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Abstract

Classical methods for the direct computation of Hopf bifurcation points and other
singularities rely on the evaluation and factorization of Jacobian matrices. In view
of large scale problems arising from PDE discretization systems of the form d

dtx(t) =
f(x(t), α), for t ≥ 0, where x ∈ Rn are the state variables, α ∈ R certain parameters
and f : Rn ×R → Rn is smooth with respect to x and α, a matrix-free scheme is
developed based exclusively on Jacobian-vector products and other first and second
derivative vectors to obtain the critical parameter α causing the loss of stability at
the Hopf point.

In the present work, a system of equations is defined to locate Hopf points, it-
eratively, extending the system equations with a scalar test function φ, based on
a projection of the eigenspaces. Since the system f(x, α) arises from a spatial dis-
cretization of an original set of PDEs, an error correction considering the different
discretization procedures is presented.

To satisfy the Hopf conditions a single parameter is adjusted independently or
simultaneously with the state vector in a deflated iteration step, reaching herewith
both: locating the critical parameter and accelerating the convergence rate of the
system.

As a practical experiment, the algorithm is presented for the Hopf point of a brain
cell represented by the FitzHugh–Nagumo model. It will be shown how for a critical
current, IHopf , the membrane potential v will present a travelling wave typical of
an oscillatory behaviour.
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Zusammenfassung

Klassische Methoden für die direkte Berechnung von Hopf Punkten und andere
Singularitäten basieren auf der Auswertung und Faktorisierung der Jakobimatrix.
Dieses stellt ein Hindernis dar, wenn die Dimensionen des zugrundeliegenden Pro-
blems gross genug ist, was oft bei Partiellen Diferenṫialgleichungen der Fall ist.
Die betrachteten Systeme haben die allgemeine Darstellung d

dtx(t) = f(x(t), α) für
t ≥ 0, wobei x ∈ Rn die Zustandsvariable, α ∈ R ein beliebiger Parameter ist und
f : Rn ×R → Rn glatt in Bezug auf x und α ist.

In der vorliegenden Arbeit wird ein Matrixfreies Schema entwicklet und unter-
sucht, dass ausschließlich aus Produkten aus Jakobimatrizen und Vektoren besteht,
zusammen mit der Auswertung anderer Ableitungsvektoren erster und zweiter Ord-
nung. Hiermit wird der Grenzwert des Parameters α, der zuständig ist für das Ver-
lieren der Stabilität des Systems, am Hopfpunkt bestimmt.

In dieser Arbeit wird ein Gleichungssystem zur iterativen Berechnung des Hopf-
punktes aufgestellt. Das System wird mit einer skalaren Testfunktion φ, die aus einer
Projektion des kritischen Eigenraums bestimmt ist, ergänzt. Da das System f(x, α)
aus einer räumlichen Diskretisierung eines Systems Partieller Differentialgleichun-
gen entstanden ist, wird auch in dieser Arbeit die Berechung des Fehlers, der bei der
Diskretisierung unvermeidbar ist, dargestellt und untersucht.

Zur Bestimmung der Hopf–Bedingungen wird ein einzelner Parameter gesteuert.
Dieser Parameter wird unabhängig oder zusammen mit dem Zustandsvektor in ei-
nem gedämpften Iterationsschritt neu berechnet. Der entworfene Algorithmus wird
für das FitzHugh–Nagumo Model erprobt. In der vorliegenden Arbeit wird gezeigt,
wie für einen kritischen Strom, IHopf , das Membranpotential v eine fortschreitende
Welle darstellt.
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1 Introduction

As certain problem parameters α vary, stationary points x(α) of dynamical systems
may lose their stability, while continuing to exist as algebraic solutions. In contrast to so
called fold or turning points where there are no solutions at all for α beyond a certain cri-
tical value, the unstable branches x(α) considered may here generate a family of periodic
solutions, which may or may not be stable. A classical example is the flutter of a wing,
caused by the interactions between the aerodynamic forces and the structural response
of the wing. Naturally, flutter is to be avoided by a combination of design measures
and operating restrictions, which should be based on a precise understanding of when
flutter occurs. Other typical examples are limit cycle oscillations in adiabatic chemical
reactors and spike generation in neuronal membrane simulation models. The purpose of
this thesis is the development of a matrix free iterative scheme for approximating the
critical values of x(α) where loss of stability occurs.

Throughout we consider continuous as well as discrete dynamical systems, where the
latter may be a temporal discretizations of the former. On a finite dimensional state space
Rn, a smooth dynamical system is usually specified by a system of ordinary differential
equations

d

dt
x(t) = f(x(t), α) for t ≥ 0 (1.1)

where x ∈ Rn are the state variables, α ∈ Rp certain parameters and f : Rn×Rp → Rn

is smooth with respect to x and α. Recently, there has been considerable interest in
generalizations called Differential Algebraic Equations, where there are additional state
variables y and a corresponding number of algebraic constraints g(x,y) = 0. We will
restrict our considerations here to the ODE scenario.

Alternatively, x could originally also be an element of an infinite dimensional Hilbert
space and f represent a partial differential operator. Then we will assume that by an
appropriate spatial discretization the problem has already been converted to an ODE of
the form considered here. However, especially in this scenario it is clear that the state
space dimension n can be almost arbitrarily large, and on the other hand the Jacobian
of f can then be expected to be quite sparse.

Simulating (1.1) for example by a Runge–Kutta method one obtains a discrete dyna-
mical system of the form

xk+1 = F (xk, α) for k = 0, 1, . . . (1.2)

where F : Rn ×R → Rn. In the case of the explicit Euler method with uniform step
size h we have simply Fh(x, α) ≡ x+h f(x, α). More generally F might be any smooth
map on the state space into itself and could possibly even change more or less drastically
as a function of the iteration counter k, for example due to a change in the step size h.

Throughout we will assume f and/or F to be fixed mappings on Rn that are at least
twice continuously differentiable. By default we will assume that F = fh is an explicit
Euler discretization of f unless otherwise specified. Most observations about this relation
carry over to other familiar explicit Runge–Kutta schemes. Finally, for simplicity we
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usually assume α to be a scalar, i.e., p = 1. This is no significant loss of generality since
we are almost exclusively interested in codimension 1 bifurcations.

Neither for the continuous system (1.1) nor for the discrete one (1.2) we have specified
initial conditions on x(0) or x0. The reason is that we are mostly interested in the
asymptotic behavior of these dynamical systems and more specifically their stationary
points x(α) where

f(x(α), α) = 0 or F (x(α), α) = x(α). (1.3)

Note that the stationary curve x(α) (or manifold if p > 1) is identical for the conti-
nuous system and explicit Euler as well as all other Runge–Kutta methods provided h
is sufficiently small. The curve x(α) will be locally well defined and differentiable with
respect to α as long as the system Jacobian

f ′(x(α), α) = ∂f/∂x ∈ Rn×n or F ′(x(α), α)− I ∈ Rn×n (1.4)

has full rank. If F is the explicit Euler discretization of f these conditions are equivalent
since

F ′(x(α), α)− I = hf ′(x(α), α). (1.5)

Consequently so-called fold points of the continuous problem (where the Jacobian suffers
a rank drop) correspond for any h to points of the dynamical system where F ′(x(α), α)
has 1 as an eigenvalue. This exact correspondence does not carry over to bifurcation
points x∗ where x(α) continues but loses its stability.
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2 Bifurcation Theory
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2 Bifurcation Theory

Many text and scientific books address the topic of Bifurcations Theory in dynamical
systems. Among them, Govaerts [2000] and Kuznetsov [2004] have been used as main
references for editing this section. The parallel representation of dynamical systems for
both continuous and discrete cases will be briefly described. Although our application
is oriented towards discrete systems, first the continuous case will explained, as it is
usually more intuitive and straightforward for understanding the properties of these
special bifurcations: Fold and Hopf points. Moreover, the results presented in Chapter 3
will have their analogous cases for the continuous case.

Before going into that, some notions on the stability of dynamical systems have to
be defined. The concept of stability is sometimes redefined with the help of weak or
strong concepts. A good definition and representation of these concepts can be found in
Kuznetsov [2004]: to represent and observable asymptotic state of a dynamical system, an
invariant set S0 must be stable; in other words, it should attract nearby orbits. Suppose
we have a dynamical system

{
T,X, ψt

}
with a complete metric state space X. Let S0

be an invariant set.

Definition An invariant set S0 is stable if

(i) for any sufficiently small neighborhood U ⊃ S0 there exists a neighborhood V ⊃ S0
such that ψtx ∈ U for all x ∈ V and all t > 0;

(ii) there exists a neighborhood U0 ⊃ S0 such that ψtx → S0 for all x ∈ U0, as
t→ +∞.

If S0 is an equilibrium or a cycle, this definition turns into the standard definition of
stable equilibria or cycles. Property (i) is called Lyapunov or weak stability. If a set S0 is
Lyapunov stable, nearby orbits do not leave its neighborhood. Property (ii) is sometimes
called asymptotic or strong stability. There are invariant sets that are Lyapunov stable
but not asymptotically stable. In contrast, there are invariant sets that are attracting
but not Lyapunov stable, since some orbits starting near S0 eventually approach S0 but
only after an excursion outside a small but fixed neighborhood of this set. In Figure 2.1,
both cases can be observed. Figure 2.1(a) presents oscillatory and stable orbits, whereas
2.1(b) represents asymptotically stable orbits, except for the contradiction mentioned.

If x∗ is a stable equilibrium solution of the system (1.1), then sufficient conditions
for its stability can be formulated as a function of the Jacobian matrix of the system
evaluated at x0.

Definition Being A the Jacobian matrix of system (1.1) evaluated at x∗, solution of
(1.1), this is stable if all eigenvalues λ1, λ2, . . . , λn of A satisfy for j = 1, . . . , n:

(i) Re (λj) ≤ 0,
(ii) Re (λj) < 0. (2.1)

Condition (i) is necessary for weak or Lyapunov stable solution x∗, whereas (ii) is suffi-
cient for the asymptotical or strong stability. As always, these definitions will have their
corresponding equivalents in discrete systems.
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2.1 Codimension 1 Bifurcations - Continuous case

Abbildung 2.1: (a) weak (Lyapunov) and (b) strong (asymptotical) stability

2.1 Codimension 1 Bifurcations - Continuous case
The codimension of a bifurcation in system (1.1) is the difference between the dimension
of the parameter space and the dimension of the corresponding space which represent
the limit of the bifurcation boundary. Equivalently, the codimension is the number of
independent parameters determining the bifurcation. As mentioned in Kuznetsov [2004],
the minimal number of free parameters required to meet a codimension k bifurcation in a
parameter dependent system is exactly equal to k. Codimension 1 bifurcations are most
frequently to be found in the present literature: Andronov–Hopf and Fold bifurcations
(see Figure 2.2). The latter one being though known too as Turning Point or Tangent
Bifurcation. Hopf points represent the appearance of oscillatory (stable or unstable)
solutions. At Fold points the stable solutions disappear altogether.

2.1.1 The Hopf Bifurcation

The phenomenom known as Hopf bifurcation, although first described in the work of
Poincaré and Andronov, finally took the name of Eberhard Hopf Hopf [1942], since he
extended it to n > 2 dimensions. An English translation of the paper can be found
in J.E. Marsden [1976]. Here only a summary of it is presented, adapting the original
paper’s notation to the one used throughout the thesis:

Hopf Bifurcation Theorem 2.1.1 Let f : Rn×R → R be a Ck(k ≥ 4) map such that
f(0, α) = 0. For α ≈ 0 let λ(α) be a simple eigenvalue of A(α) = fx(0, α), continuously
depending on α. Suppose |λ(0)| > 0, Re(λ(0)) = 0 and Re(λ′(0)) 6= 0. Suppose that all
eigenvalues of fx(0, 0), different of λ(0), have negative real parts. Then
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2 Bifurcation Theory

Abbildung 2.2: Fold and Hopf points spectrum

(a) there exist ε0 and Ck−2 maps α : [0, ε0[ → R, T : [0, ε0[ → R and x : [0, ε0[ ×
R → Rn with α(0) = 0, T (0) = 2π

|λ(0)| and x(0, α) = 0 such that ∂tx(ε, t) =
f(x(ε, t), α(ε)) and x(ε, t+ T (ε)) = x(ε, t);

(b) if x(α) is any non-stationary periodic solution to ẋ = f(x, α) with x(α) ≈ 0 and
α ≈ 0, then there exist ε ∈ ]0, ε0[ and τ ∈ R such that α = α(ε) and x(t) =
x(ε, t+ τ);

(c) if the so called Lyapunov coefficient as expressed in (2.20) is negative (positive),
then x(ε, α) is stable (unstable).

