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Abstract

Peer data management systems (Pdms) consist of a highly dynamic set of au-
tonomous, heterogeneous peers connected with schema mappings. Queries submit-
ted at a peer are answered with data residing at that peer and by passing the queries
to neighboring peers. Pdms are the most general architecture for distributed inte-
grated information systems. With no need for central coordination, Pdms are highly
flexible. However, due to the typical massive redundancy in mapping paths, Pdms
tend to be very inefficient in computing the complete query result as the number
of peers increases. Additionally, information loss is cumulated along mapping paths
due to selections and projections in the mappings.
Users usually accept concessions on the completeness of query answers in large-

scale data sharing settings. Our approach turns completeness into an optimization
goal and thus trades off benefit and cost of query answering. To this end, we propose
several strategies that guide peers in their decision to which neighbors rewritten
queries should be sent. In effect, the peers prune mappings that are expected to
contribute few data. We propose a query optimization strategy that limits resource
consumption and show that it can drastically increase efficiency while still yielding
satisfying completeness of the query result.
To estimate the potential data contribution of mappings, we adopted self-tuning

histograms for cardinality estimation. We developed techniques that ensure suffi-
cient query feedback to adapt these statistics to massive changes in a Pdms. Addi-
tionally, histograms can serve to maintain statistics on data overlap between alter-
native mapping paths. Building on them, redundant query processing is reduced by
avoiding overlapping areas of the multi-dimensional data space.
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Zusammenfassung

Peer-Daten-Management-Systeme (PDMS) bestehen aus einer hochdynamischen
Menge heterogener, autonomer Peers. Die Peers beantworten Anfragen einerseits
gegen lokal gespeicherte Daten und reichen sie andererseits nach einer Umschreibung
anhand von Schema-Mappings an benachbarte Peers weiter.
Insofern sind PDMS die allgemeinste Architektur für verteilte, integrierte Infor-

mationssysteme. Solche aufgrund fehlender zentraler Komponenten eigentlich hoch-
flexiblen Systeme leiden bei zunehmender Anzahl von Peers unter erheblichen Effi-
zienzproblemen. Die Gründe hierfür liegen in der massiven Redundanz der Pfade im
Netzwerk der Peers und im Informationsverlust aufgrund von Projektionen entlang
von Mapping-Pfaden.
Anwender akzeptieren in hochskalierten Umgebungen zum Datenaustausch in vie-

len Anwendungsszenarien Konzessionen an die Vollständigkeit der Anfrageergebnis-
se. Unser Ansatz sieht in der Vollständigkeit ein Optimierungsziel und verfolgt einen
Kompromiß zwischen Nutzen und Kosten der Anfragebearbeitung. Hierzu schlagen
wir mehrere Strategien für Peers vor, um zu entscheiden, an welche Nachbar-Peers
Anfragen weitergeleitet werden. Peers schließen dabei Mappings von der Anfragebe-
arbeitung aus, von denen sie ein geringes Verhältnis von Ergebnisgröße zu Kosten,
also geringe Effizienz erwarten.
Als Basis dieser Schätzungen wenden wir selbstadaptive Histogramme über die Er-

gebniskardinalität an und weisen nach, daß diese in dieser hochdynamischen Umge-
bung ausreichende Genauigkeit aufweisen. Wir schlagen einen Kompromiß zwischen
der Nutzung von Anfrageergebnissen zur Anpassung dieser Metadaten-Statistiken
und der Beschneidung von Anfrageplänen vor, um den entsprechenden Zielkonflikt
aufzulösen. Für eine Optimierungsstrategie, die das für die Anfragebearbeitung ver-
wendete Zeit-Budget limitiert, untersuchen wir mehrere Varianten hinsichtlich des
Effizienzsteigerungspotentials. Darüber hinaus nutzen wir mehrdimensionale Histo-
gramme über die Überlappung zweier Datenquellen zur gezielten Verminderung der
Redundanz in der Anfragebearbeitung.
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Part I.

Large-scale Data Sharing
using PDMS
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1. Introduction

Interconnecting computers both in enterprises and the Internet created the opportunity
to widen the horizon of humans by exploiting widespread information. To achieve added
value by describing complex facts, information from many sources can be combined.
Usually, the interests of consumers of integrated information differ to a certain extent
from those of the information providers. Consumers desire to quickly access comprehen-
sible and stable data sources returning correct and complete results. The owners of the
sources focus on high autonomy in the type, amount, and structure of data they offer.
And finally, the owners of data sources often want to flexibly decide about which parties
they directly cooperate with.
The main objective of integrating information from distributed information sources

is to gain a view on the world that is as complete as possible. So the more sources
can be combined to form a query answer, the higher is the potential completeness of
the results with respect to the information need of the user. However, scaling up the
number of contributing sources faces some challenges. In many scenarios, the number
and heterogeneity of data sources makes it difficult to establish a central facility to access
all the data. All stakeholders would have to agree to a common structuring of the data.
As new sources enter the system, this global agreement possibly has to be revised.
These organizational obstacles as well as the requirements of autonomy of the data

providers are addressed by a decentrally structured architecture for information inte-
gration. Peer data management systems (Pdms) are the most general architecture
for such a purpose. Recently, many works related to Pdms emerged in the literature,
e.g. [ACMH03, CGL+05, FKLS03, HIST03, HLS06, LNWS03, RN05]. Pdms consist of
an arbitrary network of peers that act both as data storage and as a mediator. The peers
answer queries using own data and by forwarding the queries to their direct neighbors.
The network of peers is made up of schema mappings that bridge the heterogeneous
conceptual structures of the peers, Fig. 1.1. The schema mappings between peers are
used to reformulate queries before passing them to a another peer. Please note that we
assume that each peer only knows about its direct neighbors. Consequently, every peer
performs query planning and data processing in isolation.
In Pdms, peers are highly autonomous, e.g., they can select any set of peers to which

they establish schema mappings or they can expose only a part of their data. Local
changes can happen independently from the rest of the system. Due to this decentral
nature, Pdms show high flexibility. This is why this architecture is well suited for ad
hoc integration scenarios such as disaster data management or virtual enterprises. In
such situations, many systems have to be integrated in a short time which does not allow
figuring out a centralized data architecture. A Pdms can be rapidly established without
a central authority or time-consuming negotiations between all stakeholders.
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1. Introduction
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Figure 1.1.: Example of a PDMS for medication logistics during a nationwide disaster.

However, the advantages of flexibility and high peer autonomy come at a cost. In
general, a certain data item in a Pdms can be reached from a particular peer along
several mapping paths. Hence, the same data might be transported back to the querying
peer on redundant mapping paths which unnecessarily consumes time.
If the mappings between peers relate only a subset of the attributes available at

one end to the other, information is lost that possibly has been transported between
several peers before. Additionally, selections in mapping paths can reduce the amount
of data returned by mapping paths compared to redundant paths. The obstacles of high
redundancy and information loss hamper Pdms to scale up to a large number of peers
although this would be possible from a conceptual perspective of schemas and mappings.
Despite of these drawbacks which will be adressed in this thesis, Pdms are suitable in

several application scenarios:

– Disaster data management supports the recovery from a regional, nationwide
(Fig. 1.1) or even more widespread crisis like the 2004 Asian tsunami or the 2005
hurricane Katrina [NR06]. It aims at rapidly integrating diverse and heterogenous
data sources that were not meant to cooperate before. Due to lack of time and the
high complexity, an appropriate solution for information sharing has to be built
and scaled up on-the-fly. In such cases, the number of data sources is very high and
the resulting network of peers usually evolves over time. Therefore, the architecure
of Pdms are very well suited in this application field [NR06]. However, comput-
ing and transporting all result data is often not possible due to the exponential
nature of the Pdms query answering problem. Additionally, in such situations a
distributed information sharing system often faces low network bandwidth between
the peers as well as long mapping paths due to damaged connections. Therefore,
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it is crucial to optimize the consumption of computing and network ressources in
Pdms resulting in a best-effort approach returning incomplete query answers.

– Fusions between companies or building virtual organizations usually involve dis-
tributed and integrated information systems already being in place at the partners.
A complete redesign of the overall data management is often impossible, because
daily business has to continue. So the new organization is forced to quickly connect
the existing system landscapes, which in general results in an irregular network of
peers, i.e., a Pdms, which then can evolve to a target state. As large enterprises
often have hundreds of heterogeneous information systems in place, obtaining the
full set of query answers by exploiting all of the redundant mapping paths here
also can be impossible due to limited computing ressources or the requirement of
quick response time.

– Sharing of scientific data, for instance in astronomy or life sciences, is often char-
acterized by a large and dynamic set of stakeholders that have specific interests.
Here, the amount of data being queried is both huge and heterogeneous. Again,
this work shows how Pdms can meet these requirements if efficiency of query
answering is drastically increased compared to retrieving all query answers.

– Personal information management means that each employee in an organiza-
tion structures the information on his or her’s computer desktop in a personal
way. These islands of personal information can be leaveraged by interconnecting
them [ANR07] and providing overall query answering services. Due to the high
number of participants and high volatility in the system, a distributed and flexible
architecture of a Pdms is ideally suited for that purpose. Because of the system
size and limitations in computing resources, efficiency is an important issue here,
too.

– The Semantic Web is the most obvious application scenario for distributed query
optimization [HIMT03]. Since the semantics of conceptual models and query an-
swering can be captured much better in a decentral fashion and since the amount
of data is huge, efficient query processing should also be organized in a distributed
manner. This can be realized appropriately by a Pdms architecture. Furthermore,
in the Web as large-scale information sharing environment best-effort approaches
as discussed in this work are usually satisfying for the users.

For Pdms being scaled up, overcoming inefficient query answering due to the high
redundancy in the network of peers is crucial. To preserve the important advantage of
high flexibility, each peer should retain high autonomy.
This thesis contributes a novel solution to increase efficiency of Pdms query answer-

ing with a decentral optimization approach estimating result size and overlap between
alternative mapping paths. This is comparably more difficult in Pdms than in cen-
tralized Dbms, because the former underlies higher volatility that massively impacts the
maintenance of completeness-related metadata. Based on this information, each peer in-
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1. Introduction

dependently decides on pruning its local search space leading to best-effort optimization
approach.
Our solution for efficient query answering in Pdms lets users access relevant query

answers in environments that remain flexible and thus makes large-scale information
sharing feasible.

1.1. Challenges for Flexible Large-scale Data Sharing
Pdms are the generalization of mediator-based or federated information systems and
promise to be both more flexible and better scalable. However, compared to these
centralized approaches to data integration, Pdms face two main difficulties in query
answering: first redundancy both in mapping paths and data stored at the different
peers and second massive changes in the data distribution as perceived at the peers as
a consequence of changes in the peer network.
Redundancy in query answering. A user query issued at a peer is answered based on data
stored locally at the peer and based on the results of queries posed to the immediate
neighbor peers. These in turn perform the same procedure. So as a result, queries are
reformulated and passed through the system recursively. Clearly, as a whole this is a
process of exponential runtime complexity.
Since the topology of the peer graph can be arbitrary, different mapping paths starting

at the same peer can end at another same peer. This means that data from the end of
the mapping path is transported redundantly along both mapping paths. Consequently,
the peer at the beginning of these alternative mapping paths possibly faces overlapping
query results, i.e., tuples returned by one mapping path also are in the result of the other
mapping path. Additionally, data about a particular real-world entity can be stored at
several peers in the system. So even without any redundant mapping paths, there can
exist data overlap from the perspective of a particular peer.
Another source of inefficiency is information loss along mapping paths. If an attribute

of a relation at one mapping end is not present at the other end, the mapping contains
a projection. Due to these projections attribute values can be eliminated from interme-
diate results. Then, those attribute values have unnecessarily been transported between
several peers before.
The high degree of redundancy together with considerable branching as query pro-

cessing advances through the peer graph as well as information loss give rise to massive
runtime problems in Pdms query answering. Even Pdms instances with tens of peers
tend to be intractable when the query answer is required to be complete with respect to
the data stored at all peers.
Users often are not interested in all results of a query, possibly because they cannot

inspect all of them in detail or they do not want to apply aggregation functions. So for
our applications, we can assume that users are satisfied with incomplete query answers.
This means that to make query answering in large-scale Pdms feasible, we can turn
to a best-effort approach. This thesis will show that allowing query answers that are
“sub-complete”, i.e., that achieve at least 90 percent completeness, incur drastically less

6



1.2. Preserving Peer Autonomy

cost than fully complete query results.
Flexibility in the system. From the perspective of a particular peer, an important ad-
vantage of the Pdms architecture is that changes can happen decentrally. A peer is
free to leave or join the network at any time and to establish and remove mappings to
other peers. For scenarios involving Pdms we can assume that there happen hundreds
of queries between two changes in the system, because new peers have to find appro-
priate neighbors and build schema mappings to them. Since the topology of the peer
graph is not constrained, even a single peer can massively influence the structure of the
Pdms. If a peer represents a bottleneck in the peer graph, the data accessible from
many other peers in the system is highly sensitive on the behavior of that particular
peer. If it goes offline, the peer graph falls apart. As a consequence, all peers in the one
part cannot reach peers in the other part any more; so the data distribution as perceived
from the local perspective of the peers drastically changes. Observe that this mechanism
can influence the available data much more than in central databases or mediator-based
integrated information systems. Therefore, this thesis puts special emphasis on this
issue.

1.2. Preserving Peer Autonomy
Being autonomous is an important requirement for data owners in practice. Often, the
profit for the owner is independent of the access rates to their data. Rather, the main
motivation for maintaining their data store is often given by their own business goals.
For instance, to support enterprise-wide intelligence, the owner of the peers have the
obligation to provide their data to others. However, acting with high autonomy often
saves cost for peer administrators concerning following issues:

– Ensuring operation without interruption. Guaranteeing continious operation of
a service can be much more cost intensive than allowing small interruptions from
time to time. This is why peers desire to go offline from time to time, often without
notifying its data consumers.

– Changes in the schema of the data. This can break the mappings neighboring peers
have established. So they are forced to repeat the time-consuming and error prone
procedure of creating schema mappings. Note that if the peer would cooperate
closer with its neighbors, it would notice them about its schema changes and they
possibly can adapt their mappings with less effort. But this notification would
decrease its autonomy.

– Changes in the data offering. As peers in a Pdms return data they have in turn
received from other peers, changing the set of neighbors can heavily influence the
amount of data a peer returns for a certain query. Principally, peers want to be
free to decide from where they get the data they return as query answers.

– Service offering. Each peer desires to decide on its own about the language of the
query interface publicly exposed. To leave as much autonomy as possible at the

7



1. Introduction

peer, we assume that only conjunctive queries are supported. It will be shown in
this thesis how peers can assess the amount of data available at their neighbors
without being notified about updates.

Taken together, the simpler the assumptions on the query and maintenance services
offered by the peers, the easier it is to extend the system with high autonomy for the
peers.

1.3. Problem Definition
This thesis addresses the problem of efficiently answering queries with a satisfying size
of the query answer in a volatile peer data management system. Given a network of au-
tonomous and heterogeneous peers acting as data integration systems and given a query
workload, we develop techniques to (i) locally gather metadata to identify promising
peers, (ii) select a good combination of peers for a plan following a cost constraint, (iii)
efficiently retrieve results for the plan. We divide this problem in several subproblems:

Description of semantic relationships between peers. The data exchanged by different
peers must be related by describing their semantic correspondences. Thus trans-
lation of user queries between the peers is enabled. The language of the schema
mappings needs to be expressive enough to capture differences between the peer’s
relational schemas. However, the mapping language also should be simple to meet
even very restricted query capabilities of practical peers. Respecting their auton-
omy in what query interface they offer is a very important requirement in practice.

Constructing a query plan. A query plan describes how to obtain the query answer
based on the preliminary answers returned from the neighbors. This plan should
return all possible result tuples, independently from how many attributes carry
NULL values. An incomplete result is always better than no result. A mechanism
to determine a query plan has to deal with the specifications of semantic relation-
ships between the peers.

Estimation of query answer size. For trading off query answer size and resource con-
sumption at query planning time, the size of the query answer must be estimated.
These assessments need to be accurate enough to distinguish peers promising many
data from those potentially returning only few resulting tuples.

Maintaining metadata for size of query answers. To enable query answer size estima-
tion, statistical metadata has to be collected. Changes in the topology of the
peer graph can have major impact on the accuracy of these statistics. So the
metadata have to adapt quickly to changes in the system.

Assessment of overlap between peers. Redundant mapping paths in the Pdms lead to
massive overlap between subquery answers returned by alternative mapping paths.
This overlap should be assessed in such a way that the information can be used to
optimize efficiency of query answering as described below.

8



1.4. Thesis Outline

Effective query planning. To answer user queries, building on cardinality estimates on
answers from neighboring peers a query plan has to be determined. The plan
should optimally exploit the schema mappings to all neighboring peers. Moreover,
it can be necessary that the resulting plan obeys a cost constraint. The creation
of an plan maximizing the completeness of its answer should be efficient, because
otherwise Pdms cannot scale up well.

Optimized retrieval of answers. Query plans can be further optimized by eliminating
data overlap between answers from alternative mapping paths to a maximum ex-
tent. But this optimization should preserve the completeness of those query an-
swers. Additionally, query planning decisions should be revised if they turn out to
be inappropriate during query execution. Then, query planning has to be adapted.

1.4. Thesis Outline
The main contribution of this thesis is a completeness-oriented optimization of queries
using adaptive statistics in a peer data management system. Part I introduces query
answering in Pdms. Part II presents metadata to be employed for the query optimization
approaches proposed in Part III. In the following, we provide an outline for the thesis
that summarizes each chapter. Related work is discussed within the chapters.

Part I – Large-scale Data Sharing using Pdms

Chapter 1: Introduction. This chapter has motivated the problem of efficiently answer-
ing queries with a satisfying result size in a large, volatile Pdms. Due to many
alternative mapping paths, query answering in Pdms is highly inefficient and tends
to be intractable. Additionally, we claim that preserving the autonomy of peers
is an important practical requirement. Therefore, approaches to prune the search
space that are solely based on local reasoning are crucial to make Pdms query
answering feasible. We divided this problem into several subproblems that are ad-
dressed throughout this thesis. An overview on the thesis was published in [Rot07].

Chapter 2: Query Answering in Pdms. We introduce our completeness-driven approach
to answer user queries. We describe the language for specifying semantic relation-
ships between neighboring peers. Based on that, a two-phase query planning al-
gorithm is presented. Information loss accumulates along mapping paths in Pdms
and leads to unnecessary transport of data. We propose to address this problem
by pruning locally at a peer and point out several difficulties when trading off
completeness of results and cost.

Chapter 3: Humboldt Peers: Building a Pdms. Humboldt Peers is the name of our ex-
perimental testbed of which we give an overview in this chapter. The effectivity of
our approaches depend on many parameters of Pdms instances. Humboldt Peers
automatically creates such instances and measures a variety of parameters during
the experiments. We briefly describe its functionality and its architecture in this
chapter. Humboldt Peers also was presented in [RNHS06].

9



1. Introduction

Part II – Completeness-related Metadata in Pdms

Chapter 4: Benefit and Cost of Query Answering. This chapter models the complete-
ness of query results, data overlap between mapping paths, and query execution
cost. We show that the completeness of results heavily depends on projections in
the mapping paths, which induce information loss. For data overlap, we illustrate
opportunities to save transportation cost and show how this problem interacts with
the completeness of the query answer.

Chapter 5: Metadata Statistics. Result cardinalities and overlap need to be captured by
multi-dimensional histograms. We compare different approaches for gathering and
maintaining statistics in distributed information systems, and we propose to use
query feedback for building statistics on result cardinalities and overlap. Therefore,
we adapt a technique for self-tuning histograms to our volatile setting. The size
of histograms is optimized in the context of our complex mapping language by
choosing the minimal set of dimensions.

Part III – Efficient Query Answering in PDMS

Chapter 6: Completeness-Driven Query Planning. In this chapter it is shown how the
cardinality statistics can be applied to prune non-promising mapping paths from
further query processing. To this end, we describe how our completeness model is
employed to valuate the utility of incomplete subplans at a peer. Pruning candi-
dates are identified by regarding their potential data contribution in the context
of a complete plan. This information is exploited in our threshold-based pruning
approach, which was published in [RN05]. An extensive experimental study reveals
that this simple, yet effective approach increases efficiency of query answering con-
siderably in many situations.

Chapter 7: Maintaining Metadata Statistics. Since there can be massive changes in the
data distribution across a Pdms our mechanism for gathering statistics must detect
such events and adapt statistics accordingly. We show that even small changes in
the peer graph topology can drastically influence data distributions as perceived
locally at a peer. Pruning cuts off query feedback from our histograms. So we
develop a technique to trade off between those two issues. We conduct several
experiments to find out the necessary level of accuracy in cardinality estimation
to achieve a satisfying increase in query answering efficiency.

Chapter 8: Query Optimization under Limited Resources. Scaling up Pdms requires ef-
fective query answering in presence of bounded resource consumption, which is
covered by this chapter. We propose a budget-driven strategy to optimize the
completeness of query answers. Several alternative algorithms for spending and
refunding a budget along with queries as well as their results are presented. This
approach was published in [RNHS06].

Chapter 9: Query Optimization using Information Overlap. We focus on further opti-
mizing query plans by eliminating data overlap while preserving completeness of
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1.4. Thesis Outline

the results. Using overlap histograms, we identify areas with high overlap density
within the multi-dimensional data distribution for each pair of peer mappings. This
information is then exploited for rewriting query plans such that overlapping data
is queried only once. This approach also makes use of the cardinality statistics,
because it must preserve as much of the initial plan completeness as possible.

Chapter 10: Conclusion. This chapter finally summarizes and discusses the contribu-
tions of this thesis. We end by pointing to future research directions in the area of
Pdms query answering, which in parts were published in [HHNR05] and [HRZ+08].
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2. Query Answering in PDMS
This chapter prepares the remainder of this work by introducing Pdms query answering
in the complex context of two types of schema mappings for mediators, namely global-
as-view and local-as-view. To this end, we first present our system model. Then, we
examine how Pdms query planning can be extended to deal with projections in mappings
between peers. They are a major source of incompleteness in such systems.
We explain how a first formulation of a query plan, the rule-goal tree, is transformed

into an directly executable query plan made up by join- and union-like operators. This
plan serves as input for our pruning techniques discussed throughout our work. The
chapter closes by focussing on the trade-off between the completeness of the query result
and the query processing cost.

2.1. Decentralized Data Sharing Using PDMS
Sharing information between a large amount of participants has to deal with several
problems:

– Data sources are heterogeneous with respect to their syntax, structuring of data,
and most importantly their semantics. A system for information sharing must
relate these heterogeneous data sets with each other.

– There are frequent changes in the set of data sources and how they expose infor-
mation to others. In practice, the stakeholders want to autonomously decide about
their data sharing services.

– Users desire to pose queries against familiar interfaces that cover their domain of
interests.

– Queries over semantically heterogeneous data sources should retrieve as many an-
swers as possible to achieve a complete view of the world.

– Efficient query answering becomes increasingly difficult to achieve as the number
of participants scales up.

In the research literature, these challenges have often been addressed by so-called in-
tegrated information systems [Nau02]. They provide a query interface with a unifying
view to the user, which hides heterogeneity of the data sources. Such a system is di-
rectly connected with all data sources and thus must map between the unified view and
all the sources. Due to its nature of central coordination, this approach does not scale
well, especially in dynamic environments. The common representation of data, in which
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2. Query Answering in PDMS

all the sources have to be mapped into, often makes it difficult to expose peculiarities
of certain sources in the unified view. In other words, this uniform interface acts as
a semantic bottleneck in accessing the variety of underlying data sources. If changes
happen in the set of data sources, a possibly time-consuming process of adaption of the
integration information system has to be conducted, possibly involving a large number
of stakeholders.
Peer data management systems have a novel architecture to approach the challenges of

large-scale information sharing listed above. They are a natural extension to integrated
information systems. Pdms abolish the distinction of passive data sources and an active
integrated information system. Rather, in a Pdms every participant can act as a data
source or an integrated information system. This achieves much higher flexibility to
adapt both to the information demand of users and an infrastructure that is already in
place. And most prominently, the architecture of a Pdms proves to be well adaptive to
changes among the participating units.

2.1.1. The Architecture of PDMS
Autonomy, heterogeneity, and distribution are the main dimensions to classify inte-
grated information systems [OV11]. These dimensions are depicted in Fig. 2.1. DBMS,
for instance, show neither heterogeneity, nor autonomy, nor distribution. Distributed
DBMS, data warehouses, federated DBMS (FDBMS), and mediator-based information
systems [Wie92, Les00] are characterized by higher degrees of distribution and hetero-
geneity or autonomy.
The peer-to-peer paradigm was first realized in so-called P2P systems [SW05]. They

are heavily used in the Internet to share content, mostly in the granularity of files. Search
requests in P2P systems usually are semantic-free [GHI+01]. They refer objects that are
specified by their identifier, which can consist of multiple attributes, thus enabling multi-
dimensional range queries [SSR07]. Hence, in the classification in Fig. 2.1, P2P systems
are characterized as homogeneous, since all peers share a common schema. Such systems
are highly distributed and the peers have high autonomy in sharing their computing
resources with other peers.
As can be seen in Fig. 2.1, Pdms extend P2P systems in the dimension of hetero-

geneity and thus are at the far end of all three dimensions. Pdms consist of a set of
heterogeneous and autonomous peers, which usually are distributed in wide-area net-
works [NR07, HIST03]. Due to their nature, Pdms are the most general abstraction for
any kind of integrated information system encountered in practice.
Each peer in a Pdms can act as a mediator or as a passive data source. As a me-

diator, a peer receives queries, reformulates them, and passes them to its neighboring
peers. Rewriting of the queries is guided by schema mappings between the peers. To
reflect practical situations, it is important that the topology of the network of peers and
schema mappings can be arbitrary. However, this has an impact on decidability of query
answering under certain semantics for a Pdms as is discussed in Sec. 2.4.
A Pdms is a set of peers, each of which may comprise local data sources and mappings

both to the local sources and to other peers, Fig. 2.2. A single peer acts as a mediator
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2.1. Decentralized Data Sharing Using PDMS
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Information System
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Figure 2.1.: Classification of integrated information systems over the dimensions auton-
omy, distribution, and heterogeneity [OV11, NL06].

consisting of a peer schema and possibly multiple local data sources. The peer schema
describes data the peer offers. Local data sources are specified by local schemas and are
connected to the peer schema by so-called local mappings. Peer schemas of neighboring
peers are related by peer mappings. This is formalized in the following description:

Definition 1 (Peer Data Management System). A PDMS is a set of peers P = {P1, P2,
. . . , Pn} each of which is represented by a tuple Pi = (S,L,ML,MP ). The peer schema
S comprises a set of relations. To denote a relation R of the peer schema S at a peer
P we write P.R. The set L consists of a relational schema for each of the local data
sources of Pi. The setML of local schema mappings relates the schemas in L to the peer
schema S. The setMP of peer mappings maps S to the peer schemas of other peers.

Peer schema

Peer

Local source +
local schema

Peer mapping
Local mapping

Figure 2.2.: Structure of a peer.
Similar to [CCGL04], we denote a foreign-key relationship between two relations R1

and R2 by R1[Key(R1)] ⊇ R2[f ] with f being the foreign key attribute at R2 pointing
to the key Key(R1) of R1.
Next, we describe the language for queries and mappings in our PDMS instances.
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2. Query Answering in PDMS

2.1.2. Queries and Mappings
In this work, we assume that peers accept a restricted version of the general form of
conjunctive queries [Ull88]. Conjunctive queries (CQ) are the class of select-project-
join queries without other operators, such as aggregation, grouping, or sorting. In the
Datalog query language [Ull88, AHV95], a CQ has the following form

q(X̄) :− s1(X̄1), s2(X̄2), . . . , s2(X̄n).

The atom q(X̄) represents the answer relation and is called the head of the query. The
predicates si(X̄i) refer to relations of a underlying schema and are called query subgoals.
Taken together, they make up the body of the query. The tuples X̄, X̄1, X̄2, . . . , X̄n

comprise variables and constants. The queries are required to be safe, i.e., X̄ ⊂ X̄1 ∪
X̄2 ∪ . . .∪ X̄n. The means that to answer the query no information is needed other than
that returned by the body of the query [PFPG02]. The variables in X̄ are distinguished
variables, all others are called existential. The complete set of variables of a query Q
is denoted by V ars(Q). In Datalog, a join between subgoals is expressed by the same
variable occurring in these different subgoals.
Queries can also contain subgoals that are selection predicates. We consider semi-

interval constraints of the form v ⊗ c made up by a variable v, a constant c, and a
relation symbol ⊗ ∈ {=, <,>,≤,≥}. We require that every variable v that occurs in a
selection predicate also is included in any subgoal of the query. We refer to the set of
selection predicates of a query Q by Sel(Q).
High autonomy of peers among other criteria also refers to the query services they

provide. In practice, projections in queries often are not possible when querying foreign
peers. Hence, the result set comprises a minimal set of attributes, which for every result
tuple have to be transferred from a remote peer. Therefore, we assume that the peers
throughout this work accept only a restricted form of conjunctive queries that excludes
projections. We denote this class of queries with CQ\P .
We extend the so-called Global-Local-as-View mappings, or GLaV mappings [Ull97,

Len02] by projections:

Definition 2 (Extensionally Sound GLaV Mapping). Let P1 and P2 be two distinct sets
of peers. An extensionally sound GLaV mapping with projections is given by the logical
formula

∀X̄∀Ȳ (QP1(X̄, Ȳ )→ ∃Z̄QP2(X̄, Z̄)). (2.1)

The queries QP1 and QP2 over the the peer sets are from CQ\P . The formula in Equa-
tion (2.1) is satisfied by database instances at P1 and P2 if

Q1(P1) ⊆ Q2(P2). (2.2)

Intuitively, this definition means that any result tuple t of the query Q1(P1) is also
an answer to the query Q2(P2), although t comprises different attributes at P1 than at
P2. This means that in query processing this mapping can be used to rewrite queries
over the peer set P2 to yield queries over P1, but not vice versa. Hence, these mappings
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2.1. Decentralized Data Sharing Using PDMS

are directed because of their inclusion dependency [AHV95]. In the following, we denote
extensionally sound GLaV mappings with projections simply as GLaV mappings. Local
mappings are of the same form as the peer mapping in Eqn. (2.2) except that Q1 is
defined over the schemas of a set of local sources.
Similarly to Datalog rules, we refer to the left side of the mapping formula

m : Qh(X̄) ⊆ Qt(Ȳ ) (2.3)

as head and to the right side as tail and denote them by Head(m) and Tail(m),
respectively. The set of variables X̄ occurring in the head is called head variables and
all others, Ȳ \ X̄, appearing only in the tail are tail variables. For a more general
introduction to mappings between domain models we refer the reader to [MBDH02].
In contrast to our approach, most important works on Pdms assume the result of the

queries in the head and tail of a mapping being of the same arity [HIST03, CGLR04,
Hos09, FKLS03]. We argue that projections in mappings are quite natural, since in
practice the sets of attributes of different peers for the same real-world entity may be
different [FHP+02].
Please note that the restriction of the class of queries accepted by the peers to CQ\P

also applies to the individual queries occurring in peer mappings. This means that both
the query in the head and the tail of a mapping are not allowed to contain projections
with respect to the underlying peer schema. Rather, projections in mappings come into
existence by the different arities of head and tail queries.
Building on the fact that our mappings are directed, we introduce the following notion

for mappings that can be used for query rewriting between peers:

Definition 3 (Outgoing Mapping). Let P be a peer. A peer mapping m that contains
any predicate over a relation of the peer schema of P in its tail, i.e., P ∈ Tail(m), is
called an outgoing mapping from P .

Selection predicates in mappings express implicit knowledge about peer schemas. So
in general, our GLaV mappings are of the form

Qh(X̄) ⊆ Qt(Ȳ ), Sel(Z̄) (2.4)

with Sel(Z̄) being a conjunct of semi-interval constraints v ⊗ c made up by a variable
v, a constant c, and a relation symbol ⊗ ∈ {=, <,>,≤,≥}. The variables involved in
selection predicates can be any variable of the query: Z̄ ⊆ X̄ ∪ Ȳ . Observe that in
particular there can be selections over variables that are not in the head.
For instance, in writing a mapping to a peer of a publisher AW and its relation Book

the fact can be expressed that the peer models books of this publisher only. This is
reflected in the following mapping from a peer of the online book shop Amazon:

AW.Book(Title, ISBN) ⊆
Amazon.Book(Title, ISBN,Publisher), Publisher = ′AW ′.

As mentioned above, projections may appear in local and peer mappings, because
different peers may comprise different attributes about a certain of real-world entity.
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2. Query Answering in PDMS

In Sec. 5.2, we discuss projections in the context of two important specializations of
GLaV mappings, namely global-as-view (GaV) and local-as-view (LaV) mappings. To
illustrate a simple case, consider a mapping from the Book relation of the publisher
AW , which includes the ISBN number, to the peer Library. Because the Publication
relation of Library does not offer this information and rather has its own identification
system based on a Signature, the attribute ISBN is projected out by the mapping:

Library.Publication(Title, Signature, Y ear) ⊆
AW.Book(Title, ISBN, Y ear).

Observe that although ISBN is a key attribute for AW.Book and although Signature
is a different key for Library.Publication, the mapping can be used to transfer tuples
from AW to Library, because they can be identified by the compound key (Title, Y ear).
Based on the system model described in this section, we now turn our attention

towards usage of the mappings for query answering. The following section introduces
our notion of weak query containment that plays an important role in the algorithms
for query planning in our Pdms setting.

2.2. Weak Query Containment
When rewriting queries the notion of query containment is an important means to com-
pare between the original query and its rewriting. A query Q1 is said to be contained
in another query Q2, denoted by Q1 ⊆ Q2, if the answer to Q1 is a subset of the answer
to Q2 for any underlying database instance.
Chandra and Merlin [CM77] proved that the existence of a so-called containment

mapping between Q2 and Q1 is necessary and sufficient for Q1 ⊆ Q2. A containment
mapping τ relates symbols of Q2 and Q1 as follows [Les00]:

CM.1 To every distinguished variable of Q2 a distinguished variable of Q1 is assigned
by τ .

CM.2 Every constant in Q2 is mapped to a constant in Q1.

CM.3 Each subgoal symbol of Q2 is mapped to a subgoal in Q1.

CM.4 The selection predicates of Q1 imply the ones of Q2: Sel(Q1)⇒ Sel(Q2).

Since in our setting we allow projections in peer mappings, the set of distinguished
variables can differ between the query over a peer’s schema and its rewriting over a
neighboring peer’s schemas. So traditional query containment mappings cannot be ap-
plied to our setting. In general, it is not always possible to find a containment mapping
that maps every distinguished variable of the original query to a variable of the rewriting
as the following example demonstrates.

Example 1. In practice, it is possible that tuples returned from a rewriting have a
different key as the corresponding result of the original query. Consider the following
peer schemas on books, their authors, and the year of publication:
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2.2. Weak Query Containment

P1.BookOfAuthor(Author, T itle, Y ear, Publisher)
P2.Book(Author, T itle, ISBN)
P2.Published(ISBN, Y ear)

Observe that the relation BookOfAuthor(Author, T itle, Y ear, Publisher) has the com-
pound key {Author, T itle, Y ear}. Using the GaV mapping

P2.Book(Author, T itle, ISBN),
P2.Published(ISBN, Y ear) ⊆ P1.BookOfAuthor(Author, T itle,

Y ear, Publisher)

to reformulate the query

q(Author, T itle, Y ear) :− P1.BookOfAuthor(Author, T itle, Y ear, Publisher)

results in the rewriting

q′(Author, T itle, Y ear, ISBN) :− P2.Book(Author, T itle, ISBN),
P2.Published(ISBN, Y ear).

This mapping contains a projection both in the direction from P1 to P2 and in the
inverse direction. The former refers to the variable Publisher at P1 and the latter
projects out the variable ISBN at P2. Observe that the variable ISBN is necessarily
a distinguished variable of q′, because it maps to the only key both of P2.Book and
P2.Published. Please note that {Author, T itle, Y ear} cannot be used to uniquely identify
the tuples returned by the rewriting, because each of these variables can be NULL.
However, due to the fact that Publisher is projected out in the mapping, a classical

containment mapping cannot be established between the original query and its rewriting.
In particular, the condition CM.1 from above is violated, because Publisher cannot be
mapped to any distinguished variable of the rewriting. 2

To accommodate deficiencies of traditional containment mappings, Grahne and Kiri-
cenko introduced the notion of p-containment [GK03, Kir03]. It requires (1) that there
is an inclusion dependency between the contained query, in our case the rewriting, and
the containing query. Additionally, (2) for every distinguished variable in the rewrit-
ing a corresponding distinguished variable must in the original query. Therefore, the
missing mapping for the variable Publisher in our example above would be tolerated by
p-containment.
However, that approach would rule out the above mapping, because the missing map-

ping for the variable ISBN of the rewriting violates condition (2) of p-containment. We
argue that p-containment can be even more relaxed by dropping condition (2) and only
requiring mappings between variables occuring in selection predicates of the query. We
adopted the notion of weak containment introduced in [H0̈6]. This diploma thesis has
been conducted in the context of our research. Within this chapter we show how an
existing query rewriting algorithm can be extended to consider weak containment thus
become applicable for mappings containing projections.
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2. Query Answering in PDMS

Definition 4 (Weak Containment Mapping). Let Q1 and Q2 be two queries. Sel(Q1)
and Sel(Q2) denote the selection predicates of Q1 and Q2, respectively. A weak contain-
ment mapping ω between Q2 and Q1 has following properties:

WCM.1 Every variable v ∈ Sel(Q1) is assigned by ω to a variable w ∈ Sel(Q2).

WCM.2 Every constant c1 ∈ Sel(Q1) is assigned to a constant c2 ∈ Sel(Q2).

WCM.3 Each subgoal symbol of Q2 is mapped to a subgoal in Q1.

WCM.4 The selection predicates of Q1 imply the ones of Q2: Sel(Q1)⇒ Sel(Q2).

Rather than every distinguished variable as demanded in CM.1 above, a weak con-
tainment mapping only requires the variables occurring in the selection predicates of
the containing query to be assigned to counterparts in the contained query. The same
holds for constants. This is the minimum set of variables and constants that have to be
mapped to guarantee the tuples returned by the rewriting be correct with respect to the
query.
Our weak form of query containment can be applied to the schema mappings that me-

diate between the schema of the original query and the schema of its rewriting. Hence, we
enclose these mappings in the new concept of containment as expressed by the following
definition.

Definition 5 (Weak Containment of Rewritings). Let Q be a query over schema S1. Let
Q′ be a rewriting of Q over a schema S2. Let furtherM be a set of GLaV mappings that
were used to rewrite Q into Q′ and that may contain projections. Then the rewriting Q′
is weakly contained in Q with respect to M, if a weak containment mapping ωM exists
between Q′ and Q. We denote this by Q′ ⊆ωM Q.

Building on this basis, we now turn our attention to techniques for query planning in
the context of Pdms dealing both with GaV and LaV mappings at the same time.

2.3. Query planning
In a PDMS, a query may be posed to the peer schema of any peer. This query may consist
of relational and comparison subgoals. To translate it, the subgoals are reformulated
and passed along mappings to other peers, which in turn recursively send the query to
their neighboring peers, etc. Reformulation terminates when all branches of recursion
have reached local data sources, where the queries can be evaluated on stored data, or
when a query is about to use the same peer schema relation or the same mapping a
second time, i.e., a cycle has been completed.
The query results make their way back from the local sources to the peer that initiated

the query. Winding their way back the results of the different alternative branches are
combined. Clearly, this whole process can be performed fully decentrally. Each of the
peers independently acts as a mediator. It receives a user or intermediate query and

20



2.3. Query planning

rewrites it using the schema mappings to neighboring peer schemas as well as those to
its local data sources.
For query planning we are given a query over a peer schema as well as a set of mappings

to local data sources and peer schemas of remote peers. Our goal is to find a query plan
that returns all possible answers to the query at hand using the given mappings. Our
process of local query planning proceeds in two steps:

1. Expanding query subgoals. We build a so-called rule-goal tree by applying the set
of available LaV mappings in isolation from the set of GaV mappings. The LaV
mappings are involved in an algorithm for answering queries using views [Hal01].
The result of this step are a sort of partial rewritings that will be specified in more
detail in the following section. These rewritings are partial, because the set of LaV
mappings not necessarily covers the whole query. Each of the GaV mappings is
applied by view unfolding and in general also results in a partial rewriting. The
rule-goal tree described in the following section nicely reflects these rewriting steps
and the resulting partial rewritings.

2. Forming rewritings. This phase exploits the partial rewritings in the rule-goal tree
to form full rewritings. This results in a query plan comprising solely rewritings
whose parts can be sent to neighboring peers and or can be applied to local data
sources. We also present the structure of this query plan in the following.

The approach to deal LaV and GaV mappings with different techniques has been in-
troduced in the Piazza Pdms project [HIST03]. There, the peer employs the MiniCon
algorithm [PL00] for answering queries using views, i.e., the LaV peer mappings, whereas
GaV mappings are expended separately. They also perform the two steps to build a rule-
goal tree and then create a query plan from that.
Important works on Pdms exclude projections from mappings between the peers,

e.g., [HIST03, CGLR04]. Since we believe that this kind of intentional incompleteness
often can be encountered in practice, we propose how to modify algorithms for Pdms
query planning to consider peer mappings with projections as well. These changes build
on our notion of weak containment in the context of query rewritings.
Interestingly, the MiniCon algorithm for answering queries using views [PL00] also

first applies the mappings to find constituents of the rewritings, the so-called MiniCon
descriptions, in the first step. The second phase combines these MiniCon descriptions
in an efficient manner. Before we explain how we modify MiniCon by introducing weak
containment, we describe the structure of a rule-goal tree.

2.3.1. Rule-goal Tree
The result of applying the mappings to rewrite the subgoals of the query at hand can be
comprehensively represented as a rule-goal tree, Fig. 2.3. This form of an intermediate
query plan was introduced to the context of PDMS in [HIST03]. In contrast to Piazza,
our query planning approach is strictly local, hence the rule-goal tree only creates a
relationship between a query received at a peer and the subgoals of rewritings over
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neighboring peers. Put together, the local rule-goal trees from a global, yet virtual
query plan. We divide the tree into five levels:

1 Query Result The top level is the goal node of the predicate of the query result.

2 Query The rule node below the query result represents the query. In this work it is
expressed as a Datalog rule.

3 Query Subgoals The goal nodes on this level are the subgoals of the query. The arc
below the above rule node on Level 2 indicates the join between all the query
subgoals forming a conjunctive query. We do not explicitly model the selection
predicates related with the query subgoals on Level 3. Rather, we assume a func-
tion Sel(s) for a subgoal s that returns all selection predicates of the query referring
to any variable in s.

