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Abstract

We investigate Brill-Noether theory of algebraic curves, with special emphasis
on curves lying on K3 surfaces and Del Pezzo surfaces.

In Chapter 2, we study the Gieseker-Petri locus GPg inside the moduli space
Mg of smooth, irreducible curves of genus g. This consists, by definition, of curves
[C] ∈ Mg such that for some r, d the Brill-Noether variety Gr

d(C), which parametrizes
linear series of type gr

d on C, either is singular or has some components exceeding
the expected dimension. The Gieseker-Petri Theorem implies that GPg has codi-
mension at least 1 in Mg and it has been conjectured that it has pure codimension
1. We prove this conjecture up to genus 13; this is possible since, when the genus
is low enough, one is able to determine the irreducible components of GPg and
to study their codimension by “ad hoc” arguments and methods of classical Brill-
Noether theory.

Lazarsfeld’s proof of the Gieseker-Petri-Theorem by specialization to curves ly-
ing on general K3 surfaces suggests the importance of the Brill-Noether theory of
K3-sections for a better understanding of the Gieseker-Petri locus. Linear series on
curves lying on a K3 surface are deeply related to the so-called Lazarsfeld-Mukai
bundles. In Chapter 3, we study the stability of rank-3 Lazarsfeld-Mukai bundles
on a K3 surface S, and show it encodes much information about nets of type g2

d on
curves C contained in S. When d is large enough and C is general in its linear sys-
tem, we obtain a dimensional statement for the variety G2

d(C). If the Brill-Noether
number is negative, we prove that any g2

d is contained in a linear series which is
induced from a line bundle on S, as conjectured by Donagi and Morrison. Some
applications towards higher rank Brill-Noether theory and transversality of Brill-
Noether loci are then discussed.

Chapter 4 concerns syzygies of any given curve C lying on a Del Pezzo surface
S. In particular, under some mild hypotheses on the line bundle OS(C), we prove
that C satisfies Green’s Conjecture, which implies that the existence of some special
linear series on C can be read off the equations of its canonical embedding. A result
of Aprodu reduces Green’s Conjecture to a dimensional condition for some Brill-
Noether varieties, that we verify using vector bundle techniques.





Zusammenfassung

Diese Dissertation untersucht Brill-Noether-Theorie der algebraischen Kurven,
unter besonderer Berücksichtigung von Kurven auf K3-Flächen und Del-Pezzo-
Flächen.

In Kapitel 2 studieren wir den Gieseker-Petri-Ort GPg im Modulraum Mg der
glatten irreduziblen Kurven vom Geschlecht g. Dieser Ort wird definiert durch
Kurven mit einer Brill-Noether-Varietät Gr

d(C), die singulär ist oder deren Dimen-
sion größer als erwartet ist. Der Satz von Gieseker-Petri impliziert, dass GPg min-
destens Kodimension 1 hat, und es wurde vermutet, dass er von reiner Kodimen-
sion 1 ist. Wir beweisen diese Vermutung für Geschlecht höchstens 13. Dies wird
dadurch ermöglicht, dass man für kleine Geschlechter die Dimension der irredu-
ziblen Komponenten von GPg mittels “ad hoc”-Beweisführungen und Methoden
aus der klassischen Brill-Noether-Theorie untersuchen kann.

Lazarsfelds Beweis des Gieseker-Petri-Theorems mittels Kurven auf allgemeni-
nen K3-Flächen deutet darauf hin, dass die Brill-Noether-Theorie von K3-Schnitten
wichtig ist, um den Gieseker-Petri-Ort besser zu verstehen. Linearscharen von Kur-
ven, die auf K3-Flächen liegen, stehen in tiefgehender Beziehung zu sogenannten
Lazarsfeld-Mukai-Vektorbündeln. In Kapitel 3 untersuchen wir die Stabilität der
Lazarsfeld-Mukai-Vektorbündel vom Rang 3 auf einer K3-Fläche S, und wir zei-
gen, dass sie viele Informationen über Netze vom Typ g2

d auf Kurven in S enthalten.
Wenn d groß genug ist, erhalten wir eine obere Schranke für die Dimension der Va-
rietät G2

d(C). Wenn die Brill-Noether-Zahl negativ ist, beweisen wir, dass jedes g2
d

in einer von einem Geradenbündel induzierten Linearschar enthalten ist, wie von
Donagi und Morrison vermutet wurde. Schließlich werden Anwendungen in der
Brill-Noether-Theorie der Vektorbündel von höherem Rang und der Transversali-
tät von Brill-Noether-Orten diskutiert.

Kapitel 4 befasst sich mit Syzygien einer gegebenen Kurve C, die auf einer Del-
Pezzo-Fläche liegt. Unter milden Annahme über OS(C) beweisen wir insbesonde-
re, dass C die Greens Vermutung erfüllt, die impliziert, dass die Existenz gewisser
spezieller Linearscharen auf C von den Gleichungen ihrer kanonischen Einbettung
abgelesen werden kann. Ein Ergebnis von Aprodu führt Greens Vermutung auf
eine Dimensionsbedingung für gewisse Brill-Noether-Varietäten zurück, die wir
mittels Vektorbündelmethoden verifizieren.
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1 Introduction

The study of moduli spaces is one of the leading research directions in contemporary
algebraic geometry. The word “moduli” was first used by Riemann in 1857 (cf. [56]) in
order to refer to the parameters for a certain class of varieties. He proved that compact
complex Riemann surfaces of genus g ≥ 2 depend on 3g − 3 parameters. However,
the first rigorous construction of the moduli space Mg as an analytic variety, which
parametrizes isomorphism classes of smooth, irreducible curves of genus g, was accom-
plished only in 1940 by Teichmüller (cf. [63]). In 1965, by means of Geometric Invariant
Theory, Mumford performed a completely different construction of Mg as a quasipro-
jective algebraic variety valid in any characteristic (cf. [50]). Since any smooth curve of
genus g can be embedded in P5g−6 via the tricanonical map, the moduli space Mg can be
realized as the GIT quotient of a locally closed subset of the Hilbert scheme of smooth
curves of degree 6g− 6 and genus g in P5g−6 by the algebraic group PGL(5g− 5, C).
As remarked by Mumford, the presence of curves with non-trivial automorphisms pre-
vents the existence of a universal family on the scheme Mg, which is therefore just the
coarse moduli space of a more fundamental object, the moduli stackMg. Since the group
of automorphisms of any smooth, irreducible curve of genus g ≥ 2 is finite, the space
Mg is a so-called Deligne-Mumford stack. In [18] Deligne and Mumford introduced
the compactification Mg of Mg by allowing curves to degenerate to stable ones. A
curve is stable if it is complete and connected, its only singularities are nodes and its
automorphism group is finite.

Surprisingly enough, some properties of Mg were determined even before it was con-
structed. For instance, already in 1882 Klein (cf. [41]), following some ideas of Clebsch,
proved the irreducibility of Mg. This is a consequence of the Riemann’s Existence Theo-
rem since the space parametrizing branched coverings of P1 of fixed degree and genus
is connected.

Since the end of the nineteenth century, the development of the study of special divi-
sors on algebraic curves, under the name of Brill-Noether theory, somehow presumed
the existence of Mg. Indeed, in many statements, such as the Brill-Noether Theorem,
one encounters the notion of "being general in moduli". It is not surprising that the
proofs of some very early results were originally incomplete and were accomplished
only after the work of Deligne and Mumford.

Since Mg is irreducible and projective, a big advantage of considering curves in fam-
ilies is that some conditions can be verified on a single curve in order to obtain their
validity for “almost every” curve, namely in a dense open subset of the moduli space.
In fact, degeneration to specific types of singular curves proved very successful for
some fundamental theorems in Brill-Noether theory. However, the study of line bun-
dles on singular curves is not easy and generally requires sophisticated combinatorial
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1 Introduction

techniques. The major problem faced while adopting this strategy is that the Picard
functor of a singular curve is in general neither complete nor separated.

More recently, Lazarsfeld considered specializations to smooth curves lying on cer-
tain types of surfaces. In particular, he proved that sections of general K3 surfaces
behave generically from the point of view of special divisors. The Brill-Noether theory
of curves on a K3 surface S can be investigated by looking at certain vector bundles on
S. The study of the geometry of moduli spaces of sheaves on this type of surfaces is a
very active research field in itself.

This introduction is aimed to motivate the problems studied in the following chap-
ters, which mainly concern Brill-Noether theory of algebraic curves in general and of
K3-sections in particular, and to place them into context. By giving an overview of the
subject, without any claim of being exhaustive, I intend to explain why Gieseker-Petri
loci are interesting and how they are related to curves lying on K3 surfaces. I will omit
most of the proofs, especially those involving degeneration to singular curves since this
strategy is never performed in the rest of the thesis. On the contrary, I will fill details
while recalling some results on K3-sections, which play a central role in Chapter 3.

1.1 The Brill-Noether Theorem

Let C be a smooth, irreducible curve of genus g. A linear series of type gr
d on C is a

pair (A, V) such that A ∈ Picd(C) and V ⊂ H0(C, A) is an (r + 1)-dimensional sub-
vectorspace. When V = H0(C, A), the linear series is said to be complete. An effective
divisor D on C is special if

h0(C,OC(D)) > d− g + 1;

Riemann-Roch Theorem and Serre duality imply that this is equivalent to require that
h0(C,OC(KC − D)) > 0 and force the degree to be in the range 0 ≤ d ≤ 2g− 2.

Examples of special divisors had already appeared in Riemann’s paper concerning
abelian functions (cf. [56]). However, a methodical study of special linear series on
algebraic curves was started in 1874 by the German geometers Brill and Noether (cf.
[9]), after whom the theory was named. The problem of studying curves embedded in a
projective space can be translated into that of understanding their linear series. Indeed,
any very ample linear series of type gr

d on a curve C naturally defines an embedding of
C as a degree-d curve in Pr. In [9] the following result was first stated, which became
known as the Brill-Noether Theorem.

Theorem 1.1.1. A general curve [C] ∈ Mg has a gr
d if and only if the Brill-Noether number

ρ(g, r, d) := g− (r + 1)(g− d + r)

is nonnegative.

I sketch Brill and Noether’s plausibility argument. Consider the canonical embed-
ding C ↪→ Pg−1; by Riemann-Roch Theorem, C has a gr

d whenever there exists an r-

2



1.1 The Brill-Noether Theorem

dimensional family of (d− r− 1)-planes in Pg−1 which are d-secant to C. The number
of conditions imposed on a plane π ∈ G(d− r− 1, g− 1) by forcing it to intersect C in a
point equals (g− d+ r− 1). Hence, the locus G1 ⊂ G(d− r− 1, g− 1), consisting of the
planes which are d-secant to C, has codimension at most d(g− d + r− 1), if nonempty.
The condition

dim G(d− r− 1, g− 1)− d(g− d + r− 1) ≥ r

is equivalent to the inequality ρ(g, r, d) ≥ 0. However, this argument only proves that,
if ρ(g, r, d) ≥ 0 and Wr

d(C) 6= ∅, then every irreducible component of Wr
d(C) has di-

mension ≥ ρ(g, r, d).
I will give a brief excursus of the developments of the Brill-Noether theory until

the problems in providing a rigorous proof of the Brill-Noether Theorem were finally
worked out.

One of the earliest achievements is due to Clifford ([16]), who proved that any com-
plete linear series A of type gr

d on a smooth curve C satisfies d ≥ 2r; if equality holds,
then C is hyperelliptic or D is equivalent to either 0 or KC.

Castelnuovo, Enriques and Severi obtained meaningful results concerning embed-
dings of curves in projective spaces, such as the General Position Theorem ([59]) and
Castelnuovo’s Bound ([10]). I also want to mention the Enriques-Babbage Theorem
([26, 7]) stating that a canonical curve C ⊂ Pg−1, which is not isomorphic to a plane
quintic and has no linear series of type g1

3, is cut out by quadrics.
However, the proof of the existence part of the Brill-Noether Theorem, actually valid

for any curve [C] ∈ Mg, was obtained quite late and is due to Kleiman and Laksov
([40]) and Kempf([39]), who introduced the Brill-Noether variety Wr

d(C), parametrizing
complete linear series of degree d and dimension at least r on C.

Indeed, let D be a fixed divisor of sufficiently high degree m on C and L be a Poincarè
line bundle on C× Picm+dC), whose restriction to the fibre of the projection morphism
ν : C × Picd+m(C) → Picd+m(C) over a point A ∈ Picd+m(C) coincides with A itself.
Set Γ := D× Picm+d(C) and consider the isomorphism a : Picd(C) → Picm+d(C) given
by mapping a point L to L(D). Then, Wr

d(C) is the pullback to Picd(C) under a of the
(m + d− g− r)-th determinantal variety attached with the evaluation map

e : ν∗L −→ ν∗(L/L(−Γ)).

For m + d ≥ 2g− 1, the Riemann-Roch Theorem implies that e is a morphism between
two vector bundles of rank m+ d− g+ 1 and m respectively. In particular, the expected
dimensiom of Wr

d(C) equals the Brill-Noether number ρ(g, r, d). When ρ(g, r, d) ≥ 0,
the non-emptiness of Wr

d(C) follows from a more general result of Bloch and Gieseker
(cf. [8]), by showing that the dual bundle of ν∗L is ample if m + d ≥ 2g − 1. Notice
that a similar argument implies the connectedness of Wr

d(C) when ρ(g, r, d) ≥ 1, as
proved by Fulton and Lazarsfeld in [29]. I also mention that the variety Gr

d(C), which
parametrizes linear series of type gr

d on C, was later defined by Arbarello and Cornalba
(cf. [4]) as the canonical blow-up of Wr

d(C) along Wr+1
d (C).

The non-existence part of the Brill-Noether Theorem was proved by Griffiths and
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1 Introduction

Harris in [34] by means of some degeneration techniques. The strategy had already
been indicated by Castelnuovo and Severi. Since the statement concerns curves in an
open and dense subset of Mg, it is enough to prove it for just one curve of genus g. Be-
cause of the difficulties in explicitly exhibiting smooth curves which are not very special
with respect to the existence of linear series, one has to “move” curves in families. Let
C → S be a family of genus g curves such that the fibre Ct is smooth and irreducible
if t 6= 0 while the central fibre C0 is singular; one can check the statement on C0 and
then deduce its validity for a general fibre Ct. This second step is non-trivial since in
general the family {Picd(Ct)} is not proper. Kleiman understood that such a problem
can be solved by considering, instead of Picd(Ct), the variety parametrizing torsion free
sheaves of rank 1 on Ct; these correspond to line bundles on some partial normalization
of the curve.

In Severi and Kleiman’s attempts, the special fibre C0 is a g-nodal curve, that is, a
rational curve obtained by identifying g pairs of points {Pi, Qi} on P1. Griffiths and
Harris’ successful idea was to introduce another degeneration, that is, let the points
Q1, P2, Q2, · · · tend to P1 one after the other. Later on, Eisenbud and Harris provided
an easier proof by reduction to the case of g-cuspidal curves (cf. [21]).

A remarkable consequence of the Brill-Noether Theorem is that one may investigate
the existence of some special linear series on a curve C, in order to understand how
special C is in moduli. In fact, when ρ(g, r, d) < 0, one defines the Brill-Noether locus

Mr
g,d := {[C] ∈ Mg | Wr

d(C) 6= 0},

which is a subvariety of codimension at least 1 in Mg. A result of Eisenbud and Har-
ris (cf. [24]), together with a theorem of Steffen (cf. [61]), implies that the locus Mr

g,d
is an irreducible divisor in Mg if ρ(g, r, d) = −1, while it has codimension at least 2
if ρ(g, r, d) ≤ −2. Further results concerning the dimension of the loci Mr

g,d will be
recalled in Chapter 2.

1.2 The Gieseker-Petri Theorem

Let A be a line bundle on a curve [C] ∈ Mg. The Petri map µ0,A is, by definition, the
cup-product homomorphism

µ0,A : H0(C, A)⊗ H0(C, ωC ⊗ A∨)→ H0(C, ωC).

The Petri map µ0,V associated with a non-complete linear series (A, V) is the restriction
of µ0,A to the subspace V ⊗ H0(C, ωC ⊗ A∨). If (A, V) is of type gr

d, the Riemann-Roch
Theorem implies that the Brill-Noether number ρ(g, r, d) is the difference between the
dimensions of the domain of µ0,V and of its codomain.

The determinantal description of Wr
d(C), together with the isomorphism between

H1(C,OC) and the tangent space to Pic(C) in any point, implies that the tangent space

4



1.2 The Gieseker-Petri Theorem

to Wr
d(C) in a point A 6∈Wr+1

d (C) is the kernel of the map

ψA : H1(C,OC)→ Hom(H0(C, A), H1(C, A)).

Since the dual of ψA coincides the Petri map µ0,A, it follows that

TA(Wr
d(C)) = (Im µ0,A)

⊥.

Hence, every irreducible component of Wr
d(C) has dimension ≥ ρ(g, r, d) and Wr

d(C)
is smooth in A of dimension ρ(g, r, d) whenever µ0,A is injective. Analogously, the
requirement for Gr

d(C) to be smooth of the expected dimension in a point (A, V) is
equivalent to the condition ker µ0,V = 0.

The following result was indirectly stated by Petri ([54]) and first proved by Gieseker
([31]) by considering the stable reduction of the family of curves used by Griffiths and
Harris in order to prove the Brill-Noether Theorem.

Theorem 1.2.1. If [C] ∈ Mg is general, the Petri map µ0,A is injective for any line bundle
A ∈ Pic(C).

In particular, if ρ(g, r, d) ≥ 0, then Gr
d(C) is smooth of the expected dimension ρ(g, r, d)

and the forgetful map Gr
d(C) → Wr

d(C) is a rational resolution of singularities along
Sing Wr

d(C) = Wr+1
d (C). Also notice that the Gieseker-Petri Theorem trivially implies

the non-existence part of the Brill-Noether Theorem.
A simpler proof of the Gieseker-Petri Theorem is due to Eisenbud and Harris (cf.

[20]). Their idea was to specialize to g-cuspidal rational curves, for which they had al-
ready proved the validity of the Brill-Noether Theorem. Since Petri’s condition can fail
for such curves, another degeneration was necessary, namely, they let the cusps come
together one after the other. They considered the stable reduction of the family; possi-
bly after further blow-ups and base changes, they obtained a flag curve C0, consisting
of a chain of rational curves X1, · · · , Xn such that to g of the Xi an elliptic tail is joined
possibly by another rational chain.

The study of line bundles on such a curve C0 is possible thanks to the theory of limit
linear series (cf. [22]). This enables to control the degeneration of linear series on smooth
curves while such curves degenerate to a nodal curve C0 of compact type, that is, the
dual graph of C0 is a tree or, equivalently, the Jacobian Pic0(C0) is compact.

In section 1.4, I will recall Lazarsfeld’s proof of the Gieseker-Petri Theorem by means
of curves lying on a K3 surface.

Having defined the Gieseker-Petri locus in genus g as

GPg := {[C] ∈ Mg |C does not satisfy the Gieseker-Petri Theorem},

the Gieseker-Petri Theorem can be rephrased in the following way.

Theorem 1.2.2. The Gieseker-Petri locus GPg has codimension at least 1 in Mg.

Notice that GPg naturally breaks up in different components depending on the nu-
merical type of the linear series for which the Gieseker-Petri Theorem fails. For fixed
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1 Introduction

values of r and d, one defines the Gieseker-Petri locus of type (r, d) as

GPr
g,d := {[C] ∈ Mg | ∃ (A, V) ∈ Gr

d(C) with ker µ0,V 6= 0};

if ρ(g, r, d) < 0, then GPr
g,d trivially coincides with the Brill-Noether locus Mr

g,d.

1.3 Mg is of general type for g ≥ 24

Brill-Noether loci and Gieseker-Petri loci played a central role in the proof of the fol-
lowing result, due to Harris and Mumford.

Theorem 1.3.1. The coarse moduli space Mg is of general type for g ≥ 24.

Recall that a smooth projective variety X is of general type whenever the canonical
divisor KX is big, that is, the n-canonical map

φnKX : X 99K PH0(X, nKX)

is generically injective for n sufficiently high. Harris and Mumford’s Theorem was very
unexpected since it invalidated Severi’s Conjecture, which predicted the unirationality
of Mg in any genus and had been proved for genus g ≤ 10 by Severi himself. The proof
is based on a divisor class computation.

I remind that, for g ≥ 3, the group Pic(Mg) ⊗Q is freely generated by the classes
λ, δ0, . . . , δbg/2c, where λ is the first Chern class of the Hodge bundle E, whose fibre
over a point [C] ∈ Mg is the space H0(C, ωC), and δi are the classes of the boundary
divisors ∆i. Here, ∆0 denotes the closure of the locus of irreducible curves having one
node while, if i ≥ 1, a general point of ∆i has two components, of genus i and g − i,
meeting in a point. If D ⊂ Mg coincides with the closure of an effective divisor on Mg,

then [D] = aλ−∑
bg/2c
i=0 biδi for some positive integers a and bi and one defines the slope

of D as
s(D) :=

a

minbg/2c
i=0 bi

.

The computation of the canonical class

KMg
= 13λ− 2δ0 − 3δ1 − 2δ2 − . . .− 2δbg/2c

was performed by Harris and Mumford and exploits Kodaira-Spencer theory and the
Grothendieck-Riemann-Roch Theorem. Since the Hodge class λ is big (cf. [49]), the
same holds true for KMg

provided there exists a divisor D with slope < 13/2; indeed,
this ensures that [KMg

] lies in the cone spanned by λ, [D] and δi for 0 ≤ i ≤ bg/2c.
In the cases of odd genus g = 2k + 1 (cf. [36]), Harris and Mumford considered

the closure in Mg of the locus Dk ⊂ Mg consisting of curves C admitting a mapping

ϕ : C k:1→ P1. Since ρ(g, 1, k) = −1, the locus Dk is an open and dense subscheme of the
irreducible divisor M1

g,k, the difference M1
g,k \ Dk consisting of those curves for which

6
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every g1
k has some base points; as a consequence, the closure Dk inside Mg coincides

with M1
g,k. It turned out that

s(M1
g,k) = 6 +

12
g + 1

,

which is less than 13/2 for g ≥ 24.
The cases of even genus g = 2k− 2 were first treated by Harris (cf. [35]) when g ≥ 40

and later on by Eisenbud and Harris ([23]), who simplified the proof and improved the
result up to genus g ≥ 24 by means of limit linear series. The role of the divisor D1

k
is played by the closure of the branch divisor of the forgetful map Hg,k → Mg from
the Hurwitz scheme Hg,k parametrizing coverings of P1 of degree k having as source a
smooth curve C of genus g. This coincides with the locus

bGP1
g,k :=

{
[C] ∈ Mg

∣∣∣∃ a base point free (A, V) ∈ G1
k (C) with ker µ0,V 6= 0

}
,

which is open but not trivially dense in GP1
g,k.

In [23] it was also proved that the classes of all the Brill-Noether divisors contained
in Mg only differ by a positive rational factor. On the contrary, the classes of the
codimension-1 components of the loci GPr

g,d for ρ(g, r, d) ≥ 0 have been computed only
in few cases, for instance if ρ(g, r, d) ∈ {0, 1} (cf. [27, 28]).

1.4 Lazarsfeld’s proof of the Gieseker-Petri Theorem

In [45] Lazarsfeld gave an easier proof of the Gieseker-Petri Theorem. As already re-
marked, the only smooth curves which can be explicitely written down are very special
from the point of view of Brill-Noether theory. Gieseker, Eisenbud and Harris had
overcome this problem by specializing to certain types of singular curves. Lazarsfeld
understood how to prove the statement directly for some smooth curves, thus avoid-
ing degenerations. His idea was to consider an integral curve C0 of genus g lying on a
K3 surface S and let it move in its linear system |L|, where L = OS(C0). Notice that,
when g is sufficiently high, the curve C0 is far from being general in moduli; indeed,
curves lying on K3 surfaces depend on 19 + g parameters if g = 11 or g ≥ 13 (cf. [14]).
Lazarsfeld proved the following.

Theorem 1.4.1. Let S be a K3 surface such that Pic(S) = Z · L. Then, a general curve C ∈ |L|
satisfies the Gieseker-Petri Theorem.

The same holds true under the weaker hypothesis that every curve in the linear sys-
tem |L| is reduced and irreducible. Since for any g ≥ 2 there exists a K3 surface whose
Picard group is generated by the class of a smooth, irreducible curve of genus g, Lazars-
feld’s result trivially implies the Gieseker-Petri Theorem. I am going to recall the proof
of Theorem 1.4.1, which was somehow simplified by Pareschi in [53].

Let C be a smooth and irreducible curve in |L|. Given a complete and base point
free A ∈ Wr

d(C), one can think of A as a globally generated sheaf on S and define an

7
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(r + 1)-rank vector bundle FC,A on S to be the kernel of the evaluation map

evA,S : H0(C, A)⊗OS � A.

Let MC,A denote the bundle on C of rank r obtained as kernel of the map evA,C given
by evaluating the sections of A on OC, that is, MC,A fits in the following short exact
sequence:

0→ MC,A → H0(C, A)⊗OC → A→ 0.

After tensoring with ωC ⊗ A∨ and taking global sections, one obtains that

H0(S, MC,A ⊗ωC ⊗ A∨) = ker µ0,A. (1.1)

Notice that det FC,A = L∨, while det MC,A = A∨. Since ωC = OC(C) by the adjunction
formula, one has a short exact sequence

0→ OC → FC,A ⊗ωC ⊗ A∨ → MC,A ⊗ωC ⊗ A∨ → 0.

Pareschi proved that, for a general choice of (C, A), this sequence is exact on the global
sections. Indeed, denote by |L|s the locus of smooth curves in |L| and consider the
projection π : W r

d(|L|) → |L|s, whose fibre over C coincides with the Brill-Noether
variety Wr

d(C). Let
µ1,A : ker µ0,A → H0(C, ω⊗2

C )

be the Gaussian map and

ρ∨ : H0(C, ω⊗2
C )→ (TC|L|)∨ = H1(C,OC)

be the transpose of the Kodaira-Spencer map. It turns out that the coboundary map
δ : H0(C, MC,A ⊗ ωC ⊗ A∨) → H1(C,OC) coincides, up to a scalar factor, with the
composition µ1,A,S := ρ∨ ◦ µ1,A. Moreover, one shows that

Im(dπ(C,A)) ⊂ Ann(Im(µ1,A,S)) = Ann(Im δ).

Therefore, if C is general in its linear system, Sard’s Lemma implies that δ ≡ 0, that is,
one finds

0→ H0(C,OC)→ H0(C, FC,A ⊗ωC ⊗ A∨)→ H0(C, MC,A ⊗ωC ⊗ A∨)→ 0. (1.2)

Set EC,A = F∨C,A. By the very definition, EC,A fits into the short exact sequence

0→ H0(C, A)∨ ⊗OS → EC,A → ωC ⊗ A∨ → 0; (1.3)

hence, hi(S, EC,A) = 0 for i ∈ {1, 2} and EC,A is globally generated off the base points of
ωC ⊗ A∨. Tensoring (1.3) by FC,A and taking cohomology, one finds that

H0(S, EC,A ⊗ FC,A) ' H0(C, FC,A ⊗ωC ⊗ A∨). (1.4)
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Putting (1.2), (1.1), (1.4) together, one obtains the following result.

Proposition 1.4.2. If C ∈ |L| is general, then for any base point free A ∈ Pic(C) one has:

ker µ0,A = 0⇐⇒ EC,A is simple.

Notice that Riemann-Roch Theorem implies

χ(S, EC,A ⊗ E∨C,A) = 2(1− ρ(g, r, d));

hence, if ρ(g, r, d) < 0, the Lazarsfeld-Mukai bundle corresponding to any linear series
A of type gr

d on a curve C ∈ |L|s is non-simple, even without assuming that C is general
in its linear system.

It remains to prove that the hypotheses of Theorem 1.4.1 force all the bundles of
type EC,A to be simple, that is, to have no non-trivial endomorphisms. Ab absurdo
assume that h0(S, EC,A ⊗ E∨C,A) ≥ 2 and let ϕ be an endomorphism of EC,A which is not
a multiple of the identity. Set ψ := ϕ− λ · IdEC,A , where λ is an eigenvalue of ϕ(s) for
some s ∈ S. Since det ψ vanishes in s and H0(S, L⊗ L−1) = H0(S,OS) = C, we have
det ψ ≡ 0 and, up to replacing ϕ with ψ, we can assume that ϕ drops rank everywhere
on S. Therefore, both N := Imϕ and M := Cokerϕ have positive rank. Having denoted
by T(M) the torsion subsheaf of M and set M0 := M/T(M), we obtain

[C] = c1(L) = c1(N) + c1(M0) + c1(T(M)).

Since both N and M0 are quotient of EC,A, they are globally generated off a finite set.
This ensures that c1(N) and c1(M0) are represented by some effective divisors on S
and are non-trivial because H2(S, EC,A) = 0. Since c1(T(M)) is a non-negative linear
combination of the components of supp T(M) of codimension 1 in C, we have shown
that c1(L) is the sum of two effective divisors. This contradicts the hypothesis that
Pic(S) is generated by L and we are done.

The bundle EC,A is commonly known as the Lazarsfeld-Mukai bundle associated with
the pair (C, A). Thanks to Proposition (1.4.2), many Brill-Noether theoretic problems
for curves on a K3 surface S can be translated in terms of the corresponding Lazarsfeld-
Mukai bundles. In fact, the projections π :W r

d(|L|)→ |L|s can be studied by looking at
the geometry of certain moduli spaces of sheaves on S.

1.5 Propagation of linear series on K3-sections

I recall the definition of some invariants of a smooth curve C.
The gonality of C is the minimum degree d such that G1

d(C) 6= ∅; the Brill-Noether
Theorem implies that, if C has genus g, then gon(C) ≤ b(g + 3)/2c. If a line bundle A
on C satisfies both h0(C, A) ≥ 2 and h1(C, A) ≥ 2, set

Cliff(A) := deg(A)− 2h0(C, A) + 2 ≥ 0.

9
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The Clifford index of C is defined as

Cliff(C) := min{Cliff(A) | A ∈ Pic(C), hi(C, A) ≥ 2 for i = 0, 1}. (1.5)

We say that A ∈ Pic(C) contributes to Cliff(C) if it satisfies the inequalities in (1.5),
and that it computes Cliff(C) if Cliff(A) = Cliff(C). The Clifford dimension of C is, by
definition, the minimum integer r ≥ 1 such that there exists a line bundle A on C
which computes the Clifford index and such that h0(C, A) = r + 1. Curves of Clifford
dimension ≥ 2 are rare. For instance, equality holds only for smooth plane curves.
Coppens and Martens ([17]) proved that, if C has Clifford dimension ≥ 2 and gonality
k, then Cliff(C) = k− 3 and C has a 1-dimensional family of g1

k .
Let us now focus on the Brill-Noether theory of curves on K3 surfaces. A K3-section

is, by definition, a smooth irreducible curve of genus at least 2 lying on a K3 surface.
In [57], Saint-Donat proved that, if a K3-section C ⊂ S has either a g1

2 or a g1
3, the same

happens for any curve C′ ∈ |L|, where L := OS(C). Reid ([55]) extended this result
by showing that, if g > d2/4 + d + 2, any g1

d on C propagates since it is cut out by an
elliptic pencil |E| on S. This suggests that the existence of some special linear series on
a K3 section C ⊂ S might depend only on the linear equivalence class of C in S. Such an
idea originated also from the work of Harris and Mumford [36], who conjectured that
the gonality remains constant while moving C in its linear system |L|.

