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Zusammenfassung 
 
In den späten neunziger Jahren wurde der G Protein-gekoppelte Rezeptor 30 (Gpr30) von 

verschiedenen, unabhängigen Forschungsgruppen kloniert. Der Rezeptor zeigte eine hohe 

Homologie mit dem Interleukin Rezeptor 8. Anfangs wurde ein Chemokin als potentieller 

Ligand angenommen. Allerdings konnten nachfolgende Untersuchungen die 

Chemokinligand-Hypothese nicht bestätigen. Im Folgenden wurde in einer Genexpressions-

analyse von Brustkrebszellen Östrogen als neuer potenzieller Gpr30-Ligand für schnelle 

Östrogen-vermittelnde Effekte identifiziert. Dieser Befund wird kontrovers diskutiert, da 

verschiedene Studien gegen eine Rolle von Gpr30 in der Östrogensignaltransduktion 

sprechen. Zudem wurde die physiologische Funktion von Gpr30 bisher noch nicht vollständig 

geklärt, u.a. weil nur wenige Untersuchungen in vivo Modelle verwenden. 

 

Ziel der vorliegenden Arbeit war die Erforschung der Rolle von Gpr30 in vivo. In einer 

primären und sekundären Untersuchung wurde eine phänotypische Charakterisierung der 

Deltagen-Gpr30-defizienten Mäuse vorgenommen. Diese Mauslinie wurde generiert, indem 

eine -Galactosidase-Neomycin Vektorkassette in den open reading frame des Gpr30 Gens 

eingesetzt wurde. Die primäre Untersuchung beinhaltete Analysen verschiedener Aspekte der 

Mausphysiologie. Gegenstand der sekundären Untersuchung war die Bestimmung eines 

möglichen metabolischen und kardiovaskulären Phänotyps, da Gpr30 überwiegend in den 

Blutgefäßen verschiedener Organe, sowie iin der Pankreas und im Magen exprimiert ist. Zu 

diesem Zweck wurden die Mäuse einer Hochfettdiät unterzogen und es wurden metabolische 

sowie hemodynamische Tests durchgeführt. Um den Phänotyp dieser ersten Mauslinie zu 

bestätigen, wurde eine zweite Mauslinie ohne Selektionsmarker generiert (Artemis Mäuse). 

 

Im Rahmen der primären Untersuchung zeigte die immunologische Analyse eine Reduzierung 

der T-Zellen sowohl bei den männlichen als auch bei den weiblichen mutanten Mäusen. In 

einer Thymus-Genexpressionanalyse konnten einige Gene identifiziert werden, die 

möglicherweise in der Regulation der Anzahl an T-Zellen involviert waren. Auf der 

Grundlage dieser Ergebnisse wurde eine Erhöhung der Kalzium-vermittelten T-Zellen 

Apoptose hypothetisiert. In der vorliegenden Arbeit wurde erstmals eine 

echokardiographische Untersuchung an Gpr30-defizienten Mäusen durchgeführt und es 

konnte eine potenzielle Beeinträchtigung des Cardiac Output bei weiblichen mutanten 

Mäusen im Alter von sechs Monaten festgestellt werden. Da die Ergebnisse der ersten 



 

Mausmutanten mit den zweiten, unabhängigen Artemis-Mausmutanten nicht reproduziert 

werden konnten, lässt sich ein Effekt der Selektionsmarker als Ursache des beobachteten 

Phänotyps nicht ausschließen. 

 

In der sekundären Untersuchumg konnte aufgrund metabolischer Tests an beiden Mauslinien 

der Einfluss von Gpr30 auf die Glukose-Clearance, die Adipositas und die Regulation des 

Körpergewichts ausgeschlossen werden. Nach zwanzig Wochen der Hochfettdiät war das 

Plasmalevel von Cholesterin, High Density Lipoprotein und Kreatinkinase bei den weiblichen 

Mutanten signifikant niedriger als bei Kontrollmäusen. Dies lässt einen Einfluss von Gpr30 

auf den Lipid- und Muskelstoffwechsel vermuten. Die männlichen Mutantmäuse zeigten 

hingegen ein signifikant niedrigeres Level der Alkalischen Phosphatase, welches 

möglicherweise auf eine präventive hepatische Funktion trotz der Hochfettdiät hindeutet. 

 

Insgesamt tragen die Ergebnisse der vorliegenden Studie zu einem besseren Verständnis der 

Funktion von Gpr30 in vivo bei. Eine Rolle des Rezeptors bezüglich der Regulation des 

Körpergewichts konnte widerlegt werden, während ein Einfluss auf den Lipid- und 

Muskelstoffwechsel angenommen werden kann. Zudem wurde gefunden, dass Gpr30 für 

einige Östrogen-regulierende, physiologische Prozesse nicht erforderlich ist. 

 



 

Abstract 
 
Recent studies identified the G protein-coupled receptor 30 (Gpr30) as a potential new 

estrogen receptor. However, these findings still remain controversial and the physiological 

role of Gpr30 has not been clarified yet. In order to decipher the role of Gpr30 in vivo, we 

investigated the phenotype of two different Gpr30 mutant mouse lines, in a primary and a 

secondary screen. The first mouse line was generated by the insertion of a LacZ-neomycin 

cassette into the Gpr30 open reading frame. The primary screen involved different analysis in 

many areas of mouse physiology. It revealed a decrease of T cell levels in both male and 

female mutants. Thymus gene expression analysis allowed to detect some of the genes 

potentially involved in regulating T cell levels in these mice. On this basis a hypothesis of an 

increase in T cell calcium-mediated apoptosis was formulated. The secondary screen aimed at 

unraveling a potential metabolic and cardiovascular phenotype, being Gpr30 mainly 

expressed in the vasculature of several organs, as well as in the pancreas and in the chief 

gastric cells of the stomach. Therefore, mice were challenged with a defined high fat diet 

(HFD), and metabolic and hemodynamic tests were performed.  

 

To confirm the phenotype achieved in this first mouse line, a second one was generated 

devoid of any selection marker. Since the results obtained in the first set of mutants could not 

be reproduced in the second one, an effect of the selection marker in determining the observed 

phenotype can not be excluded. Metabolic tests on both mutant lines excluded a role of Gpr30 

in glucose clearance, adiposity and body weight regulation. After 20 weeks of HFD, total 

cholesterol, high density lipoprotein, and creatine kinase plasma levels were significantly 

lower in mutant females as compared to controls, suggesting an involvement of Gpr30 in lipid 

and muscle metabolism. Moreover, mutant males showed lower levels of alkaline 

phosphatase, potentially indicating a preserved hepatic function in these mice despite HFD.  

 

Altogether the results achieved may contribute to a better understanding of Gpr30 function in 

vivo, disproving a role of Gpr30 in body weight regulation, suggesting a role in lipid and 

muscular metabolism, and providing evidence that Gpr30 may not be required for several 

estrogen-regulated physiological processes. 
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1 Introduction 

1.1 G protein-coupled receptors 

1.1.1 General considerations  

G protein-coupled receptors (GPCRs) are the largest known gene superfamily of the human 

genome accounting in particular for about 2% of the human genome (1). The characteristic 

feature of all known G protein-coupled receptor proteins is that they have seven hydrophobic 

stretches of 20-25 amino acids α-helical transmembrane (TM) domains, connected by 

alternating extracellular and intracellular loops. GPCRs are also known actually as seven 

transmembrane (7TM) receptors. There are extensive amino acid sequence similarities that 

divide them into several classes, each with characteristic highly conserved residues distributed 

throughout the molecule. An example is represented by the DRY motif at the cytoplasmic end 

of the third transmembrane domain and the prolines at specific positions in helices 5, 6 and 7, 

common characteristics to the GPCR class related to rhodopsin. All GPCRs, with the 

exception of the melatonin receptor are glycoproteins, and all contain at least one N-

glycosilation site in the extracellular N-terminus of the receptor. In addition GPCR contain a 

number of conserved cysteines (Cys). There are two highly conserved Cys residues in the 

second and third extracellular loops of the receptors. An additional highly conserved Cys 

residue is found within the C-terminal tail of many GPCRs (2).  

 

GPCR are responsible for the transduction of endogenous signals into an intracellular 

response. The binding of a ligand on the cell surface causes the GPCR to become active and 

subsequently bind and activate ubiquitous guanine nucleotide-binding regulatory (G) proteins 

within the cytosol. The GPCR protein’s association with the heterotrimetic G-protein complex 

causes the GDP bound to the Gα subunit to be exchanged for GTP. The Gα-GTP complex 

then dissociates from the Gβγ subunit, freeing the Gα subunit to couple to an effector enzyme. 

An extremely heterogenous set of molecules can act as GPCR ligands including ions, 

hormones, neurotransmitters, peptides, and proteins. Sensory GPCR can also be activated by 

stimuli such as light, taste or odour. More than one type of GPCR can interact with more than 

one kind of G-protein creating a complex system involving a variety of mechanisms. GPCRs 

control and/or affect physiological processes as diverse as neurotransmission, cellular 

metabolism, secretion, cellular differentiation, and inflammatory responses. Based on 

sequence homology and functional similarity GPCRs can be grouped into 6 classes: class 1 or 
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A: rhodopsin like receptors, class 2 or B: secretin receptor family, class 3 or C: metabotropic 

glutamate receptors, class 4 or D: fungal mating pheromone receptors, class 5 or E: cAMP 

receptors, class 6 or F/S: frizzled/smoothened receptors. Class A receptors account for over 

80% of all GPCRs and represent the largest class of human receptor. There are at least 286 

human non-olfactory class A receptors, the majority of which bind peptides, biogenic amines, 

or lipid-like substance (2). The binding of endogenous peptides has an important role in 

mediating the effects of a wide variety of neurotransmitters, hormones, and paracrine signals. 

Receptors that bind biogenic amines e.g., norepinephrine, dopamine, and serotonin, are very 

commonly modulated by drugs. Pathological conditions, including Parkinson´s disease, 

schizophrenia and drug addiction, are examples of where imbalances at the level of biogenic 

amines cause altered brain function. Class B receptors bind the large peptides such as secretin, 

parathyroid hormone, glucagons, glucagons-like peptide, calcitonin, vasoactive intestinal 

peptide, growth hormone-releasing hormone, and pituitary adenylyl cyclase (AC) activating 

protein. Metabotropic glutamate receptors (mGluRs), a type of glutamate receptors, are 

activated through an indirect metabotropic process. Like all glutamate receptors, mGlusRs, 

bind to glutamate, an amino acid that functions as an excitatory neurotransmitter. In humans, 

mGluRs are found in pre- and postsynaptic synapses of the hippocampus, cerebellum and 

cerebral cortex, as well as in other parts of the brain and peripheral tissues. Class 4 receptors 

bind pheromones, used by organisms for chemical communication. cAMP receptors are part 

of chemotactic signalling systems. Frizzled receptors are necessary for Wnt binding while the 

smoothened receptors mediate hedgehog signalling. The six different classes can further be 

divided into families and sub-subfamilies based on the function of the GPCR and the specific 

ligand that it binds (3-6). 

 

Along with the elucidation of the human genome in 2001 many new members of the 7TM 

GPCR target family became “visible” at the DNA sequence level, and advanced gene-

expression analysis and bioinformatics methods became available for function and 

classification purposes. A recent comparative analysis of the human and mouse non-

olfactory/non-sensory GPCRs (endo-GPCRs) repertoire, revealed 367 humans and 392 mouse 

GPCRs; 343 were found to be common to both species (7). Of the 367 human GPCRs, 284 

belong to the rhodopsin-like class A, 50 to secretin receptor like class B, 17 to class C and 11 

to the frizzled-smoothened receptors class. Among the 392 mouse GPCRs, 313, 47, 17 and 10 

belong to classes A, B, C and F/S respectively. Two hundred twenty four human and 214 

mouse GPCRs have a known ligand. The remaining 143 human and 178 mouse GPCRs have 
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no known ligands and are therefore considered orphan receptors. Among the orphan 

receptors, 98 human and 136 mouse receptors belong to class A, 34 human and 31 mouse 

receptors belong to class B, six receptors belong to class C in both species, and none belongs 

to class F/S. 

1.1.2 G protein activation 

Heterotrimeric G proteins are composed of three subunits, α, β and γ, and their switching 

function depends on the ability of the G protein α-subunit (Gα) to cycle between an inactive 

GDP-bound conformation, primed for interaction with an activated receptor, and an active 

GTP-bound conformation modulating the activity of downstream effector proteins. In 

humans, there are 21 Gα subunits encoded by 16 genes, 6 Gβ subunits encoded by 5 genes, 

and 12 Gγ subunits. Heterotrimers are typically divided into four main classes based on the 

primary sequence similarity of the Gα subunit: Gαs, Gαi, Gαq and Gα12 (8). Many crystal 

structures of these proteins have been resolved in various conformations providing the 

framework for understanding the biomechanics of G protein signalling (9, 10). In addition to 

bovine rhodopsin, the crystal structures of other three G-protein-coupled receptors such as β1 

and β2-adrenergic receptor, and the A2A adenosine receptor have been solved, providing high-

resolution structural data on the transmembrane bundle of any GPCR (11-13). The structures 

of the Gα subunit reveal a conserved protein fold that is composed of a GTPase domain and a 

helical domain. The GTPase domain is conserved in all members of the G protein 

superfamily, including monomeric G proteins and elongation factors. This domain hydrolyses 

GTP and provides the binding surfaces for the Gβγ dimer, GPCRs and effector proteins. The 

Gβ subunit has a seven–bladed β propeller structure that is composed of seven WD40 

sequence repeats. The N-terminus of Gβ adopts an α–helical conformation that forms a 

coiled-coil with the N terminus of Gγ. Although most of Gβ subunits can interact with most 

Gαγ subunits not all of the 72 possible dimer combinations occur (14). Additionally several 

Gβγ dimers can interact with the same Gα isoform (15).  

 

Receptors are a physical conduit for the transmission of chemical signals across the cell 

membrane. Agonists bind to the extracellular surface of a GPCR and induce a conformational 

change that leads to G protein activation. Receptors bind ligands in various different ways 

(16). The small molecules that activate some rhodopsin family members bind deep within the 

transmembrane helix bundle, peptide ligands bind both within the transmembrane helices and 

on the extracellular loops. Large glycoproteins hormones, such as thyroid-stimulating 
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hormone, bind to the large N-terminal leucine-rich repeat domain, which positions the 

appropriate ligand to interact with the extracellular loops. Regardless of the mode of ligand 

binding, the common result is a conformational change in the cytoplasmic domain of the 

receptor.  

 

Two opposing models have been presented to explain how G proteins encounter activated 

receptors. In the “collision coupling” model, these interactions occur as a result of free lateral 

diffusion within the plasma membrane, wherein G proteins only interact with activated 

receptors (17). The alternative model suggests that G proteins can interact with receptors 

before agonist binding so that they are “pre-coupled”. Much of the recent data in favour of the 

pre-coupling receptor hypothesis comes from Fluorescence Resonance Energy Transfer 

(FRET) studies (18, 19). Whether the first or the second proposed model is the right one is not 

yet clarified. Further complexity is provided by the accumulating evidence that rhodopsin 

family GPCRs may form homo- and hetero-dimers (20, 21). Dimerization has also been 

demonstrated in glutamate family receptors; in particular the γ aminobutyric acid type B 

(GABAB) receptor was one of the first GPCRs shown to function as a heterodimer (22). 

However, the importance of receptor dimerization in G protein signalling remains a 

contentious issue. Relatively few types of G proteins transduce signals from a vast number of 

GPCRs, and so each member of the G protein family must be able to interact with many 

different receptors. Indeed different agonists can affect which G proteins are activated by a 

given receptor (23).  

 

The complexity of GPCR signalling is particularly enriched by the mechanisms underlying 

the GDP release phase. Some models for instance identify in the interaction between Gα and 

Gβγ a crucial role in G protein activation. It has been shown that mutations in the C-terminus 

of Gγ increase receptor-catalysed nucleotide exchange (24). Physiologically, the receptor–G 

protein complex is transiently due to rapid binding of GTP, whose cellular concentration 

exceeds that of GDP several fold. Binding of GTP to the Gα subunits causes a structural 

rearrangement of Gα (GTP), Gβγ and the receptor, which allows the dissociation from the 

receptor and the interaction with the effector. Indeed the kinetics of G protein activation can 

be different depending on the G proteins involved. It is known for instance that Gt turnover 

rates compared with other signalling systems is markedly faster (10). 
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1.1.3 G proteins 

G proteins are activated to engage effectors and stimulate cascades resulting in diverse 

biological responses. The Gs family includes Gs and the olfactory Golf which are both 

constitutively activated by cholera toxin through ADP ribosylation of their α subunit. 

Common to Gs family member is their capability to activate AC, and thereby causing an 

increase in intracellular 3´,5´-cAMP. The Gi family is most diverse, and consists of Gαi1, Gαi2, 

Gαi3, Gαo, Gαt-r, Gαt-c, Gαg, and Gαz. Rod transducin Gαt-r, cone transducin Gαt-c and gusducin 

Gαg are involved in the transduction of visual and taste signals. All Gi family members are 

sensitive to inhibition by pertussin toxin via ADP ribosylation of their α subunit except Gαz. 

This prevents their coupling to GPCRs, and hence their activation. Gα1-3, Gαo and Gαz  inhibit 

the activity of AC. The sensory Gi protein Gαg activates PLC-β and induces the increase of 

intracellular Ca2+, whereas Gαt-r and Gαt-c activate the cyclic cGMP-dependent 

phosphodiesterases (PDE) 8, causing a decrease in intracellular cGMP and hyperpolarization 

of photocells via cGMP-gated ion channels. The Gq family includes Gαq, Gα11, Gα14 and 

Gα15/16. All members lead to the activation of the four PLCβ isoforms (PLCβ1-4) and hence 

cause activation of PKC and intracellular Ca2+ mobilization. Gαq, Gα11 are ubiquitously 

expressed, whereas the expression of Gα14 is more restricted. Gα15 and Gα16 are solely found 

in hematopoietic cells. The Gα12 family consists of the ubiquitously expressed Gα12 and Gα13 

proteins. Both activate the small GTPase Rho, which can cause downstream activation of c-

Jun N-terminal kinase (JNK) and PLD (25, 26). The activity of Gα proteins is regulated by 

protein modification, such as phosphorylation, N-terminal myristoylation (Gαi proteins) and 

internal palmitoylation (26). Effectors regulated by Gβγ dimers are PLCβ, ACs, 

phosphoinositide 3-kinase (PI3K), and G protein-inwardly-rectifying K+ channels (GIRKs).  
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1.2 GPCRs in pharmacology  

The ability of GPCRs to mediate the signalling of a wide and extremely differentiate range of 

molecules makes this kind of protein involved in the physiological regulation of virtually 

every cell and tissue. GPCRs are actually a privileged target for therapeutic agent 

development (Fig. 1.1). They are used in the treatment of many different diseases in every 

major organ of the body including the central nervous, cardiovascular, reproductive, 

respiratory, metabolic and urogenital systems. In relation to the metabolic and cardiovascular 

systems along with related diseases (e.g. diabetes, or heart failure) some of the most 

successful drugs targeting GPCRs include: β-blockers acting at cardiac β1/2 adrenergic 

receptors to treat cardiac failure, hypertension and coronary heart disease; angiotensin-

receptor 1 (AT1) antagonists able to prevent diabetes-induced renal damage, hypertension, 

and heart failure; cannabinoids-receptor 1 (CB1) antagonist rimonabant to treat obesity; 

glucose-dependent insulinotropic polypeptide 1 (GLP1) analogues (e.g. exenatide) used in the 

treatment of diabetes type 1 and 2 (27). 

 

 

 

 

Figure 1.1: GPCRs in pharmacology 

30% of marketed small-molecule drug targets are represented by GPCRs. Adapted from Hopkins and Groom 
(28).  
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1.3 G protein coupled receptor 30 

In the late 1990s G protein-coupled receptor 30 (Gpr30) was independently cloned by four 

different groups (29-32). Since no ligand was known for the receptor, Gpr30 was classified at 

the beginning as an orphan receptor. Subsequently in different studies Gpr30 has been 

proposed as a new estrogen receptor able to mediate rapid signalling exerted by estrogen 

stimulation (33, 34) (see also Gpr30 signalling).  

 

Gpr30 gene is localized on chromosome 7 in humans (map position 7p22.3) and on 

chromosome 5 in the mouse genome (map position 5 G1). Both the human and the mouse 

Gpr30 genes are characterised by the presence of three exons. Three main different splicing 

variants are known for the human transcript of Gpr30 differing in the 5´ UTR and encoding a 

protein of 375 amino acids with a molecular weight of 42 KDa (NM_001039966.1, 

NM_001098201.1, NM_001505.2). There is only one mouse transcript variant of Gpr30 

encoding a protein of 375 amino acids and with a molecular weight of 42 KDa 

(NM_029771.2). Gpr30 is belonging to the class of rhodopsin-like receptors (class A). Based 

on a phylogenetic analysis of a vast number of GPCRs, Gpr30 turned out as a typical but 

distant member of the subfamily A2 (chemokine receptors) (35). Gpr30 protein has 

considerable homology with different chemoattractant receptors. In particular it shows 30% 

homology with interleukin 8-receptor (IL-8R). The common motif of the amino acid residues 

SCLNPLIY(A/S)F is found in the trans-membrane domain 7 (TM VII) (29). Subsequently an 

alternative name adopted for Gpr30 was also chemokine receptor-like 2 (CMKRL2). 

1.3.1 Gpr30 signalling 

Gpr30 has been proposed to represent a new estrogen receptor able to mediate non-genomic 

and rapid effects exerted by estrogen. Gpr30 main transduction mechanism works through 

Gi/Go family coupling. The secondary transduction mechanism involves coupling with Gs 

protein family members. Gpr30 estrogen stimulation has been shown to promote mitogen-

activated protein (MAP) kinases Erk1/2 activation via epidermal growth factor (EGFR). 

Subsequently also the activation of an AC was reported in response to Gpr30 estrogen 

stimulation (36, 37).  

 

Filardo and colleagues proposed a signalling model in which Gpr30 activation by estrogen 

leads a Gβγ subunit to promote a non-receptor tyrosine kinase (Src)-mediated matrix 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001039966.1�
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001098201.1�
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001505.2�
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_029771.2�
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metalloproteinase (MMP) dependent cleavage, and the release of heparin bounding (HB) –

EGF from the cell surface, resulting then in the activation of Erk-1/-2 pathway. In a sort of 

compensatory pathway, a Gα protein would be able to stimulate AC that in turn leads over 

time to a PKA-mediated suppression of EGF-induced Erk-1-/-2 activity. It was indeed 

observed that not only estrogen would be able to act as an agonist for Gpr30 determining the 

described Erk-1/-2 balanced pathway, but also antiestrogen molecules as fulvestrant (ICI 

182,780) and tamoxifen. These conclusions were questioned by a paper of Levin and 

colleagues reporting EGFR activation exclusively mediated by estrogen receptor α (ERα) 

(38). Yet Revankar and colleagues could show in monkey kidney fibroblasts (COS-7 cells) 

transfected with ERα or Gpr30 both conjugated to GFP, an estrogen-mediated intracellular 

calcium mobilization in both cases at 17β-estradiol concentrations below 0.1 nM, with an 

EC50 value of approximately 0.5 nM (34). Indeed the authors showed that EGFR inhibitor 

AG1478 was able to inhibit calcium mobilization only in cells transfected with Gpr30. 

Estrogen activation of Gpr30 resulted also in the synthesis of phosphatidylinositol 3,4,5-

triphosphate (PIP3) in the nucleus through the PI3K. Interestingly in a brest cancer cell line 

missing both nuclear ERs (SkBr3 cells), estrogen-mediated signalling showed the same 

characteristics found in COS-7 cells transfected with Gpr30.  

 

In addition it has been shown that Gpr30 promotes estrogen-mediated inhibition of oxidative 

stress-induced apoptosis, by promoting the B-cells lymphoma 2 gene (Bcl-2) expression (39) 

as well as cell growth by the stimulation of cyclin D expression (40). Upregulation of C-fos 

by estrogen and phytoestrogens through Gpr30 was observed in SkBr3 cells (41). Estrogen 

and tamoxifen proliferation Gpr30-dependent was revealed in endometrial and thyroid cancer 

cells (42, 43).  

 

Despite the tendency in recognizing Gpr30 as new estrogen receptor (G protein-coupled 

estrogen receptor, Gper, has been proposed as a new alternative name for the protein) part of 

the literature demonstrates controversial results concerning the effective nature of Gpr30 

ligand and signalling (44). A report from Otto and colleagues shows that radioactive 17β-

estradiol does not bind Gpr30 in a specific way (45). In the absence of ERα or ERβ Gpr30 has 

been also shown to be unable to mediate estrogen signalling (46). Furthermore silencing of 

Gpr30 did not compromise effects mediated by estrogen (46, 47). In analogy to the 

sphingosine-1 phosphate receptor EDg-3, also a 7TM receptor, involved in estrogen 

signalling (48), Levin recently proposed for Gpr30 a function in estrogen signalling actually 
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subordinated to membrane localized ERα (44). Gpr30 therefore may participate in the 

complex signalling mediated by ERα, constituting one of the many possible links between 

estrogen and downstream effectors. The hypothesis is supported by the observation that if it is 

often true that the rapid effects attributed to Gpr30 in response to estrogen require ERα (43, 

49, 50) the opposite does not seem always to occur (47). Indeed in cells from a transgenic 

mouse model, expressing only a functional E domain of the ERα at the plasma membrane 

(MOER model), Erk and PI3K activation by estrogen was rescued as opposed to cells lacking 

any ER. A remarkable limitation of these results identifying Gpr30 as a new estrogen is the 

scarce information about the in vivo function of Gpr30. Moreover even these do not always 

confirm the role of Gpr30 as a new estrogen receptor, e.g. regarding the expected estrogen 

effects in classical estrogen target tissues such as mammary gland and uterus (45) (see also 

Gpr30 in vivo function). 

1.3.2 Gpr30 subcellular localization and ligands 

Based on the homology of Gpr30 with IL-8 receptor, the ligand of Gpr30 was at the 

beginning thought to be a peptide. Different peptides or proteins were tested including: the 

chemotactic IL-8 peptide, the melanoma growth stimulatory activity alpha peptide (GRO-α), 

the monocyte chemotactic proteins 1 and 3 (MCP-1 and MCP-3 respectively), the 

macrophage inflammatory protein 1-alpha-P (MIP-1 α) and others. Experiments were also 

performed with conditioned media from cell lines known to produce cytokines. No increase or 

decrease of cAMP levels as well as of intracellular calcium was registered (31). Only later in 

a gene expression analysis of SkBr3 cells, estrogen was also proposed to function as a Gpr30 

ligand. However, the nature of the ligand is up today still controversial (see Gpr30 signalling). 

The cellular localization of Gpr30 also represents a critical issue, whose determination has 

proceeded along with all the efforts in understanding the nature of the ligand. This aspect has 

undoubtedly important implications for the function of the receptor itself. An intracellular 

localization implicates for instance that the ligand has to be membrane permeable, defining a 

relevant chemical characteristic of the putative ligand. Although most of the GPCRs are 

expressed on the cellular membrane some studies show Gpr30 to be expressed on the 

endoplasmic reticulum (34, 51). The idea that a GPCR may be located in intracellular 

compartments has been already contemplated (52). Yet two studies claimed Gpr30 to be 

expressed on the extracellular membrane, even though no staining of subcellular markers was 

provided, and the localization of Gpr30 fusion protein seemed to depend on the cell-type 

analysed and the tag used (53, 54).  
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In order to determine the subcellular localization of Gpr30 Revankar and colleagues purified 

two estrogen derivatives conjugated to Alexa dyes, the resulting products being known as E2-

Alexa 546 and E2-Alexa 633 or fluorescent estrogens, able to bind ERα, ERβ and Gpr30. 

