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Abstract

The non-perturbative formulation of Quantumchromodynamics (QCD) on
a four dimensional space-time Euclidean lattice together with the finite size
techniques enable us to perform the renormalization of the QCD parame-
ters non-perturbati-vely. In order to obtain precise predictions from lattice
QCD, one needs to include the dynamical fermions into lattice QCD simula-
tions. We consider QCD with two and four mass degenerate flavors of O(a)
improved Wilson quarks.

In this thesis, we improve the existing determinations of the fundamental
parameters of two and four flavor QCD. In four flavor theory, we compute
the precise value of the Lambda parameter in the units of the scale Lmax de-
fined in the hadronic regime. We also give the precise determination of the
Schroedinger functional running coupling in four flavour theory and com-
pare it to the perturbative results. The Monte Carlo simulations of lattice
QCD within the Schroedinger Functional framework were performed with a
platform independent program package Schroedinger Funktional Mass Pre-
conditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this
project.

Finally, we compute the strange quark mass and the Lambda parameter in
two flavour theory, performing a well-controlled continuum limit and chiral
extrapolation. To achieve this, we developed a universal program package
for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid
Monte Carlo (MP-HMC), which we used to run large scale simulations on
small lattice spacings and on pion masses close to the physical value.
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Abstract

Die nicht perturbative Formulierung der Quantenchromodynamik (QCD)
auf dem vierdimensionalen euklidischen Gitter in Zusammenhang mit der
sogenannten Finite-Size-Scaling Methode ermoeglicht die nicht-perturbati-
ve Renormierung der QCD-Parameter. Um praezise Vorhersagen aus der
Gitter-QCD zu erhalten, ist es noetig, die dynamischen Fermion-Freiheits-
grade in den Gitter-QCD-Simulationen zu beruecksichtigen. Wir betrachten
QCD mit zwei und vier O(a)-verbesserten Wilson-Quark-Flavours, wobei
deren Masse degeneriert ist.

In dieser Dissertation verbessern wir die vorhandenen Bestimmungen des
fundamentalen Parameters der Zwei- und Vier-Flavor-QCD. In der Vier-Fla-
vor-Theorie berechnen wir den praezisen Wert des Lambda-Parameters in
Einheiten der Skale Lmax, welche im hadronischen Bereich definiert ist. Zu-
dem geben wir auch die praezise Bestimmung der laufenden Schoedinger-
Funktional-Kopplung in Vier-Flavor-Theorie an sowie deren Vergleich zu
perturbativen Resultaten. Die Monte-Carlo-Simulationen der Gitter-QCD
in der Schroedinger-Funktional-Formulierung wurden mittels der plattform-
unabhaengigen Software Schroedinger-Funktional-Mass-Preconditioned-
Hybrid-Monte-Carlo (SF-MP-HMC) durchgefuehrt, die als Teil dieses Pro-
jektes entwickelt wurde.

Schliesslich berechnen wir die Masse des Strange-Quarks und den Lam-
bda-Parameter in Zwei-Flavor-Theorie, wobei die voll-kontrollierte Konti-
nuums- und chirale Extrapolation zum physikalischen Punkt durchgefuehrt
wurden. Um dies zu erreichen, entwickeln wir eine universale Software fuer
Simulationen der zwei Wilson-Fermionen-Flavor mit periodischen Randbe-
dingungen, namens Mass-Preconditioned-Hybrid-Monte-Carlo (MP-HMC).
Die MP-HMC wird verwendet um Simulationen mit kleinen Gitterabstaen-
den und in der Naehe der physikalischen Pionmasse ausfuehrlich zu unter-
suchen.
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1 Introduction

There are four fundamental interactions in nature: gravitational, electromagnetic,
weak and strong. The Standard Model (SM) is the theory of elementary particles
that provides unified description of three of them: electromagnetic, weak and
strong nuclear interaction. It was developed throughout the last century and the
current formulation was completed in the mid 1970s upon experimental confir-
mation of the existence of quarks. High energy experiments in the last decades
found agreement with almost all predictions of the Standard Model. Even the
mechanism of the spontaneous breaking of the symmetry of the electroweak force
through which the quarks and leptons acquire their masses is confirmed, so far,
in the recent findings from the LHC experiments running at CERN[1, 2] and will
be tested more precisely as time goes on.

An important part of the Standard Model is the theory that describes strong
nuclear interaction - Quantum Chromodynamics (QCD). This theory with local
symmetry and only few parameters provides a description of strong interaction
phenomena from very small distances (high energies) to large distances (low en-
ergies). QCD postulates the existence of two types of fundamental strongly inter-
acting fields: quarks, as constituents of all nuclear matter, and gluons, as media-
tors of the interactions between the quarks. Gluons live in the adjoint representa-
tion of the SU(3) group, whereas quarks are in the fundamental SU(3) represen-
tation.

The strength of the gluon coupling to the quarks is parametrized with the di-
mensionless parameter g, which is subject to renormalization in the full quantum
theory. Let us define a quantity that measures the strength of the interaction
accounting for the energy dependence and call it a renormalized or physical cou-
pling g. The asymptotic expression of the corresponding strong coupling constant
αs, as a function of the scale μ, is given by [3]

αs(μ) =
g2(μ)

4π
=

1
4π

1
b0 ln(μ2/Λ2)

[
1 − b1

b2
0

ln(ln μ2/Λ2)

ln(μ2/Λ2)
+O

( 1
(ln(μ2/Λ2))2

)]
,

(1.1)

with b0 and b1 being universal constants

b0 =
1

(4π)2 (11 − 2
3

Nf), b1 =
1

(4π)4 (102 − 38
3

Nf). (1.2)
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1 Introduction

We quote here the two-loop coefficients[4, 5] that are independent of the renor-
malization scheme. The terms of O( 1

(ln(μ2/Λ2))2 ) are scheme dependent and will
be discussed later in this work. Λ denotes a low energy QCD scale at which the
above asymptotic expansion breaks and it can be seen as a fundamental QCD
parameter equivalent to the coupling itself. It is therefore also called the Lambda
parameter of QCD.

The logarithmic decay of the coupling αs reflects an important property of
QCD, which is referred to as asymptotic freedom[6, 7]. Namely, as one moves to-
wards higher energies, the coupling becomes increasingly weak and, in the region
above the GeV scale, a systematic perturbative expansion in powers of the cou-
pling is applicable and yields reliable results for the observables of interest in this
regime.

Another crucial aspect of QCD is that quarks and gluons cannot be observed
directly. This phenomenon is known as confinement. Quarks have never been ob-
served isolated, instead they always appear as constituents of bound-state hadrons.
All physical states are invariant with respect to the SU(3) group (color singlets).

At low energies, the QCD force becomes stronger. The associated increase in
coupling consequently renders the perturbative expansion not feasible. It is thus
necessary to develop the non-perturbative methods in order to study the low
energy properties of QCD.

A way to study QCD at all energy scales from first principles is to formulate
the theory on a four dimensional space-time Euclidean lattice, with lattice spac-
ing a. This approach to QCD is known under the name of lattice QCD. In lattice
QCD, the theory is regularized in a non-perturbative way and the inverse lattice
spacing naturally imposes a cutoff at a−1. Such a system can then be regarded
as a statistical physics model and techniques from statistical mechanics can be
applied. Since its original formulation in [8], lattice QCD has been a very pow-
erful tool to study QCD, especially its non-perturbative nature. Due to the large
number of degrees of freedom arising from the discretization of space-time, in
practice, QCD on the lattice is mainly studied by means of computer simulations.

In the early days of lattice QCD simulations, the dynamical quark effects were
neglected. Namely, lattice QCD simulations get computationally very expensive
if the quark dynamics are directly incorporated in the numerical calculations. The
reason why the dynamical fermion simulations are so costly is the non-locality of
the fermion determinant and the so-called critical slowing down. The latter refers to
an increase in computational effort while approaching critical points of a theory,
beyond the naive scaling with the number of degrees of freedom of the system.
To ensure the efficiency and correctness of the required dynamical fermion simu-
lations, lattice QCD is closely related to the theoretical development and practical
implementation of suitable Monte Carlo algorithms and high performance com-
puters.
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In this work, lattice QCD will be used to make non-perturbative predictions of
QCD parameters in the low energy sector of QCD and to connect this sector to
the perturbative high energy regime. The non-perturbative formulation of QCD
on the lattice in combination with the finite size techniques, which will be dis-
cussed later in more detail, enable us to perform the renormalization of the QCD
parameters non-perturbatively. One could wonder why this is needed. Namely,
besides the fact that the QCD coupling becomes weak in ultraviolet, the asymp-
totic freedom also implies that the bare coupling goes to zero in the continuum
limit. One would then naively expect to be able to compute the QCD parameters
as power series in the bare coupling g2

0 → 0, while approaching the continuum
limit a → 0. However, this is not feasible due to the following practical point:
if one wants to invest a realistic computational effort, even with modern super-
computers, there is a clear limit to the number of degrees of freedom that can be
included in a simulation. This practical limitation does not allow us to choose a
lattice spacing for the simulation that is much smaller than the relevant physical
scales of the observable that we are interested in. Therefore, the momentum scale
a−1 is not always large enough to justify the truncation of the perturbative series.
Hence, if one wants to obtain reliable non-perturbative predictions in the low-
energy sector of QCD, the renormalization should be done non-perturbatively as
well.

The mentioned agreement of the SM with the experiment indicates that the new
physics can only be hiding in relatively small effects beyond the Standard Model.
Accordingly, precision theory is needed to test the Standard Model in even more
detail. Lattice QCD, with its tools for non-perturbative renormalization, allows
for a precise determination of the fundamental parameters of QCD from static
experimental data, e.g. the kaon decay constant, fK, and a few flavored pseu-
doscalar meson masses.

Computation of the fundamental QCD parameters has been a topic of intensive
study for many lattice QCD collaborations (see for example [9–14]1). Over the last
two decades, the ALPHA Collaboration[16], of which the author of this work is a
member, has been devoted to the precise calculation of fundamental QCD param-
eters [17–21] by employing the recursive finite size technique. The application of
this technique had been proposed and demonstrated in Refs.[22, 23]. Presently,
there is no alternative approach that can guarantee to reach reliable and precise
numbers, while keeping systematic errors fully under control.

The application of non-perturbative renormalization in determining the funda-
mental parameters of QCD is the main motivation of this work. The importance
of the precise determination of the fundamental QCD parameters will be demon-
strated here with the example of the Lambda parameter. In Table 1.1 both non-
perturbative and perturbative estimations of the value of the Lambda parameter

1 The list of references is taken over from the latest PDG[15].
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1 Introduction

Nf Λ Experiment Theory
0 238(19) mK, K→μνμ, ; K→πμνμ LGT, LPHAA

Collaboration [19]
2 310(25) mK, K→μνμ, ; K→πμνμ LGT, LPHAA

Collaboration [24]

5 160(11) DIS, HERA, . . . NNLO PT, fits to PDFs [25]
5 198(16) DIS, HERA, . . . NNLO PT, fits to PDFs [26]
5 275(57) e+e− → hadrons, LEP 4-loop PT at MZ

Table 1.1: Determination of the Lambda parameter from lattice gauge theory
(Nf = 0 and Nf = 2) by the ALPHA Collaboration and perturbation
theory estimations with different experimental input, for Nf = 5. For
comparison, all given values of Λ are converted to the MS renormal-
ization scheme. The first two rows indicate strong dependence of the
Lambda parameter on the number of dynamical flavors in lattice simu-
lations. The three results for ΛMS(Nf = 5) obtained from perturbation
theory disagree among themselves by more than one standard devia-
tion.

are shown. The present precision for Nf = 2, achieved by our collaboration, is
already comparable with the phenomenological determinations - if not better.

