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Abstract 
The LAMMER protein kinases, termed after a unique signature motif found in their 

catalytic domains, are an evolutionary conserved family of dual-specificity kinases that 

are present in most eukaryotes including humans, yeast and protozoa. Members of this 

family have been implicated in key cellular functions such as splicing, transcription, 

translation, differentiation and stimuli-induced signal transduction.  

Here I report the first functional characterization of one of the most unexplored 

members of the LAMMER family, the budding yeast Kns1. Phenotypic analysis 

uncovered a crucial role for Kns1 in the control of the yeast tolerance to high pH stress. 

Deletion of the KNS1 gene conferred high sensitivity to alkaline pH, whereas its 

overexpression increased tolerance to this stress. Further analysis established that 

Kns1 promotes growth under alkaline pH stress using not only its catalytic activity but 

also non-catalytic mechanisms. Large-scale purification of full-length Kns1 from E. coli 

allowed for the identification of nine in vitro autophosphorylation sites on Kns1 by mass 

spectrometry. Mutation of the threonine residue at position 562 (Thr562), an 

autophosphorylation site located within the LAMMER motif, to a non-phosphorylatable 

residue yielded a kinase that preserves intrinsic catalytic activity in vitro but mostly 

behaves like the catalytically inactive mutant in vivo. This finding showed the 

physiological importance of autophosphorylation site Thr562 in the regulation of Kns1 

function.  

The protein Cmk2, a calcium/calmodulin-dependent protein kinase II with 

autocatalytic properties, has been previously proposed as a possible in vitro substrate 

for Kns1. Here I demonstrate that Kns1 phosphorylates Cmk2 in vitro using a 

catalytically inactive Cmk2 mutant as substrate and show that Cmk2, as opposed to 

Kns1, acts to restrict alkaline tolerance. Genetic evidence suggested that both proteins 

act in concert on a common pathway, in which Kns1 may downregulate Cmk2 to confer 

alkaline tolerance. Identification of in vitro phosphorylation sites in Cmk2 followed by 

mutational analysis indicated that autophosphorylation of Cmk2 at Thr69 may prevent 

its downregulation by Kns1 under alkaline pH stress.  

In conclusion, this thesis describes a novel and crucial role for Kns1 and its in vitro 

substrate Cmk2 in the adaptation of yeast to alkaline stress and provide valuable 

insights into their regulation as well as into their functional interplay. 

 

Key words: LAMMER kinase, Kns1, calcium/calmodulin-dependent protein kinase II, 

Cmk2, alkaline pH stress, Saccharomyces cerevisiae. 
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Zusammenfassung 
Die LAMMER-Kinasen sind Dual-Spezifität-Proteinkinasen, die durch das 

namensgebende einzigartige LAMMER-Motiv in der katalytischen Subdomäne X 

gekennzeichnet sind. Sie sind evolutionär hoch konserviert und in den meisten 

Eukaryonten wie Menschen, Hefen und Protozoen vorhanden. Mitglieder dieser 

Familie sind mit wichtigen zellulären Prozessen wie Spleißen, Signaltransduktions-

wegen, Transkription, Translation und Differenzierung assoziiert.  

Die vorliegende Arbeit stellt die erste funktionelle Charakterisierung eines bisher 

kaum erforschten Vertreters der LAMMER-Proteinkinase Familie Kns1 aus der 

Bäckerhefe dar. Phänotypische Analysen belegten eine entscheidende Rolle für Kns1 

in der Regulation der Toleranz gegenüber basischem pH-Stress. Das Entfernen des 

KNS1 Gens führte zu einer gesteigerten Empfindlichkeit der Zellen gegenüber 

basischen Wachstumsbedingungen, während seine Überexpression in einer erhöhten  

Stresstoleranz resultierte. Weitere Analysen zeigten, dass Kns1 neben der 

katalytischen Aktivität auch nicht-katalytischen Mechanismen zur Förderung des 

Zellwachstums unter alkalischem pH-Stress nutzt. Die Reinigung des Kns1 Proteins in 

voller Länge aus E. coli ermöglichte die Identifizierung von neun in vitro-

Autophosphorylierungsstellen mittels Massenspektrometrie. Die Mutation von Thr562, 

eine Autophosphorylierungsstelle innerhalb des LAMMER-Motivs, zu Alanin ergab in 

vitro eine Kinase mit intrinsischer katalytischer Aktivität, die sich jedoch in vivo 

hauptsächlich wie die katalytisch inaktive Kns1-Mutante verhielt. Dieser Befund belegt 

die physiologische Bedeutung von Thr562 in der Regulation der Kns1 Funktion.  

Die Calcium/Calmodulin-abhängige Proteinkinase II Cmk2, die konstitutiv 

autokatalytische Eigenschaften besitzt, wurde früher als mögliches in vitro Substrat von 

Kns1 vorgeschlagen. In dieser Arbeit beweise ich durch Verwendung einer katalytisch 

inaktiven Cmk2-Mutante als Substrat, dass Kns1 Cmk2 in vitro phosphoryliert. Darüber 

hinaus zeige ich, dass Cmk2 die basische pH-Toleranz der Zellen beschränkt. Gestützt 

durch genetische Hinweise agieren beide Proteine gemeinsam bei der Regulation der 

alkalischen Stresstoleranz, wobei Kns1 möglicherweise Cmk2 herabreguliert. Die 

Identifizierung der in vitro Phosphorylierungsstellen von Cmk2, gefolgt von gerichteten 

Mutagenesestudien dieser Stellen wiesen darauf hin, dass Autophosphorylierung des 

Restes Thr69 von Cmk2 bei alkalischem Stress die Herabregulation durch Kns1 in vivo 

verhindert.  

Zusammenfassend beschreibt diese Arbeit eine neue und entscheidende Rolle von 

Kns1 und Cmk2 bei der Anpassung der Hefe an alkalisches Milieu und gibt wertvolle 

Einblicke in Regulation und funktionellem Zusammenspiel beider Faktoren.  
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Introduction 

1. Introduction 
  

1.1 Protein kinases 

Reversible protein phosphorylation is one of the most important control 

mechanisms of protein function. It is the most widespread type of post-translational 

modification in intracellular signal transduction and also plays a critical role in the 

regulation of many other cellular processes. Thus, protein phosphorylation virtually 

affects every aspect of cell life including metabolism, transcription, cell cycle 

progression, cytoskeletal organization, organelle trafficking, stress responses, 

apoptosis and differentiation1. 

Protein phosphorylation is catalysed by protein kinases, which transfer the -

phosphate from a nucleoside triphosphate (usually ATP) onto an acceptor amino acid 

in the substrate protein2. The addition of a phosphate molecule has profound 

consequences on the target protein. The attribute of a double negative charge and the 

capacity of the phosphoryl oxygens to form hydrogen-bond interactions can promote 

conformational changes in the protein that affect self-association, recognition by other 

proteins, activation or inhibition of its enzymatic activity3,4.  

1.1.1 Protein kinase classification 

The large family of protein kinases is classified based on the target amino acid 

specificity. There are three major subfamilies responsible for phosphorylation on 

hydroxy-amino acids in eukaryotic cells: (a) protein tyrosine (Tyr) kinases that 

phosphorylate the phenolic hydroxyl group of tyrosine, (b) protein serine/threonine 

(Ser/Thr) kinases that phosphorylate the hydroxyl group on the -carbon of serine and 

threonine and (c) dual-specificity protein kinases that are capable of phosphorylating 

serine, threonine and tyrosine residues5,6.  

1.1.1.2 Serine/Threonine and Tyrosine protein kinases 

Ser/Thr and Tyr protein kinases differ principally in the depth of their catalytic cleft, 

as underscored by the comparison between the tridimensional structure of the 

prototypical Ser/Thr cAMP-dependent protein kinase (PKA) and Tyr protein kinase 

Insulin receptor kinase (IRK)7,8. A number of differences in the primary structure of 

Ser/Thr and Tyr protein kinases contribute to the creation of a different residue 

environment and conformation of the active site8,9. Among these differences, there are 
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three distinctive signature motifs that are traditionally used to predict amino acid 

specificity10,11. These are found in regions close to the site of phosphotransfer i.e., in 

the catalytic loop (subdomain VIb) and in the P+1 loop (subdomain VIII), which is the 

docking site for the residue adjacent to the target phosphorylation site. One signature 

motif is the DLKPEN sequence in the catalytic loop of Ser/Thr kinases that is replaced 

by DLAARN in Tyr kinases9. The second distinctive signature is in the P+1 loop; where 

in Ser/Thr kinases there is a threonine (Thr201 in PKA) or serine, in Tyr kinases there is 

a conserved proline, which forms hydrophobic interactions with the aromatic ring of the 

substrate tyrosine9,12. Lastly, a characteristic common to all Tyr kinases is the presence 

of a conserved tryptophan (Trp1175 in IRK) in their P+1 loop. This tryptophan contributes 

to the positioning of the tyrosine ring and also interacts directly with the arginine in the 

DLAARN motif to link the catalytic with the P+1 loops8,9. In Ser/Thr kinases, this link is 

established through the interaction between Thr201 with the lysine residue in the 

DLKPEN motif, thereby resulting in a closer conformation of the catalytic cleft8.  

1.1.1.3 Dual-specificity protein kinases 

Dual-specificity protein kinases bear in their catalytic domains the signature motifs 

of Ser/Thr protein kinases6,13. Therefore, since their discovery, the assumption that the 

amino acid specificity of a protein kinase can be predicted from its primary sequence 

had to be reevaluated. Given the significant differences in size and hydrophobicity 

between the aliphatic Ser/Thr and the aromatic Tyr residues, it is currently believed that 

the distinct conformation of the catalytic cleft is what basically conditions the 

discrimination between Ser/Thr and Tyr residues14. Therefore, dual-specificity kinases 

must possess specific sequence determinants conferring permissive substrate usage 

i.e., flexibility in the active site region to accommodate either type of hydroxyl residues. 

However, the attempt to identify such determinants through sequence alignment 

analysis did not yield any obvious consensus motif6.  

The best characterized dual-specificity kinases are the mitogen-activated protein 

(MAP) kinase kinases e.g., mammalian MEK1/MKK1 and yeast Ste715,16. They typically 

participate in sequentially activated kinase signalling modules that consist of a 

minimum of three kinases: an upstream Ser/Thr kinase, a middle dual-specificity kinase 

and a downstream Ser/Thr kinase. Such signalling modules mediate cellular responses 

to a myriad of extracellular stimuli and conditions of cellular stress17,18. Owing to their 

physiological importance, MAP kinase pathways have been conserved throughout 

eukaryotic evolution19. Two other major subfamilies of dual-specificity protein kinases 

are also well-conserved from yeast to mammals: (i) the family of the dual-specificity 

tyrosine-phosphorylation-regulated kinases (DYRKs), whose members include 
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mammalian DYRK1 and S. cerevisiae Yak1, and (ii) the family of the Cdc2-like kinases 

(CLKs), herein termed LAMMER kinases, which have as a founding member murine 

Clk/Sty kinase (mCLK1)20–24.  

1.2 The LAMMER family of protein kinases  

The LAMMER family of protein kinases are found in most eukaryotes and belong to 

the group of eukaryotic signature proteins (ESPs) that were essential for the evolution 

of eukaryotic cells25. Members of this family include Kns1 from S. cerevisiae, Lkh1/Kic1 

from S. pombe, PfLammer from P. falciparum, AFC1-3 from A. thaliana, PK12 from N. 

tabacum, DOA from D. melanogaster, mCLK1-4 from murine and hCLK1-4 from 

human13,24,26–32.  

All LAMMER kinases tested so far exhibit autophosphorylation activity on Ser, Thr 

and Tyr residues in vitro33–35. Autophosphorylation on Tyr residues has only been 

demonstrated in vivo on mCLK1 when overexpressed in mouse36,37. Although some 

doubt has been raised about the extent and relevance of Tyr autophosphorylation 

under physiological conditions, biochemical data support the hypothesis that dual-

specificity might be of importance for LAMMER kinase function38,39. For instance, the 

fact that changes in the pattern of CLK1 autophosphorylation i.e., the extent of Ser/Thr 

versus Tyr phosphorylation, influences CLK1 autophosphorylation activity and activity 

towards specific substrates in vitro39,40. So far, dual-specificity does not seem to extend 

to exogenous substrates, which are phosphorylated by LAMMER kinases preferentially 

on Ser and, to a lesser extent, on Thr residues34,41,42. Alternatively, Tyr phosphorylation 

may be restricted to specific physiological substrates that are yet to be discovered. 

1.2.1 Structural features 

LAMMER kinases are characterized by and termed after a unique and highly 

conserved amino acid signature motif located within the subdomain X of their kinase 

domains; the EHLAMMERILG (or LAMMER) motif29. Based on structure analogies with 

other kinases, the LAMMER motif was initially predicted to lie below the substrate-

binding cleft, suggesting a role in substrate recognition29,43,44. However, more recently, 

determination of the crystal structures of mammalian CLK1 and CLK3 showed that the 

LAMMER motif is situated at the bottom of the large C-terminal kinase lobe in the small 

G-helix, which is buried and packed against an adjacent helix (H) making it solvent-

inaccessible and; therefore, less likely to be involved in substrate recognition42. 

Consistent with this, studies of the LAMMER homologue of tobacco plants, PK12, 

revealed that mutations disrupting the LAMMER motif abrogated catalytic activity in 
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vitro and caused aberrant subnuclear localization of the kinase but did not interfere with 

substrate binding45,46. However, in the fission yeast, disruption of the LAMMER motif of 

Lkh1 not only resulted in the abolition of catalytic activity in vitro but also in reduced 

substrate binding capacity47. Currently, it is unclear whether these outcomes relate to 

the actual role of the LAMMER motif in vivo and to what extent this role is conserved 

among evolutionary diverged species. 

The catalytic domain of LAMMER kinases is located at the carboxyl (C)-terminus of 

the protein and is extremely conserved throughout evolution, in particular, in those 

subdomains responsible for phosphotransfer and substrate recognition29. The non-

catalytic amino (N)-terminal domain is the most divergent part of the protein, varying 

greatly in length among species29. Animal LAMMER kinases contain a region enriched 

in short arginine/serine repeats (RS motifs) located at their amino-terminal domains, 

which contributes to establish optimal interactions with SR proteins34,48,49. Although the 

molecular mechanism of LAMMER kinase regulation is currently unclear, it has been 

proposed that the N-terminal domain may comprise a regulatory domain and a 

dimerization domain, as suggested by studies of mammalian CLK1 and fission yeast 

Lkh136,40,50. 

1.2.2 Functions 

The best characterized and most conserved function of LAMMER kinases in 

metazoans is the modulation of alternative splicing through the phosphorylation of 

serine/arginine (SR)-rich proteins37,39,48,51,52. Phosphorylation of the SR protein 

ASF/SF2 within the SR-rich domain by mCLK1 promotes the release of ASF2/SF2 from 

nuclear speckles and its recruitment to the sites of active transcription48,51,53. 

Furthermore, mCLK1 directly modulates the splicing activity of ASF2/SF2 in vitro and 

affects its ability to interact with other splicing factors and RNA molecules52,54. In 

Drosophila, mutations of the Doa locus result in hypophosphorylation of the SR-splicing 

factors TRA and TRA2, which in turn, cause aberrant splicing of the doublesex (dsx) 

transcript, thus altering sexual differentiation49. Dysregulation of alternative splicing is 

linked to a number of human cancers and hereditary diseases55–57. Given the 

importance of CLK1 on the control of alternative splicing, the pharmacological inhibition 

of mammalian CLK kinases has emerged as a potential tool for the therapeutic 

manipulation of abnormal splicing in pathological states42,58. The role of LAMMER 

kinases in splicing could be also conserved in plants, as PK12 from tobacco plants has 

been shown to bind and phosphorylate SR proteins in vitro and modulate the 

alternative splicing pattern of endogenous genes in living cells34,45,46. 
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Aside from participating in splicing control in diverse species, LAMMER kinases 

play a role in the oxidative stress responses of fission yeast, fruit fly and humans. In the 

fission yeast, Lkh1 positively regulates the expression of antioxidant enzymes, as loss 

of the lkh1+ gene resulted in greater sensitivity to oxidative stress owing to a reduced 

expression of catalase (ctt1+) and Cu,Zn-superoxide dismutase (sod1+)59. Lkh1 was 

later shown to phosphorylate the RNA-binding protein Csx1, which is known to stabilize 

the mRNA of the transcription factor Atf1 responsible for the induction of ctt1+ and 

other genes in response to oxidative stress50,60,61. In higher eukaryotes, however, 

LAMMER kinases exert opposite effects on the expression of antioxidant enzymes. 

Mutations in the Doa gene were reported to protect adult flies against oxidative stress 

possibly due to the increased protein levels and activity of superoxide dismutase 

(SOD1). Similarly, the knockdown of CLK1 in human cells led to an increase in SOD1 

protein levels and activity62. Although the LAMMER kinases seem to act in opposite 

ways in fission yeast and higher eukaryotes to modulate the expression of antioxidant 

enzymes, it remains possible that these LAMMER kinases share a conserved 

underlying mechanism. Yet, their exact mechanism of action in this process awaits 

further investigation.  

Several lines of evidence implicate LAMMER kinases in further stimuli-induced 

signal transducing pathways. Increased expression of mCLK1 in neuronal cells induces 

cell cycle arrest and triggers differentiation through the activation of the MAP kinases 

ERK1 and ERK2, thereby mimicking the activation of the neuronal growth factor (NGF)-

dependent transduction pathway63. Mammalian CLK1 and CLK2 phosphorylate human 

PTP-1B, a cytosolic Tyr phosphatase involved in insulin signalling, and its yeast 

homologue Ptp1 in vivo41. The LAMMER kinase from A. thaliana, AFC1, suppresses 

defects in the mating-pheromone signalling pathway of S. cerevisiae through the 

stimulation of the transcription factor Ste12, thereby complementing the function of the 

yeast MAP kinases Kss1 and Fus328,64. The activity and transcription of the tobacco 

LAMMER kinase PK12 are induced in response to the hormone ethylene, which is 

known to activate the signalling cascade implicated in a variety of stress responses and 

developmental processes in plants35,65. Evidence for a role of the LAMMER kinases in 

signalling has recently been provided by the finding that mCLK2 activity is regulated 

through phosphorylation by Akt (or Protein kinase B) in response to insulin signalling. 

Upon phosphorylation by Akt, mCLK2 undergoes autophosphorylation, becomes 

stabilized and phosphorylates the transcriptional co-activator PGC1-, causing the 

repression of gluconeogenic gene expression66. The identification of PGC1- as a 

mCLK2 substrate hints at the idea that LAMMER kinases may act at the final stages of 

the signalling cascades. Among other LAMMER kinase targets influencing 
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transcriptional regulation are the aforementioned global regulator of gene expression 

Csx1 and the transcriptional repressors Tup11 and Tup12 from S. pombe47,50,67.  

LAMMER kinases have been implicated in further cellular functions including 

translational elongation68, cellular growth and differentiation29,69, cell-cycle progression 

and autophagy in Drosophila70–73 as well as in cell division, filamentous growth and 

flocculation in S. pombe27,74. These kinases are thus emerging as important players in 

a wide-range of key cellular functions in many organisms.  

1.2.3 Subcellular localization  

In concordance to their role in the regulation of SR splicing factors, mammalian 

CLKs (CLK1-4) have been found to be localized within the nucleus36–38,48,51. The bulk of 

LAMMER kinases analysed bears a presumptive nuclear localization signal at their N-

terminus, which suggests that their nuclear targeting might be evolutionary 

conserved13,29,37. However, recent studies have reported that CLK1 and CLK3 are 

cytosolic proteins40,75. On the one hand, part of the discrepancy among the localization 

data of mammalian LAMMER kinases has been attributed to the different fixation 

agents used to perform immunostaining experiments40. On the other hand, it has also 

been proposed that the unique N-terminal features of each LAMMER family member 

contain the molecular determinants that dictate the isoform-specific differences in 

subcellular localization, as it appears to be the case for the Drosophila LAMMER 

homologue, DOA76. There are two isoforms of the DOA kinase that differ mostly in the 

size of their N-terminal non-catalytic domains. Remarkably, these two isoforms are 

distinctly distributed within the cell; the 55-kDa isoform is primarily localized to the 

nucleus whereas the 105-kDa isoform localizes exclusively to the cytoplasm76. 

Altogether, the finding that certain members of the LAMMER family reside in the 

cytosol reinforces the hypothesis that these kinases also act in cellular processes that 

take place outside the nucleus (described in 1.2.2).  

1.2.4 Kns1, the LAMMER kinase family member of S. 

cerevisiae. 

Kns1, the S. cerevisiae member of the LAMMER kinase family, is among the most 

diverged members in the family. Kns1 is one of the largest LAMMER kinases due to an 

extended N-terminal non-catalytic domain, which contains presumptive nuclear 

localization signals but lacks the signature region enriched with the RS motifs found in 

animal LAMMER kinases29. Spacing between the catalytic subdomains is highly 

conserved within the family except for Kns1, which possesses several small inserts 
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within the catalytic domain that are absent in those of higher eukaryotes29. In addition, 

the LAMMER motif of Kns1 differs in three amino acids from that of its mammalian 

counterparts, deriving in the EHMAMMQRING sequence (Fig. 1.1)29. 

 

 

Figure 1.1. Sequence alignment of the catalytic domains of S. pombe (Kic1/Lkh1), H. sapiens 

(CLK1), D. melanogaster (DOA) and S. cerevisiae (Kns1) LAMMER kinases.  
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Taken from Tang et al. (2003)74.  

 

The function of the yeast LAMMER kinase remains unknown. No subcellular 

localization, protein interactors or cellular functions have been yet ascribed to Kns1. 

Large-scale immunolocalization studies reported that epitope-tagged and 

overexpressed Kns1 shows some cytoplasmic staining and a granular staining of 

unknown nature; yet, no cellular compartment was conclusively assigned to Kns177. In 

another large scale study, genomically GFP-tagged Kns1 could not be visualized78. A 

number of yeast proteins have been reported to associate with Kns1 in high-throughput 

protein-protein interaction studies (see Table 6.1 in Appendix), but it remains to be 

confirmed whether these proteins are bona fide binding partners of Kns179–84.  

Previous studies have shown that the catalytic domain of Kns1 interacts with and 

phosphorylates mammalian SR proteins in vitro34, suggesting that Kns1 might be 

involved, like its counterparts in higher eukaryotes, in alternative splicing. However, 

although animals and budding yeasts share the basic splicing machinery, they mostly 

differ in the incidence of alternative splicing, which is rather marginal in the budding 

yeast85. Alternative splicing is mainly regulated by SR proteins in animals86,87. While SR 

proteins exist throughout the entire animal kingdom88, and even in the fission yeast89, 

genuine SR proteins are apparently missing from the budding yeast90. For these 

reasons, the finding that Kns1 is capable of interacting with mammalian SR proteins 

could be considered, at first, of dubious biological significance. Yet, the budding yeast 

does possess three SR-like proteins; Npl3, Gbp2 and Hrb191,92. These proteins have 

been originally implicated in mRNA export91–94. More recently, Npl3 has been shown to 

be required for the efficiency of pre-mRNA splicing95. Thus, the possibility of Kns1 

playing a role in regular splicing e.g., through the interaction with a SR-like protein, 

remains conceivable.  

The gene encoding the dual-specificity LAMMER kinase in yeast, KNS1, is not 

essential for viability under standard laboratory conditions26. This may indicate that the 

function of its gene product could be compensated for by a different protein or 

pathway96,97. However, previous attempts to identify gene products that are functionally 

redundant with Kns1 using synthetic lethal screening have so far failed (M. Horn, T. 

Kinzy and Rabinow, unpublished results)29. Alternatively, it is conceivable that the 

KNS1 gene is required for growth under specific conditions98. This possibility is 

supported by the finding in a genome-wide phenotypic study that the growth of cells 

lacking KNS1 (kns1) is inhibited in the presence of exogenous oleate99. This growth 

inhibition by oleate has been ascribed to the toxicity of the unsaturated fatty acid rather 

than the inability of being used as a carbon source99. Oleate toxicity has been 
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hypothesized to principally rely on the over-incorporation of oleate in the plasma 

membrane and concomitant increase in fluidity caused by disruption of acyl-chain 

packing in the lipid bilayer99. Other studies have suggested that the deleterious effects 

of the excess of oleate are due to altered membrane phospholipid composition100,101. 

Therefore, it has been proposed that oleate sensitive mutants could be impaired in 

functions that are directly or indirectly related to lipid and membrane homeostasis99. 

Whether that is the underlying defect causing the oleate sensitivity of the kns1 mutant 

is yet to be investigated.  

Recently, a map of the yeast phosphorylome has been created using proteome 

microarrays coupled with high-throughput in vitro kinase assays102. This seminal study 

has provided an overall picture of the substrate preferences of 87 yeast protein 

kinases, covering 70% of the yeast kinome and identifying over 4000 phosphorylation 

events involving 1325 different proteins. Kns1, which was among the kinases assayed, 

showed the ability to phosphorylate five from about 4400 proteins included in the 

array102 (Table 1.1). Based on the phosphorylation signal shown for each substrate, the 

Ca2+/calmodulin-dependent kinase Cmk2 was the protein phosphorylated by Kns1 to 

the greatest extent among all substrates.  

Table 1.1. Kns1 in vitro substrates previously identified in a yeast proteome array screen102. 

ORF 

Name 

Standard 

Name 

Phosphorylation 

Signal 
Description1 

YOL016C Cmk2 33508.54 

Calmodulin-dependent protein kinase; may play a role in 
stress response, many Ca2+/Calmodulin dependent 
phosphorylation substrates demonstrated in vitro, amino 
acid sequence similar to Cmk1 and mammalian CaM Kinase 
II. 

YGL180W Atg1 11370.53 
Protein serine/threonine kinase, required for vesicle 
formation during autophagy and the cytoplasm-to-vacuole 
targeting (Cvt) pathway. 

YAR019C Cdc15 6809.37 
Protein kinase of the Mitotic Exit Network that is localized to 
the spindle pole bodies at late anaphase; promotes mitotic 
exit by directly switching on the kinase activity of Dbf2. 

YLR044C Pdc1 5039.62 
Major of three pyruvate decarboxylase isozymes, key 
enzyme in alcoholic fermentation, decarboxylates pyruvate 
to acetaldehyde. 

YMR102C Ymr102c 4897.90 

Protein of unknown function; transcription is activated by 
paralogous transcription factors Yrm1 and Yrr1 along with 
genes involved in multidrug resistance; mutant shows 
increased resistance to azoles; YMR102C is not an 
essential gene. 

1ORF names, standard names and descriptions according to Saccharomyces Genome Database 

(http://www.yeastgenome.org/) 

 

 9

http://www.yeastgenome.org/


Introduction 

A growing number of drug discovery strategies is exploiting the budding yeast as 

model organism (reviewed in 103,104). The advantages of this simple organism include a 

high degree of functional conservation of basic pathways between yeast and humans, 

high genetic tractability and an extensive repertoire of genetic and molecular 

techniques available for use in genome-wide approaches105,106. In this context, a 

genome-wide screen for the identification of therapeutic targets for Parkinson’s disease 

revealed that the lack of the KNS1 gene suppresses the toxicity of -synuclein 

polypeptide expression, suggesting Kns1 as an enhancer of -synuclein-associated 

toxicity107. In another large-scale screen, KNS1 was identified as a gene that alters 

cellular sensitivity to the anticancer drug tirapazamine (TPZ), which targets 

topoisomerase II108. These findings highlight the importance of elucidating the roles of 

the Kns1 in the budding yeast and the extent to which these are shared with its human 

eukaryotes to enhance the scope of the yet limited knowledge about the LAMMER 

kinase family and enable the future development of novel therapeutic strategies for the 

treatment of diseases caused by LAMMER kinase dysregulation. 

1.3 The calcium/calmodulin-dependent 

protein kinase II family 

1.3.1 Ca2+/CaM-dependent protein kinase II in higher 

eukaryotes 

Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase type II (CaMKII) is a 

crucial mediator of calcium signalling in the brain, heart and other tissues109–112. CaMKII 

was initially discovered in the central nervous system, where it is highly enriched 

constituting up to 2% of the total protein in the hippocampus of rodents113,114. There, it 

modulates most aspects of neuronal function and plays a key role in learning and 

memory115.  

CaMKII has also been implicated in regulating many other aspects of cellular 

function in response to Ca2+ influx, including the regulation of carbohydrate, amino acid 

and lipid metabolism, ion channels and receptors, neurotransmitter synthesis and 

release, transcription and translation, cytoskeletal organization and calcium 

homeostasis116.  
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1.3.1.1 Structure and isoform diversity 

The CaMKII monomer consists of an NH2-terminal catalytic domain, a centrally 

located regulatory domain and a COOH-terminal association domain. The catalytic 

domain contains the ATP- and substrate-binding sites typical of serine/threonine 

kinases, as well as sites for interaction with anchoring proteins. The regulatory domain 

comprises a pseudosubstrate/autoinhibitory sequence that, under basal conditions, 

binds and constrains the catalytic domain and a calmodulin (CaM) binding domain. The 

association domain is responsible for the assembly of the CaMKII holoenzyme, the 

native form of the enzyme (Fig. 1.2A)117.  

The ~600 kDa holoenzyme is composed of 12-14 subunits of several isoforms in 

varying molecular ratios organized into a two stacked ring-like structure that is formed 

by the interaction of multiple association domains in a central ring from which an outer 

ring, consisting of the regulatory and catalytic domains, arises118,119. This complex 

oligomeric structure is essential to warrant accurate decodification by CaMKII of the 

information conveyed by the amplitude, duration and frequency of intracellular Ca2+ 

transients120,121.  

In mammals, the four known isoforms of CaMKII (, , , ) are encoded by 

separate genes and share approximately 89-93% sequence similarity in their catalytic 

and regulatory domains122. Each isoform ranges in molecular weight from 50 to 70 kDa. 

The primary difference among the CaMKII isoforms is the variable region, which is a 

product of alternative splicing, and consists of a series of inserts located between the 

regulatory and association domain123. In some cases, alternative splicing results in the 

acquisition of particular subcellular targeting sequences124–126. Another difference 

between isoforms is their distribution among tissues. The predominant neuronal 

isoforms of CaMKII are and whereas the  and  isoforms are expressed in 

diverse tissues including the heart122.  

1.3.1.2 Molecular mechanisms of regulation 

CaMKII is subjected to complex regulatory mechanisms that comprise 

intramolecular interactions modulated by Ca2+/CaM and autophosphorylation, 

interactions with scaffolding proteins and specific subcellular targeting127,128. This 

intricate regulation ensures signalling fidelity in spite of the broad substrate specificity 

and high cellular abundance of CaMKII. 

The most remarkable feature of CaMKII is its ability to act as molecular switch, 

being able to retain a ‘‘memory’’ of prior activation by Ca2+/CaM115. This ability is 
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acquired by a two step activation process, consisting of a first activation step upon 

Ca2+/CaM binding and a subsequent autophosphorylation step (Fig. 1.2B)117.  

Under resting conditions, intracellular Ca2+ concentration is low and most CaMKII is 

held inactive by intramolecular binding of the autoinhibitory sequence to the catalytic 

domain, which prevents substrate and ATP binding129,130. Upon an increase in 

intracellular Ca2+, CaM binds Ca2+ and, subsequently, the regulatory domain of CaMKII, 

inducing a conformational change that promotes a displacement of the autoinhibitory 

region from the catalytic domain allowing ATP access to the ATP-binding pocket, 

thereby disinhibiting the kinase131. This allosteric rearrangement of CaMKII exposes a 

regulatory residue, Thr287 (in ,  and  isoforms, Thr286 in ), that becomes 

phosphorylated by another kinase domain within the oligomeric holoenzyme 

kinase120,132,133. 

 

 

Figure 1.2. Schematic diagram of the CaMKII structure and activation mechanism upon Ca2+/CaM  

binding.  

(A) CaMKII structure. (B) CaMKII activation. See text for details. Taken from Couchonnal and Anderson 

(2008)134. 

 

Autophosphorylation at Thr287 has two important consequences for CaMKII activity. 

First, it prevents reassociation of the catalytic and regulatory domains even after 

dissociation of CaM, thereby rendering the kinase Ca2+/CaM-independent135,136. 

Second, autophosphorylation increases the affinity of CaM-CaMKII binding 
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substantially (over 1000-fold), a phenomenon termed as “CaM trapping”, which has 

been suggested to be induced by a local conformational change that allows formation 

of additional, stabilizing interactions between CaM and Phe293, Asn294 and Arg287 of 

CaMKII131,137,138. Bound Ca2+/CaM eventually dissociates from the kinase when Ca2+ 

concentration reverts to the basal level, thus uncovering additional autophosphorylation 

sites (Thr305 and Thr306) that were protected by bound CaM139. Autophosphorylation at 

these additional sites prevents subsequent reactivation by Ca2+/CaM, a process termed 

“CaM capping”140. Recently, a novel mechanism for CaMKII activation via oxidation of 

two methionine residues (Met281 and Met282) located next to the regulatory domain has 

been further described141.  

1.3.1.3 Subcellular localization  

Being a multifunctional kinase, CaMKII is capable of phosphorylating numerous 

substrates116. As CaMKII substrates are distributed in essentially every subcellular 

compartment, effective targeting is imperative to ensure optimal CaMKII function. 

Appropriate intracellular targeting is achieved by a combination of activation-dependent 

and -independent translocation mechanisms that involve interaction with anchoring 

proteins and organelle localization sequences142. Certain CaMKII isoforms possess 

distinctive segments within the variable region, which result from alternative splicing, 

that promote specific targeting. That is the case of isoform B and B, which bear 

functional nuclear localization signals, and isoform , which bears an insert within the 

association domain that induces cytoskeletal targeting by promoting interaction with F-

actin124–126. Isoform -KAP, which lacks the catalytic domain and has a short 

hydrophobic sequence instead, serves as an integrated anchoring appendage for the 

CaMKII holoenzyme that tethers coassembled catalytic-competent subunits to the 

membranes of the endoplasmic reticulum143. Furthermore, isoforms with different 

localization signals can coassemble into the same holoenzyme, whose localization is 

determined by its isoform composition125,128. 

1.3.2 Ca2+/CaM-dependent protein kinases in S. 

cerevisiae 

S. cerevisiae possesses two genes (CMK1 and CMK2) that encode protein kinases 

with sequence homology and structural organization similar to mammalian CaMKII and 

whose activity is stimulated by Ca2+/CaM144,145. Yeast Ca2+/CaM-dependent kinases 

Cmk1 and Cmk2 display  41% amino acid sequence identity with mammalian CaMKII 

and 60% amino acid identity and 90% similarity between each other145. The homology 
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between the catalytic domain of Cmk1 and Cmk2 is particularly high (75.4% amino acid 

identity), whereas that between their calmodulin binding domains is only 21%144. 

Despite their divergence, both CaM domains contain the basic residues that can be 

arranged into an amphipathic -helix to form a canonical CaM-binding site146. 

Consistent with this, Cmk1 and Cmk2 are able to interact with calmodulin145. Although 

both kinases undergo autophosphorylation and show increased in vitro kinase activity 

towards a number of substrates in the presence of Ca2+/CaM, only Cmk2 acquires 

Ca2+/CaM-independent activity upon autophosphorylation, thus displaying an 

autoregulatory behaviour most similar to mammalian CaMKII145,147. Remarkably, Cmk1 

and Cmk2 bear a conserved Thr residue within the putative regulatory region that 

corresponds to the autophosphorylation site responsible for conferring calmodulin-

autonomous activity to mammalian CaM kinase II (Thr287). However, only Cmk2 has the 

Arg residue situated three positions upstream necessary to configure the core 

consensus sequence of CaM kinases (RxxT/S)148.  

Unlike their mammalian counterparts, yeast CaM kinases are able to 

phosphorylate conventional substrates, such as Kemptamide and Myelin Basic Protein 

(MBP), in the absence of Ca2+/CaM144. Another difference between yeast and 

mammalian CaM kinases is that both yeast kinases lack the carboxy-terminal region 

that in higher eukaryotes is implicated in subunit assembly145,149,150. Accordingly, 

fractionation studies of yeast CaM kinase preparations indicated that Cmk1 and Cmk2 

do not seem to assemble into large oligomers as mammalian CaMKII151.  

The physiological roles of yeast CaM kinases remain largely unknown, as well as 

the identity of their in vivo targets. In early studies, apart from a defect in spore 

germination observed in cells lacking CMK2 (cmk2), no other defects could be 

detected in growth, mating efficiency, meiosis or spore formation144,145. More recently,  

Cmk2 has emerged as an important factor for survival in the absence of calcineurin 

signalling during endoplasmic reticulum (ER) stress152. Calcineurin is an evolutionary 

conserved Ca2+/CaM-activated phosphatase responsible for the regulation of a stress-

induced transcriptional program, progression through the cell cycle and Ca2+ 

homeostasis in yeast153. Calcineurin-induced gene expression is necessary for cell 

survival under specific stress conditions such as heat shock, exposure to high 

concentration of ions (OH-, Ca2+, Mn2+, and Na+/Li+), prolonged incubation with mating 

pheromone and in situations that compromise cell wall integrity153. The activation of 

calcineurin is also required to promote long-term survival during ER stress154. In 

calcineurin-deficient cells exposed to ER-stress eliciting agents such as miconazole, 

tunicamycin, or dithiothreitol, Cmk2 seems to delay cell death by preventing the 

accumulation of reactive oxygen species (ROS)152. The underlying mechanism of 
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Cmk2 action in this process is not completely understood; however, while being 

independent of calcineurin, it has been suggested that it may operate in concert with 

calcineurin on a common point152. 

Calcineurin and yeast CaM kinases function in separate but overlapping pathways 

involved in the maintenance of cell survival during prolonged incubation with mating 

pheromones155. In S. cerevisiae, exposure to mating pheromones during sexual 

conjugation elicits transcriptional and morphological changes that ultimately result in a 

reversible arrest at the G1-phase of the cell cycle156. To recover from this pheromone-

induced arrest, cells must be able to stimulate Ca2+ uptake, which is necessary for a 

rise in cytoplasmic Ca2+ that, in turn, activates the calcineurin pathway required for 

survival157. Like calcineurin, CaM kinases also sustain cell survival after pheromone-

induced arrest, as simultaneous loss of CMK1 and CMK2 (cmk1cmk2) results in 

decreased cell viability after exposure to the pheromone155. Since the individual effects 

of Cmk1 and Cmk2 actions were not explicitly tested, it remains unknown which one of 

them is in fact responsible for sustaining cell survival or whether both kinases act in 

redundant pathways implicated in the recovery from pheromone-induced arrest. 

Interestingly, the expression of CMK2, and not of the CMK1 gene, is induced in a 

Ca2+/calcineurin-dependent manner158. This fact, together with the distinct ability to be 

converted to a Ca2+/CaM-independent state and their involvement in apparently 

different processes, suggests that Cmk1 and Cmk2 may be differently regulated by 

Ca2+/CaM and may function in independent pathways.  

1.4 pH homeostasis in yeast 

Almost every biological process is pH dependent. Changes in the pH inside the cell 

affect the charge of metabolites, the solubility of essential elements and enzyme 

activity. It also influences the electrostatic interactions between charged groups on the 

surface of biomolecules, thus altering their function and conformational stability 

(reviewed in 159,160). Consequently, intracellular pH is an important physiological 

parameter that must be strictly regulated in all cellular systems.   

In the budding yeast, the maintenance of a cytosolic pH around neutrality mainly 

relies on the activity of the P2-type plasma membrane H+-ATPase Pma1, which 

hydrolyzes ATP to pump protons out of the cell161,162. This activity is crucial for the 

generation of the electrochemical proton gradient that drives the uptake of nutrients 

and cations from the medium and, in consequence, essential for yeast survival161,163,164. 

Another key contributor to cytosolic pH homeostasis is the vacuolar membrane proton 

pump (V-ATPase), which extrudes protons out of the cytosol to the interior of the 
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vacuole and further organelles of the secretory pathway165. In addition, cation/H+ 

exchangers such as the Na+/H+ antiporter Nha1 and K+ transporters Trk1 and Trk2 also 

play a role in cytosolic pH homeostasis166,167. 

1.4.1 Effects of high pH stress on the yeast physiology  

Alkalinization of the external milieu (i.e., to pH>7.5) disrupts the established proton 

gradient across the plasma membrane required for nutrient acquisition, constituting a 

stress situation for yeast161,168. It interferes with the maintenance of intracellular pH 

homeostasis and decreases cell proliferation, ultimately leading to viability loss169,170.  

The large set of genes that are induced (~ 400) or required for growth (~ 200) 

under high pH stress indicates that this stress exerts widespread effects on the yeast 

physiology171–175. For instance, high pH seems to elicit a situation of phosphate 

starvation, as inferred by the increased expression of genes encoding phosphate 

transporters e.g., Pho84 and Pho89, and the alkaline hypersensitivity exhibited by 

mutants lacking genes involved the adaptive transcriptional response e.g., Pho4, 

Pho81, and Pho85175,176. Similarly, the induction upon high pH stress of genes 

implicated in glucose transport and metabolism implies that yeast cells face glucose 

deprivation174,177. This is further supported by the finding that the AMP-activated protein 

kinase (AMPK) Snf1, which is necessary for the adaptation of yeast to glucose 

limitation, is activated by and required for growth under high pH stress178,179. The 

expression of genes implicated in the uptake and metabolism of iron and copper is also 

induced, which has been suggested to be required to counterbalance the reduced 

solubility of these essential metals at high pH175,176. It has been further proposed that 

high pH causes oxidative stress, as it leads to the generation of reactive oxygen 

species (ROS) and the induction of a set of genes involved in the oxidative stress 

response175,176. Consistently, mutants lacking superoxide dismutases Sod1 and Sod2, 

which play a critical role in oxygen radical detoxification, display alkaline 

sensitivity180,181.  

