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Abstract

In the present thesis we consider the problem of maximizing the power utility
from terminal wealth where the stocks have continuous semimartingale dynamics and
there are investment and information constraints on the agent’s strategies. The main
focus is on the backward stochastic differential equation (BSDE) that encodes the
dynamic value process and on transferring new results on quadratic semimartingale
BSDEs to the portfolio choice problem, in particular to its stability properties. This
is accomplished under the assumption of finite exponential moments of the mean-
variance tradeoff, generalizing previous results which require boundedness.
We first recall the precise relationship between the duality and BSDE approaches

to solving the above problem and then study the quadratic semimartingale BSDE
which arises in such a problem when the market price of risk is of BMO type. We
show that even for a bounded mean-variance tradeoff there is always a continuum of
distinct solutions to the BSDE with square-integrable martingale part (with only one
of them being a bounded solution). For this we prove that in contrast to the classical
Itô decomposition theorem an L2-representation of random variables in terms of
stochastic exponentials is not unique. We then provide a new sharp condition on
the dynamic exponential moments of the mean-variance tradeoff which guarantees
the boundedness of BSDE solutions in a general filtration. The main results are
complemented by several interesting examples which illustrate their sharpness as
well as important properties of the utility maximization BSDE.
In a subsequent step we establish existence, uniqueness and stability results for

general quadratic continuous BSDEs under an exponential moments condition. An
important additional result is that the martingale part of a solution does provide a
true measure change even though the first component of the solution triple might not
be bounded, equivalently, even though the martingale part might not be of BMO
type. As a consequence, the verification argument for the utility maximization
problem becomes feasible for unbounded mean-variance tradeoff variables which
satisfy an appropriate exponential moments assumption.
We use these results to study the portfolio selection problem when there are conic

investment constraints. Building on a decomposition result for the elements of the
so-called dual domain we have the associated BSDE satisfied by the dynamic value
process (the opportunity process) and show that by our moments assumptions this
value process is contained in a specific space in which BSDE solutions are unique.
This provides an argument for verification. A consequence of the stability result for
BSDEs is then the continuity of the optimizers with respect to the input parameters
of the model, i.e. the investor’s relative risk aversion, the market price of risk process,
the statistical probability measure and the constraints sets, in the semimartingale
topology. This result integrates previous research into a unified BSDE framework.
Finally, we study the existence, uniqueness and stability of the optimal investment

problem under exponential moments, compact constraints and restricted informa-
tion. This is done by referring to BSDE results only and performing the verification
argument using the previous measure change result, which is beyond the bounded-
ness assumptions of recent literature.
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Zusammenfassung

In der vorliegenden Dissertation befassen wir uns mit der Erwartungsnutzenma-
ximierung des Endvermögens für Potenznutzen, wenn die Aktienpreise stetigen Se-
mimartingaldynamiken genügen und die Strategien des Agenten Investitions- und
Informationsrestriktionen unterworfen sind. Hauptaugenmerk liegt dabei auf der
stochastischen Rückwärtsdifferentialgleichung (BSDE) für den dynamischen Wert-
prozess und auf der Übertragung von neuen Ergebnissen zu quadratischen Semi-
martingal-BSDEs auf das Investitionsproblem, insbesondere auf dessen Stabilitäts-
eigenschaften. Dieses gelingt unter der Annahme endlicher exponentiellen Momente
des so genannten Mean-Variance Tradeoff und verallgemeinert frühere Resultate, die
Beschränktheit fordern.
Wir betrachten dabei zunächst die genaue Beziehung zwischen den Dualitäts-

und BSDE-Ansätzen zur Lösung des obigen Problems und gehen dann über zum
Studium der quadratischen Semimartingal-BSDE, die in solch einem Problem auf-
tritt, wenn der Marktpreis des Risikos vom BMO-Typ ist. Wir zeigen, dass es selbst
für einen beschränkten Mean-Variance Tradeoff stets ein Kontinuum verschiedener
BSDE-Lösungen mit quadratisch integrierbarem Martingalanteil gibt (wobei nur ei-
ne dieser Lösungen beschränkt ist). Hierfür beweisen wir, dass im Gegensatz zum
Darstellungssatz von Itô eine L2-Darstellung von Zufallsvariablen als stochastische
Exponentiale nicht eindeutig ist. Wir stellen dann eine neue scharfe Bedingung an
die dynamischen exponentiellen Momente des Mean-Variance Tradeoffs vor, die die
Beschränktheit der BSDE-Lösungen in einer allgemeinen Filtration garantiert. Die
Hauptergebnisse werden mit mehreren Beispielen vervollständigt, die ihre Schärfe
sowie wichtige Eigenschaften der Nutzenmaximierungs-BSDE veranschaulichen.
In weiterer Folge weisen wir Existenz-, Eindeutigkeits- und Stabilitätsresultate

für allgemeine quadratische stetige BSDEs unter exponentiellen Momenten nach.
Ein wichtiges zusätzliches Ergebnis ist, dass der Martingalanteil einer Lösung einen
Maßwechsel definiert, auch wenn die erste Komponente eines Lösungstripels nicht be-
schränkt bzw. der Martingalanteil nicht vom BMO-Typ ist. Folgerichtig lässt sich das
Verifikationsargument für das Nutzenmaximierungsproblem auch für unbeschränkte
Mean-Variance Tradeoff Variablen, die einer geeigneten Bedingung an die exponen-
tiellen Momente genügen, durchführen.
Diese Ergebnisse verwenden wir, um das Investitionsproblem für den Fall konischer

Investitionsrestriktionen zu untersuchen. Ausgehend von der Zerlegung von Elemen-
ten des dualen Gebietes erhalten wir die entsprechende BSDE für den dynamischen
Wertprozess (den Opportunitätsprozess) und beweisen, dass dieser in einem Raum
liegt, in welchem Lösungen quadratischer BSDEs eindeutig sind. Dies liefert ein Ar-
gument für den Verifikationsschritt. Als Folgerung aus dem Stabilitätsresultat für
BSDEs erhalten wir die Stetigkeit der Optimierer in der Semimartingaltopologie in
den Parametern des Modells, d. h. in der relativen Risikoaversion des Investors, dem
Marktpreis des Risikos, dem statistischen Wahrscheinlichkeitsmaß und den Mengen,
die die Restriktionen modellieren. Dieses Ergebnis vereinigt frühere Forschung in
einem gemeinsamen BSDE-Rahmen.
Schließlich betrachten wir die Existenz, Eindeutigkeit und Stabilität des Investiti-

onsproblems unter exponentiellen Momenten, kompakten Handelsrestriktionen und
eingeschränkter Information. Hierbei benutzen wir ausschließlich BSDE-Resultate
und führen das Verifikationsargument aus, indem wir uns nun auf die Aussage über
den Maßwechsel beziehen, was wiederum außerhalb der Beschränktheitsannahmen
neuerer Literatur liegt.
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1 General Concepts and Preliminaries

1.1 Background and Introduction

Backward Stochastic Differential Equations

Since their introduction by Bismut [1973] within the Pontryagin maximum principle,
backward stochastic differential equations (BSDEs) have attracted much attention in the
mathematical literature. In a Brownian framework such equations are usually written

dΨt = Zt dWt − F (t,Ψt, Zt) dt, ΨT = ξ, (1.1.1)

where ξ is an FT -measurable random variable, the terminal value, F is the so-called
driver or generator and T > 0 is a real number. Here, (Ft)t∈[0,T ] denotes the filtration
generated by the one-dimensional Brownian motion (Wt)t∈[0,T ]. Solving such a BSDE
corresponds to finding a pair of adapted processes (Ψ, Z) such that the integrated version
of (1.1.1) holds. The presence of the control process Z stems from the requirement of
adaptedness for Ψ together with the fact that Ψ must be driven into the random variable
ξ at time T . One may think of Z as arising from the martingale representation theorem.
To be more concrete, for a square-integrable ξ, consider the BSDE

dΨt = Zt dWt, ΨT = ξ,

which is solved explicitly by setting Ψt := E[ξ | Ft], which gives a square-integrable
martingale, and then applying the martingale representation theorem,

Ψt = E[ξ| Ft] = E[ξ] +
∫ t

0
Zs dWs.

The above BSDE (1.1.1) is an extension of this example; it includes an additional driver
F .
In a more general semimartingale framework, where the main source of randomness

is encoded in a fixed continuous (one-dimensional) local martingale M on a filtration
(Ft)t∈[0,T ] which is not necessarily generated by it, we have to add an extra orthogonal
component N . The corresponding BSDE then takes the form

dΨt = Zt dMt + dNt − f(t,Ψt, Zt) d〈M〉t − gt d〈N〉t, ΨT = ξ. (1.1.2)

Solving (1.1.2) now corresponds to finding an adapted triple (Ψ, Z,N) of processes sat-
isfying the integrated version of (1.1.2), where N is a (continuous) one-dimensional local
martingale orthogonal to M , i.e. 〈M,N〉 ≡ 0, where 〈·, ·〉 denotes the quadratic covari-
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1 General Concepts and Preliminaries

ation. We refer to Z ·M +N as the martingale part of a solution to the BSDE (1.1.2).
In a multidimensional setting we write this BSDE as

dΨt = ZT
t dMt + dNt − F (t,Ψt, Zt) dAt − gt d〈N〉t, ΨT = ξ, (1.1.3)

where A is a predictable increasing process that encodes the variation of the continuous
d-dimensional local martingale M and N is now orthogonal to each component of M .
Moreover, in all our applications, g equals the constant 1/2 reflecting the fact that the
drivers F of the BSDEs considered here are of quadratic type (in Z). In fact, it is
well-known that such BSDEs can be solved by using an exponential transform and this
fact will be a recurrent theme in the following exposition. To motivate, we state the
prototype of a quadratic BSDE,

dΨt = ZT
t dWt −

1
2 ‖Zt‖

2 dt, ΨT = ξ.

Given suitable conditions, this is solved explicitly by setting Ψt := log
(
E[exp(ξ)| Ft]

)
and

applying the martingale representation theorem to the random variable exp(ξ), together
with an appropriate transformation, in order to find Z. In the general case, assuming
that M does not exhibit the representation property, an additional orthogonal martin-
gale enters the formula and the exponential transformation requires that its quadratic
variation appear with factor 1/2.
As already mentioned, BSDEs of type (1.1.1) and (1.1.3) have found many fields of

application in mathematical finance and the present thesis is one of the many contribu-
tions. The reader is directed to El Karoui et al. [1997] for a first survey. In view of the
specific focus of the present work we remark that appropriate BSDEs have been derived
in Hu et al. [2005] for the value processes of several constrained utility maximization
problems. This article extends earlier work by Rouge and El Karoui [2000] as well as
Sekine [2006] and motivated a subsequent extension of the Brownian framework to a
continuous semimartingale setting by Morlais [2009]. Building on the work by Mania
and Tevzadze [2003, 2008], the respective BSDE for a power utility function is investi-
gated in Nutz [2011] in even more generality establishing a one-to-one correspondence
between solutions to BSDEs and solutions to the so-called primal and dual problems
of utility maximization. In Mania and Schweizer [2005] the authors use a BSDE to
describe the dynamic indifference price for exponential utility and their approach is ex-
tended to robust utility in Bordigoni et al. [2007] and to an infinite time horizon in Hu
and Schweizer [2009]. We also mention Becherer [2006] for further extensions to BSDEs
with jumps and Mania and Tevzadze [2008] to backward stochastic partial differential
equations (BSPDEs).
With regards to the theory of BSDEs, existence and uniqueness results were first

provided in a Brownian setting by Pardoux and Peng [1990] under Lipschitz conditions.
They were extended by Lepeltier and San Martín [1997] to continuous drivers with
linear growth and by Kobylanski [2000] to generators which are quadratic as a function
of the control variable Z. Corresponding results for a semimartingale framework may
be found in Morlais [2009] and Tevzadze [2008]. In the situation when the generator

2



1.1 Background and Introduction

has superquadratic growth, Delbaen et al. [2010] show that such BSDEs are essentially
ill-posed.
A strong requirement present in the articles Kobylanski [2000], Morlais [2009] and

Tevzadze [2008] is that the terminal condition as well as the processes which appear
in the quadratic growth estimates be bounded. In a Brownian setting Briand and Hu
[2006, 2008] have replaced this by the assumption that they need only have exponential
moments but in addition, for uniqueness to hold, the driver is convex in the Z variable.
More recently, by interpreting the Ψ component as the solution to a specific stochastic
control problem, Delbaen et al. [2011] extend these results and show that one can reduce
the order of exponential moments required. In addition, in the cited references as well
as the recent articles by Frei [2009] and Barrieu and El Karoui [2011], the reader will
also find – in various degrees of generality – stability theorems for such BSDEs.
Stability is meant here in the following sense. Suppose we are given a sequence

(Fn)n∈N0 of drivers and a sequence (ξn)n∈N0 of terminal values such that in some fixed
space of processes unique solutions (Ψn, Zn, Nn)n∈N0 to the BSDE (1.1.3) with F = Fn

and ξ = ξn exist. In addition, under suitable conditions (typically that some specific
boundedness or integrability assumptions are uniform in n), then, if

F 0 = lim
n→+∞

Fn and ξ0 = lim
n→+∞

ξn

hold it is the case that

(Ψ0, Z0, N0) = lim
n→+∞

(Ψn, Zn, Nn)

where all these limits are taken with respect to appropriate norms.
The aim of this thesis is now to use the above mentioned link between BSDEs and the

portfolio choice problem and to transfer the theorems that are proved within a thorough
study of quadratic semimartingale BSDEs under an exponential moments assumption
to results on the constrained investment problem under incomplete information. A
particular focus is on the stability of the power utility maximization problem via BSDE
methods alone. We now introduce this utility maximization problem.

The Portfolio Choice Problem

We assume that there is given a financial market of one bond and d stocks modelled on
a stochastic basis (Ω,F , (Ft)t∈[0,T ],P), with the major sources of randomness encoded in
a continuous d-dimensional local martingale M and a predictable, M -integrable process
λ, the market price of risk, such that

dSt = Diag(St)
(
dMt + d〈M〉tλt

)
.

We write Xx,ν for the wealth process associated with an investment strategy ν when the
initial capital is x > 0,

Xx,ν := x E(ν ·M + ν · 〈M〉λ). (1.1.4)

3



1 General Concepts and Preliminaries

In particular, investment strategies represent the proportion of wealth invested in the
stocks.
We then consider a risk averse agent trading in the above market and assume that

their preferences are given by a power utility function U . In particular, their relative risk
aversion is constant, they are CRRA-investors. We also assume that the agent is a price-
taker, i.e. their actions do not affect the stock prices. Their goal is then to maximize
the expected utility of terminal wealth. This leads to the following formulation of the
primal optimization problem,

u(x) := sup
ν∈A

E
[
U
(
Xx,ν
T

)]
(1.1.5)

where A denotes some family of admissible investment strategies.
The strategies available to the agent are those which are valued in either a convex

cone (Chapter 4) or a compact set (Chapter 5), where we mention that using the notion
of “compact” constraints is for ease of formulation. Such sets represent constraints like
no short selling. We assume them to be stochastic and we can think of the following
example where our framework is suited for application. Consider a market in which
a regulator bans the short selling of certain stocks as soon as some reference levels
are attained. For instance, if stock prices drop dramatically or some volatility index
indicates a sharp spike, the regulatory framework might enforce a ban on short selling
to discourage aggressive speculators. Similarly, the board of an investment, pension
or hedge fund may impose rules on the fund manager’s investment possibilities that
come into effect when the market exhibits a specified behaviour. Clearly, both the
unconstrained and the incomplete case can be included within such a framework. The
former corresponds to the case in which the constraints sets equal the whole space Rd.
In the latter some of the stocks cannot be traded but rather stand for latent factors;
formally, some components of the strategies are prescribed to be zero.
In addition to such investment constraints, in Chapter 5, we study the effects of

information constraints. More precisely, we assume that both the agent and the regulator
do not have access to the full information inherent in the economy but only to some
restricted information flow modelled by a subfiltration of the main filtration. The most
natural assumption in the context of such a partial information framework is that the
market participants can observe the evolution of the stock prices or, more generally, of
the stock returns. This situation has been studied in Lakner [1998], Pham and Quenez
[2001] and Sass [2007] for instance. Although such a setting may serve as the major
example we do not assume it in general but follow the ideas of Mania and Santacroce
[2010] and Covello and Santacroce [2010], i.e. we consider a filtration which is possibly
even smaller than the filtration generated by the stock prices or stock returns. We then
extend the reasoning of these articles to the multidimensional as well as constrained case
where the mean-variance tradeoff 〈λ ·M〉 is unbounded. The latter object is exactly that
which enters the quadratic growth estimates of the associated BSDE to which we have
alluded above.
The above portfolio selection problem (1.1.5) is classical in mathematical finance and
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1.1 Background and Introduction

has been extensively studied. It dates back to Merton [1969, 1971]. For general util-
ity functions (not necessarily power) the main solution technique is convex duality, we
mention Karatzas et al. [1991], Cvitanić and Karatzas [1992], Kramkov and Schacher-
mayer [1999], Cvitanić et al. [2001], Karatzas and Žitković [2003] as well as the survey
article of Schachermayer [2004] which gives an overview of the ideas involved together
with many further references to which we refer the reader. The above list of references
reflects the development and increasing complexity of the attacked problems, starting
with nondegenerate incomplete Itô models (under constraints) and progressing to the
semimartingale framework with random endowment, intertemporal consumption and
fixed constraints. During this development the so-called dual domain evolved from the
local martingale to the supermartingale and eventually to the finitely additive measures.
Namely, one associates with the above primal problem (1.1.5) a dual problem involving
the convex conjugate Ũ of the utility function U . The dual problem consists of min-
imizing, over a suitable domain of, say, supermartingale measures for the stocks, the
expectation of the Ũ -values of (the densities of) these measures. Here, the notion of
supermartingale measures refers to the fact that all the admissible wealth processes are
supermartingales under them. One can think of this approach as looking for a pricing
measure, i.e. a measure under which the wealth process becomes a martingale (see condi-
tion (A) below). In the literature the duality approach is thus also called the “martingale
method”. The dual problem usually is easier to solve and by the conjugacy relations then
yields a solution to the primal problem.
A second approach to tackling the problem (1.1.5) is via BSDEs using the factorization

property of the value process when, as an example, the utility function is of power
type. This allows one to apply the martingale optimality principle and, as shown in
Hu et al. [2005], to describe the value process and optimal trading strategy completely
via a BSDE. By the martingale optimality principle we mean the well-known paradigm
of stochastic control theory to formulate an optimization problem in such a way that
for all admissible strategies some controlled process is a supermartingale while it is a
martingale for (only) one admissible strategy. The latter then optimizes the expectation
value of the controlled process over the set of admissible strategies. As an alternative,
one may attack the problem by pointwise minimization of the drivers of the BSDEs
associated to the strategies. This is more in the spirit of the HJB equation in a Markov
setting, but is based on the same principles.
From the above references we know that a major difficulty in the present topic con-

sists of showing that a solution to the BSDE (assuming it exists) indeed provides the
optimizers of the portfolio choice problem and, when appropriate, of the associated dual
problem. In contrast to Nutz [2011], where for verification a condition is given that
involves the martingale part of the BSDE solution, we here strive for criteria on the
parameters of the model, mainly focussing on the market price of risk λ. Under an
exponential moments condition on the mean-variance tradeoff, we study the existence
and uniqueness of an optimal solution to problem (1.1.5), together with the solution to
the associated dual problem. In Chapter 4, we show that under cone constraints, the
dual domain can conveniently be restricted to be the family of supermartingale mea-
sures for the stock. We then describe the direct correspondence between the solutions

5



1 General Concepts and Preliminaries

of a quadratic BSDE and the primal and dual optimizers. The main tool for this is an
extension of the decomposition of elements in the dual domain given in Karatzas and
Žitković [2003] and Larsen and Žitković [2007] to the case of semimartingale dynamics
with predictably measurable cone constraints, a contribution to the convex duality liter-
ature. We also mention that we derive our verification statement from BSDE comparison
principles in the spirit of Hu et al. [2005] and Morlais [2009] but relax the boundedness
and nondegeneracy assumptions there, instead building on the theoretical results for
quadratic BSDEs proved in Chapter 3.

The Stability of the Portfolio Choice Problem
The most interesting application of the theoretical results on stability of BSDEs that we
provide in Chapter 3 is in using the one-to-one correspondence between optimizers and
BSDE solutions addressing the following question.

“Do the components of the solution, such as the optimal wealth and in-
vestment strategy, depend continuously on the input parameters, i.e. utility
function, asset price dynamics and investment constraints?”

Since we focus specifically on power utility our results are simultaneously more and less
general than previous literature. Namely we are fixed within a class of utility functions
but allow for a more general market model with continuous semimartingale dynamics.
Moreover, using the link with BSDEs we can simultaneously consider continuity with
respect to utility function, model dynamics, statistical probability measure and con-
straints, integrating previous research into one framework. Here, continuity with respect
to the utility function is given in terms of the investor’s relative risk aversion parameter.
The continuity with respect to the model dynamics is formulated for the mean-variance
tradeoff process. With regards to the stability in the statistical probability measure we
consider convergence of the corresponding densities while for the constraints we rely on
the notion of the closed set limit.
These modes of convergence are appropriate for an investigation of the stability of

the utility maximization problem. For instance, in the motivating example above the
regulator may well be concerned about the effect of having their decision taken under
misspecifications of the market dynamics. As a second application no investor knows
their risk aversion exactly, similarly the stock dynamics and the probability measure
are based on historical estimation and thus it is necessary to investigate the impact of
slight misspecifications on the optimal variables. Our results are to the stability of the
portfolio choice problem, and we provide a mathematical framework to study this. We
derive convergence of the optimal strategies, as well as convergence of the optimal wealth
and dual processes in the semimartingale topology, which is stronger than convergence
at terminal time in probability. We are thus able to improve the statements in Larsen
and Žitković [2007], Larsen [2009] and Kardaras and Žitković [2011].
The BSDE approach to the study of the stability of the utility maximization problem

is a new feature, in particular, the current literature in this area typically relies upon
duality methods. More precisely, the previous research is divided into two themes,
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1.1 Background and Introduction

beginning with the article of Jouini and Napp [2004], the first analyzes continuity with
respect to the preferences. A sequence (Un)n∈N0 of utility functions (not necessarily of
power type) converging to U = U0 is considered and the continuity of the corresponding
optimizers investigated, for complete Itô-price models in Jouini and Napp [2004] and
for incomplete markets with continuous semimartingale dynamics in Larsen [2009]. In
the complete case, due to uniform boundedness of the market price of risk process, the
authors of Jouini and Napp [2004] prove the L%, % ≥ 1, as well as pointwise convergence
of the optimal wealth and consumption at each date, whereas in Larsen [2009] this is
weakened to convergence in probability of only the optimal terminal wealth. We mention
that both articles assume a regularity condition in the sense that all utility functions are
dominated by a fixed one. More recently, in Kardaras and Žitković [2011] it is shown that
such convergence in probability of the optimal terminal wealth also holds when there
are illiquid assets which the investor may add to their portfolio and when the statistical
probability measure simultaneously varies, modelled by a sequence of measures (Pn)n∈N0

converging in total variation norm. Again, there is a uniform integrability assumption.
In fact, building on Larsen and Žitković [2007], one can provide an example which shows
that convergence of the optimal wealth in probability may fail otherwise. Finally we
mention the work of Nutz [2010a] who looks at risk aversion asymptotics for the power
utility function, but also provides results on the continuity with respect to the risk
aversion parameter. In addition, in Kramkov and Sîrbu [2006] the reader will find a
related sensitivity analysis for the utility indifference prices.
The second theme, beginning with Larsen and Žitković [2007], relates to misspecifica-

tions in the model, i.e. the utility function is fixed (again, not necessarily of power type)
and the asset price dynamics vary. Typically there is a continuous semimartingale Sλ,
modelling the financial market, which is indexed by a market price of risk λ. A sequence
λn is then chosen, appropriately convergent to some λ, and the convergence of the opti-
mal terminal wealths X̂λn

T is studied, again in probability. Continuity is shown under a
suitable uniform integrability assumption (which is indispensable as an example shows).
The results therein have recently been generalized to the conditional value functions and
optimal wealth random variables X̂λn

τ for a stopping time τ valued in [0, T ], we refer to
Bayraktar and Kravitz [2010] for further details.
The previous articles consider stability/continuity only in the situation when there

are neither investment nor information constraints. As an exception, in the specific case
when the utility function is the logarithm, appropriate stability results can be found in
a recent article by Kardaras [2010]. The optimizing investment strategy is then called
the numéraire portfolio and by using its known explicit formula it is shown to depend
continuously on the filtration, probability measure as well as the investment constraints,
which are modelled by a sequence of cones.

Summary of the First Chapter

Let us now give a summary of the content of each chapter and provide additional re-
marks about our contributions to the literature. Following this introduction we fix the
framework and the notation which will be used throughout. We give an overview of the
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1 General Concepts and Preliminaries

general concepts of utility maximization which we consider to be for the unconstrained
problem in a first step. More precisely, along with the primal problem (1.1.5), we also
introduce the dual optimization problem. From Kramkov and Schachermayer [1999] we
then recall that, under suitable no arbitrage and nondegeneracy assumptions, there is
a unique primal optimizer X̂ together with a unique dual optimizer Ŷ . In particular,
we show that these optimizers exist under the condition that the mean-variance tradeoff
〈λ ·M〉T have all exponential moments which is the major structural assumption within
the entire thesis. As a matter of fact, finite exponential moments of some specific order
are sufficient as we show in Chapter 5. This then improves the results from the literature
which are for a bounded mean-variance tradeoff, see Hu et al. [2005] and Morlais [2009].
Two properties of the optimal pair (X̂, Ŷ ) turn out to be essential. Given that they

satisfy the initial condition Ŷ0 = u′(X̂0), where u is the value function from (1.1.5), we
have that

(A) the process X̂Ŷ is a martingale and

(B) it holds that ŶT = U ′(X̂T ).

In view of the relation (B) it is then natural to define

Ψ̂ := log
(

Ŷ

U ′(X̂)

)

and to investigate the dynamics of this process which in this case are accompanied by
the terminal condition Ψ̂T = 0. We are thus led to considering a BSDE for the process
Ψ̂, which turns out to be the (logarithmic transform of the) dynamic value process for
the problem (1.1.5) and which is called opportunity process in Nutz [2010b]. We then
obtain that

dΨ̂t = ẐT
t dMt + dN̂t −

1
2 d〈N̂〉t

+ q

2(Zt + λt)T d〈M〉t(Zt + λt)−
1
2 Z

T
t d〈M〉tZt, Ψ̂T = 0. (1.1.6)

The associated control process Ẑ is defined in terms of the optimal strategy ν̂ and the
market price of risk λ, i.e.

Ẑ = −λ+ (1− p)ν̂

while N̂ stems from representing Ŷ as a stochastic exponential and is assumed continuous
(which would hold in the case of a continuous filtration, for instance),

Ŷ = Ŷ0 E(−λ ·M + N̂).

In the equation (1.1.6) q stands for the dual number to p ∈ (−∞, 1), i.e. q := p
p−1 , where

1− p is the investor’s relative risk aversion. We observe that the BSDE is quadratic in
the control variable Z and in the subsequent analysis we verify that the driver of (1.1.6)
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1.1 Background and Introduction

is convex in Z, which is due to our sign conventions and the fact that q ∈ (−∞, 1).
The above item (A) provides an argument for verification. Given a solution (Ψ, Z,N)

to the BSDE in question and defining a wealth process X and a dual variable Y as
suggested by the preceding remarks we find that (X,Y ) is the pair of primal and dual
optimizers if condition (A) is satisfied by XY = eΨ0xp E

(
[(1 − q)Z − qλ] ·M + N

)
, see

Nutz [2011] for a recent treatment of this martingale principle. The uniqueness of the
optimal pair then may be used to derive uniqueness of solutions to the BSDE (1.1.6) for
which condition (A) is satisfied. However, this condition involves the martingale part
from a solution triple and hence may be difficult to check, given that the martingale part
is derived from the martingale representation theorem and in general is only implicit.
For verification we thus follow another idea. Namely, in Chapter 4, where the more
general framework of the cone constrained problem is considered, we deduce that Ψ̂ is
contained in a specific space that we call E. It consists of all processes whose supremum
has finite exponential moments of all orders. The proof of this fact relies crucially on
us being able to choose the dual domain as a set of supermartingale measures. Indeed,
we show that in the cone constrained setting of Chapter 4 this is feasible, so that we
can conclude the verification argument from the theoretical results in Chapter 3. These
results establish that uniqueness in the space E holds for quadratic BSDEs with convex
generators. The reader is referred to Table 1.1 in Section 1.3 for an overview of this
discussion.

Summary of the Second Chapter

In Chapter 2 we then study the quadratic semimartingale BSDE (1.1.6) of power utility
maximization in more detail, in particular when the market price of risk is of BMO
type. We know that a solution to the BSDE provides candidates for the optimizers
and that verification is the difficult part. It typically requires extra regularity of the
BSDE solution which is guaranteed by the boundedness of the mean-variance tradeoff
or, as we show in Chapter 3 in combination with Chapters 4 and 5, by the existence of
specific exponential moments of the mean-variance tradeoff. In particular, when one can
show the existence of a bounded solution, verification is feasible, see below for further
discussion on this point. Motivated by the ease of verification given a bounded solution
the main aim of Chapter 2 is to quantify in terms of assumptions on the mean-variance
tradeoff process 〈λ ·M〉 when one can expect such a bounded solution. This natural
question justifies the study.
The assumption that the mean-variance tradeoff process be bounded or have all ex-

ponential moments implies that the minimal martingale measure with density process
E(−λ ·M) is a true probability measure, where E denotes the stochastic exponential. In
particular, the set of equivalent martingale measures is nonempty, so that there is no
arbitrage in the sense of NFLVR (no free lunch with vanishing risk), see Delbaen and
Schachermayer [1998]. If the local martingale λ ·M is instead assumed to be a BMO
martingale then from Kazamaki [1994] Theorem 2.3 the minimal martingale measure
is again a true probability measure and NFLVR holds. The acronym BMO stands for
bounded mean oscillation and we refer to the monograph by Kazamaki [1994] for a ma-
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1 General Concepts and Preliminaries

jor account of the theory involved. In the above case of a BMO martingale λ ·M the
mean-variance tradeoff now need not be bounded or have all exponential moments. A
secondary objective of Chapter 2 is to study what happens to the solution of the BSDE
in this situation. As discussed, such a condition on λ ·M arises naturally from a no
arbitrage point of view, additionally however there is a relation between boundedness of
solutions to quadratic BSDEs and BMO martingales, see Mania and Schweizer [2005].
Under appropriate assumptions, this classical result states that when the generator of
a BSDE has quadratic growth in the variable Z then for a solution triple (Ψ, Z,N) the
process Ψ is bounded if and only if the martingale part Z ·M +N is a BMO martingale,
i.e. if and only if

sup
τ

∥∥∥∥∥E
[(∫ T

τ
Zs dMs +NT −Nτ

)2 ∣∣∣∣∣Fτ
]1/2∥∥∥∥∥

L∞

< +∞, (1.1.7)

where the supremum is over all stopping times τ valued in [0, T ]. In the setting where
Ψ is assumed to satisfy an exponential moments condition only, such a correspondence
is lost. However, we provide examples to show that whilst a solution triple (Ψ̂, Ẑ, N̂) to
the BSDE (1.1.6) indeed provides the optimizers of the utility maximization problem,
the respective martingale part Ẑ ·M + N̂ need not be a BMO martingale, equivalently,
the process Ψ̂ need not be bounded. In short, there are BMO martingales λ ·W , where
W denotes a one-dimensional Brownian motion, such that E

(
[(1 − q)Ẑ − qλ] ·W

)
is a

martingale while Ẑ ·W is not a BMO martingale. The question under which assumptions
Z · M + N from a BSDE solution triple actually induces a measure change is thus
also interesting from a mathematical standpoint and a further treatment is provided in
Chapter 3.

The contributions of Chapter 2 are then as follows. Firstly in a Brownian setting, we
provide a necessary and sufficient condition, related to the finiteness of the dual problem,
which guarantees the existence of a unique solution to the BSDE (1.1.6) satisfying (an
analogue to) the martingale condition in item (A) above. Here, we give the first compo-
nent Ψ of a solution pair in explicit terms. The statement of this result is motivated by
its applicability in a number of specific situations which arise in the subsequent analysis.
Moreover, we construct an explicit example for which the BSDE fails to have a solution
when the dual optimization problem is degenerate. This example serves us as the major
building block in our further study of counterexamples to boundedness of BSDE solu-
tions. Secondly we show that the BSDE always admits a continuum of distinct solutions
with square-integrable martingale parts. We deduce this result from a lemma in which
we show that, contrary to the classical Itô representation formula with square-integrable
integrands, an analogous L2-representation of random variables in terms of stochastic
exponentials is not unique. More explicitly, in the Brownian framework, let ξ be a posi-
tive random variable bounded away from zero and infinity. From the classical martingale
representation theorem we know that there is a constant k together with a predictable
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process β such that

ξ = k + (β ·W )T with E
[∫ T

0
|βt|2 dt

]
< +∞

and that the pair (k, β) is unique among all pairs with these properties. Let us now
strive for an analogous “multiplicative” decomposition,

ξ = c E(α ·W )T where E
[∫ T

0
|αt|2 dt

]
< +∞.

We prove that in order to deduce uniqueness of the pair (c, α) one has to add an extra
assumption. For instance, uniqueness of the pair (c, α) holds if additionally c = E[ξ].
Equivalently, one may also assume that additionally α ·W is a BMO martingale. In-
deed, we prove that for every number c ≥ E[ξ] there is a predictable square-integrable
process αc such that the above multiplicative decomposition holds. This shows that
there is a continuum of distinct multiplicative L2-decompositions. The intuition is that
E(αc · W ) need not be a martingale so that increasing c may be offset by an appro-
priate choice of αc. A consequence of this result is that it immediately carries over to
nonuniqueness of solutions to quadratic BSDEs with square-integrable martingale parts.
This is because the standard method of finding solutions to such equations involves an
exponential transform. We point out that the type of nonuniqueness is nontrivial in
the sense that the martingale parts are always square-integrable, in contrast to classical
counterexamples that are only locally integrable. Indeed, it is well known that without
square-integrability even the standard Itô decomposition is not unique. In fact, for every
k ∈ R there exists a predictable process βk such that

ξ = k + (βk ·W )T with
∫ T

0

∣∣βkt ∣∣2 dt < +∞ P-a.s.

as we know from Émery et al. [1983] Proposition 1. We mention that the reader will
find an example of a specific BSDE for which two distinct square-integrable solutions
are constructed in Ankirchner et al. [2009] Section 2.2. However, we show that there
is actually always a continuum of distinct square-integrable solutions for the class of
quadratic BSDEs related to the power utility maximization problem. For a continuum
of distinct solutions to the BSDE clearly only one of them can correspond to the optimal
pair (X̂, Ŷ ).
We then proceed with a thorough investigation of when the BSDE admits a bounded

solution. If the investor’s relative risk aversion is greater than one and λ ·M is a BMO
martingale, we demonstrate that this is automatically satisfied. This relies on the fact
that from Kazamaki [1994] we know that E(−λ·W ) defines an equivalent local martingale
measure and that it satisfies a suitable reverse Hölder inequality. Here, we use that risk
aversion greater than one corresponds to the case q ∈ [0, 1), which is equivalent to p < 0.
The reverse Hölder inequality is then known to be related to the boundedness of the first
component of the optimal BSDE solution triple (Ψ̂, Ẑ, N̂). For a risk aversion smaller
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than one the picture is rather different and we provide an example to show that even
when the mean-variance tradeoff has all exponential moments and the process λ ·M
is a BMO martingale, actually, even if it is a bounded martingale, then the solution
to the utility maximization BSDE need not be bounded. We develop this example in
several steps by using the major building block that we have alluded to above. The
major difference is that we now do not aim at degeneracy, i.e. at Ψ0 ≡ +∞, but
at unboundedness of the real-valued process Ψ. We hence add to the construction an
FT/2-measurable random variable that diffuses on its image space (0, 1] so that ΨT/2,
which involves the logarithm of this random variable, is unbounded. We then modify
this construction by choosing a suitable stopping time which additionally ensures the
finiteness of all exponential moments. We mention that we also provide explicit examples
which are Markovian in M by referring to Azéma-Yor martingales.
Building on these examples our most important result is Theorem 2.5.10, which shows

how to combine the BMO and exponential moment conditions so as to find a new minimal
condition which guarantees, in a general filtration, that the BSDE admits a bounded
solution. We point out that the result is for a situation in which N̂ may exhibit jumps.
Indeed, all the results which depend only on the specific continuous local martingale M
also hold in this more general setting. The BSDE (1.1.6) is then replaced by

dΨt = ZT
t dMt + dNt −

1
2 d〈N

c〉t + log(1 + ∆Nt)−∆Nt

+ q

2(Zt + λt)T d〈M〉t(Zt + λt)−
1
2 Z

T
t d〈M〉tZt, ΨT = 0, (1.1.8)

where N c denotes the continuous part of N and ∆N its jump part. We note that in our
setting Ŷ > 0, hence ∆N can be assumed to satisfy ∆N > −1. In a first step we use the
John-Nirenberg inequality to find a sufficient condition on the BMO2 norm of λ·M which
guarantees boundedness of the corresponding BSDE solution. This is done by choosing
the sharpest possible Hölder type estimate and it gives us a critical value, denoted by
kq, for which subsequent analysis shows that this value cannot be improved. However,
the feasibility of a uniform characterization of the boundedness property of solutions to
the BSDE (1.1.8) in terms of the BMO2 norm of λ ·M is limited, see the discussion
in Subsection 2.5.1. More precisely, the property of being bounded holds uniformly in
p ∈ (0, 1) and λ, where λ ·M is a BMO martingale, only if p is restricted to an interval
truncated at 1 and the BMO2 norm of λ ·M is small enough.
As a consequence we investigate the implications of the finiteness of dynamic expo-

nential moments of 〈λ ·M〉 of a specific order. After proving that their finiteness may be
given in terms of a condition on a critical exponent b of λ ·M , we then fully characterize
the boundedness of solutions to the quadratic BSDE arising in power utility maximiza-
tion. The corresponding theorem also involves the construction of a market price of
risk λ such that two conditions hold simultaneously, the first concerns the finiteness of
exponential moments, i.e. the critical exponent b(λ ·M), and the second relates to the
(un)boundedness of the respective BSDE solution. Here, a major task consists of balanc-
ing these two conditions. More specifically, we show that b(λ ·M) > kq is a sufficient, but
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not a necessary, condition for the existence of a (then unique) BSDE solution (Ψ, Z,N)
with Ψ bounded. However, the condition b(λ ·M) > k where k < kq is not sufficient.
As a result the value kq cannot be improved in the sense that kq cannot be chosen to
be a smaller constant, which in turn would correspond to relaxing the requirements on
the dynamic exponential moments of 〈λ ·M〉. Finally, we mention that the limiting case
of risk aversion equal to one, i.e. the case of logarithmic utility, is covered by all these
results.

Summary of the Third Chapter

Having studied when the BSDE that arises in power utility maximization has a bounded
solution, we turn our attention to the unbounded case. More explicitly, in Chapter 3, we
provide all the theoretical background material which is needed for the study of general
continuous quadratic semimartingale BSDEs under an exponential moments condition.
Having such results in greater generality increases the range of applications for BSDEs
with the major practical application being the utility maximization problem with an
unbounded mean-variance tradeoff.
Building on the theorems of Briand and Hu [2008] and Morlais [2009] we hence provide

existence, uniqueness and stability results for those BSDEs whose drivers are Lipschitz
continuous in Ψ, locally Lipschitz continuous, quadratic and convex in Z and where
the processes that appear in the quadratic growth estimates as well as the terminal
condition have finite exponential moments of some specific order. Since in this case we
do not necessarily dispose of the more convenient boundedness properties, the method
utilized in Morlais [2009] for the derivation of an a priori estimate cannot be directly
applied within our setting. We thus have to include an additional assumption on the
driver. Alternatively, we need to encode the quadratic variation 〈M〉 of M in a suitable
way, see Section 3.3 for more details.
As usual, the derivation of an a priori estimate is key to deducing an existence re-

sult. The proof of existence relies on a double truncation procedure to not only obtain
bounded solutions to the truncated BSDEs but to also apply a monotone stability result
from Morlais [2009] for which growth estimates with uniformly bounded majorants are
required. We also mention that the continuity of the filtration (in the sense that all local
martingales are assumed to be continuous) is used directly for this existence result only.
We then move on to showing that if the drivers are convex in Z then solutions to the

BSDEs under consideration with first component in the space E are unique. The proof
makes use of the so-called θ-technique and has to take care of the orthogonal martingale
part N . Finally, under a uniform exponential moments assumption, we obtain that
a stability theorem for the studied BSDEs holds as well. In contrast to the previous
existence result, in its proof all exponential moments are required to be finite.
As a byproduct of establishing our results we are able to show via an example that

the stability theorem as stated in Briand and Hu [2008] Proposition 7 needs a minor
amendment to the mode of convergence assumed on the drivers and we include the
appropriate formulation. In fact, unlike Frei [2009] Theorem 2.1 and Morlais [2009]
Lemma 3.3 our growth estimates need not be uniform. Additionally, we do not assume
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that the respective majorants are uniformly bounded. As a consequence, in contrast to
the setting of Frei [2009] Theorem 2.1, pointwise convergence of the generators is not
sufficient for our stability result to hold.
Another main contribution of Chapter 3 is to address the question of measure change.

We know that when the generator has quadratic growth in the control variable Z then the
solution processes Ψ is bounded if and only if the corresponding martingale part Z ·M+N
is a BMO martingale. In the unbounded setting we do not dispose of this correspondence
anymore. However, under the assumptions of Chapter 3, we are able to show that even
if Z ·M +N may not be a BMO martingale, the stochastic exponential E

(
%(Z ·M +N)

)
is a true martingale for |%| sufficiently large. For the prototype of a quadratic BSDE
above this is true for |%| > 1/2, in particular for % = 1. For the utility maximization
BSDE (1.1.6) the relation % = 1 can be achieved by using a suitable generalized Young
inequality, see Chapter 5 for the technical details involved. This result can then be used
to perform a verification argument as suggested by condition (A) above. Hence the
results of Hu et al. [2005], Morlais [2009] and Covello and Santacroce [2010] can all be
extended beyond the case of a bounded mean-variance tradeoff, see also Heyne [2010] for
a number of stochastic volatility models. Moreover such a theorem may be used in the
partial equilibrium framework of Horst et al. [2010] where the market price of external
risk present there is given by equilibrium considerations and is typically unbounded.

Summary of the Fourth Chapter

In the final two chapters we then apply all these results to the constrained utility maxi-
mization problem with a focus on its stability. In Chapter 4 we assume that the agent’s
strategies must take values in a predictably measurable closed and convex cone. Under
an exponential moments condition on the mean-variance tradeoff, the existence of an
optimal solution to the above problem (1.1.5) together with the solution to the associ-
ated dual problem is then obtained by arguments from convex duality. Here our line
of reasoning relies on the fact that the dual domain can be defined as the family of
supermartingale measures for the stocks. Contrary to the usual procedure of proving
the existence of a solution to the portfolio choice problem via the dual problem we here
consider the primal problem first and the dual problem second. In particular, we must
guarantee that the dual optimizer obtained does not exhibit singular parts as in Westray
[2009] from which we borrow a major part of the argument for showing the existence of
the primal and dual optimizers. Indeed, we know from Cvitanić et al. [2001] that such
singular parts operate on random endowments, which are not present here. We remark
that an additional assumption on the cones is imperative, namely that they be polyhe-
dral. Under such an assumption the family of wealth processes is closed with respect to
the semimartingale topology, see Czichowsky et al. [2011]. We also note that previous
literature, where a fixed constraints set is considered within an additive framework, see
Karatzas and Žitković [2003], is covered by our approach. Here, “additive framework”
is meant in the sense that the investment strategies, denoted by H, are defined to rep-
resent the amount of shares held in the portfolio so that wealth is written in additive
format, X = x+H · S. We refer to our formulation via equation (1.1.4) as the “multi-
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plicative formulation”. Such a formulation simplifies and generalizes to the constrained
semimartingale case the proof of the decomposition of elements of the dual domain when
compared to similar results from Karatzas and Žitković [2003] and Larsen and Žitković
[2007]. We mention that the latter are in line with earlier results which are implicitly
present in Cvitanić and Karatzas [1992] and Rouge and El Karoui [2000], for instance.
The assumption that the cones be polyhedral remains crucial.
We then state the direct correspondence between solutions (Ψ̂, Ẑ, N̂) to the quadratic

utility maximization BSDE and the primal and dual optimizers (X̂, Ŷ ) building on this
decomposition. As a consequence we augment the results from previous literature by
providing a simple decomposition of the optimal control process Ẑ into a part with well
defined properties related to the dual optimizer and the polar cone of the constraint set
and another part related to the optimal strategy. In addition, in contrast to Chapter 5
and the results from Hu et al. [2005] and Morlais [2009], we use Moreau’s decomposition
theorem to avoid measurable selection arguments. In fact, nearest point projections
onto closed and convex sets are uniquely defined (and continuous). We mention that the
corresponding BSDE now contains the distance function in its driver which reflects the
fact that there are trading constraints that have to be taken into account. Relying on
the special choice of the dual domain we are able to define the so-called dual opportunity
process and use its dynamic optimality properties. The dual opportunity process appears
in Nutz [2010b] with the exception that the crucial properties needed here may not hold
for the specific dual domain considered there in its full generality, but they do hold for
our choice. As a result Ψ̂ is contained in E and therefore unique.
The main task is then to prove that the optimal wealth, strategy and dual variable

all depend continuously on the input parameters of risk aversion, market price of risk,
probability measure and constraints. We show that this convergence takes place in
the semimartingale topology, hence directly on the level of processes as opposed to
convergence in probability at terminal time. This extends the results in Larsen and
Žitković [2007], Larsen [2009] and Kardaras and Žitković [2011]. A notable feature of
our approach is that we rely on BSDE techniques rather than duality theory, which –
given the main idea of integrating all the considered variations into one BSDE framework
– is new in the literature in this area. The main difficulty consists of providing a unified
treatment for the simultaneous investigation of all the variations in the input parameters.
In particular, we have to encode these variations within some BSDE whose driving local
martingale is the fixed M so that we can apply the stability result from Chapter 3.
Via suitable transformations this BSDE then gives us the solution triples (Ψ̂n, Ẑn, N̂n)
of the portfolio choice problem when the market price of risk, the agent’s relative risk
aversion parameter, the statistical probability measure and the constraints sets vary,
parameterized by n ∈ N0. From the stability result for these triples we then extract the
stability (in n) of the corresponding optimal pairs (X̂n, Ŷ n).
Finally we give an example which shows that our conditions on the set convergence

are well motivated. Namely, we have to take into consideration the so-called null-
investments, i.e. consider set convergence modulo those strategies that do not contribute
to the investor’s wealth.
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Summary of the Fifth Chapter

In Chapter 5 the main results consist of deriving the existence and uniqueness of so-
lutions to the constrained utility maximization problem – now additionally taking into
account a situation of restricted information – and relating them to the appropriate
BSDE under weaker conditions than those present in the literature. Following the ideas
provided in Mania and Santacroce [2010], see also Sass [2007], we transform the utility
maximization problem under partial information into a related stochastic control prob-
lem which can be interpreted as a problem under full information. Unlike these two
references we include trading constraints which are compact. Here, we write “compact”
to ease the formulation and refer to Chapter 5 for the precise conditions. The inclusion
of constraints is motivated by the riskiness of the optimal strategies which appear under
limited information and which typically consist of large long or short positions, see Sass
[2007] for further discussion.
We point out that in this chapter we rely purely on BSDE techniques. In particular,

the existence of the solution to the portfolio selection problem is guaranteed by solving
a specific BSDE which we identify to be the utility maximization BSDE in the context
of incomplete information. The main difference is that now this BSDE is not for the
local martingale M but for Mo, the optional projection of M onto the smaller filtration
which encodes the investor’s flow of partial information. We also mention that we
extend the cited literature to the multidimensional framework. In doing so we overcome
technical difficulties related to the covariations of M and Mo. More specifically, in the
utility maximization BSDE both quadratic variations 〈M〉 and 〈Mo〉 appear although, as
already stated, the BSDE is formulated with driving local martingale Mo. We mention
that in Chapter 5 we assume that all local martingales (with respect to the smaller
filtration) are continuous.
As an extension of the previous setting we also assume that at terminal time T there

applies an additional discount D on the investor’s accrued wealth. In contrast to Nutz
[2010b], the variable D need not be bounded, but only satisfy an appropriate finite
moments condition. One may think of D as arising from a stochastic tax rate or bonus.
Alternatively, we can interpretD as triggering a measure change so that the optimization
is under the investor’s subjective beliefs determined by D.
As already explained above, when performing the verification argument we must show

that some stochastic exponential of a process involving the martingale part of a BSDE
solution defines a true probability measure. By means of the generalized Young inequal-
ity we hence consider growth estimates that are parameterized by ε > 0 and then fix a
specific ε = ε∗ in such a way that a solution to the BSDE exists and that the correspond-
ing martingale part indeed induces a true measure change. The martingale optimality
argument then enables us to conclude that specific BSDE solutions indeed provide the
optimizers of the incomplete information and constrained investment problem.
As an application of the stability result for quadratic BSDEs we finally show that the

respective optimizers depend continuously on the investor’s attitude towards risk, the
market price of risk process, the constraints sets and the discount or measure change, sim-
ilarly to the procedure in Chapter 4. In conclusion, our contribution lies in generalizing
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1.2 Framework and Model Formulation

the approaches of the cited references in several directions as well as providing a common
framework for the treatment of the various features that may be investigated within a
portfolio choice problem. These comprise investment and information constraints, the
effects of perturbations and – more importantly from a calibration perspective – the
impact of misspecifications of the model parameters.
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1.2 Framework and Model Formulation

Throughout the entire thesis we work on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P)
satisfying the usual conditions of right-continuity and completeness. We assume that the
time horizon T is a finite number in (0,∞) and that F0 is the completion of the trivial
σ-algebra. All semimartingales are assumed to be equal to their càdlàg modification.
Later in the Chapters 3 and 5, in order to apply the techniques of BSDE theory, we will
need a stronger assumption, referred to in the literature as continuity of the filtration.

Assumption 1.2.1. All local martingales are continuous.

For instance, if (Ft)0≤t≤T is the augmentation of the natural filtration generated by
a Brownian motion, this assumption is satisfied. Hence, in the following chapters, the
Brownian setting will serve as a major framework for the construction of some specific
(counter-)examples. More generally, (Ft)0≤t≤T could be the augmented filtration gener-
ated by a continuous local martingale that allows for the representation property from
Jacod and Shiryaev [2003] III.4c to hold.

The Market Model

We assume that on the given stochastic basis there is modelled a financial market con-
sisting of one bond, assumed constant, and d stocks with (discounted) price process

17



1 General Concepts and Preliminaries

S = (S1, . . . , Sd)T, a d-dimensional continuous semimartingale, where we write T for
transposition. More precisely, our semimartingale S is assumed to have dynamics

dSt = Diag(St)
(
dMt + d〈M〉tλt

)
,

where M = (M1, . . . ,Md)T is a d-dimensional continuous local martingale with M0 = 0,
λ is a d-dimensional predictable process, the market price of risk, satisfying

P
(∫ T

0
λT
t d〈M〉tλt < +∞

)
= 1

and Diag(S) denotes the d× d diagonal matrix whose diagonal elements are taken from
S. Observe that · denotes stochastic integration and that we write 〈M〉 = 〈M,M〉 for
the quadratic (co-)variation matrix of M .

It is a consequence of Delbaen and Schachermayer [1995] Theorem 3.5 that any con-
tinuous, arbitrage free, numéraire denominated model of a market is of the above form
so there is no loss of generality in the above framework in view of Assumption 1.2.3
below.

