
 

 

Dissertation 

Characterization of Aus1 protein – a putative yeast 
sterol transporter 

  

zur Erlangung des akademischen Grades  
doctor rerum naturalium  

(Dr. rer. nat.) 
 in Fach Biophysik 

eingereicht an der 
 Mathematisch-Naturwissenschaftlichen Fakultät I  

der Humboldt-Universität zu Berlin 

von  
Master in Biologie 
Magdalena Marek  

 

Präsident der Humboldt-Universität zu Berlin  
Prof. Dr. Jan-Hendrik Olbertz  

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I  
Prof. Dr. Andreas Herrmann 

Gutachter:  1. Prof.Andreas Herrmann 
  2. Prof. Thomas Günther-Pomorski 
  3. Prof.Thomas Eitinger 
 
 
 

Tag der mündlichen Prüfung: 05.10.2011 

 



 

 

 

For my family



 

 

Zusammenfassung 

Sterine sind essentielle Komponenten der Zellmembran, deren Konzentration und Lokalisierung 

genau kontrolliert wird. Die Hefe Saccharomyces cerevisiae ist ein fakultativ anaerober Organismus, 

der in Abwesenheit von Sauerstoff auxotroph für Sterine wird, d.h. ohne Sauerstoff wächst Hefe nur 

wenn aufnahme von exogenen Sterinen möglich ist. Allerdings muss der genaue Mechanismus der 

Sterinaufnahme noch erforscht werden. Die Proteine Aus1p und Pdr11p gehören zur Familie der 

ABC (ATB-binding cassette) Proteine und spielen eine wichtige Rolle in diesem Prozess, da die 

gleichzeitige Deletion beider Protein die Aufnahme von Sterinen unter anaeroben 

Wachstumsbedingungen blockiert [1]. 

 

In dieser Arbeit wurde das Gen AUS1 in voller Länge kloniert. Methoden für die Extraktion und 

Reinigung dieses Transporters wurden entwickelt, damit dieser detailliert charakterisiert werden 

kann. Mit Hilfe von Detergenzien wurde das Protein löslich gemacht und zeigte ATP-Bindung und -

Hydrolyse. Die ATP-Hydrolyse konnte durch die Mutation eines konservierten Lysins zu Methionin 

im Walker A Motif verhindert. Genauso konnte die ATP-Hydrolyse auch durch klassische 

Inhibitoren von ABC Transportern inhibiert werden. Nach der Rekonstitution von Aus1p in 

Proteoliposomen wurde die ATPase Aktivität spezifisch durch Phosphatidylserin (PS) in einer 

stereoselektiven Weise stimuliert. 

 

Zusätzlich konnte gezeigt werden, dass Änderungen im zellulären PS Spiegel die Aus1p-abhängige 

Aufnahme von Sterin, aber nicht die Expression und Verschickung an die Membran beeinflussen. 

Diese Ergebnisse schlagen eine für die Aktivität des Transporters wichtige, direkte Interaktion 

zwischen Aus1p und PS vor. 

 

Da es sich bei der Aufnahme von Sterin um einen komplexen Prozess handelt, könnten  

Komponenten exisitieren, die mit Aus1p interagieren. Der Hefestamm, der die 

Immunpräzipitation von Aus1p mit seinem Interaktionspartner ermöglicht, wurde erzeugt und der 

Einfluß von Mannoproteinen auf Sterinaufnahme wurde getestet. Außerdem wurde eine Methode 

entwickelt, mit der Aus1p in Giant Unilamellar Vesicles (GUVs) rekonstituiert werden kann. Mit 

diesen Liposomen kann das Verhalten und die Aktivität von Aus1p in Membranen mit einer 

komplexen Lipidzusammensetzung untersucht werden. 

 

Schlagwörter: ABC Protein, Aus1p, Sterinaufnahme, Proteoliposomen, Protein Aufreinigung, die 

Phosphatidylserin 



 

 

Abstract 

 

Sterols are essential components of cellular membranes and their concentration and localization are 

tightly controlled. Saccharomyces cerevisiae is a facultative anaerobic organism which becomes 

auxotrophic for sterols in the absence of oxygen. Under that condition yeast growth relays on the 

uptake of exogenous sterols. However, the precise mechanism of sterol uptake remains to be 

revealed. Two proteins belonging to ABC (ATP-binding cassette) protein family, Aus1p and Pdr11p 

were proposed to play a critical role in this process as simultaneous deletion of both of them blocks 

sterol uptake under anaerobic growth conditions [1].  

In the present work, the full length AUS1 gene was cloned. An extraction and purification 

procedures were then developed to allow for detailed characterization of the transporter. The 

detergent solubilized protein was shown to bind and hydrolyse ATP. Mutagenesis of the conserved 

lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was 

inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the 

ATPase activity of Aus1p was specifically stimulated by phosphatidylserine (PS) in a stereoselective 

manner. 

Furthermore, it was demonstrated that Aus1p-dependent sterol uptake, but not Aus1p expression and 

trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results 

suggest a direct interaction between Aus1p and PS which is critical for the activity of the transporter. 

Because of the complexity of sterol incorporation process efforts were made to identify additional 

components of the sterol uptake machinery that interact with Aus1p protein. The yeast strain 

allowing for immunopercipitation of Aus1p with its interaction partners was generated and 

previously proposed influence of mannoproteins [2] on the sterol uptake was tested. Additionally, 

method was developed to reconstitute Aus1p protein into Giant Unilamellar Vesicles (GUVs). These 

liposomes can be used further for testing of the behaviour and activity of Aus1p in the membranes 

with complex lipid composition.  

 

Key Words: ABC protein, Aus1p, sterol uptake, proteoliposomes, protein purification, 

phosphatidylserine 
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Abbreviation    Meaning 

 

ABC     ATP-binding cassette 

ADP    Adenosine diphosphate 

ALA    5-aminolevulinic acid 

ATP    Adenosine triphosphate 

AU  Arbitrary Units 

BN-PAGE     Blue Native PAGE 

CHOL    Cholesterol 

cmc     Critical micellar concentration  

CRAC Cholesterol recognition/interaction amino 

acid consensus 

CW  Calcofluor white 

CWP  Covalently bound cell wall protein 

DDM    n-dodecyl-β-maltoside 

DIC  Differential interference contrast 

DMSO  Dimethyl sulfoxide 

DTT    Dithiothertiol 

EDTA  Ethylenediaminetetraacetic acid 

ERG    Ergosterol 

ER    Endoplasmic reticulum 

GUV     Giant Unilamellar Vesicle 

HDL  High density lipoprotein 

LDL  Low density lipoprotein 

LTP    Lipid transport protein 

LUV    Large unilamellar vesicle 

MCS     Membrane contact site 



 

 

NEM N-ethylmaleimide 

NBD    Nucleotide binding domain 

25-NBD cholesterol  25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)methyl]amino]-27-norcholesterol 

NBD (lipid) 7-nitrobenz-2-oxa-1,3-diazole (lipid) 

OSBP     Oxysterol binding protein 

ORP    OSBP related protein 

PA    Phosphatidic acid 

PAGE    Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline 

PC    Phosphatidylcholine 

PCR    Polymrase chain reaction 

PE    Phosphatidylethanolamine 

PG    Phosphatidylglycerol 

PI    Phosphatidolinositol 

PM    Plasma membrane 

PMSF    Phenylmethylsulphonyl fluoride 

PS    Phosphatidylserine 

RFP    Red fluorescent protein 

RT-PCR     Real time PCR 

SPH    Sphingomyelin 

TMD    Transmembrane domain 

SEC  Size exclusion chromatography 

SD  Standard deviation 

SDS Sodium dodecyl sulfate 

WT Wild type 
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1. INTRODUCTION   

Sterol homeostasis is critical for many cellular processes, including signaling and protein trafficking, 

as well as regulation of permeability and fluidity of cellular membranes [3]. Many cell types can 

synthesize sterols on their own but some have to relay on external sterol sources - permanently or 

under certain environmental conditions [4]. Understanding of the molecular mechanisms underlying 

sterol trafficking is extremely important since disturbances in that processes are connected with 

various diseases like obesity, artheriosclerosis and neurodegeneration [5].  

In the yeast Saccharomyces cerevisiae, sterol uptake occurs only under anaerobic conditions (when 

the oxygen is inaccessible for the cells) and it is suggested to be mediated by two ABC transporters - 

Aus1p and Pdr11p [1]. It has been proposed that both proteins may transport sterol directly out of the 

plasma membrane to a cytosolic acceptor, such as soluble sterol-binding proteins, or closely apposed 

membranes of the endoplasmic reticulum [6]. Alternatively, they may indirectly facilitate sterol 

transport by catalyzing the transbilayer movement of other lipids (as suggested for other ABC 

transporters) or be required for the entry of external sterol into the plasma membrane [7,8,9]. Thus, 

direct biochemical proof of their function and key features of their activity remain to be elucidated. 

In this study several methods were employed to characterize Aus1p transporter and investigate its 

role the process of sterol uptake in budding yeast. 

 

1.1 Lipid and sterol homeostasis in the cell  

Cellular membranes are composed of lipid and protein molecules. They consist of a bilayer structure 

and separate functional compartments within the cell [10]. The most abundant lipids in eukaryotic 

membranes are: phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), cholesterol [11] and sphingolipids (Figure 1) [12]. To fulfill properly their 

functions lipids have to be transported between organelles as well as between the inner and outer 

leaflet of the membranes (Figure 2). Since lipid molecules can move within the membrane (for 

example by lateral diffusion in the plane of the membrane or flip-flop across the membrane bilayer) 

it would be expected that they equilibrate among membranes connected by vesicular trafficking. 

However, such mixing is not observed and cells sustain different lipid composition between 

organelles, leaflets of some membranes and even within one leaflet [13]. It was proposed that 

generation of the transverse membrane asymmetry is mediated by flippases - a group of proteins that 

facilitate lipid movement between the leaflets, generating a symmetrical or asymmetrical lipid 

composition [14]. A symmetrical distribution of lipids occurs in endoplasmic reticulum (ER) 

membranes but the Golgi, plasma membrane (PM) and endosomal membranes display an 

asymmetric distribution, with sphingomyelin and glycosphingolipids on the non-cytosolic side and 
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phosphatidylserine and phosphatiylethanolamine enriched in the cytosolic part of the membrane 

[15]. 

  

   

Figure 1: Lipid synthesis and steady-state composition of cell membranes. The lipid compositional data 
are expressed as a percentage of the total phospholipid (PL) in mammals (blue) and yeast (light blue). As a 
measure of sterol content, the molar ratio of cholesterol and ergosterol (ERG) to phospholipid is also included. 
The major glycerophospholipids assembled in the endoplasmic reticulum are phosphatidylcholine, 
phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid (PA). In addition, 
the ER synthesizes ceramide (Cer), galactosylceramide (GalCer), cholesterol and ergosterol. The Golgi lumen 
is the site of synthesis of sphingomyelin (SM), complex glycosphingolipids (GSLs) and yeast inositol 
sphingolipid (ISL) synthesis. PC is also synthesized in the Golgi, and may be coupled to protein secretion at 
the level of its diacylglycerol (DAG) precursor. Approximately 45% of the phospholipid in mitochondria 
(mostly PE, PA and cardiolipin (CL)) is autonomously synthesized by the organelle. BMP (bis 
(monoacylglycero)phosphate) is a major phospholipid in the inner membranes of late endosomes. PI4P, 
phosphatidylinositol- 4-phosphate; R, remaining lipids; S1P, sphingosine-1-phosphate [12]. 

 

The asymmetric distribution of lipids has important functional consequences. For example 

phosphatidylserine acts as a susceptibility signal for phagocytosis when exposed on the cell surface 
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of mammalian cells, and as a propagation signal in blood coagulation [16]. Furthermore, lipid 

translocation to the cytosolic leaflet causes a lipid imbalance that can contribute to the membrane 

bending which is required for vesicle budding [12]. 

As mentioned before cellular organelles differ in their lipid composition. Especially sterols are not 

uniformly distributed throughout the cell and the amount of sterol in each subcellular organelle is 

unique [17]. For instance, the sterol level is low at its site of synthesis in the endoplasmic reticulum 

but high in the plasma membrane reaching up to 30 mol% of lipid molecules [18]. Therefore, 

mechanisms must exist which regulate the transport and distribution of sterols and that maintain a 

distinct level of sterol in each membrane. The importance of such transport and sorting mechanisms 

is highlighted in several human diseases. For instance, accumulation of cholesterol in endosomal 

compartments is associated with Niemann Pick Disease type C and possibly with Alzheimer's 

disease [19,20]. The molecular mechanisms underlying sterol biosynthesis and esterification are 

relatively well known. However, how the non-homogenous distribution of sterols within the cell is 

maintained and how sterols move between and within cellular membranes is not fully understood in 

molecular terms [3].  

Sterols play essential role in eukaryotic cells by modulating membrane properties and taking a part 

in various cellular processes [21,22,23]. The endoplasmic reticulum produces the bulk of the 

structural phospholipids and sterols. Newly synthesized sterol is rapidly transported to other 

organelles and the excess of cholesterol is delivered to acyl-CoA cholesterol acyl transferase 

(ACAT) for esterification and subsequent storage in lipid particles [12]. The ER is a key site where 

the sterol level is monitored and feedback regulatory cascades are initiated to control sterol 

biosynthesis and uptake so that cellular sterol homeostasis is maintained [4].  

In mammalian cells, cholesterol is obtained either through de novo synthesis in the ER or by the 

uptake of lipoproteins [3]. Recently it was also suggested that NPC1L1 – a protein expressed in 

intestine and liver - can mediate sterol uptake through clathrin mediated endocytosis [24]. 

Saccharomyces cerevisae relays on sterol synthesis under aerobic and on sterol uptake under 

anaerobic conditions whereas Drosophila melanogaster and Caenorhabditis elegans are sterol 

auxotrophs [4]. 
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Figure 2: Transport of lipids within the cell. Lipids can diffuse laterally (step a; lateral movement) or 
transversely between the two leaflets of each organelle membrane (step b; transbilayer movement or flip–flop). 
As lipids form the backbone of a membrane, they are an integral part of vesicular carriers (step c; vesicular 
transport) that connect, for example, the endoplasmic reticulum and the plasma membrane indirectly through 
the Golgi (not shown). At the same time, lipids can be exchanged as monomers between the cytosolic surfaces 
of organelle membranes (step d; monomeric exchange). For simplicity in this figure, scaled-up lipids (red) are 
shown on top of single lines that represent the various membrane bilayers [25]. 

 

The ratio of particular lipid compounds in the cell is also highly regulated and interestingly the 

amount of sterols in the cell influences the amount of other lipids. It was shown that in yeast the 

pathways of ergosterol biosynthesis and synthesis of sphingolipids are closely connected – decrease 

in the amount of ergosterol leads to down-regulation of ceramide (sphingolipid precursore) 

production. Additionally, decreased amount of sphingomyelin in plasma membrane enhances the 

level of sterol estrification and subsequent storage in lipid droplets. Other cross talk has been 

observed between ergosterol and fatty acids biosynthesis pathways namely blocking the ergosterol 

synthesis results in decrease in the transcription level of genes responsible for the novo synthesis of 

long chain fatty acids (ELO1, OLE1, FAS1) [24]. 

A few mechanisms have been proposed to explain sterol transport between organelles. Sterols can be 

moved by membrane transport vesicles, by diffusible carrier proteins or by putative multi-protein 

scaffolding complexes between donor and acceptor membranes (Figure 2) [18,26]. Vesicular 

transport requires ATP and intact cytoskeleton and although lipids and sterols can be transported by 

endocytic and secretory vesicles, it is still not clear if this is the main transport pathway, especially 

for newly synthesized or incorporated molecules. Another possibility is that sterols are transported 

by carrier proteins called LTP (Lipid Transport Protein). LTPs are supposed to be peripheral 

membrane proteins, with two targeting signals – one for donor and one for acceptor compartment, so 

that the protein can shuttle substrate between the two [25]. It is known that CERT protein can 

transport ceramide from ER to Golgi and StarD1 is required for delivery of cholesterol to the inner 

mitochondrial membrane [25,27]. Recently, also OSBPs (Oxysterol Binding Protein) and ORPs 

(OSBP Related Proteins) have been shown to transport sterols [28,29]. It was also suggested that 

sterol transport could occurs at the contact sites between two organelles (MCS, membrane contact 
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site). Such domains, connecting for example plasma membrane and ER or ER and mitochondrium 

are well known in yeast cells [30]. At MCS, ER membrane comes close to the other membrane but 

does not fuse with it. Instead of that, protein-protein bridges are formed between organelles contact 

sites. Therefore endoplasmic reticulum could theoretically acts as a conduit for lipids. Increasing 

evidences suggest that lipid transfer proteins can work at MCSs [25].  

Although several studies have been performed the maintenance of non-random lipid distribution in 

the cell is still a key question in cell biology. Different pathways and protein families are involved in 

regulation of lipid metabolism, uptake and extrusion. According to the results obtained during the 

last years also proteins belonging to the ABC family influence cellular lipid homeostasis. The 

precise mechanism of lipid transport is still under investigation but ABC transporters seem to be 

crucial components of the lipid uptake/export system in eukaryotes. 

 

1.2 The superfamily of ABC transporters 

ABC transporters constitute a large superfamily of membrane proteins involved in various cellular 

processes. They are present in both eukaryotes and prokaryotes and share a set of conserved domains 

as well as similar molecular architecture. ABC proteins can work as importers or exporters for a 

great amount of substrates like ions, lipids, peptides, sugars and a range of chemically unrelated 

xenobiotics [31]. Interestingly, they can also act as regulators of other proteins. For example SUR 

(sulfonylurea receptor) assembles with Kir subunit of potassium channel and by that modulate the 

activity of the potassium chanel complex (KATP) [32,33]. Because of their involvement in many 

crucial cellular functions (eg. nutrient uptake, cell division, antigen processing), mutations affecting 

these proteins are often associated with a wide range of disorders including hypercholesterolemia, 

cystic fibriosis or diabetes [34]. 

 

1.2.1 Structure and architecture of ABC transporters 

ABC proteins have a characteristic architecture that consists minimally of four domains: two 

transmembrane domains (TMDs) localized in the lipid bilayer and two nucleotide binding domains 

(NBDs) that are located outside the membrane. In contrast to the highly conserved structure of 

NBDs, there is considerable variation in the appearance and arrangements of TMDs between 

different ABC subfamilies [35].  

NBD domains contain motifs characteristic for ABC transporters like the Walker A motif (or P loop, 

GXXGXGK(S/T)), the Walker B motif (xxxxD where x is a hydrophobic molecule), a Q loop, H 

motif (or switch region) and more structurally diverse helical domain, which contains ABC signature 
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motif LSGGQ (Figure 3) [36]. In ABC transporters hydrolysis of ATP is coupled to conformational 

changes in the TMDs which effect substrate translocation. Structural and biochemical studies on 

isolated NBD have demonstrated that they form dimers in the ATP-bound state. NBD dimers have a 

head-to-tail configuration, in which the Walker A motif (P-loop) of one monomer and the LSGGQ 

signature motif of the other monomer form a composite active site via their interaction with the 

bound ATP [37].  

  

  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3: The minimal composition of ABC transporters. Classical ABC transporters are formed by two 
transmembrane domains which contain substrate binding site, and two nucleotide binding domains responsible 
for ATP binding and hydrolysis. The TMDs from different subfamilies of ABC transporters are not necessarily 
homologous. The NBDs are homologous throughout the family. Each NBD contains highly conserved, but not 
invariant, motifs [37].  

 

The ABC proteins encoding genes can be divided into subfamilies, based on a similarity in their 

gene structure (eg. order of domains or the sequence homology in the NBDs and TMDs domains). 

There are seven mammalian ABC gene subfamilies and five of them can be found in Saccharomyces 

cerevisiae genome (Figure 4).  
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Figure 4: Yeast ABC phylogenetic tree. The protein sequences of the yeast ABC transporters have been 
subjected to a multiple-sequence alignment using CLUSTALW and phylogenetic analysis, and the resulting 
data are depicted in a radial-tree format (PHYLO). Subfamilies have been highlighted and grouped by black 
lines and arcs. The nomenclature ABCB to ABCG is used to assign the yeast ABC proteins to their 
homologous subfamilies. For each subfamily, a mammalian member (boldface type) was included in the 
analysis as a point of reference [38]. 

 

The yeast PDR, MRP/CFTR, MDR and ALDp family members contain at least six predicted TMDs 

when YEF3/RLI protein lacks any obvious TMD. The ABC proteins are organized either as full 

transporters containing two TMDs and two NBDs or as half transporters containing only one TMD 

and one NBD. Half transporters can further form homo or heterodimers (Figure 5). Full size ABC 

transporters, have a tandemly duplicated organization with usually six predicted helices in each half, 

arranged either in forward (TMD6-NBD)2 or reverse (NBD-TMD6)2 configuration. Yeast 

MRP/CFTR proteins carry an additional TMD at the N-terminus called an N terminal extension [39]. 
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Figure 5: Predicted topology and domain organization of ABC protein subfamilies. The cartoon depicts 
the predicted membrane topology and domain organization of ABC proteins. ABC proteins can be organized 
as full transporters containing two NBD and two TM domains or as half transporters containing only one NBD 
and one TMD domain. Half transporters can further form homo or heterodimers. Proteins from MRP/CFTR 
family carry additional transmembrane domain called N terminal extension while proteins from YEF3/RLI 
family lack any transmembrane domain [39]. 