Donagi and Morrison disproved Harris and Mumford’s Conjecture by exhibiting the
following counterexample (cf. [19]). Let π : S → P2 be a K3 surface which is a dou-
ble cover of P2 branched along a smooth plane sextic and let L := π∗OP2(3). One
can check that L2 = 18; this ensures that the projective dimension of the linear system
|L| is 10 and equals the genus of any smooth curve C ∈ |L|s. Curves in the subspace
|π∗H0(P2,OP2(3))|, which has codimension 1 in |L|, are double covers of an elliptic
curve, thus they have gonality 4. On the other hand, a general element in |L| is isomor-
phic to a smooth plane sextic, hence its gonality is 5. However, both the pencils g1

4 on
a curve inside |π∗H0(P2,OP2(3))| and the g1

5 on a general curve in |L| are contained in
a linear series of type g2

6, which computes the Clifford index and is induced from the
same line bundle π∗OP2(1) on S.

Donagi and Morrison’s example suggests that the Clifford index, instead of the go-
nality, might be constant for all curves in |L|. This was conjectured by Green (cf. [33])
in connection with his theory of Koszul cohomology. Indeed, he noticed that in the
ample case such a statement would be implied by a conjecturally generalization of the
Enriques-Babbage Theorem, now known as the Green’s Conjecture. Moreover, one can
expect that any gr

d on C such that ρ(g, r, d) < 0 is contained in the restriction to C of a
line bundle on S.

In [19] Donagi and Morrison showed that, if C has Clifford dimension 1, then Cliff(C′)
equals Cliff(C) for any other smooth curve C′ ∈ |L|. They actually proved a somehow
stronger statement, which we are now going to recall. We say that M ∈ Pic(S) is adapted
to |L| if the following conditions are satisfied:

(i) h0(S, M) ≥ 2, h0(S, L⊗M∨) ≥ 2,
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(ii) h0(C, M⊗OC) is independent of the curve C ∈ |L|s.

This ensures that the restriction of M to a smooth curve C ∈ |L| contributes to the
Clifford index and Cliff(M⊗OC) does not depend on the choice of C ∈ |L|s. Donagi
and Morrison proved the following.

Theorem 1.5.1. Let S be a K3 surface and L ∈ Pic(S) be a line bundle such that curves in
|L| are non-hyperelliptic of genus g. Let A be a complete, base point free g1

d on a smooth curve
C ∈ |L| such that ρ(g, 1, d) < 0.

Then, there exists M ∈ Pic(S) adapted to |L| such that the linear system |A| is contained in
|M⊗OC| and Cliff(M⊗OC) ≤ Cliff(A).

I recall the idea of the proof. Let E := EC,A be the Lazarsfeld-Mukai bundle associated
with the pair (C, A). The hypothesis ρ(g, 1, d) < 0 prevents E from being simple, thus
there exists a non-zero endomorphism ϕ : E → E which drops rank everywhere on
S. Let N = ker ϕ and M ⊗ Iξ = Imϕ, where N, M ∈ Pic(S) and Iξ is the ideal sheaf
of a 0-dimensional subscheme ξ ⊂ S. The bundle E sits in the following short exact
sequence:

0→ N → E→ M⊗ Iξ → 0, (1.6)

which is known as the Donagi-Morrison extension. Since E is globally generated off a
finite set and H2(S, E) = 0, then M is base point free and non-trivial, thus h0(S, M) ≥ 2.
Moreover, either E ' N ⊕ M or ϕ is nilpotent by a theorem of Atiyah (cf.[6]). We
assume that (1.6) does not split, the case where E is the direct sum of two line bundles
being easier. Since Imϕ ⊂ ker ϕ, one has h0(S, M∨ ⊗ N) 6= 0. It follows that h0(S, N) is
greater or equal than 2 and (i) is satisfied.

The bundle E naturally has a section s such that, if (s) = A0, then A = OC(A0). Since
s is not a section of N, one finds that A0 ⊂ D where D = c1(M). It is not difficult
to check that Cliff(M ⊗OC) ≤ d− 2. Finally, condition (ii) follows from the fact that
h1(S, M) = 0 unless D ≡ kΓ for some positive integer k and some elliptic curve Γ ⊂ S;
in this case, Donagi and Morrison explain how to replace D with a divisor D̃ which is
adapted to |L| and has the same properties as D.

Donagi and Morrison conjectured that an analogue of Theorem 1.5.1 should hold for
any gr

d on a curve C ⊂ S such that ρ(g, r, d) < 0. In particular, such a gr
d is expected

to be contained in a linear series gs
e on C, which is induced from a line bundle on S,

contributes to the Clifford index of C and satisfies e − 2s ≤ d − 2r. However, their
proof cannot be adapted to the cases where r ≥ 2 and E has rank at least 3, hence their
conjecture remains open.

In [32] Green and Lazarsfeld proved that linearly equivalent curves on a K3 surface
have the same Clifford index, independently on their Clifford dimension. More pre-
cisely, their result states the following.

Theorem 1.5.2. Let S be a K3 surface and C ⊂ S be a smooth irreducible curve of genus g ≥ 2.
Then

Cliff(C′) = Cliff(C)

11
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for every curve C′ ∈ |L|s, where L := OS(C). Moreover, if Cliff(C) < b(g − 1)/2c, there
exists a line bundle M ∈ Pic(S) whose restriction to any curve C′ ∈ |L|s computes the Clifford
index of C′.

The argument is as follows. Assume that C has the minimal Clifford index among
all the smooth curves in the same linear system |L|, and let A be a line bundle on C
computing Cliff(C) such that deg A ≤ g− 1. One would like to obtain the line bundle
M as a subsheaf of EC,A; this turns out to be possible up to replacing EC,A with what
Green and Lazarsfeld call a reduction of minimal rank. If S does not contain any smooth
rational curve, such a replacement is equivalent to the further assumption that C has
minimal Clifford dimension r among all the curves in |L| having the same Clifford
index as C, and h0(C, A) = r + 1.

If r = 1, one proceeds as Donagi and Morrison. If r ≥ 2, one uses the inequality
h0(S, EC,A) ≥ 2rk EC,A in order to prove the existence of s ∈ H0(S, EC,A) vanishing in
at least two points. The section s vanishes along a divisor D because otherwise there
would exist a pair (C′, A′), satisfying C′ ∈ |L|s, A′ ∈ Pic(C′), Cliff(A′) ≤ Cliff(A)
and h0(C′, A′) < h0(C, A). If S does not contain any smooth elliptic curve, one shows
that the restriction of M := OS(D) to any curve C′ ∈ |L|s contributes to the Clifford
index of C′ and Cliff(M⊗OC′) ≤ Cliff(A). Such a construction of M deeply uses the
minimality assumptions on Cliff(A) and cannot be performed in order to prove Donagi
and Morrison’s Conjecture for arbitrary gr

d with ρ(g, r, d) < 0.

1.6 Gonality and Clifford dimension of K3-sections

Quite surprisingly, Donagi and Morrison’s example turned out to be the only case
where Harris and Mumford’s Conjecture fails. Observe that in this example the curves
of minimal gonality 4 have a 1-dimensional family of g1

4 since they are double covers of
an elliptic curve. This phenomenon depends on a more general result. In fact, given a
K3 surface S and a line bundle L on it, if there exists a smooth curve C ∈ |L| of minimal
gonality k such that the variety W1

k (C) has a reduced and isolated point, then all smooth
curves in |L| have gonality k, as the following argument implies.

Let A be a g1
k on C corresponding to a reduced and isolated point of W1

d (C) and
E := EC,A be the Lazarsfeld-Mukai bundle associated with it. We denote by U the open
subscheme of G(2, H0(S, E)) consisting of vector subspaces Λ such that the evaluation
map evΛ : Λ⊗OS → E drops rank along a smooth, irreducible curve CΛ ∈ |L|. The
tangent space of U at Λ is canonically identified with H0(CΛ, AΛ)⊗H0(CΛ, ωCΛ ⊗ A∨Λ),
where ωCΛ ⊗ A∨Λ is the cokernel of evΛ. One can easily check that the derivative of the
natural map χE : U → |L|s at Λ coincides with the Petri map µ0,AΛ . As a consequence,
one finds that

dim χE(U) ≥ 2(g− d + 1)− dim ker µ0,A = dim Imµ0,A.

12



1.6 Gonality and Clifford dimension of K3-sections

Since A ∈W1
k (C) is reduced and isolated, then

dim TAW1
k (C) = g− dim Imµ0,A = 0,

hence χE is dominant. One concludes that the projection π : W1
k (|L|) → |L|s is surjec-

tive because its image is closed in |L|s.
This result was strengthened by Ciliberto and Pareschi (cf. [15, Theorem B]), who

showed that , if C ∈ |L|s is a curve of minimal gonality k such that W1
k (C) has a reduced

component W, then either S and L are as in Donagi and Morrison’s example or the
gonality of curves in |L|s is constant. As a consequence, they obtained the following.

Theorem 1.6.1. Let S be a K3 surface and L an ample line bundle on it. If the gonality of curves
in |L|s is not constant, then the pair (S, L) is as in Donagi and Morrison’s example.

The proof consists in showing that the hypothesis on the existence of a curve C lying
in |L|s and a reduced irreducible component W ⊂ W1

k (C) is automatically satisfied as
soon as L is ample. By an infinitesimal argument, it is enough to exhibit a complete
and base point free A ∈ W1

k (C) such that the Lazarsfeld-Mukai bundle EC,A is rigid,
that is, H1(S, EC,A ⊗ E∨C,A) = 0. Ciliberto and Pareschi proved that, if a pair (C′, A′)
computes the minimal gonality k and ρ(g, 1, k) < 0, the Donagi-Morrison extension
corresponding to the bundle EC′,A′ has the form

0→ N → EC′,A′ → M→ 0,

with N and M being base point free and non-trivial and h1(S, N) = h1(S, M) = 0. As
a consequence, the bundle N ⊕ M coincides with the Lazarsfeld-Mukai bundle EC,A
associated with a pair (C, A). Up to slightly modifying N and M, one can assume that
h1(S, EC,A ⊗ E∨C,A) = h1(S, N ⊗M∨) = 0 as desired.

More recently, Knutsen (cf. [43]) showed that Theorem 1.6.1 holds even without the
ampleness assumption by a degeneration argument. His idea was to deform a pair
(S, L), such that L is globally generated but non-ample and the gonality of curves in
|L|s varies, in order to make L “almost ample”, that is, the morphism φL contracts a
unique rational curve Γ such that Γ · L = 0 and the line bundle H := L(−Γ) is still glob-
ally generated. Since the non-constancy of the gonality is preserved by deformations,
Knutsen specialized to a curve C′ ∪ Γ, where C′ ∈ |H|.

In [15] and [43], the Clifford dimension of curves on K3 surfaces was studied as well.

Theorem 1.6.2. Let S be a K3 surface and C ⊂ S a smooth curve such that Cliff(C) equals
gon(C) + 3. Then, one of the following occurs:

(i) S and L := OS(C) are as in Donagi and Morrison’s example.

(ii) C ≡ 2D + Γ, where D and Γ are smooth curves such that D2 ≥ 2, Γ is rational and
D · Γ = 1; furthermore, there is no line bundle B on S such that 0 ≤ B2 < D2 and
0 < B · L− B2 ≤ D2.
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The proof relies on Green and Lazarsfeld’s result concerning the constancy of the
Clifford index. Notice that in case (ii), if D has genus r, the genus of any curve C ∈ |L|s
equals 4r − 2 and Cliff(C) = 2r − 3 = gon(C) − 3; the only line bundle comput-
ing Cliff(C) is OC(D), hence C has Clifford dimension r. The same examples with
Pic(S) = ZD ⊕ ZΓ had already been displayed by Eisenbud, Lange, Martens and
Schreyer in [25], where it was conjectured that any smooth curve of Clifford dimen-
sion r ≥ 3 has genus r and Clifford index 2r− 3. Ciliberto and Knutsen’s results imply
that this conjecture holds for curves on K3 surfaces.

1.7 Green’s Conjecture for curves on K3 surfaces

As briefly mentioned in Section 1.5, the constancy of Clifford index for algebraically
equivalent K3-sections was conjectured by Green in [33] as a direct consequence of the
following conjecture concerning syzygies of canonical curves. Recall that, if [C] ∈ Mg
and A ∈ Pic(C), the Koszul group Kp,q(C, A) is defined as the cohomology group of the
complex

p+1∧
H0(A)⊗ H0(Aq−1)→

p∧
H0(A)⊗ H0(Aq)→

p−1∧
H0(A)⊗ H0(Aq+1),

where all the global sections are taken over C. If A is very ample, the Koszul cohomol-
ogy of A is strictly connected with the syzygies of the embedded curve

φA : C → P(H0(C, A)∨).

For instance, A is normally generated whenever K0,q(C, A) = 0 for all q ≥ 2. Anal-
ogously, the vanishing of the groups K1,q(C, A) for q ≥ 2 is equivalent to the ideal of
φA(C) being generated by quadrics.

Green’s Conjecture. Kp,2(C, ωC) = 0 if p < Cliff(C).

If true, such a statement would be optimal; indeed, Green and Lazarsfeld proved (cf.
[33, Appendix]) that Kp,2(C, ωC) 6= 0 if p ≥ Cliff(C), by producing a non-zero syzygy
from any linear series on C which contributes to the Clifford index. Quite remarkably,
Green’s Conjecture predicts that the Clifford index of C can be read off the equations
of its canonical embedding. For instance, one obtains that C ⊂ Pg−1 is projectively
normal whenever Cliff(C) > 0, or equivalently, C is non-hyperelliptic; this is precisely
the Max Noether Theorem (cf. [5, III.2]). Furthermore, a canonical curve C ⊂ Pg−1

is cut out by quadrics as soon as Cliff(C) > 1; since the Clifford index of a smooth
non-hyperelliptic curve C equals 1 whenever C is either trigonal or a plane quintic, one
recovers the Enriques-Babbage Theorem.

If C lies on a K3 surface and L := OS(C) is ample, the adjunction formula and Green’s
hyperplane section theorem (cf. [33, Theorem (3.b.7)]) imply that

Kp,q(C, ωC) ' Kp,q(S, L);
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1.7 Green’s Conjecture for curves on K3 surfaces

hence, smooth curves in |L| form a family of canonical curves with constant syzygies
and, if Green’s Conjecture holds, they all have the same Clifford index.

Curves lying on K3 surfaces were used by Voisin in order to prove Green’s Conjecture
for general curves in any gonality stratum M1

g,k with k ≥ g/3+ 1; observe that the cases
of smaller gonality had earlier been worked out by Teixidor (cf. [64]) by adapting the
theory of limit linear series to vector bundles of higher rank. By semicontinuity and the
irreducibility of the loci M1

g,k, it is enough to find a single curve C of gonality k which
satisfies K2,k−3(C, ωC) = 0; indeed, the Clifford index of general curves in M1

g,k is k− 2.
In [65], Voisin proved the following:

Theorem 1.7.1. Let S be a K3 surface such that Pic(S) = Z · L and L2 = 2g− 2 with g even.
Then smooth curves in the linear system |L| satisfy Green’s Conjecture.

Notice that, under the above hypotheses, Lazarsfeld’s Theorem forces every curve in
|L|s to have maximal gonality k = (g + 2)/2. However, this result implies the generic
Green’s Conjecture not only when the genus is even and the gonality is maximal, but
in all the cases where g/3 + 1 ≤ k ≤ g/2 + 1 by degenerating curves in |L|s to nodal
curves X with at most (k− 1)/2 nodes.

The remaining case of odd genus g = 2k − 3 and maximal gonality k is performed
in [66] by considering a K3 surface S such that Pic(S) = Z · L⊕Z · E, where L is very
ample with L2 = 2g− 2 and g = 2k − 3, while E = OS(Γ) for a rational curve Γ and
E · L = 2. It turns out that, in order to prove Green’s Conjecture for curves in |L|, it
is enough to show that it holds for curves in |L ⊗ E| and this is obtained by slightly
modifying the arguments of [65] so as to deal with the larger Picard group of S.

Green’s Conjecture for general curves of odd genus g = 2k − 3, together with a re-
sult of Hirschowitz and Ramanan (cf. [37]), implies that the locus Zg,k−3, consisting of
curves [C] ∈ Mg such that K2,k−3(C, ωC) 6= 0, is a divisor in Mg and coincides set the-
oretically with the Brill-Noether divisor M1

g,k−1. In particular, any curve of odd genus
and maximal gonality satisfies Green’s Conjecture. By generalizing this result to stable
singular curves, in [2] Aprodu provided a sufficient condition for a curve C of genus
g and gonality k ≤ (g + 2)/2 to satisfy Green’s Conjecture only in terms of the Brill-
Noether theory of C, namely the linear growth condition

W1
k+n(C) ≤ n for 0 ≤ n ≤ g− 2k + 2. (1.7)

This is achieved by considering a nodal curve X ∈ M2g+3−2k obtained from C by iden-
tifying g + 3− 2k pairs of general points.

The following more recent result is due to Aprodu and Farkas (cf. [3]).

Theorem 1.7.2. Green’s Conjecture holds true for every smooth curve C lying on an arbitrary
K3 surface S.

In fact, if C is general in its linear system |L|, has Clifford dimension 1 and gonal-
ity k ≤ (g + 2)/2, then C satisfies condition (1.7). On the other hand, if C has higher
Clifford dimension, then it does not satisfy the linear growth condition and Green’s
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Conjecture is proved by using Knutsen’s Theorem together with a degeneration argu-
ment. Now, I recall how to verify condition (1.7) in the first case.

Let d := k + n and consider the projection π : W1
d (|L|) → |L|s. One has to show

that, if curves in |L|s have genus g and gonality k and 0 ≤ n ≤ g − 2k + 2, every
dominating component W ⊂ W1

d (|L|) has dimension at most g + n. By Proposition
1.4.2, if C ∈ |L|s is general and A ∈W1

d (C), the simplicity of EC,A implies that W1
d (C) is

smooth in A of dimension ρ(g, 1, d) ≤ n. As a consequence, it is enough to estimate the
dimension of the irreducible components of W1

d (|L|) dominating |L|, whose general
points correspond to non-simple Lazarsfeld-Mukai bundles. For this porpouse, the
following parameter count is performed.

Fix a positive integer l and a non-trivial globally generated line bundle N such that,
having set M := L⊗ N∨, one has H0(S, M⊗ N∨) 6= 0. The space PN,l , parametrizing
Lazarsfeld-Mukai bundles E that are given by a non-trivial Donagi-Morrison extension

0→ M→ E→ N ⊗ Iξ → 0, (1.8)

with l(ξ) = l, turns out to be an open subset of a projective bundle P̃N,l on the Hilbert
scheme S[l] of 0-dimensional subschemes of S of length l. Indeed, the fibre of P̃N,l over
ξ ∈ S[l] is PExt1(N ⊗ Iξ , M) and, surprisingly enough, its dimension does not depend
on ξ.

When PN,l is non-empty, let GN,l be the Grassmann bundle whose fibre over a point
[E] ∈ PN,l coincides with G(2, H0(S, E)). For d := c2(E) = c1(M) · c1(N) + l, one
defines a rational map

hN,l : GN,l 99KW1
d (|L|),

by sending a general pair (E, Λ) to the point (CΛ, AΛ), where CΛ is the degeneracy
locus of the evaluation map evΛ : Λ⊗OS → E and ωCΛ ⊗ A∨Λ is its cokernel. The fibre
of hN,l over a pair (C, A) is isomorphic to PHom(EC,A, ωC ⊗ A∨), whose dimension
equals h0(S, EC,A ⊗ E∨C,A) − 1 by (1.4). Since (1.8) does not split by assumption, one
computes that h0(S, EC,A ⊗ E∨C,A) = 1 + h0(S, N∨ ⊗ M) and, putting all together, the
closureW of the image of hN,l satisfies

dim W = g + l = g + d− c1(M) · c1(N).

The hypothesis on the Clifford dimension of a general curve C ∈ |L|s is used in or-
der to bound from below the intersection product c1(M) · c1(N). Indeed, since both
h0(S, N) ≥ 2 and h0(S, M) ≥ 2, the restriction of M to C contributes to the Clifford
index and the inequality

Cliff(M⊗OC) ≥ Cliff(C) = k− 2

gives c1(M) · c1(N) ≥ k, hence dim W ≤ g + n, where n := d− k.
Concerning decomposable Lazarsfeld-Mukai bundles E = M ⊕ N, if the rational

map χE : G(2, H0(S, E)) 99K |L| is dominant, its differential at a general point Λ, which
coincides with the Petri map µ0,AΛ , is surjective. As a consequence, ρ(g, 1, d) ≤ 0 and,
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1.8 Moduli spaces of sheaves on K3 surfaces

for a general C ∈ |L|s, the fibre χ−1
E (C) consists of isolated points of W1

d (C).
For k ≤ d ≤ g− k + 2 and k ≤ (g + 2)/2, thanks to Aprodu’s result, one obtains that

smooth curves in |L| satisfy Green’s Conjecture. On the other hand, when d exceeds
g − k + 2, the same parameter count shows that every dominating component W of
W1

d (|L|) corresponds to simple Lazarsfeld-Mukai bundles. As a consequence, in the
case of maximal gonality, one finds:

Theorem 1.7.3. Let S be a K3 surface and L a globally generated line bundle on S. Assume
that general curves in |L| have Clifford dimension 1, genus g and possess maximal gonality
k = b(g + 3)/2c. Then, if C ∈ |L|s is general and ρ(g, 1, d) > 0, the variety W1

d (C) is
reduced of the expected dimension ρ(g, 1, d). Moreover, if g is even, the variety W1

k (C) is zero-
dimensional but not necessarily reduced.

This result gives a partial answer to the question how special from a Gieseker-Petri
point of view curves lying on an arbitrary K3 surface S are. Such a problem arises
naturally from Lazarsfeld’s Theorem concerning the case Pic(S) = Z · L.

1.8 Moduli spaces of sheaves on K3 surfaces

Because of the relation between the Brill-Noether theory of curves on a K3 surface S and
vector bundles on S, I will recall some results on moduli spaces of sheaves of fixed rank
and Chern classes on projective surfaces. A generalization of the construction of the
Picard scheme to the cases of vector bundles of higher rank r > 1 on projective surfaces
is not trivial. First of all, while looking for a complete parameter space, one cannot
restrict to the class of vector bundles but has to consider also torsion free sheaves which
are not locally free. Secondly, as pointed out by Geometric Invariant Theory, in order
to investigate the existence of a moduli space, a notion of stability must be introduced.
Let S be a projective surface and H be a polarization on S. If E is a torsion free sheaf on
S, the slope of E with respect to H is, by definition,

µH(E) :=
c1(E) · c1(H)

rk E
.

Following Mumford and Takemodo (cf. [62]), one says that E is µH-stable if for every
subsheaf 0 6= F ⊂ E such that rk F < rk E one has µH(F) < µH(E), and that E is
µH-semistable if equalities are also allowed.

For constructing compact moduli spaces, the following different notion of stability,
which was introduced by Gieseker (cf. [30]), proved more useful. A torsion free sheaf
E on S is said to be H-semistable if every subsheaf F 6= 0 of E of smaller rank satisfies
p(F, m) ≤ p(E, m), where

p(E, m) :=
χ(E⊗ H⊗m)

rk E
is the normalized Hilbert polynomial; H-stability requires that all the inequalities are
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strict. One can check that

µH − stability⇒ H − stability⇒ H − semistability⇒ µH − semistability;

moreover, every H-stable sheaf is simple.
In [30], Gieseker first constructed the moduli space MH(c) of semistable sheaves of

fixed Chern classes c on (S, H). The space MH(c) is a projective variety parametrizing
S-equivalence classes of H-semistable objects. I recall that every H-semistable sheaf E
admits a filtration, the so-called Jordan-Hölder filtration, which splits E in stable factors
gri(E) and the graded object gr(E) := ⊕igri(E) is uniquely determined. Two semistable
sheaves are S-equivalent whenever they have the same graded object. This notion was
originally introduced by Seshadri (cf. [58]), who explained that, in order to obtain a
separated moduli space for semistable vector bundles of rank r > 1 on an algebraic
curve, one has to consider them up to S-equivalence instead then up to isomorphism.
The space MH(c)s, parametrizing isomophism classes of H-stable sheaves, is an open
and dense subscheme of MH(c). Since H-stability is weaker than µH-stability, one finds
an open subset MH(c)µs of MH(c), whose point correspond to bundles which are µH-
stable. In Chapter 3, we will denote by MH(c)µs the Artin stack obtained from the
scheme MH(c)µs by endowing every point with the automorphism group of the corre-
sponding µH-stable sheaf, which has dimension 1.

I briefly recall the idea of a later construction of MH(c) presented by Simpson in [60].
If m is sufficiently high, to any torsion free sheaf F of Chern classes c together with a
basis for H0(S, F⊗ H⊗m), one associates a surjection

E := (H⊗−m)⊕n → F,

where n := h0(S, F ⊗ H⊗m). Since such a morphism naturally defines a point of the
Grothendieck’s Quot scheme Quot(E, P), parametrizing quotients of E with the same
Hilbert polynomial P as F, the space MH(c) can be constructed starting from an open
subset of Quot(E, P) and modding it out by the freedom in the choice of the basis for
H0(S, F⊗ H⊗m).

The moduli spaces Spl(c) of simple sheaves on S of Chern classes c = (rk, c1, c2) was
constructed in the complex case by Kosarew and Okonek in [44]. The tangent space
of Spl(c) at a point [E] is canonically isomorphic to Ext1(E, E) (cf. [1]). In [47], Mukai
proved that, if S is a K3 surface, Spl(c) is smooth of dimension (1− rk)c2

1 − 2(rk)2 +
2rkc2 + 2. This result can be used in order to simplify the proof of Lazarsfeld’s Theorem
in the following way (cf. [46]).

I recall that the hypothesis Pic(S) = Z · L forces all the Lazarsfeld-Mukai bundles
to be simple. In particular, if c1(L)2 = 2g− 2 and C ∈ |L|s has a linear series of type
gr

d, one has ρ(g, r, d) ≥ 0. By the generic smoothness theorem applied to the projection
π : W r

d(|L|) → |L|s, in order to prove that the Petri map associated with any complete,
base point free A ∈ Wr

d(C) is injective, it is enough to show that the varietyW r
d(|L|) is

smooth of dimension g + ρ(g, r, d). Set c := (r + 1, C, d) and let G be the Grassmann
bundle on Spl(c) whose fibre over a point [E] coincides with G(r + 1, H0(S, E)). Con-
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sider the open subset U of G consisting of pairs (E, Λ) such that E is locally free and
globally generated, h1(S, E) = h2(S, E) = 0 and the evaluation map evΛ : Λ⊗OS → E
drops rank along a smooth curve CΛ and has a line bundle ωCΛ ⊗ A∨Λ as cokernel.
The fibre over (C, A) of the natural map h : U → Wr

d(|L|), sending a pair (E, Λ) to
(CΛ, AΛ), is isomorphic to PHom(EC,A, ωC ⊗ A∨) ' PH0(C, EC,A ⊗ E∨C,A), which is a
point. Hence, the variety Wr

d(|L|) is isomorphic to U and Mukai’s Theorem leads to the
conclusion.

For completion, I recall that Mukai’s result is actually much stronger, also stating that
Spl(c) is a symplectic manifold, that is, it has a 2-form which vanishes nowhere. Since
MH(c)s is an open subset of Spl(c), it is smooth of the same dimension as Spl(c) and it
inherits its symplectic structure. In the particular case where MH(c) is 2-dimensional,
Mukai showed that it is a K3 surface isogenous to S (cf. [48]). In higher dimensional
cases, under some mild hypotheses on c and H, O’Grady (cf.[51]) proved that MH(c)
is an irreducible hyperkähler manifold; moreover, MH(c) is deformation equivalent to
the Hilbert scheme S[n] for some n by a result of Huybrechts (cf. [38]).

1.9 Outline of the results

In Chapter 2 we study the Gieseker Petri locus GPg in low genera. It is conjectured that
this has pure codimension 1 in Mg, as proved by Castorena up to genus 8 (cf. [11, 13]).
We extent this result by showing that:

Theorem. The Gieseker-Petri locus GPg has pure codimension 1 inMg for g ≤ 13.

The idea is to consider all the loci GPr
g,d, which may be themselves reducible, and to

prove that the ones whose codimension is either unknown or strictly greater than 1 are
contained in some divisorial components of GPg. The cases g = 9, 10, 11 follow from
some general inclusions together with a recent result of Bruno and Sernesi.

For g = 12, 13 the situation becomes more complicated. In particular, it is necessary
to develop a new method in order to control the codimension of the locus GP1

g,g−2.
We remove some annoying hypotheses in a previous result of Castorena ([12]), thus
exhibiting a divisorial component of GP1

g,g−2 for all g. This consists of curves [C] in
GP1

g,g−2 such that, if L ∈ W1
g−2(C) satisfies ker µ0,L 6= 0, then L is complete and base

point free and ωC ⊗ L∨ ∈W2
g (C) is big.

When the genus becomes higher, the number of components of the Gieseker-Petri lo-
cus increases and it becomes more and more difficult to prove the conjectural statement
that GPg has pure codimension 1 in Mg. We strongly believe that some Brill Noether
loci Mr

g,d with ρ(g, r, d) < −1 might be irreducible components of GPg, thus making
the conjecture fail.

As suggested by Lazarsfeld, the behavior of curves lying on a K3 surface S with
respect to Petri maps is quite interesting. The Gieseker-Petri Theorem generally fails
if the Picard number of S is greater than 1 and it is natural to ask up to which extent.
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In Chapter 3 we look at linear series of type g2
d on a curve C lying on an arbitrary K3-

surface S. If ρ(g, 2, d) < 0, we show that, under some mild hypotheses on L := OS(C),
any g2

d on C is contained in the restriction to C of a line bundle on S as predicted by the
Donagi and Morrison’s Conjecture. More precisely, we prove the following.

Theorem. Let S be a K3 surface and L ∈ Pic(S) be an ample line bundle such that a general
curve in |L| has genus g, Clifford dimension 1 and maximal gonality k =

⌊
g+3

2

⌋
. Let A be a

complete, base point free g2
d on a curve C ∈ |L|s such that ρ(g, 2, d) < 0.

Then, there exists M ∈ Pic(S) adapted to |L| such that the linear system |A| is contained in
|M⊗OC| and Cliff(M⊗OC) ≤ Cliff(A). Moreover, one has c1(M) · C ≤ (4g− 4)/3.

If ρ(g, 2, d) ≥ 0 and C is general in its linear system, we look at the subvariety W̃2
d (C)

of W2
d (C) whose points correspond to base point free line bundles.

Theorem. Under the same hypotheses on (S, L) as above, fix a positive integer d such that
ρ(g, 2, d) ≥ 0 and (g, d) 6∈ {(2, 4), (4, 5), (6, 6), (10, 9)}. Then, for a general C ∈ |L|s, the
following hold.

a. If d > 3
4 g + 2, the variety W̃2

d (C) is reduced of the expected dimension ρ(g, 2, d).

b. If d ≤ 3
4 g + 2, let W be an irreducible component of W̃2

d (C) which either is non-reduced
or has dimension greater than ρ(g, 2, d). Then, there exists an effective divisor D ⊂ S
such that OS(D) is adapted to |L| and, for a general A ∈ W, the linear system |A| is
contained in |OC(D)| and

Cliff(OC(D)) ≤ Cliff(A).

For d large enough, this gives an analogue of Aprodu and Farkas’ dimensional state-
ment for the variety W1

d (C). If instead d ≤ 3
4 g + 2, the theorem implies that general

points of a component of W̃2
d (C), which either is non-reduced or has dimension greater

than the expected one, correspond to linear series which are all contained in the restric-
tion to C of the same line bundle on S.

The study of linear series of type g2
d involves vector bundles of rank 3 and one can-

not control the non-simple ones by means of Donagi-Morrison extensions. Our new
approach consists of studying the simplicity of rank-3 Lazarsfeld-Mukai bundles indi-
rectly, by investigating whether they are µL-stable. We use the well known fact that ev-
ery µL-unstable sheaf E has a filtration, called the Harder-Narashiman filtration, which
splits E in µL-semistable factors. Analogously, if E is properly µL-semistable, we con-
sider its Jordan-Hölder filtration by µL-stable factors. We show that when d is small
enough, in particular always for ρ(g, 2, d) < 0, the Lazarsfeld-Mukai bundle E associ-
ated with any A of type g2

d on any curve C ∈ |L|s fits into a short exact sequence

0→ N → E→ E/N → 0,

where N ∈ Pic(S) and E/N is a µL-stable, torsion free sheaf of rank 2. Such extensions
will play the same role as Donagi-Morrison extensions in the case of rank 2. I reckon
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that the use of Harder-Narasimhan and Jordan-Hölder filtrations is the right strategy
in order to prove the Donagi and Morrison’s Conjecture in general.