Previous determinations of the Lambda parameter from lattice QCD show a
significant dependence on the number of dynamical quark flavors in the simu-
lation (cf. Nf = 0 and Nf = 2 in Table 1.1). Therefore, it was very important to
complete the program of the determination of the fundamental lattice parameters
for Nf = 2 (one of the focuses of this thesis) and to make progress towards com-
pleting the precise computation for Nf = 4 dynamical flavors, which may then
be perturbatively connected to e.g. 5-flavor MS coupling. That would give a final
and most precise theoretical estimate of the Lambda parameter and resolve the
discrepancy of its current phenomenological estimations (cf. Table 1.1). The goal
of this work is to

• Give a final result for the strange quark mass and the Lambda parameter in
two flavour theory, performing a well-controlled continuum limit and chiral
extrapolation. To achieve this, we will have to develop a universal program
package for simulating two flavours of Wilson fermions, which will need to
run large scale simulations on small lattice spacings a on pion masses close
to the physical value.

• Give a more precise determination of the running coupling in four flavour
theory then it was done in [21]. For the successful realization of this part, a
development of a dedicated program package is also needed.

4



This work reports on significant progress that has been made on both of these
fronts. It is organized as follows: In the succeeding chapter, we give a brief in-
troduction to the formulation of QCD on the lattice. After discussing the fermion
formulation used in this work, namely Wilson fermions, we will explain the O(a)
improvement which is an important ingredient of our study. In the third chapter,
we introduce the most frequently used algorithm for lattice QCD simulations, the
Hybrid Monte Carlo (HMC) algorithm. In this chapter we also discuss the algo-
rithmic advances that made the simulations including fermions at near-physical
quark masses and small lattice spacings possible, the so-called preconditioning
of the HMC algorithm.

Chapter 4 deals with our implementation of the mass preconditioned HMC
algorithm (MP-HMC program package). This chapter describes the algorithmic
choices we made in order to speed up of the simulations with O(a) improved
Wilson quarks.

Next, we give the theoretical foundations of the Schrödinger functional (SF)
renormalization scheme on the lattice, which allows for a fully non-perturbative
renormalization of QCD to be performed. For the purpose of computing the run-
ning of the coupling in the SF renormalization scheme, we develop an extension
of the MP-HMC algorithm with SF boundary conditions (SF-MP-HMC) and de-
scribe its main features at the end of the Chapter 5.

In Chapter 6 we discuss the energy dependence of the QCD coupling with four
flavors of O(a) improved Wilson quarks in the Schrödinger functional scheme.
In order to convert the obtained results to physical units, one has to determine
the lattice spacing in the large scale simulations with four flavors of dynamical
fermions. Performing this procedure systematically for Nf = 4 theory is beyond
the scope of this thesis and requires the commitment of a large team of lattice
physicists in the following years. Therefore, in Chapter 7, we illustrate the pro-
cess of determining the fundamental parameters of QCD with the example of the
Nf = 2 theory. The summary and outlook of this work are given in Chapter 8.
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2 Quantum Chromodynamics on the
Lattice

If one wants to solve the path integrals in theories with a large number of de-
grees of freedom, such as QCD, then applying numerical methods is a natural
way to go. The numerical evaluation cannot be used for the vacuum expectation
values (v.e.v.) of the products of fields in Minkowski space, since the oscillations
of the complex weight in this formulation make the stochastic evaluation impos-
sible. On the other hand, the formulation of the set of axioms that describe the
correlation functions in Euclidean space by Osterwalder and Schrader [27, 28]
has allowed for an analytic continuation of the Minkowski v.e.v. to the Euclidean
Green function. After the continuation to imaginary time, the functional integral
is interpreted as an average of the Euclidean field configuration space. The v.e.v.
of a two point function is then given by

〈φ1(x1)φ2(x2)〉 =
1
Z

∫
[Dφ]φ1(x1)φ2(x2)e−SE[φ]. (2.1)

The weight in this integral can be interpreted as the Boltzmann probability e−SE[φ]

of the classical Euclidean action SE[φ], whereas Z represents the partition func-
tion of the same statistical system

Z =
∫
[Dφ]e−SE[φ]. (2.2)

The details of performing the above integrations numerically, with the help of
Monte Carlo simulations, will be discussed in chapter 3. We mentioned it here in
order to motivate the exclusive usage of the Euclidean formulation throughout
this work. Therefore, in the following the superscript “E” will be omitted and all
the expressions that we are about to give are defined in the Euclidean space-time.

After a brief reminder of the (Euclidean) continuum QCD action and its prop-
erties, in this chapter we give a short introduction into the lattice formulation of
QCD, with a focus on the discretization proposed by Wilson[8]. For detailed in-
sight into the subject and many different discretization approaches that are not
covered here, we refer the reader to the following textbooks [29–33] and reviews
[34–36].
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2 Quantum Chromodynamics on the Lattice

2.1 Continuum QCD

The action of QCD in the continuum is given by

SQCD[ψ, ψ, A] = SF[ψ, ψ, A] + SG[A] (2.3)

=
Nf

∑
f=1

∫
d4xψ

( f )
(x)(γμ(∂μ + iAμ(x)) + m( f ))ψ( f )(x)

+
1
4

8

∑
i=1

∫
d4xF(i)

μν (x)F(i)
μν (x), (2.4)

where ψ( f ) and ψ
( f ) describe the quark and antiquark fields at the space-time po-

sition x, coupled to the gauge field Aμ through minimal coupling. Quarks are
spin 1/2 particles and have 12 independent components (4 Dirac × 3 color com-
ponents). The flavor index runs from 1 to the number of quark flavors Nf and the
mass of the corresponding quarks is denoted with m( f ). QCD postulates six fla-
vors of quarks: up, down, strange, charm, bottom and top. For the computation
of many observables, it is often enough to include a certain number (Nf) of the
lightest quarks. For example, when we take into account only the dynamical ef-
fects of u and d quarks, we are talking about the Nf = 2 approximation of QCD,
which will in the following be referred to simply as the Nf = 2 theory, etc.

The local gauge symmetry group of QCD is the non-Abelian color group SU(3).
Local rotations in color space Ω(x) ∈ SU(3) give the transformation law for color
fields at each space-time point x

ψ(x) → ψ′(x) = Ω(x)ψ(x), ψ(x) → ψ
′
(x) = ψ(x)Ω†(x). (2.5)

The gauge principle requires that the action and the measure for ψ and ψ is invari-
ant under the gauge group transformation. This request is equivalent to defining
the covariant derivative

Dμ(x) = ∂μ + iAμ(x) (2.6)

and, as the name says, imposing its invariance under the local gauge transforma-
tions

D′
μ → Dμ(x) = ∂μ + iA′

μ(x) = Ω(x)Dμ(x)Ω†(x). (2.7)

From eq. 2.7 we can derive the transformation law for the gauge fields in contin-
uum

Aμ(x) → A′
μ(x) = Ω(x)Aμ(x)Ω†(x) + i(∂μΩ(x))Ω†(x). (2.8)

8



2.2 Lattice formulation of QCD

In addition to the obtained local gauge invariance of the fermion part of the con-
tinuum QCD action, we have to make sure that the gauge part of the action has
the same property. This is achieved by defining the field strength tensor Fμν(x)
from eq. 2.4 as the commutator of covariant derivatives

Fμν = −i[Dμ(x)Dν(x)]. (2.9)

It can be verified with a simple manipulation that

Fμν(x) → F′
μν(x) = Ω(x)FμνΩ−1(x). (2.10)

and therefore the full QCD action given in equation 2.4 satisfies the equivalence

SQCD[ψ, ψ, A] = SQCD[ψ
′, ψ

′, A′] (2.11)

under the transformations given in equations 2.5 and 2.8. The commutation rela-
tions of the γμ matrices and their representation used in this thesis are given in
appendix 1.

2.2 Lattice formulation of QCD

One way to regularize QCD is to formulate it on a four dimensional space-time
Euclidean lattice. The four dimensional space-time continuum gets replaced by
a hyper-cubic discrete grid of points with finite distance a, the lattice spacing. The
quark and antiquark fields are restricted to the sites of the discretized space-time
lattice xμ = anμ, nμ = 0, 1, . . . , Nμ − 1, μ = 0, . . . , 3, where the convention of
using the zeroth direction as the time is introduced and Nμ denotes the num-
ber of lattice points in the direction μ. As well as in the continuum formulation,
quark and antiquark fields ψ(x) and ψ(x) carry color, Dirac and flavor indices.
The regularization parameter a−1 serves as a momentum cutoff that modifies the
theory at short distances and renders UV divergences finite. The introduction of
the finite lattice spacing a breaks some symmetries, but we already try to keep as
many as possible in the discretized theory. For example, the rotational symmetry
obviously gets replaced by a hyper-cubic symmetry and the original symmetry is
recovered in the continuum limit a → 0, i.e. when the cutoff is removed. On the
other hand, we are able to retain the local gauge invariance in the lattice formula-
tion. Following a similar reasoning as for the construction of the gauge invariant
action in the continuum QCD, we achieve the local SU(3) invariance through an
adequate introduction of the gluon fields. Derivatives on the lattice become finite
difference operators. Let us use μ̂ to denote a unit vector in the direction μ. We
can define the forward and backward gauge invariant derivatives acting on the

9



2 Quantum Chromodynamics on the Lattice

ψ(y) ψ(y)
y

Uμ(x)

U–μ(x+μ̂)

U–μ(x)

Uμ(x–μ̂)
x

UP(y, μν)

y

V (d)
μν (r)

r

V (u)
μν (s)

s

ν̂

μ̂

z

U(z, μν)U(z, ν–μ)

U(z, –ν–μ) U(z, –νμ)

Figure 2.1: Illustration of the two dimensional lattice, with characteristic objects
that are addressed in sections 2.2 and 2.3. Fermion fields are placed
in the lattice points, while the gauge fields (links) connect the neigh-
boring lattice points. In the lower left angle we have plaquette - an
elementary loop on the lattice. The upper right corner contains the so-
called clover contribution to the fermion action, which is introduced in
section 2.5.
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2.2 Lattice formulation of QCD

fermion fields on the lattice in the following way

∇μψ(x) =
1
a
[Uμ(x)ψ(x + μ̂)− ψ(x)], (2.12)

∇∗
μψ(x) =

1
a
[ψ(x)− U−1

μ (x − μ̂)ψ(x − μ̂)], (2.13)

where Uμ(x) represents the parallel transporter of the field ψ(x + μ̂) along the
link that connects it to ψ(x). One can easily verify that this choice of the deriva-
tives ensures that the quark fields transform under eq. 2.5 in the same way if the
link parallel transporter Uμ(x) has the following transformation property

Uμ(x) → U′
μ(x) = Ω(x)Uμ(x)Ω†(x + μ̂). (2.14)

Uμ(x) is an SU(3) matrix assigned to the segment that connects neighboring sites
on the lattice: x and x + μ̂. In Figure 2.1, we illustrate the gauge links and their
property

Uμ(x) = U†
−μ(x + μ̂), Uμ(x − μ̂) = U†

−μ(x), (2.15)

together with some other objects that they can form on the lattice, which will be
used in the subsequent sections. The relation between the matrix representation
of the parallel transporters and the continuum gauge field is given by

Uμ(x) = P{ea
∫ 1

0 dtAμ(x+(1−t)aμ̂)} (2.16)

= 1 + aAμ(x) + O(a2). (2.17)

where P preserves path-ordering of the exponentials, needed in the case of non-
Abelian gauge groups, such as SU(3).

