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Abstract

The problem of parametric drift estimation for a Lévy-driven jump diffusion process is
considered in two different settings: time-continuous and high-frequency observations. The
goal is to develop explicit maximum likelihood estimators for both observation schemes that
are efficient in the Hájek-Le Cam sense.
In order to develop a maximum likelihood approach the absolute continuity and singularity

problem for the induced measures on the path space is discussed. For varying drift param-
eter we obtain locally equivalent measures when the driving Lévy process has a Gaussian
component. The likelihood function based on time-continuous observations can be derived
explicitly and leads to explicit maximum likelihood estimators for several popular model
classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differ-
ential equations driven by Lévy processes in detail and prove strong consistency, asymptotic
normality and efficiency of the likelihood estimators in these models.
The appearance of the continuous martingale part of the observed process under the dom-

inating measure in the likelihood function leads to a jump filtering problem in this context,
since the continuous part is usually not directly observable and can only be approximated
and the high-frequency limit. This leads to the question how the jumps of the driving Lévy
process influence the estimation error. We show that when the continuous part can only be
recovered up to some small jumps the estimation error is proportional to the jump intensity
of these small jumps. Hence, efficient jump filtering becomes an important task before infer-
ence on the drift can be undertaken. As a side result we obtain that least squares estimation
is inefficient when jumps are present.
In the second part of this thesis the problem of drift estimation for discretely observed

processes is considered. The estimators are constructed from discretizations of the time-
continuous maximum likelihood estimators from the first part, where the continuous mar-
tingale part is approximated via a threshold technique. Here the jump activity of the Lévy
process plays a crucial role for the asymptotic analysis of the estimators. We consider first
the case of finite activity and show that under suitable conditions on the behavior of small
jumps and the observation frequency the drift estimator attains the efficient asymptotic dis-
tribution that we have derived in the first part. Based on these results we prove asymptotics
normality and efficiency for the drift estimator in the Ornstein Uhlenbeck type model also
for infinite jump activity. In the course of the proof we show that the continuous part of
a jump diffusion can be recovered in the high frequency limit even when the observation
horizon growth to infinity and the process has infinitely many small jumps in every finite
time interval.
Finally, the finite sample behavior of the estimators is investigated on simulated data.

When the assumption of high-frequency observations is reasonable the theoretical results
are confirmed. We find also that the maximum likelihood approach clearly outperforms the
least squares estimator when jumps are present and that the efficiency gap between both
techniques becomes even more severe with growing jump intensity.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfah-
rens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst
werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie
entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen
Parametern auf dem Pfadraum induzierten Maße. Es zeigt sich, dass lokale Äquivalenz vor-
liegt sobald der treibende Lévy-Prozess einen Gauß’schen Anteil besitzt. In diesem Fall kann
die zugehörige Likelihood-Funktion explizit angegeben werden, so dass für einige in Anwen-
dungen populären Modelle ein expliziter Maximum-Likelihood-Schätzer entwickelt werden
kann. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ,
Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit
Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz
im Sinne von Hájek und Le Cam für den Likelihood-Schätzer.
In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Mar-

tingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden
kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich
der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation
des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern
von Sprüngen führen. Um den Einfluss der Sprünge auf den Schätzfehler besser zu verste-
hen, nehmen wir nun an, dass nur große Sprünge entfernt werden können. Unter diesen durch
Sprünge gestörten Daten zeigt sich, dass der Schätzfehler des Maximum-Likelihood-Schätzers
proportional zur Sprungintensität ist, so dass die Entfernung des Sprunganteils aus den Da-
ten wichtig für die Effizienz des Schätzers wird. Als Korollar dieser Untersuchungen erhalten
wir, dass der Kleinste-Quadrate-Schätzer in Modellen mit Sprüngen ineffizient ist.
Der zweite Teil dieser Arbeit untersucht die Schätzung des Drifts, wenn nur diskrete Be-

obachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil
und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Hier-
für spielt die Sprungaktivität des treibenden Lévy-Prozesses eine entscheidende Rolle. Wir
untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hoch-
frequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen
wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer
im Ornstein-Uhlenbeck Modell. Der Beweis beinhaltet als wesentlichen Schritt, dass der ste-
tige Anteil einer Sprungdiffusion aus Hochfrequenzdaten rekonstruiert werden kann, selbst
wenn der Beobachtungshorizont gegen Unendlich geht und der treibende Prozess unendlich
viele kleine Sprünge pro Zeitintervall aufweist.
Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stich-

proben aus simulierten Daten geprüft. Es zeigt sich, dass ab einer gewissen Beobachtungs-
dichte der stochastische Fehler den Diskretisierungsfehler dominiert und in diesem Bereich
die Annahme hochfrequenter Daten sinnvoll erscheint. Daneben wird auch die Ineffizienz des
Kleinste-Quadrate-Schätzers im Vergleich der Standardabweichungen beider Schätzverfahren
deutlich und es fällt auf, dass der Effizienzgewinn des Maximum-Likelihood-Schätzers durch
den Sprungfilter mit steigender Sprungintensität weiter zunimmt.
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1 Introduction

The study of jump diffusion processes in probability theory was initiated already in the early
work of Kolmogoroff [1931] and Feller [1940] on Markov processes. Later Itô’s theory of stochas-
tic integration opened up another perspective on jump diffusions as solutions of stochastic dif-
ferential equations. Since then this class of processes has been employed to describe complex
dynamics in all kinds of applications (we will give some examples later on). In particular during
the last two decades they have become an inevitable tool in stochastic modeling. But what
are the main reasons for the recent interest in this family of continuous time processes from an
applied perspective?
Besides their analytical tractability and flexibility to describe many kinds of complex dynamics

the main reason might be that we have seen a dramatic change in the availability of data recently.
In classical statistics a dynamic process in time is usually represented by a time series, i.e. a
stochastic process in discrete time. This modeling framework was for a long time reasonable,
since the available data was inherently discrete in the sense that measurements were not frequent
enough to employ time-continuous models such as jump diffusions. This situation changed
rapidly over the last two decades with the emergence of computer-aided measurements in e.g.
physics, biology and physiology, but also electronic trading in finance such that nowadays large
sets of so-called high-frequency data are available that make statistical modeling via stochastic
processes in continuous time feasible.
The term jump diffusion already reveals that such a process X may be decomposed as the

sum of a continuous diffusion component M and a component J that evolves purely by jumps.
Here the diffusive part M will be of the form

Mt = M0 +
∫ t

0
δ(s,Xs) ds+

∫ t

0
γ(s,Xs) dWs, t ∈ R+,

where W is a Wiener process. Our aim in this work is to infer the drift or trend function δ from
observations of X. In this model the function δ is measured under two quite different nuisance
terms: W and J . Each of these noise components on its own already leads to a mathematically
challenging estimation problem and for us it will be crucial to understand the interplay of both
noise terms in order to develop an estimation approach that recovers δ efficiently.

Statistical model and estimation problem

The main goal of this thesis is to provide a parametric estimation approach for the drift of a
jump diffusion process with Lévy noise. A jump diffusion means here the strong solution X to

1



1 Introduction

the stochastic integral equation

Xt = X0 +
∫ t

0
δ(θ, s,Xs) ds+

∫ t

0
γ(s,Xs−) dLs, t ∈ R+. (1.1)

with initial value X0 ∈ R. We suppose that X is defined on a filtered probability space denote
by (Ω,F , (Ft)t≥0, P ). The drift coefficient δ is parametrized by an unknown θ ∈ Θ and we
impose Lipschitz and linear growth conditions on δ and γ such that (1.1) exhibits a unique
strong solution. The driving process L is assumed to be a Lévy process with Lévy-Khintchine
characteristics (b, σ2, µ). This triplet of characteristics determines the law of L uniquely via the
Lévy-Khintchine formula, which implies a decomposition, the so-called Lévy-Itô decomposition,
of L into a linear drift with slope b, a Wiener process W with variance E[Wt] = σ2t and a jump
component that is fully described by the so-called Lévy measure µ.
The jump diffusion process (1.1) incorporates many widely used models from applications.

There is such a vast amount of literature such that we can only mention some examples here.
The first application in finance was developed by Merton [1976] in the context of option pricing.
In the literature on stochastic volatility two well known examples are Bates [1996] and Barndorff-
Nielsen and Shephard [2001] (cf. also Cont and Tankov [2004a]). A more general discussion
of affine jump-diffusions in finance with a focus on spectral methods for option pricing and
estimation was given in Duffie et al. [2000]. In neuroscience the neuronal membrane potential
has been represented by a jump diffusion in Lansky and Lanska [1987] and Jahn et al. [2011],
where the jump component describes the spiking behavior of the neurons.
For the statistical analysis of jump diffusion models several authors have investigated cali-

bration from option pricing data in financial applications. These references include for example
Cont and Tankov [2004b] and Belomestny and Schoenmakers [2011], where spectral estimation
techniques based on the empirical Fourier transform were used. Bandi and Nguyen [2003] consid-
ered non-parametric estimation of the conditional infinitesimal moments and proved consistency
of kernel estimates in this setting. There is also a growing literature on statistical inference in
the more general setting of Itô semimartingales as for example in Clement et al. [2011] and the
references therein.
When time-continuous observations (Xt)t∈[0,T ] are given a natural question is, which char-

acteristics of (1.1) can be identified. It is well known that when T > 0 is fixed the quadratic
variation of X is known and hence also the integrated volatility

∫ T
0 γ(s,Xs)2 ds. The situa-

tion is completely different for the drift, which cannot be identified in general when T is fixed.
However, when T → ∞ the drift is identifiable in the limit. Therefore, we will consider here
an observation scheme with with growing time horizon. When X is discretely observed on time
points 0 = t1 < . . . < tn = T there is a well developed theory for estimation of the volatility
under high-frequency observations, i.e. ∆n = max1≤i≤n−1{ti+1 − ti} ↓ 0, even if X is corrupted
by an additive noise (see e.g. Bibinger [2011]). For identification of the drift an observation
scheme is needed that satisfies Tn = T →∞ and also ∆n ↓ 0 as n to∞.
Let us next sketch our estimation approach. Since every Lévy process has a modification with

càdlàg paths, we can assume here that the paths of X lie in the Skorokhod space D[0,∞) of
càdlàg functions on [0,∞). Under certain conditions the measures P θ for θ ∈ Θ induced by X
on D[0,∞) are locally equivalent and the Radon-Nikodym derivative or likelihood function is

2



given by

dP θt
dP 0

t

= exp
[∫ t

0
γ(s,Xs−)−2δ(θ, s,Xs−) dXc

s −
1
2

∫ t

0
β(θ, s,Xs)2γ(s,Xs−)−1 ds

]
,

where P θt is the restriction of P θ to Ft and Xc denotes the continuous martingale part of X
under P 0. There is a well developed theory for parameter estimation for diffusions without
jumps driven by a Wiener process. A comprehensive overview for the ergodic case is provided
in Kutoyants [2004]. A likelihood theory for jump diffusions under time-continuous observa-
tions can be found in Sørensen [1991]. In this thesis we will expand these results and develop
an estimation approach for discretely observed X. For jump processes this step involves new
mathematical challenges, since Xc is in general unknown and has to be recovered. We will call
this approximation of Xc a jump filtering problem.

The appearance of the continuous component in the likelihood function leads to a central
problem for statistical inference from jump process models: the separation of the continuous
and the jump part. If the statistician is interested in properties of the continuous component,
then the jumps can be seen as a noise that has to be filtered or smoothed out before inference
on the continuous part can be undertaken. This type of problem occurs in the present work
or in the context of volatility estimation in Mancini [2009] or Cont and Mancini [2011], where
the integrated volatility of the continuous part is estimated by means of realized quadratic
variations and thus the quadratic variation that stems from the jump component has to be
removed. The second type of problem occurs when characteristics of the jump behavior are of
interest. In Aït-Sahalia and Jacod [2012] for example generalized Blumenthal-Getoor indices for
Itô semimartingales are estimated by approximating the number of jumps larger than a certain
threshold, which is then used to estimate the activity of small jumps when the threshold tends
to zero.

As a main example for such a jump filtering problem we shall consider an Ornstein-Uhlenbeck
type process X defined via

dXt = −aXt dt+ dLt, t ∈ R+, X0 = x ∈ R,

for a ∈ R unknown. The recent interest in this class of processes has been mainly stimulated by
Barndorff-Nielsen and Shephard [2001] in the context of stochastic volatility modeling in finance.
Nonparametric estimation of the Lévy measure of L was considered in Jongbloed et al. [2005].
When L is a subordinator Brockwell et al. [2007] applied time series techniques to infer the
drift parameter based on equidistant observations. For purely α-stable L Hu and Long [2009]
proposed least squares estimation and proved convergence to a stable limiting distribution.

For time-continuous observations (Xt)t∈[0,T ] the efficient maximum likelihood estimator for a
is explicitly given by

âT = −
∫ T

0 XsdX
c
s∫ T

0 X2
sds

. (1.2)

In applications time-continuous observations are usually not available such that the question

3



1 Introduction

arises, how the continuous martingale part can be recovered from discrete observations

Xt1 , . . . , Xtn for 0 = t1 < . . . < tn = Tn.

Can we identify increments of X that contain jumps? When high-frequency data is available it
turns out that this is indeed possible under restriction on the intensity of small jumps by deleting
increments of the process ∆iX = Xti+1 −Xti that are large relative to the threshold (ti+1− ti)β
for suitably chosen threshold exponent β ∈ (0, 1/2). This leads to the following estimator with
jump filter

ān = −
∑n−1
i=0 Xti∆iX1{|∆iX|≤∆β

n}∑n−1
i=0 Xti(ti+1 − ti)

, (1.3)

where ∆n = max1≤i≤n−1{ti+1− ti}. In the context of volatility estimation threshold techniques
were first employed by Mancini [2009]. Also the recent book by Jacod and Protter [2012] provides
detailed discussions of such separation problems between continuous and jump component for
Itô-semimartingales based on high-frequency observations. In contrast to our discussion these
authors have consider the case of a fixed observation horizon Tn = T <∞ for all n ∈ N.
One of the main problems considered in this thesis is the question under what conditions on β,

the observation scheme and the Lévy measure µ, does
∑n−1
i=0 ∆iX1{|∆iX|≤∆β

n}
approximate the

continuous martingale part Xc such that the drift estimator ān attains the same asymptotic
distribution as âT and is efficient? We will tackle this question in two steps. First we assume
that L has only jumps of finite activity such that in principle it is possible to identify all
jumps when the observation frequency is high enough. In the second most challenging step
we generalize these results to the case of possibly infinite jump activity, where we find that if
the jump component has an α-stable like behavior for the small jumps we can indeed choose
the threshold exponent β such that the continuous part can be identified in the limit and ān
attains the efficient asymptotic distribution. This result requires a fine estimate for the Markov
generator of the jump component of L and a sophisticated analysis of the convergence behavior
of each component of X under thresholding.

Main results and a guideline for the reader

This thesis can be divided into two main parts. In the first part we develop maximum likeli-
hood estimators for the drift based on time-continuous observations for several jump diffusion
processes that lead to an explicit estimator and prove asymptotic properties such as consistency,
asymptotic normality and efficiency. The second part is devoted to the problem of estimating
the drift from discrete observations.
The first part in Chapter 3 and 4 lies the groundwork for the estimation theory from discrete

observations in Chapter 5 and 6. We will build on these results in two ways. First of all the
discrete estimators will be constructed from their continuous analogs via discretization and jump
filtering. Secondly, the asymptotics of the continuous case will serve as a benchmark for the
discrete case in the sense that discrete observations cannot be more informative than the fully
observed process. Thus the efficiency bounds for the asymptotic variances from Chapter 4 hold
also for estimators based on discrete data. Another way of comparing both observation schemes

4



is to look at their limits. Since the high frequency scheme converges as ∆n → 0 to the time-
continuous scheme, it follows that in the limit both experiments are equally informative such
that efficiency bounds carry over from one to the other.

In Chapter 3 we discuss the absolute continuity problem for the measures (P θ)θ∈Θ induced
by the jump diffusion X on the path space D[0,∞) for different parameters. When absolute
continuity holds the likelihood function is known explicitly. These results are based on Sørensen
[1991]. From the general results for solutions of (1.1) we specialize then on three specific models
that play a major role in applications. The first model will be the class of Ornstein-Uhlenbeck
type processes, for which we give an independent and worked out proof of the absolute conti-
nuity of solution measures when the driving Lévy process L has a Gaussian component. Our
goal is to exemplify how the general theory of absolute continuity and singularity problems for
semimartingales, that was developed in Jacod and Memin [1976], applies in our setting. The
main tool here is the Hellinger process corresponding to the family (P θ)θ∈Θ. We also discuss
the role of the continuous martingale part and its behavior under changes of measure, since
this will be crucial later for the investigation of the maximum likelihood estimator. The second
example is the class of Lévy-driven square root processes. This class enjoys great popularity
in mathematical finance, owing to the fact that it stays non-negative under certain conditions
on the driving process. After the work of Cox et al. [1985] they also became known as Cox-
Ingersoll-Ross processes. In the last model we exemplify that the likelihood approach also works
in the non-Markovian setting of stochastic delay differential equations. Here we use results from
Küchler and Sørensen [1989] to derive the likelihood function for solutions of stochastic delay
equations driven by Lévy processes.

In Chapter 4 we start by defining a maximum likelihood estimator for the general jump dif-
fusion model (1.1). In this generality the likelihood equation has no explicit solution such that
numerical methods have to be applied. In Section 4.2 we develop a detailed asymptotic theory
for the maximum likelihood estimator (1.2) for Ornstein-Uhlenbeck type processes X. We prove
strong consistency, asymptotic normality and that the statistical experiment is locally asymp-
totically normal, i.e. that it behaves locally like a Gaussian shift experiment. This property then
implies asymptotic efficiency in the sense of the Hájek-Le Cam convolution theorem. Then we
investigate the influence of the jumps of the driving Lévy process on the estimation error. The-
orem 4.2.10 states that when the continuous martingale part in (1.2) is replaced by Xc + Xj ,
where Xj is a pure jump Lévy process with Lévy measure 1[−ε,ε]µ(dx), then the asymptotic
variance increases by

Ea[X2
0 ]−1

∫
|x|<ε

x2 µ(dx),

i.e. the jumps lead to an additional variance that is proportional to the intensity of jumps.
This result motivates the jump filtering approach in Chapter 5 and 6. In the last part on the
Ornstein-Uhlenbeck model we investigate the discretization error. We consider the estimator

ă∆n,T =
∑n−1
i=0 Xti∆iX

c∑n−1
i=0 X

2
ti∆i

instead of âT . Note that this is still a pseudo estimator, since the increments of the continuous

5



1 Introduction

martingale part are usually not observed. We prove that if ∆n = o(T−2
n ) then ă∆n,T converges

to the same asymptotic distribution as âT . Theorem 4.2.12 shows finally that the discretization
bias when ∆n = ∆ is kept fixed and we let T →∞ is of the order O(∆) and can be reduced to
O(∆2) via a bias correction.
In Section 4.3 we derive an explicit maximum likelihood estimator for the Lévy-driven square

root process and prove that it is consistent and asymptotically normal. Efficiency follows again
by proving the LAN property for the underlying statistical experiment. Then we generalize in
Section 4.4 the results from the Ornstein-Uhlenbeck model and the square root process to jump
diffusions with affine drift parameter, i.e.

δ(θ, s, x) = g(s, x) + θf(s, x)

for known functions f, g : R+ × R → R. This class also leads to an explicit and strongly
consistent estimator, which is asymptotically normal under ergodicity. The last Section 4.5
contains the likelihood estimator for the stochastic delay equations with linear point delay. We
show that it is strongly consistent and asymptotically normal. For the sake of simplicity we
restrict our attention here to one-dimensional equations and delay measures that are supported
on two points, but this can be extended easily to the multi-dimensional case with a more complex
dependence on the past.
Chapter 5 is devoted to the problem of estimating the drift from discrete, arbitrarily spaced ob-

servationsXt1 , . . . , Xtn for 0 = t1 < . . . < tn = Tn whenX has finite intensity jumps. Arbitrarily
spaced means here that we only require that ∆n → 0 fast enough such that Tn∆(1−2β)∧ 1

2
n = o(1),

where β is the threshold exponent in the jump filter. Under the assumption of finite intensity
the jump component of L can always be written as a compound Poisson process

Jt =
Nt∑
i=1

Zi

where N is a Poisson process and the Zi’s are iid with distribution F . To control the number
of small jumps we suppose that F (−2∆β

n, 2∆β
n) = o(T−1

n ) as n → ∞. When F has a bounded
Lebesgue density this condition means that ∆β

nTn = o(1).
In this setting we prove for the drift estimator (1.3) for the Ornstein-Uhlenbeck type process

that under stationarity

T 1/2
n (ān − a) D−→ N

(
0, σ2

Ea[X2
0 ]

)
as n→∞

under P a. This convergence together with the efficiency result in Section 4.2 implies then
asymptotic efficiency of ān. For the proof we define the good sets Ain as the events that a small
increment of X implies that no jump occurred in that increment and vice versa:

Ain =
{
ω ∈ Ω : 1{|∆iX|≤∆β

n}
(ω) = 1{∆iN=0}(ω)

}
.

We show then that the joint probability of the good sets tends to one as n→∞ such that in the
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limit the jump filter is able to identify all jumps of L. Then we prove that the continuous part
is asymptotically not affected by the thresholding. In the last section of Chapter 5 we apply the
jump filtering approach to obtain an estimator for linear stochastic delay differential equation
from high-frequency observations and prove that it attains the same asymptotic distribution as
the the likelihood estimator based on a fully observed process.
Chapter 6 contains as the final result of this thesis the proof that the likelihood approach

with jump filtering for jumps of infinite activity leads to an asymptotically normal and efficient
estimator. We restrict our attention here to the Ornstein-Uhlenbeck model. As in Chapter 5 it
is necessary to control the behavior of small jumps of L. In order to separate continuous and
jump part in the limit we suppose that the Lévy measure of L exhibits an α-stable like behavior
around zero, i.e. there exists an α ∈ (0, 2) such that∫ v

−v
x2 µ(dx) = O(v2−α) (1.4)

as v ↓ 0. This condition is closely related to the Blumenthal-Getoor index of L, which would be
the minimal α ∈ (0, 2) such that (1.4) holds. For α-stable Lévy processes this means that the
stability index α satisfies (1.4). The second assumption on the jumps of L is that the small jumps
are symmetric in a neighborhood of zero. If then there exists β ∈ (0, 1/2) such that Tn∆1−2β∧ 1

2
n =

o(1) we obtain that ān attains the efficient asymptotic distribution N
(
0, σ2Ea[X2

0 ]−1). For the
proof we derive first that the Markov generator of a pure jump Lévy process on a smoothed
version of the test function f t(x) = x21{|x|≤tβ} behaves like O(t1+β(2+α)) around zero. Then we
separate the problem into the continuous martingale part plus jumps of finite activity and the
remaining small jumps. Convergence of the first component follows from the results in Chapter
5. Then we apply the bound for the Markov generator and use the Lévy-Itô decomposition to
proof that the component of small jumps is negligible in the limit.
In Chapter 7 we discuss simulation results to assess the finite sample behavior of the drift

estimators from Chapter 5 and 6. First we consider models with finite jump activity and
compare mean and standard deviation of Monte Carlo simulations for different jump intensities
and parameter values. We also contrast the finite sample distribution with the asymptotic
distribution from the central limit theorems. In the second part we perform a similar program
for models with infinite jump activity. Overall we find that the estimators perform well if
the maximal distance between observation is small enough such that the assumption of high-
frequency observations is reasonable.
In the last Section 7.3 we compare the likelihood and the least squares estimator for the

Ornstein Uhlenbeck model. It is well known that in the Gaussian case both estimators coincide.
This is not the case anymore in models with jumps and as a corollary of Theorem 4.2.10 we obtain
that the least squares estimator is inefficient in the jump case. This observation is confirmed
also for finite samples, where we find that the likelihood estimator clearly outperforms the least
squares approach when jumps are present and this performance gap becomes even larger with
increasing jump intensity.
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2 Basic theory and notation

The field of statistics of stochastic processes is a branch of stochastics that connects several
modern parts of probability theory and mathematical statistics. In this chapter we fix our
notation and collect in the first four sections the foundations from semimartingale theory with
a special emphasis on local characteristics, Lévy processes and stochastic differential equations.
In the second part in Section 2.5 and 2.6 we introduce with Le Cam’s theory on asymptotics of
statistical experiments and exponential families of stochastic processes two important concepts
from modern statistics that will play a major role in this work.

2.1 Semimartingales

Semimartingales form a general class of stochastic processes that offers a rich theory of stochastic
calculus. In the following we will fix our notation and collect some results based on Jacod and
Shiryaev [2003]. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space.

Definition 2.1.1. An adapted, càdlàg process Y : R+ × Ω → Rd is a semimartingale if a
decomposition

Y = Y0 +M +A

exists where Y0 ∈ F0, M is a local martingale and A is a process of locally finite variation such
that M0 = A0 = 0.

In the theory of semimartingales the quadratic (co-)variation process plays a central role. For
the definition we need the notion of convergence in ucp. A sequence of processes Xn converges
uniformly on compacts in probability (ucp) to a process X if for all t ∈ R+,

sup
0≤s≤t

{|Xn
s −Xs|}

p−→ 0

as n→∞. Moreover, a sequence of stopping times (τn)n∈N is called a random partition if τ0 = 0
and supn{τn} <∞ as well as τn < τn+1 for all n on the event {τn <∞}. A sequence of random
partitions (τmn )n,m∈N is called a Riemann sequence if

sup
n
{|τmn+1 ∧ t− τmn ∧ t|} → 0

as m→∞ for all t ∈ R+.

Theorem 2.1.2. Let X,Y be two semimartingales. Then there exists a unique increasing,
adapted, càdlàg process [X,Y ] such that for every Riemann sequence (τmn )n,m∈N of random par-
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2 Basic theory and notation

titions ( ∞∑
i=1

(Xτmi+1∧t −Xτmi ∧t)(Yτmi+1∧t − Yτmi ∧t)
)
t≥0

ucp−→ [X,Y ].

The process [X,Y ] is called the quadratic covariation of X and Y .

A proof of this result can be found in Jacod and Shiryaev [2003], Section I.4. As an alternative
definition the relation

[X,Y ] = XY −X0Y0 −X− · Y − Y− ·X

can often be found in the literature. From a statistical point of view the definition in Theorem
2.1.2 is interesting, since it suggest a natural estimator for [X,Y ] which is called the realized
quadratic covariation.
The quadratic variation process leads also to the following important Lp-bound for the supre-

mum of a martingale.

Theorem 2.1.3 (Burkholder-Davis-Gundy inequality). LetM be a càdlàg martingale and p ≥ 1.
Then there exist constants cp, Cp > 0 that do not depend on M such that

cpE
[
[M,M ]p/2t

]1/p
≤ E

[(
sup
s≤t
{Ms}

)p]1/p

≤ CpE
[
[M,M ]p/2t

]1/p
.

The constants appearing here are universal in sense that they depend on p, but not on M or
the underlying probability space. A proof can be found in Chp. VII, Theorem 92 in Dellacherie
and Meyer [1980].

2.1.1 Random measures
Our aim in this thesis is the development of statistical method for models that involve jump
processes. In order to have a convenient description of the jump behavior of a càdlàg process
we will use the language of random measures.

Definition 2.1.4. A random measure is a mapping ρ : B(R+) × B(Rd) × Ω → R+ such that
ρ(·, ·, ω) is a measure for each ω ∈ Ω and ρ({0},Rd, ω) = 0 for all ω ∈ Ω.

For the definition of a stochastic integral with respect to a random measure ρ we refer to II.1d
in Jacod and Shiryaev [2003]. We denote by W ∗ ρ the integral of an integrable function c with
respect to ρ. The optional σ-field O on Ω×R+ is generated by all adapted càdlàg processes on
Ω× R. The σ-field P on Ω× R+ that is generated by all left-continuous processes is called the
predictable σ-field. The following definition gives a suitable notion of measurability for random
measures.

Definition 2.1.5. (i) A random measure ρ is called optional if the process W ∗ ρ is O-
measurable for every O ⊗ B(Rd)-measurable function W .

