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Abstract deutsch  

Adipositas ist eine polymorphe chronische Erkrankung mit epidemischer Prävalenz. Im katabolen Leptin-

Melanocortin-Signalweg ist das Proopiomelanocortin Gen (POMC) ein zentrales Element, das bei 

Dysfunktion massive Adipositas bewirken kann. Auch eine kürzlich identifizierte intragenische 

Methylierungsvariante des POMC wurde mit Adipositas assoziiert und deutet somit auf eine mögliche 

epigenetische Modulation des Gewichtsphänotyps hin. Zur Aufklärung der Relevanz, Stabilität und 

Entwicklung dieser epigenetischen Modifikation wurden die Funktionalität, Ontogenese und Phylogenese 

der POMC DNA-Methylierung untersucht. 

In vitro Analysen zeigten DNA-Methylierungsabhängige Promoteraktivität beider CpG-Inseln (CGIs) des 

POMC. Diese hier erstmals beschriebene Transkriptionsaktivität der intragenischen CGI weist auf einen 

alternativen Promoter des POMC hin.  

Hinsichtlich der Ontogenese konnten in Mensch und Maus postnatal stabile DNA-Methylierungsmuster 

mit interindividueller Konservierung für beide CGIs des POMC identifiziert werden. Zusätzlich erwiesen 

sich Gewebeunabhängigkeit der DNA-Methylierungsmuster und ihre pränatale Ausbildung zwischen dem 

Blastocystenstadium und der frühen Organogenese in der Maus. 

Die POMC DNA-Methylierungsmuster upstream des Exon3 unterscheiden sich in Mensch und Maus. Der 

mögliche Einfluss von primatenspezifischen Alu-Elementen im Intron2 des POMC hierauf wurde in 

verschiedenen Primatenfamilien analysiert. Die Ergebnisse zeigen eine bedingte Assoziation der Alu-

Elemente mit der DNA-Methylierung in der entsprechenden Region, lassen jedoch auch weitere 

Einflussfaktoren vermuten.  

Insgesamt zeigt diese Arbeit, dass die POMC DNA-Methylierung artspezifisch konserviert ist und in der 

frühen Embryogenese, vermutlich Alu-abhängig, ausgebildet wird. Dabei könnten stochastische 

Variationen der DNA-Methylierung die POMC-Aktivität beeinflussen und somit das Risiko für Adipositas 

erhöhen. 

 

Schlagworte 

Proopiomelanocortin (POMC), Adipositas, Epigenetik, DNA Methylierung, Alu-Elemente, alternativer 

Promoter, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus, Papio hamadryas, Macaca mulatta, Callithrix 

jacchus, Galago senegalensis, Eulemur macaco 



II 

Abstract English 

Obesity is a polymorphic chronic disease with epidemic prevalence. Within the catabolic leptin-

melanocortin signaling pathway pre-proopiomelanocortin (POMC) is a pivotal element. Dysfunction of 

POMC, e.g. due to mutations, can cause severe obesity. Moreover, a recently identified intragenic 

methylation variant of POMC was found to be associated with obesity. Therefore, this indicates potential 

epigenetic modulation of the weight phenotype. To gain further insight into the relevance, stability, and 

origin of this epigenetic modification, the functionality, ontogenesis, and phylogenesis of the POMC DNA 

methylation patterns were analyzed. 

In vitro analyses revealed DNA methylation-dependent promoter activity of both CpG islands (CGIs) of 

POMC. Thereby, the intragenic CGI was identified as a potential alternative promoter of POMC, which has 

not been described before.  

Regarding the ontogenesis, postnatally stable POMC DNA methylation patterns with interindividual 

conservation were detected for both CGIs in humans and mice. In addition, it was observed that the POMC 

DNA methylation patterns are non-tissue-specific, stable upon long time administration of a high fat diet, 

and develop prenatally between the blastocystal stage and the early organogenesis. 

The POMC DNA methylation pattern upstream of exon3 differs in humans and mice. A possible influence 

of primate-specific Alu elements within the intron2 region of POMC was analyzed in various primate 

families. Results evince a partial association of the Alu elements with the DNA methylation pattern in this 

particular region, but also suggest an influence of additional factors. 

Overall, this work demonstrates that DNA methylation of the POMC locus is species-specific highly 

conserved, and that it is established during early embryogenesis, possibly Alu-triggered. In the course of 

this, stochastic variances of the POMC DNA methylation might influence the POMC activity and 

consequently alter the risk to develop obesity. 
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1 Introduction 

1.1 Obesity 

Overweight is an expanding health problem worldwide. Nowadays obesity is considered a chronic disease 

and is defined as excessive fat deposition in the body storages accompanied by various co-morbidities. A 

simple numeric measure for estimating the weight status of a person is the body mass index 

(BMI = weight in kilograms divided by the square of height in meters [kg/m2]). For adults a BMI of 18.5 to 

24.9 is considered optimal weight. BMI greater than 25 is considered as overweight, while a BMI larger 

than 30 and 40 indicate obesity and morbid obesity respectively (WHO, 2000). For children and 

adolescents BMI values are classified using age-related percentile charts (Kromeyer-Hauschild, 2001). 

Worldwide, it is observed that the prevalence and severity of obesity is increasing rapidly in children, 

adolescents, and adults (Chan and Woo, 2010; Wang and Lobstein, 2006). In Germany, more than 15% of 

the children and adolescents (3 – 17 years) were overweight in 2007, while even 6.3% were obese (Kurth 

and Schaffrath Rosario, 2007). In total that adds up to about 1.9 million children being overweight in 

Germany.  

The associated co-morbidities of obesity, such as hypertension, dyslipidemia, and disturbed glucose 

tolerance are present in adults, adolescents, and children (I'Allemand et al., 2008; Mauras et al., 2010). 

Furthermore, childhood obesity is associated with an increased risk for coronary heart disease in 

adulthood with connected shortened lifespan (Baker et al., 2007; Biro and Wien, 2010; Reinehr and 

Wabitsch, 2010). The care for obese patients, to prevent further morbidity and mortality, is laborious but 

necessary and, therefore, the obesity-related health care costs are substantial (Ebbeling et al., 2002; John, 

2010; Muller-Riemenschneider et al., 2008; Yach et al., 2006). For appropriate prevention and treatment 

of obesity and related health problems, knowledge of risk factors and contributing determinants is 

compulsive. This may also reduce the connected health care costs. 

There is good evidence that individuals regulate their body weight constantly over long periods around a 

predetermined set point, despite minor short-term variations in the energy balance (Farias et al., 2010; 

Harris and Martin, 1984; Keesey and Hirvonen, 1997). For regulation of the body weight maintenance 

around this set point, the hypothalamus was identified to play a central role. 

1.2 Hypothalamic body weight regulation 

It is known for a long time that the hypothalamus is a crucial control node for the maintenance of energy 

homeostasis  (Anand and Brobeck, 1951; Hetherington and Ranson, 1940). The hypothalamus receives 

and integrates neural, metabolic, and hormonal signals from the periphery. The signals converge in the 

hypothalamus, interconnect, and spread into respective brain areas (Coll et al., 2007; Schwartz et al., 

2000). Especially the arcuate nucleus in the mediobasal hypothalamus receives hunger or satiety signals 

from beyond the blood-brain-barrier in the form of hormones, such as leptin, ghrelin, and insulin. The 

hormone stimuli regulate the expression of neuropeptides in the neurons of the arcuate nucleus. The 

neuropeptides transmit the information onto second order neurons by stimulating or antagonizing the 

respective receptors. In particular the arcuate nucleus neurons project onto second order neurons of the 

paraventricular nucleus and the lateral hypothalamus (Coll et al., 2004) that forward the signals further in 

order to maintain the body’s energy homeostasis.  

One subpopulation of the arcuate nucleus neurons are the neuropeptide Y (NPY) and agouti related 

peptide (AgRP) expressing neurons that represent the orexigenic (appetite-stimulating) pathway. They 

form a coordinated network with a second subpopulation of arcuate nucleus neurons, the 
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pre-proopiomelanocortin (in the further text referred to as POMC) expressing neurons, since both carry 

corresponding receptors (Cone, 2005). The POMC neurons are a pivotal link in the catabolic and 

anorexigenic (appetite-inhibiting) leptin-melanocortin pathway. 

1.2.1 Leptin-melanocortin axis 

The proteohormone leptin is secreted from white adipose tissue proportional to the body fat content and, 

therefore, is related to the body mass. Serum concentrations of leptin correlate well with BMI in both 

humans and rodents (Boston et al., 1997). Via the blood circuit, leptin reaches its target receptors 

(ObR/LepR) in the hypothalamic brain area, where the information of body fat conditions in the periphery 

is translated into central neuronal signals (Considine et al., 1996; Wang et al., 1998; Woods et al., 1998). 

Leptin stimulation of the anorexigenic POMC neurons in the arcuate nucleus induces POMC expression. On 

the other hand, decreased leptin levels due to fasting conditions result in lower POMC expression. 

The biologically inactive polypeptide hormone precursor POMC is posttranslationally processed to 

generate a range of smaller biologically active peptides like the melanocyte-stimulating hormones 

(melanocortins; α-, β- and -MSH). This process depends on appropriate activity of prohormone 

convertases (PC)1 and PC2 (Coll et al., 2004; Seidah et al., 1999). α- and β-MSH activate the melanocortin 

4 receptor (MC4R), which is a G protein-coupled seven transmembrane domain receptor (GPCR) located 

on the neurons of the paraventricular nucleus. After MC4R activation, subsequent signaling leads to a 

decreased food intake and increased metabolic rate (Figure 1) (Cone et al., 1996; Schwartz et al., 2000; 

Solomon, 1999). Possible mediators of this anorexigenic outcome are the brain-derived neurotropic factor 

(BDNF) and its receptor tyrosine kinase B receptor TrkB (Xu et al., 2003). α-, β-, and -MSH are also 

capable of activating the melanocortin 3 receptor (MC3R) that is expressed on the opposing POMC and 

NPY/AgRP neuron populations within the arcuate nucleus, forming a paracrine feedback loop (Bagnol, 

2004). In addition to the control of food intake, it has been shown in rodents that the hypothalamic 

melanocortin system also participates in the regulation of peripheral energy expenditure and 

thermogenesis by influencing the brown adipose tissue sympathetic nerve activity (Yasuda et al., 2004). 

 

Figure 1: Catabolic leptin-melanocortin axis (Cummings and Schwartz, 2003). White adipose tissue secretes the peripheral 

hormone Leptin, which stimulates POMC expressing neurons in the arcuate nucleus (ARC) via the leptin receptor (LepR). POMC 

derived products, such as -MSH, stimulate the MC4R in the paraventricular nucleus (PVN). Subsequent signaling of the MC4R, for 

example via BDFN and its receptor TrkB, leads to decreased food intake and increased energy expenditure. Mutations in *-marked 

genes can cause erly onset obesity in humans and rodents. PC1 = protein convertase 1, CPE = carboxypeptidase E.  

Diverse factors can disturb this energy homeostasis-regulating system. Hence, obesity is not a single 

disorder but a heterogeneous group of conditions with multiple causes (Kopelman, 2000). Besides 

environmental and socio-cultural factors, also genetic determinants contribute to the development of 

obesity (Bouchard, 2009; Drewnowski, 2009; Maes et al., 1997; Yang et al., 2007). In most cases, obesity is 

a polygenic disease. Aberrant gene information and translation due to mutations or sequence variants like 
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single nucleotide polymorphisms (SNPs) of relevant genes can cause a disbalance in energy metabolism 

and shift the feeding behavior into pathological states (Coll et al., 2004). Studies in monozygotic and 

dizygotic twins showed that the heritability of the BMI is approximately 50 to 84% (Allison et al., 1996; 

Barsh et al., 2000; Stunkard et al., 1986). Besides genes involved in the differentiation of adipocytes and 

the thermogenesis, especially genes of the energy metabolism regulating system were identified in 

genome wide association (GWA) studies to be associated with the weight phenotype (Bouchard, 2009; 

Drewnowski, 2009; Maes et al., 1997; Speliotes et al., 2010; Thorleifsson et al., 2009; Yang et al., 2007).  

For the majority of key genes of the leptin-melanocortin signaling pathway (Figure 1) gene mutations in 

rodents and humans were identified to lead to monogenic early onset obesity (Beales, 2010). Thereby, 

mutations within the MC4R are most commonly identified (Farooqi et al., 2003). In addition to seldom 

gene mutations, large scale GWAs also identified several SNPs that correlate with the weight phenotype. 

Among the latest identified SNPs is a sequence variant that lies near the POMC locus and might influence 

the POMC action (Speliotes et al., 2010). 

1.3 Pre-proopiomelanocortin (POMC) 

The human pre-proopiomelanocortin (POMC) gene is located on chromosome 2p23.3 and consists of 

three exons which enclose two introns (Figure 2A). Translation, starting within the second exon results in 

a complex, functionally inactive 32 kDA full-length precursor polypeptide. Posttranslationally, the inactive 

propeptide is proteolytically cleaved into smaller partially functional units (Coll et al., 2007) (Figure 2B). 

This processing occurs within secretory vesicles during the transport from the endoplasmatic reticulum 

through the Golgi apparatus towards the plasma membrane. The resulting repertoire of derived products 

is highly dependent on the particular tissue and its range of processing enzymes (Bertagna, 1994; 

Solomon, 1999). 

 

Figure 2: human POMC gene and precursor polypeptide structure. (A) Human POMC gene locus. Grey boxes indicate exons. 

Hatched ovals mark the location of CpG islands (CGIs). Alu element positions are marked by vertical arrows. (B) Full-length 

precursor polypeptide originating from exon2 and exon3. Repertoire of cleaving products depends on the present enzymes. ACTH = 

adrenocorticotropic hormone, MSH = melanocortin. 

The majority of functional relevant POMC-derived peptides, including adrenocorticotropic hormone 

(ACTH), the endogenous opioid β-endorphin, and melanocyte-stimulating hormones (α-, β- and -MSH), 

are cleaved from the C-terminal region, which arises from the third exon (Coll et al., 2007). They all have a 

broad range of biological functions including roles in pigmentation, stress response, and the regulation of 

energy homeostasis (Adan and Gispen, 2000; Hadley et al., 1998; Yaswen et al., 1999). The exon2-derived 

N-terminal peptide solely forms the signal peptide and the N-terminal peptide. 

A few hundred base pairs upstream of exon1 lies the promoter region with adjoining transcription start 

site (TSS) (Newell-Price et al., 2001). Further 10 to 12 kb upstream two evolutionary conserved neuronal 

enhancers, nPE1 and nPE2, are located. These neuronal enhancers are essential for expression in the 

hypothalamus but not for expression in the pituitary (de Souza et al., 2005). Within the gene region of the 

human POMC several domains can be distinguished based on their structure and function, including a 
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series of repetitive DNA units (Chang et al., 1980). Most of those repetitive DNA units are 

retrotransposable elements of the primate-specific Alu family (Whitfeld et al., 1982). 

Except for the Alu elements, which do not have equipollents within the murine gene region, the POMC 

locus is highly conserved in mice and other species (Takahashi et al., 1983). Especially the exons and 

3’ terminal region of POMC show ample homology and, therefore, indicate an important physiological role 

of the gene product (Whitfeld et al., 1982). 

The POMC sequence is coined by two CpG islands (CGIs). The 5’ located CGI is associated with the 

promoter region and adjoining TSS. It is referred to as 5’ CGI or first CGI. Approximately 5 kb downstream 

a second CGI is located surrounding the intron2-exon3 junction. This CGI is referred to as 3’ CGI or second 

CGI (Gardiner-Garden and Frommer, 1994). The full-length transcripts of about 1200 bp initiate from a 

TSS within the 5’ CGI. Only in skin cells, cells of the immune system, the anterior lobe of the pituitary, and 

neurons of the arcuate nucleus and solitary nucleus physiological significant levels of regular POMC 

transcripts can be detected (Coll et al., 2007; Wikberg, 1999). In mice POMC expressing cells in the 

anterior and intermedial pituitary are not detectable until the late stage of embryonic (E) day 12.5 and 

day E14.5, respectively (Elkabes et al., 1989). Beside the regular long transcripts also short POMC-related 

transcripts, approximately 800 bp in length, were detected in several peripheral tissues (Gardiner-Garden 

and Frommer, 1994). They might be initiated from alternative TSS within the 3’ CGI of POMC (Gardiner-

Garden and Frommer, 1994; Jeannotte et al., 1987; Lacaze-Masmonteil et al., 1987). This region also 

contains sequences matching the guidelines of Kozak (Lacaze-Masmonteil et al., 1987). Therefore, the 

translation of truncated peptides including the functional MSH peptides but lacking the signal peptide 

could be possible. Since the signal peptide is relevant for processing and secretion, the functionality of the 

resulting proteins is unclear. When the short transcripts are translated in in vitro systems, the truncated 

proteins are not secreted (Clark et al., 1990). 

1.3.1 POMC action, gene dose, and obesity risk 

Mutations in POMC, leading to improper transcription, translation, or posttranslational processing, can 

have extensive effects on the phenotype (Challis et al., 2002; Pritchard et al., 2002). In humans and 

rodents, a deficient POMC action is characterized by the development of obesity, hyperphagia, and 

increased linear growth. In addition, reddish hair, due to the lack of MSH at the MC1R receptor in skin and 

hair melanocytes, and secondary hypocortisolism caused by ACTH deficiency can be observedfrequently 

(Krude et al., 1998; Lee et al., 2006; Yaswen et al., 1999). Compound heterozygotes and homozygotes for 

complete loss-of-function mutations of the POMC show extreme phenotypes with early onset obesity. 

However, also heterozygous mutation carriers may show elevated body weight or even obesity (Farooqi 

et al., 2006; Krude et al., 2003). This implicates that POMC gene products contribute in a dosage-

dependent fashion to the body weight regulation (Krude et al., 2003). Moreover, these findings suggest 

that factors, which only have subtle effects on the POMC action, could increase the risk of developing 

obesity (Farooqi et al., 2006).  

The overall contribution of known genetic variants, including the identified mutations and SNP of the 

POMC locus, is estimated to account for less than 3% of the inherited variation of the weight phenotype (Li 

et al., 2010b; Loos et al., 2008). Therefore, novel strategies are needed to detect and elucidate further 

heritable factors that determine the individual weight phenotype. Since epigenetic events are also capable 

of altering gene expression and, therefore, hormonal signaling (Bird, 2007; Jaenisch and Bird, 2003; 

Wolffe and Matzke, 1999) this work is contributed to epigenetic mechanisms that may be involved in the 

development of the weight phenotype, particularly the DNA methylation of the POMC locus. 
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1.4 Epigenetics 

Conrad Waddington introduced the term epigenetics it in the middle of the last century as the study of the 

mechanisms that convert genetic information into phenotypes (Waddington, 1957). Definitions that are 

more recent describe epigenetics as the potentially heritable structural adaptation of chromosomal 

regions to register, signal, or perpetuate altered gene activity states without alteration of the underlying 

DNA sequence (Bird, 2007; Portela and Esteller, 2010). For the establishment of this structural adaption 

corresponding signal and binding proteins, as well as enzymes and relevant substrates are reqired. The 

resulting so-called epigenetic modifications contribute to the phenomenon that genetically homogeneous 

organisms can show structural and functional heterogeneity of cells due to differential expression of genes 

in diverse tissues and developmental stages (Holliday and Pugh, 1975). Based on their mitotical and 

meiotical heritability (Riggs, 1975), epigenetic modifications could promote relatively fast adaption to the 

requirements of a changing environment without the need of changing the genetic backbone (Tang and 

Ho, 2007). Specifically, epigenetic modifications are mainly histone modifications, nucleosome 

positioning, and DNA methylation, which interact with each other. Histone modifications and nucleosome 

positioning are crucial in epigenetics but will not be discussed in detail in the following, since this work 

focuses on DNA methylation. 

DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its 

function and establishes heritable cellular memories (Reik, 2007). Although, it is likely, that DNA 

methylation has a conserved role in the regulation of gene expression and maintenance of genomic 

stability, manifestation of DNA methylation appears to vary among different organisms. However, 

covalent cytosine methylation at the C-5 position is a common feature found in most eukaryotic organisms 

including plants, animals, and fungi. The resulting 5-methylcytosine acts highly similar to a regular 

cytosine, for example forming hydrogen bonds with guanine. In animals the symmetric 5’- Cytosin-

phosphatidyl-Guanin-3’ (CpG) methylation on both strands is predominant (Feng et al., 2010; Lee et al., 

2010).  

The majority of cytosines in a CpG context are methylated in normal adult somatic tissues. Especially 

transposable elements and endogenous retroviruses, which are frequently found in intronic regions, are 

densely methylated (Yoder et al., 1997b). CpG residues in the context of CpG clusters in GC-rich regions, so 

called CpG islands (CGIs) (Gardiner-Garden and Frommer, 1987), form the exception. CGIs mostly remain 

methylation-free, particularly those in promoter regions of genes (5’ CGIs) (Antequera and Bird, 1988). 

5’ CGIs make up approximately 50% of all occurring CGIs in the genome. Their methylation-free state is 

possibly mediated by specific sequence motifs closely related to transcription start sites (TSS) 

(Straussman et al., 2009). However, a small percentage of CGIs is methylated, preferentially inter- and 

intragenic CGIs, but also some 5’ CGIs (Antequera and Bird, 1988; Shen et al., 2007; Yamada et al., 2004). 

Methylation of promoter-associated CGIs is a common feature of genomic imprinting and X chromosome 

inactivation and is generally associated with transcriptional silencing and gene dosage reduction, for 

example in differentiation processes (Costello and Plass, 2001; Feinberg and Tycko, 2004; Goll and Bestor, 

2005; Jaenisch and Bird, 2003; Razin and Cedar, 1994; Shen et al., 2007). Artificial methylation of CGI 

promoters can decrease gene transcription, while the expression of genes with endogenous methylated 

CGIs can be restored by applying methylase inhibitors (Hansen and Gartler, 1990; Siegfried et al., 1999; 

Stein et al., 1982b). Methylation of intragenic CGIs may also effect transcriptional silencing in mammals, 

for example by initiating the formation of chromatin structures that reduce transcription efficiency 

(Lorincz et al., 2004). 
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1.4.1 Establishment and stable maintenance of DNA methylation 

How the methylation of the genome and of gene-, tissue- and individual-specific patterns is established in 

detail has still to be resolved. However, it is known that a group of enzymes called cytosine 

methyltransferases mediates the process of CpG methylation. These enzymes have highly conserved 

sequences and functions, which indicate that DNA methylation is a critical process in an evolutionary 

sense (Bestor et al., 1988; Rodriguez-Osorio et al., 2010). In most eukaryotes DNA methyltransferases of 

the families 1 and 3 (DNMT1 and DNMT3) can be found in varying prevalence (Ponger and Li, 2005), 

while few eukaryotes, like Caenorhabditis elegans and Saccharomyces cerevisiae, do not possess any 

cytosine methyltransferases and henceforth lack cytosine methylation in their genomes (Goll and Bestor, 

2005). All known DNMTs use S-adenosyl methionine (SAM) as methyl donor. For sufficient biosynthesis of 

SAM an adequate folate and folic acid (vitamin B9) uptake from the diet is essential (Trasler et al., 2003).  

DNMTs can be divided into two groups: (1) de novo DNMTs and (2) maintenance DNMTs. De novo DNMTs 

initiate the DNA methylation pattern on unmethylated DNA double strands. How de novo DNA 

methyltransferases are attracted and activated by non-methylated DNA has not been discovered so far. 

They are expressed mainly in early embryo development where they initially set up the pattern of DNA 

methylation (Bestor, 2000; Santos et al., 2005; Vertino et al., 1996). In mammals the three DNMT3 

homologues DNMT3A, DNMT3B and DNMT3L represent the de novo DNA methyltransferases (Okano et 

al., 1999). However, DNMT3L lacks cytosine methylase activity but shows regulatory functions in germ 

cells.  

Maintenance DNMTs methylate the unmethylated strand of asymmetric, heterogeneously methylated DNA 

to achieve a symmetric methylation pattern. In this way maintenance DNMTs are responsible for 

preservation of the epigenetic code in the process of semiconservative DNA replication (Stein et al., 

1982a). The DNMT1 affinity to heterogeneously methylated DNA is 5 to 30 times greater than to 

unmethylated DNA. Hence, it is considered as maintenance DNA methyltransferase (Stein et al., 1982a; 

Yoder et al., 1997a). Mutations in the mouse DNMT1 gene lead to dysregulation of DNA methylation which 

are lethal to the mouse embryo (Li et al., 1992). DNMT2 shares strong sequence similarities with the other 

DNMTs, but methylates tRNA instead of DNA (Goll et al., 2006).  

DNA methylation is crucial for the phenotypic manifestation of the genetic code. Even tough, DNA 

methylation patterns in differentiated cells are generally stable (Bestor, 2000; Bird, 2002) genome wide 

DNA methylation reprogramming occurs at least at two developmental periods in mammals. Then a 

substantial part of the genome is demethylated and afterward newly methylated in a tissue- or cell-

specific pattern.  

One large-scale epigenetic reprogramming phase takes place periconceptionally (Figure 3A). During the 

preimplantation phase both parental genomes are demethylated to a certain extend. The loss of the 

specific DNA methylation of the paternal genome is fast and seems to be active since it occurs in the 

absence of DNA replication. Within six hours after fertilization the lowest methylation status of the 

paternal genome is reached in mice (Mayer et al., 2000). The maternal methylation is more resistant and 

remains intact during the first cell cycle (Santos et al., 2002). In the subsequent cell cycles the maternal 

DNA methylation vanishes passively as a consequence of a lack of DNMT1 in the nucleus, which results in 

a lack of maintenance DNA methylation (Rougier et al., 1998). The nadir of DNA methylationis reached at 

the morula stage (Dean et al., 2003). Subsequent remethylation establishes individual-specific DNA 

methylation at first instance (Santos et al., 2005). In mice, the de novo methylation wave is observed 

between the morula and blastocystal stage of the germ, just before implantation. At this point, DNA 

methylation is mainly involved in the repression of lineage-specific genes that are later demethylated 

during terminal differentiation. In contrast, regions that are unmethylated at the time of implantation can 
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become de novo methylated in a tissue-specific manner and may be involved in gene regulation (Santos et 

al., 2002; Straussman et al., 2009). 

In the early post-implantation embryo, during the development of primordial germ cells (PGCs), another 

reprogramming phase takes place (Figure 3B), which probably has a more general role in the restoration 

of totipotency (Mitalipov and Wolf, 2009). Thereby the parent-of-origin specific markings of the alleles are 

erased. Afterwards, uniform imprinting marks are established for both alleles in all PGCs. In the case of 

fertilization, those uniform imprinting marks are transferred to the offspring as parent-of-origin specific 

marks (Hajkova et al., 2002; Lee et al., 2002). In mice, demethylation of the PGCs is finished around E13 to 

E14 when they have entered the gonads (Monk et al., 1987). Remethylation occurs in the male germ line in 

the prospermatogonial stage starting at day E16. In the female germ line, remethylation takes place only 

after birth and during the growth of the oocyte (Reik et al., 2001). The described flow of reprogramming 

and the consequent DNA methylation patterning seems to be evolutionary conserved.  

 

Figure 3: Methylation reprogramming during early embryogenesis and in germ line cells. Reprinted by permission (Reik et al., 

2001). (A) Methylation reprogramming during early embryogenesis. The paternal genome (blue) is demethylated immediately after 

fertilization. The maternal genome (red) is demethylated by a passive mechanism that depends on DNA replication. Both are 

remethylated around the time of implantation to different extents in embryonic (EM) and extraembryonic (EX) lineages. Some 

methylated imprinted genes and repeat sequences (upper dashed line) are not demethylated. (B) Methylation reprogramming in the 

germ line. Primordial germ cells (PGCs) in the mouse become demethylated early in development. Remethylation begins in 

prospermatogonia on E16 in male germ cells, and after birth in growing oocytes. Some stages of germ cell development are shown.  

Despite these evolutionary conserved mechanisms of reprogramming, also examples of epigenetic 

inheritance are described. The mechanism of direct transgenerational transmission of DNA methylation - 

the escape from the post-fertilization DNA methylation reprogramming process and instead direct 

inheritance of the DNA methylation of the parental gametes - was firstly suggested for the Avy (viable 

yellow agouti) and AxinFu (axin fused) loci (Morgan et al., 1999; Rakyan et al., 2003; Youngson and 

Whitelaw, 2008). However, it was not specifically shown for these loci, but for endogenous retrovirus-like 

intracisternal A-particles (IAPs) in general (Lane et al., 2003). Thus, the DNA methylation and connected 

suppression of transposable IAP elements is maintained in order to prevent uncontrolled transposition 

and linked genomic rearrangements (Reik, 2007; Walsh et al., 1998). Recently, also specific genes were 

identified that show direct transgenerational transmission of DNA methylation, such as the somatic 

expressed genes Rrh (retina) or Cd4 and Fyb (hematopoietic cells) (Borgel et al., 2010). 

Besides reprogramming, longitudinal changes in DNA methylation of individuals are detectable but seem 

to occur seldom (Eckhardt et al., 2006). In 2008, Bjornsson et al. showed global methylation changes over 

time in two independent cohorts. These findings have recently been supported by various studies (Bollati 

et al., 2009; Christensen et al., 2009). Some changes happen to be locus-specific, intraindividual, and 

family-related. Hence, the data suggest that methylation maintenance, for at least specific loci, may be 

under genetic control (Bjornsson et al., 2008; Heijmans et al., 2007). The identified sex-association to DNA 

methylation, as well as the connection to single nucleotide polymorphisms supports this theory (Boks et 

al., 2009; Fuke et al., 2004). In addition, Talens et al. demonstrated that the variability and stability of the 
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DNA methylation depends fundamentally on the locus itself, despite methylation variability over time 

(Talens et al., 2010). It is discussed that some loci with longitudinal DNA methylation stability and 

interindividual variability could add up to a personalized epigenetic signature which may be related to the 

risk of common diseases (Feinberg et al., 2010). 

1.4.2 Environmental and stochastic alterations of DNA methylation 

DNA methylation has a strong evolutionary determination with heritable components, which cause a 

certain stability of manifestation and maintenance of epigenetic marks. However, stochastic, 

environmental, or age-related components to epigenetic variation can be observed.  

For a few genes it was shown to date that the phenotype of genetically identical cells is correlated with the 

epigenetic status of the locus, in particular the DNA methylation. These loci are called genes with 

metastable epialleles. The DNA methylation of metastable epialleles can be changed intrauterine by 

environmental factors, for example methyl donor supplementation of the mother’s diet (Dolinoy et al., 

2006; Waterland and Jirtle, 2003). Two genes with metastable epialleles are Avy and AxinFu (Jirtle and 

Skinner, 2007) which both contain a retrotransposable IAP sequence in their promoter region (Duhl et al., 

1994; Vasicek et al., 1997). The epigenetic state of these loci can be inherited transgenerationally (Rakyan 

et al., 2003) and their allelic expression is correlated with the methylation status of the IAP 

retrotransposon in their promoter region. More studies support the notion of relationships between early 

environmental exposures and alterations in the epigenome (Waterland et al., 2011; Waterland et al., 2008; 

Wolff et al., 1998), of which some are potentially reversible (Weaver et al., 2004). Thereby, the timing of 

exposure seems to be crucial (Heijmans et al., 2008; Waterland, 2009a). 