11



2 Quantum Chromodynamics on the Lattice

2.3 Pure gauge action on the lattice

A gauge invariant action on the lattice was first put forward by Wilson[8]. For
the discretized action, we need a local object defined on the lattice that is gauge
invariant at the same time. The most simple choice is the so called plaquette
variable which is the oriented product of parallel transporters around an elemen-
tary square on the lattice

UP(x, μν) = Uμ(x)Uν(x + μ̂)U−1
μ (x + ν̂)U−1

ν (x). (2.18)

The plaquette variable is depicted in the lower left corner of Figure 2.1. The
Wilson gauge action (also known as the Wilson plaquette action) is then given by

SW [U] = β ∑
x

∑
μν,μ 	=ν

SP(UP(x, μν))

SP(UP) = 1 − 1
3

Re TrUP.
(2.19)

where the summation is done over all plaquettes and β = 2N/g2
0 for the SU(N) gauge

group. In the case of the color gauge group SU(3) of QCD, we have β = 6/g2
0. It

can be shown that the Wilson gauge action reduces to the continuum Yang-Mills
action in the naive continuum limit a → 0, with the discretization errors of O(a2)

SG[U] =
a4

2g2
0

∑
x

∑
μν

TrF2
μν(x) + O(a2). (2.20)

This is the simplest gauge invariant discretization of the QCD action. In princi-
ple, it is possible to construct the gauge invariant action using arbitrary closed
loops. However, one must make sure that it is appropriately averaged over all
orientations and space-time translations, such that it reproduces the space-time
symmetries when the continuum limit a → 0 is taken. All such actions will differ
only at the order O(a2). It is also possible to use the linear combination of differ-
ently shaped closed loops, such that the leading cutoff effects are canceled. This
is known as the construction of the improved actions and although we will exclu-
sively use the discussed Wilson formulation of the gauge action in this work (eq.
2.19), we use a similar strategy for improving the fermion action in section 2.5.

2.4 Wilson discretization of the fermion action

Before we discuss the lattice discretization of fermion action used in this work, let
us take a quick look at some general issues that the discretization of the fermion
action faces. A simple way to regularize the Dirac operator is the so-called naive

12



2.4 Wilson discretization of the fermion action

discretization of fermions on a lattice. One replaces the partial derivatives from
the fermion part of QCD action (cf. eq. 2.4) with the symmetric combination of
finite differences defined in eq. 2.13 and obtains

Snaive
F = a4 ∑

x
ψ(x)(γμ

∇μ +∇∗
μ

2
+ m)ψ(x), (2.21)

where m denotes the bare quark mass from the original Lagrangian. It turned
out that it is a highly non-trivial problem to regularize the Dirac operator in
a way that preserves the chiral symmetry without violating other fundamental
field theoretic properties, such as locality. In order to simplify the following con-
siderations, we will first discuss the discretization of the Dirac operator on the
case of the free Dirac particle. If we replace Uμ(x) with the trivial gauge fields
Uμ(x) = 1l, the covariant derivatives ∇μ,∇∗

μ become naive lattice derivatives
∇̃μ, ∇̃∗

μ:

∇̃μψ(x) =
1
a
[ψ(x + μ̂)− ψ(x)], (2.22)

∇̃∗
μψ(x) =

1
a
[ψ(x)− ψ(x − μ̂)], . (2.23)

The free Dirac propagator in momentum space then reads

D(p)−1 = [
i
a ∑

μ

γμ sin(pμa) + m]−1 (2.24)

=
m − i

a ∑μ γμ sin(pμa)
m2 + a−2 ∑μ sin(apμ)2 , (2.25)

where the quantized momenta pμ ∈ [−π/a, π/a] are restricted to the first Bril-
louin zone of the lattice. It is particularly interesting to look at the case when the
fermion becomes massless (m = 0). In this case the propagator in momentum
space has the correct continuum limit for fixed momenta

D(p)−1 =
− i

a ∑μ γμ sin(pμa)
a−2 ∑μ sin(apμ)2 a → 0−−−→

−i ∑μ γμ pμ

p2 . (2.26)

The continuum propagator in momentum space has a single pole at the origin,
which corresponds to the fermion described by the continuum Dirac equation.
On the other hand, the lattice propagator from eq. 2.26 has 15 additional unphys-
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2 Quantum Chromodynamics on the Lattice

ical poles:

p = (π/a, 0, 0, 0), (0, π/a, 0, 0), (0, 0, π/a, 0), . . . , (π/a, π/a, π/a, π/a). (2.27)

which are also known as fermion doublers. They represent contributions that are
pure lattice artifacts and have no continuum analog. Even though the above ar-
gument holds for the free theory, due to the fact that the interacting theory is con-
sidered to be asymptotically free, we also expect the appearance of doublers in
full QCD. The doubling was better understood after the formation of the Nielsen
Ninomiya no-go theorem [37–39]. The theorem assumes some general properties of
the lattice fermion action, such as unitarity, locality of action, symmetry under
the cubic group and chiral symmetry in the continuum and then claim that the
spectrum of free fermions is never going to be free of doublers. The reason why
e.g. chiral symmetry is violated at the quantum level is the emergence of anoma-
lies and this violation is related to topological properties of QCD. Namely, the
Nielsen Ninomiya theorem implies that with the presence of fermion doublers
there are as many states of positive chirality as of those with negative chirality,
which render the theory anomaly-free and which is not in agreement with phe-
nomenology.

One way to avoid the fermion doublers is to break the corresponding symme-
try. Wilson’s proposal does exactly that: an irrelevant (Wilson-) term is added to
the naive fermion action (eq. 2.21), defining the Wilson-Dirac operator in position
space

DW =
1
2 ∑

μ

{γμ(∇∗
μ +∇μ)− ra∇∗

μ∇μ}. (2.28)

The Wilson term is proportional to a, therefore it vanishes in the continuum limit.
On the other hand, due to the additional term, the mass contribution to the dou-
blers is proportional to the cutoff (2r/a). This can again be deducted from the free
propagator in momentum space

D(p)−1 = [m +
i
a

γμ sin(apμ) + r
2
a

sin2(
a
2

pμ)]
−1. (2.29)

We see that the Wilson term does not change the low energy spectrum of the
theory - it disappears for components with p close to zero. The choice of the
Wilson parameter r = 1 is most often used, which removes all the doublers at the
same time. After these considerations, we give the Wilson fermion action for Nf

14



2.4 Wilson discretization of the fermion action

flavors, corresponding to the definition of the Dirac operator in equation 2.28

SF = a4
Nf

∑
f=1

∑
x

ψ
( f )

(x)(DW + m( f ))ψ( f )(x). (2.30)

A direct consequence of the explicit chiral symmetry breaking due to the Wilson
term is the increase of discretization errors to O(a). Nevertheless, the conver-
gence rate to the continuum limit of O(a2) can be restored in a systematic way.
This systematic improvement of the convergence will be discussed in section 2.5.
Finally, let us just note that, as predicted in the Nielsen-Ninomiya theorem, the
Wilson term has a trivial Dirac structure.
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2 Quantum Chromodynamics on the Lattice

2.5 O(a) improved action

In the previous two sections, we have introduced Wilson’s original formulation
of lattice QCD. The leading lattice corrections of the Wilson gauge action are of
the order O(a2), while the lattice artifacts contribute to the Wilson fermion action
already at the order of O(a). These discretization errors vanish in the continuum
limit a → 0. However, performing lattice calculations towards the continuum
limit is a non-trivial task and a higher rate of convergence to the continuum limit
is advantageous.

Following the Symanzik improvement program [40, 41] it is possible to in-
crease, order by order, the action’s rate of convergence to the continuum limit
and in a similar manner, the operators of interest. This is achieved by adding
irrelevant operators, i.e. operators of a dimension larger than four, to the lat-
tice Lagrangian. With properly chosen coefficients, the additional terms serve as
counterterms to the leading order cutoff dependence and therefore speed up the
convergence to the continuum limit. These coefficients are easily determined at
the tree level of perturbation theory, but their determination on the higher loop
level is more demanding. Symanzik argued that, when the lattice spacing is small
enough, the lattice regularized theory is equivalent to a continuum theory with
an effective action in powers of the lattice spacing a

Se f f = S0 + aS1 + a2S2 + . . . , Sk =
∫

d4xLk(x), (2.31)

where the terms Lk are linear combinations of local gauge-invariant composite
fields. Additionally, these terms respect the exact symmetries of lattice theory
and have canonical dimension1 4 + k. For the O(a) improvement of the lattice
QCD action with Wilson fermions a possible basis of dimension-5 operators of
fields for the Lagrangian L1 contains

O1 = ψσμνFμνψ, (2.32)

O2 = ψDμDμψ + ψD∗
μD∗

μψ, (2.33)

O3 = mTrFμνFμν, (2.34)

O4 = m{ψγμDμψ − ψD∗
μγμψ}, (2.35)

O5 = m2ψψ, (2.36)

where σμν = i[γμ, γν]/2. For the on-shell O(a) improvement of the considered
action, we can employ the field equations to reduce the number of basis fields
in the effective Lagrangian. The cancellation of the effects of action S1 in the

1In the convention used here the explicit powers of the quark mass m are included in the dimen-
sion counting.
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2.5 O(a) improved action

effective theory in the on-shell amplitudes can be achieved by adding lattice rep-
resentatives of the terms O1, O3 and O5 to the unimproved lattice Lagrangian.
The argumentation for the elimination of operators O2 and O4 is that, by using
the field equations, one can express these operators as functions of O1, O3 and
O5. The coefficients of the remaining three operators are the functions of the bare
coupling g0 only. We leave the discussion of suitable improvement conditions
for chapters 5 and 6. However, note here that fields O3 and O5 already appear
in the unimproved theory and thus merely lead to a reparametrization of bare
parameters g0 and m0. The relevance of these terms in connection with mass-
less renormalization schemes is discussed in Ref. [42]. Finally, it turns out that a
single independent dimension-5 operator O1 is sufficient to obtain the O(a) im-
provement term for the Wilson fermion action,

SSW[U, ψ, ψ] = a5cSW(g0)∑
x

∑
μν

ψ(x)
i
4

σμν F̂μνψ(x). (2.37)

Here F̂μν represents the lattice version of the field strength tensor introduced by
Sheikholeslami and Wohlert

F̂μν(x) =
1

8a2{Qμν(x)− Qνμ(x)}, (2.38)

Qμν(x) = Uμ(x)Uν(x + μ̂)U−1
μ (x + ν̂)U−1

ν (x) (2.39)

+ Uν(x)U−1
μ (x − μ̂ + ν̂)U−1

ν (x − μ̂)Uμ(x − μ̂) (2.40)

+ U−1
μ (x − μ̂)U−1

ν (x − μ̂ − ν̂)Uμ(x − μ − ν̂)Uν(x − ν̂) (2.41)

+ U−1
ν (x − ν̂)Uμ(x − ν̂Uν(x + μ − ν̂)U−1

μ (x) (2.42)

and cSW is the coefficient that has to be tuned such that the O(a) improvement is
achieved. The lattice object Qμν which enters the Sheikholeslami-Wohlert term is
depicted in the upper right corner of Figure 2.1. In order to perform all steps of
O(a) improvement non-perturbatively, one should determine cSW in lattice sim-
ulations. The existing determinations of cSW for different numbers of fermion
flavors[21, 43–45] are given in Table 2.1. In all of these determinations, the Wilson
plaquette action was used in the gauge sector.

