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Abstract

Modern methods in statistics and econometrics successfully deal with stylized
facts observed on financial markets. The presented techniques aim to understand
the dynamics of financial market data more accurate than traditional approaches.
Economic and financial benefits are achievable. The results are here evaluated in
practical examples that mainly focus on forecasting of financial data. Our applica-
tions include: (i) modelling and forecasting of liquidity supply, (ii) localizing mul-
tiplicative error models and (iii) providing evidence for the empirical pricing kernel
paradox across countries.
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Zusammenfassung

Moderne statistische und ökonometrische Methoden behandeln erfolgreich stili-
sierte Fakten auf den Finanzmärkten. Die vorgestellten Techniken erstreben die Dy-
namik von Finanzmarktdaten genauer als traditionelle Ansätze zu verstehen. Wirt-
schaftliche und finanzielle Vorteile sind erzielbar. Die Ergebnisse werden hier in
praktischen Beispielen ausgewertet, die sich vor allem auf die Prognose von Finanz-
marktdaten fokussieren. Unsere Anwendungen umfassen: (i) die Modellierung und
die Vorhersage des Liquiditätsangebotes, (ii) die Lokalisierung des ’Multiplicative
Error Model’ und (iii) die Erbringung von Evidenz für den empirischen Zustands-
faktorparadox über Landern.
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1 Introduction

The key to growth is the introduction of higher
dimensions of consciousness into our awareness.

Lao Tzu

It is a challenging task to understand the dynamics of financial market processes. The
goal of this work is to mitigate this challenge from an academic and a practical perspec-
tive. Our theoretical framework discusses recently developed statistical and econometric
(structural and adaptive) techniques adequate for modelling and forecasting of finan-
cial data. Applying the framework to transaction and market data, we achieve (and
evaluate) economic and financial benefits. Special care is given to the treatment of
high-frequency data since the ultimate research goal in academia and in practice is to
understand the time evolution of transaction level events. At glance, our work deals with
high-dimensional and time-varying data structures and demonstrates the full power of
non- and semiparametric techniques.
The theoretical background is provided in Chapter 2. When dealing with high-

dimensional data structures evolving over time on a high frequency, we recommend
to employ a successful dimension-reduction technique, the, so-called, dynamic semipara-
metric factor model (DSFM). A powerful approach applied in modelling and forecasting
univariate time series is the local adaptive multiplicative error model (MEM). The local
MEM is based on the local parametric approach (LPA) which was gradually introduced
into the econometric literature. While studying the market microstructure, in particular
asset pricing, a state-dependent pricing kernel specification allows to investigate prefer-
ences over time in a realistic setup. The methodology enables us to provide evidence on
the empirical pricing kernel (EPK) paradox across stock markets.
The financial data collected at the world’s leading stock markets is described in Chap-

ter 3. The theoretical methods are illustrated in the following key applications in Chapter
4: (i) Modelling and forecasting of liquidity supply, (ii) Local adaptive multiplicative er-
ror models and (iii) Cross country evidence for the empirical pricing kernel paradox.
Our applications cover structural and adaptive modelling of data and achieve financial
and economic benefits, as summarized in Chapter 5. In this introductory chapter we
correspondingly motivate all key applications.

1.1 Modelling and Forecasting Liquidity Supply
Electronic limit order book (LOB) trading has become the dominant trading form for
equities. The limit order book provides important information about the current liq-
uidity supply, i.e., excess supply for shares on the market. The volume quoted above
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1 Introduction

the realized market quantity summarizes traders’ price expectations, the current implied
trading costs as well as the marginal costs (i.e., the demand and supply elasticities). As
a high-dimensional object, the limit order book changes on a transaction level basis.
The dynamic behaviour of liquidity supply has been firstly studied by Härdle et al.

[2012a]. Due to the flexibility of the employed dynamic semiparametric factor model it
is now possible to model the high-dimensional bid and ask curves in a dynamic setting.
Our work rewrites the cited study and provides more implementation details. In financial
and economic applications we focus on liquidity supply prediction and the improvement
of trading strategies.
The underlying modelling idea is to capture the shape of high-dimensional ask and

bid curves by a low dimensional factor structure. The factors are estimated non-
parametrically (’smooth in space’). A dynamic semiparametric factor model (DSFM)
enables us to capture the shape of order schedules by a non-parametric factor structure
while the curves’ dynamic behavior is driven by time-varying factor loadings. The lat-
ter are modelled parametrically employing a vector error correction (VEC) specification
(’parametric in time’). The governing modelling philosophy of the DSFM is thus ’smooth
in space and parametric in time’.
Recent empirical literature is enriched by our evidence on the dynamics and pre-

dictability of order book schedules and we complement recent (theoretical) work on
order splitting and dynamic order execution strategies. For example, splitting a large
order is highly relevant in financial practice. Optimal splitting strategies require predic-
tions of liquidity demand and liquidity supply, see, e.g., Obizhaeva and Wang [2005] and
Engle and Ferstenberg [2007]. Execution strategies are derived by minimizing expected
costs of order execution, see, e.g., Bertsimas and Lo [1998] and Almgren and Chriss
[2000] and they are analyzed in a limit order book market by Alfonsi et al. [2010]. The
studies require knowledge about the (future) order book shape which we can provide.
The study by Härdle et al. [2012a] is the first to model jointly the shape and the

dynamics of liquidity supply. Their methodology is used to improve order execution
strategies. Note that not only the future shape of the high-dimensional limit order book
is predicted, but also the curves’ position. Quotes are shown to be in this context short
term predictable based on the shape knowledge. Other studies discuss only partially
the shape, dynamics or order splitting strategies. We refer here to studies by, e.g., Biais
et al. [1995], Griffiths et al. [2000], Ahn et al. [2001], Ranaldo [2004], Hollifield et al.
[2004], Bloomfield et al. [2005], Degryse et al. [2005], Hall and Hautsch [2006], Hall and
Hautsch [2007], Large [2007], Hasbrouck and Saar [2009] and Cao et al. [2009]. In the
central focus of recent literature are furthermore the analysis of liquidity risks, see, e.g.,
Johnson [2008], Liu [2009], Garvey and Wu [2009] or Goyenko et al. [2009], and the
treatment of liquidity costs, see, e.g., Chacko et al. [2008] and Hasbrouck [2009].
The bid and ask curves are in our study high-dimensional objects. Our objective is to

capture quantities close to the best quotes as well as volumes more deeply in the book. A
snapshot of a typical limit order book for four stocks traded at the Australian Securities
Exchange (ASX) is provided in Figure 1.1. Looking at the order book dynamics, we note
that volume can be substantially dispersed over a wider range of price levels. Dynamic
and individual modelling of all volume levels becomes complicated and intractable.
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1.1 Modelling and Forecasting Liquidity Supply

Figure 1.1: Limit order book for selected stocks traded at the ASX on July 8, 2002 at
10:15. Red: bid curve, blue: ask curve.

The high dimensionality of the order book is reduced by a the so-called dynamic
semiparametric factor model (DSFM), proposed by Fengler et al. [2007], Brüggemann
et al. [2008], Park et al. [2009] and Cao et al. [2009]. The shape of the book is captured
by latent factors which are defined on a grid space around the best ask or bid quotes and
can depend on explanatory variables, i.e., the state of the market. The factors are in
the first step estimated nonparametrically. In the second step the corresponding factor
loadings are modelled jointly with the best bid and the best ask quotes using a VEC
specification.
The research questions are: (i) How many factors are sufficient to model liquidity

supply reasonably well? (ii) What does the shape of the factors look like? (iii) What do
the dynamics of the estimated factor loadings look like? (iv) Does there exist evidence
for a strong cross-dependence between both sides of the order book? (v) Can quotes be
predictable in the short run? (vi) Does the shape of the order book curves depend on
past price movements, past trading volume as well as past volatility? (vii) How successful
is the model in predicting future liquidity supply and can it be used to improve order
execution strategies?
Applying the methodology to limit order book data of four stocks traded at the ASX

one observes that approximately 95% of the order book variations can be explained
by two factors. The first factor captures the overall order book slope, whereas the
second factor is associated with its curvature. The estimated factor loadings follow
highly persistent though stationary dynamics. There are less significant spill-over effects
between the bid and the ask side of the market. Quotes are predictable in the short run
given a knowledge upon the order book shape. Recent liquidity demand, past returns
and corresponding (realized) volatility have an effect on the shape of the order book.
The DSFM approach outperforms a naive prediction, where the current book is used as
a predictor, in a realistic forecasting exercise. The intra-day order execution strategies
are improved by our approach, i.e., our model reduces the implied transaction costs.
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1.2 Localizing Multiplicative Error Models

Researchers in academia and in practice aim to understand the dynamics of processes
when all single events are recorded. The ultimate goal is to account for external shocks
and structural shifts on financial markets. The present study expands the local adaptive
multiplicative error model (MEM) study by Härdle et al. [2012b] which can be used to
accomplish the above mentioned goals. The methodology is suitable to be applied to
(positive-valued) univariate time series, such as, for example, durations, bid-ask spreads,
trading volumes, transactions costs or volatilities.
A multiplicative error model (MEM) by Engle [2002], serves as a workhorse for the

modelling of positive valued, serially dependent high-frequency data. It has been suc-
cessfully applied to, for example, financial duration data by Engle and Russell [1998] in
the context of an autoregressive conditional duration (ACD) model, or to intraday trad-
ing volumes, see, e.g., Manganelli [2005], Brownlees et al. [2011] and Hautsch and Huang
[2011]. The model parameters are typically estimated over long estimation windows in
order to increase estimation efficiency. Empirical evidence makes parameter constancy
in high-frequency models over long time intervals questionable.
Structural breaks in MEM parameters have been reported in current literature, see,

e.g., Zhang et al. [2001] who identify regime shifts in trade durations and suggest a
threshold ACD (TACD) specification in the spirit of threshold ARMA models, see, e.g.,
Tong [1990]. A smooth transition ACD (STACD) model may capture the transition
of parameters between different states. Regime-switching MEM approaches allow for
changing parameters on possibly high frequencies (in the extreme case from observation
to observation). They, however, require to impose a priori structures on the transition
form, the number of underlying regimes or on the type of the transition variable.
The local MEM adapts a local parametric approach and only assumes that financial

data locally (i.e., over short data intervals) follow an underlying MEM model. The local
parametric approach (LPA), originally proposed by Spokoiny [1998], has been gradually
introduced into the time series literature. For applications to daily exchange rates, see,
e.g., Mercurio and Spokoiny [2004] and Čížek et al. [2009] for an adaptation of the
approach to GARCH models in modelling of daily market index volatility. In realized
volatility analysis, the LPA has been applied by Chen et al. [2010] to daily stock index
returns.
Implementing a local parametric framework for multiplicative error processes, Härdle

et al. [2012b] illustrate its usefulness when it comes to out-of-sample forecasting under
possibly non-stable market conditions. A flexible statistical approach presented here
allows to statistically select a data window over which it is appropriate to fit a local
constant-parameter model. Insights into the time evolution of high-frequency data are
provided. The length of (local) estimation windows is data-driven, i.e., a sequential
testing procedure is used to determine the so-called interval of homogeneity. Within
this interval one can safely fit a MEM with constant (homogeneous) parameters.
The interval of homogeneity leads to the adaptive estimate which in turn is used

to produce (multi-step ahead) forecasts of financial data. These steps are repeated
in every period. Period-to-period variations in parameters are therefore captured and
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rolling-window out-of-sample forecasts account only for information which is statistically
identified as being ’relevant’.
In order to control liquidity risk, i.e., the exposure of a trader’s position to volume dy-

namics, we focus on one-minute cumulative trading volumes of five highly liquid stocks
traded at NASDAQ. Note that our findings may be carried over to other high-frequency
(univariate) series, as the stochastic properties of high-frequency volumes are quite sim-
ilar to those of other processes, such as, trade counts, squared midquote returns, market
depth or bid-ask spreads.
Our research questions include: (i) How strong is the time variation of MEM param-

eters? (ii) What are typical interval lengths of parameter homogeneity implied by the
local MEM? (iii) How good are out-of-sample short-term forecasts compared to adaptive
procedures where the length of the estimation windows is fixed on an ad hoc basis? (iv)
Is it possible to achieve financial gains using the LPA?
Based on trading volumes at the NASDAQ stock market, one observes that MEM

parameters and the estimation quality considerably change over time. On average a
more precise adaptive estimates require local estimation windows of approximately 3 to
4 hours. A less conservative approach would select 2-3 hours of data. The local MEM
yields statistically better short-term forecasts than competing approaches using fixed-
length rolling windows of comparable sizes. It also results in financial benefits when
considering a (hypothetical) trading strategy. Implementing the proposed framework
requires re-estimating and re-evaluating the model based on rolling windows of different
lengths from minute to minute, yielding extensive insights into the time-varying nature
of high-frequency trading processes.

1.3 Cross Country Evidence for the EPK Paradox

In market microstructure literature, the empirical pricing kernel (EPK) paradox has been
reported in the options markets with payoffs dependent on the stock index holdings. The
’anomaly’ regarding the monotonicity of the pricing kernel has been shown to be time
persistent and significant.
On stock markets there does not exist much evidence about the (statistical) existence

or the persistence of the EPK paradox. It appears as a U-shaped functional estimate,
see, e.g., Dittmar [2002] who investigated equity returns of US data. Schweri [2010] often
rejects the non-monotonicity (more precisely the U-shaped EPK form) for high values
of wealth due to sparsity of data.
Following a recent and promising approach, we consider the pricing kernel derived

under state-dependent utility, see, e.g., Grith et al. [2011]. The methodology is here
applied to portfolios at six worldwide largest stock markets.
We aim answering the following research questions: (i) Does there exist an EPK para-

dox when considering cross-sections of equity returns? (ii) How well does the proposed
methodology (i.e. state dependent preference specification) explains the EPK paradox?
(iii) How strong is the variation of the EPK and its parameters over time? (iv) Is the
locally increasing EPK part statistically significant? (v) How strong is the cross country
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variation of the EPK in equity returns?
Based on stock market data at the worldwide leading markets we show that statisti-

cally there exists a EPK paradox. The results are quite robust across countries and for
the underlying framework specifications. Estimated EPK preference parameters exhibit
a time-varying pattern.
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If the facts don’t fit the theory, change the facts.
Albert Einstein

In this chapter we introduce the theoretical background relevant for the econometric
modelling of financial market data. We firstly introduce the dynamic semiparametric
factor model (DSFM) that deals with high-dimensional data structures evolving over
time. The model’s power lies in the joint modelling of the object’s spatial structure
(e.g. the LOB’s shape) and its temporal structure related to the most influential eco-
nomic variables, such as, e.g. the observed prices and liquidity demand, the bid-ask
spread, realized volatility or stock returns. We will therefore use the model for predic-
tion of liquidity supply, i.e. the order book’s shape and its (relative or absolute) position
depending upon the current market conditions, see Chapter 4.
Secondly, in the context of univariate financial time series modelling, the localized Mul-

tiplicative Error Model (MEM) addresses the question of time-varying MEM parameters.
A statistical technique, the so-called local parametric approach (LPA), is used to locally
(i.e. over short time intervals) approximate a financial time series’ dynamics by a MEM
structure. Here we strike a balance between parameter variability and the modelling
bias. The presented methodology allows to model any (positive) financial process, such
as, e.g., durations, bid-ask spreads, trading volumes, stock volatilities or trading costs.
We will illustrate its usefulness in a case study of predicting trading volumes for stocks
over the course of a trading day, see Chapter 4.
Finally, focusing on the market microstructure modelling, we investigate how agents

price assets on stock markets. The theory deals with the derivation of a pricing kernel
under state-dependent utility, as well as with a testing procedure on parameter signif-
icance. By applying the introduced methodology in Chapter 4, we provide worldwide
evidence for the empirical pricing kernel paradox (i.e. non-monotonicity of the pricing
kernel) on stock markets.

2.1 Dynamic Semiparametric Factor Model (DSFM)
In modelling liquidity supply we observe a high-dimensional object of order volume in-
ventories moving on a high frequency. We therefore apply a flexible statistical framework
that allows us to reduce the object’s dimensionality while preserving the spatial struc-
ture of the data, to parametrize the temporal dependence of the order book, as well as
to relate the book’s shape and dynamics to various economic variables.
Denote the (periodicity adjusted) volumes pending on the bid side at time t by Y b

t,j ∈
RJ and that on the ask side by Y a

t,j ∈ RJ . The seasonal adjustment of data is explained
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in Section 3.2. Our analysis considers four different depth levels of the book, namely
J ∈ {25, 50, 75, 101}. Due to the present modelling challenges we have to strike a balance
between information loss on the spatial and temporal structure of the process, involved
computational costs and the stability of employed numerical techniques.
In order to reduce the dimensionality a factor decomposition is commonly applied. A

high-dimensional object’s shape is then explained by few common (parametric) factors.
For example, in modelling yield curves, Nelson and Siegel [1987] propose a parametric
factor model based on Laguerre polynomials.
Since there is no (theoretical) form for the shape or dynamics of limit order book

curves, we capture the book’s spatial structure non-parametrically employing a Dynamic
Semiparametric Factor Model (DSFM), proposed by Fengler et al. [2007], Brüggemann
et al. [2008], Park et al. [2009] and Cao et al. [2009]. As the model is stipulated under
the modelling philosophy smooth in space and parametric in time it combines the ad-
vantages of a nonparametric approach (spatial dependence) and parametric modelling
(multivariate time series).

2.1.1 Model Structure
Let a random vector Yt,j ∈ RJ be decomposed based on the orthogonal L-factor model

Yt,j = m0,j + Zt,1m1,j + . . .+ Zt,LmL,j + εt,j , (2.1)

with time-invariant factors m (·) = (m0,m1, . . . ,mL)>, ml : Rd → R, l = 0, . . . , L and
factor loadings Zt = (1T , Zt,1, . . . , Zt,L)>. Here εt,j represents a white noise error term.
The time index is denoted by t = 1, . . . , T , whereas the cross-sectional (i.e. order book
level) index is j = 1, . . . , J .
The DSFM allows the factors ml to depend upon explanatory variables and thus can

be seen as a generalization of the factor model (2.1)

Yt,j =
L∑
l=0

Zt,lml (Xt,j) + εt,j = Z>t m (Xt,j) + εt,j , (2.2)

assuming that the processes Xt,j , εt,j and Zt are independent. Moreover, the number of
factors L should not exceed the object’s dimension J .
As explanatory variable Xt,j , we consider either the ’relative price levels’ on the bid

side Sbt,j or those on the ask side Sat,j . In studying the order book shape predictability
we consider additionally one of the three key (weakly exogenous) market variables: past
5-min aggregated trading volume on both sides of the market representing the recent
liquidity demand, the past 5-min log mid-quote return as well as the past 5-min volatility,
see Section 4.1.3.

