker chooses hypothesis h0 with
probability pv0 and rejects it (chooses h1) with probability pv1 = 1− pv0.
Without loss of generality, let us assume that hypothesis h0 is the correct one. Since

decision makers have uniform behavior (all of them choose h0 with the same probability)
it is possible to directly calculate probabilities of true and false positives/negatives. The
confusion matrix, similar to one presented in Table 2.3 is shown in Table C.1.
The precision and recall are calculated in accordance with their definitions from Equa-

tions 2.3 and 2.4:

precision = TP

TP + FP
= p0pv0
p0pv0 + (1− p0)pv0

= p0. (C.1)

recall = TP

TP + FN
= p0pv0
p0pv0 + (1− pv0)p0

= pv0. (C.2)

If hypothesis h1 is correct, same approach yields that precision is p1 and recall pv1.
For application scenario of bridge and articulation point detection, this means that the

average precision of random markings is equal to average fraction of bridges/articulation
points in the network, while the recall depends only on node’s willingness to perform
the marking. Since precision is independent of recall, the F-measure is maximized if
pv0 = 1.
On example of Freifunk network in Berlin, the average precision for bridge detection

is 0.15 with variable recall, and F-measure can take values up to 0.3. Such decisions are
obtained for free, but their accuracy is much lower than accuracy provided by OLSR
and DIBADAWN (Chapter 9).

actual positive actual negative
decided positive true positive false positive

p0pv0 (1− p0)pv0
decided negative false negative true negative

p0(1− pv0) (1− p0)(1− pv0)

Table C.1.: Confusion Matrix for Random Markings.

225

D. Detailed Evaluation Results

This appendix provides the detailed evaluation results from the Chapter 9. For every
evaluation scenario that is presented in the appendix, four metrics are shown: precision,
recall, F-measure and reward. While the evaluation in Chapter 9 was focused on voting
rule behavior for k = 5, the results presented in this appendix show their behavior for
larger set of values. In Motelab experiments, k has been varied between one and seven,
and in simulation between one and ten.

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) Precision.

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Recall.

Figure D.1.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.1.

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

k

R
e

w
a

rd

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Reward.

Figure D.2.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.1.(2)

227

D. Detailed Evaluation Results

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) Precision.

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Recall.

Figure D.3.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.316.

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

0 2 4 6

0
2

4
6

8
1

0
1

2

k

R
e

w
a

rd
Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Reward.

Figure D.4.: Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.316.(2)

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.5.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.1.

228

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.6.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.1.(2)

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

k

R
e

c
a

ll
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.7.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.316.

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

−2 0 2 4 6

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

−2 0 2 4 6

0
5

1
0

1
5

2
0

2
5

3
0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.8.: Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.316.(2)

229

D. Detailed Evaluation Results

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

k

P
re

c
is

io
n

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Recall.

Figure D.9.: Voting rules for bridge detection. NPART/Leipzig placement, Rayleigh
fading. Link acceptance threshold t = 0.1.

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

F
−

M
e

a
s
u

re

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) F-measure.

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

−2 0 2 4 6 8 10

4
0

6
0

8
0

1
0

0
1

2
0

k

R
e

w
a

rd
Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Reward.

Figure D.10.: Voting rules for bridge detection. NPART/Leipzig placement, Rayleigh
fading. Link acceptance threshold t = 0.1.(2)

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.11.: Voting rules for bridge detection. NPART/Leipzig placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.

230

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

−2 0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

k

R
e

w
a

rd

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.12.: Voting rules for bridge detection. NPART/Leipzig placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.(2)

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll
Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.13.: Voting rules for bridge detection. NPART/Berlin placement, Rayleigh
fading. Link acceptance threshold t = 0.1.

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

k

R
e

w
a

rd

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.14.: Voting rules for bridge detection. NPART/Berlin placement, Rayleigh
fading. Link acceptance threshold t = 0.1.(2)

231

D. Detailed Evaluation Results

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

−2 0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.15.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

k

R
e

w
a

rd
Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.16.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.(2)

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.17.: Voting rules for articulation point detection. NPART/Leipzig placement,
Rayleigh fading. Link acceptance threshold t = 0.1.

232

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.18.: Voting rules for articulation point detection. NPART/Leipzig placement,
Rayleigh fading. Link acceptance threshold t = 0.1.(2)

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.19.: Voting rules for articulation point detection. NPART/Leipzig placement,
Ricean fading. Link acceptance threshold t = 0.1.

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.20.: Voting rules for articulation point detection. NPART/Leipzig placement,
Ricean fading. Link acceptance threshold t = 0.1.(2)

233

D. Detailed Evaluation Results

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.21.: Voting rules for articulation point detection. NPART/Berlin placement,
Rayleigh fading. Link acceptance threshold t = 0.1.

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

k

R
e

w
a

rd
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.22.: Voting rules for articulation point detection. NPART/Berlin placement,
Rayleigh fading. Link acceptance threshold t = 0.1.(2)

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.23.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.1.

234

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

−2 0 2 4 6 8 10

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.24.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.1.(2)

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll
Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Recall.

Figure D.25.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.316.

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0 2 4 6 8 10

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

k

F
−

M
e

a
s
u

re

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

k

R
e

w
a

rd

Unanimous

Single−for

Majority

Intel.Majority

Trusted

Weighted

(b) Reward.

Figure D.26.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.316.(2)

235

D. Detailed Evaluation Results

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous

Majority

Trusted

Weighted−Bridge

Weighted−Degree

U,M,T,wB,wD − Majority

Sf,M,T,wB,wD − Majority

Sf,M,wD − Weighted

Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous

Majority

Trusted

Weighted−Bridge

Weighted−Degree

U,M,T,wB,wD − Majority

Sf,M,T,wB,wD − Majority

Sf,M,wD − Weighted

Sf,T,wD − Weighted

(b) Recall.

Figure D.27.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316.

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

−2 0 2 4 6 8 10

0
.5

0
.6

0
.7

0
.8

0
.9

k

F
−

M
e

a
s
u

re

Unanimous

Majority

Trusted

Weighted−Bridge

Weighted−Degree

U,M,T,wB,wD − Majority

Sf,M,T,wB,wD − Majority

Sf,M,wD − Weighted

Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

k

R
e

w
a

rd

Unanimous

Majority

Trusted

Weighted−Bridge

Weighted−Degree

U,M,T,wB,wD − Majority

Sf,M,T,wB,wD − Majority

Sf,M,wD − Weighted

Sf,T,wD − Weighted

(b) Reward.

Figure D.28.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316.(2)

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.29.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility. Link acceptance threshold t = 0.1.

236

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0 2 4 6 8 10

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

−2 0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

k

R
e

w
a

rd

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.30.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility. Link acceptance threshold t = 0.1.(2)

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.31.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility. Link acceptance threshold t = 0.1.

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.32.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility. Link acceptance threshold t = 0.1.(2)

237

D. Detailed Evaluation Results

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

−2 0 2 4 6 8 10

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.33.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=2. Link acceptance threshold t = 0.1.

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

k

R
e

w
a

rd
Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.34.: Voting rules for bridge detection.NPART/Berlin placement, Ricean fad-
ing,forward search radius=2.Link acceptance threshold t = 0.1.(2)

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0 2 4 6 8 10

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

−2 0 2 4 6 8 10

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.35.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=4. Link acceptance threshold t = 0.1.

238

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0 2 4 6 8 10

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

k

R
e

w
a

rd

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.36.: Voting rules for bridge detection.NPART/Berlin placement, Ricean fad-
ing,forward search radius=4.Link acceptance threshold t = 0.1.(2)

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.37.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2, threshold t = 0.1.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.38.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2, threshold t = 0.1.(2)

239

D. Detailed Evaluation Results

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

R
e

c
a

ll

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.39.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4, threshold t = 0.1.