Moreover confocal fluorescence microscopy revealed that E2-Alexa 546 staining colocalized 

with Gpr30-GFP expression in the endoplasmic reticulum and that this binding could be 

competed by an excess of 17β-estradiol. A direct linear correlation was observed between 

receptor expression levels and specific Alexa-633 binding staining of COS-7 cells transfected 

with ERα, ERβ, or Gpr30 conjugated to GFP. Competition binding assays of E2-Alexa 633 

with 17β-estradiol showed a Ki of approximately 6.6 nM for Gpr30 (34). Otto and colleagues 

reached the same conclusion as Revankar and colleagues in terms of subcellular localization, 

detecting Gpr30 in the endoplasmic reticulum. However using radioactive estradiol they could 

observe specific saturable binding of estradiol only to ERα but not to Gpr30 (51). A first 

approach to uncover Gpr30 ligand has been a molecular-dynamics-simulated annealing using 

the hydrophilic cyclopeptide EMTOVENOGQ, derived from alpha-fetoprotein, an inhibitor 

of estrogen-stimulated proliferation of human breast cancer (55). Later, combining virtual and 

biochemical screening techniques aimed at sift through a vast numbers of compound 

candidates as GPCR ligands, Bologa and colleagues identified a new molecule able to bind 

selectively and with high affinity to Gpr30. The compound is a substituted dihydroquinoline, 

and was denominated Gpr30-specific compound 1 (G1) (56). Using fluorescent estrogens the 

authors performed competition binding assays for Gpr30 in COS-7 cells, and found a 

dissociation constant (Ki) of 11nM for G1. Furthermore they could confirm the localization of 

Gpr30 on the endoplasmic reticulum by immunohistochemistry approaches. Indeed G1 

stimulation of COS-7 cells led to intracellular calcium mobilization and PIP3 nuclei 

accumulation. The same results were found in SkBr3 cells as well as in a human breast adeno-

carcinoma cell line, MCF7 cells, supporting the ability of G1 to activate also endogenously 

expressed Gpr30. Conflicting results with those reported by Bologa and colleagues were 

described by Otto and co-workers who were not able to show calcium current in response to 

G1 in several cellular lines transiently transfected with Gpr30 (e.g. MDA-MB231, HEC50, 

MCF-7 and COS-7 cells). A long-last stimulation of calcium currents was detected as 

expected when agents such as ionomycin were applied (45). Nevertheless in a recent paper 

Dennis and colleagues following the same approach used to identify the G1 agonist for Gpr30 

could select a new molecule as the first selective antagonist of Gpr30, G15 (57). The authors 

conducted competitive binding assay experiments and reported an affinity of G15 for Gpr30 

of about 20 nM. G15 displayed little binding to ERα and ERβ at concentrations up to 10μM. 
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Moreover they performed assays for intracellular calcium mobilization in SkBr3 cells, 

showing that G15 alone was not able to induce calcium mobilization but pre-incubation with 

G15 reduced in a dependent dose manner the response to G1 or to estrogen. Like for G1, G15 

was tested in COS-7 cells in response to estrogen or G1 mediated PI3K activation after 

transfection with Gpr30, ERα or ERβ. G15 could inhibit PIP3 accumulation in response to G1 

stimulation, but was unable to exert the same inhibitory effects in cells transfected with ERα 

or ERβ and stimulated with estrogen. The specificity of G15-Gpr30 binding was proved by its 

inability to interfere with ATP calcium mediated mobilization.  

 

One aspect of great interest in the field of Gpr30 ligand studies is certainly represented by the 

interaction between 4-hydroxytamoxifen (a selective estrogen receptor modulator, SERM), 

fulvestrant (a pure ERα antagonist) and Gpr30. Any of them have been discussed to represent 

Gpr30 agonists (54). Transactivation of EGFR through Gpr30 leading to epithelial 

proliferation, has been proposed to be the molecular mechanism explaining the onset of 

endometrial cancer in women treated with tamoxifen (34, 58, 59). However so far the distinct 

roles of ERα and Gpr30 in transactivating EGFR have not been properly clarified and a 

subordinated role of Gpr30 to ERα could not be excluded (38). 

1.3.3 Gpr30 in vivo function 

So far most of the functional studies of Gpr30 were based on cell-assays, and only few 

publications have reported in vivo approaches. An overview of the most relevant results from 

these studies is shown in the Table 1.1. Most of the approaches were aimed to clarify the 

potential role of Gpr30 as an estrogen receptor: for this scope E2, G1 compound, ICI 182,780, 

and the newly identified G15 have been used in the different in vivo studies. Wildtype rats 

and Gpr30 knockout (KO) mice were the animal models used. In particular so far four 

different Gpr30 KO mouse models have been generated (45, 60-62) and the following 

functional categories identified: immunology, neurology, reproduction, metabolic and 

cardiovascular function, inflammatory mechanisms. The approaches are disparate and often 

the results conflicting.  
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Table 1.1: Gpr30 in vivo function 

Animal model Method Main phenotype reported 
Proposed or excluded Gpr30 

function 

Gpr30 KO mice 
PD1-KO mice 

EAE induction and G1 
treatment 

 
enhanced suppressive activity of 

CD4(+)Foxp3(+) T regulatory cells 
through a Gpr30- and programmed 

death 1-dependent mechanism 

Protective effect of Gpr30 
against EAE (69) 

 
Gpr30 KO mice 

Rats 
 

 
G1 infusion, BP and BW 

measurements 
 

Reduction of MAP in rats. 
Obesity in Gpr30 KO mice 

 
Gpr30 estrogen mediates effects 

of protection from 
cardiovascular diseases and 

obesity (68) 
 

 
Ovx Gpr30 KO female mice 

 
E2 treatment 

 
E2 treatment did not effect femur 
length in Ovx Gpr30 KO females 

mice 

 
Gpr30 is required for a normal 
estrogenic response in growth 

plate (220) 
 

Gpr30 KO mice 
Morphological metabolic and 

hemodynamic studies  
(e.g. GTT, BP measurements) 

 
In females mice: impaired glucose 

metabolism, reduced BW, 
increased blood pressure, reduced 

bone growth 
 

Gpr30 is required for normal 
bone growth, glucose 

homeostasis, and blood pressure 
in female mice (61) 

Gpr30 KO mice 
Ovx Gpr30 KO female mice 

Continuous mating studies 
E2, E2+P treatment 

 
Gpr30 KO mice have normal: 

fertility, development of 
reproductive organs, and responses 

to E2 or E2+P in the uterus and 
mammary gland 

 

Gpr30 is not involved in 
estrogenic response in 

reproductive organs (45) 

Ovx Gpr30 KO female mice G1 treatment 

 
G1 has not impact on estrogenic 
responses in the uterus and the 
mammary gland (epithelial cell 
proliferation, endbud formation, 

target gene induction) 
 

Gpr30 is not involved in 
estrogenic response in 

reproductive organs (51) 

Gpr30 KO mice 
E2, G1 treatment: 

assessment of the thymic 
atrophy and thymic apoptosis 

 
E2-induced apoptosis in TCR β-/low 

DP thymocytes was significantly 
attenuated in Gpr30 KO mice. G1 
treatment in WT mice, similar to 

E2, induces apoptosis 
 

 
Gpr30 is indispensable for E2-
induced thymocyte apoptosis 

and consequent thymus atrophy 
(along with Erα–mediated DN 

thymocytes development 
blockage) (62) 

Ovx female and ICR male 
mice 

E2, G15 injections 
G1 and G15 administration in 

tail suspension test 

 
Epithelial cell proliferation E2 or 
G1- induced, reduced by G15 in a 

dose dependent manner. G1 and E2 
antidepressant effects inhibited by 

G15 

 
Gpr30 estreogen mediated 

effects of epithelial cell 
proliferation and regulation of 

depression (antidepressant effect 
of G1 inhibited by G15) (57) 

Ovx female rats 5HTP injection to induce VH 

 
Lost of VH when ovx rats were 

treated with antisense 
oligodeoxynucleotide against 

Gpr30 

Gpr30 estrogen-mediated VH 
(73) 

Gpr30 in vivo function. 5HTP: 5-hydroxytryptophan; BP: blood pressure; BW: body weight; E2: estrogen; EAE: 
experimental autoimmune encephalomyelitis; GTT: glucose tolerance test; KO: knockout; MAP: mean arterial 
pressure; Ovx: ovariectomized; P: progesterone; VH: visceral hypersensibility. 
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Analysis shown in the first paper was conducted in rats, using a trauma-hemorrhagic shock 

(THS) model based on a mechanical and controlled bleeding followed by a pharmacological 

resuscitation. The animals were treated with E2 or E2 conjugated to BSA and hepatic injury 

was based on plasma α-glutathione S-transferase (αGST) levels. E2 and E2-BSA 

administration after THS were both able to reduce αGST levels. Indeed the authors showed in 

hepatocytes PKA inhibition of the anti-apoptotic Bcl-2 gene, in response to E2 or E2-BSA 

stimulation. The authors concluded that hepatic injury may be attenuated in response to 

estrogen through a Gpr30 mediated anti-apoptotic signalling (63). In this study there was no 

difference in using E2 or E2-BSA, the latter being a membrane-impermeable compound. Its 

presumed effects mediated by Gpr30 are however in contradiction with strong evidences for 

Gpr30 being located on the endoplasmic reticulum (see Gpr30 subcellular localization and its 

ligands). Other studies also provided evidence for a pro-apoptotic function of Gpr30 (62, 64).  

 

A recent paper reports that Gpr30 is required for E2 stimulation of the primordial follicle in 

the hamster ovary suggesting a potential role of Gpr30 in reproduction (65). On the other 

hand Otto and colleagues showed that Gpr30 is not involved in estrogenic response in 

reproductive mouse organs (45). They used ovariectomized (ovx) Gpr30 KO female mice 

treated with E2 alone or in combination with progesterone (P) to simulate pregnancy status. 

They found that the lack of Gpr30 did not affect endbud or sidebranches formation in 

mammary gland, as well as uterine growth (weight) and epithelial cell proliferation. Uterine 

genes expression as Hspa5, S100a10, and Wnt4, claimed to be induced by estradiol in an Erα 

independent manner, were also not influenced by Gpr30 lack (66, 67). Moreover mating 

studies showed Gpr30 KO mice to be fertile and that follicles from all stages of development 

were present as well as corpora lutea. A similar experimental approach using also G1 in vivo 

led to the same results. The authors therefore concluded that no impairment of the 

hypothalamic-pituitary-gonadal axis in female mutant mice was observed and they excluded a 

general involvement of Gpr30 estrogen response in reproductive organs (45, 51). In a recent 

paper however Dennis and colleagues (2009) showed an increase of epithelial proliferation in 

ovx female mice treated with E2, reverted by the pre-treatment with G15.  

 

Another study on Gpr30 KO mice claimed an involvement of Gpr30 in the regulation of 

glucose metabolism and blood pressure, with a sexual dimorphism (61). The authors found 

that deletion of Gpr30 was associated with hyperglycemia and impaired glucose tolerance, 

reduced skeletal growth and increased blood pressure in female mice. Glucose impaired 
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tolerance was associated with reduced glucose-stimulated insulin release. Indeed female 

Gpr30 KO mice exhibited an age reduced body weight as well as increased mean arterial 

pressure (MAP) at 9 months of age, probably due to events of arterial remodelling such as an 

increase in the media-to-lumen ratio. In the same year Haas and co-workers claimed a role of 

Gpr30 in the metabolic and cardiovascular system, but reported results contrasting with those 

from Martensson concerning magnitude, direction, and sexual dimorphism in body weight 

and blood pressure (68). Infusion in rats of G1 resulted in an acute reduction of MAP, being 

the phenotype sex independent. Using pressurized rat mesenteric resistance arteries, they 

found that G1 was able to promote acute dilatation of preconstricted arteries, and the dilator 

effect was abrogated in the carotid artery of Gpr30 KO mice. G1 but not E2 turned out to be 

able to abrogate serotonin-calcium increase after intracellular (but not extracellular) injection 

of the compound. Haas and co-workers proposed a model wherein Gpr30 is involved in 

mediating acute vasodilatation through a pathway antagonizing calcium release. Moreover the 

authors showed that both males and females Gpr30 KO mice have a higher body weight 

compared to their wildtype littermates. 

 

An immunological role of Gpr30 was proposed by Wang and colleagues (62). The authors 

investigated the mechanisms of thymic atrophy occurring in response to estrogen exposure. 

The maturation of T cells can be divided in different stages in relation to the expression of 

CD4 and CD8 receptors: double negative (DN: CD4-/CD8-), double positive (DP: 

CD4+/CD8+) and single-positive (SP: CD4+/CD8-; CD4-/CD8+) stages. DN T cells can further 

be found at different levels of maturation depending on their expression of CD44 and CD25 

receptors (DN1-4). E2 treated Gpr30 KO female mice showed alleviated but not completely 

reversed thymic atrophy. The atrophic effect resulted rather abrogated in α-ERKO mice. Still 

the authors could distinguish between the contribution of Gpr30 and ERα in mediating thymic 

atrophy since the apoptosis in TCR β-/low DP thymocytes was significantly attenuated in 

Gpr30 but not in ERα depleted cells; concerning the role of ERα, they observed that E2-

induced accumulation of DN1 and DN2 thymocytes was only blocked in α-ERKO mice.  

 

Recently the same authors proposed a possible involvement of Gpr30 and ERα in 

autoimmune diseases protection (69). Using a multiple sclerosis mouse model, experimental 

autoimmune encephalomyelitis (EAE) induced in wildtype mice was partially rescued by G1 

as well as by E2 treatment, whose protective effect, through ERα has been formerly proven 

(70-72). In order to distinguish between the contribution of Gpr30 and ERα in attenuating 
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EAE, the authors investigated ex vivo the role of a T regulatory cells fraction (CD4+ FoxP3+ 

Treg cells) potentially expressing the programmed death 1 (PD-1) receptor. The expected PD-

1 receptor up-regulation mediated by estrogen was abolished in Gpr30 KO PD-1+ splenocytes. 

Indeed G1 administration in vivo failed to protect PD1-KO mice from EAE. The authors 

concluded that G1 may suppress EAE by up-regulation of the PD-1 signalling pathway in 

CD4+ FoxP3+ cells. However E2 treatment of α-ERKO mice as opposed to Gpr30 KO mice 

did not attenuate EAE, detecting ERα as the main factor in this process (70).  

 

Other studies provide evidence indicating a role of Gpr30 in mediating distinct phenomena of 

nociception. Lu and colleagues (2009) recently investigated the role of Gpr30 in estrogen 

induced visceral hypersensitivity (VH). VH is a factor involved in the pathogenesis of 

irritable bowel syndrome, and can be mimicked in rats through injections of 5-

hydroxytryptophan (5HTP, a precursor of serotonin). The entity of VH was assessed in vivo 

using a colorectal distension procedure and measurements of electromyogram (EMG) levels, 

accounting for the visceromotor reflex. Pre-treatment of ovx rats with the presumed selective 

Gpr30 agonist G1 and not with ERα or ERβ agonists, namely propylpyrazole-triol (PPT) and 

diarylpropionitrile (DPN), increased EMG levels following 5HTP sensitization. Pre-treatment 

with the ER antagonist fulvestrant in the presence of estrogen led to the same results. Since 

the use of antisense oligodeoxynucleotides against Gpr30 could prevent the 5HTP induced 

VH events, the authors concluded that Gpr30 mediated visceral pain in the described in vivo 

model (73). Starting from the observation that gonadal hormones may influence pain, Kuhn 

and colleagues investigated the involvement of Gpr30 in an estrogen induced nociception rat 

model (74). Previously the same group demonstrated that injection of estrogen into the hind 

paw of male rats induced a PKCε dependent mechanical hyperalgesia. Kuhn and colleagues 

questioned whether this mechanism could have been mediated by Gpr30. Injecting 10 ng of 

G1 in the hind paw of male rats and measuring the nociceptive flexion reflex, they found 

significant increase of hyperalgesia. Hundred ng as well as 1 μg led to the near-maximal 

mechanical hyperalgesia. Same results were obtained using a fulvestrant and both effects were 

abrogated by the use of a specific PKCε inhibitor. Ten nM estrogen was the minimal 

concentration required to observe activation of PKCε in neurons in vitro, but plasma levels of 

estrogen in male rats has been estimated in 1.1 nM (a value closer to Ki values of ERα and 

Erβ), therefore the authors hypothesized that a Gpr30 mediated nociception model may 

require high locally restricted estrogen levels, hypothesis not yet proved.  
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A role of Gpr30 in estrogen related effects in depression has been recently proposed by 

Dennis and co-workers. The authors showed the ability of G1 as well as E2, in a method for 

screening antidepressants in mice (tail suspension test), to replicate the effects determined by 

the antidepressant drug desipramine. This effect was then shown to be partially reverted by 

G15 treatment. Once more the role of the nuclear estrogen receptors could not be completely 

excluded, since not only G1 but also E2 led to the same results in the tail suspension test. 

Moreover the effects of ERα or ERβ antagonist were not analysed (57).  
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1.4 Mouse genome manipulations: transgenic and knockout mice 

1.4.1 Transgenic mice 

Transgenic and knockout mice are a powerful and invaluable tool to dissect the function of 

individual components of complex biological systems. Transgenic technology was developed 

in the early 1980s and precedes gene targeting technology. The latter is based on homologous 

recombination in embryonic stem cells (ES cells), and its development aimed at overcoming 

the limits of the random insertions that transgenic technology involves. The first transgenic 

experiments have been published about 30 years ago following infection of mouse embryos 

with viruses or retroviruses (75, 76). Pronuclear injection of mouse oocytes with naked DNA 

is the technique at the base of transgenic mice generation (77). The technique allows the use 

of transgenic constructs of several 100 kb in size, using for example yeast artificial 

chromosomes (YACs), P1-derived artificial chromosomes (PACs) or bacterial artificial 

chromosomes (BACs) (78). Often mini-gene constructs up to 10-15 kb are used. They consist 

of a regulatory sequence, a carefully selected promoter sequence and a coding sequence 

(cDNA) with polyadenylation sites. In order to obtain a large number of mature follicles 

female mice are treated with gonadotropic hormones to induce super-ovulation. F1 hybrid 

mouse strains are often used, as for example B6D2F1 mice, with a C57BL/6 mother and a 

DBA/2 father (79). Fertilized oocytes (zygotes) are collected when the paternal and maternal 

nucleus (pronucleus) are not fused yet and the transgene construct injected into the pronucleus 

of the zygotes. The microinjected oocytes are subsequently implanted into the oviducts of 

wildtype pseudo-pregnant mice previously obtained by mating them with vasectomised 

males. Through random recombination events the fusion gene construct becomes integrated 

into the genome. The integration normally occurs in a “head-to-tail” orientation and in a 

variable range number of copies verifiable through analysis by PCR and a southern blot (80). 

When the transgene inserts into the genome before the first cellular division, the embryo 

develops with the “foreign” gene (i.e. the transgene) in every somatic cell and germ-line, and 

the mouse that will develop from this embryo will constitute the founder of a transgenic line, 

able to transmit the genetic modification to its offspring. Alternatively the embryo may 

develop as a genetic mosaic. The founders are heterozygous for the transgene. The 

heterozygotes are subsequently mated to obtain the other possible genotypes.  

 

Transgenic technology is an efficient and well established approach. Despite that it shows 

some important drawbacks: 1) the copy number of the integrated transgene is highly variable 
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and the integration site can strongly influences transgene expression; 2) the injected DNA 

does not contain necessary all regulatory elements, often not reflecting the complexity of the 

genome since these elements are sometimes located at large distance from the coding 

sequence or within introns of complex genes; 3) transgenes with a trans-dominant lethal 

phenotype cannot be studied (81). Some of these limitations have been overcome through new 

approaches and a variety of gene transfer methods, are today also available, many of them 

based on ES cell or lentiviral vectors (82). But independently of the technique used, 

pronuclear injection, gene transfer into ES cells or lentivirus-mediated gene transfer, the 

insertion of the transgene remains random, and its expression not linked in most cases to the 

endogenous locus. In contrast knockout technology achieves a specific genetic modification at 

a given gene locus.  

1.4.2 Knockout mice 

1.4.2.1 ES cells and gene targeting strategies 

Knockout or gene targeting technology derives from a combination of ES cell culture 

techniques and homologous recombination strategies aimed at introducing a specific mutation 

in a specific gene. ES cells are pluripotent cells isolated from the inner cell mass of pre-

implantation blastocysts and can contribute to both somatic and germ-line tissues after 

reintroduction into blastocysts (83, 84). The genetic background of the majority of available 

ES cell lines is 129, a mouse strain from which ES cell lines can easily be established (85). 

The principles of homologous recombination were first established in yeast where 

recombination between a DNA vector and genomic DNA occurs through the specific 

recognition between homologous DNA regions. In the mammalian cells such an event is 

much more infrequent (81). In particular, experiments of gene targeting in ES cells, namely 

the technique to delete or specifically inactivate a gene trough homologous recombination, 

was first realized for the hypoxanthine phosphoribosyl transferase HPRT gene locus, a 

selectable gene (86, 87), and then for the int-2 and the c-abl gene loci, two non-selectable 

genes (88, 89). These experiments paved the way for the construction of the first knockout 

mouse in 1989 (90). A schematic representation of a knockout mouse generation approach is 

shown in Fig. 1.2. The first step in a gene targeting experiment is to isolate the genomic 

clones containing the gene of interest, and the best approach involves the use of both ES cells 

and genomic clone from the same genetic background (i.e. isogenic DNA). The vectors can be 

classified as either replacement or insertion vectors. A replacement type vector, present in a 

linearized form, is inserted into the genomic locus by a double crossover that leads to the 
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ejection of the genomic DNA fragment. An insertion type vector enters the target locus as 

linearized vector that leads to the duplication of genomic sequences. Most often replacement 

vectors are used. In any case the vector has to contain a gene that allows a positive selection 

strategy, able to confer e.g. a precise antibiotic resistance to the transgenic ES cells, as for 

instance neomycin resistance (neor). Alternatively other gene cassettes may render resistance 

against hygromycin, puromycin or histidinol (91-93). To enrich the clones that have 

undergone homologous recombination a second gene allowing a negative selection of 

sensitive ES cells is usually added to the construct, often a cassette encoding thymidine kinase 

(TK). Those cells that have undergone homologous recombination have lost the TK gene, on 

the other hand the cells that have still kept the genes will result exposed to the toxic effect of 

an agent such as gancyclovir and consequently be eliminated. Altogether the system is known 

as negative-positive selection strategy (88). Another negative selection marker used with 

success was the diphteria toxin A (DT-A) gene fragment (94). Some approaches combine 

directly a positive selection strategy with homologous recombination technology. Therefore 

the vector is designed in such a way that when a homologous recombination event occurs 

regulatory elements of a given selection marker necessary are reconstituted (88, 89, 95).  

 

It has been described that several factors can affect the rate of homologous recombination in 

ES cells: 1) the locus per se, likely reflecting the variable organisation of chromatin 

structures; 2) the extent of the homology region between the targeting vector and the targeted 

locus, being 10 kb the empirical optimal value (96); 3) the genetic background of the targeted 

ES cells, since isogenic DNA increases the efficiency of homologous recombination (97).  

 

Other technical improvements have enriched and refined the strategy of gene targeting (98, 

100, 101). In designing a targeting vector often the possibility of introducing a β-

galactosidase gene (LacZ) in frame with the targeted protein has been considered. On the 

other hand this strategy leads to fused proteins of LacZ and the transgene, e.g. LacZ-neor. 

Alternatively one could introduce an internal ribosomal entry site (IRES) sequence in order to 

drive the translation of LacZ protein alone. The main advantage of both approaches is to use 

LacZ expression able to report the expression pattern of the gene protein of interest, providing 

therefore an invaluable knowledge. Indeed in the present study was used such a model, 

aiming at the functional characterization of a rather unknown gene locus, Gpr30. 
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Figure 1.2: Schema of a KO mouse generation 

Selected ES cells for the mutation are implanted into a normal blastocyst. The blastocyst is implanted in a 
pseudopregnant mouse that will generate chimeric mice, bred to verify germ-line transmission of the mutation. 
Adapted from Crawley JN (99). 
 

1.4.2.2 The chimera and its offspring 

Competent ES cells are subsequently injected into a blastocyst of wildtype pseudopregnant 

mice, preliminary collected from superovulated female mice, often the C57BL/6 strain. 

Collection is usually performed at embryonic day 2.5, when the blastocyst is at early stage of 

development (79). A fine-gauge needle is used to microinject cultured, single ES cells into the 

central hollow of the blastocoele of the blastocyst. The injected blastocysts are then implanted 

into pseudopregnant female recipients. The adoptive mothers can be of any strain, usually 

C57BL/6. When ES cells carrying a dominant allele of Agouti as Aw (white-bellied agouti, 

from a substrain of 129) are injected into mouse blastocysts of the strain C57BL/6 (a non-

agouti), mice containing both C57Bl/6 and 129-derived cells can easily be identified by coat 

color chimerism. In this case the pups (chimeras) have typically a greyish brown colour. If 
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manipulated ES cells have also colonized germ-line organs, the resulting chimeras will be 

able to transmit the mutation. 

To detect germ-line transmission, crossings are conducted. Chimeras are bred to wildtype 

mice such as C57BL/6 or 129/Sv. The F1 offspring of these crosses are then analysed for the 

expression of the mutation. Southern blots or PCRs are performed on small tissue sample 

from the tail of the offspring, to identify positive heterozygotes. Heterozygotes are then mated 

with each other to produce a F2 generation. Homozygous mutants may not survive, providing 

evidence for an autosomal recessive mutation and the embryonic lethality as the result of the 

gene ablation. Heterozygous mutant may express half of the gene product, reflecting the 

presence of half gene dosage, or may also express variable amounts. PCR and western blot 

are usually used to evaluate the absence of the specific mRNA and protein.  

 

A critical and essential issue to be considered is the genetic background of the mutant mice 

(102). The majority of targeted mouse mutants have been generated using ES cells derived 

from 129 substrains (85) and the 129-derived chimeras are bred with C57BL/6 females since 

129 strains are poor breeders. Such a strategy leads to mixed genetic background of the 

mutant mice. Moreover targeted mutations can render very different phenotypes when studied 

on different genetic backgrounds (103). To eliminate confounding effects caused by a mixed 

genetic background a mutation should be studied on a pure genetic background. One 

possibility is breeding chimeras with mice of the same genetic background of the original ES 

cells used to generate the mutation. A valid alternative may also be systematic backcrosses 

between the mutant and the standard inbred mice (e.g. C57BL/6, 129/Sv, CD-1 etc.)(104).  

 

1.4.2.3 Recombinase based approaches 

A breakthrough in gene targeting technology was achieved with recombinase-based 

approaches, leading to the second generation of conditional KO mice. This strategy is based 

on the use of the Cre/LoxP recombination system. This technique involves the use of the site-

specific recombinase Cre from the phage P1 that recognizes and binds to a 34-bp long, 

partially palindromic sequence called LoxP (locus of crossover x in P1). The Cre-

recombinase protein has the ability to excise any sequence placed between two LoxP-sites. In 

particular if the LoxP-sites are positioned in the same orientation the recombinase will lead to 

the excision of the sequence. If the two LoxP-sites are in a tail to tail orientation the insertion 

will result a Cre-mediated genomic inversion. The first process is more efficient than the 

second one and it is broadly used in generating a non-selectable mutation in the mouse 
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genome (81). In principle the approach consists in the use of a cassette including the mutated 

locus of interest along with a neor marker gene for a positive selection, properly flanked by 

two LoxP sites. The ES cells selected for homologous recombination are transiently 

transfected with a Cre recombinase vector that leads to the excision of the neor gene. A 

negative selection allows to enrich the culture for those cells containing exclusively the 

mutated locus. As an alternative to Cre/LoxP system the Flp/Frt recombinase system from 

yeast has been used in ES cells as well as in transgenic mice (105, 106).  

 

The general main advantage of this strategy is that the selection marker gene and its potential 

“side effects” on the generated mutant mouse can be opportunely removed. However the KO 

mice generation as described above is preferentially achieved establishing two mutant mouse 

lines. A first main line contains LoxP-sites flanking the genomic region to be deleted, 

properly inserted by homologous recombination in ES cells. The second one is a transgenic 

mouse carrying one copy of the Cre-recombinase gene. Mating these two lines leads to the 

generation of a Cre-and LoxP-double positive transgenic offspring. In these mice, the targeted 

gene is disrupted by Cre/LoxP-mediated deletion of the target chromosomal gene segment. 

An advanced generation of knockout vectors possesses LoxP sites at the 5´ and 3´ of a pivotal 

portion of the locus of interest (e.g. the start codon) and additionally in order to specifically 

remove the selection marker the neomycin cassette is flanked by Frt sequences recognized by 

Flp recombinase. A mouse carrying a LoxP/Frt vector is crossed with a transgenic mouse 

expressing Cre and Flp recombinase in germ cells so that the neomycin resistance gene is 

removed. Moreover if Cre is expressed under the control of a tissue specific promoter, or in 

an inducible manner, the resulting mutant will be a conditional knockout, potentially showing 

a reversible phenotype (107-109).  