4 Mappings The rule nodes on this level represent the mappings used for reformulation
of the query subgoals one level above. Again, an arc below a rule node denotes a
join of the subgoals below.

5 Resulting Subgoals This level contains the subgoals resulting from applying the map-
pings in Level 4 to the query subgoals in Level 3. The subgoals of Level 5 are the
constituents of the query rewritings. If a subgoal r of Level 5 returns attribute
values for a query subgoal g on Level 3, we say that r covers g. Subgoals created by
a local-as-view rewriting (LaV) are connected via a rule node to any of the query
subgoals covered by the resulting subgoal. The dashed lines from the subgoals on
Level 5 to query subgoals on Level 3 identify all other subgoals, so-called uncle
nodes [HIST03], which are covered by that resulting subgoal.
Since the resulting subgoals actually are queries over the peer schema of a neighbor-
ing peer or a local source schema, they can be related by foreign-key relationships
that have no counterpart in the peer schema the query is formulated over. There-
fore, foreign-key relationships on Level 5 are modeled explicitly. Observe that joins
between resulting subgoals can also be represented by an arc below a rule node in
Level 4, i.e., a global-as-view rewriting (GaV).
We return to the foreign-key relationships on Level 5 when we describe the algo-
rithm to transform a rule-goal tree into a local query plan consisting of join and
union operators in Sec. 2.3.4.

2.3.2. Expanding Query Subgoals
In the first phase of query planning a peer computes constituents of the final rewritings
for a query it has received. All of them are collected in a rule-goal tree described above.
We now take a closer look into the algorithmic details of query rewriting in the Pdms
context: We first focus on how well the parts of the rewritings produced in this step
fit together. This aspect considerably influences the second part of the process that
assembles the fragments together to obtain executable rewritings. A second requirement

22



2.3. Query planning

  

s1 s2 s3

m1

r1 r3

q

r4

1

2

3

4

5

Query result

Query

Query subgoals

Mappings

Resulting subgoals

GaV rewritingLaV rewriting

r2

m2 m3

Foreign-key
relationship

Figure 2.3.: Rule-goal tree created by query reformulation.

is to change existing approaches for Pdms query reformulation to cope with mappings
containing projections.

Answering Queries using Views with Projections. Some important algorithms for an-
swering queries using views, such as the Bucket algorithm [LRO96], first consider each
mapping in isolation and check which subgoals of the query to be answered can be
covered by tuples resulting from that view predicate. In the Bucket algorithm, each
subgoal of the query collects the views that potentially deliver data for that subgoal.
However, to find the query rewritings in the next step, this approach requires contain-
ment checks to filter actual rewritings from the Cartesian product of the contents of all
the subgoal buckets.
The MiniCon algorithm of Pottinger and Levy is considerably more efficient than

the Bucket algorithm [PL00], because it overcomes the enumeration of this Cartesian
product. When looking at a view, MiniCon also examines the join conditions of the
query subgoal covered by that view. By doing this, the algorithm discovers additional
query subgoals the view contributes data to. The view and the query subgoals that it
covers are recorded in a so-called MiniCon description (MCD). Additionally, this artifact
contains a partial containment mapping between the view and the corresponding query
subgoals. Note that the term “partial” refers to the subgoals of the query rather than
to the set of variables in the containment mapping. So it may not be interchanged with
our notion of a weak containment mapping.
Performing the above kind of chase [AHV95] in the query can be used to decide whether

a view can be combined with other views in a rewriting at all. In this way, MiniCon
can drop useless views in an early stage of the procedure rather than involving a view
repeatedly in expensive containment checks many times as it is done by the Bucket
algorithm [PL00].
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For applying both LaV and GaV mappings in our context, we start from the approach
of the Piazza Pdms [HIST03] and show how to relax it by weak containment to better
fit to our system setting. For a query at hand, we involve all LaV mappings into the
first phase of the MiniCon algorithm, i.e., creating the MiniCon descriptions. GaV
mappings are used to expand appropriate subgoals of the query by view unfolding. For
this task, we propose to apply the same properties as for the views in our relaxed version
of MiniCon, denoted by MiniConr. Next, we describe these properties together with
our changes.
Our relaxed MiniCon description Dr for a view V applied to a query Q is a triple
〈V, ω,GD〉 that contains

– the view V, which is part of the final rewriting,

– a partial mapping ω from V ars(Q) to V ars(V ) relating query and view subgoals,
and

– the set GD of subgoals of Q that are covered by the subgoals in the view definition
of V .

Next, we describe the original MiniCon algorithm and list its properties below. Briefly,
MiniCon checks for each query subgoal gi and each view subgoal vj whether there exists
a mapping ϕ from V ars(gi) to V ars(vj): ϕ(gi) = vj . Intuitively, the variable mapping ϕ
is the containment mapping from the subgoals of the original query covered by V to the
rewriting subgoal V . The original MiniCon and Bucket algorithms require that all
distinguished variables of the query are supplied by the rewriting. This is the intuitive
meaning of property M.1 below, which can also be applied for the Bucket algorithm.
Property M.2 introduces the improvement of MiniCon over Bucket. When Mini-

Con detects a mapping between a query subgoal and a view subgoal it changes the
perspective and follows the join condition of the query subgoal. By this chase step, the
algorithm can find other query subgoals that are covered by the view subgoal at hand.
The properties M.3 and M.4 of MiniCon refer to the treatment of selection predicates

in the query and the mappings in our setting of semi-interval constraints. Given a set
X̄ of query variables, SelX̄(Q) denotes the set of selection predicates that only include
variables in X̄ and that at least contains one existential variable of Q. Intuitively,
M.3 requires that the view must satisfy all selection predicates that refer to the set of
variables in the domain of the corresponding variable mapping. To achieve the condition
in M.4, selection predicates of Q not included in the preliminary rewriting obtained by
combining the MCDs have to be added to form the final rewriting.

M.1 For each distinguished variable x of the query Q in the domain of ϕ, ϕ(x) is a
distinguished variable in V .

M.2 If ϕ(x) is an existential variable in V , following holds: For every subgoal g of the
query Q that includes x, (1) all the variables of g are in the domain of ϕ, and (2)
all variables of g are mapped to V : ϕ(g) ∈ V .
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M.3 If X̄ is the set of variables in the domain of ϕ of a MCD, then it is required for
the MCD that Sel(V ) ⊇ SelX̄(Q). In particular, a MCD must not contradict the
selection predicates of the query in its view.

M.4 A final rewriting satisfies all predicates from Sel(Q).

For our setting with projections in the mappings we argue that some of these prop-
erties are too restrictive and can be relaxed without losing their utility. Intuitively,
we substitute the fragments ϕ of containment mappings from the original query to the
rewritings by weak containment mappings. This means that in our relaxed MiniConr

we do no longer require that all distinguished variables are mapped to distinguished
variables in the view (M.1). This is illustrated in the following example.

Example 2. Regard the rule-goal tree in Fig. 2.4. Assume that we are given extracts of
the schemas of the emergency hospitalization of three hospitals J , K, and L that model
patients and their admission differently:

J.Patient(SSN,Name,Date)
K.Patient(SSN,Name),K.Admission(AdmID,Address,Date)
L.Patient(SSN,Address, InID), L.Intake(InID,Name,Date)

The following LaV peer mappings are defined between these schemas:

m1 : J.Patient(SSN,Name,Date) ⊆ K.Patient(SSN,Name,AdmID),
K.Admission(AdmID,Address,Date),

m2 : L.Patient(SSN,Address, InID) ⊆ K.Patient(SSN,Name,AdmID),
K.Admission(AdmID,Address,Date),

m3 : L.Intake(InID,Name,Date) ⊆ K.Patient(SSN,Name,AdmID),
K.Admission(AdmID,Address,Date).

As depicted in the rule-goal tree in Fig. 2.4, each of these mappings covers both subgoals
of the query

q(SSN,Name,Address,Date) :− K.Patient(SSN,Name,AdmID),
K.Admission(AdmID,Address,Date).

To understand why MiniConr should obtain the depicted rule-goal tree as a result,
we take a closer look at the variable projections in the mappings. They are listed in Ta-
ble 2.1. The subgoal J.Patient resulting from applying m1 does not return values for the
K.Admission.AdmID and K.Admission.Address. Consequently, this mapping returns
incomplete, yet still useful tuples for our query. If this result were to be materialized in
the schema K, an AdmID has to be chosen using a Skolem function [FHP+02]. That
would provide a unique value for the key attribute AdmID of K.Admission.
Mappings m2 and m3 are more subtle. While L.Patient in the head of m2 comprises

values for SSN and Address only, L.Intake only returns the “complementary” attributes
Name and Date. Observe that although both m2 and m3 cover all subgoals of our query
in isolation, the query result would be more complete if a join between them is included
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K.Patient
AdmIDNameSSN

K.Admission
DateAddressAdmID

L.Patient
InIDAddressSSN

L.Intake
DateNameInID

q

m2 m3

J.Patient
DateNameSSN

m1

Figure 2.4.: Example for a rule-goal tree with two LaV expansions involving three
mappings.

Mapping
Variables
only in
head

Variables in head and tail Variables only in tail

m1 SSN , Name, Date AdmID, Address
m2 InID SSN , Address Name, AdmID, Date
m3 InID Name, Date AdmID, Address

Table 2.1.: Overview on the variable projections in our example on emergency
hospitalization.

in the rewriting. This join returns tuples that cover all attributes of the query subgoals.
Instead, using m2 and m3 in isolation would only result in tuples for K.Patient and
K.Admission that could not be joined, because they do not provide a value for the variable
AdmID. The above join indicated by the foreign-key relationship between L.Patient and
L.Intake on Level 5 of the rule-goal tree.
The MiniCon algorithm as published in [PL00] would rule out each of the resulting

goal nodes on Level 5 in the rule-goal tree in Fig. 2.4. For instance, the variable Address
is in ϕ and is a distinguished variable in the query. Since ϕ(Address) is not distinguished
in m1, condition M.1 is violated and hence MiniCon will not create a MCD for it.
Similarly, m2 and m3 are dropped. Since condition M.1 also holds for the Bucket
algorithm, projections in mappings also enforce a relaxation for Bucket. 2

In our relaxed MiniConr we accept that a view does not return a variable that is
assigned by ϕ to a distinguished variable x of the query, if and only if x does not occur
in any selection predicate of the query. So we substitute properties M.1 and M.2 by
relaxed conditions that consider selection predicates as well:
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R.1 For each distinguished variable x of the query Q in the domain of ϕ that also
occurs in the selection predicates Sel(Q) of Q, ϕ(x) is a distinguished variable in
V .

R.2 If ϕ(x) is an existential variable in V , the following holds: For every subgoal g of
the query Q that includes x, (1) all the variables of g that are involved in selection
predicates are in the domain of ϕ, and (2) all of these variables are mapped to V :
ϕ(g) ∈ V .

Condition M.3 remains the same for MiniConr. In Sec. 2.3.4 we describe a second
relaxation of the MiniCon algorithm that applies to the phase that combines the MCDs
to form the rewritings.

Creating the Rule-Goal Tree. In contrast to algorithms for answering queries using
views, in our Pdms context rewritings can be created by exploiting both LaV and GaV
mappings at the same time. In the following, we describe the creation of the rule-goal
tree informally.
Similar to [HIST03], all LaV mappings to local sources or foreign peers are involved in

the first phase of MiniConr for answering queries using views. Every MCD is inserted
into the rule-goal tree as a goal node on Level 5 (see Fig. 2.3 on Page 23). Such a goal
node is connected by a rule node to one of the goal nodes on Level 3 that are covered
by this LaV mapping. All the other goal nodes from that set are connected to the
Level 5 goal node by dashed lines indicating an “uncle” relationship [HIST03]. Observe
that the foreign-key relationships between the Level 5 goal nodes resulting from the
MCDs are a by-product of MiniConr. In contrast to former work, we annotate foreign-
key relationships in the rule-goal tree to facilitate its transformation into an executable
query plan as is described in the following two sections.
Since there is no need for coordination, every GaV mapping is applied to the peer

query in isolation. It expands an appropriate goal node of Level 3 by traditional view
unfolding [HIST03].

Example 3. In the GaV expansion in Fig. 2.5 (a), the query subgoal g is expanded
into a join of the subgoals h1, h2, . . . , hl using the mapping m1. A GaV mapping can be
used only if the variables in the comparison predicates associated with the subgoal to be
reformulated occur in the mapping head. For instance, this means that in the situation
in Fig. 2.5 (a) it holds that

V ars(Sel(g)) ⊆
⋃

i

V ars(Sel(hi)).

The LaV expansion in Fig. 2.5 (b) uses the mappings m2, m3, and possibly others to
cover the subgoals of the query to be reformulated, namely g1, g2, . . . , gk. There, the
dashed line indicates that the resulting goal node h covers both g1 and g2. 2

The MiniCon algorithm published in [PL00] aims to combine the MCDs seamlessly
to form complete rewritings. This is no longer necessary in the Pdms context. Here, goal
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Figure 2.5.: Selection predicates (Sel) in the rule-goal trees of a GaV (a) and a LaV
expansion (b). Rectangles represent goal nodes (subgoals of queries). Map-
pings are displayed as circles.

The MiniCon algorithm published in [PL00] aims to combine the MCDs seamlessly
to form complete rewritings. This is no longer necessary in the Pdms context. Here, goal
nodes created from MCDs can be combined with goal nodes resulting from applying GaV
mappings as well. To this end, foreign-key relationships are required from the goal nodes
resulting from MCDs and GaV expansions as indicated between the goal nodes below the
LaV mapping m2 and the GaV mapping m3 in Fig. 2.3 on Page 23. These foreign-key
relationships can be drawn from the peer schema if all involved goal nodes are instances
of the same peer schema. If the goal nodes resulting from MCDs and those created
by GaV expansions are related to different peer schemas, the foreign-key relationships
between them could be discovered by data profiling techniques [BH03, IMH+04].
Before we describe how to transform a rule-goal tree into an executable query plan in

Sec. 2.3.4, the following section presents the structure of such a query plan along with
some preliminaries.

2.3.3. Query Plan
While the rule-goal tree is advantageous to discuss the results of query reformulation at a
peer, we need to transform it to a query plan to compute the query result. Such a query
plan is made up by the join-merge operations, denoted by u, and full outerjoin-merge
operations, denoted by t [Nau02]. The operator u performs join-like and t union-like

28
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expansion (b). Rectangles represent goal nodes (subgoals of queries). Map-
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nodes created from MCDs can be combined with goal nodes resulting from applying GaV
mappings as well. To this end, foreign-key relationships are required from the goal nodes
resulting from MCDs and GaV expansions as indicated between the goal nodes below the
LaV mapping m2 and the GaV mapping m3 in Fig. 2.3 on Page 23. These foreign-key
relationships can be drawn from the peer schema if all involved goal nodes are instances
of the same peer schema. If the goal nodes resulting from MCDs and those created
by GaV expansions are related to different peer schemas, the foreign-key relationships
between them could be discovered by data profiling techniques [BH03, IMH+04].
Before we describe how to transform a rule-goal tree into an executable query plan in

Sec. 2.3.4, the following section presents the structure of such a query plan along with
some preliminaries.

2.3.3. Query Plan

While the rule-goal tree is advantageous to discuss the results of query reformulation at a
peer, we need to transform it to a query plan to compute the query result. Such a query
plan is made up by the join-merge operations, denoted by u, and full outerjoin-merge
operations, denoted by t [Nau02]. The operator u performs join-like and t union-like
operations between data sets with possibly conflicting data values for the same real-world
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entity. We recall their definitions from [Nau02] in the following and use these symbols
throughout this thesis to denote join respectively union operators.

Definition 6 (Join-Merge Operator u). Let R1 and R2 be two relations with the attribute
sets A1 and A2, respectively. Let ak ∈ A1 ∩A2 be the foreign key that joins R1 and R2.

R1 uak
R2 := {tuple t | ∃r ∈ R1, s ∈ R2 with

t[ak] = r[ak] = s[ak],
t[a] = r[a], ∀a ∈ A1 \ A2,
t[a] = s[a], ∀a ∈ A2 \ A1,
t[a] = f(r[a], s[a]), ∀a ∈ A1 ∩ A2},

where f is a resolution function that computes a value for each attribute of the resulting
tuple t based on the given tuples r and s.

The definition of the full outerjoin merge operator t builds on the outer-union operator
] that performs a union between relations with differing attribute sets [Cod79]. The
result of ] comprises the union of the attribute sets of the input relations.

Definition 7 (Full Outerjoin-Merge Operator t). Let R1 and R2 be two relations with
the attribute sets A1 and A2, respectively. Let ak ∈ A1 ∩ A2.

R1 tak
R2 := (R1 uak

R2) ] (R1 \ (R1 uak
R2)[A1]) ] (R2 \ (R1 uak

R2)[A2]).

The result of the full outerjoin-merge operator comprises every tuple of the given
relations. Missing attribute values of a tuple that does not have a matching tuple in the
other relation are padded with NULL values.
Before the structure of a query plan is explained, we introduce some additional pre-

liminary notions.

Definition 8 (Result of a Mapping). A mapping m is used in isolation for query rewrit-
ing of a query Q. Then the tuple set returned by the rewriting of Q using m is called the
result of the mapping m.

When a mapping is used in isolation for query rewriting, the result of the mapping is
transferred over the corresponding mapping path. If the mapping is involved in a join
pushdown, Sec. 5.2.2, or in answering queries using views [Hal01], then the result of the
mapping has to be joined with other conjuncts before it can be returned to the peer
that performed the query rewriting. In the rule-goal tree the result of a mapping can
be identified as all Level 5 goal nodes that are connected to the rule node of Level 4
that represents the mapping. The notion for the result of an individual mapping can
naturally be extended to a set of mappings:

Definition 9 (Result of a Mapping Set). LetM = {m1,m2, . . . ,mn} be a set of n map-
pings with their respective results R(mi). The result R(M) is given by the conjunction
of the results of all mappings inM:

R(M) = R(m1) u . . . uR(mn).
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Generally, the results of mapping sets are parts of the query rewritings as produced
by algorithms for answering queries using views [Hal01, LMSS95], for instance the Mini-
Con algorithm [PL00] or our relaxed form MiniConr, or finally by join pushdown to
neighboring peers, Sec. 5.2.2. For individual mappings and sets of mappings containing
projections we examine which attributes of the involved peer schemas and local source
schemas are covered by the their results in Sec. 5.2 and Sec. 5.3.
Building on these concepts we are now ready to define the structure of the constituents

of a query plan, i.e., the query rewritings:

Definition 10 (Query Rewriting). Let Q be a query over a peer schema. Let Sel(Q) be
the set of selection predicates of the query. A query rewriting is a multi-way join-merge

Q′ = C1 u C2 u . . . u Ck (2.5)

with Sel(Q′) ⊆ Sel(Q). Different subgoals Ci ∈ Q′ and Cj ∈ Q′ cover possibly over-
lapping subsets of subgoals of Q. Each subgoal Ci groups all alternative contributions
of mapping sets with a full outerjoin-merge that contribute data to the query subgoals
covered by Ci:

Ci =
⊔

l

(R(Ml), Sel(Ml)) . (2.6)

A rewriting returns a correct but possibly incomplete query result, i.e., can contain NULL
values in variables not involved in any selection predicate.

The rewriting subgoals Ci group the results of different sets of mappings that cover
the same query subgoals. These mapping sets can be of different size. For instance,
certain query subgoals can be covered by two LaV mappings or three LaV mappings.
The rewriting subgoals also are a group of minimal size of these mapping sets. This
means that it is not possible to take a mapping away from a mapping set and still yield
a correct rewriting due to the selection predicates that are associated with that mapping.
Previous works on query planning in data integration, e.g., the traditional MiniCon

algorithm [PL00] or [Nau02] exclude that different subgoals of a rewriting cover overlap-
ping sets of the query subgoals. In particular, MiniCon combines the MCDs such that
they non-redundantly cover the query subgoals. In contrast, we argue that a higher com-
pleteness of the query result can be achieved if we allow that the subgoals of a rewriting
may overlap in the sets of query subgoals they cover. Such a situation is mentioned in
Example 2 on Page 25. We will take up this case in Sec. 2.3.4.
An example of a query plan is depicted in Fig. 2.6 and its general structure is defined

as follows:

Definition 11 (Query Plan). Let Q be a query posed to a certain peer. LetM1,M2, . . .
be sets of outgoing mappings of type local-as-view or individual global-as-view mappings.
A query plan P (Q) is a full outerjoin-merge of alternative query rewritings Q′i that have
the form Ci1 u Ci2 u . . . u Cik:

P (Q) =
⊔

i

(Ci1 u Ci2 u . . . u Cik) . (2.7)
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Each rewriting in P (Q) has a unique assignment of the Cij to the subgoals of Q. A
particular conjunct Cij can occur in different query rewritings and always covers the
same set of subgoals of Q.

Even when the sets of query subgoals covered by different subgoals of a rewriting over-
lap it is important that the results of the mapping sets below each rewriting subgoal can
be combined with those of the other rewriting subgoals using foreign-key relationships.

2.3. Query planning
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same set of subgoals of Q.
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Figure 2.6.: General form of a query plan P (Q) for a query Q at a peer consisting
of join-merge (u) and full outerjoin-merge (t) operator nodes introduced
in [Nau02].

For instance, assume that the query Q has three subgoals: q :− s1, s2, s3. We present
some possible assignments of rewriting subgoals to these query subgoals:

– Q′1 : {R(m1) → {s1, s2, s3}}: means that the LaV mapping m1 covers all query
subgoals. So the rewriting Q′1 only comprises a single subgoal for m1.

– Q′2 : {R(m2)→ {s1, s2}, R(m3)→ {s3}}: here the LaV mapping m2 returns tuples
for one part and the GaV mapping m3 for the complementary part of the query
subgoals.

– Q′3 : {R(m4) → {s1}, R(m5) → {s2, s3}}: the GaV mapping m4 only covers the
subgoal s1 whereas the LaV mapping m5 supplies results for the rest of the query
subgoals.

In general, a particular rewriting subgoal can occur in different rewritings.
Moreover, note that there can be different rewriting subgoals Ca and Cb occurring in

different rewritings that cover the same set of query subgoals. They cannot be substi-
tuted by each other since in general they can have different foreign-key relationships.
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2.3.4. Transforming a Rule-Goal tree into a Query Plan
A query plan as described in the previous section is better suited for performing opti-
mizations than the rule-goal tree from Sec. 2.3.1. The reason is that in a query plan the
sub-queries to neighboring peers are grouped by their sets of query subgoals they cover.
Additionally, from the structure of the query plan as introduced in the above section it
is clear where joins and unions have to be performed.
In this section, we present an algorithm to transform a rule-goal tree into a query

plan. This algorithm has to combine Level-5 goal nodes created by both LaV and GaV
expansions. The main idea of that algorithm that forms the second phase of our relaxed
MiniConr is to exploit all the foreign-key relationships between the goal nodes on Lev-
el 5 of rule-goal tree to exhaustively form all possible rewriting subgoals. These rewriting
subgoals are then combined to form rewritings whose selection predicates satisfy those
of the query at hand.

MiniConr extends the original MiniCon algorithm [PL00] in the way the MCDs
are combined. As already described, each MCD maintains the set of query subgoals it
covers. When the original MiniCon creates the rewritings, following additional property
is considered:

M.5 A rewritingQ′ can be only a combination of MCDs that fulfills following conditions:
(i) The union of all query subgoals covered by the MCDs in Q′ contains all query

subgoals.
(ii) The MCDs in Q′ do not overlap with respect to the query subgoals they cover.

We argue that this property has to be relaxed to obtain maximally complete query
answers in presence of projections in the peer mappings. Recall Example 2 from Page 22.
There, the rule-goal tree contains two MCDs, namely the Level 4 rule nodes m2 and m3,
that joined together in a rewriting yield a larger result for the given conjunctive query
than applying them in isolation. Since foreign peer schema of hospital L has a different
foreign-key relationship between the results of the mappings m2 and m3 than the local
peer schema at hospital K the query is posed to, using the mappings in isolation would
result in incomplete relations that cannot be joined to form an answer to the query at
hand.
To provide a maximally complete query answer in such situations, we propose the

following additional relaxation properties that complete the specification of our relaxed
MiniConr:

R.3 A rewriting Q′ can yield incomplete query answers with respect to the subgoals
and the variables of the query. Variables for which Q′ does not return any values
are padded with NULL.

R.4 Different rewriting subgoals can overlap in the sets of query subgoals they cover.

R.5 The selection predicates of the rewriting entail those of the query: Sel(Q′) ⊇
Sel(Q).
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We would like to emphasize again that MiniConr yields a higher completeness of the
query answers than the original MiniCon algorithm, because it returns incomplete an-
swers that are excluded by MiniCon. The algorithm to transform a given rule-goal
tree into a query plan containing rewritings that follow the properties R.3 to R.5 is
documented in Algorithm 2.3.1 on Page 34.
There, the set of goal nodes of the Level 5 of the given rule-goal tree T is denoted by

Level5(T ). In Lines 2-4, the algorithm performs an exhaustive chase [FHP+02, AHV95]
to find all possible incomplete rewritings that follow the properties R.3 to R.5 above.
They consist of the goal nodes of Level 5 of the given rule-goal tree (Line 2) connected
by the foreign-key relationships between these goal nodes (Line 3) and are represented
in by the set R (Line 4). For every subset Si of the query subgoals, one potential
rewriting subgoal 〈Cj ,Fui ,Sj〉 is created in Line 5. It contains a set Fui of unbound
foreign-key relationships and the set of query subgoals covered by the rewriting subgoal
Cj . Next, for each of the potential rewritings 〈Gi,Fi〉 a check for join pushdown is
performed (Lines 7-15) and results of mappings belonging to the same remote peer are
assigned to the rewriting subgoal that covers the same query subgoals as the result of
the mapping set (as determined by the function Covered) and has the same unbound
foreign-key relationships (returned by UnboundFKs). The latter is necessary that all
contributions below a rewriting subgoal actually can be joined with their counterparts
in other rewriting subgoals. Observe that in the mapping sets involved in join pushdown
can be both LaV and GaV mappings. Next, all Level-5 goal nodes not involved in join
pushdown are assigned to the rewriting subgoals where applicable with respect to the
corresponding query subgoals and the foreign-key relationships (Lines 16-25). Finally,
the algorithm creates the rewritings under consideration of the property R.5 for the
selection predicates (Lines 26-31).
Since we believe that finding the fully expanded query plan at a peer is not perform-

ance-critical due to the typically small number of neighboring peers, this algorithm
performs an exhaustive, non-optimized enumeration of rewriting subgoals. Rather, as it
is more promising, the focus of this work is to exclude entire mapping paths from query
processing.
Kiricenko also applies a her limited form of query containment to relax the Mini-

Con [Kir03]. Since our concept of weak query containment is more general and we
consider foreign-key relationships within the schema of the rewritings, our version Mini-
Conr yields results of higher completeness.

2.4. Semantics of Query Answering

The common approach to define semantics for PDMS is based on the notion of certain
answers [AD98], which immediately can be applied to an individual peer [CGLR04,
FKLS03, HIST03]. For a local-as-view mapping, a relation of a local schema is defined
as a view on the peer schema. Hence, answering a query against the peer schema amounts
to solving the “answering queries using views” problem [Hal01]. So a certain answer is
defined to be part of any instance of the peer schema that is consistent with the above
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Input : Query Q with selection predicates Sel(Q), rule-goal tree T
Output: fully expanded query plan P̂ (Q)
P̂ ← ⊥1
Q ← {s1, s2, . . . , sn}, si ∈ Q {query subgoals}2
G ← {g1, g2, . . . , gm}, gi ∈ Level5(T ) {Level-5 goal nodes}3
F ← {gi[Key(gi)] ⊇ gj [fk]}, gi, gj ∈ G {Level-5 foreign-key rel.}4
R ← {〈Gi,Fi〉}, Gi ∈ G, Fi ∈ F such that R.3, R.4, R.5 hold {rewritings}5
C ← {〈Cj ,Fuj ,Sj〉}, Sj ∈ Q, Sk 6= Sl if k 6= l {rewriting subg., Fui unbound}6
foreach 〈Gi,Fi〉 ∈ R do {join pushdown}7

group subgoals in Gi by peers into sets GPr8
foreach GPr do9

repeat10
〈C,Fu,S〉 ← next 〈Cj ,Fuj ,Sj〉 ∈ C such that Sj = Covered(R(MPr ))11

until Fu = UnboundFKs(R(MPr ))12
add R(MPr ) and Sel(MPr ) to C13

end14

end15
foreach 〈Gi,Fi〉 ∈ R do {assignment of other goal nodes}16

foreach g ∈ 〈Gi,Fi〉 | g 6∈ C do17
create R(m), Sel(m) using g and the corresponding mapping m18
foreach 〈Cj ,Fuj ,Sj〉 ∈ C do19

if Sj = Covered(R(MPr )) and Fuj = UnboundFKs(R(MPr )) then20
add R(m) and Sel(m) to C21

end22

end23

end24

end25
foreach 〈Gi,Fi〉 ∈ R with C1, C2, . . . , Ck ∈ C do {create rewritings}26

Q′ ← C1 u C2 u . . . u Ck27
if Sel(Q′) ⊇ Sel(Q) then {property R.5}28

add Q′ to P̂29
end30

end31

return P̂32

Algorithm 2.3.1: Transforming a fully expanded rule-goal tree into a query plan
(Transform step of MiniConr). Covered returns the set of subgoals covered by a
result of a mapping set and UnboundFKs the foreign-key relationships that are
not bound within this result.

mapping from the peer schema to the local schema and the database instance of the
local source.
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Now we can extend this understanding to the whole PDMS and give an intuitive
description of the semantics of PDMS query answering: Let a (global) source database
be the assumed outer-union [Cod79] of the local source database instances of all peers,
i.e., the database state of the PDMS. Additionally, let a global database of a PDMS be
an assignment of attribute values to all peer schemas, i.e., the assumed union of all peer
schema instances mentioned above [CGLR04, HIST03]. Please note that an instance of
a particular peer schema is a so-called solution to the data exchange problem with the
local schema as source and the peer schema as target [GLLR07]. The semantics of a
PDMS is the set of all possible global databases. Given a (global) source database, the
certain answers to a query is the set of tuples being part of all the global databases in
the above semantics.
Of course, the global databases mentioned above depend on how the mappings be-

tween the peers are interpreted [CGLR04]. The approach implemented in the Piazza
PDMS [HIST03] employs global first order logic semantics, which interprets the map-
pings as material logical implications. This enables global reasoning to obtain query
answers and thus amounts to the open-world assumption with respect to a particular
peer. In contrast, the approach of Calvanese et al. [CGLR04] considers mappings to
be specifications of the exchange of certain answers [GLLR07], which actually means a
closed-world assumption from the perspective of a particular peer. The authors argue
that their epistemic logic based semantics better represents modularity of the peers, i.e.,
better preserves peer autonomy as discussed in Section 1.2. Therefore, our system also
follows the closed-world assumption for a particular peer.
The problem of finding the certain answers to a query in a PDMS under globally de-

fined semantics is undecidable [CGLR04, HIST03]. Cycles in mapping paths can lead to
non-terminating query reformulation. Even if cycles are recognized and query reformu-
lation is terminated according to a certain criterion [HIST03], there may be situations,
in which correct tuples are missed. Approaches based on local semantics show decid-
able query answering even in PDMS with cycles in the network of mappings [CGLR04].
However, under this semantics some answers are missed that are found under global
semantics, because it does not employ global reasoning.
There are several works that also examine semantics of query answering in data inte-

gration [Gra02, Kha08] or data exchange [Lib07] the context of incomplete information.
In contrast to them, this work resorts to a more intuitive and experimental consideration
of this topic.

2.5. Information Loss in PDMS

A consequence of our approach of local reasoning is information loss during the process
of distributed query processing in a Pdms. Next, we describe this problem, which is one
source of inefficient query answering.
In many practical situations, queries to foreign peers cannot contain projections to

keep the query service simple. In particular, for heterogeneous peer schemas with a
complicated peer mapping it is not immediately clear how to “translate” projections
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from one peer schema into another. A peer sending a query to a neighbor is then
forced to transport the complete result rather than being able to specify which portion
of resulting relation is desired. To reflect such situations in this thesis, we exclude
projections from our queries.
In contrast to queries, peer mappings contain projections to specify that heterogeneous

peer schemas provide different attributes of a real-world entity. Since peers are not able
to adapt their queries to projections in peer mappings, they act as filters in the flow of
data along mapping paths. This means that data provided by peers “behind” a mapping
to a neighboring peer can be dropped because of projections in the mapping to that peer.
As is discussed in detail in Sec. 4, projecting out even a single attribute of a relation
significantly decreases the completeness of that intermediate query result. So actually
valuable information can be lost. This is inefficient, because these data may have been
transmitted over several peer mappings before and may have induced considerable load
in several database computations.
Clearly, the effect of information loss along mappings is a small result size at the end

of a mapping path. One of the main ideas of this thesis is to prune mapping paths that
promise comparably few result data from further reformulation to reduce cost of query
answering. Essentially, by these pruning decisions peers aim to find a trade-off between
completeness and cost of the query result.

2.6. Trade-off between Completeness and Cost

This section characterizes our solution as a best-effort approach and introduces our main
ideas. The data complexity of Pdms query answering can be measured by the size of the
virtual overall query plan. This plan can be created by building the union of all local
query plans actually computed at all peers involved in answering a particular query. In
general, the size of the overall query plan is exponential in the number of mappings
to neighboring peers and the size of the query in terms of relations. So even in Pdms
with tens of peers, there is an astonishingly high number of redundant mapping paths
between two peers. For instance, in an example with about 30 peers we observed an
overall query plan with about 34,000 union and about 17,000 join operators.
In the spirit of [NFL04] we argue that in large-scale Pdms users do not demand

complete query answers. Similar to information retrieval with search engines, users of
Pdms with a large number of peers cannot inspect all query answers in detail. On the
other hand, it is important to have reasonable response times in our scenario to satisfy
users even with incomplete query answers.
To achieve such a satisfying trade-off between completeness and cost of query answers

we propose to make concessions to the completeness of query answers – turning it into
an optimization goal rather than requiring a complete answer. The main idea of our
approach is to exploit these concessions to increase efficiency of query answering. To
this end, we prune mappings promising less data than others, Chapter 6 [RN05].
Additionally, resources in large Pdms may be limited, i.e., users require a query answer

within a maximum response time. In Chapter 8 we propose solutions to this problem.
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They spent a limited budget intelligently [RNHS06].

2.7. Applications

At this point we continue the discussion of application scenarios for our approach of
local query optimization for large-scale from the introduction. We focus on the issues of
peer autonomy and the scale of the Pdms and explain why they are important in the
following application fields.
Virtual organizations, both in industry and science, spanning multiple stakeholders

often emphasize the autonomy of their information resources. Usually, data stores and
applications are at the core of the respective business of the individual organizations.
Therefore, it is this business that drives the structure and usage of these resources.
Exchanging data with other organizations is often of lower priority and the corresponding
interfaces are kept simple and have to adapt to the requirements of the organization’s
purposes rather than to an optimized data flow within the virtual organization. To
meet this practice, we assume highly autonomous peers that need to provide only simple
interfaces for information sharing, e.g., a simple query language and exclusively local
optimization approaches.
Disaster Data Management [NR06, HIST03] is an area where both highest flexibility

and large-scale are crucial. In case of a nationwide crisis, systems might have to be
connected that were never supposed to cooperate before. Since the disaster is spread
over large regions, the resulting integrated data management system is also complex.
These requirements ideally fit to the characteristics of Pdms. It is moreover realistic
that during a serious crisis computing resources are limited due to broken networks or
lack of electricity. So the question arises which level of query answering service can be
achieved under these circumstances. This problem is studied in Chapter 8 of this thesis.
The Semantic Web [SS06, HIMT03] comprises such a huge variety of information that

it seems impossible to establish centralized query answering services even for particular
subareas. Offerings in the Web pop up and get out of date frequently. So an extremely
flexible approach like Pdms is best suited for information sharing in this highly volatile
environment. With today’s search facilities, it is commonly accepted that search results
in the Web are incomplete and even of low relevancy with respect to the search query.
Pdms for the Semantic Web promise to return answers of much higher relevancy than
current search engines. But this can only work with an effective trade-off between the
result quality and the cost of query answering in such an infrastructure. Exactly this
topic is addressed by this thesis.
Networked Personal Information Management Systems (PIM) [ANR07] can help orga-

nizations save much of the effort their employees spend for searching useful information.
Estimations for the amount of time employees use for searching information differ, but
many of these studies claim that these activities take more than half of the whole time.
PIM are an approach to address this enormous potential. However, as organizations are
complex corresponding PIM are complex as well. In [ANR07] we proposed to use Pdms
to interconnect PIM environments of the individual employees. Again, as organizations
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desire to be agile, corresponding information systems also face this challenge.

2.8. Related Work

In his work on mediators [Wie92], Wiederhold mentions that mediators may use other
mediators to answers queries. Since peers in our sense act as mediators, this was the first
proposal for the system architecture of Pdms, i.e., an arbitrary network of mediators.
The work in [Les00] introduced a mapping language of similar expressivity as GLaV
mappings and studied semantics and efficiency of query answering. In some sense, it can
be seen a basis for query answering in mediators in the context of Pdms. Building on
a large body of literature in the field of peer-to-peer file sharing systems, Halevy et al.
identified several research questions for peer-to-peer systems employing data integration
techniques [GHI+01]. In [BGK+02], Bernstein et al. formulate their vision on peer-based
data management.
In the following, we provide an overview of the main types of Pdms approaches.

In [HRZ+08], we surveyed these system proposals by identifying a set of characteristics
of Pdms. We found a set of different approaches that are roughly decribed in Table 2.2
on Page 40. As explained in Sec. 2.4, the main difference between different variants of
Pdms is whether query planning is performed on a global level or in an isolated manner
at each peer. The Piazza system [HIST03, TH04, Tat04] employs global information
about the whole Pdms and computes all certain answers. However, this setting is only
tractable under certain conditions of which an acyclic topology is the most important
one. Note that this requirement is nearly never given in practice. Experiments with
Pdms of any approach clearly show that the effort for query answering grows rapidly
with the size of the system. So intractability can actually occur in practice. Another
drawback of the Piazza architecture is that their pruning technique involves non-local
information about the query plan as we discuss in Sec. 6.2.1.
The work of Calvanese et al. [CGLR04] follows a fully local approach for query plan-

ning. As mentioned in Sec. 2.4, local reasoning misses answers that are found under
global first order semantics, because that actually amounts to an open-world assump-
tion. In contrast, local query planning means a closed-world assumption. Our work
also computes all query answers under their semantics but additionally performs query
optimization in a best-effort manner.
There are several research prototypes that take a best effort approach, for instance

our full-fledged Pdms Humboldt Peers [RNHS06], SmurfPDMS [HLS06, Hos09], or the
approach of Petrakis et al. [PKP04]. They all have in common that they compromise
the completeness of the query result. Besides that, every of these approaches has its own
focus. SmurfPDMS performs skyline computation. The work reported in [PKP04] aims
at discovering clusters of peers with similar data. Humboldt Peers puts special emphasis
on optimization techniques that preserve the autonomy of the peers by exploiting query
feedback for query planning purposes. In contrast to other approaches, Humboldt Peers is
capable to deal with volatile Pdms instances independently where changes in the system
happen. Moreover, our work is the first that reduces data overlap between alternative
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mapping paths to reduce cost, Sec. 9.

2.9. Summary
This chapter introduced query processing at a peer in the context of both global-as-view
and local-as-view mappings. It presented an algorithm to transform a rule-goal tree into
an executable query plan comprising joins and union operators.
We examined how information loss accumulates along mapping paths due to pro-

jections in the mappings. As a consequence, many attribute values are unnecessarily
transported between several peers before a projection in a peer mapping eliminates
them. We also discussed that selections in peer mappings differentiate redundant map-
ping paths. Both of these phenomenons can be exploited to prune the search space and
thus increase efficiency of distributed query answering in Pdms. We argued that in many
large-scale information sharing applications users are satisfied with incomplete query an-
swers. Therefore, the main problem addressed in this thesis is to trade-off completeness
of the query result and cost of query answering.
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Category Alternatives Global
planning +
complete
answers
[HIST03]

Local
planning +
incomplete
answers
[RNHS06]
[HLS06]
[PKP04]

Local
planning +
complete
answers
[CGLR04]

System model
Topology Arbitrary × ×

Arbitrary
without cycles

×

Peer autonomy Exchange queries +
results only

×

Exchange metadata
with queries

×

Non-local
containment checks

×

Information loss No projections in
mappings

× [HLS06, PKP04]

Projections in map-
pings

[RNHS06]

Semantics
Semantics of
query answering

(Global)
first-order logic

×

(Local) reasoning × ×
Decidability Decidable in gen-

eral
× ×

Decidable for
acyclic topologies

×

Query optimization
Query planning Global (OWA) ×

Local (CWA) × ×
Complexity co-NP complete ×

polynomial × ×
Relaxation of
completeness

Complete
answer sets

× ×

Incomplete
answer sets

×

Pruning Optimizing cost for
complete answers

×

Trading off cost
and completeness

×

Table 2.2.: Characteristics of PDMS and features of exemplary PDMS ap-
proaches [HRZ+08].
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To investigate our query planning and pruning strategies experimentally, we have de-
veloped a full-fledged Pdms implementation called Humboldt Peers, which is able to
generate Pdms instances [Sch06, H0̈6, Tie06, Tie09] This chapter gives an overview of
its functionality and the system architecture
Although Humboldt Peers contains a variety of measurement facilities, it is a real

Pdms rather than a simulation environment. In that, it nicely abstracts many practical
scenarios in which a set of independent information systems is in place that only exchange
a minimal set of queries and their results.

3.1. Features
As shown in Fig. 1.1 on page 4, peers in Humboldt Peers consist of

– a relational peer schema,

– a set of local sources connected to the peer schema via local mappings, and

– peer mappings from one peer schema to the schemas of other peers.