2.1.2 Estimation
Factors ml are estimated using a series estimator, see, e.g. Park et al. [2009]. For
K ≥ 1, one selects functions ψk : [0, 1]d → R, k = 1, . . . ,K, such that

∫
ψ2
k (x) dx = 1
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holds. Park et al. [2009] select tensor B-spline basis functions, whereas Fengler et al.
[2007] use a kernel smoothing approach. We follow the former strategy. The factors
m (·) = (m0,m1, . . . ,mL)> are approximated by Aψ, with a coefficient matrix A =
(al,k) ∈ R(L+1)K and a vector of selected functions ψ (·) = (ψ1, . . . , ψK)>. K denotes
the number of knots and it can be seen as a bandwidth parameter. This allows us to
rewrite a part of model (2.2)

Z>t m (Xt,j) =
L∑
l=0

Zt,lml (Xt,j) =
L∑
l=0

Zt,l

K∑
k=1

al,kψk (Xt,j) = Z>t Aψ (Xt,j). (2.3)

The coefficient matrix A and time series of factor loadings Zt is estimated using least
squares. The estimated matrix Â and factor loadings Ẑt =

(
1T , Ẑt,1, . . . , Ẑt,L

)>
minimize

the sum of squared residuals, S (A,Zt)(
Ẑt, Â

)
= arg min

Zt,A
S (A,Zt) (2.4)

= arg min
Zt,A

T∑
t=1

J∑
j=1

{
Yt,j − Z>t Aψ (Xt,j)

}2
. (2.5)

Newton-Raphson algorithm is used to find a solution of the minimization in (2.5).
This algorithm converges to a solution at a geometric rate under some weak conditions
on the initial choice

{
vec (A)(0) , Z

(0)
t

}
, see, e.g. Park et al. [2009]. Furthermore, they

prove that the differences between the estimated loadings Ẑt and the true loadings Zt are
asymptotically negligible. It is therefore justified to model the estimated factor loadings
and consequently the object’s dynamics by a parametric multivariate time series. In our
work we consider a vector error correction (VEC) specification.

2.1.3 Application Details
The number of time-invariant factors L and the number of knots K is performed by
evaluating the proportion of explained variance (EV )

EV (L) = 1−RV (L) = 1−

T∑
t=1

J∑
j=1
{Yt,j −

L∑
l=0

Ẑt,lm̂l (Xt,j)}2

T∑
t=1

J∑
j=1
{Yt,j − Ȳ }2

. (2.6)

We choose linearly spaced knots. A starting point is determined by the minimal value
of the explanatory variable (corrected by -5%), whereas the end point corresponds to
the maximal value (corrected by 5%). Results of a sensitivity results are quite stable
regarding the choice of grid points. Due to the use of tensor B-spline functions for bid
and ask curves (which are monotone in the price), our estimated first factor m̂1 and the
estimated quantities Ŷt,j are adjusted for extreme price levels. For the bid side we keep
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constant the first (lowest) ten level values, and analogously, for the ask side we fix the
last (highest) ten level values. Finaly, the model’s goodness-of-fit is evaluated using the
root mean squared error (RMSE) criterion,

RMSE =

√√√√ 1
TJ

T∑
t=1

J∑
j=1
{Yt,j −

L∑
l=0

Ẑt,lm̂l (Xt,j)}2. (2.7)

In summary, the DSFM framework allows us to simultaneously model the order book’s
shape and its dynamics. It will help us to discuss the spatial and temporal dependencies
(structures) between liquidity supply and various economic variables, such as, e.g., the
’relative price levels’, trading volume (liquidity demand), mid-quote returns, realized
volatility and the best ’bid’ and ’ask’ prices (with corresponding returns and the bid-ask
spread).

2.2 Multiplicative Error Model (MEM)
While the DSFM framework successfully deals with high-dimensional data structures, a
Multiplicative Error Model (MEM), as discussed by Engle [2002], is widely used in uni-
variate financial time series analysis like, e.g., in modelling trading volumes, durations,
bid-ask spreads, price volatilities, market depth or trading costs. A MEM specification
assumes, contrary to empirical evidence, time-invariant parameter structures over long
estimation windows. In localizing MEM we therefore aim to find the longest estimation
window over which one can safely apply a parametric MEM structure.

2.2.1 Model Structure
The model structure is based on the idea of an autoregressive conditional heteroscedas-
ticity (ARCH) specification introduced by Engle [1982]. The framework is essentially
used for modelling the temporal dependence and clustering effects in financial data. In
high-frequency finance, Engle and Russell [1998] were first to apply the MEM to trade
durations. Since then, MEM literature grew, see, e.g., Hautsch [2012] for a comprehen-
sive overview.
Denote by y = {yi}ni=1 a positive valued (financial) process. The data is modelled as

a product of its conditional mean µi and a positive valued (unit mean) error term εi

yi = µiεi, E [εi | Fi−1] = 1, (2.8)

given the information set Fi up to observation i. The conditional mean process follows
an ARMA-type specification

µi = µi(θ) = ω +
p∑
j=1

αjyi−j +
q∑
j=1

βjµi−j , (2.9)

with parameters ω, α = (α1, . . . , αp)> and β = (β1, . . . , βq)>.
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In modelling squared (de-meaned) log returns the model structure resembles the con-
ditional variance equation of a GARCH(p, q) model. In the context of modelling duration
data, econometric literature refers to it as an autoregressive conditional duration (ACD)
model. Here both labels are used as synonyms.

2.2.2 Distributional Assumptions

We choose the (standard) exponential and the Weibull distribution for modelling of the
error term εi, see, e.g. Engle and Russell [1998]. A quasi maximum likelihood approach
results in consistent MEM parameter estimation even in the case of distributional mis-
specification. Denote by I = [i0−n, i0] a (right-end) fixed interval of (n+ 1) observations
at observation i0. We consider the following ACD models:
(i) Exponential-ACD model (EACD) - εi ∼ Exp (1), θE =

(
ω, α>, β>

)>
, with (quasi)

log likelihood function over I = [i0 − n, i0] given i0,

LI (y; θE) =
n∑

i=max(p,q)+1

(
− logµi −

yi
µi

)
I (i ∈ I) ; (2.10)

(ii) Weibull-ACD model (WACD) - εi ∼ G (s, 1), θW =
(
ω, α>, β>, s

)>
, with (quasi)

log likelihood function over I = [i0 − n, i0] given i0,

LI (y; θW ) =
n∑

i=max(p,q)+1

[
log s

yi
+ s log Γ (1 + 1/s) yi

µi
−
{Γ (1 + 1/s) yi

µi

}s]
·

· I (i ∈ I) . (2.11)

The quasi-maximum likelihood estimates (QMLEs) of θE and θW over the data interval
I are given by

θ̃I = arg max
θ∈Θ

LI (y; θ). (2.12)

2.2.3 Estimation Quality

We access the quality of the QMLE θ̃I of the true parameter vector θ∗ by the Kullback-
Leibler divergence. For a fixed estimation interval I consider the (positive) difference
LI(θ̃I) − LI(θ∗). The expressions for the log likelihood expressions for the EACD and
WACD models given by (2.10) and (2.11), respectively. We define the loss function as
the r−th power of that difference, i.e. LI(θ̃I , θ∗)

def=
∣∣∣LI(θ̃I)− LI(θ∗)∣∣∣r.

For any risk power r > 0, there exists a constant, the so-called (parametric) risk bound
Rr (θ∗), such that it bounds the expected loss function

Eθ∗
∣∣∣LI(θ̃I , θ∗)∣∣∣r ≤ Rr (θ∗) , (2.13)

see, e.g., Spokoiny [2009] and Čížek et al. [2009].
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Recall that the idea behind localizing MEM is to find a data interval, i.e. the so-called
interval of homogeneity, over which one can safely use the parametric MEM structure
with constant parameters. The power r can be seen in this context as a steering pa-
rameter. Higher (lower) values of r lead to, ceteris paribus, longer (shorter) intervals
of homogeneity. In this work we consider two scenarios, namely the ’modest risk case’
(r = 0.5) and a ’conservative risk case’ (r = 1). Practically, the ’modest risk case’ would
result, contrary to the ’conservative risk case’, with shorter intervals of homogeneity,
more variable parameters and essentially a lower modelling bias. We therefore suspect
that the ’modest risk case’ may outperform the ’conservative risk case’ in short-term
forecasting.

2.3 Local Parametric Approach (LPA)

A local parametric approach (LPA) requires that a time series can be locally, i.e., over
short time periods, approximated by a parametric model. The idea behind the LPA is
to statistically find the longest interval over which parameter homogeneity cannot be
rejected. We consequently assume that high-frequency data locally follow the MEM
structure presented in Section 2.2. This assumption is quite realistic in practical appli-
cations.
The LPA was proposed by Spokoiny [1998] and it has been gradually introduced into

the econometrics literature. It was successfully used for daily volatility modelling, see,
e.g., Mercurio and Spokoiny [2004] (local constant volatility), Čížek et al. [2009] (GARCH
models), Chen et al. [2010] (realized volatility). We apply the LPA to high-frequency
(transaction) data with the goal to understand the dynamics of financial processes when
all single events are recorded.

2.3.1 Statistical Framework

Econometric literature suggests that local modelling outperforms global (parametric)
modelling. Although long estimation windows reduce the parameter variability, they
considerably enlarge the modelling bias. This effect is even more pronounced in high-
frequency data analysis. By striking a balance between parameter variability and the
modelling bias, the methodology presented below yields an interval of homogeneity. One
can safely use this interval in modelling of transaction data.
We measure the theoretical differences between the underlying ’true’ process µi and

the parametric model µi (θ) in (2.9) by the entity ∆Ik(θ) =
∑
i∈Ik K{µi, µi(θ)} over a

given data interval Ik, where K(·) denotes the Kullback-Leibler divergence. Denote by
∆ ≥ 0 the small modelling bias (SMB), i.e. a constant that bounds the expected value
of the modelling differences

E [∆Ik(θ)] ≤ ∆, (2.14)

for a fixed interval Ik and for some θ ∈ Θ.
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The SMB condition implies that in our QML estimation framework with loss function
LI(θ̃I , θ∗) over a fixed data interval I

E
[
log

{
1 +

∣∣∣LI(θ̃I , θ∗)∣∣∣r /Rr (θ∗)
}]
≤ 1 + ∆, (2.15)

where Rr (θ∗) denotes the (parametric) risk bound in (2.13).
Consider (K + 1) nested intervals (with right-end point i0 fixed) Ik = [i0 − nk, i0] of

length nk and I0 ⊂ I1 ⊂ · · · ⊂ IK . The ’oracle’ (i.e., theoretically optimal) selected Ik∗
is the largest interval for which the SMB condition holds E

[
∆Ik∗ (θ)

]
≤ ∆.

In practice the entity ∆Ik is unknown and therefore we aim to mimic the oracle
choice using a sequential testing procedure, see Section 2.3.2. The resulting interval of
homogeneity I

k̂
is then used for defining the adaptive estimate. An important property

of the adaptive estimation is that the involved estimation errors during steps k ≤ k∗ are
not larger than those induced by QML estimation based on k∗ (stability condition), see,
e.g., Čížek et al. [2009] and Spokoiny [2009]. The adaptive estimation therefore does not
incur a larger estimation error compared to the situation where k∗ is known, see (2.15).
The lengths of the underlying intervals are chosen to evolve on a geometric grid with

initial length n0 and a multiplier c > 1, nk =
[
n0c

k
]
. We select n0 = 60 observations

(i.e., minutes) and consider two schemes with c = 1.50 and c = 1.25 and K = 8 and
K = 13, respectively:

(i) 9 estimation windows: n0 = 60 min, n1 = 90 min, . . ., n8 = 1800 min (1 week),
and

(ii) 14 estimation windows: n0 = 60 min, n1 = 75 min, . . ., n13 = 1800 min (1 week).

The later scheme bears a slightly finer granulation than the first one.

2.3.2 Local Change Point (LCP) Detection Test
The selection of the interval of homogeneity is performed based on a sequential testing
procedure. At each interval Ik, k = 1, . . .K one tests the null on parameter homogeneity
against a change point alternative. The alternative hypothesis at step k states that there
exists a change point at unknown location τ within Ik.
The test statistic of the test is given by

TIk,Jk = sup
τ∈Jk

{
LAk,τ

(
θ̃Ak,τ

)
+ LBk,τ

(
θ̃Bk,τ

)
− LIk+1

(
θ̃Ik+1

)}
, (2.16)

where Jk and Bk denote intervals Jk = Ik \ Ik−1, Ak,τ = [i0 − nk+1, τ ] and Bk,τ = (τ, i0].
This intervals use a part of the observations within Ik+1. The test statistic considers the
maximum (supremum) of the corresponding likelihood ratio statistics over all (unknown)
change points τ ∈ Ik.
The testing procedure is graphically illustrated in Figure 2.1. Assume that for fixed

i0 parameter homogeneity in the interval Ik−1 has been established. Homogeneity in
interval Ik would mean that there is no break point τ in the interval Jk = Ik \ Ik−1. For
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2 Theoretical Modelling

every τ , we compute the log likelihoods over the intervals Ak,τ = [i0 − nk+1, τ ] (colored
in red) and Bk,τ = (τ, i0] (colored in blue). The test statistics (2.16) is then computed
as the supremum of these likelihood values for each τ ∈ Jk relative to the log likelihood
associated with the interval Ik+1.
For example, let us test for parameter homogeneity at step k = 1, i.e. consider

the interval I1 = 75 min. We search for possible change point(s) within J1 = I1 \ I0,
containing observations from yi0−75 up to yi0−60. Sum the log likelihood values fitted over
A1,τ and B1,τ and subtract the likelihood over I2. The test statistic (2.16) corresponds
to the largest obtained likelihood ratio.

Figure 2.1: Graphical illustration of sequential testing for parameter homogeneity in
interval Ik with length nk = |Ik| ending at fixed time point i0. Suppose
we have not rejected homogeneity in interval Ik−1, we search within the
interval Jk = Ik \ Ik−1 for a possible change point τ . The red interval marks
Ak,τ and the blue interval marks Bk,τ (blue) splitting the interval Ik+1 into
two parts depending upon the position of the unknown change point τ .

2.3.3 Adaptive Estimation

At every step k we search for the longest interval of homogeneity I
k̂
for which the

null hypothesis (parameter homogeneity) is still not rejected. This is accomplished by
comparison of the test statistic (2.16) and the corresponding (simulated) critical value.
The construction of critical values is explained in the following Section 2.3.4. Then the
adaptive estimate θ̂ is defined as the QMLE at the interval of homogeneity

θ̂ = θ̃
k̂
. (2.17)

Note that if the null hypothesis is already rejected at the first step of the LCP detection
test from Section 2.3.2, then θ̂ equals to the QMLE at the shortest interval. In our case,
the shortest interval (by assumption homogeneous) is I0 = 60 min. If no break point can
(still) be detected within IK , then θ̂ equals the QMLE over the longest window. The
longest interval in our case contains 1800 observations: IK = 1800 min = 1 week.
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2.3.4 Critical Values
The test statistic for parameter homogeneity is a nonlinear function (supremum) of the
likelihood and therefore it makes the derivation of distributional properties difficult. We
therefore simulate the critical values under the null of parameter homogeneity over the
interval sequence {Ik}Kk=1. The idea is to control the loss due to adaptive estimation since
step k̂ < K is potentially selected. Under the null hypothesis of parameter homogeneity,
the correct choice is the largest considered interval IK . At each step k = 1, . . . ,K we
impose the following (’propagation’) condition on the corresponding k−th step critical
value

Eθ∗
∣∣∣LIk(θ̃Ik)− LIk(θ̂Ik)

∣∣∣r ≤ ρkRr (θ∗) , (2.18)

with ρk = ρk/K for given significance level ρ and the risk bound Rr (θ∗), recall (2.13).
So selected critical values ensure that the loss associated with ’false alarm’ (i.e., select-

ing k < K) is at most a ρ-fraction of the parametric risk bound of the ’oracle’ estimate
θ̃K . For r → 0, ρ can be interpreted as the false alarm probability.
Since the test statistic (2.16) is not studentized, one needs to check the critical values

for different null parameters θ∗. The simulation of critical values depends furthermore
upon the involved parameters (r, ρ, K), as well as the modelling framework employed
(EACD or WACD). The parametric risk bound Rr (θ∗) given in (2.13) has to be simu-
lated as well.
We select nine parameter constellations based on a local parameter dynamics study,

see Section 4.2.1 and Table 4.11. Due to the (high-frequency) nature of financial data,
we rather follow a data-driven selection technique than a grid-search based approach.
Here we consider two risk levels (r = 0.5 and r = 1), two interval granulation schemes
(K = 8 and K = 13) and two significance levels (ρ = 0.25 and ρ = 0.50).
The resulting critical values satisfying (2.18) for the nine possibilities of ’true’ param-

eter constellations from Table 4.11 of the EACD(1, 1) model for interval schemes with
K = 8 and K = 13 are displayed in Figures 2.2 and 2.3, respectively. Similarly, the
criticial values of the WACD(1, 1) model for the two considered interval schemes (K = 8
and K = 13) are shown in Figures 2.4 and 2.5, respectively. We distinguish at each
scenario between a ’moderate risk case’ (r = 0.5) and a ’conservative risk case’ (r = 1).
We set ρ = 0.25 since the results with ρ = 0.50 are quite similar.
The critical values are almost invariable with respect to θ∗ across the nine scenarios,

recall the parameter constellations from Table 4.11. The largest difference between all
cases appears for interval lengths up to 90 minutes, i.e. until step k = 3. We observe
that the critical values are robust across the range of parameters, particularly for the
underlying risk cases (r = 0.5 and r = 1), interval selection schemes and models under
consideration (EACD and WACD).
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Figure 2.2: Simulated critical values of an EACD(1, 1) model for the ’moderate risk case’
(r = 0.5, upper panel) and the ’conservative risk case’ (r = 1, lower panel),
ρ = 0.25, K = 8 and chosen parameters constellations according to Table
4.11. The low (blue), middle (green) and upper (red) curves are associated
with the corresponding ratio levels β̃/(α̃+ β̃).