 

1.2.2 Working mechanism of ABC transporters  

Translocation of substrate molecules by ABC transporters requires energy which comes from 

hydrolysis of ATP molecules. The switch model of action of ABC proteins assumes that transporter 

must cycle between high and low-affinity states for ligands on different sides of the membrane. The 

ATP switch mechanism describes how these states are coupled to the ATP catalytic cycle in a way 

that is consistent with the available structural data. During the first step ligand binds to the TMDs in 

inducing increased affinity for ATP within NBDs. Subsequently ATP binding induces formation of 

the closed NBD dimer, which in turn induces a large conformational change in the TMDs sufficient 

to translocate ligand. ATP hydrolysis initiates dissolution of the closed NBD dimer and at the end of 

the cycle phosphate and ADP is released to complete the transport cycle and restore the protein to a 

high - affinity state for ligand (Figure 6) [37]. 

 

 

 

ABC Subfamily Predicted Topology Domains
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Figure 6: A simple ATP-switch mechanism powers ABC transporters. Ligand binding to a high-affinity 
pocket formed by the TMDs induces a conformational change in the NBDs resulting in a higher affinity for 
ATP. Two molecules of ATP bind to the NBDs. The energy released by the formation of the closed NBD dimer 
causes conformational change in the TMDs. ATP hydrolysis triggers dissolution of the closed NBD dimmer 
resulting in further conformational changes in the TMDs. Finally, phosphate and then ADP release restores the 
transporter to the open NBD dimer conformation ready for the subsequent cycle [37]. 

 

The detailed mode of substrate transport by ABC proteins seems to be more complex process. The 

flippase translocation model (Figure 7) proposes that the substrate binding sites are located within 

the TMDs and that the main criterion for transport is the partitioning of hydrophobic substrate into 

the membrane. After energy consuming conformational changes transported molecule is released 

into the opposite half of the bilayer. In this case relatively hydrophilic molecules could easily 

partition into external environment. However, this model does not explain how hydrophobic lipids 

substrate reach acceptor [40]. According to the vacuum cleaner model the substrate enters membrane 

localized binding site and subsequently is expelled into the medium on the other site. This model 

assumes complete hydration of the substrate after transport event what poses a problem from 

energetical point of view – since ABC transporter cannot produce enough energy during its power 

stroke to transport a lipid molecule [40,41]. The third, so called activation model assumes that the 

substrate is shifted by the transporter to the location of intermediate hydrophobicity and presented to 

the acceptor molecule [40]. It is also speculated that intra and extracytosolic loop domains can take a 

part in substrate site construction and/or filtering [42]. 

 

 

 

 

 

 

 



INTRODUCTION 

10 

 

 

 

 

 

 

Figure 7: Models of substrate translocation by ABC transporters. Pumps transport polar substrates from 
one side of the membrane to the other, through a hydrophilic path formed by the transmembrane regions of the 
protein [43]. In the vacuum cleaner model, substrates partition into the lipid bilayer, interact with the 
transporter within the membrane, and are subsequently effluxed extracelluarly. In the flippase model, 
substrates partition into the membrane, interact with the drug-binding pocket localized within transporter and 
are translocated, or flipped, to the outer membrane leaflet [44]. 

 

Interestingly, for some prokaryotic ABC transporters that function as importers, substrate 

translocation is also dependent on another protein component - a high affinity binding protein that 

specifically associates with the ligand in the periplasm for the delivery of the substrate to the 

transporter. An example is the bacterial B12 vitamin transporter BtuCD which associates with the 

BtuF protein during the process of substrate translocation (Figure 8).  

                            

Figure 8: Vitamin B12 uptake system. Schematic cartoon of the vitamin B12 uptake system in Escherichia 
coli. BtuB transfers vitamin B12 across the outer membrane into the periplasmic space, where the vitamin binds 
to BtuF. Once the loaded form of BtuF docks to the ABC transporter BtuCD, transport across the inner 
membrane is initiated. This process is powered by ATP hydrolysis, taking place at the interface between the 
NBDs, shown in green, on the cytoplasmic side of the inner membrane. To date the B12 uptake system is the 
only ABC transporter system where the structures of all the key players are known [45]. 
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1.3 Involvement of the mammalian ABC transporters in the sterol 

transport 

In mammalian cells specific proteins mediate sterol entrance and exit from the cells in order to 

maintain the balance between sterol synthesis, absorption and excretion (Figure 9). The entrance of 

dietary cholesterol into enterocytes is facilitated by NPC1L1 protein which localizes to the apical 

part of the plasma membrane. It is thought that the protein senses the high level of sterol in the 

membrane environment and upon endocytosis, is transported to the ERC (Endocytic Recycling 

Compartment) together with high amounts of cholesterol. When the cholesterol level is low the 

NPC1L1 cycles back to plasma membrane [46].  

An important role in sterol homeostasis is played also by ABC transporters. One example is the 

ABCA1 protein which is expressed in many tissues but the highest amount can be detected in liver 

and in the macrophages. The absence of functional ABCA1 protein results in Tangier disease, with 

characteristic very low level of HDL (High Density Lipoprotein) in the blood. The exact function of 

ABCA1 is not known, although it is proved to be involved in the removal of cholesterol from the 

cells [42,47].  

Proteins from ABCG family seem to be especially involved in the maintenance of the cellular sterol 

balance. ABCG5/G8 acts as a heterodimer and is expressed only in liver and intestine where 

localizes to the plasma membrane. Mutations affecting that protein lead to the sitosterolemia - a 

disease characterized by accumulation of high amounts of dietary phytosterols accompanied by 

higher intestinal cholesterol absorption. Currently there are two hypotheses explaining the mode of 

action of ABCG5/B8. The first one assumes that the protein acts as an extruder exposing sterols in 

the extracellular leaflet of plasma membrane that would facilitate the extraction into the intestine 

lumen by bile acids. The second one proposes that ABCG5/G8 is a flippase which moves 

phospholipids from inner to the outer leaflet of the apical membrane of enterocytes [48]. ABCG1 

and ABCGG4 are involved in cholesterol efflux to HDL and regulation of sterol accumulation in the 

brain and lack of them leads to accumulation of sterol precursors (desmosterol, lathosterol and 

lanosterol) in primary astrocytes [49]. Also one of the multidrug resistance proteins – ABCG2 was 

implicated in the transport of sterols. This protein (known also as BCRP (Breast Cancer Resistance 

Protein)) is a plasma membrane transporter which is able to extrude a wide variety of drugs from the 

cell. Because overexpression of ABCG2 in L.lactis increases the uptake of estradiol, and estradiol 

stimulates ATPase activity of the protein, it was proposed that ABCG2 plays a role in the transport of 

sterols and steroids [50]. 
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Figure 9: Sterol transport in mammalian cells. (A) Micellar solubilization of dietary sterols by bile acids 
allows them to move through the diffusion barrier overlying the luminal surface of enterocytes. The NPC1L1 
protein (dark red) is located at the apical membrane of enterocytes and facilitates the uptake of cholesterol 
across the brush border membrane. In contrast, the ABCG5/G8 transporter (green) promotes the active transfer 
of cholesterol and plant sterols back into the intestinal lumen for excretion. Acyl CoA cholesterol 
acyltransferase isoform-2 (ACAT2) esterifies the absorbed cholesterol, which becomes incorporated into 
nascent chylomicron particles. Chylomicrons are synthesized around the APOB48 apoprotein in the 
endoplasmic reticulum (ER). Dietary fatty acids are used for triglyceride synthesis in the smooth ER and MTP 
(microsomal triglyceride transfer protein) transfers triglycerides and cholesteryl esters to APOB48. The 
nascent chylomicrons leave the ER in COPII-coated vesicles and are secreted through the Golgi complex to 
the basolateral side of the enterocyte and reach the venous circulation through lymphatic vessels. (B) Low 
density lipoprotein (LDL) receptors bind LDL particles (yellow) in clathrin-coated pits for delivery into early 
sorting endosomes. The LDL receptor recycles back to the plasma membrane and LDL is delivered to later 
endocytic compartments for hydrolysis. Acid lipase hydrolyses cholesteryl esters (and triglycerides) and the 
free cholesterol can exit the endosomal system for delivery to other compartments, including the PM and 
endoplasmic reticulum. Efflux from late endosomal compartments is not well characterized despite the fact 
that the process is inhibited by ablation of Niemann–Pick C1 (NPC1) or NPC2 proteins. Cholesterol is 
enriched in the internal membranes of multivesicular endosomes and depleted from lysosomes, which implies 
that cholesterol efflux takes place before cargo delivery to lysosomes [4]. 
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1.4 Yeast as a model organism for studying sterol transport 

The budding yeast Saccharomyces cerevisiae is widely used for studying different aspects of cell 

physiology and genetics. The yeast genome is sequenced and the cells are genetically and 

physiologically characterized. In addition, tools allowing for genetic manipulations on S.cerevisiae 

are well established. These features make yeast an excellent organism for biological studies as well 

as for industrial applications [51].  

One of the processes widely studied in yeast is the uptake and metabolism of sterols. In contrast to 

mammalian cells yeast do not synthesize cholesterol but its analogue – ergosterol (Figure 10). The 

differences between ergosterol molecule in comparison to cholesterol comprise additional methyl 

group at C24 of the side chain and double bonds at C7 and C22. Both molecules influence 

membrane fluidity and have tendency for association with sphingolipids [52]. However, the amount 

of sterol that becomes associated with sphingolipid-rich domains (rafts) in the plasma membrane 

varies widely depending on the sort of sterol incorporated in PM [43]. In yeast, internalized 

ergosterol remains largely raft-associated while cholesterol does not. Presumably, newly 

incorporated cholesterol in the PM is out-competed by endogenous ergosterol for raft association. 

Interestingly, there exist an inverse correlation between the ability of sterol to become raft associated 

in the PM and the rate at which it is transported to the ER since sterols with low raft affinity are 

more rapidly transferred. In addition, depleting cells of sphingolipids (and thus raft associated 

sterols) decrease the differences in the rates at which exogenous ergosterol and cholesterol moved 

from PM to ER. Taken together these observations suggest that only non raft associated sterol in the 

PM is available for non vesicular transfer to ER [28]. 

  

 

 

 

 

 

 

 

 

Figure 10: Chemical structures of different sterols. The main sterol in mammalian cells is cholesterol while 
fungi produce ergosterol. The main sterols of plant cells are stigmasterol and camposterol. 
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1.4.1 Sterol exclusion process in Saccharomyces cerevisiae 

Saccharomyces cerevisiae is a facultative anaerobe and under aerobic conditions can synthesize 

sterols from acetyl-CoA. Proteins responsible for ergosterol biosynthesis (so called ERG proteins) 

are localized in endoplasmic reticulum and only five of them functioning in the final steps of the 

pathway are encoded by nonessential genes [23]. However, under anaerobic conditions yeast growth 

relies on the uptake of sterols. This fact is called aerobic sterol exclusion and is a result of 

requirement of molecular oxygen in several steps of the ergosterol biosynthesis pathway (Figure 

11A). Since ERG proteins require heme as a prosthetic group, blocking the mitochondrial heme 

synthesis pathway leads to the inactivation of sterol biosynthesis in the cell, and thus mimic hypoxic 

conditions. Aerobic sterol exclusion is so effective that most sterol auxotorphs without heme 

deficiency cannot grow under aerobic conditions even with sterols provided in the medium [53]. 

Cells with deleted HEM1 (5-aminolevulinate synthase) gene express genes responsible for sterol 

uptake. Addition of 5 aminolevulinic acid (ALA) [50] – a product of 5-aminolevulinate synthase 

activity - overcomes the heme synthesis block and restores the sterol synthesis pathway (Figure 

11B). In addition some transcription factors like SUT1 or UPC2-1 were shown to enable the sterol 

influx in heme-competent, aerobic cells. UPC2-1 (uptake control) cells express mutated version of 

UPC2 zinc finger transcription factor which is thought to be gain of function mutation in terms of 

activation of sterol influx (since deletion of UPC2 gene do not influence sterol uptake). Not mutated 

version of UPC2 binds to sterol regulatory elements of ergosterol biosynthesis genes [2]. In contrast 

to UPC2, SUT1 does not appear to bind to DNA directly. This protein acts rather at transcriptional 

level by relieving hypoxic genes from Cyc8-Tup1 repression through its physical interaction with 

Cyc8. Both SUT1 and UPC2 are upregulated under anaerobic conditions. Interestingly, among 

UPC2-1 responsive and anaerobic genes are two ABC transporters, AUS1 and PDR11 which are 

required for yeast anaerobic growth and sterol uptake [54]. 
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Figure 11: Biosynthesis of ergosterol and heme in yeast cells. (A) Sterol biosynthesis pathway is 
accomplished by ERG proteins and requires molecular oxygen on several steps. (B) Many of ERG proteins 
have heme prosthetic group which is required for theirs activity. Deletion of HEM1 (5-aminolevulinate 
synthase) gene prevents heme synthesis by blocking conversion of succinly-CoA into 5-aminolevulinate. 
Under that condition ergosterol biosynthesis is blocked, and cells relay on sterol uptake. ERG enzymes are 
marked in blue. Oxygen dependent reactions are labelled in red [54]. 

 

1.4.2 Role of the cell wall in sterol uptake process in Saccharomyces 

cerevisiae 

For being internalized into yeast cell sterol molecules have to pass the barrier of the cell wall which 

surrounds the cell and overlay plasma membrane. The fungal cell wall is composed of 

mannoproteins, β-glucans and chitin forming a macromolecular complex (Figure 12). With respect 

to their biochemical characteristics two groups of yeast cell wall proteins can be discriminated. The 

first group includes proteins disulphide-linked or non-covalently attached to the wall components 

(SEP—SDS-extractable proteins). The second group consists of proteins which are covalently linked 

to the glucan framework (CWP—covalently bound cell wall proteins) [55]. During adaptation to 

anaerobiosis budding yeast remodel the content of the cell wall [56]. Previous studies suggested that 

some of CWP proteins (Dan1p, Dan3p, Dan4p and Tir4p) could play a role in anaerobic sterol influx 

since their expression is significantly upregulated in anaerobiosis. Moreover, it was shown that 

coexpression of Aus1p together with Dan1p (but not each of the proteins alone) increases sterol 

influx around 1.7-fold under aerobic conditions [2]. However, the exact role of those proteins in 

sterol incorporation process is not clear [1]. One possibility is that they act in a way similar to FIT 
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proteins (FIT1, FIT2, FIT3) which take a part in iron uptake process. These group of mannoproteins 

has been shown to be responsible for binding of iron within the cell wall and although FITs are not 

directly involved in transport of iron through the plasma membrane, their abscence greatly reduces 

the amount of internalized iron [56]. 

 

 

 

 

 

 

 

 
Figure 12: The architecture of yeast cell wall. Fungal cell wall is composed of mannoproteins, β-glucans and 
chitin forming a macromolecular complex. The cell wall polysaccharides that have been described so far are 
composed of polymers of mannose, glucose, galactose, N-acetylglucosamine, and/or rhamnose, and these 
include mannans, glucans, chitin, galactomannans, glucomannans, rhamnomannans, and phosphomannans. 
Fungal cell walls also contain covalently and noncovalently linked glycoproteins that bear N- and O-glycans. 

 

1.4.3 Transport of sterol molecules from plasma membrane to 

endoplasmic reticulum in yeast 

The cell wall and ABC transporters seem to play a crucial role in sterol uptake. How sterols are 

intracellulary transported remains unknown. Theoretically, they could be carried by vesicular 

transport or carrier proteins. However, it was shown that treatment with Brefeldin A (a chemical 

compound which disrupts ER to Golgi vesicular trafficking) only partially blocks the transport of 

newly synthesized cholesterol [57]. Transport from PM to ER also seems to be a non-vesicular 

process since estrification of incorporated sterol is not blocked in mutants defected in vesicular 

trafficking [29].  

Yeast lack the homologs of known mammalian sterol binding proteins like START (Steroidogenic 

Acute Regulatory Protein), caveolin or SCP2 (Sterol Carrier Protein 2) [30]. However, they express 

proteins belonging to the conserved ORP family which were shown to bind lipids and oxysterols. 

The yeast ORP family comprises of seven proteins (OSH1-OSH7) which possess at least one 

overlapping function, since deletion of single OSH protein does not have physiological 

consequences, but removal of all of them is lethal [58]. The crystal structure of OSH1 (Kes1p) was 

solved displaying existence of hydrophobic binding pocket covered by a lid forming domain. Kes1p 

was shown to bind sterol (as well as PS and PI) directly, however it is suggested that OSH proteins 
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function more as lipid/sterol sensors than transporters. Although sterols can be taken up in 

mammalian cells by endocytosis, it seems that in yeast cells other, non-vesicular process is 

responsible for sterol uptake [59] (Figure 13).  

   

                 

 

 

 

 

 

 

 

 
Figure 13: Sterol transport pathways in yeast. Straight arrows represent vesicular routes, curved arrows 
represent non-vesicular routes. Brown arrows indicate routes for which there is no direct evidence. Ergosterol 
is synthesized by proteins located in the ER and in lipid particles [60]. Sterol carrier proteins (Osh) might 
transport ergosterol to the cell surface. Vesicular transport to the plasma membrane occurs via the trans Golgi 
network (TGN) and secretory vesicles (SV). Ester hydrolases (Yeh1/2, Tgl1) can mobilize ergosterol from 
steryl esters in the LPs and the PM.The ABC transporters Aus1p/Pdr11p are involved in the uptake of 
extracellular sterols and might transfer them to carrier proteins (Osh). Vesicle budding can lead to 
internalization of sterols to early endosomes (EE). They can either immediately be back-transferred in 
recycling endosomes (RE) or be sent to the multivesicular body (MVB) or the vacuole (Vac). Ncr1/Npc2 
might be involved in transfer of sterols from the MVB/Vac to other organelles [30]. 

    
 

1.4.4 Role of ABC transporters in sterol uptake in yeast 

Saccharomyces cerevisiae exhibit many aspects of sterol homeostasis in common with higher 

eukaryotes but the process of sterol uptake mechanism seems to be different. Yeast cells do not 

express homologs of mammalian LDL receptor and most probably pathway other than endocytosis is 

involved in internalization of sterols. As mentioned before studies on sterol influx revealed the 

involvement of two ABC transporters - Aus1p and Pdr11p since deletion of both proteins abolished 

sterol internalization under anaerobic conditions (Figure 14). Additionally, Aus1p/Pdr11p mediated 

sterol uptake was inhibited by vanadate, indicating that classical inhibitor of ABC proteins can 

blocks the sterol import [1]. It was also proven that coexpression of Aus1p with cell wall 

mannoprotein Dan1p is sufficient to promote sterol in aerobiosis but only to a certain extent [2]. 

Other studies identified a protein called Det1p – a phosphatase which is suggested to be involved in 

the non-vesicular transport of sterols between the endoplasmic reticulum and plasma membrane 
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[61]. Deletion of DET1 disturbs proper trafficking of Aus1p to plasma membrane and leads to a 

decrease in the amount of incorporated sterols. 

 

 

                                    

 

 

 

 

 

 

 

 

 

 

Figure 14: Sterol uptake in AUS1 and PDR11 deletion mutants under anaerobic conditions. AUS1 and 
PDR11 were deleted from the SCY325 control strain and uptake of radioactive cholesterol was investigated. 
Sterol uptake affected by single deletion of AUS1 but not PDR11 gene. Deletion of both genes abolished 
internalization of exogenously supplied cholesterol. Results are the means of ± SD of three independent 
determinations [1]. 
 

It is well known that cells sustain a gradient of sterol concentration across the secretory system with 

the highest amount in the plasma membrane and the lowest at the endoplasmic reticulum where the 

biosynthesis of sterols takes place [30]. Interestingly, there exists a similar gradient of sphingolipids 

among cellular membranes [62]. Since sterols and sphingolipids have a high affinity to each other, it 

has been proposed that raft association is one of the primary determinants of the intracellular 

distribution of those compounds, especially that raft domains are enriched in the plasma membrane 

and absent from endoplasmic reticulum [6,63]. The model in which Aus1p and Pdr11p mediate 

nonvesicular transfer of sterols from plasma membrane to endoplasmic reticulum was proposed by 

Li and Prinz [6]. They showed that the propensity of PM sterols to be moved to the ER is largely 

determined by their affinity for sterol sphingolipid-enriched microdomains (rafts) what suggests that 

raft association is a primary determinant of sterol accumulation in the PM and that Aus1p and 

Pdr11p facilitate sterol uptake by increasing the cycling of sterol between the PM and ER (Figure 

15). 

 

Control pdr11Δaus1Δ pdr11Δ
aus1 Δ

14
C

 C
ho

le
st

er
ol

ac
cu

m
ul

at
io

n 
( D

PM
/m

g 
ce

ll 
w

t )
 

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Control pdr11Δaus1Δ pdr11Δ
aus1 Δ

14
C

 C
ho

le
st

er
ol

ac
cu

m
ul

at
io

n 
( D

PM
/m

g 
ce

ll 
w

t )
 

500

1000

1500

2000

2500

3000

3500

4000

4500

5000



INTRODUCTION 

19 

         

Figure 15: Influence of Aus1p, Pdr11p and raft association on sterol uptake and intracellular 
distribution. Sterol diffuses into the PM from the medium. Aus1p and Pdr11facilitate nonvesicular sterol 
transport to the ER. Sterol (not estrified in the ER) is rapidly moved back to the PM and concentrated there by 
a process that is likely driven by raft association [6]. 