To precisely describe our model we need some further results on 〈M〉. We may use
Jacod and Shiryaev [2003] Proposition II.2.9 and II.2.29 to write

〈M〉 = C ·A (1.2.1)

where C is a predictable process valued in the space of symmetric positive semidefinite
d × d matrices and A is a predictable increasing process. It is known that there are
many such factorizations, see Jacod and Shiryaev [2003] Section III.4a. We can choose
A := arctan

(∑d
i=1〈M i〉

)
and then, following an application of the Kunita-Watanabe

inequality, we may derive the absolute continuity of each 〈M i,M j〉 with respect to A
to get C. From Karatzas and Shreve [1991] Theorem 3.4.2 it is known that there exist
Borel measurable functions which diagonalize a symmetric positive semidefinite d × d
matrix, in particular we deduce the existence of some processes P and Γ valued in the
space of d× d orthogonal (resp. diagonal) matrices such that

〈M〉 = C ·A = P TΓP ·A = BTB ·A, (1.2.2)

where we set B := Γ
1
2P . The matrix Γ has nonnegative entries only, with the eigenvalues

of C on its diagonal. We also point out that our results do not depend on the particular
choice of A, but only on its boundedness. In particular, if M = W is a d-dimensional
Brownian motion we may choose At = t, t ∈ [0, T ], and B the identity matrix. The
above processes A,B,C, P and Γ will be fixed throughout.

We let P denote the predictable σ-algebra on [0, T ] × Ω, generated by all the left-
continuous adapted processes. The process A induces a measure µA on P, the Doléans
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1.2 Framework and Model Formulation

measure, defined for E ∈ P by

µA(E) := E
[∫ T

0
1E(t) dAt

]
. (1.2.3)

In what follows, we use the abbreviation Υ for a process (Υt)0≤t≤T and write “for
all t” meaning “for all t ∈ [0, T ]”. A local martingale N is called orthogonal to M if
〈M i, N c〉 ≡ 0 for all i = 1, . . . , d where N c denotes the continuous part of N . We refer
the reader to Jacod and Shiryaev [2003] and Protter [2005] for unexplained terminology
and background material.

The Portfolio Selection Problem

We consider an investor trading in the above market according to an admissible invest-
ment strategy ν that they choose. Here, a predictable d-dimensional process ν is called an
admissible trading or investment strategy if it isM -integrable, i.e.

∫ T
0 νT

t d〈M〉tνt < +∞,
P-a.s. We write A for the family of such investment strategies ν and define the compo-
nents νi to represent the proportion of wealth invested in each stock Si, i = 1, . . . , d. In
particular, for some initial capital x > 0 and an admissible strategy ν, the associated
wealth process Xx,ν evolves as follows:

Xx,ν := x E(ν ·M + ν · 〈M〉λ), (1.2.4)

where E denotes the stochastic exponential. The family of all such wealth processes is
denoted by X (x).
Our agent has preferences modelled by a utility function U , which is throughout

assumed to be of power type,

U(x) = xp

p
, for p ∈ (−∞, 0) ∪ (0, 1).

We also include the case p = 0, in which the utility function becomes logarithmic,

U(x) = log(x).

Starting with initial capital x > 0, they choose admissible strategies ν and aim to
maximize the expected utility of terminal wealth. This leads to the following formulation
of the primal optimization problem,

u(x) := sup
ν∈A

E
[
U
(
Xx,ν
T

)]
. (1.2.5)

Remark 1.2.2. A key property arising under power and logarithmic utility and to be
used in the sequel is the factorization property of the value process, more precisely we
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1 General Concepts and Preliminaries

may write

u(x) =

x
p supν∈A E

[
U
(
X1,ν
T

)]
if p 6= 0,

log(x) + supν∈A E
[
U
(
X1,ν
T

)]
if p = 0.

=
{
U(x) cp if p 6= 0,
U(x) + c0 if p = 0.

for some constants cp, p ∈ (−∞, 1), to be identified below under suitable assumptions.
A well known corollary of this is that the optimal investment strategy ν̂, when it exists,
is independent of x and the primal optimizer X̂ = X̂x,ν̂ has a simple linear dependence
on x.

Utility Maximization and Duality Theory

Related to the above primal problem is a dual problem which we now describe. For
y > 0 we introduce the set of adapted càdlàg processes

Y(y) := {Y ≥ 0 |Y0 = y and XY is a supermartingale for all X ∈ X (1)},

as well as the minimization problem

ũ(y) := inf
Y ∈Y(y)

E
[
Ũ
(
YT
)]
, (1.2.6)

where Ũ is the conjugate (or dual) of U given by

Ũ(y) = sup
x>0

{
U(x)− xy

}
, y > 0.

In the present setting there is an explicit formula for Ũ ,

Ũ(y) =


(

1
p − 1

)
yq = − yq

q if p 6= 0,
− log(y)− 1 if p = 0,

where here and throughout q is the dual exponent to p,

q := p

p− 1 .

There is a bijection between p and q so that in what follows we often state the results
for q rather than for p. Note that the set Y(y) has the following factorization property,
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Y(y) = yY(1). Similarly to u we then see the factorization property for ũ,

ũ(y) = inf
Y ∈Y(1)

E
[
Ũ
(
yYT

)]
=

 y
q infY ∈Y(1) E

[
Ũ
(
YT
)]

if p 6= 0,
− log(y) + infY ∈Y(1) E

[
Ũ
(
YT
)]

if p = 0,

=
{
Ũ(y) c̃p if p 6= 0,
Ũ(y) + c̃0 if p = 0.

The relationship between c̃p and cp is provided in Theorem 1.2.4.
It is shown in Kramkov and Schachermayer [1999, 2003] (among others) that for

general utility functions (not necessarily power) the following assumption is the weakest
possible for well posedness of the market model and the utility maximization problem.

Assumption 1.2.3.

(i) The setMe(S) of equivalent local martingale measures for S is non-empty.

(ii) If p ≥ 0, there is an x > 0 such that u(x) < +∞.

When p ≥ 0, we then derive that u(x) < +∞ for all x > 0, because the initial condition
factors. Conversely, if p < 0, u(x) ≤ 0 < +∞ automatically holds for all x > 0.

The Main Results in the Unconstrained Case
Summarizing the results of Kramkov and Schachermayer [1999] we then have the follow-
ing theorem where the additional claim in item (iii) follows from a calculation using the
conjugacy of u and ũ.

Theorem 1.2.4 (Kramkov and Schachermayer [1999] Theorem 2.2). Suppose Assump-
tion 1.2.3 holds, then

(i) There exists a strategy ν̂ ∈ A which is optimal for the primal problem. That is,
given x > 0,

u(x) = E
[
U
(
X̂T

)]
, where X̂ = Xx,ν̂.

In addition, ν̂ is unique in the following sense. Any other strategy ν̄ ∈ A which is
also optimal for the primal problem satisfies

E
[∫ T

0
(ν̂t − ν̄t)T d〈M〉t(ν̂t − ν̄t)

]
= 0,

so that Xx,ν̂ and Xx,ν̄ are indistinguishable.

(ii) Given y > 0, there exists an optimal Ŷ y ∈ Y(y) for the dual problem, unique up to
indistinguishability, i.e.

ũ(y) = E
[
Ũ
(
ŶT
)]
, where Ŷ = Ŷ y.
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1 General Concepts and Preliminaries

(iii) The functions u and ũ are finite, continuously differentiable and conjugate, more-
over, u′ and − ũ′ are strictly decreasing. If y = u′(x) then, adopting the notation
from (i) and (ii), we have the following relations,

E[X̂T ŶT ] = xy, ŶT = U ′(X̂T ), u(x) = ũ(y) + xy.

More explicitly, there are constants cp, p ∈ (−∞, 1), such that when c̃p := c
1

1−p
p ,

u(x) =
{
U(x) cp if p 6= 0,
U(x) + c0 if p = 0,

ũ(y) =
{
Ũ(y) c̃p if p 6= 0,
Ũ(y) + c̃0 if p = 0.

(iv) If y = u′(x) then the process X̂Ŷ is a martingale on [0, T ].

Remark 1.2.5. In Kramkov and Schachermayer [1999] the authors work in the addi-
tive formulation where strategies represent the number of shares of each stock held in
the portfolio and wealth remains (only) nonnegative. However, for power utility maxi-
mization, the additive formulation and the setting here are equivalent. Our motivation
for writing wealth in exponential format stems from the fact that the dual domain of
the portfolio choice problem will (and for reasons of convenience should) be a family
of supermartingale measures, hence stochastic exponentials. Since we want to relate
the utility maximization problem straigthly to a BSDE and we dispose of a relationship
between primal and dual optimizer at terminal time, see Theorem 1.2.4 (iii), it turns
out to be most convenient to write wealth as a stochastic exponential as well. Moreover,
as in our setting the optimal wealth X̂ exists and satisfies X̂T > 0 we may, without
loss of generality, choose to optimize over the family of strictly positive wealth processes
X (x). As a byproduct this simplifies and generalizes the proof of the decomposition
of the elements of the dual domain. Also, in Kramkov and Schachermayer [1999] it is
stated only that there exists a unique primal and dual optimizer, however the precise
interpretation of “uniqueness” is not directly discussed. We refer the reader to Chapter
4 for further details on these issues.

The almost explicit form of the value function u already yields a useful characterization
of the optimal processes X̂ and Ŷ . We provide it in the following theorem which collects
together necessary and sufficient conditions for two candidate processes to be optimal
and whose statement is assumed to be part of common knowledge.

Theorem 1.2.6. For x, y > 0 let X ∈ X (x) and Y ∈ Y(y) satisfy the terminal condition
YT = U ′(XT ) = Xp−1

T . Then, under Assumption 1.2.3, the following are equivalent.

(i) The relation y = u′(x) holds.

(ii) The equality E
[
XTYT

]
= xy holds.

(iii) The process XY is a martingale on [0, T ].

(iv) The processes X and Y are optimal for x and y respectively, i.e. X gives equality
in (1.2.5) and Y gives equality in (1.2.6).

22



1.2 Framework and Model Formulation

Remark 1.2.7. One may in fact use Theorem 1.2.6 as a method of finding the op-
timal pair (X̂, Ŷ ). This is the approach favoured in Kallsen and Muhle-Karbe [2010]
and successfully employed there for a number of affine stochastic volatility models. It
also provides the justification for using the so-called martingale optimality principle in
deriving a suitable BSDE, as performed in Hu et al. [2005] for instance. Namely, one
can find the optimizers by imposing a condition at terminal time T together with a
condition on some stochastic dynamics on [0, T ]. The latter is given in item (iii) above
and corresponds to property (A) of the introduction. This naturally leads to a specific
BSDE which is the main objects of the present study.

Proof. Let us start with the implication (i) ⇒ (ii) and suppose that p < 0. Then, XY
being a supermartingale,

xy ≥ E[XTYT ] = pE[U(XT )] ≥ p u(x) = cp x
p = xu′(x) = xy.

If p = 0, we have XTYT = XT log′(XT ) = 1 = x log′(x) = xu′(x) = xy, see the Appendix
6.1. If p ∈ (0, 1), then q < 0 so that

xy ≥ E[XTYT ] = E
[
Y

1
p−1
T YT

]
= E

[
Y q−1
T YT

]
= −q E

[
Ũ(YT )

]
≥ −q ũ(y) = yq c

1
1−p
p = cqp x

q(p−1)c
1

1−p
p = cp x

p = u′(x)x = xy.

The implication (ii)⇒ (iii) follows from the fact that XY is a càdlàg supermartingale
with constant expectation xy.
If XY is a martingale, then from YT = U ′(XT ) and Theorem 1.2.4 (iii)

u(x) ≥ E[U(XT )] = E[Ũ(YT ) +XTYT ] = E[Ũ(YT )] + xy

≥ ũ(y) + xy ≥ u(x)− xy + xy = u(x).

Therefore, u(x) = E[U(XT )] and ũ(y) = E[Ũ(YT )], i.e. X and Y are optimal, so that
(iv) follows from (iii).
Finally, assume that X and Y are optimal. Set ŷ := u′(x) and take the dual optimizer

Ŷ ∈ Y(ŷ). Then, by assertion (iii) of Theorem 1.2.4, ŶT = U ′(XT ) = YT , from which
xŷ = E[XT ŶT ] = E[XTYT ] ≤ xy. In particular, u′(x) = ŷ ≤ y = u′((u′)−1(y)) =: u′(x̂)
where x ≥ x̂ > 0, since u′ is strictly decreasing and continuous, u′(0) = +∞ and
u′(+∞) = 0 by Kramkov and Schachermayer [1999] Theorem 2.2. Now take a primal
optimizer X̂ ∈ X (x̂). From U ′(XT ) = YT = U ′(X̂T ) we derive that XT = X̂T , which
in turn yields x̂ŷ ≥ E[X̂T ŶT ] = E[XT ŶT ] = xŷ, so that x̂ ≥ x, from which y = u′(x̂) =
u′(x).

Remark 1.2.8. Observe that we made use of the explicit form of the value function
only in the proof of the first implication.

We now wish to derive more structure of the dual optimizer. In Larsen and Žitković
[2007] the following characterization theorem is shown when S is one-dimensional. We
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state here the multidimensional analogue whose proof we delegate to Chapter 4. How-
ever, we mention that our proof given there builds on, simplifies and extends that of
Larsen and Žitković [2007] as we consider utility maximization under constraints there.

Proposition 1.2.9. Let Assumption 1.2.3 hold. If Ŷ ∈ Y(y) denotes the dual optimizer
then there exists a local martingale N̂ such that N̂ is orthogonal to M and

Ŷ = Ŷ0 E(−λ ·M + N̂).

1.3 Power Utility Maximization and Quadratic BSDEs
Let us now concentrate on the case p ∈ (−∞, 0)∪(0, 1). The logarithmic case is fully dealt
with in Appendix 6.1. We here recall the BSDE satisfied by the so-called opportunity
process from Nutz [2010b], more precisely by its log-transform. We start with the solu-
tions X̂ and Ŷ to the above primal and dual problem (when Ŷ0 = y = u′(x) = u′(X̂0))
and derive the BSDE satisfied by the following process

Ψ̂ := log
(

Ŷ

U ′(X̂)

)
.

The logic is now very similar to the procedure in Mania and Schweizer [2005], we apriori
obtained the existence of the object Ψ̂ of interest. Imposing a suitable assumption we
show that Ψ̂ lies in a certain space in which solutions to (a special type of) quadratic
semimartingale BSDE are unique. This approach of using BSDE comparison principles
in utility maximization may also be found in Hu et al. [2005] and Morlais [2009]. We
observe that in these references the mean-variance tradeoff 〈λ ·M〉T is bounded. In what
follows we extend their reasoning to the unbounded case under exponential moments.
Hence our assumption is

Assumption 1.3.1. For all % > 0 we have that

E
[
exp

(
% 〈λ ·M〉T

)]
= E

[
exp

(
%

∫ T

0
λT
s d〈M〉sλs

)]
< +∞.

We describe this by saying that the mean-variance tradeoff 〈λ · M〉T has exponential
moments of all orders.

For instance, the above assumption is satisfied in a model of a one-dimensional Brow-
nian motion M = W with stock price dynamics given by

dSt
St

= dWt − sgn(Wt)
√
|Wt| dt,

see Subsection 2.4.1 for more details. Here, “− sgn” reflects a return reverting behaviour
of the stock prices. Clearly, this example is the prototype from a whole class of similar
ones. In Chapter 2 we also provide some more, rather sophisticated, examples.
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The preceding assumption is compatible with Assumption 1.2.3. However, clearly, it
is not the minimal one which is sufficient for the latter. As a matter of fact, for the next
lemma to hold, a finite exponential moment of 〈λ ·M〉T of order

max
(1

2 ,
(
q2 − q

2 − q
√
q2 − q

)
1{q<0}

)
is sufficient. We will investigate such minimal sufficient conditions in Chapter 2 to which
we refer for more details. We have

Lemma 1.3.2. Assumption 1.3.1 implies Assumption 1.2.3, more precisely,

(i) The process Y λ := E(−λ ·M) is a martingale on [0, T ], hence defines an equivalent
local martingale measure for S, the so-called minimal martingale measure.

(ii) The function u is finite on all of (0,+∞).

Proof. Item (i) follows from Novikov’s criterion and the product rule using the continuity
of M . For item (ii) we need only consider the case of p ∈ (0, 1). Let x > 0 and observe
that from the definition of Ũ , Hölder’s inequality, q < 0 and the exponential moments
assumption

u(x) = sup
ν∈A

E
[
U
(
Xx,ν
T

)]
≤ E

[
Ũ
(
Y λ
T

)]
+ sup
ν∈A

E
[
Xx,ν
T Y λ

T

]
≤ −1

q
E
[(
Y λ
T

)q]+ x

≤ −1
q
E
[
exp

(
q(2q − 1)

∫ T

0
λT
t d〈M〉tλt

)]1/2

+ x < +∞,

which completes the proof.

Before we discuss properties of the process Ψ̂ we first fix some notation.

Definition 1.3.3. Let E denote the space of all processes Υ on [0, T ] whose supremum
Υ∗ := sup0≤t≤T |Υt| has finite exponential moments of all orders, i.e. those processes Υ
such that for all % > 0

E [exp (%Υ∗)] < +∞.

In the Chapter 4 we show that if Assumption 1.3.1 holds and if (X̂, Ŷ ) is the solution to
the primal and dual optimization problem, then Ψ̂ ∈ E. With regards to the derivation
of the BSDE satisfied by Ψ̂, we note that, using the formulae for X̂ and Ŷ ,

Ψ̂ = log
(
y E(−λ ·M + N̂)

(
x E (ν̂ ·M + ν̂ · 〈M〉λ)

)1−p )
.

Assuming that N̂ is continuous and after the change of variables

Ẑ := −λ+ (1− p)ν̂
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a calculation shows that we have found a solution (Ψ̂, Ẑ, N̂) to the following quadratic
semimartingale BSDE (written in the generic variables (Ψ, Z,N)),

dΨt = ZT
t dMt + dNt −

1
2 d〈N〉t

+ q

2(Zt + λt)T d〈M〉t(Zt + λt)−
1
2 Z

T
t d〈M〉tZt, ΨT = 0, (1.3.1)

where we call BSDE solution a triple (Ψ, Z,N) of processes valued in R×Rd×R satisfying
(1.3.1) P-a.s. such that:

(i) The function t 7→ Ψt is continuous P-a.s.

(ii) The process Z is predictable andM -integrable, in particular
∫ T

0 ZT
t d〈M〉tZt < +∞

P-a.s.

(iii) The local martingale N is continuous and orthogonal to M .

(iv) We have that P-a.s.∫ T

0

(
(Zt + λt)T d〈M〉t(Zt + λt) + ZT

t d〈M〉tZt
)

+ 〈N〉T < +∞.

We summarize these findings in the following theorem noting that it is uniqueness that
requires the stronger Assumption 1.3.1, existence is guaranteed under Assumption 1.2.3.

Theorem 1.3.4. Let Assumption 1.3.1 hold and (X̂, Ŷ ) be the solution pair to the primal
and dual optimization problem, i.e. for x > 0

X̂ = x E(ν̂ ·M + ν̂ · 〈M〉λ) and Ŷ = u′(x) E(−λ ·M + N̂).

Assume that N̂ is continuous and set

Ψ̂ := log
(

Ŷ

U ′(X̂)

)
and Ẑ := −λ+ (1− p)ν̂.

Then

(i) The triple (Ψ̂, Ẑ, N̂) is the unique solution (Ψ, Z,N) to the BSDE (1.3.1) where
Ψ ∈ E and Z ·M and N are two square-integrable (continuous) martingales.

(ii) In terms of the BSDE we may write Ŷ as

Ŷ = exp(Ψ̂)U ′(X̂) = eΨ̂0xp−1 E(−λ ·M + N̂) ∈ Y
(
cp x

p−1
)

where cp = exp
(
Ψ̂0
)
, P-a.s. Here, cp is the constant from Theorem 1.2.4.

(iii) The process E
([

(1− q)Ẑ − qλ
]
·M + N̂

)
is a martingale on [0, T ].
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Proof. The content of item (i), i.e. the uniqueness part, follows from Theorem 3.2.6 and
Corollary 3.4.3 (ii) in Chapter 3. A calculation yields the alternative formula for Ŷ in
item (ii) and the relation

eΨ̂0xp E
([

(1− q)Ẑ − qλ
]
·M + N̂

)
≡ X̂Ŷ

gives the remaining assertion in item (iii).

For the convenience of the reader we summarize the previous discussion and the rea-
soning of the present thesis in the following table, which also includes a hint at an
important application of the theory, namely the one concerned with stability.

Duality Approach BSDE Approach

Under the exponential moments assumption 1.3.1,

• There exist primal and dual optimizers
X̂ and Ŷ .

• Quadratic BSDEs allow for solutions
(Ψ, Z,N) with Ψ ∈ E (if in addition
Assumption 1.2.1 holds).

• The process Ψ̂ := log(Ŷ /U ′(X̂)) is part
of a triple (Ψ̂, Ẑ, N̂) that satisfies a
quadratic BSDE.
• We have that Ψ̂ ∈ E. • Solutions with Ψ ∈ E are unique.

• Solutions with Ψ ∈ E hence coincide
with those from the duality approach.
• Quadratic BSDEs allow for stability
results.

Table 1.1: Link between the Duality and the BSDE Approach to the Study of the Existence,
Uniqueness and Stability of the Utility Maximization Problem under Exponential Moments

The statement of the above theorem is essentially known. In Hu et al. [2005] and Morlais
[2009] the boundedness of the mean-variance tradeoff is used to ensure uniqueness. In
Chapter 4 we are going to extended this argument to the unbounded case with expo-
nential moments. Building on previous work by Mania and Tevzadze [2003, 2008] the
article of Nutz [2011] shows that in a general setting the opportunity process exp(Ψ̂)
satisfies a BSDE which reduces to (1.3.1) under the additional assumption of continu-
ity of the filtration. In particular, exp(Ψ̂) is identified as the minimal solution to this
BSDE. Having identified candidate optimizers from the BSDE, a difficult task is then
verification, i.e. showing that a solution to the BSDE indeed provides the primal and
dual optimizers. A sufficient condition is that E

(
[(1− q)Z− qλ] ·M +N

)
is a martingale

as can be derived from Nutz [2011] Theorems 5.2 and 5.15 or the above Theorem 1.2.6.
For a Brownian framework the reader will find a more explicit result in Theorem 2.2.1
below. However, given a solution (Ψ, Z,N) to the BSDE (1.3.1), the above martingale
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condition need not be satisfied, hence a solution to the BSDE (1.3.1) need not yield the
optimizers even when Z ·M and N are square-integrable, as we demonstrate in detail
in Subsection 2.2.2. For completeness and improved exposition of the material below we
state the following verification result as a theorem.

Theorem 1.3.5 (Nutz [2011] Theorems 5.2 and 5.15). Let Assumption 1.2.3 hold. Then:

(i) Given the solution pair (X̂, Ŷ ) to the primal/dual problem, where X̂ and Ŷ together
with Ψ̂, Ẑ and N̂ are as in Theorem 1.3.4, then the triple (Ψ̂, Ẑ, N̂) solves the
BSDE (1.3.1).

(ii) Suppose a triple (Ψ, Z,N) solves the BSDE (1.3.1) and is such that

E
([

(1−q)Z−qλ
]
·M+N

)
= E(−λ·M+N) E

(
Z + λ

1− p ·M + Z + λ

1− p · 〈M〉λ
)

(1.3.2)

is a martingale on [0, T ]. If we define ν := Z+λ
1−p and, for x > 0,

X := x E(ν ·M + ν · 〈M〉λ), Y := exp(Ψ)U ′(X), (1.3.3)

then the pair (X,Y ) is optimal for the primal/dual problem. In particular,

u(x) = exp(Ψ0)U(x) < +∞.

(iii) Suppose there exist two solutions to the BSDE (1.3.1) (Ψi, Zi, N i), i = 1, 2, with
the property that the stochastic exponential from (1.3.2) is a martingale for each
i = 1, 2. Then (Ψ1, Z1 ·M,N1) ≡ (Ψ2, Z2 ·M,N2) up to indistinguishability.

Proof. Only item (ii) needs (little) consideration. We observe that under the given
transformations,

XY = exp(Ψ)Xp = exp(Ψ0)xp E
([

(1− q)Z − qλ
]
·M +N

)
.

The proof is then immediate, either from Theorem 1.2.6 or the stated reference.

Hence, if a solution triple (Ψ, Z,N) exists, then under some conditions it provides the
solution (X̂, Ŷ ) to the primal and dual problem and we have uniqueness to the BSDE
within a certain class. As already noted, this is in the spirit of Mania and Tevzadze
[2008] Theorem 1.3.2, Nutz [2011] Theorems 5.2 and 5.13 and Theorem 1.2.6. However,
above and in these theorems, the requirement imposed via the exponential in (1.3.2)
is not on the model. In contrast, our goal is to study which conditions on the model,
i.e. on λ and M , ensure such a BSDE characterization, the regularity of its solution,
for instance in terms of a bounded dynamic value process and, most importantly, the
stability of its solution in the input parameters. While we examine the latter in Chapter
4 and look at the second one in Sections 2.3 to 2.5, the former motivates our Assumption
1.3.1 under which we can give a unified treatment, i.e. where both methods, duality and
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BSDEs, can be compared alongside one another, see Theorem 1.3.4. The result imposes
exponential moment conditions on the mean-variance tradeoff as well as on the BSDE
solution component Ψ. However, as the uniqueness results of Delbaen et al. [2011]
suggest, Assumption 1.3.1 is not the minimal one.
In the Subsection 2.2.1 we provide a necessary condition for this correspondence be-

tween duality and BSDEs. This condition is formulated in terms of the dual problem
and is made explicit via a counterexample. We mention that the Assumption 1.2.3 (i)
is avoided, hence we need the following result for the calculations involved.

Lemma 1.3.6. For a triple (Ψ, Z,N) to satisfy the BSDE (1.3.1) it is equivalent that
P-a.s. for all t,

exp
(
(1− q)Ψt

)
E(−λ ·M +N)qt = e(1−q)Ψ0 E

(
[(1− q)Z − qλ] ·M +N

)
t
, ΨT = 0.

Proof. If (Ψ, Z,N) solves the BSDE (1.3.1), then an application of the partial integration
formula yields that

d
(
exp

(
(1− q)Ψt

)
E(−λ ·M +N)qt

)
= exp

(
(1− q)Ψt

)
E(−λ ·M +N)qt

(
[(1− q)Zt − qλt] dMt + dNt

)
.

The converse statement follows from a calculation after taking logarithms of the expres-
sion in the lemma.
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2 BSDEs in Utility Maximization with
BMO Market Price of Risk

2.1 Introduction

The aim of this chapter is to study the specific quadratic semimartingale BSDE (1.3.1)
arising in (unconstrained) power utility maximization concentrating on a market price
of risk λ for which λ · M is a BMO martingale. This is a natural condition as it
ensures that the minimal martingale measure with density process E(−λ ·M) is a true
probability measure, see Kazamaki [1994] Theorem 2.3. In particular, it ensures that
there is no arbitrage in the sense of NFLVR, see Delbaen and Schachermayer [1998]. In
a Brownian setting we provide a necessary and sufficient condition for the existence of a
solution to (1.3.1) but show that uniqueness fails to hold in the sense that there exists
a continuum of distinct square-integrable solutions. This feature occurs since, contrary
to the classical Itô representation theorem, an L2-representation of random variables in
terms of stochastic exponentials is not unique. We then study in detail when the BSDE
has a bounded solution and derive a new dynamic exponential moments condition which
is shown to be the minimal sufficient condition in a general filtration. We point out that
this result is for the BSDE (1.1.8) which includes jump terms of N .
The study of bounded solutions is motivated by the ease of the verification argument.

Namely, when one can show the existence of a bounded solution to (1.3.1), verification
is feasible. This is due to the fact that the martingale part of the corresponding BSDE
solution then is a BMO martingale. Moreover, such an argument involves only the first
component of a BSDE solution which in concrete situations usually is a conditional
expectation of a known object. Thus, it may be more accessible than the martingale
part. As a direct consequence we obtain additional regularity of the optimal strategy
which we then find to be of BMO type as well. The main results of the present chapter
are complemented by several interesting examples which illustrate their sharpness as
well as important properties of the utility maximization BSDE. In particular, we first
motivate the new dynamic exponential moments condition by showing that the ordinary
exponential moments assumption together with the BMO property are not sufficient for
boundedness. Then we give this dynamic exponential moments condition in terms of a
critical exponent and show that it cannot be improved.
The chapter is based on joint work with Christoph Frei and Nicholas Westray, see Frei

et al. [2011]. It is organized as follows. In the next section we analyze the questions
of existence and uniqueness of BSDE solutions and in Section 2.3 turn our attention to
the interplay between boundedness of solutions and the BMO property of λ ·M and
the martingale parts. In Section 2.4 we develop some related counterexamples and then
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

provide the characterization of boundedness in Section 2.5.

2.2 Existence, Uniqueness and Optimality for Quadratic BSDEs

From Theorem 1.3.4 we see that under Assumption 1.3.1 one can connect the duality
and BSDE approaches to solving the utility maximization problem. This relies on the
results for quadratic BSDEs under such an exponential moments condition as presented
in the next Chapter 3. To analyze the above connection in further detail, we consider in
the present section a setting where the BSDE (1.3.1) is explicitly solvable. Proposition
2.2.1 gives a sufficient condition for a solution to the BSDE (1.3.1) to exist and provides
an expression for Ψ̂ in terms of Y λ := E(−λ ·M).
We then go on to study uniqueness and show in Theorem 2.2.5 that in general there

are infinitely many distinct solutions with a square-integrable martingale part. This is
a consequence of the fact that a multiplicative L2-representation of random variables as
stochastic exponentials need not be unique, which is the content of Lemma 2.2.3. Finally,
one aim in the present chapter is to study the boundedness of solutions to the BSDE
(1.3.1) under the exponential moments and BMO conditions. This involves constructing
counterexamples and some of the key techniques and ideas used for this are introduced
in the current section.
Therefore, in the present section, we restrict ourselves to the Brownian setting, which

we assume to be one-dimensional for notational simplicity. So let M = W be a one-
dimensional Brownian motion under P and (Ft)t∈[0,T ] its augmented natural filtration.
In particular, N ≡ 0 is the unique local martingale orthogonal to M . A generalization
of the following results to the multidimensional Brownian framework is immediate.

2.2.1 Necessary Conditions for the Existence of Solutions to Quadratic
BSDEs

In this subsection we provide a condition that is sufficient and necessary for the BSDE
(1.3.1) to allow for a (then unique) solution in some specific space. This space is defined
precisely via the condition that stems from the utility maximization problem (the con-
dition (A) in the introduction) so that solving the BSDE (1.3.1) leads to the primal and
dual optimizers.

Proposition 2.2.1. For q ∈ [0, 1) the BSDE (1.3.1) always admits a solution. For
q < 0 the BSDE (1.3.1) admits a solution if and only if

E
[(
Y λ
T

)q] = E
[
E(−λ ·W )qT

]
< +∞. (2.2.1)

If there exists a solution, there is a unique solution (Ψ̂, Ẑ) with E
(
[(1 − q)Ẑ − qλ] ·W

)
a martingale. Its first component is given by

Ψ̂t = 1
1− q log

(
E
[
E(−λ ·W )qt,T

∣∣Ft]), t ∈ [0, T ], P-a.s. (2.2.2)
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In particular, solving (1.3.1) and setting (X,Y ) as suggested by Theorem 1.3.4 gives the
pair of primal and dual optimizer.

As a result, condition (2.2.1) is sufficient for the existence and uniqueness of the opti-
mizers and we mention that it corresponds to condition (10) in Kramkov and Schacher-
mayer [2003]. It says that the dual problem is finite, however, the Assumption 1.2.3 (i)
is avoided. Hence, the utility maximization problem is well-defined even if NFLVR (no
free lunch with vanishing risk) does not hold. This is because FLVR strategies cannot
be used beneficially by the CRRA-investor due to the requirement of having a positive
wealth at any time.

Proof. Let us first show that the BSDE (1.3.1) admits a solution if (2.2.1) holds. Observe
that from Jensen’s inequality, for q ∈ [0, 1),

E
[
E(−λ ·W )qT

]
≤ E

[
E(−λ ·W )T

]q ≤ 1,

so that (2.2.1) automatically holds in this case. For t ∈ [0, T ] consider

M t := E
[
E(−qλ ·W )T exp

(
q(q − 1)

2

∫ T

0
λ2
s ds

)∣∣∣∣∣Ft
]
. (2.2.3)

Since we have

E
[
E(−qλ ·W )T exp

(
q(q − 1)

2

∫ T

0
λ2
s ds

)]
= E

[
E(−λ ·W )qT

]
< +∞,

M is a positive martingale so that by Itô’s representation theorem there exists a pre-
dictable process Z with

∫ T
0 Z

2
t dt < +∞ P-a.s. such that 1

M
·M ≡ Z ·W . We set

Ẑ := Z + qλ

1− q

and Ψ̂ as in (2.2.2). A calculation then shows that (Ψ̂, Ẑ) solves the BSDE (1.3.1) with
E
(
[(1− q)Ẑ − qλ] ·W

)
≡ E

(
Z ·W

)
≡ 1

M0
M a martingale.

We now turn our attention to uniqueness. Let us assume that (Ψ, Z) is a solution to
(1.3.1) such that E

(
[(1−q)Z−qλ] ·W

)
is a martingale. For t ∈ [0, T ] a calculation gives,

see Lemma 1.3.6,

exp
(
−(1− q)Ψt

)
E
(
−λ ·W

)q
t,T

= exp
(
(1− q)(ΨT −Ψt)

)
E
(
−λ ·W

)q
t,T

= E
(
[(1− q)Z − qλ] ·W

)
t,T

P-a.s. (2.2.4)

so that we obtain

Ψt = 1
1− q log

(
E
[
E(−λ ·W )qt,T

∣∣Ft]) P-a.s.
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

We derive that Ψ and Ψ̂ are indistinguishable which is due to continuity. From (2.2.4)
we then obtain that E

(
[(1− q)Z− qλ] ·W

)
is uniquely determined, from which it follows

that Ẑ ·W ≡ Z ·W .
Finally, we show that the condition (2.2.1) is also necessary. Assume that a solution

(Ψ, Z) to (1.3.1) exists but E
[
E(−λ ·W )qT

]
= +∞. Then, together with the supermartin-

gale property of E
(
[(1− q)Z − qλ] ·W

)
, the equality (2.2.4) shows that P-a.s.

exp
(
(1− q)Ψ0

)
≥ E

[
E
(
[(1− q)Z − qλ] ·W

)
T

]
exp

(
(1− q)Ψ0

)
= E

[
E
(
−λ ·W

)q
T

]
= +∞,

from which Ψ0 = +∞ P-a.s. in contradiction to the existence of Ψ.

The above theorem thus provides a condition that is sufficient and necessary for the
existence of solutions to a class of quadratic BSDEs. We now provide an explicit market
price of risk for which condition (2.2.1) fails to hold, hence for which the BSDE (1.3.1)
has no solution.

Proposition 2.2.2. For every q < 0 there exists λ such that λ ·W is a bounded mar-
tingale and E

[(
Y λ
T

)q] = E
[
E(−λ ·W )qT

]
= +∞.

Proof. For t ∈ [0, T ] define

λt := π

2
√
−q(T − t)

1]]T/2,τ ]](t, ·), (2.2.5)

where τ is the stopping time

τ := inf
{
t >

T

2

∣∣∣∣∣
∣∣∣∣∣
∫ t

T/2

1√
T − s

dWs

∣∣∣∣∣ ≥ 1
}
.

Here, we define λ from time T/2 onwards to be consistent with the construction in
Subsection 2.4.3. For the present proof, we could equally well replace T/2 by 0 in the
definitions of λ and τ . Observe that we have that P(T/2 < τ < T ) = 1 due to continuity
and the relation 〈∫ ·

T/2

1√
T − t

dWt

〉
T

=
∫ T

T/2

1
T − t

dt = +∞.

By construction, λ ·W is bounded by π
2
√
−q . We obtain, using Kazamaki [1994] Lemma

1.3 similarly to the proof of Frei and dos Reis [2011] Lemma A.1,

E
[
E(−λ ·W )qT

]
= E

[
exp

(
−q(λ ·W )T −

q

2

∫ T

0
λ2
t dt

)]

≥ e−
π
√
−q

2 E
[
exp

(
π2

8

∫ τ

T/2

1
T − t

dt

)]
= +∞,
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2.2 Existence, Uniqueness and Optimality for Quadratic BSDEs

from which the statement follows immediately.

Let us make three points concerning the above example, firstly that when q ∈ [0, 1)
such a degeneracy cannot occur, as shown in Proposition 2.2.1. In fact for a BMO
martingale λ·W there actually always exists a (then unique) bounded solution as Theorem
2.3.4 shows. We recall from Kazamaki [1994] that a continuous martingale M on the
compact interval [0, T ] with M0 = 0 is a BMO martingale if

∥∥M∥∥
BMO2

:= sup
τ

∥∥∥∥E[(MT −M τ
)2∣∣∣Fτ ]1/2∥∥∥∥

L∞
< +∞, (2.2.6)

where the supremum is over all stopping times τ valued in [0, T ].
Secondly we point out that the martingale in the above Propostion 2.2.2 is bounded.

Indeed, it is a leitmotiv of the present chapter that requiring (in addition) the martingale
λ ·M to be bounded does not improve the situation with respect to finiteness of a BSDE
solution. This is because the key estimates are all on the quadratic variation process
〈λ ·M〉 which in general does not inherit such properties.
Thirdly, we elaborate further on the construction of τ , which is a first hitting time of

the set R\(−1, 1) for some continuous local martingale. As we know from the general
theory, this local martingale is a time-changed Brownian motion so that we may write
τ as a time change of the first time that a Brownian motion leaves (−1, 1). More
explicitly, by the above construction, we obtain that

∫ τ
T/2

1
T−t dt is this passage time.

From Kazamaki [1994] Lemma 1.3 we then derive that for c ∈ R, |c| < 1,

E
[
exp

(
c2π2

8

∫ τ

T/2

1
T − t

dt

)]
= cos(0)

cos
(
|c|π
2

) = 1
cos
(
|c|π
2

) . (2.2.7)

As |c| tends to one, this expectation tends to +∞, a fact which we used in the above proof
and which is due to cos

(
π
2
)

= 0. In conclusion, there is a dichotomy in the behaviour
of the above expectation; either it is finite (for |c| < 1) or infinite (for |c| ≥ 1), and we
repeatedly exploit variants of this dichotomy in the sequel, see the Section 2.4 for more
examples.

2.2.2 Nonoptimality of BSDE Solutions

If a solution to the BSDE (1.3.1) does exist, it does not automatically lead to an optimal
pair for the utility maximization problem. This is because it may fail to be in the
right space (e.g. with respect to which uniqueness for BSDE solutions holds). We now
provide a theoretical result to illustrate the problem. More precisely, in contrast to
the classical Itô representation theorem with square-integrable integrands, an analogous
representation of random variables in terms of stochastic exponentials is not necessarily
unique. We have the following result.

Lemma 2.2.3. Let ξ be a random variable bounded away from zero and infinity, i.e.
there are constants L, ` > 0 such that ` ≤ ξ ≤ L P-a.s. Then, for every real number
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

c ≥ E[ξ], there exists a predictable process αc such that

ξ = c E(αc ·W )T , E
[∫ T

0
|αct |2 dt

]
< +∞. (2.2.8)

However, there is only one pair (c, α) consisting of a real constant c and a predictable
W -integrable process α satisfying ξ = c E(α · W )T with α · W a BMO martingale or,
equivalently, with c = E[ξ].

Remark 2.2.4. Comparing the multiplicative representation (2.2.8) with the classical
one, see Karatzas and Shreve [1991] Theorem 4.15, namely

ξ = k + (β ·W )T , E
[∫ T

0
|βt|2 dt

]
< +∞,

we see that existence holds in both cases, whereas there is no uniqueness of (c, αc) in
(2.2.8) despite the fact that E

[∫ T
0 |αct |2 dt

]
< +∞ and in contrast to the uniqueness

of (k, β). While in the standard Itô representation theorem for L2-random variables
the square-integrability of β and the martingale property of β ·W are equivalent, our
result shows that in the multiplicative form E

[∫ T
0 |αct |2 dt

]
< +∞ does not guarantee

uniqueness. The intuition for the difference between β in the additive and αc in the
multiplicative form is the following. Since β is a square-integrable process, β ·W is a
martingale, hence it must be the case that k = E[ξ]. In contrast, the square-integrability
of αc is not sufficient for E(αc ·W ) to be a martingale. It can be that E[E(αc ·W )T ] < 1
so that increasing c ≥ E[ξ] may be offset by an appropriate choice of αc such that (2.2.8)
still holds. A consequence of this is that uniqueness of the decomposition ξ = c E(α·W )T
holds if α ·W is a BMO martingale or equivalently (see Kazamaki [1994] Theorem 3.4,
using the boundedness of ξ) if E(α ·W ) is a martingale.
One could argue that a more natural condition in (2.2.8) is to assume that E(αc ·W )

be a true martingale, however our aim is a characterization in terms of αc ·W itself and
thus we do not pursue this. Note that it is not possible to find c < E[ξ] such that (2.2.8)
holds, because E(αc ·W ) is always a positive local martingale, hence a supermartingale.

Proof. We first defineM t := E[ξ|Ft], t ∈ [0, T ], and apply Itô’s representation theorem to
the stochastic logarithm ofM , which is a BMO martingale by Kazamaki [1994] Theorem
3.4 sinceM is bounded away from zero and infinity. This application yields a predictable
process α such that α ·W is a BMO martingale and ξ = E[ξ] E(α ·W )T . The uniqueness
part of the statement is then immediate; if α ·W is a BMO martingale, we have c = E[ξ]
and α ·W ≡ α ·W since E(α ·W ) is a martingale. Conversely, if c = E[ξ] the process
E(α ·W ) is a supermartingale with constant expectation, hence a martingale. Again we
have that

E(α ·W ) ≡ E[E(α ·W )T | F.] ≡
1

E[ξ] E[ξ| F.] ≡ E[E(α ·W )T | F.] ≡ E(α ·W )

and thus α ·W ≡ α ·W , which is the BMO martingale from above.
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We now fix c ≥ E[ξ] > 0 and construct αc. For this we first define the stopping time

τc := inf
{
t ≥ 0

∣∣∣∣ ∫ t

0

1
T − s

dWs ≤
t

2T (T − t) + log M t

c

}
.

We argue that τc < T P-a.s. To this end consider

τ c := inf
{
t ≥ 0

∣∣∣∣ ∫ t

0

1
T − s

dWs ≤
t

2T (T − t) + log `
c

}
and observe that τc ≤ τ c. If we define the time change ρ : [0, T ] → [0,+∞] by ρ(t) :=

t
T (T−t) , then it follows from Revuz and Yor [1999] II.3.14. that

E
[
exp

(1
8 ρ(τ c)

)]
= exp

(
−1

2 log `
c

)
= c1/2

`1/2
< +∞. (2.2.9)

We deduce that E[ρ(τ c)] < +∞, hence ρ(τ c) < +∞ P-a.s. and thus τ c < T P-a.s. from
which it follows that indeed τc < T P-a.s.
We now set

αct := 1
T − t

1[[0,τc]](t, ·) + α1]]τc,T ]](t, ·) (2.2.10)

and observe that it satisfies

c E(αc ·W )T = c
MT

M τc

E(αc ·W )τc = c
MT

M τc

M τc

c
= MT = ξ,

where the second equality is due to the specific definition of the stopping time τc. More-
over, we have

E
[∫ T

0
|αct |2 dt

]
≤ E

[∫ τc

0

1
(T − t)2 dt

]
+ E

[∫ T

0
|αt|2 dt

]
= E[ρ(τc)] + E

[∫ T

0
|αt|2 dt

]
,

which is finite because E[ρ(τc)] ≤ E[ρ(τ c)] < +∞ and α ·W is a BMO martingale.

The standard method of finding solutions to quadratic BSDEs involves an exponential
change of variables. A consequence of the preceding lemma is that the above type of
nonuniqueness carries over to the corresponding BSDE solutions, in particular to those
of the utility maximization problem. Observe that for each c the process αc · W is
square-integrable in contrast to classical locally integrable counterexamples. Indeed it
is well known that without square-integrability even the standard Itô decomposition is
not unique. In fact, for every k ∈ R there exists βk such that

ξ = k + (βk ·W )T ,
∫ T

0

∣∣βkt ∣∣2 dt < +∞ P-a.s.

by Émery et al. [1983] Proposition 1. We are hence able to construct distinct solutions
(Ψ, Z,N) to the BSDE (1.3.1) which are nontrivial in the above sense. This amounts
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

to some of these solutions being nonoptimal by Proposition 2.2.1. Actually, all except
one of these solutions are nonoptimal. Alternatively, uniqueness of the multiplicative
decomposition ξ = c E(α ·W )T holds under an additional BMO assumption which then
implies the uniqueness of Ψ via Lemma 2.3.1 below. We summarize these comments in
the following theorem.

Theorem 2.2.5. For all p ∈ (−∞, 1) and all predictable processes λ with 〈λ ·W 〉T =∫ T
0 λ2

t dt bounded, there exists a continuum of distinct solutions (Ψb, Zb, N b ≡ 0) to the
BSDE (1.3.1), parameterized by b ≥ 0, satisfying the following properties:

(i) The martingale part Zb ·W is square-integrable for all b ≥ 0.

(ii) The process E
([

(1− q)Zb − qλ
]
·W

)
is a martingale if and only if b = 0.

(iii) Defining νb and Xb as suggested by the formulae in Theorem 1.3.4, the admissible
process νb is the optimal strategy and the associated wealth process Xb = Xνb is
the primal optimizer if and only if b = 0.

It is known from Ankirchner et al. [2009] Section 2.2 that quadratic BSDEs need not
have unique square-integrable solutions. These authors present a specific example of
a quadratic BSDE with a particular terminal condition which allows for two distinct
solutions with square-integrable martingale parts. In contrast, Lemma 2.2.3 shows that
every BSDE related to power utility maximization with bounded mean-variance tradeoff
has no unique square-integrable solution, independently of the value of p. This underlines
the importance of being able to find a solution to the BSDE (1.3.1) with Z ·W a BMO
martingale in Hu et al. [2005] and Morlais [2009] (as is done by means of BSDE theory
there).

Proof. We set ξ := exp
(
q(q−1)

2
∫ T
0 λ2

t dt
)
and define the measure change

dP̃
dP

:= E(−qλ ·W )T ,

so that P̃ is an equivalent probability measure under which W̃ is a Brownian motion on
[0, T ] where

W̃t := Wt + q

∫ t

0
λs ds.

This measure change is implicitly already present in the proof of Proposition 2.2.1, see
(2.2.3). We now apply Lemma 2.2.3 to the triple

(
W̃ , P̃, (Ft)t∈[0,T ]

)
noting that in its

proof we may use Itô’s representation theorem in the form of Karatzas and Shreve [1998]
Theorem 1.6.7, i.e. we can write any P̃-martingale as a stochastic integral with respect to
W̃ , although W̃ may not generate the whole filtration (Ft)t∈[0,T ]. For every real number
c ≥ EP̃[ξ] > 0 we then derive the existence of a predictable process αc such that

ξ = c E(αc · W̃ )T , EP̃

[∫ T

0
|αct |2 dt

]
< +∞.
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2.3 Boundedness of BSDE Solutions and the BMO Property

For t ∈ [0, T ] we then set

Ψ̃c
t := log(c) +

∫ t

0
αcs dW̃s −

1
2

∫ t

0
|αcs|2 ds−

q(q − 1)
2

∫ t

0
λ2
s ds,

so that Ψ̃c solves the BSDE

dΨ̃c
t = αct dW̃t −

1
2 |α

c
t |2 dt−

q(q − 1)
2 λ2

t dt, Ψ̃c
T = 0. (2.2.11)

Using the transformations b := c − EP̃[ξ] ≥ 0, Ψ̃c =: (1 − q)Ψb and αc =: (1 − q)Zb we
arrive at the BSDE (1.3.1),

dΨb
t = Zbt dWt + q

2(Zbt + λt)2 dt− 1
2
(
Zbt
)2
dt, Ψb

T = 0,

which admits a continuum of distinct solutions, parameterized by b ≥ 0, as we will see
shortly. We first show that each martingale part is additionally square-integrable under
P. This follows from the inequality

E
[∫ T

0
|αct |2 dt

]
≤ EP̃

[
E(qλ · W̃ )2

T

]1/2
EP̃

(∫ T

0
|αct |2 dt

)2
1/2

.

Note that the second term on the right hand side is finite since from (2.2.9) in the proof
of Lemma 2.2.3 we have that EP̃

[
ρ(τ c)2] < +∞. Moreover, using α from this proof,

α · W̃ is a BMO martingale (under P̃), hence
∫ T

0 |αt|2 dt has an exponential P̃-moment of
some order by Kazamaki [1994] Theorem 2.2, see also Lemma 2.5.1 and the comments
thereafter. To derive that the first term is finite we use that

EP̃

[
E(qλ · W̃ )2

T

]
≤ EP̃

[
exp

(
6q2

∫ T

0
λ2
t dt

)]1/2

< +∞.

We now observe that the Assumption 1.3.1 is satisfied, hence our previous analysis
applies. However, there is a continuum of distinct solutions (Ψb, Zb) to the BSDE (1.3.1)
since for every b = c − EP̃[ξ] ≥ 0 we have that Ψb

0 = log(c)
1−q . From Kazamaki [1994]

Theorem 3.6 we have that αc · W̃ is a BMO martingale under P̃ if and only if αc ·W is
a BMO martingale under P. This last condition holds if and only if Zb ·W is a BMO
martingale under P. We conclude that E

([
(1− q)Zb − qλ

]
·W

)
is a martingale if b = 0

and it cannot be a martingale for b > 0 since otherwise (Ψb, Zb) would coincide with
(Ψ̂, Ẑ) ≡ (Ψ0, Z0). The last assertion in item (iii) is then immediate.

2.3 Boundedness of BSDE Solutions and the BMO Property
Thus far we have worked under an exponential moments assumption on the mean-
variance tradeoff which provides us with the existence of the primal and dual optimizers
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

as well as a link between these optimizers and a special quadratic BSDE. We now connect
the above study to the boundedness of solutions to quadratic BSDEs which we show to
be intimately related to the BMO property of the martingale part and the mean-variance
tradeoff. In fact, a sufficient condition for showing that Y λ = E(−λ ·M) indeed defines a
true measure change, is that λ ·M be a BMO martingale, see Kazamaki [1994] Theorem
2.3.
To motivate, suppose that λ ·M is a BMO martingale and that we can find a solution

(Ψ, Z,N) to the BSDE (1.3.1) with Ψ bounded. Due to the quadratic form of the driver
of (1.3.1), we may find a positive constant c̄ such that∫ T

0
(Zt + λt)T d〈M〉t(Zt + λt) + ZT

t d〈M〉tZt ≤ c̄
∫ T

0
ZT
t d〈M〉tZt + λT

t d〈M〉tλt.

Thus, we can apply Mania and Schweizer [2005] Proposition 7 to see that the process
Z ·M + N is a BMO martingale. We derive that

[
(1 − q)Z − qλ

]
·M + N is a BMO

martingale which, by Kazamaki [1994] Theorem 2.3, shows that E
([

(1−q)Z−qλ
]
·M+N

)
is a true martingale. We then deduce that solving the BSDE with a bounded Ψ gives
rise to an optimal pair for the primal and dual problem.
Conversely, given λ · M a BMO martingale, suppose that Z · M and N are BMO

martingales, then Ψ is bounded. This follows by taking the conditional t-expectation in
the integrated version of (1.3.1) and estimating the remaining finite variation parts with
the help of the BMO2 norms of λ ·M , Z ·M and N , uniformly in t. To summarize, we
deduce the following equivalence regarding solutions (Ψ, Z,N) to the BSDE (1.3.1) of
the utility maximization problem with BMO market price of risk λ.

Lemma 2.3.1. Suppose that λ ·M is a BMO martingale and that the triple (Ψ, Z,N)
solves the BSDE (1.3.1). Then Ψ is bounded if and only if Z · M and N are BMO
martingales. If this is the case, setting (X,Y ) as suggested by Theorem 1.3.4 gives the
pair of primal and dual optimizer.