Figure 2.3: Simulated critical values of an EACD(1, 1) model for the ’moderate risk case’
(r = 0.5, upper panel) and the ’conservative risk case’ (r = 1, lower panel),
ρ = 0.25, K = 13 and chosen parameters constellations according to Table
4.11. The low (blue), middle (green) and upper (red) curves are associated
with the corresponding ratio levels β̃/(α̃+ β̃).
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Figure 2.4: Simulated critical values of a WACD(1, 1) model for the ’moderate risk case’
(r = 0.5, upper panel) and the ’conservative risk case’ (r = 1, lower panel),
ρ = 0.25, K = 8 and chosen parameters constellations according to Table
4.11. The low (blue), middle (green) and upper (red) curves are associated
with the corresponding ratio levels β̃/(α̃+ β̃).

Figure 2.5: Simulated critical values of a WACD(1, 1) model for the ’moderate risk case’
(r = 0.5, upper panel) and the ’conservative risk case’ (r = 1, lower panel),
ρ = 0.25, K = 13 and chosen parameters constellations according to Table
4.11. The low (blue), middle (green) and upper (red) curves are associated
with the corresponding ratio levels β̃/(α̃+ β̃).

17
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2.4 Pricing Kernel under State-Dependent Utility

In market microstructure literature (particularly in asset pricing), a promising technique
for preference modelling works with the pricing kernel under state-dependent utility, see,
e.g., Grith et al. [2011]. The presented methodology considers therefore a more realistic
economic framework.

2.4.1 Economic Setup

We consider a representative agent with an exogenous income ωt at time t. The entire
income is used to finance current consumption ct and to purchase a financial portfolio
consisting of k assets with prices St = (S1,t, . . . , Sk,t)>

ωt = ct + q>t St, (2.19)

where qt = (q1,t, . . . , qk,t)> denotes the vector of asset holdings. The agent’s current
consumption therefore equals the difference between the income and the financial wealth,
i.e. ct = ωt − q>t St. Given the current portfolio choice qt, the next period consumption
includes the future income and all asset payoffs, that is ct+1 = ωt+1 + q>t St+1, where
St+1 denotes the asset prices including all corresponding payoffs at time t+ 1.
A representative agent maximizes the following expected time separable and state-

dependent utility

u (ct, ct+1) = u (ct) + β1Et [u (ct+1)] I {ct ∈ [0, x)}+ β2Et [u (ct+1)] I {ct ∈ [x,∞)} (2.20)

with given reference point x at which the agent may switch between two preference
specifications given potentially different (non-negative) impatience parameters β1 and
β2, see, e.g., Grith et al. [2011]. We denote the conditional expectation operator by
Et [•] = E [• | Ft], given the information set Ft up to time t.
It turns out that the maximization of the expected utility (2.20) over the consumption

stream is equivalent to the choice of the optimal portfolio holding qt

max
ct,ct+1

u (ct, ct+1) = max
qt

[ u
(
ωt − S>t qt

)
+

+ β1Et
[
u
(
ωt+1 + q>t St+1

)]
I
{(
ωt+1 + q>t St+1

)
∈ [0, x)

}
+ (2.21)

+ β2Et
[
u
(
ωt+1 + q>t St+1

)]
I
{(
ωt+1 + q>t St+1

)
∈ [x,∞)

}
] .

The first order conditions for (expected) utility maximization therefore imply the fol-
lowing fundamental asset pricing formula

St = Et
[{
β1
u′ (ct+1)
u′ (ct)

I {ct ∈ [0, x)}+ β2
u′ (ct+1)
u′ (ct)

I {ct ∈ [x,∞)}
}
St+1

]
. (2.22)
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2.4.2 Pricing Kernel

The multiplicative term related to St+1 in (2.22) denotes the consumption based in-
tertemporal pricing kernel or the stochastic discount factor that measures the intertem-
poral rate of consumption substitution. Under logarithmic utility, i.e. with u (ct) = log ct
and u (ct+1) = log ct+1, the intertemporal rate of consumption substitution becomes an
inverse function of consumption growth

u′ (ct+1)
u′ (ct)

=
(
ct+1
ct

)−1
. (2.23)

In practice one observes poor consumption data quality and therefore the consump-
tion based intertemporal pricing kernel is related to data that approximate or influence
agent’s consumption, see, e.g. Cochrane [2001]. Consumption growth is therefore in
practice approximated by the simple market gross return rm,t+1 = Sm,t+1/Sm,t, where
the observed stock market index value at time t is denoted by Sm,t. Finally, the state-
dependent pricing kernel (for fixed reference point x) is given by

Kθ (rm,t+1) = β1r
−1
m,t+1I {rm,t+1 ∈ [0, x)}+ β2r

−1
m,t+1I {rm,t+1 ∈ [x,∞)} , (2.24)

with parameter vector θ = (β1, β2)>.

2.4.3 Moment Conditions

The asset pricing equation (2.22) reads as

St = Et [Kθ (rm,t+1)St+1] , (2.25)

or expressed in return terms it can be interpreted as the expectation of k (conditional)
moment conditions

Et [Kθ (rm,t+1)Rt+1 − 1k] = 0k, (2.26)

where Rt+1 = (S1,t+1/S1,t, . . . , Sk,t+1/Sk,t)> denotes the simple gross asset return vector.
The k-dimensional vectors of ones and zeros are denoted by 1k and 0k, respectively. An
optimal asset allocation therefore implies that for each asset, the expected value of the
cross-product between the pricing kernel and the simple gross asset return equals one.

2.5 Generalized Method of Moments

In estimation of the pricing kernel given in (2.25) we utilize the Generalized Method of
Moments (GMM) approach, as proposed by Hansen [1982]. Based on the k (conditional)
moment conditions from the asset pricing equation (2.26)

g (θ) def= Kθ (rm,t+1)Rt+1 − 1k, Et [g (θ)] = 0k, (2.27)
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we define the sample moment function as

gn (θ) def= n−1
n−1∑
t=0
{Kθ (rm,t+1)Rt+1 − 1k}, (2.28)

over the data sample of size n.

2.5.1 Parameter Estimation

The parameter vector θ is estimated by two techniques:

(i) Iterated GMM estimation based on a two-step efficient GMM estimation procedure
by Hansen and Singleton [1982], see, e.g., Ferson and Foerster [1994] - in the first
step, using a feasible weighting matrix (e.g. the identity matrix of order k) we
obtain the estimate

θ̃n
def= arg min

θ

{
g>n (θ) gn (θ)

}
. (2.29)

The resulting consistent optimal weighting matrix is given by

W̃n = n−1
n−1∑
t=0

g(θ̃n)g(θ̃n)>. (2.30)

Secondly, based on the optimal weighting matrix W̃n the feasible efficient GMM
estimate solves

θ̂n
def= arg min

θ

{
g>n (θ) W̃−1

n gn (θ)
}

(2.31)

and leads to the following consistent optimal weighting matrix

Ŵn = n−1
n−1∑
t=0

g(θ̂n)g(θ̂n)>. (2.32)

The second step is iterated until parameter convergence. As a rule of thumb, we
stop when the estimated parameters do not differ on the fourth digit.

(ii) GMM estimation with Hansen-Jagannathan (HJ) weighting matrix

W̃n = n−1
n−1∑
t=0

RtR
>
t , (2.33)

see, e.g., Jagannathan and Wang [1996] and Hansen and Jagannathan [1997]. The
estimate follows directly from (2.31). This technique may provide better finite
sample properties of the GMM estimate as the matrix is not a function of the
model parameters, i.e. it may lead to more robust results, see, e.g., Cochrane
[2001].
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2.5.2 Hypothesis Testing
The GMM modeling framework allows us to test for the non-monotonicity of the pricing
kernel. We employ the so-called “D-test”, as proposed by Newey and West [1987]. The
corresponding test statistic is given by

D =ng>n (θ̃n)W̃−1
n gn(θ̃n)− ng>n (θ̌n)W̌−1

n gn(θ̌n) L→ χ2
j , (2.34)

with j denoting the number of imposed parameter restrictions. The estimated parameter
vectors using two methods are denoted by θ̃n and θ̌n. The associated weighting matrices
are labeled by W̃ and W̌ , respectively.
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3 Data

It is the theory that decides what we can observe.
Albert Einstein

3.1 Stock Markets around the Globe

In estimating pricing kernels we select six from the worldwide largest ten stock markets,
namely the Australian Securities Exchange (Australia - AUS), Deutsche Börse (Germany
- GER), the Tokyo Stock Exchange (Japan - JPN), the SIX Swiss Exchange (Switzerland
- SUI), the London Stock Exchange (United Kingdom - UK) and the New York Stock
Exchange (United States - US). At each exchange, the data collected from Datastream
and EcoWin include daily stock index values, interest rates, as well as closing stock
prices of the largest 20 companies by market capitalization augmented on 31 May 2012,
whose stocks were continuously traded during the sample period from 1 January 1990
until 31 May 2012.
In modelling and forecasting liquidity supply we focus on limit order book data for

four companies at the Australian Securities Exchange from 8 July to 16 August 2002, see
Section 3.2. The local multiplicative error model is applied to transaction data of five
large NASDAQ stocks in the period from 2 January to 31 December 2008, see Section
3.3.

3.1.1 Descriptive Statistics

Denote the index value at given stock market at time t by Sm,t and the closing stock
prices of 20 blue chips by St = (S1,t, . . . , S20,t)>. The variables of interest in es-
timating the pricing kernel are the monthly overlapping simple market gross return
Rm,t+1 = Sm,t+1/Sm,t−20, as well as the monthly overlapping simple stock gross returns
Rt+1 = (S1,t+1/S1,t−20, . . . , S20,t+1/S20,t−20)>. The time series of the market returns are
displayed in Figure 3.1 and descriptive statistics thereof are summarized in Table 3.1.
We find left-skewed and leptokurtic distributions, thus the distributions have more

probability mass around the center and in the tails than the normal distribution. In
financial time series kurtosis is typically larger than 3 due to the frequent appearance of
outliers. The average index return is close to one in all cases with a dispersion of about
4-5%. High market volatility is observed during the stock market distress period from
1998-2003 and during the present financial crisis which started in fall 2008.
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Figure 3.1: Market returns for selected stock market indices on major stock markets from
1 January 1990 until 31 May 2012 (5827 observations per series).

3.1.2 Portfolio Selection

At each stock exchange we select among the most frequently traded stocks a portfolio of
20 largest blue chips. The selected market portfolios share similar worldwide performance
(results not reported in the paper) and focus country-wise on the most dominating
industries. Our empirical results are therefore comparable across countries. In order to
discuss robustness of our results, we split the initial pool of 20 stocks per market into six
equally-weighted (sub-)portfolios per criteria selected. Current finance literature suggest
to group stocks firstly according to their book/market (B/M) value into three groups
(high - 30%, medium - 40% and low - 30% of companies), see, e.g., Fama and French

Country Index Mean St. deviation Skewness Kurtosis
Australia S&P/ASX 200 1.004 0.041 -0.48 4.54
Germany DAX 30 1.007 0.062 -0.65 4.84
Japan NIKKEI 225 0.997 0.064 -0.14 4.44
Switzerland SMI 1.006 0.051 -0.41 5.20
United Kingdom FTSE 100 1.004 0.045 -0.53 4.88
United States S&P 500 1.006 0.046 -0.63 6.48

Table 3.1: Descriptive statistics of monthly returns of the selected market indices from
1 January 1990 until 31 May 2012 (5827 observations per series).

24



3.1 Stock Markets around the Globe

[1992]. Secondly, the stocks are divided into two groups according to one of the following
criteria:

(i) Size - based on the market capitalization we distinguish between large and small
companies, see, e.g., studies that employ the Fama-French three factor model by
Fama and French [1993].

(ii) Momentum - stocks with the highest (lowest) past 12-month return are expected
to yield high (low) return in the following month, as firstly shown by Jegadeesh
[1990]. We consider therefore the average 12-month overlapping return to catego-
rize companies.

(iii) Beta - in the capital asset pricing model (CAPM), developed independently by
various authors in the sixties, the “beta” factor of stock i is given by the ratio
Cov (Ri,t, Rm,t) /Var (Rm,t), t = 1, . . . , n. Stocks with larger beta tend to be more
volatile and therefore riskier.

The performance of all considered portfolios is illustrated in Tables 3.2, 3.3 and 3.4
for companies with high, medium and low book-to-market ratio, respectively.

Country Size Momentum Beta
High Low High Low High Low

Australia 1.0101 1.0071 1.0114 1.0058 1.0079 1.0093
Germany 1.0049 1.0028 1.0051 1.0026 1.0026 1.0051
Japan 0.9999 1.0020 1.0040 0.9979 1.0017 1.0002
Switzerland 1.0059 1.0065 1.0080 1.0043 1.0059 1.0065
United Kingdom 1.0101 1.0091 1.0124 1.0067 1.0095 1.0096
United States 1.0070 1.0110 1.0110 1.0070 1.0103 1.0078

Table 3.2: Average return of selected portfolios for companies with a high book-to-market
ratio from 1 January 1990 until 31 May 2012.

Country Size Momentum Beta
High Low High Low High Low

Australia 1.0090 1.0107 1.0116 1.0081 1.0090 1.0106
Germany 1.0093 1.0064 1.0104 1.0053 1.0089 1.0069
Japan 1.0045 1.0036 1.0054 1.0027 1.0033 1.0048
Switzerland 1.0092 1.0083 1.0110 1.0065 1.0069 1.0106
United Kingdom 1.0095 1.0117 1.0135 1.0078 1.0128 1.0085
United States 1.0095 1.0132 1.0154 1.0072 1.0149 1.0078

Table 3.3: Average return of selected portfolios for companies with a medium book-to-
market ratio from 1 January 1990 until 31 May 2012.
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Country Size Momentum Beta
High Low High Low High Low

Australia 1.0077 1.0089 1.0107 1.0058 1.0107 1.0058
Germany 1.0127 1.0112 1.0150 1.0088 1.0127 1.0112
Japan 1.0065 1.0026 1.0065 1.0026 1.0041 1.0050
Switzerland 1.0105 1.0111 1.0125 1.0091 1.0120 1.0097
United Kingdom 1.0087 1.0121 1.0150 1.0058 1.0113 1.0095
United States 1.0182 1.0093 1.0182 1.0093 1.0182 1.0093

Table 3.4: Average return of selected portfolios for companies with a low book-to-market
ratio from 1 January 1990 until 31 May 2012.

Empirical evidence shows that portfolios of high momentum stocks achieve worldwide
best results irrespectively upon the book-to-market ratio. Volatility of a stock (here
measured by the beta factor) is negatively related to the book-to-market (B/M) ra-
tio. This means that the best performance of high (low) B/M stocks is achieved for
low (high) volatile stocks. The influence of company’s size on the B/M performance
varies over markets. We distinguish between countries with neutral (Germany), mixed
(Switzerland), positive (Australia and UK) and negative effect (Japan and US). For ex-
ample, on a German market the largest companies outperform small ones in any case.
For countries with positive (negative) tendency, portfolios of large (small) companies are
more desirable given high B/M value.

3.2 Trading at the Australian Stock Exchange (ASX)
The Australian Stock Exchange (ASX) is a continuous double auction electronic market.
The continuous auction trading period is preceded and followed by a call auction. Normal
trading takes place continuously on all stocks between 10:09 a.m. and 4:00 p.m. from
Monday to Friday. Any buy (sell) order entered that has a price that is greater than (less
than) or equal to existing queued buy (sell) orders, will be executed immediately. If an
order cannot be executed completely, the remaining volume enters the queues as a limit
order. Limit orders are queued in the buy and sell queues according to a strict price-time
priority order. Orders can be entered, deleted and modified without restriction.
For order prices below 10 cents, the minimum tick size is 0.1 cents, for order prices

above 10 cents and below 50 cents it is 0.5 cents, whereas for orders priced 50 cents and
above it is 1 cent. There might be orders which are entered with an undisclosed or hidden
volume if the total value of the order exceeds AUD 200,000. As this applies only to a
small fraction of the posted volumes, we safely neglect the occurrence of hidden volume
in our empirical study. For more details on the data, see Hall and Hautsch [2007] using
the same data base as well as the official description of the trading rules of the Stock
Exchange Automated Trading System (SEATS) on the ASX on www.asxonline.com.
We select four companies traded at the ASX covering the period from 8 July to 16

August 2002 (30 trading days), namely Broken Hill Proprietary Limited (BHP), National
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Australia Bank Limited (NAB), MIM and Woolworths (WOW). The number of market
and limit orders in the period under review for the selected stocks is given in Table 3.5.

Orders BHP NAB MIM WOW
Market orders
(i) buy 28,030 16,304 4,115 7,260
(ii) sell 16,755 15,142 2,789 6,464
Limit orders
(i) buy (bid side) 50,012 28,850 9,551 13,234

- changed 8,009 7,561 1,637 3,203
- cancelled 5,202 4,725 2,044 1,951

(ii) sell (ask side) 32,053 25,953 6,474 11,318
- changed 6,891 6,261 1,862 3,164
- cancelled 4,692 3,863 1,178 1,554

Table 3.5: Total number of market and limit orders for selected stocks traded at the
ASX from 8 July to 16 August 2002.