Introduction                                                                                                                                            23 
_________________________________________________________________________________________________________________                           
 

 

1.5 GPCR knockout mice  

Transgenic techniques as well as constitutive and inducible gene targeting strategies have 

been extensively used for dissecting GPCR function in vivo (110). There are many examples 

of GPCR knockout mice generated by gene cassettes targeting based on replacement vectors, 

often in combination with reporter gene cassettes. These include members of adrenergic, 

dopaminergic, serotonergic, endothelin, thrombin, mGlu receptor, angiotensin II, bradykinin, 

and histamine receptor families (111).  

 

As already mentioned Gpr30 is a member of chemokine receptors showing high homology 

with IL-8R (CXCR1). Several chemokine receptors KO mice have been generated (112). 

These mice present often impaired host defence inflammatory response and macrophage 

function, evidencing a role for these receptors in immune response. In particular IL-8R KO 

mice have been shown to be extremely susceptible to an urinary tract infection (UTI) model. 

These mice showed a dysfunctional neutrophil response to UTI, being these cells unable to 

cross the epithelial barrier and causing tissue destruction (i.e. kidney scarring) (113, 114). 

So far there are four different Gpr30 mutant mouse models. In the present thesis we focused 

in particular on two different mutant mouse lines, Gpr30-T181 Deltagen mice and the SHG17 

Artemis mice. 

1.5.1 Gpr30-T181 Deltagen mice 

Gpr30-T181 mice were generated at Deltagen (San Carlos, USA) through a homologous 

recombination approach in ES cells from 129/Sv strain. In synthesis a LacZ-neor cassette was 

used to disrupt the open reading frame (ORF) in the exon 3 of the Gpr30 gene. The insertion 

deleted 349 bp of the ORF encoding the first two transmembrane domains and the first 

intracellular loop. The inclusion of the reporter LacZ gene within the targeting construct 

served a dual purpose: 1) to disrupt the gene of interest and 2) to allow the assessment of 

receptor expression pattern. The use of reporter genes in conjunction with disruption schemes 

has been demonstrated for other GPCR as the mGlu1 receptor and the angiotensin type 1A 

receptor (AT1) (115-117). Using LacZ reporter assays on a variety of several Gpr30-T181 

tissues and co-immunolocalization experiments we could identify tissues and cell types 

expressing Gpr30 (60).  
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We found Gpr30 expression in endothelial cells of small arterial vessels of several tissues 

such as kidney, heart, peritoneum, and genital tract; in smooth muscle cells and pericytes in 

the brain; in a neuronal subpopulation in the cortex as well as in the polymorph layer of the 

dentate gyrus; in the intermediate and anterior lobe of the pituitary gland and in the medulla 

of the adrenal gland. Indeed Gpr30 was expressed in gastric chief cells of the stomach. RT-

PCR experiments performed at Deltagen detected also high expression levels of Gpr30 in the 

stomach and the pancreas (Fig.1.3).  

 

 

 

Figure 1.3: RT-PCR analysis (Deltagen)  

Using different tissues from Gpr30-T181 mice shows a predominant Gpr30 expression in stomach, pancreas and 
pituitary gland. 
 
 
In a preliminary screen, however performed on a small cohort of animals (Deltagen), and 

consisting in physical, histological, clinical chemistry, haematology, aging and fertility 

examinations Gpr30-T181 mice did not show any obvious phenotype. The only observation 

reported as potential phenotypic change concerned higher serum levels of low density 

lipoproteins (LDL) in mutant female mice.  
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1.5.2 SHG17 Artemis mice 

SHG17 Artemis mice were generated using a Cre-recombinase based approach (45). The 

inactivation of Gpr30 was obtained deleting exon 3 from the murine genome which encodes 

the complete ORF of the Gpr30 protein. SHG17 Artemis mice were found at the expected 

mendelian ratio and a gross histopathological analysis did not show any aberrant phenotype of 

Gpr30 deficient mice. Still a slight but significant decrease in liver relative weight was only 

found in mutant females compared to their wildtype littermates. Moreover in mating studies 

SHG17 Artemis mice showed a normal fertility. 
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1.6 Phenotyping strategies 

Animal models are essential for understanding the genetics and pathogenetics of human 

diseases. Several reasons underline such a statement: 1) the genome is 90% identical to the 

human genome; 2) modifying the mouse genome is a well established approach and of 

relatively easy access; 3) manipulating mouse genome allows to produce animal model 

diseases or altering the normal function of organs, systems or behaviours allowing to gain 

insights into the mechanisms underlying a normal organ, system or behaviour; 4) mouse 

models can be used for drug screening and testing of therapies (118). Once the mouse model 

is generated an appropriate and rigorous phenotype analysis is required.  

 

The phenotype is defined as an observable characteristic or biochemical tract of an organism 

that results from the interaction between environment and genotype (119). A phenotypic 

analysis of a mutant mouse can be developed at different levels. A first level includes a 

comprehensive and standardized phenotyping of the mouse line of interest (primary screen). 

A second level includes approaches focussed on specific organ systems and their function, 

based for instance on mutation “challenging” strategies (secondary screen). Limiting the 

analysis to one level of investigation might lead to miss unexpected phenotype alterations, 

therefore the two strategies can be combined in a global “pyramidal” phenotyping approach 

(119). Gpr30 mutant mice, whose phenotype study is here presented and discussed, 

underwent both an extended primary screen and in parallel a mutation challenging strategy 

based on a specific theoretical background, as clarified in the following paragraphs.  

1.6.1 Primary screen 

The German Mouse Clinic (GMC) at the Helmotz Centrum and German Research Center for 

Environment and Health in Munich provides a comprehensive phenotyping of mouse models, 

structured in different areas of investigation. A first line screening bundles screens which can 

be carried out at relatively high-throughput and applied in a comprehensive manner to a 

significant number of mice. The “standards operating procedures” (SOPs) are divided in two 

categories: 1) primary protocols that are simple to apply and require little special equipment, 

2) primary extended protocols that give further information on the phenotype but require 

more specialized skills or equipments.  
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The phenotyping platforms at the GMC cover several research areas. 1) In the dysmorphology 

screen mice are analysed for morphological abnormalities in different organ systems. The aim 

of the screen is to detect mouse models for human skeletal diseases like osteoporosis or others 

diseases connected to the bone and the cartilage. The screen is essentially based on 

morphological observations, e.g. x-ray and bone density analysis. 2) The cardiovascular 

screen aims at the assessment of cardiovascular parameters and involves hemodynamic 

studies as electrocardiograms (ECG) or non-invasive measurements of blood pressure (tail-

cuff) and atrial-natriuretic peptide (ANP) plasma levels analysis. 3) The metabolic screen 

focuses on the determination of food and energy uptake under ad libitum conditions 

concerning food access and metabolic adaptations during food restrictions. Body weight, 

energy uptake metabolizable energy and body temperature are measured. 4) Clinical 

chemistry and hematologic primary investigations aim at detecting haematological changes, 

as well as changes in metabolic pathways and electrolyte homeostasis. Several parameters are 

measured as various enzymes activities or specific substrates and electrolytes. 5) Assessment 

of morphological alterations of the eye is realized evaluating anterior segment abnormalities 

by slit lamp biomicroscopy as well as posterior segment abnormalities by funduscopy. The 

axial eye is measured by laser interference biometry. 6) For lung function analysis 

spontaneous breathing patterns during rest and activity are studied. The technique involves a 

chamber that allows measurements of pressure changes which arise from inspiratory and 

expiratory, temperature and humidity fluctuations during breathing. 7) The molecular 

phenotyping screen is based on RNA expression profiling of different tissues. 8) A potential 

behavioural phenotype is explored by evaluation of exploratory drive, reactivity to novelty 

and emotionality (Open Field Test) of the mice as well as prepulse inhibition in response to 

acoustic stimuli: a neurological phenomenon whose deficit is linked to abnormalities in 

sensorimotor gating (a predictor of schizophrenia and others psychiatric diseases in humans). 

9) In the primary neurological screen different parameters are evaluated to assess muscle, 

motor neuron, spinocerebellar, sensory and autonomic functions. 10) Nociceptive screen is 

based on the evaluation of the somatosensory responsiveness to thermal pain. 11) For a first 

immunological profile leukocyte populations of the peripheral blood and immunoglobulin 

levels in blood plasma are measured. 12) To detect a potential tendency to develop allergy 

total plasma immunoglobulin E is measured, since several immune disorders are IgE 

mediated (e.g. allergic asthma, allergic rhinitis, and atopic dermatitis). 13) Steroid metabolism 

plays a key role in controlling differentiation and the proliferation processes of cells and 

tissues, such as regulation of apoptosis and bone remodelling. The steroid metabolism screen 



Introduction                                                                                                                                            28 
_________________________________________________________________________________________________________________                           
 

 

is focussed on steroids dehydroepiandrosterone (DHEA) and testosterone plasma levels 

assessment. 14) A pathology screen is realized by histological analysis of several organs (e.g. 

skin, muscle, brain kidney et cetera) (120).  

1.6.2 Secondary screen  

In parallel to the comprehensive analysis of the phenotype performed at the GMC, we decided 

to challenge Gpr30-T181 mice with high fat diet (HFD). Several reasons justified this 

approach. LacZ assays conducted in Gpr30-T181 mice showed that Gpr30 protein was mainly 

expressed in endothelial cells of small vessels, but also in the stomach and the pancreas (45, 

60). A first phenotypic preliminary screen (Deltagen) showed that female mutant mice may 

have higher serum values of LDL. Therefore our work hypothesis was that the lack of Gpr30 

may lead to a metabolic and cardiovascular imbalance set off by a challenge such as HFD.  

Moreover in order to exclude a gene targeting strategy effect potentially responsible for the 

resulting Deltagen mice phenotype, Artemis mice, generated on a pure C57BL/6 background 

and devoid of any targeting vector at genomic level were used.  
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1.7 Estrogen receptors in metabolic diseases and associated 
cardiovascular disorders 

Obesity results from a prolonged imbalance of energy intake and energy expenditure. Co-

morbidities associated to obesity include hypertension, dyslipidemia and cardiovascular 

diseases, which significantly reduce life expectancy. In this context type 2 diabetes mellitus 

(T2DM) also represents a growing health threat. Indeed metabolic diseases and associated 

complications are becoming progressively object of study of an emerging gender-medicine 

community, since the evidence for gender disparities regarding glucose and lipid metabolism, 

as well as body weight regulation (121).  

 

In some cases these differences may partially be related to circulating levels of sexual 

hormones and to the sex-dimorphic effects of these hormones. Testosterone has gender 

dimorphic effects on the incidence of T2DM: high levels of testosterone may be protective 

against T2DM, but have opposite effects in women. Estrogen deficiency may affect glucose 

regulation and may also increase insulin resistance in estrogen-resistant males or in 

postmenopausal women (122, 123). However, it has been reported that ERα seems beneficial 

for glucose homeostasis stimulating the expression of glutamate transporter 4 (GLUT4). 

Moreover in this mechanism seems to play an important role the ERα/ERβ ratio (122). 

Androgen receptors play a more significant role in visceral and estrogen receptors in 

subcutaneous fat tissues respectively. The different obesity patterns in women and in men, 

who tend to accumulate adipose tissue prevalently at abdominal or gluteal levels respectively, 

may reflect the pronounced antilipolytic effects of ERα in subcutaneous fat tissue (121, 122). 

In fact the perimenopause women frequently become obese developing a male pattern, which 

is termed also android obesity and that is per se linked to an increased cardiovascular 

mortality (124).  

 

The role of estrogen receptors in regulating energy and glucose homeostasis has been studied 

in estrogen receptor knockout models. α-ERKO mice are obese and insulin resistant and the 

absence of ERα produces adipocyte hyperplasia and hypertrophy in the white adipose tissue 

(125). ERα deficient mice store increased amount of fat in retroperitoneal and gonadal fat 

pads and show higher levels of insulin free fatty acids and total cholesterol (126). Also 

aromatase knockout (ArKO) mice that lack the enzyme responsible for converting androgens 
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in estrogens show the same characteristics (125, 127). GLUT4 expression is drastically 

reduced in α-ERKO, unaffected in β-ERKO mice, and increased in ArKO mice (128).  

Despite the reported evidence of a protective role of estrogen in humans as well as in animal 

models, whether estrogen actually plays a positive or negative role in the development of 

insulin resistance and T2DM is still unclear and currently under debate. In particular estrogen 

levels out of a physiological range are related to a higher incidence of insulin resistance (129) 

and high levels of estrogen in postmenopausal women have been related to T2DM (130). 

Mice treated with estrogen or bisphenol A (the environmental estrogen) showed insulin 

resistance after 4 days of treatment (131). In addition to the classical estrogen nuclear 

receptors, non-classical membrane estrogen receptors have also been hypothesised to play a 

role in the control of energy balance (129). Estrogen may also act binding other receptors or 

ion channels (132, 133).  

 

Cardiovascular diseases associated to the metabolic syndrome show remarkable gender 

differences (124). Interaction of hyperinsulinemia and sexual hormones may explain the 

elevated predisposition of patients with diabetes to the development of cardiovascular 

diseases. Insulin resistance is associated with a greater relative cardiovascular risk in women 

compared to men (134). Diabetic patients have a greater risk to develop myocardial infarction, 

and diabetic women show a higher increase in early and late mortality compared with diabetic 

men (135). Diabetes impairs the microcirculation and the cardiac energy level, hence it 

represents one of the most important factors in the onset of diastolic dysfunction, a form of 

cardiac dysfunction that seems to be more frequent in postmenopausal women than in men 

(136). The frequency of atherosclerosis in premenopausal women is lower compared to 

postmenopausal women and it can be partially reversed through hormone replacement therapy 

(137, 138).  

 

In reaction to vascular injury and development of atherosclerosis estrogen has important 

effects on vascular protection by regulating for instance lipid and cholesterol levels. ERα gene 

polymorphisms are associated to increased high density lipoprotein (HDL) levels in 

postmenopausal women with coronary disease in response to estrogen therapy (139). In 

addition, ERβ gene polymorphisms are associated with reduced LDL cholesterol levels in 

premenopausal or postmenopausal women exposed to estrogen therapy (140). Mice lacking 

the apolipoprotein gene E (ApoE knockout mice) develop spontaneous atherosclerotic lesions, 

a phenotype attenuated by estrogen treatment. The mechanism seems to be mediated mainly 
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by ERα, since ApoE KO mice crossed with α-ERKO mice are not responding to estrogen 

treatment (141-143).  

Estrogen does not exert only indirect cardiovascular protective effects through lipid 

regulation, but also acts directly on blood vessels through non-genomic effects. These occur 

in a short time and do not require gene expression changes, so that they are not related to 

nuclear ERα or ERβ. Estrogen mediated vasodilation represents a good example of such an 

effect. In several studies it has been shown that estrogen membrane receptor isoforms mediate 

rapid effects of estrogen in endothelial cells, in which estrogen interacts with p85α, the 

regulatory subunit of PI3K. Stimulation with estrogen produces a stronger activation of ERα-

associated PI3K, recruitment and activation of Akt protein kinase, resulting downstream in 

the activation of endothelial nitric oxide (NO) synthase (eNOS) (144-146).  
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1.8 High fat diet mouse model 

HFD fed mice represent a robust model for obesity and early type 2 diabetes. This model was 

initially described by Surwit and colleagues (147). In general two types of macroscopic 

responses have been observed when rodents are given a HFD: some species and strains gain 

weight but others do not. Among the different mouse strains the C57BL6/J one positively 

responds to HFD and is often used as a diet-induced obese (DIO) mouse strain (148). SWR/J 

and A/J mice are obesity resistant whereas BALB/cByJ, C3H/HeJ and C57L/J mouse strains 

are intermediate (149). Moreover it has been shown that HFD in C57BL6/J mice results over 

time in a stable hyperinsulinemia indicating a progressive worsening of insulin resistance. 

After already one week of HFD feeding, mice have been shown to display elevated plasma 

glucose and insulin levels, a reduced glucose clearance and an impaired insulin secretion. 

Indeed characteristic for impaired glucose resistance and type 2 diabetes are insulin resistance 

and islet dysfunction (150). The DIO model along with obesity and insulin resistance is also 

characterized by dyslipidemia, namely hypertriglyceridemia with low blood HDL levels, 

hyperleptinemia, hypoadiponectinemia, central adiposity and elevated triglycerides levels. 

These factors are component of the metabolic syndrome.  

 

The metabolic syndrome is defined as a clustering of hyperglycemia/insulin resistance, 

obesity and dyslipidemia. Moreover all these events may lead to micro and macro vascular 

injury, hypertension and atherosclerosis. In particular the impairment of vessel function, 

known as endothelial dysfunction (ED), is considered as the final common pathway between 

cardiovascular risk factors and the development of atherosclerosis (151). Notably HFD insulin 

resistance and visceral adiposity have been associated to ED. Adiponectin, which normally 

exerts a protective role on vessel function, is downregulated upon HFD. Hyperinsulinemia 

stimulates endothelial and vascular muscle cell proliferation, causing vasoconstriction, and an 

increase of the adrenergic system tonus, leading to pathological angiogenesis (152). In 

visceral fat, leptin resistance increases the generation of toxic reactive oxygen species (ROS). 

Indeed free fatty acids may contribute to ED by a combination of different mechanisms (151).  

 

Obesity is considered an independent risk factor for cardiac diseases (153) and has been 

associated with left ventricle (LV) hypertrophy, lipid cardiomyopathy and heart failure in 

human patients (154). Hypertension, tachycardia, LV hypertrophy, increased collagen 

deposition, reduced cardiac contractility and increased end-diastolic pressure are some of the 
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cardiovascular alteration observed in various DIO animal models (155, 156). However in 

studies conducted in rats, similar effects were not reported (157, 158). HFD has already been 

used in rodents to induce and study cardiac dysfunction (159). A study from Park and 

colleagues showed that ventricular fractional shortening of mice fed with HFD progressively 

declined between 10-15 weeks (160). The differences in the effects of HFD presumably 

account for species, diet type, age of the animals and time feeding, but in general do not 

diminish the experimental value and the usefulness of the DIO models. 
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1.9 Assessment of endocrine and cardiovascular function in mice 

Metabolic and endocrine disorders can be evaluated with many different tests of high variable 

complexity. The direct and close observation of mouse behaviour may be the first source of 

information, e.g. nervousness may be associated with hyperthyroidism (161). Such apparent 

organ abnormalities may easily be detected in a primary screen such as a dysmorphology 

analysis (162). Body weight monitoring represents another simple but high informative test, 

providing an initial assessment of metabolic homeostasis. The direct measurement of adipose 

mass by nuclear magnetic resonance (NMR) allows to measure directly the amount of fat 

mass in vivo and to analyse potential differences in terms of fat mass deposition even without 

changes in total body weight. NMR was established to be more precise and rapid than other 

available measurements such as dual energy x-ray absorptiometry (DAX) or chemical post 

mortem analysis (163). It allows a non-invasive measurement of total adipose mass and 

skeletal muscle of unanesthetized mice. 

 

Insulin resistance develops when an increase of insulin is required to inhibit hepatic 

gluconeogenesis and for stimulating glucose uptake from fat and muscle tissues. To keep 

stable the levels of blood glucose, the pancreas reacts producing progressively more insulin; 

this phenomenon leads to pancreas dysfunction and onset of T2DM. Glucose impaired 

clearance is an indicator of insulin resistance which can be assessed by a glucose tolerance 

test. This test indicates altogether the efficiency of the liver in concentrating and storing 

glucose, the capacity of the pancreas to produce insulin, and the sensitivity of the cells to 

respond to it. After assessing baseline values of blood glucose concentrations, glucose is 

administered by intraperitoneal injection (IPGTT) or by oral gavage (OGTT). Plasma glucose 

concentrations are then measured at regular intervals of 2 hours and plotted against the time. 

The calculated incremental area under the curve (AUC) indicates the insulin sensitivity, so 

that an increase in the area shows a decreased glucose tolerance and vice versa.  

 

One important aspect in establishing a metabolic disease model is to investigate lipid 

metabolism. The main serum lipid parameters such as LDL, HDL, triglycerides (TG) and total 

cholesterol are assessed. Lipoproteins are molecular complexes consisting of lipids and 

proteins, whose main function is to transport non-polar lipids from the site of synthesis to 

those of their utilization. The non-polar lipids are membrane components and play a relevant 

function since constitute a transportable metabolic energy pool, and participate in hormone 



Introduction                                                                                                                                            35 
_________________________________________________________________________________________________________________                           
 

 

synthesis. Lipoproteins transport is mainly based on three pathways: exogenous, endogenous 

and reverse (164). In the exogenous pathway dietary–derived lipids are absorbed and 

packaged into large TG rich particles called chylomicrons and subsequently delivered to the 

various cells of the body. In the endogenous pathway very low density lipoproteins (VLDL) 

are synthesized by the liver for TGs transport. In the reverse pathway cholesterol esters in 

mature HDL particles are selectively taken up by the liver through HDL receptors. 

 

Along with lipids analysis, a wider clinical chemistry profile may be fundamental to find 

potential alterations in a mutant mouse model. For instance enzymatic deviations from 

physiological ranges of alanine amino transferase, alkaline phosphatase, α-amilase, creatine 

kinase, lactate dehydrogenase may indicate skeletal, pancreas, liver, cardiac or muscle 

disease. Other substrates of interest are normally represented by bilirubin, creatinine and urea. 

Increased values of bilirubin may indicate icterus, elevated values of creatinine may underlie 

heart insufficiency, kidney diseases, or urinary tract disorders; alternatively reduced values of 

creatinine may indicate cachexia. An increase of urea may be associated with heart 

insufficiency or kidney disease and a decrease with defects in protein catabolism (161).  

 

There are different approaches to assess cardiac function in mice. They are based on 

ventricular catherization, radiolabed microspheres or thermodilution. However they constitute 

invasive techniques and do not allow to analyse physiological changes in a serial manner, a 

condition required for instance in a longitudinal study. Echocardiography represents a valid 

alternative to characterize cardiac phenotypes. It allows the measurement of physiological 

parameters in adult, neo-natal and embryonic rodents. Echography is a technique that uses 

high frequency broadband sound waves in the megahertz range that are reflected by the 

tissues producing three-dimensional images. Briefly a transducer in a real-time micro-

visualization (RMV) scan-head is used to transmit ultrasound pulses into the animal through a 

coupling medium such as water or ultrasound gel. The transducer detects the back-scatter or 

ultrasound echo returning from the animal. The echo is used to build up a single digital 

ultrasound image. As the transducer moves over the object multiple ultrasound lines are 

acquired and combined in a so-called B-Mode image. B-Mode imaging is essentially a 

method of acquiring ultrasound data and creating two-dimensional images. There are at least 

other two different methods besides B-Mode: the M-Mode and the Doppler-Mode. The 

different systems of acquiring and elaborating data serve different scopes. M-Mode is a 

method of acquiring data in order to generate an image of a single ultrasound beam over time. 
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M-Mode images are for instance used to measure chamber dimensions at various time-points 

throughout the cardiac cycle, e.g. left ventricle internal diameter in diastole or in systole 

(LVIDd, LVIDs). LV fractional area shortening (FS) and ejection fraction (EF) are the most 

commonly used indices of LV systolic performance, even though more sophisticated indices 

have been introduced and developed (165). EF is the fraction of blood pumped out with each 

heart beat. FS measures the change in the diameter of the left ventricle between the contracted 

and relaxed states (for the formulas see Materials and Methods).  

 

Following the formulas established in human echocardiography left ventricular systolic 

function parameters and left ventricular mass can also be calculated in mice (166-171). For 

instance B-Mode imaging allows the acquisition of two-dimensional images necessary to 

visualize the area of interest for the measurements in M and Doppler-Mode. Doppler images 

allow to examine the velocity of flow within a region of interest (e.g. aorta) (171). Moreover 

in some studies precise two-dimensional echo measurements replaced M-Mode measurements 

to assess LV volume, ejection fraction or cardiac output, allowing to build three dimensional 

models (172). Altogether echocardiography in mice has reliably assessed LV mass, chamber 

dimensions and wall thickness, LV systolic and diastolic function as well as vascular 

properties (165). Indeed a systematic methodology for in vivo transthoracic cardiac imaging 

has substantiated these results obtained using echocardiography by magnetic resonance (173).  

 

One of the limits of echocardiography conducted in mice is the effects of anaesthetics on 

cardiac function (174). Many different regimens of general anaesthesia have been used such 

as ketamin-xylazine mixtures, tribromoethanol barbiturates or inhalation of isoflurane and 

halothane. Among the various approaches isoflurane anaesthesia was the most reliable one in 

terms of reproducible fractional shortening values and end-diastolic dimensions (165). A 

second problematic aspect is the poor resolution of the right ventricle. To overcome this 

challenge transesophageal echocardiography has been established as a reproducible method 

for assessing size and function of the right ventricle (175).  

To validate echocardiography results electrocardiogram (ECG) may provide a second system 

to measure heart rate (HR). ECG is a tool that records the electrical activity of the cardiac 

system providing an additional standardized procedure. 
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2 Aims of the study 
 
Estrogen (E2) regulates gene expression via nuclear estrogen receptors, ERα and ERβ, acting 

as a ligand-activated transcription factor exerting an important role in a wide variety of 

biological processes including energy and glucose homeostasis (129, 176). Several studies 

suggest that in addition the G-protein coupled receptor 30 (Gpr30) binds E2 with high affinity 

and mediates rapid estrogen signalling in tissue culture (34, 36, 37). The presumed ability of 

Gpr30 to bind estrogen and its intrinsic nature as G protein-coupled receptor have aroused a 

great interest supported by an exponential increased number of publications. However, 

recently the function of Gpr30 as an estrogen receptor has been strongly questioned in 

different publications rebutting the direct involvement of Gpr30 in estrogen signalling and 

proposing rather a subordinate role of Gpr30 to ERα (44, 45, 51).  

Most studies on Gpr30 have been conducted in vitro without a strong in vivo models support. 

In order to understand the physiological function of Gpr30 in vivo we decided to characterize 

Gpr30-T181 Deltagen mice. Deltagen mice were generated by a “global” knockout strategy 

using a LacZ-neomycin replacement target vector. Since Deltagen mice did not show any 

obvious phenotype and protein expression analysis revealed high expression of Gpr30 in 

small arterial vessels and pancreas (60) we decided to challenge mutant mice with HFD, 

presumably enhancing a possible metabolic and a cardiovascular phenotype. Metabolic and 

hemodynamic tests in vivo were performed. In parallel to the HFD challenge, mice underwent 

an extensive primary screening, aimed at a deeper complete analysis of the mutant mice and a 

valuable starting point for further investigations. Moreover to confirm the results obtained in 

these mice and in order to exclude an incomplete phenotype potentially due to the adopted 

targeting strategy (81) we also performed baseline experiments in SHG17 Artemis mice, a 

Gpr30 KO mouse model generated through a recombinase-based approach (51). 
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3 Materials and Methods 

3.1 Gpr30 mutant mouse models  

3.1.1 Gpr30-T181 Deltagen mice  

Gpr30-T181 mice were purchased by Deltagen (San Carlos, USA). Gpr30-T181 Deltagen 

mice were generated by gene targeting strategy. Embryonic stem (ES) cells derived from the 

129/OlaHsd mouse substrain were used to generate chimeric mice. The third exon of Gpr30 

mouse gene, coding for the open reading frame (ORF), was targeted by homologous 

recombination using a gene targeting construct containing a LacZ reporter gene and a 

neomycin resistance gene (LacZ-neor) (Fig. 3.1). ES cells from the 129/OlaHsd mouse 

substrain were transfected with the linearized construct. Selected ES cells containing the gene 

targeting construct were injected into C57BL/6 blastocyst and the blastocyst implanted into a 

CD-1 pseudo recipient. Male chimeras (producing C57BL/6 sperm and 129 sperm) were 

mated to C57BL/6 mice. Offspring that resulted from the outcross of the 129 sperm and the 

C57BL/6 ova were the F1 generation and had an agouti colour. Agouti pups were genotyped. 

F1 heterozygous males were in house backcrossed to C57BL/6 parental line, for at least 6 

generations. 