The dimensional statement for the variety W̃2
d (C) when ρ(g, 2, d) ≥ 0 follows from

bounding the number of moduli of µL-unstable and properly µL-semistable Lazarsfeld-
Mukai bundles of rank 3 by using some Artin stacks that parametrize the corresponding
Harder-Narasimhan and Jordan-Hölder filtrations, which can be of various types.

The aforementioned results are used in order to prove the transversality of some
components of the Gieseker-Petri locus GPg in any genus g. An application towards
higher rank Brill-Noether theory is also presented.

In Chapter 4 we study syzygies of curves lying on Del Pezzo surfaces and obtain the
following:

Theorem. Let C be a smooth, irreducible curve lying on a Del Pezzo surface S and, having set
L := OS(C), assume that L⊗ωS is nef and big. Then, the following hold:

• If deg(S) ≥ 2, then C satisfies Green’s Conjecture.

• If C is general in its linear system and Cliffdim(C) = 1, then C verifies Green-Lazarsfeld’s
Gonality Conjecture.

• If deg(S) = 1, Green’s Conjecture is true for a general curve in |L|; under the further
assumption that the Clifford index of a general curve in |L| is not computed by the restric-
tion of the anticanonical bundle ω∨S , Green’s Conjecture holds for every smooth irreducible
curve in |L|.

Curves on Del Pezzo surfaces share some common behavior with K3-sections. In
particular, Pareschi (cf. [52]) and Knutsen (cf. [42]) proved that the gonality and the
Clifford index of a curve C on a Del Pezzo surface S only depend on the linear equiva-
lence class of C, with very few exceptions. Moreover, the Clifford dimension of C is at
most 3.

It turns out that the linear growth condition (1.7) holds for a curve C which is general
in its linear system, has Clifford dimension 1 and gonality k ≤ (g + 2)/2. We make use
of some rank-2 vector bundles EC,A whose definition is analogous to that of Lazarsfeld-
Mukai bundles for K3-surfaces. The ampleness of the anticanonical bundle ω∨S assures
that the injectivity of the Petri map associated with a complete, base point free pencil A
on C depends on the group H2(S, EC,A ⊗ E∨C,A), which is trivially zero if EC,A is stable.
We thus perform a parameter count for pairs (C, A) such that EC,A is not µL⊗ω∨S

-stable.
We get Green’s Conjecture for every smooth irreducible curve C in |L|, when

Kg−c−1,1(S, L⊗ωS) ' Kg−c−1,1(C, ωC);

the hypotheses that L⊗ωS is nef and big and that ω∨S ⊗OC does not compute Cliff(C)
if deg(S) = 1 are used in order to prove the above isomorphism of Koszul cohomology
groups. We remark that the cases not satisfying such assumptions coincide with the
only examples in genus ≥ 4 where the Clifford idex of curves in |L| is not constant.
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Our proof does not deeply use the ampleness ω∨S , but only its effectivity. Therefore,
it seems likely that the same techniques might succeed in proving Green’s Conjecture
for curves on other types of rational anticanonical surfaces.

Chapter 2 and Chapter 3 are respectively based on the the following two papers:

• M. Lelli-Chiesa, The Gieseker-Petri divisor inMg for g ≤ 13, Geom. Dedicata 158
(2012), 149-165.

• M. Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, preprint
ArXiv:1112.2938.
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2 The Gieseker-Petri divisor in Mg for genus
g ≤ 13

2.1 Introduction

Let Mg be the coarse moduli space of smooth irreducible projective curves of genus g.
Given [C] ∈ Mg and a line bundle A on C, we consider the Petri map

µ0,A : H0(C, A)⊗ H0(C, ωC ⊗ A∨)→ H0(C, ωC).

This map has been studied in detail because of its importance in the description of the
Brill-Noether varieties Gr

d(C) and Wr
d(C). The most important result in this sense is the

Gieseker-Petri Theorem (cf. [16], [9]), which asserts that for the generic curve and for
any line bundle on it the Petri map is injective. This implies that if [C] ∈ Mg is general
and the Brill-Noether number

ρ(g, r, d) := g− (r + 1)(g− d + r)

is nonnegative, then Gr
d(C) is smooth of dimension ρ(g, r, d) and the natural morphism

Gr
d(C) → Wr

d(C) is a rational resolution of singularities. We refer to Section 1.2 for
details. The Gieseker-Petri locus is defined as

GPg := {[C] ∈ Mg |C does not satisfy the Gieseker-Petri Theorem}.

It is conjectured that GPg has pure codimension 1 inside Mg; an explanation why this
is plausible is given below. The expectation has been proved in genus up to 8 by Cas-
torena (cf. [5], [7]). Our main result is:

Theorem 2.1.1. The Gieseker-Petri locus GPg has pure codimension 1 inside Mg for g ≤ 13.

Our strategy is to look at the different components of GPg determined by the numer-
ical type of the linear series for which the Gieseker-Petri Theorem fails. For values of
g, r, d such that both r + 1 and g − d + r are at least 2 we consider the Gieseker-Petri
locus of type (r, d)

GPr
g,d := {[C] ∈ Mg | ∃ (A, V) ∈ Gr

d(C) with ker µ0,V 6= 0},

where µ0,V denotes the restriction of the Petri map to V ⊗ H0(C, ωC ⊗ A∨). Clifford’s
Theorem, along with Riemann-Roch Theorem, restricts to the range 0 < 2r ≤ d ≤ g− 1
the values of g, r, d for which it is necessary to study the component GPr

g,d. We also
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

recall that, given [C] ∈ GPg, at least one of the linear series on C for which the Gieseker-
Petri Theorem fails is primitive, that is, complete and such that both A and ωC ⊗ A∨ are
base point free.

In some cases the codimension of GPr
g,d inside Mg is known but in general it seems

quite difficult to determine the irreducible components of GPg and control their dimen-
sion. When ρ(g, r, d) < 0, the Petri map corresponding to any gr

d on a genus g curve
cannot be injective for dimension reasons and the locus GPr

g,d coincides with the Brill-
Noether variety

Mr
g,d := {[C] ∈ Mg |Wr

d(C) 6= ∅}.

In particular, when ρ(g, r, d) = −1, the locus Mr
g,d, if nonempty, is an irreducible divisor

(cf. [11], [22]), known as the Brill-Noether divisor. On the other side, if ρ(g, r, d) < −1,
the codimension of any component Z of Mr

g,d inMg is strictly greater than 1. If it is true
that GPg has pure codimension 1 inside Mg, then Z must be contained in some divisorial1

component of GPg; there is no evident reason why this should hold in general.
When ρ(g, r, d) ≥ 0, the Gieseker-Petri locus GPr

g,d can be described as the image of
a determinantal variety under a projection map. Indeed, given a family ϕ : C → S of
smooth curves of genus g admitting a section, one can define a variety π : Gr,d

C/S → S
parametrizing pairs (Cs, (As, Vs)) such that Cs = ϕ−1(s) for some s ∈ S and (As, Vs) in
Gr

d(Cs). On Gr,d
C/S, there exists a morphism of vector bundles

µ : E1 ⊗ E2 → F ,

which extends the Petri map. The codimension in Gr,d
C/S of the degeneracy locus X(µ) is

at most ρ(g, r, d) + 1. The locus

GPr,d
C/S := {s ∈ S | [Cs] ∈ GPr

g,d}

coincides with the image under π of X(µ); the transversality of the fibres of π to X(µ)

would imply that GPr,d
C/S has codimension 1 in S. Since the construction can be global-

ized by considering the universal family on the moduli stackMg, this suggests that the
locus GPr

g,d is divisorial.
We define

bGPr
g,d := {[C] ∈ Mg | a base point free (A, V) ∈ Gr

d(C) with ker µ0,V 6= 0};

this locus is open in GPr
g,d but not necessarily dense.

Farkas proved that
bGPr

g,d always has a divisorial component if ρ(g, r, d) ≥ 0 (cf. [13],
[14]). However, there are only few cases when GPr

g,d is well understood. In Section 2.2,
we will recall known results on some irreducible components of GPg of type both GPr

g,d
with ρ(g, r, d) ≥ 0 and Mr

g,d for ρ(g, r, d) < 0.
We summarize our results. We show that when g ≤ 13 the components of GPg whose

1By divisorial we will always mean a locus of pure codimension 1.
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2.2 Divisorial components of GPg

codimension is either unknown or strictly greater than 1 are contained in some diviso-
rial components. Most of the inclusions easily follow from some basic facts established
in Section 2.3. In particular, the components GP1

g,k with ρ(g, 1, k) < −1 are all contained
in the Brill-Noether divisor M1

g, g+1
2

if g is odd, and in the locus GP1
g, g+2

2
if g is even.

If the Brill-Noether number ρ(g, r, d) is either 0 or 1, we can prove the inclusion of
both Mr+1

g,d+1 and Mr
g,d−1 inside GPr

g,d. We use a very recent result, due to Bruno and
Sernesi, stating that for values of g, r, d such that ρ(g, r, d) ≥ 0 and ρ(g, r + 1, d) < 0,
the locus GPr

g,d is divisorial outside its intersection with Mr+1
g,d (cf. [4]). As a corollary

we obtain that, in even genus, GP1
g, g+2

2
coincides with the closure of the locus bGP1

g, g+2
2

,

which was studied by Eisenbud and Harris.
In Section 2.4 we prove Theorem 2.1.1 in genera 9, 10, 11. In addition to the results

of the previous section, we use some well known facts about plane curves. The study
of the component M3

10,9 requires extra work: we prove that it is contained in GP1
10,6 by

remarking that any curve of degree 9 and genus 10 in P3 is either a curve of type (3, 6)
on a non singular quadric surface or the intersection of two cubic surfaces; linear series
on a cubic surface X can be easily written down remembering that X is isomorphic to
the blow-up of the projective plane in 6 points.

In the last section we deal with genera 12 and 13. The situation gets more compli-
cated because the methods used before do not enable us to control the codimension of
GP1

g,g−2. We prove the following theorem:

Theorem 2.1.2. Let [C] ∈ GP1
g,g−2 be a non hyperelliptic curve with no vanishing theta-null.

Let us assume that for any A ∈ G1
g−2(C) such that µ0,A is not injective, A is primitive and

ωC ⊗ A∨ ∈ W2
g (C) defines a birational morphism. Then C carries only a finite number of

A ∈W1
g−2(C) for which ker µ0,A 6= 0.

This generalizes [6], where it is assumed that the plane model Γ of C corresponding to
ωC ⊗ A∨ has only singularities which become nodes after a finite number of blow-ups
(in a somewhat oldfashioned way these are called possibly infinitely near nodes). The
idea of our proof is to show that we do not need any assumption on the singularities of
Γ because the non injectivity of µ0,A implies that Γ has at least one double point, which
cannot be a cusp of any order if [C] 6∈ GP1

g,g−1; then we proceed like in [6]. Theorem 2.1.2
implies Theorem 2.1.1 in genus 13 because no g2

13 can be composed with an involution.
Instead, for a curve [C] ∈ GP1

12,10 it may happen that a g2
12, for which the Petri map is

not injective, induces a finite covering of a plane curve of lower genus. We prove that
this can be the case only for [C] ∈ GP1

12,7 ∪ GP1
12,8 (cf. Theorem 2.5.5).

2.2 Divisorial components of GPg

In this section we will recall some results concerning the codimension inside Mg of
the Brill-Noether loci Mr

g,d and of some components of the Gieseker-Petri locus whose
corresponding Brill-Noether number is nonnegative.
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

The following theorem is due to Steffen (cf. [22]).

Theorem 2.2.1. The codimension of the Brill-Noether locus Mr
g,d inside Mg is ≤ −ρ(g, r, d).

Equality holds in the cases where ρ(g, r, d) ∈ {−1,−2,−3}.

The last part of the statement follows directly from the results of Eisenbud and Harris
(cf. [11]) and Edidin (cf. [8]). Steffen’s argument is as follows.

Let ϕ : C → S be a family of smooth curves of genus g admitting a section. Having
fixed an integer m such that m + d ≥ 2g − 1, denote by Picm+d

C/S the relative Picard
scheme. The construction of Wr

d(C) as a determinantal variety can be extended in order
to define a schemeW r,d

C/S → S, whose fibre over a point s ∈ S coincides with the scheme
Wr

d(Cs), where Cs = ϕ−1(s). In fact,W r,d
C/S is the (m + d− g− r)-th degeneracy locus of

a morphism of vector bundles E → F on Picm+d
C/S such that E ,F have rank m+ d− g+ 1

and m respectively. Thus,W r,d
C/S has codimension at most (r + 1)(d− g + r) in Picm+d

C/S .
Moreover, one shows that the vector bundle E∨ ⊗F is ample relative to the projection
p : Picm+d

C/S → S, that is, it is ample when restricted to any fibre of p. A more general
theorem of Steffen implies that this forces W r,d

C/S to be transversal to the fibres of p,
hence the image p(W r,d

C/S) has codimension at most −ρ(g, r, d) in S. By considering the
universal family on the moduli stackMg, one globalizes the construction and obtains
the statement.

When r = 1, a stronger result holds.

Theorem 2.2.2. If d < (g + 2)/2, the Brill-Noether locus M1
g,d is irreducible and has codi-

mension −ρ(g, 1, d) in Mg.

The irreducibility statement is due to Fulton (cf. [15]) and follows from the irre-
ducibilty of Hurwitz schemes together with the Riemann’s Existence Theorem. Con-
cerning the dimensional statement, given a family of curves ϕ : C → S, consider the
projection p : W1,d

C/S → S. As proved by Arbarello and Cornalba (cf. [1]), the scheme
W1,d
C/S is smooth of dimension = dim S + ρ(g, 1, d) outside W2,d

C/S and the image of p
coincides with the points of S such that [Cs] ∈ M1

g,d. Since the construction can be
globalized, the result follows from exhibiting a curve C ∈ Mg and a base point free
A ∈ W1

d (C) \W2
d (C) such that dim ker µ0,A = −ρ(g, 1, d). Segre (cf. [21]) realized such

a curve as a particular plane curve.
Now, let us turn our attention to some particular loci GPr

g,d with ρ(g, r, d) ≥ 0.

If g is even, the locus bGP1
g,(g+2)/2 was used by Eisenbud and Harris (cf. [10]) in

order to prove that Mg is of general type for g ≥ 24. It turns out that
bGP1

g,(g+2)/2 is a
divisor in Mg which can be alternatively described as the closure of the branch locus of
the natural map Hg,(g+2)/2 → Mg from the Hurwitz scheme Hg,(g+2)/2 parametrizing
coverings of P1 of degree (g + 2)/2 having as source a smooth curve C of genus g. In
the next section we will show that bGP1

g,(g+2)/2 is dense in GP1
g,(g+2)/2.
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2.2 Divisorial components of GPg

The component GP1
g,g−1 coincides instead with the locus of curves with a vanish-

ing theta-null, that is, having a theta-characteristic whose space of sections has di-
mension at least 2. By definition, a theta-characteristic on a curve C is a line bundle
A ∈ Picg−1(C) which satisfies A2 ∼= ωc. Any non-singular curve C of genus g has
22g theta-characteristics corresponding to the points of order 2 in the Jacobian variety
J(C) ' Picg−1(C). Riemann Singularity Theorem (cf. [3, Ch. VI]) implies that the
space of sections of a theta characteristic A on C has dimension at least 2 whenever A
corresponds to a singular point of the theta divisor Θ 'W0

g−1(C). If this happens, then
[C] ∈ GP1

g,g−1; indeed, by the Base Point Free Pencil Trick (cf. [3, p. 126]) the condition
A2 ∼= ωc prevents the map µ0,V from being injective for any pencil (A, V).

Mumford ([20]) was the first to treat theta-characteristics purely algebraically, with-
out referring to the theory of theta-functions. This made it possible to study theta-
characteristics on singular curves, which were used by Teixidor in order to prove that
GP1

g,g−1 is an irreducible divisor in Mg (cf. [17, 23, 24]).
The following result was recently proved by Bruno and Sernesi ([4]) and exhibits

some other divisorial components of GPg:

Theorem 2.2.3. Let g, r, d be integers such that 0 < 2r ≤ d ≤ g − 1, ρ(g, r, d) ≥ 0 and
ρ(g, r + 1, d) < 0. Then any irreducible component of GPr

g,d whose general point does not lie
in Mr+1

g,d has pure codimension 1 inside Mg.

The condition ρ(g, r + 1, d) < 0 assures that on a generic curve of genus g every gr
d is

complete. In this situation one can find a modular family ϕ : C → S of smooth curves
of genus g not belonging to Mr+1

g,d such that the induced map S → Mg is dominant and
finite. The morphism of vector bundles

µ : E1 ⊗ E2 → F

globalizing the Petri map is well defined over the relative scheme p : W r,d
C/S → S and

the locus
GPr,d
C/S := {s ∈ S | ϕ−1(s) ∈ GPr

g,d}

coincides with image under p of the degeneracy locus X(r+1)(g−d+r)−1(µ).

If X(r+1)(g−d+r)−1(µ) is nonempty, then its codimension insideW r,d
C/S does not exceed

ρ(g, r, d) + 1. The finiteness of the fibres of the restriction of p to X(r+1)(g−d+r)−1(µ)
follows from the already mentioned result of Steffen (cf.[22]), which can be applied
because p is projective and dominant and the sheaf (E1 ⊗ E2)∨ ⊗F is ample relative to
p.

Without the condition ρ(g, r + 1, d) < 0, we could still define the sheaves E1, E2 and
F in the same way but E1 and E2 would be locally free only when restricted to the
open subsetW r,d

C/S \W
r+1,d
C/S . Unfortunately, the restriction of p toW r,d

C/S \W
r+1,d
C/S is not

projective and so Steffen’s Theorem cannot be applied in this situation.
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

2.3 Some useful inclusions

In this section we prove some inclusions among different components of GPg, which
enable us to restrict the values of r and d for which the codimension of GPr

g,d must be
determined.

Lemma 2.3.1. For ρ(g, r− 1, d− 1) < 0 and r > 1, we have that:

Mr
g,d ⊂ Mr−1

g,d−1 = GPr−1
g,d−1.

Proof. From any gr
d we can trivially get a gr−1

d−1 by subtracting a point outside its base
locus.

Next result concerns the components GP1
g,k:

Lemma 2.3.2. If g is odd, the following sequence of inclusions holds:

M1
g,2 ⊆ M1

g,3 ⊆ . . . ⊆ M1
g, g+1

2
,

and M1
g, g+1

2
is a Brill-Noether divisor.

Similarly when g is even we have that:

M1
g,2 ⊆ M1

g,3 ⊆ . . . ⊆ GP1
g, g+2

2
.

Proof. Cosider k < g+1
2 if g is odd and k < g+2

2 if g is even. Let [C] ∈ M1
g,k and A

be a complete g1
k on C. By defining A′ := A⊗OC(P) with P a point outside the base

locus of ωC ⊗ A∨, one may prove all the inclusions but M1
g, g

2
⊂ GP1

g, g+2
2

. When A is a

complete g1
g
2

on C with base locus B (not necessarily empty), the Base Point Free Pencil
Trick implies both

dim ker µ0,A = h0(C, ωC ⊗ A−2 ⊗OC(B)) ≥ −ρ(g, 1, g/2) = 2

and
dim ker µ0,A′ = h0(C, ωC ⊗ A−2 ⊗OC(B− P)) ≥ 1.

Thus A′ is a g1
g+2

2
on C violating the Gieseker-Petri Theorem and [C] ∈ GP1

g, g+2
2

.

The following result is a corollary of Theorem 2.2.3. Together with the previous
Lemma, it implies that all the loci GP1

g,k such that ρ(g, 1, k) < 0 are contained in a
divisorial component of GPg.

Corollary 2.3.3. In even genus the following equality holds:

bGP1
g, g+2

2
= GP1

g, g+2
2

.
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Proof. By Lemma 2.3.2, we have that M1
g, g

2
⊂ GP1

g, g+2
2

and so we can write

GP1
g, g+2

2
= bGP1

g, g+2
2
∪M1

g, g
2
,

where
bGP1

g, g+2
2

is a divisor on Mg. Furthermore M1
g, g

2
is irreducible and of codimension

2 in Mg (cf. [15]). Our goal is to show that M1
g, g

2
⊂ bGP1

g, g+2
2

.

Theorem 2.2.3 implies that GP1
g, g+2

2
\ M2

g, g+2
2

is divisorial, and by Lemma 2.3.1 we

know that M2
g, g+2

2
⊂ M1

g, g
2
. It follows that

M1
g, g

2
\M2

g, g+2
2
⊂ bGP1

g, g+2
2

,

and the same must be true passing to the closures. If we show that M1
g, g

2
\ M2

g, g+2
2

is

open in M1
g, g

2
, then the irreducibility of M1

g, g
2

implies that M1
g, g

2
⊂ bGP1

g, g+2
2

and we have

finished. To end the proof it is enough to remark that the generic curve in M1
g, g

2
has a

unique g1
g
2

(cf. [1]) while a curve inside M2
g, g+2

2
has at least a 1-dimensional space of g1

g
2
’s

(all obtained from a g2
g+2

2
by the subtraction of a point).

Other useful inclusions come from the following fact:

Lemma 2.3.4. If ρ(g, r, d) ∈ {0, 1}, then Mr+1
g,d+1 ⊂ GPr

g,d and Mr
g,d−1 ⊂ GPr

g,d.

Proof. Assume ρ(g, r, d) = 0. We fix [C] ∈ Mr+1
g,d+1 and A a complete gr+1

d+1 on C. For any
P ∈ C outside the base locus of A, the linear series A(−P) := A⊗OC(−P) is a gr

d on C
and so Gr

d(C) contains

C′ := {A(−P) : P ∈ C, P 6∈ bs(|A|)} ∼= C.

It follows that dim TA(−P)(Gr
d(C)) ≥ dimA(−P) Gr

d(C) ≥ 1. By remembering that

dim TA(−P)(G
r
d(C)) = ρ(g, r, d) + dim ker µ0,A(−P) = dim ker µ0,A(−P),

one deduces that A(−P) does not satisfy the Gieseker-Petri Theorem. Analogously,
given [C] ∈ Mr

g,d−1 and A a complete gr
d−1 on C, the variety Gr

d(C) contains the locus

C′′ := {A(P) : P ∈ C, P 6∈ bs(|ωC ⊗ A∨|}) ∼= C

and, reasoning as above, one proves that [C] ∈ GPr
g,d.

For ρ(g, r, d) = 1, we consider [C] ∈ Mr
g,d−1 and A a complete gr

d−1 on C. The def-
inition of C′′ is the same. Since we can assume that dim Gr

d(C) = 1 (otherwise we
could soon conclude that [C] ∈ GPr

g,d), it follows that C′′ is an irreducible component of
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

Gr
d(C). As C must have a base point free gr

d, there exist components of Gr
d(C) different

from C′′. By the Connectedness Theorem (cf.[3, p. 212]), Gr
d(C) is connected. It follows

that Gr
d(C) is singular and so [C] ∈ GPr

g,d. We proceed very similarly if [C] ∈ Mr+1
g,d+1.

2.4 Proof of Theorem 2.1.1 in genus 9, 10, 11

In this section we prove that, for genus g ∈ {9, 10, 11}, the Gieseker-Petri locus GPg is
of pure codimension 1 inside Mg.

Let us fix g = 9. For r ∈ {4, 3} and 2r ≤ d ≤ 8 and for r = 2 and 4 ≤ d ≤ 6,
the Brill-Noether number ρ(g, r− 1, d− 1) is negative and so, by Lemma 2.3.1, we can
restrict our analysis to the components GP2

9,d and GP1
9,k for d ∈ {7, 8} and 2 ≤ k ≤ 8.

Moreover, Lemma 2.3.2 implies that M1
9,k is contained in the Brill-Noether divisor M1

9,5
for k ≤ 4.

Since ρ(9, 2, 7) < 0, we now study M2
9,7. Given [C] ∈ M2

9,7, if we assume that C does
not lie in M1

9,5, then any g2
7 on C is base point free and defines an embedding

φ : C → Γ ⊂ P2,

where Γ is a plane curve of degree 7 and genus 9. By the Genus Formula it follows that
Γ is singular, which is a contradiction.

Regarding the component GP2
9,8, we note that ρ(9, 2, 8) = 0 and ρ(9, 3, 8) < 0, so

Theorem 2.2.3 implies that GP2
9,8 \ (M3

9,8 ∩ GP2
9,8) is divisorial. We do not need to study

M3
9,8 ∩ GP2

9,8 separately because, by Lemma 2.3.1, the inclusion M3
9,8 ⊆ M2

9,7 holds.
Let us consider the components GP1

9,k for k ∈ {6, 7, 8}. For k ∈ {6, 7} we have that
ρ(9, 1, k) > 0 and ρ(9, 2, k) < 0 and so the locus GP1

g,k \ (GP1
g,k ∩M2

g,k) is divisorial. As
GP1

9,8 is the irreducible divisor consisting of curves with a vanishing theta-null, Theo-
rem 2.1.1 is proved in genus 9.

Before dealing with the case of genus 10, we prefer to treat the case of genus 11, which
is very similar to the one we have just studied. As before, by applying Lemma 2.3.1 and
Lemma 2.3.2 we reduce to considering the components GP2

11,d and GP1
11,k for 8 ≤ d ≤ 10

and 7 ≤ k ≤ 10.
We can prove that M2

11,8 is contained in the Brill-Noether divisor M1
11,6 simply by

remarking that any g2
8 on a genus 11 curve [C] 6∈ M1

11,6 is base point free and defines an
embedding

φ : C → Γ ⊂ P2.

We get a contradiction because Γ is a plane curve of degree 8 and genus 11 and so it
must be singular by the Genus Formula.

As for the other components, the locus M2
11,9 is a Brill-Noether divisor, while GP2

11,10
is divisorial outside its intersection with M3

11,10 as ρ(11, 2, 10) > 0 and ρ(11, 3, 10) < 0.
Theorem 2.2.3 can be applied in order to prove that GP1

11,k \ (M2
11,k ∩GP1

11,k) is divisorial
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2.4 Proof of Theorem 2.1.1 in genus 9, 10, 11

for 7 ≤ k ≤ 9, too. The component GP1
11,10 is the irreducible divisor of curves with a

vanishing theta-null and so Theorem 2.1.1 is proved in genus 11.

We now deal with the case of genus 10. As above, by Lemmas 2.3.1 and 2.3.2, the
only components of GP10 we have to consider are GP2

10,d and GP1
10,k for 7 ≤ d ≤ 9 and

7 ≤ k ≤ 9.
As ρ(10, 1, 6) = 0, Lemma 2.3.4 implies that M2

10,7 ⊂ GP1
10,6.

Moreover, ρ(10, 2, 9) = 1 and so Lemma 2.3.4 implies that M2
10,8 ⊂ GP2

10,9, too. Since
ρ(10, 3, 9) < 0, the locus GP2

10,9 is divisorial outside M3
10,9. In this case we have to study

the component M3
10,9 separately as our remarks imply only that M3

10,9 ⊆ M2
10,8 ⊆ GP2

10,9.
We postpone the study of M3

10,9. For k ∈ {7, 8}, the locus GP1
10,k \ (GP1

10,k ∩ M2
10,k) is

divisorial because ρ(10, 2, k) < 0, while GP1
10,9 is the irreducible divisor consisting of

curves with a vanishing theta-null.
In order to end the proof of Theorem 2.1.1 in genus 10, we now study M3

10,9. We
consider [C] ∈ M3

10,9 and L a g3
9 on C. We can assume [C] 6∈ M3

10,8 and so L, being base
point free, defines a morphism φ : C → Γ ⊂ P3. Furthermore, we can assume that
[C] 6∈ M2

10,7, which forces φ to be an embedding. Therefore C can be seen as a curve
of genus 10 and degree 9 in P3. By the classification of curves in P3, we know that C
is either a curve of type (3, 6) on a non singular quadric surface S or the intersection
of two cubic surfaces (cf. [18] Example 6.4.3. chp.IV). In the first case the lines of type
(0, 1) on S cut out a g1

3 on Γ. The second case is treated in the following lemma:

Lemma 2.4.1. Let [C] ∈ M10 be the intersection of two cubic surfaces X, Y in P3. Then
[C] ∈ GP1

10,6.

Proof. It is classically known that X is isomorphic to the blow-up of P2 in 6 points
P1, . . . , P6. We denote by π : X → P2 the projection and by Ei the exceptional divisors.
The Picard group Pic(X) ∼= Z7 is generated by l, e1, e2, . . . , e6, where l is the class of
the strict transform of a line in P2 and ei is the class of Ei. The class of the hyperplane
section is h = 3l −∑ ei, while the class of the canonical divisor is

KX ∼ −h = −3l + ∑ ei.

As C lies on another cubic surface Y, then

C ∼ 3h = 9l − 3 ∑ ei,

namely C is the strict transform of a plane curve C̃ of degree 9 with 6 triple points
P1, . . . , P6. The pencil of cubics through P1, . . . , P6 with a double point in P1 cuts out a
g1

6 on C̃. The strict transforms of these cubics cut out on C the linear series

A := OC(3l −∑
i 6=1

ei − 2e1).

In order to check that A is a g1
6 on C, we tensor with OX(3l − ∑i 6=1 ei − 2e1) the exact
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

sequence
0→ OX(−C)→ OX → OC → 0,

getting

0→ OX(−6l + 2 ∑
i 6=1

ei + e1)→ OX(3l −∑
i 6=1

ei − 2e1)→ OC(3l −∑
i 6=1

ei − 2e1)→ 0.

As 6l − 2 ∑i 6=1 ei − e1 is ample (cf. [18] Cor.4.13 chap.V), Kodaira Vanishing Theorem
implies that hi(X,OX(−6l + 2 ∑i 6=1 ei + e1)) = 0 for i = 0, 1. It follows that

h0(C,OC(3l −∑i 6=1 ei − 2e1)) = h0(X,OX(3l −∑i 6=1 ei − 2e1)) =
= h0(P2,OP2(3)⊗OP2(−∑i 6=1 Pi − 2P1)) =
= 2

and this is enough to conclude that A is a pencil on C; it is trivial to check that its degree
is 6.
By the Base Point Free Pencil Trick we have that

ker µ0,A
∼= H0(C, ωC ⊗ A−2) = H0(C,OC(2e1)).

As OC(2e1) is effective, it follows that [C] ∈ GP1
10,6.

Remark 1. The previous Lemma can also be proved by using the results of [19]. Curves
of genus 10 which are the complete intersection of two cubic surfaces in P3 are the only
curves of Clifford dimension 3. Martens proved that such curves are 6-gonal and carry
a one-dimensional family of g1

6. Since ρ(10, 1, 6) = 0, this is enough to conclude that
they lie in GP1

10,6.
It is natural to ask whether all curves of Clifford dimension greater than 1 lie in a

divisorial component of the Gieseker-Petri locus. Curves of Clifford dimension 2 are
smooth plane curves of degree d ≥ 5. Their gonality is d − 1 and there is a one-
dimensional family of pencils computing it. As ρ

(
(d−1

2 ), 1, d− 1
)
≤ 0 for d ≥ 5, Lemma

2.3.2 implies that they lie in the Brill-Noether divisor M1
g, g+1

2
when g = (d−1

2 ) is odd, and

in the irreducible divisor GP1
g, g+2

2
when g is even.

It was conjectured in [12] that, if a curve C has Clifford dimension r>3, then one has
g(C) = 4r− 2, gon(C) = 2r and there is a one-dimensional family of pencils computing
the gonality (this conjecture was proved in [12] for r ≤ 9). Since ρ(4r − 2, 1, 2r) = 0,
such curves lie in the divisor GP1

g, g+2
2

= GP1
4r−2,2r.

