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Abstract

In three essays, this thesis deals with the econometric analysis of financial
market data sampled at intraday frequencies. In particular, we focus on the dy-
namic and distributional modeling of high-frequency or intraday data, as well as
its utilization for risk reduction in vast-dimensional portfolios.

Chapter 1 presents a novel approach to model serially dependent positive-
valued variables realizing a nontrivial proportion of zero outcomes. This is a
typical phenomenon in financial high-frequency time series. We introduce a flexible
point-mass mixture distribution, a tailor-made semiparametric specification test
and a new type of multiplicative error model (MEM). Applying the proposed
methodology to high-frequency cumulated trading volumes of liquid and illiquid
NYSE stocks, we show that the model captures the dynamic and distributional
properties of the data and is able to correctly predict future distributions.

Chapter 2 addresses the problem that fixed symmetric kernel density estima-
tors exhibit low precision for positive-valued variables with a large probability mass
near zero, which is common in high-frequency data. We show that gamma kernel
estimators are superior, while their relative performance depends on the specific
density and kernel shape. We suggest a refined gamma kernel and a data-driven
method for choosing the appropriate type of gamma kernel estimator. In a simu-
lation study, we compare the refined estimator to the original gamma kernels and
standard boundary-correction methods, demonstrating the superiority of the new
approach.

Chapter 3 turns to the open debate about the merits of high-frequency data
in large-scale portfolio allocation. We consider the problem of constructing global
minimum variance portfolios based on the constituents of the S&P 500. Covariance
matrix predictions are obtained by applying a blocked realized kernel estimator,
along with different smoothing windows, regularization methods and forecasting
models. We show that forecasts based on high-frequency data can yield a sig-
nificantly lower portfolio volatility than approaches using daily returns, implying
noticeable utility gains for a risk-averse investor.

I



Zusammenfassung

Diese Dissertation behandelt die ökonometrische Analyse von hochfrequenten
Finanzmarktdaten. Insbesondere liegt der Schwerpunkt auf der Modellierung der
Dynamik und Verteilung von Hochfrequenz- oder Intratagesdaten sowie der Aus-
nutzung dieser Daten für die Risikominderung in hochdimensionalen Portfolios.

Kapitel 1 stellt einen neuen Ansatz zur Modellierung von seriell abhängigen
positiven Variablen, die einen nichttrivialen Anteil an Nullwerten aufweisen, vor.
Letzteres ist ein weitverbreitetes Phänomen in hochfrequenten Finanzmarktzeitrei-
hen. Eingeführt wird eine flexible Punktmassenmischverteilung, ein maßgeschnei-
derter semiparametrischer Spezifikationstest sowie eine neue Art von multiplika-
tivem Fehlermodell (MEM). Die Anwendung der vorgeschlagenen Methoden auf
hochfrequente kumulierte Handelsvolumina von liquiden und illiquiden NYSE-
Aktien zeigt auf, dass das Modell die Eigenschaften der Daten bzgl. Dynamik
und Verteilung erfasst sowie eine korrekte Prognose zukünftiger Verteilungen
ermöglicht.

Kapitel 2 beschäftigt sich mit dem Umstand, dass feste symmetrische
Kerndichteschätzer eine geringe Präzision aufweisen, falls eine positive Zufallsvari-
able mit erheblicher Wahrscheinlichkeitsmasse nahe Null gegeben ist. Wir legen
dar, dass Gammakernschätzer überlegen sind, wobei ihre relative Präzision von
der genauen Form der Dichte sowie des Kerns abhängt. Wir führen einen
verbesserten Gammakernschätzer sowie eine datengetriebene Methodik für die
Wahl des geeigneten Typs von Gammakern ein. In einer Simulationsstudie vergle-
ichen wir den verbesserten Schätzer mit dem ursprünglichen Gammakern sowie
mit Korrekturmethoden für feste symmetrische Kerne. Dabei zeigen wir die
Überlegenheit des neuen Ansatzes auf.

Kapitel 3 wendet sich der offenen Frage nach dem Nutzen von Hochfrequen-
zdaten für hochdimensionale Portfolioallokationsanwendungen zu. Wir betra-
chten das Problem der Konstruktion von globalen Minimum-Varianz-Portfolios
auf der Grundlage der Konstituenten des S&P 500. Die Kovarianzmatrixprognosen
beruhen auf der Anwendung des geblockten Realized-Kernel-Schätzers sowie ver-
schiedenen Glättungsfenstern, Regularisierungsmethoden und Prognosemodellen.
Wir zeigen auf, dass Prognosen, welche auf Hochfrequenzdaten basieren, im Ver-
gleich zu Methoden, die tägliche Renditen verwenden, eine signifikant geringere
Portfoliovolatilität implizieren. Letzteres geht mit spürbaren Nutzengewinnen aus
der Sicht eines Investors mit hoher Risikoaversion einher.
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Introduction

Beginning in the 1990s, one of the major developments in econometrics has been
related to the analysis of financial data sampled at ever higher frequencies. This
evolution was triggered by an increasing intraday trading activity, as well as ad-
vances in the technology for recording, storing and processing vast datasets. On
the one hand, so-called intraday or high-frequency data offer great opportunities.
The latter are due to the substantial advantage in terms of the amount of infor-
mation provided when compared to, e.g., daily observations of financial variables.
As a matter of fact, the limiting case is a situation in which records on every single
transaction or even every order event occurring in a limit order book are available.1

On the other hand, researchers face numerous challenges, since high-frequency data
exhibit features that are not encountered at lower frequencies. Hence, its analysis
requires new tailor-made econometric methods.

This thesis covers two general topics in the field of high-frequency economet-
rics. Chapter 1 and 2 are related to the problem of both modeling high-frequency
data and evaluating the resulting specifications. Econometric models for variables
such as high-frequency trading volumes or volatilities are crucial, e.g., for intraday
trading strategies. In this context, dynamic specifications have to account for the
main stylized facts of the aforementioned type of data, including a strong persis-
tence, intraday seasonality effects and the nonnegativity of many trading variables.
Chapter 1 presents an extension of the most widely-used modeling framework ad-
dressing an additional problem that is often encountered in high-frequency data
sampled at a regular grid: the occurrence of a considerable number of zero ob-
servations in the dataset. The latter effect can be captured by an appropriate
adjustment of the model for the underlying distribution, while a powerful tool
for examining the validity of the distributional assumptions is given in the form
of kernel-based specification tests. This evaluation methodology involves non- or
semiparametric density estimation, which is a nontrivial task if the variable of
interest is positive-valued and its distribution features a considerable probability
mass close to zero. Motivated by the fact that the above properties are of empirical
relevance in high-frequency datasets, Chapter 2 compares alternative estimators

1For the former case, Engle (2000) has introduced the term “ultra-high-frequency data”.
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and proposes refinements of existing approaches.
As the second major topic of this thesis, Chapter 3 discusses the utilization

of high-frequency data for economic applications in a low-frequency setting with
the focus being on portfolio selection. The underlying rationale is that covariance
matrix estimates and forecasts based on high-frequency returns should offer an
increased precision compared to their counterparts employing daily data. Then,
the question arises whether the aforementioned precision gains also translate into
economic benefits, such as a reduced portfolio risk. So far, this issue has only
been addressed for a relatively moderate number of assets, while the realistic,
vast-dimensional scenario has remained unexamined. Here, the main econometric
challenges include an efficient estimation of the large-scale covariance matrices,
ensuring that the resulting forecasts can be inverted in a numerically stable way,
as well as imposing suitable smoothing schemes to prevent excessive transaction
costs.

In the following, the most important contributions and findings of the three
chapters that comprise this thesis will be outlined in more detail.

Chapter 1 is joint work with my supervisors, Nikolaus Hautsch and Melanie
Schienle, and is forthcoming in the Journal of Financial Econometrics. In this
chapter, we propose a new econometric methodology for modeling positive-valued
variables which exhibit a strong serial dependence and, in particular, realize a non-
trivial proportion of zero outcomes. The latter is a typical phenomenon in financial
time series sampled at high frequencies and aggregated over regular intervals, such
as cumulated trading volumes. Our proposed approach comprises both a flexi-
ble point-mass mixture distribution and a semiparametric specification test that
is explicitly tailored for distributions of this type. Further, we introduce a novel
type of multiplicative error model (MEM) relying on the above zero-augmented
distribution. This structure includes an autoregressive binary choice component
and thus is able to capture the (potentially different) dynamics of zero occurrences
and of strictly positive realizations. In an empirical study, we apply the proposed
modeling framework to high-frequency cumulated trading volumes of both liquid
and illiquid NYSE stocks. Our results demonstrate that the model accounts for
the dynamic and distributional features of the data and provides precise forecasts
of future distributions.

Chapter 2 is joint work with my supervisor Melanie Schienle. A version of this
chapter is being revised for publication in Computational Statistics & Data Analy-
sis. The chapter tackles the known issue that standard fixed symmetric kernel-type
density estimators suffer from precision problems when considering positive-valued
random variables with a pronounced probability mass close to the lower bound of
the support. In particular, we demonstrate that, in such settings, alternative ap-
proaches based on asymmetric gamma kernel estimators are superior. However,
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both the asymptotic and finite sample performance of the aforementioned estima-
tors differ depending on the shape of the underlying density near zero, as well as
the specific form of the chosen kernel. Hence, we propose a refined gamma kernel
featuring an additional tuning parameter. The latter is varied according to the
shape of the density near the lower bound of the support. In addition, we suggest
a data-driven methodology which allows to choose the modified gamma kernel es-
timator appropriately. We conduct a comprehensive simulation study comparing
the finite sample performance of the refined estimator to the original gamma ker-
nel approaches, as well as standard boundary-corrected and adjusted fixed kernels.
Our results indicate that, in all settings considered, the suggested new estimator
offers a superior precision. Finally, we underline the practical relevance of the pro-
posed methodology in two empirical applications, which focus on high-frequency
trading volumes and realized volatility estimates, respectively.

Chapter 3 is joint work with my supervisor Nikolaus Hautsch and my former
colleague Lada Kyj. A version of this chapter is under revision for publication
in the Journal of Applied Econometrics. The chapter addresses the unsolved de-
bate about the usefulness of high-frequency data for portfolio allocation given a
vast-dimensional asset universe. For that purpose, we consider the general appli-
cation of selecting global minimum variance portfolios from the constituents of the
S&P 500 index over a four-year period, which covers the 2008 financial crisis. Our
approach for computing covariance matrix predictions based on high-frequency
data relies on a blocked realized kernel estimator, as well as on applying different
smoothing windows, various regularization techniques and two forecasting mod-
els. In an extensive empirical study, we show that covariance predictions based on
high-frequency data yield a significantly lower portfolio volatility when compared
to a comprehensive set of benchmark methods employing daily returns. Partic-
ularly during the volatile crisis period, these performance gains hold over longer
horizons than previous studies have shown and translate into substantial utility
benefits from the perspective of an investor exhibiting pronounced risk aversion.

3
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Chapter 1

Capturing the Zero: A New Class
of Zero-Augmented Distributions
and Multiplicative Error
Processes

This chapter is based on Hautsch, Malec, and Schienle (2013).

1.1 Introduction

The availability and increasing importance of high-frequency data in empirical finance
and financial practice has triggered the development of new types of econometric models
capturing the specific properties of these observations. Typical features of financial data
observed on high frequencies are strong serial dependencies, irregular spacing in time,
price discreteness and the nonnegativity of various (trading) variables. To account for
these properties, models have been developed which contain features of both time series
approaches and microeconometric specifications, see, e.g., Engle and Russell (1998),
Russell and Engle (2005) or Rydberg and Shephard (2003), among others.

This chapter proposes a novel type of model capturing a further important property
of high-frequency data that is present in many situations but not taken into account in
extant approaches: the occurrence of a nontrivial part of zeros in the data – henceforth
referred to as “excess zeros” – which is a typical phenomenon particularly in the context
of high-frequency time aggregates (e.g., 15-second or 30-second data). In high-frequency
trading, this type of data is widely used and generally preferred to tick-by-tick level
data, as it dispenses with certain pitfalls in econometric modeling, such as the irregular
spacing of time spells. However, measures of trading activity within short intervals, such
as cumulated trading volumes, naturally reveal a high proportion of zero observations.
This is even true for liquid stocks, since there is always a significant proportion of

5



Figure 1.1: Histogram of 15-Second Cumulated Volumes of the McDermott Stock
Traded at NYSE for July 2009

intervals with no trading. It should be stressed that such zero clustering effects will
also not be mitigated by a further increase of market liquidity over time, as in that
case, correspondingly higher frequencies of trading decisions naturally result in smaller
aggregation intervals. As a representative illustration, Figure 1.1 depicts the empirical
distribution of cumulated trading volumes per 15 seconds of the McDermott stock traded
at the New York Stock Exchange (NYSE). No-trade intervals amount to a proportion
of about 50%, leading to a significant spike at the leftmost bin.

The occurrence of such high proportions of zero observations can not be appropri-
ately captured by any standard distribution for nonnegative random variables, such as
the exponential distribution, generalizations thereof, as well as various types of truncated
models (c.f. Johnson et al., 1994). This has serious consequences in a dynamic frame-
work, as e.g., in the multiplicative error model (MEM) introduced by Engle (2002b),
which is commonly used to model positive-valued autocorrelated data. In such a frame-
work, employing distributions which do not explicitly account for excess zeros induces
severe distributional misspecifications, causing inefficiency and in many cases even in-
consistency of parameter estimates. These misspecifications become even more evident
when zero occurrences – and thus (no-)trading probabilities – follow their own dynamics.
Moreover, standard distributions are clearly inappropriate whenever density forecasts are
in the core of interest, since they are not able to explicitly predict zero outcomes.

To the best of our knowledge, existent literature does not provide any systematic and
self-contained framework to model, test and predict serially dependent positive-valued
data realizing a nontrivial part of excess zeros. Therefore, our main contributions can
be summarized as follows. First, we introduce a new type of discrete-continuous mixture
distribution capturing a clustering of observations at zero. The idea is to decompose the
distribution into a point-mass at zero and a flexible continuous distribution for strictly
positive values. Second, we propose a novel semiparametric density test, which is tai-
lored to distributions based on point-mass mixtures. Third, we employ the above mixture

6



distribution to specify a so-called zero-augmented MEM (ZA-MEM) that allows for max-
imum likelihood estimation in the presence of zero observations. Finally, we explicitly
account for serial dependencies in zero occurrences by introducing an augmented MEM
structure which captures the probability of zeros based on a dynamic binary choice com-
ponent. The resulting so-called Dynamic ZA-MEM (DZA-MEM) yields a specification
which allows to explicitly predict zero outcomes and thus is able to produce appropriate
density forecasts.

A zero-augmented model is an important complement to current approaches, which
reveal clear deficiencies and weaknesses in the presence of zeros. Many distributions for
positive-valued random variables, such as the Weibull or gamma distribution and gener-
alizations thereof, imply log-likelihood functions which cannot be evaluated in the case of
zero observations. The same is true for a log-normal distribution yielding consistency in
a QML setting for a logarithmic MEM (Allen et al., 2008). An exception is the exponen-
tial distribution, which allows for positive- and zero-valued random variables. In fact,
the latter is the only distribution allowing for (consistent) QML estimation of MEMs,
while still implying a tractable log-likelihood function in the presence of zeros. Although
exponential QML implies consistency of conditional mean parameters, estimates become
quite inefficient in the presence of a high proportion of zeros, as the continuous nature
of the exponential distribution causes a severe misspecification at the lower boundary of
the support. For an illustration, see Figure 1.1. A similar argument applies if the model
is estimated by the generalized method of moments (GMM), which is an alternative
way for the consistent estimation of the conditional mean in the presence of zeros (see
Brownlees et al., 2010). However, the inefficiency of estimates based on QML/GMM
can be harmful if the sample size is not too high (e.g., induced by local rolling window
estimation, see Härdle et al., 2012) and/or if time-aggregated data is sampled at high
frequencies, inducing a high proportion of zeros. In these situations, it becomes essen-
tial to explicitly capture the point-mass at zero. The latter is even more relevant when
researchers are particularly interested in predicting zero realizations and, in addition,
when zero occurrences might follow their own dynamics.

Finally, from an economic viewpoint, no-trade intervals provide self-contained in-
formation. E.g., in the asymmetric information-based market microstructure model by
Easley and O’Hara (1992), the absence of a trade indicates lacking information in the
market. Indeed, the question whether to trade and (if yes) how much to trade are
separate decisions which do not necessarily imply that no-trade intervals can be consid-
ered as the extreme case of low trading volumes. Consequently, the binary process of
non-trading might follow its own dynamics other than that of (nonzero) volumes.

This chapter contributes to several strings of literature. First, it adds to the literature
on point-mass mixture distributions. An important distinguishing feature of the existing
specifications is whether the point-mass at zero is held constant (e.g., Weglarczyk et al.,
2005) or explained by a standard (static) binary choice model (e.g., Duan et al., 1983).
We extend these approaches by allowing for a dynamic model for zero occurrences.
In an MEM context, De Luca and Gallo (2004) or Lanne (2006) employ mixtures of
continuous distributions which are typically motivated by economic arguments, such as
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trader heterogeneity. The idea of employing a point-mass mixture distribution to model
zero values is only mentioned, but not applied, by Cipollini et al. (2006).

Second, our semiparametric specification test contributes to the class of kernel-based
specification tests, as e.g., proposed by Fan (1994), Fernandes and Grammig (2005)
or Hagmann and Scaillet (2007). None of the existing methods, however, is suitable
for distributions including a point-mass component. If applied to MEM residuals, our
approach also complements the literature on diagnostic tests for MEM specifications.

Third, since the proposed dynamic zero-augmented MEM comprises a MEM and
a dynamic binary choice part, we also extend the literature on component models for
high-frequency data, as e.g., in Rydberg and Shephard (2003) or Liesenfeld et al. (2006),
among others. While the latter focus on transaction price changes, our model is appli-
cable to various transaction characteristics, as it decomposes a (nonnegative) persistent
process into the dynamics of zero values and strictly positive realizations. For instance,
the approach can explain the trading probability in a first stage and, given that a trade
has occurred, models the corresponding cumulated volume.

We illustrate the usefulness of the proposed modeling and evaluation framework in
two steps. First, a simulation study shows the efficiency gains of a ZA-MEM compared
to standard models ignoring zero effects and demonstrates the excellent power of the
new semiparametric specification test. Second, we apply our methodology to 15-second
cumulative volumes of two liquid and two illiquid stocks traded at the NYSE. The
resulting sample is exemplary for situations where the amount of excess zeros is not
negligible. Using the developed specification test, we show that the ZA-MEM captures
the distributional properties of the data very well. Moreover, a density forecast analysis
shows that the novel type of MEM structure is successful in explaining the dynamics of
zero values and appropriately predicting the entire distribution. The best performance
is shown for a DZA-MEM specification where the zero outcomes are modeled using
an autoregressive conditional multinomial (ACM) model as proposed by Russell and
Engle (2005). In fact, we observe that trading probabilities are quite persistent, while
following their own dynamics. Our results demonstrate that the proposed model can
serve as a workhorse for modeling and predicting various high-frequency variables and
can be extended in different directions.

The remainder of this chapter is structured as follows. In Section 1.2, we introduce a
novel point-mass mixture distribution and develop a corresponding semiparametric spec-
ification test, which is applied to evaluate the goodness-of-fit based on MEM residuals.
Section 1.3 presents the dynamic zero-augmented MEM capturing serial dependencies in
zero occurrences. We evaluate the extended model by examining out-of-sample forecasts
of conditional densities. Finally, Section 1.4 concludes.
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1.2 A Discrete-Continuous Mixture Distribution

1.2.1 Data and Motivation

We analyze high-frequency trading volume data for the four stocks Bank of America
(BAC), International Business Machines (IBM), McDermott International (MDR) and
Cimarex Energy (XEC), which are traded at the New York Stock Exchange. The first
two represent liquid stocks, while the latter two are less liquid as measured by the
total share volume in July 2009. The transaction data is extracted from the Trade and
Quote (TAQ) database released by the NYSE and covers the trading week from July
27 to 31, 2009. We filter the raw data by deleting transactions that occurred outside
regular trading hours from 9:30 am to 4:00 pm. The tick-by-tick data is aggregated
by computing cumulated trading volumes over 15-second intervals, resulting in 7795
observations for the four stocks. Modeling and forecasting cumulated volumes on high
frequencies is, for instance, crucial for algorithmic trading strategies (see, e.g., Brownlees
et al., 2010). To account for the well-known intraday seasonalities (see, e.g., Hautsch,
2004, for an overview), we divide the cumulated volumes by a seasonality component,
which is pre-estimated employing a cubic spline function.

An important feature of the data is the high number of zeros induced by non-trading
intervals. The summary statistics in Table 1.1 and the histograms depicted in Figure 1.2
report a nontrivial share of zero observations, ranging from about 9% for BAC to almost
60% for MDR. The proportion of zeros is comparably high, as it is a relatively calm
market period. However, we choose this period as an exemplary sample for situations
where zeros are not negligible. The latter occur whenever researchers aim at linking the
sampling frequency to the underlying (average) trading frequency. Then, more liquid
stocks inducing a higher trading intensity also require a higher sampling frequency in
order to limit the loss of information on intraday variation. For instance, analyzing the
same stocks not in July, but, e.g., in February 2009, would result in a lower proportion of
zeros induced by higher trading frequencies. In this case, the same distributional pattern
emerges if the sampling frequency is approximately doubled. Likewise, even higher
proportions of zeros might be observed if the sampling frequency is further increased or
less liquid stocks are analyzed. Therefore, we see the data employed in this chapter as
being representative for situations where the necessity of a high sampling frequency or
the illiquidity of the underlying assets confronts researchers with a significant proportion
of zeros.1

A further major feature of cumulated volumes is their strong autocorrelation and
high persistence as documented by the Q-statistics in Table 1.1 and the autocorrelation
functions (ACFs) displayed in Figure 1.3.

1The proportion of zeros is also affected by institutional and technical factors. O’Hara and
Ye (2011) show that more than 50% of the trading volume of NYSE stocks is executed on
other venues. O’Hara et al. (2011) investigate the fact that the TAQ database contains only
transactions with a size of at least 100 shares, although smaller trades can account for up to
66% of the total volume. However, a closer examination of these issues in the given modeling
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Table 1.1: Summary Statistics of Cumulated Trading Volumes
All statistics are reported for the raw and seasonally adjusted time series. SD: standard
deviation, q5 and q95: 5% and 95% quantile, respectively. nz/n: share of zero obser-
vations. Q(l): Ljung-Box statistic associated with l lags. The 5% (1%) critical values
associated with lag lengths 20, 50 and 100 are 31.41 (37.57), 67.51 (76.15) and 124.34
(135.81), respectively.

BAC IBM

Raw Adj. Raw Adj.

Obs 7795 7795 7795 7795
Mean 16612.7 1.02 651.8 1.01
SD 31384.9 1.57 1381.6 1.91
q5 0 0.00 0 0.00
q95 61800 3.76 2800 3.85

nz/n 0.092 0.092 0.263 0.263

Q(20) 10714.52 1658.86 8614.27 864.52
Q(50) 17681.48 2160.17 14431.50 1310.42
Q(100) 24795.88 2477.98 17773.13 1575.16

MDR XEC

Raw Adj. Raw Adj.

Obs 7795 7795 7795 7795
Mean 215.2 1.01 163.45 1.01
SD 683.1 3.34 440.88 2.13
q5 0 0 0 0
q95 900 4.44 700 4.26

nz/n 0.582 0.582 0.506 0.506

Q(20) 3277.38 384.73 3008.03 1118.00
Q(50) 4769.92 576.79 4893.87 1615.18
Q(100) 6002.79 637.50 5947.61 1891.64
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(a) BAC (b) IBM

(c) MDR (d) XEC

Figure 1.2: Sample Histograms of Deseasonalized Cumulated Volumes
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(a) BAC (b) IBM

(c) MDR (d) XEC

Figure 1.3: Sample Autocorrelograms
Sample autocorrelation functions of raw (gray line) and diurnally adjusted (black line)
cumulated trading volumes. Horizontal lines indicate the limits of 95% confidence inter-
vals (±1.96/

√
n).
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To account for these strong empirical features, we first propose a distribution cap-
turing the phenomenon of excess zeros and, secondly, implement it in a MEM setting.

1.2.2 A Zero-Augmented Distribution for Nonnegative
Variables

We consider a nonnegative random variable X with independent observations {Xt}nt=1,
corresponding, e.g., to the residuals of an estimated time series model. In the presence of
zero observations, a natural choice is the exponential distribution, as it is also defined for
zero outcomes and, being a member of the standard gamma family, provides consistent
QML estimates of the underlying conditional mean function (e.g., specified as a MEM).
However, in case of high proportions of zero realizations (as documented in Section 1.2.1),
this distribution is severely misspecified, making QML estimation quite inefficient.

To account for excess zeros, we assign a discrete probability mass to the exact zero
value. Hence, similar to the structure of a tobit, we define the probabilities

π := P (X > 0) , 1− π := P (X = 0) . (1.1)

Conditional on X > 0, the random variable X follows a continuous distribution with
density gX(x) := fX(x|X > 0), which is continuous for x ∈ (0,∞). Consequently, the
unconditional distribution of X is semicontinuous with a discontinuity at zero, implying
the density

fX(x) = (1− π) δ(x) + π gX(x) 1I(x>0), (1.2)

where 0 ≤ π ≤ 1, δ(x) is a point probability mass at x = 0, while 1I(x>0) denotes an
indicator function taking the value 1 for x > 0 and 0 else. The probability π is treated
as a parameter of the distribution determining how much probability mass is assigned
to the strictly positive part of the support. Note that the above point-mass mixture
assumes zero values to be “true” zeros, i.e., they originate from another source than
the continuous component and do not result from censoring. This assumption is valid,
e.g., in case of cumulative trading volumes, where zero values correspond to non-trade
intervals and originate from the decision on whether to trade or not.

The log-likelihood function implied by the mixture density (1.2) is

L (ϑ) = nz ln (1− π) + nnz lnπ +

t∈Inz

ln gX(xt;ϑg), (1.3)

where ϑ = (π, ϑg)
′, ϑg denotes the vector of parameters determining gX(x), Inz indicates

the set of all subscripts t associated with nonzero observations xt, while nz and nnz are
the number of zero and nonzero observations, respectively. If no dependencies between
π and ϑg are introduced, componentwise estimation is possible and the estimate of π is
given by the empirical frequency of zero observations.

framework goes beyond the scope of this chapter.
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The conditional density gX(x) can be specified according to any distribution defined
on positive support. We consider the generalized F (GF) distribution, since it nests most
of the distributions frequently used in high-frequency applications (see, e.g., Hautsch,
2003). The corresponding conditional density is given by

gX(x) =
a xam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
, (1.4)

where a > 0,m > 0, η > 0 and λ > 0. B(·) describes the full beta function with
B(m, η) := Γ(m) Γ(η) Γ(m+ η)−1. The conditional noncentral moments implied by the
GF distribution are

E[Xs|X > 0] = λs ηs/a
Γ(m+ s/a) Γ(η − s/a)

Γ(m) Γ(η)
, a η > s. (1.5)

Accordingly, the distribution is based on three shape parameters a, m and η, as well as
a scale parameter λ. The support of the GF distribution includes the exact zero only
if the parameters satisfy the condition am ≥ 1 with the limiting case of an exponential
distribution. A detailed discussion of special cases and density shapes implied by different
parameter values can be found, e.g., in Lancaster (1997).