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

−2 0 2 4 6 8 10

0
.4

0
.5

0
.6

0
.7

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

k

R
e

w
a

rd
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.40.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4, threshold t = 0.1.(2)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

P
re

c
is

io
n

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

−2 0 2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

k

R
e

c
a

ll

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Recall.

Figure D.41.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility, threshold t = 0.1. Forward search TTL=4.

240

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

k

F
−

M
e

a
s
u

re

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

−2 0 2 4 6 8 10

0
5

0
1

0
0

1
5

0

k

R
e

w
a

rd

Unanimous
Single−for
Majority
Intel.Majority
Trusted
Weighted

(b) Reward.

Figure D.42.: Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility, threshold t = 0.1. Forward search TTL=4. (2)

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

P
re

c
is

io
n

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) Precision.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

k

R
e

c
a

ll
Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Recall.

Figure D.43.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility, threshold t = 0.1, search TTL=4.

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

−2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

k

F
−

M
e

a
s
u

re

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(a) F-measure.

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−2 0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

k

R
e

w
a

rd

Unanimous
Majority
Trusted
Weighted−Bridge
Weighted−Degree
U,M,T,wB,wD − Majority
Sf,M,T,wB,wD − Majority
Sf,M,wD − Weighted
Sf,T,wD − Weighted

(b) Reward.

Figure D.44.: Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility, threshold t = 0.1, search TTL=4. (2)

241

Bibliography

[1] Car 2 Car, communication consortium, 2005. URL http://www.car-to-car.
org/.

[2] Wizzy digital courier, 2006. URL http://www.wizzy.org.za/.

[3] MIT Roofnet, 2008. URL http://pdos.csail.mit.edu/roofnet.

[4] UCSB MeshNet, 2008. URL http://moment.cs.ucsb.edu/meshnet/.

[5] B.A.T.M.A.N. (Better Approach To Mobile Ad-hoc Networking) routing protocol,
2008. URL https://www.open-mesh.net/batman.

[6] CRAWDAD - A Community Resource for Archiving Wireless Data At Dartmouth,
2008. URL http://crawdad.cs.dartmouth.edu/.

[7] Berliner Freifunk-Community, 2008. URL http://olsrexperiment.de/.

[8] Leipziger Freifunk-Community, 2008. URL http://leipzig.freifunk.net/.

[9] Metrik - Modellbasierte Entwicklung von Technologien für selbstorganisierende
dezentrale Informationssysteme im Katastrophenmanagement, 2008. URL http:
//metrik.informatik.hu-berlin.de/grk-wiki/index.php/Hauptseite.

[10] Hannover Free Network Map, 2008. URL http://map.freifunk-hannover.de/
map.php.

[11] Merriam-Webster’s Dictionary, Eleventh Edition, 2008. URL http://www.
merriam-webster.com/.

[12] Motelab testbed, 2008. URL http://motelab.eecs.harvard.edu.

[13] MySQL, 2008. URL http://www.mysql.com.

[14] OLSR implementations, 2008. URL http://www.olsr.org/.

[15] Omnet++ simulator, 2008. URL http://www.omnetpp.org/.

[16] ORBIT: Open-access research testbed for next-generation wireless networks, 2008.
URL http://www.orbit-lab.org/.

[17] Safespot project, 2008. URL http://www.safespot-eu.org.

[18] Secure Vehicular Communication - SEVECOM, 2008. URL http://www.
sevecom.org.

[19] Jist/SWANS simulator, 2008. URL http://jist.ece.cornell.edu/.

243

http://www.car-to-car.org/
http://www.car-to-car.org/
http://www.wizzy.org.za/
http://pdos.csail.mit.edu/roofnet
http://moment.cs.ucsb.edu/meshnet/
https://www.open-mesh.net/batman
http://crawdad.cs.dartmouth.edu/
http://olsrexperiment.de/
http://leipzig.freifunk.net/
http://metrik.informatik.hu-berlin.de/grk-wiki/index.php/Hauptseite
http://metrik.informatik.hu-berlin.de/grk-wiki/index.php/Hauptseite
http://map.freifunk-hannover.de/map.php
http://map.freifunk-hannover.de/map.php
http://www.merriam-webster.com/
http://www.merriam-webster.com/
http://motelab.eecs.harvard.edu
http://www.mysql.com
http://www.olsr.org/
http://www.omnetpp.org/
http://www.orbit-lab.org/
http://www.safespot-eu.org
http://www.sevecom.org
http://www.sevecom.org
http://jist.ece.cornell.edu/

Bibliography

[20] Aletheia - semantische föderation umfassender produktinformationen, 2009. URL
http://www.aletheia-projekt.de.

[21] Kernel AODV, 2009. URL http://w3.antd.nist.gov/wctg/aodv_kernel/.

[22] AODV UU - Ad-hoc On-demand Distance Vector Routing for real world and
simulation, 2009. URL http://core.it.uu.se/core/index.php/AODV-UU.

[23] I. Aad, J. Hubaux, and E. W. Knightly. Denial of service resilience in ad hoc
networks. In Proceedings of the 10th Annual International Conference on Mobile
Computing and Networking, MOBICOM 2004, 2004.

[24] N. Aboudagga, M. T. Refaei, M. Eltoweissy, L. DaSilva, and J. Quisquater. Au-
thentication protocols for ad hoc networks: Taxonomy and research issues. In
Proceedings of the 8th International Symposium on Modeling Analysis and Simu-
lation of Wireless and Mobile Systems, MSWiM 2005, 2005.

[25] A. Aguiar and J. Gross. Wireless Channel Models. Technical report, TU Berlin,
2003.

[26] M. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the
crash-recovery model. Distributed Computing, 13(2):99–125, 2000.

[27] E. Akkoyunlu, K. Ekanadham, and R. Huber. Some constraints and tradeoffs in
the design of network communications. In SOSP ’75: Proceedings of the Fifth
ACM Symposium on Operating Systems Principles, pages 67–74, 1975.

[28] G. Alonso, E. Kranakis, R. Wattenhofer, and P. Widmayer. Probabilistic protocols
for node discovery in ad-hoc, single broadcast channel networks. In Proceedings of
the 17th International Symposium on Parallel and Distributed Processing, 2003.

[29] J. B. Andersen, T. S. Rappaport, and S. Yoshida. Propagation measurements and
models for wireless communication channels. IEEE Communications Magazine,
33:42–49, 1995.

[30] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. 1, 1:11–33, 2004.

[31] S. Baase. Computer Algorithms. Addison-Wesley, 1988.

[32] J. Barnat and I. Černá. Distributed breadth-first search LTL model checking.
Formal Methods in System Design, 29(2):117–134, 2006.

[33] R. Barr, Z. Haas, and R. van Renesse. Jist: An efficient approach to simulation
using virtual machines. Software Practice & Experience, 35:539–576, 2005.

[34] P. Basu and J. Redi. Movement control algorithms for realization of fault tolerant
ad hoc robot networks. Technical Report 8359, BBN Technologies, 2002.

[35] S. Bates. On edges and connectivity in ad hoc networks. In Proceedings of Global
Telecommunications Conference, GLOBECOM ’04, volume 6, pages 3588– 3593,
2004.

244

http://www.aletheia-projekt.de
http://w3.antd.nist.gov/wctg/aodv_kernel/
http://core.it.uu.se/core/index.php/AODV-UU

Bibliography

[36] C. Bettstetter. On the minimum node degree and connectivity of a wireless mul-
tihop network. In Proceedings of the Third ACM International Symposium on
Mobile Ad Hoc Networking and Computing, 2002.