 

Figure 3.1: Targeting vector used to generate Gpr30-T181 Deltagen mice 

The targeting vector is consisting in: a splice acceptor (SA) site, an internal ribosome entry site (IRES), a β-
galactosidase gene sequence (LacZ), a polyadenylation site from SV40 virus (SV40 pa), and in a 
phosphoglycerate kinase (PGK) promoter. The PGK promoter drives the transcription of neomycin for a positive 
selection of ES cells undergoing homologous recombination. Gpr30 mouse gene is consisting of three exons; the 
third one contains the open reading frame (ORF): 349 bp of the ORF were deleted by the insertion of the 
targeting vector. The ATG position, a schematic representation of probes for southern blotting primers used in 
genotyping and Real-Time PCR are reported (P1, P2, P3, P10, P15). Adapted from Iseensee et al. (60). 
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3.1.2 SHG17 Artemis mice  

SHG17 Artemis mice were provided by Bayer Schering Pharma (Berlin, Germany). Gpr30 

KO mice were generated through a Cre-recombinase approach (45). The inactivation of 

Gpr30 was obtained deleting the exon 3 from the murine genome which encodes the complete 

ORF of the Gpr30 protein. The targeting construct was based on a genomic fragment 

containing the genomic sequence of exon 1, 2 and 3 and the surrounding introns of the murine 

Gpr30 gene. The fragment was modified in order to introduce two LoxP sites flanking the 

exon 3 and a cassette containing a PGK promoter driving the transcription of neomycin and 

thymidine kinase genes (PGK-tk-neor cassette) flanked by two Frt sites. After transfection in 

embryonic stem cells and selection with G418, one of the homologously recombined clones 

harbouring the targeted allele was used for the generation of chimeric mice by blastocyst 

injection. To eliminate exon 3 and the selection marker, mice heterozygous for the targeted 

allele were crossed with transgenic mice carrying a copy of Cre-recombinase gene. In order to 

eliminate the Cre recombinase transgene the resulting offspring heterozygous for the null 

allele was backcrossed with C57BL6 mice.  

 

3.1.3 Genotyping of Gpr30-T181 Deltagen mice 

3.1.3.1 Materials 

Tail lysis buffer: NaAcetate 300 mM, Tris-HCl 10.0 mM, EDTA 5.0 mM, Triton X-100 1%, 

Proteinase K 750 µg/ml; pH 8.3. 

dNTPs 10 mM (Fermentas, Burlington, Canada) 

10 X Taq Buffer with Magnesium 15 mM (Eppendorf, Hamburg, Germany) 

Taq DNA Polymerase 5 u/µl (Eppendorf, Hamburg, Germany) 

Primers genes, sequences and relative abbreviations are reported in the table 3.1. 
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Table 3.1 Primers 

Primer Sequence Gene/localization/orientation Experiment 

P1 GGTGGAGATCTACCTAGGTCCCGTG Gpr30, exon 3; fw 
Gpr30-T181 mice 

genotyping 

P2 ACCTGTCGAAGCTCATCCAGGTGAG Gpr30, exon 3; rev 
Gpr30-T181 mice 

genotyping 

P3 GGGGATCGATCCGTCCTGTAAGTCT Neo: fw 
Gpr30-T181 mice 

genotyping 

P4 CCCGAATTCGTGCCATCTCAGGTAGGAGC 
5´construct arm targeting vector 

Gpr30 T181-mice; fw 
southern blotting: for 

5´ probe 

P5 CCCGAATTCCCAGAGCTGAGGTGCTTTCC 
5´construct arm targeting vector 

Gpr30-T181mice; rev 
southern blotting:for 

5´ probe 

P6 CCCGAATTCTTCTGCGTACTCTCCTATGTACC 
3´construct arm targeting vector 

T181-mice; fw 
southern blotting: for 

3´ probe 

P7 CCCGAATTCGCTCTGCCAAGTCCACTAAACC 
3´construct arm targeting vector 

T181-mice; rev 
southern blotting: for 

3´ probe 

P8 CCCGAATTCCACGTCTCTTTCCAACAGCTGC 
LacZ-Neor-cassette Gpr30-T181 mice; 

fw 
southern blotting: 
for internal probe 

P9 CCCGAATTCAGTAGTCGCATCCATGGCTTCC 
LacZ-Neor cassette Gpr30-T181 mice; 

rev 
southern blotting: 
for internal probe 

P10 TGTCCACCCTTCTGGTTTTC Gpr30 exon 3; fw 
Gpr30-T181 mice: 

mol. characterization: 

P11 GGTAGATCTCCACCCCAACA Gpr30 exon3; rev 
Gpr30-T181 mice: 

mol. characterization: 

P12 CTGCTTCTGCTTTGCTGATG Gpr30 exon 3; fw 
Gpr30-T181 mice: 

mol. characterization 

P13 CGATGAGGGAGTAGCAGAGG Gpr30 exon 3; rev 
Gpr30-T181 mice: 

mol. characterization 

P14 GTGCACATGCTTTACATGTGTTT Lac Z; fw 
Gpr30-T181 mice: 

mol. characterization 

P15 GTGGCCATATTATCATCGTGTTT LacZ; rev 
Gpr30-T181 mice: 

mol. characterization 

P16 TGTTCCTACCCCCAATGTGT Gapdh; fw 
Real Time: reference 

gene 

P17 CCTGCTTCACCACCTTCTTG Gapdh; rev 
Real Time: reference 

gene 

P18 TGTTGTTGGATATGCCCTTG Hprt; fw 
Real Time: reference 

gene 

P19 TTGCGCTCATCTTAGGCTTT Hprt; rev 
Real Time: reference 

gene 

P20 CCATCATCAATGGGTACAAGC PO; fw 
Real Time: reference 

gene 

P21 CAGATGGATCAGCCAGGAAG PO; rev 
Real Time: reference 

gene 

P22 ACCCACAGCTCTCTTGTGTGC Shg17 mice targeting vector; fw 
SHG1717 mice 

genotyping 

P23 TCTGCGTACTCTCCTATGTACC Shg17 mice targeting vector; fw 
SHG1717 mice 

genotyping 

P24 TCATTTTATCGCCTACTTGTTACC Shg17 mice targeting vector; rev 
SHG1717 mice 

genotyping 

P25 GAGAACGCTCACACAAAGACC Atp2a2; fw* 
Thymus microarray 

validation 

P26 CAATTCGTTGGAGCCCCAT Atp2a2; rev* 
Thymus microarray 

validation 

P27 ACATGGTCTGGGACTTCTGG Cat; fw 
Thymus microarray 

validation 

P28 CAAGTTTTTGATGCCCTGGT Cat; rev 
Thymus microarray 

validation 

P29 TCTGCGTACTCTCCTATGTACC Ccr5; fw 
Thymus microarray 

validation 

P30 TGTCATAGCTATAGGTCGGAACTG Ccr5; rev 
Thymus microarray 

validation 

P31 ATTGACAGGATTGGAGCCCAGAGT Nppa; fw** 
Thymus microarray 

validation 

P32 TGACACACCACAAGGGCTTAGGAT Nppa; rev** 
Thymus microarray 

validation 

Primers list. fw: forward; rev: reverse; mol.: molecular; Gapdh: Glyceraldehyde-3-phosphate dehydrogenase; 
Hprt: hypoxanthine-guanine phosphoribosyltransferase; PO: ribosomal protein, large; Atp2a2: ATPase, Ca++ 
transporting, cardiac muscle, slow twitch 2; cat: catalase; Ccr5: chemokine (C-C motif) receptor 5; Nppa: 
natriretic peptide A.*: published in Primer Bank, http://pga.mgh.harvard.edu/primerbank/;. **: published in RT primer 
Data Base: http://medgen.ugent.be/rtprimerdb/index.php.  

http://pga.mgh.harvard.edu/primerbank/�
http://medgen.ugent.be/rtprimerdb/index.php�
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3.1.3.2 Method 

Tail samples were collected in a 96-well format. Hundred µl tail lysis buffer were added to 

the biopsies. The samples were incubated over night at 55 °C and the day after centrifuged at 

2000 rpm. In order to destroy proteinase K the supernatant was heated at 95 °C for 5 minutes. 

Supernatants were transferred in a new tube and subsequently diluted 1:10 in Tris 10 mM, pH 

8.3. Two µl of the dilutions were used as template in genotyping PCR reaction (Table 3.2).  

Inheritance of the targeting construct was monitored by three types of PCR genotyping assays 

(Table 3.2) using three primers (P1, P2, P3, Table 3.1). Primers P1 and P2 were drawn on the 

5´ and 3´ regions of exon 3 respectively, flanking the targeting vector; primer P3 was drawn 

on the neomycin gene of the targeting vector (Fig. 3.1). The first type of reaction (multiplex, 

primers P1, P2 and P3) was designed to simultaneously detect the endogenous and targeted 

alleles and was used to genotype mice from both the F1 and F2 generations. The second type 

of reaction (targeted, primers P2 and P3) was designed to detect only the targeted allele and 

was used to genotype mice from the F1 generation. This step ensured that only heterozygous 

mutant mice (Gpr30-T181+/-) proceeded to the breeding programs. The third type of reaction 

(endogenous, primers P1 and P2) was designed to detect the wildtype (Gpr30-T181+/+) or 

endogenous allele and was only used to genotype mice from the F2 generation. This quality 

control step ensured that homozygous mutant mice (Gpr30-T181-/-) were always accurately 

genotyped. 

Table 3.2: Genotyping PCR reaction 

Reagent Amount (µl) Final concentration 
dH2O 14.6  
10X Taq Buffer 2 1X 
dNTPs 0.4 0.2 mM 
Primer Mix* (5 µM each one) 0.8 0.2 µM 
Taq DNA Polymerase  0.2 0.05 u/µl 
Template 2  
Final volume 20 

Genotyping PCR reaction types 
Primer combination Genome amplified 

fragment (bp) 
Allele Reaction  

P1/P2/P3 433; 618 wildtype; targeted multiplex 
P2/P3 618 targeted targeted 
P1/P2 433 wildtype endogenous 

*for the multiplex PCR reaction primers P2 and P3 were used at the final concentration of 2.5 µM, whereas P1 
primer at the final concentration of 5 µM 
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Thermic profile of the genotyping PCR reaction 

1) 94 °C 3 min 

2) 35 cycles:  

 94 °C 10 sec 

 60 °C 30 sec 

 68 °C 1.5 min 

3) 68 °C 7 min 

PCR products were separated on a 1.4% agarose gel for 50 min at 180 V (see also Results). 

 

3.1.4 Southern Blotting 

3.1.4.1 Materials 

Lyses buffer: Tris-Cl 10 mM, EDTA 100 mM, SDS 0.5%, pH 8.0 

RNAse A 30 mg/ml (Sigma-Aldrich, St. Louis, USA) 

Proteinase K 10 mg/ml (Boehringer Mannheim, Mannheim, Germany) 

Buffered phenol (Roth, Karlsruhe, Germany) 

Ammonium acetate10 M (Merck, Darmstadt, Germany) 

Ethanol (Merck, Darmstadt, Germany) 

TE: tris-EDTA solution 

Nanodrop (Thermo Scientific, Wilmington, USA) 

PCR2.1 TOPO cloning kit (Invitrogen, Carlsbad, USA) 

PCR DIG Probe synthesis kit (Roche, Basel, Switzerland) 

Restriction endonucleases enzymes: 

EcoRI, BamHI, HindIII (New England Biolabs, Ipswich, USA) 

TBE buffer: tris-borate-EDTA solution 

DIG-labelled DNA marker (Roche, Basel, Switzerland) 

Denaturation solution: NaOH 0.5 M, NaCl 1.5 M 

Neutralization solution: Tris-HCl 0.5 M pH 7.5; NaCl 1.5 M 

20X SSC: NaCl 3M, sodium citrate 300 mM, pH 7.0 

Nylon membrane (Roche, Basel, Switzerland) 

Transilluminator: (Stratagene, Cedar Creek, USA) 

DIG Easy Hyb buffer (Roche, Basel, Switzerland) 

Hybridisation oven: (Binder, Tuttlingen, Germany) 

                                                 
 Southern blotting was realized in collaboration with Jörg Isensee. 
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Low stringency buffer: 2X SSC, SDS 0.1% 

High stringency buffer: 0.5X SSC, SDS 0.1 % 

Washing buffer: maleic acid 0.1 M, NaCl 0.15 M, Tween 20 0.3 % (v/v), pH 7.0 

Blocking solution: 10X blocking solution (Roche, Basel, Switzerland) diluted 1:10 in maleic 

acid buffer 

Antibody solution: anti-digoxigenin-AP 75 mU/ml, 1:10000 in blocking solution 

Detection buffer: Tris-HCl 0.1 M, NaCl 0.1 M, pH 9.5 

CSPD 

x-ray films: Amersham hyperfilm ECL (GE Healthcare, Buckinghamshire, UK) 

3.1.4.2 Method 

High molecular weight genomic DNA was isolated from liver and spleen using a phenol-

based protocol according to Sambrook and Russel (177). Hundred mg of powdered tissue was 

suspended in 800 μl lyses buffer in a 2.0 ml tube. RNA was digested by adding 1 μl RNAse A 

for 1 h at 37 °C. The sample was gently mixed with 10 μl proteinase K and incubated at 50° 

overnight. After adding an equal amount of buffered phenol the solution was mixed for 10 

min. The emulsion was separated by centrifugation at 5000 g for 15 min at room temperature. 

The viscous aqueous phase was carefully transferred into a new tube and 0.2 volumes of 

ammonium acetate 10 M and 2 volumes of ethanol were added. The precipitate was collected, 

washed twice with ethanol 70%, and stored in an open tube at room temperature until the 

ethanol was evaporated. Subsequently the DNA was dissolved in 200-500 μl Tris-HCl 10 mM 

at 4 °C for 12 hours. The obtained high molecular weight DNA was diluted 1:10 in TE and 

vigorously vortexed before quantification with a Nanodrop at 260 nm.  

DIG-labeled probes were constructed in order to match outside and adjacent the 5´ and 3´ 

construct arms as well as the targeting vector (internal probe). The sequences were amplified 

from genomic DNA by PCR employing primers P4-P5 for the 5´ probe, P6-P7 for the 3´ 

probe, and P8-P9 for the internal probe. The probes sequences were subcloned in PCR2.1-

TOPO vector. For DIG-labeling the PCR DIG Probe synthesis kit was used with purified 

plasmid DNA as template. Control reactions without DIG-dUTP were included.  

About 10 μg genomic DNA was digested with 100 U of the restriction endonucleases EcoRI, 

Bam HI or Hind III in a total reaction volume of 50 μl at 37 °C overnight. Digested DNA 

samples (5 μg) were separated by gel electrophoresis in large gels (agarose 0.8% in TBE 

buffer) at 30 V overnight. Five μl of DIG-labelled DNA marker was used as molecular weight 

marker. The gel was briefly stained in ethidium bromide 0.3 μg/ml and examined under UV 

light. 
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DNA denaturation was obtained submerging the gel in HCl 250 mM for 10 min at room 

temperature and placing it twice in denaturation solution for 15 min. Following a quick rinse 

in double distilled water, the gel was submerged in a neutralization solution for 15 minutes 

and then equilibrated in 20X SSC for at least 10 min.  

The DNA was transferred overnight onto a positively charged nylon membrane using a 

downward capillary transfer procedure. On the next day, the damp membrane was placed on a 

Whatman 3MM paper previously soaked in 2X SSC and exposed to UV light in a trans-

illuminator. The blot was rinsed briefly in double distilled water, air dried and stored at 4 °C.  

For hybridization the blots were placed in roller bottles containing 10 ml pre-warmed DIG 

Easy Hyb buffer and incubated for at least 30 minutes at 46.5 °C in a hybridization oven. To 

prepare the hybridization solution, 10 μl of DIG-labelled PCR product was diluted 1:5 in 

dH2O, denatured at 95 °C for 5 min, chilled on ice, and added to 5 ml pre-warmed DIG Easy 

Hyb buffer. The pre-hybridization solution was replaced by the hybridization solution and 

blots were incubated at 46.5 °C overnight. On the next day they were washed twice for 5 min 

in low stringency buffer at room temperature transferred into high stringency buffer pre-

warmed at 68 °C and incubated twice for 15 min at 68 °C with gentle shaking. 

To visualize probe-targeted hybrids by chemiluminescence, the blots were washed twice for 2 

minutes in washing buffer at room temperature, transferred into blocking solution for 30 min 

and incubated with antibody solution for 30 min while shaking. After washing twice for 15 

minutes with washing buffer, the blots were equilibrated in detection buffer and placed on 

acetate sheets, covered with 1 ml diluted CSPD, sealed, and incubated for 10 min at 37 °C to 

enhance the luminescence reaction. Finally the x-ray films were exposed to the sealed blots 

for 30-60 min. 

3.1.5 RNA extraction 

3.1.5.1 Materials 

PureLink™ Micro-to-Midi Total RNA Purification System (Invitrogen, Carlsbad, USA) 

GIBCO ultraPURE distilled water DNAse, RNAse free (Invitrogen, Carlsbad, USA) 

Dnase I, Amplification Grade 1 u/μl (Invitrogen, Carlsbad, USA) 

GIBCO ultraPURE distilled water DNAse, RNAse free (Invitrogen, Carlsbad, USA) 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA) 

Agilent 2110 expert software (Agilent Technologies, Santa Clara, USA) 

Agilent RNA6000 Nano Kit (Agilent Technologies, Santa Clara, USA) 

RNA Nano Chips (Agilent Technologies, Santa Clara, USA) 
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3.1.5.2 Method 

Using a rotor stator 10-60 mg of tissue sample was homogenized in 0.6 ml of RNA Lysis 

Solution containing guanidinium isothiocyanate. The sample was centrifuged at 2600 g for 5 

minutes at room temperature. The supernatant was carefully transferred to a clean RNase-free 

tube. A volume of ethanol 70% was added to each volume of tissue homogenate. After 

mixing the sample was transferred to a RNA spin cartridge and centrifuged at 12000 g for 15 

sec: the flow-through discarded. Ten μl of DNase I (1u/μl), properly resuspended in 70 μl of a 

DNase buffer, was added to the column for 15 minutes and subsequently removed through 

centrifugation at 12000 g for 15 sec. To remove impurities, the silica-based membrane in the 

spin cartridge binding RNA was properly washed, and RNA eluted using 30 μl of RNAse-free 

water. 

For an electrophoretic analysis of the extracted RNA, 1 μl of the RNA sample was loaded in 

an Agilent Nano Chip in presence of 1 μl of RNA 6000 Nano marker. The RNA-chip was run 

in an Agilent 2100 Bioanalyzer and concentration and quality of the extracted RNA analysed 

through Agilent 2100 expert software. Indeed per each RNA sample analysed were reported 

and evaluated the RNA ratio (28S/18S) and a RNA integrity number (RIN).  

3.1.6 Reverse transcription 

3.1.6.1 Materials 

High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, USA) 

3.1.6.2 Method 

For the cDNA synthesis of RNA samples a reverse transcription reaction (RT+) along with a 

reverse transcription negative control (RT-) were assembled as reported in the Table 3.3. 

Samples were incubated at 25 °C for 10 min and at 37 °C for 120 min. 

Table 3.3: Reverse transcription 

Reagent RT+ (μl) RT- (μl) Final Concentration 
RNA 0.1 μg/ μl 10 10 0.05 μg/μl 
RNAse -free H20 10 11  
10X RT Buffer 2 2 1X 
dNTPs mix 100 mM 0.8 0.8 4 mM 
10X Random Primers mix 2 2 1X 
Multiscribe™ RT 50 u/μl 1 - 2.5 u/μl 
Ribonuclease Inhibitor 20 u/μl 0.5 0.5 0.5 u/μl 
Final volume 20 20  
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3.1.7 Real Time PCR 

3.1.7.1 Materials 

Sybr-Green I Master Mix (Applied Biosystems, Foster City, USA) 

Stratagene Mx3000P™ (Stratagene, Cedar Creek, USA) 

Stratagene MxPro. Software (Stratagene, Cedar Creek, USA) 

96 well Multiply-PCR plates (Sarstedt, Nümbrecht, Germany) 

Primer 3 software (http://frodo.wi.mit.edu/) 

3.1.7.2 Method 

Real-Time PCR quantification of sequences within and flanking the Lacz-neor cassette was 

realized using the following couples of primers: P10-P11, P12-P13, P2-P3 and P10-P15 

(Table 3.1). Quantification of the wildtype allele was realized using specific primers designed 

for Gpr30 (P1-P2) (Table 3.1). 

Real-Time PCR reactions were performed in triplicate using SYBR-Green master mix. Real-

Time was performed using per every cDNA sample the corresponding reverse transcription 

negative control (RT-). cDNA and RT- samples were diluted 1:50 in water in order to obtain 

approximately a final cDNA concentration of 1 ng/μl. The reactions were assembled as 

showed in Table 3.4.  

Table 3.4: Real-Time PCR 

Reagent Amount (μl) Final Concentration 
SYBR Mix 2X 12.5 1X 
H2O 1.25  
Primer mix (5 pmol/μl each one) 1.25 0.25 pmol/μl 
Template (1 ng/μl) 10 0.4 ng/μl 
Final volume 25  
 
1) Relative quantification of gene expression  

Normalisation and error propagation were calculated as in Vandesompele et al. (178).  
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3.1.8 SHG17 Artemis mice genotyping 

3.1.8.1 Materials 

See genotyping of Gpr30-T181 Deltagen mice. 

3.1.8.2 Method 

SHG17 Artemis mice genotyping was performed as described by Otto et al. (45). Genomic 

DNA was extracted from 1-2 mm long tail tips as above described (see Genotyping of Gpr30-

T181 mice). Two PCR reaction using three primers P22, P23 and P24 (Table 3.1) were 

performed. The wildtype allele was amplified using primers 3´ to exon 3 (P22, P24) and 

mutant allele using primers flanking the inserted LoxP sites (P23, P24). Amplification of the 

wildtype allele resulted in a band of 398 bp, whereas amplification of the mutant allele 

resulted in a band of 560 bp. 

Thermic profile of the genotyping PCR reaction 

1) 94 °C 3 min 

2) 35 cycles:  

 94 °C 45 sec 

 60 °C 1 min 

 72 °C 1 min 

3) 72 °C 10 min 

PCR products were separated on a 1.4% agarose gel for 50 min at 180 V (see also Results).  



Materials and Methods                                                                                                                           
_________________________________________________________________________________________________________________                           
 

 

48

3.2 Primary screen 

All animal procedures here reported were performed in accordance with German animal 

welfare law and with the permission of the District Government of Berlin. 

 

Animals breeding were set up using, brother/sister mating (intercrosses) in the following 

ratio: 2 females: 1 male. 50 Gpr30-T181+/- females (N=6) were bred with 25 males Gpr30-

T181+/- (N=6). A cohort of 80 animals was selected and the following mouse groups shipped 

to the Germany Mouse Clinic for a primary screen: 20 Gpr30-T181-/- females, 20 Gpr30-

T181+/+ females, 20 Gpr30-T181-/- males, 20 Gpr30-T181 +/+ males. Breeding records were 

realized using both the “mating unit” system (each mating pair and its offspring were 

registered) and the animal/litter system (each litter and each individual animal were 

registered) (99). Animals were sent to the German Mouse Clinic at the age of 4 weeks.  

The primary screen was performed on 8 weeks old animals, along two main pipelines and in 

the following areas: dismorphology, cardiovascular system, energy metabolism, clinical 

chemistry and haematology, eye, lung function, molecular phenotyping, behaviour, 

neurology, nociception, immunology and allergy, steroid metabolism, pathology (Fig. 3.2). 

All the experiments were performed in 10 weeks. 

 

 

Figure 3.2: Workflow at the German Mouse Clinic 
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3.2.1 Microarray RNA analysis  

3.2.1.1 Materials 

RNeasy Midi kit (Qiagen, Hilden, Germany) 

Hybridization buffer: 6X SSC, 0.5% SDS, 5X Denhardt’s solution, 50% formamide 

HS4800 Hybstation (Tecan, Männerdorf, Switzerland) 

GenePix 4000A microarray scanner (Axon Instruments, Foster City, USA) 

GenePix Pro 6.1 image processing software (Axon Instruments, Foster City, USA) 

3.2.1.2 Method 

1) Organ collection 

Twelve male mice (6 Gpr30-T181-/- mice and 6 wildtype littermates) of the Gpr30 Deltagen 

mutant mouse line were provided to the molecular phenotyping screen. Brain, kidney and 

thymus organs were collected. To minimize the influence of circadian rhythm on gene 

expression, mice were killed between 9 am and 12 am by carbon dioxide asphyxiation.  

2) Isolation of total RNA 

Total RNA was isolated just before processing for expression profiling. For preparation of 

total RNA individual organs were thawed out in buffer containing chaotropic salt and 

homogenized using a Polytron homogenizer. Total RNA from individual samples was 

obtained according to manufacturer’s protocol using RNeasy midi kits. The concentration was 

calculated from OD 260/280 measurement and 2 μg RNA aliquots were run on a 

formaldehyde agarose gel to check for RNA integrity. The RNA was stored at -80 °C in 

RNase free water. 

3) Chip Hybridization 

Two chip hybridizations were performed with RNA from all selected organs of each 

individual Gpr30-T181 mouse. Each chip hybridization experiment was performed against the 

identical pool of the same organ of reference RNA (reference RNA pool). For each individual 

Gpr30-T181 mouse the chip experiment included a color–flip experiment.  

4) Reverse transcription and fluorescent labeling 

For labeling 15 μg of total RNA were used for reverse transcription and indirectly labeled 

with Cy3 or Cy5 fluorescent dye according to a modified TIGR protocol (179). Labeled 

cDNA was dissolved in 50 μl hybridization buffer and mixed with 50 μl of reference cDNA 

solution (pool from 6 control animals) labeled with the second dye. This hybridization 

mixture was injected on a pre-hybridized microarray in a HS4800 Hybstation and incubated at 

42 °C for 16 hours. After hybridization slides were washed with 3X SSC, 1X SSC, 0.5X SSC 
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and 0.1X SSC at room temperature. Slides were dried with nitrogen. Dried slides were 

scanned with a GenePix 4000A microarray scanner and the images were analysed using the 

GenePix Pro6.1 image processing software. 

5) Normalization 

To normalize the signal intensities of the two channels of the microarray experiment a moving 

average approach was used. The sum of the two signal intensities of each feature was 

calculated and these sums of all features were ranked. Following, the ratio of the moving 

averages (± 50 features) of both channels was calculated for each feature, leading to a signal 

intensity dependent on a normalization factor. 

5) Detection of differentially expressed genes 

For the identification of differentially expressed genes in the comparison of two conditions 

with microarrays (Gpr30-T181-/- vs. control mice) we used the Significance Analysis of 

Microarrays (SAM). The SAM statistic identifies significant changes in gene expression by 

performing a set of gene-specific t-tests. For each gene, a score is calculated on the basis of 

expression change relative to the standard deviation of repeated measurements for that gene. 

Genes with scores greater than a threshold delta were defined as significantly deregulated. 

Manual adjustment of this threshold delta allows the identification of smaller or larger gene 

cohorts. In addition, based on random permutations of all measurements, a false discovery 

rate was estimated.  

6) Functional annotation and pathway analysis 

For the detection of gene ontology (GO, www.geneontology.org) categories and KEGG 

pathways (Kyoto Encyclopedia of Genes and Genomes, www.kegg.com) with a significant 

overrepresentation of genes in a given group compared to the whole genome, the web-based 

DAVID tool was used (Database for Annotation Visualization and Integrated Discovery, 

National Institute of Allergy and Infectious Disease). Fisher’s Exact test was applied to 

determine whether or not the proportion of those genes falling into each GO category or 

KEGG pathway differed significantly between the input data set and the whole genome. In 

order to create networks of biologically related genes Ingenuity Pathways Analysis was used 

(Ingenuity Systems, www.ingenuity.com).  

7) Gene expression validation through Real Time PCR 

RNA extraction, reverse transcription and Real Time PCR were performed as above 

described. Four different couples of primers were used in order to perform Real Time PCR 

quantification of the following genes: ATPase, Ca++ transporting, cardiac muscle, slow twitch 

http://www.ingenuity.com/�
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2 (Atp2a2) also known as sarcoplasmic reticulum calcium-ATPase 2 (Serca2), catalase (Cat), 

chemokine (C-C motif) receptor 5 (Ccr5) and the natriuretic peptide A (Nppa), (Table 3.1).  