 

1.4.5 Aus1p protein as a putative sterol transporter 

Aus1p (encoded by YOR011W/AUS1) is predicted to be a transmembrane protein localized to the 

plasma membrane. Analysis of its amino acid sequence reveals existence of 12 transmembrane 

domains with topology NBD-TM-NBD-TM (Figure 16A). Sequence alignment of yeast ABC 

proteins with similar topology allowed for identification of crucial motifs characteristic for ABC 

proteins within the sequence of Aus1p (Figure 16B). Analysis of similarity and identity degree 

between the amino acid sequence of Aus1p and other yeast ABC transporters shows that the protein 

of interest has one homolog in Saccharomyces cerevisiae called Pdr11p (YIL013C). Other organisms 

do not possess Aus1p homologs. 
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Figure 16: Aus1p protein is a full size ABC transporter. (A) Schematic structure of Aus1p protein. Aus1p is 
a plasma membrane protein containing 12 transmembrane helices and displaying topology NBD(TMD)-
NBD(TMD). (B) Alignment of yeast ABC proteins with inverted topology reveals the existence of conserved 
domains within both NBD regions. 
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Figure 17: Analysis of the protein sequences of Aus1p and Pdr11p. (A) CRAC (Cholesterol 
Recognition/Integration Amino Acid Consensus) motifs identified within the amino acid sequence of Aus1p 
and Pdr11p. Four marked motifs are conserved between both proteins. 

 

Additionally, 12 putative CRAC (Cholesterol Recognition/Interaction Amino acid Consensus) motifs 

can be found in the Aus1p amino acid sequence and four of them are identical between Aus1p and 

Pdr11p (Figure 17 ). CRAC motifs are supposed to interact with sterols and this [64] the only sort of 

sterol interacting motif which can be detected in silico within Aus1p protein sequence. Although as 

much as 12 putative CRACs exist in the sequence, only two of them (CRAC 4 and CRAC 8) are 

localized on the border of transmembrane domains. Such localization is characteristic for functional 

CRAC motifs and the sequences which fulfill both conditions – fit to the CRAC - motif algorithm 

and localize at the border of TM domains and intra/extracellular loops can be considered to be 

functional CRACs.  

As mentioned in previous chapter deletion of AUS1 gene decreases sterol uptake during anaerobiosis 

and deletion of AUS1 and PDR11 abolishes the sterol influx almost completely. Sterols are crucial 

elements of the cellular membranes so their transport and metabolism are tightly regulated. Initial 

steps of sterol incorporation depend on the activity of ABC transporters and their role seems to be 

indispensable for cell viability. Although several studies have been done, still the exact function of 

Aus1p and Pdr11p proteins remains unclear. 



MATERIALS AND METHODS 

22 

2. AIM OF THE THESIS  

3. MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Equipment  

Incubator IG-150 Incubator, Thermo 

Electron Corporation 

SLM Aminco Spectrofluorymeter Thermo Fisher Scientific 

Confocal Microscope Fluo View-1000 Olympus 

Centrifuge Avanti J-20XP (Rotor JLA10.500) Beckmann Coulter GmbH 

Beckmann Coulter GmbH Ultracentrifuge Optima L-100K (Rotors: 45Ti, 70.1Ti, SW40Ti, 

SW60) 

Table top centrifuge Biofuge  Heraeus 

Gel Electrophoresis Mini Protean System Bio Rad 

Gel-dryer Uniequip 

FPLC System AKTA Amersham Biosciences 

pH-Meter 761 Climatic Knick 

Biophotometer Plus Spectrophotometer Eppendorf 

Phosphoimager Image Analyser FLA3000 BASReader 

Software 

FujiFilm 

Semi-Dry Transfer cell TransBlot SD BioRad 

BioRad 

BioRad 

Thermal Cycler MyCycler 

Agarose Gel Electrophoresis System 

Scintillation Counter Pacard, Canberra Company 

Flow Cytometer FACSCalibur Becton Dickinson 

ABI Prism 7000 Applied Biosystem 

FACS analysis software Cyflogic  Cyflogic 
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3.1.2 Chemicals  

8-Azido-[α-32P] ATP (12.5 Ci/mmol) was purchased from ALT bioscience (Lexington, KY, USA); 

[γ-32P]ATP from Hartmann Analytic (Braunschweig, Germany). The detergent n-dodecyl-β-

maltoside (DDM) was obtained from GLYCON Biochemicals (Luckenwalde, Germany). POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanol- amine), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine), SM 

(sphingomyelin), and NBD (7-nitrobenz-2-oxa-1,3-diazole)-lipids including 25-NBD-cholesterol 

(25-{N-[NBD-methyl]amino}-27-norcholesterol), C6-NBD-PS (1-palmitoyl-2-NBD-hexanoyl-sn-

glycero-3-phosphoserine) and C12-NBD-PS (1-palmitoyl-2-NBD-lauroyl-sn-glycero-3-

phosphoserine) were purchased from Avanti Polar Lipids (Alabaster, AL). POPS stereoisomers were 

a gift from David Daleke (Department of Biochemistry and Molecular Biology, Indiana University, 

Bloomington, Indiana). All restriction enzymes, dNTPs, polymerase and ligase were ordered from 

New England Biolabs (Frankfurt, Germany). M2-Anti FLAG antibody, M2-anti Flag resin, ssDNA 

and SYBR Safe DNA gel stain were purchased from Invitrogen (Darmstadt, Germany). GAMPO 

antibody, molecular weight standards and SM-2 BioBeads were purchased from BioRad (Munich, 

Germany). Bacto Agar, Bacto Tryptone and Yeast Extract were purchased from BD Becton and 

Dickinson company (Lepont de Claix, France). Hybond ECL nitrocelullose membrane and 

autoradiography film Hyperfilm ECL were obtained from Amersham Bioscience. Nycodenz was 

purchased from Axis-Schield (Oslo, Norway). All other chemicals and reagents were obtained from 

Sigma-Aldrich (Munich, Germany) unless otherwise indicated. 

3.1.3 Kits 

QIAprep Spin Miniprep kit Quiagen, Hilden, Germany 

Quiagen, Hilden, Germany QIAquick gel extraction kit 

Micro BCA protein assay kit Pierce, Rockford, USA 

Pierce, Rockford, USA ProFound HA Tag IP/Co-IP Kit 

High Pure mRNA Isolation Kit Roche, Berlin, Germany 

Roche, Berlin, Germany Transcriptor High Fidelity cDNA Synthesis Kit 

TAMRA labelling Kit (Fluoro Spin 557) Princeton Separations, Adelphia, USA 

QuikChange™II XL Site-Directed Mutagenesis Kit Stratagene, Waldbroon, Germany 

ECL plus western blotting detection system Amersham Biosciences, Freiburg, 

Germany 
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3.1.4 Yeast strains 
Table 1: Summary of yeast strains used in this study 

Yeast strain Relevant phenotype Source 

W303  MATa ade2-1 his3-11,15 leu2-

3,112 trp1-1 ura3-1 can1-100  

Roland Lill, Philipps-Universität 

Marburg  

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0 

Michal Surma, MPI Dresden 

MMY28  W303 hem1Δ:: LEU2  Roland Lill, Philipps-Universität 

Marburg  

GKY22  W303 hem1Δ :: LEU2 pdr11Δ :: 

loxP aus1Δ :: loxP-HIS5Sp- loxP  

This study  

MMY112  W303 hem1Δ :: LEU2 cho1Δ :: 

loxP-HIS5Sp-loxP  

This study  

MMY115  W303 cho1Δ :: loxP-HIS5Sp-loxP  This study  

MMY116 W303 AUS1::HA This study 

YPL1 BY4741 hem1Δ :: KAN dan1Δ :: 

loxP-HIS5Sp-loxP 

This study 

YPL2 BY4741 hem1Δ :: KAN dan4Δ :: 

loxP-HIS5Sp-loxP 

This study 

BJ 1991  MATa leu2 trp1 ura3-52 prb1-1122 

pep4-3 gal2  

Ralf Erdmann, Ruhr Universität 

Bochum  

YPH500 MATα ura3-52 lys2-801_amber 

ade2-101_ochre trp1-Δ63 his3-

Δ200 leu2-Δ1 

Agilent Technologies 

 

3.1.5 Bacteria  

DH5α (E. coli) 

 

XL10-Gold 

F- endA1 recA1 hsdR17(rk
- mk

+) supE44 λ- thi-1 gyrA(Na1) relA1 Φ80 

lacZ∆M15∆(lacZY A-argF)    

Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 

relA1 lacHte [F´ proAB lacIqZΔM15 Tn10 (Tetr) Amy Camr] 
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3.1.6 Oligonucleotides and plasmids 

Primers and oligonucleotides used for the PCR reactions are described in Table 1. All constructs 

used in this study are listed in Table 2.  

A vector carrying N terminally Flag-tagged AUS1 sequence was created by ligating the PCR-

generated open reading frame sequence of AUS1 (primer set F-Aus1 and R-Aus1) into the Pac1 and 

Not1 restriction sites of pESC-URA vector (Stratagene, La Jolla, CA). A vector carrying RFP tagged 

AUS1 gene was generated by ligating PCR amplified monomeric RFP (primer set F-Aus1-RFP and 

R-Aus1-RFP) into the PacI restriction site of pESC-URA containing AUS1 gene cloned into 

Not1/Pac1 restriction sites. A mutant unable to hydrolyze ATP was generated by site-directed 

mutagenesis (primer set F-Aus1-MM and R-Aus1-MM) following the manufacturer’s (Stratagene) 

instructions for mutagenesis and was verified by sequencing. Low copy vectors carrying AUS1 gene 

under the control of 1000bp endogenous promoter or under the control of GALs promoter were 

generated by homologous recombination method as described by Oldenburg et al. [65] using the 

primers Prom-F/Prom-R and F-GALs /R-GALs respectively. 

 
Table 1: Summary of primers used in this study 
 

Primer Sequence from 5´ to 3` 
F-Aus1  GAGAGCGGCCGCAATGGATTACAAGGATGACGACGATAAAATCTCAATTTCAAAGTACTTCACT 

 

R-Aus1  GAGAATTAATTAATTAGTTGTGTACAGGCTT  

F-Aus1-RFP  TTAATTAAATGGCCTCCTCCGAGGAC  

R-Aus1-RFP  TTAATTATTTAGGCGCCGGTGGAGTG  

F-Aus1-MM  ATGGGTGAGTCCGGTGCAGGTATGACTACTTTGCTGAATGTC  

R-Aus1-MM  TGATAAGACATTCAGCAAAGTAGTCATACCTGCACCGGACTC  

F-CHO1 GAGAGCGGCCGCAATGGATTACAAGGATGACGACGATAAAATCGTTGAATCAGATGAAGATTTCG 

R-CHO1 GAGATTAATTAATTACTATGGCTTTGGAATTTTCAAG 

1DF-AUS1  AGCTGAATAGTAAAGACTGCTGTAATTCATCTCTCAGTCCTTGCAGTCTGCTTTTTCTGGAATTCCTAGTCT
AGAAGCTT  

1DR-AUS1  CTGTACAGGCTTCTTCCCTCTGTGTGGAATTACTTTGGTGATAATTTTAAAGACCTTTGGCCATACACACCT
CGAGGGCCC  

2DF-PDR11  AGCTCTCTGCTCTTTTAGCTATTAATAGTATTATCACACACTTAAACCCTTTTCTCATTAGTTCTCCTAGTCT
AGAAGCT  

2DR-PDR11  AGTAGATATGGGGACATTTCAAAATTAAAAAGGATATATGATGCTTCGTTGAACGTAGAGGGACCACACC
TCGAGGGCCC  

3DF-CHO1  TGTCATTTTTAGTTGTCTATTTGATTCAATCAAAAAACAAAAATAAAACTATATATTAAAAA 
CTCCTAGTCTAGAAGCTT  

3DR-CHO1  AAAGTAGAATAAAAAGTTATATGTACAAATTTTTTTTGACGCCAGGCATGAACAAAAACTA 
CACACACCTCGAGGGCCC  

4DF-DAN1 ATGTCTAGAATTAGTATATTAGCTGTCGCCGCAGCATTAGTGGCAAGTGCAACCGCCGCATCCTCCTAGTC
TAGAAGCTT 

4DR-DAN1 CTATAACAATAGAGCGGCGGCACCAGCAATAGCAGCGGCACCGAAAACACCGTTATTGAACCACACACCT
CGAGGGCCC 

5DF-DAN4 CAAACTGAAATAAGTACCAGTTCCTGTCGAATCTGCGATATCCGAAAAACTCCGAAGAAAGCACTCCTAG
TCTAGAAGCTT 

5DR-DAN4 TCAATTTAAATTATTTTACAATTGTTTATATGCTTGTGAAGATTATATTGTATCACTATAGCACACACCTCG
AGGGCCC 

6DF-HEM1 ATGCAACGCTCCATTTTTGCGAGGTTCGGTAACTCCTCTGCCGCTGTTTCCACACTGAATAGCTCCTAGTCT
AGAAGCTT 

6DR-HEM1 TTACTGCTTGATACCACTAGAAACCTCTAGTTGTTTAACGATGGGGTCTCTAACATTAGGGCACACACCTC
GAGGGCCC 

Prom-F  CCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAGCTCATTTCAGGAAGCGATCAAAAAG  

Prom-R  CACCTTGAAGCGCATGAACTCCTTGATGACGTCCTCGGAGGAGGCCATGTTCTGTACAGGCTTCTTCCCT  
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Primer Sequence from 5´ to 3` 
F-GALs ATACCTCTATACTTTAACGTCAAGGAGAAAAAACCCCGGATTCTAGAATGTCAATTTCAAAGTACTTCAC 

R-GALs CACCTTGAAGCGCATGAACTCCTTGATGACGTCCTCGGAGGAGGCCATGTTCTGTACAGGCTTCTTCCCT 

7F-AUS1-HA AAGGTCTTTAAAATTATCACCAAAGTAATTCCACACAGAGGGAAGAAGCCTGTACAGAACGGAGCAGGGG
CGGGTGC 

7R-AUS1-HA TCAAATCCGATTGGAAGCATTTTTTGTCGTGCACTTTTGCTATATAAATATTTTTTGAGCGAGGTCGACGGT
ATCGATAAG 

8F-ACT-RT GGCATCATACCTTCTACAACG 

8R-ACT-RT TACCGGAAGAGTACAAGGAC 

9F-AUS1-RT TGAGGCTGCACTAACAATCG 

9R-AUS1-RT TCGTAAACGAGCGTGTTGTC 

10F-PDR11-RT GAAGAAGAAGCCCGGAAATC 

10R-PDR11-RT TAGCATCTTGCAGACCGTTG 

 
1-6 Primer sets used to amplify the respective gene disruption cassette containing loxP-HIS5Sp loxP. 
7-10 Primer sets used for RT-PCR 
Prom-F/Prom-R primer set used for generation of pRS416 vector carrying AUS1 gene under control of 1000bp 
endogenous promoter 
F-GALs/R-GALs primer ser used for generation of pRS416 vector carrying AUS1 gene under the control of 
GALs promoter 
 

Table 2: Summary of plasmids used in the studies 

Name Marker Description Source 

pESC-ura URA Empty vector Agilent 

Technologies 

pRS416 URA Empty vector Michal Surma, 

MPI Dresden 

pESC-AUS1 URA pESC-ura vector containig N terminally Flag tagged  

AUS1 gene under the control of GAL10 promoter 

This study 

pESC-AUS1-RFP URA pESC-ura vector containing AUS1 gene tagged at N 

terminus with Flag tag and at C terminus with monomeric 

RFP; gene is placed  under the control of GAL10 

promoter 

This study 

pESC-AUS1 K788M URA pESC-ura vector containig N terminally Flag tagged  

AUS1 carrying the mutation within Walker A motif of 

NBD2; gene under the control of GAL10 promoter 

This study 

pESC-AUS1 K788M -

RFP 

URA pESC-ura vector containing AUS1 gene tagged at N 

terminus with Flag tag and at C terminus with monomeric 

RFP and carrying the mutation within Walker A motif of 

NBD2; the gene is placed under the of GAL10 promoter 

This study 
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Name Marker Description Source 

GalS-AUS1-RFP URA pRS 416 vector  containing AUS1 gene tagged at the C 

terminus with monomeric RFP; the gene is placed  under 

the control of GALs promoter 

This study 

Endo-AUS1-RFP URA pRS 416 vector  containing AUS1 gene tagged at the C 

terminus with monomeric RFP; the gene is placed  under 

the control of AUS1 endogenous promoter 

This study 

pESC-CHO1 URA pESC-ura vector containig N terminally Flag tagged  

CHO1 gene under the control of GAL10 promoter 

This study 

pESC-PDR11 URA pESC-ura vector containig N terminally Flag tagged  

PDR111 gene under the control of GAL10 promoter 

This study 

 

3.1.7 Media and buffers 

Yeast medium and plates 

SD 0.17% Yeast Nitrogen Base, 0.5% Ammonium sulfate, 0.0055% Adenine, 

0.0055% L-Thyrosin, 0.0055% Uracil, 2% glucose, 1% aminoacides stock  

SG 0.17% Yeast Nitrogen Base, 0.5% Ammonium sulfate, 0.0055% Adenine, 

0.0055% L-Thyrosin, 0.0055% Uracil, 2% galactose 1% aminoacides stock 

Sterol containing 

medium 

For a sterol supplementation selected medium (SD, SG or YPD) was 

supplemented with  sterol mixture (20 μg/ml of sterol and 0.5% Tween 80),  

and 0.01 mg/ml methionine 

ALA containing 

medium 

For supplementation with 5-aminolevulinic acid (ALA) selected medium 

(SD, SG or YPD) was supplemented with 20 μg/ml aminolevulinic acid 

Media for growth of 

CHO1 mutants 

Yeast mutants lacking CHO1 gene were grown in selected medium (SD or 

SG) was supplemented with 600mM ethanolamine, 0.01 mg/ml myoinositol 

YPD 1% BactoYeast Extract, 2% BactoPepton, 2% sugar (glucose or galactose) 

 

For preparation of solid media, the liquid media were supplemented with 2% agar. 
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Bacteria medium  

LB-medium  1% Bacto™ Tryptone, 0.5% Bacto™ Yeast Extract, 0.5% NaCl, in ddH2O, 

pH 7. Optionally ampicilin was added to the medium in concentration of 

100 μg/ml. 

 

Buffers 

Buffer Content 

10x PBS 40 g NaCl, 1 g KCl, 7.1 g Na2HPO4  2H2O, 1 g KH2 PO4 in 500 ml ddH2O 

TBS 50 mM Tris-HCl pH 7.4, 150 mM NaCl 

TBST 100 ml 10xTBS, 10 ml 10% Tween 20, 890 ml H2O, 

10x PAGE running 

buffer 

30 g Tris-Base, 144 g Glycin, 10 g SDS in 1 l ddH2O 

4x SDS-PAGE-

sample buffer 
25% β-mercaptoethanol, 5% SDS, 0.05% Bromophenol Blue , 25% 

Glycerin, 12.5% 1 M Tris-HCl buffer pH 6.8 

Blocking buffer 0.1% Tween-20, 5% milk, 1x PBS in ddH2O 

Transfer buffer 40 ml PAGE-Buffer, 20 ml methanol, 0.6 ml SDS (10%), in 100 ml ddH2O 

IP buffer 50mM Tris, 100 mM KCl, 1xPIC, 1mM PMSF 

TK buffer 100 mM KCl, 50 mM Tris-HCl, pH 7.4 

TKG buffer 100 mM KCl, 50 mM Tris-HCl, 20% glycerol, pH 7.4 

Reconstitution 

buffer 

20 mM HEPES, 150 mM KCl, pH 7.4 

 

Composition of SDS-PAGE gels 

Resolving gel (8%) 4.6 ml ddH2O, 2.7 ml Acrylamid/Bisacrylamid (30%), 2,5 ml 1.5 M Tris-

HCl pH 8.8, 100 µl SDS (10%), 100 µl APS (10%), 4 µl TEMED, 

Stacking gel (5%) 3.4 ml ddH2O, 1 ml Acrylamid/Bisacrylamid (30%), 1.5 ml 0.5 M Tris-HCl 

pH 6.8, 60 µl SDS (10%), 60 µl APS (10%), 6 µl TEMED 
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3.2 Methods 

3.2.1 Polymerase Chain Reaction (PCR) 

The PCR (polymerase chain reaction) technique allows for amplification of specific DNA sequence 

in vitro. The reaction requires: the nucleotide mixture (dNTPs), the forward and reverse primers 

(namely F and R), the enzyme DNA polymerase and a buffer, specific for a type of used polymerase. 

The denaturation of the DNA template is the first step of reaction and leads to separation of DNA 

strands. During the second step – so called annealing – primers anneal with template what allows for 

generation of new DNA strands during the third, extension step. The Table 3 represents the standard 

conditions recommended for PCR reaction carried with Phusion Polymerase. 