The unconditional density of the zero-augmented generalized F (ZAF) distribution
follows from (1.2) and (1.4) as

fX(x) = (1− π) δ(x) + π
axam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
1I(x>0), (1.6)

which reduces to the GF density for π = 1. The unconditional moments can be obtained
by exploiting (1.5), i.e.,

E[Xs] = π E[Xs|X > 0] + (1− π) E[Xs|X = 0] ,

= π λs ηs/a
Γ(m+ s/a) Γ(η − s/a)

Γ(m) Γ(η)
, a η > s. (1.7)

The log-likelihood function of the ZAF distribution is given by

L (ϑ) = nz ln (1− π) + nnz lnπ +

t∈Inz


ln a+ (am− 1) lnxt + η ln η (1.8)

− (η +m) ln

η +


xt λ

−1
a− lnB(m, η)− am lnλ


,

where ϑ = (π, a,m, η, λ)′.
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1.2.3 A New Semiparametric Specification Test

To perform model diagnostics, we introduce a specification test that is tailored to point-
mass mixture distributions on nonnegative support like (1.2). Instead of, e.g., checking
a number of moment conditions, we consider a kernel-based semiparametric approach,
which allows to formally examine whether the entire distribution is correctly specified.
Compared to similar smoothing specification tests for densities with left-bounded sup-
port, as e.g., proposed by Fernandes and Grammig (2005) and Hagmann and Scaillet
(2007), the assumption of a point-mass mixture under the null and alternative hypothe-
sis is a novelty. Estimation in our procedure is optimized for densities which are locally
concave for small positive values as described in Section 1.2.1.

In this setting, an appropriate semiparametric benchmark estimator for the uncon-
ditional density fX(x) must have the point-mass mixture structure as in (1.2). Since
the support of the discrete and continuous component is disjoint, we can estimate both
parts separately without further functional form assumptions. In particular, we use the
empirical frequency π̂ := n−1


t 1I(xt>0) as an estimate for the probability of X > 0.

The conditional density gX is estimated using a nonparametric kernel smoother, i.e.,

ĝX(x) =
1

nnzb


t∈Inz

Kx,b(Xt) , (1.9)

where K is a kernel function integrating to unity. The estimator is generally consistent
on unbounded support for bandwidth choices b = O(n−ν) with ν < 1. However, if the
support of the density is bounded, as in our case from below at zero, standard fixed
kernel estimators assign weight outside the support at points close to zero, yielding
inconsistent results at points near the boundary. Thus instead, we consider a gamma
kernel estimator as proposed in Chen (2000) whose flexible form ensures that it is free
of boundary bias, while density estimates are always nonnegative. This is in contrast to
boundary correction methods for fixed kernels, such as boundary kernels (Jones, 1993)
or local-linear estimation (Cheng et al., 1997). The asymmetric gamma kernel is defined
on the positive real line and is based on the density of the gamma distribution with
shape parameter x/b+ 1 and scale parameter b, such that

Kγ
x/b+1,b(u) :=

ux/b exp(−u/b)
bx/b Γ(x/b+ 1)

. (1.10)

For the final standard gamma kernel estimator, set Kx,b(Xt) = Kγ
x/b+1,b(Xt) in (1.9).

Note that if the true underlying density has a large probability mass near zero as in our
data, it is statistically favorable to employ the standard gamma kernel (1.10), and not the
modified version as proposed in Chen (2000) or other boundary correction techniques,
such as reflection methods (e.g. Schuster, 1958) or cut-and-normalized kernels (Gasser
and Müller, 1979). In this case, the first derivatives of the density are usually significantly
nonzero at points close to the boundary. Further, comparing the absolute size of the
respective leading terms in the asymptotically vanishing bias expressions of the standard
and modified gamma kernel estimator reveals that the sum of first and second derivatives
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with opposed signs for the standard gamma kernel estimator is smaller than the pure
second derivative for the modified one and the other estimators (see Zhang, 2010, for
details). This performance difference is even more relevant in finite samples as outlined
in Chapter 2. Note, however, that if, in contrast to our data here, densities were locally
convex with no pole at zero, such as for income distributions (see, e.g., Hagmann and
Scaillet, 2007), the modified instead of the standard gamma kernel should be used,
following exactly the opposite arguments as above.

While for estimation at points further away from the boundary the variance of gamma
kernel estimators is smaller when compared to symmetric fixed kernels, their finite sam-
ple bias is generally larger. Therefore, we apply a semiparametric correction factor
technique as in Hjort and Glad (1995) or Hagmann and Scaillet (2007) to enhance the
accuracy of the gamma kernel estimator in the interior of the support. This approach
is semiparametric in the sense that the unknown density gX(x) is decomposed as the
product of the initial parametric model gX


x, ϑg


and a factor r(x) which corrects for

the potentially misspecified parametric start. The estimate of the parametric start is
given by gX


x,ϑg, where ϑg is the maximum likelihood estimator. The correction factor

is estimated by kernel smoothing, such that r̂(x) = n−1
nz


t∈Inz

Kx/b+1,b(xt) /gX

Xt,ϑg.

Therefore, the bias-corrected gamma kernel estimator is

g̃X(x) =
1

nnzb


t∈Inz

Kγ
x/b+1,b(Xt)

gX

x,ϑg

gX

Xt,ϑg , (1.11)

which reduces to the uncorrected estimator if the uniform density is chosen as the initial
model. Hjort and Glad (1995) show that a corrected kernel estimator yields a smaller
bias than its uncorrected counterpart whenever the correction function is less “rough”
than the original density. Their proof is valid for fixed symmetric kernels, but the
argument also holds true for gamma-type kernels with slightly modified calculations.

The formal test of the parametric model fX

x, ϑ


against the semiparametric alter-

native fX(x) measures discrepancies in squared distances integrated over the support.
As the discrete parts coincide in both cases, it is based on

I := π

 ∞

0


gX(x)− gX


x, ϑg

2
dx, (1.12)

where gX(x) and gX

x, ϑg


denote the general and parametric conditional densities,

respectively. The null and alternative hypothesis are

H0 : P

f̂X(x) = fX


x, ϑ = 1, H1 : P


f̂X(x) = fX


x, ϑ < 1, (1.13)

where f̂X(x) and fX

x, ϑ are the semiparametric and parametric density estimates with

respective continuous conditional parts g̃X(x) and gX

x,ϑg as in (1.11). The feasible

test statistic is given by

Tn := nnz
√
b π̂

 ∞

0


g̃X(x)− gX


x,ϑg2

dx. (1.14)
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Asymptotic normality of Tn could be shown using the results of Fernandes and Monteiro
(2005). However, it is well-documented that non- and semiparametric tests suffer from
size distortions in finite samples (e.g. Fan, 1998). Therefore, we employ a bootstrap
procedure as in Fan (1998) to compute size-corrected p-values. This is outlined in detail
in the following subsection for a MEM framework.

We choose the bandwidth b according to least-squares cross-validation, which is fully
data-driven and automatic. Thus, for the bias-corrected gamma kernel estimator (1.11),
the bandwidth b must minimize

CV (b) :=
1

n2nz


i∈Inz


j∈Inz

∞
0 gX


x,ϑg2Kγ

x/b+1,b(xi) K
γ
x/b+1,b(xj) dx

gX

xi,ϑggXxj ,ϑg

− 2

nnz (nnz − 1)


i∈Inz


j ̸=i∈Inz

Kγ
xi/b+1,b(xj)

gX

xi,ϑg(i)

gX

xj ,ϑg(i) , (1.15)

where ϑg(i) denotes the maximum likelihood estimate computed without observation Xi.
The cross-validation objective function is directly derived from requiring the bandwidth
to minimize the integrated squared distance between the semiparametric and parametric
estimates. For the uncorrected gamma kernel estimator, the corresponding objective
function is analogous to (1.15), but does not involve density terms.

Our test differs from related methods not only by being designed for point-mass
mixtures. Fan (1994) uses fixed kernels with the respective boundary consistency prob-
lems. Fully nonparametric (uncorrected) gamma kernel-based tests as Fernandes and
Grammig (2005) have a larger finite sample bias near the boundary for locally concave
densities and generally also in the interior of the support. The semiparametric test by
Hagmann and Scaillet (2007) suffers from the same problem near zero. Furthermore,
weighting with the inverse of the parametric density in their test statistic yields a par-
ticularly poor fit in regions with sparse probability, which is an issue in our application,
as the distributions are heavily right-skewed.

1.2.4 Empirical and Simulation-Based Evidence for a Zero-
Augmented MEM

In order to apply the proposed specification test to our data, we have to appropri-
ately capture the serial dependence in cumulated volumes. This task is performed by
specifying a multiplicative error model (MEM) based on a zero-augmented distribution.
Accordingly, cumulated volumes yt are given by

yt = µt εt, εt ∼ i.i.d. D(1) , (1.16)

where µt denotes the conditional mean given the information set Ft−1 and depending
on a parameter vector ϑµ, i.e., µt := E[yt|Ft−1] = µ(Ft−1;ϑµ). εt denotes a disturbance
following a distribution D(1) with nonnegative support and E[εt] = 1. A deeper discus-
sion of the properties of MEMs is given by Engle (2002b) or Engle and Gallo (2006). We
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specify µt in terms of a logarithmic specification proposed by Bauwens and Giot (2000)
for autoregressive conditional duration (ACD) models which does not require parameter
constraints to ensure the positivity of µt. Accordingly, µt is given by

lnµt = ω +

p
i=1

αi ln εt−i 1I(yt−i>0) +

p
i=1

α0
i 1I(yt−i=0) +

q
i=1

βi lnµt−i, (1.17)

where the additional dummy variables prevent the computation of ln εt−i whenever
εt−i = 0. The lag structure is chosen according to the Schwarz information criterion
(SIC). For more details on the properties of the logarithmic MEM, we refer to Bauwens
and Giot (2000) and Bauwens et al. (2003). A survey of additional MEM specifications
is provided by Bauwens and Hautsch (2008).

Define the zero-augmented MEM (ZA-MEM) as a MEM where εt is distributed
according to the ZAF density (1.6) with scale parameter λ = (π ξ)−1 and

ξ := η1/a [Γ(m+ 1/a) Γ(η − 1/a)] [Γ(m) Γ(η)]−1 . (1.18)

Recalling (1.7), the constraint on λ ensures that the unit mean assumption for εt is ful-
filled. The MEM structure (1.16) implies that, conditionally on the information set Ft−1,
yt follows a ZAF distribution with λt = µt (π ξ)

−1. Note that the latter constraint pre-
vents componentwise optimization of the corresponding log-likelihood and thus requires
joint estimation of all parameters.

To implement the semiparametric specification test (1.14) in the above MEM setting,
we estimate the model by exponential QML. This approach yields residuals ε̂t := yt/µ̂t,
which are consistent estimates of the i.i.d. errors εt. Alternatively, we could obtain
consistent error estimates using the semiparametric methods by Drost and Werker (2004)
or employing GMM as in Brownlees et al. (2010). The consistency and parametric rate
of convergence of the conditional mean estimates enable us to use the residuals as inputs
for the semiparametric specification test without affecting the asymptotics of the kernel
estimators discussed in Section 1.2.3. A similar procedure is applied by Fernandes and
Grammig (2005) for their nonparametric specification test. Finally, we obtain applicable
finite sample p-values by employing the following bootstrap procedure:

Step 1 : Draw a random sample {ε∗t }
n
t=1 from the parametric ZAF distribution with

density fε

ε, ϑ, where ϑ is the maximum likelihood estimate of the ZAF parameters ϑ

based on the original data. From this, generate a bootstrap sample {y∗t }
n
t=1 as y

∗
t = µ̂t ε

∗
t ,

where µ̂t is the fitted conditional mean as in (1.17) based on the maximum likelihood
estimates from the original data.
Step 2 : Use {y∗t }

n
t=1 to compute the statistic Tn, which we denote as T ∗

n . This requires
the re-evaluation of both the parametric and semiparametric estimates of fε(ε).
Step 3 : Steps 1 and 2 are repeated B times and p-values are obtained from the empirical

distribution of

T ∗
n,r

B

r=1
.

Before the empirical application, we conduct a simulation study to investigate the
following two issues: the inefficiency of parameter estimates based on an error distribu-
tion that does not capture zero clustering effects, as well as the power of the proposed
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specification test in a MEM setting. We consider four data-generating processes (DGPs)
which assume the above zero-augmented MEM structure relying on the ZAF distribution
as in (1.6), (1.16), (1.17) and (1.18) with parameter values chosen to replicate the stylized
facts of the data. For each DGP, 1000 samples with 8000 observations are simulated.

To address the first question, we estimate the MEM parameters by maximum likeli-
hood based on the ZAF distribution and by QML based on the (misspecified) exponential
distribution. Table 1.2 displays the simulation results for the different scenarios. De-
spite the considerable sample size, the ML estimates of the ZA-MEM consistently exhibit
lower standard deviations and root mean squared errors (RMSEs). The discrepancy in
precision is more pronounced for DGPs with a larger value of the shape parameter m
of the ZAF distribution and a higher probability of zero outcomes. The latter finding
demonstrates the relationship between the magnitude of zero clustering and the relative
inefficiency of the exponential QML approach compared to the ML estimator of the
ZA-MEM.

For the power study, we estimate three models. All assume the MEM structure (1.16)
with a correctly specified conditional mean µt and errors εt following the general zero-
augmented distribution in (1.1) and (1.2). However, they introduce different misspeci-
fications of the conditional error density gε(εt). The first model (E-ZA-MEM) assumes
an exponential distribution with scale parameter λ = π−1, while the second one (G-ZA-
MEM) considers a gamma distribution with shape parameter m and scale parameter
λ = (πm)−1. The third specification (W-ZA-MEM) assumes a Weibull distribution
with shape parameter a and scale parameter λ = (π ξw)

−1, where ξw := Γ(1 + 1/a).
Table 1.3 displays the rejection rates of the specification test based on 500 bootstrap
replications for the p-values. For all DGPs and (misspecified) models, the rejection rates
are close or equal to one. Accordingly, the proposed test exhibits a high power regarding
the detection of misspecified error distributions in various scenarios, which indicates that
it constitutes a reliable inference technique in empirical applications.

We now apply the above estimation and testing methodology to the cumulated vol-
ume data. Table 1.4 shows the maximum likelihood estimates of the ZA-MEM based on
the ZAF distribution, while Figure 1.4 depicts the resulting parametric error densities
together with their semiparametric counterparts based on the uncorrected gamma ker-
nel. For all stocks, the parametric and semiparametric densities are quite close to each
other. However, there is a noticeable discrepancy to the right of the boundary, which
can be explained by the increased bias of the gamma kernel compared to standard fixed
kernels in the interior of the support. To refine the semiparametric density estimate, we
employ the bias-corrected gamma kernel estimator (1.11), choosing the ZAF distribu-
tion as parametric start. The plots in Figure 1.5 show that, in all cases, the discrepancy
between both estimates vanishes, as the parametric density now generally lies within
the 95% confidence region of the semiparametric estimate. For the less liquid stocks
MDR and XEC, the density estimates are virtually zero on an interval near the lower
boundary of the support. Since the parametric density serves as the starting model for
the corrected gamma kernel estimator, the vanishing probability mass close to the origin
also explains the large cross-validation bandwidths. More details on the relationship
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Table 1.2: Simulation Results – ZA-MEM vs. Exponential QML
Each DGP assumes a zero-augmented Log-MEM based on the ZAF distribution and
the MEM parameters ω = 0.05, α1 = 0.05, β1 = 0.9 and α0

1 = −0.005. For every
replication, MEM parameters are estimated by ML based on the ZAF distribution and
by exponential QML. The study uses 1000 replications and a sample size of 8000. SD
denotes the standard deviation, RMSE is the root mean squared error.

ZA-MEM Exp. QML

ω̂ α̂1 β̂1 α̂0
1 ω̂ α̂1 β̂1 α̂0

1

DGP 1: a = 0.6, m = 100, η = 3.3, π = 0.9

Median 0.0510 0.0500 0.8990 -0.0048 0.0505 0.0508 0.8962 -0.0078
Mean 0.0512 0.0501 0.8977 -0.0047 0.0630 0.0529 0.8722 -0.0030
SD 0.0082 0.0061 0.0153 0.0169 0.0586 0.0220 0.1165 0.0697
RMSE 0.0082 0.0061 0.0154 0.0169 0.0600 0.0221 0.1198 0.0697

DGP 2: a = 0.6, m = 100, η = 3.3, π = 0.5

Median 0.0510 0.0505 0.8988 -0.0057 0.0552 0.0535 0.8892 -0.0076
Mean 0.0539 0.0506 0.8946 -0.0058 0.1021 0.0589 0.8155 -0.0052
SD 0.0212 0.0113 0.0327 0.0147 0.1662 0.0453 0.2407 0.0695
RMSE 0.0216 0.0113 0.0331 0.0147 0.1741 0.0462 0.2549 0.0695

DGP 3: a = 0.6, m = 1.9, η = 100, π = 0.9

Median 0.0504 0.0502 0.8987 -0.0039 0.0503 0.0501 0.8986 -0.0036
Mean 0.0507 0.0501 0.8981 -0.0045 0.0507 0.0503 0.8978 -0.0038
SD 0.0072 0.0057 0.0144 0.0220 0.0077 0.0061 0.0156 0.0231
RMSE 0.0072 0.0057 0.0146 0.0220 0.0077 0.0061 0.0158 0.0232

DGP 4: a = 0.6, m = 1.9, η = 100, π = 0.5

Median 0.0510 0.0499 0.8980 -0.0054 0.0511 0.0504 0.8970 -0.0038
Mean 0.0538 0.0505 0.8938 -0.0053 0.0552 0.0512 0.8895 -0.0033
SD 0.0210 0.0112 0.0332 0.0190 0.0306 0.0135 0.0498 0.0241
RMSE 0.0213 0.0112 0.0338 0.0190 0.0310 0.0135 0.0508 0.0241
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Table 1.3: Simulation Results – Power of Semiparametric Specification Test
Rejection rates of the semiparametric specification test for the distribution of MEM er-
rors εt. The same DGPs as in Table 1.2 are used. For every replication, we estimate
three models based on the zero-augmented MEM structure with a misspecified distri-
bution of the strictly positive errors. The specification test considers empirical p-values
based on 500 bootstrap replications. Following Fernandes and Grammig (2005), rule-of-
thumb bandwidths adjusted to gamma kernels and using the exponential distribution as

reference are employed, i.e., b̂ = 4−1/5 λ̂

λ̂−1/2

−4/5
n
−4/9
nz , where λ̂ is the sample mean

of strictly positive observations. The study uses 1000 replications and a sample size of
8000.

DGP 1 DGP 2 DGP 3 DGP 4

Est. Model\α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

E-ZA-MEM 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000
W-ZA-MEM 1.000 0.999 0.999 0.999 1.000 1.000 0.996 0.987

between the shape of the parametric start density and the optimal bandwidth can be
found in Hjort and Glad (1995).

The estimation results suggest that the ZAF distribution provides a superior way
to model MEM disturbances for cumulated volumes. This graphical intuition can be
formally assessed by the semiparametric specification test (1.14). Table 1.5 displays
the test results based on 1000 bootstrap replications for the empirical p-values. In all
four cases, the statistic is insignificant at all conventional levels, which implies that we
cannot reject the null hypothesis (1.13). These results confirm that the ZA-MEM is able
to capture the distributional properties of high-frequency cumulated volumes.

1.3 Dynamic Zero-Augmented Multiplicative

Error Models

1.3.1 Motivation

Assumption (1.1) implies that, conditional on past information, the trading probability
is constant or, more formally,

π := P (εt > 0|Ft−1) = P (yt > 0|Ft−1) = P (It = 1|Ft−1) , (1.19)

where It is a “trade indicator” taking the value 1 for yt > 0 and 0 else. The assumption
of constant no-trade probabilities is in line with the seminal model of nonsynchronous
trading by Lo and MacKinlay (1990) but appears to be rather restrictive, as (nonzero)
cumulative volume is clearly time-varying and reveals persistent serial dependencies.
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Table 1.4: Estimation Results – ZA-MEM
Maximum likelihood estimates and t-statistics of the zero-augmented Log-MEM based
on the ZAF distribution. Lag structure is determined using the SIC.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.041 6.301 0.017 6.750 -0.028 -5.379 -0.023 -8.108
α1 0.118 8.808 0.187 13.757 0.091 9.259 0.130 6.554
α2 -0.060 -3.731 -0.119 -7.856 - - -0.066 -3.181
β1 0.913 64.253 0.930 135.281 0.938 116.017 0.953 206.477
α0
1 -0.315 -3.328 -0.162 -5.235 0.032 4.831 -0.013 -0.551
α0
2 0.291 3.171 0.144 4.640 - - 0.044 1.926

m 1.703 3.871 653.758 41.981 450.064 8.379 507.419 13.310
η 562.562 12.143 7.533 7.696 3.343 5.335 1.856 14.411
a 0.570 6.748 0.385 14.620 0.642 9.893 1.084 24.059
π 0.908 277.210 0.737 147.718 0.419 74.887 0.495 87.677

L -9335.306 -10850.092 -10452.980 -10917.378
SIC 18760.222 21789.796 20977.645 21924.368

Table 1.5: Semiparametric Specification Test
Results of the semiparametric specification test applied to the MEM errors εt. The
reported p-values are based on the empirical distribution of the test statistic resulting
from 1000 simulated bootstrap samples.

BAC IBM MDR XEC

Tn 0.298 0.818 1.404 1.308

P-Val. 0.208 0.164 0.990 0.972
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(a) BAC (b) IBM

(c) MDR (d) XEC

Figure 1.4: Estimates of Error Density with Gamma KDE
The black solid line represents the error density implied by the ML estimates of the
ZA-MEM. The black dashed line is the semiparametric estimate based on the gamma
kernel estimator. The gray dashed lines are 95% confidence bounds of the kernel density
estimator. CV bandwidths: 0.020 (BAC), 0.012 (IBM), 0.004 (MDR), 0.003 (XEC).
Estimates of 1 − π based on sample percentage of zeros values: 0.092 (BAC), 0.263
(IBM), 0.582 (MDR), 0.506 (XEC).
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(a) BAC (b) IBM

(c) MDR (d) XEC

Figure 1.5: Estimates of Error Density with Corrected Gamma KDE
The black solid line represents the error density implied by the ML estimates of the
ZA-MEM. The black dashed line is the semiparametric estimate based on the bias-
corrected gamma kernel estimator. The gray dashed lines are 95% confidence bounds
of the kernel density estimator. CV bandwidths: 1.455 (BAC), 0.406 (IBM), 10578.031
(MDR), 1096.787 (XEC).
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Table 1.6: Runs Test for the Trade Indicator
Results of the two-sided runs test for serial dependence of the indicator for nonzero
aggregated volumes. Under the null of no serial dependence, the statistic Z = R−E(R)

V(R)

(R: number of runs) is asymptotically standard normal.

BAC IBM MDR XEC

Z -10.000 -13.832 -17.558 -17.015

P-Val. 0.000 0.000 0.000 0.000

Moreover, it is at odds with the well-known empirical evidence of autocorrelated trading
intensities (see, e.g., Engle and Russell, 1998). Table 1.6 shows the results of a simple
runs test based on the trade indicator It, suggesting that the null hypothesis of no serial
correlation in no-trade probabilities is clearly rejected. To capture this effect, we propose
an augmented version of the ZA-MEM accounting also for dynamics in zero occurrences.

1.3.2 A ZA-MEM with Dynamic Zero Probabilities

Assume that, given the information set Ft−1, the conditional probability of the distur-
bance εt being zero depends on a restricted information set Ht−1 ⊂ Ft−1. Moreover, πt
is assumed to depend on Ht−1 by a function π(·;ϑπ) with parameter vector ϑπ, i.e.,

πt := P (εt > 0|Ft−1) = P (εt > 0|Ht−1) = π(Ht−1;ϑπ) . (1.20)

As a consequence of this assumption, the disturbances lose the i.i.d. property and, condi-
tionally on Ht−1, are independently but not identically distributed. Thus, the dynamics
of the endogenous variable yt are not fully captured by the conditional mean µt, as past
information contained in Ht−1 affects the innovation distribution. Similar generaliza-
tions of the MEM error structure have been considered, e.g., by Zhang et al. (2001) or
Drost and Werker (2004). The resulting dynamic zero-augmented MEM (DZA-MEM)
can be formally written as

yt = µt εt, εt|Ht−1 ∼ i.n.i.d. PMD(1) , (1.21)

where PMD(1) denotes a point-mass mixture as in (1.2) with assumption (1.1) replaced
by (1.20) and E[εt|Ht−1] = E[εt] = 1. Hence, the conditional density of εt given Ht−1 is

fε(εt|Ht−1) = (1− πt) δ(εt) + πt gε(εt|Ht−1) 1I(εt>0), (1.22)

where the conditional density for εt > 0, gε(εt|Ht−1), depends on Ht−1 through the
probability πt, as the unit mean assumption in (1.21) requires

κt := E[εt|εt > 0;Ht−1] = π−1
t , (1.23)
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such that

E[εt] = E{E[εt|Ht−1]} = E[πt κt] = 1. (1.24)

Since the function π(·;ϑπ) is equivalent to a binary choice specification for the trade
indicator It defined in (1.19), the log-likelihood of the DZA-MEM consists of a MEM
and a binary choice part,

L(ϑ) =
n

t=1

{It lnπ(Ht−1;ϑπ) + (1− It) ln [1− π(Ht−1;ϑπ)]} (1.25)

+

t∈Inz

{ln fε(yt/µ(Ft−1;ϑµ) |Ht−1;ϑg)− lnµ(Ft−1;ϑµ)} ,

where ϑ = (ϑπ, ϑg, ϑµ)
′. As in the previous section, a separate optimization of the two

parts is infeasible, since the constraint (1.23) implies that both components depend on
the parameters of the binary choice specification, ϑπ.

If we use the ZAF distribution as point-mass mixture PMD(1), we obtain the con-
ditional density of εt given Ht−1 as

fε(εt|Ht−1) = (1− πt) δ(εt) + πt
a εam−1

t [η + (εt πt ξ)
a](−η−m) ηη

(πt ξ)
−am B(m, η)

1I(εt>0), (1.26)

where we set λt = (πt ξ)
−1, with ξ defined as in (1.18), to meet the constraint (1.23).

The corresponding log-likelihood function is

L(ϑ) =
n

t=1

{It lnπ(Ht−1;ϑπ) + (1− It) ln [1− π(Ht−1;ϑπ)]} (1.27)

+

t∈Inz


log a+ (am− 1) ln yt − (η +m) ln


η +


yt
µ(Ft−1;ϑµ)

π(Ht−1;ϑπ)
ξ

a
+ η ln η − am ln


µ(Ft−1;ϑµ)

π(Ht−1;ϑπ)
ξ−1


− lnB(m, η)


,

where ϑ = (ϑπ, a,m, η, ϑµ)
′.