We consider the n-dimensional autonomous system of differential equations given by
(1.1), which depends on the real parameter α. We assume that (1.1) possesses an analytic
family x = x(α) of equilibrium points, that is f(x(α), α) = 0. We suppose that for the
particular value of α = 0, the matrix fx(0, α) has no other purely imaginary eigenvalue.
If λ(α) = σ(α) + iω(α) is the continuation of the eigenvalue iω then we assume that
σ′(0) 6= 0.

Hopf bifurcations come in several types, depending on what happens to orbits near
the stationary equilibrium at the bifurcation point. Two types are important in experi-
mental work because they explain the important phenomenon of the creation of periodic
behavior. At a supercritical bifurcation, the equilibrium at the bifurcation value of
the parameter, the bifurcation orbit, is stable. When seen in experiment, a supercritical
Hopf bifurcation is seen as a smooth transition.

When the bifurcation orbit is unstable, the bifurcation is called subcritical. A subcri-
tical Hopf bifurcation is seen experimentally as a sudden jump in behavior. An important
nonlinear effect often seen in the presence of a subcritical Hopf bifurcation is hysteresis.
See Figure 2.5 for the representation of a subcritical Hopf or Figure 2.3 for a supercritical
Hopf bifurcation.

8



2.1 Codimension 1 Bifurcations - Continuous case

Abbildung 2.3: Supercritical Hopf bifurcation for α = 0, α < 0, α > 0

Abbildung 2.4: Supercritical Hopf bifurcation
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2 Bifurcation Theory

Abbildung 2.5: Subcritical Hopf bifurcation for α = 0, α < 0, α > 0

Abbildung 2.6: Subcritical Hopf bifurcation
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2.1 Codimension 1 Bifurcations - Continuous case

In the degenerate case, there may or may not be a limit cycle. To decide the question
one must look at the effects of higher grade nonlinearities and see their influence. There
are ways to compute the so called first Lyapunov’s coefficient which allows to know
the nature of our bifurcation points as it will be shown later. Although the issue of
stability might require studies of the higher order terms, modifications to the frequency
of oscillation occur at lower orders. For the convergence of the presented algorithm the
existence of no other eigenvalue on the imaginary axis is assumed.

Numerics

As a first step to detect Hopf points two standard procedures have been usually employed.
Some of these are described in T.J. Garret [1991], K. Lust [2000] and W.J.F. Govaerts
[1996], for example. The first method is based on finding and following the eigenvalues
closer to the imaginary axis (or the ones of maximal modulus for the discrete case), as
these are the ones comprising the stability, through Arnoldi’s Method Arnoldi [1951] and
an appropriate generalized Cayley’s Transform Cayley [1846] as it follows

C(A) := (A− β1I)−1(A− β2I). (2.2)

The usefulness of the transform in the continuous case is that eigenvalues of A lying to
the right (left) of 1

2(β1 +β2) are mapped to eigenvalues of C(A) lying outside (inside) the
unit circle. Therefore, Arnoldi’s method finds the interesting eigenvalues, and monitoring
these, a fast detection of Hopf points is allowed (instead of calculating all eigenvalues of
a matrix arisen from the discretization of PDEs which is usually very large). A second
method is presented in W.J.F. Govaerts [1996] based on the Schur complement and the
Nyquist stability criterion, being only convenient for low dimensional applications, e.g.,
in Control Theory based on differential equations.

Several methods are known for the direct computation of Hopf points, but the usual
determining system can be expressed as a solution to the complex system (2.3). As men-
tioned in the Hopf Theorem, the Jacobi Matrix A must have a pair of purely imaginary
eigenvalues ± iω within its spectrum. Therefore: f(x, α)

(A− iωIn)Q
CH ·Q− 1

 = 0 X = [x, Q, ω, α], (2.3)

where x is the vector of unknowns formed by our states, Q is the complex right eigenvec-
tor, α is the parameter and ω the rotational speed of the appearing oscillation, being C a
complex vector not orthogonal to Q, usually the previously computed right eigenvector
at the starting point and from now on to be shown as Q0. To obtain a real system we
set Q = q1 + iq2, Q0 = q10 + iq20 and take real and imaginary parts of the equations in
(2.3) and thus it gives
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2 Bifurcation Theory


f(x, α)

Aq1 + ωq2
Aq2 − ωq1

q>10q1 + q>20q2 − 1
−q>20q1 + q>10q2

 = 0 X = [x,q1,q2, ω, α]. (2.4)

This is a system of 3n + 2 equations in 3n + 2 unknowns x,q1,q2, ω, α. This system
is regular at the Hopf point if and only if the transversality condition holds, i.e., there
is only a pair of eigenvalues lying on the imaginary axis and σ′(α) 6= 0, for a proof of
this see A. Griewank [1983], where such a variant was proposed for the computation of
Hopf points. This approach was routinely used in AUTO Doedel [1981]. The condition
(A − iωI)Q = 0 is equivalent to the condition (A2 + ω2)q = 0, where q ∈ R is the
eigenvalue associated to the eigenvalue λ = (iω)2, allowing this to reduce the number of
equations by n. The resulting system is though worse conditioned and such a reduction
in the number of equations is not that of an advantage for solving the system, which
would look as it follows:

f(x, α)
(A2 + ω2)q

c>q
q>q − 1

 = 0 X = [x,q, ω, α]. (2.5)

Now, this is a system of 2n + 2 equations in 2n + 2 unknowns x,q, ω, α. Variants with
slightly different normalizations were proposed in D. Roose [1985] and implemented in
CONTENT A. Khibnik [1993].

Analysis

So far the numerical approaches for computing Hopf points have been presented. Some
basic analysis tools allow us though to reformulate the systems. As done in Kuznetsov
[2004], and reminding that A has a simple pair of complex eigenvalues on the imaginary
axis: λ1,2 = ±iω0, ω0 > 0, and these eigenvalues are the only eigenvalues with Re(λ) = 0.
By the Implicit Function Theorem, the system has a unique equilibrium x(α) in some
neighborhood of the origin for all sufficiently small |α|, since λ = 0 is not an eigenvalue
of the Jacobian matrix. Let q ∈ Cn be a complex eigenvector corresponding to λ1:

A(α)q(α) = λ(α)q(α), A(α)q̄(α) = λ̄(α)q̄(α). (2.6)

Introduce also the adjoint eigenvector p ∈ Cn having the properties

A>(α)p(α) = λ̄(α)p(α), A>(α)p̄(α) = λ(α)p̄(α); (2.7)

and satisfying the normalization
〈p,q〉 = 1 (2.8)
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2.1 Codimension 1 Bifurcations - Continuous case

where 〈p,q〉 =
∑n
i=1 p̄iqi is the standard scalar product in Cn (linear with respect to

the second argument). Furthermore, we can show that 〈p, q̄〉 = 0. This holds, since

〈p, q̄〉 = 〈p, 1
λ̄
Aq̄〉 = 1

λ̄
〈A>p, q̄〉 = λ

λ̄
〈p, q̄〉, (2.9)

and therefore (
1− λ

λ̄

)
〈p, q̄〉 = 0. (2.10)

But λ 6= λ̄ because for all sufficiently small |α| we have ω(α) > 0. Thus the only
possibility is 〈p, q̄〉 = 0.

Once a correct normalization has been chosen, and taking into account that every
system undergoing a bifurcation allows a normal form, we can express (1.1) as:

ẋ = A(α)x + F (x, α), (2.11)

where F is a smooth vector function whose components have Taylor expansions in x
starting with at least quadratic terms, F = O(‖x‖2). This system presents a local to-
pological equivalence to our system. Suppose that at α = α0 the function F (x, α) is
represented as

F (x, α0) = 1
2B(x,x) + 1

6C(x,x,x) +O(‖x‖4) (2.12)

where B(x,x) and C(x,x,x) are symmetric multilinear vector functions. In coordinates,
we have:

B(x,y) =
n∑

j,k=1

∂2Fi(ξ, α0)
∂ξj∂ξk

|ξ=0 xjyk, (2.13)

and
C(x,y,u) =

n∑
j,k,l=1

∂3Fi(ξ, α0)
∂ξj∂ξk∂ξl

|ξ=0 xjykul. (2.14)

As shown in Kuznetsov [2004], we can speak of a manifold T u corresponding to the
linear eigenspace of A spanned by the eigenvalues causing the bifurcations, and an n-2-
dimensional stable linear eigenspace T s of A corresponding to all eigenvalues other than
±iω0. On account of this, corrections can be made in each of the manifolds influencing
only the corresponding dynamics. We can decompose any vector x ∈ Rn as

x = zq + z̄q̄ + y, (2.15)

where zq ∈ T u, y ∈ T s, which is fulfilled if and only if 〈p,y〉 = 0. Here y ∈ Rn is
real, while p ∈ Cn is complex. If p and q are normalized as in (2.8), we get explicit
expressions for z and y: {

z = 〈p,x〉,
y = x− 〈p,x〉q − 〈p̄,x〉q̄. (2.16)
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2 Bifurcation Theory

Using (2.12) and the definitions of the eigenvectors, we can write

ż = iω0z + 1
2G20z2 +G11zz̄ + 1

2G02z̄2 + 1
2G21z2z̄

+ z〈p, B(q,y)〉+ z̄〈p, B(q̄,y) + · · · ,

ẏ = Ay + 1
2H20z2 +H11zz̄ + 1

2H02z̄2 + · · · .

(2.17)

The terms G and H being computed by the following formulas:

G20 = 〈p, B(q,q)〉 ,

G11 = 〈p, B(q, q̄)〉 ,

G02 = 〈p, B(q̄, q̄)〉 ,

G21 = 〈p, C(q,q, q̄)〉 ,

(2.18)

and
H20 = B(q,q)− 〈p, B(q,q)〉q − 〈p̄, B(q,q)〉q̄,

H11 = B(q, q̄)− 〈p, B(q, q̄)〉q − 〈p̄, B(q, q̄)〉q̄.
(2.19)

Since y ∈ Rn, we have H̄ij = Hji. With these expressions we can compute the so
called first Lyapunov coefficient l1(α0), which determines wether the Hopf bifurcation is
sub- or supercritical:

Re
2ω0

[
〈p, C(q,q, q̄)〉 − 2〈p, B(q, A−1B(q, q̄))〉+ 〈p, B(q̄, (2ω0In −A)

B(q,q) )〉
]
. (2.20)

An explicit expression for the first Lyapunov coefficient in terms of Taylor series of
a general planar system was obtained by Bautin [1949]. A much simpler derivation of
it is given by B. Hassard [1981]. It is to be noted that this formula includes complex
arithmetic. However, there is a way of computing it based on real arithmetic and of
avoiding computing all second- and third-order partial derivatives of F at (x0, α0). First,
note that the multilinear functions B(x,y) and C(x,y, z) shown in (2.13) and (2.14)
can be evaluated on any set of coinciding real vector arguments by computing certain
directional derivatives, as it can be seen in the following formulae:

B(v,v) = d2

dτ2 f(x0 + τv, α0)|τ=0. (2.21)

Analogously,

C(v,v,v) = d3

dτ3 f(x0 + τv, α0)|τ=0. (2.22)

Starting from this decomposition, it is easy to see the central point of our approach
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2.1 Codimension 1 Bifurcations - Continuous case

and the usefulness of the algorithmic differentiation (AD). The eigenspace T u is a space
of much lower dimension than the one of our system. Thus, a study and closer look at this
manifold, leaving the dynamics and properties of the stable eigenspace T s unchanged,
will avoid much of the computational effort as it can be seen in Verheyden and Lust
[2005], where a Picard correction step is combined with a direct Newton step for solving
the determining systems. Finding an appropriate test function which, as said, locates the
Hopf conditions, as well as overcomes the complex nature of our problem will be the main
point of the thesis. On the other hand, the study and computation of the third and higher
order derivatives just shown has been disregarded in this thesis, since the supercritical
nature of the Hopf bifurcations studied is given from the previous approaches to the
problems used in this project. For such higher order computations, Kuznetsov [2004]
shows further details and several numerical examples.