Table 3: Standard PCR reaction mixture and amplification program 
 

PCR reagents (final concentration) PCR scheme 

DNA template 50 ng CYCLE T (°C) Time 

dNTPs 200 µM Initial Denaturation 98 1 min 

Polymerase 1 U *Denaturation 98 10 sek 

F-primer 0.5 µM *Annealing primer 
dependent 

30 sek 

R-primer 0.5  µM *Extension 72 1min/1kB 

PCR Buffer 1x Final extension 72 15 min 

ddH2O to final volume of 50 µl Cooling 4 30 min 

 
* The denaturation-annealing-extension steps were repeated 30 times 
 

3.2.2 Quick Change Mutagenesis 

The Quick Change mutagenesis strategy allows for insertion of point mutation into the dsDNA 

plasmid. The reaction was carried out according to the Stratagene kit (QuikChange™II XL Site-

Directed Mutagenesis Kit) manual. Generally, the mutation was inserted during PCR step followed 

by digestion of parental (not mutated) DNA with DpnI enzyme (1 h, 37ºC) - an endonuclease that 

digests methylated DNA. The product of mutagenesis – a plasmid carrying mutated fragment DNA 

was then transformed into E.coli XL10-Gold cells for amplification. Plasmids were recovered from 

bacteria and sequenced. 
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3.2.3 DNA purification, cleavage and ligation 

To control the size of PCR products or products obtained after restriction digestions, the DNA 

fragments were run on 1% agarose gel supplemented with SYBR Safe gel stain for visualization. If 

necessary, DNA was extracted from agarose gel using QIAquick Gel Extraction Kit. Enzymatic 

cleavage of DNA fragments with restriction enzymes was carried out in a final volume of 30 µl (1-2 

µg of DNA, 1xbuffer, 1U of selected enzyme, water) for 3 h at 37ºC. Before ligation, all DNA 

fragments were run on agarose gel and purified from the gel. Ligation was carried out using T4 

ligase with following rations of vector to insert: 1:3, 1:6, 1:9 (w/w). Reaction was run for 10 min at 

25ºC and 16 h at 16ºC. The product of ligation was used to transform DH5α E.coli competent cells. 

3.2.4 Transformation of bacteria 

 50 μl of E.coli DH 5α chemically competent cells was incubated for 10 min with ligation product on 

ice. Afterwards, 50 sek of heat shock at 42ºC was applied, followed by 2 min incubation on ice. 

About 700 µl of LB medium was added to the mixture and the cell solution was shaken for 1 h at 

37ºC. Transformed cells were plated on LB plates supplemented with appropriate antibiotics. 

3.2.5 Plasmid purification from bacteria 

Plasmid DNA was purified from 10 ml overnight bacterial cultures growing on LB medium 

(supplemented with appropriate antibiotic) using QIAprep Spin miniprep kit. The DNA was eluted 

from columns with 50 μl of elution buffer and its concentration was determined with a 

Biophotometer Plus Spectrophotometer. New generated plasmids were sequenced by Invitek 

company (Invitek, Berlin, Germany). 

3.2.6 Transformation of yeast cells 

Yeast cells were transformed with DNA (in form of plasmid or PCR product) by lithium-acetate 

method. Shortly, yeast was cultivated to the 0.6-1 OD600 and subsequently 2 ml of the cell culture 

were harvested by centrifugation (5 min, 700 g, 23ºC) and washed once with 500 μl of 0.1 M lithium 

acetate. Cell pellet was dissolved in 250 μl of 50% PEG 3350 and mixed with 37.5 μl 1M lithium 

acetate, 10 μl of boiled ssDNA (11 μg/ml) and 45 μl of DMSO. Cells were incubated 30 min at 30ºC 

and then heat shocked by 15 min incubation at 45ºC. Pelleted cells were plated on plates with 

appropriate selective medium and incubated for 3-4 days at 30ºC. 

3.2.7 Gene deletion 

A PCR generated deletion strategy was used to replace selected yeast genes with HIS5 deletion 

cassette [66]. A specific primers (HPLC purified) overlapping around 60 bp from upstream and 

downstream of deleted DNA fragment were designed and used to amplify deletion cassette by PCR 
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method. PCR products were run on agarose gel, purified and transformed into yeast cells according 

to the previously described methods. Plates were incubated at 30ºC for 5-7 days and obtained 

mutants were analysed by PCR method. 

3.2.8 RNA isolation from Saccharomyces cerevisiae 

RNA was isolated from the exponentially growing cells (0.8 OD 600) with a High Pure RNA Isolation 

Kit. 10 ml of cells were harvested and diluted in 200 µl of PBS. The cell wall was removed by 

treatment with 10 µl of lyticase (0.5 mg/ml) for 15 min at 30ºC. The further steps of RNA isolation 

were done according to the kit manual. The concentration of RNA was evaluated by measurement of 

absorbance at 260 nm. 

3.2.9 cDNA synthesis and evaluation of transcript amount by RT-PCR 

cDNA was synthesized on mRNA template (5 μg) using Transcriptor High Fidelity cDNA Synthesis 

Kit (Roche, Germany). Amplification of cDNA was done on ABI Prism 7000 cycler and the data 

were normalized to the amount of actin (ACT1) as a housekeeping gene. The reaction conditions are 

depicted in the Table 4. 

Table 4: RT-PCR reaction mixture and amplification program 

PCR reagents PCR scheme 

cDNA template 0.5 µl CYCLE T (°C) Time 

Sybr Green Mix 10 µl Pre heating I 50 30 min 

F-primer 2.4 µl (20µM) Pre-heating II  95 15 min 

R-primer 2.4 µl (20µM) * Deanturation 94 15sek 

ddH2O  to final volume = 20 µl *Annealing 60 30 sek 

*Extension 72 30sek 

*The denaturation-annealing-extention steps are repeated 45 times 
 

The level of the transcript amount was evaluated by ΔΔCt method: 

Fold difference = 2-ΔΔCt    where   ΔΔCt = ΔΔCt sample - ΔΔCt calibrator 

* Ct threshold cycle 

3.2.10 Protein overexpression and purification 

Saccharomyces cerevisiae strain BJ1991 carrying a vector expressing tagged protein was grown in 

selective SD media to 1-1.5 OD600 (30°C, 170 rpm).  Cells were harvested (700 g, 5 min, 24°C), and 

inoculated into selective SG media to induce protein expression. Growth was continued at 30°C and 

cells (around 15 g wet weight) were harvested 16 h after induction, lysed by vortexing 5 times for 1 
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min with acid-washed glass beads (10 g, 0.5 mm) and 10 ml ice-cold TK buffer containing the 

protease inhibitors and 1 mM phenylmethylsulfonyl fluoride (PMSF). The lysate was clarified by 

centrifugation (500 g, 10 min, 4°C). Membranes were collected from the precleared lysates by 

centrifugation (50.000 g, 45 min, 4°C) and detergent-solubilized at a protein concentration of 1 

mg/ml in TKG buffer supplemented with 1% (w/v) n-dodecyl-maltoside (DDM) on an end-over-end 

rotator for 2 h at 4°C. Insoluble material was removed by centrifugation (100.000 g, 45 min, 4°C) 

and the supernatant was incubated with 14 µl/ml M2 anti-Flag affinity resin for 12 h at 4°C. The 

resin was washed three times for 10 min at 4°C with TKG buffer containing 0.05% (w/v) DDM. 

Proteins were eluted with 100 µg/ml triple FLAG peptide in TKG buffer containing 0.05% (w/v) 

DDM. Proteins were concentrated using Amicon Ultra with molecular weight cutoff of 50 kDa. 

Elution fraction was analyzed by SDS-PAGE and Coomassie staining. Concentrations of purified 

proteins were determined using Micro BCA protein assay kit. 

3.2.11 SDS PAGE 

For analysis of protein samples SDS-PAGE gels were prepared. Samples were mixed with 4x 

concentrated loading buffer before application on the gel. Gels were run at 140 V for 40 min and 

subsequently proteins were visualized by Coomassie Blue or were used for Western Blot analysis. 

Blue Native PAGE (BN-PAGE) was prepared as described by Witting et al.[67] using stacking gel 

containing 3.5% acrylamide and gradient resolving gel containing 4% to 13% acrylamide. 

3.2.12 Western Blot 

For detection of tagged proteins with specific antibodies, proteins resolved on SDS-PAGE gels were 

transferred on the nitrocellulose membranes for 40 min at 20 V. The membranes were blocked with 

5% not-fat dry milk supplemented with 0.05% Tween 20, for at least 2 h at room temperature. 

Afterwards membranes were washed twice with TBST buffer for 10 min and incubated with primary 

antibody (diluted according to the supplier instructions) for 12 h at 4ºC. Subsequently membranes 

were washed twice with TBST and incubated 1 h with secondary antibody (GAMPO 1:1000) diluted 

in milk. After washing with TBST Western blots were developed with an ECL Western Blotting Kit 

on photofilm. 

3.2.13 Protein Mass Spectrometry 

The protein preparation containing the recombinant Aus1p protein was separated on 8% SDS-PAGE 

gel. After staining with Coomassie Blue the gel lane was cut in 12 slices. Proteins in each of the 

slices were converted to peptides by in-gel digestion with trypsin. The recovered peptides were 

separated on a 20 cm reverse-phase column (Waters, Milford, MA, USA) using a 10-50% 

acetonitrile linear gradient on a nonoUPLC system (Waters, nanoAcquity, Milford, MA, USA). The 
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separated peptides were sprayed directly into a Q-TOF premier (Waters, Milford, MA, USA) mass 

spectrometer. The recorded spectra were analysed using the proteinLynx (Waters, Milford, MA, 

USA) and MASCOT (Matrix Science, London, UK) software packages. 

3.2.14 Size Exclusion Chromatography 

Size exclusion chromatography was conducted using an AKTA Purifier 900 fast protein liquid 

chromatography (FPLC) system equipped with a Superdex 200 Hi Load 16/60 size exclusion 

column and a UV detector, all obtained from Amersham Pharmacia Biotech (Little Chalfont, United 

Kingdom). Protein was injected onto the column preequilbrated with buffer liquid phase (TKG plus 

0.05% DDM) at a flow rate 1 ml/min.  

3.2.15 Preparation of liposomes and protein reconstitution 

For protein reconstitution, lipids were dissolved in chloroform and evaporated. The lipid film (2.5 

mg) was rehydrated in 1 ml reconstitution buffer (150 mM KCl, 20 mM HEPES, pH 7.5). The 

resulting multilamellar liposomes were extruded 31 times through a polycarbonate filter of a pore 

size of 200 nm (Avanti Polar Lipids). The obtained unilamellar liposomes (LUVs) were destabilized 

by incubation with 1.5 mM DDM. Proteoliposomes were prepared by addition of purified protein to 

destabilized liposomes in a lipid to protein ratio of 20:1 (w/w) followed by a 15 min incubation at 

room temperature. Protein-free liposomes were prepared similarly by replacing purified protein with 

elution buffer. DDM was removed by incubation for 16 h at room temperature with 0.3 g/ml SM-2 

Adsorbent Bio-Beads (Bio-Rad, Hercules, CA). The resulting proteoliposomes were collected by 

centrifugation (100.000 g, 1 h, 4°C), resuspended in reconstitution buffer and used for assays 

immediately. 

3.2.16 Density flotation 

Density flotation was prepared as described by Chen at al. [68]. Shortly, 250 μl of proteoliposomes 

was mixed with an equal volume of 80% Nycodenz in an 11 x 60 mm centrifuge tube (Beckman, 

Fullerton, CA) and overlaid with 0.5 ml 30%, 0.5 ml 20%, 0.5 ml 10%, 0.5 ml 5%, 0.5 ml 2.5% 

(w/v) Nycodenz, and 0.5 ml reconstitution buffer. After centrifugation (130.000 g, 4 h, 4°C), 14 

fractions (0.25 ml) were collected from the top of centrifuge tubes and analyzed for RFP 

fluorescence and total phosphate determination. Phosphate determination was prepared as described 

by Bottcher [69]. 

3.2.17 Collisional quenching assay 

To elucidate the orientation of reconstituted Aus1p-RFP, collisional quenching of RFP fluorescence 

with CuCl2 was performed. Vesicles in the absence and presence of 0.5% (w/v) Triton X-100 were 
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titrated with CuCl2 (0 to 30 μM, as indicated) until RFP fluorescence intensities did not decrease 

further. Parallel samples were measured in which MgCl2 was used instead of CuCl2 showing that Mg 

had no detectable effect on RFP fluorescence. Data were corrected for volume changes and 

scattering. The fraction of RFP that is accessible to the quencher was calculated as (Fb - FCu)/(Fb - F0) 

x 100, where Fb is the initial fluorescence of vesicles in buffer without CuCl2, FCu is the fluorescence 

plateau value of vesicles titrated with CuCl2, and F0 is the fluorescence plateau value of Triton X-

100-permeabilized vesicles titrated with CuCl2. 

3.2.18 ATPase assay 

Purified Aus1p (2-10 μg) was mixed with 45 μl reconstitution buffer containing 2 mM dithiothreitol 

and incubated for 20 min at 23°C for protein activation. ATPase activity was analyzed by measuring 

the release of inorganic phosphate (Pi) using two methods: (i) a spectrophotometric assay following 

the manufacturer’s instructions (EnzChek® Phosphate Assay Kit) (ii) an assay with [γ-32P]ATP as 

described by Gorbulev et al. (26). Briefly, for the [γ-32P]ATP assay, 5 μl ATP mix (1 mM ATP, 5 mM 

MgCl2, 2 μCi [γ-32P]ATP) was added to the mixture and the reaction was carried on for 40 min at 

27°C. The reaction was stopped by placing samples on ice and the addition of 1.5 ml of reagent A 

(10 mM ammonium molybdate in 1 N HCl), 15 μl of 20 mM H3PO4 and 3 ml of reagent B 

(isobutanol, cyclohexane, acetone and reagent A in a ratio of 5:5:1:0.1, v/v). The mixture was mixed 

vigorously for 30 s. After phase separation, 1 ml of the organic phase was mixed with scintillation 

fluid (Ultima Gold XR, Perkin Elmer, Wiesbaden, Germany) and the release of inorganic phosphate 

was determined by β-counting on Packard Liquid Scintillation Analyzer. A similar protocol was used 

to determine the ATPase activity of reconstituted Aus1p. Inhibition was assayed in cocktails 

containing ATP mix supplemented with either 1 mM orthovanadate, 1 mM BeSO4 and 5 mM NaF 

(BeFx), or 1 mM AlF3). Orthovanadate solutions (100 mM) were prepared from Na3VO4 (Fisher 

Scientific GmbH, Schwerte, Germany) at pH 10 and boiled for 15 min before each use to break 

down polymeric species. 

3.2.19 Nucleotide Binding Assay 

Nucleotide binding was measured by 8-azido-[α-32P]ATP photo cross-linking experiments. Reactions 

were performed in a 96-well microtiter plate in a final volume of 25 μl per reaction. Purified wild-

type or mutant Aus1p (about 2 μg of protein) was incubated for 5 min on ice with 8-azido-[α-

32P]ATP (0.01- 20 μM) in reaction buffer (100 mM KCl, 2.5 mM MgCl2, 50 mM Tris/HCl, pH 7.4). 

For competition experiments, 0.1 μM to 20 mM unlabeled ATP was included in the buffer. 

Subsequently, samples were irradiated with UV light (254 nm, 8 W) for 5 min at 4°C, separated by 

SDS–PAGE, Coomassie Blue stained, dried and exposed to a phosphor screen. Samples were 

visualized with a FLA-3000 Fuji Imaging System and bands were quantified using Aida Image 
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Analyser 3.24 software. Apparent Kd for 8-azido-[α-32P]ATP values were obtained from the best fit 

of the data to a hyperbolic curve using SigmaPlot software (Systat Software, Inc) and the equation Y 

= BmaxX/(Kd(azidoATP) + X), where Bmax is the maximal binding, X is the concentration of 8-azido 

nucleotide, and Kd(azidoATP) is the concentration of the 8-azido-32P-nucleotide required to reach half-

maximal binding. The half maximal inhibitory concentration (IC50) for ATP was derived by plotting 

labeling intensities corresponding Aus1p as a function of unlabeled ATP concentrations. The 

KD(azidoATP) values and the IC50 values were used to calculate the KD(ATP) for ATP applying the Cheng-

Prusoff equation [70]. 

3.2.20 Spotting assay 

Yeast cells were inoculated from the plate to 5 ml of appropriate medium and cultivated up to 0.8-

0.9 OD600 at 30 ºC. Two ml of cells were then harvested (700 g, 5 min, 23ºC) and washed once with 

PBS buffer. Cells were diluted to 0.3 OD600 and five, five fold serial dilution was prepared. 3μl of 

each dilution was spotted on the testing plates and the plates were incubated 3-5 days at 30 ºC. 

3.2.21 Lipid and Sterol Uptake Assay 

Uptake of 25-NBD-cholesterol was analyzed on cells cultured for 16 h in minimal medium 

containing 5 mg/ml Tween 80 and 20 μg/ml cholesterol mix (cholesterol : 25-NBD-cholesterol; 1:1, 

w/w). Before analysis by flow cytometry or confocal microscopy, cells were washed twice with ice-

cold PBS buffer containing 0.05% (w/v) Nonidet P-40 and finally cells were resuspended in PBS. 

Uptake of C6-NBD-PS was analyzed as described before [71] with small modifications. Briefly, cells 

were grown to 0.6-0.8 OD600 on SD medium and subsequently harvested by centrifugation (3.000 g, 

5 min, room temperature). Cells (5x107) were incubated in 250 μl SD medium with 60 μM C6-NBD-

PS for 30 min at 30°C with periodic mixing. Prior to analysis by flow cytometry, cells were washed 

twice in ice-cold medium containing 3% (w/v) bovine serum albumin to extract C6-NBD-PS from 

the cell surface. Flow cytometry was performed on FACSCalibur flow cytometer equipped with an 

argon laser using Cell Quest software. One μl of 1 mg/ml propidium iodide in water was added to 

107 cells in 1 ml PBS just before flow cytometry analysis. Cells were analyzed without gating during 

the acquisition and the data were analyzed by Cyflogic software (www.cyflogic.com). A histogram 

of the red fluorescence (propidium iodide) was used to set the gate that excluded dead cells from the 

analysis. Green fluorescence (C6-NBD-PS) of living cells was plotted on a histogram and the 

geometric mean of the fluorescence intensity was calculated.  
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3.2.22 Microscopy 

Microscopy was performed using FluoView 1000 microscope (Olympus, Tokio, Japan) and a 60x 

(N.A. 1.35) oil-immersion objective. Fluorescence of NBD was excited with a 488 nm argon laser 

and recorded between 500 and 530 nm. RFP was excited using a 559 nm laser and emission was 

recorded between 570 nm and 670 nm. For staining with Calcofluor White cells (around 40μl OD 

0.5) were placed on the glass slide. Subsequently 5 μl of CW solution (1mg/ml) and 5 μl of 10% 

potassium hydroxide were added. After 1 min incubation the fluorescence of Calcofluor White was 

examined by microscopy using excitation at 405 nm and recording the emission between 420 nm 

and 460 nm. 

3.2.23 Measurement of phosphatidylserine transport in liposomes 

Proteoliposomes with desired lipid composition were labelled with C6NBD-PS. For labelling of 

outer leaflet, short chain NBD-PS diluted in buffer was added directly to the liposomes and 

incubated 10 min at 27ºC. Labelling on both leaflets was done by integration of 0.6 mol % of 

fluorescent lipid during formation of liposomes. For the assay 20 µl of liposomes and 

proteoliposomes (12 mg/ml of lipid) were incubated 40 min at 27ºC with a buffer containing 0.5 mM 

ATP, 1mM MgCl2, 2 mM DTT and optionally 1 mM vanadate as an inhibitor of protein activity. The 

fluorescence intensity (ex: 470 nm, em: 540 nm) was recorded 30 sec before addition of dithionite 

(50 mM final concentration) and 540 sek afterwards. At the last step 0.5% Triton X-100 was added 

and fluorescence was recorded for additional 30 sec. 

3.2.24 Preparation of Giant Unilamellar Vesicles (GUVs) 

GUVs were prepared by electroformation method. The desired lipid composition (100 nmol of lipid 

in total) was dissolved in chloroform and dried on metal parts of electroformation chamber under 

vaccum for at least 1h. Subsequently, the chamber was filled with 250 µl of swelling buffer and 

closed tightly. The chamber was connected to the power supply and AC field was applied with 

stepwise increasing voltage from 20 mM up to 1.1 V in one step per 6 min. Frequency at 10 Hz was 

constant for at least 3 h and was followed by 30 min at 4Hz and 1.3 V to detach the GUVs. For 

generation of proteo-GUVs (GUVs containing protein) proteoliposomes were dried 24 h on metal 

parts of the electroformation chamber in NaCl saturated chamber at 4ºC and the further steps were 

the same as in case of GUV formation. For microscopy samples were diluted 1:1 with PBS and 

incubated 10 min before visualization. 
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3.2.25 Measurment of the liposomal membrane order 

The measurement of liposomal membrane order was done as described by Kaiser et al. [72]. Shortly, 

to determine the GP (Generalized Polarization) values, 200 μM LUVs were stained with 200 nM 

Laurdan for 12 h at room temperature. Samples were measured using Aminco spectrofluorymeter 

and excitation wavelength of 385 nm. Emission spectra were recorded between 400 nm and 560 nm. 