1.3.3 Dynamic Models for the Trade Indicator

In order to allow the trade indicator It to follow a dynamic process, we propose two
alternative specifications: a parsimonious autologistic specification and a more flexi-
ble parameterization using autoregressive conditional multinomial (ACM) dynamics as
proposed by Russell and Engle (2005). By considering the general logistic link function

πt = π(Ht−1;ϑπ) =
exp(ht)

1 + exp(ht)
, (1.28)
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the autologistic specification for ht = ln[πt/ (1− πt)] is given by

ht = θ0 +
l

i=1

θi∆t−i +
d

i=1

γi It−i, (1.29)

where ∆t denotes an indicator for large values of the endogenous variable yt and is
defined as

∆t := max(yt − It, 0) . (1.30)

This type of transformation was suggested in a similar setting by Rydberg and Shep-
hard (2003) and accounts for the multicollinearity between the lags of yt and It. The
autologistic model has advantages in terms of tractability, such as the concavity of the
log-likelihood function, making numerical maximization straightforward. However, since
this process does not include a moving average component, it is not able to capture per-
sistent dynamics in the binary sequence. Therefore, as an alternative, we propose an
ACM specification given by

ht = ϖ +
v

j=1

ρj st−j +
w

j=1

ζj ht−j , (1.31)

where

st−j :=
It−j − πt−j
πt−j (1− πt−j)

, (1.32)

denotes the standardized trade indicator. The process {st} is a martingale difference
sequence with zero mean and unit conditional variance, which implies that {ht} follows
an ARMA process driven by a weak white noise term. Consequently, {ht} is stationary
if all values of z satisfying 1− ζ1z − . . .− ζwz

w = 0 lie outside the unit circle. For more
details, see Russell and Engle (2005).

An appealing feature of the ACM specification in the given framework is its similarity
to a MEM. Actually, analogously to a MEM specification, it imposes a linear autoregres-
sive structure on the logistic transformation of the probability πt, which in turn, equals
the conditional mean of the trade indicator It given the restricted information set Ht−1,
i.e., E [It|Ht−1].

The DZA-MEM dynamics can be straightforwardly extended by covariates which
allow to test specific market microstructure hypotheses. Moreover, a further natural
extension of the DZA-MEM is to allow for dynamic interaction effects between the
conditional mean of yt, µt, and the probability of zero values, πt. For instance, by
allowing for spillovers between both dynamic equations, the DZA-MEM can be modified
as

ht = ϖ +
v

j=1

ρj st−j +
w

j=1

ζj ht−j +
m∗
j=1

τj µt−j , (1.33)

lnµt = ω +

p
i=1

αi ln εt−i 1I(yt−i>0) +

p
i=1

α0
i 1I(yt−i=0) +

q
i=1

βi lnµt−i +
n∗
i=1

ϱi πt−i.
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In the resulting model, the intercepts ϖ and ω are not identified without additional
restrictions, such as ϖ = 0. Alternatively, or additionally, dynamic spillover effects
might be also modeled by the inclusion of the lagged endogenous variables of the two
equations, see, e.g., Russell and Engle (2005) in an ACD-ACM context.

1.3.4 Empirical Evidence on DZA-MEM Processes

We apply a DZA-MEM by parameterizing the conditional mean function µt based on the
Log-MEM specification (1.17). The lag orders in both dynamic components are chosen
according to the Schwarz information criterion. Table 1.7 shows the estimation results
for the DZA-MEM with autologistic binary choice component. For all stocks, the large
volume indicator ∆t has a positive impact on the subsequent trading probability, but
only for IBM this effect is significant at a 5% level. However, the lagged trade indicators
are significantly positive in almost every case. Thus, trade occurrences are positively
autocorrelated, which is in line with empirical market microstructure research (see, e.g.,
Engle, 2000).

For every stock, all Q-statistics of the autologistic residuals

ut :=
It − π̂t
π̂t (1− π̂t)

, (1.34)

are significant at the 5% level, showing that an autologistic specification does not com-
pletely capture the dynamics and is too parsimonious.

As shown by Table 1.8, dynamic modeling of trade occurrences by an ACM specifica-
tion yields significantly lower Q-statistics. Hence, the ACM specification seems to fully
capture the serial dependence in the trade indicator series with the parameter estimates
underlining the strong persistence in the process. For MDR, the smallest root of the
polynomial 1− ζ1z − ζ2z

2 = 0 is not far outside the unit circle, while in the other cases,
the coefficient ζ1 is close to one, suggesting that the underlying process is very persistent.

1.3.5 Evaluating the DZA-MEM: Density Forecasts

The evaluation of the DZA-MEM is complicated by the fact that the disturbances are not
i.i.d. In particular, the non-identical distribution makes an application of the semipara-
metric specification test from Section 1.2.3 impossible. Moreover, since the disturbances
are not i.i.d. even given the restricted information set Ht−1, we cannot employ a trans-
formation that provides standardized i.i.d. innovations as in De Luca and Zuccolotto
(2006).

As an alternative, we examine one-step-ahead forecasts of the conditional density
of yt implied by the DZA-MEM, which we denote by ft|t−1(yt|Ft−1). To assess the
forecasting performance of our model, we employ evaluation methods as developed by
Diebold et al. (1998) and firstly applied to MEM-type models by Bauwens et al. (2004).
One difficulty is that these methods are designed for continuous random variables, while
we have to deal with a discrete probability mass at zero. Therefore, following Liesenfeld
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Table 1.7: Estimation Results – DZA-MEM with Autologistic Component
Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with
autologistic specification for the binary choice component. The Q-statistics are based on
the residuals of the autologistic component. 5% (1%) critical values of the Q-statistics
with 20, 50 and 100 lags are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81), respectively.
The autologistic residuals are defined as: ut :=

It−π̂t√
π̂t (1−π̂t)

.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.047 6.522 0.036 8.104 0.044 6.067 0.005 1.577
α1 0.120 11.135 0.206 9.691 0.182 14.880 0.153 8.669
α2 -0.060 -4.407 -0.128 -5.685 - - -0.056 -3.039
β1 0.908 58.869 0.919 115.177 0.854 70.964 0.923 118.600
α0
1 -0.416 -6.146 -0.310 -3.895 -0.133 -8.873 -0.260 -7.412
α0
2 0.345 4.939 0.223 2.981 - - 0.218 6.058

m 1.755 10.270 653.760 4.193 450.064 11.143 507.708 9.435
η 562.562 8.006 7.719 22.007 5.393 13.260 2.729 14.331
a 0.560 17.809 0.378 52.429 0.493 24.486 0.862 25.311

θ0 -0.390 -1.748 -0.937 -4.780 -1.440 -30.669 -1.196 -22.787
θ1 0.080 1.788 0.087 2.987 0.009 1.430 0.021 1.550
γ1 0.697 5.971 0.456 5.755 0.453 10.860 0.525 10.599
γ2 0.591 5.313 0.217 3.743 0.359 8.981 0.213 5.874
γ3 0.400 3.473 0.349 6.553 0.257 6.357 0.211 5.909
γ4 0.719 6.755 0.299 5.584 0.305 7.717 0.164 4.595
γ5 0.637 5.860 0.153 2.229 0.263 6.715 0.120 3.501
γ6 - - 0.115 1.227 0.154 3.942 0.209 5.959
γ7 - - 0.194 3.424 0.228 5.864 0.126 3.526
γ8 - - 0.177 2.446 0.259 6.599 0.209 5.875
γ9 - - 0.201 2.871 0.119 3.077 0.153 4.316
γ10 - - 0.164 1.912 0.203 5.184 0.125 3.596
γ11 - - 0.202 3.744 - - 0.133 3.652
γ12 - - 0.204 4.038 - - 0.210 6.009

L -9217.064 -10581.962 -10083.494 -10585.878
SIC 18577.504 21370.032 20337.240 21377.865

Q(20) 183.111 51.498 51.409 64.732
Q(50) 446.024 247.462 167.692 227.053
Q(100) 827.023 538.224 325.533 445.320
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Table 1.8: Estimation Results – DZA-MEM with ACM Component
Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with
ACM specification for the binary choice component. The Q-statistics are based on the
residuals of the ACM component. 5% (1%) critical values of the Q-statistics with 20,
50 and 100 lags are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81), respectively. The
ACM residuals are defined as: ut :=

It−π̂t√
π̂t (1−π̂t)

.

BAC IBM MDR XEC

Coef. T-St. Coef. T-St. Coef. T-St. Coef. T-St.

ω 0.047 7.378 0.034 10.855 0.037 8.048 0.012 5.676
α1 0.117 10.941 0.186 12.419 0.107 10.055 0.130 7.914
α2 -0.060 -4.478 -0.122 -7.589 - - -0.063 -3.629
β1 0.913 68.542 0.935 157.746 0.925 97.593 0.950 210.962
α0
1 -0.409 -6.243 -0.290 -7.392 -0.092 -9.030 -0.215 -6.563
α0
2 0.311 4.577 0.199 5.054 - - 0.170 5.128

m 1.701 11.707 653.999 3.791 452.493 5.375 507.657 11.273
η 562.562 9.848 7.523 10.040 3.636 9.763 2.249 11.319
a 0.570 20.125 0.385 19.177 0.618 18.001 0.972 19.707

ϖ 0.018 3.304 0.006 2.946 0.000 -0.855 0.001 0.574
ρ1 0.195 5.835 0.183 7.911 0.146 10.818 0.203 9.696
ρ2 -0.077 -2.267 -0.099 -4.325 -0.132 -9.907 -0.125 -5.945
ζ1 0.993 501.627 0.995 664.373 1.806 116.644 0.993 683.977
ζ2 - - - - -0.807 -51.669 - -

L -9114.437 -10475.223 -9969.811 -10453.388
SIC 18345.367 21066.941 20047.150 21023.271

Q(20) 36.885 34.602 37.773 16.338
Q(50) 71.301 55.415 75.476 33.972
Q(100) 128.234 104.017 114.527 97.845
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et al. (2006) and Brockwell (2007), we employ a modified version of the test. The idea
is to add random noise to the discrete component, ensuring that the c.d.f. is invertible.
Hence, we compute randomized probability integral transforms (PITs)

zt :=


Ut Ft|t−1(yt|Ft−1) if yt = 0,

Ft|t−1(yt|Ft−1) if yt > 0,
(1.35)

where Ft|t−1(yt|Ft−1) denotes the c.d.f. corresponding to ft|t−1(yt|Ft−1), while Ut are
random variables with {Ut}nt=1 being i.i.d. U(0, 1). Using (1.22), we obtain

zt =


Ut (1− πt) if yt = 0,
(1− πt) + πtGt|t−1(yt/µt|Ht−1) if yt > 0,

(1.36)

where Gt|t−1(yt/µt|Ht−1) is the c.d.f. corresponding to gt|t−1(yt/µt|Ht−1), which denotes
the one-step-ahead forecast of the conditional density of the disturbance εt for εt > 0
evaluated at yt/µt. For a DZA-MEM based on the ZAF distribution, it follows that

zt =


Ut (1− πt) if yt = 0,
(1− πt) + πt [B(c ;m, η) /B(m, η)] if yt > 0,

(1.37)

where B(c ;m, η) :=
 c
0 t

m−1 (1− t)η−1 dt is the incomplete beta function evaluated at

c :=

yt µ

−1
t πt ξ

a 
η +


yt µ

−1
t πt ξ

a−1
. (1.38)

If the series of one-step-ahead forecasts, ft|t−1(yt|Ft−1), coincides with the true condi-
tional densities, fY (yt|Ft−1), the zt sequence is i.i.d. U(0, 1), see Brockwell (2007) for
a proof. While Diebold et al. (1998) recommend a visual inspection of the properties
of the zt’s, we also check for uniformity using the Pearson-χ2 and Kolmogorov-Smirnov
(KS) tests. In addition, following Berkowitz (2001), we compute the normal quantile
transformation ztrt := Φ−1(zt), where Φ−1(·) denotes the inverse c.d.f. of the standard
normal distribution. As is well-known, i.i.d. uniformity of the zt’s implies that the ztrt se-
quence is i.i.d. N(0, 1). To verify normality, we consider the omnibus tests proposed by
Bowman and Shenton (1975) and Doornik and Hansen (2008), which will be referred to
as BS and DH test, respectively.

Appendix A.1 describes the setup and reports the results of a power study for the
above distribution tests based on both in-sample and out-of-sample PITs. In the latter
case, estimation is carried out using the first two thirds of the dataset, while density
forecasts and PITs are computed for the last third of the sample. The results can be
summarized as follows. First, the power with respect to misspecifications of the error
distribution is high for all tests with rejection rates being close or equal to one. Second,
the detection of misspecifications of zero dynamics is somewhat lower. However, the
power of all tests increases substantially when evaluating out-of-sample instead of in-
sample density forecasts. Finally, there are noticeable performance differences between
the four tests. In the in-sample setting, the BS and DH tests offer the highest power,
while the KS test performs relatively poorly. For out-of-sample forecasts, the KS test
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Table 1.9: Distribution Tests for (Transformed) Out-of-Sample PITs
P-values of the χ2 test and statistic of the Kolmogorov-Smirnov test (KS) for unifor-
mity of out-of-sample randomized PITs. 5% and 1% critical values of the KS test are
0.027 and 0.032, respectively. In addition, p-values of the Bowman-Shenton (BS) and
Doornik-Hansen test (DH) for normality of transformed randomized PITs are reported.
The estimated model is the DZA-ACM-MEM. Two thirds of the sample are used for
estimation, one third for evaluation.

BAC IBM MDR XEC

Uniformity of PITs

χ2
P-Val 0.243 0.818 0.887 0.752

KSStat 0.022 0.013 0.024 0.017

Normality of Transformed PITs

BSP-Val 0.100 0.474 0.713 0.385

DHP-Val 0.109 0.463 0.765 0.414

becomes the most powerful one. Due to the reported power gains in this setting, but also
motivated by the higher practical relevance, we focus on the evaluation of out-of-sample
forecasts in the empirical application below.2

Table 1.9 shows the results of the distribution tests for the out-of-sample randomized
PITs and their transformed counterparts implied by the DZA-ACM-MEM. As above, the
model was estimated using the first two thirds of the sample, while density forecasts were
computed for the last third. For all stocks and both the χ2 and KS test, we cannot reject
the null hypothesis of uniformity of the PITs at a significance level of 5%. Similarly, the
BS and DH statistic, checking for normality of the transformed PITs, are insignificant
at the 5% level in all cases. These findings are underlined by the histograms of the
out-of-sample PITs depicted in Figure 1.6. For all stocks, most bars are well within the
95% confidence bounds, which indicates a satisfactory density forecasting performance.

1.4 Conclusion

We propose a model for autoregressive positive-valued variables with excess zero out-
comes. These properties are typical for time-aggregated financial high-frequency data
and cannot be appropriately handled in extant approaches.

In order to capture observations clustered at zero, we introduce a new point-mass
mixture distribution, which consists of a discrete component at zero and a flexible con-

2Results of in-sample forecasts can be found in a web appendix available at
http://amor.cms.hu-berlin.de/~malecpet/ZAMEM_appendix.pdf.
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(a) BAC (b) IBM

(c) MDR (d) XEC

Figure 1.6: Histograms of Out-of-Sample PIT Sequences
Histograms of the out-of-sample randomized probability integral transforms based on the
estimated DZA-ACM-MEM. Two thirds of the entire sample are used for estimation, one
third for evaluation. The dashed lines represent approximate 95% confidence intervals
for the bin heights under the null that the PITs are i.i.d. uniform.
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tinuous distribution for the strictly positive part of the support. To evaluate such a
distribution, a novel semiparametric specification test tailored for point-mass mixture
distributions is introduced. Finally, to accommodate serial dependencies in the data,
we incorporate the proposed point-mass mixture into a new type of multiplicative error
model (MEM) capturing the dynamics of both zero occurrences and strictly positive
values. In a simulation study, we demonstrate that, in the presence of zero observations,
maximum likelihood estimation of the resulting zero-augmented MEM (ZA-MEM) offers
clear efficiency gains compared to exponential QML and that the proposed specification
test exhibits excellent power in detecting misspecifications of the error distribution.

Empirical evidence based on cumulated trading volumes of four NYSE stocks shows
that the zero-augmented MEM on the basis of the proposed point-mass mixture captures
the distributional and dynamic properties of the data very well. The best fit is shown
for a specification incorporating a two-state ACM component for the trade indicator.
Besides MEM dynamics in trading volumes, the model also explains individual dynamics
in trade occurrences and produces good out-of-sample density forecasts.

Further possible applications include the modeling of absolute returns revealing
a nontrivial proportion of zero outcomes or the modeling of irregularly-spaced high-
frequency data, where zero durations occur as a consequence of simultaneous transac-
tions. An alternative motivation for continuous-discrete mixture distributions is, for
instance, the clustering of trade sizes at round numbers, which is caused by the well-
known preference of traders for round lot sizes.

Finally, our modeling framework is sufficiently flexible to be extended in various ways,
e.g., to allow for dynamic spillovers between the two types of dynamics or incorporating
other exogenous regressors. Moreover, it should be straightforward to extend the model
to a multivariate setting, in the spirit of, e.g., Manganelli (2005), Cipollini et al. (2006)
or Hautsch (2008). Here, the modeling of equidistant high-frequency data is particularly
useful, as the regular sampling grid avoids the technical complications caused by the
asynchronicity of observations. An interesting application of a multivariate extension
would be the simultaneous analysis of trading volumes on several exchanges. In this
context, the occurrence of zero volumes on specific venues only could be interpreted as a
substitution effect, while zero volumes on all exchanges would indicate a complete lack
of information.
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Chapter 2

Nonparametric Kernel Density
Estimation Near the Boundary

This chapter is based on Malec and Schienle (2012).

2.1 Introduction

There are many applications, in particular in economics, where densities of positive-
valued random variables are the object of interest or an essential model ingredient to
be estimated from a given sample. Compare, e.g., data on incomes, survival times,
financial trading volumes and durations, as well as volatility measures. In many of these
situations, however, appropriate functional forms are unknown or controversial, such
that a nonparametric estimate is needed. Importantly, it is often the point estimates
close to the boundary which are in the focus of practical interest and thus require good
precision.

In case of densities where most of the probability mass is concentrated away from the
boundary, there is a huge literature on boundary correction techniques for the standard
symmetric fixed kernel density estimator. Such adjustments are needed at points close to
the boundary, since fixed kernels might assign positive weight outside the support, yield-
ing inconsistent results. Among these techniques count, e.g., the cut- and normalized
kernel, see Gasser and Müller (1979), and the reflection method, see Schuster (1958).

If, however, the true density might have substantial mass close to the boundary, there
are superior methods, such as the boundary kernel of Jones (1993). Since this estimator
could yield negative point estimates, Jones and Foster (1996) propose an appropriate
correction at some minor cost of performance (see Jones, 1993). In comparison, the com-
bination of polynomial transformation followed by reflection as in Marron and Ruppert
(1994) is much less flexible, working well at boundaries only if the initial transformation
is close enough to the density shape near zero.

Nonparametric kernel density estimators based on asymmetric kernels, such as those
of gamma-type, have been introduced to improve upon the performance of fixed kernels
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(a) Volume (b) Realized Kernel

Figure 2.1: Histograms of Intraday Trading Volume and Realized Kernel Estimates
We consider deseasonalized nonzero 15-second trading volumes of Citigroup and realized
kernel estimates for JP Morgan. Sample period: February 2009 (trading volumes),
January 2006 – December 2009 (realized kernel). For details on the seasonal adjustment
of trading volumes and the computation of the realized kernel, see Section 2.4.

at the boundary. In particular for positive random variables, their flexible shape avoids
the boundary consistency problem and directly yields positive estimates by construction
(see Chen, 2000). Moreover, in this class of nonnegative kernel density estimators,
asymmetric kernels achieve the optimal rate of convergence in the sense of the integrated
mean squared error (IMSE) (see, e.g., Chen, 2000; Scaillet, 2004). In addition, their
variance decreases the further the points of estimation move away from the boundary.
This effect leads to an advantage in situations of naturally unbalanced scattered design
points, in particular for densities with sparse areas (see, e.g., Chen, 1999; Hagmann
and Scaillet, 2007; Michels, 1992). As generally boundary and unequal design issues get
increasingly severe for higher dimensions, the use of gamma kernels especially pays off
for multivariate density or regression problems. This is relevant, in particular, for the
extreme case of functional data analysis (see Ferraty and Vieu, 2006).

We contribute to the extensive literature on kernel estimation near the boundary by
clearly identifying design situations in which the finite sample and asymptotic perfor-
mance of gamma kernel estimators is distinctly superior to any competing fixed kernel
adjustments, implying that the former should be strictly preferred. Such situations oc-
cur when the true density f approaches the boundary with a derivative f ′ significantly
different from zero. These density shapes naturally appear in high-frequency data, e.g.,
when studying cumulated trading volumes (see Figure 2.1), but also in many other
applications, such as spectral density estimation of long-memory time series (see, e.g.,
Robinson and Henry, 2003) or when modeling volatilities, in particular at the intraday
level (see, e.g., Corradi et al., 2009).
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We also show that, depending on the underlying shape of the true density, the two
existing gamma kernel estimators, the so-called standard and modified version intro-
duced in Chen (2000), might differ substantially in terms of boundary performance and
still leave significant room for improvement. While in practice almost exclusively a mod-
ified gamma-type kernel estimator is used, we find that, in particular for pole situations,
the standard gamma-type estimator yields large performance advantages. We therefore
introduce a simple data-driven criterion identifying such extreme settings.

For all other design situations, we propose a refined gamma kernel estimator, which
outperforms all existing estimators in a comprehensive finite sample study. The new
estimator introduces a modification parameter according to the shape of f and its first
two derivatives close to the boundary. For determining the appropriate specification of
this refined gamma kernel estimator in practice, we additionally provide an automatic
procedure.

Our two applications clearly demonstrate the significant impact of a design-
dependent choice of the gamma kernel type on the overall estimation results. For high-
frequency stock trading volumes, we detect a pole situation and obtain an improved fit
employing the standard gamma kernel estimator, as opposed to the generally applied
modified one. In realized volatility modeling, the new refined gamma kernel estima-
tor is the only one which yields results consistent with financial theory, while all other
competing estimators produce an unexpected bias.

2.2 Kernel Density Estimation at the Boundary

Throughout the chapter, we study density estimation for the case that the support
SX ⊂ R of an unknown density is bounded from one side. Without loss of generality,
we assume that this bound is a lower bound and equals zero, such as in applications
involving the distributions of wages, trading volumes, etc. Obtained results, however,
can be easily generalized by appropriate translations and reflections at the y-axis. In
addition, note that we restrict our exposition to the case of univariate densities for
ease of notation. Multivariate extensions are systematically straightforward via product
kernels.

For an i.i.d. random sample {Xi}ni=1 from a distribution with unknown den-
sity fX(x), the conventional kernel density estimator has the form

f̂X(x) =
1

nb

n
i=1

K


x−Xi

b


, (2.1)

where b denotes a smoothing bandwidth with b → 0 and nb → ∞ as n → ∞, while K
is a kernel function which integrates to unity, i.e.,


K(u) du = 1. If the shape of K is

symmetric and fixed across the support, estimation and inference are generally simplified
given an unbounded support. However, if zero bounds the support SX from below, f̂X
is inconsistent in the boundary region [0, b) for such simplistic choices of K. Therefore,
the literature has provided many suggestions for adjustments in fixed kernel estimation,
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which we will outline in more detail when they appear as benchmarks in the simulation
study in Section 2.3. What characterizes all these approaches, however, is that, predom-
inantly, they work well only for specific forms of fX in the boundary region and/or can
yield negative estimates. In particular, for densities with nonvanishing probability mass
close to zero as in Figure 2.1, these standard correction methods perform poorly at the
boundary. In applications, it is exactly the boundary region which lies in the focus of
attention and requires precise estimates, though.

2.2.1 Standard Asymmetric Kernel Density Estimators

Density estimators based on kernels with locally varying form have shown good per-
formance for a wide range of shapes of the underlying true density. Such kernels are
nonnegative, but no longer symmetric, adjusting in skewness along the support. For the
considered one-sided boundary problem, gamma kernel estimators are the simplest and
most popular forms of such flexible estimators. In case of a two-sided boundary, which
is not our focus here, beta kernels would be the appropriate choice (see Chen, 1999).
There are two alternative specifications of gamma kernel estimators proposed by Chen
(2000), of which the first kind is defined as

f̂γX(x) =
1

n

n
i=1

Kγ
x/b+1,b(Xi) , (2.2)

where Kγ
x/b+1,b denotes the density of the gamma distribution with shape parameter

x/b+ 1 and scale parameter b, i.e.,

Kγ
x/b+1,b(u) :=

ux/b exp(−u/b)
bx/b+1 Γ(x/b+ 1)

. (2.3)

Consistency and asymptotic normality of the above estimator are straightforward to de-
rive under standard assumptions. See, e.g., Chen (2000) for the pointwise and Hagmann
and Scaillet (2007) for the uniform version. For time series observations, consistency
can also be obtained under mixing assumptions following Bouezmarni and Rombouts
(2010). In particular, for a sufficiently smooth density fX ∈ C2(SX), it can be shown
that bias and variance vanish asymptotically for b → 0 and nb → ∞. Their asymptotic
forms are

Bias

f̂γX(x)


= b


f ′X(x) +

1

2
x f ′′X(x)


+ o(b) , (2.4)

and

Var

f̂γX(x)


≈


fX(x)
nb Cb(x) if x/b→ κ,

fX(x)
2
√
π
(xb)−1/2 n−1 if x/b→ ∞,

(2.5)
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where κ is a nonnegative constant and

Cb(x) :=
Γ(2κ+ 1)

21+2κ Γ2(κ+ 1)
. (2.6)

Accordingly, the asymptotic mean squared error is

MSE

f̂γX(x)


≈


b2


f ′X(x) + 1

2 x f
′′
X(x)

2
+ fX(x)

nb Cb(x) if x/b→ κ,

b2

f ′X(x) + 1

2 x f
′′
X(x)

2
+ fX(x)

2
√
π
(xb)−1/2 n−1 if x/b→ ∞.

(2.7)

Note that the asymptotic variance decreases for large x, which is offset by an increasing
bias. In contrast to fixed kernel estimators, the asymptotic bias contains the first deriva-
tive of the density, f ′X , which is due to the fact that the chosen flexible kernel shape
has its mode rather than its mean at the point of estimation x. The modified gamma
kernel estimator improves on this for most of the support without generating conver-
gence problems in the boundary region. In particular, it uses the density of a gamma
distribution with shape parameter x/b and scale parameter b as kernel function in the
interior of the support. This density has mean x, but is unbounded for x approaching
zero. Therefore, the kernel function consists of two regimes with the boundary form
being chosen ad hoc to ensure a smooth connection to the desired interior shape, while
avoiding unboundedness problems. According to Chen (2000), the estimator is thus
defined as

f̂γmX (x) =
1

n

n
i=1

Kγ
ρb(x),b

(Xi) , (2.8)

where

ρb(x) :=


1
4


x
b

2
+ 1 if x ∈ [0, 2b) ,

x/b if x ∈ [2b,∞) .
(2.9)

Note that the estimator fixes the size of the boundary region to the area from 0 to 2b
independent of the shape of the underlying true density. The asymptotic bias of the
modified gamma kernel estimator has the desired leading term, i.e.,

Bias

f̂γmX (x)


=


ξb(x) b f

′
X(x) + o(b) if x ∈ [0, 2b) ,

1
2 x f

′′
X(x) b+ o(b) if x ∈ [2b,∞) ,

(2.10)

where

ξb(x) := (1− x)
ρb(x)− x/b

1 + b ρb(x)− x
, (2.11)

which is in [0, 1] for standard choices of b < 1/2 for all x ∈ [0, 2b) (see Figure 2.2). The
corresponding asymptotic variance can be shown to have the same structure as (2.5)
with modified constant

Cb(x) := Γ

2κ2 + 1


21+2κ2 Γ2(κ2 + 1)

, (2.12)
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(a) b = 0.0091 (b) b = 0.0396

Figure 2.2: ξb(x)
Scale factor ξb(x), as defined in (2.11), entering asymptotic bias of the modified gamma
kernel estimator. Bandwidths of two DGPs from the simulation study in Section 2.3 are
used.

and

MSE

f̂γmX (x)


≈


{ξb(x) b f ′X(x)}2 + fX(x)

nb
Cb(x) if x/b→ κ,

1
2 x f

′′
X(x) b

2
+ fX(x)

2
√
π
(xb)−1/2 n−1 if x/b→ ∞.

