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Abstract

In this work, we investigate the transport of Brownian particles in confined geo-
metries where entropic barriers play a decisive role. The commonly used Fick-
Jacobs approach provides a powerful tool to capture many properties of entropic
particle transport. Unfortunately, its applicability is mainly limited to the over-
damped motion of point-like objects in weakly corrugated channels.
We perform asymptotic perturbation analysis of the probability distribution in

terms of an expansion parameter specifying the channel corrugation. With this
methodology, exact solutions of the associated stationary Smoluchowski equation
are derived. In particular, we demonstrate that the leading order of the series
expansion is equivalent to the Fick-Jacobs approach. By means of the higher ex-
pansion orders, which become significant for strong channel corrugation, we obtain
corrections to the key particle transport quantities in the diffusion dominated limit.
In contrast to the commonly used Lifson-Jackson formula, these corrections can
be calculated exactly for most smooth and discontinuous boundaries, and they
provide even better agreements with simulation results.
Going one step further, we overcome the limitation of the Fick-Jacobs approach

to curl-free forces (scalar potentials). For this purpose, we study entropic transport
caused by force fields containing curl-free and divergence-free (vector potential)
parts. Based on our methodology, we develop a generalized Fick-Jacobs approach
leading to a one-dimensional, energetic description. As an exemplary application,
we consider the prevailing situation in microfluidic devices, where Brownian parti-
cles are subject to external constant forces and pressure-driven flows. The analysis
of particle transport leads to the interesting finding that the vanishing of the mean
particle current is accompanied by a significant suppression of diffusion, yielding
the effect of hydrodynamically enforced entropic trapping. This effect offers a unique
opportunity to efficiently separate particles of the same size.
Since separation and sorting by size is a main challenge in basic research, we

intend to incorporate the particle size into the Fick-Jacobs approach. Finite par-
ticle size inevitably causes additional forces, e.g., hydrodynamic particle-particle
and particle-wall interactions. We identify the limits for the ratio of particle size to
pore size and the mean distance between particles, for which these forces can safely
be disregarded in experiments. Moreover, we demonstrate that within these limits
the analytic expressions for the key transport quantities, derived for point-like
particles, can be applied to extended objects, too.
We study the impact of the solvent’s viscosity on entropic transport. If the time

scales separate, adiabatic elimination results in an effective, kinetic description
for particle transport in the presence of finite damping. The possibility of such
description is intimately connected with equipartition and vanishing correlation
between the particle’s velocity components. Numerical simulations show that this
approach is accurate for moderate to strong damping and for weak forces. For
strong external forces, equipartition may break down due to reflections at the
boundaries. This leads to a non-monotonic dependence of particle mobility on the
force strength. Finally, we study the impact of boundary conditions on entropic
transport. We show numerically that perfectly inelastic particle-wall collisions can
rectify entropic transport.
In summary, this work shows how experimentally relevant issues such as strong

channel corrugation, sophisticated external force fields, particle size, particle iner-
tia, and the solvent’s viscosity can be incorporated into the Fick-Jacobs approach.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Transport von Brownschen Teilchen
in beschränkten Geometrien, in denen entropische Barrieren auftreten. Die häufig
verwendete Fick-Jacobs Näherung erlaubt eine genaue Beschreibung zahlreicher
Eigenschaften des entropischen Transportes, ist aber nur für die überdämpfte Be-
wegung von Punktteilchen in sich schwach ändernden Kanalstrukturen gültig.
Im ersten Teil der Arbeit bestimmen wir die exakte Lösung für die stationäre

Wahrscheinlichkeitsdichte mittels Entwicklung in einem geometrischen Parameter,
der die Kanalmodulation misst. In der führenden Ordnung, welcher dem Grenzfall
sich schwach ändernden Strukturen entspricht, stimmt unsere Entwicklung mit
der Fick-Jacobs Näherung überein. Insbesondere die höheren Entwicklungsterme
ermöglichen die Berechnung von Korrekturen zu den Transportkoeffizienten in sich
stark ändernden Geometrien. Im Unterschied zur häufig genutzten Lifson-Jackson
Formel lassen sich mit dieser Methode diese Korrekturfaktoren für eine Vielzahl von
Kanalstrukturen exakt berechnen und, wie der Vergleich mit numerischen Simu-
lationen zeigt, können die Transportkoeffizienten damit genauer berechnet werden.
Die Fick-Jacobs Näherung, welche in der Literatur ausschließlich auf konserva-

tive Kräfte (skalare Potentiale) beschränkt ist, kann mit Hilfe unsere Entwicklung
auf komplizierte Kraftfelder, die einen rotationsfreien und divergenzfreien (Vektor-
potential) Anteil besitzen, verallgemeinert werden. Die Genauigkeit der Näherung
testen wir anhand eines Beispiels, dem mikrofluidischen System. Dort wird der
Teilchentransport durch externe Kräfte und Strömungen hervorgerufen. Die Ana-
lyse der Transportkoeffizienten liefert, dass das Verschwinden des Teilchenstroms,
ungeachtet der wirkenden starken Kräfte, mit einer signifikanten Reduktion der
Diffusion einhergeht. Dieser Effekt des hydrodynamisch induzierten entropischen
Einsperrens ermöglicht die effiziente Trennung von Objekten gleicher Größe.
Neben der Trennung gleichgroßer Teilchen, ist das effiziente Sortieren nach Größe

eine der wichtigsten Ziele in der Grundlagenforschung. Daher ist es notwendig den
Einfluss der Teilchengröße in die Fick-Jacobs Näherung zu integrieren. Eine End-
liche Ausdehnung beeinflusst nicht nur die entropischen Barrieren sondern führt
unweigerlich zu zusätzlichen Kräften, z.B., hydrodynamische Teilchen-Teilchen und
Teilchen-Wand Wechselwirkung. Deswegen bestimmen wir die Grenzen für die Teil-
chengröße, für welche die zusätzlichen Kräfte vernachlässigbar sind, und zeigen,
dass die Ergebnisse für die Transportkoeffizienten aus der Fick-Jacobs Näherung
auf solche ausgedehnte Objekte erweitert werden können.
Abschließend untersuchen wir den Einfluss der Viskosität des umgebenen Me-

diums auf den entropischen Teilchentransport. Wenn die Zeitskalen des Systems
separieren, führt adiabatische Eliminierung auch im Falle endlicher Reibung zu ei-
ner Fick-Jacobs ähnlichen Beschreibung. Eine solche Näherung ist unweigerlich mit
der Gleichverteilung der Energien und mit verschwindender Korrelation zwischen
den Geschwindigkeitskomponenten verbunden. Vergleiche mit numerischen Simu-
lationen zeigen, dass diese effektive Beschreibung für moderate bis starke Dämp-
fung und schwache externe Kräfte gültig ist. Für starke Kräfte wird die angenom-
mene Gleichverteilung der Energien infolge von Teilchen-Wand Kollisionen verletzt.
Dies führt zu einer nichtlinearen Abhängigkeit der Teilchengeschwindigkeit und des
effektiven Diffusionskoeffizienten von der Kraftstärke.
Zusammenfassend wird in der Arbeit gezeigt, wie experimentell vorherrschende

Gegebenheiten, z.B., sich stark ändernde Geometrien, komplizierte Kraftfelder,
Teilchenausdehnung, Trägheit oder endliche viskose Reibung, in der Fick-Jacobs
Näherung berücksichtig werden können.
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1. Introduction

“Diffusion is a universal phenomenon, occurring in all states of matter on time scales
that vary over many orders of magnitude, and indeed controlling the overall rates of a
wide variety of physical, chemical, and biochemical processes.” [Kärger and Ruthven,
1992, p. vii]. Unquestionably, effective control of mass and charge transport requires a
deep understanding of the diffusion mechanism involving small objects whose size ranges
from the nano- to the microscale. Thereby, diffusive transport can either be described
in terms of a continuum (macroscopic) description which is given by Fick’s second law
[Fick, 1855] or as a stochastic process accounting for the erratic motion of suspended
microscopic particles. This erratic motion was first systematically investigated by the
botanist Robert Brown [Brown, 1828] almost 200 years ago. In honor of Brown’s
observation1 which “has played a central role in the development of both the foundations
of thermodynamics and the dynamical interpretation of statistical physics” [Hänggi and
Marchesoni, 2005], diffusion of microscopic (Brownian) particles is often referred to as
Brownian motion. In 1905, based on the molecular-kinetic theory of heat, Albert
Einstein provided the link between the underlying microscopic dynamics in suspension
and the macroscopic observable phenomena [Einstein, 1905]. In particular, he derived
a relation between the fluid viscosity and the diffusion constant which was confirmed
by theoretical studies made by William Sutherland [Sutherland, 1905], Marian von
Smoluchowski [von Smoluchowski, 1906], and Paul Langevin [Langevin, 1908]. This
connection, known as the Stokes-Einstein or Sutherland-Einstein2 relation, was later
generalized in terms of the famous fluctuation-dissipation theorem [Callen and Welton,
1951] and by linear response theory [Kubo, 1957]. Although Jean-Baptiste Perrin
[Perrin, 1909] was awarded the Nobel Prize in 1926 for the experimental observation of
Brownian motion, it has taken more than a century till high-resolution time measure-
ments of Brownian motion were technically feasible. These experiments provide direct
verification of the energy equipartition theorem [Li et al., 2010] and show the full
transition from ballistic to diffusive Brownian motion [Huang et al., 2011]. Albeit the
theory of Brownian motion has found broad application in the description of phenomena
in many fields in science [Frey and Kroy, 2005], the original theory was limited to freely
suspended Brownian particles.

1Nevertheless that Brown’s name is associated with the microscopic phenomenon of Brownian motion,
he was not the first one who observed it. In 1784, Jan Ingen-Housz had already been reported the
phenomenon of irregular motion of coal dust particles immersed in a fluid [Ingen-Housz, 1784].

2Abraham Pais points in his Einstein biography “Subtle is the Lord: The Science and the Life of
Albert Einstein” (Oxford University Press, 1982) to the coincidence that the Stokes-Einstein relation
has been obtained independently in 1904 by William Sutherland [Sutherland, 1905]. Therefore,
according to Pais, the relation should be properly called the Sutherland-Einstein relation.
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1. Introduction

In nature, Brownian motion in spatial confinements ranging from the nano- to the
microscale is ubiquitous. Today, there exists a large variety of natural and artificial
confined geometries, e.g., biological cells [Zhou et al., 2008], ion channels [Hille, 2001;
Lindner et al., 2004], nanoporous materials [Beerdsen et al., 2005, 2006], zeolites [Kärger
and Ruthven, 1992; Keil et al., 2000], microfluidic channels [Bruus, 2008; Squires and
Quake, 2005], artificial nanopores [Firnkes et al., 2010; Pedone et al., 2011], and ion-
pumps [Siwy and Fulinski, 2004; Siwy et al., 2005]. In such systems, the geometric
restrictions to the particle’s dynamics result in confined diffusion [Verkman, 2002] and
suppressed Brownian motion [Cohen and Moerner, 2006]. Due to its relevance for the
understanding of molecular biological processes [Alberts et al., 2002] like the transport
of molecules across membranes [Berezhkovskii and Bezrukov, 2005, 2008; Rüdiger and
Schimansky-Geier, 2009] or the binding of diffusing molecules to a reaction partner [Sza-
bo et al., 1980], the fundamental problem of particle transport through micro-domains
exhibiting small openings, also called entropic barriers, has been studied extensively
[Burada et al., 2009, 2008b; Grigoriev et al., 2002; Zwanzig, 1992]. In particular, the
shape of these confinements regulates the dynamics of Brownian particles leading to
transport properties which may significantly differ from the free case [Reguera et al.,
2006]. Hence, a detailed understanding of the complexities of particle transport through
confined geometries is essential for the development, design, and optimization of (i)
shape and size selective catalysis [Corma, 1997], (ii) particle separation techniques
[Howorka and Siwy, 2009; Voldman, 2006], and (iii) artificial nano- and microchannels
[Martin et al., 2005; Sven and Müller, 2003]. In what follows, we briefly address these
systems and their applications:

Zeolites are three-dimensional, nanoporous, crystalline solids with well-defined struc-
tures [Kärger and Ruthven, 1992]. Based on their chemical composition, zeolites form
a long, regular network of cavities (cages) with connecting pores. Especially, they
combine many properties such as a type-specific uniform pore size (∅ ∼ 0.4 − 1.3 nm
[Corma, 1997]), large internal surface area, ion exchange ability, high thermal stability,
etc. As a result, zeolites can not only improve the efficiency of catalytic processes,
including petrochemical cracking, purification, and isomerization, but they can also be
used to separate particles based on size, shape, and polarity. For this reasons, zeolites
are often called molecular sieves [Duke and Austin, 1998; Kärger, 2008].

0.1 1 10 100 1000 10000 nm

K+-ion Albumin Ribosome HIV virus

prokaryotic cells

viruses

silica bead

DNA length10 bp 50 kbp

¸-DNA

Figure 1.1.: Typical dimensions of a number of particles discussed in the introduction.
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The separation and sorting of size-dispersed particles [Cheng et al., 2008; Di Carlo
et al., 2007] is a main challenge in basic research, industrial processing, and in nano-
technology. By particles, we mean micro- or even nanosized particulate matter, inclu-
ding proteins, DNA, viruses, prokaryotic cells, and colloids (see Fig. 1.1). Filtering of
these particles is traditionally performed by means of centrifugal fractionation [Harri-
son et al., 2002], external electric fields, causing electroosmotic [Mishchuk et al., 2009]
or induced-charge electrokinetic flows [Bazant and Squires, 2004], and phoretic forces
leading to acousto- [Petersson et al., 2007], magneto- [Pamme and Wilhelm, 2006],
dielectro- [Gascoyne and Vykoukal, 2002], and electrophoresis [Dorfman, 2010]. Un-
questionably, electrophoretically separating DNA by size is one of the most powerful
tools in molecular biology [Slater et al., 2002; Volkmuth and Austin, 1992] which is
usually performed in gel, “DNA prism” [Huang et al., 2002], or in nano- and micro-
fluidic channels [Eijkel and van den Berg, 2005; Zhao and Yang, 2012].

(b) (d)

(e)

(f)

(a)

Figure 1.2.: Panel (a): Scanning electron micrograph of a cleaved modulated macro-
porous silicon ratchet membrane with an attached colloidal spheres. Reprinted by
permission from Macmillan Publishers Ltd: Nature [Sven and Müller, 2003], copy-
right (2003). (b): Fluorescence micrographs of continuous DNA separation in a
pulsed-field electrophoretic DNA prism, where DNA molecules of different lengths
naturally follow different trajectories. Reprinted by permission from Macmillan
Publishers Ltd: Nature Biotechnol. [Huang et al., 2002], copyright (2002). (c):
Wild-type C. elegans (encircled) crawling in a modulated sinusoidal channel with
amplitude A = 121µm. Reprinted by permission from Macmillan Publishers Ltd:
Biomicrofluidics [Parashar et al., 2011], copyright (2011). (d): Illustration of a
zeolite. By courtesy of NASA Marshall Space Flight Center. (e): Separation of
white blood cells by dielectrophoresis along a rectangular hurdle. Cells below 10µm
move downwards and larger ones move upwards. Reprinted with permission from
Kang et al., 2008 c©Springer Science + Business Media, LLC 2007. (f): Intracellular
view on the heptameric transmembrane pore Staphylococcus aureus α-hemolysin.
Reprinted by permission from Macmillan Publishers Ltd: Science [Song et al., 1996],
copyright (1996).
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1. Introduction

Nowadays, techniques to construct artificial micro- and nanochannels [Kang and
Li, 2009; Martin et al., 2005; Squires and Quake, 2005] are established which make
the development of innovative Lab-on-chip devices feasible [Dittrich and Manz, 2006;
Srinivasan et al., 2004]. These devices perform a continuous sequence of identical
separation operations, for instance, the sieving of healthy cells from deceased (cancer)
or dead cells [Becker et al., 1995; Gascoyne et al., 1997]. Other devices are based on
the realization of entropic ratchets [Chou et al., 1999; Freund and Schimansky-Geier,
1999; Hänggi et al., 2005; Lindner and Schimansky-Geier, 2002; Slater et al., 1997]
which make use of the asymmetric channel profile to transport and separate particles.
In addition to solely sorting objects, revealing the sequence and analysing the structure
of polymers, DNA and RNA molecules via artificial nanopores [Dekker, 2007; Keyser
et al., 2006] have been challenging tasks in recent years. These nanopores use the
fact that each base pair (bp) in a structured polynucleotide exhibits its own distinct
electronic signature which is recorded during the passage through the charged small
opening [Matysiak et al., 2006; Muthukumar, 2001]. A similar mechanism applies if ions
pass through a nanopore where different ionic species generate different ionic currents
[Kosińska et al., 2008; Siwy et al., 2005].

A common characteristic of all these systems is that the volume accessible to a diffusing
particle is restricted by confining boundaries or obstacles. Variations of the structural
shape along the direction of motion imply changes in the number of accessible states
of the particles or, equivalently, lead to spatial variations of entropy. Consequently,
the directed motion of Brownian particles induced by the presence of external driving
forces – entropic transport – is controlled by entropic barriers. These barriers are pro-
moting or hindering the transfer of mass and energy to certain regions. Along with
the progress of experimental techniques, theoretical methods to study the kinetics of
entropic transport have received substantial attention. Clearly, solving the governing
equation for the joint probability density function (PDF) for finding a Brownian parti-
cle at a given position within an arbitrarily shaped channel (boundary value problem)
is a difficult task. Previous studies by Merkel H. Jacobs [Jacobs, 1967] and Robert
Zwanzig [Zhou and Zwanzig, 1991; Zwanzig, 1992] ignited numerous research activities
in this topic, resulting in the development of an approximate description of the diffu-
sion problem – the Fick-Jacobs approach. This approach, in which the elimination of
the transversal degree(s) of freedom leads to an effective one-dimensional, kinetic de-
scription for the longitudinal coordinate, provides a powerful tool to describe particle
transport through corrugated channel geometries [Berezhkovskii et al., 2009; Burada
et al., 2009; Grigoriev et al., 2002; Reguera et al., 2006]. In the developed Fick-Jacobs
equation, spatial variations of the confinements are taken into account by means of the
potential of mean force or the so-called effective entropic potential. The accuracy of
the Fick-Jacobs (FJ) approach has been intensively studied for diffusing particles in
two- [Burada et al., 2008b; Reguera and Rubí, 2001] and three-dimensional channels
[Ai and Liu, 2006; Berezhkovskii et al., 2007; Dagdug et al., 2011] with smooth walls.
Additionally, it has been tested in discontinuous geometries formed by circular cavities
[Berezhkovskii et al., 2010; Cheng et al., 2008], obstacles [Dagdug et al., 2012; Ghosh
et al., 2012a], and in channels with abruptly changing cross-sections [Borromeo and
Marchesoni, 2010; Dagdug et al., 2011; Makhnovskii et al., 2010]. Nevertheless that
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the FJ formalism can provide a highly accurate description, its derivation entails a tacit
requirement, namely, the existence of a hierarchy of relaxation times [Wilemski, 1976].
This hierarchy guarantees the separation of time scales and supports the approximation
that the particle distributions equilibrate much faster in transverse directions than in
the transport (longitudinal-) direction. Since this ansatz neglects the influence of finite
relaxation dynamics, large deviations were found for strongly corrugated confinements
[Burada et al., 2007; Kalinay and Percus, 2008]. In order to improve the accuracy of
the FJ equation, Zwanzig proposed the consideration of a spatially dependent diffusion
coefficient which substitutes the constant diffusion coefficient present in the common
FJ equation [Zwanzig, 1992]. This idea is equivalent to an imposed artificial separation
of time scales. Later, the ansatz was supported by heuristic arguments [Reguera and
Rubí, 2001] and operator projection techniques [Kalinay and Percus, 2006]. However,
in the presence of external forces the time scales may not separate and thus the equili-
bration ansatz may get violated. By analyzing the different time scales involved in the
problem, Burada et al. derived an estimate for the conditions under which equilibration
is established in confined geometries. They demonstrated that the FJ approach is ac-
curate for any external force strengths only for narrow channels. Moreover, the authors
showed that the applicability diminishes with growing width, respectively, corrugation
of the confinement. Even though, the Fick-Jacobs approach captures many properties
of entropic particle transport its usage is limited to narrow channel geometries, so far.

With this thesis we aim at addressing two main issues:

1. The first issue concerns a methodology to derive the exact solution for the joint
probability density function in an arbitrary corrugated channel. We ask the
question, whether there exists a systematic treatment which reproduces the Fick-
Jacobs equation for weakly modulated geometries and, more importantly, leads
to an extension towards extremely corrugated boundaries. In a wider sense, we
intend to derive analytic results for the key particle transport quantities which
go beyond the commonly used formulas comprising the artificially introduced
spatially dependent diffusion coefficient.

2. Based on our derived methodology, we give answers to the second question:
“Under which conditions is a generalization of the Fick-Jacobs approach to finite-
sized Brownian particles and to more sophisticated external force fields feasible?”.
This question is of practical interest since in micro- and even nanoscale devices
neither objects with negligible (point-like) extension are separated, nor conserva-
tive forces are solely exerted on the particles. These two simplifications are state
of the art in the current literature. Additionally, to gain deeper insight into the
key physical assumptions behind the Fick-Jacobs approach, we investigate the
impact of the viscosity of the surrounding solvent. Since finite viscous friction
comprises an additional time scale, the question arises, whether the assumption
of equilibration is violated.

By explicitly taking account of the channel’s corrugation, we provide an analytic tool
to gain new perspectives in the understanding of entropic transport. With the use
of numerical simulations, we study the problem of biased Brownian motion through

5



1. Introduction

spatially confined geometries and, in fact, we check the accuracy and applicability of
our analytic predictions. Thereby, the sinusoidally modulated channel is our reference
geometry throughout the thesis.

The outline of the thesis is as follows. Prior to calculations, in chapter 2 we briefly
discuss transport processes in systems without geometrical constraints, followed by a
short introduction to macrotransport theory. In the next step, we present the Fick-
Jacobs approach in detail and outline how analytical expressions for the key transport
quantities can be derived via the mean first passage time approach.
In chapter 3, we proceed to a systematic treatment for entropic transport. More pre-

cisely, we perform asymptotic perturbation analysis of the stationary joint probability
density function in terms of an expansion parameter which specifies the corrugation
of the channel walls. With this method, exact solutions of the associated stationary
Smoluchowski equation are derived. In particular, we demonstrate that the leading
order of our series expansion is equivalent to the Fick-Jacobs approach. Additionally,
analytic expressions to calculate the particle transport quantities in strongly corrugated
confinements are obtained.
Going one step further, we overcome the limitation of the FJ approach to conser-

vative forces (scalar potentials) in chapter 4. There, based on our derived methodology,
we generalize the FJ description to the most general external force field exerted on a
particle which is composed of a curl-free (scalar potential) and a divergence-free com-
ponent (vector potential). We put forward an effective one-dimensional description
involving the generalized potential of mean force, which along with the commonly
known “entropic” contribution, acquires a qualitatively novel contribution associated
with the divergence-free force. To elucidate the intriguing features caused by vector
potentials, we apply our approach to the experimentally relevant situation where Brow-
nian particles are subject to both an external constant bias and to a pressure-driven
flow (microfluidic device). The analysis of particle transport leads to the interesting
finding that the vanishing of the mean particle current is accompanied by a signifi-
cant suppression of diffusion, yielding the effect of selective hydrodynamically enforced
entropic trapping.
Since separation and sorting by size is a main challenge in basic research, chapter

5 is devoted to the question, whether the FJ approach can be applied to extended
spherical particles. Finite particle size causes additional forces exerted on the particles,
e.g., hydrodynamic particle-particle and particle-wall interactions, which have been
disregarded in our preceding theoretical considerations. Hence, we identify the limits
for the ratio of particle size to pore size and the mean distance between the particles.
Moreover, we demonstrate that within these limits the analytic expressions for the
transport quantities, derived for point-like particles in the preceding chapters, can
be generalized to extended colloids. Furthermore, we present simulation results for
large particles in extremely corrugated channels showing a sensitive dependence of the
particles’ terminal speeds on their size.
In the concluding chapter 6, we study the impact of the viscous friction coefficient

on entropic transport. The existence of a hierarchy of relaxation times, governed by
the geometry of the channel and the viscous friction, guarantees the separation of
time scales and the equipartition of energy. Supposing further a vanishing correlation

6



between the particle’s velocity components, we derive an effective, kinetic description
for entropic transport in the presence of finite damping. A comparison of the reduced
description (FJ approach) with numerical results shows that the FJ approach is accurate
for moderate to strong damping and for weak forces. In particular, we identify an upper
limit for the external bias beyond which the FJ approach fails even in narrow, weakly
modulated channels. The origin of the failure is the violation of equipartition for the
transversal coordinate and velocity. The latter is caused by the transfer of the externally
applied acceleration into the “fast” coordinates due to reflections at the boundaries.
Lastly, we study the impact of the boundary conditions on the particle transport and
show numerically that perfectly inelastic particle-wall collisions can rectify entropic
transport. With these findings, we conclude the main part of the thesis. Finally, we
summarize all our findings and draw conclusions for possible forthcoming studies in
chapter 7.
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2. Transport in confined geometries –
The Fick-Jacobs approach

In order to give a short outline, we discuss briefly transport processes in systems without
geometrical constraints, followed by a short introduction in macrotransport theory. In
the next step, we present the Fick-Jacobs approach, which allows a reduction of the
problem’s dimensionality to an effective one-dimensional (1D) energetic problem. At
the end of this chapter, we demonstrate how analytical expressions for the key transport
quantities for Brownian motion in confined geometries can be evaluated with the use
of the mean first passage time approach.

We consider first the case without any spatial constraints, which we refer to as the
free case: A spherical Brownian particle with mass m, spatially homogeneous particle
density ρp, and diameter dp is subject to an external force F (q∗, t) in a solvent with
spatially homogeneous density ρf and dynamic viscosity η. The motion of particles
that are immersed in a fluidic medium is influenced by various types of forces [Maxey
and Riley, 1983]. The systematic impact of the solvent on the motion of a solid particle
at position q∗ = (x∗, y∗, z∗)T can be approximated by the Stokes drag force

Fdrag = −γ [v− u (q∗, t)] . (2.1)

Here, u (q∗, t) is the instantaneous velocity of the fluid in absence of the particle,
q̇∗(t) = v(t) = (vx, vy, vz)T represents the particle velocity at time t, and γ = 3π η dp is
the viscous friction coefficient. At the same time, the “tracer” particle collides randomly
with the ∼ 1023 molecules per mol of the surrounding fluid with a rate up to 1021

times per second. These random collisions result in the particle’s Brownian motion
[Brown, 1828; Perrin, 1909] and can be effectively described by a stochastic thermal
force ξ(t) = (ξx, ξy, ξz)T . Following Langevin, 1908, the particle’s equation of motion
(EOM) at position q∗ is determined by the stochastic differential equation

m
d v
d t = m v̇ = −γ v + F (q∗, t) + ξ(t). (2.2)

For small solid particles in laminar solvent flows, the Oseen correction [Faxen, 1922;
Oseen, 1910] to the Stokes drag Eq. (2.1), effects of solvent inertia, including those
described by the Basset history force, added mass force, and Saffman lift force [Saffman,
1965], and effects that can be initiated by rotation of particles (e.g., Magnus force,
modified drag, and rotational Brownian diffusion [Favro, 1960]) are generally small
compared to the Stokes drag, Eq. (2.1), and can be disregarded in the EOM, Eq. (2.2),
[Maxey, 1990; Maxey and Riley, 1983]. As an additional simplification, if not explicitly
stated otherwise, we always consider a quiescent solvent u(q∗, t) = 0. Throughout this
thesis, each component of the stochastic force ξ(t) is assumed to be Gaussian white
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2. Transport in confined geometries – The Fick-Jacobs approach

noise with zero mean

〈 ξi(t) 〉 = 0, (2.3a)

and temporal δ-correlation

〈
ξi(t) ξj(t′)

〉
= 2 γ kBT δi,jδ(t− t′), for i, j = x, y, or z, (2.3b)

where kB is the Boltzmann constant and T refers to the spatially homogeneous environ-
mental temperature. Thereby 〈 · 〉 represents the ensemble average.

Solving Eq. (2.2) under the simplification that F is independent of time and position,
i.e., ∂tF = 0 and ∇qF = 0, gives

q̇∗ = v(t) = v(0) e−γ t/m + F
γ

(
1− e−γ t/m

)
+

t∫
0

dt′ e−γ (t−t′)/mξ(t′), (2.4a)

with v(0) being the particle velocity at time t = 0. Thereby, ∇q = (∂x, ∂y, ∂z)T
represents the gradient. Integrating the last equation once more with respect to the
time, yields

q∗ = q∗(0) + F
γ
t+

(
v(0)− F

γ

) 1− e−γ t/m

γ/m
+

t∫
0

dt′
t′∫

0

dt′′ e−γ (t′−t′′)/mξ(t′′), (2.4b)

where q∗(0) denotes the initial particle position at time t = 0.

The Langevin equation Eq. (2.2) provides a mathematical description of a Brownian
particle dynamics that include its inertia and is applicable over the entire time domain.
However, experiments showed that this description is not exact for all times [Huang
et al., 2011; Weitz et al., 1989]. Deviations from the random diffusive behavior were
shown to originate from the inertia of the surrounding fluid, which leads to long-living
vortices caused by and in turn affecting the particle motion. These hydrodynamic
memory effects [Hinch, 1975; Vladimirsky and Terletzky, 1945] introduce an inter-
mediate regime between the purely ballistic and the diffusive regime. The characteristic
time scale for the onset of this effect is given by τf = d2

pρf/(4 η) and it is related to
the characteristic velocity correlation time tcorr = m/γ via τf/τcorr = 9ρf/(2ρp). For
micro-sized particles (dp ' 1µm) moving through water (ρp ' ρf = 998 kg/m3 and
η = 10−3 kg/ms), both time scales are of the order τf & τcorr ≈ 0.1µs at room tem-
perature T = 293, 15 K. The description can be improved by incorporating effects of
fluid inertia via the added mass force in Eq. (2.2). Accordingly, the particle’s mass m
is replaced by an effective mass m∗, where m∗ is given by the sum of the mass of the
particle and half the mass of the displaced fluid [Maxey and Riley, 1983]. The latter is
the weight added to a system due to the fact that an accelerating or decelerating body
must move some volume of surrounding fluid with it as it moves. Then, in the absence of
external forces F = 0, the velocity variance approaches

〈
v2 〉 = 3 kBT/m∗ as demanded

by the equipartition theorem. Only on timescales shorter than τc = dp/c ≈ 0.3 ns,

10



where c is the speed of sound in the fluid, the particle is able to decouple from its fluid
envelope and thus m∗ → m.

Referring to Kramers, 1940, see also Becker, 1985, the inertial term in Eq. (2.2) is
negligible if all other forces do not change much during the effective characteristic
velocity correlation time t∗corr = m∗/γ. In detail, if the particle’s velocity becomes
uncorrelated during the time the particle needs to move its own size t∗corr < dp/v, the
inertial forces become negligible in comparison with the viscous forces [Purcell, 1977].
For micro-sized particles (dp ' 1µm, ρp ' ρf ) moving with typical velocities of the
order v = 1 mm/s through water, t∗corr ≈ 0.1µs is four magnitudes smaller compared
to the typical drift time dp/v at room temperature. Then the inertial term m∗ v̇(t) in
Eq. (2.2) is negligibly small compared to the other forces and thus one can safely set
m∗ = 0 (overdamped limit or Smoluchowski approximation [von Smoluchowski, 1906]).
Under this condition Eq. (2.2) reduces to the overdamped Langevin equation

γ q̇∗ = F (q∗, t) + ξ(t). (2.5)

Obviously, the fluid envelope carried by the particle does not affect its dynamics in the
high friction limit. If not explicitly stated otherwise, we always consider the overdamped
limit in the following.

However, the detailed solution of the individual dynamics is in most cases not of prac-
tical interest. Instead, one is interested in the behavior of the long-time moments of the
joint probability density function P (q∗, t) of finding a particle at position q∗ at time t.
Thereby P (q∗, t) describes the statistical properties of the particle motion which are
captured by key transport quantities like the mean particle velocity in the long-time
limit 〈

v0
〉

= lim
t→∞
〈 q̇∗(t) 〉 = lim

t→∞

〈q∗(t) 〉
t

. (2.6)

From Eq. (2.5), and with the properties of Gaussian white noise, Eqs. (2.3), it is
straightforward to conclude that the free mean particle velocity equals

〈
v0 〉 = F/γ.

In the sense of linear response, the terminal drift velocity and the applied force are
connected via the mobility tensor M, v = MF. For non-interacting particles moving
through a spatially isotropic media M is diagonal, i.e., Mmn = µ0 δm,n for m,n are
x, y, or z. The main diagonal elements equal the free particle mobility

µ0 = 1
γ
. (2.7)

We emphasize that for a non-dilute particle concentration hydrodynamic interactions
between the Brownian particles have to be taken into account. According to Faxen’s law
[Faxen, 1922], additional forces are exerted on a given particle caused by the flow fields
induced by all the other particles. These hydrodynamic interactions can be included
into the EOM via the hydrodynamic mobility tensor Mhyd whose non-diagonal elements
are different from zero; for details see Sect. 5.2.
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2. Transport in confined geometries – The Fick-Jacobs approach

The second quantity of interest, the dispersion tensor D, concerns the temporal evolu-
tion of the mean square displacement (MSD) with respect to the mean position 〈q∗ 〉

〈
(q∗ − 〈q∗ 〉) (q∗ − 〈q∗ 〉)T

〉
= 2 tr[D] t. (2.8)

In the case of normal diffusion, the MSD grows linearly in time in the long time limit.
For a spatially isotropic medium, D is diagonal with main diagonal elements being
equal to the free diffusion constant [von Smoluchowski, 1906]

D0 = kBT

γ
. (2.9)

In 1905 and 1906, Einstein showed that for Brownian particles the diffusion con-
stant is connected to the friction coefficient γ via the fluctuation-dissipation theorem
(Sutherland-Einstein relation) [Callen and Welton, 1951; Sutherland, 1905]. It is a
remarkable feature that the diffusion coefficient does not depend on the mass of the
Brownian particle [Reimann, 2002]. We emphasize that in contrast to the MSD mea-
sured with respect to the initial position, 〈(q∗ − q∗(0)) (q∗ − q∗(0))T 〉 ∝ (F t/γ)2, the
diffusion coefficient Eq. (2.9) does not change even if there is a constant external force F
acting on the particle. This follows from the fact that the diffusion constant is invariant
under Galilean transformation q→ q−F t/γ. Comparing Eq. (2.9) and Eq. (2.7), one
notices that the free diffusion constant and the free particle mobility are connected via
the Sutherland-Einstein relation [Sutherland, 1905]

D0 = µ0 kBT. (2.10)

2.1. Macrotransport theory
The dynamics of Brownian particles and their transport properties, respectively, change
if their motion becomes restricted by geometrical constraints. In typical transport
processes through confined structures such as pores and channels, like the one depicted
in Fig. 2.1 with period L and an area of local cross-section Q(x), the impenetrability
of the channel’s walls has to be taken into account. Consequently, the mean particle
velocity and the diffusion constant may differ from the free values. Macrotransport
theory provides a rigorous method for extracting the mean particle velocity 〈 q̇∗ 〉 and
the effective dispersion tensor Deff without the need for solving Eq. (2.5) directly or
performing the equivalent Langevin-type simulations [Brenner and Edwards, 1993].
The theory based on the decomposition of the position q∗ within the periodic system
into a “cell pointer” Rn, where −∞ < n < ∞, and Rn − Rn−1 = L ex. Then the
local position within a cell reads q = q∗ − Rn. This results in the transformations
P (q∗, t)→ P (n,q, t) and 〈 q̇∗ (q∗) 〉 → 〈 q̇ (q) 〉. Using a moment-matching asymptotic
procedure, 〈 q̇ 〉 and Deff can be evaluated from the solution of two time-independent
intracellular fields, which depend only on the local position q = (x, y, z)T within the
unit cell which, with no loss of generality, extends over the range 0 ≤ x ≤ L. The
theory is valid in the long-time limit, namely, when the residence time τR in the system
satisfies the inequality τR � L2/D0.
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2.1. Macrotransport theory
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q

Figure 2.1.: Segment of 3D planar channel geometry with period L, height ∆H, and
periodically varying cross-section Q(x). An exemplary particle trajectory is indicated
by the erratic line. Superimposed are the global position vector q∗, lattice-point
position vector Rn, and the local position vector within a unit cell q = q∗ −Rn.

The first step in the macrotransport scheme entails computing the joint probability
density function (PDF) P (q, t) of finding a particle at local position q at time t

P (q, t) =
∞∑

n=−∞
P (n,q, t) , (2.11)

regardless of the specific cell in which it resides. Its evolution is given by the Smo-
luchowski equation [Risken, 1989; von Smoluchowski, 1915]

∂tP (q, t) + ∇q · J (q) = 0, (2.12)

where

J = F (q, t) P (q, t)− kBT

γ
∇qP (q, t) , (2.13)

is the probability current of P (q, t). Caused by impenetrability of the channel walls
the probability current J (q, t) = (Jx, Jy, Jz)T is subject to no-flux boundary condition
(bc), reading

J (q, t) · n = 0, ∀q ∈ channel wall, (2.14)

where n denotes the outward-pointing normal vector at the channel walls. Note that
the channel walls confine the particles motion inside the channel, but do not exchange
energy with them otherwise. Especially, particle absorption and emission at boundaries
are disregarded. Various kinds of boundary conditions exist that regulate the inward
and outward probability fluxes at the ends of the channel [Burada et al., 2009]. If
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2. Transport in confined geometries – The Fick-Jacobs approach

the channel connects large, well-mixed particle reservoirs, constant PDFs PL,R may be
assigned at the channel’s end at xL and xR leading to Dirichlet boundary conditions,
viz., P (xL, y, z) = PL and P (xR, y, z) = PR. For an infinitely long channel consisting
of many unit cells periodic boundary conditions are more appropriate [Risken, 1989]

P (q +mL ex, t) = P (q, t), m ∈ Z. (2.15)

Additionally, P (q, t) has to satisfy the normalization condition∫
unit cell

P (q, t) d3q = 1, (2.16)

in the case of periodic bc. In the long-time limit both the stationary joint PDF
Pst (q) ≡ P (q, t→∞) and its gradient must be continuous at the transition from
x = x0 to x = x0 + L. Once, Pst (q) is known, the mean particle current 〈 q̇ 〉 can
be computed by

〈 q̇ 〉 =
∫

unit cell

Jst(q) d3q. (2.17)

Thereby, in the sense of linear response, the mean particle current vector and the
applied force are connected via an effective mobility tensor 〈 q̇ 〉 = Meff F. In what
follows, we focus only on transport in the longitudinal (transport) channel direction,
µ ≡ Meff

x,x, and we call it particle mobility

µ = 〈 ẋ 〉
Fx

. (2.18)

Figure 2.2: Time evolution of
the marginal PDF p(x∗, t) as a
function of the global coordi-
nate x∗ in a confined geometry
with periodically varying width.
Mean position and mean square
displacement grow linearly in
time, viz., 〈x∗(t) 〉 = 〈 ẋ∗ 〉 t and
〈(x∗ − 〈x∗ 〉)2〉 = 2Deff t. The
Gaussian distribution p(x, ti) ∝
exp

[
− (x− 〈 ẋ∗ 〉 ti)2 / (4Deffti)

]
(solid lines) represents the enve-
lope of the numerical simulation
of Eq. (2.5) (peaked structure).
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2.2. Dimensionless units

The second step involves the calculation of the so-called B-field [Brenner, 1980; Brenner
and Edwards, 1993],

B (q) = lim
t→∞

[ ∞∑
n=−∞

Rn P (n,q, t)
Pst (q) − 〈 q̇ 〉 t

]
. (2.19)

This intracellular vector field arises from deviations of the tracer position q∗ from the
mean position 〈 q̇ 〉 t and it is governed by a convection-diffusion equation in the i-th
spatial direction

Di,i∇q · (Pst ∇qBi)− (J ·∇q) Bi =Pst (q) 〈 q̇i 〉 , for i = x, y, or z. (2.20)

Any component Bi obeys the no-flux boundary condition

∇qBi (q) · n = 0, ∀q ∈ channel wall, (2.21)

and satisfies the requirement that b = B + q is a periodic function in the longitudinal
channel direction (here in x), yielding

B (x = x0 + L)−B (x = x0) = −L ex. (2.22)

Mathematically, the B-field can be interpreted as a dispersion “potential”: once B is
calculated, the elements of the effective dispersion tensor Deff can be computed by the
following unit cell quadrature

Deff
i,j = Di,j

∫
unit cell

Pst (q) (∇qBi) · (∇qBj) d3q, for i, j = x, y, or z. (2.23)

Here, we also concentrate only on the diffusion constant in longitudinal channel direc-
tion, Deff ≡ Deff

x,x, and we call it effective diffusion coefficient (EDC).

2.2. Dimensionless units

We pass to dimensionless quantities, i.e., all lengths are measured in units of the channel
period L, q→ qL, the time is expressed in units of τ = L2γ/(kB T ) which is twice the
time the particle requires to overcome diffusively the distance L at zero bias ‖F‖ = 0,
i.e., t→ τ t, and all energies are scaled in units of the thermal energy kBT . Furthermore,
we define the dimensionless forcing parameter f

f = FL
kBT

, (2.24)

which characterizes the ratio of the work FL done on a particle when dragged by the
constant force ‖F‖ along a distance of length L divided by the thermal energy kBT .
While the force F and the temperature T are independent variables in the case of purely
energetic systems, these two quantities become coupled and tune the system’s transport
properties in geometries with spatial constraints [Burada, 2008; Burada et al., 2008b].
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2. Transport in confined geometries – The Fick-Jacobs approach

In an experimental setup, the value of f can be adjusted either by modifying the force
strength or the thermal energy kBT . After re-scaling the EOM of Brownian particles,
Eq. (2.5) changes to

q̇(t) = f + ξ(t), (2.25)

with ξ(t) → ξ(t)/
√
τ . Additionally, the joint PDF reads P (q, t) → P (q, t) /L3 and

the probability current is given by J (q, t) → J (q, t) /(τ L2). In the following, for
convenience, we shall omit the overbar in our notation.
Assuming that the Sutherland-Einstein relation Eq. (2.10) is valid also for transport

processes in confined geometries for any force strength f = ‖f‖, yields Deff = µkBT .
After passing to dimensionless variables the relation reduces to

Deff/D
0 = µ/µ0. (2.26)

Supposing that the particle dispersion in longitudinal channel direction is proportional
to its mobility, as a consequence of the fluctuation-dissipation theorem, it turns out
that the effective diffusion coefficient in units of its free value has to be equal to the
particle mobility in units of the bulk mobility. By means of Eq. (2.26), we are able to
identify values for the external force strength f where the Sutherland-Einstein relation
is violated in confined geometries. A detailed discussion is given in Sect. 3.2.4.

2.3. Fick-Jacobs approach

As mentioned in the previous section, the first step to calculate the main transport
quantities entails evaluating the stationary joint probability density function Pst(q).
The latter is determined by Eq. (2.12) and has to obey the no-flux bc Eq. (2.14) for
any channel geometries. Below, we consider two realizations for three-dimensional (3D)
channels which are relevant to experiments [Squires and Quake, 2005], viz., (i) a planar
periodic channel geometry with unit period, constant height ∆H, and periodically
varying transverse width W (x), for details see Sect. 3.1, and (ii) a cylindrical tube
with unit period and periodically varying radius R(x) (see Sect. 3.3). First, we focus
on the 3D planar problem1: the motion of a particle is confined by two planar walls
at z = 0 and z = ∆H as well as by two perpendicular side-walls at y = ω+(x) and
y = ω−(x). Thereby, the outward-pointing normal vectors read nz = (0, 0,±1)T at
z = 0(−),∆H(+) and ny =

(
∓ω′±(x),±1, 0

)T at (x, y = ω±(x)). The prime denotes
the differentiation with respect to x.

Integrating the Smoluchowski equation Eq. (2.12) over the local cross-section Q(x) and
respecting the no-flux bcs, yields

∂t p (x, t) = −
ω+(x)∫
ω−(x)

dy ∂x
∆H∫
0

dz Jx(q, t)−
∆H∫
0

dz Jy(q, t)
∣∣∣∣y=ω+(x)

y=ω−(x)
. (2.27)

1The basic assumptions and considerations are identical for the cylindrical geometry.
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2.3. Fick-Jacobs approach

Thereby, the marginal probability density function is defined by

p (x, t) =
ω+(x)∫
ω−(x)

dy
∆H∫
0

dz P (q, t). (2.28)

Using the relation

β(x)∫
α(x)

dy ∂xf(x, y) = ∂x

β(x)∫
α(x)

dy f(x, y) + α′(x)f(x, α(x))− β′(x)f(x, β(x)), (2.29)

we obtain for arbitrary boundary functions ω±(x)

∂t p (x, t) = − ∂x
ω+(x)∫
ω−(x)

dy
∆H∫
0

dz [fx(q, t)P (q, t)− ∂xP (q, t)] = −∂xJx(x, t). (2.30)

The principle problem that must be solved is to express the joint PDF P (q, t) in terms
of the marginal PDF p (x, t). According to the Bayes theorem, the joint PDF is given
by the product

P (q, t) =P (y, z|x, t) p(x, t) (2.31)

of the conditional PDF P (y, z|x, t) and the marginal PDF, cf. Eq. (2.28). In general,
P (y, z|x, t) cannot be calculated analytically for arbitrary channels and external forces.
Several authors made either assumption for the conditional PDF or present expansion
methods for the joint PDF. In their pioneering works M. H. Jacobs [Jacobs, 1967] and
R. Zwanzig [Zwanzig, 1992] assumed a separation of the time scale between the “fast”
transverse dynamics and the “slow” longitudinal one. A detailed derivation of their
results is given below. Later other authors presented series expansion techniques based
on the ratio of the time scales, respectively, length scales [Kalinay and Percus, 2006;
Laachi et al., 2007; Yariv and Dorfman, 2007]. In Chapt. 3, we present an expansion
method for the joint PDF P (q, t) in a parameter measuring the corrugation of the local
width W (x).

In 1935, Merkel H. Jacobs studied diffusion processes in a symmetric tube whose cross-
section Q(x) varies along the x-axis, defined by the center line of the tube. He con-
sidered an elementary volume of thickness dx perpendicular to the axis of the tube,
see Fig. 2.3. The rate of entrance rin = −Q(x) ∂x (p(x, t)/Q(x)) and the rate of exit
rout = −

[
Q(x) ∂x (p(x, t)/Q(x)) + ∂x (Q(x)∂x (p(x, t)/Q(x)) dx) +O(dx2)

]
of the dif-

fusing particles into the volume are given by Fick’s 1st law (dimensionless). Thereby
p(x, t)/Q(x) is the local probability in units of the local cross-section area. For the
problem at hand, both rates are different not only because the concentration gradient
∂xp(x, t) changes with dx, but also due to the variation of the cross-section Q(x). The
difference between both rates provides the rate of change of the particles in the elemen-
tary volume, ∂tp(x, t) dx. Neglecting quadratic terms in dx, Jacobs derived by means
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Figure 2.3: Sketch of Jacobs’ approach to
determine the Fick-Jacobs equation. An
elementary volume of thickness dx is pre-
sented. The rates of entrance rin and
of exit rout of the diffusing particles into
the volume are given by Fick’s 1st law.
The difference between both rates pro-
vides the rate of change of the substance
in the elementary volume, ∂tp(x, t) dx.

rin rout

x x+dx

y

  @  t  p(x,t) dx

of these arguments an effective one-dimensional equation governing the diffusion within
a channel geometry

∂tp(x, t) = ∂x

[
Q(x)∂x

(
p(x, t)
Q(x)

)]
, (2.32)

which is referred to as the Fick-Jacobs (FJ) equation. Equation (2.32) represents a
extension of the Fick’s 2nd law which is recovered for non-modulated cross-sections
Q(x) = const, ∂tp(x, t) = ∂2

xp(x, t). Note that the argumentation presented by Jacobs
is not exact because it does not take account of the no-flux boundary conditions.
Comparing Eq. (2.32) with the more general expression, Eq. (2.30), it turns out that
p(x, t) = P (q, t)Q(x). Hence the derivation of Jacobs implies that the Brownian par-
ticles distribute uniformly along the transverse direction(s) of the confined structure at
any position x and at any given time t, i.e., P (y, z|x, t) = 1/Q(x).
In 1992, Robert Zwanzig presented a more general derivation of the Fick-Jacobs

equation by considering the diffusion in a potential Φ(q). This potential Φ(q) can be
either an external potential confining the motion of the Brownian particles (Zwanzig’s
original idea), a scalar potential generating the external force,2 f = −∇Φ(q) (shown
later by other authors [Burada, 2008; Reguera and Rubí, 2001; Reguera et al., 2006]),
or a combination of both [Martens et al., 2012a; Wang and Drazer, 2010]. Zwanzig
derived the FJ equation by performing a reduction in the number of coordinates from
the full 3D Smoluchowski equation to a one-dimensional description. Assuming that the
distribution of the transverse coordinates y and z relaxes much faster to the equilibrium
one than the longitudinal coordinate does (separation of time scales), the conditional
PDF, Eq. (2.31), can be approximated by

P (y, z|x, t)→ P (y, z|x) = e−Φ(q)

ω+(x)∫
ω−(x)

dy
∆H∫
0

dz e−Φ(q)

. (2.33)

2According to the Helmholtz’s theorem, in general, every force f(q) can be decomposed into a curl-free
component and a divergence-free component, f(q) = −∇Φ (q) + ∇ ×Ψ (q). An extension of the
Fick-Jacobs approach to the most general force f(q) is presented and discussed in Chapt. 4.
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2.3. Fick-Jacobs approach
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Figure 2.4: The effective entropic
potential A(x) as a function of
the longitudinal coordinate x,
Eq. (2.37b), for a channel with
periodically varying local width
W (x) (plan view on a 3D planar
channel). The arrows indicate the
direction and strength of the mean
force 〈 fx 〉 = −dA(x)/dx in the
absence of external forces f = 0.
Superimposed are the maximum
change of entropy ∆S and the
particle-wall interaction potential
U±(n±), Eq. (2.38).

Substituting Eq. (2.33) into Eq. (2.30), yields

∂tp (x, t) = ∂x
[
eA(x)∂x

(
e−A(x)p (x, t)

)]
, (2.34)

where the effective entropic potential A(x) (in units of kBT ) is explicitly given by

A(x) = − ln

 ω+(x)∫
ω−(x)

dy
∆H∫
0

dz e−Φ(q)

 . (2.35)

The Smoluchowski equation for the marginal PDF, Eq. (2.34), is associated to a 1D
particle dynamics evolving in the potential A(x)

ẋ(t) = −dA(x)
dx + ξx(t). (2.36)

To conclude, the Fick-Jacobs approach enables a reduction of the problem’s complexity
from a 3D dynamics in a confined geometry with no-flux bcs to a 1D energetic descrip-
tion.

2.3.1. Potential of mean force – effective entropic potential

For the commonly discussed limits of either pure diffusion (Φ(q) = 0) [Dagdug et al.,
2010; Kalinay and Percus, 2006; Makhnovskii et al., 2010], or an external force with
magnitude f acting along the longitudinal (x) direction of the channel, i.e, Φ(q) = −f x
[Burada et al., 2007; Dagdug et al., 2011; Kalinay, 2009], the dimensionless effective
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2. Transport in confined geometries – The Fick-Jacobs approach

entropic potential simplifies to

A(x) = − ln [Q(x)] , if f = 0, (2.37a)
A(x) = − f x− ln [Q(x)] , if f 6= 0. (2.37b)

One immediately notices that substituting Eq. (2.37a) into Eq. (2.34) results in the
Fick-Jacobs equation derived by Jacobs, cf. Eq. (2.32).

For illustration, the effective entropic potential is depicted in Fig. 2.4 for different values
of f . A(x) reflects the periodicity of the local cross-section Q(x) and attains its max-
imum values at the minima of Q(x) and vice versa. Even in the absence of external
forces, f = 0, detailed balance is locally broken due to the uneven shape of the channel.
Since the stationary joint PDF Pst(q) scales with exp(−A(x)), the particle motion is rec-
tified by the confinement, P (x+ dx, y, z)/P (x− dx, y, z) = Q(x+ dx)/Q(x− dx) 6= 1
for dx 6= 0. It turns out that the probability for a particle to diffusive towards the
constricting part of the channel is smaller compared to the one to move in opposite di-
rection. The modulation of the channel’s shape, or, equivalently, the entropy variations
induces a symmetry breaking that biases the particles’ diffusion. This fact is indicated
by the arrows in Fig. 2.4. For f 6= 0, the effective entropic potential becomes tilted with
slope f and therefore detailed balance is violated at any position x even in a straight
channel, Q(x) = const. Additionally, we depict the maximum change of entropy ∆S
within a channel unit cell. For Brownian motion in a confined geometry the number
of possible states Ω in transverse direction(s) is proportional to the local cross-section
Ω ∝ Q(x) for a given longitudinal position x. Within the Fick-Jacobs approach each
transverse microstate is assumed to be occupied by equal probability. According to the
fundamental assumption of statistical thermodynamics [Boltzmann, 1896], the entropy
is given by S = kB ln [Ω] for any system if the occupation of any microstate is equally
probable. Hence, the effective entropic potential A(x), Eq. (2.37a), scales with the local
entropy in the absence of external forces.

By introducing A(x) one replaces the 3D full dynamics in a confined geometry with
no-flux bc to an effective 1D description, cf. Eq. (2.36), where the particles evolve in an
energetic potential. But what is the physical nature of the effective entropic potential?
Referring to Sokolov, 2010, the interaction of the particles with the channel’s wall can
be mimicked by a quadratic potential growing in the direction normal to the wall,3

U±(n±) = κw
2 n2

±, (2.38)

with interaction strength κw and n± being the coordinate along the normal to the
upper n+ and lower boundary n− taken at the point (x, ω±(x)), see Fig. 2.4. When x
is fixed, the energy depends solely on the y-coordinate and is given by

U±(x, y) =
{

0, if ω−(x) < y < ω+(x),
1
2 κw (y − ω±(x))2 cos2 α±(x), otherwise,

(2.39)

3Here, we restrict ourselves to a two-dimensional setup. A generalization to three dimensions is trivial.
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2.4. Spatially dependent diffusion coefficient

with angle α±(x) = arctan
(
ω′±(x)

)
. Then, the mean force acting on the particle during

its motion through the confined geometry is given by

〈 fx 〉 = −dA(x)
dx = −

∫ ∞
−∞

dy (∂xΦ(x, y) + ∂xU±(x, y))P (y|x). (2.40)

Interchanging derivation and integration, yieldsA′(x) = −∂xln
[∫∞
−∞ dy exp (−Φ− U±)

]
.