2.1.2 Fold Point

The case in which one eigenvalue λ ∈ R becomes positive, see Figure 2.2, is called a Fold
or tangent bifurcation. In this case a sudden loss of stability is present, see Figure 2.7.
For α < 0 there are two equilibria in the system: x1, x2, the first one of which is stable,
while x2 is unstable. For α > 0 there are no equilibria in the system. At α = 0 the two
equilibrium solutions have merged into one, which will vanish with growing α.

For the computation of fold points no complex arithmetic is needed since only one
real eigenvalue is to be followed. Fold points require the computation of f(x0, α0) and
fx(x0, α0) and, usually, test functions as det(fx(x, α)) or

∏
λi (fx(x, α)) have been used

when the system dimensions allow it. An example of existing approaches using the so
called Moore–Spence system, the one presented here, can be found in A. Griewank [1984],
G. Moore [1980] and Seydel [1988]. Other approaches by means of Krylov’s subspace
methods can be found in Moret [1994]. When the dimensions of the system forbids their
application, the usual extended determining systems show up again with the required
transformations to suit the fold points conditions, that is f(x, α)

Aq
c>·q − 1

 = 0 X = [x,q, α], (2.23)

In Figure 2.8 a representation of possible stability regions and bifurcations points as
a function of the coefficients in the characteristic equation is represented. The characte-
ristic equation of a 2× 2 matrix B,

λ2 − c2λ− c1 = λ2 − Tr(B)λ+ det(B) = 0, (2.24)

gives the eigenvalues of a matrix of the kind:(
0 1
c1 c2

)
(2.25)

15



2 Bifurcation Theory

Abbildung 2.7: Solutions of f(x, α) for values of α at a Fold point

and it can be seen straightaway that the coefficients can be expressed as the trace and
the determinant of the matrix to be analyzed. As seen in Govaerts [2000], this is a Jordan
block characterizing a Bogdanov–Takens (BT) point. We note in particular that the axis
λ1 = 0 corresponds to a fold curve and the axis λ2 to a Hopf–BT–neutral saddle curve.
The curves in which λ1,2 = σ ± iω and the case in which λ1 = 0 coincide at one point
in which ω = 0. This case is called a Bogdanov–Takens bifurcation, first described in
Takens [1974] and Bogdanov [1981]. Furthermore, for λ2 < 0 we find Hopf points and
for λ2 > 0 we have neutral saddles.
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2.2 The Discrete Case

1

2

Hopf

Complex

Eigenvalues

Complex

Eigenvalues

Fold

BT

Fold

Real

Eigenvalues

Real

Eigenvalues

c

c

Abbildung 2.8: Different Stability Regions

2.2 The Discrete Case

In the case of discrete systems, everything mentioned before applies with the usual trans-
formations. The required changes of notation start with the expression of the defining
equations. Corresponding to the continuous formulation (1.1) we have for the discrete
systems, as we already saw in (1.2):

xk+1 = f(xk, α). (2.26)

In discrete systems the equivalent stability condition also refers to the eigenvalues of
the Jacobian matrix, although they usually get a different denomination: multipliers.
The system remains stable as long as each multiplier stays within the unit circle, see
Figure 2.9. Similarly, we can represent the condition of strong or asymptotical stability if
every multiplier’s modulus is strictly smaller than 1. In Figure 2.9 the different possible
bifurcation points in the discrete case are shown. In addition to the Fold and Hopf corre-
sponding bifurcations, the flip or period–doubling bifurcation appears when a multiplier
gets the value −1. Thus, the condition for critical stability is that a multiplier lies on
the unit circle. Again, a short overview will be done for those points of main interest
for the current study. In addition to the mentioned references, for discrete maps Iooss
[1979] presents a detailed description.
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2 Bifurcation Theory

Abbildung 2.9: Flip, Neimark–Sacker and Fold Bifurcations

2.2.1 Neimark–Sacker bifurcation

In the case of discrete time dynamical systems, the Hopf bifurcation is called Neimark–
Sacker bifurcation Neimark [1959]. In correspondence to the Hopf bifurcation, one pair,
and only one, of complex eigenvalues of modulus one is considered. That is:

µ1,2 = e±iθ0 , 0 < θ0 < π (2.27)

1

θ

θ

µ

µ

Abbildung 2.10: Discrete case: Neimark–Sacker Bifurcation

These multipliers are the only ones with |µ| = 1. This implies that det(A − I) 6=
0, which corresponds to the condition θ0 6= 0. Thus, we know that by the Implicit
Function Theorem, system (1.2) has a solution x(α) : (−ε, ε) → Rn, as in Figure 2.11.
Furthermore, we can express the non-degeneracy condition, as seen in previous section,
as:

∂|µ|2

∂α
6= 0. (2.28)

Let q ∈ Cn be a complex eigenvector corresponding to µ1. If we express as in (2.6)

18



2.2 The Discrete Case

Abbildung 2.11: x(α) and dx
dα

Abbildung 2.12: Periodic orbits on varying parameter

and (2.7) the critical eigenvectors, dropping α for simplicity, it gives:

Aq = µq, Aq̄ = µ̄q̄. (2.29)

Let introduce also the adjoint eigenvector p ∈ Cn having the properties

A>p = µ̄p, A>p̄ = µp̄, (2.30)

and satisfying the normalizations, as in (2.8),

〈q,q〉 = 1, 〈p,q〉 = 1. (2.31)

Doing some basic analysis on these equations, some transformations allow other useful
expressions to be obtained as a first step. If (2.29), (2.30) and (2.31) are differentiated
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2 Bifurcation Theory

along curve x(α), see Figure 2.11, it gives

µ′q + µq′ = A′q +Aq′,

µ̄′p + µ̄p′ = A
′>p +A>p′,

p̄′>q + p̄>q′ = 0, q̄′>p + q̄>p′ = 0.

(2.32)

Multiplying the first equation in (2.32) by p> and the second equation by q> it gives:

µ′ + µp̄>q′ = p̄>A′q + µp̄>q′,

µ̄′ + µ̄q̄>p′ = q̄>A′>p + µ̄q̄>p′,
(2.33)

Conjugating the second equation in (2.33) and adding both it results:

2µ′ + µ(p̄>q′ + q>p̄′) = 2p̄>A′q + µ(q̄′>p + q̄>p′), (2.34)

and using (2.32.3) it gives:
µ′ = p̄>A′q. (2.35)

which gives us the derivative of the multiplier. The modulus of µ′ is a scalar value which
due to our assumptions (2.28) cannot be equal to zero and actually it is only necessary to
know its sign. A positive value means that the absolute value of the multiplier is growing,
therefore it might cross the unit circle and leave the stability region. As long as the
derivative remains smaller than zero the stability of the system is guaranteed. Analogous
relations as those explained for the continuous case, as well as the corresponding normal
forms Arnold [1983], take place and can be consulted in other text books V. Arnold
[1985] for a deeper analysis.

2.2.2 Fold and Flip bifurcations
As it can be seen in Figure 2.9 the Flip and Fold bifurcations represent the cases µ = −1
and µ = 1 respectively. They represent similar behaviors in which they represent a loss
of stability, as their equivalent continuous case. The discrete Fold bifurcation presents a
corresponding behavior to the continuous Fold and as such, no further description of its
effects will be done here. Only Figure 2.13 to represent the differences with respect to
the continuous case is shown.

Referring to the Flip bifurcation, as a first indication it is noted that it corresponds to
a Pitchfork bifurcation of the second iteration. By analogy with the Hopf Bifurcation,
flip bifurcations are defined as supercritical or subcritical, depending on the stability of
the fixed point at the critical parameter value Kuznetsov [2004]. Flip bifurcation is also
referred to as period doubling bifurcation.

When the parameter α approaches the critical value, a stable solution disappears,
generating a periodic solution, which can again disappear forming another periodic so-
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2.2 The Discrete Case

Abbildung 2.13: Discrete Fold bifurcation

lution of double the period. A very representative case of this is the simple population
model presented by Ricker Ricker [1954]. The model reads as follows

xk+1 = αxke
−xk , (2.36)

where xk is the population density in year k, and α > 0 is the growth rate. It is to be
noted that the Ricker Equation describes population of each successive generation and
it only depends upon population of the previous generation, i.e., the xk individuals are
not alive during the k+ 1 generation. As it can be seen in Figure 2.14, a stable solution
for α < α1 exists. This stable solution will successively generate said double period
solutions at given α and for certain α chaotic solutions occur too. This phenomenon is
called Feigenbaum’s cascade of period doublings and it has been demonstrated that the
quotient

αk − αk−1
αk+1 − αk

(2.37)

tends to 4.6692 . . . as k increases. These properties were presented as a conjecture by
Feigenbaum [1978] and later proven by Lanford [1980] with the help of a computer. This
value is referred to as the Feigenbaum constant.
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2 Bifurcation Theory

Abbildung 2.14: Flip bifurcations in Ricker’s equation
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3 Defining Systems for Neimark–Sacker
Points
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3 Defining Systems for Neimark–Sacker Points

In addition to the usual difficulties for solving large nonlinear systems with singular
Jacobian, addressed in H. Shwetlick [1996] and K. Lust [2000], the introduction of com-
plex arithmetic to deal with Hopf points should be somehow overcome or faced directly
when designing the approach, see for example W.J.F. Govaerts [1996] where the complex
properties defining the bifurcation points are used to obtain the Hopf points. Other ap-
proaches can be consulted in T.J. Garret [1991]. In section 3.3 the projection techniques
used in order to find the eigenvalues and eigenvectors are shown, while the terms used
to accelerate the convergence of our defining system in the vicinities of Hopf points are
explained in section 3.4. The method used to define the Hopf point conditions is shown in
3.2, with each required modification corresponding to the differently discretized systems
shown in section 3.5.

3.1 Scalar test functions

Since Neimark–Sacker bifurcation points are codimension one singularities we should be
able to compute them as solution of a minimally extended system of the form

f(x, α) = 0 or F (x, α) = x (3.1)

and
φ(x, α) = 0 with φ : Rn+1 7→ R. (3.2)

Here the additional real valued function is called a test function. It must be constructed
for the codimension one singularity and should be reasonably convenient to evaluate and
differentiate. Moreover, it is very important that φ(x, α) be well defined at all (x, α) in
some larger neighborhood of the desired bifurcation points.

For simple bifurcation points, where there is usually an exchange of stability between
two intersecting solution paths, such test function was given for example in A. Griewank
[1983]. That particular test function is easy to differentiate, but the computation of its
value and gradient ∇φ does require the solution of linear systems in bordered versions
of the system Jacobian. Moreover, the bordering vectors must be selected appropriately,
which is in principle not difficult but still complicates the resulting algorithms somewhat.
For the singularities considered here we will solve the linear systems in a one-shot fashion
while updating the bordering vectors simultaneously.

Suppose that on some neighborhood D ⊂ Rn the multipliers µj of the Jacobian
F ′(x, α) satisfy

|µ1| ≥ |µ2| > ρ̂ ≥ |µ3| ≥ . . . ≥ |µn| with ρ̂ < 1 (3.3)

In other words only the two largest multipliers may approach 1 in modulus. Then
A = F ′(x, α) and its transposed A> = F ′(x, α)> have unique two-dimensional invariant
subspaces associated with the largest two eigenvalues µ1 and µ2. They vary smoothly
with respect to (x, α) and can be spanned by the columns of two matrices U, V ∈ Rn×2
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3.1 Scalar test functions

so that for two matrices B, B̃ ∈ R2×2,

AV = V B and A>U = UB̃ (3.4)

Moreover B and B̃ must have the same multipliers so that equivalently

det(B) = det(B̃) and Tr(B) = Tr(B̃)

It is shown below in proposition 3.2.1 that both the determinant and the trace are
differentiable functions of (x, µ). Adding to F (x, α) = x a test function defined in terms
of φ = det(B) or ψ = Tr(B), as it will be shown, yields Neimark–Sacker points under
suitable nondegeneracy conditions. We will later consider test functions involving the
determinant and the trace to obtain perturbed Neimark–Sacker point of discretized
systems that correspond exactly to the Hopf point of the underlying continuous system.

Postmultiplying V and U by suitable 2× 2 matrices we can ensure that

U>V = I and thus B = B̃.