(2.13)

See Chen (2000) for details on the derivations.

2.2.2 Choice of Estimators for Different Density Shapes
Near Zero

Generally in the literature, the modified gamma kernel estimator has been strictly pre-
ferred to the standard gamma kernel version. Although a simple comparison of their
asymptotic variances reveals that, close to the boundary (and for all κ < 1), the con-
stant (2.12) for the modified estimator is strictly larger than the corresponding one for
the standard gamma kernel in (2.6), the above choice has been justified by the similarity
of the modified gamma kernel to fixed kernels in terms of asymptotic bias behavior as
displayed in (2.10). However, when carefully comparing the leading asymptotic bias
terms of both gamma-type estimators, we find that there are cases where it is asymp-
totically favorable to use the standard gamma kernel. For all x > 2b, in the interior of
the support with 12 x f ′′X(x)

 > f ′X(x) +
1

2
x f ′′X(x)

 , (2.14)
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the standard gamma kernel is preferable to the modified version. In particular, this
occurs for areas where the density satisfies the shape restriction

0 < −f ′X(x) /f ′′X(x) < x . (2.15)

The lower bound is fulfilled for values x where f ′X and f ′′X have different sign, i.e., where
the density fX is either decreasing and convex or where it is concave and increasing.
In the first case, it can be shown that if fX has a pole at zero, then trivially also the
upper bound in (2.15) is satisfied. If additionally fX does not have any local maxima,
the standard gamma kernel should be preferred over the modified version for the entire
interior part of the support (see Figure 2.3). Our simulation study below confirms that
this effect is of importance in finite samples, as well, while being particularly pronounced
when smaller sample sizes are considered. It can be easily shown that a pole is a sufficient
condition, but the same logic also applies to all densities with f ′X < −α < 0 for α not
too small and f ′′X ≥ 0 close to the boundary.

Apart from these pronounced cases at the boundary, any density whose support
is unbounded from the right will be convex and decreasing for large x in order to be
integrable. In this situation, the asymptotic variance regimes are identical for both
gamma-type estimators. For the asymptotic bias, independent from the rate of decay of
fX , the upper bound in (2.15) always holds in these regions. For very large x, however,
slopes and curvature values are generally small, yielding overall small biases for any
kernel-type estimator, such that a measurable advantage of the standard versus modified
gamma kernel estimator might disappear. Besides these convex cases, unimodal densities
are concave around the mode and increasing to its left (see Figure 2.3). The use of the
standard gamma kernel estimator might be recommendable in this area, as well. For
finite samples, however, observed differences are rather small even in the extreme case
of a strictly concave density between zero and the mode.

Moreover, also on the boundary for x ∈ [0, 2b), the standard gamma kernel estimator
can outperform the modified one if

f ′X(x) ξb(x)
 > f ′X(x) +

1

2
x f ′′X(x)

 . (2.16)

As ξb(x) < 1, this can occur for densities fX with opposite sign of f ′X and f ′′X . Thus in
some pole situations satisfying (2.15), the standard gamma kernel is superior to the mod-
ified one due to |ξb(x)| /

1 + 1
2 x f

′′
X(x) /f ′X(x)

 > 1 with ξb(x) = (1− β b) / (1 + b+ cβ),
where cβ > 0 for any x = β b in the boundary region. In particular, the above condition
is fulfilled for densities fX which can be approximated by δ x−1 or δ x−2 for δ > 0 in the
boundary region. However, as this area is vanishingly small, its influence on the overall
estimation results is negligible (c.f. the simulation results in Section 2.3).

Hence in practice, the ex-ante detection of pole situations is crucial for being able
to choose the best-performing version among standard and modified gamma kernel es-
timators. We propose a simple but reliable measure to check for poles as opposed to
standard cases. If fX has a pole at zero, it is the relative convergence and consistency
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f(x)

x

(a) Pole at x = 0 and no local maxima

f(x)

x

(b) Unimodal

Figure 2.3: Density Shapes Favoring the Standard Gamma Kernel Estimator
Schematic densities for which the standard gamma kernel estimator in (2.2) and (2.3)
should be preferred over the modified version in (2.8) and (2.9) according to the shape
restrictions (2.15) and (2.16). Left figure: condition (2.15) is satisfied globally for x > 2b,
while for x ≤ 2b, condition (2.16) holds if fX can be bounded by δ x−3 with δ > 0 in
this area. Right figure: condition (2.15) can be satisfied locally to the left of the mode.

of the estimator f̂X which is of main importance to judge if the correct order of decay
is detected.1 Thus, it must hold thatf̂X(x) /fX(x)− 1

 = op(1) . (2.17)

The governing term in the stochastic expansion for the right-hand side controlling con-
vergence is x f ′X(x) /fX(x), which we write as xD(x). See the proof of Theorem 5.3. in
Bouezmarni and Scaillet (2005). The practically most important pole situations occur
for densities which have or can be bounded by densities with hypergeometric decay from
zero, i.e., fX(x) = ζ x−ϑ for ζ > 0 and 0 < ϑ < 1 (the cases with ϑ > 1 are excluded by
fX being a density). Here, the quantity xD(x) equals the constant −ϑ irrespective of
the scaling factor ζ.

For distinguishing a pole situation from a no-pole scenario, it is favorable to study
D(x) directly in order to ensure sufficient power of the criterion against alternatives.
Therefore, we estimate D(x) by exploiting the simple relation

D(x) :=
f ′X(x)

fX(x)
=

d

dx
ln fX(x). (2.18)

Note that, for x approaching 0, in a pole situation D(x) is significantly negative, ap-
proaching infinity at rate −ϑ/x in case of densities decreasing with hypergeometric speed

1See, e.g., Robinson and Henry (2003) for how this is important regarding consistent estima-
tion of the long-memory parameter in long-range dependent time series.
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and −1 for exponential-type behavior. In all other settings where the modified gamma
kernel is the method of choice, D(x) is significantly positive. As a criterion, D(x) com-
bines properties of the density and its slope to distinguish the pole situation from other
density shapes. This is more powerful than checking density and slope in isolation. In
practice, D(x) can be estimated by the difference quotient based on modified gamma
kernels, i.e.,

D(x) =
ln f̂γmX (x+ b)− ln f̂γmX (x)

b
, (2.19)

where b > 0 is the same bandwidth as for the density estimates at x and x+ b. For the
practical framework of this chapter, it is sufficient to work with a rough criterion checking
if D(x) is significantly negative or not. Developing a novel formal test for the H0 of a
hypergeometric pole situation is beyond the scope of this chapter. We conjecture that,
using the results in Fernandes and Grammig (2005) for specification testing in the simple
density case, the corresponding asymptotic distribution of the centered test statistic

TD := nb2
 D(x) +

ϑ

x


, (2.20)

could be derived. However, as calculations are quite involved and should be comple-
mented with a valid bootstrap approximation scheme for finite samples, we leave this
for future research and a study on its own.

2.2.3 Refined Estimation with Modified Gamma Kernels

In cases where we can exclude a pole at the boundary, the modified gamma kernel
generally should be the method of choice in terms of best asymptotic performance.
However in the literature, its chosen form, in particular in the boundary region, has
mainly been justified by (computational) convenience. Our simulation results clearly
indicate that alternative, slightly more flexible specifications can significantly improve
upon the performance of the original modified gamma kernel.

More precisely, we propose simple refined versions of the modified gamma kernel,
where an additional modification parameter c allows for higher accuracy if appropriately
chosen in a data-driven way. We study two types of refined modified gamma kernels,
i.e.,

ρvIb (x) :=



1
4


x
bc

2
+ 1


[c+ 2b (1− c)] if x ∈ [0, 2bc) ,

x
bc (c+ 2b− x) if x ∈ [2bc, 2b) ,

x/b if x ∈ [2b,∞) ,

(2.21)

and

ρvIIb (x) :=


1
4


x
bc

2
+ 1 if x ∈ [0, 2bc) ,

x/(bc) if x ∈ [2bc,∞) ,
(2.22)
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where c ∈ (0, 1] with c = 1 yielding the original parametrization in both cases. Specifica-
tion vI shifts the boundary regime below one and introduces a flexible quadratic middle
part. In the latter regime, for ρb(x) > x/b, we have that x/b < ρvIb (x) < ρb(x) if

x

b

2b− x

ρb(x)− x/b
< c < 1, x ∈ [2bc, 2b) , (2.23)

where ρb(x) is defined as in (2.9). Importantly, fulfillment of the above condition implies
that specification vI is closer to the theoretically optimal situation with the mean of
the kernel being at the observation point as compared to the original modified gamma
kernel. The second alternative, vII, keeps two regimes and the general structure of the
original specification but shrinks the boundary region proportionally to the value of the
modification parameter c. This modification also affects asymptotics in the interior of
the support, as the mean of the kernel equals x/c and hence only in the trivial case c = 1
coincides with the point of estimation.

Figure 2.4 shows plots of ρb(x) based on the original specification proposed by Chen
(2000) along with the above refined versions for different values of the parameter c
and using the bandwidths of two DGPs from the simulation study in Section 2.3. In
addition, we include x/b, which corresponds to the interior component of the original
specification and implies a gamma kernel with mean at the point of estimation. In its
middle regime, ρvIb is closer to x/b than the original specification for c = 0.6 in the
right and for both values of c in the left figure, since in these cases, condition (2.23) is
satisfied. Close to the boundary, the shape function of specification vI takes values below
one, implying that the resulting gamma densities and thus gamma kernels are unbounded
at the origin (see Figure 2.5). However, the finite sample study below clearly reveals that
this specification outperforms both the original modified one and the refined version vII
in all settings where a modified gamma kernel should be applied.

For a feasible implementation of these refined estimators, we provide an automatic
procedure to select the modification parameter c. Holding the bandwidth b fixed, we
determine the threshold xc := b κ for which the two MSE expressions of the modified
gamma kernel in (2.13) coincide. Then, the optimal value of c can be obtained as
c∗ = κ/2 = xc/ (2b). In practice, this approach requires minimizing the objective func-
tion

M(x) :=


ξb(x) b f

′
X(x)

2
+
fX(x)

nb
Cb(x)− 

1

2
x f ′′X(x) b

2
(2.24)

− fX(x)

2
√
π

(xb)−1/2 n−1

2

,

in 0 ≤ x ≤ 2b.
Evaluation of the objective function requires estimates of the unknown density and its

first two derivatives. fX(x) and f ′X(x) = D(x) fX(x) can be estimated using the original
modified gamma kernel. An estimate of f ′′X(x) can be obtained by differentiating, e.g.,
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(a) b = 0.0091 (b) b = 0.0396

Figure 2.4: Shape Parameter ρb(x) of Modified Gamma Kernel
Black solid and short-dashed line: c = 0.6 and c = 0.05 for refined kernel vI (see (2.21)).
Gray solid and short-dashed line: c = 0.6 and c = 0.05 for refined kernel vII (see (2.22)).
Black long-dashed line: original modified kernel (see (2.9)). Gray long-dashed line:
interior regime of original specification and refined version vI, x/b. Bandwidths of the
modified gamma kernel estimator for two DGPs from the simulation study in Section 2.3
are used.

(a) b = 0.0091 (b) b = 0.0396

Figure 2.5: Gamma Kernel Depending on Shape Parameter
Gamma kernel Kγ

ρb(x),b
(u) for different values of shape parameter ρb. Black solid line:

ρb = 0.5. Black short-dashed line: ρb = 1. Black long-dashed line: ρb = 1.5. Gray solid
line: ρb = 2. Bandwidths of the modified gamma kernel estimator for two DGPs from
the simulation study in Section 2.3 are used.
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the standard gamma kernel estimator, such that

f̂ ′′γX (x) =
1

n b2

n
i=1

∂2

∂x2
Kγ

x/b+1,b(Xi) , (2.25)

=
1

n b2

n
i=1

Kγ
x/b+1,b(Xi)


ln(Xi/b)− ψ(x/b+ 1)

2
− ψ1(x/b+ 1)


,

where ψ(u) := (d/du) ln Γ(u) and ψ1(u) :=

d2/du2


ln Γ(u) denote the digamma and

trigamma function, respectively.

2.3 Simulation Study

In order to obtain a complete picture, we compare basic, modified and refined gamma
kernel estimators to standard boundary-corrected versions of the symmetric fixed kernel
density estimator (2.1) for a wide range of test densities representing all potential types
of shapes near the boundary. Further, this complements simulation studies for the two
original gamma kernels put forward in the literature, as e.g., in Chen (2000), who focuses
on very specific density settings, and Hagmann and Scaillet (2007), who restrict the range
of fixed boundary kernel competitors.

All fixed kernels are of Epanechnikov-type, i.e., K(u) = 3/4

1− u2


1I(−1≤u≤1),

where 1I(−1≤u≤1) denotes an indicator function limiting the support of K to [−1, 1]. In
particular, we report results for the following five competing fixed kernel adjustments.

The reflection estimator proposed by Schuster (1958) is given as

f̂Refl
X (x) =

1

nb

n
i=1

K


x−Xi

b


+K


x+Xi

b


. (2.26)

In the inside of the support for x ≥ 2b, (2.26) coincides with the standard kernel density
estimator f̂FixedX in (2.1).

For the cut-and-normalized estimator f̂CaN
X introduced by Gasser and Müller (1979),

the kernel function K is truncated at ν := x/b in the boundary region and normalized
ensuring integration to unity. Based on the Epanechnikov kernel, it has the form

KCaN(u) =


1− u2

 ν
−1 (1− u2) du

1I(−1≤u≤ν). (2.27)

General boundary-corrected estimators f̂Bound
X (see, e.g., Jones, 1993) replace the

standard kernel function in the boundary region by a modified version KBound, which is
chosen to meet the following conditions 1

ν
KBound(u) du = 0,

 ν

−1
KBound(u) du <∞,

 ν

−1
KBound(u)u du = 0. (2.28)
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Table 2.1: Data Generating Processes for Simulation Study
DGPs are based on i.i.d. samples from different specifications of the generalized F
distribution (2.31). We use the following tuples of shape parameters a, m and η. The
scale parameter λ is chosen such that the expectation of each DGP is normalized to one.
Corresponding shapes of the densities are depicted in Figure 2.6.

DGP a m η

1 1 1 ∞
2 0.9 0.7 1.2
3 14 0.2 0.5
4 35 0.08 0.1
5 0.8 2 ∞
6 0.55 3 5
7 5 0.3 ∞

We use the boundary kernel based on the Epanechnikov kernel, which yields

KBound(u) = 12
(1 + u)

(1 + ν)4


3ν2 − 2ν + 1

2
+ u (1− 2u)


1I(−1≤u≤ν). (2.29)

A method that corrects for the possible negativity of the boundary kernel estimates
implied by (2.29) was proposed, e.g., by Jones and Foster (1996). The corresponding
estimator has the form

f̂JFX (x) = f̂CaN
X (x) exp


f̂Bound
X (x)

f̂CaN
X (x)

− 1


. (2.30)

We compare the performance of the above estimators for seven different density
functions with nonnegative support, which reflect the variety of practically relevant types
of shapes. The densities of DGP 1 and DGP 2 are entirely decreasing and convex with
DGP 2 exhibiting pole behavior at zero. The remaining densities are increasing near the
boundary. For DGP 3 and 4, the density is locally convex in the boundary region, while
for 5,6 and 7, it is concave with a varying degree of steepness. The corresponding density
shapes are depicted in Figure 2.6. All DGPs are generated from different specifications
of the flexible generalized F distribution, which is based on a gamma mixture of the
generalized gamma distribution (see, e.g., Lancaster, 1997). Its marginal density function
is given by

fX(x) =
a xam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
, (2.31)

where a > 0,m > 0, η > 0 and λ > 0. B(·) describes the full beta function with
B(m, η) := Γ(m) Γ(η) Γ(m+ η)−1. Table 2.1 shows the values of the shape parameters
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(a) DGPs 1 to 4 (b) DGPs 5 to 7

Figure 2.6: Densities Corresponding to Different DGPs
Densities corresponding to tuples of shape parameters in Table 2.1. Left: DGP 1 (black
solid), DGP 2 (black short-dashed), DGP 3 (black long-dashed) and DGP 4 (gray solid).
Right: DGP 5 (black solid), DGP 6 (black short-dashed) and DGP 7 (black long-dashed).

a, m and η for the seven DGPs considered. To ensure comparability across the different
DGPs, the expectation is restricted to one by setting

λ = η−1/a Γ(m) Γ(η)

Γ(m+ 1/a) Γ(η − 1/a)
. (2.32)

From each DGP, we draw 1000 random samples {Xi}ni=1 of size n = 400 and
n = 4000. To minimize the effects of sampling variation, we follow Zhang (2010) and
select the optimal bandwidth for each estimator and DGP by minimizing the integrated
mean squared error (IMSE) given as

IMSE

f̂X(x)


=

1

1000

1000
r=1

 ∞

τ


fX(x)− f̂ rX(x)

2
dx, (2.33)

where τ is a small number and f̂ rX(x) denotes the density estimate for the rth simulated
sample. Bandwidth selection is conducted using the sample size nb = 200, which re-
quires multiplying the resulting bandwidths by the factor (n/nb)

−1/5 for the subsequent
analysis. The rescaled bandwidths for n = 400 and n = 4000 are reported in Table 2.2.
The two gamma kernel estimators exhibit noticeably smaller bandwidths in comparison
to the other estimators, which can be explained by the reduced variance of the former
in the interior part of the support.

Table 2.3 and 2.4 report the IMSEs of the different estimators for the seven DGPs
and two samples sizes. IMSEs are computed over the interval [0, 2]. For DGPs 3 to 7, we
additionally consider shorter intervals that encompass and exclude the mode of the dis-
tribution, respectively. Three major results are apparent. First, in a general comparison
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Table 2.2: Bandwidths
Bandwidths chosen by minimizing the integrated mean squared error (2.33) using sim-
ulated samples with n = 200. The following estimators are used. Gam and Gamm:
standard and modified gamma kernel estimator. Fixed: fixed kernel estimator based on
the Epanechnikov kernel. Refl: reflection estimator. CaN: cut-and-normalized estima-
tor. Bound: boundary kernel estimator. JF: Jones-Foster estimator.

Est. DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

n = 400

Gam 0.0768 0.0042 0.0096 0.0088 0.0571 0.0319 0.0308
Gamm 0.1163 0.0166 0.0099 0.0091 0.0634 0.0396 0.0336
Fixed 0.1821 0.0176 0.2058 0.1820 0.2678 0.0888 0.4015
Refl 0.4643 0.0391 0.2054 0.1818 0.3569 0.2144 0.3609
CaN 0.4223 0.0307 0.2044 0.1808 0.4308 0.1868 0.3494
Bound 0.7471 0.0086 0.2064 0.1825 0.3824 0.3141 0.4024
JF 0.4223 0.0307 0.2044 0.1808 0.4308 0.1868 0.3494

n = 4000

Gam 0.0485 0.0027 0.0061 0.0055 0.0360 0.0201 0.0195
Gamm 0.0734 0.0104 0.0062 0.0058 0.0400 0.0250 0.0212
Fixed 0.1149 0.0111 0.1299 0.1148 0.1689 0.0561 0.2533
Refl 0.2930 0.0247 0.1296 0.1147 0.2252 0.1353 0.2277
CaN 0.2664 0.0194 0.1290 0.1141 0.2718 0.1179 0.2204
Bound 0.4714 0.0054 0.1302 0.1152 0.2413 0.1982 0.2539
JF 0.2664 0.0194 0.1290 0.1141 0.2718 0.1179 0.2204
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Table 2.3: Integrated Mean Squared Errors (n=400)
For DGP 3, 4 and 7, limits x1 and x2 are chosen such that [x1, x2] encompasses the mode:
x1 ∈ {0.888, 0.600, 0.500} and x2 ∈ {1.292, 1.090, 1.700}. For DGP 5 and 6, x1 = x2 is
chosen such that [0, x1] includes the mode, where x1 = x2 ∈ {0.600, 0.200}. The follow-
ing estimators are used. Gamma and Gammamod: standard and modified gamma kernel
estimator. Fixed: fixed kernel estimator based on the Epanechnikov kernel. Refl: reflec-
tion estimator. CaN: cut-and-normalized estimator. Bound: boundary kernel estimator.
JF: Jones-Foster estimator. Results are re-scaled by the factor 103.

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

0 ≤ x ≤ 2

Gamma 4.185 75.151 8.857 9.759 5.828 14.572 5.286
Gammamod 3.575 279.733 8.720 9.623 5.422 14.879 4.575
Fixed 17.659 287.118 7.293 8.630 7.182 26.125 3.462
Refl 3.854 320.621 7.309 8.645 9.815 16.738 4.943
CaN 4.171 177.666 7.340 8.670 10.160 17.460 5.308
Bound 3.039 356.335 7.279 8.621 6.651 18.096 3.594
JF 4.259 923.101 7.274 8.612 7.235 17.629 3.792

0 ≤ x ≤ x1

Gamma 2.880 1.729 4.691 11.902 1.804
Gammamod 2.553 1.502 4.330 11.590 1.501
Fixed 2.015 1.125 4.991 17.248 0.934
Refl 2.037 1.143 8.285 13.032 2.309
CaN 2.083 1.178 8.956 13.339 2.619
Bound 1.993 1.109 5.250 14.616 1.066
JF 2.017 1.120 6.030 13.508 1.104

x1 ≤ x ≤ x2

Gamma 4.702 6.416 3.224
Gammamod 4.304 6.038 2.549
Fixed 3.788 5.316 2.190
Refl 3.783 5.312 2.303
CaN 3.770 5.295 2.358
Bound 3.796 5.326 2.189
JF 3.770 5.295 2.358

x2 ≤ x ≤ 2

Gamma 1.220 1.573 1.136 2.670 0.258
Gammamod 1.806 2.039 1.092 3.289 0.525
Fixed 1.433 2.134 2.190 8.877 0.339
Refl 1.432 2.136 1.530 3.706 0.330
CaN 1.431 2.141 1.204 4.122 0.331
Bound 1.434 2.131 1.401 3.479 0.339
JF 1.431 2.141 1.204 4.122 0.331
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Table 2.4: Integrated Mean Squared Errors (n=4000)
For DGP 3, 4 and 7, limits x1 and x2 are chosen such that [x1, x2] encompasses the mode:
x1 ∈ {0.888, 0.600, 0.500} and x2 ∈ {1.292, 1.090, 1.700}. For DGP 5 and 6, x1 = x2 is
chosen such that [0, x1] includes the mode, where x1 = x2 ∈ {0.600, 0.200}. The follow-
ing estimators are used. Gamma and Gammamod: standard and modified gamma kernel
estimator. Fixed: fixed kernel estimator based on the Epanechnikov kernel. Refl: reflec-
tion estimator. CaN: cut-and-normalized estimator. Bound: boundary kernel estimator.
JF: Jones-Foster estimator. Results are re-scaled by the factor 103.

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

0 ≤ x ≤ 2

Gamma 1.011 21.601 2.246 2.758 2.069 6.924 1.218
Gammamod 0.679 161.086 2.237 2.760 1.734 7.307 0.986
Fixed 8.122 46.145 1.331 1.683 1.960 8.504 0.734
Refl 0.803 154.026 1.332 1.684 4.415 10.797 1.203
CaN 0.890 56.600 1.334 1.682 5.443 10.075 1.318
Bound 0.471 62.457 1.329 1.684 2.106 10.593 0.684
JF 0.585 616.087 1.327 1.676 2.663 8.142 0.721

0 ≤ x ≤ x1

Gamma 0.450 0.271 1.831 6.484 0.322
Gammamod 0.349 0.207 1.532 6.567 0.216
Fixed 0.360 0.193 1.592 7.029 0.267
Refl 0.362 0.194 4.149 10.148 0.723
CaN 0.367 0.198 5.227 9.364 0.830
Bound 0.357 0.191 1.859 9.886 0.216
JF 0.360 0.192 2.447 7.431 0.234

x1 ≤ x ≤ x2

Gamma 1.495 2.200 0.826
Gammamod 1.337 2.055 0.567
Fixed 0.721 1.118 0.405
Refl 0.720 1.116 0.421
CaN 0.717 1.110 0.430
Bound 0.722 1.121 0.405
JF 0.717 1.110 0.430

x2 ≤ x ≤ 2

Gamma 0.293 0.281 0.238 0.440 0.071
Gammamod 0.542 0.488 0.202 0.741 0.202
Fixed 0.239 0.361 0.369 1.475 0.062
Refl 0.239 0.361 0.266 0.650 0.058
CaN 0.239 0.362 0.216 0.711 0.058
Bound 0.239 0.361 0.247 0.706 0.062
JF 0.239 0.362 0.216 0.711 0.058
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with the standard fixed kernel adjustments, gamma kernel estimators appear to offer
a satisfactory performance. They are clearly more precise for DGPs 2, 5 and 6, while
yielding similar (or only slightly higher) IMSEs in the remaining cases. In particular,
the single largest improvement in favor of the (standard) gamma kernel is achieved in
the pole scenario of DGP 2. Note that when the applied polynomial transformation for
the method of Marron and Ruppert (1994) was close to the true pole behavior, we could
also construct a fixed kernel estimator with a similar or even better precision for DGP 2.
Corresponding results, however, were not robust to deviations of the transformation
from the true density shape near zero, implying a high risk of extremely large IMSEs
in practice. Due to the tailored construction of the above method for pole situations
only, the IMSE records for any other form of the density were largely inferior to the rest.
Therefore, we do not report results for this estimator.

Second, the simulation evidence confirms the relationship between the relative per-
formance of the standard and modified gamma kernel estimator and the shape of the
underlying density. If the latter has first and second derivatives of opposing sign in
the interior of the support, as is the case for DGPs 3, 4, 6 and 7 in the subinterval to
the right of the mode, the standard gamma kernel yields noticeably lower IMSEs (see
bottom panel). When considering the entire interval [0, 2], the basic gamma kernel is
more precise for DGPs 2 and 6 with the most striking gains occurring in the former
scenario, as it corresponds to a globally convex density with pole at zero. Finally, the
above relation breaks down within the boundary region due to the involvement of the
factor ξb(x) in the asymptotic bias (see (2.10)). For DGPs 5 and 6, the modified gamma
kernel implies lower IMSEs over the leftmost subinterval, in which the corresponding
densities are increasing and concave (see lower top panel).