As observed in twin cohort studies, changes in DNA methylation can also occur postnatally. Older identical 

twins showed greater differences in global methylation than younger twin pairs (Fraga et al., 2005). In 

addition, considerable intraindividual differences in DNA methylation of various tissues were observed in 

newborn twins. Additional interindividual discordances of DNA methylation patterning of specific loci 

within twin pairs occurred. These differences were more pronounced in dizygotic twin pairs than in 

monozygotic (Kaminsky et al., 2009; Ollikainen et al., 2010).  

Altogether, these results imply that genetic and stochastic factors, as well as the prenatal environment 

may contribute to the establishment of the epigenome. Research approaches that focus on stochastic 

components of methylation changes within a lifetime  to which the maintenance DNMT1 contributes to 

due to an error rate of 5% (Goyal et al., 2006; Whitelaw and Whitelaw, 2006) – underline this impression. 

1.4.3 Alterations of DNA methylation and pathophysiological states 

In the past, it was assumed that the susceptibility of diseases is determined solely by inheritable 

information carried in the primary sequence of the DNA. However, recently it has become clear that 

epigenetic disruption of gene expression plays an equally important role in the development of diseases 

(Godfrey et al., 2007; Jiang et al., 2004; Tang and Ho, 2007). The observed connections of epigenetic 

changes with human diseases are diverse and DNA methylation in particular can be associated with 

various diseases. In the context of imprinting, DNA methylation abnormalities can cause clinical 

syndromes like the Prader-Willi syndrome or the Angelman syndrome. These two imprinting disorders 

are reciprocally inherited and are associated with the inactivation of the chromosomal region 15q11-13 

(Knoll et al., 1989). Thereby, the incorrectly imprinted allele often carries the imprinting marks of the 

opposite parental origin (Walter and Paulsen, 2003). Imprinting mainly regulates and affects embryonic 

growth and development but also inhibits aberrant growth in later life. Therefore, abnormal expression of 

a gene due to an imprinting defect may result in carcinogenesis, as observed in Wilms’ tumors (Jelinic and 
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Shaw, 2007). Imprinting changes in DNA repair systems and tumor suppressor genes may promote 

carcinogenesis (Esteller, 2005; Robertson, 2005). 

Besides imprinting disorders, dissimilar forms of epigenetic alterations are also associated with 

pathological states such as cancer. A range of silenced genes in cancer cells, including tumor-suppressor 

and cell cycle-regulating genes, were identified to promote tumorigenesis due to aberrant 

hypermethylation within their promoter regions (Esteller, 2005; Jones, 2002; Santos et al., 2005). In 

addition, hypomethylation seems to contribute to cell transformation, for example by inducing genomic 

instability and by deregulation of transposable elements (Berdasco and Esteller, 2010; Wilson et al., 

2007).  

Recent studies also show relationships between DNA methylation changes and neurodegenerative, 

neurological, and autoimmune diseases (Portela and Esteller, 2010). Both, aberrant hypomethylation or 

hypermethylation of specific gene promoters have been observed, for instance in multiple sclerosis 

patients and in cases of Alzheimer’s disease respectively (Urdinguio et al., 2009). For rheumatoid arthritis 

it is suggested that partial hypomethylation of promoter regions of repetitive elements are associated 

with reactivation of the mobile elements causing genomic instability (Karouzakis et al., 2009). 

Furthermore, transposon-induced epigenetic variations causing transcriptional interferences have been 

described as in X-linked dystonia-parkinsonism. In this movement disorder a disease-specific 

retrotransposable insertion of a SVA (short interspersed nuclear element, variable number of tandem 

repeats, and Alu composite) element was detected, which induces abnormal DNA methylation. This is 

assumed responsible for decreased expression of the subsequent gene and hence involved in the disease 

genesis (Makino et al., 2007). Transposable elements seem to have a close relation to DNA methylation in 

the genome and contribute to genome organization, gene expression, and related disorders in various 

ways. 

1.5 Transposable elements 

Transposons are a group of genetic elements that are mobile in the genome, meaning that they can 

translocate to new loci. They are abundant in the genomes of most eukaryotic organisms. Transposons can 

act as endogenous mutagens altering genes and their expression, promote genomic rearrangements and 

may contribute to the speciation of organisms (Mills et al., 2007). They are considered important for 

several reasons. One reason is the space they occupy. The group of transposons and transposon-like 

elements constitutes approximately 44% of the human genome sequence (Lander et al., 2001). Another 

reason is their ability for transposition within the genome and consequentially the related mutational 

potential, even though some are not known to be active (Smit, 1999; Smit and Riggs, 1996). Depending on 

their strategy for transposition, transposons are divided into two subgroups (Figure 4): (1) DNA 

transposons, which transpose via DNA intermediates, and (2) retrotransposons (Biemont and Vieira, 

2006).  
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Figure 4: Tree of mobile genetic elements. Alu = primate Alu element; B1 = rodent B1 element; LINE = long interspersed repetitive 

element; LTR = long terminal repeats; MIR = mammalian-wide interspersed repeat; SINE = short interspersed repetitive element. 

Retrotransposons transpose via RNA intermediate elements generated by RNA polymerase. The RNA 

intermediates are transcribed by reverse transcriptase into cDNA, which is subsequently integrated in the 

genome. The retroposition mechanism of retrotransposons is always replicational (“copy & paste”) and, 

therefore, increases the number of mobile elements in the genome (Cordaux and Batzer, 2009).  

The group of retrotransposons consists of two sub-types, the ones possessing long terminal repeats (LTR 

retrotransposons) and the non-LTR retrotransposons (Deininger et al., 2003). Long interspersed nuclear 

elements (LINEs) and short interspersed nuclear elements (SINEs) are the two subgroups of the non-LTR 

retrotransposons.  

SINEs are usually up to 500 bp. Their retroposition is catalyzed by RNA polymerase III and reverse 

transcriptase. Since SINEs do not encode for the enzymes themselves, they rely on the apparatus of other 

mobile elements for transposition, such as of the LINEs. SINE families in primates and rodents are related 

and originate from the 7SL RNA gene of the signal recognition particle (Kriegs et al., 2007). They have 

been identified in primates, scandentians (tree shrews), and rodents (Krayev et al., 1980; Nishihara et al., 

2002).  

1.5.1 Alu elements 

The most abundant primate-specific representatives of SINEs are the Alu elements that are named after 

the restriction enzyme AluI. AluI cleaves Alu elements into two distinct fragments of approximately 

130 bp and 170 bp lengths. Alu elements compose 11% of the human genome (Cordaux and Batzer, 2009). 

As other SINEs, they have no coding capacity and make use of the retroposition machinery encoded by L1 

elements (Dewannieux et al., 2003). Therefore, they are considered non-autonomous. Their retroposition 

mechanism is replicative (“copy & paste”) via RNA intermediate elements (Figure 5B).  

Alu elements are approximately 300 bp long and consist of two related monomers (fossil left Alu 

monomers C = FLAM-C and fossil right Alu monomers = FRAM) which both arose from the 7SL RNA gene 

(Gal-Mark et al., 2008; Kriegs et al., 2007; Ullu and Tschudi, 1984). The monomers are separated by an A-

rich linker region (Gal-Mark et al., 2008). The left monomer comprises a RNA polymerase III-promoter. 

The element ends with an oligo(dA)-rich tail of variable length (Batzer and Deininger, 2002). Alus can be 

directed in either sense or anti-sense orientation. In the human genome both directions are almost equally 

represented with 45% of Alus in sense and 55% Alus in anti-sense orientation (Gal-Mark et al., 2008). As 



Introduction                                   11 

 

Alu elements do not possess termination signals for RNA polymerase III, their transcripts extend into the 

vicinal 3’ region until a terminator sequence is encoded (Shaikh et al., 1997). Due to the retroposition 

mechanism, usually the 3’ overhang is not integrated in the target site (Figure 5C).  

Alu elements can be classified into three lines depending on their structure and age, namely the AluJ, AluS, 

and AluY. AluJ is the most ancient line (circa 65 Ma) and inactive in humans (Batzer et al., 1996; Bennett et 

al., 2008). The second oldest line, AluS, is approximately 30 Ma years old. This is the major group of Alus 

and constitutes up to 80% of all Alu representatives in humans, and some subfamilies are still active, 

meaning retroposition can be detected (Batzer et al., 1996; Bennett et al., 2008). AluY elements form the 

most modern line, which is active in retroposition (Batzer et al., 1996; Bennett et al., 2008). The genomic 

distribution of Alu elements is not uniform, but is characterized by a strong bias towards gene-rich 

regions. Approximately 70% of Alus reside within intronic sequences in protein coding regions (Gal-Mark 

et al., 2008). 

Organisms beside primates do not possess dimeric SINEs like the Alu elements. However, monomeric 

SINEs can be found, which are related to Alu elements and originate from the same precursor as FLAM-C, 

which is called rodent proto-B1 element (PB1) or fossil left Alu monomers A (FLAM-A) (Quentin, 1994). 

For example the murine B1 elements (B1) and the Tu-type SINEs found in tree shrews descended from the 

PB1/FLAM-A precursor, too, and are therefore equipollents of the Alu elements (Kramerov and Vassetzky, 

2005; Krayev et al., 1980; Nishihara et al., 2002; Singer, 1982). This kind of relationships in combination 

with information about type and location of trace mobile elements makes it possible to establish a 

phylogenetic framework for species (Kriegs et al., 2007), for instance a primate cladogram. 

 

Figure 5: A typical human Alu element and its retroposition. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Reviews Genetics (Batzer and Deininger, 2002), copyright 2002. (A) A typical human Alu element: approximately 300 bp long, built 

of two monomers connected by an A-rich linker. The 5’ monomer contains a RNA polymerase III-promoter (box A and B). The 

3’ terminus is a poly-A tail. (B) For retroposition, the Alu element is transcribed by RNA polymerase III. (C) It has been proposed that 

the run of As at the 3’ terminus of the Alu RNA might anneal directly at the site of integration and a target-primed reverse 

transcription (mauve arrow) is performed. The first nick at the insertion site is most likely made by the L1 endonuclease at the 

TTAAAA consensus site. (D) A new set of direct repeats (red arrows) is created during the insertion of the new Alu element. 



Introduction                                   12 

 

1.5.1.1 Alu elements in primate phylogeny 

Alu elements are used for elucidating human population genetics and for unraveling the phylogeny of the 

primate family. They suite this purpose of tracing the complex patterns of duplication and rearrangements 

in genomes taking place during evolution of the primate family (Rowold and Herrera, 2000), since:  

 Alu elements evolved around the same time as primates developed within the supraprimates 

clade, approximately 65 Ma years ago (Singer, 1982), hence are primate-specific.  

 They have a defined ancestral state and are rarely lost completely during retroposition (Roy-

Engel et al., 2001).  

 The distribution of Alu elements is free from homoplasy since independent but identical 

retroposition is very unlikely (Batzer and Deininger, 1991).  

 Some Alu copies are still actively retroposing and can help unravel kinships that are more recent.  

Even though the retroposition rate in humans is reduced drastically compared to its peak in early primate 

evolution (Shen et al., 1991), frequent Alu insertion can be detected. Until 2006, Alu-retroposition rates 

were estimated, using exclusively evolutionary approaches, on approximately one insertion per 200 

births. The advancement of method by mutation information corrected the estimation to the occurrence of 

one new Alu insertion per 20 births in humans (Cordaux et al., 2006). 

 

Figure 6: Genus-level phylogenetic cladogram of the primate branch based on the study of mobile elements. Reprinted by 

permission (Xing et al., 2007). Numbers beside the branches indicate the number of mobile element insertions supporting each node. 

Even though, approximately 7,000 Alu insertions are unique for humans (Chimpanzee-Sequencing-and-

Analysis-Consortium, 2005) many of the 1.1 million human Alu element insertions can be found in the 

corresponding positions in the genomes of other primates. However, only human-specific copies of the 

AluS and AluY have been identified, but not of the AluJ line, suggesting that AluJ elements have not been 

active since the branching of humans (Hedges et al., 2004; Mills et al., 2006). Compared to humans, a much 

larger variability of Alus is observed in the chimpanzee genome, even though there are almost twice as 

much Alu insertions in the human genome, which indicates contemporary retroposition activity (Lander 

et al., 2001). For the lemur, a member of the strepsirrhini, seven lineage-specific Alu subfamilies have been 
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identified which are distinctly different from their human counterparts. For comparison, only one lineage-

specific Alu subfamily each has been identified for the platyrrhine (marmoset) and catarrhine (baboon 

and macaque) families. In combination with the information about distribution-divergences of Alu 

elements in the various primate genomes, this indicates a steady rate of Alu-retroposition activity among 

strepsirrhini and declining rates of Alu activity among the hominoid lineage of evolution (Liu et al., 2009). 

Concluding, the primate-specific Alu elements show varying activity in different primate genomes and, 

therefore, are present to different extends and distribution. 

Alu elements not only aid the unraveling of primate phylogeny (Figure 6) but also have the potential to 

participate actively in primate evolution itself. Over the 65 Ma that Alu elements exist, they have been 

accumulating in primate genomes. The acute Alu-insertion-rate in humans is estimated to be one new 

insertion per 20 births (Cordaux et al., 2006). Therefore, some Alu insertions are so recent that they are 

classified as polymorphic for their presence/absence (Roy-Engel et al., 2001).  

Extrapolating the rate of one Alu per 20 births to the global population of six billion people, it gets clear 

that new Alu insertions must have an impact on human genetics, biology, and diseases (Batzer and 

Deininger, 2002; Belancio et al., 2008; Mills et al., 2007). Various kinds of genomic rearrangements are 

caused by Alu insertion and are partly integrated into the functional apparatus of the genome (Babich et 

al., 1999; Faulkner et al., 2009; Hasler and Strub, 2006; Lee et al., 2008). However, the variety of possible 

genomic rearrangements, as deletion of genomic sequences (Belancio et al., 2008), mutagenesis (Gal-Mark 

et al., 2008; Sorek et al., 2002), microsatellite seeding (Arcot et al., 1995; Kelkar et al., 2008), and ectopic 

recombination (Sen et al., 2006), will not be discussed in detail in the following. This work focuses on 

epigenetic effects, possibly triggered by Alus. Alu insertion into the promoter of a gene might change its 

expression, either through disruption/addition of regulatory sequences, promoter effects of the Alu itself, 

or by changes of the DNA methylation status and, therefore, of the epigenetic regulation of the gene 

(Borchert et al., 2006; Britten, 1996; Chen et al., 2008; Norris et al., 1995). 

1.5.1.2 Alu elements and epigenetics 

The epigenetic silencing of transposon activity through DNA methylation is an important defense 

mechanism for the cell to prevent genomic instability. Transcription of Alu elements can be inhibited by 

CpG methylation (Kochanek et al., 1993). Defense mechanisms like this became essential for organisms 

because of the massive increase in transposon copy numbers (Yoder et al., 1997b). Hence, highly 

conserved high levels of transposon methylation are found in land plants and vertebrates (!!! INVALID 

CITATION !!!). About one third of all genomic CpG sites in humans are accumulated in Alu elements (Rubin 

et al., 1994) and most of these sites are methylated in vivo in somatic cells (Schmid, 1991). However, 

distinct differences in the levels of methylation and even hypomethylated Alu elements have been found. 

The differences in methylation patterning depend on the type of Alu sequence, as well as on the type of 

tissue (Hellmann-Blumberg et al., 1993; Xie et al., 2009). These tissue-specific differences in pattern are in 

concordance with the methylation observed for the surrounding sequences.  

It is suggested that variation in the methylation level of Alu elements not only regulates their own 

expression, but also modifies gene expression of other genes (Batzer and Deininger, 2002; Liu et al., 1994; 

Liu and Schmid, 1993). The methylation levels of Alus, as well as the Alu structure itself, influence the 

positioning of nucleosomes, even in neighboring regions (Englander and Howard, 1995). This can 

compress chromatin to inactive heterochromatin causing repression of transcription of Alu elements and 

adjacent genes (Buttinelli et al., 1995; Englander et al., 1993).  

Alu elements are found at significantly low densities in imprinted regions of the genome. The prevention 

of retrotransposon accumulation in imprinted regions might be actively mediated. This could be for the 

reason that Alus attract and spread DNA methylation and heterochromatin. Alu-induced silencing of the 
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single active allele in an imprinted locus could lead to deleterious consequences for embryonic growth 

and survival (Greally, 2002; Khatib et al., 2007). 

As already mentioned, sequence- and tissue-specific differences can occur in Alu methylation. However, 

other factors, like sex and alcohol consumption, may influence the methylation patterns, too (Zhu et al., 

2010). As for the global DNA methylation in age (Bjornsson et al., 2008; Wilson and Jones, 1983; Wilson et 

al., 1987) also a decrease of Alu element methylation in particular has been described for ageing (Bollati et 

al., 2009; Jintaridth and Mutirangura, 2010; Zhu et al., 2010). Likewise, influences of Alu elements on 

cancer development and other diseases have been reported. 

1.5.1.3 Alu elements in human disease 

All genetic and epigenetic effects of Alu elements, which are mentioned and described above, have the 

potential to disrupt the genome or the gene expression regulation in a way that could lead to various 

diseases or cancer (Deininger and Batzer, 1999). Well-known examples for Alu insertion genetic disorders 

are neurofibromatosis, hemophilia, breast cancer, cholinesterase deficiency and the Apert syndrome 

(Deininger and Batzer, 1999; Miki et al., 1996; Muratani et al., 1991; Oldridge et al., 1999; Vidaud et al., 

1993; Wallace et al., 1991). Disorders and cancers to which Alu-mediated recombination contribute 

include insulin-resistant diabetes type II, familial hypercholesterolemia, acute myelogenous leukaemia, 

and the Ewing sarcoma (Chae et al., 1997; Onno et al., 1992; Shimada et al., 1990; Strout et al., 1998). 

These are only some examples of how Alu elements contribute to a significant portion of human genetic 

diseases. Disease-causing alleles have been reported to carry Alus of the S and Y line but not the AluJ line 

(Batzer and Deininger, 2002; Bennett et al., 2004; Mills et al., 2007). Beyond causing the disease, Alu 

elements can also act as a marker for the disease, segregating with the particular affected allele.  

Not only retroposition of Alus disturbing the new locus can cause diseases. Since Alu elements determine 

methylation of their vicinity, they are expected to influence expression of adjacent genes. Hence, also Alu-

induced epigenetic changes, causing aberrant expression of pivotal genes, can induce disease genesis, as 

described for the X-linked dystonia parkinsonism (Paragraph 1.4.3). A similar effect was observed for 

ependymomas. There the DNA methylation of Alu elements and their vicinity is aberrant (Xie et al., 2010).  

The mechanism of transposon insertion-induced methylation spreading has not only been observed in 

disease states, but also in other contexts. In melon, for example, a mechanism like this determinates the 

sex of the flowers. This contributes to the evolution of the species since the transposon-induced alteration 

are forwarded to the next generation (Martin et al., 2009). The other way around, this heritable and, 

therefore, stable alteration could possibly be used as indicator for sex ascertainment in the flowers of 

melon. 

Recently it was observed that stable alterations of the DNA methylation occur more commonly and may 

serve as personalized epigenetic signature. Some were identified to co-vary consistently with certain 

phenotypes or diseases, such as the weight phenotype (Feinberg et al., 2010). Since DNA methylation has 

an impact on gene expression, the variances in DNA methylation might not only correlate with a certain 

phenotype but account for it. This hypothesis was tested by Kuehnen et al. by investigating the DNA 

methylation of POMC as candidate gene for obesity. 

1.6 DNA methylation of the POMC locus 

The promoter-associated 5’ CGI of the POMC locus is better investigated to date than the 3’ CGI. This first 

CGI of POMC was found to be specifically unmethylated in POMC expressing tissues (Mizoguchi et al., 

2007; Newell-Price et al., 2001; Ye et al., 2005). Moreover, DNA methylation of the region inhibits POMC 

expression in a manner that suggests that the specific location rather than the quantity of methylated CpG 
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dinucleotides are crucial (Newell-Price, 2003). Since (i) short POMC transcripts are possibly initiated from 

an alternative TSS within the 3’ CGI (Gardiner-Garden and Frommer, 1994) and (ii) already minor changes 

of the POMC dose can stimulate the development of POMC-associated syndromes like obesity, the 

assessment of the DNA methylation state of the 3’ CGI and its involvement in POMC expression becomes 

significant.  

Kuehnen et al. investigated the POMC DNA methylation of both CGIs in search for CpG methylation 

variants that correlate with childhood obesity (Kuehnen et al., in revision). In human peripheral blood 

cells (PBC) and β-MSH positive cells from the human hypothalamus, which are both POMC-expressing but 

originate from different germ layers, equivalent DNA methylation patterns were detected for both CGIs 

(Figure 7A and B). Thereby, the 5’ CGI was found to be primarily hypomethylated, as common for 

promoter-associated CGIs and described by (Newell-Price et al., 2001), while the 3’ CGI showed a more 

prominent particular sharp pattern of hypermethylation in intron2 and hypomethylation in exon3.  

In obese children, the sharp border between hypermethylation in intron2 and hypomethylation in exon3 

of the 3’ CGI was found to be significantly shifted into the exon3 region (Figure 7C and D), while the 5’ CGI 

pattern remained unchanged. The stability of this changed POMC methylation pattern in obese individuals 

was verified in longitudinal samples, revealing that the aberrant methylation in the 3’ CGI exists before the 

development of obesity occurs. Moreover, the binding of the transcription enhancing p300 complex, as 

well as the POMC expression in PBC is reduced in obese children with altered methylation (Kuehnen et al., 

in revision). These data reflect a correlation of methylation status of the POMC locus with the weight 

phenotype and possibly the gene function. These findings raise of course more questions and hypotheses 

of which several were investigated and answered in the scope of this thesis work. 
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Figure 7: DNA methylation pattern of the human POMC locus (Kuehnen et al., in revision). (A) and (B) POMC DNA methylation 

patterns of CGI 1 and 2 (5’ CGI and 3’ CGI respectively) in peripheral blood cells (PBC) of normal weight adolescents (n = 12) and 

microdissected ß-MSH positive cells of human arcuate nucleus (n = 5). (C) Box plots analysis represents the statistic differences from 

the mean CpG methylation intensity (in %) of CpG position -5 to +5 (relative to exon3 start) in normal weight individuals and obese 

patients (p < 0.001). (D) POMC DNA methylation intensity (in %) of CGI 2 in PBC of normal weight and obese individuals (red and 

blue curve respectively). CpG positions are numbered according to their relative position to the next exon start. 

1.7 Aim of this thesis 

Obesity is classified as a chronic disease with severe organic co-morbidities. Childhood obesity is 

associated with an increased risk for coronary heart disease in adulthood and premature death (Baker et 

al., 2007; Reinehr and Wabitsch, 2010). Moreover, the obesity prevalence worldwide is epidemic-like and 

causes substantial costs for health care systems. The genesis of obesity is multiplex based on individual 

predisposition and environmental factors.  

Even though approximately 50 to 84% of the BMI can be accounted to heritability (Allison et al., 1996; 

Barsh et al., 2000; Stunkard et al., 1986) only about 10% of the severe cases with early onset, which are 

therby likely inherited, can be explained by concrete genetic defects, which mostly constitute 

insufficiencies within the leptin-melanocortin pathway (Speliotes et al., 2010). The origin of the majority 

of cases remains unclear.  

Epigenetic modifications, like DNA methylation, are heritably metastable and capable of changing gene 

expression without changing the DNA itself. Therefore, it is conceivable that, in the context of body weight 

regulation, epigenetic changes of involved genes can lead to disruption of the minute control of food 

intake and the energy expenditure equilibrium. For the human POMC gene, which is a central pivot in the 
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catabolic leptin-melanocortin-axis, a significant change in the DNA methylation pattern, associated with 

obesity, was detected. For a better understanding and estimation of the role of POMC DNA methylation in 

pathogenesis of obesity, it is important to get insights in its function and development. Therefore, the aim 

of the thesis was to analyze the functional relevance of the POMC CGIs and effects of POMC DNA 

methylation changes on its gene expression. Moreover, the ontogenetic development of the POMC DNA 

methylation patterns and possible influencing factors were examined, as well as the phylogenetic origin of 

the POMC methylation patterns. This was done based on the following four hypotheses: 

 

1) The DNA methylation status of POMC influences its gene expression. 

Constructs containing variations of either the 5’ or 3’ CGI of the human POMC gene were created 

using a CpG-free luciferase-containing vector backbone. 

Functional analysis, based on dual luciferase assays applying those vector constructs in different 

methylation states, were performed. 

 

2) The DNA methylation patterns of POMC are stably established early during ontogenesis. 

The DNA methylation patterns of POMC were determined in sundry prenatal stages and in various 

tissues postnatally. 

DNA methylation of newborn humans was compared to the pattern of adult humans. 

 

3) The DNA methylation patterns of POMC are stable postnatally. 

The DNA methylation patterns of POMC were determined in mice receiving a high fat diet for 29 

weeks.  

 

4) The phylogenetic development of POMC DNA methylation is associated with Alu element 

incidence within the intron2 region. 

This hypothesis was tested by establishing the incidence of Alu elements in the POMC locus of 

various primate families.  

Alu element incidence was correlated to the DNA methylation patterns in the gene region of 

interest.
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2 Materials and Methods 

2.1 Materials  

2.1.1 Index of manufacturers 

Manufacturer Location 

Affymetrix Santa Clara, CA, USA 

Applied Biosystems Foster City, CA, USA 

Berthold Technologies GmbH & Co. KG  Bad Wildbad, Germany 

BINDER Inc.  Bohemia, NY, USA 

Biochrom AG Berlin, Germany 

Biometra GmbH Goettingen, Germany 

Bio San Laboratories Inc. Derry, NH, USA 

BRAND GMBH + CO KG Wertheim, Germany 

Braun biotech = Sartorius AG Goettingen, Germany 

Carl Zeiss AG Oberkochen, Germany 

Eppendorf Hamburg, Germany 

Fried Electric Haifa, Israel 

Heraeus Holding GmbH  Hanau, Germany 

IKA® Werke GmbH & Co. KG Staufen, Germany 

Invitrogen Carlsbad, CA, USA 

ITW Dynatec Hendersonville, TN, USA 

KNF Neuberger GmbH Freiburg, Germany 

Leica Camera AG Solms, Germany 

Liebherr-Hausgeräte Ochsenhausen GmbH             Ochsenhausen, Germany 

MACHEREY-NAGEL GmbH & Co. KG Dueren, Germany 

MAG Biosystems Exton, PA, USA 

Mettler-Toledo GmbH Giessen, Germany 

Millipore Headquarters Billerica, MA, USA 

New England Biolabs Ipswich, MA, USA 

Peqlab Erlangen, Germany 

Promega GmbH Mannheim, Germany 

QIAGEN  Hilden, Germany 

Sartorius AG Goettingen, Germany 

Seegene Rockville, MD, USA 

Siegma-Aldrich  St. Louis, MO, USA 

Stratagene La Jolla, USA 

Syngene Cambridge, UK 

Thermo Fisher Scientific Inc.  Waltham, MA, USA 

ZIEGRA Eism aschinen GmbH  Isernhagen, Germany 

2.1.2 Antibiotics 

For the plasmid and cell culture work of this thesis, the following antibiotics were used: 

Antibiotic Manufacturer 

Ampicillin Sigma-Aldrich 

Penicillin- Streptavidin Biochrome 

Zeocin (Phleomycin D1) Invitrogen 
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2.1.3 Enzymes 

The following enzymes were used for the plasmid and cell culture work described in this work: 

Enzyme Manufacturer   

ExonucleaseI New England Biolabs 

Methyltransferase  

 HhaI New England Biolabs 

 HpaII New England Biolabs 

 M.SssI New England Biolabs 

Polymerase  

 AmpliTaq® DNA Polymerase Applied Biosystems 

 BIOTAQ™ DNA Polymerase Bioline 

 MangoTaqTM DNA Polymerase Bioline 

 PfuTurbo® DNA polymerase Stratagene 

Restriction endonuclease New England Biolabs 

 BamHI  

 EcoRI  

 NcoI  

Shrimps Alkaline Phosphatase Affymetrix 

T4-DNA- Ligase New England Biolabs 

  

2.1.4 Buffer and media 

For the experimental work of this thesis, the following media and buffer were used: 

Buffer/medium  Composition/manufacturer 

For bacterial culture 

 LB medium according to Miller*, pH 7.0   1% tryptone, 0,5% yeast extract, 1% NaCl H2O, sterilized  

 LB agar culture plates*  1,5% agar in LB medium, in culture dishes, stored at 4°C  
* The antibiotics were added in a final concentration of 50 µg/ml (ampicillin) and 25 µg/ml (zeocin) 

respectively.  SOB medium, pH 7.4  2% tryptone, 0,5% yeast extract, 0.05% NaCl in 2.5 mM 

KCl  SOC medium   20 mM MgCl2 , 20 mM glucose in sterilized SOB medium 

 X-gal  40 mg/ml X-gal in dimethylformamide 

For cell culture 

 Dulbecco`s Modified Eagle Medium 

(DMEM) 

 Biochrome 

 Phosphate buffered saline (PBS)  Biochrome 

Furthermore 

 Ammonium acetate  10 M ammonium acetate  in H2OHPLC 

 5x TBE, pH 8.3  0.45 M tris-borate, 1 mM EDTA in H2O 

    

2.1.5 Equipment 

For this thesis work, following apparatus and software were used: 

Hardware/device Specification Manufacturer 

Automated Nucleic Acid Extraction System 

 Maxwell® 16 System Promega 

Centrifuge 

 Refrigerated Microcentrifuge 5417 R Eppendorf 

 Non-refrigerated Microcentrifuge 5417 C Eppendorf 

 Sorvall® RC 6™ Plus Superspeed-Centrifuge Thermo Scientific 
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 Labofuge® 200 Centrifuge Thermo Scientific 

Gel documentation system 

 Gene Flash gel documentation system Syngene  

Gel Electrophoresis Apparatus 

 Agagel Midi-Wide Horizontal  Biometra  

 Compact XS/S Horizontal  Biometra 

Ice machine 

 ChipIce Machine ZBE 70-35  Ziegra 

Incubator 

 CO2 incubator B 6120  Heraeus  

 Drying oven T6030 Heraeus 

 Drying oven APT.line™ Binder 

 Thermomixer compact Eppendorf 

 Ceromat® BS-1 incubation shaker  B. Braun Biotech 

Laminarflow cabinet 

 LaminAir® HBB 2448 Heraeus 

Magnetic stirrer 

 RCT basic IKAMAG® safety control IKA 

Microscope and imaging system 

   Axiovert 10  Zeiss  

 DV2™ Dual-Channel MAG Biosystems 

 Stereomikroskope MZ 6, MZ 12.5  Leica  

Multimode microplate reader 

 Mithras LB 940 Berthold Technologies 

pH meter 

 S20-SevenEasy™ pH Mettler-Toledo  

Pipette 

 Research® Adjustable-volume Pipette series Eppendorf  

 Research® Multichannel Pipette Eppendorf 

 HandyStep® repetitive pipette Brand  

 Accu-jet® pro pipette controller Brand 

Scale 

 Analytical Balance CPA 2235-OCE Sartorius 

 Precision Balance MC1 LC2200P Sartorius 

Sequencer 

 ABI 3130 Genetic Analyzer  Applied Biosystems  

   

Shaker 

 Vortex Genius  IKA  

 BioVortex V1 Plus Biosan 

 Microtiter plate Vari-Shaker ITW Dynatech 

 CombiSpin FVL-2400N peqlab 

Software 

 In vitro search tool for transcription factor binding sites 

http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCH.html  In vitro sequence screen tool for repetitive elements 

http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker Spectrophotometer 

 BioPhotometer 6131 Eppendorf  

 NanoDrop 3300  Thermo Scientific 

Sterilizer 

 VARIOKLAV® Steam Sterilizer 75 S Thermo Scientific 

http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCH.html
http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
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Hardware/device Specification Manufacturer 

Thermocycler 

 Mastercycler ep gradient S Eppendorf 

 Mastercycler gradient Eppendorf 

 UNO-Thermoblock Biometra 

Vacuum Pump 

 LABOPORT  KNF Neuberger 

Water Bath 

 Thermostatic Water Bath (WBS) Fried Electric 

Water Purification System 

 Elix 5 Water Purification System Millipore 

   

2.1.6 Kits 

The preassembled reaction systems (kits) used for this thesis work are listed below: 

Kit Application Manufacturer 

BigDye® Terminator v3.1 Cycle Sequencing Kit Sequencing Applied Biosystems 

DNA IQ™ Casework Sample Kit for Maxwell® 16 DNA extraction Promega 

DNA Walking SpeedUp™ Kit II Amplification Seegene 

Dual-Luciferase® Reporter Assay System Reporter gene assay Promega 

Effectene Transfection Reagent Transfection Qiagen 

Maxwell® 16 Tissue DNA Purification Kit DNA extraction Promega 

Omniscript™ RT Kit RT-PCR Qiagen 

Plasmid DNA Purification NucleoBond® Xtra Midi System Midi preparation Macherey Nagel 

PureYield™ Plasmid Miniprep System Mini preparation Promega 

TOPO TA Cloning® Kit (pCR®2.1-TOPO-Vektor) TOPO cloning Invitrogen 

TRIzol® Reagent RNA isolation Invitrogen 

Wizard® SV Gel and PCR Clean-Up System DNA purification Promega 

   

2.1.7 Primers 

All oligonucleotide primers used in this thesis were synthesized either by TIB MOLBIOL, Berlin, Germany, 

or by Invitrogen GmbH, Darmstadt, Germany.  