Even with that normalization, the matrices U, V are not unique and there does not
seem to be a simple way to normalize them. Therefore, we will call any pair U, V a
compatible eigenbasis. Computing U, V,B and the corresponding test function for given
(x, α) with full accuracy requires at least a partial Eigenvalue Decomposition of the full
Jacobian, F ′. To avoid this costly calculation, in each outer iteration, we prefer a one-
shot approximation of U, V,B and φ or ψ simultaneously with solving the state equation
F (x, α) = x. In the next section we examine the properties of U, V,B and φ in more
detail.
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3 Defining Systems for Neimark–Sacker Points

3.2 Uniqueness and Differentiability

As it was remarked before in order to compute Hopf points the complex arithmetic should
be somehow overcome. Dropping the subscript k we have the 2× 2 matrix and recalling
some notions of Linear Algebra it can be stated that for a generic matrix B ∈ R2×2 as
follows

B = U>AV =
[
b11 b12
b21 b22

]
∈ R2×2, (3.5)

with U and V defined as solutions to

V B = AV,
U>B = A>U.

(3.6)

The multipliers and the characteristic equation have the special form, as already
shown:

det(B − µI) = µ2 − Tr(B)µ+ det(B) = 0, (3.7)

where
Tr(B) = b11 + b22, det(B) = b11b22 − b21b12. (3.8)

Thanks to these relations we can express analytically the values of both eigenvalues as

µ1,2 = Tr(B)±
√

(Tr(B))2 − 4 det(B)
2 (3.9)

Therefore, if Tr(B) = 0 there is either a pair of purely complex conjugate eigenvalues, or
a pair of eigenvalues with same module but different sign, and this will depend on the sign
of det(B). Furthermore, we know that µ =

√
det(B). Thus, we can express conditions

on our multipliers by combinations of the trace and determinant of the matrix B. We
will see later that since neither the trace of a matrix nor the determinant are affected by
similarity transformations, this will allow us to simplify the proof of uniqueness of our
test functions.

The eigenvalue locations defining our critical points will though depend, as we will see
in section 3.5 on the kind of system which is under study. In a continuous system, a pair
of pure imaginary eigenvalues is our objective. For discrete systems a pair of complex
multipliers of modulus one is to be found and in case of the discretized continuous
systems, it depends on the discretization scheme used. The different approaches will be
shown in the following sections.

As commented before, in the case of a discrete system a pair of complex conjugate
multipliers of modulus one exist, which makes it straightforward to state that the de-
terminant of B at a Neimark–Sacker point (actually the product of both eigenvalues) is
equal to one. In order to be able to locate the critical points as a function of the states
and depending on the discretization procedures, basic combinations of the following basic
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3.2 Uniqueness and Differentiability

test functions will be used:

φ = det(B) and ψ = Tr(B). (3.10)

Remark In the case U, V ∈ Rn×1, the function φFold = U>AV can be considered as
a test function to locate Fold points (φFold = U>AV − 1 in the discrete case).

In addition, our test functions φ and ψ are uniquely defined inside a ball with center
at a Hopf point (x∗, α∗) and are differentiable in this domain as we present below.
Furthermore, we will see later how to compute the derivative of the test functions φ and
ψ analytically. While there is apparently no convenient way to standardize U, V and B
the resulting test function based on the determinant and trace are unique. Furthermore,
we define ρ(A) as the spectral radius of A.
Proposition
Given F (x, α) : Rn+1 → Rn, with A(x, α) = Fx(x, α) ∈ Rn×n fulfilling the conditions

assumed in 2.2.1, there are solutions U, V ∈ Rn×2 and B = U>AV ∈ R2×2 to the
bilinear system

AV − V B = 0
U>A−B>U> = 0

U>V − I2 = 0
(3.11)

such that det(B(x, α)) = ρ(A(x, α))2 and

(i.a) φ(x, α) = det(B) ∈ R

(i.b) ψ(x, α) = Tr(B) ∈ R,

(ii) P (x, α) = V U> ∈ Rn×n,

(iii) Q(x, α) = V (I −B)−1U>A ∈ Rn×n,

are unique. Furthermore, all of them are differentiable with respect to x, α in a neigh-
borhood of a point satisfying the Neimark–Sacker conditions.
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3 Defining Systems for Neimark–Sacker Points

Proof

First, to the uniqueness of the selected functions φ or ψ and P, Q, we may choose
U, V ∈ Rn×2 such that their columns span the unique two dimensional invariant sub-
spaces S, T of the matrix A and A> associated with the largest eigenvalue pair. Because
that eigenvalue pair is required to be non-defective, U>V must have full rank and can
be assumed without loss of generality to be the identity.

Let Ũ and Ṽ be another pair with the same properties, yielding a different B̃ = Ũ>AṼ .
Then, there must be matrices C and C̃ such that:

Ṽ = V C, Ũ = UC̃, and Ũ>Ṽ = I; (3.12)

Then we find
Ũ>Ṽ = C̃U>V C = I = C̃>C = I ⇒ C̃ = C−> . (3.13)

Thus, we find that
B̃ = C̃>U>AV C = C̃>BC = C−1BC. (3.14)

Hence, B̃ results from a similarity transformation of B, which means that the determinant
and trace remain unchanged and therefore we have shown that φ and ψ are unique. For
(ii) and (iii), same procedure is to be followed, introducing Ũ , Ṽ in the equations. This
gives:

P = V U> ⇒ P̃ = Ṽ Ũ> = V CC̃>U> = V U>. (3.15)

Which implies
P̃ = V U> = P . (3.16)

For the proof of uniqueness of (iii), some more operations need to be done after introdu-
cing the Woodbury formula Woodbury [1949] which allows to compute a perturbed
matrix for a change to a given matrix M . That is, the inverse of a rank-k correction of
some matrix can be computed doing a rank-k correction to the inverse of the original
matrix. (

M + Y HZ>
)−1

= M−1
[
I − Y

(
H−1 + Z>M−1Y

)−1
ZM−1

]
. (3.17)

We define now Q̃

Q̃ = Ṽ (I − B̃)−1Ũ>A = V C(I − C̃>BC)−1C̃>U>A. (3.18)

If we transform the inverted matrix (I − C̃B̃C)−1 present in last equation and taking

Z> = C; Y = −C̃>; M = I and H = B

following the Woodbury formula, the equation reads:

Q̃ = V C
[
I + C̃>(B−1 − I)−1C>

]
C̃>U>A. (3.19)
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3.2 Uniqueness and Differentiability

In the case of Q, applying the same formula and taking Z> = I; Y = −I, M = I, and
H = B, Q reads

Q = V
[
I + (B−1 − I)−1

]
U>A = V U>A+ V U>(B−1 − I)−1A (3.20)

If we operate and simplify the expression defining Q̃:

Q̃ = V C
[
I + C̃>(B−1 − I)−1C>

]
C̃>U>A,

= V CC̃>U>A+ V CC̃>(B−1 − I)−1C>C̃>U>A,

= V CC̃>U>A+ V CC̃>(B−1 − I)−1C>C̃>U>A.

Last step is done regarding that C̃ = C−> ⇒ C̃>C = C>C̃ = I and thus

Q̃ = V U>A+ V (B−1 − I)−1U>A. (3.21)

and hence, comparing, we can state: Q = Q̃.

As we have proven, although the quantities U, V, B are not uniquely defined, the
formulation of the functions (i), (ii) and (iii) is appropriately chosen as these are unique.

Concerning the differentiability of the three functions (i), (ii) and (iii),for the system as
defined in (3.11), let (x0, α0) denote the point at which we wish to prove differentiability
and denote all quantities associated with it by subscript 0. Then, we consider a fixed
decomposition

A0V0 = V0B0,
U>0 A0 = B0U

>
0 ,

U>0 V0 = I.
(3.22)

Also consider the system of (2n+ 2)× 2 equations

A(x, α)V = V B,
U>0 V = I,

(3.23)

which is bilinear in the (2n+2) variables (V,B). Now by the Implicit Function Theorem
(V,B) are differentiable functions of (x, α) with value (V0, B0) at (x0, α0), provided the
Jacobian of the above system with respect to (V,B) is nonsingular, i.e., has no nullspace.
This is equivalent to

A0V
′ = V ′B0 + V0B

′,
U>0 V

′ = 0, (3.24)

having only the solution (V ′, B′) = 0. Moreover if this is true it is also true for A in
some neighborhood of A0 and thus (x, α) in some neighborhood of (x0, α0). Multiplying
the above equation at A = A0 by U>0 we get

B0U
>
0 V

′ = U>0 V
′B0 +B′,

U>0 V
′ = 0. (3.25)
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3 Defining Systems for Neimark–Sacker Points

This obviously requires B’ = 0 and thus

A0V
′ = V ′B0, U>0 V

′ = 0. (3.26)

It now follows from the simplicity of the two complex conjugate eigenvalues that this
equation only has the solution V ′ = 0. Hence the Implicit Function Theorem can be
applied and we have differentiable functions V (x, α) and B(x, α). Now all that remain
to be shown is that the B̃(x, α) obtained as any other solution of

AṼ = Ṽ B̃, Ũ>A = B̃Ũ>, Ũ>Ṽ = I (3.27)

is a similarity transformation of W and thus has the same determinant and trace. That
olds because we get from multiplication of the middle equation with V

Ũ>V B = B̃Ũ>V (3.28)

with Ũ>V nonsingular. As well, the system

U>A(x, α) = B(x, α)U>
U>V (x, α) = I

(3.29)

for the given particular V (x, α) is also differentiable and nonsingular at (x0, α0). Hence,
U and the expressions P and Q are also differentiable with respect to (x, α). Finally, it
can be easily checked that the same values are obtained for any other admissible pair
Ũ , Ṽ .

Of particular importance for our algorithm are the total derivatives of φ and ψ along
the solution path x(α), whose tangent ẋ = ẋ(α) is defined by

(I −A(x(α), α)) ẋ(α) = Fα(x(α), α).

This linear system is nonsingular at Neimark–Sacker points, but not for 1:1 resonances.
Denoting the total derivatives by dφdα and dψdα we obtain the following explicit expressions.

Lemma 3.2.1 With V = [v1,v2] , U = [u1,u2] and det(B)UB−> = [b1,b2] we have

dφ

dα
= b>1

∂2F (x, α)
∂α ∂x v1 + b>2

∂2F (x, α)
∂α ∂x v2 +

+b>1
∂2F (x, α)

∂2x 〈v1, ẋ〉+ b>2
∂2F (x, α)

∂2x 〈v2, ẋ〉 .

and

dψ

dα
= u>1

∂2F (x, α)
∂α ∂x v1 + u>2

∂2F (x, α)
∂α ∂x v2 +

+u>1
∂2F (x, α)

∂2x 〈v1, ẋ〉+ u>2
∂2F (x, α)

∂2x 〈v2, ẋ〉 .
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3.2 Uniqueness and Differentiability

Proof

This is done taking a look at the expression of the determinant:

detB =
n∑
i=1

bij(−1)i+j det(Mij), (3.30)

with no implied summation over j and where Mij is the minor of matrix B formed by
eliminating row i and column j from B. Recalling that the derivative of the determinant
with respect to the matrix entries is given by

d

dB
det(B) = B−> det(B) (3.31)

we can express the derivative of φ with respect to B as before:

∂φ

∂B
= ∂ detB

∂bij
= (detB)B−>. (3.32)

The total derivative of φ is therefore, assuming differentiability of B:

φ′ =
〈
∂φ

∂B
,B′

〉
=
〈

det(B)B−>, B′
〉

= Tr (det(B)B−1B′), (3.33)

where 〈 〉 denotes the componentwise inner product on matrix spaces and B′ denotes the
implicit derivative of B in some direction on the state space (x, α). The derivative of B
can be deduced from its definition and from the relations

AV = V B,
U>A = BU>.

(3.34)

If in addition we differentiate the consistency condition U>V − I = 0, it gives

U
′>V + U>V ′ = 0⇒W = U

′>V = −U>V ′. (3.35)

With these relations we can differentiate B:

B = U>AV, (3.36)
B′ = U

′>AV + U>A′V + U>AV ′

= U>A′V + U
′>V B +BU>V ′

= U>A′V +WB −BW.