The integral over y can be divided into three parts, namely, −∞ < y ≤ ω−(x),
ω−(x) < y < ω+(x), and ω+(x) < y <∞. Integrating

∫ ω−(x)
−∞ dy . . . by parts and using

the substitution ς = y − ω− result in

0∫
−∞

dς e−[Φ(x,ς+ω−)+U−(x,ς)] =
√

π

2κw cos2 α−

[
e−Φ(x,−∞)

−
0∫

−∞

dς ∂ςe−Φ(x,ς+ω−(x)) erf

√κw cos2 α−
2 ς

 .
(2.41)

In the same manner, we evaluate the integral
∫∞
ω+(x) dy . . . . In the limit of hard walls,

i.e., κw →∞, both integrals vanish and thus the mean force in the longitudinal direction
reads

〈 fx 〉 = −dA(x)
dx = ∂x ln

 ω+(x)∫
ω−(x)

dy e−Φ(x,y)

 . (2.42)

It turns out that “the mean force is the conditional average of the mechanical force
acting on the particle (here conditioned on its x-coordinate). This is essentially a mean
constraint force caused by nonholonomic constraint stemming from the boundaries”
[Sokolov, 2010]. The result that the potential of mean force equals the free energy asso-
ciated with the partition function Z(x) =

∫ ω+(x)
ω−(x) dy exp (−Φ(q)) is absolutely general4

and it is intimately connected with equipartition.

2.4. Validity of the Fick-Jacobs approach – Spatially
dependent diffusion coefficient

The reduction of dimensionality done implicitly in the formulation of the Fick-Jacobs
equation, Eq. (2.34), relies on the assumption of equilibration in transverse directions.
This approximation neglects the influence of relaxation dynamics in y and z, supposing
that it is infinitely fast. In a more detailed view, we have to notice that the particles
can flow from or to the wall in transverse direction(s) only at finite time. Therefore,
particles may accumulate at the curved walls where the channel is getting narrower
or depletion zones can occur where the channel becomes wider. By analyzing the

4In Martens et al., 2012a we have shown that the derivation of the potential of mean force is not only
valid in the overdamped limit but also for arbitrary viscous friction coefficient γ, see Eq. (2.2). This
fact is also discussed in depth in Sect. 6.2.
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2. Transport in confined geometries – The Fick-Jacobs approach

different time scales involved in the problem, Burada et al., 2007, see also [Burada,
2008], derived an estimate for the conditions under which equilibration occurs. In
the case of forced Brownian motion, three characteristic processes with corresponding
time scales can be identified in a 2D channel.5 These are the times τy = ∆y2/2 and
τx = ∆x2/2 to diffuse over distances ∆y and ∆x, respectively, and the characteristic
drift time τdrift = ∆x/f . In order to achieve equilibration in the transverse direction,
the characteristic time scales associated with diffusion in this direction has to be much
smaller than the other two characteristic time scales, yielding

1� τy
τx

=
(∆y

∆x

)2
∼W ′(x)2, (2.43a)

1� τy
τdrift

= f
∆y2

2 ∆x ∼
f

2 W (x)2. (2.43b)

Then, the criterion

max (τy/τx, τy/τdrift)� 1, (2.44)

has to be satisfied at any position x and for any value of f .
Consequently, the accuracy of the FJ equation can be improved by either speeding

up the transverse dynamics while keeping the longitudinal one fixed or slowing down
the longitudinal dynamics. These imposed artificial separation of time scales can be
realized e.g. by an anisotropy in the dispersion tensor, Dy,y � Dx,x [Berezhkovskii
and Szabo, 2011; Kalinay and Percus, 2006]. Hence, Zwanzig proposed the following
correction to the Fick-Jacobs equation

∂tp (x, t) = ∂x
[
D(x, f)eA(x)∂x

(
e−A(x)p (x, t)

)]
, (2.45)

which corresponds to a slow down of the longitudinal dynamics. Note that the function
D(x, f) corrects both the convection and the diffusion term in the same way, keeping
(a kind of) the Sutherland-Einstein relation between them valid. We stress that the
dynamics of p(x, t), Eq. (2.45), differs from the one in systems with position-dependent
diffusion [Büttiker, 1987; Lindner and Schimansky-Geier, 2002]. Since the criterion
Eq. (2.44) depends on the magnitude of the external force f , the spatially dependent
diffusion coefficient D(x, f) (in units of D0) has to be a function of f . Comparing
Eqs. (2.30) and (2.45), the marginal probability current in longitudinal direction is
given by

−Jx(x, t) = D(x, f)eA(x)∂x
(
e−A(x)p (x, t)

)
= −

ω+(x)∫
ω−(x)

dy
∆H∫
0

dz [fx(q, t)P (q, t)− ∂xP (q, t)] .
(2.46)

5For the sake of simplicity, the authors focused on the situation of a two-dimensional (2D) channel,
although the same discussion can readily be extended to 3D.
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2.4. Spatially dependent diffusion coefficient
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Figure 2.5: Sketch of one unit cell
of a two-dimensional, confining geo-
metry with unit period (top panel).
The behavior of the spatially de-
pendent diffusion coefficient D(x, 0)
is depicted in the bottom panel.
Solid line corresponds to Zwanzig’s
estimate Eq. (2.47), dashed line
represents Reguera-Rubí’s proposal
Eq. (2.48), the result of Kalinay and
Percus is indicated by the dashed-
dotted line Eq. (2.49a), and the hori-
zontal line corresponds to the free
diffusion constant which is unity in
our scaling. As an example for a
periodically varying width we choose
W (x) = 0.7− 0.5 cos (2π x).

The second equality determines the sought-after D(x, f). Once the joint PDF P (q, t)
and marginal PDF are known the spatially dependent diffusion coefficient can be
calculated according to Eq. (2.46).

Zwanzig calculated the first order correction to P (q, t) and suggested

DZ(x, 0) = 1− α

4 W
′(x)2 ' 1

1 + αW ′(x)2/4 , (2.47)

for an axis-symmetric channel. Thereby, 3D planar structures are presented by α = 1/3
and tubes by α = 1/2. Reguera and Rubí, 2001, presented arguments for the cor-
rected stationary FJ equation, cf. Eq. (2.45), within the framework of mesoscopic
non-equilibrium thermodynamics. They improved Zwanzig’s estimates of DZ(x, 0),
proposing

DRR(x, 0) = 1[
1 +W ′ (x)2 /4

]α , (2.48)

with α = 1/3 (3D planar structures) and α = 1/2 (tubes), respectively, with rather
heuristic reasoning. A first systematic treatment taking the finite diffusion time into
account was presented by Kalinay and Percus (KP). Their proposed mapping procedure
enables the derivation of higher order corrections in terms of an expansion parameter
ε2
KP , which is the ratio of imposed anisotropic diffusion constants in the longitudinal
and transverse direction [Kalinay and Percus, 2006]. Within this scaling, the “fast”
transverse modes (transients) separate from the “slow” longitudinal ones and can be
projected out by integration over the transverse directions. KP suggested an operator
procedure mapping the solutions of the corrected FJ equation back onto the space
of solutions of the original 3D problem. The resulting recurrence scheme provides
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2. Transport in confined geometries – The Fick-Jacobs approach

systematic corrections to the FJ equation resulting in

DKP (x, 0) = arctan (W ′(x)/2)
W ′(x)/2 , for 3D planar structures, (2.49a)

DKP (x, 0) = 1√
1 +W ′(x)2/4

, for tubes. (2.49b)

In 2009, Kalinay extended the mapping procedure to the problem of biased (Φ(q) 6= 0)
Brownian particles in a two-dimensional confinement. He presented a first order ex-
pansion for a generalized spatially dependent diffusion coefficient D(x,Φ(q)).

2.5. Mean first passage time

The mean first passage time (MFPT) approach [Arrhenius, 1889; Hänggi et al., 1990;
Kramers, 1940; van’t Hoff, 1884] enables the calculation of the transport characteristics
like the mean particle current, Eq. (2.17), and effective diffusion coefficient, Eq. (2.23),
of Brownian particles moving through a periodic channel by means of the moments of
the first passage time distribution. The first passage time t (x0 → x0 + 1) is the time
an object needs to reach the final point x0 + 1 for the first time when it starts at an
arbitrary point x0. The n-th moment of the first passage time distribution is given
by the average over the fluctuating force, 〈 tn (x0 → x0 + 1) 〉. For the one-dimensional
Fick-Jacobs dynamics, Eq. (2.36), these moments are given by the well-closed analytical
recursion [Burada, 2008, see appendix]

〈 tn (a→ b) 〉 = n

b∫
a

dx eA(x)

D (x, f)

x∫
−∞

dy e−A(y)
〈
tn−1 (y → b)

〉
. (2.50)

The iteration starts with
〈
t0(a→ b)

〉
= 1 for n = 0.

For any non-negative force the mean particle current in periodic structures can be
obtained via the Stratonovich formula [Stratonovich, 1958; Tikhonov, 1959]

〈 ẋ 〉 = 1
〈 t(x0 → x0 + 1) 〉 = 1− e−f

x0+1∫
x0

dx eA(x)

D(x,f)

x∫
x−1

dx′ e−A(x′)
. (2.51)

Note that for a vanishing force f = 0 the mean first passage time 〈 t(x0 → x0 + 1) 〉
diverges and consequently 〈 ẋ 〉 vanishes. A non-zero force prevents the particle to
make far excursions to the left or right, hence leading to a finite mean first passage
time as well as a finite current.

Referring to Eq. (2.8), Deff is defined as the asymptotic behavior of the variance of
the position and can be computed analytically by regarding the hopping events [Lindner
et al., 2001; Reimann et al., 2001] as manifestations of a renewal process [Ebeling and
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2.5. Mean first passage time

Sokolov, 2005] in the overdamped regime

Deff/D
0 =

〈
t2(x0 → x0 + 1)

〉
− 〈 t(x0 → x0 + 1) 〉2

2 〈 t(x0 → x0 + 1) 〉3
. (2.52)

After algebraic manipulations the expression for Deff can be transformed to read
[Reimann et al., 2001, 2002]

Deff/D
0 =

1∫
0

dx I∓(x)I±(x)2

[
1∫
0

dx I±(x)
]3 , (2.53)

where the substitutes I+(x) and I−(x) are given by

I+(x) = e−A(x)
x+1∫
x

dx′ eA(x′)

D(x′, f) , (2.54a)

I−(x) = eA(x)

D(x, f)

x∫
x−1

dx′ e−A(x′). (2.54b)

In the diffusion dominated regime, ‖f‖ � 1, the Sutherland-Einstein relation emerges
and thus the particle mobility equals the effective diffusion coefficient, cf. Eq. (2.26).
For any particle diffusing in a periodic potential A(x+m) = A(x) with periodic function
D(x + m, f) = D(x, f),∀m ∈ Z, Deff(f)/D0 can be calculated via the Lifson-Jackson
formula [Lifson and Jackson, 1962]

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 = 1〈
e−A(x) 〉

x

〈
eA(x)/D(x, f)

〉
x

. (2.55)

According to Eq. (2.37a), the potential of mean force simplifies to A(x) = − ln [Q(x)]
for f → 0 and thus one gets

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 = 1
〈Q(x) 〉x 〈 1/ (D(x, 0)Q(x)) 〉x

. (2.56)

Here, the average is taken over one period which is one in the considered scaling,
i.e., 〈 · 〉x =

∫ 1
0 ·dx. It turns out that the effective diffusion constant in longitudinal

direction is solely determined by the channel geometry. In channels where the local
equilibration assumption is always fulfilled, the expression for the spatially dependent
diffusion coefficient D(x, f) can be replaced by the bulk coefficient. The latter is one
in our scaling.
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2. Transport in confined geometries – The Fick-Jacobs approach

2.6. Summary
In this chapter, we gave first a short overview over Brownian motion in systems without
geometrical constraints. In the presence of spatially constrictions, one can compute the
transport quantities like the mean particle current and the effective diffusion coeffi-
cient by means of macrotransport theory. The main task entails computing the joint
probability density function P (q, t) for geometries with impenetrable boundaries. For
arbitrary channel geometries and forces the problem usually cannot be solved analy-
tically. Assuming that (i) the time scales in transverse directions separate from the
longitudinal one, (ii) the distributions of the transverse coordinates equal the equili-
brium distributions at any position x and time t, and (iii) equipartition holds, enable
a reduction of the problem’s dimensionality and leads to an effective one-dimensional
kinetic description – the Fick-Jacobs approach. Within the latter, the particle dynamics
is determined by the potential of mean force A(x). The mean force 〈 fx 〉 = −A′(x) is
essentially a mean constraint force caused by nonholonomic constraint originated from
the boundaries. The reduction of dimensionality done implicitly in the formulation of
the Fick-Jacobs equation neglects the influence of relaxation dynamics in transverse
directions, supposing that it is infinitely fast. Therefore, the accuracy of the Fick-
Jacobs equation can be improved by the introduction of a spatially dependent diffusion
coefficient D(x, f), which corresponds to an imposed artificial separation of time scales.
Finally, concerning the reduced one-dimensional kinetic description, analytical expres-
sions for the mean particle current and effective diffusion coefficient can be evaluated
via the mean first passage time approach.

In the following chapter 3, we present a systematic treatment for entropic particle trans-
port by performing asymptotic perturbation analysis of the stationary joint probability
density function. We demonstrate that the leading order of the series expansion, in
terms of an expansion parameter specifying the channel corrugation, is equivalent to
the well-established Fick-Jacobs approach. The calculated higher-order corrections to
the joint probability density function become significant for extremely corrugated con-
finements.
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3. Biased particle transport in extremely
corrugated channels – Higher-order
corrections to Fick-Jacobs equation

In the previous chapter, we gave a short introduction into macrotransport theory for
spatially periodic confinements which provides a generic scheme for computing the main
transport quantities like the mean particle current and the effective diffusion coefficient
(EDC). The first step to calculate these quantities entails calculating the joint PDF
P (q, t) whose evolution is governed by the Smoluchowski equation, Eq. (2.12). In ge-
neral, the problem’s dimensionality (degrees of freedom) can be reduced by integrating
the transverse coordinate(s) out, leading to an integro-partial differential equation, see
Eq. (2.30). Then, the principle problem that must be solved is to express the 3D joint
PDF P (q, t) in terms of the marginal PDF p (x, t). This can only be done exactly in a
few idealized cases.

Hence, many authors discussed different approaches in order to solve this problem.
In their pioneering works M. Jacobs [Jacobs, 1967] and R. Zwanzig [Zwanzig, 1992]
assumed a separation of the time scale between the “fast” transverse dynamics and the
“slow” longitudinal one. This approach neglects the relaxation dynamics in transverse
direction(s) and leads to an effective one-dimensional, energetic description for the
problem of biased Brownian motion in system with spatial constraints.
In the sense of lubrication theory [Reynolds, 1886], several authors presented series

expansion techniques for the 3D joint PDF based on the ratio of time scales or, equiva-
lently, length scales involved in the problem. In principle, the Smoluchowski equation,
Eq. (2.12), can be rewritten as a series expansion in a small parameter ε. Thereby,
the leading order O(ε0) also denoted as unperturbed problem is assumed to be solvable.
The expansion parameter ε measures how far the actual problem deviates from the
unperturbed problem whereby the latter’s solution equals the one of the Fick-Jacobs
equation. The idea is to calculate both the 3D joint PDF and marginal PDF by succes-
sively finding the higher-order terms in a perturbation expansion series. The essential
question here is the choice of the small parameter ε, in which one could do an expansion.
For instance, the disparity between the channel height and the period, ε = ∆H,

or between the averaged half width and channel’s period, ε = 〈W (x) 〉x, serves as
expansion parameter in [Laachi et al., 2007; Yariv and Dorfman, 2007]. Contrary,
Kalinay and Percus [Kalinay and Percus, 2006, 2008] used as smallness parameter the
ratio of an imposed anisotropy in the dispersion tensor, ε2

KP = Dx,x/Dy,y ≈ τy/τx � 1.
In both cases, a small value of ε corresponds to rapid transverse sojourns associated
with quick relaxation of the transverse profile to the steady-state form. Based on an
expansion in ε, Kalinay and Percus derived a rigorous mapping method where the n-th
series expansion term of the 3D joint PDF have the form of an operator acting on
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3. Biased particle transport in extremely corrugated channels

p (x, t). Both choices of ε are appropriate if one focuses on the short time evolution of
P (q, t) when starting from a given initial PDF P (q, 0).

Our objective with this chapter is to provide a systematic treatment by applying the
method of asymptotic perturbation analysis [Bruus, 2008] to the problem of biased
Brownian motion in confined geometries. We purpose to calculate higher-order cor-
rection terms to the stationary joint PDF in terms of an expansion parameter, which
specifies the channel corrugation. In particular, we limit our consideration to the sta-
tionary problem of Eq. (2.12), which is in fact, the only state necessary for deriving
the main transport quantities, see Sect. 2.1. Once equilibration in transverse direc-
tion(s) is accomplished, the problem is well described by the FJ equation, Eq. (2.34),
as long as the modulation of the channel walls is small compared to the period length.
Hence, contrarily to the choices for ε stated above, we choose a quantity characterizing
the deviation of the corrugated cross-section from the straight channel, corresponding
to ε = 0. In detail, our dimensionless parameter ε measures the difference between
the widest cross-section of the channel, ∆Ω, and the most narrow constriction at the
bottleneck, ∆ω ,1 yielding

ε = ∆Ω−∆ω. (3.1)

Our choice of ε is supported by analysis of the time scales involved in the problem, see
Sect. 2.4, leading to a criteria for the validity of the FJ equation. Burada et al. found
the requirement W ′(x)2 ' ε2 � 1 for diffusive motion, f = 0.

Before we start to deduce the higher-order correction terms to the Fick-Jacobs solution,
we briefly summarize the basic concept underlying asymptotic perturbation analysis. In
general, the governing stationary Smoluchowski equation, cf. Eq. (2.12), can be refor-
mulated in terms of the steady state Fokker-Planck operator L, yielding LPst(q) = 0.
First, one supposes that L can be written as a series expansion in ε

L = L0 + ε2 L1, (3.2)

where L0 is a differential operator, which represents a simpler problem that is assumed
to be solvable.2 This simpler problem is also denoted as unperturbed problem or lead-
ing order. The idea is to calculate the stationary joint PDF Pst(q) by successively
finding the higher-order terms in the expansion Pst(q) =

∑∞
n=0 ε

2nPn(q). Since we
suppose that the steady state Fokker-Planck operator depends of ε2, Eq. (3.2), Pst(q)
is expanded solely in the form of a formal perturbation series in even orders of ε.
Combining both expansions, the stationary Smoluchowski equation reads

L0P0 + ε2 (L0P1 + L1P0) + ε4 (L0P2 + L1P1) + . . . = 0. (3.3)

Likewise, one has to expand the no-flux boundary condition, Eq. (2.14), in ε. For
Eq. (3.3) to be true for any value of ε, each order must be zero, leading to an infinite,

1Please note that throughout this thesis all lengths are scaled in units of the channel period L.
Considering dimensionful quantities leads to ε = (∆Ω−∆ω) /L.

2We emphasize that the described concept is not limited to three-dimensional problems. Mainly, we
apply this method to effective 2D systems in the following sections.
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3.1. 3D channel geometry with rectangular cross-section
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Figure 3.1.: Sketch of a segment of a 3D, reflection-symmetric periodically varying
channel that is confining the motion of overdamped, point-like Brownian particles.
The periodicity of the channel structures is unity, the height ∆H, the minimal and
maximal channel widths are ∆ω and ∆Ω, respectively. The size of a unit cell is
indicated with the dashed lines.

hierarchic set of boundary value problems to solve. By assumption, the homogeneous
zero-order equation is the unperturbed, solvable problem and P0(q) can therefore be
found. This implies that the first-order equation O(ε2) becomes an inhomogeneous dif-
ferential equation for the first-order correction P1(q) which in principle can be derived
since L1P0 is known. Then, the solution of the full problem can be calculated if any
solutions of L0Pn + L1Pn−1 = 0 with associated bc can be iteratively found.

In the following chapter, we calculate the higher-order corrections terms to Fick-Jacobs
solution for two possible realizations of three-dimensional channels. That are (i) a
periodic channel geometry with rectangular cross-section in Sect. 3.1 and (ii) a cylin-
drical tube with periodically varying radius R(x) in Sect. 3.3. If not explicitly stated
otherwise, we always restrict our studies to (i) axis-symmetric boundary functions
ω±(x) = ±ω(x) confining the particle’s motion in transverse direction(s). Additionally,
we assume throughout (ii) dilute particle concentration within each unit cell and (iii)
negligible particle diameter (point-like) compared to the bottleneck width, dp � ∆ω.
Thus, hydrodynamic particle-wall, hydrodynamic and hard-core particle-particle inter-
actions can safely be disregarded [Happel and Brenner, 1965]. Finally, (iv) the particles
are subject to an external static force with static magnitude f acting only along the
longitudinal direction of the channel ex (the corresponding potential is Φ(q) = −f x).

3.1. Three-dimensional, planar channel geometry
In this section, we study the dynamics of point-size Brownian particles evolving under
the action of an external static force f = f ex in a 3D planar channel geometry.3
The confinements possess unit period, constant height ∆H, and a periodically vary-
ing rectangular cross-section Q(x). The particle motion is confined by two planar

3I remark that several results and similar figures presented in this section have been previously pub-
lished in Martens et al., 2011a.
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3. Biased particle transport in extremely corrugated channels

walls at z = 0 and z = ∆H and by the perpendicular axis-symmetric side-walls at
y = ω+(x) = ω(x) and y = ω−(x) = −ω(x) [Oliveira et al., 2007; Squires and Quake,
2005]. The corresponding local cross-section is given by Q(x) = ∆HW (x) with
W (x) = 2ω(x). The minimal and maximal value of the local channel width are de-
noted as ∆ω and ∆Ω. A sketch of a segment of the channel is depicted in Fig. 3.1.

We next measure, for the case of finite corrugation ε 6= 0, the transverse length y in
units of ε, y → ε y and, likewise, the boundary functions ±ω(x) → ±ε h(x). After re-
scaling, the joint PDF reads P (q, t) → ε P (q, t), respectively, the probability current
is given by J (q, t) = (εJx, Jy, εJz)T . We emphasize that the scaling of time, energies,
and the set of units are not influenced by this additional transverse scaling, see Sect. 2.2.

In dimensionless units, the Langevin equations, Eq. (2.25), describing the particle’s
dynamics are given by

ẋ = − ∂xΦ(q) + ξx(t), (3.4a)

ẏ = − 1
ε2∂yΦ(q) + 1

ε
ξy(t), (3.4b)

ż = − ∂zΦ(q) + ξz(t). (3.4c)

The corresponding stationary4 Smoluchowski equation, Eq. (2.12),

0 = ∇q · Jst (q) = −∇q
[
e−Φ(q)∇q

(
eΦ(q) Pst (q)

)]
, (3.5a)

simplifies to

0 = ε2∂xJ
x
st + ∂yJ

y
st + ε2∂zJ

z
st, (3.5b)

with ∇q =
(
∂x, ε

−1∂y, ∂z
)T . The subscript st will be omitted in the following since we

solely discuss the stationary problem. We postulate that the dynamics in z-direction
is decoupled from the one in x and y-direction. Consequently, the separation ansatz
P (q) = p(x, y)Z(z) in consideration of the boundary condition

Jz(q) =0, at z = 0, and z = ∆H, (3.6)

results in a non-trivial solution for Jz (q) = 0 everywhere within the channel. For the
studied situation, i.e., there is only a constant force acting in x-direction, the particles
are uniformly distributed in z-direction and the form function Z(z) equals the inverse
of the dimensionless channel height at steady state, i.e., Z = 1/∆H. The separation
ansatz can also be applied to more complicated forcing scenarios if the external potential
can be written as a sum of two independent potentials, Φ(q) = V (x, y) +W (z). In this

4For non-stationary problems, the left-hand side of Eq. (3.5b) reads −ε2∂tP (q, t). Hence, the time
derivative is negligible for smoothly varying channel widths, respectively, small values for ε.
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3.1. 3D channel geometry with rectangular cross-section

case, the stationary solution reads

P (q) = p(x, y) e−W (z)

∆H∫
0

dz e−W (z)
, (3.7)

where the form function Z(z) equals the Boltzmann-distribution. This allows a reduc-
tion of the problem’s dimensionality from 3D to 2D:

ε2∂xJ
x(x, y)+∂yJy(x, y) = 0. (3.8)

Comparing the last expression with Eq. (3.2), we identify L0p(x, y) = ∂yJ
y(x, y) and

L1p(x, y) = ∂xJ
x(x, y). The 2D transport problem, stated in Eq. (3.8), was investigated

for symmetric [Burada et al., 2008b; Laachi et al., 2007; Marchesoni and Savel’ev, 2009]
as well as in asymmetric [Bradley, 2009; Kalinay and Percus, 2010; Yariv et al., 2004]
channels.
For the considered re-scaled channel geometry, the outward-pointing normal vector

reads ny = (−h′(x),±1, 0)T /
√

1 + h′(x)2 at the perpendicular side-walls at y = ±h (x).
The prime denotes the differentiation with respect to x. Therefore, the no-flux boun-
dary conditions, Eq. (2.14), can be written as

±ε2h′(x) Jx =Jy, ∀ (x, y) ∈ channel wall. (3.9)

Asymptotic perturbation analysis

In what follows, we perform asymptotic perturbation analysis of the problem stated by
Eqs. (3.8) and (3.9). Therefore, the stationary joint PDF p(x, y)

p(x, y) = p0(x, y) + ε2 p1(x, y) + . . . =
∞∑
n=0

ε2npn(x, y), (3.10)

and, likewise, the stationary probability current J

J(x, y) =
∞∑
n=0

ε2nJn(x, y), (3.11)

are expanded a perturbation series in even orders of the parameter ε. Substituting
these expressions into Eqs. (3.8) and (3.9), we get a hierarchic set of inhomogeneous,
partial differential equations

0 = ∂yJ
y
0 (x, y) +

∞∑
n=1

ε2n {∂xJxn−1(x, y) + ∂yJ
y
n(x, y)

}
, (3.12a)

with associated boundary conditions at the channel walls y = ±h(x)

0 = − Jy0 (x, y) +
∞∑
n=1

ε2n {±h′(x)Jxn−1(x, y)− Jyn(x, y)
}
, ∀ (x, y) ∈ wall. (3.12b)

31



3. Biased particle transport in extremely corrugated channels

For this to be true for any value of ε each term within the brackets must be zero, yielding
to an infinite system of boundary value problems to solve. Basically, the solution of the
full problem can be calculated if any solutions of Eq. (3.12) can be iteratively found.

Moreover, the stationary joint PDF has to be normalized for any value of ε. For
simplification, we claim that the normalization requirement for p(x, y) corresponds to
the zeroth solution p0(x, y)

〈 p0(x, y) 〉x,y =
1∫

0

dx
h(x)∫
−h(x)

dy p0(x, y) = 1, (3.13)

that is normalized to unity. Consequently, the unit-cell average of the higher-order
correction terms must vanish

〈 pn(x, y) 〉x,y = 0. (3.14)

In order to prevent that the marginal PDF, Eq. (2.28), equals the FJ results for any
value for ε, i.e., p(x) = p0(x), we claim that ∃x ∈ [0, 1] :

∑∞
n=1 ε

2n ∫ h(x)
−h(x) dy pn(x, y) 6= 0.

The normalization condition, Eq. (3.14), can be realized by introducing the centered
functions

pn(x, y) 7−→ pn (x, y)− 〈 pn (x, y) 〉x,y , for n ∈ N+. (3.15)

We emphasize that the latter are no probability densities functions anymore because
they can assume negative values for a given x and y. Additionally, each order pn(x, y)
has to obey the periodicity requirement pn(x+m, y) = pn(x, y), ∀m ∈ Z.
By means of the series expansion Eq. (3.12a) in combination with Eq. (3.14), the

calculation of the mean particle current in longitudinal direction, Eq. (2.17), simplifies
to

〈 ẋ 〉 = 〈 ẋ 〉0 −
∞∑
n=1

ε2n 〈 ∂xpn(x, y) 〉x,y . (3.16)

We find that the mean particle current is composed of (i) the Fick-Jacobs result 〈 ẋ 〉0
and (ii) becomes corrected by the sum of averaged derivatives of the higher-order cor-
rection terms pn(x, y). One immediately notices that the introduction of the centered
functions, Eq. (3.15), does not influence the result for the mean particle current.

3.1.1. Zeroth Order: the Fick-Jacobs equation

First, we derive the solution for the leading order p0(x, y) and demonstrate that the
latter is identical to the solution of the Fick-Jacobs equation, cf. Eq. (2.34). Comparing
Eqs. (3.8) and (3.2), the unperturbed differential operator L0 explicitly reads

L0 = −∂y
[
e−V (x,y)∂ye

V (x,y)
]

= −∂2
y , (3.17)
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3.1. 3D channel geometry with rectangular cross-section

for Φ(q) = V (x, y) = −f x. To derive the leading order term, one has to solve
L0p0(x, y) = ∂yJ

y
0 (x, y) = 0 supplemented with the corresponding no-flux boundary

condition Jy0 (x, y) = 0, ∀ (x, y) ∈ channel wall, Eqs. (3.12). It immediately follows that
p0(x, y) = g(x) e−V (x,y) where g(x) is an unknown function which has to be determined
from the second order O

(
ε2) balance of Eq. (3.3), L0p1(x, y) + L1p0(x, y) = 0, with

L1 = −∂x
[
e−V (x,y)∂xe

V (x,y)
]

=
(
f ∂x − ∂2

x

)
. (3.18)

Integrating the second order O
(
ε2) balance with respect to y, yields

0 = ∂x

 h(x)∫
−h(x)

dy e−V (x,y)g′(x)

+ h′(x)Jx0 (x,−h(x))

+ h′(x)Jx0 (x, h(x))− Jy1 (x, h(x)) + Jy1 (x,−h(x)).

Taking the no-flux boundary conditions, Eq. (3.12b), into account, we obtain

0 = ∂x
(
e−A(x)g′(x)

)
, (3.19)

where A(x) is the potential of mean force previously introduced in Eq. (2.35). For the
exactly-posed problem, Φ(q) = −f x, A(x) looks like A(x) = −f x − ln (2h(x)). For
f 6= 0 and only if x is not multiplicative coupled to the other spatial coordinate(s), a
closed-form for p0(x, y) can be found [Risken, 1989]:

p0(x, y) = e−V (x,y)g(x) = I−1 e−V (x,y)
x+1∫
x

dx′ eA(x′), (3.20)

with substitutes

I(x) = e−A(x)
x+1∫
x

dx′ eA(x′), and I =
1∫

0

dx I(x). (3.21)

Further, the marginal probability density function, cf. Eq. (2.28), becomes

p0(x) = e−A(x)g(x) = I−1 I(x). (3.22)

In the pure diffusion limit, f = 0, the particles are uniformly distributed within each
channel unit cell, p0(x, y) = const, and the marginal PDF reduces to

p0(x) = W (x)
1∫
0

dxW (x)
. (3.23)
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3. Biased particle transport in extremely corrugated channels

Expressing next g(x) by p0(x), Eq. (3.19) reduces to the stationary Fick-Jacobs equa-
tion

0 = ∂x
[
e−A(x)∂x

(
eA(x) p0(x)

)]
, (3.24)

previously presented in Sect. 2.3.

We demonstrated that the leading order term of the asymptotic perturbation analysis
is equivalent to the solution of the FJ equation. Therein, the particles’ distributions in
transverse directions equal the equilibrium (canonical) one. In addition, we showed that
whether one considers an energetic confining potential Ven(x, y) with natural boundary
conditions Jyn(x, y = ±∞) = 0 or the problem of Brownian motion in a confined region
with corresponding no-flux boundary conditions Eq. (3.12b), the differential equation
determining the unknown function g(x), Eq. (3.19), is the same. Therefore, in zeroth
order and for the given scaling, Brownian motion in an appropriately chosen con-
fining potential Ven(x, y), obeying

∫∞
−∞ dy exp(−Ven(x, y)) =

∫ h(x)
−h(x) dy exp(−V (x, y)),

exhibits the same transport characteristics as those induced by a confining channel
with hard walls [Sokolov, 2010; Wang and Drazer, 2010]. We emphasize that the
above presented derivation of the FJ equation is neither limited to reflection symmetric
channel geometries, h±(x) = ±h(x), nor to the particularly chosen external potential:
V (x, y) = −f x, see [Burada and Schmid, 2010; Burada et al., 2008a].
We evaluate the mean particle current in longitudinal direction by use of well-known

analytic expressions [Burada et al., 2009; Stratonovich, 1958], to yield

〈 ẋ(f) 〉0 =
1∫

0

dx
h(x)∫
−h(x)

dy Jx0 (x, y) = I−1
(
1− e−f

)
. (3.25)

Consequently, the particle mobility in units of the free mobility µ0 is given by

µ0 (f) /µ0 = 〈 ẋ(f) 〉0
f

=

(
1− e−f

)
f I

. (3.26)

in leading order. Basically, the stationary joint PDF of finding an overdamped Brow-
nian particle budging in a two-dimensional periodic geometry is sufficiently described by
Eq. (3.20) as long as the extension of the channel structure’s bulges is small compared
to the period, i.e., ε� 1. We next address the higher-order corrections pn(x, y) to the
joint PDF which become necessary for more winding structures.

3.1.2. Higher order contributions to the Fick-Jacob equation

According to Eq. (3.3), one needs to iteratively solve L0pn +L1pn−1 = 0 having regard
to the boundary condition Eq. (3.12b). For the considered situation, the equation
simplifies to

∂2
ypn(x, y) =

(
f ∂x − ∂2

x

)
pn−1(x, y), n ∈ N+. (3.27)
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3.1. 3D channel geometry with rectangular cross-section

Each solution of this second order partial differential equation possesses two integra-
tion constants dn,1 and dn,2. The first one, dn,1, is determined by the no-flux boun-
dary condition Eq. (3.12b) whereas the second provides the normalization condition
〈 pn(x, y) 〉x,y = 0.

For the first order correction, the determining equation is

∂2
yp1(x, y) = 〈 ẋ 〉0 ∂x

( 1
2h(x)

)
, (3.28)

and after integrating twice over y, we obtain

p1(x, y) = − 〈 ẋ 〉0
(
h′(x)

2h2(x)

)
y2

2! . (3.29)

Hereby, as previously requested above, the first integration constant d1,1(x) is set to
0 in order to fulfill the no-flux boundary condition, and the second must provide the
normalization condition Eq. (3.13), i.e., d1,2 = 0. Obviously, the first correction to the
joint PDF becomes positive if the confinement is constricting, i.e., for h′(x) < 0 and
〈 ẋ 〉0 6= 0. In contrast, the probability for finding a particle diminishes in unbolting
regions of the confinement, i.e., for h′(x) > 0. Please note, that the first order correc-
tion scales linearly with the mean particle current 〈 ẋ 〉0. Overall, the break of spatial
symmetry observed within numerical simulations in previous works [Burada, 2008; Bu-
rada et al., 2007] is reproduced by this very first order correction. Particularly, with
increasing forcing, the probability for finding particles close to the channel bottlenecks
increases.

Upon recursively solving, the higher-order correction terms read

pn (x, y) 'Ln1p0(x, y) y2n

(2n)! + dn,2, n ∈ N+, (3.30)

where the differential operator L1 utilized n-times is given by

Ln1 =
n∑
k=0

(
n
k

)
(−1)k fn−k ∂ n+k

∂ xn+k . (3.31)

We stress that each single correction term pn(x, y), Eq. (3.30), satisfies the normalization
condition, dn,2 = −〈Ln1p0(x, y) (y2n)/(2n)!〉x,y, but does not obey the no-flux boundary
condition at the channel wall, Eq. (3.12b). Referring to Eq. (3.10), the stationary PDF
p(x, y) is obtained by summing all correction terms pn(x, y), leading to

p(x, y) = p0(x, y) +
∞∑
n=1

ε2n
(
Ln1p0(x, y) y

2n

(2n)! + dn,2

)
. (3.32)

One can proof that the full solution, Eq. (3.32), obeys the no-flux bc by putting the
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3. Biased particle transport in extremely corrugated channels

latter into Eq. (3.9), yielding

ε2 ∂x

h(x)∫
−h(x)

dy e−V (x,y)∂x
(
eV (x,y)p(x, y)

)
= 0. (3.33)

Referring to Eq. (2.30), this expression vanishes identically at steady state.

The exact solution for the stationary joint probability density function of finding a
biased Brownian particle in 3D, planar channel geometry is given by Eq. (3.32). The
latter solves the stationary Smoluchowski equation, Eq. (3.8), under satisfaction of the
normalization as well as the periodicity requirements. More importantly the solution,
Eq. (3.32), obeys the no-flux boundary conditions at the center line y = 0 (caused by
problem’s axis-symmetry) as well as at the channel walls, y = ±h(x). Further, one
notices that p(x, y) is fully determined by the Fick-Jacobs results p0(x, y). Caused by
L1 p0(x, y) ∝ 〈 ẋ(f) 〉0, the higher order corrections to the PDF scales linearly with the
mean particle current in the FJ limit 〈 ẋ 〉0, and thus the stationary PDF equals the
leading order (FJ) result, p(x, y) = p0(x, y) = const, regardless the value of ε for f = 0
or, equivalently, for 〈 ẋ 〉0 = 0.
In practice, it is only possible or worthwhile to calculate a few of the higher-order

corrections terms. Then, the series is truncated and one has to take account of the
integration constants dn,1 in order to satisfy the no-flux bc. This results in an addi-
tional sum over odd powers of |y| in Eq. (3.30), viz.,

∑n
k=1 L

n−k
1 dk,1(x) |y|

2(n−k)+1

(2(n−k)+1)! . The
integration constants dn,1(x) are proportional to the probability current of the previous
order, dn,1(x) ∝ −∂x(

∫ h(x)
−h(x) dy Jxn−1 (x, y)). Caused by the |y|-terms, each probability

current Jyn(x, y) is discontinuously at the center line at y = 0. The |y|-terms generate
nonzero fluxes to or from the center line, despite that there are neither sources nor
sinks. Solely, in the limit n→∞ all discontinuities vanishes.
We emphasize that the presented derivation of p(x, y) is valid only if (i) the dynamics

in z is decoupled from the dynamics in x and y-direction, Φ(q) = V (x, y) + W (z),
(ii) no forces act in y-direction, ∂yV (x, y) = 0 or, equivalently, L0 = −∂2

y , and (iii)
the channel is axis-symmetric with respect to the y-axis. In this special case, the
center line C(x) = (ω+(x) + ω−(x)) /2 acts as a hard wall with an additional bc at
y = C(x) = 0, viz., ∂yp(x, y) = 0. One can easily check that our solution, Eq. (3.32),
satisfies this bc at y = 0, too. From this follows that the above present solution is also
exact for channel geometries with one flat boundary at y = h−(x) = 0. In general,
any solution for the stationary joint PDF depends both on the local width W (x),
respectively, local cross-section Q(x) and on the center line’s behavior. In 2009, Bradley
presented a first derivation for higher order corrections to the diffusion problem in a
narrow two-dimensional channel with arbitrary boundary functions h±(x), respectively,
curved center line C ′(x). Very recently, Dagdug and Pineda, presented a generalization
to the case of asymmetric channel geometries using the projection method introduced
earlier by Kalinay and Percus, to project the 2D diffusion equation into an effective
one-dimensional generalized Fick-Jacobs equation [Dagdug and Pineda, 2012].
According to Eq. (3.16), it follows that the mean particle current scales with the mean

particle current obtained from the Fick-Jacobs formalism 〈 ẋ 〉0 for any values of ε. In
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3.1. 3D channel geometry with rectangular cross-section

what follows, we derive an expression for the spatially dependent diffusion coefficient
D(x, f) and for the mean particle current based on the above presented perturbation
series expansion for the stationary PDF P (q).

3.1.3. Spatially dependent diffusion coefficient

In Sect. 2.3, we showed that the reduction of dimensionality done implicitly in the
formulation of the FJ equation relies on the assumption of equilibration in transverse
direction(s). Referring to the previously presented series expansion, this approximation
is sufficiently correct as long as the maximum change of the local cross-section is negli-
gible compared to the channel period, ε� 1. Because the particles can move out from
or to the channel’s bulges only at finite rate, higher-order corrections to the joint PDF,
Eq. (3.30), become important for ε & 1. Basically, the accuracy of the FJ descrip-
tion can be improved by the introduction of a spatially dependent diffusion coefficient
D(x, f), see Eq. (2.45). In reference to Eq. (2.46), D(x, f) is given by ratio of two
equivalent expressions for the marginal probability current Jx(x), viz.,

D(x, f) = −
∫ h(x)
−h(x) dy [f p(x, y)− ∂xp(x, y)]

eA(x)∂x
(
e−A(x)p(x)

) , (3.34)

for the considered situation Φ(q) = −f x. The spatially dependent diffusion coefficient
is solely determined by the stationary joint PDF p(x, y) and the stationary marginal
PDF p(x). In what follows, we intend to calculate D(x, f) based on our previous results
for the asymptotic perturbation analysis, Eq. (3.32).
Let us start with the force dominated limit, f →∞, in which all terms proportional

to f prevail, leading to

lim
f→∞

D(x, f) =
f
∫ h(x)
−h(x) dy p(x, y)
f p (x) = 1. (3.35)

We find that D(x, f) equals the bulk diffusion coefficient, which is unity in our scaling,
if the external bias dominates the diffusion. Then the particles’ sojourn time within
one unit cell goes to 1/f , i.e., the particles move almost straight through a unit cell
without having time to diffuse into the channel’s bulges. Consequently, their motion is
quasi one-dimensional and thus the change of the cross-section will not influence the
diffusion in longitudinal direction.

Inserting Eq. (3.32) into Eq. (3.34), yields

D(x, f) =
〈 ẋ 〉0 −

∑∞
n=1 ε

2n ∫ h(x)
−h(x) dy (∂xV (x, y)− ∂x) pn(x, y)

〈 ẋ 〉0 −
∑∞
n=1 ε

2n (A′(x)− ∂x) pn (x)

= 〈 ẋ 〉0 +
∑∞
n=1 ε

2n [fpn(x)− ∂xpn(x)] + 2
∑∞
n=1 ε

2n h′(x) pn(x, h(x))
〈 ẋ 〉0 +

∑∞
n=1 ε

2n [fpn(x)− ∂xpn(x)] +
∑∞
n=1 ε

2nh′(x) pn(x)/h(x) .

(3.36)

In the case that the stationary joint PDF is independent of y, i.e., flat profile in trans-
verse direction which corresponds to pn(x) = 2h(x) pn(x, h(x)), D(x, f) equals unity.
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For smoothly varying channel geometries, ε . 1, it is worthwhile to calculate only
the leading orders in ε. In detail, we expand the general expression for D(x, f) up to
the forth order resulting in

D(x, f) = 1− h′(x)2

3 ε2 + 1
90
{

18h′4 − 13hh′2 h′′ + 3h2 h′ h′′′

+f h h′3 − 3 f h2 h′ h′′
}
ε4 +O(ε6, f2).

(3.37)

We find that the second order solely depends on the first derivative of the boundary
function while the forth order is composed of combinations of h(x) and its derivatives
as well as it depends linearly on the force magnitude f . The next higher orders ε2n

contains terms proportional to (2n− 1)-th derivative of h(x) and fn−1.

Albeit the method givesD(x, f) exactly, it is rather tedious and one cannot go to high
orders in ε. Thus, it is necessary to make the ansatz that (i) all but the first derivative
of the boundary function h(x) are negligible and (ii) the external force magnitude is
sufficiently small, f . 1. If so, L1 simplifies to

Ln1 ' (−1)n ∂ 2n

∂ x2n + (−1)n−1 n f
∂ 2n−1

∂ x2n−1 +O(f2). (3.38)

Additionally, the m-th derivative of h(x)−1 with respect to x can be approximated by

∂mx

( 1
h(x)

)
' (−1)m m! h′(x)m

h(x)(m+1) +O
(
h′′(x)

)
. (3.39)

With these simplifications, the n-th order of the joint PDF Eq. (3.10) reads

pn(x, y) ' (−1)n 〈 ẋ 〉0
4nh′(x)2

[
h′(x) + (n− 1)

2n− 1 f h(x)
](

y h′(x)
h(x)

)2n
+ dn,2(f), (3.40a)

respectively, the marginal PDF reduces to

pn(x) ' (−1)n 〈 ẋ 〉0 h(x)h′(x)2n

2n (2n+ 1)h′(x)2

[
h′(x) + (n− 1)

2n− 1 f h(x)
]

+ 2h(x) dn,2(f), (3.40b)

for n ∈ N+. Expanding next Eq. (3.36) in Taylor series in f , one gets

D(x, f) =D0(x) +D1(x) f +O(f2)

= 〈 ẋ 〉0 +A1(f) +A2(f)
〈 ẋ 〉0 +A1(f) +A3(f)

∣∣∣
f=0

+ f

[
A′1(f) +A′2(f)

〈 ẋ 〉0 +A1(f) +A3(f)

−〈 ẋ 〉0 +A1(f) +A2(f)
〈 ẋ 〉0 +A1(f) +A3(f)

A′1(f) +A′3(f)
〈 ẋ 〉0 +A1(f) +A3(f)

]
f=0

+O(f2).

(3.41)

Here, the prime denotes the derivative with respect to f . The auxiliary functions Ai
read A1(f) =

∑∞
n=1 ε

2n [fpn(x)− ∂xpn(x)], A2(f) =
∑∞
n=1 ε

2n2h′(x) pn(x, h(x)), and
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3.1. 3D channel geometry with rectangular cross-section

A3(f) =
∑∞
n=1 ε

2nh′(x) pn(x)/h(x). Inserting Eqs. (3.40) into Ai(f), we derive

D0(x) = 1 +
∞∑
n=1

(−1)n (ε h′(x))2n

2n+ 1 = arctan (ε h′(x))
ε h′(x) = arctan (W ′(x)/2)

W ′(x)/2 , (3.42)

for the leading order and

D1(x) = h(x)
2h′(x)

∞∑
n=1

(−1)n (ε h′(x))2n

2n+ 1 −D0(x) h(x)
2h′(x)

∞∑
n=1

(−1)n (ε h′(x))2n

(2n+ 1)(2n− 1)

= W (x)
4W ′(x)

[
−2 +D0(x) +D0(x)2 + arctan

(
W ′(x)/2

)2] (3.43)

for the first order correction term in f . One can proof that the integration constants
dn,2(f) and its derivative with respect to f , ∂fdn,2(f), are proportional to h′′(x) which
is assumed to be negligible. Therefore, dn,2(f) and ∂fdn,2(f) vanish approximately for
f = 0 and n ∈ N+.

To briefly conclude, we verified the expression limf→0D(x, f) = D0(x) proposed by
Kalinay and Percus, cf. Eq. (2.49a), by means of an asymptotic perturbation analysis
in orders of the expansion parameter ε. In compliance with the authors, we supposed
that the second and all higher derivatives of the boundary function h(x) are negligible.
Furthermore, we calculated the first order correction term to D(x, f) in f , Eq. (3.43).
The latter is proportional toW (x)/W ′(x) and is determined by a combination ofW ′(x)
and arctan(W ′(x)/2). In contrast to D0(x), the first order correction D1(x) in f is less
practicable. Hence, below we limit the spatially dependent diffusion coefficient to its
leading order for f ≤ 1, D(x, f) ' D0(x).
Very recently, Dagdug and Pineda derived a more general expression for the spatially

dependent diffusion coefficient for arbitrary channel geometries in 2D

lim
f→0

DDP (x, f) = arctan (C ′(x) +W ′(x)/2)
W ′(x) − arctan (C ′(x)−W ′(x)/2)

W ′(x) . (3.44)

The authors took only the first derivatives of the center line C ′(x) and of the local width
W ′(x) into account [Dagdug and Pineda, 2012]. For channels that have a straight center
line, C(x) = 0, or are composed of one flat wall, the expression in Eq. (3.44) simplifies
to Eq. (3.42).

3.1.4. Corrections to the mean particle current

Next, we derive an estimate for the mean particle current 〈 ẋ(f) 〉 based on the higher
expansion orders to the joint PDF, pn(x, y). Referring to Eq. (3.16), the mean par-
ticle current is composed of (i) the Fick-Jacobs result 〈 ẋ(f) 〉0, cf. Eq. (3.25), and
(ii) becomes corrected by the sum of the averaged derivative of the higher orders
〈 ∂xpn(x, y) 〉x,y.
In accordance with the previous paragraph, we also suppose that (i) all but the first

derivative of the boundary function h(x) are negligible. Further, (ii) we focus on the
diffusion dominated limit, i.e., f . 1. Then the partial derivative of pn(x, y) with
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3. Biased particle transport in extremely corrugated channels

respect to x, Eq. (3.40a), reduces to

∂xpn(x, y) = 〈 ẋ(f) 〉0 (−1)n+1 (h′)2n

2h2n+1 y
2n +O(h′′(x)). (3.45)

Integrating the latter over the local channel width and plugging the result into Eq. (3.16),
lead to one of our main findings

lim
f→0
〈 ẋ(f) 〉 ' lim

f→0
〈 ẋ(f) 〉0

〈 arctan (εh′(x))
εh′(x)

〉
x

+O
(
h′′(x), f

)
' lim

f→0
〈 ẋ(f) 〉0 〈DKP (x, f) 〉x +O

(
h′′(x), f

)
, (3.46)

where we identify arctan (εh′(x)) /εh′(x) with the spatially dependent diffusion co-
efficient DKP (x, 0) derived by Kalinay and Percus for 2D channel geometries, see
Eqs. (2.49a) and (3.42). We obtain that the mean particle current is determined as the
product of the Fick-Jacobs result, 〈 ẋ(f) 〉0, and the expectation value of the spatially
dependent diffusion coefficient 〈DKP (x, 0) 〉x in the diffusion dominated regime, f . 1.
In the sense of linear response, the particle mobility is given by µ(f)/µ0 = 〈 ẋ(f) 〉 /f .

Referring to the Sutherland-Einstein relation, the dimensionless EDC Deff(f)/D0 coin-
cide with the dimensionless particle mobility for f � 1, see Eq. (2.26), leading to

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 ' lim
f→0

µ0(f)/µ0 〈DKP (x, f) 〉x +O
(
h′′(x)

)
. (3.47)

We stress that the correction derived above differs from the commonly used ansatz, cf.
Eq. (2.56). In compliance with the MFPT approach, see Sect. 2.5, the leading order
of the particle mobility can be evaluated via the well-known Lifson-Jackson formula
[Lifson and Jackson, 1962]

lim
f→0

µ0(f)/µ0 = lim
f→0

Deff(f)/D0 = 1
〈Q(x) 〉x 〈 1/Q(x) 〉x

. (3.48)

Combining Eqs. (3.47) and (3.48), one gets

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 ' 〈DKP (x, 0) 〉x
〈Q(x) 〉x 〈 1/Q(x) 〉x

6= 1
〈Q(x) 〉x 〈 1/(DKP (x, 0)Q(x)) 〉x

.

(3.49)

Although both derivations assume that higher derivatives of h(x) are insignificantly
small, the results differ as long as

〈
(DKP (x, 0)Q(x))−1 〉

x 6=
〈
Q(x)−1 〉

x 〈DKP (x, 0) 〉x.

3.2. Example: Channel geometry with sinusoidally varying
rectangular cross-section

Throughout this work, we study the transport characteristics of Brownian particles
with negligible diameter, dp � ∆ω, moving under the action of an external force f
through confining structures. It is supposed that the local, rectangular cross-section
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3.2. Example: Sinusoidally varying rectangular cross-section
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Figure 3.2.: Segment of 2D channel geometry with unit period and sinusoidally varying
local width W (x) = 2ω(x). The particle transport occurs due to the combination of
molecular diffusion and convective transport caused by the external force f = f ex.
An exemplary particle trajectory for f = 1 is indicated by the erratic line.

Q(x) = ∆HW (x) varies periodically in longitudinal direction whereby the system’s
period is unity in our scaling. Basically, any periodic function can be decomposed into
a Fourier series [Fourier, 1807]

W (x) = a0
2 +

∞∑
k=1
{ak cos (2π k x) + bk sin (2π k x)} , (3.50)

where ak and bk are the expansion coefficients associated to the k-th mode. Focusing
on first sine harmonic, i.e., k = 1, the boundary functions at y = ω±(x) read

ω±(x) = ±ω(x) = ±
[
a0
4 + b1

2 sin (2π x)
]
, (3.51)

for axis-symmetric boundaries. Thereby, the parameters a0 and b1 control the slope
and the channel width at the bottleneck ∆ω. Here, the condition a0 > 2 b1 should
be satisfied in order to avoid a closed channel. The sum and difference of the two
parameters, 0.5 a0 +b1 and 0.5 a0−b1, yield the maximum width ∆Ω and the minimum
width of the channel ∆ω, respectively. Hence, the boundary function is given by

ω(x) = 1
4 [(∆Ω + ∆ω) + (∆Ω−∆ω) sin (2π x)] , (3.52)

and is illustrated in Fig. 3.2. Moreover, the first coefficient coincides with the average
channel’s half width 〈W (x) 〉x. The maximum change of the local cross-section within
a unit cell is represented by ∆Ω−∆ω which was previously denoted as ε, cf. Eq. (3.1).
We emphasize that our performed asymptotic perturbation analysis in ε, presented in
Sect. 3.1, agrees with an expansion of the transverse quantities in units of the amplitude
of the first harmonics (“dominating” wavelength). Hence, the used method is often
also called long-wave asymptotic analysis in literature [Laachi et al., 2007; Yariv and
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3. Biased particle transport in extremely corrugated channels
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Figure 3.3.: Schematic sketch of the dependence of expansion parameter ε = ∆Ω−∆ω
and aspect ratio δ = ∆ω/∆Ω on the maximum width ∆Ω, respectively, the width
at the bottleneck ∆ω. The dashed lines correspond to δ = 1, 0.5, 0.25 (from above)
whereas the colored areas illustrate pairs of (∆Ω,∆ω) where ε ≤ 0.1 (blue,diamonds),
ε ≤ 1 (red,triangles), ε ≤ 5 (green,dots), and ε > 5 (yellow,plus signs).

Dorfman, 2007]. The dimensionless boundary h(x) looks like

h(x) = 1
4 [b + sin (2π x)] , (3.53)

and contains only one free parameter b = (1 + δ)/(1 − δ) which is solely governed by
the channel aspect ratio δ = ∆ω/∆Ω .
Obviously different realizations of channel geometries can possess the same value

for δ. The number of orders have to taken into account in the perturbation series,
Eq. (3.32), or, equivalently, the applicability of the Fick-Jacob approach to the problem,
depends solely on the value of the expansion parameter ε = ∆Ω (1− δ) for a given
aspect ratio δ. For clarity, the impact of maximum ∆Ω and minimum width ∆ω on ε
and on δ is illustrated in Fig. 3.3.