2.5 Proof of Theorem 2.1.1 in genus 12, 13

The situation in genus 12 and 13 is slightly more complicated as there is a component
in GPg which cannot be studied using the methods explained in the previous sections.
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2.5 Proof of Theorem 2.1.1 in genus 12, 13

In genus 12, by Remarks 2.3.1 and 2.3.2, we have to analyze only the components
M3

12,11, GP2
12,d for 8 ≤ d ≤ 11 and GP1

12,k for 8 ≤ k ≤ 11. Since ρ(12, 2, 10) = 0, Lemma
2.3.4 implies that both M3

12,11 and M2
12,9 are contained in GP2

12,10. Lemma 2.3.4 can also
be used in order to show that M2

12,8 ⊂ GP1
12,7; indeed, ρ(12, 1, 7) = 0.

As ρ(12, 3, d) < 0 for d ∈ {10, 11}, the loci GP2
12,10 and GP2

12,11 are divisorial outside
their intersection with M3

12,10 and M3
12,11 respectively. We have to study M3

12,10 sepa-
rately because our remarks only imply that M3

12,10 ⊂ M2
12,9 ⊂ GP2

12,10.
Given [C] ∈ M3

12,10, we can suppose that [C] 6∈ M2
12,8 and so any g3

10 on C is base point
free and defines an embedding φ : C → Γ ⊂ P3. It can be seen that Γ has ten 4-secant
lines (cf. [3], p. 351), each of which corresponds to a g1

6 on it.
Theorem 2.2.3 can be applied in order to show that the locus GP1

12,k is divisorial out-
side M2

12,k for k ∈ {8, 9}. The component GP1
12,11 is an irreducible divisor. We postpone

the study of GP1
12,10 to the end of the section.

The situation in genus 13 is very similar to that in genus 12. By Remarks 2.3.1 and
2.3.2, we reduce to considering M3

13,12, GP2
13,d for 9 ≤ d ≤ 12 and GP1

13,k for 8 ≤ k ≤ 12.
As ρ(13, 2, 11) = 1, Lemma 2.3.4 implies that both M3

13,12 and M2
13,10 are contained in

GP2
13,11.

Concerning M2
13,9, any g2

9 on a genus 13 curve [C] 6∈ M1
13,7 defines an embedding

φ : C → Γ ⊂ P2. We get a contradiction because the Genus Formula forces Γ to be
singular.

The components GP2
13,11 and GP2

13,12 are divisorial outside M3
13,11 and M3

13,12 respec-
tively. As before we have to study M3

13,11 separately. Given [C] ∈ M3
13,11 such that

[C] 6∈ M2
13,9, by taking the 4-secant lines to the space model of C corresponding to any

l ∈ G3
11(C), one shows that C has a g1

7.
Regarding the other components, the locus GP1

13,k is divisorial outside its intersection
with M2

13,k for k ∈ {8, 9, 10}, while GP1
13,12 is an irreducible divisor. Therefore Theorem

2.1.1 is proved also in genus 13 if we are able to verify that the component GP1
g,g−2 is

divisorial. In order to show this, we generalize a result of Castorena (cf. [6]) as follows.

We consider curves [C] ∈ GP1
g,g−2 such that for any A ∈ G1

g−2(C) for which µ0,A is
not injective the following are satisfied:

1. A is primitive.

2. The morphism φ := φωC⊗A∨ is birational.

We remark that the first condition is satisfied if

[C] 6∈ GP1
g,g−3 ∪ GP2

g,g−2 ∪ GP2
g,g−1,

because if A were not complete (respectively not base point free), this would imply
[C] ∈ GP2

g,g−2 (resp. [C] ∈ GP1
g,g−3). Similarly, if ωC ⊗ A∨ is not base base point free,
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

then [C] ∈ GP2
g,g−1. We prove the following result:

Proposition 2.5.1. Let Zg ⊂ GP1
g,g−2 be the locus consisting of curves C inside GP1

g,g−2 such
that, if A ∈ G1

g−2(C) satisfies kerµ0,A 6= 0, then A is primitive and the morphism φ := φωC⊗A∨

is birational. The scheme Zg has pure codimension 1 in Mg outside its intersection with the
hyperelliptic locus and the divisor GP1

g,g−1.

It is clear that Zg is open in GP1
g,g−2 but in general it is not dense. Indeed, given an

irreducible component W ⊂ GP1
g,g−2, it may happen that the general element of W lies

in GP1
g,g−3 ∪GP2

g,g−2 ∪GP2
g,g−1 and that it does not satisfy condition 1. Analogously, we

could have that, if [C] ∈ W is general, there exists a primitive A ∈ G1
g−2(C) such that

ker µ0,A 6= 0 and φωC⊗A∨ defines a finite covering of a plane curve of degree strictly less
than g. In order to prove Proposition 2.5.1 we need the following:

Lemma 2.5.2. If [C] ∈ Zg and A is a g1
g−2 on C such that ker µ0,A 6= 0, then A is the pullback

to C of the pencil cut out on Γ := φωC⊗A∨(C) by the lines through a singular point x. In
particular, x is a double point of Γ and

ωC ⊗ A−2 =
1
k

φ∗OΓ(x),

where k is the number of blow-ups necessary to desingularize Γ in x (e.g., if x is a tacnode, then
k = 2).

Proof. The statement follows directly from the Base Point Free Pencil Trick, which im-
plies that ωC ⊗ A−2 = φ∗(OP2(1))⊗ A∨ has at least a 1-dimensional space of sections.
The point x must be a double point because A is base point free.

We can now prove the following fact:

Lemma 2.5.3. If [C] ∈ Zg, [C] 6∈ GP1
g,g−1 and C is not hyperelliptic, then there exists only a

finite number of A ∈W1
g−2(C) such that µ0,A is not injective.

Proof. We recall and adapt the proof of Castorena, referring to [6] for further details.
Given A a g1

g−2 on C with ker µ0,A 6= 0, we have that

ωC ⊗ A−2 =
1
k

φ∗OΓ(x) = OC(P + Q),

and we can assume P 6= Q because otherwise A⊗OC(P) would be a theta characteristic
with a 2-dimensional space of sections, thus contradicting the hypothesis [C] 6∈ GP1

g,g−1.
We remark that asking that P 6= Q is equivalent to requiring that x be not a cusp of any
order. As C is not hyperelliptic, we obtain that h0(C, ωC ⊗OC(−P− Q)) = g− 2 and
h0(C,OC(P + Q)) = 1. It follows that A2 lies in the intersection of the following two
subvarieties of Pic2g−4(C):

X1 := {A2 | A ∈W1
g−2(C)},

X2 := {ωC ⊗OC(−P−Q) | P, Q ∈ C} ⊂Wg−3
2g−4(C).
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2.5 Proof of Theorem 2.1.1 in genus 12, 13

We have to show that A2 is an isolated point in X1 ∩ X2, which amounts to prov-
ing that TA2(X1) ∩ TA2(X2) = {0} in H1(C,OC) = TA2(Pic2g−2r(C)). Such condi-
tion is equivalent to requiring that TA2(X1)

⊥ + TA2(X2)⊥ generates the whole space
H0(C, ωC) = TA2(Pic2g−4(C))⊥. In fact, the following holds:

dim TA2(X1)
⊥ = dim Im µ0,A = 5.

Since µ0,A2 is injective, TA2(X2)⊥ ' Im, µ0,A2 ' H0(C, ωC ⊗ OC(−P − Q)), which is
(g− 2)-dimensional.
We claim that Im µ0,A ∩ H0(C, ωC ⊗OC(−P − Q)) concides with the image of the re-
striction of µ0,A to H0(C, A)⊗ H0(C, ωC ⊗ A∨ ⊗OC(−P−Q)). This enables us to con-
clude that dim TA2(X1)

⊥ ∩ TA2(X2)⊥ = 3, since the space

H0(C, A)⊗ H0(C, ωC ⊗ A∨ ⊗OC(−P−Q)) ' H0(C, A)⊗ H0(C, A)

is 4-dimensional and contains the 1-dimensional kernel of µ0,A. Our claim follows by
the fact that x becomes a node after k − 1 blow-ups. Indeed, if φk−1 : Xk−1 → P2

denotes the composition of these blow-ups and Ck−1 is the strict transform of Γ under
φk−1, then there exist two distinct lines l1 and l2 in P2 whose strict transforms in Xk−1
are the two tangent lines to Ck−1 in (φk−1|Ck−1)

∗(x). The linear system |L ⊗ OC(−P)|
(resp. |L⊗OC(−Q)|) contains a unique divisor D1 (resp. D2). The divisors D1 and D2
are distinct since one of them is cut out by the strict transform under φ of l1 and the
other by the strict transform of l2; moreover, D1 does not contain Q and D2 does not
contain P. This implies that H0(C, A⊗OC(−P−Q)) = 0 and, since

H0(C, ωC ⊗ A∨ ⊗OC(−P)) = H0(C, ωC ⊗ A∨ ⊗OC(−P−Q))

= H0(C, ωC ⊗ A∨ ⊗OC(−Q)),

our claim follows.

Proof of Proposition 2.5.1. Let [C] ∈ Zg be a non hyperelliptic curve with no vanishing
theta-null. One may find a neighborhood U ⊂ Mg of C, intersecting neither the hy-
perelliptic locus nor the divisor GP1

g,g−1, such that there exists a finite ramified covering

π : Ũ → U, a universal curve ϕ : ΓŨ → Ũ and a variety G1
g−2

ξ→ Ũ proper over Ũ
which parametrizes pairs (C, (A, V)) with [C] ∈ Ũ and (A, V) a g1

g−2 on ϕ−1(C). Up to
restricting U, we can also assume that U ∩ GP1

g,g−2 ⊂ Zg. The scheme G1
g−2 is smooth

of dimension ρ(g, 1, g− 2) + dim Mg (cf. [2]). We define the following subvariety of
G1

g−2:

Z̃g := {(C, A) ∈ G1
g−2 | [C] ∈ π−1(Zg ∩U), ker µ0,A 6= 0}.

Lemma 2.5.3 implies that the fibre of the projection from Z̃g on Zg ∩U is finite. For any
(C, L) ∈ Z̃g, the curve C is not hyperelliptic and so dim Imµ0,A = 5. Locally the Petri
map defines a homomorphism µ of vector bundles on G1

g−2 and Z̃g can be identified
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

with the fifth degeneracy locus of µ. By the fact that each irreducible component of
Z̃g has codimension ≤ ρ(g, 1, g − 2) + 1 in G1

g−2 and by the finiteness of the fibres of

π ◦ ξ over the points of π ◦ ξ(Z̃g), we can deduce that each component of Zg ∩U has
codimension at most 1 in U. It must be 1 because of the Gieseker-Petri Theorem.

Remark 2. Lemma 2.5.2 can be generalized as follows. Fix 2 < r < (g + 6)/4 such
that ρ(g, 1, g− r) > 0. If C ∈ GP1

g,g−r has maximal gonality and A is a primitive g1
g−r

on C such that ker µ0,A 6= 0 and φωC⊗A∨ is birational, then A is the pullback to C of
the pencil cut out on Γ := φωC⊗A∨(C) by the hyperplanes containing an (r − 2)-plane
π ⊂ Pr, which is (2r − 2)-secant to Γ. In order to gain a statement analogous to that
of Lemma 2.5.3, we need some assumptions on Γ. If π cuts out a divisor D2r−2 on Γ
consisting of 2r − 2 distinct smooth points, then the hypothesis on the gonality of C
assures that ker µ0,A is 1-dimensional and µ0,A2 is injective. It follows that A2 lies in two
subvarieties X1 and X2 of Pic2g−2r(C) whose definition is analogous to the one given
above. However, in order to show that A2 is an isolated point in X1 ∩ X2, we need to
assume that there does not exist a k-plane π1 ⊂ Pr for some k ≤ r− 3 and a hyperplane
H ⊃ π such that H is tangent to Γ in all the points of D2r−2 not lying in π1.

Proposition 2.5.1 implies the following:

Corollary 2.5.4. The locus GP13 has pure codimension 1 in M13.

Proof. By the above discussion we should only study the component GP1
13,11. Given

[C] ∈ GP1
13,11, assume that [C] does not lie in GP1

13,10 ∪ GP2
13,11 ∪ GP2

13,12. In particular,
condition 1 is satisfied for any A ∈ G1

13(C) for which the Gieseker-Petri Theorem fails.
Moreover, ωC ⊗ A∨ cannot be composed with any involution and so condition 2 is
satisfied, too. It follows that [C] ∈ Zg and so Proposition 2.5.1 is enough to conclude.

Next we turn to the case of genus 12. Given [C] ∈ GP1
12,10 such that condition 1 is

satisfied for any A ∈ G1
10(C) with ker µ0,A 6= 0, it could still happen that some of the

above A ∈ W1
10(C) violate condition 2, that is, φωC⊗A∨ is not birational. We prove the

following:

Theorem 2.5.5. Let [C] ∈ GP1
12,10 and let us assume that condition 1 is satisfied for any A in

G1
10(C) such that ker µ0,A 6= 0. If for one of such A ∈W1

10(C) the morphism ωC⊗ A∨ defines a
finite covering of a plane curve Γ of degree strictly less than 12, then [C] lies in GP1

12,7 ∪GP1
12,8.

Proof. Let [C] ∈ GP1
12,10 be as in the hypothesis and A be a g1

10 on C for which the
Gieseker-Petri Theorem fails. If φ := φωC⊗A∨ : C → Γ ⊂ P2 is not birational, then it is a
finite covering of degree 6, 4, 3 or 2. We analyze these cases.

(I): deg φωC⊗A∨ = 6. In this case Γ is rational and so C has a g1
6.

(II): deg φωC⊗A∨ = 3. Then Γ has degree 4 and genus at most 3. If g(Γ) < 3, then
Γ has at least one singular point and by taking the lines through it one sees that Γ is
hyperelliptic and so C has a g1

6.
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2.5 Proof of Theorem 2.1.1 in genus 12, 13

Let us consider g(Γ) = 3. As the triple cover is induced by ωC ⊗ A∨, it follows that
ωC⊗ A∨ = φ∗OΓ(1) = φ∗ωΓ and so A = OC(R), where R is the ramification locus. The
Base Point Free Pencil Trick thus implies that

ker µ0,A ' H0(C, ωC ⊗OC(−2R)) ' H0(C, φ∗OΓ(1)⊗OC(−R)).

If this were not zero, then there would exist a divisor D on Γ, OΓ(D) = OΓ(1), such
that φ∗D − R ≥ 0. This would imply that D contains the branch locus B but this is
impossible because deg B ≥ 1

2 deg R = 5 while deg D = 4.

(III): deg φωC⊗A∨ = 4. The curve Γ has degree 3 and so it is either a rational curve or
a smooth elliptic curve. In the first case C has a g1

4 and lies in GP1
12,7.

If Γ is elliptic , then we have that ωC ⊗ A∨ = φ∗OΓ(1) and

A = φ∗(ωΓ ⊗OΓ(−1))⊗OC(R) = φ∗OΓ(−1)⊗OC(R).

It follows that

ker µ0,A ' H0(C,OC(R)⊗ (OC(R)⊗ φ∗OΓ(−1))−2) = H0(φ∗OΓ(2)⊗OC(−R)).

This is nonzero whenever there exists a divisor D on Γ such that O(D) = OΓ(2) and
φ∗D − R ≥ 0. This never happens because D has degree 6 and it should contain the
base locus B, whose degree is at least 1

3 deg R > 7.

(IV): deg φωC⊗A∨ = 2. The degree of Γ is 6 and by the Riemann-Hurwitz Formula it
follows that g(Γ) ≤ 6. We can assume that Γ has only double points as singularities
because otherwise Γ has a g1

k for some k ≤ 3 and Lemma 2.3.2 implies that [C] ∈ GP1
12,7.

If g(Γ) ≤ 4, it is easy to check that Γ has always a g1
3 and [C] ∈ GP1

12,7. As a consequence
the only two cases that require a more detailed analysis are g(Γ) = 5 and g(Γ) = 6.

Let us consider the case where Γ is a plane sextic of genus 5. We can assume that
the singularities of Γ are 5 double points P1, . . . , P5. Some of the Pi’s may coincide;
indeed, if we need k blow-ups in order to desingularize Γ in Pi, then this point appears
k times in the list. We denote by xi, yi the counterimage of Pi under the normalization
map p : Y → Γ. Denoting by B and R the branch locus and the ramification locus
respectively, the Riemann-Hurwitz Formula implies that both B and R have degree 6.
The double covering f : C → Y induced by φ is given by means of a divisor η on Y of
degree −3, which satisfies 2η = −B and f∗OC = OY ⊕OY(η). As Pic−3(Y) = Y − Y4,
we can write η = x− D4.

We consider the divisor f ∗(D4) ∈ Pic8(C). We can assume that

h0(C,OC( f ∗D4))) = h0(Y,OY(D4)) + h0(Y,OY(D4 + η)) = 2,

because otherwise we can conclude that [C] ∈ M2
12,8 ⊂ GP1

12,7. We would like to prove
that ker µ0,OC( f ∗D4) 6= 0, which implies [C] ∈ GP1

12,8. By the Base Point Free Pencil Trick
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

we know that ker µ0,OC( f ∗D4)
∼= H0(C, ωC ⊗OC( f ∗D4)

−2), and its dimension equals

h0(C, f ∗(ωY⊗OY(−η− 2D4))) = h0(Y, ωY⊗OY(−η− 2D4))+ h0(Y, ωY⊗OY(−2D4));

here we have used that ωC = f ∗(ωY ⊗OY(−η)).
Since h0(Y, ωY ⊗OY(−2D4)) 6= 0 whenever D4 is a theta characteristic on Y, our goal
is to show that h0(Y, ωY ⊗OY(−η − 2D4)) > 0. As

ωY ⊗OY(−η − 2D4) = OY(3)(−x1 − y1 − . . .− x5 − y5 − D4 − x),

we need to prove the existence of a plane cubic passing through the points P1, P2, P3, P4,
P5, p(x), p(z1), p(z2), p(z3), p(z4), where D4 = z1 + . . . + z4.
We can assume that every g2

6 on Y is base point free and not composed with an involu-
tion and that every plane model of Y as a sextic has only double points as singularities
(otherwise Y would have a g1

3 and C a g1
6); the same is true for all the curves in a neigh-

borhood U of Y in M5. Up to shrinking U, we can assume the existence of a proper
morphism ξ : G2

6 → U , where G2
6 parametrizes couples (Y′, l′), with [Y′] ∈ U and l′

a g2
6 on Y′. We denote by V5,6 the variety of irreducible plane curves of degree 6 and

genus 5 and by m : V5,6 → M5 the natural morphism. The locus m−1(U) can be seen
as a PGL(2)-bundle on G2

6 parametrizing couples ((Y′, l′),B′) with (Y′, l′) ∈ G2
6 and B′

a frame of l′. Indeed, giving l′ and B′ is equivalent to fixing a plane model of Y′. We
denote by p1 : m−1(U)→ G2

6 the natural morphism. The restriction mU : m−1(U)→ U
coincides with the composition ξ ◦ p1 and it is proper because both ξ and p1 are. De-
noting by π : M5,5 → M5 the forgetful map, the morphism

m1 : m−1(U)×U π−1(U)→ π−1(U)

is proper because of the invariance of properness under base extension. A point of
m−1(U)×U π−1(U) is of the form (Γ′, (Y′, z′1, . . . , z′5)), where Y′ is the normalization of
Γ′.

We remark that m−1(U)×U π−1(U) has dimension equal to

dim π−1(U) + ρ(5, 2, 6) + dim PGL(2) = dim π−1(U) + 10.

Let
E := H0(OP2(3))× (m−1(U)×U π−1(U))

be the trivial bundle on m−1(U) ×U π−1(U) and let us define F to be the bundle on
m−1(U)×U π−1(U) with fibre over (Γ′, (Y′, z′1, . . . , z′5)) being the space

H0(OP2(3)⊗O∆Γ′
)⊕

5⊕
i=1

H0(OP2(3)⊗Oφ′(z′i)
),

where ∆Γ′ is the scheme of all singular points of Γ′ and φ′ : Y′ → Γ′ denotes the nor-
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2.5 Proof of Theorem 2.1.1 in genus 12, 13

malization map. If Γ′ ∈ m−1(U) is generic, this space is

H0(OP2(3)⊗OP′1
)⊕ . . .⊕ H0(OP2(3)⊗OP′5

)⊕
5⊕

i=1

H0(OP2(3)⊗Oφ′(z′i)
),

where P′1, . . . , P′5 are the nodes of Γ′. We consider the evaluation map F : E → F . Both
E and F have rank 10 and so the degeneracy locus X(F), if nonempty, has codimension
1 in m−1(U)×U π−1(U).

In order to show that X(F) 6= ∅ we observe that, given a cubic Γ3 ⊂ P2 and P1, . . . , P10
ten points on it, one can always find a sextic Γ6 ⊂ P2 passing through P6, . . . , P10 and
having nodes in P1 . . . , P5 (because there exists a P27 of plane sextics). If φ̃ : Ỹ → Γ6
is the normalization map, the point (Γ6, (Ỹ, φ̃∗(P6), . . . , φ̃∗(P10))) lies in X(F). Thus we
have that

dim X(F) = dim m−1(U)×U π−1(U)− 1 = dim π−1(U) + 9.

As m1 is proper, it follows that m1(X(F)) is closed inside π−1(U). Moreover,

dim m1(X(F)) = dim X(F)− dim Xe = dim π−1(U) + 9− dim Xe,

where Xe is the generic fibre of m1|X(F). Hence, dim m1(X(F)) < dim π−1(U) if and
only if dim Xe = 10, that is, the generic fibre of m1|X(F) coincides with the generic fibre
of m1. If we prove that this cannot happen, then m1|X(F) is surjective and in particular
(Y, x, z1, . . . , z4) ∈ m1(X(F)), which implies the existence of a plane model Γ̃ of Y and
of a cubic passing through the singular points of Γ̃ and through the images in Γ̃ of
x, z1, . . . , z4. Therefore it remains only to prove that dim Xe 6= 10.

Given a general [Y′] ∈ U, we have to find general points z′1, . . . , z′5 ∈ Y′, a g2
6 on Y′,

together with a frame B′ corresponding to a rational map

φ′ : Y′ → Γ′ ⊂ P2,

such that Γ′ has 5 nodes P′1, . . . , P′5 and there does not exist a cubic through P′1, . . . , P′5,
φ′(z′1), . . . , φ′(z′5). We remark that any complete g2

6 on Y′ is of the form

A′ = ωY′ ⊗OY′(−a− b), a, b ∈ Y′.

Having chosen a frame for H0(Y′, A′) and denoted by φ′ : Y′ → Γ′ ⊂ P2 the corre-
sponding morphism, this is equivalent to saying that

φ′∗OΓ′(1) = φ′∗(OΓ′(3)(−∆Γ′))⊗OY′(−a− b),

that is, every cubic in P2 passing through the singular points of Γ′ and the points
φ′(a), φ′(b), intersects Γ′ in other points which are collinear. Choose B′ any frame
of ωY′(−z′1 − z′2); it is enough to take z′3, z′4, z′5 such that φ′(z′3), φ′(z′4), φ′(z′5) are not
collinear in the plane model of Y′ corresponding to (ωY′ ⊗OY′(−z′1 − z′2),B′).
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2 The Gieseker-Petri divisor in Mg for genus g ≤ 13

Now we consider the case when g(Γ) = 6, namely Γ is a plane sextic with 4 double
points P1, . . . , P4. Using the notation introduced above, we now have that B has degree
2 and so η ∈ Pic−1(Y). Choose a point P ∈ Y. Since Pic−2(Y) = Y2 −Y4, we can always
write η − P = D2 − D4; it follows that η = D3 − D4 with P a point of D3. As in the
previous case, we can assume that

h0(C,OC( f ∗D4)) = h0(Y,OY(D4)) + h0(Y,OY(D3)) = 2,

and so f ∗(D4) defines a g1
8 on C.

In trying to prove that it does not satisfy the Gieseker-Petri Theorem, the above
method fails. Indeed, we should prove the existence of a plane cubic passing through
P1, . . . , P4, p(z1), . . . , p(z6), p(P), where D4 = z1 + . . . , z4 and D3 = z5 + z6 + P. As
P ∈ Y is arbitrarily chosen, it would be enough to prove the existence of a cubic through
P1, . . . , P4, z1, . . . , z6 and this is a divisorial condition in (P2)10. Since ρ(6, 2, 6) = 0, in
this case we do not have any degree of freedom in the choice of a g2

6 on Y, namely in
the choice of P1, . . . , P4.

Thus we proceed in a slightly different way. We have that ρ(6, 2, 7) = 3 and, given l
a base point free g2

7 on Y, we can assume that it defines a birational morphism

ϕ : Y → Λ ⊂ P2,

where Λ is a plane septic of genus 6; indeed, l cannot be composed with any involution.
We expect Λ to have only nodes as singularities but in this case we cannot exclude the
possibility that Λ has some triple points. As Y is the normalization of Λ, we have that

ωY = ϕ∗(OΛ(4)(−∆Λ)) with ∆Λ = ∑
P∈SingΛ

(rP − 1)P,

where rP is the multiplicity of Λ in P. Of course for Λ generic, the singular locus ∆Λ is
the sum of the nine nodes P1, . . . , P9 and the inequality ker µ0,OC( f ∗D4) 6= 0 is equivalent
to the existence of a plane quartic through the points P1, . . . , P9, ϕ(z1), . . . , ϕ(z6). In the
non generic case the condition equivalent to the non-injectivety of µ0,OC( f ∗D4) is different
(for instance, when Λ has a triple point Q and six double points P1, . . . , P6, then we
require that the plane quartic has a double point in Q and passes through P1, . . . , P6).
However, the number of independent conditions imposed on the plane quartics is the
same.

As before, we consider a neighborhood U of Y in M6 such that there exists a proper
morphism ξ : G2

7 → U, where G2
7 parametrizes pairs (Y′, l′), with [Y′] ∈ U and l′ a g2

7
on Y′. We can assume that, given [Y′] ∈ U, the generic g2

7 on Y′ is base point free and
not composed with an involution but in this case the models of Y′ as a plane septic can
have also some triple points. Denoting by m : V6,7 → M6 the natural morphism, the
restriction mU : m−1(U)→ U is proper. If π : M6,6 → M6 is the forgetful map, then the
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2.5 Proof of Theorem 2.1.1 in genus 12, 13

morphism m1 : m−1(U)×U π−1(U)→ π−1(U) is proper, too. We have that

dim m−1(U)×U π−1(U) = dim π−1(U) + ρ(6, 2, 7) + dim PGL(2) =
= dim π−1(U) + 11.

As in the previous case, we define

E := H0(OP2(4))× (m−1(U)×U π−1(U))

and F being the bundle on m−1(U) ×U π−1(U) with fibre over (Λ′, (Y′, z′1, . . . , z′6))
equal to

H0(OP2(4)⊗O∆Λ′
)⊕ H0(OP2(4)⊗Oϕ′(z′1)

)⊕ . . .⊕ H0(OP2(4)⊗Oϕ′(z′6)
),

where ϕ′ : Y′ → Λ′ is the normalization map. For Λ′ ∈ m−1(U) generic we have that

H0(OP2(4)⊗O∆Λ′
) = H0(OP2(4)⊗OP′1

)⊕ . . .⊕ H0(OP2(4)⊗OP′9
),

where P′1, . . . , P′9 are the nodes of Λ′. Instead, if for instance Λ′ has one triple point Q′

and 6 nodes P′1, . . . , P′6, then the following equality holds:

H0(OP2(4)⊗O∆Λ′
) = H0(OP2(4)⊗O2Q′)⊕ . . .⊕ H0(OP2(4)⊗OP′6

).

We define F : E → F to be the evaluation map. As both E and F have rank 15, the
situation is analogous to the one already treated. Therefore, in order to prove that the
image under m1 of the degeneracy locus X(F) is the whole π−1(U), it is enough to show
that the generic fibre Xe of m1|X(F) is nonempty and that it does not coincide with the
generic fibre of m1.

The fact that Xe 6= ∅ follows easily by observing that, given 15 points on a quartic
Λ4 ⊂ P2, there always exists a plane septic Λ7 passing through them and having nodes
in the first nine.

On the other hand, it can be shown that dim Xe 6= 15 by proceeding like in the case
of genus 5 because on a curve Y′ of genus 6 any complete g2

7 has to be of the form
l′ = ωY′ ⊗OY′(−a− b− c), with a, b, c ∈ Y′.

Finally, we obtain that:

Corollary 2.5.6. The locus GP12 has pure codimension 1 in M12.

Proof. By the remarks at the beginning of the section we have to study only the compo-
nent GP1

12,10.
Given [C] ∈ GP1

12,10, we may assume that [C] does not lie in GP1
12,9 ∪GP2

12,10 ∪GP2
12,11,

which forces any l ∈ G1
10(C) for which the Gieseker-Petri Theorem fails to verify con-

dition 1. By Theorem 2.5.5, condition 2 is satisfied if [C] 6∈ GP1
12,7 ∪ GP1

12,8. We can thus
apply Proposition 2.5.1.
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3 Stability of rank-3 Lazarsfeld-Mukai
bundles on K3 surfaces

3.1 Introduction and statement of the results

Many results of Brill-Noether theory regarding a general point in the moduli space
Mg, which parametrizes isomorphism classes of smooth, irreducible curves of genus g,
have been proved by studying curves lying on K3 surfaces. One of the advantages of
considering an irreducible curve C ⊂ S, where S is a smooth K3 surface, is that some
interesting properties, such as the Clifford index, do not change while moving C in its
linear system (cf. [11]); we refer to Sections 1.5 and 1.6 for details. Moreover, Brill-
Noether theory on C is strictly connected with the geometry of some moduli spaces
of vector bundles on the K3 surface. Indeed, given a complete, base point free linear
series A on C, one associates with the pair (C, A) a vector bundle on S, the so-called
Lazarsfeld-Mukai bundle, denoted by EC,A.

As recalled in Section 1.4, Lazarsfeld-Mukai bundles were first used by Lazarsfeld,
in order to show that, given a K3 surface S such that Pic(S) = Z · L, a general curve
C ∈ |L| satisfies the Gieseker-Petri Theorem, that is, for any line bundle A ∈ Pic(C) the
Petri map

µ0,A : H0(C, A)⊗ H0(C, ωC ⊗ A∨)→ H0(C, ωC)

is injective (cf. [16], [23], or [17] for a more geometric argument).
It is natural to investigate what happens if the Picard number of S is greater than

1. In order to do so, having denoted by |L|s the locus of smooth, connected curves
in the linear system |L| and chosen two positive integers r, d, one studies the natural
projection π : W r

d(|L|) → |L|s, whose fibre over C coincides with the Brill-Noether
variety Wr

d(C). We set g := 1+ c1(L)2/2; this coincides with the genus of curves in |L|s.
At first we look at the cases where ρ(g, r, d) < 0. Following [5], we say that a line

bundle M is adapted to |L| whenever

(i) h0(S, M) ≥ 2, h0(S, L⊗M∨) ≥ 2,

(ii) h0(C, M⊗OC) is independent of the curve C ∈ |L|s.

Conditions (i) and (ii) ensure that M ⊗ OC contributes to the Clifford index of C and
Cliff(M⊗OC) is the same for any C ∈ |L|s.

Donagi and Morrison ([5, Theorem (5.1’)]) proved that, if A is a complete, base point
free pencil g1

d on a nonhyperelliptic curve C ∈ |L|s and ρ(g, 1, d) < 0, then |A| is con-
tained in the restriction to C of a line bundle M ∈ Pic(S) which is adapted to |L| and
such that Cliff(M⊗OC) ≤ Cliff(A). The same is expected to hold true for any linear
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

series of type gr
d with ρ(g, r, d) < 0 (compare with [5, Conjecture (1.2)]). We prove this

conjecture for r = 2 under some mild hypotheses on L.