2.1.7.1 Bisulfite sequencing, mouse 

Bisulfite sequencing mouse   

Primer Sequence Fragment size  

mPOMC-F1-for-out  5’-GGTATAGAAGGATATTTGTTTTGAAATA-3’ 342 bp  

mPOMC-F1-rev-out  5’-TCCACTTAAAACTAAACAAAAACTTAAC-3’   

mPOMC-F1-for-in  5’-TTTATTTTAAAAGGTAGTTTGTTTTGGG-3’ 243 bp  

mPOMC-F1-rev-in  5’-CAAACCTAATTCTAAAATCTTACAAATC-3’   

mPOMC-F2-for-out  5’-GATTTGTAAGATTTTAGAATTAGGTTTG-3’ 541 bp  

mPOMC-F2-rev-out  5’-CCCATCTCAAAAATTTAAAAAAAAATCAA-3’   

mPOMC-F2-for-in  5’-GTTAAGTTTTTGTTTAGTTTTAAGTGGA-3’ 421 bp  

mPOMC-F2-rev-in  5’-CCAATCTACTAAAAATCCCAAAATCC-3’   

mPOMC-F3-for-out  5’-GTTTATGTTTGTTTTGGATTTAAATAG-3’ 421 bp  

mPOMC-F3-rev  5’-CAACACTACTACTATTCCTAAAAC-3’   

mPOMC-F3-for-in  5’-GTAAGATTTTGTTAGTAAGAGTTAAG-3’ 396 bp  

mPOMC-F4-for-out  5’-GGAGATGAATAGTTTTTGATTGAAAAT-3’ 604 bp  
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Bisulfite sequencing mouse   

Primer Sequence Fragment size  

mPOMC-F4-rev-out  5’-CCTAACACAAATAACTCTAAAAAAC-3’   

mPOMC-F4-for-in  5’-GGAGATGAATAGTTTTTGATTGAAAAT-3’ 494 bp  

mPOMC-F4-rev-in  5’-CCCATACAAAAAAAAAACCTTAAAAT-3’   
 

2.1.7.2 Bisulfite sequencing, human 

Bisulfite sequencing human  

Primer Sequence Fragment size 

hPOMC_F1 for-out  5’-ttttaaagtggaatagagagaatatga-3’ 484 bp 

hPOMC_F1 rev-out  5’-ctcctctatccttatatacttacc-3’  

hPOMC_F1 rev-in  5’-acaacacaaaaaacaacTccc-3’ 416 bp 

hPOMC_F1 for-in  5’-gtggaatagagagaatatgatttttt-3’  

hPOMC_F2 for  5’-GTAAGTATATAAGGATAGAGGAG–3’  

hPOMC_F2 rev-out  5’-CTCTCCAACATAAACAACAAAAAC–3’ 499 bp 

hPOMC_F2 rev-in  5’-AATTATCCCAAAACCTCCTAACAA–3’ 442 bp 

hPOMC-F3-for-out  5’-TTAGATAAATTATGGAATGGGA-3’ 687 bp 

hPOMC-F3-rev-out  5’-AAACTCCAAAAAAAAAACCTC-3’  

hPOMC-F3-for-in  5’-GTGGTAAGATTTTAGATGTTT-3’ 513 bp 

hPOMC-F3-rev-in  5’-AAAATACTCCATAAAATAAAAAC-3’  
 

2.1.7.3 Bisulfite sequencing, non-human primates 

Bisulfite sequencing non-human primates  

Primer Sequence Fragment size 

Eulemur macaco  

t-POMC-F14-for_out   5’–AGAAGTATGTAGGGGTATAGGGA-3’ 341 bp 

t-POMC-F14-R-rev  5’–CTAAAATTCRCCCTTAAAATAACCC-3’  

t-POMC-F14-for_in  5’–GGTGAGTTTTAGGAGTTGTTTATTAG-3’ 300 bp 

Galago senegalensis  

t-POMC-F14-for_out   5’–AGAAGTATGTAGGGGTATAGGGA-3’ 316 bp 

t-POMC-F14-R-rev  5’–CTAAAATTCRCCCTTAAAATAACCC-3’  

t-POMC-F13-for_in  5’–GGGTATAGGGAATAAGAGTGATG-3’ 291 bp 

Macaca mulatta  

t-POMC-F29-for-out  5’–GTTAGATAAATTATGGAATGGGATGG-3’ 687 bp 

t-POMC-F29-rev-out  5’–AAAATACTCCATAAAATAAAAA-3’  

t-POMC-F29-for-in  5’–GGTGGTAAGATTTTAGATGTTTA-3’ 506 bp 

t-POMC-F29-rev-in  5’–CTCTTAAACTCCAAAAAAAAAACCTC-3’  

tPOMC-F29-seq-mitte  5’–GGAGTGTATTYGGGTTTGTAAG-3’  

Papio hamadryas  

t-POMC-F44-for-out  5’–TAGTTGTTAGGTAGAAGTATGTAGG-3’ 382 bp 

t-POMC-F44-R-rev  5’–CTAAAATTCRCCCTTAAAATAACCC-3’  

t-POMC-F44-for-in  5’–GGAATAAAAGAGTGGTGGTAAGATT-3’ 353 bp 

Callithrix jacchus  

t-POMC-F51-for-out  5’–TGTTAGATATAATAGTAGGATT-3’ 758 bp 

t-POMC-F51-rev-out  5’–AAACTCCAAAAAAAAAACCTC-3’  

t-POMC-F51-for-in  5’–GGTGGTAAGATTTTAGATGTTT-3’ 522 bp 

t-POMC-F51-rev-in  5’–AAAATACTCCATAAAATAAAAAC-3’  
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2.1.7.4 Sequencing POMC intron2-region in non-human primates 

Sequencing POMC intron2-region in non-human primates  

Primer Sequence Fragment size 

Amplification of gene region  

hPOMC_Alu_for_out  5’-CCACAATAGAGTCCTCTAGG-3’ 1,066 bp 

hPOMC_Alu_rev_out  5’-GCATCTAAGATCTTGCCACTG-3’  

hPOMC_Alu_for_in  5’-CAAGGAGCAGAGACACAG-3’ 1,022 bp 

hPOMC_Alu_rev_in  5’-CTCTTTTGTCCCATCCCC-3’  

hPOMC_Intron2_for5  5’-TCAGGACCTCACCACGGAA-3’ 3,078 bp 

hPOMC_Intron2_rev5  5’-GAAGTGGCCCATGACGTACT-3’  

Sequencing  

Galago senegalensis  

Midi13-1-seq-for1  5’-CACTCTGTATTGCTTCCTC-3’  

Midi13-1-seq-for2  5’-GTAGTTCCACGAATTACCTC-3’  

Midi13-1-int-for3  5’-GTGGAACCATAACCAGGTC-3’  

Midi13-1-int-for4  5’-ACCACACACAGAGGCCATGA-3’  

Eulemur macacoI  

Midi14-2-seq-for1  5’-GTCTGCTAGGTAGTTCCACA-3’  

Midi14-2-seq-for2  5’-AGGGGAAAAAGGAAAAACCAAG-3’  

Midi14-2-int-for3  5’-CAGAACCCATGGGTTCTAG-3’  

Midi14-2-int-for4  5’-TGCAGTTCCCAGGTCACTG-3’  

Midi14-2-seq-rev1  5’-AGGCCTGGATGCACTCCT-3’  

Midi14-2-int_rev2  5’-AGCCCTATCCCTGCACTAT-3’  

Midi14-2-int_rev3  5’-CTGAACTGATATCCCTGTAC-3’  

Eulemur macacoII  

Midi16-3-seq-for1  5’-GTCTGCTAGGTAGTTCCACA-3’  

Midi16-3-seq-for2  5’-AGGAAAAACCAAGTCACCA-3’  

Midi16-3-int_for3  5’-GACACAGAACAGGTTTCACG-3’  

Midi16-3-int_for4  5’-GAGACCCAAGAGTTTCTCGA-3’  

Papio hamadryas    

Midi44a-int-for1  5’-GCTCATATCACTTGCCATTTTCA-3’  

Midi44a-int-for2  5’-CAAATCATCTCTGGAAGAAGGAA-3’  

Midi44a-int-for3  5’-GGTGCCAAATGTCTCATGCTAC-3’  

Midi44a-int-for4  5’-CCAGTTGCAAAACCAGCCAGG-3’  

Midi44a-int-for5  5’-TAAGAAATGGGAGAAGGAATGAGGG-3’  

Midi44a-int-for6  5’-GGTTGAGTCCACAATTTCTGTTTAG-3’  

Midi44a-seq-rev1  5’-TTGGCACTCGTGGGCATCTAA-3’  

Midi44a-seq-rev2  5’-CTTCCCTACAGAGCAGGTCT-3’  

Midi44a-int-rev3  5’-CCTCAGTGATGGAAAACCTAC-3’  

Midi44a-int-rev4  5’-TCACGACTTCTAAGCTGATC-3’  

Midi44a-int-rev5  5’-CTCTTGGGTCTTTTCTGAACT-3’  

Midi44a-int-rev6  5’-TCCCTGGTGAGCTGTGCAGT-3’  

Midi44a-int-rev7  5’-TCCCCTGGATGGATAATGAAAC-3’  

Midi44a-int-rev8  5’-GGACTAGAACCCATGTGTCCTG-3’  

Midi44a-int-rev9  5’-TCAAGCAATCCTCCCACCTTAGC-3’  

Midi44a-int-rev10  5’-TGTGACCTCAAACTCTTGGCCTCA-3’  
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2.1.7.5 Site-directed mutagenesis 

Site-directed mutagenesis 

Primer Sequence 

pCpGL-Isand2 long-construct   

Insel2-del-for  5’-CGCGTCTTCCCCCAGTGCATCCGGGCCTGC-3’ 

Insel2-del-rev  5’-GCAGGCCCGGATGCACTGGGGGAAGACGCG-3’ 

Insel2-mut-for  5’-CGCGTCTTCCCCCAGCTCTGCATCCGGGCCTGC-3’ 

Insel2-mut-rev  5’-GCAGGCCCGGATGCAGAGCTGGGGGAAGACGCG-3’ 

Insel2-mut-CpG-for  5’-CCCAGGAGTGCATCTGGGCCTGCAAGCCCG-3’ 

Insel2-mut-CpG-rev  5’-CGGGCTTGCAGGCCCAGATGCACTCCTGGG-3’ 
 

2.1.7.6 Cloning 

Cloning  

Primer Sequence Fragment size 

pCR®2.1-TOPO® vector    

M13_for  5’-GTAAAACGACGGCCAG-3’  

M13_rev  5’-CAGGAAACAGCTATGAC-3’  

pCpGL vector    

pCpGL-basic_for  5’-GAGCAAACAGCAGATTAAAAGG-3’  

pCpGL-basic_rev2  5’-GCCATCTTCCAGAGGGTAGAA-3’  

hPOMC_Prom1a_for  5’-CGATGGATCCCCCCAAAGTGGAACAGAGAG-3’ 592 bp 

hPOMC_Prom1a_rev  5’-CGATCCATGGCTGCGCCCTTACCTGTCTC-3’  

hPOMC-Insel2-lang_for  5’-CGATGGATCCGCAGTTGCCAGGCAGAAGCA-3’ 550 bp 

hPOMC-Insel2-lang_rev  5’-CGATCCATGGAGTAGGAGCGCTTGCCCTCG-3’  

hPOMC-Insel2-mittel_for  5’-CGATGGATCCGCAGTTGCCAGGCAGAAGCA-3’ 294 bp 

hPOMC-Insel2-mittel_rev  5’-CGATCCATGGGAGAGGTCGGGCTTGCAGGC-3’  

hPOMC-Insel2-kurz_for  5’-CGATGGATCCGCAGTTGCCAGGCAGAAGCA-3’ 247 bp 

hPOMC-Insel2-kurz_rev  5’-CGATCCATGGGACGCGAGGGCATGAGGGCA-3’  

hPOMC-Insel2-mut_for  5’-CGCGTCTTCCCCCAGCTCTGCATCCGGGCCTGC-3’ 550 bp 

hPOMC-Insel2-mut_rev  5’-GCAGGCCCGGATGCAGAGCTGGGGGAAGACGCG-3’  

hPOMC-Insel2-mut-CpG_for  5’-CCCAGGAGTGCATCTGGGCCTGCAAGCCCG-3’ 550 bp 

hPOMC-Insel2-mut-CpG_rev  5’-CGGGCTTGCAGGCCCAGATGCACTCCTGGG-3’  

hPOMC-Insel2-del_for  5’-CGCGTCTTCCCCCAGTGCATCCGGGCCTGC-3’ 547 bp 

hPOMC-Insel2-del_rev  5’-GCAGGCCCGGATGCACTGGGGGAAGACGCG-3’  
 

BamHI-Schnittstelle 

NcoI-Schnittstelle 

 

2.1.7.7 RT-PCR 

RT-PCR from GT1-7 RNA  

Primer Sequence Fragment size 

β-Actin-RT-for  5’-CGACAACGGCTCCGGCATG-3’ 159 bp 

β-Actin-RT-rev  5’-CCTCTCTTGCTCTGGGCCTCG-3’  

mPOMC_RT_for   5’-GTTGCTGGCCCTCCTGCTTC-3’ 216 bp 

mPOMC_RT_rev   5’-CAGCGGAAGTGACCCATGACG-3’  

mEp300-RT_for   5’-AACCAGCAGATGCTCAACCT-3’ 238 bp 
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Primer Sequence Fragment size 

mEp300-RT_rev   5’-CGGTAAAGTGCCTCCAATGT-3’  

mGATA1-RT-for  5’-AGCCCAGGTTCAACCCCAGTGT-3’ 487 bp 

mGATA1-RT-rev  5’-GCAGGCAGTGCAGTCCCCAG-3’  

2.2 Methods 

2.2.1 Extraction of genomic DNA 

Genomic DNA from samples was extracted using the Maxwell® 16 System (Promega). Depending on the 

type of sample, different protocols were applied. 

2.2.1.1 DNA extraction from blood and tissue samples 

For DNA extraction from EDTA blood (peripheral blood cells, PBCs) and tissue samples the Maxwell® 16 

Tissue DNA Purification Kit (Promega) was used according to the manufacturer’s instructions (Henry, 

2001; Promega, 2010c). Up to 50 µg of tissue sample or 350 – 500 µl EDTA blood was processed directly 

with the tissue program. The extracted DNA was eluted with 270 – 350 µl H2OHPLC and stored at 4°C 

afterwards. 

2.2.1.2 DNA extraction from Guthrie spots (blood on newborn screening cards)  

Newborn screening cards (Whatman Protein SaverTM 903® cards) were punched (diameter = 3.2 mm). 

Four punches per sample (= 8.04 mm2) were applied for DNA extraction from blood (peripheral blood 

cells, PBCs) using the DNA IQ™ Casework Sample Kit for Maxwell® 16 (Promega) according to the 

manufacturer’s instructions (Promega, 2010a). The punches were pre-incubated in 200 µl lysis buffer 

containing 10 mM DTT (60 min, 350 rpm, 70°C) and then cooled on ice for 2 min. Afterwards the samples 

were centrifuged (2 min, 14,000 rpm, rt) in DNA IQ™ Spin Baskets (Promega). The filtrate was transferred 

to the forensic kit cartridge and processed with the tissue program. The extracted DNA was eluted with 

50 µl elution buffer and stored at 4°C.  

2.2.2 Determination of genomic DNA concentration 

DNA concentrations of samples were determined by measuring the optical density (OD) at a wavelength of 

260 nm. Measurements were performed either with diluted samples (1:25) using the Biophotometer 6131 

(Eppendorf), or the undiluted samples were measured using the NanoDrop 3300 (Thermo Scientific). 

Purity of genomic DNA was assessed by determining the OD260 nm/OD280 nm-ratio. OD260 nm/280 nm values of 

1.8 - 2.0 were considered as sufficient. 

2.2.3 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) enables exponential amplification of selected genomic regions of 

interest from genomic or plasmid DNA by utilization of pairs of sequence specific oligonucleotide primers, 

as well as a thermo stable Taq or Pfu DNA polymerase (Erlich, 1989; Lundberg et al., 1991). For this thesis, 

various PCR methods were applied, of which the specificities are outlined in the following paragraphs. For 

accurate pipetting schemes and PCR run protocols, see Appendix Table A1 and A3. 

2.2.3.1 Bisulfite PCR amplification 

Genomic regions of interest were amplified from bisulfite-treated DNA (Paragraph 2.2.12) or blastocysts 

using the thermo stable AmpliTaq® DNA Polymerase (Applied Biosystems). For examining the methylation 

status of specific regions, oligonucleotide primers were designed flanking the regions of interest. Primer 

landing site sequences did not contain CpG dinucleotides, and therefore their nucleotide sequences 

remained independent of the methylation state during bisulfite treatment. As a result, both methylated 



Materials and Methods        26 

 

and unmethylated DNA could be proportionally amplified in the same reaction. To achieve higher yields 

and reduced contamination by unspecific amplification products, all bisulfite PCRs were designed as 

nested or half-nested PCRs. Nested polymerase chain reactions involve two sets of primers used in two 

successive polymerase chain reaction runs. Hereby the second set is intended to amplify a secondary 

target within the first amplification product (Figure 8). 

A suitable amount of bisulfite-treated DNA or a washed agarose bead (Paragraph 2.2.12) was used for 

each PCR reaction. The PCR mix contained 1x AmpliTaq® buffer, 1.5 mM MgCl2, 1 M betaine, 100 µM 

dNTPs, 200 nM forward primer ‘out’, 200 nM reverse primer ‘out’, and AmpliTaq® DNA Polymerase. The 

reaction was started in a PCR block with preheated lid (105°C). After initial denaturation for 5 min (95°C), 

40 cycles of 45 s denaturation (95°C), 45 s primer annealing, and 60 s elongation (72°C) were performed. 

The final elongation time was 8 min at 72°C. The primer annealing temperature depended on the primers 

used.  

With the product of the first PCR, a second PCR run was implemented using the same PCR run protocol 

and a similar PCR mix as for the first PCR. Only the ‘out’ primers were replaced by the corresponding ‘in’ 

primer pair. The product of the second PCR was loaded on an agarose gel for analysis. Samples showing 

the expected size of PCR product were either directly applied to an Exo/SAP-reaction and subsequent 

sequencing (Paragraph 0) with gene region specific primers, or the fragments were purified from the gel, 

TOPO cloned (Paragraph 2.2.7.1) and sequenced after colony PCR as described below. 

 

Figure 8: Principle of nested PCR.  
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2.2.3.2 Colony PCR amplification  

When the transformants of TOPO cloning reactions were analyzed by PCR amplification, single colonies 

were picked and dissolved in 10 µl H2OHPLC. Using this solution as template, the cloned fragments were 

amplified by PCR using pCR®2.1-TOPO® vector-specific M13 primers (333 nM each). Beside the primers, 

the PCR mixture contained 1x NH4 Reaction Buffer, 1.5 mM MgCl2, 100 µM dNTPs, and BIOTAQ™ DNA 

Polymerase. After initial denaturation for 10 min (95°C), 30 cycles of 30 s denaturation (95°C), 30 s primer 

annealing (55°C), and 45 s elongation (72°C) were performed. The final elongation time was 8 min at 

72°C.The PCR products were analyzed by agarose gel electrophoresis. When the DNA bands in the gel 

showed the right size, the PCR amplification product was applied to an Exo/SAP-reaction and 

subsequently sequenced (Paragraph 0) with gene specific primers.  

2.2.3.3 PCR amplification of unknown POMC fragments for sequencing 

For comparative sequence and methylation analyses of the different primate POMC loci, the respective 

gene region of various primates had to be determined. Therefore, the DNA fragment of interest was PCR 

amplified using primers that had their landing sequence in highly conserved regions of the POMC locus 

(Paragraph 0). 

 The POMC-Intron2 regions were determined for Pongo pygmaeus (orangutan), Papio hamadryas 

(baboon), Galago senegalensis (galago), and Eulemur macaco (lemur) with genomic DNA kindly 

provided by the Deutsches Primaten Zentrum (DPZ), Göttingen, Germany.  

 The POMC-Alu region was amplified from Gorilla gorilla (gorilla) DNA (DPZ) with a nested PCR 

approach (Figure 8).  

The PCR mixes contained DNA in suitable amounts, 1x AmpliTaq® buffer, 1.5 mM MgCl2, 1 M betaine, 

100 µM dNTPs, 200 nM respective forward primer, 200 nM respective reverse primer, and AmpliTaq® 

DNA Polymerase. The reaction was started in a PCR block with preheated lid (105°C). After initial 

denaturation for 5 min (95°C), 40 cycles of 45 s denaturation (95°C), 45 s primer annealing, and 1 - 4 min 

elongation (72°C) were performed. The final elongation time was 10 min at 72°C. The primer annealing 

temperature depended on the primers used. The PCR products were validated by agarose gel 

electrophoresis, and the DNA bands were cut from the gel. The purification product from the agarose gel 

slices were TOPO cloned (Paragraph 2.2.7.1). Resulting plasmid vector preparations were applied for 

sequencing procedures with respective sequencing primers (Paragraph 0).  

2.2.3.4 PCR amplification of POMC fragments for functional analysis 

For functional analysis of the 5’ CGI and the 3’ CGI region of the human POMC gene, appropriate fragments 

were amplified from human genomic DNA. Therefore, restriction site-containing oligonucleotide primers 

were used, to substitute the fragments with a BamHI restriction site upstream and an NcoI restriction site 

downstream (Paragraph 0).  

The PCR mixes contained DNA in suitable amounts, 1x AmpliTaq® buffer, 1.5 mM MgCl2, 1 M betaine, 100 

µM dNTPs, 200 nM forward primer, 200 nM reverse primer, and AmpliTaq® DNA Polymerase. The reaction 

was started in a PCR block with preheated lid (105°C). After initial denaturation for 5 min (95°C), 40 

cycles of 45 s denaturation (95°C), 45 s primer annealing, and 4 min elongation (72°C) were performed. 

The final elongation time was 10 min at 72°C. The primer annealing temperature depended on the 

primers used. The PCR products were validated by agarose gel electrophoresis, and the DNA bands were 

cut from the gel. The purification product from the agarose gel slices were TOPO cloned and sequenced 

(Paragraph 2.2.7.1 and 0). For trans-cloning from the TOPO vector into the pCpGL vector the TOPO 

constructs were BamHI and NcoI restricted and the resulting restriction fragments were ligated into the 

likewise restricted pCpGL vector (Paragraph 2.2.7.2).  
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2.2.3.5 Site-directed mutagenesis PCR 

For further analysis of the 3’ CGI region of the human POMC gene, the pCpGL-Island2 long-construct 

(obtained in pCpGL cloning, Paragraph 2.2.7.2) was mutated and deleted by site-directed mutagenesis 

PCR with corresponding primer pairs (Paragraph 0). Respective complementary primer pairs were 

designed containing desired mutation or deletion (up to three nucleotides were mutated or deleted).  

The PCR mix was prepared on ice and contained pCpGL-Island2 long-construct DNA in suitable amounts, 

1x Cloned Pfu DNA polymerase reaction buffer, 1.5 mM MgCl2, 1 M betaine, 200 µM dNTPs, 300 nM forward 

primer, 300 nM reverse primer, and PfuTurbo® DNA polymerase (Stratagene). The reaction was started in 

a PCR block with preheated lid (105°C). After initial denaturation for 30 s (95°C), 18 cycles of 30 s 

denaturation (95°C), 60 s primer annealing (55°C), and 6 - 8 min elongation (68°C) were performed. The 

final elongation time was 10 min at 72°C. After the PCR amplification, the samples were further processed 

as described in Paragraph 2.2.8. 

2.2.4 RT-PCR for determination of gene expression in GT1-7 cells 

For semi-quantitative determination of the occurrence of specific mRNAs within a cell line or tissue as a 

measure of gene expression, a technique called reverse transcription PCR (RT-PCR) is applied. Firstly 

whole RNA isolated from cells or tissues and secondly RT-PCR is performed using primer pairs that have 

their landing sites within two different exons of one gene, to avoid false-positive results by genomic DNA-

contamination. RNA extracted from GT1-7 cells (Paragraph 2.2.13) was tested for expression of POMC, 

Ep300 (E1A binding protein p300), GATA1, and Actb of β-actin as control.  

2.2.4.1 Extraction of total RNA from GT 1-7 cells 

Total RNA of GT1-7 cells was isolated applying the TRIzol® Reagent (Invitrogen) according to the 

manufacturer’s instructions (Invitrogen, 2010) after trypsination of the adherent cells. The RNA was 

resuspended in 30 µl DEPC H2O and stored at -80°C until use for RT-PCR procedures. 

2.2.4.2 RT-PCR 

The RT-PCR is a variant of PCR, in which a RNA strand is reverse transcribed into its DNA complement 

(cDNA) by the enzyme reverse transcriptase. Then the resulting cDNA is amplified using standard PCR.  

a) cDNA generation: 

An oligo-dT-Primers was used in combination with the Omniscript™ RT Kit (Qiagen) according to the 

manufacturer’s instructions (Qiagen, 2010) to generate cDNA from the extracted RNA from GT1-7 cells. 

b) PCR amplification of desired cDNA fragments: 

Corresponding primer pairs (Paragraph 0) were used to amplify desired fragments from cDNA in a PCR 

mix that contained 1x MangoTaq colored reaction buffer, 1.5 mM MgCl2, 1 M betaine, 50 µM dNTPs, 200 nM 

forward primer, 200 nM reverse primer, and MangoTaqTM DNA Polymerase (Bioline). The reaction was 

started in a PCR block with preheated lid (105°C). After initial denaturation for 5 min (95°C), 40 cycles of 

30 s denaturation (95°C), 30 s primer annealing, and 60 s elongation (72°C) were performed. The final 

elongation time was 7 min at 72°C. The primer annealing temperature depended on the primers used. The 

PCR products were validated by agarose gel electrophoresis (Paragraph 2.2.5). 

2.2.5 Agarose gel electrophoresis 

Agarose gel electrophoresis (1 - 2% agarose in 0.5 TBE buffer) was used to separate nucleic acid 

fragments by length. Application of an electric field (80 - 100 V) moves negatively charged molecules, such 

as DNA, through the agarose matrix. Thereby, shorter molecules move faster through the pores of the gel 

and migrate farther than longer molecules (Aaij and Borst, 1972). The gels were supplemented with 
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ethidium bromide (EtBr, 0.4 µg/ml) which fluoresces when intercalated into nucleic acids. Hence, 

ethidium bromide makes DNA (and RNA) visible in UV light.  

After gelatinizing, the gels were transferred into TBE (0.5x) containing horizontal electrophoresis 

chambers. Before loading, the samples were substituted with negatively charged 6x loading buffer 

(containing 0.25% xylene cyanol and 0.25% bromphenol blue which co-sediment with nucleic acids) for 

visualization in visible light. In each well 7 – 30 µl of one sample or 2 – 4 µl of size marker were loaded. 

DNA marker, Quick-Load® 100 bp DNA Ladder (New England Biolabs), 1 Kb DNA Ladder (Invitrogen), were 

used as standards to estimate the fragment sizes. After electrophoresis, the gels were assessed with the 

Gene Flash gel documentation system (Syngene). 

2.2.6 Purification of DNA fragments or PCR products 

For some applications, it is suitable to purify DNA fragments or PCR products to remove buffers, primer 

residues, enzymes, or other disturbing substances. For purification of PCR products or of DNA fragments 

from agarose gel slices the Wizard® SV Gel and PCR Clean-Up System (Promega) was used according to the 

manufacturer’s instructions for the centrifugation strategy (Betz and Strader, 2002; Promega, 2009b) with 

following modifications: 

 Gel slices were dissolved at 65°C and 500 rpm. 