In what follows, we study the key transport characteristics like particle mobility µ(f)/µ0

and effective diffusion coefficient D0
eff(f)/D0 of point-like Brownian particles (dp → 0)

evolving in a sinusoidally-shaped 2D geometry like the one in Fig. 3.2. Particularly,
we compare the Fick-Jacobs approach with precise numerical simulations in order to
validate our obtained analytic prediction, Eq. (3.47). As mentioned previously in
Sect. 3.1, the stationary joint PDF in z-direction equals the Boltzmann distribution
which permits us to integrate P (q) with regard to z. Consequently, it is sufficient to
consider only the particle dynamics in the x− y plane.
Before we discuss the particle’s transport characteristics, we focus first on the statio-

nary joint PDF p(x, y) with regard to the impact of the external bias f on the latter.
In Fig. 3.4, we depict p(x, y) (left column), the normalized transverse profiles at given
x-values, and the marginal PDF p(x) (right column). Thereby, the numerical result
for p(x, y), see Fig. 3.4 (iii), was obtained by solving the stationary 2D Smoluchowski
equation Eq. (3.8) with the associated boundary conditions Eq. (3.12b) using finite
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Figure 3.4.: Left column: Stationary 2D joint PDF p(x, y) for f = 10; (i) leading
order p0(x, y), Eq. (3.20), (ii) leading order plus first correction term p0 + ε2 p1,
Eq. (3.29), and (iii) the numerically obtained result using FEM. Right column: Sta-
tionary marginal PDF p(x) for different force magnitudes f (a). Numerics are repre-
sented by staircase like solid lines whereas dashed-dotted lines correspond to the FJ
solution p0(x), Eq. (3.22). Numerical obtained transverse profile of the stationary
PDF (normalized with respect to the local width) at maximum width x = 0.25 (b)
and at the bottleneck x = 0.75 (c) for various f values are depicted. The vertical
dash-dotted lines indicate the width of the bottleneck. The channel parameters are
∆Ω = 1 and ∆ω = 0.1.
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3. Biased particle transport in extremely corrugated channels

element method (FEM).5 It is shown that the 2D joint PDF reflects the axis-symmetry
with respect to x-axes of the channel since the latter is not broken by the external
force, f = f ex. In addition, accumulation of Brownian particles at the exit of the
unit cell is found. This accumulation is due to, if a Brownian particle enters a cell
through the preceding bottleneck, the applied force drags the particles in its direction.
Simultaneously, the thermal fluctuations try to deviate this straight particle motion.
As a result, Brownian particles may pile up at the bottleneck. Both accumulation
and axis-symmetry can be found in the leading order solution p0(x, y) (FJ result),
Eq. (3.20), as shown in Fig. 3.4 (i). If additionally the first order correction term is
considered, Eq. (3.29), the superposition p0(x, y) + ε2 p1(x, y) reproduces the particles’
stickiness at the bottleneck quite well as shown in Fig. 3.4 (ii).

In the right column of Fig. 3.4, we present the dependence of the marginal PDF p(x)
and of the transverse profiles on the external force. If diffusion dominates external
forcing, f . 1, equilibration in transverse direction is accomplished even for wider
channel geometries. Then, the particles are uniformly distributed in y-direction (black
lines) and the marginal PDF scales linearly with the local channel width p(x) ∝W (x).
In compliance with the time scales involved in the problem, see Sect. 2.4, an increase of
the force magnitude results in the violation of the equilibration assumption. For large
forces, the particles gather at the center of the channel. The initial step-like distribution
at the bottleneck spreads to a bell-shaped distribution, see the blue line in Fig. 3.4 (b).
Since the width of the joint PDF in transverse direction becomes broader than the
subsequent bottleneck (indicated by the vertical dash-dotted lines) some particles are
pushed against the boundary. These have to slide along the channel wall in order to
leave the unit cell. This process takes some time and is revealed by the appearance of
two distinct maxima at the left and right side of the bottleneck in p(0.75, x). Of course,
this behavior is also reflected by the marginal PDF. Namely, p(x) exhibits an uneven
shape and the position of the maximum starts to shift towards the bottleneck for larger
forces. Nevertheless, the numerical result is well reproduced by the Fick-Jacobs solution
even for a wide channel ∆Ω = 1 and moderate force magnitude f = 10. Especially,
particle accumulation plays an important role in the diffusion process and results in
enhancement of the effective diffusion coefficient as we will present below. For f →∞,
the external drag is dominant compared to diffusion and thus the transverse PDF at
the maximum width is almost equal to the one at the bottleneck, see Fig. 3.4 (b).
In this situation, the Brownian particles do not feel any boundaries and the impact of
entropic barriers disappears. Then, the particle motion is almost straight. Nevertheless,
accumulation still can be observed at the channel walls, cf. Fig. 3.4 (c), in any kind of
channel, no matter if it is rough [Dagdug et al., 2011; Marchesoni and Savel’ev, 2009]
or smooth.

As already mentioned in Sect. 2.3, the problem’s complexity is reduced from a three-
dimensional dynamics in a confined geometry with no-flux boundary condition to an 1D
energetic description within the Fick-Jacobs approach. The latter involves the potential
of mean force A(x), Eq. (2.36). For the problem at hand, the potential explicitly reads

5For details concerning the used numerical methods please see App. A.
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3.2. Example: Sinusoidally varying rectangular cross-section

A(x) ' −f x− ln [h(x)],6 cf. Eq. (2.37b). Its extrema are located at

xi = 1
2 + 1

2π arcsin (yi) + k, k ∈ Z and i ∈ {min , max }, (3.54)

for the boundary function given in Eq. (3.53). Thereby, the substitutes read

ymin
max

= f2 b
f2 + (2π)2

[
1∓ 2π

b f2

√
(b2 − 1) (f2

c − f2)
]
. (3.55)

For force magnitudes less than the critical value

fc = π
(1− δ)√

δ
, (3.56)

the potential of mean force possesses distinct extrema separating the adjacent basins
of attraction. The entropic barrier (in units of kBT ) within each period is given by

∆A(f) = f

2π (arcsin (ymin)− arcsin (ymax)) + ln
(

b− ymin
b− ymax

)
, (3.57)

and simplifies to

∆A(f) '− ln
(∆ω

∆Ω

)
− f

2 +O
(
f2
)
, (3.58)

for small force magnitude f � 1. If f < fc, the barrier height goes to infinity for closed
channels, δ = ∆ω/∆Ω→ 0, and vanishes for straight channels, δ → 1. For f = fc, the
separating entropic barrier disappears.

3.2.1. Particle mobility

Let us first consider the particle mobility µ/µ0 of one single Brownian particle in force
direction. The particle mobility in periodic structures can be evaluated by means of
the mean first passage time (MFPT), see Sect. 2.5, yielding

µ/µ0 = 1
f 〈 t(0→ 1) 〉 , (3.59)

for any non-zero force f . Within the Fick-Jacobs description (leading order), the
MFPT of Brownian particles starting at x = 0 and arriving at x = 1 is given by
〈 t(0→ 1) 〉 = I/ (1− exp(−f)) with substitutes I, see Eq. (3.21). For the explicitly

6The additive term − ln[2 ∆H] is irrelevant for the discussion.
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3. Biased particle transport in extremely corrugated channels

Figure 3.5: Particle mobility
versus external force magnitude
f for different aspect ratios δ
is presented. Numerically ob-
tained results are represented
by markers. Exact analytic
results for the leading order,
Eq. (3.61), are indicated by
lines. The maximum channel
width is kept fixed ∆Ω = 0.1.
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considered boundary, Eq. (3.52), the leading order result for 〈 t(0→ 1) 〉 reads

〈 t(0→ 1) 〉 = 1
1− e−f

1∫
0

dx e−f x

b + sin (2π x)

x∫
x−1

dx′ ef x′
(
b + sin

(
2π x′

))

= 1
f

f2 + 1
2 (2π)2

{√
δ + 1/

√
δ
}

f2 + (2π)2 . (3.60)

Immediately, one derives

µ0(f)/µ0 = f2 + (2π)2

f2 + 1
2 (2π)2

{√
∆Ω
∆ω +

√
∆ω
∆Ω

} . (3.61)

for the particle mobility in units of its bulk value µ0. We derive that µ0(f) is solely
determined by the aspect ratio δ = ∆ω/∆Ω for any given value of f . Due to the reflec-
tion symmetry of the boundary function ω(x) with respect to x = 0.25 and x = 0.75,
respectively, the particle mobility is a symmetric function µ0(−f) = µ0(f). Thus it is
sufficient to discuss only the behavior for f ≥ 0.
In Fig. 3.5, we compare numerics (markers) with analytic results (lines), Eq. (3.61),

for the particle mobility as a function of f for different aspect ratios δ. Thereby,
the different aspect ratios are adjusted by fixing the maximum width ∆Ω and varying
bottleneck width ∆ω. The numerical results were obtained by calculating the stationary
joint PDF and subsequently evaluating the mean particle current Eq. (3.25) using FEM.
The FEM results were also double-checked by Brownian dynamics (BD) simulations.
The numerical simulation methods are presented in depth in App. A. We emphasize
that numerical errors are of the size of the markers so we do not indicate them.
In the limiting case of infinite large force strengths, i.e., drift is the dominating pro-

cess, the particles move mostly close to the center line of the channel because diffusive
spreading in y-direction is comparatively slow, see Fig. 3.4 (b). Hence, the transport is
not inhibited by the confinement and particles’ sojourn times to stay within one unit
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3.2. Example: Sinusoidally varying rectangular cross-section

cell equal the free value 〈 t(0→ 1) 〉 = 1/f , see Eq. (3.60). Consequently, the particle
mobility tends to

lim
f→∞

µ0(f)/µ0 = 1, (3.62)

as shown in Fig. 3.5. With decreasing dimensionless force magnitude f , i.e., the impact
of thermal fluctuations becomes stronger, the spreading of the probability density in
y-direction increases and the mean sojourn time within one unit cell grows. Thus, the
particle mobility lessens. At

fip = 2π
√{√

δ + 1/
√
δ
}
/6 , (3.63)

µ0(f)/µ0 possesses its inflection point. After further reduction of f , diffusion dominates
and µ(f) converges to its asymptotic value

lim
f→0

µ0(f)/µ0 = 1
〈h(x) 〉x 〈 1/h(x) 〉x

= 2
√

∆ω/∆Ω
1 + ∆ω/∆Ω . (3.64)

In the diffusion dominated regime, f � 1, the mobility of Brownian particles is solely
determined by the geometry – more precisely by the aspect ratio of the channel. In
the limit of straight channels δ = 1, i.e., there is no restriction of the phase space,
the entropic barriers vanish and hence µ(f)/µ0 attains always unity. With decreasing
bottleneck width, the motion of the particles becomes inhibited and thus they accumu-
late at the cell’s exit. In addition, the mean sojourn time grows, respectively, µ goes
down even for small force magnitudes f → 0. For very narrow bottlenecks ∆ω → 0,
the entropic barrier separating the adjacent basins of attraction goes to infinity, cf.
Eq. (3.58), and the mobility converges to zero.
Noteworthy, it is shown that the exact analytic result for µ0(f)/µ0, Eq. (3.61),

matches very well with numerics for all values of f and δ, see Fig. 3.5.

We stress that transport in periodically varying channel structures with associated
entropic barriers is totally different from the one in 1D energetic, periodic potentials
[Burada et al., 2009; Hänggi et al., 1990]. The fundamental difference is the tempera-
ture dependence of these models. In an energetic periodic potential, the MFPT from
one period to the subsequent one grows with decreasing temperature according to the
Arrhenius law 〈 t(0→ 1) 〉 ∝ exp [∆Φ] [Arrhenius, 1889]. Thereby, ∆Φ denotes the
activation energy (in units of thermal energy kBT ) necessary to proceed by a period
[Hänggi et al., 1990]. Therefore, decreasing the temperature leads to a diminishing mo-
bility ∝ 〈 t(0→ 1) 〉−1. In contrast, in systems with geometrical constraints a decrease
of the thermal energy leads to growing values of the dimensionless force parameter f
and, consequently, to a shortening of the MFPT 〈 t(0→ 1) 〉, see Fig. 3.5.

Wang and Drazer considered biased transport of Brownian particles confined by a soft
channel. The latter was described by a parabolic potential Ven(x, y) = 0.5 (y/W (x))2

with periodically varying curvatureW (x) =
√

2 (b + cos(2π x)). The potential of mean
force, associated to Φ(q) = −f x+Ven(x, y), is given byA(x) ' −f x− ln[b + cos(2π x)].
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3. Biased particle transport in extremely corrugated channels

Figure 3.6: Comparison of
numerically obtained results
for the particle mobility
(markers) with the analytic
result µ0(f)/µ0 (solid line),
Eq. (3.61), for various values
of the expansion parameter
ε. Additionally the estimate
Eq. (3.66) including higher
order corrections is presented
(dash-dotted lines). The aspect
ratio is set to δ = 0.1.
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The latter coincides with Eq. (2.37b) for the explicitly studied channel structure,
Eq. (3.52). Therefore, the authors derived the identical result for the particle mobility,
cf. Eq. (3.61) and Eq. (51) in [Wang and Drazer, 2009]. This agreement exemplifies
that an appropriately chosen confining energetic potential may lead to the same trans-
port characteristics as those induced by the smoothly varying channel with hard walls;
for details see Sect. 3.1.1.

In Sect. 3.1.1, we demonstrated that the solution of the FJ equation is identical to
the leading order of an asymptotic perturbation analysis of the 2D joint PDF in the
expansion parameter ε. In Fig. 3.6, we present the influence of ε on the particle mobility.
The value for ε is adjusted by changing the maximum width ∆Ω for a fixed aspect
ratio δ = 0.1, see Fig. 3.3. We observe that the exact analytic solution, Eq. (3.61),
is in very good agreement with the numerics for ε . 0.1. This validates that the
dynamics of single particles can be well described by the FJ approach as long as the
maximum channel width is of the order of 10% of its period. With growing ε value,
as expected, the deviation between the analytic and the numerical result becomes
distinct. Particularly, one recognizes that µ/µ0 decreases with increasing maximum
width ∆Ω or, equivalently, with growing area of the channel’s bulges. More available
space in transverse direction enhances the probability for excursions into the channel’s
bulges, or, equivalently, the probability for long sojourn times. Therefore, the MFPT
grows and the particle current lessens with ∆Ω. In agreement with the analysis of the
time scales involved in the system, see Sect. 2.4, the leading order µ0(f)/µ0 is valid
for 1 � f � ε−2. In the case of wide channels, the Fick-Jacobs approach becomes
untenable already for relatively small forces f , whereas for ε � 1, its validity extends
to significantly larger drives [Burada et al., 2007, 2008b].

3.2.2. Verification of the correction to the particle mobility

In Sect. 3.1.4, we derived that the higher-order correction to the particle mobility
is proportional to the expectation value of the spatial dependent diffusion coefficient
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3.2. Example: Sinusoidally varying rectangular cross-section
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Figure 3.7.: Comparison of analytic theory versus precise numerics: Mobility (squares)
and effective diffusion coefficient (triangles) for confined Brownian particles versus
ε/∆Ω for different maximum channel widths ∆Ω and bias f = 10−3 (correspon-
ding to the diffusion dominated regime). The left curves correspond to ∆Ω = 1
and the right ones to ∆Ω = 5. Superimposed are the limit behavior of the zeroth
order mobility µ0(0)/µ0 (dotted line), Eq. (3.64), the higher-order corrections (solid
lines), Eq. (3.65), the Lifson-Jackson approach using DRR(x, 0) (dashed lines), and
DKP (x, 0) (dash-dotted lines).

〈DKP (x, f) 〉x, Eq. (3.47). Calculating the period average of DKP (x, f) results in

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 ' 4
√

1− ε/∆Ω
2− ε/∆Ω

asinh (πε/2)
π ε

+O(h′′(x)) (3.65)

for 3D, planar confinements with sinusoidally varying rectangular width Eq. (3.52).

In Fig. 3.7, we depict the dependence of the particle mobility (squares) and the effective
diffusion coefficient (triangles) on the expansion parameter ε for f � 1 in depth. The
results for Deff/D

0 were obtained by calculating the stationary joint PDF, solving the
convection-diffusion equation for the B-field, Eq. (2.20), and subsequent evaluation of
the unit cell quadrature, Eq. (2.23), using FEM; for details see App. A. In order to
modify the value of ε, the minimum width ∆ω is changed while the maximum width ∆Ω
is kept fixed. It is demonstrated that the numerical results for Deff(f)/D0 and µ(f)/µ0

coincide for all values of ε, thus corroborating the Sutherland-Einstein relation for
f � 1. Particularly, we compare the numerical results with our analytic estimates, viz.,
the zeroth order µ0/µ

0 (dotted lines), Eq. (3.64), and the higher-order correction (solid
lines), Eq. (3.65). Additionally, we evaluated the Lifson-Jackson formula, Eq. (2.56),
by using the expression derived by Reguera and Rubí DRR(x, 0), Eq. (2.48), as well
as the one obtained by Kalinay and Percus DKP (x, 0), Eq. (2.49a). Note that we do
not present any results for the Lifson-Jackson formula using the expression proposed
by Zwanzig DZ(x, 0), Eq. (2.47). The discrepancies are much bigger compared with
DRR(x, 0) and DKP (x, 0) for any value of ε.
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3. Biased particle transport in extremely corrugated channels

∆Ω ε/∆Ω FJ, Eq. (3.64) Eq. (3.65) DRR(x, 0) DKP (x, 0)

0.5 0.5 0.022 -0.002 -0.002 -0.002
0.8 0.049 -0.011 -0.003 -0.003

1 0.5 0.068 -0.019 -0.018 -0.020
0.8 0.153 -0.033 -0.017 -0.024

2 0.5 0.151 -0.096 -0.097 -0.112
0.8 0.355 -0.108 -0.082 -0.117

5 0.5 0.264 -0.326 -0.342 -0.398
0.8 0.679 -0.317 -0.288 -0.401

Table 3.1.: Relative error µtheo(0)/µnum(0) − 1 between theoretical estimates and
numerics are presented for two given ratios ε/∆Ω. The maximum channel width
is varied from ∆Ω = 0.5 to ∆Ω = 5. The third column represents the results for
the Fick-Jacobs approach limf→0 µ0(f)/µ0, Eq. (3.64), and the values in the 4th
column corresponds to our correction estimate Eq. (3.65). Additionally the results
based on the Lifson-Jackson formula with DRR(x, 0) (5th column) and DKP (x, 0)
(6th column) are presented.

Although not explicitly shown here, all analytic expressions are in excellent agreement
with the numerics in the case of smoothly varying channel geometry, ∆Ω� 1. Basically,
the zeroth order result µ0(0)/µ0 matches sufficiently well with the simulation results,
indicating the applicability of the Fick-Jacobs approach. In virtue of Eq. (3.1), the
dimensionless expansion parameter is defined by ε = ∆Ω−∆ω and hence the maximal
value for ε equals ∆Ω, see Fig. 3.3. Consequently, the influence of the higher expansion
orders ε2n 〈 ∂xpn(x, y) 〉 on the mean particle current as well as on the particle mobility
becomes negligible if the maximum channel width ∆Ω is small.
With increasing maximum width the deviation between the FJ result and the nume-

rics grows. Specifically, µ0(0)/µ0 overestimates the particle mobility and the effective
diffusion coefficient. In Tab. 3.1, we display the relative error µtheo(0)/µnum(0) − 1
between theoretical estimates and numerics for two selected ratios ε/∆Ω = 0.5, 0.8.
At these values, the size of the bottleneck is 50% (ε/∆Ω = 0.5), respectively, 20%
(ε/∆Ω = 0.8) of the maximum channel width. Note that a negative value of the re-
lative error, µtheo(0)/µnum(0) − 1, indicates that the theoretical result underestimates
the true result while a positive value corresponds to overestimation of µ. We find that
the relative error between the FJ result and the simulation results grows from 2% to
15% for ∆Ω = 1. Higher-order corrections need to be included and therefore all other
theoretical estimates provide a very good agreement for a wide range of ε-values for
which the maximum width ∆Ω is on the scale to the channel period, i.e., ∆Ω ∼ 1. The
relative errors are below 4%. We emphasize that any estimate including geometrical
corrections underestimates the simulation results.
Upon further increasing the maximum width ∆Ω, the range of applicability of the

derived higher-order corrections diminishes. This is due to the neglect of correction
terms which scale with higher derivatives of the boundary function h(x). Put differently,
the higher derivatives of h(x) become significant for ∆Ω > 1. The relative error grows
from nearly 3% (∆Ω = 1) to at least 30% (∆Ω = 5) for all estimates. Thereby,
our estimate Eq. (3.65) provides almost identical results for mobility and effective
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3.2. Example: Sinusoidally varying rectangular cross-section

diffusion coefficient as the Lifson-Jackson formula with DRR(x, f). Notably, Eq. (3.65)
agrees better with numerics compared to the Lifson-Jackson formula with DKP (x, f),
although, both use the same expression for the spatially dependent diffusion coefficient.
To summarize, we found that our estimate for the particle mobility, respectively, the

EDC matches very well with numerical results for the entire range of ε-values, for which
maximum widths ∆Ω are on the scale to the channel period, i.e., ε ∈ [0, 1). For all
values of ε and ∆Ω, the mobility is bounded from above by the FJ result µ0(0)/µ0 and
from below by the estimates including the channel corrugation. Remarkable, Eq. (3.65)
can be calculated exactly in contrast to the integrals appearing in the Lifson-Jackson
formula our estimate. More importantly, our estimate provides equally good or even
better agreement with the simulation results.

Motivated by the small discrepancy between the higher-order results, Eq. (3.47), and
the numerically evaluated results in the diffusion dominated limit, we propose that
µ(f)/µ0 is given by the product of the FJ result, Eq. (3.61), and the expectation value
of DKP (x, 0) for any force magnitude f

µ(f)/µ0 ≡ µ0(f)/µ0 〈DKP (x, 0) 〉x '
2 asinh (πε/2)

π ε
µ0(f)/µ0 +O(h′′(x)). (3.66)

In Fig. 3.6, we indicate this estimate by dash-dotted lines. As expected, the ansatz
underestimates the true mobility for all force magnitudes. For small up to moderate
force strengths, Eq. (3.66) matches the true result quite well. However, for large values
of f the asymptotic limits are not reached for ε 6= 0. The differing saturation values
are due to the application of the force-independent expression for D(x, f). Refer-
ring to Sect. 3.1.3, D(x, f) equals the bulk diffusion coefficient for f → ∞ and thus
limf→∞ µ(f)/µ0 = limf→∞ µ0(f)/µ0 = 1. Furthermore, it turns out that the range of
applicability of Eq. (3.66) diminishes with growing maximum channel width ∆Ω.

3.2.3. Effective diffusion coefficient
In this paragraph, we focus on the second transport quantity of interest, the effective
diffusion coefficient Deff(f)/D0. The latter is defined as the asymptotic behavior of the
variance of the position, Eq. (2.8), and, in principle, it can be computed analytically by
regarding the hopping events in the overdamped regime as manifestations of a renewal
process [Lindner et al., 2001; Reimann et al., 2001]. In leading order in ε (FJ limit),
the EDC is determined by

D0
eff/D

0 = I−3
1∫

0

dx
x∫

x−1

dx′ eA(x)−A(x′) I2(x). (3.67)

Unfortunately, a closed-form expression for I(x) cannot be found for the considered
boundary function, Eq. (3.52).
Nevertheless, we derive an estimate for D0

eff/D
0 based on its limiting behavior in

what follows. For infinite strong forces the particle moves close to the channel’s
center line, see Fig. 3.4 (b), and thus the diffusion coefficient equals the free value,
i.e., Deff(f)/D0 → 1. Referring to Eq. (3.61), the dominating power of I(x) has
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3. Biased particle transport in extremely corrugated channels

to be (1 − e−f ) f2/(f3 + (2π)2 f). In the opposite limit, f → 0, the integral I(x)
simplifies to I(x) = h(x) 〈 1/h(x) 〉x. Therefore, we assume the following structure
I(x) = (1 − e−f )

(
f2 + k(x) f + (2π)2 h(x)/

√
b2 − 1

)
/ (f3 + (2π)2 f) where k(x) is

an unknown function. The latter has to be periodic in order to fulfill the condition∫ 1
0 dx I(x) = (1− e−f )/(µ0(f)/µ0 f). From numerical evaluation of I(x), we propose

I(x) ≈ 1− e−f

f3 + (2π)2 f

[
f2 + (b + sin (2π x))√

b2 − 1

{
π2 − 2π f

b
cos(2π x)

}]
. (3.68)

By plugging the latter into Eq. (2.53), we get the following result for the EDC in units
of the bare diffusion coefficient

D0
eff(f)/D0 ≈ 1 + c1(b)f4 + c2(b) f2 + c3(b)(√

b2 − 1 f2 + (2π)2 b
)3 , (3.69)

where the coefficients c1,c2, and c3 read

c1(b) =(2π)2
(

b3 −
√

b2 − 1
3
− 1/b

)
, (3.70a)

c2(b) = (2π)4
(
6 b2

(
b−

√
b2 − 1

)
− 5 b + 3

√
b2 − 1

)
, (3.70b)

c3(b) = (2π)6 b3
(√

1− 1/b2 − 1
)
. (3.70c)

In Fig. 3.8, we depict the impact of the aspect ratio δ = ∆ω/∆Ω on Deff(f)/D0. The
aspect ratio is adapted by fixing the maximum width ∆Ω and varying the minimum
width at the bottleneck ∆ω. The EDC was numerically computed by FEM, see App. A.
The analytic estimate Eq. (3.69) is represented by lines in Fig. 3.8. In the drift do-
minated regime f � 1, the effective diffusion coefficient equals unity independent of
the chosen aspect ratio. In the opposite limit, f � 1, Deff(f) attains the asymptotic
value limf→0Deff(f)/D0 = limf→0 µ(f)/µ0. The latter can be adjusted by the channel
aspect ratio δ. For narrow bottlenecks, ∆ω → 0, the entropic barrier separating the
adjacent basins of attraction goes to infinity, cf. Eq. (3.58), and thus the diffusion
coefficient converges to 0. With growing bottleneck width, ∆ω → ∆Ω, the asymptotic
value for the effective diffusion coefficient tends to the bulk value. This behavior is
in compliance with experiments [Jovanovic-Talisman et al., 2009; Martin et al., 2005]
in which was found that the diffusion of nano- or micro-sized colloid objects [Siwy
et al., 2005] and DNA [Meller et al., 2001] can be controlled by changing the pore
size (bottleneck width) of the channel. Moreover, in between the asymptotic limits,
f � 1 and f � 1, an enhancement of Deff(f)/D0, with maximum exceeding the free
diffusion constant, is observed [Burada et al., 2008b; Reguera et al., 2006; Yariv and
Dorfman, 2007]. In particular, one notices that the maximum value of the EDC grows
with lessening aspect ratio δ, respectively, bottleneck width, see Fig. 3.8. Noteworthy,
our analytic estimate (lines), Eq. (3.69), reproduces well the asymptotic limits as well
as the peak of Deff(f) for a wide range of aspect ratios.
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Figure 3.8: Effective diffusion
coefficient as a function of the
external force magnitude f for
different aspect ratios δ. Si-
mulation results (markers) are
compared to the estimate for
D0

eff(f)/D0 (lines), Eq. (3.69).
The maximum channel width
is kept fixed ∆Ω = 0.1.

In Burada et al., 2008b, the authors showed that entropic effects increase the random-
ness of transport through a channel in such a way that the particle mobility decrease
and the effective diffusivity increase. They found that a growth in the maximum chan-
nel width ∆Ω, while the aspect ratio is kept fixed, results not only in a dramatical
enhancement of the maximal diffusion value but also in a broadening of the diffusion
peak. Consequently, the value of f where Deff/D

0 attains unity becomes larger with
∆Ω. Additionally, as anticipated, the deviation between the zeroth order estimate and
the numerical result grows with ε. The described behavior is not explicitly shown here.
Referring to Costantini and Marchesoni, 1999, the f -dependence of the diffusion

constant can be interpreted analytically in the framework of linear response theory
resulting in

Deff(f)/D0 = d
d f 〈 ẋ(f) 〉 = µ(f)/µ0 + f

d
d f

[
µ(f)/µ0

]
, (3.71)

for overdamped Brownian motion in period energetic potentials. Then “the bump in
the Deff(f)/D0 is related to the jump of µ(f) at the locked-to-running transition thres-
hold f = fc”[Costantini and Marchesoni, 1999]. The authors found that for energetic
potentials “the resonance-like behavior of the diffusion coefficient is around the value
for the tilt f for which the potential in Eq. (2.36) ceases to exhibit local extrema” and
the peak “gets more and more pronounced as the thermal noise strength decreases”
[Reimann et al., 2002]. Replacing the particle mobility by our exact zeroth order
result, Eq. (3.61), and calculating the derivative with respect to f in Eq. (3.71), the
effective diffusion coefficient may attains its maximum at

fCost. = ±π
√

6
(√

δ + 1/
√
δ
)
. (3.72)

So far, we have restricted ourselves tacitly to f > 0. It is not difficult to see that the
results remain valid for f < 0.
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3. Biased particle transport in extremely corrugated channels

In order to simplify the estimate Eq. (3.69), we expand the latter for large aspect ratios
or, equivalently, small value for 1/b, leading to

D0
eff/D

0 ≈ 1− 2π2 4 + 3 f2(
f2 + (2π)2

)2
1
b2 +O

( 1
b4

)
. (3.73)

Then the EDC reaches its maximum value

max
(
D0

eff/D
0
)

= 1 + 9
32

(1− δ
1 + δ

)2
, at fmax = ±

√
20
3 π. (3.74)

In Fig. 3.9, we depict the impact of the aspect ratio δ on the position of the diffusion
peak fmax (a) as well as on the peak height max(D0

eff/D
0) (b). To do this, we nu-

merically evaluated the maximum of Deff(f)/D0 from the exact expression (squares),
Eq. (2.53), and from our estimate (circles), Eq. (3.69).
Concerning the peak position, see Fig. 3.9 (a), one observes that the value of fmax

decreases with growing aspect ratio δ. Whereas our estimate , Eq. (3.69), underesti-
mates fmax for very narrow bottlenecks, the agreement becomes better with growing
bottleneck width ∆ω. For δ > 0.1, both results coincide within the errors. Additionally,
we notice that the peak position saturates for wider bottlenecks and finally converges
to fmax =

√
20/3π (dash-dotted line). More interestingly, it turns out that the en-

hancement of diffusion is not initiated by the locked-to-running transition. The value
for fmax where Deff/D

0 attains its maximum neither coincides with the critical force
magnitude fc (solid line), Eq. (3.56), nor with the estimate derived by Constantini et al.
(dashed line), Eq. (3.72). Consequently, the mechanism entailing the enhancement of
diffusion for biased transport in confined geometries is different to the one in energetic
periodic potential despite that Deff/D

0 is well reproduced by the 1D kinetic FJ de-
scription. Moreover, the enhancement is comparatively weak – maximal factor of 2D0

– in contrast to energetic potential where the diffusion may be enhanced up to multiple
orders of magnitude [Reimann et al., 2002]. An explanation for the enhancement of
diffusion can be given by the ratio of the diffusion time in transversal direction to the
drift time in transport direction. For f → ∞, the drift time is much short than the
diffusive time scale and thus the particles gather at the channel’s center line. Hence,
the effective diffusivity approaches the bulk value. With decreasing dimensionless force
strength, the initial step-like distribution at the bottleneck becomes bell-shaped in
transversal direction, see the blue line in Fig. 3.4 (b). Therefore, some particles pile up
at the bottleneck and hence move slower than the mean. Consequently, the joint PDF
spreads in x-direction and the EDC exceeds its bulk value. With upon decreasing value
of f , diffusion starts to dominate and the particle transport becomes irregular. If so, the
drift time is much larger than the diffusive time and thus equilibration in transversal
direction is accomplished; see the black line in Fig. 3.4 (b). In this limit, the majority
of the particles stay together for long times in a unit-cell and, consequently, diffusion
in longitudinal direction is diminished such that the effective diffusion coefficient is less
than free diffusion.
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Figure 3.9.: The impact of aspect ratio δ = ∆ω/∆Ω on the position of the diffusion
peak fmax (left panel) and the peak height max(Deff/D

0) (right panel) is depicted.
The peak height as well as the position are numerically evaluated for the exact result
(squares), Eq. (2.53), and for the estimate (circles), Eq. (3.69). Superimposed are in
(a): the critical force magnitude fc (solid line), Eq. (3.56), the estimate of Constan-
tini et al. (dashed line), Eq. (3.72), and the asymptotic limit for fmax (horizontal
dash-dotted line), Eq. (3.74); in (b): the estimate for max(Deff/D

0) (dotted line),
Eq. (3.74), and the asymptotic value unity (dash-dotted line). For all graphs the
maximum width is set to ∆Ω = 0.1.

In Fig. 3.9 (b), we present the influence of the aspect ratio δ on the diffusion peak
height max(D0

eff/D
0). We find that our analytic result, Eq. (3.69), underestimates the

true peak height for the entire range of aspect ratios. Further, it is shown that the
discrepancy becomes smaller with growing value of δ. More importantly, the result
Eq. (3.74) matches the maximum value obtained from Eq. (3.69) for δ > 0.1. Addition-
ally, as expected, the peak height max(D0

eff/D
0) goes to unity in the limit of a straight

channel, δ → 1.

3.2.4. Transport quality – Péclet number

In order to qualify the particle transport in confined geometries, we consider the Péclet
number Pe [Landau and Lifschitz, 1991; Péclet, 1841]. Originally, the Péclet number
was used in the context of heat transfer in fluids and was defined as the ratio of heat
transfer in horizontal direction of the fluid surface to the diffusion. Large values of Pe
correspond to ordered and directed motion whereas small Péclet numbers are associated
with irregular motion. In the context of particulate motion, the Péclet number reflects
the ratio of convective to diffusive motion on a characteristic length. For some problems,
it is desirable that particles starting at sharp distribution reach a certain region without
much spreading [Freund and Schimansky-Geier, 1999; Romanczuk et al., 2010]. If so,
convective motion dominates and this results in a large Péclet number. In honor of
Howard Brenner the number has also been called Brenner number Br [Rose, 1973]. In
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3. Biased particle transport in extremely corrugated channels

Figure 3.10: Simulation
results for Peclet number
Pe versus external force
magnitude f for different
aspect ratios δ. The
maximum channel width
is kept fixed ∆Ω = 0.1. 10
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detail, the Péclet number is given by

Pe = 〈 ẋ 〉L
D0 , (3.75)

for dimensionful quantities. Immediately, one recognizes that our dimensionless force
magnitude f = F L/kBT equals the Péclet number for the problem of biased Brow-
nian motion in systems without geometrical constraints, i.e., Pe0 = f . Passing to
dimensionless quantities, the Péclet number in units of its free value reads

Pe/f = µ(f)/µ0

Deff(f)/D0 . (3.76)

According to Eq. (2.26), Pe/f equals unity if the Sutherland-Einstein relation holds.
Consequently, the Péclet number can be used to identify parameter ranges where this
relation is violated.
The impact of the external force magnitude on the Péclet number is depicted in

Fig. 3.10. Obviously, Pe/f equals unity regardless the value of f if the channel is
straight, i.e., δ = 1. With decreasing aspect ratio we observe that the Sutherland-
Einstein relation gets violated for an intermediate range of force strengths [Burada,
2008]. In compliance with the previously presented results for the mobility and the
effective diffusion coefficient, cf. Sect. 3.2.1 and 3.2.3, the Péclet number attains unity
either for very small, f . 1, of for very large force magnitudes, f & 100. In between
Deff(f)/D0 shows a resonance-like behavior and attains values larger than one. In the
same interval the particle mobility changes from limf→0 µ(f)/µ0 ≤ 1 to its asymptotic
value 1 without exceeding unity. As a consequence, one observes that the Péclet number
attains a minimum for f ∈ [1, 100]. In this parameter range, the transport in confined
geometries exhibiting entropic barriers is more irregular and diffusive compared to
the free situation. Unlike the maximal value of Deff(f)/D0 increases with shrinking
bottleneck size, the minimal value for Pe/f decreases with 1/∆ω. In addition, it turns
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3.3. 3D cylindrical tube

out that the interval where the Sutherland-Einstein relation is violated becomes wider
with lessening bottleneck width for a given ∆Ω. It can be seen that not only the Péclet
number attains smaller values but also that the dent becomes broader for channels with
larger bulges (not explicitly shown).

3.3. Three-dimensional, cylindrical tube with periodically
changing cross-section

In Sect. 3.1, we provided a systematic treatment for biased Brownian motion in a
three-dimensional, planar channel with periodically varying, rectangular cross-section.
There, the expansion of the stationary probability density function in a series in terms
of the geometric parameter ε which specifies the channel corrugation was presented. In
particular, we have demonstrated that the consideration of the higher order corrections
to the stationary joint PDF leads to a substantial improvement of the commonly em-
ployed Fick-Jacobs approach towards extremely corrugate channels. The object of this
section is to provide a similar analytic treatment to the problem of biased Brownian
motion in three-dimensional, cylindrical tubes with periodically varying radius R(x).7
In detail, we consider the overdamped dynamics of point-like Brownian particles in

a cylindrical tube with periodically modulated radius R(x), respectively, cross-section
Q(x) = π R(x)2. For simplification, we suppose a radial symmetric channel resulting in
a straight and position independent channel center line C(x) = 0. A sketch of a tube
segment with unit period is depicted in Fig. 3.11. As before in Sect. 3.1, the particles are
subject to an external force with static magnitude f acting along the longitudinal direc-
tion of the tube ex, i.e., the corresponding potential reads Φ(q) = −f x. Additionally,
the particle size is considered to be negligibly small (point-like). Thus, hydrodynamic
as well as hard-core particle-particle interactions can safely be disregarded.

For the studied cylindrical geometry it is appropriate to change from Cartesian re-
presentation to Polar coordinates (x, y, z) → (x, r, ϕ) with distance r =

√
y2 + z2

and angle ϕ = arctan (z/y). The evolution of the joint probability density func-
tion P (q, t) of finding the particle at the local position q = (x, r, ϕ)T at time t is
governed by the 3D Smoluchowski equation Eq. (3.5a) with associated probability cur-
rent J (q, t) = (Jx, Jr, Jϕ)T . Additionally, J (q, t) has to obey the no-flux boundary
condition at the tube’s wall, J (q, t) · n = 0, where n is the outward-pointing normal
vector at the boundary, reading explicitly

R′(x)Jx (q, t) =Jr (q, t) , at r = R(x). (3.77a)

The prime denotes the derivative with respect to x. As a result of symmetry arguments
the probability current must be parallel with the tube’s center line at r = 0

Jr (q, t) |r=0 = 0. (3.77b)

7I remark that several results and similar figures presented in this section have been previously pub-
lished in Martens et al., 2011b.
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3. Biased particle transport in extremely corrugated channels

Figure 3.11.: Sketch of a segment of a cylindrical tube with sinusoidally varying radius
R(x) that is confining the motion of an overdamped, point-like Brownian particle.
The periodicity of the tube structures is unity, the minimal and maximal tube widths
are ∆ω and ∆Ω, respectively. The constant force f pointing in the direction of the
tube is applied on the particle.

Further, P (q, t) satisfies the normalization condition Eq. (2.16) as well as the periodicity
requirement P (x+mL, r, ϕ+ n 2π, t) = P (x, r, ϕ, t), ∀m,n ∈ Z.

Since the external force f = fex acts only in longitudinal channel direction, the pro-
bability density P (q, t) is radial symmetric. This allows a reduction of the problem’s
dimensionality from 3D to 2D by integrating Eq. (3.5a) with respect to the angle ϕ,
yielding

∂tp (x, r, t) = ∂x
[
e−Φ(x)∂x

(
eΦ(x) p(x, r, t)

)]
+ 1
r
∂r [r ∂rp(x, r, t)] . (3.78)

Thereby, the joint PDF is defined as

p(x, r, t) = 1
2π

2π∫
0

dϕP (x, r, ϕ, t) , (3.79)

and the marginal probability density reads

p(x, t) = 1
2π

R(x)∫
0

dr r
2π∫
0

dϕP (x, r, ϕ, t) . (3.80)
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3.3. 3D cylindrical tube

Both are connected via

∂tp(x, t) = ∂x

R(x)∫
0

dr r
[
e−Φ(x)∂x

(
eΦ(x) p(x, r, t)

)]
, (3.81)

which can be obtained by integrating Eq. (3.78) over the local cross-section and taking
the boundary conditions, Eqs. (3.77), into account.

Below we measure, for the case of finite corrugation ε 6= 0, the radius r in units of ε,
i.e., r → ε r and, likewise, the local channel radius R(x) → ε h(x). Consequently, the
joint PDF reads P (q, t)→ ε2 P (q, t), respectively, the probability current is given by
J (q, t) =

(
ε2Jx, Jr, ε2Jϕ

)T after re-scaling. We emphasize that the scaling of time,
energies, and the set of units are not influenced by this additional transformation, see
Sect. 2.2.
In the same manner as done before in Sect. 3.1, we concentrate only on the steady

state, limt→∞ p(x, r, t) := p(x, r). The Smoluchowski equation, Eq. (3.78), becomes

ε2∂x
[
e−Φ∂x

(
eΦp(x, r)

)]
+ 1
r
∂r [r ∂rp(x, r)] = 0, (3.82)

and the no-flux bcs, Eqs. (3.77), read

0 =
[
∂rp(x, r)− ε2h′(x)e−Φ∂x

(
eΦp(x, r)

)]
(x,r=h(x))

, (3.83a)

0 = ∂rp(x, r)|(x,r=0). (3.83b)

in dimensionless units. Comparing Eqs. (3.82) and Eq. (3.2), we identify the un-
perturbed, steady state Fokker-Planck operator, L0 = 1

r∂r [r ∂r], and the perturbed
one, L1 = ∂x[e−Φ(x)∂xe

Φ(x)] =
(
f∂x − ∂2

x

)
.

Asymptotic perturbation analysis

Next, we perform asymptotic perturbation analysis of the problem stated by Eqs. (3.82)
and (3.83). Therefore, we expand the stationary joint PDF p(x, r)

p(x, r) = p0(x, r) + ε2 p1(x, r) + . . . =
∞∑
n=0

ε2npn(x, r), (3.84)

and, likewise, the probability current J(x, r) =
∑∞
n=0 ε

2nJn(x, r) at steady state in the
form of a formal perturbation series in orders of ε2. Substituting these expressions into
Eq. (3.82), we find

0 =L0 p0(x, r) +
∞∑
n=1

ε2n {L0 pn(x, r) + L1 pn−1(x, r)} ,

0 = 1
r
∂r [r∂rp0] +

∞∑
n=1

ε2n
{1
r
∂r [r∂rpn] + ∂x

[
e−Φ∂x

(
eΦpn−1

)]}
.

(3.85)
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3. Biased particle transport in extremely corrugated channels

The no-flux bc at the tube wall at r = h(x), Eq. (3.83a), turns into

0 = ∂rp0(x, r)+
∞∑
n=1

ε2n
{
∂rpn(x, r)− h′(x)e−Φ∂x

(
eΦpn−1(x, r)

)}
, (3.86a)

and the bc at the tube’s center line at r = 0, Eq. (3.83b), reads

0 =
∞∑
n=0

ε2n∂rpn(x, r). (3.86b)

Further, we claim that the normalization condition for p(x, r) corresponds to the zeroth
solution p0(x, r) that is normalized to unity,

〈 p0(x, r) 〉x,r =
1∫

0

dx
h(x)∫
0

dr r p0(x, r) = 1. (3.87)

Therefore, all higher orders term pn have zero average, 〈 pn(x, r) 〉x,r = 0, n ∈ N+, and
have to obey the periodic boundary condition pn(x+m, r) = pn(x, r),∀m ∈ Z.

3.3.1. Zeroth Order: the Fick-Jacobs equation

Let us start with the leading order of the perturbation series p0(x, r). To derive the
latter, one has to solve L0 p0(x, r) = 0 supplemented with the associated no-flux bc
∂rp0(x, r) = 0 at r = 0 and at r = h(x). We propose the ansatz p0(x, r) = g(x) e−Φ(x)

where g(x) is an unknown function which has to be determined from the second order
O
(
ε2) balance of Eq. (3.85), viz., L0 p1(x, r) + L1 p0(x, r) = 0. Integrating the latter

with respect to the radius r and taking the no-flux boundary conditions Eqs. (3.86)
into account, we get 0 = ∂x(e−A(x)g′(x)). Here, A(x) also denotes the potential
of mean force, defined as A(x) = − ln[

∫ h(x)
0 dr r e−Φ(x)]. The latter explicitly reads

A(x) = −f x− ln[h2(x)] for the considered situation Φ(q) = −f x. Note that upon
the irrelevant additive constant ln(π) the potential of mean force corresponds to that
given in [Jacobs, 1967].

Referring to Sect. 3.1.1, the normalized leading order of stationary joint PDF is given
by

p0(x, r) = e−Φg(x) = I−1 e−Φ(x)
x+1∫
x

dx′ eA(x′), (3.88)

and, moreover, the marginal probability density, Eq. (3.80), becomes

p0(x) = e−A(x) g(x) = I−1 e−A(x)
x+1∫
x

dx′ eA(x′), (3.89)

with substitute I previously defined in Eq. (3.21). In the case f → 0, the stationary
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3.3. 3D cylindrical tube

joint PDF passes into a uniform distribution p0(x, r) = const and the marginal PDF
scales with the cross-section p0(x) ∝ Q(x). Expressing next g(x) by p0(x) yields the
stationary Fick-Jacobs equation 0 = ∂x

[
e−A(x)∂x(eA(x) p0(x))

]
, previously discussed in

Sect. 2.3. In the same manner as done before for 3D, planar confinements, we demon-
strate that the leading order term of the asymptotic perturbation analysis is equivalent
to the FJ-equation. Naturally, the joint pdf is sufficiently reproduced by Eq. (3.88)
as long as the modulation of the tube radius is small compared to its periodicity, i.e.
ε� 1.
By using p0(x, r), the leading order of the mean particle current is evaluated the

Stratonovich formula [Stratonovich, 1958]

〈 ẋ(f) 〉0 =
1∫

0

dx
h(x)∫
0

dr r Jx0 (x, r) = I−1
(
1− e−f

)
. (3.90)

Additionally, the mean particle current Eq. (2.6) simplifies to

〈 ẋ 〉 = 〈 ẋ 〉0 −
∞∑
n=1

ε2n 〈 ∂xpn(x, r) 〉x,r , (3.91)

due to the normalization condition Eq. (3.87). Similar to the problem stated in Sect. 3.1,
the mean particle current in longitudinal tube direction (here x-direction) is composed
of (i) the Fick-Jacobs result 〈 ẋ 〉0 , Eq. (3.90), and (ii) becomes corrected by the sum
of averaged derivatives of the higher orders pn(x, r). We next address the higher order
corrections pn(x, r) of the probability density which become necessary for extremely
corrugated structures.

3.3.2. Higher order contributions to the Fick-Jacobs equation

In reference to Eq. (3.85), one has to recursively solve L0 pn(x, r) + L1 pn−1(x, r) = 0
bearing in mind the no-flux bcs, Eqs. (3.86). In detail, the determining equations read

1
r
∂r [r∂rpn(x, r)] =

(
f∂x − ∂2

x

)
pn−1(x, r), n ∈ N+. (3.92)

Any solution of this second order partial differential equation has two integration con-
stants dn,1, determined by the no-flux bc at the center line at r = 0, Eq. (3.86b), and
dn,2, providing the zero average condition 〈 pn(x, r) 〉x,r = 0, n ∈ N+.

The determining equation for the first order correction reads

1
r
∂r [r∂rp1(x, r)] = 2 〈 ẋ 〉0 ∂x

( 1
h2(x)

)
, (3.93)

and after integrating twice with respect to r, we obtain

p1(x, r) = − 〈 ẋ 〉0
(
h′(x)
h3(x)

)
r2. (3.94)
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3. Biased particle transport in extremely corrugated channels

Upon recursively solving, the higher order corrections are given by

pn (x, r) 'Ln1p0(x, r) r2n

(2nn!)2 + dn,2,

' 2 〈 ẋ 〉0
r2n

(2nn!)2 Ln−1
1 ∂x

( 1
h2(x)

)
+ dn,2, n ∈ N+, (3.95)

where Ln1 is given by Eq. (3.31). According to Eq. (3.84), p(x, r) is obtained by summing
all correction terms pn(x, r), yielding

p(x, r) = p0(x, r) +
∞∑
n=1

ε2n
(
Ln1 p0(x, r) r2n

(2nn!)2 + dn,2

)
. (3.96)

To conclude, the exact solution for the joint PDF p(x, r) for finding a biased Brow-
nian particle (Φ(q) = −f x) in cylindrical tube with periodically varying radius at
steady state is given by Eq. (3.96). The latter solves the stationary Smoluchowski
equation, Eq. (3.82), under satisfaction of the normalization as well as the periodicity
requirements. More importantly the solution, Eq. (3.96), obeys both no-flux boundary
conditions at r = 0 and at r = h(x). We stress that in contrast to the full solu-
tion, Eq. (3.96), each correction term pn, Eq. (3.95), does not satisfy the no-flux bc
at the channel wall since all terms scaling with integration constants dn,1 are missing.
Furthermore, one notices that p(x, r) is solely determined by the leading order solution
(FJ result) p0(x, r). As a consequence of L1 p0(x, r) ∝ 〈 ẋ(f) 〉0, higher order contri-
butions to p(x, r) scale linearly with 〈 ẋ 〉0, cf. Eq. (3.95). Since 〈 ẋ 〉0 is determined
by the external force, in force free limit the stationary PDF equals its zeroth order
p(x, r) = p0(x, r) = const regardless of the value of ε. With increasing force magnitude
f , the probability for finding particles close to the constricting part of the confinement
grows, see Fig. 3.4(a).
According to Eq. (3.91), the average particle current scales with the mean particle

current obtained from the Fick-Jacobs formalism 〈 ẋ 〉0 for all values of ε. Therefore,
in order to validate the exact result for p(x, r) as well as to derive corrections to the
mean particle current it is required to calculate 〈 ẋ 〉0 first.

3.4. Example: Sinusoidally modulated cylindrical tube

Below, we study the key transport quantities like the particle mobility µ(f)/µ0 and
the EDC Deff(f)/D0 of point-like Brownian particles moving through a tube with sinu-
soidally varying cross-section Q(x), Eq. (3.52). The associated dimensionless boundary
function reads h (x) = 0.25 (b + sin (2π x)), Eq. (3.53), and it is illustrated in Fig. 3.11.
The function h(x) is solely governed by the aspect ratio δ = ∆ω/∆Ω, respectively, the
auxiliary parameter b = (1 + δ)/(1− δ).

First, we calculate the leading order (Fick-Jacobs approximation) for the particle mo-
bility µ0/µ

0 in units of its bulk value. Referring to Eqs. (3.90) and (2.18), the particle

62



3.4. Example: Sinusoidally modulated cylindrical tube

mobility is given by

[
µ0(f)/µ0

]−1
= 1

2
√

b2 − 13

{
b
(
2b2 + 1

)
− 4bf2

f2 + (2π)2

+

(
2
√

b2 − 13 − 2b3 + 3b
)
f2

f2 + (4π)2

 .
(3.97)

Due to the reflection symmetry of the boundary function R(x) with respect to x = 0.25
and x = 0.75, the particle mobility µ(f)/µ0 is also a symmetric function, µ(−f) = µ(f).
Therefore, it is sufficient to discuss only the behavior for f ≥ 0.
In the limiting case of infinite large force strength, the particle mobility equals the

bulk value

lim
f→∞

µ0(f)/µ0 = 1, (3.98)

regardless of the channel parameters ∆Ω and ∆ω. With decreasing force magnitude f ,
µ0(f)/µ0 lessens till it attains the asymptotic value

lim
f→0

µ0(f)/µ0 = lim
f→0

Deff(f)/D0 = 8 δ
3δ2 + 2δ + 3

2
√
δ

1 + δ
, (3.99)

which coincides with the value for limf→0Deff(f)/D0 in accordance with the Sutherland-
Einstein relation, Eq. (2.26). In the limit of vanishing bottleneck width, δ → 0, the
mobility and the effective diffusion constant tend to zero. On the contrary, both trans-
port quantities attains their free values for straight tubes corresponding to δ = 1,
respectively, ε = 0.
Comparing the asymptotic value Eq. (3.99) with the one for three-dimensional, planar

channels, Eq. (3.64), one notices that the mobility and the effective diffusion coefficient
in a tube are much smaller. What is the reason for this reduction? For weak forces, the
particles are uniformly distributed over an area of maximum size max(Q(x)) = π∆Ω2

in a tube. In order to induce directed motion, the particles has to be dragged through
the much smaller bottleneck of size min(Q(x)) = π∆ω2. Hence, the total change of
available space scales with (∆ω/∆Ω)2 for cylindrical tubes compared to ∆ω/∆Ω for
planar channels. Having in mind that the change of the cross-section’s area is reflected
by the entropic barrier ∆A separating the adjacent basins of attraction (unit cells), it
turns out that ∆A for cylindrical channels, limf→0 ∆A = −2 ln (δ), doubles the one for
planar geometries, cf. Eq. (3.58).

In Fig. 3.12, we depict the dependence of µ(f)/µ0 and Deff(f)/D0 on the force mag-
nitude f .8 Referring to Fig. 3.12 (a), we recognize that the analytic result for the
mobility, Eq. (3.97), is corroborated by the numerics. Further, it is shown that in the
case of weakly modulated tubes, ∆Ω� 1, our analytic result is in excellent agreement
with the numerics for all values of f , indicating the applicability of the FJ approach.

8The numerical results were obtained by FEM. For details please see App. A. The numerical errors
are of the size of the markers so we do not indicate them.
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3. Biased particle transport in extremely corrugated channels

Figure 3.12: Particle mobility
(a) and effective diffusion
constant (b) for Brownian
particles moving inside a
sinusoidal tube as function
of the force magnitude f .
The maximum tube width is
kept fixed, ∆Ω = 0.1, while
the aspect ratio is varied
δ = 0.01, 0.1, 1, respectively,
the corresponding values of
ε are ε = 0.099, 0.09, 0. The
markers correspond to the
simulation results for the
mobility and the effective
diffusion coefficient. In panel
(a) the lines represent the
analytic result Eq. (3.97).
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The EDC Deff(f) exhibits a non-monotonic dependence on f , see Fig. 3.12 (b). It
starts with the value Eq. (3.99) which is less than the free diffusion constant in the
diffusion dominated regime, i.e., |f | � 1. Then it reaches a maximum with increasing
f and finally approaches the value for the free diffusion from above. In addition, we
observe that the location of the diffusion peak as well as the peak height depends on
the aspect ratio δ. With diminishing bottleneck width, while keeping the maximum
channel width ∆Ω fix, the diffusion peak is shifted towards larger force magnitude
f . Simultaneously the peak height grows. In the limit of straight tubes, δ → 1, as
expected, the EDC coincides with its free value D0 which is one in the considered
scaling.
In Fig. 3.13, we depict the impact of the expansion parameter ε on the particle

mobility. It turns out that for values of ε . 0.1 the Fick-Jacobs approach is in very
good agreement with the simulation. The difference between the FJ-result (solid line)
and the numerics grows with the value of ε. In detail, we find that the larger the
available space inside the tube the less is the particle mobility. Consequently, the
higher order corrections to p(x, r), Eq. (3.84), and to the µ(f)/µ0, Eq. (3.91), need to
be included in order to provide a better agreement. This is done in the next paragraph.