Theorem 3.1.1. Let S be a K3 surface and L ∈ Pic(S) be an ample line bundle such that a
general curve in |L| has genus g, Clifford dimension 1 and maximal gonality k =

⌊
g+3

2

⌋
. Let

A be a complete, base point free g2
d on a curve C ∈ |L|s such that ρ(g, 2, d) < 0.

Then, there exists M ∈ Pic(S) adapted to |L| such that the linear system |A| is contained in
|M⊗OC| and Cliff(M⊗OC) ≤ Cliff(A). Moreover, one has c1(M) · C ≤ (4g− 4)/3.

We recall that the assertion that |A| is contained in |M ⊗ OC| is equivalent to the
requirement h0(C, A∨ ⊗ M ⊗ OC) > 0. The assumption on the gonality k is used for
computational reasons; however, the methods of our proof might be adapted in order
to treat the cases where k is not maximal. It was proved by Ciliberto and Pareschi (cf. [4]
Proposition 3.3) that the ampleness of L = OS(C) forces C to have Clifford dimension
1 with only one exception occurring for g = 10.

The case of pencils is very special, since it involves vector bundles of rank 2. Don-
agi and Morrison used the fact that any non-simple, indecomposable Lazarsfeld-Mukai
bundle of rank 2 can be expressed as extension of the image and the kernel of a nilpo-
tent endomorphism, which both have rank 1. Their proof cannot be adapted to linear
series with r > 1, corresponding to Lazarsfeld-Mukai bundles of rank at lest 3. Our
techniques consist of showing that, under the hypotheses of Theorem 3.1.1, the rank-3
Lazarsfeld-Mukai bundle E = EC,A is given by an extension

0→ N → E→ E/N → 0,

where N ∈ Pic(S) and E/N is a µL-stable, torsion free sheaf of rank 2. When E is
µL-unstable, the line bundle N coincides with its maximal destabilizing sheaf and the
determinant of E/N plays the role of the line bundle M in the statement. Something
similar happens if E is properly µL-semistable.

This suggests that the notion of stability might play a fundamental role in a general
proof of the Donagi-Morrison Conjecture.

Now, we turn our attention to the cases where ρ(g, r, d) ≥ 0. In the course of their
proof of Green’s Conjecture for curves on arbitrary K3 surfaces, Aprodu and Farkas (cf.
[1]) showed that, if L is an ample line bundle on a K3 surface such that a general curve
C ∈ |L| has Clifford dimension 1 and gonality k, given d > g− k + 2, any dominating
component ofW1

d (|L|) corresponds to simple Lazarsfeld-Mukai bundles. In particular,
when the gonality is maximal this ensures (cf. Theorem 1.7.3) that, if C is general in its
linear system and the Brill-Noether number ρ(g, 1, d) is positive, the variety W1

d (C) is
reduced and of the expected dimension. In the case ρ(g, 1, d) = 0, one finds that W1

d (C)
is 0-dimensional, even though not necessarily reduced.

It is natural to wonder to what extent such a result can be expected to hold for linear
series of type gr

d with r > 1. We prove the following theorem.
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Theorem 3.1.2. Let S be a K3 surface and L ∈ Pic(S) be an ample line bundle such that a
general curve in |L| has genus g, Clifford dimension 1 and maximal gonality k =

⌊
g+3

2

⌋
. Fix a

positive integer d such that ρ(g, 2, d) ≥ 0 and assume (g, d) 6∈ {(2, 4), (4, 5), (6, 6), (10, 9)}.
Then, the following hold:

(a) If d > 3
4 g + 2, no dominating component ofW2

d (|L|) corresponds to rank-3 Lazarsfeld-
Mukai bundles which are not µL-stable.

(b) If d ≤ 3
4 g + 2, let W be a dominating component of W2

d (|L|) that corresponds to
Lazarsfeld-Mukai bundles which are not µL-stable. Then, there exists M ∈ Pic(S)
adapted to |L| such that, for a general (C, A) ∈ W , the linear system |A| is contained in
|M⊗OC| and Cliff(M⊗OC) ≤ Cliff(A). Moreover, c1(M) · C ≤ (4g− 4)/3.

Unlike case (a), case (b) does not exclude the existence of dominating components
ofW2

d (|L|) which correspond to either µL-stable or properly µL-semistable Lazarsfeld-
Mukai bundles. However, general points of such a componentW give nets g2

d, which
are all contained in the restriction of the same line bundle M ∈ Pic(S) to curves in |L|.
Furthermore, the Clifford index of M⊗OC is the same for any C ∈ |L|s and does not
exceed d− 4.

For a curve C ∈ |L|s and for a fixed value of d, we define the variety

W̃2
d (C) := {A ∈W2

d (C) | A is base point free},

which is an open subscheme of W2
d (C), not necessarily dense. The following result is a

direct consequence of Theorem 3.1.2.

Corollary 3.1.3. Under the same hypotheses of Theorem 3.1.2, for a general C ∈ |L|s the
following hold.

(a) If d > 3
4 g + 2, the variety W̃2

d (C) is reduced of the expected dimension ρ(g, 2, d).

(b) If d ≤ 3
4 g + 2, let W be an irreducible component of W̃2

d (C) which either is non-reduced
or has dimension greater than ρ(g, 2, d). Then, there exists an effective divisor D ⊂ S
such that OS(D) is adapted to |L| and, for a general A ∈ W, the linear system |A| is
contained in |OC(D)| and Cliff(OC(D)) ≤ Cliff(A).

Aprodu and Farkas’ result follows from a parameter count for spaces of Donagi-
Morrison extensions corresponding to non-simple Lazarsfeld-Mukai bundles of rank 2.
The strategy used to prove Theorem 3.1.2 consists, instead, of counting the number of
moduli of µL-unstable and properly µL-semistable Lazarsfeld-Mukai bundles of rank 3;
this involves Artin stacks that parametrize the corresponding Harder-Narasimhan and
Jordan-Hölder filtrations.

The plan of the paper is as follows. Sections 3.2, 3.3 and 3.4 give background in-
formation on linear systems on K3 surfaces, Lazarsfeld-Mukai bundles and stability of
sheaves on K3 surfaces respectively.
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

In Section 3.5 we present a different proof of Aprodu and Farkas’ result and show
that, if ρ(g, 1, d) > 0, the Lazarsfeld-Mukai bundles corresponding to general points of
any dominating component of W1

d (|L|) are not only simple, but even µL-stable (The-
orem 3.5.3). We introduce stacks of filtrations, studied for instance by Bridgeland
in [2] and Yoshioka in [26], and explain our parameter count in an easier case. The
space of Lazarsfeld-Mukai bundles E, such that the bundles appearing in the Harder-
Narasimhan filtration of E have prescribed Mukai vectors, turns out to be an Artin
stack, whose dimension can be computed by using some well known facts regarding
morphisms between semistable sheaves.

In Section 3.6 we look at the different types of possible Harder-Narashiman and
Jordan-Hölder filtrations of a rank-3 Lazarsfeld-Mukai bundle E with det(E) = L and
c2(E) = d. If the determinants of both the subbundles Ei and the quotient sheaves Ej,
given by the filtration of E, have at least two global sections, their restriction to a gen-
eral curve C ∈ |L| contributes to the Clifford index. This is used in order to bound from
below the intersection products between the first Chern classes of the sheaves Ei and
Ej.

In Sections 3.7, 3.8, 3.9 we estimate the number of moduli of pairs (C, A) correspond-
ing to rank-3 Lazarsfeld-Mukai bunldes which are not µL-stable. The subdivision in
three sections reflects the different methods necessary to treat various types of filtra-
tions, depending on their length and on the rank of the sheaves Ei and Ej. At the end
of Section 3.9 the proofs of Theorems 3.1.1 and 3.1.2 are given. In Section 3.10, an appli-
cation towards transversality of Brill-Noether loci and Gieseker-Petri loci is presented.
For values of r, d such that ρ(g, r, d) ≥ 0, we define the scheme

cGPr
g,d := {[C] ∈ Mg | ∃ A ∈Wr

d(C) \Wr+1
d (C) with ker µ0,A 6= 0},

which is open but not necessarily dense in the locus GPr
g,d. We prove the following:

Theorem 3.1.4. Let r ≥ 3, g ≥ 0, d ≤ g − 1 be positive integers such that ρ(g, r, d) < 0
and d− 2r + 2 ≥ b(g + 3)/2c. If r ≥ 4, assume d2 > 4(r − 1)(g + r − 2). For r = 3, let
d2 > 8g + 1. If −1 is not represented by the quadratic form

Q(m, n) = (r− 1)m2 + mnd + (g− 1)n2, m, n ∈ Z,

then:

a. Mr
g,d 6⊂ M1

g, f for f < (g + 2)/2.

b. Mr
g,d 6⊂

cGP1
g, f for f ≥ (g + 2)/2.

c. Mr
g,d 6⊂ M2

g,e if e < d− 2r + 5 and ρ(g, 2, e) < 0.

d. Mr
g,d 6⊂

cGP2
g,e if e < min

{ 17
24 g + 23

12 , d− 2r + 5
}

and ρ(g, 2, e) ≥ 0.

The assumption on the quadratic form Q is a mild hypothesis. For instance, it is
automatically satisfied when r and g are odd and d is even.
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In the last section we exhibit an application of our methods to higher rank Brill-
Noether Theory. We give a negative answer to Question 4.2 in [13], which asks whether
the second Clifford index Cliff2(C), associated with rank-2 vector bundles on an alge-
braic curve C, equals Cliff(C) whenever C is a Petri curve. We analyze what happens
in genus 11 and look at the Noether-Lefschetz divisorNL4

11,13, which consists of curves
that lie on a K3 surface S ⊂ P4 with Picard number at least 2; this coincides with the lo-
cus of curves [C] ∈ M11 such that Cliff2(C) < Cliff(C) (cf. [7]). We prove the following:

Theorem 3.1.5. A general curve [C] ∈ NL4
11,13 satisfies the Gieseker-Petri Theorem.

In other words, the Gieseker-Petri divisor GP11 and the Noether-Lefschetz divisor
NL4

11,13 are transversal.

3.2 Linear systems on K3 surfaces

The following results concerning linear systems on K3 surfaces are mainly due to Mayer
([18]) and Saint-Donat ([24]).

Let D be a divisor on a K3 surface S and set L := OS(D). Riemann-Roch Theorem
and Serre duality give

h0(S, L) + h0(S, L−1) = 2 +
1
2

D2 + h1(S, L).

It follows that, if L is numerically equivalent to 0, then either L or L−1 has some sections
and neither D nor −D is effective and non-trivial; hence, L = OS. As a consequence,
the Picard group of S has no torsion and Pic(S) = Num(S).

The short exact sequence defining OD trivially implies that

h1(S,OS(−D)) = h0(D,OD)− 1.

Therefore, if D is an irreducible curve, then dim |L| = 1 + D2/2 and, having denoted
by pa(D) its arithmetic genus, one has D2 = 2pa(D)− 2 by the adjunction formula. In
particular, one finds D2 ≥ −2 and

dim |L| = 0⇐⇒ D2 = −2 ⇐⇒ D is smooth and rational,
dim |L| = 1⇐⇒ D2 = 0 ⇐⇒ pa(D) = 1.

In general, if L is any line bundle on S such that h0(S, L) > 0, then any fixed component
of |L| is a (−2)-curve which is isomorphic to P1. Moreover, |L| has no base points
outside its fixed components (cf. [24, Corollary 3.2]).

The following result is a strong version of Bertini’s Theorem holding for K3 surfaces.

Theorem 3.2.1. Let L be a line bundle on a K3 surface S such as h0(S, L) > 0 and |L| has no
fixed components. Then, the following hold:

(i) If c1(L)2 > 0, then h1(S, L) = 0 and a general element in |L| is a smooth, irreducible
curve of genus g = 1 + c1(L)2/2.
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

(ii) If c1(L)2 = 0, then there exist a number k ∈ Z>0 and an irreducible curve E ⊂ S
with pa(E) = 1 such that L = OS(kE). In this case, one obtains h0(S, L) = k + 1,
h1(S, L) = k− 1 and every element in |L| can be written as a sum E1 + E2 + · · ·+ Ek
with Ei ∈ |E| for 1 ≤ i ≤ k.

In the first case, we call any smooth curve C ∈ |L| a K3-section. Let c1(L)2 > 0 and
look at the map φL : S −→ P(H0(S, L)) ' Pg. Two cases can occur. Either φL is
birational and contracts only the finitely many (−2)-curves Γ ⊂ S such that Γ · L = 0,
or it has degree 2 and every member of |L| is a hyperelliptic curve; in the latter case, the
map φL3 is birational. Notice that the restriction of φL to a smooth curve C ∈ |L| is the
canonical morphism φωC .

3.3 Lazarsfeld-Mukai bundles

In this section we briefly recall the definition and the main properties of Lazarsfeld-
Mukai (henceforth LM) bundles associated with complete, base point free linear series
on curves lying on K3 surfaces. We refer to Section 1.4 for details. Let S be a K3 surface
and C ⊂ S a smooth connected curve of genus g. Any base point free linear series
A ∈ Wr

d(C) \Wr+1
d (C) can be considered as a globally generated sheaf on S; therefore,

the evaluation map evA,S : H0(C, A)⊗OS → A is surjective and one defines the bundle
FC,A to be its kernel, i.e.,

0→ FC,A → H0(C, A)⊗OS → A→ 0. (3.1)

The LM bundle associated with the pair (C, A) is, by definition, EC,A := F∨C,A. By dual-
izing (3.1), one finds that EC,A sits in the following short exact sequence:

0→ H0(C, A)∨ ⊗OS → EC,A → ωC ⊗ A∨ → 0; (3.2)

in particular, EC,A is equipped with a (r + 1)-dimensional subspace of sections. The
following proposition summarizes the most important properties of EC,A:

Proposition 3.3.1. If EC,A is the LM bundle corresponding to a base point free linear series
A ∈Wr

d(C) \Wr+1
d (C), then:

• rk EC,A = r + 1.

• det EC,A = L, where C ∈ |L|.

• c2(EC,A) = d.

• The bundle EC,A is globally generated off the base locus of ωC ⊗ A∨.

• h0(S, EC,A) = h0(C, A) + h0(C, ωC ⊗ A∨) = r + 1 + g− d + r,
h1(S, EC,A) = h2(S, EC,A) = 0.

• χ(S, EC,A ⊗ FC,A) = 2(1− ρ(g, r, d)).
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In particular, if ρ(g, r, d) < 0, the LM bundle EC,A is non-simple. Being a LM bundle
is an open condition. Indeed, a vector bundle E of rank r + 1 is a LM bundle whenever
h1(S, E) = h2(S, E) = 0 and there exists a subspace Λ of G(r + 1, H0(S, E)) such that
the degeneracy locus of the evaluation map evΛ : Λ⊗OS → E is a smooth connected
curve.

We recall Proposition 1.4.2 due to Pareschi, stating that, if C ∈ |L|s is general, for any
base point free A ∈ Pic(C) one has:

ker µ0,A = 0⇐⇒ EC,A is simple.

Standard Brill-Noether theory implies that no component ofW r
d(|L|) is entirely con-

tained inW r+1
d (|L|). Therefore, the variety Wr

d(C) is reduced of the expected dimension
for a general C ∈ |L|s as soon as no dominating componentW ofW r

d(|L|) is of one of
the following types:

(a) For (C, A) ∈ W general, A is complete, base point free and EC,A is non-simple.

(b) For (C, A) ∈ W general, A is not base point free and ker µ0,A 6= 0.

In order to exclude (b), one can proceed by induction on d because, if B denotes the
base locus of A and ker µ0,A 6= 0, then µ0,A(−B) 6= 0, too.

3.4 Mumford stability for sheaves on K3 surfaces

For later use, we recall some facts about coherent sheaves on smooth projective sur-
faces, referring to [12] and [25] for most of the proofs. Let S be a smooth, projective
surface over C and H an ample line bundle on it. Given a torsion free sheaf E on S of
rank r, the H-slope of E is defined as

µH(E) =
c1(E) · c1(H)

r
;

E is called µH-semistable (resp. µH-stable) in the sense of Mumford-Takemoto if for any
subsheaf 0 6= F ⊂ E with rk F < rk E, one has µH(F) ≤ µH(E) (resp. µH(F) < µH(E)).
The Harder-Narasimhan (henceforth HN) filtration of E is the unique filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Es = E,

such that Ei := Ei/Ei−1 is a torsion free, µH-semistable sheaf for 1 ≤ i ≤ s, and
µH(Ei+1/Ei) < µH(Ei/Ei−1) for 1 ≤ i ≤ s− 1. Such a filtration always exists. It can be
easily checked that, if E is a vector bundle, the sheaves Ei are locally free; moreover,

µH(E1) > µH(E2) > . . . > µH(E).

The sheaf E1 is called the maximal destabilizing sheaf of E; the number µH(E1) is the
maximal slope of a proper subsheaf of E and, among the subsheaves of E of slope equal
to µH(E1), the sheaf E1 has maximal rank. In particular, E1 is µH-semistable.
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

Now, we assume E is µH-semistable. A Jordan-Hölder filtration of E (later on, JH
filtration) is a filtration

0 = JH0(E) ⊂ JH1(E) ⊂ . . . ⊂ JHs(E) = E,

such that all the factors gri(E) := JHi(E)/JHi−1(E) are torsion free, µH-stable sheaves
of slope equal to µH(E). This implies that µH(JHi(E)) = µH(E) for 1 ≤ i ≤ s.
The Jordan-Hölder filtration always exists but is not uniquely determined, while the
graded object gr(E) := ⊕igri(E) is. The following result regards morphisms between
µH-semistable and µH-stable sheaves on S (cf. [25], [9]).

Proposition 3.4.1. Let E, F be torsion free sheaves on S. Then:

a. If E and F are µH-semistable and µH(E) > µH(F), then Hom(E, F) = 0.

b. If E and F are µH-stable, µH(E) = µH(F) and there exists a nonzero ϕ ∈ Hom(E, F),
then rk E = rk F and ϕ is an isomorphism in codim ≤ 1 (in particular it is injective).

In the case where S is a K3 surface, by Serre duality H2(S, E) ' Hom(E,OS)
∨; hence

(a) implies that, if E is µH-semistable and µH(E) > 0, then h2(S, E) = 0.
From now on, we assume S to be a K3 surface. Throughout the paper we will often

use the following fact:

Lemma 3.4.2. Let E, Q ∈ Coh(S) be torsion free and rk E ≥ 2. If E is globally generated off a
finite number of points, h2(S, E) = 0 and there exists a surjective morphism ϕ : E → Q, then
h0(S, Q∨∨) ≥ 2.

Proof. Being a quotient of E , the sheaf Q is globally generated off a finite set. If rk Q ≥ 2,
this trivially implies h0(S, Q∨∨) ≥ h0(S, Q) ≥ 2. On the other hand, if Q has rank 1, then
Q = N ⊗ I, where N ∈ Pic(S) and I is the ideal sheaf associated with a 0-dimensional
subscheme of S. Since N is a quotient of E off a finite number of points, it has no fixed
components, thus it is base point free (cf. [24]). The statement follows by remarking
that N = Q∨∨ cannot be trivial because h2(S, E) = 0.

Another useful result is the following one (cf. Lemma 3.1 in [11]):

Lemma 3.4.3. Let E be a vector bundle of rank r on S which is globally generated off a finite
number of points. If h2(S, E) = 0, then h0(S, det E) ≥ 2.

Proof. Since the natural map ∧r H0(S, E)⊗OS → ∧rE = det E is surjective off a finite
number of points, the line bundle det E is base point free. Therefore, it is enough to
show that det E is non-trivial. This follows by remarking that, if V ∈ G(r, H0(S, E)) is
general, then the natural map evV : V ⊗OS → E is injective but is not an isomorphism
since h2(S, E) = 0. Therefore, det evV gives a section of det E vanishing on a non-zero
effective divisor.
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Last but not least, we recall some notation and results from [20]. The Mukai vector of
a sheaf E ∈ Coh(S) is defined as:

v(E) := ch(E)(1 + ω) = rk(E) + c1(E) + (χ(E)− rk(E))ω ∈ H∗(S, Z) = H2∗(S, Z),

where H4(S, Z) is identified with Z by means of the fundamental cocycle ω. The Chern
classes of E are fixed once its Mukai vector is assigned.

The Mukai lattice is the pair (H∗(S, Z), 〈 , 〉), with 〈 , 〉 being the symmetric bilinear
form on H∗(S, Z) whose definition is the following:

〈v, w〉 := −
∫

S
v∗ ∧ w,

where, if v = v0 + v1 + v2 with vi ∈ H2i(S, Z), we set v∗ := v0 − v1 + v2. Given
E, F ∈ Coh(S), we define the Euler characteristic of the pair (E, F) as

χ(E, F) :=
2

∑
i=0

(−1)i dim Exti(E, F),

and it turns out that χ(E, F) = −〈v(E), v(F)〉.
Given a Mukai vector v ∈ H∗(S, Z), letM(v) be the moduli stack of coherent sheaves

on S of Mukai vector v. If H ∈ Pic(S) is ample, we denote byMH(v)µss (resp.MH(v)µs)
the moduli stack parametrizing isomorphism classes of µH-semistable (resp. µH-stable)
sheaves on S with Mukai vector v. Recall that any µH-stable sheaf is simple and that
any irreducible component ofMH(v)µs has dimension equal to 〈v, v〉+ 1. Moreover, if
gcd(v0, v1 · H) = 1, then µH-semistability and µH-stability coincide.

3.5 Stability of Lazarsfeld-Mukai bundles of rank 2

Let S be a smooth, projective K3 surface and consider an ample line bundle L ∈ Pic(S)
such that a general curve C ∈ |L|s has genus g, Clifford dimension 1 and maximal
gonality k =

⌊
g+3

2

⌋
. In this section we prove that, if C is general in its linear system and

ρ(g, 1, d) > 0, the LM bundle associated with a general complete, base point free g1
d on

C is µL-stable.
Fix a rank-2 LM bundle E = EC,A corresponding to a complete, base point free pencil

A ∈W1
d (C) with C ∈ |L|s; Proposition 3.3.1 implies that

v(E) = 2 + c1(L) + (g− d + 1)ω.

We assume E is not µL-stable. In the case where E is µL-unstable (respectively properly
µL-semistable) we consider its HN filtration (resp. JH filtration) 0 ⊂ M ⊂ E, which
gives a short exact sequence

0→ M→ E→ N ⊗ Iξ → 0, (3.3)
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

where M and N are two line bundles such that µL(M) > µL(E) = g− 1 > µL(N) (resp.
µL(M) = µL(E) = µL(N)) and Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S
of length l = d− c1(N) · c1(M). By Lemma 3.4.2, we know that h0(S, N) ≥ 2. First of
all, we prove the following:

Lemma 3.5.1. In the situation above, if general curves in |L|s have Clifford dimension 1 and
(constant) gonality k, one has c1(M) · c1(N) ≥ k.

Proof. We remark that h2(S, M) = 0 since µL(M) > 0. Therefore, if

2 > h0(S, M) ≥ χ(M) = 2 + c1(M)2/2,

then c1(M)2 < 0, and the inequality µL(M) ≥ g− 1 implies

c1(M) · c1(N) ≥ g + 1 ≥ k.

From now on, we assume h0(S, M) ≥ 2. Since ωC ⊗ N∨ = M ⊗ OC, the line bundle
N ⊗OC contributes to Cliff(C). The short exact sequence

0→ M∨ → N → N ⊗OC → 0

gives h0(C, N ⊗OC) ≥ h0(S, N). It follows that

Cliff(N ⊗OC) = c1(N) · (c1(N) + c1(M))− 2h0(C, N ⊗OC) + 2
≤ c1(N)2 + c1(N) · c1(M)− 2χ(N)− 2h1(S, N) + 2
= −2 + c1(N) · c1(M)− 2h1(S, N).

Since Cliff(N ⊗OC) ≥ k− 2, then c1(M) · c1(N) ≥ k + 2h1(S, N) ≥ k.

Our goal is to count the number of moduli of µL-unstable and properly µL-semistable
LM bundles of rank 2. Fix a nonnegative integer l and a non-trivial, globally generated
line bundle N on S such that, if M := L ⊗ N∨, either µL(M) = µL(N) = g − 1 or
µL(M) > g − 1 > µL(N). We consider the moduli stack EN,l parametrizing filtra-
tions 0 ⊂ M ⊂ E with [M] ∈ M(v(M))(C) and [E/M] ∈ M(v(N ⊗ Iξ))(C), where
l(ξ) = l. Note that, as N and M are line bundles, the stack M(v(M)) has a unique
C-point endowed with an automorphism group of dimension 1, whileM(v(N ⊗ Iξ))

is corepresented by the Hilbert scheme S[l] parametrizing 0-dimensional subschemes of
S of length l. Two filtrations 0 ⊂ M ⊂ E and 0 ⊂ M′ ⊂ E′ are equivalent whenever
there exists a commutative diagram

M //

ϕ1

��

E
ϕ2

��
M′ // E′,

where ϕ1 and ϕ2 are two isomorphisms (cf. [2] for the proof that EN,l is algebraic). The
stack EN,l can be alternatively described as the moduli stack of extensions of type (3.3).
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Let p : EN,l →M(v(M))×M(v(N ⊗ Iξ)) be the natural morphism of stacks mapping
the short exact sequence (3.3) to (M, N⊗ Iξ). The fibre of p over the C-point (M, N⊗ Iξ)
ofM(v(M))×M(v(N ⊗ Iξ)) is the quotient stack

[Ext1(N ⊗ Iξ , M)/Hom(N ⊗ Iξ , M)],

where the action of Hom(N ⊗ Iξ , M) over Ext1(N ⊗ Iξ , M) is the trivial one (cf. [2]); it
follows that in general p is not representable.

We define P̃N,l to be the closure of the image of EN,l under the natural projection
q : EN,L →M(v(E)), which maps the point of EN,L given by (3.3) to [E]. The morphism
q is representable (cf. proof of Lemma (4.1) in [2]) and the fibre of q over a C-point of P̃N,l
corresponding to E is the Quot-scheme QuotS(E, P), where P is the Hilbert polynomial
of N ⊗ Iξ . We denote by PN,l the open substack of P̃N,l whose C-points correspond to
vector bundles E satisfying h1(S, E) = h2(S, E) = 0.

Let GN,l → PN,l be the Grassmann bundle with fibre over a point [E] ∈ PN,l(C)
equal to G(2, H0(S, E)). A C-point of GN,l is a pair (E, Λ) and comes endowed with an
automorphism group equal to Aut(E). We consider the rational map

hN,l : GN,l 99KW1
d (|L|),

mapping a general point (E, Λ) ∈ GN,l(C) to the pair (CΛ, AΛ), where CΛ is the degen-
eracy locus of the evaluation map evΛ : Λ⊗OS → E, which is injective for a general
Λ ∈ G(2, H0(S, E)), and ωCΛ ⊗ A∨Λ is the cokernel of evΛ.

Notice that d := c1(N) · c1(M) + l. Since while mapping to W1
d (|L|) we forget the

automorphisms, the fibre of hN,l over (C, A) is the quotient stack

[P(Hom(EC,A, ωC ⊗ A∨)◦)/Aut(EC,A)],

where Hom(EC,A, ωC ⊗ A∨)◦ denotes the open subgroup of Hom(EC,A, ωC ⊗ A∨) con-
sisting of those morphisms whose kernel is isomorphic to O⊕2

S , and Aut(EC,A) acts on
P(Hom(EC,A, ωC ⊗ A∨)◦) by composition. In particular, hN,l is not representable. As
remarked in Section 1.4, one has

Hom(EC,A, ωC ⊗ A∨) ' H0(S, EC,A ⊗ E∨C,A);

it is trivial to check that

Hom(EC,A, ωC ⊗ A∨)◦ ' Aut(EC,A).

Therefore, the action of Aut(EC,A) on P(Hom(EC,A, ωC ⊗ A∨)◦) is transitive and the
stabilizer of any point is the subgroup generated by IdEC,A ; as a consequence, any fi-
bre of hN,l has dimension −1 (cf. [10] for the definition of the dimension of a locally
Noetherian algebraic stack). We denote by WN,l the closure of the image of hN,l . The
following holds:

Proposition 3.5.2. Assume that PN,l be non-empty and letW be an irreducible component of
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WN,l . Then
dimW ≤ g + d− k,

where k is the gonality of any curve in |L|s.

Proof. Proposition 3.4.1, together with the fact that h0(S, Iξ) = 0 if l > 0, implies that

dim Hom(M, N ⊗ Iξ) =

{
1 if M ' N, ξ = ∅
0 otherwise

.

It follows that the fibres of p have constant dimension equal to −χ(M, N ⊗ Iξ), unless
M ' N and l = 0, in which case it is −χ(M, N ⊗ Iξ) + 1.

Regarding the fibres of q, it is well known (cf. [12] Proposition 2.2.8) that, given
[ϕ : E→ N ⊗ Iξ ] ∈ QuotS(E, P), the following holds:

dim Hom(K, N ⊗ Iξ)− dim Ext1(K, N ⊗ Iξ) ≤ dim[ξ] QuotS(E, P)
≤ dim Hom(K, N ⊗ Iξ),

(3.4)

where K = ker ϕ; moreover, if Ext1(K, N ⊗ Iξ) = 0, then QuotS(E, P) is smooth in [ϕ]
of dimension equal to dim Hom(K, N ⊗ Iξ). Since K ' M, if M ' N and l = 0, all the
fibres of q are smooth of dimension 1; indeed, one has Ext1(N, N) ' H1(S,OS) = 0.
Otherwise, the fibres of q are 0-dimensional. As a consequence, if PN,l is non-empty,
then:

dimGN,l = dim PN,l + 2(g− d + 1)
= dimM(v(M)) + dimM(v(N ⊗ Iξ))

+〈v(M), v(N ⊗ Iξ)〉+ 2(g− d + 1)

= 2l − 2 + c1(M) · c1(N)− c1(M)2

2
− c1(N)2

2
− 2 + l + 2(g− d + 1)

= 3l + 2g− 2d− 2− (g− 1) + 2c1(M) · c1(N)

= g + d− 1− c1(N) · c1(M)

≤ g + d− 1− k,

where we have used that c1(M) + c1(N) = c1(L) and d = c1(M) · c1(N) + l, and the
last inequality follows from Lemma 3.5.1. The statement is a consequence of the fact
that the fibres of hN,l are quotient stacks of dimension equal to −1.

We can finally prove the following result:

Theorem 3.5.3. Assume that general curves in |L|s have Clifford dimension 1 and maximal
gonality k =

⌊
g+3

2

⌋
.

• If ρ(g, 1, d) > 0, any dominating component of W1
d (|L|) corresponds to µL-stable LM

bundles. In particular, if C ∈ |L|s is general, the variety W1
d (C) is reduced and has the

expected dimension ρ(g, 1, d).
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3.6 Lazarsfeld-Mukai bundles of rank 3 which are not µL-stable

• If ρ(g, 1, k) = 0 and C ∈ |L|s is general, then W1
k (C) has dimension 0.

Proof. When ρ(g, 1, d) > 0, we show that no componentW ofW1
d (|L|s) corresponding

to either µL-unstable or properly µL-semistable LM bundles dominates |L|. Proposition
3.5.2 gives:

dimW ≤ g + d− k ≤ g + d− g + 2
2

.

Our claim follows by remarking that any dominating component of W1
d (|L|) has di-

mension at least g + ρ(g, 1, d) and that ρ(g, 1, d) > d− g+2
2 whenever d > g+2

2 .
If k = g+2

2 , that is, ρ(g, 1, k) = 0, our parameter count shows that any dominat-
ing component of W1

k (|L|) has dimension g; hence, if C ∈ |L| is general, W1
k (C) is

0-dimensional, even though non necessarily reduced. By induction on d, one excludes
the existence of components ofW1

d (|L|) whose general points correspond to linear se-
ries which are not base point free.