 No evaporation step with open centrifuge lid was carried out. 

 DNA was eluted with 40 µl nuclease-free water. 

2.2.7 Molecular cloning 

Cloning is commonly used as method to save and amplify DNA fragments for further application in 

molecular biological experiments, such as sequencing, gene (-fragment) characterization, and protein 

production. With the molecular cloning approach, the DNA amplification takes place in a living organism. 

Therefore, the DNA fragment of interest has to be ligated into a vehicle (plasmid vector), which exhibits 

certain features, such as an origin of replication. Then living cells, for example bacteria, are transformed 

with the vector construct to propagate the DNA fragment of interest.  

2.2.7.1 TOPO cloning 

By TOPO cloning, Taq polymerase-amplified DNA fragments can be directly inserted into specific plasmid 

vectors without the requirement of restriction sites, restriction enzymes, or ligases. The TOPO vector is 

equipped with covalently bound topoisomerase and 3´ thymidine (T)-overhangs. The T-overhangs match 

the 3’ adenine (A)-overhangs at the Taq polymerase-amplified DNA fragment and the topoisomerase 

catalyzes the covalent binding of the TOPO vector and the DNA fragment (Shuman, 1994). 

The TOPO® TA Cloning® Kit (Invitrogen) was used in combination with One Shot® TOP10 chemically 

competent Escherichia coli (E. coli) (Invitrogen) for DNA fragments amplified in PCRs using AmpliTaq® 

DNA Polymerase (Applied Biosystems).  

i. For sequencing, PCR products from bisulfite PCRs and fragments containing the POMC-Intron2 

region of various monkeys were cloned into the pCR®2.1-TOPO® vector. 

ii. For functional analysis the pCR®2.1-TOPO® vector was used as a vehicle for necessary DNA 

fragments for further cloning steps into the target vector pCpGL. 

a) PCR amplification of fragment of interest: 

Fragments of interest were amplified in respective PCRs, separated by agarose gel electrophoresis, and 

purified from the gel (Paragraph 2.2.3, 2.2.5, and 2.2.6). 
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b) Cloning reaction: 

The cloning reaction was carried out according to the manufacturer’s instructions (Invitrogen, 2006) 

using 4 µl of purified PCR product (Paragraph 2.2.6), 1 µl salt solution and 1 µl of the pCR®2.1-TOPO® 

vector. 

c) Transformation of TOP10 competent cells: 

TOP10 competent cells were transformed according to the manufacturer’s instructions (Cohen et al., 1972; 

Invitrogen, 2006) with following modifications: 

 The total amount of 6 µl TOPO cloning reaction mix was added to the cells. 

 The cells were heat-shocked for 45 s. 

 200 µl of each transformation was spread onto one culture plate. 

d) Selection: 

For dual selection, LB plates containing 50 μg/ml ampicillin were additionally spread with 40 µl X-gal 

(Table 1). The ampicillin in the agar confirms the transformation of the bacteria. Since the pCR®2.1-TOPO® 

vector encodes ampicillin-resistance, only successfully transformed bacteria can grow in this 

environment. The X-gal application is to distinguish bacteria transformed with an empty vector from 

bacteria transformed with an insert-containing vector. The insertion of a fragment into the vector disrupts 

its LacZ gene. Thus, the bacteria cannot metabolize X-gal anymore and appear white instead of blue. 

e) Analysis of transformants: 

The transformants were analyzed by either: 

 Mini preparation and restriction cut analysis (Paragraph 2.2.9.1 and 2.2.10). 

 Colony PCR (Paragraph 2.2.3.2). 

Table 1: Composition of LB medium, LB agar culture plates and X-gal used in the cloning procedure. The LB medium and LB 

agar were substituted with the antibiotics ampicillin or zeocin in the concentrations of 50 μg/ml or 25 µg/ml respectively. 

Solution/buffer Composition 

LB medium according to Miller,pH 7.0   1% tryptone, 0,5% yeast extract, 1% NaCl H2O, sterilized  

LB agar culture plates   1.5% agar in LB medium, in culture dishes, stored at 4°C  

X-gal  40 mg/ml X-gal in dimethylformamide 
  

2.2.7.2 pCpGL cloning 

The promoter activity of the 5’ CGI and 3’ CGI of the human POMC locus were analyzed in this thesis. 

Therfore, vector constructs that contained 5’ CGI- or 3’ CGI-fragments were made (Table 2). All fragments 

were substituted upstream with a BamHI restriction site and downstream with an NcoI restriction site for 

fragment insertion. The pCpGL vector is a luciferase-containing plasmid vector with a CpG-free backbone 

(Figure 9).  
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Figure 9: Map of the CpG-free reporter vector: pCpGL. Reprinted by permission (Klug and Rehli, 2006). The vector, including its 

multiple cloning site (MCS), is completely free of CpG dinucleotides. It contains a zeocin resistance gene and the R6K origin of 

replication. The plasmid is propagated in bacteria expressing the PIR gene. 

The CpG-free vector backbone is of importance for methylation experiments, since effects of backbone 

CpG-methylation can distort the results. The pCpGL-basic as well as the pCpGL-CMV/EF1 vector construct, 

which can be used as positive control, was kindly provided by the working group of Dr. Rehli from the 

Institut für Hämatologie und internistische Onkologie, Universitätsklinikum Regensburg, Regensburg, 

Germany. The transformation was performed with One Shot® PIR1 chemically competent E. coli 

(Invitrogen). The selection was carried out using zeocin-containing LB culture plates.  

a) PCR amplification of fragment of interest: 

Fragments of interest were amplified in respective PCRs, separated by agarose gel electrophoresis, and 

purified from the gel (Paragraph 2.2.3, 2.2.5, and 2.2.6). If necessary, they were TOPO cloned before 

further use (Paragraph 2.2.7.1). 

b) Restriction of DNA fragments of interest and of the pCpGL vector: 

The DNA fragment of interest containing necessary restriction sites – as purified PCR product or as TOPO 

construct - and the pCpGL-basic vector were restricted overnight (37°C). The BamHI and NcoI enzymes 

(New England Biolabs) were applied simultaneously in a mix containing 1x the corresponding buffer 

NEB3 and 10x BSA (Appendix Table A2). Afterwards, the enzymes were heat inactivated (20 min, 85°C). 

c) Purification: 

The Wizard® SV Gel and PCR Clean-Up System (Promega) was used as described in Paragraph 2.2.6, to 

remove small nucleotide fragments, the buffer, and the enzymes (i) directly the pCpGL vector-restriction 

reaction mixture, (ii) the PCR product-restriction after agarose gel electrophoresis. 

d) Ligation: 

The restricted DNA fragment of interest (15 µl) was ligated into the corresponding restriction sites of the 

pCpGL vector (2 µl) using 1 µl of a T4 DNA ligase (400 u/µl; New England Biolabs). The T4 DNA ligase 

catalyzes the formation of a phosphodiester bond between juxtaposed 5' phosphate and 3' hydroxyl 

termini in duplex DNA (Sambrook and Russel, 2001). The ligation reaction was carried out at room 

temperature in 1x T4 DNA ligase reaction buffer (4 h). 
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e) Transformation of PIR1 competent cells: 

The pCpGL vector contains the R6K origin of replication. For transformation, PIR1 competent cells 

(Invitrogen) are suitable. They express the protein pi that is needed for the activation of the R6K origin of 

replication. PIR1 competent cells were transformed according to the manufacturer’s instructions 

(Invitrogen, 2004) with following modifications: 

 The total volume of 20 µl pCpGL ligation reaction was added to the cells. 

 The cells were heat shocked for 60 s. 

 200 µl of each transformation was spread onto the culture plates. 

f) Selection: 

LB plates containing 25 µg/ml zeocin were used to select transformed bacteria (Table 1). The pCpGL 

vector encodes for zeocin-resistance. Therefore, only transformed PIR1 bacteria can grow on zeocin 

containing LB agar culture plates. 

g) Analysis of transformants: 

The transformants were analyzed by mini preparation, restriction cut analysis and sequencing. 

h) Amplification of correct transformants: 

To obtain a larger amount of plasmid for further usage, the correct transformants were amplified by midi 

preparation (Paragraph 2.2.9.2). 

Table 2: pCpGL vector-constructs obtained from pCpGL cloning procedures and applied in dual-luciferase reporter gene 

assays. The noted fragments were obtained from human genomic DNA by PCR amplification of POMC fragments for functional 

analysis. 

Name Inserted fragment of the human POMC gene 

pCpGL-PromI  -493 bp to + 98 bp relative to exon1 start  

pCpGL-Island2 long   -256 bp to +294 bp relative to exon3 start 

pCpGL-Island2 medium  -256 bp to +32 bp relative to exon3 start 

pCpGL-Island2 short  -256 bp to -10 bp relative to exon3 start 

2.2.8 Site-directed mutagenesis of pCpGL vector-constructs 

Site-directed mutagenesis is a technique in which a mutation is created at a defined site in a DNA molecule 

using polymerase chain reaction (PCR) with oligonucleotide primers that contain the desired mutation 

(Braman et al., 1996). For plasmid manipulations, a pair of complementary mutagenic primers is used to 

amplify the entire plasmid. Resulting nicked, circular DNA is mended by the endogenous bacterial repair 

machinery after transformation. To separate the mutated DNA from the non-mutated template plasmid, 

enzymatic digestion with a methyl-sensitive restriction enzyme can be applied. The biosynthesized 

template DNA carries specific methylation marks but not the in vitro generated mutated plasmid. 

Therefore, template DNA is eliminated by digestion, while the mutated DNA is preserved and can be used 

for amplification in bacteria cells. This method was applied to the pCpGL-Island2 long-construct to obtain 

mutated and deleted constructs (Table 3) for further analysis of the p300 binding site. 

a) Site-directed mutagenesis PCR: 

The pCpGL-Island2 long-fragments were PCR amplified using corresponding primers for insertion of the 

desired mutations and deletions (Paragraph 2.2.3.5). 
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b) Elimination of template plasmid: 

The methylated template plasmid was restricted by the methyl-sensitive DpnI enzyme (1 h, 37°C). 

Therefore, a sufficient amount of enzyme (1 µl) was added directly to the sample after PCR amplification. 

c) Purification and precipitation: 

To remove buffer and enzymes, the samples were mixed with phenol/chloroform (1 : 1) and centrifuged 

(10 min, 14,000 rpm, 4°C). After centrifugation, from the uppermost of the three phases the DNA was 

precipitated overnight (-80°C) using 1/5 of the sample volume of 1.5 M sodium acetate (pH 5.5) and 

2.2 times the sample volume of 100% ethanol. To pellet the DNA, the samples were centrifuged (25 min, 

14,000 rpm, 10°C). The pellet was washed with 70% ethanol (20 min, 14,000 rpm, 10°C), subsequently 

dried at 37°C, and resuspended in 30 µl H2O (HPLC quality).  

d) Transformation of PIR1 competent cells: 

For ligation of the nick in the circular DNA and for amplification, PIR1 competent cells were transformed 

with the mutated or deleted pCpGL-Island2 long-constructs The transformation of PIR1 competent cells 

was performed according to the manufacturer’s instructions (Invitrogen, 2004) with following 

modifications: 

 10 µl of mutated or deleted pCpGL-Island2 long-constructs was added to the cells. 

 The cells were heat shocked for 60 s. 

 200 µl of each transformation was spread onto the culture plates. 

Selection, analysis of transformants and amplification of correct transformants was performed according 

to the procedure described in Paragraph 2.2.7.2. 

Table 3: Deleted and mutated pCpGL-Island2 long-constructs obtained from site-directed mutagenesis. The noted positions 

are relative to the exon3 start of the human POMC gene. Construcs were applid in reporter gene assays. 

Name Position (relative to exon3 start) Deletion or mutation 

  pCpGL-Island2 long-del +1 to +3 bp GAG were deleted 

  pCpGL-Island2 long-mut +1 to +3 bp GAG  CTC 

  pCpGL-Island2 long-mut CpG +10 bp C  T 

2.2.9 Plasmid vector preparation 

To amplify the plasmid vector DNA for further experiments, such as sequencing, secondary cloning steps, 

or for functional analysis, LB medium containing ampicillin (50 µg/ml) or zeocin (25 µl/ml) was 

inoculated with a single bacterial colony picked from a culture plate and incubated overnight (220 rpm, 

37°C). Depending on the plasmid DNA yield that should be achieved, either 4 ml (mini preparation) or 250 

ml (midi preparation) medium was used. In the case of midi preparations, glycerol stocks were produced 

for backup. Therefore, bacteria culture was mixed with glycerol (1:1) and stored at -80°C. To isolate the 

plasmid vector DNA from the cultured bacteria the PureYield™ Plasmid Miniprep System (Promega) or the 

Plasmid DNA Purification NucleoBond® Xtra Midi Syste” (Macherey Nagel) was used.  

2.2.9.1 Mini preparation (miniprep) 

The PureYield™ Plasmid Miniprep System (Promega) provides a rapid method to purify plasmid DNA using 

a silica membrane column. Initially, the 4 ml bacteria culture was centrifuged (10 min, 4,000 rpm, rt) and 

the supernatant was removed. Afterwards, the kit was used according to the manufacturer’s instructions 

(Promega, 2009a). The purified plasmid DNA was eluted with 30 µl elution buffer and stored at 4°C. The 

correctness of the inserts was verified by enzymatic restriction and subsequent sequencing (Paragraphes 

2.2.10 and 0). 
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2.2.9.2 Midi preparation (midiprep) 

Larger amounts of plasmid DNA were produced in larger volumes of culture charging stock (250 ml). The 

purification was performed using the Plasmid DNA Purification NucleoBond® Xtra Midi System (Macherey 

Nagel) according to the manufacturer’s instructions for  the centrifugation strategy (MachereyNagel, 

2010). The purified plasmid DNA was eluted with 200 - 400 µl H2OHPLC and stored at 4°C. The correctness 

of the inserts was verified by enzymatic restriction and subsequent sequencing (Paragraph 2.2.10 and 0). 

2.2.10 Enzymatic plasmid vector restriction 

To verify the inserts by length, the plasmid DNA preparations were restricted (1 h, 37°C) using 

appropriate enzymes (Table 4) and separated by agarose gel electrophoresis (Sambrook and Russel, 

2001). The cloning site of the pCR®2.1-TOPO® vector is flanked up- and downstream by EcoRI restriction 

sites and, therefore, a restriction with EcoRI (New England Biolabs) releases the DNA insert from the 

vector. The pCpGL vector constructs were restricted by simultaneous use of BamHI and NcoI. Vectors 

containing inserts of expected sizes were Sanger sequenced by capillary electrophoresis (Paragraph 0). 

Table 4: Pipetting scheme for restriction analysis of plasmid DNA preparations. The appropriate restriction enzymes - EcoRI 

for TOPO vector constructs and BamHI/NcoI for pCpGL vector constructs - and buffers were applied. 

EcoRI restriction  BamHI and NcoI restriction 

pCR®2.1-TOPO® vector preparation 2 µl       pCpGL vector preparation 2 µl 

10x EcoRI buffer 1 µl   10x NEBuffer 3 1 µl 

    100x BSA  1 µl 

EcoRI (100 u/µl) 0.25 µl   BamHI (20 u/µl) 0.5 µl 

    NcoI (20 u/µl) 0.5 µl 

H2OHPLC 6.75 µl   H2OHPLC 5 µl 

Total volume 10 µl   Total volume 10 µl 
 

2.2.11 Sequencing 

To determine the sequence of nucleotides within a DNA fragment of interest, samples were Sanger 

sequenced using the ABI 3130 Genetic Analyzer which works with capillary electrophoresis (Sanger et al., 

1977). For sequencing PCR products without a preceding cloning step, the primer leftovers of the PCR 

reaction had to be eliminated by restriction with exonuclease I (Exo, New England Biolabs) and shrimp 

alkaline phosphatase (SAP, Affymetrix), the so called Exo/SAP restriction. Afterwards, the samples were 

prepared for sequencing in a sequencing reaction. Plasmid DNA, which did not contain primer residues, 

was applied directly to the sequencing reaction without preceding Exo/SAP reaction. 

2.2.11.1 Exo/SAP restriction 

PCR products (8 µl) were incubated with 0.18 µl ExoI (20 u/µl) and 0.32 µl SAP (1 u/µl) in a final volume 

of 11 µl (35 min; 37°C) followed by heat inactivation of the enzymes (15 min, 80°C). 

2.2.11.2 Sequencing reaction 

Pretreated PCR products and plasmid DNA were applied in sequencing reactions using fragment-specific 

or vector-specific primers and luminescent dNTPs in the BigDye®-Sequencingmix (Table 5). After initial 

denaturation (1 min, 95°C) the sequencing reaction was performed with 30 cycles of 30 s denaturation 

(95°C), 15 s primer annealing (55°C) and 4 min elongation (60°C). The final elongation step was 8 min 

(60°). The products of this reaction were precipitated using 1/5 of the sample volume of 1.5 M sodium 

acetate (pH 5.5) and twice the sample volume of 100% ethanol (25 min, 14,000 rpm, 10°C). The pellet was 
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washed with 70% ethanol (20 min, 14,000 rpm, 10°C), subsequently dried at 60°C and resuspended in 

10 µl H2O (HPLC quality) preceding to the application to capillary electrophoresis sequencing in the ABI 

3130 Genetic Analyzer. 

Table 5: Pipetting scheme for sequencing reactions either of Exo/SAP products or of plasmid DNA. 

Sequencing reaction of Exo/SAP product Sequencing reaction of plasmid DNA 

Exo/SAP product 5 µl       Plasmid DNA 1 µl 

5x BigDye sequencing buffer 1.5 µl   5x BigDye sequencing buffer 1.5 µl 

Primer (5 µM) 1 µl   Primer (5 µM) 1 µl 

BigDye®-Sequencingmix 0.75 µl   BigDye®-Sequencingmix 0.75 µl 

H2OHPLC 1.75 µl   H2OHPLC 5.75 µl 

Total volume 10 µl   Total volume 10 µl 

2.2.12 Bisulfite genomic sequencing for DNA methylation analysis  

 

Figure 10: The principle of bisulfite genomic sequencing. In genomic DNA, methylated (mC) and non-methylated cytosines (C) 

are present. Treatment with bisulfite changes latter in three steps to uracil (U): 1. sulphonation, 2. hydrolytic deamination, 3. alkali 

desulphonation. In PCR, uracil is translated to thymine, while cytosine remains cytosine. This can be demonstrated by sequencing. 

To determine the DNA methylation status in single CpG resolution, genomic DNA was bisulfite converted 

by standard techniques (Clark et al., 2006; Frommer et al., 1992). Non-methylated cytosines of the DNA 

are converted into uracil, while methylated cytosines remain unchanged (Figure 10). In subsequent PCR 

amplification, uracils are transformed into thymines. Consequently, methylated and non-methylated 

cytosines can be distinguished after sequencing, since the latter causes a thymine signal instead of a 

cytosine signal.This method was applied to various samples from mice, humans, and non-human primates 

(Table 6). All animal experiments were performed in accordance with the German animal welfare act. 

 

Table 6: Compilation of samples to which the bisulfite genomic sequencing method was applied. Genomic DNA was extracted 

from all samples, except from blastocysts, and applied to bisulfite genomic sequencing. 
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Samples for bisulfite genomic sequencing 

Organism Specification Type/tissue  Age/stage Number 

Feeding experiment1,# 

   Mouse BFMI860 strain Blood – control diet  10 weeks  9 

  Blood – high fat diet  10 weeks 10 

  Blood – control diet  32 weeks  9 

  Blood – high fat diet  32 weeks 10 

 B6 strain Blood – control diet  10 weeks  10 

  Blood – high fat diet  10 weeks 10 

  Blood – control diet  32 weeks  10 

  Blood – high fat diet  32 weeks 10 

Ontogenesis 

   Mouse NMRI strain2 Blood  adult 1 

  Various tissues*  adult * 

 
* 1 x adrenal, 3 x brain (whole), 1 x heart, 1 x kidney, 3 x liver, 1 x lung, 1 x ovary, 1 x pancreas, 3 x spleen and 1 x thymus 

   Mouse NMRI strain2 Whole embryo  E8.0 3 

  Whole embryo  E8.5 1 

  Whole embryo  E9.5 3 

  Whole embryo  E10.5 3 

  Whole embryo  E11.5 3 

  Whole embryo  E14.5 1 

   Mouse B6 strain2 Blood  adult 20 

  Various tissues**  adult ** 
** 1 x brain, 1 x heart, 3 x hypothalamus, 1 x kidney, 1 x liver, 1 x lung, 1 x muscle, 1 x pancreas, 1 x spleen and 1 x white adipose tissue 

  Whole blastocysts3  blastocyst 11 

   Human4 

 

 Blood                      

(from Guthrie spots) 

 newborn 8 

Phylogenesis 

   Primate Pan troglodytes5 Blood  adult 5 

 Gorilla gorilla5 Blood  adult 5 

 Macaca mulatta5 Blood  adult 5 

 Papio hamadryas5 Blood  adult 5 

 Callithrix jacchus6 Blood  adult 4 

 Eulemur macaco5 Muscle tissue  adult 4 

 Galago senegalensis5 Muscle tissue  adult 4 
 

1 The samples were kindly provided by the working group of Prof. Brockmann from the Institut für 

Züchtungsbiologie und molekulare Tierzüchtung, Humboldt-Universität zu Berlin, Berlin, Germany.#  

2 The samples were kindly provided by the Max Planck Institute for Molecular Genetics, Berlin, Germany. 

Noon of the day that the mating plug was observed was considered embryonic day 0.5 (E0.5) of 

development. 

3 The samples were kindly provided by the research group ‘Developmental Biology / Signal Transduction’ 

of Prof. Birchmeier-Kohler, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany. 

4 For the analysis of the newborn blood samples parents gave special informed consent. 

5 The samples were kindly provided by the Deutsches Primaten Zentrum (DPZ), Göttingen, Germany. 

6 The samples were kindly provided by Christian Adams of the Centrum für Reproduktionsmedizin und 

Andrologie, Universitätsklinikum Münster, Münster, Germany. 
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# The long-term feeding study, from which this samples of the working group of Prof. Brockmann are 

obtained, is extensively described by Widiker et al. (Widiker et al., 2010). To describe the study in short:  

Mice of two mouse strains 

a) obese Berlin Fat Mouse Inbred (BFMI) line 860 of the Institute of Animal Sciences, Humboldt-

University, Berlin, Germany (Meyer et al., 2009; Wagener et al., 2006)  

b) lean C57BL/6NCrl (B6) mouse line (Charles River Laboratories, Sulzfeld, Germany) 

were divided into 8 groups of 4 - 5 mice of the same mouse strain and sex. They were fed either a standard 

maintenance diet (SMD; V1534-000 ssniff R/M-H) or high fat diet (HFD; S8074-E010 ssniff EF R/M, both 

ssniff Spezialdiäten GmbH, Soest, Germany, Table 7) for 29 weeks (starting week 3 after weening until 

week 32). Water consume was ad libidum. They were caged at room temperature with a light-dark cycle of 

12 h. 

Blood samples were collected at week 10 and week 32. Genomic DNA was extracted with the NucleoSpin 

Tissue Kit (Macherey-Nagel GmbH & Co., Duren, Germany). The animal experiments were in accordance 

with the German Animal Welfare Act (approval no. G0152/04). 

Table 7: Compositions of the standard maintenance diet and high fat diet used in the mouse feeding experiment. 

Content 

 Standard maintenance diet High fat diet 

 SMD HFD 

Metabolizable energy 12.8 MJ/kg 19.1 MJ/kg 

Energy from  * Fat 9% 45% 

 * Protein  33% 24% 

 * Carbohydrates 58% 31% 
 

2.2.12.1 Bisulfite conversion of DNA samples 

a) Denaturation: 

Approximately 1 µg genomic DNA in a total volume of 50 µl was chemically denatured by incubation with 

5.7 µl freshly prepared 3 M sodium hydroxide solution (NaOH) (15 min, 500 rpm, 37°C) followed by a 

thermal denaturation step (5 min, 500 rpm, 95°C). The DNA containing tubes were immediately placed on 

ice to ensure that the DNA remained denatured. 

b) Sulfonation and hydrolytic deamination: 

The bisulfite solution was always freshly prepared by mixing one aliquot 5% hydroquinone solution with 

3.25 aliquots saturated sodium metabisulfite solution (Table 8). Thereof 563 µl were added to each 

sample. Then the samples were incubated (12 h, 50°C). To avoid oxidation, preparation of the solution, as 

well as the bisulfite conversion incubation were performed protected from light. 

c) Purification:  

The samples were desalted using the Wizard® SV Gel and PCR Clean-Up System (Promega) according to the 

manufacturer’s instructions (Promega, 2009b) and eluted with 50 µl nuclease-free water.  

 

d) Alkali desulfonation: 

The final alkali desulfonation was achieved by incubating with 5.7 µl 3 M NaOH (15 min, 500 rpm, 37°C).  

e) Neutralization and precipitation: 
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To neutralize the samples and precipitate the DNA, 1 µl of glycogen solution (10 mg/ml), 17 µl 7.5 M 

ammonium acetate, and 450 µl 100% ethanol were added, followed by overnight precipitation at -80°C. 

The DNA was centrifuged (25 min, 14,000 rpm, 10°C) and washed with 500 µl ice cold 70% ethanol 

(20 min, 14,000 rpm, 10°C). Afterwards, all traces of supernatant were removed and the samples were air 

dried for approximately 20 min (37°C). Finally, the DNA was resuspended in 35 µl H2OHPLC and either used 

directly for PCR amplification procedures (Paragraph 2.2.3.1) or stored at 4°C. 

Table 8: Composition of solutions used for the bisulfite conversion of genomic DNA samples. 

  Solution/buffer Composition 

3 M NaOH  1.2 g NaOH pellets in 10 ml H2OHPLC 

5% hydroquinone solution  50 mg hydroquinone crystals dissolved in 1 ml 

H2OHPLC (50°C, 500 rpm) Saturated sodium metabisulfite  solution, pH 

5.0 

 1.9 g sodium metabisulfite in 3.25 ml 0.46 M NaOH  

2.2.12.2 Bisulfite conversion of blastocysts  

This protocol is suitable for small amounts of tissue or cells without prior DNA extraction. 

a) Preparation of single blastocyst-containing agarose beads: 

Single blastocysts were mixed with 6 µl of 2% SeaPlaque® Agarose (Lonza), equilibrated twice with 50 µl 

1x EcoRI buffer (New England Biolabs, 15 min, on ice) and then incubated overnight with 100 µl EcoRI 

restriction-mix (37°C). 

b) Denaturation: 

The EcoRI restriction-mix was removed and the agarose beads were washed with 50 µl 0.4 M NaOH 

(2 x 15 min, rt) and 50 µl 0.1 M NaOH (5 min, rt). After complete removal of the NaOH, the beads were 

overlaid with 500 µl heavy mineral oil and heated to destroy the cells and to denature the DNA (30 min, 

95°C). Next, the samples were put on ice for approximately 20 min. until the agarose was getting solid 

again, hereby enclosing the denatured DNA in the beads. 

c) Sulfonation and hydrolytic deamination: 

Bisulfite solution was always freshly prepared by mixing 1 aliquot 10% hydroquinone solution with 

6.5 aliquots saturated sodium metabisulfite solution and put on ice to cool (Table 9). 800 µl ice cold 

bisulfite solution was added to each sample in such a way that the bead was located in the watery bisulfite 

phase, and incubated (12 h, 50°C). To avoid oxidation, preparation of the solution, as well as the bisulfite 

conversion incubation were performed protected from light. 

Table 9: Composition of solutions and buffer used for the conversion of blastocysts. 

Solution/buffer Composition 

2% SeaPlaque® Agarose  20 mg SeaPlaque® Agarose powder in 1 ml H2OHPLC 

EcoRI restriction-mix  20 units EcoRI in 100 µl 1x EcoRI buffer 

2 M NaOH  0.8 g NaOH pellets in 10 ml H2OHPLC 

10% hydroquinone solution  5 mg hydroquinone crystals dissolved in 0.5 ml 

H2OHPLC (50°C, 500 rpm) Saturated sodium metabisulfite  

solution, pH 5.0 

 1.9 g sodium metabisulfite powder in 3.25 ml 0.31 M 

NaOH 1x TE, pH 8.0  10 mM Tris-HCl, 1mM EDTA in H2O 
 

d) Purification and alkali desulfonation: 

After sulfonation and deamination, the mineral oil and bisulfite solution were carefully removed and the 

beads were washed with 500 µl 1x TE buffer (3 x 10 min, rt), 500 µl 0.2 M NaOH (3 x 10 min, rt) and 
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500 µl 1x TE buffer (3 x 10 min, rt) respectively. The beads were either used immediately for PCR 

amplification procedures (Paragraph 2.2.3.1) or stored at 4°C in 1x TE buffer. 

2.2.12.3 Translation of bisulfite genomic sequencing results 

The bisulfite converted DNA samples were PCR amplified (Paragraph 2.2.3.1). The resulting fragments 

were either directly applied to Exo/SAP and sequencing reaction (Paragraphs 0), or only after TOPO 

cloning and colony PCR (Paragraphs 2.2.7.1 and 2.2.3.2). Afterwards, sequences were evaluated and 

translated into (i) color-code for lollipop diagrams and (ii) number-code for methylation intensity plots. 

Response codes were used to translate the sequencing curves as stated below (Table 10 and Figure 11). 

Thereby cytosine-thymine double peaks were always interpreted as ‘heterogeneously methylated’ 

independent of their relation of heights. 

Table 10: Response code for interpreting and translating methylation data from sequences. 

Translation and coding of methylation status 

Base Methylation status Color-code Number-code 

 Cytosine methylated  black 100%  

 Thymine non-methylated  white 0%  

 cytosine-thymine heterogeneously methylated  grey 50%  
 

 

Figure 11: Translation of bisulfite sequences into the methylation status with respective lollipop figures. (A) Sequence with 

single cytosine = C and thymine = T peaks that are interpreted as ‘methylated’ or ‘non-methylated’ respectively and translated into 

black or white circles respectively. (B)  Sequence with double peaks of cytosine-thymine = Y that are all interpreted in the same way 

as ‘heterogeneously methylated’ and translated into grey circles. 

2.2.13 Functional analysis of the pCpGL vector constructs in GT1-7 cells 

The promoter activity of the 5’ CGI and 3’ CGI of the human POMC locus was analyzed in dual luciferase 

reporter gene assays. Therefore, GT1-7 cells were transiently transfected with the luciferase-containing 

pCpGL vector constructs (Paragraph 2.2.7.2) and a renilla vector as transfection control.  