[37] C. Bettstetter and C. Hartmann. Connectivity of wireless multihop networks in a
shadow fading environment. Wireless Networks, 11:571–579, 2005.

[38] C. Bettstetter and S. Konig. On the message and time complexity of a distributed
mobility-adaptive clustering algorithm in wireless ad hoc networks. In Proceedings
of European Wireless, 2002.

[39] C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random
waypoint mobility model for wireless ad hoc networks. IEEE Transactions on
Mobile Communications, 2:257–269, 2003.

[40] C. Bettstetter, M. Gyarmati, and U. Schilcher. An Inhomogeneous Spatial Node
Distribution and its Stochastic Properties. In Proceedings of International Sym-
posium on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWIM 2007), 2007.

[41] C. Bezuidenhout, G. Grimmett, and A. Loeffler. Percolation and minimal spanning
trees. Journal of Statistical Physics 92, 1998.

[42] D. Blough and H. Brown. The broadcast comparison model for on-line fault diag-
nosis in multicomputer systems: Theory and implementation. IEEE Transactions
on Computers, 48(5):470–493, 1999.

[43] L. Booth, J. Bruck, M. Cook, and M. Franceschetti. Ad hoc wireless networks
with noisy links. In IEEE International Symposium on Information Theory, 2003.

[44] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7:609–616, 2001.

[45] R. Braden. Requirements for Internet Hosts – Communication Layers, 1989. URL
http://tools.ietf.org/rfc/rfc1122.txt.

[46] C. Cachin. Modeling complexity in secure distributed computing. In Future direc-
tions in distributed computing: research and position papers, pages 57–61, 2003.

[47] G. Calinescu and P. Wan. Range assignment for high connectivity in wireless ad
hoc networks. Ad-Hoc, Mobile, and Wireless Networks, LNCS 2865:235–246, 2003.

[48] T. Camp, J. Boleng, and L. Wilcox. Location information services in mobile ad
hoc networks. In Proceedings of the IEEE International Conference on Commu-
nications ICC 2002., volume 5, 2002.

[49] P. Carmi, M. Segal, M. Katz, and H. Shpungin. Fault-tolerant power assignment
and backbone in wireless networks. In Proceedings of Fourth Annual IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom
Workshops), 2006.

245

http://tools.ietf.org/rfc/rfc1122.txt

Bibliography

[50] J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Localized lmst
and rng based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc
Networks, 3:1–16, 2005.

[51] J. K. Cavers. Mobile Channel Characteristics. Kluver Academic Publishers, 2000.

[52] I. Chakeres and E. Belding-Royer. The utility of hello messages for determining
link connectivity. In Proceedings of the 5th International Symposium on Wireless
Personal Multimedia Communications, 2002.

[53] I. Chakeres and E. Belding-Royer. Aodv routing protocol implementation design.
In Proceedings of the 24th International Conference on Distributed Computing
Systems (Workshops), 2004.

[54] I. Chakeres and C. Perkins. Dynamic MANET On-demand (DYMO) Rout-
ing (IETF Draft), March 2007. URL www.ietf.org/internet-drafts/
draft-ietf-manet-dymo-08.txt.

[55] E. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE
Transactions on Software Engineering, 8:391–401, 1982.

[56] L. Chao and H. Aiqun. Reducing the message overhead of aodv by using link
availability prediction. In Proceedings of the Third International Conference on
Mobile Ad-Hoc and Sensor Networks, 2007.

[57] K. Chen, S. H. Shah, and K. Nahrstedt. Cross-layer design for data accessibility
in mobile ad hoc networks. Wireless Personal Communications, 21, 2002.

[58] M. Cinque, D. Cotroneo, G. De Caro, and M. Pelella. Reliability requirements of
wireless sensor networks for dynamic structural monitoring. In Proceedings of the
International Workshop on Applied Software Reliability (WASR 2006), 2006.

[59] T. Clausen and P. Jacquet. The Optimized Link State Routing protocol (RFC
3626), October 2003. URL www.ietf.org/rfc/rfc3626.txt.

[60] A. Clementi, P. Penna, and R. Silvestri. Hardness results for the power range
assignment problem in packet radio networks. Randomization, Approximation,
and Combinatorial Optimization. Algorithms and Techniques, LNCS 1671:197–
208, 1999.

[61] M. Conti. Multi-hop ad hoc networking: from theory to reality. In Proceedings of
the 10th International Symposium on Modeling Analysis and Simulation of Wire-
less and Mobile Systems, MSWiM 2007, 2007.

[62] N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 1993.

[63] S. Das, H. Liu, A. Nayak, and I. Stojmenovic. A localized algorithm for bi-
connectivity of connected mobile robots. In Proceedings of The Third International
Conference on Mobile Ad-hoc and Sensor Networks, 2007.

246

www.ietf.org/internet-drafts/draft-ietf-manet-dymo-08.txt
www.ietf.org/internet-drafts/draft-ietf-manet-dymo-08.txt
www.ietf.org/rfc/rfc3626.txt

Bibliography

[64] D. DeCouto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path metric
for multi-hop wireless routing. In Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, MOBICOM 2003, pages 134–
146, 2003.

[65] Transport Statistics Great Britain - 2006 Edition. Department For Transport,
2006.

[66] L.P. Devroye. The expected size of some graphs in computational geometry. Com-
puters and Mathematics with Applications, 15, 1988.

[67] E. Dijkstra and C. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11(1):1–4, 1980.

[68] U. Dralle and A. Reinefeld. A distributed algorithm for optimal concurrent com-
munication and load balancing in parallel systems. In Proceedings of the Interna-
tional Conference and Exhibition on High-Performance Computing and Network-
ing, pages 588–600. Springer-Verlag, 1997.

[69] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat, V. Kulathu-
mani, M. Sridharan, H. Zhang, and H. Cao. Kansei: a testbed for sensing at scale.
In Proceedings of The Fifth International Conference on Information Processing
in Sensor Networks, IPSN 2006., 2006.

[70] K. Fall and K. Varadhan. the ns2 Manual, 2007. URL http://www.isi.edu/
nsnam/ns/ns-documentation.html.

[71] L. Fang, W. Du, and P. Ning. A Beacon-Less Location Discovery Scheme for
Wireless Sensor Networks. In Proceedings of 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM2005, 2005.

[72] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1.
Wiley, 1968.

[73] M. Franceschetti, L. Booth, M. Cook, R. Meester, and J. Bruck. Continuum
percolation with unreliable and spread-out connections. Journal of Statistical
Physics, 118, 2005.

[74] N. Freris and P. Kumar. Fundamental limits on synchronization of affine clocks in
networks. In Proceedings of the 46th IEEE Conference on Decision and Control,
2007.

[75] E. Gansner and S. North. An open graph visualization system and its applica-
tions to software engineering. Software Practice and Experience, 30(11):1203–1233,
2000.

[76] M. Garey and D. Johnson. Computers and intractability, a guide to the theory of
NP-completeness. W.H.Freeman, 1979.

[77] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc
language: A holistic approach to networked embedded systems. In Proceedings of
Programming Language Design and Implementation, 2003.

247

http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/ns-documentation.html

Bibliography

[78] E.N. Gilbert. Random plane networks. Journal of the Society of Industrial and
Applied Mathematics, 9, issue 4:533–543, 1961.

[79] V. Giruka and M. Singhal. Hello protocols for ad-hoc networks: overhead and
accuracy tradeoffs. In Proceedings of Sixth IEEE International Symposium on a
World of Wireless Mobile and Multimedia Networks, 2005.

[80] D. Goyal and J. Jr. Caffery. Partitioning avoidance in mobile ad hoc networks
using network survivability concepts. In International Symposium on Computer
and Communications (ISCC), 2002.

