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Abstract

In electrical energy systems, hundreds of power plants are coupled via thousands
of kilometres of transmission lines in order to reliably serve millions of customers.
The sheer complexity of interactions between all these components is a never-
ending source both of trouble for system operators who strive to keep their power
grid stable, and of challenges for complex systems scientists seeking fundamental
understanding.

This thesis addresses the question how the stability of a power grid depends
on the network topology. Two pieces of methodological equipment are therefore
required: first, a concept of stability; and, second, a framework for the description
of network structures. Stability is assessed here by means of basin stability, a
nonlocal and nonlinear inspection scheme that allows to quantify how stable a
power grid is against large perturbations such as short circuits or major load
switchings. The other part of the toolbox consists of the instruments of complex
network theory that have been widely used to characterize networked systems.

To the best of the author’s knowledge, basin stability has not yet been ap-
plied in the context of complex systems science. Therefore, a rigorous definition
is provided that clarifies its relation to other stability concepts. Basin stability
quantifies the stability of an attractor in the middle ground between instability
and global stability by estimating the volume of its basin of attraction in state
space. It has several favourable properties: First, the numerical costs for estimat-
ing basin stability are not too high and, crucially, independent of the system’s
dimension. Second, the estimation procedure appears to work properly even
when fractal basin boundaries are present. Third, basin stability can be used in a
component-wise fashion particularly suitable for the study of networked systems.

Basin stability is used to assess the relation between network topology and
power grid stability once in an abstract and once in a more applied way. The ab-
stract approach is motivated by the fact that power grids rely on the synchronous
operation of their components, and focusses on the problem how general dynam-
ical networks should be structured to support a stable synchronous state. There
exists a huge body of literature on this subject. Yet the topologies of real-world
synchronizing networks such as power grids or neural networks have eluded pre-
vious theoretical approaches that were based on local stability concepts. Here,
a complementary nonlocal-stability perspective is offered. It turns out that net-
works with maximum basin stability are located at the opposite end of a certain
network-theoretical spectrum than networks optimal with respect to local sta-
bility. This suggests that, during the evolution of synchronizing networks, the
optimization for local stability and the simultaneous optimization for nonlocal
stability have acted as opposing forces. The real-world topologies actually found
may be explained as a compromise between these forces.

The more applied approach draws on a power grid model from the engineering
literature. A component-wise version of basin stability is used to assess how a
grid’s degree of stability against large single-node perturbations is influenced by
certain patterns in the wiring topology. Simulations in an ensemble of power grids
yield various statistics that all support one main finding: The widespread and
cheapest of all connection schemes, so-called dead ends and dead trees, strongly
diminish stability. A case study of the Northern European power system demon-
strates that the inverse is also true: ‘Healing’ dead ends by addition of transmis-
sion lines substantially enhances stability. This indicates a basic design principle
for future power grids: Add just a few more lines to avoid dead ends.
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Zusammenfassung

Hunderte Kraftwerke sind in Stromnetzen durch Tausende Kilometer von Lei-
tungen miteinander verknüpft, um die Versorgung von Millionen von Kunden si-
cherzustellen. Die Wechselwirkungen zwischen all diesen Komponenten sind hoch-
komplex und damit eine unerschöpfliche Quelle sowohl von Beschwernissen für
Ingenieure, die sich um die Stabilität ihres Stromnetzes bemühen, als auch von
Herausforderungen für Wissenschaftler, die komplexe Systeme von Grund auf
verstehen wollen.

Diese Arbeit ist der Frage gewidmet, wie die Stabilität eines Stromnetzes mit
seiner Topologie zusammenhängt. Der methodische Ansatz muss also aus zwei
Teilen bestehen: Erstens aus einem geeigneten Stabilitätskonzept; und zweitens
aus einem Begriffssatz zur Beschreibung von Netzwerktopologien. Stabilität wird
hier mit Hilfe von Bassin-Stabilität vermessen, einer nichtlokalen und nichtlinea-
ren Methode, mit der sich quantifizieren lässt, wie stabil ein Stromnetz ist gegen
große Störungen wie etwa Kurzschlüsse oder Lastsprünge. Den anderen Teil des
methodischen Ansatzes machen die Instrumente der Theorie komplexer Netzwer-
ke aus, die schon in vielen Forschungsfeldern eingesetzt wurden, um netzartige
Systeme zu beschreiben.

Nach Kenntnis des Autors ist Bassin-Stabilität im Kontext komplexer Syste-
me noch nie verwendet worden. Darum wird hier zunächst eine grundlegende
Definition zur Verfügung gestellt, um Bassin-Stabilität in die Reihe anderer Sta-
bilitätskonzepte einzuordnen. Bassin-Stabilität quantifiziert die Stabilität eines
Attraktors zwischen Instabilität und globaler Stabilität durch Vermessung des
Volumens seines Anziehungsbereichs im Zustandsraum. Das Konzept hat einige
vorteilhafte Eigenschaften: Erstens sind die numerischen Kosten zur Schätzung
von Bassin-Stabilität nicht allzu hoch und, was besonders wichtig ist, unabhän-
gig von der Dimension des Zustandsraums. Zweitens funktioniert die numerische
Schätzung anscheinend sogar dann, wenn fraktale Bassinränder vorliegen. Drit-
tens kann Bassin-Stabilität auch komponentenweise angewendet werden, was be-
sonders nützlich für die Untersuchung von netzartigen Systemen ist.

Bassin-Stabilität wird hier benutzt, um den Zusammenhang zwischen der Stabi-
lität eines Stromnetzes und seiner Netztopologie zu untersuchen, und zwar einmal
abstrakt und einmal konkret. Der abstrakte Ansatz ist dadurch motiviert, dass die
Funktion eines Stromnetzes auf dem synchronen Zusammenwirken seiner Kompo-
nenten beruht. Er betrifft die Frage, wie generelle dynamische Netzwerke struktu-
riert sein sollten, um stabile Synchronisation zu unterstützen. Dieses Thema hat
in der Literatur schon viel Aufmerksamkeit gefunden. Dennoch konnte man die
Topologien von synchron funktionierenden Systemen aus der Wirklichkeit, etwa
von neuronalen Netzen oder Stromnetzen, durch bisherige theoretische Ansätze
nicht erklären. Diese Ansätze basierten allerdings auf einem lokalen Stabilitätsbe-
griff. Hier wird eine nichtlokale Perspektive eingenommen. Es stellt sich heraus,
dass Netzwerke mit maximaler Bassin-Stabilität am entgegengesetzten Ende ei-
nes gewissen netzwerktheoretischen Spektrums angesiedelt sind als Netzwerke, die
optimal sind in Hinsicht auf lokale Stabilität. Dies deutet darauf hin, dass in der
Entwicklung von synchron funktionierenden Systemen die Optimierung auf loka-
le Stabilität hin und die gleichzeitige Optimierung auf nichtlokale Stabilität hin
als entgegengesetzte Kräfte gewirkt haben. Die tatsächlich gefundenen Topolo-
gien wären dann als Kompromiss zwischen diesen beiden Optimierungsprozessen
erklärbar.
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Der konkrete Ansatz geht aus von einem Stromnetzmodell aus der Ingenieu-
ersliteratur. Bassin-Stabilität wird komponentenweise eingesetzt, um zu untersu-
chen, wie der Grad der Stabilität eines Stromnetzes gegen große Einzelknoten-
Störungen beeinflusst wird von gewissen Mustern in der Netztopologie. Simula-
tionen in einem Ensemble von Stromnetzen bringen diverse Statistiken hervor, die
alle eine wesentliche Beobachtung stützen: Ausgerechnet das kostengünstigste und
weitverbreitetste Anschlussschema – bestehend aus Stichleitungen – vermindert
die Netzstabilität beträchtlich. In einer Fallstudie des nordeuropäischen Stromnet-
zes zeigt sich, dass die Umkehrung auch zutrifft: Beseitigung von Stichleitungen
durch Zubau neuer Leitungen erhöht die Netzstabilität deutlich. Daraus lässt sich
ein fundamentales Designprinzip für zukünftige Stromnetze ableiten: Man baue
immer ein paar Verbindungen mehr, um Stichleitungen zu vermeiden.

viii
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1 Introduction

From Gallipoli, an Italian seaside town, the German city of Papenburg is about 2,000
kilometres away. Therefore, the Gallipolini may have found it a little far-fetched
when they first heard that the power blackout which had darkened their town on 4
November 2006, had actually had its root cause in Papenburg.

It was meant to be a routine operation: Engineers of a German power company
decided to deenergize a transmission line over the river Ems near Papenburg to allow
the safe passage of a large cruise ship. At a total length of about 60 kilometres, the
line constitutes only a tiny segment of the more than 220,000 kilometres long pan-
European power grid, and its shut-down was expected to cause no trouble. However,
it triggered a series of events in which numerous further transmission lines all over
Europe overloaded and automatically switched off. The grid was on the brink of
collapse. More than 10 million households including in the Netherlands, Spain –
and Gallipoli – had to be disconnected for up to two hours to avoid a complete
blackout [UCTE, 2007].

“All this happened because a single transmission line went missing,” commented
Jürgen Kurths, an expert on complex systems and the supervisor of this thesis. “Isn’t
it impressive that such a seemingly small change in the network topology can make
the whole grid unstable?” He thus suggested the overarching question of this thesis:

How does the network topology influence the stability of a power grid?

To tackle it, I am going to need two pieces of methodological equipment: first, a
framework for dealing with network structures; and, second, a suitable concept of
power grid stability. As for the first, I will employ complex network theory [Watts
and Strogatz, 1998; Strogatz, 2001; Albert and Barabási, 2002; Boccaletti et al., 2006;
Newman, 2003, 2010], a versatile toolkit that has found fruitful application in various
fields of research including the social sciences (see, e.g., Amaral et al. [2000]), infras-
tructure engineering (see, e.g., Crucitti et al. [2004b]), and biology (see, e.g., Sporns
and Zwi [2004]). As for the second, I will assess power grid stability by means of basin
stability, a nonlocal and nonlinear concept that allows to quantify how stable a grid
is.

Facets of power grid stability
Power grid stability refers to the capacity of a power system not to suffer a blackout.
We will presently see that grid stability is a multi-faceted problem. In contrast,
blackouts all follow the same pattern [Ewart, 1978]: At the beginning, an unplanned
event causes a single grid component such as a transmission line, transformer or
generator to break down. This increases the stress on other components and provokes
some of them to fail, too, thus further weakening the grid. A vicious cycle is set
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1 Introduction

in motion, and in an avalanche of component failures and deteriorating operating
conditions, ever more parts of the grid become disconnected until, in the worst case,
the system collapses entirely.

The operators of a power grid work hard to avoid such cascading failures, trying to
ensure that their system is always (n − 1)-stable, that is, able to cope with the loss
of a single component. Apart from that, they strive to prevent component failure in
the first place. As there are various different causes due to which a component might
fail, power grids need to be stable in many ways [Machowski et al., 2008].

Take, for instance, a transmission line that is overloaded. Overheating will cause the
line’s wires to expand and to sag lower between the poles. This reduces the distance
between wires and nearby objects (such as trees) and increases the risk of a flashover
that could only be cleared by switching the line off. Thus, to ensure a grid’s long-term
stability, overloading has to be avoided.

Yet component failures can also have short-term causes. For example, when an in-
dustrial motor is turned on, it initially draws a large current that induces a temporary
drop in the voltage. If this sudden undervoltage cannot be cleared fast enough, it may
grow into a severe disturbance and induce protection schemes to shut parts of the grid
down. Voltage stability is achieved through the provision of reactive power, a quantity
that has to be supplied by nearby equipment instead of by transfers over the grid.
Hence the overall network structure, whose influence on power system performance
I aim to study in this thesis, is not highly relevant for this very local aspect of grid
stability.

I will therefore place the focus on another, truly nonlocal challenge for stable grid
operation which is related to the balance of active power, that is, to the nonlocal
requirement that, across the whole grid and at any time, the total amount of power
supplied by all generators must exactly equal the total amount of power demanded
by all consumers. If this delicate balance is satisfied, power flows on the grid are
constant and all components operate synchronously at the grid’s rated frequency (50
or 60 Hz). However, perturbations such as load switchings, short circuits or weather-
induced fluctuations in renewable generation constantly threaten to push the grid away
from this synchronous balance. If a component indeed becomes desynchronized, it has
to be disconnected, thereby weakening the grid and possibly triggering a cascading
blackout. Consequently, power grids must be designed as stable as possible against
desynchronization-prone perturbations.

A nonlocal stability perspective

When assessing grid stability, one needs to distinguish between small perturbations
and large perturbations. Both kinds do take place in power grids [Machowski et al.,
2008]: the former, for instance, when a consumer switches on their coffee machine
[Dobson, 2013], and the latter, for example, when a short circuit forces a transmission
line out of service. In recent times, the relation between network topology and small-
perturbation stability has been investigated a lot (e.g., in Witthaut and Timme [2012];
Rohden et al. [2012]; Dörfler et al. [2013]).

Small perturbations are highly local affairs, and the corresponding analysis tools,
such as linearization [Argyris et al., 2010] or convergence rate measurements [Scheffer
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et al., 2009], are focussed on the surroundings of a system’s current state. They can
be used to assess whether or not the system will return to this state after having been
pushed a tiny bit away by some external influence.

By contrast, large perturbations – on which I will focus here – may drive the system
far away from its current state, and any analysis has to take into account nonlocal
information. Indeed, the system will only return to the current state after having
been hit by a large perturbation, if it is not pushed outside of that state’s so-called
basin of attraction, a truly nonlocal entity.

I will use basin stability, a nonlinear measure based on the basin’s volume, to quan-
tify how stable a state is against large perturbations. Although volumes of basins have
been studied before (see, e.g., Wiley et al. [2006]), basin stability has – to the best of
my knowledge – not yet been applied in the context of complex systems science.

Contents and main findings

The contents of this thesis are arranged as follows. In Chapter 2, I will set basin
stability into the context of other, particularly local stability concepts, providing a
rigorous definition of it as well as a numerical estimation procedure for it. Basin sta-
bility gauges by a number SB ∈ [0, 1] the stability of an attractor between instability
(SB = 0) and global stability (SB = 1). It will turn out that basin stability has
several advantageous properties. First, the computational costs of its estimation are
independent of the system dimension and, in general, not too high. Second, basin sta-
bility appears reliable even when studying systems whose basin boundaries are fractal.
These two facts render basin stability a widely applicable tool.

I will then apply basin stability to investigate the relation between power grid stabil-
ity and network structure once in an abstract and once in a more applied way. The
abstract approach, presented in Chapter 3, is inspired by the fact that the reliable
function of a power grid crucially depends on the synchronous operation of its compo-
nents. Because of this, the chapter is dedicated to the problem how the topologies of
general dynamical networks should be optimally shaped to support synchrony. This
subject has received considerable scientific attention. Yet the topologies of synchro-
nizing networks found in the real world, such as power grids or neural networks, could
not be explained by previous, local-stability-based approaches. Offering a complemen-
tary nonlocal-stability perspective, I will demonstrate that networks with maximum
basin stability reside at the opposite end of a certain network-theoretical spectrum
than networks optimized for local stability. This suggests that the optimization for
local stability and the simultaneous optimization for nonlocal stability may have acted
as antagonistic evolutionary forces. My conjecture is that the real-world topologies
actually found, so called small-world topologies, may be explained as a compromise
between the two.

In the more applied approach, spelled out in Chapter 4, I will investigate a power
grid model from the engineering literature and use a component-wise version of basin
stability to evaluate the effects of certain topological patterns on a grid’s degree of
stability against large single-node perturbations. A comprehensive statistical analysis
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1 Introduction

of simulations in an ensemble of randomly generated power grids produces one main
finding: The widespread and cheapest of all connection schemes, so-called dead ends
and dead trees, severely reduce stability. In a case study of the Northern European
power system that confirms this result, I will demonstrate that the inverse also holds:
When dead ends are ‘healed’ through addition of some transmission lines, grid stabil-
ity increases substantially. This hints at a basic design principle for tomorrow’s power
grids: Do not go for the cheapest option: dead ends, but build a few extra lines to
avoid them.

Finally, Chapter 5 contains a summary of the main results of this thesis and a discus-
sion of possible starting points for further research.

Please note that the theoretical terms and concepts used in this text will be defined
en passant. However, a Glossary is offered after the main part of the text.
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2 Stability concepts

Stability is a crucial property of various natural and man-made systems. When you,
for instance, slightly perturb a biological cell by altering the expression level of one
of its genes, the cell’s internal processes usually quickly return to the phenotype they
were in before the perturbation [Huang and Ingber, 2007]. Likewise, when you turn on
the lights in your household and thereby push the electricity grid a tiny bit away from
balanced operation, this deviation dampens out in a fraction of a second, and the grid
becomes balanced again [Dobson, 2013]. These are examples of dynamical regimes
to which the respective system returns after small perturbations. Such regimes are
called stable.

A system can possess more than one stable dynamical regime. In the human brain,
for instance, healthy operation co-exists with pathological regimes that correspond to
ailments such as epilepsy [Babloyantz and Destexhe, 1986; Lytton, 2008]. Similarly,
the thermohaline circulation, a system of ocean currents important for the Earth’s
climate, is believed to possess an alternative stable regime in which it would cease
to transport the huge amounts of heat it conveys today [Rahmstorf, 1995]. This
illustrates that a system’s different regimes typically reveal qualitatively very distinct
modes of behaviour. Transitions between two regimes are therefore abrupt, sometimes
catastrophic events whose mechanisms have received considerable scientific attention.

There are two common types of transition. The first type occurs when the environ-
mental conditions change in a way that renders the currently occupied regime unstable.
This is called a bifurcation, and inevitably forces the system into another regime. The
second type, called critical transition, can only take place in multistable systems. In
these systems, multiple stable regimes exists at the same environmental conditions,
and a shift between them can be triggered by a large external shock [Scheffer, 2009].
The two examples cited above, the human brain and the thermohaline circulation,
are actually multistable systems. Other examples include arrays of coupled lasers
[Erzgräber et al., 2005] and the Amazon rainforest [Da Silveira Lobo Sternberg, 2001;
Oyama and Nobre, 2003; Hirota et al., 2011]. Power grids, the real-world systems
from which this thesis mainly draws its motivation, are also multistable [Machowski
et al., 2008; Chiang, 2011].

Bifurcation-related transitions can be studied by means of local stability methods, in
which a dynamical regime is assessed basically by inspecting the dominant curvature of
the potential energy function in the regime’s surroundings (as expressed by Lyapunov
exponents). The curvature’s absolute value measures the speed of convergence or
divergence after a small perturbation, and its sign qualifies the regime as stable or
unstable (Fig. 2.1). When a regime is losing stability, the convergence speed gradually
decreases until the curvature finally changes sign. This critical slowing-down can be
detected in observational data and was suggested as an early-warning signal of an
approaching bifurcation-related transition [Scheffer et al., 2009].
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2 Stability concepts

Figure 2.1: Marble on a marble track. The track is immersed in a highly viscous
fluid to make the system’s state space one-dimensional. Dashed arrows
indicate where the marble would roll from each position. A, B and C label
fixed points, at which the marble would remain forever. Fixed point B is
a stable dynamical regime. The green bar indicates B’s basin of attraction
B. If the marble is perturbed from B to a state within the basin, it will
return to B. Such perturbations are ‘permissible’. Perturbations to states
outside the basin are ‘impermissible’. The dashed parabola shows the local
curvature around B, fitting the true marble track only badly in most of
the basin. Figure published in [Menck et al., 2013a].

However, as we will see below, critical slowing-down does not in general warn of
the other type of abrupt regime shift: critical transitions. Indeed, these are nonlocal
events to which the toolbox of local stability does not apply. One needs to employ
stability concepts that are based on global objects [Chiang, 2011]: basins of attraction.
Indeed, a system will only return to its former dynamical regime after a given large
external shock, if it is not pushed out of the basin of attraction of that regime (Fig.
2.1). As basins can be extremely complicated entities [Nusse and Yorke, 1996], we
will here focus on a single fundamental property: the basin’s volume. Based on it, we
shall define a concept called basin stability which can be used to quantify how stable
a regime is against transition-prone large external shocks.

The following pages provide the conceptual background for and the rigorous defi-
nition of basin stability. We will also study how basin stability can be estimated in
numerical simulations. It turns out that the numerical costs associated with this esti-
mation are relatively low and independent of the system’s dimensionality. This means
that basin stability can be applied even to high-dimensional systems. Furthermore,
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we will see evidence that basin stability may be applicable even when fractal basin
boundaries are present.

Contents
The chapter is structured as follows. Section 2.1 introduces the basic terminology of
dynamical systems theory that will be used all over this text. Then, in Section 2.2,
we will discuss the concept of local stability and its relation to Lyapunov exponents.
Section 2.3 is about nonlocal stability concepts and includes the definition of basin
stability. In Section 2.4, we will consider a numerical procedure to estimate basin
stability and assess its applicability to high-dimensional systems and systems with
fractal basin boundaries. In Section 2.5, we will deal with ways to infer stability from
observational data. Section 2.6 contains conclusions and outlook.

Some of the findings presented here have been published in [Menck et al., 2013a,b].
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2 Stability concepts

2.1 Dynamical systems terminology

Throughout all chapters of this thesis, we will investigate time-evolving systems with
the concepts of dynamical systems theory. So let us first introduce some of these
concepts following the very lucid expositions by Strogatz [2001] and Argyris et al.
[2010].

2.1.1 States and state space

Dynamical systems theory starts by assuming that all aspects of a system can be
captured by a specifiable set of numbers: the system’s state

x = (x1, x2, . . . , xm). (2.1)

In general, a system may be able to assume a vast number of different states, and its
state may vary in time. So we denote by x(t) ∈ S the system’s state at time t, where
S is the set of all possible states which is commonly referred to as the system’s state
space. The dimensionality of S is m.

Our definition of a state implies that, in the absence of any external or stochastic
influences, x(t0) at any time t0 incorporates the complete information about all future
states. We can hence write the system’s time evolution as

x(t) = Φt(x(t0)), (2.2)

and define the trajectory pertaining to the initial state x(t0) as the set

{Φt(x(t0)) | t ≥ t0}. (2.3)

A trajectory converges to a set V ⊂ S, if for every open neighbourhood U of V there
is a tU so that Φt(x(t0)) ∈ U for all t > tU . For brevity, we denote convergence by
Φt(x(t0)) → V.

Eq. (2.2) can equivalently1 be expressed in a differential way as

ẋ = F(x) (2.4)

which says that the change of the system’s state x in time, given by its time derivative
ẋ := dx/dt, is determined entirely by a function F that only depends on x.2 A system
that obeys an equation of the form (2.4) is called deterministic.3 We shall discuss many
such systems in what follows.

1Provided Φt is differentiable w.r.t. t. In that case, write ẋ = lim∆t→0[x(t + ∆t) − x(t)]/∆t =
lim∆t→0[Φt+∆t(x(t0)) − Φt(x(t0))]/∆t = lim∆t→0[Φ∆t(x(t)) − Φ0(x(t))]/∆t =: F(x(t)).

2A system for which F does not explicitly depend on any independent variable such as the time
variable t is called autonomous. However, an m-dimensional non-autonomous system for which
F is t-dependent can be transformed into an autononous one by adding an m + 1-th variable
xm+1 = t and setting Fm+1 = 1. So we do not lose generality by limiting ourselves to autonomous
systems here.

3We only consider systems in which F gives unique trajectories.
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2.1 Dynamical systems terminology

2.1.2 Contractiveness and minimal invariant sets

One has to distinguish different kinds of deterministic system [Argyris et al., 2010].
In a conservative system, the total amount of energy is conserved, which implies
div F = 0. However, we will solely study dissipative systems, in which friction-like pro-
cesses give rise to a continuous loss of energy to the system’s surroundings. Dissipative
systems are characterized by div F < 0, which has the important consequence that vol-
umes of sets of states contract in time. More specifically, if ∆V denotes a set of states
that occupies the state space volume (i.e., Lebesgue measure) ∆V := Vol(∆V) > 0
and is small enough to be characterized by the same value of div F throughout, then

d∆V

dt
= div F · ∆V < 0 (2.5)

implies contraction. Consequently, bigger volumes made up of many small volumes
also contract. Hence, from every individual initial state, a dissipative dynamical
system will converge to a zero-volume minimal invariant set I, that is, to a non-
empty set that has the invariance property

Φt(I) := {Φt(x) | x ∈ I} = I for all t (2.6)

and whose proper non-empty subsets are themselves not invariant. Indeed, the zero-
volume minimal invariant sets, objects of dimensionality lower than m, play an im-
portant role for understanding the long-term behaviour of dissipative deterministic
systems.

2.1.3 Illustration

Consider a classical damped pendulum, such as the one depicted in Fig. 2.2, that is
driven by a constant angular acceleration X. Assume its dynamics obey

φ̇ = ω (2.7)
ω̇ = −αω + X − K sin φ, (2.8)

where φ denotes the pendulum’s angle and ω its angular frequency. Furthermore,
α > 0 is the dissipation coefficient and K = g/ℓ, with the gravitational acceleration
g and the pendulum’s length ℓ. The system has the state space S = [0, 2π] × R, and
div F = −α < 0 implies that it is dissipative.