2.2.13.1 Culturing GT1-7 cells 

The GT1-7 cell line, developed by Mellon et al. (Mellon et al., 1990), is a mouse cell line obtained from 

anterior hypothalamic tumors with neuronal morphology. They were constructed and used for studies 

related to GnRH. However, it is one of the most utilized neuronal cell models for studies of basic neuronal 

function as they represent one of the few appropriate neuronal models available (Mayer et al., 2009). 

GT1-7 cells were adherently cultured in Dulbecco's Modified Eagle's Medium (DMEM; Biochrom) 

containing 4.5 mg/l glucose, 548 mg/l L-glutamine, 10% fetal bovine serum (FBS), and 100 U/ml 

penicillin-streptavidin antibiotics, in a  4 – 5% CO2 environment in 37°C. Once a week cells were 

trypsinized with 1 x Trypsin/EDTA solution (T/E) and passed through 1: 5 or used for seeding. 
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2.2.13.2 Transfection of GT1-7 cells 

The GT1-7 cells were transfected with both a pCpGL construct and the pGL4.74 renilla vector using the 

Effectene Transfection Reagent (QIAGEN) according to the manufacturer’s instructions (QIAGEN, 2002). 

Cells were seeded in 12-well plates at a cell density of 1.5 x 105 cells/well. The transfection was performed 

24 h after the seeding. Per well 300 ng of the pCpGL construct and 0.12 ng of the renilla vector were added 

for transfection (1: 2500) using 2.4 µl Enhancer solution and 6 µl Effectene reagent. The pCpGL vector 

constructs were applied either unmethylated or after in vitro methylation with the methyltransferases 

M.SssI, HhaI, HpaII.  

2.2.13.3 In vitro methylation of pCpGL vector constructs 

Methyltransferase M.SssI was applied for complete methylation of each CpG position within the fragment. 

For partial methylation of the fragments, side specific methylases HhaI and HpaII were used. For detailed 

information about the specific methylation sites, see the Results section 3.1. Each microgram of vector 

construct was incubated (16 h, 37°C) in 1x buffer (NEB2 for M.SssI, HhaI buffer for HhaI, and HpaII buffer 

for HpaII), S-adenosylmethyonine (SAM, 160 µM for M.SssI and 80 µM for HhaI or HpaII), and the 

respective enzyme (enzymes, buffers and SAM obtained from New England Biolabs). To stop the 

enzymatic reaction, samples were purified using the centrifugation strategy (Promega, 2009b) of the 

Wizard® SV Gel and PCR Clean-Up System (Promega) with following modifications: 

 No evaporation step with open centrifuge lid was carried out. 

 DNA was eluted with 60 µl nuclease-free water. 

After purification, DNA concentrations of the samples were determined by NanoDrop, so the right amount 

could be deployed for transfection. For the mock controls, the same sample processing protocol was 

followed without the addition of SAM. The unmethylated vector was also exposed to the same incubation, 

cleaning and measuring steps for control. 

2.2.13.4 Dual-luciferase reporter gene assay 

The dual-luciferase reporter gene assay is based on two different luciferase reporter enzymes, which are 

simultaneously expressed after transfection into the cell. The firefly luciferase and the renilla (sea pansy) 

luciferase have different bioluminescence substrates and do not cross-activate (Sherf et al., 1996). The 

dual-luciferase assay was applied for functional analysis of the pCpGL vector constructs (Table 2 and 

Table 3). These fragments are assumed to have promoter function, hence to be capable of activating gene 

transcription and expression of the firefly luciferase gene, which is located downstream of the multiple 

cloning site of the pCpGL vector. By transfecting constant ratios of the firefly luciferase vector constructs 

(pCpGL) and the renilla luciferase vector (pGL4.74), the independently measured light signals can be used 

to (i) detect gene expression activation due to the cloned fragments by measuring the firefly luciferase 

signal and (ii) adjust the data for transfection efficiency by the renilla luciferase signal.  

a) Cell lysis: 

The GT1-7 cells were lysed 48 h hours after transfection in two steps. First, the medium was substituted 

by 250 µl of 1x passive lysis buffer (PLB, Promega) and the plates were shaked (15 min, 500 rpm, rt). 

Secondly, the cells were frozen (at least 1 h, -20°C) after the shaking procedure. 

b) Measurement of both luciferase signals: 

After thawing, 3 x 20 µl, the cell lysate was measurement using the Dual-Luciferase® Reporter Assay System 

from Promega (Promega, 2010b) with the microplate reader Mithras LB 940 (Berthold). 
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2.2.14 Statistical analysis 

The statistical analyses (exploratory data analysis and non-parametric statistics) of the bisulfite genomic 

sequencing results of the samples from the mouse feeding experiment was performed by Andrea Ernert, 

Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie, Charité Berlin, Berlin, Germany.  

The data from dual-luciferase reporter gene assay was analyzed using Excel (Microsoft, Redmond, USA) 

and the GraphPadPrism 4 software (GraphPad Software, LaJolla, USA). Significance was tested with 

unpaired, two-tailed t-tests for a 95% confidence interval.  

2.2.15 Repeat analysis 

Using the RepeatMasker Web Server tool (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) the 

sequences of the various primates were analyzed for Alu incidence. 

2.2.16 Transcription factor binding site analysis 

The analysis by TFSEARCH transcription factor search web tool 

(http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCH.html) revealed putative transcription factor 

binding sites in the applied sequences.

http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCH.html
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3 Results 

The POMC locus exhibits two CpG islands (CGIs). The 5’ CGI is associated with the promoter region and 

embeds the exon1 start that coincides with the transcription start site (TSS) of regular POMC transcripts. 

The intragenic 3’ CGI surrounds the exon3 start (Figure 12). The DNA methylation patterns of both CGIs 

were established by Kuehnen et al. (Kuehnen et al., in revision). 

 

Figure 12: human POMC gene  indicating the location of the PromI and Island2 fragments for functional analysis. Grey boxes 

indicate exons. Hatched ovals mark the location of CGIs. Alu element positions are marked by horizontal arrows. 

The aim of this thesis was to reveal various core issues of the DNA methylation patterns of the POMC CGIs: 

their function in gene activity, their tissue distribution and stability, as well as their ontogenetic and 

phylogenetic development. Therefore, I tested the postulated four hypotheses regarding the DNA 

methylation patterns of the POMC locus with appropriate methodological approaches as posed in 

Paragraph 1.7.  

3.1 The POMC DNA methylation status influences its gene expression 

Generally, DNA methylation interferes with gene expression. In this thesis work, fragments of both CGIs of 

the POMC locus were tested for promoter activity. The constructs of interest were built using a luciferase-

containing CpG-free vector backbone (pCpGL) to prevent unspecific inhibiting influences of vector 

backbone-CpGs (Klug and Rehli, 2006). Thereby, only effects of functionally important CpG residues 

within the fragments of interest could be detected.  

The so-called pCpGL-PromI construct contains a fragment of the 5’ CGI. The second construct, the so-

called pCpGL-Island2, contains a fragment of the 3’ CGI (Figure 12). Both pCpGL-constructs were 

methylated using the generic CpG methylase SssI for complete methylation and target specific CpG 

methylases HhaI (target site = GCGC) and HpaII (target site = CCGG) for partial methylation (Figure  13B 

and Figure 14B).  

Cells of the GT1-7 hypothalamic cell line were transfected with SssI-, HhaI-, HpaII-methylated or 

unmethylated constructs. A renilla vector was used as a control for transfection efficiency. After 48 h, the 

cells were lysed and a dual-luciferase assay was performed. The transfection efficiency was determined by 

putting the luciferase signal in relation to the renilla signal.  

3.1.1 Functional analysis of the pCpGL-PromI construct 

As shown in Figure 12 and Figure 13B, the PromI fragment spans -493 bp to +98 bp of the 5’ CGI in 

relation to the TSS (= exon1 start). This fragment includes 48 CpG dinucleotides, which were all 

methylated after incubation with SssI. Methylation with HhaI and HpaII resulted in six and three 

methylated CpG positions respectively (Figure 13B). In silico analysis revealed, that one of the HpaII-

methylation sites coincides with a nucleotide sequence that is similar to a binding site of the group of 

signal transducers and activators of transcription (STAT). 

The unmethylated vector construct showed signaling in comparison to the negative control. However, no 

response was observed when the vector construct pCpGL-PromI was completely methylated (SssI). Partial 

methylation with HhaI showed no significant effects while methylation with HpaII reduced the response 

significantly (Figure 13A).  
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Figure 13: Functional analysis of the hPOMC 5’ CGI (pCpGL-PromI construct). (A) Effects of DNA methylation (SssI-, HhaI-, or 

HpaII-methylation) on signaling activity in dual-luciferase reporter gene assays. Results are shown relative to the activity of the 

unmethylated pCpGL-PromI construct and are normalized for transfection efficiency by co-transfection of Renilla construct. Values 

are the mean ± SD from three independent experiments. *** p-value < 0.001 (t-test for a 95% confidence interval). (B) Lollipop 

figures of the differentially methylated PromI fragment (unmethylated, SssI-, HhaI-, or HpaII-methylated). The target sites of 

respective enzymes are shown. Each lollipop indicates the position of one CpG group within the fragment. white circles = non-

methylated, black circles = methylated. The vertical arrow marks the CpG position that coincides with an in silico predicted STAT 

binding site. Illustration of the CpG positions and fragment lengths are in proportion and the vertical dashed line indicates the 

starting point of exon1. 

3.1.2 Functional analysis of the pCpGL-Island2 construct 

The 3’ CGI of the human POMC was also analyzed as pCpGL vector construct. First GT1-7 hypothalamic 

cells were transfected with the long construct pCpGL-Island2 long (-256 bp to +294 bp of the exon3 

boundary) either unmethylated or SssI-, HhaI- or HpaII-methylated. Next, the pCpGL-Island2 construct 

was tested in different lengths variations to determine, which regions are important for signaling. 

3.1.2.1 Differentially methylated Island2 fragment 

The Island2 fragment spans over the intron2-exon3 junction within the 3’ CGI of the human POMC (-256 

bp to +294 bp of the exon3 boundary, Figure 12) and possesses 53 CpG dinucleotides. All of these 53 CpG 

dinucleotides were methylated by SssI. The methylases HhaI and HpaII only methylated five and six CpGs 

respectively in this region (Figure 14B). Also for the Island2 fragment in silico analysis revealed a 

coincidence of one HpaII-methylation site with a hypothetical STATx-binding site. Additionally, the 

subsequent CpG position of the p300 binding site is also a target site of HpaII.  
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Figure 14: Functional analysis of the hPOMC 3’ CGI (pCpGL-Island2 construct). (A) Effects of DNA methylation (SssI-, HhaI-, or 

HpaII-methylation) on signaling activity in dual-luciferase reporter gene assays. Results are shown relative to the activity of the 

unmethylated pCpGL-Island2 construct and are normalized for transfection efficiency by co-transfection of Renilla construct. Values 

are the mean ± SD from three independent experiments. ** p-value = 0.001 – 0.01; *** p-value < 0.001 (t-test for a 95% confidence 

interval). (B) Lollipop figures of the differentially methylated Island2 fragment (unmethylated, SssI-, HhaI-, or HpaII-methylated). 

The target sites of respective enzymes are shown. Each lollipop indicates the position of one CpG group within the fragment. white 

circles = non-methylated, black circles = methylated. The vertical arrow marks the CpG position that coincides with an in silico 

predicted STAT binding site. Illustration of the CpG positions and fragment lengths are in proportion and the vertical dashed line 

indicates the starting point of exon3. 

Compared to the negative control (empty vector), the unmethylated vector construct showed significant 

signaling and, therefore, promoter function. However, when the Island2 fragment was completely 

methylated, the response disappeared. Partial methylation with HpaII resulted in significant but not 

complete reduction of the activity. HhaI methylation showed no significant effects (Figure 14A).  

3.1.2.2 Variations in length of the Island2 fragment 

The Island2 fragment showed promoter activity in the previous experiments. To find out about crucial 

regions for the identified activity, two additional pCpGL constructs of the 3’ CGI were created and tested. 

Assuming that the Island2 construct is the ‘long’ fragment, also a ‘medium’ and a ‘short’ fragment were 

designed. All three fragments had the same starting position (-256 bp to the exon3 boundary) but the 

‘long’ fragment ended in the middle of the exon3 at position +294 bp relative to the exon3 start. Therefore, 

it contained the p300 binding site with subsequent CpG residue at the intron-exon junction, as well as the 

putative STATx binding site surrounding the CpG position at +53 bp. Those two CpG sites were identified 

in the previous experiment to be target sites of HpaII methylation, which reduced the promoter activity of 

the fragment significantly. The medium-sized fragment ended downstream of the p300 binding site 

(+32 bp) and included the succeeding CpG position but not the putative STATx binding site. The ‘short’ 

fragment ended before the exon3 start at -10 bp and contained neither the p300 nor the putative STAT 

binding site (Figure 15B). 
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Figure 15: Functional analysis of the 3’ CGI (pCpGL-Island2 construct) in various lengths. (A) Effects of length variations (long, 

medium, and short) on signaling activity in dual-luciferase reporter gene assays. Results are shown relative to the activity of the 

pCpGL-Island2 long construct and are normalized for transfection efficiency by co-transfection of Renilla construct. Values are the 

mean ± SD from three independent experiments. *** p-value < 0.001 (t-test for a 95% confidence interval). (B) Scheme of the 

Island2-fragments with the lengths long, medium, and short. Length indications are relative to the exon3 start. The p300 binding site 

is marked with a black box. The grey hatched box indicates the in silico predicted STATx binding site. 

Transfection of the long fragment into GT1-7 cells resulted in a proper luciferase signal. However, the 

medium and the short versions of the pCpGL-Island2 construct were significantly reduced in their activity 

and showed practically no response in the reporter gene assays (Figure 15A). To examine further a 

possible involvement of the p300 binding site in the promoter activity of the Island2 fragment, the p300 

binding site was modified in different ways and afterwards again tested in dual-luciferase assays.  

3.1.2.3  Modifications of the p300 binding site of the Island2 fragment 

The long Island2 fragment, which contains the p300 binding site and the in silico predicted STATx binding 

site, was modified in three ways in the region of the p300 binding site (Figure 16B) to elucidate the role of 

the p300 binding site for the promoter activity of the Island2 fragment: 

 Island2 long-del: the three bases GAG were deleted to make the p300 binding site unrecognizable. 

 Island2 long-mut: a GAG  CTC mutation was introduced to make the p300 binding site 

unrecognizable. 

 Island2 long-mutCpG: CpG residue +1 downstream of the p300 binding site was mutated to TpG. 

Transfection of the long, unmodified Island2 fragment into GT1-7 cells resulted in a proper luciferase 

signal (Figure 16A). Deletion of the three bases ‘GAG’ within the p300 binding site (Island2 long-del) lead 

to unrecognizability of the binding site and resulted in a slight but significant reduction of signaling 

activity. In the Island2 long-mut construct the p300 binding site was also unrecognizable, but caused a 

significant increase of promoter activity. However, even though this mutation destroyed the p300 binding 

site it created a putative GATA-1 binding site at the same time. The CpG  TpG mutation of the CpG 

residue that is directly downstream of the p300 binding site (Island2 long-mutCpG), showed no effect on 

the signaling activity of the Island2 fragment. The p300 binding site was unaffected by this mutation.  
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Figure 16: Functional analysis of the 3’ CGI (pCpGL-Island2 construct) with p300 binding site modifications. (A) Effects of 

modifications of the p300 binding site (del, mut, and mutCpG) on signaling activity in dual-luciferase reporter gene assays. Results 

are shown relative to the activity of the pCpGL-Island2 long construct and are normalized for transfection efficiency by co-

transfection of Renilla construct. Values are the mean ± SD from three independent experiments. * p-value = 0.01 - 0.05; *** p-value < 

0.001 (t-test for a 95% confidence interval). (B) Scheme of the Island2-fragments with different modifications. Length indications are 

relative to the exon3 start. The p300 binding site is marked with a black box. The grey hatched box indicates the putative STATx site. 

del = deletion of ‘GAG’; mut = ‘GAG’  ‘CTC’-mutation; mutCpG = CpG  TpG-mutation of the moiety +1. 

These reporter gene assays showed, that both CGI fragments exert promoter activity in vitro, which can be 

influenced by length or sequence modifications of the fragment, as well as by changes in the methylation 

state. Hence, it was interesting to establish the methylation states of both CGIs of the POMC in vivo and to 

test their constancy during life. 

3.2 The POMC DNA methylation pattern is stably established early during 

ontogenesis 

The in vitro reporter gene assays showed, that the promoter activity of both CGIs could be influenced by 

the methylation status. Since the in vivo DNA methylation status of a promoter region can also be 

associated with its transcriptional activity of the gene, the occurrence and tissue distribution of POMC 

DNA methylation patterns was analyzed in various murine tissues.  

DNA methylation of the genome changes during lifetime. For instance, periconceptional the DNA 

methylation is reprogrammed. In this phase, the DNA methylation patterns of a genome are established. 

Hence, it is important to understand the dynamics of the ontogenetic formation and development of DNA 

methylation pattern. Therefore, the ontogenetic development of DNA methylation patterns of the POMC 

locus was further elucidated.  
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3.2.1 POMC DNA methylation in various tissues of adult mice 

 The DNA methylation patterns of the two CGIs within the POMC gene region were determined in 

peripheral blood cells (PBC). 

 By comparing the patterns of various murine tissues of adult members of two different mouse 

strains (NMRI and C57BL/6) the intraindividual constancy of POMC methylation was estimated. 

 

Figure 17: mouse POMC gene denoting the 5’ and 3’ CGI. (A) Scheme of the mouse POMC gene. Hatched ovals mark the location of 

the 5’ and the 3’ CGI. The F1, F2, F3, F4 labeled segments mark the location of the four fragments of interest (mPOMC-F1 = 243 bp, 6 

CpGs; mPOMC-F2 = 450 bp, 21 CpGs; mPOMC-F3 = 328 bp, 17 CpGs; mPOMC-F4 = 493 bp, 37 CpGs). (B) Lollipop figures of the two 

fragments of the 5’ CGI (mPOMC-F1and -F2). (C) Lollipop figures of the two fragments of the 3’ CGI (mPOMC-F3and -F4). Each 

lollipop indicates the position of one CpG residue within the fragment. The illustration of the CpG positions is in proportion. 

Upstream boarders of the exons1 and exon3 are marked by vertically dashed lines. 

The samples of genomic DNA from mouse blood and various mouse tissues were bisulfite converted. The 

four fragments of interest, mPOMC-F1, -F2, -F3 and -F4 (Figure 17), were PCR amplified using the primers 

listed in Paragraph 2.1.7.1. The resulting fragments from the bisulfite PCRs were directly sequenced. Not 

all CpG positions within and in between the fragments were accessible because of the primer positions 

and sequencing reasons. 

 

Figure 18: DNA methylation patterns in DNA samples from peripheral blood cells (PBC, n = 20) of adult C57BL/6 mice. 

Vertical solid lines indicate the margins of the four fragments (mPOMC-F1/-F2/-F3/-F4). Dotted vertical lines mark the upstream 

boundaries of exon1 and exon3 respectively. Each circle of one row represents one CpG position within the gene region. Vertical 

dashes indicate CpGs with a non-analyzable methylation status. Black circles represent methylated CpGs; white circles non-

methylated CpGs and grey circles represent heterogeneously methylated CpGs.  
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Bisulfite converted DNA samples from peripheral blood cells (PBC) of 20 different C57BL/6 mice showed 

the following DNA methylation pattern (Figure 18):  The 5’ CGI, covered by the fragments mPOMC-F1 and 

mPOMC-F2, was distinctly methylated with hypermethylation in the mPOMC-F1 region and predominant 

heterogeneous methylation for the mPOMC-F2 fragment. In the mPOMC-F1 fragment, a methylation dip 

around CpG position -19 (respective to exon1 start) could be detected. The 3’ CGI, covered by mPOMC-F3 

and mPOMC-F4, showed sporadic heterogeneous methylation for the intron2 region of the mPOMC-F3 

fragment (first to sixth CpG position), and hypomethylation for the exon3 region (posterior part of 

mPOMC-F3 and mPOMC-F4). This patterning was similar for all mice examined.  

The analysis of the DNA samples from different tissue of the C57BL/6 mouse strain and the NMRI mouse 

strains showed similar patterning for the examined tissues (Figure19). All samples showed the overall 

hypomethylation for the third and fourth fragment (exon3 region), which increased up to 50% of sporadic 

methylation in the intron2 region. In addition, the patterns of heterogeneous methylation of the second 

fragment and hypermethylation of the first fragment were consistent. Even the methylation decrease at 

CpG position -19 (respective to exon1) in the mPOMC-F1 fragment was reproducible in most samples. 

 

Figure 19: DNA methylation patterns in DNA samples from various tissues of adult NMRI and C57BL/6 mice. The tissues are 

sorted by germ layer origin (derived from literature). Vertical solid lines indicate the margins of the four fragments (mPOMC-F1/-

F2/-F3/-F4). Dotted vertical lines mark the upstream boundaries of exon1 and exon3 respectively. Each circle of one row represents 

one CpG position within the gene region. Vertical dashes indicate CpGs with a non-analyzable methylation status. Black circles 

represent methylated CpGs; white circles non-methylated CpGs and grey circles represent heterogeneously methylated CpGs. 

Summing up, the DNA methylation patterns were largely the same in all tissue samples examined, 

independent from the tissue, the mouse strain, or the POMC expression status. Even the germ layer of 

origin of the tissue did not have an influence on the methylation pattern. Hence, the question aroused 

when these constant patterns evolve, if they are established before the differentiation of the germ layers, 

or if they develop independently in the various tissues. To find out about the time point when the DNA 
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methylation patterns of POMC are established, they were analyzed in various embryonic stages of NMRI 

mice. 

3.2.2 POMC DNA methylation in various embryonic stages of NMRI mice 

During cell division, the DNA methylation is passed to the daughter cells. However, in the periconceptional 

phase, DNA methylation is reprogrammed and patterns are established. To find out about the 

developmental dynamics of the POMC methylation patterns, we aimed to determine, when the consistent 

patterns, we observed in PBC and different mouse tissues, evolve. Therefore, a comparative analysis of the 

POMC methylation patterns in mice was performed using samples of various prenatal stages. The results 

from the embryonic samples were compared to the patterns found in adult mice.  

The samples of genomic DNA from mouse embryos of various prenatal stages (E8.0, E8.5, E9.5, E10.5, 

E11.5, and E14.5) were bisulfite converted. The four fragments of interest, mPOMC-F1, -F2, -F3 and -F4 

(Figure 17), were PCR amplified using the primers listed in Paragraph 2.1.7.1. The resulting fragments 

from the bisulfite PCRs were directly sequenced. Not all CpG positions within and in between the 

fragments were accessible because of the primer positions and sequencing reasons.  

All embryonic samples showed the same patterning (Figure 20):  Heterogeneous methylation of intron2 

and hypomethylation of exon3 characterized the 3’ CGI. Distinct hypermethylation with a heterogeneous 

methylation dip at CpG -19 in the front part was observable for the 5’ CGI. However, the back part of the 

5’ CGI showed slight pattern variations amongst the different samples but was at large heterogeneously 

methylated. Comparative analyses revealed that the patterns of both POMC CGIs from whole embryo 

samples resemble the patterns of PBC and tissue samples received from adult mice.  

 

Figure 20: DNA methylation patterns in DNA samples from various embryonic stages (E8.0 to E14.5) of NMRI mice. Vertical 

solid lines indicate the margins of the four fragments (mPOMC-F1/-F2/-F3/-F4). Dotted vertical lines mark the upstream boundaries 

of exon1 and exon3 respectively. Each circle of one row represents one CpG position within the gene region. Vertical dashes indicate 

CpGs with a non-analyzable methylation status. Black circles represent methylated CpGs; white circles non-methylated CpGs and 

grey circles represent heterogeneously methylated CpGs. E = embryonic day. 

3.2.3 POMC DNA methylation in mouse blastocysts 

To examine further, if the observed patterns are established before the differentiation of the germ layers, 

or if they develop independently in the various tissues, samples from an earlier developmental stage, the 

blastocystal stage (E3.5), were examined. Because of the nature of a blastocyst sample and its small 

number of cells, a modified version of the bisulfite conversion was applied (Methods 2.2.12.2) to capture 

the small amount of DNA from a blastocyst within an agarose bead before conversion. The four fragments 

of interest, mPOMC-F1, -F2, -F3 and -F4 (Figure 17), were amplified using one blastocyst-agarose bead as 

template per PCR. After amplification, the PCR products were TOPO cloned, as well as directly sequenced. 

Following the TOPO cloning step, various clones of one blastocyst-sample were sequenced. The sequences 
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of all clones originating from one blastocyst template represent its methylation pattern. For each fragment 

(mPOMC-F1/-F2/-F3/-F4) all clones of one blastocyst are shown exemplary for the results of all analyzed 

blastocysts (Figure 21).  

 

Figure 21: DNA methylation patterns in blastocyst samples of the C57BL/6 mouse strain. Vertical solid lines indicate the 

margins of the four fragments (mPOMC-F1/-F2/-F3/-F4). Dotted vertical lines mark the upstream boundaries of exon1 and exon3 

respectively. Each row represents one analyzed clone. Each circle of one row represents one CpG position within the gene region. 

Vertical dashes indicate CpGs with a non-analyzable methylation status. Black circles represent methylated CpGs; white circles non-

methylated CpGs and grey circles represent heterogeneously methylated CpGs. All shown clones for one fragment originate from the 

same blastocyst sample. The posed sequences are exemplary for the results obtained from all analyzed blastocysts. In sequences 

obtained from direct sequencing, analogue results were observed. 

All analyzed clones of various blastocysts displayed similar methylation states. The four fragments of 

interest were uniformly hypomethylated with only a few CpG residues showing methylation with a 

random distribution. In sequences obtained from direct sequencing, analogue results were observed. 

The mPOMC-F1 fragment, which was hypermethylated in all samples from embryos and adult mice, was 

also non-methylated in blastocysts. The same applied for mPOMC-F2, as well as the intron2 region of 

mPOMC-F3, which were heterogeneously methylated in all other samples. The exon3 regions were also 

non-methylated as observed before in adult mice and mouse embryos. These results differed significantly 

from those of various mouse tissues and embryonic stages later than E8.0, described in the paragraphs 

above, suggesting reprogramming and establishment of the patterns in early development. For validation 

if the consistency of the POMC DNA methylation patterns observed in this study also applies for the 

human POMC locus, samples from newborns were analyzed.  

3.2.4 POMC DNA methylation in newborn humans 

Parallel to the ontogenetic examinations in mice also the stability of the human POMC DNA methylation 

pattern was tested. Therefore, the human DNA methylation patterns of newborn PBC DNA samples were 

analyzed using samples obtained from Whatman Protein SaverTM 903® newborn screening cards. Due to 

obvious ethical reasons, it was not possible to examine the human patterns prenatally in different 

embryonic stages.  

The DNA samples of eight newborn humans were bisulfite converted. The three fragments of interest, 

hPOMC-F1, -F2, and -F3 (Figure 22) were PCR amplified using primers listed in Paragraph 0. The resulting 

fragments from the bisulfite PCRs were directly sequenced. Not all CpG positions within and in between 

the fragments were accessible because of the primer positions and sequencing reasons.  
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Figure 22: human POMC gene denoting the 5’ and 3’ CGI. (A) Scheme of the human POMC gene. Hatched ovals mark the 

location of the 5’ and the 3’ CGI. The F1, F2, and F3 labeled segments mark the location of the three fragments of interest (hPOMC-F1 

= 416 bp, 30 CpGs; hPOMC-F2 = 442 bp, 46 CpGs; hPOMC-F3 = 513 bp, 53 CpG). Alu element positions are marked by arrows. 

(B) Lollipop figures of the two fragments of the 5’ CGI (hPOMC-F1 and -F2). (C) Lollipop figure of the fragment of the 3’ CGI (hPOMC-

F3). Each lollipop indicates the position of one CpG residue within the fragment. The illustration of the CpG positions is in proportion. 

Upstream boarders of the exons1 and exon3 are marked by vertically dashed lines. 

The results of the newborn humans are not depicted as lollipop figures as the mouse samples, but as semi-

quantitative descriptive plots that show the CpG methylation intensity over the particular CpG position 

(Figure 23), as it was done by Kuehnen et al. for the DNA methylation patterns from human adolescents 

and β-MSH positive cells (Figure 7). The patterns, received from PBC samples from newborns, showed 

heterogeneous DNA methylation for the 5’ CGI. The gene region upstream of the exon1 start was 

irregularly heterogeneously methylated with peaks at CpG positions -23, -27 and -29. The region 

downstream of the exon1 start was hypomethylated. For the 3’ CGI a prominent pattern of 

hypermethylation in the intron2 region and hypomethylation in exon3 was observed. Within the block of 

hypermethylation in intron2, a constant reduction of methylation to approximately 50% was detectable. 

The transition from hypermethylation in the intron2 region to hypomethylation in the exon3 occurred as 

sudden decline between CpG position -3 and CpG +2, which downright forms a ‘drop zone’ at the intron2-

exon3 junction (Figure 23). 

 

Figure 23: DNA methylation pattern of the human POMC locus in samples from human newborns (n = 8) depicted as 

methylation intensity plots. The plots are semi-quantitative and descriptive and display CpG methylation intensity (in %) over the 

particular CpG position within this region. CpG positions are numbered according to their relative position to the next exon start. 

Vertical dashed lines mark the exon starts. 5’ CpG island (CGI) = hPOMC-F1 + hPOMC-F2; 3’ CGI = hPOMC-F3. 

The detected methylation pattern was compared to the established human patterns from adult PBC DNA 

(Figure 7). The patterns from newborn PBCs were consistent with the findings of adult PBC and 
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microdissected ß-MSH positive cells of the human arcuate nucleus. Even the dip to heterogeneous 

methylation at CpG position -13 of the 3’ CGI showed conservation  

The methylation dip at CpG -13 and the distinct drop zone at the intron2-exon3 junction are conserved in 

all three kinds of human samples: newborn PBC, adult PBC and microdissected ß-MSH positive cells. The 

conservation of those structural features suggests some kind of function. Therefore, we tested both the 

CpG -13 position and the intron2-exon3 transition for putative transcription factor binding sites in silico, 

to estimate their importance and relevance in this coherence.  

The comparative analysis of the human POMC DNA methylation patterns in newborn PBC, adult PBC and 

ß-MSH positive cells showed high constancy of the patterns in human postnatal life. The methylation 

pattern of humans differs highly from the murine methylation pattern. A possible influencing factor for 

this was examined in Paragraph 3.4. However, the findings of the constancy of the POMC methylation in 

humans are in accordance with the findings from mice made in samples from various tissues of different 

germ layer origin and in various developmental stages. If these stable patterns can be changed by 

exposure to long-time application of a high fat diet to mice, was tested in the following part. 