There are more buy orders than sell orders implying that the bid side of the limit order
book was changing more frequently than the ask side. BHP and NAB are significantly
more actively traded than MIM and WOW shares. Aggregated over all stocks, 20.08%
(23.98%) of all bid (ask) limit orders have been changed (after posting), whereas 13.70%
(14.89%) have been cancelled. For both traded as well as posted quantities we find that
on average sell volumes are higher than buy volumes (not reported here). Liquidity
variations on the bid side are again higher than that of the ask side. This finding might
be explained by the fact that during the analyzed period the market generally went down
creating more sell activities than buy activities.
The original dataset contains all limit order book records as well as the corresponding

order curves represented by the underlying price-volume combinations. The latter is
the particular object of interest for the remainder of the analysis. The underlying limit
order book data contains identification attributes regarding r = 1, . . . , R different orders
as well as quantities demanded and offered for different price levels j = 1, . . . , J , at any
time point t = 1, . . . , T . At any t, we observe J = 101 price levels on a fixed minimum
tick size grid originating from the best bid and ask quote.
Since the order book dynamics are found to be very persistent, we choose a sampling

frequency of five minutes without losing too much information on the liquidity supply.
To remove effects due to market opening and closure, the first 15 minutes and last 5
minutes are discarded. At each trading day, starting at 10:15 and ending at 15:55, we
select per stock 69 price-quantity vectors, in total T = 2070 vectors over the whole
sample period. Denote by Ỹ b

t,j and Ỹ a
t,j the pending bid and ask volumes at bid and ask

limit prices S̃bt,j and S̃at,j , respectively at time point t.
The best bid price at time t is defined as the highest buy price S̃bt,101, and similarly,

the best ask price at t as the lowest sell price S̃at,1. The corresponding quantities at
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best bid and ask prices are then Ỹ b
t,101 and Ỹ a

t,1, respectively, yielding the mid-quote
price to be defined as S̃∗t =

(
S̃bt,101 + S̃at,1

)
/2. The absolute price deviations from the

best bid and ask price at level j and time t are given by S̆bt,j = S̃bt,j − S̃bt,101 and S̆at,j =
S̃at,j − S̃at,1, respectively and constitute a fixed price grid. To measure spreads between
individual price levels in relative terms, i.e., in relation to the prevailing best bid and ask
price, we define so-called ’relative price levels’ as Sbt,j = S̆bt,j/S̃

b
t,101 and Sat,j = S̆at,j/S̃

a
t,1,

respectively.
In order to investigate to which extent order book information might reveal informa-

tion to predict high-frequency returns, we regress 1 min and 5 min mid-quote returns,
respectively, on lagged order imbalances

Ỹ b
t−1,j/

(
Ỹ b
t−1,j + Ỹ a

t−1,j

)
and Ỹ a

t−1,j/
(
Ỹ b
t−1,j + Ỹ a

t−1,j

)
,

respectively, for j = 1, . . . , 101. Figure 3.2 shows the implied R2 values in dependence of
the number of included imbalance levels. It turns out that order book imbalances indeed
reveal short-term predictability. Even levels far apart from the market have still distinct
prediction power pushing the R2 to values of approximately 10%. These findings show
that the order book itself reveals predictive content for future price movements which
could be exploited in trading strategies.

Figure 3.2: Coefficients of determination (R2) implied by linear regression of 1 min (red)
and 5 min (blue) mid-quote returns on lagged order imbalances for selected
stocks traded at the ASX from 8 July to 16 August 2002 (30 trading days).
The horizontal axis depicts the number of included imbalance levels.

In order to account for intra-day seasonality effects, we adjust the order volumes
correspondingly. To avoid to seasonally adjust all individual volume series separately,
we assume that the seasonality impact on quoted volumes at all levels is identical and is
well captured by the seasonalities in market depth on the best bid and ask levels Ỹ b

t,101
and Ỹ a

t,1, respectively. Assuming a multiplicative impact of the seasonality factor, the
seasonally adjusted quantities are computed for both sides of the market at price level
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j, and time t as

Y b
t,j =

Ỹ b
t,j

sbt
(3.1)

Y a
t,j =

Ỹ a
t,j

sat
, (3.2)

with sbt and sat representing the seasonality components at time t for the bid and the ask
side, respectively.
The non-stochastic seasonal trend factors sbt and sat are specified parametrically using

a flexible Fourier series approximation as proposed by Gallant [1981] and are given by

sbt = δb · t̄+
Mb∑
m=1
{δbc,m cos

(
t̄ · 2πm

)
+ δbs,m sin

(
t̄ · 2πm

)
} (3.3)

sat = δb · t̄+
Ma∑
m=1
{δac,m cos

(
t̄ · 2πm

)
+ δas,m sin

(
t̄ · 2πm

)
}. (3.4)

Here δb, δa, δbc,m, δac,m, δbs,m and δas,m are coefficients to be estimated, and t̄ denotes a
normalized time trend mapping the time of the day on a (0, 1] intervals. The polynomial
orders M b and Ma are selected according to the Bayes information criterion (BIC).
For all stocks we select M b = Ma = 1, except for the bid side for BHP (M b = 2).
The resulting intra-day seasonality patterns for both sides of all order book markets are
plotted in Figure 3.3.
Liquidity supply increases for all stocks before market closure. We attribute this find-

ing to traders’ pressure and willingness to close positions overnight. Posting aggressive
limit orders on the best levels (or even within the spread) maximizes the execution prob-
ability and avoids crossing the spread. Moreover, weak evidence for a ’lunch time dip’ is
presented which, however, is only observed for the more liquid stocks (NAB and BHP).
For the less liquid stocks the amount of posted volume nearly monotonically increases
over the course of the day.

3.3 Trading at the NASDAQ Stock Market

We use transaction data of five large companies traded at NASDAQ: Apple Inc. (AAPL),
Cisco Systems, Inc. (CSCO), Intel Corporation (INTC), Microsoft Corporation (MSFT)
and Oracle Corporation (ORCL). These companies account for approximately one third
of the market capitalization within the technology sector. Our variable of interest is the
one-minute cumulative trading volume, reflecting high-frequency liquidity demand, cov-
ering the period from 2 January to 31 December 2008 (250 trading days with continuous
trading activity). To remove effects due to market opening, the first 30 minutes of each
trading session are discarded. Hence, at each trading day, we analyze data from 10:00
to 16:00. Descriptive statistics of daily and one-minute cumulated trading volume of the
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Figure 3.3: Estimated intra-day seasonality factors for quantities offered at best bid
prices (red) and for quantities supplied at best ask prices (blue) across se-
lected stocks traded at the ASX from 8 July to 16 August 2002 (30 trading
days).

five analyzed stocks are shown in Table 3.6.
We find right-skewed distributions with higher dispersions on the high-frequency level

than on the daily level. The Ljung-Box (LB) tests statistics indicate a strong serial
dependence as the the null hypothesis of no autocorrelations (among the first 10 lags) is
clearly rejected on any reasonable significance level.
Denote the one-minute cumulative trading volume by y̆i. Assuming a multiplicative

impact of intra-day periodicity effects, we compute seasonality adjusted volumes by

yi = y̆is
−1
i , (3.5)

with si representing the intraday periodicity component at time point i. Typically,
seasonality components are assumed to be deterministic and thus constant over time.
To capture slowly moving (’long-term’) components, we estimate the periodicity effects
on the basis of 30-days rolling windows, see, e.g., Engle and Rangel [2008]. Seasonality
effects could be captured directly within the local adaptive framework presented below
avoiding to fix the length of the rolling window on an ad hoc basis. As our focus is on
(pure stochastic) short-term variations in parameters rather than on (more deterministic)
periodicity effects, we decide to remove the former beforehand. This leaves us with non-
homogeneity in processes which is not straightforwardly taken into account and allows us
to evaluate the potential of a local adaptive approach even more convincingly. The intra-
day component si is specified via a flexible Fourier series approximation as proposed by
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AAPL CSCO INTC MSFT ORCL
Daily volume in million
Minimum 8.7 12.8 12.5 15.3 8.2
25%-quantile 24.3 38.2 41.8 48.7 25.6
Median 30.6 47.7 54.9 64.7 33.3
75%-quantile 39.3 59.4 67.5 81.3 41.9
Maximum 100.4 177.3 227.8 204.8 88.4
Mean 33.4 50.9 58.3 68.7 35.0
Standard deviation 13.4 19.0 24.8 28.0 13.1
LB(10) 651.8 271.9 373.3 537.0 252.8
One-minute volume in 1000 shares
Minimum 1.5 0.4 0.6 1.6 0.4
25%-quantile 47.3 58.7 63.6 78.6 35.9
Median 75.4 105.7 119.4 141.7 70.1
75%-quantile 118.5 180.8 208.9 242.1 124.4
Maximum 2484.8 3064.9 12231.4 7360.8 3558.2
Mean 92.9 141.4 162.0 190.8 97.1
Standard deviation 68.9 131.7 166.4 183.0 101.1
LB(10) 334076.1 164999.2 142128.8 197173.7 107629.6

Table 3.6: Descriptive statistics and Ljung-Box statistics (based on 10 lags) of daily
and one-minute cumulated trading volumes of five large companies traded
at NASDAQ between January 2 and December 31, 2008 (250 trading days,
90000 observations per stock).

Gallant [1981].

si = δ · ı̄+
M∑
m=1
{δc,m cos (̄ı · 2πm) + δs,m sin (̄ı · 2πm)}. (3.6)

The coefficients to be estimated are denoted by δ, δc,m and δs,m, and ı̄ ∈ (0, 1] de-
notes a normalized intraday time trend defined as the number of minutes from opening
until i divided by the length of the trading day, i.e. ı̄ = i/360. The order M is se-
lected according to the Bayes Information Criterion (BIC) within each 30-day rolling
window. To avoid forward-looking biases in the forecasting study, at each observation
the seasonality component is estimated using previous data only. The sample of season-
ality standardized cumulative one-minute trading volumes accordingly covers the period
from 14 February to 31 December 2008, corresponding to 220 trading days and 79,200
observations per stock. In nearly all cases, M = 6 is selected. We observe that the es-
timated daily seasonality factors change mildly in their level reflecting slight long-term
movements. The intraday shape is rather stable.
Figure 3.4 displays the intra-day periodicity components associated with the lowest

and largest monthly volumes, respectively, observed through the sample period. We
observe the well-known (asymmetric) U-shaped intraday pattern with high volumes at
the opening and before market closure. Before closure, it is evident that traders intend
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Figure 3.4: Estimated intra-day periodicity components for cumulative one-minute trad-
ing volumes (in units of 100, 000 and plotted against the time of the day) of
selected companies at NASDAQ on 2 September (blue, lowest 30-day trading
volume) and 30 October 2008 (red, highest 30-day volume).

to close their positions creating high activity.
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4 Applications
An economist is someone who sees something that

works in practice and wonders if it would work in theory.
Ronald Reagan

This chapter summarizes empirical results concerning structural and adaptive mod-
elling of financial series. We start with the modelling and forecasting of the (high-
dimensional) liquidity supply. The predictions are based on a intimate relationship
between the order book’s shape and the current stock market conditions. Note that
forecasting liquidity supply implies prediction of the LOB curves (quantity), as well as
the market conditions (price) over time. All financial and economic applications are
consequently related to liquidity supply prediction. One of the highlights is a proposed
trading strategy suitable for reducing transaction costs in order splitting, i.e. cost related
to trading relatively large market orders over the course of a trading day.
The second part is dominated by a case study of (short-term) trading volume pre-

dictability. Recall, using our localized MEM methodology one may model and fore-
cast any (positive) financial process, such as, e.g., durations, trading volumes, bid-ask
spreads, volatilities or trading costs. Two prediction methods are statistically compared,
namely the local parametric approach (LPA) and a ’standard’ approach with ad-hoc se-
lected estimation window. Results favor the LPA technique. In practice, short-term
volume forecasts are used for trading cost optimization, particularly in trading strate-
gies related to the execution of large orders. This aspect is yet to be explored.
The last part is devoted to market microstructure modelling, where empirical evidence

for the existance of the EPK paradox on the leading stock markets is provided. The
results are discussed in a dynamic context, across countries and over different economic
scenarios.

4.1 Modelling and Forecasting Liquidity Supply using
Semiparametric Factor Dynamics

For each stock individually (BHP, NAB, MIM and WOW) we employ a two step mod-
elling procedure. In the first step, the shape of order book curves is modelled in depen-
dence of relative price deviations from the best bid price and best ask price, Sbt,j and
Sat,j , respectively. The dynamics of the estimated factor loadings is in the second step
analyzed jointly with the best bid/ask quotes and the bid-ask spread using a vector error
correction (VEC) specification. Due to the estimation complexity, the seasonal trend
coefficients in (3.1) and (3.2) are not estimated jointly with the unknown parameters
(matrix A) and the factor loadings from (2.5).
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In the modelling part we focus on the cross-dependency between the bid and ask side
of the market, the relations between the LOB and the quotes, as well as on the impact
of the bid-ask spread on liquidity supply. The predictability of order book’s shape is
related to various covariates, e.g., the past trading volume, past log returns and past
(realized) volatility.

4.1.1 Limit Order Book Modelling using the DSFM

We focus on two implementation methods of the DSFM:

(i) Separated approach: the bid side Y b
t,j ∈ R101 and the ask side Y a

t,j ∈ R101 are
analyzed separately.

(ii) Combined approach: both sides of the limit order book are modelled simultane-
ously, with the bid side reversed, i.e.

(
−Y b

t,j , Y a
t,j

)
∈ R202.

We impose K = 20 and K = 40 knots for the B-spline functions in the case of a
separated and combined approach, respectively. Using more knots does not result in
significant improvements of the explained variance or in the corresponding RMSE, as
defined in 2.6 and 2.7.
Up to approximately 95% of the explained variation in order curves can be explained

using L = 2 factors, see Table 4.1. The marginal contribution of a potentially third
factor is very small. A two-factor DSFM specification is therefore sufficient to capture
the curve dynamics and is used in the sequel of the analysis.

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 0.925 0.934 0.990 0.916 0.916 0.909 0.946 0.938
2 0.964 0.965 0.996 0.975 0.941 0.948 0.953 0.959
3 0.971 0.976 0.996 0.981 0.941 0.961 0.949 0.964

Combined
1 0.922 0.522 0.762 0.558 0.546 0.806 0.696 0.944
2 0.921 0.936 0.975 0.914 0.930 0.912 0.951 0.948
3 0.961 0.938 0.977 0.972 0.932 0.950 0.973 0.949

Table 4.1: Explained variance (EV) of estimated order book variations depending on
relative prices based on different number of factors L using both DSFM
approaches.

In almost all cases the DSFM-Separated approach outperforms the DSFM-Combined
approach in terms of a higher proportion of explained variance and lower values of
the root mean squared error, see, e.g., Table 4.2. The root mean squared errors for
different absolute price levels j, S̆bt,j and S̆at,j , respectively, are compared in Figure
4.1. Again, at almost every price level the DSFM-Separated approach outperforms
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the DSFM-Combined approach. The remainder of the analysis will therefore rely on the
DSFM-Separated approach with two factors.

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 3.49 2.51 0.29 2.10 2.60 3.09 0.81 2.73
2 2.40 1.82 0.19 1.16 2.18 2.32 0.76 2.22
3 2.17 1.52 0.18 0.10 2.18 2.02 0.79 2.07

Combined
1 3.55 6.75 1.41 4.81 6.03 4.50 1.93 2.59
2 3.57 2.47 0.46 2.13 2.37 3.03 0.78 2.50
3 2.50 2.44 0.44 1.21 2.33 2.29 0.57 2.49

Table 4.2: Root mean squared errors (RMSEs) implied by estimated order book vari-
ations depending on relative prices based on different number of factors L
using both DSFM approaches.

Figure 4.1: Root mean squared errors (RMSEs) for different absolute price levels, S̆bt,j
(red) and S̆at,j (blue), using the DSFM-Separated (solid) and the DSFM-
Combined approach (dashed).

Estimated first and second factor m̂1 and m̂2 in dependence of the relative price grids
are plotted in Figure 4.2. The first factor captures the overall slope of the curve which
is associated with the average trading costs for all volume levels on the corresponding
sides of the market. Order curve fluctuations are captured by the second factor around
the overall slope and thus can be interpreted as a ’curvature’ factor.
We observe that the shape of the second factor looks different for levels close to the

best bid/ask quotes than for levels very deep in the book. The shapes of the estimated
factors are remarkably similar for all stocks, except for MIM. The shapes of both factors
of MIM are quite similar and significantly deviate from those reported for the other
stocks. This finding is explained by the fact that liquidity is concentrated on relatively
few price levels around the best ask and bid quotes. For higher levels the book flattens
out.
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Figure 4.2: Estimated first and second factor of the limit order book depending on rel-
ative price levels using the DSFM-separated approach with two factors for
selected stocks traded at the ASX from July 8 to August 16, 2002 (30 trading
days). Red: bid curve, blue: ask curve.

It is unclear a priori whether modelling order book curves based on all J = 101
price levels is most appropriate for prediction. For example, predictive information may
depend on the distance to the best quotes. Price levels far away from the best quotes
can carry important information, but also virtually contain only noise (stale orders).
To mitigate this challenges, we base our model selection on in-sample information and
evaluate the explained variance when not the full grid of 101 levels but just 25, 50 and
75 levels are employed. The results are reported in Table 4.3.
Employing the full curve (J = 101) yields the highest explained variance. This is

particularly true for order books of less liquid stocks. It turns out that the factor
structure remains unchanged, and therefore we proceed with the analysis of the full
order book.
The estimated factor loadings, Ẑbt and Ẑat , strongly vary over time reflecting time

variations in the shape of the book, see, e.g., Figure 4.3. The series reveal clustering
structures indicating a relatively high persistence. This is not surprising, since order book
inventories do not change too severely during short time periods. On higher frequencies
than 5 minutes, this persistence further increases, ultimately driving the factor loadings
toward unit root processes. This behavior is distinct for less frequently traded stocks
and less severe for highly active stocks, see, e.g., Hautsch and Huang [2011].
The high persistence is confirmed by autocorrelation functions of Ẑbt and Ẑat and

corresponding unit root and stationarity tests. According to the Schmidt-Phillips test,
see, e.g., Schmidt and Phillips [1992], as shown in Table 4.4 for all processes the null
hypothesis of a unit root can be rejected at the 5% significance level. Testing the null
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BID ASK
BHP NAB MIM WOW BHP NAB MIM WOW

L = 1, J = 101 0.925 0.934 0.990 0.916 0.916 0.909 0.946 0.938
L = 2, J = 101 0.964 0.965 0.996 0.975 0.941 0.948 0.953 0.959
L = 3, J = 101 0.971 0.976 0.996 0.981 0.941 0.961 0.949 0.964
L = 1, J = 75 0.912 0.926 0.974 0.912 0.927 0.907 0.935 0.938
L = 2, J = 75 0.953 0.960 0.979 0.966 0.950 0.947 0.941 0.961
L = 3, J = 75 0.959 0.972 0.980 0.973 0.956 0.960 0.859 0.971
L = 1, J = 50 0.908 0.920 0.972 0.914 0.933 0.910 0.906 0.932
L = 2, J = 50 0.951 0.958 0.981 0.959 0.961 0.950 0.931 0.962
L = 3, J = 50 0.955 0.968 0.982 0.970 0.968 0.961 0.926 0.972
L = 1, J = 25 0.895 0.868 0.964 0.901 0.904 0.882 0.852 0.849
L = 2, J = 25 0.925 0.904 0.978 0.932 0.942 0.920 0.897 0.892
L = 3, J = 25 0.930 0.908 0.978 0.938 0.949 0.922 0.908 0.889

Table 4.3: Explained variance (EV) of estimated order books depending on relative prices
based on different number of factors L and price grid points using the DSFM-
Separated approach

Figure 4.3: Estimated first and second factor loadings of the limit order book depending
on relative price levels using the DSFM-separated approach with two factors
for selected stocks traded at the ASX from July 8 to August 16, 2002 (30
trading days). Red: bid curve, blue: ask curve.
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of stationarity using the KPSS test, see, e.g., Kwiatkowski et al. [1992], implies no
rejections for the majority of the processes. In five cases we have to reject stationarity,
see, e.g. 4.5. To test for possible cointegration between the factor loadings, we perform
Johansen’s trace test, see, e.g., Johansen [1991]. No significant evidence is found for
common stochastic trends underlying the order book.