3.4.1. Spatially dependent diffusion coefficient and corrections to particle
mobility

The commonly studied idea to enhance the applicability of the Fick-Jacobs approach
based on the introduction of the spatially dependent diffusion coefficient D(x, f), for
details please see Sect. 2.4, which can be derived by means of the marginal probability
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3.4. Example: Sinusoidally modulated cylindrical tube
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Figure 3.13: Influence of
geometric parameter ε on
particle mobility is presented.
The value of ε is varied,
ε = 0.05, 0.5, 2.5, while the
aspect ratio is kept fixed,
δ = 0.5. The solid line cor-
responds to the analytic
result Eq. (3.97) whereas the
dash-dotted line indicates the
asymptotic value unity.

current in longitudinal direction

−Jx(x) =D (x, f) e−A(x)∂x
(
eA(x)p (x)

)
=

h(x)∫
0

dr r e−Φ(q)∂x
(
eΦ(q)p (x, r)

)
. (3.100)

The second equality determines D(x, f) which is governed by the stationary joint PDF
p(x, r) and the stationary marginal PDF p(x). Below, we calculate D(x, f) by means
of the result from asymptotic perturbation analysis, Eq. (3.96).

One immediately notices that in the force dominated regime |f | � 1, Eq. (3.100) sim-
plifies to D(x, f) f p(x) =

∫ h(x)
0 dr r f p(x, r). Thus, the spatially dependent diffusion

coefficient equals the bulk value D0, which is one in our scaling,

lim
f→∞

D(x, f) = 1. (3.101)

In the opposite limit of small force strengths, |f | � 1, diffusion is the dominating
process and Eq. (3.100) reduces to

D (x, f)h2(x)∂x
(
p (x)
h2(x)

)
=

h(x)∫
0

dr r ∂xp (x, r) . (3.102)

By inserting Eq. (3.96) into Eq. (3.102), we are able to calculate an expression for
D(x, f). In compliance with other authors [Kalinay and Percus, 2006; Reguera and
Rubí, 2001], we assume that all but the first derivative of the boundary function
h(x) are negligible. If so, the n-times applied operator L1, Eq. (3.31), reduces to
Ln1 = (−1)n ∂ 2n

∂ x2n ; yielding

pn(x, r) = 2 (−1)n 〈 ẋ 〉0
(2n)!

(2nn!)2
(h′)2n−1

h2n+1 r2n +O(h′′(x)). (3.103)
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3. Biased particle transport in extremely corrugated channels

Putting the latter into Eq. (3.100) and calculating the complete sum, we get

lim
f→0

D(x, f) = 1√
1 +W ′ (x)2 /4

+O
(
h′′(x)

)
, (3.104)

for the spatially dependent diffusion coefficient in the diffusion dominated regime
|f | � 1. To conclude, we confirm the expression for DRR(x, 0) previously suggested by
Reguera and Rubí, cf. Eq. (2.48), and derived by Kalinay and Percus, see Eq. (2.49b),
using our exact analytic result for p(x, r).

Next, we derive an estimate for the particle mobility µ(f)/µ0 based on the higher
expansion orders pn(x, r), n ∈ N+. From Eqs. (3.91) and (2.18) follow that the mean
particle current is composed of (i) the Fick-Jacobs result µ0(f)/µ0 , Eq. (3.90), and (ii)
becomes corrected by the sum of the averaged derivatives of the higher orders pn(x, r).
Immediately, one notices that the additive integration constants dn,2, resulting from
the normalization condition Eq. (3.87), do not influence the result for µ(f)/µ0.
In particular, we concentrate on the diffusion dominated limit, |f | � 1. Furthermore,

we suppose once more that all but the first derivative of the boundary function h(x)
are negligible. If so, the partial derivative of pn(x, r) with respect to x reduces to

∂xpn(x, r) = 2 〈 ẋ 〉0 (−1)n+1 (h′)2n

h2n+2
(2n+ 1)! r2n

(2nn!)2 +O(h′′(x)), (3.105)

and, finally, we obtain

lim
f→0

µ(f)/µ0 ' lim
f→0

µ0(f)/µ0
∞∑
n=0

(−1)n (2n+ 1)!
22n+1 (n!) (n+ 1)!

〈 (
εh′(x)

)2n 〉
x

(3.106)

' lim
f→0

µ0(f)/µ0
〈

2
(εh′(x))2

1− 1√
1 + (εh′(x))2

〉
x

6= lim
f→0

µ0(f)/µ0 〈DRR(x, f) 〉x .

We derive that the most important transport quantities like mean particle current,
particle mobility, and effective diffusion coefficient are determined by the product of
their zeroth order result and the expectation value of a complicated function, including
the slope of the boundary. In contrast to the previously studied case of biased Brownian
motion in a 3D, planar channel geometry, Sect. 3.1.4, the multiplicative correction term
to the transport quantities does not coincide with the expectation value of DRR(x, 0).

Evaluating the sum in Eq. (3.106), for a cylindrical tube with sinusoidally modulated
radius, Eq. (3.53), leads to the estimate

lim
f→0

µ(f)/µ0 ' lim
f→0

µ0(f)/µ0
2F1

(
1
2 ,

1
2 , 2,−

(
επ

2

)2
)
, (3.107)

where 2F1 (·) is the first hypergeometric function.
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Figure 3.14.: Comparison of the analytic theory versus precise numerics: Mobility and
effective diffusion constant of Brownian particles moving inside a tube with sinusoidal
varying radius are depicted as a function of geometric parameter ε in units of ∆Ω.
The latter is varied ∆Ω = 0.1, 1, 5 (from top to bottom) while the external bias
is kept fixed f = 10−3 (corresponding to the diffusion dominated regime). The
symbols correspond to the numerically obtained mobility (triangles) and effective
diffusion coefficient (circles). Solid lines represent the analytic higher order result,
Eq. (3.107). The zeroth order (Fick-Jacobs) results, Eq. (3.99), collapse to a single
curve hidden by the solid line for ∆Ω = 0.1. In addition, numerical evaluations
of the Lifson-Jackson formula with DRR(x, 0), Eq. (2.56), are represented by the
dash-dotted lines.

We stress that considering the first derivative of the boundary function h′(x) only results
in an additional term proportional to ε2

2F1
(
3/2, 3/2, 3,− (επ/2)2

)
. Taking the second

derivative h′′(x) into account indicates that this additional term is negligible compared
to 2F1 (1/2, . . .) regardless of the value of ε.

In Fig. 3.14, we present the dependence of µ(f)/µ0 (triangles) and Deff(f)/D0 (circles)
on the slope parameter ε for f = 10−3. We find that the numerical results for the EDC
and the particle mobility coincide for any values of ε corroborating the Sutherland-
Einstein relation. In addition, the Fick-Jacobs result, given by Eq. (3.99), the higher
order result (solid lines), Eq. (3.107), and the numerical evaluation of the Lifson-Jackson
formula using DRR(x, 0) (dash-dotted lines), Eq. (2.56), are depicted in Fig. 3.14.
For the case of smoothly varying tube geometry, ∆Ω � 1, all analytic expressions

are in excellent agreement with the numerics, indicating the applicability of the Fick-
Jacobs approach. With upon growing maximum width, discrepancies between the FJ-
result, Eq. (3.99), and the numerics become larger. Specifically, the FJ-approximation
overestimates µ/µ0 and Deff/D

0. Consequently, the corrugation of the tube geome-
try needs to be included. The Lifson-Jackson formula using DRR(x, 0), Eq. (2.56),
provides a good agreement for a wide range of ε-values as long as the maximum
width ∆Ω is on the scale to the period length of the tube, i.e., ∆Ω ∼ 1. The rela-
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3. Biased particle transport in extremely corrugated channels

∆Ω ε/∆Ω FJ, Eq. (3.99) Eq. (3.107) DRR(x, 0)

1
0.25 0.027 0.008 -0.007
0.5 0.009 0.021 -0.035
0.8 0.179 0.027 -0.024

5
0.25 0.159 -0.106 -0.289
0.5 0.460 -0.150 -0.449
0.8 1.342 -0.002 -0.281

Table 3.2.: Relative error µtheo(0)/µnum(0) − 1 between theoretical estimates and
numerics are presented for three given ratios ε/∆Ω. The maximum channel width
is varied from ∆Ω = 1 to ∆Ω = 5. The third column represents the results for
the Fick-Jacobs approach limf→0 µ0(f)/µ0, Eq. (3.99), and values in the 4th column
correspond to our correction estimate Eq. (3.107). Additionally, the results derived
from the Lifson-Jackson formula with DRR(x, 0) (5th column) are presented.

tive error µtheo(0)/µnum(0) − 1 is below 4% for all values of ε/∆Ω, see 5th column
in Tab. 3.2. Upon further increasing the maximum width ∆Ω diminishes the range
of applicability of the presented concept. In detail, the Lifson-Jackson formula using
DRR(x, 0), Eq. (2.56), drastically underestimates the simulation results (rel. error of
45% for ε/∆Ω = 0.5) due to the neglect of the higher derivatives of h(x). Put differently,
the higher derivatives of h(x) become significant for ∆Ω & 1.
In contrast, we observe that our estimate, Eq. (3.107), for the particle mobility and

the diffusion coefficient, based on the higher order corrections to the stationary joint
PDF, is in very good agreement with the numerics. For tube geometries where the
maximum width ∆Ω is on the scale to the period length, ∆Ω ∼ 1, the correction
estimate matches perfectly with the numerical results (rel. errors are below 3%). A
further growth of the tube width results in small deviations from the simulation results.
Noteworthy, the relative errors between the analytic estimate and the numerics are less
than 15%. Additional, it is remarkable that the agreement becomes much better with
shrinking bottleneck width ∆ω, respectively, larger value of ε/∆Ω.

3.5. Summary

In this chapter, we considered the transport of Brownian particles under the action of
a static and spatially homogeneous force field through a 3D, planar channel geometry
and 3D cylindrical tube with both periodically varying cross-section.
For both geometries, we presented a systematic treatment for particle transport

by performing asymptotic perturbation analysis of the stationary joint probability
density function (PDF) in terms of an expansion parameter specifying the channel
corrugation. Exact solutions for the associated stationary Smoluchowski equation were
derived for point-like Brownian particles moving in axis-symmetric channels. In par-
ticular, it turned out that the zeroth order of the series expansion is equivalent to
the well-established Fick-Jacobs approach. The higher-order corrections to the joint
PDF become significant for extreme bending of the channel walls. Interestingly, these
correction terms scale with the zeroth order of the mean particle current.
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3.5. Summary

Moreover, by means of the exact solutions for the stationary joint PDF, we presented
an alternative derivation for the spatially dependent diffusion coefficient D(x, f) sub-
stituting the constant diffusion coefficient present in the common Fick-Jacobs equation.
Based on similar assumptions as those previously suggested by other authors, we vali-
dated both the result for 3D, planar geometries (Kalinay and Percus) and the one for
cylindrical tubes (Rubí and Reguera).
In particular, we applied the analytic results to a specific example, namely, the

particle transport through confinements with sinusoidally varying cross-section. Our
theoretical predictions for the particle mobility and the effective diffusion coefficient
were corroborated by precise numerical results. It turned out that the dynamics of
single particles can be well described by the Fick-Jacobs approach as long as the maxi-
mum channel width is of the order of 10% of its period. Furthermore, we derived
that in the diffusion dominate regime |f | � 1 the key transport quantities like mean
particle current, particle mobility, and effective diffusion coefficient are determined by
the product of their zeroth order result and the expectation value of a function, inclu-
ding the channel wall’s corrugation. Remarkably, our analytic result can be calculated
exactly for sinusoidal boundaries in contrast to the integrals appearing the commonly
used Lifson-Jackson formula and it provides equally good or even better agreement
with the numerics.

So far, the Fick-Jacobs approach has been limited to scalar potentials which solely
generates conservative forces exerted on the particles. In the following chapter 4, we
overcome this restriction by extending the Fick-Jacobs description to the most general
external force which is composed of a curl-free (conservative) and a divergence-free
component.
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4. Hydrodynamically enforced entropic
trapping of Brownian particles –
Fick-Jacobs approach to vector
potentials

In the previous chapter, we presented a systematic treatment for particle transport by
performing an asymptotic perturbation analysis of the stationary joint PDF in terms of
an expansion parameter specifying the corrugation of the channel walls. Exact solutions
for the stationary Smoluchowski equation were derived for point-like Brownian particles
moving under the action of a static, spatially homogeneous force (Φ(q) = −f x) in axis-
symmetric channels. Possible realizations of this simplest form of an external force are
e.g. gravity and electric fields. In particular, electric fields are generated by two
oppositely charged cathodes placed at entrance and exit of the channel.

As an obvious extension, one may consider the superposition of a longitudinal f‖ and a
perpendicular force f⊥ [Burada and Schmid, 2010]. The associated energetic potential
reads Φ(q) = −f‖ x− f⊥ y and the force field is given by f = (f cos(β), f sin(β), 0)T .
Thereby, f =

√
f2
‖ + f2

⊥ is the force magnitude and β = arctan(f⊥/f‖) represents the
force orientation angle measured from the x-axis. Burada and Schmid, showed that “by
changing the angle of the external bias, the nature of the potential barriers, separating
two adjacent unit cells, changes from purely entropic to energetic, which in turn affects
the diffusion process in the system. Especially, at an optimum angle of the bias, the
particle mobility exhibits a striking bell-shaped behavior. Moreover, the enhancement
of the effective diffusion coefficient can be efficiently controlled by β”. These facts are
presented in Fig. 4.1. Albeit, the consideration of a superposition of a longitudinal and
perpendicular force component or, equivalently, the introduction of a force orientation
angle β is quite simple its influence on the particle transport quantities is very strong.

However, the situation is often not so simple in nature. Many forces acting on a
suspended particle can be exerted, for instance, by surrounding walls [Israelachvili,
2011], by neighboring particles and molecules via hydrodynamic interactions [Happel
and Brenner, 1965, for a discussion see Sect. 5.2], by external fields and solvent flows.
For example, a solid surface submerged in aqueous (polar) solutions acquires electrical
charges which attract counterions and repel co-ions. To maintain the electoneutrality of
the system, electric double layer (EDL)1 which excess the counterions must be formed
to counterbalance the surface charge. Evidently due to thermal motion there is no
perfect charge neutrality within the EDL whose thickness is approximately determined

1Although it is traditionally termed “double” layer, its structure can be very complicated and may
contains three or more layers in most instances [Zhao and Yang, 2012].
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Figure 4.1.: Particle mobility µ/µ0 = 〈 ẋ 〉 /f‖ (left) and effective diffusion coefficient
(right) versus force magnitude f for various forcing angles β. Inset: Sketch of a
channel unit cell and the force orientation are depicted. In compliance with Burada
and Schmid the channel parameters are ∆Ω = 0.6 and ∆ω = 0.06.

by Debye length λD. Furthermore, the ionic charges in the EDL gradually screen the
electric field generated by the charged surface with zeta potential ζ. The latter is a
measure of the surface charge density. In the case of two parallel walls, the opposite
surface attains as surface potential −ζ in order to maintain system’s electoneutrality.
Although the application of external driving electric fields does not influence the

surface charge on insulating (non-conducting) surfaces, electrokinetic phenomena occur.
The two most prominent are electroosmosis – the movement of the liquid relative to a
stationary charged surface – and electrophoresis – the movement of a charged suspended
object relative to a stationary liquid. Electroosmotic flows emerge along charged solid
walls subjected to a tangential electric field. The externally applied electric field exerts
body force on the net charge density in the diffusive part of the EDL, driving ions
and the liquid into motion [Dukhin and Shilov, 1969]. It is a unique feature that the
electroosmotic flow does not depend an the channel geometrie that stands in contrast
to pressure-driven flows. Due to this property the combination of electroosmotic and
pressure-driven flows are used as micropumps [Brask et al., 2005; Mishchuk et al., 2009].
On the other hand, the electroosmotic slip velocity over the surface of a freely sus-

pended, charged particle in an electrolyte solution [Teubner, 1982] gives rise to particle
motion, known as electrophoresis. The particle motion is oppositely directed to the
electroosmotic slip velocity. However, in the case of electrokinetic motion of charged
particles inside a channel of µm-size, electrophoresis and electroosmosis are not inde-
pendent of each other.
When polarizable (conducting) surfaces are subject to external electric fields, the

external driving electric field induces surface polarization charges [Bazant and Squires,
2010; Daghighi and Li, 2010] in addition to the physiochemical bond charges on the
surface, which generate additional effects like non-linear induced-charge electrokinetic
flows [Dukhin, 1991; Squires and Bazant, 2006]. Such flows arise when the applied
electric field interacts with the EDL that is induced by the applied field itself. Without
surface conduction or Faradaic currents, ionic charges suspended in the aqueous solvent
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Figure 4.2.: Left: Induced-charge electroosmotic (ICEO) flow streamlines over con-
ducting patch. Reprinted with permission from Soni et al., 2007. Right: ICEO flow u
around a charged polarizable cylindrical wire which is placed in an electrolyte under
the action of a weak electric field E. Reprinted with permission from Bazant and
Squires, 2004. Copyright (2012) by The American Physical Society.

accumulate in the EDL. The induced charge is non-uniform – negative (ζ > 0) where
the initial current leaves the surface and positive (ζ < 0) where it enters [Anderson,
1985]. Then the flow pattern is “simply a superposition of a non-linear quadrupol flow
and the linear streaming flow of electrophoresis” [Bazant and Squires, 2004] in a dc
field. It is evident that the basic pattern of such non-linear electrokinetic flows is a pair
of symmetric counter-rotating vortices above the conducting path [Squires and Bazant,
2004; Zhao and Yang, 2012].
Moreover, acousto- [Petersson et al., 2007], magneto- [Pamme and Wilhelm, 2006],

and dielectrophoretic forces [Gascoyne and Vykoukal, 2002] can also be exerted on par-
ticles. Dielectrophoretic forces arise from the interaction between a dielectric particle
in a dielectric suspending medium and either rapidly changing electric fields gradients
or non-uniform electric fields [Voldman, 2006].

To sum up, in experimental devices like micro- or nanofluidic devices mass transport
occurs due to the combination of molecular diffusion, passive transport arising from
complicated force fields, and hydrodynamic solvent flow fields. Consequently, various
forces act on the particles which together add up to the most general external force
f(q). According to the Helmholtz decomposition any twice continuously differentiable
vector field f(q) can be decomposed into a curl-free and a divergence-free component:

f(q) = −∇Φ(q) + ∇×Ψ(q). (4.1)

Thereby, Φ(q) denotes the scalar potential

Φ(q) = 1
4π

∫
V

∇q′ · f(q′)
‖q − q′‖ dV ′ − 1

4π

∫
S

f(q′) · dS′

‖q − q′‖ , (4.2)
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Figure 4.3.: Sketch of a segment of a reflection-symmetric sinusoidally varying channel
that is confining the motion of overdamped, point-like Brownian particles. The
periodicity of the channel structures is unity, ∆H represents the channel height, and
the minimal and maximal channel widths are ∆ω and ∆Ω, respectively. The size of
a unit cell is indicated with the dashed lines. Superimposed is an exemplary force
field f(q) which contains vortices and stagnation points (solid circles).

and Ψ(q) is the vector potential

Ψ(q) = 1
4π

∫
V

∇q′ × f(q′)
‖q − q′‖ dV ′ + 1

4π

∫
S

f(q′)× dS′

‖q − q′‖ . (4.3)

Thus far, the Fick-Jacobs approach has mainly been limited to energetic potentials
generating conservative forces on the particles, as given by the first term in Eq. (4.1).
In what follows, we overcome this restriction by extending the FJ formalism to the
most general external force f(q), Eq. (4.1), exerted on particles.2

4.1. Fick-Jacobs approach to vector potentials

We start by considering the dynamics of point-like, spherical Brownian particles at
position q = (x, y, z)T moving under the action of a most general, static force field f(q)
Eq. (4.1) through a planar, three-dimensional channel with unit period and constant
height ∆H. The periodically varying side-walls at y = ω+(x) and y = ω−(x) confine
the particle motion, see Fig. 4.3. Assuming throughout (i) dilute particle density, (ii)
negligible particle diameter (dp � ∆ω), and (iii) a strong viscous dynamics, implies
that inertial effects, hydrodynamic particle-particle and particle-wall interactions, and
the effects that can be initiated by rotation of particles can be neglected [Happel and
Brenner, 1965; Maxey and Riley, 1983]. If so, the particles’ dynamics is well described
by the overdamped Langevin equation3

q̇(t) = −∇ Φ(q) + ∇×Ψ(q) +
√

2 ξ(t), (4.4)

2I remark that several results and similar figures presented in this chapter will be published in Martens
et al., 2012b.

3By passing to dimensionless quantities the energetic potential Φ → Φ kBT and the vector potential
Ψ→ Ψ kBT are scaled in units of the thermal energy kBT .
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4.1. Fick-Jacobs approach to vector potentials

with Gaussian random force ξ = (ξx, ξy, ξz)T obeying 〈 ξi(t)ξj(s) 〉 = δijδ(t− s) and
〈 ξi(t) 〉 = 0; i, j = x, y or z. Although formally Eq. (4.4) is stated for a quiescent
liquid, the case of moving solvent can be treated via the term ∇×Ψ(q), as discussed
later in Sect. 4.2.

At first, we aim an approximated one-dimensional description of the above stated 3D
problem, Eq. (4.4). In the spirit of the Fick-Jacobs approach, we consider the cor-
responding Smoluchowksi equation for the stationary joint PDF P (q), Eq. (3.5a),
and perform asymptotic perturbation analysis, cf. Sect. 3.1, in the expansion pa-
rameter ε, Eq. (3.1), to the problem. Therefore, we measure the transverse quanti-
ties in ε, i.e., y → ε y and ω±(x) → ε h±(x), and expand the stationary joint PDF
P (q) = P0(q) + ε2 P1(q) +O(ε4) and similar Φ(q) = Φ0(q) +O(ε2) in a series in even
orders of ε. Due to the invariance of ∇ ×Ψ under the scaling in y, the series expan-
sion of the vector potential reads Ψ(q) = (εΨx

0 + O(ε3),Ψy
0 + O(ε2), εΨz

0 + O(ε3))T .
Substituting this ansatz into the stationary Smoluchowksi equation

0 = −∇ · J(q), where J = [−∇ Φ(q) + ∇×Ψ(q)] P −∇P, (4.5)

together with the no-flux boundary condition J · n = 0, we obtain a hierarchic set
of partial differential equations. With the conditions that (i) the x-component of
(∇×Ψ0(q)) is periodic in x with unit period and (ii) its z-component (∇×Ψ0(q))z
vanishes at the upper and lower confining boundary, i.e., for z = 0,∆H, the stationary
marginal PDF yields

p0(x) =
e−F(x)

x+1∫
x

dx′ eF(x′)

1∫
0

dx e−F(x)
x+1∫
x

dx′ eF(x′)
. (4.6)

Here, F(x) is the generalized potential of mean force, reading

F(x) = − ln

 h+(x)∫
h−(x)

dy
∆H∫
0

dz e−Φ0(q)


−

x∫
0

dx′
h+(x′)∫
h−(x′)

dy
∆H∫
0

dz (∇×Ψ0)x Peq(y, z|x′),

(4.7)

where Peq(y, z|x) = e−Φ0(q)
/∫ h+(x)

h−(x) dy
∫∆H

0 dz e−Φ0(q) is the equilibrium PDF of y and
z, conditioned on x. The derivation of Eq. (4.6) is presented in depth in App. B.

Note that a closed-form expression for p0(x) exists only if the scalar potential is either
independent of the x-coordinate or scales linearly with x, and if and only if the lon-
gitudinal coordinate x is not multiplicatively connected to the transverse coordinates.
Further, Eq. (4.6) is only valid if the generalized potential of mean force fulfills the
condition ∆F = F(x + 1) − F(x) 6= 0. For ∆F = 0, the stationary joint PDF is con-
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stant, P0(q) = const, and the marginal PDF scales with the local channel cross-section
p0(x) ∝ Q(x).
We reveal that the generalized potential of mean force F(x) comprises the known

effective entropic potential A(x) (the logarithmic term), Eq. (2.35), caused by the non-
holonomic constraints stemming from the boundaries, see Sect. 2.3.1, and the newly
energetic contribution, the part stemming from Ψ0. The latter is associated with the
conditional average of the x-component of the divergence-free forces exerted on the
particle weighted by its equilibrium conditional PDF Peq(y, z|x). In the absence of
divergence-free forces, Eqs. (4.6) and (4.7) reduce to the commonly known results of
the Fick-Jacobs approximation, cf. Eqs. (3.22) and (2.35).

The kinetic equation for the time-dependent marginal PDF p0(x, t) can be deduced from
its steady state solution, Eq. (4.6), resulting in the generalized Fick-Jacobs equation

∂tp0(x, t) = ∂x

[dF(x)
dx p0(x, t)

]
+ ∂2

xp0(x, t). (4.8)

We evaluate the stationary average particle current by making use of the well-known
Stratonovich formula [Stratonovich, 1958], to yield

〈 ẋ 〉0 = 1− e∆F

1∫
0

dx e−F(x)
x+1∫
x

dx′ eF(x′)
. (4.9)

The effective diffusion coefficient (in units of the bulk diffusivity D0) is calculated via
the first two moments of the first passage time distribution, cf. Sect. 2.5:

Deff/D
0 =

1∫
0

dx eF(x)
x+1∫
x

dx′ eF(x′)
[

x∫
x−1

dx′ e−F(x′)
]2

[
1∫
0

dx eF(x)
x∫

x−1
dx′ e−F(x′)

]3 . (4.10)

4.2. Poiseuille flow in shape-perturbated channels
Generally, the external force consists of two terms, Eq. (4.1), and the interpretation of
results based on Eq. (4.7) may be not straightforward. To elucidate the newly obtained
contribution and make comparison with previous results more transparent, we apply
the developed approach to Brownian motion under the influence of both, an external
constant bias with magnitude f in x-direction and the Stokes drag force caused by the
difference between the particle velocity q̇ and the instantaneous solvent flow field in
the absence of the particle u(q, t). Accordingly, the particle dynamics is determined by

q̇(t) = f ex + u(q, t) +
√

2 ξ(t), (4.11)

with scalar potential Φ(q) = −f x and vector potential u(q, t) = ∇×Ψ(q).
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In the equation of motion for a spherical particle, Eq. (4.11), we disregard the effects of
solvent inertia ∝ u̇, including those described by the Basset history term; added mass
force; and Saffman lift force [Saffman, 1965], effects that can be initiated by rotation of
particles (e.g., Magnus force, modified drag, and rotational Brownian diffusion [Favro,
1960]), particle acceleration, the Oseen correction [Faxen, 1922; Oseen, 1910] to the
Stokes drag, side forces due to shear of the undisturbed flow, etc. [Hess and Klein, 1983;
Maxey and Riley, 1983, see references within]. All these effects are small compared
to the Stokes drag force with the assumption of low Reynolds number Re (laminar
solvent flow) and for particle with density ρp comparable to the solvent’s density ρf .
Additionally, our model implies one-way coupling between the solvent and the particles,
i.e., the particle dynamics is influenced by the solvent flow but not vice versa. To be
precise, we suppose that u is superimposed and is not affected by the particle motion
[Straube, 2011]. This is ensured by the adopted assumption of the dilute suspension and
negligible particle size, dp � ∆ω [Faxen, 1922]. Furthermore, we emphasize that the
Stokes drag formula is only valid in infinite containers in which the solvent moves very
slowly. Hence, for microfluidic systems the formula is solely applicable for low Reynolds
numbers, Re � 1, and given that the spherical particle is moving at distances several
times their diameter away from the channel walls [Bruus, 2008].

The time and spatial evolution of the fluid with density ρf is determined by the dimen-
sionless Navier-Stokes equation (NSE) [Landau and Lifschitz, 1991]

Re {∂tu (q, t) + (u ·∇) u (q, t)} = −∇P (q, t) +4u (q, t) , (4.12)

where 4 is the Laplace operator, u = (ux, uy, uz)T denotes the solvent flow field in
units of L/τ , P (q, t) is the sum of the hydrodynamic and hydrostatic pressures in
units of η/τ , and the Reynolds number Re = ρf L

2/ (η τ). Here, we presume that the
solvent viscosity η is independent of the channel’s dimensions like it is true for most
microfluidic devices [Gravesen et al., 1993]. The NSE is composed of the convective
acceleration term (u ·∇) u, which is caused by the change in velocity over position, the
pressure gradient ∇P (q, t), and the internal friction is described by the term4u (q, t).
Sometimes additional body forces that act on a unit volume of fluid ∆V must be taken
into account in Eq. (4.12). These body forces are often so-called conservative forces
and may be represented as the gradient of some scalar quantity. This implies that
solving the NSE without body force fext can be mended by introducing an effective
local pressure field −∇Peff(q, t) = −∇P(q, t) + fext/∆V .
Assuming conservation of mass and the constraint that the solvent density ρf re-

mains constant within a moving unit volume of fluid, the continuity equation for an
incompressible flow reads

∇ · u (q, t) = 0. (4.13)

The fluid flow field may obeys the slip or so-called Navier boundary conditions at every
point of the boundary

u (q, t)− uwall (q, t) = λs
∂ u (q, t)
∂ n

, ∀q ∈ channel wall, (4.14)
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where λs is the slip length or Navier length and ∂u/∂n = (n · ∇)u represents the
gradient perpendicular to the boundary. For typical slip lengths λs = 50 nm ± 50 nm
[Joseph and Tabeling, 2005, for water on glas] the right hand side of Eq. (4.14) is
negligible if ∆ω � λs. If so, Eq. (4.14) simplifies to the no-slip bc

u (q, t) = 0, ∀q ∈ channel wall, (4.15)

for a resting wall uwall (q, t) = 0. In what follows, we employ the no-slip bc to the
discussed problem since we solely consider micro-sized fluidic systems. For nanofluidic
devices slip bcs, Eq. (4.14), have to be considered.

Bearing in mind microfluidic applications, for most devices with rectangular cross-
section the aspect ratio of the transverse length scales can often be so large that the
channel is well approximated by an infinite parallel-plate configuration ∆H � ∆Ω.
Then, the velocity profiles for ux and uy are flat in the wide direction except near the
walls, cf. Fig. C.2. By rotation, this situation can always be realized in experiments for
any shape of the cross-section. On contrary, if both length scales are of the same size
the best we can do analytically is to find a Fourier sum representation of the solution
for weakly shape-perturbed channels. Then, the flow components depend on all channel
directions. For the interested reader, we present the derivation of an estimate for flow
velocities of an incompressible fluid through an arbitrary 3D channel with periodically
varying rectangular cross-section in App. C in depth.
If we neglect the top and bottom side walls completely, we arrive at the case of an

infinitely high channel. For ∆H � 1, the pressure is uniform in wide direction which
permits us to integrate u(q, t) with regard to z and thus to consider the flow field only
in x and y-direction. Additionally, from the uniformity of the pressure in z directly
follows that uz(q) = 0. Applying the curl to both sides of Eq. (4.12) results in the
elimination of the local pressure p(r). Then, the NSE for incompressible flows degrades
into one equation

Re {∂t 4Ψ + ∂yΨ ∂x (4Ψ)− ∂xΨ ∂y (4Ψ)} = 42 Ψ, (4.16)

for the stream function Ψ(x, y), Ψ = Ψ(x, y) ez. Here 42 = ∇4 is the biharmonic ope-
rator. Defining the stream function through ux = ∂yΨ and uy = −∂xΨ results in conti-
nuity equation, Eq. (4.13), being unconditionally satisfied. In order to solve Eq. (4.16),
one has to take account of the no-slip bcs, ∂yΨ = 0 at y = ω±(x), and of the condi-
tions specifying the flow discharge, Ψ = 0 at y = ω−(x) and Ψ = −∆p/(12〈W−3(x)〉x)
at y = ω+(x) [Kettner et al., 2000; Kitanidis and Dykaar, 1997; Mortensen et al.,
2005]. In analogy to the derivation of the generalized FJ equation, we measure all
transverse quantities in units of the expansion parameter ε which results in y → εy,
∂y → ε−1∂y, and Ψ → εΨ. Substituting the expansion of Ψ into Eq. (4.16) yields
0 = ∂4

yΨ0(x, y) +O(ε2). After tedious calculations, we finally obtain

Ψ0(x, y) = − P
′
0(x)
12 (y − ω−(x))2 (3ω+(x)− ω−(x)− 2y) . (4.17a)
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Figure 4.4.: The leading order solutions for the locale pressure P0(x, y) (left panel) and
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y
0)T (right panel) are depicted. The associated

stream function is indicated by the colored background where blue represents small
values and red high values of Ψ0. The chosen channel parameters are ∆Ω = 0.5 and
∆ω = 0.1.

The solution for the flow field components reads

∂yΨ0 = ux0(x, y) = − P
′
0(x)
2 (ω+(x)− y) (y − ω−(x)) , (4.17b)

−∂xΨ0 = uy0(x, y) = 1
12∂x

[
P ′0(x) (y − ω−(x))2 (3ω+(x)− ω−(x)− 2y)

]
, (4.17c)

and the local pressure is given by

P0(x, y) = ∆P

x∫
0

dx′W (x)−3

1∫
0

dxW (x)−3
, (4.17d)

plus an additive constant which can be set to zero. Thereby, the change of pressure
along one unit cell is denoted by ∆P = P(x+1, y)−P(x, y) andW (x) = ω+(x)−ω−(x)
is the local width. Note that we scaled the transverse quantities back in order to
enhance the readability. We emphasize that both the time derivative and the convective
advection term are proportional to Re ε2. Therefore, as long as the product is small
Re ε2 � 1, the left hand side in Eqs. (4.12) and (4.16) can be disregarded, which
leaves us with the Stokes equation, respectively, the so-called “creeping flow” equation
[Landau and Lifschitz, 1991]. In most microfluidic applications Re� 1. Because of the
smallness of the Reynolds number most well known flow instabilities leading to period
doubling [von Stamm et al., 1996], chaos [Hall and Papageorgiou, 1999], turbulence
[Karniadakis and Triantafyllou, 1992], and the formation of eddies [Oliveira et al.,
2008] are absent. Beside the absence of flow instabilities, low Reynolds number Re� 1
is even more essential to safely disregard many forces exerted by the fluid on a spherical
particle.

79



4. Hydrodynamically enforced entropic trapping of Brownian particles

Note that in the limit of straight channels W (x) = ∆Ω, Eqs. (4.17b)-(4.17d) give the
known Poiseuille flow results ux(x, y) = −∆P (y2 − (∆Ω/2)2)/2, uy(x, y) = 0, and
P(x, y) ∼ ∆P x between two flat walls at y = ω± = ±∆Ω/2. According to Eq. (4.17b),
the longitudinal flow component ux0 is inversely proportional to the third power of the
local channel width W (x) for arbitrary boundary functions ω±(x). Consequently, ux0
attains its maximum values at the bottlenecks where the gradient of the local pressure
is maximal ∂xP0(x, y) ∝ W (x)−3. Interestingly, the local pressure sharply increases,
respectively, decreases at the channel bottlenecks instead of the linear growth which
is known for straight channels, see Fig. 4.4. Further, the flow velocity in longitudinal
direction is limited from above by the value max(|ux0 |) ≤ |∆P| (∆Ω)3 /(8 ∆ω). Conse-
quently, the flow velocity grows with lessening bottleneck width.

As mentioned previously, various forces exerted on a spherical particle can be safely
disregarded under the assumption of low Reynolds number Re. Usually the Reynolds
number is defined as Re = ρf V0 L0/η, where L0 is a characteristic length scale and V0
is a characteristic velocity scale. Following the convention that the Reynolds number
should contain the smallest length scale of the system, here ∆ω, we evaluating Re at the
channel bottleneck where the longitudinal flow component is the strongest, resulting
in Re = ρf |∆P| (∆Ω)3 /(8η2 L) in dimensional units. If we claim that the Reynolds
number is small [Gravesen et al., 1993], Re < 1, we obtain an upper limit for the applied
pressure drop, viz.,

∆P < 10 kPa, (4.18)

for typical channel parameters L = 100µm, ∆Ω = 50µm, see Tab. 5.1, and water as
solvent (ρf = 998 kg/m3 and η = 10−3 kg/(m s)) at room temperature T = 293, 15 K.
We emphasize that even if we suppose that the characteristic length scale equals the
unit cell period length, the upper limit for the maximal pressure drop decreases only
by one order of magnitude. Furthermore, the characteristic quantities are of the order
τ = 103 s,

〈
v0 〉 = L/τ = 0.1µm/s, and Pref = η/τ = 1µPa for tracer particles of

size dp = 0.1µm. Consequently, we can apply pressure drops of the order |∆P| = 1010

in our Brownian dynamics simulations without worrying about influences caused by
flow instabilities. Lastly, we stress that hydrodynamic acceleration effects like added
mass become important only on a time scale of the order τf ≈ 1 ns� τ for micro-sized
particles (dp = 0.1µm) in water [Hinch, 1975].

4.3. Example: Transport in sinusoidally varying channels

To elucidate the intriguing feature caused by the divergence-free force, Eqs. (4.17), and
its interplay with the constant bias which represents the curl-free force, we limit our
consideration to particles moving in our standard example for a 2D channel geometry,
viz., the reflection symmetric sinusoidally-shaped channel Eq. (3.52) [Hoagland and
Prud’Homme, 1985; Kitanidis and Dykaar, 1997]. All numerical results presented below
were obtained by Brownian dynamics simulation of Eq. (4.11) in which the flow field u
was calculated by solving the “creeping flow” equation (right-hand side of Eq. (4.12))
using FEM.

80



4.3. Example: Transport in sinusoidally varying channels

10
−2

10
−1

10
0

−10
1

−10
−1

−10
−3

−10
−5

δ

〈ẋ
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Figure 4.5.: Left panel: Comparison of numerical results from BD simulations for the
mean particle current (markers) and the analytic estimate Eq. (4.20) (lines) versus
the aspect ratio δ for two different pressure drops ∆P. The solid lines represent
the Poiseuille flow result 〈 ẋ 〉 = −∆P (∆Ω)2/12. Right panel: Simulation results
for the EDC Deff/D

0 (markers) as a function of δ. Superimposed is the estimate
Deff/D

0 = 2
√
δ/(1 + δ) (dashed line). The horizontal dash-dotted line indicates

unity. Impact of | 〈 ẋ 〉 | on Deff/D
0 is presented in inset (a): markers represent

numerical results and the estimate Deff/D
0 ∝ (∆Ω 〈 ẋ 〉)2 /192 is indicated by the

dashed line. The remaining parameters are ∆Ω = 0.5 and f = 0.

Next, we investigate the dependence of the key transport quantities, such as the ave-
rage particle velocity 〈 ẋ 〉 and the effective diffusion coefficient Deff/D

0, on the force
magnitude f and the applied pressure drop ∆P. Both parameters generally control the
curl-free and the divergence-free contributions to the force field f(q), cf. Eq. (4.1).

4.3.1. Purely flow driven transport

First, we shortly discuss the purely flow driven case. In the absence of scalar potentials,
Φ(q) = 0, and in the case of vanishing flow velocity u = ∇×Ψ normal to the channel
wall, u · n = 0, only uniform distributions are allowed, p(x, y) = 1/ 〈W (x) 〉x. If
so, no particle separation could ever be achieved. Any inhomogeneity in the spatial
distribution of non-interacting suspended particles can only be caused by hydrodynamic
interaction between particles and walls [Happel and Brenner, 1965; Schindler et al.,
2007]. In the purely flow driven case the mean particle current is given by

〈 ẋ 〉flow
0 = 1

〈W (x) 〉x

1∫
0

dx
ω+(x)∫
ω−(x)

dy ux0(x, y) = − ∆P
12 〈W 〉x 〈W−3 〉x

, (4.19)
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and, in particular, reads

〈 ẋ 〉flow
0 = − 4 ∆P (∆Ω)2 √δ5

3 (1 + δ) (3 + 2δ + 3δ2) , for f = 0, (4.20)

for the considered channel geometry Eq. (3.52). We obtain that the mean particle
current is proportional to ∆Ω2 and scales linearly with the applied pressure drop ∆P.
For ∆P < 0 the solvent flows left to right and vice versa for ∆P > 0. Figure 4.5 (a)
shows that 〈 ẋ 〉flow

0 ∝ δ5/2 for δ � 1 and that the latter converges to the Poiseuille
result for δ = 1, viz., 〈 ẋ 〉Pois = −∆P (∆Ω)2 /12. The variations in the flow field at
the microscale contribute significantly to the macroscale effective diffusion coefficient
Deff/D

0. For sufficiently small pressure drops |∆P| or, equivalently, slow mean par-
ticle velocity, 〈 ẋ 〉 . 1, the particles’ dynamics is dominated by diffusion. Hence, the
EDC starts from the value of Deff/D

0 = 2
√
δ/(1 + δ), Eq. (3.47), see Fig. 4.5 (b).

With growing pressure drop which leads to higher flow velocity, the EDC exhibits
Taylor-Aris dispersion [Aris, 1956; Taylor, 1953] regardless of the channel constriction,
i.e., Deff/D

0 ∝ (∆Ω 〈 ẋ 〉)2 /192 for 〈 ẋ 〉 � 1. This fact is presented in the inset of
Fig. 4.5 (b). Due to the invariance of the effective diffusivity under the transformation
〈 ẋ 〉 → −〈 ẋ 〉, one observes the same dependence of Deff/D

0 on the pressure drop for
∆P < 0 (not shown).
The opposite limit of solely curl-free forces was previously discussed in detail in

Sect. 3.2. Analytic results for the mean particle current and the EDC are known.

4.3.2. Interplay of solvent flow and external forcing
Below, we study the interplay of both the external bias and the Stokes drag acting on the
Brownian particles. Because all required conditions for the derivation of the generalized
FJ equation are fulfilled, cf. App. B, the studied problem of forced Brownian dynamics
in a confined 2D geometry can by replaced by Brownian motion in the tilted, periodic
potential of mean force Eq. (4.7); yielding

F(x) = −f x− ln [2ω(x)]−
x∫

0

dx′
ω(x′)∫
−ω(x′)

dy u
x
0(x′, y)
2ω(x′) . (4.21)

In Fig. 4.6, we present the impact of the external bias and the solvent flow (∆P) on
the steady state marginal PDF. If the Brownian particles experience solely the Stokes
drag force, f = 0, the stationary joint PDF simplifies to p(x, y) = 1/ 〈W (x) 〉x and
thus the stationary marginal PDF scales with the local channel width p(x) ∝ W (x).
In the opposite limit of biased transport in a resting solvent, ∆P = 0, the particles
accumulate at the channel bottleneck. Thus, p(x) exhibits an uneven shape whose
maximum is shifted towards the constricting part of the channel. If both forces are
acting simultaneously but in opposite directions, i.e, f > 0 and ∆P > 0, the large
longitudinal flow velocities lead to the appearance of vortices in total force field fex+u
near the bottleneck, see Fig. 4.8. Obviously, the force field points oppositely to the
external bias near the vortices. As a consequence, the bias-induced accumulation of

82



4.3. Example: Transport in sinusoidally varying channels

0 0.25 0.5 0.75 1

0

1

2

x

p
(x

)

 

 

f = 10 , ∆P = 0

f = 0 , ∆P = 5 · 103

f = 10 , ∆P = 5 · 103

Figure 4.6: Stationary marginal
PDF p(x) as a function of force
magnitude f and pressure drop
∆P. Numerical results are re-
presented by staircase like solid
lines whereas dashed-dotted lines
correspond to general FJ solution
p0(x), cf. Eq. (4.6). The channel
parameter values are ∆Ω = 0.5
and ∆ω = 0.1.

particles at the bottleneck is inhibited, cf. Fig. 3.4(iii). Since the vortex size grows
with the applied pressure drop, the maximum of the stationary marginal PDF shifts
towards the left with ∆P. Additionally, one observes that the peak height grows
with the pressure drop indicating accumulation of particles. Notably, the numerical
results are well reproduced by the generalized FJ solution, Eq. (4.6), even for moderate
corrugated channels ε = 0.4, cf. Fig. 4.6.

Figure 4.7 shows the impact of the pressure drop ∆P on the mean particle current
(left panel) for different values of external bias f . Only at f = 0, 〈 ẋ 〉 = 〈 ẋ 〉flow

0 , cf.
Eq. (4.20), is point symmetric with respect to ∆P. The behavior changes drastically
for f 6= 0. For ∆P < 0 with |∆P| � 1, ux and f are both positive, the Stokes drag
force dominates over the constant bias and thus 〈 ẋ 〉 ' 〈 ẋ 〉flow

0 ∝ −∆P. The increase
in ∆P results in a systematic crossover from flow driven transport to biased entropic
transport. We observe a broad range of |∆P| values in which the presence of the flow
is insignificant and thus 〈 ẋ 〉 remains almost constant. In this interval the external
bias dominates and hence F(x) is approximately given by F(x) ' −f x − ln[2ω(x)].
According to Eq. (4.9), the mean particle current reads

〈 ẋ 〉ent
0 = f µ0(f)/µ0 = f3 + (2π)2 f

f2 + 1
2 (2π)2

{√
∆Ω
∆ω +

√
∆ω
∆Ω

} , for∆P = 0, (4.22)

whereas the result for the associated particle mobility was previously presented in
Eq. (3.61). The width of the interval where 〈 ẋ 〉 ' 〈 ẋ 〉ent

0 holds, scales linearly with
f . With further growing pressure drop ∆P � 1 – the solvent flow ux0 < 0 drags the
particles in opposite direction to the external force f > 0 – one notices that a sharp
jump of 〈 ẋ 〉 from positive to negative velocities occurs. In other words, the particle
current reverses its direction. Although strong non-vanishing local forces fex + u(x, y)
are acting on the particles, there exists a critical ratio of force magnitude to applied
pressure drop (f/∆P)crit such that 〈 ẋ 〉 = 0. As follows from Eq. (4.9), this occurs if
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Figure 4.7.: Results for BD simulations in a channel geometry like Fig. 4.3 with
∆Ω = 0.5 and ∆ω = 0.1. Left: Mean particle current 〈 ẋ 〉 versus pressure drop ∆P
for different force magnitudes f . The solid line indicate the analytic estimate for
f = 0, Eq. (4.20), and the dashed lines correspond to Eq. (4.9). Comparison of
numerics (markers) and Eq. (4.23) (lines) for the critical force magnitude fcrit versus
∆Pcrit is presented in the inset (i). Right: Deff/D

0 as a function of ∆P for various
values of f . The dashed lines represent the numerical evaluation of Eq. (4.10) and
the horizontal dash-dotted line is for Deff = D0. Exemplary trajectory corresponding
to HEET (f = 102 and ∆P = 6.5 · 104) of a point-like Brownian particle (red circle)
is depicted in inset (ii).

∆F = 0, yielding for the critical ratio(
f

∆P

)
crit

= 1
12

〈
W (x)−1 〉

x

〈W (x)−3 〉x
= 2 ∆Ω2 δ2

3 (3 + 2δ + 3δ2) . (4.23)

The critical ratio is solely determined by the channel geometry, see Fig. 4.7(i). Espe-
cially, the smaller the maximum channel width the less is the ratio f/∆P in order
to inhibit particle transport for a given aspect ratio δ. While (f/∆P)crit goes to
zero for almost closed channels δ → 0, Eq. (4.23) resembles the Poiseuille flow result
f/∆P = ∆Ω2/12 for straight channels δ = 1. Finally, upon further increasing pressure
drop, the flow-induced drag force starts to dominate over the external bias again and
thus we observe 〈 ẋ 〉 ≈ 〈 ẋ 〉flow

0 ∝ −∆P. In Fig. 4.7, we compare the numerically
evaluated results for Eq. (4.9) with the predictions of Eq. (4.21) (dashed lines). In
compliance with the very good agreement between the leading order estimates for the
marginal PDF and the numerics we observe that the mean particle current is also
strikingly well reproduced by the generalized potential of mean force.

4.3.3. Hydrodynamically enforced entropic trapping

The role of ∆P and f on the EDC Deff/D
0 is presented in the right panel of Fig. 4.7. As

previously mentioned, in the purely flow driven case, f = 0 (squares), the EDC starts
from the value of Deff/D

0 = 2
√
δ/(1 + δ) for 〈 ẋ 〉 . 1, i.e., small |∆P|. It exhibits so

termed Taylor-Aris dispersion [Aris, 1956; Taylor, 1953] Deff/D
0 ∝ ∆P2 for 〈 ẋ 〉 � 1
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Figure 4.8.: Stationary joint PDF p(x, y) and force field f (lines) for parameter sets
where HEET was observed. Left panel: f = 10 and ∆P = 5.5 · 103. Right panel:
f = 100 and ∆P = 6.5 · 104. The channel parameters are ∆Ω = 0.5 and ∆ω = 0.1.

or, equivalently, large |∆P|. In the opposite limit of a resting fluid, ∆P = 0, such
that solely static bias induced transport occurs, Deff/D

0 exhibits the known bell shape
structure as a function of f , see Sect. 3.2.3.

A new intriguing effect emerges if the Stokes drag (u(q)) and the external force (fex)
exerted on the particles start to counteract. Especially, if ux ∝ −∆P and f are
comparable, but of opposite sign. In this case, their superposition, f = fex + u,
contains stagnation points – points of zero force – and vortices leading to hydrodyna-
mically enforced entropic trapping (HEET). We find that at the critical ratio (f/∆P)crit,
Eq. (4.23), at which the mean particle current vanishes, the EDC displays an abrupt
decrease and becomes several magnitudes smaller than the bulk one D0. Although
the particles experience continuous thermal fluctuations, they exhibit long residence
times in the regions where the force field pushes the particles against the channel wall,
see inset (ii) in Fig. 4.7. In these regions of the channel, we observe strong particle
accumulation resulting in a more localized distribution or, equivalently, larger depletion
zones., cf. Fig. 4.8. Moreover, one notices that the vortices counteract the focusing
structure of the channel. As previously mentioned in Sect. 3.2, one also finds particle
accumulation for biased transport in a resting solvent ∆P = 0. There. the particles
follow the force field f = fex and may slide along the constricting boundary in order to
leave the unit cell. This leads to particle accumulation at the bottlenecks and results in
an enhancement of the EDC. In flowing solvent, ∆P 6= 0, the biased particles stick to
the boundary and the probability to find a particle at the channel’s center line, y = 0,
is severely reduced which suppresses diffusion.
Particularly, HEET becomes more pronounced for larger fcrit and ∆Pcrit, resulting

in a stronger localized particle distribution or, equivalently, larger depletion zones,
see Fig. 4.8. Therefore, the minimum of Deff/D

0 decreases with the growth in f , cf.
Fig. 4.7, leading to a stiffer trap. HEET can be understood in terms of the generalized
potential of mean force F(x). Upon glancing at the energy barrier within one unit cell,
δF = max(F(x)) − min(F(x)), we notice that the latter is solely determined by the
channel’s aspect ratio δ and increases linearly with fcrit for f � 1, cf. Fig. 4.9.
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Figure 4.9: Impact of critical
force magnitude fcrit and
aspect ratio δ on the energy
barrier within one unit cell
δF = max(F(x))−min(F(x)).
The corresponding pressure is
determined by Eq. (4.23). The
horizontal surface represents
δF = 10 (in units of kBT ).
The chosen channel parameters
are ∆Ω = 0.5 and ∆ω = 0.1. 10
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Additionally, we compare the numerical results for Eq. (4.10) with Eq. (4.21) (dashed
lines) in the right panel of Fig. 4.7. It is demonstrated that the dependence of the
EDC on the applied pressure drop is well described by Eq. (4.10) for many values for
∆P. Especially, one observes a satisfactory agreement for 〈 ẋ 〉 ' 〈 ẋ 〉entr

0 and, more
importantly, at the minimum of Deff/D

0. Merely for ∆P � 1 where Stokes’ drag
force dominates and thus the EDC shows Taylor-Aris dispersion, Deff/D

0 ∝ ∆P2, not
surprisingly, strong deviations occur. On the one hand, the tilt of F(x) decreases with
∆P (ux < 0), and thus the separating energy barrier δF eventually disappears which
leads to a directed motion Deff ' D0. On the other hand, Taylor-Aris dispersion
is caused by the transverse diffusion that transports the particle among layers with
different longitudinal velocities ux0(x, y) ∝ (ω(x)2 − y2). This microscopic effect is not
incorporated in the effective one-dimensional energetic picture.

HEET offers a unique opportunity to efficiently separate particles of the same size based
on their different response to applied stimuli, e.g., to sift healthy cells from deceased
and dead cells [Becker et al., 1995; Hu et al., 2005; Voldman, 2006]. With regard
to Fig. 4.7, even small distinctions in the response can be used to achieve opposite
transport directions for those particles by tuning f at a fixed ∆P (or, equivalently, ∆P
at a fixed f) such that their ratio is close to the value given by Eq. (4.23). Figure 4.10
shows the temporal evolution of three different non-interacting particle species star-
ting with delta distribution p(x, y) = δ(x − 0.25)δ(y) at t = 0. While particles with
f < fcrit move to the left, they remain for quite long time within the starting unit cell
at f = fcrit, and move to the right for f > fcrit. Thus, one can efficiently separate
particles by adjusting the pressure drop in such a way that the associated critical force
strength lays in between the specific species’ force magnitudes. Assisted by the sup-
pressed effective diffusion, the marginal PDFs are much narrower compared to the free
case at a given time t. In the right panel of Fig. 4.10, we depict the temporal evolution
for the probability P (0 ≤ x ≤ 1, t) of a particle to be found within the starting unit
cell at time t. Albeit, strong local forces and continuous fluctuations are acting on the
particles, the probability slowly decays for the critical parameter values. In detail, the
probability reduces to almost 30% at t = 100 which corresponds to one hundred times
the characteristic diffusion time τ in dimensional units. For f < fcrit and f > fcrit,
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Figure 4.10.: Left panel: Snapshot of marginal PDF p(x, t) at t = 100 for different
force strengths f in units of fcr = 100 in a corrugated channel with ∆ω = 0.1. The
width of p(x, t) is several magnitudes smaller compared to the case of unbounded
geometry ∝ D0 t. Inset: Péclet number | 〈 ẋ 〉 |/Deff versus f/fcr for δ = 0.2 and δ = 1
(straight channel). Right panel: Time evolution for probability P (0 ≤ x ≤ 1, t) to
find a particle within the starting unit cell at time t. Superimposed is the result
for purely diffusive particle motion (red dots), i.e., f = ∆P = 0. The remaining
parameter values are ∆Ω = 0.5, ∆ω = 0.1, and ∆P = 6.5 · 104.

the probability decays faster, nevertheless, the decrement is much slower compared to
diffusion (red dots). There, P (0 ≤ x ≤ 1, t) reduces to almost 30% at the characteristic
diffusion time t = 1.

Importantly, we stress that the converging-diverging nature of the channel geometry,
δ 6= 1, is a crucial prerequisite to observe HEET. Despite that for a straight channel
(δ = 1) a critical force magnitude also can be found where the transport direction
reverses, viz., fcrit = −〈 ẋ 〉Pois, the force field f(q) lacks vortices which are responsible
for particle accumulation. As a result, the effective diffusion coefficient behaves like
Deff/D

0 = 1 + (∆Ω 〈 ẋ 〉Pois)2/192 and it is bounded from below by the value of bulk
diffusivity, Deff ≥ D0. Consequently, HEET is impossible and the Péclet number
| 〈 ẋ 〉 |/Deff , which quantifies the transport of the objects, is strongly reduced compared
to channels with finite corrugation, δ 6= 1, cf. inset in Fig. 4.10. Note that in contrast
to corrugated channels, Deff/D

0 is independent of the external force for δ = 1 since
Galilei transformation x→ x− f t leaves the latter invariant.