The activity of the V-ATPase becomes essential for survival under pH stress 

conditions172,182. Mutants lacking genes encoding for V-ATPase subunits or assembly 

factors (vma mutants) are impaired in organelle acidification183, which, in turn, is 

required for endocytosis, intracellular protein sorting, processing and turnover as well 

as metabolite storage and osmoregulation (reviewed in 184–186). Consistent with the 

need of a functional V-ATPase for growth at high pH, a number of mutations with 

repercussions on V-ATPase assembly, transport and regulation have been observed to 

result in enhanced sensitivity to high pH stress172,187,188.   
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Figure 1.3. Major effects of high pH stress on the physiology of S. cerevisiae and known adaptive 

response signalling pathways.  

See text for details. 

 

Yeast cells undergo extensive transcriptional remodelling to withstand alkaline 

stress. So far, at least three signalling pathways have been identified to be implicated 

in the adaptive response to high pH stress; the Rim101, the Slt2 MAP kinase and the 

calcineurin pathway (reviewed in 189). Activation of the transcriptional repressor Rim101 

upon high pH stress leads to an increase in the expression of the plasma membrane 

Na+-ATPase Ena1/Pmr2 and Vma4, a subunit of the vacuolar proton pump V-ATPase 

that is required for multimer assembly190–192. The Slt2 MAP kinase pathway is crucial 

for cell wall biogenesis and for the maintenance of cell wall integrity (CWI) in the face of 

damaging insults (reviewed in 193). Recently, exposure to alkaline pH has been shown 

to specifically activate this pathway177. As this activation was mediated by the cell wall 

stress sensor Wsc1, it has been suggested that alkaline stress causes cell wall 

damage177. In response to high pH, cells become depolarized and, in turn, the Mid1-

Cch1 Ca2+-channel rapidly activated, triggering Ca2+ entry and concomitant activation 

of the Ca2+-dependent phosphatase calcineurin174. Activated calcineurin 

dephosphorylates Crz1, a transcription factor that induces a genetic program required 

for the endurance of high pH stress174,176.  
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In summary, a wide variety of processes are involved in the optimal adaptation of 

yeast to external alkalinization (Fig. 1.3). The integrity of housekeeping processes such 

as vesicle transport, cell wall and vacuolar organization, phosphate and glucose 

metabolism as well as metal cation homeostasis is crucial to endure high pH 

stress171,180,189. In addition, the activation of the Slt2 MAP kinase, calcineurin, Snf1 and 

Rim101 pathways play an important role in the acquisition of high pH tolerance. Yet, 

despite its obvious importance on the yeast physiology, there is still limited information 

concerning the extent and general features of the mechanisms governing the 

acquisition of high pH tolerance.  

 

 18



Introduction 

1.5 Aims 

Given their implication on vital cellular processes, the LAMMER kinases are 

emerging as a potential targets for the treatment of cancer, neurodegenerative and 

metabolic disorders42,58,66,107,108,194–196. Hence, understanding the roles of Kns1 in the 

budding yeast is key to the use of this genetically tractable organism as a model 

system for the future development of therapeutic strategies targeting LAMMER 

kinases. 

The function of Kns1 has not been yet investigated in the cellular context. Most of 

the data available for Kns1 has been obtained within the scope of large-scale surveys. 

It is known that Kns1 is not essential for viability under standard conditions; however, 

little is known about the conditions that may render Kns1 indispensable. Analysis of 

Kns1 localization has yielded thus far inconclusive results77,78. Biochemical 

characterization of Kns1 has been precluded by the difficulty in purifying the full-length 

kinase from E. coli. Hence, all data regarding Kns1 autocatalytic activity derive from 

analysis of the truncated protein, which was shown to undergo autophosphorylation at 

Ser, Thr and Tyr residues33. Yet, the exact sites of phosphorylation, their physiological 

significance and evolutionary conservation as well as whether dual-specificity extends 

to exogenous substrates remain obscure. High-throughput screening for potential 

kinase target proteins identified five in vitro substrates for Kns1 but none of them have 

been further validated171. Furthermore, it is an open question whether Kns1 shares 

functions with its counterparts. 

The present study aimed to unravel cellular roles and regulatory mechanisms of 

Kns1 in the budding yeast. To this end, the following specific objectives were 

established:  

 To analyse the effects that KNS1 gene deletion causes on cell fitness under 

environmental stress conditions. 

 To examine the intracellular localization of Kns1 in living cells by fluorescence 

microscopy.  

 To optimize the recombinant expression and purification of full-length and 

catalytically competent Kns1 for use in biochemical studies.  

 To identify the in vitro autophosphorylation sites on Kns1 by mass spectrometry 

and investigate the role of relevant sites on Kns1 function by site-directed 

mutagenesis. 

 To validate in vitro candidate substrates for Kns1 and assess their potential 

physiological relevance. As several Kns1 homologues have been implicated in 
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signal transducing pathways activated by extracellular stimuli, I speculated that 

Kns1 may serve similar roles in yeast. Among the in vitro candidate substrates 

reported for Kns1, the Ca2+/CaM-dependent kinase Cmk2 was the candidate with 

the highest potential significance owing to its suggested roles in stress response 

pathways152,155,158. Therefore, the secondary aim of this thesis was to evaluate the 

potential relevance of Cmk2 as Kns1 target. For this purpose, I set out to:  

 carry out the validation of Cmk2 phosphorylation by Kns1 in vitro,  

 identify potential Kns1 target site(s) on Cmk2,  

 analyse the genetic relationship between CMK2 and KNS1 genes, 

 assess whether Cmk2 and Kns1 physically interact in vivo,  

 gain insights into the function, subcellular localization and regulation of 

Cmk2 and examine whether Kns1 influences any of these aspects. 
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2.1. Materials 

2.1.1 Strains 

2.2.1.1 Bacteria strains 

Table 2.1: Bacteria strains used in this study. 

Name Genotype Source 

XL1-Blue 
endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 
proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+) 

Stratagene 
 

DH5 
F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 
(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Invitrogen 

DB3.1 
F– gyrA462 endA1 Δ(sr1-recA) mcrB mrr hsdS20(rB–, mB–) 
supE44 ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ– leu 
mtl1  

Invitrogen 

Rossetta 2 F– ompT hsdSB(rB
- mB

-) gal dcm pRARE2 (CamR) Novagen 

2.2.1.2 Yeast strains 

The Saccharomyces cerevisiae (hereafter termed yeast) S288C-derived strain DF5 

(Table 2.2) was used throughout this work, unless indicated otherwise.  

Table 2.2: Yeast strains used in this study. 

Name Genotype Source 

BY4741 s288c; MATa, his3∆1, leu2∆0, met15∆0, ura3∆0 C.B. Brachmann197 

DF5 
a/α, trp1-1(am)/trp1-1(am), his3-Δ200/his3-Δ200, ura3-52/ura3-52, 
lys2-802/lys2-801, leu2-3,-112/leu2-3,-112 

D. Finley198 

KL1 
MATa, his3Δ200, leu2-3,-112, ura3-1, trp1Δ1, ade2-1, can1-100, 
Kan- PGAL1-GST-prp8Δaa1-78, otherwise as BMA38a 

J.D. Beggs199 

PJ69-4 
W303; MATa, trp1-901, leu2-3,112, ura3-52, his3-200,gal4Δ, gal80Δ 
LYS2::GAL1-HIS3, GAL2-ADE3, met2::GAL7-lacZ Phillip James200 

sUB62 s288c; MATa, ura3–52, his3Δ-200, trp1–1, leu2–3,112 lys2–801 G.A. Dittmar198 

Y01507 
BY4741; Mat a; his3D1; leu2D0; met15D0; ura3D0; 
YLL019c::kanMX4  

Deletion consortium 
strain 

Y16473  BY4742; Mat ; his31; leu20; lys20; ura30; YOL016c::kanMX4 Euroscarf 

yAS005 MATa, kns1Δ::natMX4 This study 
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yBM87 yWO1; MATα vps23::HIS3 Birgit Meusser 

yNM195 MATa, vma1Δ::kanMX4 This study 

yNM414 MATa, cmk2::kanMX4 This study 

yNM454 MATa, cmk2:: KANMX4, kns1Δ::natMX4 This study 

yNM459 MATa, natNT2::Cup1-1::GFP-KNS1 This study 

yNM555 MATa, natNT2::Cup1-1::GFP-CMK2 This study 

*All yeast strains created during the course of this study were constructed by me 

except for yAS5, which was constructed by Andreas Schlundt during his practical 

placement in the laboratory.  

2.1.2 Plasmids  

Table 2.3: Bacterial plasmids used in this study.  

Name Description 
Selectable 
marker 

Source 

pDESTco 6xHIS attR1 CmR ccdB attR2 AmpR CmR 
Scheich et al. 
2007201 

pDONR221 attP1 CmR ccdB attP2 KanR CmR Invitrogen 

pGEX-4T-1 GST AmpR  
Amersham 
Pharmacia 

pNM11 (pGEX-4T-1) GST KNS1 AmpR  This study 

pNM14 (pDONR221) attL1 KNS1 attL2  KanR  This study 

pNM33 (pDONR221) attL1 KNS1D440A attL2 KanR  This study 

pNM34 (pDONR221) attL1 KNS1T562A attL2 KanR  This study 

pNM37 (pGEX-4T-1) GST  KNS1D440A   AmpR  This study 

pNM38 (pDESTco) 6xHIS attB1 CMK2 attB2  AmpR  This study 

pNM39 (pDESTco) 6xHIS attB1 CMK2S328E attB2  AmpR This study 

pNM43 (pDESTco) 6xHIS attB1 CMK2T406A attB2  AmpR This study 

pNM44 (pDESTco) 6xHIS attB1 CMK2T406D attB2  AmpR This study 

pNM45 (pDESTco) 6xHIS attB1 CMK2D171A attB2  AmpR This study 

pNM47 (pDONR221) attL1 CMK2 attL2 KanR  This study 

pNM50 (pDONR221) attL1 CMK2D171A attL2  KanR  This study 

pNM54 (pGEX-4T-1) GST-KNS1T562A AmpR  This study 

pNM55 (pDESTco) 6xHIS attB1 CMK2Y47F attB2  AmpR This study 

pNM56 (pDESTco) 6xHIS attB1 CMK2T52A attB2  AmpR This study 

pNM58 (pDESTco) 6xHIS attB1 CMK2T69A attB2 AmpR This study 

pNM59 (pDESTco) 6xHIS attB1 CMK2S328A attB2  AmpR This study 
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pNM60 (pDESTco) 6xHIS attB1 CMK2S379A attB2  AmpR This study 

pNM75 (pDESTco) 6xHIS attB1 CMK2T316A attB2  AmpR This study 

pNM76 (pDESTco) 6xHIS attB1 CMK2T316E attB2  AmpR This study 

pNM77 (pDESTco) 6xHIS attB1 CMK2S379E attB2  AmpR This study 

pNM78 (pDESTco) 6xHIS attB1 CMK2Y47D attB2  AmpR This study 

pNM79 (pDESTco) 6xHIS attB1 CMK2T52D attB2  AmpR This study 

pNM80 (pDESTco) 6xHIS attB1 CMK2T69D attB2  AmpR This study 

pNM85 (pDONR221) attL1 CMK2Y47F attL2  KanR  This study 

pNM86 (pDONR221) attL1 CMK2T52A attL2  KanR  This study 

pNM88 (pDONR221) attL1 CMK2T69A attL2  KanR  This study 

pNM89 (pDONR221) attL1 CMK2S328A attL2  KanR  This study 

pNM90 (pDONR221) attL1 CMK2S379A attL2  KanR  This study 

pNM91 (pDONR221) attL1 CMK2T316A attL2  KanR  This study 

pNM92 (pDONR221) attL1 CMK2T316E attL2  KanR  This study 

pNM93 (pDONR221) attL1 CMK2S379E attL2  KanR  This study 

pNM94 (pDONR221) attL1 CMK2Y47D attL2  KanR  This study 

pNM95 (pDONR221) attL1 CMK2T52D attL2  KanR  This study 

pNM96 (pDONR221) attL1 CMK2T69D attL2  KanR  This study 

pNM98 (pDONR221) attL1 CMK2T406A attL2  KanR  This study 

pNM99 (pDONR221) attL1 CMK2T406D attL2  KanR  This study 

pNM100 (pDONR221) attL1 CMK2S328E attL2  KanR  This study 

pYM-N1 natNT2 CUP1-1 yeGFP  AmpR 
Janke et al. 
2004202 

Table 2.4: Yeast plasmids used in this study 

Name Description Selectable marker Reference/Source 

Type 2µm   

pGO45 PADH GFP-CPS AmpR URA3 S.D. Emr203 

pMD299 (pSV52) PGAL4 EGFP attR1 CmR ccdB attR2 AmpR CmR TRP1 M. Dahlmann 

pNM18 
(pSV52) PGAL4 10xHIS-HA  attB1 CMK2T129A  
attB2  

AmpR TRP1 This study 

pNM36 (pNM67) PCUP1-1 EGFP attB1 CMK2D171A attB2 AmpR TRP1 This study 

pNM53 (pNM67) PCUP1-1 EGFP attB1 KNS1D440A attB2 AmpR TRP1 This study 

pNM67 
(pMD299) PCUP1-1 EGFP attR1 CmR ccdB 
attR2 

AmpR CmR TRP1 This study 

pNM73 (pNM67) PCUP1-1 EGFP attB1 CMK2 attB2 AmpR TRP1 This study 

pNM74 (pNM67) PCUP1-1 EGFP attB1 KNS1 attB2 AmpR TRP1 This study 

pNM101 (pNM67) PCUP1-1 EGFP attB1 CMK2Y47F attB2  AmpR TRP1 This study 
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pNM102 (pNM67) PCUP1-1 EGFP attB1 CMK2T52A attB2  AmpR TRP1 This study 

pNM110 (pNM67) PCUP1-1 EGFP attB1 CMK2S328A attB2  AmpR TRP1 This study 

pNM111 (pNM67) PCUP1-1 EGFP attB1 CMK2S379A attB2  AmpR TRP1 This study 

pNM112 
(pNM67) PCUP1-1  EGFP attB1 CMK2T316A 
attB2  

AmpR TRP1 This study 

pNM113 (pNM67) PCUP1-1 EGFP attB1 CMK2T406A attB2  AmpR TRP1 This study 

pNM116 (pNM67) PCUP1-1 EGFP attB1 CMK2T69A attB2  AmpR TRP1 This study 

pNM121 (pNM67) PCUP1-1 EGFP attB1 KNS1T562A attB2 AmpR TRP1 This study 

pNM125 (pNM67) PCUP1-1 EGFP attB1 CMK2Y47D attB2  AmpR TRP1 This study 

pNM126 (pNM67) PCUP1-1 EGFP attB1 CMK2T52D attB2  AmpR TRP1 This study 

pNM127 (pNM67) PCUP1-1 EGFP attB1 CMK2T69D attB2  AmpR TRP1 This study 

pNM128 (pNM67) PCUP1-1 EGFP attB1 CMK2T316E attB2  AmpR TRP1 This study 

pNM129 (pNM67) PCUP1-1 EGFP attB1 CMK2S328E attB2  AmpR TRP1 This study 

pNM130 (pNM67) PCUP1-1 EGFP attB1 CMK2S379E attB2  AmpR TRP1 This study 

pNM131 (pNM67) PCUP1-1 EGFP attB1 CMK2T406D attB2  AmpR TRP1 This study 

pSV52 PGAL4 10xHIS-HA AmpR CmR TRP1 
Gheysen et al. 
1982204 

Type CEN ARS   

pMD302 
(pOAD1) PADH1 GAL4(AD) attR1 CmR ccdB 
attR2 

AmpR CmR LEU2 M. Dahlmann 

pMD303 
(pOBD2) PADH1 GAL4(BD) attR1 CmR ccdB 
attR2 

AmpR CmR TRP1 M. Dahlmann 

pNM61 (pRS414) PCMK2 CMK2 AmpR TRP1 This study 

pNM63 (pNM61) PCMK2 EGFP attR1 CmR ccdB attR2 AmpR CmR TRP1 This study 

pNM65 (pNM63) PCMK2 EGFP attB1 CMK2 attB2  AmpR TRP1 This study 

pNM103 (pMD302) PADH1 GAL4(AD) attB1 KNS1 attB2  AmpR LEU2 This study 

pNM104 (pMD302) PADH1 GAL4(AD) attB1 CMK2 attB2  AmpR LEU2 This study 

pNM105 (pMD303) PADH1 GAL4(BD) attB1 KNS1 attB2 AmpR TRP1 This study 

pNM106 (pMD303) PADH1 GAL4(BD) attB1 CMK2 attB2 AmpR TRP1 This study 

pRS414  AmpR TRP1 
Sikorski et al. 
1989205 

pMR29 (pOBD2) PADH1 GAL4(BD) attB1 SNU66 attB2 AmpR TRP1 Hyun-Mi Ryu 

pGD240 (pOAD1) PADH1 GAL4(AD) attB1 HUB1 attB2 AmpR LEU2 G. Dittmar 

pGD252 attB1 KNS1 attB2 AmpR TRP1 G. Dittmar 

pGD253 attB1 CMK2 attB2 AmpR TRP1 G. Dittmar 

 

2.1.3 Oligonucleotides 

Table 2.5: Oligonucleotides used in this study 
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Oligo 
name 

Sequence Purpose 

Kan&His TGGGCCTCCATGTCGCTGG 
Control primer for kan & his 
tagging vectors from 
Schiebel set, reverse (rev). 

oGD70 GTCGTCAAGAGTGGTACCCATGG 
Control primer binds to ATG 
of NAT gene (460 bp from p-
tef), rev. 

oMD135 CCCGGATCCATGTCACAGAATATTCAAATTGGC 
BamHI KNS1 cloning, 
forward (fwd). 

oMD136 CCCGGGCCCCTATCCTTGGGTATTATTATAAGTTGC 
XmaI/SmaI KNS1 cloning, 
rev. 

oMD141 GAAGATTTAGCACAACAAAGACTAATC 
KNS1 k.o. check 80 bp 
upstream of ATG, fwd. 

oMD175 ATGGACCCACATAATCCAATTG 
RT-PCR, binds upstream of 
ARP2 intron; 200bp/323bp 

oMD176 AGATAAGAGCGAACTTCACTTGC 
RT-PCR, binds downstream 
of ARP2 intron; 200bp/323bp 

oMD177 GAAAATTTACTGAATTAACAATGGATTCTG 
RT-PCR, binds upstream of 
ACT1 intron; 200bp/508bp 

oMD178 GGATTGAGCTTCATCACCAAC 
RT-PCR, binds downstream 
of ACT1 intron; 200bp/508bp 

oMD179 ACAATGAGAGAAGTTATTAGTATTAATG 
RT-PCR, binds upstream of 
TUB1 intron; 200bp/316bp 

oMD180 GCCCTTGGAACGAACTTACC 
RT-PCR, binds downstream 
of TUB1 intron; 200bp/316bp 

oNM62 
ACGCATACTGCTCTTCTTCATTATTGCTTTATCTTCCGCG
TACCTTAGTTATGCGTACGCTGCAGGTCGAC 

KNS1 N-terminal tagging, 
fwd. 

oNM63 
TTCATATTTGCTCTTGAACGTTTTCTAGTGCCAATTTGAAT
ATTCTGTGACATCGATGAATTCTCTGTCG 

KNS1 N-terminal tagging, 
rev.  

oNM76 
CGTCACCTTTTCTTCTATCACATCGCCAATATAAATATAG
ACACCAAAAATGCGTACGCTGCAGGTCGAC 

CMK2 N-terminal tagging, 
fwd. 

oNM77 
GGACATCTACATGAAATTCAGAATTTATGACCTCTGACTC
CTTGGGCATCGATGAATTCTCTGTCG 

CMK2 N-terminal tagging, 
rev. 

oNM78 GTGTGCAAGGTATACAAAGCAGAATG 
RT-PCR, binds upstream of 
VMA10 intron; 273bp/434bp 

oNM79 CTCAGCTAATTCACCTTGCACAC 
RT-PCR, binds downstream 
of VMA10 intron; 
273bp/434bp 

oNM80 CAATTATACGGACACGATGAAG 
RT-PCR, binds upstream of 
SEC27 intron; 345bp/544bp 

oNM81 GTTGGATGTACAGCAATGGAACG 
RT-PCR, binds downstream 
of SEC27 intron; 
345bp/544bp 

oNM82 GTCAAGGACTGCGGAACTAC 
RT-PCR, binds upstream of 
SNC1 intron; 258bp/370bp  

oNM83 CAATGGGGACGATGATTACAAC 
RT-PCR, binds downstream 
of SNC1 intron; 258bp/370bp 

oNM86 CCAGTCGTTGAGCATCATATG 
CMK2 k.o., binds 279 bp 
upstream of ATG, fwd. 

oNM87 CTGAGTGAGGAGAATACATTG 
CMK2 k.o., binds 303 bp 
downstream of stop codon, 
rev 

oNM94 
ACCATCATGCCATGGGATACCCTTATGATGTTCCAGATTA
CGCTTCTTTGACAAGTTTGTACAAAAAAGCAGGCTCTATG
CCCAAGGAGTCAGAGGT 

Gap repair in pSV52 
(BamHI, HindIII) CMK2, fwd.  

oNM95 
TGAGCGGATAACAATTTCACACAGGAAACAGCTATGACC
ATGATTACGCCACCACTTTGTACAAGAAAGCTGGGTCTTA
GTCTTCTGACTTCGACT 

Gap repair in pSV52 
(BamHI, HindIII) CMK2, rev. 

oNM96 
ACCATCATGCCATGGGATACCCTTATGATGTTCCAGATTA
CGCTTCTTTGACAAGTTTGTACAAAAAAGCAGGCTCTATG
TCACAGAATATTCAAATTG 

Gap repair in pSV52 
(BamHI, HindIII) Kns1, fwd.  

oNM97 
TGAGCGGATAACAATTTCACACAGGAAACAGCTATGACC
ATGATTACGCCACCACTTTGTACAAGAAAGCTGGGTCCT
ATCCTTGGGTATTATTATAAG 

Gap repair in pSV52 
(BamHI, HindIII) Kns1, rev. 

oNM146 
CCT TTT CTT CTA TCA CAT CGC CAA TAT AAA TAT AGA 
CAC CAA AAC 

Cloning pNM63, fwd. 
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oNM147 TTT TGA GCT CCC ATT ACC GAC ATT TGG GCG Cloning pNM67, fwd. 

oNM148 CCC CAG ATC TCA GTT TGT TTT TCT TAA TAT C Cloning pNM67, fwd. 

oNM153 
CTT CAA AGA GAG TTG AAG CTA GCA ATA TTT TAC 
CAG ACG 

SDM fwd, Cmk2  insert 
mutation T316A, RE site 
NheI. 

oNM154 
CGT CTG GTA AAA TAT TGC TAG CTT CAA CTC TCT TTG 
AAG 

SDM rev, Cmk2  insert 
mutation T316A, RE site 
NheI. 

oNM155 
GAG AGT TGA AGA TAG TAA TAT TTT ACC AGA CGT 
CAA GAA AGG G 

SDM fwd, Cmk2  insert 
mutation T316D, RE site 
AatII. 

oNM156 
CCC TTT CTT GAC GTC TGG TAA AAT ATT ACT ATC TTC 
AAC TCT C 

SDM rev, Cmk2  insert 
mutation T316D, RE site 
AatII. 

oNM157 CGG CGT CAC ACA TGA GCT CGA TGA TTT ACG TC 
SDM fwd, Cmk2  insert 
mutation S379E, RE site 
SacI. 

oNM158 GAC GTA AAT CAT CGA GCT CAT GTG TGA CGC CG 
SDM rev, Cmk2  insert 
mutation S379E, RE site 
SacI. 

oNM159 
GTC AAC AGG ACT AAT GAT ATC TTC GGT CGA ACA 
CTG 

SDM fwd, Cmk2  insert 
mutation Y47D, RE site 
EcoRV. 

oNM160 
CAG TGT TCG ACC GAA GAT ATC ATT AGT CCT GTT 
GAC 

SDM rev, Cmk2  insert 
mutation Y47D, RE site 
EcoRV. 

oNM161 
TAT ATT TTC GGT CGA GAC CTT GGT GCC GGT TCC 
TTC 

SDM fwd, Cmk2  insert 
mutation T52A, RE site StyI. 

oNM162 
GAA GGA ACC GGC ACC AAG GTC TCG ACC GAA AAT 
ATA 

SDM rev, Cmk2  insert 
mutation T52A, RE site StyI. 

oNM163 
GAG ACA AGC CAG AAA GCT TTC CGA TAA TGA AGA 
TGT TGC 

SDM fwd, Cmk2  insert 
mutation T69D, RE site 
HindII. 

oNM164 
GCA ACA TCT TCA TTA TCG GAA AGC TTT CTG GCT 
TGT CTC 

SDM rev, Cmk2  insert 
mutation T69D, RE site 
HindII. 

oNM166 
GAC GTT AAG AAA GGG TTT GAG CTC CGT AAG AAA 
TTA CGT GAC G 

SDM fwd, Cmk2  insert 
mutation S328E, RE sites 
SacI/EcoRV. 

oNM167 
CGT CAC GTA ATT TCT TAC GGA GCT CAA ACC CTT 
TCT TAA CGT C 

SDM rev, Cmk2  insert 
mutation S328E, RE sites 
SacI/EcoRV. 

oNM168 
GAA ATT GAA GTC TGC CTT GGC AAA GGA TGC CTT 
TGT TC 

SDM fwd, Cmk2  insert 
mutation T406A, RE site StyI 

oNM169 
GAA CAA AGG CAT CCT TTG CCA AGG CAG ACT TCA 
ATT TC 

SDM rev, Cmk2  insert 
mutation T406A, RE site StyI 

oNM170 
GAA ATT GAA GTC TGC CTT GGA TAA GGA TGC CTT 
TGT TC 

SDM fwd, Cmk2  insert 
mutation T406D, RE site StyI 

oNM171 
GAA CAA AGG CAT CCT TAT CCA AGG CAG ACT TCA 
ATT TC 

SDM rev, Cmk2  insert 
mutation T406D, RE site StyI 

2.1.4 Antibodies  

Table 2.6: Antibodies used in this study 

Antibody Source 

Rabbit Peroxidase anti-Peroxidase soluble complex antibody (PAP) Sigma Aldrich  

Affinity-purified mouse monoclonal (IgG2a) anti-GFP antibody (JL-8) BD Livingcolors 

Donkey anti-Rabbit IgG (H+L) peroxidase-conjugated, polyclonal 
Jackson Immuno 
Research 
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Donkey anti-Goat IgG (H+L) peroxidase-conjugated, polyclonal 
Jackson Immuno 
Research 

Mouse anti-Pgk1, monoclonal antibody Sigma 

Mouse anti-Pentahistidine, monoclonal antibody  Qiagen 

Goat anti-Glutathione-S-Transferase (GST) antibody, polyclonal antibody  GE life sciences 

2.1.5 Proteins 

Table 2.7: Proteins used in this study 

Protein Description Source 

Bovine serum albumin 
(Fraction V) 

66 kDa Sigma-Aldrich 

Myelin basic protein 18.14 KDa Sigma-Aldrich 

Calmodulin 16.8 KDa Sigma-Aldrich 

2.1.6 Enzymes  

 Taq DNA Polymerase (New England BioLabs, Inc.)  

 Expand™ Long Template PCR System (Roche) 

 PfuTurbo® DNA-polymerase (Stratagene)  

 Phusion™ High-Fidelity DNA Polymerase (New England BioLabs, Inc.) 

 T4 DNA Ligase (New England BioLabs, Inc.) 

 Zymolyase-20T from Arthrobacter luteus (MP Biomedicals; Inc.)  

 OneStep RT-PCR Enzyme Mix, contains Omniscript Reverse Transcriptase, 

Sensiscript Reverse Transcriptase, and HotStarTaq DNA Polymerase (QIAGEN) 

 Restriction endonucleases (New England BioLabs, Inc.)  

2.1.7 Chemicals and other products 

Radioactive isotopes 

[32-P]-ATP Redivue (specific activity 3000 Ci/mmol, 10 µCi/µl) was purchased 

from GE healthcare.  
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Chemicals 

Chemicals were purchased from Bio-Rad, Becton and Dickinson, Invitrogen, 

Merck, Roche, PAA industrials, Invitrogen, Fermentas, Roth, Serva, Roche, GE 

Healthcare, Calbiochem, Amersham, Gibco, Fluka or Sigma-Aldrich. 

Table 2.8: Chemicals used in this study 

 

Acrylamide/bisacrylamide solution 

(37.5:1) 

Adenine 

Agarose 

Ammoniumpersulfate (APS) 

Ampicillin  

Arginine 

Bacto Pepton  

Bacto Agar 

Bromphenol blue 

Chloramphenicol  

Chloroform  

Complete mini EDTA-free protease 

inhibitor cocktail tablets  

Cycloheximide 

Diethylpyrocarbonate (DEPC) 

Dimethyl sulfoxide (DMSO) 

Dithiothreitol (DTT) 

DNA ladder (O’GeneRulerTM)  

DNTPs 

Ethanol absolute 

Ethylenediaminetetraacetic acid 

(EDTA) 

Ethidium bromide 

Ficoll 

Geniticin (G418)  

Glucose 

Glycerine 

Glycine (MP Biochemicals) 

Herring sperm DNA Skimmed dry milk 

Histidine 

Hoechst 33258  

Hydrochloric acid (HCl) 

Hydroxyethyl piperazineethanesulfonic  

acid (HEPES) 

IgG SepharoseTM 6 Fast Flow 

Isoleucine 

Isopropanol 

Isopropyl β-D-1-thiogalactopyranoside (IPTG)  

Kanamycin  

Leucine 

Lithium acetate 

Lysine 

2-Mercaptoethanol 

Methanol absolute 

Methionine 
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Nourseothricin (Werner BioAgents) 

Orange G 

PageRulerTM Prestained protein 

ladder (10-170 KDa) 

PEG (Polyethylene glycol) 

Phenol:chloroform:isoamyl alcohol 

(25:24:1) 

Phenylalanine 

PMSF 

(phenylmethanesulphonylfluoride) 

Sodium azide (NaN3) 

Quinacrine dihydrochloride 

Sodium chloride (NaCl) 

Sodium dodecyl sulfate (SDS) 

Sodium hydroxide (NaOH) 

Sucrose 

Tetramethylethylenediamine 

(TEMED) 

Texas Red-X phalloidin  

Threonine 

Tris-Base 

(tris(hydroxymethyl)aminomethane) 

TritonX-100 

Tryptophane 

Tween-20 

Uracil  

Urea 

Yeast Extract  

Yeast Nitrogen Base (YNB) 
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2.1.8 Growth media  

2.1.8.1 Bacteria growth media 

E.coli strains used for plasmid amplification were cultured according to standard 

procedures at 37°C in Luria Bertani (LB) medium supplemented, if required, with the 

appropriate antibiotic (Table 2.9)206.  

Table 2.9: Bacteria growth media components 

Luria Bertani (LB)  5 g/l Yeast extract 
10 g/l Tryptone 
10 g/l NaCl 
 

Additives Antibiotics 100 µg/ml Ampicillin (Amp) 
  25 µg/ml Chloramphenicol (Cm)  
  25 µg/ml Kanamycin (Kan) 

 
 

2.1.8.2 Yeast growth media 

Yeast strains were cultured according to standard procedures either in rich (also 

termed YPD) or synthetic dextrose (SD) medium. SD medium was supplemented with 

the required aminoacids and nitrogen bases (see table 2.10) to obtain synthetic 

complete (SC) medium207. SC dropout medium was prepared by including all the 

required aminoacids and nitrogen bases except those used as auxotrophy markers. All 

media were autoclaved for 20 min at 120 °C. Solid media were prepared by adding 

bacto-agar at a final concentration of 2 % (w/v). 

Solid growth medium containing oleate (STYO) was prepared with 0.67 % yeast 

nitrogen base (YNB), 0.05 % yeast extract, 1 % Triton-X100, 0.1 % oleate, the 

required amino acids and nitrogen bases and 2 % bacto-agar. Oleate was dissolved in 

warm (~50 °C) 10% Triton-X100 before being added to the other components. 

Control plates (STYD) contained 2 % D-glucose instead of oleate. 

High pH rich growth medium was prepared by adding HEPES to a final 

concentration of 100 mM to YPD medium and titrating with 25% HCl to either pH 7.8, 8 

or 8.2 before autoclaving. To prepare high pH synthetic complete (SC) dropout medium 

for studies with overexpression plasmids, the medium was supplemented with copper 

(100 µM CuSO4) to induce expression and with HEPES added to a final concentration 

of 10, 15 or 17.5 mM. The pH of these plates after autoclaving was 7.8, 8.0 or 8.2, 

respectively, as determined using a surface electrode. SC dropout media with higher 

concentrations of HEPES and pH ≥ 8.0 could not be used owing to the tendency of 
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yeast nitrogen base to precipitate in these conditions. Copper was added to both 

control (without HEPES; pH ~ 6.5) and high pH plates.  

Table 2.10: Yeast media components 

YPD 10 g/l Yeast extract 
20 g/l Peptone  
20 g/l D-glucose 
 

SD (synthetic dextrose) 1.7 g/l Yeast nitrogen base (YNB)  
w/o amino acids 
5 g/l Ammonium sulfate 
20 g/l D-glucose  
 

Amino acids 
 

20 mg/l L-Arginine 
30 mg/l L-Histidine 
60 mg/l L-Isoleucine 
40 mg/l L-Lysine 
20 mg/l L-Methionine 
60 mg/l L-Phenylalanine 
50 mg/l L-Threonine 
40 mg/l L-Tryptophan 
60 mg/l L-Leucine 
 

Nitrogen base 20 mg/l Uracil 
20 mg/l Adenine sulphate 
 

Additives 

Antibiotics 200 mg/l Geneticin (G418) 
100 mg/l Nourseothricin (cloNAT)  
0.1-1 µg/ml Cycloheximide 
 

 Others HEPES 
100 µM Copper sulfate 

2.1.9 Buffers and solutions  

Table 2.11: Solutions used in this study 

Solution  Composition* 
Ammonium persulfate (APS) 10% (w/v) Ammonium persulfate 

 
ATP solution 1 mM Na2ATP 

1 mM MgCl2  
 

ATP/[-32P]ATP solution  100 µM Mg/ATP  

1 μCi/µl [-32P]ATP (33 nM ATP) 
 

Blocking solution  1x TBS-T 
 5% (w/v) Skim milk 
 

Blotting buffer pH ~8.3 
 

25 mM Tris-HCl 
192 mM Glycine 
20% (v/v) Methanol  
 

Coomassie Brilliant Blue (10x) 0.05% (w/v) Coomassie blue 
50% (v/v) Methanol 
10% (v/v) Acetic acid 
in ddH2O 
 

DNA loading buffer (5x) 
 

15% (w/v) Ficoll 
Orange G 
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Solution  Composition* 
Genomic DNA extraction buffer 10 mM Tris-HCl pH 8 

100 mM NaCl 
1 mM EDTA 
1% (w/v) SDS 
2% (v/v) Triton-X100 
 

Laemmli sample buffer 62,5 mM Tris-Cl pH 6,8 
2% (w/v) SDS 
10% (w/v) Glycerol 
50% (w/v) DTT 
0,02% (w/v) Bromophenol blue 
 

Lysis buffer A  
 

50 mM Tris-HCl pH 8 
150 mM NaCl 
5 mM EDTA 
1x Proteinase inhibitor mix (Roche) 
0,1 mM PMSF 
 

Phosphate Buffered Saline (PBS) pH 7.4 
 

137 mM NaCl 
2.7 mM KCl 
4.3 mM Na2HPO4 
1.47 mM KH2PO4 
 

Phenylmethanesulphonylfluoride (PMSF) PMSF (100 mM in methanol absolute) 
 

PEG 40% (v/v) Polyethylene glycol 
 

SDS electrophoresis buffer pH 8.3 
 

25mM Tris-HCl 
19.2mM Glycine 
0.1% (w/v) SDS 
 

SDS-polyacrylamide gel pH 8.8 
Resolving gel (10%) 

30% Acrylamide/0.8% bisacrylamide (v/v) 
375 mM Tris-HCl pH 8.8 
0.1% (w/v) SDS 
0.1% (w/v) Ammonium persulafte  
TEMED (1:1000 dilution) 
 

SDS-polyacrylamide gel ~6.8 
Stacking gel (4%) 

30% Acrylamide/0.8% bisacrylamide (v/v) 
125 mM Tris-HCl pH 6.8 
0.1% (w/v) SDS 
0.1% (w/v) Ammonium persulafte  
TEMED (1:1000 dilution) 
 

Sodium acetate  3 M Sodium acetate 
Adjust pH to 5.2 with 3 M acetic acid 
 

TAE electrophoresis buffer pH ~8.5 
 

40 mM Tris-acetate 
2 mM EDTA 
 

TBS-T 
 

20 mM Tris-HCl pH 7.6 
137 mM NaCl 
0.1% (v/v) Tween-20 
 

TE pH ~8.0 
 

10 mM Tris-HCl pH 8.0 
1 mM EDTA pH 8.0 
 

TEL pH ~8.0 
 

10 mM Tris-HCl pH 8.0 
1 mM EDTA pH 8.0 
100 mM Lithium acetate 
 

TES  10 mM TrisCl pH 7.5 
10 mM EDTA 
0.5% (w/v) SDS 
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Solution  Composition* 
Zymolyase solution 0.5 mg/ml Zymolyase-100T  

in 1 M Sorbitol 
 

*Unless indicated otherwise, chemical substances were dissolved or diluted with 
deionized water. 

2.1.10 Reaction systems, kits  

 Western Lightning Chemiluminescence Reagent PLUS (Perkin Elmer) 

 Expand High Fidelity PCR system (Roche) 

 QuikChange® Site-Directed Mutagenesis Kit (Stratagene) 

 Gateway® BP and LR Clonase® II enzyme mix (Invitrogen) 

 Invisorb® Spin Plasmid Mini Two (Invitek) 

 QIAprep MIDI Plasmid Purification Kit (Qiagen) 

2.1.11 Consumables  

 Centrifuge propylene tubes, 15ml and 50ml (Roth)  

 Chromatographie Papier, 3mm (Whatman) 

 Eppendorf tubes, 1.5ml (Eppendorf) 

 PCR tubes 0.2 ml (Biozym) 

 Glass beads 425-600 µm, acid-washed (Sigma) 

 X-ray films, Kodak® BioMax® XAR (Sigma-Aldrich) 

 Microscope Glass Slides 76 x 26 mm (Menzel-Gläser) 

 Coverslips 18 x 18 mm (Roth) 

 Nitrocellulose membrane, 0.2 µm (Bio-Rad) 

 Petridishes (Roth) 

2.1.12 Laboratory hardware equipment 

 Mini Gel Electrophoresis System Gel XL
Plus (Labnet International Inc.) 

 Heating block Techne DB-2A (Eppendorf)  

 Centrifuge 4K15 z.3, 11156/13115 Rotor (Sigma) 
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 Centrifuge 5415D (Eppendorf)  

 Centrifuge RC5C, S3/SS34 Rotor (Sorvall Instr. Du Pont) 

 Micromanipulator MSM system (Singer Instruments) 

 Microscope Axioplan 2 (Carl Zeiss) 

 Mini Protean III System (Bio-Rad) 

 Mini Trans Blot Cell (Bio-Rad) 

 MJ Mini Personal PCR Thermal Cycler (Bio-Rad) 

 Power supply (Bio Rad) 

 UV/visible Spectrophotometer Ultra spec 3100 pro (Amersham Biosciences) 

 Thermomixer (Eppendorf) 

 Vortex (Scientific Ind.) 

 Gene Pulser® II Electroporation System (BioRad) 

 Imaging plate (Fuji Imaging Plate BAS-TR2025, Fuji Photo Film Co., Ltd., Tokyo, 

Japan) 

 Phosphorimager (Fuji Analyzer BAS-1800) 

 

2.2. Methods 

2.2.1 E. Coli methods 

2.2.1.1 Preparation of electrocompetent E.coli and 

transformation by electroporation  

For the preparation of electrocompetent E. coli cells, 10 ml of Luria Bertani (LB) 

starter culture was inoculated with a single colony of E. coli, grown overnight at 37 °C 

in a shaker (250 r.p.m.) to saturation and diluted into 1l of LB media. Cells were grown 

at 37 °C to an optical density (OD600) of 0.6-0.8 and then chilled by placing the culture 

flask on ice for 20 min. Cells were harvested at 5000 xg for 20 min at 4 °C. Cell pellet 

was resuspended in 100 ml ice-cold deionized sterile water and centrifuged at 4500 

r.p.m. for 20 min at 4 °C twice. Cell pellet was resuspended in 20 ml ice-cold 10% 

glycerol, centrifuged again and resuspended in the same volume (w/v) of ice-cold 10% 
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glycerol. Cell suspension was aliquoted in eppendorf tubes (50 µl) and freezed in liquid 

nitrogen (N2) and stored at -80 °C. 

Transformation was carried out by incubation of 50 µl electrocompetent E. coli cells 

with 0.5 μl plasmid DNA preparations for 5 min on ice followed by electroporation in 2 

mm cuvettes using an electroporation apparatus (Bio-Rad). After electroporation, 

transformed cells were immediately resuspended in pre-warmed LB medium, incubated 

for 30 min with vigorous shaking by 37 °C and plated onto LB-agar plates 

supplemented with the appropriate antibiotic. The E. coli strain XL1-Blue  

(Stratagene) was used for the maintenance and propagation of all plasmids with the 

exception of Gateway® constructs, which were propagated using the DH5 and 

DB3.1 strains (Invitrogen). The Rossetta™ 2 strain (Novagen) was used for the 

expression of recombinant proteins. 