Factor BID ASK
Loadings BHP NAB MIM WOW BHP NAB MIM WOW
Ẑ1,t -74.95 -164.33 -67.16 -158.90 -69.89 -145.47 -111.34 -102.56
Ẑ2,t -71.21 -201.53 -53.88 -186.95 -143.59 -159.49 -182.96 -141.29

Table 4.4: Schmidt-Phillips test statistics for estimated factor loadings (H0: unit root,
critical values are -15.0, -18.10 and -25.20 for significance levels 10%, 5% and
1%, respectively.)

Factor BID ASK
Loadings BHP NAB MIM WOW BHP NAB MIM WOW
Ẑ1,t 0.10 0.06 0.26 0.06 0.16 0.11 0.17 0.09
Ẑ2,t 0.12 0.05 0.33 0.18 0.17 0.15 0.12 0.12

Table 4.5: KPSS test statistics for estimated factor loadings (H0: weak stationarity,
critical values are 0.12, 0.15 and 0.22 for significance levels 10%, 5% and 1%,
respectively.)

A graphical illustration depicting the estimated vs. the actually observed limit order
book curve suggest that the model fits the observed order book very well, see, e.g., Figure
4.4 in the case of NAB. For other stocks we find similar results. The fit is best for price
levels close to the best ask and bid quotes, at any chosen trading day and stock. Slight
deviations are observed deeply in the book. Note that the last case is less relevant for
financial applications.

Figure 4.4: True (solid) and estimated (dashed) limit order book using the DSFM-
separated approach with two factors (EV≈ 95%) on 8 July 2002 for NAB.
Red: bid curve, blue: ask curve.
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4.1.2 Modelling Limit Order Book Dynamics
The limit order book dynamics is now investigated in a multivariate time series modelling
context, recall our modelling philosophy: smooth in space and parametric in time. The
order book dynamics is additionally related to the time evolution of additional covariates.
For each stock (BHP, NAB, MIM and WOW) we focus on the dynamics of the four

estimated stationary factor loadings. Denote the first (1) and second (2) factor loadings
for the bid (b) and ask side (a) by loadings by Ẑb1,t, Ẑb2,t, Ẑa1,t and Ẑa2,t. Jointly with the
best bid and the best ask price returns, consider a (six dimensional) vector of endogenous
variables

zt =
(
Ẑb1,t, Ẑ

b
2,t, Ẑ

a
1,t, Ẑ

a
2,t,∆ log S̃bt,101,∆ log S̃at,1

)>
,

with ∆ log S̃bt,101 and ∆ log S̃at,1 representing the best bid and ask price return, respec-
tively.
The bid-ask spread serves as a cointegration relationship between the two integrated

ask and bid price return series, see, e.g., Engle and Patton [2004] and Hautsch and Huang
[2011]. With stationary factor loadings, a vector error correction (VEC) specification of
order q with the spread as the only cointegration relationship is established

zt = c+ Γ1zt−1 + . . .+ Γqzt−q + γ
(
log S̃bt−1,101 − log S̃at−1,1

)
+ εt. (4.1)

Here c denotes a vector with constants, vector γ = (γ1, . . . , γ6)> collects parameters
associated with the lagged bid-ask spread and εt represents a white noise error term.
The matrices Γ1,Γ2, . . . ,Γq are parameter matrices associated with lagged endogenous
variables. Technically, we determine the order q according to the Bayes information
criteria (BIC).
A maximum lag order of q = 4 is sufficient in all cases. We select the following model

orders: BHP and WOW (q = 3), NAB (q = 2) and MIM (q = 4). The estimates of
matrix Γ1 and vector γ for all four stocks are reported here since they contain the most
relevant economic information (5% significance is denoted by an asterix (∗)):

0.95∗ 0.63∗ −0.05 −0.26∗ 3.03 −18.08
0.02∗ 0.79∗ 0.00 0.04 10.68 −16.12
0.04∗ 0.00 0.75∗ 0.02 −59.60 67.60
−0.00 0.04 0.02∗ 0.77∗ −13.99 13.55

0.00∗ 0.00 −0.00∗ 0.00∗ −0.59 0.29
0.00∗ 0.00 −0.00∗ 0.00∗ −0.26 −0.04


,



−95.70
−34.13

86.83
−13.21
−0.42

0.02


,



0.71∗ 0.16 −0.04 −0.21 123.78∗ −124.07∗
0.04∗ 0.78∗ −0.00 0.07∗ −22.39∗ 21.91
0.04 0.13 0.73∗ 0.18 −88.56∗ 86.91∗
−0.03∗ −0.03 0.03∗ 0.71∗ 26.03∗ −25.46∗

0.00∗ 0.00∗ −0.00∗ −0.00 0.21 −0.34
0.00 0.00∗ −0.00∗ 0.00 0.29 −0.41


,



−174.41∗
9.26

47.60
−20.59
−0.85
−0.04


,
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0.90∗ 1.29∗ −0.00 0.55∗ −46.92 50.79
0.00 0.93∗ −0.01∗ −0.01 1.12 −1.49
−0.02 1.23∗ 0.99∗ 0.48∗ 31.56 −25.63

0.00 0.04 0.03∗ 0.84∗ 6.73 −5.89
0.00 0.00 −0.00 −0.00 0.40 −0.58
0.00 0.00 −0.00 −0.00 0.90 −1.09


,



62.01∗
0.25

−44.50∗
−21.66∗
−0.28
−0.18


and



0.74∗ −0.02 0.12∗ 0.38∗ 28.87 −37.11
0.04∗ 0.82∗ −0.02∗ −0.04 2.53 −3.58
0.04 0.03 0.87∗ 0.19∗ −70.61∗ 72.84∗
−0.03∗ 0.02 0.02∗ 0.83∗ 12.81 −13.70
−0.00∗ −0.00∗ 0.00 0.00∗ 0.02 −0.15
−0.00∗ −0.00∗ 0.00 0.00∗ 0.21 −0.34


,



−27.14
−6.33
59.98
−4.04
−0.51

0.05


.

Firstly, empirical results suggest strong own-process dynamics and relatively weak
cross-dependencies between the endogenous variables. The market cross-dependencies
are most pronounced for less frequently traded stocks (MIM and WOW). Time variations
in the liquidity schedule on the one side is almost unaffected by that on the other side
due to the quite weak inter-dependencies.
Secondly, quote changes are short-run predictable given the shape of the order book.

Changes in the factor loading have a short term impact (up to 5-10 minutes) on the quote
changes. High frequently traded stocks (BHP and NAB) have more pronounced impact
than less liquid stocks (MIM and WOW). A shock on the bid side results economically
in upward rotation the bid curve, i.e. it induces a higher sell pressure. We find that
such a shock leads to an instantaneous decrease in the best bid quote followed by a
significant increase of the price within the next few minutes, see, e.g. Figure 4.5. The
price movements are driven by a growing buy pressure reflected by an increase of bid
depth at and behind the market. The impulse responses of ask and bid quotes driven by
a shock in the order book slope are plotted in Figure 4.5. Observe that the effects are
quite distinct on the bid side and a more neutral on the ask side. Note that the quote
predictability holds over comparably short horizons, up to, say 10-15 minutes. For daily
order execution strategies these effects are only of limited use, see Section 4.1.4.
Thirdly, slight evidence is found for asymmetric reactions of slope factor loadings

on changes of the bid-ask spread. Rising spreads tend to reduce (increase) the order
aggressiveness on the bid (ask) side. As the bid and ask curves move apart, the price
is therefore (on average) decreasing. The price is expected to increase as the bid-ask
spread shrinks. This re-confirms our finding in Chapter 3: liquidity variations on the
bid side are higher than those on the ask side with more sell than buy activities.
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Figure 4.5: Orthogonalized impulse-response analysis: responses of the best bid quote
return to a one standard deviation shock in the estimated first bid factor
loadings (upper panel) and response of the best ask quote return to a one
standard deviation shock in the estimated first ask factor loadings (lower
panel). We employ the DSFM-separated approach with two factors and a
VEC specification for selected stocks traded at the ASX from 8 July to 16
August 2002 (30 trading days). The response variable always enters the VEC
specification in the first position. 95% confidence intervals are shown with
dashed lines.
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4.1.3 Drivers of the Order Book Shape

An important finding is that quote changes are short-run predictable given the shape of
the order book. Now we analyze to which extend is the order book’s shape predictable
based on (weakly exogenous) trading variables. Four variables are selected for which
we expect to observe the strongest impact on the LOB’s shape, namely the past 5-min
aggregated trading volume on both sides of the market representing the recent liquidity
demand, the best bid/ask price, the past 5-min log mid-quote return as well as the past
5-min volatility.
Representing liquidity demand, we consider the buy and sell trading volumes at time

t by the sum of traded quantities from all market orders r, Q̃br and Q̃sr, over five minutes
interval, namely, Q̃bt =

∑Rbt
r=1 Q̃

b
r and Q̃st =

∑Rst
r=1 Q̃

s
r, with Rbt and Rst denoting the

number of buy and sell orders over the interval (t− 1, t], respectively. Log returns rt
and volatility Vt are computed as

rt = log S̃∗t

S̃∗t−1
(4.2)

Vt = r2
t , (4.3)

with mid-quotes S̃∗t and S̃∗t−1 at time points t and t−1, respectively. The trading volumes
and volatility series are seasonally adjusted following the procedure explained above. The
necessary DSFM standardization of variables into the [−1, 1] interval is performed based
on the minimum and maximum observations. As nonparametric regression becomes
computationally cumbersome for a high number of regressors, we include the regressors
only individually together with the relative price levels.
The estimated first factors for the bid and the ask side in dependence of the past 5-min

sell and buy trading volumes as well as best bid and ask prices are shown in Figures 4.6,
4.7, 4.8 and 4.9, respectively.
Past liquidity demand influences the order book curve. A high trading volume removes

a non-trivial part of the pending volume in the book. Variation of the factor’s shape is
then induced either by the complete absorption of price levels close to best quotes or by
the distributional change of the pending volumes across the (relative) price levels.
On observes that the curve flattens in the area of high volumes, as well as a decaying

pattern if the volume sizes decline. The maximum slope (and thus the highest level
of liquidity supply) is observed for magnitudes of the standardized volume between −1
and 0, i.e., comparably small trading volumes, most likely due to the boundary effect
of non-parametric regression or the standardization procedure. Note that because of
the curse-of-dimensionality we cannot simultaneously control for other variables. For
example, small trading volumes can indicate the occurrence of market imbalances or
might be associated with wide spreads. Investors would in both cases be forced to post
limit orders rather than market orders. That could help to explain the decaying shape
of the factors after having observed small trading volumes.
To evaluate whether the inclusion of regressors further increases the model’s goodness-
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Figure 4.6: Estimated first factors of the bid side with respect to relative price levels and
the past log traded sell volume using the DSFM-Separated approach with
two factors for selected stocks traded at the ASX from 8 July to 16 August
2002 (30 trading days).
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Figure 4.7: Estimated first factors of the ask side with respect to relative price levels and
the past log traded buy volume using the DSFM-Separated approach with
two factors for selected stocks traded at the ASX from 8 July to 16 August
2002 (30 trading days).
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Figure 4.8: Estimated first factors of the bid side with respect to relative price levels and
the best bid price using the DSFM-Separated approach with two factors for
selected stocks traded at the ASX from 8 July to 16 August 2002 (30 trading
days).
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Figure 4.9: Estimated first factors of the ask side with respect to relative price levels and
the best ask price using the DSFM-Separated approach with two factors for
selected stocks traded at the ASX from 8 July to 16 August 2002 (30 trading
days).
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of-fit, we calculated the corresponding RMSEs. Comparing the results with that for the
basis model shows that the included regressors yield higher estimation errors, see, e.g.,
Tables 4.2 (basis model), 4.6 (buy volume), 4.7 (sell volume) and 4.8 (log-returns).
The range of the RMSEs for best bid/ask quotes for the DSFM-Separated approach
with two factors is [3.78, 11.19]. Inclusion of additional regressors generates more noise
overcompensating a possibly higher explanatory power.

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 18.17 28.25 18.99 13.47 11.53 28.82 17.66 17.77
2 18.45 159.52 22.01 15.16 12.09 217.03 122.93 18.72
3 19.75 610.53 52.38 15.29 12.45 564.95 97.05 21.13

Combined
1 17.92 93.34 11.01 12.84 55.25 82.63 24.82 44.68
2 18.02 367.58 11.07 12.74 55.11 352.75 25.30 44.46
3 18.21 312.20 7.36 12.78 55.21 299.23 20.03 44.25

Table 4.6: Root mean squared error (RMSE) of the estimated limit order book data for
all selected stocks based on the traded buy quantities evaluated for different
number of factors L using both DSFM approaches

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 26.69 16.73 27.28 12.50 20.97 16.20 51.20 17.01
2 42.95 45.59 193.50 12.95 37.00 19.97 61.58 17.32
3 23.82 49.84 222.66 18.61 30.79 22.77 154.01 21.72

Combined
1 23.10 14.95 10.17 12.58 60.54 46.43 23.66 44.35
2 22.42 17.63 16.01 12.69 59.84 48.62 27.18 44.25
3 22.76 15.90 19.26 13.29 59.44 46.07 28.02 45.00

Table 4.7: Root mean squared error (RMSE) of the estimated limit order book data for
all selected stocks based on the traded sell quantities evaluated for different
number of factors L using both DSFM approaches

We conclude that due to the lower dimensionality of the regressors in comparison
with that of the limit order book the modelling performance declines. As the included
regressors do not reveal any variation across the levels of the book, the explanatory
variables can improve only the the model’s dynamic fit. It is evident that the dynamic
fit is not sufficient to obtain an overall reduction of modelling errors.
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4.1.4 Forecasting Liquidity Supply

In this section we analyze the model’s forecasting performance in a realistic setting
mimicking the situation in financial applications. We assume that an investor observes
the limit order book at 5-minute snapshots together with the history over the past 10
trading days. During a trading day an investor updates the limit order book every 5
minutes and has to produce forecasts for all (5 minutes) intervals of the remainder of the
trading day. This forecasts may be used for optimal order execution during the course
of a day. The investor does not exceed beyond the end of the trading day in order to
avoid overnight effects. The forecasting horizon h therefore subsequently declines if we
approach market closure.
Starting at 10:30, an investor produces multi-step forecasts for all remaining h = 66

intervals during the day. At 15:50, we are left with a horizon of h = 1. Since quotes,
according to our results above, are only predictable over very short (virtually irrelevant)
horizons for our forecasting study, we do not explicitly incorporate this information here.
The model is re-estimated every five minutes based on past information over a fixed

window of 10 trading days. The estimation period includes the recent observation. We
do not produce forecasts for the first two weeks of our sample and thus focus on the
period between 22 July and 16 August 2002. We thereby cover the period of 20 trading
days. In accordance with our in-sample results the DSFM-Separated approach based on
two factors without additional regressors is selected as underlying specification.
We evaluate our model’s performance against the naive forecast. Using the naive

forecasting approach, we assume that the investor has no appropriate prediction model
and takes the last observed limit order book as the forecast for the remainder of the
trading day. The models are compared based on the predicted volume Ŷt′+h,j at a given
time point t′ from 22 July at 10:25 until 16 August 2002, at 15:50, t′ = 693, . . . , 2069 =
T − 1, over a forecasting horizon 1 ≤ h ≤ 66, and over the absolute price level j. Our
investor can use the following two approaches in order to forecast liquidity supply:

(i) DSFM approach: Firstly, the factors and factor loadings are estimated using the
DSFM-Separated approach with two factors. We impose K = 20 knots for the
B-spline basis functions and consider the past 690 observed (de-seasonalized) limit
order book curves. At time point t′, relative price levels Sbt′−691:t′,j and Sat′−691:t′,j
as well as the de-seasonalized observed bid and ask sides Y b

t′−691:t′,j and Y a
t′−691:t′,j

enter the estimation. There are 66 estimates for the bid (ask) side per day for each
stock, in total 1320 estimates over 20 days.

Secondly, because short-term quote return predictability does not enter our fore-
casting setup, we focus only on the forecasts the liquidity supply. A simple 4-
dimensional VAR(p) model is employed for the four time-varying factor loadings,
Ẑb1,t, Ẑ

b
2,t, Ẑ

a
1,t and Ẑa2,t. According to the BIC, a maximum lag order p = 4 is suffi-

cient when the entire time series (30 trading days) is fitted by a VAR(p) model. The
following VAR(p) models are selected: BHP and MIM - VAR(4), NAB - VAR(2)
and WOW - VAR(3). We forecast the factor loadings over the forecasting period
Ẑt′+h using this specifications. The predicted factor loadings together with the

48



4.1 Modelling and Forecasting Liquidity Supply using Semiparametric Factor Dynamics

estimated time-invariant factors m̂l, l = 0, . . . , 2 are then used to predict liquidity
supply.

(ii) Naive approach: Among all historical 690 limit order book curves (10 trading
days), only the last one at time t′,

(
Y b
t′,j , Y a

t′,j

)
, is selected as the h-step ahead

order book forecast.

Using the root mean squared prediction error (RMSPE) we evaluate the performance
of the competing forecasting approaches. The RMSPE is a version of the in-sample
RMSE (2.7), i.e. the sum over the sampling periods t and the sample size T are replaced
by the forecasting horizons h and H, respectively.
Note that since future quotes and relative price grids are not predicted by the model,

we impose the assumption that quotes follow random walk processes and that the bid-
ask spread remains constant. Future quotes are therefore predicted using the current
observation while the predicted future relative price grid remains constant.