The simulation results stress the importance of determining pole situations in ad-
vance, which can be achieved by examining the normalized density derivative D(x) in
the boundary region. We estimate the latter as in (2.19) using the modified gamma
kernel for the points x ∈ {0, b, 2b}, where b is the bandwidth of the corresponding esti-
mator. Table 2.5 reports descriptive statistics of the estimates for n = 400. In case of
DGP 2, these estimates are highly negative at all three points, demonstrating that our
simple method is able to detect a pole at zero. We obtain negative estimates at all or at
distinct points also for DGPs 1 and 6, but their magnitude is considerably lower than
in the above true pole scenario.

As was argued in Section 2.2.2, whenever no pole situation is detected, the modified
gamma kernel in its original or refined form should be used. The IMSEs of the three
corresponding estimators are displayed in Table 2.6. For the refined kernels vI and vII, a
set of values for the modification parameter c is considered. To ensure comparability, we
apply the bandwidths b of the original modified gamma kernel to all estimators and also
use 2b as the upper integration limit in the IMSE calculations. The main finding is that
the refined kernel vI exhibits a high precision in all situations for which the modified
kernel should be considered, i.e., all DGPs except the second one. The improvement
with respect to the original specification is particularly pronounced, accompanied by
low optimal values of the parameter c, in case of densities with concave shape near the
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Table 2.5: Summary Statistics of Normalized Density Derivative
Descriptives for estimates of the ratio D(x) := f ′X(x) /fX(x) based on the modified
gamma kernel. The estimator (2.19) is used. n = 400.

x DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

Mean

0 -0.226 -13.982 73.923 80.433 1.899 1.265 4.710
b -0.711 -27.341 182.844 205.189 3.260 0.756 8.741
2b -0.941 -23.570 185.301 198.408 1.892 -1.558 6.763

1st Quartile

0 -0.399 -15.110 67.995 73.900 1.473 0.737 2.707
b -1.017 -29.185 165.094 184.470 2.467 -0.257 4.562
2b -1.180 -25.188 161.913 172.373 1.247 -2.386 3.800

Median

0 -0.220 -13.928 75.557 82.861 1.922 1.284 4.890
b -0.727 -27.382 187.737 212.998 3.209 0.710 8.395
2b -0.939 -23.557 191.768 208.193 1.865 -1.568 6.629

3rd Quartile

0 -0.059 -12.794 81.790 89.863 2.350 1.798 7.020
b -0.421 -25.602 206.611 235.238 4.025 1.764 12.854
2b -0.703 -21.906 216.830 236.042 2.493 -0.786 9.496
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boundary, as in DGPs 5,6 and 7. Further, the refined kernel vII is at roughly the same
level as the traditional parameterization and even yields the lowest IMSE for DGP 1 when
n = 400. However, recall that this specification makes the boundary region smaller and
has neither its mean nor mode at the point of estimation for x > 2bc (see Section 2.2.3).
These properties cause a vastly lower precision compared to the other specifications in
the interior part of the support. Corresponding simulation results are available upon
request.

Finally, Table 2.6 shows that the performance of the refined modified gamma kernel
estimators is highly dependent on the value of the modification parameter c. This is
underlined by Figure 2.7, which depicts plots of the root mean squared errors (RMSEs)
of the estimators based on the original modified gamma kernel and the refined version
vI for several values of c. The plots also illustrate that the choice of c determines for
which part of the support the original estimator can or cannot be outperformed. E.g.
in case of DGP 4, specification vI almost consistently exhibits lower RMSEs for c = 0.6
or c = 0.1, while providing precise estimates only in a small neighborhood of x = 0 if
c = 0.01.

Since in practice, the modification parameter c has to be chosen ex-ante, we examine
how well the data-driven method introduced in Section 2.2.3 can “track” the optimal
values according to Table 2.6. We estimate the unknown quantities entering the objective
function (2.24) as was outlined above. Figure 2.8 displays means, medians and quartiles
of the resulting estimates of the (transformed) objective function Q(c) := M(2bc), where
b is the bandwidth of the modified gamma kernel. A comparison with the IMSEs from
Table 2.6 shows that, for DGPs 5, 6 and 7, the means, in particular, have local minima
close to the values of c yielding the lowest IMSEs of the estimator based on the refined
modified kernel vI. For DGP 4, finding a unique minimum is more difficult, which
corresponds to the fact that several values of c imply equal IMSEs. These results suggest
that if suitable starting values are chosen, the above approach can determine the optimal
value of c with reasonable precision.

2.4 Application: Intraday Trading Volumes and

Return Volatility

To demonstrate the practical relevance of the above methodology, we employ the latter
to compute semiparametric estimates of the conditional distributions of high-frequency
trading volumes and return volatilities of stocks traded at the New York Stock Exchange
(NYSE). Modeling high-frequency trading volumes is, for instance, relevant for trading
strategies replicating the (daily) volume weighted average price (VWAP). Estimates of
conditional volatility distributions are crucial for the pricing of volatility derivatives.
Examples include options and futures on the CBOE Volatility Index (VIX) trading at
the Chicago Board Options Exchange (CBOE).
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Table 2.6: Integrated MSE for Refined Modified Gamma KDE vI & vII
Refined modified gamma kernel estimators as defined in (2.8) and (2.21) or (2.22). c = 1∗

denotes original modified gamma kernel from (2.8) and (2.9). IMSEs are computed from
0 to 2b. Bandwidths of the original modified gamma kernel are used. Results for n = 400
and n = 4000 are rescaled by the factor 104 and 105, respectively.

c DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

n = 400

1∗ 18.230 1971.501 0.005 0.009 24.452 99.402 2.713

v I

0.9 18.389 2238.201 0.005 0.008 22.112 98.176 2.555
0.8 18.927 3280.673 0.005 0.008 19.936 97.139 2.416
0.7 19.976 6045.533 0.004 0.007 17.940 96.462 2.299
0.6 21.776 13836.526 0.004 0.007 16.123 96.310 2.201
0.3 39.301 16309119 0.004 0.007 11.443 96.476 1.991
0.1 74.542 3193545 0.004 0.007 9.150 69.093 1.872
0.05 99.107 29681669 0.004 0.007 18.179 45.087 2.162
0.01 623.499 3640.61 0.008 0.012 72.511 144.333 10.431

v I
I

0.9 17.878 1453.286 0.006 0.010 23.301 97.185 2.722
0.8 18.157 1040.206 0.007 0.011 22.507 95.373 2.780
0.7 19.768 837.209 0.008 0.013 22.470 94.715 2.937
0.6 24.050 996.348 0.009 0.015 23.755 96.878 3.285
0.3 104.500 6653.866 0.027 0.042 43.068 195.018 8.734
0.1 629.167 24190.131 0.364 0.530 81.172 874.974 48.989
0.05 1115.938 32319.507 3.483 5.224 170.476 1460.694 105.800
0.01 1688.05 38771.282 69.245 70.217 321.568 2185.416 48.598

n = 4000

1∗ 25.397 10185.573 0.002 0.002 94.207 594.231 5.050

v I

0.9 23.982 16235.410 0.002 0.002 80.850 562.997 4.439
0.8 23.446 29262.905 0.002 0.001 68.844 533.361 3.912
0.7 24.057 55516.877 0.001 0.001 58.242 506.235 3.472
0.6 26.498 110274.880 0.001 0.001 49.013 483.124 3.115
0.3 109.444 16058082 0.001 0.001 27.206 431.343 2.493
0.1 721.532 561573.060 0.001 0.001 11.743 283.302 2.029
0.05 740.051 57227048 0.001 0.001 31.993 131.333 2.011
0.01 1716.071 6091.886 0.002 0.002 523.996 244.364 16.592

v I
I

0.9 25.709 5653.425 0.002 0.002 88.817 571.585 5.026
0.8 27.903 2185.219 0.002 0.002 86.931 550.769 5.212
0.7 33.997 682.415 0.003 0.003 91.895 534.382 5.827
0.6 47.993 2474.760 0.003 0.003 108.945 526.934 7.271
0.3 306.934 53804.758 0.009 0.011 334.800 750.698 31.256
0.1 2502.053 207647.900 0.145 0.209 634.147 3412.288 212.589
0.05 5517.404 277217.360 1.424 2.168 757.340 6670.104 540.434
0.01 10682.698 335603.280 373.201 424.930 1566.361 12161.535 433.552
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(a) DGP 1 (b) DGP 4

(c) DGP 5 (d) DGP 6

Figure 2.7: RMSE of Refined Modified Gamma KDE vI
Refined modified gamma kernel vI as defined in (2.8) and (2.21). Black solid line: c = 0.6.
Black short-dashed line: c = 0.1. Black long-dashed line: c = 0.01. Gray solid line:
c = 1∗ (original modified gamma kernel). n = 400. Bandwidths of the original modified
gamma kernel are used.
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(a) DGP 4 (b) DGP 5

(c) DGP 6 (d) DGP 7

Figure 2.8: Objective Function for Choice of c
Mean (black solid), median (gray solid), first (black long-dashed) and third (black short-
dashed) quartile of (transformed) objective function for choice of the modification pa-
rameter c in the refined modified gamma kernel vI as defined in (2.8) and (2.21). The
transformed objective function is Q(c) := M(2bc), where M(x) is given in (2.24) and b
denotes the bandwidth of the original modified gamma kernel. n = 400.
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2.4.1 Modeling Intraday Trading Volumes

We consider transaction data for Citigroup from the last trading week of February 2009.
The raw sample is filtered by deleting transactions that occurred outside regular trading
hours from 9:30 am to 4:00 pm, computing cumulated trading volumes over 15-second
intervals and removing zero observations, which yields a sample size of 7452.2 To cap-
ture the well-known intraday seasonalities of high-frequency trading variables (see, e.g.,
Hautsch (2004) for an overview), we divide the cumulated volumes by a seasonality
component, which is pre-estimated employing a cubic spline function.

An important property of the resulting (deseasonalized) trading volumes is the strong
persistence, as evidenced by the highly significant Ljung-Box statistics in Table 2.7. The
most widely-used parametric framework for this type of data, see, e.g., Brownlees et al.
(2010), is the multiplicative error model (MEM) originally proposed by Engle (2002b).

Accordingly, we decompose the t-th trading volume, x
(v)
t , as

x
(v)
t = µ

(v)
t ε

(v)
t , ε

(v)
t ∼ i.i.d. D(1) , (2.34)

where µ
(v)
t denotes the conditional mean given the past information set F (v)

t−1 and is as-

sumed to evolve according to the dynamics described in Appendix B.1. ε
(v)
t is a distur-

bance following an unspecified distribution D(1) with positive support and E

ε
(v)
t


= 1.

Assuming MEM-type dynamics would allow to apply gamma kernel estimators to trad-

ing volumes directly and estimate their unconditional density fX

x
(v)
t


consistently (see

Bouezmarni and Rombouts, 2010). Our object of interest, the conditional density given

the past information set F (v)
t−1, can be estimated semiparametrically in a straightforward

way, as the MEM structure implies the basic relationship

fX

x
(v)
t |F (v)

t−1


= fε


x
(v)
t /µ

(v)
t


/µ

(v)
t . (2.35)

We consider a two-step approach. First, we estimate µ
(v)
t by exponential QML and gen-

erate residuals ε̂
(v)
t := x

(v)
t /µ̂

(v)
t , which are consistent estimates of the i.i.d errors ε

(v)
t

(see, e.g., Drost and Werker, 2004). Second, we estimate fε

x
(v)
t /µ

(v)
t


nonparametri-

cally employing gamma kernels. The consistency and parametric rate of convergence of
the conditional mean estimates enable us to use the MEM residuals as inputs without
affecting the asymptotics of the kernel density estimators.

Nonparametric estimation of the error density requires the choice of the appropriate
type of gamma kernel, i.e., standard or modified in the original and refined version (spec-
ification vI). To ensure comparability and boundary regions of equal size, we consider
the least-squares cross-validation (LSCV) bandwidth of the standard gamma kernel es-
timator in all cases. In particular, we use the bandwidth b∗ that minimizes a nearly

2For a detailed discussion of the treatment of zero observations in the context of financial
high-frequency data, see Chapter 1.
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Table 2.7: Ljung-Box Statistics for Trading Volumes and Realized Kernel Estimates
Q(l): Ljung-Box statistic associated with l lags. The 5% (1%) critical values associated
with lag lengths 20, 50 and 100 are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81). We
consider deseasonalized nonzero 15-second trading volumes of Citigroup and realized
kernel (RK) estimates for JP Morgan.

Volume RK

Q(20) 10349.281 5045.309
Q(50) 19447.096 9834.944
Q(100) 31353.699 14012.591

unbiased estimate of the integrated mean squared error, i.e.,

CV (b) :=
1

n2


i


j

 ∞

τ
Kγ

x/b+1,b


ε̂
(v)
i


Kγ

x/b+1,b


ε̂
(v)
j


dx (2.36)

− 2

n (n− 1)


i


j ̸=i

Kγ
xi/b+1,b


ε̂
(v)
j


,

which yields the bandwidth b∗ = 0.0118. See Hjort and Glad (1995) for details on
(nearly) unbiased cross-validation. Further, we estimate the normalized density deriva-

tive D

ε
(v)
t


for ε

(v)
t ∈ {0, b∗, 2b∗} as in (2.19) based on the modified gamma kernel. The

corresponding results in Table 2.8 show that two out of three estimates are considerably
negative, which indicates a possible pole situation and suggests the use of the standard

gamma kernel. Figure 2.9 displays estimates of the error density fε

ε
(v)
t


based on the

standard and, for comparison, modified gamma kernel for the boundary region and a
larger part of the support. While for both density estimates, the probability mass is
quite concentrated close to the origin, the standard gamma kernel, being the method
of choice, yields an estimate that lies clearly below the density implied by the modified
kernel for the major part of the boundary region.

Finally, Figure 2.10 shows estimates of the conditional density of trading volumes for
February 26 and 27, 2009, at 11am EST. On the latter day, Citigroup announced that
the US treasury would be taking a major equity stake in the company, while the former
day is included for comparison. As an alternative to the semiparametric approach, the
plot also features the conditional density implied by maximum likelihood estimates of
the MEM (2.34) assuming that the errors follow the widely-used gamma distribution
(e.g. Engle and Gallo, 2006). The impact of the announcement on trading activity
related to the Citigroup stock is clearly visible, as the conditional volume distribution for
February 27 assigns considerably less weight to small transactions. The semiparametric
density estimates and their parametric counterparts are quite close to each other in the
interior of the support. The major difference occurs at the origin where the parametric
densities exhibit a pole, which is not the case for the semiparametric estimates.
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Table 2.8: Estimates of Normalized Density Derivative for MEM Errors

Estimates of the ratio D

ε
(m)
t


:= f ′ε


ε
(m)
t


/fε


ε
(m)
t


, m = v, rk, based on the modi-

fied gamma kernel in the boundary region as in (2.19). ε
(m)
t are errors from the MEM

structure (2.34) fitted to deseasonalized nonzero 15-second trading volumes of Citigroup
and realized kernel (RK) estimates for JP Morgan. b∗ is LSCV bandwidth of the stan-
dard gamma kernel estimator: 0.0118 for trading volumes and 0.0206 for realized kernel
estimates.

ε
(m)
t Volume RK

0 0.293 26.283
b∗ -10.100 59.915
2b∗ -14.399 53.235

(a) Full Support (b) Boundary

Figure 2.9: Estimates of MEM Error Density for Intraday Trading Volumes

Estimates of the density fε

ε
(v)
t


from the MEM structure (2.34) fitted to deseasonalized

nonzero 15-second trading volumes of Citigroup. Black solid line: standard gamma
kernel. Gray solid line: modified gamma kernel. LSCV bandwidth of the standard
gamma kernel, b∗ = 0.0118, is used for both estimators.
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(a) Full Support (b) Boundary

Figure 2.10: (Semi-)Parametric Conditional Density of Intraday Trading Volumes
Conditional densities of deseasonalized nonzero 15-second trading volumes of Citigroup

at time t given past information F (v)
t−1. Based on the MEM structure (2.34) and the

relationship (2.35). Parametric estimates (dashed lines) are implied by a ML approach

assuming gamma-distributed errors ε
(v)
t . Semiparametric estimates (solid lines) rely on

QML estimates of µ
(v)
t and nonparametric estimates of fε


x
(v)
t /µ

(v)
t


using the standard

gamma kernel. Conditional densities are estimated for 11am EST on February 26 (black
lines) and February 27, 2009 (gray lines).
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2.4.2 Modeling Realized Volatility

Realized volatility measures computed from high-frequency data allow to construct more
accurate estimates of the underlying lower frequency volatility (see, e.g., Andersen et al.,
2010a). We employ mid-quotes for JP Morgan from January 2006 to December 2009,
which corresponds to 983 trading days, and clean the raw data as suggested in Barndorff-
Nielsen et al. (2008b). The realized volatility for day t is simply defined as the sum of
squared (mid-quote) returns ri,t, i = 1, . . . , Nt. Barndorff-Nielsen and Shephard (2002)
show that, in the absence of noise and with the number of intraday returns approaching
infinity, this basic estimator is consistent for the latent integrated volatility, which under
regularity conditions, provides an unbiased measure of the conditional variance of (daily)
returns. In practice, observed prices are contaminated by microstructure effects, causing
an inconsistency of the basic realized volatility estimator (e.g. Hansen and Lunde, 2006).
Hence, we consider the noise-robust realized kernel estimator, which was proposed by
Barndorff-Nielsen et al. (2008a) and takes the form

x
(rk)
t := γ0 +

H
h=1

k


h− 1

H


(γh + γ−h) , γh :=

nt
i=1

ri,t ri−h,t, (2.37)

where k(·) is the Parzen kernel and H the bandwidth.3 Since (filtered) realized kernel
estimates are used as inputs for kernel density estimators below, the two bandwidths
involved have to be balanced in a way similar to Corradi et al. (2009) who propose
nonparametric conditional density estimators for the integrated volatility. We ensure
that their assumption A.1 is met by choosing H as in Section 4.3 of Barndorff-Nielsen
et al. (2008a).4

Table 2.7 shows that the realized kernel estimates exhibit a similar persistence as
trading volumes, which we account for by following Engle and Gallo (2006) and impos-
ing a flexible MEM structure. Hence, we model the realized kernel value for day t,

x
(rk)
t , analogously to (2.34), where the assumptions for the errors ε

(rk)
t remain the

same, while a slightly different specification is chosen for the conditional mean µ
(rk)
t

(see Appendix B.1). We compute semiparametric estimates of the conditional density

fX

x
(rk)
t |F (rk)

t−1


using the same approach as in Section 2.4.1, which in the given appli-

cation, can be considered as a simple alternative to the fully nonparametric procedure
proposed in Corradi et al. (2009). As Table 2.8 reports, the estimates of the normalized
density derivative for the MEM errors are consistently positive, indicating that the cor-
responding density should be estimated using a modified gamma kernel. Thus, we first
determine the optimal value of the modification parameter c for the refined specification
vI by minimizing the objective function (2.24). We compute the required pilot estimates
of the unknown density and its first two derivatives as outlined in Section 2.2.3, which
yields the parameter value c∗ = 0.0863.

3The number of returns used for the computation of the realized kernel, nt, is lower than the
total number of observations Nt due to the so-called jittering procedure. See Barndorff-Nielsen
et al. (2008a) for details.

4To estimate the so-called noise-to-signal ratio, we follow Barndorff-Nielsen et al. (2008b).
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(a) Full Support (b) Boundary

Figure 2.11: Estimates of MEM Error Density for Realized Kernel Estimates

Estimates of the density fε

ε
(rk)
t


from the MEM structure (2.34) fitted to realized kernel

estimates for JP Morgan. Black solid line: standard gamma kernel. Gray solid line:
modified gamma kernel. Black dashed line: refined modified gamma kernel vI. LSCV
bandwidth of the standard gamma kernel, b∗ = 0.0206, is used for all estimators.

Estimates of the MEM error density implied by all three types of gamma kernels
considered are displayed in Figure 2.11 and indicate the following major results. First,
as compared to the error density based on trading volumes in Figure 2.9, the mode of
the distribution is further to the interior of the support. Second, the density exhibits
a similar degree of right-skewness as was reported for the unconditional distribution of
realized volatilities by Andersen et al. (2001). Finally, the density estimate based on
the refined modified kernel tends to zero when approaching the boundary instead of

taking a strictly positive value at ε
(rk)
t = 0. This effect is caused by the low value of

the modification parameter c, which pushes the shape parameter ρvIb

ε
(rk)
t


below one

when smoothing at the boundary (see (2.21)). A distribution of stock return volatility
with vanishing probability mass close to the boundary is in line with financial theory,
since stocks are “risky” assets for which investors demand a volatility premium (see, e.g.,
Merton, 1973).

Figure 2.12 displays conditional density estimates of realized kernel values for two
days during the financial crisis 2007 – 2008: October 10, 2008, when the DJIA index fell
by 8% at the start of the trading day, and November 10, 2008, when a major restruc-
turing of the AIG bailout plan was announced. The density estimates are based on our
semiparametric procedure using the refined modified gamma kernel and the parametric
approach from Section 2.4.1. Except for some discrepancies around the mode and in
the boundary region, the parametric estimates roughly match the semiparametric ones,
indicating that the gamma distribution is a reasonable assumption for the MEM errors.
With respect to dynamic changes, the conditional densities reflect the more unstable
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(a) Full Support (b) Boundary

Figure 2.12: (Semi-)Parametric Conditional Density of Realized Kernel Estimates
Conditional densities of realized kernel estimates for JP Morgan at day t given past

information F (rk)
t−1 . Based on the MEM structure (2.34) and the relationship (2.35).

Parametric estimates (dashed lines) are implied by a ML approach assuming gamma-

distributed errors ε
(rk)
t . Semiparametric estimates (solid lines) rely on QML estimates of

µ
(rk)
t and nonparametric estimates of fε


x
(rk)
t /µ

(rk)
t


using the refined modified gamma

kernel vI. Conditional densities are estimated for October 10 (gray lines) and Novem-
ber 10, 2008 (black lines). Realized kernel estimates are annualized.

market environment on October 10, since the corresponding volatility distribution has
its mode further away from the origin and is more dispersed. Further, as in case of the
unconditional error density, the probability mass is vanishing close to the boundary for
both days and estimators considered.

2.5 Conclusion

Gamma kernel estimators vary their shape according to the point of estimation along
the support. For positive-valued random variables, this location adaptiveness avoids the
boundary bias associated with standard fixed kernel estimators, while yielding strictly
nonnegative density estimates by construction. We show for various density shapes that,
in finite samples, the two original gamma kernel estimators outperform all boundary and
boundary-corrected fixed kernel-type estimators in the boundary region, especially for
settings with a pronounced probability mass close to zero. For all other setups and in
the interior of the support, their finite sample performance is comparable to the one of
fixed-type boundary kernels. Moreover, based on asymptotic considerations and finite
sample illustrations, we find that, for pole situations at zero, the two gamma kernel
estimators differ substantially. In fact, the standard type is superior to the generally
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used modified version in this case. We therefore suggest a simple criterion to check
for such situations. For all other settings, we propose a refined modified version of the
gamma kernel estimator, which further improves upon the performance of the original
modified kernel. Our technique is complemented by a data-driven approach for choosing
the modification parameter in the new refined gamma kernel. In two application settings,
we demonstrate that, in particular in high-frequency finance, the suggested methodology
yields superior results of practical impact.
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Chapter 3

Do High-Frequency Data Improve
High-Dimensional Portfolio
Allocations?

This chapter is based on Hautsch, Kyj, and Malec (2011).

3.1 Introduction

With the rise in mutual fund and exchange-traded fund (ETF) investing, quantitative
short-term management of vast portfolios has emerged as a topic of great interest. For
allocation decisions, forecasts of high-dimensional covariance matrices constitute a cru-
cial input, which initiated a body of literature on the performance of various methods
based on asset return data measured up to a daily frequency (see, e.g., Chan et al., 1999;
Jagannathan and Ma, 2003). Although the work of Andersen et al. (2001), Barndorff-
Nielsen and Shephard (2004) and Barndorff-Nielsen et al. (2011), among others, opened
up a new channel for increasing the precision of covariance matrix estimates and fore-
casts by exploiting high-frequency (HF) data, existing empirical studies examine its
benefits for portfolio selection only in moderate dimensions (e.g. Fleming et al., 2003;
Liu, 2009). This chapter evaluates the potential of HF data for portfolio selection in a
realistic high-dimensional framework.

While ensuring a high precision, we face major technical and practical challenges
when constructing covariance matrix forecasts for vast-dimensional portfolio applica-
tions. First, forecasts have to be both positive definite and well-conditioned. These
properties can be guaranteed by having sufficiently long estimation windows, sampling
frequently enough within a fixed window, imposing a parametric specification or apply-
ing suitable regularization techniques. The latter include factor structures, e.g., based
on principal components, methods from random matrix theory, such as eigenvalue clean-
ing (see Laloux et al., 1999), or shrinkage techniques as proposed in Ledoit and Wolf
(2003). Second, covariance matrix predictions have to balance responsiveness (to new

67



information) and a certain degree of stability. The latter property is crucial for prevent-
ing high transaction costs caused by excessive portfolio rebalancing and can be ensured
by smoothing the estimates appropriately.

Motivated by these requirements, we address the following research questions: (i) Do
HF-based forecasts generally outperform low-frequency-based approaches and – if yes –
over which time horizons? (ii) Which regularization methods are (empirically) supe-
rior? (iii) How important is it to smooth estimates over time? (iv) How well do naive
predictions of covariance matrices (i.e., random walk forecasts) perform compared to
corresponding dynamic forecasting models? (v) How do results change in dependence of
the dimension of the underlying portfolio?

We answer these questions in an extensive and thorough empirical study by focus-
ing on the problem of constructing global minimum variance (GMV) portfolios based
on the constituents of the S&P 500 index over a four-year period covering the 2008
financial crisis. Studying global minimum variance portfolios (in contrast to minimum
variance portfolios for a given expected return) has the important advantage that the
corresponding weights are determined solely by forecasts of the conditional covariance
matrices over the given investment horizon. This property is tantamount to pure volatil-
ity timing strategies and avoids the inherent noisiness of conditional mean predictions,
overshadowing the analysis and blurring the role of covariance forecasts, (see, e.g., Ja-
gannathan and Ma, 2003). We obtain HF-based covariance matrix estimates by applying
the blocked realized kernel (BRK) by Hautsch et al. (2012) to mid-quote data. These
estimates are smoothed over different time windows, regularized by eigenvalue cleaning
or imposing a factor structure and, finally, utilized to construct both naive predictions
and forecasts based on a simple dynamic specification. We benchmark the HF forecasts
with prevailing approaches employing daily returns. In particular, we use multivari-
ate GARCH models, rolling window sample covariance matrices regularized in different
ways, as well as both classic and state-of-the-art RiskMetrics approaches. The compet-
ing methods are evaluated in terms of the (estimated) conditional portfolio volatility and
important characteristics of the implied portfolio allocations, such as portfolio turnovers
and the amount of short-selling. Finally, we examine the economic significance of differ-
ences in portfolio volatility by a refined version of the utility-based method introduced
in West et al. (1993) and Fleming et al. (2001). This approach provides performance fees
(net of transaction costs) that a risk-averse investor would be willing to pay to switch
from, for instance, covariance forecasts employing daily returns to HF-based forecasts.
To provide finite sample inference for these performance characteristics, we embed the
entire evaluation methodology into a stylized “portfolio bootstrap” framework based on
a random sampling of asset subsets.