This metadata is stored at each peer and includes only information about the peer itself
and the mappings to the direct neighbors. As depicted in Fig. 3.1 on Page 43, peers
only hold metadata that can be gathered locally (local metadata). This reflects usual
practical scenarios where no global catalog on all systems exists.
Query planning is fully decentralized and implemented locally at the peers. Based on

the given local-as-view (LaV) and global-as-view (GaV) peer mappings, a local rule-goal
tree (Sec. 2.3.1) is created at the peer receiving the original query as well as at every
peer that is contacted during query processing. After local optimization and possibly
pruning, the resulting local query plan (Sec. 2.3.3) is executed. This process requires no
global knowledge at all; query planning, optimization, and pruning strategies are based
on local peer information only.
For experimental purposes, Humboldt Peers features a specialized Monitor peer (see

Fig. 3.2 on Page 3.2 for its GUI) to which the regular peers report their activities. This
peer can be used to create, visualize, manipulate, and query a Pdms. During query
execution this peer can perform a live-visualization of the mapping paths already used
for query reformulation and passing back results. The monitor peer is also able to
collect numerous measurement data that can be used for query execution analysis and
statistics, for instance execution time, number of database operations, number of peer
queries, number of peers used for query answering and local mappings, completeness
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and density (Sec. 4.1) of result sets, virtual global query plan (composed of local query
plans). Please note that the measurement facilities of the monitor peer do not influence
local reasoning for query answering. In particular, the Monitor peer does not provide
any data about other peers to any of the peers in the Pdms. The Monitor peer also
contains a workload generator that generates, persistently stores, and executes a random
query workload over all peers in the Pdms. Additionally, there is a central facility for
changing the topology of a Pdms instance by removing certain peers from the network
and possibly activating them again at a later point in time.
Each peer comprises extensive logging services. Especially for the histogram statistics

for cardinality and overlap (see Chapter 5) we implemented useful visualization and
logging functionality. Of course, the measurements for the Monitor peer and the logging
functionality mean overhead cost for query answering. However, since our focus is on
relative comparisons of different approaches the absolute query answering time is less
important.
Humboldt Peers serves as a testbed for the query optimization approaches examined

throughout this thesis. Hence, most of the techniques discussed in the remainder of this
work were extensively evaluated by experimenting with our system.

3.2. System Architecture
Humboldt Peers has been developed using Java and consists of three main subsystems
that are depicted in Fig. 3.1:

– Monitor Peer : The purpose of this subsystem is to create Pdms instances and
conduct the experiments with them. It contains the graphical user interface (GUI)
that displays the peer graph, the list of peers as well as detailed information on
them such a peer schemas, mappings, peer activity status, or estimation accuracy
of the histogram statistics. The Pdms generator [H0̈6] is a powerful facility to au-
tomatically create Pdms instances of arbitrary size. This process can be controlled
by a rich set of parameters, Sec. 3.3.
The Deployer component assigns the Pdms model created by the generator to a set
of computers in the network. On each of them, several so-called Pdms Peers can
run within a single Java Virtual Machine (JVM). Their creation and registration at
the JXTA network (see below) is supervised by the Controller component. Please
note that the Controller is not directly involved in query processing during runtime
of the Pdms. Rather, it acts as a supporting facility to put the Pdms instance
into operation and control the system during runtime.
The query processing statistics are measured orthogonally to the actual query
processing functionality and are available afterwards at the Monitor. Collecting
these statistics is completely independent from query processing. The latter does
not use any intermediate non-local query processing statistics.

– Pdms Peers: There can be several Pdms peers running in a distributed mode.
Each of them “models” a real-world peer with own query answering facility, cost
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model, and statistics. The Pdms peers are created by the Deployer and the Con-
troller component. Several Pdms Peers can run within a single JVM on a com-
puter in the network. The local metadata mentioned in Fig. 3.1 comprises the peer
schema, peer mappings, local schemas and mappings, as well as the statistics on
cost, cardinality and data overlap discussed throughout this thesis.
In Humboldt Peers, any existing RDBMS with a JDBC driver can be embedded
as a local data source. If no DBMS is available, Humboldt Peers uses an internal
HSQLDB1 database for storing temporary data and to perform joins as well as
unions.

– JXTA Network: This system is based on the JXTA framework2, which supports
communication between distributed peers, so-called nodes, or across the Internet.
JXTA offers methods to establish a peer-to-peer system, offer services at the peers
and for communication between the peers. For instance, to create a P2P system,
peers can automatically find each other by a multicast technique. During our first
experiments, it turned out that JXTA consumes considerable resources. This led to
the design decision to run several Pdms peers within a single JVM that commonly
use one instance of JXTA.

GUI

Monitor Peer

PDMS Generator

Deployer

Reference DB

Controller

PDMS Model

Statistics

JX
TA

 N
et

w
or

k

PDMS Peer

Query 
Processing Local Data Source

Local Metadata

Figure 3.1.: Architecture of Humboldt Peers with monitor peer and an exemplary PDMS
peer.

Query processing in Humboldt Peers can be done in sequential and parallel mode.
Sequential means that all outgoing queries to neighboring peers are fired one after the
other by a peer. The peer waits for the result of a query before sending out the next
one. In the parallel query processing mode [Tie06], all outgoing queries at a peer are
sent at the same time. Downstream peers can then process these queries in parallel to
each other. Clearly, the parallel mode only leads to a speed up of the whole computation
if there are several computers involved. If an experiment is performed on a single-core
computer, sequential query processing is sufficient.

1hsqldb.org
2www.jxta.org
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The cost model for query processing has to be specific for either sequential or parallel
query processing. For simplicity, we implemented only a sequential cost model. To
simulate different types of networks with different bandwidths, we introduced an artificial
transport time into the cost model. Additionally to the actual time for transporting the
result data back to the peer where the query originated, this artificial transport time is
added. The bandwidth can be set for each peer mapping individually.
The source code of Humboldt Peers comprises about 650 classes and about 80,000 lines

of code. We have tested the system with up to 50 peers across a network and were able
to answer queries against data distributed across all peers.

Figure 3.2.: Humboldt Peers with automatically generated Pdms. On the left, the peer
structure of the Pdms is displayed. Below the peer graph, detailed informa-
tion on selected peers is presented, e.g., a peer schema.

3.3. PDMS Instance Generation
To perform meaningful experiments, it is important to create numerous Pdms instances
with different characteristics and execute queries on them. To simplify this step, Hum-
boldt Peers includes a Pdms generator that was developed by Hübner [H0̈6]. This gen-
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erator creates a given number of peers, local sources, various heterogeneous schemas,
and mappings including selection predicates for the created peer graph. This task can
be controlled by a set of parameters referring to the structure of the peer graph, the
distribution of selections and projections in the peer mappings, and the data distribution
across the peer graph. Note that the creation of a Pdms instance that meets a consid-
erable set of constraints is difficult. To meet this challenge, Hübner examined several
techniques for finding a satisfying approximation to this constraint solving problem.
The generator takes a reference schema as input and varies this schema by normaliza-

tion and de-normalization to yield heterogeneous candidate schemas for the peers. As
the relationships between the reference schema and these candidate schemas are known,
the generator can create appropriate mappings between the derived peer schemas. Addi-
tionally, instances of local sources are created, again using data given with the reference
schema or by automatically generating new data values. Finally, these peers are assigned
to differently shaped Pdms graphs, such as simple chains, circles, trees, and completely
random graphs, and then distributed across the network to the different peers by the
Deployer component.
Alternatively, a Pdms instance can be modified manually or even built from scratch

by creating peers, setting peer schemas and peer mappings, and assigning instance data
to them. Using this functionality, any Pdms instance can be created to study certain
scenarios.

3.4. Summary
This chapter presented our Pdms implementation Humboldt Peers. It is a full-fledged,
fully-functional relational peer data management system whose peers can run distributed
across a network. Humboldt Peers contains a powerful instance generator that greatly
helps to create experiment configurations. Additionally, we described the system archi-
tecture and the measurement facilities of the system.
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Part II.

Completeness-related Metadata
in PDMS
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4. Benefit and Cost of Query Answering

The main objective of information integration is to obtain a view on the world that is
as complete as possible. The higher the number of data sources, the more information
can be expected about a certain real-world entity. So intuitively, completeness of the
query result is the most important benefit in information integration settings. A first
dimension of this completeness is the cardinality of the result set. If projections are
involved in mappings, it additionally has to be considered how many data values are
returned in each result tuple. Besides completeness, Part II of this thesis describes why
data overlap between alternative mapping paths is an important metadata input for
query optimization.
Classical query optimization in centralized databases heavily depends on accurate

estimations for sub-result cardinality in query execution plans. In this part we show
why Pdms pose more difficult challenges when gathering the above completeness-related
statistics, and we discuss several approaches to establishing metadata statistics in the
context of a Pdms.
The following section defines the most important metadata for optimizing query an-

swering towards high efficiency in terms of completeness and cost. First, we relate
the completeness model for integrated information systems introduced by Naumann et
al. [NLF99, Nau02, NFL04] to the Pdms context. Next, we go beyond this model and
examine why data overlap between alternative mapping paths at a peer occurs and how
it influences the efficiency of query answering. Finally, we review several works for cost
models in data integration and develop our cost model on this basis.

4.1. Completeness of a Query Result

In many scenarios, users of large integrated information systems are not interested in
all certain answers, Sec. 2.4, because they are not able to examine all of them in detail.
Further, a constraint of large Pdms is the limitation of resources for query evaluation
and transmission of query results. Facing these restrictions, a user may be satisfied
with a fraction of all answers. This concession is related with the so-called extensional
completeness, i.e., the number of tuples in a query result. For instance, in Web search
users usually examine a very small fraction of the query answer. In such cases, it is
desireable to rank the result tuples according to their relevancy. Next, we define different
measures concerning completeness.
Coverage. Extensional completeness, also known as coverage, describes the proportion
of the size of a tuple set to the number of all tuples accessible within a Pdms. The
measure applies both to the data set a peer actually stores and to a query result.
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To calculate coverage we make the closed world assumption. The world comprises all
real-world entities represented within a PDMS. We assume to know the size |w| of this
world. In practice, however, knowing this number precisely is not necessary, because it
only plays the role of a normalizing factor. We formalize this notion as follows:

Definition 12 (Coverage). Let DQ be a set of tuples answering a query Q. The coverage
of DQ with respect to a world w is c(DQ) := |DQ|/|w|.

Density. The intension queried by the user is the set of attributes AQ asked for in the
query. Intensional completeness of data sets, also known as density, first suffers from
null values in data sources. Secondly, attributes that are asked for in the query may not
be available at certain data sources in the Pdms. The user may be interested in having
tuples in the query result even though they miss some of the desired attributes. In this
way, the overall completeness of the query can be increased. Missing attribute values
are filled with null values, thus creating incomplete tuples. As introduced in [Nau02],
attribute density is used as a measure for this kind of completeness:

Definition 13 (Attribute density). Let aR be an attribute of a relation R. A projection
of a tuple t of this relation to aR is denoted by t[aR]. With ⊥ denoting null, the attribute
density of a tuple set D for R is defined as

d(aR) := |{t ∈ D | t[aR] 6=⊥}|
|D| .

Similar to coverage, the density of a data set is also query dependent as expressed by
the following definition:

Definition 14 (Query-dependent density). Let AQ be the set of attributes asked for in a
query Q. We define the query-dependent density of a tuple set D as the average attribute
density of the attributes in AQ

dQ(D) := 1
|AQ|

∑

a∈AQ

d(a).

Completeness. Intuitively, overall completeness can be regarded as an aggregate mea-
sure for the ratio of the amount of data in a certain data set, e.g., the result set of a
query, to the amount of data in the world w. This means that it is a combination of
coverage and density, which we aim to maximize in query answering:

Definition 15 (Query-dependent completeness). Let AQ be the set of attributes asked
for in a query Q. We denote the value of an attribute a ∈ AQ by va. The query-dependent
completeness for a tuple set D is

CQ(D) := |{va ∈ D | va 6=⊥}|
|w| · |AQ|

.

50



4.2. Completeness of mappings

In [Nau02] it is shown that the completeness score of a data source S can be calculated
as C(S) = c(S)·d(S). There, the query is posed to the universal relation, which comprises
all attributes of all relations contained in the global schema of a data integration system.
We can use these results in the context of a Pdms by regarding the peer schema the query
is posed to as the (universal) relation, which includes the attribute set AQ introduced
above. So this equation naturally applies to an intermediate query result of a Pdms as
well.
Since the overall completeness is a product of extensional and intensional completeness,

it can increase by retrieving more but perhaps incomplete tuples compared to the usual
requirement that the resulting tuples should be intensionally complete, i.e., having only
non-null values in all attributes.

4.2. Completeness of mappings
To follow our main objective of efficient query answering in Pdms, our approach is
based the concession of accepting incomplete query answers. This is realized by pruning
decisions during query planning, Sec. 2.3.
Intuitively, query planning for a Pdms is a search problem. Its search space is made

up of peer schemas and peer mappings. The goals of the search are the local data
sources at the “border” of the search space. Using local mappings to reach them forms
the final search step. During exploration of the search space, we lack information about
the completeness contribution of local data sources not found yet. As a consequence,
to intelligently explore the search space collecting query results, we must decide which
mappings promise to be useful. This leads to the question how mappings and the data
sources “behind them” contribute to the overall completeness of the query result.
In this work, we assume the mappings to include only select-project-join (SPJ) queries.

In the following, we show how to calculate the influence of S, P, and J operations used in
the mappings on the coverage and density of query results. Additionally, query plans con-
tain union-type operators, which collect results returned by alternative mapping paths
starting from a certain peer. Again we describe their influence on the completeness of
the result.

4.2.1. Influence of selections and projections
Applying a selection σ to a tuple set of a relation R reduces the set of tuples by a
selectivity factor s. Hence, we can calculate coverage of the selection result as

c(σ(R)) = s · c(R). (4.1)

Observe that in our definition the higher the selectivity s the more tuples are returned
by the selection.
Assuming that null-values are distributed uniformly over all tuples, density is not

affected by a selection:
d(σ(R)) = d(R). (4.2)
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4. Benefit and Cost of Query Answering

We use this model with a mapping selectivity to study the influence of selections along
mapping paths in Pdms. In further chapters of this work we introduce a more advanced
approach, because the above selectivities would have to be query-dependent to be suffi-
ciently accurate. In particular in Chapter 5 we describe our approach to use histograms
to estimate the result size of mapping paths. For now, we assume the above selectivities
to be given and use them to abstract from the histograms.
Note that these mapping selectivities are applied to the data of the target of a mapping,

but also on all other sources reachable through that mapping. For instance, in the Pdms
in Fig. 4.1 the selectivity annotated to the mapping from P1 to P2 applies to the data
returned by P2. For simplicity, we assume here that projections do not reduce coverage,

P1

20%
P2

P3

P4

100%

20%

60%

70%

20%

20%

P1.Book (Title, ISBN, Author, Year, Publisher, Price)

70%

60%

P3.Book (Title, ISBN, Author, Year)

P4.Book (Title, ISBN, Author, Year, Publisher, Price)

Peer schema
Peer

Local data source

Peer mapping

P2.Book (Title, ISBN, Author, Year, Publisher, Price)

Figure 4.1.: Example PDMS with coverage scores and mapping selectivities.

i.e., duplicates generated by projection are not eliminated. Additionally, observe that
the query issued by the user also can contain selections. Their selectivity has to be
“concatenated” with the mapping selectivities. That happens in the same way as for
mapping selectivites along a mapping path as it is shown in the following example.

Example 4. Regard the Pdms in Fig. 4.1. Suppose P1 receives a query Q. The data at
P4, for instance, are then filtered by the selective mappings P1 → P2 and P2 → P4. If
we assume statistical independence between the selections in the mappings, they together
yield a selectivity of 60% · 70% = 42%. If the tuples from P4 are transported via P3 to
P1, the selectivity of the mapping path is 100% · 70% = 70%.

Without concessions to the completeness of query answers, projections would not be
allowed in mappings. Using projections in mappings means to reduce the intensional
completeness of the resulting tuples. Attributes projected out have to be padded with
null-values. But, as stated above, by allowing projections in our mappings we can
explore a larger part of the query-dependent world w.
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4.2. Completeness of mappings

Projections in mappings massively influence the density of the result of a mapping
(Def. 8). To understand this, we quantify this influence and find that the query-dependent
density value has be to recalculated subtracting the density of the set of attributes
projected out:

Theorem 1. Let AR be the attribute set of a relation R. Let AP be the set of attributes
R is projected to. Then the density of the projection R[AP ] of R to AP is calculated
from the given density of R as

dQ(R[AP ]) = dQ(R)− dQ(R[AR \ AP ]). (4.3)

Proof. Let the attribute set of the relation R be AR = {a1, . . . , an}. Without loss of
generality, suppose the attribute set, on which R is projected, to be AP = {a1, . . . , ai}.
We use the definition of the query-dependent density from Def. 14 with AQ being the
attribute set of the query:

dQ(R)− dQ(R[AR \ AP ]) =
1
|AQ|

(d(a1) + . . .+ d(ai) + d(ai+1) + . . .+ d(an))

− 1
|AQ|

(d(ai+1) + . . .+ d(an)) =

1
|AQ|

(d(a1) + . . .+ d(ai))

+ 1
|AQ|

(d(ai+1) + . . .+ d(an))

− 1
|AQ|

(d(ai+1) + . . .+ d(an)) =

1
|AQ|

(d(a1) + . . .+ d(ai)) = dQ(R[AP ]).

Observe that all these transformations still hold if some of the attributes of R do not
occur in the query Q. Their densities are set to 0. 2

Intuitively, this means that the influence of the projection on the query-dependent
density is proportional to the fraction of attributes that is projected out. However, this
only holds exactly, if the density of all attributes of R is the same and the remaining set
AP of attributes and the attributes AR \ AP projected out include the same number,
but not necessarily the same set, of query attributes.
In other words, since query-dependent density is always based on the size |AQ| of the

attribute set of the query at hand, the influence of the projection can be measured by
counting non-null attribute values of the tuples of a relation. As a projection removes a
vertical part of a relation, the difference in the query-dependent density can be obtained
by simply subtracting the number of non-null attribute values removed.
As a consequence, according to Equation (4.3) the part of the information loss caused
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by a projection in a mapping can be quantified by calculating only the query-dependent
density of the attributes projected out. We use this observation in our heuristic to decide
which mappings suffer from loss of information [RN05], Sec. 6.
Since the projection R[AP ] leaves the number of tuples of R unchanged, the coverage

of the result is not affected:
c(R[AP ]) = c(R) (4.4)

Example 5. Consider the relation P4.Book from Fig. 4.1. The following table lists the
attribute densities and the query-dependent density of P4.Book as it is exported by peer
P4 and as it is perceived by P3 over the mapping from P3 to P4, which projects out the
attributes Publisher and Prize.

a) First, we assume the query asks for all attributes. The following table lists the
attribute densities and the query-dependent density at both peers:

a T itle ISBN Author Y ear Publisher Price dQ

dP4(a) 90% 100% 80% 60% 40% 70% 73%
dP3(a) 90% 100% 80% 60% 0 0 55%

As can be seen, projecting out a third of the attributes reduces the query-dependent
density by about a third in this example. If the coverage had not been affected
(having a mapping selectivity of 1), the completeness of P4.Book perceived at P3
would have been decreased by a third.

b) Next, we assume that the query projects out the attributes ISBN and Price. Then,
the result is as follows:

a T itle Author Y ear Publisher dQ

dP4(a) 90% 80% 60% 40% 68%
dP3(a) 90% 80% 60% 0 58%

Now, the decrease in dQ is only about 15%, because the attribute Price that is
projected out in the mapping P3 → P4 is also not considered in the query.

2

4.2.2. Influence of joins

Suppose we are given the tuple sets of the two relations R1 and R2 together with their
respective coverage and density values. We aim to calculate completeness for the result
of the join R1uR2. In [Nau02] formulas for calculating the expected coverage and density
for these join-merge operators are derived.
Both the way of calculation and the results of coverage and density for joined relations

strongly depend on the information overlap, i.e., the number of real-world entities rep-
resented in both data sets. If we assume independence of the representation of objects,
we can use the following formulas for the expected coverage and density for R1 u R2,

54



4.2. Completeness of mappings

where A denotes the union of the attribute sets of R1 and R2:

c(R1 uR2) = c(R1) · c(R2) (4.5)

d(R1 uR2) = 1
|A|

∑

a∈A
(dR1(a) + dR2(a)− dR1(a) · dR2(a)). (4.6)

Intuitively, Equation (4.5) states that the probability of a real-world entity to be repre-
sented in both relations and thus enter the join result is the product of the probabilities
of being in one of the given relations. This property is associative, so coverage can be
calculated along paths of mappings. To determine the density of the joined relations,
shown in Equation (4.6), we have to count the number of non-null values in both rela-
tions for each attribute and then subtract the corresponding number of tuples counted
twice.
Please note that because the above equations calculate only the expected value for the

coverage of R1 u R2, the actual overlap situation can lead to results that significantly
differ. For very small overlaps the values may be much less and for large overlaps they
are higher.
If the extensional overlap X between the joined relations is known from statistics

about about data overlap, Sec. 4.4, a more accurate assessment is possible. With the
size of the overlap |X| and the size of the world |w| we may use following equation
from [Nau02]:

c(R1 uR2) = |X|/|w|. (4.7)

Intuitively, the resulting coverage is the “coverage of the overlap”.

4.2.3. Influence of unions

The answer to a query posed to a PDMS is usually made up of the union of many
contributions from alternative mapping paths. As stated above, these contributions can
comprise different sets of attributes. Hence, in general they are not union-compatible.
To overcome this restriction, a more flexible union operator is needed. For instance, the
“outer union” operator as suggested by Codd [Cod79] pads attributes not contained in
both relations with null-values before performing a usual union operation. Additionally,
it is mentioned in [EN00] to expect that the set of common attributes includes a common
key. This can be used to eliminate duplicates by the “outer union” operator. This
requires that tuples representing the same real-world entity have the same value in the
key attribute, e.g., the ISBN attribute of a relation Book.
The full outerjoin-merge operator t from [Nau02] is similar to the “outer union”, but

allows all common attributes but the key attribute to have conflicting data values. In
this work we use the full outerjoin-merge operator to calculate the completeness of the
above combinations of the results returned by alternative mapping paths, i.e., query
plans, and thus may draw the corresponding equations from [Nau02]. The following
equation provides the expected coverage of a full outerjoin-merge for the case of statistical
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independent data sets:

c(R1 tR2) = c(R1) + c(R2)− c(R1) · c(R2). (4.8)

For the density of a “union” realized by a full outerjoin-merge the equation includes
the coverage of the join-merge operator u. First, the attribute density of an individual
attribute a amounts to:

dR1tR2(a) =dR1(a) · c(R1)
c(R1 tR2) + dR2(a) · c(R2)

c(R1 tR2) −

dR1(a) · dR2(a) · c(R1 uR2)
c(R1 tR2) .

(4.9)

Using this, the density of R1tR2, which comprises the attribute set A is the arithmetic
mean of the attribute densities:

d(R1 tR2) = 1
|A|

∑

a∈A
dR1tR2(a). (4.10)

Again, if we have more information about overlap, Equations (4.8) – (4.10) can be
refined. There, also associativity of the coverage criterion for u and t is shown. However,
density is proven to be associative only for independent data sets [Nau02]. We take up
this result in the next section.
Having the basic means to calculate the expected completeness scores for the most

important relational operators occurring in mappings and query plans, the next section
shows how to apply them to calculate the completeness of partial and entire query plans.

4.3. Completeness of query plans
In this section we apply the completeness model to calculate the completeness of an
entire query plan as it was presented in Sec. 2.3.3. The completeness of a query plan
can be used to decide about pruning of parts of a fully expanded query plan at a peer
as discussed throughout the Sections 6 - 9. To illustrate the structure of a Pdms query
plan, we return to our running example.

Example 6. The virtual global query plan of our example introduced above (see Fig. 4.1
on page 52) is displayed in Fig. 4.2 below. The root of the tree is built by the query pred-
icate. Here, we assume a user at peer P1 wants to retrieve all books in the Pdms. Full
outerjoin-merge operators are used to combine contributions from alternative mapping
paths. The respective peer is annotated next to the operator symbol. We assumed the
mappings between the local data sources and their peer schema to have no information
loss. All the mapping selectivities from the peer mappings are annotated at the corre-
sponding edge. Even this simple Pdms shows a considerable redundancy within the query
plan, e.g., the local data source of peer P4 occurs three times. Also note that because this
is a virtual global query plan, it does not correspond to the structure of a local query
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plan presented in Sec. 2.3.3. 2

P1.q(Title, ISBN, Author, Year, Publisher, Price)

∏

∏

∏

∏

P1.Book

P3.BookP2.Book

P3.Book

P4.Book

s(P1→ P2)

s(P2→ P4)

s(P2→ P3)

s(P3→ P4)

s(P1→ P3)

s(P3→ P4)

P1

P3

P2 P3

Figure 4.2.: Overall query plan of our example Pdms.

To calculate the completeness of the query plan in Fig. 4.2, we traverse it recursively.
For each node containing a full outerjoin merge t, the following is performed:

1. Before combining results from local data sources, they are transformed to the peer
performing the full outerjoin merge. This is achieved by multiplying the coverage
of the local data sources with the mapping selectivities annotated in the query
plan according to Eqn. (4.1).

2. Now the coverage and density scores of the data sets can be combined making use
of Equations (4.8)–(4.10).

Notice that, at some nodes of the query plan we have to combine more than two local
data sources. This is only possible if we can assume associativity of the full outerjoin-
merge operator t in our setting. But because of the redundancy of local data sources,
some data sets to be combined are not independent from each other. For instance,
P4.Book and P4.Book t P3.Book in the left of Fig. 4.2 have the “known” overlap of
P4.Book. So in general, we have a mixed overlap situation [Nau02] in a global Pdms
query plan, in particular because peers can be reached through multiple paths and
because peers can play different roles in a single path. Dealing with such settings is
complex and there are no formulas available yet. In Chapter 9 we examine the overlap
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between alternative mapping paths in more detail. This helps assess the accuracy of the
formulas for independent data sets when they are applied in situations where the overlap
significantly differs from the case of statistical independence.
For now, we accept some error created by using the formulas for the case of independent

data sets. To get an intuition about this error we use a simple example.

Example 7. To quantify the error of using the formulas for independent data sets for full
overlap, assume all attributes of P4.Book to have the same attribute density value dQ(a).
Now we calculate the query-dependent density of the full outerjoin merge of P4.Book with
itself. The result should have the same query-dependent density as P4.Book, because it
is actually the same data set. If we use Eqn. (4.9) for independent data sets, we get the
values for dQ(P4.Book t P4.Book) listed in the following table for varying coverage and
attribute density of P4.Book:

dQ(P4.Book t P4.Book)
c(P4.Book)

dQ(a) = 0.2 dQ(a) = 0.5 dQ(a) = 0.8
0.2 0.22 0.53 0.82
0.5 0.25 0.58 0.85
0.8 0.31 0.67 0.91

For small coverage values, which are more likely to be encountered in practice, the devi-
ation of dQ(P4.Book t P4.Book) from the uniform attribute density as the correct value
is moderate (e.g., max. 10% for c(P4.Book) = 0.2 and max. 25% for c(P4.Book) = 0.5).
As the coverage increases, the error rises as well (e.g., max. 55% for c(P4.Book) = 0.8).
2

So, even in case of one data set containing the other, i.e., full overlap, the formulas
for independent data sets lead only to an acceptable error in most practical situations.
Knowing this, we apply these formulas to our query plan. Additionally, the problem
of the inaccurate independence assumption is addressed by removing data overlap from
local query plans as shown in Chapter 9.

Example 8. Using the above procedure we calculate the completeness score for the query
plan in Fig. 4.2. Recall that each of the four local data sources has a coverage score of
20%. For the overall completeness of the plan we get C(q) = 55%.
Now we illustrate our heuristic to prune mappings providing poor information quality.

Suppose we decide to prune the mappings from P2 to P3 and from P3 to P4, because
they include both a reduced selectivity and loss of a third of the attributes asked for
in the query due to projection. In this example, this leads to a query plan without
redundancy. Although we save the expansion of two mappings, we nearly achieve the
same completeness of Cp(q) = 52%. If we use the number of peer mappings used as a
rough cost measure, the pruned query plan needs only about a third of the cost of the
fully expanded query plan. 2
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4.4. Information Overlap between Mappings
Information integration aims at obtaining a complete view on the universe of discourse.
To this end, data from many sources are combined. Usually, information on a certain
real-world entity can occur in several of these sources. Because different data sources in
general contain different attributes of that particular real-world object, added value is
created by merging this data into a single consistent and coherent result. To enable this,
different tuples representing the same real-world entity that stem from different sources
have to be identified. In the literature, this problem is called duplicate detection, object
identification, object fusion, or record linkage [New88, PAGM96, WN05, DHM05]. In
this work, we assume that two tuples representing the same real-world entity share a
common key attribute ak. If they have the same value for ak, we conclude that the
tuples belong to the same real-world entity. Algorithms for duplicate detection create
such an identifying attribute, if it does not exist. As mentioned in [Nau02], this is the
extensional dimension of overlap:

Definition 16 (Extensional Overlap). Let R and S be two relations with the attribute
sets AR and AS respectively. R[A] denotes the projection of the data set R to the
attribute set A. Let Ak be a key for both R and S. Then, the set of tuples

{t | ∃ r ∈ R, s ∈ S with t[Ak] = r[Ak] = s[Ak]}

is called the extensional overlap of R and S.

Extensionally overlapping tuples can differ in their attribute sets, i.e., their intension.
So the second orthogonal dimension overlap is defined as follows:

Definition 17 (Intensional Overlap). Let R and S be two relations with their attribute
sets AR and AS. The intensional overlap between R and S is given by the attribute set
AO = AR ∩ AS.

Since peers are autonomous, the same real-world entity can be represented at several
peers. A special characteristic of Pdms is that redundant mapping paths can lead to
extensional overlap between result sets retrieved over these paths, even there is no ex-
tensional overlap among any sources. For instance, two mapping paths starting at the
same peer Pi can meet at another peer Pj . If the data returned by Pj are not joined with
other data on their way to Pi, the overlap visible at the peer Pi will comprise all tuples
initially returned by the peer Pj . Recall that query planning extends in the direction of
mapping paths, whereas the result data flows back in the opposite direction.

Example 9. We introduce the simple illustrative example in Fig. 4.3(a) on Page 60
to study the potential savings of considering data overlap between neighboring peers in
Pdms query planning. Each peer schema comprises at least one of the two relations R
and S, which are connected by a foreign-key relationship (at peers P1 and P4) or occur
in de-normalized form as a single relation RS at peer P3. Peer P1 has no local data.
The relations at the other peers are populated by the tuples r1, r2, s1, and s2 as depicted
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(a) Pdms with peer schemas and mappings. The symbols in the
peer data denote individual tuples.

Q: q :─ P1.R, P1.S
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(b) Query plan local at P1 for the query Q:−P1.R, P1.S of our illustrative
example. Each relation is annotated with the result data it returns (to P1)
after evaluating this plan.

Figure 4.3.: Illustrative example for overlap-driven query answering.

in the database symbols. The relations in the peer schemas are related by peer mappings.

Suppose a user poses the query Q :−P1.R, P1.S at P1. Peer P1 uses its outgoing
mappings to create the query plan displayed in Fig. 4.3(b). The relation P1.R can be
reformulated using two alternative mappings into P2.R and P4.R. These contributions
are merged by the union operator in the lower left of the query plan. All data retrieved for
P1.R has to be joined with results for P1.S, which can draw tuples from P4.S. Finally, the
result of this join-merge needs to be merged with the result returned by P3.RS. Observe
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that these tuples cover both P1.R and P1.S, because of the local-as-view mapping between
P1 and P3.
Now we identify redundancies in the data retrieved by the query plan in Fig. 4.3(b).

It is easy to see that the result sets from P2.R and P4.R are equal. So one of the two
mappings could have been pruned, if P1 had known that their data contributions are
mutually equal. In addition, such an overlap-based pruning can be combined with other
techniques taking a cost model into account. In this case, assessing the cost for obtaining
the result {r1, r2} might lead to the decision that accessing P4 is cheaper, because the data
have to be transported only between P4 and P1. When the tuples {r1, r2} are joined with
{s1} coming from P4, we maximally obtain {r1 u s1, r2 u s1}. So the union right below
the query in Fig. 4.3(b) shows overlap as well (namely {r1 u s1}). However, pruning the
result from P3.RS completely would result in losing the tuple {r2us2}, which is not part
of the overlap. So we have to make a trade-off between the completeness of the query
result and cost savings achieved by removing data overlap from the plan, Sec. 4.5. In
Chapter 9, we introduce a novel approach to prune mappings partially. Thus, we aim to
eliminate overlap while preserving non-overlapping tuples in the query answer of a set
of alternative mapping paths.

2

Overlap distribution To reduce data overlap during query planning, it is necessary to
measure and describe extensional overlap in an aggregated form. To this end, it is inter-
esting to look at the distribution of overlap with respect to the ranges of the attributes
of a relation. Consider a multi-dimensional data space made up by the attributes of
a relation as dimensions as depicted in Fig. 4.4 on Page 62. It makes a fundamental
difference whether the overlapping tuples are scattered equally in this space or whether
they occur with higher frequency in certain regions.
In the first case, the overlap can only be described on a tuple basis. As a consequence, it

is very difficult to provide an aggregated description of the extensional overlap between
the two relational extensions at hand. In the case that overlapping tuples occur at
certain regions within the multi-dimensional space, we have a good chance to describe
these regions and adjust further query processing to this information. In Chapter 9 we
propose a technique to do so.
We believe that in practice both cases occur. However, observe that selections in

mappings and in the user query restrict the corresponding result sets to be located in
subareas of the multi-dimensional space. In effect, we can expect much of the overlap
between these intermediate result sets being limited to a number of sub-regions that can
be handled by our techniques presented in Chapter 9.
The degree of skew in the data distribution accessible over alternative outgoing map-

pings at a peer also influences the distribution of overlap at that peer. The higher the
skew of the data distribution, the higher is the probability of regions with comparably
high density of overlapping tuples. The reason for this are redundant mapping paths.
As discussed above, data returned by a peer Pj may be transported to a peer Pi along
different mapping paths. There, the datasets coming from the same originating peer
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a1

a2

Overlap {mi, mj}

(a) Overlap distribution of data potentially
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(b) The cardinality distribution of mapping mi

shows that only a fraction of all data at that
peer is part of the overlap. Some of these cells
are highlighted with a black dot.

Figure 4.4.: Example of a 2-dimensional overlap distribution aligned with corresponding
cardinality distribution.

Pj overlap completely. If the data distribution at Pj has a high skew, i.e., there are
areas in the multi-dimensional space comprising much more tuples than other areas of
the same size, then the overlap distribution at Pi is skewed in the same way as the data
distribution at Pj . Observe that detecting and exploiting such situations is exactly our
objective.

4.5. Combining Overlap and Completeness
In this section we motivate the trade-off between completeness and overlap minimization.
This issue is then taken up in Chapter 9 and considered in our overlap-driven query
optimization approach.
Briefly, our approach “removes” an overlapping area in the data space from all but

one of a set of alternative mappings in the query plan. This is technically achieved by
inserting appropriate selection predicates into the corresponding parts of the local query
plan.
There can be situations in which an overlapping area of the data space also comprises

a considerable part of the result size of that set of mappings, Fig. 4.4. Excluding this
area from query reformulation also drops all non-overlapping result tuples in this area,
which decreases the completeness of the answer. If this decrease is higher than the cost
savings by avoiding the transport of overlapping tuples, the overall efficiency of query
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answering decreases.
So it becomes clear that we have to consider the completeness of the query plan and

cost savings due to excluded overlap at the same time. And doing so is very well possible,
because we can exploit the degree of freedom at which of a set of alternative mappings
we reduce data overlap. For more details, we refer the reader to Chapter 9.

4.6. Query Execution Cost
To address the challenge of high peer autonomy, our cost model should work fully de-
centrally. This means that a peer can only use information available locally to estimate
the cost of answering a query being sent to a neighboring peer.
Basically, referring to the result size we can identify two different types of cost in

Pdms query answering:

– Variable cost depend on both the size of the transmitted data set and the charater-
istics of the mapping path they are transported on, such as its length and network
bandwidth. Moreover, the result size influences the cost to be spent for computa-
tion of the query plan operations.

– Fixed cost represent the effort query planning and latency time for establishing
network connections for transporting result data. Query planning cost depend on
the size of the virtual overall query plan that can be thought of as the “union” of
all local query plans at all subsequent peers.
Latency [OV11] is independent from the size of the query result. Similar to query
planning, it depends on the length of mapping paths in an virtual overall query
plan.

Both types of cost are part of the query response time. Clearly, the total query response
time can be measured locally at a peer. In Chapter 9, we only vary the number of
queries sent to neighboring peers, for each of which we estimate the result size. So it is
of secondary importance how the variable cost depend in detail on the size of the result,
the mapping path, and the computation effort. The same holds for the structure of the
fixed cost.
Since we want to perform a trade-off between the amount of transported data and the

query planning effort influenced by the number of queries, we choose a linear regression
model for the total query response time tQ:

tQ = v · |R|e︸ ︷︷ ︸
variable

+ c ·
∑

i

|Qi|
︸ ︷︷ ︸

fixed

(4.11)

with the estimated result cardinality |R|e, the sum of the number of predicates of outgo-
ing queries in the plan, a parameter v for calculating the variable cost, and a parameter
c for the fixed cost. To find the unknown parameters v and c we repeatedly perform
a simple linear regression. In the literature, several much more elaborated cost models
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have been proposed, e.g., [GRZZ00, ZL96, ROH99, NK01, NGT98]. Since this topic is
not in the focus of this thesis, we use a fairly simple cost model and make sure that it
suffices for our experiments, i.e., the estimation error for the query execution cost should
not lead to wrong decisions in our query optimization approaches.

4.7. Related Work
In this section we review related research in the areas of completeness modeling, data
overlap and cost models, apart from the work in [Nau02, NFL04], which we have already
discussed.

4.7.1. Data Overlap
The research from Nie et al. [NKN05, NK04, NKH03, NK01] considers overlap in query
planning for data integration systems. However, we believe that due to the high redun-
dancy of mapping paths in Pdms data overlap must be exploited more fine grained than
Nie et al. do for data integration systems. There, redundancy only arises if data about
a certain real-world entity is stored at different sources. Even in such cases it can be too
coarse to prune an entire source as it is done in the work of Nie et al.

4.7.2. Cost Model
The work in [GRZZ00, ZRZB01, ZRV+02] employs a multi-dimensional learning tech-
nique to predict query response times of Web data sources. Similar to the technique
we describe in Chapter 5, their model uses query feedback and can adapt to changes in
the behavior of the data sources. As in our work, one important dimension in the cost
statistics in [GRZZ00] is the result size of queries. However, it remains unclear from
the description in [GRZZ00] how the authors estimate the result size when the response
time for a query is to be assessed. As we describe in the following chapter, cardinality
estimation for conjunctive queries over skewed data sources is a difficult task.
Finding regression models in a multi-database environment is the subject of [ZL96].

This procedure could principally be applied to Pdms. However, the set of the known
parameters would have to be adapted, e.g., the size of the query plan has to be considered
when trying to find a trade-off between plan size and overlap removal.
The framework in [NGT98] assumes that a wrapper exports detailed information to

facilitate cost estimation. This assumption is less applicable in our setting of high peer
autonomy.

4.8. Summary
This chapter identified important measures to drive best-effort query optimization in
Pdms. Completeness and overlap serve as the basis for query planning decisions in
Part III of this thesis. We showed how the completeness model of Naumann et al. [Nau02,
NFL04] can be applied to our Pdms setting.
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4.8. Summary

We discussed why it is important to address data overlap between alternative mapping
paths at a peer and proposed to include the overlap distribution over the data space
queried into query planning strategies. Such approaches have to consider completeness
and overlap in an integrated way. Finally, this chapter reviewed existing cost models for
data integration and developed a coarse linear regression cost model used throughout
this work.
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5. Statistics on Metadata
The processing models presented in the previous section rely on information about com-
pleteness and data overlap of neighboring peers. Peers employ these scores to valuate
full and pruned query plans and to rank them accordingly. In the following, we propose
to gather statistics on completeness and data overlap over neighboring peers locally at
each peer.
Density of query results is heavily affected by projections in the schema mappings

between the peers, Sec. 4.2.1. Additionally, density suffers from null-values in the
tuples returned from neighboring peers. In contrast, coverage of results returned from
adjacent peers cannot be assessed by looking on the schema mappings. Rather, we need
an approach to gather query-dependent information on the actual data stored in the
part of the system accessible by a particular peer mapping. This section explains why
using query feedback for this purpose is superior to other techniques. Particularly, the
autonomy of the peers in the Pdms can be preserved, which is a major prerequisite for
the flexibility of this kind of system architecture.
We show how actual query results are examined to build up query-dependent statis-

tics on result cardinalities. To this end, we propose to use self-tuning histograms (ST-
histograms1) for both cardinality and data overlap assessment. Since each overlap his-
togram involves a pair of peer mappings and since there can be an exponential number
of such pairs at a peer, it is very important to minimize their size to save computing
resources. This section describes how to build these histograms with minimal size in a
complex query planning context employing both GaV and LaV style schema mappings.
Please note that we examine the accuracy of our histograms in Sec. 7.

5.1. Histograms Preserving Peer Autonomy
In this section we first recall the problem of estimating result cardinalities and discuss
some improvements to the STHoles histograms of Bruno et al. [BCG01]. Then, we
compare several approaches to gather and maintain statistics in Pdms with special
emphasis on the requirement of high peer autonomy.

5.1.1. Cardinality Estimation
Our approach of completeness-driven query planning heavily relies on precise and up-
to-date statistics about cardinalities of results returned from neighboring peers. Real-
world data is usually not uniformly distributed over the multi-dimensional data space,

1We use the term “ST-histogram” for the class of histograms using query feedback for their adaption
and do not refer to the special approach documented in [AC99].
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which is made up of the attributes of a relation as dimensions2. Instead, the tuples
of a relation are distributed with more or less skew. To perform a query-dependent
cardinality estimation, we are interested in the so-called joint data distribution.
We review some aspects of query result size estimation using multivariate statis-

tics [AC99, GTK01, IMH+04, MMK+05, PI97] and relate them to our PDMS context.
This problem deals with estimating result cardinalities for queries containing selection
predicates over different variables. A common solution is to estimate the result car-
dinalities for the selections over single attributes separately and to assume attribute
value independence. To assess the selectivity of a conjunctive selection predicate, all the
individual attribute selectivities are multiplied.
However, it is well known that there may be statistical correlations between the

values of different attributes of a relation, for instance functional dependencies. So
in practice, the assumption of attribute value independence may lead to very inac-
curate cardinality estimates, which can miss the true selectivity by orders of magni-
tude [FK97, DGR01, IMH+04, MMK+05]. Additionally, we point out that in Pdms it is
not possible to apply the uniformity assumption for the distribution of attribute values
for cardinality estimation, because a peer neither knows the overall number of tuples a
neighbor potentially may return nor it does know the complete range of attribute values.
Since approximating the joint data distribution of a multi-dimensional data set is

an important problem in query optimization and approximate query answering, various
works proposed solutions to this problem using multi-variate statistics and in partic-
ular multi-dimensional histograms. A general survey about histograms can be found
in [Ioa03].
To underline the difficulty of adequately estimating cardinalities in PDMS, recall

Fig 2.5 on Page 28. The comparison predicates of the user query, the intermediate
queries, and the mappings overlap and are accumulated. In Pdms, this effect repeatedly
may happen along a path of peer mappings. As a result, downstream queries include
complex conjunctive predicates. So we face high requirements with respect to accu-
racy in cardinality estimation. This can only can be addressed by multi-dimensional
histograms.
Among other characteristics, approaches to multi-dimensional histograms differ in

how they decompose the multi-dimensional data space and how they are set up and
maintained. Maintenance can be done in three different ways:

– Sampling. A peer systematically poses queries to adjacent peers to explore data
potentially accessible over them.