(ii) An optional random measure ρ is σ-finite if there exists a P ⊗ B(Rd)-measurable V :
R+ × Rd × Ω → (0,∞) such that limt↑∞(V ∗ ρ)t is integrable (note that V ∗ ρ has a
terminal variable, since V is strictly positive).
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2.1 Semimartingales

Now we are able to define the compensator of an optional σ-finite random measure ρ in full
generality. By Theorem II.1.8 in Jacod and Shiryaev [2003] there exists a unique predictable
random measure ν such that

E(W ∗ ν∞) = E(W ∗ ρ∞)

holds for every nonnegative measurable function W : R+ × Rd × Ω→ R.

Definition 2.1.6. The predictable random measure ν is called the compensator of ρ.

For us the most important example of a random measure is the jump measure of a càdlàg
process.
Example 2.1.7. Let X be an adapted càdlàg process taking values in Rd and set Xt− = lims↑tXs

and ∆Xs = Xt −Xt−. Then

ρ(dt, dx, ω) =
∑
s

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx) (2.1)

defines a random measure with the following properties.

(i) ρ({t},Rd, ω) ∈ {0, 1} for every ω, t,

(ii) ρ takes values in N ∪ {0,∞},

(iii) ρ is optional and σ-finite.

A random measure that has the properties (i) to (iii) is called an integer-valued random
measure. When a càdlàg process has independent increments its associated random measure is
a so-called Poisson random measure as defined below.

Definition 2.1.8. A Poisson random measure on R+×Rd is an integer-valued random measure
ρ such that for A ∈ B(R+)× B(Rd) it holds that

(i) the measure defined by ν(A) = E[ρ(A)] is σ-finite and satisfies ν({t}×Rd) = 0 for t ∈ R+,

(ii) for every t ∈ R+ and if A ⊂ (t,∞) × Rd such that ν(A) < ∞ then ρ(·, A) is independent
of Ft.

The compensator of a Poisson random measure is deterministic and given by ν(A) = E[ρ(A)]
for A ∈ B(R+)× B(Rd). This is a consequence of the independence property (ii).

2.1.2 Semimartingale characteristics

The characteristics of a semimartingale are an extension of the Lévy-Khintchine triplet that
describes the uniquely the law of a process with stationary and independent increments to
semimartingales. They are a very useful tool in several different directions. For limit theorems
the convergence of semimartingales can often be described by convergence of their characteristics
(cf. Jacod and Shiryaev [2003]). In statistics the likelihood function of a semimartingale model
can be given in terms of the characteristics as we will explore later on. They also form the
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basis for the formulation of martingale problems, solutions to absolute continuity problems and
changes of measure in a semimartingale setting as we will see in Section 2.3. An nicely written
introduction to semimartingale characteristics and their use in financial modeling can be found
in Kallsen [2006].
As the Lévy-Khintchine triplet the characteristics of a semimartingale consist of three com-

ponents that describe the generalized drift, a local martingale part and the jump behavior. In
the following we collect the necessary notation for their definition.
Let Y : Ω × R+ → Rd be a semimartingale and h : Rd → Rd a truncation function, i.e. h is

bounded, measurable and satisfies h(x) = x in a neighborhood of 0. Let ∆Y denote the adapted
process defined by ∆Yt = Yt − Yt− for t ∈ R+. We define the process of big jumps of Y by

Y
h
t =

∑
s≤t

(∆Ys − h(∆Ys)) (2.2)

and Y without its big jumps
Y h = Y − Y h

. (2.3)

We have ∆Y h = h(∆Y ), such that Y h has bounded jumps and therefore it admits a canonical
decomposition (Jacod and Shiryaev [2003], Lemma I.4.24)

Y h = Y (0) +Mh +Bh

where Mh is a local martingale with M(0) = 0 and Bh a predictable process of finite variation.
The jump characteristics stems from the jump measure of a semimartingale Y which is an

integer-valued random measure ρ : Ω× R+ × Rd → N defined by

ρ(ω, dt, dx) =
∑
s

1{∆Ys(ω)6=0}δ(s,∆Ys(ω))(dt, dx) (2.4)

where δ(x,y) denotes the Dirac measure with unit mass at (x, y).
Finally, every semimartingale Y = Y0 + M + A is by definition the sum of its starting value

Y0, a local martingale M and a process A of finite variation. By Theorem I.4.18 in Jacod and
Shiryaev [2003] M exhibits a unique up to indistinguishablility decomposition M = M c + Md

into a continuous local martingale M c and a purely discontinuous local martingale Md. Recall
that a local martingale Md is purely discontinuous if for every continuous local martingale N
the product MdN is a local martingale which means that Md is orthogonal to the space of
continuous martingales when square integrability holds. The uniqueness of this decomposition
enables us to make the following definition.

Definition 2.1.9. The continuous local martingale M c is called the continuous martingale part
of Y and is denoted by Y c = M c.

Now we have collected all necessary notions to introduce semimartingale characteristics.

Definition 2.1.10. The characteristic of a semimartingale Y is the predictable triplet (B,C, ν),
where B = Bh, C = 〈Y c, Y c〉 is the quadratic variation process of Y c and ν is the predictable
compensator of the jump measure ρ of Y .
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Semimartingales were originally developed as the most general class of stochastic processes
that allow for stochastic integration. This property can also be used as an alternative definition
as was done in Protter [2004] to develop an alternative approach to semimartingale stochastic
calculus. Since the class of semimartingales is closed under stochastic integration, it is an
immediate question how the characteristics are transformed by the integral. In the following we
use standard notation for stochastic integrals from Jacod and Shiryaev [2003] where X · Y =∫
X dY denotes the stochastic integral of X with respect to Y and X ∗ν =

∫
X dν is the integral

of X with respect to a random measure ν.

Proposition 2.1.11. Let X be a d-dimensional semimartingale with characteristics (B,C, ν)
relative to the truncation function h and H an n × d-dimensional predictable process that is
integrable with respect to X. Then the characteristics of Y =

∫
H dX relative to the truncation

function h′ are (B′, C ′, ν ′) where

B′ = H ·B + (h′(Hx)−Hh(x)) ∗ ν,

C ′ =

∑
k,l≤d

(H i,kHj,l) · Ck,l


1≤i,j≤n

ν ′(A) = 1A(Hx) ∗ ν for all A ∈ B(Rn).

2.2 Lévy processes
An important subclass of the class of semimartingales are Lévy processes. They provide a good
compromise between the flexibility to fit to many kinds of dynamics in applications and their
analytical tractability. In this section we will collect some basic results for Lévy processes.

2.2.1 Definition and characterization

We assume that a complete probability space (Ω,F , P ) is given and that it is equipped with
a filtration (Ft)0≤t<∞. We say that a stochastic process X = (Xt)0≤t<∞ is continuous in
probability if for every t ∈ R+ and ε > 0,

Xs
p−→ Xt as s→ t.

Definition 2.2.1. An adapted process L = (Lt)0≤t<∞ is called a Lévy process if

1. L0 = 0 almost surely,

2. L has independent increments, i.e. for all n ∈ N and 0 ≤ t0 < . . . < tn the random
variables Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent.

3. L has stationary increments, i.e. for every h ∈ R+ the distribution of Lt+h − Lt does not
depend on t.

4. L is continuous in probability.
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Two processes X and Y on (Ω,F , (Ft)t≥0, P ) are called modifications of each other if

P (Xt = Yt) = 1 for all t ∈ R+.

A proof of the following result can be found in Protter [2004], Theorem 30.

Theorem 2.2.2. Every Lévy process has a modification with càdlàg paths.

Therefore, we will assume throughout this thesis that we are working on the unique càdlàg
version of any given Lévy process.
One reason why Lévy processes are popular is that this class of processes contains a large

variety of different jump processes that make Lévy processes a versatile tool for stochastic
modeling. These include classical examples like the Poisson or compound Poisson process, but
also (tempered) stable, gamma and Normal-Inverse-Gaussian processes to name just a few of
them.
For a given Lévy process L the behavior of its jumps can be conveniently described by its Lévy

measure. It follows from the càdlàg property that every Lévy process has only finitely many
jumps with jump sizes bounded away from zero. Hence, we can make the following definition.

Definition 2.2.3. Let L be a Lévy process. For every Borel set B ⊂ R\{0} such that 0 is not
in the closure of B, the measure defined by

µ(B) = E

 ∑
0<s≤1

1B(Ls − Ls−)


is called the Lévy measure of L.

Remark 2.2.4. Every Lévy measure is finite on compacts except for a possible singularity around
the origin. This singularity is such that

µ({0}) = 0 and
∫
R

(x2 ∧ 1) µ(dx) <∞. (2.5)

The fundamental theorem in the theory of Lévy processes is an explicit factorization of the
characteristic function for every Lévy process into a term that stems from a Gaussian process, a
deterministic drift component and a term that characterizes the jump behavior. This decompo-
sition is the famous Lévy -Khinthchine formula. It was first derived in special cases by de Finetti
and Kolmogorov. Later Paul Lévy proved the general cased for Rd valued Lévy processes. A
much simpler proof for the one-dimensional version was given by Khintchine. A proof can be
found in Bertoin [1998] or Sato [1999].

Theorem 2.2.5 (Lévy-Khintchine formula). Let L be a Lévy process. Then there exists a
characteristic triplet (b, σ2, µ) consisting of b ∈ R, σ2 ∈ R+ and a Lévy measure µ on R such
that

φLt(u) = E
[
eiuLt

]
= etψ(u) (2.6)
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where
ψ(u) = ibu− σ2

2 u
2 +

∫
R

(
eiux − 1− iux1{|x|≤1}

)
µ(dx).

Conversely, for every triplet (b, σ2, µ) as above such that µ satisfies the integrability condition
(2.5) there exists a Lévy process L with characteristic function of the form (2.6).

The characteristic triplet is also called the Lévy-Khintchine triplet. Every Lévy process is
a semimartingale and vice versa every semimartingale with deterministic and constant local
characteristics is a Lévy process and its Lévy-Khintchine triplet (b, σ2, µ) and semimartingale
characteristics (B,C, ν) are then related by

B(ω, t) = bt,

C(ω, t) = σ2t,

ν(ω, dt, dx) = µ(dx)⊗ λ(dt),

where λ denotes the Lebesgue measure on R. A proof of this result is given in II.4.19 of Jacod
and Shiryaev [2003].

2.2.2 Distributional and path properties
The Lévy -Khintchine formula shows that the law of a Lévy process is uniquely determined
by the characteristic triplet (b, σ2, µ). We notice immediately that the characteristic function
of a Lévy process factorizes into the characteristic function of a Brownian motion with drift
φWt+tb(u) = exp(ibu− σ2

2 u
2) and the integral with respect to µ. A corresponding decomposition

of L exists also in a path-wise sense. This representation is the so-called Lévy -Itô decomposition.
For a detailed proof we refer to Sato [1999] or Jacod and Shiryaev [2003].

Theorem 2.2.6 (Lévy -Itô decomposition). For every Lévy process L with characteristic triplet
(b, σ2, µ) there exist a Wiener process W and a Poisson random measure

N : B(R+)× B(R)× Ω→ N

with compensator µ such that W and N are independent and

Lt = Wt + bt+
∫ t

0

∫
|x|<1

x (N(dt, dx)− dtµ(dx)) +
∫ t

0

∫
|x|≤1

x N(dt, dx)

= Wt + bt+
∫ t

0

∫
|x|<1

x (N(dt, dx)− dtµ(dx)) +
∑
s≤t

∆Ls1{|∆Ls|≤1}.

When in addition to (2.5) we have µ(R) <∞ then we say that jumps of L are of finite activity.
This corresponds to the case that the jump part of L is of compound Poisson type. In this case
the Lévy -Itô decomposition reads as follows:

Lt = Wt + bt+
∑
s≤t

∆Ls.
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The following formulae from Kunita [2010] for the first two conditional moments of integrals
with respect to a Poisson random measure N can be easily proved by considering the usual
extension argument from simple functions to square integrable functions.

Proposition 2.2.7. Let f be an Fs × B(R)-measurable random variable such that

E

[∫
R\{0}

f(x)2 µ(dx)
]
<∞.

Then for any s < t a.s.,

E

[∫ t

s

∫
R\{0}

f(x) (N(dt, dx)− dtµ(dx))
∣∣∣∣∣Fs

]
= 0, (2.7)

E

(∫ t

s

∫
R\{0}

f(x) (N(dt, dx)− dtµ(dx))
)2
∣∣∣∣∣∣Fs

 = (t− s)
∫
R\{0}

f(x)2 µ(dx). (2.8)

2.3 Some tools from stochastic analysis
Stochastic analysis provides many important ideas for the statistical analysis of stochastic pro-
cesses. In the first section we introduce the concept of martingale problems in a semimartingale
setting. They will prove useful together with Hellinger processes to solve absolute continuity
problems and develop the likelihood theory for jump diffusions in Chapter 3. The last part
of this section collects some martingale limit theorems that will be needed for the asymptotic
analysis of our estimators.

2.3.1 Martingale problems
Martingale problems were originally developed in the study of diffusion processes to understand
the relation between the coefficients a : R+ × Rd → Rd×d and b : R+ × Rd → Rd of a diffusion
process X and the distribution Ps,x of X starting in x ∈ Rd at time s ∈ R+. When the generator
G of X is given by

Gt = 1
2

d∑
i,j=1

aij(t, ·)
∂2

∂i∂j
+

d∑
i=1

bi(t, ·)
∂

∂i
,

then for all f ∈ C∞0 (Rd) and s ∈ R+ fixed an application of Itô’s formula shows that the process

f(Xt)−
∫ t

s
Guf(Xu) du, t ≥ s (2.9)

is a Ps,x-martingale with respect to a given filtration (Gt)t≥0 such that FXt ⊆ Gt for all t ≥ 0.
This is the first example of a martingale problem. In other words a martingale problem asks for
existence and uniqueness (in a suitable sense to be defined later) of measures Ps,x under which
(2.9) is a martingale and the initial condition

Ps,x(Xs = x) = 1 (2.10)
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holds. More material on martingale problems in the setting of diffusion processes can be found
in the book by Stroock and Varadhan [2006]. This idea was than generalized to the setting of
semimartingales where the coefficients a, b were replaced by a set of semimartingale character-
istics (B,C, ν) and one asks for the existence and uniqueness of a measure such that a given
process is a semimartingale under this measure with characteristics (B,C, ν). In the following
we will mainly follow Chapter III in Jacod and Shiryaev [2003]. An even more comprehensive
source on martingale problems in a semimartingale setting is Jacod [1979].
Let (B,C, ν) be a predictable triplet on a filtered space (Ω,F , (Ft)t≥0) relative to the trunca-

tion function h : R→ R such that:

1. B : Ω× R+ → R is an (Ft)-predictable process with finite variation and B(0) = 0;

2. C : Ω×R+ → R is an (Ft)-predictable continuous and nonnegative process with C(0) = 0;

3. the random measure ν : Ω × R+ × R → R is (Ft)-predictable such that ν(R+ × {0}) =
ν({0} × R) = 0 and (|x|2 ∧ 1) ∗ νt(ω) < ∞ as well as

∫
h(x)ν(ω; {t} × dx) = ∆Bt(ω) and

ν(ω; {t} × R) ≤ 1 for all ω ∈ Ω and all t ≥ 0.

Suppose now that Y is a càdlàg process on (Ω,F , (Ft)t≥0). We formalize the problem of
finding a measure P on (Ω,F , (Ft)t≥0) under which Y is a semimartingale with characteristics
(B,C, ν) as follows.

Definition 2.3.1. A measure P on (Ω,F) solves the martingale problem associated with Y ,
initial distribution π on (Ω,F0) and (B,C, ν) if:

(i) Under P the distribution of Y (0) equals π.

(ii) Y is semimartingale on (Ω,F , (Ft), P ) with characteristics (B,C, ν) relative to h.

We denote by s(Y |π;B,C, ν) the set of all solution measures P of the martingale problem
associated with the process Y , initial distribution π and characteristics (B,C, ν). If the initial
distribution is clear from the context, we will often drop it.

Besides uniqueness in the sense that #s(Y |π;B,C, ν) = 1 we will also need the following
notion of uniqueness. Let (F0

t ) denote the filtration generated by Y .

Definition 2.3.2. (i) A mapping T : Ω→ R̄+ such that {T ≤ t} ∈ F0
t for all t ∈ R+ is called

a strict stopping time.

(ii) Local uniqueness holds for a martingale problem s(Y |π;B,C, ν) if for every strict stopping
time T any two solutions P, P ′ ∈ s(Y T |π;BT , CT , νT ) of the stopped problem coincide on
F0
T .

All martingale problems that we will encounter in this work will be related to solutions
of stochastic differential equations. Of course there is a close connection between martingale
problems and stochastic differential equations. The next theorem is one result in this direction
that relates weak solutions of an SDE to the solutions of a corresponding martingale problem.
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2 Basic theory and notation

Let W be an m-dimensional Wiener process and µ a Poisson random measure with com-
pensator ν = λ ⊗ F for a σ-finite measure F on Rd both defined on some filtered space
(Ω′,F ′, (F ′t)t≥0, P

′). Consider the following stochastic differential equation driven by W and
µ.

dYt = β(t, Yt) dt+ γ(t, Yt) dWt + h ◦ δ(t, Yt−, z)(µ(dt, dz)− λ(dt)⊗ F (dx))
+ (x− h(x)) ◦ δ(t, Yt−, z)µ(dt, dz)

Y0 = ξ

(2.11)

where h is a truncation function, the initial value ξ is F ′0-measurable and the coefficients are
Borel measurable mappings

β : R+ × Rd → Rd,
γ : R+ × Rd → Rd×m,

δ : R+ × Rd × Rd → Rd.

Theorem 2.3.3. Let P(β, γ, µ, ξ) be the set of all distributions of weak solutions of (2.11) on
the canonical space (Ω,F). Then

P(β, γ, µ, ξ) = s(X|π;B,C, ν)

where π = L(ξ) and‘

Bt =
∫ t

0
β(s,Xs) ds,

Ct =
∫ t

0
γγ>(s,Xs) ds,

ν(ω, dt, dx) = λ(dt)⊗Kt(Xt, dx),

Kt(x,A) =
∫

1A\{0}(δ(t, y, z)) F (dz).

(2.12)

The next theorem is an existence and uniqueness result for martingale problems related to
jump diffusion processes that will be useful when we investigate absolute continuity questions
for solutions of stochastic differential equations.

Theorem 2.3.4. Assume that (B,C, ν) are as in (2.11) such that β is bounded, γγ> is bounded
continuous and everywhere invertible and

(t, y) 7→
∫
A

(|z|2 ∧ 1)Kt(y, dz)

is bounded and continuous for every A ⊂ B(Rd). Then s(X|π;B,C, ν) has a unique solution.
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2.3 Some tools from stochastic analysis

2.3.2 Absolute continuity and singularity of measures
Given a measure P on a filtered measurable space (Ω,F , (Ft)t≥0) we denote by Pt the restriction
of P to Ft.
Definition 2.3.5. We say that P ′ is locally absolutely continuous with respect to P , if for the
restrictions P ′t � Pt holds for every t ∈ R+. We will write P

loc
� P in this case.

Let P and P ′ denote two probability measures on (Ω,F , (Ft)t≥0) and h(α, P, P ′), α ∈ [0, 1)
any version of the Hellinger process as defined in Jacod and Shiryaev [2003], IV.1.
Theorem 2.3.6. Let T be a stopping time and assume F = F∞−. Then the following are
equivalent
(i) P ′T � PT ,

(ii) P ′0 � P0 and P ′(h(α)T <∞) = 1 for any α ∈ (0, 1) and P ′(h(0)T = 0) = 1,

(iii) P ′0 � P0 and h(α)T → 0 under P ′ as α ↓ 0.
A proof can be found in Jacod and Shiryaev [2003], IV.2.

2.3.3 Limit theorems
Here we will collect several limit theorems for (local) martingales that we will use frequently in
this thesis. Let (Ω,F , P ) together with (Ft)t≤0 be a filtered probability space.

Laws of large numbers

To prove consistency of various estimators we will need the following law of large numbers from
Liptser [1980].
Theorem 2.3.7. Let M be a locally square integrable martingale with M0 = 0 and suppose that
A is a predictable, non-decreasing and right-continuous process with A0 = 0. Define

Bt =
∫ t

0
(1 +As)−2 d〈M〉s,

then as t→∞,
Mt

At

a.s.−→ 0 on {A∞ =∞} ∩ {B∞ <∞}.

When we take the deterministic function As = s for A in Theorem 2.3.7 we obtain as an
immediate corollary a law of large numbers for locally square integrable martingales normalized
by the quadratic variation process.
Theorem 2.3.8. Let M be locally square integrable martingale. Then as t→∞ we have

Mt

〈M〉t
a.s.−→ 0

on {〈M〉∞ =∞}.
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2 Basic theory and notation

Central limit theorems

In this section we give a central limit theorem for multivariate martingales. It will be important
later on to investigate the relative error of the estimators under consideration. A proof can
be found in Küchler and Sørensen [1999]. For a more detailed discussion on martingale limit
theorems the read may consult Hall and Heyde [1980] or Jacod and Shiryaev [2003].

Theorem 2.3.9. Let M be an n-dimensional square integrable martingale with mean zero and
covariance matrix Ht = E[M2

t ]. Assume that there exists an invertible non-random sequence
(kt)t≥0 of n× n-matrices such that kt → 0 as t→∞ and

1. for Ki
t =

∑n
j=1 |kjit| we have

ktE

[
sup
s≤t
|∆Ms|

]
→ 0 as t→∞,

2.
kt[Mt]k>t

p−→W as t→∞

where W is a random positive semi-definite matrix such that P (det(W ) > 0) > 0,

3.
ktHtk

>
t → Σ as t→∞

and Σ ∈ Rn×n is positive definite.

Then as t→∞
(ktMt, kt[Mt]k>t ) D−→ (W 1/2Z,W )

and conditionally on {det(W ) > 0}

W−1/2ktMt
D−→ Z,

where Z is n-dimensional standard normal distributed independent of W .

2.4 Stochastic differential equations

Since the introduction of Itô’s stochastic integral, stochastic differential equations have become
a central topic in modern probability theory. Their solutions form prototypic examples for
Markov processes and semimartingales whose generator and semimartingale characteristics can
be explicitly given in terms of the coefficients of the equation itself. Therefore very powerful
tools are at hand for their study.
In applications SDEs provide an intuitive approach for stochastic modeling. They form a

natural extensions of models that use ordinary differential equations to situations where mea-
surement error or other sources of uncertainty are present. Hence, they are nowadays standard
tools in fields like mathematical finance and economics, physics, engineering or biology.
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2.4 Stochastic differential equations

2.4.1 Basic notions and results
We will formulate the basic results in a general semimartingale setting. For a more specialized
theory that is framed for Lévy processes we recommend Applebaum [2009]. We will mainly
follow Jacod [1979] and Protter [2004]. For our purpose it will be sufficient to consider strong
solutions under Lipschitz conditions on the coefficients. Assume that a filtered probability space
(Ω,F , P ) and (Fs)s≤0 is given.

Definition 2.4.1. strong solution and uniqueness

Next we give a standard existence and uniqueness result under Lipschitz conditions.

Theorem 2.4.2. Let Y be a semimartingale starting at zero and f : R× R+ × Ω→ R be such
that

1. For every x ∈ R the random process f(x) : R+ × Ω → R is Ft-adapted and has càdlàg
paths.

2. Lipschitz condition on f : there exists a finite random variable K such that

|f(x, t, ω)− f(y, t, ω)| ≤ K(ω)|x− y|

for all (x, y, t, ω) ∈ R2 × R+ × Ω.

If in addition X0 ∈ F0 is finite then

Xt = X0 +
∫ t

0
f(Xs−, s, ·) dYs

has a unique strong solution that is also a semimartingale.

Example 2.4.3 (Lévy-driven Ornstein-Uhlenbeck processes). Let (Lt, t ≥ 0) be a Lévy process
on a given filtered probability space (Ω,F , (Ft), P ) adapted to the filtration (Ft)t≥0. We call
for every a ∈ R a strong solution X to the stochastic differential equation

dXt = −aXt dt+ dLt, t ∈ R+, X0 = X̃, (2.13)

an Ornstein Uhlenbeck (OU) process driven by the Lévy process L with initial distribution
π = L(X̃). The initial condition X̃ is assumed to be independent of L.
It follows from Itô’s formula that an explicit solution of (2.13) is given by

Xt = e−atX0 +
∫ t

0
e−a(t−s)dLs, t ∈ R+. (2.14)

The integral in (2.14) can by partial integration be defined path-wise as a Riemann-Stieltjes
integral , since the integrand is of finite variation (see Dudley [2002] for example). This solution
to equation (2.13) is unique up to indistinguishability.
Equation 2.13 admits a stationary solution (cf. Sato and Yamazato [1984]) if and only if∫

|x|>1
log |x| µ(dx) <∞ and a > 0. (2.15)
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2 Basic theory and notation

Under these conditions X has a unique invariant distribution F and Xt
D−→ X∞ ∼ F as t→∞.

The Lévy-Itô decomposition 2.2.6 for L can be used to relate properties of X and L. As an
example the following lemma provides the second moment of the stationary distribution of X
in terms of the Lévy-Khintchine triplet of L.

Lemma 2.4.4. Assume that (2.15) holds and denote the Lévy-Khintchine triplet of L by (b, σ2, µ).
Then

Ea
[
X2
∞

]
= b2∞ + σ2

2a +
∫
R
x2 µ∞(dx),

where

b∞ = b

a
+
∫
R

∫ ∞
0

e−asz
(
1(−1,1)(e−asz)− 1(−1,1)(z)

)
ds µ(dz),

µ∞(A) =
∫ ∞

0
µ(e−asA) ds, A ∈ B(R).

The statement of the lemma remains valid when L has infinite second moment such that also
the second moment of X∞ is infinite.

Proof: It was shown in Theorem 4.1 and 4.2 in Sato and Yamazato [1984] that under (2.15)
the process X has a unique invariant distribution that is self-decomposable and exhibits the
Lévy -Khintchine triplet (b∞, σ2/2a, µ∞). Hence, the characteristic function of X∞ is given by

φX∞(u) = exp
(
iub∞ −

1
4au

2σ2 +
∫
R

(eiuz − 1− iuz1(−1,1)(z)) µ∞(dz)
)
.

The second moment of X∞ results in

Ea[X2
∞] = −φ′′X∞(0) = b2∞ + σ2

2a +
∫
R
x2 µ∞(dx).

Since every Lévy process is a semimartingale and the class of semimartingales is closed under
transformations such as (2.14), X is again a semimartingale. Next, we will derive its character-
istics.

Lemma 2.4.5. Let X be an Ornstein-Uhlenbeck process driven by a Lévy process L with charac-
teristic triplet (b, σ2, ρ) then the semimartingale characteristics (B,C, ν) of X are given by

B(ω, t) = bt− a
∫ t

0
Xs(ω)ds,

C(ω, t) = σ2t,

ν(ω, dt, dx) = ρ(dx) λ(dt),

where λ denotes the Lebesgue measure on R.
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2.4 Stochastic differential equations

Proof: Since the characteristics of a semimartingale do not depend on the initial distribution,
we set without loss of generality X0 = 0. If we write the OU equation (2.13) in integral form

Xt = −a
∫ t

0
Xsds+ Lt,

B and C follow from Proposition IX.5.3 in Jacod and Shiryaev [2003] and the fact that the
semimartingale characteristics of L are (bt, σ2t, ρ(dx)λ(dt)).
By I.4.36 in Jacod and Shiryaev [2003] it follows from equation (2.14) that X and L have the

same jump measure. Hence, the compensator of their jump measures coincide. �

2.4.2 Stochastic delay differential equations

Solutions to stochastic differential equations whose coefficients depend also on past values of
the process are particular examples of Itô or diffusion type processes (cf. Liptser and Shiryaev
[2001]). Even if they can still be represented as solutions to stochastic differential equations
the dependence on the past of the process destroys the Markov property of the solutions. An
interesting example are solutions X to stochastic delay differential equations of the form

dXt =
∫ 0

−r
X(t+ u) m(du) dt+ dLt, t > 0,

Xt = X0
t t ∈ [−r, 0],

(2.16)

where m is a finite signed measure on a finite interval [−r, 0], L is a Lévy process with Lévy-
Khintchine triplet (b, σ2, µ) and (X0

t )−r≤t≤0 is an initial process with càdlàg paths. Since no
stochastic integrals are involved in defining (2.16), solutions can be understood in a path-wise
sense. If X0 is integrable a unique path-wise solutions exists. The existence of a stationary so-
lution was investigated in Mohammed and Scheutzow [1990] when L is a general semimartingale
and by Gushchin and Küchler [2000] for Lévy driver. In the following give a brief summary of
their results.
The fundamental solution of the deterministic equation corresponding to (2.16) is a function

x0 : [−r,∞)→ R such that

x0(t) =
∫ 0

−r
x0(t+ u) a(du), t > 0,

x0(t) = 0, t ∈ [−r, 0),
x0(0) = 1.