Relative quantification of gene expression was performed using the comparative Ct method 

(ΔΔCt) as described in (180). A de-regulation gene expression fold factor (2-ΔΔCt) was 

measured. Normalized Ct values of the gene of interest with the reference genes (house 

keeping genes) were compared using the Student’s t-test, and the hypothesis of equality of 

means rejected with a p-value < 0.05. 
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3.3 Secondary screen 

3.3.1 Groups 

For the experiments were used male and female of both Gpr30 Deltagen and Artemis mutant 

mice, with sex-and age-matched control mice. Gpr30-T181 homozygous mutants (Gpr30-

T181-/-) and littermate control mice (Gpr30-T181+/+) were fed with a high fat diet (HFD) or a 

control diet (CD); SHG17 homozygous mutant mice (SHG17-/-) and littermate controls 

(SHG17+/+) were fed with a standard diet.  

Sex, diet, genotype, age and number of mice groups used for all the experiments are reported 

in Table 3.5. 

Table 3.5: Animal groups 

Deltagen Gpr30-T181 mice 
sex diet genotype age (weeks) number 
female CD +/+ 24 12 
female CD -/- 24 9 
male CD +/+ 24 12 
male CD -/- 24 10 
female HFD +/+ 24 12 
female HFD -/- 24 9 
male HFD +/+ 24 11 
male HFD -/- 24 11 
Artemis SHG17 mice 
sex diet genotype age (weeks) number 
female standard +/+ 13 10 
female standard -/- 13 10 
male standard +/+ 13 10 
male standard -/- 13 10 
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3.3.2 Diets 

3.3.2.1 Materials 

Standard diet: complete diet for mice-maintenance meal V1534-300 (Ssniff, Soest, Germany) 

High fat diet (HFD): rodent purified diet w/60% energy from fat, blue (TestDiet, Purina Mills 

LLC/PMI Nutrition International, Richmond, USA) 

Control Diet (CD): rodent purified diet w/10% energy from fat, yellow (TestDiet, Purina 

Mills LLC/PMI Nutrition International, Richmond, USA) 

The nutritional and energetic profiles of the last two diets are reported in the Tables 3.6 and 

3.7 respectively:  

Table 3.6: Rodents purified diets: nutritional profile 

Control diet High fat diet Components 
% % 

Protein 17.3 24.2 
Fat 4.3 34.7 
Fiber 4.7 5.5 
Carbohydrates 67.5 

 
 
fat source: lard 
 

27.8 

 
 
fat source: lard 
 

Kcal/g Kcal/g Energy  
3.78 5.21 

 
 

Table 3.7: Rodents purified diet: energetic profile 

Control diet High fat diet Components 
Kcal % Kcal % 

Protein 0.692 18.3 0.943 18.3 
Fat 0.384 10.2 3.140 60.9 
Carbohydrates 2.697 71.5 1.037 20.1 
 
 

3.3.2.2 Method 

Gpr30-T181 Deltagen mice were fed with HFD or CD for 25 weeks. Fresh food was used to 

replace old food twice per week. Mouse food intake was recorded twice per week between 10 

a.m. and 12 a.m. 
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3.3.3 Body weight and body mass composition 

3.3.3.1 Materials  

Balance 1219 MP (Sartorius, Goettingen, Germany) 

EchoMRI system (Echo Medical System, Houston, USA) 

3.3.3.2 Method 

Body weights were recorded twice per week between 10 a.m. and 12 a.m. Total body fat and 

lean mass of mice was assessed using an EchoMRI system. During the procedure, lasting 70 

sec, mice were kept awake. For the measurements mice were put in an appropriate cylinder 

keeping them immobilized. Three different measurements per each mouse were recorded. 

3.3.4 Intraperitoneal glucose tolerance test (IPGTT) 

3.3.4.1 Materials 

Precision Xtra Blood Glucose & Ketone Monitoring System glucometer (Abbott GmbH & 

Co.KJ, Wiesbaden, Germany) 

Precision Xtra Blood Glucose Test Strips (Abbott GmbH & Co.KJ, Wiesbaden, Germany) 

D-glucose, anhydrous (Sigma-Aldrich, St. Louis, USA) 

Isotonic solution NaCl 0.9% (Fresenius Kabi, Bad Homburg, Germany) 

Surgical Disposable Scalpel (Aesculap Ag & CO KG., Tuttlingen, Germany) 

3.3.4.2 Method 

The evening prior to the IPGTT mice were transferred into a clean cage only with water and 

fasted for 15 hours. The following morning mice were prepared for the glucose tolerance test: 

animals were weighed; the tail was nicked with a fresh razor blade by a horizontal cut of the 

very end, ~35 to 50 μl of blood was very gently massaged from the tail to a Precision Xtra 

glucometer test strip. Baseline blood glucose was measured by the glucose oxidase method 

using a Precision Xtra Blood Glucose & Ketone Monitoring System glucometer. When all 

mice were prepared the test was begun. A glucose solution (0.2 g/ml in 0.9% NaCl) was 

injected into the intraperitoneal cavity (1g glucose/Kg body weight). After 15, 30, 60, 90 and 

120 minutes, blood glucose was sampled from the tail of each mouse by gently massaging a 

small drop of blood onto the glucose test strip. Glucose injections were timed so that the 

sample times were accurate for each animal. An IPGTT matrix example for a batch of 15 

animals is reported in Table 3.8. 
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Area under the curve (AUC) values were calculated as reported by Nishikawa and colleagues 

(149). 

 

Table 3.8: Intraperitoneal Glucose Tolerance Test Matrix 

m bw g0 ig t1 g1 t2 g2 t3 g3 t4 g4 t5 g5 t6 g6 
1    0  15  30  60  90  120  
2    2  17  32  62  92  122  
3    4  19  34  64  94  124  
4    6  21  36  66  96  126  
5    8  23  38  68  98  128  
6    10  25  40  70  100  130  
7    12  27  42  72  102  132  
8    14  29  44  74  104  134  
9    16  31  46  76  106  136  
10    18  33  48  78  108  138  
11    20  35  50  80  110  140  
12    22  37  52  82  112  142  
13    24  39  54  84  114  144  
14    26  41  56  86  116  146  
15    28  43  58  88  118  148  

m: mouse identification number; bw: mouse body weight; g0: blood glucose in baseline; ig: injected glucose for 
the test (1g glucose/Kg body weight); tn scheduled time for injection (minutes); gn: measured blood glucose 
(mg/dl) at the time tn. 
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3.3.5 Echocardiography 

3.3.5.1 Materials  

Vevo 7700 (VisualSonics Inc., Toronto, Canada) 

Vevo anaesthesia system (VisualSonics Inc., Toronto, Canada) 

Isofluran Florene R (Abbott GmbH & Co.KJ, Wiesbaden, Germany) 

Ultrasonic gel (Aquasonic 100, Fa. Parker, Fairfield, USA) 

Electrodes gel (Signa Gel, Fa. Parker, Fairfield, USA) 

Hair remover (Veet®, Reckitt Benckiser, Germany) 

Surgical Tape Durapore™ (3M Health Care, Neuss, Germany) 

Medical lamp (Petra Electric, Burgau, Germany) 

3.3.5.2 Method 

1) Animal preparation 

Mice were anaesthetized using isoflurane (isoflurane 2%, oxygen 98%), and laid supine fixed 

to a platform for analysis through surgical tape stripes (Fig 3.3). Body temperature was 

monitored via a rectal thermometer and maintained at 36-38 °C using a heating pad and a 

medical lamp. All hair was removed from the chest using a chemical hair remover. Scanning 

was performed using an ultrasonic gel opportunely pre-warmed and spread on the mouse 

chest.  

 

 

Figure 3.3: Echocardiography in mice, mouse preparation 

Mice are fixed to a warmed plate using surgical tape, and a mask for anaesthesia (isoflurane).  
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2) Left ventricle: images acquiring 

All the procedures used for echocardiography imaging and echocardiography calculations in 

the present study were performed as described and reported by Zhou and colleagues (2004) 

(173). A left parasternal transverse section of the left ventricle (LV) was obtained locating the 

transducer at the lower 1/3 of the mouse chest midline, orientating the direction of the 

transducer central axis in a posterior and slightly rightward direction so as to form 

approximately a 70° angle with the coronal plane. The orientation of imaging plane resulted 

rotated counter-clockwise from transverse plane approximately by 15° (Fig. 3.4, Fig. 3.5).  

 

 

Figure 3.4: Echocardiography in mice, mouse orientation and its spatial relation with the transducer 

In the upper panel it is shown the transducer and the related two-dimensional (2D) imaging planes. In the figure 
below the orthogonal planes of body mouse for investigation are schematically indicated, and the mouse chest 
midline subdivision in three parts reported. Taken from Zhou et al. (2004) (173). 
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Figure 3.5: Echocardiography in mice, obtaining a left ventricle short axis view 

Left: simplified heart schema in parasternal long axis view (heart sagittal section). The red line indicates 
schematically at which level the heart is transversally “cut” to obtain a left ventricle short axis view. Right: 
simplified 2D short axis view of the left ventricle as visualized by the operator in echocardiography (heart 
transversal section at papillar muscles level). Arrow: blood flow direction. RA: right atrium. RV: right ventricle. 
LV: left ventricle. LA: left atrium; IVS: internal ventricle septum; LVW: left ventricle wall.  
 

 

3) Aorta: images acquiring 

A right parasternal longitudinal section of the aortic arch with the descending tract in 

evidence was obtained locating the transducer at the middle 1/3 of the mouse chest midline, 

and orientating the direction of the transducer central axis leftward and posterior so as to form 

approximately a 40° angle with the coronal plane. The orientation of imaging plane resulted 

parallel to the central axis of mouse body (Fig. 3.6). A right parasternal longitudinal section of 

the aorta was obtained locating the transducer at the lower 1/3 of the mouse chest midline, 

orientating the direction of the transducer central axis leftward and posterior so as to form 

roughly a 70° angle with the coronal plane. The orientation of imaging plane resulted parallel 

to the central axis of mouse body. A right parasternal transverse section of the ascending 

aortic tract was obtained locating the transducer at the lower 1/3 third of the mouse chest 

midline, and orientating the direction of the transducer central axis posterior, slightly superior 

and leftward so as to form approximately a 70° angle with the coronal plane. The orientation 

of imaging plane resulted rotated counter clockwise from transverse plane approximately by 

30°.  
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Figure 3.6: Echocardiography in mice, simplified schema of the mouse aortic arch 

The green lines evidence the descending and the ascending aortic tracts. AscAo: ascending aorta. LA: left 
atrium; RPA: right pulmonary artery; IA: inanimate artery; LCC: left common carotid; LSA: Left subclavian; 
DTA: descending thoracic aorta.  
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4) Left ventricular parameters, formulas and calculations 

A left ventricle short axis view was obtained to measure in M-Mode the following parameters 

left ventricular internal diameter in diastole (LVIDd) and left ventricular internal diameter in 

systole (LVIDs) (Fig. 3.7). Left ventricular volume in diastole (LV Vold), left ventricular 

volume in systole (LV Vols), ejection fraction (EF) and fractional shortening (FS) were 

calculated using the following formulas:  

LV Vold= [7/ (2,4xLVIDd)] x LVIDd3 

LV Vols= [7/ (2,4xLVIDs)] x LVIDs3 

EF= 100 x [(LV Vold-LV Vols)/LVIDd] 

FS= 100 x [(LVIDd-LVIDs)/LV Vold] 

 

 

 

Figure 3.7: Echocardiography in mice 

Left ventricle short axis view  (upper panel) and measurements of LVIDd (3), LVIDs (3) and HR in M-Mode 
(lower panel) are shown. LVIDd: left ventricle diameter in diastole (mm); LVIDs: left ventricle diameter in 
systole (mm). HR: heart rate (beats per minute, BPM). 
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5) Aorta parameters 

Right parasternal longitudinal sections of the ascending aortic tract and aortic arch were 

obtained to measure the end-diastolic diameter (EDD) of the aorta in B-Mode and M-Mode, 

respectively (Fig. 3.8 and 3.9). In particular a cine loop was recorded and a cine frame 

opportunely selected in order to operate EDD measurements in B-Mode.  

 

 

Figure 3.8: Echocardiography in mice 

A right parasternal longitudinal section of the ascending aortic tract in a frame selected from a cine-loop and 
relative measurements of the aorta EDD in three different points are shown. EDD: end-diastolic diameter (mm). 
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Figure 3.9: Echocardiography in mice 

A right parasternal longitudinal section of the aortic arch (upper panel) and measurements of the aorta EDD (3) 
in M-Mode (lower panel) are shown. EDD: end-diastolic diameter (mm). 
 
 
 
A right parasternal longitudinal section of descending aortic tract and an aorta short axis view 

were obtained in order to measure the blood flow velocity in the descending (AoVeldesc) and 

ascending (AoVelasc) tracts of the aorta in Doppler-Mode, respectively (Fig 3.10 and Fig 

3.11). 

6) Data collection 

Between 10 and 15 pictures per mouse study were collected. Per each study 6 measurements 

obtained from two selected pictures of LVIDd, LVIDs, EDD (B-Mode, M-Mode), AoVeldesc 

and AoVelasc were recorded and the average calculated. Aortic blood flow velocity (AoVel) 

was expressed as an average of AoVeldesc and AoVelasc values. 
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Figure 3.10: Echocardiography in mice 

A right parasternal longitudinal section of aortic arch (upper panel) and blood flow velocity (cm/sec) 
measurements in Doppler (3) of the descending aortic tract (lower panel) are shown.  
 
 
 

 

Figure 3.11: Echocardiography in mice 

A right parasternal transversal section of the ascending aortic tract (short axis view of the aorta, upper panel) and 
blood flow velocity (cm/sec) measurements in Doppler (3) of the ascending aortic tract (lower panel) are shown.  
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3.3.6 Electrocardiogram (ECG) 

3.3.6.1 Materials: 

Vevo anaesthesia system (VisualSonics Inc., Toronto, Canada) 

PowerLab record unit: PowerLab System ML840, Animal Bio Amp ML136, needle 

electrodes 29 gauge MLA1204 (AD instruments, Lexington, Australia) 

PowerLab analysis unit: Chart software v 5.4 for Windows (AD instruments, Lexington, 

Australia) 

3.3.6.2 Method 

An Animal Bio Amplifier ML136 was connected to an ECG Lead Switch Box (PowerLab 

System ML840) to enable ECG recording using three needle electrodes (3 Leads ECG, 

positive negative and earth) carefully inserted subcutaneously in the mouse limbs and secured 

with tape. The ECG tracings were filtered using a high pass setting of 0.3 Hz and low pass 

setting of 1 kHz. During the procedure the mouse was anesthetized with isoflurane (isoflurane 

2%, oxygen 98%) via facemask, following induction in a chamber containing 5% isoflurane. 

Per each mouse the signal was acquired for 1 minute. The ECG records were analysed using 

the Chart 5.4 software. During offline analysis 1 minute recording was analysed for heart rate 

calculated as the reciprocal of the average of R-R peaks distances between valid beats (Fig. 

3.12, Fig. 3.13). 
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Figure 3.12: ECG in mice 

Calculated signal-averaged ECG (10, green lines) over 10-15 seconds of recording showing the wave 
composition of an ECG signal (P, QRS and T peaks are reported in the picture). 
 

 

 

Figure 3.13: ECG recording over 1 minute: example of one R-R peaks distance 
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3.3.7 Blood chemistry 

3.3.7.1 Materials 

Isofluran Florene R (Abbott GmbH & Co.KJ, Wiesbaden, Germany) 

End-to-end capillaries (Sarstedt AG & Co., Nümbrecht, Germany) 

Litium-Heparin tubes 20 μl, K2EDTA (Synlab, Berlin, Germany) 

Olympus AU 400 (at Synlab laboratories, Berlin, Germany) 

3.3.7.2 Method 

1) Retro-orbital puncture 

Mouse blood samples were obtained using a retro-orbital puncture under isoflurane 

anaesthesia. Blood was drained using a sterile and heparinized end-to-end capillary in sterile 

tubes provided with Li-Heparin. Blood samples were immediately stored at 4 °C and 

subsequently centrifuged at 4000 rpm for 10 min. Plasma supernatant was carefully 

transferred in new tubes and stored at –20 °C. 

2) Blood analysis  

Analysis of samples was realized at Synlab in Berlin (www.synlab.vet/de). The following 

parameters were checked: 

alanine aminotransferase (ALAT), albumin (Alb), α –amylase (Amy), alkaline phosphatase 

(AP), aspartate transaminase (ASAT), bilirubin (Bil), calcium (Ca), cholesterol (Ch), 

creatinine (Cr), creatine kinase (CK), fructosamine (Fru), γ-glutamyl transferase (GTT), 

glucose (Glu), high-density lipoprotein-cholesterol (HDL-cholesterol), inorganic phosphate 

(IP), iron (Fe), lactate dehydrogenase (LDH), lipase (Lip), low-density lipoprotein-cholesterol 

(LDL), triglycerides (TG), urea. 

3.3.8 Mouse housing 

Our animal facility at the Center for Cardiovascular Research-Charité houses mice in plastic 

cages with filter-paper-covered plastic microisolator tops. A maximum of five mice per cage 

providing good animal care has been kept. Food and water were available ad libitum. A 

circadian light cycle of 12 hours light/12 hours dark was maintained in the housing room. 

Temperature and humidity were controlled.  
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3.4 Statistical analysis 

3.4.1 Materials 

Spss 12.0 software (Spss Inc., Chicago, Usa) 

3.4.2 Method 

Statistical analysis was performed using the Spss 12.0 software. Experimental groups were 

compared using the statistical procedure analysis of the variance (ANOVA). In particular 

means were compared using the ANOVA one-way procedure. Levene test was chosen for 

evaluating homogeneity of the variance test. Post-hoc analysis for multiple comparisons was 

realized using Tukey´s test or Tamhane test; significance level fixed at 5% and null 

hypothesis rejected with a p value < 0.05. 
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4 Results 

4.1 Gpr30 mutant mouse models 

In order to understand the in vivo function of Gpr30, two different Gpr30 mouse models were 

used for an extensive phenotypical analysis: Gpr30-T181 Deltagen mice (60) and SHG17 

Artemis mice (45). Deltagen mice were generated through a homologous recombination 

approach in 129/Sv ES cells. A LacZ-neor cassette was used to disrupt the ORF in the Gpr30 

exon 3. SHG17 mice were generated through a Cre-recombinase approach and the 

inactivation of Gpr30 was obtained deleting the entire Gpr30 exon 3 from the murine genome. 

4.2 Molecular characterization of Gpr30-T181 Deltagen mice 

4.2.1 Genotyping 

Mutant ES cells (129/Sv) containing the targeting gene construct were injected into C57BL/6 

blastocysts and these implanted into a CD-1 pseudo pregnant recipient. Male chimeras were 

then mated to C57BL/6 wildtype females. The offspring represents the F1 generation and 

shows an agouti coat colour the higher the contribution of the transgenic cells (129/Sv) was. 

For the germ line transmission evaluation, agouti pups were genotyped and heterozygous 

mutants selected and backcrossed to C57BL/6 for at least 6 generations. 

Briefly genotyping was performed using tail biopsies from 4 weeks old animals digested and 

analysed by PCR. PCR analysis was performed using a combined PCR approach with two 

independent reactions. In the first reaction (M) three primers and in the second one (T) two 

primers were used to amplify specific bands corresponding to the mutant (618 bp) and 

wildtype allele (433 bp), respectively. Heterozygous animal alleles were characterized by the 

presence of both bands, i.e. 433 and 618 bp (Fig. 4.1). 

 

 

Figure 4.1: Gpr30-T181 Deltagen mouse genotyping 

Three different samples of wildtype (+/+), heterozygous (+/-) and homozygous (-/-) mutant mice were analysed 
by PCR using two reactions (M and T) to detect the mutant (618 bp) and the wildtype (433 bp) alleles. PCR 
products were run on 1.4% of agarose gel. Arrows indicate the mutant and the wildtype bands, respectively. 
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4.2.2 Southern blotting 

In order to verify the correct and single integration of the LacZ-neor cassette into the mouse 

genome, a Southern blotting analysis was performed (Materials and Methods Fig. 3.1; Fig. 

4.2). Genomic DNA from liver of wildtype, heterozygous and homozygous Gpr30-T181 

Deltagen mice was used. Two probes hybridizing outside and adjacent the 5´ and 3´ arms (5´ 

and 3´probes respectively) and a probe hybridizing to the targeting vector (internal probe) 

were used. The integration of the 5´ construct arm was confirmed by detecting a 10.5 kb 

EcoRI-fragment from the wildtype allele and an 8.8 kb targeted fragment. Integration of the 

3´ construct arm was confirmed by the 3´ external probe detecting fragments of 6.1 and 6.8 kb 

corresponding to the wildtype allele, and two fragments of 6.8 kb and 10.7 kb corresponding 

to the targeted allele. Single vector integration was verified using an internal probe which 

detected two fragments of 6.1 and 6.9 kb corresponding to the wildtype allele as well as two 

fragments of 2.0 and 2.5 kb corresponding to the targeted allele. As shown in Fig. 3.2 all the 

detected fragments had the expected size, confirming a single successful event of homologous 

recombination.  

 

 

Figure 4.2: Southern blotting  

Analysis of genomic DNA from liver of wildtype (+/+), heterozygous (+/-) and homozygous (-/-) Gpr30-T181 
Deltagen mice. The blots show the hybridization products for the three different probes (5´, internal and 
3´probes), and the corresponding enzymatic digestions (EcoRI, BamHI, Hind III). 
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4.2.3 Real Time PCR 

Then we evaluated the correct splicing and proper expression of the targeted locus. Therefore 

brain cDNA samples from male and female wildtype, heterozygous and homozygous Gpr30-

T181 Deltagen mice were used for the quantification analysis of sequences flanking and 

within the targeting vector. Primers within the 5´ region of exon 3 and within the LacZ 

cassette (Materials and Methods Fig. 3.1) were used to evaluate proper splicing within the 

targeted Gpr30 locus as well as LacZ expression levels. Highest relative expression levels of 

the amplicon obtained using primers within the 5´ region of exon 3 and the 3´ of the LacZ 

cassette were found in homozygous Gpr30-T181 mice. Consistently with these results 

intermediate values were found in heterozygous Gpr30-T181 mice (Fig. 4.3 a). The results 

showed that the cassette spliced to the 5´ region of exon 3. Using a couple of primers 

designed in the neor cassette and in the 3´ region of exon 3, a fusion transcript of the neor gene 

and part of exon 3 was also detected (Fig. 4.3 b). Our results point to a correct splicing of the 

mutated exon 3 and to a transcription product of the neor gene and the 3´ region of this exon. 

Note that the highest expression levels of this mutant transcript occur in homozygous mutant 

mice (Fig. 4.3 b).  

 

 

Figure 4.3: Real Time PCR quantification of the fusion transcripts  

Real Time PCR quatification of the fusion transcripts was performed using brain cDNAs from wildtype (+/+), 
heterozygous (+/-) and homozygous (-/-) male and female Gpr30-T181 Deltagen mice. a) relative expression 
levels of a fusion transcript using primers within the 5´ region of exon 3 and the LacZ cassette. b) relative 
expression levels of a fusion transcript using primers within the 3´ region of exon 3. 
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To simplify the analysis of potential phenotype alterations, we first examined Gpr30 gene 

expression levels in different tissues and organs. Therefore a relative quantification of Gpr30 

mRNA levels was performed using different tissue cDNAs from male and female Gpr30-

T181 heterozygous mice. Heterozygous Gpr30-T181 mice were used because in a preliminary 

analysis we could show that LacZ expression exactly reflected Gpr30 expression (60). 

Therefore the experiments were done using only one set of mice allowing a smaller number of 

animals to be sacrificed. The highest expression levels of Gpr30 were found in brain vessels 

and the lowest in the liver (Fig. 4.4). In addition, no differences between sexes were detected.  

 

 

Figure 4.4: Gpr30 mRNA relative expression  

Gpr30 mRNA relative expression levels were measured using Real Time on different tissue cDNAs from a 
heterozygous Gpr30-T181 male mouse and a heterozygous Gpr30-T181 female mouse respectively. Gpr30 
highest relative expression was found in brain vessels and the lowest in the liver. 
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4.3 SHG17 Artemis mice genotyping 

SHG17 Artemis mice were obtained through a Cre-recombinase lox P approach. Gpr30 

inactivation was achieved by deleting the complete exon 3 containing the ORF of the Gpr30 

gene. SHG17 mice were generated on a pure C57BL/6 genetic background and genotyping 

was performed as described by Otto and colleagues (45). The wildtype allele was amplified 

using primers 3´ to exon 3 and the mutant allele using primers flanking the inserted LoxP 

sites. Amplification of the wildtype allele resulted in a band of 398 bp, whereas amplification 

of the mutant allele resulted in a band of 560 bp. 

Briefly, genotyping PCR analysis was performed using a combined strategy of two reactions 

(M and T) and three primers. For wildtype animals only the band of 398 bp was obtained, 

whereas for the heterozygous an additional fragment of 560 bp was observed (Fig. 4.5).  

 

 

Figure 4.5: SHG17 Artemis mice genotyping 

Three different samples of wildtype (+/+), heterozygous (+/-) and homozygous (-/-) mutant mice were analysed 
by PCR using two reactions (M and T) to detect the mutant (560 bp) and the wildtype (398 bp) alleles. PCR 
products were run on 1.4% of agarose gel. Arrows indicate the mutant and the wildtype bands, respectively. 
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4.4 Gpr30-T181 Deltagen mice phenotypic assessment 

In order to assess the physiological function of Gpr30 in vivo, Gpr30-T181 Deltagen mice 

underwent an extensive phenotypic analysis at two different levels: 1) a primary screen 

performed at the German Mouse Clinic, providing a comprehensive phenotype analysis of the 

mice; 2) a secondary screen consisting of the diet-induced obesity (DIO) model based on the 

use of a defined high fat diet (HFD). 

4.4.1 Primary screen 

Gpr30-T181 Deltagen mice underwent a primary screen consisting of a wide phenotype 

analysis in many different fields of mouse genetics, physiology and pathology (Materials and 

Methods Fig. 3.2). The analysis was performed on a cohort of 80 animals: 40 homozygous 

mutant mice (20 males and 20 females) and 40 age-sex-matched wildtype littermates as 

controls.  