– Update propagation. The peers are expected to inform their respective neighbors
about any update in their local data stores [HLS06].

– Query feedback. Intermediate answers to user queries are exploited to adapt the
histograms to the actual data distribution that can be found in the query re-
sults [CR94, AC99, BCG01, SHM+06].

2Note that this notion of data space is completely different from the more general dataspace introduced
by Halevy et al. [HFM06].
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These approaches are compared in Sec. 5.1.3. In this work we use the query feedback
approach and propose several techniques to ensure accuracy and timeliness of our multi-
dimensional histograms on cardinality and data overlap in Sec. 7. There, we provide a
mechanism to detect “hidden” changes in the data distribution of a Pdms from a local
perspective. Additionally, we describe and solve the problem of trading off the conflicting
objectives of using query feedback and pruning the search space during query planning.
Another important facet of the cardinality estimation problem is assessing join result

sizes. Instead of complex probabilistic models [GTK01], we use a formula from [NFL04]
for estimating cardinality of join results, which is based on a simple probability as-
sessment with the cardinalities of the joined data sets as input. It does not require any
assumptions about the information overlap of the join partners. Adopting more accurate
techniques for join selectivity estimation is subject to future work.

5.1.2. Self-tuning Histograms: Improved STHoles
We briefly review the multi-dimensional self-tuning STHoles histogram proposed by
Bruno et al. [BCG01], which we use in an improved form for cardinality and data overlap
estimation.
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Figure 5.1.: Simple 2-dimensional STHoles histogram [BCG01] with tree structure of
buckets and the actual data distribution. The number of tuples measured
for each bucket is annotated in brackets.

STHoles consist of a nested structure of rectangular buckets covering subareas of the
multi-dimensional data space, Fig. 5.1. Each bucket covers a certain range of attribute
values in each dimension and maintains the number of tuples potentially returned for
a query exactly selecting that bucket—the so-called frequency. The volume v(c) of a
bucket c nested in a particular bucket b is not included in b. Rather, the “hole” c
maintains its own frequency f(c) and can in turn have own child holes. Regard the
STHoles histogram in Fig. 5.1. The root bucket br only measures those tuples that are
not within the bounding box of any of its children. Consequently, to estimate the result
size of the query Q, the overlap of Q with each of the bucket bi has to be computed and
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the frequency of each overlap is determined using a uniformity assumption across each
intersection, i.e., the contribution of bi to the cardinality estimation for Q is assumed to
be proportional to the volume of Q ∩ bi.
This tree structure of buckets of a STHoles histogram is refined by drilling new holes

where the actual tuple density obtained from the query answer significantly differs from
other parts of a potential parent bucket. An overlap area between the query and a bucket
b can have a non-rectangular shape in case it overlaps with any child of b. To obtain a
rectangular form, the so-called candidate bucket has to be shrunken. For instance, for
the histogram shown in Fig. 5.1 it has been determined that in the area covered by the
bucket b12 the tuple density is 0, hence it differs from the parent br. So a new child bucket
b12 has been drilled into br. The overlap of the query Q with b11 has an L shape, because
of the child b21. For a new child being drilled into b11, Q∩b11 would have to be shrunken
to a rectangular shape. One of our improvements of the STHoles histogram approach
concerns which one out of several possible solutions to chose as shrunken candidate hole.
To bound memory consumption and computing resources for maintenance, the number

of buckets is limited. A mechanism to merge buckets with similar frequency is used to
keep the number of buckets within that limit.

Improvements. We have made several changes to the STHoles mechanism as it was
introduced in [BCG01]:

– Ranking buckets during shrinking. When a candidate bucket c has to be shrunken
to exclude overlap with any of its parent’s children, several solutions si are possible
in general. Bruno et al. propose to chose the shrunken bucket with the “smallest
reduction of c” [BCG01]. However, there are cases in which the shrunken candidate
bucket si with the smallest reduction of volume is not the best solution. Rather,
it is more adequate to rank the different solutions according to their difference in
tuple density ∆dt with the original candidate bucket c

∆dt =
∣∣∣∣
f(c)
v(c) −

f(si)
v(si)

∣∣∣∣ . (5.1)

Observe that this approach requires to evaluate the query representing v(si) over
the query feedback to be used for updating the histogram. However, as we point
out in the next bullet, this helps to further increase the accuracy of histogram
updates.

– Using actual frequency for holes. As mentioned above, the original approach es-
timates the frequency f(c) of a candidate hole c by relying on the uniformity
assumptions. Especially in histograms with few but comparably large buckets, the
tuple density can be quite different across the volume of a large potential parent
bucket. Hence, the uniformity assumption can lead to considerable errors for f(c).
Our solution employs query feedback to precisely determine the frequency of the
new hole c. This improves consistency as well, because the merge procedure also
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has to assess the frequency of resulting buckets using the uniformity assumption.
This leads to our last improvement.

– Query feedback for bucket merge. To overcome the drawbacks of applying the uni-
formity assumption for histogram update, we propose to maintain the last query
feedback result R(b) for each bucket b in the histogram. Thus, even merge pro-
cedures can exploit query feedback in computing the frequency of the resulting
bucket and the change to the frequency of the parent based on the actual data
distribution as gained by the corresponding query feedback. Drilling a new hole c
into bucket b requires to “move” the corresponding tuples from R(b) to the query
feedback of c. In merging buckets, the query feedbacks of the buckets have to be
adjusted analogously.

Since the focus of this work is not on multi-dimensional histograms itself, we did not
perform an in-depth analysis of these improvements.

5.1.3. Histogram Maintenance
As mentioned in Sec. 1.2, high autonomy of the peers is an important requirement for
information sharing infrastructures. The flexibility of peer-to-peer architectures heavily
depends on the autonomy of individual peers. In this section we examine several ap-
proaches to gather and maintain statistics as they are listed in Sec. 5.1.1. We focus on
the following aspects:

– Influence on peer autonomy in Pdms. What obligations does the approach require
from the peers? Each functional requirement reduces peer autonomy to a certain
degree.

– Adaptability to Pdms changes. As we discuss in Sec. 7, the capability to adapt
to changes in the Pdms structure and data distribution over the system is an
important discriminator of corresponding solutions. There, we argue that possibly
due to comparably simple events, for instance a particular peer goes offline, massive
changes in the data distribution can be induced. A first challenge for statistics
maintenance in Pdms is to be informed about changes that happen beyond the
own neighborhood. To valuate solutions to this difficulty, we introduce the horizon
of statistics for a distributed information system. It is defined as the maximum
length of mapping paths to data the histogram captures.
Second, the data distribution as it is perceived in a certain peer’s statistics has to be
updated quickly to reflect the change, although the peer has no direct connection
to the part of the Pdms where the change happened.

– Efficiency of maintenance. How large is the overhead of a certain approach to
update distributed statistics in case of significant changes in the Pdms? This
depends on whether the solution requires additional exchange of information for
updating statistics throughout the system.
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Sampling Neighboring Peers. As we assume that a particular peer only knows its im-
mediate neighbors and we believe that a histogram update should not compromise those
peer’s autonomy, sampling [LN90, PI97] involves additional queries, which are recur-
sively passed through the system. This expensive processing of sampling queries would
have to be done during normal operation time, thus decreasing the overall efficiency of
the system. Moreover, the additional cost of sampling is very difficult to predict for an
individual peer.
Another drawback is that sampling statistics can become outdated in case of changes

in the Pdms. The question is how often to repeat sampling to capture changes in
the system quickly. This cannot be answered from the perspective of an individual
peer because, as already mentioned, changes can happen beyond its directly accessible
neighborhood.

Update Propagation. A different approach to establish statistics about data accessible
through peer mappings is the propagation of updates as proposed in [HLS06]. There,
peers are expected to inform their neighbors about updates in their local data and update
messages they receive from their respective neighbors. The peers use this information in
their own statistics on the multi-dimensional data distribution perceived over a certain
peer mapping.
We believe that in practice peers may not always be willing to pro-actively dis-

tribute their updates, i.e., peers likely deny such functionality. Moreover, the approach
in [HLS06] is less accurate than using query feedback for histogram tuning, because a
certain number of updates is buffered before propagating them. Our results presented
in Sec. 7 show that information on changes in the Pdms needs to be processed quickly
to adapt the distributed system to these events.
Propagating all updates through the complete system would also not be feasible,

because changes involving whole peers would result in transforming and transporting
large amounts of data. Therefore, Hose et al. propose to limit the propagation distance
of updates by a hop count [HLS06]. This, again compromises peer autonomy in that peers
have to attach lineage information on the query result as well as pass this information
to other peers. Hence, they would uncover from where the result tuples come and thus
impede “trading” data they received from other peers. Moreover, introducing such a
limitation actually bounds the horizon of the histograms accordingly. Then, the difficulty
arises at each peer how to choose this hop count in a Pdms of unknown extension.

Using Query Feedback. In contrast to the above techniques, using query feedback
for gathering and maintaining statistics basically comes for free. Of course, in such an
approach only those parts of the data space can be adapted that are covered by queries.
However, the workload created by user queries usually suffices to adapt histograms to
changes of the data distribution in the Pdms as we experimentally show in Sec. 7.2.
Recall that due to the high redundancy of the mapping paths in Pdms every peer has to
answer so many queries that we have enough query feedback to update the histograms in
the frequently queried areas of the data space. This means that no further functionality
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is required from the peers, i.e., their autonomy is fully preserved. Compared to the two
other approaches, the efficiency of histogram maintenance based on query feedback is
also much higher.
The most important advantage is that query feedback reflects the current state of all

the data accessible over a peer mapping, hence the horizon of the statistics covers all
reachable peers. Consequently, if the mechanism for detecting changes beyond a peer’s
neighborhood is sensitive enough, it can notice modifications of the data distribution
even over long mapping paths. To this end, we present a fine grained mechanism for
detecting hidden changes in the Pdms in Sec. 7.2. It is based on the estimation error
history of individual histogram buckets.
Pruning the search space in query answering as we propose in Sec. 6 raises the difficulty

that first the amount of query feedback is drastically reduced and second that changes
can be masked by examination of query feedback. We provide a solution for this conflict
between maintenance of statistics and cutting down the effort for query answering in
Sec. 7.1.
As histogram adaption is computed in a distributed fashion in a Pdms, we employ

online refinement in Humboldt Peers, i.e., we adapt the histograms immediately after
receiving the query feedback to achieve fast histogram adaption rather than collecting
query feedback information and updating the histograms only from time to time [AC99].
Taken together, we agree to Aboulnaga and Chaudhuri who claimed in their paper

introducing self-tuning histograms [AC99] that techniques using query feedback are es-
pecially suitable in settings with distributed data sets, where there is no maintenance
window available, in which to perform sampling to update histograms. This especially
applies to Pdms because there is no central unit of control.
The comparison of approaches to histogram maintenance in Pdms is summarized in

Tab. 5.1.

Peer Autonomy Adaptability Efficiency
Sampling Neighboring Peers guaranteed − −−
Update Propagation compromised − −
Query Feedback guaranteed ++ ++

Table 5.1.: Comparison of approaches for histogram maintenance in Pdms. The scale
reaches from very poor (−−) to very good (++).

5.2. Histograms for GaV and LaV Mappings

Computational complexity for cardinality estimation and update of an individual his-
togram is indeed in linear time. However, the number of pairs of overlap histograms
at a peer is exponential in the number of outgoing peer mappings. Therefore, we are
interested in keeping the size of the histograms as small as possible to save computing
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resources and memory. There are several factors influencing the computational effort for
histogram maintenance:

– Number of dimensions, i.e., the number of attributes considered in the histogram,

– Maximal number of histogram buckets for the STHoles histograms,

– Update frequency of the histograms.

The latter two of these factors also heavily impact estimation accuracy of the histogram.
So we face a conflict of goals that is dealt with in Sec. 7. Here, we focus to limit the
number of histogram dimensions to the ones that are absolutely necessary.
As discussed in Sec. 2.3, a local query plan of a peer consists of several layers involving

relation predicates, comparison predicates, and the operators u and t. For our goal to
prune mapping paths that contribute only a small amount of data to the result of a user
query cardinality statistics for individual mappings are required. Similarly, approaches
to exclude overlapping tuples from being transferred unnecessarily need information on
data overlap between pairs of mappings. In this section we give an answer to the question
which attributes should be considered in building histograms for GaV as well as LaV
mappings in the context of the complex query plans at the peers.
A first optimization opportunity is to take into account projections in mappings

(Sec. 5.2.1). In some situations, there are further optimization opportunities by com-
bining histograms for different relations into one. This happens if certain properties for
the mappings hold. For instance, considering join pushdown (Sec. 5.2.2) can further
decrease consumption of computing resources of histograms at a peer.

5.2.1. Mappings Containing Projections

In general, peer mappings include projections as the following example illustrates. To
understand how histograms have to be initialized in such cases, we study the interference
of queries and mappings. The following example describes a peer mapping containing
projections.

Example 10. Consider the following standard schema H describing hospitals in the
disaster management domain:

H.Hospital(HID,Name,Zip)
H.Department(DID,HID,LeadingDoc, Specialization)
H.Bed(BID,Department, Patient, Status)

A particular hospital L may have a relation

IntensiveBed(BID,Room,Patient, Status)

to offer information about beds in intensive care units. The following LaV-mapping
relates the standard hospital schema to the above relation of our local hospital:
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L.IntensiveBed(BID, r, p, st) ⊆ H.Hospital(HID, n, Zip),
H.Department(DID,HID, ld, sp),
H.Bed(BID,Department, p, st),
HID = 89123, sp = ′IntensiveCare′

This mapping contains projections in both directions: The variable r in the head of the
mapping does not occur in the tail. Vice versa, the tail variables HID, n, Zip, DID,
ld, sp, and Department do not appear in the head of the mapping. Observe that this
(inclusion) mapping can be used only to reformulate queries over the standard hospital
schema H into queries over the schema L. 2

Additionally to selections and projections in peer mappings, the intermediate query
reformulations may contain selection predicates as well. So, we face the problem to
minimize the number of attributes considered in a histogram for a given mapping while
being able to estimate the result cardinality for all possible queries. To find a solution,
we investigate the set of possible queries, which may use the given mapping for reformu-
lation. The set of attributes to be considered by a histogram depends on the variables
of the selection predicates.
We distinguish GaV and LaV mappings: The single subgoal t in the tail of a GaV

mapping Q(X̄) ⊆ t(Ȳ ), Sel(Z̄) is unfolded into the subgoals of the query Q(X̄) in the
mapping head. The result of the reformulated query of a LaV mapping of the form
h(X̄) ⊆ Q(Ȳ ), Sel(Z̄) comprises the attributes X̄ of the single head subgoal h. In
both types of mappings the head variables are denoted by X̄, and Ȳ is the set of tail
variables. Note that there is no restriction about the variable set of the comparison
predicates: Z̄ ⊆ X̄ ∪ Ȳ .
For setting up a histogram it suffices to consider only the intensional overlap between

tail and head of the corresponding mapping (i.e., X̄ ∩ Ȳ ):

Theorem 2. Let m be a GaV or LaV mapping of the form

Q(X̄) ⊆ t(Ȳ ), Sel(Z̄) (GaV)
h(X̄) ⊆ Q(Ȳ ), Sel(Z̄) (LaV).

Let Hm be a corresponding histogram that allows cardinality estimation of all possible
queries that can be reformulated using m. Then the minimal set of attributes to be
covered by Hm to enable estimates for all possible queries are the attributes referenced
both in the head and the tail of m, i.e., the variable set X̄ ∩ Ȳ .

Proof. In general, the head of m can contain fewer or more variables than the tail. We
distinguish three different sets of variables: An individual variable can occur either

– only in the mapping head, X̄ \ (X̄ ∩ Ȳ ),

– both in the head and the tail, X̄ ∩ Ȳ ,

– or only in the tail, Ȳ \ (X̄ ∩ Ȳ ).
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We show why the first and the last group of variables need not to be considered by a
histogram for a GaV or a LaV mapping. Let ψ be a variable mapping from the mapping
variables X̄ ∪ Ȳ to the query variables that assigns a particular query variable to each
mapping variable.
Queries that have some variables from ψ(Ȳ \ (X̄ ∩ Ȳ )) in their comparison predicates

cannot be reformulated by the mapping, because the resulting reformulation would not
contain any of these variables. So their corresponding comparison predicates could not
be translated. Rather, using the mapping m we can reformulate only queries maximally
having ψ(X̄ ∩ Ȳ ) in their comparison predicates.
Variables that are not part of the mapping tail, X̄ \ (X̄ ∩ Ȳ ), i.e., that occur only in

the mapping head, cannot be part of any query to be reformulated using m. Simply,
there are no attributes corresponding to these variables in the peer schema(s), to which
the relations in the mapping tail belong.
The variables in X̄∩ Ȳ have counterparts in the both the head and the tail schema. So

comparison predicates in the query and the mapping can be formulated in both schemas.
Thus, it is guaranteed that only correct tuples are returned by the peer(s) involved in
the mapping head.

Taken together, the histogram for GaV, LaV, and in general for GLaV mappings
is only required to calculate estimates for queries over the attributes corresponding to
X̄ ∩ Ȳ . These attributes can be found by establishing a mapping from the variables in
X̄ ∩ Ȳ to the attributes of the peer schema relations corresponding to the tail subgoal
t, in which all these variables occur. Note that Theorem 2 holds independently of any
particular query reformulation algorithm.
In Example 10, the intensional overlap X̄ ∩ Ȳ between the mapping tail and head

comprises the variables p and st corresponding to the attributes Patient and Status,
respectively. All other variables in the example mapping need not to be considered in
setting up the corresponding histogram. So a two-dimensional histogram suffices to cover
all possible queries to be reformulated by the mapping given in that example.
Within the context of a query plan, the attribute set X̄ ∩ Ȳ of the intensional overlap

between head and tail of a mapping is the schema of the query rewriting resulting from
that individual mapping. So we can refine the corresponding Definition 8 from Sec. 2.3.3:

Definition 18 (Schema of the Result of a Mapping). Let m be a GLaV mapping of the
form Qh(X̄) ⊆ Qt(Ȳ ). The result of the mapping m has the attribute set X̄ ∩ Ȳ .

5.2.2. Optimization for Join Pushdown

After minimizing the set of attributes for a single histogram we now widen our scope to
all histograms at a particular peer. To identify additional opportunities for reduction of
the size or the number of histograms, one has to regard the most general query plan for
an individual peer. Here, we extend our Pdms model by the notion of a special kind of
peer mapping:
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Definition 19 (Incoming Mapping). Let m be a peer mapping of the general GLaV form
Qh(Ph) ⊆ Qt(Pt). Let P be a peer. The mapping m is called an incoming mapping with
respect to P , if P ∈ Ph.

Intuitively, incoming mappings have the peer under consideration as target. Conse-
quently, they can only be used for query planning by the neighbor peers occuring in the
tail of the mapping.
In situations where reformulation using several mappings results in a join of relations

that reside at the same remote peer, the join attribute needs to be reflected only once
in the histograms. In fact, a single histogram for the join result would be sufficient.
However, this optimization assumes that the peer exclusively receives such queries that
require the join result rather than queries over a participating relation.
A sufficient condition that this condition is always fulfilled is that

(1) the peer knows about all of its incoming mappings and

(2) all of these mappings are GaV mappings such that the above join is part of their
reformulation.

Even if the peer does not know about all of its incoming mappings, it can observe the
query workload it receives. If the workload in the past has solely consisted of conjunctive
queries, it is quite probable that this also will be the case in the future. Property (2)
guarantees that none of the relations involved in the join is ever queried in isolation
by another peer. Rather, the peer always receives conjunctive queries. Observe that
checking property (2) before setting up the histograms only requires information locally
available at a the peer. The following example illustrates this approach.

21

subgoal to be reformulated occur in the mapping head. For instance, this means
that in the situation in Fig. 4 (a) it holds that V ars(Sel(g)) ⊆ ∪iV ars(Sel(hi)).
The LaV expansion in Fig. 4 (b) uses the mappings m2, m3, and possibly others
to cover the subgoals of the query to be reformulated, namely g1, g2, . . . , gk.
There, the dashed line indicates that the resulting goal node h covers both g1

and g2. 2

  

h1, CP(h1) h2, CP(h2) hk, CP(hk)

g, CP(g)

h1, CP(h1) h2, CP(h2) hk, CP(hk)

h2, CP(h2) h2, CP(h2)

(a)

g1, Sel(g1) g2, Sel(g2) . . . gk, Sel(gk)

P.h, Sel(h) P.j, Sel(j)

m2

Sel(m2)

m3

Sel(m3)

h1, Sel(h1) h2, Sel(h2) . . . hl, Sel(hl)

m1 Sel(m1)

g, Sel(g)

Fig. 4. Selection predicates (Sel) in the rule-goal trees of a GaV (a) and a LaV
expansion (b). Rectangles represent goal nodes (subgoals of queries). Mappings
are displayed as circles.

The MiniCon algorithm published in [PL00] aims to combinine the MCDs
seamlessly to form complete rewritings. This is no longer necessary in the Pdms
context. Here, goal nodes created from MCDs can be combined with goal nodes
resulting from applying GaV mappings as well. To this end, foreign-key relation-
ships are required from the goal nodes resulting from MCDs and GaV expansions
as indicated between the goal nodes below the LaV mapping m2 and the GaV
mapping m3 in Fig. 2 on page 16. These foreign-key relationships can be drawn
from the peer schema if all involved goal nodes are instances of the same peer
schema. If the goal nodes resulting from MCDs and those created by GaV expan-
sions are related to different peer schemas, the foreign-key relationsships between
them have to be discovered by data profiling techniques [BH03,IMH+04].

Figure 5.2.: Selection predicates (Sel) in the rule-goal tree of a a LaV expansion (ex-
tract from Fig. 2.5). Rectangles represent goal nodes (subgoals of queries).
Mappings are displayed as circles .

Example 11. Regard the local rule-goal tree for a LaV expansion shown in Fig. 5.2.
The goal nodes g1, g2, . . . , gk form the conjunctive query to be reformulated at the current
peer. These goal nodes are joined as indicated by the arc below the top rule node. The
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goal nodes were created by using the mapping corresponding to this rule node in a GaV
expansion. One level below, the LaV mapping m2 covers g1 and g2 and results in a goal
node P.h at another peer P . On the far right, the goal node gk is reformulated into the
goal node P.j at the same peer P . Observe that in general there can be more goal nodes
in between g2 and gk. For now let the goal nodes g1, g2 and gk be the only ones in the
rule-goal tree.
Then, the LaV mapping m2 and the GaV mapping m3 completely reformulate the

conjunctive query g1, g2, gk. The result of the query reformulation step involving m2 and
m3 is P.huP.j, i.e., the join between the goal nodes P.h and P.j. Since both of these goal
nodes represent queries over the same peer P , the join calculation can be pushed down
to that peer. This means that it suffices to use a histogram for the result of P.huP.j as
discussed in more detail below.
Since the goal nodes g1, g2 and gk from the above example are joined, their correspond-

ing relations must pairwise share a join attribute. For instance, let the join attribute of
g2 and gk be ak. Then, the attribute ak of the extension of the (natural) join P.h u P.j
only contains values that occur both in the extension of g2 and the tuple set of gk.
If we create a histogram for both m2 and m3, the join attribute ak of P.h u P.j would

occur in both of these histograms. Moreover, some parts of the value ranges of ak covered
by these histograms never occurs in the extension of P.h u P.j. Hence, this approach
unnecessarily occupies memory for the join attribute in both histograms and for covering
value ranges of ak, which are guaranteed not to be part of the final query answer.
Another drawback is that actually pushing down joins, e.g., P.huP.j, also hides update

information from the histograms of the individual mappings, here m2 and m3. Since each
of those mappings can potentially return more tuples than P.huP.j if queried in isolation.
Note that this can happen, if a user poses a query only over the relations g1 and g2 that
is rewritten using only m2 or a query over gk that is reformulated using only m3.
Usage of computing resources, memory consumption, and estimation accuracy can be

improved by creating only a single histogram for the join P.huP.j. In this approach, the
join attribute ak is represented only once. Additionally, the accuracy of the histogram
is higher, because the same number of buckets as in the naive approach are used to
exclusively cover the ranges of ak, which are guaranteed to occur in the result of the join.
2

Substituting histograms for single mappings by a single histogram for their reformula-
tion result requires that it is guaranteed that the peer is expected to estimate cardinalities
only for the conjunctive query completely covered by these mappings, instead of indi-
vidual subgoals of that conjunctive query. For instance, the peer in the above example
solely could perform cardinality estimation for the conjunctive query g1, g2, gk if only a
histogram for the result of the mappings m2 and m3 is available.

5.3. Histograms for Information Overlap
Our goal in this section is to build histograms for every situation in the local query
plan at a peer where alternative subresults are combined. To this end, we first recall
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the notion of information overlap. Then, we examine the most general structure of the
query plan with respect to overlap. Based on these findings, we are able to decide how to
create the overlap histograms that can be used for all possible queries over a given peer
schema. Finally, the usage of the overlap histograms in query answering is explained.
Information overlap has two dimensions as discussed in Sec. 2. Intensional overlap

means that two data sets have at least one attribute in common. As [NFL04], we
require that two overlapping data sets at least have one common attribute ak. This
attribute ak can either be a key for both data sets or a foreign key for one data set and
a key for the other. Extensional overlap requires that there are actually tuples in the
different data sets that have an identical value for ak.

5.3.1. Information Overlap in Query Plans
As discussed in Sec. 2.3, query plans reflect several alternatives to rewrite a query at
hand. The following example serves as a starting point to study at which positions in
the local query plan overlap has to be considered.

Example 12. We take up Example 2 on the emergency hospitalization of three hospi-
tals J , K, and L from page 25. The rule-goal tree in Fig. 5.3 displays the state after
expanding the subgoals of the following query:

q :−K.Patient(SSN,Name,AdmID),K.Admission(AdmID,Adress,Date).

This query can first be partially answered by using the mapping m1 to J.Patient. Second,
both m2 and m3 can individually be used to obtain further partial answers to the query.
Finally, combining the two mappings m2 and m3 in a join-merge L.PatientuL.Intake
also returns result tuples for the above query. In terms of Sec. 2.3, these tuples are the
result R({m2,m3}) of the mapping set {m2,m3}. 2

Now we widen our scope to the general query plan as it results from the transformation
of the rule-goal tree. The local query plan P of a peer is a full outerjoin-merge t of
rewritings, each of which returns tuples that satisfy the query Q the peer is about to
answer:

P (Q) =
⊔

i

(Ci1 u Ci2 u . . . u Cik) . (5.2)

This is the first level on which the operator t occurs in the query plan. So we have
to consider overlap between tuples resulting from different query rewritings Q′i = Ci1 u
Ci2 u . . . u Cik.
Each of the terms Cij in the rewritings can combine alternative contributions for the

query subgoals covered by that rewriting subgoal. Each of these alternative contributions
is a result of a set of mappings Ml along with the corresponding selection predicates
Sel(Ml). All results of mapping sets that are in the same Cij , have to be combined by
a full outerjoin-merge t:

Cij =
⊔

l

(R(Ml), Sel(Ml)) . (5.3)
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K.Patient
AdmIDNameSSN

K.Admission
DateAddressAdmID

L.Patient
InIDAddressSSN

L.Intake
DateNameInID

q

m2 m3

J.Patient
DateNameSSN

m1

Figure 5.3.: Example for a rule-goal tree with two LaV expansions involving three
mappings.

Hence, this is the second occurrence of t in the query plan. Observe that in many cases
a mapping set consists only of an individual mapping.
In general, we aim to assess the size of the extensional overlap by an overlap histogram

for each combination of terms connected by t in both situations it can occur:

– Each pair (Tm, Tn),m 6= n. In practice, there is usually a small number of such
pairs, especially if the number of relations in a peer schema is small. But the larger
the peer schema, the more relations can be involved in a query to the peer and the
more different groups of query subgoals—reflected in different Ti—are possible.

– Each pair of results of mapping sets (R(Mp), R(Mq)), p 6= q. The number of
different pairs of this kind is dependent on the number of peer mappings a peer
has, i.e., the rank of the peer.

Principally, the number of overlap histograms necessary to capture all possible pairs
of alternative subresults in a query plan is exponential in the parameters mentioned
above [FKL97]. Therefore, it is crucial to minimize the size of each overlap histogram
to save memory and computing resources for their maintenance.

5.3.2. Overlap Histograms
Since overlap between results of mapping sets is much more common in practice than
overlap between complete rewritings, Equation (5.2), and the potential savings are much
higher we focus on the former. Overlap between the top level terms of a query plan can
be treated similarly.
We turn our attention to pairs of mappings possibly containing projections and discuss

which attributes of the peer schema have to be included in overlap histograms. As in
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Sec. 5.2, we are interested to initialize the overlap histograms such that overlap can
be estimated for all possible queries a peer receives. Since the local rule-goal tree at a
peer consists of both GaV and LaV expansions, we have to find out for which pairs of
mapping sets an overlap histogram has to be created.

Comparing Mapping Results. We align the tuple sets returned by the mapping sets
for each pair of mapping sets. Please recall that these tuple sets are the results of
the respective mapping sets, Def. 9. As mentioned above, we require those tuple sets
to be compared for overlap to have a common key attribute. Then, two tuples are
regarded as overlapping, if their key attributes have the same value. Otherwise, the
tuples correspond to different real-world entities. This task is straightforward for GaV
mappings concerning the same relation of a peer schema.
However, comparing GaV and LaV mappings is more difficult. First, we study LaV

mappings in more detail. Key attributes of peer schema relations covered by a LaV
mapping m are only a key for the result R(m) of the mapping, if they are not involved
as a target in a foreign-key relationship as highlighted by the following example.

Example 13. Consider the two relations P1.R(a, b) and P1.S(b, c) connected by a for-
eign-key relationship over attribute b, a relation P2.RS(a, b, c), and the LaV mapping

P2.RS(u, v, w) ⊆ P1.R(u, v), P1.S(v, w).

Since b is the target of a foreign-key relationship, the result of the LaV mapping, namely
P2.RS(a, b, c), and P1.S(b, c) do not share a common key attribute although both tuple
sets include values for the attribute b of the relation P1.S(b, c). The attribute b is no key
in RS(a, b, c). 2

This observation leads to a general condition for the results of a GaV and a LaV
mapping to be compared for overlap.

Theorem 3. Let m1 be a GaV mapping of the form Qh ⊆ T and m2 be a LaV mapping of
the form H ⊆ T1, T2, . . . , T, . . . , Tn, i.e., both mappings can potentially be used to answer
a query for T . Let none of the mappings project out any variable that corresponds to a
key attribute of a schema relation. Then, it is only possible to test the results of m1 and
m2 for overlap, if the key of the schema relation the predicate T matches to is also a key
of the relation the mapping head H matches to.

Proof. According to the conditions of the theorem, all variables corresponding to a key
attribute of a schema relation are part of the results of the mappings. The results of
two mappings can be checked for overlap, if their corresponding schema relations have
the same key. Hence, the check is possible, if T and H share the same key attribute.
As demonstrated in the above example, the mappings cannot be checked for overlap,

if the key attribute of the schema relation T corresponds to a target of a foreign-key
relationship in the tail of the LaV mapping, here T1, T2, . . . , T, . . . , Tn. In that case, the
key attribute that T corresponds to is no key in the result of the LaV mapping.
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Notice that it is possible that result sets of the queries in the head and the tail of
a mapping can have different keys, i.e., variables corresponding to key attributes can
be projected out. For such cases a more sophisticated method to compare tuples is
necessary, for instance duplicate detection. However, with such techniques, instance
data has to be included into the examination for overlap. In such situations, the overlap
cannot be determined using solely schema and mapping information. We do not cover
these situations in this thesis.

Histogram Dimensions. As stated above, our goal is to find the minimal set of at-
tributes to be considered in an overlap histogram HM1,M2 for a certain pair of mappings
sets (M1,M2) such that it can be used for all possible queries involving (M1,M2). Sim-
ilarly to Sec. 5.2, we examine which queries have to be treated by the histogram and
which do not. The result is that the set of attributes to be considered in HM1,M2 corre-
sponds to the intensional overlap between results R(M1) and R(M2) of the mappings
sets:

Theorem 4. LetM1 andM2 be two mapping sets with their results R(M1) and R(M2)
respectively. Let Attr(R(M)) be the set of attributes of R(M), i.e., the schema of a
result of a mapping set. Then the minimal set of attributes to be considered in the
overlap histogram HM1,M2 for (M1,M2) such that it can be used for all possible queries
combiningM1 andM2 by a full outerjoin-merge t is Attr(R(M1)) ∩Attr(R(M2)).

Proof. The attribute set Attr(R(M)) of a result of a mapping set is the union of the
attributes of the results of the individual mappings mi in M, because the join-merge
operator u in Def. 9 keeps all the attributes of the results of the mi:

Attr(R(M)) =
⋃

i

Attr(R(mi)) (5.4)

Combined with Theorem 2, it follows that Ā1 = Attr(R(M1)) and Ā2 = Attr(R(M2))
contain the candidate attributes for HM1,M2 . Let ψ be a variable mapping from the
mapping variables of R(M1) and R(M2) to the query variables assigning a particular
query variable to each mapping variable.
Analogously to Theorem 2, the attributes in Ā1 \ (Ā1 ∩ Ā2) need not be considered in

HM1,M2 , because queries involving selections over ψ(Ā1 \ (Ā1∩ Ā2)) cannot be answered
byM2. Due to symmetry betweenM1 andM2 the same holds for Ā2 \ (Ā1 ∩ Ā2) and
M1. In contrast, queries with selection predicates over ψ(Ā1 ∩ Ā2) can be answered by
both sets of mappings.

Intuitively, the above theorem means that the overlap histogram only needs to com-
prise the attributes for which selection predicates can be translated by both of the given
mapping sets.

Example 14. We continue Example 10 from Page 74 and add a second mapping m2
establishing a relationship to beds and patients at another hospital L:
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L.Bed(BID,PatientSSN,Building)
L.Patient(SSN,Name,Age)
m2 : L.Bed(BID, p, b), L.Patient(p, n, a) ⊆ H.Bed(BID,DID, p, st),

HID = 65432

We have a simple example withM1 = {m1} andM1 = {m2}. The attributes of the result
of the mapping m1 from Example 10 were Attr(R(m1)) = {BID,PatientSSN, Status},
whereas we have Attr(R(m2)) = {BID,PatientSSN} for m2 above. Consequently, the
overlap histogram HM1,M2 has the dimensions

Attr(R(M1)) ∩Attr(R(M2)) = {BID,PatientSSN}.

The attribute Status ∈ Attr(R(m1)) is no dimension of the overlap histogram, because
m2 cannot answer queries with selections over Status. 2

An example of an overlap histogram with a comparison of the corresponding data
distributions is depicted in Fig. 5.4.

5.3.3. Using Overlap Histograms

This section explains how to use the overlap histograms to estimate overlap between data
resulting from the corresponding mapping sets. We denote the rewritings resulting from
applying the two mapping setsM1 respectivelyM2 on a query Q with Q′M1 respectively
Q′M2 . These rewritings occur in the Cij in Equation 5.3. Hence, they have the form

Q′Mi
= R(Mi), Sel(Mi) (5.5)

consisting of the result and the selection predicates of the mapping set. Given the
rewritings Q′M1 and Q′M2 , we are interested in the set S of selection predicates to be
used for overlap estimation with the given histogram HM1,M2 .
Since we assume overlapping tuples returned by Q′M1 and Q′M2 to be equal in the

values of all common attributes, the overlapping tuples fulfill the selection predicates of
both rewritings. Consequently, we find that

S = Sel(M1) ∩ Sel(M2). (5.6)

5.4. Related Work

Related work for this section comes from two fields: Multivariate statistics for selectivity
estimation in centralized databases and efforts to capture statistics on overlap between
information sources. To the best of our knowledge, there is no research that investigated
the the difficulties in applying multi-dimensional statistics on the comparably complex
and volatile setting of Pdms for query-dependent cardinality and overlap estimation.
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Abbildung 4.2: Overlap-Histogramma und zugehörige Datenverteilungen

a In der vorliegenden Arbeit werden überwiegend aus visuellen Gründen nahezu ausschließlich zwei-
dimensionale Histogramme betrachtet. Die vorgestellten Konzepte sind jedoch dennoch auch auf
n-dimensionale Fälle übertragbar. STHoles-Histogramme erweisen sich allerdings für mehr als vier
Dimensionen als relativ ungenau [5].

(a) Data distribution of
mapping setM1.
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(c) Overlap histogram for
the mapping sets M1 and
M2.

Figure 5.4.: Example of an overlap histogram with the data distributions of alternative
mapping sets. The numbers show the tuple frequency of the buckets.

5.4.1. Multivariate Statistics
In this section we discuss related work covering multivariate statistics. Multi-dimensional
histograms were introduced in [PI97] to overcome potential high inaccuracies of one-
dimensional histograms in conjunction with the attribute value independence. Especially
in the Pdms context, where peers deal with completely unknown data sources it is very
probable that the independence assumption may lead to highly inaccurate estimations.
As creating optimal multi-dimensional histograms is NP-hard [MPS98], a variety to
approaches has been proposed to achieve accurate approximations. In the following, we
focus on self-tuning approaches.
The first proposal on using query feedback for maintenance of statistics was [CR94].

This paper deals with one-dimensional statistics. Aboulnaga and Chaudhuri [AC99]
exploit query feedback to maintain multi-dimensional histograms. The extensive ex-
perimental study in that work reveals that self-tuning histograms are feasible for low-
dimensional data sets and medium skew in the underlying data. They also proved to
be sufficiently robust against a biased tuning workload as well as against significant
database updates. These characteristics make them well suited for application in highly
dynamic Pdms. An important drawback of the rectangular decomposition of the multi-
dimensional data space used in [AC99] is the very high memory and CPU consumption
for high-dimensional datasets, e.g., with more than 4 or 5 dimensions.
Chaudhuri et al. overcome this obstacle with their STHoles histograms [BCG01] that

we use in an improved version in this thesis. However, due to their uniformity assumption
for an individual histogram bucket, query feedback is not exploited to the full extent.
In our version of STHoles, we derive the exact tuple density for a new hole by querying
the query feedback to be used for the histogram update. By keeping the most current
query feedback for each bucket in the histogram, it is also possible to perform merges
of buckets with higher accuracy than in the original STHoles histogram, Sec. 5.1.2. The
estimation accuracy of STHoles histograms for high-dimensional data of with 4 or more
dimensions is not sufficient in some cases.
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To improve accuracy and consistency of selectivity estimation especially for high-
dimensional data sets, Markl et al. apply the principle of maximum entropy (ME) to this
problem [MMK+05, MHK+07]. This approach exploits all (possibly partial) information
on the data distribution of the data set at hand. Principally, it is possible to apply the
ME approach to improve accuracy and consistency of self-tuning histograms for high-
dimensional data. The maximum entropy approach is also proved to adapt readily to
changes in the underlying data [SHM+06].
The approach to assess join selectivity in [GTK01] goes much beyond the completeness

model used in this work. However, it requires intensive analysis of dependencies in the
underlying data to establish probabilistic models and is therefore less appropriate in the
heterogeneous and dynamic environment of a Pdms.
The Semantic Gossiping approach of Aberer et al. uses cycles in mapping networks

to examine loss of information [ACMH03]. That is, instead of explicitly modeling com-
pleteness as in our approach, the authors use instance sampling to assess information
quality criteria. The authors use a simple data model and define mappings only between
attributes. Moreover, their work does not cover selection queries.
The basic idea of using histograms for query planning in a P2P system in [PKP04]

is quite similar to ours. However, that work only uses 1-dimensional histograms in
conjunction with the attribute value independence assumption. Additionally, in contrast
to Pdms, every peer in a P2P system has the same peer schema. Hence, the approach
in [PKP04] does not deal with creating histograms in the context of a complex query
plan comprising GaV and LaV style rewritings. The authors also do not discuss how to
adapt their histograms to changes in the system.
The work in [NKN05, NK04, NKH03, NK01] is closely related to our approach. Nie et

al. employ techniques from data mining to collect multivariate statistics for coverage and
overlap in a data integration scenario. They also provide a best effort approach as our
research does. Similar to this thesis, their systems BibFinder and StatFinder [NKH03]
assume that the autonomous data sources do not export statistics on their coverage
and overlap with other sources. The approach of the StatMiner component to learn the
statistics is based on identifying query classes with a necessary level of granularity. So
in fact, they also follow a query feedback approach. A difference to our work is that
they only consider queries frequently occuring for their statistics. In contrast, our goal
is to provide sufficient estimation accuracy for all random queries.
Nie et al. claim that the loss of accuracy by choosing the query classes too coarse

grained is not critical for their application, because they are primarily interested in
relative coverage statistics to rank data sources accordingly. Since we want to use car-
dinality and overlap estimates together with a cost model to assess the efficiency of
querying certain neighboring peers on a finer grained level, Sec. 9, we are interested
in absolute, highly accurate estimates. Furthermore, as reported in [NK04], Nie et al.
measure estimation accuracy by looking on the average error of a whole query workload.
In this thesis we examine how the estimation accuracy changes over time and thus over
the query workload. This is necessary to avoid that worse query planning decisions are
made based on the cardinality and overlap estimations. This is particularly probable
for queries referring to areas in the data space that are either seldom covered and thus
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receive low attention in the approach of Nie et al. or that differ drastically in their tuple
density from their surroundings.
The experiments that Nie et al. present deal with low dimensional data sets. Usually,

they use two dimensions. We believe that their approach to represent multivariate
statistics does not promise to scale well for a higher number of dimensions. This is also
an issue for the STHoles histograms that we use, but they can easily be improved by
employing the maximum entropy approach proposed in [MMK+05].