So we now turn to the minimal invariant sets of the pendulum, choosing α = 0.1,
X = 0.5, and K = 1. In turns out that there are several such sets. First, the pendulum
possesses two fixed points, that is: states with φ̇ = 0 and ω̇ = 0. We denote them by
x∗

i = (φi, ωi), i = 1, 2, with coordinates

φ1,2 = arcsin


X

K


(2.9)

ω1,2 = 0 (2.10)

where we take φ1 to be the solution of arcsin inside [0, π/2] and φ2 = π − φ1. These
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2 Stability concepts

Figure 2.2: A damped driven pendulum. The angle of the pendulum is measured
by φ, and its length is ℓ. X indicates a constant angular acceleration that
acts on the pendulum.

two solutions correspond to the angles at which the gravitational angular acceleration
exactly balances the external angular acceleration X. Besides them, there is another
invariant set: a periodic limit cycle, which corresponds to an incessant rotation of the
pendulum at the approximate angular frequency

ωcycle(t) ≈ Ω + K

Ω cos(Ωt + φ0) (2.11)

with Ω = X/α. These three minimal invariant sets are depicted in Fig. 2.3.

We will need Eq. (2.11) in a later chapter, so let us quickly derive it here. Note
that, at K = 0, the pendulum has a limit cycle solution with constant frequency
ω(t) = X/α =: Ω and phase φ(t) = Ωt + φ0. In numerical simulations one observes
that, for a range of K-values larger than zero, a similar solution exists which still
approximately obeys φcycle(t) ≈ Ωt + φ0. To specify it, we write ωcycle = Ω + f(t)
where f(t) is to be determined. Inserting this into Eq. (2.8) yields

ḟ = −αf − K sin(Ωt + φ0). (2.12)

The specific solution to this Eq. is

f(t) = − αK

Ω2 + α2


sin(Ωt + φ0) − Ω

α
cos(Ωt + φ0)


. (2.13)

For |Ω|/α = |X|/α2 ≫ 1, this is approximated by

f(t) ≈ K

Ω cos(Ωt + φ0) (2.14)
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2.1 Dynamical systems terminology

which yields Eq. (2.11). Integrating ωcycle gives

φcycle(t) ≈ Ωt + K

Ω2 sin(Ωt + φ0) + φ0, (2.15)

which means that φ(t) ≈ Ωt + φ0 will indeed be observed if Ω2 ≫ K, as is the case
for our choice of parameters X = 0.5, K = 1, α = 0.1.

Figure 2.3: Minimal invariant sets of the damped driven pendulum. a, shown
are the angles φ1,2 of the two fixed points x∗

i = (φi, ωi), i = 1, 2, at which
the gravitational angular acceleration exactly balances the external angu-
lar acceleration X. b, time series of the limit cycle’s angular frequency
ω.
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2 Stability concepts

2.2 Local stability and strong attractors

As in the example of the pendulum we just discussed, a dynamical system of the form
(2.4) is often intended as a model for a real-world system. The minimal invariant sets
pertaining to such a model are candidates for capturing possible long-term dynamical
regimes. As real-world systems usually settle in regimes that are stable against per-
turbations, we next define stability for invariant sets.

2.2.1 Asymptotic stability

We define a perturbation ∆x as a push of the system from one state to another, that
is

x →→ x + ∆x. (2.16)

Stability against perturbations has several key aspects that are addressed by the fol-
lowing definitions [Argyris et al., 2010]. A compact invariant set I is called Lyapunov
stable, if for every open neighbourhood U of I one can find an open neighbourhood
V ⊂ U so that Φt(V) ⊂ U for all t. Lyapunov stability implies that, if a perturbation
pushes the system from x ∈ I to a state x + ∆x that is still close enough to I, the
ensuing trajectory will also remain close to I forever. Building upon this, a compact
invariant set I is called asymptotically stable or locally stable, if it is Lyapunov stable
and has an open neighbourhood U so that for any open neighbourhood V of I there
is a tV so that Φt(U) ⊂ V for t > tV . In this case, the system not only stays close to
I after a small perturbation but its trajectory also finally converges back to it. We
refer to an asymptotically stable minimal invariant set as a (strong) attractor. If an
attractor loses stability through a change in the system parameters or if, conversely,
a formerly unstable minimal invariant set becomes stable, this is called a bifurcation.

2.2.2 Lyapunov exponents

The convergence and divergence of trajectories nearby and on minimal invariant sets
can instructively be characterized in terms of Lyapunov exponents. Following the
exposition in Argyris et al. [2010], let us consider a dynamical system that evolves
along a reference trajectory on a compact minimal invariant set I, with its state at
time t denoted by xr(t) and starting at xr(t0). We will compare to this trajectory
the evolution along another trajectory x(t) that starts at the slightly perturbed initial
state x(t0) = xr(t0) + ∆x(t0). Writing x(t) = xr(t) + ∆x(t), this gives

ẋ(t) = ẋr(t) + ∆ẋ(t) = F(xr(t) + ∆x(t)) (2.17)
= F(xr(t)) + DF(xr(t))∆x(t) + . . . (2.18)

where DF denotes the Jacobian matrix of F. If ∆x(t) is infinitesimally small, we can
neglect higher-order terms and obtain a time-dependent linear system of differential
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2.2 Local stability and strong attractors

equations that determines ∆x, namely

∆ẋ = DF(xr(t))∆x(t). (2.19)

The Lyapunov exponent of ∆x(t) w.r.t. the reference trajectory xr(t) measures the
average rate at which xr(t) + ∆x(t) diverges from or converges to xr, and is defined
as

σxr (∆x) = lim sup
t→∞

1
t

log |∆x(t)|
|∆x(t0)| = lim sup

t→∞

1
t

log |∆x(t)|. (2.20)

Provided the system’s time evolution is ergodic, σxr will be the same for almost all
reference trajectories xr(t) on I. So we henceforth drop the subscript xr when stat-
ing σ. For an m-dimensional dynamical system, σ can assume m different values at
maximum for different ∆x [Argyris et al., 2010].

Lyapunov exponents are an important tool for investigating the local stability of in-
variant sets. Specifically, a hyperbolic fixed point, that is a state x∗ with F(x∗) = 0 for
which the eigenvalues of DF(x∗) have non-zero real parts, is an attractor if and only
if all its Lyapunov exponents are negative, as in the neighbourhood of such a fixed
point the linearized dynamics are equivalent to the full non-linear dynamics (theorem
of Hartman-Grobman [Argyris et al., 2010]). A general compact minimal invariant set
is asymptotically stable if all perturbations transversal to it are damped out. Hence
the negativity of all Lyapunov exponents corresponding to transversal perturbations
is a necessary condition for being an attractor. Nevertheless, attractors can possess
non-negative Lyapunov exponents correponding to non-transversal perturbations.

For example, Fig. 2.4 displays the four different types of attractor that can appear
in 3-dimensional dynamical systems [Argyris et al., 2010]. The first type (Fig. 2.4a)
is a stable fixed point, that is, a single state which is attractive in all directions and
therefore has all three Lyapunov exponents negative.

The second type (Fig. 2.4b) is a stable limit cycle. On such an attractor, the
dynamics return to exactly the same state after a certain period. It possesses one zero
Lyapunov exponent, corresponding to small perturbations along its trajectory. The
other two exponents correspond to transversal perturbations and are negative.

The third type (Fig. 2.4c) is a stable torus, that is, an attractor on which the dy-
namics are characterized by two periods that are incommensurate. In contrast to
a limit cycle, a trajectory on a torus never returns to exactly the same state. A
torus has two zero Lyapunov exponents and a negative one. The first zero expo-
nent corresponds to small perturbations along a trajectory, and the second to small
perturbations transversal to it but still to states inside the attractor.

Finally, the fourth type (Fig. 2.4d) is a chaotic attractor. Such an attractor charac-
teristically displays a sensitive dependence on the initial state, which means that tra-
jectories starting from two neighbouring states inside the attractor in general diverge
at an exponential rate. This gives rise to a positive Lyapunov exponent [Pikovsky
et al., 2003]. The second Lyapunov exponent of a chaotic attractor is zero, corre-
spoding to small perturbations along the trajectory. The third exponent is negative,
indicating asymptotic stability.
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2 Stability concepts

Figure 2.4: Different types of attractor in 3-dimensional state spaces. a, a
stable fixed point. b, a limit cycle. c, a torus. d, a chaotic attractor
(Lorenz). The symbols in the braces indicate the types of Lyapunov ex-
ponents the attractor has, with +, 0, or − representing a positive, zero or
negative value. The figure is modelled on a similar figure in Argyris et al.
[2010]. Panels c,d contain elements of free graphics files4.

4Origin: Wikimedia Commons. Author: Cepheus. Filenames: Simple_Torus.svg,
Lorenz_attractor2.svg.
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2.2 Local stability and strong attractors

2.2.3 Illustration

In Section 2.1.3 we analyzed the dynamics of a damped pendulum driven by a constant
angular acceleration X. With the pendulum’s angle φ and frequency ω obeying

φ̇ = ω (2.21)
ω̇ = −αω + X − K sin φ, (2.22)

we found that, at the parameter settings α = 0.1, X = 0.5, K = 1, there are at least
three minimal invariant sets in state space: the two fixed points and the limit cycle
shown in Fig. 2.3a,b. Let us now assess their stability properties.

First, note that

DF =


0 1
−K cos φ −α


. (2.23)

For each of the two fixed points x∗
i = (φi, ωi), i = 1, 2, with coordinates φ1,2 =

arcsin (X/K) and ω1,2 = 0, where φ1 ∈ [0, π/2] and φ2 = π −φ1, the Jacobian DF(x∗
i )

is a constant matrix. Therefore, for fixed point x∗
i , we can write ∆x = β+pi

+ + β−pi
−,

where pi
± are eigenvectors of DF(x∗

i ) to the eigenvalues

ξi
± = −α

2 ±


α2 − 4K cos φi

2 , (2.24)

and obtain
β̇± = ξi

±β±. (2.25)

This implies that the two Lyapunov exponents σi
± of fixed point x∗

i are just given by
the real parts of ξi

±,
σi

± = Re ξi
±. (2.26)

For 0 < X < K, both σ1
− < 0 and σ1

+ < 0, because cos φ1 > 0. By the theorem
of Hartmann-Grobmann, this means that x∗

1 is attracting in all directions and hence
a (strong) attractor. For x∗

2, we also obtain σ2
− < 0, but σ2

+ > 0, as cos φ2 < 0.
Therefore the second fixed point x∗

2 is an unstable saddle and no attractor. This is,
of course, in agreement with how one would have judged from mere inspection of Fig.
2.3a: In contrast to x∗

1, x∗
2 looks clearly unstable.

Now we turn to the limit cycle that we also found to be an invariant set at the
parameter settings α = 0.1, X = 0.5, and K = 1. The first of its two Lyapunov
exponents is zero, corresponding to perturbations along the trajectory. Its second
Lyapunov exponent is negative, and it turns out that the limit cycle is asymptotically
stable. Indeed, it can be shown that, for a range of parameter settings, the stable
fixed point and the limit cycle are competing attractors in the pendulum’s state space
[Strogatz, 2001]. Which of them the pendulum finally ends up in only depends on the
initial state.
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2.3 Nonlocal stability and weak attractors
Lyapunov exponents are a powerful tool for investiating the local stability of a minimal
invariant set against small perturbations, that is, against perturbations for which the
linearization in Eq. (2.19) is a valid approximation. However, Lyapunov exponents in
general do not allow to assess the stability against non-small perturbations. Let us
now contemplate this nonlocal stability problem.

2.3.1 Lyapunov functions
One way to assess the nonlocal stability of an attractor, at least for a fixed point, is
by means of Lyapunov functions [Argyris et al., 2010]. Consider a fixed point x∗. If
there exists a function V whose partial derivatives are continuous in a neighbourhood
U of x∗ and that fulfils V (x∗) = 0 and V (x) > 0 for all x ∈ U \ {x∗}, then the stability
of x∗ against all perturbations to states inside U is related to the evolution of V along
trajectories. More specifically, if one defines

V̇ (x(t)) = grad V · ẋ = grad V · F(x), (2.27)

and if V̇ (x) < 0 for all x ∈ U \ {x∗}, then the system converges to x∗ from every
perturbed state x ∈ U .

Energy functions are promising candidates for Lyapunov functions. The problem is
that there is no systematic way to construct such functions for general (dissipative)
dynamical systems. To find them, “divine inspiration is usually required” in the words
of Strogatz [2001]. We will here follow a different approach to characterize nonlocal
stability.

2.3.2 Definition of basin stability
In a dissipative system, a trajectory started from any initial state will eventually ei-
ther converge to a compact minimal invariant set or diverge. Based on the notion of
compactification [tom Dieck, 2000], let us understand divergence as meaning conver-
gence to ∞, and treat this ‘point at infinity’ as a compact minimal invariant set as
well.

The basin of attraction B of a compact minimal invariant set I is defined as the set
of all states that converge to I [Argyris et al., 2010],

B = {x ∈ S | Φt(x) → I}. (2.28)

A minimal invariant set whose basin of attraction has a positive volume (Lebesgue
measure) is called a weak attractor. Note that every strong attractor is a weak attrac-
tor, as it has an open neighbourhood from which all states converge to the attractor
and whose volume is, by definition of openness, positive. But a weak attractor is
not necessarily a strong attractor. In the following, we will mostly deal with weak
attractors and for simplicity just refer to them as attractors. When a statement only
applies to strong attractors, we will explicitly mention that.
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Complete knowledge of an attractor’s basin would allow ultimate assessability of its
nonlocal stability [Chiang, 2011]: One could classify perturbations into the permissible
(those pushing the system to a state within the basin) and the impermissible. However,
basins are intricate entities [Nusse and Yorke, 1996] and especially hard to explore in
high dimensions. Throughout this thesis, we will therefore focus on a single but
fundamental property: the basin’s volume. Wiley et al. [2006] interpret the volume of
an attractor’s basin as a measure of the likelihood of arrival at this attractor, i.e., as a
measure of the attractors’s relevance. Almost equivalently, let us here understand the
volume of the basin as an expression of the likelihood of return to the attractor after
any random – possibly non-small – perturbation. This yields a second interpretation:
The basin’s volume quantifies how stable an attractor is. We refer to the quantification
of stability based on the basin’s volume as basin stability [Menck et al., 2013a].

In an alternative approach, C.S. Holling suggested to quantify nonlocal stability (or
resilience, in his nomenclature) in terms of the width of the basin of attraction in a
particular direction [Holling, 1973; Scheffer, 2009]. This concept has inspired a host
of studies on complex socioecological systems. Yet the measure of stability it implies
“is not so easily quantified, even in models” [van Nes and Scheffer, 2007]. One reason
is that, in systems with many state variables, it is impossible to identify the single
most relevant direction along which the width of the basin should be gauged. Basin
stability offers two important improvements: (i) It follows a volume-based probabilis-
tic approach that is compatible with the natural uncertainty about the strength and
direction of perturbations. (ii) It provides a measure of stability that is clearly defined
and easily quantified even in high-dimensional systems (see 2.4.2).

In order to formally define basin stability, note that the basins of all attractors fill out
the volume of state space completely5. If a system has only one attractor to whose
basin almost all states belong, this attractor is called globally stable [Argyris et al.,
2010]. In contrast, if a system is multistable, i.e., possesses multiple attractors, each
basin occupies only a certain portion of state space. So we define the basin stability
of a compact minimal invariant set I with basin B as

SB =


S
χB(x) ρ(x) dx, (2.29)

where
χB(x) =


1 if x ∈ B
0 otherwise (2.30)

is the indicator function of B and ρ is a density with


S ρ(x) dx = 1 and for which
ρ(x) dx reflects how likely it is that a perturbed state close to x occurs. The value of
basin stability is bound to lie between zero and one,

SB ∈ [0, 1]. (2.31)

An invariant set that is no attractor always has SB = 0. On the other extreme, a
globally stable attractor always has SB = 1. For any other attractor, the value of basin

5For the treatment of divergence, see the remark at the beginning of this subsection.
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stability depends on the choice of ρ and measures the likelihood that the system will
return to the attractor after a perturbation randomly drawn according to probability
density ρ.

2.3.3 Illustration
We observed in Sections 2.1.3 and 2.2.3 that the damped driven pendulum, whose
angle φ and frequency ω obey

φ̇ = ω (2.32)
ω̇ = −αω + X − K sin φ, (2.33)

has two attractors: the stable fixed point x∗
1 and a limit cycle. These two are indeed

the only attractors that exist for a range of parameter settings [Strogatz, 2001], and
their basins of attraction fill the volume of state space to its entirety. Fig. 2.5 displays
how these basins look like.
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Figure 2.5: Basins of attraction of the damped driven pendulum. The filled
(open) circle marks the stable (unstable) fixed point x∗

1 (resp. x∗
2). The

green area indicates the basin of attraction of x∗
1. From points in the white

area, the pendulum converges to the limit cycle. Parameters: α = 0.1,
K = 1, and X = 0.5.
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2.3 Nonlocal stability and weak attractors

Let us now take a closer look at the basin stability of the stable fixed point x∗
1 = (φ1, 0).

It is well known that, at X = K, a fold bifurcation occurs in which the two fixed
points x∗

1 and x∗
2 collide and disappear. Let us track how the stable fixed point’s

basin stability changes towards this bifurcation. To do that, we for simplicity set ρ
to be a uniform distribution on Q = [0, 2π] × [−20, 20] and zero elsewhere, choose
α = 0.1 and K = 1, and tune up the external angular acceleration X from zero to K.
The result, obtained via the numerical procedure specified in Section 2.4.1, is shown
in Fig. 2.6. Basin stability SB starts at 1, when x∗

1 is indeed the only attractor. At
X ≈ 4α/π ≈ 0.127 [Strogatz, 2001], the limit cycle becomes stable and its basin starts
to claim an ever larger portion of state space. SB declines until hitting zero at X = 1,
after which the limit cycle is the only stable attractor.
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Figure 2.6: Basin stability of the damped driven pendulum. Basin stability SB
of the stable equilibrium x∗

1 versus X. Parameters: α = 0.1, K = 1.

It is interesting to compare the basin stability characteristic in Fig. 2.6 to the change
of the maximum Lyapunov exponent σ1

+ of x∗
1 as X increases towards K. In every

fold bifurcation, the maximum Lyapunov exponent of the stable fixed point becomes
zero at the bifurcation point, and approaches it from below before [Strogatz, 2001].
Its declining magnitude corresponds to a slowing down of the rate at which a system
recovers after a small perturbation. In climate science, this is called critical slowing
down and has been suggested as an early-warning signal to detect the nearby collapse
of climatic tipping elements (see, e.g., Scheffer et al. [2009] and the discussion in
Section 2.5). Is there critical slowing down in the pendulum’s dynamics?

Fig. 2.7 shows that, as X goes up, σ1
+ is constant and equal to −α/2 for all values

except very close to X = 1. Only at X = 0.999997, when the square root term
contributing to the eigenvalues ξ1

± becomes real (cf. Eq. (2.24)), does σ1
+ start moving

towards 0, where it reaches at X = 1. Does this render critical slowing down detectable
experimentally? The maximum perturbation in positive φ-direction that the stable
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fixed point x1 can withstand is φ2 − φ1 (cf. Fig. 2.5), which at X = 0.999997 amounts
to approximately 5 · 10−3 rad = 0.28◦. For a pendulum of length ℓ = 10 cm, this
corresponds to a displacement ∆ = 0.5 mm. Therefore, only if fluctuations induced by
the environment are significantly less than ∆ will critical slowing down be detectable
in an experiment.

If critical slowing down is detectable, it occurs very late as X increases from 0 to 1.
Hence critical slowing down appears not to be a reliable early-warning signal for the
pendulum’s fold bifurcation.
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Figure 2.7: Local Stability of the damped driven pendulum. a,b: Maximum
Lyapunov exponent σ1

+ of the stable fixed point versus X. b zooms in
close to X = 1. Parameters: α = 0.1, K = 1.

2.3.4 Basin stability and the choice of ρ

By definition (cf. Eq. (2.29)), the exact value of an attractor’s basin stability hinges
on the choice of ρ, the probability density of random perturbations. So far, we have
employed a density that is uniform on a certain subset Q of state space, which gives
an impression of how a basin contracts or expands in a certain, possibly important
region Q. But such a choice of ρ will certainly not count as realistic. However, defining
what would make a choice of ρ realistic and then finding it is beyond the scope of this
thesis.

Just a few thoughts on this issue: From inspecting the marble track in Fig. 2.1
one might suggest that a realistic ρ should incorporate the “height of the landscape”,
which corresponds to the magnitude of that system’s energy function. Indeed, per-
turbations that involve the crossing of high energy barriers should occur less often
than perturbations across low barriers. Now for the toy example of this chapter, the
dissipative pendulum, there is no simple energy function. But we know that the ki-
netic energy of a perturbed state increases with the square of ω. Hence a Gaussian
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2.3 Nonlocal stability and weak attractors

distribution
ρ(x) = ρ(φ, ω) = 1

(2π)3/2b
exp


− ω2

2b2


(2.34)

with zero mean and standard deviation b could be considered a simple candidate for
a realistic choice of ρ.

Fig. 2.8 shows how SB changes as the distribution’s width b is increased at α = 0.1,
K = 1, and X = 0.5. For very small b up to about 0.8, basin stability assumes
an almost constant value around 0.55. In this regime, typical perturbations in the
ω-direction are not yet strong enough to drive the pendulum out of the basin of the
stable fixed point (cf. Fig. 2.5). When b passes 0.8, strong enough perturbations
become ever more likely and SB declines sharply. After about b = 20, basin stability
again remains almost constant, now at a value close to 0.1. This indicates that the
basin is apparently unbounded and occupies a considerable portion of the negative-ω
half of state space (cf. Fig. 2.5).
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Figure 2.8: Basin stability of the damped pendulum with Gaussian ρ. Shown
is the dependence of SB on the width of the Gaussian distribution ρ, cf.
Eq. (2.34). Parameters: α = 0.1, K = 1, and X = 0.5
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2.4 Basin stability estimation
Here we discuss how basin stability can be estimated in numerical experiments. Fur-
thermore, we assess its applicability to high-dimensional systems and to systems with
fractal basin boundaries.

2.4.1 Numerical procedure
Consider a compact minimal invariant set I whose basin of attraction is B. To estimate
the corresponding basin stability SB (cf. Eq. (2.29)), we T times draw a random initial
state x(t0) from S according to the probability distribution determined by the density
ρ and integrate the system equations. Then we count the number M of initial states
for which the trajectory has converged to I. Finally, we estimate SB as M/T .

This procedure is a Monte Carlo rejection method [Von Neumann, 1951], and was
also used by Wiley et al. [2006] to study the volumes of basins. As it consists of
repeated Bernoulli experiments, we infer that the estimate M/T carries a standard
error of [Menck et al., 2013a]

e :=


SB(1 − SB)√
T

. (2.35)

Throughout this thesis, we use at least T = 500, for which e < 0.023 in absolute
terms.

2.4.2 High-dimensional systems
Note that the estimation error e for basin stability does not depend on the dimension
of the dynamical system under investigation, cf. Eq. (2.35). Hence basin stability can
as easily be applied to high-dimensional systems as to low-dimensional systems.

To check whether this is indeed the case, let us study a 300 dimensional system of
N = 100 Rössler oscillators [Rössler, 1976] that are coupled through a network of
interactions. The dynamics of oscillator i, i = 1, . . . , N , obey

ẋi = −yi − zi + K
N

j=1
Aij(xj − xi) (2.36)

ẏi = xi + ayi (2.37)
żi = b + zi(xi − c) (2.38)

where xi, yi, zi are the state variables of unit i and the matrix A indicates whether
there is a direct influence of unit i on unit j and vice versa (in which case Aij = 1) or
not (Aij = 0). We assume a uniform interaction strength K and choose the parameters
a = b = 0.2 and c = 7.0. We will analyze systems like this one in depth in the next
chapter, and here prematurely consume some of the results on that chapter’s example
network (depicted in Fig. 3.1a).

There exists a minimal invariant set Ms on which all oscillators synchronously follow
the same trajectory on the chaotic Rössler attractor (Fig. 3.1b). We set K = 0.185,
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2.4 Basin stability estimation

where Ms is known to be an attractor for this network (see Section 3.3.2). How does
the standard error in the estimate of its basin stability SB ≈ 0.396 depend on T?

We set ρ to be a uniform distribution on Q := qN with q = [−15, 15] × [−15, 15] ×
[−5, 35] and perform the estimation procedure 1,000 times for each of different values
of T . From these 1,000 realizations, we estimate the dependence of e on T . As
shown in Fig. 2.9, the resulting characteristic agrees very well with Eq. (2.35), thus
supporting the claim that e is independent of the system’s dimension.
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Figure 2.9: Error of the basin stability estimation. Red crosses indicate the
standard error of the numerical basin stability estimation for different
values of T . The dashed line shows the theoretical curve e(T ) as given by
Eq. (2.35).