4.4. Summary

Let us summarize our findings presented in this chapter. First, we generalized the Fick-
Jacobs approach to the most general force acting on the particle, Eq. (4.1), which can
involve both the curl-free and the divergence-free component. In the spirit of chapter 3,
we applied asymptotic perturbation analysis in the geometric parameter ε to the pro-
blem of Brownian motion in a 3D, planar channel geometry. By doing this, the problem
reduces to an effective one-dimensional kinetic system in which the particle dynamics is
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determined by the generalized potential of mean force F(x), where x is the coordinate
along the channel. The latter comprised the known entropic contribution caused by the
non-holonomic constraint stemming from the boundaries, which is equivalent to that
obtained in Sect. 2.3.1, and a second novel energetic contribution associated with the
divergence-free force exerted on the particle. In the absence of divergence-free forces,
the leading order solutions resemble the common Fick-Jacobs result.
The interpretation of the leading order results may be not straightforward. To eluci-

date the intriguing feature caused by the divergence-free force, we applied the developed
approach to the problem where Brownian particles are subject to both, an external con-
stant bias f and to a pressure-driven flow controlled by the applied pressure drop ∆P.
The leading order expressions for the local pressure and the solvent’s flow components
were derived. In particular, we corroborated these results by a specific example, namely,
biased particle transport through 2D confinements with sinusoidally modulated width.
Analytic estimates for the mean particle current and the effective diffusion coefficient
are available in the limiting case of particle diffusion in a moving solvent. Especially, we
found that the effective diffusion coefficient (EDC) is solely determined by the aspect
ratio δ if the mean solvent velocity is small, however, the EDC shows Taylor-Aris
dispersion for high flow velocity.
Intriguing novel effects emerge when the Stokes drag and the external force acts simul-

taneously but in opposite directions. For example, the mean particle current changes
from biased entropic to flow driven transport controlled by the applied pressure drop.
Furthermore, during this transition the transport direction reverses. Remarkably, we
identified a critical ratio of force magnitude to applied pressure drop, (f/∆P)crit, at
which the mean particle current turns to zero despite that strong non-vanishing local
forces are acting. Being accompanied by a significant suppression of diffusion and there-
fore robust against thermal fluctuations, the effect is caused by the existence of vortices
in the force fields f(q). These vortices lead to strong particle accumulation at the chan-
nel walls, referred to as hydrodynamically enforced entropic trapping (HEET). Counter-
intuitively, HEET becomes more pronounced for larger fcrit and ∆Pcrit, respectively,
and, more importantly, it is a purely entropic effect caused by the converging-diverging
nature of the channel geometry, δ 6= 1. Despite that for a straight channel, δ = 1, one
also finds a critical force magnitude resulting in a vanishing mean current, the force
field lacks vortices which are responsible for particle accumulation. As a result, the
EDC is bounded from below by the value of bulk diffusivity and it is solely determined
by the applied pressure drop. Furthermore, we showed that HEET offers the opportu-
nity to efficiently separate particles of the same size based on their different response
to external stimuli.

Beside the opportunity to separate Brownian particles of the same size, a main challenge
in basic research is to obtain pure single-size suspensions by filtering wanted from
unwanted material. The impact of the particle size which affects numerous physical
properties like the mass, the viscous friction coefficient, the strength of the external
force, and the accessible space within the channel, on the particle dynamics is studied
in the subsequent chapter 5. In particular, we investigate the simplifications made in
our preceding theoretical considerations for their applicability in experiments.
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5. Entropic transport of spherical finite
size particles

In the last two chapters, we solely focused on the transport quantities of Brownian
particles with negligible diameter dp → 0 (point-like) in 3D confinements with perio-
dically modulated cross-section. Obviously, assuming that the particle size is much
smaller compared to the bottleneck width is a strong limitation which might not fea-
sible in experiments. A main challenge in basic research, industrial processing, and
in nanotechnology is to separate particles by their size. Separation techniques use the
fact that the response of the particles to an external stimulus depends on their size.
Filtering objects of different size is traditionally performed by means of centrifugal
fractionation [Harrison et al., 2002], external fields [MacDonald et al., 2003] or phoretic
forces [Bruus, 2008]. Unquestionably, electrophoretically separating DNA by size is
one of the most important tools in molecular biology [Slater et al., 2002]. By means
of these methods, the sorting of particles proceeds either by size exclusion, as happens
in a sieve, or by migration through the host medium, a gel or porous media [Voldman,
2006]. Contrary to our method proposed in Sect. 4.3.3, in these cases all particles move
in the same direction but at different speeds. In the last decade, various separation
techniques have been proposed which take account of the impact of the particle size
on the environment where they are located in [Duke and Austin, 1998; Martin et al.,
2005; Reguera et al., 2012].

In this chapter, we study the dynamics of spherical objects with mass m and finite
diameter dp evolving under the action of an external static force F = F ex in a resting
solvent, u(q) = 0, with dynamic viscosity η [Cheng et al., 2008; Reguera et al., 2012;
Riefler et al., 2010]. Their motion is confined by a 2D channel geometry1 which is
depicted in Fig. 5.1. Here, we also restrict our studies to symmetric channel geometries,
i.e., ω±(x) = ±ω(x). The finite particle size influences numerous physical properties
like (i) the effective mass m∗ = π(ρp + 0.5 ρf )d3

p/6, (ii) the viscous friction coefficient
γ = 3πη dp, (iii) the external force F = F0 d

α
p ex, and (iv) the accessible space within

one unit cell.
How the external force F depends on the particle diameter is determined by the

exponent α. The latter can attain the values α = 0 (idealized situation [Riefler et al.,
2010]), α = 2 for surface-charged colloids [Hänggi and Marchesoni, 2009] and for DNA
electrophoresis2[Volkmuth and Austin, 1992], and α = 3 for gravitational, buoyant and

1In Sect. 3.1, we have shown that the particles’ dynamics in a 3D, planar confinement can be reduced
to a 2D problem. Thereby, the channel height reduces to ∆H − dp for extended particles.

2Double-stranded DNA is a semiflexible heteropolymer whose structure is characterized by a cascade
of nucleotides [Dorfman, 2010]. Rather than model DNA as thousands of bases, one can adopt a
coarser approach by treating the DNA instead as a homopolymeric chain consisting of Nk Kuhn
segments of Kuhn length lk [Kuhn, 1934]. Each Kuhn segment consists of approximately N0 = 300
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x

y

¢! ¢Ω fd p

1

Figure 5.1.: Sketch of 2D sinusoidally modulated channel ω(x) with unit period,
maximum width ∆Ω, and bottleneck width ∆ω. The spherical particle of diameter
dp is subject to the external force f = f ex. Superimposed are the effective boundary
function for the center of a particle ωeff(x) with dp/∆ω = 0.4 (dashed line) and
dp/∆ω = 0.8 (dash-dotted line).

electric force with charge density ρq. Furthermore, F0 denotes the α-dimensional force
density.

As mentioned above, the accessible space within each unit cell depends on the parti-
cle size too. Caused by the finite particle size its center position q can approach the
hard walls only up to its radius dp/2. Therefore, the particle’s center never reaches
the channel wall for finite radius and thus it is restricted to a portion of the unit
cell area. Consequently, the dynamics of the particle’s center is confined by an effec-
tive boundary ωeff(x) and thus it takes place in channel geometries with effective local
width Weff(x) = 2ωeff(x). The effective upper boundary is determined by the map
(x†, ωeff(x†))T → (x, ω(x))T − dp/2 n; yielding

x† =x+ dp ω
′(x)/2, (5.1a)

ωeff(x†) =ω(x)− dp/2, (5.1b)

with outward-pointing normal vector n = (−ω′(x), 1)T . Unfortunately, the inverse
function x = F−1(x†) associated with Eq. (5.1a) can only be found for some special cases
[Berezhkovskii and Dagdug, 2010; Reguera et al., 2012] and thus the effective boundary
function ωeff(x) cannot be determined explicitly for arbitrary channel geometry.
If the maximal curvature of ω(x) is smaller than the one of the particle, 2/dp, the

effective boundary and its derivatives are continuous. Then, the bottleneck width and
the maximum channel width for ωeff(x) read ∆ω − dp and ∆Ω− dp, respectively. The

base pairs. In the local force model, the electric force acting on the DNA molecule is Felec = qkNk E,
where qk is the charge per Kuhn segment and E is the magnitude of the electric field. In free solution,
the configurational entropy of the chain is maximized by the random coil configuration. For an ideal
chain (no excluded volume interactions) the radius of gyration of the coil scales as Rg ∼ lkNν

k with
Flory exponent ν = 1/2 [Flory, 1942]. Consequently, the number of Kuhn segments are proportional
to R2

g, yielding Felec ∼ qk (Rg/lk)2 E for ideal chains. Taking excluded volume interactions into
account which are important for long DNA the Flory exponent reads ν = 3/5 for a swollen chain in
a good solvent [Doi, 1996]. Then the electric force scales Felec ∼ qk (Rg/lk)5/3 E. This limit is not
discussed in detail here.
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associated aspect ratio changes to δeff = (∆ω − dp)/(∆Ω− dp) while the value for the
expansion parameter maintains, εeff = ε. In the opposite limit where the particle’s
curvature is smaller than the maximal channel’s curvature, i.e., max (|ω′′(x)|) > 2/dp,
ωeff(x) exhibits kinks and therefore its derivatives are discontinuous. Then, both the
effective aspect ratio and the value for ε decrease, viz., δeff < (∆ω−dp)/(∆Ω−dp) and
εeff < ∆Ω−∆ω. An illustration of the effective boundary is depicted in Fig. 5.1.

The Langevin equation Eq. (2.2) for extended, spherical Brownian particles reads
explicitly

m∗ q̈ + 3πη dp q̇ = F0 d
α
p ex +

√
6πη dp kBT ξ(t), (5.2)

with Gaussian white noise ξ(t), Eq. (2.3). Passing to re-scaled quantities q → qL,
dp → dp L, t→ τ t, and ξ(t)→

√
τξ(t), the dimensionless EOM is given by3

Λ q̈ + dp q̇ = f0 d
α
p ex +

√
2 dp ξ(t), (5.3)

with f0 = F0L
α+1/kBT , Λ = m∗L2/(kBT τ2) and characteristic time τ = 3πηL3/(kBT ).

The parameter Λ measures the ratio of the velocity correlation time τcorr = m∗/γ(dp)
to the diffusion time τdiff = γ(dp)L2/kBT , i.e., Λ = τcorr/τdiff d

2
p . Usually Λ is small

for Brownian particles moving inside a medium and thus inertial effects can be ne-
glected in Eq. (5.3); resulting in the overdamped limit. Furthermore, we disregard
both hydrodynamic particle-wall and hydrodynamic particle-particle interactions (sup-
posed dilute particle concentration), and, as well, all effects initiated by rotation of
the particles. Moreover, the effect of hard-core particle-particle interaction (collision)
is not considered. Otherwise, especially for large particles, 2 dp > ∆Ω, the mutual
passage of particles is excluded which leads to single file diffusion [Hahn et al., 1996;
Keil et al., 2000; Wei et al., 2000]. In this case, the sequence of particles remains the
same resulting in strong deviations from normal diffusion, i.e., the particle MSD grows
∝
√
t.

The evolution of the joint PDF p(q, t) following Eq. (5.3) is governed by the Smolu-
chowski equation ∂tp(q, t) = −∇q ·J(q, t). The probability flux J(q, t) obeying no-flux
bcs at y = ±ωeff(x), J · n = 0, reads J(q, t) = [f0 d

α
p p(q, t) ex −∇qp(q, t)]/dp. The

outward-pointing normal vectors read n = (−ω′eff(x),±1)T . Despite the inherent com-
plexity of this problem, an approximated solution can be given within the concept of the
potential of mean force Ad(x) = −f0 d

α
p − ln[2ωeff(x)]. The corresponding Fick-Jacobs

equation reads ∂tp(x, t) = d−1
p ∂x [A′d(x) p(x, t) + ∂xp(x, t)], see Sect. 2.3. As previously

shown in Sect. 3.2, this approach is expected to be accurate for weakly corrugated
channel geometries ε2

eff � 1. Within this 1D kinetic description the most important
particle transport quantities can be calculated by means of the moments of the first

3We emphasize that by re-scaling the variables in same way like done in Sect. 2.2, the characteristic
time scale τ = γ(dp)L2/(kBT ) becomes a function of the particle size dp. Then, each spherical
Brownian particle obeys the dimensionless Langevin equation, Λ† q̈ + q̇ = f0 d

α
p ex +

√
2 ξ(t), with

Λ† = m∗L2/(kBT τ2). Since, our main object is to study the influences of dp on the particle dynamics,
here, we intentionally choose a different scaling. Certainly, the results for the particle mobility and
the EDC in units of their free values do not depend on the considered scaling.

91



5. Entropic transport of spherical finite size particles

passage time distribution, see Sect. 2.5,

µ/µ0 =
1− exp(−f0 d

α
p )

f0 dαp
1∫
0

dx eAd(x)
x∫

x−1
dx′ e−Ad(x′)

, (5.4a)

Deff/D
0 =

1∫
0

dx eAd(x)
x+1∫
x

dx′ eAd(x′)
[

x∫
x−1

dx′ e−Ad(x′)
]2

[
1∫
0

dx eAd(x)
x∫

x−1
dx′ e−Ad(x′)

]3 . (5.4b)

Thereby, the free values µ0 = 1/dp and D0 = 1/dp also depend on the particle size;
yielding that smaller objects diffuse faster and response stronger to external stimuli
compared to larger ones.

5.1. Sinusoidally modulated two-dimensional channel
geometry

In what follows, we evaluate the particle mobility µ/µ0 and the effective diffusion
coefficient Deff/D

0 for finite size Brownian particles moving through a 2D channel
geometry with sinusoidally modulated boundary ω(x), Eq. (3.52). In Fig. 5.2, we
present µ/µ0 and Deff/D

0 as a function of the external force f0 d
α
p for different particle

diameters dp and for α = 0. We emphasize that the shown results are independent of the
explicitly chosen exponent α as long as the product f0 d

α
p attains the same value for a

given particle diameter dp, cf. Fig. 5.4. For weakly corrugated channels, e.g., ∆Ω = 0.2,
one recognizes that the general behavior of both µ/µ0 and Deff/D

0 do not change with
growing particle diameter. In detail, the particle mobility is a monotonously growing
function which starts from a value smaller than 1 for small forces and goes to unity for
large forces. For weak forces, the asymptotic value decreases with growing dp due to the
reduction of the effective boundary’s aspect ratio δeff = (∆ω−dp)/(∆Ω−dp). This is in
compliance with Eq. (3.64). Further, Deff/D

0 exhibits a non-monotonic dependence on
the force magnitude, see Fig. 5.2 (b). It starts with a value which is less than the free
diffusion constant in the diffusion dominated regime, i.e., |f0 d

α
p | � 1. With increasing

force magnitude it reaches a maximum and finally approaches from above the value for
free diffusion. Additionally, we observe that the location of the diffusion peak as well
as the peak height grow with particle size dp.
In Sect. 3.2.1, we demonstrated that the analytic result for µ(f), Eq. (3.61), matches

perfectly for weakly modulated channels and tends to overestimate the true result with
growing channel width. Based on this, we propose an estimate for the mobility of finite
size Brownian particles. By simply replacing f → f0 d

α
p and δ → (∆ω− dp)/(∆Ω− dp)

in Eq. (3.61), we get

µ/µ0 .

(
f0 d

α
p

)2
+ 4π2(

f0 dαp

)2
+ 2π2

{√
∆Ω−dp
∆ω−dp +

√
∆ω−dp
∆Ω−dp

} . (5.5)
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Figure 5.2.: Particle mobility µ/µ0 (left panel) and effective diffusion coefficient
Deff/D

0 (right panel) versus external force magnitude f0 d
α
p for different particle

diameters dp. The force is adjusted by varying the force density f0 for a chosen
diameter dp. The lines represent the analytic estimate Eq. (5.5). The remaining
parameter values are ∆Ω = 0.2, ∆ω = 0.05, and α = 0.

According Eq. (5.5), the associated MFPT reads 〈 t(0→ 1) 〉 = (f0 d
α
p µ)−1 for finite

size particles. In Fig. 5.2 (a), the estimate Eq. (5.5) is indicated by lines. One observes
that the agreement with the numerics is satisfying. In contrast to point-like particles
where the FJ approach is accurate only for ε� 1, we expect that our analytical result
additionally works well for big particles. In this limit, the effective boundary function
exhibits an kink-like structure, as shown in Fig. 5.1, and thus the corresponding slope
parameter εeff < ∆Ω−∆ω is smaller than the one for point-like particles, see Fig. 5.3.
In exact the same manner, we can derive an estimate for the effective diffusion

coefficient by substituting f → f0 d
α
p and b→ (∆Ω+∆ω−2dp)/(∆Ω−∆ω) in Eq. (3.69).

This fact is not presented in depth.

The impact of force magnitude f0 d
α
p and of particle size dp on the particle mobility

and the effective diffusion coefficient is presented in Fig. 5.4. The markers represent
different combinations of values for f0, dp, and α, viz., α = 0 (squares), α = 2 (circles),
and α = 3 (diamonds). In order illustrate the dependence of µ/µ0 and Deff/D

0 on
f0 d

α
p and dp better, we superimpose associated surface plots which were obtained by

cubic interpolation of the scattered data points.
For moderately corrugated channels Fig. 5.4 (a)-(b), i.e., ∆Ω = 1 and ∆ω = 0.5, the

effective boundary function ωeff(x) is continuous and thus the corresponding bottleneck
width and maximum channel width are given by ∆ω−dp and ∆Ω−dp, respectively. As
a consequence, the bottleneck width becomes smaller and the entropic effects stronger
with growing particle size while the value for ε remains constant. Hence, we basically
observe that the particle mobility µ/µ0 decreases monotonously with growing particle
size. Thereby, one notices that the values of µ/µ0 are almost equal for a broad range
of particle diameters, dp ∈ [0,∆ω/2], regardless of the force magnitude f0 d

α
p . This

indicates that particles with diameter up to the half bottleneck width can be satis-
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Figure 5.3: Relative error
µFJ/µ− 1 between FJ estimate
Eq. (5.5) and the numerically
obtained particle mobility
µ/µ0 as a function of external
force magnitude f0 d

α
p and for

various particle diameters dp.
The remaining parameters are
∆Ω = 1, ∆ω = 0.5, and α = 0.
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factorily described as point-like. In the opposite limit dp → ∆ω, the effective channel
for the particle’s center is closed and thus both µ/µ0 and Deff/D

0 go to zero. This
behavior is in compliance with the previously presented results for point-like particles,
cf. Fig. 3.5. It can be approximately described by µ/µ0 ∝

√
δeff/(1+δeff) for sufficiently

weak forces. In addition, it turns out that µ/µ0 grows monotonously with the force
magnitude regardless of the particle size dp and the channel size. In particular, it is
remarkable that the mobility exhibits a step-like dependence on the particle size for
f0 d

α
p � 1; µ/µ0 is almost constant for a broad range of dp values before it sharply

decreases to zero for dp → ∆ω.
Likewise, the effective diffusion coefficient shows a similar dependence on f0 d

α
p and

dp for moderate corrugated confinements, see Fig. 5.4 (b). For weak forces, Deff/D
0

monotonously decreases with the particle size and coincides with µ/µ0, thus corro-
borating the Sutherland-Einstein relation. Keeping the particle’s diameter fixed while
increasing the force magnitude, one observes the typical bell-shaped structure ofDeff/D

0

on f0 d
α
p , cf. Fig. 5.2b. Thereby, the asymptotic value for weak forces becomes less for

bigger particles whereas the peak height slightly grows with dp. For infinite strong
forces the effective diffusion coefficient attains its D0 for dp 6= ∆ω.
The behavior of µ/µ0 and Deff/D

0 drastically changes for extremely modulated
confinements, ∆Ω = 10 and ∆ω = 1, as shown in Fig. 5.4 (c)-(d). For instance,
the particle mobility shows a resonance-like behavior as a function of the particle size
for weak forces. While the bottleneck width decreases linearly with dp, the maximum
channel width shows a much stronger decline if max(|ω′′(x)|) > 2/dp. With growing
particle diameter, the size of the effective channel’s bulges lessens and the sojourn time,
which the particle spends on average within one unit cell, shortens. Despite the inti-
mately connected reduction of the bottleneck size, the particle mobility grows with
the particle size till it attains its maximum value for a given diameter. With further
increasing particle size, the particle motion gets more and more hindered by the shrink-
ing bottleneck size and thus µ/µ0 decreases. The impact of dp on the mobility lessens
for larger force strengths, i.e., the mobility is almost independent of the particle size
for f � 1. In the force dominated regime, we observe that µ/µ0 exhibits an almost
step-like dependence on dp.
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Figure 5.4.: Particle mobility µ/µ0 (left column) and effective diffusion coefficient
Deff/D

0 (right column) as a function of force f0 d
α
p and particle diameter dp. The

markers represent the simulation results for various values of α, viz., α = 0 (squares),
α = 2 (circles), and α = 3 (diamonds). Additionally, we depict the associated surface
plots obtained by cubic interpolation of the scattered data points. The channel
parameters are ∆Ω = 1, ∆ω = 0.5 (top row) and ∆Ω = 10, ∆ω = 1 (bottom row).
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5. Entropic transport of spherical finite size particles

L [µm] ∆Ω [µm] ∆ω [µm] dp [µm]
Sven and Müller, 2003 8.4 4.8 2.5 1
Marquet et al., 2002 50 6-12 1-6
Mathwig et al., 2011 110 3.8 2 0.1-0.5

Groisman and Quake, 2004 230 330 37
Yang et al., 2012 250 120 40 5-10

Table 5.1.: Experimentally used channel parameters and values for colloid diameters
dp are gathered from various sources.

Furthermore, the effective diffusion coefficient exhibits a complex dependence on the
particle diameter and the force magnitude. In the limiting case of point-like particles
dp/∆ω � 1, we notices the typical bell-shaped structure of Deff/D

0 as a function of
f0 d

α
p . Noteworthy, the maximal diffusivity exceeds the free value D0 for more than one

magnitude, viz., max(Deff) ' 20D0. Interestingly, an increase of the particle size leads
to a growth of Deff/D

0 for weak forces and a decline of the peak’s height at moderate
forces. In the asymptotic limit dp → ∆ω, the effective diffusion coefficient grows with
dp regardless of the force strength. In particular, one observes that Deff/D

0 increases
with growing force magnitude for dp → ∆ω. In contrast to point-like particles, the
peak position is shifted towards stronger forces, however, the peak height also exceeds
the free value D0 for more than one magnitude. We expect that in the limit f0 d

α
p →∞

the EDC converges to the free value regardless of the particle diameter.

5.2. Discussion on the applicability in experiments
In the previous section, we presented Brownian dynamics simulation results for the
particle mobility and the effective diffusion coefficient of spherical objects with dia-
meter dp. We disregard (i) inertial effects Λ � 1, (ii) hydrodynamic particle-particle
interactions as well as (iii) hydrodynamic particle-wall interaction in our study. Fur-
thermore, we assume that the objects are subject to an idealized spatial homogeneous
and static external force whose magnitude vary from 10−2 − 102.

In what follows, we quantify the simplifications made for their applicability in ex-
periments. Tab. 5.1 presents a small collections of channel parameter values and particle
diameters used in experiments. For colloidal particles of size dp = 0.1 − 1µm moving
freely in water ρf = 998 kg/m3, η = 10−3 kg/(m s), the free particle mobility is of the
order µ0 ≈ 108 − 109 s/kg and the free diffusion constant is nearly D0 ≈ 0.1− 1µm2/s
at room temperature T = 293, 15 K. Thereby smaller objects diffuse faster and respon-
se stronger (larger free mobility) to external stimuli. In numerical simulations we can
easily vary the dimensionless force magnitude f0 d

α
p from 10−2−102 like done in chapters

3-5. One may ask if such values are accessible in experiments?

Assuming that the colloids are subject to gravity and buoyancy acting along longitudi-
nal channel direction, but with opposite orientation, one gets Fgrav ≈ 10−4−10−1 fN for
polystyrene beads4 of size dp = 0.1−1µm, Tab. 5.1, and density ρp = 1050 kg/m3. For

4http://www.polyscience.com

96

http://www.polyscience.com


5.2. Discussion on the applicability in experiments

silica beads, ρp = 2000 kg/m3, of the same size one calculates Fgrav ≈ 10−2−101 fN. The
corresponding free particle velocity is in a range from

〈
v0 〉 = 0.01µm/s (dp = 0.1µm) to〈

v0 〉 = 1µm/s (dp = 1µm). For a typical unit cell period length L = 100µm, Tab. 5.1,
the dimensionless force magnitude is of the order fPoly ≈ 10−3−100 for polystyrene and
fSil ≈ 10−1−102 for silica beads at room temperature. Albeit, gravity is a comparably
weak force the values of f are of right order. Concerning the impact of inertial effects
on the particles dynamics, we obtain Λ ≈ 10−18− 10−15 for both polystyrene and silica
beads (dp = 0.1− 1µm) suspended in water at room temperature. Consequently, this
assumption to neglect the inertial term Λq̈ is justified for spherical objects evolving in
a aqueous solvent.
Apart from separating colloidal dispersion by size, electrophoretically separating of

DNA or RNA by size is unquestionably one of the most important tools in molecular
biology. While the understanding of DNA at the nucleotide level is critical for many
biophysical studies, one can capture many physical properties using coarse-grained
models. For example, DNA can be treated as a homopolymeric chain consisting of
Nk Kuhn segments of Kuhn length lk [Kuhn, 1934]. Each Kuhn segment consists of
approximately N0 = 300 base pairs. In free solution, the DNA coils with an associated
radius of gyration Rg ∼ lk

√
Nk for ideal chains (no excluded volume interactions) [Doi,

1996]. Supposing that the coil diameter is of the size of the bottleneck, ∆ω = 1−10µm,
cf. Tab. 5.1, results in an upper limit for the number of base pairs, Nbp ≈ 104 − 105

for ideal chains. The canonical example for long DNA is λ-DNA which consists of
Nbp = 48502 and has a radius of gyration of Rg = 0.73µm. If the DNA is confined to a
length scale smaller than the Kuhn length lk ≈ 0.1µm [Smith et al., 1996, for λ-DNA],
a finer-scale model is needed [Odijk, 1983].
Calculating the prefactor Λ in Eq. (5.3), one gets Λ ≈ 10−29 − 10−28 for DNA with

Nbp ≈ 104 − 105 in water at room temperature.5 In contrast to colloid particles,
gravity applies only Fgrav ≈ 10−5 − 10−4 fN on DNA; yielding f ≈ 10−3 − 10−2 for
Nbp = 104−105 and L = 100µm at room temperature. We emphasize that even for long
DNA (Nbp = 4.85·104 and qk ∼ 0.3 electron/Å [Volkmuth and Austin, 1992]) one has to
apply strong electric field strengths E = 100 − 104 V/cm to achieve felec = 10−2 − 102.

Hydrodynamic particle-particle interaction

Next, we briefly discuss the strength of hydrodynamic interaction between rigid sphe-
rical objects with diameter dp moving slowly through a viscous fluid (low Reynolds
number dynamics). It is assumed that the particles are sufficiently distant from the
boundary walls to be regarded as unbounded. Attention will be predominantly directed
to the situation where the fluid at infinity is at rest. According to Faxen’s law [Faxen,
1922; Happel and Brenner, 1965], an additional force fji acts on the j-th particle at

5The mass of the adenine-thymine base pair is given by phosphate(95) + sugar(115) + adenine(134)
+ phosphate(95) + sugar(115) + thymine(125)=679 Da. For the cytosine-guanine complex one finds
phosphate(95) + sugar(115) + cytosine(110) + phosphate(95) + sugar(115) + guanine(150)=680
Da. Thereby, one Dalton is 1 Da = 10−27 kg.
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5. Entropic transport of spherical finite size particles

position r0

fji = dp

[
ui(r0) +

d2
p

24 4 ui(r0)
]
, (5.6)

caused by the flow field ui(r) induced by the i-th particle located at (0, 0)T . These
hydrodynamic interactions can be included into the EOM

dp


q̇1(t)
q̇2(t)
...

q̇N (t)

 = Mhyd


f1
f2
...

fN

+
√

2 dp


ξ1(t)
ξ2(t)
...

ξN (t)

 , (5.7)

by means of the Rodne-Prager tensor Mhyd

Mhyd
ii = I, (5.8a)

Mhyd
ij =

[
3 dp
8 rij

(
I + rij rij

r2
ij

)
+

d3
p

16 r3
ij

(
I− 3rij rij

r2
ij

)]
. (5.8b)

Here rij = ‖rij‖ denotes the distance between the i-th and j-th particle and I represents
the unit matrix. One notices that hydrodynamic interactions are of repulsive character.
Furthermore it turns out that the average distance between two particles of size dp has
to be 〈 rij 〉 ≥ dp/∆f if an additional force of magnitude ∆f is maximally tolerated.
For dp = 0.1 − 1µm and 10% tolerance for the force magnitude, we derive that the
mean distance must be at least 〈 rij 〉 = 1− 10µm which is of the size of the bottleneck
width, cf. Tab. 5.1. Thus, the particle concentration has to be diluted in order to
guarantee that only one particle is in the bottleneck’s vicinity at any time.

Hydrodynamic particle-wall interaction

Concerning the particle-wall interaction it is necessary to establish the effect of walls on
the particle dynamics separately. These effects may then be combined with those due
to particle-particle interaction. In general, the interaction of a particle with the wall
depends on the particle shape, orientation, and position, as well as on the geometry of
the channel walls [Happel and Brenner, 1965]. For simplification, we suppose that the
particle at distance l moves parallel to a infinite long horizontal wall located at y = 0
in a strong viscous media (low Reynolds number). Referring to Happel and Brenner,
1965, an additional force with magnitude

∆f = dp
2 l − dp

f +O

((
dp
2l

)2)
(5.9)

acts on the particle due to the wall. From Eq. (5.9) follows that the additional force
vanishes if the particle is far away from the wall, l � dp. With decreasing distance l,
the force strength ∆f grows and finally goes to infinity for l → dp/2. Since ∆f acts
parallel to the particle’s direction of motion and is oppositely directed, one can interpret
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5.3. Summary

∆f as an additional drag force. Consequently, the asymptotic particle velocity lessens
if the particle approaches the wall. In the limit l → dp/2, no-slip velocity v = 0 is
accomplished at the wall.
According to Eq. (5.9), the distance between particle and wall has to be at least

l ≥ 0.5 (1 + f/∆f) dp if an additional force of magnitude ∆f is tolerated. For diameter
dp = 0.1− 1µm and 10% force tolerance, we calculate that the distance must be at
least l = 0.55− 5.5µm which is of the size of half the bottleneck width, cf. Tab. 5.1.
In agreement with the condition for the mean particle distance, it has to be gua-
ranteed that only one particle is in the bottleneck’s vicinity at any time in order to
safely disregard any hydrodynamic interactions. If this requirement is violated, as
expected, particle-wall interaction becomes significant at the bottleneck. In particular,
accumulation of particles at the constricting bottleneck may become enhanced due to
the interaction with the wall [Schindler et al., 2007].

5.3. Summary
To conclude, we studied the impact of finite particle size on the key transport quantities.
Since numerous physical properties like the particle mass, the friction coefficient, the
external force magnitude, the accessible space or, equivalently, the entropic barrier
within the channel depend on the particle diameter, the particle dynamics may change
drastically. We validated that the transport quantities are well described by the Fick-
Jacobs approach for weakly modulated channels as well as for strongly corrugated
channels and large particles. In the latter limit, the effective boundary function exhibits
a kink-like structure and consequently the corresponding channel slope is much smaller
than the one for point-like particles. Interestingly, due to the nonlinear dependence
of both the channel aspect ratio and the slope parameter on particle size, we found a
resonance-like behavior of the particle mobility on the diameter for extreme corrugated
channels and weak forces. Such a sensitive dependence offers the possibility to separate
Brownian objects of different size.
Finally, we tested the simplifications made in our theoretical consideration for their

applicability in experiments. In particular, limits for the ratio of particle size to pore
size and the mean distance between the particles were identified. Both demonstrate
that dilute particle concentration is essential for finite particle size. Namely, it has to
be guaranteed that only one single particle stays in the bottleneck’s vicinity at any
time. If so, hydrodynamic particle-particle and particle-wall interactions can safely be
disregarded. Additionally, the particles have to be much smaller compared to the pore
size. For such diameter values, we found that the transport quantities in units of their
free values are similar to the ones for idealized, point-like particles.

Regarding the impact of inertia on the particle dynamics, we demonstrate that the
prefactor Λ, appearing in the equation of motion Eq. (5.3), is negligible small. Thus,
the inertial term in Eq. (5.3) can be safely disregarded for colloid particles and DNA in
an aqueous solvent. Nevertheless, if particles are confined in narrow channels and
the dynamic viscosity of the surrounding medium is low, as it is e.g. in acetone
η = 3 · 10−4 kg/(m s) or in gases η ' 10−5 kg/(m s) [Li et al., 2010; Roy et al., 2003],
the thermal correlation length, lcorr =

√
mkBT/γ, can be of the order of the bottleneck
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5. Entropic transport of spherical finite size particles

size ∆ω. Moreover, the length scale on which the particle motion is spatially correlated
grows in the presence of an external force (acceleration). Hence, it is of interest to
investigate the impact of the viscous friction coefficient γ(η) on the particle dynamics.
This is done in detail in the subsequent chapter 6.
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6. Impact of inertia on biased Brownian
transport in confined geometries

In the previous chapters, we showed that the Fick-Jacobs approach, in which the eli-
mination of the “fast” transversal degree(s) of freedom results in an effective description
for the longitudinal coordinate, provides a powerful tool to describe particle transport
through weakly corrugated channel geometries. The applicability of this approach
depends on the existence of a hierarchy of relaxation times [Wilemski, 1976] governed
by the geometry of the channel and by the viscous friction coefficient γ [Skinner and
Wolynes, 1979; Titulaer, 1978]. This hierarchy guarantees separation of time scales
and equipartition of energy; both are necessary conditions for applying the method.
The core physical assumption behind the Fick-Jacobs approach is that the dynamics of
particles in a fluid is the overdamped Langevin one (for a discussion see Chapt. 2). In
the overdamped regime, the particle’s velocity becomes uncorrelated during the time
the particle needs to move a characteristic length lcorr forward, m∗/γ < lcorr/v. If so,
the inertia termm∗ q̈(t) is negligibly small compared to the other acting forces and thus
one can formally set the (added) mass of the particle to zero, m∗ = 0, or, equivalently,
make the viscous friction coefficient tend to infinity (Smoluchowski approximation [von
Smoluchowski, 1906]).

But how large is an “infinite” γ or how small can be a “zero” mass? In cases that par-
ticles are confined in channels with narrow openings (lcorr ' ∆ω . 1µm), the dynamic
viscosity η of the surrounding medium is very low [Li et al., 2010], or particles move with
relatively high velocities like in gases [Roy et al., 2003], the inequality m∗/γ < lcorr/v
is not always satisfied. Hence, one expects that inertial effects become important as
long as the particle’s motion is spatially correlated on a length of the order of, or larger
than, the smallest length scale of the system; the bottleneck width ∆ω [Ghosh et al.,
2012b,c]. The correlation length crucially depends on γ, the external force strength,
and the environmental temperature T .

In the limit of vanishing viscous dissipation, γ → 0, the considered problem resembles
deterministic billiards where correlations are long-ranged [Machta, 1983]. Billiard-type
dynamical systems are at the heart of the foundations of statistical mechanics and
the theory of dynamical systems [Kozlov and Treshchëv, 1991]. These are suitable
models for attempting to understand non-equilibrium statistical mechanics showing
very rich dynamics, e.g., chaos [Gaspard et al., 1998], ergodicity [Sinai, 1970], defocusing
[Bunimovich, 1974], stickiness to KAM tori [Arnold, 1963], Fermi acceleration [Fermi,
1949], etc. One of the most famous billiard-type system in statistical mechanics is a
Lorentz gas [Bunimovich and Sinai, 1981; Gaspard and Baras, 1995] generated by a
motion of a point particle in a periodic array of immovable scatterers. These confined
geometries are ideal systems for studying deterministic diffusion which refers to the

101



6. Impact of inertia on biased Brownian transport in confined geometries

asymptotically linear growth of the mean square displacement in purely deterministic
and typically chaotic dynamical systems [Klages, 1996, 2002; Machta and Zwanzig,
1983].
Finite damping, γ 6= 0, and non-zero environmental temperature, T 6= 0, guarantee

the existence of a hierarchy of relaxation times which may leads to an effective descrip-
tion for the longitudinal coordinates (FJ approach). Within the latter, the damped
particle motion takes place in the one-dimensional, spatially periodic potential of mean
force. Its purely energetic correspondent, a tilted periodic potential, is one of the
most studied nonequilibrium system [Risken, 1989] and gained great interest due to
its wide application and practical importance in many fields including Josephson tun-
nelling junctions [Barone and Paternò, 1982], rotation of dipoles, diffusion of atoms
and molecules on crystal surfaces [Patriarca et al., 2005], to name a few. The asso-
ciated particle dynamics is characterized by random switches occurring either between
a locked state and a running state (small friction) or between two locked states (strong
damping) [Hänggi and Marchesoni, 2009]. The transition rates between the locked
and running state crucially depends on the force magnitude, the thermal fluctuation
strength, and the viscous friction coefficient. As a consequence, analytic results are
only known in some limits [Hänggi et al., 1990]. Caused by the interplay of chaotic and
stochastic dynamics, in particular, time-periodically forced Brownian particles exhibit
a variety of interesting phenomena like hysteresis loops [Borromeo et al., 1999], dynami-
cal stochastic resonance [Borromeo and Marchesoni, 2000; Costantini and Marchesoni,
1999], absolute negative mobility [Machura et al., 2007; Nagel et al., 2008], and feedback
control [Hennig et al., 2009; Pyragas, 1992].

Our objective with the chapter at hand is to investigate the impact of the viscous friction
coefficient γ on point-size Brownian particles evolving in two-dimensional confining
geometries. We demonstrate that if the time scales involved in the problem separate,
the previously derived result for the potential of mean force A(x), see Sect. 2.3.1, is
absolutely general for arbitrary friction coefficients and it is intimately connected with
equipartition.1

6.1. Model for inertial Brownian motion in periodic channels
In the following, we consider point-sized2 Brownian particles with massm whose motion
in the x−y− plane is confined by the top and bottom boundaries given by the functions
ω+(x) and ω−(x), respectively, both periodic with unit period, see Fig. 6.1. For the sake
of simplicity, we focus on the situation of a two-dimensional channel, although the same
discussion can readily be extended to 3D. The directed motion of the particles is induced
only by an external curl-free force f = f ex which acts along the channel’s longitudinal
(x-) direction (scalar potential Φ(q) = −f x). Hydrodynamic particle-particle as well
as particle-wall interactions within the system can be neglected provided particles are

1I remark that several results and similar figures presented in this chapter have been previously
published in Martens et al., 2012a.

2In Sect. 5.1, we showed that the results for the transport quantities (in units of their free values) are
almost independent of the particle size if dp < ∆ω/2. Thus, we simplify our model by considering
idealized, point-like Brownian particles.
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The Langevin equation Eq. (6.1) is equivalent to the Klein-Kramers equation [Hänggi
et al., 1990] for the joint PDF P (q,v, t) of a particle to be found at position q = (x, y)T
with velocity v at time t:

∂tP = Lx,vxP + Ly,vyP, (6.2a)

with

Lq,v = −v∂q + ∂qΦ(q)∂v + γ∂v [v + ∂v] . (6.2b)

Both the q- and the v-component of the probability current

Jq = vP, and Jv = −∇qU P − γ [v + ∇v]P, (6.3)

obey the no-flow condition which leads to vanishing probability currents normal to the
channel’s boundary

Jq (q,v, t) · n = 0, and Jv (q,v, t) · n = 0, ∀q ∈ channel wall, (6.4)

where n denotes the outward-pointing normal vector at the channel walls. We stress
that any solution of the Klein-Kramers equation, Eq. (6.2a), exhibits a kinetic boun-
dary layer near a completely or partially absorbing wall [Harris, 1981]. Such kinetic
boundary layers occur when one imposes boundary conditions that cannot be satisfied
by a distribution function of local equilibrium type [Kainz and Titulaer, 1991; Selinger
and Titulaer, 1984]. Hence, for simplification all particle-wall collisions are treated as
perfectly elastic v · n = 0, i.e., the angle of incidence just before the collision is equal
to the angle of reflection just after the collision with the boundaries. Consequently, the
bc for Jq is unconditionally satisfied. In the same manner, we claim that the normal
component of Jv equals zero at the moment of collision. Periodic boundary conditions
are appropriate [Risken, 1989]

P (x+m, y, vx, vy, t) = P (x, y, vx, vy, t), m ∈ Z, (6.5)

for an infinitely long channel consisting of many unit cells. Additionally, P (q,v, t)
satisfies the normalization condition in every unit

1∫
0

dx
ω+(x)∫
ω−(x)

dy
∞∫
−∞

dvx
∞∫
−∞

dvy P (x, y, vx, vy, t) = 1. (6.6)

Approximations to Eq. (6.2a) give rise to effective theories concentrating on the relevant
x-coordinate and suppressing the irrelevant y-one. In what follows, we first discuss
necessary conditions for such a reduced description.
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6.2. Fick-Jacobs approach for arbitrary friction

According to the Bayes theorem, the joint PDF of the position and the velocity is given
by the product

P (q,v, t) =P (y, vy|x, vx, t) p(x, vx, t), (6.7)

of the marginal probability density

p(x, vx, t) =
ω+(x)∫
ω−(x)

dy
∞∫
−∞

dvy P (q,v, t), (6.8)

and the joint PDF of y and vy conditioned on x, vx, and t, P (y, vy|x, vx, t). The fast
relaxation approximation [Berezhkovskii and Szabo, 2011] assumes that P (y, vy|x, vx, t)
equals the equilibrium PDF of y and vy, conditioned on x:

Φ(y, vy|x, vx, t) = Φ(y, vy|x) = e−[v2
y/2+Φ(q)]

√
2π

ω+(x)∫
ω−(x)

dy e−Φ(q)

. (6.9)

In this case the full dynamics, Eq. (6.1), can be replaced by the motion of a particle in
the potential of mean force A(x)

dA(x)
dx =

ω+(x)∫
ω−(x)

dy
∞∫
−∞

dvy ∂xΦ(q)P (y, vy|x), (6.10)

yielding

v̇x = − γ vx −
dA(x)

dx +
√

2γ ξx(t). (6.11)

The assumption Eq. (6.9) is valid if (i) the distribution of y relaxes fast enough to
the equilibrium one (separation of time scales), (ii) equipartition of the kinetic ener-
gies corresponding to vx and vy holds (outside of energy-diffusion regime), and (iii)
vx and vy are uncorrelated at any time τ , 〈 vx(τ)vy(0) 〉 = 0. Burada et al., 2007,
analyzed the time scales involved in the problem. These are the times τy = γ∆y2/2
and τx = γ∆x2/2 to diffuse over distances ∆y and ∆x, the characteristic drift time
τxdrift = min(γ∆x/f,∆x/vx) and τydrift = ∆y/vy, and the velocity correlation time
τcorr = 1/γ. A criterion to be satisfied is

max (τy/τx, τydrift/τ
x
drift, τcorr/τy, τcor/τ

y
drift)� 1, (6.12)

whereas τy/τx � 1 and τydrift/τ
x
drift � 1 represent the supposed separation of the trans-

verse to the longitudinal time scales. This can be achieved either for anisotropic friction
γx � γy [Berezhkovskii and Szabo, 2011], or, equivalently, for anisotropic diffusion co-
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efficients Dy � Dx [Kalinay and Percus, 2006]. The last two conditions τcorr/τy � 1
and τcorr/τ

y
drift � 1 should ensure that the velocity components are uncorrelated at

any time. In the considered situation, Eq. (6.1), correlation between vx and vy can
only occur due to reflection at the corrugated boundaries, where the acceleration in
x-direction (fex) is transfered to the transverse velocity component. This means that
the ansatz, Eq. (6.9), is not valid as long as the Brownian motion is spatially corre-
lated on a length (thermal length ltherm = 1/γ (f � 1) or the drift length lf = f/γ2

(f > 1) of the order of, or larger than, the smallest length scale of the system, viz., the
bottleneck width ∆ω. Consequently, the criterion Eq. (6.12) can be formulated in an
alternative way [Ghosh et al., 2012b,c]:

γ∆ω � 1, and γ2 ∆ω
f

� 1. (6.13)

Violation of time scale separation

If the fast relaxation approximation (separation of time scales) fails, Eqs. (6.12) and
(6.13), Berezhkovskii and Szabo proposed to add an additional term to Eq. (6.7) which
describes the deviation from the local equilibrium ∆(q,v, t), yielding

P (q,v, t) =P (y, vy|x) p(x, vx, t) + ∆(q,v, t). (6.14)

Substituting Eq. (6.14) into Eq. (6.2a) and integrating the result over y and vy, leads
to

∂tp(x, vx, t) = LMF
x,vx − ∂vx

ω+(x)∫
ω−(x)

dy
∞∫
−∞

dvy δFx(y) ∆(q,v, t), (6.15)

where LMF
x,vx is obtained from Lx,vx , Eq. (6.2b), by replacing ∂xΦ(q) by dA(x)/dx,

Eq. (6.10), and δFx(y) = −∂xΦ(x, y) + dA(x)/dx measures the difference between the
locally acting force and the mean force. The evolution of ∆(q,v, t) is determined by

∂t∆(q,v, t) = Lx,vx∆ + Ly,vy∆+P (y, vy|t) ∂vx

ω+(x)∫
ω−(x)

dy
∞∫
−∞

dvy δFx(y) ∆(q,v, t)

−P (y, vy|t) δFx(y) [vx + ∂vx ] p(x, vx, t).

(6.16)

We emphasize that the last two equations are exact. By omitting the last term in
Eq. (6.15), i.e., putting ∆(q,v, t) = 0, one recovers the familiar result that the motion
along x occurs in the presence of the potential of mean force with intrinsic mass and
friction Eq. (6.11). Berezhkovskii and Szabo, 2011, showed further that the dynamics
along y influences the dynamics along x (through δFx(y) 6= 0) in two ways. It leads to
an additional friction force as well as an additional thermal force (second heat bath), the
two being related by the fluctuation-dissipation theorem. In the Markovian limit, the
additional forces result in a position-dependent friction coefficient γ(x), respectively,
position-dependent diffusion coefficient D(x), cf. Sect. 2.4. Then, the particle’s velocity
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along x is approximately governed by

v̇x = − γ(x) vx −
dA(x)

dx +
√

2γ(x) ξx(t). (6.17)

High-friction limit

Referring to Kramers, 1940, see also Becker, 1985, the Fick-Jacobs equation, Eq. (2.34),
can be derived directly from the Klein-Kramers equation, Eq. (6.15). Paraphrasing the
latter leads to

∂tp(x, vx, t) = (γ∂vx − ∂x)
[
vx + ∂vx + 1

γ
∂x + 1

γ

dA(x)
dx

]
p(x, vx, t)

+ 1
γ
∂x

[dA(x)
dx p(x, vx, t) + ∂xp(x, vx, t)

]
,

(6.18)

where δFx(y) is set to zero. Integrating Eq. (6.18) along the line G : vx = γ (x0 − x)
results in∫

G
ds ∂tp(x, vx, t) = 1

γ

∫
G

ds ∂x
[dA(x)

dx p(x, vx, t) + ∂xp(x, vx, t)
]
. (6.19)

If both the mean force dA(x)/dx and the joint PDF p(x, vx, t) do not change much
along x during the correlation length vx/γ, the integration along G : vx can be replaced
by
∫∞
−∞ dvx for any value for x, give rise to

∂tp(x, t) = 1
γ
∂x

[dA(x)
dx p(x, t)

]
+ 1
γ
∂2
xp(x, t). (6.20)

One expects that Eq. (6.20) is valid as long as

d 2A(x)
dx2

1
γ
� dA(x)

dx , and ∂xp(x, vx, t)
1
γ
� p(x, vx, t) (f � 1). (6.21a)

or

d 2A(x)
dx2

f

γ2 �
dA(x)

dx , and ∂xp(x, vx, t)
f

γ2 � p(x, vx, t) (f > 1), (6.21b)

are satisfied. By re-scaling the time as suggested in Sect. 2.2, Eq. (6.20) goes over to
the time-dependent Fick-Jacobs equation, cf. Eq. (2.34). Accordingly, the conditional
PDF, Eq. (6.9), simplifies to Eq. (2.33) by integrating the transverse velocity vy out. By
expanding the Klein-Kramers equation, Eq. (6.18), in orders of the relaxation time 1/γ
(Chapman-Enskog procedure), Tikhonov derived the first order correction to Eq. (6.20)

∂tp(x, t) = ∂

∂ x

{
1 + 1

γ2
d 2A(x)

dx2

}[dA(x)
dx p(x, t) + ∂xp(x, t)

]
, (6.22)

which scales with the second derivative of the potential of mean force with respect to
the coordinate x [Titulaer, 1978; Wilemski, 1976].
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The analytic expression for the potential of mean force A(x) for arbitrary viscous
friction coefficient can be derived along the lines of Sect. 2.3.1: Following Sokolov,
2010, the interaction of the particles with the wall can be mimicked by a quadratic
potential acting in the direction normal to the wall, U±(n±) = 0.5κw n2

± with inter-
action strength κw and n± being the coordinate along the normal to the upper and
lower boundary taken at the point (x, ω±(x))T . When x is fixed, U±(n±) depends
only on the y-coordinate and is given by Eq. (2.39). Equation (6.10) then reduces to
dA(x)/dx =

∫ ω+(x)
ω−(x) dy

∫∞
−∞ dvy [∂xΦ + ∂xU±] P (y, vy|x). Integrating the latter with

respect to the transverse velocity leads to Eq. (2.40) and, finally, we derive Eq. (2.42):

−dA(x)
dx = ∂x ln

 ω+(x)∫
ω−(x)

dy e−Φ(x,y)

 . (6.23)

The mean force is the conditional average of the mechanical forces exerted on the par-
ticle caused by non-holonomic constraint originated from the boundaries. Furthermore,
the corresponding potential of mean force A(x) is the free energy associated with the
partition function Z(x) =

∫ ω+(x)
ω−(x) dy exp (−Φ(q)) and, more importantly, it does not

depend on the viscous friction coefficient γ. Referring to Pope and Ching, 1993, this
result relies on the Maxwell distribution of vy, i.e., on equipartition. Based on purely
probabilistic considerations, Pope and Ching derived an equation connecting the sta-
tionary PDF p(x) of any variable x with the mean conditional acceleration 〈 ẍ|x 〉 at x
and the mean conditional squared velocity at x,

〈
ẋ2|x

〉
:

〈 ẍ|x 〉 p(x) = d
dx

[〈
ẋ2|x

〉
p(x)

]
. (6.24)

If the equipartition theorem holds, the mean squared velocity of the particle does not
depend on its position in a canonical ensemble and it equals unity in our scaling,〈
ẋ2|x

〉
= 1. If so, the mean force or, equivalently, the mean conditional acceleration is

given by

〈 ẍ|x 〉 = d
dx ln [p(x)] , (6.25)

which coincides with Eq. (6.23). As we proceed to show, equipartition breaks down if
the particle motion is not overdamped.

6.3. Particle transport through sinusoidally-shaped channels

In this section, we focus on the particle mobility µ/µ0 = limt→∞ γ 〈x(t) 〉 /(f t) and the
effective diffusion coefficient Deff/D

0 = limt→∞ γ (
〈
x(t)2 〉− 〈x(t) 〉2)/(2 t) of particles

moving in a sinusoidally-shaped channel with top boundary given by

ω+ (x) = 1
4 [∆Ω + ∆ω − (∆Ω−∆ω) cos (2π x)] , (6.26)
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Figure 6.2: Particle mobility µ/µ0

in a sinusoidally-shaped channel
with profile Eq. (6.26) as a func-
tion of viscous friction coefficient
γ for different channel widths
∆Ω = 0.1, 1 and aspect ratios
δ = 0.1, 0.3. The force magnitude
is kept fixed f = 0.1.

and with flat bottom boundary, ω−(x) = 0. ∆Ω and ∆ω denote the maximal and
the minimal width of the channel, respectively, with aspect ratio δ = ∆ω/∆Ω. An
exemplary segment of the considered 2D channel geometry is depicted in Fig. 6.1.
Since the external force acts only along the channel axis and all reflections at the
boundary are treated as elastic, it is sufficient to consider only one half of the channel
instead of the complete reflection symmetric geometry with ω−(x) = −ω+(x). Both
configurations lead to the same results for the transport quantities, cf. [Ghosh et al.,
2012b,c]. Solely the correlation between the velocity components changes, however, the
latter is assumed to be zero within the fast relaxation approximation Eq. (6.9).