3.6 Lazarsfeld-Mukai bundles of rank 3 which are not µL-stable

We fix a LM bundle E = EC,A associated with a complete, base point free g2
d on a smooth

connected curve C ∈ |L|s with L ∈ Ample(S). By Proposition 3.3.1, we have

v(E) = 3 + c1(L) + (2 + g− d)ω,

where g = g(C). We assume that E is not µL-stable and, if it is also µL-unstable, we
look at its HN filtration:

0 = E0 ⊂ E1 ⊂ . . . ⊂ Es = E.

On the other hand, if E is properly µL-semistable, we consider its JH filtration:

0 = JH0(E) ⊂ JH1(E) ⊂ . . . ⊂ JHs(E) = E.

We first consider the cases where either E is properly µL-semistable and JH1(E) has
rank 2, or E is µL-unstable, rk E1 = 2 and E1 is µL-stable. Under these hypotheses, E
sits in the following short exact sequence:

0→ M→ E→ N ⊗ Iξ → 0, (3.5)

where M = JH1(E) (resp. M = E1) is a µL-stable vector bundle of rank 2, N is a line
bundle and Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S. Moreover,

µL(M) ≥ µL(E) =
2g− 2

3
≥ µL(N ⊗ Iξ) = µL(N), (3.6)

with the former inequality being strict whenever the latter one is. We obtain that
c1(L) = c1(E) = c1(M) + c1(N) and d = c2(E) = c1(N) · c1(M) + l(ξ) + c2(M), where
l(ξ) denotes the length of ξ. We prove the following:
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Lemma 3.6.1. Assume a general curve C ∈ |L|s has Clifford dimension 1 and gonality k. In
the above situation, one has c1(N) · c1(M) ≥ k and

d ≥ 3
4

k +
7
6
+

g
3

. (3.7)

Proof. As E is globally generated off a finite number of points, the line bundle N is
base point free and non-trivial, thus h0(S, N) ≥ 2 and µL(N) > 0. The inequality
µL(M) > 0 implies that h2(S, M) = 0 and, since µL(det M) = 2µL(M), we have that
h2(S, det M) = 0, too. Therefore,

h0(S, det M) ≥ χ(det M) = 2 + c1(M)2/2

and, if h0(S, det M) < 2, then c1(M)2 ≤ −2 and c1(N) · c1(M) ≥ (4g + 2)/3 > k by the
first inequality in (3.6), which gives

c1(M)2 + c1(N) · c1(M) ≥ 4g− 4
3

. (3.8)

On the other hand, if h0(S, det M) ≥ 2, then N ⊗ OC contributes to Cliff(C) and one
shows, as in the proof of Lemma 3.5.1, that c1(N) · c1(M) ≥ k + 2h1(S, N) ≥ k.

The µL-stability of M implies that

−2 ≤ 〈v(M), v(M)〉 = c1(M)2 − 4χ(M) + 8 = 4c2(M)− c1(M)2 − 8.

Therefore, we have

d = c1(N) · c1(M) + c2(M) + l(ξ) ≥ c1(N) · c1(M) +
c1(M)2

4
+

6
4
≥ 3

4
k +

7
6
+

g
3

;

this concludes the proof.

Now, we assume that either E is µL-unstable, rk E1 = 1 and E/E1 is µL-stable, or E is
properly µL-semistable and its JH filtration is of type 0 ⊂ JH1(E) ⊂ E with JH1(E) of
rank 1. Denoting by N the line bundle E1 (resp. JH1(E)), one has a short exact sequence:

0→ N → E→ E/N → 0, (3.9)

where E/N is a rank-2, µL-stable, torsion free sheaf on S such that

µL(N) ≥ µL(E) ≥ µL(E/N),

and either both inequalities are strict, or none is. We prove the following:

Lemma 3.6.2. In the above situation, if a general curve C ∈ |L|s has Clifford dimension 1 and
gonality k, then c1(N) · c1(E/N) ≥ k.
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3.6 Lazarsfeld-Mukai bundles of rank 3 which are not µL-stable

Proof. As in the proof of Lemma 3.4.2 one shows that h0(S, E/N) ≥ 2. Since E/N is
stable, then µL(E/N) > 0 and h2(S, E/N) = 0. Moreover, the vector bundle (E/N)∨∨

is globally generated off a finite number of points and h0(S, det(E/N)) ≥ 2 by Lemma
3.4.3 because det(E/N) := det(E/N)∨∨.
Since µL(N) = c1(N) · (c1(N) + c1(E/N)) ≥ (2g− 2)/3 > 0, we have h2(S, N) = 0.
Hence, if h0(S, N) < 2, then c1(N)2 < 0 and c1(N) · c1(E/N) ≥ (2g + 4)/3 > k.
Otherwise, the restriction N ⊗ OC contributes to the Clifford index and this implies
c1(N) · c1(E/N) ≥ k, too.

The cases still to be considered are the following ones:

(i) E is µL-unstable with HN filtration 0 ⊂ E1 ⊂ E2 ⊂ E.

(ii) E is properly µL-semistable with JH filtration 0 ⊂ JH1(E) ⊂ JH2(E) ⊂ E.

(iii) E is µL-unstable with HN filtration 0 ⊂ E1 ⊂ E and E1 is a properly µL- semistable
vector bundle of rank 2.

(iv) E is µL-unstable with HN filtration 0 ⊂ E1 ⊂ E and E1 is a line bundle such that
E/E1 is a properly µL- semistable torsion free sheaf of rank 2.

In all these cases one has four short exact sequences:

0→ N → E→ E/N → 0 (3.10)

0→ M→ E→ N1 ⊗ Iξ1 → 0, (3.11)

0→ N → M→ N2 ⊗ Iξ2 → 0, (3.12)

0→ N2 ⊗ Iξ2 → E/N → N1 ⊗ Iξ1 → 0, (3.13)

where N, N1, N2 are line bundles, Iξ1 and Iξ2 denote the ideal sheaves of two zero-
dimensional subschemes ξ1, ξ2 ⊂ S, the sheaf E/N has rank-2 and no torsion, while M
is a vector bundle of rank 2. Moreover, the following inequalities hold:

µL(N) ≥ µL(N2) ≥ µL(N1), (3.14)

µL(N) ≥ 2g− 2
3
≥ µL(N1); (3.15)

in particular, µL(N) = µL(N2) (resp. µL(N1) = µL(N2)) whenever M (resp. E/N)
is properly µL-semistable, that is, in cases (ii) and (iii) (resp. in cases (ii) and (iv)).
Analogously, equalities in (3.15) force E to be properly µL-semistable with JH-filtration
0 ⊂ N ⊂ M ⊂ E, that is, one is in case (ii).
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

Lemma 3.6.3. In the above situation, N1 ⊗ OC always contributes to the Clifford index of
C ∈ |L|s. Moreover, one of the following occurs:

(a) Both N ⊗OC and N1 ⊗OC contribute to the Clifford index of C ∈ |L|s.

(b) The inequality c1(N) · (c1(N1) + c1(N2)) ≥ 2g+4
3 holds and either N2⊗OC contributes

to the Clifford index of C or c1(N2) · (c1(N) + c1(N1)) ≥ g.

(c) The linear series N ⊗OC contributes to the Clifford index of C ∈ |L|s and one has the
inequality c1(N2) · c1(N) > 1

2 c1(N) · (c1(N1) + c1(N2)).

(d) The inequality c1(N) · c1(N2) ≥ g+5
3 holds.

In particular, if a general C ∈ |L|s has Clifford dimension 1 and gonality k, then

d ≥ c1(N) · c1(N1) + c1(N) · c1(N2) + c1(N1) · c1(N2) ≥
3
2

k. (3.16)

Proof. Being a quotient of E off a finite set, N1 is base point free and non-trivial, thus
h0(S, N1) ≥ 2 and µL(N1) > 0. By the Strong Bertini’ s Theorem (cf. [24]), N1 is nef.
Proposition 3.4.1 implies h2(S, N) = h2(S, N2) = 0 because of (3.14). Analogously,
µL(N2 ⊗ N) = µL(N2) + µL(N) > 0 and h2(S, N2 ⊗ N) = 0. Moreover, the following
holds:

c1(N2 ⊗ N)2 = c1(N2)
2 + c1(N)2 + 2c1(N2) · c1(N)

≥ c1(N)2 + c1(N2) · c1(N) + c1(N1) · c1(N) + c1(N1)
2

= µL(N) + c1(N1)
2 > 0,

where we have used that, since µL(N2) ≥ µL(N1), then

c1(N2)
2 + c1(N2) · c1(N) ≥ c1(N1)

2 + c1(N1) · c1(N), (3.17)

and that c1(N1)
2 ≥ 0 because N1 is nef. We obtain that

h0(S, N2 ⊗ N) ≥ χ(N2 ⊗ N) = 2 +
1
2

c1(N2 ⊗ N)2 > 2,

thus N1 ⊗OC always contributes to the Clifford index of C ∈ |L|s.
If both h0(S, N2) ≥ 2 and h0(S, N) ≥ 2, we are in case (a).
If h0(S, N2) ≥ 2 and h0(S, N) < 2, we show that (b) occurs. Since χ(N) < 2, one

has c1(N)2 < 0 and c1(N) · (c1(N1) + c1(N2)) ≥ µL(E) + 2 = (2g + 4)/3 by the first
inequality in (3.15). Since µL(N ⊗ N1) > 0, then h2(S, N ⊗ N1) = 0. Moreover, one can
show that

c1(N ⊗ N1)
2 ≥ µL(N1) + c1(N2)

2 > c1(N2)
2.

It follows that, if c1(N ⊗ N1)
2 < 0, then c1(N2)2 < 0 and

2g− 2 < 2c1(N) · c1(N2) + 2c1(N1) · c1(N2),
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3.6 Lazarsfeld-Mukai bundles of rank 3 which are not µL-stable

that is, c1(N2) · (c1(N) + c1(N1)) ≥ g. On the other hand, if c1(N ⊗ N1)
2 ≥ 0, then

h0(S, N ⊗ N1) ≥ 2 and N2 ⊗OC contributes to the Clifford index.
From now on, let h0(S, N2) < 2, hence c1(N2)2 < 0. Since det E/N ' N1 ⊗ N2,

Lemma 3.4.3 implies h0(S, N1⊗N2) ≥ 2. Thus, if h0(S, N) ≥ 2, the linear series N⊗OC
contributes to the Clifford index of C ∈ |L|s. Furthermore, inequality (3.17), together
with the fact that c1(N2)2 < 0 ≤ c1(N1)

2, implies that

c1(N2) · c1(N) >
1
2

c1(N) · (c1(N1) + c1(N2)),

and we are in case (c).
It remains to treat the case where both h0(S, N2) < 2 and h0(S, N) < 2. Under these

hypotheses, c1(N2)2 < 0 and c1(N)2 < 0 and we obtain

2g− 2 ≤ c1(N1)
2 + 2c1(N1) · c1(N) + 2c1(N1) · c1(N2) + 2c1(N) · c1(N2)− 4

= 2c1(N) · c1(N2) + 2µL(N1)− c1(N1)
2 − 4

≤ 2c1(N) · c1(N2) +
4g− 4

3
− 4.

As a consequence, c1(N) · c1(N2) ≥ g+5
3 and we are in case (d).

Now, we assume that C has Clifford dimension 1 and gonality k and prove inequality
(3.16). One shows, as in Lemma 3.5.1, that

c1(N1) · (c1(N) + c1(N2)) ≥ k, (3.18)

because N1 ⊗OC always contributes to the Clifford index of C ∈ |L|s. Analogously, if
N ⊗OC (resp. N2 ⊗OC) contributes to Cliff(C), then

c1(N) · (c1(N1) + c1(N2)) ≥ k (resp. c1(N2) · (c1(N) + c1(N1)) ≥ k);

therefore, the last part of the statement is proved if either (a) or (b) occurs (use that
(2g + 4)/3 ≥ k).

In case (c), one arrives at the same conclusion by adding inequality (3.18) and

c1(N) · c1(N2) >
1
2

c1(N) · (c1(N1) + c1(N2)) ≥
k
2

. (3.19)

Similarly, in case (d), one uses that c1(N) · c1(N2) ≥ (g + 5)/3 ≥ k/2.

Corollary 3.6.4. Assume C ∈ |L|s has Clifford dimension 1 and maximal gonality k =
⌊

g+3
2

⌋
and let E be the Lazarsfeld-Mukai bundle associated with a complete, base point free net A ∈
W2

d (C).
If E is not µL-stable, d < 3

4 k + 7
6 + g

3 and (g, d) 6= (6, 6), then E is given by an extension
of type (3.9), with N ∈ Pic(S) and E/N a µL-stable, torsion free sheaf of rank 2 such that
µL(N) ≥ (2g− 2)/3 ≥ µL(E/N).
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Proof. Apply Lemma 3.6.1 and Lemma 3.6.3 and use that
⌈ 3

4 k + 7
6 +

g
3

⌉
≤
⌈ 3

2 k
⌉

unless
g = 6.

3.7 Cases with a µL-stable subbundle of rank 2 and L-slope
≥ µL(E)

We assume that a general curve in |L| has Clifford dimension 1 and maximal gonality.
In this section we show that, if C ∈ |L|s is general, the LM bundle E corresponding to
a general, complete, base point free g2

d on C is neither properly µL-semistable with JH
filtration 0 ⊂ JH1(E) ⊂ E and rk JH1(E) = 2, nor µL-unstable with a µL-stable, rank-2
vector bundle E1 as maximal destabilizing sheaf .

Fix a positive integer d. Choose l ∈ N and a non-trivial, globally generated line
bundle N such that

µL(N) ≤ 2g− 2
3
≤ (c1(L)− c1(N)) · c1(L)

2
, (3.20)

and impose that these are either two equalities or two strict inequalities. Set

c1 := c1(L)− c1(N),
c2 := d− c1.c1(N)− l,
χ := g− d + 5− χ(N) + l,

and define the vector v := 2 + c1 + (χ− 2)ω ∈ H∗(S, Z). The following construction is
analogous to that of Section 3.5.

Let EN,l be the moduli stack of filtrations 0 ⊂ M ⊂ E, where [M] ∈ ML(v)µs(C) and
[E/M] ∈ M(v(N ⊗ Iξ))(C) with l(ξ) = l. This is alternatively described as the moduli
stack of extensions

0→ M→ E→ N ⊗ Iξ → 0, (3.21)

with M and ξ as above.
If p : EN,l → ML(v)µs ×M(v(N ⊗ Iξ)) denotes the morphism of Artin stacks map-

ping the short exact sequence (3.21) to (M, N ⊗ Iξ), the fibre of p over the point of
ML(v)µs ×M(v(N ⊗ Iξ)) corresponding to the pair (M, N ⊗ Iξ) is the quotient stack

[Ext1(N ⊗ Iξ , M)/Hom(N ⊗ Iξ , M)].

Define P̃N,l to be the closure of the image of EN,L under the natural projection

q : EN,L →M(v(E)),

which sends the isomorphism class of extension (3.21) to [E] ∈ M(v(E))(C). The mor-
phism q is representable and the fibre of q over the point of P̃N,l corresponding to [E] is
the Quot-scheme QuotS(E, P), where by P we denote the Hilbert polynomial of N⊗ Iξ .
We consider the open substack PN,l ⊂ P̃N,l , whose C-points are isomorphism classes of
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vector bundles E such that h1(S, E) = h2(S, E) = 0.

Lemma 3.7.1. The stack PN,l , if nonempty, has dimension

dim PN,l = 2l + 〈v, v〉+ 〈v(N ⊗ Iξ), v〉.

Proof. We claim that the dimension of the fibres of p is constant. Indeed, Serre dual-
ity and Proposition 3.4.1 imply that for any [M] ∈ ML(v)µs(C) and ξ ∈ S[l] one has
dim Ext2(N ⊗ Iξ , M) = dim Hom(M, N ⊗ Iξ) = 0. This shows that EN,l , if nonempty,
has dimension equal to

dim(ML(v)µs ×M(v(N ⊗ Iξ)))− χ(N ⊗ Iξ , M) = 2l − 1 + 1 + 〈v, v〉+ 〈v(N ⊗ Iξ), v〉;

note that this coincides with the dimension computed by Yoshioka (cf. Lemma 5.2 in
[26]). The statement follows now by remarking that, when PN,l is nonempty, we have
dim PN,l = dim P̃N,l = dim EN,l because the Quot-schemes corresponding to the fibres
of q are 0-dimensional (use inequalities analogous to (3.4)).

We consider the Grassmann bundle GN,l → PN,l , whose fibre over [E] ∈ PN,l(C) is
G(3, H0(S, E)), and the rational map hN,l : GN,l 99K W2

d (|L|). The fibre of hN,l over a
pair (C, A) is the quotient stack

[P(Hom(EC,A, ωC ⊗ A∨)◦)/Aut(EC,A)],

where Hom(EC,A, ωC ⊗ A∨)◦ ⊂ Hom(EC,A, ωC ⊗ A∨) consists, by definition, of mor-
phisms with kernel isomorphic toO⊕3

S . Such quotient stack has dimension equal to−1,
as in Section 3.5. Our goal is to estimate the dimension of the closure of the image of
hN,l , which is denoted byWN,l . We first prove the following:

Lemma 3.7.2. If GN,l is nonempty, then

dimGN,l = g + ρ(g, 2, d) + χ(M, N ⊗ Iξ).

Moreover, χ(M, N ⊗ Iξ) ≤ 4
3 g + 8

3 − d− 3
2 c1(N) · c1.

Proof. We use that

2(ρ(g, 2, d)− 1) = 〈v(E), v(E)〉
= 〈v(N ⊗ Iξ), v(N ⊗ Iξ)〉+ 〈v, v〉+ 2〈v(N ⊗ Iξ), v〉
= 2l − 2 + 〈v, v〉+ 2〈v(N ⊗ Iξ), v〉;

this implies that

dimGN,l = dim PN,l + 3(h0(S, E)− 3)
= 2ρ(g, 2, d)− 〈v(N ⊗ Iξ), v〉+ 3(g− d + 2)
= g + ρ(g, 2, d) + χ(M, N ⊗ Iξ),
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

as soon as GN,l is nonempty.
Since χ(M, N⊗ Iξ) = −〈v(N⊗ Iξ), v〉 = 2χ(N⊗ Iξ) + χ− 4− c1(N) · c1, the last part

of the statement follows by remembering that χ(E) = χ + χ(N ⊗ Iξ) = g− d + 5 and
that

c1(N)2

2
≤ g− 1

3
− c1(N) · c1

2
because µL(E) ≥ µL(N ⊗ Iξ).

In conclusion, we prove the following:

Proposition 3.7.3. Assume that a general curve in |L|s has Clifford dimension 1 and max-
imal gonality k =

⌊
g+3

2

⌋
. Let W ⊂ WN,l be an irreducible component of W2

d (|L|); then,
ρ(g, 2, d) > 0 andW does not dominate the linear system |L|.

Proof. Lemma 3.6.1 gives c1(N) · c1 ≥ k ≥ (g + 2)/2 and d ≥ 3
4 k + 7

6 +
g
3 ≥

17
24 g + 23

12 ; in
particular, ρ(g, 2, d) ≥ 0. By Lemma 3.7.2, we have

dimGN,l ≤ g + ρ(g, 2, d) +
4
3

g +
8
3
− d− 3

2
k

≤ g + ρ(g, 2, d) +
4
3

g +
8
3
− d− 3

4
g− 3

2

= g + ρ(g, 2, d) +
7
12

g +
7
6
− d.

Since any fibre of hN,l is an algebraic stack of dimension −1, then

dimW ≤ g + ρ(g, 2, d) +
7
12

g +
13
6
− d.

The right hand side is strictly smaller than g + ρ(g, 2, d) because d > 7g+26
12 . It follows

thatW cannot dominate |L|.

3.8 Cases with a µL-stable quotient sheaf of rank 2 and L-slope
≤ µL(E)

In this section we count the number of moduli of rank-3 LM bundles E, which are
either properly µL-semistable with JH filtration 0 ⊂ JH1(E) ⊂ E where JH1(E) is a
line bundle, or µL-unstable with maximal destabilizing sheaf E1 such that E/E1 is a
µL-stable, torsion free sheaf of rank 2.

Fix an integer d ≥ 4. Choose N ∈ Pic(S) such that

µL(N) ≥ 2g− 2
3
≥ (c1(L)− c1(N)) · c1(L)

2
, (3.22)

with equality holding either everywhere or nowhere.
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As before, we set c′1 := c1(L)− c1(N), c′2 := d− c′1 · c1(N), χ′ := g− d + 5− χ(N),
v′ := 2 + c′1 + (χ′ − 2)ω ∈ H∗(S, Z).

We denote by FN the algebraic stack of extensions

0→ N → E→ E/N → 0, (3.23)

where E/N defines a point of Mµs
L (v′). Equivalently, FN is the moduli stack of fil-

trations 0 ⊂ N ⊂ E such that [E/N] ∈ Mµs
L (v′)(C). Consider the two projections

p : FN → Mµs
L (v′)×M(v(N)) and q : FN → M(v(E)) and define R̃N to be the clo-

sure of the image of q. The open substack RN ⊂ R̃N consists, by definition, of points
corresponding to bundles E such that hi(S, E) = 0, i = 1, 2. We look at the Grassmann
bundle GN → RN with fibre over [E] ∈ RN(C) equal to G(3, H0(S, E)). The closure of
the image of GN under the rational map hN : GN 99K W2

d (|L|) is denoted by WN . As
before, the fibres of hN are quotient stacks of dimension −1.

Lemma 3.8.1. The stack GN , if nonempty, has dimension

dimGN = g + ρ(g, 2, d) + χ(E/N, N).

Proof. The fibre of p over a point ofMµs
L (v′)×M(v(N)) corresponding to (E/N, N) is

the quotient stack [Ext1(E/N, N)/Hom(E/N, N)].
Since E/N is µL-stable and µL(N) ≥ µL(E/N), Serre duality and Proposition 3.4.1

imply that Ext2(E/N, N) = 0; hence, the dimension of the fibres of p is constantly equal
to −χ(E/N, N) = 〈v(N), v′〉. The morphism q is representable and, as in the previous
sections, one shows that its fibres are Quot-schemes of dimension 0. Therefore, if RN is
nonempty, one has:

dim RN = dim R̃N = dimFN = 〈v′, v′〉+ 〈v(N), v′〉.

The statement follows by proceeding as in the proof of Lemma 3.7.2.

Next Lemma gives an upper bound for χ(E/N, N).

Lemma 3.8.2. Assume that general curves in |L| have Clifford dimension 1 and maximal go-
nality k =

⌊
g+3

2

⌋
. If RN is nonempty, then χ(E/N, N) ≤ 3

2 g− 2d + 3 for any E/N corre-

sponding to a point ofMµs
L (v′).

Proof. Consider the extension (3.23), where [E] ∈ RN(C). Since µL(N) > 0, one has
h1(S, E/N) = h2(S, N) = 0. By Lemma 3.4.2, one finds χ(E/N) = h0(S, E/N) ≥ 2,
hence χ(N) = χ(E)− χ(E/N) ≤ g− d + 3. As a consequence:

χ(E/N, N) = 2χ(N) + χ′ − 4− c1(N) · c′1
= g− d + 1 + χ(N)− c1(N) · c′1
≤ 2g− 2d + 4− c1(N) · c′1
≤ 3

2
g− 2d + 3,
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where the last inequality follows from Lemma 3.6.2.

Finally, we prove the following:

Proposition 3.8.3. We assume that a general curve in |L| has Clifford dimension 1 and max-
imal gonality k =

⌊
g+3

2

⌋
. If d > 3

4 g + 2, no irreducible component W ofW2
d (|L|), which is

contained inWN , dominates the linear system |L|.
Proof. LetW ⊂ WN be an irreducible component ofW2

d (|L|). Since any fibre of hN is
an Artin stack of dimension equal to −1, Lemma 3.8.1 and Lemma 3.8.2 imply that

dimW ≤ g + ρ(g, 2, d) +
3
2

g− 2d + 4.

If ρ(g, 2, d) ≥ 0, the condition d > 3
4 g + 2 prevents the map W → |L| from being

dominant.

Now we show that, if d is small enough and C ∈ |L|s, any complete base point free g2
d

on C, whose LM bundle is given by an extension of type (3.23), is contained in a linear
series which is induced from a line bundle on S.

Proposition 3.8.4. Let L be as in Proposition 3.8.3 and A be a complete, base point free g2
d on a

curve C ∈ |L|s. If d < (5g+ 13)/6 and the LM bundle [EC,A] ∈ RN(C) for some N ∈ Pic(S),
the linear system |A| is contained in the restriction to C of the linear system |L⊗ N∨| on S.
Moreover, L⊗ N∨ is adapted to |L| and Cliff(L⊗ N∨ ⊗OC) ≤ Cliff(A) = d− 4.

Proof. By hypothesis, E = EC,A sits in a short exact sequence like (3.23), where E/N is
µL-stable and µL(N) ≥ (2g− 2)/3 ≥ µL(E/N). Since µL(N) > 0, then h2(S, N) = 0.

The µL-stability of E/N implies

−2 ≤ 〈v′, v′〉 = 4c′2 − (c′1)
2 − 8,

thus c′2 ≥ 3/2 + (c′1)
2/4.

If h0(S, N) < 2, then c1(N)2 ≤ −2, which implies (c′1)
2 + 2c1(N) · c′1 ≥ 2g and

c′1 · c1(N) ≥ (2g + 4)/3. In particular,

d = c′1 · c1(N) + c′2 ≥ c′1 · c1(N) +
3
2
+

(c′1)
2

4
≥ g

2
+

3
2
+

g + 2
3
≥ 5g + 13

6
,

hence a contradiction. Therefore, both h0(S, N) ≥ 2 and h0(S, det E/N) ≥ 2.
Observe that (E/N)∨∨ is globally generated off a finite set and

hi(S, (E/N)∨∨) = hi(S, E/N) = 0 for i = 1, 2.

Since the line bundle det E/N = det(E/N)∨∨ is base point free and non trivial, if
h1(S, det E/N) 6= 0, then (c′1)

2 = 0 and Proposition (1.1) in [11] implies the existence of
a smooth elliptic curve Σ ⊂ S such that

(E/N)∨∨ = OS(Σ)⊕OS(Σ).
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Such equality would contradict the stability of E/N, thus we conclude that (c′1)
2 ≥ 2

(and c′2 ≥ 2) and
h1(S, det E/N) = 0. (3.24)

This ensures that h0(C, det E/N ⊗OC) does not depend on the curve C ∈ |L|s (cf. [5]
Lemma (5.2)). Hence, the line bundle det E/N = L⊗ N∨ is adapted to |L|. We obtain:

Cliff(det E/N ⊗OC) = c1(E/N)2 + c1(N) · c1(E/N)− 2h0(C, det E/N ⊗OC) + 2
≤ c1(E/N)2 + c1(N) · c1(E/N)− 2h0(S, det E/N) + 2
= c1(N) · c1(E/N)− 2− 2h1(S, det E/N)

= d− c2(E/N)− 2
≤ d− 4.

It remains only to prove that h0(C, det E/N⊗OC ⊗ A∨) > 0. Consider the following
diagram:

0 // H0(C, A)∨ ⊗OS
// E

α // ωC ⊗ A∨ // 0.

N
?�

γ

OO

Since h2(S, N) = 0, the composition α ◦ γ is non-zero. Thus, Hom(N, ωC ⊗ A∨) 6= 0
and we have finished because N∨ ⊗ωC ⊗ A∨ ' det E/N ⊗OC ⊗ A∨.

3.9 Remaining cases

In this section we consider rank-3 LM bundles E of type (i), (ii), (iii), (iv) on page 63,
such that det E = L and c2(E) = d is fixed.
Choose l2 ∈ N and two line bundles N, N2 ∈ Pic(S) such that N1 := L⊗ (N ⊗ N2)∨ is
globally generated and non-trivial, and the following holds:

µL(N) ≥ µL(N2) ≥ µL(N1), (3.25)

µL(N) ≥ 2g−2
3 ≥ µL(N1), (3.26)

where in (3.26) either both the inequalities are strict, or none is.
Set v := v(N), v1 := v(N1 ⊗ Iξ1) and v2 := v(N2 ⊗ Iξ2), with l(ξ2) = l2 and

l(ξ1) = l1 := d− l2 − c1(N) · c1(N1)− c1(N) · c1(N2)− c1(N1) · c1(N2).

Define FN,N2,l2 to be the moduli stack of extensions

0→ N2 ⊗ Iξ2 → E/N → N1 ⊗ Iξ1 → 0,

where ξi ⊂ S is a 0-dimensional subscheme of length li for i = 1, 2. We consider the
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

projections p2 : FN,N2,l2 → M(v2)×M(v1) and q2 : FN,N2,l2 → M(v(E/N)), and we
denote by QN,N2,l2 the closure of the image of q2.

Let EN,N2,l2 be the moduli stack of extensions

0→ N → E→ E/N → 0, with [E/N] ∈ QN,N2,l2(C),

and p1 : EN,N2,l2 →M(v)×QN,N2,l2 and q1 : EN,N2,l2 →M(v(E)) be the two projections.
The closure of the image of q1 is denoted by P̃N,N2,l2 and its open substack, consisting
of points which correspond to vector bundles E such that h1(S, E) = h2(S, E) = 0, by
PN,N2,l2 .

Notice that, if E is a LM bundle of type (i), (ii), (iii), (iv), there exist N, N2 and l2
such that [E] defines a point of PN,N2,l2 . In order to count the number of moduli of such
bundles, we start by proving the following:

Lemma 3.9.1. The stack QN,N2,l2 , if nonempty, has dimension

dim QN,N2,l2 = 2l1 + 2l2 − 2 + 〈v1, v2〉,

unless N1 ' N2, l2 6= 0 and l1 = 0. In this case, for any component Q ⊂ QN,N2,l2 , the
following inequality holds:

dim Q ≤ 2l1 + 2l2 − 1 + 〈v1, v2〉.

Proof. The fibre of p2 over the point of ML(v2) ×ML(v1) corresponding to the pair
(N2 ⊗ Iξ2 , N1 ⊗ Iξ1) is the quotient stack

[Ext1(N1 ⊗ Iξ1 , N2 ⊗ Iξ2)/Hom(N1 ⊗ Iξ1 , N2 ⊗ Iξ2)].

Since µL(N2) ≥ µL(N1), if either N1 6' N2 or N1 ' N2, l1 6= 0 and l2 = 0, one finds that

Hom(N2 ⊗ Iξ2 , N1 ⊗ Iξ1) = 0.

In these cases, the dimension of any fibre of p2 equals −χ(N1 ⊗ Iξ1 , N2 ⊗ Iξ2), while the
fibres of q2 are 0-dimensional Quot-schemes, hence the statement follows.

If N1 ' N2 and l1 = l2 = 0, the conclusion is the same because the fibres of p2 have
constant dimension equal to −χ(N1 ⊗ Iξ1 , N2 ⊗ Iξ2) + 1 and the fibres of q2 are smooth
Quot-schemes of dimension 1. Indeed, dim Hom(N1, N1) = 1 and Ext1(N1, N1) = 0.