2.4.3 Systems with fractal basin boundaries

In Fig. 2.5 we saw that the basins of different attractors can have intricately inter-
twined shapes. But the boundary between the two basins shown there is still an easily
discernible smooth curve. For other systems, however, basin boundaries can be fractal
[McDonald et al., 1985]. If two basins are indeed separated by a fractal boundary and
one draws a line across it from one basin to the other, the line leaves and enters each
basin infinitely many times [Nusse and Yorke, 1996].

The nature of the basin boundaries influences the predictability of a system’s be-
haviour in the long run, as McDonald et al. [1985] argued. Imagine we randomly
draw initial states from a box through which the boundary between the basins of two
attractors runs. Suppose each initial state is specified up to a certain numerical error
ϵ. Then for an initial state that is closer to the boundary than ϵ, it is uncertain to
which of the two attractors the system will converge. Denote by f(ϵ) the fraction of
initial states for which the outcome is uncertain. If the boundary is a smooth curve,
then these states are all located inside a strip of width 2ϵ along this curve, and f(ϵ)
is just proportional to ϵ. However, if the boundary is fractal, then f(ϵ) ∝ ϵα, where
typically α < 1. This means that an improvement in numerical precision yields only
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a rather small decrease in the share of uncertain initial states. Hence even at high
precision, the long-term behaviour of systems with fractal basin boundaries may be
hard to predict [McDonald et al., 1985].

The trouble is that predicting the long-term behaviour for initial states is the essence
of basin stability estimation. So we will now investigate how fractal basin boundaries
impact the accuracy of the numerical estimation procedure. For that purpose, we
again turn to the damped pendulum, but this time apply a time-dependent forcing,
dictating that the dynamics of the pendulum’s angle φ and frequency ω obey

φ̇ = ω (2.39)
ω̇ = −αω + X cos t − K sin φ (2.40)
ṫ = 1 (2.41)

For α = 0.1, K = 1 and X = 7/4, this system has several attractors [Kennedy and
Yorke, 1991]. The four dominant of them, all limit cycles with period 2π, are shown in
Fig. 2.10a: The black and the red attractor correspond to rotations of the pendulum,
and the orange and the yellow attractor are librations. Their respective basins of
attraction at t = 0 are shown in Fig. 2.10b. Strikingly, certain regions in this figure
appear sprinkled with dots belonging to the different basins. Indeed, the boundary
between the basins is not easily discernible, and remains so when zooming in (Fig.
2.10c). This is a consequence of the Wada property the basins have.

Here is the definition: Three subsets of state space are said to have the Wada
property if any point on the boundary of one subset is also on the boundary of the two
others. For the pendulum, the black basin, the red basin and the union of the orange
and the yellow basin have the Wada property [Kennedy and Yorke, 1991; Nusse and
Yorke, 1996]. This means that a trajectory starting at an initial state closer than the
numerical error ϵ to the boundary of these sets could in principle converge to any of
the four attractors.

To check this in numerical simulations, we write ϵ = 10−p with p denoting precision,
and forcefully discard all information after the p-th significant digit in the double
variables used in the simulation code. A float variable has p ≈ 7, and a full double
variable has p ≈ 16. For different values of p we then integrate from t = 0 a fixed
set of fifty initial states, drawn uniformly at random from Q := [−π, 0] × [−1, 2]. The
outcome, shown in Fig. 2.11a, reveals that some initial states, particularly the ones
indicated by arrows, indeed lead to different outcomes for different values of p.

Now we estimate how basin stability SB depends on p, drawing T = 1, 000 initial
states6 randomly from Q with uniform ρ and again integrating from t = 0. As
depicted in Fig. 2.11b, there seems to be no systematic influence of p on basin stability
estimation. Indeed, most of the individual values of SB(p) are within one standard
deviation of the most precise value SB(16). This suggests that, in contrast to long-
term prediction for individual initial states (cf. Fig. 2.11a), volume estimation is quite
robust under variation of p. Consequently, basin stability may even be applicable to
systems with fractal basin boundaries.

6For other choices of T such as 500 or 5,000 the results look basically the same.
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2.4 Basin stability estimation

Figure 2.10: Damped pendulum with fractal basin boundaries. a, attractors
of the damped pendulum with time-dependent forcing, cf. Eqs. (2.39)–
(2.41). b, state space of the pendulum at t = 0. Black/red/orange/yellow
colouring indicates convergence to the black/red/orange/yellow attractor.
Convergence to other attractors is indicated by white colouring. c, zoom
into the dashed square in panel b.
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Figure 2.11: Basin stability in the pendulum with fractal basin boundaries.
a, shown are the outcomes of numerical integrations for a fixed set of
fifty initial states at different values of the numerical precision p. The
squares in each column correspond to the same initial state, and their re-
spective colours indicate which state the system converges to from there
at given precision p. Black/red/orange/yellow colouring indicates con-
vergence to the black/red/orange/yellow attractor. b, basin stability
SB of the four attractors at different levels of p. The basin stability
of the black/red/orange/yellow attractor is shown by the height of the
black/red/orange/yellow bar. The grey shadows indicate ± one standard
deviation around the respective value of SB(16) (computed from multiple
estimations thereof).
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2.5 Inferring stability from data
Transitions between different attractors can drastically change the appearance and
functionality of a system. When that system is only one part in a large assembly of
systems, as is often the case in ecology and climatology, this can have grave conse-
quences for the whole. Therefore scientists have put considerable research effort into
inferring warning-signals of approaching transitions from observational data.

A typical cause of a transition is a shift in environmental conditions that makes
the attractor currently occupied by a system lose its stability. This means that one
of its transversal Lyapunov exponents changes from negative to positive. Hence, on
the assumption of continuity, the magnitude of this exponent strives towards zero
before the transition, implying that the convergence rate of the system after small
perturbations becomes ever slower.

In theory, this critical slowing down can be detected in observed time series in sev-
eral ways: On the one hand, a decline of the small-perturbation convergence rate
tends to make successive states more similar to one another, thus increasing autocor-
relation [Held and Kleinen, 2004]. On the other hand, it makes deviations due to noise
decay more slowly, giving them the chance to accumulate and thus increasing vari-
ance [Carpenter and Brock, 2006], though this signal may be distorted [Dakos et al.,
2012]. Critical slowing down was suggested as an early-warning signal of approaching
transitions [van Nes and Scheffer, 2007; Dakos et al., 2008; Scheffer et al., 2009].

Warning of transitions is particularly critical for tipping elements in the Earth’s cli-
mate system [Lenton et al., 2008; Schellnhuber, 2009]. One such tipping element is the
Amazon rainforest, which presumably possesses two stable states: the present fertile
forest state and a barren savanna state [Da Silveira Lobo Sternberg, 2001; Oyama and
Nobre, 2003; Hirota et al., 2011]. A transition would emit huge amounts of carbon
dioxide captured in the rich vegetation. At a range of environmental conditions, both
Amazonian states are stable due to a positive feedback: Deep-rooting trees take up
water stored in the soil and transpire it to the atmosphere. Thereby forest cover in an
area increases overall precipitation and improves its own growing conditions. Conse-
quently, a rather arid area (i.e., an area with weak precipitation inflow) may still be
supportive of forest growth if its forest cover exceeds a certain critical threshold; were
forest cover pushed below this threshold, the area would lose all of its trees [Menck
et al., 2013a].

This is summarized in a conceptual model (the Levins model [Levins, 1969] with an
additional discontinuity, see also Appendix)

dC

dt
= F (C) =


r(1 − C) C − x C if C > Ccrit,

−x C if C < Ccrit.

Here, C is the relative forest cover that grows with the saturating rate r if C > Ccrit
and dies with rate x (assuming r > x > 0). Ccrit is the critical forest cover threshold.
This model has two equilibria, the forest state CF = 1 − x

r and the savanna state
CS = 0. The equilibrium CF (resp. CS) exists and is stable if CF > Ccrit (resp.
Ccrit > 0). Assuming that Ccrit increases linearly with aridity A, we obtain the state
diagram in Fig. 2.12.
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Figure 2.12: State diagram of a bistable stylized forest-savanna model.
Dashed arrows show where the system state C would move from a certain
initial state at given aridity A. The green (light yellow) area is the basin
of attraction of the forest (savanna) state CF (CS). Solid circles indicate
the emergence or disappearance of an equilibrium. Figure published in
[Menck et al., 2013a].

Global warming may drive up aridity, pushing it eventually beyond the bifurca-
tion point Acrit where the forest state vanishes. Here, a bifurcation-related transition
would be enforced. Furthermore, as aridity increases, the volume of CF’s basin of
attraction shrinks, indicating that the forest state becomes less stable against per-
turbations. Indeed, due to this reduced basin stability, a large perturbation such as
strong deforestation might induce a critical transition to the savanna state long before
aridity reaches Acrit. Crucially, none of this is reflected by linear stability methods,
which only judge the forest state CF by the coefficient F ′(CF) = x − r that remains
constant as aridity goes up.

This implies [Menck et al., 2013a]: (i) There is no critical slowing down. Indeed,
linear early-warning signals can be absent in systems with strong non-linearities such
as this model and fail to announce an approaching bifurcation-related transition. (ii)
Because of their highly local perspective, linearization-based stability methods such as
the small-perturbation convergence rate do not indicate how stable CF is against non-
small perturbations. Thus they do not signal the increasing risk of a critical transition.
Note that both these effects came up in a similar way in our above discussion of the
damped driven pendulum, where slowing down did emerge but set in too late to be
an early-warning signal (see Section 2.3.3).

This suggests that the small-perturbation convergence rate, which may or may not
warn of an approaching bifurcation-related transition, is not a reliable indicator of an
attractor’s basin stability. Indeed, inferring basin stability from observational data
poses a daunting task, as time series inevitably have Lebesgue measure zero in higher
dimensions, whereas the object one is seeking information on, the basin of an attractor,
always has a positive Lebesgue measure.
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2.6 Conclusions and outlook
We have introduced the terminology of dynamical systems theory and discussed several
of the different stability concepts it provides, including local stability, global stability,
and multistability. In this context, we developed a clear definition of basin stability,
a nonlocal concept based on the volume of the basin of attraction that can be used to
quantify by a number SB ∈ [0, 1] the stability of a (weak) attractor between instability
(SB = 0) and global stability (SB = 1).

We established several important facts about basin stability. First, the numerical
costs of its estimation are relatively low and independent of the state space dimension.
Second, we found evidence that basin stability is applicable even when fractal basin
boundaries are present.

However, we observed a drawback, too: There might be no simple way to infer basin
stability from observational data. In particular, the small-perturbation convergence
rate, a possible indicator for the degree of local stability, does not reliably correlate
with basin stability.

Several questions derive from this chapter’s investigations that could be addressed in
future work:

(i) Basin stability crucially depends on the choice of the probability density ρ of
random large perturbations. In this thesis, we mostly limit ourselves to simple choices,
where ρ is uniform on a certain subset of state space and zero elsewhere. This provides
insights into the contraction or expansion behaviour of a basin inside this subset.
However, ρ could be chosen in many other ways. Particulary, in many applications
one may seek to make a realistic choice of ρ. It needs to be specified what realism
would mean in this context and how it could be achieved.

(ii) In the way we have defined basin stability here, it is applicable solely to deter-
ministic dynamical systems. Stochasticity enters only via the randomized perturba-
tions that are applied. However, one may want to study stochastic dynamical systems.
To apply basin stability, one would have to incorporate an appropriate stochastic no-
tion of basins. This needs to be explored further.

(iii) Basin stability quantifies how stable an attractor is against perturbations in
state space at fixed environmental conditions, i.e., at fixed system parameters. How-
ever, there may be parameter uncertainty or parameter perturbations. It should be
investigated how this would best be taken into account when estimating an attractor’s
basin stability.

(iv) Time series may contain more or less robust signals that indicate local stability.
As warning of approaching transitions can be crucial in complex systems particularly
from the realms of ecology or climatology, it would be worth trying to find ways how
(a decline of) basin stability could be detected from observational data.
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Synchronization refers to the observation of processes taking place together (sun-) in
time (qrìnoc). Defined like this, synchronization is a rather mundane phenomenon.
For example, a car cruising smoothly on a highway clearly has its four wheels spinning
at the same speed, thus showing synchronous behaviour. But there are also scores of
systems in which the emergence of synchronization, or order in time [Strogatz, 2012],
is intriguingly far from self-explaining. These systems have attracted considerable
scientific interest, particularly in the past decades [Pikovsky et al., 2003].

The first account of spontaneous synchronization has been credited to Christiaan
Huygens, a seventeenth century dutch astronomer, physicist and mathematician, who
was also patent-holder for the first pendulum clocks. Huygens, reportedly while ly-
ing sick in bed [Pikovsky et al., 2003], observed that two such clocks, hanging from
the same supporting beam, always adjusted their movements in a synchronous way,
regardless of how he had started them. More specifically, he found the two clocks to
always converge to a state in which both ticked at exactly the same rate while mov-
ing in opposite directions, with one pendulum assuming its left-most position when
the other assumed its right-most position. This phenomenon was later termed syn-
chronization in anti-phase. Huygens explained that it is caused by a small, hardly
perceptible motion of the supporting beam by which the two pendulums influence one
another. This motion gradually becomes smaller until, in anti-phase synchronization,
it completely ceases. Huygens’ observation was recently reproduced in a study of two
metronomes placed on a freely moving base [Pantaleone, 2002]. Interestingly, besides
anti-phase synchronization, this experimental setup turned out to be also capable of
producing in-phase synchronization.

Since Huygens’ description, synchronization has been reported in many disciplines.
A fascinating example from entomology is synchrony in populations of fireflies. Indeed
in some species, groups of male fireflies adjust their signaling rhythms with millisec-
ond precision, apparently in order to better attract the females’ attention [Moiseff
and Copeland, 2010]. In the technological sphere, synchronization is, for instance,
central to the function of power grids, the real-world systems that provide the main
motivation for this thesis. A power grid’s components have to be operated at the
same synchronous frequency (usually 50 or 60 Hz) to achieve steady power flows and
to avoid destruction of connected equipment [Machowski et al., 2008].

Synchronization also plays an important role in the bodies of mammals, and of
humans in particular. For example, a mammal’s internal biological clocks synchronize
themselves to the 24-hours period of the Earth’s rotation. Loss of synchronization
brings bodily functions into temporary disorder, as is a common experience of travelers
suffering jet lag after a long-distance flight [Pikovsky et al., 2003]. Furthermore,
the frequencies of locomotion and breathing synchronize when a mammal is running
[Bramble and Carrier, 1983]. Finally, both neural communication [Fries, 2005] and
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memory processes [Fell et al., 2001; Fell and Axmacher, 2011] rely vitally on the
synchronous firing of neurons. This means that, although synchronization is also
associated with pathological states like Parkinsonian tremor [Hammond et al., 2007],
the functional ability to support synchrony is pivotal for mammalian brains.

All these examples of spontaneous synchrony share two crucial ingredients [Pikovsky
et al., 2003]. First, the individual systems that become synchronized are all self-
sustained oscillators, that is, they produce a self-repeating process of a certain internal
frequency also when isolated from their surroundings. Plants, for example, usually
have their internal biological clocks close to the daily 24-hours period, but can be
gene-manipulated to self-sustain oscillations with periods of 20 hours to more than
30 hours [Dodd et al., 2005]. Importantly, the phase of a self-sustained oscillator is
free, meaning that its position on the internal oscillatory cycle can be adjusted by
external influences. These external influences on individual oscillators are brought
about by the second crucial ingredient to synchronization: some form of coupling. In
Huygens’ observations, coupling was mediated by the supporting beam from which
both pendulum clocks suspended.

Many studies focussed on how the properties of the individual oscillators, particu-
larly their internal frequencies, support or hinder synchronization [Kuramoto, 1975;
Strogatz and Mirollo, 1991; Strogatz, 2000]. Fascinatingly, synchronization was even
observed in systems of chaotic oscillators, despite the notorious divergence of nearby
initial conditions such systems are known for [Pecora et al., 1997; Boccaletti et al.,
2002]. Indeed, special kinds of chaotic oscillator for whose attractors phases can be
defined were found capable of reaching a state of wild, uncorrelated amplitude varia-
tions but synchronized frequencies and locked phases [Rosenblum et al., 1996]. This
phenomenon is called chaotic phase synchronization. Furthermore, sets of identical
oscillators were found capable of reaching a completely synchronous state in which the
units totally align their dynamics and follow exactly the same trajectory [Pecora and
Carroll, 1990].

In recent years, researchers have paid considerable attention to scrutinizing how the
nature of the coupling influences a system’s propensity for synchronization. Among
the above examples, the entrainment of biological clocks by the external day-and-night
cycle illustrates that coupling can be unidirectional. In Huygens’ pendulum clocks,
the coupling is bidirectional. Furthermore, in large populations of oscillators such as
neurons in the brain or generators in a power grid, the coupling is best described
as a highly structured, possibly time-dependent network of interactions between the
individual units. Aided by the theory of complex networks [Watts and Strogatz, 1998;
Strogatz, 2001; Albert and Barabási, 2002; Boccaletti et al., 2006; Newman, 2003,
2010], many studies have therefore elaborated on how the topology of this network
affects a system’s ability to synchronize [Arenas et al., 2008]. We will also pursue
investigations on this topic here.

Of particular interest to what follows below is the work on master stability functions
by Pecora and Carroll [1998] who were able to establish a rigorous relation between
the local stability of a network’s completely synchronous state and the network’s topo-
logical properties. Based on this result, a host of studies investigated what kinds of
networks are the most suitable for synchronization [Arenas et al., 2008]. Notably,
Hong et al. [2004] found that synchronizability is optimal in networks with so-called
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random topologies. This is in sharp contrast to the observation that many synchro-
nizing real-world systems, such as neural networks or power grids, have small-world
topologies that are comparatively regular [Watts and Strogatz, 1998], and has left
networks research with a long standing puzzle.

It is important to note that the theoretical insights by Pecora and Carroll and Hong
et al. are based on local stability and hence only address the synchronous state’s re-
silience against small perturbations. Seeking to complement the theory, we will here
attempt to identify networks that are optimal w.r.t. basin stability, the nonlinear sta-
bility concept defined in Section 2.3.2 that measures the synchronous state’s stability
against large perturbations. Interestingly, we will discover that basin stability improves
as topological regularity increases. This provokes to conjecture a solution to the said
puzzle: The evolution of real-world synchronizing networks has been shaped by two
counteracting processes: First, by the optimization w.r.t. local stability that promoted
topological randomness; and, second, by the simultaneous optimization w.r.t. basin
stability that favoured topological regularity. This contest ended in a topological
tradeoff: small-worldness.

Contents
We will start in Section 3.1 by studying an example network of chaotic oscillators that
can be tuned to achieve complete synchronization and that we will revisit throughout
this chapter. After this, we will introduce in Section 3.2 several terms and concepts
from the theory of complex networks that are needed for what follows. In Section 3.3,
we will review the important studies by Pecora and Carroll [1998] and Hong et al.
[2004], and elaborate on the puzzle they pose. In Section 3.4, we will explore how
basin stability complements the local-stability-based approach of these studies and
discuss the conjectured solution to the puzzle. Section 3.5 provides conclusions and
outlook. Finally, Section 3.6 contains some additional material that supports the main
findings but, if included earlier, would have made their presentation rather lengthy.

Some of the findings presented here have been published in [Menck et al., 2013a].
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3 Synchronization on complex networks

3.1 A motivating example
As this chapter’s motivating example, consider the network of 100 x-coupled Rössler
oscillators [Rössler, 1976] sketched in Fig. 3.1a. In the figure, each lightblue circle
represents one of the oscillators, and a line drawn between two circles indicates that
the corresponding oscillators exert a direct influence on one another. The dynamics
of unit i, i = 1, . . . , N , are given by

ẋi = −yi − zi + K
N

j=1
Aij(xj − xi) (3.1)

ẏi = xi + ayi (3.2)
żi = b + zi(xi − c) (3.3)

where xi, yi, zi are the state variables of unit i and the matrix A captures if there is
a direct influence between units i and j (in which case Aij = 1) or not (Aij = 0).
The interaction strength, assumed uniform throughout the network, is given by the
constant K ≥ 0. Finally, we choose the parameters a = b = 0.2 and c = 7.0, which,
in the case of no coupling (K = 0), produce the (stable) chaotic Rössler attractor R
depicted in Fig. 3.1b in each individual unit’s 3-dimensional state space.

Can K be tuned so that all units follow the same trajectory on the Rössler attractor
synchronously? In principle, this completely synchronous state can be established
artificially for any value of K: Just initiate all units to the same state on the attractor,
(xi, yi, zi)(0) := (x, y, z) ∈ R for all i = 1, . . . , N ; then they will remain on the same
trajectory on this attractor indefinitely, as the coupling terms in Eq. (3.1) have no
chance of becoming non-zero. However, a minor perturbation might immediately
destroy the synchronous state. So, for which values of K is it asymptotically stable?

To answer this question, let us start with some trial and error. We set K = 0.15
and initiate the network to a state on the Rössler attractor as just described. Then,
after some time, we apply a random perturbation to all oscillators.1 The outcome is
shown in Fig. 3.1c: The perturbation dampens out rapidly, and the whole network
converges back to the synchronous state, which hence appears stable. Now we set
K = 1.50 and repeat the experiment. Intuition might suggest that a larger K-value
can only benefit the synchronous state’s stability. But this is not so! As shown in
Fig. 3.1d, the perturbation does not damp out, but instead the units’ state variables
diverge.2 The synchronous state is not stable at this value of K.

In a groundbreaking study, Pecora and Carroll [1998] uncovered that the values of K
for which the synchronous state is stable are completely determined by the network’s
wiring topology. We will examine their reasoning in Section 3.3.1.

1For each unit, the perturbation is drawn independently and applied to the y-coordinate.
2For reasons of visualizability, the perturbation applied in Fig. 3.1d is rather large. However, the

same outcome, divergence, is also observed at K = 1.5 when the synchronous state is affected by
small perturbations.
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Figure 3.1: Synchronization of a network of chaotic Rössler oscillators. a,
coupling diagram of a network of 100 Rössler units (an edge list of the
network can be found in Section 3.6.5). b, Rössler attractor for a = b =
0.2, c = 7.0. c-d, time series of 20 units’ y-coordinates before and after
a random perturbation is applied. c, coupling K = 0.15. d, coupling
K = 1.5.
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3 Synchronization on complex networks

3.2 Network terminology

Before going into the details of how a dynamical network’s ability to synchronize is
influenced by the wiring topology, we first have to introduce some descriptive network
language. For that purpose, let us employ the standard nomenclature of complex
network theory [Watts and Strogatz, 1998; Strogatz, 2001; Albert and Barabási, 2002;
Boccaletti et al., 2006; Newman, 2003, 2010], a set of concepts and tools that has
been developed and put to fruitful use by a number of disciplines, including the social
sciences (with applications such as friendship networks [Amaral et al., 2000] or sci-
entific citation networks [Price, 1965]), economics (e.g., airline [Guimera et al., 2005]
and cargo ship networks [Kaluza et al., 2010]), infrastructure engineering (e.g., the
internet [Faloutsos et al., 1999], power grids [Crucitti et al., 2004b]), climate science
(e.g., correlation networks [Donges et al., 2009]), and biology (e.g., neural networks
[Sporns and Zwi, 2004], gene regulatory circuits [Huang and Ingber, 2007], food webs
[Gross et al., 2009]).

3.2.1 Nodes, edges and the adjacency matrix

A network consists of nodes and edges. In a social-sciences context, for example,
nodes often represent individual persons, and edges express the relationships between
them. Similarly, in the internet, nodes are computers or routers, and edges represent
physical connections. Edges can be undirected: When nodes A and B in a computer
network are linked by a physical connection, packages can usually travel from A to B
or from B to A. Conversely, edges can be directed: In a business network, individual
A might be related to individual B by being a customer of them, but this does not
imply that B is also a customer of A. Furthermore, edges can be weighted: If, in an
airport network, the presence of an edge between nodes A and B implies that there
is a direct connection from A to B, such an edge could carry additional information
that indicates how many passengers could maximally embark on flights across this
connection per day. Such information attributed to an edge is commonly called its
weight. Unweighted edges do not carry information beyond their existence.

A network of N nodes can conveniently be represented in terms of the adjacency matrix
A, a matrix of size N × N that incorporates information on all edges in the network.
To set it up, for every combination (i, j), where i, j = 1, . . . , N , define Aij = wij if
there is an edge from node i to node j with weight wij > 0 and Aij = 0 otherwise.
By this definition, the adjacency matrix of an undirected network (i.e., a network that
contains only undirected edges) is symmetric. In contrast, the adjacency matrix of a
directed network may be non-symmetric. In unweighted networks, every edge carries
the same weight 1 and is represented by Aij = 1.

3.2.2 Shortest paths, connectedness and betweenness

Paths have been studied extensively in the context of social networks. In an acquain-
tance network, for example, there is a path of length r between two individuals A and
C if A is acquainted with another individual B1, B1 is acquainted with B2, . . ., Br−2
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3.2 Network terminology

is acquainted with Br−1, and Br−1, finally, is acquainted with the target C. Similarly,
in a more general network, a path of length r between two nodes i and j is defined as
a set of hops along r adjacent edges that lead from i to j, that is, an ordered set of
pairs of nodes

(i = k0, k1), (k1, k2), . . . , (kr−2, kr−1), (kr−1, kr = j) with Aks−1,ks > 0 for s = 1, . . . , r.