2.2.1.2 Plasmid preparation 

The alkaline lysis protocol was used for the small-scale purification of plasmid DNA 

for restriction endonuclease digestions and cloning. A 3 ml E. coli culture was grown 

overnight to saturation in LB media under selective pressure at 37 °C with shaking (250 

r.p.m.). Cells were harvested in eppendorf tubes by centrifugation (16000 xg for 2 min, 

room temperature (RT)) and resuspended in 250 μl resuspension buffer (50 mM Tris-

Cl, pH 8.0, 10 mM EDTA, 100 μg/ml RNase A). Upon addition of 250 μl lysis buffer  

(200 mM NaOH, 1% SDS (w/v)), cell suspensions were mixed by gently inverting the 

tubes 3 times and incubated for 2 min prior to the addition of 250 μl neutralization 

solution (3.0 M potassium acetate pH 5.5). The lysate was cleared by centrifugation 

(16000 xg for 10 min, RT). The supernatant was transferred to a fresh tube and 

plasmid DNA was desalted and concentrated by isopropanol precipitation. The pellet 

was then washed once with 70% (v/v) ethanol, dried under vacuum, resuspended in 50 

µl sterile deionized water and stored at -20 °C. 

Highly purified plasmid DNA for sequencing purposes was obtained using the 

Invisorb® Spin Plasmid Mini Two (Invitek) following manufacturer’s instructions. 

Plasmid DNA for large-scale preparative purposes was purified using the QIAprep MIDI 

Plasmid Purification Kit (Qiagen) following manufacturer’s instructions. 

2.2.1.3 Recombinant protein purification  

Plasmid pGEX-2TK (GE Healthcare) carrying the KNS1 coding sequence (pNM11) 

was transformed into E. coli Rossetta 2 (Novagen). A single clone of transformed 

bacteria was grown overnight to saturation in 100 ml of LB media containing 100 µg/ml 
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ampicillin (Amp) (LBAmp) at 37 °C and then diluted 1:50 in fresh LBAmp. Cells were 

grown at 37 °C until OD600 reached 0.5 and chilled in water bath at 16 °C for at least 1 

h. Expression of GST-Kns1 was induced when OD600 reached 0.7 by adding Isopropyl 

β-D-1-thiogalactopyranoside (IPTG; 0.2 mM). After 4h of induction at 16 °C, bacteria 

were harvested at 5000 xg for 15 min and resuspended in 400 ml ice-cold lysis buffer 

LB1 (10 mM Tris pH 7.6, 10 mM EDTA, 150 mM NaCl and freshly added 1 mM DTT 

and 0.1 mM PMSF). Cell suspension (100 ml) was lysed by sonication in 6 cycles of 20 

sec sonication-30 sec pause (Settings for Branson Sonifier 450 using a horn with 1cm 

of diameter Tip: 70% Duty Cycle, 4-5 Output control). After sonication, cell lysate was 

diluted 1:2 with extraction buffer EB (10 mM Tris pH 7.6, 10 mM EDTA, 150 mM NaCl, 

1 mM DTT and 2% Triton-X100) and incubated for 1 h with gentle shaking at 4 °C. 

Cell debris was pelleted by centrifugation 12000 xg for 30 min. The supernatant was 

transferred to a new tube and incubated with 1ml of 50 % (v/v) slurry of glutathione-

Sepharose™ 4B resin (GE Healthcare) pre-equilibrated in buffer LB1. After 2 h 

incubation at 4 °C with slow tilt rotation, the resin was transferred into an empty column 

and washed with 500 ml of buffer LB1. Fusion protein GST-Kns1 was eluted from the 

resin with 1ml elution buffer EB1 (10 mM Tris pH 8, 10 mM EDTA, 150 mM NaCl, 1 mM 

DTT and 10 mM GSH). Elution was repeated 5 times. Eluates were aliquoted, freezed 

in liquid N2 and stored at -80 °C. 

Plasmid pDESTco (Invitrogen) carrying the CMK2 coding sequence (pNM38) was 

transformed into E. coli Rossetta 2 (Novagen). A single clone of transformed bacteria 

was grown overnight to saturation in 25 ml of LB media containing 100 µg/ml ampicillin 

(Amp) and 25 µg/ml chloramphenicol (Cm) (LBAmp/Cm) at 37 °C and then diluted 1:50 in 

fresh LBAmp/Cm. Cells were grown at 37 °C until OD600 reached 0.6-0.7 and then 

expression of 6His-Cmk2 was induced by adding IPTG (0.2 mM). After 2h of induction 

at 30 °C, bacteria were harvested at 12000 xg for 20 min and resuspended in 50 ml 

ice-cold lysis buffer LB2 (50 mM Tris HCl pH 7.6, 5 mM imidazol and freshly added 0.1 

mM PMSF). Cell suspension (50 ml) was lysed by sonication in 6 cycles of 20 sec 

sonication-30 sec pause as described above. After sonication, cell debris was pelleted 

by centrifugation 12000 xg for 30 min. The supernatant was transferred to a new tube 

and incubated with 50 µl of NiNTA-Agarose resin (Qiagen). Prior to use, the Ni-NTA 

bead resin (100 µl of 50 % (v/v) slurry) was washed 3 times with 1 ml buffer LB2 and 

incubated with high concentration of bovine serum albumin (BSA) i.e., 50 µg BSA in 

500 µl resin/buffer LB2 suspension, for 10 min with rotation to block non-specific 

protein-bead interactions. After 30 min incubation at 4 °C with slow tilt rotation, the 

resin was transferred into an empty disposable plastic column (Pierce) and washed 

with 25 ml of buffer WB (50 mM Tris pH 7.6, 300 mM NaCl, 70 mM KCl, 1 mM MgCl2, 5 
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mM imidazol). Fusion protein 6His-Cmk2 was eluted from the resin by adding 100 µl of 

elution buffer EB2 (10 mM Tris pH 7.6, 100 mM NaCl and 5 mM EDTA) and incubating 

with gentle mixing for 10 min. The use of EDTA in the elution buffer was necessary due 

to the high affinity of the recombinant protein for the resin.  

2.2.2 Yeast methods 

2.2.2.1 Cultivation of yeast strains 

Yeast strains were cultured using standard microbiological methods207. Liquid 

cultures were inoculated from a fresh pre-culture or a single colony and grown 

overnight (at least 12 h) in rich (YPD) or synthetic complete (SC) drop-out medium in 

flasks with shaking (225 r.p.m) or in tubes with tilt rotation. To cultivate yeast on solid 

agar plates, small aliquots of yeast were streaked out from glycerol stocks with sterile 

inoculation loops on plates containing either YPD or SC media. Strains were grown at 

30 °C, unless otherwise noted. Yeast strains were stored for short periods of time on 

solid agar plates at 4 °C and for long-term periods at -80 °C in 15% glycerol (v/v). The 

genotype of the strains used in this work is described in table 2.2.  

The cell density of yeast cultures was determined by measuring its optical density 

at 600 nm (OD600) in a spectrophotometer. For reliable measurements, cultures were 

diluted so that the OD600 was <1. An OD600 of 1 is equivalent to ~ 3 × 107 cells/ml208. 

The growth stage and rate of cell division of yeast are a function of the cell density of 

the culture. The exponential phase of growth is referred as log-phase and can be 

divided into three stages. Early-log phase is the period when cell densities are <107 

cells/ml. Mid-log phase cultures have densities between 1 and 5 × 107 cells/ml. Late-

log phase occurs when cell densities are between 5 × 107 and 2 × 108 cells/ml. At a 

density of 2 × 108 cells/ml yeast cultures are said to be saturated and the cells enter 

stationary, or G0 phase208. 

2.2.2.2 Yeast transformation 

Transformation of yeast was performed using the modified lithium acetate (LiAc) 

method by Gietz et al. (1992)209. Yeast cells were transformed with either plasmids or 

linear DNA fragments. Briefly, yeast cells were grown overnight in liquid YPD media at 

30 °C until OD600 reached 0.5-1. Approximately 5 OD600 units of cells were gently 

pelleted by centrifugation (2000 xg for 2 min) and washed twice with sterile deionized 

water and once with sterile TE/LiAc solution (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 100 

mM LiAc). Cells were resuspended in a total volume of 40 µl of TE/LiAc solution and 
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supplemented with 50 µg of single-stranded herring sperm carrier DNA (10 mg/ml, 

Sigma) and either 40-200 ng plasmid DNA or up to 1 μg linear DNA to be transformed. 

Then, 350 µl of sterile TE/LiAc-PEG solution (40 % (w/v) PEG 4000 in TE/LiAc) was 

added, mixed thoroughly with cell suspension and incubated for 30 min at 30 °C. After 

subsequent heat shock in water bath at 42 °C for 15 min, cells were gently sedimented 

by centrifugation (1000 xg for 1 min, RT), supernatant was removed and cell pellet was 

resuspended in TE to plate on the appropriate selection medium. For selection of 

auxotrophic markers (e.g. the TRP1 or URA3 selection markers contained in plasmid 

vectors), synthetic complete (SC) medium lacking the corresponding amino acid was 

used. When selection of dominant markers (e.g. the G418R marker) was necessary, 

transformed cells were first resuspended in 1 ml YPD medium and incubated for 2 h at 

30 °C with rotation to allow the expression of the marker before plating.  

2.2.2.3 Creation of yeast mutants 

The endogenous CMK2 gene was disrupted using a PCR-based strategy. The 

complete coding sequence of CMK2 was replaced by the heterologous dominant drug 

resistance cassette kanMX4. The module containing kanMX4 was amplified from the 

genomic DNA extracted from strain Y16473 (cmk2::kanMX4) of the Euroscarf deletion 

set by PCR using primers homologous to a 20 bp genomic sequence located 300 bp 

up and downstream of the CMK2 coding sequence (oNM86/oNM87)210. PCR was 

carried out using the Phusion™ High-Fidelity DNA Polymerase (New England BioLabs, 

Inc.) and following the manufacturer’s instructions. The PCR-product was transformed 

into diploid yeast cells. Diploid cells that correctly integrated the kanMX4 cassette into 

the genome (yNM413) by homologous recombination, acquired resistance to geneticin 

(G418R) conferred by the kanr open reading frame (ORF) of E. coli transposon 

Tn903211 and were thus selectable on YPD plates containing 200 µg/ml of G418-

sulphate (Calbiochem). Positive clones were verified by PCR using oNM86 and 

Kan&His primers. The creation of ∆vma1 (yNM194) diploid cells was achieved by the 

same approach. Haploid deletion mutant strains were obtained by sporulation and 

tetrad dissection (described below).  

The endogenous KNS1 gene was genomically tagged at the N-terminus with the 

enhanced GFP tag (EGFP, hereafter termed GFP) using a PCR-mediated strategy202 

to create strain yNM459. A module containing the drug resistance cassette natNT2, the 

CUP1-1 promoter and the GFP tag was amplified by PCR using plasmid pYM-N4 as 

template202. The insertion of the CUP1-1 promoter upstream of the KNS1 gene allowed 

the strong induction of KNS1 expression upon CuSO4 addition. The forward primer 

oNM62 is composed of the 45 nucleotides upstream of the ATG (including ATG) of the 
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KNS1 gene followed by 18 nucleotides that anneal to the 5’-end of the cassette. The 

backward primer oNM63 is composed of the reverse complement of the 45 nucleotides 

downstream of the ATG of the gene KNS1 (excluding ATG) followed by 20 nucleotides 

that anneal to the 3’-end of the cassette. PCR was carried out using the Phusion™ 

High-Fidelity DNA Polymerase following the manufacturer’s instructions. After module 

amplification, the PCR-product was transformed into wild-type haploid yeast strain 

sUB62. Cells that acquired resistence to nourseothricin conferred by the natNT2 gene 

from Streptomyces noursei were selectable on YPD plates containing 100 µg/ml of 

clonNAT (Nourseothricin, Werner BioAgents). Positive clones were verified by PCR 

using oGD70 and oMD141 primers. The module containing natNT2, CUP1-1 and GFP 

was integrated upstream of the endogenous CMK2 gene using the same approach and 

the primer set oNM76/77 for module amplification.   

2.2.2.4 Diploid creation, sporulation and tetrad analysis  

To create a diploid yeast strain possessing different genetic modifications, two 

haploid strains of the opposite mating type carrying distinct selectable markers were 

mated on the surface of YPD agar plates212. After 4h of mating at 30 °C, the mating 

mixture was streaked onto a plate that selected for the diploid genotype. Meiosis and 

subsequent sporulation of the diploid cell was induced by nitrogen starvation. In 

principle, a fresh liquid culture from a single colony of the diploid strain was grown 

overnight until it reached the log-phase. A fraction of this culture (50 µl) was diluted in 2 

ml of pre-sporulation media (0.8% yeast extract, 0.3% peptone, 10% dextrose) and let 

grown for approximately 6-8 hours. Cells were then harvested, exhaustively washed to 

eliminate traces of pre-spo media and resuspended in 2 ml of sporulation media (0.1% 

yeast extract, 0.05% dextrose, 1% potassium acetate). After 2-3 days of incubation 

with rotation at 30 °C, the culture was examined microscopically for spore formation. 

Tetrads, which are composed of four haploid spores surrounded by a thick-cell wall 

(ascus), were prepared for dissection by incubating a 10 µl aliquot of the sporulated 

culture with 1 µg of Zymolyase-100T (MP Biomedicals, Inc.) in Zymolyase solution (0.5 

mg/ml Zymolyase-100T in 1 M Sorbitol) for 10 min at RT to disrupt the cell wall. 

Subsequently, the cell suspension was streaked out onto YPD plates. During tetrad 

dissection, asci were visualized under a dissection microscope using a 100x 

magnification and the spores from one ascus were separated using the glass tip of the 

micromanipulator. Once tetrad analysis is completed, plates were incubated at 30 °C to 

let spores germinate. After 3 days, the spores formed colonies that could be replica 

plated for genotyping and further characterization. In this manner, the sporulation of the 

diploid strains and subsequent tetrade dissection led to the creation of the following 

 39



Materials and methods 

haploid strains; yNM195 (vma1::kanMX4), yNM414 (cmk2::kanMX4), yNM454 

(cmk2::kanMX4, kns1::natNT2) (see table 2.2 for further genotype details).  

2.2.2.5 Serial dilution spotting assay 

The sensitivity of wild-type and deletion mutant yeast strains to different stress 

conditions (e.g. high pH) was assessed by spotting serial dilutions of yeast cultures on 

solid agar plates. Cell cultures were grown overnight to mid-log phase in liquid media at 

30 °C with rotation, diluted first to an OD600nm of 0.25 in a 96-well microtiter plate and 

then successively diluted 1 to 5. These dilutions were spotted using a Steers-type 

inoculum replicator onto agar plates containing the indicated chemicals compounds 

and/or buffers (described in section 2.1.8.2). Plates were incubated, unless stated 

otherwise, at 30 °C and photodocumented after the indicated days. Sensitivity to a 

particular condition was regarded qualitatively as the relative growth of each deletion 

mutant strain compared with growth of the isogenic wild-type strain on the same plate.  

Quantitation of the approximate cell population density of yeast strains grown at 

high pH was performed by densitometry (ImageJ, NIH). The approximate cell 

population of each mutant was expressed relative to that of wild-type cells (set to 1.0).  

2.2.2.6 Yeast two-hybrid analysis  

Yeast two-hybrid assays were performed using the GAL4-based system developed 

by Fields et al.(1989)213. Combinations of bait plasmid bearing the GAL4 binding 

domain (OBD) fused to the coding sequence of Kns1 (pNM105), prey plasmid bearing 

the GAL4 activation domain (OAD) fused to Cmk2 (pNM104) and the respective empty 

plasmids were transformed as indicated into the host yeast strain PJ69-4A. PJ69-4A 

allows for stringent growth selection on SC-His and SC-Ade media200. Transformants 

were streaked out on synthetic complete (SC) medium lacking Trp and Leu (SC-Trp-

Leu; control) to select for both Gal4-fusion plasmids and then single colonies were 

selected and streaked onto SC-Trp-Leu medium additionally lacking either His (SC-

Trp-Leu-His; reporter 1) or Ade (SC-Trp-Leu-Ade; reporter 2) to assay for reporter 

activation. Negative controls consisted of cells cotransformed with the following 

combination of plasmids; pNM105 (OBD-KNS1) with pMD302 (OAD alone) and OAD-

CMK2 with pMD302 (OBD alone). In addition, bait plasmid bearing OBD fused to Cmk2 

(pNM106; OBD-CMK2), prey plasmid bearing OAD fused to Kns1 (pNM103; OAD-

KNS1) and the respective empty plasmids were assayed. The reported interaction 

between Snu66 and Hub1 was tested in parallel as a positive control for the assay 

using plasmids expressing OBD fused to Snu66 (pMR29; OBD-SNU66) and OAD 
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fused to Hub1 (pGD240; OAD-HUB1)214, which were kindly provided by Dr. Gunnar 

Dittmar. Plates were incubated for 3 days at 30 °C before photodocumentation.  

2.2.2.7 Isolation of genomic DNA from yeast 

The preparation of genomic DNA from yeast for use in PCR amplification reactions 

was performed using the procedure described by Hoffman et al. (1987)215. A 5 ml yeast 

cell culture was grown in YPD to saturation (OD600>2), harvested and resuspended in 

200 µl DNA extraction buffer (10 mM Tris-HCl pH 8, 100 mM NaCl, 1 mM EDTA, 1% 

SDS, 2% Triton-100). After addition of 200 µl phenol:chloroform:isoamyl alcohol 

(25:24:1), cells were disrupted with glass beads (Sigma) by vortexing for 3 min. Cell 

lysate was spun for 5 min and aqueous phase was transferred to a new tube. To 

precipitate isolated genomic DNA, 1 ml 100% EtOH and 20 µl 3 M sodium acetate (pH 

5.2) were added and mixed by inversion. Finally, after 10 min incubation and 10 min 

high speed centrifugation (16000 xg), pellet was washed once with 70% EtOH, dried in 

a speed vacuum and dissolved in 50 µl TE buffer (10 mM Tris-HCl pH=8, 1 mM EDTA).  

2.2.2.8 Preparation of whole yeast cell extracts  

Whole cell extracts were prepared from cultures grown overnight to log-phase in 

liquid media at 30 °C. Cells were harvested by centrifugation at 2000 xg for 5 min, 

resuspended in 1x cell pellet volume of lysis buffer (50 mM Tris pH 8, 100 mM NaCl, 

10mM EDTA) supplemented with an EDTA-free protease inhibitor cocktail tablet 

(Roche) and phenylmethanesulfonyl fluoride (PMSF; 1 mM). After cell disruption with 

acid-washed glass beads by vortexing at full speed for 3 min, 3x cell pellet volume of 

lysis buffer was added. Cell lysate was then cleared of cellular debris with a 5 min 1000 

xg spin followed by a 10 min 16000 xg spin. Supernatant was transferred to a new 

microcentrifuge tube, Laemmli sample buffer (62.5 mM Tris-Cl pH 6.8, 2% (w/v) SDS, 

10% (w/v) Glycerol, 50% (w/v) DTT) was added and the mixture was boiled at 95 °C for 

5 min to allow protein denaturation. Aliquots of 0.1 OD600 units/µl were resolved by 

electrophoresis on 8, 10 or 12 % SDS-polyacrylamide gels as indicated. 

2.2.2.9 RNA preparation from yeast cells 

Total RNA was prepared from intact yeast cells by extraction with hot acidic phenol 

as described by Collart et al. (1993)216. Wild-type (sUB62) and kns1 (yAS5) cells were 

grown in 10 ml of YPD to mid-log phase (OD600= 0.7). The strain used as positive 

control for splicing defects, KL1, is impaired in splicing when cultured in glucose 

medium because the expression of chromosomal PRP8 is repressed by the galactose 
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promoter (PGAL1)
199. Thus, KL1 was grown in YPGR (YP + 2% galactose, 2% raffinose) 

at 30 °C to an OD600 of 0.2 and transferred to YPD to repress chromosomal PRP8 

expression and grown until the culture OD600 reached 0.7. Cells were harvested and 

resuspended in 2 ml of TES solution (10 mM Tris-Cl pH 7.5, 10 mM EDTA, 0.5% SDS). 

After addition of 2 ml of acid phenol followed by 10 s vortexing, samples were 

incubated for 1 h at 65 °C in water bath. This step ensured cell lysis in a chemical 

environment that resulted in denaturation of proteins, necessary to rapidly eliminate 

ribonucleases, and removal of DNA. Then, samples were cooled on ice for 5 min and 

RNA were fractionated from the other cellular macromolecules by centrifuging 5 min at 

1500 xg at 4 °C. The aqueous phase was transferred to a new tube and phenol 

extraction was performed again. Thereafter, addition of 2 ml of chloroform to the 

aqueous fraction and posterior centrifugation completed the extraction procedure. To 

achieve concentration and desalting of the purified RNA, 40 µl of 3 M sodium acetate 

(pH 5.3) and 1 ml of ice-cold 100% ethanol were added to 400 µl aliquots of the 

samples. Following 1h incubation at -80 °C, RNA was pelleted and washed with 70% 

ethanol.  Finally, RNA was resuspended in 50 µl deionized water. The RNA content 

and purity was determined by measuring the absorption of the samples at 260 nm 

(A260) and the ratio of the absorptions at 260 nm and 280 nm (A260/A280), respectively, 

using quartz cuvettes. Importantly, during all RNA manipulations, rnase-free lab-ware 

and diethylpyrocarbonate (DEPC)-treated solutions were used to avoid contamination 

by ribonucleases. 7 OD600  cells yielded approximately 250 µg RNA.  

2.2.2.10 Partial purification of Pdc1-TAP from yeast 

A 3.5 l culture of exponentially growing yeast cells (OD600=0.6) was harvested by 

centrifugation at 2000 xg for 5 min and resuspended in 5 ml of lysis buffer (50 mM Tris 

pH 8, 150 mM NaCl, 5 mM EDTA and 0.1 % TX-100) supplemented with protease 

inhibitors (complete mini EDTA-free protease inhibitor cocktail and PMSF). After cell 

disruption with acid-washed glass beads by vortexing at full speed for 3 min, 20 ml of 

lysis buffer was further added. All subsequent steps were performed at 4 °C. Cell lysate 

was cleared of cellular debris with a 10 min 1000 xg spin followed by a 10 min 10000 

xg spin. The cleared lysate was incubated with 100 μl of IgG-Sepharose 6 Fast Flow 

resin (GE Healthcare) for 1 h at 4°C with rotation. The IgG-Sepharose resin (200 µl; 

50% (v/v) slurry) was previously equilibrated according to instructions provided by the 

manufacturer. The resin suspension was loaded onto an empty column and extensively 

washed with buffer (50 mM Tris pH 8, 150 mM NaCl and 5 mM EDTA). Finally, the 

washed resin (~100 µl) was transferred to a new microcentrifuge tube and 100 µl of a 

10 mM Tris pH 7.5 solution was added.   
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2.2.3 General molecular techniques 

All molecular biology techniques were performed as described in Sambrook and 

Russell (2001) unless otherwise stated206.  

2.2.3.1 Standard PCR reaction 

PCR reactions for the amplification of modules for genomic epitope tagging  or 

drug resistence cassettes for gene deletion were carried out using 200 ng of DNA 

template and 300 nM of each set of primers in a 100 μl reaction containing dNTPs (500 

µM), 2U of Expand Long Template DNA-polymerase (Roche), 10μl of 10x PCR-buffer 

2 (with 2.75 mM MgCl2). PCR cycling conditions were as follows: denaturation at 92 °C 

for 3 min, 35 cycles of 92 °C for 15 s, 52 °C for 30 s and 68 °C for 3 min followed by a 

final elongation step at 68 °C for 10 min. PCR reactions for the amplification of genes 

for cloning purposes were carried out using Phusion™ High-Fidelity DNA Polymerase 

(New England BioLabs, Inc.) and following the manufacturer´s instructions. To test 

appropriate genomic insertions, standard PCR protocols were performed using Taq-

DNA Polymerase (New England BioLabs, Inc.) and isolated genomic yeast DNA as 

template in 25 μl reaction volume. 

2.2.3.2 Site-directed mutagenesis 

Single-point mutations were inserted into KNS1 and CMK2 coding sequences 

(CDS) using the QuickChange™ XL Site-Directed mutagenesis Kit (Stratagene) 

following the manufacturer’s instructions. This method is based on the non-strand-

displacing action of the PfuTurbo® DNA polymerase, which extends the mutagenic 

primers generating nicked circular strands. PCR reactions were performed using 200ng 

of the pDONR221 plasmid (Invitrogen) containing either full-length KNS1 (pNM14) or 

CMK2 (pNM47) as template and 125ng of forward and reverse primers carrying the 

desired mutations. After amplification, the PCR product was digested with 10 U of the 

DpnI restriction endonuclease for 30 min at 37 °C to remove the non-mutated 

methylated parental DNA prior to transformation into E. coli cells. Mutagenic primers 

were designed with a silent mutation introducing a restriction site adjacent to the 

mutation of interest to enable positive mutant screening by restriction endonuclease 

digestion analysis. All point mutations were further verified through automated DNA 

sequencing performed by the Invitek sequencing service. Mutagenic primers containing 

the desired mutations and the accompanying restriction sites are listed in table 2.12.  
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Table 2.12: Site directed mutagenesis of plasmids. 

Name Template Gene Mutation Primers oNM Silent RE site 

pNM33 pNM14 Kns1 D440A 117/118 StyI 

pNM34 pNM14 Kns1 T562A 127/128 SacI 

pNM47 pNM47* Cmk2 A129T 123/124 PvuII 

pNM50 pNM47 Cmk2 D171A 111/112 ApaI 

pNM85 pNM47 Cmk2 Y47F 129/130 StyI 

pNM86 pNM47 Cmk2 T52A 131/132 SacI 

pNM88 pNM47 Cmk2 T69A 135/136 HindIII 

pNM89 pNM47 Cmk2 S328A 137/138 PvuI 

pNM91 pNM47 Cmk2 T316A 153/154 NheI 

pNM92 pNM47 Cmk2 T316D 155/156 AatII 

pNM93 pNM47 Cmk2 S379E 157/158 SacI 

pNM94 pNM47 Cmk2 Y47D 159/160 EcoRV 

pNM95 pNM47 Cmk2 T52D 161/162 StyI 

pNM96 pNM47 Cmk2 T69D 163/164 HindIII 

pNM98 pNM47 Cmk2 T406A 168/169 StyI 

pNM99 pNM47 Cmk2 T406D 170/171 StyI 

pNM100 pNM47 Cmk2 S328E 166/167 SacI 

pNM111 pNM47 Cmk2 S379A 139/140 StyI 

 

2.2.3.3 Restriction Endonuclease digestion and ligation 

reactions 

Restriction endonuclease digestions were carried out following supplier’s 

instructions. A standard reaction mixture of 100µl contained 1-5 µg of plasmid DNA (or 

PCR product), 1 unit (U) of the appropriate restriction enzyme(s) per µg of DNA (New 

England BioLabs, Inc.), the recommended buffer and BSA (100 µg/ml) if required. 

Antarctic Phosphatase (1U/ µg of DNA; New England BioLabs, Inc.) was additionally 

added to prevent self-ligation of the plasmids. Reaction mixtures were incubated for at 

least 1 h at 37°C in water bath.  

Ligation reactions were performed using 1 U of T4 DNA Ligase enzyme (New 

England BioLabs, Inc.) per µg of DNA in a 10 µl reaction mixture. Reactions were 

incubated overnight at 16 °C. The optimal molar ratio of vector to insert was estimated 

for each ligation reaction.  

2.2.3.4 Electrophoretic DNA separation 

Horizontal agarose gel electrophoresis was used for the identification of DNA 

fragments. Because of the negative charge of their phosphate groups, the DNA 

molecules move through the agarose matrix towards the plus-pole in an electric field. 

Under constant voltage the migration speed of linear, double-stranded DNA in agarose 

gels is proportional to the logarithm of its molecular weight. The size of a linear DNA 
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fragment can be determined by comparison with standard DNA fragments of known 

size. Depending on the size of the DNA molecules the agarose concentration was 

chosen between 0.5% and 2.0% (w/v). For the detection of the DNA strands, addition 

of DNA-intercalating stain ethidium bromide was added to the agarose gels. TAE buffer 

was used for the preparation of the agarose solution and as electrophoretic buffer. 

Separated fragments were visualized by UV-light. 

2.2.3.5 Plasmid construction 

The plasmids used in this work were created combining classic cloning techniques, 

the Gateway® cloning system (Invitrogen) and gap-repair cloning in yeast. All plasmids 

created were confirmed by sequencing and are listed in Table 2.3 and 2.4. 

The KNS1 coding sequence was cloned into pGEX-2TK (GE Healthcare) to enable 

the recombinant expression of N-terminally GST-tagged Kns1 in E. coli and purification 

by glutathione-agarose chromatography. First, the KNS1 coding sequence was 

amplified by PCR from wild-type yeast genomic DNA (sUB62) using a forward primer 

containing the BamHI site (oMD135) and a reverse primer containing the XmaI site 

(oMD136). Then, PCR-product and pGEX2TK were digested with BamHI/XmaI and 

ligated according to standard protocols to yield pNM11206. 

The Gateway® cloning technology is based on the bacteriophage lambda (λ)-

based site-specific recombination system217–219. In particular, the clonase from a LR 

enzyme mixture transfers the gene of interest (flanked by attL1 and attL2 sites) from 

the entry vector into a destination vector which contains a chloramphenicol resistance 

(CmR) and a ccdB gene (flanked by attR1 and attR2 sites).  Upon recombination, the in 

vitro reaction is transformed in E. coli strain DH5. Thus, positive clones can be readily 

selected on LB plates containing 100 mg/ml ampicillin (LBamp). The toxicity of the ccdB 

gene in the standard laboratory E. coli strain DH5 inhibits the growth of transformants 

containing the original destination vector.  

To create KNS1- and CMK2-bearing plasmids compatible with the Gateway® 

cloning system (Invitrogen), KNS1- and CMK2 coding sequences were amplified from 

plasmids (pGD252 and pGD253; kindly provided by Dr. G. Dittmar) using 

oligonucleotide primer sets containing attR1 and attR2 sites flanked by sequences 

complementary to the ends of BamHI/HindIII-digested pSV52 (oNM94/95, oNM96/97). 

The PCR-amplified KNS1- and CMK2 coding sequences with attR1 and attR2 sites at 

their respective 5′ and 3′ ends were cloned into pSV52 (kindly provided by S. Sadis and 

D. Finley) to yield pNM18 and pNM19, respectively. To this end, PCR-products and 

pSV52 were digested with BamHI/HindIII and each PCR-product was transformed 

along with linearised pSV52 into yeast cells, which repair the gap in pSV52 by 
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homologous recombination (gap repair cloning; described by Ma et al. 1987220). Next, 

the CMK2 coding sequence from plasmid pNM18 and KNS1 from plasmid pNM19 were 

transferred into pDONR221™ (Invitrogen) by homologous recombination using the BP 

Clonase enzyme mixture (Invitrogen) and following the manufacturer’s instructions to 

create CMK2- (pNM47) and KNS1-containing (pNM14) entry vectors. Upon 

recombination, the in vitro reaction was transformed in E. coli strain DH5 and positive 

clones selected on LB plates containing 50 mg/ml kanamycin (LBkan). The inserts of 

both entry vectors were examined by DNA sequencing. A mutation (T129A) found in 

CMK2 from pNM47 was repaired using primers oNM123/124 to yield the wild-type 

sequence of CMK2 by site-directed mutagenesis. Then, CMK2 and KNS1 were 

transferred from pNM47 and pNM14 into plasmid pNM67 (2µm, TRP1) to yield pNM73 

and pNM74, which enable the expression of either N-terminally GFP-tagged Cmk2 or 

Kns1 driven by the copper-inducible promoter pCUP1-1 in yeast cells. Plasmid pNM67 

was created by cloning promoter pCUP1-1 into destination vector pMD299 (kindly 

provided by M. Dahlmann), which contains a GFP tag (enhanced GFP; EGFP) placed 

5' of the Gateway® cloning cassette. Promoter CUP1-1 was amplified by PCR from 

pYM-N1 using a forward primer containing the Sac I restriction site (oNM147) and a 

reverse primer containing the BglII site (oNM148). Both PCR-product and pMD299 

were digested with SacI/BglII and ligated according to standard protocols206. Similarly, 

CMK2 was transferred from pNM47 into destination vector pDESTco201 (kindly provided 

by Prof. E. Wanker) using the LR Clonase recombination enzyme mixture (Invitrogen) 

to yield plasmid pNM38, which enables recombinant expression of 6His-Cmk2 in E. coli 

and purification by nickel chelate chromatography as described above.  

For the yeast two hybrid assays, Gateway®-compatible destination vector pMD303 

containing the GAL4 binding domain (based on pOBD2)83 and pMD302 containing the 

GAL4 activation domain (based on pOAD1)221 were used (kindly provided by M. 

Dahlmann). Bait plasmids were constructed by transferring either KNS1 or CMK2 from 

pNM47 and pNM14 into pMD303 to create the OBD-KNS1 (pNM105) or OBD-CMK2 

(pNM106) fusions whereas prey plasmids were constructed by cloning either KNS1 or 

CMK2 from pNM47 and pNM14 into pMD302 to create the OAD-KNS1 (pNM103) or 

OAD-CMK2 (pNM104) fusions.  

To express GFP-tagged Cmk2 from a single-copy plasmid and under the control of 

its endogenous promoter in yeast, I cloned the 5’-UTR (1000 bp) of the CMK2 locus 

into pRS414 (CEN ARS, TRP1)205 to yield pNM61. The 5’-UTR (1000 bp) region of the 

CMK2 locus was amplified by PCR from wild-type yeast genomic DNA (sUB62) using a 

forward primer containing the EcoRI site (oNM142) and a reverse primer containing the 

XhoI site (oNM143). Both PCR-product and pRS414 were digested with EcoRI/XhoI 
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and ligated according to standard protocols206. Plasmid pNM61 was converted into a 

destination vector (pNM63) by inserting the GFP tag (EGFP) and Gateway® cloning 

cassette via gap repair cloning, which were amplified by PCR from pMD299 using 

primer set oNM145/146 containing sequences complementary to the ends of 

XhoI/KpnI-digested pNM61. PCR-product and pNM61 were digested with XhoI/KpnI 

and transformed into yeast cells to allow homologus recombination. The E. coli strain 

DB3.1™ was used for propagation of the resulting destination vector pNM63. Finally, 

CMK2 was transferred from pNM47 into plasmid pNM63 to yield pNM65. The correct 

functioning of the endogenous promoter of Cmk2 was verified by the induction of 

expression of N-terminally GFP-tagged Cmk2 upon exposure of yeast cells to high 

extracellular levels of Ca2+, as previously described222.   

2.2.3.6 Reverse-transcriptase PCR reaction 

RNA reverse transcription and subsequent amplification of the resulting cDNA 

were performed by using One-Step RT-PCR kit (Qiagen) following the manufacturer’s 

instructions. Both enzymatic reactions were carried out in the same tube. The 50 µl 

reaction mixture contained 1 µg of purified RNA as template, 1 µg of oligo(dT) primers, 

0.6 µM of the gene-specific primers, dNTP mix (400 µM of each dNTP), 1x QIAGEN 

OneStep RT-PCR Buffer and 2 µl of the Qiagen Enzyme mix. During the first 

incubation step at 50 °C for 30 min, oligo(dT) primers ensured poly(A)-containing 

mRNA reverse transcription. After cDNA synthesis, a 15 min incubation at 95 °C led to 

inactivation of the reverse transcriptase, activation of the HotStarTaq DNA-polymerase 

and denaturation of the cDNA. Then, the PCR reaction started with the following 

cycling conditions: 25 cycles of denaturing for 20 s at 95 °C, annealing for 30 s at 55 

°C, extension for 1 min at 72 °C  and one final 10 min extension. Amplified cDNA PCR 

products were analysed by electrophoresis on 2 % agarose gels.  

2.2.4 Protein analysis 

2.2.4.1 Determination of protein concentration 

The protein concentration was estimated using the Bradford-based Bio-Rad 

Protein Assay223. This assay is based on the shift in the absorbance maximum (from 

465 nm to 595 nm) that occurs when the Coomassie Brilliant Blue G-250 dye binds 

with proteins224. A 10 μl aliquot of a protein solution was diluted 1:50 with deionized 

water and mixed with 500 µl of the Bradford reagent dye (Bio-Rad) in a disposable 

polystyrene cuvette. After a brief incubation at RT, the absorbance of the sample was 

measured at 595 nm using a UV/visible spectrophotometer (Ultra spec 3100 pro; 
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Amersham Biosciences). Serial dilutions of a BSA stock solution of known 

concentration was prepared and measured in parallel to create a standard curve (from 

50 to 2000 μg/ml).  

2.2.4.2 SDS-PAGE gel electrophoresis  

Analysis of yeast protein extracts was carried out by using discontinuous one 

dimensional SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing 

conditions according to the standard Laemmli protocol225. Protein solubilization was 

achieved by the action of denaturants (SDS), reducing agents (DTT) and heat. 

Laemmli buffer (6x) was added 1 to 5 to the protein sample, which was then heated for 

5 min at 95 °C to allow protein denaturation prior to loading on a SDS-polyacrylamide 

gel for molecular weight-based separation. For the detection of tagged Kns1 (MW=109 

kDa), the percentage of acrylamide used in the separating gel was 8 % and, for tagged 

Cmk2, was 12 %. SDS electrophoresis buffer (25mM Tris-HCl, 19.2mM Glycine, 0.1% 

(w/v) SDS) and a 20mA constant current were used as standard running conditions226. 

Vertical electrophoresis was performed using the Mini-PROTEAN 3 system (Bio-Rad). 

Broad range protein marker (NEB) or pre-stained broad range protein marker (NEB) 

was used for size-determination. 

2.2.4.3 Coomassie staining of polyacrylamide gels 

The protein content of polyacrylamide gels was visualized by staining with 

Coomassie brilliant blue G250. Following electrophoresis, gels were washed 3 times 

for 5 min with deionized water to remove SDS and buffer salts and then stained for 1 h 

at RT on a shaker with Coomassie brilliant blue G250 solution according to the 

manufacturer’s instructions. Thereafter, gels were destaining with deionized water. 

2.2.4.4 Western blotting 

Electroblotting of proteins from polyacrylamide gels onto nitrocellulose membranes 

was performed essentially as described by Burnette et al. (1981)227 and using the tank 

transfer system from BIO-RAD (Mini-Trans-Blot) according to the manufacturer´s 

guidelines. The gel and the nitrocellulose membrane were placed into the semi-dry blot 

apparatus between two piles of two 3MM filter-papers (Millipore) soaked with transfer 

buffer (20 mM Tris-base, 192 mM Glycine, 20 % (v/v) Methanol). Electrophoretic 

transfer was accomplished by applying 70 mA constant current for 1 hour or at 20 mA 

overnight in transfer buffer. After blotting, the membrane was blocked with proteins 

from bovine milk to avoid unspecific binding of the antibodies for 1 h at RT in Tris-
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buffered saline (20 mM Tris-HCl pH 7.6, 137 mM NaCl) supplemented with 0.1 % (v/v) 

Tween-20 (TBS-T) and 5% (w/v) skim milk powder. Subsequently, the membrane was 

incubated with the primary antibody diluted in blocking solution for 1 h at RT or 

overnight at 4 °C on a shaker. After three washes of 5 min with TBS-T, the membrane 

was incubated for 1 h at RT with the respective horseradish peroxidase (HRP)-coupled 

secondary antibody on a shaker. Finally, the membranes were washed at least 3 times 

for 10 min with TBS-T. Detection by enhanced chemiluminescence (ECL) was 

performed using the ECL detection system as recommended by the manufacturer 

(Perkin Elmer). The light emitted by oxidized luminol from the reaction catalysed by the 

horseradish peroxidase was recorded on X-ray films (Kodak® BioMax® XAR, Sigma-

Aldrich). 

2.2.4.5 In vitro phosphorylation assays 

The autophosphorylation capabilities of wild-type GST-Kns1 (pNM11), GST-

Kns1D440A (pNM37) and GST-Kns1T562A (pNM54) were tested in vitro in phosphorylation 

buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 1 mM DTT and 0.2 µg/µl BSA) by incubating 

62.5 ng (~ 0.625 pmol) of kinase with 0.5 µl of [-32P]ATP (10 µCi/µl; 3000 Ci/mmol) in 

a total volume of 20.5 µl for 15 min at 30 °C (Fig. 3.8 and 11).  

The assessment of Cmk2 in vitro phosphorylation by Kns1 was performed by 

incubating 250 ng (~ 5 pmol) of wild-type 6His-Cmk2 (pNM38) or catalytically inactive 

6His-Cmk2D171A (pNM45) with either 50 ng (~ 0.5 pmol) of wild-type GST-Kns1 

(pNM11) or catalytically inactive GST-Kns1D440A (pNM37) in 20.5 µl of reaction mix 

containing phosphorylation buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 1 mM DTT and 

0.2 µg/µl BSA) and 0.5 µl of [-32P]ATP for 15 min at 30 °C (Fig. 3.14).  