On the other hand, if N1 ' N2 and l2 6= 0, the dimension of the fibres of p2 is not
necessarily constant; indeed, dim Hom(N1 ⊗ Iξ2 , N1 ⊗ Iξ1) depends on the reciprocal
position of ξ1 and ξ2. Since Hom(Iξ2 ,OS) ' Hom(Iξ2 , Iξ2) ' OS (cf. [22]), one shows
that

Hom(Iξ2 , Iξ1) ' { f ∈ OS | f · Iξ2 ⊆ Iξ1} =: (Iξ1 : Iξ2) = Iξ1\(ξ1∩ξ2);

hence, one finds that

dim Hom(N1 ⊗ Iξ2 , N1 ⊗ Iξ1) = H0(S,Hom(Iξ2 , Iξ1)) =

{
1 if ξ1 ⊆ ξ2
0 otherwise

. (3.27)
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3.9 Remaining cases

As in [26], define N 0
N,N2,l2

(resp. N 1
N,N2,l2

) to be the substack of M(v2) ×M(v1)

whose points correspond to pairs (N1 ⊗ Iξ2 , N1 ⊗ Iξ1) with ξ1 6⊆ ξ2 (resp. ξ1 ⊆ ξ2),
i.e., dim Hom(N1 ⊗ Iξ2 , N1 ⊗ Iξ1) = 0 (resp. dim Hom(N1 ⊗ Iξ2 , N1 ⊗ Iξ1) = 1). Notice
that N 0

N,N2,l2
and N 1

N,N2,l2
are complementary and that, being open, N 0

N,N2,l2
is dense in

M(v2)×M(v1) provided l1 6= 0.
We define F 0

N,N2,l2
:= (p2)−1(N 0

N,N2,l2
) and F 1

N,N2,l2
:= (p2)−1(N 1

N,N2,l2
) and we de-

note by Q0
N,N,l2

and Q1
N,N,l2

the closure of the image under q2 of F 0
N,N2,l2

and F 1
N,N2,l2

respectively. Since the fibres of q2 are Quot-schemes, we obtain that:

dim Q0
N,N2,l2

= dimF 0
N,N2,l2

= dimN 0
N,N2,l2

+ 〈v1, v2〉 ≤ 2l1 + 2l2 − 2 + 〈v1, v2〉,
dim Q1

N,N2,l2
≤ dimF 1

N,N2,l2
= dimN 1

N,N2,l2
+ 〈v1, v2〉+ 1 ≤ 2l1 + 2l2 − 1 + 〈v1, v2〉,

where the last inequality in the second row is strict, unless the stackN 1
N,N2,l2

is dense in
M(v2)×M(v1), that is, l1 = 0.

The statement follows because every component of QN,N,l2 is contained either in
Q0

N,N,l2
or in Q1

N,N,l2
.

By proceeding as in Lemma 3.9.1, one proves the following:

Proposition 3.9.2. Let Z be a nonempty irreducible component of PN,N2,l2 . We have that

dim Z = 2l1 + 2l2 + 〈v2, v〉+ 〈v1, v〉+ 〈v1, v2〉 − α, (3.28)

where α satisfies:

(a) If N, N1, N2 are all non-isomorphic, then α = 3.

(b) Assume N ' N1 ' N2. If l2 6= 0 and l1 = 0, then α ∈ {1, 2, 3}. If l1 6= 0 and l2 = 0,
one has α ∈ {2, 3}. In all the other cases, α = 3. If N ' N1 6' N2, one has α = 3 unless
l1 = 0, in which case α ∈ {2, 3}.

(c) If N ' N2 6' N1, then α = 3 unless l2 = 0, in which case α ∈ {2, 3}.

(d) Assume N1 ' N2 6' N. Then α = 3 except when l2 6= 0 and l1 = 0; in this case
α ∈ {2, 3}.

Note that LM bundles of type (i) lie in some PN,N2,l2 with N, N1, N2 as in case (a).
Analogously, if E is a LM bundle of type (iii) (resp. of type (iv)), then there exist
N, N2, N1 = L ⊗ (N ⊗ N2)∨ as in (a) or (c) (resp. as in (a) or (d)) and l2 ∈ N such
that [E] ∈ PN,N2,l2(C). On the other hand, if a bundle of type (ii) defines a point of
PN,N2,l , then µL(N) = µL(N2) = µL(N1) and any case of the previous proposition may
occur.

Now, we consider the Grassmann bundle ψ : GN,N2,l2 → PN,N2,l2 with fibre over a
point [E] ∈ PN,N2,l2(C) equal to G(3, H0(S, E)) and denote byWN,N2,l2 the closure of the
image of the rational map hN,N2,l2 : GN,N2,l2 99KW2

d (|L|).
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

Lemma 3.9.3. Assume that general curves in |L| have Clifford dimension 1 and maximal go-
nality k =

⌊
g+3

2

⌋
. Then, for any irreducible componentW ofWN,N2,l2 , one has

dimW ≤ 1
4

g + d +
3
2
− α,

where α is as in Proposition 3.9.2.

Proof. Let G be an irreducible component of GN,N2,l2 such that W = hN,N2,l2(G). Since
G = ψ−1(Z) for some irreducible component Z of PN,N2,l2 , Proposition 3.9.2 implies
that:

dimG = 3(g− d + 2) + dim Z
= 3(g− d) + 12− α− 2χ(E) + 2l1 + 2l2 +

c1(N) · c1(N1) + c1(N) · c1(N2) + c1(N1) · c1(N2)

= g− d + 2− α + 2(l1 + l2) + c1(N) · (c1(N1) + c1(N2)) + c1(N1) · c1(N2)

= g + d + 2− α− c1(N) · c1(N1)− c1(N) · c1(N2)− c1(N1) · c1(N2)

≤ g + d + 2− α− 3
2

k

≤ 1
4

g + d +
1
2
− α,

where we have used Lemma 3.6.3 and the fact that k ≥ (g + 2)/2. The statement
follows since the fibres of hN,N2,l2 are quotient stacks of dimension −1.

Finally, we prove the following:

Proposition 3.9.4. Assume that general curves in |L| have Clifford dimension 1 and maximal
gonality k =

⌊
g+3

2

⌋
. Fix a positive integer d such that (g, d) 6∈ {(2, 4), (4, 5), (6, 6), (10, 9)}.

LetW ⊂ WN,N2,l2 be an irreducible component ofW2
d (|L|). Then ρ(g, 2, d) ≥ 0 andW does

not dominate |L|.

Proof. Lemma 3.6.3 implies d ≥ 3
2 k, hence ρ(g, 2, d) ≥ 0. Lemma 3.9.3 gives:

dimW ≤ 1
4

g + d +
3
2
− α.

Therefore,W cannot dominate |L| if

1
4

g + d +
3
2
− α < g + ρ(g, 2, d) = −g + 3d− 6,

that is, d > 5
8 g + 15

4 −
α
2 . In particular, as α ≥ 1, it suffices to require d > 5

8 g + 13
4 =: h.

Such inequality is satisfied always except for

(g, d) ∈ {(2, 4), (3, 5), (4, 5), (5, 6), (6, 6), (6, 7), (8, 8), (10, 9), (14, 12)}.
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If (g, d) = (6, 6), the linear system |L| can be dominated by W . In all the other cases
d = bhc and we check whether α > 2h− 2 bhc+ 1, which would preventW from being
dominant. This holds true if (g, d) 6∈ {(2, 4), (4, 5), (10, 9)} (use that the case α = 1 may
occur only when parametrizing LM bundles of type (ii) and that, if gcd(2g− 2, 3) = 1,
there do not exist properly µL-semistable of Mukai vector v(E)).

Remark 3. The four cases which are not covered by Proposition 3.9.4 might be treated
by “ad hoc” arguments but this is not our purpose.

Proofs of Theorem 3.1.1 and Theorem 3.1.2 are now straightforward.

Proof of Theorem 3.1.1. Being non-simple, the LM bundle EC,A is not µL-stable. Since
d < 2

3 g + 2, Corollary 3.6.4 implies the existence of a line bundle N ∈ Pic(S) such that
EC,A ∈ RN(C). The statement thus follows directly from Proposition 3.8.4.

Proof of Theorem 3.1.2. Case (a) trivially follows from Proposition 3.7.3, Proposition 3.8.3
and Proposition 3.9.4.

Now, let 2
3 g + 2 ≤ d ≤ 3

4 g + 2. Given W an irreducible component of W2
d (|L|)

which dominates |L| and whose general point corresponds to a LM bundle that is not
µL-stable, Proposition 3.7.3 and Proposition 3.9.4 imply the existence of a line bundle
N ∈ Pic(S) such thatW ⊂ WN . The statement follows from Proposition 3.8.4.

3.10 Transversality of some Brill-Noether loci

We apply our results in order to prove Theorem 3.1.4 in the introduction.

Theorem 3.10.1. Let r ≥ 3, g ≥ 0, d ≤ g− 1 be positive integers such that ρ(g, r, d) < 0
and d− 2r + 2 ≥ b(g + 3)/2c. If r ≥ 4, assume d2 > 4(r − 1)(g + r − 2). For r = 3, let
d2 > 8g + 1. If −1 is not represented by the quadratic form

Q(m, n) = (r− 1)m2 + mnd + (g− 1)n2 m, n ∈ Z,

there exists a smooth curve C ⊂ Pr of genus g, degree d and maximal gonality
⌊

g+3
2

⌋
. More-

over, one can choose C such that for any complete, base point free g1
e on C with ρ(g, 1, e) ≥ 0

the Petri map is injective.

Proof. Notice that the inequalities d ≤ g − 1 and d2 > 4(r − 1)(g − 1) trivially imply
d > 4(r− 1).

In order to prove the first part of the statement, we proceed as in [6, Theorem 3] pay-
ing special attention to our slightly different hypotheses. Rathmann’s Theorem implies
the existence of a 2r− 2-degree K3 surface S ⊂ Pr and a smooth curve C ⊂ S of degree
d and genus g such that Pic(S) = ZH ⊕ZC, where H is the hyperplane section of S.
Our assumption on Q implies that S does not contain (−2)-curves. As in [6], one shows
that the line bundle L := OS(C) is ample by Nakai-Moishezon criterion (if D ⊂ S is
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

an effective divisor, use that D2 ≥ 0 and D · H > 2, in order to show that C · D > 0).
Hence, C has Clifford dimension 1 (cf. [4] Proposition 3.3).

Assume that C has gonality k <
⌊

g+3
2

⌋
. We reach a contradiction by showing that

k ≥ d− 2r + 2. If A is a complete, base point free pencil g1
k on C, by [5] Theorem (4.2)

there exists an effective divisor D ≡ mH + nC on S, such that |A| is contained in the
linear system |OC(D)| and the following conditions are satisfied:

h0(S,OS(D)) ≥ 2, h0(S,OS(C− D)) ≥ 2, C · D ≤ g− 1, Cliff(D|C) = Cliff(A).

In particular, as remarked in [5, page 60], the last equality implies that

h1(S,OS(D)) = h1(S,OS(C− D)) = 0,

thus c1(D)2 > 0 and c1(C− D)2 > 0. Moreover, one has

k = 2 + Cliff(D|C) = D · (C− D).

We show that

f (m, n) = D · C− D2 = −(2r− 2)m2 + d(1− 2n)m + (n− n2)(2g− 2) ≥ d− 2r + 2,

for values of m and n satisfying the following inequalities:

(i) (r− 1)m2 + mnd + n2(g− 1) > 0,

(ii) (r− 1)m2 + (mn−m)d + (1− n)2(g− 1) > 0,

(iii) 2 < (2r− 2)m + nd < d− 2,

(iv) md + (2n− 1)(g− 1) ≤ 0.

Assume first n = 1, and set a = −m. Then (iii) implies 0 < a < (d − 2)/(2r − 2).
Inequality (i) is equivalent to (r− 1)a2 − ad + g− 2 ≥ 0, whence

a ≤ d−
√

d2 − 4(r− 1)(g− 2)
2r− 2

.

We have f (−a, 1) ≥ d− 2r + 2 whenever 1 ≤ a ≤ d/(2r − 2)− 1. For either r ≥ 4 or
r = 3 and d2 − 8g ≥ 8, this holds true as d2 − 4(r− 1)(g− 2) ≥ 4r(r− 1) > 4(r− 1)2.
If r = 3 and d2 − 8g < 8, then d2 − 8g = 4 and d ≡ 2 mod 4. Hence, (iii) implies
that 1 ≤ a < (d − 4)/4. Notice that f (−a, 1) = d − 2r + 2 whenever a = 1, that is,
C ≡ C− H. The case n = 0 can be treated similarly by using (ii) instead of (i), and one
obtains that f (m, 0) ≥ d− 2r + 2 with equality holding only for m = 1, that is, D ≡ H.

If n < 0, inequalities (i), (iii) and (iv) imply that −αn < m ≤ (g − 1)(1 − 2n)/d,
where

α =
d +

√
d2 − 4(r− 1)(g− 1)

2r− 2
.
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Therefore, one has

f (m, n) ≥ min
{

f (−αn, n), f
(
(g− 1)(1− 2n)

d
, n
)}

.

Analogously, if n ≥ 2, then max{−βn, (2− nd)/(2r − 2)} < m ≤ (g− 1)(1− 2n)/d,
where

β =
d−

√
d2 − 4(r− 1)(g− 1)

2r− 2
;

this gives

f (m, n) ≥ min
{

f
(
(g− 1)(1− 2n)

d
, n
)

, max
{

f (−βn, n), f
(

2− nd
2r− 2

, n
)}}

.

Computations in [6] give max { f (−βn, n), f ((2− nd)/(2r− 2), n)} > d− 2r + 2 when
n ≥ 2, and f (−αn, n) > d− 2r + 2 when n < 0, unless r = 3, n = −1 and d2 − 8g = 4.
In this case, d ≡ 2 mod 4 and m ≥ (d + 4)/4 by (iii); one uses that f ((d + 4)/4,−1)
is greater than d− 4. In order to conclude the proof that C has maximal gonality, it is
enough to remark that the function

h(n) := f
(
(g− 1)(1− 2n)

d
, n
)
=

g− 1
2

[
(2n− 1)2(d2 − 4(r− 1)(g− 1))

d2 + 1
]

reaches its minimum for n = 1/2 and h(0) ≥ d− 2r + 2 by direct computation.
Concerning the last part of the statement, assume C is general in its linear system

and let A be a complete, base point free pencil g1
e on C such that ρ(g, 1, e) ≥ 0 and

ker µ0,A 6= 0. The bundle E = EC,A is non-simple, hence it cannot be µL-stable. As a
consequence, there exists a short exact sequence

0→ M→ E→ N ⊗ Iξ → 0, (3.29)

where M, N are line bundles, Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S
and c1(M) · C ≥ µL(E) = g− 1 ≥ c1(N) · C. If sequence (3.29) does not split, then

h0(S, E⊗ E∨) ≤ 1 + dim Hom(M, N ⊗ Iξ) + dim Hom(N ⊗ Iξ , M).

Since µL(M) ≥ µL(N), if Hom(M, N ⊗ Iξ) 6= 0 then M ' N and C = 2c1(M), which
is absurd. It follows that N∨ ⊗M is non-trivial and effective. Since S does not contain
(−2)-curves, one has

c1(N∨ ⊗M)2 = C2 − 4c1(N) · c1(M) = 2g− 2− 4c1(N) · c1(M) ≥ 0;

this contradicts Lemma 3.5.1, which states that c1(N) · c1(M) ≥ k ≥ (g + 2)/2. Thus,
ξ = ∅ and sequence (3.29) splits. We have to show that, if E = N ⊕M is a splitting LM
bundle, the rational map χE : G(2, H0(S, E)) 99K |L| cannot be dominant.

Notice that χE factors through hE : G(2, H0(S, E)) 99KW1
e (|L|); the fibre of hE over a
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

point (C, A) ∈ Im hE is at least 1-dimensional since it is isomorphic to

P(Hom(EC,A, ωC ⊗ A∨)◦),

where Hom(EC,A, ωC ⊗ A∨)◦ is an open subgroup of

Hom(EC,A, ωC ⊗ A∨) ' H0(S, EC,A ⊗ E∨C,A).

We are done, as ρ(g, 1, e) ≥ 0, hence dim G(2, H0(S, E)) = 2(g− e + 1) ≤ g.

Theorem 3.10.2. Let g, r, d satisfy the hypotheses of Theorem 3.10.1. The curve C can be chosen
so that, if

e < min
{

d− 2r + 5,
17
24

g +
23
12

}
,

then C does not have any complete, base point free net g2
e for which the Petri map is non-

injective.

Proof. Let S ⊂ Pr be a K3 surface as in the proof of Theorem 3.10.1 and C ⊂ S be general
in its linear system. Let A be a complete, base point free g2

dA
on C with dA < 17

24 g + 23
12 ;

if ρ(g, 2, dA) ≥ 0, assume moreover that ker µ0,A 6= 0. Corollary 3.6.4 and Proposition
3.8.4 imply that |A| is contained in the linear system |OC(D)| for some effective divisor
D ≡ mH + nC on S such that:

h0(S,OS(D)) ≥ 2, h0(S,OS(C− D)) ≥ 2, C · D ≤ 4g− 4
3

, Cliff(D|C) ≤ Cliff(A).

In fact, the Lazarsfeld-Mukai bundle E := EC,A is given by an extension

0→ N → E→ E/N → 0,

where N := OS(C − D) and E/N is a µL-stable torsion free sheaf of rank 2 on S. As
in the proof of Proposition 3.8.4, one shows that D2 > 0, hence h1(S,OS(D)) = 1.
Moreover, one obtains that h1(S, N) = 0 because the equality (C − D)2 = 0 would
imply d ≥ (5g + 4)/6, which is absurd. As a consequence, one has

dA − 4 = Cliff(A) ≥ Cliff(D|C) = D · C− 2h0(S,OC(D|C) + 2 = D · (C− D)− 2,
(3.30)

and equality holds whenever D2 = 2 and c2(E/N) = 2 (cf. proof of Proposition 3.8.4);
in particular, for D ≡ H, the inequality is strict. We show that

f (m, n) := D · (C− D) ≥ d− 2r + 2, (3.31)

and, if equality holds, then either D ≡ H or D ≡ C− H. Computations are similar to
those in Theorem 3.10.1, but now, instead of having D · C ≤ g− 1, we only know that
D · C ≤ (4g− 4)/3. Therefore, inequality (iv) must be replaced with

(iv’) md + (2n− 4
3 )(g− 1) ≤ 0.
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The cases n ∈ {0, 1} can be treated exactly as before. For n < 0, we have

f (m, n) ≥ min

{
f (−αn, n), f

(
(g− 1)( 4

3 − 2n)
d

, n

)}
.

If n ≥ 2, then

f (m, n) ≥ min

{
f

(
(g− 1)( 4

3 − 2n)
d

, n

)
, max

{
f (−βn, n), f

(
2− nd
2r− 2

, n
)}}

.

Therefore, it is enough to show that

g(n) := f

(
(g− 1)( 4

3 − 2n)
d

, n

)
− d + 2r− 2 > 0 for n < 0 or n ≥ 2.

One can write g(n) = an2 + bn + c, with

a = −4(2r− 2)
(

g− 1
d

)2

+ 2d
(

g− 1
d

)
,

b =
16
3
(2r− 2)

(
g− 1

d

)2

− 8
3

d
(

g− 1
d

)
,

c = −16
9
(2r− 2)

(
g− 1

d

)2

+
4
3

d
(

g− 1
d

)
− d + 2r− 2.

Since a > 0 and 0 < −b/2a < 1, our claim follows if g(0) = c > 0, or equivalently, if

3
4
<

g− 1
d

<
3
8

(
d− 2(r− 1)

r− 1

)
.

The left inequality is trivial since d ≤ g − 1. The right inequality is equivalent to the
condition 8(g− 1)(r− 1) < 3d2 − 6d(r− 1), which is satisfied as well (if r ≥ 4, use that
8(g− 1)(r − 1) < 2d2 − 8(r − 1)2 and d > 4(r − 1); if r = 3, use that d2 > 8g + 1 and
either (g, d) = (12, 11) or d ≥ 12 by manipulation of the hypotheses).

We conclude that dA ≥ d− 2r + 4 and the inequality is strict unless equalities hold
both in (3.30) and (3.31), thus D ≡ C− H and (C− H)2 = 2. This case can be excluded
since it would imply d = g + r− 3 ≥ g.

Note that the condition e < 17
24 g + 23

12 is automatically satisfied if ρ(g, 2, e) < 0.

The proof of Theorem 3.1.4 is now trivial: apply Theorem 3.10.1 and Theorem 3.10.2
and proceed by induction on f and e in order to deal with pencils g1

f and nets g2
e which

have a nonempty base locus.
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

3.11 Noether-Lefschetz divisor and Gieseker-Petri divisor in
genus 11

The Clifford index Cliff(C) is one of the most important invariants of an algebraic curve
C. In [14] Lange and Newstead defined the analogue of the Clifford index for higher
rank vector bundles in the following way. If UC(n, d) denotes the moduli space of
semistable rank-n vector bundles of degree d on a genus-g curve C, given E ∈ UC(n, d),
the Clifford index of E is

γ(E) := µ(E)− 2
n

h0(C, E) + 2 ≥ 0,

where µ(E) denotes the slope of E. For any positive integer n, one defines the higher
Clifford index of C

Cliffn(C) := min{γ(E) | E ∈ UC(n, d), h0(C, E) ≥ 2n, µ(E) ≤ g− 1}.

A natural question is whether higher Clifford indices are new invariants, different from
the ones arising in classical Brill-Noether theory. In [14] Lange and Newstead reformu-
lated a conjecture of Mercat (cf. [19]) in a slightly weaker form predicting:

Cliffn(C) = Cliff(C); (3.32)

remark that trivially Cliffn(C) ≤ Cliff(C), while the the opposite inequality is largely
non-trivial. When n = 2, the conjecture has been proved for a general curve in Mg, if
g ≤ 16, by Farkas and Ortega (cf. [8]) and the same is expected to hold true in any
genus. However, if g ≥ 11, there are examples of curves with maximal Clifford index
Cliff(C) =

⌊
g−1

2

⌋
that violate (3.32) for n = 2. These have been constructed in [8], [7],

[14], [15], [13] as sections of K3 surfaces with Picard number at least 2. We recall that
the K3 locus

Kg := {[C] ∈ Mg |C ⊂ S, S is a K3 surface}

is irreducible of dimension 19 + g if either g = 11 or g ≥ 13 (cf. [3]). In particular,
K11 = M11, and a general curve [C] ∈ M11 lies on a unique K3 surface with Picard
number one (cf [21]). Given two positive integers r, d such that d2 > 4(r − 1)g and d
does not divide 2r− 2, one defines the Noether-Lefschetz divisor inside Kg as

NLr
g,d :=

{
[C] ∈ Kg

∣∣∣∣ C ⊂ S, S is a K3 surface, Pic(S) ⊃ ZC⊕ZH,
H nef , H2 = 2r− 2, C2 = 2g− 2, C · H = d

}
.

In [7] it is proved that a curve C of genus 11 violates Mercat’s conjecture for n = 2,
whenever [C] ∈ NL4

11,13.

Since some of the curves exhibited in [14], [15], [13] do not satisfy the Gieseker-Petri
Theorem, Lange and Newstead asked whether Cliff2(C) = Cliff(C) whenever C is a
Petri curve (Question 4.2 in [13]). We prove Theorem 3.1.5, which gives a negative
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3.11 Noether-Lefschetz divisor and Gieseker-Petri divisor in genus 11

answer to this question.

Let S ⊂ P4 be a K3 surface such that Pic(S) = ZC⊕ZH, where H is the hyperplane
section, H2 = 6, C2 = 20 and C · H = 13. Denote by L the line bundle OS(C). We
show that, if C ∈ |L| is general, then [C] does not lie in the Gieseker-Petri locus GP11.
As proved in Chapter 2, GP11 has pure codimension 1 in M11 and decomposes in the
following way:

GP11 = M2
11,9 ∪ GP2

11,10 ∪
10⋃

d=7

GP1
11,d,

where M2
11,9 is a Brill-Noether divisor. Therefore, proving the transversality of NL4

11,13
and GP11 is equivalent to showing that in the above situation, if C ∈ |L| is general,
then C has no g2

9 and the varieties G2
10(C) and G1

d(C) for 7 ≤ d ≤ 10 are smooth of the
expected dimension.

We proceed as in the previous section; since the hypotheses of Theorem 3.10.1 are not
satisfied, explicit computations must be performed. Direct computations imply that S
contains no (−2)-curves. Moreover, C is an ample line bundle on S by [13, Proposi-
tion 2.1]. As a consequence, C has Clifford dimension 1 (cf. [4, Proposition 3.3]) and
Cliff(C) = 5 (cf. [7, Proposition 3.3]). In particular, C has maximal gonality k = 7 and
has no g2

d for d ≤ 8. Hence, in order to prove that G2
9(C) = ∅, it is enough to exclude

the existence of complete, base point free g2
9 on C. Similarly, the condition [C] 6∈ GP2

11,10
is equivalent to the requirement for G2

10(C) to be smooth of the expected dimension
ρ(11, 2, 10) in the points corresponding to complete, base point free linear series. Anal-
ogously, by induction on d, if the Petri map associated with any complete, base point
free pencil of degree 7 ≤ d ≤ 10 is injective, then [C] 6∈ ∪10

d=7GP1
11,d.

For any A ∈ G2
9(C), the Petri map µ0,A is non-injective for dimensional reasons and

the bundle E = EC,A is non-simple, hence it cannot be µL-stable. Since

gcd(rk E, c1(E)2) = gcd(3, 20) = 1,

there are no properly semistable sheaves of Mukai vector v(E) = (3, C, 4); hence, E is
µL-unstable. By Corollary 3.6.4, E sits in the short exact sequence

0→ N → E→ E/N → 0, (3.33)

where N ∈ Pic(S) coincides with its maximal destabilizing sheaf and the quotient E/N
is a µL-stable torsion free sheaf of rank 2. Having denoted by D the first Chern class
of E/N, Proposition 3.8.4 implies that the line bundle OC(D) contributes to Cliff(C).
Moreover, as in the proof of the aforementioned proposition, one shows that

D2 ≥ 2, (3.34)

c2(E/N) ≥ 3
2
+

1
4

D2. (3.35)
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3 Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces

Furthermore, Lemma 3.6.2 gives

c1(N) · c1(E/N) = (C− D) · D ≥ k = 7. (3.36)

Since
9 = c2(E) = c2(E/N) + (C− D) · D ≥ 3

2
+

1
4

D2 + (C− D) · D,

the divisor D ≡ mH + nC must satisfy{
C · D = 13m + 20n = 9
D2 = 6m2 + 20n2 + 26mn = 2(m + n)(3m + 10n) = 2

.

One shows that this system admits no integral solution. As a consequence, a general
curve in |L| has no linear series of type g2

9.

Analogously, given a complete, base point free A ∈ G2
10(C) with ker µ0,A 6= 0, the

LM bundle E = EC,A is µL-unstable and its maximal destabilizing sheaf is a line bundle
N such that E/N is µL-stable by Corollary 3.6.4. With the same notation as above, in-
equalities (3.34), (3.35), (3.36) still hold true and the following cases must be considered:

(a)


C · D = 10
D2 = 2
(c2(E/N) = 2)

(b)


C · D = 9
D2 = 2
(c2(E/N) = 3)

(c)


C · D = 11
D2 = 4
(c2(E/N) = 3)

(d)


C · D = 13
D2 = 6
(c2(E/N) = 3)

.

These systems have no integral solutions except for (d), which is satisfied by

(m, n) = (1, 0).

Therefore, N = OS(C− H) and v(E/N) = (2, H, 2). As 〈v(E/N), v(E/N)〉 = −2, the
sheaf E/N is uniquely determined.

By applying first Hom(E,−) and then Hom(−, N) and Hom(−, E/N) to the short
exact sequence (3.33), one shows that

h0(S, E⊗ E∨) ≤ 2 + dim Hom(N, E/N) + dim Hom(E/N, N)

and the inequality is strict if the sequence does not split. As µL(N) > µL(E/N), Propo-
sition 3.4.1 implies that Hom(N, E/N) = 0. Let 0 6= α ∈ Hom(E/N, N). Since both
Im α and ker α are torsion free sheaves of rank 1, there exists an effective divisor D1 on
S and two 0-dimensional subschemes ξ1, ξ2 ⊂ S such that E/N is given by an extension

0→ OS(2H − C + D1)⊗ Iξ1 → E/N → OS(C− H − D1)⊗ Iξ2 → 0.
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3.11 Noether-Lefschetz divisor and Gieseker-Petri divisor in genus 11

The µL-stability of E/N implies that

13/2 = µL(E/N) < (C− H − D1) · C = −D1 · C + 7;

since C has positive intersection with any non-trivial effective divisor, D1 = 0. It follows
that

3 = c2(E/N) = (2H − C) · (C− H) + l(ξ1) + l(ξ2) ≥ 7,

which is absurd. Hence, Hom(E/N, N) = 0 and (3.33) splits. As a consequence, the
bundle E = N ⊕ E/N is uniquely determined.

We look at the rational map χ : G(3, H0(S, E)) 99K |L|; this cannot be dominant since
dim G(3, H0(S, E)) = 9. Therefore, a general curve C ∈ |L| does not lie in GP2

11,10.

It remains to show that, if C ∈ |L| is general, then [C] 6∈ ∪10
d=7GP1

11,d. It is enough
to prove that for any complete, base point free g1

d on C the Petri map is injective. One
can proceed exactly as in the last part of the proof of Theorem 3.10.1 since S does not
contain (−2)-curves.
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4 Green’s Conjecture for curves on Del
Pezzo surfaces

4.1 Introduction

Syzygies of canonical curves are a subject of great interest in algebraic geometry. Two
very classical results are Noether’s Theorem, stating that a nonhyperelliptic curve C
is embedded in Pg−1 by its canonical bundle ωC as a projectively normal curve, and
the Enriques-Babbage Theorem, asserting that the ideal of C in Pg−1 is generated by
quadrics unless C is either trigonal or isomorphic to a plane quintic. Green’s Conjecture
was first stated in [9] and proposes a generalization of these results in terms of Koszul
cohomology, predicting that

Kp,2(C, ωC) = 0 if and only if p < Cliff(C). (4.1)

Quite remarkably, this would imply that the Clifford index of C can be read off the
syzygies of its canonical embedding. The implication Kp,2(C, ωC) 6= 0 for p ≥ Cliff(C)
was immediately achieved by Green and Lazarsfeld ([9, Appendix]) and the conjec-
tural part reduces to the vanishing Kc−1,2(C, ωC) = 0 for c = Cliff(C), or equivalently,
Kg−c−1,1(C, ωC) = 0.

One naturally expects the gonality k of C to be also encoded in the vanishing of some
Koszul cohomology groups. In fact, Green-Lazarsfeld’s Gonality Conjecture predicts
that any line bundle A of sufficiently high degree on C satisfies

Kp,1(C, A) = 0 if and only if p ≥ h0(C, A)− k. (4.2)

Green ([9]) and Ehbauer ([8]) have shown that the statement holds true for any curve of
gonality k ≤ 3. As in the case of Green’s Conejcture, one implication is well-known
(cf. [9, Appendix]); it was proved by Aprodu (cf. [1]) that the conjecture is thus
equivalent to the existence of a non-special globally generated line bundle A such that
Kh0(C,A)−k,1(C, A) = 0.

Both Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture are in their full
generality still open. However, as recalled in Section 1.7, by specialization to curves
on K3 surfaces, they were proved for a general curve in each gonality stratum of Mg
(cf. [14, 15, 2]). In the case of odd genus g = 2k − 3, the two conjectures are known
to hold for every curve of maximal gonality k. Furthermore, it was proved by Aprodu
that both Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture are true for
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4 Green’s Conjecture for curves on Del Pezzo surfaces

every curve C of gonality k ≤ (g + 2)/2 satisfying the linear growth condition

dim W1
d (C) ≤ d− k for k ≤ d ≤ g− k + 2. (4.3)

In this Chapter we prove the following:

Theorem 4.1.1. Let C be a smooth, irreducible curve lying on a Del Pezzo surface S and, having
set L := OS(C), assume that L⊗ωS is nef and big. Then, the following hold:

• If deg(S) ≥ 2, then C satisfies Green’s Conjecture.

• If C is general in its linear system and Cliffdim(C) = 1, then C verifies Green-Lazarsfeld’s
Gonality Conjecture.

• If deg(S) = 1, Green’s Conjecture is true for a general curve in |L|; under the further
assumption that the Clifford index of a general curve in |L| is not computed by the restric-
tion of the anticanonical bundle ω∨S , Green’s Conjecture holds for every smooth irreducible
curve in |L|.

Green’s Conjecture for curves lying on arbitrary K3 surfaces was proved by Aprodu
and Farkas in [3] (see Section 1.7 for details). Linear systems on Del Pezzo surfaces have
some common behavior with those on K3 surfaces but, since Del Pezzo surfaces in gen-
eral are non-minimal and their canonical bundle is non-trivial, their study is somehow
more complicated; we will recall some known results in Section 4.3. Notice that the
classes of line bundles L such that L⊗ ωS is nef and big have been precisely described
in [7] in terms of the coefficients of the generators of Pic(S) in the presentation of L.