Inertial effects in shape modulated channels become apparent if the Brownian motion
is spatially correlated on a length of the order of the bottleneck width ∆ω. According
to Eqs. (6.12) and (6.13), this is true both for small friction coefficient γ and for strong
external forces f . Figures 6.2 and 6.3 show the impact of γ on the particle mobility
in a sinusoidally-shaped channel with profile Eq. (6.26). The numerical results were
obtained by Brownian dynamics simulation. For this reason, the Langevin equation
Eq. (6.1) was numerically integrated by Euler’s method [Kloeden and Platen, 1999]
with a position dependent time step ∆t. For each parameter set, ∆t was set small
enough for the output to be independent of it. Averages were performed over an
ensemble of 3 · 104 initially equilibrated trajectories and collisions of the particle with
the boundaries were treated as elastic [for details see App. A]. The numerical errors
were of the size of the markers so we don’t indicate them.
By inspecting Fig. 6.2 and 6.3, one immediately recognizes that inertial effects (small

value of γ) suppresses the particle mobility in corrugated channels, i.e., particles re-
spond much weaker to external stimuli. In the opposite limit of strong viscous friction,
γ → ∞, the mobility becomes independent of γ and tends to an asymptotic value, as
expected in the Smoluchowski approximation m→ 0. For weakly modulated channels
ε = ∆Ω−∆ω . 0.1 and γ � 1, this asymptotic value is given by Eq. (3.61) for the
considered geometry, Eq. (6.26). At low friction coefficient γ � 1, the particle mobility
µ/µ0 grows with γ as a power of γ, µ/µ0 ' γχ, where χ depends on f , see Fig. 6.3
(insets), and on the geometry parameters ∆Ω and ∆ω, see Fig. 6.2. In particular, the
exponent is close to χ ' 1/2, i.e., µ/µ0 ' √γ, for narrow channels ∆Ω � 1. Such a
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Figure 6.3.: Particle mobility µ/µ0 as a function the rescaled friction coefficient
γ2 ∆ω/f and of γ (insets) for different values for f . Left: The raising branch of the
collapsing curves is fitted by a power law (γ2 ∆ω/f)χS with exponent χS = 0.75±0.02
for ∆Ω = 0.1 and ∆ω = 0.01. Right: µ/µ0 vs. γ for different bottleneck widths
∆ω = 0.1 (blank symbols) or ∆ω = 0.5 (filled symbols) and force strengths f ∆ω.
The maximum channel width is kept fixed ∆Ω = 1. All data points collapse to one
unique curve which scales like (γ2 ∆ω/f)χS with exponent χS = 0.65± 0.01.

dependence is known for weakly damped Brownian motion in 1D, periodic energetic
potentials, cf. [Risken, 1989, Eq. (11.135)], and might witness for the applicability of
the reduced description. In the opposite limit of wide channels, ε & 1, the exponent is
unity, χ = 1, regardless of the bottleneck width or the aspect ratio (see inset in Fig. 6.4
(ii)), i.e., limf→0 µ/µ

0 ∝ γ. Comparing Fig. 6.4 (i) and (ii), we observe that the particle
mobility and the effective diffusion coefficient coincide if diffusion dominates f � 1;
thus corroborating the Sutherland-Einstein relation Eq. (2.26). In this limit, the mo-
tion within the unit cell of the channel is practically ballistic at a speed of the order
of the rms thermal velocity 〈 v 〉 (scaled to unity). The typical time to traverse the cell
is Te = 1/ 〈 v 〉, and the probability to leave the cell for another one, making a unit
displacement, is of the order of the aspect ratio δ [Ghosh et al., 2012b]. Therefore, the
EDC scales like Deff(0) ∝ δ/Te ' δ and one gets

lim
f→0

µ(f)/µ0 = lim
f→0

Deff(f)/D0 ∝ δ γ, for γ � 1. (6.27)

Although, the last equation agrees quite well with numerics for ∆Ω = 1 (see Fig. 6.4 (b))
it does not reproduce the results for narrow channels ∆Ω = 0.1 (see Fig. 6.4 (a)). To be
more precise, for δ = 0.1 and f = 0.1 we found χ ' 0.75, 0.94, 0.99 for ∆Ω = 0.1, 0.2,
and 1.
Remarkable, expressing the viscous friction coefficient in units of

√
f/∆ω, all curves

tends to collapse on one unique curve which scales like (γ2 ∆ω/f)χS . The exponent was
fitted as χS = 0.75±0.02 for ∆Ω = 0.1 and ∆ω = 0.01 regardless of the value of f . For
wider channels ∆Ω = 1, the particle mobility grows with exponent χS = 0.65 ± 0.01
independent of the value of the bottleneck width and the force strength. Surprisingly,
while one observes that the value of γ, where µ/µ0 attains its asymptotic value, grows
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6.3. Particle transport through sinusoidally-shaped channels

with the force magnitude it turns out that the value of the re-scaled friction coefficient
γ2 ∆ω/f decreases with f . Whereas it is of the order of unity for wide channels,
∆Ω = 1, the value decreases to approximately 0.01 for f ∆ω = 10 in narrow channels,
∆Ω = 0.1. This contradicts the argumentation based on the length scales, Eq. (6.13).
Furthermore, it indicates that the analytic form of a function for γ(f,∆Ω,∆ω) at which
the particle’s dynamics can be treated as overdamped is more complicated.
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Figure 6.4.: Results of simulation of full dynamics, Eq. (6.1), in a sinusoidally modu-
lated channel geometry of Fig. 6.1 with ∆Ω = 0.1 and ∆ω = 0.01 (a), and ∆Ω = 1
and ∆ω = 0.1 (b). In panel (i)-(iii), the force dependence of different dynamical
characteristics of the system are depicted for γ = 1, 5 and 100. (i) Particle mo-
bility µ/µ0 (symbols). Superimposed are numerical results for reduced dynamics,
Eq. (6.11) (dashed lines). (ii) The effective diffusion coefficient, Deff/D

0 versus f .
Inset: Deff/D

0 versus δ γ for f = 0.1. Dash-dotted line indicates δ γ. (iii) The 2nd
central moment σ2 = 〈v2

y〉 − 〈 vy 〉
2 of vy. The horizontal dash-dotted lines indicate

unity.
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6. Impact of inertia on biased Brownian transport in confined geometries

Figure 6.4 shows the influence of the force strength f on the particle mobility (see panel
(i)) for various viscous friction coefficients γ. Since µ(f) and Deff(f) are reflection
symmetric functions caused by the symmetry of the boundary function ω+(x), viz.,
µ(−f) = µ(f) and Deff(−f) = Deff(f), for the sake of clarity, we discuss the behavior
for f > 0 only. For γ � 1, we recognize the already known dependence of µ/µ0

on f , cf. Sect. 3.2.1: Starting from the asymptotic value µ/µ0 = 2
√
δ/(1 + δ) for

f � 1, Eq. (3.64), the mobility increases with force magnitude till the asymptotic
value µ/µ0 = 1 is reached for f → ∞. In the limiting case ε = ∆Ω − ∆ω . 0.1 and
γ � 1, the dependence of the particle mobility on f is well reproduced by Eq. (3.61)
for the considered geometry Eq. (6.26).4 In the diffusion dominated regime, f < 1, the
particle mobility and the effective diffusion coefficient (Fig. 6.4 (i) and (ii)) coincide.
Furthermore, it is demonstrated that the scaled particle mobility µ/µ0 and the EDC
Deff/D

0 grow with γ for f < 1, see Fig. 6.2. Noteworthy, the particle mobility and the
mean particle current 〈 ẋ 〉 differ from zero even for sufficient weak, non-zero forces. In
2D confining channels, no locked state with zero mean particle current exists for f 6= 0,
contrary to biased Brownian motion in 1D energetic potentials. Only in the limit of
vanishing pore sizes, ∆ω → 0, the MFPT diverges and particles are trapped.
For stronger external force, the particle mobility grows with f , reaches its maximum

at fmax, whose value depends on the friction coefficient and goes to infinity for γ →∞,
and then decays as µ/µ0 ∝ f−εf with εf < 1. It turns out that the particles’ response
to an external force diminishes with its strength for a finite value of γ. In Tab. 6.1, we
list some values of εf for different channel parameters and viscous friction coefficients.
It turns out that the particle mobility is well fitted by an exponent εf ' 0.65 for
low friction and strong force. In the opposite limit of strong friction, γ∆ω > 1 and
γ2∆ω/f > 1, the Smoluchowski approximation m → 0 is valid and thus the particle
mobility tends to µ0 for f →∞. Consequently, the exponent εf goes to zero.
Below, we discuss the impact of γ on the effective diffusion coefficient. In the high fric-

tion limit, we reproduce the results from Sect. 3.2.3: starting fromDeff/D
0 =2

√
δ/(1 + δ)

for f → 0, Eq. (3.64), the EDC grows with increasing f until it reaches its maximum,
then decays, and finally tends to the bulk value Deff = D0 for f →∞. For low γ and for
small forces, all numerical results for the EDC collapse to one unique curve which scales
linearly with γ, Deff/D

0 ∝ γ δ for ∆Ω = 1, and attain values smaller than D0. For
narrow geometries, Deff/D

0 grows with γ too, but the slope diminishes with lessening
channel width (see left inset in Fig. 6.4 (ii)). For moderate to strong forces, f & 10,
the behavior of Deff/D

0 as a function of γ is non-monotonic. For weak to moderate
damping the EDC grows monotonically with γ whereby the attained values are larger
than the bulk value D0 = 1/γ. In the opposite limit of high friction, the EDC is almost
equal to D0. Consequently, Deff/D

0 attains a maximum at a given value of γ which
depends on the force magnitude and on the channel geometry. For f →∞, the effective
diffusion coefficient diverges like Deff/D

0 ∝ f ςD caused by the (chaotic) mechanism of
ballistic collisions. From the numerical data we conclude that the exponent ςD solely
depends on the geometry parameters. In detail, we find ςD ' 0.5 for ∆Ω = 0.1 and
ςD ' 1 for ∆Ω = 1. Especially, the last value coincides with the numerical results and
a heuristic explanation presented in Ghosh et al., 2012b.

4Since we have demonstrated the good agreement already in Sect. 3.2.1, for sake of clarity, we abandon

112



6.4. Applicability of the Fick-Jacobs approach

∆Ω ∆ω γ∆ω εf
0.1 0.01 0.01 0.69 ± 0.05
0.1 0.01 0.1 0.46 ± 0.03
0.1 0.01 1 0.01 ± 0.01
1 0.1 0.1 0.63 ± 0.04
1 0.1 1 0.68 ± 0.02
1 0.1 10 0.06 ± 0.02
1 0.5 0.1 0.60 ± 0.05
1 0.5 1 0.57 ± 0.03
1 0.5 10 0.05 ± 0.01

Table 6.1: The value of the exponent εf
which determines the particle mobility’s
decay for f → ∞ was fitted from the
numerical data. Its dependence on the
channel parameters ∆ω and ∆Ω and on
the friction coefficient γ is presented.

6.4. Applicability of the Fick-Jacobs approach

In Sect. 6.2, we demonstrated that the full dynamics, Eq. (6.1), can be replaced by the
motion of a particle evolving in the potential of mean force A(x), Eq. (6.11). Above,
we showed that both the particle mobility and the EDC grow with the viscous friction
coefficient γ as a power of γ if diffusion dominates, f < 1. A similar dependence is
known for weakly damped Brownian motion in 1D periodic potentials [Risken, 1989]
and might be witness for the applicability of the reduced description, Eq. (6.11).

In Fig. 6.4 (i), the particles mobility for the reduced dynamics (dashed lines) obtained
by simulating Eq. (6.11) is additionally presented. We observe that within the FJ
approach µ/µ0 is a monotonous function of f which starts from an asymptotic value,
which is less than µ0, for f < 0 and tends to the bulk value for f →∞. Comparing the
results for reduced dynamics with numerical results for the full problem, one notices
that the reduced description overestimates the mobility. However, the accuracy of the
approximation is sufficiently good for γ ≥ 5 and small forces f < fmax. Additionally, we
recognize that there exists a characteristic force strength fc beyond which the reduced
description fails. The force fc gets smaller with decreasing friction and thus the dis-
crepancy is large even for γ = 1 in the diffusion dominated regime, f � 1. Introducing
the position-dependent friction γ(x), as proposed in [Berezhkovskii and Szabo, 2011],
gives corrections of the order of (∆Ω)2 and does not sufficiently improve the agreement
(not explicitly shown).

Our derivation of the effective dynamics, Eq. (6.9), implies (i) homogeneous distribu-
tion of y (fast relaxation approximation), (ii) vanishing correlation between vx and vy,
and (iii) most importantly equipartition of the kinetic energies (Maxwell distribution)
corresponding to vx and vy holds. Figure 6.5 (a) presents the velocity PDFs P (vx)
and P (vy) centered at their means 〈 vx 〉 and 〈 vy 〉 for different γ values and fixed force
strength, f = 100. The distribution P (vx), Fig. 6.5 (a,i), undergoes a transition from
a normal (Maxwell) one with unit variance for γ = 100 over an asymmetric form for
γ = 10 to an even broader symmetric function for γ = 1. While the largest absolute
value of vx is much smaller than the asymptotic one for γ = 1, viz. |vx| � f/γ,
the maximum of P (vx) coincides with asymptotic value vx ' f/γ for γ = 10. The

to repeat it here.

113



6. Impact of inertia on biased Brownian transport in confined geometries

10
0

10
−2

10
−4

P
(v

x
)

−50 −25 0 25 50

10
0

10
−2

10
−4

vx − 〈vx〉 , vy − 〈vy〉

P
(v

y
)

 

 

γ = 100

γ = 101

γ = 102

(i) 

(ii)

(a) (b)

Figure 6.5.: Left panel: Normalized stationary probability distribution functions
of vx and vy as functions of the friction coefficient γ. The mean values are
〈 vx 〉 ≈ 3.46, 6.78, 0.99 (for γ = 100, 101, 102) and 〈 vy 〉 ' 0 (for all γ values).
The black dashed lines indicate the normalized Maxwell velocity distribution
exp

(
−v2

i /2
)
/
√

2π with i = x, y. Right panel: Contour plots of the stationary joint
PDFs P (x, vx) (top) and P (x, vy) (bottom) for γ = 10. The dashed lines represent
the asymptotic values for the particle velocity, viz., f/γ for vx and zero for vy. For
all panels the remaining parameters values are ∆Ω = 0.1, ∆Ω = 0.01, and f = 100.

PDF P (vy), Fig. 6.5 (a,ii), also broadens with decreasing viscous friction coefficient
but stays symmetric. The corresponding mean values are always zero, 〈 vy 〉 = 0. The
deviation of P (vy) from equilibrium distribution is indicated by its second central mo-
ment σ2 = 〈v2

y〉− 〈 vy 〉
2, see Fig. 6.4 (iii), which is unity for Maxwellian distribution in

our scaling. For subcritical force magnitudes f < fc(γ), the velocity distribution P (vy)
are always Maxwellian and thus σ2 ≈ 1. If f exceeds a critical magnitude fc, we find
σ2 ∝ f ςv with ςv & 1. Consequently, the PDF P (vy) broadens with decreasing viscous
friction coefficient for f > fc. In other words, the decrease of the particle mobility goes
hand in hand with violation of equipartition. The 2nd central moment of vx shows the
same dependence on the external force magnitude and the friction coefficient as the one
of vy (not explicitly shown). Furthermore, we find that the critical value fc is bounded
by γ ≤ fc ≤ 10 γ, see Fig. 6.6.

Let us discuss the nature of the equipartition violation. While changes in γ hardly
influence the properties of the free motion (up to timescales), its value is crucial when
the motion is confined, see Fig. 6.1. The latter changes from erratic γ � 1 to almost
regular – like in the deterministic case [Cecconi et al., 2003; Harayama et al., 2002] – for
γ → 0. In Fig. 6.5 (b), we depict the stationary joint PDFs P (x, vx) and P (x, vy) ob-
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line) and fc = 10 γ (dashed dot-
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tained by BD simulation of 105 individual trajectories. We notice that the acceleration
in x-direction is transferred to the transversal velocity component vy due to reflections
at the boundaries. The latter were treated as elastic. As a consequence, the probabil-
ity that vx attains negative values, i.e., the particles move in opposite direction to the
force, increases at the bottleneck. At the same time, the variance 〈v2

x〉−〈 vx 〉
2 becomes

a function of the position x and thus the equipartition condition
〈
ẋ2|x

〉
= const gets

violated. Furthermore, one observes that the transversal component vy is strongly en-
hanced due to the transfer of acceleration at the channel’s constricting part. Hence,
vy increases with f leading to violation of equipartition,

〈
ẏ2|x

〉
6= const, and to the

monotonous growth of σ2 with f , cf. Fig. 6.3(iii). Integrating P (x, vx) and P (x, vy)
with respect to x results in the blue curves presented in Fig. 6.5 (a).
The behavior in the x-direction is more complex. Particles reflected at an “optimal”

angle can fly over several cells to the left or to the right. Since this “optimal” reflec-
tions happen randomly there are always particles moving in opposite direction to the
external force at any time. These particles need a given time to turn their direction
of motion, tturn = ln (1 + γ|vx|/f) /γ (without subsequent collision at the boundaries),
which causes the decay of µ/µ0 ∝ f−εf and the growth of the effective diffusivity
Deff/D0 ∝ f ςD . In particular, we measured the distance d between two subsequent
collisions and it turns out that the probability for long stretches d > 1 increases with
external force and with decreasing γ (not explicitly shown). Likewise, the smaller the
friction the higher is the probability to escape to the left P (x→ x−1), see Fig. 6.7 (a).
Nevertheless, long excursions in force direction are more probable than in opposite di-
rection, P (x → x + 1) > P (x → x − 1), due to the broken symmetry in x-direction.
Additionally, we depict the first passage time PDF P (t(x0 → x0 + 1)) for f = 100 in
Fig. 6.7 (b). P (t(x0 → x0 + 1)) undergoes a transition from a Gaussian distribution
with mean 〈 t(x0 → x0 + 1) 〉 = f/γ for γ = 100 to a broader bimodal one for γ = 10,
whose maxima are located at t(x0 → x0 + 1) = f/γ and t(x0 → x0 + 1) ' 3 f/γ (for
the given channel parameters). With further reduction of γ, the first passage time
PDF broadens and its most probable value shifts towards larger times. Likewise, the
mean first passage time grows with ongoing reduction of γ and thus the average particle
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Figure 6.7.: Probability to leave a unit cell to the left or right and first passage time
PDF for ∆Ω = 0.1 and ∆ω = 0.01. Left: Impact of γ and force magnitude f on
probability to leave one unit cell to the left P (x→ x−1) or to the right P (x→ x+1).
Right: Normalized PDF of first passage time t(x0 → x0 + 1) (in units of free value
f/γ) to reach the final point x0 + 1 for the first time when it starts at an arbitrary
point x0. The force magnitude is set to f = 100.

velocity 〈 vx 〉 = 1/ 〈 t(x0 → x0 + 1) 〉 or, equivalently, the particle mobility lessens with
the value of γ. The latter is in compliance with the results depicted in Fig. 6.4 (a).

Nevertheless that equipartition of the kinetic energy corresponding to vy holds for
f < fc, we found a large discrepancy between the particle mobility of the full problem
and the one of the reduced dynamics for γ . 1, cf. Fig. 6.4. The derivation of the
effective dynamics, Eq. (6.9), additionally implies that both velocity components are
uncorrelated at any time τ , i.e., 〈 vx(τ)vy(0) 〉 = 0. According to the solution of Eq. (6.1)
in the absence of spatial constraints (the free case),

v(t) = v(0) e−γ t + f
γ

(
1− e−γ t

)
+

t∫
0

dt′ e−γ (t−t′)ξ(t′), (6.28)

where v(0) is the particle velocity at time t = 0, cf. Eq. (2.4), the velocity correlation
function (VCF) Cvx,vy(τ) = 〈 vx(τ)vy(0) 〉 reads

〈 vi(t)vj(s) 〉 =
[(
〈 vi(0) 〉 − fi

γ

)
e−γ t + fi

γ

] [(
〈 vj(0) 〉 − fj

γ

)
e−γ s + fj

γ

]
+ e−γ|t−s| − e−γ(t+s), for i, j = x or y,

(6.29)

for Gaussian white noise ξ(t′), see Eq. (2.3). For large times t and s, i.e., γt � 1 and
γs� 1, the VCF is independent of the initial velocity v(0) and becomes a function of
the time difference τ = t − s only. Normalizing Eq. (6.29) by the VCF at τ = 0, we

116



6.4. Applicability of the Fick-Jacobs approach

τ

C
v
x
,v

y
(τ

)
/
C

v
x
,v

y
(0

)

 

 

0 0.5 1 1.5 2
−1

0

1 f = 100

f = 101

f = 102

Figure 6.8: Impact of force
strength f on the normal-
ized velocity correlation func-
tion Cvx,vy(τ) = 〈 vx(τ)vy(0) 〉
associated with the confined
Brownian motion in a 2D
channel. The remaining
parameter values are γ = 1,
∆Ω = 0.1, and ∆ω = 0.01.

obtain

Cvi,vj (τ)
Cvi,vj (0) = 〈 vi(τ)vj(0) 〉

〈 vi(0)vj(0) 〉 = fi fj + γ2δi,je
−γ|τ |

fi fj + γ2 δi,j
, for i = x, y. (6.30)

It turns out that the normalized velocity correlation function between the velocity com-
ponents decays exponentially with the characteristic correlation time tcorr = 1/γ. The
velocity auto-correlation function (VACF) of any component remains finite and different
from zero for all time differences τ if an external force is applied in the corresponding
direction. For large times, each component converges to its asymptotic value, fi/γ,
and thus the normalized VCF equals limτ→∞Cvi,vj (τ)/Cvi,vj (0) = fi fj/(fi fj +γ2 δi,j)
for i, j = x, y. For the considered situation where the force acts only along the lon-
gitudinal channel direction, fy = 0, the VCF vanishes identically for all times, i.e.,
Cvx,vy(τ)/Cvx,vy(0) = 0.

Figure 6.8 shows the normalized VCF as a function of the external force magnitude f
for γ = 1. In contrast to free case, where Cvx,vy(τ) = 0, we observe a non-vanishing
correlation between the longitudinal and the transverse velocity component. The VCF
is determined by subsequent positively correlated and anti-correlated intervals which
are caused by the transfer of the acceleration from the longitudinal vx to the transver-
sal velocity component vy during collisions with boundaries. Since the time between
two successive collisions with the boundary shortens with f , the durations of positively
correlated or anti-correlated intervals become less with growing force magnitude. Ad-
ditionally, we notice that both the envelope’s amplitude and its characteristic decay
time decrease with increasing force strength. Consequently, the VCF is different from
zero for short times and the velocity components become uncorrelated only for τ � 1.
Additionally, we depict the dependence of the normalized VACF of the longitudinal

vx, Fig. 6.9 (left), and the transverse velocity component vy, Fig. 6.9 (right), on the
force magnitude f . While Cvx,vx(τ) shows anti-correlation in a certain time interval for
f ≤ 1, with growing force strength this interval shortens and finally vanishes identically
for f � 1. Noteworthy, the longitudinal velocity component decorrelates for large time
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Figure 6.9.: Influence of force magnitude f on normalized velocity auto-correction
functions Cvx,vx(τ) (left) and Cvy ,vy(τ) (right) associated with the confined Brownian
motion in a 2D channel. Superimposed is the free VACF, Eq. (6.30), for f = 1 by
the solid line. The remaining parameter values are γ = 1, ∆Ω = 0.1, and ∆ω = 0.01.

differences τ in contrast to free motion. On the other hand, Cvy ,vy(τ) is governed
by subsequent positively correlated and anti-correlated intervals regardless of f . Inte-
restingly, we observe that the envelopes of the VACF decay much faster compared to
the free motion (solid lines), indicating that the persistent of the particle motion is
disturbed by the collisions with the channel walls. Despite that the duration of anti-
correlated particle motion depends on f , the characteristic decay time, Cvy ,vy(τ †) ' 0,
seems to be independent of the force magnitude, viz., τ † ' 1.

We conclude that the discrepancy between the reduced dynamics and the full one is
caused by the non-vanishing correlation of the particle’s velocity components Cvx,vy(τ).
Since the correlation between vx and vy becomes amplified with decreasing external
force magnitude, the decay time of the VCF scale inversely proportional to f . In other
words, the time scale conditions tcorr/τy and tcorr/τ

y
drift are solely satisfied for strong

forces or wide channels. This might explain our previous observation that the value of
γ2 ∆ω/f , where the particle mobility attains its asymptotic value, decreases with the
force strength, cf. Fig. 6.3.

6.5. When dissipation helps: Enhancement of particle
transport through inelastic collision

In the sections above, we demonstrated that the full dynamics, Eq. (6.1), is suffi-
ciently well reproduced by the reduced description involving the potential of mean force,
Eq. (6.11), for moderate up to strong viscous friction coefficients γ ≥ 5 and weak forces
f < fc. If f exceeds fc, the reduced dynamics fails caused by violation of the equipar-
tition conditions, 〈ẋ2|x〉 = const and 〈ẏ2|x〉 = 1. Nevertheless that 〈ẏ2|x〉 = 1 holds for
f < fc, we found a large discrepancy between the particle mobility of the full problem
and the one of the reduced dynamics for weak damping, γ . 1. We concluded that this
discrepancy is caused by the non-vanishing correlation between the particle’s velocity
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components due to the transfer of the acceleration in x-direction to the transversal
velocity component at the moment of collision with the boundaries. Before, reflections
at the boundaries were treated as elastic. But, experiments clearly demonstrate that
surface roughness of both the walls and the particles have a significant impact on the
particle dynamics, because contact occur through microscopic surface imperfections
[Bennett and Mattsson, 1989; Joseph et al., 2001]. Sommerfeld, 1992, showed that the
rebound velocity depends on the impact Stokes number St ∝ ‖v‖/γ and weakly on
the elastic properties of the material. Below a Stokes number of approximately 10, no
rebound of the particle occurred. For large impact Stokes number, the coefficient of
restitution appears to asymptote to the values for elastic collision. In the following,
we discuss the impact of inelastic collision and random elastic scattering on the key
particle transport quantities. In particular, we ask if additional sources of dissipation
or randomness help to enhance the accuracy of the reduced dynamics.

Caused by the impenetrability of the channel walls, the particle’s velocity normal to
the wall vanishes identically at the moment of collision. In principle, these collisions
can be treated either as elastic or inelastic. The amount of energy dissipation due to
the inelasticity of the contacts [Brilliantov and Pöschel, 2001] is often characterized by
the coefficient of restitution CR, defined by the ratio of the rebound to impact velocity.
Basically, the particle velocity after collision v′ is given by

v′ = v− (1 + CR) (v · n) n, (6.31)

where n is the outward-pointing normal vector at the collision point. According to
Eq. (6.31), the tangential component of v does not change, v′t = vt, while the rebound
normal component reads v′n = −CR vn. CR = 1 corresponds to the limit of ideal elastic
collision (specular reflection): here the angle of incidence equals the angle of reflection
with respect to the surface normal vector n. The opposite limit of perfectly inelastic
collision is represented by CR = 0. There, the normal velocity component after collision
vanishes, v′n = 0, and only the tangential component remains, v = vt et. The associated
change of kinetic energy reads

∆Ekin = E′kin − Ekin = v2
n

2
(
C2
R − 1

)
. (6.32)

For CR < 1, ∆Ekin is negative and thus the systems losses energy caused by its inter-
action with the channel boundaries. In detail, we assume that the kinetic energy is lost
due to e.g. surface friction, emission of heat, or transferred into elastic energy of the
boundary, without changing the shape of both collision partners.

Ofter, the impact of microscopic surface imperfections (rough surfaces) is modeled by
uniformly distributed reflection angles taken randomly from φ ∈ [0, π] [Bennett and
Mattsson, 1989]. Then, the rebound velocity v′ is determined by

v′ = ‖v‖
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
et. (6.33)
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Figure 6.10: Illustration of im-
pact of the coefficient of resti-
tution CR on the rebound
particle velocity vector. The
case of scattering with ran-
dom uniformly distributed re-
flection angle φ is represented
by the green arrow. n is the
normal surface vector.

v

n

CR=1

CR=0.5

CR=0

Áv'

Obviously, kinetic energy and momentum are conserved during the collision. Never-
theless, the scattering procedure will influence the correlation between the velocity
components. All discussed reflection methods are illustrated in Fig. 6.10.

The influence of the value of CR on the transport quantities like the particle mobi-
lity µ/µ0 and the EDC Deff/D

0 is depicted in Fig. 6.11 (a). The numerical results
(markers) were obtained by BD simulations in which collisions with the flat boundary,
y = ω−(x) = 0, were always treated as ideal elastic regardless of the considered reflec-
tion procedure at the top boundary ω+(x). Thus, our numerical results correspond to
a reflection symmetric geometry with ω−(x) = −ω+(x).
At first glance, we observe that the particle mobility grows with decreasing value

of CR or, equivalently, with increasing loss of kinetic energy due to collision. For
CR = 0.5, we find that the mobility is almost one magnitude larger compared to the
limit of elastic reflection, CR = 1, for any value of f . A further reduction of CR results
only in a weak enhancement of µ/µ0. In particular, µ/µ0 is close to unity for CR = 0
and f ≤ fmax. Basically, one notices that the dependence of the particle mobility on f is
independent of the considered reflection method: µ/µ0 starts from an asymptotic value
which coincides with Deff/D

0 for f � 1, grows with f till it reaches its maximum at
fmax, and finally decays as a power of f . Interestingly, the value of fmax is independent
of the considered method, too. In contrast to inelastic particle-wall collisions, elastic
scattering leads to smaller mobility values compared to the results for CR = 1. Since
the reflection angles are randomly chosen, the particles may change their direction of
motion independent of the force orientation. Consequently, the probability to move in
opposite direction to f grows and thus µ/µ0 goes down.
Next, we discuss the impact of CR on the EDC Deff/D

0. One recognizes that the
coefficient of restitution strongly influences the behavior of Deff/D

0. While the EDC is
a monotonously growing function for elastic reflection, the situation changes for CR < 1.
For CR = 0.5, we find that Deff/D

0 attains a minimum at moderate force strengths
before it diverges like Deff/D

0 ∝ f ςD for f → ∞. In the limit of perfectly inelastic
collision, CR = 0, the effective diffusion coefficient decays monotonically with f . The
chaotic mechanism of ballistic collisions (γ = 1 and f � 1), resulting in the divergence
of Deff/D

0 for CR = 1, is suppressed due to loss of kinetic energy at the top boundary.
This leads to rectification of the particles’ motion, cf. Fig. 6.12 (left). In the case of
elastic scattering, the EDC grows monotonically with f like for CR = 1, however, the
attained values are smaller than the one for elastic reflection.

120



6.5. Impact of inelastic particle-wall collision

10
−1

10
0

µ
/
µ

0

10
−1

10
0

10
1

D
e
ff
/
D

0

10
−1

10
0

10
1

10
2

10
3

10
−2

10
0

10
2

f

σ
2

 

 

CR = 0
CR = 0.5
CR = 1
CR = 1, scattering

(iii)

(ii)

(i)

(a)

C
v
x
,v

x
(
τ
)

0

0.5

1

C
v
y
,v

y
(
τ
)

 

 

0

0.5

1

τ

C
v
x
,v

y
(
τ
)

0 0.5 1 1.5

−10

−5

0

5

CR = 0
CR = 0.5
CR = 1
CR = 1, scattering

(i)

(ii)

(iii)

(b)

Figure 6.11.: Results of BD simulation of full dynamics, Eq. (6.1), in a sinusoidally
modulated channel geometry with ∆Ω = 0.1, ∆ω = 0.01, and γ = 1. Left figure: In
panel (i)-(iii), the force dependence of different dynamical characteristics of the sys-
tem are depicted for CR = 0, 0.5, and 1 and for elastic scattering. (i) Particle mobility
µ/µ0 (symbols) and numerical results for reduced dynamics, Eq. (6.11) (dashed line).
(ii) The effective diffusion coefficient, Deff/D

0, versus f . (iii) The 2nd central mo-
ment σ2 = 〈v2

y〉−〈 vy 〉
2 of vy. Right figure: Normalized VACF Cvx,vx(τ)/Cvx,vx(0) (i),

Cvy ,vy(τ)/Cvy ,vy(0) (ii), and normalized VCF Cvx,vy(τ)/Cvx,vy(0) (iii) for CR = 0, 0.5,
and 1 and for elastic scattering. Superimposed are the free VACFs, Eq. (6.30), by the
solid line. The force strength is set to f = 1. In all panels, the horizontal dash-dotted
lines indicate unity.

121
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The two mean ingredients for the validity of the reduced description, Eq. (6.11), are (i)
equipartition of the kinetic energy of vy and (ii) vanishing correlation between vx and
vy. In panel (iii) of Fig. 6.11 (a), we show the influence of f on 2nd central moment
of vy, σ2 = 〈v2

y〉 − 〈 vy 〉
2, which indicates if equipartition holds. In addition, the

impact of the coefficient of restitution on the normalized VACFs Cvx,vx(τ)/Cvx,vx(0),
Cvy ,vy(τ)/Cvy ,vy(0), and the VCF Cvx,vy(τ)/Cvx,vy(0) are presented in Fig. 6.11 (b).
Comparing both elastic collision methods, we observe that σ2 ' 1 for f < fc and di-

verges like σ2 →∞ if f exceeds fc. Thereby, the critical force strength fc, beyond which
equipartition is violated, becomes larger for elastic scattering. Concerning the corre-
lation between the particle’s velocity components, one notices that elastic scattering
increases weakly the characteristic decay time of the VACFs Cvx,vx(τ) and Cvy ,vy(τ).
Nevertheless, the components still decorrelate faster compared to free motion (solid
lines). Focusing on the VCF Cvx,vy(τ), we find that the velocity components remain
correlated for any time difference τ and, in particular, elastic scattering enhances the
correlation.
Due to the loss of kinetic energy during the collision of the particles with the channel

boundary, Eq. (6.32), the fluctuation-dissipation relation and, consequently, equiparti-
tion of the kinetic energy of vy are violated for CR 6= 1. In particular, we find that the
width of the velocity PDF P (vy) shrinks with decreasing coefficient of restitution CR.
Therefore, σ2 attains values less than unity for weak forces, f � 1, see panel (iii) in
Fig. 6.11 (a). With growing force magnitude, the width of P (vy), respectively, σ2 grow
and finally tend to infinity for f → ∞. Remarkable, all graphs σ2(f) collapse to one
unique curve on expressing the latter in units of its asymptotic value for f → 0, viz.,
σ2(f)/σ2(0) (not shown). Therefore, we conclude that the underlying mechanism lead-
ing to violation of equipartition for the transversal velocity vy is solely determined by
the length scales (channel parameters) and the viscous friction coefficient γ. Studying
the impact of CR on the VACFs, we recognize that the decay times grow with decreasing
value of CR, but nevertheless, the times are much shorter compared to the unconfined
situation (solid lines). Additionally, one notices that VCF Cvx,vy(τ) differs from zero
for all times τ regardless the value of CR. Particularly, the correlation between vx and
vy becomes amplified by reducing the coefficient of restitution CR.

We conclude that additional sources of dissipation or randomness do not enhance the
accuracy of the reduced dynamics, Eq. (6.11). Quite the contrary, due to the loss
of kinetic energy as a consequence of inelastic particle-wall collision, CR 6= 1, the
equipartition presumption is not satisfied for any value of f . In the case of elastic
scattering, the particles’ direction of motion changes randomly during collisions with the
top wall, resulting in a higher probability to move in opposite direction to the external
force f . Consequently, the particle mobility is reduced and thus the discrepancy grows.
However, we find that the transport quality, which is measured by the Péclet number Pe
(in units of its free value Pe/f = (µ/µ0)/(Deff/D

0)), grows with f for perfectly inelastic
collision, CR = 0. The attained values are larger than unity indicating that particle
transport is directed. In compliance with Fig. 6.12 (left), perfectly inelastic collisions
rectify the nearly ballistic (chaotic) particle motion appearing for weak damping and
strong forces. For CR 6= 0 as well as elastic scattering, the particle transport becomes
more irregular with increasing force strength. Hence, the particle’s response to external
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Figure 6.12.: Left: Exemplary particle trajectories for CR = 0 (black), CR = 1 (red),
and elastic scattering (green); γ = 1 and f = 1. Right: Simulation results for Peclet
number Pe versus external force magnitude f for CR = 0, 0.5, and 1 and for elastic
scattering. The remaining parameters are ∆Ω = 0.1, ∆Ω = 0.01, and γ = 1.

stimuli (µ/µ0) decays, the EDC diverges like Deff/D
0 ∝ f ςD , and the Péclet number

Pe tends to zero with growing value of f , see Fig. 6.12 (right).

6.6. Summary

Let us summarize our findings. In this chapter, we investigated the impact of the
viscous friction coefficient γ on biased Brownian motion of point-like particles in two-
dimensional channels with periodically varying width. If the particle motion is spatially
correlated on a length larger than bottleneck width, its dynamics becomes extremely
sensitive to the finite viscosity of the surrounding solvent. In particular, we found
that the particle mobility µ/µ0 grows for small γ as a power of γ. Noteworthy, on
expressing the viscous friction coefficient in units of the

√
f/∆ω, all mobility curves

tends to collapse on one unique curve regardless of the force strength. The latter
demonstrate that the particle motion behaves as overdamped even for characteristic
correlation times larger than the drift time, γ2 ∆ω/f < 1. Counterintuitively, this ratio
becomes smaller with decreasing channel width and for stronger forces. Furthermore,
the particle’s response to the external force diminishes with its strength for finite value
of γ. Solely, in the high friction limit, γ � 1, the particle mobility converges to the
bulk value µ0 for f → ∞. In addition, the effective diffusion coefficient diverges as a
power of f caused by ballistic collisions with the wall appearing for weak damping and
strong forces.
Assuming that the time scales in transverse direction separate from the longitudinal

one, adiabatic elimination of the transverse degrees of freedom results in a reduced
description (Fick-Jacobs approach) for the x-coordinate involving the potential of mean
force A(x). This description is intimately connected with (i) equipartition of the ki-
netic energy of vy and (ii) vanishing correlation between vx and vy. Comparing the
results for the reduced dynamics with numerical results for the full problem, namely,
biased particle transport through a 2D sinusoidally modulated channel, we showed that
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the Fick-Jacobs description overestimates the mobility, although the accuracy of the
approximation is sufficiently good for γ ≥ 5 and weak forces f < fc. There exists
a characteristic force strength fc beyond which the Fick-Jacobs approach fails. The
force fc gets smaller with decreasing friction. The effective description fails due to the
violation of equipartition for the fast coordinate y and velocity vy. The latter is caused
by the transfer of the externally applied acceleration in x-direction to the transversal
velocity component vy during collisions with the boundaries, which were treated as
elastic. Nevertheless that the equipartition condition is satisfied for f < fc, we found
a large discrepancy between the particle mobility of the full problem and the one of
the reduced dynamics for γ . 1. We demonstrated that this deviation is caused by the
non-vanishing correlation between the particle’s velocity components.
Finally, we studied the influence of inelastic particle-wall collisions as well as elastic

scattering on entropic particle transport. We showed that additional sources of dissi-
pation or randomness do not enhance the accuracy of the reduced description. Quite
the contrary, due to the loss of kinetic energy as a consequence of inelastic particle-wall
collision, the equipartition presumption is not satisfied for any value of f . In the case of
elastic scattering, the particles’ direction of motion changes randomly during collisions
with the top wall, resulting in a higher probability to move in opposite direction to the
external force f . Consequently, the particle mobility is reduced and thus the difference
to the reduced dynamics grows. Notably, it turned out that perfectly inelastic collisions
rectify the ballistic particle motion, resulting in a regular and directed transport for
weak damping and strong forces.
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7. Concluding remarks

In this thesis, we have addressed the problem of biased Brownian motion in spatially
confined geometries which are ubiquitous in nature. The main attention has been
directed towards the analysis of particle transport in confinements where entropic bar-
riers play an important role. In the introduction, we have formulated two questions
concerning the well-established Fick-Jacobs approach:

First, we asked whether there exists a methodology reproducing the Fick-Jacobs
equation for weakly modulated geometries and, more importantly, leading to an exten-
sion towards extremely corrugated boundaries.

In chapter 3, we have presented a systematic treatment for biased particle transport by
performing asymptotic perturbation analysis of the joint probability density function
in terms of an expansion parameter specifying the corrugation of the channel walls.
Exact solutions for the associated stationary Smoluchowski equation have been cal-
culated for point-like Brownian particles moving in three-dimensional, axis-symmetric
channel with periodically varying rectangular or circular cross-sections. In particular,
we have demonstrated that the leading order of our developed series expansion is equi-
valent to the well-established Fick-Jacobs solution. Higher-order corrections to the joint
probability density function become significant for extremely corrugated channel walls.
Moreover, we have derived that the most important transport quantities like mean
particle current, particle mobility, and the effective diffusion coefficient are determined
by the product of their zeroth order result and the expectation value of a function
– including the boundary corrugation – in the diffusion dominated regime. Remark-
ably, our analytic result can be calculated exactly for most smooth and discontinuous
boundaries in contrast to the integrals appearing in the commonly used Lifson-Jackson
formula. Moreover, it provides at least equally good or even better agreements with
the numerical results.

Until now in the literature, the Fick-Jacobs approach has mainly been applied to
conservative forces (scalar potentials) governing the overdamped dynamics of point-
like Brownian particles. This led to our second question: “Under which conditions is a
generalization of the Fick-Jacobs approach to more sophisticated situations including
finite particle size, inertial effects, and more general forces feasible?”

For this purpose, based on our derived methodology we have generalized the Fick-Jacobs
formalism to the most general external force field which can be decomposed into a curl-
free (scalar potential) and a divergence-free component (vector potential) in chapter
4. Focusing on typical, weakly corrugated channel geometries, we have put forward an
effective one-dimensional description involving the generalized potential of mean force.
The latter comprises the commonly known “entropic” term in the presence of a constant
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bias and a qualitatively novel contribution associated with the divergence-free force. To
elucidate the intriguing features caused by divergence-free forces, we have applied our
approach to the experimentally relevant situation where small Brownian objects are
subject to both an external constant bias and to a pressure-driven flow. The analysis
of particle transport, caused by the counteraction of the flow and the bias, has led to
the intriguing finding that the mean particle current can vanish identically despite the
presence of locally strong forces. This effect is accompanied by a significant suppression
of diffusion, thus being robust against thermal fluctuations, and leads to the selective
effect of strong particle accumulation – hydrodynamically enforced entropic trapping.
The latter can be utilized to efficiently separate Brownian particles of the same size
and it is inherently connected to the uneven shape of the channel. Noteworthy, the
generalized Fick-Jacobs approach provides a powerful tool to calculate the transport
quantities even for such complicated problems and it is in excellent agreement with
the numerical results. Although the presented methodology admits the situation of a
driven solvent, we expect that similar effects can be found in a resting solvent with
non-vanishing divergence-free forces.
Beside the opportunity to separate Brownian particles of the same size, a main

challenge in basic research is also to obtain pure single-size suspensions by filtering
wanted from unwanted material. The particle size impacts numerous physical properties
like the mass, the viscous friction coefficient, the accessible space or, equivalently, the
entropic barriers within the channel. Additionally, it determines the strength of various
forces exerted on the particles, e.g., external stimuli, hydrodynamic particle-particle
and particle-wall interactions. In chapter 5, we have verified the simplifications made
in our preceding theoretical considerations for their applicability in experiments. In
particular, limits for the ratio of particle size to pore size and the mean distance between
particles have been identified. Both demonstrate that a dilute particle concentration
is essential. Additionally, we have validated that the transport quantities of extended,
spherical objects are well described by the Fick-Jacobs approach within these limits.
Interestingly, due to the nonlinear dependence of the entropic barriers’ height on the
object size, we have found a resonance-like behavior of the particles’ terminal speeds
on their diameter for extremely corrugated channels and weak forces. Such a sensitive
dependence offers the possibility to separate Brownian objects of different size.
In chapter 6, we have studied the impact of the viscous friction coefficient on the

particle dynamics to gain deeper insight into the key physical assumption behind the
Fick-Jacobs approach. The existence of a hierarchy of relaxation times, governed by
the geometry of the channel and by the viscous friction, guarantees the separation of
time scales and the equipartition of energy. Both are necessary conditions to apply
the Fick-Jacobs approach. Supposing further a vanishing correlation between the par-
ticle’s velocity components, we have demonstrated that the expression for the potential
of mean force does not depend on the friction coefficient. Comparisons of numerical
results for biased particle transport with analytic estimates have shown that the redu-
ced description is accurate for moderate up to strong damping and for weak forces.
In particular, there exists an upper bound for the force magnitude beyond which the
Fick-Jacobs approach fails even in narrow, weakly modulated channels. This force
strength grows with increasing friction and tends to infinity for infinite strong damping
(Smoluchowski approximation). The origin of the failure of the Fick-Jacobs description
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is the violation of equipartition for the transversal coordinate and velocity. The latter is
caused by the transfer of the externally applied acceleration into the transversal direc-
tion during particles’ collisions with the boundaries. In particular, for weak damping
we have found that our reduced description fails even for weak forces, nevertheless that
equipartition holds, due to non-vanishing correlation between the particle’s velocity
components. Finally, we have studied the impact of the boundary conditions on the
particle transport. We have shown that contrary to the case of ideal elastic collision,
perfectly inelastic particle-wall collisions rectify the almost ballistic particle motion,
resulting in a regular and directed transport for weak damping and strong forces.

In summary, this work shows how the well-established Fick-Jacobs approach can be
extended to strongly corrugated channels and sophisticated external force fields, and,
as well, how physical properties like particle size and viscous friction coefficient can
be incorporated. Besides a number of analytic results derived for the particle mobility
and the effective diffusion coefficient, we have gained a deeper insight into the key
physical assumption behind this reduced energetic description, namely, separation of
time scales, equipartition of energy, and vanishing velocity correlation. It would be
gratifying if this work inspires experimentalists and theoreticians for further studies.
For instance, an extension to other types of stochastic forces, e.g., colored noise [Radtke
and Schimansky-Geier, 2012] or non-Gaussian noise [Wang et al., 2012], or to “active”
matter [Romanczuk and Schimansky-Geier, 2011; Romanczuk et al., 2012], like motile
cells [Church et al., 2009; Di Carlo et al., 2007] or artificial self-propelled particles
[Paxton et al., 2004], would be worthwhile. Likewise, the incorporation of particle-
particle interactions [Gallardo et al., 2012; Zeng et al., 2011] and irregularities in the
channel structure [Neusius et al., 2009; Rols et al., 2008], as they are present in porous
media, are very challenging tasks.
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A. Numerical methods

In this appendix, we present the numerical integration algorithms used in this thesis
in detail. Basically two different methods were used to solve stochastic different equa-
tions [Kloeden and Platen, 1999], viz., Brownian dynamics (BD) simulation and finite
element method (FEM).

Overdamped Brownian dynamics simulation

As a starting point, we consider the dimensionless Langevin equation

q̇(t) = f(q, t) + ξ(t), (A.1)

where f(q, t) comprises all deterministic forces acting on the particle at position q =
(x, y, z)T and time t except for the hard-wall interactions. ξ(t) is Gaussian white noise
whose components have zero mean 〈 ξi(t) 〉 with correllation 〈 ξi(t)ξj(s) 〉 = 2 δi,j δ (t− s),
i, j are x, y, or z, representing the thermal fluctuating forces. To numerically solve
Eq. (A.1), we may discretize it according to the Euler algorithm [Kloeden and Platen,
1999], yielding

qt+dt = qt + f(qt, t) dt+
√

2 dtGt, (A.2)

as an approximation for the displacement of the particle from qt to qt+dt during the
time interval dt. In Eq. (A.2), each component of Gt is a Gaussian random number of
zero mean and unit variance. In the simulations these Gaussian random numbers are
calculated by the Polar-method [Kloeden and Platen, 1999] using uniformly distributed
random numbers. These numbers are generated by the Mersenne Twister algorithm
MT19937-64 [Matsumoto and Nishimura, 1998].
Each discretization step in the Euler algorithm Eq. (A.2) represents a Monte-Carlo

step weighted by the transition PDF

p(qt+dt, t+ dt; qt, t) = 1
√

4π dt3
exp

(
−(qt+dt − qt − f dt)2

4 dt

)
, (A.3)

for finding the particle at position qt+dt after a time interval dt when it initially was
located at position qt, provided the deterministic force f(qt, t) is constant in space and
time. This algorithm works well for small enough time steps so that f does not vary
significantly during dt and over the typical step size.
However, the particle wall-interaction is not included yet. In case a collision with

a hard wall occurs and an unphysical configuration qt+dt is produced by Eq. (A.2),
i.e., the particle is placed beyond the channel wall, the component of the particle
displacement qt+dt − qt parallel to the wall remains unchanged while the component
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Figure A.1.: Illustration of the reflection approach used in our Brownian dynamics
simulations. The solid line represents the transition PDF without walls Eq. (A.5).
In addition, the first terms of the infinite series of Gaussian distribution centered at
An and Bn are illustrated. Calculating the complete sum results in the red curve
which represents the correct transition PDF p(q̃, dt; q).

perpendicular to the wall has to be corrected. The exact final position q∗t+dt is obtained
by the forbidden position qt+dt as

q∗t+dt = qt + [(qt+dt − qt) · t] t + (q − q̃) n, (A.4)

where t is the unit tangential vector and n is the unit normal vector on the hard surface
that points in opposite direction to the location of the particle center qt [Behringer and
Eichhorn, 2011]. Further, q denotes the distance of the particle from the wall at time
t and q̃ represents a random displacement. The one-dimensional transition probability
p(q̃, dt; q) for a particle starting at distance q at time t = 0 and reaching q̃ at dt is deter-
mined by the Smoluchowski equation ∂dt p+ ∂q̃(f · n p− ∂q̃ p) = δ(q̃ − q). Furthermore,
p(q̃, dt; q) equals zero if q̃ ≤ 0 caused by the impenetrability of the hard wall and the
transition PDF has to obey the no-flux boundary condition (f · n p− ∂q̃ p)|q̃=0 = 0. A
solution for the transition PDF can be found analytically [von Smoluchowski, 1916],
however, it is quite difficult to implement the latter numerically.
Otherwise, p(q̃, dt; q) can be evaluated numerically by reflecting unphysical displace-

ments at the wall, i.e., q̃ → −q̃. The underlying idea for the reflection approach is
illustrated in Fig. A.1. If q̃ > 0, the transition PDF is given by Gaussian distribution
with mean q + f · n dt and variance 2 dt

p(q̃, dt; q) = 1√
4π dt

exp
(
−(q̃ − q − f · n dt)2

4 dt

)
. (A.5)
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Figure A.2.: Impact of numerical time step dt on the results for the particle mobility
µ(f)/µ0 (markers) for weakly corrugated ∆Ω = 0.1 (left) and moderate modulated
channels ∆Ω = 1 (right) is presented. The channel aspect ratio is kept fixed δ = 0.1.
Additionally, we depict the numerical result obtained by finite element method (solid
line).

In the case of unphysical displacements, we reflect the tail of the transition PDF,
Eq. (A.5), which contains all these unphysical displacements, from the forbidden region
to the ”physical” one. This is equivalent to add a second Gaussian distribution centered
at −q − f · n dt to Eq. (A.5). In the case of two walls, the first located at q = 0
and the second at qwall, the transition PDF p(q̃, dt; q) is given by an infinite series of
Gaussian distribution centered at An and Bn, respectively. The mean values An and
Bn are determined by the recursion formula: A0 = B0 = q + f · n dt, An = −Bn−1,
and Bn = 2 qwall − An−1, for n ≥ 1. Additionally, the conditions p(0, dt; q) = 0 and
p(qwall, dt; q) = 0 have to be included in the numerics by hand. For this procedure to
yield a decent approximation to the solution of Eq. (A.1), it is required that the shape
of the channel wall does not vary significantly over typical particle displacements in
addition to the standard assumption of small variations in f during typical integration
steps.
For this reason, the Langevin equation Eq. (A.1) was numerically integrated by

Euler’s method [Kloeden and Platen, 1999] with a position and force dependent time
step ∆t = min

(
10−4, 0.01/‖f‖,W (x)2/100

)
, where W (x) reprents the local width at

position x. A further decrease of the time step did not cause a noticeable change of the
numerical results. This fact is presented in depth in Fig. A.2. Averages were performed
over an ensemble of N = 3 ·104 initially equilibrated trajectories which were integrated
for not less than 107 time steps. Additionally, we also numerically integrated Eq. (A.1)
by use of a Heun integration scheme [Mannella, 2000] and found no noticeable change
of the numerical results for identical time steps (not explicitly shown).
The numerical error for the mean particle velocity 〈 ẋ 〉 can be estimated as follows.
In the overdamped limit, Eq. (A.1), the particle’s velocity is ill-defined. The set
of final velocities vi can only be calculated from the particle’s final positions via
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A. Numerical methods

vi = xi(tsimu)/tsimu, i ∈ {1, N}, where N is the ensemble size. Thus, the mean par-
ticle velocity is given by

〈 ẋ 〉 = 1
N

N∑
i=1

vi = lim
t→tsimu

〈x(t) 〉
t

. (A.6)

The experimental standard deviation

σ〈 ẋ 〉 =

√√√√ 1
N − 1

N∑
i=1

(vi − 〈 ẋ 〉)2

is connected with the effective diffusion coefficient Deff

Deff = 1
2N tsimu

N∑
i=1

(xi − 〈x 〉)2 , (A.7)

via

σ〈 ẋ 〉 =
√

2N Deff
(N − 1) tsimu

. (A.8)

The numerical uncertainties (errors) are determined by

u〈 ẋ 〉 =
√

2Deff
(N − 1) tsimu

, and uµ = 1
f

√
2Deff(f)

(N − 1) tsimu
. (A.9)

They are negligible for large ensemble size N ' 3 · 104, sufficient long simulation time
tsimu, and non-diverging effective diffusivity.

Finite element method

Alternatively, the main transport quantities like the mean particle velocity and the
effective diffusion coefficient were computed by finite element method [Hughes, 2000;
Zienkiewicz et al., 2005]. The first step to calculate these quantities entails calculating
the stationary joint PDF P (q) whose evolution is governed by the stationary Smolu-
chowski equation

0 = ∇ · J (q) = ∇ · (f P (q)−∇P (q)) . (A.10)

By multiplying the latter with the auxiliary function h(q) and integrating over the
unit-cell area dA, one gets

0 =
∫

dAh(q)∇ · (fP (q))−
∫

dAh(q)∆P (q). (A.11)

134



Using first Green’s identity leads to

=
∫

dAh∇ · (fP )−
∫
ω±

ds h (∇P ) · n +
∫

dA (∇h ·∇P ) . (A.12)

Considering the boundary condition J · n = 0, finally, we derive

0 =
∫

dAh∇ · (fP ) +
∫

dA (∇h ·∇P )−
∫
ω±

ds hP f · n. (A.13)

The corresponding code in FreeFem++[Pironneau et al., 2012] for biased Brownian
motion in a two dimensional channel (x− y plane) explicitly reads

1 // s o l v e the Smoluchowski equat ion
2 s o l v e FPE(p , h , s o l v e r=UMFPACK, eps=1.0e−10) =
3 int2d (Tu) ( h∗dxfx∗p+h∗ fx ∗dx (p)+dx (p)∗dx (h ) )
4 +int2d (Tu) ( h∗dyfy∗p+h∗ fy ∗dy (p)+dy (p)∗dy (h ) )
5 −in t1d (Tu , 2 ) ( p∗h∗(N. x∗ fx+N. y∗ fy ) ) //bc
6 +int2d (Tu) ( q∗h) // source
7 ;
8
9 // norma l i za t i on
10 r e a l norm=int2d (Th) ( p ) ;
11 pnorm=p/norm ;

The mean particle current is calculated by integrating the probability current J (q)
over one channel’s unit-cell, cf. Eq. (2.17),

12 int2d (Th) ( fx ∗pnorm−dx (pnorm ) ) ; // cur rent c a l c u l a t i o n

The second step involves the numerical calculation of the so-called B (q)-field Eq. (2.20)
[Brenner, 1980; Brenner and Edwards, 1993] governed by the following convection-
diffusion equation

∇ · (P (q) ∇B (q))− (J (q) ·∇)B (q) =P (q) 〈 ẋ 〉 . (A.14)

The auxiliary function b = B + x is periodic in transport direction b(q + ex) = b(q),
yielding

P 4 b− P f ·∇b+ 2 ∇P ·∇b =P (〈 ẋ 〉 − f · ex) + 2∂xP. (A.15)

Furthermore, the b-field obeys the no-flux boundary conditions

∇b (q) · n− ex · n = 0 , ∀q ∈ channel wall. (A.16)

Multiplying the partial equation Eq. (A.15) with the auxiliary function h(q), inte-
grating the latter over the unit-cell area dA, and considering the boundary condition,
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A. Numerical methods

finally, one gets∫
dA [h (∇P ) · (∇b)− P (∇h) · (∇b)− hP f ·∇b] =∫

dAh [P 〈 ẋ 〉 − P f · ex + 2∂xP ]−
∫
ω±

ds hP ex · n.
(A.17)

13 s o l v e b f i e l d (b , h , s o l v e r=UMFPACK, eps=1.0e−10) =
14 int2d (TB) ( ( h∗dx (pnorm)−pnorm∗dx (h)−h∗pnorm∗ fx )∗dx (b ) )
15 +int2d (TB) ( ( h∗dy (pnorm)−pnorm∗dy (h)−h∗pnorm∗ fy )∗dy (b ) )
16 +int1d (TB, 2 ) ( pnorm∗h∗N. x ) // bc
17 −in t2d (TB) ( h∗(pnorm∗ strom−pnorm∗ fx+2∗dx (pnorm ) ) ) ;

Finally, the effective diffusion coefficient Deff(f)/D0 is obtained by subsequently eva-
luating the unit-cell quadrature Eq. (2.23)

18 d e f f=1+int2d (TB) ( pnorm∗( dx (b)∗dx (b)−2∗dx (b)+dy (b)∗dy (b ) ) ) ;

The FEM code can easily be extended to 3D [Pironneau et al., 2012].
The numerical errors in the finite element method depend mostly on the mesh dis-

cretization of inner unit cell domain into a set of discrete sub-domains (triangles). For
each parameter value, the number of triangles, respectively, the number of vortices was
set large enough so that the output was independent of it.