Substituting this last equation in (3.33) we get

φ′ = Tr
[
det(B)B−1

(
U>A′V +WB −BW

)]
(3.37)

= Tr
(
det(B)B−1U>A′V + det(B)B−1WB − det(B)B−1BW

)
,
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3 Defining Systems for Neimark–Sacker Points

= Tr
(
det(B)B−1U>A′V + det(B)(B−1WB −W )

)
,

= det(B)Tr
(
B−1U>A′V

)
+ det(B)Tr

(
B−1WB −W

)
,

= det(B)Tr
(
B−1U>A′V

)
.

The second trace term is equal to zero since B−1WB is a similarity transformation of
W and thus has same trace. Decomposing the matrix product in the last line of (3.37)
and calling the components of the 2× n matrix det(B)B−1U> as

det(B)B−1U> =
[

b>1
b>2

]
, (3.38)

we can express the derivative of φ as:

∇φ = b>1 A′v1 + b>2 A′v2, (3.39)

where A′ represents the differentiation of A, the Jacobian matrix, with respect to α and
all components of x which would correspond to a second order adjoint vector, thus:

∇φ = b>1
∂2F (x, α)
∂x ∂(x, α)v1 + b>2

∂2F (x, α)
∂x ∂(x, α)v2. (3.40)

It is to be noted that for the case ψ = Tr(B) the same steps give

∇ψ = ∇
(
[1, 0]B [1, 0]> + [0, 1]B [0, 1]>

)
= [1, 0]B′ [1, 0]> + [0, 1]B′ [0, 1]> (3.41)

where B′ would be as shown in (3.36). This is equivalent to

∇ψ = Tr(B′)

and can now be rewritten as

∇ψ = Tr(U>A′V +WB −BW ), (3.42)

where as before, the last two terms cancel out since the trace is invariant to similarity
transformations, which gives

∇ψ = Tr(U>A′V ). (3.43)

We have to consider though the variation of the states with respect to α so the deri-
vative has to be completed as follows:

d

dα
φ(x, α) = ∇φ

[
∂x
∂α
1

]
= ∂φ

∂x
∂x
∂α

+ ∂φ

∂α
, (3.44)
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3.2 Uniqueness and Differentiability

which leaves the complete expression of the derivative for φ as:

dφ

dα
= b>1

∂2F (x, α)
∂α ∂x v1 + b>2

∂2F (x, α)
∂α ∂x v2 +

+b>1
∂2F (x, α)

∂2x 〈v1, ẋ〉+ b>2
∂2F (x, α)

∂2x 〈v2, ẋ〉 .

For ψ it gives

dψ

dα
= u>1

∂2F (x, α)
∂α ∂x v1 + u>2

∂2F (x, α)
∂α ∂x v2 +

+u>1
∂2F (x, α)

∂2x 〈v1, ẋ〉+ u>2
∂2F (x, α)

∂2x 〈v2, ẋ〉 .

Vector expressions of the form u>F ′′ v are known as second order adjoints. As it can
be seen in Griewank [2000], their computational cost is of the order of magnitude of
the function evaluation cost. The condition dφ

dα 6= 0 is equivalent to say that expression
(2.35) is non zero. This is the transversality condition which takes part in the mentioned
Hopf Theorem.
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3 Defining Systems for Neimark–Sacker Points

3.3 Power Iteration for dominant eigenvalues
In this project it is assumed that one only has available a user supplied fixed point solver
of the form

xk+ 1
2

= F (xk, α), (3.45)

where F ∈ Rn+1 → Rn may arise from discretizing a PDE model equation and is
a function of x, the state vector, and α, the model parameter. We denote by Ak =
∂F
∂x (xk, αk) the Jacobian matrix of F . Applying the power method to approximate U
and V , starting from (2.29) and (2.30), we obtain the following matrix recurrences:

Vk+ 1
2

= ∂F
∂x (xk, αk)(xk, αk)Vk = AkVk,

Uk+ 1
2

= U>k
∂F
∂x (xk, αk)(xk, αk) = A>k Uk.

(3.46)

Intermediate version Uk+ 1
2
, Vk+ 1

2
∈ Rn×2 are then renormalized to Uk+1Vk+1 such that

U>k+1Vk+1 = I2, (3.47)

and
range(Uk+1) = range(Uk+ 1

2
),

range(Vk+1) = range(Vk+ 1
2
). (3.48)

We may then approximate the matrix B ∈ R2×2 by

Bk = U>k AkVk = U>k Vk+ 1
2

= U>
k+ 1

2
Vk. (3.49)

This matrix is actually called the interaction matrix in the subspace iteration methods.
The equations represented in (3.46) are a usual subspace iteration, first mentioned by
Bauer as Treppen–Iteration or Bi–iteration. Because of the assumption (3.3), the com-
ponents of Uk and Vk converge from general U0, V0 to the left and right eigenvectors of
the multipliers with greatest modulus, see Saad [1992].

Further improvements in this technique were introduced in Stewart [1976], W.J. Ste-
wart [1981] and A. Jennings [1975]. Some of these improvements were meant to deal with
the difficulty that in this case multipliers are of equal modulus, and thus can be overco-
me through the introduction in the iteration of a so called interaction matrix and guard
vectors to improve the convergence rate. These vectors converge columnwise to those
eigenvectors of maximal modulus, converging thus in our case to the Neimark–Sacker
eigenvectors, due to the proximity to the Neimark–Sacker point.

Convergence rate is however determined by the modulus of the next bigger eigenvector.
It is therefore appropriate to introduce in the iteration some more vectors than what
one is actually seeking, as some of the following multipliers in modulus might be close to
the critical ones. That is the reason why U and V could be chosen in Rn×m for m > 2
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3.3 Power Iteration for dominant eigenvalues

instead of in Rn×2. This would improve convergence rate of the subspace iteration to
|µm+1
µ2
| instead of |µ3

µ2
| ≈ |µ3|, since µ2 is almost one. Independently from these variations,

the subspaces as represented in (3.46) and (3.47) will span the subspace T u and thus
will allow us to know more about the dynamics of the most compromising eigenvalues
of the system. Another examples of similar techniques for this problem can be seen in
G.M. Shroff [1993] and M. Mönnigmann [2002].

Once the subspace iteration is introduced, the central point of this thesis is presen-
ted: the variation of the parameter α in dynamical systems (dimensions or temperature
in chemical reactors D. Roose [1989]; shape-conditioned stiffness of materials in fluid-
structure interactions S.A. Morton [1999], G. Schewe [2003], voltage thresholds in nerve
conduction models J. Rinzel [1983]) can lead to slowly converging solutions due to un-
desired oscillations or even unstable solutions. Stability, logically, is a desired property
of the designed systems but usually the high performance required demands, though,
the operation of these systems in regions which are close to instability. Therefore, it
is aimed here to define a constraint φ(x, α) ≤ 0 which defines the stable regions and
more precisely φ(x, α) = 0 which represents the critical point for our stability, while, as
presented in next section an accelerated solver is used to help us coping with the slow
converging system.
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3 Defining Systems for Neimark–Sacker Points

3.4 Deflated State equation Solver

Due to the assumed stability of our system, the critical multipliers are the only ones
compromising the convergence of the fixed point iteration in the vicinity of the Neimark–
Sacker bifurcation as all other multipliers should stay inside the unit circle. Due to this,
the fixed point iteration (3.45) should converge to a stationary solution x(α), i.e.,

F (x(α), α)− x(α) = 0 (3.50)

only where A = F ′(x(α), α) has a spectral radius less than one. It might converge very
slowly or not at all from some points in the vicinity of a Neimark–Sacker point. These
compromising modes, as mentioned, are contained in the subspaces spanned by U and V ,
and thus, in order to overcome this problem, a correction term to accelerate convergence
is added to our fixed point iteration, as follows, based on these subspaces:

xk+1 = F (xk, αk) + Vk ck. (3.51)

Using the Taylor expansion of F (xk+1, αk)− xk+1 at xk we get:

F (xk, αk)− xk+1 + Fx(xk, αk)(xk+1 − xk) ' 0 (3.52)

and thus
− Vk ck + Fx(xk, αk) [F (xk, αk) + Vk ck − xk] = 0. (3.53)

Multiplying the last equation by U>k from the left it gives, according to the consistency
condition (3.47):

ck = U>k Ak(F (xk, αk)− xk) + (U>k AkVk)ck = U>k Ak(F (xk, αk)− xk) +Bk ck (3.54)

The last equation can be reformulated as

(I −Bk)ck = U>
k+ 1

2
[F (xk, αk)− xk] ,

ck = (I −Bk)−1U>
k+ 1

2
[F (xk, αk)− xk] .

(3.55)

The deflated state vector iteration can therefore be expressed as

xk+1 = F (xk, αk) + Vk(I −Bk)−1U>
k+ 1

2
[F (xk, αk)− xk] (3.56)

= F (xk, αk) +Qk [F (xk, αk)− xk]

where Qk is as defined in proposition 3.2.1 independently of the particular choice of U, V .
Differentiating the right hand side with respect to xk we obtain at any feasible point the
Jacobian
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3.4 Deflated State equation Solver

∂xk+1
∂xk = A(xk, αk) +Qk [A(xk, αk)− I]

= Ak + Vk(I −Bk)−1BkU
>
k (Ak − I)

= Ak + Vk(I −Bk)−1(Bk − I)U>k Ak

= Ak − VkU>k Ak = (I − Pk)Ak

(3.57)

This means that

spec
{
∂xk+1
∂xk

}
= spec {(I − Pk)Ak} = spec {Ak} ∪ {0} \ {µ1, µ2} .

which makes the deflated iteration converge at the rate determined by the next bigger
eigenvalue |µ3| ≤ ρ̂ as defined in section 3.1. The computation of the inverse used in
(3.56) could though be problematic when the Neimark–Sacker multipliers get closer to
one (i.e., θ = 0, which is a Bogdanov–Takens bifurcation in continuous case, called 1:1
resonance in discrete case). We assume in general that θ 6= 0; nevertheless, the case θ = 0
has been considered in 4.3 in a theoretical way.
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3.5 Discretization error correction

In this chapter we have considered so far the Neimark–Sacker Bifurcation for discrete
dynamical systems. When this system is obtained as temporal discretization of a conti-
nuous system, the Neimark–Sacker points correspond approximately to Hopf bifurcations
of the underlying continuous system. However, this correspondence is not exact and we
face a slight perturbation which depends on the particular discretization scheme. He-
re we consider only explicit and implicit Euler as well as the 4th order Runge–Kutta
method.

Basically, the biggest difference between them is that explicit methods calculate the
state of a system at a later time from the state of the system at the current time, while
an implicit method finds it by solving an equation involving both the current state of
the system and the later one. For further details on numerical computation of partial
differential equations, a review of some titles like S. Larsson [2003], P. Deuflhard [2008]
and Hackbusch [1996] is recommended.

When discretizing a continuous system for its solution, the eigenvalues and thus the
rate of convergence can be influenced while solving by means of a preconditioner. A
preconditioner P of a matrix A is a matrix such that P−1A has a smaller condition
number than A. That is, the system

P−1Ax = P−1b (3.58)

is better conditioned than the original system. Special reference is done in the case
P = A−1. In this case, the eigenvalues of the matrix, once the preconditioner has been
applied are all 1. Computation of the preconditioner P will be as hard as solving the
original system, though, since the computation of A−1 is required.

As we have seen, rate of convergence and therefore the eigenvalues (multipliers) of a
matrix can be conveniently (or unwillingly) modified. Looking at this from the other side,
we need to know how our discretization of the systems will influence the eigenvalues to be
studied. Hence, a separate analysis of the continuous and of its correspondent discretized
equations is needed and, as mentioned, this will depend on the method used to discretize.

3.5.1 Explicit Euler

The explicit (or forward) Euler is one of the most frequently used methods due to its
simplicity and its implementation advantages. Mathematically, if xk is the current system
state and xk+1 is the state at the later time, then:

xk+1 = F (xk, αk) = xk + hf(xk, αk) (3.59)

Although easy to implement, the forward Euler method has a local error proportio-
nal to h2, while the global error is proportional to h, which can be demonstrated by
comparing (3.59) to the full Taylor expansion. Furthermore, like for all explicit methods
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1
h

1
h

Abbildung 3.1: Stability zone of continuous eigenvalues (red) for explicit Euler

a condition is required for stability in which, given a space discretization, a maximum
time step is allowed R. Courant [1967].