The solution of (2.16) in terms of x0 is then

Xt = x0(t)X0
0 +

∫ 0

−r

∫ 0

u
X0
sx0(t+ u− s) ds a(du) +

∫ t

0
Lt−s dx0(s), t ≥ 0,

Xt = X0
t , t ∈ [−r, 0).

We see now that the asymptotic behavior of X is determined by the asymptotic behavior of
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2 Basic theory and notation

x0. In turn the asymptotic behavior of x0 is characterized by the solutions of the so-called
characteristic equation

h(λ) = λ−
∫ 0

−r
eλu a(du) = 0.

It follows now from Lemma 2.1 in Gushchin and Küchler [2000] that x0(t) = O(ev0t) where

v0 = sup{Reλ|h(λ) = 0}.

This relation between the fundamental solution and X can be used to give necessary and suffi-
cient conditions for the existence of a stationary solution.

Theorem 2.4.6 (Theorem 3.1, Gushchin and Küchler [2000]). Equation (2.16) admits a sta-
tionary solution if and only if one of the following equivalent conditions hold.

(i) v0 < 0 and ∫
|x|>1

log(|x|) µ(dx) <∞.

(ii) There exists a solution X such that Xt converges in distribution as t→∞.

(iii) Any solution X has a limit distribution Xt
D−→ X∞ as t→∞.

These results will prove useful in Chapter 4 when we derive limiting results for drift estimators
for linear stochastic delay equations.

2.5 Le Cam theory
The foundations of modern statistical decision theory and the theory of statistical experiments
was laid by Blackwell and Wald. Blackwell [1951] introduced the notion of statistical experiments
as the triplet

(Ω,F , (P θ)θ∈Θ)

were (Ω,F) is a measurable space and (P θ)θ∈Θ a family of probability measures on (Ω,F). The
main idea in the theory of statistical experiments is to compare different experiments by defining
a suitable distance and related mode of convergence for them. First ideas in this direction go
back to Wald [1943].
In the second half of the 20th century Lucien Le Cam developed these ideas further into his

theory on asymptotics of statistical experiments via localization. When we consider a sequence
of experiments (P θn)n∈Nθ∈Θ then typically for two different θ, θ′ the sequence of measures (P θn)
and (P θ′n ) will be singular in the limit, i.e. we obtain a trivial limit experiment. To obtain a
meaningful limit experiment the idea of localization was introduced which means a rescaling of
the parametrization in analogy to the normalization in the central limit theorem. Le Cam [1960]
found that the prototypic limit experiment is the so-called Gaussian shift experiment which takes
the role of the Gaussian law in the central limit theorem. An experiment is then called locally
asymptotically normal (LAN) when its likelihood converges to the likelihood of the Gaussian
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2.5 Le Cam theory

shift experiment. When the LAN property is fulfilled very powerful results such as the minimax
theorem by Hájek and Le Cam or Hájek’s convolution theorem are at hand. But of course many
other limiting behaviors have been found so far. In more complex models based on stochastic
processes local asymptotic mixed normality (LAMN) and local asymptotic quadraticity (LAQ)
often appear. A quite intricate example in the context of stochastic delay differential equations
was investigated in Gushchin and Küchler [1999]. For a modern viewpoint on the convergence of
statistical experiments in the general framework of (γ,Γ)-models and λ-convergence the reader
may consult Shiryaev and Spokoiny [2000].
In the following we will be working on a filtered measurable space (Ω,F , (Ft)t≥0). That

together with a family (P θ)θ∈Θ of probability measures forms our statistical experiment. We
assume that Θ ⊂ Rd and that a dominating probability measure P exists such that P θt � Pt for
all θ ∈ Θ and t ∈ R+. Here Pt denotes the restriction of P to the σ-field Ft. The log-likelihood
function will be denoted by lt(θ) = log(dP θt /dPt).

Definition 2.5.1. The statistical experiment (P θ)θ∈Θ on (Ω,F , (Ft)t≥0) is called

(i) locally asymptotically quadratic at θ if there exist a d-dimensional random process Vt(θ)
and a sequence of symmetric positive semidefinite random and adapted k × k-matrices
It(θ) such that It(θ) is P θ-a.s. positive definite and

lt(θ + δth)− lt(θ)− h>It(θ)1/2Vt(θ)−
1
2h
>It(θ)h = op(1)

for every h ∈ Rd and every sequence of positive definite matrices δt ∈ Rd×d such that
δt

t→∞−→ 0. The sequence (Vt(θ), It(θ))t≥0 is bounded in probability as t → ∞, the se-
quences (P θ+δtht )t≥0 and (P θt )t≥0 are contiguous and if (V∞(θ), I∞(θ)) is a cluster point of
(Vt(θ), It(θ))t≥0 then I∞(θ) is a.s. positive definite.

(ii) locally asymptotically mixed normal at θ if (i) holds and

(Vt(θ), It(θ))
D−→ (V (θ), I(θ)) as t→∞

under Pθ where I(θ) is a Pθ-a.s. positive definite random matrix such that conditionally
on I(θ) the random vector V (θ) is standard normal.

(iii) locally asymptotically normal at θ if (ii) holds such that I(θ) is deterministic.

When the LAMN property holds it can be shown that the matrix I(θ) is a lower bound for the
asymptotic variance of an estimator for θ in the sense of the following theorem. Let Θ̊ denote
the interior of Θ.

Theorem 2.5.2 (convolution theorem). Let (P θ)θ∈Θ be LAMN at θ ∈ Θ̊ and suppose that
(θ̂t)t≥0 is a sequence of estimators such that θt ∈ Ft and

(It(θ), δ−1
t (θ̂t − θ − δth)) D−→ (I(θ),Σ(θ))
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under P θ+δtht . Then there exists a kernel k(I(θ)) such that almost surely

P (Σ(θ)|I(θ)) = k(I(θ)) ∗N(0, I(θ)−1).

The next theorem gives a lower bound for the risk of an estimator of θ under arbitrary loss
functions.

Theorem 2.5.3 (minimax theorem). Let (P θ)θ∈Θ be LAMN at any θ ∈ Θ̊ and suppose that θ̂t
is any estimator for θ. Then for any bowl-shaped loss function f : Rd → [0,∞) we have

lim
r→∞

lim inf
t→∞

sup
|δ−1
t (θ′−θ)|≤r

Eθ′
[
f(δ−1

t (θ̂t − θ′))
]
≥ E

[
f(I(θ)−1V (θ)

]
= E

[
f(I(θ)−1/2Z(θ)

]
where Z ∼ N(0, Idd) is independent of I.

We will use these results to define optimality of an estimator in the following sense.

Definition 2.5.4. Let (Ω,F , (Ft)t≤0, (P θ)θ∈Θ) be as statistical experiment. An estimator θ̂t
of θ is called asymptotically efficient if its (conditional) asymptotic variance attains the lower
bound given in Theorem 2.5.2.

2.6 Exponential families

Classical exponential families of probability distribution have a long history in mathematical
statistics. On one hand they provide a suitably general class of models for many applications
including important examples like normal, Poisson, exponential distribution and at the same
time these models are quite easy to handle from a mathematical point of view such that in many
cases optimal inference methods are at hand.
This idea of a general class of statistical models that have many desirable properties and

include the major part of models that we use in applications was then generalized to the theory
of exponential families of stochastic processes. Since also the models that we are going to
investigate in this thesis lead to exponential families of stochastic processes, many results of this
theory will be of great use to us. In this section we give a suitable definition for our purpose
and collect some important results closely following the book by Küchler and Sørensen [1997].
Let {P θ, θ ∈ Θ} be a family of measures on a filtered probability space (Ω,F , (Ft)t≥0) with

parameter set Θ ⊂ Rd such that the interior Θ̊ is nonempty. We assume that a dominating
measure P θ0 for some θ0 ∈ Θ exists such that local absolute continuity P θ

loc
� P θ0 holds (recall

Definition 2.3.5) for all θ ∈ Θ.

Definition 2.6.1. A statistical experiment {P θ, θ ∈ Θ} forms a curved exponential family if
the likelihood function exists and is of the form

Lt(θ, ω) = dP θt

dP θ0t
= exp

(
θ>At − κ(θ)St

)
(2.17)
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where κ : Θ → R and A : Ω × R+ → Rd is a càdlàg process. Moreover, S : Ω × R+ → R is
assumed to be a non-decreasing continuous process with S0 = 0 and St

t→∞−→ ∞ P θ-a.s. for all
θ ∈ Θ.

Let us take a look at some examples.
Example 2.6.2. Consider the Lévy-driven Ornstein-Uhlenbeck process X from Example 2.4.3.
Then X is a solution to the stochastic differential equation

dXt = −θXt dt+ dLt, t ∈ R+, X0 = X̃,

where L is a Lévy process and θ ∈ R. When a is our parameter of interest such that Θ = R, then
the class of Ornstein-Uhlenbeck processes index by a induces a family of measures {P θ, θ ∈ R} on
the space of càdlàg functions on [0,∞). We will prove in Chapter 3 that under suitable conditions
on L the family {P θ, θ ∈ R} forms a curved exponential family with likelihood function

Lt(θ,XT ) = exp
(
− θ

σ2

∫ T

0
Xs− dX

c
s −

θ2

2σ2

∫ T

0
X2
s ds

)
.

So for

At = 1
σ2

∫ t

0
Xs dX

c
s

κ = θ2

2σ2

St =
∫ t

0
X2
s ds

we see that the class of Lévy-driven Ornstein-Uhlenbeck processes forms a curved exponential
family.
Example 2.6.3. Another example is the class of Cox-Ingersoll-Ross process, which can be defined
as a solutions of

dXt = −θXtdt+
√
XtdLt; 0 ≤ t ≤ T

driven by a Lévy process Lt = Wt + bt + Jt, where W is a Wiener process, b > 0 and J is
assumed to be subordinator (see Sato [1999], Section 4.21 on subordinators). The starting value
is X0 = x > 0 and the drift parameter θ > 0. These conditions assure that the process stays
positive such that the square-root is well-defined. In this example the likelihood function (cf.
Chapter 3) is

Lt(θ,X) = exp
(
− θ

σ2 (Xc
T −Xc

0)− θ2

2σ2

∫ T

0
Xt dt

)
. (2.18)

which is again of the form of an exponential family as in (2.17).
In the setting of an exponential family the maximum likelihood estimator is consistent and

asymptotically normal under weak regularity conditions given in the following two results. They
are taken from Küchler and Sørensen [1997], Section 5.2. A strictly convex function κ : Θ→ R
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is called steep if for all θ1 ∈ Θ\Θ̊, θ0 ∈ Θ̊ and θs = (1− s)θ0 + sθ1, s ∈ (0, 1),

d

ds
κ(θs)→∞ as s ↑ 1.

Theorem 2.6.4. Suppose a curved exponential family of the form (2.17) is given such that κ
is steep and St > 0 for t > 0 P θ-a.s. for all θ ∈ Θ. Then the maximum likelihood estimator θ̂T
from time continuous observations on [0, T ] exists and is uniquely given by

θ̂T = (κ̇)−1
(
AT
ST

)
if and only if AT /ST ∈ C̊ where C = κ̇(Θ̊).
If also θ ∈ Θ̊, then under P θ the maximum likelihood estimator exists and is unique for T

sufficiently large and θ̂T
a.s.−→ θ as T →∞.

Next we give the corresponding central limit theorem.

Theorem 2.6.5. For a curved exponential family of the form (2.17) assume that θ ∈ Θ̊ and
that there exists an increasing positive non-random function φθ(t) such that under P θ

φθ(t)−1St
p−→ η(θ)2

as t → ∞ where η(θ)2 is a finite non-negative random variable for which P θ(η(θ)2 > 0) > 0.
Then under P θ (

S
−1/2
t (At − κ(θ)St) , φθ(t)−1St

) D−→ N (0, κ̈(θ))× Fθ

as t → ∞ conditionally on {η(θ)2 > 0}, where Fθ is the conditional distribution of η(θ)2 given
{η(θ)2 > 0}. Moreover,

(S1/2
t (θ̂t − θ), φθ(t))

D−→ N(0, κ̈(θ)−1)× Fθ

conditionally on {η(θ)2 > 0} as t→∞.
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3 Likelihood theory for jump diffusions

In this chapter we give existence results for the likelihood function of solutions to stochastic
differential equations driven by Lévy processes when continuous observations are given. This
leads naturally to absolute continuity problems for the measures induced by these processes on
the path space. Conditions for absolute continuity can be given in terms of the Hellinger process
that describes roughly speaking the time evolution of Hellinger integrals corresponding to differ-
ent solutions. In turn the Hellinger processes can then be given in terms of the semimartingale
characteristics of two processes.
When the measures on the path space are equivalent the Radon-Nikodym derivative is known

explicitly. In the drift estimation problem considered here the density process does not depend
on the jump part of the processes, in the sense that the jump measures do not appear in
the density process. At the same time the density process involves explicit knowledge of the
continuous martingale part. Since the continuous martingale part is not directly observed, this
will be our main challenge in the second part of this work when only discrete observations are
assumed.
The general theory of absolute continuity and singularity of measures in a semimartingale

setting was developed by Jacod [1979]. We will tailor these results to the setting of jump
diffusions and discuss several examples in the spirit of Sørensen [1991]. Likelihood theory for
ergodic diffusion processes driven by Brownian motion was treated in the book by Kutoyants
[2004].

3.1 Jump diffusion processes

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space and L be an m-dimensional Lévy process
on this space with Lévy -Khintchine triplet (b,ΣΣ>, µ). Define X as a solution to

Xt = X0 +
∫ t

0
δ(θ, s,Xs) ds+

∫ t

0
γ(s,Xs−) dLs, t ∈ R+, (3.1)

where X0 ∈ Rd, the parameter set Θ ⊂ Rn is such that Θ̊ 6= ∅ and the coefficients are Borel
measurable functions

δ : Θ× R+ × Rd → Rd,
γ : R+ × Rd → Rd×m,

such that γ takes values in the positive definite matrices and the following regularity conditions
are satisfied.
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3 Likelihood theory for jump diffusions

Assumption 3.1.1. 1. Local Lipschitz condition: There exists Cn ∈ R+ such that for all
t, |x|, |y| ≤ n and θ ∈ Θ,

|δ(θ, t, x)− δ(θ, t, y)| ≤ Cn|x− y|,
|γ(t, x)− γ(t, y)| ≤ Cn|x− y|.

2. Linear growth condition: For each n ∈ N there exists Cn ∈ R+ such that for all t ≤ n,
x ∈ Rd and θ ∈ Θ:

|δ(θ, t, x)| ≤ Cn(1 + |x|),
|γ(t, x)| ≤ Cn(1 + |x|).

Under these conditions Theorem 2.4.2 guarantees existence and uniqueness of a strong solution
to equation (3.1). The solution X is a semimartingale and hence has càdlàg paths. As a mapping
into the path space X induces a measure P θ on the canonical space (Ω′,F ′, (F ′t)t≥0) (cf. Jacod
and Shiryaev [2003], III.2.13 for the canonical setting). Then under P θ the canonical process is
again a semimartingale with characteristics

Bt(θ, ω) =
∫ t

0
β(θ, s,Xs(ω)) ds,

Ct(ω) =
∫ t

0
c(s,Xs(ω)) ds,

ν(ω, dy, dt) = Kt(Xt−(ω), dy)⊗ λ(dt),

(3.2)

where

β(θ, s, x) = δ(θ, s, x) + b+
∫
|y|>1

y Ks(x, dy),

c(s, x) = γΣΣ>γ>(s, x),

Ks(x,A) =
∫
Rm

1A\{0}(γ(s, x)y) µ(dy), ∀A ∈ B(Rd).

(3.3)

By abuse of notation we denote the canonical process likewise by X. In the following we assume
time continuous observations of the canonical process (Xt)0≤t≤T over [0, T ]. The next result
gives conditions for absolute continuity of the measures induced by X for different parameters
and an explicit representation of the Radon-Nikodym derivative for the case where absolute
continuity holds.

Theorem 3.1.2. Suppose that Assumption 3.1.1 holds, c is strictly positive definite and

(t, x) 7→
∫
A

(|y|2 ∧ 1) Kt(x, dy)
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3.2 Lévy-driven Ornstein-Uhlenbeck processes

is continuous for all A ∈ B(Rd). Define for θ, θ′ ∈ Θ the process

ht(θ, θ′) =
∫ t

0
a(θ, θ′, s,Xs)>c(s,Xs)−1a(θ, θ′, s,Xs) ds,

where
a(θ, θ′, s, x) = β(θ, s,X)− β(θ′, s, x).

Then

(i) P θt
loc
� P θ

′
t if and only if

P θ(ht(θ, θ′) <∞) = P θ
′(ht(θ, θ′) <∞) = 1.

(ii) If (ii) holds the likelihood function is given by

dP θt
dP θ

′
t

= exp
[∫ t

0
c(s,Xs−)−1a(θ, θ′, s,Xs−) dXc

s

−1
2

∫ t

0
a(θ, θ′, s,Xs)>c(s,Xs−)−1a(θ, θ′, s,Xs) ds

]
here Xc denotes the continuous martingale part under P θ′.

The theorem follows from Theorem 2.1 in Sørensen [1991], which can be proved by applying
Theorem III.5.34 in Jacod and Shiryaev [2003] by establishing local uniqueness for the corre-
sponding martingale problem. We have given here a simplified version for parametric estimation
of the drift. In the next sections we discuss in detail examples where the maximum likelihood
estimator can be derived explicitly.

3.2 Lévy-driven Ornstein-Uhlenbeck processes

As a first example for a jump diffusion model that is frequently used in applications let us
recall the stochastic differential equation that defines the one-dimensional Lévy-driven Ornstein-
Uhlenbeck process (cf. Section 2.4.1).

dXt = −aXt dt+ dLt, t ∈ R+, X0 = X̃. (3.4)

Here L is a one-dimensional Lévy process with Lévy-Khintchine triplet (b, σ2, µ), X̃ is a possibly
random initial condition and a ∈ R the unknown drift parameter. Denote by P a and P a′ the
measures induced by X on the path space for two different drift parameters a, a′ ∈ R. To
illustrate the results from the previous section we provide here conditions in terms of the Lévy-
Khintchine triplet of L for absolute continuity and derive the Radon-Nikodym derivative. In
order to simplify our notation we will write from now on P ′, B′ and so on for all objects that
correspond to a′.
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3 Likelihood theory for jump diffusions

Theorem 3.2.1. Let P a, P a′ be two solution measures of the OU equation for the same driving
Lévy process L with characteristic triplet (b, σ2, ρ) and initial distributions π and π′. Suppose
σ2 > 0, π′ � π and µ has a finite second moment, then we have P a′

loc
� P a.

Before we proceed to the proof let us give a short example when absolute continuity fails.
Example 3.2.2. Suppose the driving Lévy process is of compound Poisson form

Lt =
Nt∑
i=1

Yi,

where N is a Poisson process and the Yi’s are iid random variables. In this case obtain that the
induced measures {P a, a ∈ R} are mutually singular, since the trajectories of X corresponding
to the parameter a are piecewise exponentials with rate a such that the induced measures have
disjoint support.
We divide the proof into three steps. First, define a martingale problem that gives weak

solutions to equation (3.4). Then, we will derive the Hellinger process of two different solution
measures and finally the Hellinger process will solve the absolute continuity/singularity problem.
Some basic facts on martingale problems can be found in Section 2.3.1.
Now we derive the Hellinger process for two solution measures of equation (3.4). For the

corresponding theory on Hellinger distance and absolute continuity and singularity problems we
refer the reader to Jacod and Shiryaev [2003], IV.1.
Proposition 3.2.3. A version of the Hellinger process H corresponding to solution measures
P a, P a

′ of the Ornstein-Uhlenbeck equation (2.13) is given by

Ht(α, a, a′) = (a′ − a)2α(1− α)
2σ2

∫ t

0
X2
sds, t ∈ R+,

where α ∈ (0, 1).

Proof: Denote by (B,C, ν) the characteristics of X with initial distribution π as in Lemma
2.4.5. The problem of finding a solution measure to the defining SDE (2.13) is equivalent to
the martingale problem s(X|π;B,C, ν), since by Theorem III.2.26 in Jacod and Shiryaev [2003]
the solution measures to the SDE are given by s(X|π;B,C, ν) (by abuse of notation we use the
same expression for the problem and the set of solutions).
Next, we define a predictable process by

B̃t = Bt −B′t = (a′ − a)
∫ t

0
Xsds.

Set β̃(a, a′)s = a′−a
σ2 Xs. Then according to IV.3.9 in Jacod and Shiryaev [2003] a candidate for

the Hellinger process corresponding to two solutions of the martingale problems s(X|π;B,C, ν)
and s(X|π′;B′, C, ν) is given by

Ht(α, a, a′) = α(1− α)σ2

2

∫ t

0
β̃(a, a′)2

s1Σ ds. (3.5)
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3.2 Lévy-driven Ornstein-Uhlenbeck processes

In our setting we obtain

Σ = Ω× R+.

Hence, Ht(α, a, a′) takes the form

Ht(α, a, a′) = (a′ − a)2α(1− α)
2σ2

∫ t

0
X2
sds, t ∈ R+.

The next step is to show that Ht(α, a, a′) is indeed a version of the Hellinger process. This
follows from local uniqueness of the martingale problems s(X|π;B,C, ν) and s(X|π′;B′, C, ν),
which follow from Corollary III.2.41 in the case of jump diffusions. Hence, by Corollary IV.3.68
in Jacod and Shiryaev [2003] h(α, a, a′) is indeed a version of the Hellinger process. �

The relation Pt � P ′t is by Theorem 2.3.6 equivalent to Ht(α, a, a′) < ∞ a.s. under P ′ such
that Theorem 3.2.1 follows now easily by bounding H on (0, t).

Proof of Theorem 3.2.1: We have shown that a version of the Hellinger process of X under
P and P ′ is given by Ht(α, a, a′) from Proposition 3.2.3 and in our setting both processes have
the same initial distribution. Hence, in order to prove that P ′

loc
� P it is sufficient by Theorem

IV.2.1 in Jacod and Shiryaev [2003] to show that P ′(Ht(1
2 , a, a

′) <∞) = 1. Thus, we need that

∫ t

0

[∫ u−

0

(
e−a

′(u−s) − e−a(u−s)
)
L(ds)

]2
du <∞, Pa′-a.s. ∀t ∈ [0, T ].

Set f(u, s) = e−a
′(u−s) − e−a(u−s). By the Lévy-Itô decomposition we can write L as

Lt = σWt + Jt + bt+
∑
s≤t

∆Ls1{|∆Ls|≥1},

where W is a Wiener process and Jt =
∫
{|x|<1} x(Nt(dx) − tµ(dx)) with jump measure N of L

and its compensator µ. Define Mt = σWt + Jt and Vt =
∑
s≤t ∆Ls1{|∆Ls|≥1} + bt. Then

Ea

[(∫ u

0
f(u, s) dLs

)2
]
≤ Ea

[(∫ u

0
f(u, s) dMs

)2
]

+ Ea

[(∫ u

0
f(u, s) dVs

)2
]

Since V is of finite variation, it can be decomposed path-wise into the difference of two increasing
functions such that Ea

[
(
∫ u

0 f(u, s) dVs)2
]
<∞ follows by bounding f by its supremum and using

that V is locally bounded.

M is a martingale such that we can apply Burkholder-Davis-Gundy inequality to obtain

Ea

[(∫ u

0
f(u, s) dMs

)2
]
≤ CEa

[∫ u

0
f(u, s)2 d[M ]s

]
.
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3 Likelihood theory for jump diffusions

Since [M ] is increasing and 0 ≤ f(u, s) ≤ 1 within the range of integration, it follows that

Ea

[∫ u

0
f(u, s)2 d[M ]s

]
≤ E [[M ]u] = σ2u+ Ea

∑
s≤u

(∆Ls)21{|∆Ls|≤1}


= σ2u+ u

∫ 1

0
x2 µ(dx) <∞

again by the Lévy-Itô decomposition and Theorem 2.3.8 in Applebaum [2009]. �

When absolute continuity holds, the Radon-Nikodym density can be given explicitly. Recall
the definition of the continuous martingale part of a semimartingale from Section 2.1.

Proposition 3.2.4. If σ2 > 0 and π � π′, then the Radon-Nikodym density process of P ′ with
respect to P is given by

Zt = dP ′t
dPt

= dP ′0
dP0

exp
(

(a− a′)
σ2

∫ t

0
Xs dX

c
s −

(a− a′)2

2σ2

∫ t

0
X2
sds

)
(3.6)

P -a.s. and Xc denotes the continuous martingale part of X under P .

Proof: If (B,C, ν) and (B′, C, ν) are the characteristics of X under P and P ′, respectively, it
follows from Lemma 2.4.5 that we can write

B′ = B + σ2
∫ ·

0
βdt,

where we have introduced a predictable process βt = (a−a′)
σ2 Xt.

Next, we define another random process by

K =
∫ ·

0
σ2β2dt = (a− a′)2

σ2

∫ ·
0
X2
t dt.

K is predictable and has non-decreasing paths. Obviously, K does not jump to infinity in the
sense that KT− =∞ on {T = inf(t : Kt =∞) <∞}. We set

Tn = inf(t ∈ R+ : Kt ≥ n), A =
⋃
n

[0, Tn].

Tn is a stopping time and A defines a predictable random set. Since

Kt = (a− a′)2

σ2

∫ t

0
X2
sds

a.s.−→∞

under P and P ′ as t→∞, also Tn
a.s.−→∞ under P and P ′ such that A = R a.s. under P and P ′.

We know already from the previous proposition that local uniqueness holds for the martingale
problem s(X|π;B′, C, ν). By III.5.10/32 in Jacod and Shiryaev [2003] there exists now a process
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3.2 Lévy-driven Ornstein-Uhlenbeck processes

U : A→ R such that
US =

((a− a′)
σ2 Xt1[0,S]

)
·Xc,

for every stopping time S with [0, S] ⊂ A and Z is given by

Zt = Z0 exp
(
Ut −

(a− a′)2

2σ2

∫ t

0
X2
sds

)∏
s≤t

(1 + ∆Us)e−∆Us , t ∈ [0, S].

Since U is continuous, the product term disappears.

Finally, we observe that the continuous martingale part Xc of X is a Wiener process under
P 0. Indeed, by the Lévy-Itô decomposition of the driving Lévy process L we can write X as (cf.
Protter [2004], Theorem I.42)

Xt = X0 − a
∫ t

0
Xs ds+ σWt + Jt , t ≥ 0, (3.7)

where W is a Wiener process and J a quadratic pure jump process (cf. Protter [2004], p.71)
given by

Jt =
∫
{|x|<1}

x(Nt(dx)− tµ(dx)) + bt+
∑

0≤s≤t
∆Xs1{|∆Xs|≥1}, (3.8)

here µ is the Lévy measure, b the drift of L and N denotes the Poisson random measure on R
associated with the jumps of L that is independent of W . The integral term in (3.7) is of finite
variation and N is purely discontinuous such that we have decomposed the semimartingale X
into a process of finite variation

At = −a
∫ t

0
Xs ds+ bt+

∑
0≤s≤t

∆Xs1{|∆Xs|≥1}

and a local P 0-martingale

Mt = σWt +
∫
{|x|<1}

x(Nt(dx)− tµ(dx)).

By Theorem I.4.18 in Jacod and Shiryaev [2003] this decomposition of M is unique such that
Xc = σW under P 0 up to indistinguishability. �

Remark 3.2.5. For the proof of local equivalence in Theorem 3.2.1 we have employed general
results on absolute continuity problems for semimartingales (cf. Jacod [1979] and Jacod [1979])
that also apply for general jump diffusions as in Theorem 3.1.2.