GP values were calculated according to the formula: 

GP = (I 440-I 490) /(I 440+I 490) 

3.2.26 Immunoprecipitation 

To induce the expression of HA tagged Aus1 protein, 250 ml of yeast culture was grown overnight to 

1 OD 600 on selective medium in the presence of sterol mixture (20 μg/ml of cholesterol, 0.5% Tween 

80) at 30ºC. 25 ml of 11% formaldehyde was added directly to the culture and incubated at room 

temperature for 20 min. Subsequently 37.5 ml of Glycine Stop solution (3 M glycine, 20 mM Tris) 

was added and the mixture was incubated for 5 min at room temperature. Cells were pelleted (700 g, 

5 min, 4ºC) and washed one with cold water supplemented with 1mM PMSF. Cell pellet was 

redissolved in IP buffer in ratio 10 ml of buffer per 5 g of cells. Cells were disrupted by vortexing 

with glass beads 5 times with 1 min break and incubation on ice. Cell debris were removed by 

centrifugation (500 g, 5 min, 4ºC) and the supernatant was centrifuged 100.000 g 45 min 4ºC. The 

pellet was redissolved in TKG buffer to the final protein concentration of 1 mg/ml and incubated 

with 1% digitonin for 2 h at 4ºC with rotation. Sample was centrifuged 100.000g 45 min 4ºC. The 

supernatant was recovered and further steps were done using Pierce Immunoprecipitation Kit 

following manufacturer instructions. Final eluate was analyzed by mass spectrometry as described 

before.
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4. RESULTS 

4.1 Cloning and expression of AUS1 gene from Saccharomyces cerevisiae 

To characterize the putative sterol transporter Aus1p in details the full length AUS1 gene was cloned 

and expressed in yeast Saccharomyces cearevisiae. Two versions of protein were overexpressed: 

Aus1p with Flag tag at N terminus (159 kDa) and Aus1p with Flag tag at N terminus and RFP tag at 

C terminus (184.5 kDa).  

 

 

 

 

 

 

 

 

 

 

 

Figure 18:  Expression of RFP tagged Aus1p protein under different conditions. Yeast cells 
hem1∆aus1∆pdr11∆ and W303 wild type cells were transformed with a centromeric vector carrying Aus1p-
RFP sequence under the control of AUS1 endogenous promoter (Endo-AUS1-RFP) and were cultivated in the 
presence of ALA, cholesterol or without any supplementation. Subsequently cells were visualized by 
fluorescence microscopy. Phase/fluorescent overlay images show that blocking of the sterol synthesis (by 
removing aminolevulinic acid from media) leads to activation of Aus1p protein expression in 
hem1∆aus1∆pdr11∆ yeast strain and that this activation is independent of the presence of sterol in the culture 
medium. No protein expression was detected in wild type W303 cells. 

 

 

 

 

 

 

 

he
m

1∆
au

s1
∆

pd
r1

1∆

ALA Cholesterol No supplementation

W
30

3



RESULTS 

39 

A 

  

 

 

 

 

B 

 
 

 

 

 

 

 

Figure 19: Expression of RFP tagged Aus1p protein in Saccharomyces cerevisiae. Yeast cells were growing 
on media supplemented with sterol/Tween mixture and 2% galactose until the logarithmic phase. Aus1p 
protein was overexpressed from (A) strong galactose promoter (pESC-AUS1-RFP) or (B) from weak GALS 
promoter (GalS-AUS1-RFP) in hem1∆aus1∆pdr11∆ and W303 yeast strains. Subsequently cells were 
visualized by fluorescent microscopy. Phase/fluorescent overlay images show that overexpressed Aus1p-RFP 
protein was able to reach plasma membrane in both strains when expressed from weak and strong promoter. 
 

The full length Aus1p protein was effectively expressed upon 16 h of induction with 2% galactose or 

after induction of expression from natural promoter for the same time. The endogenous promoter 

containing 1000bp upstream of the AUS1 ATG starting codon was long enough to mediate activation 

of AUS1 expression in hem1∆aus1∆pdr11∆ cells upon starving for sterols or in medium containing 

sterol/Tween mixture (20μg/ml of sterol, 0.5% Tween 80) (Figure 18). In contrast, no expression 

from endogenous promoter was observed in aerobically growing cells with active ergosterol 

biosynthesis pathway. Those results are in line with the previous reports that AUS1 is an anaerobic 

gene [1]. The RFP tagged protein localized to plasma membrane when expressed under the control 

of endogenous promoter in hem1∆aus1∆pdr11∆ yeast strain (Figure 18) and in  hem1∆aus1∆pdr11∆ 

and wild type W303 strain when expression was driven from galactose inducible vectors (Figure 

19A and B). In all cases upon induction of protein expression fluorescent signal was detected also 

W303hem1∆ aus1∆ pdr11∆ W303hem1∆ aus1∆ pdr11∆

W303hem1∆ aus1∆ pdr11∆ W303hem1∆ aus1∆ pdr11∆
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from other cell compartments like vacuole or endoplasmic reticulum. The endoplasmic reticulum is 

the site of protein synthesis and detected signal most likely corresponded to the newly synthesized 

molecules of Aus1p-RFP protein. Plasma membrane proteins designed for degradation are 

endocytosed and delivered to the vacuole for degradation [73]. The fluorescent signal obtained from 

that compartment after induction of AUS1 expression corresponded probably to the protein 

molecules that undergo terminal degradation.  

Since two types of constructs were used in this study: containing Flag tagged or Flag and RFP 

tagged Aus1p it was necessary to test if the fused reporter molecules do not disturb protein function. 

To test functionality of the constructs yeast cells lacking only HEM1 gene or HEM1 and 

AUS1/PDR11 were transformed with the appropriate plasmid expressing tagged Aus1p and grown 

on media supplemented with sterol (survival only in the presence of functional sterol importer) or 

aminolevulinic acid (survival independent of the sterol uptake process) (Figure 20). 

Overexpression of Aus1p (as well as Aus1p-RFP) protein partially rescued the growth of 

hem1Δaus1Δpdr11Δ yeast strain on the media supplemented with sterol. Therefore was concluded 

that the tagged protein reaches the proper destination place and is able to fulfill its function. To 

obtain a good negative control for further experiments an ATPase inactive version of Aus1p protein 

was created for both – Flag tagged protein (called later Aus1pK788M) and its RFP tagged version 

(called later Aus1pK788M RFP). Inactive mutants of tagged Aus1p were generated by introducing a 

lysine to methionine substitution in the Walker A region of NBD2 (Aus1K788M) which is known to 

block the ATPase activity of ABC proteins [74]. Mutated proteins were expressed upon induction 

with 2% galactose and detected in the membrane fraction obtained from yeast cells (Figure 21A). 

The tagged Aus1pK788M was able to reach plasma membrane although ER and vacuolar staining were 

also detected (Figure 21B). To confirm that introduced mutation inactivates protein, 

hem1Δaus1Δpdr11Δ yeast strain was transformed with plasmid expressing Aus1pK788M or 

Aus1pK788M-RFP proteins and tested for its ability to grow on media supplemented with cholesterol. 

Despite overexpression and plasma membrane localization (Figure 21A and B) the mutated proteins 

were not able to survive on sterol containing medium (Figure 20). 
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Figure 20:  Growth rescue after overexpression of Aus1p or Aus1p-RFP protein in a triple mutant 
background (hem1Δaus1Δpdr11Δ). Five fold dilutions of the yeast cells were spotted on plates supplemented 
with galactose and incubated 3 days at 30ºC. Mutant lacking Aus1p and Pdr11p proteins (hem1Δaus1Δpdr11Δ) 
was unable to synthesize sterols due to the heme deficiency and could not grow on media supplemented with 
cholesterol. However, it survived in the presence of aminolevulinic acid which restores internal sterol 
synthesis. Overexpression of Aus1p ( from pESC-AUS1 vector) or Aus1p tagged with RFP (from pESC-
AUS1-RFP vector) restored partially the growth defect on sterol containing medium, confirming that 
fluorescently tagged version of protein was active. Overexpression of mutated versions of Aus1p (pESC-
AUS1K788M  and  pESC-AUS1K788M-RFP) did not restore the growth of  the triple mutant. 
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Figure 21:   Expression of mutated Aus1pK788M –RFP protein in hem1Δ yeast strain. (A) Aus1pK788M and 
Aus1pK788M –RFP were overexpressed in hem1Δ yeast strain upon 16 h of induction. Yeast total membranes 
were collected and subjected to analysis by Western Blot with anti-Flag antibody. (B) Aus1p-RFP protein 
carrying a mutation in Walker A motif was expressed upon induction with galactose in hem1Δ yeast strain. 
Protein expression was visualized by fluorescence microscopy. Aus1pK788M –RFP localized to the plasma 
membrane, however additional staining of ER or vacuole could be also detected. 
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4.2 Influence of putative sterol transporters on sterol uptake in vivo 

Under anaerobic conditions incorporation of exogenous sterols is crucial for survival of yeast cells. 

To measure the sterol uptake, yeast cells were incubated with fluorescently labeled sterol (25-NBD 

cholesterol) for 16 h and subsequently subjected to flow cytometry.  

A         B 

 
 

 

 

 

 

 

 

 

 

 

Figure 22: Uptake of 25-NBD cholesterol by Saccharomyces cerevisiae mutants. (A) Sterol auxotrophic 
cells (hem1Δ and hem1∆aus1∆pdr11∆) were cultivated in the presence of 25-NBD cholesterol for 16 h, 
washed and subsequently visualized by DIC (Differential Interference Contrast) and fluorescent microscopy. 
Sterol auxotrophic cells lacking AUS1 and PDR11 genes were not able to accumulate exogenously applied 
sterol (B) Yeast cells were grown for 16 h in media supplemented with 20 μg/ml of sterol (25-NBD 
cholesterol:cholesterol, 1:1) and 0.5% Tween 80. Subsequently the fluorescent signal (corresponding to the 
amount of accumulated fluorescent sterol) was evaluated by flow cytometry. As depicted sterol internalization 
was blocked in the wild type W303 cells as well as in the sterol auxotropic cells lacking Aus1p protein. Results 
are the means ± SD of three independent determinations, relative to the value obtained for hem1Δ cells. 
 

Yeast mutants lacking HEM1 gene displayed high degree of fluorescence upon cultivating on media 

supplemented with 25-NBD cholesterol (Figure 22A). Additional deletion of AUS1 and PDR11 

genes greatly diminished the NBD signal, lowering it to the level displayed by sterol prototrophic 

cells (W303) which do not take up sterols (Figure 22 B). Surprisingly, deletion of AUS1 gene had 

much stronger effect on the sterol internalization than deletion of PDR11. Since overexpression of 

both proteins in hem1Δaus1Δpdr11Δ background rescued the cell growth on plates supplemented 

with sterol (Figure 20 and 23) both proteins can support sterol-dependent growth of yeast. However, 

measurement of endogenous expression level of AUS1 and PDR11 genes revealed around 40 fold 
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lower amount of PDR11 transcript in comparison to the amount of AUS1 mRNA (Figure 24). 

Altogether obtained data indicate that both proteins can participate in sterol internalization but under 

natural conditions expression of AUS1 gene is much stronger. 

 

 

 

 

 

 

Figure 23: Growth rescue of hem1Δaus1Δpdr11Δ yeast strain overexpressing Pdr11p protein on medium 
supplemented with cholesterol. Five fold dilutions of the yeast cells transformed with vector pESC-Pdr11, 
spotted on the plate containing 2% galactose and incubated 3 days at 30ºC. Overexpression of Pdr11p protein 
partially rescued the growth of the triple mutant on the medium supplemented with sterols confirming that 
Pdr11p protein can assists in the sterol uptake process. 
 

 

 

 

 

 

 

 

 

 

 

Figure 24: Measurement of transcript level of AUS1 and PDR11 genes. Yeast cells (hem1Δ) were 
cultivated either in the presence of 5-aminolevulinic acid or cholesterol. Subsequently the mRNA was isolated 
and the amount of transcript was evaluated by RT-PCR. Tested genes were not expressed when yeast cells 
were cultivated in the presence of ALA however, high amount of AUS1 transcript was detected upon 
cultivation of sterol auxotrophic cells in the presence of sterol in medium. Although both genes were 
upregulated in hypoxic state AUS1 expression level was much higher than PDR11. Results are the means ± SD 
of three independent determinations. 
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To test if Aus1p alone can mediate sterol incorporation the protein was overexpressed in 

hem1Δaus1Δpdr11Δ and W303 cells. Under aerobic conditions (W303) presence of elevated 

amounts of Aus1p did not lead to accumulation of 25-NBD cholesterol indicating that other 

components are necessary for efficient sterol uptake. Deletion of AUS1 and PDR11 in hem1Δ 

background with subsequent overexpression of Aus1p leads to generation of separate population of 

the cells accumulating high amounts of 25-NBD cholesterol. No uptake was observed in cells 

expressing mutated version of the protein (Figure 25). These results prove that Flag tagged Aus1p 

can support sterol uptake under anaerobic conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25:  Measurment of 25-NBD cholesterol uptake in yeast strains overexpressing Aus1p or 
Aus1pK788M proteins. Cells were cultivated for 16 h in the presence of fluorescently labeled sterol and 2% 
galactose as an induction factor and subsequently analyzed by flow cytometry.  Overexpression of Aus1p wild 
type protein in hem1Δaus1Δpdr11Δ increased the amount of accumulated sterol while overexpression of 
Walker A mutant did not have any influence. No sterol uptake was detected in cells with active sterol 
biosynthesis pathway (W303). Grey line – Aus1p, red line Aus1pK788M, black-e.v. (empty vector). An 
representative experiment of two independent measurements. 
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4.3 Optimization of cultivation conditions for overexpression of Aus1p 

protein 

In order to overexpress high amount of protein the cultivation conditions were optimized. The 

expression level of Aus1p was compared in two strains – BJ1991 and YPH500 transformed with a 

multicopy vector in which Aus1p expression was under the control of GAL10 promoter. BJ1991 

strain lacks endogenous Pep4 protease, what ensures higher stability of expressed protein and 

increases the yield of purified product. The growth of YPH500 strain was weaker on media 

supplemented with 2% galactose indicating that cell viability was affected by protein overexpression 

(Figure 26). Therefore the BJ1991 strain was selected for further studies.  

 

 

 

 

 

 

 

 

Figure 26: Comparison of growth of yeast cells upon induction of Aus1p protein overexpression. Yeast 
cells (BJ1991 and YPH 500 strains) were transformed with a vector carrying Flag tagged Aus1p protein under 
the control of galactose inducible promoter (GAL10). Five fold serial dilutions of cells were spotted on the  
plates containing minimal medium supplemented with either 2% glucose or galactose. Growth of EHY500 
yeast strain was impaired in comparison to the cells transformed with empty vector when expression of Aus1p 
protein was induced by galactose. 
 

From several clones obtained after transformation of BJ1991 strain with AUS1 containing plasmid, 

four were tested for their ability to express the protein of interest. As shown in Figure 27, clone 4 

produced the highest amount of protein and was selected for further experiments. In the next step, 

different induction times were tested to determine at which time the overexpression starts and 

reaches maximum level. To test that, cells were cultivated in a total volume of 20 ml media 

supplemented with 2% galactose as an induction factor. Upon indicated time the cultures were 

harvested and total membranes were isolated. Twenty μg of total protein was loaded on the SDS 

PAGE gel from each sample and the signal was detected with anti-Flag antibody. Product of 

overexpression was detected after 12 h of induction and was stable until 20 h. For further analysis 

the time of 16 h of induction was selected. To improved cultivation conditions the expression of 

Aus1p was tested in the cells growing on media with different pH, in range from 5 to 8 (Figure 27). 
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The optimum expression was achieved when the cells were cultivated on the minimal selective 

medium with pH between 6 to 7. Taken together, cultivation conditions were set up for growth on 

SD-ura medium for 16 h of induction with 2% galactose at pH 6. 

 

 

 

 

 

 

Figure 27: Expression of Aus1p protein. Western blot analysis of membranes prepared from protease-
deficient Saccharomyces cerevisiae BJ1991 strain expressing FLAG tagged Aus1p. Several yeast clones, the 
effect of medium pH and induction time on Aus1p expression were tested. Flag tagged Aus1p protein was 
detected by immunodetection with M2 anti-Flag antibody. 
 

4.4 Purification of Aus1p protein overexpressed in S.cerevisiae cells 

To obtain a pure protein for in vitro studies Aus1p was overexpressed in BJ1991 Saccharomyces 

cerevisiae cells. The purification procedure (Figure 28) was done as described in Materials and 

Methods after induction of protein expression by 2% galactose for 16 h.  

 

 

 

 

 

 

 

 

 

 

Figure 28: Schematic representation of steps required during Aus1p protein purification. Upon lysis of 
cells, cellular membranes (P1) were collected by ultracentrifugation of total lysate (S1). Membranes were 
solubilized with 1% DDM and insoluble material (P2) was removed by ultracentrifugation. Soluble fraction 
(S3) which contained Aus1p protein released from membranes was subjected to affinity chromatography step 
with anti-FLAG gel. Protein was released from affinity matrix by washing of the resin with a FLAG peptide.  
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Since Aus1p is a plasma membrane protein, a membrane solubilization step was necessary during 

the procedure to release the protein from its natural membrane environment and to make it 

competent for subsequent affinity chromatography step. Membrane solubilization is achieved upon 

treatment with detergent and the selection of correct one is a crucial step during purification. In this 

studies two detergents – DDM and Triton X-100 were tested. Both detergents were able to release 

the protein from membrane after 2 h of incubation although with different efficiency (Figure 29).  

 

 

 

 

 

 

Figure 29: Solubilization of Aus1p protein from cellular membranes. Membranes (0.5 mg total protein) 
were resuspended in 100 μl of IP buffer supplemented with different detergents as indicated. Solubilized (S) 
and non-solubilized proteins (pellet, P) were separated by ultracentrifugation (100.000 g) and analyzed by 
immunoblotting using the FLAG M2 monoclonal antibody. 
 

DDM at concentration of 1% solubilized Aus1p at the highest degree and therefore was selected for 

further experiments. The protein released from membranes was used for affinity chromatography in 

order to separate it from impurities. During that step Flag tagged protein interacted with anti-Flag 

resin composed of agarose beads covered with covalently bound anti-Flag antibody. After washing 

steps which remove unbound components the protein was eluted from the resin by treatment with 

FLAG peptide which has much higher affinity for anti-Flag beads than the Flag-tagged protein itself. 

After affinity chromatography, unbroken protein product was detected (Figure 30A). Densitometric 

analysis of the gels of purified Aus1p revealed at least 90% degree of protein purity. This high purity 

of the product is necessary if the protein is used subsequently for reconstitution. To ensure that the 

eluate did not contain contaminations the final sample was analyzed by mass spectrometry. 

According to mass spectrometry results only minor contaminations were present in the final product 

of purification procedure (Table 5). 
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Table 5: Mass spectrometry analysis of Aus1p purification product. After purification, Aus1p protein was 
run on SDS page gel and subsequently the gel line was cut into 12 pieces. Proteins were isolated from each 
fragment and analysed by mass spectrometry. As depicted in the table most of the peptides identified in the 
sample belong to Aus1p protein. 
 

Protein name Peptides recovered Protein name Peptides recovered 

Aus1 175 GIP3 1 

Pdr11 11 Lic4 1 

Kin4 5 RPL1A 1 

Trp2 4 YER184C 1 

Stp3 2 YOR248W 1 

 

 

The efficiency of purification was in range of 70 μg of pure product per 1g of cell pellet. This 

corresponds to high purification yield in comparison to other membrane proteins purified from yeast 

- Atm1p, a mitochondrial ABC transporter was purified with efficiency of 0.5 μg per liter of culture 

and Mdl1p, an yeast peptide transporter, gave the yield of 34 μg per liter of culture [75,76]. Exactly 

the same purification efficiency as for Aus1p protein was obtained after heterologous expression of 

plant H-ATPase in yeast [77].  

Protein purified by Flag affinity chromatography can be purified further eg. by size exclusion 

chromatography (SEC) (Figure 30B). This technique allows for separation of molecules depending 

of their size and can be used also for determination of oligomeric state of the protein and/or 

detection of impurities. During SEC procedure molecules bigger than the pores of the resin elute 

faster since they cannot enter the pores and the way they travel through the column is shorter. Gel 

filtration could improve the purification of Aus1p by elimination of the small amount of impurities 

and/or oligomers from the sample. However, Aus1p recovered after SEC did not display ATPase 

activity (data not shown). Since no degradation was observed after gel filtration other factors eg. loss 

of structural lipid or other cofactors could to be responsible for protein inactivation. 