5.4.2. Overlap Statistics

The approach in [FKL97] basically has the same goals as our work. It builds a proba-
bilistic model on coverage and overlap between information sources in a mediator. The
model represents the probability distribution over a set of collections of a mediated
schema. Using this model their system can assess the coverage and overlap for a given
user query. The authors point out that their probabilistic model cannot consider arbi-
trary constant values of user queries. Rather, these values are mapped to the collections
of the mediated schema. In fact, this means that their mediator is not able to make es-
timations for queries containing selection predicates on continuous ranges of attributes
like our histogram-based approach can. Moreover, unlike to our approach, the solution
in [FKL97] assumes uniform data distribution and independence of attributes and is
therefore not capable to deal with highly skewed data distributions.
The work of Nie et al., e.g., [NK04], discussed in detail in the previous section also

addresses the problem of gathering overlap statistics to rank sources in data integration.
Similar to our approach, they treat statistics for coverage and data overlap by the same
technique.
The work in [BMT+05] comes from the area of information retrieval and aims to mea-

sure overlap between document collections with respect to the keywords they comprise.
Minerva is a P2P system for distributed Web search. In their approach, they have also
to reconcile the goals of high accuracy and scalability. A limiting factor for scalability
is the size and number of messages on their local indexes exchanged between the peers.
Although the maintenance of index information in Minerva is actually global, they face
to similar conflicts as we discuss in Sec. 7.

5.5. Summary

The focus of this chapter was on defining multi-dimensional histograms in the context
of complex query plans consisting of both GaV and LaV style query rewritings. We
proposed several improvements for STHoles histograms to obtain higher estimation ac-
curacy and better consistency of the statistics. Then, we compared different approaches
for collecting and maintaining statistics in Pdms with respect to preserving peer auton-
omy, adaptability to massive changes in Pdms, and their efficiency. We found that using
query feedback for maintenance of statistics is clearly superior to sampling techniques
or update propagation.
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5.5. Summary

We examined how to build histograms of minimal size both for cardinality and overlap
estimation for query rewritings involving peer mappings containing projections. For the
purpose of overlap estimation is was necessary to identify occurrences of the union-like
full outerjoin-merge operator in the general form of a query plan local at a peer.
Self-tuning histograms as described in this chapter are a solid basis for completeness-

driven as well as overlap-aware query optimization as discussed in the following chapters.
STHoles histograms are extensively used throughout our experiments.

87





Part III.

Efficient Query Answering in PDMS

89





6. Completeness-Driven Query Planning

To implement large-scale data sharing using Pdms in a flexible and efficient way, pruning
the search space of query planning is crucial. The main contribution of this thesis is to
optimize query planning based on completeness-related metadata gathered locally at the
peers. The first two parts of this work have introduced solutions for query answering
and maintaining corresponding metadata on benefit and cost in the flexible and volatile
context of a Pdms.
In this part we employ these metadata and propose new techniques for completeness-

driven query optimization. First, we show the potential of pruning the search space based
on estimations of the completeness of results returned from neighboring peers. Then,
Chapter 7 proposes solutions to keep the statistics necessary for completeness estimates
up to date in presence of changes as well as pruning. The budget-driven algorithms of
Chapter 8 employ a simple cost model together with cardinality estimations to both
optimize and limit resource consumption of query answering. Finally, in Chapter 9
we propose a novel approach to exploit query-dependent information on data overlap
between alternative peers to introduce another dimension of query optimization.
This chapter first explains the sources of information loss in Pdms query answering

and motivates our first pruning approach. Next, we describe how to use the cardinality
histograms introduced in Sec. 5 to identify mapping paths that contribute only few data.
Then, we present our threshold-based algorithm for pruning query plans and report on
its experimental evaluation.
As explained in Sec. 2.5, information loss along a mapping path means that data

can be filtered out by projections in peer mappings after they were transported between
several peers before. Since these data do not contribute to the query result, transporting
them even to the location where they are dropped is useless. However, the effort for
query reformulation and data transport already has been spent. So efficiency of query
answering is unnecessarily decreased. Observe that this effect only occurs if the query
language does not support projections. We believe, that for heterogeneous environments
this is a realistic assumption. For instance, in many query interfaces in the Web, the
user usually cannot choose the set of attributes in the result. If the query language
would support projections in queries a peer could project out attributes from a foreign
peer schema that are not mapped to its own schema.
Selections usually accumulate along mapping paths during query planning. In effect,

selection predicates in the query or in any mapping along a mapping path are applied
to the data stores. Hence, there is no unnecessary transport of data due to selections
in peer mappings as long as every peer in the path supports selections in the query
language. If some peers do not accept selections for some attributes of a query, this
leads to similar problems as for projections.
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6.1. Assessing Subplan Utility
Results of mapping sets are the smallest elements in query plans and they are combined
by a full outerjoin-merge into a subgoal of a query rewriting (Fig. 2.6 on page 31). As
described in Sec. 4.4, all of these results of mapping sets maximally contribute the same
set of attributes to the rewriting subgoal, i.e., they overlap intensionally. Additionally,
the results of the mapping sets can overlap extensionally. Therefore, we can expect that
pruning away a particular result will not reduce the overall completeness of the query
plan too much, because it is probable that a considerable part of the results pruned away
will be part of alternative results.
As stated in [Nau02], for the maximization of the completeness of a query plan of

an integrated information system, e.g., a peer, the principle of optimization does not
hold. This means that adding the result from a mapping set with higher completeness
than another one does not necessarily increase the completeness of the resulting plan
more than the mapping set with the lower completeness. This shows that the utility of
a mapping set for a query plan cannot be valuated in isolation. Rather, the result of
each mapping set must be considered in the context of the virtual overall query plan.
However, this is difficult in a Pdms query plan that consists of a mixture of GaV and
LaV mappings. The number of possibly incomplete query plans at a peer is exponential
in the number of query subgoals s and the number of mappings m contributing to each
query subgoal. Assuming that these numbers are known, the size of the search space
amounts to 2s·m.
To the best of our knowledge, there is no approach that considers any information qual-

ity criteria during the creation of a query plan involving both GaV and LaV mappings.
The work in [NLF99] uses a query planning approach dealing with GLaV-like mappings
and exploits information quality on the data sources sequentially. The authors state
that—for simplicity—they separated the query planning step from the quality-based
ranking of data sources and plans. Additionally to the results in [NLF99], Naumann
presented an integrated method for quality-aware query planning in a mediator setting
with LaV mappings [Nau02, NFL04]. However, in that work each LaV mapping is used
in isolation.
In contrast to the approach in [Nau02], that aims to find the best query plan without

exhaustively enumerating all query plans, we assume that at a peer it is usually possible
to compute the query plan to its full extent. Unlike the setting of a single mediator
being directly connected to a very high number of sources, in a Pdms we can assume
that the number of neighbors of a peer is usually quite small, i.e., less that 10. This is
due to the distributed nature of a Pdms. A particular peer only needs to know a few
neighbors. Yet, through the recursively branching network of peers most of them have
indirect access to a large part of the system.

6.1.1. Estimating Subplan Completeness

To valuate the utility of the result of a mapping set, we can refer to the fully expanded
query plan denoted by P̂ . Using the completeness model presented in Sec. 4, we assess

92



6.1. Assessing Subplan Utility

the completeness of all pruned plans derived from P̂ from the local perspective of the
peer under consideration. The completeness model requires the following input data for
each mapping setMl ∈ P̂ :

– Density scores for all attributes of the corresponding rewriting subgoal Cij ,

– Coverage of the result R(Ml).

In the following, we describe how to gather these data.

Density. For simplicity, we assume the attributes of the data returned by the neigh-
boring peers have full density:

∀a ∈ Attr(R(Ml)) : d(a) = 1. (6.1)

Of course, this is usually not the case because of projections in the peer mappings along
mapping paths. Projections in the mapping to the neighboring peer are considered in
our approach since the peer at hand knows about them. In experiments that have a
significant fraction of peer mappings with projections, we track how this assumption
increases the estimation error for the completeness of pruned query plans. It would be
possible to overcome this assumption by introducing accurate statistics on the attribute
densities of each mapping set in the query plan, e.g., by multi-dimensional histograms
analogously to the cardinality histograms. But this is not in the focus of this work.
Projections in mappings ofMl on the one hand means that the result of the mapping

set comprises fewer attributes than the corresponding rewriting subgoal:

Attr(R(Ml)) ⊂ Attr(Cij).

This is reflected in the input for the completeness calculation by setting the density of
these attributes to 0:

∀a ∈ (Attr(Cij) \Attr(R(Ml))) : d(a) = 0. (6.2)

On the other hand, projections lead to unnecessary data transport. This is the case,
if the result of the mapping has more attributes than the query subgoal it is covering.
Of course, this does not decrease the completeness of the mapping result. Rather, the
ratio of completeness to cost, i.e., the efficiency, is worse than it would have been if these
extraneous attribute values had not been transported.

Coverage. A second type of input information for the completeness model are the
coverages of the results of the mapping sets in P̂ . Recall that the result of a mapping set
is computed by a join-merge between the results of the included mappings. During query
planning, our histograms (Sec. 5.1) provide the peer with query-dependent cardinality
estimates |(R(mk)| for the results of the mappings referred to in Ml. By normalizing
them using a constant factor, e.g., the estimated size of the world |wmk

|, an estimate for
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the coverage of the result set can be obtained:

c(R(mk)) = |(R(mk)|
|wmk

| . (6.3)

Please note that the size of |wmk
| can be arbitrary for a particular mapping at a particular

peer. So it is not necessary to exactly know the size of the world. For instance, |wmk
|

can be chosen upon the initialization of the cardinality histogram of the mapping mk.
The coverage c(R(Ml)) can be calculated as usual using Eqn. (4.5).
Based on the attribute densities of the rewriting subgoals and the coverages of the

results of the mapping sets the completeness C(P̂ ) of the fully expanded query plan P̂
or any of its incomplete subplans can be computed using the formulas in Sec. 4.2.

6.1.2. Identify Pruning Candidates
Our goal is to assess the utility of each mapping set Ml ∈ P̂ to decide whether the
mappings inMl are worth following during further query planning. As we argued above,
the potential data contribution of a mapping set has to be determined in the context
of the local query plan. In [RNHS06], we have proposed to quantify the potential data
contribution of a mapping setMl by comparing the completeness

– of the local query plan exploiting all sets of outgoing mappings and

– of the plan without that mapping set.

Intuitively, this approach assesses the impact of the data contribution of Ml on the
query result of the peer. This approach is formalized as follows:

Definition 20 (Potential Data Contribution ∆C). Let P (Q) be a query plan to answer
the query Q. Let R(M) be the result of a mapping set M contributing to any of the
rewriting subgoals in P . The query plan resulting by removing R(M) from P is P ′ =
P \ 〈R(Ml), Sel(Ml)〉. Then, the potential data contribution of R(M) in the context of
P amounts to

∆C(P,R(M)) = C(P )− C(P ′) (6.4)

This definition can be applied analogously for the the data contribution of a rewriting
subgoal in P .

The potential data contributions of mapping sets can be used to compare different
mapping sets and—based on that—decide on pruning as discussed in the following sec-
tion and the Chapters 8 and 9.

6.2. Pruning Subplans
Having the means to assess the utility of mapping sets, we now exploit this information
to prune the search space of query planning. First, different general approaches for
pruning are compared. Then we present a simple pruning algorithm.
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6.2.1. General Pruning Approaches
Corresponding to the open-world semantics and the close-world semantics mentioned in
Sec. 2.4, pruning in Pdms comes in two principally different flavors:

Information preserving pruning. In this approach the final query result of the pruned
rule-goal tree is equivalent to that of the original tree, i.e., it returns the same
query answer. This has been implemented by the Piazza project [TIM+03]. They
remove branches of the rule-goal tree whose results are known to be contained in
other parts of the tree [TH04]. Regard the rule-goal tree depicted in Fig. 6.1. The
subgoal P2.h can be pruned if P2.h ⊆ P2.g, i.e., the query P2.h is contained in P2.g,
and if there are no joins between P2.g and P1.f . The subgoals contained in each
other must be at the same peer. Tatarinov and Halevy show that this technique
may cut down the effort for query reformulation up to an order of magnitude.
However, the approach presumes to have knowledge of the global query plan. This
contradicts our goal to perform query planning only locally at each peer to preserve
their autonomy.

Concessive pruning. In flexible large-scale information sharing users often may be satis-
fied with a considerable part of all query results. They are neither able to examine
every result in detail nor do they want to perform accurate aggregation operations
on these results. As systems for information integration scale up, resources may
become scarce. Additionally, the data sources are not available permanently. So
we believe that query answering in such settings can only be offered as best effort
service. The system returns as much benefit as possible for a limited budget of
resource consumption, i.e., the query result can be extensionally and intension-
ally incomplete. Strategies for concessive pruning should minimize this loss of
information without exhaustively enumerating the entire search space.

In this thesis we follow the concessive pruning approach since we highly emphasize peer
autonomy, Sec. 1.2.

  

…

…

…

Q

P1. f

P2.hP2.g   

Figure 6.1.: A global rule-goal tree for which the Piazza system [TH04] may prune the
goal node P2.h (image from [TH04]).
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6.2.2. Threshold-based Pruning
Now we present a first pruning approach that compromises the query result on the one
hand, but considerably increases efficiency of query answering on the other hand. More
elaborated techniques are presented in Chapters 8 and 9. Here, mapping sets with small
expected subresults are pruned if applicable. This is realized in Prune depicted in
Algorithm 6.2.1. The main idea of Prune is to use the potential data contribution of
a mapping set to decide about pruning. As mentioned above, the algorithm takes the
fully expanded local query plan P̂ (Q) of a query Q as an input.

Input : Query Q with selection predicates Sel(Q), fully expanded local query
plan P̂ (Q), pruning threshold statistics t∆C(M)

Output: Pruned local query plan Pp(Q)
Pp ← P̂1

foreach rewriting Q′i ∈ P̂ do {see Fig. 2.6}2
foreach conjunct Cij ∈ Q′i do3

foreach mapping setMl ∈ Cij do4
if ∆C(P,R(Ml)) < t∆C(Ml) then5
V ← V ars(Sel(Q)) ∪ V ars(Sel(Ml)) {variables with selections}6
if |Cij | > 1 or ∀v ∈ V : ∃s ∈ Q′i : v ∈ V ars(s) then7

Pp ← Pp \ 〈R(Ml), Sel(Ml)〉8
end9

end10

end11

end12

end13
return Pp14

Algorithm 6.2.1: Threshold-based pruning of a query plan (Prune).

Please note that although P̂ is fully expanded at each peer, the global search space
is by far not enumerated completely. Doing this would require to combine all fully
expanded local query plans. Despite this, the search space referring to the whole Pdms
is considerably pruned by excluding a mapping set from further query answering. So
by local pruning the global search space is indirectly reduced. The algorithm Prune
iterates over each mapping set in P̂ (Lines 2 - 4).
An additional input for Prune is given by a threshold function t∆C(M) whose value

depends on the mapping set at hand. This threshold is used to filter out the corre-
sponding mapping set from further query processing if the value for ∆C is smaller than
t∆C(M) (Line 5). This condition is only necessary but not sufficient. To ultimately
be pruned, for a mapping set one of the following two conditions (Line 7) must also be
fulfilled:

– There must be at least one result left for the parent rewriting subgoal (|Cij | > 1)
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after pruning the mapping set. Otherwise the join-merge between all the subgoals
of a rewriting may collapse and return no result although the other subgoals may
yield many data. In Sec. 8.2.1 we present a technique that tries to balance the
result sizes of the rewriting subgoals to avoid such cases.

– If the mapping set under consideration is the last one below its rewriting subgoal,
it may only be pruned if the corresponding subgoal is not the only one containing
a variable over which a selection predicate is defined in the query. Intuitively, this
means the rewriting subgoal does not contribute to the join-merge, but all variables
with selection conditions still occur in the resulting tuples of the join-merge. As a
result, the query result loses all attributes of that query subgoal. The user must
decide whether such highly incomplete result tuples are of any value.

If the pruning conditions are fulfilled, the mapping set Ml is removed from the plan
resulting in an incomplete intermediate plan Pp (Line 8). The last state of Pp is finally
returned by Prune.
The runtime of Prune is polynomial in the number of rewritings Q′i, number of

subgoals Cij per rewriting, and the number of mapping setsMl per subgoal. As stated
above, we assume that the size of P̂ is small enough to be handled by a single peer.
Clearly, the completeness of the resulting query plan heavily depends on the choice of

the threshold t∆C :

– If it is too high, almost no mapping sets are pruned. Consequently, the cost of
query answering tends to be the same as for the complete query plan P̂ .

– The other extreme is that by a too small value for t∆C almost every mapping set
is pruned.

So a suitable choice of the pruning threshold is crucial for this approach. A good value
for t∆C(M) can be determined starting from the cardinality histogram for a mapping
set M. Of course, the amount of data a mapping set returns depends on the selection
predicates in the query. However, the upper bound for the potential data contribution
is the one for a query without selections using a particular mapping. So a start value
for the maximum value ∆Cmax can be determined for every mapping set by estimating
the mapping set cardinalities for a query including all predicates of the peer schema but
without any selections. Then, a peer can collect statistics on the values for ∆C during
normal operation and possibly adjust ∆Cmax. Based on these statistics it can choose
t∆C by some fraction f lower than the maximal potential data contribution ∆Cmax of
the mapping set:

t∆C(M) = f ·∆Cmax(M). (6.5)

If a change happens in the Pdms the values for ∆C can change for some mapping
sets. Then the new threshold t∆C can be immediately set by using the same value for
f and a new value for ∆Cmax obtained by a query without selections. Note that such a
query also helps all subsequent peers to update their thresholds as long as there are no
selections in the peer mappings.
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Prune does not employ a cost model or cost related statistics. This constitutes an
interesting advantage, because accurately estimating cost in dynamic Pdms is a difficult
problem, Sec. 4.6. However, the results under this circumstance cannot be as good
as with a cost model of sufficient accuracy. So in this chapter, query processing cost
is neither an optimization goal nor a boundary condition. Despite this, we observed
considerable cost savings induced by pruning and therefore measure query execution
cost in our experiments. Going beyond this fairly simple pruning approach, we employ
a cost model for query optimization in in Chapters 8 and 9.
A mapping path is the sequence of peer mappings from a peer receiving a user query

and a local data storage at another peer. Clearly, the longer mapping paths are in a
Pdms, the higher is the probability for information loss and the higher are the cost for
data transport. So threshold-based pruning is more effective the longer the mapping
paths in the peer graph are. Observe that the length of mapping paths usually increases
with the rank of the Pdms, i.e., the average number of peer mappings at a peer.

6.3. Experimental Evaluation
We are interested in how far the algorithm Prune can increase efficiency of query an-
swering. Of course, we also desire query results with high completeness, since increasing
efficiency while simultaneously decreasing the size of the query answer too drastically
would not satisfy the user. In our experimental evaluation, we vary some important
properties of the Pdms and study the effectiveness of threshold-based pruning:

– the rank of the Pdms,

– overall amount of data and its distribution over the peer graph,

– mixture between mapping paths returning many vs. only a few data.

– Bandwidth of network connections between peers
(variation: 50 kBit/s, 0.5 MBit/s, 5 MBit/s, 50 MBit/s).

6.3.1. Experimental Setup
All of our experiments base on randomly created Pdms instances P, Tab. 6.1. To vary
the above properties, we manually changed the instances without significantly influencing
their random character.

#Peers Rank Mappings with projections Average mapping path length
P1 10 2.8 63% 2.9
P2 20 4.2 48% 3.4
P3 10 3 0% 2.3
P4 4 2.5 0% 2.5

Table 6.1.: Datasets and their main characteristics.
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Observe that P2 from Table 6.1 is much more complex than P1, because its number of
peers is twice that of P1, in average it has longer mapping paths, and most importantly
it has many more possible mapping paths because of its significantly higher rank.
For each experiment, we perform at least 3 runs with the same configuration on the

same computer. We check whether the variation of the results is satisfyingly small and
then average the values over these 3 runs. All experiments are conducted on an Apple
MacBook Pro with an Intel Core 2 Duo processor running at a speed of 2.3 GHz and
with 2 GB of main memory.

6.3.2. Evaluation
Experiment 6.1 (Influence of pruning threshold.) This experiment proves the effec-
tiveness of threshold-based pruning and studies how it depends on the choice of the
pruning threshold and the network bandwidth between the mappings. We also gather
experience in finding an appropriate pruning threshold, since this would be an important
task for the administrator of a peer that uses our algorithm.
Methodology. To find a suitable pruning threshold, we take a close look at the potential
data contributions ∆C of mapping sets. We are interested how that value changes for
a particular mapping set over the query workload. On this basis, an administrator can
choose the fraction f that sets the pruning threshold for filtering out the corresponding
mapping set if applicable.
To this end, the pruning threshold is varied and the resulting completeness, cost, and

efficiency values are recorded and averaged over all queries. For each mapping, we first
choose the pruning threshold such that this mapping is always pruned for the query
workload at hand. In a second step, the pruning threshold is set to a value that leads to
pruning in at least two thirds of the usages of the mapping under consideration during
the same workload. If a mapping never contributes any data, its pruning threshold is
set to 0. This means that this mapping is always pruned if it is not expected to return
any result data. Finally, the pruning thresholds of the mappings are adjusted such that
a particular mapping is omitted in at least a third of all cases within the same workload.
Orthogonally, we examine how the efficiency of query answering varies with the net-

work bandwidth between the peers. We expect that threshold-based pruning can increase
the efficiency the more, the slower the network transports the data.
We analyze how the completeness depends on the pruning threshold. To this end, we

assume that each peer passes the query to its neighbors sequentially, i.e., the query is
passed to the next neighbor after receiving the answer from the current neighbor. Then,
we investigate each overall query plan and measure time consumed for computation and
transport of data.
Discussion. The result of this experiment for Pdms instance P2 (Fig. 6.2(a)) and a work-
load of 500 queries is depicted in the diagrams in Fig. 6.2. The effectivity of threshold-
based pruning is clearly reflected in Fig. 6.2(b). The more we prune, the higher is the
completeness reduction compared to query processing without pruning. However, we
shall keep in mind that pruning at least a third of all mappings at each peer still yields a
completeness of about 0.72. Even pruning in two thirds of all cases achieves much more
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than half of the maximal size of the query answer.
The cost reduction, and more importantly, the efficiency gain of the pruned queries

compared to querying the complete answer are displayed over different network band-
widths in Fig. 6.2(c) and Fig. 6.2(d), respectively. Notice that the cost reduction for all
pruning degrees and all bandwidth values depicted is at least 68%. By trend, the cost
savings are the higher, the slower the network transports the result data between the
peers. Interestingly, the efficiency gain drops from quite high values for a bandwidth
of 50 kBit/s to about one order of magnitude for 0.5 MBit/s and remains on a level of
about 7 for higher bandwidths. This also holds for bandwidths higher than 50 MBit/s.
The phenomenon shows that for certain levels of the network bandwidth the computing
resources necessary for query planning and to process the intermediate query results
dominates the cost for query answering.
We performed similar experiments with the Pdms instance P1. For P1, the cost

reduction for all pruning strengths was at least 50% and the efficiency gain was only
about 50-80% for a bandwidth of 5 or 50 MBit/s. This proves that the approach of
threshold-based pruning needs a certain level of size of the Pdms to be truely effective.
In our example, it is much more effective for P2 with 20 peers than for P1 with 10 peers.

Experiment 6.2 (Impact of distribution of data.) One major characteristic of a Pdms
is how the data are distributed over the peers. Every peer can have a similar amount of
data or some peers can have more data stored than others, i.e., the overall distribution
is skewed. This experiment shows that this distribution has no considerable influence
on the effectivity of threshold-based pruning.
Methodology. We vary the skew in the amount of data at the peers according to a
Zipfian distribution [Zip49]. The size s(p) of the datasets at the peers are obtained by
the equation

s(p) = c

pz
, (6.6)

where p = 1, 2, . . . is the peer number and the parameter z controls the degree of skew.
The constant parameter c determines the overall amount of data in the Pdms instance.
A value of z = 0 means a uniform distribution, hence, each peer has the same amout
of data in this case. In constrast, for z = 1 and 10 peers the peer with the fewest data
holds ten times less data than the peer with the most data. The data distribution in
P2 used in Experiment 6.1 was randomly created and can be approximated with a Zipf
parameter between 0 and 1.
Discussion. As the diagram in Fig. 6.3(b) reveals, the skew of data distribution inter-
estingly has no major influence on the effectivity gain by threshold-based pruning. With
exception of very strong skew with z = 2 for a bandwidth of 0.05 MBit/s, the skew does
not considerably impact the effectivity gain in this experiment with the 10-peer instance
P3. One reason can be that we used a test workload that queried every peer for all of its
data and then averaged over this workload. If a peer is queried that is quite “far” from
the peers that carry the most data, pruning usually should have a major impact on the
efficiency of query answering. However, this is compensated by the queries to the peers
that carry many data. There, efficiency gain by pruning is small since the main part of
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(a) Peer graph P2.
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(b) Loss of completeness by pruning.
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(c) Cost reduction by pruning.
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(d) Efficiency gains by pruning.

Figure 6.2.: Efficiency increase for different network bandwidths for Pdms P2.

their query result stems from local data rather than from peers being far apart.

Experiment 6.3 (Efficiency in dependency of the amount of data.) This experiment
varies the overall amount of data in the Pdms and examines the impact of this dimension
on the efficiency of threshold-based pruning. Recall that the efficiency of query answering
has been defined as the ratio between the completeness and cost. Pruning decisions in
Prune are based on the potential completeness difference between alternative mapping
paths. The completeness of (intermediate) query answers is not expected to change, if
the amount of data is uniformly increased over all peers.
Methodology. Increasing the amount of data without changing the skew of their distribu-
tion over the peers and at the same time retaining pruning decisions should solely affect
the cost. We use the simple Pdms instance P4 and vary the amount of local data at every
peer from 1 tuple to 128 tuples. The data sets at the peers are disjoint. Additionally,
the world size to calculate the completeness of query answers is adjusted accordingly.
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(b) Efficiency gains by pruning.

Figure 6.3.: Influence of the data distribution on the effectivity of threshold-based prun-
ing for Pdms P3.

If we additionally choose the pruning threshold such that for the same query the same
pruning decisions are made for each Pdms instance, we yield the same completeness
results independently from the overall amount of data. This approach makes it possible
to study the impact of the amount of overall data on the efficiency of query answering.
Discussion. The results of this experiment are depicted in Fig. 6.4. Each result is the
average of 10 runs of the same configuration. As above, the effectivity of threshold-based
pruning is measured by the efficiency ratio between pruned and the same query without
pruning.
For the interpretation of this experiment it is important that the Pdms instance P4 is

quite small. For much larger Pdms instances with much more data, the fraction of query
processing time spent for data transport between the peers is much higher. Therefore,
their behavior is expected to be similar to the result with P4 for small bandwidth, where
the data transportation time also plays a major role.
The diagram in Fig. 6.4(b) shows that the threshold-based pruning heavily depends

on the bandwidth b between the peers. For a small b = 0.05 MBit/s, the efficiency gain
clearly increases with the overall amount of data in the system. This effect is weaker for
b = 0.5 MBit/s. If the bandwidth is even higher, the efficiency gain is nearly constant
or varies without any visible trend (for b = 50 MBit/s).

6.4. Related Work

First, we discuss work dealing with pruning in query planning in the area of data in-
tegration. Then we turn our attention to similar approaches in peer-based systems for
data management.
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Figure 6.4.: Influence of the overall amount of data on the effectivity of threshold-based
pruning for Pdms P4.

6.4.1. Pruning in Data Integration Systems

Nie et al. also use statistics on coverage and overlap to control query planning in a
mediator setting [NK04]. As Pdms are a generalization of mediators, our work goes
much further in that we examine the behavior of a network of mediators. The same
holds for the work in [FKL97] and [DH02]. Of course, all algorithms proposed for
mediator query planning that build on information locally available can be applied to
Pdms as well. However, the focus of our work is how locally controlled query planning
influences the global behavior of a Pdms.

Naumann, Leser, and Freytag follow a three-step process to find high-quality query
plans in a mediator setting [NLF99]. Their query planning approach uses GLaV-like
mappings described in detail in [Les00]. In [NLF99] data sources to be considered in
the planning step are first selected based on their information quality scores. Then all
possible plan are computed. Finally, the plans are ranked according to their information
quality characteristics. Our approach is similar to that work, because we also sequentially
perform query planning and completeness-based pruning of the fully enumerated search
space of a mediator, given by the fully expanded local query plan at a peer.

In [Nau02] Naumann presents a branch & bound algorithm for quality-driven query
planning in a mediator. It can find the top N plans without exhaustively enumerating
the whole search space of query plans. As stated above, we assume that in a Pdms
setting a peer is capable of computing the fully expanded local query plan, because a
peer typically has only a few neighbors.
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6.4.2. Pruning in PDMS
The mediation between schemas of a Pdms is the main concern of the Piazza sys-
tem [HIMT03, HIST03]. Concessions to the completeness of query results are men-
tioned, but not discussed further. Instead, Tatarinov and Halevy propose an approach
for information preserving pruning during query reformulation [TH04]. It is based on
query containment rather than on statistics about neighboring peers. In that sense, the
approach in this thesis can be seen as complementary to containment-based pruning
and it additionally comes with the important advantage that it can be performed fully
locally at a peer. In contrast, checking query containment needs to know some parts of
the non-local, overall query plan; peer autonomy is compromised.
In contrast, concessive pruning routes queries in the Pdms based on statistics about

neighboring peers and their subsequent neighbors.
The approach of [HLS06] assumes that peers exchange information about updates of

their data. This can be used to maintain statistics about neighboring peers. In [PKP04],
histograms are used to route queries in a peer-to-peer system with a common peer
schema. The work in this thesis is in the spirit of that approach and extends it to deal
with the difficulties present in heterogeneous Pdms.

6.5. Summary
Based on the completeness-related metadata presented before, this chapter introduced
an approach to prune the local query plan. Pruning is controlled by a threshold for the
potential data contribution of a mapping set. Since no cost information is needed, this
is a lightweight, yet effective solution, as we show in our experimental evaluation.
First, we showed how to employ our completeness model and statistics to valuate

incomplete subplans and to identify mapping sets as candidates for pruning. Then, we
discussed two principally different approaches to pruning in Pdms query planning and
argued that in large-scale information sharing best effort solutions often suffice, or even
are the only way to scale up such infrastructures. The choice of the pruning threshold was
identified as a critical decision within this approach. Therefore, we provided a method to
find an appropriate threshold based on the completeness statistics and experience from
answering previous queries. Finally, our experimental evaluation has shown that Pdms
characteristics like the fraction of mappings with information loss due to projections
and distribution of the data across the peer graph mainly influence effectivity of our
approach.
Pruning mapping paths from query answering impacts our technique for maintaining

completeness-related statistics that relies on query feedback. Pruning cuts off query
feedback from peers and that can lead to insufficient accuracy of statistics. In the next
chapter we develop solutions for this conflict.
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As we argue in Sec. 1.1, flexibility is the major advantage of Pdms. Peers are allowed
to enter the system or to go offline at will. Depending on the structure of the Pdms, it
can happen that even small changes can have significant impact on the data distribution
perceived at certain peers. For instance, peers that constitute a bottleneck-like path in
the Pdms topology can cut off access to parts of the system by leaving the network.
The changes to the data distribution we face to in Pdms can be much larger than
those resulting from usual inserts, updates, and deletes in centralized databases. As
a consequence, the statistical approximations of the data distribution at a particular
mapping set can become drastically inaccurate, thus leading to wrong query planning
decisions. So the challenge arises that Pdms peers must adapt their cardinality and
overlap statistics quickly to a possibly completely different situation.
However, query results are required both for detecting the above changes and up-

dating the statistics accordingly. Pruning subplans as introduced in the last chapter
naturally cuts off query feedback. Hence, we must compromise between pruning and
query feedback.
This chapter first examines the challenges for statistics maintenance that arise from

hidden changes, i.e., change events that are located beyond the direct neighborhood
of a particular peer. Next, we present a technique to detect hidden changes solely by
exploiting query feedback. To this end, we provide algorithms to track the estimation
error history at a fine grained level. We also present a solution for the problem of trading
off pruning and query feedback, which is based on finding the necessary amount of query
feedback to accurately update our statistics. The feasibility of all these techniques is
extensively evaluated in experiments conducted using our testbed Humboldt Peers.
The techniques and experiments provided in this chapter complement the brief dis-

cussion of approaches for histogram maintenance in Sec. 5.1.3. Here we show that using
query feedback suffices to accurately and efficiently maintain our statistics while pre-
serving the autonomy of neighboring peers at the same time.

7.1. Implications of PDMS Volatility
As a consequence of their high flexibility, Pdms face a large degree of volatility. This
volatility influences the data distribution of a Pdms and has two facets:

Amount of data. The overall amount of data available in the Pdms changes over time
due to updates to the data locally stored at the peers and as a result of peers
entering or leaving the system. Changes in the amount of data are an important
challenge for statistics about result cardinalities. For instance, a peer going offline
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can be compared with a large instantaneous delete on a significant part of a local
database. So the influence of changes in the Pdms structure on histogram accuracy
may be much higher than the impact of typical updates in centralized databases.
Similarly, in data integration systems a few sources going offline do not influence
the amount of data that can be received from the remaining sources. This is
completely different in Pdms.

In [HLS06], changes in the Pdms structure are regarded as a special case of up-
dates on local peer data. There, all updates are assumed to be communicated to
neighboring peers. In contrast, this work pays special attention on the impact of
changes in the structure of the Pdms on the overall amount of available data and
conducts experiments covering that issue.

Topology of the peer graph. The topology of a Pdms changes by peers leaving or en-
tering the network or by creation or deletion of peer mappings. This may have a
drastic influence on the data distribution throughout the topology and therefore
also on the amount of data available for a particular peer. In general, a topology
can be highly sensitive to local changes. In an extreme situation, creating a single
peer mapping can provide new access to many further peers.

In practice, many distributed systems have bottlenecks in their topology, most promi-
nently the Internet [ASS03]. Another example are mergers of companies. Originally,
each company has an own network of interconnected information systems. Usually, only
a few mediators connect these separate spheres to quickly establish data exchange im-
mediately after the fusion. Thus, in the resulting distributed information system, the
above mediators form bottlenecks.
The graph structure of the Pdms depicted in Fig. 7.1 contains several bottlenecks.

There is a number of peer nodes that are so-called articulation nodes. By definition,
the graph falls apart into unconnected subgraphs when an articulation node disap-
pears. For instance, Peer005 is an articulation node in the peer graph in Fig. 7.1.
If Peer005 vanishes, Peer014 and Peer018 in the right part have no longer access to
Peer007_REFPEER, Peer011, Peer013_REFPEER, Peer010, Peer004, Peer009,
and Peer012 in the left part of the peer graph.
To understand the importance of particular peers for query answering in Pdms, we

have to examine the graph topology in more detail. Recall that a Pdms is a directed
graph of peer mappings. So with respect to a particular peer where a user query Qu orig-
inates, some other peer node pa can be an articulation node although its disappearance
does not let the Pdms graph fall apart. However, a certain subgraph can be unreach-
able by user query Qu after pa disappeared, because there is no path of directed peer
mappings to that subgraph anymore.
Taken together, even small changes in Pdms can significantly affect the data distribu-

tion as it is perceived at individual peers. For the cardinality and overlap estimations to
still be accurate, it is necessary to quickly adapt to a possibly fundamentally different
data distribution.
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Figure 7.1.: Graph with several articulation nodes generated by Humboldt Peers.

7.1.1. Estimation Accuracy and Completeness

To underline the requirement of high adaptivity of the completeness-related statistics,
we study the impact of inaccurate cardinality estimations on the size of the query result
as well as on the efficiency of query answering in a Pdms.
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Figure 7.2.: Example of a rule-goal tree with resulting data sets and simple histograms.

Example 15. Regard the local rule-goal tree in Fig. 7.2. It comprises the two query
subgoals s1 and s2. Each of the four goal nodes on Level 5 has a local data source,
whose cardinality is inserted in the data store symbol. We assigned a symbolic histogram
with an estimated frequency f to each of the rule nodes that represent peer mappings
in Level 4. We focus on query subgoal s1 and compare the cardinality estimation with
the actual values c(r1) and c(r2). The relative estimation error at r1 is +75%, whereas
the cardinality at r2 is underestimated by −37.5%. The resulting estimated completeness
differences ∆Ce for the rule nodes above the ri are listed in Table 7.1. The peer on Level 3
assumes the world to comprise 1000 tuples in total. Since this is only a normalizing factor
it does not matter that the actual world size is 100 + 200 + 100 + 100 = 500 tuples.
Assume that the threshold t∆C for pruning is 0.025, which is the lowest value that re-

sults in pruning any mapping. Then, the mapping corresponding to r2 would be pruned,
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whereas all other Level-5 goal nodes would not be pruned. So due to the fact the estima-
tion error at the histogram above r1 is much larger than the inaccuracy of the estimation
on r2, threshold-based pruning makes a wrong decision. The reason is that due to the
different estimation errors at r1 and r2 the actual cardinality at r2 is twice as high as
the actual cardinality at r1.
How such a poor decision impacts the result of a local rule-goal tree depends on the

context given by the other rule and goal nodes. The more alternative mappings a query
subgoal on Level 3 has, the less the influence of an individual mapping path on the result
can be expected to be, if we assume independence with respect to data overlap. Similarly,
the more query subgoals exist on Level 3, the less the impact of a mapping on Level 4 is
supposed to be. In our example, based on the histograms it is estimated that pruning r2
would change the completeness of the complete rule-goal tree by 0.022, which amounts to
36%. Actually performing this pruning would lead to an expected completeness of 0.019
for the query result. If the histograms were more accurate, pruning r1 (because of its
actual completeness difference of 0.015) instead of r2 would have led to a doubled overall
completeness of 0.038. Observe that the reduced completeness of the pruned rule-goal
tree is combined with a cost saving that is not taken into account in this example. 2

Pruned Level-5 goal node r1 r2 r3 r4
Estimated completeness difference ∆Ce(ri) 0.033 0.022 0.027 0.030
Actual completeness difference ∆Ca(ri) 0.015 0.034 0.025 0.025
Actual coverage c(ri) 100 200 100 100
Estimated completeness Ce complete rule-goal tree 0.060
Actual completeness Ca complete rule-goal tree 0.053
Actual completeness Ca rule-goal tree without r2 0.019
Actual completeness Ca rule-goal tree without r1 0.038

Table 7.1.: Estimated and actual completeness results for the complete and pruned rule-
goal tree in Fig. 7.2. ∆C(ri) is the completeness difference between the fully
expanded local rule-goal tree T and the the one created from T by pruning
the rule node above ri. Estimated values are based on the simple cardinality
histograms in Fig. 7.2.

7.1.2. Hidden Changes
Changes in the Pdms graph can happen beyond the direct neighborhood of a particular
peer. For instance, if the articulation node Peer005 in Fig. 7.1 disappears, Peer014
would not notice, because it does not know about the existence of Peer005 at all. To
describe such situations, we introduce the notion of a hidden change.

Definition 21 (Hidden Change). Let the Pdms P = {P1, P2, . . . , Pn} be given by a set
of peers. Let the direct neighborhood N (P ) of a peer P be the set of peers that occur in
the head of any of the outgoing mappings of P (Def. 3). A hidden change with respect
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to P is given by any modification in P \N (P ) or in the outgoing mappings of the peers
in N .

Observe that for autonomy reasons discussed in Sec. 1.2 we assume that a peer does
not know about the outgoing mappings of its direct neighbors. This means that a peer
has no information from where its neighboring peers receive their data. Modifications
beyond the direct neighborship, above denoted by P \N (P ), can occur if peers leave or
enter the system or mappings become invalid due to schema changes.
The following example serves to illustrate the impact of high volatility in the Pdms

on our local statistics by studying a hidden change. Moreover, the example highlights
the requirement of high adaptability to the maintenance of the statistics.

Example 16. Regard the Pdms in Fig. 7.3, which is a subset of the Pdms in Fig. 1.1,
showing an infrastructure for medication logistics during a nationwide disaster. It con-
tains hospitals, medication inventories, relief organizations, a logistics company, a gov-
ernment control center, and others. Let the peers National medication inventory and
National pharmacies association have comparably large amounts and great variety of
medications in their stocks (depicted as larger database icons).
Let peer Regional hospital north query other peers for medicine. Among others the

two following alternative mapping paths can be used to reach the two large medication
inventories (highlighted in Fig. 7.3):

p1: Regional hospital north → Capital hospital → Capital medication inventory →
National medication inventory → National pharmacies association

p2: Regional hospital north → Red cross capital headquarters → Government control
center → National medication inventory, National pharmacies association.

The path p1 is better than p2, i.e., it usually returns more data, because it contains
mappings between similar organizations, namely hospitals and medication inventories.
This naturally results in a comparably low loss of information on the complete mapping
path. In contrast, we assume that the mapping path p2 loses a considerable part of the
data that can be found at the large data sets at the end of both paths due to projections
is the mapping from Regional hospital north to Red cross capital headquarters.
Now we assume that the peer Capital medication inventory goes offline. The situa-

tion existing immediately after this event is highlighted in Fig. 7.3 by the dashed peer
mappings. These mappings do not exist any more after the change. The disappearance
of the peer Capital medication inventory radically changes the size of results accessible
via p1 respectively p2. The two large data sets at the National medication inventory and
National pharmacies association are not reachable by (the remaining rest of) p1. In con-
trast, the path p2 remains unaffected. Taken together, now p2 promises much more data
than p1. Observe, that the peer initiating the queries, namely Regional hospital north,
is not informed about the change “behind” the peers Capital hospital and Government
control center. Rather, it can detect this massive change only by exploiting query feed-
back. Once it has detected the change, the peer Regional hospital north must quickly
adapt its statistics to this new situation. 2

109



7. Maintaining Metadata Statistics7. Maintaining Metadata Statistics

Capital 
hospital

Regional 
hospital 

north

National 
medication
inventory

Red cross
capital 

headquarters

National 
pharmacies
association

Capital 
medication
inventory

Government 
control 
center

Q

p1

p2

Figure 7.3.: PDMS topology immediately after the peer Capital medication inventory went
offline (extract).

7.2. Capturing Hidden Changes
One of our main assumptions is that in practice the peers are very interested in high
autonomy. This means that the peers offer only a query service. We assume, that the
peers are not willing to contribute actively to the maintenance of other peer’s statistics.
Consequently, hidden changes must be detected solely from query feedback. As discussed
in Sec. 5.1.3, the horizon of query feedback comprises all data that potentially will be
returned for a query. This is why it is in principle possible to detect hidden changes
from query feedback.
Our main idea in this section is to track the estimation error to find out about hidden

changes. To this end, we observe the estimation accuracy at a fine grained level. If a
hidden change is detected, the peers must decide how to quickly adapt their statistics
to this event. We present several approaches for this task.

7.2.1. Tracking the Estimation Error
The estimation accuracy of a histogram can be measured by the relative estimation
error, which is defined as follows:

Definition 22 (Relative Estimation Error). Let Q be a query and Ra(Q) the actual
result. With the estimated result Re(Q) the relative estimation error amounts to

e(Q) = ||Ra(Q)| − |Re(Q)||
|Ra(Q)| .