Remark 2.3.2. If the pair (X̂, Ŷ ) of primal and dual optimizer is known to exist then
Nutz [2010a] Corollary 5.12 shows that Ψ̂ := log(Ŷ/ U ′(X̂)) is bounded if and only if
λ ·M , Z ·M and N are BMO martingales.

Regarding our previous remarks on placing sufficient conditions on the model, when
〈λ ·M〉T is bounded, Hu et al. [2005] and Morlais [2009] show by BSDE techniques that
there is a unique solution (Ψ, Z,N) to (1.3.1) with Ψ bounded. The existence of such
a solution allows one to deduce the existence of a solution to the utility maximization
problem and the argument relies crucially upon the boundedness of Ψ.
Proceeding differently, if 〈λ ·M〉T is bounded, we again have Y λ = E(−λ ·M) ∈ Y(1)

and observe that it satisfies the following reverse Hölder inequality Rq; there is a constant
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2.3 Boundedness of BSDE Solutions and the BMO Property

crH,p > 0 (which depends on p) such that for all stopping times τ valued in [0, T ],

E
[(
Y λ
T

/
Y λ
τ

)q ∣∣∣∣Fτ] ≤ crH,p in the case of p ∈ (0, 1), (2.3.1)

E
[(
Y λ
T

/
Y λ
τ

)q ∣∣∣∣Fτ] ≥ crH,p in the case of p ∈ (−∞, 0). (2.3.2)

We may then refer to Nutz [2010b] Proposition 4.5 for boundedness of the special solution
(Ψ̂, Ẑ, N̂) to the BSDE when it is assumed to exist (e.g. under Assumption 1.2.3).
Conversely, given the solution (X̂, Ŷ ) to the primal and dual optimization problem we
find from Nutz [2010b] Propositions 4.3 and 4.4 and the above definition that

exp
(

sup
0≤t≤T

|Ψ̂t|
)

= sup
0≤t≤T

E
[(
ŶT
/
Ŷt
)q ∣∣∣∣∣Ft

]sgn(p)(1−p)

.

The above discussion then amounts to the following lemma.

Lemma 2.3.3 (Nutz [2010b] Proposition 4.5). Assume that the pair (X̂, Ŷ ) of the primal
and dual optimizer exists and consider Ψ̂ := log(Ŷ/ U ′(X̂)). Then Ψ̂ is bounded if
and only if the reverse Hölder inequality (2.3.1), respectively (2.3.2), holds for the dual
optimizer Ŷ , if and only if it holds for some Y ∈ Y(1).

From Remark 2.3.2 we already know that the BMO property of λ ·M is necessary
for the boundedness of Ψ̂. The following result shows that for nonpositive risk aversion
parameters p ∈ (−∞, 0] it is also sufficient.

Theorem 2.3.4. Assume that q ∈ [0, 1) and that λ ·M is a BMO martingale. Then the
pair (X̂, Ŷ ) of the primal and dual optimizer exists and Ψ̂ := log(Ŷ /U ′(X̂)) is bounded.
In particular, solving the BSDE (1.3.1) with bounded first component gives rise to the
pair of primal and dual optimizer.

Proof. Since λ ·M is a BMO martingale, Y λ := E(−λ ·M) defines an equivalent local
martingale measure for S so that Assumption 1.2.3 is satisfied, where we use a calculation
similar to the proof of Lemma 1.3.2 to extend its item (ii) to p = 0. By Kazamaki [1994]
Corollary 3.4 Y λ ∈ Y(1) also satisfies the reverse Hölder inequality (2.3.2) if q ∈ (0, 1).
The assertion then follows from Lemma 2.3.3 and from the explicit formula Ψ̂ ≡ 0 that
holds in the case q = 0.

Proposition 2.2.1 shows that in a Brownian framework the BSDE (1.3.1) always admits
a solution if q ∈ [0, 1). In view of the above theorem this property extends to the general
framework under the condition that λ ·M is a BMO martingale. In particular, there
is a unique solution which is bounded and it is given by the opportunity process of the
utility maximization problem.
Let us now contrast this with the situation when q < 0. The example in Subsection

2.2.1 provides a bounded BMO martingale λ ·M such that the corresponding BSDE
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

admits no solution. For this example the utility maximization problem satisfies u(1) =
+∞, i.e. the utility maximization problem is degenerate. In fact, Ψ0 ≡ +∞ in this case.

The question now becomes whether, given an arbitrary λ such that λ ·M is a BMO
martingale and given some q < 0, we can still guarantee a bounded solution Ψ to the
BSDE (1.3.1) when the utility maximization problem is nondegenerate. We settle this
question negatively in the next section providing an example for which Assumption 1.3.1
as well as the BMO (even the boundedness) property of λ ·M hold, but for which the
BSDE (1.3.1) does not have a bounded solution.

To counterbalance this negative result, in Section 2.5 we provide via the John-Nirenberg
inequality a condition on the order of the dynamic exponential moments of the mean-
variance tradeoff process that guarantees boundedness of Ψ̂. This is accompanied by a
further example showing that this condition cannot be improved. To conclude, Theorems
2.3.4 and 2.5.10 provide a full characterization of the boundedness of solutions to the
BSDE (1.3.1) in terms of the dynamic exponential moments of 〈λ · M〉 for a BMO
martingale λ ·M .

2.4 Counterexamples to the Boundedness of BSDE Solutions

We know that an optimal pair for the utility maximization problem gives rise to a
triple (Ψ̂, Ẑ, N̂) solving the BSDE (1.3.1). Conversely, under suitable conditions, BSDE
theory based on Briand and Hu [2008], Kobylanski [2000] or the results given in Chapter
3, provides solutions to the BSDE with Ψ̂ bounded (in E), with uniqueness in the class
of bounded processes (in the class E). We now present an example of a BMO martingale
λ ·M which satisfies Assumption 1.3.1 and for which the BSDE (1.3.1) related to the
utility maximization problem has an unbounded solution for a given p.

We develop this example in three steps. Firstly, we show that Assumption 1.3.1
alone (rather unsurprisingly) is not sufficient to guarantee a bounded solution. The
corresponding λ ·M involved is however not a BMO martingale. The second example
is of BMO type, but lacks finite exponential moments of a sufficiently high order. It
resembles the example provided in Subsection 2.2.1. Finally, we combine these two
examples to construct a BMO martingale λ ·M such that 〈λ ·M〉T has all exponential
moments, but for which the BSDE does not allow for a bounded solution. Although this
last step leaves the first two obsolete, we believe that the outlined presentation helps
the reader in gaining insight into the nature of the degeneracy. In addition it hints at
the minimal sufficient condition in Theorem 2.3.4. Namely, instead of simply requiring
both the BMO and the exponential moments properties, they should be combined into a
dynamic condition. Since in the present section we construct suitable counterexamples
let M = W be again a one-dimensional P-Brownian motion in its augmented natural
filtration.
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2.4 Counterexamples to the Boundedness of BSDE Solutions

2.4.1 Unbounded Solutions under All Exponential Moments

Let us assume that the market price of risk is given by λ := − sgn(W )
√
|W | so that the

stock price dynamics read as follows,

dSt
St

= dWt − sgn(Wt)
√
|Wt| dt.

Note that in the above definition “− sgn” is motivated by economic rationale, to simulate
a certain reverting behaviour of the returns. Assumption 1.3.1 is satisfied since∫ T

0
λ2
t d〈M〉t =

∫ T

0
|Wt| dt ≤ T · sup

0≤t≤T
|Wt|

and by Doob’s inequality, for % > 1,

E
[
exp

(
% sup

0≤t≤T
|Wt|

)]
= E

[
sup

0≤t≤T
exp(%|Wt|)

]
≤
(

%

%− 1

)%
E[exp(%|WT |)]

≤ 2
(

%

%− 1

)%
e %

2 T/2 < +∞.

Now let p ∈ (0, 1) so that q < 0 and let (X̂, Ŷ ) be the optimizers of the utility maxi-
mization problem, where X̂0 = x > 0 and Ŷ0 = y := u′(x). Since we are in a complete
Brownian framework we have that Ŷ = y E(sgn(W )

√
|W | ·W ). If ν̂ denotes the optimal

investment strategy we derive from Theorem 1.3.4 that (Ψ̂, Ẑ, 0) is the unique solution
to the BSDE (1.3.1) where Ψ̂ := log(Ŷ/ U ′(X̂)) ∈ E and Ẑ := sgn(W )

√
|W |+ (1− p)ν̂.

According to Lemma 2.3.3 Ψ̂ is bounded if and only if Ŷ satisfies the reverse Hölder
inequality (2.3.1) for some positive constant crH,p and all stopping times τ valued in
[0, T ], which is not the case as we now show.
The family {|Wt| | t ∈ [0, T ]} is uniformly integrable since E

[
W 2
t

]
= t ≤ T , so we may

apply the stochastic Fubini theorem (see Becherer [2006] Lemma A.1) to get, for some
t ∈ (0, T ), via Jensen’s inequality,

E
[(
ŶT
/
Ŷt
)q ∣∣∣∣Ft] = E

[
exp

(
q

∫ T

t
sgn(Ws)

√
|Ws| dWs −

q

2

∫ T

t
|Ws| ds

) ∣∣∣∣∣Ft
]

≥ exp
(
E
[
q

∫ T

t
sgn(Ws)

√
|Ws| dWs −

q

2

∫ T

t
|Ws| ds

∣∣∣∣Ft
])

= exp
(
−q2 E

[∫ T

t
|Ws| ds

∣∣∣∣Ft
])

= exp
(
−q2

∫ T

t
E
[
|Ws|

∣∣Ft] ds
)

≥ exp
(
−q2

∫ T

t
|Wt| ds

)
= exp

(
−q(T − t)2 |Wt|

)
.

Since the last random variable is unbounded it cannot be the case that (2.3.1) holds,
hence Ψ̂ cannot be bounded.
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

However, λ ·W from this example is not a BMO martingale since for t ∈ (0, T ),

E
[∫ T

t
|Ws| ds

∣∣∣∣Ft
]

=
∫ T

t
E
[
|Ws|

∣∣Ft] ds ≥ (T − t) |Wt|,

which shows that ‖λ ·M‖BMO2 = ‖λ ·W‖BMO2 cannot be finite.

2.4.2 Unbounded Solutions under the BMO Property

We continue with a BMO example for which the solution to the BSDE (1.3.1) satisfying
the (analogue of) condition (A) from the introduction is unbounded. The idea is the
following, from Proposition 2.2.2, for q < 0, there exists λ with λ ·W a BMO martingale
such that the BSDE (1.3.1) has no solution (in any class of possible solutions). Replacing
this λ by c λ for a constant c, it follows from (2.5.9) below that the BSDE has either no
solution (for |c| ≥ 1) or has a solution which is bounded and fulfills a BMO property (for
|c| < 1), see also the remarks following the proof of Proposition 2.2.2. This dichotomy is
in line with the fact that for a BMO martingale M the set of all % < 0 such that E(M)
satisfies the reverse Hölder inequality R% is open; compare Kazamaki [1994] Corollary
3.2. The insight then is to make c a random variable in order to construct λ such that
the BSDE (1.3.1) has a solution which is not bounded. More precisely, we have the
following result.

Proposition 2.4.1. For every q < 0 there exists a predictable W -integrable process λ
with λ ·W a bounded (hence a BMO) martingale such that,

(i) The BSDE (1.3.1) has a unique solution (Ψ̂, Ẑ, N̂ ≡ 0) with E
(
[(1− q)Ẑ− qλ] ·W

)
a martingale. In particular, solving (1.3.1) and setting (X,Y ) as suggested by
Theorem 1.3.4 gives the pair of primal and dual optimizer.

(ii) There does not exist a solution (Ψ, Z) to (1.3.1) with Z ·W a BMO martingale or
Ψ bounded.

Proof. For t ∈ [0, T ] we set

λt := πα

2
√
−q(T − t)

1]]T/2,τ ]](t, ·), (2.4.1)

where

α := 2
π

arccos
√

Φ
(√

2/T WT/2

)
for Φ the standard normal cumulative distribution function and τ the stopping time
from the proof of Proposition 2.2.2,

τ := inf
{
t >

T

2

∣∣∣∣∣
∣∣∣∣∣
∫ t

T/2

1√
T − s

dWs

∣∣∣∣∣ ≥ 1
}
. (2.4.2)
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Note that Φ
(√

2/T WT/2
)
is uniformly distributed on (0, 1] and that α is valued in

[0, 1) P-a.s. It follows immediately that λ ·W is bounded by π
2
√
−q , in particular it is a

BMO martingale. This is due to Kazamaki [1994] Corollary 2.1 which states that the
BMO1 and BMO2 norms are equivalent for uniformly integrable martingales. Here, for
a continuous martingale (M t)t∈[0,T ] with M0 = 0,

∥∥M∥∥
BMO1

:= sup
τ

∥∥∥∥E[∣∣MT −M τ

∣∣∣∣∣Fτ ]∥∥∥∥
L∞

< +∞,

where the supremum is over all stopping times τ valued in [0, T ].

Using Kazamaki [1994] Lemma 1.3 in the same way as in the proof of Frei and dos
Reis [2011] Lemma A.1, see the remarks after the proof of Proposition 2.2.2, we obtain
that

E
[
E(−λ ·W )qT

]
≤ e

π
√
−q

2 E
[
exp

(
π2α2

8

∫ τ

T/2

1
T − t

dt

)]
= e

π
√
−q

2 E
[

1
cos
(
πα/2

)]

= e
π
√
−q

2 E
[

1√
Φ
(√

2/T WT/2
)
]

= 2e
π
√
−q

2 < +∞,

so that Proposition 2.2.1 gives the first assertion. Due to the FT/2-measurability of α
and the FT/2-independence of τ , we have

exp
(
(1− q)Ψ̂T/2

)
≥ e

−π
√
−q

2 E
[
exp

(
π2α2

8

∫ τ

T/2

1
T − t

dt

)∣∣∣∣∣FT/2
]

= e
−π
√
−q

2 E
[
exp

(
π2x2

8

∫ τ

T/2

1
T − t

dt

)]∣∣∣∣∣
x=α

= e
−π
√
−q

2

cos(πα/2) .

This shows that

(1− q)Ψ̂T/2 ≥ −
π
√
−q

2 − 1
2 log

(
Φ
(√

2/T WT/2
))
,

which is unbounded by the uniform distribution of Φ
(√

2/T WT/2
)
on (0, 1].

For item (ii) assume that there exists a solution (Ψ, Z) to (1.3.1) with Z ·W a BMO
martingale or Ψ bounded. By Lemma 2.3.1 we can restrict ourselves to assuming that Ψ
is bounded, which implies that Z ·W is a BMO martingale so that E

(
[(1−q)Z−qλ] ·W

)
is a martingale. By uniqueness, (Ψ, Z) coincides with (Ψ̂, Ẑ) above, in contradiction to
the unboundedness of Ψ̂.
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2.4.3 Unbounded Solutions under All Exponential Moments and the BMO
Property

The two previous subsections raise the question whether we can find a BMO martingale
λ · M such that its quadratic variation has all exponential moments and the BSDE
(1.3.1) has only an unbounded solution. Roughly speaking, the idea is to combine the
above two examples by translating the crucial distributional properties of |W | and α
into the corresponding properties of a suitable stopping time σ to be constructed. This
guarantees that the BMO property and the exponential moments condition are satisfied
simultaneously, while we can also achieve the unboundedness of the BSDE solution by
using independence. Table 2.1 summarizes the key properties.

Form of λ2
t Crucial Properties

Example in 2.4.1 |Wt|
|Wt| is unbounded,
has all exponential moments

Example in 2.4.2 π2α2

4(−q)
1

T−t 1]]T/2,τ ]](t, ·)
α2 ∈ [0, 1), P(α2 ≥ %) > 0 ∀% < 1,
E
[
1/cos(απ/2)

]
< +∞

Combination π2

4(−q)
1

T−t1]]T/2,τ∧σ]](t, ·)
σ ∈ (T/2, T ], P(σ ≥ %) > 0 ∀% < T ,∫ σ

0
1

T−t dt has all exp. moments

Table 2.1: Comparison of the BSDE Examples from the Present Section 2.4

Theorem 2.4.2. For every q < 0, there exists a predictable W -integrable process λ such
that,

(i) The process λ ·W is a bounded (hence a BMO) martingale.

(ii) For all % > 0 we have E
[

exp
(
%
∫ T

0 λ2
t dt

)]
< +∞.

(iii) The BSDE (1.3.1) has a unique solution (Ψ̂, Ẑ, N̂ ≡ 0) with E
(
[(1− q)Ẑ− qλ] ·W

)
a martingale. In particular, solving (1.3.1) and setting (X,Y ) as suggested by
Theorem 1.3.4 gives the pair of primal and dual optimizer.

(iv) There does not exist a solution (Ψ, Z) to (1.3.1) with Z ·W a BMO martingale or
Ψ bounded.

Proof. Let us first construct σ with the desired distributional properties. We define the
nonnegative continuous function f : (T/2, T ] → R, f(t) := c0 · e−

1
T−t , where c0 > 0 is

a constant such that
∫ T
T/2 f(t) dt = 1. We then consider the strictly increasing function

F : (T/2, T ]→ (0, 1], F (t) :=
∫ t
T/2 f(s) ds and its inverse F−1 : (0, 1]→ (T/2, T ]. We set

σ :=
(
F−1 ◦ Φ

)(√
2/T WT/2

)
,
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so that σ is an FT/2-measurable random variable with values in (T/2, T ] and cumulative
distribution function F . Now define for t ∈ [0, T ],

λt := π

2
√
−q(T − t)

1]]T/2,τ∧σ]](t, ·),

where τ is the stopping time from (2.4.2). It follows immediately that λ ·W is bounded
by π

2
√
−q , hence a BMO martingale, see the argument given in the previous proof.

Let us now show that
∫ T

0 λ2
t dt has all exponential moments. Take % > 0 and fix an

integer %̄ ≥ π2%
4(−q) ∨ 2. We derive

E
[
exp

(
%

∫ T

0
λ2
t dt

)]
≤ E

[
exp

(
%̄

∫ σ

T/2

1
T − t

dt

)]

= E
[
exp

(
%̄ [log(T/2)− log(T − σ)]

)]
= (T/2)%̄ E

[
1

(T − σ)%̄

]

= c0(T/2)%̄
∫ T

T/2

( 1
T − t

)%̄
e−

1
T−t dt = c0(T/2)%̄

∫ +∞

2/T
s%̄−2e−s ds

= c0(T/2)%̄(%̄− 2)! e−2/T
%̄−2∑
k=0

(2/T )k

k! < +∞,

where in the last equality we used the representation of the incomplete gamma function
at integer points (or, directly, integration by parts),

Γ(n, x) :=
∫ +∞

x
sn−1e−s ds = (n− 1)! e−x

n−1∑
k=0

xk

k! for n ∈ N, x ∈ R.

A standard argument then shows that E
[
E(−λ ·W )qT

]
< +∞, see the proof of Lemma

1.3.2. It follows from Proposition 2.2.1 that the BSDE (1.3.1) has a unique solution
(Ψ̂, Ẑ) with E([(1− q)Ẑ − qλ] ·W ) a martingale where the first component is given by

Ψ̂t = 1
1− q log

(
E
[
E(−λ ·W )qt,T

∣∣Ft]), t ∈ [0, T ], P-a.s.

We deduce that P-a.s.

exp
(
(1− q)Ψ̂T/2

)
≥ e

−π
√
−q

2 E
[
exp

(
π2

8

∫ τ∧σ

T/2

1
T − t

dt

)∣∣∣∣∣FT/2
]

= e
−π
√
−q

2 E
[
exp

(
π2

8

∫ τ∧s

T/2

1
T − t

dt

)]∣∣∣∣∣
s=σ

because σ is FT/2-measurable and τ is independent from FT/2. From monotone conver-
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gence it follows that

lim
s↑T

E
[
exp

(
π2

8

∫ τ∧s

T/2

1
T − t

dt

)]
= E

[
exp

(
π2

8

∫ τ

T/2

1
T − t

dt

)]
= +∞, (2.4.3)

the last equality being a consequence of (2.2.7). We now fixK > 0 and take s0 ∈ (T/2, T )
such that

E
[
exp

(
π2

8

∫ τ∧s

T/2

1
T − t

dt

)]
≥ e(1−q)K+π

√
−q

2 for all s ∈ [s0, T ),

which is possible by (2.4.3). This implies P(Ψ̂T/2 ≥ K) ≥ P(σ ≥ s0) = 1 − F (s0) > 0
since s0 < T , in particular Ψ̂ is unbounded. The assertion of item (iv) then follows as
in the previous proof.

Remark 2.4.3. It is interesting to compare, for different constants c ∈ R, the above
different definitions of λ regarding the behaviour of the solution to the BSDE

dΨt = Zt dWt + q

2 (Zt + cλt)2 dt− 1
2 Z

2
t dt, ΨT = 0. (2.4.4)

In the example of Proposition 2.2.2 λ2
t is of the form π2

4(−q)
1

T−t 1]]T/2,τ ]](t, ·), while in Sub-
section 2.4.2 λ2

t equals π2α2

4(−q)
1

T−t1]]T/2,τ ]](t, ·), which we modified to π2

4(−q)
1

T−t1]]T/2,τ∧σ]](t, ·)
in the above discussion. Table 2.2 shows that by introducing additional random vari-
ables in the construction of λ, the BSDE (2.4.4) becomes solvable for bigger values of |c|,
but the solution for |c| ≥ 1 is unbounded. The assertions of Table 2.2 can be deduced
from the arguments in the above proofs together with the additional calculation given
in (2.5.11) below.

Form of 4(−q)
π2 λ2

t

Solution to the BSDE (2.4.4)
|c| ∈ [0, 1) |c| = 1 |c| > 1

Example in 2.2.1 1
T−t 1]]T/2,τ ]](t, ·) bounded no solution

Example in 2.4.2 α2 1
T−t 1]]T/2,τ ]](t, ·) bounded unbounded no solution

Example in 2.4.3 1
T−t 1]]T/2,τ∧σ]](t, ·) bounded unbounded

Table 2.2: Description of Solutions to the BSDE (2.4.4)

2.4.4 Markovian Examples via Azéma-Yor Martingales

In the Subsections 2.2.1, 2.4.2 and 2.4.3 we constructed several explicit counterexamples
to the boundedness of solutions to the BSDE (1.3.1). The aim of this subsection is to
show that such examples can also be given in Markovian form. More precisely, for a
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2.4 Counterexamples to the Boundedness of BSDE Solutions

specific choice of M we find market price of risk processes λt = λ(Mt), t ∈ [0, T ], which
are functions of M and such that the corresponding assumptions from the Subsections
2.2.1, 2.4.2 and 2.4.3 are satisfied. In particular, the corresponding results carry over to
such a Markovian framework. The construction of M involves Azéma-Yor martingales
for which we recall the following result.

Lemma 2.4.4. Let (Xt)t≥0 be a one-dimensional (continuous) local martingale with
running maximum X, let g : R → R be a locally integrable function and G(x) :=∫ x

0 g(y) dy. Then
G(X)− g(X)(X −X) = g(X) ·X,

which defines a (continuous) local martingale. The corresponding statement for the run-
ning minimum X is immediate upon using X = −(−X).

The construction ofM now takes the following familiar form. Let (Wt)t∈[0,T ] be a stan-
dard one-dimensional Brownian motion and (Ft)t∈[0,T ] its natural augmented filtration.
For t ∈ [0, T ) let

Xt :=
∫ t

0

1√
T − s

1(T/2,T ](s) dWs,

which defines a continuous martingale X on [0, T ). In analogy to the previous examples
consider the stopping time

τ := inf
{
t >

T

2

∣∣∣∣∣
∣∣∣∣∣
∫ t

T/2

1√
T − s

dWs

∣∣∣∣∣ ≥ 1
}

= inf
{
t ≥ 0

∣∣ |Xt| ≥ 1
}
.

By the above Lemma 2.4.4, applied to X and the identity function g(x) = x,

U := −XX + 1
2 X

2 and V := XX − 1
2 X

2

are continuous local martingales on [0, T ). In particular, setting

M̌ := (X,U, V )

we obtain that M̌ is a three-dimensional continuous local martingale on [0, T ). Our goal
being the construction of a local martingale M which (by the general assumptions) is
continuous on the whole interval [0, T ], it remains to close the continuity gap at t = T .
To this end we first define the stopping time

τ̌ := inf
{
t ≥ 0

∣∣ |Xt| ≥ 2
}

and derive that T/2 < τ < τ̌ < T , P-a.s. ThenM := M̌ τ̌ is a continuous local martingale
on [0, T ], as required.

Lemma 2.4.5. There are measurable functions g, g : R2 → R such that

X = g(X,U) and X = g(X,V ),

49



2 BSDEs in Utility Maximization with BMO Market Price of Risk

where X, U and V are from the above construction. In particular,

1[[0,τ ]] = 1{
X≥−1

}1{
X≤1

} = 1{
g(X,U)≥−1

}1{
g(X,V )≤1

}
is a function of M̌ and hence also of M .

Proof. We have that 1
2 X

2 − XX − U = 0. Since X2 + 2U = X2 − 2XX + X2 =
(X −X)2 ≥ 0 this is equivalent to X = X ±

√
X2 + 2U . Due to X ≤ X we find that

X = X −
√
X2 + 2U = g(X,U) for g(x, u) :=

(
x −
√
x2 + 2u

)
1{x2≥−2u}. The proof for

X is similar and therefore omitted. Finally,

1{
g(X τ̌

t ,U
τ̌
t )≥−1

}1{
g(X τ̌

t ,V
τ̌
t )≤1

} =


1{

g(Xt,Ut)≥−1
}1{

g(Xt,Vt)≤1
} = 1[[0,τ ]](t) t ≤ τ̌ ,

1{
X τ̌≥−1

}1{
X τ̌≤1

} = 0 = 1[[0,τ ]](t) t > τ̌ .

As a consequence, defining λ in the usual way, i.e. by using an indicator function of
τ we find that it can be chosen as a function of M . We now provide some more details
as to how to adapt the examples in the Subsections 2.2.1, 2.4.2 and 2.4.3.

First Example in Subsection 2.2.1

Our goal is to prove the analogue of Proposition 2.2.2 with a Markovian λ such that the
BSDE does not allow for a solution. We could take the three-dimensionalM from above
(as we do in the next subsection), but actually the one-dimensional local martingale
M1 = X τ̌ turns out to be sufficient for our purposes. We recall that we are in the
standard one-dimensional Brownian framework.

Lemma 2.4.6. For every q < 0 there exists a predictable process λ which is a function
of the local martingale M1 = X τ̌ , i.e. λt = λ(M1

t ), such that λ · M1 is a bounded
martingale with E

[
E(−λ ·M1)qT

]
= +∞. In particular, the BSDE (1.3.1) with driving

local martingale M1 does not have a solution.

Proof. We set λ := π
2
√
−q 1{|M1|≤1} which is predictable since M1 is adapted and con-

tinuous. Moreover, λ ·M1 is a martingale since it is bounded by π
2
√
−q . We then derive

from M1 ≡ 0 on [0, T/2] and independence that P-a.s.

E
[
E
(
−λ ·M1)q

T

∣∣∣FT/2] = E
[
E
(
−λ ·M1)q

T

]
≥ e−

π
√
−q

2 E
[
exp

(
π2

8

∫ τ̌

T/2

1{|Xt|≤1}
T − t

dt

)]

≥ e−
π
√
−q

2 E
[
exp

(
π2

8

∫ τ

T/2

1
T − t

dt

)]
= +∞.

Now let us assume that a solution (Ψ, Z,N) to the BSDE (1.3.1) exists. Considering it
on [T/2, T ], we observe that from time T/2 up to time τ̌ the filtration generated by M1

50



2.4 Counterexamples to the Boundedness of BSDE Solutions

coincides with the filtration generated by a Brownian motion, hence dN ≡ 0 on [[T/2, τ̌ ]].
As for (2.2.4) we then derive that P-a.s. for t ∈ [[T/2, τ̌ ]],

exp
(
(1− q)(Ψτ̌ −Ψt)

)
= E

(
[(1− q)Z − qλ] ·M1)

t,T
E
(
−λ ·M1)−q

t,T
,

where we use that M1 is constant after time τ̌ . This fact also shows that

exp(Ψτ̌ ) = exp
(
−(ΨT −Ψτ̌ )

)
= −E(N)τ̌ ,T .

In fact, the BSDE (1.3.1) degenerates to dΨt = dNt − 1
2 d〈N〉t on [[τ̌ , T ]]. After taking

Fτ̌ -conditional expectation we obtain that Ψτ̌ ≥ 0, P-a.s. As a consequence,

exp
(
(1− q)ΨT/2

)
≥ E

[
E
(
[(1− q)Z − qλ] ·M1)

T/2,T

∣∣∣FT/2] exp
(
(1− q)ΨT/2

)
= E

[
E
[
E
(
[(1− q)Z − qλ] ·M1)

T/2,T exp
(
(1− q)ΨT/2

) ∣∣∣FT/2] ∣∣∣Fτ̌ ]
≥ E

[
E
[
E
(
[(1− q)Z − qλ] ·M1)

T/2,T exp
(
(1− q)(ΨT/2 −Ψτ̌ )

) ∣∣∣FT/2] ∣∣∣Fτ̌ ]
= E

[
E
(
−λ ·M1)q

T/2,T

∣∣∣FT/2] = +∞ P-a.s.

from which ΨT/2 = +∞ P-a.s. This contradicts the existence of Ψ.

Second and Third Example in Subsections 2.4.2 and 2.4.3

For the examples from the Subsections 2.4.2 and 2.4.3 we consider the three-dimensional
local martingale M constructed above and extend it to a fourth dimension by setting
M4 := W1[0,T/2] +WT/21(T/2,T ]. This fourth component serves for writing α and σ from
the Subsections 2.4.2 and 2.4.3 as a function of M , see their specific definitions there.
The process λ is then chosen to satisfy λ = (λ1, 0, 0, 0), where

λ1 := πα

2
√
−q

1[[0,τ ]] or λ1 := π

2
√
−q

1[[0,τ∧σ]].

Then λ is a function of M .
We now concentrate on transferring the proof of Theorem 2.4.2 to the present context,

noting that we can construct a solution (Ψ̂, Ẑ, N̂) with orthogonal component N̂ satis-
fying N̂ ≡ 0 on [0, T ]. In fact, the BSDE (1.3.1) degenerates to dΨt = dNt− 1

2 d〈N〉t on
[[τ̌ , T ]] hence we can set (Ψ̂, N̂) ≡ (0, 0) there in view of the terminal condition ΨT = 0.
On [[T/2, τ̌ ]] we have that the filtration generated by M1 coincides with the filtration
generated by a Brownian motion, hence N̂ ≡ 0 due to continuity. It follows that P-a.s.

exp
(
(1− q)Ψ̂T/2

)
= E

[
E
(
−λ ·M

)q
T/2,T

∣∣∣FT/2] = E
[
E
(
−λ ·M

)q
T

]
< +∞,

which is finite and a constant, using λ ·M ≡ λ1 ·M1, its independence from FT/2 and
M1 ≡ 0 on [0, T/2]. On [0, T/2] the BSDE degenerates again, hence for continuity
reasons we may choose (Ψ̂, N̂) ≡ (Ψ̂T/2, 0). This gives a solution (Ψ̂, Ẑ, N̂ ≡ 0) with

51
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E
(
[(1 − q)Ẑ − qλ] ·M + N̂

)
a martingale. Conversely, if (Ψ, Z,N) is a solution with

E
(
[(1− q)Z − qλ] ·M +N

)
a martingale we derive from Theorem 1.3.5 (iii), which can

be applied due to the finiteness of the exponential moments of 〈λ ·M〉T , that Ψ ≡ Ψ̂. In
analogy to Lemma 2.4.6 we obtain the following Markovian result.

Theorem 2.4.7. For every q < 0 there exists a predictable process λ which is a function
of the continuous local martingale M constructed above, i.e. λt = λ(Mt), such that,

(i) The process λ ·M is a bounded (hence a BMO) martingale.

(ii) For all % > 0 we have E
[

exp
(
%〈λ ·M〉T

)]
< +∞.

(iii) The BSDE (1.3.1) has a unique solution (Ψ̂, Ẑ, N̂) with E
(
[(1− q)Ẑ− qλ] ·M + N̂

)
a martingale. Here, N̂ ≡ 0. In particular, setting (X,Y ) as suggested by Theorem
1.3.4 gives the pair of primal and dual optimizer.

(iv) There does not exist a solution (Ψ, Z,N) to (1.3.1) with Z ·M +N a BMO mar-
tingale or Ψ bounded.

2.5 Characterization of Boundedness of BSDE Solutions
We have already shown that for a BMO martingale λ ·M and q ∈ [0, 1) the BSDE (1.3.1)
allows for a unique bounded solution given by the utility maximization problem. In the
previous section we gave some examples to show that for q < 0 the situation is rather
different. In this section we complete the analysis by developing and finally providing
a sufficient condition that guarantees (necessarily unique) bounded solutions to (1.3.1).
It is also shown that this particular condition cannot be improved. More precisely, we
consider here a more general situation where the orthogonal local martingale N may
exhibit jumps. We assume that the local martingale M is still continuous. In this case
the BSDE (1.3.1) is replaced by

dΨt = ZT
t dMt + dNt −

1
2 d〈N

c〉t + log(1 + ∆Nt)−∆Nt

+ q

2(Zt + λt)T d〈M〉t(Zt + λt)−
1
2 Z

T
t d〈M〉tZt, ΨT = 0, (2.5.1)

where ∆N denotes the jump part of N and satisfies ∆N > −1, recalling that Ŷ > 0. We
mention that all the results which depend only on the specific continuous local martingale
M also hold in this more general setting. In particular, the statements of Lemma 2.3.3
and Theorem 2.3.4 continue to hold for the BSDE (2.5.1) in place of the BSDE (1.3.1).

2.5.1 Bounded Solutions via the John-Nirenberg Inequality
We exploit here the John-Nirenberg inequality and show that if λ·M is a BMOmartingale
with BMO2 norm in a specific range then the utility maximization problem admits a
unique solution (X̂, Ŷ ) with Ψ̂ = log(Ŷ/U ′(X̂)) bounded.
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The Critical Exponent

We recall the John-Nirenberg inequality for the convenience of the reader. In what
follows M is an arbitrary continuous one-dimensional martingale on [0, T ] with M0 = 0.

Lemma 2.5.1 (Kazamaki [1994] Theorem 2.2). If
∥∥M∥∥

BMO2
< 1 then for every stopping

time τ valued in [0, T ],

E
[
exp

(
〈M〉T − 〈M〉τ

)∣∣∣Fτ ] ≤ 1
1−

∥∥M∥∥2
BMO2

. (2.5.2)

Define the critical exponent b via

b(M) := sup
{
b ≥ 0

∣∣∣∣ sup
τ

∥∥∥E[ exp
(
b
(
〈M〉T − 〈M〉τ

)) ∣∣∣Fτ ]∥∥∥
L∞

< +∞
}
, (2.5.3)

where the supremum inside the brackets is over all stopping times τ valued in [0, T ].
This inner supremum is called a dynamic exponential moment of 〈M〉. We observe that
if b(M) > 0 for a continuous local martingale M then M is already a true martingale.
A consequence of Lemma 2.5.1 is that a martingale M is a BMO martingale if and only
if b(M) > 0. In addition, the following lemma shows that the supremum in (2.5.3) is
never attained.

Lemma 2.5.2. Let b > 0 and M be a continuous martingale with M0 = 0 and

sup
τ

∥∥∥E[ exp
(
b
(
〈M〉T − 〈M〉τ

)) ∣∣∣Fτ ]∥∥∥
L∞

< +∞, (2.5.4)

where the supremum is over all stopping times τ valued in [0, T ]. Then there exists b̃ > b
such that also

sup
τ

∥∥∥E[ exp
(
b̃
(
〈M〉T − 〈M〉τ

)) ∣∣∣Fτ ]∥∥∥
L∞

< +∞.

Proof. Motivated by Kazamaki [1994] Corollary 3.2 we aim to apply Gehring’s inequality.
To this end, fix a stopping time τ and set Θt := exp

(
b
(
〈M〉t− 〈M〉τ

))
for t ∈ [0, T ]. For

each µ > 1, we then define the stopping time τµ := inf{t ∈ [[τ, T ]] |Θt > µ}. It follows
from µ > 1 and the continuity of Θ that

Θτµ = µ on {τµ < +∞}. (2.5.5)

Since Θ is nondecreasing, we have that {ΘT > µ} = {τµ < +∞} and this event is
Fτµ-measurable. Therefore, we obtain

E
[
1{ΘT>µ}ΘT

]
= E

[
1{ΘT>µ}E[ΘT | Fτµ ]

]
= E

[
1{ΘT>µ}ΘτµE

[
exp

(
b
(
〈M〉T − 〈M〉τµ

))∣∣∣Fτµ]]
≤ cb E

[
1{ΘT>µ}Θτµ

]
,
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where we used (2.5.4) and denoted its left-hand side by cb. Now fix ε ∈ (0, 1). Using
(2.5.5), we derive

E
[
1{ΘT>µ}Θτµ

]
= µε E

[
1{ΘT>µ}Θ

1−ε
τµ

]
≤ µε E

[
1{ΘT>µ}Θ

1−ε
T

]
and conclude that

E
[
1{ΘT>µ}ΘT

]
≤ cb µε E

[
1{ΘT>µ}Θ

1−ε
T

]
.

It follows from the probabilistic version of Gehring’s inequality given in Kazamaki [1994]
Theorem 3.5, however see Remark 2.5.6 below, that there exist r > 1 and K > 0
(depending on ε and cb only) such that

E
[
Θr
T

]
≤ K E[ΘT ]r.

To obtain the conditional version, we take A ∈ Fτ and derive from the same argument
and Jensen’s inequality that

E
[
Θr
T1A

]
≤ K E[ΘT1A]r ≤ K E

[
E[ΘT |Fτ ]r1A

]
so that

E
[
Θr
T |Fτ ] ≤ K E[ΘT |Fτ ]r ≤ crbK P-a.s.

Since this holds for any stopping time τ , we conclude the proof by setting b̃ = rb.

A direct consequence of Lemma 2.5.2 is the following result.

Corollary 2.5.3. For k > 0 and a continuous martingale M , M0 = 0, the following
two items are equivalent,

(i) supτ
∥∥∥E[ exp

(
k
(
〈M〉T − 〈M〉τ

)) ∣∣∣Fτ ]∥∥∥
L∞

< +∞,

(ii) b
(
M
)
> k,

where the supremum in (i) is over all stopping times τ valued in [0, T ].

Boundedness of BSDE Solutions

The John-Nirenberg inequality (2.5.2) can now be used to provide a first sufficient con-
dition for the boundedness of solutions to the BSDE (2.5.1).

Proposition 2.5.4. For p ∈ (0, 1), i.e. q < 0, set

kq := q2 − q

2 − q
√
q2 − q = 1

2
(
q −

√
q2 − q

)2
> 0 (2.5.6)

and consider a martingale λ ·M with ‖λ ·M‖BMO2 < 1/
√
kq. Then we have,
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(i) The reverse Hölder inequality (2.3.1) holds for Y λ := E(−λ · M), i.e. for all
stopping times valued in [0, T ] we have that

E
[(
Y λ
T

/
Y λ
τ

)q ∣∣∣∣Fτ] ≤ crH,p

for some positive constant crH,p depending on p and the BMO2 norm of λ ·M .

(ii) Assumption 1.2.3 holds and hence the solution pair (X̂, Ŷ ) to the primal and dual
problem exists.

(iii) If X̂, Ŷ , Ψ̂, Ẑ and N̂ are as in Theorem 1.3.4 (N̂ not necessarily continuous), then
the triple (Ψ̂, Ẑ, N̂) is the unique solution to the BSDE (2.5.1) with Ψ̂ bounded.

Proof. For item (i) we proceed similarly to the proof of Lemma 1.3.2 by choosing the
sharpest possible version of Hölder’s inequality in the sense that the condition on the
BMO2 norm of λ ·M is the least restrictive; this is how kq is selected. We set β :=
1 − 1

q

√
q2 − q > 1, then with % := β/(β − 1) > 1, the dual number to β, we have that

for any stopping time τ valued in [0, T ],

E
[(
Y λ
T

/
Y λ
τ

)q∣∣∣∣Fτ] ≤ E
[
E(−βqλ ·M)1/β

τ,T exp
(
%q

2 (βq − 1)
∫ T

τ
λT
s d〈M〉sλs

)1/%∣∣∣∣∣Fτ
]

≤ E
[

exp
(
kq

∫ T

τ
λT
s d〈M〉sλs

)∣∣∣∣∣Fτ
]1/%

(2.5.7)

≤
(

1
1− kq‖λ ·M‖2BMO2

)1/%

=: crH,p < +∞,

where we used Hölder’s inequality, the supermartingale property of E(−βqλ ·M), the
definition of the constants and the John-Nirenberg inequality (2.5.2). For item (ii)
we remark that Y λ := E(−λ · M) is a martingale by Kazamaki [1994] Theorem 2.3.
Moreover, using x > 0 and τ ≡ 0 in the previous calculation, we obtain

0 ≤ u(x) = sup
ν∈A

E
[
U
(
Xx,ν
T

)]
≤ E

[
Ũ
(
Y λ
T

)]
+ sup
ν∈A

E
[
Xx,ν
T Y λ

T

]
≤ −1

q
E
[(
Y λ
T

)q]+ x

≤ −1
q
crH,p + x < +∞.

For the last statement we assume that X̂, Ŷ , Ψ̂, Ẑ and N̂ are as in Theorem 1.3.4. Then
(Ψ̂, Ẑ, N̂) is a solution to the BSDE (2.5.1) where the process Ψ̂ is bounded. This is due
to Lemma 2.3.3. Conversely, if the triple (Ψ, Z,N) is a solution to the BSDE (2.5.1)
with Ψ bounded, we can identify it with (Ψ̂, Ẑ, N̂) by Nutz [2011] Corollary 5.6 and the
following lemma, which we apply to M = −λ ·M . Namely, the cited result implies that
if the utility maximization problem is finite for some p̃ ∈ (p, 1) then a solution triple
(Ψ, Z,N) with Ψ bounded coincides with (Ψ̂, Ẑ, N̂).
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Lemma 2.5.5. Let q < 0 and M be a continuous BMO martingale such that the reverse
Hölder inequality (2.3.1) holds for E(M). Then there exists q̃ < q such that E(M)
satisfies the reverse Hölder inequality (2.3.1) with q̃.

Proof. We note that the reverse Hölder inequality Rq for q < 0 is equivalent to the
Muckenhoupt inequality A% with % = 1− 1/q > 1. Indeed, the inequality

E
[(
YT
/
Yτ
)q ∣∣∣∣Fτ] ≤ crH,p

is equivalent to the estimate

E
[(
Yτ
/
YT
) 1
%−1

∣∣∣∣Fτ] ≤ crH,p

where −q = 1
%−1 and τ is any stopping time valued in [0, T ]. This second inequality

is the Muckenhoupt inequality A%, see Kazamaki [1994] Definition 2.2. Therefore, the
statement of Lemma 2.5.5 follows from Kazamaki [1994] Corollary 3.3 which states that
if E(M) satisfies A%, % > 1, then it also satisfies A%−ε for some ε ∈ (0, %− 1).

Remark 2.5.6. We mention that in the formulation of Kazamaki [1994] Theorem 3.5
as well as the proof of Kazamaki [1994] Corollary 3.2 there is a small gap which can be
easily filled. Namely, for a nonnegative random variable U and positive constants K, β
and ε ∈ (0, 1) the author requires Gehring’s condition

E
[
1{U>µ}U

]
≤ Kµε E

[
1{U>βµ}U1−ε] (2.5.8)

to hold for all µ > 0, which cannot be satisfied for U ∈ L1
+(P) unless U = 0, P-a.s. This

is because for U ∈ L1
+(P), U 6= 0, the right-hand side tends to zero as µ ↓ 0 whereas

the left-hand side tends to E[U ] > 0. However, an inspection of the proof of Kazamaki
[1994] Theorem 3.5 reveals that (2.5.8) is needed only for µ > E[U ]. In conclusion,
Kazamaki [1994] Theorem 3.5 should be stated for µ > E[U ] instead of µ > 0. If this
is the case it then can be applied in the proof of Kazamaki [1994] Corollary 3.2, where
for µ > 0 the following stopping time is considered, τµ = inf{t ≥ 0 | E(M)pt > µ} for
a continuous martingale E(M), see also the proof of Lemma 2.5.2. Then, the desired
estimate E(M)pτµ ≤ µ is derived, but the latter holds for µ ≥ 1 only, since for µ ∈ (0, 1)
we obtain that τµ = 0 which in turn gives E(M)pτµ = E(M)p0 = 1 > µ.

Let us now continue our investigation of boundedness of solutions to the BSDE (2.5.1).
Setting kq := 0 for q ∈ [0, 1) and using the convention 1/0 := +∞, then in view of
Theorem 2.3.4, the above Proposition 2.5.4 may be formulated for all q ∈ (−∞, 1).
The following figure depicts the upper bound of ‖λ ·M‖BMO2 as a function of p which

guarantees that the statements of Proposition 2.5.4 hold. In particular, it indicates that
as p → 0+ there are no constraints on ‖λ ·M‖BMO2 . In fact, limp→0+

(
1/
√
kq
)

= +∞
which is consistent with Theorem 2.3.4.
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Figure 2.1: Range in p of BMO2 Norms of λ ·M for which Proposition 2.5.4 Holds.

Before providing a sharp sufficient condition for boundedness of solutions to the BSDE
(2.5.1), we investigate the implications of limp→1−

(
1/
√
kq
)

= 0. Since 1/
√
kq is decreasing

in p we can give the following corollary.

Corollary 2.5.7. Fix a p̃ ∈ (−∞, 1) with dual exponent q̃ = p̃
p̃−1 . Then choosing

k := k(p̃) := 1
/√

kq̃ ∈ (0,+∞]

the following property holds:
If λ ·M is a martingale with ‖λ ·M‖BMO2 < k then for all p ∈ (−∞, p̃] we have:

(i) The solution pair (X̂, Ŷ ) to the primal and dual optimization problem exists.

(ii) If X̂, Ŷ , Ψ̂, Ẑ and N̂ are as in Theorem 1.3.4 (N̂ not necessarily continuous), then
the triple (Ψ̂, Ẑ, N̂) is the unique solution to the BSDE (2.5.1) with Ψ̂ bounded.

Remark 2.5.8. Observe that in Corollary 2.5.7 (ii), for p̃ fixed, Ψ̂ is bounded but the
bound itself may well depend on p ∈ (−∞, p̃], especially as p → −∞. In fact, by Nutz
[2010a] Theorem 6.6 (ii), we have

lim
p→−∞

Ψ̂t = log
(
Lexp
t

)
≤ 0 for all t ∈ [0, T ], P-a.s.

and this limit is from above. Here Lexp is the opportunity process for the exponential
utility maximization problem and is uniformly bounded away from zero if and only if
the density process of the minimal entropy martingale measure QE (assumed to exist)
satisfies the so-called reversed Hölder inequality RL log(L), i.e.

E
[(
Y E
T /Y

E
τ

)
log
(
Y E
T /Y

E
τ

)∣∣∣Fτ ] ≤ crH,−∞

for all stopping times τ valued in [0, T ], a positive constant crH,−∞ and with Y E the
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P-density process of QE . If RL log(L) is satisfied, or we restrict ourselves to p ∈ [p, p̃] for
a fixed p ∈ (−∞, p̃], then the bound on Ψ̂ is uniform in p and depends on p̃ and either
on crH,−∞ or on p.

Let us now investigate the feasibility of a classification of the boundedness (property)
of solutions to the BSDE (2.5.1) given a BMO assumption. We interpret the BSDE as
being parameterized by p ∈ (−∞, 1) and λ, where λ ·M is a BMO martingale. Theorem
2.3.4 shows that if p is restricted to (−∞, 0], Ψ̂ = Ψ̂(p, λ) is a bounded process, with the
boundedness property holding uniformly in (p, λ). Corollary 2.5.7 shows that this is true
for p > 0 if p is restricted to an interval truncated at 1 and the BMO2 norm of λ ·M is
small enough.
We show that one cannot extend this property to hold for the whole interval (−∞, 1)

of values for p. This degeneracy is suggested by the observation that limp̃→1− k(p̃) = 0 in
the above corollary. However, if we drop the assumption that the boundedness property
of Ψ̂ = Ψ̂(p, λ) be uniform in λ, there is an example for which the described extension
is indeed possible. More precisely, we have the following result.

Proposition 2.5.9.

(i) There does not exist a finite k > 0 with the following property:
If (under the Assumption 1.2.3 (ii)) λ ·M is a (local) martingale which satisfies
‖λ ·M‖BMO2 < k then the process Ψ from the unique solution (Ψ, Z,N) to (2.5.1)
with E

(
[(1− q)Z − qλ] ·M +N

)
a martingale is bounded for all p ∈ (−∞, 1).

(ii) However, there does exist an unbounded BMO martingale λ ·M , with unbounded
〈λ ·M〉T , such that for all p ∈ (−∞, 1) the process Ψ from the solution (Ψ, Z,N)
to the BSDE (2.5.1) with E

(
[(1− q)Z − qλ] ·M +N

)
a martingale is bounded.

Proof. For item (i) assume to the contrary that such a k exists and let M = W be a
one-dimensional Brownian motion. Set λt := πα

2
√
T−t 1]]T/2,τ ]], t ∈ [0, T ], where α and

τ are as in the proof of Proposition 2.4.1. This defines a bounded, hence a BMO,
martingale λ ·W . Let us now consider an arbitrary q < −

‖λ·W‖2BMO2
k2 < 0 and define

λ := λ√
−q . Then λ is precisely that of Proposition 2.4.1 for the chosen q and we have

that only unbounded solutions to (2.5.1), which coincides with (1.3.1) here, can (and
do) exist. However, ‖λ ·W‖BMO2 = ‖λ·W‖BMO2√

−q < k by the choice of q < 0, which in turn
corresponds to some p ∈ (0, 1).
For item (ii) we observe that from the estimate (2.5.7) in the proof of Proposition 2.5.4,

we are done if we find an example of an unbounded martingale λ ·M with unbounded
〈λ ·M〉T and b(λ ·M) = +∞, where we use the notation of the critical exponent from
(2.5.3). An explicit martingale with these properties is provided by Example 3.1 of
Schachermayer [1996]. While that example is defined on R+, we can apply an increasing
bijection (e.g. t 7→ ρ(t) := Tt

1+t from [0,∞] to [0, T ]) in order to obtain such a martingale
on [0, T ].
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2.5 Characterization of Boundedness of BSDE Solutions

Using the specific construction in the above proof the boundedness property of a
solution to (2.5.1) as p → 1− can be illustrated as follows; observe that p → 1− is
equivalent to q → −∞. Then, to avoid the degeneracy of the above counterexample, for
all q it must hold that q ≥ −

‖λ·W‖2BMO2
k2 from which it follows that k → 0+. Hence a fixed

k > 0 implying the desired boundedness property of a solution to (2.5.1) cannot exist.
The above item (ii) is not against the intuition that the investor becomes risk neutral
as p→ 1−. It only states that for each p the corresponding Ψ̂ is bounded, but it is not
uniformly bounded in p.
The results above summarize and show the limitations of a BMO characterization of

the boundedness property of the process Ψ from a solution to the BSDE (2.5.1). In
particular, if b denotes the critical exponent from (2.5.3), we see from (2.5.2) and the
estimate in (2.5.7) that if λ ·M is a martingale with

b(λ ·M) > kq

then Proposition 2.5.4 continues to hold. Contrary to this result, the specific example of
a BMO martingale that does not yield a bounded solution to the BSDE in Subsection
2.4.2 exhibits

b(λ ·M) = −q2 < q2 − q

2 − q
√
q2 − q = kq,

recalling that q < 0 and where the first equality can be shown using (2.5.11) below.
Hence the following questions arise,

• Which boundedness properties do hold for solutions to the BSDE (2.5.1) for those
λ with b(λ ·M) ∈

(
− q

2 , kq
)
?

• Can we use the critical exponent b to characterize boundedness of solutions to the
BSDE (2.5.1)?

We answer these questions in the next subsection by showing that the bound kq is indeed
the maximal one which guarantees boundedness in the general case and that it cannot
be improved. In doing so we provide a full description of the boundedness of solutions
to the quadratic BSDE (2.5.1) with λ ·M a BMO martingale in terms of the critical
exponent b.