To confirm that purified protein was mainly in a monomeric state Aus1p (and additionally Aus1p-

RFP) were run on a Blue Native PAGE (BN-PAGE) which is often used to determine native protein 

masses and oligomeric state [67]. As depicted on Figure 30C, both proteins were detected as single 

bands with a size corresponding to the expected values.  
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Figure 30: Validation of Aus1p purity state. (A) The purified protein was visualized on SDS-PAGE gel by 
Coommasie Blue staining (lane 1) and by immunodetection (Western Blot) with anti-Flag antibody (lane 2). 
(B) Protein obtained after affinity chromatography step were a subject of size exclusion chromatography. Main 
signal depicted on chromatogram corresponded to Aus1p protein revealing high degree of purification. Second 
peak (*) corresponded to the FLAG peptide used during purification process for elution of protein from the 
resin. (C) Analysis of Aus1p protein by native PAGE. Purified Aus1p (lane 1) and Aus1p-RFP (lane 2) were 
analyzed by BN-PAGE and Coomassie Blue staining and their position is indicated by arrows. Soluble 
molecular mass standards (M) are shown for size comparison. AU; arbitraty units. 
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4.5 Nucleotide binding by Aus1p protein 

Functional ABC transporters are able to bind and hydrolyze ATP molecules and use the released 

energy for conformational changes which in turn lead to the transport of substrate molecule. 

Although it is not clarified how ATP hydrolysis drives substrate transport, active ABC transporters 

require ATP binding and hydrolysis to fulfill their functions. To examine the interaction of Aus1p 

with ATP, the detergent-solubilized, purified protein was incubated at 4°C with 8-azido-[α-32P]ATP 

and the protein complex was exposed to UV light followed by analysis by SDS-PAGE. The SDS-

PAGE gels were subject to autoradiography for detection of 8-azido-[α-32P]ATP labelling and to 

Coomassie Blue staining for determination of protein content (Figure 31A).  
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Figure 31: Binding of ATP by pure Aus1p protein. (A) Binding of 8-Azido-(α 32P) ATP to purified Aus1p 
protein, in the presence of magnesium chloride, EDTA, excess of cold ATP or N-methylmaleimide (NEM) 
respectively. As expected for active ATPase strong signal was obtained in the presence of magnesium which 
could be quenched by the excess of cold ATP. EDTA and NEM prevented binding of azido-ATP to the pure 
protein. (B) Binding affinity of pure Aus1p to 8-Azido-(α32P ) ATP was determined by incubation of the 
protein with increasing amounts of photoreactive probe and subsequent UV irradiation. Samples were 
analyzed on SDS-PAGE gel and obtained autoradiography signal was evaluated. (C) Determination of half 
maximal inhibition (IC 50) value by competition experiment with non-radioactive ATP. Aus1p protein was 
incubated with constant amount of 8-Azido-(α32P ) ATP and increasing amounts of cold ATP. After UV cross-
linking, protein was separated on SDS-PAGE gel and autoradiography signal was evaluated. 
 

A major band of about 160 kDa, consistent with the molecular weight of Aus1p, was identified by 

Coomassie Blue staining and found to be photoaffinity-labeled by 8-azido-[α-32P]ATP. Labelling of 

Aus1p by 8-azido-[α-32P]ATP required magnesium and was strongly inhibited by addition of EDTA 

(1 mM), excess of cold ATP (10 mM) or pretreatment with 1 mM N-ethylmaleimide (NEM), a 

covalent SH-group reagent (Figure 31A). Taken together, these data indicate that the protein had 

retained its ability to bind ATP through out the purification process. The apparent affinity constant 

for 8-azido-ATP was determined to be 0.12 μM (Figure 31B). Photoaffinity labeling of Aus1p by 8-

azido-[α-32P]ATP was inhibited by ATP with an IC50 value of 3.6 μM (Figure 31C). Based on the 

apparent affinity of 8-azido-ATP, a dissociation constant for ATP of 0.2 μM was calculated. 
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4.6 Reconstitution of Aus1p into liposomes 

Some properties of membrane proteins can be determined using purified detergent solubilized 

protein, however the studies on transport activity can be done only in the native, membrane 

environment. Although it is possible to use crude cell membranes that system is often avoided due to 

the undefined lipid composition and undetermined amount of other proteins in it. To overcome those 

disadvantages the protein of interest can be reconstituted into liposomes – an artificial lipid 

membranes which serve as an excellent model for studying membrane properties.  

The first step during the reconstitution procedure is the insertion of the protein into liposomes. At 

this point preformed liposomes are destabilized with detergent and subsequently mixed with the 

purified, detergent solubilized protein. After short equilibration the detergent is removed leading to 

the insertion of the hydrophobic membrane protein into liposomes (Figure 32A). There are several 

factors influencing the efficiency of this process (eg. the sort of used detergent, protein:lipid ratio or 

the method of detergent removal) and no general method for protein reconstitution has been 

developed so far. Because of that the reconstitution conditions have to be adjusted for each protein 

individually.  

For reconstitution of Aus1p (and Aus1p-RFP) liposomes preformed by extrusion through 200 μm 

filter were destabilized with 1.5 mM DMM. DDM was choosen for destabilization of liposomes 

because it is generally recommended to use for reconstitution the same detergent as was used for 

purification of the protein. The protein and lipids were mixed at the ratio 1:20 (w/w) and equilibrated 

for 15 min at 25ºC. Detergent was removed by treatment with BioBeads - a polysterene beads which 

are able to absorb detergent on their surface. The BioBeads were added in excess (300 mg/ml of 

reconstitution mixture) and incubated for 16 h at 4ºC to assure complete removal of detergent from 

the sample. The proteoliposome formed after treatment with BioBeads were collected by 

ultracentrifugation and dissolved in buffer. The successful reconstitution was confirmed by detection 

of unbroken protein on Coomassie stained polyacrylamide gel (Figure 32 B) and by flotation assay. 

During the flotation assay liposomes containing protein migrate to the top fractions of the gradient 

whereas pure protein stays at the bottom after ultracentrifugation. Since the protein posses a 

fluorescent tag (RFP) it can be easily detected in particular fractions by measurement of red 

fluorescence. As shown in Figure 33 Aus1p-RFP fluorescence was detected in the upper fractions of 

the Nycodenz gradient together with the lipids, confirming successful reconstitution of Aus1p into 

liposomes. 
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Figure 32: Reconstitution of Aus1p protein. (A) Main steps of protein reconstitution into liposomes. 
Detergent destabilized liposomes are mixed with pure protein (Step I) and subsequently the detergent is 
removed (Step II) what leads to formation of proteoliposomes (Step III). (B) Coomassie Blue stained SDS-
PAGE gel of purified, solubilized Aus1-RFP (control) and Aus1-RFP reconstituted in proteoliposomes 
composed of different lipids. PC: POPC only; PS: POPC/POPS (7:3). Molecular mass is indicated on the left. 

            

 

 

 

 

 

 

 

 

 

 

Figure 33: Flotation of Aus1p containing proteoliposomes on Nycodenz gradient. Purified Aus1–RFP was 
reconstituted into preformed detergent-destabilized liposomes as described in Materials and Methods. Aus1-
RFP containing liposomes were applied to a Nycodenz gradient, centrifuged, and the obtained fractions were 
analyzed for RFP fluorescence (dashed line) and phospholipid content (solid line). Reconstitution was evident 
from co-migration of phospholipid and Aus1-RFP. A control sample containing only purified, solubilized 
Aus1p in the absence of lipids was mock-treated in 0.05% n-dodecylmaltoside-containing buffer at the same 
temperatures as the reconstitution samples (dotted line). 

Nycodenz concentration (%)

2.5 10 20 30 4050

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
gn

al
 in

te
ns

ity
 (a

.u
.)

Control

Lipid

RFP-Aus1

Nycodenz concentration (%)

2.5 10 20 30 4050

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
gn

al
 in

te
ns

ity
 (a

.u
.)

Control

Lipid

RFP-Aus1

PC PS Con
tro

l

PC PS

250

150
100

75

50

37

kDa Con
tro

l



RESULTS 

54 

To determine the orientation of the protein in the liposomal membrane RFP quenching method was 

used. It was described previously [78] that red fluorescent protein can be effectively quenched by the 

copper ions and the effect was also reproduced during titration of Aus1p-RFP with Cu+2. The copper 

binding constant was calculated from a Stern-Volmer Plot giving the quenching constant Kq 1.8µM-1 

and copper disassociation constant Kd  0.6 µM. Kd values were lower in case of Aus1p-RFP in 

comparison to previously reported disassociation constant for monomeric RFP molecule (1.7 µM), 

indicating higher affinity of Aus1p-RFP to the Cu+2 ions. 

To prove the specificity for copper ions the control experiments were done with magnesium chloride 

showing no considerable quenching effect. According to assumptions addition of saturating amounts 

of CuCl2 should quench the RFP fluorescence from all the protein molecules with C terminus 

outside the liposome and the remaining signal would correspond to the molecules with the opposite 

orientation for which fluorescent C terminus is protected from copper ions. Comparison of the 

quenching data on intact and detergent permeabilized vesicles revealed that about 50-60% of Aus1p 

was inserted into POPC vesicles with the NBDs facing outward (Figure 34). Proteoliposomes 

composed of POPC/POPS (7:3) and POPC/POPE (7:3) were also analyzed for Aus1p orientation. 

Here, about 70-80% of Aus1p was inserted into these vesicles with the NBDs facing outward (data 

not shown). However, an exclusive asymmetric orientation of Aus1p towards one side of the vesicles 

was never observed. 

 

    

 

 

    

 

 

 

 

 
Figure 34: Determination of protein orientation in liposomes. Protein molecules reconstituted into 
proteoliposomes can display different orientations - toward the interior or exterior of vesicles. To determine the 
direction in which RFP tagged Aus1p was incorporated in liposomes the RFP-copper quenching method was 
used. As depicted above the method relies on the fact that RFP fluorescence can be efficiently quenched upon 
addition of copper ions – because of that – the fluorescence of C terminally tagged Aus1p molecules which 
display their C terminus outside the vesicle, will be quenched after addition of Cu+2 ions. The remaining signal 
will correspond to the molecules with opposite orientation, thereby allowing to calculate the ratio of molecules 
directed inside and outside the vesicle. Orientation of Aus1p-RFP in POPC proteoliposomes was determined to 
be symmetrical with half of the reconstituted molecules orientated outside the liposome and half orientated 
inside. 
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4.7 ATPase activity of pure protein and its sensitivity to inhibitors 

Aus1p protein is a yeast specific plasma membrane ABC transporter containing two ATP binding 

domains which are expected to bind and hydrolyze ATP molecules during the catalytic cycle in order 

to deliver energy for transport of substrates. However some ATPases (eg. P-glycoprotein) can 

hydrolyze ATP without the presence of substrate displaying so called basal activity which can be 

further stimulated by the presence of the substrate [79]. The ATPase activity of the purified protein 

in detergent-containing buffer was determined using a spectrophotometric assay for released 

phosphate. ATP was hydrolyzed by the protein in a time-dependent manner at 27ºC as revealed by 

the linear increase of released phosphate ions during the first 30 min. From that, a specific ATPase 

activity of the purified, detergent-solubilized Aus1p in the range of about 56 nmol ATP/min/mg of 

protein was estimated (Figure 35). 

 

 

 

 

 

 

 

Figure 35: ATPase activity of pure Aus1p protein in buffer solution. The ATPase activity of pure Aus1p 
protein was measured over 30 min at 27ºC by EnzCheck Assay. During the reaction, enzyme PNP (purine 
nucleoside phosphorylase) convertes the substrate MESG (2-amino-6-mercapto-7-methylpurine riboside) to 
robose 1-phosphate and 2-amino-6mercapto-7-methylpurine. The accompanying change in absorption at 360 
nm is measured and allows for quantification of inorganic phosphate consumed in the reaction (▲ Aus1p 
protein ■ buffer). 
 

Further, ATPase activities of wild type protein and mutated version (Aus1pK788M) were compared 

using radiolabeled ATP.  As shown in Figure 36 protein mutated in Walker A motif of NBD2 was 

inactive. This result confirmed that observed ATP hydrolysis was a result of Aus1p activity and that 

the lysine at position 788 is crucial for the protein catalytic cycle (Figure 36).  
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Figure 36: ATPase activity of pure Aus1p protein and its mutated version Aus1pK788M. Equal amounts of 
pure proteins were evaluated for its ability to hydrolyze γ-P32- ATP over 40 min at 27ºC and the amount of 
inorganic phosphate released during ATP hydrolysis was measured. Activity of wild type protein was set up as 
100% and compared with activity of the mutated protein. Substitution of lysine (K) to methionine (M) at 
position 788 inactivated the protein. Results are the means ± SD of three independent determinations, relative 
to the value obtained for the purified detergent-solubilized WT protein. 

 

Many ABC proteins display sensitivity to the transition state analogue orthovanadate. Vanadate acts 

as a structural analog of the inorganic phosphate transition state and arrests the hydrolytic cycle at an 

intermediate point by forming complex with MgADP at the catalytic site [80,81]. Aus1p was 

sensitive to the vanadate displaying around 90% of reduction in activity after treatment with this 

inhibitor.  

ABC transporters show also sensitivity to metal fluorides like beryllium (BeFx) and aluminium 

fluoride (AlF3) which block the ATP hydrolysis by trapping the nucleotide in the catalytic centre. 

However, they differ in the range of sensitivity to these compounds and some of them (eg.TAP, 

ALDP) seem to be even insensitive to vanadate treatment [82]. As shown in Table 6, all classical 

inhibitors of ABC proteins could efficiently block the basal activity of pure Aus1p confirming that 

the measured release of inorganic phosphate was a result of activity of ABC protein.  

Additionally, three other inhibitors were tested namely sodium azide, ouabain and verapamil. 

Sodium azide is a strong inhibiotor of the cytochrom oxidase and mitochondrial proton pump [83], 

but Aus1p (like all known ABC transporters) was insensitive to this compound. Ouabain (g-

strophantin) inhibits Na+/K+ ATPases [84] but as in case of sodium azide Aus1p was insensitive to 

this inhibitor. ATPase activity was effectively blocked by elevated concentrations of verapamil – a 

calcium channel blocker which can also block some other ABC proteins (eg. ABCB1) [85,86] (Table 

6). 
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Table 6: Determination of ATPase activity of pure Aus1p protein in the presence of inhibitors.  ATPase 
activity of most of ABC transporters is inhibited by vanadate, beryllium fluoride and aluminium fluoride. Pure 
Aus1p protein displayed expected sensitivity and additionally was inhibited by verapamil - although only at 
elevated concentration. Results are the means ± SD of three independent determinations, relative to the value 
obtained for the purified detergent-solubilized protein. 
 
 
 

 

 

 

 

 

 

 

As the exact substrate of Aus1p is unknown, the ATPase activity of pure protein was tested in the 

presence of different lipids to evaluate if any of them would have positive impact. As shown in 

Figure 37A all tested lipids stimulated the activity in a similar manner although phosphatidylserine 

displayed a higher impact. Also sterols (putative Aus1p substrates) were tested, however none of 

them was able to significantly influence the activity of the transporter (Figure 37B). These results 

however do not exclude the possibility that sterols or other lipids are Aus1p substrates since the 

presence of substrate not always have a stimulatory effect [44]. Because of the poor solubility of 

sterols in aqueous solutions under the experimental conditions sterol was delivered in form of 

liposomes. This sort of delivery system might be not optimal and it is possible that in this form the 

lipids are not recognized by the protein. 

 

 

4.8 Influence of lipids on ATPase activity of reconstituted Aus1p 

The functionality of membrane proteins is often regulated by the lipid bilayer composition [87]. It 

was shown previously that changes in physical properties of membrane influence the energetic costs 

of bilayer deformation during conformational changes of protein, and finally can change both - the 

function and conformational distribution of the protein [69]. In case of some ABC transporters 

surrounding lipid environment and membrane fluidity can modulate the activity of the protein and its 

interactions with the substrate [88,89]. To test the influence of membrane fluidity on the ATPase 

activity of Aus1p the protein of interest was reconstituted into fluid POPC liposomes, partially fluid 

Compound Final conc. (mM) % ATPase activity 

Control - 100.00 
Vanadate 1 2.64 ± 0.03 
BeSO4 /NaF (BeFx) 1 / 5 21.63 ± 0.18 
AlF3 1 14.17 ± 0.06 
Sodium azide 5 108.04 ± 0.51 
Ouabin 5 108.12 ± 0.38 
Verapamil 1 4.16 ± 0.30 
Verapamil 0.1 86.74 ± 8.67 
Verapamil 0.01 111.07 ± 6.77 
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POPC:cholesterol liposomes or into rigid liposomes composed of PC:sphingomyelin:cholesterol. 

(1:1:1).  
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Figure 38: Influence of membrane fluidity on activity of Aus1p protein reconstituted into liposomes. (A) 
Spectra of liposomes with different lipid composition after membrane labeling with Laurdan, showed that 
three tested lipid compositions display different membrane fluidity. (B) The ATPase activity of protein 
reconstituted into liposomes with different membrane fluidity was measured using radiolabeled ATP. Aus1p 
ATPase activity was slightly stimulated upon addition of cholesterol to the membrane, however the protein 
was inactive in rigid membrane containing high amount of sterol. Results are the means ± SD of three 
independent determinations, relative to the value obtained for the purified detergent-solubilized protein. 
The fluidity of the membrane was determined by measurement of anisotropy after the staining with 

Laurdan. Laurdan is a fluorescent probe, sensitive to membrane phase transitions and other 

alternations in membrane fluidity (Figure 38A) [90]. Changes in the degree of lipid packing in the 

membrane lead to the shifts in the Laurdan emission spectrum and allow to calculate so called GP 

(Generalized Polarization) value. GP can assumes values from -1 (what corresponds to not ordered 

state) to +1 (corresponding to the most ordered state) [72]. As depicted on Figure 38B activity of 

Aus1p in fluid environment was diminished in comparison to the pure protein and the rigid 

membrane surrounding blocked almost totally the ability of protein to hydrolyze ATP. Interestingly, 
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addition of cholesterol to POPC membranes slightly stimulated the activity what can be due to the 

better protein arrangement in this mixture or by the fact that cholesterol is a substrate for Aus1p.  

To test influence of other lipids on Aus1p activity, the protein was reconstituted into liposomes 

containing POPC and 30 mol% of selected lipid. Upon reconstitution into liposomes the protein did 

not show any stimulation neither by addition of phosphatidylethanolamine or phosphatidylinositol. 

However, addition of 30 mol% phosphatidylserine stimulated the activity about 6 fold (Figure 39).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Influence of membrane composition on ATPase activity of Aus1p protein reconstituted into 
liposomes. ATPase activity was measured for Aus1p protein reconstituted into POPC proteoliposomes 
containing 30 mol% of selected lipid was evaluated using radiolabelled ATP. In the presence of 
phosphatidylserine 6 fold stimulation was obtained in comparison to the activity of pure protein in buffer. 
Results are the means ± SD of three independent determinations, relative to the value obtained for the purified, 
detergent-solubilized protein (Control). 
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Figure 40: Influence of cholesterol on ATPase activity of Aus1p reconstituted into liposomes. (A) ATPase 
activity of Aus1p reconstituted into POPC liposomes in the presence of sterol was determined using 
radiolabelled ATP. Cholesterol and ergosterol (50 μM) were applied as a sterol::cyclomaltodextrin complex. 
Results are the means ± SD of three independent determinations, relative to the value obtained for the purified 
detergent-solubilized protein. (B) Aus1p was reconstituted into POPC/POPS liposomes. ATPase activity was 
evaluated using radiolabelled ATP in the presence of increasing amount of cholesterol complexed with 
cyclomaltodextrin. Results are the means ± SD of three independent determinations, relative to the value 
obtained for protein reconstituted into POPC/POPS vesicles without supplementation with cholesterol 
complexed with cyclomaltodextrin. 
 

To test the influence of exogenously applied sterols on the ATPase activity of reconstituted Aus1p 

proteoliposomes were incubated with the sterol (cholesterol or ergosterol) encapsulated into β-

methylcyclodextrin. Cyclodextrins are cyclic oligosaccharides with internal cavity capable to 

encapsulate normally hydrophobic compounds what allows them to became soluble in aqueous 

solution [91]. Upon reconstitution of Aus1p into POPC liposomes no stimulatory effect was 

observed after addition of 50 μM cyclodextrin complexed with sterol. Instead the ATPase activity 

decreased even further (Figure 40A). When the protein was reconstituted into vesicles composed of 

POPC/POPS mixture addition of cholesterol complexed with β-methylcyclodextrin did not influence 

ATPase activity of Aus1p and only the stimulatory effect of PS was detected (Figure 40B). This lack 

of stimulation by the putative substrate might be explained by the fact that - although useful for 

solubilization of hydrophobic compounds - cyclodextrins are not optimal donors of sterol molecules 

for Aus1p protein. 