We summarize the major results as follows. First, even naive HF-based forecasts
outperform all low-frequency (LF) methods in terms of portfolio volatility. This is par-
ticularly true during the turbulent crisis period. Here, an investor with high risk aversion
and a daily horizon would be willing to pay up to 199 basis points to benefit from a lower
portfolio volatility produced from HF data. This superiority of HF-based forecasts per-
sists up to a monthly horizon with the corresponding performance fee being still 99 basis
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points. Second, while eigenvalue cleaning, as applied to BRK estimates by Hautsch et al.
(2012), performs well as a robust baseline approach, adaptive or fixed factor structures
constitute an effective alternative. Third, short-term smoothing of HF-based covariance
matrix estimates can be beneficial for further reducing portfolio volatility. In contrast,
smoothing over too long time intervals increases volatility but lowers portfolio turnover.
The latter, however, is of importance if the transaction cost level is particularly high.
Fourth, constructing forecasts based on a simple dynamic specification of (realized) co-
variances further improves the performance of HF-based forecasts. During the crisis
period, the performance fees an investor with pronounced risk aversion would pay for
switching from LF-based predictions amount to 328 and 239 basis points for a daily
and monthly horizon, respectively. Fifth, we demonstrate that exploiting HF data for
portfolio selection is challenging in a vast investment universe including relatively illiq-
uid assets. In contrast, focusing on the 100 and 30 most heavily-traded stocks out of
the S&P 500 universe, we find that basis point fees for switching to HF-based forecasts
increase by a multiple.

This chapter contributes to (the few existing) studies on the benefits of HF data for
portfolio allocation. In their seminal work, Fleming et al. (2003) apply the evaluation
methodology by Fleming et al. (2001) to volatility timing strategies in a general mean-
variance context. For a daily forecasting horizon, they find that a risk-averse investor
would be willing to pay between 50 and 200 basis points to switch from covariance fore-
casts based on daily returns to those employing five-minute returns. However, these
results are based on allocations across only three highly-liquid futures contracts. Liu
(2009) extends the size of the asset universe to 30 by constructing minimum tracking
error portfolios (tracking the S&P 500 index) based on the constituents of the Dow Jones
Industrial Average. He confirms the benefits of HF-based forecasts in terms of track-
ing error volatility. Apart from examining the value of HF data for portfolio selection
in general, the studies by Bandi et al. (2008) and de Pooter et al. (2008) also aim to
determine the optimal intraday sampling frequency. While the former minimize a mean
squared error criterion for three S&P 500 stocks and conduct an ex-post economic eval-
uation, the latter directly compare the performance of volatility timing strategies based
on different frequencies considering the constituents of the S&P 100 index.

However, to our best knowledge, no study thoroughly analyzed HF-based forecasts of
portfolios covering several hundreds of assets as commonly used in practice. In addition,
our contributions to this strand of literature are twofold. First, the above studies are
restricted to intraday data sampled at fixed time intervals (e.g., five minutes). We
consider the highest frequency possible, employing tailor-made covariance estimators
that offer substantial precision gains (see, e.g., Barndorff-Nielsen et al., 2011; Hautsch
et al., 2012). Second, the predominant evaluation method is to examine unconditional
sample moments of implied portfolio returns (or utilities depending on the latter), which
however, can distort the ranking of the underlying covariance matrix forecasts (see Voev,
2009). Our evaluation approach builds upon estimated conditional portfolio volatilities,
allowing for a more reliable ranking of competing covariance predictions.

The remainder of the chapter is organized as follows. Section 3.2 introduces the
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general GMV framework, as well as the corresponding evaluation methodology for con-
ditional covariance matrix forecasts. In Section 3.3, we discuss the methods for the
construction of conditional covariance predictions based on both HF and LF data. Sec-
tion 3.4 presents the S&P 500 dataset, more details on the evaluation procedure and the
empirical results. Finally, Section 3.5 concludes.

3.2 Global Minimum Variance Portfolios and

Covariance Forecasts

The practical implementation of a general mean-variance framework in the spirit of
Markowitz (1952) relies on forecasts of the first two conditional moments of asset returns.
Consequently, the performance of the predicted (optimal) portfolio allocation depends on
the predictability of both conditional means and conditional covariances. However, it is
well-known that the predictability of first conditional moments of asset returns is much
lower than the predictability of conditional (co-)variances (e.g. Merton, 1980). Thus,
mean forecasts are subject to substantial prediction errors, which in turn, can completely
dominate and distort the analysis (e.g. Michaud, 1989). As a result, isolating the explicit
effects of high-dimensional covariance forecasts on the resulting portfolio performance
is virtually impossible. Hence, in order to eliminate the impact of conditional mean
predictions and to solely focus on the value of covariance forecasts, we consider global
minimum variance portfolios. This proceeding is backed by empirical evidence showing
that the noisiness of mean predictions leads to highly unstable portfolio allocations,
which are typically outperformed by approaches explicitly avoiding the need of mean
forecasts (e.g. DeMiguel et al., 2009; Jagannathan and Ma, 2003; Michaud, 1989). In this
sense, our analysis provides insights into the impact of covariance forecasts on portfolio
performance without being affected by assumptions or estimation errors associated with
mean predictions.

We assume a risk-averse investor with a horizon of h days and an asset universe of
m stocks whose optimization problem at day t can be formulated as

min
wt,t+h

w′
t,t+hΣt,t+hwt,t+h s.t. w′

t,t+hι = 1, (3.1)

where wt,t+h is the (m× 1) vector of portfolio weights and ι is a (m× 1) vector of ones.
Further, Σt,t+h := Cov[rt,t+h|Ft] denotes the (m×m) conditional covariance matrix of
rt,t+h, i.e., the (m× 1) vector of log-returns from day t to t + h, given the information
set at t, Ft. If, for simplicity, we assume that Cov[rt+r−1,t+r, rt+s−1,t+s|Ft] = 0, r, s ≥ 1,

r ̸= s, then Σt,t+h =
h

r=1 E[Σt+r−1,t+r|Ft]. For h = 1, we write rt+1 := rt,t+1 and,
equivalently, Σt+1 := Σt,t+1. Solving (3.1) yields the GMV portfolio weights given by

w∗
t,t+h =

Σ−1
t,t+h ι

ι′Σ−1
t,t+h ι

. (3.2)
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We investigate the benefits of HF data for GMV portfolio selection in terms of forecasts
of the conditional covariance matrix, Σt,t+h, with corresponding weights wt,t+h. To
evaluate these predictions, we exploit the basic result of Patton and Sheppard (2008)
showing that the conditional variances of the portfolios based on the true conditional
covariance matrix Σt,t+h and its forecast Σt,t+h obey

w′
t,t+hΣt,t+h wt,t+h > w∗′

t,t+hΣt,t+hw
∗
t,t+h if Σt,t+h ̸= Σt,t+h. (3.3)

This result yields a natural evaluation criterion, as resulting portfolio variances approach
a lower bound if forecasts Σt,t+h approach their population counterparts. Consequently,

we consider a forecast Σt,t+h as being “better” if it produces a smaller conditional port-
folio variance. As will be discussed below, the conditional portfolio variances can be
proxied using HF data.

Importantly, Voev (2009) shows that the above criteria are valid only for condi-
tional, but not unconditional variances. Employing the latter introduces an objective
bias, which is driven by the variance of the conditional mean of portfolio returns. There-
fore, the bias is negligible only if a mean of zero can be assumed, which is problematic
for horizons of more than, e.g., a day. Further, the bias term imposes a penalty on the
variation in portfolio weights. This property becomes particularly restrictive when com-
paring covariance matrix forecasts based on LF and HF data, as intuitively, the latter
should be able to incorporate new information faster, implying more variability in the
weights. Hence, gains from employing HF data might be understated when unconditional
portfolio variances are considered for evaluation.

We assess the economic significance of lower (conditional) portfolio variances by
adapting the utility-based evaluation approach suggested by West et al. (1993) and
Fleming et al. (2001) to a conditional framework. Accordingly, we assume that the
investor has quadratic preferences of the form

U

rpt,t+h


= 1 + rpt,t+h −

γ

2 (1 + γ)


1 + rpt,t+h

2
, (3.4)

where rpt,t+h := w′
t,t+h rt,t+h is the portfolio return, while γ denotes the relative risk

aversion. Following Fleming et al. (2003), we consider the two levels γ = 1 and γ = 10.
For two competing covariance forecasts, ΣI

t,t+h and ΣII
t,t+h, implying the GMV portfolio

returns rp,It,t+h and rp,IIt,t+h, we then determine a value ∆γ , such that

T−h
t=1

E

U

rp,It,t+h

Ft


=

T−h
t=1

E

U

rp,IIt,t+h −∆γ

Ft


. (3.5)

∆γ can be interpreted as a fee the investor would be willing to pay in order to

switch from a GMV strategy based on ΣI
t,t+h to its counterpart employing ΣII

t,t+h.
As we show in Appendix C.1, the solution to (3.5) depends on the conditional port-
folio variances, wi′

t,t+hΣt,t+h wi
t,t+h, and the conditional means, wi′

t,t+h µt,t+h, where
µt,t+h := E[rt,t+h|Ft] is the (m× 1) vector of conditional expected returns and i = I, II.
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To focus on the effects of differences in (average) conditional portfolio variances, we
assume that expected returns are constant over time and identical across all stocks, i.e.,
µt,t+h = (h/252)µid ι, t = 1, . . . , T − h. Then, we obtain the relationship

∆γ > 0 iff σ2,pI > σ2,pII , σ2,pi :=
1

T − h

T−h
t=1

wi′
t,t+hΣt,t+h wi

t,t+h, i = I, II, (3.6)

under the assumption that (h/252)µid ≤ 1/γ (see Appendix C.1).1 To control for
the impact of the assumed level of µid on the performance fee ∆γ , we consider a grid
of values satisfying the above restriction for the investment horizons and rates of risk
aversion employed, i.e., µid ∈ {−0.05, 0, 0.05, 0.1}. However, as we discuss below, our
results are very robust to the specific value of µid.

3.3 Covariance Estimation and Forecasting in

Vast Dimensions

3.3.1 Forecasts Based on High-Frequency Data

Estimating asset return covariances based on high-frequency data requires addressing
four major challenges: (i) using high-frequency information based on maximally high
sampling frequencies in order to maximize the estimator’s efficiency, while (ii) avoiding
biases due to microstructure noise (e.g. Hansen and Lunde, 2006) and the asynchronous
arrival of observations across assets (e.g. Epps, 1979), as well as (iii) ensuring positive
definiteness and (iv) well-conditioning of covariance estimates, i.e., numerical stability
of their inverse. Satisfying all criteria simultaneously is challenging, as for instance,
fulfilling (i), (iii) and (iv) requires sampling on maximally high frequencies, which in
turn, causes substantial biases ruled out by (ii). Conversely, sparse sampling, e.g., based
on five-minute returns, as utilized by the classical realized covariance estimator proposed
by Andersen et al. (2001), satisfies (ii) but violates (i) and – if the dimension of the
portfolio is high – (iv).

A widely-used estimator that is both consistent in the presence of microstructure
noise and provides positive semidefinite estimates (thus satisfying (ii) and (iii)) is the
multivariate realized kernel proposed by Barndorff-Nielsen et al. (2011). As an important
ingredient, this approach involves so-called refresh time sampling for synchronization,
which requires to sample prices whenever all assets have been traded (i.e., have been
refreshed) at least once. This naturally implies a loss of efficiency, since the sampling fre-
quency is driven by those assets trading slowest. As stressed and illustrated by Hautsch
et al. (2012), this loss of efficiency can be substantial (thus violating (i)) if the number of

1 Even in case (h/252)µid > 1/γ, we always have that ∆γ > 0 if σ2,p
I > σ2,p

II . However, the
above condition on µid is not overly restrictive. For the longest investment horizon and highest
level of risk aversion we consider, i.e., h = 20 and γ = 10, we need to impose that µid ≤ 1.26.
That is, the assumed annualized expected return may not exceed 126 percentage points.
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assets and their heterogeneity in terms of trading frequency is high. In the extreme case,
covariance matrix estimates might even become ill-conditioned (thus violating (iv)).

The Blocked Realized Kernel

To address this problem and construct estimates which satisfy all criteria, we consider
the blocked realized kernel put forward by Hautsch et al. (2012). The idea behind the
blocked realized kernel is to assign the assets to groups according to their (average)
trading frequency and to estimate the underlying correlation matrix groupwise.

In a general framework, we denote the log-price of asset i at time τ by p
(i)
τ ,

i = 1, . . . ,m. For the assumptions on the price process that ensure consistency of
the (blocked) multivariate realized kernel, we refer to Barndorff-Nielsen et al. (2011).

On day t, t = 1, . . . , T , the j-th price observation of asset i is at time τ
(i)
t,j , where

j = 1, . . . , N
(i)
t and i = 1, . . . ,m. Let G be the specified number of liquidity groups,

yielding the blocks b = 1, . . . , B, with B = G (G+ 1) /2. Further, we denote the set of
indices of the mb assets associated with block b by Ib. Applying the multivariate realized
kernel methodology to the assets in Ib then requires refresh time sampling with refresh
times defined as the time it takes for all the assets in this set to trade or refresh posted
prices, i.e.,

rτ bt,1 := max
i∈Ib


τ
(i)
t,1


, rτ bt,l+1 := max

i∈Ib


τ
(i)

t,N(i)(rτbt,l)+1


, (3.7)

where N (i)(τ) denotes the number of price observations of asset i before time τ . Accord-
ingly, vectors of synchronized returns are obtained as

rbt,l := prτbt,l
− prτbt,l−1

, l = 1, . . . , nbt , (3.8)

where nbt is the number of refresh time observations in block b.
The multivariate realized kernel on block b is defined as

Kb
t :=

Hb
t

h=−Hb
t

k


h

Hb
t + 1


Γh,b
t , (3.9)

where k(·) is given by the Parzen Kernel and Γh,b
t is an autocovariance matrix, i.e.,

Γh,b
t :=

 nb
t

l=h+1 r
b
t,l r

b′
t,l−h for h ≥ 0nb

t
l=−h+1 r

b
t,l+h r

b′
t,l for h < 0.

(3.10)

Hb
t is a block-specific smoothing bandwidth that is chosen as in Section 3.4 of Barndorff-

Nielsen et al. (2011). Based on (3.9), we compute the corresponding estimate of the
correlation block b as

RK,b
t :=


V b
t

−1
Kb

t


V b
t

−1
, V b

t := diag

K

b,(ii)
t

1/2
, i = 1, . . . ,mb, (3.11)
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Figure 3.1: Visualization of the Blocking Strategy According to Hautsch et al. (2012)

where K
b,(ii)
t , i = 1, . . . ,mb, are the diagonal elements of Kb

t .
The correlation matrix RBRK

t is then obtained as a hierarchical combination of the
correlation blocks RK,b

t , b = 1, . . . , B. Figure 3.1 from Hautsch et al. (2012) illustrates
the blocking strategy in a covariance matrix, where the top-left corner is associated with
the most liquid assets and the bottom-right corner is associated with the least liquid
assets. The data is decomposed into three equal-sized liquidity groups (G = 3), yielding
six correlation blocks. Then, in a first step, the entire correlation matrix (block one) is
estimated. Subsequently, we obtain estimates of blocks two and three associated with
the correlations between the less liquid and more liquid assets, respectively. Finally,
blocks four to six contain the correlations within each liquidity group. Efficiency gains
arise due to a more effective synchronization and thus a higher (refresh time) sampling
frequency within each block. Consequently, all blocks – except block one – are estimated
with higher precision than in the plain realized kernel. Finally, from the (block-wise)
estimated correlation matrix RBRK

t , the BRK estimate of the covariance matrix is con-
structed according to

BRKt := V RK
t RBRK

t V RK
t , V RK

t := diag

RK

(i)
t

1/2
, i = 1, . . . ,m, (3.12)

with RK
(i)
t , i = 1, . . . ,m, denoting variance estimates based on the univariate version of

the realized kernel (Barndorff-Nielsen et al., 2008a). Consequently, the variance elements
are estimated with highest precision, since in a univariate setting synchronization by
refresh time sampling is not necessary. We implement the realized kernel estimator
following the procedure from Barndorff-Nielsen et al. (2008b).

Smoothing, Regularization and Construction of Forecasts

Variations in portfolio weights require a rebalancing of the portfolio and thus cause
transaction costs. The latter can be reduced by keeping covariance matrix forecasts suf-
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ficiently stable. The explicit consideration of transaction costs in the underlying portfolio
optimization problem, however, results in an empirically challenging problem, as it re-
quires bounding the variability of portfolio weights and thus of the covariance matrix
over time. Although the derivation of an explicit solution of this problem is beyond
the scope of this chapter, we still aim at studying the impact of competing covariance
forecast constructions on the resulting portfolio turnover. A straightforward method to
stabilize covariance matrix estimates is to “smooth” them over time by computing simple
averages over S days, i.e., BRKt,S := (1/S)

S
s=1BRKt−s+1, where BRKt,1 = BRKt.

2

Then, a smoothed correlation matrix is obtained as

RBRK
t,S :=


V RK
t,S

−1
BRKt,S


V RK
t,S

−1
, V RK

t,S := diag

RK

(i)
t,S

1/2
, i = 1, . . . ,m, (3.13)

with RK
(i)
t,S := (1/S)

S
s=1RK

(i)
t−s+1, i = 1, . . . ,m, being smoothed univariate realized

kernel estimates.
Estimating correlation matrices block-wise implies efficiency gains, but yields esti-

mates (even after smoothing) which are not guaranteed to be positive semidefinite and
well-conditioned. Indefinite matrices feature negative eigenvalues, while ill-conditioned
matrices possess eigenvalues that are close to zero, which makes inversions numerically
unstable. Particularly for the computation of minimum variance portfolio weights as in
(3.2), however, it is crucial that covariance matrices are both positive definite and well-
conditioned. These requirements make it necessary to employ suitable regularization
techniques.

As a first alternative, we follow Hautsch et al. (2012) employing the eigenvalue clean-
ing procedure proposed by Laloux et al. (1999). This method rests on the idea of com-
paring the (empirical) distribution of eigenvalues of the estimated correlation matrix to
the theoretical distribution of eigenvalues one would obtain under independence of the
m processes. The latter is derived from random matrix theory and yields the expected
distribution of eigenvalues assuming these are completely driven by noise. Consequently,
eigenvalues strongly departing from the theoretical distribution are identified as “signals”
carrying significant information on cross-sectional dependencies. Conversely, eigenval-
ues being close to zero, and thus below a theoretical upper threshold, are identified
as “noisy”. They are likely to be noninformative, while causing the correlation ma-
trix to be ill-conditioned. Hence, these eigenvalues can be inflated, making estimates
well-conditioned without significantly losing information. See Appendix C.2 for details.

As a second regularization technique, we consider a factor structure based on the
spectral components of the correlation matrix. Covariance forecasts based on factor
models have been demonstrated to improve the performance of minimum variance port-
folios (e.g. Chan et al., 1999). Moreover, a factor structure ensures fast convergence of
the factor inverse if the number of factors is small relative to the number of assets (see
Fan et al., 2008). Accordingly, we consider a spectral decomposition of the smoothed

2Obviously, one might also “smooth” in a more sophisticated way by applying weighting
schemes, e.g., based on kernel methods. We leave this for further research but show that even
smoothing based on simple averages yields superior results, see Section 3.4.3.
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correlation matrix estimate on day t, i.e.,

RBRK
t,S = Qt,S Λt,S Q

′
t,S , (3.14)

where Λt,S is the diagonal (m×m) matrix of eigenvalues ordered from largest to small-
est, while Qt,S denotes the orthonormal (m×m) matrix of corresponding eigenvectors.
Then, by retaining only the first kt,S ≤ m correlation eigenvalues and associated eigen-
vectors, we obtain the factorized estimate of the correlation matrix

RBRK
t,S,(kt,S)

= Qt,S,(kt,S)Λt,S,(kt,S)Q
′
t,S,(kt,S)

+

Im −Qt,S,(kt,S)


, (3.15)

where Qt,S,(kt,S) is a diagonal (m×m) matrix containing the diagonal elements of
Qt,S,(kt,S)Λt,S,(kt,S)Q

′
t,S,(kt,S)

. The number of factors kt,S is chosen in two ways. Firstly,

we select the number of factors for each day t separately employing the criteria by Bai
and Ng (2002). For implementation details, we refer to Appendix C.3. Secondly, we
consider a factor structure with the numbers of factors fixed to one or three.

Hence, our combined framework for smoothing and regularizing BRK estimates can
be summarized asΣvRnB

t,S := V RK
t,S RvRnB

t,S V RK
t,S , v ∈ {E,F, 1F, 3F} , (3.16)

with RvRnB
t,S corresponding to the smoothed correlation matrix estimates from (3.13)

regularized by eigenvalue cleaning (E) or by imposing an adaptive (F) or fixed (1F and
3F) factor structure. Following Hautsch et al. (2012), in all cases we regularize only if
RBRK

t,S is nonpositive definite or ill-conditioned. The latter is defined to be the case ifΛ(1)
t,S/Λ

(m)
t,S

 > 10×m, (3.17)

where Λ
(1)
t,S and Λ

(m)
t,S are the largest and smallest eigenvalue of RBRK

t,S , respectively.
Further possibilities for regularization include, for instance, thresholding techniques

(Wang and Zou, 2010). However, the latter rely on a sparsity assumption for the un-
derlying covariance matrix, which is problematic given the strong cross-sectional depen-
dencies typical for equity data. Alternatively, as shown by Jagannathan and Ma (2003),
regularization can be achieved by imposing no-short-sale constraints in the portfolio op-
timization problem (3.1). A related result for general gross portfolio constraints is put
forward by Fan et al. (2012b) and applied to evaluate covariance matrix estimates using
HF data, e.g., in Fan et al. (2012a). Here, we focus on an unconstrained framework, since
it explicitly allows us to compare the performance of different regularization methods
and to evaluate the forecasting accuracy not only with respect to the covariance matrix,
but also to its inverse.

We construct forecasts of Σt,t+h based on the information set Ft by two alterna-
tive approaches. Firstly, we evaluate random walk (“naive”) forecasts of the formΣt,t+h = h ΣvRnB

t,S , which will be referred to as vRnB(S), v ∈ {E,F, 1F, 3F}. As an
alternative to a pure random walk forecast, we propose a simple dynamic model for un-
smoothed covariance matrix estimates. When choosing a suitable dynamic specification
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for covariance matrices, positive definiteness of forecasts, model parsimony and ease of
implementation are important factors to ensure feasibility in a vast-dimensional setting.
To guarantee positive definiteness, we follow Andersen et al. (2003) and Chiriac and
Voev (2011) in modeling the Cholesky decomposition of covariance matrix estimates,
i.e., ΣvRnB

t,1 = Lt L
′
t, where Lt is a lower triangular matrix. As Lt contains m (m+ 1) /2

distinct elements, we ensure tractability in high dimensions by modeling each row or col-
umn of Lt independently. Due to its triangular form, modeling the rows or columns of
Lt implies a hierarchical specification of dynamics, depending on the ordering of assets.
Consequently, (co-)variances associated with assets being ranked first widely follow their
individual dynamics, while volatilities associated with higher ranks are subject to several
joint dynamics. For instance, in case of row modeling, the volatility of the first asset and,
in case of column modeling, all scaled covariances thereof with all other stocks follow
independent dynamics.3 To account for this hierarchy, we order the assets according to
their (average) trading frequency during the estimation period.

Let L
(g•)
t denote the (g × 1) vector of elements from the g-th row of Lt and L

(•g)
t

the ((m− g + 1)× 1) vector of elements from the g-th column, g = 1, . . . ,m. Dynamic

specifications for L
(g•)
t and L

(•g)
t should capture the well-known persistence properties

of volatility processes, which can be achieved by fractionally integrated processes (e.g.,
Andersen et al., 2003), appropriately mixing different frequencies using, e.g., mixed
data sampling (MIDAS) techniques as proposed by Ghysels et al. (2006) or heteroge-
neous autoregressive (HAR) processes introduced by Corsi (2009). We follow the latter
strategy, which is in the spirit of Chiriac and Voev (2011) applying HAR dynamics
to the Cholesky factors of realized covariance estimates. Accordingly, we consider the
HAR(1, 5, 20) specifications

L
(g•)
t = c(g•) + α

(g•)
d L

(g•)
t−1 +

α
(g•)
w

5

5
s=1

L
(g•)
t−s +

α
(g•)
m

20

20
s=1

L
(g•)
t−s + ε

(g•)
t , g = 1, . . . ,m,

(3.18)

L
(•g)
t = c(•g) + α

(•g)
d L

(•g)
t−1 +

α
(•g)
w

5

5
s=1

L
(•g)
t−s +

α
(•g)
m

20

20
s=1

L
(•g)
t−s + ε

(•g)
t , g = 1, . . . ,m,

where c(g•) and c(•g) are (g × 1) and ((m− g + 1)× 1) parameter vectors, respectively,
while the remaining parameters are scalars. We will refer to these specifications as Row-
and Column-Cholesky-HAR (RCHAR and CCHAR) models. Based on (least-squares)

parameter estimates, the models (3.18) yield h-step ahead forecasts L(g•)
t+h and L(•g)

t+h ,

g = 1, . . . ,m, which are combined to form Lt+h. Finally, we construct forecasts of Σt,t+h

as Σt,t+h =
h

r=1
Lt+r

L′
t+r. These forecasts involve a bias, as they rely on a nonlinear

transformation of the covariance matrix. However, we abstain from a bias correction,

3The first row of Lt contains the diagonal element
Σ(1,1)

t,1 , while the first column equals the

vector
Σ(1,1)

t,1 , Σ(1,2)
t,1 , . . . , Σ(1,m)

t,1

′
/
Σ(1,1)

t,1 .
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as e.g., Chiriac and Voev (2011) demonstrate that this bias is empirically negligible. In
any case, this issue should be of minor relevance when considering an economic instead
of a statistical loss function.

3.3.2 Forecasts Based on Daily Data

We assess the merits of covariance forecasts based on HF data for the portfolio se-
lection framework presented in Section 3.2 by benchmarking the former against meth-
ods employing daily returns. A comprehensive overview of these approaches can be
found in Sheppard (2012). The three classes of estimators we consider are (i) multivari-
ate GARCH models, (ii) (regularized) rolling window sample covariance matrices and
(iii) RiskMetrics. (i) and (ii) have been shown to perform well in the econometric and
finance literature, while (iii) is of relevance in financial practice. In this context, we
will denote by ut the (m× 1) vector of demeaned returns at day t, i.e., ut := rt − µt,
t = 1, . . . , T , where as for the utility-based evaluation above and in line with, e.g.,
Hansen and Lunde (2005) we assume that the vector of conditional mean returns µt is
constant over time.