The STHoles histogram approach assumes the tuple density within a particular bucket
to be uniformly distributed. In reality, however, the tuple distribution within a bucket is
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to be uniformly distributed. In reality, however, the tuple distribution within a bucket is
skewed. Consequently, the estimation error can also differ over the volume of a bucket.
Hence, the error is volume-dependent. So the estimation accuracy is the higher the
smaller the volume under consideration.
Therefore, we propose to observe the history of the estimation error at the level of

histogram buckets.

Definition 23 (Estimation Error History). Let W = 〈Q1, Q2, . . . , Qn〉 be a sequence
of queries, i.e., a query workload. With time(Qi) denoting the point in time the query
was processed, it holds that time(Qi) < time(Qi+1). Let Ei = 〈ei, Bi, Qi, R(Qi)〉 be
an individual entry of the estimation error history of a particular bucket B with the
estimation error ei at time(Qi), the possibly modified bucket Bi (see below), as well as
the result R(Qi). Then the estimation error history of bucket B for W is given by the
sequence H(B) = 〈E1, E2, . . . , En〉.

Note that new entries are added at the end of the estimation error history. So the
estimation error history reflects the order the respective queries were used for adapting
the corresponding histogram. In the following, we describe the maintenance of esti-
mation error histories in case their corresponding bucket is modified during histogram
maintenance.

Adapting Error Histories to New Holes. Our goal is to compare estimation errors
over time to detect changes in the distribution of data accessible over a certain map-
ping. Since the estimation error is volume-dependent, we necessarily have to compare
similar volumes for this task. Recall that drilling a new hole into a bucket changes its
volume [BCG01]. So, if a new hole is to be drilled into a bucket B at a certain time, it
also has to be drilled into every earlier entry of B’s estimation error history. Every entry
of the error history then has to be recalculated with the new bucket volume created by
drilling the hole. These steps are performed by Algorithm 7.2.1.
When inserting the new hole into each bucket of the estimation error history we have

to take into account their respective states. Buckets of history entries at earlier points
in time than that of the latest entry (denoted by Ec) can contain children that are not
present in Ec. Such children could have been merged with their parent in the meantime.
Recall that in the STHoles approach, buckets may not overlap. So before actually drilling
a new hole, the candidate bucket has to be shrunken to exclude overlap with any other
children of the parent bucket [BCG01] (see line 3 in Algorithm 7.2.1). So in fact, the
same technique as for the new hole in the latest bucket has to be applied to drill that
(candidate) hole into all the buckets of earlier members of the error history. After doing
so, the estimation error of the corresponding entry can be recalculated.

Merging Error Histories. If two buckets are merged, their error histories have to be
merged as well. Next, we propose Algorithm 7.2.2 to compute the combined estimation
error histories of two buckets Ba and Bb being merged into a resulting bucket Br. Intu-
itively, we iterate in parallel over the error histories and look for entries corresponding
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Input : Estimation error history H(B), new candidate hole Bc

Output: Modified estimation error history H′(B)
foreach E ∈ H(B) do1

Shrink Bc such that it does not overlap with any child of E.B [BCG01]2
Drill Bc into E.B [BCG01]3
Recalculate E.e using the adapted volume of E.B, E.Q, and R(Q)4

end5
return H′(B)6

Algorithm 7.2.1: Adapting an estimation error history to a new hole.

to the same query that are to be merged (lines 22 - 26). If an entry has no suitable
partner, it must be checked whether its bucket covers the bucket Br to a certain extent
(lines 13 and 18). If this is the case, the entry can represent the whole volume of Br

while keeping the error of this approximation low (lines 14 and 19).
If the two entries under consideration refer to the same query Q, the weighted mean ē

of the estimation errors is calculated (line 24). The errors coming from the two histories
are weighted with respect to the fraction of their buckets overlapping with Q.

7.2.2. Detecting Changes
To check whether a possibly hidden change has happened in the data accessible over
a certain mapping path, we examine the estimation error history of each bucket in the
corresponding histogram. To detect a change event, it suffices that any of these buckets
reports a sudden variation in the data distribution of its query feedback.
In experiments we observed that even within an estimation error history of a single

bucket, estimation errors can differ significantly although the underlying data distri-
bution did not change. As discussed in the previous section, the estimation error is
volume-dependent due to skew in the data distribution.
Therefore, our method to detect changes from query feedback presented in Algo-

rithm 7.2.3 only compares entries of an estimation error history if they cover a similar
sub-volume of a histogram bucket (lines 2 and 3). For instance, in Fig. 7.4 on Page 114
the queries E1.Q∩B and E2.Q∩B have a large overlap with respect to the sum of their
volumes (line 2 in Algorithm 7.2.3). So we can assume that their estimation errors are
very similar. In contrast, the overlap volume between E3.Q ∩ B and E1.Q ∩ B respec-
tively E2.Q∩B is much smaller. Therefore, their estimation errors probably differ more
due to skew in the data distribution in bucket B. Note that calculating the volume v
according to [BCG01] excludes children of a bucket, for instance the child Bc of bucket
B in Fig. 7.4 on on Page 114.
If no change happens in the data accessible over a peer mapping, the estimation errors

of two entries covering overlapping volume are similar, i.e., the difference between their
errors is below a certain threshold that relates to the mean of the two errors (line 3).
Observe that the estimation errors of a pair of history entries in Algorithm 7.2.3 do
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Input : Estimation error histories H(Ba) and H(Bb), resulting bucket Br

Output: Estimation error history H(Br) of Br

i← 1, j ← 11
while i ≤ |H(Ba)| or j ≤ |H(Bb)| do2

Ea ← {}, Eb ← {} {Ex: current entry of H(Bx)}3
if i ≤ |H(Ba)| then {No correspond. entry in H(Ba)?}4

Ea ← Hi(Ba)5
i← i+ 16

end7
if j ≤ |H(Bb)| then {No correspond. entry in H(Bb)?}8

Eb ← Hj(Bb)9
j ← j + 110

end11
if time(Ea.Q) < time(Eb.Q) then {Ea has no corresponding entry}12

if v(Ea.B) > 1
2v(Br) then {v(Ex.B): volume of Ex.B}13

H(Br).add(〈Ea.e, Br, Ea.Q,Ea.R(Q)〉) {add Ea to result}14
end15

end16
if time(Ea.Q) > time(Eb.Q) then {Eb has no corresponding entry}17

if v(Eb.B) > 1
2v(Br) then18

H(Br).add(〈Eb.e, Br, Eb.Q,Eb.R(Q)〉)19
end20

end21
if time(Ea.Q) = time(Eb.Q) then22

Q← Ea.Q {here: Ea.Q = Eb.Q}23

ē←∑
x=a,b

v(Ex.Bi ∩Q)∑
x=a,b

v(Ex.B ∩Q))Ex.e {ē: averaged estim. error}
24

H(Br).add(〈ē, Br, Q,Ea.R(Q)〉) {here: Ea.R(Q) = Eb.R(Q)}25

end26

end27
return H(Br)28

Algorithm 7.2.2: Merging estimation error histories.
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E1.Q
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Figure 7.4.: Bucket with entries from its estimation error history.

not only differ because they do not exactly cover the same sub-volume of a bucket.
Rather, the above approach to merge estimation error histories (Algorithm 7.2.3) is an
approximation.
An extension of Algorithm 7.2.3 is to give to more belief to pairs of history entries the

higher their overlap is. This could be implemented by varying the threshold te dependent
on the size of the overlap v(Ei.Q ∩ Ej .Q ∩B) between the entries and the bucket.

Input : Histogram H with estimation error histories H(Bi), threshold for
volume overlap tv, threshold for error difference te

Output: true, if a change has been detected, false otherwise
foreach B ∈ H do {v : volume}1
O ← {(Ei, Ej) ∈ H(B)|v(Ei.Q∩Ej .Q∩B) > tv · (v(Ei.Q∩B) + v(Ej .Q∩B))}2
if ∃(Ei, Ej) ∈ O : |Ei.e− Ej .e| > te · 1

2(Ei.e+ Ej .e) then3
return true4

end5

end6
return false {no change has been found}7

Algorithm 7.2.3: Checking for a change in a histogram.

7.2.3. Controlling Histogram Adaption
Our ultimate goal in using statistics is to achieve a high cardinality estimation accuracy,
i.e., a low estimation error. Once a peer has detected a change in the distribution of the
data accessible over a certain mapping, it can use current query feedback as well as the
corresponding estimation error history to find out

– how large the estimation error is and
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– where large errors are located in the data space.

Based on the heuristic that the possibly hidden change is the bigger the higher the
estimation error is, the peer can conclude from the estimation error size to the size of
the change. Moreover, the peer can gain information which areas of the data space are
concerned by considerable change. Before discussing actions the peer can take to adapt
to the change, we continue our example from the disaster data management domain
(Example 16).

Example 17. Regard Fig. 7.3 again. Since the peer Capital medication inventory has
just left the Pdms, the peer Regional hospital north observes a high estimation error
for the mapping path p1. This is because p1 no longer returns the large amount of data
accessible at National medication inventory. Obviously, the current statistics about p1 at
the peer Regional hospital north have to be adapted to a hidden change in this mapping
path.

To avoid poor query planning decisions based on wrong cardinality estimates, a peer
needs to quickly adapt the corresponding histogram to changes responsible for these bad
estimates. To this end, a peer can take the following steps:

– Adapting query planning. In a situation with high estimation errors, a histogram
needs as much query feedback as possible. Hence, the peer should not prune the
corresponding mappings during a certain number pf queries, even if a pruning
criterion is fulfilled. In budget-driven query planning as presented in Chapter 8,
the peer can give more budget to mappings showing a high estimation error. In
Sec. 7.3 below, we elaborate on this trade-off.

– Additional sampling. A peer can exploit information on where in the data space
the estimation error indicates a Pdms change. Either it can extend the selection
predicates of future queries to cover these regions. Or it can pose additional sam-
pling queries to gather query feedback for these critical sub-volumes of the data
space. However, this would come with all the drawbacks of sampling mentioned in
Sec. 5.1.3.
As a result, the peer obtains more query feedback than it would have received if it
only had processed the queries posed from other peers. Of course, before passing
the result of extended queries back to where the original query came from, the
peer must compute the correct answer by applying the selection predicates of the
original query. Note that this technique is an additional sampling. In contrast to
completely independent sampling, it primarily extends queries induced by the user
and is thus more efficient than only issuing additional queries possibly overlapping
with queries processed anyway.

7.2.4. Experimental Setup
This section presents experimental evaluation of the main aspects our solution based
on random synthetic data and various workloads. We show that STHoles histograms
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can detect changes in the Pdms to a certain extent by only exploiting query feedback.
The histograms prove to rapidly adapt to massive changes in the data distribution of a
Pdms caused by these changes. In particular, we examine whether estimation accuracy is
sufficient to effectively and efficiently route queries in the Pdms based on the threshold-
based pruning approach discussed in Chapter 6. Moreover, we are interested in how the
pruning of mappings influences the accuracy and adaptability of their histograms; i.e.,
we investigate whether our techniques ensure enough query feedback despite repeated
pruning of mappings. The above changes are due to peers entering or leaving the system
during an experiment.

Data Sets As described in Sec. 3.3, a Pdms instance is created in Humboldt Peers
by varying a reference schema and a corresponding instance and then assigning the
resulting extensions to the peers. The extension of the reference schema is created at
random conforming to a Zipfian data distribution [AC99]. This distribution reflects
data skew due to functional dependencies between different attributes of a relation.
Such skewed data serve to examine the differences between cardinality estimation results
based on multi-dimensional histograms and the assumption of uniformly distributed and
independent attribute values.
As described in [AC99], we first generate N distinct random data values for each

attribute dimension of a relation. These are combined into N distinct tuples. Next, a
frequency value out of a Zipfian distribution is assigned to each of the N tuples. Each of
these tuples corresponds to a cell in the joint frequency distribution matrix [PI97]. The
frequencies are obtained by the equation

f(r) = c · r−z with r = 1, 2, . . . , N (7.1)

where the parameter z controls the skew of the data distribution. A uniform distribution
has z = 0, whereas z = 1, z = 2, and z = 3 can be seen as medium, high and very high
skew respectively. The constant c is used to normalize the frequencies to create a certain
number of overall tuples. In our experiments, the size of the reference extension was
1,000 tuples for Pdms P3 and 10,000 for P5. We experimented with N = 100 distinct
data values per attribute dimension. Both for an initial calibration of the histograms and
for user queries we employ randomly generated query workloads. The queries are posed
to randomly selected peers in the Pdms. An additional instance used in the experiments
in this section is described with some important characteristics in Table 7.2. Its topology
is depicted in Fig. 7.5.

#Peers Rank Mappings with projections Average mapping path length
P5 5 2 0% 3

Table 7.2.: Additional Pdms instance and its main characteristics (continued from Ta-
ble 6.1 from Page 98).
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Peer004

Peer005

Peer003

Peer001

Peer002

Figure 7.5.: Structure of the Pdms P5.

Measuring histogram adaptability. To measure adaptability of the histograms to the
dynamic behavior of our system, we observe the query-dependent relative estimation
error e(Q). What can be regarded as a good cardinality estimation depends on our
pruning strategy. To decide about pruning peer mappings, we compare their potential
data contribution as discussed in Sec. 6.1. In our experiments, we found that this data
contribution differs by several orders of magnitude between alternative peer mappings.
This means that a relative cardinality estimation error below an order of magnitude,
i.e., below 1,000%, is already sufficient for distinguishing the size of data contributions
of alternative peer mappings.

Storybook of Experiments. To examine the influence of massive changes in the Pdms
data distribution, we follow a storybook describing the steps to be performed for a
particular data set:

1. Vary the schema and the extension of the given reference data set and assign the
resulting heterogeneous schemas and data sets to the individual Pdms peers.

2. Initialize an STHoles histogram for each peer and local mapping in the Pdms.

3. Train histograms by a random training workload to the peers in the Pdms.

4. Issue a first part of a testing workload and measure histogram accuracy.

5. Change the data distribution, for instance by turning a certain fraction of peers
offline or by adding new peers.

6. Issue a second part of a user query workload and observe adaption of histograms
to the new Pdms configuration.

Note that in Step 3 each query contributes to refine all histograms along the mapping
paths used for its reformulation. We characterize the size of changes of the Pdms by
counting all non-NULL attribute values at the peers that are removed or added to the
system in relation to the overall number of attribute values. For instance, a change size
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of −50% means that a data set half of the size of all data existing in the Pdms before
become unavailable.

7.2.5. Evaluation
In the first set of experiments presented in this section we seek to evaluate the ability of
our self-tuning histograms to quickly adapt in a highly dynamic setting such as a Pdms.

Adaptability in dynamic PDMS Adapting to large changes in the system is a major
requirement to ST-histograms in the context of Pdms. This first set of experiments
deals with detecting changes and the estimation accuracy after changes.
Experiment 7.1 (Detecting changes). The challenge in detecting hidden changes
in the Pdms from the point of view of a particular peer is to distinguish corresponding
changes in the query feedback from usual variation of the estimation error. Additionally,
we are interested to measure whether changes that happen in a certain distance (in terms
of peer mappings) from a histogram can be detected.
Methodology. After a training phase, a change happens in a Pdms. This change is given
by a peer leaving the system. The size of the change is measured by the amount of data
this peer stores. To discover a hidden change, each peer records the estimation error
for the cardinality histograms assigned to its peer mappings. To assess the influence of
the distance to the change, we compare the estimation error graphs for the same query
workload along a mapping path. Observe that in practice a peer has to detect changes
without being able to compare with a workload without changes.
To better distinguish between normal variation and a potential change, outliers of the

estimation error are eliminated as follows: As we discuss in conjunction with the next
experiment, large estimation errors are usually due to a high skew of the actual data
distribution within an individual histogram bucket. Since we use the average relative
estimation error to detect changes in the Pdms, we omit all estimation errors higher
than 500%. Additionally, all measurements that are more than a factor of 5 above the
average of the last 5 measurements and exceed a threshold of 200% are also eliminated
from the statistics.
Discussion. The measurements for Pdms P3 are displayed in Fig. 7.6 on Page 119. The
diagram in Fig. 7.6(b) shows the estimation errors along the mapping path highlighted
in Fig. 7.6(a) both for the experiment with a change at query 200 and the experiment
without any change in the peer graph.
Peer005 can clearly notice the change in the data accessible over the mapping from

Peer005 to Peer006 by a large increase of the averaged estimation error after query 200.
As can be seen in the experiment without changes at query 350, for the same mapping a
peak with similar level occurs due to highly selective queries. So such sudden increases
of the estimation error can lead to false positives in change detection. We believe that
this effect can be reduced by a more sensitive method for outlier elimination based on
the discussion of the reasons for large estimation errors in the following experiment.
If the distance to the change is increased by one peer mapping by considering the

estimation error for the mapping from Peer008 to Peer005, one can still see considerable
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(a) Initial peer graph. A change happens at query 200: P eer007
with about 10% of all data goes offline.
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splines) along the mapping path highlighted in the peer graph above.

Figure 7.6.: Relative estimation error in dependency of the distance from the change for
Pdms P3.

increase, which lasts for a comparable long period. The length of such an increase in
terms of the number of peers is also a means to distinguish changes in the Pdms from
oscillation due to outliers. However, compared to the mapping discussed before, this
peak is more difficult to separate from normal variation.
When considering the next peer mapping in the path highlighted in Fig. 7.6(a), it can

be seen that the response to the change at query 200 cannot be distinguished from the
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local maxima during the training phase.
To learn about the influence of the size of the change, we increased the amount of data

stored at Peer007. With a doubled amount of data, the change is visible with similar
strength at all three mappings examined in detail. In an experiment with Peer007
having four times more data than the other peers, the change in the relative cardinality
estimation error is very strong in the mapping from Peer008 to Peer005. In the mapping
with the biggest distance out of the three considered, the change is also clearly reflected
in the error graph. Interestingly, in the mapping that lies nearest to the Peer007, the
increase is too small to detect the change. A closer examination revealed that this
mapping yields a comparably high estimation error of 166% right before the change.
After the change, is has no cardinality greater than 0 for a period of about 30 user
queries. Then, the estimation error is only moderate.
Taken together, we are able to detect a hidden change in the data distribution of the

neighbor of a neighboring peer in this example. If the change is of sufficient size, it can
even be detected at peers with a higher distance from the change’s location.
Experiment 7.2 (Accuracy after changes). This experiment serves to study the
adaption of STHoles histograms to large changes in the Pdms without taking any further
actions: in this experiment we perform no pruning.
Methodology. We changed the size of the Pdms P5 by disabling the peers Peer001,
Peer004, and Peer003 such that they no longer accept any queries (Fig. 7.5). In this
example, this means that about 55% of all data values go offline. Observe that this is a
considerably large change in the overall data distribution. The histograms are tuned at
every query to achieve the maximum adaptability.
Discussion. The massive change in the Pdms is reflected by the estimation error in the
diagram in Fig. 7.7(a). Compared to the same experiment without any changes depicted
in Fig. 7.7(b), the estimation error increases significantly after the change at user query
50. This is clearly reflected in the very different graphs of the average estimation error
in Fig. 7.7. The upper diagram shows that the estimation error rapidly decreases to
a level of less than 100%. Observe that no elimination of outliers is performed in this
experiment.
Large estimation errors. Now we examine the reason for the very high estimation errors
of more than an order of magnitude occuring in Fig. 7.7. For instance, the error at user
query 129 overestimates the actual size of query result drastically. The estimation is
71 tuples, whereas the actual cardinality is only 5. This is a consequence of our highly
skewed data distribution of this example. There is a very large area around these 5
tuples that does not contain any other tuple. Due to our quite coarse decomposition of
the data space by only 10 buckets in this experiment, this user query selects a fraction
of several comparably large buckets, that averages the tuple density within its area. The
data distribution in these buckets is also skewed. In this case, the query only covers a
small part of the tuples located in these buckets. If the selection area is large but the
actual number of tuples in this selected area of the bucket is very low or the skew of the
data distribution in the buckets is large, the estimation error will become very large.
However, note that including this mapping for answering user query 129 does no harm,

because of the overestimation the actual effort for transporting the result is much less
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(a) Hidden change: P eer001, P eer004, P eer003 go offline at query 50. The change is
marked by a grey bar in the background.
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(b) Without any changes.

Figure 7.7.: Relative estimation error (measurements and averaged) for Pdms P5.

than expected. In general, it depends on the reason that a certain mapping path actually
returns much less data than estimated. Only if data is lost along a mapping path the
cost for query processing can be too high for a comparably small result. In such cases, a
cost-based query optimization such as described in Chapter 8 achieves better efficiency
results than a simple threshold-based pruning (Chapter 6).
Underestimating the cardinality of a mapping path induces that the mapping is pos-
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sibly pruned or ranked lower, which means that execution time is saved. However, if an
underestimated mapping path is used, query execution cost will be higher than expected.
The extremely large estimation error at query 67 in Fig. 7.7(a) has a different reason.

Directly before the change of the Pdms instance at query 50 the ST-Holes histogram
has a small bucket comprising 1040 tuples. This is a considerable fraction of all tuples
(6550) that are available over the mapping path under consideration. All tuples in that
bucket become unavailable after the change. Then, query 67 covers this bucket that
still assumes that these tuples are there. In other words, the histogram overestimates
the actual data distribution due to the change and the fact that a large amount of data
is located within a small area of the data space. Using the query feedback of query
67, the wrong frequency of the above bucket is set to 0, which drastically improves the
estimations over the corresponding area in the data space in following queries. At this
point, our improvement from Sec. 5.1.2 to use the actual frequency to create new holes
or adapt the frequency of existing holes comes into play.
To summarize, this experiment shows the ability of the STHoles histograms to quickly

adapt to massive changes in Pdms if we have enough query feedback to tune the his-
tograms. The next experiments discuss situations where the amount of query feedback
is reduced by pruning mappings from query answering.
Taken together, the main observation in these experiments is that ST-histograms prove

to be robust against changes in the data distribution of the Pdms. With some tolerable
exceptions, the estimation error obviously remains on the level of about 100 %, which is
absolutely acceptable for our purposes.

7.3. Trading off Pruning and Query Feedback
In contrast to centralized DBMS, in the much more dynamic environment of a Pdms
changes

– are much more frequent than in centralized DBMS,

– can concern a comparably high fraction of the overall data, and

– can dramatically modify the data distribution as perceived from the point where
queries are initiated.

Therefore, in Pdms, self-tuning histograms continuously need query feedback to be up-
dated. This is especially important in situations, where large changes in the Pdms have
been detected as described in the previous section.
However, the need for query feedback conflicts with strategies of pruning the search

space in Pdms query planning as discussed in the Chapters 6, 8, and 9 of this thesis or
in the literature, e.g., [HLS06, PKP04, RNHS06]. When a certain mapping is pruned,
i.e., not considered for query reformulation, the corresponding histogram receives no
query result to for histogram adaption. Moreover, if this mapping is pruned repeatedly
since a small result size is expected, changes in the Pdms structure happening “behind”
that mapping are never reflected in the histogram. This is especially problematic, if
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the change would increase the size of data accessible by that mapping path and thus
cause that the mapping no longer has to be pruned. Such a situation is illustrated in
the following example.

Example 18. We extend the Examples 16 and 17 (from pages 109 and 115, respec-
tively). Recall the Pdms change depicted in Fig. 7.3 on Page 115. The change cuts
off the mapping path p1 from a large data store at National medication inventory. This
is a hidden change with respect to the peer Regional hospital north on which a query
workload is posed to. We assume that peer Regional hospital north has detected this
change and has adapted its histogram for p1.
In the following, this might cause repeated pruning of p1, because the alternative path

p2 promises more data. Then, suppose Capital medication inventory switches back on-
line and the original mapping path p1 to the large data set at peer National medication
inventory is completely available again. However, due to the peer-to-peer paradigm Re-
gional hospital north is not informed about that event. Hence, it continues to prune
p1, because the corresponding histogram remains unchanged. This is because the hidden
change is masked by repeated pruning. Of course, this change can not be detected since
no query feedback is available to the histogram.
However, in this new situation, it would be better for the peer Regional hospital north

to switch query reformulation from p2 back to the path p1, for instance because p1 better
preserves the data on their way from National medication inventory to Regional hospital
north. 2

A solution to this problem must somehow compromise between both objectives. In the
following, we present an approach that addresses the two subproblems of this conflict:

– Avoid pruning after a peer has just detected a change in the data accessible by a
peer mapping and in the following needs to adapt the corresponding histogram as
already mentioned in Sec. 7.2.3.

– Avoid repeated pruning to check for changes in the data “behind” a peer mapping.

The main idea of our solution is to sacrifice some efficiency gains of pruning to obtain
sufficient query feedback. This means that, in some situations, we explicitly do not prune
although pruning a mapping path is supposed to increase efficiency of query answering.
Observe that the better we can exploit query feedback, the less we have to compromise

pruning. At this point, our efforts to optimally make use of query feedback by tracking
the estimation error on the finest granularity pay off again. In particular, this helps
detect Pdms changes from query feedback with only a small amount of query feedback.

7.3.1. Guaranteeing Sufficient Query Feedback
After a peer has detected a change, it needs further query feedback to adapt the corre-
sponding histogram. The histogram enters an adaption phase lasting until its estimation
error in average decreases below a threshold. During this phase pruning must be discon-
tinued with the sole purpose of obtaining query feedback.
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To control the trade-off between pruning and query feedback, we introduce the fol-
lowing parameter.

Definition 24. (Minimum Non-Pruning Frequency) Let M be a set of outgoing map-
pings at a peer P being covered by a histogram HM. The minimum non-pruning fre-
quency f of the histogram HM guarantees that at least after a sequence of f−1 prunings
of the mappings in HM they are used for creation of the local query plan.

A peer considers each mapping’s minimum non-pruning frequency in its pruning de-
cisions. In this way, we ensure that at least each f -th query actually returns query
feedback for the corresponding mapping. With the minimum non-pruning frequency we
have an independent mechanism to control the compromise between pruning and query
feedback for each histogram. By decreasing f for a certain histogram, we can enforce
that the peer checks the query feedback of a mapping more frequently.
In this work we experimentally gather experience on the choice of f for complete

histograms only, Sec. 7.3.2. As a further enhancement, our technique can be refined
by assigning an own minimum non-pruning frequency for different subareas of the data
space, i.e., individual histogram buckets.
To implement the adaption phase of a histogram mentioned above, the minimum non-

pruning frequency is set to f = 0 to completely prevent pruning. If the estimation error
of the corresponding histogram reaches an acceptable level, f can be increased again.

7.3.2. Experimental Evaluation
This paragraph addresses the conflict between pruning mappings and using query feed-
back for histogram tuning.
Experiment 7.3 (Avoiding masking changes by pruning). We extend the ex-
periment on detecting changes from Sec. 7.2.5 by including our technique based on the
minimum non-pruning frequency f . We study how f influences the estimation accuracy
of mappings frequently being pruned.
Methodology. We return to Pdms P3 and consider the same mapping from Peer005 to
Peer006 that lies one peer mapping away from the change. Again, we examine how
Peer005 can detect the hidden change using the query feedback for this mapping. The
pruning threshold for this mapping is chosen such that the mapping is always pruned,
if pruning is not disabled. First, we check the behavior for a minimum non-pruning
frequency f =∞. To this end, f is actually set to 1000 for the corresponding cardinality
histogram. This means that repeated pruning of the same mapping in different user
queries is never disabled. Next, we decrease f to 10, 5, and 3 and apply the same
setting. We compare the estimation errors of the above mapping for the different values
of the pruning frequency.
Discussion. The results of this experiment is depicted in Fig. 7.8. When disabling
of pruning is applied with f = 10, the histogram of our mapping has only 5 query
feedbacks between the user queries 100 and 200. Right after the change at query 200,
the completeness difference is above the pruning threshold several times. So no pruning
applies and the histogram can use query feedback for tuning and determining a relative
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estimation error. However, since there are so few estimation errors available before the
change, the smoothed average of the estimation error increases uniformly between query
100 and 200. Despite this ramp, it can be detected from the graph that a change around
query 200 must have happened. However, after the increase the estimation error does
not decrease significantly. This is due to the fact that the histogram only can exploit 8
query feedbacks between query 250 and 400, which obviously remain quite high in that
run of the experiments. Repeating the experiment several times did not change this
behavior.
For f = 5 the adaption to the change is better but the change is more difficult to detect,

because the increase of the estimation error after the change is moderate. This is again
due to the very small number of query feedback events before the change. Observe that
the detection could be improved by considering the estimation error without smoothing.
When the minimum non-pruning frequency is set to f = 3, there are about 15 query

feedbacks between query 100 and 200 and therefore (1) the change can clearly be detected
and (2) there is also enough query feedback for the estimation error to quickly adapt to
the change. The local maximum around query 350 is due to an individual estimation
error of about 200%. All other estimation errors beyond query 250 are clearly below
100%. Additionally, the curve for the experiment without pruning in Fig. 7.8 shows that
the estimation error in this experiment decreases slowly after the change at query 200.
With f = 3 we still observe average cost savings of about 50% while the average com-
pleteness of the query answer is about 85%. In summary, this experiment shows that
the technique of ensuring a minimum frequency of query feedback works well only with
small values for the minimum non-pruning frequency.

7.4. Related Work

Nie et al. gather multivariate statistics using a data mining approach over the queries
posed to a mediator. Their work is discussed in detail in Sec. 5.4.1. Here, we only
examine the issue of statistics maintenance. In contrast to our work, the authors do not
prove adaptability of their statistics on coverage and overlap in case of large changes
in the underlying data sets [NKN05, NK04]. They solely mention that computing even
one-dimensional statistics for a fine grained decomposition of the data space is very
time-consuming, e.g., it can take hours. It remains unclear how long multi-dimensional
statistics take to be built and how much query feedback it takes to achieve sufficient
accuracy. The authors point out that the statistics can be computed offline and that
they could consider incremental updates as new query feedback comes in.
We believe that Pdms face the challenge to adapt statistics to massive changes in

the data distribution in an online manner. So such systems are forced to incrementally
update their statistics, which seems to be an open challenge in the results presented
in [NKN05, NK04]. In our work, we use self-maintaining cardinality histograms that
immediately adapt to incoming query result. For a comparison of different approaches
of self-maintaining histograms see [Lem07, IP95].
The work in [TIGK02] deals with creating dynamic multi-dimensional histograms over
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Figure 7.8.: Relative estimation error in dependency of the minimum non-pruning fre-
quency for Pdms P3. The graphs represent the average over the last 5
values. Outliers have been removed before averaging. Each smoothed graph
is accompanied with the raw impulses in the same color. The change at
query 200 is marked by a grey bar in the background.

data streams, i.e., their focus is on statistics maintenance. The authors employ a so-
called dynamic summary data structure to capture statistics of the data stream. If
desired, algorithms can be applied to derive a histogram from that structure for which
approximate guarantees on the estimation quality can be given. The paper compares the
STHoles histogram [BCG01] with their own approach, which for some setups outperforms
STHoles in terms of accuracy. The main difference to our setting is that we face the
problem that changes to the underlying data structure cannot be detected, because query
feedback is missing due to repeated pruning. In contrast, in the setting in [TIGK02] every
change is available to the agent maintaining the statistics.
Pitoura et al. [KPPT05] use histograms both as routing indexes [PKP04] and to

construct small world overlays in a P2P system. An overlay consists of a network of
peers and is as such comparable to the network of peer mappings in a Pdms. In contrast
to our work, they create their histograms based on the content of the peers within
the horizon of the histogram. In this way, that approach contradicts the peer-to-peer
paradigm, that each peer only knows about its direct neighbors. Their solution that
peers offer their local index for the construction of routing indexes on a global level
also does not fit to the main assumption of autonomous peers. Additionally, there is no
information in the paper on the maintenance of the histograms in case of changes in the
system, which is the major focus in this chapter.
In [HLS06] statistics about data potentially being returned by neighboring peers is

maintained by exploiting update information that the peers propagate through the net-
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work. So these statistics require other peers to actively publish information about their
data distribution rather than exploiting query feedback. This assumption is very opti-
mistic as experience from practice shows. For instance, a peer turning offline would have
to publish all of its information as “deleted”. That work also does not consider complex
mappings between the peers.

7.5. Summary
The goal of this chapter was to prove that query feedback—exploited to its full potent-
ial—can serve to accurately maintain multi-dimensional statistics on cardinality in the
context of Pdms. To this end, we presented the challenges set by the high degree of
volatility in Pdms as well as their distributed nature. We solved the problem of detecting
hidden changes arising from the peer-to-peer paradigm by keeping track of the estimation
error at a fine grained level. Additionally, we proposed several techniques to support the
adaption of our histograms to a changing data distribution in the Pdms. An extensive
experimental study has shown that based on our techniques, the relative estimation error
clearly remains below an order of magnitude, even after massive changes in the Pdms.
This is considered to be sufficient for our techniques of query optimization presented in
this thesis.
Further, we discussed an approach to the problem of trading off pruning and query

feedback by interweaving pruning mappings and obtaining enough query feedback to
detect sudden changes and to adapt histograms. To this end, pruning can be disabled
in a frequency that can controlled in dependency of the current estimation accuracy.
Having the means of accurate statistics in dynamic Pdms, we now present our ap-

proaches to query optimization under cost constraints (Chapter 8) and with information
overlap (Chapter 9).
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8. Query Optimization under Limited
Resources

To preserve peer autonomy, we focus on purely local reasoning in query planning. There-
fore, we assume the number and length of mapping paths “behind” neighboring peers
to be unknown from the local perspective of a peer. For this reason, our approach for
threshold-based pruning introduced in Chapter 6 has two major shortcomings:

– Benefit and cost of query answering are difficult to control. They are heavily
dependent on the completeness threshold that controls pruning of peer mappings.
Furthermore, the suitable value for this threshold is specific for the query at hand.

– The result size and the cost of query answering can be arbitrarily poor. In extreme
cases our approach may prune every result available in the Pdms. On the other
hand, pruning too few mappings may lead to a unacceptable response time.

Bounding the cost of query answering is an important requirement in practice. Users
usually expect information systems to return an answer in sub-second time. If a system
shows longer response times, its acceptance is likely to drop. So particularly for Pdms
potentially high execution cost conflict with user expectations of sub-second query an-
swering.
To address these problems, this chapter introduces an approach to limit resource

consumption of query answering while hardly compromising our requirement for local
reasoning. We assume that the peers accept a time budget for processing queries received
from other peers or directly from the user. This budget is passed along with each
query. Together with the queries, the corresponding budget is recursively distributed to
downstream peers.
In this chapter we first present in an illustrative example how this approach can

be used to explore the Pdms intelligently. Then we propose two major alternatives
to distribute a query’s budget to a set of alternative query reformulation options. To
establish non-monotonic reasoning for query optimization, budget can also be given back
to the peer it came from. We present two alternatives for doing so. Finally, we report
on the extensive experimental evaluation we conducted on these algorithms using our
Pdms testbed Humboldt Peers.

8.1. Bounding Resource Consumption
In this section we first define the completeness maximization problem for an individual
peer answering a query. Then we turn our attention to the whole Pdms and illustrate
our technique of budget-driven query answering by an example.
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8.1.1. Problem Definition
In principal, estimating the cost of distributed query answering is difficult if only local
information and query feedback can be exploited, Sec. 4.6. Even if statistics on cost
are accurate, a change in the Pdms structure can lead to dramatically higher resource
consumption for query answering due to the exponential nature of this problem. For
query execution cost, the same implications of high Pdms volatility apply as discussed
in Sec. 7.1. Even small changes with only an individual or a few peers can have massive
impact on the data accessible over a certain mapping path.

Definition 25 (Budgeted Completeness Maximization Problem). Given a query Q over
the schema of a peer, a budget B to be spent for accessing a subset of the given outgoing
mapping setsM1,M2, . . . of the peer. And given estimations on their coverage and den-
sity scores as well as their query execution cost Cost(Mi) are available, find a local query
plan P for Q with maximal estimated completeness C(P) together with a corresponding
assignment of the budget B to the mapping setsMi ∈ P .

To overcome these difficulties and the shortcomings of our approach for threshold-
based pruning mentioned above, the following sections show how to spend a given budget
to maximize the benefit of query answers while guaranteeing a limited amount of resource
consumption. To this end and in the spirit of the Mariposa system [SAP+96], we propose
a budget-driven approach, where peers are assigned a budget to use for query answering.

8.1.2. Budget-driven Query Answering
Every peer is free to decide about how to spend the budget it receives with the query.
Additionally, if a peer has no outgoing mapping, it is reasonable to give budget back
to the next upstream peer from which the budget was passed. This enables a non-
monotonic optimization strategy. If a peer has spent budget to a mapping path that
cannot exploit it to the full extent, the peer will get back the unused budget. Then it
can allot this refunded budget to other mapping paths that were ignored before. If the
cost measure is just response time, refunding of budget is implicitly done by finishing
query processing before the given time has passed.
Intuitively, our approach to exchange budget along with queries and their results is

a means to establish a weak coordination between peers. In this chapter we examine
different fully local strategies to spend and possibly refund budget. The strategies differ
in the way peers allot budget to their outgoing mappings.
The main idea behind our budget spending strategies is to distribute the budget to

alternative mappings based on the expected amount of data they contribute to the local
query result at a peer. To estimate this contribution, we use the completeness model from
Sec. 4.1 and our cardinality histograms introduced in Chapter 5. Before we present our
new techniques in detail, the following example gives an overview on how budget-driven
query optimization works.

Example 19. To illustrate our approach, we introduce an example of a simple Pdms
with some schemas and mappings between them, and guide the reader through the process
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of query answering while considering the completeness of the intermediate query result
(Fig. 8.1).

P1 edcbaR1

edcR3

edcbaR5

P4
dcbaR4

P6 edcR6

cbaR2

P2

P5
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Figure 8.1.: A small Pdms with mappings, source cardinalities, and symbolic histograms.

System Description. Each peer mapping is shown in Datalog notation. The mappings
can contain projections, for instance the mapping P2 → P4 does not map attribute e.
Also, mappings may have selection predicates. For instance, the mapping P2 → P6
has a selection predicate d > 10. The cardinality histogram at each peer mapping is
symbolically depicted in Fig. 8.1. We only annotate the frequency in a single root bucket,
which represents the whole STHoles histogram, Sec. 5.1.2. Further, we assume that our
Pdms overall holds data about 100 real-world entities. For each data source, the number
of tuple it offers is annotated. For example, based on its histogram, peer P2 estimates
to receive 54 tuples from P6 for queries without any selections. However, since P6 itself
expects 90 tuples that are actually stored at P5, we observe that the selection predicate
in the mapping P2 → P6 removes all but 60% of the tuples available at P6.
Query Planning. We now regard query planning with a simple cost model and our com-
pleteness model, discussed in detail in Sec. 4.1. We assume a simple cost model: Using a
set of peer mappings has a cost of 1, independent of the amount of result data transferred.
A fixed budget assigned along with the initial user query serves to bound the resources
spent for query planning and evaluation. To ensure that we spend the budget wisely, i.e.,
that we retrieve as many results as possible, our completeness model counts the number
of retrieved attribute values in relation to the overall number of attribute values. Please
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note, that it is not necessary to know the latter, because it only acts as a normalizing
factor.
Since peer P5 stores 90 tuples, each with data across all five attributes, it has a com-

pleteness of 90%. However, if this data is passed through the mapping to P1, the number
of tuples is reduced to 36 because of the selection predicate in the peer mapping P1 → P5.
Thus, P5 has a completeness of approx. 0.29 (180/500 attribute values) from the perspec-
tive of P1. Please note that in general this effect of decreased completeness is accumulated
along mapping paths.
Now, consider a query

q(a, b, c, d, e) :−P1.R1(a, b, c, d, e)

posed to peer P1 asking for all objects of relation R1. Let the budget of this query be 4,
i.e., we can recursively access four remote peers to answer the query. The database at
P1 can answer the query itself with a completeness of 0.2 (20 · 5/500 attribute values).
P1 has mappings to two other peers, P2 and P5, and it must now decide, which paths to
follow and how much budget to allot to each path.
Using one of the strategies outlined below, P1 decides to pass along the query only to

P2, because it promises to return 54 tuples compared to only 36 tuples estimated by the
histogram of the alternative mapping to P5. Since we assume full autonomy of peers, we
employ a fully local optimization strategy, Sec. 1.2. However, the histograms give us a
means to somehow globally assess the data accessible over a peer mapping.
By passing the query to P2, the aggregated coverage is incremented to include the data

stored at P2:

c(P1.R1 t (P2.R2 u P2.R3)) = 0.2 + ( 0.6︸︷︷︸
c(P2.R2)

· 0.6︸︷︷︸
c(P2.R3)

)− 0.2 · (0.6 · 0.6). (8.1)

Since both P1 and P2 comprise all 5 attributes, we yield an intermediate completeness
C(P1.R1t(P2.R2uP2.R3)) = 0.49. The subtraction in Eqn. (8.1) accounts for duplicates
among P1 and P2, assuming for now independence of tuples stored in P1 and P2.
Next, P2 has a remaining budget of 3 and decides to spend it all for the path to P6,

because the histogram of the mapping P2 → P6 promises 54 tuples instead of only 9 tuples
for the mapping P2 → P4. As P6 lacks a data source of its own, it cannot contribute to the
overall completeness and passes the query to P5 along with a budget of 2. By these steps,
the intermediate completeness is increased to C(P1.R1t(P2.R2u(P2.R3tP5.R5))) = 0.59.
Thus, the large data set of P5 is reached after all, however, along a different path. This
alternative path conserves more data on the way back to P1 than the direct path P1 → P5.
Since P5 has no outgoing mapping, it can refund the budget of 2 to P6, which in

turn also gives the budget back to P2 along with the query answer. Peer P2 can exploit
this budget by passing the query to the previously ignored path to peer P4. Finally, P4
increments completeness to C(P1.R1 t ((P2.R2 u (P2.R3 t P5.R5)) t P4.R4)) = 0.62,
accounting for the fact that it supplies only four of the five attributes and only 10% of
the overall data items in the system. Now the entire budget is used up and the query
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results flow back to P1 from where the query originated. 2

While this simple example is meant to convey the main idea of the approach for query
optimization under limited resources, real Pdms must deal with additional difficulties
that we discuss in the following sections.

8.2. Spending Budget
We first discuss major requirements and rules for strategies for spending a budget to
sets of mappings. Then we present two budget spending approaches in detail.
As pointed out in Sec. 6.1, we can assume that peers are able to enumerate the search

space completely, because they are only connected to a small number of neighbors and
their peer schema contains only contain foreign key chains of small length. For these
reasons, we employ a two step approach:

1. The peer computes the fully expanded query plan for a received query as presented
in Sec. 2.3.

2. A budget spending algorithm selects a fraction of the fully-expanded local query
plan along with an assignment of the available budget to the sets of mappings used
in the rewritings of that subplan.