To provide further insight into Aus1’s specific requirement for PS, the ability of PS stereoisomers to 

stimulate ATPase activity of Aus1p was explored (Figure 41A). Maximal activation occurred in the 
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presence of the naturally occurring 1-palmitoyl-2-oleoyl-sn-phosphatidyl-L-serine (1,2-sn-POP-L-

S). Altering the stereochemistry in the serine headgroup (1,2-sn-POP-D-S) or in the glycerol 

backbone (2,3-sn-POP-L-S, 2,3-sn-POP-D-S) caused a decrease in ATPase activity. Maximum 

activation of Aus1p in the presence of natural PS and the ability of the enzyme to discriminate 

between various PS stereoisomers indicates that the activation results from the association of PS 

with a specific binding site on the enzyme. 
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Figure 41: Influence of phosphatidylserine isomers on ATPase activity of Aus1p protein in liposomes. 
(A) Schematic models of four phosphaidylserine stereoisomers. (B) ATPase activity of Aus1p protein 
reconstituted into liposomes containing 30 mol% of selected phosphatidylserine isomer. Results are the means 
± SD of three independent determinations, relative to the value obtained for the purified detergent-solubilized 
protein in the absence of inhibitors (control).  
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Figure 42 : ATPase activity of Aus1p reconstituted into different lipid mixtures. Aus1p was reconstituted 
into liposomes containing DOPC or POPC or mixtures DO/PO-PC and 30 mol% of DO/PO-PS and the ATPase 
activity of protein was evaluated using radioactively labeled ATP. Results are the means ± SD of three 
independent determinations, relative to the value obtained for the purified detergent-solubilized protein. No 
significant differences were observed between tested mixtures. 
 
Additionally, there were no differences in protein activity when DOPC was replaced by POPC 

and/or DOPS by POPS (Figure 42).  

To test if the influence of PS is a dose dependent effect Aus1p protein was reconstituted into 

liposomes containing different amounts of phosphatidylserine. 

 

 

 

 

 

 

 

 

 

Figure 43: ATPase activity of Aus1p protein reconstituted into POPC membranes containing different 
amount of POPS. Aus1p protein was reconstituted into liposomes containing various amount of 
phosphatidylserine. ATPase activity of the protein was evaluated by radioactive ATPase assay. Samples 
containing 1mM vanadate were used as a negative control. Results are the means ± SD of three independent 
determinations, relative to the value obtained for the purified detergent-solubilized protein. 
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As shown in Figure 43 the ATPase activity diminished with decreasing content of PS in the 

liposomal membrane. To exclude the possibility that PS is a substrate for Aus1p, the protein was 

reconstituted into two kinds of liposomes: liposomes with the outer liposomal leaflet labeled with 

C6NBD PS or with both leaflets labeled with fluorescent lipids.  
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Figure 44: Measurement of PS transport across membranes containing Aus1p. (A) The outer leaflet of 
liposomes was labeled with 0.6 mol% C6NBD PS and the samples were incubated at 27ºC for 1 h. 
Subsequently, dithionite was added to quench the fluorescene of accessible C6NBD PS molecules. In all tested 
samples (empty liposomes, proteoliposomes - with and without ATP mixture), almost all signal was destroyed 
indicating that Aus1p protein under tested conditions could not transport C6NBD PS. (B) Liposomes were 
labeled on both leaflets with 0.6 mol% C6NBD PS and subsequently were incubated with ATP mixture (1 mM 
ATP, 10 mM MgCl2) for 1 h at 27ºC. 1mM vanadate was used as an inhibitor of Aus1p ATPase activity. After 
addition of dithionite half of the initial fluorescence was quenched in all samples indicating that protein does 
not transport C6 NBD PS molecules from inner liposomal leaflet. 

 

Subsequently samples were incubated with ATP mixture to activate Aus1p. After 60 minutes of 

reaction, dithionite was used to quench the fluorescence of lipid molecules which remained in the 

outer layer. If Aus1p would be a PS exporter, after quenching, the signal from ATP induced sample 

would be higher than from the control one. If Aus1p would be an importer for PS, after quenching of 

fluorescence, the signal from ATP induced sample would be lower than from the control one. 

However, in both cases, activated and not activated samples displayed the same quenching level. 

This suggests that PS is not a substrate for Aus1p protein (Figure 44A and B). 

To test if fluorescently labeled phosphatidylserine has the same effect on ATPase activity as POPS 

Aus1p was reconstituted into liposomes containing 30 mol% C6NBD PS or C12NBD PS. Both 

fluorescent lipids were able to increase ATPase activity of the protein several folds (Figure 45). 

Taken together, those data show that PS is able to enhance ATPase activity of reconstituted Aus1p in 

a dose dependent and stereoselective manner. At the same time, PS is not a substrate for the 

investigated transporter. This leads to the conclusion that PS could be structural lipid for Aus1p or it 

could modify membrane properties making the membrane environment more convenient for Aus1p. 

 

 

 

 

 

 

 

 

 

 

Figure 45: ATPase activity of Aus1p reconstituted into liposomes containing fluorescently labeled 
phosphatidylserine. Aus1p was reconstituted into vesicles containing 30 mol% of C6NBD PS NBD or 
C12NBD PS. The ATPase activity of the protein was stimulated by fluorescently tagged lipids in the same 
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manner as by natural PS. Results are the means ± SD of three independent determinations, relative to the value 
obtained for the purified detergent-solubilized protein. 
 

4.9 Influence of putative sterol transporters on phosphatidylserine uptake 

and cellular distribution  

The specific stimulation of Aus1p ATPase activity by PS suggests that this phospholipid might be a 

substrate for the ABC transporter. Therefore the uptake of C6-NBD-PS was measured by flow 

cytometry in hem1Δ cells containing or lacking both, AUS1 and PDR11 genes. As shown in Figure 

46, no significant differences in the internalization of C6-NBD-PS were observed between cells 

containing or lacking these two ABC proteins.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 46: Lipid internalization in yeast sterol uptake mutants. hem1Δ cells containing or lacking both, 
AUS1 and PDR11 genes were analyzed for uptake of fluorescently tagged PS and PE. Cells were grown on 
media supplemented with fluorescently labeled cholesterol to the early logarithmic phase and then were tested 
for uptake of C6NBD labeled PS or PE by flow cytometry. No significant differences between the samples 
were observed indicating that in vivo Aus1p is not involved in the uptake of PS and PE. 
 

C6NBD-PS has been shown previously to be predominantly internalized by transbilayer transport 

across the plasma membrane resulting in intracellular labeling of various organelles [11]. This result 

was confirmed for both hem1Δ cells containing or lacking AUS1 and PDR11 by examining the 

intracellular localization of C6NBD-PS by fluorescence microscopy. As shown in Figure 47 

localization of investigated lipid was not changed in the absence of Aus1p and Pdr11p when cells 

were growing in the presence of ALA or cholesterol. However, cells growing on media 

supplemented with sterol had more dispersed fluorescent signal in comparison to the cells with 
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active sterol biosynthetic pathway. That could be due to the changes in metabolism and trafficking 

between aerobic and anaerobic state - but these differences seemed to be independent of the action 

of Aus1p. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Localization of C6NBD phosphatidylserine in yeast. Yeast was grown on media supplemented 
with aminolevulinic acid. Subsequently cells were labeled with 60 μM C6NBD-PS, washed with medium 
containing BSA to extract not internalized C6-NBD-PS and visualized by fluorescent microscopy. Both 
mutants displayed no differences in term of cellular localization of internalized C6NBD PS. 
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4.10 Influence of PS on sterol uptake in vivo 

As described in the previous chapter the presence of phosphatidylserine greatly enhances the ATPase 

activity of Aus1p protein reconstituted into liposomes. However, PS was not a substrate for Aus1p in 

vitro and deletion of AUS1 gene had no effect on accumulation of C6NBD PS in yeast cells. To 

further investigate the role of phosphatidylserine in sterol uptake process the gene encoding 

phosphatidylserine synthase (CHO1) was deleted and the mutant was evaluated for its ability to 

accumulate 25-NBD cholesterol.  

Phosphatidylserine synthase is a crucial enzyme in PS synthesis pathway which specifically transfers 

the phosphatidyl group from CDP-diacylglycerol or dCDP-diacylglycerol to l-serine [92]. Newly 

synthesized PS is conversed to PE and indirectly serves as a substrate in PC synthesis pathway. 

Deletion of CHO1 gene completely blocks phosphatidylserine synthesis in the cell. However the 

mutation is not lethal and the cells are still able to synthesize PE and PC through Kennedy pathway 

when supplemented with choline or ethanolamine (Figure 48) [93]. As depicted in Figure 49A cells 

lacking phosphatidylserine were still able to express Aus1p-RFP when expression was driven from 

AUS1 natural promoter and the protein was able to reach plasma membrane. 

 

 

 

 

 

 

 

 

 

 

Figure 48: Lipid synthesis in yeast. Phosphatidylserine synthase encoded by CHO1 gene catalyse 
transformation of CDP-DAG into PS. When CHO1 gene is deleted PS synthesis is completely blocked. Under 
this conditions lipids like PC and PE are synthesized through Kennedy pathway [93]. 
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Figure 49: Influence of phosphatidylserine on sterol uptake in vivo. (A) Expression of Aus1p-RFP protein 
in hem1Δcho1Δ. Yeast cells transformed with vector carrying construct containing Aus1p-RFP (vector Endo-
AUS1-RFP) and cultivated for 16 h in media supplemented with 2% galactose and sterol/Tween mixture. 
Subsequently cells were visualized by DIC and the RFP tagged protein expression was examined by 
fluorescence microscopy. (B) 25-NBD cholesterol uptake was measured by flow cytometry as described in 
Materials and Methods. Cells lacking phosphatidylserine synthase (hem1Δcho1Δ) incorporated less 25-NBD 
cholesterol than the control hem1Δ strain. Results are the means ± SD of three independent determinations, 
relative to the value obtained for hem1Δ yeast strain. 

 

As shown previously, cells with active sterol synthesis pathway do not incorporate sterols and 

removal of CHO1 gene from those cells do not change this state. However, sterol accumulation in 

cells that are sterol competent and at the same time lack phosphatidylserine was greatly reduced 

(around 50%) (Figure 49B). This fact supports the idea that phosphatidylserine is necessary for 
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effective sterol uptake process in yeast. In the next step CHO1 gene encoding phosphatidylserine 

synthase was cloned and overexpressed in yeast. N terminally Flag tagged Cho1p protein was 

functional since it was able to rescue the growth of Δcho1 mutant on media not supplemented with 

choline (Figure 50A). Overexpressed protein was detected by immunodetection in two forms - 

phosphorylated (30 kDa) and non phosphorylated (27 kDa) (Figure 50B). Although only the non-

phosphorylated form is active both versions of protein are known to co-exist in the equal amount in 

the growing cells [94]. Generated construct can be further used to study the effects of 

phosphatidylserine synthase overexpression on sterol uptake in yeast. 

 

A                                   B  
 

 

 

 

 

 

 

 

 
Figure 50: Overexpression of phosphatidylserine synthase and its influence on sterol uptake in yeast. (A) 
Serial dilutions of CHO1 deficient strain and WT transformed with empty vector (pESC-ura) or vector 
carrying CHO1 gene (pESC-CHO1) were spotted on plates supplemented with 2% galactose. Overexpression 
of CHO1 rescued the growth of cho1Δ mutant on media not supplemented with choline. (B) Immunodetection 
of N terminally Flag-tagged phosphatidylserine synthase overexpressed in hem1Δ and hem1Δ aus1Δpdr11 Δ. 
In both strains protein was detected in two forms phosphorylated (30 kDa) and not phosphorylated (27 kDa). 
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5. PERSPECTIVE 

5.1 Influence of the cell wall on the sterol uptake process 

Sterol influx is restricted to the anaerobiosis or to heme deficiency. The cell wall surrounding the 

yeast cell seems to play an important role in the process of sterol uptake. Upon anaerobiosis cell wall 

undergo general remodeling [95] and increase its affinity for sterols. 25-NBD cholesterol binds 

efficiently to the cell wall of sterol competent cells but not to cell wall of wild type W303 cells (data 

not shown). 

Among the genes, which expression is up regulated in anaerobiosis are also genes encoding cell wall 

mannoproteins belonging to DAN/TIR family. It was suggested by Alimardani et al. [2] that one of 

those proteins, Dan1p can assists Aus1p in sterol uptake process. To test that hypothesis yeast 

mutants lacking DAN1 gene were generated and tested for its ability to accumulate fluorescent sterol 

analog, 25-NBD cholesterol. Deletion of DAN1 but not DAN4 significantly decreased sterol 

incorporation in hem1Δ background, confirming specific influence of tested mannoprotein on the 

sterol uptake and excluding the possibility that removal of any of the mannoproteins would have 

impact on sterol internalization (Figure 51A and B).  

Since the cell wall seems to play a crucial role in sterol incorporation it was tested if there are 

changes in the cell wall structure between mutants expressing or lacking AUS1, PDR11 and DAN1 

genes (Figure 52A and B). Cells were grown in the presence of sterol or ALA and subsequently were 

labeled with calcofluor white – a non specific fluorochrome that binds to cellulose and chitin. In the 

presence of ALA and cholesterol sterol competent cells (Δhem1), sterol uptake mutant 

(Δhem1Δaus1Δpdr11) and wild type cells (W303) did not display any differences. However sterol 

competent cells lacking DAN1 gene were labeled differently than when grown in the presence of 

ALA or cholesterol (Figure 52C). The punctature labeling could correspond to the specific 

depositions of chitin and cellulose and indicate perturbations in the cell wall integrity what in turn 

could affect sterol transport. 
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Figure 51: Influence of cell wall mannoproteins on 25-NBD cholesterol uptake. Uptake of 25-NBD 
cholesterol in yeast mutants was measured by flow cytometry as described in Materials and Methods. Results 
are the means ± SD of three independent determinations, relative to the value obtained for hem1Δ yeast strain. 
(A) Measurement of sterol uptake in cells lacking DAN1 gene in hem1Δ background and in wild type 
background. Cells unable to express Dan1p could not incorporate exogenously applied sterols. (B) 
Incorporation of 25-NBD cholesterol in yeast mutants lacking DAN4 gene in hem1Δ background and in wild 
type background. Deletion of DAN4 did not have influence on sterol uptake confirming particular role of 
Dan1p in the process of sterol uptake. 
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Figure 52: Stainig of the yeast cell wall with calcofluor white. Yeast mutants were cultivated in the presence 
of (A) cholesterol/ Tween mixture or (B) aminolevulinic acid for 16 h. Subsequently cells were stained with 
calcofluor white (CW) and visualized by DIC and fluorescence microscopy. No differences in term of cell wall 
integrity and structure was observed between sterol auxotrophic cells lacking DAN1 gene and control cells 
when cultivated in the presence of ALA or sterols. (C) Yeast mutant hem1Δdan1Δ was cultivated in the 
presence of ALA or cholesterol/Tween mixture and subsequently labeled with calcofluor white. The punctature 
structures within the cell wall were present when the cells were growing on media supplemented with sterol. 

 

Altogether, obtained results confirm that Dan1p protein is important for sterol uptake and open the 

possibility that it could interact with Aus1p eg. acting as a sterol donor for ABC transporter, which 

deliver the sterol molecules directly to the transporter or assists its incorporation into the plasma 

membrane (Figure 53). However further experiments are necessary to confirm this hypothesis and to 

elucidate the further steps of sterol transport. 
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        .  

Figure 53: Theoretical mechanism of sterol uptake mediated by Dan1p and Aus1p proteins. Assuming 
that Dan1p mannoprotein could act as a sterol donor, two mechanisms of further sterol transport are possible: 
(A) Dan1p could bind sterol and delivers it to Aus1p protein which subsequently could insert the sterol 
molecule into the membrane (B) Dan1p could deliver sterol to Aus1p which transport it through the membrane 
and release it to the acceptor molecule 

 

5.2 Immunoprecipitation of Aus1p protein with interacting partners 

As suggested in the previous chapter Aus1p could interact with other proteins eg. Dan1p. Therefore 

attempts were made to detect putative interaction partners for Aus1p which could act as direct 

regulators of protein activity or as partners in sterol transport process (acceptors of donors of sterol 

molecules). For detection of interactors, the gene of interest was genomically tagged with 10xHA tag 

on C terminus, immunoprecipitated and the obtained eluate was analyzed by mass spectrometry. The 

expression of protein was confirmed by immunodetection with anti-HA antibody showing that full 

size protein was generated upon cultivation of the cells on the media supplemented with sterol. Upon 

tagging the protein expression was detected only in cells auxotrophic for sterols (hem1Δ 

background)). In the W303 strain, which is able to synthesize its own sterols no signal was detected 

(Figure 54A). Immunoprecipitation procedure was done according to the method described in 

Materials and Methods section. Although the protein was detected by Western Blot procedure 

(Figure 54B), the amount of immunoprecipitaed Aus1p was too low to be detected by Silver or 

Coommasie staining on SDS-PAGE gels, indicating that the sample contain less that 1 ng of the 

protein. Preliminary analysis by mass spectrometry revealed low amount of peptides copurified with 

Aus1p (Table 6). 
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Figure 54: Detection of Aus1p-HA expression (A) AUS1 was genomically tagged with 10xHA tag at C 
terminus in hem1Δ and W303 yeast strains. Cells were cultivated in the presence of 20 μg/ml of cholesterol 
and 0.5% Tween80 for 16h and subsequently total cellular membranes were isolated. Protein expression was 
evaluated by immunodetection with anti HA antibody. Signal was detected in the membranes obtained from 
hem1Δ cells in which AUS1 was tagged with HA tag, confirming that AUS1 gene expression is not activated 
when the cells are able to synthesize sterols. (B) HA tagged Aus1p protein was immunoprecipitated as 
described in Materials and Methods. Signal corresponding to the Aus1-HA protein was detected by Western 
Blot in the eluate. 
 

Interestingly, among detected proteins is a components of eisosomes - Pil1 and actin (End7) which 

are important for uptake of cargo from that structures. Eisosomes are large cytoplasmic protein 

assemblies that localize to specialized domains on the plasma membrane which are supposed to be 

sites of endocytosis [96]. Since LDL mediated sterol uptake in mammalian system relays on 

endocytosis it would be especially interesting to investigate if such a connection would exist also in 

yeast. However, due to the poor number of identified peptides it is necessary to confirm that data and 

to optimize the process of immunoprecipitation to obtain more clear results.  
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Table 6 List of peptides detected after Aus1-HA immunoprecipitation. Peptides present in the control (cells 
growing in the presence of ALA) sample were excluded. 

 

Gene 
name 

Gene description Number of 
identified 
peptides 

AUS1 Transporter of the ATP-binding cassette family, involved in uptake of sterols 
and anaerobic growth 

42 

PDC1 Major of three pyruvate decarboxylase isozymes, key enzyme in alcoholic 
fermentation, decarboxylates pyruvate to acetaldehyde; subject to glucose-, 
ethanol-, and autoregulation; involved in amino acid catabolism 

13 

TDH2 Glyceraldehyde-3-phosphate dehydrogenase, isozyme 2, involved in 
glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of 
glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the 
cytoplasm and cell wall  

12 

YDL055C GDP-mannose pyrophosphorylase (mannose-1-phosphate guanyltransferase), 
synthesizes GDP-mannose from GTP and mannose-1-phosphate in cell wall 
biosynthesis; required for normal cell wall structure 

2 

HSP82 Hsp90 chaperone required for pheromone signaling and negative regulation of 
Hsf1p; docks with Tom70p for mitochondrial preprotein delivery; promotes 
telomerase DNA binding and nucleotide addition 

2 

HSC82 Cytoplasmic chaperone of the Hsp90 family, redundant in function and nearly 
identical with Hsp82p, and together they are essential; 

2 

GRP78 ATPase involved in protein import into the ER, also acts as a chaperone to 
mediate protein folding in the ER and may play a role in ER export of soluble 
proteins; regulates the unfolded protein response via interaction with Ire1p 

2 

END7 Actin, structural protein involved in cell polarization, endocytosis, and other 
cytoskeletal functions 

1 

YNL135C Peptidyl-prolyl cis-trans isomerase (PPIase), binds to the drugs FK506 and 
rapamycin; also binds to the nonhistone chromatin binding protein Hmo1p 
and may regulate its assembly or function  

1 

PIL1 Primary component of eisosomes, which are large immobile cell cortex 
structures associated with endocytosis; null mutants show activation of 
Pkc1p/Ypk1p stress resistance pathways 

1 
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5.3 Reconstitution of Aus1p into Giant Unilamellar Vesicles (GUVs) 

Giant Unilamellar Vesicles serve as a model system for studying aspects of biological membranes. 

Although during last years a lot of effort was done to optimize generation of GUVs, it is still 

difficult to obtain proteo-GUVs (GUVs with a protein inserted into the membrane), especially ones 

containing large proteins. Here attempts were made to reconstitute Aus1p into such vesicles in order 

to investigate later the impact of ABC transporter on sterol transport. Several conditions were tested 

for effective formation of giant vesicles containing Aus1p-RFP varying in the composition of 

reconstitution buffer (low versus high salt concentration) and electroformation parameters (short 

versus long electrofrmation). Initially the Aus1p-RFP protein was used during the experiments, in 

order to confirm protein incorporation into GUVs by RFP fluorescence. However, in most cases no 

fluorescence was detected from formed GUVs.  