For the Ornstein-Uhlenbeck model an alternative proof follows by defining the process

Zt = exp
(
a

σ2

∫ t

0
Xs dX

c
s −

a2

2σ2

∫ t

0
X2
sds

)
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3 Likelihood theory for jump diffusions

and showing that Z is a martingale with E[Zt] = 1 that induces a new measure via

P at = ZtP
0
t for all t ∈ R+

such that X is an Ornstein-Uhlenbeck process under P a. The last step follows by deriving the
characteristics of X under P a via a version of Girsanov’s theorem (cf. Theorem III.39 in Protter
[2004]) and using that X is the unique solution of the Langevin equation.

3.3 Square-root processes

This class of processes was first studied by William Feller in Feller [1951], who coined the name
square-root processes. The square-root process has the remarkable property that due to the
square-root term in the diffusion coefficient it stays nonnegative at all times. This property
and its analytical tractability led to its popularity in mathematical finance, where it has been
applied in interest rate modeling, derivative pricing and stochastic volatility models. In term
structure modeling Cox et al. [1985] introduced this class of processes for the dynamics of the
short rate. Whereas the Heston model employs a square-root process as a stochastic volatility
process of a price process (cf. Heston [1993]). All these classical references consider square-root
processes driven by a Wiener process only.
The square-root process with jumps X can be defined as a solution to the following stochastic

differential equation

dXt = −aXtdt+ σ
√
XtdWt + dLt, 0 ≤ t <∞, (3.9)

driven by a Lévy process Lt = bt+ Jt and a standard Wiener process W , where σ, b > 0 and J
is assumed to be subordinator. When the starting value X0 = x > 0 and drift parameter a > 0
are strictly positive the square root term secures that X stays nonnegative at all times.
Existence and uniqueness of a nonnegative strong solution of (3.9) have been proved in Section

5 in Dawson and Li [2006]. A model of this form with a jump component has been employed in
Barndorff-Nielsen and Shephard [2001] to include leverage in their stochastic volatility model.
Kallsen [2006] derives the semimartingale characteristics of X and shows that X has an affine
structure such that X is also a regular affine Feller process (cf. Duffie et al. [2003] on regular
affine processes). It follows from Corollary 3.2 in Mayerhofer et al. [2011] that X stays strictly
positive for all t ≥ 0 if b ≥ σ2/2.
The paths of X lie in D[0,∞) such that for every a > 0 the process induces a measure P a

on D[0,∞). Necessary and sufficient conditions for absolute continuity for two measures P a
and P a′ corresponding to different coefficients follow easily from Theorem 3.1.2. We summarize
these results in the following proposition which also provides the density process in the case
when absolute continuity holds.

Proposition 3.3.1. Suppose that L has a nonzero Gaussian component and that P a0 � P 0
0 .
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3.4 Stochastic delay differential equations

Then P a
loc
� P 0 and the density process is given by

dP aT
dP 0

T

= dP a0
dP 0

0
exp

(
− a

σ2 (Xc
T −Xc

0)− a2

2σ2

∫ T

0
Xt dt

)
(3.10)

P 0-almost surely and Xc denotes the continuous P 0-martingale part.

3.4 Stochastic delay differential equations

In this section we leave the class of jump diffusions that we have investigated so far to demon-
strate that the likelihood approach also works in a non-Markovian setting for delay equations.
We have already introduced some basic material on stochastic delay equations driven by Lévy
processes in Section 2.4.2. We specialize the setting of Section 2.4.2 to linear delay equations
in order to obtain a likelihood function that is a quadratic in the parameter. We assume that
the measure a that describes the past dependence of the process is supported on finitely many
points 0 = τ0 < . . . < τm <∞ for some m ∈ N.
Let L be a Lévy process with Lévy-Khintchine triplet (b, σ2, µ) on a filtered probability space

(Ω,F , (Ft)t≥0, P ) and X the solution to the stochastic delay differential equation

dXt =
m∑
i=0

aiXt−τi dt+ dLt, t ≥ 0,

Xt = X0
t , t ∈ [−τm, 0).

(3.11)

The initial condition X0 is a càdlàg process and independent of L and X is parametrized by
the drift parameter a = (a0, . . . , am) ∈ Rm+1. For a1 = . . . = an = 0 we obtain the Ornstein-
Uhlenbeck type process from Section 3.2.
For each a ∈ Rm+1 the process X induces a measure P a on the space of càdlàg functions

D[−τm,∞). If σ2 > 0 these measures are mutually locally absolutely continuous.

P a
loc
� P a

′ for all a, a′ ∈ Rm+1.

This follows from (2.10) in Küchler and Sørensen [1989], since X is by Theorem V.3.7 in Protter
[2004] a semimartingale. The Radon-Nikodym derivative takes the form

dP aT
dP 0

T

= exp
(
a>VT −

1
2a
>ITa

)
(3.12)

for T > 0 where the m+ 1-dimensional process V equals

VT =
(∫ T

0
Xt−τi dX

c
t

)
i=0,...,m

,

where the continuous martingale part Xc is taken under the dominating measure P 0 and the
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3 Likelihood theory for jump diffusions

(m+ 1)× (m+ 1)-dimensional process I is given by

IT =
(∫ T

0
Xt−τiXt−τj dt

)
i,j=0,...,m

.

The form of dPaT
dP 0
T

in 3.12 implies that the system of equations forms an exponential family in
the sense of Section 2.6. In the next chapter we will use these results to construct a maximum
likelihood estimator for a.
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4 Maximum likelihood estimation

In this chapter we develop a maximum likelihood approach for estimating the drift of a jump
diffusions from time-continuous observations and discuss examples of jump diffusion models that
lead to an explicit maximum likelihood estimator. We prove asymptotic normality results and
give conditions for efficiency of the maximum likelihood estimator in the sense of Hájek-Le Cam.
We also investigate how the activity of jumps influences the estimation error and find that the

asymptotic variance is proportional to the intensity of jumps. This result motivates the jump
filtering approach in the next chapters when the problem of estimation from discrete observations
is considered and we approximate the continuous martingale part by using a threshold technique.
As a consequence we obtain that the least squares estimator is inefficient in models with jumps.
For the Ornstein-Uhlenbeck process we discuss asymptotic properties of the discretized like-

lihood estimator. These results lay the foundation for the next two chapters, where we prove
asymptotic properties for the discretized estimator under approximation of the continuous mar-
tingale part.
For a comparison to diffusions without jumps driven by Brownian motion we refer the reader

to the book by Kutoyants [2004], where a general maximum likelihood theory for these models
is developed.
It should be made clear at this point that all estimators in this chapter are only pseudo

estimators in the sense that they are build on time-continuous observations, which are in general
not available in practice. The problem of estimation from discrete observations will be considered
in Chapter 5 and 6, where we will build upon the results developed here. We will use them in two
directions. First of all we construct the discrete estimators from the estimators in this chapter
and second the pseudo estimators will serve us as a benchmark when we come to efficiency
questions for the discrete case.

4.1 General jump diffusion processes

Consider the jump diffusion X as a solution to

Xt = X0 +
∫ t

0
δ(θ, s,Xs) ds+

∫ t

0
γ(s,Xs−) dLs, t ∈ R+, (4.1)

where X0 ∈ Rd and L, δ and γ are as in Section 3.1 and the drift coefficient is parametrized
by θ ∈ Θ ⊂ Rn. We denote the Lévy -Khintchine triplet of L by (b,ΣΣ>, µ). Suppose that
δ(0, ·, ·) ≡ 0 and that time-continuous observations (Xt)t∈[0,T ] are given. Define

c(s,Xs) = γΣΣ>γ(s,Xs)>
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4 Maximum likelihood estimation

and denote by P θ the measure induced by X on the path space D[0,∞). If c is invertible the
likelihood function for θ is by Theorem 3.1.2 equal to

L(X, θ)T = exp
(∫ T

0
c(s,Xs)−1δ(θ, s,Xs) dXc

s

− 1
2

∫ T

0
δ(θ, s,Xs)>c(s,Xs)−1δ(θ, s,Xs) ds

)
,

where Xc is the continuous martingale part under P 0. A maximum likelihood estimator for θ
is then any θ̂T such that

θ̂T = arg max
θ∈Θ

L(X, θ)T . (4.2)

In many widely used diffusion models this equation can be solved explicitly. In the next two
sections we discuss two examples of this kind, the Ornstein-Uhlenbeck type and the square-root
or Cox-Ingersoll-Ross process, in detail. In the last section we move on to models that depend in
an affine way on the parameter such that the likelihood equation (4.2) still exhibits an explicit
solution.

4.2 Ornstein-Uhlenbeck type processes
As a first example for a jump diffusion model that leads to an explicit maximum likelihood esti-
mator we consider the Lévy-driven Ornstein-Uhlenbeck process. Recall the stochastic Langevin
equation (cf. Section 2.4.1).

dXt = −aXt dt+ dLt, t ∈ R+, X0 = X̃. (4.3)

Here L is a Lévy process with Lévy-Khintchine triplet (b, σ2, µ), X̃ is a possibly random initial
condition and a ∈ R the unknown drift parameter. The unique strong solutionX to this equation
will be called an Ornstein-Uhlenbeck process in the following.
From the results of Proposition 3.2.4 follows now an explicit maximum likelihood estimator â

for the coefficient a of the OU process. By setting π = π′ in (3.6) we obtain that the likelihood
function with respect to the dominating measure P 0 is

L(a;XT ) = exp
(
− a

σ2

∫ T

0
Xs dX

c
s −

a2

2σ2

∫ T

0
X2
s ds

)
,

where Xc denotes the continuous P 0-martingale part of X. Maximizing the log-likelihood yields
finally

âT = −
∫ T

0 XsdX
c
s∫ T

0 X2
sds

. (4.4)

Remark 4.2.1. All results in this section can also be extended to d-dimensional Ornstein-
Uhlenbeck processes

dXt = AXtdt+ dLt, X0 = X̃,
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4.2 Ornstein-Uhlenbeck type processes

where A ∈ Rd×d, L is a d-dimensional Lévy process and the initial condition X̃ might be random
or non-random. Nevertheless, we restrict our attention here to the one-dimensional case, since
we are interested in the influence of the jumps of X and the role of the continuous martingale
part Xc for the estimation of the drift parameter.

Now the question arises how Xc can be written in terms of the components of X under the
dominating measure P 0. We consider a0 = 0 such that under P 0 we have X = L and Xc = σW ,
where σW is the Gaussian component of L, i.e. W is a standard P 0-Wiener process. Then we
know from Proposition 3.2.4 that

L(a1, X
T ) = dP a1

T

dP 0
T

= exp
(
−a1σ

−1
∫ T

0
Xs dWs −

a2
1

2σ2

∫ T

0
X2
s ds

)
.

and it follows from Girsanov’s theorem (Theorem III.3.11 in Jacod and Shiryaev [2003]) that

W̃t = Wt + a1σ
−1
∫ t

0
Xs ds

is a standard Wiener process under P a1 . Hence, the continuous P 0-martingale part can be
rewritten as

Xc
t = σWt = σW̃t − a1

∫ t

0
Xs ds.

Thus, we can express the MLE as the true parameter a1 minus a bias that is driven by a
P a1-Wiener process:

âT = −
∫ T

0 XsdX
c
s∫ T

0 X2
sds

= a1 −
σ
∫ T
0 XsdW̃s∫ T
0 X2

sds
.

The next question that comes up is can we obtain a path of the continuous part (Xc
t (ω))t∈[0,T ]

from observations (Xt(ω))t∈[0,T ]? By subtracting the pure jump component J of L from X,
equations (3.7) and (3.8) yield that under P a1

Xc
t = Xt − Jt −X0

= Xt −
∫
{|x|<1}

x(Nt(dx)− tµ(dx))− bt−
∑

0≤s≤t
∆Xs1{|∆Xs|≥1} −X0, (4.5)

such that we obtain a path by path transformation from X to Xc. Hence, given a continu-
ously observed trajectory (Xt(ω))t∈[0,T ] of the OU process we can use (4.5) to construct the
corresponding trajectory of Xc by removing the jumps and subtracting the drift bt and the
compensator

∫
{|x|<1} xt µ(dx) of the jump measure N if this integral is finite.

The decomposition (4.5) means that under continuous observations and for general Lévy
processes the drift b and the Lévy measure µ in a small neighborhood of zero are needed to
evaluate the MLE, whereas σ might be unknown. When the jump part of L has finite activity
the integral with respect to N in (4.5) disappears such that only the drift b has to be known
in advance or could be replaced by an estimate. This situation changes when only discrete
observations of X are given. Then we will use in Chapter 5 and 6 an approximation of Xc that
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works without knowledge of µ provided that the Blumenthal-Getoor index of L is less than two.

4.2.1 Asymptotic properties of the estimator
In this section we will show that the maximum likelihood estimator âT for the parameter of
the OU process exists uniquely and is strongly consistent, i.e. it converges to the true value
almost surely as the observation length tends to infinity. We will also investigate the asymptotic
distribution of âT − a under P a. These properties follow from the fact that the class of Lévy-
driven Ornstein-Uhlenbeck processes {Xa : a ∈ R+} forms a curved exponential family of
stochastic processes. For a detailed discussion of the theory of exponential families of stochastic
processes and their statistical applications we refer the reader to the book by Küchler and
Sørensen [1997].
Let us recall the definition of LAN from Section 2.5. Let {P θ, θ ∈ Θ} be a statistical experi-

ment on a filtered probability space (Ω,F , (Ft)t∈R+) with parameter set Θ ⊂ Rd such that the
interior Θ̊ is nonempty. To prove asymptotic efficiency for the maximum likelihood estimator we
will show later in this chapter that the statistical experiment corresponding to the estimation
of the Ornstein-Uhlenbeck parameter is locally asymptotically normal.

Definition 4.2.2. A statistical experiment {P θ, θ ∈ Θ} on (Ω,F , (Ft)t∈R+) is called locally
asymptotically normal if for all θ ∈ Θ:

1. There exist (Ft)-adapted processes (Zt(θ))t∈R+ and (Tt(θ))t∈R+ such that for all real se-
quences (δt)t∈R+ with δt → 0 as t→∞ it holds that

log
(
dP θ+δtht

dP θt

)
− hTt(θ)1/2Zt(θ)−

1
2h

2Tt(θ) = oP θ(1)

for every h ∈ R.

2. The convergence
(Zt(θ), Tt(θ))

D−→ (Z, T )

holds as t→∞ for a standard normal random variable Z and fixed T ∈ R.

The next result states that the drift estimator is strongly consistent.

Theorem 4.2.3. Under the condition σ2 > 0 the maximum likelihood estimator âT for the
coefficient of the Ornstein-Uhlenbeck process based on observations from the time interval [0, T ]
exists and is given by

âT = −
∫ T

0 Xs−dX
c
s∫ T

0 X2
sds

, (4.6)

where Xc denotes the continuous P 0-martingale part of X. Furthermore, under P a the maximum
likelihood estimator is unique and

âT
a.s.−→ a

under P a as T →∞.
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4.2 Ornstein-Uhlenbeck type processes

Proof: By setting

At = 1
σ2

∫ t

0
Xs dX

c
s

κ = a2

2σ2

St =
∫ t

0
X2
s ds

we obtain a non-decreasing continuous random process S : Ω×R+ → R, a predictable continuous
process A : Ω× R+ → R and a deterministic function κ : (0,∞)→ R on the set of parameters.
With this notation the likelihood function exhibits a decomposition of the form (2.17) and we
see that the class of OU processes indexed by the coefficients forms a curved exponential family.
Since σ2 > 0, we have ST > 0 P a-a.s. for T > 0 and a ∈ R. Hence, AT /ST is a.s. well defined

for T > 0. We see immediately that κ is a steep function in the sense of Section 2.2 in Küchler
and Sørensen [1997] such that the statement of the theorem follows from 5.2.1 in Küchler and
Sørensen [1997]. �
To prove a central limit theorem for âT we make the following assumptions on the drift

coefficient and the Lévy measure that assure ergodicity properties of X.
Assumption 4.2.4. Suppose that a, σ2 > 0, the Lévy measure of L satisfies∫

|x|>1
log |x| µ(dx) <∞ (4.7)

and that the stationary distribution F of X has a finite second moment.
The existence of a stationary distribution under a > 0 and (4.7) was shown in Sato and

Yamazato [1984] such that
Xt

D−→ X∞ ∼ F as t→∞.

The next result provides a central limit theorem for âT .
Theorem 4.2.5. Suppose that Assumption 4.2.4 holds. Then under P a

√
T (âT − a) D−→ N

(
0, σ2

Ea[X2
∞]

)

and
σ−1S

1/2
T (âT − a) D−→ N(0, 1) (4.8)

as T →∞ and ST =
∫ T

0 X2
s ds.

Remark 4.2.6. (i) When σ2 is known or a consistent estimator is at hand we can use (4.8) to
construct confidence intervals for a.

(ii) The second moment of the invariant distribution of X in terms of the Lévy-Khintchine
triplet of L was derived in Lemma 2.4.4. We find that a higher jump intensity and stronger
drift of L lead to a smaller asymptotic variance of the drift estimator.
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Proof: Under Assumption 4.7 it follows from Theorem 2.6 in Masuda [2007] that X is ergodic.
The ergodic theorem implies now that

1
t

∫ t

0
X2
s ds

a.s.−→ Ea[X2
∞] > 0 as t→∞ (4.9)

under P a. Thus, we obtain
St

a.s.−→∞ as t→∞

under P a. Then, by 5.2.3 in Küchler and Sørensen [1997]

√
t(âT − a) D−→ N

(
0, σ2

Ea[X2
∞]

)

as t→∞. The second convergence follows immediately from (4.9) and Slutsky’s lemma. �
In the next step we will investigate how the MLE performs in comparison to other estimators.

In order to do this, we discuss the asymptotic behavior of the likelihood function and prove
that the statistical model {P a, a ∈ R} of Ornstein-Uhlenbeck processes is locally asymptotically
normal. Some basic material on convergence of statistical experiments and local asymptotic
theory can be found in Section 2.5.

Theorem 4.2.7. Suppose that Assumption 4.2.4 is satisfied, then the following holds:

1. The statistical experiment {P a, a ∈ R+} is locally asymptotically normal.

2. The estimator âT is asymptotically efficient in the sense of Hájek-Le Cam (cf. Definition
2.5.4).

Proof: Let us denote by l the log-likelihood function

lt(a) = log
(
dP at
dP 0

t

)
= − a

σ2

∫ t

0
Xs dX

c
s −

a2

2σ2

∫ t

0
X2
s ds.

Then we obtain

lt(a+ t−1/2h)− lt(a) = −a+ t−1/2h

σ2

∫ t

0
Xs dX

c
s −

(a+ t−1/2h)2

2σ2

∫ t

0
X2
s ds

+ a

σ2

∫ t

0
Xs dX

c
s + a2

2σ2

∫ t

0
X2
s ds

= − t
−1/2h

σ2

∫ t

0
Xs dX

c
s −

at−1/2h

σ2

∫ t

0
X2
s ds−

t−1h2

2σ2

∫ t

0
X2
s ds.

The continuous P 0-martingale part Xc can be written as

Xc = σW̃ − a
∫
Xs ds,
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4.2 Ornstein-Uhlenbeck type processes

where W̃ is a standard P a-Wiener process such that

Mt = − t
−1/2h

σ2

∫ t

0
Xs dX

c
s −

at−1/2h

σ2

∫ t

0
X2
s ds = − t

−1/2h

σ

∫ t

0
Xs dW̃s

is a martingale under P a. The ergodic theorem implies that

t−1h2

2σ2

∫ t

0
X2
s ds

a.s.−→ h2Ea[X2
∞]

2σ2

for t→∞. Furthermore, Fubini’s theorem yields for t→∞ that

t−1Ea

[∫ t

0
X2
s ds

]
→ Ea[X2

∞].

It follows now from Theorem A.7.7 in Küchler and Sørensen [1997] that(
− t
−1/2

σ2

∫ t

0
Xs dX

c
s −

at−1/2

σ2

∫ t

0
X2
s ds,

t−1

2σ2

∫ t

0
X2
s ds

)
D−→
(
C1/2Z,C

)
(4.10)

for t→∞ where Z is a standard normal random variable and C = Ea[X2
∞]/σ2. The statement

of the theorem follows now, since we have shown that

lt(a+ t−1/2h)− lt(a) D−→ hC1/2Z + 1
2h

2C

for t→∞. Asymptotic efficiency is a direct consequence of (4.10) and Theorem 2.5.2.

4.2.2 The non-ergodic case

The normal convergence in Theorem 4.2.5 holds when X has ergodic properties. This is the case
when a > 0 and ∫

|x|>1
log(x) µ(dx) <∞

such that a stationary solution exists (cf. Masuda [2007]). In this section we investigate the
non-ergodic situation. We will only discuss the case a < 0 here. Assume for simplicity that L
has bounded jumps and X0 = x ∈ R is deterministic. In this setting the process |X| growth
exponentially and the maximum likelihood estimator (4.4) is strongly consistent by Theorem
4.2.3.
To derive the asymptotic distribution of âT − a with a proper scaling consider the following

decomposition of an exponential scaling of X:

Ht = eatXt −X0 =
∫ t

0
eas dLs = σ

∫ t

0
eas dWs + b

∫ t

0
eas ds+

∫ t

0
eas dJs

= H1
t +H2

t +H3
t ,

where J denotes the jump component and W the Gaussian component of L. The process H1
t is
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a zero-mean, uniformly integrable P a-martingale such that the martingale convergence theorem
yields

H1
t
a.s.−→ H1

∞ as t→∞ (4.11)

under P a. For H2 we obtain

H2
t = b

a
(eat − 1)→ − b

a
= H2

∞ as t→∞. (4.12)

Denote by N the Poisson random measure corresponding to J and by Ñ(dx, dt) = N(dx, dt)−
µ(dx)dt its compensated version. Since L has bounded jumps, the process H3 can be written as

H3
t =

∫ t

0
eas dJs =

∫ t

0

∫
|x|<1

easx Ñ(dx, dt).

Proposition 2.2.7 yields for all t ≥ 0 that

E
[
(H3

t )2
]

= E

(∫ t

0

∫
|x|<1

easx Ñ(dx, dt)
)2
 = e2at − 1

2a

∫
|x|<1

x2 µ(dx) <∞.

Hence, H3 is a zero-mean, uniformly integrable martingale and the martingale convergence
theorem implies

H3
t
a.s.−→ H3

∞ as t→∞ (4.13)

under P a. The convergences (4.11), (4.12) and (4.13) yield

Ht
a.s.−→ H1

∞ +H2
∞ +H3

∞

under P a and
e2atX2

t
p−→
(
X0 +H1

∞ +H2
∞ +H3

∞

)2
.

The integral version of Toeplitz lemma (cf. Küchler and Sørensen [1997], Appendix B) leads to

e2at
∫ t

0
X2
t ds

p−→ (−2a)−1
(
X0 +H1

∞ +H2
∞ +H3

∞

)2

such that for St =
∫ t

0 X
2
s ds we can apply Theorem 5.2.2 in Küchler and Sørensen [1997] to

obtain
S

1/2
t (ât − a) D−→ N(0, 1) as t→∞

under P a. This implies under P a that

e−at (ât − a) D−→ N(0, (−2a)
(
X0 +H1

∞ +H2
∞ +H3

∞

)−2
) as t→∞,

where the limit distribution is a mixed normal distribution. The non-ergodic case leads therefore
to a non-regular estimation problem with exponential rate of convergence for the maximum
likelihood estimator. This is not surprising, since the exponential growth of X is due to a very
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4.2 Ornstein-Uhlenbeck type processes

strong drift such that in this setting the dynamics of the process are dominated by the drift,
which simplifies its estimation considerably. A similar behavior of the likelihood estimator was
found for non-ergodic Gaussian Ornstein-Uhlenbeck processes in Feigin [1976].

4.2.3 Influence of jumps

In this section we investigate how the jumps of X influence the drift estimator in the sense that
if we replace the continuous martingale part Xc by Xcj(ε) = Xc +Xj(ε), where

Xj
t (ε) =

∫
|x|<ε

x(Nt(dx)− tµ(dx)), (4.14)

for ε ∈ [0,∞], the resulting estimate given by

ãT = −
∫ T

0 Xs−dX
cj(ε)s∫ T

0 X2
sds

(4.15)

remains strongly consistent and we can show that the jumps lead to an increase in asymptotic
variance that is proportional to the intensity of the jumps. For discrete observations of X, as
considered in Chapter 5 and 6, the results in this section help us to understand how the jumps
influences the estimation error. When we approximate Xc from discrete observations via jump
filtering, it will be much simpler to detect large jumps (in Chapter 5 we will make precise what
large means). In this sense ãT mimics the situation that we are able to detect jumps larger than
ε whereas smaller jumps cannot be removed and lead to an increased asymptotic variance as we
will see in Theorem 4.2.10.
The results in this section are meant as a preparation for the discussion on discrete observa-

tions later on. We do not strive here to work under the most general conditions, but impose
stationarity and slightly stronger moment conditions than necessary to simplify the presentation
at some points.

Theorem 4.2.8. Let us assume that X is stationary with Ea[X2
0 ] < ∞ and σ2 > 0. Then

ãT → a with P a-probability one as T →∞.

Remark 4.2.9. Let us mention here that we can recover a path of Xcj(ε) from time-continuous
observations of X, since X has only a finite number of jumps larger than ε on compact intervals
and these jumps are summable such that we can simply subtract the sum of jumps larges than
ε from X. Hence, Xcj is observable when time-continuous observations are given.

The assumption of a finite second moment for X implies in particular that the jump part of
L exhibits a second moment (cf. Lemma 2.4.4) such that we can use in the following that∫

R
x2 µ(dx) <∞.
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Proof: Under P a the estimator ãT can be written as

ãT = a+
∫ T

0 Xs−dX
j
s (ε)∫ T

0 X2
sds

+ σ
∫ T

0 XsdWs∫ T
0 X2

sds
. (4.16)

From Theorem 4.2.3 we know that ∫ T
0 XsdWs∫ T
0 X2

sds
→ 0

P a-a.s. as T →∞. It remains to show that the second term in (4.16) goes to zero P a-a.s. The
quadratic variation of Xj(ε) is given by

[Xj(ε)]T =
∑

t∈[0,T ]
∆L2

t1{|∆Lt|<ε},

where we sum over all jump times of L (recall that the squared jumps of a Lévy process are
summable) . This yields

Ea

∫ T

0
X2
t− d[Xj(ε)]t = Ea

∑
t∈[0,T ]

X2
t−∆L2

t1{|∆Lt|<ε}

= Ea

∫
[0,T ]×{|x|<ε}

X2
t−x

2 N(dt, dx).

Since X2
t−x

2 is square-integrable and predictable, by Lemma 4.1.4 in Applebaum [2009] we can
find 0 ≤ t1 < . . . < tn ≤ T , Ai ∈ B(R) and define a predictable sequence

fn(t, x) =
n∑
i=1

X2
ti−x

2
i1(ti,ti+1](t)1Ai(x),

of simple functions such that fn converges to f(t, x) = X2
t−x

21|x|<ε in L2(Ω× R+ × R). Hence,

Ea

∫
[0,T ]×{|x|<ε}

X2
t−x

2 N(dt, dx) = lim
n→∞

Ea

∫
[0,T ]×{|x|<ε}

fn(t, x) N(dt, dx)

= lim
n→∞

n∑
i=1

Ea

∫
(ti,ti+1]×Ai

X2
ti−x

2
i N(dt, dx)

= lim
n→∞

n∑
i=1

Ea
[
X2
ti−x

2
i N((ti, ti+1], Ai)

]
.
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Since N((ti, ti+1], Ai) is independent of Fti and X is stationary, we obtain

lim
n→∞

n∑
i=1

Ea
[
X2
ti−x

2
i N((ti, ti+1], Ai)

]
= lim

n→∞

n∑
i=1

Ea
[
X2
ti−

]
x2
iE [N((ti, ti+1], Ai)]

= Ea
[
X2

0

]
lim
n→∞

n∑
i=1

x2
iλ((ti, ti+1])µ(Ai)

= Ea
[
X2

0

]
lim
n→∞

n∑
i=1

∫
(ti,ti+1]×Ai

x2
iλ(dt)µ(dx)

= Ea
[
X2

0

]
T

∫
{|x|<ε}

x2 µ(dx),

where we used that if λ denotes the Lebesgue measure on R, then E[N(dt, dx)] = µ(dt)λ(dx).
It follows now from Corollary 3 on p.73 of Protter [2004] thatM = X−·Xj(ε) =

∫ ·
0 Xt− dX

j(ε)t
is a square integrable martingale, i.e. E[M2

t ] <∞ for all t > 0.
By Theorem I.4.40 in Jacod and Shiryaev [2003] we obtain for the predictable quadratic

variation of M
〈M〉 = 〈X− ·Xj(ε)〉 = X2

− · 〈Xj(ε)〉,

and by Theorem II.1.33 in Jacod and Shiryaev [2003]

〈Xj(ε)〉t =
〈∫
|x|<ε

x(Nt(dx)− tµ(dt))
〉
t

= t

∫
|x|<ε

x2µ(dx).