Phosphorylation of Pdc1 by Kns1 was tested in vitro by incubating Pdc1-TAP, 

which was affinity-purified on matrix-bound IgG from yeast extracts (described in 

2.2.2.10), with either 50 ng wild-type GST-Kns1 (pNM11) or catalytically inactive GST-

Kns1D440A (pNM37) in 20.5 µl of reaction mix containing phosphorylation buffer (25 mM 

Tris pH 7.5, 10 mM MgCl2, 1 mM DTT and 0.2 µg/µl BSA) and 0.5 µl of [-32P]ATP for 

15 min at 30 °C (Fig. 13). 50 µl of the 200 µl IgG-Sepharose resin suspension 

containing Pdc1-TAP (50% (v/v) slurry of beads in 10 mM Tris pH 7.5) were used for 

each kinase reaction. Beads were gently spun down, the supernatant was carefully 

removed by pipetting and 20 µl of the reaction mix containing the kinase in 

phosphorylation buffer was added.  

The phosphorylation activities of 6His-Cmk2 and phosphorylation site mutants 

were assayed by measuring their ability to phosphorylate the exogenous model 
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substrate MBP (Sigma-Aldrich). Reactions were performed by incubating MPB (5 µM) 

with the indicated 6His-Cmk2 version (0.2 µM) in phosphorylation buffer (25 mM Tris 

pH 7.5, 10 mM MgCl2, 2.5 mM CaCl2 and 0.2 µg/µl BSA) containing a ATP/[-32P]ATP 

solution (10 µM ATP with 0.1 μCi/µl [-32P]ATP) in the absence or presence of 

calmodulin (CaM; 10 µM) for 5 min at 30 °C (Fig. 3.24, 25 and 26). 

All kinase reactions were started with the addition of [-32P]ATP and terminated by 

addition of 10 µl of Laemmli sample (6x) buffer and immediate boiling for 5 min. 

Preincubations were performed on ice. Samples (5 µl) were resolved by SDS-PAGE. 8 

% polyacrylamide (PA) gels were used for autophosphorylation assays, 10 % PA gels 

for Cmk2 in vitro phosphorylation by Kns1 assays and 18 % PA gels for MBP 

phosphorylation assays. After electrophoresis, gels were fixed in fixing solution (50% 

methanol, 10% glacial acetic acid) for 30 min and dried under vacuum at 80 °C for 1-

2h. Subsequently, digital photostimulated luminescence (PSL) autoradiography was 

performed by placing dried PA gels into an exposure cassette with an imaging plate 

(Fuji Imaging Plate BAS-TR2025, Fuji Photo Film Co., Ltd.). After the appropriate 

exposure time, the imaging plates were scanned using a phosphorimager (Fuji 

Analyzer BAS-1800) and data were stored as digital files.  

BSA was included in the phosphorylation reactions as a unspecific phosphate-

acceptor competitor. Aliquots of the reaction mixtures were taken prior to [32-P]ATP 

addition and resolved by SDS-PAGE followed by Western blotting (WB) with the 

appropriate antibodies to verify equal protein content of each fusion protein species as 

indicated. MPB protein content was visualized by staining PA gels after electrophoresis 

with Coomassie Blue. BSA protein content was detected on Western blots by 

incubating with Ponceau S-staining solution (0.5 % (w/v) Ponceau S, 1 % (v/v) acetic 

acid) for 5 min at RT with agitation.  

2.2.4.6 Identification of phosphorylation sites by mass 

spectrometry 

For the identification of phosphorylation sites on GST-Kns1 by mass spectrometric 

(MS) analysis, in vitro autophosphorylation reactions were performed on a large scale 

using 2 µg of GST-Kns1 (wild-type or catalytically inactive) in a 40 µl reaction mix 

containing phosphorylation buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 1 mM DTT) and 

50 µM ATP for 30 min at 30 °C. For the identification of phosphorylation sites on 6His-

Cmk2 by MS analysis, in vitro phosphorylation reactions were performed by incubating 

10 µM 6His-Cmk2 (wild-type or catalytically inactive) with 2 µg of wild-type GST-Kns1 

in a 40 µl reaction mix containing phosphorylation buffer (25 mM Tris pH 7.5, 10 mM 
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MgCl2, 1 mM DTT) and 50 µM ATP for 30 min at 30 °C. Additional reaction mixtures 

devoid of ATP were incubated and analysed in parallel as negative controls. Reaction 

mixtures were subjected to SDS-PAGE followed by staining with Imperial™ Protein 

Stain (Pierce). Protein bands containing either 6His-Cmk2 or GST-Ksn1 were excised 

from the gel.  Both proteins were converted to peptides by an in-geld digestion with 

trypsin and the resulting peptides were extracted as described in Shevchenko et al. 

(2006)228. Analysis by mass spectrometry of the resulting peptides was performed by 

Dr. Gunnar Dittmar in the Mass Spectrometry Core Facility at the Max-Delbrück 

Centrum (Berlin). The recovered peptides were separated on a 10 cm Pepmap column 

and directly sprayed into the mass spectrometer using electrospray ionization. Spectra 

were recorded using a Waters Q-TOF premier or an ABSciex Q-TRAP 4000 mass 

spectrometer. For the analysis of the recorded spectra the MASCOT software package 

(Matrix Science) was used.  

2.2.5 Data analysis  

Phosphate [32-P] incorporation into MBP was quantified via densitometric analysis 

using an image-analysis software (TINA 2.1, Raytest Isotopenmessgeräte GmbH). All 

raw phosphorylation values of MBP were firstly corrected for background activity and 

then normalized to the phosphorylation value of MBP incubated with wild-type 6His-

Cmk2 either in the absence or presence of CaM/Ca2+ as indicated (Fig. 3.24, 25 and 

26). Average MBP phosphorylation values and standard deviations were calculated 

from data derived from three independent experiments. Two-tailed unpaired Student´s 

t-tests were performed to show whether the difference in phosphorylation efficiency 

between wild-type 6His-Cmk2 and the phosphorylation site mutant cells was 

significant. Significance levels are indicated in the figures as follows; *p≤0.05 (n=3), 

**p≤0.01 (n=3). .  

2.2.6 Live fluorescence microscopy 

All microscopy was performed using the Axioplan II fluorescence microscope 

(Zeiss). Images were acquired with the Axiocam charge-coupled device camera 

(Zeiss). The AxioVision 3.0 software was used to control the stage, filter sets and 

image acquisition. Exposure time, magnification and software settings were kept 

constant for all acquisitions taken during each experiment.  GFP and Hoechst or GFP 

and Phalloidin images were merged using Adobe Photoshop 4.0 (Adobe Systems, 

Inc.). 
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2.2.6.1 GFP fluorescence imaging and Hoechst staining 

Cells carrying genome-integrated GFP fusion proteins (yNM459, yNM555 and 

yNM574) controlled by the copper-inducible promoter (PCUP1-1) were grown overnight in 

YPD to mid-log phase at 30 °C, induced with 100 µM CuSO4 for 60 min and visualized 

by fluorescence and differential interference contrast (DIC) microscopy. Cells carrying 

the genome-integrated GFP-Kns1 fusion protein (yNM459) were stained with the DNA 

dye Hoechst 33258 (final concentration 1 µg/ml, Molecular Probes) for 5 min at RT.  

Cells expressing GFP-Cmk2, GFP-Kns1 fusion proteins or any of the GFP-tagged 

phosphorylation mutants under the control of the copper-inducible promoter from high-

copy plasmids were grown overnight in synthetic complete media lacking tryptophan 

(SC-Trp) to log phase at 30 °C, induced with 100 µM CuSO4 for 60 min and visualized 

by fluorescence and DIC microscopy. Images were acquired within an hour after 

addition of copper. For GFP-Kns1 localization studies under high pH stress, cells 

grown overnight in SC-Trp were inoculated into YPD buffered to pH 8 with 100 mM 

HEPES (YPD/pH 8).  After overnight culture to log phase, cells were induced with 100 

µM CuSO4  for 60 min and subjected to hyperosmotic stress (1M Sorbitol for 10 min) 

prior to visualization by fluorescence microscopy.  

For GFP-Cmk2 localization studies under hyperosmotic stress, cells grown 

overnight in SC-Trp were inoculated into rich culture media (YPD).  After overnight 

culture to log phase, cells were induced with 100 µM CuSO4 for 60 min and subjected 

to hyperosmotic stress (1M Sorbitol for 10 min) prior to visualization by fluorescence 

microscopy. Overnight growth in YPD prior to the hyperosmotic treatment was done to 

emulate the conditions used for cells carrying genome-integrated GFP fusion proteins. 

As growth in selective synthetic medium constitutes a mild stress situation to which 

cells seem to adapt, cells did not perceive and respond to the hyperosmotic treatment 

when cultured in SC-Trp as when cultured in YPD. 

Cells expressing the GFP-Cps1 fusion protein from episomal plasmid pGO45 

(generous gift from Prof. S.D. Emr) were grown overnight to log phase in synthetic 

complete media lacking uracil (SC-Ura) at 30 °C and directly visualized by fluorescence 

and differential interference contrast (DIC) microscopy. 

2.2.6.2 Quinacrine staining  

To assess vacuole acidification in vivo, yeast cells were stained with quinacrine 

essentially as described by Weisman et al. (1987)229. Wild-type (sUB62), kns1 (yAS5) 

and vma1 (yNM195) cells were grown to early-log phase (1ml, OD600 0.2), harvested 

by centrifugation at 2000 xg and resuspended in 500 µl YPD buffered with 100 mM 
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Hepes (pH 7.6). Upon addition of quinacrine dihydrochloride to a final concentration of 

200 µM, cells were incubated for 5 min protected from light at RT. Subsequently, cells 

were spun and washed twice with a solution containing 2% glucose buffered with 100 

mM Hepes (pH 7.6). Cells were examined immediately under the fluorescence 

microscope using a fluorescein isothiocyanate (FITC) filter set (<0.2 s exposure time). 

Images were acquired within 10 min after labelling.  

2.2.6.3 Labelling of F-actin with rhodamine-tagged phalloidin  

The labeling of filamentous actin with rhodamine-phalloidin was performed 

following the protocol described by Hasek (2006)230 with minor modifications. Cells 

expressing GFP-tagged Cmk2 (yNM555) from the genomic locus and under the control 

of the copper-iducible promoter (PCUP1-1) were grown to log phase (OD600 0.5) in YPD 

and induced with 100 µM CuSO4. After 60 min of induction, 900 µl of cell culture was 

fixed by adding formaldehyde to a final concentration of 3.7% (v/v) and incubated for 

10 min at 30 °C with gentle rotation. Cells were washed two times in phosphate 

buffered saline (PBS) and then resuspended in 20 µl PBS containing 25 % (v/v) 

methanol, to which 2 µl of Texas Red-X phalloidin (Molecular Probes, Invitrogen) 

solution was added (0.2 U/µl in methanol). After a 15 min of incubation in the dark with 

agitation, cells were washed three times in PBS and visualized under the microscope 

using a fluorescein isothiocyanate (FITC) filter (L5) for GFP-Cmk2 and a rhodamine B-

isothiocyanate (RITC) filter (TX2) for Texas Red Phalloidin-stained actin.  



   Results 

3. Results 
  

3.1 Analysis of the kns1 phenotype 

3.1.1 kns1 mutants display high sensitivity to 

environmental alkaline stress. 

Several lines of evidence support a role for Kns1 homologues in signal 

transducing pathways that respond to environmental stress or external 

stimuli28,41,50,59,231. Thus, to gain insight into the physiological function of Kns1, I set 

out to determine the phenotype of a yeast strain lacking the KNS1 gene (∆kns1) 

under a number of environmental stress conditions. Previous phenotypic analysis 

performed in our laboratory ruled out oxidative, salt and osmotic stress as limiting 

growth conditions for ∆kns1 (data not shown; M. Dahlmann, personal 

communication). I thus subjected ∆kns1 cells to other commonly tested restrictive 

conditions such as growth at high (37° C) or low (16° C) temperatures, at high pH 

(pH 8) and in medium containing a non-fermentable carbon substrate 

(Glycerol)171,232. The sensitivity of ∆kns1 to these conditions was assessed by 

spotting serial dilutions of exponentially growing cells on the different test plates 

(described in Methods 2.2.2.5). This basic phenotypic analysis revealed that kns1 

cells exhibit remarkable high sensitivity to alkaline pH conditions (pH 8) compared to 

wild-type cells, indicating the KNS1 gene is required for optimal growth under high 

pH stress conditions (Fig. 3.1A). The growth of kns1 and wild-type cells did not 

differ in the other conditions tested (Fig. 3.1B). Reduced alkaline tolerance was also 

observed in a kns1 mutant isogenic to the reference strain BY4741171,180,197,210,233, 

confirming that the alkaline sensitivity phenotype exhibited by kns1 cells is 

background-independent i.e., not caused by strain-specific heterogeneities (Fig. 

3.1C). 
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Figure 3.1. The kns1 deletion mutant strain is highly sensitive to high pH conditions.  

(A) Wild-type (WT; sUB62) and kns1 (yAS5) cells were grown overnight in YPD to mid-log phase at 

30 °C, and diluted to an optical density (OD600nm) of 0.25. Five-fold serial dilutions of these diluted 

cultures were spotted onto rich medium containing glucose (YPD; control, pH ~5.5), YPD containing 

100mM Hepes adjusted to pH 8 (YPD/pH 8). (B)WT and kns1 cells were spotted onto rich medium 

containing either glucose (YPD; control) or glycerol (YPG) prior wash with medium lacking carbon 

source (YP). Additionally, cells were spotted in triplicate onto YPD plates, which were incubated either 

at 30 °C (control), at 37 °C, or 16 °C. (C) WT strain BY4741 and the isogenic kns1 mutant were 

grown, diluted and spotted onto YPD (control) and YPD/pH 8 as in (A). Plates were incubated at 30° C 

for 2 days (controls), for 5 days (YPD/pH) or 3 days (YPG) or at 37 °C or 16 °C for 3 days before 

photodocumentation. In all cases, the diluted overnight culture (OD600nm=0.25) is shown at the left 

along with 5-fold serial dilutions going left to right. 

 

To verify that the newly identified alkaline sensitive phenotype of the kns1 

mutant exclusively resulted from the absence of the KNS1 gene, I tested whether 

ectopic expression of Kns1 in the kns1 background restores normal tolerance to 

high pH conditions. To this end, I first created a plasmid containing the genomic 

region of KNS1 (including 1000 bp of the 5’-UTR region followed by the GFP tag 

and the KNS1 gene) in an attempt to express Kns1 at endogenous levels; however, 

I was unable to detect GFP-Kns1 by Western blotting using monoclonal -GFP 

antibodies (data not shown). This failure may indicate that either crucial regulatory 

elements were missing in the cloned 5’-UTR region or that, although less likely, 

endogenous Kns1 levels were below the detection limit of the Western blot assay. I 

therefore cloned KNS1 into a plasmid (2µm) carrying the metallothionein promoter 

(PCUP1-1) to enable the copper-inducible overexpression of N-terminally GFP-tagged 

Kns1 (GFP-Kns1) (described in Methods 2.2.3.5)202,234. The created vector was then 
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transformed into the haploid deletion strain ∆kns1 in order to avoid the effects of 

endogenous KNS1 gene product. The copper-induced expression of the GFP-Kns1 

fusion protein was verified by Western blotting of yeast cell extracts using -GFP 

antibodies (Fig. 3.2A, lane 4). Note that GFP-Kns1 can be observed in the extract 

prepared from non-induced cells (Fig. 3.2A, lane 3), indicating leaky expression. In 

addition, increasing the concentration of copper ameliorates, in part, growth at high 

pH, as it has been suggested to compensate for the reduced solubility this essential 

metal cation at high pH172. For these reasons, alkaline sensitivity was regarded 

qualitatively as the relative growth of kns1 cells harbouring the vector alone 

compared with the growth of kns1 cells overexpressing GFP-Kns1 on the same 

plate (supplemented with copper; 100 µM CuSO4).  

As shown in fig. 3.2B, overexpression of GFP-KNS1 restored the growth of 

∆kns1 to wild-type levels in medium buffered to pH 8, thereby demonstrating that the 

∆kns1 phenotype is exclusively caused by the loss of KNS1. Furthermore, this result 

indicates that the fusion protein preserved the biological function of Kns1 i.e., the N-

terminal GFP tag did not interfere with the kinase role in conferring alkaline stress 

tolerance.  

 

 

Figure 3.2. Kns1 overexpression suppresses the alkaline sensitivity of kns1 cells.  

(A) Western blot analysis showing copper (Cu2+)-induced expression of GFP-Kns1 from a high-copy 

plasmid in kns1 cells. kns1 (yAS5) cells were transformed with either copper-inducible high-copy 

empty plasmid (PCUP1-1-GFP; pNM67) or plasmid encoding wild-type Kns1 (PCUP1-1-GFP-Kns1; pNM74). 

Transformants were grown overnight to log-phase in synthetic complete medium (SC-Trp) and then 

either directly harvested (lanes 1 and 3) or induced with Cu2+ (100 µM CuSO4) for 30 min at 30 °C 

(lanes 2 and 4). Whole-cell extracts were prepared and analysed by SDS-PAGE, followed by  Western 

blotting with -GFP and -Pgk1 antibodies as described in Methods 2.2.4. Pgk1 was detected to 

confirm equal protein loading. Space between lanes corresponds to lanes that have been spliced out. 
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(B) Wild-type (WT; sUB62) cells harbouring an empty plasmid (pNM67) and kns1 cells harbouring 

either empty plasmid (pNM67) or plasmid encoding GFP-Kns1 (pNM74) were grown overnight at 30 °C 

in SC-Trp to log-phase and diluted to an optical density (OD600nm) of 0.25. Five-fold serial dilutions of 

this diluted culture were spotted onto either SC-Trp (pH ~6.5) or SC-Trp containing 15 mM Hepes (pH 

8.0). All plates were supplemented with 100 µM CuSO4 to induce GFP-Kns1 expression. Cell growth 

was monitored after incubation at 30 °C for 3 days (pH 6.5) or 6 days (pH 8.0).  

 

3.1.2 Deletion of KNS1 does not cause global splicing 

defects in yeast 

The best characterized role of LAMMER kinases in higher eukaryotes is the 

regulation of splicing through the phosphorylation of serine/arginine (SR)-rich 

splicing factors37,39,48,51,52. Kns1 has been reported to phosphorylate and interact with 

mammalian SR proteins34. Although the budding yeast does not seem to possess 

genuine SR proteins, it does have SR-like proteins implicated in splicing95,235. For 

this reason, I contemplated the possibility of Kns1 being involved in splicing in the 

budding yeast. Unspliced pre-mRNAs are generally targeted for degradation to 

prevent their translation into non-functional or truncated proteins236–238. Thus, if Kns1 

were required for efficient splicing, the increased alkaline sensitivity of ∆kns1 cells 

could be explained by the inefficient splicing of pre-mRNAs encoding proteins 

essential for normal alkaline tolerance as e.g., the subunit of the vacuolar proton 

pump (V-ATPase) Vma10, whose absence hinders growth at pH 7.5239. A similar 

scenario in which failure to splice a particular transcript causes pleiotropic effects on 

other processes has been previously reported240. Loss of factors required for 

splicing typically leads to the accumulation of unspliced mRNA241,242. To test 

whether Kns1 is necessary for effective pre-mRNA splicing, I determined the relative 

levels of spliced and unspliced mRNA in kns1 cells. For this, I performed a 

reverse-transcriptase PCR (RT-PCR) on total RNA purified from kns1 and wild-

type (WT) using intron-flanking oligonucleotides (described in Methods 2.2.3.6 and 

2.2.2.9). The gene transcripts assayed included VMA10, along with SNC1 and 

SEC27, which were arbitrarily chosen, and commonly tested transcripts ACT1, 

ARP2 and TUB1243–245. The oligonucleotides used in the RT-PCR were designed to 

hybridize with the two exons encompassing the intron to differentiate pre-mRNA 

(unspliced) from the mature mRNA (spliced) (Fig. 3.3A). I included the KL-1 mutant 

strain (kindly provided by Prof. J.D. Beggs) in the assay as the positive control strain 

for splicing defects199. In this strain, the expression of the essential PRP8 gene, 

which encodes a crucial component of the U4/U6-U5 snRNP complex required for 
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splicing246, is strongly repressed by the galactose promoter (PGAL1) in glucose 

medium. KL1 cells display reduced splicing activity when grown in glucose medium 

and are still viable due to the ectopic expression of a truncated Prp8 form that is 

inefficiently transported to the nucleus199. As shown in fig. 3.3B, the predominant 

mRNA species in kns1 and WT cells was spliced mRNA. KL-1 mutant cells 

showed greater accumulation of unspliced pre-mRNA than WT, being the unspliced 

form predominant in most cases (Fig. 3.3B), as expected199. This result indicates 

that loss of KNS1 does not affect the splicing efficiency of the transcripts assessed 

i.e., it does not cause a global splicing defect.  

 

 

Figure 3.3. Deletion of KNS1 does not globally affect pre-mRNA splicing in yeast.  

(A) Schematic representation of pre-mRNA (unspliced) and mature mRNA (spliced). Oligonucleotides 

for the RT-PCR reaction were designed to hybridize with the two exons (E1 and E2) encompassing the 

intron (I) of each of the gene transcripts assessed in (B). (B) kns1 cells efficiently splice the pre-

mRNA of reporter transcripts. The splicing-defective mutant (KL1-1) showed greater accumulation of 

pre-mRNA than WT, as expected199. Total RNA was prepared from wild-type (WT; sUB62), kns1 

(yAS5) and KL1-1 as described in Methods 2.2.2.9. RT-PCR reactions were carried out as described in 

Methods 2.2.3.6. cDNA from the reverse transcriptase (RT) reaction was used as template in PCR 

reactions with the appropriate intron-flanking oligonucleotide set for the following genes ACT1, ARP1, 

VMA10, SNC1, SEC27 and TUB1. PCR products were resolved on 2% agarose gels and stained with 

ethidium bromide. Bands representing the PCR products corresponding to the mature mRNA (m) and 

pre-mRNA (p) are indicated by arrows.  
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3.1.3 kns1 cells do not display vacuolar acidification 

defects 

Disruption of genes encoding V-ATPase subunits or regulators typically leads to 

hypersensitivity to alkaline stress180,182,188,239,247. Importantly, the subunit A of the V-

ATPase (Vma1/Tfp1) has been reported to co-purify with Kns1 in a large-scale co-

immunoprecipitation study80,248, suggesting the possible association of both proteins 

in vivo. This prompted me to speculate that Kns1 could be linked to V-ATPase 

function. Thus, if Kns1 were required for proper V-ATPase function, loss of KNS1 

could conceivably elicit defects in vacuolar acidification, thereby explaining the 

kns1 phenotype. To investigate this possibility, I assessed whether kns1 cells 

were defective in vacuolar acidification using the quinacrine uptake assay 

(described in Methods 2.2.6.2). Quinacrine is a fluorescent weak base that diffuses 

freely through membranes and accumulates upon protonation within the acidic 

vacuolar compartment229,249. Cells lacking the VMA1 gene (vma1) showed a 

complete absence of quinacrine staining (Fig. 3.4B), which has been shown to 

correlate with loss of V-ATPase-mediated acidification, and the inability to grow at 

pH 8 characteristic of the vma mutants (Fig. 3.4A) 184,188,250. kns1 cells showed a 

severe growth defect at pH 8 (Fig. 3.4A). However, the vacuoles of kns1 cells, like 

those of WT cells, were notably stained with quinacrine, indicating that they were 

properly acidified. This result shows that kns1 cells do not display notable vacuolar 

acidification defects.  
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Figure 3.4. The kns1 mutant displays high pH sensitivity comparable to vma1 mutant but 

does not exhibit vacuolar acidification.  

(A) Wild-type (WT; sUB62), kns1 (yAS5) and vma1 (yNM195) cells were grown overnight in YPD to 

mid-log phase at 30 °C and diluted to an optical density (OD600nm) of 0.25. Five-fold serial dilutions of 

this diluted culture were spotted onto rich medium containing glucose (YPD; pH~5.5, control plate), 

YPD containing 100mM Hepes adjusted to pH 8 (pH 8). Cell growth was monitored after incubation at 

30 °C for 2 days (YPD) or 5 days (high pH). (B) The same strains as in (A) were grown to mid-log 

phase in YPD at 30°C and stained with quinacrine prior to visualization by fluorescence microscopy. 

WT and kns1 cells showed notable and equivalent quinacrine staining, whereas no quinacrine 

staining could be detected in vma1 cells. Cells were first located under differential-interference 

contrast (DIC) optics and then visualized under a fluorescein isothiocyanate (FITC) filter with a 100x 

objective to examine vacuolar staining with quinacrine.  
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3.1.4 kns1 cells are not impaired in vacuolar protein 

transport  

I next sought to investigate which underlying defects could cause impaired 

growth at high pH without affecting vacuolar acidification in the kns1 mutant. 

Efficient sorting of vesicles and proteins to the vacuole is sensitive to changes in 

organelle acidification; therefore, it is particularly compromised under alkaline 

conditions251–253. Conversely, alterations in the vacuolar protein sorting (VPS) 

system greatly impinge upon alkaline tolerance, as manifested by the finding that 

many mutants defective in this process e.g., vps mutants, display remarkable 

sensitivity to high pH stress conditions171,172,188. To test whether the alkaline 

sensitivity of kns1 cells correlates with an underlying failure in vacuolar protein 

sorting, I examined the delivery of hydrolase carboxypeptidase S (Cps1) via the 

CPY pathway to the vacuole. The inactive precursor of CPS (pCps1) is a type II 

integral membrane protein that traverses through the endoplasmic reticulum (ER) 

and Golgi apparatus to the late endosomal compartment, also termed multivesicular 

body (MVB), where it is selectively sorted into intralumenal vesicles (reviewed in 254). 

Upon fusion of the matured MVB with the vacuole, lumenal vacuolar hydrolases 

cleave pCps from its transmembrane anchor to form the active and mature CPS 

form (mCps1) (Fig. 3.5A)255. The transport of Cps1 into the vacuolar lumen can be 

readily monitored by fluorescence microscopy using N-terminally GFP-tagged Cps1, 

which is a well-established model cargo protein of the VPS/MVB pathway203,256. I 

therefore transformed wild-type and kns1 cells, as well as vps23 cells, which 

served as a positive control for VPS defects, with an high-copy plasmid coding for 

the GFP-Cps1 fusion protein (a generous gift from Prof. S.D. Emr)203. The vps23 

mutant lacks an essential component of the ESCRT-I complex, the endosomal 

sorting complex required for transport of cargo into the MVBs256. This causes the 

accumulation of cargo proteins destined for the vacuole in an aberrant endosomal 

compartment termed the class E compartment256. Wild-type and kns1 cells showed 

GFP fluorescence within the vacuole, indicating that the vesicles containing GFP-

Cps1 were adequately transported into the lumenal space (Fig. 3.5B). By contrast, 

the GFP fluorescence in vps23 mutants was mainly localized to the vacuolar 

membrane and in vesicle-like structures adjacent to the vacuole, which were 

reminiscent of the class E compartment (Fig. 3.5B, indicated by arrows).  
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Figure 3.5. The kns1 mutant does not exhibit defects in the vacuolar sorting of Cps1. 

(A) Schematic depiction of the vacuolar sorting of N-terminally GFP-tagged Cps1 (carboxypeptidase 

S). GFP-Cps1 traverses the Golgi to the multivesicular body (MVB)/late endosome with the GFP 

moiety facing the cytosol. In wild-type (WT) cells, GFP-Cps1 is efficiently sorted into MVB intralumenal 

vesicles and delivered to the vacuolar lumen. In the class E vacuolar protein sorting (vps) mutant 

vps23, sorting of cargo into intralumenal vesicles is impaired; hence, upon MVB-vacuolar fusion, 

GFP-Cps1 remains on the vacuolar membrane with GFP facing the cytosol. TM, transmembrane 

region of Cps1. Adapted from Katzmann et al. 2001256. (B) Localization of GFP-Cps1 in WT (sUB62), 

kns1 (yAS5) and vps23 (yBM87) cells. Like WT, kns1 cells show GFP fluorescence in the vacuolar 
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lumen, indicating effective GFP-Cps1 vacuolar sorting. vps23 cells show GFP signal accumulation at 

the vacuolar membrane and vesicle-like structures adjacent to the vacuole. WT, kns1 and vps23 

cells expressing GFP-Cps1 from a high-copy plasmid (pGO45) were grown overnight to mid-log phase 

in liquid SC-Ura at 30 °C and visualized by fluorescence and DIC microscopy. Arrows indicate 

presumptive class E compartments. (C) Western blot of whole protein extracts from WT, kns1 and 

vps23 cells expressing GFP-Cps1. Whole-cell lysates were prepared and analysed by SDS-PAGE, 

followed by Western blotting with anti-GFP antibodies. Space between lanes corresponds to lanes that 

have been spliced out.  

 

Efficient GFP-Cps1 vacuolar delivery in kns1 cells was further confirmed 

through the analysis of GFP-Cps1 proteolytic processing. Both full-length GFP-Cps1 

(~91 KDa) and free GFP (~27 KDa) were detected in whole-cell protein extracts 

from wild-type and kns1 cells expressing GFP-Cps1 (Fig. 3.5C) by Western 

blotting using -GFP antibodies. This indicates that GFP-Cps1 reached the vacuolar 

lumen and was subject to protease-dependent cleavage. In class E vps mutants, 

most of GFP-Cps1 accumulates at the vacuolar membrane with the GFP-tag facing 

the cytoplasm203,256. As a result, vacuolar proteases are unable to process the part 

of the protein fusion containing the transmembrane domain (TM) and the GFP-

tag203,256. Therefore, an additional band with the approximate molecular weight of 

the GFP-TM fusion of GFP-Cps1 (~31 KDa) was detected in vps23 whole-cell 

extracts (Fig. 3.5C). Altogether, these data show that kns1 efficiently transports 

GFP-Cps1 to the vacuole, ruling out an impairment of the VPS system, in particular, 

of the CPY/MVB pathway, as the underlying defect responsible for its alkaline 

sensitive phenotype. 

 

3.2 Analysis of the intracellular localization 

of Kns1 

Determination of protein localization is an important step towards the 

understanding of the biological function of a protein. In the case of protein kinases, 

subcellular distribution represents an additional level of regulation, which affects 

substrate specificity14,257. Therefore, to obtain further insight into the function of 

Kns1, I examined the subcellular localization of GFP-Kns1 by fluorescence 

microscopy in living cells.  
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3.2.1 Kns1 localizes predominantly to the nucleus 

 To visualize Kns1 expressed at endogenous levels, I inserted the GFP-tag at 

the C-terminus of the KNS1 genomic locus (KNS1-GFP). Yet, endogenously 

expressed Kns1-GFP did not yield detectable fluorescence signal (data not shown). 

For this reason, I created cells overexpressing genomic N-terminally GFP-tagged 

Kns1 (GFP-Kns1) under the control of the copper-inducible metallothionein promoter 

(PCUP1-1) (described in Methods 2.2.2.3). The PCUP1-1 promoter was introduced 

upstream of the KNS1 locus to allow culturing cells in rich media, which is a more 

physiological, less stress-inducing condition than nutrient-limiting synthetic media. 

As shown in fig. 3. 6, GFP-Kns1 was predominantly localized within the nucleus, as 

indicated by its colocalization with the DNA-dye Hoechst-33258. GFP-Kns1 was 

also found uniformly distributed throughout the cytoplasm. 

 

 

Figure 3.6. Analysis of the localization of genomic tagged GFP-Kns1 shows predominant 

nuclear localization.  

Genomic Kns1 tagged with GFP at its N-terminus (GFP-Kns1) and expressed under the control of the 

copper-inducible PCUP1-1 promoter localizes predominantly to the nucleus, as shown by colocalization 

with the Hoechst stain. Cells carrying the genome-integrated GFP-Kns1 fusion protein (yNM459) were 

grown overnight in YPD to mid-log phase at 30 °C and induced with copper (100 µM CuSO4) for 60 

min. Cells were then stained with a DNA dye (Hoechst 33258) for 5 min and visualized by fluorescence 

and differential interference contrast (DIC) microscopy. Fluorescence at the cell periphery in the 

Hoechst panels is an occasional artefact of the Hoechst staining procedure. Merge indicates the fusion 

between the GFP (green) and Hoechst (blue) fluorescence images.  
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3.3 Identification of the in vitro 

autophosphorylation sites in Kns1  

Autophosphorylation constitutes a regulatory mechanism of fundamental 

importance in protein kinases258. Therefore, the identification of the sites of 

autophosphorylation and elucidation of their role is crucial to define the molecular 

mechanisms involved in kinase function and regulation. Previous studies using 

phosphoamino acid analysis have shown that a recombinant truncated form of Kns1 

autophosphorylates on Ser, Thr and Tyr residues in vitro33. The evolutionary 

conservation of dual-specificity in Kns1 suggests a relevant biological role. However, 

the identity of the autophosphorylated residue(s) on Kns1 remains unknown. To gain 

insight into Kns1 autoregulation and obtain direct evidence for dual amino acid 

specificity, I set out to determine the in vitro site(s) of Kns1 autophosphorylation 

through the analysis of recombinant full-length Kns1 by mass spectrometry.  

 

3.3.1 Expression and purification of recombinant full-

length GST-Kns1 in E.coli 

Attempts in the past to purify recombinant full-length Kns1 have either yielded 

minimal amounts of intact protein along with several degradation products or failed 

completely33,34. Therefore, most of the biochemical studies on Kns1 have been 

performed using truncated forms of Kns1 consisting solely of either the non-catalytic 

or the catalytic domain33,34. So far, full-length Kns1 has been only be purified as an 

N-terminal GST-fusion protein at a small scale for use in proteome 

microarrays102,259. In the present work, I set out to produce full-length GST-Kns1 in a 

larger scale to perform in-solution in vitro kinase assays. To this end, I cloned Kns1 

into plasmid pGEX-2TK and undertook the optimization of its expression in E. coli 

(described in Methods 2.2.1.3). When the expression of the enzyme was induced at 

37 °C, the vast majority of the protein appeared in the insoluble fraction, probably 

forming inclusion bodies. Lowering the culture temperature reduces the growth and 

translation rate of bacteria, which improves recombinant protein folding and, in turn, 

decreases inclusion body formation260–262. Therefore, induction of GST-Kns1 

expression was performed at a lower temperature (16 °C), resulting in an increase in 

solubility. Additionally, bacterial cell lysates were incubated after sonication with the 

non-ionic detergent Triton® X-100 (1%) for 1 h. This step was included to help 
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solubilization of the exposed hydrophobic surfaces of the protein and remove major 

contaminants, such as lipid and membrane-associated proteins as well as E. coli 

cell wall material263. 

  

 

Figure 3.7. Optimized procedure for the purification of full-length GST-Kns1 from E. coli.  

(A) Purification of GST-Kns1. The recombinant GST-Kns1 protein was purified by glutathione-affinity 

chromatography as described in Methods 2.2.1.3. Aliquots from indicated steps of the purification 

protocol were subjected to SDS-PAGE on a 8% polyacrylamide gel followed by Coomassie brilliant 

blue R250 staining. Lane M; molecular weight marker, lane 1; before IPTG induction, lane 2; after 4h 

IPTG induction, lane 3; Supernatant, lane 4; Pellet, lane 5; Flow through, lane 6; Wash 1, lane 7; Wash 

2, lane 8; Eluate (E) 1, lane 9; Eluate 2, and lane 10; Eluate 3.  (B) Western blot analysis with the -

GST antibody of a bacterial cell fraction before (1) and after (2) IPTG induction of GST-Kns1 

expression. (C) Western blot analysis with the -GST antibody of E1 from (A).  

 
An example of the optimized purification of GST-Kns1 is shown in fig. 3.7A. A 

protein band with the predicted molecular mass of GST-Kns1 (calculated Mr 108 

kDa) was detected in the IPTG-induced cell extract (Fig. 3.7B, lane 2) but not in the 

non-induced cell extract (Fig. 3.7B, lane 1) by Western blotting using -GST 
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antibodies, confirming specific IPTG-induction of GST-Kns1. After affinity purification 

using glutathione Sepharose™ 4B beads, the presence of full-length GST-Kns1 was 

clearly visible in eluted fractions (E1-3) on Coomassie blue-stained gels (Fig. 3.7A, 

lanes 8, 9 and 10). Although the full-length protein was the predominant protein 

species, several low molecular weight proteins were also recovered in the eluate 

fractions. These proteins appeared to be degradation products of GST-Kns1, as a 

similar band pattern was detected in the eluate fraction (E1) by Western blotting 

using -GST antibodies (Fig. 3.7C). Many of these bands were detected by Western 

blotting of the IPTG-induced cell fraction removed before the purification procedure, 

suggesting that most degradation occurred during expression in bacteria (Fig. 3.7B, 

lane 2). 

Previous studies have shown that recombinantly expressed Kns1 exhibits 

constitutive autophosphorylation activity33,34. To test whether the catalytic activity of 

GST-Kns1 was preserved throughout the purification procedure, I performed an in 

vitro kinase assay to test for autophosphorylation activity (described in Methods 

2.2.4.5). Incubation of purified GST-Kns1 in the presence of radiolabed ATP ([-32P]-

ATP) led to the incorporation of phosphate ([-32P]) into GST-Kns1. Phosphorylated 

GST-Kns1 was detected after resolution of the reaction mixture on SDS-PAGE gels 

and subsequent autoradiography (Fig. 3.8B, lane 1). This result indicates that the 

purified enzyme was capable of efficient autophosphorylation, demonstrating intact 

kinase functionality. 

To confirm that GST-Kns1 phosphorylation was solely due to the intrinsic 

catalytic activity of Kns1, I created a catalytically inactive version of GST-Kns1. For 

this, I replaced the catalytic base of Kns1 to Ala. The catalytic base is an invariant 

residue found in the catalytic loop of all protein kinases that is crucial for phosphoryl-

transfer and active site conformation5,264–268. Mutation of this residue to Ala has been 

extensively proved to dramatically decrease catalytic activity102,269–271. Sequence 

alignment of the catalytic loops of Kns1 and the prototypical protein kinase A of 

yeast (Tpk1) and human (PKA) indicated that residue Asp440 of Kns1 is the 

equivalent to the catalytic base of Tpk1 (Asp210) and PKA (Asp166) (Fig. 3.8A)44,270. 

Western blot analysis showed that mutant GST-Kns1D440A migrated slightly faster 

than wild-type GST-Kns1, probably due to the lack of autophosphorylation (Fig. 

3.8B, lane 2, middle panel). The absence of detectable autophosphorylation activity 

in the reaction mixture containing mutant GST-Kns1D440A demonstrated effective 

kinase inactivation (Fig. 3.8B, lane 2, upper panel). Furthermore, it confirmed that 

the incorporation of phosphate [-32P] into wild-type GST-Kns1 was the result of 
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autocatalysis and not due to the catalytic activity of contaminating or copurifying 

proteins. 

 

 

Figure 3.8. Mutation of the catalytic site (D440A) effectively abolishes Kns1 catalytic activity.  

(A) Sequence alignment of the catalytic loop of S.cerevisiae (Kns1) LAMMER kinase and H.sapiens 

(PKA) and S.cerevisiae (Tpk1) Protein kinase A kinases identified Asp440 as the presumptive catalytic 

base of Kns1 (B) In vitro autophosphorylating activities of wild-type GST-Kns1 and GST-Kns1D440A 

mutant. Recombinantly expressed and purified wild-type (WT) GST-Kns1 (1) and GST-Kns1D440A 

mutant (2) were incubated with [-32P]ATP in phosphorylation buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 

1 mM DTT) for 15 min at 30 °C and then subjected to SDS-PAGE. BSA was included in the 

phosphorylation reactions as a unspecific phosphate-acceptor competitor (0.2 µg/µl). Reactions were 

stopped by addition of Laemmli sample buffer and immediate boiling for 5 min, followed by SDS-PAGE 

and autoradiography. Upper pannel: 32P autoradiograph, Middle panel: -GST WB, Bottom panel: 

Ponceau S staining. The migration positions of molecular mass marker proteins are indicated in 

kilodaltons (kDa). 

 

3.3.2 Autophosphorylation sites in Kns1 

To identify Kns1 autophosphorylation sites, an in vitro kinase assay was 

performed by incubating recombinant wild-type GST-Kns1 with non-radiolabeled 

ATP (described in Methods 2.2.4.6). Briefly, upon incubation with ATP, the in vitro 

kinase reaction mixture was resolved by SDS-PAGE followed by Coomassie blue 

staining. The protein band containing full-length GST-Kns1 was excised and 

digested in-gel with trypsin. Subsequent analysis by mass spectrometry (MS) of the 

resulting peptides was performed by Dr. Gunnar Dittmar (Head of the Mass 

Spectrometry Core Facility, Max Delbrück Centrum).  
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In total, nine Kns1 phosphorylation sites were identified (Table 3.1). Six 

phosphorylation sites, Thr34, Ser57 Thr183 Ser198 and Thr217, are found distributed 

along the non-catalytic N-terminal domain (Fig. 3.9A). The three remaining 

phosphorylation sites are found within the catalytic domain (Fig. 3.9A). Concretely, 

Thr562 is situated within the LAMMER motif, in subdomain X (Fig. 3.9B). Ser583 and 

Ser601 are found within the insertions of unknown function between subdomain X 

and XI, which are characteristic of LAMMER kinases and other members of the 

CMGC group of protein kinases5. 

Two in vitro kinase reactions that served as negative controls were additionally 

performed and analysed in parallel with the aforementioned reaction: one containing 

the inactive mutant GST-Kns1D440A and one containing wild-type GST-Kns1 devoid 

of ATP. No phosphopeptides were detected in these reactions (G. Dittmar, personal 

communication), which indicates that GST-Kns1 did not undergo 

autophosphorylation during expression in E. coli.  

 

Table 3.1. Phosphopeptides containing the phosphorylation sites identified in vitro on Kns1 by 

mass spectrometry. 