Multivariate GARCH Models

Multivariate GARCH (MGARCH) models parameterize the dynamics of the conditional
covariance matrix Σt+1. For a survey of this model class, we refer to Bauwens et al.
(2006). We consider the scalar version of the vector GARCH model (S-VEC) intro-
duced in Bollerslev et al. (1988) and the dynamic conditional correlation (DCC) model
proposed by Engle (2002a). The former is motivated by the results on spectral com-
ponents of covariance and correlation matrices in Zumbach (2009a) that favor a direct
modeling of conditional covariance matrices. For that purpose, the S-VEC model is
the most parsimonious approach. Employing DCC specifications is justified by their
superior out-of-sample prediction accuracy within the MGARCH class when considering
various statistical loss functions and different dimensions (e.g. Caporin and McAleer,
2012; Laurent et al., 2012). We estimate both models by Gaussian QML, i.e., assuming
ut+1|Ft ∼ N(0,Σt+1).

The S-VEC model is a direct extension of the univariate GARCH specification. En-
suring covariance targeting as proposed by Engle and Mezrich (1996), it can be formu-
lated as

Σt+1 = Σ̄ (1− αh − βh) + αh ut u
′
t + βh Σt, αh, βh ≥ 0, αh + βh < 1, (3.19)

where Σ̄ := E[ut u
′
t] denotes the unconditional covariance matrix of ut, which is consis-

tently estimated by the corresponding sample moment. Then, αh and βh are estimated
by QML using the composite likelihood method proposed by Engle et al. (2008). Ac-
cordingly, the joint likelihood is replaced by the sum of pairwise likelihoods, ensuring
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tractability in high dimensions.4 Using the parameter estimates in specification (3.19),
we construct h-step ahead forecasts Σt+h, yielding Σt,t+h =

h
r=1

Σt+r.
The DCC model decomposes the conditional covariance matrix according to

Σt+1 = Vt+1 Rt+1 Vt+1, Vt+1 := diag

σ
2,(i)
t+1

1/2
, i = 1, . . . ,m, (3.20)

with the conditional variances σ
2,(i)
t+1 following univariate GARCH processes, while a

similar dynamic structure is imposed on the conditional correlations in Rt+1, i.e.,

σ
2,(i)
t+1 = ωi + αi u

(i),2
t + βi σ

2,(i)
t , ωi, αi, βi ≥ 0, αi + βi < 1, i = 1, . . . ,m, (3.21)

Rt+1 =

V z
t+1

−1
Zt+1


V z
t+1

−1
, V z

t+1 := diag

Z

(ii)
t+1

1/2
, i = 1, . . . ,m,

Zt+1 = Z̄ (1− αz − βz) + αz ϵt ϵ
′
t + βz Zt, αz, βz ≥ 0, αz + βz < 1,

where Z
(ii)
t+1, i = 1, . . . ,m, are the diagonal elements of Zt+1, ϵt := V −1

t ut is the
(m× 1) vector of devolatilized returns and Z̄ := E[ϵt ϵ

′
t]. Estimation is carried out

in three steps. Firstly, we estimate the m univariate GARCH(1, 1) models. Secondly, Z̄
is estimated by correlation targeting, i.e., replacing E[ϵt ϵ

′
t] with its sample analogue.5

Finally, we estimate the correlation parameters by the composite likelihood approach.
Based on QML parameter estimates and the dynamics in (3.21), one-step ahead covari-
ance forecasts can be straightforwardly constructed as

Σt+1 = Vt+1
Rt+1

Vt+1, Vt+1 := diag
σ2,(i)t+1

1/2
, i = 1, . . . ,m. (3.22)

To obtain the multi-step forecasts necessary for computing Σt,t+h =
h

r=1
Σt+r, h > 1,

we use the approximations suggested in Engle and Sheppard (2005) and Engle (2009,
ch. 9.1).

Regularized Rolling Window Sample Covariance

The sample covariance matrix computed from L (demeaned) daily returns is defined as

Ct :=
1

L

L
l=1

ut−l+1u
′
t−l+1. (3.23)

The covariance matrix estimate Ct is positive definite whenever L ≥ m, but inversion
can be numerically unstable even if the latter condition is fulfilled. Accordingly, we
regularize Ct using alternative techniques if it is ill-conditioned according to the definition

4In our vast-dimensional setting, we follow a suggestion of Engle et al. (2008) and use only
adjacent pairs of assets. The results do not change qualitatively when modifying the ordering of
assets.

5Aielli (2011) shows that the resulting estimator of Z̄ is inconsistent and proposes a “cor-
rected” DCC (cDCC) model. However, Caporin and McAleer (2012) find the latter having an
inferior forecasting performance compared to the original DCC specification.
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in Section 3.3.1. We denote the resulting estimate by Creg
t , where Creg

t = Ct if no
regularization is imposed. Covariance forecasts are then computed as Σt,t+h = hCreg

t .
As a simple regularization method, we consider factor models based on the princi-

pal components of Ct. The strong performance of factor structures in GMV portfolio
applications is documented by Chan et al. (1999), showing that a three-factor model
according to the Fama and French (1993) factors is sufficient. While the latter are fac-
tors constructed based on asset return characteristics and economic fundamentals, an
approximation thereof using principal components can be motivated, for instance, by the
results in Connor (1995) on the similar explanatory power of fundamental and statistical
factor models. Let Λc

t,(kt)
be the diagonal (kt × kt) matrix of the first kt eigenvalues and

Qc
t,(kt)

the (m× kt) matrix of the corresponding eigenvectors of Ct. Then, the resulting
factorized covariance matrix estimate is

Creg
t = Qc

t,(kt)
Λc
t,(kt)

Qc′

t,(kt)
+

V c
t −Qc

t,(kt)


, (3.24)

where V c
t and Qc

t,(kt)
are diagonal (m×m) matrices containing the diagonal elements of

Ct and Q
c
t,(kt)

Λc
t,(kt)

Qc′

t,(kt)
, respectively. In the spirit of Chan et al. (1999), we consider

a three-factor structure (i.e., kt = 3) and, alternatively, examine a more restrictive
framework with kt = 1. Further, we allow for a closer comparison with FRnB estimates
by choosing kt on a dynamic basis using the Bai and Ng (2002) criteria discussed in
Appendix C.3.

As a second type of regularization, we use the shrinkage technique initially proposed
by Stein (1956) and adopted by Ledoit and Wolf (2003) for sample covariance matrices.
The resulting shrunk estimator is a weighted average of Ct and a restricted, positive
definite target Ft, i.e.,

Creg
t = φFt + (1− φ) Ct, 0 ≤ φ ≤ 1, (3.25)

where φ is an estimate of the optimal shrinkage intensity derived by Ledoit and Wolf
(2003) minimizing the squared error loss. As shrinkage target Ft, they consider the
one-factor model by Sharpe (1963), showing that the resulting estimator outperforms,
e.g., the pure one-factor and three-factor model. As an approximation, we employ the
principal component structure (3.24) with kt = 1. In addition, we follow Ledoit and
Wolf (2004) and let Ft be given by the equicorrelation model, i.e., the covariance matrix
implied by setting the common correlation equal to the cross-sectional average of all
pairwise sample correlations implied by Ct.

Finally, we regularize Ct by the eigenvalue cleaning procedure that is applied to
BRK estimates in Section 3.3.1 and discussed in more detail in Appendix C.2. Laloux
et al. (2000) demonstrate that sample covariance matrices regularized by this technique
yield considerably lower portfolio volatilities than their “uncleaned” counterparts in
minimum-variance applications.
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RiskMetrics

RiskMetrics covariance forecasts constitute the industry standard. The original Risk-
Metrics1994 approach is based on an exponentially-weighted moving average (EWMA)
of the outer products of demeaned returns, i.e.,

Σt+1 =
(1− λ)

1− λLRM−1
 LRM

l=1

λl−1 ut−l+1u
′
t−l+1, 0 ≤ λ ≤ 1, (3.26)

where LRM denotes the window length. We follow the suggestion made in J.P. Mor-
gan/Reuters (1996) for daily returns and set λ = 0.94. If the forecast Σt+1 is ill-
conditioned based on the criterion from Section 3.3.1, we apply the tailored regulariza-
tion technique suggested in Zumbach (2009b), which relies on a two-stage shrinkage. See
Zumbach (2009b) for details. Forecasts of Σt,t+h are then computed as Σt,t+h = h Σreg

t+1,

where Σreg
t+1 is the regularized forecast with Σreg

t+1 =
Σt+1 if no regularization is necessary.

Additionally, we employ the updated RiskMetrics2006 methodology, which intro-
duces pseudo-long memory dynamics by assuming a hyperbolic decay of the weights on
lagged outer products of returns. The corresponding one-step ahead covariance forecast
is

Σt+1 =
LRM
l=1

λl ut−l+1u
′
t−l+1, λl :=

vmax
v=1

ζv
(1− θv)

1− θL
RM−1

v

 θl−1
v , (3.27)

ζv :=
1

D


1− ln(ηv)

ln(η0)


, θv := exp(−1/ηv), ηv := η1 ρ

v−1,

where the constant D is specified such that


v ζv = 1, η0 is a logarithmic decay factor,
while η1 and ηvmax denote the lower and upper cut-off, respectively. ρ is an additional
tuning parameter and vmax is determined by specifying the values of the other parame-
ters. We use the values suggested in Zumbach (2006), i.e., η0 = 1560, η1 = 4, ηvmax = 512
and ρ =

√
2. Finally, we construct forecasts of Σt,t+h according to Σt,t+h =

h
r=1

Σreg
t+r,

where multi-step predictions Σt+r, r > 1, are computed following Appendix A of Zum-
bach (2006).

3.4 Empirical Results

3.4.1 Data and Empirical Setup

We employ mid-quotes for the constituents of the S&P 500 index extracted from the
Trade and Quote (TAQ) database. We focus on the 400 assets with the longest con-
tinuous trading history during the sample period between January 2006 and December
2009, covering approximately 1, 000 trading days and including the financial crisis after
the bankruptcy filing of Lehman Brothers Inc. We discard the first 15 minutes of each
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Figure 3.2: Cross-Sectional Averages of Volatility and Absolute Correlation Estimates
Based on smoothed BRK estimates using daily, monthly or yearly window. Volatilities
are annualized square roots of diagonal elements and are reported in percentage points.

trading day to avoid opening effects and conduct additional steps to clean the raw quote
data. Details are provided in Appendix C.4.

Based on the cleaned mid-quote data, we compute BRK estimates as outlined in
Section 3.3.1 using G = 4 liquidity groups, which will be motivated below. Further, we
smooth the BRK estimates over weekly, monthly, quarterly, half-yearly and yearly win-
dows, i.e., S ∈ {1, 5, 20, 63, 126, 252}. For three smoothing windows, Figure 3.2 depicts
the resulting averages of the square roots of diagonal elements, i.e., volatility estimates,
and of the absolute values of pairwise correlations. Two major features are apparent.
First, there is a considerable increase of both volatility and absolute correlation during
the heyday of the financial crisis in the later part of 2008. Second, employing BRK
estimates smoothed over monthly and yearly windows implies a noticeable stabilization.
The latter effect can also be confirmed for the eigenvalues of the corresponding corre-
lation matrix estimates displayed in Figure 3.3. Here, smoothing is helpful to separate
the dynamics of the first (largest) eigenvalue, which allows for a better signal extrac-
tion. The result that the first eigenvalue follows own dynamics different from those of
other eigenvalues is at odds with findings based on correlation matrices estimated over
long-term rolling windows of daily data (e.g. Zumbach, 2009a).

Following Section 3.3.1, we regularize indefinite or ill-conditioned smoothed BRK
estimates by eigenvalue cleaning (ERnB) or imposing a factor structure (FRnB, 1FRnB
and 3FRnB). As we show in the web appendix in more detail, regularization is necessary
for all days in the sample and every smoothing window.6 Figure 3.4 gives the number of

6The web appendix is available at

82



2007 2008 2009 2010
10

0

10
1

10
2

10
3

Date

E
ig
en

v
a
lu
e

 

 
First Second Third Fourth

(a) Unsmoothed

2007 2008 2009 2010
10

0

10
1

10
2

10
3

Date

E
ig
en

v
a
lu
e

 

 
First Second Third Fourth

(b) Monthly Smoothing Window

Figure 3.3: Eigenvalues of BRK Correlation Matrix Estimates
Based on logarithmic scale.
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Figure 3.4: Sample Distribution of Number of Factors for FRnB Estimates
Number of factors is determined by applying Bai and Ng (2002) criteria from Ap-
pendix C.3 to BRK estimates smoothed over different windows.

factors based on BRK estimates smoothed over different windows resulting from adaptive
factor selection using the Bai and Ng (2002) criteria (FRnB). The positive relationship
between the length of the smoothing window and the degree of parsimony of the implied
factor structure is apparent.

Our analysis focuses on open-to-close covariance matrices, whereby noisy overnight
returns do not have to be included. This approach is in line with Andersen et al. (2010b)

http://amor.cms.hu-berlin.de/~malecpet/MHFDPF_appendix.pdf.
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treating overnight returns as deterministic jumps. Accordingly, we measure the vector
of daily returns, rt, by the vector of open-to-close returns, which can be interpreted as
close-to-close returns corrected for the above deterministic jumps. To implement the
methods based on daily returns from Section 3.3.2, we obtain the vector of demeaned
returns, ut, by subtracting the sample mean during the respective estimation period.

Using data up to day t, we compute out-of-sample forecasts of the conditional covari-
ance matrices Σt,t+h for daily, weekly and monthly horizons, i.e., h ∈ {1, 5, 20}. Rolling
window sample covariance matrices are computed using a baseline window length of
L = 252 days, although alternative window sizes will be examined in a sensitivity anal-
ysis. RiskMetrics forecasts are computed employing all available data up to day t with
an initial in-sample period of 252 days. Both the sample covariance matrix and Risk-
Metrics estimates need to be regularized for each day (see web appendix). Finally, we
construct covariance forecasts based on MGARCH, as well as R- and CCHAR models
using the same expanding windows as for RiskMetrics. R- and CCHAR parameters are
re-estimated at each step. In the case of MGARCH models, we estimate the parameters
over the entire sample for reasons of numerical stability.

The initial in-sample period comprises the time from 01/2006 to 12/2006. Moti-
vated by the descriptive results above and in order to gain insights into the forecasting
performance during “normal” and “non-normal” market periods, we conduct a separate
evaluation for a period of 375 days before the financial crisis, covering the time from
01/2007 until 06/2008 (“pre-crisis period”), and the period of 377 days from 07/2008 to
12/2009 including the financial crisis (“crisis period”).

3.4.2 Evaluation and Inference in the Portfolio Selection
Framework

The forecasts of the conditional covariance matrix, Σt,t+h, are used as inputs for the
GMV portfolio selection framework in (3.1) and (3.2), yielding the weights wt,t+h. The
resulting conditional portfolio variance, w′

t,t+hΣt,t+h wt,t+h, is then estimated by the
five-minute realized portfolio variance

σ2,pt,t+h := w′
t,t+hRCovt,t+h wt,t+h, (3.28)

where RCovt,t+h is the five-minute realized covariance from day t to t+h, i.e., the sum of
outer products of five-minute return vectors obtained by previous-tick interpolation (e.g.
Dacorogna et al., 2001). The realized portfolio variances based on competing covariance
forecasts are used to compute performance fees ∆γ , γ ∈ {1, 10}, according to (3.4) and
(3.5).

In addition, we examine several basic characteristics of the GMV portfolio alloca-
tions. Following de Pooter et al. (2008), we evaluate portfolio turnover rates to proxy
transaction costs proportional to the traded dollar amount for every stock. For a hori-

zon h, the total return of the portfolio from t−h to t is given by rpt−h,t :=


i w(i)
t−h,t r

(i)
t−h,t,

where w(i)
t−h,t and r

(i)
t−h,t are the weight and return of stock i, respectively. Then, be-

fore rebalancing to the next period, the weight of stock i in the portfolio changes to
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w(i)
t−h,t


1 + r

(i)
t−h,t


1 + rpt−h,t

−1
. Consequently, the portfolio turnover is given by

pot,h :=
m
i=1

 w(i)
t,t+h − w(i)

t−h,t

1 + r
(i)
t−h,t

1 + rpt−h,t

. (3.29)

Secondly, we quantify the portfolio concentration of resulting GMV portfolio weights.
For instance, Oomen (2009) stresses that estimation errors might imply extreme posi-
tions and may cause practical pitfalls, such as disproportionate transaction costs or an
excessive market impact. We measure portfolio concentration in terms of the norm of
the vector of portfolio weights,

pct,h := ∥ wt,t+h∥2 =
 m

i=1

w(i) 2

t,t+h

1/2

, (3.30)

which is minimized for an equally-weighted portfolio, i.e., wt,t+h = (1/m) ι. Finally,
motivated by the analysis in Liu (2009), we evaluate the size of short positions in the
portfolio. Verifying to which extent short-sale constraints would be violated is of practi-
cal relevance, since many portfolio managers are prohibited from taking such positions.
Hence, we compute the sum of negative portfolio weights as

spt,h :=

m
i=1

w(i)
t,t+h 1I

 w(i)
t,t+h<0

, (3.31)

where 1I(·) denotes an indicator function.
To assess the statistical significance of performance differences between competing

forecasts, we perform a stylized “portfolio bootstrap”. Firstly, we create asset indices by
drawing random samples of size 350 without replacement from the uniform distribution
on the integers 1, . . . , 400, which is repeated 1000 times. Second, for each random set of
assets and every covariance matrix forecasting model, we compute: (i) the GMV port-
folio weights for each horizon and day, (ii) the square root of the sample average of the
(annualized) realized portfolio variance in (3.28), σ̄ap , (iii) the resulting annualized per-
formance fees relative to competing forecasts, ∆a

γ , γ ∈ {1, 10}, for all considered values

of the (identical) conditional mean µid, as well as (iv) the sample averages of the above
portfolio characteristics in (3.29), (3.30), and (3.31), i.e., po, pc and sp, respectively.
For the quantities in (ii)-(iv), we examine median values across all random samples.
Additionally, we report the standard deviations of σ̄ap . The empirical implementation
of the outlined re-sampling procedure is computationally demanding, as it requires the
inversion of more than two million 350 × 350 covariance matrices for each forecasting
method.
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3.4.3 The Economic Value of High-Frequency Data

Global Minimum Variance Portfolio Performance

Table 3.1 and 3.2 report the GMV portfolio performance of ERnB, RCHAR and CCHAR
forecasts with the latter utilizing unsmoothed ERnB estimates. Throughout the analysis,
we fix the number of groups in the blocking strategy to G = 4, which will be justified
by means of a robustness check below. Table 3.1 and 3.2 also report the performance of
factor-based forecasts. For sake of brevity, however, we only show the best-performing
factor models minimizing the median realized portfolio volatility for each smoothing
window. The complete results are available in the web appendix. The following findings
can be summarized.

Firstly, covariance predictions based on a dynamic model yield better GMV portfolio
performances than those based on a “naive” forecast. Prior to the crisis, the median
realized portfolio volatility declines by five standard deviations (s.d.’s) when switching
from random walk ERnB(1) to RCHAR forecasts. During the crisis period, the gains
induced by dynamic forecasts even increase up to 13 s.d.’s. HAR-based forecasts cor-
respond to weighted averages of past realized covariances and thus are by construction
“smoother” in time than random walk forecasts. This property pays off in terms of less
volatile portfolio weights and thus lower portfolio turnover. The gains even increase for
weekly and monthly forecasts. Further, it turns out that CCHAR forecasts are superior
to RCHAR forecasts. In particular, in the pre-crisis period, the difference in median
realized portfolio volatility is less than one s.d. for h = 1, but during the crisis period,
CCHAR forecasts yield a median portfolio volatility that is lower by three s.d.’s. This
is also reflected by lower portfolio turnovers induced by CCHAR forecasts.

Secondly, varying the length of the smoothing window has an ambiguous effect. Un-
smoothed or only moderately smoothed forecasts result in the lowest portfolio volatility,
less short positions and lower portfolio concentration (i.e., more diversification). The
benefits of using the most recent data and thus producing forecasts which are highly
responsive to new information have to be confronted, however, with a higher variability
in portfolio weights, causing a higher portfolio turnover and hence higher transaction
costs. These effects yield a natural tradeoff between responsiveness and (too high) vari-
ability of covariance forecasts. Not surprisingly, portfolio turnover is minimized by using
maximally long smoothing intervals, i.e., one year in our setting.

Thirdly, we show that eigenvalue cleaning generally results in the lowest portfo-
lio turnovers and yields less concentrated weights, as well as smaller short positions.
Factor-based regularization (FRnB and 3FRnB), however, becomes effective only if the
underlying estimates are sufficiently smoothed. In this case, they yield the lowest port-
folio volatility and turnover. These effects are particularly apparent during the crisis
period. Here, the combination of smoothing and factor-based regularization yields the
best portfolio performance in terms of lower portfolio volatility and turnover. In more
stable market periods, such as prior to the crisis, the necessity of smoothing and thus
the effectiveness of factor-based regularization declines, making eigenvalue cleaning su-
perior. In contrast, factor structures based on unsmoothed BRK estimates result in
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Figure 3.5: Median Portfolio Volatility of CCHAR Forecasts Relative to Benchmarks
Time series of ratios m(σp,CCHAR

t,t+1 )/m(σp,bencht,t+1 ), where σpt,t+1 is the square root of the
realized portfolio variance in (3.28) computed for h = 1. m(·) denotes the median across
1,000 random samples with each random sample containing 350 assets out of the entire
400 asset universe.

highly unstable forecasts and are not reported here (for details, see web appendix).
Table 3.3 and 3.4 show the corresponding results based on forecasting models utiliz-

ing daily returns as presented in Section 3.3.2. We find that covariance forecasts based
on HF data as evaluated in Table 3.1 and 3.2 outperform all “low-frequency” (LF)
benchmarks up to a weekly horizon. The best-performing LF methods in terms of me-
dian portfolio volatility are the RiskMetrics1994 estimator, as well as the rolling window
sample covariance matrix regularized by eigenvalue cleaning. The strong performance
of the latter, particularly during volatile periods, indicates that the strength of a proper
conditioning scheme might be even more important than imposing a dynamic forecast-
ing model. Nevertheless, during the pre-crisis period, (random-walk-type) ERnB(1)
forecasts yield a median portfolio volatility which is three s.d.’s lower than the best-
performing LF benchmark. This performance gain increases to seven s.d.’s if not naive
but (dynamic) RCHAR specifications are used. During the volatile crisis period, the
superiority of HF-based approaches becomes even stronger, resulting in a decrease in
median realized portfolio volatility of up to 17 s.d.’s in case of a CCHAR model. The
dominance of HF-based forecasts, particularly during the crisis period, is graphically
highlighted by Figure 3.5, which displays the time series of median portfolio volatility
implied by CCHAR forecasts relative to the two best-performing LF benchmarks.

Not surprisingly, the above effects are strongest for daily horizons (h = 1) and become
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weaker for longer forecasting horizons. However, although the informational advantage
of HF data naturally declines with the prediction interval, we still identify performance
gains from HF data even at a monthly horizon. While in the pre-crisis period, the best
LF and HF one-month forecast yield exactly the same median portfolio volatility, the
latter can be significantly reduced during the crisis if HF-based forecasts are employed.

The dominance of HF-based approaches is obviously due to the efficient use of
more recent information, making forecasts more responsive and adaptable to structural
changes. These effects particularly pay off during highly volatile periods, such as in 2008.
Moreover, we show that HF-based forecasts also yield less concentrated (and thus more
diversified) positions, as well as less short-selling. However, as stressed above, the down-
side of a higher responsiveness of forecasts is a higher variability in portfolio weights,
which increases portfolio turnover and transaction costs. The latter could be reduced
at the expense of a higher portfolio volatility by using longer, i.e., at least quarterly,
smoothing windows. Addressing this tradeoff more thoroughly is a challenging avenue
for further research, but is clearly beyond the scope of the current study.

Finally, we also evaluate the performance of a naive investment strategy assigning
equal weights (1/m) to all assets. Interestingly, the 1/m-portfolio yields a significantly
higher median volatility than all other methods. This finding is at odds with the study
of DeMiguel et al. (2009) reporting that strategies based on covariance matrix forecasts
cannot consistently outperform a naive diversification strategy. However, it has to be
noted that DeMiguel et al. examine unconditional Sharpe ratios, while our evaluation
focuses on the conditional portfolio volatility (approximated by the realized volatility).

Economic Significance

We evaluate the economic gains of employing HF-based covariance forecasts using the
utility-based evaluation approach in (3.4) and (3.5). To incorporate the effect of trans-
action costs, we follow de Pooter et al. (2008) assuming that the latter are propor-
tional to portfolio turnover. Accordingly, (3.5) is extended by defining performance fees
net of the difference in transaction costs between the two competing strategies, i.e.,
∆c

γ := ∆γ − c

poII − poI


, where c denotes the proportional transaction costs on each

traded dollar and poi is the (average) turnover implied by the GMV strategy based on the
covariance forecasts Σi

t,t+h, i = I, II. However, to avoid assumptions on the level c, we fo-

cus on “break-even” trading cost levels implying ∆c
γ = 0 and thus c∗γ := ∆γ/


poII − poI


.

The economic interpretation depends on the signs of the performance fee ∆γ and the
turnover difference Dpo := poII − poI. If ∆γ > 0, Dpo > 0 implies that c∗γ yields the
maximal level of positive transaction costs under which the risk-averse investor is still
willing to pay for employing strategy II instead of I, while for Dpo < 0, c∗γ gives the
minimal level (in absolute terms) of negative transaction costs, i.e., transaction credits,
under which this is no longer the case. In contrast, given that ∆γ < 0, c∗γ denotes the
minimal positive (for Dpo < 0) or negative (for Dpo > 0) transaction cost level necessary
to make strategy II superior to strategy I.

Table 3.5 and 3.6 report the median values of the (annualized) performance fees ∆a
γ in
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basis points (bp) the investor would pay in order to switch from the best LF benchmarks
to HF-based forecasting methods. Moreover, we show the median values of the corre-
sponding annualized break-even transaction costs c∗γ . The underlying expected returns

are assumed to be identical across stocks and are fixed to µid = 0.05 (annualized). In the
web appendix, we demonstrate that alternative values of µid yield quantitatively almost
identical results. As LF benchmarks, we choose those strategies minimizing the median
portfolio volatility or turnover. Among HF-based forecasts, for each smoothing window
we select the regularization method yielding the lowest median portfolio volatility. The
corresponding findings for all other models are given in the web appendix.

The major observations are as follows. Firstly, by utilizing HF-based covariance
forecasts, a risk-averse investor can achieve noticeable economic gains which become
substantial during the crisis period. Before the crisis and for a daily horizon, an investor
with low (high) risk aversion would be willing to pay 2 (17) bp to switch from the best LF
strategy to the best random-walk-type HF forecast (ERnB(1)) and 4 (40) bp to switch to
a CCHAR forecast. During the crisis period, these values increase to 20 (199) bp in the
naive (FRnB(5)) and 33 (328) bp in the dynamic case. Focusing on longer forecasting
intervals, these gains become smaller, however are still substantial even for a monthly
horizon if the investor exhibits a high risk aversion. In the latter case, the median
performance fees for switching to FRnB(5) and CCHAR forecasts amount to 99 and
238 bp, respectively. Figure 3.6 shows the nonparametrically estimated performance fee
densities resulting from the underlying portfolio bootstrap approach. The plots confirm
the statistical significance of the results, particularly during the crisis period. Moreover,
CCHAR covariance forecasts yield slightly less dispersed performance fee distributions
than random-walk-type FRnB(5) forecasts.