Underdamped Brownian dynamics simulation

In what follows, we discuss how the particle-wall interaction is implemented in our
simulations for the case of arbitrary friction coefficient γ. The corresponding Langevin
equation reads

v̇ + γ v = f(v,q, t) +
√

2γ ξ(t). (A.18)

To numerically solve Eq. (A.18), we may discretize it according to the Euler algorithm
[Kloeden and Platen, 1999], yielding

qt+dt = vt(qt) dt, (A.19a)
vt+dt = vt(qt)− γ vt(qt) dt+ f(vt,qt, t) dt+

√
2γ dtGt, (A.19b)

as an approximation for the displacement of the particle’s velocity and position from
vt to vt+dt, respectively, qt to qt+dt during the time interval dt. This Euler step works
well for small enough time steps so that both v and f do not vary significantly during
dt and over the typical step size. All integration steps that are performed according to
Eqs. (A.19) indeed produce valid trajectories, as long as the particle’s trajectory does
not cross the channel wall (unphysical configuration).
Once an unphysical configuration is encountered, the particle-wall interaction has to

be taken into account. Basically, the overall particle velocity has to be split into two
perpendicular velocities: one tangent to the common normal surfaces of the wall at the
point of contact, vt = (v · t) t, and the other along the line of collision, vn = (v ·n) n.
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Since the collision only imparts force along the line of collision, the tangential velocity
does not change; yielding vt′ = vt. The symbol ′ denotes the velocity component after
the collision. The collision of the particle with the wall was treated either elastically or
inelastically. These two totally different behaviors can be controlled via the coefficient
of restitution CR. The latter represents the ratio of the normal velocity component
after collision to the one before the collision, CR = ‖vn′‖/‖vn‖. Thereby, CR = 1
corresponds to ideal elastic collision, i.e., conversation of momentum and energy during
the collision process is supposed, whereas CR = 0 represents perfectly inelastic collision,
vn′ = 0.

In detail, the following individual steps were executed in every Euler step during the
simulation

1. Calculation of the boundary crossing point qcross

2. Evaluation of associated crossing time τcross which the trajectory needs to reach
qcross when it starts at qt at time t, viz., τcross = ((qcross − qt) · ex) /(vt+dt · ex)
or τcross = ((qcross − qt) · ey) /(vt+dt · ey)

3. Correct final velocity v′t+dt

v′t+dt = vt+dt − (1 + CR) (vt+dt · n) n (A.20)

4. Correct final position q′t+dt

q′t+dt = qcross + v′t+dt (dt− τcross) (A.21)

Note that we assume that the particle’s velocity instantaneously changes from vt to
vt+dt at time t. We suppose that this algorithm works well for small enough time steps
so that both the wall shape and f do not vary significantly during dt and over the
typical step size. For this reason the Langevin equation Eq. (A.18) was numerically
integrated with a position and velocity dependent time step

∆t = min
(
10−5, 0.01/(vt · ex),W (x)/(100 vt · ey), γ W (x)2/100

)
.

In the underdamped limit, averages were also performed over an ensemble of 3 · 104

initially equilibrated trajectories which were integrated for not less than 107 time steps.

In contrast to the overdamped limit, the particle’s velocity vi is well-defined at
any time for arbitrary viscous friction coefficient γ. Consequently, the mean particle
velocity in channel’s longitudinal direction reads 〈 vx 〉 =

∑N
i=1 vx,i/N and the nume-

rical uncertainties (errors) are determined by uvx =
√
σ2/(N (N − 1)), respectively,

uµ = uvx/f . Both quantities are sufficiently small for large ensemble size N ' 3 · 104

and non-diverging second central moment σ2 =
〈
v2
x

〉
− 〈 vx 〉2.

We emphasize that due to the higher dimensionality of the underdamped particle
dynamics in a two-dimensional channel geometry (4 degrees of freedom) the problem
cannot be treated by FreeFem++ which is limited to 3 degrees of freedom.
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B. Derivation of the generalized
Fick-Jacobs equation

For particle dynamics decribed by

q̇(t) = −∇ Φ(q) + ∇×Ψ(q) +
√

2 ξ(t), (B.1)

the stationary joint PDF P (q) following Eq. (B.1) is governed by the Smoluchowski
equation [Risken, 1989]

0 = ∇ · J (q) = ∇ · {[−∇ Φ(q) + ∇×Ψ(q)] P (q)−∇P (q)} . (B.2)

Caused by the impenetrability of the channel walls the probability flux obeys the no-
flux boundary condition at the walls, J (q) · n = 0. For 3D planar channel geometry
the outward-pointing normal vectors are n =

(
∓ω′±(x),±1, 0

)T at the side-walls and
n = (0, 0,±1)T at the top and bottom boundary, respectively. The prime denotes the
derivative with respect to x.

We next measure, for the case of finite corrugation ε 6= 0, the transverse coordinate
y → ε y, the boundary functions ω±(x) → ε h±(x), and Ψ → (εΨx,Ψy, εΨz)T in
units of ε. Consequently, the gradient ∇→ (∂x, ε−1∂y, ∂z)T and the Laplace operator
4→ (∂2

x + ε−2∂2
y + ∂2

z ) change. Further, we expand the joint PDF P (q) = P0(q) +
ε2 P1(q) + O(ε4), the scalar potential Φ(q) = Φ0(q) + ε2 Φ1(q) + O(ε4), and each
component of Ψi(q) = Ψ0

i (q) +O(ε2), for i = x, y or z, in the a series in even orders of
ε. Substituting this ansatz into Eq. (B.2), yields

0 = − ∂y
[
e−Φ0∂y

(
eΦ0 P0

)]
− ε2

{
∂y [∂yΦ1 P0 + ∂yΦ0 P1 + ∂yP1] + ∂x

[
e−Φ0∂x

(
eΦ0 P0

)]
+∂z

[
e−Φ0∂z

(
eΦ0 P0

)]
− (∇×Ψ0) ·∇P0

}
+O(ε4). (B.3)

Furthermore, no-flux bcs change to

at y = h−, h+ : 0 = ∓e−Φ0∂y
(
eΦ0 P0

)
∓ ε2 {∂yΦ1 P0 + ∂yΦ0 P1 + ∂yP1

−h′±(x)e−Φ0∂x
(
eΦ0 P0

)
+ h′±(x) (∇×Ψ0)x P0 − (∇×Ψ0)y P0

}
+O(ε4), (B.4a)

at z = 0,∆H : 0 = ∓e−Φ0∂z
(
eΦ0 P0

)
± (∇×Ψ0)z P0 ∓ ε2 {∂zΦ1 P0 + ∂zΦ0 P1

+∂zP1 − (∇×Ψ1)z P0 − (∇×Ψ0)z P1}+O(ε4). (B.4b)

From the leading order terms (ε0) in Eqs. (B.3) and (B.4), immediately follows that
P0(q) = g(x, z)e−Φ0(q), where g(x, z) is an unknown function which has to be deter-
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B. Derivation of the generalized Fick-Jacobs equation

mined from the second order O(ε2) of Eq. (B.3). Integrating O(ε2) over the local
cross-section Q(x) = ∆H (h+(x)− h−(x)), using

h+(x)∫
h−(x)

dy
∆H∫
0

dz (∇×Ψ0) ·∇P0 = ∂x

h+(x)∫
h−(x)

dy
∆H∫
0

dz (∇×Ψ0)x P0

− h′+(x) (∇×Ψ0)x P0
∣∣∣
y=h+

+ h′−(x) (∇×Ψ0)x P0
∣∣∣
y=h−

+
∆H∫
0

dz (∇×Ψ0)y P0
∣∣∣y=h+

y=h−
+

h+(x)∫
h−(x)

dy (∇×Ψ0)z P0
∣∣∣z=∆H

z=0
,

(B.5)

and taking account of the no-flux bcs, Eq. (B.4b), we get

0 = ∂xJ
x
0 (x) = ∂x

h+(x)∫
h−(x)

dy
∆H∫
0

dz
[
e−Φ0∂xg + (∇×Ψ0)x g e

−Φ0
]
. (B.6)

In what follows, we suppose that the z-component of convergence-free force field va-
nishes identically at the top and bottom wall, i.e., (∇×Ψ0)z = 0 at z = 0 and z = ∆H.
According to Eq. (B.4), the unknown function g(x, z) must be independent of z and
thus Eq. (B.6) simplifies to

Jx0 = e−A(x) g′(x) + g(x) e−A(x) χ(x), (B.7)

with effective entropic potential A(x), cf. Eq. (2.35), and substitute

χ(x) =
h+(x)∫
h−(x)

dy
∆H∫
0

dz (∇×Ψ0)x e
−Φ0(q)+A(x). (B.8)

Solving the differential equation for g(x) yields

P0(q) =

C0e
−Φ0(q) − J0

x

x∫
0

dx′ eF(x)

 e−Φ0(q)+χ(x), (B.9)

where F(x) is the potential of mean force in longitudinal channel direction

F(x) = − ln

 h+(x)∫
h−(x)

dy
∆H∫
0

dz e−Φ0(q)


−

x∫
0

dx′
h+(x′)∫
h−(x′)

dy
∆H∫
0

dz (∇×Ψ0)x Peq(y, z|x′).

(B.10)
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Here Peq(y, z|x) represents the equilibrium PDF of y and z, conditioned on x, given by
Peq(y, z|x) = exp(−Φ0(q) +A(x)).

The joint PDF has to satisfy the periodicity requirement P (x+m, y, z) = P (x, y, z),
∀m ∈ Z. Assuming that (i) the scalar potential scales like Φ(q) ∼ −f xβ with β = {0, 1}
and (ii) (∇×Ψ)x is periodic in x with unit period, one gets

P0(x+m, y, z) =

C0 − Jx0
m+1∑
n=0

(
e∆F

)n 1∫
0

dx eF(x) −
x∫

0

dx′ eF(x′)

 e−m∆Fe−Φ0(q)+χ(x)

≡P0(x, y, z).

In the case that F(x) is periodic in x, i.e, ∆F = F(x + 1) − F(x) = 0, the solution
Eq. (B.9) obeys the periodicity requirement if either the probability current vanishes,
J0
x = 0, or

∫ 1
0 dx exp(F(x)) = 0. The second condition is only feasible for F(x) = −∞

which is an unphysical situation. From the first condition J0
x = 0 immediately follows

that divergence-free force has to equal zero for all values of x, i.e., (∇×Ψ)x = 0.
Consequently, ∆Φ must vanish and therefore the stationary joint PDF is constant,
P0(q) = const. Then the marginal PDF, cf. Eq. (2.28), scales with the local channel
cross-section

p0(x) ∼ ∆H (h+(x)− h−(x)) . (B.11)

In the opposite limit, ∆F 6= 0, the periodicity requirement is fulfilled only for
C0 = J0

x

∫ 1
0 dx exp(F(x))/(1− exp(∆F)) and we finally obtain [Risken, 1989]

p0(x) =
e−F(x)

x+1∫
x

dx′ eF(x)

1∫
0

dx eF(x)
x+1∫
x

dx′ eF(x′)
, (B.12)

whereby the stationary marginal PDF obeys the normalization condition
∫ 1

0 p(x)dx = 1.
If β > 1 or the longitudinal coordinate x is multiplicative connected to the transverse
coordinates, a closed periodic solution for the joint PDF cannot be found [Risken, 1989].

The kinetic equation for the time-dependent marginal PDF p0(x, t) can be gathered
from its steady state solution, Eq. (B.12), resulting in the generalized Fick-Jacobs
equation

∂tp0(x, t) = ∂x

[dF(x)
dx p0(x, t)

]
+ ∂2

xp0(x, t). (B.13)
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C. Poiseuille flow in shape-perturbed
channels

Here, we present the derivation of the leading order solution for the fluid’s flow field
through a three-dimensional, planar channel geometry with periodically varying cross-
section Q(x). Unit-cells with constant rectangular cross-section are often called Hele-
Shaw cells and it is perhaps a surprising fact that no closed-form analytic solution
is known to the Poiseuille-flow problem. The solution can only be represented by a
Fourier sum [Bruus, 2008; Gondret et al., 1997].
The time and spatial evolution of the fluid velocity is governed by the Navier-Stokes

equation (in dimensionless units)

Re {∂tu (q, t) + (u ·∇) u (q, t)} = −∇P (q, t) +4u (q, t) , (C.1)

where u = (ux, uy, uz)T denotes the solvent flow field, P (q, t) corresponds to the local
pressure, and Re is the Reynolds number. For most micro-fluidic devices the Reynolds
number is small Re < 1. If the pressure drop along one unit-cell is dominated by viscous
losses 4u (q, t), the solvent flow is laminar [Gravesen et al., 1993]. Furthermore, a low
Reynolds number Re < 1 is essential to safely disregard many forces exert by the
fluid on a spherical particle, for details see Sect. 4.2. Therefore, the left hand side in
Eqs. (C.1) can be disregarded, which leaves us with the Stokes’ equation, respectively,
the so-called ”creeping flow” equation [Landau and Lifschitz, 1991]:

0 = −∇P (q, t) +4u (q, t) . (C.2)

Since the particle’s motion is bounded by two parallel plane walls located at z = 0
and z = ∆H, the local pressure does not depend on the z-coordinate P(x, y, t). From
the no-slip bc, u(q) = 0 ,∀q ∈ wall, immediately follows uz(q) = 0. In addition, we
highlight that the time dependence of the velocity field is merely parametric within the
Stokes’ equation, Eq. (C.2). Once a steady state solution u(q) has been determined for
the stationary pressure field P(q), the solution u(q, t) at any time t is simply given by
the product of the stationary solution u(q) times the time dependence of the pressure
field [Kettner et al., 2000]. Thus, it is sufficient to focus on the steady state solution.

We begin by expanding all functions in the problem as Fourier series [Fourier, 1807]
along the transverse z direction. To ensure the fulfillment of the no-slip bc, u(x, y, 0) =
u(x, y,∆H) = 0, we use only terms proportional to sin (nπz/∆H) ,∀n ∈ N. The Fourier
expansion of any constant yields

1 = 4
π

∞∑
n=0

1
2n+ 1 sin

(
(2n+ 1)π z

∆H

)
, (C.3)
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a series containing only odd integers. The Fourier series for the flow components reads

ux(x, y, z) =
∞∑
n=1

fn(x, y) sin
(
nπ

z

∆H

)
, (C.4a)

uy(x, y, z) =
∞∑
n=1

gn(x, y) sin
(
nπ

z

∆H

)
. (C.4b)

Inserting these series into Eq. (C.2) and integrating the latter with regard to z leads to

0 = 42D f2n+1(x, y)− 4
π(2n+ 1)∂xP(x, y)− (2n+ 1)2 π2

∆H2 f2n+1(x, y), (C.5a)

0 = 42D g2n+1(x, y)− 4
π(2n+ 1)∂yP(x, y)− (2n+ 1)2 π2

∆H2 g2n+1(x, y), (C.5b)

where 42D = ∂2
x + ∂2

y . Any solution to the problem must satisfy that for all values of
n, the n-th coefficient in the local pressure has to be equal to the n-th coefficient in
the flow velocities terms, Eqs. (C.5). Consequently all even terms vanish identically
f2n = g2n = 0.
In analogy to the derivative of the generalized FJ equation, cf. App. B, we mea-

sure all transverse quantities in units of expansion parameter ε, i.e., y → ε y and
ω±(x)→ ε h±(x). Then, the series expansion for Fourier components and local pressure
in ε read

fm(x, y) = f (0)
m + ε f (1)

m + . . . =
∞∑
n=0

εnf (n)
m (x, y), (C.6a)

gm(x, y) = ε g(0)
m + ε2 g(1)

m + . . . =
∞∑
n=0

εn+1g(n)
m (x, y), (C.6b)

P(x, y) = 1
ε2P0 + 1

ε
P1 + . . . =

∞∑
n=0

εn−2Pn(x, y). (C.6c)

The leading orders in ε for the three quantities are determined by the known Poiseuille
flow solution which is the exact solution for the Stokes’ equation, Re � 1, in a straight
channel ε = 0. Substituting Eqs. (C.6) into Eqs. (C.5), we get

0 =− 4
πm

∂xP0(x, y) + ∂2
yf

(0)
m (x, y)−m2 π2

(
ε

∆H

)2
f (0)
m (x, y) +O(ε), (C.7a)

0 =− 4
πm

1
ε
∂yP0(x, y) +O(ε), (C.7b)

for any odd integerm. While the third term in Eq. (C.7a) is negligible for high channels,
∆H � ε, this term becomes important if the gap between the flat walls is asymptoti-
cally small, ∆H � 1 – Hele-Shaw flow. On the contrary, the counterpart in Eq. (C.7b)
scales linearly with ε even for asymptotically small channel height and thus can safely
be disregarded.
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Additionally to the Stokes’ equation, the Fourier components for the flow velocities
have to obey the continuity equation

0 = ∇ · u =
∞∑
n=0

εn
{
∂xf

(n)
m (x, y) + ∂yg

(n)
m (x, y)

}
, (C.8)

the no-slip bcs at the channel walls, f (n)
m (x, h±(x)) = g

(n)
m (x, h±(x)) = 0, ∀n ∈ N, and

the periodicity requirement, f (n)
m (x + k, y) = f

(n)
m (x, y) and g(n)

m (x+ k, y) = g
(n)
m (x, y),

∀k ∈ Z ∧ n ∈ N.

From Eq. (C.7b), one immediately sees that the pressure depends only on the x-
coordinate in leading order. We obtain that the general solution of Eq. (C.7a) attains
the form

f (0)
m (x, y) = Am sinh (cmεy) +Bm cosh (cmεy)− 4

πmc2
mε

2∂xP0(x), (C.9)

with substitute cm = mπ /∆H. The coefficients Am and Bm have to be determined
by the no-slip bc, fm(x, h±(x)) = 0, which leads to the leading order solution for the
Poiseuille flow in a channel with periodically varying rectangular cross-section Q(x)

ux0(q) = −4 ∆H2

π3 ∂xP0(x)
∞∑
n=0

[
1− sinh (c2n+1 (ω+(x)− y))

sinh (c2n+1W (x))

−sinh (c2n+1 (y − ω−(x)))
sinh (c2n+1W (x))

] sin (c2n+1 z)
(2n+ 1)3 ,

(C.10)

where W (x) = ω+(x) − ω−(x) is the local width. In order to enhance the readability
in the following, we scaled the transverse quantities back. The so far unknown solution
for the local pressure P0(x) is derived from the no-slip bcs for uy0(q) giving rise to

P0(x) = P0 + ∆P
〈χ(x)−1 〉x

x∫
0

dx′ χ(x′)−1, (C.11)

where

χ(x) =
∞∑
n=0

c2n+1W (x) sinh (c2n+1W (x)) + 2 (1− cosh (c2n+1W (x)))
(2n+ 1)4 sinh (c2n+1W (x)) . (C.12)

The drop of pressure along a unit-cell is denoted by ∆P = P(x + 1, y) − P(x, y) and
P0 corresponds to a constant offset which can be set to zero.
We derive that the leading order solutions for the longitudinal flow component ux0

and the local pressure P0 are both given by an infinite sum of hyperbolic sine and
cosine functions. The length scale over which ux0 varies in x and y-direction is the
local width W (x), the channel height ∆H being involved through the ratio W (x)/∆H.
In Figs. C.1 and C.2 we depict the simulation results for a laminar flow through a 3D
channel with sinusoidally varying cross-section, Eq. (C.2), using FEM. We find that our
analytic expression for the longitudinal flow component, Eq. (C.10), agrees very well
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C. Poiseuille flow in shape-perturbed channels

with the numerics for weakly modulated channels, cf. Fig. C.1 (ε = 0.1). Although,
the leading order results tends to overestimate the numerics with growing channel
corrugation, see Fig. C.2 (ε = 0.4), the compliance is notably well at the widest part
of the channel. For reflection symmetric cross-sections, ω±(x) = ±ω(x), Eq. (C.10)
resembles Eq. (9) in [Lauga et al., 2004]. There the authors derived the leading order
solution via lubrication theory [Reynolds, 1886] using the channel height as expansion
coefficient, ∆H � 1. In the limit of an non-modulated cross-section, W (x) = ∆Ω,
Eqs. (C.10) and (C.11) give the Poisseuille flow in a rectangular channel with plane
walls at y = ±∆Ω/2 and z = 0,∆H [Bruus, 2008], viz., P(x) = ∆P x, uy(q) = 0, and

ux(q) = −4 ∆H2∆P
π3

∞∑
n=0

1−
cosh

(
(2n+ 1)π y

∆H
)

cosh
(
(2n+ 1)π ∆Ω

2∆H

)
 sin

(
(2n+ 1)π z

∆H
)

(2n+ 1)3 .

For any modulated cross-section, one recognizes that the successive terms of the sum
for ux0 decrease with 1/(2n+ 1)2 and the terms in Eq. (C.12) lessen even more rapidly,
roughly as 1/(2n + 1)4. Consequently, it is sufficient to consider only the first terms
of each sum. For most aspect ratios ∆H/∆Ω and ∆H/∆ω, respectively, we find that
the first two terms, n = {0, 1}, agrees quite well with the numerics; dashed lines in
Figs. C.1 and C.2.
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Figure C.1.: Profiles of the longitudinal flow component ux in a 3D channel with
sinusoidally modulated boundary, ω±(x) = ± [∆Ω + ∆ω + (∆Ω−∆ω) sin(2πx)] /4,
and constant height ∆H, see Fig. 3.1. The profiles in the y−z plane were numerically
evaluated by FEM (markers) for different ratios of channel height to local width:
∆H/∆Ω at xpos = 0.25 (left column) and ∆H/∆ω at xpos = 0.75 (right column).
The lines represents the analytic estimate, Eq. (C.10), by calculating the sum either
for the first 2 terms (dashed lines) or for the first 10 terms (solid lines). For several
parameter values the dashed lines may are hidden by the associated solid lines. The
remaining parameter values are ∆Ω = 0.5, ∆ω = 0.4, and ∆P = 100.
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Figure C.2.: Profiles of the longitudinal flow component ux in a 3D channel with
sinusoidally modulated boundary, ω±(x) = ± [∆Ω + ∆ω + (∆Ω−∆ω) sin(2πx)] /4,
and constant height ∆H, see Fig. 3.1. The profiles in the y−z plane were numerically
evaluated by FEM (markers) for different ratios of channel height to local width:
∆H/∆Ω at xpos = 0.25 (left column) and ∆H/∆ω at xpos = 0.75 (right column).
The lines represents the analytic estimate, Eq. (C.10), by calculating the sum either
for the first 2 terms (dashed lines) or for the first 10 terms (solid lines). For several
parameter values the dashed lines may are hidden by the associated solid lines. The
remaining parameter values are ∆Ω = 0.5, ∆ω = 0.1, and ∆P = 100.
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Infinitely high channel
For microfluidics devices the aspect ratio of height to width can often be so large that the
channel is well approximated by an infinite parallel-plate configuration in z-direction,
∆H � ∆Ω. By rotation, this situation can always be realized in experiments, i.e.,
y → z and z → y. In the limit of infinite channel height, the velocity profile for ux is
flat in z except near the walls, see square markers in the bottom row of Figs. C.1 and
C.2. Then the situation is quasi two-dimensional. Expanding Eqs. (C.10) and (C.11)
in a Taylor series in 1/∆H, one gets

ux0(x, y) ' −P
′
0(x)
2

4
π

(ω+(x)− y) (y − ω−(x)) +O
(
∆H−2

)
. (C.13a)

Using the continuity equation Eq. (C.8), the leading order for the flow velocity in
y-direction reads

uy0(x, y) ' 1
12∂x

[
P ′0(x) (y − ω−(x))2 (3ω+(x)− ω−(x)− 2y)

]
+O

(
∆H−2

)
. (C.13b)

The prime represents the derivative with respect to x. The solution for the local
pressure, Eq. (C.11), reduces to

P0(x, y) ' P0 + ∆P

x∫
0

dx′W (x′)−3

〈W (x)−3 〉x
. (C.14)

As for every two-dimensional flow of incompressible fluid, the Stokes equation turns
into the biharmonic equation ∇4Ψ0(x, y) = 0 for the zeroth order stream function Ψ0
for which ux0 = ∂y Ψ0 and uy0 = −∂x Ψ0. From Eqs. (C.13) follows

Ψ0(x, y) = −∆p
12

(y − ω−(x))2 (3ω+(x)− ω−(x)− 2y)
W (x)3 〈W (x)−3 〉x

. (C.15)
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1D . . . . . . . . . one-dimensional , page 9
2D . . . . . . . . . two-dimensional , page 22
3D . . . . . . . . . three-dimensional , page 16
bc(s) . . . . . . . boundary condition(s) , page 13
BD . . . . . . . . Brownian dynamics , page 46
EDC . . . . . . . effective diffusion coefficient , page 15
EDL . . . . . . . electric double layer , page 71
EOM . . . . . . equation of motion , page 9
FEM . . . . . . . finite element method , page 44
FJ . . . . . . . . . Fick-Jacobs , page 18
HEET . . . . . hydrodynamically enforced entropic trapping , page 85
MFPT . . . . . mean first passage time , page 24
MSD . . . . . . . mean square displacement , page 12
NSE . . . . . . . Navier-Stokes equation , page 77
PDF . . . . . . . probability density function , page 13
VACF . . . . . . velocity auto-correlation function , page 117
VCF . . . . . . . velocity correlation function , page 116

Functions
2F1 (·) . . . . . . first hypergeometric function , page 66

Symbols and Variables
α . . . . . . . . . . force exponent f ∝ dαp , page 89
β . . . . . . . . . . force orientation angle measured from the x-axis , page 71
4 . . . . . . . . . Laplace operator , page 77
42 . . . . . . . . biharmonic operator , page 78
∆P . . . . . . . . change of pressure along one channel unit cell , page 79
∆H . . . . . . . . height of planar channel geometry , page 16
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∆Ω . . . . . . . . maximum width of the channel , page 28
∆ω . . . . . . . . minimum width of the channel , page 28
ε . . . . . . . . . . . dimensionless expansion parameter , page 28
η . . . . . . . . . . . dynamic viscosity , page 9
γ . . . . . . . . . . viscous friction coefficient , page 9
∇q . . . . . . . . gradient , page 10
Ψ(q) . . . . . . . vector potential , page 74
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Nomenclature

κw . . . . . . . . . particle-wall interaction strength , page 20
Λ . . . . . . . . . . ratio of velocity correlation time to diffusion time , page 91
λD . . . . . . . . . Debye length , page 72
〈·〉 . . . . . . . . . ensemble average , page 10
〈·〉x . . . . . . . . geometrical average over one channel period , page 25
〈·〉x,y . . . . . . . geometrical average over local width and channel period , page 32
〈q̇〉 . . . . . . . . . mean particle current vector , page 14
D . . . . . . . . . . dispersion tensor , page 12
Deff . . . . . . . . effective dispersion tensor , page 15
M . . . . . . . . . . mobility tensor , page 11
Meff . . . . . . . . effective mobility tensor , page 14
Mhyd . . . . . . . hydrodynamic mobility tensor , page 98
F(x) . . . . . . . potential of mean force for energetic and vector potentials , page 75
P (q, t) . . . . . local pressure field , page 77
L0 . . . . . . . . . unperturbed steady state Fokker-Planck operator , page 28
L1 . . . . . . . . . perturbed steady state Fokker-Planck operator , page 28
max(a, b) . . . maximum value of a or b , page 22
µ . . . . . . . . . . particle mobility , page 14
µ0 . . . . . . . . . free particle mobility , page 11
N+ . . . . . . . . . set of all natural numbers excluding zero, N+ = N \ {0} , page 32
‖q‖ . . . . . . . . Euclidean norm of vector q , page 15
ωeff(x) . . . . . effective boundary function for extended particles , page 90
ω±(x) . . . . . . upper (+) and lower (-) boundary function , page 16
Φ(q) . . . . . . . scalar potential , page 18
ρf . . . . . . . . . density of the solvent , page 9
ρp . . . . . . . . . . density of the particle , page 9
tr[ ] . . . . . . . . trace , page 12
b . . . . . . . . . . periodic B-field , page 15
∅ . . . . . . . . . . diameter , page 2
B . . . . . . . . . . B-field , page 15
F . . . . . . . . . . external force vector , page 9
f . . . . . . . . . . . dimensionless external force vector , page 15
J (q, t) . . . . . probability current , page 13
n . . . . . . . . . . outward-pointing normal vector , page 13
q . . . . . . . . . . local particle position vector , page 12
Rn . . . . . . . . . lattice-point position vector , page 12
u(q, t) . . . . . solvent flow field vector , page 76
v . . . . . . . . . . particle velocity vector , page 9
ζ . . . . . . . . . . . zeta potential , page 72
A(x) . . . . . . . effective entropic potential or potential of mean force , page 19
C(x) . . . . . . . center line of the channel C(x) = (ω+(x) + ω−(x)) /2 , page 36
CR . . . . . . . . . coefficient of restitution , page 119
Cvi,vj (τ) . . . velocity correlation function between vi and vj at time τ , page 116
D(x, f) . . . . spatially dependent diffusion coefficient , page 22
D0 . . . . . . . . . free diffusion constant , page 12
Deff . . . . . . . . effective diffusion coefficient , page 15

152
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dp . . . . . . . . . . diameter of particle , page 9
f . . . . . . . . . . magnitude of external force f = ‖f‖ , page 16
h±(x) . . . . . . dimensionless upper (+) and lower (-) boundary function , page 30
kB . . . . . . . . . Boltzmann constant , page 10
L . . . . . . . . . . period of channel unit cell , page 12
lk . . . . . . . . . . Kuhn length , page 89
m . . . . . . . . . . mass of particle , page 9
m∗ . . . . . . . . . effective mass of particle , page 10
Nk . . . . . . . . . number of Kuhn segments , page 89
P (q, t) . . . . . joint probability density function , page 13
p (x, t) . . . . . marginal probability density function , page 17
Pst (q) . . . . . stationary joint probability density function , page 14
Pe . . . . . . . . . Péclet number , page 56
Q(x) . . . . . . . area of local cross-section , page 12
R(x) . . . . . . . local tube radius , page 16
Rg . . . . . . . . . radius of gyration , page 90
Re . . . . . . . . . Reynolds number , page 77
T . . . . . . . . . . temperature , page 10
t . . . . . . . . . . . time , page 9
tcorr . . . . . . . . velocity correlation time , page 10
W (x) . . . . . . local channel width W (x) = ω+(x)− ω−(x) , page 16
ξ . . . . . . . . . . . Gaussian white noise , page 9

153





Bibliography

B.-q. Ai and L.-g. Liu. Current in a three-dimensional periodic tube with unbiased
forces. Phys. Rev. E, 74(5):051114, 2006. doi: 10.1103/PhysRevE.74.051114.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology
of the Cell. Garland Science, New York, 4th edition, 2002. ISBN 0-8153-4072-9.

J. L. Anderson. Effect of nonuniform zeta potential on particle movement in elec-
tric fields. J. Colloid Interface Sci., 105(1):45–54, 1985. doi: 10.1016/0021-
9797(85)90345-5.

R. Aris. On the dispersion of a solute in a fluid flowing through a tube. Phil. Trans.
R. Soc. Lond. A, 235(1200):67–77, 1956. doi: 10.1098/rspa.1956.0065.

V. Arnold. Proof of a A. N. Kolmogorov theorem on conservation of conditionally
periodic motions under small perturbations of the Hamiltonian function. Uspeki
Mat. Nank., 18:13–40, 1963.

S. Arrhenius. Über die Dissoziationswärme und den Einfluss der Temperatur auf den
Dissoziationsgrad der Elektrolyte. Z. Phys. Chem. (Leipzig), 4:226, 1889.

A. Barone and G. Paternò. Physics and Applications of the Josephson Effect. Wiley,
New York, 1982. ISBN 9780471014690.

M. Z. Bazant and T. M. Squires. Induced-charge electrokinetic phenomena: Theory and
microfluidic applications. Phys. Rev. Lett., 92(6):066101, 2004. doi: 10.1103/Phys-
RevLett.92.066101.

M. Z. Bazant and T. M. Squires. Induced-charge electrokinetic phenomena. Curr.
Opin. Colloid In., 15(3):203–213, 2010. doi: 10.1016/j.cocis.2010.01.003.

F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. C. Gascoyne.
Separation of human breast cancer cells from blood by differential dielectric affinity.
Proc. Nat. Ac. Sc. U.S.A, 92(3):860, 1995. doi: 10.1073/pnas.92.3.860.

R. Becker. Theorie der Wärme. Springer, Berlin, 3rd edition, 1985. ISBN 3540153837.

E. Beerdsen, D. Dubbeldam, and B. Smit. Molecular understanding of diffusion
in confinement. Phys. Rev. Lett., 95(16):164505, 2005. doi: 10.1103/Phys-
RevLett.95.164505.

E. Beerdsen, D. Dubbeldam, and B. Smit. Understanding diffusion in nanoporous ma-
terials. Phys. Rev. Lett., 96(4):044501, 2006. doi: 10.1103/PhysRevLett.96.044501.

155

http://dx.doi.org/10.1103/PhysRevE.74.051114
http://dx.doi.org/10.1016/0021-9797(85)90345-5
http://dx.doi.org/10.1016/0021-9797(85)90345-5
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1103/PhysRevLett.92.066101
http://dx.doi.org/10.1103/PhysRevLett.92.066101
http://dx.doi.org/10.1016/j.cocis.2010.01.003
http://dx.doi.org/10.1073/pnas.92.3.860
http://dx.doi.org/10.1103/PhysRevLett.95.164505
http://dx.doi.org/10.1103/PhysRevLett.95.164505
http://dx.doi.org/10.1103/PhysRevLett.96.044501


Bibliography

H. Behringer and R. Eichhorn. Hard-wall interactions in soft matter systems: Ex-
act numerical treatment. Phys. Rev. E, 83(6):065701, 2011. doi: 10.1103/Phys-
RevE.83.065701.

J. M. Bennett and L. Mattsson. Introduction to surface roughness and scattering.
Optical Society of America, Washington, D.C., 1989. ISBN 9781557521088.

A. M. Berezhkovskii and S. M. Bezrukov. Optimizing Transport of Metabolites through
Large Channels: Molecular Sieves with and without Binding. Biophys. J., 88(3):L17–
L19, 2005. doi: 10.1529/biophysj.104.057588.

A. M. Berezhkovskii and S. M. Bezrukov. Counting Translocations of Strongly Repelling
Particles through Single Channels: Fluctuation Theorem for Membrane Transport.
Phys. Rev. Lett., 100(3):038104, 2008. doi: 10.1103/PhysRevLett.100.038104.

A. M. Berezhkovskii and L. Dagdug. Biased diffusion in tubes formed by spherical
compartments. J. Chem. Phys., 133(13):134102, 2010. doi: 10.1063/1.3489375.

A. M. Berezhkovskii and A. Szabo. Time scale separation leads to position-dependent
diffusion along a slow coordinate. J. Chem. Phys., 135(7):074108, 2011. doi:
10.1063/1.3626215.

A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov. Diffusion in a tube of
varying cross section: Numerical study of reduction to effective one-dimensional de-
scription. J. Chem. Phys., 126(13):134706, 2007. doi: 10.1063/1.2719193.

A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov. Entropic effects in channel-
facilitated transport: Interparticle interactions break the flux symmetry. Phys. Rev.
E, 80(2):020904, 2009. doi: 10.1103/PhysRevE.80.020904.

A. M. Berezhkovskii, L. Dagdug, Y. A. Makhnovskii, and V. Y. Zitserman. Communica-
tions: Drift and diffusion in a tube of periodically varying diameter. Driving force in-
duced intermittency. J. Chem. Phys., 132(22):221104, 2010. doi: 10.1063/1.3451115.

L. Boltzmann. Vorlesungen über Gastheorie. J.A. Barth, Leipzig, 1896.

M. Borromeo and F. Marchesoni. Backward-to-Forward Jump Rates on a Tilted
Periodic Substrate. Phys. Rev. Lett., 84(2):203–206, 2000. doi: 10.1103/Phys-
RevLett.84.203.

M. Borromeo and F. Marchesoni. Particle transport in a two-dimensional septate chan-
nel. Chem. Phys., 375(2):536–539, 2010. doi: 10.1016/j.chemphys.2010.03.022.

M. Borromeo, G. Costantini, and F. Marchesoni. Critical hysteresis in a tilted wash-
board potential. Phys. Rev. Lett., 82(14):2820–2823, 1999. doi: 10.1103/Phys-
RevLett.82.2820.

R. M. Bradley. Diffusion in a two-dimensional channel with curved midline and varying
width: Reduction to an effective one-dimensional description. Phys. Rev. E, 80(6):
061142, 2009. doi: 10.1103/PhysRevE.80.061142.

156

http://dx.doi.org/10.1103/PhysRevE.83.065701
http://dx.doi.org/10.1103/PhysRevE.83.065701
http://dx.doi.org/10.1529/biophysj.104.057588
http://dx.doi.org/10.1103/PhysRevLett.100.038104
http://dx.doi.org/10.1063/1.3489375
http://dx.doi.org/10.1063/1.3626215
http://dx.doi.org/10.1063/1.3626215
http://dx.doi.org/10.1063/1.2719193
http://dx.doi.org/10.1103/PhysRevE.80.020904
http://dx.doi.org/10.1063/1.3451115
http://dx.doi.org/10.1103/PhysRevLett.84.203
http://dx.doi.org/10.1103/PhysRevLett.84.203
http://dx.doi.org/10.1016/j.chemphys.2010.03.022
http://dx.doi.org/10.1103/PhysRevLett.82.2820
http://dx.doi.org/10.1103/PhysRevLett.82.2820
http://dx.doi.org/10.1103/PhysRevE.80.061142


Bibliography

A. Brask, J. Kutter, and H. Bruus. Long-term stable electroosmotic pump with ion
exchange membranes. Lab Chip, 5(7):730–738, 2005. doi: 10.1039/B503626G.

H. Brenner. Dispersion resulting from flow through spatially periodic porous media.
Phil. Trans. R. Soc. Lond. A, 297(1430):81–133, 1980. doi: 10.1098/rsta.1980.0205.

H. Brenner and D. A. Edwards. Macrotransport Processes. Butterworth-Heinemann,
Boston, 1993. ISBN 0750693320.

N. Brilliantov and T. Pöschel. Granular gases with impact-velocity-dependent restitu-
tion coefficient. In Granular Gases, volume 564 of Lecture Notes in Physics, pages
100–124. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-41458-2. doi: 10.1007/3-
540-44506-4_5.

R. Brown. XXVII. A brief account of microscopical observations made in the months of
June, July and August, 1827, on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bodies. Phil.
Mag., 4:161–173, 1828.

H. Bruus. Theoretical Microfluidics. Oxford Master Series in Condensed Matter
Physics. Oxford University Press, 2008. ISBN 9780199235094.

L. Bunimovich and Y. Sinai. Statistical properties of Lorentz gas with periodic
configuration of scatterers. Comm. Math. Phys., 78(4):479–497, 1981. doi:
10.1007/BF02046760.

L. A. Bunimovich. On ergodic properties of some billiards. Funct. Anal. Appl., 8:254,
1974.

P. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner. Diffusion in confined
geometries. ChemPhysChem, 10(1):45–54, 2009. doi: 10.1002/cphc.200800526.

P. S. Burada. Entropic transport in confined media. PhD thesis, Universität Augsburg,
Germany, 2008.

P. S. Burada and G. Schmid. Steering the potential barriers: Entropic to energetic.
Phys. Rev. E, 82(5):051128, 2010. doi: 10.1103/PhysRevE.82.051128.

P. S. Burada, G. Schmid, D. Reguera, J. M. Rubí, and P. Hänggi. Biased diffusion in
confined media: Test of the Fick-Jacobs approximation and validity criteria. Phys.
Rev. E, 75(5):051111, 2007. doi: 10.1103/PhysRevE.75.051111.

P. S. Burada, G. Schmid, D. Reguera, M. H. Vainstein, J. M. Rubí, and P. Hänggi.
Entropic Stochastic Resonance. Phys. Rev. Lett., 101(13):130602, 2008a. doi:
10.1103/PhysRevLett.101.130602.

P. S. Burada, G. Schmid, P. Talkner, P. Hänggi, D. Reguera, and J. M. Rubí. En-
tropic particle transport in periodic channels. BioSystems, 93(1):16–22, 2008b. doi:
10.1016/j.biosystems.2008.03.006.

157

http://dx.doi.org/10.1039/B503626G
http://dx.doi.org/10.1098/rsta.1980.0205
http://dx.doi.org/10.1007/3-540-44506-4_5
http://dx.doi.org/10.1007/3-540-44506-4_5
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1002/cphc.200800526
http://dx.doi.org/10.1103/PhysRevE.82.051128
http://dx.doi.org/10.1103/PhysRevE.75.051111
http://dx.doi.org/10.1103/PhysRevLett.101.130602
http://dx.doi.org/10.1103/PhysRevLett.101.130602
http://dx.doi.org/10.1016/j.biosystems.2008.03.006
http://dx.doi.org/10.1016/j.biosystems.2008.03.006


Bibliography

M. Büttiker. Transport as a consequence of state-dependent diffusion. Z. Phys. B, 68
(2):161–167, 1987. doi: 10.1007/BF01304221.

H. B. Callen and T. A. Welton. Irreversibility and Generalized Noise. Phys. Rev., 83
(1):34–40, 1951. doi: 10.1103/PhysRev.83.34.

F. Cecconi, D. del Castillo-Negrete, M. Falcioni, and A. Vulpiani. The origin of dif-
fusion: The case of non-chaotic systems. Physica D, 180(3-4):129–139, 2003. doi:
10.1016/S0167-2789(03)00051-4.

K.-L. Cheng, Y.-J. Sheng, and H.-K. Tsao. Brownian escape and force-driven transport
through entropic barriers: Particle size effect. J. Chem. Phys., 129(18):184901, 2008.
doi: 10.1063/1.3009621.

C.-F. Chou, O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H. G.
Craighead, and R. H. Austin. Sorting by diffusion: An asymmetric obstacle course
for continuous molecular separation. Proc. Nat. Ac. Sc. U.S.A, 96(24):13762–13765,
1999. doi: 10.1073/pnas.96.24.13762.

C. Church, J. Zhu, G. Wang, T.-R. J. Tzeng, and X. Xuan. Electrokinetic focusing and
filtration of cells in a serpentine microchannel. Biomicrofluidics, 3(4):044109, 2009.
doi: 10.1063/1.3267098.

A. E. Cohen and W. E. Moerner. Suppressing Brownian motion of individual
biomolecules in solution. Proc. Nat. Ac. Sc. U.S.A, 103(12):4362–4365, 2006. doi:
10.1073/pnas.0509976103.

A. Corma. From microporous to mesoporous molecular sieve materials and their use
in catalysis. Chem. Rev., 97(6):2373–2420, 1997. doi: 10.1021/cr960406n.

G. Costantini and F. Marchesoni. Threshold diffusion in a tilted washboard potential.
Europhys. Lett., 48(5):491, 1999. doi: 10.1209/epl/i1999-00510-7.

L. Dagdug and I. Pineda. Projection of two-dimensional diffusion in a curved midline
and narrow varying width channel onto the longitudinal dimension. J. Chem. Phys.,
137(2):024107, 2012. doi: 10.1063/1.4733394.

L. Dagdug, M.-V. Vazquez, A. M. Berezhkovskii, and S. M. Bezrukov. Unbiased dif-
fusion in tubes with corrugated walls. J. Chem. Phys., 133(3):034707, 2010. doi:
10.1063/1.3431756.

L. Dagdug, A. M. Berezhkovskii, Y. A. Makhnovskii, V. Y. Zitserman, and S. M.
Bezrukov. Communication: Turnover behavior of effective mobility in a tube
with periodic entropy potential. J. Chem. Phys., 134(10):101102, 2011. doi:
10.1063/1.3561680.

L. Dagdug, M.-V. Vazquez, A. M. Berezhkovskii, V. Y. Zitserman, and S. M. Bezrukov.
Diffusion in the presence of cylindrical obstacles arranged in a square lattice analyzed
with generalized Fick-Jacobs equation. J. Chem. Phys., 136(20):204106, 2012. doi:
10.1063/1.4720385.

158

http://dx.doi.org/10.1007/BF01304221
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1016/S0167-2789(03)00051-4
http://dx.doi.org/10.1016/S0167-2789(03)00051-4
http://dx.doi.org/10.1063/1.3009621
http://dx.doi.org/10.1073/pnas.96.24.13762
http://dx.doi.org/10.1063/1.3267098
http://dx.doi.org/10.1073/pnas.0509976103
http://dx.doi.org/10.1073/pnas.0509976103
http://dx.doi.org/10.1021/cr960406n
http://dx.doi.org/10.1209/epl/i1999-00510-7
http://dx.doi.org/10.1063/1.4733394
http://dx.doi.org/10.1063/1.3431756
http://dx.doi.org/10.1063/1.3431756
http://dx.doi.org/10.1063/1.3561680
http://dx.doi.org/10.1063/1.3561680
http://dx.doi.org/10.1063/1.4720385
http://dx.doi.org/10.1063/1.4720385


Bibliography

Y. Daghighi and D. Li. Induced-charge electrokinetic phenomena. Microfluid.
Nanofluid., 9(4):593–611, 2010. doi: 10.1007/s10404-010-0607-2.

C. Dekker. Solid-state nanopores. Nature Nanotech., 2:209–215, 2007. doi: 10.1038/n-
nano.2007.27.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner. Continuous inertial focusing,
ordering, and separation of particles in microchannels. Proc. Nat. Ac. Sc. U.S.A, 104
(48):18892–18897, 2007. doi: 10.1073/pnas.0704958104.

P. S. Dittrich and A. Manz. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev.
Drug. Discov., 5(3):210–218, 2006. doi: 10.1038/nrd1985.

M. Doi. Introduction to Polymer Physics. Clarendon Press, Oxford, 1996. ISBN
9780198517894.

K. D. Dorfman. DNA electrophoresis in microfabricated devices. Rev. Mod. Phys., 82
(4):2903–2947, 2010. doi: 10.1103/RevModPhys.82.2903.

T. Duke and R. Austin. Microfabricated Sieve for the Continuous Sorting of
Macromolecules. Phys. Rev. Lett., 80(7):1552–1555, 1998. doi: 10.1103/Phys-
RevLett.80.1552.

S. Dukhin. Electrokinetic phenomena of the second kind and their applications. Adv.
Colloid Interface Sci., 35:173–196, 1991. doi: 10.1016/0001-8686(91)80022-C.

S. S. Dukhin and V. N. Shilov. Theory of the static polarization of the diffuse part of
the thin double layer of spherical particles. Colloid J. USSR, 31:564–570, 1969.

W. Ebeling and I. M. Sokolov. Statistical Thermodynamics and Stochastic Theory of
Nonequilibrium Systems. World Scientific, Singapore, 2005. ISBN 9810213824.

J. C. T. Eijkel and A. van den Berg. Nanofluidics: what is it and what can we expect
from it? Microfluid. Nanofluid., 1(3):249–267, 2005. doi: 10.1007/s10404-004-0012-9.

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 322
(8):549–560, 1905. doi: 10.1002/andp.19053220806.

A. Einstein. Eine neue Bestimmung der Moleküldimensionen. Ann. Physik, 324(2):
289–306, 1906. doi: 10.1002/andp.19063240204.

L. D. Favro. Theory of the Rotational Brownian Motion of a Free Rigid Body. Phys.
Rev., 119(1):53–62, 1960. doi: 10.1103/PhysRev.119.53.

O. H. Faxen. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen
Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann.
Phys. (Leipzig), 373(10):89–119, 1922. doi: 10.1002/andp.19223731003.

E. Fermi. On the Origin of the Cosmic Radiation. Phys. Rev., 75(8):1169–1174, 1949.
doi: 10.1103/PhysRev.75.1169.

159

http://dx.doi.org/10.1007/s10404-010-0607-2
http://dx.doi.org/10.1038/nnano.2007.27
http://dx.doi.org/10.1038/nnano.2007.27
http://dx.doi.org/10.1073/pnas.0704958104
http://dx.doi.org/10.1038/nrd1985
http://dx.doi.org/10.1103/RevModPhys.82.2903
http://dx.doi.org/10.1103/PhysRevLett.80.1552
http://dx.doi.org/10.1103/PhysRevLett.80.1552
http://dx.doi.org/10.1016/0001-8686(91)80022-C
http://dx.doi.org/10.1007/s10404-004-0012-9
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1103/PhysRev.119.53
http://dx.doi.org/10.1002/andp.19223731003
http://dx.doi.org/10.1103/PhysRev.75.1169


Bibliography

A. Fick. Über Diffusion. Ann. Phys., 94:59–86, 1855. doi: 10.1002/andp.18551700105.

M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, and U. Rant. Electrically facil-
itated translocations of proteins through silicon nitride nanopores: Conjoint and
competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett., 10
(6):2162–2167, 2010. doi: 10.1021/nl100861c.

P. Flory. Thermodynamics of High Polymer Solutions. J. Chem. Phys., 10(1):51–61,
1942. doi: 10.1063/1.1723621.

J. Fourier. Mémoire sur la propagation de la chaleur dans les corps solides. Nouveau
bulletin des sciences par la société philomathique de Paris, 1807.

J. A. Freund and L. Schimansky-Geier. Diffusion in discrete ratchets. Phys. Rev. E,
60(2):1304–1309, 1999. doi: 10.1103/PhysRevE.60.1304.

E. Frey and K. Kroy. Brownian motion: a paradigm of soft matter and biological
physics. Ann. Phys., 14(1-3):20–50, 2005. doi: 10.1002/andp.200410132.

A. Gallardo, S. Grandner, N. G. Almarza, and S. H. L. Klapp. Theory of repul-
sive charged colloids in slit-pores. J. Chem. Phys., 137(1):014702, 2012. doi:
10.1063/1.4730923.

P. R. C. Gascoyne and J. Vykoukal. Particle separation by dielec-
trophoresis. Electrophoresis, 23(13):1973–1983, 2002. doi: 10.1002/1522-
2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1.

P. R. C. Gascoyne, X. Wang, Y. Huang, and F. Becker. Dielectrophoretic separa-
tion of cancer cells from blood. IEEE T. Ind. Appl., 33(3):670–678, 1997. doi:
10.1109/28.585856.

P. Gaspard and F. Baras. Chaotic scattering and diffusion in the Lorentz gas. Phys.
Rev. E, 51(6):5332–5352, 1995. doi: 10.1103/PhysRevE.51.5332.

P. Gaspard, M. E. Briggs, M. K. Francis, J. V. Sengers, R. W. Gammon, J. R. Dorfman,
and R. V. Calabrese. Experimental evidence for microscopic chaos. Nature, 394
(6696):026103, 1998. doi: 10.1038/29721.

P. K. Ghosh, P. Hänggi, F. Marchesoni, S. Martens, F. Nori, L. Schimansky-Geier, and
G. Schmid. Driven Brownian transport through arrays of symmetric obstacles. Phys.
Rev. E, 85(1):011101, 2012a. doi: 10.1103/PhysRevE.85.011101.

P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid. Detectable inertial
effects on Brownian transport through narrow pores. Europhys. Lett., 98(5):50002,
2012b. doi: 10.1209/0295-5075/98/50002.

P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid. Brownian trans-
port in corrugated channels with inertia. Phys. Rev. E, 86(2):021112, 2012c. doi:
10.1103/PhysRevE.86.021112.

160

http://dx.doi.org/10.1002/andp.18551700105
http://dx.doi.org/10.1021/nl100861c
http://dx.doi.org/10.1063/1.1723621
http://dx.doi.org/10.1103/PhysRevE.60.1304
http://dx.doi.org/10.1002/andp.200410132
http://dx.doi.org/10.1063/1.4730923
http://dx.doi.org/10.1063/1.4730923
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1103/PhysRevE.51.5332
http://dx.doi.org/10.1038/29721
http://dx.doi.org/10.1103/PhysRevE.85.011101
http://dx.doi.org/10.1209/0295-5075/98/50002
http://dx.doi.org/10.1103/PhysRevE.86.021112
http://dx.doi.org/10.1103/PhysRevE.86.021112


Bibliography

P. Gondret, N. Rakotomalala, M. Rabaud, D. Salin, and P. Watzky. Viscous parallel
flows in finite aspect ratio Hele-Shaw cell: Analytical and numerical results. Phys.
Fluids, 9:1841–1843, 1997. doi: 10.1063/1.869301.

P. Gravesen, J. Branebjerg, and O. Jensen. Microfluidics - a review. J. Micromech.
Microeng., 3:168, 1993. doi: 10.1088/0960-1317/3/4/002.

I. V. Grigoriev, Y. A. Makhnovskii, A. M. Berezhkovskii, and V. Y. Zitserman. Kinetics
of escape through a small hole. J. Chem. Phys., 116(22):9574–9577, 2002. doi:
10.1063/1.1475756.

A. Groisman and S. R. Quake. A microfluidic rectifier: Anisotropic flow resistance at
low Reynolds numbers. Phys. Rev. Lett., 92(9):094501, 2004. doi: 10.1103/Phys-
RevLett.92.094501.

K. Hahn, J. Kärger, and V. Kukla. Single-file diffusion observation. Phys. Rev. Lett.,
76(15):2762–2765, 1996. doi: 10.1103/PhysRevLett.76.2762.

P. Hall and D. Papageorgiou. The onset of chaos in a class of Navier-Stokes solutions.
J. Fluid Mech., 393(1):59–87, 1999. doi: 10.1017/S0022112099005364.

P. Hänggi and F. Marchesoni. Introduction: 100 years of Brownian motion. Chaos, 15
(2):026101, 2005. doi: 10.1063/1.1895505.

P. Hänggi and F. Marchesoni. Artificial Brownian motors: Controlling transport on
the nanoscale. Rev. Mod. Phys., 81(1):387, 2009. doi: 10.1103/RevModPhys.81.387.

P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: Fifty years after
Kramers. Rev. Mod. Phys., 62(2):251–341, 1990. doi: 10.1103/RevModPhys.62.251.

P. Hänggi, F. Marchesoni, and F. Nori. Brownian motors. Ann. Phys., 14(1-3):51–70,
2005. doi: 10.1002/andp.200410121.

J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special applica-
tions to particulate media. Prentice-Hall, Inc., Engelwood Cliffs, N. J., 1965. ISBN
9789024728770.

T. Harayama, R. Klages, and P. Gaspard. Deterministic diffusion in flower-shaped
billiards. Phys. Rev. E, 66(2):026211, 2002. doi: 10.1103/PhysRevE.66.026211.

S. Harris. Steady, one-dimensional Brownian motion with an absorbing boundary. J.
Chem. Phys., 75(6):3103–3106, 1981. doi: 10.1063/1.442406.