The Brill-Noether theory of curves lying on Del Pezzo surfaces was investigated by
Pareschi (cf. [12]) and Knutsen (cf. [10]). They proved that, if g(C) ≥ 4, both the
gonality and the Clifford index of a curve C on a Del Pezzo surface S do not vary
while moving C in its linear system, with only one class of exceptions occurring when
deg(S) = 1. In Section 4.3 we will show that such exceptional cases can be alternatively
described as the ones where L⊗ωS is nef and big and the restriction of the anticanonical
bundle ω∨S to a general curve in |L| computes its Clifford index.

In [10], the author also proved that the only curves of Clifford dimension > 1 on a
Del Pezzo surface are the strict transforms of smooth plane curves and complete inter-
sections of two cubic surfaces in P3.

Since Green’s Conjecture for smooth curves in P2 and for complete intersections of
type (a, b) in P3 with a+ b = 6 has already been verified by Loose in [11], while proving
Theorem 4.1.1 we can assume that C has genus g ≥ 4, Clifford dimension 1 and gonality
k ≤ (g + 2)/2. Under these hypotheses, we show that, if C is general in its linear
system, it satisfies the linear growth condition (4.3); indeed, if d ≤ g − k + 2, it turns
out that the dimension of any irreducible component ofW1

d (|L|) which dominates |L|
under the natural projection π : W1

d (|L|) → |L|s does not exceed dim |L|+ d− k. This
follows from a parameter count for rank-2 bundles EC,A, which are the analogue of the
Lazarsfeld-Mukai bundles for K3 surfaces. The key fact proved in Section 4.4 is that, if
A is a complete, base point free pencil on a general C ∈ |L|, the dimension of ker µ0,A
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is controlled by H2(S, EC,A ⊗ E∨C,A). Hence, it is enough to find an upper bound for the
number of moduli of bundles EC,A which are not stable; this is done in Section 4.5 by
considering Harder-Narasimhan and Jordan-Hölder filtrations.

In Section 4.6 the proof of Theorem 4.1.1 is completed by showing that, under some
hypotheses on L if deg(S) = 1, there is an isomorphism of Koszul cohomology groups

Kg−c−1,1(S, L⊗ωS) ' Kg−c−1,1(C, ωC),

which implies Green’s Conjecture for any smooth and irreducible curve in |L|.

4.2 Syzygies and Koszul Cohomology

If X is a complex projective variety and L is a globally generated line bundle on it,
let S := Sym.H0(X, L) be the homogeneous coordinate ring of the projective space
P(H0(X, L)∨) and set S(X) := ∑m H0(X, Lm). Being a finitely generate S-module, S(X)
admits a minimal graded free resolution

0→ Er → . . .→ E1 → E0 → S(X)→ 0,

where r = h0(X, L) − 1 and Ek = ∑i≥k S(−i − 1)βk,i . The syzygies of X of order k are
by definition the graded components of the S-module Ek. We say that the pair (X, L)
satisfies property (Np) if E0 = S and Ek = S(−k − 1)βk,k for all 1 ≤ k ≤ p; in other
words, the syzygies of X up to order p are linear. For instance, property (N0) is satisfied
if and only if φL embeds X as a projectively normal variety, while property (N1) also
requires that the ideal of X in P(H0(X, L)∨) is generated by quadrics.

The most effective tool in order to compute syzygies is Koszul cohomology, whose
definition is the following. Let L ∈ Pic(X) and F be a coherent sheaf on X. The Koszul
cohomology group Kp,q(X, F, L) is defined as the cohomology at the middle-term of the
complex

p+1∧
H0(L)⊗ H0(F⊗ Lq−1)→

p∧
H0(L)⊗ H0(F⊗ Lq)→

p−1∧
H0(L)⊗ H0(F⊗ Lq+1).

We agree that, if F ' OX, the Koszul cohomology group is simply denoted by Kp,q(X, L).
It turns out (cf. [9]) that property (Np) for the pair (X, L) is equivalent to the vanishing

Ki,q(X, L) = 0 for all i ≤ p and q ≥ 2.

In particular, Green’s Conjecture can be rephrased by asserting that (C, ωC) satisfies
property (Np) whenever p < Cliff(C).

In the sequel we will make use of the following results, which are due to Green. The
first one is the Vanishing Theorem (cf. [9, Theorem (3.a.1)]), stating that

Kp,q(X, E, L) = 0 if p ≥ h0(X, E⊗ Lq). (4.4)
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4 Green’s Conjecture for curves on Del Pezzo surfaces

The second one (cf. [9, Theorem (3.b.1)]) relates the Koszul cohomology of X to the one
of a smooth hypersurface Y ⊂ X in the following way.

Theorem 4.2.1. Let X be a smooth irreducible projective variety and assume L, N ∈ Pic(X)
satisfy

H0(X, N ⊗ L∨) = 0 (4.5)
H1(X, Nq ⊗ L∨) = 0, ∀ q ≥ 0. (4.6)

Then, for every smooth integral divisor Y ∈ |L|, there exists a long exact sequence

→ Kp,q(X, L∨, N)→ Kp,q(X, N)→ Kp,q(Y, N ⊗OY)→ Kp−1,q+1(X, L∨, N)→ .

4.3 Linear systems on Del Pezzo surfaces

A smooth irreducible surface S is called a Del Pezzo surface if its anticanonical bundle
ω∨S is ample. Having set KS := c1(ωS), the degree of S is defined as deg(S) := K2

S. It
is classically known (cf. [6]) that 1 ≤ deg(S) ≤ 9. Moreover, deg(S) = 9 whenever
S = P2, while deg(S) = 8 implies that either S = P1 ×P1 or S = BlP(P

2).
If 1 ≤ deg(S) ≤ 7, then S is isomorphic to P2 blown-up at 9−deg(S) points such that

no three of them are collinear and no six of them lie on a conic. If S is a Del Pezzo surface
of degree s ≤ 7, then Pic(S) is freely generated by the class l of the strict transform of
a line and the classes e1, . . . , e9−s of the exceptional divisors, with intersection products
l2 = 1, l · ei = 0, ei · ej = −δij. The anticanonical divisor−KS ∼ 3l−∑9−s

i=1 ei is base point
free unless deg(S) = 1 (in this case it has exactly one base point) and is very ample as
soon as deg(S) ≥ 3.

Let L be a Line bundle on S; the Riemann-Roch Theorem gives

χ(L) = 1 +
c1(L)2 − c1(L) · KS

2
;

if L > 0 and there exists a smooth irreducible curve C ∈ |L| (this is always the case if L
is nef and big), then

g(C) = 1 +
c1(L)2 + c1(L) · KS

2
= χ(S, L⊗ωS) = h0(S, L⊗ωS);

we denote by |L|s the locus of curves inside |L| which are smooth and irreducible. No-
tice that if L is base point free, then hi(S, L) = 0 for i ∈ {1, 2} (this follows by Kodaira
Vanishing Theorem since L⊗ω∨S is ample).

The only (reduced and irreducible) curves with negative self-intersection on S are the
(−1)-curves, that is, smooth rational curves C such that C2 = C · KS = −1. If C is not
a (−1)-curve, then −KS · C ≥ 2 unless deg(S) = 1 and L ' ω∨S (cf. [10, (P6)]). For Del
Pezzo surfaces, as well as for K3 surfaces, a strong version of Bertini’s Theorem holds.
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Theorem 4.3.1. Let S be a Del Pezzo surface and L ∈ Pic(S) be effective. Then, the following
hold:

(a) If deg(S) ≥ 2, then L has no base points outside its fixed components (cf. [12, Remark
(0.5.3)]).

(b) The line bundle L is nef if and only if it is base point free or L ' ω∨S and deg(S) = 1,
and L is ample if and only if it is very ample or L ' ω∨S and deg(S) ≤ 2 or L ' ω−2

S
and deg(S) = 1.(cf. [7, Corollary (4.7)])

(c) Assume L is nef. If c1(L)2 > 0, then a general curve in |L| is smooth and irreducible. If
instead c1(L)2 = 0, then L = OS(kΓ) where k ∈ Z>0 and Γ is a smooth rational curve
moving in a pencil (cf. [10, (P7), Proposition 3.2 (b)]).

(d) If deg(S) < 8, then the ampleness of L implies the nefness of L⊗ωS (cf. [7, Section 5])

By Proposition 3.1 in [7], the class of the curve Γ appearing in (c) equals l − ei for
some 1 ≤ i ≤ 9− deg(S).

The Brill-Noether theory of curves lying on Del Pezzo surfaces has been studied in
details; in most of the cases, fundamental invariants, such as the Clifford index and
the gonality, only depend on the linear equivalence class of the curve considered. The
following result is due to Pareschi (cf. [12]).

Theorem 4.3.2. Let S be a Del Pezzo surface of degree ≥ 2 and C ⊂ S a smooth irreducible
curve of genus g. Having set L := OS(C), one has:

(i) If g(C) ≥ 2, then either the gonality of curves in |L|s is constant, or deg(S) = 2 and
L ' ω−2

S (hence g(L) = 3).

(ii) If g(C) ≥ 4, then all curves in |L|s have the same Clifford index.

Notice that the assumptions g(C) ≥ 2 in (i) and g(C) ≥ 4 in (ii) are not restricting
at all because every genus 1 curve is hyperelliptic and every curve of genus at most
3 has Clifford index 0. When deg(S) ≥ 2, the only case of non-constant gonality is
analogous to the Donagi-Morrison’s example for K3 surfaces. Indeed, if S has degree 2,
the anticanonical line bundle defines a double cover φ := φω∨S

: S→ P2 branched along
a smooth quartic and ω−2

S = φ∗(OP2(2)); smooth curves in the codimension-1 subspace
|φ∗H0(P2, (OP2(2))| ⊂ |ω−2

S | are hyperelliptic because they are double covers of plane
conics, while a general C ∈ |ω−2

S |s, being isomorphic to a plane quartic, is trigonal.
In [10] Knutsen generalized the above theorem to the case deg(S) = 1, showing that

all curves in |L|s have the same gonality unless L ' OS(−2KS + 2E), where E is a
(−1)-curve (thus g(L) = 3), or the following happens:

Example 1. L is ample, c1(L) · E ≥ 2 for every (−1)-curve E if c1(L)2 ≥ 8, and there is
an integer k ≥ 3 such that −c1(L) · KS = k, c1(L)2 ≥ 5k− 8 ≥ 7 and c1(L) · Γ ≥ k for
every smooth rational curve such that Γ2 = 0.

In this case, the curves passing through the base point of ω∨s form a family of codi-
mension 1 in |L|s, have gonality k − 1 and Clifford index k − 3, while a general curve
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4 Green’s Conjecture for curves on Del Pezzo surfaces

C ∈ |L|s has gonality k and Clifford index k − 2 (in particular, ω∨S ⊗ OC computes
Cliff(C)).

Remark 4. The classes of line bundles as in Example 1 have been precisely described
by Knutsen (cf. [10, p. 78]]) in terms of the coefficients a and bi such that L ∼ al−∑ aiei;
one can check that L⊗ωS is always nef and big.

We remark that the line bundles as in Example 1 can be alternatively described as the
only line bundles L such that L⊗ωS is nef and big and the restriction of ω∨S to a general
curve C ∈ |L|s computes its Clifford index.

Indeed, since h0(C, ω∨S ⊗OC) = 2, if Cliff(C) = Cliff(ω∨S ⊗OC), then C has gonality
k := −c1(L) · KS and Cliff(C) = k− 2. The inequality c1(L)2 ≥ 5k− 8 is equivalent to
the trivial condition k ≤ (g + 3)/2. Since every smooth rational curve Γ with Γ2 = 0
moves in a base point free pencil, its restriction to C must have degree at most k. Anal-
ogously, the requirement on the intersection product with any (−1)-curve E follows
from the fact that, if c1(L)2 ≥ 8, the restriction of OS(−KS + E) to C defines a g2

d (with
d = k + c1(L) · E) which contributes to the Clifford index.

In [10], Knutsen also proved that the Clifford index of curves in |L|s is constant except
in the cases covered by Example 1. Moreover, he obtained the following:

Theorem 4.3.3. Let S be a Del Pezzo surface and L ∈ Pic(S) a nef line bundle such that curves
in |L|s have genus g ≥ 4. Then, all curves in |L|s have the same Clifford dimension r and, if
r ≥ 2, one of the following occurs:

(I) r = 2 and curves in |L|s are the strict transforms of smooth plane curves under a mor-
phism φ : S→ P2 which is the blow-up of P2 in 9− deg(S) points.

(II) r = 3, 1 ≤ deg(S) ≤ 3 and there exist a cubic surface S′ ⊂ P3 and a morphism
φ : S → S′ which is the blow-up of S′ in 3− deg(S) points such that curves in |L|s are
the strict transforms of smooth curves in | − 3KS′ | under φ.

4.4 The analogue of the Lazarsfeld-Mukai bundle

Let S be a Del Pezzo surface and C ⊂ S be a smooth, irreducible curve of genus g. If
A is a complete, base point free gr

d on C, as in the case of K3 surfaces, we consider the
vector bundle FC,A defined by the sequence

0→ FC,A → H0(C, A)⊗OS
evA,S−→ A→ 0,

and set EC,A := F∨C,A. Since NC|S = OC(C), by dualizing the above sequence we get

0→ H0(C, A)∨ ⊗OS → EC,A → OC(C)⊗ A∨ → 0. (4.7)

This trivially implies that:

• χ(S, EC,A ⊗ωS) = h0(S, EC,A ⊗ωS) = g− d + r,
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4.4 The analogue of the Lazarsfeld-Mukai bundle

• rk EC,A = r + 1, c1(EC,A) = L := OS(C), c2(E) = d,

• h2(S, EC,A) = 0, χ(S, EC,A) = g− d + r− c1(L) · KS.

As in the case of K3-surfaces, being a bundle of type EC,A is an open condition. Indeed,
a vector bundle E of rank r + 1 is of type EC,A iff h1(S, E ⊗ ωS) = h2(S, E ⊗ ωS) = 0
and there exists a subspace Λ ∈ G(r + 1, H0(S, E)) such that the degeneracy locus of
the evaluation map evΛ : Λ⊗OS → E is a smooth connected curve.

Notice that the dimension of the space of global sections of EC,A depends not only on
the type of the the linear series A but also on A⊗ωS. In particular, one has

h0(S, EC,A) = r + 1 + h0(C,OC(C)⊗ A∨),
h1(S, EC,A) = h0(C, A⊗ωS).

Moreover, if the line bundleOC(C)⊗ A∨ has sections, then EC,A is generated off its base
points. In the case r = 1, we prove the following.

Lemma 4.4.1. Let A be a complete, base point free g1
d on C ⊂ S. If either deg(S) ≥ 2 or

deg(S) = 1 and A 6' ω∨S ⊗OC, then h0(C, A⊗ωS) = 0.

Proof. Since L⊗ωS is effective, the short exact sequence

0→ L∨ ⊗ω∨S → ω∨S → ω∨S ⊗OC → 0

implies that h0(C, ω∨S ⊗ OC) ≥ h0(S, ω∨S ) = 1 + deg(S) and the statement follows
trivially if deg(S) ≥ 2. Let deg(S) = 1 and h0(C, A ⊗ ωS) > 0. Then it must be
h0(C, ω∨S ⊗OC) = 2 and A⊗ ωS is the fixed part of the linear system of sections of A.
Since A is base point free by hypothesis, then A ' ω∨S ⊗OC.

Under the hypotheses of the above Lemma, the bundle EC,A is globally generated off
a finite set and χ(S, EC,A) = h0(S, EC,A) = g − d + 1− c1(L) · KS. Now, we prove an
analogue of Proposition 1.4.2.

Proposition 4.4.2. Let C ∈ |L|s be general and assume that either deg(S) ≥ 2 or deg(S) = 1
and A 6' ω∨S ⊗OC. Then for any complete, base point free pencil A on C one has:

ker µ0,A = 0 ⇐⇒ H2(S, EC,A ⊗ E∨C,A) = 0.

Proof. The proof proceeds as in [13], hence I will not enter into details. It is easy to
show that ker µ0,A = H0(C, MC,A ⊗ωC ⊗ A∨), where the bundle MC,A is defined as the
kernel of the evaluation map evA,C : H0(C, A) ⊗ OC � A. Since det FC,A = L∨ and
det MC,A = A∨, by adjunction one finds the following short exact sequence:

0→ ωS ⊗OC → FC,A ⊗ωC ⊗ A∨ → MC,A ⊗ωC ⊗ A∨ → 0. (4.8)

The coboundary map δ : H0(C, MC,A ⊗ ωC ⊗ A∨) → H1(C, ωS ⊗OC) coincides, up to
multiplication by a non-zero scalar factor, with the composition of the Gaussian map

µ1,A : ker µ0,A → H0(C, ω2
C)
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4 Green’s Conjecture for curves on Del Pezzo surfaces

and the dual of the Kodaira spencer map

ρ∨ : H0(C, ω2
C)→ (TC|L|)∨ = H0(C, NC|S)

∨ = H1(C, ωS ⊗OC).

Indeed, as in the proof of Lemma 1 in [13], one finds a commutative diagram

0 // ωS ⊗OC // FC,A ⊗ωC ⊗ A∨ //

��

MC,A ⊗ωC ⊗ A∨ //

s
��

0

0 // ωS ⊗OC // Ω1
S ⊗ωC // ω2

C
// 0,

where the homomorphism induced by s on global sections is µ1,A and the coboundary
map H0(C, ω2

C)→ H1(C, ωS ⊗OC) is (up to scalar coefficients) ρ∨.
If A has degree d, look at the natural projection π : W1

d (|L|) → |L|s. First order
deformation arguments (e.g. [4, p.722]) imply that

Im(dπ(C,A)) ⊂ Ann(Im(ρ∨ ◦ µ1,A)).

Therefore, by Sard’s Lemma, if C ∈ |L|s is general, the short exact sequence (4.8) is exact
on the global sections for any complete, base point free A ∈ W1

d (C), and ker µ0,A '
H0(C, FC,A ⊗ωC ⊗ A∨).

The short exact sequence (4.7), when tensored by FC,A ⊗ωS, yields

H0(C, FC,A ⊗ωC ⊗ A∨) ' H0(S, E∨C,A ⊗ EC,A ⊗ωS)

because Hi(S, FC,A ⊗ωS) ' H2−i(S, EC,A)
∨ = 0 for i ∈ {0, 1}. The statement follows by

Serre duality.

Corollary 4.4.3. Let W be an irreducible component of W1
d (|L|) which dominates |L| and

whose general points correspond to µL⊗ω∨S
-stable bundles EC,A; if deg(S) = 1 also assume that

general points ofW are not of the form (C, ω∨S ⊗OC). Then, ρ(g, 1, d) ≥ 0 andW is reduced
of dimension equal to

dim |L|+ ρ(g, 1, d) = g− 1− c1(L) · KS + ρ(g, 1, d).

Proof. Let (C, A) be a general point of W . If EC,A is stable, EC,A ⊗ ωS also is. Since
µL⊗ω∨S

(EC,A) > µL⊗ω∨S
(EC,A ⊗ ωS), then H2(S, E∨C,A ⊗ EC,A) ' Hom(EC,A, EC,A ⊗ ωS)

∨

vanishes.

4.5 Parameter count

By the analysis made in the previous section, in order to verify the linear growth con-
dition for a general curve in |L|s, it suffices to control the dimension of every dom-
inating component W ⊂ W1

d (|L|), whose general points are pairs (C, A) such that
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A 6' ω∨S ⊗OC and the bundle EC,A is not µL⊗ω∨S
-stable. Indeed, if A ' ω∨S ⊗OC for a

general point ofW , then ω∨S ⊗OC′ is an isolated point of W1
d (C

′) for every C′ ∈ |L|s.
Let A be a complete, base point free g1

d on a curve C ∈ |L|s such that the bundle
E := EC,A is not µL⊗ω∨S

-stable and A 6' ω∨S ⊗ OC if deg(S) = 1. As in Section 3.5,
by considering either the HN filtration or the JH filtration of E, we get a short exact
sequence

0→ M→ E→ N ⊗ Iξ → 0, (4.9)

where N, M ∈ Pic(S) satisfy

µL⊗ω∨S
(M) ≥ g− 1− c1(L) · KS ≥ µL⊗ω∨S

(N), (4.10)

and Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S of length l = d− c1(N) ·
c1(M).

Lemma 4.5.1. In the above situation, assume that C has Clifford dimension 1 and gonality
k ≥ 4 and let k ≤ d ≤ g− k + 2. Then, one of the following occurs:

(a) c1(M) · c1(N) + c1(N) · KS ≥ k− 2;

(b) c1(M) · c1(N) + c1(M) · KS ≥ k− 2.

Proof. Being a quotient of E off a finite set, N is base component free (base point free if
deg(S) ≥ 2) and is non-trivial since H2(S, N⊗ωS) = 0. As a consequence, h0(S, N) ≥ 2
. The inequality µL⊗ω∨S

(M) > 0 assures that H2(S, M) ' Hom(OS, M∨⊗ωS)
∨ = 0 and,

if

χ(S, M) = 1 +
c1(M)2 − c1(M) · KS

2
≤ h0(S, M) < 2,

then (4.10) implies d ≥ c1(M) · c1(N) ≥ g − 1− c1(L) · KS > g − 1. Hence, we can
assume both h0(C, N ⊗OC) ≥ 2 and h0(C, M ⊗OC) ≥ 2. If h0(S, M ⊗ ωS) ≥ 2, then
N ⊗OC contributes to the Clifford index of C and (a) is satisfied since

k− 2 ≤ Cliff(N ⊗OC) = c1(N) · (c1(N) + c1(M))− 2h0(C, N ⊗OC) + 2
≤ c1(N)2 + c1(N) · c1(M)− 2h0(S, N) + 2
≤ c1(N) · c1(M) + c1(N) · KS.

Analogously, if h0(S, N ⊗ ωS) ≥ 2, then M ⊗ OC contributes to the Clifford index of
C and we get (b). One can exclude that both χ(S, M ⊗ ωS) ≤ h0(S, M ⊗ ωS) < 2 and
χ(S, N ⊗ωS) ≤ h0(S, N ⊗ωS) < 2 since this would imply

d ≥ c1(M) · c1(N) ≥ (c1(L)2 + c1(L) · KS)/2 = g− 1.

Now, having fixed a nonnegative integer l and a line bundle N such that (4.10) is
satisfied for M := L⊗ N∨, we want to estimate the number of moduli of pairs (C, A)
such that the bundle EC,A sits in a short exact sequence like (4.9). As in Section 3.5,
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let EN,l be the moduli stack of extensions of type (4.9) with l(ξ) = l, and consider the
projections p : EN,l →M(v(M))×M(v(N ⊗ Iξ)) and q : EN,L →M(v(E)).

We denote by P̃N,l the closure of the image of q and by PN,l its open substack whose
C-points correspond to vector bundles E satisfying h1(S, E⊗ ωS) = h2(S, E⊗ ωS) = 0
and h1(S, E) = 0 (this last condition is superfluous if deg(S) ≥ 2 by Lemma 4.4.1). Let
GN,l → PN,l be the Grassmann bundle whose fibre over E ∈ PN,l(C) is G(2, H0(S, E)).
Having set d := l + c1(M) · c1(N), we defineWN,l to be the closure of the image of the
rational map GN,l 99K W1

d (|L|), sending a general point ([E], Λ) ∈ GN,l(C) to the pair
(CΛ, AΛ) where the evaluation map evΛ : Λ ⊗ OS ↪→ E degenerates on CΛ and has
OCΛ(CΛ) ⊗ A∨Λ as cokernel. The following proposition gives an upper bound for the
dimension ofWN,l .

Proposition 4.5.2. Assume that general curves in |L|s have Clifford dimension 1 and gonality
k ≥ 4. Then, every irreducible componentW ofW1

d (|L|s) which dominates |L| and is contained
inWN,l satisfies:

dimW ≤ g− 1− c1(L) · KS + d− k.

Proof. Since N and M are line bundles, the stack M(v(M)) has dimension −1, while
M(v(N ⊗ Iξ)), being corepresented by the Hilbert scheme S[l], has dimension 2l − 1.
The fibre of p over the C-point (M, N⊗ Iξ) ofM(v(M))×M(v(N⊗ Iξ)) is the quotient
stack

[Ext1(N ⊗ Iξ , M)/Hom(N ⊗ Iξ , M)],

while the fibre of q over [E] ∈ P̃N,l(C) is the Quot-scheme QuotS(E, P), where P is the
Hilbert polynomial of N ⊗ Iξ . The condition µL⊗ω∨S

(M) ≥ µL⊗ω∨S
(N) implies that

Ext2(N ⊗ Iξ , M) ' Hom(M, N ⊗ωS ⊗ Iξ)
∨ = 0,

hence the dimension of the fibres of p is constant and equals

−χ(S, N ⊗M∨ ⊗ωS ⊗ Iξ) = −g + 2c1(N) · c1(M) + c1(M) · KS + l.

Moreover, the fibres of q are either all 0-dimensional or all smooth of dimension 1;
this follows from the fact that Hom(M, N ⊗ Iξ) = 0 unless M ' N and l = 0, in
which case Ext1(M, N ⊗ Iξ) = H1(S,OS) = 0. Since every [E] ∈ PN,l(C) satisfies
h0(S, E) = g− d + 1− c1(L) · KS and the fibres of hN,l are quotient stacks of dimension
−1 (as in Section 3.5), by Lemma 4.4.1 we get:

dimWN,l ≤ 3l − 1− g + 2c1(N) · c1(M) + c1(M) · KS + 2(g− d− 1− c1(L) · KS)

= d + g− 3− c1(N) · c1(M)− c1(N) · KS − c1(L) · KS.

In case (a) of Lemma 4.5.1 the conclusion is straightforward. On the other hand, in case
(b) we obtain

dimWN,l ≤ g− 1 + d− k− c1(L) · KS − KS · (c1(N)− c1(M)),
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and the statement follows provided that−KS · (c1(N)− c1(M)) ≤ 0. Since ω∨S is ample,
it is enough to show that N∨ ⊗ M is effective. Let W ⊂ WN,l be an irreducible com-
ponent ofW1

d (|L|) which dominates |L|. By Proposition 4.4.2 we can assume that for a
general (C, A) ∈ W the bundle EC,A, which is given as an extension

0→ M→ EC,A → N ⊗ Iξ → 0, (4.11)

satisfies Hom(EC,A, EC,A ⊗ ωC) 6= 0. Applying Hom(EC,A,−) to the above short exact
sequence tensored by ωS, we get

0→ Hom(EC,A, M⊗ωS)→ Hom(EC,A, EC,A⊗ωS)→ Hom(EC,A, N⊗ωS⊗ Iξ)→ · · · .

By applying Hom(−, N ⊗ ωS ⊗ Iξ) (resp. Hom(−, M ⊗ ωS)) to (4.11), one finds that
Hom(EC,A, N ⊗ ωS ⊗ Iξ) = 0 (resp. Hom(EC,A, M ⊗ ωS) ' Hom(N ⊗ Iξ , M ⊗ ωS)),
hence N∨ ⊗M ≥ N∨ ⊗M⊗ωS is effective.

4.6 Proof of Theorem 4.1.1

As remarked in the introduction, we can assume that curves in |L|s have genus g ≥ 4,
Clifford dimension 1 and (constant) gonality 4 ≤ k ≤ (g + 2)/2.

Having fixed k ≤ d ≤ g− k+ 2, Corollary 4.4.3 and Proposition 4.5.2 imply that every
dominating component W of W1

d (|L|) has dimension ≤ dim |L| + d − k. As a conse-
quence, a general curve C ∈ |L|s satisfies the linear growth condition (4.3), hence Green-
Lazarsfeld’s Gonality Conjecture holds for C and Kg−c−1,1(C, ωC) = 0 for c = Cliff(C).
If we show that the group Kg−c−1,1(C, ωC) does not depend (up to isomorphisms) on
the choice of C in its linear system, by semicontinuity Green’s Conjecture follows for
any curve in |L|s (this also provides a new proof of the constancy of the Clifford index).

Set N := L⊗ωS; since N is nef and big, the hypotheses of Theorem 4.2.1 are satisfied.
Indeed, (4.5) and (4.6) for q = 1 follow directly from the fact that S is regular and has
geometric genus 0. Equality (4.6) for q = 0 is trivial since L is ample, hence |L| contains
a smooth, irreducible curve. For q ≥ 2, the line bundle Nq−1 is nef and big, hence

0 = H1(S, N−(q−1))∨ ' H1(S, (L⊗ωS)
q−1 ⊗ωS) = H1(S, Nq ⊗ L∨).

By adjunction, for any curve C ∈ |L|s, we obtain the following long exact sequence

· · · → Kg−c−1,1(S, L∨, L⊗ωS)→ Kg−c−1,1(S, L⊗ωS)→ Kg−c−1,1(C, ωC)

→ Kg−c−2,2(S, L∨, L⊗ωS)→ · · · .

The group Kg−c−1,1(S, L∨, L⊗ ωS) trivially vanishes since H0(S, ωS) = 0. By the Van-
ishing Theorem (4.4) applied to Kg−c−2,2(S, L∨, L⊗ωS), we can conclude that

Kg−c−1,1(S, L⊗ωS) ' Kg−c−1,1(C, ωC),
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provided that g − c − 2 ≥ h0(S, L ⊗ ω2
S). We can assume h0(S, L ⊗ ω2

S) ≥ 2, hence
ω∨S ⊗OC contributes to the Clifford index and

c ≤ Cliff(ω∨S ⊗OC) = −c1(L) · KS − 2h0(C, ω∨S ⊗OC) + 2 (4.12)
≤ −c1(L) · KS − 2 deg(S).

Since L⊗ωS is nef and big, then H1(S, L⊗ω2
S) ' H1(S, L∨ ⊗ω∨S )

∨ = 0 and

h0(S, L⊗ω2
S) = χ(S, L⊗ω2

S) = g + c1(L) · KS + deg(S)
≤ g− c− deg(S).

By (4.12), we are done as, if deg(S) = 1, we have Cliff(ω∨S ⊗OC) < c by hypothesis.

4.7 Further remarks

Remark 5. Corollary 4.4.3 can also be proved by arguing in the following way. Let
M := Mµs

H (c) be the moduli space of µH-stable vector bundles of fixed Chern classes
c = (2, c1(L), d) on a Del Pezzo surface S with respect to any polarization H. Since
every [E] ∈ M satisfies Ext2(E, E)0 = 0, it turns out that M is a smooth, irreducible
projective variety of dimension 4d − c1(L)2 − 3 (cf. [5, Remark 2.3]) as soon as it is
non-empty. Let M0 be the open subset of M parametrizing vector bundles [E] such that
hi(S, E) = hi(S, E⊗ ωS) = 0 for i ∈ {1, 2} and define G as the Grassmann bundle on
M0 with fibre over [E] equal to G(2, H0(S, E)). Its easy to see that the rational map
h : G 99KW1

d (|L|) is birational onto its image, that we denote byW . It follows that the
dimension ofW equals:

4d− c1(L)2 − 3 + 2(g− d− 1− c1(L) · KS) = 2d− 3− c(L) · KS = dim |L|+ ρ(g, 1, d).

Remark 6. What explained in the previous remark actually holds for every anticanon-
ical rational surface, that is, every surface S such that the anticanonical bundle ω∨S is
effective. Such surfaces include all blow-ups of relatively minimal models of rational
surfaces, namely P2 and the Hirzebruch surfaces Σn for n = 0 and n ≥ 2, in at most 8
points and all smooth complete toric surfaces. It seems quite likely that the techniques
used in this chapter might also succeed in proving Green’s Conjecture for curves C
lying on some other classes of anticanonical rational surfaces, at least when the line
bundle L defined by C satisfies some positive criteria.
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