[81] S. Graham and P. R. Kumar. Time in general-purpose control systems: The
control time protocol and an experimental evaluation. In Proceedings of the 43rd
IEEE Conference on Decision and Control, 2004.

[82] M. Gudmundson. Correlation model for shadow fading in mobile radio systems.
Electronic Letters, 27:2145–2146, 1991.

[83] E. Hamida, G. Chelius, and E. Fleury. Revisiting neighbor discovery with inter-
ferences consideration. In Proceedings of the Third ACM International Workshop
on Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks,
2006.

[84] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST: a scalable and recon-
figurable testbed for wireless indoor experiments with sensor networks. In Pro-
ceedings of the Second International Workshop on Multi-hop Ad Hoc Networks:
From Theory to Reality, 2006.

[85] M. Hauspie, D. Simplot, and J. Carle. Partition detection in ad-hoc networks using
multiple disjoint paths set. In Proceedings of the First International Workshop on
Objects Models and Multimedia Technologies (OMMT), 2003.

[86] M. Hefeeda. Forest fire modeling and early detection using wireless sensor net-
works. Technical report, Simon Fraser University, 2007.

[87] A. Herms, G. Lukas, and S. Ivanov. Realism in design and evaluation of wireless
routing protocols. In Proceedings of the First International Workshop on Mobile
Services and Personalized Environments, 2006.

[88] P. Ibach and J. Zapotoczky. Vorteile und beschränkungen durch open source lizen-
zierung im projekt magicmap. In Beiträge der 37. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), Informatik trifft Logistik, 2007.

[89] P. Ibach, P. Troger, and B. Milic. Selbst-organisierendes autarkes kanban-system
auf basis eigenintelligenter, vernetzter und ultrakostengünstiger sensorknoten,
2009. URL http://www.rok.informatik.hu-berlin.de/rok/research/smart_
kanban/inde%x_html.

[90] M. Impett, M. Corson, and V. Park. A receiver-oriented approach to reliable
broadcast in ad hoc networks. In Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC 2002), 2002.

248

http://www.rok.informatik.hu-berlin.de/rok/research/smart_kanban/inde% x_html
http://www.rok.informatik.hu-berlin.de/rok/research/smart_kanban/inde% x_html

Bibliography

[91] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking,
11(1):2–16, 2003.

[92] S. Ivanov. and E. Nett. Fault-tolerant coverage planning in wireless networks. In
Proceedings of IEEE Symposium on Reliable Distributed Systems, pages 175–184,
2008.

[93] R. Jansen, S. Hanemann, and B. Freisleben. Proactive distance-vector multipath
routing for wireless ad hoc networks. In Proceedings of Communication Systems
and Networks, CSN2003, 2003.

[94] J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80:1502–1517, 1992.

[95] T. Johansson and L. Carr-Motyckova. Reducing interference in ad hoc networks
through topology control. In The Third ACM International Workshop on Foun-
dations of Mobile Computing, 2005.

[96] D. Johnson, D. Maltz, and Y. Hu. The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (RFC 4728), February 2007. URL www.ietf.org/rfc/
rfc4728.txt.

[97] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences
with zebranet. In Proceedings of 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2002.

[98] P. Karp and H. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In 6th ACM Conference on Mobile Computing and Networking, 2000.

[99] L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet
radio networks. Theoretical Computer Science, 1-2:289–305, 2000.

[100] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental
evaluation of wireless simulation assumptions. In Proceedings of the ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM), pages 78–82, 2004.

[101] E. Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Dover,
New York, 1986.

[102] D. Krioukov, F. Chung, K. Claffy, M. Fomenkov, A. Vespignani, and W. Willinger.
The workshop on internet topology (wit) report. Computer Communication Re-
view, 37(1):69–73, 2007.

[103] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing:
of theory and practice. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC’03), 2003.

[104] L. Kuncheva. On the optimality of naive bayes with dependent binary features.
Pattern Recognition Letters, 27:830–837, 2006.

249

www.ietf.org/rfc/rfc4728.txt
www.ietf.org/rfc/rfc4728.txt

Bibliography

[105] L. Lamport, M. Pease, and R. Shostak. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4:382–401, 1982.

[106] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable sim-
ulation of entire TinyOS applications. In Proceedings of the First international
Conference on Embedded Networked Sensor Systems, 2003.

[107] X. Li, P. Wan, Y. Wang, and C. Yi. Fault Tolerant Deployment and Topology
Control in Wireless Networks. In Proceedings of the 4th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing, 2003.

[108] Y. Liang and C. Rhee. An optimal algorithm for finding biconnected components
in permutation graphs. In Proceedings of the 1995 ACM 23rd Annual Conference
on Computer Science CSC95, 1995.

[109] A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing in intermittently con-
nected networks. In Proceedings of the Firrst International Workshop on Service
Assurance with Partial and Intermittent Resources, SAPIR 2004, 2004.

[110] X. Liu and M. Haenggi. Toward Quasiregular Sensor Networks: Topology Control
Algorithms for Improved Energy Efficiency. IEEE Transactions on Parallel and
Distributed Systems, 17:975–986, 2006.

[111] M. J. de Caritat, Marquis de Condorcet. Essai sur l’application de
l’analyse á la probabilité des décisions rendues á la pluralité des voix.
http://gallica.bnf.fr/ark:/12148/bpt6k417181, 1785.

[112] M. Malek, B. Milic, and N. Milanovic. Analytical Availability Assessment of IT
Services. In Proceedings of The 5th International Service Availability Symposium
(ISAS 2008), 2008.

[113] D. Marandin. Performance evaluation of failed link detection in mobile ad hoc
networks. In Proceedings of The Third Annual Mediterranean Ad Hoc Networking
Workshop, 2004.

[114] M. McGlynn and S. Borbash. Birthday protocols for low energy deployment
and flexible neighbor discovery in ad hoc wireless networks. In Proceedings of
the Second ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2001.

[115] Mesh Dynamics. Network-Centric Warfare and Wireless Communications, 2008.

[116] N. Milanovic, B. Milic, and M. Malek. Modeling Business Process Availability.
In Proceedings of the IEEE International Workshop on Methodologies for Non-
functional Properties in Services Computing, 2008.

[117] N. Milanovic, B. Milic, and M. Malek. Developing Effective Service Oriented
Architectures: Concepts and Applications in Service Level Agreements, Quality
of Service and Reliability, chapter Model-based Methodology and Framework for
Assessing Service and Business Process Availability. IGI Global, 2009.

250

Bibliography

[118] B. Milic and M. Malek. Dropped edges and faces’ size in gabriel and relative
neighborhood graphs. In Proceedings of The Third IEEE International Conference
on Mobile Ad-hoc and Sensor Systems (MASS 2006), 2006.

[119] B. Milic and M. Malek. Analyzing Large Scale Real-World Wireless Multihop
Network. IEEE Communication Letters, 11(7), 2007.

[120] B. Milic and M. Malek. Adaptation of Breadth First Search Algorithm for Cut-
edge Detection in Wireless Multihop Networks. In Proceedings of 10th ACM-IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM 2007), 2007.

[121] B. Milic and M. Malek. Handbook of Wirless Ad Hoc and Sensor Networks, chapter
1: Properties of wireless multihop networks in theory and practice. Springer
Verlag, 2009.

[122] B. Milic and M. Malek. NPART - Node Placement Algorithm for Realistic Topolo-
gies in Wireless Multihop Network Simulation. In Proceedings of the Second In-
ternational Conference on Simulation Tools and Techniques (SIMUTools), 2009.