3.3 The POMC DNA methylation pattern is stable postnatally  

Mice were fed for 29 weeks (starting at week 3 after weaning) with either a high fat diet (HFD) or a 

standard maintenance diet (SMD). This was tested in two different mouse models, the C57BL/6 and the 

BFMI860 mouse strain. The C57BL/6 mouse strain is considered a lean wild type strain. The members of 

the BFMI860 strain are considered predisposed for being obese (Meyer et al., 2009; Wagener et al., 2006). 

The DNA samples from PBC of 39 mice taken at week 10 (seven weeks of feeding) and week 32 (29 weeks 

of feeding and end of the test period) were bisulfite converted. The four fragments of interest, mPOMC-

F1, -F2, -F3 and, -F4 (Figure 17) were PCR amplified. The resulting fragments were directly sequenced. 

Not all CpGs within the region were accessible because of the primer positions and sequencing reasons.  

All analyzed groups - high fat diet and control diet groups of both mouse strains - showed similar DNA 

methylation patterns (Figure 24). This was true for the comparison of different groups, as well as for the 

comparison of both time points within one group. The 5’ CGI, covered by the fragments mPOMC-F1 and 

mPOMC-F2, was hypermethylated in the mPOMC-F1 region, and predominantly heterogeneously 

methylated for the mPOMC-F2 fragment. In mPOMC-F1, a methylation drop around CpG position -19 was 

detected. The 3’ CGI was heterogeneously methylated in the intron2 region (first to sixth CpG position of 

mPOMC-F3), whereas the exon3 region (posterior region of mPOMC-F3 + mPOMC-F4) showed 

hypomethylation. These patterns for the 5’ CGI and 3’ CGI were observed for all samples analyzed, with 

mild irregularities, independent of mouse strain, time point, or diet.  

Various statistical tests (exploratory data analysis and non-parametric statistics) were applied to the data, 

whereby all CpGs positions analyzed were tested as one group. Additionally, two subgroups were created 

and independently tested with the same statistical tests. This was done, because the regions of the 

subgroups showed prominent extremes of DNA methylation. One subgroup consisted of the first five CpG 

positions (subgroup CpG 1 - 5), which showed hypermethylation in comparison to the other regions. The 

other subgroup was formed of the data from the last 20 CpG moieties (subgroup CpG 60 - 80), which 

showed regions of irregular heterogeneous methylation within the hypomethylated exon3 region.  

For the C57BL/6 mice, no statistically significant differences could be detected. In the non-parametric 

Mann-Whitney-Test a difference in CpG position 63 was detected, which was almost significant showing a 

p-value of 0.054. This difference was only observed in the CpG 60 - 80 subgroup data without correction 

for binding influences.  
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The data obtained from the BFMI mice were equally insignificant. Only the subgroup CpG 1 - 5 showed a 

significant difference in the Mann-Whitney-Test between the normal diet group and the high fat diet 

group at week 32 (p-value = 0.035). This significant difference vanished after correction for binding 

influences. Altogether, no meaningful alterations of the DNA methylation patterns by postnatal diet were 

found in mouse PBC in these experiments. 

 

Figure 24: DNA methylation patterns of the mouse POMC locus before and after 29 weeks of high fat or control diet. Two 

mouse strains were tested: C57BL/6 = wild type and BMFI860 = predisposed for obesity. (A) PBC of C57BL/6 mice on a normal diet 

(n = 10). (B) PBC of C57BL/6 mice on a high fat diet (n = 10). (C) PBC of BFMI860 mice on a normal diet (n = 9). (D) PBC of BFMI860 

mice on a high fat diet (n = 10). The plots are semi-quantitative and display CpG methylation intensity (in %) over the particular CpG 

position within this region. CpG positions are numbered according to their relative position to the next exon start. Vertical dashed 

lines mark the exon starts. 5’ CpG island (CGI) = mPOMC-F1 + mPOMC-F2; 3’ CGI = mPOMC-F3 + mPOMC-F4. 
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3.4 The phylogenetic development of POMC DNA methylation is associated 

with Alu element incidence within the intron2 region 

The comparison of the murine and human POMC DNA methylation patterns is difficult, as long as the the 

human patterns are depicted as methylation intensity plots (Figure 23) and the mouse patterns as lollipop 

figures (Figure 18). To make them comparable, the mouse lollipop figures of PBC samples were translated 

into methylation intensity plots (Figure 25B). Then it gets obvious that the human and murine DNA 

methylation patterns of POMC are divergent. (Figure 25). The 5’ CGIs DNA methylation patterns of both 

species are heterogeneous. In humans the upstream region of exon1 is heterogeneously methylated and 

the exon1 region is hypomethylated (Figure 25A). The mouse is also heterogeneously methylated 

upstream of exon1, but the heterogeneous methylation extends further into exon1 (Figure 25B). However, 

the 3’ CGI showed a more striking divergence. While the hypomethylation of the exon3 region was 

consistent in both species, the intron2 part differs fundamentally. In human samples, a prominent block of 

hypermethylation in the intron2 area ends in a distinct drop to hypomethylation exactly at the exon3 

boundary (Figure 25A). This effect was not observed in the murine pattern where the intron2 is 

heterogeneously methylated (Figure 25B). 

 

Figure 25: Comparison of POMC DNA methylation patterns in (A) human PBC of newborn (n = 8) and (B) murine PBC 

(n = 20). The data obtained from mouse blood samples (Figure 18; C57BL/6 strain, week 10, Paragraph 3.2) were converted into the 

same format as the data from newborn humans. The plots are semi-quantitative and descriptive and display CpG methylation 

intensity (in %) over the particular CpG position within this region. CpG positions are numbered according to their relative position 

to the next exon start. Vertical dashed lines mark the exon starts.  

To find out about the background, or even cause, of this observed divergence in DNA methylation patterns 

of mice and humans, a comparative sequence analysis of the human and the murine POMC gene locus was 

performed. The exon regions showed high sequence homology, while the consensus in non-exon regions is 

lower. A large difference between the human and murine POMC sequences lies in the presence of six 

retrotransposable elements of the Alu family in the human POMC gene. No equipollents were found for the 

murine POMC gene (Tsukada et al., 1982) (Figure 17 and Figure 22). Three of those Alu elements (Alus) 

are located in the intron2 region just upstream of the 3’ CGI. Viewed from 5’ to 3’ the first Alu is of the 

most ancient ‘J family’ and is oriented in 5’  3’. The middle one is of the most recent ‘Y type’, oriented 

backward in 3’  5’, and the third one is an Alu of the second oldest ‘S family’, which is also in the 
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backwards direction 3’  5’ oriented. They are labeled Alu D, Alu E and Alu F in the following, that also 

includes the analogy of the type – J, Y or S – and the orientation: 

 Alu D = most upstream one of the three; of the J family; 5’  3’ oriented. 

 Alu E = middle one of the three; of the Y family; 3’  5’ oriented. 

 Alu F = most downstream one of the three; of the S family; 3’  5’ oriented. 

 

These three Alu elements lie just upstream of the 3’ CGI, which showed the distinct hypermethylation in 

humans but not in mice (Figure 25). Alu elements can influence the methylation of their vicinity. Hence, it 

is an assumption that the hypermethylation of the intron2 region in the human POMC gene can be caused 

by the presence of those three Alu repeats. To test this hypothesis, genomes of other primates were 

analyzed: First, the presence and distribution of the primate-specific Alu elements were described. 

Secondly, the methylation status of the 3’ CGI of the primate POMC locus was tested. Last, the Alu element 

incidence was correlated to the methylation patterns of the different primates. 

3.4.1 Sequence analysis of various primate POMC loci for Alu element incidence 

Alu elements are a primate-specific family of retrotransposable elements. To test the influence of Alus 

within the intron2 region of the POMC gene on the methylation pattern of the subsequent 3’ CGI, the 

sequences of various non-human primates were tested for Alu element incidence in this region. For some 

non-human primates like Pan troglodytes (chimpanzee, ENSPTRG00000011721), Gorilla gorilla (gorilla, 

ENSGGOG00000003480), Pongo pygmaeus (orangutan, ENSPPYG00000012592), Macaca mulatta 

(macaque, ENSMMUG00000016463), Callithrix jacchus (marmoset, ENSCJAG00000008148), and Eulemur 

macaco (lemur, ENSMICG00000001616) DNA sequence information was available online. Nevertheless, 

DNA of gorilla, orangutan, and lemur was resequenced to fill gaps in the available sequences and to 

elucidate possible convergences between the published sequences and the exact sequence of the available 

DNA samples. Furthermore, the complete intron2 regions of Papio hamadryas (baboon) and Galago 

senegalensis (galago) were sequenced. All newly obtained sequences were submitted to NCBI GeneBank to 

obtain accession numbers (Figure 26). Using the RepeatMasker Web Server tool, the sequences of the 

various primates were analyzed for Alu incidence (Figure 26). 
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Figure 26: Overview of the branching of various primates and their Alu incidence within the POMC intron2 region. Primate 

strains with trivial names are designated to primate families. Accession numbers of the POMC loci, Alu element incidence within the 

intron2 region and chromosomal location are listed. Alu elements are noted in the order in which they appear within the intron2 

region. The time scale is based on (Goodman, 1999; Janecka et al., 2007; Siepel, 2009). n.d. = no data available; - = Alu not present;  

= Alu of this type is present in the DNA sequence; Alu Ad1 = additional Alu1; Alu Ad2 = additional Alu2; AluD/E/F = the three Alu 

elements which are present in the intron2 of the human POMC.  

3.4.1.1 Hominids sequences 

Humans are most closely related to chimpanzees, gorillas, and orangutans. They are all members of the 

hominids group. Therefore, the sequences of the POMC gene of three hominids, the chimpanzee, the 

gorilla, and the orangutan, were analyzed for Alu incidence. 

Pan troglodytes = chimpanzee 

The POMC gene of Pan troglodytes (ENSPTRG00000011721) is located on chromosome 2a. Sequence 

analysis revealed that chimpanzees have three Alu elements integrated in the intron2 region of the POMC 

gene that are highly equivalent to the human Alu elements D, E and F in this region. Just like in humans, 

the upstream Alu element of the intron2 region is of the most ancient AluJ family. This Alu element is 

oriented in the 5’  3’ direction. The next Alu element is a member of the most recent discovered AluY 

family, while the Alu element located downstream in this region belongs to the second oldest AluS family. 

The latter two Alus are both orientated ‘backwards’ in the 3’  5’ direction.  

Gorilla gorilla = gorilla 

The gorilla POMC gene is also located on chromosome 2a. The gaps of ENSGGOG00000003480 were filled 

by sequencing (JF421754). Analysis for the existence of retrotransposable elements by RepeatMasker 

showed the same results as obtained for the chimpanzee sequence. All three Alus D, E, and F are present in 

the intron2 region of the gorilla POMC gene. 
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Pongo pygmaeus = orangutan 

Just as the other two hominids examined, the POMC sequence of the orangutan (ENSPPYG00000012592 

and JF421751) contains all three Alu elements D, E, and F in its intron2 region, corresponding in type and 

orientation to the human ones.  

 

To summarize: all three apes of the hominid family analyzed here showed the same number, kind, 

orientation, and distribution of Alu elements within the intron2 region of their POMC genes. The Alu 

elements correspond with the Alus D, E, and F from the human sequence (ENSG00000115138) in type, 

order, and orientation. The three Alu repeats found are of the three different types: the upstream one is of 

the J family and orientated in sense direction, the middle one is of the Y family and is orientated antisense, 

just as the Alu element downstream, which is of the S family. 

3.4.1.2 Cercopithecoidea sequences 

Cercopithecoidea and hominids both belong to the catarrhines, which are often referred to as old world 

monkeys in common parlance (Figure 26). Therefore, cercopithecoidea are closely related to hominids and 

branched approximately 25 million years ago. The genomes of the baboon and the macaque, two members 

of the cercopithecoidea, were tested for the presence of Alu elements in their POMC regions. 

Papio hamadryas = baboon 

The baboon POMC gene (JF421752) only possesses two Alus in its intron2, which are equivalent to the 

adverse oriented Alu D and Alu F. 

Macaca mulatta = macaque 

Analysis of the macaque POMC (ENSMMUG00000016463) located on chromosome 13 revealed the 

presence of only two Alus in the intron2 of the POMC gene. The upstream Alu D-equivalent is orientated in 

the 5’  3’ direction and the downstream Alu F-equivalent is orientated the other way around. 

 

The two cercopithecoidea members macaque and baboon have one Alu repeat less than the tested 

hominids. The middle Alu E-equivalent, a member of the most modern Y family, is missing.  

3.4.1.3  Platyrrhines sequences 

Platyrrhines, colloquial named new world monkeys, branched off the main strain 40 million years ago 

(Figure 26). Callithrix jacchus is a platyrrhine and its POMC sequence was tested for Alu incidence. 

Callithrix jacchus = marmoset 

The marmoset POMC intron2 sequence (ENSCJAG00000008148) contains four Alu elements. The anterior 

one is not present in the human or any other sequence analyzed. It is of the second oldest AluS family and 

orientated in antisense direction. I will refer to it as ‘Alu Ad1’ (additional1). The second and the third Alu 

elements correspond to the two Alu elements identified in catarrhines, Alu D- and Alu F-equivalents. They 

occur in opposing directions. The fourth Alu element is again a member of the S family, and is orientated in 

the antisense direction. I will refer to it as ‘Alu Ad2’ (additional2). Similar to the cercopithecoidea, the Alu 

element of the most recent Y family is also missing in the platyrrhines.  
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3.4.1.4  Strepsirrhinis sequences 

Strepsirrhinis are the farthermost relatives to humans within the primates. They branched off the hominid 

strain approximately 65 million years ago (Figure 26). The POMC genes of the two strepsirrhinis 

members, the Galago senegalensis and the Eulemur macaco, were sequenced for presence of Alu elements. 

Galago senegalensis = galago 

The POMC intron2 sequence of galagos (JF421753) is Alu-free. 

Eulemur macaco = lemur 

Analysis of the lemur POMC intron2 (JF421755) with RepeatMasker showed that there are no Alu 

elements in the region of interest at all. 

 

The farthermost relatives of humans within the group of non-human primates, the strepsirrhinis, diversed 

off the main strain almost 65 Ma ago at the time that the Alu elements began to proliferate in the genomes 

of primates (Batzer and Deininger, 2002). The strepsirrhinis have no Alu elements in the gene region of 

interest.  

 

Figure 26 illustrates the Alu incidence in the intron2 region of POMC of various primates in the context of 

their relation to each other. However, besides Alu elements there are also other relevant structural 

elements within this gene region, such as binding sites of transcription factors (TF) or regulatory proteins. 

All primate gene sequences were analyzed for a selection of this sequence features. The results of this 

analysis are posed in the next paragraph. 

3.4.2 In silico analysis of POMC sequences of various primates for identification of 

putative binding sites  

The POMC locus of primates exhibits various potential binding sites for transcription factors or regulatory 

proteins. We chose three of them for further analysis in all primate intron2 sequences, based on their 

estimated relevance regarding DNA methylation or energy homeostasis regulation. These were: (i) the 

p300 binding site, (ii) the STATx binding site and (iii) the Sp1 binding site. The intron2-exon3 junction in 

human POMC exhibits a histone acetylase p300 complex binding site. STATx is involved in the POMC 

activation through leptin signaling. The Sp1 transcription factor is involved in gene expression in the early 

development of an organism and is said to influence DNA methylation establishment (Graff et al., 1997; 

Turker, 1999). Binding dynamics of these factors could possibly be influenced by DNA methylation status 

of respective binding regions. Thus, a putative existence of those three binding site in the intron2 region of 

the different primate sequences were in silico analyzed using the TFSEARCH transcription factor search 

web tool (Table 11). 

We found that all primates, except the galago, have a predicted p300 complex binding site. The p300 

binding sites have all the exact same sequence and location at the intron2-exon3 junction. For the putative 

Sp1 and STATx binding sites the results were more diverse. Only lemurs, galagos, and mice exhibit 

predicted Sp1 binding sites in this region. All recognized target sequences differ and lie in different 

locations. In lemurs and galagos, Sp1 binding sites lie upstream of the exon3 start, while in mice the Sp1 

binding site is located within the exon3. Predicted STATx binding sites in humans and macaques have 

similar but not equivalent sequences and a similar location within the exon3. In lemurs and mice, putative 

STATx binding sites differ highly and lie upstream of the exon3 start.  
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Table 11: Putative binding sites for Sp1, STATx, and histone acetylase p300 complex in the POMC intron2 sequences of 

various primates and mice. Sp1 binding sites have different locations within the sequences in which they occur. In lemurs [-78 bp 

(1.) and -507 bp (2.)] and galagos [-241 bp (1.) and -1.871 bp (2.)] they are located upstream of exon3 start. In mice, the Sp1 binding 

site is +193 bp downstream of the exon3 start. STATx binding sites are downstream of the exon3 start in humans (+57 bp) and 

macaques (+58 bp) and upstream in lemurs [-1.556 bp (1.) and -1.822 bp (2.)] and mice [-1.129 bp (1.) and -1.445 bp (2.)]. The p300 

binding sites, if existent, have always the same location exactly at the intron2-exon3 junction. 

 

3.4.3 POMC DNA methylation of the 3’ CpG island of various primates  

The primates of which the sequences were previously determined and tested for Alu element incidence 

(Paragraph 3.4.1) were also analyzed for their methylation status in the 3’ CGI region. Therefore, the 

sequences of the POMC loci of the primates were first in silico converted into bisulfite treated sequences. 

Based on those sequences, appropriate primers were designed for bisulfite genomic sequencing to amplify 

fragments that span the intron2-exon3 junction and are similar to the hPOMC-F3 fragment. The location of 

the primers varies in the different primates due to the sequence reasons. As a result, the amplified 

fragments vary in length. Moreover, the fragments of interest of different primates show varying numbers 

and locations of CpG moieties (Figure 27). Figure 27 depicts the different fragments in proportion; hence, 

comparison of the CpG moiety location relative to the exon3 start is possible. The CpG number and 

location in the hominid fragments (human, chimpanzee, and gorilla) are similar. In addition, the fragments 

of the two cercopithecoidea, baboon and macaque, reveal a comparable CpG incidence within this region. 

The marmoset has another pattern than the hominids and the cercopithecoidea, especially in the intron2 

region. The galago sequence shows depletion of CpGs within the intron2 region; 12 CpG moieties instead 

of 18 CpG moieties in an equivalent stretch of DNA in humans. The other strepsirrhini, the lemur, had 

more CpG moieties in the intron2 region, than the human, 21 CpG moieties instead of 18 CpG moieties. The 

exon3 regions of both strepsirrhini look more similar to the human region, with 10 CpGs in the stretch of 

galago sequence and 11 CpGs in the lemur, where the human possessed 11 CpG moieties. The sequences of 

the other primates showed high similarity in the exon3 regions, too. 
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Figure 27: Lollipop figures of the 3’ CGI fragments of the POMC locus in different primates. Each lollipop indicates the position 

of one CpG group within the fragment. Illustration of the CpG positions and fragment lengths are in proportion. The dashed line 

indicates the intron2-exon3 junction. human = 513bp, 53 CpGs; chimpanzee = 521bp, 54 CpGs; gorilla = 512bp, 51 CpGs; baboon 

= 353bp, 29 CpGs; macaque = 506bp, 53 CpGs; marmoset = 522bp, 54 CpGs; galago = 291bp, 22 CpGs; lemur = 300bp, 32 CpGs. 

The DNA of the primates was analyzed using the genomic bisulfite sequencing strategy by application of 

primate-specific primers for amplification. The resulting fragments were purified from the agarose gel and 

TOPO cloned. Single colonies were picked for colony PCR, subsequent Exo/SAP and sequencing reaction. 

Not all CpG positions within the fragments were accessible because of the primer positions and 

sequencing reasons. The results were converted in semi-quantitative descriptive methylation intensity 

plots, comparable to the human and mouse data (Figure 25). The CpG moieties, which were not detectable 

or readable due to methodological reasons especially in the posterior parts of the fragments, were 

excluded from the displayed methylation intensity plots (Figure 28, Figure 29, and Figure 30) to prevent 

from misinterpretation. 

3.4.3.1 Hominids DNA methylation 

Homo sapiens = human 

The hPOMC-F3 fragment, which coincides with the 3’ CGI, is 511 bp long with 19 CpG dinucleotides in the 

intron2 region and 34 CpGs in the exon3 region. The DNA methylation pattern is striking as described 

above with hypermethylation in the intron2 region and hypomethylation in the exon3 region. The 

transition from hypermethylation to hypomethylation is sudden at the exon3 boundary and at CpG 

position -13 a heterogeneous methylation dip is recognizable (Figure 28A). In silico analysis revealed, CpG 

-13 lies within a putative binding area for upstream transcription factors (USF) and transcription factors 

of the myelocytomatosis viral related oncogene family (N-Myc). 

Pan troglodytes = chimpanzee 

The amplified chimpanzee DNA fragment (521 bp) contains 19 CpG dinucleotides in the intron2 region 

and 35 CpG dinucleotides in the exon3 region. The DNA of five different chimpanzees was converted, 

amplified, and sequenced. The resulting methylation intensity plot (Figure 28B) looked similar to the 

human pattern with hypermethylation in the intron2 region, hypomethylation in the exon3 region and a 

clear drop zone in between at the boundary of exon3. Likewise, the dip to heterogeneous methylation at 

CpG position -13 was noticeable. The sequence around the CpG -13 also codes for equivalent transcription 

factor binding sites as detected for humans. 
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Gorilla gorilla = gorilla 

The 50 CpG moieties (18 in intron2 plus 32 in exon3) of the gorilla fragment are spread over a fragment 

size of 512 bp. The DNA methylation pattern from five gorillas was determined and was similar to the 

human and chimpanzee patterns. It showed a hypermethylated intron2 and a strictly non-methylated 

exon3 which starts exactly at the junction of exon3. The distinct methylation reduction at CpG -13 was not 

as pronounced as seen in humans and chimpanzees but also detectable (Figure 28C).  

 

Figure 28: DNA methylation pattern of the 3’ CGI of POMC of the hominids humans, chimpanzees, and gorillas. The plots are 

semi-quantitative and display CpG methylation intensity (in %) over the particular CpG position within this region. CpG positions are 

numbered according to their relative position to the exon3 start. Vertical dashed lines mark the intron2-exon3 junction. POMC gene 

schemes indicate number, orientation, and distribution of Alu elements in the intron2 region of respective primate. (A = human 

newborns; B = chimpanzees, C = gorillas). 
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All members of the hominid family have a similar POMC DNA methylation pattern of the 3’ CGI with a clear 

difference between hypermethylation in the intron, hypomethylation in the exon and an obvious 

methylation drop zone at exon3 start. The methylation dip at CpG -13 was observed in all three primates. 

In combination with the sequencing results described above, it can be said that all examined hominids 

possess equivalent three Alu elements upstream of exon3 and showed a block of hypermethylation in the 

intron2 region. 

 

Figure 29: DNA methylation pattern of the 3’ CGI of POMC of the caterrhines baboon and macaque and the platerrhine 

marmoset. The plots are semi-quantitative and display CpG methylation intensity (in %) over the particular CpG position within this 

region. CpG positions are numbered according to their relative position to the exon3 start. Vertical dashed lines mark the intron2-

exon3 junction. POMC gene schemes indicate number, orientation, and distribution of Alu elements in the intron2 region of 

respective primate.  (D = baboons; E = macaques; F = marmoset). 
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3.4.3.2  Cercopithecoidea DNA methylation 

The two members of the cercopithecoidea, the baboon and the macaque, both possess only two Alu 

elements within the intron2 region upstream of the 3’ CGI. The middle Alu E element of the Y-family, 

which is present in hominids, is missing in both.  

Papio hamadryas = baboon 

The 3’ CGI fragment of the baboon counts 353 bp and 17 CpG positions in the intron region plus 11 CpG 

positions in the exon region. Five members of the family were analyzed. The summary of all colony 

sequences is displayed in Figure 29D.In the anterior part of the amplified fragment, the hypermethylation 

was similar to the plots of the hominids. Towards the boundary of exon3, the methylation intensity 

decreased stepwise. At CpG residue -3 and -11, heterogeneous methylation dips were detectable. In 

addition, in the predominantly hypomethylated exon region a small noise peak of 20% methylation at CpG 

position +5 was observed. In silico analysis of the three areas of conspicuous methylation change showed 

no association to specific putative binding sites. 

Macaca mulatta = macaque 

The pattern of the macaque 3’ CGI fragment, which was observed in the five samples (Figure 29E), was 

similar to that of the baboons. The 16 CpG moieties lying in the intron2 region of the fragment showed 

hypermethylation like the hominids and the baboons, with two dips of distinct heterogeneous methylation 

at CpG position -12 and -3. The methylation decrease to hypomethylation in the exon region was stepwise. 

Furthermore, the methylation of the exon part (37 CpGs) was low but noisier than in baboons and 

hominids and showed an irregular slow increase towards the posterior part of the 506 bp long fragment. 

At positions +20 and +27 distinct peaks of methylation were detectable. As seen for the baboon, the 

macaque’s areas of methylation dips and peaks did also not lie within specific predicted binding sites. 

 

Both cercopithecoidea members only possess the Alu D and Alu F elements. Nevertheless, they showed 

similar methylation patterns to the hominids. However, their patterns appeared less strict concerning the 

extreme conditions of methylation and the transition from hypermethylation to hypomethylation. 

Moreover, both families had a hypermethylation dip at CpG -3. 

3.4.3.3  Platyrrhines DNA methylation 

Callithrix jacchus = marmoset 

Fragments of 522 bp length were amplified from the marmoset samples. The mean of the results of all 

four monkeys are shown in Figure 29F. A distinct block of hypermethylation in the intron2 region with a 

dip at CpG -8 was noticeable. The exon3 region predominantly showed hypomethylation with prominent 

peaks at CpG +20 and +23. However, the transitional drop zone was shifted downstream, into the exon3 

region, in comparison to all previously described patterns. While for the methylation peak-areas not 

putative binding sites can be detected, the dip at CpG -8 is associated with a predicted binding site area for 

USF, N-Myc, c-Myc and the aryl hydrocarbon receptor (AHR) nuclear translocator (ARNT). Interestingly, 

the position of CpG -8 in the marmoset sequence coincided with the human CpG -13, when the fragments 

were aligned (Figure 27). 

 

The platyrrhine family member Callithrix jacchus combines the characteristics of the hominid and 

cercopithecoidea DNA methylation patterns, but shows a slightly later drop zone and small peaks of 
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methylation within the exon3 region. If this methylation pattern could be influenced by the two additional 

Alus of the S-family present in the marmoset POMC locus, will be debated in the discussion paragraph.  

 

Figure 30: DNA methylation pattern of the 3’ CGI of POMC of strepsirrhinis and the mouse.The plots are semi-quantitative and 

display CpG methylation intensity (in %) over the particular CpG position within this region.CpG positions are numbered according 

to their relative position to the exon3 start. Vertical dashed lines mark the intron2-exon3 junction. The plots are semi-quantitative 

and descriptive. POMC gene schemes indicate number, orientation, and distribution of Alu elements in the intron2 region of 

respective organism. (G = galago; H = lemur; I = mouse). 

3.4.3.4  Strepsirrhinis DNA methylation 

Galago senegalensis = galago 

Due to the sequence characteristics of the galago POMC locus, the amplified fragment of the galago DNA is 

relatively short (291 bp) and contains only 21 CpG positions (12 in the intron plus 9 in the exon region). 



Results                                                                                    65 

 

Four DNA samples were processed and analyzed. The results are shown in Figure 30G. Hypermethylation 

was detectable in the intron region with heterogeneous methylation dips at CpG positions -8 and -10, of 

which the dip at CpG -10 coincides with a putative GATA-1 binding site. The exon region was 

hypomethylated. However, the descent from hypermethylation to hypomethylation started more 

upstream, already at CpG position -5, and was softer than and not as abrupt as in the previous samples.  

Eulemur macaco = lemur 

In the relative of the galago, the lemur, the methylation state was completely different (Figure 30H). Even 

though the amplified fragment is only 300 bp long, there are more CpG groups in the region, respectively 

21 in the intron2 and 10 in the exon3. The determined pattern of the four lemurs is unusual. In contrast to 

the patterns described above, the lemur POMC gene was not hypermethylated in the intron2 region, but 

rather heterogeneous hypomethylated with some irregularities in the anterior region, peaking in CpG -18 

at a methylation intensity of 45%. The whole remaining fragment, intron region as well as exon region, 

was throughout hypomethylated. The sequence around the major peak at CpG -18 was inconspicuous 

concerning predicted TF binding sites. Interestingly, the noise peak at CpG -14 draw our attention on a 

putative binding site for factors with myeloid zinc finger domains (MZF1) and the human transcription 

factor specific protein 1 (Sp1). 

 

The galago and the lemur showed divergent methylation patterns for the intron2 region of the POMC 

locus, although sequence analysis revealed no Alu elements within this region for both. There is no 

occurrence of retrotransposable elements in this gene region of interest in the two primates, exactly as in 

the murine POMC locus. The lemur pattern was highly similar to the murine pattern (Figure 30I) and 

showed hypomethylation in the intron and exon region. However, the pattern of the galago, was rather 

similar to the patterns of all other primates analyzed, including the human pattern.  

Interestingly, all primates analyzed had a hypomethylated exon3 region, even though some patterns 

showed regions of heterogeneous methylation peaks. This was independent of primate family and Alu 

incidence within the intron2 region. Moreover, the hypomethylation of exon3 was also detected for the 

POMC locus in mice. 
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4 Discussion 

The BMI is estimated to be heritable for 50 to 84% (Allison et al., 1996; Barsh et al., 2000; Stunkard et al., 

1986). However, the overall impact of identified mutations and genetic variations that are associated to 

the weight phenotype variation is minor. Only about 10% of the severe obesity cases with early onset can 

be explained by diagnosed genetic causes, which mostly constitute insufficiencies within the leptin-

melanocortin pathway (Speliotes et al., 2010). Consequently, it is compulsive to elucidate the 

pathogenesis of obesity further. This may ultimately lead to identification of early markers for obesity 

enabeling customized prevention, intervention, and treatment strategies. Inherently, this may also lead to 

the reduction of the related health care costs and to increased quality of life for the individual. 

Epigenetic modifications, like DNA methylation, are metastable and capable of changing gene expression 

without changing the DNA sequence itself. Therefore, it is conceivable that, in the context of body weight 

regulation, epigenetic changes of involved genes might lead to disruption of the minute control of food 

intake and the energy expenditure equilibrium. Moreover, stable epigenetic modifications of specific 

genes may suite as early recognition markers for diseases, such as obesity.  