2.5.2 Boundedness under Dynamic Exponential Moments

We have seen that neither the BMO property of λ · M nor an exponential moments
condition guarantees the boundedness of a BSDE solution. While a counterexample
showed that a simple combination of the two conditions does not suffice, we next see
that a dynamic combination provides the required characterization. In particular, while
the existence of all exponential moments of the mean-variance tradeoff is sufficient for
the existence of a unique solution (Ψ̂, Ẑ, N̂) to (1.3.1) with Ψ̂ ∈ E, the existence of all
dynamic exponential moments is sufficient for the existence of a unique solution with
Ψ̂ bounded, and in general this requirement cannot be dropped. We recall that by
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2 BSDEs in Utility Maximization with BMO Market Price of Risk

Corollary 2.5.3 any requirement on the dynamic exponential moments may be written
in terms of a condition on the critical exponent b.

Theorem 2.5.10. Fix p ∈ (0, 1), i.e. q < 0, and define kq as in (2.5.6). Then,

(i) If λ ·M is a martingale with b(λ ·M) > kq then the solution pair (X̂, Ŷ ) to the
primal and dual problem exists and if Ψ̂, Ẑ and N̂ are as in Theorem 1.3.4 (N̂
not necessarily continuous), then the triple (Ψ̂, Ẑ, N̂) is the unique solution to the
BSDE (2.5.1) with Ψ̂ bounded.

(ii) For a one-dimensional Brownian motion M = W and every k < kq, there exists a
BMO martingale λ ·M with b(λ ·M) > k such that the solutions to the primal and
dual problem exist and the corresponding triple (Ψ̂, Ẑ, N̂ ≡ 0) is a solution to the
BSDE (2.5.1) with Ψ̂ unbounded.

(iii) For a one-dimensional Brownian motion M = W , there exists a BMO martingale
λ ·M with b(λ ·M) = kq such that the solutions to the primal and dual problem
exist and the corresponding triple (Ψ̂, Ẑ, N̂ ≡ 0) is the unique solution to the BSDE
(2.5.1) with Ψ̂ bounded.

We can summarize this result as follows: Item (i) gives a sufficient condition for
boundedness of solutions to the BSDE (2.5.1) in terms of dynamic exponential moments,
which is less restrictive than a bound on the BMO2 norm. Item (ii) shows that this
condition is sharp in the sense that it cannot be improved. In particular, the critical
exponent b from (2.5.3) characterizes the boundedness property of solutions to the BSDE
(2.5.1) that stem from the utility maximization problem. Item (iii) gives information
about the critical point kq of the interval (kq,+∞). It yields that the converse of item
(i) does not hold.
The following Figure 2.2 provides a visualization of this discussion, it depicts the value

kq as a function of p. Let us now discuss it briefly, fix p ∈ (0, 1) and assume that we are
on the critical black line, i.e. we have a specific λ ·M with b(λ ·M) > kq. Note that
the black line is included in the area that ensures boundedness because a finite dynamic
exponential moment of order kq is equivalent to b(λ ·M) > kq by Corollary 2.5.3. Now
choosing q̃ < 0 such that b(λ ·M) > kq̃ > kq we can derive the statement of Theorem
2.5.10 (i) for the corresponding p̃ > p. However, p̃ depends on the specific choice of λ
and therefore it is not possible to shift the whole black line uniformly for all processes
λ.
A main difference between Figure 2.1 and Figure 2.2 (apart from the fact that Figure

2.1 depicts only a sufficient condition) is that in the former the boundary line is not
included in the area that ensures boundedness. For Figure 2.1, we fix again p ∈ (0, 1)
and consider all λ ·M whose BMO2 norm is bounded by some c < 1/

√
kq. In this case,

the boundedness result holds for some p̃ > p (depending on c), uniformly for all λ. Hence
the line determined by c can be moved slightly to the right which is in line with the fact
that the grey area in Figure 2.1 is open.
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Figure 2.2: Dynamic Exponential Moments of 〈λ ·M〉 Sharply Sufficient for the Bounded-
ness of Ψ̂.

Items (ii) and (iii) of the above theorem rely on the construction of a specific example
which we first provide in the following auxiliary lemma.

Lemma 2.5.11. Let W be a one-dimensional Brownian motion. Then, for every b ∈ R,
there exists a predictable process λ̃ such that λ̃ ·W is a BMO martingale and

sup
τ stopping time
valued in [0,T]

∥∥∥∥EP̃

[
exp

(
c2
∫ T

τ
λ̃2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞

{
< +∞ if |c| < 1,
= +∞ if |c| ≥ 1.

(2.5.9)

where P̃ is the probability measure given by dP̃
dP := E

(
−bλ̃ ·W

)
T
.

Proof. We proceed similarly to the example from Subsection 2.4.2 and define for t ∈
[0, T ],

λ̃t := πα√
8(T − t)

1]]
T/2,τ̃

]](t, ·), (2.5.10)

where α is as in the proof of Proposition 2.4.1 and where τ̃ is now the stopping time

τ̃ := inf
{
t >

T

2

∣∣∣∣∣
∣∣∣∣∣
∫ t

T/2

1√
T − s

(
dWs + bπα√

8(T − s)
ds

)∣∣∣∣∣ ≥ 1
}
,

for which again P(T/2 < τ̃ < T ) = 1. Then
∫ ·

0 λ̃t
(
dWt + bλ̃t dt

)
is bounded by π√

8 . If
b < 0 we derive from

λ̃ ·W =
∫ ·

0
λ̃t
(
dWt + bλ̃t dt

)
− b

∫ ·
0
λ̃2
t dt ≥ −

π√
8

that the continuous local martingale λ̃ ·W is bounded from below, hence a supermartin-
gale. It then follows from the Optional Sampling Theorem, see Karatzas and Shreve
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[1991] Theorem 1.3.22, that for any stopping time τ valued in [0, T ],

E
[∫ T

τ
λ̃2
t dt

∣∣∣∣∣Fτ
]

= 1
b
E
[∫ T

τ
λ̃t(dWt + bλ̃t dt)

∣∣∣∣∣Fτ
]
− 1
b
E
[∫ T

τ
λ̃t dWt

∣∣∣∣∣Fτ
]
≤ π√

2 |b|
.

In particular, λ̃ · W is a BMO martingale. A similar reasoning applies if b > 0 and
the claim is immediate for b = 0. We hence may consider the measure P̃ given by
dP̃
dP := E

(
−bλ̃ ·W

)
T
under which W̃ := W + b

∫ ·
0 λ̃t dt is a Brownian motion. Now, for a

stopping time τ valued in [T/2, T ] and for u ∈ R and v ∈ [0, T ], we set

τ̃u,v(τ) : = v + inf
{
t ≥ 0

∣∣∣∣∣
∣∣∣∣∣u+

∫ t

0

1√
T − s− v

dW̃τ+s

∣∣∣∣∣ ≥ 1
}

= inf
{
t ≥ v

∣∣∣∣∣
∣∣∣∣∣u+

∫ t

v

1√
T − s

dW̃τ+s−v

∣∣∣∣∣ ≥ 1
}
,

where we extend the P̃-Brownian motion W̃ to [0, 2T ].
Let |c| < 1. Since λ̃ vanishes on [0, T/2] and exp

(
c2 ∫ T

τ λ̃2
t dt

)
= 1 on {τ = T}, for the

first assertion of (2.5.9), it is enough to consider stopping times τ valued in (T/2, T ).
Then, using the Fτ -measurable random variable U :=

∫ τ
T/2

1√
T−s dW̃s we have that τ̃ ≤

τ̃U,τ (τ) P-a.s. Moreover, τ̃u,v(τ) is P̃-independent of Fτ since it is σ
(
W̃τ+s − W̃τ , s ≥ 0

)
-

measurable. We thus obtain

EP̃

[
exp

(
c2
∫ T

τ
λ̃2
t dt

)∣∣∣∣Fτ] ≤ EP̃

[
exp

(
c2π2

8

∫ τ̃
U,τ

(τ)

τ

1
T − t

dt

)∣∣∣∣Fτ] (2.5.11)

= EP̃

[
exp

(
c2π2

8

∫ τ̃u,v(τ)

v

1
T − t

dt

)]∣∣∣∣∣
u=U,v=τ

= 1{|U |≥1} + cos(cπU/2)
cos(cπ/2) 1{|U |<1} ≤

1
cos(cπ/2) < +∞,

where we applied Kazamaki [1994] Lemma 1.3 in a similar way as in the proof of Frei and
dos Reis [2011] Lemma A.1 and used that τ̃u,v(τ) and τ̃u,v(0) have the same distribution
under P̃. This gives an upper bound for (2.5.9) in the case |c| < 1.
If |c| ≥ 1, we note that from τ̃ = τ̃0,T/2(T/2) P-a.s. and the definition of α,

EP̃

[
exp

(
c2
∫ T

T/2
λ̃2
t dt

)∣∣∣∣FT/2] ≥ EP̃

[
exp

(
π2α2

8

∫ τ̃

T/2

1
T − t

dt

)∣∣∣∣FT/2] = 1
cos(πα/2) ,

(2.5.12)
which is unbounded and this concludes the proof of Lemma 2.5.11.

We are now ready to provide the proof of Theorem 2.5.10.

Proof of Theorem 2.5.10. Item (i) follows from the proof of Proposition 2.5.4, see the
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estimate in (2.5.7) and recall Corollary 2.5.3.

For item (ii) observe that since

k < kq := q2 − q

2 − q
√
q2 − q,

there exists an a > 0 such that

k < q2 − q

2 − q
√
q2 − q − 2a2. (2.5.13)

Choose such an a and then set b := 1
a (q−

√
q2 − q − 2a2) < q

a < 0. We mention that the
need for two parameters a and b stems from the fact that we have two conditions which
must both be satisfied, the first concerns the finiteness of exponential moments and the
second relates to the (un)boundedness of Ψ̂. We then define λ̃ and P̃ as in Lemma 2.5.11
and observe that contrary to the previous examples the measure change is now part of
the construction. Finally, we set λ := 1

a λ̃ and deduce for t ∈ [0, T ] that,

E
[
E(−λ ·W )qt,T

∣∣Ft] = EP̃

[
exp

((
b− q

a

)∫ T

t
λ̃s dW̃s +

(
qb

a
− q

2a2 −
b2

2

)∫ T

t
λ̃2
s ds

) ∣∣∣∣Ft]
≤ e

(q/a−b)π√
2 EP̃

[
exp

(∫ T
t λ̃2

s ds
)∣∣∣Ft],

≥ e
(b−q/a)π√

2 EP̃

[
exp

(∫ T
t λ̃2

s ds
)∣∣∣Ft],

where we used the boundedness of λ̃ · W̃ and qb
a −

q
2a2 − b2

2 = 1, together with b <
q/a. By the inequality (2.5.12), this shows that E

[
E(−λ ·W )qT/2,T

∣∣FT/2] is unbounded,
whereas E

[
E(−λ ·W )qT

]
< +∞ since EP̃

[
exp

(∫ T
0 λ̃2

t dt
)]

= 2, see the proof of Proposition
2.4.1. Proposition 2.2.1 now yields the existence of a solution (Ψ̂, Ẑ, N̂ ≡ 0) and the
identification with the primal and dual problems. The conclusion is that Ψ̂ is unbounded.
Moreover, using the boundedness of λ̃ · W̃ again, we have

sup
τ

∥∥∥∥E[exp
(
k

∫ T

τ
λ2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞
≤ e

|b|π√
2 sup

τ

∥∥∥∥EP̃

[
exp

(∫ T

τ

(
k

a2 −
b2

2

)
λ̃2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞
.

This is finite by (2.5.9) since the relation k
a2 − b2

2 < 1 is equivalent to

k < a2 + a2b2

2 = qab− q

2 = q2 − q

2 − q
√
q2 − q − 2a2,

which is inequality (2.5.13).

The proof of item (iii) is similar to that of item (ii). We use the same definitions
subject to the modification that now we must choose a > 0 and b ∈ R such that

qb

a
− q

2a2 −
b2

2 < 1 and kq
a2 −

b2

2 = 1.
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This choice ensures the existence of the optimizers and guarantees the boundedness of
Ψ̂, again thanks to Proposition 2.2.1 and (2.5.9). Note that now a dynamic exponential
moment of order kq will not exist.
The above equation is satisfied for b :=

√
2kq
a2 − 2 > 0 if a2 < kq, and then the

inequality reads as q
a

√
2kq
a2 − 2− q

2a2 − kq
a2 < 0. This last relation holds for any choice of

a ∈
(
0,
√
kq
)
since we have kq > − q

2 > 0.

A consequence of Theorem 2.5.10 is the following result.

Corollary 2.5.12.

(i) If λ ·M is a martingale that satisfies b(λ ·M) = +∞, then for all p ∈ (0, 1) the
solution pair (X̂, Ŷ ) to the primal and dual problem exists. If Ψ̂, Ẑ and N̂ are as
in Theorem 1.3.4 (N̂ not necessarily continuous), then the triple (Ψ̂, Ẑ, N̂) is the
unique solution to the BSDE (2.5.1) with Ψ̂ bounded.

(ii) The converse statement, however, is not true. More precisely, if λ ·M is a BMO
martingale such that for all p ∈ (0, 1) the solutions to the primal and dual problem
exist with Ψ̂ bounded, the critical exponent need not satisfy b(λ ·M) = +∞.

Proof. The first part is an immediate consequence of item (i) of Theorem 2.5.10. For the
second part, we proceed similarly to the proof of item (ii) of the Theorem 2.5.10. Taking
a one-dimensional Brownian motion M = W , we define λ via (2.5.10) with b = 1/2 and
λ = λ̃. By construction,

∫ ·
0 λt

(
dWt + λt

2 dt
)
is bounded by π√

8 so that for q < 0

sup
τ stopping time
valued in [0,T]

∥∥∥∥E[exp
(
−q
∫ T

τ
λt dWt −

q

2

∫ T

τ
λ2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞
≤ e

−qπ√
2 < +∞.

Hence, for all p ∈ (0, 1), the solutions to the primal and dual problem exist and the
corresponding triple (Ψ̂, Ẑ, N̂ ≡ 0) is the unique solution to the BSDE (2.5.1) with Ψ̂
bounded. For the estimate on the process 〈λ ·W 〉 we have

sup
τ

∥∥∥∥E[exp
(
k

∫ T

τ
λ2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞
≥ e

−π√
8 sup

τ

∥∥∥∥EP̃

[
exp

((
k− 1

8

)∫ T

τ
λ2
t dt

)∣∣∣∣Fτ]∥∥∥∥
L∞
.

The right hand side is +∞ when k − 1
8 ≥ 1 by (2.5.9), this implies b(λ ·W ) ≤ 9

8 < +∞(
actually, b(λ ·W ) = 9

8
)
despite the fact that Ψ̂ is bounded for arbitrary p ∈ (0, 1).

Remark 2.5.13. Corollary 6.7 is based on the fact that b(λ ·M) = +∞ is stronger
than requiring that E(−λ ·M) to satisfy the reverse Hölder inequality Rq for all q <
0. However, there exists an equivalence between b(λ ·M) = +∞ and a strengthened
reverse Hölder condition. It follows from Theorem 4.2 of Delbaen and Tang [2010] that
b(λ ·M) = +∞ holds if and only if for some (or equivalently, all) % ∈ [1,+∞) and all
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a ∈ C there exists c%,a > 0 such that

E
[∣∣∣∣E(aλ ·M)σ
E(aλ ·M)τ

∣∣∣∣%
∣∣∣∣∣Fτ

]
≤ c%,a

for all stopping times τ ≤ σ valued in [0, T ].
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3 Quadratic Semimartingale BSDEs under
an Exponential Moments Condition

3.1 Introduction
In the present chapter we provide all the background material that is needed for a
thorough study of the utility maximization problem under exponential moments via
BSDE methods. We recall that in a (one-dimensional) Brownian framework BSDEs are
usually written

dΨt = Zt dWt − F (t,Ψt, Zt) dt, ΨT = ξ, (3.1.1)

where ξ is an FT -measurable random variable, the terminal value, and F is the so-called
driver or generator. Solving such an equation consists of finding a pair of adapted
processes (Ψ, Z) such that the integrated version of (3.1.1) holds. The presence of the
control process Z stems from the requirement of adaptedness for Ψ together with the
fact that Ψ must be driven into the random variable ξ at time T . One may think of Z
as arising from the martingale representation theorem, see the introduction for more on
this topic.
In the semimartingale framework where the main source of randomness is encoded in

a given (continuous) local martingale M on a filtration (Ft)t∈[0,T ] that is not necessarily
generated by M , we have to add an extra orthogonal component N . The corresponding
BSDE then takes the form

dΨt = Zt dMt + dNt − f(t,Ψt, Zt) d〈M〉t − gt d〈N〉t, ΨT = ξ, (3.1.2)

and solving (3.1.2) now corresponds to finding an adapted triple (Ψ, Z,N) of processes
that satisfies the integrated version of (3.1.2), where N is a (continuous) local martingale
orthogonal to M .
As we already know, BSDEs of type (3.1.1) and (3.1.2) have found many fields of

application in mathematical finance and the reader is directed to El Karoui et al. [1997]
for a first survey. Moreover, we find a BSDE derived in Hu et al. [2005] for the value
process of the utility maximization problem, being in line with work by Rouge and
El Karoui [2000] as well as Sekine [2006]. In Mania and Schweizer [2005] the authors
used a BSDE to describe the dynamic indifference price for exponential utility and their
approach was extended to robust utility in Bordigoni et al. [2007] and to an infinite
time horizon in Hu and Schweizer [2009]. We also mention Becherer [2006] for further
extensions to BSDEs with jumps and Mania and Tevzadze [2008] to backward stochastic
partial differential equations.
With regards to the theory of BSDEs, existence and uniqueness results were first
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provided in a Brownian setting by Pardoux and Peng [1990] under Lipschitz conditions.
They were extended by Lepeltier and San Martín [1997] to continuous drivers with linear
growth and by Kobylanski [2000] to generators which are quadratic as a function of the
control variable Z. Corresponding results for the semimartingale case may be found
in Morlais [2009] and Tevzadze [2008]. In addition some stability results for quadratic
BSDEs are also found in the recent articles by Frei [2009] and Barrieu and El Karoui
[2011]. In the situation when the generator has superquadratic growth, Delbaen et al.
[2010] show that such BSDEs are essentially ill-posed.
A strong requirement present in the articles Kobylanski [2000], Morlais [2009] and

Tevzadze [2008] is that the terminal condition be bounded. In a Brownian setting
Briand and Hu [2006, 2008] have replaced this by the assumption that it need only
have exponential moments but in addition the driver is convex in the Z variable. More
recently, Delbaen et al. [2011] show that one can reduce the order of exponential moments
required.
The present chapter has two main contributions, the first is to extend the existence,

uniqueness and stability theorems of Briand and Hu [2008] and Morlais [2009] to the
unbounded continuous semimartingale case. The motivation is that having results in
greater generality increases the range of possible applications for BSDEs. The main
practical application for the results derived in this chapter is the utility maximization
problem with an unbounded mean-variance tradeoff though. This provides a second, if
not the more important, motivation for the present work.
In order to prove the respective results in the unbounded semimartingale framework

technical difficulties related to an a priori estimate must be overcome. This requires
an additional assumption when compared to Briand and Hu [2008] and Morlais [2009].
As a byproduct of establishing our results we are able to show via an example that
the stability theorem as stated in Briand and Hu [2008] Proposition 7 needs a minor
amendment to the mode of convergence assumed on the drivers and we include the
appropriate formulation.
Our second contribution is to address the question of measure change. We know

from Lemma 2.3.1 that when the generator has quadratic growth in Z then the solution
processes Ψ is bounded if and only if the martingale part Z ·M+N is a BMO martingale.
In the present setting, where Ψ is assumed to satisfy an exponential moments condition
only, such a correspondence is lost. However, we are able to show that whilst Z ·M +N
need not be a BMO martingale, see Chapter 2 for further discussion and some examples,
the stochastic exponential E

(
% (Z ·M+N)

)
is still a true martingale for |%| large enough.

It is thus not only mathematically interesting to be able to describe the properties of
the martingale part of the BSDE but also relevant for applications. For instance, the
above result can be used to extend the BSDE approaches of Hu et al. [2005] and Morlais
[2009] to utility maximization, see Chapter 5 for further details as well as Heyne [2010]
for some explicit stochastic volatility models. Moreover such a theorem may be used
in the partial equilibrium framework of Horst et al. [2010] where the market price of
external risk is given by equilibrium considerations and is typically unbounded.
The chapter is based on the working paper Mocha and Westray [2011a] and organized

as follows. In the next section we lay out the notation and the assumptions and state the

68



3.2 Framework and Statement of Results

main results. The subsequent sections contain the proofs. Section 3.3 gives the a pri-
ori estimates together with some remarks on the necessity of an additional assumption,
Section 3.4 deals with existence and Section 3.5 includes the comparison and uniqueness
results. In Section 3.6 we prove the stability property as well as providing an appro-
priate counterexample. In Section 3.7, we turn our attention to the measure change
problem and finally, in Section 3.8, we point at interesting applications of our results
to constrained utility maximization and partial equilibrium models. The constrained
portfolio choice problem will then be the main concern of the Chapters 4 and 5.

3.2 Framework and Statement of Results
We work on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual condi-
tions of right-continuity and completeness. We also assume that F0 is the completion
of the trivial σ-algebra. The time horizon T is a finite number in (0,∞) and all semi-
martingales are considered equal to their càdlàg modification.

Notation and Problem Formulation

Throughout this chapter M = (M1, . . . ,Md)T stands for a continuous d-dimensional
local martingale, where T denotes transposition. We refer the reader to Jacod and
Shiryaev [2003] and Protter [2005] for further details on the general theory of stochastic
integration.
The objects of study in the present chapter will be continuous semimartingale BSDEs

considered on [0, T ]. In the d-dimensional case such a BSDE may be written

dΨt = ZT
t dMt + dNt − 1T d〈M〉tf(t,Ψt, Zt)− gt d〈N〉t, ΨT = ξ. (3.2.1)

Here ξ is an R-valued FT -measurable random variable and f and g are random pre-
dictable functions [0, T ] × Ω × R × Rd → Rd and [0, T ] × Ω → R, respectively. We set
1 := (1, . . . , 1)T ∈ Rd. Moreover, N is a continuous local martingale that is orthogonal
to M , i.e. 〈M i, N〉 ≡ 0 for all i = 1, . . . , d.
The format in which the BSDE (3.2.1) encodes its finite variation parts is not so

tractable from the point of view of analysis. Therefore we write semimartingale BSDEs
by factorizing the matrix-valued process 〈M〉 = 〈M i,M j〉i,j=1,...,d. This separates its
matrix property from its nature as measure.
For i, j ∈ {1, . . . , d} we may write 〈M i,M j〉 = Cij · A where Cij are the components

of a predictable process C valued in the space of symmetric positive semidefinite d × d
matrices and A is a predictable increasing process. There are many such factorizations
(see Jacod and Shiryaev [2003] Section III.4a). We may choose A := arctan

(∑d
i=1

〈
M i
〉)

so that A is uniformly bounded byKA = π/2 and derive the absolute continuity of all the
〈M i,M j〉 with respect to A from the Kunita-Watanabe inequality. This together with
the Radon-Nikodým theorem provides C. Furthermore, we can factorize C as C = BTB
for a predictable process B valued in the space of d × d matrices. We note that all
the results below do not rely on the specific choice of A, but only on its boundedness.
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In particular, if M = W is a d-dimensional Brownian motion we may choose At = t,
t ∈ [0, T ], and B the identity matrix. Then A is bounded by KA = T.
We recall that P denotes the predictable σ-algebra on [0, T ]× Ω and that µA stands

for the Doléans measure, defined by

µA(E) := E
[∫ T

0
1E(t) dAt

]
, E ∈ P.

Given the above discussion the equation (3.2.1) may be rewritten as

dΨt = ZT
t dMt + dNt − F (t,Ψt, Zt) dAt − gt d〈N〉t, ΨT = ξ, (3.2.2)

where again ξ is an R-valued FT -measurable random variable, the terminal condition,
and F and g are random predictable functions [0, T ]×Ω×R×Rd → R and [0, T ]×Ω→ R
respectively, called generators or drivers. This formulation of the BSDE is very flexible,
allowing for various applications and being amenable to analysis. Starting with (3.2.1)
and setting F (t, ψ, z) := 1TCtf(t, ψ, z) = 1TBT

tBtf(t, ψ, z) we get (3.2.2). A reversion of
this procedure is not relevant in our applications as we will see.
Under boundedness assumptions, existence of solutions to (3.2.2) is provided in Mor-

lais [2009] via an exponential transformation that makes the d〈N〉 term disappear. A
necessary condition for this kind of transformation to work properly is dg = 0. In the
sequel we thus consider the above BSDE to be given in the form

dΨt = ZT
t dMt + dNt − F (t,Ψt, Zt) dAt −

1
2 d〈N〉t, ΨT = ξ, (3.2.3)

except in specific situations where a solution is assumed to exist.

Definition 3.2.1. A solution to the BSDE (3.2.2), or (3.2.3), is a triple (Ψ, Z,N) of
processes valued in R× Rd × R satisfying (3.2.2), or (3.2.3), P-a.s. such that:

(i) The function t 7→ Ψt is continuous P-a.s.

(ii) The process Z is predictable andM -integrable, in particular
∫ T

0 ZT
t d〈M〉tZt < +∞

P-a.s.

(iii) The local martingale N is continuous and orthogonal to each component ofM , i.e.
〈M i, N〉 ≡ 0 for all i = 1, . . . , d.

(iv) We have that P-a.s. ∫ T

0
|F (t,Ψt, Zt)| dAt + 〈N〉T < +∞.

As in the introduction we call Z ·M +N the martingale part of a solution.

Our goal is now to address the questions under which assumptions the BSDE (3.2.3)
allows for a solution, under which conditions and in which spaces uniqueness and stability
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of solutions to (3.2.3) hold and finally to derive the so-called measure change property
of appropriate solutions to (3.2.3).

The Model Assumptions
In what follows we collect together the assumptions that allow for all the assertions of
this chapter to hold simultaneously. However we want to point out that not all of our
results require that every item of Assumption 3.2.2 be satisfied, as will be indicated in
appropriate remarks.

Assumption 3.2.2. There exist nonnegative constants β and β, positive numbers βf
and γ ≥ max(1, β) together with a predictable M -integrable Rd-valued process λ so that
writing

α := ‖Bλ‖2 and |α|1 :=
∫ T

0
αt dAt =

∫ T

0
λT
t d〈M〉tλt

we have P-a.s.

(i) The random variable |ξ|+ |α|1 has exponential moments of all orders, i.e. for all
% > 1

E
[
exp

(
%
[
|ξ|+ |α|1

])]
< +∞. (3.2.4)

(ii) For all t ∈ [0, T ] the driver (ψ, z) 7→ F (t, ψ, z) is continuous in (ψ, z), convex in z
and Lipschitz continuous in ψ with Lipschitz constant β, i.e. for all ψ1, ψ2 and z
we have

|F (t, ψ1, z)− F (t, ψ2, z)| ≤ β |ψ1 − ψ2|. (3.2.5)

(iii) The generator F satisfies a quadratic growth condition in z, i.e. for all t, ψ and z
we have

|F (t, ψ, z)| ≤ αt + αtβ|ψ|+
γ

2‖Btz‖
2. (3.2.6)

(iv) The function F is locally Lipschitz in z, i.e. for all t, ψ, z1 and z2

|F (t, ψ, z1)− F (t, ψ, z2)| ≤ βf
(
‖Btλt‖+ ‖Btz1‖+ ‖Btz2‖

)
‖Bt(z1 − z2)‖.

(v) The constant β in (iii) equals zero and then we set cA := 0. Alternatively, β > 0,
but additionally assume that for all t, ψ and z we have

|F (t, ψ, z)− F (t, 0, z)| ≤ β |ψ| and At ≤ cA · t

for a positive constant cA.

If this assumption is satisfied we refer to (3.2.3) as BSDE(F, ξ) with the set of parameters
(α, β, β, βf , γ).

Remark 3.2.3. The above items (i)-(iv) correspond to the assumptions made in Briand
and Hu [2008] and Morlais [2009]. In particular, the BSDEs under consideration are of
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quadratic type (in the control variable z) and of Lipschitz type in ψ. Item (v) is new
and arises from the fact that the methods used in Morlais [2009] to derive an a priori
estimate may no longer be directly applied so that an additional assumption is required.
We elaborate further on this topic in Section 3.3. Observe that in the key application of
power utility maximization the associated driver is independent of ψ and hence β = 0
applies. In particular, this shows that we can indeed allow for more general models;
in contrast to Hu et al. [2005] and Morlais [2009] we need not assume that the mean-
variance tradeoff of the underlying market be bounded.

Notice that items (ii) and (iii) from above provide

|F (t, ψ, z)| ≤ αt + β|ψ|+ γ

2 ‖Btz‖
2, (3.2.7)

for all t, ψ and z, P-a.s. This is an inequality which does not involve α in the |ψ| term on
the right hand side and which is used repeatedly throughout the proofs. We also define
the constant

β∗ := cA · β. (3.2.8)

Statement of the Main Results
Before giving the main results of the chapter let us introduce some notation. For % > 0,
S% denotes the set of R-valued, adapted and continuous processes Υ on [0, T ] such that

E
[

sup
0≤t≤T

|Υt|%
]
< +∞.

The space S∞ consists of the continuous bounded processes. An R-valued, adapted and
continuous process Υ belongs to E if the random variable

Υ∗ := sup
t∈[0,T ]

|Υt|

has exponential moments of all orders. We also recall that Υ is called of class D if the
family {Υτ | τ ∈ [0, T ] stopping time} is uniformly integrable. The set of (equivalence
classes of) Rd-valued predictable processes Z on [0, T ]× Ω satisfying

E

(∫ T

0
ZT
t d〈M〉tZt

)%/2 < +∞

is denoted by M%. Finally,M% stands for the set of R-valued continuous local martin-
gales N on [0, T ], such that

‖N‖M% := E
[
〈N〉%/2T

]
< +∞.

In order to deduce the existence of solutions to BSDEs, which we assume to be continuous
by definition, the following assumption is needed.
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Assumption 3.2.4. The filtration (Ft)t∈[0,T ] is a continuous filtration in the sense that
all local (Ft)t∈[0,T ]-martingales are continuous.

The following four theorems constitute the main results of the present chapter. We
mention that only the existence result requires the assumption of the continuity of the
filtration. We also recall that their statements may hold under weaker conditions which
we provide in the subsequent detailed analysis.

Theorem 3.2.5 (Existence). If Assumptions 3.2.2 and 3.2.4 hold there exists a solution
(Ψ, Z,N) to the BSDE (3.2.3) such that Ψ ∈ E and Z ·M +N ∈M% for all % > 0.

Theorem 3.2.6 (Uniqueness). Suppose that Assumption 3.2.2 holds. Then any two
solutions (Ψ, Z,N) and (Ψ′, Z ′, N ′) in E ×M2 ×M2 to the BSDE (3.2.3) coincide in
the sense that Ψ and Ψ′, Z ·M and Z ′ ·M , and N and N ′ are indistinguishable.

Theorem 3.2.7 (Stability). Consider a family of BSDEs(Fn, ξn) indexed by the ex-
tended natural numbers n ≥ 0 for which Assumption 3.2.2 holds true with parameters
(αn, βn, β, βf , γ). Assume that the exponential moments assumption (3.2.4) holds uni-
formly in n, i.e. for all % > 1,

sup
n≥0

E
[
e% (|ξn|+|αn|1)

]
< +∞.

If for n ≥ 0 (Ψn, Zn, Nn) is the solution in E×M2 ×M2 to the BSDE(Fn, ξn) and if

|ξn − ξ0|+
∫ T

0

∣∣Fn − F 0∣∣ (s,Ψ0
s, Z

0
s ) dAs −→ 0 in probability, as n→ +∞, (3.2.9)

then for each % > 0 as n→ +∞

E
[(

exp
(

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣))% ] −→ 1 and Zn ·M +Nn −→ Z0 ·M +N0 inM%.

Theorem 3.2.8 (Exponential Martingales). Suppose that Assumption 3.2.2 holds, let
|%| > γ/2 and let (Ψ, Z,N) ∈ E ×M2 ×M2 be a solution to the BSDE (3.2.3). Then
E
(
% (Z ·M +N)

)
is a true martingale on [0, T ].

Remark 3.2.9. The preceding theorems generalize the results of Briand and Hu [2008]
and Morlais [2009]. For their proofs we combine the localization and θ-technique from
Briand and Hu [2008] together with the existence and stability results for BSDEs with
bounded solutions found in Morlais [2009]. Similar ideas are used in Hu and Schweizer
[2009] on a specific quadratic BSDE arising in a robust utility maximization problem
where the authors also investigate the measure change problem for their special BSDE,
however here we pursue the general theory. As we know from Proposition 2.2.2, if
|ξ|+ |α|1 does not have sufficiently large exponential moments then the BSDE may fail
to have a solution. In particular, we here present all the theoretical background for
the study of power utility maximization under exponential moments, see the remaining
chapters, as well as of partial equilibrium, see Horst et al. [2010].
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3.3 A Priori Estimates

In this section we show that, under appropriate conditions, solutions to the BSDE (3.2.2)
satisfy some a priori norm bounds. After giving an important result used in the sub-
sequent sections we motivate Assumption 3.2.2 (v) by showing that without such an
assumption the method utilized in Morlais [2009] for the purpose of deriving appropri-
ate a priori bounds fails in the present unbounded case.
Let (Ψ, Z,N) be a solution to (3.2.2), suppose that Assumption 3.2.2 (iii) and (v) hold

and that g is uniformly bounded by γ/2. Recall β∗ from (3.2.8), fix s ∈ [0, T ] and set,
for t ∈ [s, T ],

H̃t := exp
(
γeβ

∗(t−s)|Ψt|+ γ

∫ t

s
eβ
∗(r−s) d〈λ ·M〉r

)
.

where we have written 〈λ ·M〉t :=
∫ t

0 λ
T
r d〈M〉rλr =

∫ t
0 αr dAr. First we show that H̃ is,

up to integrability, a local submartingale.
From Tanaka’s formula,

d|Ψt| = sgn(Ψt)(ZT
t dMt + dNt) − sgn(Ψt)

(
F (t,Ψt, Zt) dAt + gt d〈N〉t

)
+ d`t, (3.3.1)

where ` is the local time of Ψ at 0. Itô’s formula then yields

dH̃t = γH̃t e
β∗(t−s)

[
sgn(Ψt)(ZT

t dMt + dNt) + β|Ψt|(cA dt− dAt) (3.3.2)

+
(
− sgn(Ψt)F (t,Ψt, Zt) + αt + β|Ψt|+

γ

2 e
β∗(t−s)‖BtZt‖2

)
dAt

+
(
− sgn(Ψt) gt + γ

2 e
β∗(t−s)

)
d〈N〉t + d`t

]
.

An inspection of the finite variation parts shows that under the present assumptions they
are nonnegative. In particular, the semimartingale H̃ is a local submartingale, which
leads to the following result.

Proposition 3.3.1 (A Priori Estimate). Suppose Assumption 3.2.2 (iii) and (v) hold
and assume that the function g is uniformly bounded by γ/2, P-a.s. Let (Ψ, Z,N) be a
solution to the BSDE (3.2.2) and let the family(

exp
(
γeβ

∗T |Ψt|+ γ

∫ T

0
eβ
∗r d〈λ ·M〉r

))
t∈[0,T ]

be of class D. Then P-a.s. for all s ∈ [0, T ],

|Ψs| ≤
1
γ

logE
[
exp

(
γeβ

∗(T−s)|ξ|+ γ

∫ T

s
eβ
∗(r−s) d〈λ ·M〉r

)∣∣∣∣∣Fs
]
. (3.3.3)
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Proof. Fix s ∈ [0, T ] and set H̃ as above. Since H̃ is a local submartingale there exists
a sequence of stopping times (τn)n≥1 valued in [s, T ], which converges P-a.s. to T , such
that H̃τn is a submartingale for each n ≥ 1. We then derive

exp(γ|Ψs|) ≤ E[H̃T∧τn | Fs] ≤ E
[
exp

(
γeβ

∗(T−s)|ΨT∧τn |+ γ

∫ T

s
eβ
∗(r−s) d〈λ ·M〉r

)∣∣∣∣∣Fs
]
.

Letting n→ +∞ the claim follows from the class D assumption.

On the Additional Assumption 3.2.2 (v)

Proposition 3.3.1 provides the appropriate a priori estimate, indeed suppose that |ξ| and
|α|1 are bounded random variables and (Ψ, Z,N) is a solution to (3.2.3). If the current
assumptions hold and exp(γeβ∗T |Ψ|) is of class D, then Ψ satisfies

|Ψ| ≤
∥∥∥eβ∗T (|ξ|+ |α|1)

∥∥∥
∞
. (3.3.4)

Comparing with (3.3.3) this indicates that the inclusion of Assumption 3.2.2 (v) allows
us to prove similar estimates to the bounded case which enables us to establish existence
for the BSDE (3.2.3) when |ξ|+ |α|1 has exponential moments of all orders, to be more
precise, an order of at least γeβ∗T .
Contrary to the above let us investigate the method utilized in Morlais [2009] under

Assumption 3.2.2 (iii) only, supposing that g is bounded by γ/2. We set

Ht := exp
(
γeβ〈λ·M〉s,t |Ψt|+ γ

∫ t

s
eβ〈λ·M〉s,r d〈λ ·M〉r

)
, (3.3.5)

where 〈λ ·M〉s,t := 〈λ ·M〉t − 〈λ ·M〉s =
∫ t
s αr dAr. We derive from Itô’s formula that

dHt = γHt e
β〈λ·M〉s,t

[
sgn(Ψt)(ZT

t dMt + dNt)

+
(
− sgn(Ψt)F (t,Ψt, Zt) + αt + αtβ|Ψt|+

γ

2 e
β〈λ·M〉s,t‖BtZt‖2

)
dAt

+
(
− sgn(Ψt) gt + γ

2 e
β〈λ·M〉s,t

)
d〈N〉t + d`t

]
.

Once again, the finite variation parts are nonnegative. We conclude in the same way as
for Proposition 3.3.1 that the corresponding a priori result holds for H as well. To sum
up, we have that under a similar class D assumption, now on

exp
(
γeβ〈λ·M〉T |Ψ|+ γ

∫ T

0
eβ〈λ·M〉r d〈λ ·M〉r

)
,
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P-a.s. for all s ∈ [0, T ],

|Ψs| ≤
1
γ

logE
[
exp

(
γeβ〈λ·M〉s,T |ξ|+ γ

∫ T

s
eβ〈λ·M〉s,r d〈λ ·M〉r

)∣∣∣∣∣Fs
]
. (3.3.6)

If β = 0, then H̃ from above equals H and there is no difference with the statement
of Proposition 3.3.1. However when β > 0 the estimate (3.3.6) is not sufficient for our
purposes. We aim at using the a priori estimate to show the existence of solutions to
the BSDE (3.2.3) in E×M2×M2 using an appropriate approximating procedure. If |ξ|
and |α|1 are bounded random variables there exists a solution (Ψ, Z,N) to (3.2.3) with
Ψ bounded, see Morlais [2009]. With (3.3.6) at our disposal we then have the estimate

|Ψ| ≤
∥∥∥eβ|α|1(|ξ|+ |α|1)∥∥∥∞ . (3.3.7)

Our goal is to remove the boundedness assumption and to replace it with the assumption
on the existence of exponential moments of |ξ|+|α|1 in the spirit of Briand and Hu [2008].
However a closer inspection of the a priori estimate from (3.3.6) together with (3.3.7)
already indicates that more restrictive assumptions are necessary. More specifically,
when β > 0 we cannot deduce any integrability of exp

(
γeβ|α|1

(
|ξ|+ |α|1

))
when |ξ| and

|α|1 have only exponential moments. This motivates Assumption 3.2.2 (v), which is
sufficient for the present study as we have seen using the formula in (3.3.2). Note that
we could opt for deriving the existence result under the weaker assumption that the
above random variable exp

(
γeβ|α|1

(
|ξ|+ |α|1

))
be integrable. In this case, describing the

space in which a solution to the BSDE exists is more technical, as would be a statement
of uniqueness.

3.4 Existence and Norm Bounds

In the present section we establish Theorem 3.2.5 together with some related results
on norm bounds of the solution. The proof of existence follows the following recipe.
Firstly we truncate 〈λ ·M〉 to get approximate solutions. Then by using the estimate
from Proposition 3.3.1 we localize and work on a random time interval so that the
approximations are uniformly bounded and we can apply a stability result. Finally we
glue together on [0, T ] to construct a solution. The a priori estimates ensure that we
may take all limits in the described procedure.

The Existence Result

Theorem 3.4.1 (Existence). Let Assumptions 3.2.2 (ii)-(v) and 3.2.4 hold and let |ξ|+
|α|1 have an exponential moment of order γeβ∗T . Then the BSDE (3.2.3) has a solution
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(Ψ, Z,N) such that

|Ψt| ≤
1
γ

logE
[
exp

(
γ eβ

∗(T−t)|ξ|+ γ

∫ T

t
eβ
∗(r−t) d〈λ ·M〉r

)∣∣∣∣∣Ft
]
. (3.4.1)

Proof. Exactly as in Briand and Hu [2008] we first assume that F and ξ are nonnegative.
For each integer n ≥ 1, we set

σn := inf
{
t ∈ [0, T ]

∣∣∣∣〈λ ·M〉t :=
∫ t

0
αs dAs ≥ n

}
∧ T,

ξn := ξ ∧ n, λnt := 1{t≤σn}λt and Fn(t, ψ, z) := 1{t≤σn}F (t, ψ, z). Then Fn satisfies
Assumption 3.2.2 (ii)-(v) with the same constants, but with the processes λn and αn

where
αnt := ‖Btλnt ‖2 = 1{t≤σn}‖Btλt‖

2 = 1{t≤σn}αt.

In particular, |αn|1 =
∫ σn

0 αs dAs ≤ n and∫ T

0
(λnt )T d〈M〉tλnt =

∫ T

0
‖Btλnt ‖2 dAt = |αn|1 ≤ n,

so we may apply Morlais [2009] Theorem 2.5 and Theorem 2.6 to conclude that there
exists a unique solution (Ψn, Zn, Nn) ∈ S∞ ×M2 ×M2 to the BSDE (3.2.3), where F
is replaced by Fn and ξ is replaced by ξn. From Proposition 3.3.1 we derive

|Ψn
t | ≤

1
γ

logE
[
exp

(
γeβ

∗(T−t)|ξn|+ γ

∫ T

t
eβ
∗(r−t) d〈λn ·M〉r

)∣∣∣∣∣Ft
]

≤ 1
γ

logE
[
exp

(
γeβ

∗(T−t)|ξ|+ γ

∫ T

t
eβ
∗(r−t) d〈λ ·M〉r

)∣∣∣∣∣Ft
]

≤ 1
γ

logE
[
exp

(
γeβ

∗T (|ξ|+ |α|1))
∣∣∣∣∣Ft

]
=: Xt. (3.4.2)

Let n ≤ m so that we have σn ≤ σm and 1{t≤σn} ≤ 1{t≤σm}. In particular, ξn ≤ ξm

and Fn ≤ Fm, from which we deduce that the Assumptions 3.2.2 (ii)-(v), hence the
corresponding assumptions in Morlais [2009], hold for both Fn and Fm with the same
set of parameters (αm, β, β, βf , γ) where the additional cθ in Morlais [2009] is equal to
m. An application of Theorem 2.7 therein now shows that Ψn ≤ Ψm so that (Ψn)n≥1 is
an increasing sequence of bounded continuous processes.
The next step would be to send n to infinity, however, we do not dispose of a suitable
stability result. Indeed we have only Morlais [2009] Lemma 3.3 which applies for bounded
processes under uniform growth assumptions on the drivers, hence we introduce an
additional truncation. Let k ≥ 1 be a fixed integer and

τk := inf
{
t ∈ [0, T ]

∣∣∣Xt ≥ k or 〈λ ·M〉t ≥ k
}
∧ T.
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Thanks to the continuity of the filtration the martingale exp(γX) is continuous so that
the random variable

V := max
t∈[0,T ]

(
Xt
)
∨ 〈λ ·M〉T

is finite P-a.s. We derive that P-a.s. τk = T for large k. Due to (3.4.2) the sequence
(Ψn,k)n≥1 given by

Ψn,k
t := Ψn

t∧τk ,

is uniformly bounded by k. For the martingale parts we define

Zn,kt := 1{t≤τk}Z
n
t and Nn,k

t := 1{t≤τk}N
n
t .

An inspection of the respective cases shows that

Ψn,k
t = Ψn

τk
−
∫ T

t

(
Zn,ks

)T
dMs −

∫ T

t
dNn,k

s

+
∫ T

t
1{s≤τk∧σn}F (s,Ψn,k

s , Zn,ks ) dAs + 1
2

∫ T

t
d〈Nn,k〉s.

Moreover, Ψn
τk

n↑+∞−−−−→ supn≥1 Ψn
τk

=: ξk, where ξk is bounded by k. Next we appeal
to the stability result stated in Morlais [2009] Lemma 3.3, noting Remark 3.4 therein.
Note that this result requires estimates that are uniform in n which is accomplished
by the specific choice of the stopping time τk. Hence (Ψn,k, Zn,k, Nn,k) converges to
(Ψ∞,k, Z∞,k, N∞,k) in the sense that

lim
n→+∞

E
[

sup
0≤t≤T

∣∣Ψn,k
t −Ψ∞,kt

∣∣] = 0,

lim
n→+∞

E
[∫ T

0

(
Zn,ks − Z∞,ks

)T
d〈M〉s

(
Zn,ks − Z∞,ks

)]
= 0

and
lim

n→+∞
E
[∣∣∣Nn,k

T −N∞,kT

∣∣∣2] = 0,

where the triples (Ψ∞,k, Z∞,k, N∞,k) solve the BSDE

dΨ∞,kt =
(
Z∞,kt

)T
dMt + dN∞,kt

− 1{t≤τk}F (t,Ψ∞,kt , Z∞,kt ) dAt −
1
2 d〈N

∞,k〉t, Ψ∞,kτk
= ξk,

on the random horizon [[0, τk]] ⊂ [0, T ]. The stopping times τk are monotone in k and
therefore it follows that

Ψn,k+1
·∧τk ≡ Ψn,k, 1[[0,τk]]Z

n,k+1 ≡ Zn,k and 1[[0,τk]]N
n,k+1 ≡ Nn,k,
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so that the above convergence yields (for the two last objects inM2)

Ψ∞,k+1
·∧τk ≡ Ψ∞,k,

(
1[[0,τk]]Z

∞,k+1
)
·M ≡ Z∞,k ·M and 1[[0,τk]]N

∞,k+1 ≡ N∞,k.

To finish the proof, we define the processes

Ψt := 1{t≤τ1}Ψ
∞,1
t +

∑
k≥2

1{t∈]]τk−1,τk]]}Ψ
∞,k
t ,

Zt := 1{t≤τ1}Z
∞,1
t +

∑
k≥2

1{t∈]]τk−1,τk]]}Z
∞,k
t

and Nt := 1{t≤τ1}N
∞,1
t +

∑
k≥2

1{t∈]]τk−1,τk]]}N
∞,k
t .

By construction this gives a solution to the BSDE

dΨt = ZT
t dMt + dNt − F (t,Ψt, Zt) dAt −

1
2 d〈N〉t, ΨT = ξ,

since 1{t≤τ1} +
∑
k≥2 1{t∈]]τk−1,τk]]} = 1{t∈[0,T ]} P-a.s. More precisely, there is a P-null set

N such that for all ω ∈ Nc there is a minimal k0(ω) with τk0(ω)(ω) = T and such that
Ψ∞,kτk(ω)(ω) = ξk(ω) for all k, which yields that (possibly after another modification of N)

ΨT (ω) = Ψ∞,k0(ω)
T (ω) = ξk0(ω)(ω) = sup

n≥1
Ψn
T (ω) = ξ(ω).

The bound in (3.4.1) holds as we have it for all n and k from (3.4.2).
In the case when ξ and f are not necessarily nonnegative, we reduce the problem to
using a double truncation procedure defined by ξn,m := ξ+ ∧ n − ξ− ∧ m, λn,m :=
1{t≤σn}λ+ − 1{t≤σm}λ− and Fn,m := 1{t≤σn}F+ − 1{t≤σm}F−.

Remark 3.4.2. Let us recall the specific counterexample to the existence of a BSDE
solution provided in Proposition 2.2.2. More precisely, in a Brownian framework, for
every q < 0, we can construct a predictableW -integrable process λ which lacks sufficient
integrability. The BSDE (1.3.1) now is amenable to the analysis in this chapter. For
instance, the quadratic growth estimate reads

|F (t, z)| ≤ |q|2ε0
‖λt‖2 + γ(ε0)

2 ‖z‖2,

where F denotes the driver of (1.3.1) and γ(ε0) := 1 +
(
1 + |q|/2

)
ε0 for ε0 > 0, by

the generalized Young inequality, see also Proposition 4.6.3. Hence, in the setting of
Proposition 2.2.2, |α|1 := |q|

2ε0
∫ T

0 λ2
t dt = π2

8ε0
∫ τ
T/2

1
T−t dt has an exponential moment of

order % > 0 if and only if % < ε0, see the remarks that follow Proposition 2.2.2. As
we have seen above, a sufficient condition for the existence of a BSDE solution is that
% ≥ γ(ε0) = 1 +

(
1 + |q|/2

)
ε0 > ε0 which is indeed incompatible with the deficient

integrability of the specific λ considered in Proposition 2.2.2.
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Norm Bounds Results

As a corollary of the previous theorem we deduce

Corollary 3.4.3 (Norm Bounds for the Components of BSDE Solution Triples).

(i) Let the Assumptions 3.2.2 (ii)-(v) and 3.2.4 hold and let |ξ| + |α|1 have an ex-
ponential moment of order δ∗ > γeβ

∗T . Then the BSDE (3.2.3) has a solution
(Ψ, Z,N) such that exp(γΨ) ∈ S%∗ for %∗ := δ∗

γeβ∗T
> 1.

When additionally |ξ|+ |α|1 has exponential moments of all orders, i.e. Assump-
tion 3.2.2 (i) holds, this solution is such that Ψ ∈ E. In particular, for each % > 1
we have the estimate

E
[
exp

(
%γΨ∗

)]
≤
(

%

%− 1

)%
E
[
exp

(
%γeβ

∗T
(
|ξ|+ |α|1

))]
. (3.4.3)

(ii) Let the Assumption 3.2.2 (i)-(iii) and (v) hold and suppose there exists a solution
(Ψ, Z,N) to the BSDE (3.2.3) such that Ψ ∈ E. Then (Z,N) ∈M% ×M% for all
% > 0, more precisely

E

(∫ T

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2 ≤ c%,γ E[exp
(
4%γeβ∗T

(
|ξ|+ |α|1

))]
, (3.4.4)

where c%,γ is a positive constant depending on % and γ. The estimate (3.4.3) then
holds as well.

Proof. (i) Let (Ψ, Z,N) be the solution to (3.2.3) obtained in Theorem 3.4.1. As in the
previous section set

H̃t := exp
(
γeβ

∗t|Ψt|+ γ

∫ t

0
eβ
∗r d〈λ ·M〉r

)
, (3.4.5)

which is a local submartingale. Moreover, from the estimate (3.4.1), Jensen’s inequality
and the adaptedness of

∫ ·
0 e

β∗r d〈λ ·M〉r we deduce that

H̃t =
[

exp(γ|Ψt|)
]exp(β∗t)

exp
(
γ

∫ t

0
eβ
∗r d〈λ ·M〉r

)

≤ E
[
exp

(
γeβ

∗(T−t)|ξ|+ γ

∫ T

t
eβ
∗(r−t) d〈λ ·M〉r

)∣∣∣∣∣Ft
]exp(β∗t)

exp
(
γ

∫ t

0
eβ
∗r d〈λ ·M〉r

)

≤ E
[
exp

(
γeβ

∗T
(
|ξ|+ |α|1

))∣∣∣∣∣Ft
]
.