[123] B. Milic, N. Milanovic, and M. Malek. Prediction of partitioning in location-aware
mobile ad hoc networks. In Proceedings of the Hawaii International Conference
on System Sciences, HICSS-38, (Minitrack on Quality of Service in Mobile and
Wireless Networks), 2005.

[124] M. Mock, R. Frings, S. Trikaliotis, and E. Nett. Clock synchronization for wireless
local area networks. In Proceedings of 12th Euromicro Conference on Real-Time
Systems (Euromicro-RTS 2000), 2000.

[125] T. Mukherjee, S. Gupta, and G. Varsamopoulos. Analytical Model for Optimizing
Periodic Route Maintenance in Proactive Routing for MANET’s. In Proceedings
of International Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWIM 2007), 2007.

[126] J. Mullen and H. Huang. Impact of multipath fading in wireless ad hoc networks.
In Proceedings of The Second ACM International Workshop on Performance Eval-
uation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, 2005.

[127] M. Naserian and K. Tepe. Game theoretic approach in routing protocol for wireless
ad hoc networks. Ad Hoc Networks, 2008.

[128] E. Ngai, Y. Zhou, M. R. Lyu, and J. Liu. Reliable Reporting of Delay-Sensitive
Events in Wireless Sensor-Actuator Networks. In Proceedings of The Third IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2006.

[129] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The broadcast storm problem in a mobile ad
hoc network. In Proceedings of the International Conference on Mobile Computing
and Networking, MOBICOM 1999, 1999.

[130] S. Nikolopoulos and L. Palios. On the parallel computation of the biconnected
and strongly connected co-components of graphs. Discrete Applied Mathematics,
155:1858–1877, 2007.

251

Bibliography

[131] S. Nitzan and J. Paroush. Optimal decision rules in uncertian dichotomous choice
situations. International Economic Review, 23:289–297, 1982.

[132] A. Okabe, B. Boots, and K. Sugihara. Spatial Tesselations: Concepts and Appli-
cations of Voronoi Diagrams. John Wiley & Sons, 1992.

[133] B. On, H. Shin, M. Choi, and M. Park. A hierarchical ack-based protocol for
reliable multicast in mobile networks. In Proceedings of the 8th IEEE International
Conference on Networks (ICON 00), 2000.

[134] F. Onat and I. Stojmenovic. Generating random graphs for wireless actuator net-
works. In Proceedings of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, WoWMoM 2007., 2007.

[135] A. Panchenko and A. Thümmler. Efficient phase-type fitting with aggregated
traffic traces. Perform. Eval., 64(7-8):629–645, 2007.

[136] M. D. Penrose. On a continuum percolation model. Advances in Applied Proba-
bility, 23, 1991.

[137] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing (RFC 3561), July 2003. URL www.ietf.org/rfc/rfc3561.txt.

[138] L. F. Perrone. Could a caveman do it? the surprising potential of simple attacks.
IEEE Security and Privacy, 5:74–77, 2007.

[139] T. Plesse, J. Lecomte, C. Adjih, M. Badel, and P. Jacquet. Olsr performance
measurement in a military mobile ad-hoc network. In OLSR Performance Mea-
surement in a Military Mobile Ad-hoc Network, 2004.

[140] R. Punnoose, P. Nikitin, and D. Stancil. Efficient simulation of ricean fading within
a packet simulator. In Proceedings of the Vehicular Technology Conference, 2000.

[141] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding broadcast
messages in mobile wireless networks. In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS), 2002.

[142] J. Quintanilla and S. Torquato. Clustering in a continuum percolation model.
Advances in Applied Probability, 29, 1997.

[143] R Development Core Team. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, 2005. URL http://www.R-project.
org.

[144] T. Rappaport. Wireless Communications, Principles and Practice. Prentice Hall,
2008.

[145] P. Reinecke and K. Wolter. Phase-type approximations for message transmission
times in web services reliable messaging. In Samuel Kounev, Ian Gorton, and
Kai Sachs, editors, Performance Evaluation – Metrics, Models and Benchmarks,
volume 5119, pages 191–207. Springer, 2008.

252

www.ietf.org/rfc/rfc3561.txt
http://www.R-project.org
http://www.R-project.org

Bibliography

[146] S. A. Roach. The Theory of Random Clumping. Mentuen, London, 1968.

[147] R.A. Sahner, K.S. Trivedi, and A. Puliafito. Performance and Reliability Analysis
of Computer Systems. Kluwer Academic Publishers, 2002.

[148] P. Samar and S. Wicker. Link dynamics and protocol design in a multihop mobile
environment. IEEE Transactions on Mobile Computing, 5(9):1156–1172, 2006.

[149] E. Schoch, M. Feiri, F. Kargl, and M. Weber. Simulation of ad hoc networks:
ns-2 compared to jist/swans. In Proceedings of the First International Conference
on Simulation Tools and Techniques for Communications, Networks and Systems,
2008.

[150] L. Shapley and B. Grofman. Optimizing group judgmental accuracy in the pres-
ence of interdependencies. Public Choice, 43:329–343, 1984.

[151] R. Sombrutzki, A. Zubow, M. Kurth, and J. Redlich. Self-organization in commu-
nity mesh networks: The Berlin RoofNet. In Proceedings of IEEE OpComm2006,
2006.

[152] M. Souryal and N. Moayeri. Channel-adaptive relaying in mobile ad hoc networks
with fading. In Proceedings of The First IEEE Conference on Sensor and Ad Hoc
Communications and Networks, SECON2004, 2004.

[153] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile networks. In Proceedings of
SIGCOMM 2005, 2005.

[154] I. Stojmenovic, M. Russell, and B. Vukojevic. Depth first search and location
based localized routing and qos routing in wireless networks. In Proceedings of the
Proceedings of the 2000 International Conference on Parallel Processing (ICPP
2000), 2000.

[155] I. Stojmenovic, A. Nayak, and J. Kuruvila. Design guidelines for routing protocols
in ad hoc and sensor networks with a realistic physical layer. IEEE Communica-
tions Magazine, 43:101–106, 2005.

[156] A. Subbiah and D. Blough. Distributed diagnosis in dynamic fault environments.
IEEE Transactions on Parallel Distributed Systems, 15(5):453–467, 2004.

[157] M. Takai, J. Martin, and R. Bagrodia. Effects of wireless physical layer modeling
in mobile ad hoc networks. In Proceedings of the Second ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2001.

[158] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

[159] M. Thomas, S. Phand, and A. Gupta. Using group structures for efficient routing
in delay tolerant networks. Ad Hoc Networks, 2008.

[160] J. Thomsen and D. Husemann. Evaluating the use of motes and tinyos for a
mobile sensor platform. In Proceedings of Parallel and Distributed Computing and
Networks, 2004.

253

Bibliography

[161] A. Thümmler, P. Buchholz, and M. Telek. A novel approach for phase-type fitting
with the em algorithm. IEEE Transactions on Dependable and Secure Computing,
3(3):245–258, 2006.

[162] R. Thurimella. Sub-linear Distributed Algorithms for Sparse Certificates and
Biconnected Components. Journal of Algorithms, 23(1):160–179, 1997.

[163] G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern
Recognition, 12:261–268, 1980.

[164] Tropos MetroMesh Proven: Metro-Scale Wi-Fi in Chaska, MN. Tropos Networks,
2005.

[165] Y. Tseng, S. Ni, and E. Shih. Adaptive approaches to relieving broadcast storms
in a wireless multihop mobile ad hoc network. In Proceedings of the The 21st
International Conference on Distributed Computing Systems ICDCS2001, 2001.

[166] A. Vahdat and D. Becker. Epidemic routing for partially disconnected ad hoc
networks. Technical Report CS200006, Duke University, USA, 2000.