A path between nodes i and j is called a shortest path if, along it, node j can be
reached from node i in a minimum number ℓij of hops, where ℓij is called the shortest-
path length of nodes i and j. If there is no path from i to j in a given network, the
convention is to set ℓij = ∞. The average shortest-path length of a network is defined
as

L = 1
N(N − 1)


i,j,ℓij ̸=∞

ℓij . (3.4)

In the network shown in Fig. 3.2, the dashed arrows show a path of length 5 from
node 4 to node 1. The shortest path has only length 1.

Interestingly, shortest paths really are rather short in acquaintance networks. Indeed,
in a famous experiment by Milgram and co-workers in the 1960s [Milgram, 1967;
Travers and Milgram, 1969], it turned out that randomly chosen individuals from one
US city were able to pass a message to a target individual in another US city along
acquaintance paths of average length 6! This has been referred to as the small-world
effect that was also found in a recent study of the social network Facebook [Ugander
et al., 2011].

Figure 3.2: Example network to illustrate network definitions. The network
consists of 15 nodes which can be grouped into two connected sets A and
B (indicated by the dashed circles). Arrows indicate paths from node 4 to
node 1.
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3 Synchronization on complex networks

A connected set of a network is a set C of nodes whose pairwise shortest-path lengths
are all finite but whose shortest-path lengths to nodes outside the set are all infinite.3
The example network in Fig. 3.2 has two connected sets, A and B. A network that
consists just of a single connected set, that is, a network in which there is a path
from every node i to every other node j, is called a (fully) connected network. The
mentioned study on Facebook found that, in 2011, more than 99.9% of the social
network’s N = 721, 000, 000 active users belonged to the largest connected set (and
about 2,000, or 0,0003 %, to the second-largest) [Ugander et al., 2011]. Hence one
might say that Facebook is almost fully connected.

Individual nodes may play different roles in a network. A characteristic that tries to
quantify how central node i is to a network is shortest-path betweenness bi, defined as
the number of shortest paths between pairs of nodes in the network that run through
node i. Clearly, this measure seems to be relevant for communication networks such
as the internet in which, ideally, messages travel along shortest paths. Indeed, the
efficiency of communication networks may be seriously diminished by attacks that
specifically disable nodes with large bi [Holme et al., 2002]. A formal definition of
shortest-path betweenness bi of node i reads

bi =


j ̸=i,k ̸=i,k>j

M i
jk

Mjk
, (3.5)

where Mjk is the number of shortest paths from node j to node k and M i
jk is the

number of shortest paths from node j to node k that go through node i. If there is
no path between a pair (j, k) the associated ratio is, by convention, set to zero in the
summation.

3.2.3 Degree and clustering
Another important nodal characteristic is the degree of node i, defined as the number
of edges that go from node i to other nodes,

di =
N

j=1
Aij . (3.6)

In a directed network, this is called the out-degree of node i, and its in-degree is defined
as
N

j=1 Aji. In a weighted network, di as defined here is called intensity. Nodes with
large degree, commonly referred to as hubs, have a particular functional relevance
in many networks. For example, in air transportation networks hubs include the
large airports at which domestic and international routes of multiple airlines intersect
[Guimera et al., 2005].

3This definition is somewhat imprecise for directed networks. In such a network, we say that two
nodes i and j belong to the same connected set if dij ̸= ∞ or dji ̸= ∞.
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3.2 Network terminology

The clustering coefficient Ci of node i, also called transitivity, captures how many
pairs among the nodes to which node i is connected are also connected, and can be
interpreted as a measure of local structure. In a social network, it expresses how many
friends of a person’s friends are also friends. The clustering coefficient is defined as

Ci = 1
di(di − 1)

N
j=1

Aij ̸=0

N
k=1

Aik ̸=0

Ajk. (3.7)

The average of the nodal clustering coefficients, C = 1/N


i Ci, is called the network’s
clustering coefficient.

3.2.4 The Laplacian matrix

An alternative matrix representation of an N -node network is the N × N Laplacian
matrix L. Its elements are defined as

Lij = diδij − Aij , (3.8)

where δij = 1 if i = j and δij = 0 otherwise. We will see below that the eigen-
values λ1, . . . , λN of L can be very important to dynamical processes taking place
on a network. Therefore we need to acknowledge two well-known facts about these
eigenvalues.

The first fact is that the number of zero eigenvalues of a Laplacian matrix is equal
to the number κ of connected sets of the corresponding network (provided all weights
of existing edges are positive). The second fact is that, for a connected undirected
network, the Laplacian’s eigenvalues λ2 to λN are all positive real numbers. Hence
one can sort the eigenvalues, and write

0 = λ1 < λ2 ≤ . . . ≤ λN .

The first fact can be proven as follows [Newman, 2010]. Denote the connected sets of
the network under investigation by C1, . . . , Cκ, and multiply L from both sides by an
N -dimensional vector x to obtain

P = x∗Lx =


i


j

Aij(|xi|2 − x∗
i xj) = 1

2


i


j

Aij |xi − xj |2, (3.9)

where ∗ denotes the complex conjugate. Now, for each connected set construct an
eigenvector of L with eigenvalue zero. This is not too hard: For connected set Cl,
l = 1, . . . , κ, and for i = 1, . . . , N , set xi = 1 if node i ∈ Cl and xi = 0 otherwise.
As the connected sets represent a disjunct decomposition of {1, . . . , N}, the set of
eigenvectors {x1, . . . , xκ} thus created is linearly independent. Hence the number of
zero eigenvalues is at least κ.

Second, assume that x is an eigenvector of L with eigenvalue zero. Then the prod-
uct P in Eq. (3.9) vanishes. However, as the terms summed over are all non-negative,
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3 Synchronization on complex networks

P can only be zero if xi = xj for every pair i, j of elements for which Aij ̸= 0. But
this means that, for any two nodes i and j that are in the same connected set Cl of
the network, xi = xj = ξl, where ξl is a set-specific constant. Hence x is of the form
x =

κ
l=1 ξlxl, where {x1, . . . , xκ} are the eigenvectors contructed above. This means

that the number of zero eigenvalues is exactly κ.

To prove the second fact [Newman, 2010], note that a connected network has exactly
one connected set and hence exactly one zero eigenvalue. Denote this eigenvalue by
λ1. For any eigenvector x of L with eigenvalue λ, it follows from Eq. (3.9) that

xtLx = λxtx = λ ||x|| = λ ≥ 0,

where we assumed without loss of generality that ||x|| = 1. As λ1 is the only zero
eigenvalue, it follows that all the other eigenvalues are > 0. Hence we can sort them
in ascending order and write 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN .

3.3 Local stability and the puzzle it poses
3.3.1 Master stability function formalism
Thus equipped with network terminology, we can turn to the groundbreaking study
of Pecora and Carroll on synchronization in dynamical networks [Pecora and Carroll,
1998]. Consider a system of N identical oscillators which are coupled through a
connected network. Its dynamics are governed by the equations

ṙi = F(ri) + K


j

Aij [H(rj) − H(ri)] = F(ri) − K


j

LijH(rj), (3.10)

where ri = (r1
i , . . . , rm

i )t is the m-dimensional state vector describing the processes at
node i. A is the N × N adjacency matrix and L is the Laplacian matrix (see Section
3.2). Finally, K denotes the overall coupling constant and H(r) is the coupling func-
tion prescribing through which of their m coordinates the connected nodes interact.
F determines the evolution of each individual oscillator in the case of no coupling
(K = 0). Because L has zero row sum by definition (cf. Eq. (3.8)), there always exists
a synchronous state Ms = {r1 = r2 = . . . = rN = s(t)|t ∈ R} in the Nm-dimensional
state space in which all individual oscillators follow the same trajectory s(t) on an
attractor of the m-dimensional uncoupled system ṙ = F(r). Technically, Ms is a
compact invariant set of states rather than a state (cf. Section 2.1). However, for
notational simplicity, we keep on calling it the synchronous state.

Is Ms stable? Based on local-stability methods (cf. Section 2.2), Pecora and Carroll
showed that the answer to this question breaks up into two parts: First, F, H define
a master stability function MSFF,H that is independent of the network. Second, K
and the network define a set of numbers at which MSFF,H has to be evaluated to find
out whether Ms is stable. Indeed, Ms is stable if K and the eigenvalues λ1, . . . , λN

of L satisfy MSFF,H(Kλi) < 0 for all i = 2, . . . , N .
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3.3 Local stability and the puzzle it poses

To understand this, we follow the expositions in Pecora and Carroll [1998] and Arenas
et al. [2008] and, employing a small perturbation analysis around Ms, write ri =
s(t) + δri in order to expand F(ri) ≈ F(s) + DF(s)δri and H(ri) ≈ H(s) + DH(s)δri

in Taylor series, where DF and DH are the Jacobian matrices of F and H respectively.
This gives

δṙi = DF(s)δri − KDH(s)


j

Lijδrj . (3.11)

These equations can be used to calculate the Lyapunov exponents of Ms (cf. Section
2.2.2). If the exponents corresponding to perturbations transversal to Ms are negative,
then Ms is stable.

Pecora and Carroll found that this linearization-based stability assessment can be
significantly simplified by exploiting the block form of Eqs. (3.11), which becomes
apparent in direct-product notation

δṙ = [1N ⊗ DF(s) − K L ⊗ DH(s)] · δr, (3.12)

where 1N is the N -dimensional identity matrix and δr is shorthand for the Nm-dimen-
sional state vector (δr1, . . . , δrN )t. This equation can be diagonalized by projecting
δr onto the eigenvectors of L,

δr =
N

i=1
ei ⊗ δri =

N
i=1

(
N

j=1
αijvj) ⊗ δri =

N
j=1

vj ⊗ (
N

i=1
αijδri) =:

N
j=1

vj ⊗ δwj ,

where ei has elements eij = δij and denotes the N -dimensional unit vector pointing
into direction i, i = 1, . . . , N , and vi is the eigenvector corresponding to the ith
eigenvalue λi of L, i = 1, . . . , N . Then, in contrast to the single coupled equation
(3.12), one is left with N decoupled equations

δẇi = [DF(s) − KλiDH] δwi, i = 1, . . . , N, (3.13)

into which the network topology enters only via the eigenvalues of L. In a connected
network, L always has a single vanishing eigenvalue λ1 = 0 with eigenvector v1 =
(1, 1, . . . , 1) (see Section 3.2.4). As this mode corresponds to perturbations in parallel
to the synchronous state Ms, it is not relevant for the assessment of its local stability.
In contrast, the eigenmodes belonging to λ2, . . . , λN are transversal to Ms; if this state
is to be asymptotically stable, then all of these modes must be damped out, which
means that the corresponding maximum Lyapunov exponents have to be negative (cf.
Section 2.2.2).

Pecora and Carroll noted that these N − 1 Lyapunov exponents can be determined
from a single function that is independent of the network. Observing that Eqs. (3.13)
are all of the same form

δẇ = [DF(s) − αDH] δw (3.14)

which only depends on F and H, they defined the master stability function MSFF,H
as the function that assigns to the number α the maximum Lyapunov exponent of the
m-dimensional dynamical system in (3.14). This reduces the local-stability assessment
of the synchronous state Ms of the dynamical network (3.10) to just a few evaluations
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3 Synchronization on complex networks

of the network-independent function MSFF,H. More specifically, Ms is stable if

MSFF,H(Kλi) < 0 for i = 2, . . . , N. (3.15)

For general directed or asymmetrically weighted networks, L may be non-symmetric
so that the eigenvalues λi are complex numbers, and MSFF,H is a function defined
on the complex plane. This case was discussed by Pecora and Carroll [1998]. In
the following, we will limit ourselves to the less general case that has received far
more attention [Arenas et al., 2008] and consider only connected, undirected networks
whose edges carry symmetric or homogeneous weights. For these, L is symmetric, all
its eigenvalues are non-zero real numbers that can be sorted in an ascending fashion
(cf. Section 3.2.4),

0 = λ1 < λ2 ≤ . . . ≤ λN ,

and MSFF,H is an easily plottable function on the real line.
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Figure 3.3: Master stability function of x-coupled Rössler oscillators. Param-
eters of the Rössler oscillators were chosen to be a = b = 0.2 and c = 7.0.
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3.3.2 Revisiting the motivating example

Recall the motivating example network of x-coupled Rössler oscillators from Section
3.1, in which we observed the synchronous state to be stable for K = 0.15 but to
be unstable for K = 1.50. As Eqs. (3.1)–(3.3) are of the form (3.10), we can now
employ the master stability function formalism to understand this outcome. To cast
Eqs. (3.1)–(3.3) into the form of (3.10), we write

F(r) =

 −y − z
x + ay

b + z(x − c)

 and H(r) =

 x
0
0

 ,

where r = (x, y, z)t, a = b = 0.2 and c = 7.0. If the network is in the synchronous
state Ms, all nodes follow the same trajectory on the chaotic Rössler attractor (cf.
Fig. 3.1b,c). To determine the values of K for which Ms is stable, we note that

DF(r) =

 0 −1 −1
1 a 0
z 0 (x − c)

 and DH(r) =

 1 0 0
0 0 0
0 0 0


and then estimate MSFF,H(α) by determining the maximum Lyapunov exponent of
(3.14) as a function of α. The result is shown in Fig. 3.3. MSFF,H(α) starts at
α = 0 with a positive value, reflecting the fact that the Rössler attractor is chaotic
and therefore has a positive maximum Lyapunov exponent (cf. Section 2.2.2). As α
is increased, MSFF,H crosses zero at α1 ≈ 0.1232, remains negative until α2 ≈ 4.663
and then stays above zero indefinitely [Pecora, 1998].

We can now assess the local stability of the synchronous state Ms by comput-
ing the eigenvalues λ2, . . . , λN of the network’s Laplacian L and checking whether
MSFF,H(Kλi) < 0 for all of them (cf. Eq. (3.15)). As MSFF,H is negative only in the
interval (α1, α2), it actually suffices to check whether

α1 < Kλ2 ≤ . . . ≤ KλN < α2.

The two extremal non-zero eigenvalues of the example network read λ2 = 1.236 and
λN = 13.871. This means: The synchronous state is indeed unstable for K = 1.50
(as observed in Fig. 3.1d), as then KλN = 20.807 > α2. In contrast, the synchronous
state is stable for K = 0.15 (as seen in Fig.3.1c), because then both Kλ2 = 0.185 and
KλN = 2.081 are within the interval (α1, α2).

3.3.3 Synchronizability

Master stability functions can display a host of different shapes [Huang et al., 2009].
Indeed, for some choices of F and H, the function MSFF,H(α) is positive for all α
and no network will ever spontaneously synchronize. For other choices, MSFF,H(α)
crosses the zero line several times. Particularly interesting are choices of F and H for
which MSFF,H(α) falls below zero at α1 and then remains negative. In this case, the
stability of a network’s synchronous state Ms depends only on Kλ2: indeed, Ms is
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stable if Kλ2 > α1. As networks with a larger λ2 are able to synchronize at smaller
values of K, they are regarded as more synchronizable w.r.t. such so-called unbounded
master stability functions. The eigenvalue λ2, which graph theory calls algebraic
connectivity [Fiedler, 1973; de Abreu, 2007], is also related to the convergence speed
towards synchronization [Almendral and Díaz-Guilera, 2007].

The other particularly interesting shape of master stability functions that has re-
ceived a lot of attention and that we will concentrate on here is illustrated in Fig.
3.3. In this bounded case, MSFF,H(α) is negative only in an interval α ∈ (α1, α2).
Therefore, the synchronous state Ms is stable in every network for which

α1 < Kλ2 ≤ . . . ≤ KλN < α2. (3.16)

The final term, KλN < α2, implies that – somewhat counterintuitively – an increase in
the coupling strength K can be detrimental for stability: Whereas Ms may be stable
for intermediate values of K above α1/λ2, it becomes unstable when the coupling is
driven beyond α2/λN . This is exactly what we witnessed in our example (cf. Section
3.1).

Condition (3.16) is equivalent to demanding that

R := λN

λ2
<

α2
α1

, (3.17)

provided K is chosen from the stability interval

Is = (α1/λ2, α2/λN ). (3.18)

As inequality (3.17) can more easily be met by networks for which the eigenratio R
is small, such networks are regarded as more synchronizable w.r.t. bounded master
stability functions. Hence R is called the synchronizability of a network.

3.3.4 The puzzle
In the past decade, a host of studies have investigated the relation between network
topology and synchronizabilty R. Examples include the papers Hong et al. [2004];
Barahona and Pecora [2002]; Nishikawa et al. [2003]; Zhao et al. [2006]; Zhou et al.
[2006]; Zhou and Kurths [2006]. Notably, Barahona and Pecora [2002] found that syn-
chronizability R improves markedly as random edges are added to an initially regular
lattice. It was argued that this improvement in R could be caused by two parallel
topological effects of random link addition: first, by the plain increase in the number
of edges; and, second, by the increase in the number of short cuts. Differentiating
between the two, Hong et al. [2004] performed a similar study in a slightly differ-
ent setting. They employed the Watts-Strogatz graph generating model that induces
short cuts as well, but does so at a fixed number of edges [Watts and Strogatz, 1998].
The results of Hong et al. are highly important to what follows. So let us dive into
the details here.
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The Watts-Strogatz algorithm creates a network by intially setting up a regular lattice
of N nodes of which each one is connected to its k nearest neighbours. Such a lattice
is shown in Fig. 3.4a. Then each edge is rewired independently with probability p by
re-drawing one of its end points uniformly at random.4 For large p, this yields heavily
rewired networks similar to completely random graphs (Fig. 3.4c). For small non-zero
p, in contrast, the resulting networks still basically look like the initial regular lattice,
differing only by a few rewiring-induced short cuts (Fig. 3.4b).

Figure 3.4: Watts-Strogatz graph generation model. Example networks with
N = 16 and k = 4. a, initial 1-dimensional configuration: a regular ring
lattice in which the degree di = k for every node i = 1, . . . , N . This is
also the outcome of the model for rewiring probability p = 0. b,c, typical
outcomes for rewiring probability p = 0.2 and p = 0.9.

It turns out that a few such short cuts already have a strong effect on the global
network structure [Watts and Strogatz, 1998]: In comparison to the initial lattice,
they drastically lower the average shortest-path length L. Indeed, as the number
of rewiring-induced short cuts increases, L quickly reaches the very low value it is
known to have in random graphs. In contrast, the effect of a few short cuts on the
local network structure is comparatively minute. This is illustrated by the network in
Fig. 3.4b, whose clustering coefficient C is still about as large as that of the initial
lattice and hence far larger than that of the random graph in Fig. 3.4c.

Watts and Strogatz noted that, very much like the networks produced from their
model at small non-zero p, many important real-world networks also reveal a small
average shortest-path length combined with a high clustering coefficient. This class
of networks has since been called small-world networks. Explicitly, one says that a
network has the small-world property if its average shortest-path length L is close
to the value LR in a random graph of the same size and if its average clustering
coefficient C is much larger than the value CR in such a random graph. That is
[Watts and Strogatz, 1998]:

L ≈ LR and C ≫ CR defines small-worldness. (3.19)

4Self-loops and multi-edges are typically not allowed.
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3 Synchronization on complex networks

From the Watts-Strogatz model’s perspective, small-world networks reside in the mid-
dle ground between regular lattices and random graphs.

As mentioned above, Hong et al. [2004] applied the Watts-Strogatz model in their
search for optimally synchronizable networks. They found that, as the model is tuned
from regular lattices (model parameter p = 0) to random graphs (p = 1), synchro-
nizability R shows a strong, monotonical improvement (reproduced in Fig. 3.5a).
Consequently, according to linearization-based synchronizability, real-world networks
whose function relies on synchronization should ideally look like random graphs. But
neural networks and power grids display small-world topologies that, from the Watts-
Strogatz model’s perspective, are far more regular than random graphs [Watts and
Strogatz, 1998; Sporns and Zwi, 2004; Wang et al., 2010]. Indeed, when building well
functioning synchronizable networks, nature and civilization appear to shun the pre-
dicted randomness (for details, see Section 3.4.2). This discrepancy between theory
and observation has left networks research with a long-standing puzzle.
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Figure 3.5: Synchronizability and basin stability in Watts-Strogatz networks
of chaotic oscillators. a, expected synchronizability ⟨R⟩ versus the
Watts-Strogatz model’s parameter p. The scale of the y-axis was reversed
to indicate improvement upon increase in p. b, expected basin stability
⟨S̄B⟩ versus p. The grey shade indicates ± one standard deviation. The
dashed line shows an exponential fitted to the ensemble results for p ≥
0.15. Solid lines are guides to the eye. The plots shown were obtained
for N = 100 oscillators of Rössler type, each having on average k = 8
neighbours. Choices of larger N and different k produce results that are
qualitatively the same, see Fig. 3.7. Figure published in [Menck et al.,
2013a].
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3.4 The nonlocal stability perspective
3.4.1 Basin stability in Rössler networks
In an attempt to complement the theory, let us apply basin stability to ensembles of
Watts-Strogatz networks at whose nodes we place Rössler oscillators. The dynamics
at node i obey

ẋi = −yi − zi − K
N

i=1
Lijxj (3.20)

ẏi = xi + ayi (3.21)
żi = b + zi(xi − c) (3.22)

with coupling constant K, Laplacian matrix L, a = b = 0.2, and c = 7.0. From the
master stability function formalism (Section 3.3.1), we know that every such network
has a completely synchronous state Ms in which all nodes follow the same trajectory
on the Rössler attractor (Fig. 3.1b). A network’s synchronous state is stable if its syn-
chronizability R < α2/α1 = 37.88 and K ∈ Is = (α1/λ2, α2/λN ), where α1 = 0.1232
and α2 = 4.663. However, the level of R does not quantify how stable the synchronous
state is against large perturbations. To address this yet unasked question, we will
here consider the synchronous state’s basin stability SB [Menck et al., 2013a].

Let B denote the basin of attraction of a network’s synchronous state and define its
basin stability as

SB ∩Q := Vol(B ∩ Q)/Vol(Q) ∈ [0, 1] (3.23)

where Q is a subset of state space with finite volume. This corresponds to the definition
of basin stability in Section 2.3.2 with ρ chosen as a uniform distribution on Q and
zero elsewhere; so we can use the numerical procedure described in Section 2.4.1 to
estimate SB ∩Q. We choose T = 500, so that the estimate carries a standard error
e < 0.023, and employ

Q := qN with q = [−15, 15] × [−15, 15] × [−5, 35]. (3.24)

Note that the Rössler attractor (Fig. 3.1b) is included in q. It turns out that other
choices of Q – for instance ([−8, 8] × [−8, 8] × [−8, 8])N – would not produce a qual-
itative difference in what we will find out below (cf. Section 3.6.1). Therefore we
henceforth suppress the subscript Q when stating SB.

For each of several different values of the Watts-Strogatz model parameter p, we now
generate an ensemble of 100 networks. Then, for each ensemble network we perform an
estimation of basin stability SB for ten equally spaced values of the coupling constant
K inside the network-specific stability interval Is (cf. Eq. (3.18)) and compute their
mean S̄B = meanK∈IsSB(K). For instance, our example network (see Sections 3.1
and 3.3.2), which is actually a member of our ensembles, has the stability interval
Is = (0.010, 0.336). At ten equally spaced K-values in the interior of Is one gets

K 0.121 0.143 0.164 0.185 0.207 0.229 0.250 0.272 0.293 0.315
SB(K) 0.203 0.266 0.323 0.388 0.452 0.538 0.600 0.662 0.684 0.747
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These give the average basin stability S̄B ≈ 0.49. We compute S̄B like this for every
ensemble network and finally average S̄B over the 100 networks belonging to each
p-value to obtain expected basin stability ⟨S̄B⟩ as a function of p.

The main finding is depicted in Fig. 3.5b (see also Fig. 3.7): In sharp contrast to
expected synchronizability ⟨R⟩, expected basin stability ⟨S̄B⟩ declines exponentially
fast as networks become more random.5 Therefore, the synchronous state is much
more stable in networks that are more regular.

Why is this? Fig. 3.6a displays that the expected basin stability ⟨SB(K)⟩ of a
network at any fixed coupling K increases strongly as K grows and that it hardly
depends on p. Hence a network’s mean basin stability S̄B should be determined
primarily by the location of its stability interval Is. Indeed, for increasing p, the
expected stability interval ⟨Is⟩ = (α1/⟨λ2⟩, α2/⟨λN ⟩) of a network simultaneously
broadens and shifts to the left (see Fig. 3.6b). This qualitatively explains the rapidly
decreasing behaviour of expected mean basin stability shown in Fig. 3.5b. It also
implies that the mean basin stability S̄B of a Rössler network mainly depends on the
absolute values of λ2 and λN (which determine Is), as opposed to their ratio which is
central to synchronizability studies (cf. Eq. (3.17)).
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Figure 3.6: Explanatory characteristics. a, expected basin stability ⟨SB(K)⟩ at
coupling K, measured in the interior of the expected stability interval for
p = 0.2, 0.5, 0.8. Solid lines are guides to the eye. b, expected stability
interval ⟨Is⟩ at rewiring probability p. The red solid line represents its left
bound α1/⟨λ2⟩, the green dashed line its right bound α2/⟨λN ⟩.