4.1.5 Forecasting Results
We obtain the squared residuals after every forecasting procedure and then base the
evaluation of our results on the root mean root mean squared prediction error (RMSPE).
At the same absolute price level, we record the differences between the true observed limit
order book curves and the predicted ones for both approaches. For example, predicted
limit order book curves and the true ones for each stock on 22 July 2002, at 11:00 and
15:00 are shown in Figure 4.10.
The predictive performance of the competing forecasting methods is illustrated by

displaying the RMSPEs. For each forecasting horizon h during a trading day the RM-
SPEs implied by the DSFM as well as by the naive model are shown in Figure 4.11. We
summarize our forecasting performance findings in the sequel.
Overall, the DSFM method outperforms the naive approach. This is a very good

achievement because the naive forecasting method is a serious competitor given the
high persistence in liquidity supply. Focusing on the average RMSPEs, averaged over all
forecasting horizons and both order book sides, one observes that the DSFM performance
is significantly higher than that of the benchmark. The average RMSPEs are reported
in Table 4.9.
The DSFM outperforms the naive approach especially on the bid side of the market.

Recall, during the sample period one observes a downward market with high trading
activity on the bid side. The forecasting result is therefore explained by the fact that
the DSFM, stipulated under the philosophy smooth in space and parametric in time,
successfully captures the dynamics of high-dimensional objects evolving over time. This
is particularly true for the more active bid side.
Our DSFM approach is clearly better than the naive model over relatively short fore-

casting horizons, say, up to 1 to 2 hours. We contribute this finding to the modelling
flexibility. For longer horizons, the DSFM outperformance over the naive method is
diminishing. Even for trading strategies over relatively longer horizons during a trading
day it is justified to use our DSFM approach.
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L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 10.21 12.90 52.99 5.28 9.92 9.69 173.67 13.39
2 17.27 12.49 1104.46 9.51 15.76 12.68 7750.16 16.40
3 29.47 14.14 8456.95 6.78 16.37 11.59 2139.35 31.40

Combined
1 17.20 13.03 151.01 4.99 44.59 25.44 146.74 34.32
2 20.01 13.16 97.09 5.08 45.29 25.23 107.25 34.21
3 16.82 14.77 57.39 5.97 43.83 25.33 56.20 34.60

Table 4.8: Root mean squared error (RMSE) of the estimated limit order book data
for all selected stocks based on the intraday log-return evaluated for different
number of factors L using both DSFM approaches

Figure 4.10: Predicted limit order book curves (dashed) and the true ones (solid) on
July 22, 2002, at 11:00 (upper panels) and 15:00 (lower panels) at different
absolute price levels in AUD. The predicted curve using the naive approach
is shown with black solid line.
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Approach BID ASK
BHP NAB MIM WOW BHP NAB MIM WOW

Naive 7.11 7.59 6.03 6.08 6.50 5.96 5.83 6.19
DSFM 7.18 5.10 4.84 5.33 5.56 5.46 5.63 5.45

Table 4.9: Average root mean squared prediction errors (RMPSEs) of both limit order
book sides implied by the DSFM-separated approach with two factors and
the naive model for selected stocks traded at the ASX in the period from 22
July to 6 August 2002 (20 forecasting days).

4.1.6 Financial and Economic Applications
The DSFM successfully predicts liquidity supply over various forecasting horizons dur-
ing a day. The forecasting results are now applied to three practical examples. The
first example is devoted to an order execution strategy, whereas the second one deals
with demand and supply elastitity forecasts. Our last example shows how the DSFM
framework can be used to simultaneously predict the shape and the position of the limit
order book in the short run.

EXAMPLE 1. (Trading Strategy)

Suppose that an institutional investor decides to optimize the trading costs resulting
from buying or selling shares on a stock market. We assume that the investor decides
to buy (sell) a certain number of shares v over the course of a trading day, starting from
10:30 until 15:40. For BHP, NAB and WOW we select the size of the traded quantity
to be 5 or 10 times the average volume at the best bid or ask level. In the case of MIM
the liquidity supply is more concentrated at the first few levels and the book is very thin
for higher levels. The size of the traded quantity is respectively set to 2 and 5 times the
average depth at the first level. The following volumes have been selected in the case of
a high (a) and very high (b) liquidity demand:

(a) BHP - 175,000 shares; NAB - 25,000 shares; WOW - 50,000 shares; MIM - 1,860,000
shares

(b) BHP - 350,000 shares; NAB - 50,000 shares; WOW - 100,000 shares; MIM -
4,650,000 shares.

We assume furthermore that trading is performed every 5 minutes through the day,
i.e. at every of the 63 possible trading time points. This assumptions relaxes the
computational burden. The investor makes consequently a trading decision at 10:30
and does not monitor the stock market anymore over the course of a trading day. The
decision is to adopt one of the following two order execution strategies:

(i) Splitting the buy (sell) order of size v proportionally over the trading day, i.e.
’trading’ market orders of size v/63 at each of the 63 time points.
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(ii) Placing orders at thosem (5 minute interval) time points throughout the day where
the DSFM-based predicted implied trading costs c of the volume v are smallest
(among all 63 possible periods). The orders are thus not proportionally split over
the trading day, i.e. the volume v is split over the m time points according to
the relative proportions of expected trading costs. At interval i, wi · v shares are
’traded’ at the stock market, with wi = ci/

∑m
j=1 cj for i = 1, . . . ,m.

Strategy (i) can be seen as a special case of strategy (ii) if m = 63 and the volume
v is equally split over the course of a trading day. In the other extreme case, when the
entire volume is traded only once in a day (m = 1), it is required to severely ’walk up’
the limit order book. Note that ’walking up’ the book might be very costly because the
trader would face prices that differ from the best quotes.
The trading cost predictions using the DSFM framework are computed based on the

predicted order book shape at each possible ’trading’ time point and the effective costs
to buy or sell v shares at the bid and ask quotes prevailing at 10:25. This follows from
our random walk assumption about the price dynamics.
In our setup we fix the quantity v and do not optimize it. One possibility to optimize

the order size would be to minimize the predicted trading costs for relative proportions of
v at different execution time points. This order size optimization lies beyond the scope of
the current study. The quantity v corresponds here to the maximally possible order size
at a trading moment. Our strategy selects therefore those trading points where trading
the entire quantity v is expected to be cheapest. We cover the hypothetical (limiting)
case of putting all weight wi on a single time point, i.e., the so-called ’one-shot’ order
execution strategy.
We consider 20 forecasting days covering the period from 22 July to 16 August 2002

to implement and evaluate the competing forecasting strategies. The average percentage
reduction in trading costs of strategy (ii) in excess of the strategy (i), i.e. that of equal-
splitting, is shown in Figure 4.12. We select m = 1, . . . , 63 and consequently include
both extreme cases, namely the ’one-shot’ order execution (m = 1) and the proportional
splitting strategy (m = 63).
Our DSFM yields better results than the proportional splitting strategy. Its trading

gains are on average 10 basis points higher than those implied by the ’naive’ strategy.
The DSFM is quite successful in predicting the time points where the market is deep
enough to absorb large orders. The results are robust relative to the trading volume size
v, i.e., similar patterns are found for quantities that equal to 5 or 10 times the mean
posted first level volume.
The gain curves show a non-monotonic behavior. For a very small number of daily

ordersm an investor would prefer a proportional trading strategy, as the costs of ’walking
up’ the book are quite high due to the price impact. When the number of orders m
increases, the gains become increasing and positive. The benefits converge to zero as
the DSFM method approaches the proportional splitting strategy. Financial benefits
in the extreme case (m = 63) are driven by the used non-equal weighting scheme.
Interestingly, an investor would benefit from trading a small number of orders per day
for the MIM stock. This is obviously induced by the extremely deep order book’s shape
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Figure 4.11: Root mean squared prediction errors (RMSPEs) implied by the DSFM-
separated approach with two factors for the bid side (red) as well as the ask
side (blue) and by the naive approach (black) for all intra-day forecasting
horizons (in hours) for selected stocks traded at the ASX. Prediction period:
July 22 to August 16, 2002 (20 trading days).

Figure 4.12: Average percentage gains by reduced transaction costs compared to an
equal-splitting strategy when buying (blue) and selling (red) shares based
on m DSFM-predicted time points per day. Upper panel: Daily volumes
corresponding to 5 (2) times the average first level market depth for BHP,
NAB, WOW (MIM). Lower panel: Daily volumes corresponding to 10 (5)
times the average first level market depth for BHP, NAB, WOW (MIM).
Prediction period: 22 July to 16 August 2002 (20 trading days).
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at the first levels. ’One-shot’ executions of large volumes in case of MIM are therefore
quite beneficial.
The selling strategy outperforms the buying activity. This is in accordance with our

forecasting findings above. There are substantial differences between the sell-based and
the buy-based gains for BHP, particularly in the case of a low or moderate number of
trading points.
In summary, the DSFM performs reasonably well and is promising for more elaborate

applications. Note that the reported results do not include transaction fees. A propor-
tional splitting strategy certainly induces more transaction costs than a (single) market
order. Our DSFM approach would thus be even more beneficial than a ’naive’ trading
execution strategy. Note that trading cost optimization as well as the future returns
predictability power of the DSFM framework would definitely lead to an improvement
of the proposed trading strategy.

EXAMPLE 2. (Demand and Supply Elasticity)

Assume that an investor decides to optimize the marginal trading costs. From an
economic point of view, the investor focuses on the elasticities of the order book curves.
At best bid (S̃bt′,101) and best ask prices (S̃at′,1) the elasticities are computed as

Êdt′+h =
Ŷ b
t′+h,1 − Ŷ b

t′+h,101

Ŷ b
t′+h,101

/
S̃bt′,1 − S̃bt′,101

S̃bt′,101
, (4.4)

Êst′+h =
Ŷ a
t′+h,101 − Ŷ a

t′+h,1

Ŷ a
t′+h,1

/
S̃at′,101 − S̃at′,1

S̃at′,1
, (4.5)

for the bid and the ask side, respectively. The limit order book represents excess supply,
i.e., the volume that is observed above the equilibrium trading volume which is traded at
the equilibrium market price. In our work we focus on elasticities computed at the bid or
the ask side. This market sides constitute only a part of the entire stock market demand
and supply curves. The elasticities reported here are thus related to the marginal trading
costs of excess supply.
The setup follows the forecasting framework discussed above. Shortly, we assume that

an investor aims to predict the elasticities for the bid and the ask curves for all 5-min
intervals over the course of a trading day for horizons h = 1, . . . , 66. Last 10 days of
data is used for the estimation of the DSFM parameters and the price is assumed to
follow a random walk. Last observed bid and ask quotes are therefore used for elasticity
prediction. For illustration, the predictions of bid and ask elasticities for all trading days
at 10:30 and stocks are shown in Figure 4.13.
Marginal trading costs are varying significantly over time. Since predicted elasticities

reveal daily trend patterns one may use this information to improve trading strategies.
Consider the NAB stock on 24 July and 30 July 2002. The bid elasticities are in absolute
terms increasing on the first day, and decreasing through the second day. A trader would
therefore earn if the shares are sold late on 24 July and early on 30 July provided that
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Figure 4.13: Predicted demand and supply elasticities at best bid (red) and best ask
prices (blue) using the DSFM-separated approach with two factors for se-
lected stocks traded at the ASX from 22 July to 2 August 2002 (upper
panels, 10 trading days) and from 5 August to 16 August 2002 (lower pan-
els, 10 trading days).

the price does not change significantly during both trading days. The ask elasticities
show converse patterns over the selected days. It would be beneficial to buy shares early
on 24 July and late on 30 July, given unchanged prices. Setting a dynamic trading
strategy lies beyond the scope of the paper.

EXAMPLE 3. (Predicting the Limit Order Book: Shape and Location)

Suppose that an investor aims to predict the shape of the limit order book and its
location for the BHP stock on July 22 at 15:00 within the next 20 minutes. Using the
DSFM-Separated approach with two factors the investor estimates the corresponding
factors and factor loadings. A VEC model specification is then fitted to a multivariate
time series containing the four estimated factor loadings, the best bid and the best ask
quotes. As an additional regressor, the investor considers the lagged bid-ask spread.
The predicted and observed limit order book curves are shown in Figure 4.14. Six

levels on each side of the book are shown. One observes better forecasts of the limit
order book’s shape in the short run (i.e., within the first 5-10 minutes) than in the
long run. This findings support our impulse-response analysis results conducted earlier.
The best price fit is at 10 minutes. An investor can therefore use the proposed DSFM
modelling approach and successfully forecast liquidity supply: the shape and the location
of the limit order book.
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Figure 4.14: Predicted (dashed) and realized (solid) limit order book curves for BHP
on 22 July 2002, between 15:05-15:20 using the DSFM-Separated approach
with two factors.

4.2 Local Adaptive Multiplicative Error Models for
High-Frequency Forecasts

The goal of the local parametric approach (LPA) is to find a length of a data window
over which one can safely apply a parametric model. Our objective is to localize a
multiplicative error model (MEM). Using a sequential testing procedure (i.e. the local
change point (LCP) detection test) one finds an interval of homogeneity that is used to
adaptively estimate the model parameters.

4.2.1 Parameter Dynamics

Prior to the implementation of the local MEM, we now conduct a study about the
parameter dynamics. The analysis is accomplished on a rolling window basis where
we vary the window length. The results of this section will be used in the modelling
setup of the local MEM approach. We discuss the time evolution and the distribution
of MEM parameters, as well as a possible tradeoff between parameter variability and
the modelling bias. Our study results with reasonable parameter constellations that are
used for simulation of critical values for the LCP detection test.
The dynamics of MEM parameters is studied based on data windows of lengths of 1

hour, 2 hours, 3 hours, 1 trading day (6 hours), 2 trading days (12 hours) and 1 trading
week (30 hours). Since non-trading periods are removed, the estimation windows contain
data that (potentially) cover more trading days. The EACD(1, 1) and the WACD(1, 1)
model are applied to all five stocks (AAPL, CSCO, INTC, MSFT and ORCL) at each
minute from 22 February to 31 December 2008 covering the period of 215 trading days.
Note that the first 30 days in 2008 are used in seasonality adjustments and additional
5 days are used to obtain the first ’weekly’ estimate (i.e., an estimate using one trading
week of data). In total, we estimate 4,664,000 parameter vectors - 6 data window lengths,
5 stocks, 2 models, 77400 minutes. Estimated EACD parameters for INTC for estimation
windows of one-day (six trading hours) and one-week (30 trading hours) are shown in
Figure 4.15.
One observes that estimated parameters (ω̃, α̃ and β̃) as well as persistence levels(
α̃+ β̃

)
clearly vary over time. Parameter estimates are less (more) volatile for longer
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Figure 4.15: Time series of estimated ’weekly’ (left panel, rolling windows covering 1800
observations) and ’daily’ (right panel, rolling windows covering 360 obser-
vations) EACD(1, 1) parameters and functions thereof based on seasonally
adjusted one-minute trading volumes for Intel Corporation (INTC) at each
minute from 22 February to 31 December 2008 (215 trading days). First 35
days are used for initialization. Based on 154,800 individual estimations.
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(shorter) estimation windows. This finding describes our bias-variance tradeoff: precise
estimates over comparably long estimation periods result in a high modelling bias and
vice versa. A local MEM successfully deals with this tradeoff.
Empirical densities of estimated EACD(1, 1) and WACD(1, 1), are shown in Figures

4.16 and 4.17, respectively. The densities exhibit different shapes with respect to the
estimation window size. There is a lower dispersion of a weekly estimated parameter,
as compared to the daily one. Results for time periods between 1 hour and 1 week
support this empirical finding. Modelling over long (short) time intervals thus inflates
(decreases) the modelling bias and reduces (increases) the parameter variability.

Figure 4.16: Kernel density plots (Gaussian kernel with optimal bandwidth) of estimated
EACD(1, 1) parameters for seasonally adjusted trading volumes over weekly
(red) and daily window (blue).
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For all five stocks we observe that estimated MEM parameters and functions thereof
substantially vary over time. Parameter variation is intimately related to the lengths of
underlying local estimation windows. The MEM parameter variations are reflected in
their empirical distributions. Quartiles of the estimated persistence

(
α̃+ β̃

)
level across

all five stocks are summarized in Table 4.10.

Estimation EACD(1, 1) WACD(1, 1)
window Low Moderate High Low Moderate High

1 week 0.85 0.89 0.93 0.82 0.88 0.92
2 days 0.77 0.86 0.92 0.74 0.84 0.91
1 day 0.68 0.82 0.90 0.63 0.79 0.89
3 hours 0.54 0.75 0.88 0.50 0.72 0.87
2 hours 0.45 0.70 0.86 0.42 0.67 0.85
1 hour 0.33 0.58 0.80 0.31 0.57 0.80

Table 4.10: Quartiles of estimated persistence levels
(
α̃+ β̃

)
for all five stocks at each

minute from 22 February to 31 December 2008 (215 trading days) and six
lengths of local estimation windows based on EACD and WACD specifica-
tions. We label the first quartile as ’low’, the second quartile as ’moderate’
and the third quartile as ’high’.

Quartiles of the estimated persistence parameter for a given data window size are
associated with ’low’ (25% quantile), ’moderate’ (median) and ’high’ (75% quantile)
persistence level. One observes that the estimated persistence increases with diminishing
variability as the length of the underlying data window includes more observations. This
finding suggests that persistence may be more reliably estimated over relatively long data
intervals.
Empirical evidence suggests that MEM parameters, their variability and their distri-

bution properties change over time. Results depend upon the length of the underlying
data window. Here longer estimation windows increase the parameter precision (i.e. de-
crease parameter variability) and enlarge the misspecification risk. The modelling bias
is thereby inflated as parametric models are fitted over long data stretches. Standard
time series analysis selects large estimation windows in order to obtain relatively precise
estimates. As the ’price’ of assuming parameter homogeneity over long intervals is rather
high, the LPA strikes a balance between parameter variability and the modelling bias.
As discussed above, the aim of the LPA is to find the longest possible data interval over
which parameter homogeneity hypothesis cannot be rejected. The target of the LCP
detection test is thus to find the interval of homogeneity.
The LCP sequential testing procedure requires as an input a set of critical values that

here depend upon the ’true’ parameter. Our approach is to select reasonable parameter
constellations. ’True’ parameter candidates are selected using a data driven approach,
i.e. we focus on those parameters that can most likely be estimated from financial data.
According to the computed quartiles of the ’weekly’ persistence (α̃ + β̃) levels we
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Figure 4.17: Kernel density plots (Gaussian kernel with optimal bandwidth) of estimated
WACD(1, 1) parameters for seasonally adjusted trading volumes over weekly
(red) and daily window (blue).
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discriminate between three persistence levels (low, medium or high), see the first row of
Table 4.10. The range for classification of a parameter vector into the medium persistence
group is then [0.87, 0.91] in the case of EACD and [0.85, 0.90] for the WACD model.
For example, an EACD parameter vector with estimated persistence of 0.90 would be
classified into the medium persistence level group as 0.90 is closer to the median than
to the third quartile.
Conditional on a persistence group we then distinguish between different magnitudes

of α̃ relative to β̃. Similarly to the above procedure we form three groups based on
the quartiles of the ratio β̃/(α̃+ β̃). The resulting categories are labeled as low, mid
or high ratio, see Table 4.11. As an example for classification, consider the case where
α̃ + β̃ = 0.20 + 0.71 = 0.91. The parameter vector is then classified into the medium
persistence and high ratio group (0.20/0.91 = 0.22 is closer to 0.19/0.89 = 0.21 than to
0.23/0.89 = 0.26).