 
The most relevant result was observed in the immunological analysis. A flow cytometric 

analysis of several T cell lines in blood samples of both Gpr30-T181-/- male and female mice 

was performed. Gpr30-T181-/- male and female mice showed lower levels of T cells and a 

lower proportion of CD62L expressing cells within the T cell cluster compared to control 

mice (Table 4.1). In particular, the fraction of CD4+ cells was reduced by 24.8% and by 

30.2% in females and males Gpr30-T181-/- respectively. The number of CD8+ cells was also 

lower by 20.6% in Gpr30-T181-/- females and by 28.2% in Gpr30-T181-/- males. CD62L 

expressing T cell levels represent the naïve T cell compartment, newly produced in the 

thymus. These cells were reduced by 59% and 44.9% in female and male Gpr30-T181-/- mice, 

respectively. These results were confirmed in a second independent experiment, suggesting a 

potential immunological susceptibility in Gpr30-T181-/- mice. 
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Table 4.1: Immunology screen of Gpr30-T181 Deltagen mice 

females 
1st bleeding 2nd bleeding  

parameter -/- +/+ p value -/- +/+ p value 
CD3+ 21.5 ± 0.9 26.6 ± 1.6 < 0.05 18.7± 0.9 24.0± 1.7 < 0.05 

CD3e+/CD4+ 9.7 ± 0.5 12.9 ± 1.1 < 0.05 8.5 ± 1.0 11.6 ± 0. < 0.05 

CD3e+/CD8a+ 8.5 ± 0.4 10.7 ± 0.6 < 0.05 7.4 ± 0.4 9.9 ± 0.7 < 0.05 

CD3e+/CD4+/CD25+ 6.4 ± 0.5 4.9 ± 0.4 < 0.05 7.5 ± 0.6 5.6 ± 0.5 < 0.05 

CD3e+/gd+ 0.38 ± 0.02 0.046 ± 0.03 n.s 0.35 ± 0.02 0.4 ± 0.02 n.s 

CD4+/CD62L+ 16.8 ± 4.8 40.1 ± 6.4 <0.01 25.6 ± 5.2 58.9 ± 6.0 <0.001 

CD4+/CD44+ 70.4 ± 0.8 73.1 ± 1.5 n.s 72.9 ± 0.8 75.4 ± 0.9 n.s 

CD8a+/CD62L+ 19.0 ± 5.6 47.4 ± 7.2 <0.01 29.8 ± 5.6 66.3 ± 6.8 <0.001 

CD8a+/CD44+ 58.1 ± 0.9 58.8 ± 1.2 n.s 64.1 ± 0.8 62.4 ± 0.9 n.s 
CD11b+/Gr1+ 7.6 ± 0.9 6.3 ± 0.4 n.s 16.4 ± 2.1 12.6 ± 0.6 n.s 
CD11b+/nonGra/nonNK 6.2 ± 1.0 5.9 ± 0.4 n.s 4.03 ± 0.6 3.0 ± 0.5 n.s 
NK+CD5+ 0.3 ± 0.01 0.3 ± 0.02 n.s 0.3 ± 0.02 0.4 ± 0.02 n.s 
NK+CD5- 3.6 ± 0.03 3.8 ± 0.2 n.s 3.4 ± 0.7 3.7 ± 0.3 n.s 
CD19+ 58.19 ± 1.7 54.3 ± 2.1 n.s 53.7 ± 2.2 50.3 ± 1.9 n.s 
CD19+/IgD+ 92.8 ± 0.03 92.6 ± 0.04 n.s 92.8 ± 0.8 90.7 ± 0.9 n.s 
CD19+/CD5+ 2.5 ± 0.1 2.6 ± 0.2 n.s 1.9 ± 0.1 2.5 ± 0.2 <0.01 

CD19+/MHCII+/B220+ 81.8 ± 1.2 85.2 ± 0.9 <0.05 84.1 ± 1.0 82.8 ± 1.0 n.s 

CD11b+/NK+ 45.4 ± 1.8 51.8 ± 2.4 <0.05 39.6 ± 1.9 44.4 ± 2.4 n.s 

males 
1st bleeding 2nd bleeding  

parameter -/- +/+ p value -/- +/+ p value 
CD3+ 13.6 ± 1.3 18.7 ± 1.0 <0.01 12.3 ± 1.0 17.2 ± 1.0 <0.01 

CD3e+/CD4+ 6.0 ± 0.6 8.6 ± 0.6 <0.01 5.1 ± 0.5 7.4 ± 0.6 <0.01 

CD3e+/CD8a+ 5.6  ± 0.5 7.8 ± 0.5 <0.01 5.9 ± 0.5 8.1 ± 0.4 <0.01 

CD3e+/CD4+/CD25+ 7.1 ± 0.5 5.9 ± 0.5 n.s 8.3 ± 0.5 6.2 ± 0.06 <0.05 

CD3e+/gd+ 0.27 ± 0.03 0.3 ± 0.02 n.s 0.25 ± 0.03 0.3 ± 0.02 n.s 

CD4+/CD62L+ 22.6 ± 7.1 43.4 ± 7.1 n.s 16.8 ± 2.8 42.6 ± 7.9 <0.01 

CD4++/CD44+ 70.5 ± 1.0 72.0 ± 0.9 n.s 69.3 ± 1.2 70.5 ± 0.9 n.s 

CD8a+/CD62L+ 28.2 ± 7.1 48.6 ± 7.2 n.s 24.2 ± 3.4 50.1 ± 8.1 <0.05 

CD8a+/CD44+ 65.4 ± 1.8 63.8 ± 1.9 n.s 66.2 ± 0.8 64.3 ± 1.3 n.s 

CD11b+/Gr1+ 9.6 ± 1.8 8.0 ± 0.9 n.s 16.4 ± 1.1 14.7 ± 1.0 n.s 

CD11b+/nonGra/nonNK 6.3 ± 0.7 6.0 ± 0.6 n.s 3.3 ± 0.1 3.4 ± 0.2 n.s 
NK+CD5+ 0.3 ± 0.03 0.3 ± 0.01 n.s 0.3 ± 0.02 0.3 ± 0.03 n.s 
NK+CD5- 3.3 ± 0.2 3.2 ± 0.2 n.s 4.2 ± 0.3 3.7 ± 0.3 n.s 
CD19+ 66.8 ± 2.4 63.6 ± 1.9 n.s 60.3 ± 1.9 57.4 ± 1.5 n.s 
CD19+/IgD+ 92.7 ± 0.3 93.5 ± 0.2 <0.05 92.1 ± 0.5 92.2 ± 0.4 n.s 
CD19+/CD5+ 1.9 ± 0.1 2.4 ± 0.1 <0,05 1.4 ± 0.1 1.9 ± 0.1 <0.05 

CD19+/MHCII+/B220+ 85.1 ± 0.7 85.7 ± 0.8 n.s 81.4 ± 1.2 81.2 ± 1.2 n.s 

CD11b+/NK+ 29.7 ± 3.1 32.8 ± 2.4 n.s 48.0 ± 3.5 45.4 ± 2.6 n.s 

Immunology screen of Gpr30-T181 Deltagen mice. Main lineages: CD3+ T cells, CD4+ T cells, CD8+ T cells, 
γδT cells, T regulatory cells (CD4+ CD25+), B cells (CD19+, responsive B220+), B1 B cells (/CD5+), mature B 
cells (/IgD+), granulocytes (CD11b+Gr1+), NK cells (DX5+CD3-), NK T cells (DX5+CD3+). Subpopulations 
are identified by bi-variate gating with the following markers: Tcells/non T cells: CD25, CD62L, Ly-6C, CD44, 
CD45RB, CD103. CD19+ cells: IgD, B220, CD11b, CD5, Gr1. CD19-cells: Gr1, B220, CD5, CD11b. +/+: 
Gpr30-T181 wildtype mice; -/-: Gpr30-T181 homozygous mutant mice. Statistical analysis: means comparison 
by t-test. The most relevant results are evidenced in red. 
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Slight differences between Gpr30-T181-/- mice and control mice were also observed in the 

behavioural and clinical chemistry screens.  

Behavioural analysis of spontaneous activity in a novel environment measured by the Open 

Field Test (OFT) revealed subtle behavioural alterations in Gpr30-T181 mice-/-. Briefly, the 

OFT was conducted in a transparent and infrared light permeable acrylic test arena (45.5 x 

45.5 x 39.5 cm). For data analysis the arena was divided in two areas: the periphery defined as 

a corridor of 8 cm width along the walls and the remaining part representing the centre. The 

following parameters were measured: distance travelled, resting and permanence time as well 

as speed of movement in the centre of the arena or in the periphery. During a 20 min 

observation period Gpr30-T181-/- mice compared to control mice moved significantly less 

during the first 5 minutes, with a lower speed and later to the centre of the arena (Table 4.2). 

 

Table 4.2: Behavioural observations of Gpr30-T181 Deltagen mice 

control Gpr30-T181 mutant p value in two-way ANOVA 
parameter 

males females males  females sex genotype interaction 
trav.distance 
(cm) 

5967.6 
± 442.59 

6667.95 
± 372.69 

5576.38 
± 162.02 

5548 
± 206.87 ns < 0.05 ns 

centre-mean 
velocity (cm/s) 

23.77 
± 0.92 

29.07 
± 1.56 

22.77 
± 1.21 

24.11 
± 1.16 ns < 0.05 ns 

latency (s) 
6.41 
± 1.62 

4.64 
± 0.96 

11.2 
± 2.28 

7.55 
± 2.05 ns < 0.05 ns 

Behavioural observations of Gpr30-T181 Deltagen mice. The travelled distance indicates the total distance 
travelled by the mice during the Open Field Test. Centre-mean velocity indicates the velocity of mice in entering 
the centre of the test arena. Latency indicates the time spent to enter the centre of the arena. A genotype effect 
was observed in all three parameters. Trav: travelled. Statistical analysis: Two-way Anova. Values are expressed 
± standard deviation. 
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In the clinical chemistry analysis, several parameters were measured and among these, 

alkaline phosphatase (AP) activity resulted significantly lower in Gpr30-T181-/- female mice 

than in the respective controls (Fig.4.6). Males showed a similar trend. In a second analysis 

AP levels resulted slightly, but not significantly lower in Gpr30-T181-/- female mice 

compared to control mice. Moreover changes in AP levels were also observed in mutant male 

mice in response to HFD (secondary screen), suggesting a potential link between Gpr30 and 

AP activity. 

 

 

Figure 4.6: Primary screen of Gpr30-T181 Deltagen mice 

Clinical chemistry revealed in a first experiment slightly but significantly higher values of alkaline phosphatase 
(AP) in littermate control female mice compared to homozygous mutant mice. In a second analysis no 
differences were reported between groups. Male mice 13 or 17 weeks old did not show any significant 
difference. Statistical analysis: Two-way ANOVA and means comparisons by t-test, * p-value < 0.05. 
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In order to understand the molecular basis of the phenotypic alterations detected in the 

immunological behavioural and clinical chemistry screens and taking into account also Gpr30 

gene expression pattern, microarray analysis was performed on three different organs: 

thymus, brain and kidney. Briefly, tissue RNA was isolated from Gpr30-T181-/- male mice 

and control mice, the latter constituting the RNA reference pool. For each RNA sample chip 

hybridazations were performed in duplicate. Normalization of the two channels (2 probes per 

array) was obtained through the calculation of a moving average with a fixed length window 

(± 50). Significance Analysis of Microarrays (SAM) did not identify differentially expressed 

gene in brain or kidney. However, SAM identified 20 significantly regulated genes in the 

thymus of Gpr30-T181-/- mice compared to wildtype controls. All the genes resulted to be 

down-regulated. Some of these genes are reported in the Table 4.3, as well as Gene Ontology 

classification, significance level (q value) and fold change. 
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Table 4.3: Gene ontology annotation of deregulated genes in the thymus of Gpr30-T181-/- Deltagen mice 

Gene symbol Molecular function Biological process Cellular component q-value (%) Fold change 

Nppa hormone activity 
regulation of blood pressure; 
regulation of blood vessel size 

extracellular region; 
cytoplasm 

0.00 -9.09 

Wnt7a 
signal transducer 
activity; receptor 
binding 

signal transduction; Wnt 
receptor signaling pathway 

extracellular region; 
proteinaceous 
extracellular matrix; 
extracellular space 

19.25 -8.33 

Tnnt2 

actin binding; 
tropomyosin 
binding; troponin C 
binding; troponin I 
binding 

regulation of heart contraction; 
muscle filament sliding; 
negative and positive 
regulation of ATPase activity; 
response to calcium ion 

troponin complex 24.75 -8.33 

Ccr5 

actin binding; 
phosphoinositide 
phospholipase C 
activity; G-protein 
coupled receptor 
activity; protein 
binding; coreceptor 
activity; C-C 
chemokine receptor 
activity 

chemotaxis; inflammatory 
response; immune response; 
cellular defense response; G-
protein coupled receptor 
protein signaling pathway; 
elevation of cytosolic calcium 
ion concentration 

cytoplasm; 
endosome; plasma 
membrane; integral 
to plasma membrane; 
external side of 
plasma membrane 

24.75 -4.00 

Serca2 

nucleotide binding; 
magnesium ion 
binding; calcium-
transporting 
ATPase activity; 
calcium ion 
binding; ATP 
binding; hydrolase 
activity 

regulation of the force of heart 
contraction; ATP biosynthetic 
process; cation transport; 
cellular calcium ion 
homeostasis; ER-nuclear 
signaling pathway 

membrane fraction; 
microsome; integral 
to plasma membrane; 
membrane; 
sarcoplasmic 
reticulum membrane 

32.08 -6.25 

Cat 

aminoacylase 
activity; catalase 
activity; growth 
factor activity; 
heme binding; 
protein 
homodimerization 
activity; metal ion 
binding; NADP or 
NADPH binding 

response to reactive oxygen 
species; triglyceride metabolic 
process; cholesterol metabolic 
process; cell proliferation; 
aerobic respiration 

mitochondrion; 
peroxisome; 
peroxisomal 
membrane 

39.51 -6.67 

Hspa1a protein stabilization  
folding of the newly translated 
proteins, ubiquitine-proteasome 
pathway 

cytosol 51.67 -16.67 

Myl4 

motor activity; actin 
monomer binding; 
calcium ion 
binding; structural 
constituent of 
muscle; myosin II 
heavy chain binding 

regulation of the force of heart 
contraction; muscle organ 
development; positive 
regulation of ATPase activity; 
cardiac muscle contraction 

muscle myosin 
complex; myosin 
complex; A band 

51.67 -4.35 

Slc35e1  transport 
membrane; integral 
to membrane 

51.67 -9.09 

Usp26 

ubiquitin 
thiolesterase 
activity; peptidase 
activity; cysteine-
type peptidase 
activity 

ubiquitin-dependent protein 
catabolic process 

nucleus 51.67 -7.14 

Atp13a4 

nucleotide binding; 
magnesium ion 
binding; ATP 
binding; ATPase 
activity  

ATP biosynthetic process; 
cation transport 

membrane; integral 
to membrane 

51.97 -4.17 

Itfg1 protein binding  
extracellular region; 
membrane 

53.52 -10.00 

Gene ontology annotation. SAM: Significance Analysis of Microarrays; Nppa: natriuretic peptide precursor A; 
Wnt7a: wingless-type MMTV integration site family, member 7A; Tnnt2: troponin T type 2; Ccr5: chemokine 
(C-C motif) receptor 5; Serca2: sarcoplasmic reticulm Ca(2+)-ATPase2; Cat: catalase; Hspa1a: heat shock 
70kDa protein 1A; Myl4: myosin, light chain 4´; Slc35e1: solute carrier family 35, member E1; Usp26: ubiquitin 
specific peptidase 26; Atp13a4: ATPase type 13A4; Itfg1: integrin alpha FG-GAP repeat containing ; q value: 
significance; fold change: regulation factor.  
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SAM analysis identified Nppa, Serca2, Ccr5, and Cat genes to be down-regulated in the 

thymus of Gpr30-T181-/- males. Some of these genes are known to be involved in T cell 

development such as the Nppa gene (181). Their involvement might contribute to substantiate 

the hypothesis of a lower rate of T cells in the thymus of mutant mice. Therefore, in order to 

validate microarray results, Nppa, Serca2, Ccr5, and Cat mRNA levels were measured in 

thymus cDNA of male homozygous mutants and wildtype control mice using Real-Time 

PCR. Real-Time results are reported in Table 4.4. In agreement with microarray analysis, a 

pronounced trend of down-regulation for Nppa, Ccr5, Atpa2a and Cat gene expression was 

found in Gpr30-T181-/- mice compared to wildtype control mice. Nppa, Ccr5, Atpa2a and Cat 

genes resulted 14, 5, 7 and 6 times down-regulated in mutant mice, respectively. Note, that 

the small number of animals used (4 wildtypes and 5 mutants), might explain p values not 

expressing significant differences. 

 

Table 4.4: Validation of microarray data 

GOI/ 
Biological 
replicate 

Normalized Ct 
biological 
replicate 

Gpr30-T181 +/+ 

Normalized Ct 
biological 
replicate 

Gpr30-T181 -/- 

Ct 
 

Fold-expression p value 

Nppa  1 31.55 31.91 3.74 0.07 0.19 
 2* 34.89 30.08    
 3 27.40 31.94    
 4 24.82 31.79    
 5  32.60    
Ccr5  1 30.46 33.79 2.26 0.21 0.11 
 2* 34.04 29.73    
 3 27.55 31.70    
 4 30.09 31.60    
 5  31.32    
Serca2  1 27.67 30.07 2.79 0.14 0.12 
 2* 30.97 26.27    
 3 23.64 28.34    
 4 26.04 29.73    
 5  28.48    
 Cat 1 26.85 29.27 2.61 0.16 0.14 
 2* 30.13 25.45    
 3 22.76 27.27    
 4 25.33 28.00    
 5  27.98     

Validation of microarray data. GOI: gene of interest. Nppa: natriuretic peptide precursor A; Ccr5: chemokine (C-
C motif) receptor 5; Serca2: sarcoplasmic reticulum Ca(2+)-ATPase 2; Cat: catalase. Ct was calculated as: 
average of normalized Gpr30-T181-/- Ct values- average of normalized Gpr30-T181+/+ Ct values. Reference 
genes used for normalization of Ct values were: Gapdh: Glyceraldehyde-3-phosphate dehydrogenase; Hprt: 
hypoxanthine-guanine phosphoribosyltransferase; PO: ribosomal protein, large. Fold-expression= 2-Ct. p value 
calculated in a t-test used to compare Ct value means obtained in Gpr30-T81+/+ versus Gpr30-T181-/- mice. *: Ct 
value of the biological replicate 2, among Gpr30-T81+/+ mice, was identified as an outlier (mouse weight 20.4 g 
vs. mouse weight average 29.2 ± 1.57 g) and excluded in the fold calculation.  
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4.4.2 Secondary screen 

In order to unravel a potential metabolic and cardiovascular role of Gpr30, Deltagen mice 

were challenged in a diet induced obesity model (DIO model) by a defined high fat diet 

(HFD). Wildtype and homozygous mutant, male and female mice, were fed for 25 weeks with 

a defined high fat diet (HFD) along with age-and sex matched littermates fed with a control 

diet (CD) (Fig.4.7). Mice were analysed for body weight and body mass composition (by 

nuclear magnetic resonance), glucose metabolism (by intraperitoneal glucose tolerance test), 

left ventricular function (by echocardiography) and blood chemical parameters (by blood 

chemistry). Experiments were performed at three different time-points: before starting HFD 

(1st time-point or baseline experiments, mice age 6 months); after 4 weeks of HFD (2nd time-

point, mice age 8 months); and after 20 weeks of HFD (3rd time-point, mice age 12 months). 

 

 

Figure 4.7: HFD workflow 

Mice were fed with HFD or CD for 25 weeks. Experiments were performed at three different time-points. NMR: 
nuclear magnetic resonance; IPGTT: intra-peritoneal glucose tolerance test. HFD: high fat diet, (60% Kcal from 
fat); CD: control diet (14% Kcal from fat); 1st time-point: before starting HFD (mice age 6 months); 2nd time-
point: 4 weeks of HFD (mice age 8 months); 3rd time-point: 20 weeks of HFD (mice age 12 months).  
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4.4.2.1 Body weight and body mass composition  

In order to assess the endocrine function of Gpr30-T181 Deltagen mice in response to HFD, 

animals underwent different metabolic measurements. Body weight was regularly recorded 

twice per week, lean and fat mass accumulation assessed by NMR and glucose clearance 

analysed by IPGTT. 

During the experiment, mice on HFD gained progressively weight compared to groups on 

CD. Moreover no differences in both sexes were reported between Gpr30-T181-/- and control 

mice (Fig. 4.8).  

 

 

Figure 4.8: Gpr30-T181 Deltagen mice, body weight (BW) 

BW was recorded twice per week for 25 weeks. Mice on HFD gain progressively more weight. However, 
genotype did not make any difference in weight gaining. CD: control diet. HFD: high fat diet. wt: control 
littermates. 
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Body mass composition assessed by NMR did not show any genotypic difference between 

groups assigned to HFD or CD. However, as expected a stronger increase of fat mass was 

reported in animals fed with HFD compared to littermate controls (Fig. 4.9). 

 

 

Figure 4.9: Gpr30-T181 mice, nuclear magnetic resonance (NMR) 

Animals on HFD accumulated progressively more fat. As expected a significant difference in both sexes was 
found between mice on HFD and mice on CD. However, genotype did not make any difference. CD: control 
diet. HFD: high fat diet. *: Statistical analysis: One-way ANOVA followed by post-hoc analysis for multiple 
comparisons, * p value < 0.05. wt: control littermates. 
 

4.4.2.2 Intraperitoneal Glucose Tolerance test (IPGTT) 

In order to detect potential differences in glucose clearance efficiency between homozygous 

mutant and control mice the IPGTT was performed. Mice on HFD (2nd and 3rd time-points) 

showed wider peaks of glucose clearance compared to mice on CD, reflecting the tendency, 

following HFD, to develop a less efficiency in glucose clearance (Fig. 4.10). Moreover for a 

statistical analysis, area under the curve (AUC) values were calculated. No statistically 

significant differences were found between homozygous mutant and control mice (Fig. 4.11). 
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Figure 4.10: Gpr30-T181 mice, intraperitoneal-glucose tolerance test (IPGTT) 

IPGTT measurements were performed at three different time-points. Mice on HFD showed metabolic curves 
(dashed lines) with a wider profile, reflecting a slower efficiency in metabolizing glucose. In particular, this 
trend is evident in both sexes and genotypes after 20 weeks of HFD (3rd time-point). wt: control littermates. 
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Figure 4.11: Gpr30-T181 Deltagen mice intraperitoneal glucose tolerance test (IPGTT), area under the 
curve (AUC) 

In order to compare glucose clearance efficiency between the different groups, AUC values were calculated from 
curves in Fig. 3.10. No statistically differences were found between homozygous mutant and control mice on 
HFD or CD. Statistical analysis: One-way ANOVA followed by post-hoc analysis for multiple comparisons. wt: 
control littermates. 
 

4.4.2.3 Echocardiography 

Left ventricular function and potential changes induced by HFD on the heart were assessed 

using echocardiography. In order to analyse left ventricular systolic function, ejection fraction 

(EF), fractional shortening (FS) and left ventricular internal diameter in diastole (LVIDd) and 

in systole (LVIDs) were measured. Left ventricular diastolic function was examined 

measuring aortic blood flow velocity (AoVel).  

The only significant difference between homozygous and mutant mice was found in baseline 

measurements. Six months old Gpr30-T181-/- female mice showed a slight but significant 

decrease of AoVel when compared to control female mice (Fig. 4.12, Table 4.5), suggesting a 

potential impaired cardiac output. However, the same difference was not found in female 

mutant mice at 8 and 12 months of age. Statistical analysis did not reveal other significant 

genotype-dependent differences (Table 4.5 and Table 4.6.). 
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Figure 4.12: Gpr30-T181 Deltagen mice, echocardiography 

The analysis revealed a slight but significant decrease of AoVel in 6 months old Gpr30-T181-/- female mice 
compared to control mice, suggesting a potential impaired cardiac output. However this difference was not found 
at 8 and 12 months of age. On the right, AoVel values in male mice are shown: no statistically significant 
differences were found among groups. Statistical analysis: t-test. *: p value < 0.05. wt: control littermates. 
 
 

Table 4.5: Echocardiography of Gpr30-T181 Deltagen female mice 

parameters 
groups 

time-
point 

 
EF FS LVIDd LVIDs AoVel HR EDD(M) EDD(B) 

mean 50.53 25.76 4.12 3.06 785.83 445.36 1.66 1.51 
+/+ ♀ baseline 

± s.d 8.90 5.63 0.23 0.37 90.44 47.93 0.16 0.07 

mean 46.92 23.50 4.2 3.22 698.40 433.28 1.65 1.52 
-/- ♀ baseline 

± s.d 8.61 5.13 0.35 0.41 89.39 53.97 0.60 1.52 
t-test p value n.s n.s n.s n.s .03 n.s n.s n.s 

mean 43.51 21.46 4.38 3.44 675.63 398.33 n.a n.a +/+ ♀ 
CD 

2nd  
± s.d 5.77 3.39 0.17 0.24 98.11 29.24 n.a n.a 
mean 42.79 21.26 4.20 3.32 629.84 399.16 n.a n.a -/- ♀ 

CD 
2nd 

± s.d 12.09 7.24 0.23 0.44 93.19 41.89 n.a n.a 
mean 46.40 23.02 4.24 3.38 713.88 447.72 n.a n.a +/+ ♀ 

HFD 
2nd  

± s.d 4.13 2.40 0.24 0.41 105.98 35.91 n.a n.a 
mean 51.63 26.71 4.13 3.04 782.43 439.50 n.a n.a -/- ♀ 

HFD 
2nd  

± s.d 10.93 7.41 0.15 0.39 174.24 50.91 n.a n.a 
ANOVA p value .030 .036 n.s n.s .003 .012   

mean 49.06 24.95 4.23 3.17 727.80 470.66 n.a n.a +/+ ♀ 
CD 

3rd  
± s.d 9.33 5.88 0.22 0.33 148.86 52.58 n.a n.a 
mean 44.61 22.01 4.07 3.17 687.69 481.06 n.a n.a -/- ♀ 

CD 
3rd 

± s.d 7.70 4.70 0.24 0.24 172.26 48.41 n.a n.a 
mean 51.63 26.71 4.13 3.04 782.43 439.50 n.a n.a +/+ ♀ 

HFD 
3rd 

± s.d 10.93 7.41 0.15 0.39 174.24 50.91 n.a n.a 
mean 45.73 23.80 4.36 3.35 707.94 446.50 n.a n.a -/- ♀ 

HFD 
3rd 

± s.d 6.41 3.73 0.20 0.27 154.49 48.83 n.a n.a 
ANOVA p value n.s n.s n.s n.s n.s n.s   

Echocardiography of Gpr30-T181 Deltagen female mice. +/+ ♀ CD: wildtype female mice on control diet; -/- ♀ 
CD: Gpr30-T181-/- female mice on control diet ; +/+ ♀ HFD: wildtype female mice on high fat diet; -/- ♀ HFD: 
Gpr30-T181-/- female mice on high fat diet. EF: ejection fraction (%); FS: fractional shortening (%); LVIDd: left 
ventricular internal diameter in diastole (mm); LVIDs: left ventricular internal diameter in systole (mm); AoVel: 
aorta blood flow velocity (cm/s). HR: heart rate (beats/min). EDD (M): end-diastolic diameter calculated in M-
mode. EDD (B): end-diastolic diameter calculated in B-mode. Statistical analysis: t-test and One-way ANOVA 
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followed by post-hoc test for multiple comparisons. Hypothesis of equality of the means rejected with a p value 
< 0.05. Note that the in one-way ANOVA analysis, only statistically significant differences found in post-hoc 
tests between mutant and control mice groups, on CD, or on HFD, respectively, were considered relevant. s.d: 
standard deviation. n.s: not significant (p value > 0.05); n.a: not available. Values significantly different are 
reported in red. 
  

Table 4.6: Echocardiography of Gpr30-T181 Deltagen male mice 

parameters 
groups 

time-
point 

 
EF FS LVIDd LVIds AoVel HR 

mean 
+/+ ♂ baseline 

± s.d 
51.55 
11.45 

26.74 
7.78 

4.50 
0.40 

3.30 
0.49 

873.55 
221.22 

422.15 
42.96 

mean 
-/- ♂ baseline 

± s.d 
50.34 
7.35 

25.67 
4.50 

4.47 
0.31 

3.33 
0.37 

862.25 
168.22 

423.92 
51.53 

t-test p value n.s n.s n.s n.s n.s n.s 

mean +/+ ♂ 
CD 

2nd  
± s.d 

45.67 
7.15 

22.86 
4.27 

4.61 
0.29 

3.68 
0.47 

826.89 
171.92 

416.33 
46.24 

mean -/- ♂ 
CD 

2nd 
± s.d 

43.69 
7.51 

22.90 
2.95 

4.67 
0.30 

3.60 
0.30 

780.53 
161.31 

401.70 
54.64 

mean +/+ ♂ 
HFD 

2nd  
± s.d 

53.05 
13.45 

27.82 
8.82 

4.38 
0.33 

3.18 
0.54 

808.81 
217.95 

455.14 
64.48 

mean -/- ♂ 
HFD 

2nd  
± s.d 

44.56 
5.33 

22.20 
3.09 

4.63 
0.58 

3.60 
0.46 

838.50 
295.29 

426.22 
58.48 

ANOVA p value n.s n.s n.s n.s n.s n.s 

mean +/+ ♂ 
CD 

3rd  
± s.d 

45.28 
7.01 

22.59 
4.05 

4.55 
0.41 

3.53 
0.42 

798.37 
119.35 

466.22 
31.95 

mean -/- ♂ 
CD 

3rd 
± s.d 

43.02 
8.64 

21.36 
4.97 

4.55 
0.53 

3.58 
0.55 

756.54 
115.21 

456.11 
44.66 

mean +/+ ♂ 
HFD 

3rd 
± s.d 

51.90 
6.05 

26.70 
3.75 

4.45 
0.34 

3.27 
0.39 

866.83 
178.98 

467.00 
57.40 

mean -/- ♂ 
HFD 

3rd 
± s.d 

47.02 
3.40 

23.46 
1.93 

4.33 
0.56 

3.30 
0.51 

806.79 
224.90 

463.78 
59.31 

ANOVA p value .0018 .014 n.s n.s n.s n.s 

Echocardiography of Gpr30-T181 Deltagen male mice. +/+ ♂ CD: wildtype male mice on control diet; -/- ♂ CD: 
Gpr30-T181-/- male mice on control diet; +/+ ♂ HFD: wildtype male mice on high fat diet; -/- ♂ HFD: Gpr30-
T181-/- male mice on high fat diet. EF: ejection fraction (%); FS: fractional shortening (%); LVIDd: left 
ventricular internal diameter in diastole (mm); LVIDs: left ventricular internal diameter in systole (mm); AoVel: 
aorta blood flow velocity (cm/s). HR: heart rate (beats/min). Statistical analysis: t-test and One-way ANOVA 
followed by post-hoc test for multiple comparisons. Hypothesis of equality of the means rejected with a p value 
< 0.05. Note that in the one-way ANOVA analysis, only statistically significant differences found in post-hoc 
tests between mutant and control mice groups, on CD, or on HFD, respectively, were considered relevant. s.d: 
standard deviation. n.s: not significant (p value > 0.05).  
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4.4.2.4 Blood chemistry 

In order to detect potential alterations induced by HFD in Gpr30-T181 Deltagen mice, blood 

chemistry analysis was performed and several parameters were checked (Table 4.7 and Table 

4.8). 