The user expects results for all variables of the query posed to a peer. Moreover, we
have to assume that every variable can be concerned by selection predicates. Therefore,
it is important that the budget is spent in such a way that similar amounts of data are
retrieved for the different subgoals of the query at hand. Then the probability that the
multi-way join in a conjunctive query yields many results is maximized. The importance
of this aspect is highlighted by following example.

Example 20. We are given a query plan P (Q) = R1 u R2 as well as the two mapping
results R1(a1, a2, a3) and R2(a3, a4). Suppose the budget had been spent such that the
mapping results have following coverage and density scores:

c(S) d(a1) d(a2) d(a3) d(a4) d(S) C(S)
R1 0.1 1 1 1 0 0.75 0.08
R2 0.8 0 0 0.3 0.1 0.1 0.08

R1 has low coverage but returns many attribute values per tuple. In contrast, although
yielding the same completeness as R1, the mapping result R2 shows a completely different
configuration. It has high coverage, i.e., returns many tuples, but the density with respect
to the attributes a1, a2, a3, and a4 is comparably low. The completeness of P (Q) is
assessed as C(R1 uR2) = 0.05. Interestingly, combining the contributions from R1 and
R2 by a join merge yields less completeness than both mapping results considered in
isolation. The reason for this is the large difference in the coverage scores of R1 and R2
that leads to a low coverage of the result of the join-merge. 2
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Recall the structure of a fully expanded local query plan at a peer as depicted in
Fig. 2.6 (on Page 31). A query plan is a full outerjoin-merge of different rewritings,
each of which is in turn a join-merge over contributions of several subgoals Cij : P (Q) =⊔

i (Ci1 u Ci2 u . . . u Cik). Each subgoal retrieves data from alternative mapping sets
that are combined by a full outerjoin-merge: Cij = ⊔

l (R(Ml), Sel(Ml)). A budget
spending approach must decide how to distribute the budget to the mapping sets at the
lowest level of the query plan. In particular, it can prune mapping sets by not allotting
any budget to them.

Example 21. Regard the fully expanded query plan in Fig. 8.2. It shows a query plan
with an individual rewriting Q′1 that has three subgoals below. Each of them combines
results from the mapping results listed in the table along with their potential data contri-
butions ∆C, cost, and ∆C/Cost ratio. The latter acts as a measure for efficiency of a
mapping set in the query processing: The higher the value for ∆C/Cost, the more data
is retrieved based on the cost.
For instance, the rewriting C12 retrieves data from the mapping sets M3, M4, and
M5. We shall use this query plan to explain our budget spending algorithms below. 2
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Result R(M1) R(M2) R(M3) R(M4) R(M5) R(M6) R(M7)
c 0.3 0.8 0.1 0.65 0.7 0.3 0.9

∆C 0.05 0.47 0.008 0.14 0.176 0.023 0.49
Costmax 3 6 2 5 16 4 7

∆C/Cost 0.016 0.078 0.004 0.028 0.011 0.006 0.07

P (Q)

Q′1

C11 C12 C13

Figure 8.2.: Example of a fully expanded local query plan P (Q). The mapping results
R(Mi) are listed along with their respective coverage c, data contribu-
tion ∆C, their cost for retrieving their maximal completeness, and their
∆C/Cost ratio.

An important observation to keep in mind when deciding on how to distribute bud-
get is that—usually—yielding high completeness is accordingly expensive. However, the
main idea behind our pruning approaches is to find exceptions from this heuristic and
prune mapping paths from query processing if they promise small results with dispro-
portionately high cost. For instance, in the query plan in Fig. 8.2 the mapping setM4
is three times more efficient thanM5 and yields 86% of the data ofM5.
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Our two approaches for spending the budget differ in how they distribute the bud-
get to the available mappings. The first strategy follows a breadth-first approach and
distributes the budget in proportion to the potential data contribution of the mapping
paths. The second algorithm takes a depth-first approach and exclusively chooses the
mapping paths with the highest completeness estimation whose cost is below the limit
given by the budget.
Both algorithms return an assignment of budget to every rewriting constituent of a

query plan as follows:

Definition 26 (Budgeted Query Plan). Let P be a local query plan. Let b be a mapping
{R(Mi)} → float from the mapping setsMi ∈ P to a corresponding budget for further
query processing. Then the pair 〈P, b〉 is called a budgeted query plan. It fulfills the
budget constraint ∑

Mi∈P

b(Mi) ≤ B, (8.2)

where B denotes the given budget.

The budgets are passed to the neighboring peers along with the queries. These peers
are expected to follow this budget constraint.

8.2.1. Weighted Distribution of Budget

In this strategy, a peer distributes its budget in a breadth-first manner. It starts from a
fully expanded local query plan denoted by P̂ . Every result of a mapping set in this plan
is assigned a fraction of the given budget. The algorithm is called Weighted because
that fraction of budget is proportional to its expected data contribution. Weighted is
documented in detail in Algorithm 8.2.1. It returns a mapping b : {R(Mi)} → float
from the mapping sets Mi in the given query plan to a budget for downstream query
processing that satisfies the budget constraint.
On the top level of the query plan, the budget is simply distributed in proportion

of the potential data contribution of the rewritings of the plan (Lines 1-2). Since the
alternative data contributions of a union-like full outerjoin-merge are independent, we
can maximize its result size by maximizing the result sizes of the operands in that way.
Things are different with the join-merge operator. As for the usual join, the result size

depends on how well the data of the conjuncts “fit together”. In a centralized database
that guarantees referential integrity for foreign key relationships, the cardinality of a
relation connected by a 1-to-1 foreign-key relationship must be at least as large as the
relation where the foreign-key relationship starts from. This could be considered when
distributing the budget among the conjuncts. However, for 1-to-many relationships it is
in general not possible to assess the lower bound for the cardinality of the target relations.
And in data integration, we even cannot assume that referential integrity holds. Rather,
when retrieving data for relations connected by a foreign key from different peers, the
cardinality of the join result can be much smaller than the size of the joined relations as
Example 20 demonstrates above.
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Input : Query Q, fully expanded query plan P̂ (Q), budget B
Output: Budget mapping b for 〈P̂ , b〉
foreach rewriting Q′i ∈ P̂ do1

BQ′i
← ∆C(P̂ , Q′i)/

∑
Q′

k
∈P̂ ∆C(P̂ , Q′k) ·B {weighted distribution}2

ns ← 5 {#steps to distribute BQ′i
}3

bC ← ⊥ {budget mapping {Cij} → float}4
for i← 1 to ns do5

foreach Cij ∈ Q′i do6

bC(Cij)← bC(Cij) + ∆C(P̂ , Cij)/∑Cik∈P̂ ∆C(P̂ , Cik) · 1
2BQ′i

/ns7

bij ← bC8
bij(Cij)← bC(Cij) + 1

2BQ′i
/ns {what-if analysis wrt. each Cij}9

end10

find j with
∑

k 6=j

∣∣∣∣
sij

sik
− |〈Cij , bij〉|
|〈Cik, bC〉|

∣∣∣∣ = minCij∈Q′i
{〈Cij , bij〉: bud. subplan}

11

bC(Cij)← bC(Cij) + 1/ns ·BQ′i
{spend fraction of budget}12

end13
foreach Cij ∈ Q′i do14

foreachMl ∈ Cij do15

b(Ml)← ∆C(P̂ , R(Mi))/
∑
Mk∈Cij

∆C(P̂ , R(Mk)) · bC(Cij)16

end17

end18

end19
return b20

Algorithm 8.2.1: Allotting budget in proportion to the expected contribution to
the query result (Weighted).

Therefore, we do distribute the budget among the subgoals of a rewriting not only in
proportion to their data contribution. Rather,

– we follow our main goal of maximizing the completeness of the query plan while
spending the budget.

– But we also aim to fulfill a boundary condition on the result sizes of the subgoals
as presented below.

This constraint specifies the ratio between the result sizes of the subgoals. The result
cardinality of the individual subgoals changes with different budgets assigned to them.
Therefore, we propose to iteratively assign small fractions of the rewriting’s budget to a
particular subgoal (Lines 7 and 12).
During this process we both follow our optimization goal and try to minimally devi-

ate from the boundary condition. In each step, we first assign a fraction of the budget
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in proportion to the data contribution of that subgoal in the given plan. This reflects
Weighted’s approach to achieve maximal completeness of the query plan without ex-
haustively enumerating all plans. Second, we allot another fraction that is oriented to
fulfill the budget condition. This is performed by an exhaustive what-if analysis (Lines
6-11). To this end, a budget mapping bij for each subgoal Cij of the rewriting is created
by copying the main budget mapping bC (Line 8). Then, the fraction of the rewriting
budget is added to each bij .
Please note that at this point, we assume to have statistics to estimate the complete-

ness of a budgeted query plan. Finally, Weighted distributes the budget assigned to
every subgoal of the rewriting (as stored by bC) in proportion to the data contributions
of the results of the mapping sets (Lines 14-19).
The boundary condition serves to prune the search space of our optimization problem.

It is a means to control the size of the joins between the rewriting subgoals. The join
size between two relations is dependent on the ratio of their cardinalities. For instance,
consider a join between two relations R and S connected by a 1-to-many relationship.
We double the size of S while R remains unchanged. Statistically, the size of the join is
expected to be doubled as well, since the probability for each new tuple to find a join
partner in R is supposed to be the same as for the old tuples. Consequently, we assume
a boundary condition that specifies the ratios between the cardinalities |Ci| of the data
contributions of the subgoals Cij ∈ Q′i:

|Ci1| : |Ci2| : . . . : |Cik| = si1 : si2 : . . . : sik. (8.3)

In practice, sij in Eqn. (8.3) are the output of a special approach for query optimization
based on join selectivity estimation, which is beyond the focus of this thesis. Here,
we assume that we do not know whether the type of the relationship between rewriting
subgoals is 1-to-1 or 1-to-many. So to avoid highly selective joins as in Example 20 above,
we aim at similar cardinalities of the data contributions of the rewriting subgoals, i.e.,
referring to Eqn. (8.3) we choose ∀Cij ∈ Q′i : sij = 1.
The deviation from this condition is measured for a certain rewriting subgoal by sum-

marizing the differences of the ratios of the subgoal cardinalities from their target value
for that subgoal with each other subgoal of the rewriting (Line 13 in Algorithm 8.2.1).
To maximally reduce the deviation from the boundary condition from Eqn. (8.3), the
algorithm Weighted greedily assigns the next fraction of the rewriting budget BQ′i

to
the subgoal that maximally reduces this difference. Please note that this technique can
also be applied in the other algorithms for query planning (Prune) and optimization
(Greedy following in the next section and the algorithms in Chapter 9).

Example 22. We apply the algorithm Weighted to our query plan introduced in Ex-
ample 21 above. In this example, we assume that the coverage of a result for a given
budget can be assessed by the linear function

c(B) = cmax ·
B

Costmax
, (8.4)
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where cmax denotes the coverage that can maximally be achieved at the cost of Costmax.
Since the fully expanded query plan contains only one rewriting Q′1, the complete budget
of B = 20 is assigned to Q′1.
While in the first part of each step the budget is distributed in the same proportion

during all steps, the second step considering the boundary condition chooses different
rewriting subgoals to assign the budget to. Finally, Weighted ends up with the following
budget assignment:

Subgoal C11 C12 C13
Assigned budget 4.9 9.4 5.7

To understand this result, recall the valuation of the result sets from Fig. 8.2. The subgoal
C11, especially R(M2) returns data with a high coverage at moderate cost as reflected by
the scores for ∆C/Cost measuring the efficiency of the mapping path. For the subgoal
C13, R(M7) has similar characteristics. In contrast, the score ∆C/Cost for the subgoal
C12 is less than half as good as for the two other subgoals. These are the reasons for the
comparably small amounts of budget spent to C11 and C13.
The cardinalities of the rewriting subgoals relate to each other as follows:

|C11| : |C12| : |C13| = 0.61 : 0.63 : 0.70.

So the maximal deviation from the boundary condition from Eqn. (8.3) of about 13%
is satisfying. Taken together, half of the budget has been used to follow the boundary
condition, whereas the other half has been distributed in proportion to the potential data
contributions. Of course, this ratio can easily be varied in the algorithm Weighted by
choosing the sij in Eqn. (8.3) to accentuate either the completeness maximization of the
individual rewriting subgoals or the join merge of their results. 2

8.2.2. Greedy Distribution of Budget
Instead of expanding the query at hand in a breadth-first way as Weighted does,
our Greedy strategy follows the best of a set of alternative mapping sets. It assigns
the whole budget available for a rewriting subgoal to the mapping set promising the
most data. Regard Algorithm 8.2.2, which we now explain in detail. It uses the func-
tions followBudgetConstraint and increaseCostOfP lan that are documented in Algo-
rithm 8.2.3 and Algorithm 8.2.4 respectively. As discussed above, the algorithm Greedy
takes the fully expanded query plan as input.
The main idea of Greedy is to find a query plan that has the structure, i.e., the Cij ,

of one of the rewritings in the fully expanded plan but only considers the best mapping
set of each rewriting subgoal while satisfying the budget constraint. All rewritings of
the complete query plan are included in the search for this best plan. Similarly to
Weighted, the algorithm Greedy returns a mapping b : {R(Mi)} → float from the
mapping setsMi in the returned query plan Pmax to budget values for each result of a
mapping set.
As explained in [Nau02], the principle of optimality does not hold for the budgeted

completeness maximization problem, i.e., a less complete data source can better fit to an
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Input : Query Q, fully expanded query plan P̂ (Q) with l query rewritings, an
average of k subgoals per rewriting, each with n mapping sets, budget
B, look ahead la

Output: Pruned local query plan Pmax, budget mapping b for 〈Pmax, b〉
Cmax ← 0, Pmax ← ⊥1

foreach rewriting Q′i ∈ P̂ (Q) do2
foreach subgoal Cij ∈ Qi do {RCij : priority queue}3

RCij ← sortByCompleteness({R(Ml) ∈ P̂ |R(Ml) ∈ Cij})4

end5
P ← ⊥, i← 0 {i: look-ahead counter}6
repeat7

if P = ⊥ then8
foreach subgoal Cij ∈ Qi do9

P ← P uRCij .pop()10

end11

else12

find C∗ with ∆C(P̂ ,RC∗ .first()) = maxCij∈Q′i
(∆C(P̂ ,RCij .first()))13

P [C∗]← RC∗ .pop() {P [C∗]: subgoal C∗ in P}14

end15

P ← followBudgetConstraint(P, P̂ , B, {RCij}) {see Algorithm 8.2.3}16

P ← increaseCostOfP lan(P, P̂ , B,Q′i, {RCij}) {see Algorithm 8.2.4}17

if C(P ) > C(Pmax) then18
Pmax ← P , Cmax ← C(P ), i← 019

else20
i← i+ 121

end22

until i = la or ∀RCij : RCij .isEmpty()23

end24
foreachMi ∈ Pmax do25

b(Mi)← ∆C(Pmax, R(Mi))/
∑
Mj∈Pmax ∆C(Pmax, R(Mj)) ·B26

end27
return Pmax, b28

Algorithm 8.2.2: Allotting budget in a greedy manner (Greedy).
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Input : Pruned local query plan P , fully expanded query plan P̂ , budget B,
priority queues {RCij})

Output: Pruned local query plan P
while Cost(P ) > B do1

d← C(P ) {change P with min. decrease of C(P )}2
foreach C ∈ P do3

P ′ ← P4
P ′[C]← RC .first()5
if |C(P )− C(P ′)| < d then6

C∗ ← C, d← |C(P )− C(P ′)|7
end8

end9
P [C∗]← RC∗ .pop()10

end11
return P12

Algorithm 8.2.3: Adjusting a plan to the budget constraint
(followBudgetConstraint(P, P̂ , B, {RCij})).

Input : Pruned local query plan P , fully expanded query plan P̂ budget B,
rewriting Q′i, priority queues {RCij})

Output: Pruned local query plan P
while Cost(P ) < B do1

find C∗ with ∆C(P,C∗) = minCpq∈Q′i
(∆C(P̂ , Cpq))2

P ′ ← P3
P ′[C∗]← P ′[C∗] tRC∗ .pop()4
if Cost(P ′) < B then5

P ← P ′6
end7

end8
return P9

Algorithm 8.2.4: Increase cost of a plan to maximally exploit the budget con-
straint (increaseCostOfP lan(P, P̂ , B,Q′i, {RCij})).
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existing plan than a more complete one. Therefore, once a plan with a local completeness
maximum has been constructed, Greedy proceeds in a look-ahead fashion (Lines 21 and
23). It checks a pre-defined number of additional plans (constructed in Lines 8 to 17)
for being better than the current maximum.
The strategy for constructing new plans taken by the algorithm is based on pre-sorting

the respective mapping sets of each rewriting subgoal Cij (Lines 3 - 5). The first plan
is created by taking the mapping set with the highest completeness from each subgoal
(Lines 9 - 11). To fulfill the budget condition, each new plan is modified such that its
cost is below the given budget. To this end, the function followBudgetConstraint (Al-
gorithm 8.2.3) substitutes the mapping result that minimally reduces the completeness
of the plan.
A plan created by taking a result of a mapping set for each rewriting subgoal can

be cheaper than the given budget. In such cases we extend the plan in function
increaseCostOfP lan (Algorithm 8.2.4) by including additional results of mapping sets
in the rewriting subgoal with the minimal data contribution. At this point we again ad-
dress the above requirement to uniformly retrieve data over all subgoals of the rewriting.
More data can be expected from a conjunctive query if the cardinality of the results for
the subgoals is similar than in the case where some subgoals contribute much less data
than others as demonstrated in Example 20 above.
After a plan has been chosen, the algorithm finishes by assigning a budget to each

mapping set in the plan in proportion to its potential data contribution ∆C (Lines 25 -
27). Recall that the rewriting subgoals can cover parts of the query to be answered of
very different size. So between the rewriting subgoals it is appropriate to distribute the
budget weighted on the data contribution of the mapping sets.

Example 23. We apply algorithm Greedy on our query plan introduced in Example 21
above. Assume we a given a budget of B = 20. An initial plan is created by taking the
mapping set with the highest completeness measure ∆C for each rewriting subgoal:

P1 = R(M2)︸ ︷︷ ︸
C11

uR(M5)︸ ︷︷ ︸
C12

uR(M7)︸ ︷︷ ︸
C13

.

This plan yields a completeness of C = 0.5 Our cost model assesses Cost(P1) = 29,
which is higher than the given budget. Therefore, Greedy is looking for a substitute for
one of the conjuncts in the plan that preserves as much completeness of the whole plan
as possible. It finds that the plan P2 = R(M2) uR(M4) uR(M7) is nearly as complete
as P1, i.e., C(P2) = 0.468. Yet, P2 is much cheaper, because R(M4) has a much better
completeness/cost ratio than R(M5). With Cost(P2) = 18 we have still 2 units of cost
left. So Greedy can include the rewriting R(M3) with cost of 2 units and we end up
with

P3 = R(M2)︸ ︷︷ ︸
C11

uR(M3) tR(M4)︸ ︷︷ ︸
C12

uR(M7)︸ ︷︷ ︸
C13

.

The completeness of this plan is assessed as C(P2) = 0.493, so almost the same as the
much more expensive plan P1.
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During a look-ahead phase, this plan is compared with others that are constructed by
substituting the mapping sets below a rewriting subgoal by the next best out of the ordered
collections of the subgoals. It can turn out that a certain mapping set better fits into the
current plan than another one since it has a density pattern in its attributes that better
complements the plan. In this example we assume that this does not happen and thus
Greedy returns P3 as the best pruned plan. 2

Runtime Analysis The runtime of the algorithm Greedy depends on

– the look-ahead parameter la,

– the parameters determining the size of the fully expanded query plan: the number
l of query rewritings, the average number k of subgoals per rewriting, the average
number n of mapping sets per subgoal,

– and, importantly, the configuration of the mapping sets in the given query plan.

In essence, the algorithm creates containers comprising n mapping sets for each of the
k subgoals of a rewriting. To create query plans, these mapping sets are selected. The
outer foreach loop (Line 2) is performed once for each of the l query rewritings of
the query plan. The inner repeat loop (Line 7) chooses at least a single mapping set
from the containers. Due to the nested while loops (encapsulated by the functions
followBudgetConstraint and increaseCostOfP lan), more than one mapping set can
be assembled into a plan. However, both the repeat and the while loop are controlled by
the same collection of mapping sets. So performing more while loops reduces the number
of possible repeat iterations. In addition, the look-ahead parameter la can terminate the
repeat loop well before all mapping sets in the containers are used up.
In the worst case, the look-ahead mechanism does not terminate the repeat loop at

all. Rather, the repeat and the while loops are executed until every mapping set has
been inserted into a plan, because every plan created is better than all previous ones.
Whenever a mapping set is selected, a nested loop over all subgoals of a rewriting
is performed to find a maximum or a minimum among them (Lines 13, Lines 3 - 9
in followBudgetConstraint, and Line 2 in increaseCostOfP lan). In summary, the
worst-case complexity is l · k · n · k = O(lnk2). Since Greedy does not perform an
exhaustive enumeration of all possible query plans its runtime is polynomial rather than
exponential as an exhaustive search would be.

8.2.3. Effectiveness and Comparison
The ratio between the given budget and the size of the search space, i.e., the complexity
of the Pdms, is supposed to be a factor influencing the effectivity of query planning
approaches. For instance, if the budget is very small compared to the size of the Pdms,
a depth-first search as in Greedy promises to better find peers returning a comparably
high amount of data, because Greedy acts more selective than Weighted.
Additionally, the rank of a Pdms (the average number of peer mappings of a peer) has

impact on the effectivity. The more interconnected the peers, the more likely it is that
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there are mapping paths that reach peers that otherwise would not have been found.
Another consequence is that there are both more long mapping paths and more short
mapping paths. If the budget is small and there is a high fraction of mapping paths of
short length, Weighted promises better effectivity compared to Greedy than if there
are less short mapping paths. Short mapping paths support the breadth-first approach
of Weighted to find more data. In contrast, the existence of more mapping paths
means no major advantage for Greedy, since this approach only has low fan-out.
Most notably, the fraction and distribution of loss of information in the peer mappings

strongly influences the effectiveness of our strategies. The more information loss is
encountered, the better the strategies work. On the other hand, if there would be no
information loss, the Weighted approach would behave just like the expansion of all
mappings. A disadvantage of Greedy is that the Pdms might not be explored equally,
because the different recursive reformulation paths operate independently at different
peers.

Weighted prefers to explore the neighborhood of a peer rather than more remote
peers and thus results in shorter mapping paths with less likely loss of information
(and higher semantic relevancy) and lower cost. As a further advantage, this approach
enables parallel usage of alternative mappings. However, in cases where a peer faces to
a high fraction of mappings with information loss, it is forced to spend budget on poor
mappings. Thus, this approach should be used in conjunction with a threshold-based
pruning strategy [RN05]. Additionally, it has to be considered that mappings resulting
in local-as-view style reformulations [HIST03] cover several relations at a certain peer.
Tuples retrieved over such mappings promise to contribute more completeness to the
overall result than mappings that substitute only a single relation in a global-as-view
fashion. Some of the above topics are subject of an experimental evalution in Sec. 8.5.

8.3. Refunding Budget
In case a peer has no or not enough outgoing mappings, some budget possibly cannot
be used for further query processing. It can be important information for the peer the
query has been passed from that it allotted too much budget for that query. Regard
that our algorithms are performed strictly locally at the peers. However, under limited
resources it is better to allow a weak form of cooperation to intelligently spend a limited
budget. In our altruistic variations of Greedy and Weighted a peer can refund budget
to where it came from if it has no more (promising) mappings to follow or it has detected
a cycle in query planning. In this way, the calling peer is provided with information on
how well the budget was exploited. Peers receiving and processing queries are interested
in letting the calling peer know about their resource consumption.

8.3.1. Altruistic Greedy and Altruistic Weighted
In this section we describe how to extend our algorithms Greedy and Weighted can be
extended by budget refunding. In general, peers getting back budget have the following
options:
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– Revise earlier pruning decisions: The refunded budget is spent to mappings that
were ignored initially. These mappings may either explicitly have been pruned
by threshold-based pruning (Sec. 6) or they have been omitted in distribution of
budget.

– Refund budget: A peer can in turn refund the budget that has been given back
from its neighbors if it already has used each of its outgoing mappings. In effect,
budget may be refunded back over several peers.

– Re-send queries with higher budget: Queries already sent to a neighboring peer
can be re-issued with higher budget if it can be expected that more data will be
returned.

Next, we discuss these options and relate them to our algorithms for budget spending.
The altruistic variation of budget refunding can be combined with both Weighted and
Greedy. However, the above options are more or less suitable in different situations.

Revise Earlier Pruning Decisions The benefit of revising earlier pruning decisions heav-
ily depends on the amount of data these mapping paths can contribute. If threshold-
based pruning has been applied in conjunction with Weighted, the threshold influences
the utility of mappings available to be used with the refunded budget. If the pruning
threshold t∆C is high, the mappings that have been pruned promise to contribute a high
amount of data and there is a higher number of pruned mappings than in the case of
a low t∆C . If the mappings that have been pruned promise little data, budget is pos-
sibly wasted. If Weighted is used without pruning, there are no mappings that have
received no budget, because the query plans are fully expanded. In this case, the only
options are to refund budget to the next upstream peer or to send queries again with a
higher budget, which is discussed below. However, in the former case, the budget may
return by recursive refunding to the peer to which the initial query was posed to.
Giving the refunded budget to mappings pruned earlier works well with Greedy,

because this algorithm prunes all but the best mapping from a set of alternative results
combined in a rewriting subgoal. Since usually there are more than one single map-
ping, the refunded budget can be allotted to mappings that promise to be attractive.
Example 19 (Sec. 8.1) contains such a case at peer P2.

Refund budget Using the Greedy approach it can happen that a peer gets back
budget and at the same time has no promising opportunities to spend this budget,
because the cardinality estimations are all poor. In such a situation, the peer should
refund the budget to the peer from where it received the query. When all Pdms peers act
in a greedy fashion, this budget may be better used by an upstream peer. Usually, there
are many mappings not expanded yet on the way back to the peer the query originates
from.
Another reason for giving back budget refunded from neighboring peers is that the

size of this budget is too small for Weighted to re-send any query. Clearly, to yield
more data from a certain mapping path than on a query already sent, the corresponding
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budget must be higher. If the refunded budget is smaller than the minimal budget spent
for any query before, the peer only can refund the budget too.
Budget can be given back for several reasons:
– Inaccurate Cost Statistics: Budget is given back when the cost of a query has been

overestimated. Then, the peer has the chance to update its statistic that predicts
cost of query answering.

– Changes in the Pdms: Anywhere in the mapping path that gives back unused
budget a change in the Pdms structure can happen. Of course, this can massively
influence both cardinality and cost of query answering, Chapter 7. Refunded bud-
get is an another opportunity to adapt statistics to possibly hidden changes in the
Pdms. Since we believe that the techniques to exploit the feedback from refunded
budget would similar to our proposals in Chapter 7, we do not cover this issue in
this thesis.

– Cached Query Results: To improve efficiency of query answering, a peer internally
can use a query result cache. Then, cost of query answering can be massively
smaller compared to recursively retrieving the result from other peers. As a con-
sequence, most of the budget can be given back by that peer.

Re-send queries with higher budget For inaccurate statistics and Pdms changes, it
can be promising to adjust the budget assignment of queries and send them again to
yield more data. When the budget is saved due to query caches, re-sending a query can
lead to a much more expensive and even smaller result, because the peer employing the
caches might be forced to obtain the query result in turn from its neighboring peers.
Sending queries again with higher budget is the more promising the larger the unused

budget is compared to the cost of the queries that did not refund any budget. A peer can
distribute the refunded budget to these query opportunities similarly to the approaches
applied in Weighted or Greedy.
As mentioned above, especially the algorithm Weighted faces to the problem that

once budget is refunded from other peers, every opportunity to send queries already has
been taken. If the peer wants to increase its query result with budget given back from
some of its neighbors, the only way is to re-send queries with a higher budget. Greedy
is only forced to re-send queries if a peer only has a single mapping path to send a query
to.
Of course, re-sending queries with higher budget retrieves many results a second time.

This is a kind of redundancy. The question is whether to refund budget instead of
re-sending any query or whether actually re-sending queries. We believe that a budget-
dependent cardinality estimation could help to decide this. But this is beyond the scope
of this work.

8.3.2. Deferred Weighted
Whereas refunding budget usually applies to Greedy, we now introduce a similar ap-
proach for Weighted. Deferring pruning decisions in Weighted provides a way to
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decide about allotting budget based on slightly more global information. Similar to
exploiting query feedback for cardinality and overlap estimation, Sec. 5, refunded bud-
get can be exploited to adapt query planning and pruning decisions to better solve the
completeness optimization problem as the algorithm Weighted does.
This can be accomplished by deferring the decision about spending budget to the

next mapping until it is known how much budget the current mapping will consume
and refund. On the one hand, this would take more time, because answering of a query
cannot run in parallel. However, this strategy guarantees that the entire budget is used
up even for the weighted distribution of budget. Please note that Greedy is inherently
a deferring strategy.

8.4. Exemplary Comparison of Algorithms
Before we examine our algorithms experimentally, this section gives a brief comparison
of the algorithms proposed above. To this end, we return to the illustrative Example 19
starting at Page 130.

Example 24. In Table 8.1, we list all budgeted global query plans for the example query
to P1 ordered by their budget. Each of them is discussed in the following. If budget is
not limited, we obtain the maximum completeness of 0.76. This query plan exploits the
data at peer P5 two times, first over the path P1 → P2 → P6 that branches at P2 and
also includes P4. Second, the data at P5 is used over the direct mapping P1 → P5.
The latter is the reason why this complete plan is superior to the plan resulting from

Altruistic Greedy with a budget of 4, which misses this direct access to P5 and therefore
yields a smaller completeness of 0.62. The data from P5 can only be transported via the
mapping P2 → P6 that acts as a filter due to its selection predicate. With Greedy
and a budget of 3 , the plan’s completeness of 0.59 is almost as high as with Altruistic
Greedy and a budget of 4. This plan does not involve P4, which only contributes
comparably little data in the plans discussed above. The plan that results from applying
altruistic Greedy with a budget of 2 achieves a completeness of 0.52 by only accessing
P1, P2, and P4. So, interestingly, this plan obtains almost 84 % of the completeness
of the plan with the double amount of budget, and 65 % of the maximum completeness
available for our example query to P1.

Weighted distributes the full budget of 4 units equally to P2 and P5 since only full
units of budget can be assigned in the cost model of this example. P2 in turn assigns its
remaining budget of 1 to P6, where the first of two mapping paths ends. Since P5 has no
outgoing mapping, it cannot use up its budget. 1 unit of budget which remains might be
given back to P1. Performing query answering with Weighted and the full budget ends
with the same completeness score as Greedy with a lower budget of 3. Including budget
refunding would not improve the result of Weighted in this example unless deferred
Weighted is applied. The reason is that P1 cannot exploit a budget of 1 refunded by
P5, because the other mapping paths has already be queried with a higher budget of 2.
This observation leads to the application of deferred Weighted. If P1 can afford, it
sequentially sends budget to its outgoing mappings in increasing order of their potential
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data contribution. Then, the budget of 1 unit refunded by P5 can be packed with the
budget of 2 and sent to P2. P2 first sends a budget of 1 to P4. After receiving the query
answer it queries P6 with a budget of 1, which does not contribute further data to the
overall result. In summary, deferred Weighted includes all peers in query answering
and thus yields the full completeness. 2

Approach Budget Global query plan C
[#Mappings]

Complete ∞ P1.R1 t ((P2.R2 u (P2.R3 t P5.R5)) t P4.R4) t P5.R5 0.76
contributing peers: P1, P2, P4, P5

Deferred 4 P1.R1 t ((P2.R2 u (P2.R3 t P5.R5)) t P4.R4) t P5.R5 0.76
Weighted contributing peers: P1, P2, P4, P5
Altruistic 4 P1.R1 t ((P2.R2 u (P2.R3 t P5.R5)) t P4.R4) 0.62
Greedy contributing peers: P1, P2, P4, P5
Weighted 4 P1.R1 t (P2.R2 u (P2.R3 t P5.R5)) 0.59

contributing peers: P1, P2, P5
Greedy 3 P1.R1 t (P2.R2 u (P2.R3 t P5.R5)) 0.59

contributing peers: P1, P2, P5
Altruistic 2 P1.R1 t ((P2.R2 u P2.R3) t P4.R4) 0.52
Greedy contributing peers: P1, P2, P4
Greedy 2 P1.R1 t (P2.R2 u P2.R3) 0.49

contributing peers: P1, P2

Table 8.1.: List of all possible budgeted global query plans and their completeness C
by budget for the query q(a, b, c, d, e) :−P1.R1(a, b, c, d, e) in the example
in Fig. 8.1. Some of the brackets solely document how distributed query
processing proceeded to compute the result of the plan.

8.5. Experimental Evaluation
In this section we examine experimentally how well our budget-driven strategies actually
can reduce query execution cost in terms of response time considerably and follow a cost
constraint at the same time.
We conduct similar experiments as in Sec. 6.3. First, a set of random training queries

(usually 25) is issued to the Pdms to calibrate the cardinality histograms. The rest of
the random query workload serves to measure the cost reduction and completeness yield
compared to retrieving all certain answers. Based on these results, we can determine a
measure for the efficiency gain for each query. Throughout our experiments, we use the
query response time as cost measure. All the experiments in this section were conducted
with our testbed Humboldt Peers. The main properties of the Pdms instances are listed
in Table 8.2.
Experiment 8.1 (Efficiency of budget-driven approaches.) This first experiment
is intended to give an impression of the efficiency of our budget-driven strategies for
query optimization.
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Mappings Average mapping Data#Peers Rank with projections path length distribution
P6 40 4 58% 7 random
P7 100 4 43% 8 random
P8 40 4 58% 7 Zipfian (z = 0.5)
P9 100 2.4 42% 2.3 random

Table 8.2.: Datasets and their main characteristics (continued from Table 7.2 from
Page 116).

Methodology. The algorithms Greedy and Weighted are applied to some of the ran-
domly created Pdms instances of different size described in Table 8.2. On the one hand,
we vary the time budget available for query processing. On the other hand, we study
the effect of our approaches for a wide spectrum of network bandwidths. To get an
impression of the influence of the size of the Pdms we compare P6 with 40 peers and P7
comprising 100 peers. The query workload comprises 100 random queries. 25 of them
are training queries.
Discussion. The results of the experiments with P6 are depicted in Fig. 8.3. With the
exception of the smallest network bandwidth of 0,05 MBit/s, all completeness scores are
above 0.7. The cost reduction for Weighted is slightly lower than for Greedy, but
this is overcompensated by a considerably higher completeness of about 0.9 and more
for sub-second budgets in case of Weighted. The completeness results converge to 1
as the budget for the queries increases. But even for a time budget of 20 seconds the
completeness clearly remains below 1.
The efficiency gains are even more impressive for the 100 peer Pdms instance P7

as depicted in Fig. 8.4. For small budgets of 250 or 1000 ms, Weighted yields an
efficiency increase between one and two orders of magnitude even for the fastest network
bandwidth considered in our experiments (50 MBit/s). Greedy performs even better
with efficiency gains clearly beyond an order of magnitude for all budgets and all network
bandwidths examined.
Taken together, the efficiency gains achieved by the budget-based approaches are

about an order of magnitude or higher if the budget is limited to be below one second
in our system environment. It is underlined that this result is achieved with a level
of completeness that can be regarded as satisfying for many scenarios of large-scale
information sharing.
Experiment 8.2 (Bounded response time.) This experiment examines whether
the budget-driven approaches actually follow the budget constraint. This is difficult to
achieve, because a cost model that a peer uses to predict the query response time of its
neighboring peers is always inaccurate. To fulfill a cost constraint in the case that local
or remote query processing has taken too long, a peer in Humboldt Peers can reduce
the size of the result that is transferred back to the calling peer and thus save transport
time.
Methodology. We display the query answering time for every query for several exper-
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(a) Cost reduction for Greedy.

Sheet3

Page 2

250 500 1000 2500 5000 10000 20000
40

50

60

70

80

90

100
50 MBit/s
5 MBit/s
0.5 MBit/s
0.05 MBit/s

Budget [ms]

C
os

t R
ed

uc
tio

n 
[%

]

250 500 1000 2500 5000 10000 20000
1

10

100
50 MBit/s
5 MBit/s
0,5 MBit/s
0,05 MBit/s

Budget [ms]

E
ffi

ci
en

cy
 G

ai
n

(b) Cost reduction for Weighted.
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(c) Completeness for Greedy.
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(d) Completeness for Weighted.
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(e) Efficiency gain for Greedy.

Sheet3

Page 2

250 500 1000 2500 5000 10000 20000
40

50

60

70

80

90

100
50 MBit/s
5 MBit/s
0,5 MBit/s
0,05 MBit/s

Budget [ms]

C
os

t R
ed

uc
tio

n 
[%

]

250 500 1000 2500 5000 10000 20000
1

10

100
50 MBit/s
5 MBit/s
0.5 MBit/s
0.05 MBit/s

Budget [ms]

E
ffi

ci
en

cy
 G

ai
n

(f) Efficiency gain for Weighted.

Figure 8.3.: Cost reduction, completeness scores, and efficiency gains for different bud-
gets and network bandwidths for Pdms P6.

iments and check whether they follow the time budget constraint. These experiments
vary in the size of the time budget and the cost constraint. Again the query workload
is made up of 100 random queries, of which 25 are considered as training phase for the
histograms.
Discussion. Some typical results of query response times are depicted in Fig. 8.5. The
results for other budgets and network bandwidths are similar. With exception of some
outliers in other experiments, the query response time clearly follows the budget. Most
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(a) Efficiency gain for Greedy.
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(b) Cost reduction for Weighted.
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Raw data: 

Completeness [%]: Completeness [%]:
250 1000 5000

50 MBit/s 78,9 86,03 92,56 0,000640
0.05 MBit/s 73,34 75,91 85,11 0,640000

Cost reduction [%]: Cost reduction [%]: 
250 1000 5000

50 MBit/s 87,76 82,36 76,89 0,000640
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Efficiency gain: Efficiency gain:
250 1000 5000
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(c) Completeness for Greedy.
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Raw data: 

Completeness [%]: Completeness [%]:
250 1000 5000

50 MBit/s 83,94 90,55 87,95 0,000640
0.05 MBit/s 82,53 83,12 94,37 0,640000
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50 MBit/s 33,16 11,36 10,55 0,000640
0.05 MBit/s 96,73 75,77 5,69 0,640000
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0.05 MBit/s 0,83 0,83 0,94
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(d) Completeness for Weighted.

Figure 8.4.: Efficiency gains and completeness scores for different budgets and network
bandwidths for Pdms P7 with 100 peers.

response times are considerably below the allowed response time. This shows that query
answering could achieve even better results, if the cardinality and cost estimation is
more accurate than for the techniques implemented in Humboldt Peers. As a comparison
between Fig. 8.5(a) and Fig. 8.5(b) reveals, the average level of the query answering time
increases with the budget.
Experiment 8.3 (Data distribution over the peer graph.) Our approaches to
explore the Pdms mainly differ in how they explore the peer graph. So one might
expect that their effectivity depends on the distribution of data over the network of
peers. The more an overall data set it is spread over the system, the higher the effort is
supposed to be to find all certain answers since more queries must be generated, more
data transport events happen involving latency time each time, and the length of the
data transports increases.
Methodology. We use a skewed data distribution of data over the peers. Analogously
to the skew of the reference data in the data space in Sec. 7.2.4, we construct a Zipfian
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8.5. Experimental Evaluation
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(a) Query response time for budget of 250 ms, net-
work bandwidth of 0.05 MBit/s, and Greedy.
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(b) Query response time for budget of 1000 ms,
network bandwidth of 50 MBit/s, and Weighted.

Figure 8.5.: Query answering times for Pdms P8.

distribution [Zip49] that is controlled by the Zipf parameter z. We experimented with
a value of z = 0.5 that distributes 1000 tuples in following packages: 88, 62, 51, 44, 39,
37, 33, 29, 28, 26, 25, 24, 23, 22, 22, 21, . . .. These data packages were assigned to the
peers randomly. The workload consists of 100 random queries.
Discussion. With exception of queries with small response time both Greedy are
Weighted interestingly prove to be similarly efficient and show cost reductions of
more than 70% with completeness scores of more than 50% even for a small budget of
250 ms, Fig. 8.6. Looking into the details, Greedy proves considerably higher efficiency
improvements for small budgets of 250 and 1000 ms and for high network bandwidth of
50 MBit/s. This advantage vanishes for slower networks and higher budgets. Further
results reveal that only for queries with small answering time Weighted takes longer
than Greedy. The main insight that can be drawn from this experiment is that both
Greedy are Weighted prove to be robust against skewed data distribution across the
Pdms.
Experiment 8.4 (Interconnectedness of the peer graph). With this experiment,
we examine how our approaches behave in Pdms instances with different rank, which is
defined as the average number of number of peer mappings of a peer. In less intercon-
nected Pdms instances with a smaller rank, the average length of peer mapping paths
is usually also smaller as can be seen in Table 8.2, for instance. This is due to the fact
that the more neighbors peer have the higher the more outgoing mappings they have.
Methodology. We derived Pdms instance P9 from P7 by removing about every second
mapping, Fig 8.7. This was realized by uniformly and randomly removing every second
mapping at each peer. The amount of data and the data distribution over the Pdms
remain unchanged. This leads to a rank of 2.4 compared to the rank of 4 for P7. The
average mapping path length changes from 8 to 2.3. Then we used the same query
workload as in Experiment 8.1 and compared the results with the ones from P7. The
query workload is made up of 100 random queries.
Discussion. The efficiency gains for the experiment with Pdms instance P9 are depicted
in Fig. 8.8. The main conclusion is that Greedy and Weighted change their behavior
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(a) Completeness in case of
Greedy.
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(b) Cost reduction in case of
Greedy.
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(c) Cost reduction in case of
Greedy.
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Raw data: 

Completeness [%]:
250 1000 5000

50 MBit/s 64,61 74,83 74,83
0.05 MBit/s 62,87 67,6 80,72

Cost reduction [%]: 
250 1000 5000

50 MBit/s 87,96 80,12 80,12
0.05 MBit/s 78,64 85,65 70,22

Efficiency gain:
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50 MBit/s 6,89 3,12 3,12
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(d) Completeness in case of
Weighted.
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(e) Cost reduction in case of
Weighted.
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(f) Cost reduction in case of
Weighted.