Phosphopeptide   

Position Sequence1 
Phospho 

Site 

Times 
mapped 
in vitro2 

34-43 TFLDNFEETR T34 2 

55-64 QNSFLTDNLR S57 2 

183-193 TISLPQLPLSK T183 3 

181-193 QRTISLPQLPLSK S185 3 

194-213 LSYQSNYFNVPDQTNAIVPR S198 1 

216-232 VTQTENELLHLTGSCAK T217 2 

559-571 INGTPFPTDIIDK T562 2 

580-593 LGNSPSDLNSTVIK S583 1 

599-607 TLSLQWPEK S601 1 
1Phosphorylation sites are presented as bold, underlined characters. 2Indicates the number of 

independently prepared phosphoprotein-enriched samples that produced spectra matching this 

phosphopeptide sequence. 
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Figure 3.9. Schematic diagram of the in vitro autophosphorylation sites identified on Kns1.  

(A) The sites of phosphorylation in Kns1 identified by mass spectrometry from the analysis of in vitro 

autophosphorylated GST-Kns1 are indicated by black pins, with residue type and number indicated 

above. The red pin within the catalytic domain denotes the position of the active site (D440). The 

phosphorylation site located within the LAMMER motif, T562, is shown in bold. The diagram was 

generated using MyDomains from PROSITE (http://us.expasy.org/tools/mydomains) and adapted. (B) 

Alignment of the sequences containing the LAMMER motif of Kns1 (S. cerevisiae), Lkh1/Kic1 (S. 

pombe), DOA (D. melanogaster) and CLK1 (H. sapiens) (adapted from Tang et al. 2002)74. The 

LAMMER motif is marked by a black box. Conserved amino acid residues are highlighted in dark grey 

and similar residues in light grey. 

 

To graphically visualize the general preferences of Kns1 for specific residues 

surrounding the identified autophosphorylation sites, I generated a sequence logo 

from the multiple alignment of the sequences surrounding these sites (Figure 3.10). 

In this logo, the residues are represented by their one-letter code. Letters are 

stacked in decreasing order of predominance and their height indicates the relative 

frequency of a residue at a particular position272. On the basis of the type of residues 

found on top of the stacks at these positions and taking into account that kinases 

are generally most selective at the P-3 position, followed by the P-2 and P+1 

positions273, it can be inferred that Kns1 prefers basic residues at position P-4 and 

P-3 (e.g. Arg and Lys), an uncharged polar environment at the P-2 position (e.g. 

Asn, Gln and Thr) and hydrophobic residues at the P+1 position (e.g. Phe, Leu and 

Pro).  
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Figure 3.10. Kns1 in vitro autophosphorylation site sequence logo.  

(A) Multiple alignment of the sequences containing the nine in vitro autophosphorylation sites found in 

Kns1. Sequences were aligned by the autophosphorylated residue (designated as P0). The residues on 

the N-terminal side are assigned negative numbers and those on the C-terminal side positive numbers. 

(B) The Kns1 logo was generated using the multiple sequence alignment shown in A and the PSP 

Logo Generator from http://www.phosphosite.org/homeAction.do. The numbers along the abscissa 

indicate the position of the residues relative to P0 within the sequence. The ordinates are in units of bits 

and are indicative of the information content at each position272,274. Residues are represented by their 

one-letter abbreviations and arranged from top to bottom within stacks, with the highest-frequency 

residue being on top of the stack and letter height being proportional to the relative frequency of the 

residue at a particular position272,274. Amino acid colour code: basic (blue), acidic (red), polar 

uncharged non-phosphorylatable (pink), phosphorylatable (polar uncharged or hydrophopic; green) 

and hydrophobic non-phosphorylatable (black).  

3.4 Mutational analysis of Kns1 

Among the identified autophosphorylation sites found in this study, residue 

Thr562 is one of the most intriguing owing to its proximity in the amino acid sequence 

to the LAMMER motif of Kns1 (EHMAMMQRINGT562) (Fig. 3.9B). The orientation of 

Thr562 in the tridimensional structure of Kns1 is unknown; however, the close 

proximity of Thr562 to the LAMMER motif hints at a potential implication of Thr562 

phosphorylation on the role of this signature motif in Kns1 regulation. Mutational 

analysis of the fission yeast (Lkh1) and tobacco plant (PK12) homologues of Kns1 

revealed that their LAMMER motif is required for catalytic activity in vitro45–47. 

Although the role of the LAMMER motif in other family members has not yet been 

explored, the preservation of this unique motif across evolutionarily divergent 
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species insinuates that its function might be conserved. In order to evaluate the 

relevance of Thr562 phosphorylation in Kns1, I replaced Thr562 with the non-

phosphorylatable residue Ala (T562A) and analysed the catalytic activity, in vivo 

performance and subcellular localization of the resulting mutant (Kns1T562A). 

Furthermore, I analysed the behaviour of the catalytically inactive Kns1 mutant 

(Kns1D440A) in parallel to assess the contribution of the catalytic activity to the 

biological function of Kns1.  

3.4.1 Effect of the Thr562 mutation on the intrinsic 

catalytic activity of Kns1 

To test whether loss of phosphorylation site Thr562 affects Kns1 catalytic activity, 

I examined the ability of recombinantly expressed GST-Kns1T562A to 

autophosphorylate in vitro. The autoradiograph of in vitro autophosphorylated wild-

type GST-Kns1 and mutant GST-Kns1T562A showed similar levels of phosphate [-
32P] incorporation in both protein species (Fig. 3.11A). This result shows that the 

T562A mutation does not noticeably impair Kns1 autophosphorylation, which 

indicates that residue Thr562 is not required for intrinsic catalytic activity in vitro.  

3.4.2 Effects of catalytic inactivation and Thr562 

mutation on the role of Kns1 in alkaline tolerance 

modulation. 

To explore whether catalytic inactivating D440A or phosphorylation site T562A 

mutation affects Kns1 function in vivo, I examined to what extent overexpression of 

GFP-Kns1D440A or GFP- Kns1T562A rescues the growth defect of ∆kns1 cells in plates 

buffered to pH 7.8, 8.0 or 8.2 (Fig. 3.11C). The correct expression of GFP-Kns1T562A 

and GFP-Kns1D440A mutants in yeast was confirmed by Western blot analysis using 

-GFP antibodies. As shown in fig. 3.11B, total protein levels of GFP-Kns1T562A and 

GFP-Kns1D440A were similar to wild-type GFP-Kns1 levels in kns1 cells under 

standard conditions. This indicates that neither of the mutations seems to decrease 

kinase stability. 
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3.4.2.1 Catalytically inactive Kns1 fails to confer tolerance to 

mild-alkaline stress but favours growth at higher alkaline 

stress conditions.  

In medium at pH 7.8, ∆kns1 cells overexpressing active kinase GFP-Kns1 grew 

considerably better than ∆kns1 cells overexpressing inactive mutant GFP-Kns1D440A, 

suggesting that catalytic activity is necessary for Kns1 to increase alkaline tolerance 

at this external pH (Fig. 3.11C). The fact that ∆kns1 cells were not compromised at 

pH 7.8 i.e., grew like wild-type cells (carrying an empty vector), indicates that Kns1 

is still dispensable for growth under these conditions (hereafter termed mild-alkaline 

stress) (Fig. 3.11C). In medium at pH 8, GFP-Kns1D440A had the ability to partially 

rescue the growth of ∆kns1 cells i.e., it did not rescue growth to the same extent as 

the active kinase but to a greater extent than the empty vector (Fig. 3.11C). This 

result implies that the non-catalytic properties of Kns1 also participate in conferring 

tolerance to high pH stress. Remarkably, ∆kns1 cells overexpressing inactive GFP-

Kns1D440A displayed greater alkaline tolerance than ∆kns1 cells overexpressing 

GFP-Kns1 at pH 8.2 (Fig. 3.11C). This result shows that catalytically inactive Kns1, 

as opposed to active Kns1, becomes more proficient in promoting growth as 

external alkalinity increases. In summary, these findings reveal that catalytic and 

non-catalytic properties of Kns1 positively contribute to the kinase role in sustaining 

cell growth at high pH conditions. 

3.4.2.2 Mutation T562A notably impinges upon Kns1 function in vivo  

Although the T562A mutation did not affect the autocatalytic activity of Kns1 in 

vitro (Fig. 3.11A), the possibility of this mutation impairing autocatalytic activity or 

catalytic activity towards exogenous substrates of Kns1 in vivo cannot yet be 

excluded. I hypothesized that if phosphorylation site Thr562 were required for Kns1 

catalytic activity in vivo, the replacement of Thr562 with Ala should yield a Kns1 

mutant (GFP-Kns1T562A) that behaves like the inactive kinase (GFP-Kns1D440A) 

during alkaline stress. In medium at pH 7.8, ∆kns1 cells overexpressing GFP-

Kns1T562A grew like ∆kns1 cells overexpressing GFP-Kns1D440A, indicating that both 

Kns1 mutants lack the ability of the active kinase to increase alkaline tolerance at 

pH 7.8 (Fig. 3.11C). Remarkably, kns1 cells overexpressing GFP-Kns1T562A 

exhibited a greater growth defect than kns1 cells overexpressing GFP-Kns1D440A in 

medium at pH 8, thus mimicking the growth behaviour of kns1 cells (carrying an 

empty vector) (Fig. 3.11C). This finding indicates that the mutation T562A renders 

Kns1 less capable of supporting cell growth at pH 8 than the inactivating D440A 
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mutation. At a higher pH (pH 8.2), the effects of GFP-Kns1T562A overexpression 

reverted, causing an increase in alkaline tolerance similar to that conferred by GFP-

Kns1D440A overexpression (Fig. 3.11C). This result shows that the lack of Thr562 in 

Kns1 mostly mimics the consequences of catalytic inactivation in vivo. Moreover, it 

suggests that the phosphorylation state of Thr562 regulates the role of Kns1 in 

modulating cellular tolerance to alkali.  

 

 

Figure 3.11. Phosphorylation site Thr562 (T562), catalytic activity and also non-catalytic 

properties are required for the role of Kns1 in the modulation of alkaline tolerance.  

(A) The GST-Kns1T562A mutant is catalytically active in vitro. Recombinantly expressed and purified 

wild-type (WT) GST-Kns1 (lane 1) and GST-Kns1T562A mutant (lane 2) were incubated with [-32P]ATP 

in phosphorylation buffer as described in fig. 3.8. Reactions were resolved by SDS-PAGE and 

autoradiography. Upper panel: 32P autoradiograph, Middle panel: -GST WB, Bottom panel: Ponceau 

S staining. The migration positions of molecular mass marker proteins are indicated in kDa. (B) GST-

Kns1D440A and GST-Kns1T562A mutants are efficiently expressed in vivo. Western blot of whole-cell 

extracts from wild-type (WT; sUB62) and kns1 (yAS5) cells carrying an empty vector (pNM67) and 

kns1 carrying a copper-inducible high-copy plasmid (PCUP1-1) encoding GFP-tagged wild-type Kns1 

(pNM74), catalytically inactive Kns1D440A (pNM53) or phosphorylation site mutant Kns1T562A (pNM121). 

Cells were grown overnight to log-phase in selective synthetic complete medium (SC-Trp) and induced 

with copper (100 µM CuSO4) for 30 min. Then, whole-cell extracts were prepared and analysed by 

SDS-PAGE, followed by Western blotting using -GFP and -Pgk1 antibodies as described in Methods 
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2.2.4. Pgk1 was detected to confirm equal protein loading. (C) The same cells as in (B) were grown 

overnight in SC-Trp at 30 °C to log-phase and diluted to an optical density (OD600nm) of 0.25. Five-fold 

serial dilutions of this diluted culture were spotted onto SC-Trp (pH 6.5), SC-Trp containing 10 mM 

Hepes (pH 7.8), 15 mM Hepes (pH 8.0) or 17.5 mM Hepes (pH 8.2) (described in Methods 2.2.2.6). All 

SC-Trp plates were supplemented with 100 µM CuSO4 to induce GFP-Kns1 expression. Cell growth 

was monitored after incubation at 30 °C for 3 days (pH 6.5), 5 days (pH 7.8), 6 days (pH 8.0) or 7 days 

(pH 8.2).  

 

3.4.3 Effect of mutagenesis on Kns1 subcellular 

localization 

The finding that the phosphorylation site mutant GFP-Kns1T562A partially 

mimicked the inactive mutant GFP-Kns1D440A in vivo and that both mutants act in an 

opposite manner as wild-type GFP-Kns1 implies that autophosphorylation, in 

particular at the Thr562 site, modulates Kns1 function. However, as GST-Kns1T562A 

showed no apparent impairment in catalytic function in vitro nor increased instability 

in vivo (Fig. 3.11A and B), I raised the question of whether autophosphorylation on 

Thr562 affected Kns1 function by inducing changes in its subcellular localization. This 

postulate was also prompted by the finding that the integrity of the LAMMER motif of 

PK12, the Kns1 homolgue in tobacco plants, is required for proper subnuclear 

localization46. For this reason, I examined the localization of GFP-Kns1T562A in vivo. 

3.4.3.1 Neither catalytic activity nor residue Thr526 are required for the 

nuclear localization of Kns1  

Expression of wild-type GFP-Kns1 from a high-copy plasmid revealed a 

predominant nuclear localization and the accumulation of GFP signal in one or two 

foci that appeared to be close to, or within, the nucleus (Fig. 3.12A). In contrast to 

the localization of genomically tagged GFP-Kns1 observed in cells cultured in rich 

medium, the presence of GFP-Kns1 in the cytoplasm was barely detectable when 

cells were cultured in minimal medium to ensure the maintenance of plasmids with 

selectable markers. Intriguingly, kns1 cells overexpressing GFP-Kns1 (wild-type 

Kns1, Kns1D440A or Kns1T562A) were not permeable to the DNA-dye Hoechst-33258, 

whereas cells containing an empty vector were. For this reason, co-localization 

experiments with Hoechst could not be performed. Nevertheless, it could be 

observed that GFP-Kns1D440A and GFP-Kns1T562A mutants showed similar 

distribution as wild-type GFP-Kns1, suggesting that neither catalytic activity nor 

residue Thr526 seem to be required for Kns1 localization. 
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Based on the data presented here implicating Kns1 in the modulation of alkaline 

stress, the question arose as to whether the localization of Kns1 changes in 

response to alkaline stress and, if so, whether catalytic activity and residue Thr562 

are necessary for correct relocalization. To answer this question, kns1 cells 

overexpressing GFP-Kns1, GFP-Kns1D440A or GFP-Kns1T562A were subjected to high 

pH stress (pH 8) for different short (10, 30, 60, 90 and 120 min) and long (overnight; 

~15-18 h) time periods and prior to visualization by fluorescence microscopy. 

Overnight exposure to high pH stress did not noticeably alter the distribution of GFP-

Kns1, GFP-Kns1D440A and GFP-Kns1T562A within the cell (Fig. 3.12B) nor at any of 

the other conditions assessed (data not shown), indicating that Kns1 principally 

remains in the nucleus upon pH stress independently of its catalytic activity or the 

phosphorylation state of Thr526.  

 

 

Figure 3.12. Loss of catalytic activity or phosphorylation site Thr562 does not affect GFP-Kns1 

localization under normal and high pH conditions.  

(A) Wild-type (WT) GFP-Kns1, catalytically inactive kinase GFP-Kns1D440A and phosphorylation site 

mutant GFP-Kns1T562A show similar intracellular distribution. kns1 cells (yAS5) expressing GFP-KNS1 

(pNM74), GFP-KNS1D440A (pNM53) and GFP-KNS1T562A (pNM121) from a multicopy plasmid controlled 

by the copper-inducible promoter PCUP1-1 were grown overnight to mid-log phase on selective synthetic 

complete medium (SC-Trp). Prior to fluorescence microscopy analysis, cells were induced with copper 

(100 µM CuSO4)  for 60 min. (B) GFP-Kns1, GFP-Kns1D440A and GFP-Kns1T562A localization do not 

remarkably change under high pH stress conditions. The same cells as in (A) were grown overnight in 

SC-Trp and then diluted to an optical density (OD600nm) of 0.25 in YPD buffered to pH 8 with 100 mM 

Hepes. After overnight growth under these high pH stress conditions, cells were induced with copper 
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and visualized as in (A). Merge indicates the fusion between the GFP (green) and differential 

interference contrast (DIC) images.  

 

3.5 Kns1 phosphorylates Cmk2 in vitro 

Environmental alkalinization constitutes a stress situation for yeast cells. In 

response, they activate signalling pathways that trigger adaptive transcriptional 

responses required for survival (reviewed in 189). Consistent with this, mutants 

lacking key genes involved in these responses have been reported to exhibit 

increased sensitivity to high pH conditions171,175,177,275. The LAMMER kinases of the 

fission yeast, fruit fly and human have been implicated in a variety of stimuli-induced 

signalling pathways (see Introduction 1.2.2). Given the possible existence of 

functional similarities between Kns1 and its counterparts and the hypersensitivity of 

kns1 cells to high pH, I speculated that Kns1 may play a role in the adaptive 

response to high pH. Thus, to gain insight into the mechanism by which Kns1 

controls alkaline tolerance, I assessed the functional relevance of the in vitro 

candidate substrates for Kns1 that might function in adaptive response pathways.  

The gene encoding the Ca2+/CaM-dependent kinase Cmk2, one of the identified 

in vitro candidate substrates for Kns1102, has been reported to be greatly induced 

upon high pH stress173. Exposure to high pH stress activates the calcineurin/CRZ1 

pathway, which plays a crucial role in the transcriptional response to high 

pH174,176,179. Importantly, this pathway has been shown to remarkably increase 

CMK2 gene expression when activated158. These notions altogether prompted me to 

consider that Cmk2 could be involved in an alkaline response pathway and; thus, be 

a feasible physiological substrate for Kns1. To evaluate this possibility, I analysed 

biochemical and functional links between Cmk2 and Kns1.  

Recombinantly expressed Cmk2 has been previously shown to exhibit 

constitutive autophosphorylation activity144. Therefore, to confirm the finding of the 

proteome-wide phosphorylation screen102, I performed in solution-based in vitro 

kinase assays using catalytically inactive Cmk2. In this manner, trans-

phosphorylation by Kns1 could be unequivocally detected in the absence of the 

Cmk2 autophosphorylation background. Wild-type CMK2 was cloned into bacterial 

expression vector pDESTco, expressed in E. coli as an N-terminal 6xHis-fusion 

protein (6His-Cmk2) and purified using NiNTA-Agarose (Qiagen) (described in 

Methods 2.2.1.3). Cells expressing this fusion protein produced two polypeptides of 

similar size (~ 55-60 KDa) (Fig 3.13A), as seen on Coomassie blue-stained gels. 
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These bands were confirmed to correspond to 6His-tagged Cmk2 by Western 

blotting with -His antibodies, as shown in fig. 3.14. The expression of recombinant 

Cmk2 as a doublet has been also reported to occur in a previous study and may 

indicate the eventual production of a truncated protein due to incomplete 

translation144.  

The catalytically inactive Cmk2 mutant was created by substituting Asp171 to Ala 

to yield 6xHis-Cmk2D171A. Residue Asp171 was shown to correspond to the catalytic 

active site of Cmk2 based on sequence homology within the catalytic loop region of 

Cmk2 with the prototypical protein kinase A of murine (PKA) and yeast (Tpk1) (Fig. 

3.13B)10,44,145. Akin to wild-type 6xHis-Cmk2, 6xHis-Cmk2D171A migrated also as a 

double polypeptide. However, in this instance, one of the two 6xHis-Cmk2D171A 

polypeptides migrated with an apparent lower molecular weight (Fig. 3.13A, marked 

with an asterisk). This polypeptide was consistently obtained from three different 

Cmk2D171A-bearing vector clones, which may suggest that the D171A mutation 

inherently leads to translational errors e.g., premature termination, or brings about a 

specific proteolytic event. 

 

 

Figure 3.13. Purification of wild-type 6His-Cmk2 and mutant 6His-Cmk2D171A from E. coli.  

(A) Recombinant 6His-Cmk2 and mutant 6His-Cmk2D171A were purified by Ni-NTA chromatography as 

described in Methods 2.2.1.3. A sample from each eluate was subjected to SDS-PAGE on a 12 % 

polyacrylamide gel followed by Coomassie brilliant blue R250 staining. Lane M; molecular weight 

marker. The migration positions of molecular mass marker proteins are indicated in kDa. (B) Sequence 

alignment of the catalytic loop of S. cerevisiae  Cmk2 , H.sapiens (PKA) and S.cerevisiae (Tpk1) 

Protein kinase A kinases. By sequence analogy, the residue equivalent to the catalytic base of PKA 

and Tpk1 in Cmk2 was shown to be Asp171. 

 

In vitro kinase reactions were performed by incubating GST-Kns1 with either 

6xHis-Cmk2 or catalytically inactive 6xHis-Cmk2D171A in the presence of [-32P]-ATP 
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(described in Methods 2.2.4.5). As negative controls, further in vitro kinase reactions 

using catalytically inactive mutant GST-Kns1D440A instead of GST-Kns1 were 

performed to ensure that substrate phosphorylation was solely due to the catalytic 

activity of GST-Kns1 rather than to the activity of contaminating kinases. In 

agreement with previous observations made by Ohya et al. (1991)144, incorporation 

of [-32P] into 6xHis-Cmk2 in the kinase reaction containing only 6xHis-Cmk2 (Fig. 

3.14, lane 5) demonstrated that the recombinant protein possessed basal 

autophosphorylation activity, which was independent of the presence of activating 

kinases or external factors such as e.g., calmodulin (CaM). By contrast, 6xHis-

Cmk2D171A displayed no detectable autophosphorylation activity, confirming effective 

catalytic inactivation (Fig. 3.14, lane 8). Owing to the extent of 6xHis-Cmk2 

autophosphorylating activity, the effects of including GST-Kns1 in the in vitro kinase 

reaction did not yield conclusive evidence for trans-phosphorylation (Fig. 3.14, lane 

3). Yet, trans-phosphorylation was clearly evident when inactive mutant 6xHis-

Cmk2D171A was incubated with GST-Kns1, as this resulted in the detection of the two 

radiolabed bands that corresponded to the polypeptides produced by the Cmk2D171A-

bearing pDEST vector (Fig. 3.14, lane 6). These radiolabeled bands were not 

detected after incubation with GST-Kns1D440A, confirming that 6xHis-Cmk2D171A 

phosphorylation was not due to the action of contaminating kinases but to GST-

Kns1 activity (Fig. 3.14, lane 7). In summary, these data unequivocally validate 

Cmk2 as a genuine in vitro substrate of Kns1. Moreover, incorporation of [-32P] into 

the inactive mutant GST-Kns1D440A was observed when 6xHis-Cmk2, but not 6xHis-

Cmk2D171A, was present in the reaction, indicating that Kns1 was capable of serving 

as a substrate for Cmk2 in vitro (Fig. 3.14, lanes 4 and 7). It is important to note that, 

in contrast to Kns1 (see Fig. 3.15 and refs 33,34,102), Cmk2 has been previously 

reported to display broad substrate specificity144. Hence, it is probable that the 

observed in vitro phosphorylation of GST-Kns1D440A by 6His-Cmk2 might be non-

specific.  
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Figure 3.14. Cmk2 is phosphorylated by Kns1 in vitro.  

Recombinantly expressed and purified wild-type 6His-Cmk2 (pNM38) or catalytically inactive 6His-

Cmk2D171A (pNM45) were incubated as indicated with either wild-type GST-Kns1 (pNM11) or 

catalytically inactive GST-Kns1D440A (pNM37) in phosphorylation buffer (25 mM Tris pH 7.5, 10 mM 

MgCl2, 1 mM DTT) in the presence of [-32P]ATP for 15 min at 30 °C as described in Methods 2.2.4.5. 

BSA was included at a relatively high concentration (0.2 µg/µl) in the phosphorylation reactions as a 

non-specific phospho-acceptor competitor. Reactions were stopped by addition of Laemmli sample 

buffer and immediate boiling for 5 min, followed by SDS-PAGE and autoradiography. Aliquots of the 

reaction mixtures were taken prior to [γ32P]ATP addition and analysed by SDS-PAGE and Western 

blotting with -His and -GST antibodies. Top: 32P autoradiograph; Middle: -His and -GST WB; 

Bottom: Ponceau S staining. The migration positions of molecular mass marker proteins are indicated 

in kDa. GST-Kns1 forms are not evident as 100 ng were used to obtain a kinase:substrate molecular 

ratio of 1:10. The positions of the phosphorylated protein species are indicated by arrows. Marked by 

an asterisc is a degradation product of one of the two polypeptides expressed by the 6His-Cmk2D171A-

bearing plasmid. All samples were analysed on the same gel. The phosphorylation assay shown is 

representative of at least three independent experiments. 

 
In order to validate further candidate substrates identified by Ptacek et al. 

(2005)102, I performed an in vitro kinase assay using C-terminally TAP-tagged Pdc1 

purified from yeast as substrate. Pdc1 was chosen among the Kns1 candidate 
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substrates (Table 1.1) principally for the convenient availability in the laboratory of 

the Pdc1-TAP construct. Moreover, comprehensive literature curation together with 

data obtained in preliminary experimental tests (i.e., phenotypic analysis, data not 

shown) did not reveal notable links between the other candidate substrates and a 

potential involvement in alkaline tolerance mechanisms. No phosphorylation of 

Pdc1-TAP was detected, revealing Pdc1-TAP as a false positive (Fig. 3.15). 

Importantly, this result underlined the specificity of Kns1 towards Cmk2.  

 

 

Figure 3.15. Kns1 does not phosphorylate Pdc1 in vitro.  

Pdc1-TAP was purified from yeast extracts and incubated with either recombinant wild-type GST-Kns1 

(pNM11) or catalytically inactive GST-Kns1D440A (pNM37) in phosphorylation buffer in the presence of 

[-32P]ATP for 15 min at 30 °C as described in Methods 2.2.4.5. BSA was included in the reaction as a 

phosphate-acceptor competitor (0.2 µg/µl). A band corresponding to molecular weight (MW) of the 

phosphorylated Pdc1-TAP fusion protein was not observed (expected MW=82.7; 61.5 kDa + 21.2 kDa 

of the TAP-tag, indicated with an asterisk). Although several intervening lanes were spliced out, all 

samples were analysed on the same gel. Aliquots of the reaction mixtures were taken prior to [-
32P]ATP addition and analysed by SDS-PAGE and Western blotting with -GST and Peroxidase anti-

Peroxidase soluble complex (PAP) antibodies. Top: 32P autoradiograph; Middle: -GST and PAP 

antibody WB. The migration positions of molecular mass marker proteins are indicated in kDa.  
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3.5.1 Analysis of Kns1-Cmk2 physical interaction  

The phosphorylation of Cmk2 by Kns1 inherently implies a direct interaction of 

Cmk2 with Kns1 in vitro. I therefore sought to determine whether such an interaction 

occurs in vivo. Although kinase-substrate interactions are generally of a weak and 

transient nature, in some cases, these can be more readily detected using the yeast 

two-hybrid system owing to the high sensitivity of the reporter gene strategy213,276,277. 

I chose this system to test the binding of Kns1 to Cmk2. To this end, I created a 

plasmid expressing KNS1 N-terminally fused to the GAL4 binding domain (OBD) 

and a plasmid expressing CMK2 fused to the GAL4 activation domain (OAD) both 

driven by the GAL1 promoter (PGAL1). Combinations of these constructs with each 

other, or with empty vectors (used as negative controls), were co-expressed in yeast 

strain PJ69-4A as indicated in fig. 3.16. The previously reported interaction between 

splicing factor Snu66 and ubiquitin-like protein Hub1 was tested in parallel as 

positive control (Fig. 3.16, bottom panels)214. Interactions between bait and prey 

proteins are indicated by the activation of GAL1 promoter-HIS3 reporter, which 

allows growth on medium lacking histidine. The use of Kns1 as bait (OBD-KNS1) 

resulted in auto-activation of the HIS3 reporter gene (reporter 1) in the absence of 

prey protein Cmk2 (OAD-CMK2) (Fig. 3.16, upper panels).  Therefore, I additionally 

tested CMK2 as bait (OBD-CMK2) and KNS1 as prey (OAD-KNS1) (Fig. 3.16, 

middle panels) as well as a second nutritional reporter gene, ADE2 (reporter 2). 

However, this attempt failed to detect a direct physical interaction between Kns1 and 

Cmk2, as indicated by the absence of growth on medium lacking adenine.  
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Figure 3.16. Analysis of Kns1-Cmk2 physical interaction using the yeast two-hybrid system.  

Host strain PJ69-4A was transformed with combinations of plasmids expressing GAL4 binding domain 

(OBD) fused to KNS1 (OBD-KNS1; pNM105) and GAL4 activation domain fusions (OAD) fused to 

CMK2 (OAD-CMK2; pNM104) (upper panels) or OBD fused to CMK2 (OBD-CMK2; pNM106) and OAD 

fused to fused to KNS1 (OAD-KNS1; pNM103) (middle panels). Negative controls consisted of cells co-

transformed with combinations of plasmids expressing OBD-KNS1, OAD-CMK2, OAD-KNS1 or OBD-

CMK2 with empty plasmids (OBD or OAD alone) as indicated. As a positive control for the assay, cells 

transformed with plasmids expressing OBD fused to SNU66 (OBD-SNU66; pMR29) and OAD fused to 

HUB1 (OAD-HUB1; pGD240) were used in parallel. Cells were plated on synthetic complete (SC) 

medium lacking tryptophan and leucine (SC-Trp-Leu) to select for both Gal4-fusion plasmids (control) 

and on SC medium lacking either histidine (SC-Trp-Leu-His; reporter 1) or adenine (SC-Trp-Leu-Ade; 

reporter 2) as required to assay for reporter activation. Plates were incubated for 3-4 days at 30 °C 

before photodocumentation.  

 

3.6 Genetic interactions between KNS1 

and CMK2 

The confirmation of the in vitro phosphorylation of Cmk2 by Kns1 prompted me 

to investigate whether Kns1 and Cmk2 were de facto functionally related in vivo. 

Genetic interactions reflect the extent to which the function of one gene depends on 

the presence of a second gene, providing a valuable insight into the relationship 

between their cellular roles278–285. In search of physiological evidence for the 

biochemical interaction observed, I analysed the type of genetic interaction between 

KNS1 and CMK2. For this purpose, I examined and classified the relation among 

the phenotypes of cells lacking either KNS1 (Pkns1), CMK2 (P∆cmk2) or both 
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(Pkns1cmk2) with respect to the phenotype of wild-type (PWT) cells exposed to 

alkaline stress (pH 7.8, 8.0 and 8.2) (P denotes alkaline pH sensitivity) (Fig. 3.17). 

A genetic interaction between two genes e.g., X and Y, is defined by the 

deviation () of the double deletion mutant phenotype (Pxy) from the expected 

neutral phenotype (Exy)
286,287. Exy can be calculated as the product of the 

individual mutational effects (Exy = Px
 *Py) under the hypothesis that the double 

mutant carries two non-interacting mutations (Fig. 3.17A)288,289. An absolute 

deviation distinct from zero between Pxy and Exy suggests that the two genes 

genetically interact whereas a deviation close to zero indicates non-interacting gene 

pairs280,290. To get an estimate of the deviation () between Pkns1cmk2 and Ekns1cmk2, 

the approximate cell population density of yeast strains grown at high pH was 

considered as an indicator of cell fitness and quantified by densitometry (ImageJ, 

NIH). The approximate cell population of each mutant was expressed relative to that 

of wild-type cells (set to 1.0).  

Under all high pH stress conditions tested (pH 7.8-8.2), ∆cmk2 cells grew better 

than WT cells (Fig. 3.17B), indicating that loss of CMK2 increases alkaline 

tolerance. This implies that Cmk2, as opposed to Kns1, restricts growth under high 

pH conditions.  

At pH 7.8, the lack of Kns1 conferred increased alkaline sensitivity (Fig. 3.17B), 

which shows that Kns1 is necessary for the acquisition of normal tolerance under 

these conditions (1). The double mutant kns1cmk2 exhibited a phenotype 

equivalent to the expected phenotype Ekns1cmk2 ( ~ 0). This result indicates that 

Kns1 and Cmk2 contribute separately and independently to the pathways 

responsible for the adaptation of cells to mild alkaline stress (pH 7.8). 

At pH 8.0, the loss of CMK2 partially alleviated the phenotype caused by loss of 

KNS1 because the phenotype of kns1cmk2 was less severe than expected 

(Pkns1cmk2 > Ekns1cmk2), yielding a positive deviation ( = 0.82) (Fig. 3.17B). This 

indicates that both genes display an “alleviating” genetic interaction, also termed 

positive epistasis389. This type of interaction commonly occurs when a mutation in  

                                            
1 Note that kns1 cells displayed more alkaline sensitivity than WT cells in rich media buffered to 

pH 7.8 (Fig. 3.17B) whereas kns1 grew like WT (carrying empty vectors) in minimal media buffered to 

pH 7.8 supplemented with copper (Fig. 3.11C). Importantly, nutrient conditions i.e., increased copper 

concentrations, affect the susceptibility of cells to high pH stress180. The growth conditions of the two 

experiments are not fully comparable and; therefore, their outcomes are not to be considered 

incongruous.  
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Figure 3.17. Genetic interactions between KNS1 and CMK2 under high pH conditions.  

(A) A genetic interaction between mutants x and y can be defined by the deviation () of an observed 

double-mutant phenotype (Pxy) from the expected neutral phenotype of an organism's fitness (Exy) 

under the hypothesis that it carries two non-interacting mutations290. (B) Deletion of CMK2 causes 

opposite effects as deletion KNS1 on alkaline pH tolerance. Wild type (WT; sUB62), ∆kns1 (yAS5), 

∆cmk2 (yNM414) and double deletion mutant ∆kns1∆cmk2 (yNM454) cells were grown overnight in 

YPD to mid-log phase at 30 °C and diluted to an optical density (OD600nm) of 0.25. Five-fold serial 

dilutions of this diluted culture were spotted onto YPD (pH~5.5; control plate) and YPD containing 

100mM Hepes adjusted to pH 7.8, 8.0 or 8.2. Cell growth was monitored after incubation at 30 °C for 2 

days (YPD),  4 days (pH 7.8), 5 days (pH 8.0) or 7 days (pH 8.2). The approximate cell population 

density of each strain grown at high pH was quantified by densitometry (ImageJ, NIH) and expressed 

relative to that of wild-type cells (set to 1.0).  

 

one gene impairs the function of a whole pathway, thereby concealing the 

consequence of additional mutations in other members of that pathway280,291,292. 

Based on the fact that Kns1 and Cmk2 exert opposite effects on alkaline tolerance, 
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it can be inferred that, if both proteins act on the same pathway, one protein has to 

effect a negative regulatory influence on the other.  

At pH 8.2, cmk2 grew better than kns1cmk2, indicating that loss of KNS1 

reduces the alkaline tolerance of cmk2 cells (Fig. 3.17B). Thus, Kns1 positively 

contributes to alkaline tolerance; yet, only in the absence of Cmk2. Given that WT 

was barely capable of growing at 8.2, it can be inferred that Kns1 is unable to confer 

alkaline tolerance in the WT due to the presence of Cmk2. The double mutant 

phenotype was more severe than expected (Ekns1cmk2 > Pkns1cmk2), resulting in a 

negative deviation ( = -2.12). This defines the genetic interaction between KNS1 

and CMK2 as “aggravating”389. This indicates that both proteins also genetically 

interact under severe alkaline pH stress and are, thus, functionally interconnected.  

A systematic genome-wide phenotypic analysis of the haploid yeast deletion 

collection has previously reported that deletion of KNS1 elicits an oleate-sensitive 

phenotype99. This phenotype functionally implicates Kns1 in a process required to 

endure exposure to toxic levels of exogenous oleate. In accordance with that report, 

the kns1 mutant grew poorly on media containing oleate as the sole carbon source 

(Fig. 3.18). I therefore asked whether Cmk2 shared a functional link with Kns1 in this 

process by examining the effect of deleting CMK2 on the growth of ∆kns1 on oleate-

containing medium. This revealed that the deletion of CMK2 partially alleviated the 

oleate sensitive phenotype caused by deletion of KNS1 (Fig. 3.18), leading to a 

double mutant phenotype less severe than expected (Pkns1cmk2 > Ekns1cmk2). This 

shows that both genes display an alleviating genetic interaction ( = 0.95), 

suggesting that both also act in concert to modulate the ability to cope with high 

levels of oleate.  

 

 

Figure 3.18. Genetic interaction between KNS1 and CMK2 displayed upon exposure to high 

levels of exogenous oleate.  
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Growth of ∆cmk2 cells on oleate-containing plates is comparable to that of wild-type cells. The same 

cells as in (B) were grown overnight in YPD, washed with rich medium lacking carbon source (YP), 

serially diluted and spotted onto either STY plates containing either 2 % glucose (control) or 0.1% 

oleate (described in Materials 2.1.8). Cell growth was monitored after incubation at 30 °C for 2 days 

(STY Glucose) or 7 days (STY Oleate). In all cases, the undiluted culture is shown at the left along with 

5-fold serial dilutions going left to right. The approximate cell population density of each strain was 

quantified as described in fig. 3.17. Genetic interaction is defined by the extent of deviation () of an 

observed double-mutant phenotype (Pxy) from the expected neutral phenotype of an organism's 

fitness (Exy). 

 

Altogether, these genetic data underscore the functional interplay between Kns1 

and Cmk2 in the adaptation of yeast to environmental alkalinization and exposure to 

exogenous oleate. In particular, the alleviating interactions described for KNS1 and 

CMK2 strongly suggest that both proteins act in the same pathway under these 

particular stress conditions.  

3.6.1 Loss of Cmk2 improves cell growth at high pH 

To verify that the absence of CMK2 was solely responsible for the increased 

resistence of ∆cmk2 cells to alkaline-induced stress, I performed complementation 

experiments using a high-copy plasmid overexpressing wild-type N-terminally GFP-

tagged Cmk2 under the control of the copper-inducible PCUP1-1 promoter. As shown 

in fig. 3.19A, transformation of ∆cmk2 cells with the Cmk2-borne plasmid, but not 

with the empty plasmid, led to the reduction of the alkaline tolerance of ∆cmk2 cells 

to wild-type levels. Hence, this result confirms that Cmk2 restricts alkaline tolerance.  

In order to perform the complementation experiments under more physiological 

conditions, the CMK2 gene was cloned into a single-copy plasmid harboring 1000 

bp of the 5’-UTR region of CMK2 to obtain endogenous levels of Cmk2 expression. 

Exposure of cells to high concentrations of calcium (Ca2+) induces CMK2 expression 

by  5 fold, as reported previously158. Therefore, to test whether the 5’-UTR region 

contained the promoter elements required for correct induction of Cmk2 protein 

expression, ∆cmk2 cells carrying the constructed plasmid were incubated for 20, 40, 

60 or 100 min with calcium (Ca2+; 200 mM CaCl2). Western Blotting of non-induced 

and Ca2+-induced cell extracts using -GFP antibodies showed that addition of Ca2+ 

to the growth media leads to induction of Cmk2 expression, indicating that the 

plasmid carried a functional Cmk2 promoter (Fig. 3.19D). Comparison of the growth 

of ∆cmk2 cells expressing GFP-Cmk2 at endogenous levels with ∆cmk2 cells 

overexpressing GFP-Cmk2 from a high-copy plasmid under the control of the PCUP1-1 

promoter revealed that the mere presence of GFP-Cmk2 restrained growth of cells 
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exposed to alkaline stress independently of the expressing system used (Fig. 3.19A 

and B). This shows that the effects caused by the copper-inducible overexpression 

of CMK2 are equivalent to those exerted by the kinase expressed under the control 

of its promoter. Moreover, it indicates that the N-terminal GFP tag does not disrupt 

kinase function, as evidenced by the restoration of the wild-type phenotype in 

∆cmk2 cells upon expression of the fusion protein GFP-Cmk2.  

 

 

Figure 3.19. GFP-Cmk2 expression decreases the alkaline tolerance of cmk2 cells to wild-type 

levels. Effects of CMK2 expression on alkaline tolerance are independent of the expression 

system used. 

Wild-type (WT; sUB62) cells harbouring an empty plasmid and cmk2 (yNM414) cells harbouring the 

plasmid encoding N-terminally GFP-tagged Cmk2 (GFP-Cmk2) under the control of either the copper-

inducible promoter (PCUP1-1) (high-copy; pNM73) (A) or the endogenous promoter (P5’UTR) (single-copy; 

pNM65) (B) and cmk2 cells harbouring the respective empty plasmids (pNM67 or pNM63) were 

grown overnight at 30 °C in SC-Trp to log-phase and diluted to an optical density (OD600nm) of 0.25. 

Five-fold serial dilutions of this diluted culture were spotted onto either SC-Trp (pH 6.5) or SC-Trp 

containing 15 mM Hepes (pH 8.0) or 17.5 mM Hepes (pH 8.2). Cells from (A) and (B) were spotted 

together onto the same plate. All SC-Trp plates were supplemented with 100 µM CuSO4 to induce 

GFP-Cmk2 expression from the copper-inducible plasmid. Cell growth was monitored after incubation 

at 30 °C for 3 days (pH 6.5), 6 days (pH 8.0) or 8 days (pH 8.2). (C) Western blot analysis showing 

copper (Cu2+)-induced expression of GFP-Cmk2 from a high-copy plasmid in cmk2 cells. cmk2 cells 

were transformed with empty plasmid (pNM67) or plasmid encoding GFP-Cmk2 (pNM73) driven by the 
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copper-inducible promoter (PCUP1-1). Transformants were grown overnight to log-phase in selective 

synthetic complete medium (SC-Trp) and then either directly harvested (lines 1 and 3) or induced with 

Cu2+ (100 µM CuSO4) for 60 min at 30 °C (lines 2 and 4). The extract prepared from cells carrying the 

vector encoding GFP-Cmk2 contained detectable amounts of full-length Cmk2 protein before and after 

Cu2+ induction, indicating leaky expression prior to Cu2+ addition. (D) The cloning of a functional 

promoter of the CMK2 gene was confirmed by the endogenous expression of Cmk2 upon calcium 

addition. cmk2 cells harbouring either an empty plasmid (pNM63) or a plasmid encoding GFP-Cmk2 

under the control of the endogenous promoter (p5’UTR) containing the endogenous 5’UTR of CMK2 

and the CMK2 gene fused N-terminally to GFP (pNM65) were grown to log-phase and either mock 

treated or treated with 200 mM CaCl2 for 20, 40, 60 and 100 min. Cells were harvested and washed 

with NaN3. Whole-cell extracts from (C) and (D) were prepared and analysed by SDS-PAGE, followed 

by Western blotting with -GFP antibodies and -Pgk1 as described in Methods 2.2.4. Pgk1 was 

detected to confirm equal protein loading.  