The pre-proopiomelanocortin (POMC) gene is a central pivot in the catabolic leptin-melanocortin-axis of 

the body weight regulating system. Previous studies detected a CpG-methylation polymorphism (CMP) - a 

stable change in the DNA methylation pattern - in the 3’ CpG island (CGI) in humans that is significantly 

associated with obesity (Kuehnen et al., in revision). For a better estimation of the role of POMC DNA 

methylation in the development of obesity, or as early marker for the disease, it is important to gain 

insight in the function and origin of the DNA methylation of the POMC locus.  

Therefore, it was the aim of this thesis to examine the ontogenetic development of the POMC methylation 

patterns and possible influencing factors, as well as the phylogenetic origin of the POMC DNA methylation. 

In in vitro reporter gene assays, I analyzed the promoter function of both CGI regions of the human POMC 

gene, and tested the influence of DNA methylation on the promoter activity, to estimate a potential 

functional relevance of the obesity-associated CMP in the 3’ CGI.  

4.1 DNA methylation influence on the promoter activity of the POMC CGIs 

Ten years ago, Newell-Price et al. revealed that the promoter region and transcription start site (TSS) of 

the regular long POMC transcripts of the human POMC gene is located within the 5’ CGI, which surrounds 

the exon1 start site. This 5’ CGI promoter shows differentially methylation in concordance with the POMC 

expression status of the respective tissue examined. Predominant methylation of the 5’ CGI promoter was 

detected in somatic and tumor cells with repressed POMC gene expression. In contrast, the 5’ CGI 

promoter was specifically unmethylated in expressing cells and cell lines (Newell-Price, 2003; Newell-

Price et al., 2001). However, CGIs that are not located in 5’ regions of annotated genes, but lie within their 

gene body, can also exert characteristics of functional promoters and are referred to as alternative 

promoters (Illingworth et al., 2010). For the POMC gene, it is conceivable that such an intragenic 

alternative promoter region is associated with the 3’ CGI that surrounds the exon3 start.  

Hence, I tested the promoter activity of both CGIs of the human POMC in this thesis work. As proof-of-

concept for the assay with the CpG-free vector backbone and the hypothalamic mouse cell line (GT1-7), I 

used the defined 5’ CGI fragment (PromI) of the human POMC (-493 bp to +98 bp relative to exon1, 48 CpG 

residues), which was also used by Newell-Price et al. (2001), to analyze the promoter activity of this 

region in vitro. In contrast to our approach, the construct of Newell-Price et al. was based on a CpG-

containing vector backbone (Newell-Price et al., 2001). As expected, the CpG-free backbone construct of 

the 5’ CGI also exhibited transcriptional activity in the performed promoter gene assays, and its activity 
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was abolished by complete methylation of the fragment, as shown before (Newell-Price et al., 2001). 

These data outline the functional role of the 5’ CGI fragment as promoter of POMC and confirm the impact 

of hypermethylation on promoter activity for the POMC gene, which was also detected in vivo.  

In addition, a novel fragment from the intragenic 3’ CGI region of the human POMC gene was analyzed 

(Island2; -256 bp to +294 bp relative to exon3 start, 53 CpG residues). This fragment significantly 

activated transcription of the downstream-located luciferase gene in an unmethylated state, too. This 

result suggests a separate activity of an intragenic alternative promoter within the 3’ CGI, which was 

never described before for POMC, but for other genes (Illingworth et al., 2010; Kleinjan et al., 2004; 

Macleod et al., 1998). 

After SssI-induced complete methylation of the alternative promoter (Island2) construct, the luciferase 

expression vanished completely. That is analogous to the effect shown for the 5’ CGI promoter of POMC 

and in concordance with the findings that gene body methylation can interfere with gene transcription 

and is involved in the regulation of alternative promoters (Ball et al., 2009; Flanagan and Wild, 2007). For 

alternative promoters it was shown that their activity depends in a larger extend on their methylation 

state than the activity of 5’ promoter regions (Illingworth et al., 2010; Maunakea et al., 2010). This 

methylation state-dependent activity of alternative promoters may regulate the expression of associated 

transcripts in a cell context-specific manner (Maunakea et al., 2010). In the case of POMC, short POMC-

related transcripts were detected in peripheral tissues such as testis (Gardiner-Garden and Frommer, 

1994), encoding for truncated peptides including the functional relevant MSH peptides, but lacking the 

signal peptide that seems to be essential for processing and secretion (Clark et al., 1990). However, to date 

no peptides derived from the alternative short POMC transcripts were observed in vivo. Nevertheless, it is 

tempting to speculate that the alternative POMC transcripts originate from the alternative promoter in the 

3’ CGI and that their transcription is controlled by DNA methylation. However, due to methodical reasons 

the expression of short POMC transcripts cannot be quantified directly. Therefore, a correlation of the 3’ 

CGI methylation state with the transcription of the short transcripts is not possible. Moreover, the 

identified 3’ CGI-associated alternative promoter of POMC might also influence the expression of genes, 

which lie in the downstream vicinity of the POMC locus. These include several non-characterized loci and 

pseudogenes, but also the adenylate cyclase 3 (ADCY3) gene. The ADCY3 is part of the cAMP-dependent 

pathway and shall be involved in a number of physiological and pathophysiological metabolic processes 

(Haber et al., 1994). If the 3’ alternative POMC promoter influences the expression of the 150,000 bp 

downstream located ADCY3 gene, and if this expression is associated to the methylation state of the 3’ 

POMC promoter should be subject of future research. Nevertheless, this work reveals that the DNA 

methylation statuses of both CGI regions of the human POMC influence the gene activity in general. Hence, 

further analyses of the regular 5’ promoter and the novel alternative 3’ promoter were performed to find 

out about methylation sites and structural motifs that are important for POMC gene regulation.   

The application of methyltransferases HhaI and HpaII stimulated methylation of isolated specific CpG 

moieties. Thereby, it was possible to elucidate the importance of specific DNA methylation for gene 

regulation in contrast to random methylation changes. For instance, no significant reduction of the 

promoter activity of both CGI fragments was observed after partial methylation with HhaI. In contrast, 

partial methylation of both CGI fragment catalyzed by HpaII resulted in significant reduction of luciferase 

expression. For both fragments, always one of the HpaII target sites was situated within a putative STATx 

binding site. Members of the STAT family (STAT1, STAT3, and STAT5) are known to be involved in leptin 

induced hypothalamic POMC expression (Munzberg et al., 2003). However, those STATx binding sites 

were only predicted based on sequence homology and not empirical tested. Nevertheless, this may 

suggests a possible influence of the predicted STATx binding site methylation on the reduced 

transcriptional activity of both fragments. To investigate the hypothetical relevance of unmethylated 
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STATx binding sites for POMC expression further, it would be reasonable to verify STAT-binding to the 

putative binding sites first, for instance by chromatin immunoprecipitation (ChIP) and electrophoretic 

mobility shift assays (EMSA). 

In the 3’ CGI fragment, the first CpG position downstream of the exon3 start (CpG +1) was also identified 

to belong to the HpaII targets, which in their entirety caused significant reduction of the 3’ promoter 

activity upon methylation. CpG +1 is adjacent to the p300 binding site, which spans the intron2-exon3 

junction. Interestingly, this CpG residue also shows significant hypermethylation in obese patients in 

comparison to normal weight humans, and the p300 binding site at the intron2-exon3 junction of the 

POMC was identified by ChIP assays to be a probable biological transcription factor binding site (Kuehnen 

et al., in revision). The p300 protein, which acts as a coactivator of transcription and is involved in the 

formation of open euchromatin by its integrated histone acetyltransferase (HAT) activity (Liu et al., 2008; 

Ogryzko et al., 1996; Spiegelman and Heinrich, 2004), is expressed moderately in GT1-7 cells, as I detected 

by RT-PCR. Therefore, it seems reasonable that the transcriptional activity of the 3’ CGI fragment is 

diminished by HpaII methylation due to methylation of the CpG +1 residue, which may change the binding 

dynamics of the p300 complex to its binding site and, therefore, transcription activity of POMC and 

subsequent signaling. This would be in concordance with the findings that the p300 binding is 

significantly decreased in obese patients with the POMC hypermethylation variant in this region (Kuehnen 

et al., in revision).  

Altogether, these data support the theory that rather the specific location (Newell-Price et al., 2001) than 

the quantity of methylated CpG dinucleotides seems to be critical to exert effects on expression activity 

(Boyes and Bird, 1992; Harris et al., 1994). Hence, drastic methylation changes of individual CpG moieties, 

as described for the CMP associated with obesity (Kuehnen et al., in revision), could have a relevant effect 

for gene expression depending on the location of the CpG residue. Therefore, they should be considered as 

potentially functional relevant. For further estimation of the relevance of the CpG +1 residue methylation 

status in particular, the application of the CpG +1-mutation variant in reporter gene assays after HpaII 

methylation would be a possibility. This mutant construct showed no activity difference to the non-

mutated original construct in an unmethylated state. After HpaII methylation, which would exclude the 

mutated CpG +1 (since it is a TpG), the specific influence of the CpG +1 methylation on the 3’ promoter 

might be elucidated.  

To narrow down, which sequence elements of the 3’ CGI are crucial for the activity of the alternative 

3’ promoter, further transfection experiments were performed, applying various modification and length 

variations of the 3’ CGI fragment constructs. Partial deletion of the p300 binding site significantly 

decreased the promoter function of the fragment, underlining the theory that adequate p300 binding is 

required for normal transcription activity. However, destruction of the p300 recognition sequence due to 

mutation of this region, introduced a putative GATA-1 binding site instead. Although GATA-1 is considered 

to be an erythroid development regulating transcription factor (Ohneda and Yamamoto, 2002), a slight 

GATA-1 expression in the used GT1-7 cell line was detectable. Nevertheless, it was surprising that the 

GATA-1 variant of the 3’ CGI construct increased the transcription activity of the fragment. The performed 

experiments did not resolve which structural elements of the 3’ CGI region are crucial for the in vitro 

observed activity of the alternative promoter. However, it is reasonable that sequence and structural 

elements that occur in the exon3 region could be important. Which sites or elements that are, should be 

analyzed in future research. 

As observed for the 5’ CGI promoter, also the methylation state of the alternative 3’ CGI promoter is 

associated with its transcription activity in vitro. Hence, the analysis of the POMC DNA methylation 

patterns of both regions in vivo could be informative regarding their role for the gene expression not only 

of the POMC gene. While the 5’ CGI promoter was already described to have a methylation-correlated 
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expression state (Newell-Price et al., 2001), the information about the 3’ CGI promoter methylation are 

rather rare to date. It is known that human peripheral blood cells (PBC) and arcuate nucleus cells, which 

originate from different germ layers and both express POMC, although in different functional contexts, 

show identical methylation patterns for the 3’ CGI promoter region (Kuehnen et al., in revision). That 

implies stable methylation states of this region, independent of the physiological function of the cells and 

contrasts with the expressing-matched methylation state of the 5’ promoter. To test this hypothesis, 

comparative analysis of the POMC DNA methylation patterns of different tissues and sundry 

developmental stages were performed to determine the occurrence and stability of POMC DNA 

methylation during the ontogenetic development. 

4.2 Ontogenesis and stability of the POMC DNA methylation patterns 

CGIs are regions of interest for analysis of the DNA methylation status of genes since (i) CGIs are 

frequently located in promoter regions and (ii) changes in their methylation status can affect promoter 

activity. As shown in this thesis work in vitro, this also accounts for both promoter regions of the human 

POMC gene: the regular 5’ CGI promoter and the alternative 3’ CGI promoter. To get insight in the stability 

of the DNA methylation patterns of both regions in vivo, the methylation statuses of both CGIs were 

determined in various POMC-expressing and non-expressing tissues of different mice strains. In DNA 

samples from peripheral blood cells (PBC) of 20 different C57BL/6 mice (wild type), distinct patterns for 

the 5’ CGI and 3’ CGI region were observed. This high resemblance of DNA methylation patterns in 

different mice suggests that the patterns are predestined and not established by chance. 

The observed CGI methylation patterns from C57BL/6 PBC were also found in DNA from ten different 

other tissues of C57BL/6 mice. Also in NMRI mice, identical patterns were detected in blood, as well as in 

ten additional tissues. Despite the high concordance of DNA methylation patterns in diverse tissues from 

different mouse strains, minute differences in methylation patterns were observed for a few stray CpG 

positions in some samples, independent of strain, germ layer of origin, or tissue. However, in terms of 

methylation patterns and in the scope of a basic overview of the pattern development it seems reasonable 

to neglect the differences in single CpGs as random variations and to assume the patterns of the various 

tissues of different mouse strains as similar, independent of the germ layer of origin and the physiological 

function. 

It is known that the methylation status of a gene is metastable, meaning it is passed to the daughter cells 

during cell division (Bestor, 2000; Bird, 2002). Regarding the observed congruence of the POMC 

methylation patterns in various tissues from different mouse strains some questions arise: (i) Do the 

observed methylation patterns develop independently in the different tissues or do they have a common 

origin? (ii) If the patterns have a common origin, do they develop during embryogenesis before the 

deviation of the germ layers, or do they resist global demethylation after fertilization and are directly 

transmitted from the parental germ cells as it has been observed recently for several other genes (Borgel 

et al., 2010)?  

To tackle those questions, embryonic mouse samples from various prenatal stages were examined. 

Analysis of these samples showed similar patterns as observed before in the various tissues of adult mice, 

except for slight heterogeneous methylation variances in the posterior part of the 5’ CGI (mPOMC-F2 

fragment). Apart from that the methylation pattern of the samples from embryonic stages E8.0 until E14.5 

were exactly the same as the patterns observed in adult mice with distinct hypermethylation of the 

anterior part of the 5’ CGI, heterogeneous methylation of intron2, and the strict hypomethylation in exon3. 

In conclusion, it can be stated that the distinct methylation patterns of the mouse POMC locus are already 

present in embryonic stage E8.0 and remain stable during further development throughout tissues. 
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Therefore, these methylation patterns are most likely established during embryogenesis before the 

deviation of the germ layer cell fates or are directly transmitted and preserved from the parental germ 

cells. 

Besides its maintenance during cell division, the DNA methylation of the genome changes during lifetime 

in a well-staged way. A substantial part of the genome is demethylated after fertilization followed by a 

phase where new DNA methylation patterns are established (Dean et al., 2003; Reik et al., 2001). 

However, recent studies showed that several non-imprinted germline and somatic genes resist the post-

fertilization DNA methylation reprogramming and inherit their promoter DNA methylation from parental 

gametes (Borgel et al., 2010). To test the fate of the POMC methylation patterns in the post-fertilization 

phase, I determined the DNA methylation of early mouse blastocysts. In this early stage of embryogenesis, 

the CGI regions were completely hypomethylated, and only a few stray methylated CpGs were detectable. 

The interval of minimal methylation is really narrow, since the demethylation event has its nadir at the 

morula stage and de novo methylation occurs between the morula and blastocystal stage of the germ just 

before implantation (Santos et al., 2002). Therefore, it is possible that the observed stray CpGs were still 

or already de novo methylated. That the stray methylated CpG in the predominantly non-methylated 

blastocysts samples showed hypermethylation in positions which were heterogeneously methylated at 

the most in embryo or adult samples has a methodical background: To treat the blastocysts samples 

reasonable, sequencing was performed after sub cloning. Sub cloned constructs contain only a single 

strand of target DNA and not a variegation as PCR products. As a result, no C/T-double peaks appear in 

sequencing readouts, suggesting heterogeneous methylation, but only C or T peaks. If sufficient numbers 

of sub-cloned constructs of one sample are sequenced, the prediction of heterogeneously methylated 

areas should match the results that would be obtained from the same samples when directly sequenced.  

It can be concluded that the overall hypomethylation of POMC in blastocysts differs significantly from all 

POMC DNA methylation patterns described for later developmental stages. This shows that the 

methylation patterns of the POMC locus are not directly transgenerational transmitted from the parental 

germ cells. The mechanism of direct transgenerational transmission of DNA methylation patterns was 

already suggested for the Avy and AxinFu loci ten years ago, to explain the transgenerational heritability of 

epigenetic states and related phenotypes (Morgan et al., 1999; Rakyan et al., 2003), but was never 

specifically proved for these loci, but for IAPs in general (Lane et al., 2003). However, recently 

transgenerational transmission of DNA methylation patterns from parental germ cells was genuinely 

observed for specific genes. For instance, the somatic expressed genes Rrh (retina) or Cd4 and Fyb 

(hematopoietic cells) were shown to escape the post-fertilization DNA methylation reprogramming 

process (Borgel et al., 2010). 

Yet, my data indicates that the DNA methylation patterns of the POMC gene are not directly 

transgenerational transmitted, but arise during early embryogenesis. That means that existing patterns of 

POMC DNA methylation of the germ cells are erased after fertilization. Subsequent de novo methylation 

leads then to the establishment of the methylation patterns that were detectable after the blastocystal 

stage. However, I could not show when these new methylation events take place, and if the methylation 

patterns are already fully established before germ layer division. Since the de novo methylation wave is 

usually observed before implantation (Santos et al., 2002) it is likely that the POMC gene is also newly 

methylated before division of germ layers. Consequently, the distinct methylation patterns observed in 

this study did not develop independently in the different tissues but originate from the newly established 

pattern of the blastocystal stage.  

How the development of the specific DNA methylation patterns is determined and signaled in numerous 

different individuals remains unclear. A case of transgenerational epigenetic inheritance of the patterns, 

as described for the imprinted IGF2/H19 locus, is thinkable. Thereby, the methylation profile is somehow 
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genetically transmitted from the parental generation, possibly through cis or trans regulation, even though 

the methylation is dynamic in the periconceptional phase (Tost et al., 2006). That the DNA methylation 

patterns of the POMC locus are erased and newly established during the periconceptional period and 

maintained stably throughout intrauterine and postnatal life, I revealed for the POMC locus in mice. If this 

also accounts for the human POMC locus was tested within the possible scope.  

Due to obvious ethical reasons, it was not possible to examine the human POMC methylation patterns 

prenatally. An alternative for that would have been the analyses of non-human primate samples of 

prenatal stages. The implementation of primate embryonic stem cells (ESC) as model for the early 

embryogenesis state is not possible, since ESC show abnormal methylation states. It is indicated that 

cultured ESC bear the DNA signature resembling the postimplantation embryo, possibly due to culture 

conditions (Borgel et al., 2010). However, I studied human newborn PBC samples from the earliest 

possible time point after birth and found DNA methylation patterns that were highly similar to the 

patterns determined for adult humans from PBC and arcuate nucleus cells for the 5’ and 3’ CGI promoter 

(Kuehnen et al., in revision). Beyond the distinct shift of hypermethylation to hypomethylation at the 

intron2-exon3 junction, the DNA methylation pattern from newborn PBC also showed the heterogeneous 

methylation dip at CpG -13 in the intron2 region that was already detected in adult PBC and arcuate 

nucleus cells.  

The high conservation of the block of hypermethylation in intron2, the distinct shift to hypomethylation in 

exon3 and the heterogeneous methylation dip at CpG -13 suggest some kind of function of those features. 

It is known that DNA methylation influences the accessibility of DNA regions to proteins that modulate 

chromatin formation and gene transcription and, hence, interfere with gene expression (Bird, 2007; 

Cedar, 1988; Lorincz et al., 2004). DNA methylation of promoters can influence a genes transcription via 

two possible mechanisms: (i) Direct inhibition by inaccessibility of TF binding sites or (ii) indirect 

repression by recruitment of inhibiting proteins, such as methyl-CpG binding proteins (MeCP-1), 

induction of inactive chromatin states, or expression regulation of repressing antisenseRNAs or 

microRNAs (Bartel, 2004; Boyes and Bird, 1992; Tate and Bird, 1993). Accordingly, the hypermethylation 

of the intron2 region could exert repressing function via both mechanisms. As opposed to this, the 

hypomethylated state of exon3, which is highly conserved among species, suggests importance of an 

associated open chromatin state of this POMC region, for instance for adequate gene expression. The 3’ 

CGI region has never been described as alternative promoter of POMC before, not to mention being 

involved in the expression of the functional full-length transcripts. The 3’ CGI region was just suggested to 

serve as TSS for the short alternative POMC transcripts (Gardiner-Garden and Frommer, 1994). Thereby, 

it is argumentative that the regulation of the short transcripts may be a direct mechanism, while the 

influence on full-length transcript expression might be indirect. However, the function of the short POMC 

transcripts has not been resolved yet and is even doubted, since the lack of the signal sequence probably 

renders the molecule to be nonfunctional (Clark et al., 1990; Rees et al., 2002), even though it is 

moderately expressed (Ehrlich et al., 2010). Maunakea et al. detected recently that intragenic located 

alternative promoters are common, and can induce the expression of alternative transcripts in vivo, 

regulated by DNA methylation in a cell-context specific manner (Maunakea et al., 2010). Furthermore, it is 

suggested that alternative intragenic CGI promoters play a functional role during development 

(Illingworth et al., 2010). Since the POMC locus retains its methylation patterns once they are established 

a cell- or developmental-context specific expression due to the 3’ CGI promoter does not seem probable, 

but a regulatory role of the short transcripts, maybe in the line of regulating antisense-RNAs, could be 

considered. Further investigation is needed to get insight into the role of the alternative 3’ CGI promoter 

with its stable DNA methylation pattern and the alternative short POMC transcripts in vivo. 
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To summarize: the DNA methylation patterns of the 5’ CGI and the 3’ CGI region of the murine POMC locus 

are not directly transgenerational transmitted as shown for other genes, but are established by de novo 

methylation in early embryogenesis and are perinatal stable. Furthermore, the DNA methylation patterns 

of the murine, as well as the human POMC loci are stable in postnatal life throughout tissues. These results 

match the available information about DNA methylation stability and constancy, which state that the 

constancy of methylation in various somatic tissues is high (Eckhardt et al., 2006) despite a high 

interindividual variability of the methylation of specific loci (Feinberg et al., 2010; Heijmans et al., 2007). 

While the global methylation has been reported to change over time (Bjornsson et al., 2008; Fraga et al., 

2005), the DNA methylation of some specific loci was detected to be more stable (Feinberg et al., 2010; 

Heijmans et al., 2007; Talens et al., 2010). According to our findings, the POMC locus is one of the specific 

loci with stable methylation throughout life and tissues. Therefore, it seems reasonable to see the POMC 

methylation pattern of PBC as representative for the pattern of different tissues and cells.  

 

Despite the high stability of the POMC methylation patterns over time and tissues, one should not forget 

that the DNA methylation of specific loci could differ significantly between individuals. For instance, 

Feinberg et al. identified more than 200 genomic regions in humans that showed extreme interindividual 

variability and called them variably methylated regions (VMR). Approximately half of them are stable 

within individuals and can represent a personalized epigenetic signature, which could have marker 

function regarding disease risks (Feinberg et al., 2010). One VMR-analogue for the POMC locus is the CMP, 

whose hypermethylation variant is associated with obesity (Kuehnen et al., in revision). This 

demonstrates clearly that methylation of the POMC locus can also vary interindividual. How and when the 

variations in the POMC VMR arise has not been resolved yet. However, I tried to determine if 

intraindividual changes could emerge due to life characteristics of the individual or environmental effects, 

as it was shown for global DNA methylation (Zhu et al., 2010).  

For several years it is communicated that interindividual differences in disease susceptibility, such as 

predisposition for obesity, is not only depend on genetic circumstances but also on epigenetic factors. 

Epigenetic factors are capable of influencing the phenotype through changing gene expression without 

altering the nucleotide sequence of the DNA. Dietary components have the potency to influence epigenetic 

events such as DNA methylation (Singh et al., 2003; Walsh et al., 1998; Waterland and Jirtle, 2003), 

altering gene expression and potentially modify disease risk. This phenomenon was often discussed. 

Already 35 years ago, Ravelli et al. detected in a cohort from the Dutch famine an association of nutrition 

deprivation in utero with obesity in later life (Barker, 2004; Gluckman et al., 2007; Ravelli et al., 1976)). 

Further studies about the role of prenatal nutrition also detected various correlation of exposure to 

nutritional extremes with increased risk for disease states in adulthood, such as coronary heart disease, 

raised lipids, obstructive airways disease, decreased glucose tolerance, and schizophrenia (Painter et al., 

2005; St Clair et al., 2005). Thereby, the timing of the exposure seems to be relevant for the outcome. All 

these data is only strong on epidemiological basis, but not proven molecularly. Nevertheless, also 

molecular alterations, such as changes in DNA methylation patterns, could be correlated with early 

nutritional exposures like the Dutch famine or seasonal changes. However, the persistent epigenetic 

changes detected in humans could not be matched to specific phenotypes so far (Heijmans et al., 2008; 

Steegers-Theunissen et al., 2009; Tobi et al., 2009; Waterland et al., 2011).  

In animal models, also nutritional effects on epigenetic marks of specific loci are detectable. Since animal 

experiments are better to regulate and easier to survey, also associations of altered epigenetic states with 

(pathophysiological) phenotypes can be made. For example, the in utero methyl donor supplementation of 

Avy/a  mice can determine the epigenetic state of the Avy locus of the offspring and the associated weight 

and fur phenotype (Wolff et al., 1998). For the studies showing molecular associations to prenatal 
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nutritional exposures, also a relevance of timing was observed (Tobi et al., 2009; Waterland, 2009a; 

Waterland, 2009b). 

The role of postnatal nutrition in the modification of epigenetic patterns and the potential transmission of 

changed patterns through gametes is a subject of debate (Cobiac, 2007). Although some specific loci were 

studied, human data about epigenetic changes arising after birth are rare and focus largely on the global 

methylation of the genome. However, in general, the postnatal environment can be associated with 

changes in the epigenome (Campion et al., 2009; Fraga et al., 2005; Wong et al., 2005). Some animal 

studies claim that postnatal nutritional exposure, for example to overfeeding or high fat diet, is capable of 

changing the DNA methylation of specific body weight related loci (Plagemann et al., 2009; Widiker et al., 

2010). Even though, the observed effects are significant in numbers, it should be critical estimated if the 

observed changes are relevant.  

In this thesis work, the influence of 29 weeks high fat diet after weaning on the DNA methylation of the 

murine POMC locus was tested. Since longitudinal comparative tissue analyses suggest good correlation of 

pattern-development between tissues, the DNA methylation of PBC appears to be representative for other 

tissues (Talens et al., 2010). Moreover, the usage of PBC samples enables the analysis of the patterns 

before and after the feeding period in the same animals. Two different mouse strains, a lean wild type 

strain (C57BL/6) and members of the obesity-predisposed strain BFMI860, were analyzed. No significant 

alterations of the methylation patterns by postnatal diet were observed. In conclusion, it can be stated that 

neither the diet nor the different mouse strain origins had influence on the DNA methylation patterns of 

the murine POMC locus, at least not in this study design. It would have been more reasonable to 

implement a different study design, for example with enlarged group sizes and the first blood sampling 

parallel to the beginning of the 29 week long feeding period. Moreover, a study exposing periconceotional 

germs to a high fat diet in utero might have been more promising regarding the observation of DNA 

methylation changes, as already stated above. Nevertheless, the results of the samples from this feeding 

experiment are analogue to the observation of the ontogenetic analyses. The DNA methylation patterns of 

the POMC locus are highly stable longitudinal, as well as throughout different mouse strains. 

This suggests that DNA methylation pattern-formation at the POMC locus can rather be attributed to 

genetics with stochastic components, than environmental factors. The stochastic component of DNA 

methylation was underscored for other specific loci by the observation of substantial discordances of DNA 

methylation patterns in monozygotic twins (Kaminsky et al., 2009; Ollikainen et al., 2010; Waterland et al., 

2011), while a strong locus specific genetic component was detected for the imprinted IGF2/H19 locus. 

The substantial variation of the IGF2/H19 methylation of the imprinted allele is mainly accounted to 

single nucleotide polymorphisms (SNPs) in humans (Heijmans et al., 2007), hence to genetic control. In 

addition, DNA methylation maintenance relies on genetic components. This was indicated in a family-

based cohort from Utah, showing familial clustering of methylation changes over time (Bjornsson et al., 

2008). In the scope of genetic factors, not only genetic variations like SNPs seem to play a role, but also cis-

acting genetic factors were described to participate in DNA methylation pattern manifestation 

fundamentally. DNA binding proteins with respective binding sites, such as Sp1 and VEZF1, are suggested 

to determine the methylation, but also sequence motifs like retrotransposable elements were identified to 

contribute to pattern establishment (Dickson et al., 2010; Han et al., 2001; Li et al., 2010c). Beyond that, 

transgenerational parental effects on the manifestation of DNA methylation patterns are observable, in 

imprinted and in non-imprinted loci. For instance, the epigenetic state at the Axinfu locus can be inherited 

after maternal and paternal transmission, while the inheritance of the Avy epigenetic state occurs through 

the female line only (Rakyan et al., 2003). That militates for a system that is under strong genetic 

influence, rather than facilitating easy dynamical changes through environmental factors, and, therefore, 

capable of establishing stable predetermined epigenetic signatures. Hence, it virtually obtrudes to 
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investigate the origin of the distinct 3’ CGI DNA methylation pattern of POMC on a genetic basis. Thereby, I 

considered the sequence of the locus as indicatory and chose a comparative phylogenetic approach to 

investigate the manifestation of the 3’ CGI DNA methylation pattern of POMC in association with the 

presence of Alu elements within the gene region. 

4.3 Potential phylogenetic origin of the 3’ CGI DNA methylation pattern 

The 3’ CGI methylation pattern of the human POMC shows a prominent hypermethylation in the intron2 

region and a distinct shift to hypomethylation at the intron2-exon3 junction. In accordance the mouse 

exon3 is also hypomethylated, indicating a phylogenetically conservation of this non-methylated state. 

Hence, the hypomethylation of exon3 might be important for POMC expression, for example to enable 

binding of proteins which are crucial for the activity of the gene (Choy et al., 2010). However, the murine 

methylation pattern of the intron2 region differs fundamentally from the human one with heterogeneous 

methylation. Comparison of the underlying sequences of the POMC locus in mice and humans revealed 

high sequence homology in the exon regions, while the consensus in non-exon regions was, as expected, 

significantly lower (Eberwine and Roberts, 1983; Notake et al., 1983). A large difference in the locus 

structures is represented by the presence of six retrotransposable elements of the primate-specific Alu 

family in the human POMC gene that have no equipollents in the murine POMC gene (Tsukada et al., 1982) 

(Figure 17 and Figure 22). Three of those six Alu elements of the human POMC locus are located in the 

intron2 region just upstream of the distinctly methylated 3’ CGI. In general, retrotransposable elements 

like Alu elements are methylated to prevent them from retroposition (Liu and Schmid, 1993; Yoder et al., 

1997b). This methylation is established for silencing reasons and can spread on the surrounding regions, 

resulting in modification of the DNA methylation near an Alu element (Batzer and Deininger, 2002; Turker 

and Bestor, 1997; Xie et al., 2010). Hence, the hypothesis arose that the hypermethylated region of the 3’ 

CGI detected in humans is caused by the presence of those three Alu repeats within the intron2. To test 

this hypothesis, initially genomes of other primates were analyzed for Alu incidence, since Alu elements 

are only present in primate genomes but to a different extend (Xing et al., 2007). Afterwards, it was 

evaluated if the methylation status of the 3’ CGI of the other primates is associated with the Alu incidence 

in their genomes. 