Table 4.7: Blood chemistry of Gpr30-T181 Deltagen female mice 

parameters group time-
point 

 
ALAT Alb Amy AP ASAT Bil Ca Ch CK Cre Fe Fru 

mean 0.51 57.57 45.73 1.82 1.54 5.79 1.85 2.15 2.16 10.52 22.18 248.00 +/+ ♀  
CD 

2nd 
± s.d 0.17 3.30 5.81 0.40 0.38 0.82 0.17 0.43 0.95 1.85 8.76 23.08 

mean 0.45 57.00 46.77 1.52 1.47 5.79 1.89 1.89 1.76 9.93 20.19 241.38 -/- ♀  
CD 

2nd 
± s.d 0.18 1.65 6.00 0.16 0.33 0.58 0.19 0.29 0.97 1.44 4.41 26.28 

mean 1.50 57.69 55.58 1.32 2.48 4.68 2.08 3.98 2.57 8.89 28.07 243.42 +/+ ♀  
HFD 

2nd 
± s.d 0.27 2.79 4.75 0.14 0.48 0.86 0.17 0.66 0.95 0.96 3.10 19.66 

mean 1.17 57.53 56.75 1.19 1.92 4.68 1.92 3.61 1.62 9.45 35.23 235.50 -/- ♀  
HFD 

2nd 
± s.d 0.44 2.71 7.90 0.25 0.39 0.52 0.24 0.56 0.89 0.97 6.81 11.34 

ANOVA p value .000 n.s .000 .000 .000 .001 .031 .000 n.s .032 .000 n.s 

mean 0.30 28.37 19.33 0.85 0.91 1.70 0.95 0.96 0.61 6.60 7.21 138.55 +/+ ♀  
CD 

3rd 
± s.d 0.16 2.08 1.98 0.34 0.40 0.26 0.10 0.22 0.31 0.95 2.65 18.11 

mean 0.31 28.56 20.45 0.60 0.81 1.75 1.03 0.87 0.62 6.74 8.19 142.38 -/- ♀  
CD 

3rd 
± s.d 0.24 1.82 2.81 0.13 0.44 0.33 0.09 0.18 0.35 0.74 2.10 12.85 

mean 1.08 29.93 24.67 0.54 1.50 1.69 1.13 1.97 1.22 6.29 12.88 125.33 +/+ ♀  
HFD 

3rd 
± s.d 0.27 0.77 3.77 0.11 0.28 0.18 0.03 0.29 0.25 0.59 2.61 5.39 

mean 1.09 28.28 27.58 0.50 1.50 1.66 1.02 1.60 0.68 6.00 13.06 114.80 -/- ♀  
HFD 

3rd 
± s.d 0.34 1.39 6.81 0.11 0.37 0.19 0.10 0.18 0.30 0.87 5.36 10.55 

ANOVA p value .000 n.s .000 .008 .001 n.s .001 .000 .000 n.s .000 .002 

parameters group time-
point 

 
 GGT GLDH Glu HDL IP LDH LDL Lip TG Urea 
mean 0.04 187.08 11.14 1.56 1.89 5.60 0.44 0.59 0.48 7.37 +/+ ♀  

CD 
2nd 

± s.d 0.02 86.09 2.36 0.38 0.26 2.37 0.05 0.25 0.11 1.32 

mean 0.05 175.00 10.56 1.40 1.86 4.82 0.42 0.60 0.47 7.36 -/- ♀  
CD 

2nd 
± s.d 0.02 70.71 1.49 0.24 0.22 1.80 0.07 0.17 0.09 1.07 

mean 0.05 406.00 11.55 3.17 1.79 8.14 0.64 0.67 0.73 8.68 +/+ ♀  
HFD 

2nd 
± s.d 0.02 120.85 1.94 0.57 0.22 3.34 0.08 0.17 0.12 0.89 

mean 0.03 322.50 11.64 2.87 1.84 6.31 0.58 0.55 0.81 8.51 -/- ♀  
HFD 

2nd 
± s.d 0.01 121.16 1.98 0.50 0.33 3.27 0.09 0.10 0.25 1.17 

ANOVA p value n.s .000 n.s .000 n.s .061 .000 n.s .000 .035 

mean 0.03 80.00 5.07 1.35 0.86 1.96 0.41 0.46 0.25 2.86 +/+ ♀  
CD 

3rd 
± s.d 0.02 70.74 0.69 0.33 0.11 0.71 0.07 0.10 0.03 0.38 

mean 0.02 87.25 5.49 1.26 0.93 1.91 0.39 0.48 0.24 3.00 -/- ♀  
CD 

3rd 
± s.d 0.01 95.17 0.43 0.28 0.12 1.11 0.07 0.09 0.01 0.25 

mean 0.03 337.00 5.21 3.14 0.92 2.97 0.62 0.71 0.40 3.54 +/+ ♀  
HFD 

3rd 
± s.d 0.01 103.03 0.62 0.42 0.11 0.65 0.12 0.10 0.05 0.62 

mean nd 287.00 4.99 2.58 0.93 3.66 0.51 0.97 0.42 3.19 -/- ♀  
HFD 

3rd 
± s.d nd 151.87 0.70 0.34 0.11 0.52 0.07 0.23 0.13 0.64 

ANOVA pvalue n.s .000 n.s .000 n.s .000 .000 .000 .000 .022 

Blood chemistry of Gpr30-T181 Deltagen female mice. +/+ ♀ CD: wildtype female mice on control diet; -/- ♀ 
CD: Gpr30-T181-/- female mice on control diet ; +/+ ♀ HFD: wildtype female mice on high fat diet; -/- ♀ HFD: 
Gpr30-T181-/- female mice on high fat diet; ALAT: alanine aminotransferase (μKat/l); Alb: albumin (g/l); Amy: 
α –amylase (μKat/l); AP: alkaline phosphatase (μKat/l); ASAT: aspartate transaminase (μKat/l); Bil: bilirubin 
(μmol/l); Ca: calcium (mmol/l); Ch: cholesterol (mmol/l); Cre: creatinine (μmol/l); CK: creatine kinase (μKat/l); 
Fru: fructosamine (μmol/l); GTT: γ-glutamyl transferase (μKat/l); Glu: glucose (mmol/l); GLDH: glutamate 
dehydrogenase; HDL: high-density lipoprotein-cholesterol (mmol/l); IP: inorganic phosphate (mmol/l); Fe: iron 
(μmol/l); LDH: lactate dehydrogenase (μKat/l); Lip: lipase (μKat/l); LDL: low-density lipoprotein-cholesterol 
(mmol/l); TG: triglycerides (mmol/l); urea: urea (mmol/l). Statistical analysis: One-way ANOVA followed by 
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post-hoc test for multiple comparisons. Hypothesis of equality of the means rejected with a p value < 0.05. Note 
that only statistically significant differences found in post-hoc tests between mutant and control mice groups, on 
CD, or on HFD, respectively, were considered relevant (in red). p values in post-hoc test: ASAT, <0.035; Ch, < 
0.029; CK, < 0.015; HDL, < 0.034. s.d: standard deviation. n.s: not significant (p value > 0.05). nd: not detected. 
 

Table 4.8: Blood chemistry of Gpr30-T181 Deltagen male mice 

parameters group time-
point 

 
ALAT Alb Amy AP ASAT Bil Ca Ch CK Cre Fe Fru 

mean 0.70 55.20 57.43 0.98 1.24 5.21 1.95 3.58 2.57 9.53 29.47 243.17 +/+ ♂  
CD 

2nd 
± s.d 0.52 3.56 9.09 0.16 0.52 0.97 0.23 0.93 1.05 0.79 5.75 19.06 

mean 0.70 57.22 56.74 1.06 1.20 6.06 2.01 3.84 2.84 9.74 30.50 250.20 -/- ♂  
CD 

2nd 
± s.d 0.44 3.76 6.92 0.18 0.36 1.28 0.24 0.69 0.92 0.71 8.47 14.98 

mean 1.20 60.49 79.43 0.89 1.43 3.37 2.20 5.65 1.89 9.26 33.74 231.13 +/+ ♂  
HFD 

2nd 
± s.d 0.51 5.01 8.10 0.17 0.36 0.38 0.31 0.55 0.54 1.68 8.44 21.08 

mean 1.23 58.08 76.54 0.85 1.39 3.25 2.03 5.31 1.70 9.84 31.28 221.38 -/- ♂  
HFD 

2nd 
± s.d 0.72 2.32 10.30 0.12 0.37 0.60 0.34 0.66 0.85 2.11 6.37 14.17 

ANOVA p value .059 .033 .000 .027 .587 .000 .275 .000 .028 n.s n.s .007 

mean 0.34 57.98 51.31 1.03 0.93 3.71 2.09 3.65 2.37 11.03 18.30 264.60 +/+ ♂  
CD 

3rd 
± s.d 0.12 4.15 7.31 0.15 0.31 0.69 0.20 0.52 2.51 2.11 6.34 31.96 

mean 0.54 57.13 43.29 1.03 1.08 3.96 2.08 3.32 2.57 10.34 20.50 278.25 -/- ♂  
CD 

3rd 
± s.d 0.33 3.12 9.33 0.23 0.42 0.68 0.29 0.58 1.64 1.14 9.41 19.11 

mean 2.49 61.15 65.60 1.49 1.98 3.25 2.22 5.52 3.20 12.20 25.55 258.80 +/+ ♂  
HFD 

3rd 
± s.d 0.72 0.94 9.84 0.27 0.36 0.30 0.11 0.68 2.04 2.32 6.39 20.13 

mean 1.88 60.48 64.96 1.00 1.78 3.33 2.08 5.61 1.97 12.00 22.67 251.33 -/- ♂  
HFD 

3rd 
± s.d 0.50 2.09 5.17 0.27 0.57 0.39 0.23 0.89 1.46 1.65 8.29 19.13 

ANOVA p value .000 .021 .000 .000 .000 .042 n.s .000 n.s n.s n.s n.s 

parameters group time-
point 

 
GGT GLDH Glu HDL IP LDH LDL Lip TG Urea 

mean 0.08 278.18 10.48 2.71 1.78 6.51 0.52 0.70 0.83 7.64 +/+ ♂ 
CD 

2nd 
± s.d 0.03 155.81 2.90 0.73 0.23 5.44 0.14 0.19 0.22 1.12 

mean 0.09 294.00 11.59 2.94 2.03 4.96 0.53 0.67 0.70 7.50 -/- ♂  
CD 

2nd 
± s.d 0.01 174.88 2.91 0.51 0.26 1.75 0.12 0.12 0.11 0.74 

mean 0.08 407.14 14.16 4.50 1.97 6.26 0.76 0.78 1.18 9.34 +/+ ♂  
HFD 

2nd 
± s.d 0.00 208.14 1.89 0.45 0.42 2.83 0.14 0.25 0.36 1.44 

mean nd 423.75 12.69 4.16 2.05 6.64 0.62 0.72 0.94 9.91 -/- ♂  
HFD 

2nd 
± s.d nd 248.02 1.16 0.46 0.31 3.30 0.11 0.16 0.27 0.95 

ANOVA p value .075 n.s .016 .000 n.s n.s .001 n.s .002 .000 

mean 0.06 240.60 10.12 2.94 1.91 3.52 0.52 1.10 0.77 7.03 +/+ ♂  
CD 

3rd 
± s.d 0.04 160.68 2.13 0.43 0.34 1.44 0.14 0.34 0.12 1.00 

mean 0.04 222.80 10.34 2.62 1.88 3.59 0.53 1.00 0.74 7.00 -/- ♂  
CD 

3rd 
± s.d 0.02 150.79 2.42 0.50 0.25 0.94 0.11 0.23 0.19 0.94 

mean 0.06 751.86 9.84 4.39 2.23 7.24 0.76 0.82 0.85 7.69 +/+ ♂  
HFD 

3rd 
± s.d 0.02 325.52 1.37 0.54 0.20 1.63 0.15 0.21 0.26 0.49 

mean 0.07 655.14 10.12 4.49 1.87 5.66 0.76 1.06 0.93 7.84 -/- ♂  
HFD 

3rd 
± s.d 0.02 235.93 0.99 0.66 0.28 1.10 0.20 0.36 0.18 0.71 

ANOVA pvalue n.s .000 n.s .000 .035 .000 .001 n.s n.s .069 

Blood chemistry of Gpr30-T181 Deltagen male mice. +/+ ♂ CD: wildtype male mice on control diet; -/- ♂ CD: 
Gpr30-T181-/- male mice on control diet ; +/+ ♂ HFD: wildtype male mice on high fat diet; -/- ♂ HFD: Gpr30-
T181-/- male mice on high fat diet; ALAT: alanine aminotransferase (μKat/l); Alb: albumin (g/l); Amy: α –
amylase (μKat/l); AP: alkaline phosphatase (μKat/l), ASAT: aspartate transaminase (μKat/l); Bil: bilirubin 
(μmol/l); Ca: calcium (mmol/l); Ch: cholesterol (mmol/l); Cre: creatinine (μmol/l); CK: creatine kinase (μKat/l); 
Fru: fructosamine (μmol/l); GTT: γ-glutamyl transferase (μKat/l); Glu: glucose (mmol/l); GLDH: glutamate 
dehydrogenase; HDL: high-density lipoprotein-cholesterol (mmol/l); IP: inorganic phosphate (mmol/l); Fe: iron 
(μmol/l); LDH: lactate dehydrogenase (μKat/l); Lip: lipase (μKat/l); LDL: low-density lipoprotein-cholesterol 
(mmol/l); TG: triglycerides (mmol/l); urea: urea (mmol/l). Statistical analysis: One-way ANOVA followed by 
post-hoc test for multiple comparisons. Hypothesis of equality of the means rejected with a p value < 0.05. Note 
that only statistically significant differences found in post-hoc tests between mutant and control mice groups, on 
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CD, or on HFD, respectively, were considered relevant (in red). p values in post-hoc test: AP, < 0.01. s.d: 
standard deviation. n.s: not significant (p value > 0.005); nd: not detected.  
 

After 20 weeks of HFD, total cholesterol (Ch), high density lipoprotein (HDL) and creatine 

kinase (CK) plasma levels were significantly higher in control female mice compared to 

homozygous mutant mice (Fig. 4.13, 4.14 and 4.15). Such a variation in HDL and total 

cholesterol might indicate an imbalance of lipid metabolism, whereas unchanged values of 

CK might suggest a well preserved muscular metabolism in female mutants despite HFD. 

Indeed, after 20 weeks of HFD, alkaline phosphatase (AP) plasma levels were found 

significantly higher in control male mice compared to homozygous mutant mice (Fig. 4.16). 

An increase of AP levels may indicate liver or bone disorders induced by HFD, an effect 

maybe attenuated in mutant males.  

 

 

Figure 4.13: Blood chemistry of Gpr30-T181 Deltagen mice: cholesterol (Ch) levels 

After 20 weeks of HFD total Ch levels in homozygous mutant females (12 months old) were significantly lower 
than in control mice, probably reflecting diminished levels of the HDL component  also registered in mutant 
females (see Fig. 3.14). This finding might suggest a slight impairment in lipid metabolism. On the right Ch 
values in males are shown: no genotype-dependent differences were observed at any time-point. Statistical 
analysis: One-way ANOVA followed by post-hoc analysis for multiple comparisons, * p value < 0.05. wt: 
control littermates. 
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Figure 4.14: Blood chemistry of Gpr30-T181 Deltagen mice: high density lipoprotein (HDL) levels 

After 20 weeks of HFD HDL levels in homozygous mutant females (12 months old) were significantly lower 
than in control mice. This finding might suggest a slight impairment in reverse cholesterol transport. On the right 
HDL levels in males are shown: no genotype-dependent differences were observed at any time-point. Statistical 
analysis: One-way Anova followed by post-hoc analysis, *: p value < 0.05. wt: control littermates. 
 
 
 

 

Figure 4.15: Blood chemistry of Gpr30-T181 Deltagen mice: creatine kinase (CK) levels 

After 20 weeks of HFD CK levels in homozygous mutant females (12 months old) were significantly lower than 
in control mice, a result probably indicating an unaltered muscular metabolism in mutant females. On the right 
CK male levels are shown: no genotype-dependent differences were observed at any time-point. Statistical 
analysis: One-way Anova followed by post-hoc analysis for multiple comparisons, *: p value < 0.05. wt: control 
littermates. 
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Figure 4.16: Blood chemistry of Gpr30-T181 Deltagen mice: alkaline phosphatase (AP) levels 

After 20 weeks of HFD AP levels in homozygous mutant males (12 months old) were significantly lower than in 
control mice (right panel). This finding might suggest a better adaptation of male homozygous mutant mice in 
terms of liver or bone disorders induced by HFD. On the left AP levels in females are shown: no genotype-
dependent differences were observed at any time-point. Statistical analysis: One-way Anova followed by post-
hoc analysis for multiple comparisons, *: p value < 0.01. wt: control littermates. 
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4.5 SHG17 Artemis mice phenotypic assessment  

SHG17 Artemis mice were generated by a Cre-recombinase approach leading to the complete 

deletion of the exon 3 of Gpr30 gene. Moreover these mice do not retain at genomic level any 

targeting cassette such as LacZ or neomycin, and they can be considered full Gpr30 KO mice. 

Therefore, and in order to exclude a potential influence of the LacZ-neor cassette on the 

phenotype achieved in Deltagen, Artemis mice were analysed in baseline for thymus gene 

expression, body weight, body mass composition, glucose metabolism, and left ventricular 

function.  
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4.5.1 Thymus gene expression 

Statistical analysis of microarray (SAM) revealed in the thymus of Deltagen male 

homozygous mutant mice several genes to be down-regulate and this effect could be validated 

by Real-Time PCR. Nppa, Serca2, Ccr5 and Cat gene expression analysis by Real-Time PCR, 

was also performed in the thymus of male Artemis mice. In these mice gene expression was 

clearly unchanged, being the fold of gene deregulation always close to 1 (Table 4.9). The 

different results obtained in Deltagen and Artemis mice showed for the two mutant mice a 

divergent phenotype, likely reflecting the two different strategies used to generate them. 

Therefore, the presence of the LacZ-neor cassette in Deltagen mice might have determined the 

immunological phenotype observed in this Gpr30 mouse model. 

 

Table 4.9: Validation of microarray data 

GOI/ 
Biological 
replicate 

Normalized Ct 
biological 
replicate 
SHG17+/+ 

Normalized Ct 
biological 
replicate 
SHG17-/- 

Ct 
 

Fold-expression p value 

Nppa  1 34.57 28.09 -0.08 1.06 0.96 
 2 31.43 32.72    
 3 32.61 31.96    
 4 33.34 33.32    
 5 30.55 36.02    
Cccr5  1 28.84 26.39 0.20 0.87 0.84 
 2 27.20 27.67    
 3 27.10 26.98    
 4 27.98 28.26    
 5 28.58 31.39    
Atp2a2  1 27.28 25.22 0.23 0.85 0.76 
 2 26.21 26.46    
 3 25.99 25.91    
 4 26.42 27.21    
 5 27.02 29.29    
 Cat 1 26.90 24.47 0.01 0.99 0.99 
 2 25.26 25.55    
 3 25.24 24.76    
 4 25.78 26.53    
 5 26.72 28.65    

Validation of microarray data. GOI: gene of interest. Nppa: natriuretic peptide precursor A; Ccr5: chemokine (C-
C motif) receptor 5, Serca2: sarcoplasmic reticulum Ca(2+)-ATPase 2, Cat: catalase. Ct was calculated as: 
average of normalized SHG17-/- Ct values- average of normalized SHG17+/+ Ct values. Reference genes used for 
normalization of Ct values were: Gapdh: Glyceraldehyde-3-phosphate dehydrogenase; Hprt: hypoxanthine-
guanine phosphoribosyltransferase; PO: ribosomal protein, large; Fold-expression= 2-Ct. p value calculated in a 
t-test used to compare Ct value means obtained in SHG17+/+ versus SHg17-/- mice.  
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4.5.2 Body weight and body mass composition 

Body weight of 13, 16, 19, 21 and 22 weeks old SHG17 Artemis mice was measured. No 

genotype-dependent differences were found among groups (Fig. 4.17).  

 

 

Figure 4.17: SHG17 Artemis mice, body weight (BW) 

BW of mice between 13 and 22 weeks old was measured. No genotype-dependent differences were found among 
female or male groups.  
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Body mass composition was assessed by NMR and results are reported in Fig. 4.18. No 

relevant differences were observed between control mice and SHG17-/- mice among male or 

female groups. Fat mass in SHG17-/- female mice was slightly but significantly higher than in 

SHG17-/- male mice [(13.11 ± 2.11)% body weight vs. (10.53 ± 1.66)% body weight] 

evidencing a sexual dimorphism in body mass composition only for this Gpr30 KO mouse 

model. 

 
 

 

Figure 4.18: SHG17 Artemis mice, nuclear magnetic resonance (NMR) 

Fat mass composition did not differ between SHG17 mice and relative control groups. However SHG17-/- female 
fat mass was significantly higher than in SHG17-/- male mice, evidencing a sexual dimorphism for this mutant 
mouse model (13.11 ± 2.11 vs. 10.53 ± 1.66; p-value <0.05). Statistical analysis: t-test. 
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4.5.3 Intraperitoneal glucose tolerance test 

Intraperitoneal glucose tolerance test was performed on 17 weeks old SHG17 Artemis mice. 

The experiment did not evidence any difference between groups in terms of glucose clearance 

as reported in Fig 4.19.  

 

 

Figure 4.19: SHG17 Artemis mice, IPGTT 

On the left IPGTT curves of SHG17 Artemis mice; on the right calculation of the area under the curves (AUC). 
IPGTT was performed using 17 weeks old mice. No differences were found among groups. Statistical analyisis: 
One-way ANOVA followed by post-hoc analysis for multiple comparisons. 
 
 

 

Altogether our results pointed to exclude in both Deltagen and Artemis mutant mice a 

metabolic phenotype in terms of body weight regulation, fat mass deposition and glucose 

clearance.  
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4.5.4 Echocardiography 

In order to assess the left ventricular function of SHG17 Artemis mice, 14 weeks old animals 

underwent echocardiographic analysis. In particular control male mice showed a significantly 

higher heart rate (HR) value compared to SHG17-/- male mice (Table 4.10). The same trend 

was observed between female groups, even tough the reported difference was not statistically 

significant. In order to confirm this result, a second method was adopted and ECG analysis 

performed. However in this case no differences in HR were reported among groups (Table 

4.10). Artemis mice as well as Deltagen mice did not show any cardiac abnormality, at least 

for the parameters evaluated in this study. 

 

Table 4.10: Echocardiography of SHG17 mice 

parameter 
groups 

time-
point 

 

EF FS LVIDd LVIDs AoVel HR HR(ECG) 

mean 51.37 26.21 4.17 3.08 855.59 432.00 474.58 
+/+ ♀ baseline 

± s.d 9.04 5.54 0.14 0.26 170.35 35.56 45.78 

mean 45.97 22.77 4.15 3.20 838.35 415.10 463.53 
-/- ♀ baseline 

± s.d 6.36 3.79 0.24 0.21 151.78 41.59 28.32 

t-test p value ns ns ns ns ns ns ns 

mean 45.92 22.91 4.50 3.46 936.01 438.33 452.92 
+/+ ♂ baseline 

± s.d 6.20 3.63 0.24 0.22 152.01 33.12 36.31 

mean 49.94 25.05 4.53 3.40 1008.42 412.89 450.12 
-/- ♂ baseline 

± s.d 3.91 2.39 0.23 0.23 298.15 29.22 35.17 

t-test p value ns ns ns ns ns .048 ns 

Echocardiography of SHG17 Artemis mice. +/+ ♀: wildtype control female mice; -/- ♀: SHG17-/- female mice; 
+/+ ♂: wildtype control male mice; -/- ♂: SHG17-/- female mice. EF: ejection fraction (%); FS: fractional 
shortening (%); LVIDd: left ventricle internal diameter (mm); LVIDs: left ventricle internal diameter systole 
(mm); HR: heart rate (beats/min) recorded in echocardiography. HR (ECG): heart rate (beats/min) recorded in 
electrocardiogram (ECG). Statistical analysis: t-test. s.d: standard deviation. n.s: not significant (p value > 0.05). 
Values significantly different are reported in red. 
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5 Discussion 
 
The Gpr30 receptor aroused in the last years a strong interest for two main reasons: 1) as 

GPCR, it represents a potential pharmacological target (28); 2) as estrogen receptor, it offers 

new perspectives for understanding estrogen biology (176, 182). However the role of estrogen 

as Gpr30 ligand remains one of the most controversial aspects and it is still under debate. 

Several studies have provided evidence against the involvement of estrogen in Gpr30 

signalling (44). Moreover the in vivo function of Gpr30 is still unknown. In order to gain new 

insights into Gpr30 physiological function, the main goal of the present thesis was an 

extensive phenotypic study of two Gpr30 mutant mouse models: Gpr30-T181 Deltagen and 

SHG17 Artemis mice.  

5.1 Gpr30 mutant mouse models 

Deltagen mice were obtained through an insertion of a LacZ-neor cassette into the third Gpr30 

exon, leading to the disruption of the ORF. Artemis mice, conversely, were obtained through 

a Cre/LoxP recombinase system leading to the deletion of the entire Gpr30 exon 3. Deltagen 

mice had the relevant advantage to incorporate the LacZ gene reporter that allowed us to 

establish a precise gene pattern expression for Gpr30 (60). However this model showed two 

drawbacks: 1) the insertion of the LacZ-neor cassette may lead to phenotypes not related to 

Gpr30 ablation (183); 2) a fusion transcript including the neomycin gene and part of exon 3. 

Concerning the first aspect it has to be mentioned that the phenotype of several GPCR KO 

that still keep the targeting vector at the genomic level was already successfully established 

(111). Moreover the expression of a truncated protein and the hypothesis of a “leaky” KO 

mouse has most likely to be excluded for two reasons: 1) the presence of stop codons in all 

the three possible reading frames at the 3´ end of the LacZ-neor cassette; 2) the nonsense 

reading frame of the remaining part of exon 3 spliced to the neomycin gene. Unfortunately, 

the absence of Gpr30 in Deltagen mice was not shown in western blot yet (60). Therefore to 

refer to these mice as mutants rather than KO mice may represent a more appropriate 

terminology.  

Artemis mice do not maintain the selection marker and were generated on a pure C57BL/6 

background. They could be considered in every respect Gpr30 KO mice (184) representing an 

invaluable term of paragon for results obtained in Deltagen mice.  
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5.2 Primary screen 

Deltagen mice underwent an extensive primary screen in many different fields of mouse 

physiology. The most relevant findings were achieved in the immunological and in the 

behavioural screen. 

5.2.1 Immunological screen 

A flow cytometric analysis of Deltagen mice revealed statistically significant lower 

frequencies of T cells compared to wildtype control mice, along with a lower proportion of 

CD62L expressing cells within the T cell cluster, representing the naïve T cell compartment 

newly produced in the thymus (185). This finding was in agreement with Wang and 

colleagues results (62), who showed that apoptosis rate in T cell receptor β-/low double positive 

thymocytes was doubled in Gpr30 KO mice in comparison to controls. A lower rate of T cells 

produced in the thymus may actually explain the reduced number of circulating T cells in 

Deltagen mice. To analyse the molecular basis of this observation, we decided to determine 

the gene expression profile of Deltagen mice thymus in comparison to wildtype littermates. 

Significance Analysis of Microarrays (SAM) revealed 20 down-regulated genes. Up-regulated 

genes were not found. The small number of down-regulated genes unfortunately did not allow 

us to perform a pathway analysis (DAVID or Ingenuity Pathway analysis). Nevertheless, 

some of them might contribute to explain the reduced number of T cells reported. 