The Symanzik improvement program is rarely applied to fermion actions with
lattice artifacts beyond O(a). Namely, the next step in the improvement would
require including dimension-6 operators in the leading correction term of the ef-
fective action and the four fermion operators would appear among them. This
causes technical difficulties, since the standard procedure for simulating dynam-
ical fermions, which will be discussed in section 3.7, can only be applied to an ac-
tion with fermion field bilinears. In order to simulate an action with four fermion
operators, one has to introduce auxiliary fields [46].
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2 Quantum Chromodynamics on the Lattice

cNf=0
SW =

1−0.656g2
0−0.152g4

0−0.054g6
0

1−0.922g2
0

0 ≤ g2
0 ≤ 1 [43]

cNf=2
SW =

1−0.45.g2
0−0.175g4

0+0.012g6
0+0.045g8

0
1−0.720g2

0
0 ≤ g2

0 ≤ 6/5.4 [44]

cNf=3
SW =

1−0.19478g2
0−0.110781g4

0−0.230239g6
0+0.137401g8

0
1−0.460685g2

0
0 ≤ g2

0 ≤ 6/5.2 [45]

cNf=4
SW =

1−0.1372g2
0−0.1641g4

0+0.1679g6
0

1−0.4031g2
0

0 ≤ g2
0 ≤ 6/5.0 [21]

Table 2.1: Non-perturbative determinations of the Sheikholeslami-Wohlert coeffi-
cient cSW for different number of dynamical quark flavors Nf. All of the
given estimations were obtained using the Wilson plaquette action in
the gauge sector.

Here we have outlined the procedure for obtaining the action of choice for the
work that will be presented in the following chapters. However, to fully retain
an O(a2) convergence to the continuum limit, the improvement of the action has
to be followed by the improvement of the operators. We leave the discussion of
additional work that still needs to be done in this respect for chapter 5.

2.6 Renormalization

We have previously chosen the ultraviolet regulator of the theory to be the lattice
spacing a and now wish to obtain the physical observables from the quantities
computed on the lattice. Before being able to achieve that, one first has to renor-
malize the theory. For further discussion, we choose to use a mass-independent
renormalization scheme. Also, we initially suppose that the bare parameters of
the Lagrangian m and g get multiplicatively renormalized by

g2 = g2Zg(g2, aμ), (2.43)

m = mZm(g2, aμ), (2.44)

where the renormalization factors do not depend on the quark mass.
Let us now consider a physical (renormalized) quantity Q. Its measurement

should not depend on the renormalization scale μ, but only on the renormalized
parameters of the theory, g and m. Therefore, the result has to be renormalization
scale invariant, or in short

d
dμ

Q(g(μ), m(μ), μ) ≡ 0. (2.45)
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This differential equation gives us the Renormalization Group Equation (RGE)

{
μ

∂

∂μ
+ β(g)

∂

∂g
+ τ(g)m

∂

∂m
+ γQ(g)

}
Q(g(μ), m(μ), μ) ≡ 0. (2.46)

The β-function is, up to normalization, the anomalous dimension of the coupling
constant, while the behavior of m and Q under a rescaling is contained in the τ
and γQ functions respectively.

From eq. 2.46, we can deduce the formal definition of the β- and τ-function
which will be relevant for the following discussion

β(g) = μ
∂g
∂μ

, (2.47)

τ(g) =
μ

m
∂m
∂μ

. (2.48)

Finally, γQ is the anomalous dimension of Q

γQ(g) = − μ

ZQ

∂ZQ
∂μ

, (2.49)

with Z being the corresponding renormalization constant (Q = ZQQ), which
connects the renormalized observable Q and the bare observable Q.

The definition of the functions β, τ and γQ does not depend on perturbation
theory. On the other hand, if one wants to solve the RGE, a choice of a specific
renormalization scheme is needed and the anomalous dimensions then become
dependent on that scheme. In QCD, the β-function describes the scale depen-
dence of the strong coupling constant, αs in a given scheme (cf. chapter 1). The
β-function has the asymptotic expansion

β(g)
g→0
= −g3(b0 + b1g2 + b2g4 + . . . ). (2.50)

The β-function is usually quoted in a minimal subtraction (MS) renormalization
scheme. The coefficients of the expansion in eq. 2.50 have been computed in the
MS scheme up to four loops so far [47], where the first two coefficients are unique
for all mass independent renormalization schemes

b0 =
11 − 2

3 Nf

(4π)2 , b1 =
102 − 38

3 Nf

(4π)4 . (2.51)
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2 Quantum Chromodynamics on the Lattice

The value of the succeeding coefficient in MS scheme reads [48]

bMS
2 =

(2857
2 − 5033

18 Nf +
325
54 N2

f )

(4π)6 (2.52)

Another renormalization scheme relevant for this work, which will be defined in
chapter 5 is the Schrödinger functional renormalization scheme. The two loop
coefficient in this scheme is computed in Ref. [49]

bSF
2 =

0.483(7)− 0.275(5)Nf + 0.0361(5)N2
f − 0.00175(1)N3

f
(4π)3 . (2.53)

The coefficients from equations 2.51, 2.52 are computed in the given references
for an arbitrary number of colors, but the results we have quoted above are, for
simplicity, given for the theory with three color degrees of freedom. Eq. 2.53
is computed for the case Nc = 3 only. The Λ parameter of QCD, previously
introduced in chapter 1, is actually the integration constant required for solving
the first order differential equation 2.47. It is renormalization group invariant (RGI)
quantity, i.e. it does not depend on the renormalization scale μ

Λ = μ(b0g2(μ)
)− b1

2b2
0 e

− 1
2b0g2(μ) e

−
∫ g(μ)

0 { 1
β(x)+

1
b0x3 −

b1
b2
0x
}
. (2.54)

On the other hand, Λ is renormalization scheme dependent and the exact relation
between the two mass independent schemes is obtained through a 1-loop compu-
tation. We give here as an example the relation between the Lambda parameters
in the Schrödinger functional scheme with Nf = 2 and the MS scheme, which
will be used later in this work

Λ(2)
MS

= 2.382035(3)Λ(2)
SF . (2.55)

Similarly to the case of the β-function, by formally integrating eq. 2.48 we obtain,
for small couplings, the asymptotic expansion of the τ-function

τ(g)
g→0
= −g2(d0 + d1g2 + d2g4 + . . . ). (2.56)

For this expansion, only the 1-loop coefficient is universal

d0 =
8

(4π)2 . (2.57)

The corresponding integration constant for solving eq. 2.48 is the so-called RGI
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invariant quark mass, given by

M = m(μ)(2b0g2(μ)
)− d0

2b0 e−
∫ g(μ)

0 { τ(g)
β(g)−

d0
b0g}. (2.58)

The above RGI invariant mass is both scale and renormalization scheme inde-
pendent. This quantity exists for each quark flavor separately and in the fol-
lowing considerations we will take the Λ parameter and the RGI quark masses
M1, . . . MNf as fundamental parameters of QCD.

2.6.1 Renormalization of Wilson fermions

We now proceed to consider the renormalization of the unimproved Wilson the-
ory, introduced in section 2.4. The chiral symmetry breaking of Wilson fermions
requires an additional additive mass renormalization. Therefore, for Wilson fermions
eq. 2.44 gets replaced with

m = mqZm(g2, aμ), mq = m − mcr, (2.59)

where mcr represents the (bare) critical quark mass and takes the value of the lattice
cutoff a−1 multiplied by a function of the bare coupling g. The so-called bare
subtracted quark mass mq defines the deviation from the critical line, i. e. the line
where the renormalized quark mass vanishes

mq = 0, or equivalently mcr = m. (2.60)

After the condition 2.60 has been fulfilled, the only remaining parameters are the
couplings. Therefore, the critical line is parametrized by the bare coupling g. The
estimation of mcr(g) will be further addressed in chapter 5. It has to be performed
with the help of lattice simulations, although starting guidelines may be obtained
from perturbation theory.

2.7 Continuum limit

Finally, we give some practical remarks about the extrapolation to the continuum
limit, a → 0. As already mentioned, performing the continuum limit in lattice
QCD is a very important but, at the same time, very difficult topic. In order to
obtain the continuum result for the quantity of interest, one has to compute this
quantity several times at different values of the lattice spacing, and then extrap-
olate to a = 0 following the line of constant physics. Performing lattice QCD
simulations at small lattice spacings is limited by the increasing computational
costs. The reason for this is the slowing down of all currently known simulation
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2 Quantum Chromodynamics on the Lattice

programs for lattice QCD with periodic boundary conditions at the rate of a−5 or
even a larger power of a−1 (see Ref. [50]). The usual range of lattice spacings for
modern lattice simulations is 0.05fm ≤ a ≤ 0.1fm. Due to the aforementioned
critical slowing down, simulating at smaller lattice spacings is not possible with
the currently known algorithms for QCD. Given the above constraint on the range
of lattice spacings that can be simulated, if one wants to ensure that the correct
continuum limit is reached, a thorough theoretical understanding of the way that
the continuum limit is approached is needed. We will extend this discussion fur-
ther in chapter 7.
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3 Lattice QCD Simulations

In the first decade of lattice QCD, the simulations were fairly limited by the ne-
cessity to neglect the quark contributions, which represent a significant compu-
tational challenge. Lattice QCD simulations with this approximation are usually
denoted as quenched computations. Although already very successful in the early
eighties at predicting the correct order of magnitude of some very important QCD
quantities, precision calculations with this approximation were not within reach.
Only after the introduction of the Hybrid Monte Carlo algorithm [51] could the
fermionic degrees of freedom be simulated on the lattice and up to the present
no alternative algorithm for successful fermion simulations has proven better in
practice. We will introduce in this chapter some basic techniques of numerical
simulations with the final goal of discussing the Hybrid Monte Carlo algorithm
(HMC). Afterwards, we discuss a number of optimizations for the HMC algo-
rithm that were crucial for making lattice QCD a precision tool and made it pos-
sible to obtain a number of original predictions of QCD observables from the
lattice simulations, including the final results of this thesis.

3.1 Importance sampling

Importance sampling is a general technique for variance reduction in Monte Carlo
simulations and we will illustrate it here on a simple example of the lattice quan-
tum field theory with only bosonic fields. A partition function of this theory in
the functional integral formalism has the form

Z =
∫
[dφ]e−S(φ), [dφ] = ∏

x
dφ(x), (3.1)

where S(φ) is the action and φ(x) a bosonic field on lattice site x. [dφ] denotes
the integration over the values of the field on all lattice sites x. The expectation
value of the observable A is then computed as an average with respect to the
Boltzmann weight factor e−S(φ)

A =
1
Z

∫
[dφ]A(φ)e−S(φ). (3.2)
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3 Lattice QCD Simulations

The vast computation of multidimensional integrals needed for quantum field
theory simulations on the lattice is numerically very demanding and it is per-
formed using a variety of importance sampling methods. These are designed
to select a sufficiently complete subset of points {φ(k), k = 1 . . . Ncf} in the inte-
gration domain, such that the ratio of integrals is well-estimated on the subset.
The value of the field on all sample points of this subset will in the following be
denoted as field configuration.