5 The results obtained are not qualitatively different for networks produced by a two-dimensional
Watts-Strogatz model and another model that varies the link length distribution [Li et al., 2010].
Details on this are provided in Section 3.5.
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Figure 3.7: Basin stability in Rössler networks. Expected basin stability ⟨S̄B⟩
versus p for Watts-Strogatz networks with different k and a: N = 100, b:
N=200. Solid lines are guides to the eye.

3.4.2 The puzzle – solved!?
As discussed above, the local-stability-based theory of Hong et al. [2004] suggests
that networks with random topologies should be optimal for supporting synchronous
operation. In contrast, synchronizing networks from the real world were reported to
display small-world topologies that, from the Watts-Strogatz model’s perspective, are
comparatively regular. We will see at the end of this subsection that our results on
basin stability may provide a solution to this puzzle. Yet for concreteness, let us
first take a close look at the network properties of several synchronizing real-world
networks, including power grids and neural networks (see Table 3.1).

Recall from Eq. (3.19) that a network is said to have a small-world topology if C ≫ CR
and L ≈ LR, where CR and LR are the expected values of C and L in a random network
with the same numbers N, E of nodes and edges [Watts and Strogatz, 1998]. Hence in
order to assess the small-worldness of our networks, we have to estimate CR and LR.
To do that, we apply the Watts-Strogatz algorithm with rewiring probability p = 1
to regular ring lattices of a given N and E and average over many realizations. The
initial regular ring lattices are created in two steps. First, connect every node to its k
nearest neighbours, where k is the largest even integer smaller than βE/N with β = 2
(β = 1) for undirected (directed) networks. Second, add the remaining E − kN/β
edges randomly between nodes that are k/2 + 1 steps apart on the ring [Sporns and
Zwi, 2004].

The values in Table 3.1 show that it is hard to judge just from the comparison of C
to CR and of L to LR whether a network is small-world or not. Indeed, whereas for the
Macaque Visual Cortex one has C/CR ≈ 1.42 and L/LR ≈ 1.04, the UK Power Grid
gives C/CR ≈ 11.76 and L/LR ≈ 1.61. Does any of this count as small-worldness?
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# Network N E C L CR LR
1 Macaque Visual Cortex 30 311 0.53 1.73 0.36 1.66
2 Macaque Cortex 71 746 0.46 2.38 0.15 2.03
3 Cat Cortex 52 820 0.55 1.81 0.31 1.70
4 C. Elegans Neural Network 297 2345 0.18 3.99 0.027 2.98
5 Power Grid of Western US 4941 6594 0.08 18.99 0.00035 10.19
6 Power Grid of Central Europe 4335 5551 0.07 28.73 0.00020 10.73
7 Power Grid of Northern Europe 524 640 0.04 14.49 0.0030 8.38
8 Power Grid of the UK 393 484 0.04 12.54 0.0034 7.78

Table 3.1: Topological properties of synchronizing real-world networks. N
specifies the number of nodes and E the number of edges in the network.
Furthermore, L is the average shortest-path length and C the clustering
coefficient. These two quantities have been widely used to characterize
small-worldness [Watts and Strogatz, 1998]. XR represent average values
of X computed in random networks of the same N, E, where X = L, C.
For networks 1 to 3, the values of L and C were taken from [Sporns and
Zwi, 2004].

In the Watts-Strogatz model, C and L assume their lowest values (CR, LR) in ran-
dom graphs (p = 1) and their largest values (CL, LL) in regular lattices (p = 0). So
Sporns and Zwi [2004] suggested to also take into account CL and LL when assessing
small-worldness. They defined

ζC = C − CR
CL − CR

and ζL = L − LR
LL − LR

(3.25)

and then referred to a network as small-world if ζC is high and ζL is low. Following
their reasoning, we also obtain CL and LL as well as ζC and ζL for our networks.
However, as can be seen in Table 3.2, the network size parameters N and E appear to
influence how big ζC should be to count as high, and how small ζL should be to count
low. To get rid of this network size effect, let us introduce [Menck et al., 2013a]

ξX = − log(X/XL)
log(XL/XR) = 1 − log(X/XR)

log(XL/XR) (3.26)

with X = C or L. ξX counts how many of orders of magnitude X is away from XL
in relation to the number of orders of magnitude between XL and XR.6 Lattices have
ξC = ξL = 0, whereas random graphs have ξC = ξL = 1. From the above, small-world
networks should display ξC not too far from 0 and ξL not too far from 1, and indeed
the real-world networks studied here do so (see Table 3.2).

6Note that log C can be interpreted as a measure of dimensionality [Donner et al., 2011].
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We can now use ξC and ξL to topologically compare the real-world networks listed
in Tables 3.1 and 3.2 to our ensemble findings on basin stability and synchronizabil-
ity [Menck et al., 2013a]. This is done in Fig. 3.8. The figure summarizes what
we have observed above: Whereas the local-stability-based synchronizability R im-
proves as networks become more random, the synchronous state’s basin stability, our
nonlocal measure of how stable this state is, increases as networks become more reg-
ular. This adds a crucial piece to the puzzle about the topologies of synchronizing
real-world networks and, I conjecture, makes its solution emerge: In synchronizing
networks, the functional need for the synchronous state to be as stable as possible
promotes topological regularity. Thus during network evolution, the optimization for
synchronizability and the simultaneous optimization for basin stability have acted as
two opposing forces. Their struggle resulted in a topological tradeoff: small-worldness.

# Network CL LL ζC ζL ξC ξL

1 Macaque Visual Cortex 0.66 1.97 0.56 0.26 0.36 0.76
2 Macaque Cortex 0.66 3.85 0.60 0.19 0.24 0.75
3 Cat Cortex 0.69 2.14 0.63 0.25 0.28 0.73
4 C. Elegans Neural Network 0.64 19.25 0.25 0.06 0.40 0.84
5 Power Grid of Western US 0.39 925.7 0.20 0.01 0.22 0.86
6 Power Grid of Central Europe 0.35 846.8 0.20 0.02 0.21 0.77
7 Power Grid of Northern Europe 0.29 107.6 0.13 0.06 0.43 0.79
8 Power Grid of the UK 0.30 80.3 0.12 0.07 0.44 0.80

Table 3.2: More topological properties of synchronizing real-world networks.
XL represents average values of X computed in lattices of the same N, E,
where X = L, C. The measures ζL and ζC , defined in Eq. (3.25), were
suggested in [Sporns and Zwi, 2004] to characterize small-worldness. ξL

and ξC , defined in Eq. (3.26), are new measures less prone to the influence
of the network size than ζL, ζC .
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Figure 3.8: Topological comparison of ensemble results with real-world net-
works. A circle represents the results for Watts-Strogatz networks with
N = 100, k = 10 and rewiring probability p ∈ {0.05, 0.1, 0.15, . . . , 1.0}
(p increasing from left to right). A circle’s area is proportional to the
expected basin stability ⟨S̄B⟩. A circle’s colour indicates the expected
synchronizability ⟨R⟩. Squares represent real-world networks reported to
display a small-world topology (Tables 3.1 and 3.2). Plotting ξL against ξC

allows to compare networks of different sizes w.r.t. average shortest-path L
and clustering coefficient C, quantities that characterize small-worldness
[Watts and Strogatz, 1998]. (ξL, ξC) = (0, 0) labels a regular network
whereas (ξL, ξC) = (1, 1) labels a random network. Small-world networks
reside in the top left quadrant. Figure published in [Menck et al., 2013a].
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3.5 Conclusions and outlook
We have studied how general dynamical networks should be structured to optimally
support the stable synchronous operation of their components. Previous theory sug-
gests that synchrony could most easily be achieved in networks that have highly
random topologies. However, real-world networks whose function relies on synchro-
nization – such as neural networks or power grids – have long been known to possess
small-world topologies that are comparatively regular. Addressing this puzzle, we
noted that the previous theory is based on the inherently local linear approach to
stability, and applied basin stability to add a nonlocal perspective.

Investigating ensembles of paradigmatic chaotic oscillators, we found that, in sharp
contrast to linearization-based synchronizability, nonlocal basin stability improves
substantially the more regular a network is. My conjecture is that this solves the
puzzle: The qualitative optimization towards a locally stable synchronous state and
the quantitative optimization towards a synchronous state that is as stable as pos-
sible nonlocally have acted as antagonistic evolutionary forces. The final outcome –
small-worldness – emerged as a topological compromise.

Against the broadness of this conjecture, the setting of the investigations in this chap-
ter may appear rather narrow: We have explored the stability properties of only one
type of synchronization (complete synchronization) in simple networks (undirected,
unweighted) of only one type of chaotic oscillator (Rössler). In the sense of Popper
[1963], future work might test whether our findings are refuted or corroborated under
different circumstances. Furthermore:

(i) In the networks we have studied, all nodes were identical oscillators and capable
of producing a completely synchronous state. However, the nodes of real-world syn-
chronizing networks are not, in general, identical. So a possible next step could be to
investigate how topology influences the basin stability of the phase synchronized state
in networks of non-identical chaotic oscillators.

(ii) Specifically, our networks were made up of chaotic Rössler oscillators that are
well-known to be capable of producing rich collective dynamics. However, Rössler
oscillators do certainly not constitute a realistic model of real-world synchronizing
networks such as neural networks or power grids. It could be interesting to test our
findings when actually employing realistic models.

(iii) The edges in our networks all carried the same, uniform weight. It is an open
question whether basin stability can be systematically optimized by changing the edge
weights of a fixed topology.

(iv) Similarly, we focussed on undirected topologies here. The effects of directed
topological elements on basin stability are yet to be explored.
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3.6 Supporting material
3.6.1 Another choice of the reference subset Q

The findings reported in Fig. 3.5b on the relation between expected basin stability
⟨S̄B⟩ and the Watts-Strogatz model parameter p are based on a specific choice of the
reference subset Q in the definition of basin stability, namely on Q = qN with q =
[−15, 15] × [−15, 15] × [−5, 35] (cf. Section 3.4). Here, we perform the same ensemble
study again, yet now with respect to

Q̃ = q̃N with q̃ = [−8, 8] × [−8, 8] × [−8, 8]. (3.27)

The outcome shown in Fig. 3.9. Apparently, there is no qualitative difference from
the results shown in Fig. 3.5b: Expected basin stability becomes ever better the more
regular a network is.

0 0.2 0.4 0.6 0.8 1

Figure 3.9: Basin stability with respect to another reference subset Q in
Watts-Strogatz networks of chaotic oscillators. Shown is expected
basin stability ⟨S̄B⟩ versus the Watts-Strogatz model’s parameter p, with
N = 100 oscillators of Rössler type, each having on average k = 8 neigh-
bours. Here, a different reference subset Q is used in the basin stability
estimation than for the results reported in Fig. 3.5, namely Q̃ = q̃N with
q̃ = [−8, 8] × [−8, 8] × [−8, 8] (cf. Section 3.4).
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3.6.2 2-dimensional Watts-Strogatz networks
To obtain our main results on basin stability in Section 3.4, we used a 1-dimensional
ring as the initial configuration of the Watts-Strogatz algorithm (cf. Fig. 3.4). Here,
we will use the 2-dimensional lattice depicted in Fig. 3.10.

Figure 3.10: Initial grid for 2-dimensional Watts-Strogatz network genera-
tion. Each node is connected to its four nearest neighbours and the four
diagonal ones among its next-nearest neighbours. So each node has 8
links.

We choose N = 20 · 20 = 400 as the network size and, as before, place a Rössler
oscillator at each node. Note that basin stability calculations on this lattice size
approach the limits of what is computationally feasible today. For each network in
the ensemble we estimate basin stability SB(K) for several K ∈ Is and compute
their mean S̄B. Here, we use a slightly smaller reference subset, Q = qN with q =
[−15, 15] × [−15, 15] × [−4, 35], than above as otherwise the values of SB would be
too small to be accuractely measurable with T = 500 integrations (cf. Section 2.4.1).
Note that the Rössler attractor (Fig. 3.1b) is still included in q. Finally, we average
S̄B over the ensemble to obtain ⟨S̄B⟩.

The results are shown in Fig. 3.11. There is no qualitative difference to Fig. 3.5:
Whereas synchronizability improves as networks become more random, expected basin
stability is larger in networks that are more regular and falls off exponentially with
increasing randomness.

Fig. 3.12 shows how the 2-dimensional results compare topologically to synchroniz-
ing networks from the real world (cf. Fig. 3.8). Again, there is no qualitative difference.
Whereas the need for good synchronizability drives networks towards randomness, the
need for large basin stability drives them towards regularity.
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Figure 3.11: Synchronizability and basin stability in 2-dimensional Watts-
Strogatz networks of chaotic oscillators. a, expected synchroniz-
ability ⟨R⟩ versus the Watts-Strogatz model’s parameter p. The scale of
the y-axis was reversed to indicate improvement upon increase in p. b,
expected basin stability ⟨S̄B⟩ versus p. The grey shade indicates ± one
standard deviation. The dashed line shows an exponential fitted to the
ensemble results for p ≥ 0.05. Solid lines are guides to the eye. The plots
shown were obtained for N = 400 oscillators of Rössler type, each having
on average k = 8 neighbours. Figure published in [Menck et al., 2013a].
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Figure 3.12: Topological comparison of results for the 2-dimensional ensem-
ble with real-world networks. A circle represents the results for 2D
Watts-Strogatz networks with N = 400, k = 8 and rewiring probabil-
ity p ∈ {0.05, 0.1, 0.15, . . . , 1.0} (p increasing from left to right). A cir-
cle’s area is proportional to the expected basin stability ⟨S̄B⟩. A circle’s
colour indicates the expected synchronizability ⟨R⟩. Squares represent
real-world networks reported to display a small-world topology (Tables
3.1 and 3.2). Plotting ξL against ξC allows to compare networks of dif-
ferent sizes w.r.t. average shortest-path L and clustering coefficient C,
quantities that characterize small-worldness [Watts and Strogatz, 1998].
(ξL, ξC) = (0, 0) labels a regular network whereas (ξL, ξC) = (1, 1) labels
a random network. Small-world networks reside in the top left quadrant.
Figure published in [Menck et al., 2013a].
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3.6.3 Small-World networks with different link length distributions
Here we perform another basin stability study on small-world networks with different
link length distributions. The networks are created as follows: We start with a 2-
dimensional lattice in which every node is connected to its 4 nearest neighbours.
Then we add short cuts so that, in the end, the average number of links per node is
8. For short cut addition, we use the following procedure [Li et al., 2010]: A pair of
nodes, (i, j) is chosen randomly. Then a new link connecting them is added to the
network with probability

P (r) ∝ r−α,

where r is the Manhattan distance between i and j, i.e., the distance between them
on the original 2-dimensional lattice with no short cuts.

In networks created like this, we expect the length of a typical short cut to decline
when α increases. How do basin stability and synchronizability depend on α?

To investigate this, we choose the network size to be N = 20 · 20 = 400 and, as
before, place a Rössler oscillator at each node. Then, for every network we compute
S̄B. Here, we use a slightly smaller reference subset, Q = qN with q = [−15, 15] ×
[−15, 15] × [−3, 35], than above as otherwise the values of SB are too small to be
accuractely measurable with T = 500 integrations (cf. Section 2.4.1). Note that the
Rössler attractor is still included in q. Finally, we average S̄B over the ensemble to
obtain ⟨S̄B⟩.

Fig. 3.13a shows that expected synchronizability ⟨R⟩ declines as α increases. This
means that, from the linear-stability perspective, an optimal link length distribution
should fall off slowly or not at all (corresponding to rather low α).

The perspective of basin stability, again, disagrees with this. In Fig. 3.13b, we
see that ⟨S̄B⟩ evolves in an opposite way to expected synchronizability in a large
portion of the parameter interval: ⟨S̄B⟩ grows as α increases. Finally, as α is tuned
up further, basin stability reaches a maximum and then declines rapidly towards zero
as synchronizability approaches the stability threshold.

These results appear not to contain considerably more information than Fig. 3.5 and
Fig. 3.7: For large α as well as for small p, networks have an intense local structure
that is reduced as α decreases and p increases. This may be the common reason
behind the phenomena we observe.
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Figure 3.13: Synchronizability and basin stability in networks of chaotic os-
cillators with different link length distribution. a, expected syn-
chronizability ⟨R⟩ versus the link length distributions’s parameter α. The
scale of the y-axis was reversed. The grey shade indicates ± one standard
deviation. b, expected basin stability ⟨S̄B⟩ versus α. The grey shade in-
dicates ± one standard deviation. Solid lines are guides to the eye. The
plots shown were obtained for N = 400 oscillators of Rössler type, each
having on average k = 8 neighbours.
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3.6.4 Non-convexity of the basin in Rössler-networks
One might have the idea to measure the volume of the basin B of the completely
synchronous state in a network of chaotic Rössler oscillators in an absolute rather
than a relative sense. For this, high-dimensionality poses challenges. If B were a
bounded convex set, its volume could be estimated in O(n4) time steps with today’s
best algorithm [Lovász and Vempala, 2006], where n = 3N is the dimension of state
space. We have N ≥ 100, so this would be numerically very expensive.

In any case, it turns out that B is not convex. This follows from the non-convexity
of the chaotic attractor’s basin B1 of a single Rössler oscillator, as can be seen in the
two-dimensional details displayed in Fig. 3.14. As the set BN

1 := {r1 = . . . = rN =
r | r ∈ B1} is a non-convex slice of the basin B of any network’s synchronous state, B
is non-convex, too. Hence the powerful tools for volume estimation of convex bodies
are not applicable here.
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Figure 3.14: Two-dimensional details of the Rössler attractor’s basin. a shows
the xy-detail. A point (x, y) refers to the initial state (x, y, 0). b shows the
xz-detail. A point (x, z) refers to the initial state (x, 0, z). In both panels
the white region indicates the Rössler attractor’s basin of attraction. The
green shape depicts a two-dimensional projection of the Rössler attractor.
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3 Synchronization on complex networks

3.6.5 Edge-list of the example network
For the sake of reproducibility, here we study in detail the estimation of mean basin
stability S̄B for the example network depicted in Fig. 3.1a and discussed in Sections
3.1 and 3.3.2. Its edge list reads:

0-1 0-2 0-3 4-61 2-91 1-3 1-4 1-5 3-20 2-4 2-5 2-6 3-4 3-5
3-6 3-7 4-5 4-6 7-73 4-8 5-6 5-7 5-8 5-9 7-88 8-45 6-9 6-10
7-8 7-9 7-10 7-11 8-9 8-10 8-11 8-12 9-10 9-11 9-12 9-13 10-11 10-12

10-13 10-14 12-93 11-13 14-3 11-15 12-13 12-14 12-15 12-16 14-49 13-15 13-16 13-17
14-15 14-16 14-17 14-18 15-16 15-17 15-18 19-65 16-17 16-18 16-19 20-94 17-18 17-19
17-20 17-21 18-19 20-65 18-21 18-22 19-20 19-21 19-22 19-23 20-21 22-16 20-23 20-24
21-22 21-23 24-0 21-25 22-23 22-24 22-25 22-26 24-47 23-25 23-26 27-75 24-25 26-34
27-17 28-90 25-26 25-27 28-8 25-29 26-27 26-28 26-29 26-30 27-28 27-29 27-30 27-31
28-29 30-46 31-36 28-32 30-70 29-31 29-32 29-33 30-31 30-32 30-33 30-34 31-32 31-33
31-34 35-52 32-33 32-34 35-6 36-48 33-34 33-35 33-36 33-37 34-35 34-36 34-37 34-38
35-36 35-37 35-38 35-39 36-37 36-38 39-73 36-40 37-38 37-39 40-84 37-41 38-39 38-40
38-41 42-93 39-40 41-46 39-42 43-13 40-41 40-42 43-86 40-44 41-42 41-43 41-44 45-67
42-43 42-44 45-77 46-95 43-44 43-45 43-46 43-47 44-45 44-46 44-47 44-48 45-46 47-60
45-48 49-75 46-47 46-48 46-49 46-50 47-48 47-49 47-50 51-96 48-49 48-50 48-51 52-34
49-50 49-51 49-52 49-53 50-51 50-52 50-53 50-54 51-52 51-53 51-54 51-55 53-28 54-21
52-55 56-83 54-1 53-55 56-88 57-88 55-79 54-56 54-57 58-78 56-85 55-57 55-58 55-59
56-57 56-58 56-59 56-60 57-58 57-59 60-45 57-61 58-59 58-60 61-36 62-75 60-71 59-61
59-62 63-12 61-33 60-62 60-63 64-7 61-62 61-63 61-64 61-65 62-63 62-64 62-65 66-77
63-64 63-65 66-74 67-47 64-65 64-66 67-95 68-19 65-66 65-67 65-68 65-69 66-67 66-68
66-69 66-70 67-68 67-69 67-70 67-71 68-69 68-70 68-71 68-72 69-70 69-71 69-72 73-14
70-71 70-72 73-18 74-16 71-72 71-73 71-74 71-75 72-73 72-74 72-75 72-76 74-47 73-75
73-76 77-56 75-10 74-76 74-77 74-78 75-76 75-77 75-78 75-79 77-10 76-78 79-97 76-80
77-78 77-79 77-80 77-81 78-79 78-80 81-93 78-82 79-80 79-81 79-82 79-83 80-81 80-82
83-30 80-84 81-82 81-83 84-14 81-85 82-83 82-84 82-85 86-52 84-50 83-85 83-86 83-87
85-51 86-72 84-87 84-88 85-86 85-87 85-88 85-89 86-87 86-88 86-89 86-90 87-88 87-89
87-90 91-12 88-89 88-90 88-91 88-92 90-97 91-25 89-92 89-93 91-10 92-65 90-93 90-94
92-54 91-93 94-15 91-95 92-93 92-94 92-95 92-96 93-94 93-95 93-96 93-97 95-18 94-96
94-97 94-98 95-96 95-97 95-98 99-59 96-97 96-98 96-99 0-34 98-60 97-99 97-0 97-1
98-99 98-0 98-1 98-2 99-0 99-1 99-2 99-3

This network consists of N = 100 nodes and E = 400 edges (and was generated
using the Watts-Strogatz model with rewiring probability p = 0.2). The minimum
and maximum non-zero eigenvalues of its Laplacian matrix are λ2 = 1.236 and λN =
13.871, respectively. Hence its stability interval Is = (0.010, 0.336). The synchronous
state is stable for K ∈ Is. We measure its basin stability at 10 different equally spaced
values of K in the interior of Is, obtaining

K 0.121 0.143 0.164 0.185 0.207 0.229 0.250 0.272 0.293 0.315
SB(K) 0.203 0.266 0.323 0.388 0.452 0.538 0.600 0.662 0.684 0.747

To estimate the mean basin stability S̄B of this network, we compute the average of
these values, which is S̄B ≈ 0.49.

3.6.6 Numerical methods
For all the numerical simulations of Rössler networks, we employed a fourth order
Runge-Kutta algorithm, integrating for 60.000 steps with step size τ = 0.01. If very
long transients were detected, we increased the number of steps up to 960.000.
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4 Structure and stability of power grids

Transmission grids for electrical energy, or just power grids, are of huge importance
for the functioning of today’s societies. For example, the German grid delivers about
600 billion kWh of energy per year [Statistisches Bundesamt, 2012], which amounts to
an average power supply of roughly 69 million kW, or 850 W for each of today’s 80,2
million inhabitants. For comparison, a human being engaged in long-time endurance
sports can achieve something like 85 W. So the German power grid provides an em-
powerment factor of ten, implying that, if the same service was to be delivered by
human muscle effort alone, every inhabitant would have to employ ten energy workers
drudging 24 hours a day, or 40 workers labouring 42 hours a week. Under the latter
conditions, a total of 3.2 billion workers would be needed to meet the energy demand
of this single country.

This phantastic number underscores the fact that a power grid fulfils a highly im-
portant task. The flipside is that its failure can impose enourmous costs. For instance,
the largest blackout on Northern American records, occuring in August 2003, “affected
an area with an estimated 50 million people”, and, in some regions, “power was not
restored for 4 days” [U.S.-Canada Power System Outage Task Force, 2004]. The total
costs of this event were estimated between $5 billion and $10 billion. Worryingly, such
blackouts occur rather often: The distribution of blackout sizes reveals no exponen-
tial shape, as one might have hoped, but falls off extremely slowly with a power-law
behaviour [Carreras et al., 2004; Newman et al., 2011].

Against this backdrop, it is no surprise that the scientific community has put consid-
erable effort into understanding the complex dynamics of power grids. Carreras et al.
[2004] adopted a system theory perspective and described a power grid as evolving
through consecutive periods of load growth which are interrupted by sudden blackout
events. After every blackout, grid operators strengthen the grid, only for the next
period of load growth to follow. This model, which resembles the growth-avalanche
dynamics of a continuously loaded sand pile [Fairley, 2004], reproduces the actual
blackout size distribution remarkably well [Newman et al., 2011].