According to the relation (3.59) between F and f we can deduce the Jacobian and
the discrete multipliers of F as a function of the eigenvalues of f :

F ′(xk, αk) = I + hf ′(xk, αk),
µ(F ′(xk, αk)) = 1 + hλ(f ′(xk, αk)).

(3.60)

Hence, we see that µ = 1 if only the corresponding λ = 0. In other words, we see that
Fold points of the explicit Euler discretization correspond exactly to the discrete Fold.
However, since the modulus of the largest discrete eigenvalue is given by

|µi|2 = |1 + hλi|2 = (1 + hRe(λi))2 + h2Im(λi)2, (3.61)

we see that Hopf points of the continuous system and Neimark–Sacker points of the
discrete system do not exactly correspond to each other. More specifically, the continuous
Hopf condition Re(λ) = 0 implies

|µi|2 = 1 + h2Im(λi)2 (3.62)

and the Neimark–Sacker condition |µ| = 1 is satisfied for all continuous eigenvalues λ on
a circle of radius 1/h about the center −1/h in the complex plane, as it is represented
in Figure 3.1.

The modulus of our critical eigenvalue after the transformation is bigger than 1 by
an order of h2 as long as the original eigenvalues are different from zero (the Fold case).
In the Hopf case we can nevertheless state that the new transformed multipliers have a
pair of multipliers with real part 1. This transformation can be seen in Figure 3.2.

Thus, to locate the original Hopf points of the underlying continuous systems we will
have to choose ψ = Tr (B)−2 as a test function. It remains to be shown that the resulting
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3 Defining Systems for Neimark–Sacker Points

Abbildung 3.2: Explicit Transformation of eigenvalues
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defining system F (x, α) = x and ψ = 0 is nonsingular under the Hopf conditions on f
and for sufficiently small h.

The relation between the determinant condition φ = det(B) = 0 and the trace condi-
tion ψ = 0 is given by

det(B)− 1 = µ1µ2 − 1 = +h(λ1 + λ2) + h2(λ1λ2)
= h(Tr (B)− 2) +O(h2) (3.63)

If we try to express the nondegeneracy condition explained in the continuous system (i.e.,
σ′(0) 6= 0 = τ ⇒ d

dαTr(B) = 2hτ 6= 0 ) for the explicit Euler we get that, differentiating
the trace of B

d

dα
TrBh(x(α), α)|α=α∗ = d

dα
TrB(x(α), α)|α=α∗ = 2hτ 6= 0. (3.64)

Analogously, if we differentiate for the determinant

d

dα
det(Bh) = 2hτ + h2(ω2)′ 6= 0. (3.65)

3.5.2 Implicit Euler

Implicit methods require an extra computation (solving the equation shown below),
and they can be much harder to implement. Implicit methods are used because many
problems arising in real life are stiff, for which the use of an explicit method requires
impractically small time steps ∆t to keep the error in the result bounded. For such
problems, to achieve a given accuracy, it takes much less computational time to use an
implicit method with larger time steps, even taking into account that one needs to solve
an equation of the form (3.66) at each time step. That said, whether one should use an
explicit or implicit method depends upon the problem to be solved. The implicit Euler
method reads

xk+1 = xk + hf(xk+1, αk) = F (xk+1, αk). (3.66)

If we differentiate in order to obtain the Jacobian of (3.66), it gives

dxk+1
dxk

= I + hf ′(xk, αk)
dxk+1
dxk

, (3.67)

which allows us to express the Jacobian F ′ as a function of the Jacobian f ′ of the
continuous system.

F ′(xk, αk) = (I − hf ′(xk, αk))−1. (3.68)

Thus, we can establish the relationship between the eigenvalues of F ′, µ, and f ′, λ, as
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Abbildung 3.3: Implicit Transformation of eigenvalues

it follows:
µi = 1

1− hλi
. (3.69)

If we substitute λi for the critical Hopf eigenvalue λHopf = ±iω we have

µHopf = 1
1± ihω = 1

1 + h2ω2 (1± ihω), (3.70)

which has modulus ∣∣∣∣ 1 + ihω

1 + h2ω2

∣∣∣∣ = 1√
1 + h2ω2

. (3.71)

For the Fold point, as we have seen before for the explicit case, it remains unchanged
since λFold = 0 As we can see in Figure 3.3, the eigenvalues of F ′ will be inside the circle
with origin 1/2 and diameter 1. Although the transformation of the original continuous
eigenvalues would be expected to place the multipliers of the critical eigenvalues on the
unit circle, the transformed eigenvalues have though a modulus smaller than one. This
is the case for the critical eigenvalues (i.e., those with modulus closer to the imaginary
axis, which are the ones smaller in modulus). In the case that we study the example
|λi| > 1 keeping in mind that we are contemplating only the case λi < 0, we can already
extract what will happen to µi. These eigenvalues will remain inside the mentioned circle
and the bigger the modulus of λi, the closer µi will be to 0.
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After describing the transformations undergone by the eigenvalues in the implicit case,
we can state that our defining system will be defined by

0 = F (x, α)
0 = detB(x, α)− 1

2Tr (B(x, α)) (3.72)

where the last equations are done with B formed with (I − hA)−1. That is,

B = U>AhV = U>(I − hA)−1V. (3.73)

This expression does not allow much further analysis. Even if we express first (3.68)
transformed by the Woodbury formula (3.17) used before, it gives

(I − hA)−1 = I + h(A−1 − h)−1, (3.74)

which does not help us either to find the expressions of Tr(B) and det(B). We can though
express the value of the trace and determinant as done before adding or multiplying the
critical eigenvalues, which gives:

trace(B) = µ1 + µ2 = 1
(1 + ihω) + 1

(1− ihω) = 2
1 + h2ω2 (3.75)

and
det(B) = µ1µ2 = 1

(1 + ihω)(1 + ihω) = 1
1 + h2ω2 . (3.76)

From these last two equations we can now justify the choice of the test function for
the implicit case. Again differentiating as done before, we can see that these new test
functions are still well defined

d

dα
det = 2τh+ h2(ω2)′

(1 + hTr0 + ω2h2)−2 (3.77)

and again
d

dα

(
det(x, α)− 1

2Tr(x, α)
)

= h(2τ − τ) +O(h2); (3.78)

which gives again

d

dα

(
det(x, α)− 1

2Tr(x, α)
)

= h(τ) +O(h2); (3.79)

3.5.3 Runge–Kutta 4

Runge–Kutta 4 methods utilize for the computation of xk+1 some intermediate stages
within the integration domain. Specifically, if we look at the classical 4th order Runge–
Kutta scheme, one has

xk+1 = xk + 1
6h(b1 + 2b2 + 2b3 + b4), (3.80)
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where
b1 = f(xk, αk),
b2 = f(xk + 1

2hb1, αk),
b3 = f(xk + 1

2hb2, αk),
b4 = f(xk + hb3, αk).

(3.81)

As we can see from the equations, the next value is determined in this case from the pre-
sent value and a series of weighted slope averages at intermediate points of the interval.

If we differentiate (3.80) as before, and after some modifications of the equations, it
can be stated that at a fixed point x = x(α):

dxk+1
dxk

= In + 1
6h
(

6f ′ + 3h(f ′)2 + h2(f ′)3 + 1
4h

3(f ′)4
)
, (3.82)

or, equivalently:

dxk+1
dxk

= In + hA+ 1
2h

2(A)2 + 1
6h

3(A)3 + 1
24h

4(A)4. (3.83)

This leaves a relationship between µi and λi of

µi = 1 + hλi + 1
2h

2λ2
i + 1

6h
3λ3

i + 1
24h

4λ4
i = 1 +

4∑
n=1

1
n!h

nλni . (3.84)

As before, substituting our critical eigenvalues for the Hopf and Fold points, it can be
seen once more that the Fold point eigenvalue remains unchanged, while for the Hopf
point (where λ+

Hopf = iω)

µ+
Hopf = 1 + hiω + 1

2h
2(iω)2 + 1

6h
3(iω)3 + 1

24h
4(iω)4, (3.85)

where if we expand the parenthesis, it gives

µ+
Hopf = 1 + ihω − 1

2h
2ω2 − i16h

3ω3 + 1
24h

4ω4, (3.86)

and grouping both complex and real parts results in

µ+
Hopf = 1− 1

2h
2ω2 + 1

24h
4ω4 + i(hω − 1

6h
3ω3). (3.87)

Studying the modulus of µ it can be seen

|µ+
Hopf |

2 = (1− 1
2h

2ω2 + 1
24h

4ω4)2 + (hω − 1
6h

3ω3)2 = 1 +O(h4ω4) (3.88)

These last transformations can be done analogously for λ2
Hopf = −iω, which gives

µ−Hopf = 1− ihω − 1
2h

2ω2 + i
1
6h

3ω3 + 1
24h

4ω4. (3.89)
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3.5 Discretization error correction

As it has been shown, each different discretization method influences the location of the
eigenvalues. These changes oblige to formulate the corresponding different problems and
test functions.
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Abbildung 3.4: Trace and determinant (above) and eigenvalue modulus (below) relations

Although obtaining an analytic expression of B is more difficult, since the definition
of A as seen in (3.83) includes now up to fourth order terms, we can still calculate the
values of Tr (B) and det(B) as before,

Tr (B) = µ+
Hopf + µ−Hopf = 2− h2ω2 + 1

24h
4ω4 (3.90)

and
det(B) = µ+

Hopfµ
−
Hopf = 1 + 1

6h
4ω4 − 1

72h
6ω6 + 1

242h
8ω8 (3.91)

From these two equations we can again infer the required test function for the Runge–
Kutta 4 method. Solving hω from (3.90) equation based on the trace, using the variable
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Abbildung 3.5: Transformed critical eigenvalues (red) with Runge–Kutta

change x = h2ω2, we have

x = h2ω2 = 12±
√

96 + 24Tr(B). (3.92)

When choosing the negative root in (3.92), i.e., Tr(B) ≤ 2, equation (3.91) gives the
following relationship of the determinant and trace of B when substituting x

det(B) = 1 + 1
6(12 +

√
96 + 24Tr(B))2 − 1

72(12 +
√

96 + 24Tr(B))3

+ 1
242 (12 +

√
96 + 24Tr(B))4

(3.93)

After some elementary manipulations in (3.93) the following relationship is obtained:

det(B) = 165 + 36Tr(B)−
(50

3 + 5
3Tr(B)

)√
96 + 24Tr(B) + Tr2(B); (3.94)

Once obtained, the relationship between the trace (i.e., twice the eigenvalue’s real
part) and the determinant (the eigenvalue’s modulus squared) are as shown in Figure
3.4. In Figure 3.5 it is to be seen how the Runge–Kutta method 4 transforms the critical
eigenvalues from the continuous case, i.e., Re(λ) = 0 with respect to the unit circle
representing the stability of a discrete system.

46



4 Matrix free Computation of Hopf point
as Neimark–Sacker points

47



4 Matrix free Computation of Hopf point as Neimark–Sacker points

After deriving separately the system equations as well as the test function, we show in
the following sections the conjunct implementation of our approach. In section 4.1 the
coupled iteration of both the deflated solver and the test function iteration is presented
with some results on its contractivity, while the algorithm which derives from these
equations will be presented and explained step by step in 4.2. Furthermore, as already
commented, an expansion for dealing with the difficulties presented if computations
happen close to a Takens–Bogdanov will be introduced in section 4.3.

4.1 Coupled Iteration

Once the basis of our test function has been proven, we proceed incorporating it to the
iteration. It gives the coupled iteration

xk+1 = F (xk, αk) +Q(xk, αk) [F (xk, α)− xk] (4.1)
αk+1 = αk − δ φ(xk, αk).