Hence,

〈M〉T = C

∫ T

0
X2
t dt,

where C =
∫
|x|≤ε x

2µ(dt). The strong law of large numbers for martingales (see Liptser [1980])
yields now

MT

〈M〉T
=
∫ T

0 Xs−dX
j(ε)s

C
∫ T

0 X2
sds

T→∞−→ 0 P a-a.s.

such that finally ∫ T
0 Xs−dX

cj(ε)s∫ T
0 X2

sds

T→∞−→ a P a-a.s.

This completes the proof. �
The next theorem proves asymptotic normality in the case that the data is polluted by jumps.

The asymptotic variance tells us the price we have to pay for taking Xcj instead of Xc. For the
prove we need a restriction on Xj . Suppose that Xj is a spectrally negative α-stable process
with 1 < α ≤ 2 (see Sato [1999]) with

E[euX
j
1 ] = exp(α−1uα).

This class of Xj ’s is sufficiently rich to understand the influence of small jumps of L on the
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estimator.

Theorem 4.2.10. Let X be a stationary Ornstein-Uhlenbeck process with Ea[X4
0 ] < ∞, then

ãT is asymptotically normal, i.e.,
√
T (ãT − a) D−→ N(0,Σ) under P a as T →∞,

where
Σ = Ea[X2

0 ]−1
(
σ2 +

∫
|x|<ε

x2 µ(dx)
)
.

Proof: Consider the following square integrable martingale

MT =
∫ T

0
Xs− dX

cj(ε)s.

Since Xc is continuous, whereas Xj(ε) is purely discontinuous, the quadratic variation is given
by

[M ]T = σ2
[∫ ·

0
Xs dWs

]
T

+
[∫ ·

0
Xs− dX

j(ε)s
]
T

= σ2
∫ T

0
X2
s ds+

∑
t∈[0,T ]

X2
t−∆L2

t 1{|∆Lt|<ε},

where the sum is over all jump times of L, which is countable owing to the càdlàg property of
the paths of L. We have seen in the proof of Theorems 4.2.5 and 4.2.8 that

1
T

∫ T

0
X2
s ds→ Ea[X2

0 ] Pa-a.s. as T →∞,

and that
1
T
Ea

∑
t∈[0,T ]

X2
t−∆L2

t1{|∆Lt|<ε} = Ea[X2
0 ]
∫
|x|<ε

x2 µ(dx).
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Using (4.2.3) and Theorem 4.2.3 in Applebaum [2009] the variance of the jump part equals

1
T 2 Var

 ∑
t∈[0,T ]

X2
t−∆L2

t1{|∆Lt|<ε}


= 1
T 2 Var

(∫
[0,T ]×{|x|<ε}

X2
t−x

2 N(dt, dx)
)

= 1
T 2 Var

(∫
[0,T ]×{|x|<ε}

X2
t−x

2 (N(dt, dx)− µ(dx)⊗ λ(dt))
)

= 1
T 2E

(∫
[0,T ]×{|x|<ε}

X2
t−x

2 (N(dt, dx)− µ(dx)⊗ λ(dt))
)2


= 1
T 2

∫
[0,T ]×{|x|<ε}

Ea[X4
t−x

4] µ(dx)⊗ λ(dt)

= Ea[X4
0 ]T−1

∫
{|x|<ε}

x4µ(dx).

Here again λ denotes the Lebesgue measure on R. Hence,

1
T 2 Var

∑
t∈[0,T ]

X2
t−∆L2

t1{|∆Lt|<ε} → 0 as T →∞.

This yields the stochastic convergence

1
T

[M ]T
p−→ σ2Ea[X2

0 ] + Ea[X2
0 ]
∫
|x|<ε

x2 µ(dx).

Since Xcj has bounded jumps, the maximal inequality for Ornstein-Uhlenbeck type processes
in Novikov [2003] yields

Ea[sup
s≤T
|∆Ms|] = Ea[sup

s≤T
|∆
∫ s

0
Xu− dX

j(ε)u|] ≤ εEa[sup
s≤T
|Xs|] = O(log(T ))

such that
1√
T
Ea(sup

s≤T
|∆Ms|)→ 0 as T →∞.

It follows now by Theorem A.7.7 in Küchler and Sørensen [1997] that

MT√
T

D−→ N(0,Π) as T →∞,

where
Π = σ2Ea[X2

0 ] + Ea[X2
0 ]
∫
|x|<ε

x2 µ(dx).
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Thus, we obtain by Slutsky’s lemma

√
T

∫ T
0 Xs−dX

cj(ε)s∫ T
0 X2

sds
=

1√
T

∫ T
0 Xs−dX

cj(ε)s
1
T

∫ T
0 X2

sds

D−→ N(0,Σ) as T →∞,

where
Σ = σ2Ea[X2

0 ]−1 + Ea[X2
0 ]−1

∫
|x|<ε

x2 µ(dx).

Comparing the asymptotic variance of ãT to the results in Theorem 4.2.5 for âT , we see that
in the presence of jumps the increase in variance depends on the intensity of jumps smaller then
ε, which is given by

Ea[X2
0 ]−1

∫
|x|<ε

x2 µ(dx). (4.17)

We will need this result later when we approximate the continuous martingale part in the case of
discrete observations. This can be done by setting large increments to zero, since the increments
of the jumps of X and its continuous component tend to zero at a different rate, when the step
size between observations tends to zero. Hence, for a small step size with high probability only
jumps smaller then ε remain after this transformation. Thus, when the step size tends to zero in
a high frequency setting we can let ε go to zero such that the additional variance (4.17) vanishes
asymptotically.
Formally, if the maximal jump size ε(T ) tends to zero as T →∞, we see from Theorem 4.2.10

that âT and ãT have in the limit the same variance. This fact will be of importance when we
investigate efficiency questions of our method.

4.2.4 Asymptotic properties of the discretized drift estimator

In this section we discuss the limiting behavior of the discretized drift estimator. Our objective
is here to investigate the influence of the discretization error on the estimation error. We will
give asymptotic conditions on the maximal observation distance in order to obtain an efficient
estimator. Since we assume throughout that increments of the continuous martingale part are
given, we obtain a pseudo estimator that cannot be applied in practice without further ado.
Nevertheless, besides some theoretical interest we will need the convergence results form this
section in Chapter 5 when we approximate the continuous martingale part and construct an
efficient estimator based on discrete observations.

High-frequency asymptotics

First, we will discuss high frequency asymptotics for arbitrarily spaced observations

Xt0 , . . . , Xtn where 0 = t0 ≤ . . . ≤ tn = T

such that
lim
n→∞

max
0≤i≤n−1

{ti+1 − ti|1 ≤ i ≤ n} = 0.
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4.2 Ornstein-Uhlenbeck type processes

Let ∆n = max{ti+1 − ti|0 ≤ i ≤ n− 1} and discretize the MLE as follows

ăn = −
∑n−1
i=0 Xti∆iX

c∑n−1
i=0 X

2
ti∆i

where ∆iX
c = Xc

i+1 −Xc
i and ∆i = ti+1 − ti. Our first result tells us that, if ∆n tends to zero

sufficiently fast, the discretized MLE and estimator âT based on continuous observations have
the same asymptotic distribution.

Proposition 4.2.11. Assume that X is stationary and E(X2
0 ) <∞. If Tn∆n = o(1) then√

Tn(ăn − a) D−→ N(0, σ2Ea[X2
0 ]−1)

under P a. Hence, under these conditions the discretized MLE ăn and the MLE âT based on
continuous observations converge to the same asymptotic distribution as T →∞.

Proof: LetW denotes a P a-Wiener process. The continuous P 0-martingale part can be written
as

Xc
t = σWt − a

∫ t

0
Xs ds.

This leads to the decomposition

T 1/2
n (ăn − a) = T 1/2

n a

(∑n−1
i=0 Xti

∫ ti+1
ti Xs ds∑n−1

i=0 X
2
ti∆i

− 1
)
− T 1/2

n

σ
∑n−1
i=0 Xti∆iW∑n−1
i=0 X

2
ti∆i

= S1
n − S2

n.

We will show now that S1
n

p−→ 0 and S2
n
D−→ N(0, σ2Ea[X2

0 ]−1) as n → ∞ such that the
statement of the proposition follows. Define btcn = maxi≤n{ti|ti ≤ t}. Let us first consider
convergence of S1

n. Observe that

S1
n/a =

T
−1/2
n (

∑n−1
i=0 Xti

∫ ti+1
ti Xs ds−

∑n−1
i=0 X

2
ti∆i)

T−1
n
∑n−1
i=0 X

2
ti∆i

. (4.18)

For the numerator we obtain

T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

Xs ds−
n−1∑
i=0

X2
ti∆i

∣∣∣∣∣
]
≤ T−1/2

n

∫ Tn

0
Ea
[
|XbtcnXt −X2

btcn |
]
dt

= O(T 1/2
n ∆1/2

n ) (4.19)

such that the numerator converges to zero in L1. A similar estimate for the denominator yields

T−1
n Ea

[∣∣∣∣∣
∫ Tn

0
X2
t dt−

n−1∑
i=0

X2
ti∆i

∣∣∣∣∣
]

= O(∆1/2
n ),
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4 Maximum likelihood estimation

and since the ergodic theorem implies that T−1
n

∫ Tn
0 X2

t dt
p−→ Ea[X2

0 ] as n→∞, we conclude

T−1
n

n−1∑
i=0

X2
ti∆i

p−→ Ea[X2
0 ] (4.20)

as n→∞. This convergence together with (4.18) and the estimate (4.19) imply that S1
n

p−→ 0
as n→∞.
It remains to prove convergence of S2

n. From Itô’s isometry and stationarity of X we obtain
for the numerator of S1

n that

T−1
n Ea

(∫ Tn

0
Xt dWt −

n−1∑
i=0

Xti∆iW

)2 = T−1
n Ea

(∫ Tn

0
(Xt −Xbtcn) dWt

)2


= T−1
n Ea

[∫ Tn

0
(Xt −Xbtcn)2 dt

]
= T−1

n

∫ Tn

0
Ea
[
(Xt −Xbtcn)2

]
dt

≤ 2TnEa[X2
0 −X0X∆n ] = 2TnEa[X2

0 ](1− e−a∆n) = O(∆n).

The numerator of S2
n is a continuous martingale and its quadratic variation converges due to

the ergodic theorem to the second moment of X. The martingale central limit theorem implies
now

T−1/2
n σ

∫ Tn

0
Xt dWt

D−→ N(0, σ2Ea(X2
0 ))

such that also

T−1/2
n σ

n−1∑
i=0

Xti∆iW
D−→ N(0, σ2Ea(X2

0 ))

as n→∞. This convergence together with (4.20) and Slutsky’s lemma lead to

S1
n
D−→ N(0, σ2Ea[X2

0 ]−1)

as n→∞. This completes the proof.

Long time asymptotics

Now we will turn our attention to the long time asymptotics of ân on an equidistant grid
∆, 2∆, . . . , n∆ for ∆ ∈ R+ fixed and let n→∞. In this situation the estimator exhibits a bias
that tends to zero as ∆ becomes small and by using a bias correction we can reduce the order
of the asymptotic bias to O(∆2). Our results are closely related to the work by Küchler and
Sørensen [2010] on parameter estimation for affine stochastic delay differential equations.
Given discrete observations X∆, X2∆, . . . , Xn∆ a discretized version of â is given by

ân = −An
In
,
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4.2 Ornstein-Uhlenbeck type processes

where

An =
n−1∑
m=0

Xm∆ δXc
m

and

In = ∆
n−1∑
m=0

X2
m∆

with increments δXc
m = Xc

(m+1)∆ −X
c
m∆. Let a denote the true parameter of equation (2.13).

Theorem 4.2.12. On the assumption that X is stationary with Ea(X2
0 ) <∞ the drift estimator

satisfies

ân + â2
n

2 ∆ n→∞−→ a+O(∆2) Pa-a.s.

Proof: We have seen in Section 4.2 that when W is a P a-Wiener process we can write the
continuous P 0-martingale part as

Xc
t = σWt − a

∫ t

0
Xs ds.

Therefore, we can rewrite An as

An = σ
n−1∑
m=0

Xm∆ δWm − a
n−1∑
m=0

Xm∆

∫ (m+1)∆

m∆
Xs ds

= σ
n−1∑
m=0

Xm∆ δWm − a
n−1∑
m=0

Xm∆

∫ (m+1)∆

m∆
(Xs −Xm∆) ds− a∆

n−1∑
m=0

X2
m∆

=: Zn − aRn − aIn (4.21)

From Theorem 4.3 in Masuda [2004] we know that X is β-mixing and hence geometrically
ergodic. Therefore, the ergodic theorem implies the P a-almost sure convergence of

In
n

n→∞−→ ∆Ea(X2
0 ), Zn

n
n→∞−→ 0,

and
Rn
n

n→∞−→ Ea

[∫ (m+1)∆

m∆

(
Xm∆Xt −X2

m∆

)
dt

]
=
∫ ∆

0
Ka(t) dt−∆Ea[X2

0 ],

where Ka(t) = Ea[X0Xt] = Ea[X2
0 ]e−at denotes the covariance function of X. Hence, we obtain

ân = −Zn
In

+ a
Rn
In

+ a
n→∞−→ a

∫∆
0 Ka(t) dt
∆Ea[X2

0 ]
Pa-a.s.

Finally,

a

∫∆
0 Ka(t) dt
∆Ea[X2

0 ]
= a

∆

∫ ∆

0
e−at dt = a− a2

2 ∆ +O(∆2)
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�

As expected the asymptotic bias of the discretized >estimator tends to zero as ∆ becomes
small. Our next result shows that ân is asymptotically normal if X is stationary and exhibits a
moment of order 2 + δ for some δ > 0. The proof is based on classical central limit theorems for
mixing sequences as discussed in Doukhan [1994].

Theorem 4.2.13. Let us assume that X is stationary, Ea[|X0|2+δ] < ∞ for some δ > 0. We
set

R(a) =
∫ ∆

0
Ka(t) dt−∆Ea[X2

0 ],

where Ka = Ea[X2
0 ]e−at denotes the covariance function of X. Then the distribution of

√
n

(
ân − a− a

R(a)
∆Ea[X2

0 ]

)
tends as n→∞ to a centered normal distribution.

Proof: By using (4.21) and R(a) =
∫∆

0 Ka(t) dt−∆Ea[X2
0 ] we obtain

√
n

(
ân − a− a

R(a)
∆Ea[X2

0 ]

)
=
√
n

(
Zn
In

+ a

(
Rn
In
− R(a)

∆Ea[X2
0 ]

))
= na

In

[
Rn√
n
−
√
nR(a) +

√
nR(a)

]
+
√
na

R(a)
∆Ea[X2

0 ]
+ n

In

Zn√
n

= na

In

Rn − nR(a)√
n

−R(a)na
In

In − n∆Ea[X2
0 ]√

n∆Ea[X2
0 ]

+ n

In

Zn√
n
.

The last expression has the same asymptotic distribution as

1
∆Ea[X2

0 ]

(
a
Rn − nR(a)√

n
−R(a)a∆Ea[X2

0 ]In − n∆Ea[X2
0 ]√

n
+ Zn√

n

)

Masuda [2004] proved in Theorem 4.3 that X is exponentially β-mixing and hence also α mixing.
Therefore, we see that Rn − nR(a), In − n∆Ea[X2

0 ] and Zn are sums of centered exponentially
α-mixing sequences. In order to apply the central limit theorem for α-mixing sequences (see for
example Doukhan [1994], Section 1.5, Theorem 1) it remains to check that all sequences exhibit
finite moments of order 2 + δ for some δ > 0.
By equation (2.14) we obtain for the summands of Zn

Ea[|Xm∆Wm∆|]2+δ = Ea

[
|e−am∆X0Wm∆ +Wm∆

∫ m∆

0
e−a(m∆−s) dLs|2+δ

]
.

The Lévy -Itô decomposition L = σW + J with quadratic pure jump part J and Gaussian
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4.2 Ornstein-Uhlenbeck type processes

component W yields now

Ea
[
|Xm∆Wm∆|2+δ

]
= Ea

[
|Wm∆|2+δ

]
Ea

[∣∣∣∣∣e−am∆X0 +
∫ m∆

0
e−a(m∆−s) dWs

+
∫ m∆

0
e−a(m∆−s) dJs

∣∣∣∣∣
2+δ


≤ 3
δ
2CEa[|Wm∆|2+δ]Ea

[
|e−am∆X0|2+δ

]
+ Ea

∣∣∣∣∣
∫ m∆

0
e−a(m∆−s) dWs

∣∣∣∣∣
2+δ


+ Ea

∣∣∣∣∣
∫ m∆

0
e−a(m∆−s) dJs

∣∣∣∣∣
2+δ
 <∞,

where we have used independence of X0, W , and J and an inequality by Marcinkiewicz and
Zygmund that can be found in Loeve [1977], p. 276.
For Rn we find

Ea
[
|Rn|2+δ

]
= Ea

∣∣∣∣∣
n−1∑
m=0

∫ (m+1)∆

m∆
Xm∆Xs ds+ ∆

n−1∑
m=0

X2
m∆

∣∣∣∣∣
2+δ

≤ (2 + n)1+δ

n−1∑
m=0

Ea

∣∣∣∣∣
∫ (m+1)∆

m∆
Xm∆Xs ds

∣∣∣∣∣
2+δ
+ ∆

n−1∑
m=0

Ea

[∣∣∣X2
m∆

∣∣∣2+δ
] <∞,

where we have used a moment inequality from DasGupta [2008], p. 650. We have by assumption
Ea|Zn|2+δ <∞. Hence, the asymptotic normality of all three terms

Rn − nR(a)√
n

,
In − n∆Ea[X2

0 ]√
n

and Zn√
n

follows from the central limit theorem for α-mixing sequences (Doukhan [1994], Section 1.5,
Theorem 1). �
It remains to determine the variance of the limiting distribution in the central limit theorem.

Remark 4.2.14. The case of equidistant observations X0, X∆, . . . , Xn∆ can also be treated by
classical time series methods, since we can rewrite the observations as an AR(1) process via

Xm∆ = θX(m−1)∆ + εm; m = 1, . . . , n (4.22)

where
θ = e−a∆

and
εm =

∫ m∆

(m−1)∆
e−a(m∆−s) dLs.

Then, the sequence (εm)1≤m≤n is iid due to the stationary and independent increments of L.
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4 Maximum likelihood estimation

This approach was studied in Brockwell et al. [2007] in the case that L is a subordinator with
finite second moments and on the assumption that the distribution of the εm is regularly varying
at zero.
Also for general Lévy processes the AR(1) process (4.22) can be estimated by classical least

squares or maximum likelihood techniques that lead to strongly consistent and asymptotically
normal estimators provided that X is stationary and has finite second moments. This time
series approach breaks down if the observations of X are not equidistant. In this case our
approach yields equally good results as in the equidistant case provided that the maximal time
step between observations is sufficiently small.

4.3 Lévy-driven square-root processes

As a second example of a jump diffusion that is widely used in applications we consider the
drift estimation for square-root processes from Section 3.3. Let (Ω,F , (Ft)t≥0, P ) be a filtered
probability space on which all processes will be defined in the following. Then X is a strong
solution of

dXt = −aXtdt+ σ
√
XtdWt + dLt, 0 ≤ t <∞,

driven by a Lévy process Lt = bt + Jt and a standard Wiener process W , where σ, b > 0 and
J is assumed to be subordinator (see Sato [1999], Section 4.21 on subordinators). The starting
value is X0 = x > 0 and the drift parameter a > 0. Under these conditions the process X
stays nonnegative at all times such that the square-root is well defined (cf. Section 3.3 and the
references given there). This class of processes has been used by Cox et al. [1985] for short rate
dynamics in term structure modeling when L is a Brownian motion. Therefore, they are also
known as Cox-Ingersoll-Ross processes in financial applications.
As a mapping from Ω to D[0,∞) the process X induces for every a a measure P a on D[0,∞).

Proposition 3.3.1 yields absolute continuity of these measures and enables us to derive an explicit
maximum likelihood estimator for a by solving

∂

∂a
log dP

a
T

dP 0
T

= − 1
σ2X

c
T −

a

σ2

∫ T

0
Xt dt

!= 0,

where Xc denotes the continuous P 0-martingale part. Thus, we obtain for continuously observed
X the MLE

âT = − Xc
T∫ T

0 Xt dt
. (4.23)

The form of the likelihood function implies that the class of square-root processes forms a curved
exponential family such that we can apply general results for exponential families to derive the
asymptotic behavior of âT . Denote by (b, σ2, µ) the Lévy -Khintchine triplet of L.

Theorem 4.3.1. (i) Suppose σ2 > 0, then the drift estimator âT is strongly consistent.

(ii) If additionally X is ergodic and has an invariant distribution such that Xt
D−→ X∞ as
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4.3 Lévy-driven square-root processes

t→∞ and Ea[X∞] <∞, then
√
T (âT − a) D−→ N

(
0, σ2Ea[X∞]−1

)
and

σ−1S
1/2
T (âT − a) D−→ N(0, 1)

under P a as T →∞ and ST =
∫ T

0 Xs ds.

When a consistent estimator σ̂2 for σ is at hand, the second convergence in (ii) can be used
to obtain confidence statements for a.

Proof: LetW denote the Gaussian component of L from the Lévy-Itô decomposition that isW
is a P 0-Wiener process. It follows from Girsanov’s theorem that the continuous P 0-martingale
part can be written as

Xc
t = σ

∫ t

0
X1/2
s dWs = −a

∫ t

0
Xs ds+ σ

∫ t

0
|Xs|1/2 dW̃s,

where W̃ is a standard P a-Wiener process. From this representation of Xc the MLE can be
rewritten as

âT = −σ
∫ T

0 |Xs|1/2 dW̃s − a
∫ T

0 Xs ds∫ T
0 Xs ds

= a− σ
∫ T
0 |Xs|1/2 dW̃s∫ T

0 Xs ds
.

Since σ2 > 0 and Xs ≥ 0 for almost all s > 0, it follows that∫ T

0
Xs ds→∞ as T →∞

and P a-a.s. such that by Lemma 17.4 in Liptser and Shiryaev [2001] we obtain

σ
∫ T

0 |Xs|1/2 dW̃s∫ T
0 Xs ds

→ 0

P a-a.s. as T → ∞. This proves strong consistency of âT . It remains to prove the central limit
theorem. The ergodic theorem yields

T−1
∫ T

0
Xt dt

a.s.−→ Ea[X∞] > 0 (4.24)

under P a as T →∞. Now we can apply Theorem 5.2.3 in Küchler and Sørensen [1997] to obtain
the result √

T (âT − a) D−→ N
(
0, σ2Ea[X∞]−1

)
(4.25)

under P a as T →∞.
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4.3.1 Local asymptotic normality

To show that the MLE exhibits a minimal asymptotic variance we are going to prove local
asymptotic normality for the underlying statistical experiment. As a corollary we obtain that
the estimator is asymptotically efficient in the sense of Le Cam theory.

Theorem 4.3.2. Suppose that the assumptions in Theorem 4.3.1 hold. Then the following
holds:

(i) The statistical experiment {P a, a ∈ R+} is locally asymptotically normal.

(ii) The drift estimator âT is asymptotically efficient in the sense of Hájek-Le Cam.

Proof: We have to show that the log-likelihood

lt(a) = log

(
dP at
dP 0

t

)
= − a

σ2X
c
T −

a2

2σ2

∫ T

0
Xt dt

converges locally to the likelihood of a Gaussian shift experiment. For the local parameter
a+ t−1/2h we obtain by applying Girsanov’s theorem that

lt(a+ t−1/2h)− lt(a) = −a+ t−1/2h

σ2 Xc
T −

(a+ t−1/2h)2

2σ2

∫ t

0
Xs ds

+ a

σ2X
c
T + a2

2σ2

∫ t

0
Xs ds

= − t
−1/2h

σ2 Xc
T −

at−1/2h

σ2

∫ t

0
Xs ds−

t−1h2

2σ2

∫ t

0
Xs ds

= − t
−1/2h

σ

∫ t

0
X1/2
s dW̃s −

t−1h2

2σ2

∫ t

0
Xs ds,

where W̃ denotes a P a-Wiener process. Next, we observe that the ergodic theorem leads to

t−1
∫ t

0
Xs ds

a.s.−→ σ2Ea[X∞]

for t→∞ and that Itô’s isometry implies

σ2t−1Ea

[(∫ t

0
X1/2
s dW̃s

)2]
→ σ2Ea[X∞]

such that Theorem A.7.7 in Küchler and Sørensen [1997] yields(
− t
−1/2

σ2

∫ t

0
X1/2
s dW̃s,

t−1

2σ2

∫ t

0
Xs ds

)
D−→
(
C1/2Z,C

)
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4.4 Jump diffusion models with affine drift parameter

under P a as t → ∞, where Z is a standard normal random variable and C = σ2Ea[X0]. From
this joint convergence we finally conclude that under P a we obtain

lt(a+ t−1/2h)− lt(a) D−→ hEa[X∞]1/2σ−1Z + 1
2h

2Ea[X∞]σ−2.

4.4 Jump diffusion models with affine drift parameter

Suppose that the drift coefficient in (4.1) depends linearly on θ, i.e.,

δ(θ, s, x) = g(s, x) + θf(s, x)

for known functions f, g : R+ × Rd → Rd and let Θ ⊂ Rn be an open subset. Then {P θ, θ ∈ Θ}
is a curved exponential family as defined in Section 2.6 and L is a quadratic polynomial in θ
such that (4.2) has the unique solution

θ̂T =
∫ T

0 c(s,Xs)−1f(s,Xs) dXc
s∫ T

0 f(s,Xs)>c(s,Xs)−1f(s,Xs) ds
,

where Xc denotes the continuous P 0-martingale part and we assume in the following that
c(s, x) = γΣΣ>γ>(s, x) from (4.1) is invertible for all s and x. This class of models gener-
alizes the Ornstein-Uhlenbeck type and square-root process that we have investigated in the
previous sections. Consistency and asymptotic normality for θ̂T follow under ergodicity of X
from Theorem 5.2.1 and 5.2.2 in Küchler and Sørensen [1997]. We summarize the asymptotic
properties of θ̂T in the following theorems.

Theorem 4.4.1. The maximum likelihood estimator θ̂T is strongly consistent, i.e.,

θ̂T
a.s.−→ θ under P θ as t→∞.

To obtain asymptotic normality of θ̂T we impose ergodicity of X. Therefore, it is necessary
that the coefficients do not explicitly depend on t, i.e. f, g : Rd → Rd and γ : Rd → Rd×m.
Conditions for ergodicity of jump diffusions of this type in terms of there characteristics were
developed in Masuda [2007].

Theorem 4.4.2. Suppose that X is ergodic and has an invariant distribution such that Xt
D−→

X∞ as t→∞ and
Ψ = Eθ[f(X∞)>c(X∞)−1f(X∞)] <∞.

Then under P θ we obtain
T 1/2

(
θ̂T − θ

) D−→ N(0,Ψ−1)

as T →∞.
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4.5 Stochastic delay differential equations

All jump diffusion processes considered so far have the Markov property in common. In this
section we will see that the likelihood approach generalizes also to a non-Markovian setting.

Let L be a Lévy process with Lévy-Khintchine triplet (γ, σ2, µ) and consider the following
linear stochastic delay differential equation (SDDE) driven by L.

dXt = aXt dt+ bXt−1 dt+ dLt, t > 0, (4.26)
Xt = X0

t , t ∈ [−1, 0],

where a, b ∈ R and X0 : [−1, 0] × Ω → R is the initial process with càdlàg trajectories that is
assumed to be independent of L. For general results on existence and uniqueness of stationary
solutions of delay equations we refer to Gushchin and Küchler [2000] and Mohammed and
Scheutzow [1990]. A short summary of the most important results can be found in Section 2.4.