3.2 The Monte Carlo method and the Metropolis
algorithm

The goal of Monte Carlo importance sampling is to approximate the integral 3.2
by sampling a relatively small number of random field configurations Ncf with
an appropriate weight factor. Namely, the Monte Carlo method generates a se-
quence of Ncf configurations φ(k), such that the probability distribution reads

P(φ) ∝ e−S(φ) (3.3)

and that this distribution is positive. The v. e. v. of an observable is then given
by the average over the sample configurations

〈A〉 = 1
Ncf

Ncf

∑
k=1

A(φ(k)) (3.4)

in the limit Ncf → ∞. The Monte Carlo method starts from an initial configura-
tion and perform a sequence of random updates in the field values such that the
desired probability distribution is approached. These random updates are pre-
scribed in such a way that the sequence of probability distributions φ(0), φ(1), . . .
becomes a Markov chain. Similarly to statistical mechanics, the probability dis-
tribution to which this chain converges is called the equilibrium distribution and
the process of reaching it is called thermalization. The expectation value of the
observable is then evaluated after the distribution is suitably thermalized.

Let us denote the probability for a random transition φ → φ′ as R(φ′ ← φ). The
Markov chain denotes the sequence of probability distributions P(k)(φ), such that
the probability distribution P(k+1)(φ′) depends only on P(k)(φ)

P(k+1)(φ′) =
∫
[dφ]P(k)(φ)R(φ′ ← φ). (3.5)

The probabilities of φ′ being initial or final configuration in a random update have
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3.2 The Monte Carlo method and the Metropolis algorithm

to be equal, namely

∑
φ

R(φ′ ← φ)P(φ) = ∑
φ

R(φ ← φ′)P(φ′) (3.6)

The sum on the right-hand side is trivial and can be calculated explicitly by using
the normalization property of R

0 ≤ R(φ ← φ′) ≤ 1, ∑
φ

R(φ ← φ′) = 1. (3.7)

Therefore, the equilibrium distribution P(φ′) is a fixed point of the Markov pro-
cess

∑
φ

R(φ′ ← φ)P(φ) = P(φ′). (3.8)

(3.9)

The solution of the balance equation 3.6 can be obtained if the so called detailed
balance condition is fulfilled

R(φ′ ← φ)P(φ) = R(φ ← φ′)P(φ′). (3.10)

It is also important to note that for the correctness of the results obtained, it is
required for the Markov chain to be able to access all possible field configura-
tions. This property is called ergodicity. A sufficient condition for it to be fulfilled
is that the transition matrix R(φ′ → φ) is strictly positive, for all pairs of φ and
φ′. In realistic simulations, Monte Carlo updating algorithms often have prob-
lems connecting configurations with different topological sectors. In general, it is
not trivial to show for a certain update method that starting from any point in a
scheme leads to the unique, equilibrium distribution in the end. The transition
methods used in this work are tailored such that they are sufficiently robust and
that, for our choices or simulation parameters, the aimed distribution is always
achieved.

3.2.1 Metropolis algorithm

The Metropolis method is the simplest algorithm that satisfies the condition 3.10.
It makes a symmetrical proposal of an update φ → φ′ with the probability TP(φ

′ ←
φ) such that the reverse transition has the same probability

TP(φ
′ ← φ) = TP(φ ← φ′). (3.11)
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Next, a random number r is chosen from an uniform distribution on the real
interval [0, 1] and a proposal φ′ is accepted if

P(φ′) ≥ rP(φ). (3.12)

Taking 3.3 into account, the condition 3.12 can be rewritten as

e−S(φ′)

e−S(φ)
≥ r. (3.13)

In other words, the effect of the Metropolis condition 3.11 is that

1. If S(φ′) < S(φ), the update is always accepted.

2. Otherwise, the change is accepted if e−ΔS > r

The condition for accepting the proposed field configuration φ′ is referred to as
the accept/reject condition. If 3.13 is not satisfied and the update is rejected, the
old configuration is taken for the Markov chain and then a new attempt is made.
The challenge in constructing an efficient algorithm for fast simulations is to find
an a priori transition probability TP(φ

′ ← φ), such that the proposed states are
accepted with high probability and, at the same time, the moves in the phase
space are large.

In order to apply them in lattice QCD simulations, the above methods are gen-
eralised for gauge fields U ∈ SU(3). The expectation value of the QCD observable
O in a pure gauge theory is computed as

〈O〉 =
∫

D[U]O(U)e−SG[U]∫
D[U]e−SG[U]

, D[U] = ∏
x,μ

dU (3.14)

where dU is the integration measure for the link variables Uμ(x), which is invari-
ant under SU(3). We apply the described Monte Carlo method for generating a
set of gauge configurations U(k), with probability D[U]e−SG[U]. Then the observ-
able O can be estimated as an average over Ncf gauge configurations

〈O〉 = 1
Ncf

Ncf

∑
k=1

O(U(k)) + O(
1√
Ncf

). (3.15)

The second term refers to the statistical error, and its estimation is addressed in
Appendix 8. The probability to accept the gauge configuration U′ as the update
of configuration U, which satisfies the detailed balance condition 3.10 is given by

TA(U′ ← U) = min(1, e−ΔS), ΔS = S[U′]− S[U]. (3.16)
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3.3 Molecular Dynamics method

For the alternative Monte Carlo schemes that can be used for simulating pure
gauge theory, such as the Heath Bath algorithm and Overrelaxation, we point the
reader to the literature [29, 30].

3.3 Molecular Dynamics method

In 1982, Callaway and Rahman introduced a method that gives the desired sta-
tistical distribution by integrating classical equations of motion, known as the
Molecular dynamics (MD) method [52, 53]. In order to apply this method to a the-
ory with link variables in SU(3), one needs to add to the theory with gauge fields
in SU(3) the set of their canonical momenta variables, which take values in su(3)
algebra (cf. Appendix 2)

πμ(x) = ∑
a

πa
μ(x)Ta, πa

μ(x) ∈ R. (3.17)

The associated Hamiltonian of the extended theory is now given with

H(π, U) =
1
2
(π, π) + S(U), (3.18)

where (π, π) represents the scalar product on su(3) defined in Appendix 1. This
Hamiltonian defines classical evolution in fictitious molecular dynamics time (from
now on denoted by tMD) and its equations of motion1 are given by

π̇μ(x) = −∂H(π, U)

∂Uμ(x)
= Fμ(x) (3.19)

U̇μ(x) =
∂H(π, U)

∂πμ(x)
= πμ(x)Uμ(x). (3.20)

The dot in the above equations denotes the derivative with respect to molecular
dynamics time tMD, therefore the above equations are often referred to as molec-
ular dynamics equations. Equation 3.19 defines the molecular dynamics force Fμ(x).
Let us stress once more that the MD time tMD is completely unrelated to the time
coordinate of space-time. The solutions of the MD equations can be visualized as
trajectories through phase space parametrized by MD time [πtMD, UtMD ] and they
are uniquely defined by an initial choice of fields at MD time tMD = 0. It can
be easily shown that the introduction of the momenta fields does not change the

1As noted in [34], the derivatives with respect to the gauge links Uμ(x) are formally defined by
substituting Uμ(x) → ewa

μ(x)Ta
Uμ(x), differentiating with respect to the real variables wa

μ(x)
and setting wa

μ(x) = 0 at the end.
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physics content of the theory

e−S(U) = const. ×
∫

D[π]e−H(π,U). (3.21)

Therefore, the observable O (eq. 3.15) can be evaluated using the additional
molecular dynamics fields

〈O〉 =
∫

D[π]D[U]O(U)e−H(π,U)∫
D[π]D[U]e−H(π,U)

. (3.22)

3.4 Hybrid Monte Carlo Algorithm

For a fixed molecular dynamics trajectory length τ the Hamiltonian from eq. 3.18
does not remain a constant of motion, since the equations of motion can only be
approximately (numerically) integrated

ΔH = H(πτ, Uτ)−H(π, U) 	= 0. (3.23)

This inaccuracy can be fixed by applying the Metropolis accept/reject step at the
end of each MD trajectory. The method that combines the MD integration with
the Metropolis method in this way is known as the Hybrid Monte Carlo algo-
rithm (HMC). The motivation for constructing HMC was to find an algorithm
that would update the fields globally and allow large steps through the config-
uration space without introducing additional systematic errors. Although for-
mulated in the eighties [51], HMC is still the only known algorithm suitable for
simulating dynamical fermions.

The basic idea is to view the molecular dynamics trajectory from the starting
gauge field U(0) to the field at the end of the MD trajectory U(τ) as a transition
function for the Metropolis algorithm T((U′, π′) ← (U, π)). The HMC algorithm
is summarized in following steps:

1. Momentum fields π are randomly generated, with probability distribution
e

1
2 (π,π)

2. The MD equations of motion are numerically integrated from time tMD = 0
with initial values of the fields [π, U] to some later time tMD = τ where the
fields take values [πτ, Uτ].

3. The new gauge field U′ is set to the field Uτ with the acceptance probability

Pacc(π, U) = min{1, e−(H(πτ ,Uτ)−H(π,U))} (3.24)
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If the proposed change is rejected, the new gauge field U′ is set to the field
value at the beginning of trajectory U (Metropolis accept/reject step) and a
new trajectory, starting with momenta refreshment, is followed.

3.5 Integration of MD equations of motion

In order to complete the discussion of the HMC algorithm, it is needed to define
the method for the numerical integration of the equations of motion 3.19 and 3.20.
The first request for the MD integration is that it should be time-reversible. This
would mean that for any chosen trajectory length τ and for any update U →
U′, starting from the final configuration U′ and runing the trajectory backwards
with the momenta flipped in sign gives to a required precision an initial gauge
configuration U. Another important request for the update algorithm is that the
functional integral measure D[π]D[U] be preserved - a feature known as area-
preservation. Any approximate integration that fulfills these two properties may
be employed in the MD part of the HMC algorithm.

3.5.1 Leap-frog integrator

The simplest integration scheme that is reversible and satisfies the area-preservation
is the leap-frog algorithm. The integration begins by dividing the trajectory of a
length τ in N steps of size ε = τ/N. The discretization naturally gives the in-
tegration error, which disappears in the limit ε → 0. As we already mentioned,
the error for finite ε is compensated in HMC by the inclusion of the Metropolis
accept/reject step at the end of the MD trajectory.

The Taylor expansion of the equations of motion gives

πtMD+ε = πtMD − εF|U=UtMD +O(ε2) (3.25)

UtMD+ε = UtMD + επtMDUtMD +O(ε2). (3.26)

Based on the first terms of the expansion, we construct operations for the integra-
tion scheme that give an elementary update of the MD momenta (Iπ) and gauge
fields (IU)

Iπ(ε) : (U, π) → (U, π − εF) (3.27)
IU(ε) : (U, π) → (eεπU, π), (3.28)

The application of the leap-frog integrator to the trajectory [0, τ] is then defined
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as

JLF(ε, N) = {Iπ(ε/2)IU(ε)Iπ(ε/2)}N, ε =
τ

N
. (3.29)

It is constructed from N updates of the form Iπ(ε/2)Iπ(ε)Iπ(ε/2), each of them
contributing to the integration error by ε3 giving the total integration error O(ε2).
This integrator is widely used for its simplicity and it is easy to show that it is re-
versible and area-preserving. Nevertheless, there are many other integrators that
preserve the previously mentioned good properties. In particular, the variants of
the so-called symmetric symplectic integrators are manifestly area-preserving and
reversible. It might be somewhat more complicated to implement some of them
in practice, but the gain in the simulations is either equal to or larger than what
the simple discretization error calculation would predict. An example of a sim-
ple symmetric symplectic integrator widely used in this work will be discussed
in the following.