Other researchers investigated the mechanics of large-scale blackouts from a complex
network theory perspective. They elaborated on the central observation that such
events usually include cascading breakdowns of grid components. Motter and Lai
[2002] and Crucitti et al. [2004a,b] investigated how the failure of a single node in
a big network can bring about a long series of further failures, thus wrecking grid
performance to a minimum. Buldyrev et al. [2010] included in their considerations
that failures in power grids are actually not independent from, but interrelated with
events in other complex systems, such as communication networks. They found that
such interdependencies in networks of networks make power grids even more vulnerable
to single node failure.
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4 Structure and stability of power grids

In all these studies, the dynamics of grid components and the power flows between
them are modelled either in a long-time-scale, steady-state fashion or not at all. Here,
we will study grid failures at short time scales. From this perspective, a power grid
is normally operated in the synchronous state, in which all frequencies are equal to
the rated frequency (50 or 60 Hz) and in which steady power flows equate supply
and demand everywhere [Machowski et al., 2008; Hill and Chen, 2006; Spring, 2003].
Blackouts have often ensued from a loss of synchrony [Ewart, 1978]. Indeed, when
parts of a power grid desynchronize, destructive power oscillations entail. To avoid
damage, affected components must then be switched off. Such switchings can in turn
desynchronize other grid components, possibly provoking a cascade of further shut-
downs and ending in a large-scale blackout.

Fortunately, grids can be – and usually are – designed so that the synchronous state
is locally stable, implying that desynchronization cannot be caused by small pertur-
bations, such as somebody turning on a household device [Dobson, 2013]. Yet many
intriguing questions on the relation between grid topology and local stability are still
unanswered, and this is a highly active field of research. Recently, Rohden et al.
[2012] found that decentralization of power supply can improve the local stability of
the synchronous state. Witthaut and Timme [2012] reported that, counterintuitively,
addition of transmission lines can decrease stability. Dörfler et al. [2013] formulated
rigorous conditions of a locally stable synchronous state in terms of the wiring topol-
ogy. And, finally, Motter et al. [2013] encountered a new way to improve local stability
by tuning parameters of individual nodes in the grid.

However, even if the synchronous state is stable against small perturbations, a power
grid’s state space is also populated by numerous stable non-synchronous states, to
which the grid might be pushed by short circuits, fluctuations in renewable generation
or other large perturbations [Machowski et al., 2008; Filatrella et al., 2008; Rohden
et al., 2012; Chiang et al., 1995; Chiang, 2011]. Indeed, large perturbations occur
so often that a whole sub-branch of power grid engineering, called transient stability
analysis, has been dedicated to them. The standard transient stability toolbox, based
on time domain simulations and Lyapunov function considerations [Chiang et al.,
1995; Chiang, 2011], assesses whether or not a power grid will return to synchrony
after a given large perturbation. That is: It qualifies if the synchronous state is stable
against this particular perturbation.

Here we will quantify how stable the synchronous state is against large perturbations
in general. As the traditional linearization-based approach to stability is too local for
this assessment, we will employ a single-node version of basin stability [Menck et al.,
2013a], the nonlinear concept defined in Section 2.3. It will enable us to scrutinize how
the synchronous state’s stability against large localized perturbations is influenced by
patterns of the network topology.

When investigating power grids, one must be aware that these are incredibly com-
plex machines, containing thousands of interacting components, influenced by volatile
weather conditions, and subject to sudden operator action. Modelling every detail of
a grid’s behaviour therefore is an impossible task [Machowski et al., 2008], and we
will refrain from attempting that here. Instead, we will employ a rather basic (but
well founded) model of nodal dynamics which helps to have a clear view on our main
subject: the influence on grid stability of the network topology. We will use this model
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for simulations in an ensemble of artifically generated power grids. The characteristics
we will obtain from a statistical analysis of this ensemble all support one main conclu-
sion: The widespread and cheapest of all connection schemes, so-called dead ends and
dead trees, strongly diminish stability. When testing this outcome in a case study of
the Northern European power grid, we will observe that the inverse also holds true:
‘Healing’ dead ends by addition of transmission lines considerably enhances stability.
This suggests that, when expanding today’s grids or planning tomorrow’s grids, dead
ends should be avoided.

Contents
The chapter is organized as follows. In Section 4.1, we will analyze the effects of a
typical large perturbation that hits a power grid. For the analysis, we will use a basic
but powerful model from power grid engineering, called the infinite-grid model. As
this model contains just a single dynamical node and is hence of no use for questions
concerning topology, in Section 4.2 we will discuss the generalization of this model
to N -node networks. This section also contains the introduction of single-node basin
stability, a component-wise nonlocal stability concept. As an illustration, we will in-
vestigate the single-node basin stability of a small example network. In Section 4.3,
we will study an ensemble of artificially generated power grids. Here, it will turn out
that dead ends, and dead trees in general, have a crucial influence on grid stability.
We will investigate why that is. Section 4.4 contains a case study of the Northern
European power grid, in which we will find that ‘healing’ of dead ends significantly
enhances stability. Section 4.5 concludes the chapter. Some supplementary material
is provided in Section 4.6.

Some of the findings and analyses presented here have been published in [Menck and
Kurths, 2012; Menck et al., 2013b].
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4 Structure and stability of power grids

4.1 The infinite-grid model

Figure 4.1: Generator infinite-grid model. V denotes the voltage behind the
generator’s transformer and Vgrid is the voltage of the ‘infinite’ power
grid. Z = R + iX is the transmission line’s total impedance, composed
of resistance R and reactance X. The figure contains elements of free
graphics files1.

A large perturbation that hits a power grid typically involves a local power imbalance.
Imagine, for example, a thermal generator that delivers a constant amount of power
via a single high-voltage transmission line. Suddenly, the line suffers a short circuit.
Automatic control devices immediately interrupt the line to clear the fault, and hence
the mechanical power injected via the generator’s turbine has no electrical way out
anymore. By energy conservation, this power surplus needs to go somewhere; it flows
into the turbine’s rotational energy, thus driving up its frequency. Hence when the
transmission line automatically re-closes after some delay, the generator has moved
away from its pre-fault working point. From this perturbed state, will it return to the
desired synchronous state?

4.1.1 Derivation
To illuminate the described situation we will now introduce the classical model of
power grid engineering [Machowski et al., 2008; Hill and Chen, 2006; Filatrella et al.,
2008; Rohden et al., 2012; Witthaut and Timme, 2012]. The model is based on
two fundamental physical principles: the law of energy conservation and the law of
induction. Energy conservation dictates that the amount of power2 flowing into the
generator must always equal the amount of power flowing out. There are several
contributions to this power balance. On the in-side, there are the injections of local
power generation devices, including thermal injection via the turbine. On the out-
side, there is local consumption as well as the power flow across the transmission
line. Another crucial contribution stems from the fact that the generator’s turbine
constitutes a considerable energy storage. Indeed, the amount of energy stored in

1Origin: Wikimedia Commons. Author: MBizon. Filename: Electricity_Grid_Schematic_
English.svg.

2We limit ourselves to active power here. Reactive power is assumed to be balanced at all times,
corresponding to perfect voltage control. This assumption is called the decoupling assumption in
power grid engineering.
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4.1 The infinite-grid model

the turbine’s rotating mass typically reaches up to 10 seconds times maximum power
output for a thermal generator [Horowitz and Phadke, 2008]. A positive change in
this storage enters into the power balance as a negative flow. Hence we obtain

d
dt

1
2MΩ2


= L + Lcontrol − Ltrans, (4.1)

where Ω is the turbine’s angular frequency, M is its moment of inertia, L represents
net power injection, equalling local power injection minus local power consumption,
and Ltrans denotes the amount of power flowing from the generator to the grid. The
role of the control term Lcontrol will become clear below.

What is Ltrans? Let us denote the generator’s AC voltage vector by V = V eiθ, the
grid’s voltage vector by Vgrid = Vg eiθg and the line impedance by Z = R + iX. Then
the current I = (V − Vgrid)/Z and

Ltrans = Re [VI∗] = Re

V

V∗ − V∗
grid

Z∗



= Re


R + iX

R2 + X2


V 2 − V Vg ei(θ−θg)


= 1

R2 + X2


R

V 2 − V Vg cos(θ − θg)


+ XV Vg sin(θ − θg)


.

In the high-voltage transmission part of the grid we will focus on here, R ≪ X, so
that

Ltrans = V Vg

X
sin(θ − θg). (4.2)

So far, we have not established a link between the electrical quantity θ and the me-
chanical quantity Ω, which means that plugging (4.2) into (4.1) would, at this stage,
not really promise any insights. Fortunately, there is such a link: According to the
law of induction, the time derivative of θ, namely the electrical angular frequency θ̇,
is exactly the same as the mechanical angular frequency Ω of the generator’s rotating
turbine.3 As the generator is always operated as close as possible to the grid’s rated
frequency ωr, we write Ω = ωr + ω and from now on measure θ in a frame of reference
that co-rotates with ωr. This allows us to obtain a closed set of model equations

θ̇ = ω (4.3)

Mωrω̇ = L − Dω − V Vg

X
sin(θ − θg) (4.4)

where we have assumed |ω| ≪ ωr and set Lcontrol = −Dω. This common form of
the control term expresses the effect of damper windings whose job it is to keep the
deviation ω from the rated frequency ωr as small as possible. For a slightly simpler
nomenclature, we divide Eq. (4.4) by Mωr, define net power input P := L/(Mωr),
the damping constant α := D/(Mωr), and the transfer capacity K := V Vg/(XMωr),

3This is only true for a two-pole generator. For a four-pole generator, θ̇ = 2Ω. However, this
only changes what follows by a cumbersome multiplicative constant, but does not induce any
qualitatively different behaviour. So we stick to the simpler two-pole case here.
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and obtain

θ̇ = ω (4.5)
ω̇ = P − αω − K sin(θ − θg). (4.6)

For functional reasons, the transfer capacity K > 0 of the transmission line must be
larger than |P |. For economic reasons, it is usually not much larger than |P | (cf.
Section 4.6.1). In this most basic version of the classical model, the grid is assumed
to be ‘infinite’, meaning unaffected by anything that happens at the generator. Hence
θg ≡ 0. We shall study ‘finite’ grids below.

Figure 4.2: State space of the infinite-grid model. Shown is the state space
of the model, with α = 0.1, P = 1 and K = 8 (the choice of model
parameters is elaborated on in Section 4.6.1). The solid black circle marks
the desired synchronous state (θs, 0), and the solid red line shows the
non-synchronous limit cycle attractor. The basin of attraction of (θs, 0)
is coloured green, and that of the limit cycle is coloured white. The grey
dashed line indicates the fault-on (i.e., K = 0) trajectory and its end point
(θ, ω)t1 . Figure published in [Menck et al., 2013b].

4.1.2 Perturbation analysis
Now let us recap the short-circuit fault described above. Initially, the generator is in
the synchronous state (θs, ωs = 0), with θs = arcsin(P/K) ∈ (−π/2, π/2), in which
K sin θ, the power flow across the transmission line, exactly balances net power input
P . Then suddenly, at time t0, K is switched to 0. This makes ω increase until the
line re-connects at time t1 (trajectory in Fig. 4.2). The crucial question is: Will the
generator converge to (θs, 0) from the perturbed state (θ, ω)t1? If t1 is small, then
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4.1 The infinite-grid model

(θ, ω)t1 constitutes a small perturbation w.r.t. (θs, 0) and the standard linearization-
based stability analysis applies. It yields that the generator will return to (θs, 0) if
K > |P |, as then (θs, 0) is locally stable.

Indeed, as discussed in more detail in Section 2.2.3, a standard small-perturbation
analysis of Eqs. (4.5)–(4.6) leads to

δθ̇ = δω (4.7)
δω̇ = −αδω − K cos(θ − θg)δθ (4.8)

which, evaluated at the synchronous state, has the maximum Lyapunov exponent

σ+ = Re


−α

2 +
√

α2 − 4K cos θs

2


. (4.9)

As θs ∈ (−π/2, π/2) so that cos(θs) > 0, σ+ is negative. Hence the synchronous state
is locally stable (cf. Section 2.2).

However, the clearing time t1 is typically not that small (it can reach several hundred
milliseconds [Machowski et al., 2008]), so that (θ, ω)t1 is not a small perturbation w.r.t.
(θs, 0). This renders the local stability analysis insufficient. Indeed, the generator will
only return to the synchronous state if (θ, ω)t1 is inside the basin of attraction of that
state (green area in Fig. 4.2). Otherwise, it will not regain synchronization with the
grid but converge to a different solution of (4.5)–(4.6): a non-synchronous limit cycle
characterized by

ωns(t) ≈ P

α
+ αK

P
cos


P

α
t


(4.10)

(provided |P |/α2 ≫ 1, |P |2/α2 ≫ K, as derived in Section 2.1.3).

Other, possibly serial, faults may push the generator from the synchronous state
to perturbed states anywhere in state space. If, for instance, during the above event
a faltering of locally connected renewable generation had driven P below zero, the
generator’s state would have deviated into the lower half of Fig. 4.2. We will therefore
quantify how stable the synchronous state is against general large perturbations in
terms of basin stability S ∈ [0, 1], a measure of the basin’s volume [Menck et al.,
2013a]. More specifically, we will measure S as described in Sections 2.3.2 and 2.4.1,
employing the uniform distribution ρ = 1/|Q| on (θ, ω) ∈ Q = [0, 2π] × [−100, 100].

Intuition suggests that the synchronous state should become more stable when the
transfer capacity K increases. This is indeed what we find [Menck et al., 2013b]: The
expanding green area in Figs. 4.3a-b (compared to Fig. 4.2) and the characteristic in
Fig. 4.3c show that basin stability S, starting from S = 0 for K < |P |, improves
substantially as K goes up, until finally synchrony becomes the only stable state
(S = 1).
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4 Structure and stability of power grids

Figure 4.3: Basin stability of the generator in the infinite-grid model. a-b,
state space of the model, with α = 0.1, P = 1 and a: K = 50, b: K = 65
(see Section 4.6.1). The solid black circle marks the desired synchronous
state (θs, 0), and the solid red line shows the non-synchronous limit cycle
attractor. The basin of attraction of (θs, 0) is coloured green, and that of
the limit cycle is coloured white. c, basin stability S of the synchronous
state versus the transfer capacity K. Figure published in [Menck et al.,
2013b].
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4.2 The finite-grid model
Surely, power grids are not infinite as just assumed. There will be some interplay be-
tween multiple nodes after one of them has been hit by a large perturbation. Whether
the grid will return to its synchronous state depends on the affected node’s properties,
particularly its position in the grid topology. Hence we now turn to a finite version
of the model that consists of N nodes [Machowski et al., 2008; Hill and Chen, 2006;
Filatrella et al., 2008; Rohden et al., 2012; Witthaut and Timme, 2012]. Derived
analogously to Eqs. (4.3)–(4.4), it reads

θ̇i = ωi (4.11)

Miωrω̇i = Li − Diωi −
N

j=1
YijViVj sin(θi − θj) (4.12)

where θi, ωi, and Vi are the phase, angular frequency, and magnitude of the voltage
vector at generator i, measured in a frame of reference that co-rotates with the grid’s
rated frequency ωr. Furthermore, Mi is the (cumulative) moment of inertia of the
turbine(s) rotating at node i, Li is the net power input, and Di is the damping constant.
Finally, Y is the admittance matrix that represents high-voltage transmission lines,
with Yij = 1/Xij if there is a line between nodes i and j and Yij = 0 otherwise.4

To obtain simplified model equations in parallel to (4.5)–(4.6), we divide Eq. (4.12)
by Miωr and define αi := Di/(Miωr), Pi := Li/(Miωr) and Kij := YijViVj/(Miωr).
The result is formally equivalent to a second-order Kuramoto model [Kuramoto, 1975]

θ̇i = ωi (4.13)

ω̇i = Pi − αiωi −
N

j=1
Kij sin(θi − θj) (4.14)

4.2.1 Zhukov’s aggregation
As mentioned in the introduction, the nodes of a power grid can be modelled at any
level of detail. Here, we are mostly interested in the influence the wiring topology ex-
erts on the collective dynamics of a grid’s nodes. Hence we keep the nodal dynamics
simple and employ Eqs. (4.13)–(4.14) as a basic model of the high-voltage transmission
line network, aggregating details at lower voltage levels (Fig. 4.4a). More specifically,
we apply Zhukov’s aggregation (see Machowski et al. [2008]), lump together all gen-
erators (with power supplies si

l > 0) and consumers (with power demands di
m < 0)

connected by lower voltage lines to a high-voltage node i and replace them by a single
equivalent generator with net power input Pi =


l si

l +


m di
m (see Fig. 4.4b). Nodes

with Pi > 0 are referred to as net generators. Nodes with Pi < 0 are net consumers.

4Therein, Xij is the reactance of the transmission line between nodes i and j. In high-voltage grids,
line resistance is small and usually neglected. The line model used is a valid approximation for
short transmission lines [Machowski et al., 2008].
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4 Structure and stability of power grids

Figure 4.4: Zhukov’s aggregation. a, schematic illustration of a power grid, consist-
ing of high-voltage transmission grid and lower-voltage distribution grid
plus generators and consumers. b, the grid of a after Zhukov’s aggrega-
tion. All generators (with power supplies si

l > 0) and consumers (with
power demands di

m < 0) connected to node i of the high-voltage grid
are represented by a single equivalent generator with net power injection
Pi =


l si

l +


m di
m. Nodes at which Pi > 0 (resp. Pi < 0) are called net

generators (net consumers). The figure contains elements of free graphics
files5.
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4.2 The finite-grid model

4.2.2 Effects of large perturbations

How do finite grids respond to large perturbations hitting a single node? For a start,
let us consider the simple 8-node network in Fig. 4.4b. Our main interest are the effects
of the wiring topology on the grid’s collective dynamics. So we simplify other details,
setting Pi = +P > 0 for the 4 net generators, Pi = −P for the 4 net consumers,
αi = α for all 8 nodes, and Kij = K > 0 if there is a line connecting nodes i and
j and Kij = 0 otherwise. Finally, we choose K large enough (> 2P ) so that there
is a synchronous state with ωi = 0 and ω̇i = 0 for all nodes and constant phases θs

i .
This state6 is shown in Fig. 4.5a, in which arrows indicate constant power flows that
balance the specific Pi everywhere in the grid. The synchronous state is stable.

However, there are also several non-synchronous states in the grid’s state space
which are also stable. Some of them are shown in Figs. 4.5b-e. They can be found in
numerical simulations of Eqs. (4.13)–(4.14) when the initial state vector
θi(0), ωi(0)


i=1,...,N

is chosen as the synchronous state plus a random large perturba-
tion (∆θi, ∆ωi) that hits a particular node i, that is: when the initial state is chosen
as 

θ1(0)
ω1(0)

...
θi(0)
ωi(0)

...
θN (0)
ωN (0)


=



θs
1
0
...

θs
i

0
...

θs
N

0


+



0
...
0

∆θi

∆ωi

0
...
0


. (4.15)

Before we discuss the depicted non-synchronous states, a technical remark is in
order: It is always hard to judge when a simulation has reached an attractor. Here, it
helps to note that, from Eq. (4.14),


i ω̇i = −α


i ωi +


i Pi implies the convergence

of


i ωi to zero for balanced power grids (for which


i Pi = 0). Hence when |


i ωi|
is very small, one can conclude with some confidence that the transient phase is over.

Let us now consider the non-synchronous state shown in Fig. 4.5b. It is the result of a
large perturbation that has hit node 1, the node that also emerges as the most strongly
desynchronized. Its frequency ω1 oscillates around a mean of about P1/α = +P/α,
which is surprisingly similar to the frequency oscillation in the non-synchronous state
of a generator that is coupled to an infinite grid (cf. Eq. (4.10)). Analogously, in Fig.
4.5c, a large perturbation that hits node 4 gives rise to a pronounced desynchronization
of node 4 itself, with ω4 oscillating around P4/α = −P/α. These observations seem
to indicate that Pi/α is the natural frequency of oscillations of node i.

A different scenario is shown in Fig. 4.5d, where a large perturbation hits node 8.
This time, in the end it is not node 8 that is heavily desynchronized, but node 5 is
pushed to oscillate about its natural frequency P5/α. Fig. 4.5e depicts the outcome
of a perturbation that has hit node 3. In the resulting non-synchronous state, two

5See footnote 1.
6There may be more than one synchronous state for a given grid. For this grid, however, only one

stable synchronous state is reached by the numerics.
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0

0

0

0

0

Figure 4.5: Example 8-node power grid. a, synchronous state of the 8-node grid.
The tip (thickness) of an arrow indicates the direction (strength) of con-
stant power flow. b-f, time series of the ωi in a non-synchronous state.
The state was reached in a numerical simulation after node i had been
hit by a large perturbation, where b: i = 1, c: i = 4, d: i = 8, e:
i = 3, and f: i = 8 (again). Colour marks (white, yellow, orange, red,
black) are used to classify the states (see text). Simulation parameters:
P = 1, α = 0.1, K = 8 (see Section 4.6.1).
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nodes are heavily desynchronized: ω3 oscillates around P3/α and ω5 oscillates around
P5/α. Finally, in Fig. 4.5f a large perturbation to node 8 triggers a non-synchronous
state with three heavily desynchronized nodes: Node 8 itself, node 3, and node 5 jiggle
around their respective natural frequencies.

The first two observed non-synchronous states, Fig. 4.5b-c, are qualitatively similar:
A single node i is affected by a large perturbation, which induces this node’s frequency
ωi to oscillate about the natural frequency Pi/α, whereas the frequencies of all other
nodes remain comparatively close to zero. Let us call this a direct response and
refer to it as the yellow non-synchronous state of node i. The other non-synchronous
states involve indirect responses, in which not (only) the node initially hit by the
perturbation suffers strong desynchronization, but also other nodes in the grid. Let
us call Fig. 4.5d, in which predominantly node 5 is indirectly desynchronized, the
orange state, Fig. 4.5e, in which predominantly nodes 3 and 5 are desynchronized, the
red state, and Fig. 4.5f, in which predominantly nodes 3, 5 and 8 are desynchronized,
the black state.

A careful survey of the perturbation space (∆θi, ∆ωi) ∈ [0, 2π] × [−30, 30] for all
i = 1, . . . , 8 reveals that about 99.9 % of initial states of the form (4.15) result in the
grid assuming either the (white) synchronous state or one of the (i-specific) yellow non-
synchronous states, the orange state, the red state, or the black state. The individual
perturbation space analyses for the eight nodes are shown in Figs. 4.6a-h. Nodes 1, 5,
and 7 show very similar outcomes that look a bit like the phase portrait in Fig. 4.3a
of a generator coupled to an infinite grid. Large perturbations to the lower half of the
panel yield convergence to the synchronous state, whereas perturbations to the upper
half lead to the respective yellow non-synchronous state with frequency oscillations
about the natural frequency P/α. Nodes 4 and 6 show the inverted picture, as they
have negative natural frequencies (P4 = P6 = −P ). The outcome for node 2 looks
similar, just that, here, from certain initial states in the upper half not the yellow
state of node 2 but the orange state or the red state is reached.

Whereas, as we just observed, non-synchronous states involving an indirect response
are an exceptional outcome for nodes 1, 2, 4, 5, 6, 7, such states are dominant in the
perturbation spaces of nodes 3 and 8. Indeed, for these nodes the synchronous state
is reached from significantly less than half of perturbation space, and the respective
yellow state is not reached at all.

For node 3, the majority of initial states from the lower half trigger the orange state,
meaning strong desynchronization not of the initially hit node 3, but of node 5, and
the majority of initial states from the upper half trigger the red state, in which both
nodes 3 and 5 are pushed to jiggle about their natural frequencies P3/α and P5/α.

For node 8, large perturbations to the upper half also typically induce the red state.
The majority of large perturbations to the lower half lead to the black state, which
involves strong desynchronization of three nodes: 3, 5 and 8.

These observations demonstrate that the response of a grid to a large perturbation
hitting a single node strongly depends on this node’s topological properties. We will
now employ basin stability to define a measure of this response for each node.
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4 Structure and stability of power grids

Figure 4.6: Perturbation space analysis. Perturbation space (∆θi, ∆ωi) ∈ [0, 2π]×
[−30, 30] for node i of the 8-node grid, where a: i = 1, b: i = 2, c: i = 3,
d: i = 4. Colour indicates to which (class of) state (see Fig. 4.5) the
grid converges when initiated according to (4.15). Simulation parameters:
P = 1, α = 0.1, K = 8 (see Section 4.6.1).
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Figure 4.6: Perturbation space analysis (continued). Perturbation space
(∆θi, ∆ωi) ∈ [0, 2π] × [−30, 30] for node i of the 8-node grid, where e:
i = 5, f: i = 6, g: i = 7, h: i = 8. Colour indicates to which (class of)
state (see Fig. 4.5) the grid converges when initiated according to (4.15).
Simulation parameters: P = 1, α = 0.1, K = 8 (see Section 4.6.1).
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4.2.3 Definition of single-node basin stability
The white areas in Figs. 4.6a-h are actually snippets from the basin of attraction B
of the grid’s synchronous state. More specifically, they correspond to the intersection
of the set

Bi := {(θi, ωi)|(θj , ωj)j=1,...,N ∈ B with θj = θs
j and ωj = 0 for all j ̸= i} (4.16)

with a two-dimensional box Q. As the synchronous state appears to be more stable
against large perturbations that hit nodes with a larger white area, we define the
single-node basin stability of node i as [Menck et al., 2013b]

Si := Vol(Bi ∩ Q)/Vol(Q) ∈ [0, 1]. (4.17)

This corresponds to the basin stability definition of Section 2.3.2 with ρ chosen as a
uniform distribution on {(θi, ωi)|θj = θs

j and ωj = 0 for all j ̸= i} ∩ Q and zero else-
where. So we can use the numerical procedure described in Section 2.4.1 to estimate
Si, again choosing T = 500 so that the error of the estimate e < 0.023. The number
Si expresses the probability that the grid will return to its synchronous state after
node i has been hit by a random large perturbation. We use

Q := [0, 2π] × [−100, 100] (4.18)

here and in the following, as this choice allows to clearly distinguish the three impor-
tant cases in which Bi covers (i) significantly less than half of state space (Fig. 4.2,
Figs. 4.6c,h); (ii) about half of state space (Fig. 4.3a, Figs. 4.6a,d-g); or (iii) all of
state space (Fig. 4.3b).