Observe that this upper estimate is a uniformly integrable martingale, in particular it
is of class D and therefore H̃ is a true submartingale. Then, via the Doob maximal

80



3.4 Existence and Norm Bounds

inequality, we find that for % > 1

E
[
exp

(
%γΨ∗

)]
≤ E

[
sup

0≤t≤T
H̃%
t

]
≤
(

p

p− 1

)%
E[H̃%

T ]

≤
(

p

p− 1

)%
E
[
exp

(
%γeβ

∗T
(
|ξ|+ |α|1

))]
, (3.4.6)

provided the right hand side is finite. In particular, exp(γΨ) ∈ S%∗ and Ψ ∈ E as soon
as |ξ|+ |α|1 has exponential moments of all orders, in which case (3.4.3) holds.

(ii) We first verify that (3.4.3) continues to hold when (Ψ, Z,N) is a solution to (3.2.3)
with Ψ ∈ E. First observe that we may reformulate the result of Proposition 3.3.1 under
the condition that

exp
(
γeβ

∗T |Ψ·|+ γ

∫ ·

0
eβ
∗r d〈λ ·M〉r

)
be of class D. Then, repeating the argument from item (i) above, using (3.3.3) instead
of (3.4.1), leads to the same conclusion, since we have the relation

exp
(
γeβ

∗t|Ψt|+ γ

∫ t

0
eβ
∗r d〈λ ·M〉r

)
≤ E

[
exp

(
γeβ

∗T
(
Ψ∗ + |α|1

))∣∣∣∣∣Ft
]
,

where the right hand side is indeed a process of class D. For the remaining claim, i.e.
relation (3.4.4), define the functions u, v : R → R+ via u(x) := 1

γ2 (eγx − 1 − γx) and
v(x) := u(|x|). We have that v is a C2-function, so we use Itô’s formula to see that for a
stopping time τ (to be chosen later),

v(Ψ0) = v(Ψt∧τ )−
∫ t∧τ

0
u′(|Ψs|) sgn∗(Ψs)(ZT

s dMs + dNs)

+
∫ t∧τ

0
u′(|Ψs|) sgn∗(Ψs)

(
F (s,Ψs, Zs) dAs + 1

2 d〈N〉s
)

− 1
2

∫ t∧τ

0
u′′(|Ψs|)

(
ZT
s d〈M〉sZs + d〈N〉s

)
,

where use the notation sgn∗(x) := −1{x≤0}+1{x>0} and observe that u′(0) = 0. Assump-
tion 3.2.2 (iii) yields

v(Ψ0) ≤ v(Ψt∧τ )−
∫ t∧τ

0
u′(|Ψs|) sgn∗(Ψs)(ZT

s dMs + dNs)

+
∫ t∧τ

0
u′(|Ψs|)

(
αs + αsβ|Ψs|

)
dAs + 1

2

∫ t∧τ

0

(
γu′(|Ψs|)− u′′(|Ψs|)

)
ZT
s d〈M〉sZs

+ 1
2

∫ t∧τ

0

(
u′(|Ψs|) sgn∗(Ψs)− u′′(|Ψs|)

)
d〈N〉s,
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since u′(x) = 1
γ (eγx− 1) ≥ 0 for x ≥ 0. Using the relation γu′(x)− u′′(x) = −1 together

with γ ≥ 1 it follows that

0 ≤ v(Ψ0) ≤ v(Ψt∧τ )−
∫ t∧τ

0
u′(|Ψs|) sgn∗(Ψs)(ZT

s dMs + dNs)

+
∫ t∧τ

0
u′(|Ψs|)

(
αs + αsβ|Ψs|

)
dAs −

1
2

∫ t∧τ

0
ZT
s d〈M〉sZs + d〈N〉s. (3.4.7)

Suppose first that % ≥ 2. Then (3.4.4) can be proved using the Burkholder-Davis-Gundy
inequalities as follows. From (3.4.7) we deduce that

1
2

∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s ≤

1
γ2 e

γΨ∗ + 1
γ

∫ T

0
eγ|Ψs|

(
αs + αsβ|Ψs|

)
dAs

+ sup
0≤t≤T

∣∣∣∣∫ t∧τ

0
u′(|Ψs|) sgn∗(Ψs)(ZT

s dMs + dNs)
∣∣∣∣ ,

where we used the estimates u′(x) ≤ eγx/γ and v(x) ≤ eγx/γ2, valid for x ≥ 0. From
the inequalities x ≤ ex − 1 and β ≤ γ we derive

(∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2
≤ 2 3%/2−2

(
1
γ%
e%/2 γΨ∗ + 1

γ%/2
e%γΨ∗ |α|%/21

+ sup
0≤t≤T

∣∣∣∣∫ t∧τ

0
u′(|Ψs|)sgn∗(Ψs)(ZT

s dMs + dNs)
∣∣∣∣%/2

)
,

which yields, after taking expectation and applying the estimate |x|%/2 < e%/2 |x| and the
Burkholder-Davis-Gundy inequality,

E
[( ∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]
≤ c%,γ E

[
e%/2 γΨ∗ + e%γΨ∗e%/2 γ|α|1

]

+ c%,γ E
[(∫ τ

0
e2γ|Ψs|

(
ZT
s d〈M〉sZs + d〈N〉s

))%/4]
,

where we used the estimate u′(x) ≤ eγx/γ for x ≥ 0. Note that in the above and in what
follows c%,γ > 0 is a generic constant depending on % and γ that may change from line
to line. We apply the generalized Young inequality, |ab| ≤ ε

2 a
2 + b2

2ε , for ε := 1 and for
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ε := c%,γ . Then, after an adjustment of c%,γ ,

E
[( ∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]

≤ c%,γ
(
E
[
e%/2 γΨ∗

]
+ 1

2 E
[
e2%γΨ∗

]
+ 1

2 E
[
e%γ|α|1

])

+ c%,γ E
[
e%γΨ∗

]
+ 1

2 E
[( ∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]

≤ c%,γ
(
E
[
e2%γΨ∗

]
+ E

[
e2%γ|α|1

])
+ 1

2 E
[( ∫ τ

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]
.

Next define, for each integer n ≥ 1, the stopping time

τn := inf
{
t ∈ [0, T ]

∣∣∣∣∫ t

0
e2γ|Ψs|

(
ZT
s d〈M〉sZs + d〈N〉s

)
≥ n

}
∧ T.

Inserting τn into the above calculation and using ea + eb ≤ 2ea+b for a, b ≥ 0 together
with (3.4.3), we may rewrite the last estimate as

E
[(∫ τn

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]
≤ c%,γ E

[
exp

(
2%γeβ∗T

(
|ξ|+ |α|1

))]
. (3.4.8)

By Fatou’s lemma, since τn → T as n→ +∞,

E
[(∫ T

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]
≤ c%,γ E

[
exp

(
2%γeβ∗T

(
|ξ|+ |α|1

))]

and (3.4.4) follows. In the situation where % < 2, ς := 2/% > 1 and we may combine
Jensen’s inequality with (3.4.8), which is valid for % = 2, to get

E
[( ∫ τn

0
ZT
s d〈M〉sZs + d〈N〉s

)%/2]ς

≤ E
[∫ τn

0
ZT
s d〈M〉sZs + d〈N〉s

]
≤ c2,γ E

[
exp
(
4γeβ∗T

(
|ξ|+ |α|1

))]

from which (3.4.4) follows after another application of Fatou’s lemma together with
the fact that the right hand side in the inequality above is greater or equal one while
1/ς = %/2 < 1.

Remark 3.4.4. We point out that the results of this section do not require that F be
convex in z, but only that F be continuous in (ψ, z). The reader may have noticed that
the continuity of F is not used directly in the proofs. However in Theorem 3.4.1 we rely
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3 Quadratic Semimartingale BSDEs under an Exponential Moments Condition

on the results of Morlais [2009] where continuity is a technical condition needed for an
application of Dini’s theorem. In addition our results also apply to the BSDE (3.2.2) if
g is identically equal to a nonzero constant γg/2, in which case we assume without loss
of generality that γ ≥ |γg|.

3.5 Comparison Principle and Uniqueness

We now provide a comparison theorem that yields uniqueness of a BSDE solution triple
in a specific space. The proof makes use of the θ-technique applied in the context
of second order Bellman-Isaacs equations by Da Lio and Ley [2006] and subsequently
adapted to the framework of Brownian BSDEs in Briand and Hu [2008]. We extend
these ideas to take into account the orthogonal part of the BSDE solution.

Theorem 3.5.1 (Comparison Principle). Let (Ψ, Z,N) and (Ψ′, Z ′, N ′) be solutions to
the BSDE (3.2.3) with drivers F and F ′ and terminal conditions ξ and ξ′, respectively.
Suppose in addition that Ψ ∈ E and Ψ′ ∈ E. If P-a.s. for all t ∈ [0, T ],

ξ ≤ ξ′ and F (t,Ψ′t, Z ′t) ≤ F ′(t,Ψ′t, Z ′t),

and if (F, ξ) satisfies Assumption 3.2.2 (i)-(iii) then P-a.s. for each t ∈ [0, T ]

Ψt ≤ Ψ′t.

Proof. Let θ be a real number in (0, 1) and set U := Ψ − θΨ′, V := Z − θZ ′ and
W := N − θN ′. We first collect together some helpful estimates concerning the drivers
F and F ′. Consider the process

ρs :=
{
F (s,Ψs,Zs)−F (s,θΨ′s,Zs)

Us
if Us 6= 0,

β if Us = 0.

By Assumption 3.2.2 (ii) ρ is bounded by β. We define Rs :=
∫ s
0 ρr dAr and notice that

by the boundedness of A we have that |R| ≤ β AT ≤ βKA. From Itô’s formula we deduce

eRtUt = eRTUT −
∫ T

t
eRs(V T

s dMs+dWs)+
∫ T

t
eRs

(
F θs dAs+ 1

2
(
d〈N〉s−θ d〈N ′〉s

))
,

where we define F θs := F (s,Ψs, Zs)− θF ′(s,Ψ′s, Z ′s)− ρsUs. We also set

∆F (s) := (F − F ′)(s,Ψ′s, Z ′s) ≤ 0,

where the inequality is due to the assumption of the theorem, and observe that from the
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convexity of F in z together with (3.2.7) we get

F (s,Ψ′s,Zs)− θF (s,Ψ′s, Z ′s) = F

(
s,Ψ′s, θZ ′s + (1− θ)Zs − θZ

′
s

1− θ

)
− θF (s,Ψ′s, Z ′s)

≤ (1− θ)F
(
s,Ψ′s,

Zs − θZ ′s
1− θ

)
≤ (1− θ)αs + (1− θ)β|Ψ′s|+

γ

2(1− θ) ‖BsVs‖
2.

(3.5.1)

Another application of the Lipschitz assumption 3.2.2 (ii), yields

F (s,Ψs, Zs)− F (s,Ψ′s, Zs) = F (s,Ψs, Zs)− F (s, θΨ′s, Zs) + F (s, θΨ′s, Zs)− F (s,Ψ′s, Zs)
= ρsUs + F (s, θΨ′s, Zs)− F (s,Ψ′s, Zs)
≤ ρsUs + (1− θ)β|Ψ′s|. (3.5.2)

Combining (3.5.1) and (3.5.2) we see that

F θs = F (s,Ψs, Zs)− θF (s,Ψ′s, Z ′s) + θ∆F (s)− ρsUs
= [F (s,Ψs, Zs)− F (s,Ψ′s, Zs)] + [F (s,Ψ′s, Zs)− θF (s,Ψ′s, Z ′s)] + θ∆F (s)− ρsUs

≤ (1− θ)
(
αs + 2β|Ψ′s|

)
+ γ

2(1− θ) ‖BsVs‖
2 + θ∆F (s). (3.5.3)

Let us now work towards an estimate for U = Ψ − θΨ′. Set κ := γ exp(βKA)
1−θ > 0 and

P t := exp
(
κeRtUt

)
> 0. In what follows the logic is similar to how we derived the a

priori estimates, namely, to show that by removing an appropriate drift P is a (local)
submartingale. By Itô’s formula, for t ∈ [0, T ],

P t = P T −
∫ T

t
κP se

Rs(V T
s dMs + dWs) +

∫ T

t
κP se

Rs

(
F θs −

κeRs

2 ‖BsVs‖2
)
dAs

(3.5.4)

+
∫ T

t
κP se

Rs

(
− κeRs

2 d〈W 〉s + 1
2
(
d〈N〉s − θ d〈N ′〉s

))
. (3.5.5)

To simplify notation set

G := κPeR
(
F θ − κeR

2 ‖BV ‖2
)

and (3.5.6)

H :=
∫ ·

0
κP se

Rs

(
− κeRs

2 d〈W 〉s + 1
2
(
d〈N〉s − θ d〈N ′〉s

))
. (3.5.7)

Let us first investigate the finite variation process H. We claim that H is decreasing,
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3 Quadratic Semimartingale BSDEs under an Exponential Moments Condition

indeed for all r, u ∈ [0, T ], r ≤ u, we have∫ u

r
d〈W 〉s =

∫ u

r
d〈N〉s − 2θ d〈N,N ′〉s + θ2 d〈N ′〉s.

Applying the Kunita-Watanabe and Young inequalities,∫ u

r
d〈W 〉s ≥

∫ u

r
d〈N〉s +

∫ u

r
θ2 d〈N ′〉s − 2θ

(∫ u

r
d〈N〉s

)1/2 (∫ u

r
d〈N ′〉s

)1/2

≥
∫ u

r
d〈N〉s +

∫ u

r
θ2 d〈N ′〉s − θ

(∫ u

r
d〈N〉s +

∫ u

r
d〈N ′〉s

)
= (1− θ)

(∫ u

r
d〈N〉s − θ d〈N ′〉s

)
.

In particular, since γ ≥ 1 and |R| ≤ βKA we have,∫ u

r
κeRsd〈W 〉s ≥

γ

1− θ

∫ u

r
d〈W 〉s ≥

∫ u

r
d〈N〉s − θ d〈N ′〉s,

which shows that the process H is decreasing and hence the integral in (3.5.5) is non-
positive.

Next we consider the finite variation integral in (3.5.4). Combining (3.5.3), ∆F ≤ 0
and the boundedness of R we have

G = κPeR
(
F θ − κeR

2 ‖BV ‖2
)
≤ κPeR

(
(1− θ)

(
α+ 2β|Ψ′|

))
≤ PJ, (3.5.8)

where
J := γe2βKA

(
α+ 2β|Ψ′|

)
≥ 0.

We set
Dt := exp

(∫ t

0
Js dAs

)
and P̃t := DtP t.

Partial integration yields

dP̃t = Dt

(
−Gt dAt − dHt + κP te

Rt(V T
t dMt + dWt)

)
+ P tDtJt dAt

= Dt

(
(P tJt −Gt) dAt − dHt + κP te

Rt(V T
t dMt + dWt)

)
(3.5.9)

and we conclude that the finite variation parts in the last expression are nonnegative.
We can now use the following stopping time argument to derive that P-a.s.

P t ≤ E
[
DT

Dt
P T

∣∣∣∣Ft] . (3.5.10)
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Namely, consider the stopping time

τn := inf
{
u ∈ [t, T ]

∣∣∣∣∫ u

t
κ2P̃ 2

s e
2Rs
(
V T
s d〈M〉sVs + d〈W 〉s

)
≥ n

}
∧ T,

where n ≥ 1 is an integer. Observe that τn → T as n → +∞ due to the integrability
assumptions on α, Ψ and Ψ′, as well as the boundedness of A. Then (3.5.9) provides
the estimate

P t ≤ E
[
exp

(∫ τn

t
Js dAs

)
P τn

∣∣∣∣Ft] = E
[
exp

(∫ τn

t
γe2βKA

(
αs + 2β|Ψ′s|

)
dAs

)
P τn

∣∣∣∣Ft] .
In view of the current integrability and boundedness assumptions we can send n to infin-
ity and deduce (3.5.10). This last inequality is the relation that we need for estimating
U = Ψ− θΨ′.
Notice that we also have ξ − θξ′ ≤ (1 − θ)|ξ| + θ∆ξ, where ∆ξ := ξ − ξ′ ≤ 0. Then

together with the definition of P the inequality (3.5.10) shows that

exp
(
γeβKA+Rt

1− θ
(
Ψt − θΨ′t

))

≤ E
[

exp
(∫ T

t
γe2βKA

(
αs + 2β|Ψ′s|

)
dAs

)
exp

(
κeRT

(
ξ − θξ′

))∣∣∣∣∣Ft
]

≤ E
[

exp
(
γe2βKA

∫ T

t

(
αs + 2β|Ψ′s|

)
dAs

)
exp

(
γe2βKA |ξ|

)∣∣∣∣∣Ft
]
.

Thus, we can derive the estimate

Ψt − θΨ′t ≤
1− θ
γ

logE
[

exp
(
γe2βKA

(
|ξ|+

∫ T

t

(
αs + 2β|Ψ′s|

)
dAs

))∣∣∣∣∣Ft
]
,

which follows from the above by checking the cases Ψt − θΨ′t ≥ 0 and Ψt − θΨ′t < 0
separately, noting that R + βKA ≥ 0. Once again, by the integrability assumptions on
ξ, α and Ψ′ and the boundedness of A, the conditional expectation on the right hand
side is finite, P-a.s. Taking θ ↑ 1 then gives Ψt ≤ Ψ′t and the continuity of Ψ and Ψ′
yields the claim.

The following corollary is then immediate.

Corollary 3.5.2 (Uniqueness). Let the Assumption 3.2.2 (i)-(iii) hold and let (Ψ, Z,N)
and (Ψ′, Z ′, N ′) be two solutions to the BSDE (3.2.3) with Ψ ∈ E and Ψ′ ∈ E. Then Ψ
and Ψ′, Z ·M and Z ′ ·M , and N and N ′ are indistinguishable. Under the additional
Assumption 3.2.2 (v) both (Z ·M,N) and (Z ′ ·M,N ′) belong toM%×M% for all % > 0.

Proof. By Theorem 3.5.1 and Corollary 3.4.3 (ii) only the assertion regarding the indis-
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tinguishability of the martingale part remains. Itô’s formula gives P-a.s.

0 = (ΨT −Ψ′T )2 = (Ψ0 −Ψ′0)2 + 2
∫ T

0
(Ψt −Ψ′t) d(Ψt −Ψ′t)

+
∫ T

0
(Zt − Z ′t)T d〈M〉t(Zt − Z ′t) + d〈N −N ′〉t

=
∫ T

0
(Zt − Z ′t)T d〈M〉t(Zt − Z ′t) + d〈N −N ′〉t,

from which Z ·M ≡ Z ′ ·M and N ≡ N ′.

3.6 Stability

It follows from the previous results that the BSDE (3.2.3) has a unique solution with first
component in E under appropriate Lipschitz and convexity assumptions on the driver F
and under an exponential moments condition on the terminal value ξ and the process
α. In the present section we show that a stability result for such BSDEs holds as well.
More precisely, given a sequence of terminal values and a sequence of drivers such that
the exponential moments condition is fulfilled uniformly and such that they converge to
a fixed terminal value and a fixed generator in a suitable sense, then we gain convergence
on the level of the respective BSDE solutions. This is as in the Brownian framework
of Briand and Hu [2008], however see Remark 3.6.8 and the following subsection for a
discussion of the appropriate mode of convergence of the drivers.

Theorem 3.6.1 (Stability). Let (Fn)n≥0 be a sequence of generators for the BSDE
(3.2.3) such that Assumption 3.2.2 (ii)-(iii) and (v) hold for each Fn with the set of
parameters (αn, βn, β, βf , γ). If (ξn)n≥0 are the associated random terminal values then
suppose that, for each % > 1,

sup
n≥0

E
[
e% (|ξn|+|αn|1)

]
< +∞. (3.6.1)

Let (Ψn, Zn, Nn) be the solution to the BSDE (3.2.3) with driver Fn and terminal con-
dition ξn such that Ψn ∈ E for all n ≥ 0. If

|ξn − ξ0|+
∫ T

0

∣∣Fn − F 0∣∣ (s,Ψ0
s, Z

0
s ) dAs −→ 0 in probability, as n→ +∞, (3.6.2)

then for each % > 0,

lim
n→+∞

E
[
exp

(
% sup

0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣)] = 1 and

lim
n→+∞

E
[(∫ T

0
(Zns − Z0

s )T d〈M〉s(Zns − Z0
s ) + d〈Nn −N0〉s

)%/2 ]
= 0.
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Remark 3.6.2. Let us briefly indicate how the above stability theorem differs from
those in the literature, Frei [2009] Theorem 2.1 and Morlais [2009] Lemma 3.3. The
key points are that firstly in our conditions the parameters αn and βn are allowed to
depend on n, whereas in Frei [2009] and Morlais [2009] they are assumed independent
of n. Secondly, we assume a uniform exponential moments condition, as opposed to a
uniform boundedness condition in the cited references. Finally, in the unbounded setting
we require the mode of convergence assumed above, this is in contrast to the setting of
Frei [2009] Theorem 2.1 where the weaker notion of pointwise convergence is sufficient
for a stability result to hold (due to the uniform growth and boundedness estimates).

Proof. Note that Assumption 3.2.2 (i) holds for each n thanks to (3.6.1). Exactly as in
the statement of Corollary 3.4.3 we deduce that for each % ≥ 1

sup
n≥0

E
[
exp

(
% sup

0≤t≤T

∣∣Ψn
t

∣∣)+
(∫ T

0
(Zns )T d〈M〉sZns + d〈Nn〉s

)%/2 ]
< +∞.

Hence the sequences in n of random variables

exp
(
% sup

0≤t≤T

∣∣Ψn
t

∣∣) and
(∫ T

0
(Zns )T d〈M〉sZns + d〈Nn〉s

)%/2
are uniformly integrable for all % ≥ 1. By the Vitali convergence theorem, it is thus
sufficient to prove that

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣+ ∫ T

0
(Zns − Z0

s )T d〈M〉s(Zns − Z0
s ) + d〈Nn −N0〉s −→ 0

in probability when n tends to infinity.

We split the proof of the last statement into four steps. The first two steps construct
one-sided estimates for the difference of Ψn and Ψ0 proceeding very similarly to the proof
of the comparison result. In the third step we combine the aforementioned estimates
to show that Ψn − Ψ0 converges to zero uniformly on [0, T ] in probability, i.e. in ucp.
Finally, in Step 4, we use this result to show the required convergence of the martingale
parts.

Step 1. First fix θ ∈ (0, 1) and n ≥ 1 and proceed in the same way as in the proof
of Theorem 3.5.1 by defining the same objects U , V , W , ρ, R, F θ, κ, P , G, and H,
subject to the following modification. All the objects Ξ′, Ξ ∈ {Ψ, Z,N, F}, with a
prime ′ are replaced by the respective object Ξ0 with a superscript 0. All the objects
Ξ ∈ {Ψ, Z,N, F, α} without a prime are replaced by the respective object Ξn with a
superscript n, e.g. U := Ψn − θΨ0. We observe that the above objects U , V , W , . . .
depend on n however we omit this dependence for notational brevity. In addition set
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∆nF (s) := (Fn − F 0)(s,Ψ0
s, Z

0
s ). From (3.5.3) and (3.5.6),

G ≤ κPeR
(
(1− θ)

(
αn + 2β|Ψ0|

)
+ θ∆nF

)
≤ γe2βKAP

(
αn + 2β|Ψ0|+ |∆

nF |
1− θ

)
= PJn + γe2βKAP

|∆nF |
1− θ ,

where, consistent with our modification,

Jn := γe2βKA
(
αn + 2β|Ψ0|

)
≥ 0.

Observe that in contrast to the proof of the comparison theorem, the difference ∆nF of
the drivers cannot be bounded above by zero here. Considering

Dn
t := exp

(∫ t

0
Jns dAs

)
and P̃nt := Dn

t P t

and applying the partial integration formula we obtain

dP̃nt + γe2βKAP̃nt
|∆nF |
1− θ dAt = Dn

t dP t + P t dD
n
t + γe2βKAP̃nt

|∆nF |
1− θ dAt

= Dn
t

[(
P tJ

n
t + γe2βKAP t

|∆nF |
1− θ −Gt

)
dAt − dHt + κP te

Rt(V T
t dMt + dWt)

]
,

noting that the orthogonal terms also have been dealt with in the proof of the comparison
theorem. Again, we conclude that the finite variation parts in the last expression are
nonnegative. We then use the stopping time argument from the proof of Theorem 3.5.1
to derive the inequality

P t ≤ Dn
t P t ≤ E

[
Dn
TP T + γe2βKA

1− θ

∫ T

t
Dn
sP s|∆nF (s)| dAs

∣∣∣∣∣Ft
]
. (3.6.3)

From the boundedness of ρ and the definition P = exp
(
κeRU

)
we deduce, for s ∈ [0, T ],

P s ≤ sup
0≤t≤T

[
exp

(
γe2βKA

1− θ
(
|Ψ0

t |+ |Ψn
t |
))]

=: Υn(θ) and

P T ≤ exp
(
γe2βKA

1− θ
∣∣ξn − θξ0∣∣) ≤ exp

(
γe2βKA

1− θ
(∣∣ξn − θξ0∣∣ ∨ ∣∣ξ0 − θξn

∣∣)) =: χn(θ),

where the definitions of Υn(θ) and χn(θ) are in anticipation of a converse inequality to
be derived in Step 2. Using the boundedness of ρ, the inequalities log(x) ≤ x, (3.6.3)

90



3.6 Stability

and 1 ≤ Dn
s ≤ Dn

T we then find that

Ψn
t −Ψ0

t ≤ (1− θ)|Ψ0
t |+ Ψn

t − θΨ0
t = (1− θ)|Ψ0

t |+ Ut

= (1− θ)|Ψ0
t |+

1− θ
γ

exp
(
−βKA −Rt

)
log(P t)

≤ (1− θ)|Ψ0
t |+

1− θ
γ

E
[
Dn
Tχ

n(θ) + γe2βKA

1− θ Dn
TΥn(θ)

∫ T

t
|∆nF (s)| dAs

∣∣∣∣∣Ft
]
.

(3.6.4)

Step 2. With regards to the converse inequality we proceed as in the proof of Briand
and Hu [2008] Proposition 7. More specifically, recalling the setting of the proof of
Theorem 3.5.1 we define the same objects U , V , W , R, F θ, κ, P , G, and H but now
subject to the following modification. All the objects Ξ′, Ξ ∈ {Ψ, Z,N, F}, with a prime
′ are replaced by the respective object Ξn with a superscript n ≥ 1. All the objects
Ξ ∈ {Ψ, Z,N, F, α} without a prime are replaced by the respective object Ξ0 with a
superscript 0, e.g. U := Ψ0 − θΨn. Moreover, here, we define ρ differently, namely,

ρs := Fn(s,Ψ0
s, Z

n
s )− Fn(s,Ψn

s , Z
n
s )

Ψ0
s −Ψn

s

1{|Ψ0
s−Ψns |>0}.

This ensures that |ρ| ≤ β still holds and that

θFn(s,Ψ0
s, Z

n
s )− θFn(s,Ψn

s , Z
n
s ) = ρ(θΨ0 − θΨn) ≤ β(1− θ)|Ψ0

s|+ ρsUs.

Using the convexity of Fn, the estimate (3.2.7) and the same definition of ∆nF as in
Step 1 we derive

F θ ≤ |∆nF |+ (1− θ)(αn + 2β|Ψ0|) + γ

2(1− θ) ‖BV ‖
2

so that the following inequality holds

G ≤ γe2βKAP

(
αn + 2β|Ψ0|+ |∆

nF |
1− θ

)
.

Observe that this is the same estimate on G as that obtained in Step 1. Thus we may
rewrite (3.6.4) as

Ψ0
t −Ψn

t ≤ (1− θ)|Ψn
t |+

1− θ
γ

E
[
Dn
Tχ

n(θ) + γe2βKA

1− θ Dn
TΥn(θ)

∫ T

t
|∆nF (s)| dAs

∣∣∣∣∣Ft
]
,

(3.6.5)

where Jn and thus Dn, Υn and χn(θ) are as in Step 1.

Step 3. Let us now prove that
(
sup0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣)
n≥1

converges to zero in proba-
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bility. Summing up (3.6.4) and (3.6.5) we deduce

∣∣Ψn
t −Ψ0

t

∣∣ ≤ (1− θ)
(
|Ψ0

t |+ |Ψn
t |
)

+ 1− θ
γ

E
[
Dn
Tχ

n(θ)
∣∣∣∣Ft]

+ e2βKA E
[
Dn
TΥn(θ)

∫ T

t
|∆nF (s)| dAs

∣∣∣∣∣Ft
]
.

We note that by the usual assumptions on the filtration and by the continuity of Ψn and
Ψ0 this holds for all t, P-a.s. Applying the Doob, Markov and Hölder inequalities, we
deduce the existence of some positive constants c1 and c2, which are independent of θ,
as well as of a positive constant c3(θ) such that for ε > 0,

P
(

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣ ≥ ε)

≤ P
(

(1− θ) sup
0≤t≤T

(
|Ψ0

t |+ |Ψn
t |
)
≥ ε

3

)
+ P

(
1− θ
γ

sup
0≤t≤T

E
[
Dn
Tχ

n(θ)
∣∣∣∣Ft] ≥ ε

3

)

+ P
(
e2βKA sup

0≤t≤T
E
[
Dn
TΥn(θ)

∫ T

t
|∆nF (s)| dAs

∣∣∣∣∣Ft
]
≥ ε

3

)

≤ 3(1− θ)
ε

E
[

sup
0≤t≤T

(
|Ψ0

t |+ |Ψn
t |
)]

+ 3(1− θ)
εγ

E[Dn
Tχ

n(θ)]

+ 3e2βKA

ε
E
[
Dn
TΥn(θ)

∫ T

0
|∆nF (s)| dAs

]

≤ c1(1− θ)
ε

+ c2(1− θ)
ε

E
[
χn(θ)2

]1/2
+ c3(θ)

ε
E

(∫ T

0
|∆nF (s)| dAs

)2
1/2

, (3.6.6)

where the last inequality is due to the fact that by our assumptions the sequences(
sup0≤t≤T

(
|Ψ0

t |+ |Ψn
t |
))
n≥1

, (Dn
T )n≥1 and (Υn(θ))n≥1 are bounded in all L%(P) spaces,

% ≥ 1. In addition, for the application of Doob’s inequality, we used that A is bounded
together with

|∆nF (s)| ≤ |Fn(s,Ψ0
s, Z

0
s )− Fn(s, 0, Z0

s )|+ |Fn(s, 0, Z0
s )|+ |F 0(s, 0, Z0

s )|
+ |F 0(s,Ψ0

s, Z
0
s )− F 0(s, 0, Z0

s )| ≤ 2β|Ψ0
s|+ αns + α0

s + γ‖BsZ0
s‖2, (3.6.7)

which in turn now also implies that for all % ≥ 1 the family of random variables((∫ T

0
|∆nF (s)| dAs

)%)
n≥1
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is uniformly integrable due to Corollary 3.4.3 and (3.6.1). Here, for reasons explained in
Subsection 3.6.1, we deviate from Briand and Hu [2008]. The Vitali convergence theorem
and (3.6.2) then imply that∫ T

0
|∆nF (s)| dAs → 0 in all L%(P) spaces.

Furthermore, the sequence (χn(θ))n≥1 converges in probability to exp
(
γe2βKA |ξ0|

)
as

n goes to infinity. This convergence is also in all L%(P) spaces because of the uniform
integrability assumption on (ξn)n≥1. More precisely, for all % ≥ 1, we have

sup
n≥1

E[χn(θ)%] ≤ sup
n≥1

E
[
exp

(
%γe2βKA

1− θ
(∣∣ξn∣∣+ |ξ0|

))]

≤ sup
n≥1

E
[
exp

(
2%γe2βKA

1− θ
∣∣ξn∣∣)]1/2

E
[
exp

(
2%γe2βKA

1− θ
∣∣ξ0|
)]1/2

< +∞.

From (3.6.6) we then deduce that for all θ ∈ (0, 1),

lim sup
n→+∞

P
(

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣ ≥ ε) ≤ c1(1− θ)
ε

+ c2(1− θ)
ε

E
[
exp

(
2γe2βKA |ξ0|

)]1/2
.

We then send θ to 1 to conclude that

lim
n→+∞

P
(

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣ ≥ ε) = 0.

Step 4. Let us now turn to the last assertion of the theorem. We derive from Itô’s
formula that

E
[∫ T

0
(Zns − Z0

s )T d〈M〉s(Zns − Z0
s ) + d〈Nn −N0〉s

]

≤ E
[
(ξn − ξ0)2 + 2

(
sup

0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣) ∫ T

0

∣∣Fn(s,Ψn
s , Z

n
s )− F 0(s,Ψ0

s, Z
0
s )
∣∣ dAs

]

+ E
[(

sup
0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣)∣∣∣∣∣
∫ T

0
d〈Nn〉s − d〈N0〉s

∣∣∣∣∣
]

after observing that the local martingale arising therein is in fact a true martingale
thanks to the present integrability assumptions, see Corollary 3.4.3. By (3.2.7),

∣∣Fn(s,Ψn
s , Z

n
s )−F 0(s,Ψ0

s, Z
0
s )
∣∣ ≤ αns +α0

s+β|Ψn
s |+β|Ψ0

s|+
γ

2 ‖BsZ
n
s ‖2 + γ

2 ‖BsZ
0
s‖2.

Clearly,
∣∣∣∫ T0 d〈Nn〉s−d〈N0〉s

∣∣∣ ≤ 〈Nn〉T +〈N0〉T , so that applying Hölder’s inequality, the
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3 Quadratic Semimartingale BSDEs under an Exponential Moments Condition

formula (3.4.4) and the condition (3.6.1) we recognize (the expectation of the squares
of) the integrals from the right hand side above as uniformly bounded (in n). The
result then follows from the fact that ξn → ξ0 in L2(P) and that by the Steps 1-3 also(
sup0≤t≤T

∣∣Ψn
t −Ψ0

t

∣∣)→ 0 in L2(P). To sum up, we conclude that

∫ T

0
(Zns − Z0

s )T d〈M〉s(Zns − Z0
s ) + d〈Nn −N0〉s

P−→ 0 as n→ +∞,

which completes the proof.

Remark 3.6.3. As previously mentioned the sense of convergence given here differs
from that in Briand and Hu [2008] where the pointwise convergence of the drivers is
assumed, namely

µA-a.e. for all ψ and z we have lim
n→+∞

Fn(·, ψ, z) = F 0(·, ψ, z). (3.6.8)

We provide an example in the next section showing that this condition is not sufficient
in the present setting so that the statement of Briand and Hu [2008] Proposition 7 needs
a small modification.

3.6.1 Stability Counterexample

Suppose our filtration is the augmentation of the filtration generated by a one-dimen-
sional Brownian motion W so that we may set At = t and B ≡ 1. The measure µA now
becomes the product of P and the Lebesgue measure on [0, T ]. In this setting BSDEs
take the form

dΨt = Zt dWt − F (t,Ψt, Zt) dt, ΨT = ξ, (3.6.9)

and solutions consist of pairs (Ψ, Z) such that Ψ has continuous paths, Z is a predictable
process with

∫ T
0 Z2

t dt < +∞ P-a.s.,
∫ T

0 |F (t,Ψt, Zt)| dt < +∞ P-a.s. and such that the
integrated version of (3.6.9) holds, P-a.s.
Suppose our condition

∫ T
0 |Fn − F 0| (s,Ψ0

s, Z
0
s ) ds P−→ 0 as n → +∞ is replaced by

(3.6.8), i.e. Fn converges to F 0 pointwise (t, ω)-almost everywhere on [0, T ]× Ω, where
the µA-null set does not depend on (ψ, z). One may ask whether this is sufficient for
Theorem 3.6.1 to hold, in particular if

sup
0≤t≤T

|Ψn
t −Ψ0

t |
P−→ 0 as n→ +∞. (3.6.10)

We now present an example to show that this is in fact not the case. The example re-
sembles the standard counterexample to the dominated convergence theorem and shows
that such a stability statement (under the present assumptions) already fails to hold in
an essentially deterministic situation.
Consider T > 1 together with parameters F 0 ≡ α0 ≡ ξ0 ≡ 0. Then all the assump-

tions in Briand and Hu [2008] and in the present chapter are satisfied and the unique
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solution to the BSDE (3.6.9) with parameters (F 0, ξ0) is given by (Ψ0, Z0) ≡ (0, 0), up
to appropriate null sets.
Furthermore, for integers n ≥ 1, define the terminal values ξn ≡ 0 and drivers

Fn ≡ αn ≡ n1[0, 1
n ]×Ω ≥ 0.

Observe that Fn does not depend on ψ or on z and is constant in ω, hence deterministic.
In particular |αn|1 =

∫ T
0 αns ds = 1, independently of ω and n, which shows that again

all the assumptions in Briand and Hu [2008] and in the present chapter are satisfied by
each pair (Fn, ξn), n ≥ 1.
The unique solution to the BSDE (3.6.9) with parameters (Fn, ξn) is given P-a.s. by

Zn ≡ 0, more precisely the zero element in L2([0, T ]× Ω), and

Ψn
t = (1− nt) 1[0, 1

n ]×Ω(t, ·).

We deduce that Ψn is nonnegative, nonincreasing and that Ψn
0 = 1, independently of n,

P-a.s. It follows that P-a.s. for all n ≥ 1, sup0≤t≤T |Ψn
t −Ψ0

t | = Ψn
0 = 1, from which

lim
n→+∞

(
sup

0≤t≤T
|Ψn

t −Ψ0
t |
)

= 1 P-a.s. (3.6.11)

However, by construction, limn→+∞ F
n = 0 = F on (0, T ] × Ω, hence µA-a.e. inde-

pendently of ψ and z, so that (3.6.8) holds. Since (3.6.10) and (3.6.11) cannot hold
simultaneously, the condition in (3.6.8) is not sufficient for a stability theorem to hold
under the present assumptions. Clearly, this phenomenon also occurs in a situation in
which the paths of the Ψn are differentiable since one can choose Fn to be arbitrarily
smooth in t. Indeed, independently of ω, take a smooth nonnegative function on [0, T ]
that is identically zero on ( 1

n , T ] and integrates to one over [0, T ]. The corresponding
Ψn in the BSDE solution is smooth in t and we derive the same contradiction.

The problem arising in the proof of Briand and Hu [2008] Proposition 7 can be ob-
served from equations (3.6.6) and (3.6.7). More specifically, the authors require L2(P)-
convergence of the random variables

∫ T
0 |∆nF (s)| ds however they only dispose of an

estimate on the product space [0, T ]× Ω of the form

|∆nF | ≤ 2β|Ψ0|+ αn + α0 + γ‖Z0‖2,

together with uniform integrability assumptions that are on the level of Ω, with the
t-component integrated away. There is no guarantee that the pointwise convergence of
|∆nF | on the product space [0, T ] × Ω will transform to pointwise convergence of the
integrals

∫ T
0 |∆nF (s)| ds on Ω, which is necessary to utilize the uniform integrability

assumptions. This is the insight behind the present example and motivates the modified
condition.
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3 Quadratic Semimartingale BSDEs under an Exponential Moments Condition

We now move on to look at whether the martingale part of our BSDE solution deter-
mines a change of measure.

3.7 Change of Measure
In this section we show that under the exponential moments assumption the martingale
part of a solution (Ψ, Z,N) to the BSDE (3.2.2) defines a measure change. In particular,
we need not show that Z ·M +N is a BMO martingale, which is a stronger statement
that may indeed not hold, see Chapter 2 for some examples and related discussion. Here,
we do not require that the driver F be convex in z. Our proof is based upon Kazamaki
[1994] Lemma 1.6 and Lemma 1.7 which we state here for continuous local martingales
on compact time intervals.

Lemma 3.7.1 (Kazamaki [1994] Lemma 1.6 and 1.7). If M is a continuous local mar-
tingale on [0, T ] such that

sup
τ stopping time
valued in [0,T]

E
[
exp

(
ηM τ +

(1
2 − η

)
〈M〉τ

)]
< +∞, (3.7.1)

for a real number η 6= 1, then E
(
ηM

)
is a true martingale on [0, T ]. Moreover, if

condition (3.7.1) holds for some η∗ > 1 then it holds for all η ∈ (1, η∗).

We deduce the following result.

Theorem 3.7.2. Let Assumption 3.2.2 (iii) hold, |α|1 have all exponential moments, %
be a real number with |%| > γ/2 and (Ψ, Z,N) be a solution to the BSDE (3.2.2) where
g is bounded by γ/2 and Ψ ∈ E. If β > 0 we also require that Ψ∗|α|1 has exponential
moments of all orders or that (3.2.5) holds with fixed ψ2 = 0. Then E

(
% (Z ·M+N)

)
is a

true martingale on [0, T ]. In particular, when γ < 2, E(Z ·M +N) is a true martingale.

Remark 3.7.3. In Mania and Schweizer [2005] Proposition 7 the authors show that
the martingale part of solutions to the BSDE (3.2.1) with bounded first component and
λ ·M a BMO martingale also belongs to the class of BMO martingales so that it yields a
measure change. Our theorem may thus be seen as a generalization of this result to the
case in which Ψ is not necessarily bounded. We mention that it follows from the proof
of this theorem that the assumption of all exponential moments may be weakened to
requiring exponential moments of some specific order, see the proof of Proposition 5.3.6
(iii) for more details.

Proof. We apply Lemma 3.7.1 with M := %̃(Z · M + N) for some fixed |%̃| > γ/2.
Firstly, we assume that β > 0 and that Ψ∗|α|1 has exponential moments of all orders.
Considering

logGη(t) := %̃η
[
(Z ·M)t +Nt

]
+ %̃2

(1
2 − η

)
〈Z ·M +N〉t
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for η > 0 we get from the BSDE (3.2.2) and the growth condition in (3.2.6),

logGη(t) = %̃η

(
Ψt −Ψ0 +

∫ t

0
F (s,Ψs, Zs) dAs +

∫ t

0
gs d〈N〉s

)
+%̃2

(1
2 − η

)
〈Z ·M+N〉t

≤ |%̃|η(Ψ∗ + |Ψ0|) + |%̃|η|α|1 + |%̃|ηβΨ∗|α|1 + |%̃|η
(
γ

2 + |%̃|
η

(1
2 − η

))
〈Z ·M +N〉t.

Noting that
γ

2 + |%̃|
η

(1
2 − η

)
≤ 0 ⇐⇒ η ≥ |%̃|

2|%̃| − γ =: %0,

we have that P-a.s. for all t ∈ [0, T ],

Gη(t) ≤ exp
(
|%̃|η

(
Ψ∗ + |Ψ0|

))
exp

(
|%̃|η|α|1 + |%̃|ηβΨ∗|α|1

)
, (3.7.2)

for all η ≥ %0. By the exponential moments assumption on Ψ∗, |α|1 and Ψ∗|α|1, we
conclude from Hölder’s inequality that

sup
τ stopping time
valued in [0,T]

E
[
Gη(τ)

]
< +∞ (3.7.3)

for all η ≥ %0 > 1/2. It now follows from Lemma 3.7.1 that E(%̃η(Z ·M +N)) is a true
martingale for all η ∈ [%0,+∞)\{1}. The second part of this lemma ensures that in fact
E(%̃η(Z ·M + N)) is a true martingale for all η > 1. Thus, if |%| > γ/2 we apply this
result for some fixed |%̃| ∈ (γ/2, |%|) and η := %/%̃ = |%/%̃| > 1 to conclude that indeed
E(% (Z ·M +N)) is a true martingale.
Now if β > 0 and (3.2.5) holds with fixed ψ2 = 0, we use (3.2.7) to derive, similarly to
the above,

logGη(t) ≤ |%̃|η(Ψ∗+ |Ψ0|)+ |%̃|η|α|1 + |%̃|ηβΨ∗AT + |%̃|η
(
γ

2 + |%̃|
η

(1
2 − η

))
〈Z ·M+N〉t

so that the claim follows from the boundedness of AT using exactly the same arguments.
The reasoning from above also applies when Assumption 3.2.2 (iii) holds with β = 0,
without any further conditions.

3.8 Possible Applications

In this final section we explore two applications of the theoretical results from this
chapter, specifically focusing on utility maximization and partial equilibrium. We find
that the standard results continue to hold when the usual boundedness assumptions are
replaced by appropriate exponential moments conditions, allowing for more generality.
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3 Quadratic Semimartingale BSDEs under an Exponential Moments Condition

3.8.1 Constrained Utility Maximization under Exponential Moments

In the context of the constrained utility maximization problem with power utility the
following BSDE appears, see Morlais [2009] Section 4.2.1 and the next two Chapters 4
and 5,

dΨt = ZT
t dMt + dNt − F (t, Zt) dAt −

1
2 d〈N〉t, ΨT = 0,

where the generator is given by

F (t, z) = −p(1− p)2 inf
ν∈K

∥∥∥∥Bt(ν − z − λt
1− p

)∥∥∥∥2
+ p(1− p)

2

∥∥∥∥Bt(z − λt1− p

)∥∥∥∥2
+ 1

2‖Btz‖
2.

In the above 1 − p ∈ (0,+∞) is the investor’s relative risk aversion and ν refers to
investment strategies (in a stock whose returns are driven by the continuous local mar-
tingale M under the market price of risk process λ) which must be valued in the closed
constraint set K. This K is constant in Morlais [2009] – a condition that we are going to
weaken in the Chapters 4 and 5. Writing the infimum in terms of the distance function,
which is Lipschitz continuous, one can show that the driver F satisfies Assumption 3.2.2
(ii)-(v), see the Propositions 4.6.3 and 5.3.4, so that there exist constants cλ and cz such
that

|F (t, z)| ≤ cλ‖Btλt‖2 + cz‖Btz‖2.

When we enforce that the mean-variance tradeoff 〈λ ·M〉T =
∫ T
0 λT

t 〈M〉tλt has all ex-
ponential moments, an assumption weaker than that of boundedness given in the cited
literature, we are in the current framework and see that the BSDE admits a unique
solution in E ×M2 ×M2. The crucial step in Hu et al. [2005] and Morlais [2009] is,
given a solution triple (Ψ, Z,N), to construct the relevant optimizers; this is the process
of verification. Building on Theorem 3.7.2 and not relying on BMO arguments such a
verification is performed in Chapter 5. For the Brownian framework, in Heyne [2010] the
reader will find additional illustration given via a class of stochastic volatility models.
Hence, using the theorems of the present chapter, it is possible to show that one can
repeat the reasoning of Hu et al. [2005] and Morlais [2009] and that similar results con-
tinue to hold for more general classes of market price of risk processes under appropriate
trading constraints such as bounded short-selling and borrowing.
We explore further implications in the subsequent two chapters where a detailed study

of the stability of the utility maximization problem is undertaken for the cone constrained
problem in Chapter 4 and in Chapter 5 for the constrained portfolio choice problem under
incomplete information.

3.8.2 Partial Equilibrium and Market Completion under Exponential
Moments

We now briefly describe the partial equilibrium framework of Horst et al. [2010] in which
structured securities that are written on nontradable assets are priced via a market
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clearing condition.
The agents in this economy have preferences which are given by dynamic convex risk

measures. The risk they are exposed to is given by two sources. The first is encoded
in a financial market in which frictionless trading in a stock S is possible. The second
is a non-financial risk factor R that can only be dealt with via a derivative written on
this external factor. It is assumed that this derivative completes the market, in fact it
is shown that in equilibrium the market is complete.
More specifically, while the market price λS of financial risk is given exogenously the

market price λR of external risk is determined via an equilibrium condition. This states
that when the derivative is priced according to the pricing rule arising from (λS , λR)
the agents’ aggregated demand matches the fixed supply. The demand is in this setting
given by the solutions to the agents’ individual risk minimization problems and is a
function of λR.
To ease the exposition we put ourselves in a representative agent setting where the

agent’s preferences are of entropic type, i.e. their utility function is exponential. Then
the following BSDE for the agent’s dynamic risk Ψ appears

dΨt = ZT
t dWt −

1
2
(
(λSt )2 − 2λSt Z1

t − (Z2
t )2
)
dt, ΨT = H,

where W is a two dimensional Brownian motion representing the two sources of risk,
Z = (Z1, Z2) is the corresponding control process of the pair (Ψ, Z) and H is the
agent’s endowment. Under suitable exponential moments assumptions the present study
provides the existence of a unique solution (Ψ̂, Ẑ) to the above BSDE. Once we check
that Ẑ2 defines a valid pricing rule, i.e. that E

(
(λS , Ẑ2) ·W

)
is a true martingale, we

know that the equilibrium market price λR of external risk is given by λR ≡ Ẑ2. In
conclusion we can apply the above results in order to generalize the approach of Horst
et al. [2010].
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4 A BSDE Approach to the Stability of the
Cone Constrained Utility Maximization
Problem

4.1 Introduction

In this chapter we study the optimal investment problem for an agent whose aim is to
maximize the expected power utility of terminal wealth when the admissible strategies
are those which are valued in a closed convex cone. They represent constraints like no
short selling. The focus in the present chapter is on stability, addressing the question
when the components of the solution, such as the optimal wealth and investment strategy,
depend continuously on the input parameters. These input parameters concern the
utility function, the asset price dynamics and the investment constraints.
This research is motivated by both practical applications as well as theory. Consider

a situation where the optimal investment portfolio is implemented, typically there will
be small errors in the calibration of input parameters. In order that the usefulness of
performing such an optimization is not diminished it is necessary to show that such
errors do not largely affect the optimizers, at least locally, which ties in with the above
question.
There is a huge volume of literature related to utility maximization going back as

far as Merton [1969, 1971], for an overview of the case where there are no investment
constraints we refer to the survey article of Schachermayer [2004] as well as the references
therein. The situation where there are cone or closed convex constraints has been studied
more recently. We refer the interested reader to the articles of Cvitanić and Karatzas
[1993] and Cuoco [1997] for Itô price dynamics and Mnif and Pham [2001], Karatzas
and Žitković [2003] and Westray [2009] for the case of semimartingale dynamics. The
modern solution approach for both constrained and unconstrained problems is via the
duality or martingale method, where the convexity of the problem as well as the link
between (a generalization of) martingale measures and replicable wealths is exploited.
With regards to stability, it is by the study of this dual problem that the literature

also has proceeded thus far. For instance, continuity with respect to the preferences
is investigated in Jouini and Napp [2004] for complete Itô price models and in Larsen
[2009] for incomplete markets with continuous semimartingale dynamics. In the complete
case of Jouini and Napp [2004], due to greater structure of the problem and uniform
boundedness assumptions, the authors prove the L% and the pointwise convergence of
the optimal wealth at each date, whereas in Larsen [2009] this is weakened to only
convergence in probability of the optimal terminal wealth. More recently, Kardaras and
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Žitković [2011] show that such convergence in probability of the optimal terminal wealth
also holds when there are illiquid assets which the investor may add to their portfolio and
when the statistical probability measure simultaneously varies. Finally we mention the
work by Nutz [2010a] who looks at risk aversion asymptotics and also provides results
on the continuity with respect to the risk aversion parameter.
Another theme, beginning with Larsen and Žitković [2007], relates to misspecifications

in the model, i.e. when the asset price dynamics vary. Continuity of the optimal wealth
is then shown under an additional uniform integrability assumption, again at terminal
time T only.
The previous articles consider stability in the situation when there are no investment

constraints. In the specific case when the utility function is the logarithm, this can be
generalized as shown in a recent article by Kardaras [2010]. The optimizing investment
strategy is then the numéraire portfolio and one may use its known explicit formula.
As we know, BSDEs provide an alternative framework for tackling the utility maxi-

mization problem, even in the presence of constraints. It is this fact which is exploited
in the present chapter, showing that questions of sensitivity for the optimal wealth pro-
cess, investment strategy and dual optimizer are directly related to stability results for
semimartingale BSDEs established in Chapter 3. This is under an exponential moments
condition which is weaker than the boundedness assumptions from the cited references
and hence allows for more generality in the model.
In this chapter we investigate the investor’s portfolio choice problem under cone con-

straints which we assume to be stochastic and we refer to the introduction in Chapter
1 for some examples of possible real-life interpretations. The first part of the chapter
now focuses on the existence and uniqueness of optimal solutions to the primal and dual
problems under an exponential moments condition on the mean-variance tradeoff. A
byproduct of our results is that the family of supermartingale measures for the stock
can serve as the dual domain for the cone constrained problem. Then, extending the
decomposition of elements in the dual domain given in Karatzas and Žitković [2003]
and Larsen and Žitković [2007] to the case of semimartingale dynamics with predictably
measurable cone constraints, we are led to the utility maximization BSDE from Nutz
[2011]. However, we derive our verification statement from BSDE comparison principles
in the spirit of Hu et al. [2005] and Morlais [2009] by showing that within our setting
the dual opportunity process exists and exhibits specific properties that are well suited
for the calculations. We mention that this is done under less strict assumptions on the
mean-variance tradeoff when compared to the above two references.
The second part of this chapter uses the one-to-one correspondence between optimizers

and solutions to the BSDE to study the continuity. Using this link with BSDEs we can
simultaneously consider continuity with respect to utility function, model dynamics,
statistical probability measure and cone constraints, integrating previous research into
one framework. To be more precise, stability with respect to the utility function is
formulated in terms of the agent’s relative risk aversion. The continuity with respect
to the model dynamics is based on variations of the mean-variance tradeoff. For the
statistical probability measure we consider convergence of the corresponding densities
while for the constraints we refer to the so-called closed set limit. The stability result then
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4.2 Framework and Main Results

is for the semimartingale topology, i.e. on the level of processes in contrast to convergence
at terminal time from the cited literature. Our final contribution is an example which
clarifies the compatibility of the so-called null-investments and the constraints as well as
provides the right notion of convergence of these constraints.
The present chapter is based on the working paper Mocha and Westray [2011b]. Its

structure is as follows, the modelling framework and main results are described in Section
4.2. In Section 4.3 we then consider the primal optimization problem. Sections 4.4
and 4.5 discuss the description of the dual domain and relationship between the utility
maximization problem and the solution to an appropriate BSDE. The connection with
continuity is then shown in Section 4.6. We note that related results concerning set-
valued analysis whose proof would interrupt the flow of the text are given in the Appendix
6.2.