When the GUVs were generated from proteoliposmes prepared in reconstitution buffer (20mM 

HEPES, 150 mM KCl) aggregates of RFP tagged Aus1p were visible on the surface of liposomes 

(Figure 55A). It is possible that RFP tag (around 20kDa) leads to the protein aggregation during 

electroformation. To overcome that problem, protein of interest (without RFP tag) was labeled with 

TAMRA dye (5-(and-6)- carboxytetramethylrhodamine succininmidyl ester) using Fluoro Spin 557 

TAMRA labeling kit. The TAMRA labeling reagent undergoes a cross-linking reaction between the 

NHS ester on the dye and primary amines on the protein that results in the formation of a stable, 

covalent amide bond. Finally, the labeled protein was successfully reconstituted under following 

conditions: upon reconstitution in LUVs composed of POPC the proteoliposomes were dried in a 

salt chamber at 4ºC on the platinium electrodes. Subsequently, the electrodes were placed in 

electroformation buffer (250 mM sucrose) for 3 h. After preincubation, electroformation was applied 

for 6 h with 1 V and 10 Hz. GUVs were deatached from the electrodes for 30 min with 1.2 V. 

Although formation results in low amount of GUVs, the obtained material was fluorescent 

confirming successful reconstitution of protein (Figure 55B). Obtained GUVs with Aus1p protein 

incorporated into membrane can be used to test the impact of the ABC protein on the membrane 

lipid organization (by using for example GUV shape assay) or for examination of the protein 

behavior in the membrane. 
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Figure 55: Giant Unilamellar Vesicles (GUV) with Aus1p protein. Formation of Giant Unilamellar vesicles 
was examined by DIC and fluorescence microscopy. (A) Aus1-RFP protein was reconstituted into liposomes, 
which were subsequently dried and electroformed into GUVs. Although GUVs were formed the protein was 
aggregated. (B) TAMRA labeled Aus1p protein were reconstituted into liposomes and used for formation of 
GUVs. Although low yield of GUV formation, some vesicles were properly labeled with the fluorescent 
protein. 
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6. DISCUSSION 

6.1 Influence of Aus1p protein on sterol uptake process in vivo 

Aus1p protein and its homolog Pdr11p are among the genes induced by anaerobiosis in and have 

great influence on sterol uptake process in yeast. Both ABC transporters were expressed under 

anaerobic conditions and mutants with double deletions (aus1Δ pdr11Δ) were found to be unable to 

take up radiolabeled cholesterol. During this studies yeast mutants lacking AUS1 and/or PDR11 

genes in a hem1Δ background were generated. Deletion of HEM1 gene mimics physiologically 

anaerobic state – blocking, among others, sterol biosynthesis, inducing the expression of 

AUS1/PDR11 and probably others, undefined elements of sterol-uptake machinery [97].  

25-NBD cholesterol was used to follow the sterol uptake in yeast in vivo. Although this fluorescent 

sterol analog posses a large reporter group attached to the aliphatic side chain, it was efficiently 

internalized, estrified and stored in lipid droplets. Although some studies report that localization of 

25-NBD cholesterol in the cell can differ than localization of natural sterols [98], this analog is 

widely used in studies concerning sterol transport [99,100].  

Removal of AUS1 and PDR11 blocked internalization of 25-NBD cholesterol – although the internal 

sterol biosynthesis was inactive and cells were competent for sterol uptake (due to the lack of HEM1 

gene). External sterol molecules were trapped within cell wall and were not internalized into the cell. 

That could suggests that Aus1p and Pdr11p act on the level of incorporation of sterol from 

periplasmic space into the plasma membrane. 

Deletion of PDR11, (an AUS1 homolog that displays around 70% identity with Aus1p within protein 

sequence), did not influence the amount of 25-NBD cholesterol uptake. However when 

overexpressed in hem1Δ background, Pdr11p rescued the growth of triple mutant 

(hem1Δaus1Δpdr11Δ) as efficiently as overexpressed Aus1p. One explanation of that fact is that 

under physiological conditions both genes are expressed at different levels although, as transporters, 

still have the same efficiency. To confirm that assumption, the amount of AUS1 and PDR11 

transcript was evaluated in the cells that internalize sterol and in cells with active ergosterol 

biosynthetic pathway. Real Time PCR results confirmed that both genes were induced when internal 

sterol synthesis was blocked and that the amount of AUS1 mRNA was much higher than PDR11. 

That would suggest that Aus1p is a main player in sterol uptake and Pdr11p support its action or has 

other, undefined functions.  

To characterize Aus1p transporter in vitro, the gene of interest has been cloned, tagged with 

fluorescent RFP tag at the C terminus and placed under the control of either galactose or endogenous 

promoter. When expressed under the control of strong inducible promoter, Aus1p protein was 
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produced in the cells with both active and inactive ergosterol biosynthesis pathway. The red 

fluorescent signal was detected in plasma membrane, endoplasmic reticulum and vacuole. However, 

since strong overexpression can leads to mislocalization of protein product, Aus1p-RFP construct 

was placed under the control of its own endogenous promoter. In this case the protein expression 

took place only in the cells lacking HEM1 gene when cultivated in the presence or absence of sterol. 

That indicates that the signal which induces AUS1 expression does not depend on the presence of 

sterol in the environment, but on the availability of oxygen. However, when expressed under the 

control of endogenous promoter, Aus1p-RFP has been detected in the same cellular compartments as 

when expressed under the control of galactose promoter. Since Aus1p is predicted to be a plasma 

membrane protein and other studies confirmed that [20,61], obtained signal most probably 

corresponds to the newly synthesized molecules in ER and degraded Aus1p-RFP molecules in 

vacuole. That would suggest that the turnover of Aus1p is very rapid. It has to be also considered 

that the tagging with RFP or Flag tag could be the reason of mislocalization and/or faster protein 

turnover. However, since tagged protein was able to support the growth of triple mutant, it was 

assumed that tagging did not disrupt its function. 

 

6.2 Expression and purification of Aus1p protein 

In this study for the first time a successful purification protocol and the biochemical characterization 

of the yeast putative sterol transporter Aus1p are described. Expression of a FLAG tagged version of 

Aus1p from a high copy plasmid under the control of the strong inducible promoter (GAL10) 

allowed for effective purification to homogeneity in yields high enough for subsequent biochemical 

studies.  

Yeast cells were used as a host organism for protein production because bacterial expression system 

(theoretically able to produce more product than yeast one) would not ensure correct 

posttranslational modifications which can be crucial for protein activity. Moreover, the prokaryotic 

lipid environment differs from eukaryotic (eg. bacteria produce hopanoids instead of sterols) what 

could influence the amount and quality of expressed protein [101].  

To make the purification possible, AUS1 was tagged on the N terminus with Flag tag which allowed 

for purification of this protein by affinity chromatography. Moreover, adding a small soluble tag 

(like a Flag tag) at N terminus can efficiently decrease protein degradation level, as shown already 

for yeast H-ATPase Pma1p. Protein purification is a multistep process during which the protein of 

interest is isolated from a complex mixture of all cellular components. Several factors influence the 

amount and quality of the obtained product – therefore purification protocol has to be optimized for 

each protein separately. Since protein proteolysis can be a serious problem during purification, 

Aus1p has been overexpressed in a protease deficient strain (BJ1991) and high amount of protease 
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inhibitors were added during purification process. Additionally, cultivation conditions were 

optimized to ensure that the protein is expressed with high efficiency. Since galactose promoters are 

the most efficient for protein overexpression, AUS1 was placed under the control of GAL10 and its 

expression was induced for 16h. Although this induction time seems to be long, detection of full 

length Aus1p protein was possible only after 8 h and was constant up to 20 h. Since prolonged 

induction (around 20 h) can affect cell viability, 16 h of cultivation in presence of galactose has been 

selected as an effective induction time.  

In the cell, membrane proteins account for around 30% of all proteins and they vary in size and 

physio-chemical properties. Purification of these components is more difficult than purification of 

soluble proteins since membrane proteins are highly hydrophopbic and have to be released from 

membrane environment by solubilization with detergents. To purify Aus1p, cellular membranes from 

the induced cells were collected and solubilized with 1% dodecylmaltoside (DDM). DDM was 

detergent of choice firstly because it is a non ionic detergent widely used during purification of ABC 

transporters and secondly, because it was able to efficiently release Aus1p from membranes. 

Although, Triton X-100 was also efficient in terms of Aus1p solubilization, it inactivated protein in 

term of ATP hydrolisis.  

Solubilized protein was subjected to affinity chromatography which allowed for purification of 

around 70 μg of Aus1p protein per 1 g of yeast cells. Affinity chromatography was in this case very 

efficient and selective process, since mass spectrometry analysis of the obtained product showed 

only minor contaminations. Theoretically, additional steps of purification can be included into 

protocol (eg. size exclusion chromatography) however it does not seem to be necessary in that case 

since the final product already displayed more than 90% of purity. Moreover, one has to take into 

account that any additional step can decrease the amount of purified product and can lead to 

decrease or even lost of activity. 

 

6.3 Reconstitution of Aus1 protein into liposomes 

Since Aus1p is a membrane protein, it was necessary to reconstitute it into membrane for further 

analysis. Reconstitution into liposomes is a well known strategy for studying the properties of 

membrane proteins. Again, as in the case of purification, the reconstitution procedure has to be set 

up for each protein separately since there is no general protocol. Several reconstitution methods 

exist, which differ in terms of insertion of membrane proteins into liposomes (eg. freez-thaw method 

or liposome destabilization) or detergent removal (dilution, dialysis, size exclusion chromatography 

or adsorption on polystyrene beads). Most common strategy for proteoliposome formation involves 

the use of detergents. It requires co-micellization of protein and preformed liposomes with detergent. 

Subsequently, during detergent removal, when its concentration decreases to a critical level, protein 
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molecules spontaneously associate with phospholipids to form proteoliposomes [102]. Since Aus1p 

belongs to the family of ABC transporters, which are frequently reconstituted with use of 

dodecylmaltoside, DDM was the detergent of choice for reconstitution of putative sterol flippase. It 

efficiently in solubilized of Aus1p from cellular membranes during purification and preserved 

ATPase activity of the protein. Additionally, it is also advised, to use for reconstitution the same 

detergent as for purification. Extremely important is also the complete removal of detergent from 

reconstitution mixture, as traces of detergent can negatively influence further assays eg. due to the 

higher membrane permeability in the presence of detergent leftovers [102]. Because 

dodecylmaltoside has low critical micellar concentration the only efficient method for removal of the 

detergent from lipid-protein-detergent micellar solutions is incubation with BioBeads (in contrast to 

detergents with high cmc which can be easily removed by dialysis). The polystyrene beads 

efficiently adsorb organic materials from aqueous solutions. In case of Aus1p the reconstitution 

mixture was incubated with high amount of adsorptive material for 16 h at 4ºC. Addition of high 

amount of BioBeads resin leads to fast detergent removal. That method of treatment was shown 

result in formation of smaller but unilamellar proteoliposomes (DDM is a detergent which, when 

removed with slow rate leads to formation of multilamellar vesicles). Although it was shown that the 

detergent adsorption rate of Bio Beads strongly depends on temperature (it doubles every 15ºC) 

[103] the reconstitution procedure was carried at 4ºC (to minimalize protein degradation) what in 

turns forced longer incubation time (16 h in contrast to 5 h which would be sufficient at 25ºC). After 

removal of detergent proteoliposomes were collected by ultracentrifugation giving a clearly visible 

pellet and confirming that vesicles were formed since solubilized lipid-protein-detergent mixture 

cannot be pelleted at 100.000g.  

To prove that Aus1p protein was reconstituted, preparation was floated on the step nycodenz 

gradient. During gradient ultracentrifugation liposomes migrate from the bottom to the top fractions, 

so if the protein is reconstituted into the liposomal membrane it will be detected also at the top of the 

gradient. Indeed, RFP fluorescence was clearly detected in the same fractions as liposomes 

confirming that upon applied reconstitution conditions Aus1p can be reconstituted. Moreover, 

although prolongated incubation at 4ºC, the protein was not degraded and only one band 

corresponding to Aus1p protein was detected by SDS-PAGE and Western Blot analysis. Although 

successful, the reconstitution protocol still could be optimized. Under given conditions protein was 

reconstituted with orientation dependent on the used lipid mixture. It is possible that manipulations 

with reconstitution conditions eg. lipid/protein ratio, resin amount and incubation time can improve 

the efficiency of protein incorporation and influence the orientation of Aus1p in the membrane, 

theoretically giving even symmetrical orientation with both NBD domains directed outside vesicle. 

That would be useful for further studies since only molecules with that orientation are able to 

hydrolyze ATP which is applied from outside. 
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6.4 ATPase activity of Aus1p protein 

Purified, solubilized Aus1p was able to bind ATP in the presence of Mg2+ and exhibited an 

orthovanadate-, BeFx- and AlF3 sensitive ATPase activity even before reconstitution in liposomes, 

consistent with the properties of other purified ABC transporters such as the human multidrug 

transporter P-glycoprotein [57,73]. ATPase activity was also effectively blocked at higher 

concentration (1 mM) of verapamil. Conceivably, binding of numerous verapamil molecules to 

Aus1p might start to induce structural perturbation in the protein and block the transport cycle. A 

specific activity of the purified protein of 56 nmol ATP per minute and mg of protein has been 

determined. This is within the range of values reported for a number of eukaryotic ABC transporters 

that have been purified and biochemically characterized such as Ste6p, ABCR, TAP and ABCA1 

[2,78,90,92]. This activity did not show any specific increase upon addition of lipids or sterols. 

Some ABC proteins are known to increase their activity upon addition of the substrate (eg. BCRP in 

the presence of prazosin [104]), however it is not a rule. Lack of stimulation could also be caused by 

the fact that the protein was in a detergent solution and not in its native membrane environment.  

Upon reconstitution into proteoliposomes with different lipid composition, Aus1p ATPase activity 

was reduced by PC and PE but specifically stimulated several fold in the presence of PS. 

Phosphatidylserine is an anionic lipid and the presence of this type of lipids was proven to be 

necessary for function of acetylcholine receptor (AChR) [105,106] and for the opening of potassium 

channel (KcsA) [107,108]. However, opposite to the effect observed for Aus1p, the positive impact 

was observed for mentioned proteins only in the presence of small amounts of anionic lipids, and its 

elevated concentrations inhibited protein activity. Stimulation of Aus1p by PS cannot simply be 

explained by the presence of the negatively charged lipid, since the anionic lipid PI failed to enhance 

Aus1p ATPase activity. Furthermore, the stimulation of Aus1p ATPase activity by PS was 

stereoselective; the natural stereoisomer of PS was more potent than its enantiomers in enhancing 

the ATPase activity. Although other lipids may also be important for Aus1p function, obtained data 

suggest that the direct, and stereospecific, interaction between the phospholipid PS and Aus1p 

regulates the activity of the transporter.  

Many ABC transporters have been shown to possess intrinsic ATPase activity that is stimulated in 

the presence of transported substrates. The best investigated example is the mammalian Mdr1p (P-

glycoprotein), which possesses an ATPase activity stimulated by various drugs which are known to 

be transported [109]. Hence, the specific stimulation of Aus1p ATPase activity by PS suggests that 

this phospholipid might be the primary substrate for the ABC transporter, and translocating PS 

across the plasma membrane could be the physiological function of Aus1p. However, present results 

rule out this possibility; the presence or absence of Aus1p has no effect on the internalization and 
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localization of NBD-PS and other phospholipid analogues across the yeast plasma membrane. 

Instead, Aus1p-dependent sterol uptake was drastically reduced in PS-deficient cells. Those in vivo 

data support a model in which PS is required for the full activity of the transporter to drive sterol 

uptake.  

Biochemical and structural information obtained over recent years has highlighted a relationship 

between membrane proteins and lipids that is important for full functional and structural integrity of 

the protein. Membrane proteins are embedded in the lipid environment and surrounded directly by 

so called annular lipids which cover the hydrophobic protein surface and form a ring around it [109]. 

This group (composed of approximately 30 molecules) of loosely bound lipids interacts with a 

protein and undergo very fast (2x107 s-1) exchange with bulk membrane lipids [110]. Proteins by 

itself display in most cases only a small specificity towards the kind of annular lipids, mostly 

preferring anionic ones [111]. However, it has been demonstrated that some lipid molecules interact 

with protein much stronger and cannot be removed even by detergent treatment. These so called 

non-annular lipids acts more as a cofactors and influence strongly protein activity. One example is 

the Ca+2 ATPase which binds tightly a cholesterol molecule [112,113]. Likewise, the activity of the 

yeast cytochrome bc1 complex requires cardiolipin and specific lipid binding sites have been 

identified in the X-ray structures of the protein complex [110,111]. Changes in PE levels have 

recently been shown to affect the activity of the vacuolar membrane-localized ABC transporter Ycf1 

[112]. Similarly, Aus1p activity might be regulated by the PS levels in the cell. As this lipid is 

enriched along the secretory pathway, constituting ~13% of the glycerophospholipids in late 

secretory vesicles and ~34% in the plasma membrane, respectively [113], Aus1p activity would 

increase as it transits the secretory pathway en route to its functional residence in the plasma 

membrane. Notably, a requirement for PS has also been reported for the activity of the tryptophan 

transporter in the plasma membrane of S. cervisiae [107]. The specificity of lipid stimulated Aus1p 

ATPase activity is reminiscent of the activation of lipid transporting ATPases from the P4-ATPase 

family. Like Aus1p, the ATPase activity of Atp8a1 [108] and Atp8a2 [105] are selectively activated 

by PS and, at least for Atp8a1, the enatiomeric specificity is qualitatively similar; enzyme activation 

is greatest in the presence of the 1,2-sn-PS with some preference for the L-serine stereoisomers. 

These data indicate that the binding sites for PS on these very different classes of proteins may be 

similar or may reflect some other common features of their interactions with lipids.  

The lipid composition of the membrane determines its phase state which can greatly influence the 

protein. Many membrane proteins prefer liquid crystalline state over rigid gel phase. Reconstituted 

Aus1p followed this pattern of behavior, displaying lack of activity in rigid membranes composed of 

cholesterol and sphingomyelin. However, also in pure fluid POPC liposomes the activity of protein 

was reduced in comparison to the activity of purified protein in buffer. Addition of small amount of 

cholesterol restored the activity to the basal level suggesting that cholesterol serves as a substrate, 
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structural lipid or that the protein prefers a lipid environment with middle range rigidity. However 

the stimulation by cholesterol addition was much smaller than observed by addition of 

phosphatidylserine. Interestingly, it was reported that in the presence of calcium PS is able to form 

gel like domains ([114,115] of (PS)2 Ca from which some protein (eg. Ca2+ ATPase [116] or 

gramidicin [117]) are excluded. Therefore, it is possible that stimulation of Aus1 activity can come 

from partition into such regions.  

 

6.5 Influence of phosphatidylserine on sterol uptake in vivo 

Specific stimulation of Aus1p ATPase activity by PS suggested that phosphatidylserine can play an 

important role in sterol uptake process. Indeed, yeast mutants lacking phosphatidylserine displayed 

strongly reduced accumulation of 25-NBD cholesterol although Aus1p expression and trafficking 

were not affected by PS deficiency. Overexpression of phosphatidylserine synthase (CHO1) – an 

enzyme responsible for PS synthesis in yeast, rescued the growth of Δcho1 mutant on media not 

supplemented with choline and at the same time lead to elevated accumulation of fluorescent sterol 

in sterol uptake competent cells. This data confirmed the suggestions obtained from in vitro studies 

that phosphatidylserine plays an important role in sterol uptake process. Presented data suggest that 

PS modulates the activity of Aus1p transporter and by that influence sterol uptake. However, it is 

still possible that PS plays additional roles – eg. by modulation of plasma membrane properties, 

influence on protein arrangement in membrane or by affecting the extractability of sterol from the 

membrane. Unfortunately, there is no reliable study about the lipid composition of yeast plasma 

membrane under oxygen limited conditions. It would be therefore extremely interesting to 

investigate further the role of phosphatidylserine in sterol uptake. 
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7. CONCLUSION 

In this work Aus1p protein belonging to ABC family was characterized. The protein of interest is a 

yeast specific plasma membrane transporter involved in the uptake of sterols, however the precise 

mechanism of its action remains to be revealed. 

Here, a full length gene encoding Aus1p was cloned and protocols for protein overexpression and 

purification were developed. Pure, detergent solubilized protein was shown to bind and hydrolyze 

ATP, and its ATPase activity was efficiently blocked by classical inhibitors of ABC transporters (eg. 

vanadate). Moreover, a mutated version of the protein ( carrying a lysine to methionine substitution 

within Walker A motif) was generated and it was shown to be unable to hydrolyze ATP. 

Purified protein was successfully reconstituted into liposomes and its ATPase activity was stimulated 

by phosphatidylserine in a steroloselective manner. At the same time PS was not a substrate for 

Aus1p. These results suggest a direct interaction between Aus1p and PS. 

Additionally, PS deficient yeast strain (Δcho1) was generated in order to test the influence of 

phosphatidylserine on sterol uptake in vivo. In the absence of PS sterol competent yeast cells 

incorporated significantly less exogenously applied sterol than cells capable to synthesize PS. At the 

same time expression and trafficking of Aus1p transporter to the plasma membrane were not 

affected. 

Moreover, materials allowing for further studies of Aus1p were prepared. Aus1p was reconstituted 

into Giant Unilamellar Vesicles, which can be used further for testing the behaviour of the protein in 

the membranes with complex lipid compositions. The attempts were also made to detect interaction 

partners for Aus1p by immunoprecipitation as well as influence of a cell wall protein Dan1p on 

sterol uptake. Deletion of Dan1p significantly decreased sterol uptake process by sterol competent 

cells suggesting that this mannnoprotein can act as a sterol donor for Aus1p. 
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