 

3.6.2 Cmk2 requires catalytic activity to restrict 

alkaline tolerance. 

To learn whether Cmk2 possesses kinase-independent functions, I examined 

the effect of catalytic inactivation on the role of Cmk2 in the cellular adaptation to 

alkaline conditions. In pH 8 medium, cmk2 cells overexpressing catalytically 

inactive Cmk2 (GFP-Cmk2D171A) coped with alkaline stress more efficiently than 

wild-type (WT) cells (Fig. 3.20). In particular, the effects of overexpressing GFP-

Cmk2D171A were akin to those of deleting the CMK2 gene i.e., both resulted in 

enhanced cell tolerance to alkaline stress. This result reveals that catalytic 

inactivation completely abolishes the ability of Cmk2 to restrict alkaline stress 

tolerance in vivo. Hence, it can be concluded that the effects of Cmk2 on alkaline 

stress tolerance completely rely on its catalytic activity.  

 

 

Figure 3.20. Restoration of the wild-type alkaline tolerance conferred by overexpression of 

CMK2 requires intact catalytic function.  

Wild-type (WT; sUB62) and cmk2 (yNM414) cells carrying an empty vector (pNM67) and cmk2 

carrying a copper-inducible high-copy plasmid (PCUP1-1-GFP) encoding either wild-type Cmk2 (pNM73) 

or catalytically inactive mutant Cmk2D171A (pNM36) were grown overnight in SC-Trp at 30 °C to log-
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phase and diluted to an optical density (OD600nm) of 0.25. Five-fold serial dilutions of this diluted culture 

were spotted onto either SC-Trp (pH 6.5) or SC-Trp containing 15 mM Hepes (pH 8.0) or 17.5 mM 

Hepes (pH 8.2). All SC-Trp plates were supplemented with 100 µM CuSO4 to induce GFP-Cmk2 

expression. Cell growth was monitored after incubation at 30 °C for 3 days (pH 6.5),  6 days (pH 8.0) or 

7 days (pH 8.2). Cells were spotted together onto the same plates. 

 
Genetic analysis indicated that KNS1 and CMK2 act antagonistically in a 

common pathway to govern the tolerance of cells exposed to an external pH of 8.0 

(Fig. 3.17). This result together with the finding that both proteins biochemically 

interact in vitro (Fig. 3.14) led to the hypothesis that one may conceivably 

downregulate the other by phosphorylation. Therefore, the absence of the upstream 

kinase should lead to the increased activity of the unmodified substrate, which, in 

turn, should enhance the phenotype of the kinase deletion mutant when 

overexpressed293. This concept is referred to as synthetic dosage enhancement and 

can be indicative of a kinase-substrate relationship293,294. To test this hypothesis, I 

considered the possibility of Kns1 phosphorylating Cmk2 to downregulate its 

function in vivo and examined the effects that CMK2 overexpression has on cell 

growth at pH 8.0 in the presence and absence of KNS1. Cmk2 showed greater 

ability to restrict alkaline tolerance when overexpressed in the absence of KNS1 

than in its presence (Fig. 3.21, row 3 vs 5). Overexpression of CMK2 exacerbated 

the alkaline sensitive phenotype of kns1cmk2 cells (Fig. 3.21, row 4 vs 5). 

However, cmk2 cells grew better than kns1cmk2 cells (both carrying empty 

vectors) (Fig. 3.21, row 2 vs 3), indicating that loss of KNS1 renders cells more 

sensitive to high pH stress also in the absence of Cmk2. This shows that Kns1 not 

only improves alkaline tolerance through the regulation of Cmk2 action but also 

through the regulation of additional targets with a relevant role in high pH 

adaptation. For this reason, this result does not conclusively confirm the kinase-

substrate relationship on its own. However, it does, together with the finding of an 

alleviating interaction between the KNS1 and CMK2 genes, further support the 

notion that Kns1 may conceivably inhibit Cmk2 function in vivo. Moreover, the 

possibility that Cmk2 regulates Kns1 by phosphorylation is plausible based on the 

observation that Cmk2 is capable of phosphorylating Kns1 in vitro (Fig. 3.14). 

However, this hypothesis cannot be evaluated through the examination of the 

effects of KNS1 overexpression in the absence or presence of CMK2 owing to the 

finding that Kns1 exerts dual functions on alkaline tolerance i.e., a kinase-dependent 

and independent function (Fig. 3.11).   
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Figure 3.21. Effect of the overexpression of CMK2 on cell growth at pH 8.0 in the presence and 

absence of KNS1.  

Isogenic wild-type (WT; sUB62) and cmk2 (yNM414) cells carrying an empty vector (pNM67) and 

either cmk2 or kns1cmk2 (yNM454) carrying an empty vector or copper-inducible high-copy 

plasmid (PCUP1-1-GFP) encoding wild-type Cmk2 (pNM73) were grown overnight in SC-Trp at 30 °C to 

log-phase and diluted to an optical density (OD600nm) of 0.25. Five-fold serial dilutions of this diluted 

culture were spotted onto either SC-Trp (pH 6.5) or 15 mM Hepes (pH 8.0) supplemented with 100 µM 

CuSO4. Cell growth was monitored after incubation at 30 °C for 3 days (pH 6.5),  6 days (pH 8.0). Cells 

were spotted together onto the same plates. The approximate cell population density of yeast strains 

grown at high pH was considered as an indicator of cell fitness, quantified by densitometry (ImageJ, 

NIH) and indicated as RG (relative growth). The approximate cell population of each strain was 

expressed relative to that of wild-type cells (set to 1.0).  

 

3.7 Identification of in vitro 

phosphorylation sites in Cmk2 

To further elucidate the significance of Cmk2 phosphorylation by Kns1, I aimed 

at the identification of the target residues of Kns1 in Cmk2. For this purpose, in vitro 

kinase assays were performed incubating recombinant GST-Kns1 with either 6His-

Cmk2 or the inactive 6xHis-Cmk2D171A mutant in the presence of non-radiolabeled 

ATP. In addition, 6xHis-Cmk2 was incubated alone in the presence and in the 

absence of ATP (negative control) to identify Cmk2 autophosphorylation sites. In 

vitro kinase reaction mixtures were subjected to mass spectrometric analysis 

(described in Methods 2.2.4.6).  

A summary of all phosphopeptides and phosphorylation sites identified are 

shown in table 3.2 and 3.3. A total of 13 different Cmk2 phosphopeptides including 

19 phosphorylation sites were identified (Table 3.2). A schematic representation of 

full-length Cmk2 is shown in fig. 3.22 illustrating the fairly dispersed localization of 

these phosphorylation sites throughout the entire length of Cmk2. 
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Table 3.2. Phosphopeptides containing the phosphorylation sites identified in vitro on Cmk2 by 

mass spectrometry. 

Phosphopeptide    

Position Sequence1 
Phospho 

Site2,3 

Times 
mapped 
in vitro5 

Homologous 
site in 

mammalian 
CaMKII4 

A. Cmk2 phosphopeptides and phosphorylation sites identified only in the GST-Kns1-containing 
reaction  
325-330 KGFSLR S328 1  

351-384 NMYSLGDDGDNDIEENSLNESLLDGVTHSLDDLR S354 1  

349-384 LRNMYSLGDDGDNDIEENSLNESLLDGVTHSLDDLR S379 1 S318/S319 

B. Cmk2 phosphopeptides and phosphorylation sites identified in the GST-Kns1-containing and 
autophosphorylation reaction 

30-44 FINKLSGQPESYVNR S35 4  

34-44 LSGQPESYVNR S40 3  

34-44 LSGQPESYVNR Y41 2  

34-51 LSGQPESYVNRTNYIFGR T45 3  

45-51 TNYIFGR Y47 4 Y13
52-62 TLGAGSFGVVR T52 6  

52-62 TLGAGSFGVVR S57 5  

66-76 KLSTNEDVAIK S68 1  

66-76 KLSTNEDVAIK T69 5 T36 

171-182 DLKPENVLYVDK Y179 2  

292-312 LNPADRPTATELLDDPWITSK T299 2 T262 

292-312 LNPADRPTATELLDDPWITSK T301 2  

292-312 LNPADRPTATELLDDPWITSK S311 1  

313-324 RVETSNILPDVK T316 7 T287 

313-324 RVETSNILPDVK S317 5  

403-415 SALTKDAFVQIVK T406 6 T366 
1 Phosphosites are presented as bold characters. 2 Residues conserved between yeast CaM kinase 

Cmk1 and Cmk2 are shown underlined. 3 Phosphosites S68, S379 and T406 have been previously 

mapped in vivo in S. cerevisiae Cmk2 and are marked as bold characters295–298. 4 Phosphosites that 

are conserved in mammalian CaMKII and have been found phosphorylated in vivo are indicated as 

bold characters; Y13 of mouse (isoform ), T287 of mouse and human (isoform), S319 of 

mouse and human (isoform), S318 of mouse (isoform  and T366 of mouse (isoform) CaMKII299–

303. 5 Indicates the number of independently prepared phosphoprotein-enriched samples that produced 

spectra matching this phosphopeptide sequence.  
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Figure 3.22. Schematic diagram of the in vitro phosphorylation sites identified on Cmk2.  

 (A) The sites of phosphorylation identified by mass spectrometry from the analysis of in vitro 

phosphorylated 6His-Cmk2 are indicated by black pins with residue type and number indicated above. 

The red pin within the catalytic domain (D171) denotes the position of the active site. Phosphorylation 

sites chosen for mutagenesis analysis are shown in bold. The phosphorylation sites that were only 

detected when GST-Kns1 was present in the kinase reaction are highlighted in blue. 

Autophosphorylation sites are indicated in black. The diagram was generated using MyDomains from 

PROSITE (http://us.expasy.org/tools/mydomains). The calmodulin (CAM) binding domain of Cmk2 is 

represented according to its similarity to mammalian CAM kinases145. Sequence alignment of (B) the 

catalytic domain (subdomain I and part of II), (C) the putative autoregulatory sequence and (D) the C-

terminal region of Cmk2 and the equivalent regions of Cmk1 from S. cerevisiae and the  and  

isoforms of CaMKII from R. norvegicus. The identified phosphorylation sites of Cmk2 selected for 

mutational analysis are indicated by the “P” labelled grey pins and boxed together (black box) with their 

equivalent residues in the Cmk2 homologues. Relevant regions are indicated with coloured boxes as 

follows: glycine-rich motif of protein kinases (red box) and key region for autoinhibition (dark blue) and 

minimal CaM binding domain (violet) of mammalian CaMKII kinases. Numbering is according to the 
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CMK2 sequence. Dashes indicate single-residue gaps inserted to maximize the alignment of the yeast 

and mammalian proteins. Adapted from Pausch et al. (1991)145. 

 

Failure to detect any phosphorylation on 6xHis-Cmk2D171A prevented the 

unequivocal identification of Cmk2 in vitro target sites for Kns1. However, of all the 

residues found phosphorylated on wild-type 6His-Cmk2, three were only detected 

when GST-Kns1 was present in the kinase reaction; Ser328, Ser354 and Ser379 (Table 

3.2A). Therefore, these residues were contemplated as possible Kns1 candidate 

target sites. Residue Ser328 is located within the region corresponding to the 

autoregulatory domain of CaMKII kinases, whereas Ser354 and Ser379 are found 

within the evolutionary divergent C-terminal region of Cmk2 (Fig. 3.22D). Residue 

Ser379 is conserved among Cmk2 and all isoforms of mammalian CaMKII but not 

between Cmk2 and Cmk1 (Fig. 3.22D)145.  

Sixteen phosphorylation sites were identified on both the wild-type kinase 6His-

Cmk2 incubated under autophosphorylation conditions and on the one incubated 

with GST-Kns1 (Table 3.2B). None of these phosphorylation sites was detected in 

the catalytically inactive 6xHis-Cmk2D171A mutant, indicating that these sites result 

from autocatalytic activity. Of these phosphorylation sites, Ser57, Thr301 and Ser317 

were identified in the kinase reaction devoid of ATP, which implies that 6xHis-Cmk2 

underwent autophosphorylation at these residues during expression in E. coli.  

Five autophosphorylation sites (Tyr47, Thr69, Thr299, Thr316 and Thr406) are 

remarkably conserved throughout evolution, as equivalent residues are found in 

both yeast Ca2+/CaM-dependent kinases, Cmk1 and Cmk2, as well as in several 

mammalian CaMKII isoforms, whereas three autophosphorylation sites (Ser40, Thr52 

and Tyr179) are conserved only within both yeast kinases145. Cmk2 has been 

classified into the group of Ser/Thr protein kinases based on its primary 

sequence304. For this reason, the finding of three tyrosine residues (Tyr41, Tyr47 and 

Tyr179) among the identified autophosphorylation sites was unexpected. 

Mass spectrometric analysis of the GST-Kns1 from the kinase reaction 

containing 6xHis-Cmk2 detected two phosphorylation sites (Table 3.3) in addition to 

the in vitro autophosphorylation sites identified on Kns1 (Table 3.1); Thr323 and 

Ser585. Residue Thr323 is situated within the glycine-rich loop of the ATP-binding 

region and is conserved among Kns1, S. pombe Kic1/Lkh1, D. melanogaster DOA, 

H. sapiens CLK2 and CLK374. Residue Thr585 is located C-terminally to the 

LAMMER motif of Kns1 (Fig. 3.23). This finding was consistent with the 

phosphorylation of GST-Kns1D440A by 6His-Cmk2 observed in vitro (Figure 3.14, lane 

4). 
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Table 3.3. In vitro phosphopeptides and phosphorylation sites identified by mass spectrometry 

on Kns1 only in the kinase reaction containing 6xHis-Cmk2. 

Phosphopeptide   

Position Sequence1 
Phospho 

Site 

Times 
mapped 
in vitro2 

317-326 DLLGQGTFGK T323 1 

580-593 LGNSPSDLNSTVIK S585 1 
1 Phosphosites are presented as bold, underlined characters. 2 Indicates the number of independently 

prepared phosphoprotein-enriched samples that produced spectra matching this phosphopeptide 

sequence. 

 

 

Figure 3.23. Schematic diagram of the in vitro phosphorylation sites identified on Kns1 solely in 

the presence of 6His-Cmk2.  

The sites of phosphorylation identified from the analysis by mass spectrometry of in vitro 

phosphorylated GST-Kns1, which were found only when 6His-Cmk2 present in the kinase reaction, are 

indicated by black pins with residue type and number indicated above in green. The red pin within the 

catalytic domain (D171) denotes the position of the active site. The diagram was generated using 

MyDomains from PROSITE (http://us.expasy.org/tools/mydomains). 

 

3.8 Mutational analysis of Cmk2 

The candidate Kns1 target residues Ser328 and Ser379 and autophosphorylation 

sites Tyr47, Thr52, Thr69, Thr316 and Thr406 were of particular interest due to their 

evolutionary conservation and location within functionally relevant regions of Cmk2 

(Fig. 3.22). To assess the importance of these sites in Cmk2 function, I investigated 

their role in the in vitro substrate phosphorylation activity and in vivo function of 

Cmk2 by individually mutating each residue to either alanine (Ala), to prevent 

phosphorylation, or to aspartate (Asp) or glutamate (Glu), to partially mimic 

phosphorylation, in bacterial and yeast Cmk2-borne expressing vectors.  
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3.8.1 Effect of phosphorylation site mutagenesis on 

the exogenous kinase activity of Cmk2 

The physiological substrates of Cmk2 remain so far unknown. Previous analysis 

of the in vitro kinase specificities of yeast Ca2+/CaM kinases showed that Cmk2 is 

capable of phosphorylating several substrates such as Kemptamide, Syntide 2, 

Myelin Basic Protein (MBP), Casein, Histone and Myosin Light Chain144. To assess 

whether the mutation of the selected phosphorylation sites influenced the catalytic 

capability of Cmk2, I performed in vitro kinase assays with wild-type 6His-Cmk2 

(WT) or single-point mutant versions of 6His-Cmk2 using MBP as substrate in the 

presence and absence of calmodulin and Ca2+ (Ca2+/CaM) (described in Methods 

2.2.4.5). The exogenous kinase activity of 6His-Cmk2 was expressed as relative 

incorporation of radiolabeled phosphate [-32P] from [-32P]ATP into MBP. 

3.8.1.1 Mutations in the C-terminal region of Cmk2 

The C-terminal domain is the most divergent region among members of the 

CaMKII family. In higher vertebrates, it contains several variable inserts that are 

isoform specific and confer different properties such as distinct CaM-binding 

affinities, nuclear targeting inhibitor sequences and SH3-binding potential149,305–307. 

Despite the predominant divergence within the C-terminal region, Cmk2 shares few 

short stretches of highly conserved residues with CaMKII145. The corresponding 

stretches in CaMKII are embedded within functionally variable inserts145,308. 

Therefore, the finding of two phosphorylated residues, Ser379 and Thr406, within these 

conserved stretches hinted at the possible functional significance for these 

phosphorylation events in vivo. 

The candidate Kns1 target site Ser379 is remarkably conserved among Cmk2 

and all isoforms of mammalian CaMKII (Fig. 3.22D)145. In the absence of Ca2+/CaM, 

mutation Ser379 to Ala (S379A) increased Ca2+/CaM-independent catalytic activity 

whereas mutation Ser379 to Glu (S379E) maintained this activity closer to the WT 

levels. Concretely, the amount of phosphorylated MBP was increased by 1.73-fold 

by the S379A mutation and by 1.20-fold by the S379E mutation with respect to the 

amount of MBP phosphorylated by WT (Fig. 3.24B and D). This result hints at an 

inhibitory role for Ser379 phosphorylation in the regulation of the Ca2+/CaM-

independent activity of Cmk2 toward exogenous substrate MBP in vitro. WT more 

closely resembled 6His-Cmk2S379E than 6His-Cmk2S379A in terms of Ca2+/CaM-

independent activity (Fig. 3.24), suggesting that the recombinant WT enzyme is 

probably phosphorylated at Ser379 in the absence of Ca2+/CaM.  
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Figure 3.24. Effects of phosphorylation site mutations in the C-terminal domain on the in vitro 

phosphorylation activity of Cmk2 toward the exogenous substrate MBP.  

(A) In vitro phosphorylation reactions were performed by incubating exogenous substrate MBP (Myelin 

basic protein; 5 µM) with [-32P]ATP and either wild-type (WT) 6His-Cmk2 (pNM38) or one of the 
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indicated phosphorylation site mutants (0.2 µM) in phosphorylation buffer (25 mM Tris pH 7.5, 10 mM 

MgCl2, 2.5 mM CaCl2 and 0.2 µg/µl BSA) in the presence or absence of calmodulin (CaM; 10 µM) for 5 

minutes by 30 °C as described in Methods 2.2.4.5. The phosphorylation reactions were performed in 

the absence or presence CaM as indicated. Reactions were stopped by addition of Laemmli sample 

buffer and immediate boiling for 5 min, followed by SDS-PAGE and autoradiography. The 

phosphorylation site mutations encoded by the assayed CMK2 mutants are indicated above each lane 

and are as follows: S379A (pNM60), S379E (pNM77), T406A (pNM43) and T406D (pNM44). Aliquots 

of the reaction mixtures were taken prior to [32P]ATP addition and resolved by SDS-PAGE followed by 

either Coomassie staining or Western blotting (WB) with -His antibodies. Top: Coomassie staining; 

Middle: -His WB; Bottom: 32P autoradiograph. All reactions contained BSA as an unspecific 

phosphate-acceptor competitor (2 mg/ml). The phosphorylation assay shown is representative of three 

independent experiments. The migration positions of molecular mass marker proteins are indicated in 

kDa and protein species are indicated by arrows. All samples were analysed on the same gel. (B) 

Quantification of MBP phosphorylation by the 6His-Cmk2 phosphorylation site mutants. Phosphate [-
32P] incorporation into MBP was quantified by phosphoimaging and corrected for background activity. 

The phosphorylation levels measured for MBP incubated with wild-type 6His-Cmk2 in the absence of 

Ca2+/CaM (lane 1; termed WT1) were normalized to 1 and those measured for MBP incubated with the 

indicated 6His-Cmk2 mutants (lines 2 to 10) are presented relative to that value. (C) Quantification of 

MBP phosphorylation was done as in (B) but the phosphorylation levels measured for MBP incubated 

with wild type 6His-Cmk2 in the presence of Ca2+/CaM (lane 6; termed WT6) were normalized to 1 and 

those measured for MBP incubated with the indicated 6His-Cmk2 mutants (lines 7 to 10) in the 

presence of Ca2+/CaM are presented relative to that value. Quantification data shown in (B) and (C) 

represent average MBP phosphorylation values from three independent experiments with standard 

deviation as indicated. A Student´s t-test was performed to show whether the difference in 

phosphorylation efficiency between wild-type 6His-Cmk2 and phosphorylation site mutants cells was 

significant. p values are indicated with respect to the wild-type value as follows; *p≤0.05 (n=3), 

**p≤0.01 (n=3). Columns; means, bars; standard deviation. (D) Table showing the quantification data 

used in (B) and (C).  

 

In the presence of Ca2+/CaM, both Ser379-mutants deviated from the wild-type 

behaviour, as S379A and S379E mutations increased substrate phosphorylation by 

1.64- and 1.45-fold, respectively, with respect to Ca2+/CaM-activated WT (Fig. 3.24C 

and D).  

Thr406 is conserved among Cmk2 and isoforms  and  of CamKII (Fig. 

3.22D)145. In the absence of Ca2+/CaM, mutant 6His-Cmk2T406A caused a significant 

(p<0.01) 3.12-fold increase in the amount of phosphorylated MBP compared with 

WT, which reached the activity levels of Ca2+/CaM-activated WT. By contrast, 6His-

Cmk2T406D phosphorylated MBP with a similar efficiency as WT (Fig. 3.24B and D). 

The Thr406-site mutations had similar effects on the exogenous Ca2+/CaM-dependent 

catalytic activity of Cmk2 (Fig. 3.24). The presence of Ca2+/CaM acted in a 

cumulative manner with the stimulating effects of the T406A mutation on Cmk2 

catalytic activity, resulting in a 3.70-fold increase in the amount of MBP 
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phosphorylated by 6His-Cmk2T406A relative to that phosphorylated by Ca2+/CaM-

activated WT (Fig. 3.24C and D) and a 9.73-fold increase relative to that 

phosphorylated by WT (in the absence of Ca2+/CaM) (Fig. 3.24B and D). In 

conclusion, the phosphorylation-mimicking mutation T406D prevented Cmk2 from 

achieving the enhanced catalytic activity exhibited by the 6His-Cmk2T406A mutant. 

This result strongly suggests that autophosphorylation at Thr406 is likely to play an 

important role in the inhibition of Cmk2 exogenous kinase activity in vitro. 

Furthermore, the finding that the catalytic behaviour of 6His-Cmk2T406D most closely 

resembled that of WT in the presence and absence of Ca2+/CaM implies that 

autophosphorylation of Thr406 may occur constitutively and independently of 

Ca2+/CaM activation.  

 

3.8.1.2 Mutations in the putative autoregulatory region of 

Cmk2 

In the present study, two residues located within the putative autoregulatory 

domain of Cmk2 were detected phosphorylated in vitro; candidate Kns1 target Ser328 

and autophosphorylation site Thr316 (Fig. 3.22C).  

The candidate Kns1 target site Ser328 is a non-conserved residue located within 

a region that corresponds, based on sequence similarity, to the CaM binding domain 

of mammalian CaMKII145. In particular, Ser328 is embedded within a segment 

(residues 324-334) that shows a remarkably high degree of evolutionary 

conservation; yet, Ser328 itself is substituted by a non-phosphorylatable polar residue 

in CaMKII (Asn294; in isoform ) (Fig. 3.22C). Importantly, the segment containing 

Asn294 in mammalian CaMKII (291-297) plays a key role in the stabilization of the 

autoinhibitory state of CaMKII prior to Ca2+/CaM-activation131,138. Hence, if the 

sequence containing Ser328 had a similar function in Cmk2, introduction of a 

negative charge at position 328 (S328E) would be expected to disrupt a possible 

inhibitory association of this sequence with the catalytic domain. This would, in turn, 

enhance Ca2+/CaM-independent activity, as it occurs when a similar mutation at the 

equivalent position is introduced in CaMKII (N294D)131. That was not the case, as 

6His-Cmk2S328E did not exhibit greater Ca2+/CaM-independent activity than WT 6His-

Cmk2. In fact, 6His-Cmk2S328E exhibited less activity than WT, phosphorylating 0.32-

fold less MBP than WT in the absence of Ca2+/CaM (Fig. 3.25B and D). This result 

shows that a negative charge at position Ser328 significantly decreases the 

Ca2+/CaM-independent exogenous catalytic activity of Cmk2 (p<0.01), implying that 

 99



   Results 

the role of Ser328 phosphorylation might be inhibitory. There were no significant 

differences among the substrate phosphorylation efficiencies of WT, 6His-Cmk2S328A 

and 6His-Cmk2S328E in the presence of Ca2+/CaM, indicating that the 

phosphorylation state of Ser328 is probably irrelevant for Ca2+/CaM-dependent 

exogenous activity. The observation that 6His-Cmk2S328A most closely mimics the 

catalytic behaviour of WT leads to infer that the WT enzyme is probably not 

phosphorylated under assay conditions, favouring the possibility of being Ser328 a 

target site of Kns1.  

Thr316 is a highly conserved residue embedded within sequence RVET316, which 

conforms to the minimal consensus motif for CaMKII kinases (RXXS/T)148. 

Autophosphorylation, upon Ca2+/CaM binding, at the homologous residue Thr286 in 

mammalian CaMKII leads to kinase disinhibition due to the disruption of the docked 

state of Thr286 and concomitant displacement of the pseudosubstrate region from the 

catalytic domain131. Unlike mammalian CaMKII, Cmk2 exhibits remarkable basal 

kinase activity in the absence of Ca2+/CaM. Yet, Cmk2 shows a 2.5- to 4-fold 

increase in kinase activity in the presence of Ca2+/CaM (Fig. 3.24-26 and refs. 
144,147), suggesting that some kind of regulatory mechanism exists that restrains full 

active Cmk2 until Ca2+/CaM-mediated stimulation occurs. For these reasons, it was 

conceivable to speculate that phosphorylation of Thr316 could play a role in Cmk2 

regulation similar to the role of Thr286 in mammalian CaMKII. Thus, if Cmk2 were 

catalytically constrained by a regulatory segment in a similar way as mammalian 

CaMKII is prior to Ca2+/CaM activation, introduction of a negative charge at position 

316 would be expected to disrupt the autoinhibitory state and increase Ca2+/CaM-

independent exogenous kinase activity. However, mutation of Thr316 to Asp (T316D) 

did not increased, but decreased by 0.13-fold, Ca2+/CaM-independent exogenous 

kinase activity (Fig. 3.25), arguing against the presumption that autophosphorylation 

at Thr316 plays an activating role in Cmk2. In the presence of Ca2+/CaM, 6His-

Cmk2T316D exhibited 0.13-fold less substrate phosphorylation efficiency than WT. 

Altogether, these data indicate that Thr316 autophosphorylation does not seem to 

significantly contribute to the regulation of the catalytic activity of Cmk2 toward 

exogenous substrates in vitro.  
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Figure 3.25. Effects of phosphorylation site mutations in the presumptive regulatory domain on 

the in vitro phosphorylation activity of Cmk2 toward the exogenous substrate MBP. 

(A) In vitro phosphorylation reactions were performed by incubating exogenous substrate MBP (Myelin 

basic protein) with [-32P]ATP and either wild-type (WT) 6His-Cmk2 (pNM38) or one of the indicated 

phosphorylation site 6His-Cmk2 mutants as described in legend to fig. 3.24. The phosphorylation site 

mutations encoded by the assayed CMK2 mutants are indicated above each lane and are as follows: 

T316A (pNM75), T316D (pNM76), S328A (pNM59) and S328E (pNM39). Aliquots of the reaction 

mixtures were taken prior to [-32P]ATP addition and resolved by SDS-PAGE followed by either 
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Coomassie staining or Western blotting (WB) with -His antibodies. Top: Coomassie staining; Middle: 

-His WB; Bottom: 32P autoradiograph. The phosphorylation assays shown are representative of three 

independent experiments. The migration positions of molecular mass marker proteins are indicated in 

kDa and protein species are indicated by arrows. All samples were analysed on the same gel. (B) and 

(C) Quantification of MBP phosphorylation by 6His-Cmk2 phosphorylation sites mutants was performed 

as described in fig. 3.24. p values are indicated with respect to the wild-type value as follows; *p≤0.05 

(n=3), **p≤0.01 (n=3). Columns; means, bars; standard deviation.  

 

3.8.1.3 Mutations in the ATP binding domain of Cmk2 

Residues Tyr47 and Thr52 are located within subdomain I of the kinase domain of 

Cmk2 (Fig. 3.26). This subdomain comprises the ATP-binding pocket, where key 

residues anchor and orientate the ATP molecule for the phosphotransfer reaction5. I 

speculated that phosphorylation at these sites may conceivably affect ATP-binding, 

as introduction of negative charges through phosphorylation, or mutation to an 

acidic residue, may possibly disrupt the hydrophobic environment of the ATP-

binding pocket that is necessary to enclose the adenine ring of the nucleotide. 

Residue Tyr47 limits subdomain I at its NH2-terminus and is highly conserved 

among Cmk1, Cmk2 and murine CaMKII protein kinases145. Mutation of Tyr47 to Phe 

(Y47F) decreased MBP phosphorylation by 0.26-fold in the absence Ca2+/CaM and 

by 0.17-fold in the presence of Ca2+/CaM compared to the extent of MBP 

phosphorylation by WT (Fig. 3.26). Mutation of Tyr47 to Asp (Y47D) yielded an 

enzyme that was highly insoluble, yielding a very low concentration of 6His-

Cmk2Y47D enzyme preparation. As 6His-Cmk2Y47D could not be adjusted to the same 

concentration range as the other mutants, it was excluded from the assay. 

Thr52 is conserved within Cmk1 and Cmk2 and replaced by an acidic residue in 

isoforms ,  and  of murine CaMKII145. It is situated next to the highly conserved 

glycine-rich motif (T52LGXGXXG) (Fig. 3.22B), which clamps the non-transferable 

phosphates of the ATP molecule309. In the absence of Ca2+/CaM, 6His-Cmk2T52A 

phosphorylated 0.29-fold less MBP than WT, whereas, by contrast, the 6His-

Cmk2T52D mutant phosphorylated a 1.16-fold more MBP than WT. Both 6His-

Cmk2T52A and 6His-Cmk2T52D mutants were able to phosphorylate MBP to a similar 

extent as WT does in the presence of Ca2+/CaM (Fig. 3.26). This result indicates 

that autophosphorylation at Thr52 might be required to reach the Ca2+/CaM-

independent substrate phosphorylation efficiency levels of wild-type Cmk2 in vitro. 
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Figure 3.26. Effects of phosphorylation site mutations in the ATP-binding domain on the in vitro 

phosphorylation activity of Cmk2 toward the exogenous substrate MBP. 

(A) In vitro phosphorylation reactions were performed by incubating exogenous substrate MBP (Myelin 

basic protein; 5 µM) with [-32P]ATP and either wild-type (WT) 6His-Cmk2 (pNM38) or one of the 

indicated phosphorylation site mutants as described in legend to fig. 3.24. The phosphorylation site 

mutations encoded by the assayed CMK2 mutants are indicated above each lane and are as follows: 

Y47F (pNM55), T52A (pNM56), T52D (pNM79), T69A (pNM58) and T69D (pNM80). Aliquots of the 

reaction mixtures were taken prior to [-32P]ATP addition and resolved by SDS-PAGE followed by 

either Coomassie staining or Western blotting (WB) with -His antibodies. Top: Coomassie staining; 
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Middle: -His WB; Bottom: 32P autoradiograph. The phosphorylation assay shown is representative of 

three independent experiments. The migration positions of molecular mass marker proteins are 

indicated in kDa and protein species are indicated by arrows. All samples were analysed on the same 

gel. (B) and (C) Quantification of MBP phosphorylation by 6His-Cmk2 phosphorylation sites mutants 

was performed as described in fig. 3.24. p values are indicated with respect to the wild-type value as 

follows; *p≤0.05 (n=3), **p≤0.01 (n=3). Columns; means, bars; standard deviation.  

 

Thr69 limits subdomain II at its NH2-terminus and is conserved among Cmk1, 

Cmk2 and murine CaMK II (isoforms  and) (Fig. 3.22B)5,145. In the absence of 

Ca2+/CaM, both Thr69 mutations significantly (p<0.01) decreased the exogenous 

catalytic activity of Cmk2 toward MBP. Concretely, 6His-Cmk2T69D phosphorylated 

0.57-fold less MBP than WT. 6His-Cmk2T69A was even less efficient, 

phosphorylating 0.73-fold less MBP than WT (Fig. 3.26). This result shows that loss 

of residue Thr69 impairs Ca2+/CaM-independent exogenous kinase activity in vitro. 

Remarkably, both mutants were however able to phosphorylate MBP with 

efficiencies closer to WT levels in the presence of Ca2+/CaM. In particular, 6His-

Cmk2T69A phosphorylated 0.30-fold less MBP than WT. 6His-Cmk2T69D 

phosphorylated 0.17-fold more MBP than WT (Fig. 3.26). This indicates that both 

Thr69-mutants undergo a ~6-fold stimulation in the presence of Ca2+/CaM. Yet, only 

the phosphorylating-mimicking 6His-Cmk2T69D mutant was capable of reaching, and 

even surpassing, the substrate phosphorylation efficiency of WT (Fig. 3.26). This 

finding highlights the importance of a negative charge at position 69 for Ca2+/CaM-

dependent exogenous kinase activity in vitro, implying that the autophosphorylation 

of Cmk2 at Thr69 may be necessary for proper exogenous kinase activity upon 

Ca2+/CaM activation.   

 

3.8.2 Effect of Cmk2 mutagenesis on cell survival 

under high pH stress 

The inherent complexity of protein kinase regulation demands the analysis of 

the effects of a particular mutation in a physiological context to reveal the relative 

contribution of the particular residue in the final biological output. Taking into 

account that only a fraction of the total amount of protein is normally found 

phosphorylated at any specific time310, overexpression of a mutant protein lacking a 

crucial phosphorylation site or carrying a phosphate-mimic should result in an 

enhancement of phenotype, which would shed light on the functionality of that 

residue. Therefore, to evaluate the relevance of the herein identified phosphorylation 
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sites in the in vivo regulation of Cmk2, I analysed the phenotype associated with the 

overexpression of different GFP-Cmk2 mutants containing non-phosphorylatable or 

phosphorylation-mimicking residues of cells exposed to alkaline stress (pH 8 and 

8.2).  

Based on the finding that the effects of Cmk2 on cell tolerance to alkali depend 

solely on its catalytic activity (Fig. 3.20), I reasoned that the extent of cell growth at 

high pH that is associated to the overexpression of a particular Cmk2 mutant should 

indicate whether the corresponding mutation exerts activating or inactivating effects 

on catalytic activity. Thus, I assessed the growth of cmk2 cells overexpressing 

wild-type GFP-Cmk2 or a phosphorylation site mutant Cmk2 on high pH medium 

(pH 8 and 8.2) and classified the mutations as “activating” if these elicited wild-type 

alkaline sensitivity (Fig. 3.27A, row 3), or “inactivating” if these resulted in the similar 

increased alkaline tolerance as that conferred by CMK2 gene deletion (Fig. 3.27A, 

row 2).  

Single point mutations of either candidate target Ser328 or autophosphorylation 

site Thr69 to Ala (S328A, T69A) were classified as “inactivating” because cells 

overexpressing either GFP-Cmk2S328A or GFP-Cmk2T69A displayed increased 

alkaline tolerance (Fig. 3.27A, rows 12 and 8), most closely resembling the growth 

behaviour of cmk2 cells. By contrast, mutations of either Ser328 to Glu (S328E) or 

Thr69 to Asp (T69D) elicited wild-type alkaline sensitivity and were therefore 

classified as “activating” (Fig. 3.27A, rows 13 and 9). This result indicates that Cmk2 

requires a phosphate-mimic at residue Ser328 and Thr69 to behave like the wild-type 

protein in conditions of high pH stress.  

Mutation of autophosphorylation site Thr406 to Ala (T406A) was “activating”, as 

this mutation gave rise to the wild-type alkaline sensitive phenotype (Fig. 3.27A, row 

16). Conversely, the phosphorylation-mimicking mutation T406D was classified as 

“inactivating” owing to its ability to enhance alkaline tolerance (Fig. 3.27A, row 17). 

These data argue in favour of an inhibitory role for the autophosphorylation at Thr406 

in the function of Cmk2 in vivo.  
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Figure 3.27. Mutational analysis reveals phosphorylation sites relevant for Cmk2 to confer 

tolerance to alkali.  

(A) Overexpression of Cmk2 carrying Y47D, T69A or T406D mutations causes the same increase on 

alkaline tolerance as CMK2 deletion. Wild-type (WT; sUB62) and cmk2 (yNM414) cells harbouring a 

copper-inducible high-copy empty plasmid (PCUP1-1-GFP; pNM67) and cmk2 cells harbouring plasmid 

(PCUP1-1-GFP) encoding either wild-type CMK2 (pNM73) or CMK2 carrying one of the following 

phosphorylation site mutations: Y47F (pNM101), Y47D (pNM125), T52A (pNM102), T52D (pNM126), 

T69A (pNM116), T69D (pNM127), T316A (pNM112), T316D (pNM128), S328A (pNM110), S328E 

(pNM129), S379A (pNM111), S379E (pNM130), T406A (pNM113) and T406D (pNM131) were grown 

overnight on SC-Trp at 30 °C to log-phase. Discernible antagonistic growth effects caused by pairs of 

mutants for a particular phosphorylation site are highlighted with a white lines. Letter “A” denotes the 

growth behaviour of cmk2 cells overexpressing either WT or Cmk2 mutants that mimic WT (i.e., 

carrying “activating” mutations). Letter “I” denotes the increased alkaline tolerance conferred by either 

CMK2 gene deletion or overexpression of Cmk2 carrying “inactivating” mutations. Cells were then 

diluted, spotted onto SC-Trp (pH 6.5), SC-Trp containing 15 mM Hepes (pH 8.0) or 17.5 mM Hepes 

(pH 8.2) supplemented with copper and monitored after incubation at 30 °C for 3 days as described in 

figure 3.19. (B) Summary of the effects phosphorylation site mutations on Cmk2 in vivo and in vitro 

function. Two asterisks reflect the effects on catalytic activity or ability to restrict growth at high pH 

caused by the WT protein or a mutant mimicking WT. If these effects are decreased by a mutation, 

these are denoted with one asterisk, whereas, if these effects are increased by a mutation, these are 

denoted with three or four asterisks depending on the extent of the increase. Discernible antagonistic 

growth effects at high pH or significant changes in catalytic activity caused by pairs of mutants for a 

particular phosphorylation site are boxed, where effects resembling those caused by WT are 

highlighted in grey, those reflecting a decrease in WT function (in vitro or in vivo) in red and those 

eliciting increased WT activity in green. 
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Comparison between the in vivo and in vitro mutational data revealed clear 

correlation between the effects caused by the Thr406-mutations on the in vitro 

catalytic activity and on the ability to restrict alkaline tolerance in vivo of Cmk2 (Fig. 

3.27B). Similarly, the effects caused by the Thr69-mutations on the ability of Cmk2 to 

restrict alkaline tolerance in vivo correlated with those on Ca2+/CaM-dependent 

catalytic activity but not with those on Ca2+/CaM-independent catalytic activity. By 

contrast, the effects caused by the Ser328-mutations on the in vitro Ca2+/CaM-

dependent catalytic activity of Cmk2 were opposed to their effects on the ability to 

restrict alkaline tolerance in vivo of Cmk2.  

Mutations of either candidate target Ser379 or autophoshorylation site Thr316 to 

either Ala or to a phosphorylating-mimicking residue did not elicit discernible 

antagonistic effects in cell growth at high pH (Fig. 3.27A, rows 10, 11, 14 and 15). 

Hence, these results indicate that the phosphorylation status of these residues does 

not notably affect Cmk2 function under such conditions. Any mutation of residue 

Tyr47 or residue Thr52 resulted in the alkaline tolerance phenotype of cmk2 cells, 

which indicates that loss of either Tyr47 or Thr52 impairs Cmk2 function in vivo (Fig. 

3.27A, rows 4-7). 

The correct expression of GFP-Cmk2 carrying mutations in residues Tyr47, Thr69, 

Thr406 and Ser328 was confirmed under standard conditions by Western blot analysis 

using the -GFP antibody (Fig. 3.28). As there were no substantial differences 

between the protein levels of wild-type Cmk2 and the mutants, it can be inferred that 

the increased cellular tolerance to alkali elicited by overexpression of Cmk2 carrying 

the “inactivating” mutations is more likely to correspond with an impairment in Cmk2 

function rather than with a failed expression of the mutants. 