[167] N. Vicari. Models of WWW-Traffic: a Comparison of Pareto and Logarithmic His-
togram Models. Technical Report 198, Institute of Computer Science, University
of Wuerzburg, 1998.

[168] K.H. Wang and B. Li. Group mobility and partition prediction in wireless ad-hoc
networks. In Proc. of IEEE International Conference on Communications (ICC
2002), 2002.

[169] Y. Wang, I. Stojmenovic, and X. Li. Bluetooth scatternet formation for single-
hop ad hoc networks based on virtual positions. Journal of Internet Technology,
6:43–52, 2005.

[170] S. Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9:
11–12, 1962.

[171] W. Wei and A. Zakhor. Path selection for multi-path streaming in wireless ad hoc
networks. In Proceedings of International Conference on Image Processing, 2006.

[172] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless sensor net-
work testbed. In Proceedings of the 4th international symposium on Information
processing in sensor networks, 2005.

[173] D. B. West. Introduction to Graph Theory. Prentice Hall, 1996.

[174] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), pages 194–205, 2002.

[175] Y. Wu and Y. Li. Construction algorithms for k-connected m-dominating sets in
wireless sensor networks. In Proceedings of the 9th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2008.

254

Bibliography

[176] B. Xiao, G. W. Liu, and J. Z. Si-Lu. An improvement for local route repair in
mobile ad hoc networks. In Proceedings of the 6th International Conference on
ITS Telecommunications, 2006.

[177] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Pro-
ceedings of IEEE INFOCOM, 2003.

[178] H. Zhang. The optimality of naive bayes. In Proceedings of The 17th International
FLAIRS Conference, 2004.

[179] Y. Zhang and Q. Huang. Adaptive tree: A learning-based meta-routing strategy
for sensor networks. In Proceedings of IEEE Consumer Communications and
Networking Conference, CCNC2006, 2006.

[180] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data deliv-
ery in sparse mobile ad hoc networks. In Proceedings of the 5th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2005.

[181] S. Zhu, W. Wang, and C. Ravishankar. A New Power-Efficient Scheme to De-
liver Time-Sensitive Data in Sensor Networks. In Proceedings of The Third IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2006.

[182] H. Zimmermann. OSI reference model - the ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28:425–432,
1980.

255

List of Figures

1.1. OSI and TCP/IP protocol stacks. Some text. Some text. Some text.
Some text. Some text. Some text. Some text. Some text. 2

1.2. Distribution of topics in WMN research [58]. 3
1.3. Structure of the thesis. 9

2.1. Sample topologies created by grid (left), uniform (central) and RWM
(right) models. 13

2.2. Comparison of the mean signal strength predicted by the path-loss prop-
agation model and measurement results [88]. 17

2.3. Multipath signal propagation. 18
2.4. Graph models of a wireless network. 19
2.5. Witness area and construction of neighborhood graphs. 25

3.1. Proactive topology management. 38

4.1. Heartbeat link detector. 46
4.2. Comparison of transition curves of ideal and imperfect link detector and

errors in detection process. 47
4.3. Probability of declaring a link functional by a HLD. 49
4.4. Heartbeat parameters and probability of link detection as function of

node distance in presence of signal shadowing. 50
4.5. The probability of error, false positives and negatives of a heartbeat link

detector in a network with uniformly distributed link quality. 52
4.6. Distribution of link quality in real network and its approximation with a

hyper-Erlang distribution. 53
4.7. Errors in heartbeat link detection in real networks. 54
4.8. The average waiting time of a successful run for link acceptance. 57
4.9. The probability of link acceptance P1 for links with limited duration of

existence. 59
4.10. The probability of errors under mobility for HLD(5,5). 60
4.11. The probability of false positives and false negatives under mobility for

HLD(5,5). 61
4.12. HLD behavior in a mobile network. The uniform distribution of link

quality, varying link duration rate. 61
4.13. The error probability of different HLDs for the average link duration of

25 ticks. 62
4.14. Effects of HLD induced errors on proactive topology management in net-

works of different size. Optimal HLD parameters are used for each of
thresholds. 64

257

List of Figures

5.1. Overview of the proposed approach. 69
5.2. Implementation of the DIBADAWN (1). 77
5.3. Implementation of the DIBADAWN (2). 78
5.4. Message sets used for articulation point detection (after transitive closure). 80
5.5. Example of bridge detection in DIBADAWN execution on a BFS tree. . 82
5.6. Issues of echo algorithms introduced by channel fading and message losses. 84
5.7. Example outcomes of network traversal in presence of unreliable commu-

nication channel. 88
5.8. Effects of asymmetric losses on DIBADAWN (1). 93
5.9. Effects of asymmetric losses on DIBADAWN (2). 94
5.10. Accuracy of bridge detection in DIBADAWN if limited propagation of

NOBRIGDE messages us used. 95
5.11. Utilizing different network views for accuracy improvement. 96
5.12. Competence of DIBADAWN markings as a function of number of hops

it was forwarded. 101
5.13. Competence of voters for articulation point detection. 102
5.14. Trusted rule for articulation point detection. 102
5.15. An example of the second voting round. 106

6.1. Bridges in a planarized graph. 113
6.2. Comparison of graph planarization model and simulation results. 113
6.3. Comparison of graph planarization model and simulation results for non-

uniform node placement. 114
6.4. Cycle consisting of three edges in a random geometric graph. 116
6.5. Cycles consisting of four edges in a random geometric graph. 118
6.6. Estimators of the average size of shortest cycles. 119

7.1. A section of topology sample taken at an OLSR node. 125
7.2. Part of Berlin’s network. 126
7.3. Behavior of LQE(l) link detectors for the uniform distribution of link

quality. 128
7.4. Probability that an link in a network is repeatedly a bridge. 129
7.5. Cumulative node degree distribution in real networks and artificial place-

ment models. 132
7.6. Cumulative distributions of bridge fraction and articulation point count. 134
7.7. Weighted distribution of network components obtained by bridge removal. 134
7.8. Map of Hannover Freifunk. 135
7.9. ETX cumulative distributions. 136

8.1. NPART pseudo-code. 141
8.2. Placement area and the candidate vertices in NPART. 142
8.3. Implemented metrics. 144
8.4. The average Manhattan distance to target degree distribution of topolo-

gies produced by distance and adaptive metrics of NPART (lower value
is better). 145

8.5. Conditional degree distributions. 146

258

List of Figures

8.6. Visual comparison of topologies created by the uniform node placement
model. 147

8.7. Visual comparison of a real and a NPART generated topology. 148
8.8. Comparison of node degree distributions. 148
8.9. Cumulative distributions of bridge to edge ratio for real samples and

NPART generated topologies. 149
8.10. Cumulative distributions of articulation point count for real samples and

NPART generated topologies. 149
8.11. Cumulative distribution of relative size of network components obtained

by bridge removal. 150
8.12. Effects of correlated shadowing on network topology. 151
8.13. Comparison of node degree distributions after reduction of pendant node

count by 20%. 151
8.14. Cumulative distributions of bridge to edge ratio for real samples and

generated topologies after reduction of pendant node count by 20%. . . 152
8.15. Cumulative distributions of articulation point count for real samples and

generated topologies after reduction of pendant node count by 20%. . . 152
8.16. Cumulative distribution of relative size of network components obtained

by bridge removal after reduction of pendant node count by 20%.. . . . 153
8.17. The average throughput per flow for different topology types and signal

propagation models. 156

9.1. Effects of parameter k on detection accuracy of voting rules (Motelab
experiments example). 160

9.2. A sample Motelab topology, first floor of the building. 169
9.3. Motelab infrastructure. 171
9.4. Various topology types encountered in Motelab in preparation of experi-

ments. 172
9.5. Voting rules for bridge detection. Motelab experiments, link acceptance

threshold t = 0.1. 174
9.6. Voting rules for bridge detection. Motelab experiments, link acceptance

threshold t = 0.316. 175
9.7. Voting rules for articulation point detection. Motelab experiments, link

acceptance threshold t = 0.1. 175
9.8. Voting rules for articulation point detection. Motelab experiments, link

acceptance threshold t = 0.316. 176
9.9. Voting rules for bridge detection. NPART/Berlin placement, Rayleigh

fading. Link acceptance threshold t = 0.1. 179
9.10. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-

ing. Link acceptance threshold t = 0.1. 180
9.11. Voting rules for articulation point detection. NPART/Berlin placement,