When x0 denotes the fundamental solution of the corresponding deterministic delay equation

ẋ(t) = ax(t) dt+ bx(t− 1) dt, t > 0,
x(t) = 0, t ∈ [−1, 0),
x(0) = 1,

a unique solution of (4.26) is given by

Xt = x0(t)X0
0 + b

∫ 0

−1
x0(t− s− 1)X0

s ds+
∫ t

0
x0(t− s) dLs.

It was shown in Gushchin and Küchler [2000] that a stationary solution of (4.26) exists if and
only if ∫

|x|>1
log |x| µ(dx) <∞ (4.27)

and when the characteristic equation λ − a − beλ = 0 admits only solutions with negative real
part, i.e.,

v0 = sup
λ∈C
{Re(λ)|λ− a− beλ = 0} < 0. (4.28)

4.5.1 Parameter estimation

In the following we discuss the problem of estimating the parameter θ = (a, b) ∈ R2 from
continuous observations (Xt)t∈[0,T ] for T ∈ R+. Let P θ denote the measure induced by X
on D[−1,∞). The process X is by Theorem V.3.7 in Protter [2004] a semimartingale with
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characteristics

Bt = γt+ a

∫ t

0
Xs ds+ b

∫ t

0
Xs−1 ds,

Ct = σ2t,

ν(dt, dx) = λ(dt)µ(dx).

Hence, the likelihood function for the experiment (P θ, θ ∈ R2) follows from (2.10) in Küchler
and Sørensen [1989]:

L(θ,X, T ) = dP θT

dP
(0,0)
T

= exp
(
θ>VT −

1
2θ
>IT θ

)
,

where

VT =
( ∫ T

0 Xt dX
c
t∫ T

0 Xt−1 dX
c
t

)
,

the process Xc denotes the continuous P 0-martingale part and IT is the observed Fisher infor-
mation given by

IT =
( ∫ T

0 X2
t dt

∫ T
0 XtXt−1 dt∫ T

0 XtXt−1 dt
∫ T

0 X2
t−1 dt

)
.

Hence, we are working on a set of measures (P θ, θ ∈ R2) that forms a curved exponential family
in the sense of Küchler and Sørensen [1997]. If we assume that I is non-singular the maximum
likelihood estimator takes the explicit form

θ̂T = I−1
T VT . (4.29)

The continuous P 0-martingale part of X is Xc = σW̃ , where W̃ is the Gaussian part of L and
hence a P 0-Wiener process. Under the measure P θ Girsanov’s theorem implies that

W = W̃ − a

σ

∫
Xt dt−

b

σ

∫
Xt−1 dt

is a P θ-Wiener process. Hence, the continuous martingale part can be rewritten as

Xc
t = a

∫ t

0
Xt dt+ b

∫ t

0
Xt−1 dt+ σWt. (4.30)

This representation of Xc will be important in the following when we investigate the asymptotic
behavior of the drift estimator, since we are interested in convergence results under the true
measure P θ.
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4 Maximum likelihood estimation

4.5.2 Asymptotic properties

In this section we will prove consistency and asymptotic normality for the maximum likelihood
estimator for θ.

Assumption 4.5.1. Suppose that σ2 > 0, that (4.27) and (4.28) hold and that X is ergodic
and exhibits finite second moments.

Remark 4.5.2. That σ2 > 0 yields existence of the likelihood function and hence the existence of
θ̂T . The conditions (4.27) and (4.28) are necessary and sufficient for the existence of a stationary
solution of (4.26) and they will be needed together with the ergodicity of X to derive the limit
theorems in this section. That we are in the stationary case together with the existence of second
moments of X is a requirement in order to obtain asymptotic normality for the estimation error.
It is an interesting open question to derive convergence results for θ̂T in the non-stationary
case. Gushchin and Küchler [1999] have investigated the asymptotic behavior of the likelihood
estimator in the case of Gaussian delay equations and they found that the parameter space
decomposes into eleven different regions that lead to eleven different limiting behaviors of the
likelihood function. We expect a similarly complex situation for Lévy-driven delay equations.

Theorem 4.5.3. Let Assumption 4.5.1 be satisfied, then the MLE θ̂T is strongly consistent, i.e.,
under P θ

θ̂T
a.s.−→ θ as t→∞.

Proof: We rewrite the MLE as follows:

θ̂T = I−1
T VT = θ + I−1

T ṼT , (4.31)

where
ṼT =

(
σ
∫ T

0 Xt dWt

σ
∫ T

0 Xt−1 dWt

)

and W is a P θ-Wiener process. It remains to prove that I−1
T ṼT

a.s.−→ 0 as T → ∞. First of all,
the ergodic theorem implies that

T−1IT
a.s.−→ Σ as T →∞ (4.32)

under P θ, where
Σ00 = Σ11 = lim

s→∞
Eθ
[
X2
s

]
and

Σ01 = Σ10 = lim
s→∞

Eθ [XsXs−1] .

That these limits exist follows under (4.27) and (4.28) from Theorem 3.1 in Gushchin and
Küchler [2000]. Observe that the predictable quadratic variation of ṼT converges to

T−1σ2
〈∫ ·

0
Xs dWs

〉
T

= T−1σ2
∫ T

0
X2
s ds

a.s.−→ σ2Σ00
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and
T−1σ2

〈∫ ·
0
Xs−1 dWs

〉
T

= a.s.−→ σ2Σ00.

under P θ as T →∞. Hence, the strong law of large numbers for martingales 2.3.7 yields

T−1
∫ T

0
Xs dWs

a.s.−→ 0

and
T−1

∫ T

0
Xs−1 dWs

a.s.−→ 0

under P θ as T →∞ such that the claim follows from (4.31) and (4.32).
In the ergodic case the following central limit theorem holds for estimation error.

Theorem 4.5.4. Suppose that Assumption 4.5.1 holds and that Σ from (4.32) is invertible, then

T 1/2
(
θ̂T − θ

) D−→ N
(
0, σ2Σ−1

)
.

Proof: Since Σ is symmetric, there exists an orthogonal matrix U such that U>ΣU is a diagonal
matrix. Define Yt = (Xt, Xt−1)> and

Zt = U>Yt, t ∈ R+.

Then, (4.32) leads to

T−1
∫ T

0
ZtZ

>
t ds

a.s.−→ U>ΣU as T →∞

under P θ. Since
∫ T

0 Zt dWt is a continuous P θ-martingale, the martingale central limit theorem
from Section 2.3.3 yields now

T−1/2σ

∫ T

0
Zt dWt

D−→ N(0, σ2U>ΣU) under P θ as T →∞.

Since Ys = UZs, the above convergence implies

T−1/2σ

∫ T

0
Ys dWs

D−→ N(0, σ2Σ). (4.33)

under P θ as T →∞. Finally, we observe that

T 1/2
(
θ̂T − θ

)
= T−1/2ṼTTI

−1
T

and that by (4.32)
T−1IT

a.s.−→ Σ as T →∞

under P θ such that the statement of the theorem follows from (4.33) and Slutsky’s lemma.
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5 Discrete observations: finite activity

In this chapter we consider the drift estimation problem for discrete observations. The maximum
likelihood estimator for the drift given in (4.4) involves the continuous martingale part that is
unknown when only discrete observations are given. Hence, we will approximate the continuous
part of the process by removing observations that most likely contain jumps. We restrict our
attention in this chapter to the case that the driving Lévy process has jumps of finite activity
and use a threshold technique to distinguish increments of the process that contain jumps from
increments that result from the continuous part only. This approach provides us in the high-
frequency limit an asymptotically normal and efficient estimator. Based on these results we will
treat the general case of an infinitely active jump component in Chapter 6.
In the literature on volatility estimation such jump filtering by thresholding was first employed

by Mancini [2009] for estimating the integrated volatility of an Itô semimartingale. Aït-Sahalia
and Jacod [2009] used similar methods to estimate the degree of activity of jumps in a general
semimartingale setting.

5.1 Ornstein-Uhlenbeck type processes

5.1.1 Estimator and observation scheme

Let X be an Ornstein-Uhlenbeck process as in Section 3.2 and suppose we observe X at discrete
time points 0 = t1 < t2 < . . . < tn = Tn such that Tn →∞ as well as ∆n = max1≤i≤n−1{|ti+1−
ti|} ↓ 0 and n∆nT

−1
n = O(1) as n → ∞. The last condition assures that the number of

observations n does not grow faster than Tn∆−1
n and it can always be fulfilled by neglecting

observations, but it will simplify the formulation of the proof considerably. Denote by (b, σ2, µ)
the Lévy-Khintchine triplet of L. Assume throughout this section that λ = µ(R) < ∞ for the
Lévy measure µ.
By deleting increments that are larger than some threshold vn > 0 we filter increments that

most likely contain jumps. This method applied to the estimator from Section 4.2 leads to the
following estimator.

ān := −
∑n−1
i=0 Xti∆iX1{|∆iX|≤vn}∑n−1

i=0 X
2
ti(ti+1 − ti)

. (5.1)

Here vn > 0, n ∈ N, is a cut-off sequence that will be chosen as a function of the maximal
distance between observations and ∆iX = Xti+1 −Xti .
In the finite activity case the jump part J of L can be written as a compound Poisson process

Jt =
Nt∑
i=1

Zi
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5 Discrete observations: finite activity

where N is a Poisson process with intensity λ and the jump heights Z1, Z2, . . . are iid with
distribution F .

5.1.2 Asymptotic normality and efficiency

The indicator function that appears in ān deletes increments that are larger than vn. Lévy’s
modulus of continuity for the Wiener process implies that increments of the continuous part of
X over an interval of length ∆n are with high probability smaller than ∆1/2

n (cf. Mancini [2009]).
Hence, we set vn = ∆β

n for β ∈ (0, 1/2) in order to keep the continuous part in the limit unaffected
by the threshold. In order to be able to choose vn such that Xc

n =
∑n−1
i=0 ∆iX1{|∆iX|≤vn}

approximates the continuous martingale part in the limit, we make the following assumptions
on the jumps of L and the observation scheme.

Assumption 5.1.1. (i) Suppose that there exists a β ∈ (0, 1/2) such that the maximal
distance between observation points satisfies Tn∆(1−2β)∧ 1

2
n = o(1),

(ii) the drift b = 0 and the distribution F of the jump heights is such that

F ((−2∆β
n, 2∆β

n)) = o(T−1
n ).

Remark 5.1.2. Suppose that F has a bounded Lebesgue density f . Then F ((∆β
n,∆β

n)) = O(∆β
n)

and Assumption 5.1.1(ii) becomes ∆β
nTn = o(1). Together with 5.1.1(i) we obtain that β = 1/3

leads to an optimal compromise between 5.1.1(i) and (ii).

Remark 5.1.3. Assumption 5.1.1(i) means here that for given Tn → ∞ we require ∆n ↓ 0 fast
enough such that there exists β ∈ (0, 1/2):

Tn∆1−2β
n = o(1) and Tn∆1/2

n = o(1).

Of course one of these to conditions will be dominating and determine the order of ∆n.

Remark 5.1.4. Assumption 5.1.1(ii) gives a lower bound for the choice of the threshold β. At the
same time 5.1.1(i) limits the range of possible β’s from above, since the available frequency of
observations, i.e. the order of ∆n, may be limited in specific applications. Hence, the distribution
F , the observation length Tn and frequency ∆n fix a range for the choice of β. At this point the
question of a data driven method to choose β arises, but this will not be considered in this work.
The condition b = 0 is necessary in this context, since otherwise there is no hope to recover the
continuous martingale part via jump filtering.

Remark 5.1.5. In contrast to the case of time-continuous observations in Chapter 4 the drift
estimator (5.1) can be evaluated without any knowledge of the distribution of L provided that
b = 0. More specifically the Lévy measure of L is not needed here anymore such that we consider
in fact a semiparametric estimation problem.

The following theorem gives as the main result of this section a central limit theorem for the
discretized MLE with jump filter.
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5.1 Ornstein-Uhlenbeck type processes

Theorem 5.1.6. Let X be stationary with finite second moments and assume that σ2 > 0. Set
vn = ∆β

n for β ∈ (0, 1/2) and suppose that 5.1.1 holds, then

T 1/2
n (ān − a) D−→ N

(
0, σ2

Ea[X2
0 ]

)
as n→∞.

The estimator ān is asymptotically efficient.

Remark 5.1.7. We have proved in Chapter 4 that the MLE based on continuous observations
attains the efficient asymptotic variance σ2/Ea[X2

0 ]. Since we cannot hope to obtain a lower
asymptotic variance when only discrete observations are available, efficiency of ān follows im-
mediately from the first statement of Theorem 5.1.6.

5.1.3 Proof

We divide the proof of the theorem into several lemmas. First of all we need a probability bound
for the event that the continuous component of X exceeds a certain threshold. Denote by W
the Gaussian component of L and the drift part of X by

Dt = −a
∫ t

0
Xs ds.

Lemma 5.1.8. Let sups∈[0,T ]{E[|Xs|l]} < ∞ for some l ≥ 1. For any δ ∈ (0, 1/2) and i ∈
{1, . . . , n− 1} we have

P (|∆iW + ∆iD| > ∆1/2−δ
n ) = O

(
∆l(1/2+δ)
n

)
as n→∞.

Proof: We may assume without loss of generality that σ = 1. In the first step we separate
∆iW and ∆iD.

P
(
|∆iW + ∆iD| > ∆1/2−δ

n

)
≤ P

(
|∆iW | >

∆1/2−δ
n

2

)
+ P

(
|∆iD| >

k∆1/2
n

2

)
.

By Lemma 22.2 in Klenke [2008]

P

(
|∆iW | >

∆1/2−δ
n

2

)
≤ 2∆δ

n e
− 1

8∆2δ
n .

It follows from Jensen’s inequality that∣∣∣∣∫ ti+1

ti

Xs ds

∣∣∣∣l ≤ ∆l−1
n

∫ ti+1

ti

|Xs|l ds.
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5 Discrete observations: finite activity

This leads to

E[|∆iD|l] ≤ ∆l−1
n al

∫ ti+1

ti

E[|Xs|l] ds ≤ ∆l
na

l sup
s∈[ti,ti+1]

{E[|Xs|l]}.

Finally, Markov’s inequality yields

P

(
|∆iD| >

∆1/2−δ
n

2

)
≤ al sup

s∈[ti,ti+1]
{E[|Xs|l]}

2l∆l
n

∆l(1/2−δ)
n

= O
(
∆l(1/2+δ)
n

)
.

Jump filtering

First we will investigate how to choose the cut-off sequence vn in order to filter the jumps. Define
for n ∈ N and i ∈ {1, . . . , n} the following sequence of events

Ain =
{
ω ∈ Ω : 1{|∆iX|≤vn}(ω) = 1{∆iN=0}(ω)

}
.

Here N denotes the jump measure of L as defined in (2.4).

Lemma 5.1.9. Suppose that Assumption 5.1.1 holds and set vn = ∆β
n, β ∈ (0, 1/2), then it

follows that for An =
⋂n
i=1A

i
n we have

P (An)→ 1 as n→∞.

Proof: Observe that
P (Acn) = P

(
n⋃
i=1

(Ain)c
)
≤

n∑
i=1

P ((Ain)c).

By setting

Ki
n = {|∆iX| ≤ vn},

M i
n = {∆iN = 0},

we can rewrite (Ain)c as

(Ain)c =
{

1Ki
n
6= 1M i

n

}
= (Ki

n\M i
n) ∪ (M i

n\Ki
n).

Here the events Ki
n\M i

n and M i
n\Ki

n correspond to the two types of errors that can occur when
we search for jumps. In the first case we miss a jump and in the second case we neglect an
increment although it does not contain any jumps. Next, we are going to bound the probability
of both errors.

P ((Ain)c) = P (Ki
n\M i

n) + P (M i
n\Ki

n). (5.2)
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5.1 Ornstein-Uhlenbeck type processes

Set ∆i = ti+1 − ti. For the first type of error we obtain

P (Ki
n\M i

n) =P (|∆iX| ≤ vn,∆iN > 0)

=
∞∑
j=1

e−λ∆i
(λ∆i)j

j! P (|∆iX| ≤ vn|∆iN = j)

≤P (∆iN = 1)P (|∆iX| ≤ vn|∆iN = 1) +O(∆2
n) (5.3)

and

P (|∆iX| ≤ vn|∆iN = 1) ≤ P (|∆iX| ≤ vn, |∆iJ | > 2vn|∆iN = 1)
+ P (|∆iX| ≤ vn, |∆iJ | ≤ 2vn|∆iN = 1). (5.4)

The first term on the right side is bounded by

P (|∆iX| ≤ vn, |∆iJ | > 2vn|∆iN = 1)
= P (|∆iW + ∆iJ + ∆iD| ≤ vn, |∆iJ | > 2vn|∆iN = 1)
≤ P (|∆iW + ∆iD| > vn,∆iN = 1)P (∆iN = 1)−1

≤ P (|∆iW + ∆iD| > vn)P (∆iN = 1)−1 = P (∆iN = 1)−1O(∆2−2β
n ), (5.5)

where we used Lemma 5.1.8. Denote by F the distribution of the jump heights of J . Then we
obtain for the second term on the right-hand side of (5.4)

P (|∆iX| ≤ vn, |∆iJ | ≤ 2vn|∆iN = 1) ≤ P (|∆iJ | ≤ 2vn|∆iN = 1) = F ((−2vn, 2vn)).

For the second addend in (5.2) it follows by independence of W and J that

P (M i
n\Ki

n) =P (|∆iX| > vn,∆iN = 0)
≤P (|∆iW + ∆iD| > vn).

Lemma 5.1.8 yields
P (|∆iW + ∆iD| > vn) = O(∆2−2β

n ). (5.6)

Finally, (5.3), (5.5) and (5.6) lead to

P ((Ain)c) ≤ F ((−2∆β
n, 2∆β

n))∆n +O(∆2−2β
n )

such that the statement follows, since we have shown that

P (Acn) ≤
n∑
i=1

P ((Ain)c) ≤ O(Tn)F ((−2∆β
n, 2∆β

n)) +O(Tn∆1−2β
n ).
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Approximation of the continuous martingale part

The crucial step in the proof is to show that the continuous martingale part can be approximated
by thresholding. The following lemma does this step by proving that the numerator of the
discretized MLE converges as its approximation with jump filter.

Lemma 5.1.10. Under Assumption 5.1.1 we obtain∣∣∣∣∣
n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c)
∣∣∣∣∣ = Op(Tn∆1/2

n )

as n→∞.

Proof: On An from Lemma 5.1.9 we have

n−1∑
i=0

Xti

(
∆iX1{|∆iX|≤vn} −∆iX

c
)

=
n−1∑
i=0

Xti

(
∆iX1{∆iN=0} −∆iX

c
)
, (5.7)

By Lemma 5.1.9 we have P (An) → 1 as n → ∞. Observe now that the difference of the
increments on the right hand side of (5.7) is unequal to zero only if a jump occurred in that
interval, i.e.

∆iX1{∆iN=0} −∆iX
c =

{
−∆iX

c; ∆iN > 0,
0; ∆iN = 0.

Define Cni = {∆iN > 0} and observe that

Ea

∣∣∣∣∣1An
n−1∑
i=0

Xti(∆iX1{∆iN=0} −∆iX
c)
∣∣∣∣∣ = Ea

∣∣∣∣∣
n−1∑
i=0

Xti∆iX
c 1An∩Cni

∣∣∣∣∣
The i-th increment of Xc can be written as ∆iX = ∆iW + ∆iD. Therefore,

Ea

∣∣∣∣∣
n−1∑
i=0

Xti∆iX
c 1An∩Cni

∣∣∣∣∣ ≤
n−1∑
i=0

Ea
[
|Xti(∆iW + ∆iD)| 1An∩Cni

]

≤
n−1∑
i=0

Ea
[
(|Xti∆iW | + |Xti∆iD|) 1Cni

]
.

The number of jumps of J follows a Poisson process with intensity λ such that P (Cni ) ≤ ∆nλ.
The independence of N ⊥W and ∆iN ⊥ Xti yields

n−1∑
i=0

Ea
[
|Xti∆iW | 1Cni

]
=

n−1∑
i=0

Ea[(|Xti |]E[|∆iW |]P (Cni ) ≤ Ea[|X0|]Tn∆1/2
n λ

= O(Tn∆1/2
n ).
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5.1 Ornstein-Uhlenbeck type processes

Finally, by Hölder’s inequality

n−1∑
i=0

Ea
[
|Xti∆iD| 1Cni

]
≤

n−1∑
i=0

Ea
[
X2
ti(∆iD)2

]1/2
P (Cni )1/2 = O(Tn∆1/2

n ).

Central limit theorem for the discretized estimator

To prove Theorem 5.1.6, we need next that when we discretize the time-continuous estimator
âT from Section 4.2 as

ân = −
∑n
i=1Xti∆iX

c∑n
i=1X

2
ti(ti+1 − ti)

,

then ân attains the same asymptotic distribution as âT itself. This was already proved in
Proposition 4.2.11. For completeness we give here the statement in the following lemma.

Lemma 5.1.11. Let X be stationary with finite second moments and suppose
that ∆nTn = o(1). Then

T 1/2
n (ân − a) D−→ N

(
0, σ2Ea[X2

0 ]−1
)

as n→∞

under P a.

In the last step we will then show that the discretized MLE and the estimator with jump filter
show the same limiting behavior.

Proof of Theorem 5.1.6: By Lemma 5.1.11 T 1/2
n (ân − a) D−→ N(0, σ2

Ea[X2
0 ]) as n → ∞. By

Slutsky’s lemma it remains to show

T 1/2
n (ān − ân) p−→ 0 as n→∞. (5.8)

Observe that

T 1/2
n (ān − ân) = T 1/2

n

(∑n
i=1Xti∆iX1{|∆iX|≤vn} −

∑n
i=1Xti∆iX

c∑n
i=1X

2
ti∆i

)
.

By Lemma 5.1.10 we obtain under Pa that

T−1/2
n

(
n∑
i=1

Xti∆iX1{|∆iX|≤vn} −
n∑
i=1

Xti∆iX
c

)
p−→ 0 as n→∞,

and
T−1
n

n∑
i=1

X2
ti∆i

p−→ Ea[X2
0 ],

such that (5.8) follows.
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5.2 Stochastic delay differential equations

In Section 4.5 we have derived a drift estimator for linear stochastic delay differential equations
from time-continuous observations. Based on these results we will develop in this section an
estimator for discrete observation and prove a central limit theorem for the estimation error. As
for the Ornstein-Uhlenbeck process in the previous section we will approximate the continuous
martingale part that appears in (4.29) by neglecting observations that are too large relative to
the length of the time increment.

5.2.1 Model assumptions and drift estimator

Suppose that we observe the solution X of the following stochastic delay differential equation.

dXt = aXt dt+ cXt−1 dt+ dLt, t > 0 (5.9)
Xt = X0

t , t ∈ [−1, 0],

at discrete time points 0 = t1 < . . . < tn = Tn where L is a Lévy process with Lévy-Khintchine
triplet (b, σ2, µ), drift parameter θ = (a, c) ∈ R2 and X0 : [−1, 0]× Ω→ R is the initial process
with càdlàg trajectories that is assumed to be independent of L. Let the jump component J of
L be of finite activity such that we can write J as a compound Poisson process

Jt =
Nt∑
i=1

Zi

where N is a Poisson process with intensity λ = µ(R) and the jump heights Z1, Z2, . . . are iid
with distribution F .
To estimate the drift parameter θ we propose the following estimator based on (4.29)

θ̂n = I−1
n Vn, (5.10)

where

Vn =
( ∑n−1

i=0 Xti∆iX1{|∆iX|≤∆β
n}∑n−1

i=0 Xbti−1cn∆iX1{|∆iX|≤∆β
n}

)

and In is given by

In =
( ∑n−1

i=0 X
2
ti∆i

∑n−1
i=0 XtiXbti−1cn∆i∑n−1

i=0 XtiXbti−1cn∆i
∑n−1
i=0 X

2
bti−1cn∆i

)
.

Here, bti − 1cn = maxj{tj |tj ≤ ti − 1} and β ∈ (0, 1/2). The main result of this section is a
central limit theorem for θ̂n.

Theorem 5.2.1. Suppose that Assumption 4.5.1 holds, b = 0 and that there exists β ∈ (0, 1/2)
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5.2 Stochastic delay differential equations

such that Tn∆(1−2β)∧ 1
2

n = o(1) and F (−2∆β
n, 2∆β

n) = o(T−1
n ). Then

T 1/2
n

(
θ̂n − θ

) D−→ N
(
0, σ2Σ−1

)
where Σ was defined in (4.32).

5.2.2 Proof of Theorem 5.2.1

The proof of Theorem 5.2.1 is closely related to the asymptotic normality result for the Ornstein-
Uhlenbeck drift estimator in Section 5.1. The main difference here is that due to the delay term
we would need observations at ti − 1, which are not available for irregularly spaced discrete
observations. To overcome this problem we show that in the hight-frequency setting we are able
to approximate Xti−1 by the first observation Xbti−1cn before ti − 1.

First of all we introduce some notation. Let W be the Gaussian component of L and denote
the drift component of X by

Dt = a

∫ t

0
Xs ds+ c

∫ t

0
Xs−1 ds.

We define the following sequence of events to investigate the relation between the increments of
X and the jumps of L. For n ∈ N and i ∈ {1, . . . , n} define

Ain =
{
ω ∈ Ω : 1{|∆iX|≤vn}(ω) = 1{∆iN=0}(ω)

}
.

We divide now the proof of Theorem 5.2.1 into several lemmas. A close inspection of the proof
of Lemma 5.1.9 shows that it has a straightforward extension to the delay setting such that for
An =

⋂n
i=1A

i
n we obtain

P (An)→ 1 as n→∞. (5.11)

Lemma 5.2.2. If Tn∆n = o(1) we obtain

T−1/2
n

∣∣∣∣∣
n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c)
∣∣∣∣∣ = op(1),

T−1/2
n

∣∣∣∣∣
n−1∑
i=0

Xbti−1cn(∆iX1{|∆iX|≤vn} −∆iX
c)
∣∣∣∣∣ = op(1), (5.12)

as n→∞.
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5 Discrete observations: finite activity

Proof: First, we prove (5.12). Define Cni = {∆iN > 0}. On An holds

E

∣∣∣∣∣1An
n−1∑
i=0

Xbti−1cn(∆iX1{|∆iX|≤vn} −∆iX
c)
∣∣∣∣∣

= E

∣∣∣∣∣1An
n−1∑
i=0

Xbti−1cn(∆iX1{∆iN=0} −∆iX
c)
∣∣∣∣∣

= E

∣∣∣∣∣
n−1∑
i=0

Xbti−1cn∆iX
c1An∩Cni

∣∣∣∣∣
The decomposition Xc = W +D yields

E

∣∣∣∣∣
n−1∑
i=0

Xbti−1cn∆iX
c1An∩Cni

∣∣∣∣∣ ≤
n−1∑
i=0

E
[
|Xbti−1cn∆iW |1Cni

]

+
n−1∑
i=0

E
[
|Xbti−1cn∆iD|1Cni

]
Now N is a Poisson process with intensity λ such that P (Cni ) ≤ ∆nλ. The variables Xbti−1cn ,
∆iW and ∆iN are mutually independent such that

T−1/2
n

n−1∑
i=0

E
[
|Xbti−1cn∆iW |1Cni

]
≤ T−1/2

n

n−1∑
i=0

E
[
|Xbti−1cn |

]
E [|∆iW |]P (Cni )

= O(T 1/2
n ∆1/2

n ).

Finally, Hölder’s inequality and Xbti−1cn ⊥ Cni yields

T−1/2
n

n−1∑
i=0

E
[
|Xbti−1cn∆iD|1Cni

]

≤ T−1/2
n

n−1∑
i=0

E

[(
Xbti−1cn

)2
]1/2

E
[
(∆iD)2

]1/2
P (Cni )1/2 = O(T 1/2

n ∆1/2
n ).

This completes the prove of (5.12). The second convergence follows by an analogous argument
and we will skip the proof.

In the next step we show that the pseudo estimator θ̄n defined by

θ̄n = I−1
n V̄n,

where

V̄n =
( ∑n−1

i=0 Xti∆iX
c∑n−1

i=0 Xbti−1cn∆iX
c

)
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5.2 Stochastic delay differential equations

converges to the same asymptotic distribution as the estimator (4.29) based on time-continuous
observations.