 

 

Figure 3.28. Protein levels of wild-type Cmk2 and Cmk2 carrying mutations on residues Tyr47, 

Thr69 and Thr406 are similar in vivo.  

Western blot of whole-cell extracts from cmk2 (yNM414) cells harbouring empty copper-inducible 

high-copy plasmid (pNM67) encoding either wild-type CMK2 (pNM73) or CMK2 carrying one of the 

following phosphorylation site mutations: Y47F (pNM101), Y47D (pNM125), T69A (pNM116), T69D 

(pNM127), S328A (pNM110), S328E (pNM129), T406A (pNM113) and T406D (pNM131). Cells were 

grown overnight to log-phase in SC-Trp and induced with 100 µM CuSO4 for 30 min. Then, whole-cell 
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extracts were prepared and analysed by SDS-PAGE, followed by Western blotting with -GFP and -

Pgk1 antibodies as described in Methods 2.2.4. Although intervening lanes were spliced out, all 

samples were analysed on the same gel. Pgk1 was detected to confirm equal protein loading.  

 

The alleviating genetic interaction between the KNS1 and CMK2 genes 

indicated that their encoded proteins may conceivably act on the same pathway 

under high pH stress (pH 8.0) (Fig. 3.17). Furthermore, the increased ability of 

Cmk2 to restrict alkaline tolerance when overexpressed in the absence of KNS1 

relative to that exhibited in the presence of Kns1 suggested that Kns1 could inhibit 

Cmk2 activity in vivo (Fig. 3.21). Hence, I questioned whether loss of Kns1 

distinctively affected the ability of the Cmk2 phosphorylation site mutants to 

modulate alkaline tolerance. To test this, I examined the alkaline sensitivity 

phenotype elicited by the overexpression of wild-type GFP-Cmk2 or Cmk2 mutated 

at the phosphorylation sites that seemed more likely to have relevant roles in the 

regulation of Cmk2 under high pH stress i.e., Thr69, Ser328 and Thr406, in either the 

kns1cmk2 or the cmk2 background. No remarkable differences were observed 

among the growth patterns of cells overexpressing the Ser328- and Thr406-mutants 

upon KNS1 loss (data not shown). However, loss of KNS1 reversed the 

“inactivating” effect caused by the T69A mutation (Fig. 3.29, row 3 vs 5), rendering 

GFP-Cmk2T69A able to restrict alkaline tolerance like the wild-type kinase. Thus, it 

can be inferred that Kns1 negatively regulates Cmk2 in vivo function if Cmk2 is not 

phosphorylated on Thr69. cmk2kns1 cells overexpressing GFP-Cmk2 were more 

sensitive to alkali than those overexpressing GFP-Cmk2T69A (Fig. 3.29, row 2 vs 5), 

indicating that the wild-type kinase is functionally more active than the T69A mutant. 

This suggests that the T69A mutant might be downregulated in the absence of Kns1 

by additional factors.  

 

 

Figure 3.29. The effects of T69A mutation on Cmk2 depends on the presence of Kns1. 

cmk2 (yNM414) and cmk2kns1 (yNM454) cells harbouring a copper-inducible high-copy plasmid 

empty (PCUP1-1-GFP; pNM67) or plasmid (PCUP1-1-GFP) encoding either wild-type CMK2 (pNM73) or 

CMK2 carrying one of the following phosphorylation site mutations: T69A (pNM116), T69D (pNM127) 
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were grown overnight on SC-Trp at 30 °C to log phase. Cells were then diluted and spotted onto SC-

Trp (pH 6.5), SC-Trp containing 15 mM Hepes (pH 8.0) or 17.5 mM Hepes (pH 8.2) as in figure 3.19. 

All SC-Trp plates were supplemented with 100 µM CuSO4 to induce GFP-Cmk2 expression. Cell 

growth was monitored after incubation at 30 °C for 3 days (pH 6.5),  6 days (pH 8.0) or 7 days (pH 8.2).  

 

3.9 Analysis of the intracellular localization 

of Cmk2 

The localization of Cmk2 within the cell has not been yet determined. To test 

whether Cmk2 coincides with Kns1 in the same intracellular compartment, I 

examined the intracellular localization of GFP-Cmk2 by fluorescence microscopy. I 

hypothesized that Kns1 could conceivably regulate Cmk2 function by altering its 

localization. Therefore, I further examined the localization of GFP-Cmk2 in cells 

lacking Kns1.  

3.9.1 Cmk2 localizes to the cytoplasm 

In an attempt to avoid the caveats that protein overexpression has on 

localization studies, I first aimed at assessing the localization of GFP-Cmk2 

expressed under the control of its own promoter. However, GFP-Cmk2 expressed at 

endogenous levels was not detectable by fluorescence microscopy (data not 

shown). In order to enable cell culture in rich media and facilitate visualization of 

GFP-Cmk2, I created cells expressing N-terminally GFP-tagged Cmk2 from the 

genomic locus under the control of the PCUP1-1 promoter (described in Methods 

2.2.2.4). Under standard conditions, GFP-Cmk2 was found diffusely distributed 

throughout the cytoplasm and excluded from the nucleus, as shown by the lack of 

overlap with the Hoechst staining (Fig. 3.30A). GFP-Cmk2 overexpressed from the 

high-copy vector showed cytoplasmic localization in cells cultured in minimal media, 

indicating that changes in growth media do not affect Cmk2 localization (Fig. 3.30A). 

Importantly, the localization of GFP-Cmk2 was not affected by the absence of KNS1 

(Fig. 3.30B), indicating that, under non-stressed conditions, Cmk2 localization is 

independent of Kns1. 
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Figure 3.30. GFP-Cmk2 localizes to the cytosol. 

(A) Wild-type Cmk2 genomically tagged at its N-terminus with GFP (GFP-Cmk2) and expressed under 

the control of the copper-inducible promoter (PCUP1-1) localizes to the cytosol and is excluded from the 

nuclear compartment, as shown by the lack of colocalization with the Hoechst stain. Cells carrying the 

genome-integrated GFP-Cmk2 fusion protein (yNM555) were grown overnight in YPD to mid-log phase 

at 30 °C, whereas cmk2 cells (yNM414) carrying a high-copy plasmid driven by the PCUP1-1 promoter 

(pNM73) where grown in selective synthetic medium (SC-Trp). Cells were induced with 100 µM CuSO4 

for 60 min, stained with DNA dye (Hoechst 33258) for 5 min and visualized by fluorescence 

microscopy. Merge indicates the fusion between the GFP (green) and Hoechst (blue) fluorescence 

images. Right panels: Nomarski differential-interference contrast (DIC) images. Fluorescence at the 

cell periphery in the Hoechst panels is an occasional artifact of the Hoechst staining. (B) Cells carrying 

the copper-inducible GFP-Cmk2 genomic fusion protein in the presence (yNM555; left panels) or 

absence of Kns1, (kns1, yNM574; right panels) show cytosolic GFP-Cmk2 localization. Cells were 

grown in YPD and induced as described for yNM555 in (A). Fluorescence (GFP) and differential 

interference contrast (DIC) images are shown. 

 

3.9.1.1 Exposure to osmotic stress induces 

accumulation of Cmk2 in sub-cytoplasmic patchlike 

structures 

Many kinases, including mammalian CaMKII kinases, are often targeted to 

distinct subcellular compartments in order to guarantee the appropriate 

phosphorylation of their substrates142,311–313. In particular, cytoplasmic signalling 
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proteins involved in stress response pathways are occasionally targeted to 

determined subcellular compartments to ensure signalling fidelity314. The ability of 

Cmk2 to influence cellular tolerance to high pH stress raised the possibility of 

intracellular Cmk2 repositioning in response to these stress conditions. However, 

examination of cells overexpressing genomically GFP-tagged Cmk2 subjected to 

alkaline stress (as described in 3.4.3) did not reveal noticeable changes in GFP-

Cmk2 distribution (Fig 3.31B).  

It is well-established that the intracellular localization of CaMKII kinases in 

higher eukaryotes may vary upon a variety of external stimulus128. I hypothesized 

that stress conditions that stimulate Cmk2 protein expression may also alter the 

localization of Cmk2, which may be influenced by Kns1. Thus, I set out to assess 

Cmk2 localization under different stress environments. The greatest fold increase in 

endogenous CMK2 expression has been reported to occur after 5 to 30 min of 

exposure to high levels of extracellular Ca2+ (5 fold increase) and after hypo- and 

hyperosmotic shock (2.65 fold increase)158,315. Therefore, I chose these conditions 

to challenge cells overexpressing genomically GFP-tagged Cmk2 and assessed 

GFP-Cmk2 localization. Induction of hyperosmotic stress by addition of sorbitol to 

the growth media (1M final concentration) resulted in the accumulation of GFP-

Cmk2 in discrete cytosolic punctate structures that were mainly concentrated near 

the plasma membrane, at bud tips and bud neck regions (Fig. 3.31C and G). A 

similar punctate pattern of distribution was observed under hypoosmotic conditions 

(Fig. 3.31E). By contrast, addition of calcium (100 mM of CaCl2) to the media 

followed by 30 min of incubation did not elicit noticeable changes in the diffuse 

cytosolic distribution of Cmk2 (Fig. 3.31D).  

Cells carrying a vector expressing only GFP did not show a punctate pattern 

upon osmotic stress, indicating that the onset of fluorescence signal at peripheral 

foci exclusively depends on Cmk2 (Fig. 3.31F). Furthermore, deletion of KNS1 did 

not affect the ability of GFP-Cmk2 to concentrate in peripheral foci, which shows 

that Kns1 is not required for the redistribution of GFP-Cmk2 upon hyperosmotic 

stress (Fig. 3.31G).  
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Figure 3.31. GFP-Cmk2 remains cytosolic under high pH stress but it accumulates in discrete 

punctate structures near the plasma membrane upon osmotic stress independently of Kns1.  

Cells carrying the copper-inducible GFP-Cmk2 genomic fusion fusion protein (yNM555) show 

localization of GFP-Cmk2 in the cytosol when cultured under unstressed conditions (A) and under high 

pH stress (B). Upon induction of hyperosmotic stress (1 M sorbitol) for 10 minutes, GFP-Cmk2 was 

observed to accumulate in punctate structures near the plasma membrane (C) in the same cells as in 

(A). Hypoosmotic stress (wash with distilled water followed by 10 min incubation) (E), but not the 

addition of calcium to the medium (100 mM of CaCl2) followed by 30 min incubation (D), induced 

accumulation of Cmk2 in discrete puncta in the same cells as in (A). (F) Cells carrying an empty vector 

expressing the GFP alone were subjected to hyperosmotic stress as in (A) and did not show a punctate 

localization pattern for GFP. (G) Accumulation of GFP-Cmk2 in punctate structures is independent of 

Kns1. Cells carrying the copper-inducible GFP-Cmk2 genomic fusion protein in the presence (yNM555; 

left panels) or absence of Kns1, (kns1, yNM574; right panels) show a similar punctate pattern of GFP-

Cmk2 localization. Representative examples of GFP accumulation at bud emergence sites (B), tips (T) 

and mother-bud neck (N) are indicated by arrows. Cells were grown overnight to mid-log phase at 30 

°C in YPD and subjected, or not (in A), to the indicated stress as described above prior to visualization 

by fluorescence microscopy. In all cases, cells were induced with 100 µM CuSO4 for 60 min prior to 

visualization. Fluorescence (GFP) and differential interference contrast (DIC) images are shown. 

 
The stress-induced localization of GFP-Cmk2 in punctate foci that accumulated 

in areas of polarized growth (bud emergence, tips and mother-bud necks) was 

reminiscent of the characteristic localization of cortical actin patches. Cortical actin 

patches are discrete cytoskeletal bodies wrapped around plasma membrane 

invaginations, which are known to be involved in endocytosis and membrane traffic, 
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and also suggested to constitute possible sites of osmosensing316–318. To test 

whether the punctate distribution of GFP-Cmk2 corresponded with that of cortical 

actin patches, staining of F-actin with Texas Red Phalloidin was performed in cells 

overexpressing genomically GFP-tagged Cmk2. As shown in fig. 3.32, GFP-Cmk2 

showed partial colocalization with actin patches. In particular, most overlap of GFP 

signal with the actin staining was observed near bud emergence sites and at the 

mother-bud neck. However, GFP-Cmk2 was also found in several punctate 

structures devoid of actin staining and, vice versa, various actin cortical patches 

lacked GFP-Cmk2 signal (Fig. 3.32).  

 

 

Figure 3.32. GFP-Cmk2 partially colocalizes with cortical actin patches.  

Cells carrying the copper-inducible and genome-integrated GFP-Cmk2 fusion protein (yNM555) were 

grown overnight to log-phase, fixed and stained with Texas Red Phalloidin to visualize F-actin as 

described in Methods 2.2.6.3. Cells were either immediately harvested (A) or subjected to 

hyperosmotic stress (1 M Sorbitol for 10 min) (B) before preparation for F-actin staining. Merge 

indicates the fusion between the GFP (green) and Texas Red Phalloidin (Red) fluorescence images 

where areas of overlapping localization appear in yellow. Note that cells exposed to hyperosmotic 

stress show a reduction of polarized actin cables, as previously described319. Arrows indicate examples 

of colocalization of cortical actin patches with GFP-Cmk2 fluorescence.  

 

In summary, these findings show that the cytosolic localization of 

overexpression GFP-Cmk2 remains unaltered upon alkaline stress but changes in 
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response to osmotic stress, which elicits the translocation of GFP-Cmk2 to punctate 

foci that partially colocalize with cortical actin patches and other patchlike structures.  

 

3.9.2 Effect of Cmk2 mutagenesis on localization 

Lastly, I investigated whether catalytic inactivation or mutation of the identified 

phosphorylation sites affects Cmk2 intracellular localization.  

3.9.2.1 Catalytic inactivation does not affect Cmk2 

localization 

Under unstressed conditions, the inactive kinase mutant GFP-Cmk2D171A 

showed uniform cytoplasmic localization that was identical to that exhibited by the 

wild-type protein (Fig. 3.33A, upper panels). Next, I asked whether the catalytic 

activity of Cmk2 was required for patchlike distribution of Cmk2 upon osmotic stress. 

After exposure of cells to hyperosmotic stress, GFP-Cmk2D171A was translocated to 

patchlike structures as efficiently as the wild-type protein (Fig. 3.33B, upper panels). 

This result shows that the stress-stimulated accumulation of Cmk2 in punctate 

structures does not depend on its intrinsic kinase activity.  

3.9.2.2 Cmk2 localization is not affected by the mutation of 

any of the identified phosphorylation sites  

In order to determine whether there is a correlation between the phosphorylation 

state of Cmk2 and changes in its subcytoplasmic localization, the localization of 

Cmk2 mutants was examined (Fig. 3.33). None of the mutations caused noticeable 

changes in the punctate localization pattern of GFP-Cmk2 upon hyperosmotic 

stress, indicating that repositioning of GFP-Cmk2 does not depend on the 

phosphorylation state of any of the sites investigated. As the catalytic inactive Cmk2 

mutant was still capable of accumulating in cortical punctate structures (Fig. 3.33), it 

can be concluded that neither autophosphorylation nor phosphorylation of any 

downstream substrate of Cmk2 plays a role in the regulation of cortical targeting.  
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Figure 3.33. Subcellular localization of the GFP-Cmk2 phosphorylation site mutants. 

(A) GFP-Cmk2 phosphorylation site mutants localize to the cytosol in the absence of hyperosmotic 

stress. cmk2 cells (yNM414) were transformed with a copper-inducible high-copy plasmid (PCUP1-1-

GFP) encoding wild-type CMK2 (pNM73), catalytically inactive CMK2D171A (pNM36) or one of the 

phosphorylation site CMK2 mutants carrying the following single point mutations: Y47F (pNM101), 

Y47D (pNM125), T52A (pNM102), T52D (pNM126), T69A (pNM116), T69D (pNM127), T316A 

(pNM112), T316D (pNM128), S328A (pNM110), S328E (pNM129), S379A (pNM111), S379E 

(pNM130), T406A (pNM113) and T406D (pNM131). Cells were grown overnight on selective synthetic 

medium (SC-Trp) at 30 °C to log-phase, induced with 100 µM CuSO4 for 60 min and visualized by 

fluorescence microscopy. (B) The phosphorylation site mutations do not affect accumulation of GFP-

Cmk2 in peripheral punctate structures upon hyperosmotic stress. The same cells as in (A) were grown 

overnight to log phase in SC-Trp and then used to inoculate rich culture media (YPD). After overnight 
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culture in YPD to log phase, cells were induced with 100 µM CuSO4 for 60 min and subjected to 

hyperosmotic stress (1M Sorbitol for 10 min) prior to visualization by fluorescence microscopy.  

 

 



Discussion 

4. Discussion 
 

4.1. Kns1 controls alkaline pH stress 

tolerance in yeast.  

In this study, I show that deletion of the yeast LAMMER kinase confers 

hypersensitivity to alkaline pH stress. For yeast cells to withstand external 

alkalinization, a myriad of processes must function properly171–175, making it difficult to 

discern the physiological defects that underlie the alkaline sensitivity phenotype of 

kns1. Yet, two scenarios can be imagined. In the first one, kns1 could be defective in 

a housekeeping process that is particularly necessary for survival under alkaline stress. 

Here I show that the decreased ability of kns1 cannot be accounted for, at least, by 

global defects in splicing (discussed below). In addition, neither vacuolar acidification, a 

process well-known to be crucial for growth at high pH, nor vacuolar protein transport 

(via CPY/MVB pathways) is impaired in kns1 cells (Fig. 3.4 and 3.5). In a second 

scenario, kns1 cells could be unable to invoke the appropriate adaptive response 

(discussed in 4.4.1). A role for Kns1 in alkaline pH stress adaptation would be 

consistent with previous reports indicating that KNS1 gene expression is rapidly 

induced by 4-fold in response to alkaline stress173. 

Consistent with the finding presented herein that Kns1 function is required for 

optimal growth under high pH stress, recent genome-wide mapping of the quantitative 

trait loci (QTLs) conferring alkaline tolerance has identified KNS1 among the genes that 

contribute to the ability of yeast cells to thrive under high pH stress320. However, the 

alkaline pH sensitivity of kns1 cells has gone unnoticed in previous genome-wide 

screens for deletion mutant strains sensitive to high pH171,172,233. The missed detection 

of bona fide genes relevant for alkaline tolerance in high-throughput phenotypic 

approaches is not rare. One notorious example is provided by the fact that the vma1 

mutant and several mutants lacking other components of the vacuolar H+-ATPase were 

not reported as high pH sensitive by Giaever et al. (2002)171 nor by Hillenmeyer et al. 

(2008)233, despite their demonstrated hypersensitivity to alkaline pH conditions182,188. 

Remarkably, both kns1 and vma1 mutants showed in those two studies a similar 

sensitivity score, which lay notably below the cut-off for significance. By contrast, in the 

present study, these mutants displayed evident poor growth at high pH conditions (Fig. 

3.4). The differences between the experimental conditions used in those approaches 

 117



Discussion 

and in the present study may account for the discrepancy. For instance, the use of 

buffers with different buffering capacities (e.g, HEPES vs Tris-HCl), the use of liquid vs 

solid growth media or the different medium pH used171,172,233.  

4.1.1. Kns1 is mainly located in the nucleus 

The finding that Kns1 remains predominantly localized in the nucleus under 

unstressed and alkaline pH stress conditions (Fig. 3.6 and 3.12) raises a main 

question: which nuclear process is consistent with the role of Kns1 in the cellular 

adaptation to alkaline stress?  

There are several nuclear processes that are well-known to have a major impact in 

the adaptive response of yeast to external alkalinization. For instance, the transcription 

of stress-responsive genes173,175,176,191. Recent reports have implicated the fission yeast 

Lkh1 and mammalian CLK2 LAMMER kinases in the regulation of transcription 

factors47,60,66. It is thus conceivable that a similar role for Kns1 might be conserved in 

yeast. Alternatively, Kns1 could be implicated in rRNA-related processes, as 

suggessted by the recent finding that the bulk of proteins associated with Kns1 (13 out 

of 18) reside within the nucleus and function in processes principally related to rRNA 

processing and ribosome biogenesis298. It is noteworthy that the transcription of rRNA 

genes has been shown to be highly regulated in response to environmental 

challenges321, which would harmonize with the role of Kns1 in alkaline stress tolerance. 

In addition, the splicing and nuclear export of alkaline pH stress-related transcripts 

are further processes taking place within the nucleus that could conceivably affect high 

pH tolerance. The majority of LAMMER kinases analysed to date have been reported 

to reside within the nucleus, where they principally modulate splicing processes36–39,46–

48,51,76. The ability of Kns1 to interact in vitro, like its eukaryotic counterparts, with 

mammalian SR splicing factors together with the existence of a SR-like protein in yeast 

that is required for the efficiency of pre-mRNA splicing prompted me to speculate the 

possible involvement of Kns1 in splicing34,95. Data presented here show that kns1 

cells do not globally accumulate non-spliced transcripts (Fig. 3.3), advocating against a 

general role of Kns1 in splicing. The possibility of Kns1 affecting the splicing of other 

transcripts cannot be completely ruled out given that a limited number of transcripts 

were assayed in the present study. The development of specialized genome-wide 

splice-sensitive microarrays e.g., the one created by Clark et al. (2002)241, will be 

needed in the future to analyse in greater detail splicing efficiency in kns1 cells. 

A role for Kns1 in the nuclear export of mRNA might be also feasible. Recently, a 

high-throughput mass spectrometric analysis of protein complexes has reported the 
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association of Kns1 with Gbp2 and Hrb1298, which are two SR-like proteins implicated 

in the cytoplasmic delivery of mRNA93,94. Hrb1 and Gbp2 share the basic domain 

structure of canonical SR proteins94,322; hence, the ability of Kns1 to interact with these 

proteins is in line with its ability to interact in vitro with mammalian SR splicing factors34. 

Future studies aimed at verifying these associations and investigating their 

physiological significance may provide key insights into Kns1 nuclear function.  

Examination of the localization of GFP-Kns1 overexpressed from a high-copy 

plasmid further revealed the accumulation of GFP-Kns1 in discrete foci that appeared 

to be located within, or close to, the nucleus (Fig. 3.12). A potential explanation for the 

variance observed in GFP-Kns1 intranuclear distribution may relay on the different 

expression systems used. Since my attempts to visualize endogenously expressed 

GFP-Kns1 were unsuccessful, I cannot conclude whether Kns1 is actually 

homogeneously distributed throughout the nucleoplasm or rather specifically 

concentrated in foci when expressed at physiological levels. Likewise, it remains to be 

answered whether the cytoplasmic localization of GFP-Kns1 observed when 

overexpressed from the genomic locus (Fig. 3.6) and in previous localization 

studies77,323 is de facto biologically relevant or artificially caused by protein 

overexpression e.g., as a result of the saturation of the nuclear import machinery. 

Resolving this question will require the analysis of Kns1 localization via biochemical 

means e.g., using a subcellular fractionation approach.  

In conclusion, despite the need for examination under endogenous expression 

conditions, the presented localization data for Kns1 clearly provide a valuable clue 

worth to be further explored experimentally: the implication of Kns1 on a nuclear 

process that is implicated on the adaptation of yeast to high pH stress.  

4.2 Identification of the in vitro 

autophosphorylation sites of Kns1 by mass 

spectrometry 

This work presents the first purification procedure that yields an active and full-

length recombinant Kns1 enzyme preparation optimal for in-solution kinase assays and 

phosphorylation analysis by mass spectrometry (MS). The use of this preparation 

successfully allowed the identification of eleven phosphorylation sites on Kns1: nine 

resulting from autophosphorylation (Table 3.2) and two occurring only in the presence 

of Cmk2 (Table 3.3). Mutational analysis of Thr562, one of the newly identified 
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autophosphorylation sites, revealed the importance of this site for Kns1 function in vivo 

(discussed in 4.3.2).  

The consensus sequence of Kns1 is yet to be experimentally determined. The 

characterization of Kns1 phosphorylation specificity using degenerate peptide libraries 

has been precluded in previous studies owing to the low activity of a recombinant 

truncated form of Kns1 on exogenous peptides mixtures or proteins34. Examination of 

the sequences surrounding the identified autophosphorylation sites revealed that the 

residue preferences for Kns1 conform to three of the five criteria reported to describe 

the optimal consensus sequence of the LAMMER kinase counterparts of Kns134,42. 

That is, Kns1, like Drosophila DOA, human CLK2 and tobacco PK12 LAMMER 

kinases, seems to generally favour basic residues at position P-4 and P-3, an 

uncharged polar environment at the P-2 position and hydrophobic residues at the P+1 

position (Fig. 3.10). Residues flanking Kns1 in vitro autophosphorylation sites Thr183, 

Ser185, Thr562 Ser583 and Ser601 most closely match these preferences. Remarkably, 

Thr183, Ser185, Thr562 and Ser583 have been detected in vivo in recent mass 

spectrometric studies295,298. It is thus very likely that these sites constitute 

physiologically relevant autophosphorylation sites of Kns1.   

Previous phosphoamino acid analysis of a truncated form of Kns1 consisting of the 

catalytic domain (65 KDa) revealed that phosphoserine constituted 51.5%, 

phosphothreonine 30.2% and phosphotyrosine 18.3% of the total autophosphorylation 

activity33. In the present work, five phosphoserines and four phosphothreonines have 

been identified by MS on the full-length kinase (Table 3.1). This outcome may indicate 

that phosphoserine and phosphothreonine residues constitute the most abundant 

phosphorylated residues of Kns1, as no phosphopeptide enrichment techniques were 

used prior to MS analysis. This possibility would be consistent with the data obtained 

from the phosphoamino acid analysis33. Remarkably, no phosphotyrosine was 

detected. Failure to detect phosphotyrosine might be due to several methodological 

constraints, for instance, the low abundance of phosphotyrosine in Kns1, which might 

fall below the detection limit of the MS analysis method. Another constraint to consider 

is the incomplete sequence coverage of the MS analysis, which in the presented study 

ranged between 40 - 70 % (Dr. G. Dittmar, personal communication). This limited 

coverage is commonly caused by unfavourable peptide sizes, ion suppression effects 

and/or insufficient ionization efficiencies for individual peptides324–326. In addition, 

differences between kinase purification methods, in vitro kinase assay conditions 

and/or the phosphorylation analysis approach used in this work and by Lee et. al. 

(1996)33 may account for the variance of the outcomes. However, it is important to 

stress that the phosphorylation pattern obtained with the truncated form of Kns1 might 
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not be an accurate reflection of that obtained herein using the full-length kinase. For 

instance, tyrosine phosphorylation could be restrained in the full-length kinase. 

Conversely, a truncated Kns1 might also exhibit artefactual tyrosine phosphorylation as 

a result from an abnormal conformation or residue exposure.  

4.3 Insights into the mode of Kns1 action  

In this study, I provide first insights into the mode of Kns1 action in vivo. 

Experimental evidence indicates the following; (i) Kns1 confers alkaline tolerance 

through catalytic and non-catalytic mechanisms, (ii) the contribution of either of these 

mechanisms depends on the magnitude of the stress and (iii) the newly identified 

autophosphorylation site Thr562 is crucial for the role of Kns1 in alkaline tolerance.  

4.3.1 Kns1 regulates alkaline stress tolerance through 

catalytic and non-catalytic mechanisms. 

The catalytic activity of Kns1 plays a crucial role in the ability of the kinase to 

modulate the alkaline pH stress tolerance of yeast. This was evidenced by the finding 

that, unlike overexpression of GFP-KNS1 (hereafter termed KNS1), overexpression of 

catalytically inactive KNS1D440A was not capable of increasing the tolerance of kns1 

cells to mild alkaline stress (pH 7.8). Remarkably, contrary to the effects of KNS1 

overexpression, the effects of KNS1D440A overexpression gradually become more 

favourable for survival as pH increases, leading to partial restoration of wild-type 

alkaline tolerance at pH 8.0. In medium at pH 8.2, the effects on alkaline tolerance 

elicited by KNS1 and KNS1D440A overexpression reverted, being KNS1D440A the kinase 

form that boosts tolerance to the greatest extent (Fig. 3.11). These data demonstrate 

that Kns1 not only uses its intrinsic kinase activity but also non-catalytic mechanisms to 

increase alkaline tolerance. This finding would be in line with the regulatory role 

proposed for the non-catalytic domain of LAMMER kinases in higher eukaryotes36,40,50. 

It is also consistent with the finding that the non-catalytic domain of the LAMMER 

kinase DOA fulfills separate and essential roles in Drosophila327. Like DOA, Kns1 

possesses an extended N-terminal domain. Therefore, it would be interesting to 

investigate in the future whether the non-catalytic properties of Kns1 are encompassed 

within the non-catalytic domain. Non-catalytic properties may comprise protein-binding 

properties such as target sequestration, scaffolding, anchoring or the ability to 

oligomerize.  
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The degree of external alkalinity seems to determine which of both mechanisms is 

responsible for conferring tolerance and to what extent. This strongly suggests that 

Kns1 is specifically regulated by a signal elicited by the alkaline stress and that it may 

function in an adaptive response signalling pathway. Further studies will be needed to 

establish how Kns1 exert its effects on alkaline tolerance and which alkali-induced 

factors regulate Kns1 function in vivo. Although the molecular bases of these effects 

are yet to be characterized, I speculate that Kns1 acts on downstream factors that 

perform condition-specific activities using either its catalytic activity or its non-catalytic 

qualities e.g., scaffolding properties. Hence, there might be additional Kns1 effectors 

that are regulated via mechanisms distinct from phosphorylation.  

An alternative explanation is conceivable for the phenotypical effects elicited by 

KNS1D440A overexpression. This involves an inherent limitation of the overexpression 

approach; the indirect effects induced by the sequestration of interacting proteins. 

Inactivation of the kinase was achieved through the mutation of the invariant aspartyl 

residue Asp440, which corresponds to the putative catalytic base. This type of mutation 

has been reported to cause a stabilization of the enzyme-substrate complex in other 

studies. For instance, in the yeast protein kinase A (Tpk2), mutation of Asp210 (Asp166 in 

mammalian PKA) causes a large, 370-fold decrease in kcat; however, it also causes a 

small increase in Km for the peptide substrate and ATP270. Taking this into account, it 

cannot be completely ruled out that the effects of KNS1D440A overprexpression may 

result from a functional depletion of Kns1 substrates or interactors due to a “trapping” 

mechanism. This possibility could be tested in future studies using truncated forms of 

Kns1 consisting of either the catalytic or the non-catalytic domain alone. 

4.3.2 Autophosphorylation site Thr562 is crucial for the 

in vivo function of Kns1  

Data presented herein support a key role for residue Thr562 in modulating Kns1 

function in vivo. The evidence comes from the finding that the effects of replacing 

Thr562 with Ala (T562A) mostly resemble the effects of a catalytically inactivating 

mutation (D440A) in the ability of Kns1 to modulate alkaline tolerance (Fig. 3.11). Akin 

to Kns1D440A, Kns1T562A cannot increase alkaline tolerance like the active kinase when 

overexpressed in cells exposed to an external pH of 7.8. Kns1T562A was even less 

capable than Kns1D440A of rescuing the growth of kns1 cells at pH 8.0. In conclusion, 

these results clearly show that the inability to autophosphorylate on Thr562 notably alter 

the biological function of the kinase, even to a greater extent than loss of catalytic 
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activity. Hence, it can be inferred that Thr562 phosphorylation may be required by Kns1  

to behave like the catalytically active kinase in vivo.  

Residue Thr562 is located within the amino acid sequence of the LAMMER motif 

(EHMAMMQRINGT562); therefore, I speculated that Thr562 phosphorylation might be 

linked to the role of this signature motif. For the LAMMER kinases of tobacco plants 

(PK12) and fission yeast (Lkh1), this motif is necessary for catalytic activity and 

subcellular localization45,47. In the present work, mutation T562A did not seem to affect 

the intrinsic catalytic activity in vitro nor localization of Kns1 (Fig. 3.11-12). This could 

mean that the role of the LAMMER motif is either not functionally connected to Thr562, 

not conserved in the budding yeast, or both. The fact that the LAMMER motif is less 

conserved in the budding yeast advocates against complete functional conservation 

throughout evolution (Fig. 1.1)29. Moreover, Thr562 lies between two conserved residues 

within the LAMMER motif but is absent in other members of the family, evidencing that 

regulation through autophosphorylation at Thr562 is exclusive of the budding yeast 

LAMMER homologue. The main question remains as to how the T562A mutation alters 

the activity of Kns1 within the cell. It is conceivable that the absence of phosphorylation 

at position 562 elicits the down-regulation of Kns1 in the cellular context e.g., by 

altering binding affinities toward external regulators or autoinhibitory regions. 

Elucidation of the exact molecular mechanism underlying Kns1 regulation through 

Thr562 autophosphorylation will require structural and biochemical characterization of 

the enzyme.  

4.4 Functional links between Kns1 and 

Cmk2  

Previous high-throughput screening for kinase substrates proposed Cmk2 as a 

candidate in vitro substrate for Kns1102. In this work, I unequivocally confirmed Cmk2 in 

vitro phosphorylation by Kns1 using catalytically inactive Cmk2 and provide genetic 

data supporting that both proteins may act in concert on a common pathway, in which 

Kns1 could conceivably downregulate Cmk2 to confer alkaline tolerance. Mutational 

analysis of Cmk2 further revealed that autophosphorylation site Thr69 might be required 

to prevent possible inhibition by Kns1 in vivo under specific high pH stress conditions. 

Based on these results, I propose Kns1 as a plausible down-regulator of Cmk2 during 

alkaline stress and discuss about the feasibility of being Cmk2 a bona fide substrate for 

Kns1.  

 123



Discussion 

4.4.1 Genetic interplay between KNS1 and CMK2 genes. 

A genetic interaction reveals the extent to which the function of one gene is 

influenced by the presence of a second gene. The analysis of the genetic interaction 

between the KNS1 and CMK2 genes with respect to the cellular response to high pH 

stress and high levels of exogenous oleate presented in this study provides evidence 

for the functional interplay of both proteins in vivo (described below and depicted in Fig. 

4.1).  

At an external pH of 7.8, KNS1 and CMK2 did not interact genetically, indicating 

that both proteins modulate the tolerance to mild alkaline stress separately and 

independently (Fig. 3.17B). At pH 8.0, both genes displayed an alleviating genetic 

interaction, which commonly arises from pairs of gene products that are in the same 

complex and/or function in the same pathway284,285,328–330. This result indicates that 

Kns1 and Cmk2 possibly converge in a single pathway to define alkaline tolerance at 

pH 8.0. Remarkably, alleviating interactions have been recently shown to be 

particularly enriched among kinases-substrate pairs331. Hence, the finding of an 

alleviating interaction between KNS1 and CMK2 together with the demonstration that 

Kns1 is capable of phosphorylating Cmk2 in vitro, and vice versa, strengthens the 

possibility that the kinase-substrate interaction occurs in vivo. 

The functional relation between Kns1 and Cmk2 in medium at pH 8.0 could be 

explained by the following hypothetical model: if it is assumed that downregulation of 

Cmk2 by Kns1 is important for growth at pH 8.0, then loss of the inhibition through 

KNS1 deletion (kns1) should result in less alkaline pH tolerance due to the increased 

activity of Cmk2. Conversely, the removal of Cmk2 should disable the detrimental 

effect conferred by the lack of Kns1, explaining the less severe growth defect exhibited 

by kns1cmk2 cells. This model would be consistent with the negative regulatory 

model of Avery and Wasserman278, which states that when two mutations lead to 

opposite phenotypic effects i.e., Px ≠ Py, and one suppresses the effect of the other 

i.e., one is epistatic to the other, it is the downstream mutation that is epistatic to the 

upstream mutation278. As Cmk2 is epistatic to Kns1, Cmk2 should act downstream of 

Kns1. Epistasis analysis has been used to accurately infer the order of action of 

pathway components291,332. However, it is not a completely reliable method for 

determining the order of gene action in cases where partial suppression occurs 

because it could indicate either molecular bypass or counteraction333. Here it was 

observed that loss of CMK2 did not completely, but partially, suppressed the alkaline 

sensitive phenotype of kns1. One explanation for this partial suppression is that the 

pathway for adaptation to alkaline pH regulated by Kns1 converges not only with a 

 124



Discussion 

Cmk2-dependent pathway, but also with other pathways, as suggested by the finding 

that loss of KNS1 renders cells more sensitive to high pH stress in the absence of 

Cmk2 (Fig. 3.21). A second explanation is that Kns1 may exert, not only upstream, but 

also further roles downstream of Cmk2. Because the possibility of being Cmk2 

upstream of Kns1 cannot be completely ruled out, further work will be required to 

confirm the model in which Kns1 is positioned upstream of Cmk2 in the regulatory 

hierarchy. Nonetheless, the weight of the alleviating genetic interaction and the rather 

specific phosphorylation of Cmk2 by Kns1 (discussed in 4.4.2) lead me to advocate in 

favour of the possibility that Cmk2 is regulated at pH 8.0 by Kns1 in vivo. 

At pH 8.2, the KNS1 and CMK2 genes displayed an aggravating genetic 

interaction. Interactions of this kind have been reported to often identify pairs of genes 

whose products buffer one another and impinge on the same cellular 

process105,279,285,328–330. Owing to the antagonistic nature of Kns1 and Cmk2 effects, this 

aggravating interaction cannot be interpreted as both proteins acting redundantly on 

the same process. Based on the observation that Kns1 was unable to confer alkaline 

tolerance in the wild-type strain, but was able to do that in the cmk2 background, it 

can be reasoned that either Cmk2 counteracts the positive effects of Kns1 by directly 

inhibiting Kns1 or by acting as a major repressor of a downstream target of Kns1 under 

severe alkaline pH stress conditions (pH 8.2). It has been recently reported that pairs of 

kinases that act on the same substrate genes commonly display aggravating 

interactions between themselves331. Therefore, a scenario could be envisioned in which 

both proteins act separately on a common downstream effector that controls adaptation 

to severe alkaline pH stress. Note that CMK2 deletion has positive effects on growth 

even in the absence of KNS1, which may implicate that Cmk2 negatively regulates 

other favorable processes, or stimulate processes that are detrimental for survival at 

pH 8.2. 

The finding that in medium containing oleate the KNS1 and CMK2 genes display 

an alleviating genetic interaction implies that Kns1 and Cmk2 may also function in a 

common linear pathway to regulate the ability of yeast to cope with high levels of 

oleate. Oleate sensitivity has been recently hypothesized to underlie the inability to 

adapt to fluctuations in membrane composition334. Consistent with this, oleate sensitive 

mutants unable to cope with a surplus of unsaturated fatty acids have been shown to 

direct oleate to phospholipid synthesis, thereby increasing membrane proliferation100. 

Interestingly, situations that lead to plasma membrane stretch or proliferation trigger 

activation of the cell-wall integrity (CWI) signalling pathway193, which, in turn, has been 

related to the alkaline stress response pathway177,189,335. In particular, exposure to high 

pH stress has been proposed to challenge cell-wall integrity, resulting in the specific 
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activation of the CWI pathway177. Hence, the finding that Kns1 and Cmk2 genetically 

interact under these interconnected stress conditions reinforces the notion that both 

proteins functionally converge in a common adaptive stress response pathway, which 

might conceivably overlap with the CWI pathway (further discussed in 4.7).   

 

 

 

Figure 4.1. Proposed model for the functional interplay between Kns1 and Cmk2 in the regulation 

of alkaline pH stress tolerance and tolerance to exposure to high levels of exogenous oleate based 

on genetic analysis.  

See text (4.4.1) for detailed description. 
 

 

Altogether, genetic data presented herein underscore the functional interplay 

between Kns1 and Cmk2 in the adaptation of yeast to two interconnected stress 

conditions; environmental alkalinization and exposure to exogenous oleate. 

 

4.4.2 Kns1 phosphorylates Cmk2 in vitro  

The lack of physiological regulatory constraints in an in vitro kinase assay could 

eventually lead to increased promiscuity of the purified recombinant kinases. The 

inability of GST-Kns1 to phosphorylate Pdc1-TAP (Fig. 3.15) and the low activity on 

exogenous peptide mixtures and proteins exhibited by recombinant Kns1 in previous 

studies strongly suggest that Kns1, unlike Cmk2, does not indiscriminately 

phosphorylate proteins in vitro33,34,102,144. Thus, it is conceivable to assume that the in 
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vitro phosphorylation of Cmk2 by Kns1 is rather specific. This notion together with the 

possibility that Kns1 and Cmk2 may functionally converge in a situation of high pH 

stress (pH 8.0) favour the hypothesis stated above that Kns1 conceivably regulates 

Cmk2 by phosphorylation in vivo under pH stress (pH 8.0).  

Mass spectrometric analysis of wild-type and catalytically inactive 6His-Cmk2D171A 

incubated under phosphorylating conditions in the presence and absence of GST-Kns1 

was performed to identify the targets sites of Kns1 on Cmk2. Ser328, Ser354 and Ser379 

were the only residues found to be phosphorylated in wild-type 6His-Cmk2 exclusively 

in the presence of GST-Kns1 (Table 3.2A). This led to the suggestion that these 

residues may constitute possible Kns1 target sites. Yet, the identification of the 

residues phosphorylated by GST-Kns1 in the catalytically inactive 6His-Cmk2D171A was 

necessary to unequivocally validate Ser328, Ser354 and Ser379 as Kns1 target sites. 

Despite considerable efforts, all attempts to identify the phosphorylation sites in the 

6His-Cmk2D171A incubated with GST-Kns1 using mass spectrometry failed. This may 

have been due to e.g., the low stoichiometric phosphorylation of 6His-Cmk2D171A, loss 

of phosphoric acid during sample preparation or incomplete sequence coverage336. 