Rayleigh fading. Link acceptance threshold t = 0.1. 181
9.12. Voting rules for articulation point detection. NPART/Berlin placement,

Ricean fading. Link acceptance threshold t = 0.1. 181
9.13. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-

ing. Link acceptance threshold t = 0.316. 183

259

List of Figures

9.14. Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316. 184

9.15. Comparison of F-measure of selected voting rules in presence of increased
network traffic. NPART/Berlin placement, Ricean fading. Link accep-
tance threshold t = 0.1. 189

9.16. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobile nodes. Link acceptance threshold t = 0.1. 190

9.17. Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobile nodes. Link acceptance threshold t = 0.1. 190

9.18. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=2. Link acceptance threshold t = 0.1. 192

9.19. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=4. Link acceptance threshold t = 0.1. 192

9.20. Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2. Link acceptance threshold t = 0.1.194

9.21. Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4. Link acceptance threshold t = 0.1.194

9.22. Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobile nodes. Link acceptance threshold t = 0.1. Forward search
TTL=4. 195

9.23. Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobile nodes. Link acceptance threshold t = 0.1. Forward
search TTL=4. 196

9.24. Comparison of majority, weighted and Bayesian voting rules for articu-
lation point detection. NPART/Berlin placement, Rayleigh fading. Link
acceptance threshold t = 0.1. 197

9.25. Comparison of majority, weighted and Bayesian voting rules for articu-
lation point detection. NPART/Berlin placement, Ricean fading. Link
acceptance threshold t = 0.1. 198

B.1. DIBADAWN algorithm (1). 220
B.2. DIBADAWN algorithm (2). 221

D.1. Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.1. 227

D.2. Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.1.(2) . 227

D.3. Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.316. 228

D.4. Voting rules for bridge detection. Motelab experiments, link acceptance
threshold t = 0.316.(2) . 228

D.5. Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.1. 228

D.6. Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.1.(2) . 229

D.7. Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.316. 229

260

List of Figures

D.8. Voting rules for articulation point detection. Motelab experiments, link
acceptance threshold t = 0.316.(2) . 229

D.9. Voting rules for bridge detection. NPART/Leipzig placement, Rayleigh
fading. Link acceptance threshold t = 0.1. 230

D.10.Voting rules for bridge detection. NPART/Leipzig placement, Rayleigh
fading. Link acceptance threshold t = 0.1.(2) 230

D.11.Voting rules for bridge detection. NPART/Leipzig placement, Ricean
fading. Link acceptance threshold t = 0.1. 230

D.12.Voting rules for bridge detection. NPART/Leipzig placement, Ricean
fading. Link acceptance threshold t = 0.1.(2) 231

D.13.Voting rules for bridge detection. NPART/Berlin placement, Rayleigh
fading. Link acceptance threshold t = 0.1. 231

D.14.Voting rules for bridge detection. NPART/Berlin placement, Rayleigh
fading. Link acceptance threshold t = 0.1.(2) 231

D.15.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.1. 232

D.16.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.1.(2) 232

D.17.Voting rules for articulation point detection. NPART/Leipzig placement,
Rayleigh fading. Link acceptance threshold t = 0.1. 232

D.18.Voting rules for articulation point detection. NPART/Leipzig placement,
Rayleigh fading. Link acceptance threshold t = 0.1.(2) 233

D.19.Voting rules for articulation point detection. NPART/Leipzig placement,
Ricean fading. Link acceptance threshold t = 0.1. 233

D.20.Voting rules for articulation point detection. NPART/Leipzig placement,
Ricean fading. Link acceptance threshold t = 0.1.(2) 233

D.21.Voting rules for articulation point detection. NPART/Berlin placement,
Rayleigh fading. Link acceptance threshold t = 0.1. 234

D.22.Voting rules for articulation point detection. NPART/Berlin placement,
Rayleigh fading. Link acceptance threshold t = 0.1.(2) 234

D.23.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.1. 234

D.24.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.1.(2) 235

D.25.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.316. 235

D.26.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing. Link acceptance threshold t = 0.316.(2) 235

D.27.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316. 236

D.28.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading. Link acceptance threshold t = 0.316.(2) 236

D.29.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility. Link acceptance threshold t = 0.1. 236

D.30.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility. Link acceptance threshold t = 0.1.(2) 237

261

List of Figures

D.31.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility. Link acceptance threshold t = 0.1. 237

D.32.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility. Link acceptance threshold t = 0.1.(2) 237

D.33.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=2. Link acceptance threshold t = 0.1. 238

D.34.Voting rules for bridge detection.NPART/Berlin placement, Ricean fad-
ing,forward search radius=2.Link acceptance threshold t = 0.1.(2) 238

D.35.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, forward search radius=4. Link acceptance threshold t = 0.1. 238

D.36.Voting rules for bridge detection.NPART/Berlin placement, Ricean fad-
ing,forward search radius=4.Link acceptance threshold t = 0.1.(2) 239

D.37.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2, threshold t = 0.1. 239

D.38.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=2, threshold t = 0.1.(2) 239

D.39.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4, threshold t = 0.1. 240

D.40.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, forward search radius=4, threshold t = 0.1.(2) 240

D.41.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility, threshold t = 0.1. Forward search TTL=4. 240

D.42.Voting rules for bridge detection. NPART/Berlin placement, Ricean fad-
ing, mobility, threshold t = 0.1. Forward search TTL=4. (2) 241

D.43.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility, threshold t = 0.1, search TTL=4. 241

D.44.Voting rules for articulation point detection. NPART/Berlin placement,
Ricean fading, mobility, threshold t = 0.1, search TTL=4. (2) 241

262

List of Tables

2.1. The parameters of the community mobility model [109] 15
2.2. Relation between ETX metric, link quality and probability of successful

packet reception if MAC unicast (U) (1+7 retries) is used. 20
2.3. Confusion matrix. 27

4.1. Parameters used for evaluation of heartbeat protocols and their symbols. 46
4.2. The transition matrix of HLD state machine from Figure 4.1. 48
4.3. Parameters of the hyper-Erlang distribution for approximation of link

quality distributions in Leipzig community network and Motelab testbed. 53
4.4. Optimal HLD(a,r) for a given threshold and network type. a, r ∈ {1..5} 55
4.5. Optimal HLD(a,r) for a given threshold and network type. a, r ∈ {1..10} 55
4.6. Optimal HLD(a,r) in mobile networks for a given threshold and link du-

ration ratio. a, r ∈ {1..5}. 62

5.1. Comparison of dDFS and dBFS for bridge and articulation point detec-
tion in WMNs. 73

5.2. DIBADAWN message format. 76
5.3. Sequence of method invocations for the example in Figure 5.5. 82
5.4. Errors and failures introduced to the algorithm by communication faults

(1). 90
5.5. Errors and failures introduced to the algorithm by communication faults