3.5.2 Omelyan-Mryglod-Folk integrator

Omelyan-Mryglod and Folk have suggested several symplectic numerical inte-
gration schemes in their work given in Ref. [54]. Through this work, we mainly
use the 2nd order Omelyan-Mryglod-Folk (OMF) integrator. It amounts to ap-
plying the elementary combination of operations

JOMF2(ε, N, λ) = {Iπ(λε)IU(
ε

2
)Iπ((1 − 2λ)ε)IU(

ε

2
)Iπ(λε)}N, ε =

τ

2N
(3.30)

The integrator updates the fields two times in each step size ε and depends on the
parameter λ, which is a subject of tuning. As mentioned above, this is the main
integration scheme that we used in most of the runs that will be discussed in the
following. Recently, the 4th order OMF integrator was found to be advantageous
in the particular simulation setup [55]. We have also considered it in our integra-
tor tuning procedure. Therefore, we give here for completeness the combination
corresponding to the elementary update of gauge fields and momenta of the 4th
order OMF integrator

JOMF4(ε, N) =
{
Iπ(σε) IU(ρε) Iπ(λε) IU(θε)

Iπ((1 − 2(λ + σ))
ε

2
) IU((1 − 2(θ + ρ))ε) Iπ((1 − 2(λ + σ))

ε

2
)

IU(θε) Iπ(λε) IU(ρε) Iπ(σε)
}N, ε =

τ

5N
. (3.31)
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The optimal values for the parameters in eq. 3.31 are fixed to

σ = 0.0839831526287669, (3.32)
ρ = 0.2539785108410595, (3.33)
λ = 0.6822365335719091, (3.34)
θ = −0.0323028676526997. (3.35)

The above parameters are obtained numerically in Ref. [54]. Their determina-
tion is based on the observation that for each symplectic integrator there is a
shadow Hamiltonian2 that is exactly conserved[57]. By computing the higher or-
der derivatives of the shadow Hamiltonian (either analytically [56, 58] or numer-
ically [54]) one arrives at the optimal parameters for the higher order integrators
such as the previously discussed 4th order OMF integrator. Let us finally note
that the OMF2 integrator for the parameter choice λ = 0.25 equals the leap-frog
integration with a two times smaller elementary integration step size.

3.6 HMC for the Wilson gauge theory

In this section we shall discuss in more detail how to obtain the evolution of the
gauge fields in pure gauge theory, while preserving the Hamiltonian

H(Π, U) =
1
2 ∑

x,μ
Tr{Π2

μ(x)}+ SG(U), (3.36)

where SG denotes the Wilson action of the SU(3) gauge group discussed in section
2.3. This section is based on the considerations in Ref. [59] and this is also where
the notation comes from. The traceless Hermitian canonical momenta used in the
above eq. 3.36 relates to the anti-Hermitian momenta previously considered in
3.18 as Πμ = −i

√
2πμ. Let us consider their evolution together with the gauge

fields Uμ. In order for the link variables Uμ(x) to remain an element of SU(3)
after the derivation with respect to the molecular dynamics time (cf. eq. 3.20),
their equation of motion must have the form

U̇μ(x) =iΠμ(x)Uμ(x) (3.37)

2For its construction see e.g. Ref. [56].
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or equivalently,

U′
μ(x) =eiΠμ(x)ε Uμ(x), (3.38)

where U′
μ(x) denotes the (updated) gauge field after the infinitesimal change in

molecular dynamics time ε when the dynamics is governed by the Hamiltonian
3.18. The equation of motion for H is obtained if we require it to be a constant of
the motion

Ḣ = ∑
x,μ

Tr
{

Π̇μ(x)Πμ(x) +
β

6
(U̇μ(x)Vμ(x) + V†

μ (x)U̇†
μ(x))

}
= 0. (3.39)

Variables Vμ(x) represent the sum of the staples that are products of the other
three links in the plaquettes containing Uμ(x)

Vμ(x) = ∑
ν,μ 	=ν

(V(u)
μν (x) + V(d)

μν (x))

V(u)
μν (x) = Uν(x + μ̂)U†

μ(x + ν̂)U†
ν(x)

(3.40)

V(d)
μν (x) = U†

ν(x + μ̂ − ν̂)U†
μ(x − ν̂)Uν(x − ν̂).

The objects V(u)
μν and V(d)

μν are depicted in Figure 2.1. Condition 3.37 is used to
eliminate U̇μ(x) from eq. 3.39 and we find

Ḣ = 0 = ∑
x,μ

Tr
{

Πμ(x)(Π̇μ(x) + iFG
μ (x))

}
. (3.41)

Due to the fact that Πμ(x) is traceless, eq. 3.41 will be satisfied if Π̇μ(x) + iFG
μ (x)

is the multiple of the unit matrix. Since the derivative of Πμ(x) remains traceless,
Tr{Π̇μ(x)} = 0 determines the remaining constant. Taking these considerations
into account, we finally obtain the equations of motion for the conjugate momenta

iΠ̇μ(x) = 2[Uμ(x)FG
μ (x)]T.A.. (3.42)

The subscript T.A. denotes the traceless anti-Hermitian part of the matrix

AT.A. ≡
1
2

(
A − A† − 1

3
Tr{A − A†}

)
. (3.43)

The right hand side of eq. 3.42 is the molecular dynamics force (or just force in the
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following), which has previously been defined in eq. 3.19

FG
μ (x) ≡ 2[Uμ(x)FG

μ (x)]T.A.. (3.44)

From equation 3.39 we obtain the explicit expression for FG
μ in the case of the

Wilson gauge action

FG
μ (x) =

β

6 ∑
ν 	=μ

(V(u)
μν (x)− V(d)

μν (x)), (3.45)

where V(u)
μν and V(d)

μν are defined in eq. 3.40. The force magnitude is a real number
defined by

||FG||2 ≡ 2Tr{FGFG†} ≥ 0, (3.46)

and it will be recalled quite often in future considerations, also for different fermion
forces that we will consider. ||F||2 is given by the trace of a sum of closed paths,
therefore this expression is gauge invariant. As noted in [59], if we for example
consider the gauge force in direction μ = 0, we have

||FG
0 (x)||2 =

(
2β

3

)2

∑
i,j

Tr{EiEj}, (3.47)

where Ei(x) ≡ 1
2

(
U0(x)(V(u)

0i (x)− V(d)
0i (x))

)
T.A.

is the discretized electric field
in lattice units.

3.7 Including dynamical fermions in simulations

So far we have considered a way to simulate the theory that takes into account
only the gauge fields dynamics. This corresponds to neglecting the vacuum loops
of quarks that are present in the full theory. The QCD partition function which,
in addition to the gauge action SG[U], also includes fermionic dynamical degrees
of freedom is given by the following

Z =
∫
[DU][Dψ][Dψ]e−SG(U)−SF(U,ψ,ψ). (3.48)
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If we consider the case with two degenerate flavors of dynamical quarks, the
corresponding fermion action reads

SF(U, ψ, ψ) =
2

∑
f=1

ψ f D(U)ψ f , (3.49)

where D(U) = D0(U) + m represents the massive Dirac operator.

The eigenvalues of the lattice Dirac operator D(U) are complex and their real
parts are not always positive definite. Therefore, if one would like to simulate just
a single fermion flavor with the simple approach described abogve, the exponen-
tial in eq. 3.48 would not necessarily have to real and positive and in general
cannot be interpreted as a conventional probability measure. This is the reason
we were from the start considering two degenerate dynamical quark flavors - in
this case the Dirac operator enters quadratically in the effective action and the
positivity is guaranteed.

Since Grassmann fields ψ f , ψ f are very difficult to incorporate directly into a
computational simulation, we try to integrate over them in order to obtain the
partition function that depends only on the gauge fields and on which the previ-
ously discussed algorithms could hopefully be applied. After taking into account
the transformation properties of Grassmann variables, we can indeed integrate
out the fermion field variables and the partition function now reads

Z =
∫
[DU][Dψ][Dψ]e−SG(U)(det D(U))2. (3.50)

For a detailed derivation, see for example [29]. Due to γ5-hermicity of the Dirac
operators considered in this work (γ5D = D†γ5) we have det D = det D† and
in the future we will take advantage of this property by writing det[D2(U)] as
det[D(U)D†(U)].

It is evident that the methods used to simulate pure gauge theory need to be
modified to include the effect incorporated in the fermion determinant det D(U).
This determinant is a non-local object, therefore its computation after each change
of the gauge field would be numerically extremely expensive. The way out of this
problem is to simulate the determinant by introducing the pseudofermion field φ.
This is a bosonic field that has the same number of degrees of freedom as the cor-
responding fermionic variable (color, Dirac and space-time). Its introduction was
motivated by the analogy between the fermionic and bosonic Gaussian integrals
which allows us to express the fermion determinant as a Gaussian integral of the

34



3.7 Including dynamical fermions in simulations

pseudofermion fields

det[D†D] =
∫
[Dψ][Dψ]e−∑2

f=1 ψ f D(U)ψ f ∝
∫
[Dφ][Dφ†]e−φ†(D†(U)D(U))−1φ,

(3.51)

where the identity holds up to an irrelevant constant. The partition function with
the new bosonic integration variables, for the considered system of two degener-
ate fermion flavors, is now proportional to

Z =
∫
[DU]e−SG det(D†D) =

∫
[DU][Dφ][Dφ]e−Seff

(3.52)

Seff(U, φ, φ†) = SG(U) + SPF(U, φ, φ†), (3.53)

SPF(U, φ, φ†) = −φ†(D(U)D†(U))−1φ. (3.54)

If the determinant det D(U) is itself positive, then one may even be able to
simulate a single fermion flavor from eq. 3.51. In this case, one approximates
an inverse D−1(U) by some operator TT† during the molecular dynamics part of
the HMC and corrects for this approximation in the accept-reject step at the end
of the trajectory. For the approximation of TT† different polynomial or rational
functions can be used. This approach is widely used in simulations of an odd
number of flavors or in simulations with degenerate quark masses taken into
account dynamically, for example the so-called Nf = 2 + 1 simulations, which
include 2 degenerate massless u, d quarks and a heavier s quark. Since in this
work we are interested exclusively in simulating an even number of dynamical
fermion flavors with degenerate masses (Nf = 2 and Nf = 4), we will not discuss
this approach further.

The argumentation similar to the one for two flavors holds for applying an
arbitraryv number of pseudofermions. For completion, we define the partition
function for the theory of Nf fermion flavors, which can be interpreted as a prob-
ability measure if Nf is even

Z =
∫
[DU][Dφ][Dφ]e−SG det(D†D)Nf/2 =

∫
[DU][Dφ][Dφ]e−Seff

(3.55)

Seff = SG − SPF, (3.56)

SPF = −φ†
1(DD†)−1φ1 − φ†

2(DD†)−1φ2 + . . . φ†
Nf/2(DD†)−1φNf/2. (3.57)

In the above formulae, we have dropped the dependence of the Dirac operator
on the gauge field and from now on we will write it only when necessary.