Model Low Persistence Moderate Persistence High Persistence
Low Mid High Low Mid High Low Mid High

EACD, α̃ 0.28 0.22 0.18 0.30 0.23 0.19 0.31 0.24 0.20
EACD, β̃ 0.56 0.62 0.67 0.59 0.66 0.71 0.62 0.68 0.73
WACD, α̃ 0.28 0.21 0.17 0.30 0.23 0.18 0.32 0.24 0.19
WACD, β̃ 0.54 0.60 0.65 0.58 0.65 0.70 0.60 0.68 0.74

Table 4.11: Quartiles of 774,000 estimated ratios β̃/
(
α̃+ β̃

)
(based on estimation win-

dows covering 1800 observations) for all five stocks at each minute from 22
February to 31 December 2008 (215 trading days) and both model specifica-
tions (EACD andWACD) conditional on the persistence level (low, moderate
or high). We label the first quartile as ’low’, the second quartile as ’mid’
and the third quartile as ’high’. The shape parameter for the WACD model
equals the median value in all cases (s̃ = 1.57).

Our classification procedure enables us to identify nine groups of parameter constel-
lations that are used for the simulation of critical values, see Section 2.3.4.

4.2.2 Adaptive Estimation
In applying the local MEM at each time point (our sample covers 77,400 minutes) we
select the curve of critical values according to the previously introduced classification
scheme. At every time point we therefore compute the (past) ’weekly’ persistence level
and the value of the ratio β̃/

(
α̃+ β̃

)
. In the example above (α̃ + β̃ = 0.20 + 0.71 =

0.91) our selected curve corresponds to the medium-low (persistence-ratio) group. If for
example at some other point we have α̃ = 0.32 and β̃ = 0.53, then the selected curve
comes from the low-low parameter vector group.
The adaptive estimate θ̂ equals to the QMLE at the interval of homogeneity, see

Section 2.3.3. The adaptive choice of intervals for all five stocks on 2 February 2008 is
shown in Figure 4.18.
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Figure 4.18: Estimated length of intervals of homogeneity n
k̂
(in hours) for seasonally

adjusted one-minute cumulative trading volumes of selected companies in
case of a modest (r = 0.5, blue) and conservative (r = 1, red) modelling risk
level. We use the interval scheme with K = 13 and ρ = 0.25. Underlying
model: EACD(1, 1). NASDAQ trading on 22 February 2008.

The results are here presented for the local MEM with the underlying EACD model
specification, parameters ρ = 0.25 and K = 13 as well as for both risk scenarios, i.e.
the modest and the conservative risk case with r = 0.5 and r = 1, respectively. The
adaptive estimation selects an estimation interval between 1.5 and 3.5 hours during the
selected day given the modest risk case. According to the conservative risk case, the
adaptive estimate would be based on a interval length of around 4 hours. In the modest
risk case one selects shorter intervals than in the conservative case.

4.2.3 Empirical Findings

Understanding of economic risk plays an important role in practice. A traded aims
to control the price or the volume risk, i.e. the exposure of its portfolio (wealth) to
market changes, such as, e.g., the price volatility dynamics or the evolution of the traded
quantity. A local MEM successfully deals with both kinds of risks. For example, using a
GARCH framework, one better modells the dynamics of price volatility than a ’standard’
approach, see, e.g., Čížek et al. [2009]. Applying the framework to MEM for intra-day
volume modelling, we control the volume risk. Our benefits arise while outperforming a
’standard’ approach with ad-hoc selected estimation windows.
The LPA is applied to periodicity adjusted 1-min trading volumes for all five stocks

(AAPL, CSCO, INTC, MSFT and ORCL) at each minute from 22 February to 31
December 2008 (215 trading days, 77400 trading minutes). We focus on the EACD and
the WACD model, interval schemes with K = 8 and K = 13, two risk levels (modest,
r = 0.5, and conservative, r = 1) as well as on two significance levels, ρ ∈ {0.25, 0.50}.
The distributions of the length of the interval of homogeneity are shown in Figure 4.19.
A modest risk approach (r = 0.5) leads to shorter data intervals than a conservative

risk case (r = 1). If a trader desires a more precise estimation procedure, the advice is
to take (relatively) longer estimation intervals, such as, e.g., 4-5 hours. An estimation
that favors a smaller modelling bias is obtained by setting r = 0.5, i.e., we suggest to
estimate the model over (relatively) shorter intervals, for example, including at most 2-3
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Figure 4.19: Distribution of estimated interval length n
k̂
(in hours) for seasonally ad-

justed trading volumes of selected companies in case of modest (r = 0.5,
red) and conservative modelling risk (r = 1, blue), using an EACD (upper
panel) and a WACD model (lower panel) from 22 February to 31 Decem-
ber 2008 (215 trading days). We select 13 estimation windows based on
significance level ρ = 0.25.

hours of data.

Applying a local MEM, the maximum length of the interval of homogeneity is 6 hours
in all cases. Recall, the longest investigated interval of homogeneity IK includes 1800
observations (i.e. 30 trading hours or 1 week of data). The ’weekly’ estimation is
certainly not appropriate for modelling of high-frequency data. Since the results are
quite robust across different schemes, we recommend a modelling horizon of up to one
trading day of data. The ’right’ length is varying across time, see, e.g., 4.18. An ad hoc
selected (fixed) interval is likewise not appropriate in financial time series modelling.

Concerning on the model complexity, one observes that a relatively longer (shorter)
estimation intervals should be used while using the local EACD (WACD) model spec-
ification. This finding is possibly due to the variability of the shape parameter of the
WACD model. The results are quite robust across other employed scenarios.

Focusing on the evolution of the interval of homogeneity over a course of a typical
trading day, we show averages of the selected intervals of homogeneity at each minute
through our sample, see, e.g., Figure 4.20. After seasonal adjustment of the data, one
sees slightly shorter intervals in the opening and before closure. We attribute this finding
to the fact that estimation windows in the morning hours include (significant) portion
of data from the previous day. A possible overnight effect therefore changes the param-
eter dynamics. Induced trading activity by the end of the day similarly influences the
parameter evolution.
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Figure 4.20: Average estimated interval length n
k̂
(in hours) over the course of a trading

day for seasonally adjusted trading volumes of selected companies in case
of modest (r = 0.5, red) and conservative modelling risk (r = 1, blue),
using an EACD (upper panel) and a WACD model (lower panel) from 22
February to 31 December 2008 (215 trading days). We select 13 based on
significance level ρ = 0.25.

4.2.4 Forecasting Trading Volumes

Economic benefits of the local MEM arise with better volume risk control. Presented
evidence on the (in)homogeneity of the MEM parameters suggests that a LPA may
yield better volume forecasts in the short run than a ’standard’ benchmark approach
in a rolling window exercise. Note that in the ’standard’ modelling, the length of the
estimation window is fixed a priori.
At each trading minute from 22 February to 22 December 2008 (210 trading days,

75600 minutes) the trading volume is predicted over all horizons h = 1, 2, . . . , 60 min
during the next hour. Multi-step-ahead forecasts of seasonally adjusted volume are
computed using a recursive scheme using the currently estimated MEM parameters and
initialized based on the observed data that stem from the current estimation window.
Following the multiplicative data structure (3.5), we multiply the seasonally adjusted
volume forecasts with the corresponding estimated (past) seasonal factors.
The local MEM is based on the LPA approach with r ∈ {0.5, 1} and ρ ∈ {0.25, 0.5}.

We consider two modelling specifications (EACD and WACD) as well as two interval
selection schemes (K = 8 and K = 13). Denote the h-step LPA volume prediction by
ŷi+h and the resulting prediction error ε̂i+h = y̆i+h − ŷi+h, where y̆i+h represents the
observed trading volume.
Current econometric literature suggests to use several months of data in modelling

and forecasting of high-frequency data. Here the ’standard’ approach is based on a fixed
estimation window covering (only) 1800 observations (i.e. 30 trading hours or 1 week of
data). To make the ’standard’ approach even more competitive we set the interval to
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cover just 360 observations (6 hours or 1 trading day), see Section 4.2.3. The predictions
are denoted by ỹi+h and the corresponding prediction errors by ε̃i+h = y̆i+h − ỹi+h.
With the idea of regressing the observed trading volume on the predicted volume time

series, we test for the unbiasedness and the efficiency of the forecasting methods, see,
e.g., Mincer and Zarnowitz [1969]. We consider the following three linear regression
models at fixed forecasting horizon h with unknown parameters γ̂’s, γ̃’s and η’s to be
estimated

y̆i+h = ρ̂0 + ρ̂1ŷi+h + ε̂i+h (4.6)
y̆i+h = ρ̃0 + ρ̃1ỹi+h + ε̃i+h (4.7)
y̆i+h = η0 + η1ŷi+h + η2ỹi+h + εi+h, (4.8)

where ε̂, ε̃ and ε represent white noise processes. A forecasting method is said to be
unbiased if the regression constant in models (4.6) and (4.7) is not significant, and effi-
cient if the corresponding slope equals one. Moreover, the coefficient of determination
R2 reflects the strength of correlation between forecast and outcome. If the LPA tech-
nique would cover all forecasting information, the parameters from the encompassing
regression (4.8) equal to η1 = 1 and η2 = 0.
The strength of correlation between forecast and outcome favors the LPA technique,

see, e.g., Figure 4.21. The LPA predictive power dominates across all stocks, except for
the INTC stock given modest risk case (r = 0.5). Low risk power r leads to stronger re-
lationship in the short run. Best forecasting results are therefore expected over relatively
short forecasting horizons.

Figure 4.21: Coefficient of determination R2 of forecasting regressions (4.6) and (4.7)
computed at fixed horizon h = 1, . . . , 60 for the EACD model from 22
February to 22 December 2008 (210 trading days). Results are shown for
the LPA technique with ’significance’ level ρ = 0.25 for two risk levels,
i.e., r = 0.5 (solid red line) and r = 1 (dashed red line), as well as for
two specifications of the standard method, i.e., ad hoc selected estimation
window of 360 (solid blue line) and 1800 observations (dashed blue line).

Both forecasting methods share similar unbiasedness and efficiency results allowing us
to compare their predictive accuracy. One observes that the probability of rejecting the
unbiasedness or efficiency hypothesis increases with the forecasting horizon, see, e.g., a
brief overview of test results in Table 4.12. The total (average) number of non-rejections
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across all stocks is quite similar. In a small number of cases for the AAPL stock the
forecasts are statistically unbiased (regression constant equals zero), as opposed to the
CSCO and ORCL stocks where the same null is not rejected too often.

EACD WACD
AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

Unbiasedness
r = 0.5, ρ = 0.25 0 6 6 5 11 0 3 0 3 4
r = 0.5, ρ = 0.50 0 6 6 5 12 0 3 0 3 4
r = 1.0, ρ = 0.25 0 51 19 0 23 0 20 15 40 39
r = 1.0, ρ = 0.50 0 51 19 0 25 0 20 16 43 41
Stan., 1 week 0 0 0 0 59 0 0 0 16 58
Stan., 1 day 0 41 26 16 13 0 44 26 8 45
Efficiency
r = 0.5, ρ = 0.25 3 3 4 4 20 1 1 1 2 4
r = 0.5, ρ = 0.50 3 3 4 4 21 2 1 1 2 4
r = 1.0, ρ = 0.25 0 36 18 0 0 0 4 14 38 47
r = 1.0, ρ = 0.50 0 37 19 0 0 0 4 15 38 46
Stan., 1 week 0 0 0 0 59 0 0 0 0 59
Stan., 1 day 0 46 40 12 0 0 35 23 23 25

Table 4.12: Number of non-rejections of the unbiasedness or the efficiency null hypoth-
esis given horizon h = 1, . . . , 60 of five large companies traded at the NAS-
DAQ from 22 February to 22 December 2008 (210 trading days) using an
EACD(1,1) and a WACD(1,1) model at a 5% significance level. We specify
four tuning parameter constellations when using the LPA technique and two
ad hoc selected window lengths when employing the standard method (1
week or 1 day). Maximum number of non-rejections is 60 in each case.

After estimating the encompassing regressions (4.8) we observe that the LPA tech-
nique statistically covers all forecasting information at least once in every case, see, e.g.,
Table 4.13. This finding is most likely due to the outstanding short-term forecasting
performance of the LPA technique, i.e. the ’full forecasting information’ hypothesis is
not rejected for short forecasting horizons. Best results are interestingly observed for
the EACD case.
Results show that the local MEM outperforms the ’standard’ approach with ad hoc

fixed estimation window. Now we compare both methods using a Diebold and Mariano
[1995] testing framework. Define the loss differential dh between the squared prediction
errors of both methods over a fixed horizon h and for n observations as dh = {di+h}ni=1,
with di+h = ε̂2

i+h − ε̃2
i+h. Testing whether the local MEM yields qualitatively lower

predictions errors is based on the test statistic

TST,h =
{

n∑
i=1

I (di+h > 0)− 0.5n
}
/
√

0.25n. (4.9)

The statistic is approximately N(0, 1) distributed. Our sample covers n = 75600 trading
minutes (corresponding to 210 trading days). Quantitative forecasting superiority of the
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EACD WACD
AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r = 0.5, ρ = 0.25 5 3 2 2 6 1 3 1 1 0
r = 0.5, ρ = 0.25 5 3 2 2 6 1 2 1 1 0
r = 0.5, ρ = 0.25 11 23 12 0 11 1 9 5 12 8
r = 0.5, ρ = 0.25 11 24 12 0 12 1 9 6 12 8

Table 4.13: Number of non-rejections of the ’forecasting information coverage’ null hy-
pothesis (H0 : η1 = 1 and H0 : η2 = 0) given horizon h = 1, . . . , 60 of five
large companies traded at the NASDAQ from 22 February to 22 December
2008 (210 trading days) using an EACD(1,1) and a WACD(1,1) model with
a significance level of 5%. We specify four tuning parameter constellations
when comparing the LPA technique to the standard method with an ad hoc
selected window length of 1800 observations.

local MEM is performed by testing the null H0 : E [dh] = 0. Corresponding test statistic
is given by

TDM,h = d̄h/
√

2πf̂dh (0) /n L→ N(0, 1). (4.10)

The average loss differential is computed by d̄h = n−1∑n
i=1 di+h. A consistent estimate

of the spectral density of the loss differential at frequency zero, f̂dh (0), may be computed
as

f̂dh (0) = (2π)−1
h−1∑

m=−(h−1)
γ̂dh (m) , (4.11)

γ̂dh (m) = n−1
n∑

i=|m|+1

(
di+h − d̄h

) (
di+h−|m| − d̄h

)
, (4.12)

see, e.g., Diebold and Mariano [1995]. We display the Diebold-Mariano test statistics
TDM,h against the forecasting horizon h in Figure 4.22. The underlying LPA is based
on the EACD model with significance level ρ = 0.25.
Quantitatively, our local MEM provides smaller forecasting errors than a ’standard’

approach, i.e., the fixed-window based forecast is worse than the LPA in any case. The
’standard’ approach performs poorly if the data interval includes many observations (here
one week of data). The data intervals are obviously too large and thus too restrictive in
practice. This misspecification leads to significantly worse predictions, see, e.g., Figure
4.22.
Qualitatively, the local MEM produces smaller (squared) forecasting errors in all cases,

see, e.g., Table 4.14 that includes the test statistics TST,h given in (4.9). The largest (i.e.,
least negative) statistics across all 60 forecasting horizons support our previous findings.
The prediction accuracy is robust against the underlying LPA tuning parameters.
Even after reducing the number of observations to 360 (i.e., 1 day of data) while using

the ’standard’ method according to our suggestion, the LPA statistically outperforms
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Figure 4.22: Test statistic TDM,h across all 60 forecasting horizons for five large compa-
nies traded at NASDAQ from 22 February to 22 December 2008 (210 trading
days). The red curve depicts the statistic based on a test of the LPA against
a fixed-window scheme using 360 observations (6 trading hours). The blue
curve depicts the statistic based on a test of the LPA against a fixed-window
scheme using 1800 observations (30 trading hours). The upper panel shows
the results for the ’modest risk case’ (r = 0.5) and the lower panel shows
the results for the ’conservative risk case’ (r = 1) given a significance level
of ρ = 0.25.
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EACD WACD
AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

1 week
r = 0.5, ρ = 0.25 -38.9 -28.6 -24.1 -33.8 -31.4 -22.6 -25.7 -20.2 -26.7 -26.6
r = 0.5, ρ = 0.50 -38.7 -28.7 -24.2 -33.8 -31.4 -22.7 -25.5 -20.3 -26.7 -26.6
r = 1.0, ρ = 0.25 -40.5 -31.4 -23.3 -39.1 -32.8 -27.9 -30.8 -21.5 -31.3 -29.8
r = 1.0, ρ = 0.50 -40.4 -31.3 -23.3 -39.0 -32.9 -28.1 -30.8 -21.5 -31.5 -29.7
1 day
r = 0.5, ρ = 0.25 -10.8 -6.0 -13.1 -5.7 -15.1 -6.4 -3.5 -6.1 -4.9 -12.6
r = 0.5, ρ = 0.50 -10.6 -6.0 -12.8 -5.5 -15.0 -6.3 -3.2 -6.2 -4.8 -12.7
r = 1.0, ρ = 0.25 -6.9 -8.6 -8.7 -4.4 -12.9 -4.1 -5.1 -6.5 -4.2 -11.5
r = 1.0, ρ = 0.50 -7.1 -8.6 -8.8 -4.4 -13.0 -3.9 -5.2 -6.5 -4.1 -11.4

Table 4.14: Largest (in absolute terms) test statistic TST,h across all 60 forecasting hori-
zons as well as EACD and WACD specifications for five large companies
traded at NASDAQ from 22 February to 22 December 2008 (210 trading
days). We compare LPA-implied forecasts with those based on rolling win-
dows using a priori fixed lengths of one week and one day, respectively. Neg-
ative values indicate lower squared prediction errors resulting from the LPA.
According to the Diebold-Mariano test (4.10), the average loss differential is
significantly negative in all cases (significance level 5%).

the ’standard’ approach. One sees that the fixed-window setting with shorter intervals
significantly outperforms the setting with 1 week of data, as shown in Figure 4.22 (quan-
titative performance) and Table 4.14 (qualitative accuracy). A ’standard’ approach with
an ad hoc selected (relatively) long estimation intervals fails in short-term forecasting.
Our local MEM predicts trading volumes fairly well over short horizons. The strongest

overperformance is visible over horizons between two and four minutes, see, e.g., Figure
4.23. Depicting the ratio of RMSPEs√√√√n−1

n∑
i=1

ε̂2
i+h

/√√√√n−1
n∑
i=1

ε̃2
i+h ,

in dependence of the length of the forecasting horizon, LPA again exhibit superior
forecasting power. The prediction performance shrinks slowly with the horizon. The
strongest advantage is achieved over horizons of up to 20 minutes. One still expects
financial gains implied by the local MEM in trading strategies within the next one hour.
A better forecasting performance of the LPA method is documented over time, see,

e.g., Figure 4.24. During most of the trading days in 2008 the ratio lies below one.
The striking outperformance is visible over the last months covering the financial crisis.
Since market distress periods affect the trading activity, the MEM parameters may
change more often than during a calm (summer) period. The results again do not
critically depend on the LPA modelling setup, demonstrating again the LPA strength
for understanding high-frequency dynamics.
Forecasting performance per intraday time favor the LPA method as well. The stan-
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Figure 4.23: Ratio between the RMSPEs of the LPA and of a fixed-window approach
(covering 6 trading hours) over the sample from 22 February to 22 December
2008 (210 trading days). Upper panel: EACD model, lower panel: WACD
model.