To establish its contractivity for suitable δ we consider the Jacobian leaving off the
iteration counter k. The Jacobian can be expressed at the Neimark–Sacker point as

Â(δ) =
[
A+QA−Q (I +Q)Fα
−δ ∂φ∂x 1− δ ∂φ∂α

]
=
[

(I − P )A (I +Q)Fα
−δ ∂φ∂x 1− δ ∂φ∂α

]
(4.2)

It is easy to see that for the case δ = 0, i.e., an iteration without modifications of the
parameter α, Â has the following structure

Â =
[

(1− P )A (1 +Q)Fα
0 1

]
. (4.3)

By inspection, we see that the vector [0, . . . , 0, 1] is a left eigenvector of the system,
which has the following eigenvalues

spec
{
Â(0)

}
= spec {(I − P )A(0)} ∪ {1} . (4.4)

Further analysis of the matrix Â allows to state the following proposition:

Proposition The vector v =
[
ẋ>, 1

]>
=
[
(I −A)−1F>α , 1

]>
is a right eigenvector of

Â(0) with eigenvalue 1, i.e., it solves the equation

Â(0) · v = v (4.5)

and
∂ρ(Â)
∂δ

= −dφ
dα

= ∇φ ẋ + ∂φ

∂x = ddet(B)
dα

= d|µ|2

dα
6= 0 (4.6)

where the last expressions correspond to (3.10) and what we know from (2.28), provided
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4.1 Coupled Iteration

all other eigenvalues of A have modulus below 1, i.e., ρ3 < 1.
Proof

Â(0) · v = v⇒
[

(I − P )A (I +Q)Fα
0 1

] [
ẋ
1

]
=
[

ẋ
1

]
(4.7)

For the choice ẋ = (I −A)−1 Fα = F̃α, it is to be seen that

(I − P )A F̃α + (I +Q)Fα = F̃α

(I − P )A F̃α + (I +Q)(I −A)F̂α = F̃α

(I − P )A+ (I +Q)(I −A) = I

(I − P )A+ (I −A+Q−QA) = I

Q−QA− PA = Q(I −A)− PA = 0

Substituting the values of P and Q, it gives

V
[
(I −B)−1U>A(I −A)− U>A

]
= 0

V
[
(I −B)−1U>A− (I −B)−1U>A2 −BU>

]
= 0

V
[
(I −B)−1BU> − (I −B)−1B2U> −BU>

]
= 0

V
[
(I −B)−1B − (I −B)−1B2 −B

]
U> = 0

V
[
(I −B)−1

(
B −B2 − (I −B)B

)]
U> = 0

V
[
(I −B)−1

(
B −B2 − (B −B2)

)]
U> = 0

The left part of the equation cancels out, which implies that

F̃ =
[

(I −A)−1Fα
1

]
(4.8)

is a right eigenvector of Â(0).

The case δ 6= 0 is different though as the last row and column are not zero. Some
operations can be done though with the characteristic equation of the bordered matrix
Â:

Â =
[

(I − P )A (I +Q)Fα
−δ ∂φ∂x 1− δ ∂φ∂α

]
. (4.9)

Analyzing the spectrum of this new matrix Â, and the influence of our correction
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parameter δ with respect to the eigenvalues of Â, we can assert:

∂ρ(Â)
∂δ

= [0, . . . , 0, 1]
[

0 0
−∂φ∂x −∂φ∂α

] [
(I −A)−1Fα

1

]
, (4.10)

which operating, it gives

∂ρ(Â)
∂δ

=
[
−∂φ
∂x ,−

∂φ

∂α

] [ (I −A)−1Fα
1

]
= −∂φ

∂x(I −A)−1Fα −
∂φ

∂α
. (4.11)

From our state conditions (3.45) and taking into account the Implicit Function Theo-
rem we can state:

dx
dα

= ∂F

∂x
∂x
∂α

+ ∂F

∂α
= (I −A)−1Fα. (4.12)

And therefore substituting and checking (3.39) :

∂ρ(Â)
∂δ

= −∂φ
∂x

∂x
∂α
− ∂φ

∂α
= −dφ

dα
, (4.13)

which means that we can express the variation of the contractivity of our extended
corrected iteration algorithm by:

∂ρ(Â)
∂δ

= −dφ
dα

. (4.14)

Hence, for sufficiently small δ with sign(δ) = sign( dφdα) the iteration (4.1) is contractive.
The choice δ =

(
dφ
dα

)−1
would correspond to a Newton-like iteration of α. Furthermore,

we know that the contractivity of the reduced corrected iteration is defined by ρ3 = |λ3|,
thus this represents a limit to the maximum acceleration we can give to the new extended
corrected iteration, being this the only limitation exerted on our procedure by the original
fixed-point form (3.50). This constraint fixes the value of our correction parameter δ in
the following way:

ρ̂(δ) ≈ ρ3(A) = ρ̂(0) + δ
∂ρ

∂δ
(4.15)

which implies
δ = 1− ρ3

dφ
dα

(4.16)

It is to be noted that according to our nondegeneracy conditions of the Hopf point, this
denominator cannot be 0. However, in order to evaluate dφ

dα we need to approximate the
tangent direction of ẋ by the iteration as here presented:

ẋk+1 = Fα +Akẋk +Qk (Fα +Akẋk − ẋk) . (4.17)
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This iteration is contractive since

∂ẋk+1
∂ẋk

= (I − P )A (4.18)

which has and spectral radius ρ = ρ3. Although the coupled iteration is used when U, V
have not fully converged, the practical experiments will show that this does not endanger
the convergence of the full algorithm.

4.2 Algorithm Description
After deriving in the previous section and showing the whole set of equations for the
coupled iteration, the algorithm and its implementation results can be presented.

1.- xk+ 1
2

= F (xk, αk),

2.- Vk+ 1
2

= AkVk,

3.- Uk+ 1
2

= A>k Uk,

4.- xk+1 = F (xk, αk) +Qk [F (xk, αk)− xk],

5.- ẋk+1 = Fα(xk, αk) +Akẋk +Qk (Fα(xk, αk) +Akẋk − ẋk),

6.- U>
k+ 1

2
Vk+ 1

2
= RkΣkP

>
k ,

7.- Vk+1 = Vk+ 1
2
PkΣ

− 1
2

k , Uk+1 = Uk+ 1
2
RkΣ

− 1
2

k ,

8.- φk = det(B) = det(U>k Vk+ 1
2
),

∇φk = b>1
∂2F (xk, αk)
∂x ∂(x, α) v1 + b>2

∂2F (xk, αk)
∂x ∂(x, α) v2 + · · · as described in 3.2

9.- δk = 1− ρk
∇φkẋk+1 + ∂φ

∂α

, with ρk = ‖Fk‖
‖Fk−1‖

10.- αk+1 = αk − δkφk.

After setting a convenient initial condition for the state vector, placed in the vicinity
of a Hopf point and a suitable choice of U0 and V0 , such that U>0 V0 = I, the iterative
solution of the rest state and of the possible final deflated step can be started. In step
1, the fixed-point iteration is computed. Steps 2 and 3 are responsible for the subspace
iteration where the evaluation of two directional derivatives is accomplished. xk+1 as
presented in step 4 would be already the corrected state, as introduced in the previous
chapter. As mentioned the second summand present in step 4 involves only some vector
Rn×2 matrix Rn×n products.
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4 Matrix free Computation of Hopf point as Neimark–Sacker points

The steps in 5 and 6 represent an orthonormalization of U and V. In this case this
is done through a singular value decomposition G.H. Golub [1993] from its consistency
condition as follows 

DU>
k+ 1

2
Vk+ 1

2
C = I ⇒ Uk+1Vk+1 = I

⇒ D = PΣ−
1
2 ∧ C = RΣ−

1
2

(4.19)

Other decomposition possibilities were considered, e.g., QR, but the singular value de-
composition avoided problems of underflowing in the vectors U, V which would then
compromise the convergence of the whole iteration. For this specific problem, being
U>V an R2×2 matrix, even the solution of a quadratic equation could have been used.

Step 7 and 8 represent the computations needed to evaluate our test function φ and
its gradient. As presented in the previous chapters, the evaluation of ∇φ comprises
some second order adjoints as mentioned before. It can be seen in Griewank [2000],
that these represent a computational cost in the order of the function evaluation cost
when extending the user code using an AD-package, like ADOL-C A. Griewank [1996]
or Tapenade L. Hascoët [2004].

In the parameter correcting step 10, the damping coefficient δ as presented in the
previous chapter and computed in step 9 is used. Results obtained in the implementation
of this algorithm will be shown in section 5.

4.3 Expansion near Takens–Bogdanov Points

As commented before, this approach might be unsound when operating in the neigh-
borhood of a Takens–Bogdanov point. For this case another approach must be taken.
Starting from the Taylor expansion of the uncorrected fixed point iteration and of the
test function φ, i.e.,

xk+ 1
2
− xk ' Fx· (xk+ 1

2
− xk) + Fα ∆αk

φk+1 − φk ' ∇xφk· (xk+1 − xk) +∇αφk ∆αk
(4.20)

Multiplying the first equation by U>k and substituting xk+1 by (3.51) it gives

U>k (xk+ 1
2
− xk) = U>k Fx(xk+ 1

2
− xk) + U>k Fα ∆αk

∆φ = ∇xφk(xk+ 1
2

+ V ck − xk) +∇αφk ∆αk
(4.21)

where it is easy to recognize that the first term in the right hand side of the first equation
corresponds the correction term times (I −B) as it follows

U>k (xk+ 1
2
− xk) = (I −B)ck + U>k Fα ∆αk

∆φ = ∇xφk(xk+ 1
2
− xk) +∇xφkV ck +∇αφk ∆αk

(4.22)
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4.3 Expansion near Takens–Bogdanov Points

and separating the terms which depend on ck and ∆φ as follows

U>k (xk+ 1
2
− xk) = (I −B)ck + U>k Fα ∆αk

∆φ−∇xφk· (xk+ 1
2
− xk) = ∇xφkV ck +∇αφ∆αk

(4.23)

both equations can be expressed as a 3 dimensional Newton system which would give ck
and ∆φ as a result.[

(I −B) U>k Fα
∇xφkVk ∇αφ

] [
ck

∆αk

]
=
[

U>k (xk+ 1
2
− xk)

∆φ−∇xφk· (xk+ 1
2
− xk)

]
(4.24)

The nonsingularity of this system is expected to require the nondegeneracy of the
Neimark–Sacker bifurcation, i.e., the first Lyapunov coefficient (2.20) must be not equal
to zero. In order to proof its nonsingularity it would be enough to show that U>k Fα is
not in the range of (I −B) and that ∇xφkVk is not in the range of (I −B)>.

Doing some research in the existing literature, similar approaches can be found in
K. Lust [2000], which are though not in a one-shot manner neither apply algorithmic
differentiation when handling the derivatives of the system.

The condition that (I − B) is zero is excluded as this would imply a codimension 2
bifurcation which cannot occur in a one parameter space, as this would imply a double
eigenvalue equal to one but with simple geometric multiplicity.

The corrected iteration would define now a new state equation. In order to compute
the feasible tangent of the corrected state vector ẋk+1 with respect to α the derivative of
our correction term is needed. This can be figured out differentiating (3.45) and (3.51),
which gives

ẋk+ 1
2

= Fα + Fxẋk = Fα +Akẋk
ẋk+1 = Fα + Fxẋk + Vkċk

(4.25)

Projecting the first equation in (4.25) into the subspace spanned by U> it yields:

U>ẋk+ 1
2

= U>k Fα + U>k Akẋk. (4.26)

Substituting (4.25) into its approximated projection onto the subspace spanned by U>
gives

U>k Akẋk+1 ≈ U>k Akẋ + ċk
U>k Ak (Fα +Akẋk + Vkċ) = U>k Akẋ + ċk
U>k Ak (Fα +Akẋk) +Bkċ = U>k Akẋk + ċk

(I −Bk) ċk = U>k Ak (Fα +Akẋk − ẋk) .

(4.27)

These equations give another option for the approach shown in (4.1), allowing a de-
flated state iteration which is still expected to accelerate the convergence of the normal
iteration even in the case of the computations taking place close to a Takens–Bogdanov
point. Hence, the robustness of the approach can be expected to still accelerate normal
computations disregarding the neighboring Takens–Bogdanov points.
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For testing the presented theory, along with the constructed algorithm, an example
presenting Hopf bifurcation points has been analyzed. Spiking in a neuron axon is a well
known Hopf point. Its dynamics has been of great interest for the neuroscientist, and
even the interaction amongst neurons and their coupling have been simulated. Here a
simple neuron will be analyzed following the FitzHugh–Nagumo Model.