4.2 Framework and Main Results
For the convenience of the reader let us briefly recall the utility maximization frame-
work from Section 1.2 which holds throughout. We work on a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions of right-continuity and completeness.
The time horizon T is a finite number in (0,∞) and F0 is the completion of the trivial
σ-algebra. All semimartingales are càdlàg.

The Market Model

There is a market consisting of one bond paying zero interest and d stocks with price
process S = (S1, . . . , Sd)T which is assumed to have dynamics

dSt = Diag(St)
(
dMt + d〈M〉tλt

)
,

where M = (M1, . . . ,Md)T is a d-dimensional continuous local martingale with M0 = 0
and λ is a d-dimensional predictable process, the market price of risk, satisfying

P
(∫ T

0
λT
t d〈M〉tλt < +∞

)
= 1.

Moreover, we recall the decomposition of the quadratic variation of M ,

〈M〉 = C ·A (4.2.1)

where C is a predictable process valued in the space of symmetric positive semidefinite
d × d matrices and A is a predictable increasing process. We are not restricted to a
specific choice of A as long as it remains uniformly bounded, see the remarks in Section
3.2. We then deduce the existence of predictable processes P and Γ valued in the space
of d× d orthogonal (resp. diagonal) matrices such that

〈M〉 = C ·A = P TΓP ·A = BTB ·A, (4.2.2)
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where we set B := Γ
1
2P . The matrix Γ has nonnegative entries only, with the eigenvalues

of C on its diagonal.
In the present chapter we require that the Assumption 1.3.1 on the existence of expo-

nential moments of all orders of the mean-variance tradeoff 〈λ ·M〉T holds.

Assumption 4.2.1. For all % > 0 we have that E
[
exp(% 〈λ ·M〉T )

]
< +∞.

Remark 4.2.2. Assumption 4.2.1 allows us to provide a unified presentation of the
duality and the BSDE approach to solving the utility maximization problem; it ensures
the existence of an equivalent local martingale measure for S as well as implying finiteness
of the primal and dual problems, see also Lemma 1.3.2. Since our analysis involves
semimartingale BSDEs the above condition allows us to apply the existence, uniqueness
and stability results from Chapter 3. We observe that our setting extends the framework
of Hu et al. [2005] and Morlais [2009] beyond the case of a bounded mean-variance
tradeoff. The reader may find a summary of the ideas behind these comments in Table
1.1 of Section 1.3.

The Portfolio Selection Problem

In contrast to the previous chapters, in the sequel we assume that trading in the above
market is subject to constraints which we now describe. Recall that an Rd-valued mul-
tivalued mapping G is a function G : [0, T ]×Ω→ 2Rd (the power set of Rd). It is called
predictably measurable if, for all closed subsets Q of Rd,

G−1(Q) := {(t, ω) ∈ [0, T ]× Ω | G(t, ω) ∩Q 6= ∅} ∈ P,

where P is the predictable σ-algebra on [0, T ] × Ω. The function G is called closed
(convex) if G(t, ω) is a closed (convex) set for all (t, ω) ∈ [0, T ]×Ω. We refer to Wagner
[1977] and Rockafellar [1976] for further details. The constraints are modelled by a
predictably multivalued mapping K and we assume it satisfies the following assumption.

Assumption 4.2.3. The mapping (t, ω) 7→ K(t, ω) ⊂ Rd is closed, convex, and polyhe-
dral in the following sense. There is an integer m ≥ 1, independent of (t, ω), together
with corresponding predictable M -integrable processes K1, . . . ,Km such that P-a.s. for
all t ∈ [0, T ]

K(t, ω) =


m∑
j=1

cjK
j
t (ω)

∣∣∣∣∣ cj ≥ 0, j = 1, . . . ,m

 .
Further discussion and explanation on the importance of the above assumption on K

from the point of view of existence of optimal strategies can be found in Czichowsky
and Schweizer [2011] as well as Czichowsky et al. [2011]. Namely, it ensures that the
family of the corresponding wealth processes is closed in the semimartingale topology.
We point at another important property. More explicitly, since the cone K is polyhe-
dral, the image BK of K under B is closed. Such a closedness property is not true in
general and the reader may find explicit counterexamples in Pataki [2007] along with a
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discussion of sufficient conditions. In Hu et al. [2005] the closedness of BK is ensured
by nondegeneracy assumptions on B. Since B is determined by the exogenous stock
dynamics and the choice of A we rather prefer to impose conditions on K which we
regard as being given by a regulator. A similar reasoning will lead to the consideration
of compact constraints in Chapter 5.
Clearly, the unconstrained case is covered by setting K ≡ Rd. Other special cases

include a constant polyhedral cone in Rd as in Karatzas and Žitković [2003], as well
as K ≡ Rd1 × {0}d2 with d = d1 + d2 in which we face a model where the processes
Sd1+1, . . . , Sd are nontradable latent factors. Further constraints on the tradable stocks
S1, . . . , Sd1 may then still be imposed.
We are now ready to introduce the notion of a trading strategy.

Definition 4.2.4. A predictable d-dimensional process ν is called admissible and we
write ν ∈ AK, if

(i) It is M -integrable, i.e.

P
(∫ T

0
νT
t d〈M〉tνt < +∞

)
= 1.

(ii) We have that ν ∈ K, µA-a.e. Here, µA is the Doléans measure on P.

Exactly as in Chapter 1, an admissible process ν will be interpreted as an investment
strategy and its components νi represent the proportion of wealth invested in each stock
Si, i = 1, . . . , d, now subject to investment constraints that are determined by K. In
particular, for some initial capital x > 0 and an admissible strategy ν, the associated
wealth process Xx,ν evolves as follows

Xx,ν := x E(ν ·M + ν · 〈M〉λ), (4.2.3)

where E denotes the stochastic exponential. The family of all wealth processes arising
from admissible strategies will be denoted by X (x), where we notationally suppress the
dependence on K. Furthermore, we will omit writing explicitly the dependence of Xx,ν

on the initial capital, when no ambiguity arises we just write Xν .

Remark 4.2.5. We know that the wealth equation is often written in additive format,
X = x + H · S for a predictable S-integrable process H specifying the amount of the
asset held in the portfolio and chosen such that it is valued in some constraint set and
the resulting wealth process remains (only) nonnegative. We write X add(x) for such
wealth processes and observe that X (x) ⊂ X add(x). In the case that XT > 0, which
implies X > 0 since X is a supermartingale under some equivalent measure (assumed
to exist, e.g. by the Assumption 4.2.1 the minimal martingale measure with density
process E(−λ ·M) is such a measure), the correspondence between H and ν is given by
H iSi = νiX for i = 1, . . . , d. The cone constraint in the additive formulation consists of
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the requirement that H ∈ L where

L(t, ω) :=


m∑
j=1

cj L
j
t (ω)

∣∣∣∣∣ cj ≥ 0


with Rd-valued predictable S-integrable processes L1, . . . , Lm and such that the ith com-
ponent of each Kj equals Si times the ith component of Lj . Here, Kj , j = 1, . . . ,m
denote the processes from the Assumption 4.2.3. In particular the framework of Karatzas
and Žitković [2003], where L is constant, can be embedded into ours since we allow for
a predictably measurable multivalued mapping K. We thus allow for more generality in
the model, e.g. cover constraints that are determined by a stochastic process.

Our motivation for writing wealth in exponential format stems from the fact that
the dual domain of the portfolio choice problem will (and should) be a family of super-
martingale measures, hence stochastic exponentials. It then turns out that to describe
the primal and dual optimizers and a BSDE it is most convenient to write wealth as a
stochastic exponential as well. An additional byproduct of this parameterization is that
it simplifies the proof of the decomposition of the elements of the dual domain.

Since in our setting the optimal wealth X̂ exists and satisfies X̂T > 0 we may, without
loss of generality, choose to optimize over the family of (strictly) positive wealth processes
X (x), see Lemma 4.3.1. A consequence of this is that for our definitions of K and L,
one can switch freely between the two formulations.

Our agent has preferences modelled by a power utility function U ,

U(x) = xp

p
,

for p ∈ (−∞, 0) ∪ (0, 1). They start with initial capital x > 0 and choose admissible
strategies ν so as to maximize the expected utility of terminal wealth. We hence derive
the following primal optimization problem

u(x) := sup
ν∈AK

E
[
U
(
Xx,ν
T

)]
. (4.2.4)

Remark 4.2.6. Similarly to Remark 1.2.2 we point out that for power utility the value
function factors, i.e. we can write

u(x) = xp sup
ν∈AK

E
[
U
(
X1,ν
T

)]
= U(x) cp,

for some constant cp, p ∈ (−∞, 0) ∪ (0, 1), to be identified below. Again as a corollary
the optimal investment strategy ν̂, when it exists, is independent of x and the primal
optimizer X̂ has a simple linear dependence on x.
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The Dual Problem

In analogy to the procedure in Chapter 1 we introduce the set of adapted càdlàg processes

Y(y) := {Y ≥ 0 |Y0 = y and XY is a supermartingale for all X ∈ X (1)} , y > 0,

and consider the minimization problem

ũ(y) := inf
Y ∈Y(y)

E
[
Ũ
(
YT
)]
, (4.2.5)

where Ũ is the conjugate (or dual) of U given for y > 0 by

Ũ(y) := sup
x>0
{U(x)− xy} = − yq

q ,

with q := p
p−1 the dual exponent to p. From the relation Y(y) = yY(1) we see the

factorization property for ũ,

ũ(y) = inf
Y ∈Y(1)

E
[
Ũ
(
yYT

)]
= yq inf

Y ∈Y(1)
E
[
Ũ
(
YT
)]

= Ũ(y) c̃p.

The relationship between c̃p and cp is provided in Theorem 4.2.8.

The Main Result for the Cone Constrained Problem

The utility maximization problem with semimartingale dynamics and general utility
functions has been studied under constant constraints, see Karatzas and Žitković [2003]
for the case with intertemporal consumption as well as Westray [2009]. The next lemma
shows that the assumptions necessary to apply the results from the second reference
hold in our setting.

Lemma 4.2.7. Let Assumption 4.2.1 hold then there exists an equivalent local martin-
gale measure for S and max(u(x), ũ(y)) < +∞ for all x, y > 0.

Proof. As for Lemma 1.3.2 we have that Y λ := E(−λ ·M) defines an equivalent local
martingale measure (the so-called minimal martingale measure) and for the second part,
considering the case p ∈ (0, 1) only and from the definition of Ũ , we have

max(u(x), ũ(y)) ≤ E
[
Ũ
(
yY λ

T

)]
+ sup
ν∈AK

E
[
Xx,ν
T yY λ

T

]
≤ −yq

q E
[(
Y λ
T

)q]+ xy.

Observing q < 0 and using the standard estimates, see (2.5.7) or the proof of Lemma
1.3.2, completes the proof.

The following theorem states the existence and uniqueness results that are pertinent
for our study. These results are precisely the counterparts to the known results stated
in Theorem 1.2.4. However, we note that it is essential for our study that the dual
optimizer indeed is contained in the specific dual domain defined above. We provide
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the details in Section 4.3 where we require that the set of wealth processes be closed
in the semimartingale topology, which is guaranteed by the assumption on K to be
polyhedral. Contrary to the usual procedure of proving the existence of a solution to
the portfolio choice problem via duality we consider the primal problem first and the
dual problem afterwards, having to guarantee that the dual optimizer obtained does
not exhibit singular parts as it possibly does in the literature which also covers random
endowment, see Cvitanić et al. [2001] or Westray [2009].

Theorem 4.2.8. Suppose Assumptions 4.2.1 and 4.2.3 hold and let x, y > 0. Then:

(i) There exists an admissible strategy ν̂ ∈ AK which is optimal for the primal problem,

u(x) = E
[
U
(
X̂T

)]
, where X̂ = Xx,ν̂.

In addition, ν̂ is unique in the sense that for any other optimal strategy ν̄ ∈ AK
the wealth processes Xx,ν̂ and Xx,ν̄ are indistinguishable.

(ii) There exists an optimal Ŷ y ∈ Y(y) for the dual problem, unique up to indistin-
guishability,

ũ(y) = E
[
Ũ
(
ŶT
)]
, where Ŷ = Ŷ y.

(iii) The functions u and ũ are continuously differentiable and conjugate. If y = u′(x)
then, adopting the notation from (i) and (ii), we have the relation ŶT = U ′(X̂T )
and X̂Ŷ is a martingale on [0, T ]. More explicitly, there are constants cp, p ∈
(−∞, 0) ∪ (0, 1), such that with c̃p := (cp)

1
1−p ,

u(x) = U(x) cp, ũ(y) = Ũ(y) c̃p.

BSDEs and Semimartingale Background
Our aim is now to analyze the above problems and their stability by relating them
directly to the solution of a continuous semimartingale BSDE of the following type:

dΨt = ZT
t dMt + dNt − F (t, Zt) dAt −

1
2 d〈N〉t, ΨT = 0, (4.2.6)

where F is a predictable function [0, T ] × Ω × Rd → R called the generator or driver.
For the notion of a solution to the BSDE (4.2.6) we refer to the Definition 3.2.1.
In view of the results from Chapter 3 we shall be especially interested in solution

triples (Ψ, Z,N) with Ψ ∈ E, where E denotes the space of processes Υ such that

E[exp(%Υ∗)] < +∞ for all % > 0,

i.e. those processes whose supremum, Υ∗ := sup0≤t≤T |Υt|, possesses exponential mo-
ments of all orders. In particular we can rely on a uniqueness result for BSDE solutions
with Ψ ∈ E, providing us with the desired straight link. Moreover, we then can also
refer to the stability results from Section 3.2.7. As we will see later, showing that Ψ̂ ∈ E
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relies on the dynamic optimality properties of the so-called primal and dual opportunity
processes. While such results may not hold for the dual domain considered in the gen-
eral setting of Nutz [2010b], they do hold for the dual domain considered here, which is
another motivation for defining the dual domain as above.
For % ≥ 1 we writeM% for the space of continuous P-local martingales M satisfying

M0 = 0 and
E
[
〈M〉%/2T

]
< +∞.

More generally for an arbitrary continuous semimartingale Υ we shall indirectly use
the H% norm. Given the canonical decomposition Υ = Υ0 + MΥ + AΥ where MΥ is
a (continuous) local martingale and AΥ a (continuous) process of finite variation, it is
defined via

‖Υ‖H% := |Υ0|+
∥∥∥〈MΥ〉1/2T

∥∥∥
L%(P)

+
∥∥∥∥∥
∫ T

0

∣∣dAΥ
s

∣∣∥∥∥∥∥
L%(P)

.

The stability result that we are going to derive involves the notion of convergence in
the semimartingale topology for which we refer the reader to Émery [1979] and Mémin
[1980] for more details. The following proposition collects together the key results needed
in the present study.

Proposition 4.2.9 (Émery [1979] Lemma 6, Nutz [2010a] Appendix A). Let (Υn)n∈N0

be a family of continuous semimartingales and % ≥ 1, then

(i) The sequence (Υn)n∈N converges to Υ0 in the semimartingale topology if and only
if every subsequence of (Υn)n∈N has a subsequence converging locally to Υ in H%.

(ii) If (Υn)n∈N converges to Υ0 in the semimartingale topology then (E
(
Υn)

)
n∈N con-

verges to E
(
Υ0) in the semimartingale topology.

(iii) Convergence in the semimartingale topology implies convergence uniformly on com-
pacts in probability, ucp in short, see Protter [2005] Section II.4.

The Decomposition of the Dual Domain and the BSDE

One final notation we shall need is that of the polar cone. Given the conic predictably
measurable multivalued mapping K we define (and easily derive)

K◦(t, ω) : =
{
l ∈ Rd

∣∣∣ kTl ≤ 1 for all k ∈ K(t, ω)
}

=
{
l ∈ Rd

∣∣∣ kTl ≤ 0 for all k ∈ K(t, ω)
}

=
m⋂
j=1

{
l ∈ Rd

∣∣∣ (Kj
t (ω))Tl ≤ 0

}
,

where the Kj , j = 1, . . . ,m are from Assumption 4.2.3. Under the present assumptions
on K we have that K◦ is again a closed convex predictably measurable multivalued
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mapping. The above definition and second equality apply to any given cone, the third
characterization holds for polyhedral cones.
Having described our framework and relevant background, we can state the first of

the main results. Specifically, we provide a more precise structure of the elements in
the dual domain as well as the optimizer Ŷ . A version of this result may be found in
Karatzas and Žitković [2003] Proposition 4.1 for the case where one has nondegenerate
Itô dynamics for S and a polyhedral cone K which is independent of (t, ω), see also
Larsen and Žitković [2007] Proposition 3.2 for the one-dimensional unconstrained case.
These findings are in line with earlier results which are implicitly present in Cvitanić
and Karatzas [1992] and Rouge and El Karoui [2000], for instance. We extend them to
the case of semimartingale dynamics and predictably measurable constraint sets. Due
to writing wealth in exponential format the proof becomes simpler and slightly more
general when compared to Karatzas and Žitković [2003] and Larsen and Žitković [2007].

Theorem 4.2.10. Let Assumption 4.2.3 hold.

(i) Let Y ∈ Y(1) with YT > 0. Then there exist a predictable M -integrable process κY
with

B(λ− κY ) ∈ (BK)◦, µA-a.e.

as well as a local martingale NY orthogonal to M and a predictable decreasing
càdlàg process DY with DY

0 = 1 and DY
T > 0 P-a.s. such that

Y = DY E(−κY ·M +NY ).

(ii) For the optimizer Ŷ y ∈ Y(y) (assumed to exist) we have the representation,

Ŷ y = y E(−κ̂ ·M + N̂),

for processes κ̂ := κŶ
1 and N̂ := N Ŷ 1 which are independent of y. In particular

the decreasing process from (i) satisfies DŶ 1 ≡ 1.

The next proposition relates the optimizers to the solution of a quadratic semimartin-
gale BSDE, similarly to Mania and Tevzadze [2008] for the unconstrained case and Nutz
[2011] for the constrained case. Under boundedness and nondegeneracy assumptions the
BSDE also appears in Hu et al. [2005] and Morlais [2009]. We mention that we prefer
to require the continuity of the orthogonal martingale part separately, with the main
application of a continuous filtration in mind.

Proposition 4.2.11. Let the Assumptions 4.2.1 and 4.2.3 hold.

(i) Let ν̂ denote the optimal strategy and N̂ the local martingale from Theorem 4.2.10
which we assume to be continuous. Then for every x > 0 the triple (Ψ̂, Ẑ, N̂),
where

Ψ̂ := log
(
u′(x)Ŷ 1

U ′(X̂)

)
and Ẑ := −κ̂+ (1− p)ν̂,
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is the unique solution to the BSDE (4.2.6) with Ψ̂ ∈ E where

F (·, z) = 1
2
∥∥Bz∥∥2 − q

2
∥∥ΠBK

(
B(z + λ)

)∥∥2
.

We write Π for the nearest point or projection operator onto the indicated cone.

(ii) Given the unique solution (Ψ̂, Ẑ, N̂) from (i) we can write the optimizers, for the
initial values x = 1, y = 1, up to indistinguishability as

X̂1 = E(ν̃ ·M + ν̃ · 〈M〉λ), Ŷ 1 = E
(
− κ̃ ·M + N̂

)
,

where the predictable integrands ν̃ and κ̃ are defined via

ν̃ := 1
1− pP

TΓ̃
1
2 ΠBK

(
B(Ẑ + λ)

)
, κ̃ := P TΓ̃

1
2
[
Bλ−Π(BK)◦

(
B(Ẑ + λ)

)]
and satisfy, µA-a.e. Bν̃ = Bν̂ and Bκ̃ = Bκ̂. The process (Γ̃i,j)i,j=1,...,d is chosen
to be a predictable process valued in the space of d× d diagonal matrices such that
it satisfies

Γ̃ij =
{

1
/
Γii if i = j and Γii 6= 0

0 if i 6= j.

Remark 4.2.12. The content of the above proposition is essentially known, cf. Nutz
[2011] Corollaries 3.12 and 5.18, although it is stated differently there. Define the process
L := exp(Ψ̂), then it is easy to see that L is the opportunity process of Nutz [2011] where
the author shows that the Galtchouk-Kunita-Watanabe decomposition of L satisfies an
appropriate BSDE. In contrast via our Theorem 4.2.10, we can apply Itô’s formula
directly to Ψ̂ to get the BSDE. As a consequence we augment the results of Nutz [2011]
by providing a simple additive decomposition of the process Ẑ into a part κ̂ with well
defined properties related to the dual problem and polar cone (BK)◦ and a part related
to the optimal strategy ν̂. We also note that the unique correspondence above is derived
via a BSDE comparison theorem under exponential moments, rather than a verification
theorem as in Nutz [2011].
Proceeding as above we use a reasoning similar to Hu et al. [2005] and Morlais [2009]

but allow for more generality in the market dynamics. No boundedness or nondegeneracy
assumptions are required. To be more precise, nondegeneracy has been partially replaced
by the assumption on the cones to be polyhedral. The formula for the optimal strategy
is as in the cited references, however, due to Moreau’s decomposition theorem, which is
available for cones, no measurable selection argument is involved.

Remark 4.2.13. We point out a consequence of item (ii) above. Whilst the wealth
process is unique in the space of càdlàg processes, the representation of the strategies is
not unless C is invertible or the strategy is considered in the image of B; similar remarks
apply to κ̂. This is related to the discussion of what is known as null-investments in the
literature and the above proposition identifies their components.
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The Stability Result
The main idea of the present chapter is to use the link from Proposition 4.2.11 to study
the continuity of the utility maximization problem with respect to its inputs via BSDE
methods. More explicitly, we are interested in the dependence of the optimal objects with
respect to the market price of risk process λ, the probability measure P, the investor’s
relative risk aversion parameter p and the constraint set K. As pointed out above, the
dependence on the initial wealth is a simple linear one, due to the factorization property.
Hence we vary only the four inputs λ, P, p and K by means of sequences

(λn)n∈N, (Pn)n∈N, (pn)n∈N and (Kn)n∈N

of parameters that converge to λ =: λ0, P =: P0, p =: p0 and K =: K0 in an appropriate
sense.
Fix n ∈ N, now we have that λn is a predictable M -integrable process and Pn is

assumed to be a measure equivalent to P with Radon-Nikodým derivative

dPn

dP
= E(−βn ·M + Ln)T .

Here (βn)n∈N is a sequence of predictable M -integrable processes, (Ln)n∈N a sequence
of continuous P-local martingales orthogonal to M and β0 ·M :≡ L0 :≡ 0. Due to the
Girsanov theorem the processMn := M+〈M〉·βn is a (continuous) Pn-local martingale.
This leads to dynamics for the asset S = Sn under Pn, of the form

dSnt = Diag(Snt )
(
dMn

t + d〈Mn〉t(λnt − βnt )
)
,

where we have used the continuity to deduce 〈Mn〉 = 〈M〉 = C · A. Each risk aversion
parameter pn is valued in (−∞, 0) ∪ (0, 1) and corresponds to a utility function

Un(x) := 1
pn
xp

n
, x > 0.

The cone Kn is assumed to satisfy Assumption 4.2.3 so that we can consider the primal
problem as a function of the inputs

un(x) := sup
ν∈AKn

EPn
[
Un
(
Xn,x,ν
T

)]
,

where Xn,x,ν represents the wealth acquired from an investment in Sn and considered
under Pn, so that we have

Xn,x,ν = x E(ν ·M + ν · 〈M〉λn
)

= x E(ν ·Mn + ν · 〈Mn〉(λn − βn)
)
. (4.2.7)

The definition of AKn is invariant under changes of equivalent probability measures so
that the above maximization is well defined under suitable assumptions on the parame-
ters.
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Assumption 4.2.14. Each Kn, n ∈ N0, satisfies Assumption 4.2.3 and for all % > 0

sup
n∈N0

EP

[
exp

(
%
(
〈λn ·M〉T + 〈βn ·M〉T + 〈Ln〉T

))]
< +∞.

The previous assumption ensures that for fixed n ∈ N0 and all % > 0

EPn
[
exp

(
%
〈
(λn − βn) ·M

〉
T

)]
< +∞,

which can be shown similarly to the proof of Lemma 4.2.7 and is omitted. In particular
we may apply Theorem 4.2.8 for each n ∈ N0 to deduce the existence of a primal
optimizer and corresponding optimal portfolio,

X̂n := X̂(λn,Pn, pn,Kn), ν̂n := ν̂(λn,Pn, pn,Kn), (4.2.8)

where we write the optimizers as a function of the parameters (λn,Pn, pn,Kn). A similar
convention holds for the value function un := u(λn,Pn, pn,Kn). We also use the notation
X̂ := X̂0 and ν̂ := ν̂0 and observe that due to the integrability assumption above Ln is
actually a true martingale for every n ∈ N0.
The main result shows that under suitable assumptions the optimizers are continuous

with respect to these inputs. Note that in the following assumption, since each Kn is
polyhedral, the projection BKn is closed.

Assumption 4.2.15. The preferences and markets converge in the following sense

lim
n→+∞

pn = p,

lim
n→+∞

(〈
(λn − λ) ·M

〉
T

+
〈
βn ·M

〉
T

+
〈
Ln
〉
T

)
= 0

in P-probability. We assume that

Lim
n→+∞

BKn = BK µA-a.e.

where Lim denotes the closed set limit and we refer to Appendix 6.2 for more details.

Observe that the above assumption on (pn)n∈N implies pointwise convergence of the
investor’s utilities as considered in Jouini and Napp [2004], Kardaras and Žitković [2011]
and Larsen [2009]. Stability with respect to the statistical measure is investigated in
Kardaras and Žitković [2011] and with respect to the market price of risk in Larsen
and Žitković [2007]. We also note that the sensitivity with respect to the constraints is
considered in Kardaras [2010] for the numéraire portfolio, i.e. for p = 0, as well as in
Frei [2009] for the exponential indifference value under boundedness assumptions.

Theorem 4.2.16. Let the Assumptions 4.2.14 and 4.2.15 hold and X̂n and ν̂n be as in
(4.2.8), with each N̂n continuous. Then as n→ +∞:

(i) The sequence of processes (ν̂n − ν̂) ·M converges to zero inM2.
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(ii) The family of wealth processes X̂n ∈ X (x), n ∈ N, converges to X̂ ∈ X (x) in the
semimartingale topology.

(iii) The functions un and their derivatives (un)′ converge pointwise to u and u′ respec-
tively.

Remark 4.2.17. We can establish identical results for the corresponding sequence of
dual problems and their optimizers. However since these are not the main objects of
interest we do not state them now but pursue them further in Section 4.6. We also note
that the above theorem is best formulated for a continuous filtration.

Remark 4.2.18. We discuss here in more detail how the theorem above relates to
others in the literature. When βn · M ≡ Ln ≡ 0, pn = p and Kn ≡ Rd we are in
the setting of Larsen and Žitković [2007]. Observe that our Assumption 4.2.14 is more
restrictive than the notion of “V-relative compactness” introduced therein. Thus by
fixing the utility and imposing stricter conditions on the λn we get convergence of the
whole path process together with the convergence of the optimal strategies, strengthening
the main results of Larsen [2009] as well as Larsen and Žitković [2007] where one gets
convergence in probability of the optimal terminal values X̂n

T . From the convergence in
the semimartingale topology we then deduce the corresponding continuity results given
in Bayraktar and Kravitz [2010] where T is replaced by a stopping time τ .
When βn ·M ≡ Ln ≡ 0, λn ≡ λ and Kn ≡ Rd we recover Nutz [2010a] Corollary 5.7.

Therein the process S need not be continuous. The reason for this is that when only
the risk aversion parameter varies one can compare the opportunity processes directly
via Jensen’s inequality. When P, λ and K also vary such an approach seems not to be
feasible, hence our reliance on BSDE methods alone which necessitates more stringent
assumptions.
For λn ≡ λ and Kn ≡ Rd observe that under our assumptions (Pn)n∈N converges to

P in total variation. Thus we recover Kardaras and Žitković [2011] Theorem 1.5 in the
case where there is no random endowment and the utility is power. Similarly to the case
of Larsen and Žitković [2007] above, our Assumption 4.2.14 implies the Assumption (UI)
therein. As a consequence we partially extend their results to convergence of the optimal
wealth process in the semimartingale topology in a setting without random endowment.
When p = 0, λn ≡ λ and, in addition to the cones and measure, the information

structure is also allowed to vary, Kardaras [2010] obtains results similar to ours for the
numéraire portfolio using the explicit formula for it. The problem there differs from ours
as it is “myopic” and as such there is no opportunity process and corresponding BSDE
(in the sense above, however see Appendix 6.1), so that one cannot directly compare
the two approaches. We note however that in both cases the convergence of the cones is
cast in terms of the closed set limit, see however Remark 4.2.19.
An approach similar to ours was given for the exponential indifference value in Frei

[2009]. Since λn ≡ λ and βn ·M ≡ Ln ≡ 0 hold there, the quadratic growth and locally
Lipschitz assumptions on the respective BSDEs are uniform in n so that a corresponding
stability result can be used in the setting of a bounded mean-variance tradeoff that is
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present in that article. Moreover, the conditions required for stability to hold are on the
drivers of the BSDEs and not in terms of the input parameters.
As a final remark, when the utility function is allowed to vary, one needs to assume

that the sequence converges pointwise and satisfies a uniform growth condition, see
Jouini and Napp [2004], Kardaras and Žitković [2011] and Larsen [2009]. This is implied
by our Assumption 4.2.15 so that we are consistent with the literature in this respect.

Remark 4.2.19. Here we elaborate further on the type of convergence assumed on the
cones. Together with Proposition 6.2.3, Assumption 4.2.15 implies that the projections
ΠBKn converge pointwise to ΠBK which is the key property in showing the convergence
of the drivers of the related BSDEs. Define the set

N(t, ω) := Ker
(
C(t, ω)

)
= Ker

(
B(t, ω)

)
,

a closed predictably measurable multivalued mapping. This is the set of null-investments
described in Karatzas and Kardaras [2007]. In Kardaras [2010] the author replaces
Assumption 4.2.15 with

N ⊂ Kn for all n ∈ N0 and Lim
n→+∞

Kn = K µA-a.e.

Proposition 6.2.4 in the appendix shows that this is sufficient to imply Limn→+∞BKn =
BK µA-a.e. so that the results of the present chapter remain valid under this alternative
assumption. The requirement N ⊂ Kn for all n ∈ N0 means that although the investor
faces investment constraints imposed on their portfolio, e.g. by regulators or the market
structure, these constraints must be compatible with the null-investments in the sense
that simultaneously the agent must be allowed to choose null-investment strategies.
When Ker(C) has a complicated structure this can be difficult to check and thus we
prefer Assumption 4.2.15.

The Compatibility of the Set Convergence with the Null-investments
Note that Limn→∞Kn = K alone is not sufficient for the stability result to hold as
is illustrated by a simple counterexample in which the investment constraints are not
compatible with a redundant structure of the market.
Namely, consider a standard one-dimensional Brownian motion W and set M :=

(W, 0)T. Taking a constant λ = (λ1, 0)T ∈ R2, λ1 > 0, completes the description of the
market. We may choose At ≡ t so that the process B becomes

B ≡
(

1 0
0 0

)
.

The sequence of (deterministic) constraint sets is defined by setting

Kn := {(x, y) ∈ R2 | y = nx, x ≥ 0}, K := {(x, y) ∈ R2 |x = 0, y ≥ 0}.

One can see that these cones are polyhedral and that we have {(0, 0)} = BK 6=
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Limn→+∞BKn = [0,+∞) × {0}. Note though that we do have K = Limn→+∞Kn =
{0} × [0,+∞). From this description we immediately have that in the limiting case
the agent is only allowed to invest in stocks that do not yield any extra profit when
compared to the bond while for n ≥ 1 they can choose an optimal strategy ν̂n and it
does not matter that ν̂n2 = nν̂n1 may become arbitrarily large since it can be offset by a
position in the bond, whose evolution is the same as the one of S2. Indeed, the optimal
position in the first stock is ν̂n1 = λ1/(1− p) which clearly does not converge to zero, the
only possible position in the first stock in the limiting case, by assumption. The optimal
wealth for n ≥ 1 is given by

X̂n
t = x exp

(
λ1

1− p Wt + λ2
1(1− 2p)

2(1− p)2 t

)
,

which does not equal X̂ ≡ x, the optimal wealth process for the constraint set K.
Correspondingly, the value functions un do not converge to u, since for x > 0

un(x) = 1
p
xp exp

(
pλ2

1T

2(1− p)

)
and u(x) = 1

p
xp.

Remark 4.2.20. The reader may ask whether it is necessary to vary λ and P or whether
by a sensible choice of the Girsanov transform this can be reduced to simply varying P.
In certain cases this is indeed the case, typically when M = W is a Brownian motion.
However in general not so as the following example illustrates. Set M := W ·W for a
one-dimensional Brownian motion. Thus the asset has dynamics

dSt = St(Wt dWt + λtW
2
t dt) under P.

If λ is allowed to vary, say to λ̃, all models can be achieved such that

dSt = St(Wt dWt + λ̃tW
2
t dt) under P.

However, if only P can be varied, we have dP̃/dP := E(−β ·W ) and the process S has
dynamics

dSt = St(Wt dW̃t + (λt − βt)W 2
t dt) under P̃,

where W̃ is a P̃-Brownian motion. In particular we will find it impossible to recreate
the first dynamics as W is not a Brownian motion under P̃.

4.3 Cone Constrained Utility Maximization
The utility maximization problem under polyhedral cone constraints is studied in detail
in Karatzas and Žitković [2003] and Westray [2009] for the additive representation.
We hence work also in the additive framework here and refer the reader to Remark
4.2.5 for more details. We note that in the mentioned articles the constraint set L is
independent of (t, ω). In this section we show how the results of Westray [2009] can
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be extended to give Theorem 4.2.8. The key result for our analysis above consists of
having the dual optimizer as an element of our specific dual domain of supermartingale
measures. A careful reading of the proof of Westray [2009] Theorem 3.4.2 on existence
and uniqueness shows that one needs one specific property of the cone K (L respectively),
namely, provided that the set

X add(1) is closed in the semimartingale topology

then the main existence result Westray [2009] Theorem 3.4.2 continues to hold with a
predictably measurable, non-empty, closed convex multi-valued mapping K (L respec-
tively).

Lemma 4.3.1. Suppose that K satisfies Assumption 4.2.3 then X add(1) is closed in the
semimartingale topology.

Proof. Since K(t, ω) (and hence L(t, ω)) is a polyhedral cone for all t ∈ [0, T ] P-a.s. we
see that Czichowsky and Schweizer [2011] Corollary 4.6 applies. This guarantees the
result.

We now adapt the results of Westray [2009] which are in the context of the utility
maximization with a random endowment and begin with the primal problem.

Lemma 4.3.2. Suppose that Assumptions 4.2.1 and 4.2.3 hold. Then:

(i) There exists an optimal terminal wealth X̂T , X̂ ∈ X add(1), such that

E
[
U
(
X̂T

)]
= sup

X∈Xadd(1)
E
[
U
(
XT

)]
.

Moreover, any two such primal optimizers X̂ and X̄ are indistinguishable.

(ii) We have that X̂T > 0 P-a.s. so there is an optimal strategy ν̂ ∈ AK with X̂ =
X1,ν̂ ∈ X (1).

(iii) The optimal strategy ν̂ is unique in the sense that given any other admissible strat-
egy ν̄ with corresponding wealth process X1,ν̄

T which is optimal for the primal prob-
lem we have

E
[
〈(ν̂ − ν̄) ·M〉T

]
= 0.

Proof. From Westray [2009] Theorem 3.4.2 (iii) we see that there is an admissible Ĥ
such that with X̂T := 1 + (Ĥ · S)T

E
[
U
(
X̂T

)]
= sup

X∈Xadd(1)
E
[
U
(
XT

)]
.

For the notion of admissibility of Ĥ we refer to the cited thesis. Since U is strictly concave
a standard argument involving convex combinations gives the uniqueness at terminal
time, see also Kramkov and Schachermayer [1999] Lemma 3.3. For completeness we now
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derive the uniqueness on the level of processes. Let X̂ and X̄ be two primal optimizers,
for which we know that X̂T = X̄T . Now suppose there is a t ∈ [0, T ) and a set A ∈ Ft
such that X̂t > X̄t on A and P(A) > 0. Define the integrand

H := Ĥ1[0,t] + H̄1(t,T ]1A + Ĥ1(t,T ]1Ac ,

where Ĥ and H̄ are the integrands for X̂ and X̄. Observe that X := 1+H ·S ∈ X add(1)
as we have (H · S)u = (X̄u + X̂t − X̄t) 1A + X̂u 1Ac for u ≥ t and this is nonnegative by
assumption (recall that X̂t > X̄t on A). Now we note that X̂T = X̄T P-a.s. and write

E[U(XT )] = E
[
1AcE

[
U
(
X̂T

)∣∣∣Ft]+ 1AE
[
U
(
X̄T + X̂t − X̄t

)∣∣∣Ft]] > E
[
U
(
X̂T

)]
.

This is a contradiction and the result in (i) follows from the continuity of the wealth
processes.
For item (ii) observe from Westray [2009] Theorem 3.4.2 (iv) that X̂T = −Ũ ′

(
dζ̂c
dP

)
where ζ̂c is a finite, nonnegative and countably additive measure that is absolutely
continuous with respect to P. Since −Ũ ′(y) = 0 if and only if y = +∞ for y ≥ 0
we cannot have that X̂T is zero on a set of nonzero P-measure, this would contradict the
finiteness of ζ̂c.
For item (iii) we have the equality E(ν̂ ·M + ν̂ · 〈M〉λ) ≡ E(ν̄ ·M + ν̄ · 〈M〉λ). By the

uniqueness of the stochastic logarithm we derive that ν̂ ·M + ν̂ · 〈M〉λ ≡ ν̄ ·M + ν̄ · 〈M〉λ
and thus it follows that (ν̂ − ν̄) ·M is a continuous local martingale of finite variation
and is hence constant and equal to zero, which proves the last assertion.

In Westray [2009], following Cvitanić et al. [2001], the dual domain is a subset of
L∞(P)∗, the bounded, finitely additive measures that are absolutely continuous with
respect to P. It contains Yadd(y) where

Yadd(y) :=
{
Y ≥ 0 |Y0 = y and XY is a supermartingale for all X ∈ X add(1)

}
⊂ Y(y).

Note that Yadd(y) depends on L (respectively K). The next lemma which shows that
the dual minimizer of Westray [2009] can be related to an element of Yadd(y) is key.

Lemma 4.3.3. Let the assumptions of the previous lemma hold. Then, given y > 0,
there is a Ŷ y ∈ Yadd(y) ⊂ Y(y) which is optimal for the dual problem (4.2.5), unique up
to indistinguishability and with Ŷ y

T > 0, P-a.s.

Proof. Define the sets

C := {ξ ∈ L0(P) | 0 ≤ ξ ≤ XT , X ∈ X add(1)}
D := {η ∈ L0(P) | 0 ≤ η ≤ YT , Y ∈ Yadd(1)}.

By construction and the above lemma we have

u(1) = E
[
U
(
X̂T

)]
= sup

ξ∈C
E
[
U(ξ)

]
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and thus, using the Calculus of Variations argument from the proof of Bouchard and
Pham [2004] Lemma 5.7, one can show that with η̃ := U ′(X̂T ) > 0 we obtain that
E
[
η̃ (X̂T − ξ)

]
≥ 0 for all ξ ∈ C. We set y := E

[
η̃X̂T

]
= E

[
(X̂T )p

]
> 0 and observe that

E[η̃ ξ] ≤ y for all ξ ∈ C. Hence η̃/y ∈ C◦, where we write C◦ for the polar of the cone C,

C◦ := {η ∈ L0
+(P)

∣∣E[ξη] ≤ 1 for all ξ ∈ C}.

Observing from Westray [2009] Lemma 3.5.7 that ξ ∈ C if and only if ξ ≥ 0 and EQ[ξ] ≤
1 for all Q ∈Msup, we derive that C = (Msup)◦. Here,

Msup := {Q ∼ P |X is a Q-supermartingale for all X ∈ X add(1)}.

Applying the same reasoning as in the proof of Kramkov and Schachermayer [1999]
Lemma 4.1 we derive that D◦◦ = D and equating measures Q with their densities ZQ

we are led to conclude that Msup ⊂ D. Hence C◦ = (Msup)◦◦ ⊂ D◦◦ = D from which
η̃/y ∈ D. Thus there is a Ŷ ∈ Yadd(1) with 0 < η̃/y ≤ ŶT and such that

1 = E
[
X̂0Ŷ0

]
≥ E

[
X̂T ŶT

]
≥ E

[
X̂T η̃/y

]
= 1.

In particular X̂Ŷ is a martingale. We conclude that Ŷ y := yŶ ∈ Yadd(y) is a dual
optimizer. More explicitly, since η̃ = U ′(X̂T ),

E
[
Ũ(Ŷ y

T )
]
≥ inf

Y ∈Yadd(y)
E
[
Ũ(Y )

]
≥ inf

Y ∈Yadd(y)
E
[
U(X̂T )− X̂TY

]
≥ E

[
U(X̂T )

]
− y

= E
[
U(X̂T )

]
− E

[
X̂T η̃

]
= E

[
Ũ(η̃)

]
≥ E

[
Ũ(Ŷ y

T )
]
.

For uniqueness we again suppose that there exists a t ∈ [0, T ) and a set A ∈ Ft such
that Ŷt > Y t on A and P(A) > 0, where Ŷ and Y are two optimal dual processes that
are necessarily equal at terminal time T . Since the dual function is strictly decreasing
we have that the following inequality holds on A,

E
[
Ũ
(
Ŷt
Y t
Y T

) ∣∣∣Ft] < E
[
Ũ
(
Y T

)∣∣∣Ft] = E
[
Ũ(ŶT )

∣∣∣Ft].
Note that Y being a supermartingale Y T > 0 implies that Y > 0. We then define the
process

Y := Ŷ 1[0,t] + Ŷt
Y t
Y 1A 1(t,T ] + Ŷ 1Ac 1(t,T ].

It is now essential to show that Y ∈ Yadd(1) which holds by separately checking the
respective cases thanks to the choice of Yadd(1) as a family of supermartingale measures
for S, more precisely, XY is a supermartingale for any admissible wealth process X.
Note that here it is also important that the Y constructed above is right-continuous at
t. A computation similar to that for the uniqueness of X̂ leads to

E
[
Ũ(YT )

]
< E

[
1AcE

[
Ũ(ŶT )

∣∣∣Ft]+ 1AE
[
Ũ(ŶT )

∣∣∣Ft]] = E
[
Ũ(ŶT )

]
= ũ(y),
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which is a contradiction. The processes Ŷ and Y are càdlàg and they satisfy Ŷt = Y t

P-a.s. for each t ∈ [0, T ]. We then conclude that they are indistinguishable.

The remaining items from Theorem 4.2.8, if not already implicitly contained in the
previous proofs, can be deduced in a standard fashion so we omit the details.

4.4 The Dual Domain in the Presence of Cone Constraints

This section is devoted to a proof of Theorem 4.2.10, a full description of the dual domain
in the cone constrained problem. Due to our choice of writing wealth in exponential
format the proof becomes simpler when compared to Karatzas and Žitković [2003] and
Larsen and Žitković [2007]. The theorem is slightly more general because it covers the
“multiplicative” dual domain Y(1) which contains the “additive” dual domain from the
cited references. Since in this chapter the filtration is not assumed to be continuous we
note that dual elements themselves need not be continuous. However, the polyhedral
nature of the cones is essential for the results of this section.

Proposition 4.4.1. Let Assumption 4.2.3 hold and Y ∈ Y(1) with YT > 0. Then there
exist:

(i) A predictable M -integrable process κY with B(λ− κY ) ∈ (BK)◦, µA-a.e.

(ii) A local martingale NY orthogonal to M .

(iii) A predictable decreasing càdlàg process DY with DY
0 = 1 and DY

T > 0 P-a.s. such
that with the above

Y = DY E(−κY ·M +NY ).

Proof. Since 0 ∈ K µA-a.e. we may proceed as in Larsen and Žitković [2007] Proposition
3.2. to deduce that a given Y ∈ Y(1) with YT > 0 admits a multiplicative decomposition
which we can write as

Y = DY E(−κY ·M +NY ),

where DY is a positive, predictable, nonincreasing process with DY
0 = 1, κY is a pre-

dictable M -integrable process and NY a local martingale orthogonal to M , see Jacod
and Shiryaev [2003] Theorem II.8.21 and Lemma III.4.24. It thus remains to show that
B(λ− κY ) ∈ (BK)◦ µA-a.e. and we drop the superscripts in the remainder of the proof
to ease the exposition.
Set D̃ := log(D). By Delbaen and Schachermayer [1995] Theorem 2.1 there exists a

predictable µA-null set E together with a nonnegative predictable process η such that

D̃t = −
∫ t

0
ηs dAs +

∫ t

0
1E(s) dD̃s =: −

∫ t

0
ηs dAs +Dt.
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From Itô’s formula we derive that for any admissible investment strategy ν with corre-
sponding wealth process Xν ∈ X (1) we have

d(Xν
t Yt) = Xν

t Yt−

((
νt−κt

)T
dMt+dNt+d[D,N ]t+

(
νT
tB

T
tBt(λt−κt)−ηt

)
dAt+dDt

)
.

Observe that by Yoeurp’s lemma (ν−κ
)T
dM +dN +d[D,N ] is the differential of a local

martingale, M being continuous. Since the product XνY is a supermartingale, we hence
must have that the differential(

νTBTB(λ− κ)− η
)
dA+ dD

generates a nonpositive measure on the predictable σ-algebra P. Since µA(E) = 0 we
conclude, using the cone property of K, that the following inequality must hold

(Bν)TB(λ− κ) = νTBTB(λ− κ) ≤ 0 (4.4.1)

µA-a.e. for each ν ∈ AK. To conclude we have to show that arbitrary elements of BK
can be realized as trading strategies, µA-a.e. This is where the assumption that the
constraints be polyhedral is needed.
Choosing ν = K1, . . . ,Km it now follows that there exists a single µA-null set (also

denoted E) such that for all (t, ω) ∈ Ec and all j ∈ {1, . . . ,m}(
Bt(ω)Kj

t (ω)
)T
Bt(ω)

(
λt(ω)− κt(ω)) ≤ 0.

In particular we have B(λ−κ) ∈ (BK)◦, µA-a.e. as for fixed (t, ω) any k ∈ Bt(ω)K(t, ω)
may be written µA-a.e. as

k =
m∑
j=1

cjBt(ω)Kj
t (ω)

with some cj ≥ 0 for j ∈ {1, . . . ,m}.

Remark 4.4.2. Suppose that K ≡ Rd then in (4.4.1), given a Y and corresponding
κY , we can directly insert ν = λ − κY . Integrating the resulting expression over [0, T ]
with respect to µA we derive that the stochastic integrals λ ·M and κY ·M are indis-
tinguishable and thus we deduce the multidimensional version of Larsen and Žitković
[2007] Proposition 3.2.

Corollary 4.4.3. Under the Assumptions 4.2.1 and 4.2.3 there exist a predictable M -
integrable process κ̂ as well as a local martingale N̂ orthogonal to M , such that Ŷ 1 =
E
(
− κ̂ ·M + N̂

)
for the dual optimizer Ŷ 1 where y = 1 and B(λ− κ̂) ∈ (BK)◦ µA-a.e.

If Ŷ y denotes the dual optimizer for y > 0 we have that Ŷ y = yŶ 1 = y E
(
− κ̂ ·M + N̂

)
.

Proof. In view of Proposition 4.4.1 the key is to show that Ŷ 1
T > 0 which we derive

from Lemma 4.3.3. We may then proceed as in the proof of Larsen and Žitković [2007]
Corollary 3.3. The independence of y follows from the factorization property.
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Corollary 4.4.4. Under the Assumptions 4.2.1 and 4.2.3 the optimal portfolio ν̂ satisfies
µA-a.e. for all admissible strategies ν,

ν̂TBTB
(
λ− κ̂

)
= 0 and (ν − ν̂)TBTB(λ− κ̂) ≤ 0.

Proof. Due to factorization we may suppose that x = 1. Then for the optimizers we
know from Theorem 4.2.8 (iii) that the process X̂Ŷ y is a martingale when y = u′(1).
We derive

d(X̂tŶ
y
t ) = X̂tŶ

y
t−

((
ν̂t − κ̂t

)T
dMt + dN̂t +

(
ν̂T
tB

T
tBt(λt − κ̂t)

)
dAt

)
.

Thanks to Assumption 4.2.3 it must hold that ν̂TBTB
(
λ− κ̂

)
= 0 for all ν ∈ AK, µA-a.e.

The second statement of the corollary now follows upon addition of (4.4.1).

4.5 Relationship with Quadratic Semimartingale BSDEs

Having established a representation for elements of the dual domain, in this section we
use this to connect the optimizers (X̂, Ŷ ) with the solution triple of a specific BSDE
proving Proposition 4.2.11. As noted before, admitting Theorem 4.2.10, one may find
some of the results in Nutz [2011] Corollaries 3.12 and 5.18, however we provide here a
complete proof as it illustrates the interplay between κ̂ and ν̂. Moreover, the verification
argument is via uniqueness of BSDEs building on the following lemma.

Lemma 4.5.1. In the setting of Theorem 4.2.8 let Ψ̂ := log
(
u′(x)Ŷ 1

U ′(X̂)

)
. Then Ψ̂ ∈ E.

The proof of this lemma relies on our special choice of the dual domain which allows
us to define the so-called dual opportunity process and to use its dynamic optimality
properties. From Nutz [2010b] we first recall the following result concerning the primal
opportunity process and which also holds in the cone constrained utility maximization
framework.

Proposition 4.5.2 (Nutz [2010b] Proposition 3.1). There is a unique càdlàg semi-
martingale L, the opportunity process, such that for any admissible strategy ν ∈ AK and
t ∈ [0, T ]

Lt U(Xν
t ) = ess sup

ν̌∈AK,ν
E
[
U
(
X ν̌
T

)∣∣∣Ft] , (4.5.1)

where the optimization is over all the continuation strategies ν̌ ∈ AK,ν for ν, i.e. over all
the admissible strategies ν̌ that are equal to ν on [0, t]. If (X̂, Ŷ ) denotes the optimal pair
for the utility maximization problem satisfying Ŷ0 = u′(X̂0) P-a.s. then Ŷ = LU ′(X̂).
In particular, Ψ̂ = log(L).