Autophosphorylation events that require prior phosphorylation or “priming” of 

specific residues by a heterologous kinase are common in the regulation of protein 

kinases337–339. For instance, Akt (Protein kinase B) undergoes autophosphorylation at 

Ser473 exclusively upon previous phosphorylation by PDK-1 (3-Phosphoinositide-

dependent protein kinase)339. Hence, the possibility that Ser328, Ser354 and Ser379 

phosphorylation resulted, not from direct trans-phosphorylation by Kns1, but from 

autophosphorylation e.g., induced upon phosphorylation of Cmk2 by Kns1 at other 

residues, cannot be excluded. Nevertheless, biochemical and functional data from the 

mutational analysis of Ser328 and Ser379 performed in this work together with the 

observed preferences of Kns1 for specific residues (discussed in 4.1.2) provided hints 

on the relevance of these residues in Cmk2 function and their feasibility as targets for 

Kns1 (discussed in 4.5.1).  

4.4.3 Kns1 specifically affects in vivo function of the 

Cmk2 mutant lacking Thr69 autophosphorylation site  

The mutational analysis presented herein reveals the importance of Thr69 

phosphorylation in the autoregulation of in vitro catalytic activity and in vivo function of 

Cmk2. The significant decrease in substrate phosphorylation elicited by both Thr69-

substitutions (T69A or T69D) in the absence of Ca2+/CaM may indicate that either the 

Asp residue does not appropriately mimic the phosphate in the non-activated (by 
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Ca2+/CaM) conformation of the kinase or that this threonine residue is structurally 

required for optimal Ca2+/CaM-independent catalytic activity (Figure 3.26). In any case, 

both Thr69-mutants underwent remarkable activation in the presence of Ca2+/CaM, 

which hints at a possible conformational stabilization induced upon CaM binding. 

Remarkably, only the phosphorylation-mimicking mutant 6His-Cmk2T69D reached the in 

vitro substrate phosphorylation efficiency of wild-type (Fig. 3.26), implying that 

autophosphorylation at Thr69 is likely necessary for Ca2+/CaM-dependent catalytic 

activity. This stimulatory effect observed in vitro correlated with the “activating” effect of 

the T69D mutation on the function of Cmk2 in vivo. Consistently, the T69A mutation 

was inhibitory in vitro and classified as “inactivating” in vivo. Given that the Cmk2T69D 

mutant behaved like its wild-type counterpart both in vitro in the presence of Ca2+/CaM 

and in vivo under high pH stress (Fig. 3.26 and 27), it can be speculated that wild-type 

Cmk2 may be autophosphorylated at Thr69 in these situations. Previous work has 

shown that exposure to alkali provokes a rise in intracellular calcium174. Thus, it can be 

envisaged that Cmk2 is autophosphorylated at Thr69 under high pH stress probably due 

to the Ca2+/CaM-activating conditions brought about by this stress condition174.  

Analysis of the phenotypic effects of mutating Thr69 in cells lacking KNS1 

uncovered the protective role of Thr69 autophosphorylation against Kns1 

downregulation. Overexpression of the GFP-Cmk2T69A mutant did not decrease, like 

overexpression of the wild-type kinase, the tolerance of cmk2 cells to high pH stress 

(Fig. 3.27 and 29). Yet, further deletion of KNS1 (cmk2kns1) reversed this 

behaviour, resulting in a protein GFP-Cmk2T69A that mimicked the wild-type kinase (Fig. 

3.29). This strongly suggests that the presence of Kns1 specifically represses the 

activity of unphosphorylated Cmk2 at position 69 in vivo. Moreover, the finding that 

GFP-Cmk2T69D is functionally independent of Kns1 implies that autophosphorylation at 

Thr69 could prevent downregulation by Kns1.  

Altogether, biochemical and physiological evidence underscore the necessity of a 

negative charge at position 69 for Cmk2 to achieve optimal Ca2+/CaM-dependent 

kinase activity in vitro, emulate the behaviour of the wild-type protein in vivo and 

prevent downregulation by Kns1. Therefore, it can be inferred that, under high pH 

stress conditions, autophosphorylation of Thr69 is required to maintain Cmk2 

functionally active. Whether downregulation of Cmk2T69A function by Kns1 occurs via 

phosphorylation or other non-catalytic mechanisms remains to be elucidated.  
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4.5 Cmk2 in vitro phosphorylation sites and 

their potential physiological relevance 

This study reports the first mapping of 19 in vitro phosphorylation sites on the yeast 

Ca2+/CaM-dependent kinase Cmk2 by mass spectrometry (Table 3.2). Mutational 

analysis of two potential Kns1 target sites and five autophosphorylation sites provided 

key insights into the potential roles of these sites on the regulation of Cmk2 activity 

(discussed in detail below). The proposed roles for the most relevant sites are 

summarized as follows: 

 Phosphorylation of Thr328 inhibits Ca2+/CaM-independent activity in vitro . It has 

opposed effects in vivo, possibly due to cellular effectors. It may conceivably be 

mediated by Kns1. 

 Phosphorylation of Ser379 inhibits Ca2+/CaM-independent activity in vitro. It does 

not seem to alter the role of Cmk2 in alkaline stress. This phosphorylation event is 

evolutionary conserved and physiologically relevant, as it has been detected in vivo 

both in yeast and mammals in previous studies. It may result from autocatalysis 

induced by the presence of Kns1.  

 Autophosphorylation at Thr406 constitutively inhibits Cmk2 catalytic activity in 

vitro independently of Ca2+/CaM activation. It functionally inactivates Cmk2 in vivo 

i.e., it renders Cmk2 unable to restrict alkaline pH tolerance. It does not seem to 

occur under high pH stress. This phosphorylation event has been detected in vivo 

both in yeast and mammals in previous studies. 

 Autophosphorylation at Thr316 does not notably affect substrate phosphorylation 

efficiency in vitro nor seems to play a role in the ability of Cmk2 to restrain alkaline 

tolerance.   

 Autophosphorylation at Thr69 is stimulatory and required for Ca2+/CaM-

dependent activity and to display wild-type behaviour in vivo under high pH stress. 

It may prevent downregulation by Kns1. 

 Autophosphorylation at Thr52 is stimulatory and required for Ca2+/CaM-

independent but not for Ca2+/CaM-dependent catalytic activity. Residue Thr52 is 

necessary for Cmk2 to display wild-type behaviour in vivo under high pH stress. 
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4.5.1 Mutational analysis of Kns1 candidate target sites 

Ser379 and Ser328 

Ser379 is situated within the divergent C-terminal region of Cmk2 and it is highly 

conserved in mammalian CaMKII kinases (isoforms , ,  and )145. In the absence of 

Ca2+/CaM, the S379A mutation increased the catalytic activity of Cmk2 whereas the 

S379E mutation maintained this activity closer to the WT levels (Fig. 3.24). This result 

strongly suggests a role for Ser379 phosphorylation in the inhibition of the Ca2+/CaM-

independent activity of Cmk2 toward exogenous substrate MBP in vitro. In the 

presence of Ca2+/CaM, none of the Ser379-mutants resembled the behaviour of wild-

type (WT) in terms of in vitro substrate phosphorylation efficiency (Fig. 3.24). This has 

two possible explanations. First, given the enhanced activity of the Cmk2S379A mutant, it 

is remains feasible that actual Ser379 phosphorylation de facto inhibits Ca2+/CaM-

dependent activity but that the Glu residue does not effectively serve as a reliable 

phospho-mimic for the Ca2+/CaM-activated kinase. Second, it is possible that non-

phoshosphorylated Ser379 might be structurally required for normal catalytic function 

under Ca2+/CaM-activating conditions. Remarkably, no distinguishable antagonistic 

effects on the ability of Cmk2 to restrain the growth at high pH were elicited by the 

Ser379-mutations (Fig. 3.27). It is possible that the phosphorylation state of Ser379 in 

particular, or perhaps, Ca2+/CaM-independent activity in general, may not be relevant 

to the role of Cmk2 in alkaline stress tolerance. Alternatively, Ser379 phosphorylation 

could affect the ability of Cmk2 to govern alkaline tolerance only in combination with 

other phosphorylation events. Therefore, simultaneous mutagenesis of multiple 

phosphorylation sites will be needed in the future to unveil possible synergistic effects 

of Ser379 phosphorylation and other phosphorylation events on Cmk2 regulation. Lastly, 

Ser379 phosphorylation may distinctively affect the affinity of Cmk2 towards particular 

substrates i.e., MBP vs physiological targets. 

Although mutation of Ser379 did not cause detectable differences in the growth 

phenotype of cells exposed to alkaline stress, evidence exists in support of the 

biological relevance of Ser379 phosphorylation. This has been provided by the detection 

of Ser379 phosphorylation in vivo by large-scale mass spectrometric analysis of the 

yeast proteome295,297,298. In addition, phosphorylation of Ser319, the homologous residue 

of Ser379 in -CaMKII (isoform 3), has also been detected in human cells300, which 

strongly advocates in favor of a conserved role of this phosphorylation event among 

divergent species.  

Ser328 is a non-conserved residue situated within an amino acid sequence 

(residues 324-334) that is remarkably conserved between yeast Cmk2 and mammalian 
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CaMKII kinases145. Arguing against the presumption that this sequence could be 

involved, like the homologous sequence in CaMKII131,138, in the stabilization of an 

autoinhibited form of the kinase, mutation S328E did not increase, but decreased, 

Ca2+/CaM-independent activity of Cmk2 in vitro (Fig. 3.25). This inhibitory effect caused 

by the S328E mutation in vitro did not correlate with the “activating” effect elicited by 

this mutation in vivo. Likewise, the S328A mutation caused a moderate “inactivating” 

effect in vivo but did not alter the catalytic activity of Cmk2 in vitro. These discordances 

might be explained by the possibility that external factors could specifically alter the 

catalytic properties of the Cmk2 Ser328-mutants in the cellular context. 

The question remains whether Ser328 and Ser379 could be considered feasible 

targets of Kns1. The only residue known to date to be phosphorylated in vitro by Kns1 

on an exogenous substrate is the Ser at position 164 on bovine MBP33. Comparison of 

the sequence containing Ser164 of MBP with the sequence containing Ser328 and Ser379 

of Cmk2 reveals that the properties of the residues surrounding Ser328 conform to a 

greater degree than Ser379 with those of Ser164 on MPB. In particular, basic residues 

are found surrounding Ser164 and Ser328 (at position P-3, P-4 and P+4) whereas Ser379 

is surrounded by acidic and hydrophobic residues (Fig. 4.2).  

 

 

Figure 4.2. Alignment of the sequence containing Ser164 of bovine MBP and the sequences of Cmk2 

containing Kns1 candidate target sites Ser328 and Ser379.   

Using the designation for the phosphorylated residue as P0, the residues on the N-terminal side are 

assigned negative numbers and those on the C-terminal side positive numbers. Amino acid color code: 

basic (blue), acidic (red), polar uncharged non-phosphorylatable (pink), phosphorylatable (polar uncharged 

or hydrophopic; green) and hydrophobic non-phosphorylatable (black).  

  

As wild-type 6His-Cmk2 more closely resembled the phosphorylation mimicking 

mutant 6His-Cmk2S379E than 6His-Cmk2S379A in terms of Ca2+/CaM-independent activity 

(Fig. 3.24), it might be further inferred that the wild-type recombinant enzyme 

undergoes constitutive autophosphorylation at Ser379 in vitro. Conversely, wild-type 

6His-Cmk2 behaved more like 6His-Cmk2S328A than like 6His-Cmk2S328E in the absence 

of Ca2+/CaM. This may indicate that recombinant Cmk2 is not phosphorylated under 

such conditions and that reduced catalytic activity is only elicited by external factors 

i.e., the phospho-mimic mutation (S328E) or trans-phosphorylation by Kns1. Based on 
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these notions, Ser328 seems a more feasible target of Kns1 than Ser379. However, 

assuming the hypothesis that Kns1 inhibits Cmk2 activity under high pH stress through 

the phosphorylation of Ser328, the S328E mutation should have elicited an “inactivating” 

effect in vivo. Since that was not the case, I conclude that Ser328 is not the Kns1 target 

responsible for the downregulation of Cmk2 by Kns1 in vivo, or at least, not the only 

Kns1 target. Importantly, I cannot rule out the possibility that multisite phosphorylation 

by Kns1 of Ser328 and additional target sites, which may be yet to be identified, might 

be necessary to repress Cmk2 activity in vivo.  

4.5.2 Autophosphorylation site within the C-terminal 

domain: Thr406 

The present work uncovers a crucial role of Thr406 phosphorylation in the regulation 

of Cmk2 kinase activity. In particular, it shows that the substitution of Thr406 with a non-

phosphorylatable reside i.e., T406A, causes a 3-4 fold increase in the exogenous 

catalytic activity of Cmk2 while, conversely, a mimic of Thr406 phosphorylation i.e., 

T406D mutation, prevents Cmk2 from exhibiting that maximal activity (Fig. 3.24). The 

fact that wild-type 6His-Cmk2 displays similar substrate phosphorylation efficiency as 

6His-Cmk2T406D suggests that the wild-type protein might be autophosphorylated on 

Thr406 in vitro and, possibly, catalytically repressed. This type of autoregulation appears 

to occur constitutively, as it is independent of external factors (e.g., Ca2+/CaM).  

Physiological evidence supporting the inhibitory role of Thr406 phosphorylation in 

the regulation of Cmk2 activity is provided by the finding that the T406D mutation elicits 

the effects of the catalytic inactivating mutation D171A, or CMK2 deletion, on the ability 

of the kinase to modulate alkaline stress tolerance (Fig. 3.27). Owing to the fact that 

overexpression of GFP-Cmk2 or GFP-Cmk2T406A causes the same phenotypic 

consequences on alkaline tolerance, I deduce that Cmk2 is probably not 

autophosphorylated at Thr406 in such conditions. Therefore, it is likely that Cmk2 

displays its maximal catalytic activity under high pH stress, as inferred by the enhanced 

kinase activity exhibited by 6His-Cmk2T406A in vitro (Fig. 3.24). It can be envisaged that 

a specific phosphatase would be required to dephosphorylate Thr406 and, supposedly, 

activate the kinase in that cellular context. Further work will be necessary to identify the 

extrinsic factors or stimuli that control Thr406 dephosphorylation in vivo.  

Residue Thr406 is conserved among budding yeast Cmk1 and Cmk2, and 

mammalian isoforms  and  of CaMKII, which suggests that constitutive autoinhibition 

through phosphorylation might not be a regulatory mechanism exclusive of yeast Cmk2 

but shared by several members of the CaMKII family. This conjecture is strengthened 
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by the fact that both Thr406 in Cmk2 and the equivalent residue in murine -CaMKII, 

Thr366, have been found to be phosphorylated in vivo302,303,340. The Thr406 residue is 

embedded within the sequence SALT406 located C-terminal to the putative 

autoregulatory domain of Cmk2. This sequence is analogous to the sequence SAIT366, 

which is located within the variable domain IV/V of -CaMKII145. In higher eukaryotes, 

the combination through alternative splicing of ten variable domain exons is 

responsible for the remarkable diversity within the CaMKII kinase family308. These 

variable domains condition isozyme properties such as subcellular targeting to the 

nucleus, plasma membrane or actin cytoskeleton, the binding affinity for CaM, 

substrate specificity and the initial rate of autophosphorylation125,305–307,341–345. Here I 

show that the Thr406-mutations do not seem to affect Ca2+/CaM-dependent activation 

(Fig. 3.24) and do not cause noticeable changes in the subcellular distribution of Cmk2 

(Fig. 3.33). Moreover, the catalytic inhibition caused by the T406D mutation was 

independent of external factors or stimuli. Hence, I propose that Cmk2T406D is probably 

maintained in a low activity state through an intermolecular or intramolecular 

association with, possibly, an autoinhibitory domain. Alternatively, the negative charge 

at Thr406 might favor a conformational state that affects ATP or substrate affinity or 

prevents optimal phosphotransfer. A more detailed kinetic analysis i.e., determination 

of Vmax or Kcat, will be required to elucidate the exact mechanism of inhibition by Thr406 

phosphorylation. Future experiments should be aimed at revealing the structural 

changes that occur in Cmk2 after autophosphorylation and understanding how these 

contribute to catalytic inhibition. 

4.5.3 Autophosphorylation site within the putative 

autoregulatory domain: Thr316 

An important finding of this study is the first identification of Thr316 phosphorylation 

on Cmk2. Residue Thr316 is equivalent to Thr286 of mammalian CaMKII, whose 

phosphorylation is crucial for the acquisition of Ca2+/CaM-independent activity by 

CaMKII135,136,145. Previous studies have indicated that Cmk2, like mammalian CaMKII, 

displays the ability to become Ca2+/CaM-autonomous upon autophosphorylation and 

pinpointed Thr316 as the candidate phosphorylation site accountable for such 

property144,147. The present study shows using mutational analysis that in vitro 

autophosphorylation at Thr316 does indeed occur but that it does not seem to affect 

Ca2+/CaM-independent activity in vitro nor the role of Cmk2 in modulating tolerance to 

high pH conditions. 
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Prior to Ca2+/CaM activation, CaMKII is kept by the regulatory segment in an 

inactive state, in which Thr286 is buried between the surface of the channel formed by 

two -helices of the catalytic domain and the regulatory segment with its side chain 

located at the negative pole of the F helix346. Therefore, as evidenced in previous 

mutational studies of murine CaMKII, introduction of an acidic residue at position 286 

(T286D mutation) inevitably causes its repulsion from the hydrophopic channel, thereby 

disrupting the autoinhibitory interaction between the regulatory and catalytic domains, 

which, in turn, translates into a 7-10% increase in Ca2+/CaM-independent activity 

toward exogenous substrates131,347–349. However, unlike the CaMKIIT286D mutant, the 

6His-Cmk2T316D mutant did not exhibit greater Ca2+/CaM-independent activity than the 

6His-Cmk2T316A mutant (Fig. 3.25). Thus, it is unlikely that Thr316 phosphorylation fulfills 

the same role as the equivalent phosphorylation event in mammalian CaMKII. 

Alternatively, the catalytic domain of Cmk2 may not interact with the regulatory 

segment in the same way as occurs in CaMKII and; therefore, it is possible that the 

T316D mutation (or autophosphorylation at Thr316) is not sufficient on its own to relieve 

potential inhibitory steric constraints and confer Ca2+/CaM-independent activity in the 

yeast kinase.  

It is important to note that, although both CaMKII and Cmk2 become activated by 

Ca2+/CaM, one major difference between both proteins is the degree of activation 

achieved i.e., the fold increase in total catalytic activity. While the basal kinase activity 

of CaMKII is 100-1000 fold lower than the maximal Ca2+/CaM-stimulated value, that of 

Cmk2 is only 2.5 to 8 fold lower than the Ca2+/CaM-stimulated activity (Figure 3.24-

26)144,147. Another difference between Cmk2 and CaMKII is the presence of an 

association domain at the C-terminus of CaMKII responsible for the dodecameric 

arrangement of the holoenzyme, which in Cmk2 is lacking144,149,150. These differences 

may account for the divergence in the mechanisms of autoinhibition used by both 

kinases. 

4.5.4 Autophosphorylation site in the ATP-binding 

domain: Tyr47. 

Perhaps the most intriguing finding of this study concerns the identification of three 

tyrosine autophosphorylation sites on Cmk2 (Tyr47, Tyr41 and Tyr179) (Table 3.2B). This 

implies that Cmk2 exhibits dual-specificity instead of the expected specificity restricted 

to Ser/Thr. Yet, several protein kinases that were initially considered to exclusively 

possess Ser/Thr kinase activity have been also shown to display Tyr kinase activity. 

For instance, casein kinase I and II, glycogen synthase kinase-3/Mck1, Rim11 and 
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Spk1 among others259,350–355. Moreover, dual-specificity has been previously detected in 

another Ca2+/CaM-dependent kinase family member. In particular, a chimeric CaMKII 

protein, consisting of the CaMKII catalytic fragment fused N-terminally to the 

subdomain I of CaMKI, has been shown to autophosphorylate in vitro on Tyr as result 

of an intramolecular reaction356. CaMKII has been also reported to display Tyr 

phosphorylating activity toward the synthetic substrate poly(Glu/Tyr)353. In conclusion, 

these studies in conjunction with the present work support the notion that the ability to 

phosphorylate Tyr in vitro is a conserved property of Ca2+/CaM-dependent protein 

kinases. It thus remains to be determined whether acceptor promiscuity only occurs 

under the non-physiological conditions of the in vitro assays or is de facto biologically 

relevant. Remarkably, the residue equivalent to Tyr47 in -CaMKII, Tyr13, has been 

found to be phosphorylated in the murine brain299. As data presented here show that 

Cmk2 autophosphorylates at a Tyr in the same position in vitro, it can be speculated 

that both phosphorylation events might play a conserved autoregulatory role in both 

CaMKII family members. To confirm this hypothesis in future studies, it will be 

necessary to identify Tyr47 phosphorylation in Cmk2 in vivo and establish whether Tyr13 

results from the autocatalytic activity of -CaMKII. 

Residue Tyr47 is located seven positions upstream of the glycine consensus motif 

of Cmk2, limiting the ATP-binding domain at its N-terminus (Fig. 3.22B). The close 

proximity of Tyr47 to the ATP-binding domain of Cmk2 hints at the possibility that 

autophosphorylation at Tyr47 might inhibit kinase activity by introducing a steric or 

electrostatic hindrance that prevents effective ATP or peptide binding. Inhibition by 

phosphorylation within the ATP-binding domain was initially described for the cyclin-

dependent kinase Cdc2 in S. pombe, which is down-regulated by phosphorylation of a 

conserved tyrosine (Tyr15) located within its glycine motif357–360. Whether mutation Y47D 

reduces catalytic activity remains unknown due to the instability of 6His-Cmk2Y47D, 

which prevented its efficient purification from E. coli. The instability caused by mutation 

Y47D in vitro raises the suspicion that the functional impairment of GFP-Cmk2Y47D 

might be accounted for by the instability of the mutant in vivo. However, this seems 

unlikely, as GFP-Cmk2Y47D was correctly expressed in yeast cells, at least, under 

unstressed conditions (Fig. 3.28). Bulky hydrophobic residues are commonly found in 

the position occupied by Tyr47 in protein kinases5. Therefore, the finding that, not only 

the phosphorylation-mimicking mutation Y47D, but also the Y47F mutation, elicited an 

increase in alkaline tolerance similar to that caused by the catalytic inactivation or 

deletion of the kinase (Fig. 3.20 and 27), suggests a key role for the Tyr47 residue in the 

maintenance of the structural integrity of the ATP-binding domain.  
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The finding that a similar phosphorylation event has been found to occur in vivo in 

-CaMKII299 suggests that Tyr47 autophosphorylation could in fact have a significant 

role in Cmk2. However, it remains possible that the use of Glu as a phosphomimic may 

have prevented the identification of such role. Although acidic residues lacking the 

aromatic ring (Asp and Glu) have been successfully used to mimic phosphotyrosine in 

several studies355,361–363, one major caveat of this approach is the obvious structural 

differences between these residues and Tyr. Future work aimed at elucidating the role 

of Tyr47 autophosphorylation should include the use of a better analogue of 

phosphotyrosine e.g., the chemical compound pCMF (p-Carboxymethyl-l-

phenylalanine)364.  

4.6 Cmk2 localization 

Here I show that GFP-Cmk2 is uniformly localized in the cytosol under standard 

conditions of growth, under high pH stress and exposure to high levels of extracellular 

Ca2+. In addition, I show that, in response to osmotic stress, GFP-Cmk2 rapidly 

translocates to discrete punctate structures that are dispersed throughout the cytosol 

and enriched in areas of polarized growth (Fig. 3.31).  

Localization data indicate that Kns1 and Cmk2 reside in different subcellular 

compartments under standard conditions (Fig 3.6 and 30). Given the genetic and 

biochemical evidence supporting the potential interaction of both proteins in vivo and 

their regulation of the adaptation of yeast to alkaline stress, it was conceivably to 

expect their co-localization under high pH stress. However, I could not observe co-

localization of GFP-Kns1 and GFP-Cmk2. Since Kns1 is capable of directly 

phosphorylating Cmk2 in vitro, it is possible that distinct subcellular 

compartmentalization serves to regulate this phosphorylation event in vivo. Future 

studies should be aimed at investigating the conditions in which Kns1 and Cmk2 may 

eventually coincide in the same compartment.  

Cortical actin patches consist of plasma membrane invaginations to which actin 

and other cytoskeletal bodies associate318. They are complex and dynamic in 

composition (reviewed in 365,366) and their distribution changes dramatically throughout 

the cell cycle and in response to external stimuli318,319,367. Cortical actin patches are 

considered sites of endocytosis368. Among the proteins typically found in, or near, 

cortical patches are cytoskeletal proteins and their regulators, endocytic adaptors and 

scaffolds365,369. At the sites of polarized growth such as bud sites, bud tips and mother-

bud necks, cortical actin patches coincide with other cortical structures that contain 

proteins involved in the establishment of polarity, growth of the cell surface and actin 
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assembly370–372. The finding that GFP-Cmk2-containing punctate structures partly co-

localize with cortical actin patches (Fig. 3.32) suggests a possible interaction of Cmk2 

with cortical actin patches components. In support of this possibility, recent genome 

global interaction studies have identified Cmk2 in protein complexes containing a 

number of cortical actin patch components and endocytic factors including Ede1, Cof1, 

Syp1, Myo2, Myo3, Myo4 and Myo579,80,298. Hence, these proteins may constitute 

possible cortical actin anchors of Cmk2. Like Cmk2, endocytic proteins Ede1 and Syp1 

partly colocalize with cortical actin patches373,374 However, what makes Cmk2 different 

is that its localization is principally induced by osmotic stress. Thus, it would be 

interesting to assess in future experiments whether Cmk2 directly binds any of these 

proteins and, if that were the case, whether these associations occur under normal, or 

only, under stress conditions. Owing to the fact that the mammalian homologue of 

Cmk2, -CaMKII, is capable of associating with F-actin345, it is also possible that Cmk2 

conserves the same property and is thus recruited to cortical patches via an interaction 

with actin.  

Exposure to hyperosmotic conditions elicits the rapid disassembly of the actin 

cytoskeleton319. Efficient recovery from an hyperosmotic shock requires proper 

activation of the high-osmolarity glycerol (HOG) MAP kinase pathway and the 

reorganization of the actin cytoskeleton317,319,375,376. The finding that, in response to 

hyperosmotic shock, Cmk2 is brought to, or near, cortical actin patches, which have 

been proposed to constitute possible sites of osmosensing317,376, suggest that Cmk2 

might play a role in the early steps of HOG signalling pathway or, alternatively, in the 

reassembly of a polarized actin cytoskeleton. 

The ability to alter their localization in response to external stimuli is a common 

feature of CaMKII kinases142,313. This stimuli-induced targeting of Cmk2 to cortical 

patches may have several purposes. It may increase the kinase specificity of Cmk2 

towards specific substrates and/or the sensitivity to second messengers or activators 

e.g., Ca2+ and CaM. In this regard, the repositioning of Cmk2 in polarized cortical 

patches de facto approximates the kinase to the sites where CaM accumulates within 

the cell377,378. 

4.7 Possible functions of Kns1 and Cmk2 in 

yeast: Outlook and future perspectives 

Comprehensive literature curation of genetic and physical interaction data for Kns1 

and Cmk2 together with biochemical and phenotypic data obtained herein suggest the 
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potential involvement of both proteins in a pathway linked to the Slt2 pathway. Large-

scale yeast two-hybrid interaction studies have reported the interaction of Kns1 with 

stress-inducible dual-specificity MAP kinase phosphatase Sdp1, which negatively 

regulates the Slt2 MAP-kinase83. Slt2 is a component of the cell-wall integrity (CWI) 

pathway that has been reported to induce a specific transcriptional response upon 

alkaline stress171,177 and to be necessary for growth at high pH171,172. Importantly, 

quantitative genetic interaction mapping has revealed an aggravating genetic 

interaction between the KNS1 and SLT2 genes, suggesting that both factors may work 

in compensatory pathways331. It also revealed an alleviating genetic interaction 

between the CMK2 and SLT2 genes, suggesting that their gene products may operate 

in a common linear pathway331. A genetic interaction between KNS1 and CMK2 similar 

to that observed here was not reported, possibly because that genetic analysis was 

carried out under standard growth conditions i.e., under unstressed conditions where 

Kns1 and Cmk2 may not functionally interact. Importantly, Cmk2 has been proposed as 

an in vitro candidate substrate for the Slt2 kinase102. These findings altogether raise the 

interesting possibility of Kns1 and Slt2 acting in parallel pathways, which may 

conceivably converge on Cmk2, to ultimately govern adaptation to alkaline pH stress 

(pH 8.0). Hence, I suggest that future studies should be aimed at verifying the 

interaction between Kns1 and Sdp1 and investigating whether it affects Slt2 activity in 

vivo. Moreover, it should be confirmed whether Slt2 de facto specifically 

phosphorylates in vitro Cmk2 and, in that case, whether Kns1 function influences this 

event. Future plans should further include the creation of a combinatorial collection of 

mutants to analyse the hierarchies of regulation and the genetic relations between 

Kns1, Cmk2 and components of alkaline-related stress response pathways (e.g. Slt2-

mediated and calcineurin pathways).  

4.8 Concluding remarks 

An increase in the external pH has dramatic effects on the physiology of the yeast 

cell, disrupting internal pH homeostasis and, in turn, optimal enzyme activity, metabolic 

fluxes, chemical gradients and nutrient acquisition160,161. Ultimately, it leads to viability 

loss170. Hence, a thorough understanding of the players and the mechanisms 

governing the responses of yeast to high pH is of paramount importance for both 

fundamental and applied research. For instance, the ability of fungi to thrive at high pH 

is crucial to fungal pathogenicity in plants, insects and animals379–381. Mutations that 

impair the growth of Candida albicans at high pH conditions have been shown to 

correlate with reduced fungal virulence380. External alkalinity is a key signal that triggers 
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antibiotic biosynthesis in other industrially important fungi species382,383. I describe in 

this study a novel and prominent role of the LAMMER kinase Kns1 and its in vitro 

substrate Cmk2 in the adaptation of yeast to environmental alkalinization. Therefore, 

the implications of my findings may conceivably deliver in the future practical 

applications in the development of novel antifungal therapies and antibiotic production. 

Unicellular organisms that live freely in nature constantly confront sudden and 

abrupt fluctuations of ambient pH. In multicellular organisms, single cells face pH 

pertubations in the extracellular environment under both physiological and pathological 

conditions. For instance, shifts in extracellular pH can be elicited by neurons during 

synaptic transmission but also by pathological conditions such as hypoxia/ischemia, 

epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV (reviewed in 
384–386). Furthermore, changes in extracellular pH have an important impact on the 

ability of tumour cells to metastasize387. Hence, as external pH is a key environmental 

signal to which all living cells must develop effective molecular responses, it can 

therefore be envisioned that similarities may exist between the pathways responsible 

for the ability to endure pH stress from yeast to man. It is thus of utmost interest to 

determine in the future the extent to which the role of Kns1 and Cmk2 in the control of 

high pH tolerance are shared with its counterparts in higher eukaryotes. Given the 

evolutionary conservation of CaM kinases and LAMMER kinases, I anticipate that the 

information uncovered in the yeast kinases will be likely relevant to the function of their 

homologues and may potentially have an impact in medical issues. 
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6. Appendix 
 

6.1 Additional info 

Table 6.1. Summary of Kns1 interactors identified in other studies.  

ORF Name St. Name Description Exp.  Reference 

YIL113W SDP1 

Stress-inducible dual-specificity MAP kinase 
phosphatase, negatively regulates Slt2p MAP 
kinase by direct dephosphorylation, diffuse 
localization under normal conditions shifts to 
punctate localization after heat shock 

TH Uetz P (2000) 

YOL054W PSH1 
Nuclear protein, putative RNA polymerase II 
elongation factor; isolated as Pob3p/Spt16p-
binding protein 

AC Ho Y (2002) 

YDL185W TFP1 

Subunit A of the eight-subunit V1 peripheral 
membrane domain of the vacuolar H+-ATPase; 
protein precursor undergoes self-catalyzed 
splicing to yield the extein Tfp1p and the intein 
Vde (PI-SceI), which is a site-specific 
endonuclease 

AC Ho Y (2002) 

YBR126C TPS1 

Synthase subunit of trehalose-6-phosphate 
synthase/phosphatase complex, which 
synthesizes the storage carbohydrate trehalose; 
also found in a monomeric form; expression is 
induced by the stress response and repressed 
by the Ras-cAMP pathway 

AC Ho Y (2002) 

YLR438W CAR2 

L-ornithine transaminase (OTAse), catalyzes the 
second step of arginine degradation, expression 
is dually-regulated by allophanate induction and 
a specific arginine induction process; not 
nitrogen catabolite repression sensitive 

AC Ho Y (2002) 

YDR510W SMT3 

Ubiquitin-like protein of the SUMO family, 
conjugated to lysine residues of target proteins; 
regulates chromatid cohesion, chromosome 
segregation, APC-mediated proteolysis, DNA 
replication and septin ring dynamics; 
phosphorylated at Ser2 

TH Hannich JT (2005) 

YJL092W SRS2 

DNA helicase and DNA-dependent ATPase 
involved in DNA repair, needed for proper timing 
of commitment to meiotic recombination and 
transition from Meiosis I to II; blocks trinucleotide 
repeat expansion; affects genome stability 

TH Chiolo I (2005) 

YGR037C ACB1 

Acyl-CoA-binding protein, transports newly 
synthesized acyl-CoA esters from fatty acid 
synthetase (Fas1p-Fas2p) to acyl-CoA-
consuming processes; subject to starvation-
induced, Grh1p-mediated unconventional 
secretion 

AC Krogan NJ (2006) 
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YPL209C IPL1 

Aurora kinase subunit of the conserved 
chromosomal passenger complex (CPC; Ipl1p-
Sli15p-Bir1p-Nbl1p), involved in regulating 
kinetochore-microtubule attachments; helps 
maintain condensed chromosomes during 
anaphase and early telophase 

TH Wong J (2007) 

YIL144W TID3 

Component of the evolutionarily conserved 
kinetochore-associated Ndc80 complex 
(Ndc80p-Nuf2p-Spc24p-Spc25p); conserved 
coiled-coil protein involved in chromosome 
segregation, spindle checkpoint activity, 
kinetochore assembly and clustering 

TH Wong J (2007) 

YJR076C CDC11 

Component of the septin ring of the mother-bud 
neck that is required for cytokinesis; septins 
recruit proteins to the neck and can act as a 
barrier to diffusion at the membrane, and they 
comprise the 10nm filaments seen with EM 

TH Yu H (2008) 

YGL173C KEM1 

Evolutionarily-conserved 5'-3' exonuclease 
component of cytoplasmic processing (P) bodies 
involved in mRNA decay; plays a role in 
microtubule-mediated processes, filamentous 
growth, ribosomal RNA maturation, and telomere 
maintenance 

AC Breitkreutz A (2010) 

YOR201C MRM1 
Ribose methyltransferase that modifies a 
functionally critical, conserved nucleotide in 
mitochondrial 21S rRNA 

AC Breitkreutz A (2010) 

YOL041C NOP12 

Nucleolar protein involved in pre-25S rRNA 
processing and biogenesis of large 60S 
ribosomal subunit; contains an RNA recognition 
motif (RRM); binds to Ebp2; similar to Nop13p 
and Nsr1p 

AC Breitkreutz A (2010) 

YPL043W NOP4 

Nucleolar protein, essential for processing and 
maturation of 27S pre-rRNA and large ribosomal 
subunit biogenesis; constituent of 66S pre-
ribosomal particles; contains four RNA 
recognition motifs (RRMs) 

AC Breitkreutz A (2010) 

YOR017W PET127 
Protein with a role in 5'-end processing of 
mitochondrial RNAs, located in the mitochondrial 
membrane 

AC Breitkreutz A (2010) 

YEL055C POL5 

DNA Polymerase phi; has sequence similarity to 
the human MybBP1A and weak sequence 
similarity to B-type DNA polymerases, not 
required for chromosomal DNA replication; 
required for the synthesis of rRNA 

AC Breitkreutz A (2010) 

YLR196W PWP1 

Protein with WD-40 repeats involved in rRNA 
processing; associates with trans-acting 
ribosome biogenesis factors; similar to beta-
transducin superfamily 

AC Breitkreutz A (2010) 

YPL012W RRP12 
Protein required for export of the ribosomal 
subunits; associates with the RNA components 
of the pre-ribosomes; contains HEAT-repeats 

AC Breitkreutz A (2010) 

YMR229C RRP5 

RNA binding protein with preference for single 
stranded tracts of U's involved in synthesis of 
both 18S and 5.8S rRNAs; component of both 
the ribosomal small subunit (SSU) 
processosome and the 90S preribosome 

AC Breitkreutz A (2010) 
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YNL189W SRP1 

Karyopherin alpha homolog, forms a dimer with 
karyopherin beta Kap95p to mediate import of 
nuclear proteins, binds the nuclear localization 
signal of the substrate during import; may also 
play a role in regulation of protein degradation 

AC Breitkreutz A (2010) 

YDR212W TCP1 

Alpha subunit of chaperonin-containing T-
complex, which mediates protein folding in the 
cytosol; involved in actin cytoskeleton 
maintenance; overexpression in neurons 
suppresses formation of pathogenic 
conformations of huntingtin protein 

AC Breitkreutz A (2010) 

YPL093W NOG1 

Putative GTPase that associates with free 60S 
ribosomal subunits in the nucleolus and is 
required for 60S ribosomal subunit biogenesis; 
constituent of 66S pre-ribosomal particles; 
member of the ODN family of nucleolar G-
proteins 

AC Breitkreutz A (2010) 

YJL010C NOP9 

Essential subunit of U3-containing 90S 
preribosome involved in production of 18S rRNA 
and assembly of small ribosomal subunit; also 
part of pre-40S ribosome and required for its 
export into cytoplasm; binds RNA and contains 
pumilio domain 

AC Breitkreutz A (2010) 

YCL011C GBP2 

Poly(A+) RNA-binding protein, involved in the 
export of mRNAs from the nucleus to the 
cytoplasm; similar to Hrb1p and Npl3p; also 
binds single-stranded telomeric repeat sequence 
in vitro 

AC Breitkreutz A (2010) 

YBR142W MAK5 

Essential nucleolar protein, putative DEAD-box 
RNA helicase required for maintenance of M1 
dsRNA virus; involved in biogenesis of large 
(60S) ribosomal subunits 

AC Breitkreutz A (2010) 

YGR090W UTP22 
Possible U3 snoRNP protein involved in 
maturation of pre-18S rRNA 

AC Breitkreutz A (2010) 

YNL004W HRB1 
Poly(A+) RNA-binding protein, involved in the 
export of mRNAs from the nucleus to the 
cytoplasm; similar to Gbp2p and Npl3p 

AC Breitkreutz A (2010) 

YGL120C PRP43 

RNA helicase in the DEAH-box family, functions 
in both RNA polymerase I and polymerase II 
transcript metabolism, involved in release of the 
lariat-intron from the spliceosome 

AC Breitkreutz A (2010) 

1ORF names, standard names and descriptions according to Biogrid/Saccharomyces Genome Database 

(http://www.yeastgenome.org/). AC: affinity copurification. TH: yeast Two-hybrid 

 

6.2 Abbreviations 

 
% v/v   percent per volume 

% w/v   percent per weight 

2-ME   2--mercaptoethanol 

aa   amino acid 

APS   ammoniumpersulfate 

ATP   adenosintriphosphate 
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bp   base pair(s) 

BSA   bovine serum albumin 

C-   carboxy- 

ddH2O  double deionized H2O 

DNA   2’-desoxyribonucleic acid 

DTT   dithiothreitol 

e.g.   exempli gratia (for example) 

ECL   enhanced chemiluminescence 

EDTA   ethylenediaminetetraacetic acid 

ER   endoplasmic reticulum 

et al.   et alii (and others) 

g   gram 

g   gravity 

h   hour(s) 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

i.e.   id est (that is) 

Ig   immunoglobulin 

IP   immunoprecipitation 

IPTG   isopropylthio-ß-D-galactoside 

kb   kilo base pair(s) 

kDa   kilo Dalton 

KOAc   potassium acetate 

l   litre 

LiOAc   lithium acetate 

m   meter 

M   molar (mol x l-1) 

mA   milli Amper 

mg   milligram (10-3 g) 

min   minute(s) 

ml   millilitre (10-3 l) 

mM   millimolar (10-3 M) 

mRNA  messenger RNA 

MYC   c-myc epitope 

N-   amino- 

NaOAc  sodium acetate 

nm   nanometer (10-9 m) 

OD   optical density 
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ORF   open reading frame 

PAGE   polyacrylamide gel electrophoresis 

PCR   polymerase chain reaction 

PMSF   phenyl methyl sulfonyl fluoride 

r.m.p.   rotation per minute 

RNA   ribonucleic acid 

RNase  ribonuclease 

RT   room temperature 

s   second(s) 

SDS   sodium dodecyl sulfate 

TBS   tris buffered saline 

TCA   thrichloroacetic acid 

TEMED  1,2-bis-(dimethylamino)-ethane 

Tris   tris(hydroxymethyl)aminomethane 

U   units 

v/v   volume/volume 

w/o   without 

w/v   weight/volume 

wt   wild-type 

YPD   yeast extract, peptone, dextrose 

μg   microgram (10-6 g) 

μl   microlitre (10-6 l) 

μm   micrometer (10-6 m) 

μM   micromolar (10-6 M) 
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