Lemma 5.2.3. If ∆nTn = o(1), then

T 1/2
n

(
θ̄n − θ

) D−→ N(0, σ2Σ−1)

as n→∞.

The proof is similar to the Ornstein-Uhlenbeck case in Lemma 4.2.11 such that we will con-
centrate on the differences due to the bivariate parameter here.

Proof: Due to Girsanov’s theorem the continuous P 0-martingale part can be written as

Xc
t = a

∫ t

0
Xs ds+ b

∫ t

0
Xs−1 ds+ σWt = Dt + σWt,

where W is a P θ-Wiener process. This leads to the decomposition

V̄n =
( ∑n−1

i=0 Xti∆iD∑n−1
i=0 Xbti−1cn∆iD

)
+ σ

( ∑n−1
i=0 Xti∆iW∑n−1

i=0 Xbti−1cn∆iW

)
= V̄ 1

n + V̄ 2
n (5.13)

and
T 1/2
n (θ̄ − θ) = T 1/2

n (I−1
n V̄ 1

n − θ) + TnI
−1
n T−1/2

n V̄ 2
n .

Let us prove convergence of the second addend on the right hand side. The first step is to
show that T−1/2

n V̄ 2
n
D−→ N(0, σ2Σ). This follows from (4.33), since Itô’s isometry and Fubini’s

theorem yield for first entry of (V 2
n − ṼTn) (recall the definition of ṼTn in (4.31)) that

E

(∫ Tn

0
Xt−1 dWt −

n−1∑
i=0

Xbti−1cn∆iW

)2 = E

(∫ Tn

0

(
Xt−1 −Xbt−1cn

)
dWt

)2


=
∫ Tn

0
E

[(
Xt−1 −Xbt−1cn

)2
]
dt = O(Tn∆n).

A similar estimate for the second entry yields T−1/2
n (V 2

n − ṼTn) p−→ 0 as n→∞. This together
with (4.33) and Slutsky’s lemma lead to

TnI
−1
n T−1/2

n V̄ 2
n
D−→ N(0, σ2Σ−1),

since (4.32) and a straightforward L1-estimate for T−1
n (In − ITn) shows that

T−1
n In

p−→ Σ (5.14)

as n→∞. It remains to prove T 1/2
n (I−1

n V̄ 1
n − θ)

p−→ 0. Observe that

T 1/2
n (I−1

n V̄ 1
n − θ) = TnI

−1
n T 1/2

n (Īn − In)θ (5.15)
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such that the statement follows if T−1/2
n (Īn−In) p−→ 0, where we have rewritten V̄ 1

n = Īnθ using
the matrix

Īn =
( ∑n−1

i=0 Xti

∫ ti+1
ti Xs ds

∑n−1
i=0 Xti

∫ ti+1
ti Xs−1 ds∑n−1

i=0 Xbti−1cn
∫ ti+1
ti Xs ds

∑n−1
i=0 Xbti−1cn

∫ ti+1
ti Xs−1 ds

)

An L1-estimate for the first entry of T−1/2
n (Īn − In) follows from Jensen’s inequality:

T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i −

n−1∑
i=0

Xti

∫ ti+1

ti

Xs ds

∣∣∣∣∣
]

≤
∫ Tn

0
E
[∣∣∣X2

bscn −XsXbscn

∣∣∣] ds = O(T 1/2
n ∆1/2

n ).

Three more similar estimates yield

T 1/2
n (Īn − In) p−→ 0 (5.16)

as n→∞ such that the statement follows from (5.14), (5.15) and (5.16).
In the last step we show that θ̂n and θ̄n converge in distribution to the same limit.

Proof of Theorem 5.2.1: By Lemma 5.2.3

T 1/2
n (θ̄n − θ)

D−→ N(0,Σ−1).

as n→∞. It remains to prove that T 1/2
n (θ̂n − θ̄n) p−→ 0 as n→∞. Observe that

T 1/2
n (θ̂n − θ̄n) = TnI

−1
n (T−1/2

n (Vn − V̄n)).

From Lemma 5.2.2 it follows that

T−1/2
n (Vn − V̄n) p−→ 0

as n→∞ and T−1
n In

p−→ σ−2Σ such that finally by Slutsky’s lemma

T 1/2
n (θ̂n − θ̄n) p−→ 0.
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6 Discrete observations: infinite activity

In this chapter we discuss the estimation of the drift of an Ornstein-Uhlenbeck process from
discrete observations when the jump part of the driving Lévy process can be of infinite activity.
As in Chapter 5 our estimator will be based on deleting large increments in order to approximate
the continuous martingale part of the process. We give conditions on the Lévy measure and
suitable rates for the cut-off sequence that ensure separation in the high-frequency limit between
jump part and continuous part. Under these conditions we will then prove asymptotic normality
and efficiency of our method.

6.1 Estimator and observation scheme

Suppose an Ornstein-Uhlenbeck process as defined in (2.13) is observed at discrete, arbitrarily
spaced time points Xt0 , . . . , Xtn for 0 = t0 < . . . < tn = Tn. We denote the driving Lévy process
by L and assume throughout this section that its drift vanishes such that the Lévy-Khintchine
triplet is (0, σ2, µ). As in chapter 5 we combine high-frequency and long-time asymptotics in
order to approximate in the limit a continuous-time observation scheme, i.e.

∆n = max
0≤i≤n−1

{|ti+1 − ti|} ↓ 0 and Tn →∞

as n → ∞. Let us denote by ∆iX = Xti+1 − Xti the i-th increment of X. We consider the
estimator from chapter 5 for the drift parameter a in the Ornstein-Uhlenbeck equation (2.13)
given by

ān = −
∑n−1
i=0 Xti∆iX1{|∆iX|≤vn}∑n−1

i=0 Xti(ti+1 − ti)
.

In contrast to Chapter 5 we allow here also for Lévy processes with jumps of infinite activity.
The sequence vn ∈ R+, n ∈ N will be chosen such that increments larger than vn most likely
contain jumps. Results in Mancini [2009] imply that the size of the increments of Xc are of the
order

√
∆n log 1/∆n. We will choose vn = ∆β

n for β ∈ (0, 1/2) such that in the limit n→∞ the
continuous part of X is not affected by the threshold.

6.2 Asymptotic normality and efficiency

In this section we state as the main result of this chapter a CLT for the estimation error of ān.
The limiting distribution will imply asymptotic efficiency of our method. But before we can
formulate the theorem, we introduce some notation and assumptions on the jump part of L that
enable us to separate the jump part and continuous part via jump filtering.
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6 Discrete observations: infinite activity

Let N denote the Poisson random measure associated to the jump part of L. The jump
component J of X, the components M of jumps smaller than one and U of jumps larger than
one and the drift D are given by

Jt =
∫ t

0

∫ ∞
−∞

x(N(dx, ds)− µ(dx)λ(ds)),

Mt =
∫ t

0

∫ 1

−1
x(N(dx, ds)− µ(dx)λ(ds)),

Ut = Jt −Mt,

Dt = −a
∫ t

0
Xs ds,

(6.1)

respectively. Owing to this decomposition of X we can apply the results from Chapter 5 to D,
W and U and thus can focus on Mt. To control the small jumps of Mt we impose the following
assumption on the Lévy measure µ.
Assumption 6.2.1. (i) There exists an α ∈ (0, 2) such that as v ↓ 0∫ v

−v
x2 µ(dx) = O(v2−α). (6.2)

(ii) There exists η > 0 such that for all ε ≤ η

E[∆iM1{|∆iM |≤ε}] = 0.

Remark 6.2.2. Assumption 6.2.1(i) controls the intensity of small jumps, which is determined
by the mass of µ around the origin. When γ denotes the Blumenthal-Getoor index of L defined
by

γ = inf
c≥0

{∫
|x|≤1

|x|c µ(dx) <∞
}
≤ 2

then α = γ satisfies (6.2), i.e. Assumption 6.2.1(i) states that the Blumenthal-Getoor index
is less than two. A similar conditions was used by Mancini [2011] in the context of volatility
estimation. The second assumption is more of a technical nature and is needed to derive a
moment bound for the small jump component M .
The main result of this chapter is the following central limit theorem for the drift estimator

with jump filter.
Theorem 6.2.3. Suppose that Assumption 4.2.4 and 6.2.1 hold and that X exhibits bounded
second moments. If there exists β ∈ (0, 1/2) such that Tn∆1−2β∧ 1

2
n = o(1) as n → ∞ then

vn = ∆β
n yields

T 1/2
n (ān − a) D−→ N(0, σ2Ea[X2

0 ]−1).

The estimator is asymptotically efficient.
Remark 6.2.4. We have proved in Chapter 4 that the MLE based on continuous observations
attains the efficient asymptotic variance σ2Ea[X2

0 ]−1. Since we cannot hope to obtain a lower
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asymptotic variance when only discrete observations are available, efficiency of ān follows im-
mediately from the first statement of Theorem 6.2.3.

Example 6.2.5. Let L = W + J , where J is a compound Poisson process

Jt =
Nt∑
i=1

Yi

such that Yi ∼ F are iid and Nt is a Poisson process with intensity λ. Suppose that F has a
bounded Lebesgue density f . Then∫ v

−v
x2 µ(dx) = λ

∫ v

−v
x2f(x) dx ≤ Cv3

for C > 0 such that for L Assumption 6.2.1(i) holds for every α ∈ [0, 2).
More generally every Lévy process with Blumenthal-Getoor index less than two fulfills As-

sumption 6.2.1(i). This includes all Lévy processes commonly used in applications like (tem-
pered) stable , normal inverse Gaussian, variance gamma and also gamma processes.

6.3 Proof

We will divide the proof of Theorem 6.2.3 into several lemmas. In the first place we prove a
moment bound for the component of small jumps of L under jump filtering. This bound will
be important in Lemma 6.3.8 to show that also the small jumps can be filtered in the limit.
The next section is devoted to the problem of approximation of the continuous P 0-martingale
part of X via jump filtering. Lemma 6.3.3 shows indeed that the integral with respect to Xc

can be approximated in the high frequency limit by a thresholded version of X. In the proof
of this lemma we make the decomposition (6.9) of the problem into three terms that reveal the
structure of of the following parts of the proof. The first term is the approximation error of Xc

by Xc plus compound Poisson jumps. This term has already been treated in Chapter 5. The
second term measures the difference between thresholding with respect to X and with respect
to Xc plus compound Poisson jumps and the last term contains the remaining component of
small jumps.
In the rest of the proof we demonstrate that these three terms vanish in probability with rate

T
−1/2
n . Lemma 6.3.4 verifies that the drift component of X is asymptotically not affected by

the jump filter. Whereas Lemma 6.3.5 states that thresholding with respect to X and to the
small jumps of L is asymptotically the same and in Lemma 6.3.7 we show that the continuous
martingale part is not affected by thresholding X. Finally, we conclude the proof of Theorem
6.2.3 by applying Slutsky’s lemma and the result of Lemma 6.3.3.
In the proofs in this section constants may change from line to line or even within one line

without further notice.
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6 Discrete observations: infinite activity

6.3.1 A moment bound

In this section we derive a moment bound for short time increments of pure jump Lévy processes.
Set

f(x) =
{
x2 , if |x| ≤ 1,
0 , if |x| > 2

and f(x) ∈ [0, 2] for |x| ∈ (1, 2] such that f ∈ C∞(R). We scale f to be supported on [−v, v] by

fv(x) = v2f(x/v). (6.3)

Proposition 6.3.1. Let (Mt)t≥0 be a pure jump Lévy process with Lévy measure µ such that
supp(µ) ⊂ [−1, 1] and Assumption 6.2.1(1) and (2) hold. Then for all β ∈ (0, 1

2) we obtain

E
[
f t
β (Mt)

]
= O

(
t1+β(2−α)

)
as t ↓ 0.

Remark 6.3.2. The estimate in Proposition 6.3.1 gives actually a bound for the Markov generator
of M on the smooth test function fv.

Proof: Let PMt denote the distribution of Mt. We apply Plancherel’s identity to obtain

E[f tβ (Mt)] =
∫
R
f t
β (x) PMt(dx) = (2π)−1

∫
R
Ff t

β (u)φt(u)du,

where Ff =
∫
R e

iuxf(x) dx denotes the Fourier transform of f and the characteristic function of
M satisfies

φt(u) = exp
(
t

∫ 1

−1
(eiux − 1− iux) µ(dx)

)
.

Let us rewrite φt as the linearization of the exponential at zero plus a remainder R.

φt(u) = 1 + ψt(u) +R(t, u)

with
ψt(u) = t

∫ 1

−1
(eiux − 1− iux) µ(dx).

Then,

E[f tβ (Mt)] = (2π)−1
∫
R
Ff t

β (u)(1 + ψt(u) +R(t, u)) du

= (2π)−1
∫
R
Ff t

β (u)ψt(u) du+ (2π)−1
∫
R
Ff t

β (u)R(t, u) du. (6.4)
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For the first term on the right hand side we obtain

(2π)−1
∫
R
Ff t

β (u)ψt(u) du = (2π)−1t

∫ 1

−1

∫
R
Ff t

β (u)(e−iux − 1 + iux) du µ(dx)

= t

∫ 1

−1

(
f t
β (x) + (2π)−1

∫
R
F
(
(f tβ )′

)
(u)x du

)
µ(dx)

= t

∫ 1

−1
f t
β (x) µ(dx) = tO(tβ(2−α)) (6.5)

by Assumption 6.2.1(i) and since∫
R
F

((
f t
β
)′)

(u) du =
(
f t
β
)′

(0) = 0.

It remains to bound the second addend in (6.4). For Re(z) ≤ 0 observe that∣∣∣∣ez − z − 1
z2

∣∣∣∣ ≤ C (6.6)

for constant C > 0, since for |z| ≥ 1

|ez − z − 1|
z2 ≤ 2 + |z|

z2 ≤ 3.

Whereas on the half disk {|z| < 1, Re(z) ≤ 0} the continuous function |ez − z − 1| is bounded
and z2 is bounded except for the singularity at the origin, but at zero we know that |ez−z−1| =
O(z2), i.e.

|ez − z − 1|
z2 ≤ C <∞

on {|z| < 1, Re(z) ≤ 0}. Theorem 2.2.5 in Kappus [2012] implies that |ψt(u)| ≤ Ct|u|α such
that

|R(t, u)| = |eψt(u) − ψt(u)− 1| ≤ |ψt(u)|2 ≤ Ct2|u|2α,

where we used (6.6) and that for every characteristic function | exp(ψt(u))| = φt(u) ≤ 1 holds.
Hence, we obtain ∣∣∣∣∫

R
F
(
f t
β
)

(u)R(t, u) du
∣∣∣∣ ≤ Ct2 ∫

R

∣∣∣F (f tβ) (u)
∣∣∣ |u|2α du. (6.7)

Therefore, it remains to bound
∫
R

∣∣∣Ff tβ (u)
∣∣∣ |u|2α du in t. From (6.3) and the scaling property

of the Fourier transform it follows that

F(fv)(u) = v3F
(
v−1f(x/v)

)
(u) = v3F(f)(vu).

Since f ∈ C∞(R), we obtain |F(f)(u)| ≤ Cm|u|−m such that

|F(fv)(u)| ≤ Cmv3−m|u|−m
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6 Discrete observations: infinite activity

for all u ∈ R and m, v > 0. Then

h(v, u) = |F(fv)(u)||u|2α ≤ Cmv3−m|u|2α−m.

If
2α+ 1 < m (6.8)

holds then h(v, ·) ∈ L1(R) for all v ∈ (0, 1). Setting v = tβ yields

t2
∫
R

∣∣∣F (f tβ) (u)
∣∣∣ |u|2α du ≤ Cmt(3−m)β+2

for all m > 0. Since the first term in (6.4) is of the order O
(
t1+β(2−α)

)
, we choose m such that

(3−m)β + 2 ≥ 1 + β(2− α)⇔ m ≤ 1 + β−1 + α.

Together with (6.8) this leads to the condition

2α+ 1 < 1 + β−1 + α⇔ α < β−1,

which due to α ∈ (0, 2) always holds for β ∈ (0, 1/2). Hence, we obtain∣∣∣∣∫
R
F
(
f t
β
)

(u)R(t, u) du
∣∣∣∣ = O

(
t1+β(2−α)

)
.

Together with (6.4) and (6.5) this yields finally

E[f tβ (Mt)] = tO(tβ(2−α)).

6.3.2 Approximating the continuous martingale part

The main step is to show that the continuous martingale part can be approximated by summing
only the increments that are below the threshold vn. We will use throughout the notation from
(6.1).

Lemma 6.3.3. Suppose that the assumptions of Theorem 6.2.3 hold, then

T−1/2
n

n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c) p−→ 0 as n→∞.
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Proof: Let us consider the following decomposition where X̃ = W +D + U

T−1/2
n

n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c) = T−1/2

n

n−1∑
i=0

Xti(∆iX̃1{|∆iX|≤vn} −∆iX
c)

+ T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn} = T−1/2
n

n−1∑
i=0

Xti(∆iX̃1{|∆iX̃|≤2vn} −∆iX
c)

+ T−1/2
n

n−1∑
i=0

Xti∆iX̃(1{|∆iX|≤vn} − 1{|∆iX̃|≤2vn}) + T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn}

= Sn1 + Sn2 + Sn3 . (6.9)

The only difference between the term considered in Lemma 5.1.10 and Sn1 is that the drift
−a

∫ t
0 Xsds in Sn1 integrates an OU process with possibly infinite jump activity. A careful

analysis of the proof of Lemma 5.1.10 reveals that the same argument applies to Sn1 such that
we conclude that Sn1 converges to zero in probability when n→∞. Let us prove next convergence
of

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iX̃
(
−1{|∆iX|>vn,|∆iX̃|≤2vn} + 1{|∆iX|≤vn,|∆iX̃|>2vn}

)
.

First of all the contribution of the second indicator function on the right-hand side tends to zero
in probability.

P

(
T−1/2
n

n−1∑
i=0
|Xti∆iX̃|1{|∆iX|≤vn,|∆iX̃|>2vn} > 0

)

= P

(
n−1⋃
i=0
{|∆iX| ≤ vn, |∆iX̃| > 2vn}

)
≤

n−1∑
i=0

P (|∆iX| ≤ vn, |∆iX̃| > 2vn) (6.10)

When |∆iX̃| > 2vn then with high probability |∆iU | > 0, since by Lemma 5.1.8 we obtain

n−1∑
i=0

P (|∆iX̃| > 2vn, |∆iU | = 0) ≤
n−1∑
i=0

P (|∆iW + ∆iD| > 2vn) = O(Tn∆1−2β
n ). (6.11)

This together with (6.10) and the fact that on {|∆iX| ≤ vn, |∆iX̃| > 2vn} necessarily |∆iM | >
vn implies that

P

(
T−1/2
n

n−1∑
i=0
|Xti∆iX̃|1{|∆iX|≤vn,|∆iX̃|>2vn} > 0

)

≤
n−1∑
i=0

P (|∆iU | 6= 0)P (|∆iM | > vn) +O(Tn∆1−2β
n )

= O(Tn∆nv
−2
n ) +O(Tn∆1−2β

n ) = O(Tn∆1−2β
n ),
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6 Discrete observations: infinite activity

where we used Markov’s inequality and independence of U and M . The remaining term in Sn2
is

T−1/2
n

n−1∑
i=0

Xti∆iX̃1{|∆iX|>vn,|∆iX̃|≤2vn}.

Let us prove that on {|∆iX̃| ≤ 2vn} the contribution of U is negligible.

T−1/2
n

n−1∑
i=0

P (|∆iX̃| ≤ 2vn, |∆iU | > 0)

= T−1/2
n

n−1∑
i=0

(
P (|∆iX̃| ≤ 2vn,∆iN = 1) +O(∆2

n)
)

≤ T−1/2
n

n−1∑
i=0

(
P (|∆iW + ∆iD| > 1− 2vn) +O(∆2

n)
)

= O(T 1/2
n ∆n),

(6.12)

as n → ∞, where N denotes the counting process that counts the jumps of U and the last
step follows from Lemma 5.1.8. Hence, we can assume that ∆iU = 0 on {|∆iX̃| ≤ 2vn} and so
∆iX̃ = ∆iW + ∆iD. For Tn∆1/2−β/2

n = o(1) it follows from Lemma 6.3.4 that as n→∞

T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn,|∆iX̃|≤2vn}
p−→ 0.

We have decomposed Sn2 into a term that converges to 0 in probability and a remainder.

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iX|>vn,|∆iX̃|≤2vn} + op(1).

For the remainder let us observe that by Lemma 6.3.5 we obtain

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iX|>vn,|∆iX̃|≤2vn}

= T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iW+∆iD+∆iM |>vn,|∆iW+∆iD|≤2vn} + op(1)

= T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn} + op(1)

Markov’s inequality yields P (|∆iM | > vn) ≤ ∆1/2−β
n . Independence of Xti , ∆iW and ∆iM

leads to

E

[
T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn}

]
= 0
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and

E

(T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn}

)2 ≤ T−1
n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn}

]

+T−1
n E

∑
i,j
i6=j

Xti∆iW1{|∆iM |>vn}Xtj∆jW1{|∆jM |>vn}

 .
Since Xti , Xtj ,∆iW,∆iM,∆jM ⊥ ∆jW for i < j the off-diagonal elements are centered,

E

∑
i,j
i6=j

Xti∆iW1{|∆iM |>vn}Xtj∆jW1{|∆jM |>vn}

 = 0

and the diagonal elements can be estimated by

T−1
n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn}

]
≤ T−1

n ∆n

n−1∑
i=0

E[X2
ti ]P (|∆iM | > vn)

≤ sup
i
{E[X2

ti ]}∆
1/2−β
n → 0

as n→∞. The last step is to show that Sn3 tends to zero in probability as n→∞. As in (6.12)
it follows that on |∆iX| ≤ vn we can assume that ∆iU = 0. Now

n−1∑
i=0

P (|∆iX| ≤ vn,∆iU = 0) ≤
n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | ≤ 2vn)

+
n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | > 2vn).

The second addend vanishes, since by Lemma 5.1.8 we obtain

n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | > 2vn)

≤
n−1∑
i=0

P (|∆iW + ∆iD| > vn) = O(Tn∆1−2β
n ).

Thus, Sn3 can be rewritten as

Sn3 = T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn,|∆iM |≤2vn} + op(1). (6.13)
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6 Discrete observations: infinite activity

The convergence of the remaining term in Sn3 is dominated by the behavior of ∆iM around the
threshold, i.e. we prove next that

T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn,|∆iM |≤2vn} = T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤2vn} + op(1).

Indeed,

T−1/2
n

n−1∑
i=0

Xti∆iM(1{|∆iM |≤2vn} − 1{|∆iX|≤vn,|∆iM |≤2vn})

= T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|>vn,|∆iM |≤2vn}.

That last term tends to zero in probability will be shown in the proof of Lemma 6.3.5 below
following equation (6.19). To finish the proof we demonstrate that the first addend on the right
hand side of (6.13) vanishes asymptotically. Since Xti and ∆iM are independent and ∆iM is
centered

E

[
T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤2vn}

]
= 0

and

E

(T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤2vn}

)2 ≤ T−1
n E

[
n−1∑
i=0

X2
ti(∆iM)21{|∆iM |≤2vn}

]

+T−1
n E

∑
i,j
i6=j

Xti∆iM1{|∆iM |≤2vn}Xtj∆jM1{|∆jM |≤2vn}

 .
Since Xti , Xtj ,∆iM ⊥ ∆jM for i < j the off-diagonal elements vanish by Assumption 6.2.1.1
such that

E

∑
i,j
i6=j

Xti∆iM1{|∆iM |≤2vn}Xtj∆jM1{|∆jM |≤2vn}

 = 0

and the diagonal elements can by Lemma 6.3.1 be estimated by

T−1
n E

[
n−1∑
i=0

X2
ti(∆iM)21{|∆iM |≤2vn}

]
≤ T−1

n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |≤2vn}]

= sup
i
{E[X2

ti ]}O(∆β(2−α)
n )→ 0

as n→∞.
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Approximation of the drift

The next step is to show that the drift component of X is in the limit not affected by the cut-off.

Lemma 6.3.4. If the assumptions of Theorem 6.2.3 are fulfilled then

T−1/2
n

n−1∑
i=0

Xti(∆iD1{|∆iX|≤vn} −∆iD) p−→ 0 as n→∞.

Proof: We rewrite the sum as follows.

T−1/2
n

n−1∑
i=0

Xti(∆iD1{|∆iX|≤vn} −∆iD) = T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn}.

Next, we decompose ∆iD as follows

∆iD = −a
(∫ ti+1

ti

(Xs −Xti) ds+ ∆iXti

)
such that by Lemma 6.3.5 below

T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn} =− aT−1/2
n

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ |>vn}

− aT−1/2
n

n−1∑
i=0

X2
ti∆i1{|∆iJ |>vn} + op(1). (6.14)

For the second term we obtain by Markov’s inequality and from vn = ∆β
n that

E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iJ |>vn}

∣∣∣∣∣
]
≤

n−1∑
i=0

∆iE[X2
ti ]P (|∆iJ | > vn) ≤ CTn∆1−2β

n

and so for T 1/2
n ∆1−β

n = o(1) it follows that

T−1/2
n

n−1∑
i=0

Xti∆i1{|∆iJ |>vn} = op(1).

For the first sum on the right side of (6.14) we obtain by Hölder’s inequality and independence
of Xti and ∆iJ

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ |>vn}

∣∣∣∣] ≤
E

[(∫ ti+1

ti

(Xs −Xti) ds
)2]1/2

P (|∆iJ | > vn)1/2E[X2
ti ]

1/2 = O(∆3/2
n v−1/2

n )
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such that for T 1/2
n ∆1/2−β/2

n = o(1) we can conclude that

T−1/2
n

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ |>vn} = op(1).

6.3.3 Identifying the jumps

In the following we will show that the increments of X that are larger than the threshold vn are
dominated by the jump component.

Lemma 6.3.5.

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iM |≤2vn})
p−→ 0 as n→∞.

Proof: Observe that

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iJ |≤2vn}) = T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ |>2vn} (6.15)

− T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|>vn,|∆iJ |≤2vn}.

We shall prove in Lemma 6.3.6 below that

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ |>2vn}
p−→ 0. (6.16)

In the next step we show that the contribution of U is negligible, since by independence of ∆iW ,
∆iM , ∆iU and Xti it follows that

E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iX1{|∆iJ |≤2vn,|∆iU |6=0}

∣∣∣∣∣
]
≤

n−1∑
i=0

E[|Xti |]E[|∆iW |]P (|∆iU | 6= 0)

+
n−1∑
i=0

E[|Xti |]E[|∆iJ1{|∆iU |6=0)}]

+
n−1∑
i=0

E[|Xti∆iD|1{|∆iU |6=0)}] (6.17)
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6.3 Proof

Now U is a compound Poisson process with intensity µ(R\[−1, 1]) < ∞ such that P (∆iU 6=
0) = O(∆n). We obtain for first summand on the right hand side

T−1/2
n

n−1∑
i=0

E[|∆iW |]E[|Xti |]P (∆iU 6= 0) = O(T 1/2
n ∆1/2

n ).

We split the second term into the contribution by U and J such that

T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iJ |1{∆iU 6=0}] = T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iM |]E[1{∆iU 6=0}]

+ T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iU |1{∆iU 6=0}]

The first sum is of order

T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iM |]E[1{∆iU 6=0}] = O(T 1/2
n ∆1/2

n ).

Since U is a compound Poisson process, the sum in the second term is of the order of

N((ti, ti+1),R\[−1, 1]).

This leads to the following estimate when n is large enough.

T−1/2
n E

n−1∑
i=0
|Xti∆iU1{∆iU 6=0}| ≤ T−1/2

n E

N((0,Tn),R\[−1,1])∑
i=1

|Xti∆iU1{∆iU 6=0}|

= T−1/2
n E[N((0, Tn),R\[−1, 1])]E[|Xti |]E[∆iU |]

= O(T 1/2
n ∆1/2

n )

where the sum up to N is over all increments that contain at least one jump of J . To prove
convergence of the last addend in (6.17) we rewrite ∆iD as follows

∆iD = −a
(∫ ti+1

ti

(Xs −Xti) ds+ ∆iXti

)
(6.18)

and so

T−1/2
n E[|

n−1∑
i=0

Xti∆iD1{∆iU 6=0}|] ≤ T−1/2
n aE[|

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{∆iU 6=0}|]

+ T−1/2
n E[|

n−1∑
i=0

X2
ti∆n1{∆iU 6=0}|].
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The first term on the right hand side gives by using Hölder’s inequality

T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{∆iU 6=0}

∣∣∣∣∣
]

≤ T−1/2
n a

n−1∑
i=0

E[X2
ti ]

1/2E

[(∫ ti+1

ti

(Xs −Xti) ds
)2]1/2

1{∆iU 6=0}|]

= O(T 1/2
n ∆n).