The HMC algorithm may now be applied for simulating the theory with an
even number of fermion flavors Nf. The creation of pseudo fermion fields is sim-
ple: they can, for example, be created by generating a complex vector χ with
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Gaussian distribution e−χ†χ and then determining φ = Dχ. They do not get up-
dated during the HMC trajectory. The modification needed for the procedure
discussed in section 3.4 is that now the momenta are generated with probability
distribution

P(π) ∝ e
1
2 (π,π). (3.58)

The HMC steps for updating the gauge fields and momenta follow as for the
pure gauge case, but instead of the one in eq. 3.36 the Hamiltonian used here is
extended with the pseudofermion action

H(π, U) =
1
2
(π, π) + SG(U) + SPF(U, φ, φ†). (3.59)

The force that drives the molecular dynamics evolution now has a part com-
ing from the gauge action (discussed in section 3.6) and a part coming from the
pseudofermion action which will be discussed in detail in Chapter 4.

Introducing dynamical fermions into simulations was an important and neces-
sary step in lattice QCD simulations for turning them into a precision tool. The
effect of considering the fermions dynamically is not negligible and we illustrate
it (cf. Figure 3.1) by quoting the figure from [60], which compares the values
of several observables computed in pure gauge theory and in the theory with
Nf = 2 + 1 dynamical fermions in the asqtad regularization.

3.8 Algorithm preconditioning

Introducing fermions into simulations requires a new evaluation of the fermion
determinant for each update of the gauge field. We have seen in section 3.7 that
this evaluation includes the inversion of the Dirac operator D. Such an inversion
becomes very costly when the quark mass approaches physical values and when
striving to achieve finer lattice resolutions in the simulations. The stochastic de-
termination of the fermion determinant with pseudofermions introduces addi-
tional noise which tends to destabilize the HMC algorithm and requires smaller
step sizes in the integration of the fermionic forces. The methods which attempt
to reduce the noise of the stochastic estimator of the determinant will in the fol-
lowing be referred to as methods for algorithm preconditioning3. The algorithm

3Generally, preconditioning (or solver preconditioning) refers to the techniques for transforming the
original linear system into one which has the same solution, but is more easily solvable by
the iterative solver (has a smaller condition number). Although we use the term algorithm
preconditioning in a different context, it usually gives us the factorization of the determinant
such that the factors also have smaller condition numbers than the original problem. This
should not be confused with solver preconditioning in terms of the above definition.
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fπ

fK

3MΞ −MN

2MBs −MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

Figure 3.1: Comparison of the ratio of lattice QCD and experimental values for
several observables, where the lattice QCD calculations are done in the
quenched approximation (left panel) and with 2+1 flavors of asqtad
sea quarks (right panel). The figure is taken over from [60].

preconditioning methods speed up the HMC simulations with dynamical quarks
by factorizing the quark determinant such that the infra-red and ultra-violet con-
tributions are treated separately. This leads to the reduction of the quark force
magnitude in the molecular dynamics equations. Therefore, the associated inte-
gration step sizes can be set to larger values, which accelerates the algorithm.
Different techniques for preconditioning the Hybrid Monte Carlo algorithm have
played a key role in the process of making simulations with light sea quarks real-
istic with the available computational resources.

Up to the year 2000, performing continuum limit of simulations towards phys-
ical quark masses seemed impossible with the current algorithmic techniques for
the dynamical fermion simulations (cf. the full line in Figure 3.2). The break-
through in speeding up the dynamical HMC simulations was made by develop-
ing various HMC algorithm preconditioning methods, the most important being
the so-called domain decompositioning [64] and Hasenbusch (mass) preconditioning
[65, 66]. In both of these approaches, the quark determinant is factorized into
two or more parts, where some parts are dominated by infrared and at least one
is largely ultraviolet. This leads to the reduction of the quark force magnitude
in the molecular dynamics equations. Therefore, the associated integration step
sizes can be set to larger values, and an acceleration of the algorithm is achieved.
We will have a closer look at the principles on which these two methods are based
in the following. Before we do so, we describe another method for the precondi-
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Figure 3.2: Computer resources needed to generate 1000 independent configura-
tions of size 243 × 40 at a lattice spacing of about 0.08 fm with Wilson
fermions in units of Tflops · years as a function of mPS/mV. The full
line shows the prediction from the 2001 lattice conference in Berlin[61]
(hence titled Berlin Wall plot), while the dashed line shows the cost of
a mass preconditioned HMC algorithm published in [62] scaled to the
same lattice extent. The plot is taken over from Ref. [63].

tioning of the HMC algorithm which was invented in the early nineties but only
in combination with one of the previously mentioned methods for the determi-
nant splitting leads to a significant acceleration of dynamical QCD simulations
(cf. the dashed line Figure 3.2).

3.8.1 Multiple Time Scales

The first application of multiple time scales was made by Sexton and Weingarten
[67], who noticed that separating the integration of the cheaper gauge force from
the more expensive fermion force can be advantageous. Namely, reducing the
error from the gauge force by integrating it in smaller MD steps allows a larger
step size for the fermion force that costs more to evaluate. A careful choice of the
step sizes ratio can make the total cost of the simulation smaller while keeping at
the same time the acceptance rate roughly constant.

In practice it is performed as following. The Hamiltonian of the theory that in-
cludes dynamical fermionic degrees of freedom is given in eq. 3.59. Let us denote
a single update of the momenta induced by the fermionic part of the Hamiltonian
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with TF(ε). TF(ε) is defined equivalently to the previously discussed momenta
update governed by the gauge force in eq. 3.27,

TF(ε) : (U, π) → (U, π − εFPF) (3.60)

with a difference that FPF denotes here the fermion force obtained from the varia-
tion of the pseudofermion action SPF (for explicit expression of the fermion force
see section 4.2.1). The step size of the momentum update from the fermion force
is εF = τ/N. In other words, during the molecular dynamics trajectory of length
τ, we integrate the fermion force in N steps [TF(εF)]

N. If we want to update the
pure gauge part of the Hamiltonian M times more frequently, then the overall up-
date step for the time interval εF, in the case of the Leapfrog integrator, consists
of

T (εF) = TF(εF/2)[TYM(εF/M)]MTF(εF/2). (3.61)

TYM is a joint name for the evolution of the gauge fields TU and the evolution of
momenta governed by the gauge force TG

TU(ε) : (U, π) → (eεπU, π), (3.62)

TG(ε) : (U, π) → (U, π − εFG) (3.63)
TYM(εG) = TU(εG/2)TG(εG)TU(εG/2). (3.64)

Due to the recursive structure of 3.61, throughout the trajectory of the length
τ = NεF the total gauge/momenta update TYM is applied N × M times.

We have, for simplicity, used in our illustration the Leapfrog integrator, whereas
Sexton and Weingarten originally applied this strategy to the variant of the Omelyan
integrators (section 3.5.2) with the parameter choice λ = 1/6, which is, in com-
bination with multiple time scales, also known in literature as the Sexton Wein-
garten integration scheme. This procedure can be generalized to the case where the
fermion action itself is split into several terms

S = SG + SPF1 + SPF2 + ... + SPFN , (3.65)

when computing some factors is more expensive then computing others. Differ-
ent variants of preconditioning the fermion action will be discussed in following
sections. With a clever choice of preconditioning and its parameters, the most
expensive part can contribute least to the total force and can then be integrated
with the largest step size, which makes a multiple scale integration a very useful
computational tool. The optimal advantage of this method is achieved with the
parameter choice where the residual error from the most expensive fermion force
dominates the overall error.
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3.8.2 Domain Decompositioning

The application of the Schwartz alternating procedure to the HMC algorithm by
M. Lüscher [68, 69] is based on the partitioning of the lattice into hypercubic sub-
domains - therefore this method is known as the domain decomposed HMC algo-
rithm or, for short, DD-HMC. The division of the lattice is defined such that the

Figure 3.3: Two-dimensional cross-section of a 83 × 16 lattice covered by non-
overlapping 44 blocks. The domains Ω and Ω∗ are the unions of the
black and red blocks respectively, and their exterior boundaries ∂Ω
and ∂Ω∗ consist of all points in the complementary domain repre-
sented by open circles.

blocks can be colored red and black in a chessboard style (see Figure 3.3). The
idea is to utilize the subdomains to separate the short range interaction (inter-
action between the filled points inside each block) from ultraviolet contributions
(interaction between the blocks) and, at the same time, have even-odd precondi-
tioning. Let us denote the set of sites inside the black-colored blocks (filled circles)
with Ω and the set of sites inside the red-colored ones with Ω∗. The Dirac matrix
can now be decomposed as following

D =

(
DΩ∗ D∂Ω∗

D∂Ω DΩ

)
, (3.66)

where we have denoted with ∂Ω and ∂Ω∗ the sets of boundary points of black
and red blocks (open circles), and DX denotes the Dirac operator reduced on the
set of points X. The matrix D can be further decomposed

D =

(
DΩ∗ 0
D∂Ω 1

)(
1 D−1

Ω∗ D∂Ω∗

0 DΩ − D∂ΩD−1
Ω∗ D∂Ω∗

)
, (3.67)
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such that the fermion determinant can now be written as

det D = det DΩ det DΩ∗ det[1 − D−1
Ω D∂ΩD−1

Ω∗ D∂Ω∗ ] (3.68)
= det D1 det D2, (3.69)

D1 =

(
DΩ∗ 0

0 DΩ

)
, D2 = 1 − D−1

Ω D∂ΩD−1
Ω∗ D∂Ω∗ .

The matrix D1 describes the ultraviolet part of the fermion dynamics restricted to
the interior of each subdomain and its complement D2 couples the blocks and car-
ries the infrared behaviour. In the simulation one uses separate pseudofermion
fields for these two factors. The fermion force coming from the first factor is com-
puted by inverting small matrices restricted to a single domain. In this step the
Dirichlet boundary conditions are applied on each domain. Namely, the gauge
fields across the domain boundaries is are fixed to the values of its recent update
and remain unchanged during the molecular dynamics trajectory. In the follow-
ing, we will refer to the gauge links inside the blocks, which get updated during
the trajectory, as active links. Updating only the links inside the domains results
in reduced communication, and makes the computer simulations less expensive.
In order to avoid artifacts from updating only a fraction of the links, after each
MD trajectory the domains are shifted by a random space-time displacement.

The fermion force coming from the factor D2 is computationally more expen-
sive than the force inside the blocks, therefore applying the multiple time scales
here, as previously discussed, is very advantageous.

3.8.3 Hasenbusch Preconditioning

In section 3.8.2 the basis for the factorisation of the fermion matrix was spacial
decomposition. On the other hand, it is also possible to precondition the fermion
matrix with the factors that can be written as a function of the fermion matrix.
This preconditioning method has been introduced by M. Hasenbusch [65] and
after a very promising test in the Schwinger model framework, its application
to QCD [66] was no less successful. The fermion determinant is preconditioned
with a fermion of a larger mass (Δm > 0)

det D = det W det{W−1D}, (3.70)
W = D + Δm, (3.71)

therefore this method is also known as mass preconditioning. The splitting of the
fermion determinant 3.70 leads to the effective fermion action

Seff
F = φ†

1(WW†)−1φ1 + φ†
2(W

−1D(W−1D)†)−1φ2, (3.72)
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where each factor can be simulated with a separate pseudofermion pair. For a
successful choice of Δm, the condition number of both W and W−1D needs to
be smaller than their product. Additionally, if Δm is chosen such that the forces
associated with the pseudofermion field φ2 have significantly smaller magnitudes
than those associated to φ1, then multiple time scale can be successfully applied
and save several more factors in the total computational cost.