All analyzed non-human primates of the hominid strain (chimpanzee, gorilla, and orangutan) exhibited 

the same Alu element incidence in the intron2 region as humans. The three Alu elements detected in all 

four sequences were congruous for type and orientation, indicating integration of the three Alus before 

the branching of the different families of the hominids. The two cercopithecoidea macaque and baboon 

have one Alu repeat less in their intron2 region compared to the hominids tested. Types and orientations 

of the two remaining Alus are congruent to the Alu D and Alu F of the hominid genomes, suggesting a 

common origin, since the distribution of Alu elements is free from homoplasy (Batzer and Deininger, 

1991). Interestingly, the middle Alu E, which is not present in the baboon and the macaque genome, is of 

the youngest Alu family, the Y-family that still shows transposition activity (Batzer et al., 1996; Bennett et 

al., 2008; Liu and Schmid, 1993). Most likely, this Alu element was integrated into the genome after the 

catarrhines split into hominids and cercopithecoidea 25 Ma ago. In the marmoset, the primate family with 

the greatest density of Alu elements (Liu et al., 2009), again only the Alu D- and Alu F-equivalents of the 

human genome can be detected. However, there are also two additional (Ad) repeats present, which were 

not found in one of the other primate genomes examined. Alu Ad1 and Alu Ad2 are of the S type, which is 

considered the second oldest Alu family. Either these repeats were located in their positions already 

before the off splitting of the new-world strains 40 Ma ago and were subsequently eliminated in the 

catarrhine branch, or they were integrated into the POMC gene in platyrrhines just after branching 50 Ma 

ago.  
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Lemurs and galagos belong to the group of the strepsirrhinis and are the farthermost relatives of humans 

within the group of primates. For lemurs and galagos, no Alu elements in the gene region of interest were 

detected. The separation of strepsirrhinis from the main branch took place almost 65 Ma ago. Around the 

same time Alu elements began to proliferate in the genomes of primates (Batzer and Deininger, 2002). 

Global assessment of the distributions, phylogenies, and consensus sequences for Alu elements in 

primates revealed a steady rate of Alu retrotransposition activity in lemurs (Liu et al., 2009). Hence, not a 

general Alu deprivation but rather the early branching is likely the reason why there are no Alu elements 

located within the strepsirrhinis intron2 region of the POMC locus, which are present in all other analyzed 

primates. 

In conclusion, it can be stated that closely related primates share the same Alu elements in the POMC 

intron2 region. Further, several strain-specific Alu elements were established after the branching of 

strains and are, therefore, only present in one of the branches where they form an individual signature. In 

general the differences in Alu incidence and distribution in various primate genomes have played an 

important role in shaping the primary structure of the genome, but the secondary and tertiary structure, 

as well, and make functional consequences of these changes among the diverse primate lineages rather 

likely (Liu et al., 2009). Of which type and to which extend these functional consequences of the Alu 

incidence within the POMC intron2 region are was not examined in detail here, but at the level of DNA 

methylation pattern-manifestation in the adjacent 3’ CGI region. 

The DNA methylation status of the 3’ CGI regions of most primates was determined in PBC. Only the DNA 

of the strepsirrhinis was obtained from muscle tissue due to sampling reasons. Since this work revealed 

high conservation of the POMC DNA methylation patterns in fourteen different mouse tissues, including 

PBC and muscle tissue, the difference of samples should be negligible. To determine the DNA methylation 

status of the 3’ CGI regions of the various primates, species-specific primer pairs were designed. As a 

result, the fragments of different primates not only vary in length, but also in CpG number and location. 

The latter is not only result of the different lengths but more importantly of the dynamics of DNA. CpG 

positions are prone to mutate by conversion of methylated cytosine to thymine in vivo (Bird, 1980). 

Therefore, CpG dinucleotides are underrepresented in the human genome (Duret and Galtier, 2000) and 

lead to differences in the sequences of different primates. Nevertheless, there is a high consensus of CpG 

positions within the exon3 regions of the different primates. This is in accordance with the high level of 

conservation of the translated regions due to the common ancestor of the POMC locus (Dores and Baron, 

2011). In contrast, the CpG occurrence in the intron2 region has a higher variability, especially between 

primate families, which are not so closely related, such as strepsirrhini and hominids. Interestingly, also a 

high variability in the CpG moiety distribution in the galago and the lemur can be observed, although both 

species belong to the group of strepsirrhinis and their intron2 region sequences align well. Thus, the 

mutation rate of CpGs  TpGs must be higher in galagos than in lemurs. A quarter century ago, it was 

proposed that the clustering and spacing of CpG residue contribute to the de novo methylation process 

(Bolden et al., 1985; Bolden et al., 1986). However, Yates et al. found the CpG density for methylation of 

the Aprt gene in mice as negligible, and instead demonstrated the importance of a tandem B1 repetitive 

element-motif upstream of the gene instead (Yates et al., 1999).  In addition to acting as strong signals for 

de novo methylation, the tandem B1 element also acted synergistically in the scope of spreading 

methylation. This function was also indicated for Alu elements before (Turker and Bestor, 1997), which 

are the primate equivalents to the murine B1 elements. Therefore, I focused on a presumable association 

of the final methylation pattern of the 3’ CGI region with the incidence of Alu elements in the upstream 

region.  

In all primates examined, the POMC exon3 region was hypomethylated as also observed in mice and 

humans before. This high degree of conservation of the hypomethylated state of the exon3 region in 
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different species underscores the hypothesis of a related functional relevance, since the methylation state 

of a gene region can be correlated with the gene activity by interrelating with TF binding and the 

chromatin formation (Choy et al., 2010; Martinowich et al., 2003).  

Alu elements are strongly methylated, presumably to reduce transcriptional activity of the 

retrotransposomal DNA. Mummaneni et al. coined the term methylation center for cis-acting genomic 

regions that provide significant de novo methylation signals (Mummaneni et al., 1993; Turker, 2002; Yates 

et al., 1999). By acting as methylation center, Alu elements trigger methylation in their genomic vicinity 

(Graff et al., 1997; Li et al., 2010c). Therefore, I expected primates with the same Alu incidence as humans 

to share a similar methylation pattern in this region. The hypothesis was confirmed by the results of the 

chimpanzees and gorillas, which also have the three ‘human’ Alu elements in their intron2 sequence. For 

chimpanzees and gorillas, the same distinct methylation patterns as in humans could be observed and 

matched in details, such as the sharp junction from hypermethylation to hypomethylation at the intron-

exon junction and the heterogeneous methylation dip in the anterior intron2 region. This correlation 

between the occurrence of Alu elements in the intron2 region and the establishment of the methylation 

state in this region indicates that those Alu elements function as a trigger for methylation. However, this 

methylation force seems to be restricted in areas that are presumably relevant for expression, such as CpG 

-13 and the exon3 region.  

Similar methylation patterns were also found for primate families like baboons, macaques, and marmosets 

that share only two Alus of this region with humans. Even the methylation dip of hominids was conserved 

and occurred in marmosets at CpG -8 instead of CpG -13 due to CpG depletion reasons. However, a minor 

dose-effect of Alu number could be observed. In baboons and macaques with the two Alu elements, the 

drop zone at the intron-exon junction is flatter and step wise. Marmosets have additional Alus and show a 

slightly shift of the drop zone into the exon region. This dose-effect has never been described before and is 

strengthened by the methylation pattern observed in lemurs. 

The lemur pattern is highly similar to the murine pattern and showed predominant hypomethylation 

throughout the whole fragment. Both, mice and lemurs, do not possess Alu elements or equipollents in the 

gene region of interest. This supports the hypothesis that the distinct hypermethylation in the intron2 

region of the human, hominids, cercopithecoidea, and platyrrhine POMC is correlated to – or even caused 

by – the upstream-located Alu elements. Therefore, it is tempting to pose that (i) the methylation of this 

region is induced by the upstream-located Alu acting as methylation center during early development and 

is stably transmitted to daughter cells during further development. (ii) The methylation force that 

emanates from the methylation center has a dose-effect depending on the number of Alu elements that are 

present in the methylation center region. (iii) The Alu-triggered methylation is restricted to the intron2 

region to keep the exon3 region non-methylated. 

Of course, the variance of the DNA methylation pattern of lemurs in comparison to the human-like 

methylation pattern might also have other causes apart from the missing Alu elements. For example, DNA 

binding proteins, such as the Sp1 protein, were frequently suggested to be cis-acting factors, which 

prevent DNA methylation of promoter regions and CGIs (Graff et al., 1997; Holler et al., 1988; Straussman 

et al., 2009; Tate and Bird, 1993; Turker and Bestor, 1997). The two in silico predicted Sp1 binding sites 

within the lemur intron2 sequence could inhibit the methylation of this region. However, these binding 

sites were not empirical proved by ChIP analysis. In addition, further weakening this possibility, in mice 

no Sp1 binding sites within the intron2 region are predicted that could exert an equivalent effect. That 

would imply that the analogue hypomethylation of the intron2 region in lemurs and mice would be due to 

different causes. Since this seems unlikely, it abates the hypothesis that the hypomethylation of the lemur 

intron2 region of POMC may result from the Sp1 binding sites in the intron2 regions. By implication, the 

hypothesis of the Alu-dependency of the intron2 methylation is strengthened. 
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For galagos like lemurs, Sp1 binding sites are predicted to be located in the intron2 region of the POMC 

gene. Nevertheless, galagos show no predominant hypomethylation of the 3’ CGI region as lemurs, 

weakening the possible influence of Sp1 on the specific methylation deprivation of intron2 even further. 

Instead, the galago pattern is more similar to the human pattern, than to the lemur and mouse, with 

hypermethylated regions within the intron2, although the start of the transition to hypomethylation is 

shifted upstream. 

Resembling the sequences of lemurs and mice, the galago also does not possess Alus in the POMC intron2 

region. Given the human-like DNA methylation pattern of the galago the observation of an Alu-free intron2 

raises assumptions about additional involved factors besides the direct influence of intron2 Alu elements 

on the hypermethylation of the subsequent region. It is known that chromatin is a complex system. Within 

this three-dimensional assembly of DNA and proteins, not only directly adjacent regions of the genome 

influence each other. Also further afar regions are capable of cross acting in a regulatory way (Gondor and 

Ohlsson, 2009; Lanctot et al., 2007). Moreover, it was observed that the epigenetic regulation of gene 

expression can be controlled in trans by long-range chromatin interactions, and that those long-range 

chromatin interactions can coordinate epigenetic changes (Gondor and Ohlsson, 2009; Kurukuti et al., 

2006; Lanctot et al., 2007). Presumably, there are further 5’ sequence-motifs involved in DNA methylation 

establishment of the POMC locus. For instance, three more Alu elements are present in more upstream 

regions of the human POMC gene aside from the three Alus located in the intron2. They might act in trans 

on the methylation drive. For both investigated strepsirrhinis, not the complete POMC locus has been 

sequenced to date. Therefore, it is possible, that galagos and lemurs differ from each other in the upstream 

region of the POMC gene. It is conceivable that the galago possesses Alu elements in the intron1 or further 

upstream that exert DNA methylation force, which the lemur lacks. Therefore, it should be a goal of future 

research to further sequence and analyze the unexploited gene regions of less familiar primates, such as 

the strepsirrhinis. Then investigation of chromatin interactions of the POMC locus in various primates 

would be possible, such as the application of new techniques for comprehensive three-dimensional 

analyses (Fullwood et al., 2010; Fullwood and Ruan, 2009; Li et al., 2010a). That could bear further 

insights in the triggering mechanisms of the POMC methylation patterns. 

In parallel, the elucidation of the role of the intron2 Alu elements as methylation center could be promoted 

by research focusing on other species. It would be useful to determine the POMC DNA methylation 

patterns of species, (i) which do not possess Alus or equivalent retrotransposable elements in this region 

as the mouse (for example horses or dogs), (ii) that exhibit retrotransposable elements in the locus, but 

different from Alu elements (for example dolphins and cows). 

 

In conclusion, I can state that the comparative sequence and methylation analyses of the intron2 and 

3’ CGI region of the POMC locus of various primates and mice provide strong evidence that the Alu 

elements in the intron2 region act as methylation center that triggers the DNA methylation pattern of the 

subsequent 3’ CGI. This concept of Alu-triggered DNA methylation of the 3’ CGI region is applicable to mice 

and all analyzed primates with exception of the galago. The galago data necessitate considering of further 

trans-acting factors and mechanisms determining the POMC DNA methylation pattern, which should be 

investigated in future research. However, the methylation force exerted by the intron2 Alu elements is 

apparently restricted to the intron2 region, preserving the exon3 region hypomethylated. The molecular 

mechanism that regulates the exact border restriction of the CpG-methylation in the case of POMC 3’ CGI is 

unknown. However, there are some theories about the limitations of DNA methylation to specific regions. 

Certain DNA binding proteins are thought to protect gene regions from de novo methylation (Han et al., 

2001). The Sp1 protein was detected to segregate highly methylated Alu element containing flanks from 

unmethylated CGI sites, a mechanism that is overridden in pathological states (Graff et al., 1997). In the 
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region of interest of the human POMC locus, Sp1 binding sites are only predicted to be located within the 

exon3 region, approximately 600 bp downstream of the exon start. If DNA binding proteins have a far-

distance effect, this might explain the methylation restriction to the POMC intron2 region, but this has not 

been described to date. However, analogous methylation restricting effects have also been described for 

other DNA binding proteins (Dickson et al., 2010). Therefore, it is possible that other binding proteins, 

which are located in the methylation junction region, can exert the observed effect. 

In addition to DNA binding proteins, also sequence motifs, such as an A-rich repeat sequence in the human 

GSTP1, have been shown to form a boundary between methylated and unmethylated DNA (Millar et al., 

2000). Turker proposed in 1999 a model of the dynamic equilibrium between forces that support and 

inhibit the spread of DNA methylation (Turker, 1999). Respective methylation-counteracting forces could 

be Alu elements exerting methylation force and active promoter regions promoting an open chromatin 

state. Thereby, the methylation boundary might be shifted slightly back or forth, depending on the 

strength of both forces (Turker, 2002). For the POMC intron2-exon3 boundary the following scenario is 

thinkable: The intron2 Alu elements form an upstream methylation center, which counteracts to the 

methylation blocking force of the POMC 3’ CGI promoter, whose functional relevant sites are probably 

located in the exon3 region. That could determine the intron2-exon3 methylation border of the POMC 

locus, with possible stochastically defects leading to epigenetic variants like the obesity-associated CMP 

described by Kuehnen et al. This theory would also fit the observation of a dose-dependent methylation 

force depending on the number of Alu elements present in the intron2 region. 

 

Differences in the distribution and rates of Alu transposition have played an important role in shaping the 

structure of primate genomes and defining the activity of certain gene regions by various mechanisms, 

including epigenetic regulation (Batzer and Deininger, 2002; Liu et al., 2009). They are described to have a 

close relation to DNA methylation in the genome. Hence, they contribute to genome organization, gene 

expression, and related phenotypes in various ways. Transposon-induced methylation spreading can be 

observed in the melon plant where it determinates the sex of the flowers (Martin et al., 2009). This 

phenotype-determining transposon-induced alteration of the DNA methylation is stably forwarded to the 

next generation. Therefore, it not only has a marker function for the sex of the flower, but also contributes 

to the evolution of the species. Similar to the DNA methylation mechanism in melon, I detected that the 

DNA methylation pattern of the POMC locus may have evolved upon Alu insertion into the gene region. 

Events like this can lead to pathological consequences, as observed in the X-linked dystonia-parkinsonism. 

The X-linked dystonia-parkinsonism is a movement disorder in humans, in which a newly retroposed 

element induces abnormal DNA methylation. The changed DNA methylation is assumed responsible for 

decreased TAF1 gene expression and, therefore, involved in the disease genesis (Makino et al., 2007). In 

the case of the human POMC gene, the Alu presence and position is manifested in the genome. Therefore, it 

is possible that these Alu elements induce the conserved regular DNA methylation pattern of the 3’ CGI of 

the POMC. If the Alu-induced methylation pattern changed the expression of the whole gene per se, 

remains unclear. However, it was shown, that in individuals with the hypermethylation variant of the 

weight phenotype-associated CMP of POMC, the POMC expression is decreased (Kuehnen et al., in 

revision). Therefore, an altered methylation of only a few CpG residues might be causally linked to the 

weight phenotype via a changed gene dose effect. That abnormal CpG methylation of only a few CpG 

moieties can be associated with disease was also observed in ependymomas. In the pediatric intracranial 

ependymomas, the aberrant DNA methylation is correlated with progression of the tumorigenesis. The 

aberrantly hypermethylated CpG sites are found in the vicinity of Alu elements (Xie et al., 2010), 

comparable to the hypermethylated CMP site in obese children. However, in contrast to ependymomas 

only one specific gene site near Alu elements is affected in the POMC CMP. Application of the hypothesis of 
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methylation-counteracting forces for the DNA methylation border restriction makes it seem possible that 

the abnormal methylation of individual CpG residues – in the ependymoma-genome and in the POMC CMP 

– could be exerted by an excessive Alu methylation force. As result, an Alu element-triggered methylation 

defect might emerge.  

In general, it is debated, how and when anomalous methylation states arise, and how stable they are. Data 

imply that genetic and stochastic factors, as well as environmental factors may contribute to the 

establishment of the epigenome (Bjornsson et al., 2008; Boks et al., 2009; Campion et al., 2009; Fuke et al., 

2004; Heijmans et al., 2007). Studies examining the influence of concrete environmental exposures on 

disease states in humans tend to have difficulties to filtrate explicit outcomes on molecular level that are 

associated with a certain phenotype. There are various studies showing an association of (i) 

environmental influences with increased disease risk in later life (Gluckman et al., 2007; Painter et al., 

2005; St Clair et al., 2005) and (ii) altered DNA methylation – genome wide or of specific loci – with 

disease (Heijmans et al., 2008; Steegers-Theunissen et al., 2009; Tobi et al., 2009; Waterland et al., 2011). 

Nevertheless, the linkage of environmental exposure with changes in DNA methylation that are associated 

with an increased disease risk seems to be challenging. This could be due to various reasons: In a normal 

environment, exposing events are manifold and can cross-act. The same applies for compensating 

mechanisms. Therefore, the outcome – on molecular and phenotype level – may be disguised. However, it 

is also possible that environmental-based alterations are minute and are superposed by stochastic and 

genetic factors.  

How the POMC CMP develops in particular in humans can be estimated based on the results of this thesis 

work, which demonstrate that the methylation patterns of the POMC locus are established in early 

embryogenesis, most likely due to Alu-triggered methylation spreading. After being passed through all 

germ layers, the POMC methylation patterns are highly stable in various tissues throughout life. In 

contrast to studies focusing on global DNA methylation (Zhu et al., 2010), my experiments revealed no 

effects of individual life characteristics (mouse strain) or environmental influence (long-term exposure to 

high fat diet) on the POMC methylation patterns in mice. That indicates resistance against environmental 

factors, at least postnatal, and independence of life characteristics of the POMC DNA methylation. 

Environmental factors cannot be excluded to have an influence on the specific DNA methylation pattern. 

Based on my results it is likely that the POMC CMP arises during the reprogramming phase in early 

embryogenesis on a stochastically basis. Since the CMP is not associated with genomic rearrangements of 

any kind, it may be connected to stochastically occurring termination failure of the Alu-triggered 

methylation.  

In individuals with the obesity-associated hypermethylated POMC CMP variant, reduced p300 binding and 

reduced POMC expression were detected. Regarding the observed 3’ CGI promoter activity, which is 

diminishable in vitro by methylation, the CMP might have functional relevance for POMC expression. This 

could be either by influencing TF binding or elongation efficiency through DNA methylation directly (Choy 

et al., 2010; Lorincz et al., 2004) or indirectly by participating in chromatin formation (Pennings et al., 

2005; Tanaka et al., 2010; Vaissiere et al., 2008). Hence, the 3’ CGI promoter could be involved in the 

transcription of full-length transcripts by inducing an open and active chromatin structure long-range, in 

addition to the direct regulation of short alternative transcripts. In this line of thought, the CMP might 

affect total POMC expression and reduce the gene dosage effect. Consequently, this could increase the risk 

of developing obesity. Insufficient gene expression due to transposable element-induced methylation 

alteration has been described before (Makino et al., 2007; Martin et al., 2009; Morgan et al., 1999), as well 

as aberrant DNA methylation being directly involved in the genesis of diseases, such as obesity (Bjornsson 

et al., 2004). Thus, it should be an issue of future investigation to find out about the role of variegating Alu-
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triggered DNA methylation on POMC expression, to determine if the POMC CMP has direct functional 

relevance or if it could serve indirectly as a marker for an increased obesity risk.  

Stable interindividual differences in DNA methylation of specific loci, such as the Alu element-triggered 

POMC CMP, are common. It is becoming more evident that this kind of epigenetic variation might be 

connected to obesity susceptibility. The VMR identified by Feinberg et al. included a handful of stable VMR 

that were found near, or within, body weight- or diabetes-regulating genes. They were significantly 

associated with the BMI (Feinberg et al., 2010), just like the VMR-analogue POMC CMP. In the meanwhile, 

more and more obesity-associated epigenetic changes are detected (Campion et al., 2009). For most of 

them, it is not clear if the BMI-associated epigenetic aberrations have functional relevance or not. Either 

way, they represent a personalized epigenetic signature and may serve as risk markers for obesity 

susceptibility. The identification of individuals possessing these changes in their epigenetic profile could 

help to predict their risk to develop obesity. That might allow the implementation of sufficient prevention 

or therapy interventions to impede the progress of obesity development. 

 

Besides their involvement in the pathogenesis of obesity, epigenetic factors are also discussed to be 

involved in the genesis of diseases in general (Bjornsson et al., 2004). Various studies identified global 

epigenetic changes in disease states, such as cancer, and postulated their contribution to aberrant gene 

regulation and genomic instability (Robertson, 2005; Wilson et al., 2007). Global epigenetic changes are 

hardly assignable to one concrete disease state. Moreover, it is difficult to distinguish between cause and 

effect (Laird and Jaenisch, 1996), which makes global epigenetic changes useless as early-recognition 

markers. Gene-specific epigenetic changes are easier to correlate with diseases and could be used as early-

recognition markers for screening (Jiang et al., 2004; Karouzakis et al., 2009; Urdinguio et al., 2009). 

Developmental and exposure analysis may help to find out about the stability of specific epigenetic 

changes to estimate their sense as marker-aberration, as shown in this work. Thereby, it might be useful 

to pay attention to changes near Alu elements, since Alus trigger the DNA methylation and can induce 

changes on a stochastic basis.  

This kind of epigenetic approaches to diseases opens new chances for their comprehension, early 

detection, and handling, as genetic analyses have done before. Since genetic analyses met their limitations 

in various respects, it is a promising opportunity to deepen the knowledge of epigenetic factors that mark 

or influence the risk of disease susceptibility. Even if the genesis of diseases cannot be elucidated, early-

recognition markers could be identified. By establishing appropriate biomarkers for diseases, such as the 

Alu-triggered POMC CMP for obesity, customized intervention strategies could be designed and applied as 

early as possible, to prevent the development or progression of diseases. This eventually may lead to an 

increase of health and quality of life of the individual. 
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5 Summary 

Obesity is a chronic disease with an increasing prevalence worldwide. Besides environmental, socio-

cultural, and genetic determinants, also epigenetic factors are discussed to contribute to the manifestation 

of the weight phenotype. The pre-proopiomelanocortin (POMC) gene is a pivotal element of the central 

anorexigenic leptin-melanocortin signaling pathway. Mutations within this gene can cause severe 

monogenic early onset obesity in humans and mice. In addition to these POMC mutations, recently a single 

nucleotide polymorphism (SNP) in the POMC vicinity and a POMC CpG methylation variant in the 

intragenic 3’ CpG island (CGI) were identified to be associated with obesity. The latter indicates a possible 

role of epigenetic modifications in body weight regulation. To gain further insight into the functional 

relevance, stability, and origin of the POMC DNA methylation, both CGIs of the POMC gene - the promoter-

associated 5’ CGI and the intragenic 3’ CGI - were analyzed with regard to the functionality, ontogenesis, 

and phylogenesis of their DNA methylation status.  

Via in vitro analyses, DNA methylation-dependent promoter activity for both CGIs was revealed. Thereby, 

the intragenic 3’ CGI was identified as a potential alternative promoter of POMC, which has not been 

described before. Because of the known impact of DNA methylation on gene expression activity, we 

analyzed the in vivo situation of POMC DNA methylation, starting with the ontogenetic aspects. Therefore, 

we applied bisulfite genomic sequencing (BGS) to (I) murine samples from various tissues, different 

developmental stages, and from mice receiving distinct diets, and (II) blood samples from newborn 

humans. Postnatally, stable POMC DNA methylation patterns with interindividual conservation were 

detected for both CGIs in humans and mice. In addition, it was observed in mouse samples that the POMC 

DNA methylation patterns are non-tissue-specific, stable upon long time administration of a high fat diet, 

and already present prenatally at the stage of early organogenesis. However, mouse blastocysts were 

found to be completely hypomethylated, indicating the establishment of the DNA methylation patterns 

after this stage.  

Comparative analysis of the 3’ CGI DNA methylation of humans and mice revealed distinct pattern 

differences upstream of exon3. These pattern differences could be linked to the presence of Alu elements 

within the intron2 of the human POMC gene, which might trigger methylation spreading in humans, but 

have no equipollents in the mouse genome. This hypothesis was tested by analyzing primate families for 

the respective Alu elements and their 3’ CGI DNA methylation pattern. An association of these particular 

Alu elements with the establishment of the DNA methylation pattern upstream of exon3 was indicated. 

However, the results also suggest an influence of additional factors on the DNA methylation pattern, such 

as further Alu elements within the POMC gene region. 

This work contributes to the field of epigenetics by demonstrating that the DNA methylation patterns of 

the POMC locus are species-specific highly conserved, and that they are stably established during early 

embryogenesis possibly triggered by the presence of Alu elements within the intron2. Stochastic variances 

in the manifestation of POMC DNA methylation patterns might alter the POMC gene expression, as 

indicated by in vitro analyses. Consequently, epigenetic variants may increase the risk of developing 

obesity. Future research will show whether DNA methylation changes might play a role in the 

development of common diseases, such as obesity. 
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6 Zusammenfassung 

Adipositas ist eine chronische Erkrankung mit weltweit ansteigender Prävalenz. Man geht davon  aus, 

dass neben umfeldbedingten, soziokulturellen und genetischen Determinanten auch epigenetische 

Faktoren zur Ausbildung des Gewichtsphänotyps beitragen. Das Proopiomelanocortin Gen (POMC) ist ein 

zentrales Element des anorexigenen Leptin-Melanocortin-Signalwegs, und Mutationen im POMC können 

zu frühmanifester Adipositas führen. Kürzlich konnten ein Single- Nukleotid-Polymorphismus (SNP) in 

der umgebenden Sequenz des POMC sowie eine CpG-Methylierungsvariante in der intragenischen 3’ CpG-

Insel (CGI) identifiziert werden, die mit Adipositas assoziiert sind. Die CpG-Methylierungsvariante weist 

auf einen möglichen Einfluß von epigenetischen Modifikationen auf die Gewichtsregulation hin. Zur 

Aufklärung der Relevanz, der Stabilität und des phylogenetischen Ursprungs der POMC-DNA-

Methylierung, wurden beide CGIs (die Promoter-assoziierte 5’ CGI und die intragenische 3’ CGI) in 

Hinsicht auf ihre Funktionalität, Ontogenese und Phylogenese untersucht. 

In in vitro Analysen konnte ich für beide CGIs DNA-Methylierungsabhängige Promoteraktivität feststellen. 

Die Transkriptionsaktivität der 3’ CGI konnte somit erstmals beschrieben werden und weist auf einen 

separaten alternative Promoter des POMCs hin. Wegen des bekannten Effekts von DNA-Methylierung auf 

die Genexpressionsaktivität habe ich die in vivo Situation der POMC-DNA-Methylierung untersucht, 

begonnen mit den ontogenetischen Aspekten. Hierzu wurde Bisulfit-genomische-Sequenzierung auf (I) 

murine Proben von verschiedenen Geweben und Entwicklungsstadien sowie nach bestimmter Diät, und 

(II) humane Proben von Neugeborenen angewandt. Postnatal wurden stabile DNA-Methylierungsmuster 

mit interindividueller Konservierung für beide CGIs im Mensch und in der Maus festgestellt. Des Weiteren 

zeigte sich eine Gewebeunabhängigkeit der DNA-Methylierung in der Maus mit bereits prenatal im 

Stadium der frühen Organogenese ausgebildeten Mustern. Die Analyse von murine Blastocysten hingegen 

deutete auf eine Entstehung dieser Muster in einem späteren Entwicklungsstadium hin.  

Der Vergleich des DNA-Methylierungsmusters der 3’ CGI in Mensch und Maus zeigte klare Unterschiede 

upstream des Exon3, was auf das Vorkommen von Alu-Elementen im Intron2 des humanen POMCs 

zurückzuführen sein könnte, die einen Einfluss auf die DNA-Methylierung ihrer Umgebung haben können. 

Da es für die Alu-Elemente keine Äquivalente in der murinen POMC Region gibt, wurde diese Hypothese 

überprüft, indem verschiedene Primatenfamilien auf das Vorkommen entsprechender Alu-Elemente, 

sowie ihr DNA-Methylierungsmuster der 3’ CGI untersucht wurden. Wir konnten eine bedingte 

Assoziation dieser Alu-Elemente mit der Ausprägung der DNA-Methylierung upstream des Exon3 

feststellen. Jedoch lassen die Ergebnisse noch weitere Einflussfaktoren auf das DNA-Methylierungsmuster 

vermuten (zum Beispiel weitere Alu-Elemente). 

Diese Arbeit ist ein wichtiger Beitrag zur epigenetischen Forschung. Es konnte gezeigt werden, dass die 

DNA-Methylierungsmuster des POMC Spezies-spezifisch konserviert sind und in der frühen 

Embryogenese ausgebildet werden, vermutlich ausgelöst durch das Vorhandensein von Alu-Elementen im 

Intron2. In vitro Ergebnisse weisen darauf hin, dass stochastische Variationen dieser Muster die POMC-

Expression beeinflussen und somit das Risiko für Adipositas erhöhen könnten. Zukünftige 

Untersuchungen werden zeigen, ob spezifische Änderungen der DNA-Methylierung eine Rolle in der 

Entwicklung von häufigen Erkrankungen, wie zum Beispiel der Adipositas, spielen. 
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