Secondly, using HF data remains valuable for more risk averse investors even in the
presence of transaction costs. During the crisis period, the annualized median break-
even transaction costs associated with the above performance fees for the daily horizon
are 0.2 (2) percentage points (pp) for FRnB(5) and 0.9 (9) pp for CCHAR forecasts in
case of low (high) risk aversion. These are the median values of the transaction cost
levels at which the net performance fee paid by a risk-averse investor for switching from
the low-volatility LF benchmark to the HF-based forecasts would just remain positive.
When benchmarking against the LF-based forecast yielding the lowest turnover, i.e.,
the rolling window sample covariance regularized by a one-factor structure, the median
break-even transaction costs associated with the CCHAR specification increase to 1.4
(14) pp, which is moderate compared to the increase in the corresponding performance
fees. This finding is obviously induced by the low portfolio turnover implied by the
one-factor structure, naturally decreasing the impact of transaction costs.

Finally, in several cases, we observe a combination of negative (median) performance
fees and positive (median) break-even transaction costs. Here, the explicit consideration
of transaction costs favors HF-based covariance forecasts if these costs exceed a certain
level. For instance, ERnB(252) forecasts yield negative median performance fees vis-a-
vis the low-volatility LF benchmark regardless of the level of risk aversion. However,
after the introduction of transaction costs of at least 1.8 pp in case of low risk aversion
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(a) Pre-Crisis: FRnB(5) vs. RM1994
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(b) Crisis: FRnB(5) vs. S-EvCl
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(c) Pre-Crisis: CCHAR vs. RM1994
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(d) Crisis: CCHAR vs. S-EvCl

Figure 3.6: Kernel Estimates of Performance Fee Density
Kernel density estimates across 1,000 random samples of the annualized basis point
fee (∆a

γ) a risk-averse investor with quadratic utility and relative risk aversion γ = 10
would pay to switch from covariance forecasts using daily data to high-frequency-based
forecasts. Each random sample contains 350 assets out of the entire 400 asset universe.
The assumed constant conditional mean return is identical across all stocks and set to
µid = 0.05 (annualized). Density estimates are based on the Gaussian kernel and the
rule-of-thumb bandwidth with normal reference.
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Table 3.7: No. of Liquidity Groups and GMV Portfolio Volatility of ERnB(1) Forecasts
Medians (m(·)) and standard deviations (s(·)) across 1,000 random samples of the square
root of the annualized average realized portfolio variance (σ̄ap) using predicted GMV
weights for the horizon h = 1 (in percentage points). Each random sample contains 350
assets out of the entire 400 asset universe. G denotes the number of liquidity groups used
to compute BRK estimates. Evaluation is conducted for the pre-crisis period, 01/2007
to 06/2008, and the period including the crisis, 07/2008 to 12/2009.

Pre-Crisis Crisis

G m(σ̄ap) s(σ̄ap) m(σ̄ap) s(σ̄ap)

1 8.38 0.28 14.43 0.11
2 8.25 0.29 14.25 0.11
4 7.49 0.07 14.02 0.11
5 8.15 0.30 13.98 0.11
8 8.13 0.30 13.94 0.11
10 8.12 0.30 13.93 0.11

and 18 pp in case of high risk aversion, the net performance fee turns positive. These
effects materialize whenever the smoothing window is sufficiently long, driving down the
turnover of HF-based approaches compared to their LF competitors.

3.4.4 Sensitivity Analysis and Robustness Checks

Number of Liquidity Groups

In the above analysis, we employed G = 4 liquidity groups to compute BRK estimates,
which in turn, were used to construct HF-based covariance matrix forecasts. Thus, in
order to justify this choice, we examine the optimal value of G in terms of median realized
portfolio volatility.

Focusing on a daily horizon, Table 3.7 reports the forecasting performance of un-
smoothed BRK estimates regularized by eigenvalue cleaning (ERnB(1)) for different
values of G. Before the crisis, using four liquidity groups (G = 4) yields the lowest
volatility. During the crisis period, median portfolio volatility declines monotonously
when increasing G. However, for more than four liquidity groups, the magnitude of the
reductions exhibits a noticeable decay, as the latter do not even amount to one standard
deviation. These results are in line with Hautsch et al. (2012) who find that blocking-
based efficiency gains are mainly due to the (more general) separation between liquid
and illiquid assets, implying that a relatively low number of liquidity groups is sufficient.
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Length of the Estimation Window

The results in Section 3.4.3 suggest a positive relationship between the length of the
smoothing window and the resulting portfolio volatility in the case of HF-based covari-
ance matrix forecasts. For the regularized rolling window sample covariance matrix of
daily returns, an estimation window of 252 days was employed. Hence as a robust-
ness check, we consider the alternative window lengths of 378, 126, 63 and 20 days and
investigate the impact on the median performance fees for switching to HF-based pre-
dictions, as well as on the corresponding median break-even transaction costs. We focus
on FRnB(5) and ERnB(252) forecasts, representing slight and heavy smoothing, respec-
tively. For each window length of the sample covariance matrix, we then consider both
“low-volatility” and “low-turnover” LF-based predictions by choosing the regularization
methods that imply the lowest median portfolio volatility or turnover.

Table 3.8 and 3.9 report the results focusing on the crisis period. The corresponding
analysis for the pre-crisis sample along with the complete results of the above benchmark
selection procedure can be found in the web appendix. For the low-volatility benchmarks,
reducing the window length from 252 to, ultimately, 20 days implies a severe precision
loss, as the median performance fees for switching to both FRnB(5) and ERnB(252)
forecasts increase sharply. In line with intuition, the implied portfolio turnover rises
considerably, which can be detected by the disproportionate increase in the median
break-even transaction costs. An extension of the estimation window to 378 days causes
only a small reduction of the median performance fees, indicating only mild precision
gains due to the larger sample size.

In case of low-turnover benchmarks, which employ the one-factor structure for regu-
larization, a decreasing window length is associated with shrinking median performance
fees for switching to forecasts using HF data. This finding suggests that, if a particu-
larly restrictive regularization method is considered, the smaller number of observations
used for covariance estimation is outweighed by the fact that only the most recent and
hence relevant information is utilized. However, the median performance fees remain
considerably higher than in case of low-volatility benchmarks based on the “optimal”
window lengths. Interestingly, shortening the estimation window does not necessarily
imply an excessive rise in portfolio turnover, as the median break-even transaction costs
vis-a-vis FRnB(5) forecasts decrease. However, when compared to the more severely
smoothed ERnB(252) forecasts, the growing turnover becomes apparent. As long as
the performance fee is positive, median break-even transaction costs increase or even
become negative, which corresponds to a situation where LF-based covariance forecasts
cause a higher (average) turnover than their HF counterparts. Equivalently for negative
performance fees, (positive) median break-even transaction costs contract.
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Dimension of the Asset Universe

Above, we consider a high-dimensional asset universe comprising 400 stocks, which ex-
hibit a considerable heterogeneity with respect to their liquidity.7 In order to examine
the extent to which the gains from HF data depend on both the problem dimension
and the liquidity of the underlying assets, we repeat the analysis for subsets containing
the 100 or 30 stocks with the highest number of mid-quote revisions during the sample
period. The chosen cross-sectional dimensions correspond to those of the S&P 100 and
the Dow Jones Industrial Average, which, e.g., constitute the asset universes for the
studies by de Pooter et al. (2008) and Liu (2009), respectively.

For the portfolio bootstrap procedure outlined in Section 3.4.2, we draw random
samples containing asset indices of size 85 or 25. The covariance matrix forecasting ap-
proaches from Section 3.3.1 and 3.3.2 are implemented as above with three exceptions.
First, we compute BRK estimates employing a smaller number of liquidity groups G,
i.e., G = 2 and G = 1 in the 100 and 30 asset case, respectively. As is shown in the
web appendix, up to these values of G reductions in median realized portfolio volatility
amounting to at least one standard deviation can be achieved. Second, the parameters
of MGARCH models are estimated on a day-by-day basis using expanding estimation
windows as for R- and CCHAR specifications above. In the 30 asset case, we also con-
sider the full quasi-likelihood instead of the composite likelihood approach. Finally, we
account for the fact that regularization of BRK estimates, as well as of rolling window
sample covariance and RiskMetrics forecasts is not always imposed according to the
conditions discussed in Section 3.3.1 and 3.3.2. For BRK estimates and the LF sample
covariance, Figure 3.7 shows that the regularization frequencies are positively related to
the dimension and negatively related to the length of the smoothing or estimation win-
dow.8 Thus, we additionally compute forecasts based on unconditional regularization,
i.e., independent from the above rule.

The results of the entire analysis can be found in the web appendix. Here, we focus
on the median performance fees for switching from the best LF forecasts to random-walk-
type HF-based predictions during the crisis period, which are reported in Table 3.10 and
3.11. We choose the two types of best-performing LF benchmarks, as well as the optimal
regularization (conditional or unconditional) of HF forecasts for each smoothing window
as before. The implied low-volatility benchmarks in the 100 and 30 asset case are given
by the sample covariance shrunk unconditionally towards an equicorrelation model and
the DCC specification, respectively. The latter fact indicates that MGARCH models are
more suitable for moderate dimensions than for vast-dimensional settings. Regarding
HF predictions, an unconditional regularization is not advantageous for any smoothing
window in both dimensions. Accordingly, no regularization is imposed for smoothing
windows of one month or more in the 100 asset case and for all window lengths when

7The average number of mid-quote revisions in the cleaned dataset is about 5, 000 for the
most liquid stocks and only 250 for the least liquid assets.

8The relative regularization frequency of RiskMetrics2006 forecasts drops to around 50% only
in the 30 asset case. RiskMetrics1994 forecasts are always regularized (see web appendix).
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(a) 100 Assets: BRK Estimates (G = 2)
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(c) 30 Assets: BRK Estimates (G = 1)
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(d) 30 Assets: Sample Covariance

Figure 3.7: Regularization Frequency in 100 and 30 Asset Universe
Depending on length of smoothing (BRK) or estimation window (rolling window sample
covariance). (Smoothed) BRK estimates are regularized if any correlation eigenvalue
is negative or the condition number of the correlation matrix is greater than 10 × 100
or 10 × 30. The rolling window sample covariance of daily returns is regularized if
the condition number of the corresponding correlation matrix is greater than the above
thresholds.
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30 assets are considered (cf. Figure 3.7). We refer to the corresponding unregularized
random-walk-type forecasts based on a S-day smoothing window as BRK(S).

The first major result is that, in general, the median basis point fees vis-a-vis the low-
volatility benchmarks increase considerably. In case of 100 assets and a daily horizon,
the median performance fees for switching to ERnB(5) forecasts assuming low (high)
risk aversion are 57 (567) bp, which is almost three times the corresponding values for
FRnB(5) predictions in the vast-dimensional setting. Very similar results are obtained
for 30 assets. The increased benefits from HF data can be explained by the fact that
we focus on more liquid assets featuring a higher number of mid-quote revisions, which
translates into more precise BRK estimates. The latter effect also implies that, secondly,
we observe large median performance fees even at a monthly horizon. Given a high risk
aversion, the median fees for switching to BRK(20) forecasts are 427 and 526 bp in
the 100 and 30 asset scenario, respectively, which is more than four and five times the
highest fee for this horizon found in Section 3.4.3.

Thirdly, the median basis point fees remain positive when employing the three longest
smoothing windows regardless of the magnitude of risk aversion or the investment hori-
zon. This finding is of practical importance, as the corresponding forecasts yield a
relatively low portfolio turnover, resulting in negative median break-even transaction
costs. The latter implies that a risk-averse investor is willing to pay for switching to
long-term smoothed HF-based forecasts given any positive transaction cost level. In
addition, the fact that, compared to the vast-dimensional scenario, the reduction in me-
dian performance fees is less pronounced when moving from short to yearly smoothing
windows indicates a higher persistence of the conditional covariance matrix process in
the lower dimensional case.

Finally, we do not observe the same gains due to the reduced cross-sectional di-
mension and even detect some losses when examining performance fees vis-a-vis the
low-turnover benchmark with the latter being given by the one-factor model, i.e., the
sample covariance matrix unconditionally regularized by a one-factor structure. This
result might be explained by the less restrictive nature of the one-factor model if only
100 or 30 assets are considered. However, the same instance implies that the resulting
portfolio turnover increases relatively to HF-based forecasts employing longer smoothing
windows (see web appendix). For the 30 asset setting, in particular, the latter effect is
evidenced by the median break-even transaction costs becoming considerably negative.

3.5 Conclusion

This chapter provides insights into the value of high-frequency (HF) data for short-
horizon large-scale portfolio allocation decisions. For that purpose, we construct global
minimum variance (GMV) portfolios from the constituents of the S&P 500 index with
weights being determined by different conditional covariance matrix forecasts. We con-
sider HF-based forecasts originating from covariance estimates based on the blocked
realized kernel proposed by Hautsch et al. (2012). The estimates are smoothed, regu-
larized by either eigenvalue cleaning or imposing a factor structure and, finally, used to
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construct both random-walk-type predictions and forecasts relying on a simple autore-
gressive specification. We employ an extensive set of benchmark approaches based on
daily returns and compare the competing forecasting methods in terms of estimated con-
ditional portfolio volatility and additional portfolio characteristics. We allow for basic
inference by using a “portfolio bootstrap” procedure and investigate the economic gains
of reduced portfolio volatility by means of a conditional version of the methodology put
forward in West et al. (1993) and Fleming et al. (2001).

Based on mid-quote data from 2006 to 2009, we show the following major results.
First, HF-based covariance forecasts outperform low-frequency (LF) approaches over in-
vestment horizons of up to a month. The gains in terms of reduced portfolio volatility
are considerably larger during the volatile market period including the 2008 financial
crisis and are of substantial economic value from the point of view of an investor with
pronounced risk aversion. Second, short-term smoothing can be beneficial in terms of
lower portfolio volatility, while long-term smoothing always helps to reduce transac-
tion costs. Third, the performance of HF-based strategies can be further improved if
naive random-walk-type forecasts are replaced by predictions relying on (even simple)
dynamic models. Finally, we find that incorporating methods using HF data into a
large-scale portfolio allocation framework is a relatively demanding task. If we focus on
subsets comprising only the most liquid S&P 500 assets, the gains from GMV strategies
employing HF-based covariance forecasts increase to a considerable extent.

Possible avenues for future research are threefold. First, alternative regularization
methods could be considered. Recent examples are the subsampled principal compo-
nent approach put forward by Abadir et al. (2012) or nonlinear shrinkage as proposed
in Ledoit and Wolf (2012). Second, while our choice of a dynamic model for HF-based
covariance matrix estimates was mainly driven by parsimony and ease of estimation,
richer specifications could be employed. In this context, utilizing HF data in a GARCH
framework, as e.g., suggested by Hansen et al. (2010) and Noureldin et al. (2012), ap-
pears particularly promising. Further possibilities, also specifically for vast-dimensional
settings, are presented in Andersen et al. (2011). Finally, the naive smoothing of covari-
ance matrix estimates could be replaced by an optimal smoothing scheme that strikes
a balance between the accuracy of forecasts, implying low portfolio volatility, and the
minimization of transaction costs caused by variation in portfolio weights. For this pur-
pose, the approach recently proposed by Kirby and Ostdiek (2012) could be adapted to
a HF framework.
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Appendix A

A.1 Power of Distribution Tests for Probability

Integral Transforms

We simulate 1000 samples of length 8000 considering two DGPs. They are equivalent
to DGPs 1 and 2 from the simulation study in Section 1.2.4 with the exception that the
constant probability of nonzero observations is replaced by ACM dynamics as in (1.28),
(1.31) and (1.32). The autoregressive and moving average parameters ζ1 and ρ1 are
chosen in line with the estimates obtained in the empirical application. The constant ϖ
is specified such that the initial value of πt equals 0.5 and about 0.9 for DGP 1 and 2,
respectively.

For each DGP, we estimate the following models, all assuming the correct specifica-
tion of the conditional mean µt:

1

� E-MEM: MEM (1.21), where PMD(1) is based on π = 1 and gε(εt) = fε(εt) is
the standard exponential density.

� G-ZA-MEM: MEM (1.21), where PMD(1) is based on a constant πt = π
and gε(εt) is the gamma density with shape parameter m and scale parameter
λ = (πm)−1.

� ZA-MEM: MEM (1.21), where PMD(1) is the ZAF density (1.26) with constant
πt = π and scale parameter λ = (π ξ)−1.

� G-LOG-DZA-MEM: MEM (1.21), where PMD(1) is based on the autologistic
model (1.28) and (1.29) with l = 0 and d = 1 for πt, while gε(εt|Ht−1) is the
gamma density with scale λt = (πtm)−1.

� LOG-DZA-MEM: MEM (1.21), where PMD(1) is the ZAF density (1.26) with
the autologistic model (1.28) and (1.29), where l = 0 and d = 1, for πt, while
λt = (πt ξ)

−1.

1Results for two additional DGPs and more estimated models can be found in the web ap-
pendix available at http://amor.cms.hu-berlin.de/~malecpet/ZAMEM_appendix.pdf.
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� G-ACM-DZA-MEM: same as G-LOG-DZA-MEM, but the ACM model in (1.28),
(1.31) and (1.32) with v = w = 1 is assumed for πt.

The results of the power study are reported in Table A.1.
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Table A.1: Power of Distribution Tests for (Transformed) PITs
Rejection rates of χ2 and Kolmogorov-Smirnov test for uniformity of PITs, as well as
of Bowman-Shenton and Doornik-Hansen test for normality of transformed PITs. Both
DGPs assume a DZA-Log-MEM based on a ZAF distribution with a = 0.6, m = 100,
η = 3.3 and conditional mean parameters ω = 0.05, α1 = 0.05, β1 = 0.9, α0

1 = −0.005.
πt follows ACM dynamics with ρ1 = 0.15, ζ1 = 0.99 and ϖ = 0.022 (DGP 1) or ϖ = 0
(DGP 2). For every replication, six models are estimated and (randomized) PITs are
computed. In the out-of-sample setting, models are estimated using the first two thirds
of the sample and PITs are computed based on the remaining third of the dataset. The
study uses 1000 replications and a sample size of 8000.

In-Sample Out-of-Sample

DGP 1 DGP 2 DGP 1 DGP 2

Est. Model\α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Pearson-χ2

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.025 0.003 0.015 0.003 0.669 0.571 0.721 0.641
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.047 0.008 0.229 0.088 0.608 0.500 0.711 0.603
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.988

Kolmogorov-Smirnov

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.000 0.000 0.002 0.001 0.706 0.609 0.811 0.764
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.000 0.000 0.005 0.000 0.651 0.535 0.792 0.713
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.984

Bowman-Shenton

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.015 0.002 0.015 0.001 0.325 0.194 0.499 0.364
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.144 0.030 0.114 0.018 0.307 0.154 0.439 0.302
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Doornik-Hansen

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.017 0.002 0.016 0.001 0.333 0.199 0.513 0.365
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.159 0.044 0.121 0.025 0.316 0.164 0.439 0.312
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Appendix B

B.1 MEM Specifications

For trading volumes, we specify the conditional mean µ
(v)
t in (2.34) using the logarithmic

MEM proposed by Bauwens and Giot (2000). The latter does not require parameter

constraints to ensure the positivity of µ
(v)
t and implies

lnµ
(v)
t = ω +

p
i=1

αi lnx
(v)
t−i +

q
i=1

βi lnµ
(v)
t−i, (B.1.1)

where the lag structure is chosen according to the Schwarz information criterion (SIC).
In case of volatilities, we consider (B.1.1) with p = 1, but augmented by the lags

of (logarithmic) weekly and monthly realized kernel estimates, which are defined as the
averages

x
(rk)
t,w :=

1

5

4
j=0

x
(rk)
t−j and x

(rk)
t,m :=

1

20

19
j=0

x
(rk)
t−j . (B.1.2)

This extension is motivated by the widely-used heterogeneous autoregressive (HAR)
model for realized volatilities proposed by Corsi (2009) and yields

lnµ
(rk)
t = ω + αd lnx

(rk)
t−1 + αw lnx

(rk)
t−1,w + αm lnx

(rk)
t−1,m +

q
i=1

βi lnµ
(rk)
t−i , (B.1.3)

where q is determined using the SIC.
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Appendix C

C.1 Analytical Solution for the Performance Fee

Consider the GMV framework (3.1) and the preference structure (3.4). In addition, let

µpi :=
1

T − h

T−h
t=1

wi′
t,t+h µt,t+h, µ

2,p
i :=

1

T − h

T−h
t=1

 wi′
t,t+h µt,t+h

2
, i = I, II, (C.1.1)

and ϑ := 2 (1 + γ) /γ. Then, exploiting the fact that

E


rp,it,t+h

2
Ft


= wi′

t,t+hΣt,t+h wi
t,t+h +

 wi′
t,t+h µt,t+h

2
, i = I, II, (C.1.2)

and using basic algebra, condition (3.5) can be rearranged to

∆2
γ +∆γ


ϑ− 2


1 + µpII


= (ϑ− 2)


µpII − µpI


+ µ2,pI − µ2,pII + σ2,pI − σ2,pII , (C.1.3)

where σ2,pi , i = I, II, is defined as in (3.6). If we assume that µt,t+h = (h/252)µid ι,
t = 1, . . . , T − h, (C.1.3) becomes

∆2
γ +∆γ


ϑ− 2


1 +

hµid

252


= σ2,pI − σ2,pII , (C.1.4)

yielding the solution

∆γ =
hµid

252
− 1

γ
+


hµid

252
− 1

γ

2

+ σ2,pI − σ2,pII , (C.1.5)

which, under the assumption that (h/252)µid ≤ 1/γ, is strictly positive only if

σ2,pI > σ2,pII .
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C.2 Eigenvalue Cleaning

Eigenvalue cleaning is a regularization technique proposed by Laloux et al. (1999) and
further developed by Tola et al. (2008) that draws upon random matrix theory to de-
termine the distribution of the eigenvalues of a correlation matrix estimate R depending
on the ratio of n observations and m dimensions, q := n/m. The idea is to compare
empirical correlation eigenvalues with those implied by the null hypothesis of indepen-
dent Gaussian asset returns, which allows for an identification of those eigenvalues that
deviate from the “noisy” ones and hence constitute “signals”.

Denote by Λ := diag(λ1, . . . , λm) the diagonal matrix of eigenvalues of R ordered
from largest to smallest and by Q the matrix of corresponding eigenvectors, yielding
the spectral decomposition R = QΛQ′. For n → ∞, under the null hypothesis R is
given by the identity matrix, implying that all eigenvalues are equal to one. However, if
m,n→ ∞ with q ≥ 1 fixed, the eigenvalues of R follow a Marchenko–Pastur distribution
with maximum eigenvalue λmax :=


1+1/q+2


1/q


. Hautsch et al. (2012) argue that,

for practical purposes, the above threshold should be tightened to

λ∗max := (1− λ1/m)

1 + 1/q + 2


1/q


. (C.2.6)

This adjustment allows for a better identification of smaller signals, as it accounts for
the fact that the largest empirical eigenvalue λ1 often is associated with a dominating
“market factor”. Then, eigenvalue cleaning requires that all eigenvalues below λ∗max are
transformed according to

λ̃i :=


λi if λi ≥ λ∗max,

δ otherwise,
(C.2.7)

where δ is the average of the positive parts of all “noisy” eigenvalues, i.e.,

δ :=


(λi<λ∗

max)
λ+i

# of λi < λ∗max

 . (C.2.8)

Finally, the cleaned correlation matrix estimate is obtained as R̃ = Q Λ̃Q′, where
Λ̃ := diag


λ̃i

, i = 1, . . . ,m. We apply the procedure to (smoothed) correlation ma-

trix estimates based on the blocked realized kernel, RBRK
t,S , by setting the number of

observations n equal to the minimum number of refresh times in any block averaged
over the smoothing window. For the regularization of the rolling window sample co-
variance of daily returns, Ct, we apply eigenvalue cleaning to the corresponding sample
correlation matrix Rc

t with n equal to the window length L.
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C.3 Selection of the Number of Factors

To select the number of factors for the regularization approach discussed in Section 3.3.1,
we employ the criteria by Bai and Ng (2002) developed for linear factor models with m
assets and n observations. In the context of smoothed BRK estimates, we consider a

factor model defined in refresh time. Let r
(i)
t,S,l, i = 1, . . . ,m, denote the l-th refresh time

return from days t− S + 1 to t. The resulting factor structure reads

r
(i)
t,S,l = ψ′

t,S,i Ft,S,l + ε
(i)
t,S,l, i = 1, . . . ,m, l = 1, . . . , nt,S , (C.3.9)

where Ft,S,l is the (kt,S × 1) vector of common factors, ψt,S,i denotes the corresponding

vector of factor loadings and ε
(i)
t,S,l is the idiosyncratic component of r

(i)
t,S,l, i = 1, . . . ,m.

Following Bai and Ng (2002), we determine kt,S by employing the minima of the criteria

Cm,1
t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂

2
t,S(kmax)


m+ nt,S
mnt,S


ln


mnt,S
m+ nt,S


, (C.3.10)

Cm,2
t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂

2
t,S(kmax)


m+ nt,S
mnt,S


ln

min (

√
m,

√
nt,S)

2

,

where kmax is the exogenously fixed maximum number of factors, while

σ̂2t,S(kt,S) :=
1

m

m
i=1

σ̂
2,(i)
t,S (kt,S), (C.3.11)

with σ̂
2,(i)
t,S (kt,S) being an estimate of the residual variance V


ε
(i)
t,S,l


, i = 1, . . . ,m.

In practice, we let nt,S be the minimum number of refresh times in any block of the

blocked realized kernel averaged over days t − S + 1 to t. Further, we set σ̂
2,(i)
t,S (kt,S)

equal to the i-th diagonal element of V RK
t,S


Im − Qt,S,(kt,S)


V RK
t,S , i = 1, . . . ,m, where

V RK
t,S and Qt,S,(kt,S) are defined as in (3.13) and (3.15), respectively. For the factor

structure based on the rolling window sample covariance of daily returns in (3.24), the
number of observations is equal to the window length L. The factor residual variance is

estimated by σ̂2t (kt) :=
1
m

m
i=1 σ̂

2,(i)
t (kt), where σ̂

2,(i)
t (kt) is the i-th diagonal element of

V c
t −Qc

t,(kt)


, i = 1, . . . ,m.
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C.4 Cleaning Procedure for S&P 500 Quote

Data

The raw dataset described in Section 3.4.1 is cleaned by performing the following steps:

1. Delete entries with negative bid-ask spreads.

2. Delete entries with non-positive bid or ask prices.

3. Delete entries with non-positive bid or ask sizes.

4. Delete entries with bid-ask spread greater than 1% of the current mid-quote.

5. Delete entries for which the mid-quote price is more than 5 times the median
mid-quote on the given day.

6. Delete entries for which the mid-quote price deviated by more than 5 mean abso-
lute deviations from a rolling median (excluding the observation under considera-
tion) of 50 observations (25 observations before and 25 after).

A more detailed discussion of data filtering procedures can be found in Barndorff-Nielsen
et al. (2008b).
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