(2). 91
5.6. Error and failures introduced to the algorithm by node restoration and

failures. 92
5.7. Example of successive contradictory markings of a link. 92
5.8. Example of optimal weight assignment based on [150]. 101
5.9. Rules in the second round of articulation point voting. 105
5.10. Rule legend. 105

7.1. Network characteristics and simulation parameters used for comparison
of topological properties. 124

7.2. Comparison of optimal HLDs and LQEs for same length of observed
sequences. Link quality fp(p) is uniformly distributed. 130

7.3. Mean values of selected characteristics in measured and artificial topologies.132

8.1. Comparison of network characteristics in representative simulation setups
to community networks in Berlin and Leipzig. 140

8.2. Metric values for example in Figure 8.2. Penalty is set to five. 145
8.3. Comparison of mean square errors. 153
8.4. Comparison of mean square errors after pendant node count reduction. . 153

263

List of Tables

9.1. 95% confidence intervals of precision and recall of selected rules. Simu-
lation setup: NPART/Berlin node placement, Ricean propagation, link
acceptance threshold t = 0.1. 160

9.2. Precision and recall for bridge detection under proactive topology man-
agement. 163

9.3. Precision and recall for articulation point detection under proactive topol-
ogy management. 163

9.4. The average ratio of number of captured edges (including false positives)
to accurate number of edges by OLSR protocol. 163

9.5. Overview of testbed characteristics. 168
9.6. Characteristics of nodes. 168
9.7. Properties of Motelab topologies for link acceptance threshold t = 0.1. . 172
9.8. Best rules for articulation point detection in Motelab experiments. Values

are taken for k=5. 177
9.9. Comparison of proactive and DIBADAWN-based bridge detection algo-

rithms. Link acceptance threshold t = 0.316, DIBADAWN parameter
k=5. 185

9.10. Comparison of proactive and DIBADAWN-based articulation point de-
tection algorithms. Link acceptance threshold t = 0.316, DIBADAWN
parameter k=5. 186

9.11. Comparison of DIBADAWN-based articulation point detection for correct
and incorrect weight assignments. Link acceptance threshold t = 0.316,
DIBADAWN parameter k=5. 187

9.12. Success ratios for AODV with and without bridge awareness. 202
9.13. Summary of characteristics of voting rules for bridge detection. 203
9.14. Summary of characteristics of voting rules for articulation point detection.203

10.1. Comparison of state-of-the-art for bridge and articulation point detection
and findings of this work. 207

C.1. Confusion Matrix for Random Markings. 225

264

Selbständigkeitserklärung

Ich erkläre hiermit, dass

• ich die vorliegende Dissertationsschrift mit dem Titel Distributed Biconnectivity
Testing in Wireless Multi-hop Networks selbständig und ohne unerlaubte Hilfe
angefertigt habe;

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder einen
solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät
II der Humboldt-Universität zu Berlin, gemäß Amtl. Mitteilungsblatt Nummer
34/2006, bekannt ist.

Berlin, den 27.8.2009. Bratislav Milic

265

	Introduction
	Wireless Multi-hop Networks
	Motivation
	Problem Statement and Goals
	Structure of the Thesis

	Background
	Modeling of Wireless Multi-hop Networks
	Node Placement Models
	Mobility Models
	Wireless Signal Propagation Models
	Medium Access Control Sublayer

	Graph as a Wireless Multi-hop Network Model
	What is Topology of a Wireless Multi-hop Network?
	Graph Theory Basics
	Random Geometry Graphs
	Planarization of Random Geometric Graphs

	Simulators, Emulators and Testbeds - Their Benefits and Drawbacks
	Accuracy Metrics of Biconnectivity Testing Algorithm

	Related Work
	Biconnectivity Testing in Wireless Multi-hop Networks
	Other Approaches for Circumvention of Network Partitioning or Its Effects
	Topology Control
	Partitioning Prevention by Mobility
	Disruption-Tolerant Networks

	Proactive Topology Management in WMNs
	Link Detection in Wireless Multi-hop Networks
	Local Topology Dissemination

	Summary

	Heartbeat-Based Link Status Detection in Wireless Multi-hop Networks
	Heartbeat Link Detector Model
	Analysis of Heartbeat Link Detector Behavior in Static Networks
	Heartbeat Link Detector at a Link without Node Failures
	Heartbeat Link Detector Behavior in a Network

	Node Failures and Limited Duration of Link Existence
	Effects of HLD Errors on Proactive Topology Management Protocols
	Summary

	Distributed Bridge and Articulation Point Detection Algorithm for Wireless Networks (DIBADAWN)
	Introduction
	Biconnectivity Testing Algorithms in Context of Wireless Multi-hop Networks
	Adaptation of the Echo Algorithms for Application in WMNs
	Distributed Biconnectivity Testing in WMNs
	Execution Issues of Echo Algorithms in WMNs
	Analysis of the Communication Overhead

	Algorithm Behavior in Presence of Packet Losses and Node Failures
	Analysis of Faults, Errors and Failures of the Detection Algorithm
	Explicit Reduction of Effects of Errors

	Improving Algorithm's Accuracy by Voting
	Voters, Votes and Voting Rules
	The First Round of Voting
	The Second Voting Round

	Summary

	Locality in Wireless Multi-hop Networks and Estimation of the Average Cycle Size
	Estimation of the Expected Face Size in Gabriel and Relative Neighborhood Graphs
	The Ratio of Removed Edges in Planarization Process
	The Expected Number of Faces and the Expected Face Size
	Simulation Results
	Interpretation of the Results – the Average Face Size in Limit

	Estimation of the Shortest Cycle Size
	Summary

	Case Study: Measurements from Community Wireless Multi-hop Networks
	Data Sampling and Simulation Methodology
	Data Sampling Methodology
	Validity of Measurements
	Evaluation Methodology of Artificial Topologies

	Data Analysis
	Node Degree Distributions
	Bridges and Articulation Points Analysis
	Link Quality Analysis

	Summary

	NPART - Node Placement Algorithm for Realistic Topologies in Wireless Multi-hop Network Simulation
	Algorithm Description
	Topology Quality Metrics
	Evaluation of Characteristics of Topologies Created by NPART
	Properties of Generated Topologies
	Offsetting the Imprecision Brought by Simplified Environment and Signal Propagation Modeling
	Analysis of Algorithm's Execution Time
	Effects of Network Topology on Simulation Results

	Summary

	Implementation and Verification of the Approach
	Overview of the Evaluation Methodology
	Issues of Proactive Topology Management for Bridge and Articulation Point Detection
	Implementation and Evaluation of DIBADAWN in a Wireless Sensor Testbed
	Overview of Existing Testbeds and Selection Criteria
	TinyOS and TOSSIM
	Testbed Setup and Data Collection
	Implementation of the DIBADAWN Algorithm and the Evaluation Procedure
	Detection Results

	Implementation of the Approach in Jist / SWANS Simulator
	Jist/swans Simulator Setup
	Evaluation Results in Static Topologies
	Assessing the Effects of Environmental Changes to Accuracy of Approach

	Locality Characteristics of Wireless Multi-hop Networks and DIBADAWN
	Notes on Bayesian Rules
	Application of DIBADAWN for Improvement of Route Discovery Rates
	Overview of Voting rules
	Summary

	Summary and Outlook
	Contributions
	Outlook
	Improvements of DIBADAWN and Voting Procedures
	Improvements of NPART
	DIBADAWN Application Scenarios

	Analysis of the Exact Approach to Counting of Components in Random Geometric Graphs
	Detailed Proof of the Distributed Bridge and Articulation Point Detection Algorithm for Wireless Networks
	Bridge Detection
	Detection of Articulation Points

	Precision and Recall of Random Markings
	Detailed Evaluation Results
	List of Figures
	List of Tables