Figure 4.24: Ratio between the RMSPEs of the LPA and of a fixed-window approach
(covering 6 trading hours) over the sample from 22 February to 22 December
2008 (210 trading days). Upper panel: Results for underlying (local) EACD
model. Lower panel: Results for underlying (local) WACD model.
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dard approach is clearly outperformed, for illustration see Figure 4.25. The best LPA
overperformance is interestingly achieved at the end of a typical trading day, usually
after 14:00, irrespectively upon the tunning parameters. The local MEM exhibits again
better performance than a fixed-window approach.

Figure 4.25: Ratio between the RMSPEs of the LPA method and the RMSPE of the
standard approach over the course a typical trading day using an EACD
(upper panel) and WACD (lower panel) model from 22 February to 22
December 2008 (210 trading days).

4.2.5 Financial Applications

We illustrate the usefulness of the local MEM by introducing a trading strategy based on
predicted volume series using the LPA and the ’standard’ method. The example shows
how a trader may control volume risk. A more sophisticated strategy would include
predictions of the volume weighted average price (VWAP), see, e.g., Berkowitz et al.
[1988] and Fuh et al. [2010].

EXAMPLE 4. (Trading Strategy)

Suppose that a trader decides to buy (sell) certain number of shares at each minute
from 10:00-15:00. There are two methods for predicting the future one-minute trading
volume at each observation i:

(i) ’Standard’ method - predicted volume ỹi+1,

(ii) Local MEM - predicted volume ŷi+1.

Suppose that technical analysis suggest the trader to buy (sell) stocks when the adap-
tively predicted volume is larger (smaller) than the standard method volume. Let fur-

71



4 Applications

thermore the number of traded shares equals the difference ŷt+1 − ỹt+1. Cash flow is
calculated at each trading hour (assumed transaction fees and taxes are set to be 10%).
Empirical evidence shows that the investment strategy provides positive financial ben-

efits over the entire year, see Figure 4.26. This is in particular true for AAPL, CSCO,
MSFT and their joint (equally weighted) portfolio. Except for May and September,
the strategy achieves moderate/high financial gains. The results confirm that the local
MEM outperforms the ’standard’ method and can be used in modelling of volume risk.
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Figure 4.26: Daily cash flow in USD (blue) and cummulated daily cash flow in USD (red)
of the investment strategy. The investor uses an EACD (left panel) and a
WACD model (right panel) from 22 February to 22 December 2008 (210
trading days).
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4.3 Cross Country Evidence for the EPK Paradox
Understanding the market microstructure plays an important role in economics. Fo-
cusing on asset pricing, our primary goal is to study the preference dynamics and to
provide statistical evidence for the existence of the EPK paradox on stock markets. The
economic framework of a state-dependent utility is now applied to market data at six
worldwide largest markets (AUS, GER, JPN, SUI, UK and US) in the period from 1
January 1990 until 31 May 2012.

4.3.1 Modelling Setup

Recall the pricing kernel (PK) specification (2.24) under state-dependent preferences

Kθ (rm,t+1) = β1r
−1
m,t+1I {rm,t+1 ∈ [0, x)}+ β2r

−1
m,t+1I {rm,t+1 ∈ [x,∞)} , (4.13)

with simple market gross return rm,t+1, parameter vector θ = (β1, β2)> and fixed un-
known reference point x. This specification allows us to study the estimation quality
and the parameter dynamics. It is a suitable framework to provide evidence for the
non-monotonicity of the empirical pricing kernel on stock markets.
Consider the following three scenarios:

(a) State-dependent and unconstrained estimation with β1, β2 > 0,

(b) State-dependent and constrained estimation with β1 > β2 > 0 and

(c) State-independent estimation with β1 = β2 = β = 0.

In the implementation of the above scenarios we use two estimation techniques, namely
the iterated GMM and the GMM based on the Hansen-Jagannathan (HJ) weighting
matrix, see Section 2.5.1. The estimation techniques treat the unknown change point x
as endogenous. Using a grid search method we optimize the objective function simulta-
neously in θ and x in all cases. Three different estimation window lengths are used, i.e.,
we select n ∈ {250 (1 year), 500 (2 years), 1250 (5 years)}.

4.3.2 Estimation Quality

The in-sample performance of both estimation techniques is compared based on the
optimal value of the objective function. It is sufficient to focus on the average reported
objective function value for a fixed scenario and a given stock market. The resulting
estimation quality indicators (averages) are given in Tables 4.15, 4.16 and 4.17 over the
estimation windows including n = 250, n = 500 and n = 1250 observations, respectively.
The general observation is that cases allowing for non-monotonicity of the pricing

kernel, i.e., scenarios (a) and (b), favor the iterated GMM estimation procedure. The
specification (c) leads to a monotone decreasing pricing kernel and is (on average) best
estimated by the GMM technique with the HJ weighting matrix. One furthermore
observes that in all cases the (average) optimal objective function value decreases with
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GMM with HJ matrix Iterated GMM
(a) (b) (c) (a) (b) (c)

AUS 4.05 4.25 4.45 3.55 3.95 4.55
GER 2.96 3.09 3.34 2.66 2.96 3.39
JPN 2.44 2.55 2.77 2.15 2.38 2.80
SUI 3.35 3.48 3.72 2.96 3.21 3.79
UK 2.63 2.73 2.91 2.40 2.58 2.98
US 3.33 3.50 3.68 3.01 3.41 3.76

Table 4.15: Average optimal objective function value across six worldwide largest mar-
kets for two competing estimation techniques and three scenarios: (a)
β1, β2 > 0, (b) β1 > β2 > 0 and (c) β1 = β2 = β = 0. The estimation
window covers n = 250 observations (1 year).

GMM with HJ matrix Iterated GMM
(a) (b) (c) (a) (b) (c)

AUS 1.19 1.31 1.39 1.08 1.25 1.42
GER 0.85 0.91 1.00 0.81 0.90 1.01
JPN 0.68 0.71 0.80 0.66 0.71 0.81
SUI 1.01 1.06 1.15 0.88 0.96 1.17
UK 0.84 0.89 0.95 0.79 0.86 0.97
US 0.91 0.96 1.01 0.84 0.95 1.03

Table 4.16: Average optimal objective function value across six worldwide largest mar-
kets for two competing estimation techniques and three scenarios: (a)
β1, β2 > 0, (b) β1 > β2 > 0 and (c) β1 = β2 = β = 0. The estimation
window covers n = 500 observations (2 years).

GMM with HJ matrix Iterated GMM
(a) (b) (c) (a) (b) (c)

AUS 0.34 0.38 0.39 0.29 0.38 0.40
GER 0.25 0.26 0.30 0.23 0.25 0.31
JPN 0.17 0.18 0.22 0.16 0.18 0.22
SUI 0.25 0.26 0.29 0.21 0.24 0.29
UK 0.28 0.29 0.32 0.26 0.28 0.32
US 0.27 0.29 0.31 0.25 0.29 0.31

Table 4.17: Average optimal objective function value across six worldwide largest mar-
kets for two competing estimation techniques and three scenarios: (a)
β1, β2 > 0, (b) β1 > β2 > 0 and (c) β1 = β2 = β. The estimation win-
dow covers n = 1250 observations (5 years).
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the sample size. This implies that the parameter precision increases with the number of
observations.

4.3.3 Parameter Dynamics and Reference Point Analysis
The estimated parameters for cases (b) and (c) are illustrated in Figures 4.27 and 4.28,
respectively. Parameter estimates indicate that preferences change over time, even in the
’standard’ case (c) with a monotone decreasing pricing kernel. Results clearly provide
(descriptive) evidence for the existence of a pricing kernel paradox as one observes more
trading days with different estimated parameters β1 and β2. The ’standard’ case is thus
of limited use in practice.

Figure 4.27: Time series of the estimated parameters β1 (red) and β2 (blue) across six
worldwide largest stock markets. We employ the iterated GMM estimation
technique with n = 500 (2 years).

The distributions of optimal reference points shows interesting patterns across the
stock markets, see, e.g., Figure 4.29. One selects values slightly above one with high
probability. This results supports empirical evidence from the option market literature.
There are two groups of countries that share similar distribution patterns. Countries
with relatively high percentage of optimal reference points lying just above one (AUS,
SUI and UK) potentially belong to the same group. For the remaining countries (GER,
JPN and US) the optimal reference points near one are located below and above one in
roughly similar proportions.
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Figure 4.28: Time series of the estimated parameter β across six worldwide largest stock
markets. We employ the GMM estimation technique with the HJ weighting
matrix and with n = 500 (2 years).

Figure 4.29: Kernel density plots (Gaussian kernel with optimal bandwidth) of optimal
reference point x. We employ the iterated GMM estimation technique with
n = 500 (2 years).
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4.3.4 Empirical Pricing Kernels across Stock Markets
Results of the D-test statistically indicate the existence of the EPK paradox on stock
markets, see, e.g., Table 4.18. This evidence if furthermore supported by a graphical
representation of the empirical pricing kernel fitted to the average parameter values and
average optimal reference point at a selected market, see, e.g., Figure 4.30. This findings
suggest that modern statistical techniques lead to a better understanding of the market
microstructure.

Iterated GMM GMM with HJ matrix
1 year 2 years 5 years 1 year 2 years 5 years

AUS 76.32 79.49 67.76 68.64 69.88 70.21
GER 89.94 88.99 81.76 81.55 84.27 86.30
JPN 84.22 83.02 83.15 83.60 84.67 76.93
SUI 92.06 88.47 87.14 85.21 79.77 80.62
UK 82.13 86.43 79.26 86.20 73.61 81.32
US 78.16 75.92 74.85 70.44 52.64 54.81

Table 4.18: Percentage of rejections of the null hypothesis of the D-test (H0 : β1 = β2 =
β) as indicator for the existence of the EPK paradox across the worldwide
largest six stock markets. We employed two GMM estimation techniques.

Figure 4.30: Empirical pricing kernels across six worldwide largest stock markets for
two scenarios, i.e., (a) β1, β2 > 0 (blue) and (c) β1 = β2 = β (red). The
empirical pricing kernels are fitted to average parameter estimates and the
average value of the optimal reference point. We employ the iterated GMM
estimation technique in (a) and the GMM estimation technique with the
HJ weighting matrix in (c) with n = 500 (2 years).
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If all the economists in the world were laid

end to end, they would still not reach a conclusion.
George Bernard Shaw

5.1 Modelling and Forecasting Liquidity Supply
The dynamic semiparametric factor model (DSFM) is here used for modelling and
forecasting of excess supply on stock markets, i.e., to capture the dynamics of high-
dimensional bid and ask curves on a limit order book market. We extend and rewrite
the work by Härdle et al. [2012a] while applying the DSFM proposed by Fengler et al.
[2007], Brüggemann et al. [2008], Park et al. [2009] and Cao et al. [2009]. The idea behind
the DSFM, stipulated under the philosophy ’smooth in space and parametric in time’,
is to capture the order curve’s spatial structure using a factor decomposition which is
estimated nonparametrically. The order book’s dynamics is in the following step mod-
elled using a vector error correction (VEC) specification applied to the corresponding
factor loadings with the bid-ask spread as the (only) cointegration relationship. Due to
the modelling flexibility, one successfully reduces the high dimension of the book (25, 50,
75 or 101 price grids on each market side) as well as extracts the relevant information
concerning the order book dynamics.
The model is applied to limit order book data of four stocks traded at the Australian

Securities Exchange (ASX) from 8 July to 16 August 2002 (30 trading days). After re-
moving the seasonal pattern in the data, we contest two DSFM implementation methods.
The DSFM-Separated (each market side analyzed separately) approach outperforms the
DSFM-Combined approach (bid side reversed), explainig up to 95% of in-sample varia-
tions. Including more knots does not lead to significant improvements of the explained
variance (EV) or in the corresponding RMSE. A two-factor DSFM-Separated specifica-
tion is sufficient to capture the curve dynamics and is used in the sequel of the analysis.
The first factor captures the overall slope of the curve which is associated with the av-
erage trading costs and the second factor the order curve fluctuations. The shape of
the second factor looks different for levels close to the best bid/ask quotes than for lev-
els very deep in the book, i.e., the second factor is indeed responsible for order book’s
curvature. Modelling the full bid or ask curve (dimension J = 101) yields the highest
explained variance.
The factor loadings vary considerably over time and are (statistically) strongly per-

sistent. On higher frequencies than 5 minutes the factor loadings are driven toward unit
root processes. No significant evidence is found for common stochastic trends (cointe-
gration) underlying the order book factor loadings. A vector error correction (VEC)
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specification of order q (maximum lag order of q = 4 is sufficient) with the spread as
the only cointegration relationship is established. The processes follow a strong own-
process dynamics and show relatively weak cross-dependencies between the endogenous
variables. The market cross-dependencies are most pronounced for less frequently traded
stocks (MIM and WOW). Quote changes are short-run predictable given the shape of
the order book. Changes in the factor loading have a short term impact (up to 5-10
minutes) on the quote changes. High frequently traded stocks (BHP and NAB) have
more pronounced impact than less liquid stocks. Asymmetric reactions of slope factor
loadings on changes of the bid-ask spread are reported. Rising spreads tend to reduce
(increase) the order aggressiveness on the bid (ask) side.
The DSFM approach successfully predicts the liquidity supply over various forecasting

horizons during a trading day in an realistic out-of-sample forecasting exercise. It more-
over outperforms a naive forecasting approach. In a trading strategy order execution
costs can be reduced if orders are optimally placed according to predictions of liquidity
supply. Optimal order placement in periods of high liquidity results in smaller transac-
tion costs than in the case of a proportional splitting over time. Our flexible approach
allows us to estimate and to predict future (excess) demand and supply elasticities, as
well as to forecast simultaneously the shape and the location of the limit order book.
These results show that the DSFM approach is suitable for modelling and forecasting

of liquidity supply. Since it is computationally tractable, it can serve as a valuable
building block for automated trading models.

5.2 Localizing Multiplicative Error Models

A local adaptive multiplicative error model (MEM) has been proposed by Härdle et al.
[2012b] for modelling and forecasting of high-frequency variables. By providing more
implementation details we enrich their study in our work. The local MEM relies on the
local parametric approach (LPA) introduced by Spokoiny [1998] which has been grad-
ually introduced to time series literature. It addresses the tradeoff between parameter
variability and the modelling bias. The length of the interval of homogeneity is chosen by
a sequential testing procedure. By estimating the MEM over the interval of homogeneity
one obtains the adaptive estimate used for financial data predictions.
The proposed approach is applied to the high-frequency series of one-minute cumu-

lative trading volumes based on several NASDAQ blue chip stocks. One observes that
the MEM parameters and their distribution clearly vary over time. The length of the
interval of homogeneity varies between one and six hours. A conservative modelling
approach would select on average around 3-4 hours of data, whereas a more modest
(risk) approach suggest to take 2-3 hours. The local MEM provides significantly bet-
ter out-of-sample forecasts than competing ’standard’ approaches using a priori fixed
lengths of estimation intervals. The findings are quite robust with respect to the choice
of underlying tuning parameters.
Our findings can be carried over to other (persistent) financial processes that exhibit

similar stochastic properties as cumulative trading volumes. For example, one can con-
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sider duration data, trade counts, bid-ask spreads, transaction costs, market depth or
volatilities. Adaptive techniques play an important role in high-frequency forecasting.
One may gain deeper insights into the local variation of the model parameters and struc-
tural relationships and use the information to achieve economic and financial benefits.

5.3 Cross Country Evidence for the EPK Paradox
Following a state-dependent utility approach, see, e.g., Grith et al. [2011], we provide
worldwide evidence for the existence of the EPK paradox on stock markets. The results
are quite robust across countries and for the underlying framework specifications. Since
estimated EPK parameters exhibit a time-varying pattern, one may systematically study
the preference dynamics. One could relate the present study to portfolio selection and
then evaluate the implied economic and financial benefits. As shown in this work, it is
possible to achieve positive results while applying modern statistical and econometric
methods.
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