In the 8-node example grid discussed above (Fig. 4.4b), the single-node basin stabilities
read:

S1 = 0.54 S2 = 0.47 S3 = 0.08 S4 = 0.56
S5 = 0.54 S6 = 0.53 S7 = 0.52 S8 = 0.10

Apparently, the synchronous state is particularly vulnerable against perturbations
hitting nodes 3 and 8, which is plausible in view of the perturbation space portraits in
Figs. 4.6c,h. In the next sections, we will see how the topological properties of these
nodes might explain this observation.
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4.3 Power grid ensembles

4.3 Power grid ensembles
In the 8-node example network, we just observed the well-known fact that power
grids are multistable and possess numerous stable non-synchronous states [Machowski
et al., 2008; Filatrella et al., 2008; Rohden et al., 2012; Witthaut and Timme, 2012;
Chiang et al., 1995; Chiang, 2011]. A synchronous state, with frequencies ωi = 0 and
ω̇i = 0 at all nodes i and constant phases θs

i , can only exist if two conditions are
met: First, total injected power must equal total consumed power, so that


i Pi = 0.

Second, the network matrix K must be such that net power input Pi can be balanced
through power transfers over the grid at each node i, which, for instance, necessitates

j Kij > |Pi|.
It can be shown that a synchronous state is locally stable (cf. Section 2.2) if the

phase differences |θs
i − θs

j | < π/2 for all pairs of nodes (i, j) with Kij > 0 [Machowski
et al., 2008]. Indeed, for grid dynamics given by

θ̇i = ωi (4.19)

ω̇i = Pi − αiωi −
N

j=1
Kij sin(θi − θj) (4.20)

this can quite easily be seen from the master stability function formalism (see Section
3.3.1) in the case of identical damping, i.e. αi = α at all nodes. A small-perturbation
analysis yields

δθ̇i

δω̇i


=


0 1
0 −α


δθi

δωi


−


j

Kij cos(θs
i − θs

j )


0
δθi − δθj


(4.21)

=


0 1
0 −α


δθi

δωi


−


0 0
1 0


j

Lij


δθj

δωj


. (4.22)

With
Lij := δij


l

Kil cos(θs
i − θs

l ) − Kij cos(θs
i − θs

j ) (4.23)

this is exactly of the form (3.11). If |θs
i − θs

j | < π/2 for all connected pairs (i, j), one
has cos(θs

i − θs
j ) > 0 so that the matrix L is symmetric and positive semidefinite if K

is symmetric and positive semidefinite. Hence the synchronous state is stable if the
master stability function, i.e. the maximum Lyapunov exponent (cf. Section 2.2), of

δẇ =


0 1
0 −α


− λ


0 0
1 0


δw =


0 1

−λ −α


δw (4.24)

is negative for every non-zero eigenvalue λ of L. However, the maximum Lyapunov
exponent of this expression is given by (observe the similarity to Eq. (4.9))

σ+ = Re


−α

2 +
√

α2 − 4λ

2


. (4.25)
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As for a synchronous state with |θs
i − θs

j | < π/2 across all transmission lines any
non-zero eigenvalue of L is strictly positive (cf. Section 3.2.4), it follows that such a
state is locally stable against small perturbations.

A power grid can, in principle, have multiple stable synchronous states. However,
all the grids we will consider here have a single synchronous state that is dominant in
the sense that, in numerical experiments, the vast majority of initial conditions in a
neighbourhood of {(θi, ωi) | ωi = 0 for all i} converge to it. For brevity, we will refer
to the dominant synchronous state of a grid as the synchronous state.

Assuming a grid has a stable synchronous state, defined by frequencies ωi = 0 and
constant phases θs

i , how stable is this state against large perturbations that locally
afflict a single node? And how does this depend on the network topology? Before
turning to a case study of the Northern European power grid in Section 4.4, we address
these questions statistically by studying an ensemble of 1,000 randomly generated
power grids with N nodes among which we place E transmission lines uniformly at
random (no loops, no double edges). By choosing N = 100 and E = 135 we ensure
that the resulting simple random networks (see Fig. 4.7) have the average degree
⟨d⟩ = 2.7, a value typical of power grids (cf. Sun [2005] and Section 3.2). As above,
we impose the dynamics determined by Eqs. (4.19)–(4.20). To have a clear view on the
effects of the topology, we simplify other details, assuming all generator properties and
all transmission capacities to be equal, that is, αi = α for all i, and Kij = Kji = K
if nodes i and j are connected and Kij = 0 otherwise. Furthermore, we select a load
scenario with only two types of nodes, randomly choosing N/2 net generators with
Pi = +P and N/2 net consumers with Pi = −P .

Figure 4.7: Example grid from the ensemble. The grid has N = 100 nodes and
E = 135 transmission lines. Squares (circles) represent N/2 net consumers
with Pi = −P (net generators with Pi = +P ). The colour scale indicates
a node’s basin stability Si. Figure published in [Menck and Kurths, 2012].

80



4.3 Power grid ensembles

4.3.1 Basin stability statistics

For each ensemble grid, we measure for each node i its single-node basin stability
Si ∈ [0, 1], a number that reflects the volume of the synchronous state’s basin in a 2-
dimensional subspace pertaining to the node’s two state variables (see Section 4.2.3).
Si can be interpreted as the likelihood that the grid will return to its synchronous
state after node i has been hit by a random large perturbation. An example grid from
the ensemble and its single-node basin stabilities are shown in Fig. 4.7.

As the ensemble contains 1,000 grids with N = 100 nodes each, we obtain 100,000
individual measurements of single-node basin stability Si. Fig. 4.8 depicts the his-
togram of all these Si. Evidently, the majority of nodes show a fair value of basin
stability. So what is special about the nodes with poor stability (Si < 0.30) or high
stability (Si > 0.95)?

Figure 4.8: Basin stability in the power grid ensemble. Shown is the histogram
of single-node basin stability Si for all nodes in all ensemble networks.
Dotted lines delimit nodes with poor stability (Si < 0.30) and high sta-
bility (Si > 0.95). Simulation parameters: N = 100, E = 135, α = 0.1,
P = 1, and K = 8 (see Section 4.6.1). Figure published in [Menck et al.,
2013b].

In the infinite-grid model, we observed that the synchronous state’s stability im-
proves substantially when K increases (Fig. 4.3c). Hence, in finite grids, we might ex-
pect the synchronous state to be very stable against perturbations that hit nodes with
large degree (cf. Section 3.2), as such a node is effectively coupled to the grid through
the transfer capacity dK. To check this, we compute the average basin stability ⟨S⟩
of all nodes in the whole ensemble that have degree d. The resulting characteristic is
shown in Fig. 4.9a. It is rather flat and has a large standard deviation. Hence, against
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the initial guess, basin stability ⟨S⟩ does not increase with d. However, degree does
have a second-order importance: If the neighbours of a node i have a large average
degree

dav = 1
di


j

Kij >0

dj ,

then the node’s expected basin stability ⟨S⟩ is large (provided di ≥ 2, Figs. 4.9b-c).
Indeed, nodes with degree d = 3 whose neighbours have dav = 17/3 = 5.6̄ possess
⟨S⟩ = 0.93. An example node with these properties is labelled A in Fig. 4.7. It has
SA = 1.0.

A major clue for understanding these observations, and the influence of topology
on stability in general, comes from the betweenness characteristic that shows how
the average basin stability ⟨S⟩ of nodes in the ensemble depends on shortest-path
betweenness b (cf. Section 3.2). Although the curve (Fig. 4.10a) is insignificant for
most values of b, it reveals some pronounced downward peaks that, according to
the explanatory sketch (Fig. 4.10b), show that the synchronous state is particularly
unstable against perturbations hitting nodes that are located inside dead ends or, more
generally, dead trees. As illustrated in Fig. 4.10c, a dead tree (also just called a tree)
is defined as a connected set of nodes none of which is contained in a closed loop of
edges. A dead end is a dead tree whose nodes’ maximum degree is at most 2. Every
dead tree contains at least one dead end. In Fig. 4.7, the nodes marked B1 and B2
are both located in a dead end. They have bB1 = N − 2 and bB1 = 2N − 6 and both
possess poor values of basin stability.

What is so special about dead trees? A detailed analysis of the grid dynamics
(see next section) reveals that a large single-node perturbation can typically only
desynchronize the node initially hit (cf. the yellow states of the 8-node grid discussed
in Section 4.2.2). But when a dead end is near, perturbations tend to creep into it,
rattling and desynchronizing the nodes it contains.

Therefore dead trees, as they incorporate dead ends, should drastically lower the
basin stability of nodes adjacent to them. We check this speculation as above by
computing the average basin stability ⟨S⟩ of all nodes in the ensemble that are or
are not adjacent to a dead tree. The resulting curve (Fig. 4.10d) shows that nodes
adjacent to dead trees are indeed far less stable than non-adjacent nodes. Furthermore,
non-adjacent nodes do display the increasing dependence of ⟨S⟩ on degree d we had
hypothesized earlier.

It is now clear why we could not already observe this dependence in Fig. 4.9a:
Although a large degree d topologically benefits the stability of a node, it also increases
the likelihood that this node connects to a stability-adverse dead tree. Conversely,
as dead trees in our ensemble grids often consist of a single node with degree one,
a randomly picked node whose neighbours have a large average degree is unlikely to
connect to a dead tree. This explains the increase in ⟨S⟩ in Figs. 4.9b-c [Menck et al.,
2013b].
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Figure 4.9: Relation between basin stability and topological properties of a
node. a, ensemble average basin stability ⟨S⟩ of nodes with degree d. b-c,
⟨S⟩ of nodes of degree d whose neighbours have the average degree dav (b:
d = 1, 2, c: d = 3, 4). In all panels, red and green shades indicate ± one
standard deviation. Simulation parameters: N = 100, E = 135, α = 0.1,
P = 1, and K = 8 (see Section 4.6.1). Figure published in [Menck et al.,
2013b].
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Figure 4.10: Effects of dead ends and dead trees. a, ensemble average basin
stability ⟨S⟩ of nodes with shortest-path betweenness b. b, shown are
typical examples of nodes (coloured red) that have certain distinct values
of betweenness b. They are located inside dead ends or dead trees (see
also panel c). The dashed boxes indicate the respective remainder of the
grid that contains the printed-on number of nodes. c, shown is a snippet
from the Northern European power grid (see Fig. 4.12). Squares (circles)
depict net consumers with Pi = −P (net generators with Pi = +P ). The
colour scale indicates how large a node’s basin stability Si is. The set
of nodes {1, 2, 3, 4} make up a dead tree that includes two dead ends,
{1} and {3, 4}. Nodes 2 and 3 have the distinct betweenness values
b2 = 3N −10 and b3 = N −2. As expected from panels a-b, they possess
a poor basin stability. d, ensemble average basin stability ⟨S⟩ of nodes
of degree d that are adjacent or non-adjacent to dead trees. Nodes inside
dead trees are not included in the statistics. In panels a and d, red and
green shades indicate ± one standard deviation. Simulation parameters:
N = 100, E = 135, α = 0.1, P = 1, and K = 8 (see Section 4.6.1).
Figure published in [Menck et al., 2013b].
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4.3.2 Effects of dead trees on grid dynamics

In the finite-grid model

θ̇i = ωi

ω̇i = −αωi + Pi −
N

j=1
Kij sin(θi − θj)

there exist a multitude of non-synchronous states for the power grids in our ensemble.
As (


i ω̇i) = −α(


i ωi), all of them satisfy

i

ωi = 0. (4.26)

However, a typical non-synchronous state reached after a large perturbation has hit
a node with fair basin stability is very different from a typical non-synchronous state
reached after a large perturbation has hit a node with poor basin stability (cf. his-
togram in Fig. 4.8). It turns out that this difference has to do with the presence of
dead ends. Indeed, it is their proximity that makes poor-stability nodes so unstable.

To see this, we statistically analyze the non-synchronous states that appeared in
our ensemble studies. Recall that, to estimate single-node basin stability for a certain
node in a grid, we randomly drew T = 500 initial states and integrated the model
equations (cf. Sections 2.4.1 and 4.2.3). From each of these initial states, the grid
either converged to synchrony or to a non-synchronous state. The latter outcome
emerged quite often, and indeed, performing the basin stability estimation procedure
for all nodes in all ensemble grids (totalling 50,000,000 simulation runs) yielded a huge
number of different non-synchronous states. Yet strikingly, all of them are instances
of just eight different representative scenarios [Menck et al., 2013b].

Classification according to these scenarios relies on the important observation that,
in each of the non-synchronous states, the nodes divide themselves into two distinct
groups: The vast majority remain almost synchronous, each having its frequency ωi

oscillating close to zero. However, a few nodes become strongly desynchronized, with ωi

oscillating close to Pi/α (cf. Eq. (4.10)). As observed in the 8-node example in Section
4.2.2, Pi/α seems to be the natural frequency of strongly desynchronized nodes.

Now let us look at scenario A in Figure 4.11, which shows four nodes that are
part of a larger grid. Two of the nodes are generators (Pi = +P > 0, marked by
circles) and two are consumers (Pi = −P , marked by squares). The time series next
to the nodes depict their frequencies in a non-synchronous state that the grid has
been pushed into by a large perturbation hitting the dark grey node. Evidently, the
dark grey node itself is strongly desynchronized, having ωi oscillating around Pi/α. In
contrast, the three other nodes – and actually all unshown nodes of the grid – remain
almost synchronous (with ωi wiggling around zero). This direct response, in which
only the node primarily hit suffers strong desynchronization, is what we take scenario
A to represent. This scenario is very important for fair-stability nodes. Indeed, when
a random large perturbation hitting a fair-stability node pushes a grid into a non-
synchronous state, this state is of type A in 86.8% of the cases. For poor-stability
nodes, the corresponding percentage is only 0.1%.
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Now let us turn to scenario B1. Again, the corresponding panel in Figure 4.11 shows
a non-synchronous state that has been triggered by a large perturbation hitting the
dark grey node. As in scenario A, all but one of the nodes remain almost synchronous.
However, this time there is an indirect response: Not the primarily hit (dark grey)
node, but another secondary node becomes strongly desynchronized. We take scenario
B1 to represent states in which the strongly desynchronized secondary node is of the
same type as the node primarily hit (both are consumers in the picture) and forms a
dead end directly neighbouring that node. The percentage of desynchronizing large
perturbations leading to a B1-type non-synchronous state is 13.8% for poor-stability
nodes and 9.3% for fair-stability nodes.

Scenario B2 is very similar to scenario B1: Again, it is not the primarily hit (dark
grey) node, but a secondary node forming a directly adjacent dead end that suffers
strong desynchronization. However, this time the primary node is of the opposite type
to the secondary node (consumer and generator, in the picture). Scenario B2 is very
important for poor-stability nodes: 24.6% of desynchronizing large perturbations hit-
ting such nodes lead to this kind of non-synchronous state. The respective percentage
for fair-stability nodes is just 1.9%.

Scenario B3 depicts another indirect type of response, in which the perturbation
entails strong desynchronization of a single secondary node that is not a direct neigh-
bour of the (dark grey) primary node but terminates a multi-node dead end adjacent
to it. As scenario B2, this scenario is much more important for poor-stability nodes
(8.5%) than for fair-stability nodes (0.3%).

Whereas the indirect scenarios B1-B3 all have one strongly desynchronized node, the
indirect scenarios C1-C3 involve two strongly desynchronized nodes. Scenario C1 repre-
sents non-synchronous states in which the primary node and a neighbouring dead-end
node of the same type are strongly desynchronized. Scenario C2, the most impor-
tant scenario for poor-stability nodes, represents non-synchronous states in which the
primary node and a neighbouring dead-end node of unlike type are strongly desyn-
chronized. The respective percentages for this scenario are 31.0% for poor-stability
nodes and 0.5% for fair-stability nodes. Scenario C3 shows a typical non-synchronous
state in which the primary node is not among the two strongly desynchronized nodes.
These are located in a an adjacent dead end.

Finally, scenario D represents all non-synchronous states in which more than two
nodes are strongly desynchronized. It turns out that these nodes are always located
in dead trees. The respective percentages are 9.4% for poor-stability nodes and 0.5%
for fair-stability nodes.

To sum up, 86.8% of large perturbations that hit fair-stability nodes and lead to
a non-synchronous state can only strongly desynchronize the node primarily affected
(scenario A). In contrast, 99.9% of large perturbations that hit poor-stability nodes
and lead to a non-synchronous state involve the strong desynchronization of nodes in
a nearby dead end (scenarios B1-3, C1-3, D).

This analysis suggests that poor-stability nodes are so unstable because of the dead
trees adjacent to them. Indeed, the statistics confirm that nodes adjacent to dead
trees are much less stable than non-adjacent nodes (Fig. 4.10d).

Note that these findings are consistent with what we observed for the 8-node grid
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studied in Sections 4.2.2, 4.2.3. There, we measured fair stability values for nodes 1,
2, 4, 5, 6, and 7. None of these six nodes is located inside of or adjacent to a dead
tree. For all of them, the most relevant non-synchronous state turned out to be the
yellow state (cf. Figs. 4.6a,b,d-g), which corresponds to scenario A in Fig. 4.11.

In contrast, we measured poor stability values for nodes 3 and 8, which are both
either located inside of or adjacent to a dead end. For node 3, the most relevant non-
synchronous states are the orange state, corresponding to scenario B3, and the red
state, corresponding to scenario C1 (cf. Fig. 4.6c). For node 8, apart from the orange
and the red state, the black state is important (cf. Fig. 4.6h), which corresponds to
scenario D in Fig. 4.11. The yellow state, or scenario A, has no relevance for these
two nodes.
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Figure 4.11: Statistics on non-synchronous states in the power grid ensem-
ble. Scenarios A, B1-B3 sketch different typical non-synchronous states
from the ensemble simulations. In each scenario, the dark grey node suf-
fers a large perturbation. In the resulting non-synchronous state, nodes
marked with a +, − or 0 have their frequency ω wiggling around +P/α,
−P/α, or 0, respectively, as indicated by the depicted time series. The
red (grey) percentage under each scenario gives the share of desynchro-
nizing large perturbations that hit nodes with poor (fair) stability and
produce a non-synchronous state similar to the one sketched. Figure
published in [Menck et al., 2013b].
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Figure 4.11: Statistics on non-synchronous states in the power grid ensem-
ble (continued). Scenarios C1-C3 and D sketch different typical non-
synchronous states from the ensemble simulations. In each scenario,
the dark grey node suffers a large perturbation. In the resulting non-
synchronous state, nodes marked with a +, − or 0 have their frequency
ω wiggling around +P/α, −P/α, or 0, respectively, as indicated by the
depicted time series. The red (grey) percentage under each scenario gives
the share of desynchronizing large perturbations that hit nodes with poor
(fair) stability and produce a non-synchronous state similar to the one
sketched. Figure published in [Menck et al., 2013b].
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4 Structure and stability of power grids

4.4 Case study: power grid of Northern Europe
In the preceding sections we observed that dead ends and, more generally, dead trees
have devastating effects on the synchronous state’s stability against perturbations
hitting nearby nodes. These results emerged from simulations in networks that were
randomly generated and hence had somewhat artificial topologies. Indeed, the only
network property that we tuned to be realistic was the average degree. To see whether
the results carry over to real-world topologies, we now perform a case study of the
Northern European power grid [Menck et al., 2013b].

The transmission part of this grid is shown in Fig. 4.12. As before, we investigate
it using the model equations

θ̇i = ωi

ω̇i = −αiωi + Pi −
N

j=1
Kij sin(θi − θj)

and, as our focus are the effects of the topology, simplify other details, setting αi = α
for all i and Kij = Kji = K if nodes i and j are connected and Kij = 0 otherwise. Fur-
thermore, we impose a random load scenario with only two types of nodes, randomly
choosing N/2 net generators with Pi = +P and N/2 net consumers with Pi = −P .
The load scenario shown in Fig. 4.12 is a typical outcome of this procedure.

The colour-scale in Fig. 4.12 indicates how large a node’s basin stability is. Appar-
ently, dead trees have the same strongly weakening effect as in the artificial ensemble
grids. Indeed, all poor-stability nodes are either located inside of or adjacent to a
dead tree. To check whether ‘healing’ of these appendices benefits stability, we add
transmission lines in a parsimonious way.

To be specific, for each dead tree we identify the node in the grid that has the
minimum Euclidean distance to any node inside the tree (but is not itself part of or
adjacent to the tree). Add a transmission line between this node and the tree node it
is so close to. Repetition of this step until all dead trees have been ‘healed’ yields 27
extra lines (marked red in Fig. 4.13).

The insets in Fig. 4.13 demonstrate that line addition substantially enhances the
synchronous state’s stability. Indeed, all nodes that previously showed poor basin
stability have improved to at least fair stability.
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4.4 Case study: power grid of Northern Europe

Figure 4.12: Northern European power grid. The grid has N = 236 nodes and
E = 320 transmission lines. The load scenario was chosen randomly,
with squares (circles) depicting N/2 net consumers with Pi = −P (net
generators with Pi = +P ). The colour scale indicates how large a node’s
basin stability Si is. The simulation parameters, α = 0.1, P = 1, and
K = 8, imply the simplifying assumptions that all generators in the grid
are of the same making and that all transmission lines are of the same
voltage and impedance. These assumptions enable us to focus on the
effects of the wiring topology (see Section 4.6.1). Figure published in
[Menck et al., 2013b].
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4 Structure and stability of power grids

Figure 4.13: ‘Healed’ Northern European power grid. Shown is the same grid
as in Fig. 4.12 with N = 236 nodes, to whose originally E = 320 trans-
mission lines further 27 lines have been added to ‘heal’ dead trees (see
text). New lines are coloured red. As before, squares (circles) depict N/2
net consumers with Pi = −P (net generators with Pi = +P ). The colour
scale indicates how large a node’s basin stability Si is (computed after
addition of new transmission lines). Insets I-III show the basin stability
values before line addition. Simulation parameters: α = 0.1, P = 1, and
K = 8 (see Section 4.6.1). Figure published in [Menck et al., 2013b].
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4.5 Conclusions and outlook

We have investigated the stability of power grids by means of a component-wise ver-
sion of basin stability, assigning to each node of a grid a number called single-node
basin stability that measures how stable the grid’s synchronous state is against large
perturbations hitting that node. Of the many functional aspects that presumably
matter for grid stability, we have focussed on the influence the network topology has.
Our statistical analysis of an ensemble of artificially generated power grids produced a
clear message: The widespread and cheapest of all connection schemes, namely dead
ends and dead trees, do serious harm to grid stability. A case study of the Northern
European power grid confirmed this result and demonstrated that the inverse state-
ment is also true: ‘Healing’ dead ends by means of some extra transmission lines
substantially enhances stability.

These findings imply that, in today’s power grids, special control equipment should
better be at hand in the proximity of dead ends. In the design of future power grids,
dead ends should be avoided altogether.

The detrimental effect of dead ends provides an alternative explanation for an in-
tricate recent observation. Rohden et al. [2012] studied how a power grid’s stability
against a particular large perturbation changes as the grid’s supply structure becomes
increasingly decentralized. They found that the more decentralized a grid is, the
smaller is its stability. In the process of decentralization they applied, large power
plants were replaced by ten small plants each. Crucially, these new small plants were
connected to the grid as dead ends. Our findings imply that decentralization schemes
avoiding dead ends could be less harmful to power grid stability. Future work should
investigate that.

Several more research questions arise from our results. In particular:
(i) We assumed unweighted networks, in which the transfer capacities of all trans-

mission lines are equal. Investigating the effects of link weights on grid stability could
be a worthwhile project.

(ii) Similarly, we placed only two types of nodes in our power grids: net genera-
tors and net consumers. Extending our study to multiple kinds of nodes would be
important.

(iii) We studied grid stability against large perturbations that afflict a single node.
This could straightforwardly be extended to multi-node perturbations.

(iv) We only investigated uniform distributions of large perturbations. Realistic
distributions of perturbations might be hard to obtain, but would certainly benefit
the understanding of power grid stability.