Hence, we obtain

T−1/2
n

n−1∑
i=0

Xti∆iD1{∆iU 6=0} = Op(T 1/2
n ∆1/2

n )

such that it follows that
n−1∑
i=0

Xti∆iX1{|∆iJ |≤2vn,|∆iU |6=0} = op(1).

Since the contribution of U is negligible, we obtain from (6.15) and (6.16) that

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iM |≤vn})

= T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|>vn,|∆iJ |≤2vn,|∆iU |=0} + op(1).

Hence, it remains to prove

T−1/2
n

n−1∑
i=0

Xti∆iX1{∆iX|>vn|∆iM |≤2vn,|∆iU |=0}
p−→ 0 as n→∞. (6.19)

Observe that

{|∆iM | ≤ 2vn,∆iU = 0, |∆iX| > vn}
⊂ {|∆iM | ≤ 2vn,∆iU = 0, |∆iW + ∆iD|+ |∆iM | > vn}
⊂ {|∆iW + ∆iD| > vn/2} ∪ {|∆iM | ≤ 2vn, |∆iM | > vn/2}.

Therefore, the last two steps will be to show that

(i) T−1/2
n

∑n−1
i=0 Xti∆iX1{|∆iW+∆iD|>vn}

p−→ 0,

(ii) T−1/2
n

∑n−1
i=0 Xti∆iX1{|∆iM |>vn/2,|∆iM |≤2vn}

p−→ 0.

For the proof of these two convergences we refer to Lemma 6.3.8 and Lemma 6.3.7.
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6.3 Proof

Lemma 6.3.6.

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ |>2vn}
p−→ 0 as n→∞

Proof: On {|∆iX| ≤ vn, |∆iJ | ≥ 2vn} we have

||∆iW + ∆iD| − |∆iJ || ≤ |∆iX| ≤ vn.

Hence, we necessarily have |∆iW + ∆iD| > vn, i.e.

{|∆iX| ≤ vn, |∆iJ | > 2vn} ⊂ {|∆iW + ∆iD| > vn} (6.20)

such that

P (|∆iX| ≤ vn, |∆iJ | > 2vn) ≤ P (|∆iW + ∆iD| > vn) = O(∆2−β
n ). (6.21)

It follows from (6.20) that

T−1/2
n

∣∣∣∣∣
n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ |>2vn}

∣∣∣∣∣ ≤ T−1/2
n

n−1∑
i=0
|Xti∆iX|1{|∆iW+∆iD|>vn}

≤ T−1/2
n

n−1∑
i=0
|Xti∆iW |1{|∆iW+∆iD|>vn} + T−1/2

n

n−1∑
i=0
|Xti∆iD|1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0
|Xti∆iM |1{|∆iW+∆iD|>vn} + T−1/2

n

n−1∑
i=0
|Xti∆iU |1{|∆iW+∆iD|>vn}

= A1
n + . . .+A4

n.

For A1
n we find by (6.21), Hölder’s inequality and independence of Xti and ∆iW that

E[|A1
n|] ≤ T−1/2

n ∆1/2
n

n−1∑
i=0

E[X2
ti ]

1/2P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1/2−β/2

n ).

Using (6.18) we obtain for A2
n that

E[|A2
n|] ≤ T−1/2

n a
n−1∑
i=0

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds
∣∣∣∣1{|∆iW+∆iD|>vn}

]

+ T−1/2
n ∆n

n−1∑
i=0

E[X2
ti1{|∆iW+∆iD|>vn}]
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Hölder’s inequality yields for the first term on the right hand side

T−1/2
n a

n−1∑
i=0

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds
∣∣∣∣1{|∆iW+∆iD|>vn}

]

≤ T−1/2
n a

n−1∑
i=0

E

[(
Xti

∫ ti+1

ti

(Xs −Xti) ds
)2]1/2

P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1−β/2

n )

for the second summand we find that

T−1/2
n ∆n

n−1∑
i=0

E[X2
ti1{|∆iW+∆iD|>vn}] ≤ T

−1/2
n ∆n

n−1∑
i=0

E[X4
ti ]

1/2P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1/2−β/2

n ).

For A3
n we get by a similar estimate as for A1

n that

E[|A3
n|] = O(T 1/2

n ∆1/2−β/2
n ).

The last summand A4
n converges to zero in probability, since by independence and Hölder’s

inequality

E[|A4
n|] ≤ T−1/2

n

n−1∑
i=0

E[X2
ti ]

1/2E[∆iU
2]1/2P (|∆iW + ∆iD| > vn)1/2 = O(T 1/2

n ∆1/2−β/2
n ).

Now we show that the increments of the continuous part of X are negligible in the limit. This
convergence is mainly based on the moment bound that we have derived in Lemma 5.1.8.

Lemma 6.3.7.

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iW+∆iD|>vn}
p−→ 0 as n→∞.

Proof: We decompose ∆iX = ∆iW + ∆iD + ∆iM + ∆iU to obtain

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iW+∆iD|>vn} = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iW+∆iD|>vn} + T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iU1{|∆iW+∆iD|>vn} = V 1
n + V 2

n + V 3
n + V 4

n .
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6.3 Proof

Lemma 5.1.8 yields for k = ∆β−1/2
n and l = 2 that

P (|∆iW + ∆iD| > vn) = O(∆2−β
n ).

For V 1
n we obtain by Hölder’s inequality and independence of Xti and ∆iW that

E[|V 1
n |] = T−1/2

n E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iW1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n ∆1/2

n

n−1∑
i=0

E[X2
ti ]

1/2P (|∆iW + ∆iD| > vn)

= O(T 1/2
n ∆3/4−β

n ).

To prove convergence of V 2
n we decompose ∆iD as in (6.18) to obtain

E[|V 2
n |] = T−1/2

n E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iD1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

+ T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

Applying Hölder’s inequality to the first term on the right hand side results in

T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n a

n−1∑
i=0

E

[(
Xti

∫ ti+1

ti

(Xs −Xti) ds
)2]1/2

P (∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1−β

n ).

The remaining term is of the order

T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n ∆n

n−1∑
i=0

E
[
X4
ti

]1/2
P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆3/4−β

n ).
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6 Discrete observations: infinite activity

Therefore, we conclude that V 2
n → 0 as n→∞. Similar estimates as for V 1

n can be used for V 3
n

and V 4
n to show

E[|V 3
n |] = O(T 1/2

n ∆3/4−β
n )

and

E[|V 4
n |] = O(T 1/2

n ∆3/4−β
n ).

This concludes the proof.

The next lemma states that the increments of the jump component that are close to the
threshold are negligible in the limit. For the proof we use the small time moment bound for the
jump component from Lemma 6.3.1. This is the step where Assumption 6.2.1 on the intensity
of small jumps becomes crucial.

Lemma 6.3.8.

T−1/2
n

n−1∑
i=0

Xti∆iX1{ vn2 <|∆iM |≤2vn}
p−→ 0 as n→∞.

Proof: Let us consider the following decomposition

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iM |>vn/2,|∆iM |≤2vn} = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn/2,|∆iM |≤2vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iM |>vn/2,|∆iM |≤2vn} + T−1/2
n

n−1∑
i=0

Xti∆iU1{|∆iM |>vn/2,|∆iM |≤2vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |>vn/2,|∆iM |≤2vn} = S1
n + S2

n + S3
n + S4

n

For the probability that |∆iM | lies in (vn/2, 2vn) we derive from Lemma 6.3.1 and Markov’s
inequality that

P (|∆iM | ≤ 2vn, |∆iM | > vn/2) = P (|∆iM |1{|∆iM |≤2vn} > vn/2)
≤ 4v−2

n E[(∆iM)21{|∆iM |≤2vn}] = O(∆1−αβ
n ) (6.22)
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6.3 Proof

Hence, by independence of Xti , ∆iW , and ∆iM we find that E[S1
n] = 0 and the second moment

can be estimated as follows.

E[(S1
n)2] ≤ T−1

n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn/2,|∆iM |≤2vn}

]

+ T−1
n E

∑
i,j
i6=j

Xti∆iW1{|∆iM |>vn/2,|∆iM |≤2vn}Xtj∆jW1{|∆jM |>vn/2,|∆jM |≤2vn}

 .
Since Xti , Xtj ,∆iW,∆jM,∆iM ⊥ ∆jW for i < j, the off-diagonal elements have zero expecta-
tion such that the second addend vanishes. For the diagonal elements we obtain

T−1
n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn/2,|∆iM |≤2vn}

]
≤ T−1

n ∆n

n−1∑
i=0

E[X2
ti ]O(∆1−αβ)

n )

= O(∆1−αβ)
n )

This yields the convergence S1
n

p−→ 0 as n→∞. To prove that S2
n

p−→ 0 as n→∞ we plug in
(6.18) and obtain

E[|S2
n|] = E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

+ E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

and by independence

E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

≤ aT−1/2
n

n−1∑
i=0

E[X2
ti ]∆iP (vn/2 < |∆iM | ≤ 2vn)

= O(T 1/2
n ∆1−αβ

n ).

For the second term Hölder’s inequality yields

E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

∫ ti+1

ti

(Xs −Xti) ds1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

= O(T 1/2
n ∆

1−αβ
2

n )
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6 Discrete observations: infinite activity

From Assumption 6.2.1 it follows that S4
n is centered for n large enough. Furthermore, from

Lemma 6.3.5 we conclude

E[(S4
n)2] = T−1

n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |>vn/2,|∆iM |≤2vn}]

≤ T−1
n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |≤2vn}] ≤ O(∆(2−α)β

n ) n→∞−→ 0.

Finally, we show that S3
n
n→∞−→ 0. Independence together with (6.22) leads to

E[|S3
n|] = T−1/2

n

n−1∑
i=0

E[|Xti∆iU1{|∆iM |>vn/2,|∆iM |≤2vn}|]

= T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iU |]P (|∆iM | > vn/2, |∆iM | ≤ 2vn)

= O(T 1/2
n ∆1−αβ

n )

Proof of Theorem 6.2.3: Recall that for

ân = −
∑n
i=1Xti∆iX

c∑n
i=1X

2
ti∆

n
i

we already know that T 1/2
n (ân − a) D−→ N(0, σ2

Ea[X2
0 ]) as n→∞. Therefore, it remains to show

T 1/2
n (ān − ân) p−→ 0 as n→∞. (6.23)

Observe that

T 1/2
n (ān − ân) =

T
−1/2
n (

∑n
i=1Xti∆iX1{|∆iX|≤vn} −

∑n
i=1Xti∆iX

c)
T−1
n
∑n
i=1X

2
ti∆i

.

By Lemma 6.3.3

T−1/2
n

(
n∑
i=1

Xti∆iX1{|∆iX|≤vn} −
n∑
i=1

Xti∆iX
c

)
p−→ 0 as n→∞,

and
T−1
n

n∑
i=1

X2
ti∆

n
i

p−→ Ea[X2
0 ],

such that (6.23) follows.
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7 Simulation results

In this chapter we investigate the finite sample performance of the estimators developed in
Chapter 5 and 6 by means of Monte Carlo simulations. In the first section we consider Ornstein-
Uhlenbeck type processes with finite jump intensity and give mean and standard deviation as
well as the number of jumps detected for different parameter values and varying jump intensity.
We also compare the distribution of the estimation error for finite samples and the asymptotic
distribution from Theorem 5.1.6. The second part of this chapter is devoted to models with
infinite jump activity.

7.1 Finite intensity models

In this section we perform Monte Carlo simulations for the drift estimator (5.1) of an Ornstein-
Uhlenbeck type process defined by

Xt = e−atX0 +
∫ t

0
e−a(t−s)dLs, t ∈ R+. (7.1)

We take a deterministic starting value X0 ∈ R and a > 0. The driving Lévy process L is assumed
to be of the form

Lt = Wt +
Nt∑
i=1

Yi,

where W is a Wiener process with E[W 2
t ] = σ2

W t and N is a Poisson process with intensity
λ and the jump heights Yi are iid with N(0, 2)-distribution. An advantage of this Ornstein-
Uhlenbeck model is that exact simulation algorithms are available both for X and L. We use
an exact discretization of the explicit solution (7.1) to the Langevin equation driven by L on a
equidistant time grid ti = ∆ni for i = 1, . . . n. Algorithms for the exact simulation of L can be
found in Cont and Tankov [2004a] for example.
Table 7.1 contains means and standard deviations of each 100 realizations of the drift estimator

ān from (5.1). Since the Monte Carlo error is of order N−1/2, where N is the number of Monte
Carlo iterations, we have chosen a reasonable compromise between precision of the Monte Carlo
approximation and computation time. The parameter values are a = 2 and 5 and jump intensity
λ, time horizon T and number of observations n vary as given in the table. We also present
the number of increments that were above the threshold ∆0.3

n . This number corresponds to the
number of jumps that were detected and observe that it is extremely stable when T and λ are
kept fixed, which suggests that the jump filter works quite reliable for finite intensity models
and the threshold exponent β = 0.3. For the compound Poisson process the average number of
jumps in an interval of length T is E[NT ] = Tλ is proportional to the jump intensity. This rule
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7 Simulation results

a = 2 a = 5
λ T n mean std dev ∅ jumps detect mean std dev ∅ jumps detect
1 10 1000 2.0 0.3 6.7 5.0 0.5 7.4

2000 2.0 0.3 7.0 5.0 0.5 7.2
4000 2.0 0.4 7.0 5.0 0.5 6.8

20 1000 2.0 0.2 13.1 4.7 0.3 12.5
2000 2.0 0.2 13.2 4.9 0.4 12.3
4000 2.0 0.2 13.0 5.0 0.3 13.1

50 4000 2.0 0.1 31.3 4.8 0.2 31.2
6000 2.0 0.2 32.2 4.6 0.3 30.1

5 10 1000 1.9 0.2 31.3 4.6 0.3 30.0
2000 2.0 0.2 31.2 4.8 0.3 30.9
4000 2.0 0.2 31.6 4.9 0.3 30.9

20 2000 1.9 0.1 61.4 4.6 0.2 60.2
4000 2.0 0.1 62.2 4.8 0.2 61.4

50 4000 1.9 0.1 149 4.6 0.1 145
6000 1.9 0.1 149 4.7 0.1 148

Table 7.1: Mean and standard deviation of ān with β = 0.3 for an OU process with Gaussian
component and compound Poisson jumps with intensity λ and the average number
of increments filtered.

carries over to the jump filter with a surprising precision. We also see that the average number
of filtered jumps is not equal to the expect number of jumps, but lies between 60 and 70 % of
the former. This is surprising, since we would expect the average number of detected jumps to
approach the expected number when ∆n tends to zero.
Another interesting finding is that as soon as the step size ∆n is so small that the discretization

error is negligible (cf. Section 4.2.4 for an analysis of the discretization error) a further increase
in the number of observations does not improve mean or standard deviation of the estimator any
further. This indicates that the assumption of high-frequency observations is already reasonable
when the stochastic error dominates the discretization error at least for finite intensity models.
The distribution of T 1/2(ān − a) is shown in Figure 7.1 for T = 70 and ∆n = 0.001. The

histogram on the left corresponds to a = 2 whereas on the right we have a = 5. From Theorem
5.1.6 and Lemma 2.4.4 it follows that the asymptotic variance of ān is given by

AVAR(ān) = (2aσ2
W )
(
σ2
W + λσ2

j

)−1
, (7.2)

where σ2
j denotes the variance of the jump heights. Hence, we find that the asymptotic variance

is proportional to a, which can also be observed for finite samples in Figure 7.1.
Figure 7.2 shows the same setup but with higher jump intensity. By comparing the results of

Figure 7.1 and 7.2 we find that the variance also scales with the jump intensity as indicated in
(7.2).
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7.2 Infinite intensity models
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Figure 7.1: Error distribution of ān for an Ornstein-Uhlenbeck process with a = 2 (left) and
a = 5 (right), compound Poisson jumps with intensity λ = 1
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Figure 7.2: Error distribution of ān for an Ornstein-Uhlenbeck process with a = 2 (left) and
a = 5 (right), σW = 1, compound Poisson jumps with λ = 3

All in all we find that the estimator performs well even for very short time horizons if the
discretization is fine enough. This observation corresponds to the results of Theorem 4.2.12 that
states that the discretization bias is of the order O(∆n).

7.2 Infinite intensity models

In Chapter 6 we have proved an asymptotic normality result for the discretized maximum
likelihood estimator with jump filter

ān = −
∑n−1
i=0 Xti∆iX1{|∆iX|≤vn}∑n−1

i=0 Xti(ti+1 − ti)
.

also for models that involve a jump component of infinite activity. In this section we simulate
data from an Ornstein-Uhlenbeck model of the form (7.1), where L = W + G is a Wiener
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7 Simulation results

process W with E[W 2
t ] = σ2

W t and G is a gamma process. Again we consider an equidistant
grid ti = i∆n for i = 0, . . . , n. The gamma process has jumps of infinite activity, paths of finite
variation and its Blumenthal-Getoor index is zero. The Lévy measure µ of G has an explicit
Lebesgue density given by

g(x) = cx−1e−λx1{x>0}

for x ∈ R. The parameter c > 0 controls the jump intensity and λ > 0 the frequency of large
jumps. It follows immediately from f that G is a subordinator. Exact simulation algorithms are
known for increments of gamma processes and we use Johnk’s algorithm (cf. Cont and Tankov
[2004a]).
Table 7.2 gives mean and standard deviation for different observation length and parameter

values. The 200 Monte Carlo iterations give a reasonable compromise between Monte Carlo error
and computation time, which is of order 1/2. The standard deviation scales approximately with
T−1/2 as expected from Theorem 6.2.3. In contrast to Table 7.1 we kept here ∆n = 0.0015 fixed
for all n. As in the finite intensity case we use the threshold exponent β = 0.3 for the jump
filter. We find that the value of a has hardly any impact on the average number of increments
that is filtered. When a increases the number of filtered increments also increases slightly, since
a greater variability of the drift might push increments with a relatively small jump over the
threshold.
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Figure 7.3: Error distribution of ān for an Ornstein-Uhlenbeck process with a = 2 (left) and
a = 5 (right), σW = 1 and Gamma process jumps

All in all we conclude that the jump filtering approach leads to good result also for models
with infinite jump activity provided that the maximal observation distance is small.

7.3 Maximum likelihood vs. least squares estimation

In this section we compare maximum likelihood and least squares estimation for the Ornstein-
Uhlenbeck type process X defined in (7.1). For continuously observed X the least squares
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7.3 Maximum likelihood vs. least squares estimation

a = 2 a = 5
c T mean std dev ∅ jumps detect mean std dev ∅ jumps detect
0.5 1 2.1 0.8 2.4 5.2 1.2 2.26

5 2.0 0.4 11.7 5.0 0.6 12.1
7.5 2.0 0.3 17.7 4.9 0.5 17.8
10 2.0 0.3 23.73 5.0 0.4 23.9
20 2.0 0.2 47.2 5.0 0.3 47.6

1 1 2.1 0.8 1.66 5.2 1.4 1.83
2.5 2.1 0.6 5.2 5.1 1.1 5.90
5 2.1 0.5 8.4 5.0 0.8 8.6
7.5 2.0 0.5 12.7 5.0 0.7 13.1
10 2.0 0.3 17.2 5.0 0.6 17.1

Table 7.2: Results of 200 Monte Carlo simulations of ān with ∆n = 0.0015 and β = 0.3 for an
Ornstein-Uhlenbeck process with σ2

W = 1 for the Gaussian component plus a Gamma
process with λ = 2 and the average number of jumps filtered.

estimator for the drift parameter a is given by

âLST = −
∫ T

0 XsdXs∫ T
0 X2

sds
.

For Gaussian Ornstein-Uhlenbeck processes the least squares and the likelihood estimator âML
T

(4.4) coincide, since the continuous martingale part under P a equals the process itself. But when
the driving process has jumps it follows from Theorem 4.2.10 that the asymptotic variances of
both estimators are different by

AVAR
(
âLST

)
−AVAR

(
âML
T

)
= Ea[X2

0 ]−1
∫
R
x2 µ(dx) > 0.

Hence, the least squares estimator is inefficient when jumps are present.
Figure 7.4 compares the mean of the MLE and LSE for compound Poisson jumps with different

jump intensities. For each intensity the mean of 500 Monte Carlo simulations is given for
an Ornstein-Uhlenbeck process with σW = 1 and jumps with N(0, 2)-distribution. The true
parameter is a = 2 and we find that the MLE performs slightly better than the LSE.
In Figure 7.5 the standard deviation for both estimators is given. The jump intensity λ of the

compound Poisson part of L varies between one and ten. In this model setup the difference in
asymptotic variance between MLE and LSE is given by

AVAR
(
âLST

)
−AVAR

(
âML
T

)
=

2aσ2
jλ

σ2
W + σ2

jλ

We observe that already for small jump intensities the MLE clearly outperforms the LSE. With
growing intensity this efficiency gain becomes even more severe. For λ = 10 the standard
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Figure 7.4: Mean of MLE (blue) and LSE (red) for varying jump intensity

deviation is about five times larger for the least squares estimator.
This short simulation example shows the significant gain in efficiency when we use a dis-

cretized likelihood estimator with approximation of the continuous part for drift estimation and
underlines the importance of jump filtering for jump diffusion models.
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7.3 Maximum likelihood vs. least squares estimation
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Figure 7.5: Standard deviation of MLE (blue) and LSE (red) for varying jump intensity
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8 Conclusion

The goal of this thesis was to develop explicit maximum likelihood estimators for the drift of
Lévy-driven jump diffusion processes that are efficient in the Hájek-Le Cam sense. This rather
classical problem of parametric drift estimation has led to some new mathematical challenges.
Separation of the continuous and the jump part of a process under high-frequency observations
is currently a central topic for the statistical analysis of semimartingale models (cf. e.g. Jacod
and Protter [2012] and Fan and Wang [2007]) and in the theoretical analysis of this field many
questions are still open. To the best of our knowledge this is the first work that considers the
problem of recovering the continuous martingale part under high-frequency asymptotics ∆n ↓ 0
together with a growing observation horizon, i.e. Tn →∞, in the context of jump filtering.
In Chapter 5 and 6 we have demonstrated that the likelihood theory for continuous observa-

tions from Chapter 3 and 4 leads to efficient drift estimators when jump filtering is applied for
discrete observations with growing time horizon. We would like to emphasize that this estimation
approach applies also to a much wider setting. Let us sketch some possible extensions:

• Jump diffusions with affine drift parameter
The jump diffusions X with affine drift parameter (cf. Section 4.4) was defined as a strong
solution to

dXt = (g(t,Xt) + θf(t,Xt)) dt+ γ(t,Xt) dLt, t ≥ 0
X0 = x ∈ R

A maximum likelihood estimator for θ based on time-continuous observations was derived
in Section 4.4. Suppose arbitrarily spaced observationsXt1 , . . . , Xtn are given. Approxima-
tion of the continuous martingale part via jump filtering provides the following estimator
for θ:

θ̂n =
∑n−1
i=0 γ(ti, Xti)2f(ti, Xti)∆iX1{|∆iX|≤∆β

n}∑n−1
i=0 γ(ti, Xti)2f(ti, Xti)(ti+1 − ti)

for β ∈ (0, 1/2). To derive asymptotic properties of θ̂n the methods from Chapter 5 and 6
can be generalized under similar conditions on the Lévy measure µ of L and the observation
scheme.

• Numerical evaluation of the MLE for general drift coefficients
We can even go one step further. Also for the general jump diffusion model (3.1) jump
filtering plays an important role. In this setting the maximum likelihood estimator was
defined in (4.2) and in this generality it can only be evaluated numerically. But before
numerical procedures can be applied the continuous martingale part in the likelihood
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8 Conclusion

function

L(X, θ)T = exp
(∫ T

0
c(s,Xs)−1δ(θ, s,Xs) dXc

s

− 1
2

∫ T

0
δ(θ, s,Xs)>c(s,Xs)−1δ(θ, s,Xs) ds

)
,

has to be approximated. This leads to the estimator

θ̂n = arg max
θ∈Θ

exp
(
n−1∑
i=0

γ(ti, Xti)−2δ(θ, ti, Xti)∆iX1{|∆iX|≤∆β
n}

−1
2

n−1∑
i=0

γ(ti, Xti)−2δ
(
θ, ti, X

2
ti

)
(ti+1 − ti)

)

for β ∈ (0, 1/2) that can now be computed numerically.

• The pure jump case σ2 = 0
In this work we have considered the case of a non-trivial Gaussian component of L (i.e.
σ2 > 0), since this is a necessary condition for local equivalence of the induced measures
and thus for the existence of the likelihood function. But also for σ2 = 0 jump filtering
can be used to infer the drift parameter.

When L is a pure jump Lévy process with Lévy-Khintchine triplet (0, 0, µ) and X is the
jump diffusion defined by

dXt = (g(t,Xt) + θf(t,Xt)) dt+ γ(t,Xt) dLt, t ≥ 0
X0 = x ∈ R

we can define the pseudo estimator

θ̂n =
∫ T

0 γ(t,Xt)−2f(t,Xt) dXc
t∫ T

0 γ(t,Xt)−2f(t,Xt) dt
. (8.1)

Then at least formally the continuous P θ-martingale part is given by

Xc
t = θ

∫ t

0
f(x,Xs) ds

such that θ̂T
a.s.= θ under P θ. Hence, for full observations (Xt)t∈[0,T ] the drift parameter is

known even for finite time horizon T < ∞. This is in direct contrast to the case σ2 > 0,
where the drift can only be recovered when T →∞.

For discrete observations Xt1 , . . . , Xtn these considerations imply that a high frequency
scheme ∆n ↓ 0 for 0 = t1 < . . . < tn = T and T > 0 fixed is appropriate. By jump filtering
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we obtain the estimator

θ̂n =
∑n−1
i=0 γ(ti, Xti)2f(ti, Xti)∆iX1{|∆iX|≤∆β

n}∑n−1
i=0 γ(ti, Xti)2f(ti, Xti)(ti+1 − ti)

for β ∈ (0, 1/2). Laws of larger numbers and central limit theorems for functionals of the
form

V n(f, vn, X)t =
n−1∑
i=0

f(∆iX)1{|∆iX|≤vn}

for a threshold vn = C∆β
n, β ∈ (0, 1/2), and polynomial growth conditions on the test

function f were shown in Jacod and Protter [2012] for ∆n ↓ 0 and fixed T > 0 under the
assumption that σ2 > 0. Convergence results in this setting for σ2 = 0 are still an open
problem.

All these extensions show that the scope of the methods in this thesis is much wider than
the models that we have investigated in detail in Chapter 5 and 6. Our main goal here was
to understand the limits of the jump filtering approach when different jump behaviors of the
driving Lévy process are considered. In Chapter 6 we found that it applies in the infinite activity
case under mild conditions on the small jumps. The main restriction (cf. Assumption 6.2.1(i))
is that the Blumenthal-Getoor index is strictly less than two is necessary for the approximation
of the continuous martingale part. When the Blumenthal-Getoor index is approaching two the
jump part of L behaves more and more like a Wiener process such that the separation of those
two becomes more and more difficult. Hence, this is a natural condition in the context of jump
filtering that is necessary for the identifiability of the continuous part (see also Cont and Mancini
[2011]).
Computational efficiency is another advantage of the likelihood approach that leads in many

popular models to explicit estimators that are in contrast to other techniques for jump diffusions
extremely easy to implement. This is a result of starting from the time-continuous likelihood
function, which is explicitly known such that no Monte Carlo approximations of unknown tran-
sition densities or moments are needed. The same holds true for the jump filtering technique.
To draw a conclusion maximum likelihood techniques for jump diffusion processes lead to

efficient and easy to implement drift estimators that are also computationally efficient. The
jump filtering that is needed here to extract the continuous component that contains information
on the drift applies under very mild conditions on the jump behavior of the driving Lévy process
and makes the likelihood approach feasible for discretely observed processes.
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