We now turn our attention to the dual counterpart. To this end first define the domain

Y∗(y) := Yadd(y) ∩ {Y > 0},
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4.5 Relationship with Quadratic Semimartingale BSDEs

which in view of Ŷ 1 ∈ Y∗(1) does not affect the optimizers1, in particular Y∗(y) 6= ∅
(under the Assumptions of Theorem 4.2.8). This set exhibits two important properties
which we state in the following lemma. These properties are related to the so-called
fork-convexity of a set.

Lemma 4.5.3.

(i) Let Ȳ , Ỹ and Y̌ be in Y∗(1) with Ỹ = Y̌ on [0, t] for some t ∈ [0, T ], then

Y := Ȳ 1[0,t] + Ȳt
Ỹt
Y̌ 1(t,T ] ∈ Y∗(1).

(ii) Let Ȳ , Ỹ and Y̌ be in Y∗(1) with Ȳ = Ỹ = Y̌ on [0, t] for some t ∈ [0, T ]. If
A ∈ Ft, then

Y := Ȳ 1A + Ỹ 1Ac ∈ Y∗(1).

The above properties of Y∗(1) can be proved easily using the definition of Yadd(1) as
a family of “supermartingale measures” for S, see the proof of uniqueness of the dual
optimizer. They are also the only two properties that are needed in Nutz [2010b] to derive
the existence, uniqueness and characterization of the dual opportunity process for the
unconstrained case. Hence, although not necessarily true for the dual domain considered
there, we can prove the following result which is the counterpart to Proposition 4.5.2
and in which we use the notion of so-called dual continuation strategies. Namely, for
t ∈ [0, T ], define

Y∗(Y, t) = {Ỹ ∈ Y∗(y) : Ỹ = Y on [0, t]}.

Then, mimicking the proof of Nutz [2010b] Proposition 4.3, we deduce from Lemma
4.5.3 that the following result holds.

Proposition 4.5.4. There exists a unique càdlàg process L̃, the dual opportunity process,
such that for any Y ∈ Y∗(y) and t ∈ [0, T ]

L̃t Ũ(Yt) = ess inf
Y̌ ∈Y∗(Y,t)

E
[
Ũ
(
Y̌T
)∣∣∣Ft] , (4.5.2)

Moreover, the infimum is attained at Y = Ŷ and we have that L̃ = L
1

1−p .

The previous two propositions allow us to prove the required estimates on Ψ̂.

Proof of Lemma 4.5.1. Let p ∈ (0, 1) so that q = p
p−1 ∈ (−∞, 0) and L ≥ 1. The last

inequality follows from (4.5.1) by using the strategy ν ≡ 0. In particular Ψ̂ ≥ 0 and we

1Alternatively, one could keep Yadd(y). Then in the calculations and definitions involved, whenever a
Yt appears in the denominator of some expression, there is also a related Ỹ in the numerator, e.g. Y
itself, such that Ỹ = 0. This relies on the fact that Y ∈ Yadd(y) with Yt = 0 implies Ys = 0 for s ≥ t.
Thus, all the possible expressions like 0

0 and +∞
+∞ could be given a meaning such that the assertions,

established via the Y ∈ Y∗(1) where no problems arise, are valid. However, we opt for avoiding all
these technicalities.
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A BSDE Approach to the Stability of the Cone Constrained Utility Maximization

notice that for all δ > 0

E
[
exp

(
δΨ̂∗

)]
= E

[
sup

0≤t≤T

(
exp

(
δΨ̂t

)) ]
= E

[(
Lδ
)∗]

. (4.5.3)

In what follows the constant cp,δ > 0 is generic, depends on p and δ and may change
from line to line. Let us consider an exponential moment of 〈λ · M〉T of order k >
kq := q2 − q

2 − q
√
q2 − q. We now set β := 1 − 1

q

√
q2 − q > 1, % := β/(β − 1) > 1 and

δ := k%/kq > 1. After defining Y λ := E(−λ ·M) we deduce from (4.5.1) that for a fixed
strategy ν ∈ AK, denoting ν̌ a time-t continuation strategy of ν,

Lδt ≤ pδ ess sup
ν̌∈AK,ν

(
E
[
Ũ
(
Y λ
T

/
Y λ
t

)∣∣∣Ft]+ E
[(
X ν̌
T

/
X ν̌
t

)(
Y λ
T

/
Y λ
t

)∣∣∣Ft] )δ

≤ cp,δ E
[
E(−βqλ ·M)1/β

t,T exp
(
kq〈λ ·M〉t,T

)1/%∣∣∣∣Ft]δ+ cp,δ

≤ cp,δ E
[

exp
(
kq〈λ ·M〉T

) ∣∣∣∣Ft]δ/%+ cp,δ =: cp,δ
(
χ
δ/%
t + 1

)
,

by making use of the definition of Ũ , the supermartingale property of Y λX ν̌ and of
E(−βqλ ·M), Hölder’s inequality and the positiveness of −1/q and of kq. Thanks to
the assumption on the exponential moment of 〈λ ·M〉T , the process χ is a (nonnega-
tive) martingale on [0, T ] and thus amenable to Doob’s inequality from which the result
follows.
Let us now turn to the case of p < 0, i.e. when q = p

p−1 ∈ (0, 1) and 0 < L ≤ 1. Take
an exponential moment of 〈λ ·M〉T of order k > (1− p)kq > kq := q2 + q

2 +
√
q2 + q. We

define δ := k%
(1−p)kq > 1 where β := 1 + 1

q

√
q2 + q > 1 and % := β/(β − 1) > 1. Then

E
[
exp

(
δΨ̂∗

)]
= E

[(
exp

(
δ sup

0≤t≤T

(
−Ψ̂t

)))]
= E

[(
L̃−δ(1−p)

)∗]

≤ E
[

exp
(
kq〈λ ·M〉T

) ∣∣∣∣Ft]δ(1−p)/%,
where L̃ is the dual opportunity process. The claim can then again be deduced from
Doob’s inequality.

We can now derive

Proposition 4.5.5. Under the Assumptions 4.2.1 and 4.2.3 let ν̂ denote the optimal
strategy, X̂ the optimal wealth process and Ŷ 1 the optimal dual minimizer with de-
composition Ŷ 1 = E

(
− κ̂ · M + N̂

)
which we assume to be continuous. If we set

Ψ̂ := log
(
u′(x)Ŷ 1/U ′(X̂)

)
and Ẑ := −κ̂ + (1 − p)ν̂, then the triple (Ψ̂, Ẑ, N̂) is the
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4.5 Relationship with Quadratic Semimartingale BSDEs

unique solution to the BSDE (4.2.6) with Ψ̂ ∈ E where

F (·, z) = 1
2
∥∥Bz∥∥2 − q

2
∥∥ΠBK(B(z + λ))

∥∥2
.

Remark 4.5.6. In analogy to Chapter 2, if N̂ is not continuous but exhibits jumps
then the BSDE reads

dΨt = ZT
t dMt + dNt − F (t, Zt) dAt −

1
2 d〈N

c〉t + log(1 + ∆Nt) − ∆Nt, ΨT = 0,

where the driver F is from the above proposition. The triple (Ψ̂, Ẑ, N̂) is a solution to
this BSDE with ∆N̂ > −1 since Ŷ > 0.

Proof. An application of Itô’s formula to the process Ψ̂ gives

dΨ̂t = ẐT
t dMt + dN̂t −

1
2 d〈N̂〉t +

[
(1− p)ν̂T

tB
T
tBt

(
λt −

ν̂t
2

)
− 1

2 κ̂
T
tB

T
tBtκ̂t

]
dAt.

(4.5.4)

It remains to show that the generator in the previous equation corresponds to that given
in the statement of the proposition. Using the relation

ν̂TBTBλ = ν̂TBTBκ̂

implied by Corollary 4.4.4 we end up with the following form for the generator of (4.5.4),

1
2‖BẐ‖

2 + p(1− p)
2

∥∥∥∥∥B
(
Ẑ + λ

1− p

)∥∥∥∥∥
2

− p(1− p)
2

∥∥∥∥∥B
(
ν̂ − Ẑ + λ

1− p

)∥∥∥∥∥
2

.

Now from the definition of Ẑ together with Corollary 4.4.4 the following equation holds
µA-a.e. for all admissible ν

(ν − ν̂)TBTB
[
(1− p)ν̂ − (Ẑ + λ)

]
≥ 0.

This equation can be understood as the subgradient condition for the convex function

Rd 3 η 7→ 1− p
2

∥∥∥∥∥B
(
η − Ẑ + λ

1− p

)∥∥∥∥∥
2

to have a minimum over K at ν̂ holding µA-a.e. In particular, µA-a.e.

1− p
2

∥∥∥∥∥B
(
ν̂ − Ẑ + λ

1− p

)∥∥∥∥∥
2

= 1− p
2 inf

η∈K

∥∥∥∥∥B
(
η − Ẑ + λ

1− p

)∥∥∥∥∥
2

.

Since it coincides with the generator of (4.5.4) µA-a.e. F is hence of the claimed form,
paying attention to the signs and using the Pythagorean rule (see Theorem 4.5.7).
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A BSDE Approach to the Stability of the Cone Constrained Utility Maximization

Since N̂ is assumed continuous we have constructed a solution (Ψ̂, Ẑ, N̂) to the BSDE
(4.2.6) with Ψ̂ ∈ E. The claimed uniqueness then follows from Theorem 3.2.6 noting
that Proposition 4.6.3 implies the required Assumption 3.2.2 on the driver F .

To write the processes X̂ and Ŷ in terms of the solution (Ψ̂, Ẑ, N̂) to the above BSDE
we first recall a classical result.

Theorem 4.5.7 (Moreau Orthogonal Decomposition). Let Q ⊂ Rd be a closed convex
cone and Q◦ ⊆ Rd its polar cone. Then for all q, r, u ∈ Rd the following statements are
equivalent:

(i) u = q + r, q ∈ Q, r ∈ Q◦ and qTr = 0,

(ii) q = ΠQ(u) and r = ΠQ◦(u),

where Π denotes the projection or nearest point operator onto the indicated set.

Proposition 4.5.8. Suppose that the Assumptions 4.2.1 and 4.2.3 hold and that y =
u′(x) for some x > 0. Given (Ψ̂, Ẑ, N̂), the unique solution to the BSDE (4.2.6) with
Ψ̂ ∈ E and the above driver F , we can write the optimizers, up to indistinguishability,
as

X̂x = x E(ν̃ ·M + ν̃ · 〈M〉λ), Ŷ y = y E
(
− κ̃ ·M + N̂

)
,

where the predictable integrands ν̃ and κ̃ are defined via

ν̃ := 1
1− pP

TΓ̃
1
2 ΠBK

(
B(Ẑ + λ)

)
, κ̃ := P TΓ̃

1
2
[
Bλ−Π(BK)◦

(
B(Ẑ + λ)

)]
and satisfy, µA-a.e. Bν̃ = Bν̂ and Bκ̃ = Bκ̂. The process (Γ̃i,j)i,j=1,...,d is chosen to be
a predictable process valued in the space of d× d diagonal matrices such that

Γ̃ij =
{

1
/
Γii if i = j and Γii 6= 0

0 if i 6= j.

Proof. The formulae for X̂ and ν̂ are given (up to null-investments) in Nutz [2011]
Corollary 3.12, see also Hu et al. [2005] Theorem 14 and Morlais [2009] Theorem 4.4.
To derive the result for Ŷ observe that from Proposition 4.5.5 and the uniqueness result
in Theorem 3.2.6 (ii) we have the relation Ẑ ≡ −κ̂+ (1− p)ν̂ which is equivalent to

B(Ẑ + λ) = B(λ− κ̂) + (1− p)Bν̂.

Since K is a cone we see that (1− p)Bν̂ ∈ BK, combining this with Corollary 4.4.4 and
using Theorem 4.5.7 we deduce that up to a µA-null set

(1− p)Bν̂ = ΠBK
(
B(Ẑ + λ)

)
and B(λ− κ̂) = Π(BK)◦

(
B(Ẑ + λ)

)
. (4.5.5)
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We then use the relation B = Γ1/2P to write

Γ1/2Pκ̂ = Bλ−Π(BK)◦
(
B(Ẑ + λ)

)
.

The matrix valued process Γ may have some zero diagonal elements and so we may
not be able to invert the above relation uniquely. However, by the construction of the
process κ̃ we have that Bκ̂ = Bκ̃ holds µA-a.e. Integrating the difference over [0, T ]×Ω
with respect to µA shows

E
[〈(
κ̂− κ̃

)
·M

〉
T

]
=
∫

[0,T ]×Ω
‖B
(
κ̂− κ̃

)
‖2 dµA = 0.

In particular the stochastic integrals κ̂ ·M and κ̃ ·M are indistinguishable so that the
representation for Ŷ now follows.

With regards to the nonunique representation of the optimal strategy we refer to the
Remarks 4.2.13 and 4.2.19.

4.6 Continuity of the Optimizers
In this section we prove Theorem 4.2.16 on the continuity of the optimizers

X̂n := X̂(λn,Pn, pn,Kn) and ν̂n := ν̂(λn,Pn, pn,Kn)

for the problem
un(x) := sup

ν∈AKn
EPn

[
Un
(
Xn,x,ν
T

)]
discussed in Section 4.2, to which we refer for any unexplained notation. For instance,
Ln now stands for a continuous local martingale that is orthogonal to M and which
appears in the density process of Pn. We assume throughout that the Assumptions
4.2.14 and 4.2.15 hold and that x = 1 which, due to the factorization property, is no
loss of generality. Moreover, we assume that every local martingale N̂n arising in the
decomposition of the corresponding dual optimizer is continuous. This is the case under
the Assumption 1.2.1, for instance.

Continuity for an Auxiliary BSDE
The first result is an immediate consequence of the standing assumptions.
Lemma 4.6.1. Under the Assumptions 4.2.14 and 4.2.15 the sequence of random vari-
ables (ζn)n∈N defined via

ζn := (Ln)∗ + 〈Ln〉T ,

satisfies supn∈N E[exp(%ζn)] < +∞ for all % > 0 and converges to zero in P-probability.
Proof. Let % > 0 and n ∈ N, then we have

E
[
exp

(
%ζn

)]
≤ 4E

[
exp

(
2%LnT

)]2 + E
[
exp

(
2%〈Ln〉T

)]
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by Doob’s inequality. The second term on the right hand side is finite due to Assumption
4.2.14, uniformly in n. For the first term, adding and subtracting suitable multiples
of 〈Ln〉T , then using the Hölder inequality together with the fact that the stochastic
exponential is always a supermartingale we see that it is finite, uniformly in n, as well.
The convergence to zero in probability is again a consequence of Assumption 4.2.15.
Actually, we can even deduce the L% convergence, % ≥ 1, from the Vitali convergence
theorem.

Given the optimizers (X̂n, Ŷ n) Proposition 4.5.5 describes the link to the solution
triple (Ψ̂n, Ẑn, N̂n) of the following BSDE under Pn for n ∈ N0 (written in generic
variables (Ψ, Z,N)),

dΨt = ZT
t dM

n
t + dNt − Fn1 (t, Zt) dAt −

1
2 d〈N〉t, ΨT = 0. (4.6.1)

Here,

Fn1 (·, z) = 1
2
∥∥Bz∥∥2 − qn

2
∥∥ΠBKn(B(z + λn − βn))

∥∥2
,

Mn := M + 〈M〉 · βn and N are continuous Pn-local martingales which are orthogonal
and the necessary integrability conditions are satisfied with respect to the measure Pn.
To deduce the convergence of (X̂n, Ŷ n) we shall show first that (Ψ̂n, Ẑn, N̂n) converges
to (Ψ̂, Ẑ, N̂). In order to do this it is necessary to perform a change of variables related
to considering the BSDE (4.6.1) under P rather than Pn. This is the content of the next
proposition.

Proposition 4.6.2. Let (Ψ̂n, Ẑn, N̂n) be as above then the triple

(Ξ̂n, V̂ n, Ôn) :=
(
Ψ̂n + Ln − 1

2〈L
n〉, Ẑn, N̂n + 〈N̂n, Ln〉+ Ln

)
is the unique solution to the BSDE under P

dΨt = ZT
t dMt + dNt − Fn(t, Zt) dAt −

1
2 d〈N〉t, ΨT = LnT − 1

2〈L
n〉T , (4.6.2)

with Ψ ∈ E where the generator is given by

Fn(·, z) = 1
2
∥∥Bz∥∥2 − qn

2
∥∥ΠBKn(B(z + λn − βn))

∥∥2 − (Bz)T(Bβn), (4.6.3)

qn is the dual number corresponding to pn and the process N is a (continuous) P-local
martingale orthogonal to M .

Proof. The Girsanov theorem implies that Ôn is a P-local martingale. To see this, define
the Pn-local martingale L̃n := Ln − 〈Ln〉 and observe that dP

dPn = E
(
βn ·Mn − L̃n

)
. It

follows that N̂n + 〈N̂n, Ln〉 is a P-local martingale. The orthogonality of Ôn to M
follows from the fact that 〈N̂n,Mn〉 ≡ 0 and 〈M,Ln〉 ≡ 0. Thanks to (4.6.1) the triple
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(Ξ̂n, V̂ n, Ôn) then solves (4.6.2) with driver (4.6.3). Moreover, once we show that Ξ̂n ∈ E
then Theorem 3.2.6 provides the claimed uniqueness. Via Hölder’s inequality, using the
notation of Lemma 4.6.1, we have the estimate

E
[
exp

(
%(Ξ̂n)∗

)]
≤ E

[(
dP
dPn

)2]1/2

EPn
[
exp

(
4%(Ψ̂n)∗

)]1/2
+ E[exp(2%ζn)] < +∞

for all % > 0. This completes the proof in view of Assumption 4.2.14.

The BSDE (under P = P0) satisfied by (Ψ̂, Ẑ, N̂) = (Ψ̂0, Ẑ0, N̂0) related to the opti-
mizers (X̂, Ŷ ) = (X̂0, Ŷ 0) is given by

dΨt = ZT
t dMt + dNt − F (t, Zt) dAt −

1
2 d〈N〉t, ΨT = 0, (4.6.4)

where the driver F = F 0 satisfies

F (·, z) = 1
2
∥∥Bz∥∥2 − q

2
∥∥ΠBK(B(z + λ))

∥∥2
.

Our goal is continuity of the optimizers, which we prove via the stability result in Theo-
rem 3.2.7. We show that this theorem implies convergence of (Ξ̂n, V̂ n, Ôn) to (Ψ̂, Ẑ, N̂)
in an appropriate sense and then deduce the result for (Ψ̂n, Ẑn, N̂n). We first collect
some properties of the drivers Fn.

Proposition 4.6.3. The following items (i)-(iii) hold for each n ∈ N0, P-a.s.

(i) For all t the driver Fn(t, ·) is continuously differentiable and convex (in z).

(ii) It satisfies a quadratic growth condition in z. More precisely, for all t ∈ [0, T ],
z ∈ Rd and ε0 > 0,

|Fn(t, z)| ≤ 1
2ε0
‖Btβnt ‖2 + |q

n|
4ε0
‖Bt(λnt − βnt )‖2 + γ(ε0)

2 ‖Btz‖2,

where γ(ε0) := 1 + ε0(1 + |qn|/2).

(iii) For all t the function Fn(t, ·) is locally Lipschitz continuous, i.e. for z1, z2 ∈ Rd,

|Fn(t, z1)− Fn(t, z2)|

≤
(
‖Btβnt ‖+ 1 + |qn|

2
(
‖Btz1‖+ ‖Btz2‖

)
+ |qn| · ‖Bt(λnt − βnt )‖

)∥∥Bt(z1 − z2)
∥∥.

Moreover, if Ẑ = Ẑ0 denotes the process from above, then,

(iv) Under the Assumptions 4.2.14 and 4.2.15 we have that

lim
n→+∞

∫ T

0
|Fn(t, Ẑt)− F (t, Ẑt)| dAt = 0
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in L1(P) and hence in P-probability.

Proof. Items (ii) and (iii) follow from the explicit form of the driver together with the
generalized Young inequality and the Lipschitz property of the nearest point operator.
Items (i) and (iv) are a little more involved and we provide a proof, suppressing the
argument (t, ω) for brevity. Starting with item (i) we recall from Borwein and Lewis
[2006] Section 3.3 that for the function θ : Rd → R,

θ(z) :=
∥∥Bz −ΠBK(Bz)

∥∥2
,

we have
Dzθ(z0)(·) = 2

〈
Bz0 −ΠBK(Bz0), B(·)

〉
where Dzθ(z0) denotes the differential of θ (with respect to z) at a point z0 ∈ Rd and
which is a linear functional on Rd. Here, 〈·, ·〉 stands for the inner product on Rd.
We now can show differentiability of Fn. From Theorem 4.5.7,∥∥B(z+λn−βn)

∥∥2 =
∥∥B(z+λn−βn)−ΠBKn(B(z+λn−βn))

∥∥2+
∥∥ΠBKn(B(z+λn−βn))

∥∥2

and we conclude that DzF
n(z0)(·) =

〈
Bz0 − qnΠBKn(B(z0 + λn − βn))−Bβn, B(·)

〉
.

As to convexity we then derive from the Lipschitz property of ΠBKn and the Cauchy-
Schwarz inequality, that for qn ∈ (0, 1) and for all z1, z2 ∈ Rd,(

DzF
n(z1)−DzF

n(z2)
)
(z1 − z2) ≥ (1− qn)

∥∥B(z1 − z2)
∥∥2 ≥ 0.

This is the multidimensional version of monotonicity of the derivatives and it is equivalent
to the convexity property, see Borwein and Lewis [2006] Section 3.1. For qn ∈ (−∞, 0)
we use the representation

Fn(z) = 1
2
∥∥Bz∥∥2 − (Bz)T(Bβn) + qn

2 inf
η∈BKn

(
‖η‖2 − 2

〈
η,B(z + λn − βn)

〉)
.

An infimum of affine functions (in z) is concave (in z), hence the last term is convex in
z due to the sign of qn. Thus Fn is convex as a sum of two convex functions.
We continue with item (iv). Using the definition of the drivers one can derive the

following inequality

|Fn(t, Ẑt)− F (t, Ẑt)| ≤
|q|
2 ·

∣∣∣∣∥∥∥ΠBtKnt
(
Bt(Ẑt + λt)

)∥∥∥2
−
∥∥∥ΠBtKt

(
Bt(Ẑt + λt)

)∥∥∥2
∣∣∣∣

+ ‖BtẐt‖ · ‖Btβnt ‖

+
∣∣∣∣q − qn2

∣∣∣∣ · ∥∥∥ΠBtKnt
(
Bt(Ẑt + λt)

)∥∥∥2

+ |q
n|
2 ·

∣∣∣∣∥∥∥ΠBtKnt
(
Bt(Ẑt + λt)

)∥∥∥2
−
∥∥∥ΠBtKnt

(
Bt(Ẑt + λnt − βnt )

)∥∥∥2
∣∣∣∣

=: Gnt +Hn
t + Int + Jnt .
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We have to show that

lim
n→+∞

E
[∫ T

0
(Gnt +Hn

t + Int + Jnt ) dAt

]
= 0,

for which we work term by term, beginning with Gn. By Proposition 6.2.3 (Gn)n∈N then
converges to zero µA-a.e. and is dominated by |q| · ‖B(Ẑ +λ)‖2. In particular thanks to
the dominated convergence theorem we have

lim
n→+∞

E
[∫ T

0
Gnt dAt

]
= lim

n→+∞

∫
[0,T ]×Ω

Gn dµA = 0.

For the second term we apply the Cauchy-Schwarz inequality to get

E
[∫ T

0
Hn
t dAt

]2

≤ E
[〈
Ẑ ·M

〉
T

]
E
[〈
βn ·M

〉
T

]
.

The convergence to zero now follows from Assumption 4.2.14 and the condition on βn.
For the In term we apply the contraction property of the projection map to deduce

E
[∫ T

0
Int dAt

]
≤ |q − q

n|
2 E

[〈
(Ẑ + λ) ·M

〉
T

]
,

from which the convergence follows. For the final term we first derive, similarly to item
(iii), the local Lipschitz estimate

Jnt ≤ |qn|
(
2‖BtẐt‖+ ‖Btλt‖+ ‖Btλnt ‖+ ‖Btβnt ‖

)∥∥Bt(λt − λnt + βnt )
∥∥.

Applying the Cauchy-Schwarz and Young inequalities we derive the existence of a con-
stant ĉ, independent of n (due to the convergence assumptions the sequences appearing
in the estimates are bounded), such that

E
[∫ T

0
Jnt dAt

]2

≤ ĉE
[〈

(λ− λn + βn) ·M
〉
T

]
.

Letting n go to infinity and using Assumptions 4.2.14 and 4.2.15 the result follows.

The Convergence Results

Theorem 4.6.4. Under the Assumptions 4.2.14 and 4.2.15 let the triple (Ψ̂n, Ẑn, N̂n)
denote the unique solution to the BSDE (4.6.1) with Ψ̂n ∈ E (and N̂n continuous). Then

lim
n→+∞

E
[
exp

(
%
(
Ψ̂n − Ψ̂

)∗)] = 1,

lim
n→+∞

E
[(〈

(Ẑn − Ẑ) ·M
〉
T

+ 〈N̂n − N̂〉T
)%/2]

= 0,
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for all % ≥ 1, where (Ψ̂, Ẑ, N̂) denotes the unique solution triple of the BSDE (4.2.6)
with Ψ̂ ∈ E (and N̂ continuous).

Proof. Using the notation of Lemma 4.6.1 and Proposition 4.6.2 we can write

0 ≤
(
Ψ̂n − Ψ̂

)∗ ≤ (Ξ̂n − Ψ̂
)∗ + (ζn)∗.

Hence the sequence
(
exp

(
%
(
Ψ̂n−Ψ̂

)∗))
n∈N is uniformly integrable and converges to zero in

P-probability. Both these claims are consequences of Lemma 4.6.1 and Theorem 3.2.7,
whose conditions are guaranteed by Proposition 4.6.3 and Assumption 4.2.14. Since
Ẑn ≡ V̂ n and

〈N̂n − N̂〉T ≤ 2 〈Ôn − N̂〉T + 2 〈Ln〉T ,

we derive the second convergence in a similar fashion.

We now show how this implies convergence of the objects of interest and begin with
the primal variables.

Theorem 4.6.5. Under the assumptions of the previous theorem we have that for all
% ≥ 1

lim
n→+∞

E
[〈

(ν̂n − ν̂) ·M
〉%/2
T

]
= 0.

In particular, (ν̂n − ν̂) ·M converges to zero in M2 and hence in the semimartingale
topology.

Proof. Using the definitions, it follows that the relation

lim
n→+∞

E
[〈

(ν̂n − ν̂) ·M
〉%/2
T

]
= 0

is equivalent to

lim
n→+∞

E


∫ T

0

∥∥∥∥∥ΠBtKnt
(
Bt(Ẑnt + λnt − βnt )

)
(1− pn) −

ΠBtKt
(
Bt(Ẑt + λt)

)
(1− p)

∥∥∥∥∥
2

dAt

%/2
 = 0.

To establish this we may proceed similarly to the proof of Proposition 4.6.3 (iv) so that
Proposition 4.2.9 (i) then yields the assertion.

Theorem 4.6.6. Under the assumptions of Theorem 4.6.4 the sequence of processes
X̂n ∈ X (x), n ∈ N, converges to X̂ ≡ X̂0 ∈ X (x) in the semimartingale topology.

Proof. We note the dynamics of the optimal wealth processes given by (4.2.7) and set

Υn := ν̂n ·M + ν̂n · 〈M〉λn,

for n ∈ N0. We show the convergence in H2 of the sequence (Υn)n∈N so that the result
of the theorem will follow via Proposition 4.2.9 (ii) since X̂n = E(Υn) and X̂ = E(Υ0).

132



4.6 Continuity of the Optimizers

Observe from Theorem 4.6.5 that (ν̂n − ν̂) ·M converges to zero inM2 so that we need
only show the convergence of the finite variation parts, namely that

lim
n→+∞

E

(∫ T

0

∣∣ d(〈ν̂n ·M,λn ·M〉 − 〈ν̂ ·M,λ ·M〉
)∣∣)2

 = 0.

Adding and subtracting 〈ν̂ ·M,λn ·M〉 and then applying the Kunita-Watanabe inequal-
ity, we see that the above holds due to Theorem 4.6.5 together with the convergence of
〈(λn − λ) ·M〉T to zero in all L%(P) spaces.

Theorem 4.6.7. Under the standing assumptions of this section the value functions un
converge pointwise to u. Their derivatives converge pointwise to u′.

Proof. From the BSDE (4.6.4) the reader may verify the relation,

d(exp(Ψ̂)U ′(X̂))t = exp(Ψ̂t)U ′(X̂t)(−κ̂t dMt + dN̂t)

which implies that

Ŷ = u′(x)Ŷ 1 = exp(Ψ̂)U ′(X̂) = eΨ̂0xp−1Ŷ 1 P-a.s.

It follows that cp = eΨ̂0 P-a.s. which shows that

un(x) = Un(x)cnpn = Un(x)eΨ̂n0 P-a.s.

From Theorem 4.6.4 we have that limn→+∞ |Ψ̂n
0 − Ψ̂0| = 0 in probability. Hence for an

arbitrary ε > 0, limn→+∞ P(|Ψ̂n
0 − Ψ̂0| > ε) = 0 which means that for n large enough,

P(|Ψ̂n
0 − Ψ̂0| > ε) ≤ 1

2 .

Since F0 consists of the P-null sets and their complements only, we thus derive that
there exists some m0 ∈ N such that P(|Ψ̂n

0 − Ψ̂0| > ε) = 0 for all n ∈ N with n ≥ m0. In
particular,

lim
m→+∞

P
({

sup
n≥m
|Ψ̂n

0 − Ψ̂0| > ε

})
= lim

m→+∞
m≥m0

P

 ⋃
n≥m

{
|Ψ̂n

0 − Ψ̂0| > ε
} = 0

which is a well-known criterion for almost sure convergence. Hence limn→+∞ Ψ̂n
0 = Ψ̂0

P-a.s. which implies the convergence of un(x) to u(x). The convergence of (un)′ (x) to
u′(x) is then immediate.

Similar arguments can be used to study the dual variables and we collect the results
together in the following theorem.

Theorem 4.6.8. Suppose that the assumptions of Theorem 4.6.4 hold. Then,
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(i) The processes (κ̂n − κ̂) ·M , n ∈ N, converge to zero inM2.

(ii) The processes Ŷ n ∈ Y(y), n ∈ N, converge to Ŷ ≡ Ŷ 0 ∈ Y(y) in the semimartingale
topology.

(iii) The functions ũn, n ∈ N, converge pointwise to ũ. Their derivatives converge
pointwise to ũ′.

Proof. Item (i) follows from the decomposition

κ̂n = (1− pn)ν̂n − Ẑn

together with Theorems 4.6.4 and 4.6.5. Item (i) and Theorem 4.6.4 provides the con-
vergence of Υn := κ̂n ·M + N̂n to κ̂ ·M + N̂ in H% for all % ≥ 1. Convergence in the
semimartingale topology then follows from Proposition 4.2.9 (i) and (ii). For the last
item observe that from Theorem 4.2.8 we may write

ũn(y) = Ũn(y)c̃npn , c̃npn = (cnpn)
1

1−pn = e
1

1−pn Ψ̂n0 P-a.s.

so that the claim is again a corollary of Theorem 4.6.4, as in the proof of Theorem
4.6.7.
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5 Utility Maximization under Compact
Constraints and Partial Information

5.1 Introduction

In this final chapter we study the existence, uniqueness and stability of the constrained
power utility maximization problem under incomplete information. In contrast to Chap-
ter 4 we now rely purely on the BSDE results from Chapter 3 without any reference to
duality theory. As already mentioned, given the inclusion of investment constraints, the
second theme of the exposition is the inclusion of incomplete information to the power
utility maximization problem. This is meant in the following sense. We assume that the
agent as well as the regulator cannot access all the information which is present in the
market but only some restricted information which we model by a subfiltration of the
main filtration. For instance, it is natural to assume that they can observe the stock
prices or the stock returns only. Such a partial information framework has been studied
in Lakner [1998], Pham and Quenez [2001] and Sass [2007], amongst others. Here, we
analyze an even more restrictive setting. Following the ideas of Mania and Santacroce
[2010] and Covello and Santacroce [2010] we consider a filtration which may be smaller
than the filtration generated by the stock prices or the stock returns.
The main other features are now as follows. Firstly, following the exposition in the

previous chapter, we generalize the underlying model beyond the case of a bounded
mean-variance tradeoff by requiring appropriate finite exponential moments only. Sec-
ondly, we assume that at terminal time there is an additional bonus or penalty D which
applies to the investor’s accrued wealth. This is as in Nutz [2010b] but again we relax
the boundedness assumptions. As an example we may think of D as arising from a
stochastic tax rate whose level depends on the state of the economy at terminal time
T . Another interpretation of D is that it defines a measure change so that the portfolio
choice problem is under the agent’s subjective beliefs. Thirdly, trading in the market is
subject to constraints that are not necessarily convex but merely closed. This is exactly
as in Hu et al. [2005] with the exception that we do not require any nondegeneracy of the
stock dynamics in which case we additionally have to make use of the closure operator to
derive the appropriate results. However, we mention that the use of the closure operator
becomes superfluous if we restrict ourselves to compact constraints, hence the title of
this chapter. Since, contrary to Hu et al. [2005], Mania and Santacroce [2010] and Mor-
lais [2009], we do not dispose of any BMO properties, the verification argument becomes
more involved. It consists of applying a variant of Theorem 3.7.2, see also Heyne [2010]
for explicit Brownian stochastic volatility models.
The main results thus consist of deriving the existence and uniqueness of solutions
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5 Utility Maximization under Compact Constraints and Partial Information

to the constrained utility maximization problem under partial information and of relat-
ing them to the appropriate BSDE. This is done under weaker conditions than those
which are present in the relevant literature. As an application of the stability result for
quadratic BSDEs we are then able to show that the optimizers depend continuously on
the investor’s risk aversion parameter, the market price of risk, the constraints and the
bonus at terminal time, alternatively, the measure change.
The present chapter hence is in line with the previous results and to some extent

of concluding character. It is organized as follows. In the next section we lay out
the framework of partial information as well as providing the investment constraints
together with the statement of the main result. We then relate the original problem
to an auxiliary one which can be interpreted as a problem under full information and
hence can be studied by using the BSDE results from Chapter 3. Finally, we provide an
analysis of the stability of the primal problem.

5.2 Framework and Main Result

Let us again recall the utility maximization framework from the Sections 1.2 and 4.2,
adapted to the present setting of partial information. We work on a filtered probability
space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions. The time horizon T is a pos-
itive number and F0 is the completion of the trivial σ-algebra. All semimartingales are
càdlàg.
In what follows, our aim is to develop and to analyze the utility maximization problem

within the setting of partial information which will be modelled by using a subfiltration
(Gt)t∈[0,T ] of (Ft)t∈[0,T ], i.e.

Gt ⊂ Ft for all t ∈ [0, T ],

satisfying the usual conditions. In particular, we have to be more precise about to which
filtration the processes in question are adapted. The filtration (Gt)t∈[0,T ] represents
the information which is available to the investor and the regulator or to which they
restrict themselves in choosing their strategies. In contrast, (Ft)t∈[0,T ] stands for the full
information of the economy.

The Market Model

The market consists of one bond paying zero interest and d stocks whose price process
S = (S1, . . . , Sd)T has dynamics

dSt = Diag(St)
(
dMt + d〈M〉tλt

)
,

where M = (M1, . . . ,Md)T is a d-dimensional continuous (Ft)t∈[0,T ]-local martingale
with M0 = 0 and λ is a d-dimensional (Ft)t∈[0,T ]-predictable process, the market price
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of risk, satisfying

P
(∫ T

0
λT
t d〈M〉tλt < +∞

)
= 1.

For notational reasons it turns out to be convenient to also introduce the stock returns
process R, the d-dimensional continuous semimartingale whose components evolve ac-
cording to

dRit = dSit
Sit

= dM i
t +

d∑
j=1

d〈M i,M j〉tλjt , i = 1, . . . , d,

so that
S = S0 E(R).

The most natural assumption within this framework is that the investor can observe the
stock prices, i.e. FSt ⊂ Gt for all t ∈ [0, T ], where (FSt )t∈[0,T ] is the augmentation of
the filtration generated by the process S. A sligthly more restrictive but still natural
assumption is that they can observe the stock returns, i.e. FRt ⊂ Gt for all t ∈ [0, T ],
where (FRt )t∈[0,T ] is the augmentation of the filtration generated by the process R and for
which we have that FSt ⊂ FRt for all t ∈ [0, T ]. If the evolution of the stock returns indeed
is part of the agent’s information flow, we conclude that R is a (Gt)t∈[0,T ]-semimartingale
(see below) and that 〈M〉 is (Gt)t∈[0,T ]-predictable which motivates one of our structural
conditions below.
However, in what follows, we consider a slightly more general situation. More precisely,

we do not require that (Gt)t∈[0,T ] contains (FRt )t∈[0,T ]. In this case, R is not necessarily a
(Gt)t∈[0,T ]-semimartingale. This leads us to considering an additional filtration (Ht)t∈[0,T ]
which is the augmentation of the filtration generated by (Gt)t∈[0,T ] and (FRt )t∈[0,T ], made
right-continuous. We then have

dRt = dMt + d〈M〉t
(
λt − λHt

)
+ d〈M〉tλHt = dM̃t + d〈M̃〉tλHt ,

where λH is the (Ht)t∈[0,T ]-predictable projection of λ and

M̃t := Mt +
∫ t

0
d〈M〉s

(
λs − λHs

)
defines an (Ht)t∈[0,T ]-local martingale. This can be seen as follows. Note that we have
〈M̃〉 ≡ 〈M〉 ≡ 〈R〉 and that this is (FRt )t∈[0,T ]-, hence (Ht)t∈[0,T ]-predictable. More
precisely, we should refer to a common version of these quadratic variations since they
are defined in the different filtrations in the first place. We then need to show that the
localizing sequence of stopping times which is necessary for the local martingale property
of M̃ can indeed be chosen (Ht)t∈[0,T ]-adapted, see Kohlmann et al. [2007] Lemma 2.2.

Remark 5.2.1. If 〈M〉 is (Gt)t∈[0,T ]-predictable (as it will be assumed in this chapter),
then the introduction of the auxiliary filtration (Ht)t∈[0,T ] is superfluous under the ad-
ditional assumption that λ be (Gt)t∈[0,T ]-predictable. If this is the case we choose M̃ to
be identical to M , which is not necessarily a (Gt)t∈[0,T ]-local martingale, but for which
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all the crucial calculations below remain true.

The Model Assumptions
Since we do not opt for assuming that λ be (Gt)t∈[0,T ]-predictable, we put the following
structural conditions on the above model. This is in analogy to Mania and Santacroce
[2010]. As in the previous chapters µA denotes the Doléans measure associated to M .

Assumption 5.2.2.

(i) The process 〈M〉 is (Gt)t∈[0,T ]-predictable and we have that λo := λG = λH, µA-a.e.

(ii) For any (Gt)t∈[0,T ]-local martingale M the process 〈M̃,M〉 is (Gt)t∈[0,T ]-predictable.

(iii) All (Gt)t∈[0,T ]-martingales are (Ht)t∈[0,T ]-local martingales.

(iv) All (Gt)t∈[0,T ]-local martingales are continuous.

Remark 5.2.3. If (FRt )t∈[0,T ] is contained in (Gt)t∈[0,T ] then (Ht)t∈[0,T ] coincides with
(Gt)t∈[0,T ] and items (i)-(iii) from the above assumption are satisfied. In fact, this is
the main example for the present study. We also mention that if 〈M〉 is (Gt)t∈[0,T ]-
predictable then it follows from R = log(S)− log(S0) + 1

2〈R〉 = log(S)− log(S0) + 1
2〈M〉

that (FRt )t∈[0,T ] can be replaced by (FSt )t∈[0,T ] in the definition of (Ht)t∈[0,T ].

We now recall the decomposition of the quadratic variation of M ,

〈M〉 = C ·A = P TΓP ·A = BTB ·A, (5.2.1)

where C is a process valued in the space of symmetric positive semidefinite d×dmatrices,
A is an increasing process and P and Γ are valued in the space of d×d orthogonal (resp.
diagonal) matrices and B := Γ

1
2P . In what follows below we also need the Moore-Penrose

pseudoinverse B† of B. Namely, after defining

Γ̃ := Diag(Γii · 1{Γii>0}, i = 1, . . . , d)

we set B† := P TΓ̃
1
2 . Note that due to Assumption 5.2.2 (i) all these processes are

(Gt)t∈[0,T ]-predictable.
In order to precisely describe the utility maximization problem under partial infor-

mation let us now consider the stock dynamics under the smaller filtration (Gt)t∈[0,T ],
using o to denote (Gt)t∈[0,T ]-optional projection and noting that under the assumptions
of the present chapter this optional projection coincides with the (Gt)t∈[0,T ]-predictable
projection for all the processes in question. More explicitly, under the Assumption 5.2.2,

dRot = dMo
t + d〈M〉tλot

where the prescriptionMo
t := E[M̃t| Gt] = E[Mt| Gt],t ∈ [0, T ], indeed defines a (Gt)t∈[0,T ]-

local martingale. From Mania et al. [2008] we derive that for all i = 1, . . . , d the process
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〈M i〉 − 〈(M i)o〉 is increasing so that 〈(M i)o〉 ≤ 〈M i〉. It follows that we can find an
analogous decomposition of the quadratic variation ofMo, with A from above, i.e. Ă ≡ A
and

〈Mo〉 = C̆ ·A = P̆ TΓ̆P̆ ·A = B̆TB̆ ·A,

where C̆, P̆ , Γ̆ and B̆ are matrix-valued (Gt)t∈[0,T ]-predictable processes with properties
analogous to those of C, P , Γ and B.
Our exponential moments assumption on the mean-variance tradeoff now takes the

following form.

Assumption 5.2.4. We assume that 〈λ ·M〉T =
∫ T

0
∥∥Btλt∥∥2

dAt has a finite exponential
moment of some order cλ > 0.

Remark 5.2.5. By He et al. [1992] Theorem 5.25 the Assumption 5.2.4 implies that
〈λo ·M〉T =

∫ T
0
∥∥Btλot∥∥2

dAt has a finite exponential moment of order cλ > 0.

The following structural assumption is then needed for the derivation of the corre-
sponding utility maximization BSDE.

Assumption 5.2.6.

(i) Ker(B) ⊂ Ker(B̆), µA-a.e.

(ii) The process ‖B̆B†‖2 is bounded by a constant c† ≥ 1. Equivalently, the eigenvalues
of (B̆B†)TB̆B† are uniformly bounded by c† ≥ 1.

Remark 5.2.7. We mention that item (i) of the above assumption is motivated by
〈(M i)o〉 ≤ 〈M i〉 for i = 1, . . . , d and hence is satisfied when d = 1 or, more generally,
when M and Mo are made of orthogonal components, i.e. when C and C̆ are diagonal.
Using the fact that B†B is the projector onto (Ker(B))⊥ the above item (i) is equivalent
to the condition that

B̆B†B = B̆, µA-a.e. (5.2.2)

We also emphasize that the Assumption 5.2.6 is automatically satisfied if we consider
the portfolio choice problem under the assumption that the filtration (FRt )t∈[0,T ] is part
of the investor’s information flow, which is given by (Gt)t∈[0,T ]. In this case Ro ≡ R,
Mo ≡ M̃ , 〈Mo〉 ≡ 〈M̃〉 ≡ 〈M〉 and thus B̆ ≡ B. Hence (5.2.2) holds and since BB† is
the projector onto Im(B) we find that the above item (ii) is satisfied with c† := 1. In
such a situation the focus is on utility maximization under closed constraints satisfying
a boundedness condition as described in Assumption 5.2.8. The assumption that the
agent can observe the evolution of the stock returns clearly is a natural condition.

Let us now work towards the investor’s portfolio selection problem. As in Chapter 4
we assume that their trading strategies must belong to some constraints sets K which
we introduce presently. In contrast to the previous chapter, in order to solve the utility
maximization problem, we are going to rely purely on BSDE theory in the spririt of Hu
et al. [2005] and do not refer to duality theory. As a consequence we do not assume that
the trading constraints are conic. Their closedness together with a suitable boundedness
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property will be sufficient. Given the inclusion of partial information this is the second
focus of study in the present chapter.

Assumption 5.2.8. There exists a (Gt)t∈[0,T ]-predictably measurable closed multival-
ued mapping (t, ω) 7→ K(t, ω) ⊂ Rd such that 0 ∈ K(t, ω) for all (t, ω) and such that∫ T

0 supu∈Kt ‖Btu‖
2 dAt has finite exponential moments of all orders.

Remark 5.2.9. Note that together with Assumption 5.2.6 this implies that the random
variable

∫ T
0 supu∈Kt ‖B̆tu‖

2 dAt has finite exponential moments of all orders. Here and
in what follows, a major reference for closed multivalued mappings and their measura-
bility is Rockafellar [1976]. In particular, from Rockafellar [1976] Proposition 2.C and
Theorem 2.K we see that both (t, ω) 7→ supu∈Kt ‖Btu‖

2 and (t, ω) 7→ supu∈Kt ‖B̆tu‖
2 are

(Gt)t∈[0,T ]-predictable processes. However, there is some degeneracy related to closed-
ness that we have to address before moving further. Namely, for an arbitrary closed set
K the image BK under a linear mapping B need not be closed, see Pataki [2007] for a
discussion of sufficient and necessary conditions when K is a convex cone. In Chapter 3
we use that K is polyhedral there, a condition that is not present here. We thus have to
make use of the closure operator cl in the sequel. However, observing that

sup
u∈K
‖Bu‖2 = sup

w∈BK
‖w‖2 = sup

w∈ cl(BK)
‖w‖2,

we find that incorporating the closure operator does not affect the above assumptions.

Remark 5.2.10. We mention that the use of the closure operator is superfluous if
(t, ω) 7→ K(t, ω) is a mapping of compact sets. In this case (t, ω) 7→ Bt(ω)K(t, ω) is a mul-
tivalued mapping of closed bounded sets. In particular, (t, ω) 7→ supu∈K(t,ω) ‖Bt(ω)u‖2
is well-defined and Assumption 5.2.8 is satisfied if it is a bounded process, e.g. if
K(t, ω) ≡ K is a fixed compact set and the process max(Γii)i=1,...,d of the maximal
eigenvalue of C is bounded. This setting can serve us as the major example of appro-
priate constraints. Moreover, there is a certain tradeoff between imposing exponential
moments assumptions on λ and on K. Weakening the conditions on either object typi-
cally requires stronger assumptions on the other, see the discussion related to the BSDE
and the measure change property below. We opt for fixing the assumptions as above.

The Investment Problem
We are now ready to introduce the notion of a trading strategy.

Definition 5.2.11. A d-dimensional process ν is called admissible and we then write
ν ∈ AGK, if

(i) It is (Gt)t∈[0,T ]-predictable.

(ii) It is M -integrable, i.e.

P
(∫ T

0
νT
t d〈M〉tνt < +∞

)
= 1.
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(iii) We have that Bν ∈ cl(BK), µA-a.e.

As in the preceding chapters, an admissible process ν is interpreted as an investment
strategy and its components νi represent the proportion of wealth invested in each stock
Si, i = 1, . . . , d, now subject to the investment and information constraints that are
determined by K and G. Then, requiring that ν be (Gt)t∈[0,T ]-predictable reflects the
fact that only the information encoded in the smaller filtration (Gt)t∈[0,T ] may be used
for choosing a trading strategy. For some initial capital x > 0 and an admissible strategy
ν, the associated wealth process Xx,ν then evolves as follows

Xx,ν := x E(ν ·R) = x E(ν ·M + ν · 〈M〉λ). (5.2.3)

Observe that under the Assumptions 5.2.6 and 5.2.8 all strategies ν ∈ AGK are also Mo-
integrable, due to item (iii) above. Similarly, in the above definition, item (iii) actually
also implies item (ii). Moreover, it should be regarded as the condition that “ν ∈ K”,
given that strategies ν ∈ Ker(B) do not contribute to the investor’s wealth and under
the assumption that the case of a closed BK is the natural one.
As usual, our agent has preferences modelled by a power utility function U ,

U(x) = xp

p
,

where p is now restricted to be positve, i.e. p ∈ (0, 1). They start with initial capital
x > 0, may choose admissible strategies ν, and aim to maximize the expected utility of
terminal wealth.
Contrary to the previous chapter we assume that at terminal time there applies an

additional discount or multiplicative bonus D, where D is a nonnegative FT -measurable
random variable that satisfies E[Dp|HT ] = E[Dp| GT ] =: D̆p > 0, P-a.s. and is such that
| log(D̆)| has all exponential moments. As an example we may think of D as arising from
a stochastic tax rate whose level depends on the state of the economy at terminal time
T and hence is beyond the information which is available to the investor. Alternatively,
we may think of a trader at an investment bank whose reward is a certain percentage
amount of the wealth acquired for their company. Another interpretation is that if
E[Dp] = 1, then D can be considered as yielding a change of measure. The portfolio
selection problem is then under the investor’s subjective views determined by D, see
(5.2.4).
In conclusion, we are led to considering the following optimization problem, where

without loss of generality x = 1,

u(1) := sup
ν∈AGK

E
[
U
(
DXν

T

)]
= sup

ν∈AGK

E
[
DpU

(
Xν
T

)]
. (5.2.4)

The dynamic formulation of this portfolio choice problem in the filtration (Gt)t∈[0,T ]
amounts to

ut(1) := ess sup
ν∈AGK

E
[
U
(
DXν

t,T

)∣∣∣Gt] , (5.2.5)
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where Xν = E(ν · R). The main idea is now to transform (5.2.5) into an equivalent
problem with full information, i.e. into a problem of the form

uGt (1) := ess sup
ν∈AGK

E
[
U
(
D̆X̆ν

t,T κ̆
ν
t,T

)∣∣∣Gt] , (5.2.6)

where X̆ν = E(ν ·Ro) and κ̆ν is a (Gt)t∈[0,T ]-predictable process that represents a suitable
adjustment. In the full information case κ̆ν ≡ 1, of course. Actually, this also holds when
(FRt )t∈[0,T ] is part of (Gt)t∈[0,T ]. In general, we have

κ̆ν := exp
(
p− 1

2

∫ ·
0

(
‖Btνt‖2 − ‖B̆tνt‖2

)
dAt

)
. (5.2.7)

Remark 5.2.12. A well established fact in dynamic programming is that (ut(1))t∈[0,T ]
and

(
uGt (1)

)
t∈[0,T ] are (Gt)t∈[0,T ]-supermartingales, hence admit modifications that are

càdlàg. In the sequel we thus assume that (ut(1))t∈[0,T ] and
(
uGt (1)

)
t∈[0,T ] have been

chosen in their càdlàg modification. For the proof of the supermartingale property
observe that for t ∈ [0, T ] the family

(
E
[
U
(
DXν

t,T

)∣∣Gt])ν∈AGK is stable by supremum, i.e.
for all ν1, ν2 ∈ AGK we obtain from a calculation that

E
[
U
(
DXν1

t,T

)∣∣Gt] ∨ E
[
U
(
DXν2

t,T

)∣∣Gt] = E
[
U
(
DXν

t,T

)∣∣Gt], P-a.s.
for ν := ν11E + ν21Ec ∈ AGK where

E :=
{
E
[
U
(
DXν1

t,T

)∣∣Gt] > E
[
U
(
DXν2

t,T

)∣∣Gt]} ∈ Gt.
We thus can deduce an increasing limit property of the mentioned family. More explicitly,
there is a sequence (νn)n∈N in AGK such that P-a.s.

ut(1) = lim
n→+∞

↑ E
[
U
(
DXνn

t,T

)∣∣Gt].
For s ≤ t we then deduce from the monotone convergence theorem that P-a.s.