(v) Basin stability only captures the volumes of basins. However, as illustrated
in Fig. 4.6, there may also be other stability-related characteristics of basins such as
their possible fractality that might deserve research effort.

Finally, the single-node version of basin stability used here may be a helpful tool
for investigations into other multistable complex systems, including ecosystems [May,
1977; Gross et al., 2009] and gene regulatory networks [Huang and Ingber, 2007].
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4.6 Supporting material

4.6.1 Model parameters

Recall the more explicit version of the model equations, which reads

θ̇i = ωi

Miωrω̇i = Li − Diωi −
N

j=1
YijViVj sin(θi − θj)

where θi, ωi, and Vi are the phase, angular frequency, and magnitude of the voltage
vector at generator i, measured in a frame of reference that co-rotates with the grid’s
rated frequency ωr. Furthermore, Mi is the (cumulative) moment of inertia of the
turbine(s) rotating at node i, Li is the net power input, and Di is the damping constant.
Finally, Y is the admittance matrix that represents high-voltage transmission lines,
with Yij = 1/Xij if there is a line between nodes i and j and Yij = 0 otherwise.
The model incorporates frequency dynamics based on the balance of active power,
but neglects voltage dynamics on the assumption of perfect reactive power control.
Negligence of the interaction between the two parts of the power balance is called the
decoupling assumption in power grid engineering.

In both the ensemble study (cf. Section 4.3) and the case study of the Northern
European power grid (cf. Section 4.4), we choose the model parameters as follows. As
we seek to focus on the effects of the (unweighted) topology, we assume that: (i) All
generators are of the same making, so that Mi = M and Di = D for all i; (ii) the
voltage level is the same everywhere, so that Vi = V for all i; (iii) all transmission
lines have the same reactance, so that Xij = X if there is a line between i and j.
Furthermore, we impose a load scenario in which half of the nodes are randomly
selected to be net generators with Li = L > 0 and the other half are net consumers
with Li = −L. This choice satisfies the synchronization condition of total generated
power being equal to total consumed power,


i Li = 0.

We specify a load scenario by setting L = 200 MW and choose as the transmission
capacity V 2/X = 1, 600 MW, which corresponds [Spring, 2003] to a 400 km long line
at a voltage of 380 kV. Furthermore, we set M = 40 · 103 kg m2, which amounts to
assuming the inertia of a 400 MW power plant at each node [Horowitz and Phadke,
2008]. Note that the average installed generation capacity per node in the Northern
European high-voltage transmission grid is indeed 400 MW (amounting to a total of
96 GW) [ENTSO-E, 2011].

For the simplified model

θ̇i = ωi

ω̇i = −αωi + Pi −
N

j=1
Kij sin(θi − θj)

together with ωr = 2π · 50 Hz ≈ 314.59 · 1/s these settings give P = L/(Mωr) ≈
16 · 1/s2 and K = (V 2/X)/(Mωr) ≈ 128 · 1/s2. 1/α is the decay time of elec-
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tromechanical transients induced by large perturbations and is typically of the order
[Machowski et al., 2008] 1 - 10 s. Here we choose α = 0.4 · 1/s so that 1/α = 2.5 s.
Finally, we measure time in units of 0.25 s, so that in our simulations P = 1, K = 8
and α = 0.1. Note that the Northern Grid configuration shown in Fig. 4.12 can cope
with up to P = 1.86 at K = 8, so that our setting P = 1 can be considered a modest
load scenario.

4.6.2 Parameter sensitivity
In general, one observes that single-node basin stability increases in the simulated
power grids when the damping constant α or the transmission capacity K increases.
However, our main finding is retained: Nodes adjacent to (or inside of) dead trees
typically reveal stability values that are significantly below the average stability of non-
adjacent nodes. This is illustrated in Fig. 4.14 which displays another basin stability
study of the Northern European transmission grid that is based on the parameters
α = 0.2 (doubled compared to before), P = 1.6 and K = 8.

4.6.3 Numerical methods
For all the numerical simulations of power grids, we employed a fourth-order Runge-
Kutta algorithm, integrating for 60.000 steps with step size τ = 0.01. If very long
transients were detected, we increased the number of steps up to 960.000.
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Figure 4.14: Supplement: Northern European power grid with increased
damping. The grid has N = 236 nodes and E = 320 transmission
lines. The load scenario is, topologically, the same as in Fig. 4.12, with
squares (circles) depicting N/2 net consumers with Pi = −P (net gen-
erators with Pi = +P ). The colour scale indicates how large a node’s
basin stability Si is. Here, we use different simulation parameters than
for Fig. 4.12: α = 0.2 (doubled), P = 1.6, and K = 8. Whereas in gen-
eral grid stability increases compared to Fig. 4.12 (note the many white
nodes), nodes adjacent to (or inside of) tree-like appendices still typically
have significantly lower Si than non-adjacent nodes. Figure published in
[Menck et al., 2013b].
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All the investigations reported in this thesis were motivated by the question how the
stability of a power grid depends on the network topology. The conceptual equipment
I have employed to address this question mainly consisted of complex network theory
and its tools to characterize the topology of networked systems, and of basin stability,
a nonlocal stability concept based on the basin’s volume that allows to quantify how
stable an attractor is against non-small perturbations.

It may not be obvious that there should be a significant relationship between network
properties, which derive from a finite set of numbers stored in the adjacency matrix,
and basin stability, a function of a high-dimensional geometrical object with positive
volume. Yet some interesting results have turned up. Let me briefly summarize the
main contributions of this thesis.

Summary

Although volumes of basins of attraction have been investigated before, including in
the literature on complex networks [Wiley et al., 2006], I am not aware of any study
that uses the stability interpretation I have employed here. The observation underlying
this interpretation is that the volume of a basin can be understood as an expression
of the likelihood that a system returns to a given attractor after having been hit by
a random – possibly non-small – perturbation. This observation may appear rather
straightforward, and it would thus be surprising if the stability interpretation had
really not been used so far. But in this case, and although it can certainly be refined
in many ways, basin stability could be considered a new stability concept.

In any case, this thesis contains several conceptual advances regarding the applica-
bility of basin stability. First of all, I have set it into the context of dynamical systems
theory, thereby endowing it with a firm theoretical basis that allows to explore its ad-
vantages and disadvantages. Basin stability can be used to quantify by a number
SB ∈ [0, 1] the stability of a (weak) attractor in the middle ground between instability
(SB = 0) and global stability (SB = 1). An important result I obtained is that the
numerical costs for estimating basin stability are relatively low and, importantly, do
not depend on the system’s dimension. In addition, I found evidence that the es-
timation procedure works properly even when fractal basin boundaries are present.
Furthermore, there is also a component-wise version of basin stability that may be
particularly helpful for investigations into networked systems. These advantages make
basin stability a widely applicable tool.

In any particular application, an issue that will have to be addressed is that basin
stability requires the choice of a probability density of perturbations in state space.
Whereas any choice can help to deepen the understanding of certain aspects of a
system’s behaviour, the freedom of choice may give rise to unwelcome ambiguities.
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A possible drawback of basin stability is that it may be very hard to infer any infor-
mation on it from observational data. In particular, I observed that there is no clear
relationship with the small-perturbation convergence rate, a local-stability indicator
popular in complex systems science [Scheffer et al., 2009].

I have applied basin stability to scrutinize the influence of network topology on power
grid stability once in an abstract and once in a more applied way. In the abstract
approach, I have contemplated topological conditions for stable synchronization on
general complex networks and observed that optimization for local stability and op-
timization for nonlocal stability can require completely different properties from a
dynamical system. This may seem natural from a mathematical point of view. Yet
one might have hoped that the often easy-to-use methods of local stability could serve
as dependable proxies for the nonlocal variety, too – which they do not.

More specifically, I have approached the long-standing puzzle of networks science
that synchronizing networks from the real world such as power grids and neural net-
works are so different from what previous theory predicts. To be optimally synchroniz-
able, these networks should possess random topologies according to the local-stability-
based findings of Hong et al. [2004]. But they are actually structured in a small-world
fashion that, from the Watts-Strogatz model’s perspective [Watts and Strogatz, 1998],
is comparatively regular. I found in a study of networks of chaotic Rössler oscillators
that basin stability improves markedly the more regular a topology is. I therefore
conjecture a solution to the mentioned puzzle: During the evolution of synchronizing
networks, the optimization for local stability and the simultaneous optimization for
nonlocal stability have acted as opposing forces. Their struggle ended in a topological
compromise: small-worldness.

In the more applied approach, I have finally analyzed a power grid model from the en-
gineering literature and investigated the influence that the network-related properties
of single components may have on the stability of the whole grid. For this purpose,
I defined a single-node version of basin stability and employed it to a large ensemble
of artificially generated power grids. The statistical analysis of the ensemble unveiled
several clear relationships between nodal network properties and grid stability that
all support one main finding: The widespread and cheapest of all connection schemes,
so-called dead ends and dead trees, strongly reduce stability. I found this result con-
firmed in a case study of the Northern European power system, and established that
the inverse is also true: ‘Healing’ of dead ends by addition of transmission lines sub-
stantially increases stability. This suggests a fundamental design principle for future
power grids: Add just a few more lines to avoid dead ends.

As a conclusion, I believe that I have managed to collect some parts of an answer to
the overarching question of this thesis how the stability of a power grid is influenced
by the network topology.
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Research outlook
Several new questions derive from the results presented here that could serve as start-
ing points for future research. Regarding the development of novel conceptual ap-
proaches, it is an open problem how reliable information on nonlocal stability can be
gathered from observational data. As discussed above, the small-perturbation conver-
gence rate – suggested as a warning-signal for the loss of local stability [Scheffer et al.,
2009] – may fail to signal anything when a basin of attraction contracts. It could be
an interesting undertaking to try to spot traces of changing basin stability in time
series.

Another important issue mentioned above is that basin stability depends on the
choice of a probability density of perturbations. Whereas any choice may lead to
intriguing insights into a system’s dynamics, one might attempt to find methods for
choosing the probability density in a realistic way – albeit it is highly unclear what
‘realistic’ would mean.

Additional questions arise from my investigations into synchronization on complex
networks, in which I studied only one type of systems of chaotic oscillators coupled
through undirected, unweighted links. Against the backdrop of this rather narrow fo-
cus, it may appear rather bold that I have conjectured a solution to the long-standing
puzzle of networks science about the small-worldness of synchronizable real-world
networks. In the best sense of Popper [1963], future research could try to refute my
conjecture, for instance by comparing the topological requirements of local stability
and nonlocal stability under other circumstances. Particularly, it could be investi-
gated whether usage of a proper model of neural networks or power grids would yield
results that agree or disagree with my findings.

Also regarding the concrete application of basin stability to power grids my work has
produced several open problems. I used a model on which I imposed several simplifi-
cations in order to have a maximally clear view on the effects of the network topology
on grid stability. Specifically, I allowed only two types of nodes, consumers and gen-
erators, and completely neglected any diversity inside these groups. Furthermore,
I assumed all transmission lines to have identical properties, thus disregarding the
different voltage levels, conductor types and line lengths characteristic of real-world
grids. It could be a worthwhile project to study how the stability of a power grid is
actually affected by such inhomogeneities.

Apart from that, it might be exciting to extend the single-node version of basin
stability used here to a multi-node version. This extension should be straightforward.

Finally, basin stability now stands ready as an aide for model-based investigations into
all kinds of multistable systems, such as the human brain [Babloyantz and Destexhe,
1986; Lytton, 2008], coupled lasers [Erzgräber et al., 2005], multi-species ecosystems
[May, 1977; Gross et al., 2009], gene regulatory networks [Huang and Ingber, 2007;
Cookson et al., 2009], and climatic tipping elements [Rahmstorf, 1995; Da Silveira
Lobo Sternberg, 2001; Lenton et al., 2008].
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Computational resources

Many of the results presented in this thesis are based on numerical simulations. The
programmes used for these simulations were developed by the author, written in the
language C++, and were run on the cluster computer at Potsdam-Institute for Climate
Impact Research.

Analysis tools employed included the igraph package [Csardi and Nepusz, 2006]
and several scripts in the languages R, Perl or Bash developed by the author. The
Figures were generated and edited using gnuplot and Inkscape. Data on real-world
networks was kindly provided by the research group of Prof. Dr. Dr. h.c. mult. Jürgen
Kurths.

Derivation of the conceptual Amazonian vegetation model

To motivate the simple growth equation that we use in Section 2.5, we here review the
equilibrium model of Amazonian vegetation presented in Da Silveira Lobo Sternberg
[2001]. Consider a region of the Amazon basin that is subdivided into cells having
different dry season (d.s.) precipitation requirements for forest establishment. Assume
that the frequency of cells whose d.s. precipitation requirement is p follows a normal
distribution,

f(p) = 1
σ

√
2π

e− (p−µ)2

2σ2 (1)

with mean µ and standard deviation σ. Then the relative forest cover C in the region
is related to the region’s average d.s. precipitation P through

C(P ) =
 P

0
f(p)dp. (2)

Forest cover increases overall precipitation because trees take up water stored in the
soil and release it to the atmosphere via evapotranspiration. The total amount of d.s.
precipitation in the region can therefore be expressed as

P (C) = Pin + C · Φ, (3)

where Pin is the precipitation inflow from other regions and Φ is the contribution of
one unit of forest cover to overall precipitation. An arid region is characterized by low
Pin.

Now imagine that the region has a certain level of forest cover Cbefore before global
climatic climate change alters Pin. How will C change? A pictorial answer is given in
Fig. 1.
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Figure 1: Equilibrium model of Amazonian vegetation. The solid green line
represents equilibrium forest cover C at d.s. precipitation P . The dashed
black line is the overall d.s. precipitation P as a function of C. Step-
stair sequences are shown for two different initial values of forest cover.
Reproduced from Da Silveira Lobo Sternberg [2001] .

The solid green line represents equilibrium forest cover C at d.s. precipitation P ,
cf. Eq. (2). The dashed black line is the overall d.s. precipitation P at forest cover C,
cf. Eq. (3). If Cbefore = C1, forest cover is above the critical threshold Ccrit, so that
P can support even more trees. Hence C grows, therefore P increases, upon which C
grows further, and so on. Finally, due to this positive feedback loop, C is propelled
towards 1.0. If, on the contrary, Cbefore = C2, forest cover is below Ccrit. Forest cover
at this level cannot be supported by P , starts to die back, again triggers a positive
feedback loop, and eventually vanishes completely.
We describe the growth dynamics using the Levins model [Levins, 1969], a widely
accepted basic vegetation model [Tilman, 1994], to which we add a non-smooth switch
in the growth term (corresponding to the limit σ ≪ Φ):

dC

dt
= F (C) =


r(1 − C) C − x C if C > Ccrit,

−x C if C < Ccrit.

According to this model, forest cover C grows with the saturating rate r if C > Ccrit
and dies with rate x (assuming r > x > 0). This model has two equilibria, the forest
state CF = 1 − x

r and the savanna state CS = 0. The equilibrium CF (resp. CS) exists
and is stable if CF > Ccrit (resp. Ccrit > 0). So, as in the equilibrium model reviewed
above, C converges to a non-zero constant value if C > Ccrit and vanishes completely
otherwise. When increasing aridity drives up Ccrit: i) CF’s basin of attraction of
shrinks, implying that CF becomes less stable against perturbations such as strong
deforestation (cf. Fig. 2.12). ii) CF vanishes at Ccrit = CF.
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Our model is conceptual. We do not intend it to serve as a description of reality.
Rather, we use it as a reality-inspired aide to theory to illustrate the difference between
the realm of small perturbations and the realm of non-small perturbations. This
difference manifests itself in two phenomena:

i) As the linear stability coefficient of the forest state, F ′(CF) = x − r, is a constant
independent of Ccrit, critical slowing down does not take place. This is reflected by a
zero recovery exponent [Kuehn, 2011]. Indeed, critical slowing down may be absent
in systems in which strong non-linearities such as switches exist.

ii) More important to us, because of their local nature, linear stability and the
small-perturbation convergence rate do not sense that CF’s basin of attraction of
shrinks as Ccrit goes up. Dakos et al. [2008] write that “transitions caused by a
sudden large disturbance without a preceding gradual loss of [stability against non-
small perturbations]1 will not be announced by slowing down.” On top of that, our
model shows that slowing down may be absent even if such a gradual loss of stability
is going on.

We conclude from this that linear stability and the small-perturbation convergence
rate are unreliable proxies of how stable a state is against non-small perturbations.
Instead of employing such local proxies, one should study global stability concepts like
basin stability. The same conclusions can be drawn from the study of a basic damped
driven pendulum (see Section 2.3.3).

1The original term they use is “resilience”, refering to Holling’s concept discussed in the main text.
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Adjacency matrix. A ◃network’s adjacency matrix is a matrix representation of
this network. See Section 3.2.

Attractor. Two notions of attractor are distinguished in this text. A ◃strong at-
tractor is a compact ◃minimal invariant set that is asymptotically stable. A ◃weak
attractor is a compact minimal invariant set whose ◃basin of attraction has a positive
volume (Lebesgue measure). Whenever the attribute weak or strong is omitted, the
term attractor refers to a weak attractor.

Average shortest-path length. The average shortest-path length of a ◃network is
the average length of the ◃shortest paths between all ◃nodes in the network. For a
rigorous definition, see Section 3.2.

Basin of attraction. The basin of attraction of a compact ◃minimal invariant set
is the set of ◃states in a ◃dynamical system’s ◃state space from which the system
◃converges to this minimal invariant set.

Basin stability. Basin stability is a ◃nonlocal stability concept based on the volume
(Lebesgue measure) of the ◃basin of attraction of a compact ◃minimal invariant set.
It is rigorously defined in Section 2.3.

Betweenness. See ◃shortest-path betweenness.

Bifurcation. A bifurcation refers to a qualitative change in the ◃local stability of a
compact ◃minimal invariant set.

Clustering coefficient. The clustering coefficient of a ◃node refers to the number
of its ◃neighbours that are also neighbours. The clustering coefficient of a ◃network is
the average of its nodal clustering coefficients. For a rigorous definition, see Section
3.2.

Complete synchronization. See ◃synchronization.

Component. See ◃network component.

Connected network. A ◃network is called connected if the set of all its ◃nodes is a
◃connected set.

107



Glossary

Connected set. A set of ◃nodes of a ◃network is called connected if there is a ◃path
along the ◃edges of the network between any two ◃nodes inside this set.

Convergence. A ◃trajectory of a ◃dynamical system converges to a compact ◃minimal
invariant set in this system’s ◃state space if, loosly speaking, the trajectory comes ever
closer to this set as time proceeds. A formal definition is provided in Section 2.1.

Dead end. A dead end is a ◃dead tree whose ◃nodes’ maximum ◃degree is at most 2.

Dead tree. A dead tree in a ◃network is a ◃connected set of ◃nodes none of which is
contained in a closed ◃loop of ◃edges.

Degree. The degree of a ◃node is the number of nodes to which this node is linked
by an ◃edge.

Design. Design refers to the same as ◃network topology.

Divergence. A ◃trajectory of a ◃dynamical system is said to diverge if it ◃converges
to the point at infinity. See Section 2.3.

Dynamical regime. Dynamical regime is vague term meant to capture the long-
term behaviour observed in a natural system. When a natural system is modelled as
a ◃dynamical system, ◃attractors are the analogues of a dynamical regimes.

Dynamical system. A dynamical system in this text is defined as a set of determin-
istic differential equations. All dynamical systems investigated here are dissipative.
See definitions in Section 2.1.

Edge. An edge between two ◃nodes of a ◃network captures a direct relation between
these nodes. As additional information, an edge may carry a weight or a direction.
For details and examples, see Section 3.2.

Laplacian matrix. A ◃network’s Laplacian matrix is a matrix representation of this
◃network. See Section 3.2.

Local stability. See ◃stability.

Link. A link is the same as an ◃edge.

Loop. A loop in a ◃network is a ◃path that runs through a single ◃node more than
once without hopping along the same ◃edge more than once.

Lyapunov exponents. Lyapunov exponents are a tool for assessing the ◃local sta-
bility of a compact ◃minimal invariant set.
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Minimal invariant set. A minimal invariant set in a ◃system’s ◃state space does
not change as time progresses. A formal definition is provided in Section 2.1.

Multistability. A ◃dynamical system is said to be multistable if there are multiple
◃attractors in its ◃state space.

Neighbour. A ◃node in a ◃network is the neighbour of another node, if there exists
an ◃edge between these two nodes.

Network. A network is a set of ◃nodes whose interrelations are captured by a set of
◃edges. For details and examples, see Section 3.2.

Network component. Network component is an umbrella term and refers to a
◃node or ◃edge of a ◃network.

Network design. Network design refers to the same as ◃network topology.

Network structure. Network structure refers to the same as ◃network topology.

Network topology. Network topology labels the observation of how ◃edges and
◃nodes of a ◃network are organized. It can be seen as incorporating any information
about a network that can be obtained by application of an analysis technique. As-
pects of a network’s topology include its ◃average shortest-path length, its ◃clustering
coefficient, and the ◃degrees of its nodes.

Node. Nodes are symbols for concrete or abstract objects whose interrelations are
described by means of a ◃network. They can represent various different entities, in-
cluding power generators, human beings, self-sustained oscillators or airports.

Nonlocal stability. See ◃stability.

Path. A path between two ◃nodes A and B on a network refers to an ordered set of
◃edges by which node B can be reached from node A. For details and examples, see
Section 3.2.

Perturbation. A perturbation is understood as a sudden shift in a ◃system’s ◃state
space from one ◃state to another, so-called ◃perturbed state. The ◃stability of a com-
pact ◃minimal invariant set against ◃small perturbations can be assessed using ◃local
stability methods. In contrast, the stability against ◃large perturbations requires ap-
plication of ◃nonlocal stability methods.

Perturbed state. A perturbed state is the result of a ◃perturbation.
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Glossary

Phase. The phase of (a component of) a ◃dynamical system refers to the position on
an oscillatory cycle at a certain moment in time.

Power. Power labels the rate at which energy is produced or consumed. In AC
power grids„ power has an active and a reactive component. Whenever the attribute
is omitted, power refers to active power in this text.

Regime transition. A regime transition refers to the change of a natural system from
one ◃dynamical regime to another. When a natural system is modelled as a ◃dynamical
system, a regime transition corresponds to the transition from one ◃attractor to an-
other. This can be induced by a ◃bifurcation, in which an attractor loses its ◃local
stability. In ◃multistable systems, another possible cause of transition is a ◃large per-
turbation that pushes the system from one attractor into the ◃basin of attraction of
another attractor.

Self-sustained oscillator. A self-sustained oscillator is a ◃dynamical system whose
dynamics evolve at a characteristic internal frequency when isolated from its surround-
ings.

Short cut. Short cut refers to a new ◃edge whose addition to a ◃network significantly
shortens the length of one or more ◃shortest paths.

Shortest path. A shortest path between two ◃nodes A and B in a ◃network is a path
along a minimum number of ◃edges. For details and examples, see Section 3.2.

Shortest-path betweenness. The shortest-path betweenness of a ◃node is the num-
ber of ◃shortest paths in a ◃network that run through this node. For a rigorous defi-
nition, see Section 3.2.

Small-worldness. A ◃network is said to have the small-world property if it has a com-
paratively small ◃average shortest-path length and a comparatively large ◃clustering
coefficient. See Sections 3.3.4 and 3.4.2.

Stability. A fundamental distinction is made in this thesis between ◃local stabil-
ity concepts and ◃nonlocal stability concepts. A compact ◃minimal invariant set of
a ◃dynamical system is said to be asymptotically stable – or as a synonym: locally
stable – if the system returns to this set after small ◃perturbations. Details and def-
initions can be found in Section 2.2. In contrast, nonlocal stability concepts address
the question whether system returns to a compact minimal invariant set after large
perturbations. See definitions in Section 2.3.

State. The state of a (deterministic) ◃dynamical system contains the complete infor-
mation about this system at a given point in time.

State space. ◃State space refers to the set of possible ◃states a ◃dynamical system
may assume.
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Strong attractor. See ◃attractor.

Structure. Structure refers to the same as ◃network topology.

Synchronizability. Synchronizability is a measure based on ◃local stability that as-
sesses the ability of a ◃network to support the ◃synchronous operation of its
◃components. See Section 3.3.3 for a rigorous definition.

Synchronization. Synchronization refers to the observation that two or more ◃self-
sustained oscillators have their dynamics evolving at the same frequency. For identical
chaotic oscillators, ◃complete synchronization means that these oscillators show ex-
actly the same dynamics.

Synchronous state. This term refers to a compact ◃minimal invariant set of a
multi-component ◃dynamical system in which the dynamics of the components show
◃synchronization.

Topology. Topology refers to the same as ◃network topology.

Trajectory. A trajectory is a set of ◃states in a ◃dynamical system’s ◃state space
along which this system evolves in time.

Undirected network. An undirected network is a ◃network whose ◃edges carry no
direction.

Unweighted network. An unweighted network is a ◃network whose ◃edges carry no
weights.

Watts-Strogatz network. A Watts-Strogatz network is a ◃network that is randomly
generated according to the Watts-Strogatz algorithm [Watts and Strogatz, 1998]. See
Section 3.3.4.

Weak attractor. See ◃attractor.
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