 
Four genes drew our attention: the natriuretic precursor-peptide A (Nppa), the chemokine (C-

C motif) receptor 5 (Ccr5), the sarcoplasmic reticulum calcium-ATPase 2 (Serca2 or Atp2a2), 

and the catalase (Cat). These genes are involved in T cell maturation and proliferation. Their 

decrease in the thymus of Deltagen mice might be associated with an enhanced mechanism of 

T cells apoptosis, likely leading to a reduced number of leukocytes circulating in the blood of 

these mice. Therefore, and in order to substantiate our hypothesis and in order to validate 

thymus microarray results, mRNA levels of these genes were measured by Real-time PCR. A 

pronounced trend of down-regulation consistent with microarray results was found.  

Nppa, known also as atrial natriuretic peptide (ANP), is a member of the natriuretic peptide 

family and is normally expressed in high concentrations in the atrium (186). It acts through 

the natriuretic peptide receptor A (NPR-A), a guanylyl cyclase-linked receptor, that uses 

cyclic GMP as intracellular messenger (187). Nppa is able to induce diuresis and natriuresis 

as well as vessel vasodilatation, being involved in the regulation of volume-pressure 

homeostasis. ANP and the natriuretic peptide B (NPB) are markedly increased in patients 
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with myocardial infarction as well as in those with congestive heart failure (187). However, 

Nppa has been also proposed as endogenous thymus development regulator (188). It was 

actually shown to be produced in the thymus and its receptors have been found in thymocytes 

(189, 190). In fetal thymic organ cultures (FTOC) conducted in the presence of ANP, the 

peptide was able to modulate thymocyte differentiation (188). Moreover newborn animals 

showed much higher levels of ANP in the thymus than adults (181) evidencing its 

involvement in thymus maturation. Therefore the reduced expression of ANP in the thymus of 

Deltagen mice might have interfered with T cell maturation. However, a precise link between 

ANP levels expression and a reduced number of T cells in Deltagen mice was not yet 

established, and further experiments are needed to clarify this aspect. 

Ccr5 is a member of the beta chemokine receptor family, predicted to be a seven 

transmembrane protein similar to G protein-coupled receptors. It is expressed by T cells and 

macrophages, and it is known to be an important co-receptor for macrophage-tropic viruses, 

including HIV, to enter host cells (191). Defective alleles of this gene have been associated 

with HIV resistance (192). CCR5 is important in immune cell cross talk. Interaction with the 

natural ligand macrophage inflammatory protein (MIP)-1β promotes and controls the 

recruitment of cells to sites of inflammation, the immune synapse formation, T cells 

interactions within lymph nodes and the activation and differentiation of T cells (193). 

Moreover Ccr5 was shown to be able to induce a calcium-dependent intracellular signalling 

cascade triggered by the mycobacterial heat shock protein 70; a process, promoting 

downstream dendritic cell association and immune synapse formation between dendritic and 

T cells (193). On this regard it is interesting to note that SAM analysis and Real-Time PCR 

revealed the Serca2 gene, an intracellular calcium pump, to be down-regulated in the thymus 

of Deltagen mice. It is known that calcium plays an important role in life and death of T cells; 

elevation of intracellular free calcium is one of the key triggering signals for T cell activation 

by antigen (194). Serca pumps are calcium intracellular pumps that specifically maintain low 

levels of cytosolic calcium concentrations by actively transporting it from the cytosol into the 

sarco/endoplasmic reticulum lumen (195). Therefore one might speculate that decreased 

levels of Serca2 associated to decreased levels of Ccr5, might have induced an increase of 

intracellular calcium, and that such an increase might have enhanced for instance a calcium-

induced T lymphocyte apoptosis pathway (196).  

Catalase is an enzyme responsible within cells for converting H202 into H20 and O2 playing in 

the cells a pivotal detoxifying function. H202 as ROS may lead to irreversible cellular 

damages. Catalase overexpression or catalase enzyme addition to cell culture medium, have 
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been shown to protect cells against apoptosis and oxidative stress (197, 198). Tome and 

colleagues showed that overexpression of catalase in a thymoma cell line (WEHI7.2), 

prevented apoptosis following glucocorticoid stimulation (dexamethasone) (199). Catalase 

down-regulation in the thymus of Deltagen mice might represent a further T- cell apoptosis 

promoting factor.  

Additional experiments are required to establish a clear link between these genes and the 

reduced frequency of lymphocytes in Deltagen mice. As a first step, Real-Time PCR may be 

performed on a larger number of thymi samples in order to measure statistically significant 

differences in gene expression levels between mutant and control mice. Moreover, a western 

blot analysis may aid to verify decreased protein expression levels. 

 

Altogether the results achieved so far pointed to a role of Gpr30 in mediating T cell 

maturation. Lack of Gpr30 may be associated to an increase of T cell apoptosis. Wang and 

colleagues already proposed an immunological function for Gpr30 (62). However for this 

interpretation some controversial aspects have to be taken into consideration. Concerning the 

results of Wang and co-workers it has to be mentioned that 1) the α-ERKO mice used in this 

study still expressed a splice variant of ERα; 2) the ovarian cycle phase and therefore the 

estrogen levels of Gpr30 KO female mice used in G1 experiments, were not assessed (184). 

These factors might have contributed to observe effects not necessary related to the Gpr30 

lack. Moreover experiments aimed at confirming the phenotype found, did not show the same 

results in Artemis mice. Real-Time experiments performed on thymi of these revealed a 

different gene expression profile: the expression of Nppa, Ccr5, Serca2 and Cat genes was 

unchanged. In addition we did not find in Artemis mice a decrease in circulating leukocytes as 

was previously observed in Deltagen mice (184). The molecular basis of the different 

phenotypes might indeed be related to the presence of the selection marker in Deltagen mice 

(184). Altogether these observations prompted us to reconsider the immunological function of 

Gpr30 (60, 184). 
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5.2.2 Behavioural screen 

In an Open Field Test (OFT) Deltagen mice compared to wildtype control mice moved less 

and slower, and entered later the centre of the field. This behavioural pattern of Gpr30-T181 

mice suggested a subtle increase in anxiety-related behaviour in reaction to novelty. The 

phenotype might be related to the expression of Gpr30 in the dentate gyrus of the 

hippocampus (60), a brain region involved in the neuronal circuite mediating anxiety (200). 

Moreover the results would be in agreement with the study of Dennis and colleagues, 

showing G1 and estrogen able to reproduce the effects of the antidepressant drug desipramine 

(57). However in this study the effects of specific ERα and ERβ agonists and antagonists 

where not shown. Whether Gpr30 was the only responsible for antidepressant estrogen effects 

has to still be clarified. Since only small differences were observed between Deltagen mutant 

and control mice, a secondary behavioural screen may be required. In addition in Deltagen 

mice the contribution of a cardiovascular phenotype to the observed anxiety-related behaviour 

could then be evaluated. Indeed, the results obtained in the OFT may reflect an increased 

sensitivity towards the fatigue in Deltagen mice.  
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5.3 Secondary screen 

Gene expression studies revealed Gpr30 to be mainly expressed in the microvasculature 

endothelium (a sensitive target of pathologies connected to diabetes), as well as in the 

pancreas and in the stomach (45). Deltagen preliminary data indicated higher values of LDL 

in female mutant mice, suggesting a potential metabolic imbalance characterized by a sexual 

dimorphism. Therefore, we decided to challenge these mice with a defined HFD, as a 

potential enhancer of a metabolic and/or cardiovascular phenotype. In order to exclude a 

phenotype effect due to the presence of the selection marker in Deltagen mice, baseline 

experiments were also performed on Artemis mice, devoid of any targeting vector cassette. 

5.3.1 Metabolic screen  

Deltagen mice fed with a HFD did not show any difference in terms of body weight when 

compared to wildtype littermate control mice. These results were in contrast with those 

reported in other studies. Martensson and colleagues showed an age-dependent reduction in 

body weight (-9.6% at 19 weeks) associated with a proportional reduction in skeletal growth 

in Gpr30 KO female mice (61). In our hands body weight and body mass composition (NMR) 

of Deltagen mice did not show any genotypic difference even in response to HFD. A direct 

comparison of body composition and body weight between Artemis and the mice used by 

Martensson and colleagues at the same age (13-22 weeks) did not reveal any difference. 

Martensson and co-workers also reported reduced glucose sensitivity and increased plasma 

glucose levels in 6 months old KO female mice. We were not able to observe any change in 

glucose clearance in Deltagen mice at 6, 8 or 12 months old of age. Plasma glucose levels of 

Deltagen 8 and 12 months old mice did not differ from control mice. Genotype-dependent 

differences were not observed even under HFD conditions. Similar results were found for 

Artemis mice in baseline. The differences between the two studies might be explained taking 

into account experimental procedures and different Gpr30 KO mouse models used. In the 

Martensson and colleagues study AUC values of glucose metabolism were not provided, and 

differences were only calculated point by point in the glucose clearance curves. Nevertheless 

an assumption of glucose reduced sensitivity in Gpr30 KO mice was claimed. It has to be 

mentioned that it remains unclear whether in all experimental settings littermates were used. 

Additional caveats of this study might be a mixed genetic background of the mice and a rather 

limited molecular analysis of the targeting vector insertion (184). 
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Using another Gpr30 KO mouse model (62) Haas and colleagues found increased body 

weight and visceral adiposity in both male and female, 10-11 months old Gpr30 KO mice 

(68). Like Deltagen mice, the mice generated by Wang and collegaues maintain the selection 

marker and are on a mixed genetic background. In contrast to our study, a single integration 

of the targeting vector was not accurately verified, and homozygous intercrosses were used to 

generate experimental mice. Therefore the results reported by Haas and colleagues might not 

be necessary related to Gpr30 ablation. 

 
For a comprehensive discussion of our results, the limits of the HFD model used in this thesis 

may be mentioned. Even though a clear trend of a decreased efficiency in glucose clearance 

was observed in HFD animals, a rigorous statistical analysis revealed no significant 

differences between control and HFD groups. C57BL/6 mice are known to be prone to 

develop obesity and glucose resistance (150) but it has to be noticed that the energy source 

used in a DIO model (animal or vegetal fat), as well as strain and age of the mice may lead to 

different results in terms of body weight gaining and glucose metabolism. Lard, the diet 

energy source used in our study, induces more moderate effects on glucose plasma levels and 

glucose clearance, compared for instance to diets based on butterfat (201). Moreover 

C57BL/6 middle-aged animals (around 1 year old) were shown to respond to HFD in terms of 

body weight and glucose tolerance, in a minor extension when compared to young animals (4 

weeks old) (149). Therefore we could not exclude the unexpected and rather moderate effects 

of HFD due to the use of lard as energy source and of middle aged animals. However results 

obtained in baseline on both Gpr30 mutants, Deltagen and Artemis mice still encourage us to 

exclude a role of Gpr30 in body weight regulation and glucose clearance. 

5.3.2 Cardiovascular screen  

So far there was no study reporting a left ventricular analysis by echocardiography in Gpr30 

mutant mice in vivo. Our data revealed a slight, but significant decrease of the AoVel (-8%) in 

6 months old Deltagen female mice. This difference was obtained when comparing 18 

homozygous mutants with 24 littermate control mice. AoVel can be actually used as a 

surrogate of cardiac output, and a comparison among groups can be done providing the same 

the aortic diameter in the different groups (Table 4.5) (202). A decreased cardiac output might 

be associated to an increased resistance of systemic vascular bed. This finding was consistent 

with the results of Haas and colleagues. These authors hypothesized a role for Gpr30 in 

regulating vascular tone showing the ability of Gpr30 to lower blood pressure upon estrogen 

stimulation (68). Therefore Gpr30 may act as a vasodilator, increasing vessel diameter and 



Discussion                                                                                                                                            105 
_________________________________________________________________________________________________________________                           
 

 

decreasing vascular bed resistance. Conversely the lack of Gpr30 might be associated with a 

reduced vasodilatation and with an increase of vascular bed resistance, reflected by lower 

values of AoVel. However, comparing 9 homozygous mutants with 12 littermate control 

mice, we did not observe any AoVel difference between 8 and 12 months old female and 

control mice. A different age and a smaller number of mice might explain these results.  

 

Several observations led to critically reconsider these conclusions. Echocardiography was 

performed also on Artemis mice. No differences were found in terms of AoVel between 

wildtype and littermate controls. The observation of a decreased heart rate in Artemis male 

mice was not confirmed using ECG. Moreover Deltagen mice were shown to be normotensive 

(120) (no data are available for Artemis mice yet). Altogether, the data obtained for Deltagen 

and Artemis mice seem to exclude a cardiovascular phenotype, at least concerning the systolic 

and diastolic parameters measured in this study. 

 

Moreover and as opposed to the data reported by Park and colleagues (160), HFD did not 

induce any changes in cardiac function in mutant mice. Indeed, we could not detect any 

decline in fractional shortening (FS) induced by HFD. Age and genetic background of the 

mice may account for the different results obtained (Park et al. used 2 months old C57BL/6 

mice). However our results seem to support previous reports that question the efficacy of 

HFD in causing relevant cardiac abnormalities in rodents (157). 

5.3.3 Clinical chemistry 

The most relevant results concerning clinical chemistry of Deltagen mice were observed after 

20 weeks of HFD (3rd time-point). In particular, cholesterol and HDL plasma levels of 

homozygous mutant females were found significantly lower than in littermate controls. 

Cholesterol and HDL were found decreased by 19% and 18%, respectively.  

 

The process that regulates plasma HDL levels both in human and mice it is not fully 

understood yet. Mice normally have higher levels of HDL than LDL, in contrast to humans 

where the predominant form is represented by LDL (161). Most of the plasma cholesterol is 

transported on three major lipoprotein classes: very low density lipoproteins (VLDL)-

cholesterol, LDL-cholesterol and HDL-cholesterol. The total plasma cholesterol detected in 

the clinical chemistry analysis is the sum of all the cholesterol carried by these three 
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lipoproteins (203). VLDL levels were not measured in this study, but triglycerides provide an 

indirect evaluation of VLDL amount.  

 

HDL is believed to play a key role in the so called reverse cholesterol transport, a pathway 

aimed at removing cholesterol from the extra-hepatic tissues back to the liver for biliary 

excretion, or to steroidogenic organs such as the adrenals, the ovary and the testes (204). 

Nascent HDL particles are made in the liver and the intestine. They are secreted as particles 

containing mainly phospholipids and apolipoprotein-AI. In mice, HDL maturation is a 

process depending on the progressive accumulation of apoliporotein-E, leading in its turn to 

an increased affinity of hepatic receptors to HDL (205). A decrease of total cholesterol plasma 

levels recorded in homozygous mutant female mice might be interpreted, at first sight, as a 

good adaptation of Deltagen mice to HFD. However, the reduction of the HDL component 

might conversely reflect a slight imbalance of the cholesterol reverse transport and its 

beneficial effects in protecting from atherosclerosis (203).  

 

Under equal dietary and cholesterol efflux and uptake conditions (120) and in presence of 

diminished HDL levels, a compensatory increase of LDL and/or VLDL levels would have 

been expected. However, LDL levels in homozygous mutant females were the same as in 

control mice. A direct measurement of VLDL levels was not performed. Therefore, a linear 

interpretation of the data was not possible. Still an altered reverse cholesterol transport in 

Deltagen mice would be consistent with Gpr30 expression in blood vessels. As a consequence 

of a reduced HDL clearance, LDL receptor and hepatic LDL receptor-like proteins may be 

reduced. Therefore, additional studies on these proteins at mRNA and protein levels, may aid 

to clarify and confirm the observed phenotype. 

Notably only homozygous mutant female mice developed this slight decrease in plasma HDL 

levels. This sexual dimorphism in lipid profile might underline a mechanism related to sexual 

hormones such as estrogen. Indeed, estrogens were reported to be associated with lower 

cholesterol and LDL levels (206). 

 

After 20 weeks of HFD, CK levels were increased in female wildtype mice by almost 50% in 

comparison to control mice. Remarkably, this effect could not be observed in homozygous 

mutant female mice. CK is an enzyme catalyzing the following reaction: MgADP- + CrP2- + 

H+↔ Cr + MgATP2- (where Mg: magnesium, ADP: adenosine diphosphate, CrP2-: creatine 

phosphate, H+: proton, Cr: creatine, ATP2-: adenosine triphosphate) (207). CK can be present 
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in four different isoforms playing a key role in energy transfer and cellular buffering. CK 

isoforms are most found in cells and tissues with a high demand in metabolic energy such as 

the brain, the heart or the skeletal muscle. Plasma levels are representing the total of the 

different isoforms. In particular, high plasma CK levels are normally associated with muscle 

damage. Then, CK is released into the blood stream, leading to harmful effects on the kidney 

(161). Interestingly, creatine and urea levels, two parameters for kidney function, were 

comparable between groups fed with HFD, providing evidence for a similar kidney function 

in both mutant and control mice.  

 

HFD was already shown to lead to an increase of CK plasma levels in rats (208). Moreover 

obesity is associated with an increase in the percentage of fast twitch, oxidative-glycolitic 

muscle fibers (type IIb fibers) that use glucose as an energy substrate, and to a reduction of 

slow-twitch oxidative muscle fibers with a high content of mitochondria (type I fibers) (209, 

210). Therefore, an increase of CK under HFD conditions may reflect an increase of 

glycolytic enzyme activity in the muscle associated with a predominant energy buffering 

effect of the enzyme (conversion of Cr in CrP2-). Deltagen female mice seemed not to show 

such a response after 20 weeks of HFD, resembling CK plasma levels observed in mice on 

CD. Studies on adenylate kinase (AK) and nucleoside diphosphokinase (NDPK), tightly 

connected to CK activity in maintaining an optimal muscle performance, may help to confirm 

and better understand these results (211). Interestingly, reduction of plasma CK in HFD 

conditions was observed in rats treated with L-carnitine (208). L-carnitine is a molecule 

essential for the transport of long-chain fatty acids from the cytosol to mitochondria, able to 

stimulate β-oxidation. GPCRs are known to play an important role in fatty acids oxidation, 

acting for instance on cyclic AMP (212), a second messenger already associated with Gpr30 

signalling (36). Altogether, Gpr30 might be involved in the metabolism of smooth muscle 

cells in the brain, where we already reported highest Gpr30 expression (60).  

 

After 20 weeks of HFD, homozygous mutant males showed stable plasma levels of alkaline 

phosphatase (AP). Conversely, control males showed increased AP plasma levels by almost 

50% under the same conditions. This effect could not he observed in Deltagen female mice, 

although a slight difference between mutant and control females was already reported at the 

primary screen. An increase of plasma AP activity may be related to bone metabolism 

disorders or to liver disease, being these organs the main source of ALP activity (161). 

Although the increase of ALAT, ASAT and GLDH plasma levels in mice fed with HFD 
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might suggest the onset of liver disorders in both groups, lower levels of AP in Deltagen male 

mice, might suggest a better preserved hepatic function in response to HFD in mutant males. 

Moreover AP activity has also been associated with afferent vessels of the brain (213) and 

employed as a marker for blood-brain barrier (BBB) maturation (214). Interestingly, the 

highest expression levels of Gpr30 were found in brain vessels (60). Whether brain AP is also 

a component of the total AP detected in the blood chemistry analysis is unknown, but a 

potential link between AP vessel brain activity and Gpr30 might be considered. 

 
A challenging aspect concerning the parameters measured in blood chemistry in mice is the 

high variability found among different strains, and even among animals of the same strain 

(215). Deltagen mice were generated on a mixed genetic background (6th generation C57BL/6 

backcrosses), and an effect on blood chemistry results can not be ruled out (184). However, a 

solid backcross breeding approach, aimed at re-establishing a pure C57BL/6 background, and 

the use of littermate controls in every experiment, likely reduced such an effect. Further 

experiments on Artemis mice may substantiate our findings. 

 

5.4 An estrogen receptor can do more 

The in vivo results achieved so far using Deltagen and Artemis mice may contribute to face 

the main controversy concerning Gpr30, namely whether it functions or not as an estrogen 

receptor. Estrogen is known to play a pivotal role in metabolism. Several studies show that 

estrogens and estrogen analogues decrease weight, fat store and food intake in mice and rats 

(129, 216, 217). It has been shown that α-ERKO and ArKO mice become obese and insulin 

resistant (125, 127, 129) and that glucose and insulin resistance is more severe under HFD 

conditions in α-ERKO mice (218). However, a metabolic phenotype in terms of body weight 

regulation, fat mass and glucose clearance, comparable to ERKO and ArKO mice could be 

excluded in both, Gpr30-deficient, Deltagen and Artemis mice. 

 

Remarkably, some of the parameters measured, such as HDL, were altered only in 

homozygous mutant females under HFD. Our findings might suggest an involvement of 

estrogen in regulating lipid metabolism in females under HFD conditions through Gpr30. 

However, estrogen-mediated signalling by Gpr30 was not analysed in the present study and 

sex differences are not necessarily estrogen-dependent. 

It has been reported that α-ERKO mice show an abnormal mating behaviour and many other 

anomalies in reproductive organs, partially common to β-ERKO mice (219). Mating or 



Discussion                                                                                                                                            109 
_________________________________________________________________________________________________________________                           
 

 

fertility disturbances were not observed in either Deltagen or Artemis mice (45, 51). Several 

processes associated with estrogen regulation, such as bone and cartilage development, as 

well as nociception and energy metabolism were analysed in the primary screen. Remarkably, 

no differences were found between homozygous mutant and control mice.  

 

In an overall interpretation of the data obtained in the context of the current literature, one 

may hypothesize a similar function for different estrogen receptors. This seems an incorrect or 

even misleading assumption. However, both α- and β-ERKO mice develop significant 

anomalies in metabolism, fertility and reproduction, being estrogen the lowest common 

denominator between them. This does not seem to be the case in Gpr30-deficient, Deltagen 

and Artemis mice. Indeed, the results obtained in this study are consistent with several reports 

showing that Gpr30 may not required for the normal estrogen response in some of the well-

known estrogen regulated processes (220).  
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5.5 Conclusions and outlook 

In order to better understand Gpr30 function in vivo we conducted a wide phenotypic study on 

two Gpr30 mutant mice: Gpr30-T181 Deltagen and SHG17 Artemis mice. Deltagen mice 

provided the crucial advantage of expressing a reporter gene (LacZ) that allowed us an 

extensive analysis of Gpr30 expression in any organ or tissue at any time point (60). Artemis 

mice, being generated on a pure C57BL/6 background and devoid of any selection marker, 

constituted the second Gpr30 mouse model, being essential for substantiating the results 

obtained with the Deltagen mice. A summary of experiments and results are shown in Table 

5.1. 
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Table 5.1: Results summary 

 Gpr30 mouse model 
 Deltagen  Artemis  
Experiments 
performed in 
baseline 

♀ ♂ ♀ ♂ 

BW ns ns ns ns 
NMR ns ns ns ns 
GTT ns ns ns ns 
Echo decresed AoVel 

in mutant mice 
ns ns ns 

Clinical Chem. 
 

decreased AP levels 
in mutant mice 
(primary screen) 

ns na na 

Immunology  lower frequencies 
of T cells 

lower frequencies 
of T cells 

unchanged levels of 
T cells 

na 

Molecular Phen. na 20 down-regulated 
genes in thymus 
RNA microarray 
experiments; 
confirm of a down-
regulation trend for 
Nppa, Ccr5, Serca2, 
Cat genes in Real-
Time PCR 

na 
 

absence of a down-
regulation trend of 
Nppa, Ccr5, Serca2, 
Cat genes in Real-
Time PCR 

 Gpr30 mouse model 
 Deltagen  Artemis  
Experiments 
performed during 
HFD protocol 

♀ ♂ ♀ ♂ 

BW ns ns na na 
NMR ns ns na na 
GTT ns ns na na 
Echo ns ns na na 
Clinical Chem. decreased levels of 

plasma Ch, HDL 
and CK in mutant 
mice on HFD 

decreased levels of 
plasma AP in 
mutant mice on 
HFD 

na na 

Results summary: ♀: female homozygous mutant mice; ♂: male homozygous mutant mice; ns: no significant 
differences found between deficient Gpr30 mice and littermate control mice; na: not available; BW: body 
weight; NMR: nuclear magnetic resonance; GTT: glucose tolerance test; Echo: echocardiography; Clinical 
chem.: clinical chemistry; Molecular phen.: molecular phenotyping; AP: alkaline phosphatase; Ch: cholesterol; 
HDL: high density lipoprotein; CK: creatine kinase; Nppa: natriuretic precursor peptide A; Ccr5: chemokine 
(motif C-C) receptor 5; Serca2: sarcoplasmic reticulum calcium ATPase 2, Cat: catalase.  
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Both, Deltagen homozygous male and female mutants, showed lower frequencies of 

circulating T cells, suggesting an immunological role of Gpr30 in regulating T cell 

maturation. Gene expression analysis of the thymus allowed us to identify which genes might 

be involved in determining this phenotype. We focussed on Nppa, Ccr5, Serca2 and Cat 

genes, all being down-regulated in mutant mice in comparison to controls. An enhanced 

calcium-dependent T cell apoptosis, leading to lower levels of circulating T cells might be 

involved. Deltagen mice may therefore constitute a mouse model for immunological 

susceptibility. A further cytometric and gene expression analysis using Artemis mice, 

however did not reveal the same results. The likelihood that the insertion of the LacZ-neor 

cassette might have led to the reduction of circulating T cells in Deltagen mice can not be 

excluded.  

 

For the first time a hemodynamic study on both Deltagen and Artemis mice was performed. A 

decreased value of aortic blood velocity in Deltagen females and a lower heart rate in Artemis 

male mice were found, suggesting in both cases a potential impairment of diastolic function. 

However, blood pressure measurements by the tail-cuff method were performed in the 

primary screen (120) and no significant differences were found between Deltagen and control 

mice. Indeed, an impaired cardiac function could not be substantiated in further experiments, 

in which both Deltagen and Artemis mice did not show any relevant heart abnormalities, at 

least for the parameters measured. On the other hand, the predominant expression of Gpr30 in 

the vasculature of the brain and the kidney, suggest a role of Gpr30 in vessel diameter 

regulation and may therefore deserve further attention. To this end alternative and direct 

blood pressure measurements, such as catheterization and radio-telemetry, may offer a more 

exhaustive analysis for future experiments (221). 

 

Some studies have claimed a metabolic function of Gpr30 (61, 68). However the metabolic 

screen conducted in Deltagen and Artemis mice allowed us to exclude a relationship between 

the lack of Gpr30 and body weight regulation, fat mass storage and efficiency in glucose 

clearance. Discrepancies between our and other studies might be explained by taking into 

account the different Gpr30 mouse models used and the different experimental approaches 

taken (184). Deltagen mice fed with HFD showed a different profile compared to controls, 

probably indicating a role of Gpr30 in regulating lipid and muscle metabolism. Decreased 

levels of cholesterol and HDL in homozygous mutant females fed with HFD, may suggest a 

possible impairment of the reverse cholesterol pathway in these mice. This phenotype may be 
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confirmed and further analysed on an ApoE-KO background, a well established model in 

atherosclerosis research (222). Moreover, stable levels of creatine kinase in mutant mice fed 

with a HFD suggest a potential involvement of Gpr30 in regulating muscle metabolism. The 

lack of Gpr30 might therefore contribute to preserving an optimal muscular metabolism, 

despite alterations induced by a HFD. Similarly, lower levels of alkaline phosphatase found in 

male mutants might underline a better response of the liver against alterations induced by 

HFD. Consequently, in further experiments one may expect reduced levels of liver steatosis in 

mutant in comparison to control mice, which may confirm a preserved liver function in 

Gpr30-deficient mice under HFD conditions. 

 

The results obtained in this study were also discussed in the frame of the question, whether 

Gpr30 may function or not as an estrogen receptor. We showed that Gpr30 may not be 

required for the normal estrogen response in different estrogen-regulated physiological 

processes (e.g. metabolism, mating behaviour, bone development and nociception). Our 

findings support previous publications rebutting the role of Gpr30 as a new estrogen receptor 

(44, 184), but disagree with the conclusions reported in earlier prominent publications in 

which Gpr30 was claimed to be an estrogen receptor and even renamed into G protein 

estrogen receptor, Gper (34, 56, 57). 

 

In conclusion, the results achieved in this study contributed to a better characterization of 

Gpr30 function in vivo, disproving its involvement in glucose tolerance, adiposity and body 

weight regulation and soliciting further experiments aimed at clarifying a potential role of 

Gpr30 in T cell regulation, lipid and muscular metabolism, as well as in hepatic protection 

under a high fat diet regimen.  
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