R. Harrison, P. Todd, S. Rudge, and D. Petrides. Bioseparations Science and Engi-
neering. Oxford University Press, USA, 2002. ISBN 9780195123401.

D. Hennig, L. Schimansky-Geier, and P. Hänggi. Directed transport of an inertial
particle in a washboard potential induced by delayed feedback. Phys. Rev. E, 79(4):
041117, 2009. doi: 10.1103/PhysRevE.79.041117.

W. Hess and R. Klein. Particle separation by dielectrophoresis. Adv. Phys., 32(2):
173–283, 1983. doi: 10.1080/00018738300101551.

161

http://dx.doi.org/10.1063/1.869301
http://dx.doi.org/10.1088/0960-1317/3/4/002
http://dx.doi.org/10.1063/1.1475756
http://dx.doi.org/10.1063/1.1475756
http://dx.doi.org/10.1103/PhysRevLett.92.094501
http://dx.doi.org/10.1103/PhysRevLett.92.094501
http://dx.doi.org/10.1103/PhysRevLett.76.2762
http://dx.doi.org/10.1017/S0022112099005364
http://dx.doi.org/10.1063/1.1895505
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1002/andp.200410121
http://dx.doi.org/10.1103/PhysRevE.66.026211
http://dx.doi.org/10.1063/1.442406
http://dx.doi.org/10.1103/PhysRevE.79.041117
http://dx.doi.org/10.1080/00018738300101551


Bibliography

B. Hille. Ion Channels of Excitable Membranes. Sinauer Associates, 3rd edition, 2001.
ISBN 0878933212.

E. J. Hinch. Application of the Langevin equation to fluid suspensions. J. Fluid Mech.,
72(03):499–511, 1975. doi: 10.1017/S0022112075003102.

D. A. Hoagland and R. K. Prud’Homme. Taylor-aris dispersion arising from flow in a
sinusoidal tube. AIChE Journal, 31(2):236–244, 1985. doi: 10.1002/aic.690310210.

S. Howorka and Z. Siwy. Nanopore analytics: sensing of single molecules. Chem. Soc.
Rev., 38:2360, 2009. doi: 10.1039/B813796J.

X. Hu, P. H. Bessette, J. Qian, C. D. Meinhart, P. S. Daugherty, and H. T. Soh. Marker-
specific sorting of rare cells using dielectrophoresis. Proc. Nat. Ac. Sc. U.S.A, 102
(44):15757–15761, 2005. doi: 10.1073/pnas.0507719102.

L. Huang, J. Tegenfeldt, J. Kraeft, J. Sturm, R. Austin, and E. Cox. A DNA prism
for high-speed continuous fractionation of large DNA molecules. Nat. Biotechnol.,
20(10):1048–1051, 2002. doi: 10.1038/nbt733.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin.
Direct observation of the full transition from ballistic to diffusive Brownian motion
in a liquid. Nat. Phys., 7(7):576–580, 2011. doi: 10.1038/nphys1953.

T. Hughes. The finite element method: linear static and dynamic finite element analy-
sis. Dover Civil and Mechanical Engineering Series. Dover Publications, 2000. ISBN
9780486411811.

J. Ingen-Housz. Bemerkungen über den Gebrauch des Vergrösserungsglases. Verm.
Schriften Physisch-Medicinischen Inhalts, 1784.

J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press. Elsevier Science
& Technology, 2011. ISBN 9780123919274.

M. Jacobs. Diffusion Processes. Springer, New York, 2 edition, 1967. ISBN
9783540038825.

G. G. Joseph, R. Zenit, M. L. Hunt, and A. M. Rosenwinkel. Particle–wall collisions in
a viscous fluid. J. Fluid Mech., 433:329–346, 2001. doi: 10.1017/S0022112001003470.

P. Joseph and P. Tabeling. Direct measurement of the apparent slip length. Phys. Rev.
E, 71(3):035303, 2005. doi: 10.1103/PhysRevE.71.035303.

T. Jovanovic-Talisman, J. Tetenbaum-Novatt, A. S. McKenney, A. Zilman, R. Peters,
M. P. Rout, and B. T. Chait. Artificial nanopores that mimic the transport selec-
tivity of the nuclear pore complex. Nature, 457:1023 – 1027, 2009. doi: 10.1038/na-
ture07600.

A. J. Kainz and U. M. Titulaer. The analytic structure of the stationary kinetic
boundary layer for Brownian particles near an absorbing wall. J. Phys. A: Math.
Gen., 24(19):4677–4695, 1991. doi: 10.1088/0305-4470/24/19/027.

162

http://dx.doi.org/10.1017/S0022112075003102
http://dx.doi.org/10.1002/aic.690310210
http://dx.doi.org/10.1039/B813796J
http://dx.doi.org/10.1073/pnas.0507719102
http://dx.doi.org/10.1038/nbt733
http://dx.doi.org/10.1038/nphys1953
http://dx.doi.org/10.1017/S0022112001003470
http://dx.doi.org/10.1103/PhysRevE.71.035303
http://dx.doi.org/10.1038/nature07600
http://dx.doi.org/10.1038/nature07600
http://dx.doi.org/10.1088/0305-4470/24/19/027


Bibliography

P. Kalinay. Mapping of forced diffusion in quasi-one-dimensional systems. Phys. Rev.
E, 80(3):031106, 2009. doi: 10.1103/PhysRevE.80.031106.

P. Kalinay and J. K. Percus. Corrections to the Fick-Jacobs equation. Phys. Rev. E,
74(4):041203, 2006. doi: 10.1103/PhysRevE.74.041203.

P. Kalinay and J. K. Percus. Approximations of the generalized Fick-Jacobs equation.
Phys. Rev. E, 78(2):021103–021117, 2008. doi: 10.1103/PhysRevE.78.021103.

P. Kalinay and J. K. Percus. Mapping of diffusion in a channel with abrupt change of
diameter. Phys. Rev. E, 82(3):031143, 2010. doi: 10.1103/PhysRevE.82.031143.

Y. Kang and D. Li. Electrokinetic motion of particles and cells in microchannels.
Microfluid. Nanofluid., 6(4):431–460, 2009. doi: 10.1007/s10404-009-0408-7.

Y. Kang, D. Li, S. A. Kalams, and J. E. Eid. DC-Dielectrophoretic separation of biolo-
gical cells by size. Biomed. Microdevices, 10(2):243–249, 2008. doi: 10.1007/s10544-
007-9130-y.

J. Kärger. Diffusion Measurements by NMR Techniques. In Adsorption and Diffusion,
volume 7 of Molecular Sieves, pages 85–133. Springer-Verlag, Berlin - Heidelberg,
2008. doi: 10.1007/3829_2007_019.

J. Kärger and D. M. Ruthven. Diffusion in zeolites and other microporous solids. Willey
& Sons, New York, 1992. ISBN 0-471-50907-8.

G. Karniadakis and G. Triantafyllou. Three-dimensional dynamics and transition to
turbulence in the wake of bluff objects. J. Fluid Mech., 238(1):1–30, 1992. doi:
10.1017/S0022112092001617.

F. J. Keil, R. Krishna, and M.-O. Coppens. Modeling of diffusion in zeolites. Rev.
Chem. Eng., 16(2):71–197, 2000. doi: 10.1515/REVCE.2000.16.2.71.

C. Kettner, P. Reimann, P. Hänggi, and F. Müller. Drift ratchet. Phys. Rev. E, 61(1):
312–323, 2000. doi: 10.1103/PhysRevE.61.312.

U. F. Keyser, B. N. Koeleman, S. van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay,
N. H. Dekker, and C. Dekker. Direct force measurements on DNA in a solid-state
nanopore. Nature Phys., 2:473–477, 2006. doi: 10.1038/nphys344.

P. K. Kitanidis and B. B. Dykaar. Stokes Flow in a Slowly Varying Two-
Dimensional Periodic Pore. Transport Porous Med., 26(1):89–98, 1997. doi:
10.1023/A:1006575028391.

R. Klages. Deterministic diffusion in one-dimensional chaotic dynamical systems. Wis-
senschaft und Technik Verlag, Berlin, 1996. ISBN 3-928943-49-9.

R. Klages. Transitions from deterministic to stochastic diffusion. Europhys. Lett., 57
(6):796, 2002. doi: 10.1209/epl/i2002-00581-4.

P. Kloeden and E. Platen. Numerical Solutions of Stoachstic Differential Equations.
Springer, Berlin, 4 edition, 1999. ISBN 3540540628.

163

http://dx.doi.org/10.1103/PhysRevE.80.031106
http://dx.doi.org/10.1103/PhysRevE.74.041203
http://dx.doi.org/10.1103/PhysRevE.78.021103
http://dx.doi.org/10.1103/PhysRevE.82.031143
http://dx.doi.org/10.1007/s10404-009-0408-7
http://dx.doi.org/10.1007/s10544-007-9130-y
http://dx.doi.org/10.1007/s10544-007-9130-y
http://dx.doi.org/10.1007/3829_2007_019
http://dx.doi.org/10.1017/S0022112092001617
http://dx.doi.org/10.1017/S0022112092001617
http://dx.doi.org/10.1515/REVCE.2000.16.2.71
http://dx.doi.org/10.1103/PhysRevE.61.312
http://dx.doi.org/10.1038/nphys344
http://dx.doi.org/10.1023/A:1006575028391
http://dx.doi.org/10.1023/A:1006575028391
http://dx.doi.org/10.1209/epl/i2002-00581-4


Bibliography

I. D. Kosińska, I. Goychuk, M. Kostur, G. Schmid, and P. Hänggi. Rectification in
synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Phys.
Rev. E, 77(3):031131, 2008. doi: 10.1103/PhysRevE.77.031131.

V. V. Kozlov and D. V. Treshchëv. Billiards, a Genetic Introduction to the Dynamics
of Systems with Impacts. Trans. Math. Monog., 89, 1991.

H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica (Utrecht), 7(4):284, 1940. doi: 10.1016/S0031-8914(40)90098-2.

R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory
and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn.,
12(6):570–586, 1957. doi: 10.1143/JPSJ.12.570.

W. Kuhn. Über die Gestalt fadenförmiger Moleküle in Lösungen. Colloid Polym. Sci.,
68(1):2–15, 1934. doi: 10.1007/BF01451681.

N. Laachi, M. Kenward, E. Yariv, and K. D. Dorfman. Force-driven transport through
periodic entropy barriers. Europhys. Lett., 80(5):50009, 2007. doi: 10.1209/0295-
5075/80/50009.

L. Landau and E. Lifschitz. Hydrodynamik. Verlag Harri Deutsch GmbH, 1991. ISBN
978-3-8171-1331-6.

P. Langevin. Sur la théorie du mouvement brownien. C. R. Acad. Sci. (Paris), 146:
530–533, 1908.

E. Lauga, A. D. Stroock, and H. A. Stone. Three-dimensional flows in slowly varying
planar geometries. Phys. Fluids, 16(8):3051–3062, 2004. doi: 10.1063/1.1760105.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen. Measurement of the Instanta-
neous Velocity of a Brownian Particle. Science, 328(5986):1673–1675, 2010. doi:
10.1126/science.1189403.

S. Lifson and J. L. Jackson. On the self-diffusion of ions in a polyelectrolyte solution.
J. Chem. Phys., 36(9):2410–2414, 1962. doi: 10.1063/1.1732899.

B. Lindner and L. Schimansky-Geier. Noise-Induced Transport with Low Randomness.
Phys. Rev. Lett., 89(23):230602–230605, 2002. doi: 10.1103/PhysRevLett.89.230602.

B. Lindner, M. Kostur, and L. Schimansky-Geier. Optimal diffusive transport
in a tilted periodic potential. Fluct. Noise Lett., 01(01):R25–R39, 2001. doi:
10.1142/S0219477501000056.

B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects
of noise in excitable systems. Phys. Rep., 392(6):321 – 424, 2004. doi:
10.1016/j.physrep.2003.10.015.

M. MacDonald, G. Spalding, and K. Dholakia. Microfluidic sorting in an optical lattice.
Nature, 426(6965):421, 2003.

164

http://dx.doi.org/10.1103/PhysRevE.77.031131
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1007/BF01451681
http://dx.doi.org/10.1209/0295-5075/80/50009
http://dx.doi.org/10.1209/0295-5075/80/50009
http://dx.doi.org/10.1063/1.1760105
http://dx.doi.org/10.1126/science.1189403
http://dx.doi.org/10.1126/science.1189403
http://dx.doi.org/10.1063/1.1732899
http://dx.doi.org/10.1103/PhysRevLett.89.230602
http://dx.doi.org/10.1142/S0219477501000056
http://dx.doi.org/10.1142/S0219477501000056
http://dx.doi.org/10.1016/j.physrep.2003.10.015
http://dx.doi.org/10.1016/j.physrep.2003.10.015


Bibliography

J. Machta. Power law decay of correlations in a billiard problem. J. Stat. Phys., 32(3):
555–564, 1983. doi: 10.1007/BF01008956.

J. Machta and R. Zwanzig. Diffusion in a Periodic Lorentz Gas. Phys. Rev. Lett., 50
(25):1959–1962, 1983. doi: 10.1103/PhysRevLett.50.1959.

L. Machura, M. Kostur, P. Talkner, J. Łuczka, and P. Hänggi. Absolute Negative
Mobility Induced by Thermal Equilibrium Fluctuations. Phys. Rev. Lett., 98(4):
040601, 2007. doi: 10.1103/PhysRevLett.98.040601.

Y. Makhnovskii, A. M. Berezhkovskii, and V. Y. Zitserman. Diffusion in
a tube of alternating diameter. Chem. Phys, 370(1):238, 2010. doi:
10.1016/j.chemphys.2010.04.012.

R. Mannella. A gentle introduction to the integration of stochastic differential equa-
tions. In Stochastic Processes in Physics, Chemistry, and Biology, volume 557 of
Lecture Notes in Physics, pages 353–364. Springer Berlin Heidelberg, 2000. ISBN
9783540410744. doi: 10.1007/3-540-45396-2_32.

F. Marchesoni and S. Savel’ev. Rectification currents in two-dimensional artificial chan-
nels. Phys. Rev. E, 80(1):011120, 2009. doi: 10.1103/PhysRevE.80.011120.

C. Marquet, A. Buguin, L. Talini, and P. Silberzan. Rectified Motion of Colloids in
Asymmetrically Structured Channels. Phys. Rev. Lett., 88(16):168301–168304, 2002.
doi: 10.1103/PhysRevLett.88.168301.

S. Martens, G. Schmid, L. Schimansky-Geier, and P. Hänggi. Entropic particle trans-
port: Higher-order corrections to the Fick-Jacobs diffusion equation. Phys. Rev. E,
83(5):051135, 2011a. doi: 10.1103/PhysRevE.83.051135.

S. Martens, G. Schmid, L. Schimansky-Geier, and P. Hänggi. Biased Brownian motion
in extremely corrugated tubes. Chaos, 21(4):047518, 2011b. doi: 10.1063/1.3658621.

S. Martens, I. M. Sokolov, and L. Schimansky-Geier. Communication: Impact of inertia
on biased Brownian transport in confined geometries. J. Chem. Phys., 136(11):
111102, 2012a. doi: 10.1063/1.3696002.

S. Martens, A. V. Straube, G. Schmid, L. Schimansky-Geier, and P. Hänggi. Hydro-
dynamically enforced entropic trapping of Brownian particles. Phys. Rev. Lett., in
press, 2012b.

F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino, and M. Fer-
rari. Tailoring width of microfabricated nanochannels to solute size can be used
to control diffusion kinetics. J. Controll. Release, 102(1):123–133, 2005. doi:
10.1016/j.jconrel.2004.09.024.

K. Mathwig, F. Müller, and U. Gösele. Particle transport in asymmetrically modulated
pores. New J. Phys., 13(3):033038, 2011. doi: 10.1088/1367-2630/13/3/033038.

165

http://dx.doi.org/10.1007/BF01008956
http://dx.doi.org/10.1103/PhysRevLett.50.1959
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1016/j.chemphys.2010.04.012
http://dx.doi.org/10.1016/j.chemphys.2010.04.012
http://dx.doi.org/10.1007/3-540-45396-2_32
http://dx.doi.org/10.1103/PhysRevE.80.011120
http://dx.doi.org/10.1103/PhysRevLett.88.168301
http://dx.doi.org/10.1103/PhysRevE.83.051135
http://dx.doi.org/10.1063/1.3658621
http://dx.doi.org/10.1063/1.3696002
http://dx.doi.org/10.1016/j.jconrel.2004.09.024
http://dx.doi.org/10.1016/j.jconrel.2004.09.024
http://dx.doi.org/10.1088/1367-2630/13/3/033038


Bibliography

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul., 8(1):3–30, 1998. doi: 10.1145/272991.272995.

S. Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and C. Clementi. Dynamics of
Polymer Translocation through Nanopores: Theory meets Experiment. Phys. Rev.
Lett., 96(11):118103, 2006. doi: 10.1103/PhysRevLett.96.118103.

M. R. Maxey. On the Advection of Spherical and Non-Spherical Particles in a
Non-Uniform Flow. Phil. Trans. R. Soc. Lond. A, 333(1631):289–307, 1990. doi:
10.1098/rsta.1990.0162.

M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform
flow. Phys. Fluids, 26(4):883–889, 1983. doi: 10.1063/1.864230.

A. Meller, L. Nivon, and D. Branton. Voltage-Driven DNA Translocations through
a Nanopore. Phys. Rev. Lett., 86(15):3435–3438, 2001. doi: 10.1103/Phys-
RevLett.86.3435.

N. A. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp. Micropump based
on electroosmosis of the second kind. Electrophoresis, 30(20):3499–3506, 2009. doi:
10.1002/elps.200900271.

N. A. Mortensen, F. Okkels, and H. Bruus. Reexamination of Hagen-Poiseuille flow:
Shape dependence of the hydraulic resistance in microchannels. Phys. Rev. E, 71(5):
057301, 2005. doi: 10.1103/PhysRevE.71.057301.

M. Muthukumar. Translocation of a confined polymer through a hole. Phys. Rev. Lett.,
86(14):3188–3191, 2001. doi: 10.1103/PhysRevLett.86.3188.

J. Nagel, D. Speer, T. Gaber, A. Sterck, R. Eichhorn, P. Reimann, K. Ilin, M. Siegel,
D. Koelle, and R. Kleiner. Observation of Negative Absolute Resistance in a
Josephson Junction. Phys. Rev. Lett., 100(21):217001, 2008. doi: 10.1103/Phys-
RevLett.100.217001.

T. Neusius, I. M. Sokolov, and J. C. Smith. Subdiffusion in time-averaged, confined
random walks. Phys. Rev. E, 80(1):011109, 2009. doi: 10.1103/PhysRevE.80.011109.

T. Odijk. The statistics and dynamics of confined or entangled stiff polymers. Macro-
molecules, 16(8):1340–1344, 1983. doi: 10.1021/ma00242a015.

M. S. N. Oliveira, M. A. Alves, F. Pinho, and G. McKinley. Viscous flow through
microfabricated hyperbolic contractions. Exp. Fluids, 43(2):437–451, 2007. doi:
10.1007/s00348-007-0306-2.

M. S. N. Oliveira, L. E. Rodd, G. McKinley, and M. A. Alves. Simulations of extensional
flow in microrheometric devices. Microfluid. Nanofluid., 5(6):809–826, 2008. doi:
10.1007/s10404-008-0277-5.

C. W. Oseen. Über die Stokes’sche Formel, und über eine verwandte Aufgabe in der
Hydrodynamik. Arkiv för matematik, astronomi och fysik, vi:29, 1910.

166

http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1103/PhysRevLett.96.118103
http://dx.doi.org/10.1098/rsta.1990.0162
http://dx.doi.org/10.1098/rsta.1990.0162
http://dx.doi.org/10.1063/1.864230
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1002/elps.200900271
http://dx.doi.org/10.1002/elps.200900271
http://dx.doi.org/10.1103/PhysRevE.71.057301
http://dx.doi.org/10.1103/PhysRevLett.86.3188
http://dx.doi.org/10.1103/PhysRevLett.100.217001
http://dx.doi.org/10.1103/PhysRevLett.100.217001
http://dx.doi.org/10.1103/PhysRevE.80.011109
http://dx.doi.org/10.1021/ma00242a015
http://dx.doi.org/10.1007/s00348-007-0306-2
http://dx.doi.org/10.1007/s00348-007-0306-2
http://dx.doi.org/10.1007/s10404-008-0277-5
http://dx.doi.org/10.1007/s10404-008-0277-5


Bibliography

N. Pamme and C. Wilhelm. Continuous sorting of magnetic cells via on-chip free-flow
magnetophoresis. Lab Chip, 6(8):974–980, 2006. doi: 10.1039/b604542a.

A. Parashar, R. Lycke, J. A. Carr, and S. Pandey. Amplitude-modulated sinusoidal
microchannels for observing adaptability in C. elegans locomotion. Biomicrofluidics,
5(2):024112, 2011. doi: 10.1063/1.3604391.

M. Patriarca, P. Szelestey, and E. Heinsalu. Brownian model of dissociated dislocations.
Acta Phys. Pol. B, 36(5):1745, 2005.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E.
Mallouk, P. E. Lammert, and V. H. Crespi. Catalytic nanomotors: Autonomous
movement of striped Nanorods. J. Amer. Chem. Soc., 126(41):13424–13431, 2004.
doi: 10.1021/ja047697z.

J. C. E. Péclet. Sur la determination des coefficients de conductibilite des metaux par
la chaleur. Ann. Chim. Phys., 3:107, 1841.

D. Pedone, M. Langecker, G. Abstreiter, and U. Rant. A Pore-Cavity-Pore Device
to Trap and Investigate Single Nanoparticles and DNA Molecules in a Femtoliter
Compartment: Confined Diffusion and Narrow Escape. Nano Lett., 11(4):1561–1567,
2011. doi: 10.1021/nl104359c.

J. B. Perrin. Mouvement brownien et réalité moléculaire. Ann. Chim. Phys. 8ième
série, 18:5–114, 1909.

F. Petersson, L. Aberg, A.-M. Sward-Nilsson, and T. Laurell. Free flow acoustophoresis:
Microfluidic-based mode of particle and cell separation. Anal. Chem., 79(14):5117–
5123, 2007. doi: 10.1021/ac070444e.

O. Pironneau, F. Hecht, and J. Morice. FreeFEM++, 2012. URL http://www.
freefem.org.

S. B. Pope and E. S. C. Ching. Stationary probability density functions: An exact
result. Phys. Fluids A, 5(7):1529–1531, 1993. doi: 10.1063/1.858830.

E. M. Purcell. Life at low reynolds number. Am. J. Phys, 45:3–11, 1977. doi:
10.1119/1.10903.

K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A,
170(6):421–428, 1992. doi: 10.1016/0375-9601(92)90745-8.

P. K. Radtke and L. Schimansky-Geier. Directed transport of confined Brownian
particles with torque. Phys. Rev. E, 85(5):051110, 2012. doi: 10.1103/Phys-
RevE.85.051110.

D. Reguera and J. M. Rubí. Kinetic equations for diffusion in the presence of en-
tropic barriers. Phys. Rev. E, 64(6):061106–061113, 2001. doi: 10.1103/Phys-
RevE.64.061106.

167

http://dx.doi.org/10.1039/b604542a
http://dx.doi.org/10.1063/1.3604391
http://dx.doi.org/10.1021/ja047697z
http://dx.doi.org/10.1021/nl104359c
http://dx.doi.org/10.1021/ac070444e
http://www.freefem.org
http://www.freefem.org
http://dx.doi.org/10.1063/1.858830
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1016/0375-9601(92)90745-8
http://dx.doi.org/10.1103/PhysRevE.85.051110
http://dx.doi.org/10.1103/PhysRevE.85.051110
http://dx.doi.org/10.1103/PhysRevE.64.061106
http://dx.doi.org/10.1103/PhysRevE.64.061106


Bibliography

D. Reguera, G. Schmid, P. S. Burada, J. M. Rubí, P. Reimann, and P. Hänggi. En-
tropic transport: Kinetics, scaling, and control mechanisms. Phys. Rev. Lett., 96
(13):130603, 2006. doi: 10.1103/PhysRevLett.96.130603.

D. Reguera, A. Luque, P. S. Burada, G. Schmid, J. M. Rubí, and P. Hänggi. En-
tropic splitter for particle separation. Phys. Rev. Lett., 108(2):020604, 2012. doi:
10.1103/PhysRevLett.108.020604.

P. Reimann. Brownian motors: noisy transport far from equilibrium. Phys. Rep., 361
(2-4):57–265, 2002. doi: 10.1016/S0370-1573(01)00081-3.

P. Reimann, C. van den Broeck, H. Linke, P. Hänggi, J. M. Rubí, and A. Pérez-Madrid.
Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev.
Lett., 87(1):010602, 2001. doi: 10.1103/PhysRevLett.87.010602.

P. Reimann, C. van den Broeck, H. Linke, P. Hänggi, J. M. Rubí, and A. Pérez-Madrid.
Diffusion in tilted periodic potentials: Enhancement, universality, and scaling. Phys.
Rev. E, 65(3):031104, 2002. doi: 10.1103/PhysRevE.65.031104.

O. Reynolds. On the theory of lubrication and its application to Mr. Beauchamp tower’s
experiments, including an experimental determination of the viscosity of olive oil.
Philos. T. R. Soc. Lond., 177:157–234, 1886. doi: 10.1098/rstl.1886.0005.

W. Riefler, G. Schmid, P. S. Burada, and P. Hänggi. Entropic transport of finite size
particles. J. Phys. Condens. Matter, 22(45):454109–454115, 2010. doi: 10.1088/0953-
8984/22/45/454109.

H. Risken. The Fokker-Planck Equation. Springer, Berlin, 2nd edition, 1989. ISBN
3540504982.

S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V. Agafonov, P. Launois, V. Davy-
dov, A. V. Rakhmanina, H. Kataura, and J.-L. Sauvajol. How Confinement Affects
the Dynamics of C60 in Carbon Nanopeapods. Phys. Rev. Lett., 101(6):065507, 2008.
doi: 10.1103/PhysRevLett.101.065507.

P. Romanczuk and L. Schimansky-Geier. Brownian Motion with Active Fluctuations.
Phys. Rev. Lett., 106(23):230601, 2011. doi: 10.1103/PhysRevLett.106.230601.

P. Romanczuk, F. Müller, and L. Schimansky-Geier. Quasideterministic transport of
Brownian particles in an oscillating periodic potential. Phys. Rev. E, 81(6):061120,
2010. doi: 10.1103/PhysRevE.81.061120.

P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier. Ac-
tive Brownian particles. Eur. Phys. J. - Spec. Top., 202(1):1–162, 2012. doi:
10.1140/epjst.

D. A. Rose. Some aspects of the hydrodynamic dispersion of solutes in porous materials.
J. Soil Sci., 24(3):284–295, 1973. doi: 10.1111/j.1365-2389.1973.tb00766.x.

168

http://dx.doi.org/10.1103/PhysRevLett.96.130603
http://dx.doi.org/10.1103/PhysRevLett.108.020604
http://dx.doi.org/10.1103/PhysRevLett.108.020604
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1103/PhysRevLett.87.010602
http://dx.doi.org/10.1103/PhysRevE.65.031104
http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1088/0953-8984/22/45/454109
http://dx.doi.org/10.1088/0953-8984/22/45/454109
http://dx.doi.org/10.1103/PhysRevLett.101.065507
http://dx.doi.org/10.1103/PhysRevLett.106.230601
http://dx.doi.org/10.1103/PhysRevE.81.061120
http://dx.doi.org/10.1140/epjst
http://dx.doi.org/10.1140/epjst
http://dx.doi.org/10.1111/j.1365-2389.1973.tb00766.x


Bibliography

S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan. Modeling gas flow
through microchannels and nanopores. J. Appl. Phys., 93(8):4870–4879, 2003. doi:
10.1063/1.1559936.

S. Rüdiger and L. Schimansky-Geier. Dynamics of excitable elements with time-delayed
coupling. J. Theor. Bio., 259(1):96 – 100, 2009. doi: 10.1016/j.jtbi.2009.01.030.

P. G. Saffman. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22(2):
385–400, 1965. doi: 10.1017/S0022112065000824.

M. Schindler, P. Talkner, M. Kostur, and P. Hänggi. Accumulating particles
at the boundaries of a laminar flow. Physica A, 385(1):46–58, 2007. doi:
10.1016/j.physa.2007.06.030.

J. V. Selinger and U. M. Titulaer. The kinetic boundary layer for the Klein-Kramers
equation. A new numerical approach. J. Stat. Phys., 36(3-4):293–319, 1984. doi:
10.1007/BF01010986.

Y. G. Sinai. Dynamical systems with elastic reflections: Ergodic properties of dispersing
billiards. Russ. Math. Surveys Dokl. Acad. Sci. USSR, 25:137, 1970.

Z. Siwy and A. Fulinski. A nanodevice for rectification and pumping ions. Am. J.
Phys., 72(5):567–574, 2004. doi: 10.1119/1.1648328.

Z. Siwy, I. D. Kosińska, A. Fuliński, and C. R. Martin. Asymmetric Diffusion through
Synthetic Nanopores. Phys. Rev. Lett., 94(4):048102, 2005. doi: 10.1103/Phys-
RevLett.94.048102.

J. L. Skinner and P. G. Wolynes. Derivation of Smoluchowski equations with corrections
for Fokker-Planck and BGK collision models. Physica A, 96(3):561–572, 1979. doi:
10.1016/0378-4371(79)90013-X.

G. W. Slater, H. L. Guo, and G. I. Nixon. Bidirectional Transport of Polyelectrolytes
Using Self-Modulating Entropic Ratchets. Phys. Rev. Lett., 78(6):1170–1173, 1997.
doi: 10.1103/PhysRevLett.78.1170.

G. W. Slater, S. Guillouzic, M. Gauthier, J.-F. Mercier, M. Kenward, L. C. McCormick,
and F. Tessier. Theory of DNA electrophoresis. Electrophoresis, 23(22-23):3791–3816,
2002. doi: 10.1002/elps.200290002.

D. Smith, T. Perkins, and S. Chu. Dynamical Scaling of DNA Diffusion Coefficients.
Macromolecules, 29(4):1372–1373, 1996. doi: 10.1021/ma951455p.

I. M. Sokolov. Statistical mechanics of entropic forces: disassembling a toy. Eur. Phys.
J., 31(6):1353–1367, 2010. doi: 10.1088/0143-0807/31/6/005.

M. Sommerfeld. Modelling of particle-wall collisions in confined gas-particle flows. Int.
J. Multiphase Flow, 18(6):905–926, 1992. doi: 10.1016/0301-9322(92)90067-Q.

L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux. Struc-
ture of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science, 274
(5294):1859–1865, 1996. doi: 10.1126/science.274.5294.1859.

169

http://dx.doi.org/10.1063/1.1559936
http://dx.doi.org/10.1063/1.1559936
http://dx.doi.org/10.1016/j.jtbi.2009.01.030
http://dx.doi.org/10.1017/S0022112065000824
http://dx.doi.org/10.1016/j.physa.2007.06.030
http://dx.doi.org/10.1016/j.physa.2007.06.030
http://dx.doi.org/10.1007/BF01010986
http://dx.doi.org/10.1007/BF01010986
http://dx.doi.org/10.1119/1.1648328
http://dx.doi.org/10.1103/PhysRevLett.94.048102
http://dx.doi.org/10.1103/PhysRevLett.94.048102
http://dx.doi.org/10.1016/0378-4371(79)90013-X
http://dx.doi.org/10.1016/0378-4371(79)90013-X
http://dx.doi.org/10.1103/PhysRevLett.78.1170
http://dx.doi.org/10.1002/elps.200290002
http://dx.doi.org/10.1021/ma951455p
http://dx.doi.org/10.1088/0143-0807/31/6/005
http://dx.doi.org/10.1016/0301-9322(92)90067-Q
http://dx.doi.org/10.1126/science.274.5294.1859


Bibliography

G. Soni, T. M. Squires, and C. D. Meinhart. Nonlinear phenomena in induced-charge
electroosmosis. Proceedings of IMECE2007, ASME international mechanical engi-
neering congress and exposition, Seattle, Washington, USA, 2007.

T. M. Squires and M. Z. Bazant. Induced-charge electro-osmosis. J. Fluid Mech., 509:
217–252, 2004. doi: 10.1017/S0022112004009309.

T. M. Squires and M. Z. Bazant. Breaking symmetries in induced-charge
electro-osmosis and electrophoresis. J. Fluid Mech., 560:65–101, 2006. doi:
10.1017/S0022112006000371.

T. M. Squires and S. R. Quake. Microfluidics: Fluid physics at the nanoliter scale.
Rev. Mod. Phys., 77(3):977–1026, 2005. doi: 10.1103/RevModPhys.77.977.

V. Srinivasan, V. Pamula, and R. Fair. An integrated digital microfluidic lab-on-a-chip
for clinical diagnostics on human physiological fluids. Lab Chip, 4(4):310–315, 2004.

R. L. Stratonovich. Oscillator synchronization in the presence of noise. Radiotekh.
Elektron. (Moscow), 3:497, 1958.

A. V. Straube. Small-scale particle advection, manipulation and mixing: beyond the
hydrodynamic scale. J. Phys. Condens. Matter, 23(18):184122, 2011.

W. Sutherland. LXXV. A dynamical theory of diffusion for non-electrolytes and the
molecular mass of albumin. Phil. Mag., 9:781–785, 1905.

M. Sven and F. Müller. Asymmetric pores in a silicon membrane acting as mas-
sively parallel brownian ratchets. Nature, 424(6944):53–57, 2003. doi: 10.1038/na-
ture01736.

A. Szabo, K. Schulten, and Z. Schulten. First passage time approach to diffusion
controlled reactions. J. Chem. Phys., 72(8):4350–4357, 1980. doi: 10.1063/1.439715.

G. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube. Phil.
Trans. R. Soc. Lond. A, 219(1137):186–203, 1953. doi: 10.1098/rspa.1953.0139.

M. Teubner. The motion of charged colloidal particles in electric fields. J. Chem. Phys.,
76(11):5564–5573, 1982. doi: 10.1063/1.442861.

V. I. Tikhonov. The effect of noise on phase-locked oscillator operation. Avtom. Tele-
mekh., 20:1188–1196, 1959.

V. I. Tikhonov. Phase-lock automatic frequency control operation in the presence of
noise. Avtom. Telemekh., 21:301–309, 1960.

U. M. Titulaer. A systematic solution procedure for the Fokker-Planck equation of
a Brownian particle in the high-friction case. Physica A, 91:321–344, 1978. doi:
10.1016/0378-4371(78)90182-6.

J. H. van’t Hoff. Etudes de dynamiques chimiques. F. Muller and Co., Amsterdam,
1884.

170

http://dx.doi.org/10.1017/S0022112004009309
http://dx.doi.org/10.1017/S0022112006000371
http://dx.doi.org/10.1017/S0022112006000371
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1038/nature01736
http://dx.doi.org/10.1038/nature01736
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1063/1.442861
http://dx.doi.org/10.1016/0378-4371(78)90182-6
http://dx.doi.org/10.1016/0378-4371(78)90182-6


Bibliography

A. S. Verkman. Solute and macromolecule diffusion in cellular aqueous compartments.
Trends Biochem., 27(1):27 – 33, 2002. doi: 10.1016/S0968-0004(01)02003-5.

V. Vladimirsky and Y. A. Terletzky. Hydrodynamical theory of translational Brownian
motion. Zh. Eksp. Teor. Fiz., 15:258–263, 1945.

J. Voldman. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed.
Eng., 8:425–454, 2006. doi: 10.1146/annurev.bioeng.8.061505.095739.

W. D. Volkmuth and R. H. Austin. DNA electrophoresis in microlithographic arrays.
Nature, 358(6387):600, 1992.

M. von Smoluchowski. Zur kinetischen Theorie der Brown’schen Molekularbe-
wegung und der Suspensionen. Ann. Phys., 326(14):756–780, 1906. doi:
10.1002/andp.19063261405.

M. von Smoluchowski. Über die Brown’sche Molekularbewegung unter Einwirkung
äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsglei-
chung. Ann. Phys., 353(24):1103–1112, 1915. doi: 10.1002/andp.19163532408.

M. von Smoluchowski. Drei Vorträge über Diffusion, Brown’sche Bewegung und Ko-
agulation von Kolloidteilchen. Phys. Z., 17:557–585, 1916.

J. von Stamm, U. Gerdts, T. Buzug, and G. Pfister. Symmetry breaking and period
doubling on a torus in the VLF regime in Taylor-Couette flow. Phys. Rev. E, 54(5):
4938–4957, 1996. doi: 10.1103/PhysRevE.54.4938.

B. Wang, J. Kuo, S. C. Bae, and S. Granick. When Brownian diffusion is not Gaussian.
Nat. Mater., 11(6):481–485, 2012. doi: 10.1038/nmat3308.

X. Wang and G. Drazer. Transport properties of Brownian particles confined to a
narrow channel by a periodic potential. Phys. Fluids, 21(10):102002, 2009. doi:
10.1063/1.3226100.

X. Wang and G. Drazer. Transport of Brownian particles confined to a weakly corru-
gated channel. Phys. Fluids, 22(12):122004, 2010. doi: 10.1063/1.3527546.

Q. Wei, C. Bechinger, and P. Leiderer. Single-file diffusion of colloids in one-dimensional
channels. Science, 287(5453):625–627, 2000. doi: 10.1126/science.287.5453.625.

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough. Nondiffusive Brownian
motion studied by diffusing-wave spectroscopy. Phys. Rev. Lett., 63(16):1747–1750,
1989. doi: 10.1103/PhysRevLett.63.1747.

G. Wilemski. On the derivation of Smoluchowski equations with corrections in the
classical theory of Brownian motion. J. Stat. Phys., 14(2):153–169, 1976. doi:
10.1007/BF01011764.

R.-J. Yang, H.-H. Hou, Y.-N. Wang, C.-H. Lin, and L.-M. Fu. A hydrodynamic focusing
microchannel based on micro-weir shear lift force. Biomicrofluidics, 6(3):034110,
2012. doi: 10.1063/1.4739073.

171

http://dx.doi.org/10.1016/S0968-0004(01)02003-5
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
http://dx.doi.org/10.1002/andp.19063261405
http://dx.doi.org/10.1002/andp.19063261405
http://dx.doi.org/10.1002/andp.19163532408
http://dx.doi.org/10.1103/PhysRevE.54.4938
http://dx.doi.org/10.1038/nmat3308
http://dx.doi.org/10.1063/1.3226100
http://dx.doi.org/10.1063/1.3226100
http://dx.doi.org/10.1063/1.3527546
http://dx.doi.org/10.1126/science.287.5453.625
http://dx.doi.org/10.1103/PhysRevLett.63.1747
http://dx.doi.org/10.1007/BF01011764
http://dx.doi.org/10.1007/BF01011764
http://dx.doi.org/10.1063/1.4739073


Bibliography

E. Yariv and K. D. Dorfman. Electrophoretic transport through channels of periodically
varying cross section. Phys. Fluids, 19(3):037101, 2007. doi: 10.1063/1.2710894.

E. Yariv, H. Brenner, and S. Kim. Curvature-induced dispersion in electro-
osmotic serpentine flows. SIAM J. Appl. Math., 64(4):1099–1124, 2004. doi:
10.1137/S003613990342284X.

Y. Zeng, S. Grandner, C. L. P. Oliveira, A. F. Thunemann, O. Paris, J. S. Pedersen,
S. H. L. Klapp, and R. von Klitzing. Effect of particle size and Debye length on
order parameters of colloidal silica suspensions under confinement. Soft Matter, 7
(22):10899–10909, 2011. doi: 10.1039/C1SM05971H.

C. Zhao and C. Yang. Advances in electrokinetics and their applications in micro/nano
fluidics. Microfluid. Nanofluid., 13(2):179–203, 2012. doi: 10.1007/s10404-012-0971-
1.

H.-X. Zhou and R. Zwanzig. A rate process with an entropy barrier. J. Chem. Phys.,
94(9):6147–6152, 1991. doi: 10.1063/1.460427.

H. X. Zhou, G. N. Rivas, and A. P. Minton. Macromolecular Crowding and Confine-
ment: Biochemical, Biophysical, and Potential Physiological Consequences. Annu.
Rev. Biophys., 37:375 – 397, 2008. doi: 10.1146/annurev.biophys.37.032807.125817.

O. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element Method: Its Basis And
Fundamentals. Elsevier Butterworth-Heinemann, 2005. ISBN 9780750663205.

R. Zwanzig. Diffusion past an entropy barrier. J. Phys. Chem., 96(10):3926–3930, 1992.
doi: 10.1021/j100189a004.

172

http://dx.doi.org/10.1063/1.2710894
http://dx.doi.org/10.1137/S003613990342284X
http://dx.doi.org/10.1137/S003613990342284X
http://dx.doi.org/10.1039/C1SM05971H
http://dx.doi.org/10.1007/s10404-012-0971-1
http://dx.doi.org/10.1007/s10404-012-0971-1
http://dx.doi.org/10.1063/1.460427
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817
http://dx.doi.org/10.1021/j100189a004


List of Figures

1.1. Typical dimensions of a number of particles discussed in the introduction. 2

2.1. Segment of 3D channel geometry with rectangular cross-section . . . . . 13
2.2. Time evolution of the marginal PDF p(x∗, t) as a function of the global

variable x∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Illustration of Jacobs’ approach . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. Sketch of the potential of mean force A(x) . . . . . . . . . . . . . . . . . 19
2.5. Unit cell of 2D channel with corresponding behavior of the spatially

dependent diffusion coefficient D(x, 0) . . . . . . . . . . . . . . . . . . . 23

3.1. Sketch of a segment of a 3D, planar periodically varying channel . . . . 29
3.2. Segment of a sinusoidally modulated 2D channel geometry. . . . . . . . 41
3.3. Schematic sketch of the dependence of expansion parameter ε and as-

pect ratio δ on the maximum width ∆Ω, respectively, the width at the
bottleneck ∆ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Comparison of analytic estimates for stationary PDF and numerics. . . 43
3.5. Particle mobility as function of force magnitude for different aspect ratios. 46
3.6. Comparison of numerics and analytic results for the particle mobility in

3D, planar sinusoidally varying channel for various values of the expan-
sion parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7. Comparison of theory versus numerics for the particle mobility in a 3D,
planar sinusoidal channel for f = 10−3. . . . . . . . . . . . . . . . . . . . 49

3.8. Effective diffusion coefficient as a function of force magnitude for different
aspect ratios δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9. The impact of aspect ratio δ on diffusion peak’s position and on the peak
height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10. Peclet number Pe as function of force magnitude for different aspect ratios. 56
3.11. Sketch of a segment of a cylindrical tube with periodically varying radius

R(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.12. Particle mobility and effective diffusion constant versus external force

magnitude for Brownian particles moving in a sinusoidal tube. . . . . . 64
3.13. Comparison of numerics and analytic results for the particle mobility for

various values of the expansion parameter ε. . . . . . . . . . . . . . . . . 65
3.14. Comparison between analytic estimates and numerical results for particle

mobility versus ε in sinusoidally modulated tubes. . . . . . . . . . . . . 67

4.1. Particle mobility and effective diffusion coefficient as a function of the
force magnitude for various forcing angles. . . . . . . . . . . . . . . . . . 72

173



List of Figures

4.2. Induced-charge electroosmotic flow streamlines over conducting patch
and around a charged polarizable cylindrical wire. . . . . . . . . . . . . 73

4.3. Sketch of a segment of a reflection-symmetric sinusoidally varying chan-
nel with exemplary force field f(q) containing vortices and stagnation
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4. Leading order solutions for the local pressure and the streamfunction. . 79
4.5. Mean particle current and effective diffusion coefficient as a function of

aspect ratio for purely flow driven transport. . . . . . . . . . . . . . . . 81
4.6. Comparison of analytic estimates for stationary marginal PDF and nu-

merics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7. Mean particle velocity and EDC versus applied pressure drop in a 2D

sinusoidal channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8. Stationary joint PDF and force field for biased and flow driven systems. 85
4.9. Impact of critical force magnitude and aspect ratio on the energy barrier

within one unit cell δF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.10. Time evolution of marginal PDF and of the PDF to find a particle within

the starting unit cell at time t. . . . . . . . . . . . . . . . . . . . . . . . 87

5.1. Dependence of the effective boundary function for the particle’s center
on the diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2. Particle mobility and EDC as a function of the force magnitude for
extended particles in a 2D sinusoidally modulated channel . . . . . . . . 93

5.3. Relative error between FJ estimate and the numerically obtained particle
mobility versus the force magnitude for extended particles. . . . . . . . 94

5.4. Particle mobility and EDC as a function of the force magnitude and
particle diameter for a 2D sinusoidally modulated channel . . . . . . . . 95

6.1. Exemplary particle trajectories for different values of the viscous friction
coefficient in a 2D sinusoidal channel. . . . . . . . . . . . . . . . . . . . 103

6.2. Particle mobility versus viscous friction coefficient for different channel
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3. Particle mobility versus friction coefficient for different force strengths
and channel widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4. Particle mobility, EDC, and 2nd central moment of vy as a function of
force magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5. Normalized PDF of vx and vy as functions of the friction coefficient. . . 114
6.6. Dependence of the critical force magnitude on the viscous friction coef-

ficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7. Influence of friction coefficient and force magnitude on the probability

to leave a unit cell to the left or right and on first passage time PDF. . 116
6.8. Impact of force strength on normalized velocity correlation function. . . 117
6.9. Dependence of normalized velocity auto-correction function associated

with the confined Brownian motion in a 2D channel on force magnitude. 118
6.10. Illustration of impact of the coefficient of restitution on the rebound

particle velocity vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

174



List of Figures

6.11. Particle mobility, EDC, and 2nd central moment of vy as a function of
force magnitude for different coefficients of restitution CR. Impact of CR
on VACFs and VCF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.12. Peclet number Pe versus force magnitude for different collision methods. 123

A.1. Illustration of reflection algorithm . . . . . . . . . . . . . . . . . . . . . 132
A.2. Impact of numerical time step on the results for the particle mobility. . 133

C.1. Profiles of the longitudinal flow component in a 3D, periodically modu-
lated channel with ε = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.2. Profiles of the longitudinal flow component in a 3D, periodically modu-
lated channel with ε = 0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 148

175





List of Tables

3.1. Relative error between theoretical estimates and numerics for particle
mobility in 3D, planar channel geometry with sinusoidally varying width. 50

3.2. Relative error between theoretical estimates and numerics for particle
mobility in 3D, cylindrical tube with sinusoidally varying cross-section. . 68

5.1. Experimentally used channel parameters and values for colloid diameters. 96

6.1. Impact of channel parameter and friction strength on exponent εf . . . . 113

177





List of publications

9. S. Martens, A. V. Straube, G. Schmid, L. Schimansky-Geier, and P. Hänggi
Hydrodynamically enforced entropic trapping of Brownian particles
Physical Review Letters, in press.

8. S. Martens, I. M. Sokolov, and L. Schimansky-Geier
Impact of inertia on biased Brownian transport in confined geometries
Communication: Journal of Cheminal Physics 136, 111102 [2012], doi: 10.1103/Phys-
RevE.85.011101

7. P. K. Ghosh, P. Hänggi, F. Marchesoni, S. Martens, F. Nori, L. Schimansky-
Geier, and G. Schmid
Driven Brownian transport through arrays of symmetric obstacles
Physical Review E 85, 011101 [2012], doi: 10.1103/PhysRevE.85.011101

6. S. Martens, G. Schmid, L. Schimansky-Geier, and P. Hänggi
Biased Brownian motion in extreme corrugated tubes
Chaos 21, 047518 [2011], doi: 10.1063/1.3658621

5. S. Martens, G. Schmid, L. Schimansky-Geier, and P. Hänggi
Entropic particle transport: higher order corrections to the Fick-Jacobs diffusion
equation Physical Review E 83, 051135 [2011], doi: 10.1103/PhysRevE.83.051135

4. S. Martens, D. Hennig, S. Fugmann, and L. Schimansky-Geier
Resonancelike phenomena in the mobility of a chain of nonlinear coupled oscilla-
tors in a two-dimensional periodic potential
Physical Review E 78, 041121 [2008], doi: 10.1103/PhysRevE.78.041121

3. S. Fugmann, D. Hennig, S. Martens, and L. Schimansky-Geier
Deterministic escape of a dimer over an anharmonic potential barrier
Physica D 237, 3179 [2008], doi: 10.1016/j.physd.2008.08.008

2. D. Hennig, S. Martens, and S. Fugmann
Transition between locked and running states for dimer motion induced by periodic
external driving
Physical Review E 78, 011104 [2008], doi: 10.1103/Phys-RevE.78.011104

1. Thermally activated escape dynamics of coupled nonlinear oscillator chains in a
2D periodic potential
Diplom thesis submitted at Humboldt-Universität zu Berlin, Germany, in 2007

179

http://dx.doi.org/10.1103/PhysRevE.85.011101
http://dx.doi.org/10.1103/PhysRevE.85.011101
http://dx.doi.org/10.1103/PhysRevE.85.011101
http://dx.doi.org/10.1063/1.3658621
http://dx.doi.org/10.1103/PhysRevE.83.051135
http://dx.doi.org/10.1103/PhysRevE.78.041121
http://dx.doi.org/10.1016/j.physd.2008.08.008
http://dx.doi.org/10.1103/Phys-RevE.78.011104




Danksagung

Ich möchte an dieser Stelle die Gelegenheit nutzen und all jenen danken, die mich
während meines Physikstudiums und der anschließenden Arbeit am Institut für Physik
begleitet und unterstützt haben.

Zuallererst gilt mein herzlicher Dank meinem Betreuer Prof. Schimansky-Geier, der
nicht nur mein Interesse an Stochastischen Prozessen und der Biophysik geweckt hat,
sondern mir auch seit 6 Jahren die Möglichkeit gibt in seiner Arbeitsgruppe zu arbeiten.
Mit seiner Unterstützung und seinen vielen Anregungen hat er sehr zum erfolgreichen
Gelingen dieser Arbeit beigetragen.

Ich danke ihm auch für seinen engen Kontakt zu Prof. Hänggi, welcher mich in das
faszierende Problem des entropischen Transports eingeführt hat. Seine Begeisterung
für die Wissenschaft und die zahlreichen Diskussionen haben mich stets inspiriert und
gefordert.

Besonders möchte ich mich bei Gerhard dafür bedanken, dass er sich trotz der Ent-
fernung stets die Zeit nahm, um zu helfen und meine Fragen zu beantworten. Die vielen
Diskussionen und das zahlreiche Korrekturlesen haben nicht nur zu gemeinsamen Publi-
kationen geführt, sondern vor allem diese Arbeit sehr verbessert. Ich danke Arthur für
die intensive Zusammenarbeit und seiner Unterstützung bei Fragen zur Hydrodynamik.
Ich hoffe, dass wir weitere interessante Probleme zusammen lösen werden.

An dieser Stelle möchte ich mich bei den beiden Arbeitsgruppen für die äußerst
freundliche und entspannte Arbeitsatmosphäre bedanken. Besonders die Kaffeepausen
und die Gespräche haben jeden Tag bereichert.

Ich danke Simon und Pawel für viele lustige Gespräche und die zahlreichen erkennt-
nisreichen Diskussionen in den letzten Jahren. Im Speziellen möchte ich Paul, Bernard,
beiden Christians, Martin, Felix und Justus für das Korrekturlesen meiner Arbeit dan-
ken. Insbesondere Justus war in den letzten (kritischen) Monaten ein angenehmer und
stets lustiger Zimmergenosse, der jederzeit einen guten Titelvorschlag parat hat. Ich
danke ebenfalls Fr. Rosengarten für ihre Hilfe bei allen anfallenden Problemen und
ihren hilfreichen Lebensweisheiten.

Ein ganz spezieller Dank geht an meine Eltern dafür, dass sie mich während des
gesamten Studiums immer moralisch und auch finanziell unterstützt haben. Auch wenn
ihnen die letzten 10 Jahre bestimmt ewig vorgekommen sind, haben sie nie gefragt:
“Wann bist du endlich fertig?” Danke!

181



Danksagung

Vom ganzem Herzen danke ich der wundervollsten Frau, meiner Verlobten Yasmin.
Ihr unerschütterliches Vertrauen gab mir stets die nötige Kraft. Sie baute mich auf
und trieb mich an, wenn ich es brauchte. Ich danke ihr vom ganzen Herzen für ihre
Rücksicht und ihr Verständnis.

Meiner Familie und meinen Freunden möchte ich nur sagen: Danke für Euer Ver-
ständnis! Jetzt habt ihr mich wieder.

Abschließend danke ich der Volkswagen Stiftung und dem Steuerzahler für die jahre-
lange finanzielle Unterstützung.

182



Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der
angegebenen Literatur und Hilfsmittel angefertigt habe.

Berlin, den 13.11.2012

( Steffen Martens )

183


	1 Introduction
	2 Transport in confined geometries – The Fick-Jacobs approach
	2.1 Macrotransport theory
	2.2 Dimensionless units
	2.3 Fick-Jacobs approach
	2.3.1 Potential of mean force – effective entropic potential

	2.4 Spatially dependent diffusion coefficient
	2.5 Mean first passage time
	2.6 Summary

	3 Biased particle transport in extremely corrugated channels
	3.1 3D channel geometry with rectangular cross-section
	3.1.1 Zeroth Order: the Fick-Jacobs equation
	3.1.2 Higher order contributions to the Fick-Jacob equation
	3.1.3 Spatially dependent diffusion coefficient
	3.1.4 Corrections to the mean particle current

	3.2 Example: Sinusoidally varying rectangular cross-section
	3.2.1 Particle mobility
	3.2.2 Verification of the correction to the particle mobility
	3.2.3 Effective diffusion coefficient
	3.2.4 Transport quality – Péclet number

	3.3 3D cylindrical tube
	3.3.1 Zeroth Order: the Fick-Jacobs equation
	3.3.2 Higher order contributions to the Fick-Jacobs equation

	3.4 Example: Sinusoidally modulated cylindrical tube
	3.4.1 Corrections to particle mobility

	3.5 Summary

	4 Hydrodynamically enforced entropic trapping of Brownian particles
	4.1 Fick-Jacobs approach to vector potentials
	4.2 Poiseuille flow in shape-perturbated channels
	4.3 Example: Transport in sinusoidally varying channels
	4.3.1 Purely flow driven transport
	4.3.2 Interplay of solvent flow and external forcing
	4.3.3 Hydrodynamically enforced entropic trapping

	4.4 Summary

	5 Entropic transport of spherical finite size particles
	5.1 Sinusoidally modulated two-dimensional channel geometry
	5.2 Discussion on the applicability in experiments
	5.3 Summary

	6 Impact of inertia on biased Brownian transport in confined geometries
	6.1 Model for inertial Brownian motion in periodic channels
	6.2 Fick-Jacobs approach for arbitrary friction
	6.3 Particle transport through sinusoidally-shaped channels
	6.4 Applicability of the Fick-Jacobs approach
	6.5 Impact of inelastic particle-wall collision
	6.6 Summary

	7 Concluding remarks
	Appendices
	A Numerical methods
	B Derivation of the generalized Fick-Jacobs equation
	C Poiseuille flow in shape-perturbed channels
	Nomenclature
	Bibliography