E
[
ut(1)| Gs

]
= lim

n→+∞
↑ E
[
E
[
U
(
DXνn

t,T

)∣∣Gt]∣∣∣Gs] ≤ ess sup
ν∈AGK

E
[
U
(
DXν

t,T

)∣∣Gs]
= ess sup

ν∈AGK, ν≡0 on (s,t]
E
[
U
(
DXν

s,T

)∣∣Gs] ≤ us(1),

which shows that (ut(1))t∈[0,T ] indeed is a supermartingale for the filtration (Gt)t∈[0,T ]
and the proof for

(
uGt (1)

)
t∈[0,T ] follows the same pattern.
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The BSDE in the Smaller Filtration and the Existence Result

As already announced we proceed in the spirit of Hu et al. [2005] and Mania and San-
tacroce [2010]. We solve the portfolio choice problem (5.2.6) by finding a solution to a
specific BSDE, performing a verification argument and finally constructing an optimal
strategy where in the last step we refer to measurable selection. The BSDE in question
is defined on the filtered probability space (Ω,F , (Gt)0≤t≤T ,P) and takes the following
form,

dΨt = ZT
t dM

o
t + dNt − F (t, Zt) dAt −

1
2 d〈N〉t, ΨT = log

(
U(D̆)

)
, (5.2.8)

where N is a continuous (Gt)0≤t≤T -local martingale that is orthogonal to Mo and the
driver F is given by

F (·, z) = p(p− 1)
2 dist2

(
Bλo + (B†)TC̆z

1− p ,BK
)

+ p(1− p)
2

∥∥∥∥∥Bλo + (B†)TC̆z

1− p

∥∥∥∥∥
2

+ 1
2‖B̆z‖

2.

Here, dist denotes the distance function on Rd from a non-empty set.
We argue that the driver F is (Gt)0≤t≤T -predictable for fixed z ∈ Rd. We first observe

that
dist

(
Bλo + (B†)TC̆z

1− p ,BK
)

= dist
(
Bλo + (B†)TC̆z

1− p , cl(BK)
)
.

Using Rockafellar [1976] Corollary 1.P and Assumption 5.2.8 the multivalued map-
ping (t, ω) 7→ cl(Bt(ω)K(t, ω)) is (Gt)t∈[0,T ]-predictably measurable. The (Gt)t∈[0,T ]-
predictability of F then follows from Rockafellar [1976] Theorem 2.K.
We are now ready to state the first main result of this chapter restricting ourselves to

the question of existence.

Theorem 5.2.13. Let the Assumptions 5.2.2, 5.2.4, 5.2.6 and 5.2.8 hold. Then there
exists a solution (Ψ̂, Ẑ, N̂) to the BSDE (5.2.8) on (Ω,F , (Gt)0≤t≤T ,P), i.e. to the BSDE

dΨt = ZT
t dM

o
t + dNt − F (t, Zt) dAt −

1
2 d〈N〉t, ΨT = log

(
U(D̆)

)
,

with driver

F (·, z) = −p(1− p)2 dist2
(
Bλo + (B†)TC̆z

1− p ,BK
)
− q

2
∥∥Bλo + (B†)TC̆z

∥∥2 + 1
2
∥∥B̆z∥∥2

(5.2.9)

where q = p
p−1 and where E[exp(δ∗Ψ̂∗)] < +∞ for some δ∗ > 2. The dynamic value

process
(
ut(1)

)
t∈[0,T ] from (5.2.5) is then given by

u(1) ≡ exp
(
Ψ̂
)
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and, after fixing an appropriate measurable selector (which indeed exists), we find that

ν̂ := B†Πcl(BK)

(
Bλo + (B†)TC̆Ẑ

1− p

)
(5.2.10)

defines an optimal strategy for the portfolio choice problem (5.2.4), i.e.

u(1) = E
[
U
(
DX ν̂

T

)]
,

where ν̂ ∈ AGK and Π stands for the nearest point operator onto the indicated set.

We recall that in the present framework, for a (Gt)t∈[0,T ]-predictably measurable mul-
tivalued function G : [0, T ] × Ω → 2Rd , a measurable selector is a (Gt)t∈[0,T ]-predictable
process g : [0, T ]× Ω→ Rd such that g(t, ω) ∈ G(t, ω) for all (t, ω) ∈ [0, T ]× Ω.

5.3 Information Constrained Utility Maximization

In this section we provide the proof of Theorem 5.2.13. We first transform the original
problem (5.2.5) to the auxiliary optimization problem (5.2.6), then provide a solution to
the BSDE (5.2.8) and finally use the martingale optimality paradigm to verify that this
solution gives us the optimizers.

5.3.1 The Auxiliary Utility Maximization Problem

This subsection concerns the derivation of the auxiliary optimization problem (5.2.6),
which can be interpreted as a problem for which (Gt)t∈[0,T ] encodes full information.
We show that it is equivalent to the original portfolio choice problem under the present
constraints and partial information. We begin with a preparatory lemma.

Lemma 5.3.1. Let the Assumptions 5.2.2 and 5.2.4 hold and let ν be a (Gt)t∈[0,T ]-
predictable process which is M - and Mo-integrable. Then we have ν ·Mo ≡ (ν · M̃)o and
E[E(ν · M̃)t| Gt] = E((ν · M̃)o)t for all t ∈ [0, T ], P-a.s. As a consequence, P-a.s. for all
t ∈ [0, T ],

E[E(ν · M̃)t| Gt] = E(ν ·Mo)t.

Proof. We observe that ν·M̃ and ν·Mo exist and that the Assumption 5.2.2 is satisfied for
ν · M̃ and for each of the components of M̃ in place of M . We thus may refer to Mania
and Santacroce [2010] Lemma 1 for the second statement and to Mania et al. [2008]
Proposition 2.2 to show that for any (Gt)t∈[0,T ]-local martingale M and all i = 1, . . . , d,
〈M̃ i,M〉 ≡ 〈(M i)o,M〉. Together with Jacod and Shiryaev [2003] Theorem III.4.5 we
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then deduce

〈(ν · M̃)o,M〉t =
∫ t

0

d〈ν · M̃,M〉s
d〈M〉s

d〈M〉s =
∫ t

0

∑d
i=1 ν

i d〈M̃ i,M〉s
dAs

dAs

d〈M〉s
d〈M〉s

=
∫ t

0

∑d
i=1 ν

i d〈(M i)o,M〉s
dAs

dAs

d〈M〉s
d〈M〉s = 〈ν ·Mo,M〉t,

where we use d(·)
d(·) to denote the respective Radon-Nikodým derivatives. Setting M :=

(ν · M̃)o − ν ·Mo then gives the claim and the final assertion is immediate.

If in the above lemma we replace ν by ν1[0,s] for a fixed s ∈ [0, T ], then the claim can
be stated as E[E(ν ·M̃)s,t| Gt] = E(ν ·Mo)s,t. We use this to derive the auxiliary dynamic
formulation (5.2.6) of the portfolio choice problem.

Proposition 5.3.2. Let the Assumptions 5.2.2, 5.2.4 and 5.2.8 hold. Then the dynamic
optimization problems (5.2.5) and (5.2.6) are equivalent, i.e.

ut(1) = ess sup
ν∈AGK

E
[
U
(
DXν

t,T

)∣∣∣Gt] = ess sup
ν∈AGK

E
[
U
(
D̆X̆ν

t,T κ̆
ν
t,T

)∣∣∣Gt] = uGt (1),

where κ̆ν is defined in (5.2.7).

Proof. Using the definitions, the condition on D, the above lemma and the preceding
observation we obtain that for ν ∈ AGK,

E
[
U
(
DXν

t,T

)∣∣∣Gt]
= 1
p
E
[
E[Dp|HT ] exp

(
p(ν · M̃)t,T + p

∫ T

t
νT
s d〈M〉sλos −

p

2

∫ T

t
‖Bsνs‖2 dAs

) ∣∣∣∣∣Gt
]

= 1
p
E
[
D̆p E

[
E
(
pν · M̃

)
t,T

∣∣∣GT ] exp
(
p

∫ T

t
νT
s d〈M〉sλos + p2 − p

2

∫ T

t
‖Bsνs‖2 dAs

) ∣∣∣∣∣Gt
]

= 1
p
E
[
D̆p E(pν ·Mo)t,T exp

(
p

∫ T

t
νT
s d〈M〉sλos + p2 − p

2

∫ T

t
‖Bsνs‖2 dAs

) ∣∣∣∣∣Gt
]

= E
[
U
(
D̆X̆ν

t,T

)
exp

(
p2 − p

2

∫ T

t

(
‖Bsνs‖2 − ‖B̆sνs‖2

)
dAs

) ∣∣∣∣∣Gt
]

= E
[
U
(
D̆X̆ν

t,T κ̆t,T
)∣∣∣∣∣Gt

]
,

which shows the desired identity.

Remark 5.3.3. Observe that the existence of the auxiliary object (Ht)t∈[0,T ] is used
in the first equality of the above calculation. As an alternative, we could ask for the
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5 Utility Maximization under Compact Constraints and Partial Information

(Gt)t∈[0,T ]-predictability of both 〈M〉 and λ. Then the introduction of (Ht)t∈[0,T ] is not
necessary and we can restrict ourselves to using (Gt)t∈[0,T ] in all the other structural
conditions (e.g. on D), see also Remark 5.2.1.

5.3.2 A Solution to the BSDE
Before turning our attention to solving the above portfolio selection problem by using the
martingale optimality paradigm we collect together the crucial properties of the driver
F from (5.2.9).

Lemma 5.3.4. Let the Assumption 5.2.6 (ii) hold. Then we have P-a.s.

(i) For all t ∈ [0, T ] the driver F (t, ·) is continuous and convex (in z).

(ii) For all ε0 > 0 and all t, z,

|F (t, z)| ≤ pε0
∥∥Btλot∥∥2 + p(1− p+ 1/ε0)

2 sup
u∈Kt

‖Btu‖2 + γ(ε0)
2

∥∥B̆tz∥∥2
, (5.3.1)

where γ(ε0) := 1 + 2pc†ε0.

(iii) For all t ∈ [0, T ] the function z 7→ F (t, z) is locally Lipschitz continuous, i.e. for
all t, z1, z2

|F (t, z1)−F (t, z2)| ≤
(

2|q| ·
∥∥Btλot∥∥+ 1 + 2|q|

2
(∥∥B̆tz1

∥∥+
∥∥B̆tz2

∥∥)) ·∥∥B̆t(z1−z2)
∥∥.

Proof. As in the proof of Proposition 4.6.3 we obtain the representation

F (t, z) = 1
2 ‖B̆tz‖

2 − p(1− p)
2 inf

u∈BtKt

(
‖u‖2 − 2

1− p〈Btλ
o
t + (B†)TC̆z, u〉

)
where the infimum defines a concave function in z from which item (i) follows together
with the continuity of the distance function. Item (ii) is then derived by an application
of the generalized Young inequality to the last expression upon using Assumption 5.2.6
(ii). The last item follows from the Lipschitz continuity of the distance function using
Assumption 5.2.6 (ii) again.

Remark 5.3.5. We remark that Lemma 5.3.4 (ii) gives us a family of growth estimates
which are parameterized by ε0 > 0. In particular, we are able to choose an appropriate
ε∗0 for which specific conditions that we find to be necessary hold.

Consistently to the notation in Chapter 3 we now set

|α(ε0)|1 := pε0

∫ T

0

∥∥Btλot∥∥2
dAt + p(1− p+ 1/ε0)

2

∫ T

0
sup
u∈Kt

‖Btu‖2 dAt

and observe that there is a tradeoff between the conditions that have to be imposed
on the first and the second summand as ε0 varies. As we will see below an important
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argument in performing the verification hinges on proving that a solution to the BSDE
provides a measure change in the spirit of Section 3.7. In particular, we need that
γ(ε0) < 2, so that we restrict ourselves to ε0 <

1
2pc† in the sequel.

Proposition 5.3.6. Let the Assumptions 5.2.2 (i) and (iv), 5.2.4, 5.2.6 (ii) and 5.2.8
hold. If ε∗0 > 0 is small enough, i.e. ε∗0 <

cλ∧(1/c†)
2p , then

(i) The random variable | log
(
U(D̆)

)
| +

∣∣α(ε∗0)
∣∣
1 has an exponential moment of some

order δ∗ > 2, where δ∗ depends on p, cλ, c† and ε∗0.

(ii) The BSDE (5.2.8) has a solution (Ψ̂, Ẑ, N̂) such that E
[
exp

(
δ∗Ψ̂∗

)]
< +∞, where

δ∗ is from item (i).

(iii) For all ν ∈ AGK the stochastic exponential E
(
(Ẑ+pν) ·Mo+N̂

)
is a true martingale

on [0, T ] for the filtration (Gt)t∈[0,T ].

Proof. With regards to item (i) let ε∗0 > 0 be some number that is small enough to satisfy
ε∗0 <

cλ∧(1/c†)
2p . Take β > 1 such that 1 < β2 < cλ

2pε∗0
, δ∗ := cλ

pε∗0β
2 > 2 and % := β

β−1 > 1.
Then by the Hölder inequality we obtain

E
[
exp

(
δ∗
(∣∣log

(
U(D̆)

)∣∣+ |α(ε∗0)|1
))]
≤ 1
pδ∗

E
[
exp

(
p%δ∗| log(D̆)|

)]1/%
· E
[
exp

(
pε∗0β

2δ∗
∫ T

0

∥∥Btλot∥∥2
dAt

)]1/β2

· E
[
exp

(
p%βδ∗(1− p+ 1/ε∗0)

2

∫ T

0
sup
u∈Kt

‖Btu‖2 dAt

)]1/(β%)

< +∞,

since pε∗0β2δ∗ = cλ.
Item (ii) then follows from Corollary 3.4.3 (i) since δ∗ > 2 > γ(ε∗0). We fix a suitable

ε∗0 and δ∗.
With regards to item (iii) we need some more preparation. We assume that ε0 > 0 is an

arbitrary number that is small enough to satisfy ε0 <
1

2(1+pc†) . Then define %̃(ε0) := 1−ε0
and

ε(ε0) := 1
2 min

(
ε0,

1
p
,
2%̃(ε0)− γ(ε0)

2p%̃(ε0)

)
,

where γ(ε0) is as in Lemma 5.3.4 (ii). Finally, set

%0(ε0) := %̃(ε0)(1− pε(ε0))
2%̃(ε0)(1− pε(ε0))− γ(ε0) .

Then 1 > %̃(ε0) > γ(ε0)/2 > 1/2, ε(ε0) > 0, %0(ε0) > 0 and limε0↓0 %0(ε0) = 1+ (which
means that the limit is from above). The first three of these assertions are derived easily.
We also observe that limε0↓0 ε(ε0) = 0 and that ε(ε0) = ε0 for ε0 sufficiently small. Since
ε0 <

1
2(1+pc†) < 1 + 4c† + 2/p we also have that %0(ε0) > 1 for ε0 sufficiently small from
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which the last claim follows. In particular, there exists an ε?0 ∈
(
0, 1

2(1+pc†) ∧
δ∗−2
δ∗ ∧ ε

∗
0

)
such that 1 < %0(ε?0) < δ∗

2 . We now proceed similarly to the proof of Theorem 3.7.2 and
consider for %̃ := 1− ε?0, η > 0, and ν ∈ AGK,

logGη(t) := %̃η
[
((Ẑ + pν) ·Mo)t + N̂t

]
+ %̃2

(1
2 − η

) 〈
(Ẑ + pν) ·Mo + N̂

〉
t

to get from the BSDE (5.2.8) and the growth condition in (5.3.1),

logGη(t) = %̃η

(
Ψ̂t − Ψ̂0 +

∫ t

0
F (s, Ẑs) dAs + 1

2 d〈N̂〉t
)

+ p (ν ·Mo)t + %̃2
(1

2 − η
)
〈(Ẑ + pν) ·Mo + N̂〉t

≤ %̃η(Ψ̂∗ + |Ψ̂0|) + %̃η
∣∣α(ε?0)

∣∣
1 + %̃η

(
γ

2 + %̃

η

(1
2 − η

))
〈Ẑ ·Mo + N̂〉t

+ p (ν ·Mo)t + p2%̃2
(1

2 − η
)
〈ν ·Mo〉t + 2p%̃2

(1
2 − η

)
〈Ẑ ·Mo, ν ·Mo〉t

≤ %̃η(Ψ̂∗ + |Ψ̂0|) + %̃η
∣∣α(ε?0)

∣∣
1 + %̃η

(
γ

2 + %̃

η

(1
2 − η

))
〈N̂〉t

+ %̃η

(
γ

2 + %̃

η

(1
2 − η

)
+ pε%̃

η

∣∣∣∣12 − η
∣∣∣∣) 〈Ẑ ·Mo〉t

+ p (ν ·Mo)t + p%̃2
(
p

(1
2 − η

)
+ 1
ε

∣∣∣∣12 − η
∣∣∣∣) 〈ν ·Mo〉t,

where ε > 0 is arbitrary, by the Young inequality. In what follows we choose ε > 0 to
satisfy

ε = 1
2 min

(
ε?0,

1
p
,
2%̃− γ

2p%̃

)
= ε(ε?0)

where γ = γ(ε?0). Noting that for η > 1/2,

γ

2 + %̃

η

(1
2 − η

)
+ pε%̃

η

∣∣∣∣12 − η
∣∣∣∣ ≤ 0 ⇐⇒ η ≥ %̃(1− pε)

2%̃(1− pε)− γ = %0(ε?0) =: %?0,

where indeed %?0 > 1 > 1/2, we have that P-a.s. for all t ∈ [0, T ],

Gη(t) ≤ exp
(
%̃η
(
Ψ̂∗ + |Ψ̂0|

))
exp

(
%̃η
∣∣α(ε?0)

∣∣
1

)
· exp

(
p(ν ·Mo)∗

)
exp

(
p%̃2

ε

∣∣∣∣12 − η
∣∣∣∣ 〈ν ·Mo〉T

)
, (5.3.2)

for all η ≥ %?0. Setting η∗ := δ∗/2 > %?0 > 1 and using the Hölder inequality twice, firstly
with exponent β := 1/%̃ > 1 and secondly with exponent β := 2, we conclude from the

148



5.3 Information Constrained Utility Maximization

exponential moments conditions on Ψ̂∗,
∣∣α(ε?0)

∣∣
1 and 〈ν ·Mo〉T that

sup
τ stopping time
valued in [0,T]

E
[
Gη∗(τ)

]
< +∞. (5.3.3)

It now follows from Lemma 3.7.1 that the stochastic exponential E
(
%̃η
[
(Ẑ+pν)·Mo+N̂

])
is a true martingale for all ν ∈ AGK and all η ∈

(
1, δ∗2

)
, in particular for η := 1

%̃ = 1
1−ε?0

<

δ∗/2.

5.3.3 The Martingale Optimality Principle

We are now ready to prove Theorem 5.2.13 by using the martingale optimality principle.
Let (Ψ̂, Ẑ, N̂) be the solution to the BSDE (5.2.8) obtained in the previous proposition.
For arbitrary ν ∈ AGK we then set

Jν := U
(
X̆1,ν κ̆

)
and deduce from Itô’s formula that

d
(
Jνt exp(Ψ̂t)

)
= Jνt exp(Ψ̂t)

[(
Ẑt + pνt

)
dMo

t + dN̂t

+ p(1− p)
2

(
dist2

(
Btλ

o
t + (B†t )TC̆tẐt

1− p ,BtKt
)
−
∥∥∥∥Btλot + (B†t )TC̆tẐt

1− p −Btνt
∥∥∥∥2
dAt

)]

= Jνt exp(Ψ̂t)
((
Ẑt + pνt

)
dMo

t + dN̂t + p(1− p)
2 υ(t, νt, Ẑt) dAt

)
, (5.3.4)

where for ν ∈ AGK and z ∈ Rd,

υ(t, νt, z) : = dist2
(
Btλ

o
t + (B†t )TC̆tz

1− p ,BtKt
)
−
∥∥∥∥Btλot + (B†t )TC̆tz

1− p −Btνt
∥∥∥∥2

= dist2
(
Btλ

o
t + (B†t )TC̆tz

1− p , cl(BtKt)
)
−
∥∥∥∥Btλot + (B†t )TC̆tz

1− p −Btνt
∥∥∥∥2
≤ 0.

Note that Assumption 5.2.6 (i) is used in the application of Itô’s formula in (5.3.4) via
the formula (5.2.2). Namely, there occur both Bν and B̆ν in (5.2.7). However, the
BSDE (5.2.8) is a BSDE for the local martingale Mo, hence necessarily involves B̆Ẑ. In
order to derive υ, which is given in the above convenient form, in the multidimensional
case considered here we hence require a consistency relation between B and B̆, the
Assumption 5.2.6 (i). From (5.3.4) we derive that

Jνexp(Ψ̂) = 1
p

exp(Ψ̂0) E
((
Ẑ + pν

)
·Mo + N̂

)
exp

(
p(1− p)

2

∫ ·
0
υ(t, νt, Ẑt) dAt

)
,
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5 Utility Maximization under Compact Constraints and Partial Information

which according to Proposition 5.3.6 (iii) is the product of a uniformly integrable mar-
tingale for the filtration (Gt)t∈[0,T ] and a positive nonincreasing (Gt)t∈[0,T ]-predictable
process, hence a (Gt)t∈[0,T ]-supermartingale, see Jacod and Shiryaev [2003] Theorem
II.8.21. It follows that for t ∈ [0, T ],

Jνt exp(Ψ̂t) ≥ E
[
JνT exp

(
Ψ̂T

)∣∣∣Gt], P-a.s.

from which
exp(Ψ̂t) ≥ E

[
U
(
D̆X̆ν

t,T κ̆
ν
t,T

)∣∣∣Gt], P-a.s.

Since this holds for all ν ∈ AGK we obtain, P-a.s. (see Remark 5.2.12),

exp
(
Ψ̂t
)
≥ uGt (1) = ess sup

ν∈AGK

E
[
U
(
D̆X̆ν

t,T κ̆
ν
t,T

)∣∣∣Gt] .
In particular, P-a.s.

exp(Ψ̂0) ≥ uG0 (1) = u(1) = sup
ν∈AGK

E
[
U
(
DXν

T

)]
.

Finally, we define

ν̂ := B†Πcl(BK)

(
Bλo + (B†)TC̆Ẑ

1− p

)
where we fix a suitable measurable selector. Note that such a measurable selector exists
thanks to Rockafellar [1976] Corollary 1.C. Thus, ν̂ ∈ AGK. Namely,

Bν̂ = BB†Πcl(BK)

(
Bλo + (B†)TC̆Ẑ

1− p

)
= Γ

1
2 Γ̃

1
2 Πcl(BK)

(
Bλo + (B†)TC̆Ẑ

1− p

)

and, moreover,
υ(·, ν̂, Ẑ) ≡ 0,

since all elements in the images of Γ
1
2 Γ̃

1
2B and B = Γ

1
2P have the same zero compo-

nents (which are closed) and for the nonzero components the closure does not affect the
distance function. We conclude that J ν̂exp(Ψ̂) is a martingale so that we obtain, P-a.s.

exp
(
Ψ̂t
)
≥ uGt (1) = ess sup

ν∈AGK

E
[
U
(
D̆X̆ν

t,T κ̆
ν
t,T

)∣∣∣Gt] ≥ E
[
U
(
D̆X̆ ν̂

t,T κ̆
ν̂
t,T

)∣∣∣Gt] = exp
(
Ψ̂t
)

and
E
[
U
(
DX ν̂

T

)]
= exp(Ψ̂0) = u(1) = sup

ν∈AGK

E
[
U
(
DXν

T

)]
.

The continuity of Ψ̂ and the càdlàg property of (ut(1))t∈[0,T ] and (uGt (1))t∈[0,T ], see
Remark 5.2.12, show that exp(Ψ̂) ≡ uG(1) ≡ u(1) holds up to indistinguishability.
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Remark 5.3.7. It becomes clear again that the verification argument consists of proving
that some object is a true martingale, which is a recurrent theme in the present thesis
and at the heart of stochastic control theory, see condition (A) in the introduction.

5.4 Stability of the Optimization Problem
In this section we prove that the constrained utility maximization problem (5.2.4) is
continuous with respect to the input parameters p, λ, K and D of the model, i.e. the
risk-aversion parameter of the agent, the market price of risk process, the constraints
sets and the discount or measure change factor. We proceed similarly to Section 4.6
under the appropriate assumption on the mean-variance tradeoff. More specifically, we
impose the following condition.

Assumption 5.4.1. We assume that 〈λ ·M〉T =
∫ T

0
∥∥Btλt∥∥2

dAt has finite exponential
moments of all orders.

We then have

Theorem 5.4.2. Let the Assumptions 5.2.2, 5.2.6, 5.2.8 and 5.4.1 hold. Then there
exists a unique solution (Ψ̂, Ẑ, N̂) to the BSDE (5.2.8) with Ψ̂ ∈ E and we have u(1) ≡
exp

(
Ψ̂
)
where the corresponding optimal strategy ν̂ ∈ AGK is given by (5.2.10).

Proof. For all ε0 > 0 the random variable | log
(
U(D̆)

)
| +

∣∣α(ε0)
∣∣
1 has exponential mo-

ments of all orders. The first claim then follows from the Theorems 3.2.5 and 3.2.6.
Moreover, for ε0 > 0 sufficiently small and all ν ∈ AGK, the stochastic exponential
E
(
(Ẑ + pν) ·Mo + N̂

)
is a true (Gt)t∈[0,T ]-martingale on [0, T ], which follows as in the

proof of 5.3.6 (iii). The reasoning from the previous section then yields the result.

With regards to the stability analysis let

(λn)n∈N, (pn)n∈N, (Kn)n∈N and (Dn)n∈N

be sequences of parameters that converge to λ =: λ0, p =: p0, K =: K0 and D =: D0 in
a sense that will be specified shortly. Fix n ∈ N. We have that each λn is a predictable
M -integrable process so that it leads to dynamics for the asset S = Sn of the form

dSnt = Diag(Snt )
(
dMt + d〈M〉tλnt

)
.

In addition, assume that (λn)o = (λn)G = (λn)H, µA-a.e. for all n ∈ N. Each risk
aversion parameter pn is valued in (0, 1) and corresponds to a utility function

Un(x) := 1
pn
xp

n
, x > 0.

Each Dn is an FT -measurable random variable satisfying

E
[
(Dn)pn

∣∣HT ] = E
[
(Dn)pn

∣∣GT ] =: (D̆n)pn > 0, P-a.s.
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5 Utility Maximization under Compact Constraints and Partial Information

and each constraints set Kn is assumed to satisfy Assumption 5.2.8 so that we can
consider the primal problem as a function of the inputs,

unt (1) := ess sup
ν∈AGKn

E
[
Un
(
DnXn,ν

T

)]
, (5.4.1)

where Xn,ν represents the wealth acquired from an investment in Sn so that we have

Xn,ν = E(ν ·M + ν · 〈M〉λn
)
. (5.4.2)

In what follows we prove the continuity of the optimizers

X̂n := Xn,ν̂n and ν̂n := ν̂(λn, pn,Kn, Dn),

for this problem. In view of Theorem 3.2.7 the following assumption is appropriate for
our purposes.

Assumption 5.4.3. The preferences and markets converge in the following sense,

lim
n→+∞

pn = p and

lim
n→+∞

(〈[
(λn)o − λo

]
·M

〉
T

+
∣∣D̆n − D̆

∣∣) = 0

in P-probability. The constraints sets converge in the sense of the closed topology

Lim
n→+∞

cl
(
BKn

)
= cl

(
BK

)
, µA-a.e.

see Appendix 6.2 for more details. Moreover, if ε0 <
1

2 max(pn,n≥0)c† , we assume that

sup
n≥0

E
[
e%
(
| log(D̆n)|+|αn(ε0)|1

)]
< +∞

for all % > 0 where

|αn(ε0)|1 := pnε0

∫ T

0

∥∥Bt(λnt )o
∥∥2
dAt + pn(1− pn + 1/ε0)

2

∫ T

0
sup
u∈Knt

‖Btu‖2 dAt.

Remark 5.4.4. With regards to the appropriate mode of convergence of the market
price of risk processes and in analogy to the conditions present in Chapter 4 we could
have required that 〈(λn − λ) ·M〉T have all exponential moments, uniformly in n, and
that 〈(λn − λ) ·M〉T → 0 as n → +∞ in P-probability. These conditions imply the
corresponding conditions in the above assumption as is easily checked using the universal
property of the optional projection together with He et al. [1992] Theorem 5.25. In view
of Proposition 6.2.2 and the invariance of the distance function under the closure operator
a condition equivalent to Limn→+∞ cl

(
BKn

)
= cl

(
BK

)
is that dist(·, BKn)→ dist(·, BK)

pointwise as n→ +∞.
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5.4 Stability of the Optimization Problem

Under the Assumptions 5.2.2, 5.2.6 and 5.4.3 and for fixed n ∈ N0 we have from
Theorem 5.4.2 that there exists a unique solution (Ψ̂n, Ẑn, N̂n) to the BSDE (written in
generic variables)

dΨt = ZT
t dM

o
t + dNt − Fn(t, Zt) dAt −

1
2 d〈N〉t, ΨT = log

(
U(D̆n)

)
, (5.4.3)

with Ψ̂n ∈ E and where Fn is given by

Fn(·, z) = −p
n(1− pn)

2 dist2
(
B(λn)o + (B†)TC̆z

1− pn , BKn
)

− qn

2

∥∥∥B(λn)o + (B†)TC̆z
∥∥∥2

+ 1
2‖B̆z‖

2.

Moreover, un(1) ≡ exp
(
Ψ̂n
)
and

ν̂n = B†Πcl(BKn)

(
B(λn)o + (B†)TC̆Ẑn

1− pn

)

defines an optimal strategy of the portfolio choice problem for the input parameters λn,
pn, Kn and Dn. Clearly, our goal is now to use Theorem 3.2.7 for which we need that
the drivers Fn converge appropriately. This is the content of the following lemma.

Lemma 5.4.5. Let the Assumptions 5.2.6 (ii) and 5.4.3 hold. Then, setting Ẑ = Ẑ0,

lim
n→+∞

E
[∫ T

0

∣∣Fn(t, Ẑt)− F (t, Ẑt)
∣∣ dAt

]
= 0.

Proof. Using the definition of the drivers one can derive the following inequality

|Fn(t, Ẑt)− F (t, Ẑt)|

≤ p(1− p)
2

∣∣∣∣∣dist2
(
Btλ

o
t + (B†t )TC̆tẐt

1− p ,BtKnt

)
− dist2

(
Btλ

o
t + (B†t )TC̆tẐt

1− p ,BtKt

)∣∣∣∣∣
+ pn(1− pn)

2

∣∣∣∣∣dist2
(
Btλ

o
t + (B†t )TC̆tẐt

1− p ,BtKnt

)
− dist2

(
Bt(λn)ot + (B†t )TC̆tẐt

1− pn , BtKnt

)∣∣∣∣∣
+
∣∣p(1− p)− pn(1− pn)

∣∣
2 dist2

(
Btλ

o
t + (B†t )TC̆tẐt

1− p ,BtKnt

)
+ |q−qn|

2
∥∥Bt(λn)ot + (B†t )TC̆tẐt

∥∥2 + q

2

∣∣∣∥∥Btλot + (B†t )TC̆tẐt
∥∥2 −

∥∥Bt(λn)ot + (B†t )TC̆tẐt
∥∥2
∣∣∣

=: Gnt +Hn
t + Int + Jnt .
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As in the proof of Proposition 4.6.3 we have to show that

lim
n→+∞

E
[∫ T

0
(Gnt +Hn

t + Int + Jnt ) dAt

]
= 0,

for which we can work term by term. For instance, by Proposition 6.2.2, (Gn)n∈N
converges to zero µA-a.e. and is dominated by |q|

(
‖B̆Ẑ‖2 + ‖Bλo)‖2

)
. In particular,

thanks to the dominated convergence theorem, we have

lim
n→+∞

E
[∫ T

0
Gnt dAt

]
= lim

n→+∞

∫
[0,T ]×Ω

Gn dµA = 0.

Similarly, following the same pattern as in the proof of Proposition 4.6.3, we use the
local Lipschitz estimate for the distance function, Proposition 6.2.2, the boundedness of
pn(1−pn)

2 , Assumption 5.2.6 (ii) and the given integrability to finally derive all the desired
individual convergences.

We are now ready to state the BSDE stability result 3.2.7 adapted to the present
framework.

Theorem 5.4.6. Let the Assumptions 5.2.2, 5.2.6 and 5.4.3 hold and let the triple
(Ψ̂n, Ẑn, N̂n) denote the unique solution to the BSDE (5.4.3) with Ψ̂n ∈ E then

lim
n→+∞

E
[
exp

(
%
(
Ψ̂n − Ψ̂

)∗)] = 1,

lim
n→+∞

E
[(〈

(Ẑn − Ẑ) ·Mo〉
T

+ 〈N̂n − N̂〉T
)%/2]

= 0,

for all % ≥ 1, where (Ψ̂, Ẑ, N̂) denotes the unique solution triple of the BSDE (5.2.8)
with Ψ̂ ∈ E.

As a consequence, we immediately derive the convergence of the value processes. We
have the following theorem.

Theorem 5.4.7. Let the Assumptions 5.2.2, 5.2.6 and 5.4.3 hold and let (un(1))n∈N
be the sequence of the dynamic value functions for the constrained utility maximization
problem (5.4.1) which we know to satisfy un(1) ≡ Ψ̂n. Similarly, let u(1) be the dynamic
value function for the problem (5.2.5) with u(1) ≡ Ψ̂ ≡ Ψ̂0. Here, Ψ̂n, n ≥ 0, are
components of the corresponding unique BSDE solutions with Ψ̂n ∈ E. Then for all
% > 0,

lim
n→+∞

E
[

sup
t∈[0,T ]

∣∣unt (1)− ut(1)
∣∣%] = 0.

Proof. From the proof of Theorem 3.6.1 we know that exp
((

Ψ̂n− Ψ̂
)∗) converges to one
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in Lβ%(P) for β > max(1/%, 1). Hence,

E
[

sup
t∈[0,T ]

∣∣unt (1)− ut(1)
∣∣%] = E

[
sup
t∈[0,T ]

∣∣∣eΨ̂nt − eΨ̂t
∣∣∣%]

≤ E
[(
esupt∈[0,T ]

∣∣Ψ̂nt −Ψ̂t
∣∣
− 1

)%
exp

(
%Ψ̂∗

)]

≤ E
[(
e
(
Ψ̂nt −Ψ̂t

)∗
− 1

)β%]1/β

E
[
exp

(
β%/(β − 1)Ψ̂∗

)](β−1)/β

−→ 0

as n→ +∞ by the Hölder inequality and Ψ̂ ∈ E.

If, in addition to the Assumption 5.2.8, the constraints sets are convex, then the
nearest point operator is a well-defined mapping on Rd. In particular, optimal strategies
are unique in the sense that the corresponding stochastic integrals with respect to M
are indistinguishable. In this case we have the following stability results.

Theorem 5.4.8. Let the Assumptions 5.2.2, 5.2.6 and 5.4.3 hold and assume that the
Kn are convex. Then for all % ≥ 1

lim
n→+∞

E
[〈

(ν̂n − ν̂) ·M
〉%/2
T

]
= 0.

In particular, (ν̂n − ν̂) ·M converges to zero in M2 and hence in the semimartingale
topology.

Proof. Using the definitions, it follows that

lim
n→+∞

E
[〈

(ν̂n − ν̂) ·M
〉%/2
T

]
= 0

can be derived from(∫ T

0

∥∥∥∥Γ 1
2 Γ̃

1
2 Π

cl
(
BtKnt

)(Bt(λn)ot+(B†t )TC̆tẐnt
1−pn

)
− Γ

1
2 Γ̃

1
2 Π

cl
(
BtKt

)(Btλot+(B†t )TC̆tẐt
1−p

)∥∥∥∥2
dAt

)%/2

≤
(∫ T

0

∥∥∥∥Πcl
(
BtKnt

)(Bt(λn)ot+(B†t )TC̆tẐnt
1−pn

)
−Π

cl
(
BtKt

)(Btλot+(B†t )TC̆tẐt
1−p

)∥∥∥∥2
dAt

)%/2
.

To establish the result we proceed similarly to the proof of Lemma 5.4.5, now using
Proposition 6.2.3, so that Proposition 4.2.9 (i) then yields the final assertion.

Theorem 5.4.9. Let the assumptions of the previous theorem hold and suppose that the
conditions on the convergence of the market price of risk processes are as in Remark
5.4.4, then the sequence of processes X̂n = X ν̂n, n ∈ N, converges to X̂ = X̂ ν̂ in the
semimartingale topology.
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Proof. We note the dynamics of the optimal wealth processes given by (5.4.2) and set

Υn := ν̂n ·M + ν̂n · 〈M〉λn,

for n ∈ N0. We show the convergence in H2 of the sequence (Υn)n∈N so that the result
of the theorem follows from Proposition 4.2.9 (ii) since X̂n = E(Υn) and X̂ = E(Υ0).
Observe from Theorem 5.4.8 that (ν̂n − ν̂) ·M converges to zero inM2 so that we need
only show the convergence of the finite variation parts, namely that

lim
n→+∞

E

(∫ T

0

∣∣ d(〈ν̂n ·M,λn ·M〉 − 〈ν̂ ·M,λ ·M〉
)∣∣)2

 = 0.

Adding and subtracting 〈ν̂ · M,λn · M〉 and then applying the Kunita-Watanabe in-
equality, we see that the above holds due to Theorem 5.4.8 together with the assumed
convergence of 〈(λn − λ) ·M〉T to zero in all L%(P) spaces.
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6 Appendix

6.1 The Solution for Logarithmic Utility

For completeness we here describe the unconstrained continuous case when p = 0. The
results are well-known. Our method of finding the optimizers relies on the precise de-
scription of the dual domain given in Theorem 4.4.1 and hence leads readily to the
results. If it exists, the optimal Ŷ is given by

Ŷ = y E(−λ ·M + N̂) = y E(−λ ·M) E(N̂),

where N̂ is a local martingale orthogonal toM . In the present situation we can explicitly
compute N̂ . Using E

[
E(N)T

]
≤ 1 for an arbitrary local martingale N orthogonal to M

together with Jensen’s inequality, we have for Y = y E(−λ ·M +N) ∈ Y(y),

E
[
Ũ(YT )

]
= −E[log(YT )]− 1 = −E[log(y E(−λ ·M)T )]− E[log(E(N)T )]− 1

≥ −E[log(y E(−λ ·M)T )]− log(E[E(N)T ])− 1
≥ −E[log(y E(−λ ·M)T )]− 1.

This shows that

inf
Y=y E(−λ·M+N)

E
[
Ũ(YT )

]
≥ −E[log(y E(−λ ·M)T )]− 1,

with equality attained when N ≡ 0. We conclude that Ŷ = y E(−λ ·M) by its unique-
ness. We necessarily have that ŶT = U ′(X̂T ) = 1/X̂T so that X̂Ŷ ≡ E[X̂T ŶT |F.] ≡ 1.
Moreover, we see from

exp
(
λ ·M + 1

2 λ · 〈M〉λ
)

= y

Ŷ
= yX̂

= exp
(
ν̂ ·M − 1

2 ν̂ · 〈M〉ν̂ + ν̂ · 〈M〉λ
)

that the relation (λ−ν̂)·M ≡ 0 holds. We can therefore regard λ as the optimal strategy.
In order to complete the picture, we note that

Ψ̂ = log
(

Ŷ

U ′(X̂)

)
= log(X̂Ŷ ) ≡ 0,
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so that our BSDE (1.3.1) reduces to the trivial one with solution triple (Ψ̂, Ẑ, N̂) ≡
(Ψ̂, ν̂ − λ, N̂) ≡ (0, 0, 0).
To describe the opportunity process in the logarithmic case we observe that the value

function is given by

u(x) = log(x) + E
[
(λ ·M)T + 1

2 〈λ ·M〉T
]

= log(x) + Λ0,

where we have set

Λt := E
[∫ T

t
λs dMs + 1

2 λ
T
s d〈M〉sλs

∣∣∣∣∣Ft
]

= E
[
log
(
X̂T

/
X̂t

) ∣∣∣Ft]
= E[log(X̂T )| Ft]− log(X̂t) = E[U(X̂T )| Ft]− U(X̂t),

so Λ is nothing else but the opportunity process for logarithmic utility in the spirit of
Nutz [2010b], see also Mania and Tevzadze [2008]. In the present case of a continuous
filtration, Λ satisfies the linear BSDE

dΛt = ζt dMt −
1
2 λ

T
t d〈M〉tλt + dLt, ΛT = 0,

where L is orthogonal to M . This BSDE also appears in Hu et al. [2005], Mania and
Tevzadze [2008] and Morlais [2009] and should be regarded as the right object of study
when dealing with logarithmic utility.

6.2 Set Valued Analysis

In this appendix we provide the necessary definitions from set valued analysis relevant
to the present thesis. We fix a sequence (J n)n∈N of closed nonempty subsets of Rd and
begin with the analogue of lim inf and lim sup for sets, see Aubin and Frankowska [1990].

Definition 6.2.1. The upper limit of the sequence (J n)n∈N is the subset

Lim sup
n→+∞

J n :=
{
x ∈ Rd

∣∣∣∣ lim inf
n→+∞

dist(x,J n) = 0
}

=
{
x ∈ Rd

∣∣∣∣x a cluster point of an (xn)n∈N, xn ∈ J n for all n ∈ N
}
,

where dist denotes the usual distance function from a set in Rd. Similarly, the lower
limit of the sequence (J n)n∈N is the subset

Lim inf
n→+∞

J n :=
{
x ∈ Rd

∣∣∣∣ lim
n→+∞

dist(x,J n) = 0
}

=
{
x ∈ Rd

∣∣∣∣x = lim
n→+∞

xn, where xn ∈ J n for all n ∈ N
}
.
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6.2 Set Valued Analysis

A set J is called the closed set limit of the sequence (J n)n∈N if the upper and lower
limit sets coincide, i.e.

J = Lim sup
n→+∞

J n = Lim inf
n→+∞

J n,

in which case we write J = Limn→+∞ J n.

We note that if (J n)n∈N is a sequence of (convex) predictably measurable multivalued
mappings then J = Limn→+∞ J n is a (convex) predictably measurable multivalued
mapping as well, see Proposition 6.2.2 and Rockafellar [1976] Proposition 1A.
The following proposition shows that the above notion of set convergence implies

pointwise convergence of the distance functions. Actually, it is equivalent to the latter.
This motivates the choice of the above set convergence, which is often called Kuratowski
convergence in the literature, as the appropriate notion of convergence of sets.

Proposition 6.2.2 (Beer [1987] Lemma 2.0 and Theorem 2.3). The following are equiv-
alent:

(i) The sequence (J n)n∈N of closed nonempty sets converges to J , i.e.

J = Lim
n→+∞

J n.

(ii) The sequence (dist(·,J n))n∈N of functions converges pointwise to dist(·,J ).

In the case that the sets J n, n ∈ N, are also convex, we derive from Schochetman and
Smith [1992] Theorem 3.3 that the above set convergence is also equivalent to pointwise
convergence of the nearest point operators. We state the claim that is important to our
study.

Proposition 6.2.3 (Schochetman and Smith [1992] Theorem 3.2). Let Π stand for
the nearest point operator onto the indicated (closed and convex) set. If the sequence
(J n)n∈N of closed and convex nonempty sets has a set limit denoted by J then the
sequence (ΠJ n)n∈N of mappings converges pointwise on Rd to ΠJ .

We include a different and direct proof for the convenience of the reader.

Proof. Let z ∈ Rd and x ∈ J = Limn→+∞ J n, i.e. there exist xn ∈ J n such that
x = limn→+∞ xn. We have that 〈z−ΠJ n(z),ΠJ n(z)−xn〉 ≥ 0 due to the characterization
of the nearest point operator. It follows that

0 ≤ 〈z −ΠJ n(z),ΠJ n(z)− z〉+ 〈z −ΠJ n(z), z − xn〉
≤ −‖z −ΠJ n(z)‖2 + ‖z −ΠJ n(z)‖ · ‖z − xn‖,

so that ∣∣‖z‖ − ‖ΠJ n(z)‖
∣∣2 ≤ (‖z‖+ ‖ΠJ n(z)‖

)
· ‖z − xn‖. (6.2.1)

We argue that the sequence (ΠJ n(z))n∈N is bounded. If not, there would be a subse-
quence of it with norm tending towards +∞. This would contradict (6.2.1) since, due to
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the convergence of ‖z − xn‖, the right hand side would tend to +∞ in first order while
the left hand side would go to +∞ in second order. We therefore can choose a subse-
quence (ΠJ nk (z))k∈N of (ΠJ n(z))n∈N which converges to some z0. By our assumption
on the set convergence, z0 ∈ J . Moreover, we have that

‖z0 − z‖ = lim
k→+∞

‖ΠJ nk (z)− z‖ ≤ lim
k→+∞

‖xnk − z‖ = ‖x− z‖,

i.e. ‖z0 − z‖ ≤ ‖x − z‖. Since x ∈ J was arbitrary, we conclude that ‖z0 − z‖ =
minx∈J ‖x − z‖ from which z0 = ΠJ (z). In fact, the above reasoning shows that any
cluster point of the sequence (ΠJ n(z))n∈N coincides with z0 = ΠJ (z), which shows that
there is exactly one accumulation point of this bounded sequence, hence ΠJ (z) = z0 =
limn→+∞ΠJ n(z).

The final proposition shows that the alternative assumption given in Remark 4.2.19
and used in Kardaras [2010] also leads to the appropriate convergence of the projections.
Proposition 6.2.4. Let the sequence (J n)n∈N of closed and convex nonempty sets have
a set limit denoted by J and suppose that Q is a d × d matrix such that Ker(Q) ⊆ J n
for all n ∈ N and Ker(Q) ⊆ J . Then QJ = Limn→+∞QJ n.
Proof. We must show that

QJ ⊆ Lim inf
n→+∞

QJ n ⊆ Lim sup
n→+∞

QJ n ⊆ QJ .

The first containment is an easy consequence of the definitions and we omit the details.
Since one always has Lim infn→+∞QJ n ⊆ Lim supn→+∞QJ n we need only prove the
final containment.
Let y ∈ Lim supn→+∞QJ n, this means we may find sequences (yn)n∈N and (xn)n∈N

for which yn = Qxn and xn ∈ J n for all n ∈ N and such that (ynk)k∈N converges to y for
a subsequence (nk)k∈N. We must show that we can construct x with x ∈ J and Qx = y.
For each k ∈ N we may decompose xnk uniquely as xnk = x1

nk
+ x2

nk
with x1

nk
∈ Ker(Q)

and x2
nk
∈ Ker(Q)⊥. From the assumption Ker(Q) ⊂ J n we see that for all ε ∈ (0, 1),

−(1−ε)
ε x1

nk
∈ J nk so that

(1− ε)x2
nk

= ε −(1−ε)
ε x1

nk
+ (1− ε)xnk ∈ J

nk

by convexity. Since each J nk is also closed, letting ε tend to zero we see x2
nk
∈ J nk . From

the above construction it follows that x2
nk

= Q†Qxnk , where Q† is the Moore-Penrose
pseudoinverse of Q. Define now the vector x := Q†y, then we have x = limk→+∞ x

2
nk

since ∥∥x2
nk
− x

∥∥ ≤ ∥∥Q†∥∥ · ∥∥Qx2
nk
− y

∥∥ =
∥∥Q†∥∥ · ‖Qxnk − y‖ =

∥∥Q†∥∥ · ‖ynk − y‖,
where the right hand side tends to zero. We derive that x ∈ Lim supn→+∞ J n = J and
y = limk→+∞Qxnk = limk→+∞Qx

2
nk

= Qx, hence y ∈ QJ .
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List of Symbols

A predictable increasing process that encodes the
quadratic variation of M

A% Muckenhoupt inequality
α, αn process or random variable
|α|1 integral of α over [0, T ] with respect to A, |α|1 :=

∫ T
0 αt dAt

A,AK,AGK families of admissible strategies
b, b(M), b(λ ·M) critical exponent, see Definition (2.5.3)
B square root of C, C = BTB, B = Γ1/2P
B† Moore-Penrose pseudoinverse of B
B̆ square root of C̆, C̆ = B̆TB̆, B̆ = Γ̆1/2P̆
β, βn process or constant
β, βf , β

∗ constants
〈M〉 quadratic variation of M
〈M,N〉 quadratic covariation of M and N
C covariation matrix of M , 〈M〉 = C ·A
C̆ covariation matrix of Mo, 〈Mo〉 = C̆ ·A
c, cp, c̃p, crH,p, c0, cA
cp,γ , cp,γ , c%,γ , cλ, c

† constants
cl closure operator
· stochastic integration
d dimension
D FT -measurable random variable, discount, tax rate

or bonus
dist distance function from a set
∆N jump part of N
E predictable subset of [0, T ]× Ω
ess inf essential infimum
ess sup essential supremum
E space of processes whose supremum has all exponential

moments
E stochastic exponential
F, Fn, f, g drivers of BSDEs
F ,Ft,FRt ,FSt ,Gt,Ht σ-algebras (items of filtrations)
Γ diagonal matrix of eigenvalues of C
Γ̃ pseudoinverse of Γ
K,Kn constraints set
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List of Symbols

K◦ polar cone
Kj , j = 1, . . . ,m rays generating the cone K
KA bound on A
kq critical value, see (2.5.6)
κ̂ integrand in the decomposition Ŷ 1 = E(−κ̂ ·M + N̂)
κ̆ν adjustment for partial information, see (5.2.7)
Ker kernel of a linear map (preimage of zero)
Im image of a linear map
inf infimum
1 indicator function
L opportunity process
L̃ dual opportunity process
L constraints set in the additive formulation
L0, L0(P) space of measurable random variables
L1, L1(P) space of integrable random variables
L%, L%(P) space of %-integrable random variables
L1

+ family of nonnegative integrable random variables
L2 space of square-integrable random variables/processes
L∞ space of bounded random variables
λ predictable M -integrable process, market price of risk
λo optional projection of λ
λG , λH predictable projection onto the indicated filtration
· ∨ · maximum/supremum
· ∧ · minimum/infimum
M fixed continuous local martingale
Mo optional projection of M
M generic continuous (local) martingale
M% %-integrable continuous local martingales
M% predictable %-integrable processes
µA Doléans measure associated to M via A
N continuous local martingale orthogonal to M
N c continuous part of N
N̂ continuous local martingale orthogonal to M in the

decomposition of Ŷ , Ŷ 1 = E(−κ̂ ·M + N̂)
N the positive integers, N = {1, 2, 3, . . .}
N0 the nonnegative integers, N = {0, 1, 2, 3, . . .}
‖ · ‖ Euclidean norm in Rd
‖ · ‖BMO2 BMO2 norm, see (2.2.6)
‖ · ‖L∞ L∞ norm
ν trading strategy, proportion of wealth
ν̂ optimal trading strategy
(Ω,F ,P) probability space
p investor’s relative risk avesion, p ∈ (−∞, 1)

168



P matrix of eigenvectors of C, C = P TΓP
Π nearest point operator
Pn, P̃ probability measures equivalent to P
P predictable σ-algebra on [0, T ]× Ω
Φ standard normal cumulative distribution function
Ψ,Ψn first component of a BSDE solution triple
Ψ̂ opportunity process, Ψ̂ = log(Ŷ/U ′(X̂))
q dual number to p, q := p/(p− 1)
R stock returns process
% generic constant
R% reverse Hölder inequality
R the real numbers
S stock price vector
S% continuous processes with %-integrable supremum
S∞ bounded continuous processes
sgn sign function
sup supremum
σ stopping time
〈x, y〉 scalar product of x, y ∈ Rd
T positive time horizon, t ∈ [0, T ]
T transposition
τ, τ̃ , τn stopping times
u, uG primal value function/process
U,Un utility functions, mostly of power type
ũ dual value function
Ũ convex dual to U , Ũ(y) = supx>0(U(x)− xy)
W Brownian motion
W̃ Brownian motion under P̃
x real number, mostly positive, initial value of an X
X,Xν , Xx,ν wealth processes
X̂ optimal wealth process
ξ, ξn random variable, terminal condition of a BSDE
X (x),X add(x) family of admissible wealth processes
y (positive) real number, initial value of a dual variable Y
Y, Y y, Y 1 dual variables
Ŷ optimal dual variable
Y λ density of the minimal martingale measure,

Y λ = E(−λ ·M)
Y(y),Yadd(y) dual domains
Υ generic stochastic process
Υ∗ supremum of a process Υ over [0, T ]
Z,Zn control processes in BSDE solution triples
Ẑ optimal control process in the BSDE triple involving Ψ̂
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