5.1 FitzHugh–Nagumo Model

In 1952, Hodgkin and Huxley proposed a mathematical model for the propagation of
action potentials down the giant axon of the squid Loligo. This was a starter in the
field of computational neurosciences which has developed to be one of the most active
fields in recent years. Approaches studying the bifurcating behavior of models built with
ordinary differential equations in neuroscience can be found in, e.g., W. Govaerts [2005].
The Hodgkin–Huxley equations are rather complicated and FitzHugh proposed a simp-
ler model FitzHugh [1961], consisting of a nonlinear diffusion equation coupled to one
ordinary differential equation and published further studies with numerical experiments
of thresholds using both catodal and anodal excitation FitzHugh [1976]. This model was
further revised by Nagumo, Yoshizawa and Arimoto J. Nagumo [1962] and has become
known as the FitzHugh–Nagumo (FHN) equations. This approach is based on the ex-
periments presented by J. Rinzel [1983] and H. Feddersen [1990], where the stimulating
current is presented as a Neumann boundary condition, instead of as a constant term
within the diffusion equation. In J. Rinzel [1987] an example of computation with AUTO
can be seen. The equations for this model are

∂v
∂t

= ∂2v
∂x2 − f(v)−w, ∂w

∂t
= ε(v− γw), (5.1)

where
f(v) = v(v− 1)(v− a). (5.2)

Here v(x, t) corresponds to the membrane potential at position x ∈ [0, X] and time
t < 0 and w(x, t) represents a lumped phenomenological recovery current. In pattern
formation terminology v is the activator and w is the inhibitor concentration. In our
specific example, these potentials are originated by Na+-currents in the first case and
K+-currents for the recovery potential. This recovery potential is the cause of the tra-
veling wave which is to be observed when a current is applied at the boundary. A much
more extensive analysis and description of the phenomena occurring in neural systems
can be found in Izhikevich [2007], while different approaches for modeling and study-
ing the bifurcation points of these equations can be found in Rinzel [1978], T. Kostova
[2004] and C. Rocşoreanu [2000]. The parameters are essentially restricted as follows:
ε, γ > 0, 0 < a < 1

2 . Suppose the constant, nonnegative, stimulating current I is applied
at x = 0. If x = 0 is the center of an infinite axon then by even symmetry the appropriate
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5.1 FitzHugh–Nagumo Model

Abbildung 5.1: Oscillations in the FitzHugh–Nagumo Model with I = 0.33
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Abbildung 5.2: Oscillations in the FitzHugh–Nagumo Model with I = 0.33
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boundary condition for x = 0+ is

∂v
∂x

(0, t) = −I2 . (5.3)

At x = X, the boundary condition is set to:

∂v
∂x

(X, t) = 0. (5.4)

As it can be seen in J. Rinzel [1983] and Izhikevich [2007], for small I, the state
v,w = 0 is a rest state and it is stable. As part of the Hopf Bifurcation, stability is lost
when I reaches a certain value. In J. Rinzel [1983], stability is lost at I = 0.323 when
the first repetitive firing occurs. For levels of I ≈ 0.4−0.6 the firing frequency increases.
For sufficiently large I some pulses are dropped from the response (e.g., I = 0.8). For I
too large (e.g., I = 1.4) nerve block occurs; there is only one pulse and then a steady
state with a superposed small nonpropagating periodic response.

The repetitive activity regime may include, when ε is sufficiently small, periodic im-
pulse propagation as well as nonpropagated, spatially inhomogeneous oscillations, as it
can be seen in Figure 5.1 for x ∈ [0, 30] and t ∈ [0, 1000]. In 5.2, same image as before
is shown in two dimensions and color represents the potential v. In the later figure it is
easier to see the travelling wave with the propragation along the x axis. It is mentioned
that ε plays the role of a temperature-like parameter while a is often called the voltage
threshold. For a higher threshold, the model nerve has less of a tendency to exhibit
repetitive activity in response to a slowly rising current stimulus. The same is true at
higher temperatures. Moreover, when Hopf bifurcation occurs in such ranges it is likely
to be supercritical.

A direct approach and manipulation of the equations allows us to get the nullclines of
the model, which have the cubic and linear form

w = v(a− v)(v− 1) (blue), w = ε

γ
v (red), (5.5)

and they can intersect in one, two or three points, resulting in one, two or three equili-
bria, all of which may be unstable. Following the parameters choice as in J. Rinzel [1983]
to assure the existence of our expected supercritical Hopf bifurcation, some numerical
examples are presented.

In this project the variation of the parameter I is the only one considered. In order
to solve the PDE a finite difference scheme with centered differences for the spatial
discretization and an Explicit Euler method for the time discretization in MATLAB
have been used. The time step used in the simulation has been ≈ 10−3.

Analyzing the first results presented in the Figures, it is to be seen, e.g., in the Figure
5.1, that the Hopf bifurcation leads to oscillations when departing from a steady state as
v = 0 and w = 0 as the parameter IHopf reaches a limit value, confirming the existence
of our Hopf point.
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Abbildung 5.3: Nullclines of the FHN model

First some normal or uncorrected (not deflated) iterations are shown. When simulating
the unaccelerated fixed point scheme, the resulting membrane potential evolution it’s as
shown in Figure 5.4, where we can see that I ≤≈ IHopf since a dampened oscillation is
present. Figure 5.5 shows the recovery potential w, a wave which follows the primary
potential wave and brings back the axon to stability, for the same case as the Figure
presented in 5.4 for v. These oscillations are mainly present at the boundary x = 0 where
our Neumann condition (the parameter I) is exerted. As it can be seen from the figures,
these damped oscillations need more than 1000 time units to arrive to the rest stable
state in our unaccelerated simulation.

Using now the deflated iteration as presented in section 3.4 for the same values of I
as in Figures 5.4 and 5.5, we can see the effects of the correction term. When simulating
with the correction term, a much faster convergence to the final stable state is achieved.
As can be seen in the Figures 5.6 and 5.7, the correction term (shown in Figure 5.8)
added to our fixed point iteration accelerates the convergence in a very effective way.

In Figures 5.10, 5.11 and 5.12 the action of ck can be observed at different spatial
sections of the solution. Where the original simulation (blue) needs more than 1000 time
units for reaching its final stable value, the corrected iteration (red) needs less than 50
time units for it. In green the correction term ck is to be seen. The accelerated algorithm
took therefore a 5% of the iterations needed to compute the final solution without it. Even
though the computational effort needed for calculating the correction term is bigger than
a normal iteration, this only implies handling vectors in Rn×1, Rn×2 and a R2×2 matrix
since the matrix A is always evaluated as directional derivatives in the directions set by
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Abbildung 5.4: Membrane Potential (v) without accelerating term
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Abbildung 5.5: Recovery Potential (w) without accelerating term
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Abbildung 5.6: Membrane Potential (v) with accelerating term
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Abbildung 5.7: Recovery Potential (w) with accelerating term
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Abbildung 5.8: Correction term ck
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Abbildung 5.9: Residuum of (3.11.1), (3.11.2), (3.11.3), and value of φ

U and V , being thus the computational effort comparative to the order of evaluating the
function of the system. The computational effort of this accelerated iteration would be
given by the steps 1 to 5 of the algorithm. Hence, this reflects an efficient improvement
of the computed time needed for finding out solutions close to unstable regions, that is
ρ (A) ≤≈ 1.

Special attention is paid to the convergence of our invariant subspace iteration and
the subsequent definition of our test function φ, as it can be seen in Figure 5.9. As it was
mentioned before, choosing different initial conditions for the eigenvectors U, V might
slow down the convergence of AV −V B = 0 and of the adjoint eigenspace. Nevertheless,
this does not compromise the convergence of our full algorithm nor of the test function.

Until now, all iterations were realized with a fixed α. That is, only a deflated repre-
sentation of the model has been calculated. As expected, incorporating the parameter
correction step in the algorithm causes a slower convergence to the subspaces. As we will
see, this does not compromise the convergence for achieving the critical parameter in
the computation of αHopf for a fixed state. That is, with v(x),w(x) = 0 we can find the
critical current which in the rest state would lead the system to a periodic oscillation. In
the Figures 5.13 the current converges to the value of IHopf = 0.326 starting from both
upper value and lower values. This means that, even though coming from an unstable
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Abbildung 5.11: Membrane potential (v) at x=12
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Abbildung 5.12: Membrane potential (v) at x=12
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range of I > IHopf , the algorithm is capable of reaching the correct values. Comparing
our obtained value to the results presented in J. Rinzel [1983] a very good accordance is
observed, as the error is lower than 0.1%.

In the Figures 5.14, it is to be seen how the eigenvalue of biggest modulus of A and
the eigenvalues of B coincide and are approaching the modulus 1 which limits our stable
zone. In this case the region corresponding to I < IHopf is shown as both eigenvalues are
slightly smaller than 1. For the case in which I > IHopf the values are shown in Figure
5.15 and, as it can be seen, same behavior of the algorithm is observed.

For both of these cases, the consistent definition of our test function is observed in
Figure 5.16. Although the subspaces have not fully converged yet and equation (3.11.1)
presents a residuum of around 10−3, φ converges smoothly to 0, which implies that the
eigenvalues of B are conjugate complex and of modulus 1, i.e., a Neimark–Sacker point.

When updating our statest at each iteration step, i.e., evaluating f(x, α), a slower
convergence occurs. Updating the states causes unsteady subspaces, which makes that
U and V suddenly cause changes in the definition of our test function φ. Despite these
inaccuracies the value IHopf is found in a reasonable number of iterations, although the
value can not be compared to the value present in J. Rinzel [1983] as the later is related
to the rest state v,w = 0. Thus we have found another Neimark–Sacker point in the
vicinity of our previous point with a value IHopf = 0.265 as it can be seen in Figure 5.19.

These jumps can nevertheless be eliminated when applying the full algorithm. That
is, correction of the states, computing then the deflated iteration and the update of the
parameter α. As it can be seen in Figures 5.19 and 5.20, a much faster convergence to
the same values is achieved. Thus the reliability of our test function is proven in both
cases, working much better when implementing the subspace correction which flattens
the trajectory to the value IHopf .

The choice of the test function regarding the discretization procedure is another point
to be evaluated. For the presented example, the choice of φ as defined for discrete sys-
tems or explicitly discretized continuous systems has not rendered big differences for I.
Although such a similarity might not have been expected after the theoretical results
provided in section 3.5, the discrepancies are to be found in the states vector. This means
that depending on the choice of our test function, different pair of solutions (x(α), α)
are found and these depend as shown before on h2.
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6 Outlook

The application of our approach to locate and compute codimension one bifurcation
points such as Hopf and Fold has proved to be successful under the generic nondegene-
racy conditions for the bifurcation point. The reduction of the system dimensions to the
eigenspace of the critical eigenvalues has successfully shown a reduction in the compu-
tational effort, while a still realistic description of the long-term dynamics of the system
could be achieved. Thus, the stationary behavior of the system remains unchanged and
allows us to predict on an efficient manner the values of those parameters.

It is to be noted that this project has been developed fully with explicit time solvers
because of the availability of the codes used, nevertheless for the error correction presen-
ted in 3.5 both implicit and explicit cases have been considered, allowing a representation
of the transformations due to the discretization and resulting integration schemes.

An open question in this work is the treatment of cases where several eigenvalues lie
in the vicinity of the critical ones. As mentioned before in 3.3, the introduction of guard
vectors in the power iteration could tackle this problem, although a bigger computational
effort is to be expected.

When the dynamical system is obtained as a space discretization of an evolutiona-
ry PDE, the interplay between mesh size and time steps remains to be investigated.
Furthermore, for a complete study of new problems concerning possible Hopf points,
the consideration of 3rd order derivatives might be necessary to obtain the Lyapunov
coefficient.

The case in which a Takens–Bogdanov Bifurcation is close to the expected Hopf point
has only been sketched in this work due to the lack of these points in the studied cases.
A more detailed study as well as the numerical implementation of the system proposed
in 4.3 could be of interest in the future.

A full implementation of this approach together with a one-shot optimization method
as in N.R. Gauger [2008] to avoid unnecessary steps remains still open. Some trials follo-
wing the experiments of K.J. Badcock [2005] and G. Schewe [2003] have been conducted
in view of applying it to the known Hopf bifurcation appearing at transonic speeds when
studying the aerolastic coupling of airfoils resulting in the appearance of the so called
flutter. A final study of these conditions is still contemplated in the coming future.

Further implementation possibilities are open in control theory. For example in Model
Predictive Control, incorporating the correction step for the prediction of the system’s
states and outputs might decrease the computational effort, since these are based on
costly and numerous matrix products. Another possible application is to use test func-
tions φ or ψ for stabilizing control loops. This is another open problem whose solution
might improve control strategies of systems near Hopf points.
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