Figure 8.6.: Cost reduction, completeness scores, and efficiency gains for different bud-
gets and network bandwidths for Pdms P8.

similarly when comparing these Pdms instances with different degree of interconnection.
Both show less cost reduction that similarly drops with increasing budget as it is the
case for the more interconnected Pdms instances.
An obvious difference is that Greedy shows a considerably higher increase in com-

pleteness than Weighted does. The reason for that is that Weighted yields a higher
level of completeness than Greedy in the higher interconnected case.
Another interesting insight is that the efficiency gain vanishes for P9 if the budget

increases to a certain range. This highlights the necessity to find out the right level of
budget for a given Pdms instance before any productive use. Of course, it would be even
better to vary the budget in dependency of the query at hand. This could be based on
corresponding statistics, but is out of the scope of this work.
In summary, our experiments clearly show the feasibility of our strategies for query

planning under a limited budget. Especially for large Pdms they achieve more than 75%
completeness but with drastically reduced cost while guaranteeing to stay below a given
cost limit.
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(a) Pdms instance P7 (rank 4).
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(b) Pdms instance P9 (rank 2.4).

Figure 8.7.: Pdms instances P7 and P9 with the same number of peers but different
rank.
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(a) Efficiency gain for Pdms instance
P9 and Greedy.
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(b) Efficiency gain for Pdms instance
P9 and Weighted.

Figure 8.8.: Efficiency gains for Pdms P9.

8.6. Related Work

Both Kossmann [Kos00] and the survey article [OB04] of Ouzzani and Bouguettaya em-
phasize volatility and autonomy as important characteristics of distributed information
sources in today’s world. As we agree, we pay special attention on these two require-
ments for integrated information systems in this work. In the following, we first review
related work on optimization for individual data integration systems and second in a
network of them, i.e., a Pdms.
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8. Query Optimization under Limited Resources

8.6.1. Query Optimization in Integrated Information Systems

There are many works dealing with query optimization in data integration in general,
e.g., [EKMR06], [FKL97], or [HKWY97]. Here, we focus on some important approaches
that are very similar to our best-effort strategy.
Among other topics, the work in [Nau02] deals with completeness-driven query op-

timization in mediator-based integrated information systems. Since our peers act as
mediators as well, we can draw much inspiration from these results. For instance, we
apply the completeness model introduced by Naumann in this work, Chapter. 4.
In [Nau02], the so-called translated query contains relations from the global schema

of the mediator and the merge operators introduced in that work and thus corresponds
to queries against peer schemas in this thesis. The revised query planning paradigm in
Sec. 6 of [Nau02] chooses a set of sources for each relation in a translated query. Note
that in that approach each relation is treated in isolation. Instead, we apply answering
queries using views [Hal01] and global-as-view expansions in parallel. Both techniques
lead to rewritings that can include joins between relations in remote peer schemas. In
that context, some results from other peers only can be used together in a query plan,
because of their special foreign key relationships.
The Greedy Look-Ahead algorithm Naumann proposes maximizes the completeness of

the whole plan by selecting the set of sources that maximally increases the completeness
of the plan. Again, due to the restrictions for the query planning approach in that
work, this algorithm cannot be directly applied to our setting with complex query plans
resulting from exploiting both local-as-view and global-as-view mappings at the same
time. However, we apply a similar strategy when selecting a subplan from the full query
plan in our Greedy algorithm for budget spending, Sec. 8.2. The main difference is that
we have to distribute the budget over several subgoals of a query rewriting. Additionally,
our algorithm employs pre-sorting of the data sources available for each subgoal and then
takes mapping sets out of these collections. So in effect, our algorithm does not perform
an exhaustive search on the local level of a peer.
The budgeted maximum coverage problem introduced in [KMN99] is similar to the

budgeted maximum completeness problem covered in this section. The difference is that
in our context the principle of optimality does not hold for the objective function of
plan completeness. The work in [KMN99] deals with approximation to solutions to the
budgeted maximum coverage problem. In contrast, we argue that since we usually face
to a small number of neighboring peers we are able to enumerate many possible plans
and then decide which can be executed given a budget.
Duschka assumes in [Dus97] that it is known for the underlying information sources

that subsets of the data at the sources are complete wrt. the whole set of sources a data
integration systems accesses. This property is called local completeness. That work
shows how to exploit such knowledge in query optimization. Our cardinality histograms
can be seen as a much weaker form of local completeness: they specify query-dependent
data contributions of information sources. It remains an interesting research question
whether some of the query optimization techniques can be carried over from [Dus97]
and be applied to our context and vice-versa.
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8.7. Summary

8.6.2. Query Optimization in PDMS
The work of Tatarinov and Halevy [TH04] focuses on information preserving pruning,
Sec. 6. It is realized by query containment checks during the creation of the global
rule-goal tree. In this context, the authors investigate the effectivity and efficiency of
breadth-first and depth-first search. They find that a depth-first strategy is much worse
than breadth-first in their context. This is due to the non-monotonic nature of their
query answering technique. Rewriting nodes far down in the rule-goal tree are likely to
be pruned by nodes closer to the root of the tree that are possibly created at a later
point in time. In such cases, reformulation results already achieved will be substituted
by equivalent rewritings. Hence, reformulation time is wasted.
In contrast, in our work an expansion of a rule node will never be revised. Thus, the

negative effects with the depth-first strategy in [TH04] cannot happen in our mecha-
nism. Instead, our approach contains a weaker form of non-monotonicity: Once budget
is refunded, a peer can decide to revise pruning decisions and instead give budget to
mappings that were pruned earlier on. The difference to [TH04] is that in our technique
no earlier work or result structure has to be discarded.

8.7. Summary
The contribution of this chapter is to use a budget to control distributed query optimiza-
tion in a Pdms. This is a simple, yet effective means to bound resource consumption
in a cooperation of autonomous peers. By this approach, the main disadvantage of
completeness-driven query planning from Chapter 6, namely unpredictable cost of query
answering, is overcome.
First, we proposed two algorithms for spending a limited budget to optimize com-

pleteness of the query result. They both distribute the budget by considering potential
data contributions of the mapping paths occuring in the local query plan of a peer.
Weighted explores the search space in a breadth-first manner, while Greedy follows
the best out of a set of alternative opportunities for passing a reformulated query.
Then, the algorithms were extended by a mechanism to refund unused budget to the

calling peer. We discussed several possible usages for such budget in the context of
our algorithms. Most interestingly, we proposed Deferred Weighted, a variation that
deferred spending budget until refunding from the last mapping path has happened.
We conducted an extensive experimental evaluation. It proved that both Weighted

and Greedy improve efficiency of query answering by several factors up to two orders
of magnitude while guaranteeing a limited resource consumption.
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9. Query Optimization using Information
Overlap

Overlap between data from alternative mapping paths massively influences the cost
of query answering in a Pdms. Due to the nature of such systems, many tuples are
unnecessarily transported over redundant mapping paths. This leads to massive data
overlap perceived at the peers.
Having focussed on maximizing completeness in Chapters 6 and 8, we now aim to

directly decrease cost by addressing data overlap. At the same time, completeness of
a given query plan must be preserved as far as possible. The techniques developed
in this chapter can be orthogonally applied together with threshold-based pruning or
budget-driven query optimization. Reducing overlap of the subresults is accomplished
by identifying sub-volumes with high overlap in the multi-dimensional data space and
rewriting outgoing queries such that data overlap is decreased.
We describe this new technique in the following sections. First, an approach for

identifying sub-volumes suffering from high overlap in the multi-dimensional data space
is presented. Next, we analyze this optimization problem in more detail by taking a look
on how different kinds of cost depend on the procedure of query answering. Then our
novel solution for partially pruning outgoing queries is introduced. Finally we report on
an extensive experimental study in a master’s thesis that refined and implemented our
ideas [Tie09].

9.1. Reducing Overlap Cost and Preserving Completeness
In general, a local query plan at a peer comprises an exponential number of alternative
rewritings and one level below an exponential number of sets of mappings making up the
rewritings. This exponential number of possible query plans has often been mentioned
in the literature, e.g., [NKN05, VP98, FKL97, Nau02], but has not been handled yet
with satisfying efficiency.
Each pair of alternatives can show different data overlap and completeness charac-

teristics. The distribution of overlapping data and non-overlapping data over the data
space can vary between different pairs of alternative mapping sets, for instance. So an
approach to reduce data overlap has to consider each pair of alternatives in isolation.
Of course, Pdms do not only mean much more redundancy than a centralized mediator,
rather this huge amount work for overlap-driven query optimization is also shared among
the possibly large set of peers.
Since each peer has only a small number of neighboring peers and therefore only a few

outgoing mappings, we can afford a detailed analysis of data overlap and exploit both
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overlap and cardinality estimations for optimizing the local query plan at a peer. To the
best of our knowledge, this is the first approach that considers the distribution of data
overlap over the data space and uses such information to access only sub-portions of
data available over a certain set of mappings. We call this technique partial pruning of
mapping paths. Before diving into the details, we formulate the problem that is solved
by this novel approach.

9.1.1. Combining Optimization Goals
Given a local query plan we aim to find a transformed query plan with minimal cost
whose completeness exceeds the bound:

Definition 27 (Local Cost Minimization Problem). Given a local query plan P with
estimates for the result cardinality and cost for each mapping set in P , and further
given an estimation for the distribution of the extensional overlap between each pair of
mapping sets in P as well as a completeness threshold tC , find a transformed plan P ′

with minimal cost that has an estimated completeness C(P ′) > tC · C(P ) and P ′ ⊆ P .
We combine the objectives of decreasing cost by avoiding overlap and high complete-

ness by using a boundary condition for the plan completeness. It requires the complete-
ness of the transformed plan to be at least a certain fraction of the completeness of the
fully-expanded local query plan.

9.1.2. Approximative Solution
Before presenting our novel approach in detail we return to the illustrative example
introduced in Sec. 4.4 on Page 59.

Example 25. There we examined the result sets that a peer P1 receives from its neighbors
P2, P3, and P4 for overlapping tuples. The local query plan of P1 depicted in Fig. 4.3(b)
(on Page 60) reveals that the tuple {R(r1)uS(s1)} occurs in the three alternative rewrit-
ings P3.RS, P2.R u P4.S, and P4.R u P4.S. The mapping from P1 to P3.RS exclusively
returns the tuple {R(r2) u S(s2)}. So pruning the mapping to P3.RS completely would
cut off this result.
If the peer P1 had known about this by exploiting an overlap histogram for the mapping

P1 → P3, it would have been able to manipulate the query sent to P3 such that the
overlapping volume around the tuple {R(r1) u S(s1)} is not queried there. However, the
complementing tuple {R(r2) u S(s2)} would still be returned by P3. 2

In the following we propose an approximation to the local cost minimization problem
in the sense that we usually find a good but not the optimal solution. We experimen-
tally compare our approach with the best transformed plan by enumerating all possible
transformed plans.
Intuitively, our main idea is to use the information about overlap and data distribution

to manipulate the resulting queries of a local plan such that the potential overlap of the
corresponding subresults is decreased as much as possible. Our novel procedure consists
of the following phases:
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9.1. Reducing Overlap Cost and Preserving Completeness

1. Identification of sub-volumes of the multi-dimensional data space with high overlap
using our overlap histograms introduced in Sec. 5.3.

2. Assignment of these overlapping sub-volumes to the alternative mapping sets.

3. Decomposition of the complement of the overlap sub-volumes assigned to each
mapping set into rectangular volumes.

4. Transformation of the given local query plan by replacing the queries to be sent
to neighboring peers by selections representing the complement sub-volumes.

The effectiveness of the first step depends on the accuracy of the overlap histograms as
well as on the distribution of overlapping and non-overlapping data over the data space.
If a sub-volume of the multi-dimensional data space comprises both much overlap and
many non-overlapping tuples, eliminating this sub-volume from further query processing
would lose also all of these non-overlapping data from being retrieved over the pair of
mapping sets currently treated. We decided not to involve such cardinality consideration
at this point, because when checking a pair of alternative mapping sets, there can be other
mapping sets that probably can return the non-overlapping tuples mentioned above.
Rather, we take into account the completeness of the whole transformed query plan
when distributing the overlapping sub-volumes to the mapping sets in Step 2.
The distribution of the overlap volumes to be excluded to the mapping sets in Step

2 is the core of the approach. At this point, our optimization goals control the decision
to which one of two overlapping mapping sets a particular sub-volume is assigned. We
choose the alternative with the lowest cost that still fulfills our completeness constraint.
Once all overlap sub-volumes are distributed to the mapping sets, they have to be

excluded from the query plan. To this end, we compute the complement of overlap
volumes for the resulting query for each mapping set. To prepare the next step, this
complementing volumes have to be fully subdivided into multi-dimensional rectangular
volumes.
In Step 4, these resulting pieces of the multi-dimensional data space actually to be

queried can be translated into selection predicates. Taken together they replace the
original results of the mapping sets below the rewriting subgoals Ci. In summary, we
substitute a single sub-query involving a particular mapping set by many new sub-queries
for that mapping set. The results of these sub-queries are combined by the union-like
full outer-join operator when forming the result for a rewriting subgoal.

9.1.3. Trading-Off Costs
These new selection sub-queries mean additional cost for query planning and sending
them recursively through the network of peers. The additional cost have to be traded-off
with the cost saved by excluding overlapping data from being transferred.
Next, we describe the ingredients of a cost model. As stated in [Nau02], we can

distinguish sequential and parallel cost models. In the former, the total cost is the sum
of the cost for the individual participants. This is the case if only the monetary price is
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considered as cost dimension. In parallel cost models the total cost is equal to the cost
of the most expensive participant. For instance, this applies if a query answer has to be
joined from the results returned by several sources, that can be queried in parallel and
where response time is the only cost criterion. Since a sequential cost model is easier
to study, our testbed Humboldt Peers sends queries to neighboring peers sequentially.
Furthermore, we process only a single test query at a time in the whole Pdms instance.
This makes no fundamental difference to a parallel mode with a parallel cost model,

which Humboldt Peers is also capable of. There, the cost for a single test query processed
at a time would be much smaller due to parallel processing on the one hand. But on the
other hand, if several test queries were processed at the same time, the workload on a
particular peer would be higher and thus the execution time for each test query would
not be significantly smaller than in the sequential case. The effectiveness of our query
optimization approaches is similar in the parallel query processing case.
In [OV11] Özsu and Valduriez present a detailed cost model for distributed databases.

It distinguishes between local computing efforts (for CPU and I/O) and network cost.
We simplify this model for our purposes and investigate the main influence factors in
our setting: Both computing effort and data transport cost is influenced by the size |R|
of the query answer. The second important factor is the number and size of queries Qi

sent to neighboring peers. It determines the effort for query planning at all subsequent
peers. Moreover, each query requires latency time for setting up a network connection
to send the message containing the query and the result on the way back.
As introduced in Sec. 4.6, we model the cost Cost(P ) of a local query plan P by

Cost(P ) = v · |R|+ c ·
∑

i

|Qi|.

The specific cost factors v and c heavily depend on the topology of the Pdms. Since
they are unknown locally at a peer, these parameters must be determined from query
feedback. Gruser et al. [GRZZ00] propose a technique to learn response time for Web
data sources from exploiting previous query answers. The work in [NGT98] also mentions
the use of query feedback for establishing cost models for mediator-based information
systems. Since in Pdms data are usually transported over several peer mappings, we
can assume that cost for data transport dominate local computing cost.
Reducing overlap with partial pruning comes at the expense of more queries being

sent through the network of peers. Hence, this means a trade-off between the part of
the cost influenced by the number of tuples transferred and the number of queries being
issued. One of the experiments in [Tie09] aims to find the break-even for this trade-off.
To this end, the factors v and c are varied and virtual cost for actual result sizes |R| and
the number of foreign peer queries Qi are calculated based on values measured in the
experiments.
At query planning time, a peer can estimate the cost for its local query plan based

on the estimates for the cardinalities of the subresults returned by the mapping sets.
Additionally, the number and size of queries to be posed to neighboring peers is calculated
from the local query plan considering possible join pushdowns. With the global virtual
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query plan becoming deeper, the selections introduced by partial pruning make the
queries being propagated more and more restricted. Hence, some of the mappings that
would have been used before will not be expanded because of conflicting comparison
predicates between intermediate queries and peer mappings.

9.2. Identifying Data Overlap

To describe overlap between mappings, we search for maximum sub-volumes of the
multi-dimensional data space showing high overlap. This is captured by the overlap
histograms presented in Sec. 5.3. As a measure for comparison of data overlap between
these sub-volumes, we define overlap density as follows. Of course, the volume to be
examined for overlap is bounded by the selection predicates of the query received by the
peer under consideration.

Definition 28 (Overlap density). Consider a sub-volume S of the multi-dimensional
data space covered by a self-tuning overlap histogram. Let the multi-dimensional volume
of S be vS and the sum of the overlap of all individual buckets in S be oS. Then the
overlap density dS is defined as dS = oS/vS.

In the experiments in [Tie09], a threshold is used for the overlap density to identify
updates for our overlap histograms, i.e., new sub-buckets to be drilled into existing ones.
To exploit the full potential of a set of mappings, overlap reasoning must be integrated

with estimates about cardinality. The reason is that a mapping can have a high overlap
with others on the one hand. But this disadvantage can be overcompensated by the data
contribution, which is part of the complement of the volumes showing high overlap.
Recall that data contributions have two dimensions, Fig. 9.1. Extensional overlap

talks about counting duplicate tuples. But the size of a data set is also dependent on the
number of attributes, i.e., the intentional dimension. Hence, a mapping can compensate
high extensional overlap by its intentional contribution, i.e., attributes not provided
by alternative mappings. Observe that the intentional contribution of an additional
attribute is dependent on the overall number of tuples in the relation if null-values are
not considered. In contrast, the “disadvantage” of overlap is dependent on the size of the
overlap, which usually is only a fraction of the overall number of tuples available from a
mapping. These issues are considered in our algorithms for distributing the overlapping
volumes to the alternative mapping sets.
The impact of important properties of Pdms on characteristics of the overlap dis-

tribution and potential cost savings is qualitatively summarized in Table 9.1. Therein,
“distinguishability in data space” is an informal measure how well volumes with an
overlap density above a certain threshold can be distinguished from the rest of the data
space. “Local source overlap” refers to the overlap of the data stored locally at the peers
in the Pdms.
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Figure 9.1.: Extensional and intensional dimension of data overlap. ak denotes the

key/foreign key of the relations Ri and Rj . The grey shaded area marks
the potential savings.

9.3. Partial Pruning of Mappings
Having identified overlapping sub-volumes in the data space, we proceed by trying to
exclude most of the overlapping volumes by adding appropriate selections to alternative
mapping sets such that the overlapping volumes are queried only once. This technique
has the important advantage that the autonomy of peers is fully preserved, because
overlap is solely reduced by changing the queries being sent to neighboring peers. Since
only a subset of the data potentially being returned is pruned, we call this approach
partial pruning. Actually, by this technique, only parts of the data space with high
overlap are pruned.
To avoid overlapping results, we transform a selection query into an equivalent con-

junctive selection:

Definition 29 (Decomposition of a selection query). Let Q be the conjunctive selec-
tion query. A decomposition of Q is a set D of conjuncts each of which represents a
rectangular sub-volume Di of the multi-dimensional data space such that

⋃

Di ∈D
Di = D.

The main idea of our approach is to manipulate a decomposition of the selections
of a mapping set within a query plan in such way that certain sub-volumes of multi-
dimensional data space are no longer queries over that mapping set:

Definition 30 (Overlap exclusion). Let D be a decomposition. Let O = {O1, O2, . . . , Ok}
be a set of overlap volumes to be excluded from D. An overlap exclusion D′ = D \ O is
computed by excluding each Oi ∈ O from D.

The result of an overlap exclusion for a mapping set can finally be used to transform the
query plan accordingly. During the whole process, we have several degrees of freedom.
The most important one is the choice at which mapping sets of a set of alternative

162



9.3. Partial Pruning of Mappings

Overlap
size

Extension
in data
space

Mixture
with
non-

overlap-
ping data

Distinguish-
ability in
data
space

Potentl.
cost

savings

Number of
peers + ++ + − +
Rank ++ + ++ − ++
Selectivity of
mappings − − 0 0 −
Projections in
mappings 0 0 0 0 0

Length of
mapping paths + + + − ++

Local source
overlap ++ + 0 0 ++

Direction of uniform + + + − +
mappings different − − − + −

Table 9.1.: Characteristics of Pdms and their influence on locally observable overlap and
potential cost savings (++ major impact, + impact, 0 neutral, − negative
impact) [Tie09].

mapping sets a certain overlap volume shall be excluded. Another decision concerns the
order in which pairs of a set of mapping sets are processed to decrease overlap. The work
in [Tie09] found that the order of considering these pairs affects the overall result of a
query plan, especially if the overlap histograms are mutually inconsistent. This is usually
the case in practice, because overlap histograms are inaccurate in general. We choose
the mapping sets to exclude a particular overlap volume such that the completeness of
the local query plan maximized.

Example 26. For a simple setting with 3 mapping sets, we show corresponding decom-
positions in which all of the given 5 overlapping volumes have been excluded. Regard the
overlap histograms in Fig. 9.2(a) as a starting point for excluding all the overlap buckets
contained in them from the mapping setsM1,M2, andM3. This figure also shows the
selection query associated with the mapping sets and the query to be answered. The final
state of the decompositions for each of the mapping sets is depicted in Fig. 9.2(b). The
overlap volume O3 need not be excluded at any mapping set since it is contained in O11,
which is excluded from mapping setM1. 2

The algorithm OverlapGreedy developed by Tietz in [Tie09] performs a transfor-
mation of a given local query plan according to given overlap histograms. It is docu-
mented in an adapted form in Algorithm 9.3.1. For every rewriting subgoal of a given
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of alternative mapping sets a certain overlap volume shall be excluded. Another
decision concerns the order in which pairs of a set of mapping sets are processed
to decrease overlap. The work in [Tie09] found that the order of considering
these pairs affects the overall result of a query plan, especially if the overlap
histograms are mutually inconsistent. This is usually the case in practice, be-
cause overlap histograms are inaccurate in general. We choose the mapping sets
to exclude a particular overlap volume such that the completeness of the local
query plan maximized.
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dieser Mappings angefragt werden. Wir geben im Folgenden ein Beispiel für die Umschrei-
bung von drei Mappings, die auf dem begleitenden Beispiel aus Abschnitt 5.1 beruht. Ob-
wohl die Überlappungsbereiche jeweils erst während eines Transformationsschrittes identi-
fiziert werden, gehen wir hierbei zur einfacheren Darstellung davon aus, dass diese bereits
zu Beginn gegeben sind.

Beispiel 5.8 Sei folgende Überlappungs-Situation gegeben: Abbildung 5.7a zeigt die Over-
lap-Histogramme für alle Paare der für die gegebene Anfrage Q expandierten Mappings M1,
M2 und M3. Zusätzlich sind die Selektionsbereiche der jeweiligen Mappings und der An-
frage dargestellt. Seien die eingezeichneten Buckets/Bereiche dabei dicht genug, um in den
entsprechenden Schritten als überlappend identifiziert werden zu können.
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Sei (M1,M2) das im ersten Transformationsschritt betrachtete Mapping-Paar, wobei O11

bzw. O12 an M1 und O13 an M2 ausgespart werden sollen (vgl. Beispiel 5.3). Aus dem
ersten Transformationsschritt resultieren damit die bereits in 5.2f bzw. 5.3a dargestellten
Zerlegungen für die Mappings M1 bzw. M2. Der über M3 angefragte Bereich wird in die-
sem Schritt nicht verändert. Insgesamt resultiert damit nach Transformationsschritt eins
die in Abbildung 5.7b dargestellte Konfiguration der drei Mappings, wobei die Zerlegungen
der Mappings M1, M2 bzw. M3 jeweils blau, orange bzw. grün eingefärbt sind.

Sei (M2,M3) das in Transformationsschritt zwei betrachtete Mapping-Paar. Der bereits
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All of these ideas are reflected in the algorithm OverlapGreedy devel-
oped by Tietz in [Tie09]. It is documented in an adapted form in Algorithm
9.1. For every rewriting subgoal of a given fully-expanded local query plan we
consider every pair of mapping sets. First, a decomposition for each mapping set
is initialized with the intersection of the selections in this mapping set and the
query (Lines 4 - 7). Then, the set of overlapping volumes is determined using
the overlap histogram HM1,M2

for the pair of mapping sets at hand (Lines 9
- 10). The main loop is performed over the set O of overlapping volumes for
this pair (Lines 11 - 20), where it is decided to which mapping set to assign

(a) Overlap histograms with selections for the query and mapping sets for mapping sets M1, M2,
andM3.
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of alternative mapping sets a certain overlap volume shall be excluded. Another
decision concerns the order in which pairs of a set of mapping sets are processed
to decrease overlap. The work in [Tie09] found that the order of considering
these pairs affects the overall result of a query plan, especially if the overlap
histograms are mutually inconsistent. This is usually the case in practice, be-
cause overlap histograms are inaccurate in general. We choose the mapping sets
to exclude a particular overlap volume such that the completeness of the local
query plan maximized.
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All of these ideas are reflected in the algorithm OverlapGreedy devel-
oped by Tietz in [Tie09]. It is documented in an adapted form in Algorithm
9.1. For every rewriting subgoal of a given fully-expanded local query plan we
consider every pair of mapping sets. First, a decomposition for each mapping set
is initialized with the intersection of the selections in this mapping set and the
query (Lines 4 - 7). Then, the set of overlapping volumes is determined using
the overlap histogram HM1,M2

for the pair of mapping sets at hand (Lines 9
- 10). The main loop is performed over the set O of overlapping volumes for
this pair (Lines 11 - 20), where it is decided to which mapping set to assign

(b) Final state of decompositions for mapping setsM1,M2, andM3.

Figure 9.2.: Overlap histograms and final state of decompositions after excluding all
overlapping volumes for mapping setsM1,M2, andM3.

fully-expanded local query plan we consider every pair of mapping sets. First, a de-
composition for each mapping set is initialized with the intersection of the selections in
this mapping set and the query (Lines 4 - 7). Then, the set of overlapping volumes is
determined using the overlap histogram HM1,M2 for the pair of mapping sets at hand
(Lines 9 - 10). The main loop is performed over the set O of overlapping volumes for this
pair (Lines 11 - 20), where it is decided to which mapping set to assign each overlap vol-
ume. To this end, two candidate transformed query plans are derived from the current
one (Lines 13 - 15) and compared for their estimated cost and whether they fulfill the
constraint of minimum completeness (Line 17 - 19). Finally, OverlapGreedy returns
the transformed query plan P ′ resulting from replacing resulting queries of mapping sets
below the rewriting subgoals by conjunctive selections that represent a decomposition
that exclude some overlapping volumes.
We highlight that to valuate the data contribution of a mapping set, we estimate the

completeness of the complete local query plan resulting from excluding a certain overlap
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volume at that mapping set. This is the same approach as in our other optimization and
query planning algorithms. It is due to the fact that the principle of optimality does not
hold for the completeness of query plans in our context. To trade-off between overlap
and completeness on a more fine-grained level, overlap and completeness histograms
could be compared in detail to better choose the overlapping areas. But this refinement
is beyond the scope of this thesis.

Input : Fully-expanded local query plan P for a query Q, threshold for the
overlap density tO, threshold for the completeness bound tC

Output: Transformed query plan P ′

P ′ ← P1
foreach rewriting Q′i ∈ P do2

foreach rewriting subgoal Cij ∈ Q′i do3
A ← {M|M ∈ Cij} {M: Mapping set below Cij}4
foreachM∈ A do5
DM ← Sel(M∩Q) {DM: (decomposed) volume forM}6

end7
foreach (M1,M2) ∈ A,M1 6=M2 do8
DO ← DM1 ∩ DM29
O ← findOverlapV olumes(HM1,M2 ,DO, tO) {O: overlapping vol.}10
foreach O ∈ O do11

foreach k ∈ {1, 2} do {insert O into DMk
}12

D′Mk
← DMk

\ {O}13

P ′k ← substitute 〈R(Mk), Sel(Mk)〉 ∈ Cij in P ′14
by 〈R(Mk), Sel(DMk

)〉 {Sel(DMk
) : selections of DMk

}15

end16

l←
{

1 if Cost(P ′1) < Cost(P ′2) ∧ C(P ′1)/C(P ) ≥ tC
2 if Cost(P ′2) < Cost(P ′1) ∧ C(P ′2)/C(P ) ≥ tC {best k}

17

P ′ = P ′l18
DMl

= D′Ml
19

end20

end21

end22

end23
return P ′24

Algorithm 9.3.1: Assigning overlap volumes to the mapping sets
(OverlapGreedy), simplified from [Tie09].
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9.4. Experimental Evaluation
We review some of the experiments of the master’s thesis [Tie09] conducted in the context
of our research.

9.4.1. Experimental Setup
The Pdms instance has been randomly generated by the generator component of Hum-
boldt Peers. The cardinality and overlap histograms are calibrated using a random
training workload, which consists of 100 queries against randomly chosen peers in the
Pdms. The measurement comprises 20 test queries over which the results are averaged.
After the training workload the histograms are frozen since besides OverlapGreedy
some other strategies for distributing the overlapping volumes to the mapping sets were
examined with the same state of the histograms [Tie09]. The experiments make use of
the very simple cost model that each attribute value has the same cost, which is a priori
estimated and fixed for all experiments with a certain Pdms instance.

#Peers Rank
P10 20 4
P11 20 3

Table 9.2.: Pdms instance and its main characteristics (continued from Table 8.2 from
Page 148).

9.4.2. Measurements
Experiment 8.1 (Identification of overlap.) The identification of data overlap in the
multi-dimensional data space can be controlled by the threshold tO for overlap density.
Methodology. This threshold is varied in repeated experiments with the same query
workload. We are interested in how completeness and cost reduction depend on tO. In
this experiment, the completeness constraint is turned off by setting the completeness
threshold tC = 0 in OverlapGreedy.
Discussion. The results of this experiment are depicted in Fig. 9.3. Starting from tO = 0
the average completeness of the query results clearly increases towards 1 as the threshold
is varied to tO = 0.01. Within the same interval the actual cost savings drop below 25%.
So it turns out that in this setting a threshold between 0.001 and 0.01 is the optimal
choice. As the results of query optimization are heavily dependent on the choice of tO,
its values must be carefully determined.
Experiment 8.2 (Influence of completeness constraint.) This experiment exam-
ines whether our implementation actually follows the budget constraint and how different
thresholds influence the efficiency of overlap-driven query optimization.
Methodology. The threshold for the completeness constraint is varied from 0 to 1 and for
each value the training and test workload are applied. In each experiment, cost reduction
and completeness score are measured and the resulting efficiency gain is calculated.
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Figure 9.3.: Experiments varying the threshold for overlap identification for Pdms P11.

Discussion. The main results for the Pdms P10 documented in Table 9.2 are depicted
in Fig. 9.4. The first interesting insight is that OverlapGreedy clearly follows the
completeness constraint, Fig 9.4(a). For every value of the completeness threshold, the
actual average completeness is much higher than the threshold. This is supposed to
be due to an overestimation of the overlap by our completeness model as presented in
Sec. 4.2. When estimating the cardinalities of alternative sets of mappings, this model
assumes statistical independence of the sub-results returned by them although their
overlap already has been reduced by partial pruning. Including overlap estimations into
this cardinality estimation can potentially improve cardinality estimations and thus the
effectivity of partial pruning approaches [Tie09].
The second observation can be drawn from Fig. 9.4(b). The efficiency gain clearly

drops as the completeness threshold increases. But even for a threshold of 0.95 the
average efficiency is still more than a factor of 2, which is still a considerable increase.
Additionally, this result can be combined with the information from Fig 9.4(a) that al-
ready a completeness threshold of 0.5, for instance, yields an average actual completeness
of more than 0.9.
The Pdms instance P10 with 20 peers and a rank of 4 is comparably small. If we

assume that—similar to our experience from Chapter 8—our optimization approaches
yield higher efficiency gains for bigger Pdms we could extrapolate from the above result
and expect even higher efficiency gains for Pdms with considerably more peers and
longer mapping paths.
The experiments in [Tie09] cover several other objectives. For instance, it is examined

how the results depend on the threshold of the overlap density. It also compares Over-
lapGreedy to other strategies, such as uniform distribution of the overlap volumes to
the alternative mapping sets or an exhaustive enumeration of all possible transformed
local query plans. Moreover, Tietz conducted experiments to find the break-even point,
where data transport is as expensive as query planning and how it depends on the
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threshold for overlap density.
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Figure 9.4.: Measurements on the completeness constraint for P10.

9.5. Related Work
In the same spirit as in our work, overlap between sources accessed by mediators is
considered in [VP98]. Similarly to our approach, the authors believe that in many
cases users are satisfied with incomplete query answers, so-called partial answers. They
propose an approach for query optimization that assumes that information about source
overlap is available and does not vary over time. For unions over source relations,
it employs a table of all possible source overlaps and proposes heuristics for choosing
partial answer query plans. The authors recognize that these statistics have to be kept
in addition at least for each class of similar queries involving selections.
In contrast, our work proposes a technique to gather statistics on overlap between

neighboring peers in a dynamic environment. Moreover, in a PDMS maintaining these
statistics is distributed among the peers. As every peer usually only knows a few neigh-
bors, it is feasible to compare contributions of neighboring peers in a pairwise manner
rather than for every possible query plan as proposed in [VP98].
The Piazza Pdms proposed to apply query containment checks during query planning

to identify redundant parts of the overall query plan [TH04]. They prune a subplan if
it is redundant with respect to the peers and the relations to be queried. Our approach
on the one hand is different in that it compares alternative mapping paths on the data
instance level rather than on the schema level. Another difference is that our approach
works fully decentral whereas the Piazza technique requires information about the global
query plan for a certain user query.
The problem of optimizing navigational queries in life sciences is covered with overlap
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awareness in [BKN+06]. The authors map this problem to the budgeted maximal cov-
erage problem. We discuss the original work on that problem in Sec. 8.6.1. From the
same domain, the work in [HTL07] used data overlap to rank query results.
The work in [BMT+05] applies statistics on overlap between sources for improving

selection of them for peer-to-peer search engines. Interestingly, their main idea for
keyword search is similar to our approach. However, their proposed solution cannot be
applied to the problem of answering range queries over structured data.

9.6. Summary
The contribution of this chapter is a novel approach for Pdms query optimization that
exploits information about data overlap to reduce this overlap while retrieving non-
overlapping results at the same time. We formulated the problem of local cost mini-
mization and presented a cost model that depends on the result size as well as on the
size of the queries sent to neighboring peers. We analyzed how the overlap distribution
depends on the properties of the Pdms. As the core of the approach, we discussed an
algorithm to exclude overlapping sub-volumes from the mapping sets in the local query
plan. The experimental evaluation we reported on reveals that even for Pdms instances
with tens of peers the efficiency of query answering can be increased by several factors.
Overlap-driven query optimization can be applied independently from the optimization
approaches presented in previous chapters of this thesis.
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10. Conclusion

This thesis shows that large-scale information sharing in Pdms with autonomous peers is
indeed feasible if the completeness of the query result is compromised as with our best-
effort optimization techniques. To finalize, it follows a summary of the contributions
of this work before we propose future research directions in the context of large-scale
Pdms.

10.1. Summary
The main contribution of this thesis is an exploration of a trade-off between completeness
and cost of Pdms query answering achieved in a fully decentral manner. It proposes
solutions to the problem of efficiently answering queries with satisfying completeness
of the query results in large-scale, volatile peer data management systems consisting of
autonomous peers. We return to the subproblems presented in the introduction and
describe their solutions discussed throughout this thesis.

Description of semantic relationships between peers. The language for specifying se-
mantic relationships between peer schemas is required to match to real-world peers
with simple query capabilities. Therefore, we only allow selects and joins over
relational schemas. The mappings between the peers are modeled as inclusion
dependencies between queries of different arity. So we extend global-local-as-view
mappings by projections for maximal flexibility. Since peers are not required to
accept projections in queries, information loss can occur.

Constructing a query plan. For mappings having projections we introduced weak query
containment mappings as a relaxed form of well-known containment mappings.
Using them, we extended the MiniCon algorithm to be used for answering queries
using views with projections. We provide an algorithm that transforms an inter-
mediate rule-goal tree that reflects the usage of global-as-view and local-as-view
mappings into a local query plan that contains queries to be sent to neighboring
peers. Based on two different types of semantics of Pdms query answering and
other architectural characteristics, we compared different Pdms approaches from
the literature. We implemented our full-fledged Pdms Humboldt Peers as a testbed
for the techniques developed in this thesis.

Estimation of query answer size. To be able to trade-off completeness and cost of query
answers, an accurate, query-dependent estimate of the result size is needed. For
the volatile and decentral setting of Pdms we identified self-tuning histograms as
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an appropriate approach for this task. This solution was compared with others
from the literature. We showed how to find the dimensions to be considered in
multi-dimensional histograms for mappings with projections. We also examined
the influence of inaccurate cardinality statistics on the effectivity of our techniques.

Maintaining metadata for size of query answers. As the data distribution over a Pdms
is highly sensitive against changes in the system, we put special emphasis on the
maintenance of statistics about query answers of neighboring peers. We described
how to to detect changes in the Pdms beyond the direct neighborhood of a peer
solely from query feedback. Moreover, we presented a solution to the conflict
between usage of query feedback for statistics maintenance and pruning of mapping
paths in query planning. Here, we offered techniques with varying sensitivity
that operate on different levels of granularity in the multi-dimensional data space.
An extensive experimental study was conducted to prove the feasibility of result
statistics maintenance.

Assessment of overlap between peers. We proposed to apply self-tuning histograms also
for estimating data overlap between alternative mapping paths. This is a means
to enable reduction of data overlap stemming from massive redundancy in the
network of peers and the data locally stored at the peers. Similar to cardinality
histograms, we described how to build overlap histograms for a pair of mapping
sets containing projections.

Effective query planning. To preserve peer autonomy as much as possible, we focus on
local query planning at a peer. Building on the statistics on result cardinality, we
proposed a rather simple yet effective approach to prune mapping paths from a
local query plan. It is based on a threshold for the potential data contribution
that can be estimated using the cardinality histograms. Our experimental study
revealed that the cost reduction of query answering can be reduced by two thirds
compared to the full query answer. Since the completeness is still satisfying for
a best-effort scenario, the efficiency of query answering is increased by about an
order of magnitude or more depending on the network bandwidth and pruning
strength.

Optimized retrieval of answers. Since threshold-based query planning can lead to arbi-
trarily poor results, we introduced approaches for query optimization operating
locally at a peer but accepting a cost limit for overall query answering. To this
end, we proposed to pass a budget along with each query that the called peers
has to follow. We distinguished several strategies to spend budget. These strate-
gies were augmented by techniques to use budget that had been refunded from
neighboring peers.
An experimental parameter study examined the dependency of the effectivity of
our novel approach on the size of the given budget and revealed that for Pdms
with 100 peers the efficiency gain can be between one and two orders of magnitude
or even more depending on the size of the budget and the network bandwidth.
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All of our budget spending strategies proved to be quite robust in their efficiency
against skewed data distributions and varied interconnectedness of the Pdms.
The overlap-driven optimization approach we introduced is orthogonally applicable
to the budget-oriented optimization. The core of this novel solution is to partially
prune mapping paths by excluding overlapping volumes of the multi-dimensional
data space from queries sent to neighboring peers. We described how this tech-
nique works when peers only accept conjunctive selection queries. To preserve
completeness, it follows a constraint for the minimum completeness compared to
the full query plan. Experiments examined the trade-off between savings for data
transport cost and cost to handle additional selections in queries. We also proved
experimentally that by the overlap-driven optimization approaches the efficiency
can at least be doubled even for a quite small Pdms instance with tens of peers.

Taken together, these solutions show that large-scale data sharing with Pdms is fea-
sible. This thesis provides all necessary ingredients starting with query planning for
complex mappings, over query-dependent and adaptable statistics on result cardinality
and data overlap to query optimization algorithms that limit resource consumption or
guarantee a certain level of completeness. Our solution addresses the problem of large-
scale distributed query answering over heterogeneous and autonomous peers. There are
several works in the literature that cover certain aspects of our problem. But this thesis
is the first research approach that preserves peer autonomy with respect to query lan-
guage, heterogeneity, and availability while returning query answers of satisfying size in
acceptable response time.

10.2. Further Research Directions
Peer data management systems are especially suitable for large-scale scenarios where
system structures are subject to sudden changes and users accept concessions on the
completeness of query answers. We briefly discuss three main directions for future re-
search in the context of Pdms.

Query model and semantics. The expressive power of the specification of semantic
relationships between the information offerings of the peers directly influences the ef-
fort for creating and maintaining Pdms, the user skills necessary to write queries, the
computing effort for query answering, and the quality of the query results. The more
expressive the mapping language, the more difficult the system is to build and use, but
the higher is the quality and usefulness of query answers.
In practice, it can often be observed that users are interested in easy-to-use means

for information authoring, such as for unstructured information at the beginning of the
information life-cycle. As a body of information grows, it becomes more desirable to
apply richer query facilities to retrieve answers of higher relevancy. So the query model
and its semantics is required to evolve over time to a more expressive, yet also more
expensive level. Such transitions are addressed by approaches called dataspaces and
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pay-as-you-go information integration [HFM06, SDK+07, MJC+07, SDH08]. One can
think about having different peers in the Pdms offer query services of different semantic
expressivity.

Query operators and approximation. Semantic relationships between heterogeneous
and autonomous peers are inherently inaccurate. This and the dynamic nature of a
Pdms raise the question of what can be considered as a semantically complete query
result. The best-effort query answering approach of this thesis can be extended by
augmenting the query model by approximative operators as proposed in [HLS06].
Another direction is to explicitly model uncertainty of mappings and include cor-

responding estimations into query processing [AC03, DHY07]. This approach seems
especially promising for Pdms since inaccuracies of mappings tend to accumulate along
mapping paths. Furthermore, when performing local reasoning the origin of any certain
data item is unclear. This is a more difficult problem than uncertainty assessment for
data integration systems where the data sources are known by the integration site.
As many data sources contribute to Pdms query answering, resolution of conflict-

ing data values is an important problem in practice. Therefore, it seems promising to
examine conflict tolerant query answering [CGL+05] and information fusion [BBB+05].

Building and evolving. This thesis has focused on local reasoning. However, for many
applications it is reasonable to consider the peer graph from a more global perspective to
find interesting peers [PP04] or to optimize the mapping network [HHNR05]. This effort
can draw from techniques for schema mapping composition [MH03, FKPT04]. Emergent
semantics [ACMH03, ACMO+04] is also a field that can inspire new solutions for Pdms
building and maintenance.

10.3. PDMS: Decentral and Flexible Information Systems
Peer data management systems are the most general model to study decentrally or-
ganized information sharing. Their flexible nature makes this architecture suitable for
many application scenarios in today’s rapidly changing world. Due to their flexibility,
Pdms are a framework to provide appropriate information management functionality
where it is needed.
This thesis has shown that such a decentral architecture may scale well without sac-

rificing flexibility and autonomy of the peers. Decentralization also promises to be an
important principle to balance power between a variety of stakeholders of large-scale
information systems.
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