The value of the mass parameter Δm plays the role of the infrared cutoff in a
similar way as the size of the blocks in domain decomposition. The advantage
of the mass parameter here is that it is continuous and therefore allows for more
tuning options. One can easily apply the above trick to the Hermitian Dirac oper-
ator or any of its even-odd preconditioned versions. Also, introducing more than
one preconditioning fermion is straightforward (cf. Appendix 4).
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There are several publicly available lattice QCD packages that are able to sim-
ulate Wilson fermions, such as Chroma code [70], tmQCD [63], MIMD Lattice
Collaboration (MILC) Code, DD-HMC [69] and the recently published openQCD
package by M. Lüscher and S. Schäfer [71]. The DD-HMC with the deflated solver
(versions DD-HMC-1.2.x) is a very efficient code for simulating O(a) improved
Wilson fermions [64, 68]. It has been shown in practice that this code scales partic-
ularly well with the quark mass [72] and this has encouraged the groups around
CLS1 [73] to make DD-HMC the algorithm of choice in their effort to simulate
light Wilson quarks at fine lattice spacings in the two flavor approximation of
QCD.

We have seen in section 3.8 that a preconditioning of the HMC algorithm is a
prerequisite for simulating dynamical fermions with light quark masses (cf. Fig-
ure 3.2). Nevertheless, it is not a priori clear which choice of preconditioning
the HMC algorithm is optimal for a particular lattice QCD setup. We recall that
the core idea of HMC algorithm preconditioning is to separate ultraviolet from
infrared contributions to the fermion determinant. In this way, the computation-
ally more expensive and less stable part with the infrared modes ultimately cor-
responds to the relatively small force and therefore can be integrated less often.
Both domain decomposition 3.8.2 and Hasenbusch preconditioning 3.8.3 achieve
this separation.

Despite its high effectiveness, the intrinsic structure of the DD-HMC algorithm
puts some constraints on the exploration of modern computational resources, in
the simulations of large lattices. This was our motivation for using it to develop
an implementation of the mass preconditioned HMC, reusing as many building
blocks of DD-HMC as possible, most importantly its locally deflated solver which
is in large part responsible for the excellent scaling behavior of the DD-HMC
code. In this chapter we review shortly the basics of the DD-HMC program pack-
age and comment on the hardware constraints in the application of the DD-HMC
algorithm. Afterwards, we describe in detail the algorithmic choices we made in
our implementation of mass preconditioned HMC [74]. Next, we give a compari-
son of the two setups in a realistic simulation and give some final remarks on the

1Coordinated Lattice Simulations (CLS) is a community effort, launched in 2007, whose aim is
to bring together the human and computer resources of several teams in Europe. One of the
main goals of CLS is to perform lattice QCD simulations in a wide range of quark masses,
lattice spacings and lattice volumes, using a single lattice formulation of the theory.
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performance of the MP-HMC program.

4.1 DD-HMC overview

The program package DD-HMC utilizes the domain decomposition described in
section 3.8.2 as a preconditioner of the HMC algorithm. It is designed to be able
to simulate a doublet of O(a) improved Wilson quarks at small quark masses
and lattice spacings smaller than 0.1fm. This way of preconditioning the HMC
algorithm is known under the names domain decomposition and Schwarz alternating
procedure2 (SAP). The decomposition of the lattice into non-overlapping domains,
both in the solver and in the molecular dynamics updates makes this approach
extremely suitable for parallel processing.

In the DD-HMC, the quark determinant is written as the product of the deter-
minants of the Dirac operator restricted to the blocks and a factor that accounts
for the remaining contributions to the fermion determinant (eq. 3.69). The lat-
ter factor couples the gauge fields on the different blocks and the quark force
related to it includes the contributions of the low lying modes of the Dirac oper-
ator. Therefore, the calculation of the block-interaction force consumes most of
the computer time needed for one molecular dynamics trajectory. Here the Dirac
equation has to be solved for two quark source fields on the full lattice. The solver
used for the computation of the global force combines the classical Schwarz alter-
nating procedure with a standard Krylov space solver (the GCR algorithm)[76].
The latest version of this package (DD-HMC-1.2.0 and newer) include the accel-
eration of the GCR solver with the local deflation. The idea of local deflation of
the Wilson Dirac operator is proposed and documented in Ref. [77, 78].

The inclusion of a deflated solver has brought a significant decrease in the av-
erage number of iterations in the computation of the block interaction force and
reduced significantly the dependence of the time needed per MD trajectory on
the quark mass. The later is illustrated in figure 4.1 taken over from Ref. [78].

As we have already noted in [74], the DD-HMC blocks separate the infrared
from the ultraviolet physics and therefore should have a certain physical size of
0.5fm to 1fm. This, however, introduces some drawbacks in practical applica-
tions. Since the blocks are tied to the parallel layout of the lattice across the nodes
of the computer, one would like them to be as small as possible to make full use
of the massively parallel capabilities of the available supercomputers. In particu-
lar, due to an even/odd structure of the problem, two such HMC blocks have to
reside on each core. On the other hand, from a certain point on, this degrades the
performance of the algorithm, because the physical volume of a block become too

2The Schwartz alternating procedure (SAP) does not necessarily have to refer to the decompo-
sition of the lattice into non-overlapping domains, as it is the case here. In fact, in Schwarz’s
original proposal [75], the procedure for the two overlapping domains has been worked out.
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Figure 4.1: Average execution times required for a single MD trajectory plotted
against the inverse of the bare current-quark mass msea given in lat-
tice units, for a typical set of lattice parameters for the DD-HMC algo-
rithm. The timings originate from a PC cluster with 64 cores and the
lattice size in this test is 64 × 323. The figure is taken over from Ref.
[78].

small. Also small blocks with their large surface reduce the number of updated
links. Let us recall that in this algorithm the links on the boundaries of the blocks
are frozen and only the links inside the blocks or those touching the boundary
are updated during the MD trajectory. While this has advantages in reducing
overall communication, it increases the autocorrelation time. For the simulations
of large lattices with small quark masses, the above restrictions are not any more
outweighed by the excellent performance of the algorithm.

4.2 Algorithmic choices in MP-HMC

We have argued in the previous section that with the DD-HMC algorithm, there
is a competition between the need of physics and the need of the computer, which
sets a limitation on the maximal number of CPUs that can be used in the simula-
tions. A solution that allows for more flexibility in the choice of parallelization,
but also potentially stabilizes and speeds up the simulation in the framework we
are addressing, was to replace the domain decomposition preconditioning of the
quark determinant with the Hasenbusch mass preconditioning (cf. Sec. 3.8.3).
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Mass preconditioned HMC has been used previously for QCD simulations
with periodic boundary conditions by different collaborations, e.g. [62, 79], but
our work [74] represents the first experience of mass preconditioning together
with the deflated solver.

Since DD-HMC is such an efficient program package incorporating all mod-
ern algorithmic improvements, we have started from the latest publicly available
DD-HMC version, minimizing changes to the original code. In this way, we have
managed to retain the advantages of this code, such as the highly optimized par-
allelization of the block solver, single precision acceleration and many others, but
most importantly, the previously mentioned deflated solver for the Dirac equa-
tion at low quark masses.

We have named our package MP-HMC after the main characteristics of this
code - the mass preconditioning of the HMC algorithm. MP-HMC simulates
Nf = 2 degenerate flavors of non-perturbatively O(a) improved Wilson quarks.
We recall here the Dirac operator in this formulation

D(m) = DW + cSW ∑
μ,ν

i
4 σμν F̂μν + m , (4.1)

where DW represents the unimproved Wilson Dirac operator without the mass
term, F̂μν represents the clover contribution discussed in section 2.5, cSW is the im-
provement coefficient and m is the bare mass of the unimproved Wilson fermions.
In the gauge sector, as well as in the DD-HMC case, we use the Wilson gauge ac-
tion discussed in section 2.3.

In the following we will discuss the main algorithmic choices we made for
developing this code. We begin with the fermion force, since the HMC simulation
program usually spends the largest fraction of the total execution time computing
these forces. The discussion from section 3.6 will be extended to the case of O(a)
improved Wilson fermions, adopted to fit with our choices of the HMC algorithm
preconditioning.

4.2.1 Fermionic Forces

In section 3.6 we derived the expression for the gauge force associated with the
Wilson plaquette action (eq. 3.45). This is a local expression, therefore the compu-
tation of the gauge force is straightforward and computationally cheap compared
to the force associated with fermions. The latter, on the other hand, involves parts
that have to be estimated stochastically and there are different ways in which one
can do fermion force evaluation. Here we describe in detail the computation of
the fermion force, associated with the O(a) improved Wilson action (eq. 4.1) and
to our algorithmic choices.

For the following considerations, we shall exploit the fact that the Wilson Dirac
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fermion matrix is γ5 Hermitian, namely γ5D(m)γ5 = D†(m). We may now con-
struct the Hermitian Dirac operator

Q(m) = γ5D(m). (4.2)

Since the determinant of γ5 matrix is det γ5 = 1 (cf. appendix A), for the evalua-
tion of the fermion determinant we can use the Hermitian Dirac operator Q(m).
Equivalent considerations for the Dirac matrix D(m) itself can easily be obtained
by putting D(m) = γ5Q(m) back in all expressions that will follow. From here on
we also omit writing down the quark mass dependence of the Hermitian Dirac
operator Q.

Symmetrical even-odd preconditioning of the HMC algorithm

The Hermitian Dirac operator can be written in block form

Q =

(
Qee Qeo
Qoe Qoo

)
, (4.3)

where Qee is supported on the even sites3 of the lattice, Qoo on the odd sites, while
Qeo and Qoe denote the hopping terms from the odd to the even and the even to
the odd points respectively. Blocks of Q that connect lattice points of equal parity
correspond to the following contributions to the Hermitian Dirac operator

Qee + Qoo = γ5{4 + m0 + cSW ∑
μ,ν

i
4

σμν F̂μν}, (4.4)

and the sum of the hopping terms incorporating the interaction of the neighbor-
ing lattice points equals

Qeo + Qoe = −γ5

3

∑
μ=0

1
2
{Uμ(x)(1 − γμ)δx+μ̂,x′ + U†

μ(x)(1 + γμ)δx−μ̂,x′ }. (4.5)

The Schur complement of block Qoo of the matrix Q is denoted as the asymmet-
rically preconditioned Dirac operator Q̂

Q̂ = Qee − QeoQ−1
oo Qoe. (4.6)

3A lattice site is defined to be even if the sum of all lattice coordinates is even, i.e. the point
x = (x0, x1, x2, x3) is even if 2|(x0 + x1 + x2 + x3), otherwise x is odd.
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The determinant of the Hermitian Dirac operator can now be written in the so-
called asymmetrically even-odd preconditioned form

det Q = det Qoo det Q̂. (4.7)

Similarly, the symmetrically preconditioned Hermitian Dirac operator QS is ob-
tained by multiplying the asymmetrical one with the inverse of Qee

QS = Q−1
ee Q̂ (4.8)

= 1 − Q−1
ee QeoQ−1

oo Qoe. (4.9)

Let us note how the above preconditioned matrices behave under Hermitian con-
jugation

Q̂† = Q̂, (4.10)

Q†
S = QeeQSQ−1

ee . (4.11)

The determinant of a full Hermitian Dirac operator can now be split up in a more
symmetrical way, which is known as symmetrical even-odd preconditioning

det Q = det Qee det Qoo det QS. (4.12)

This factorization was applied to the fermion determinant in a MP-HMC simu-
lation program. The motivation for doing this comes from the fact that the Dirac
operator we are considering only has a nearest neighbor coupling, therefore the
first two factors on the right hand side of eq. 4.12 can be evaluated rather easily.
In our case, their computation could be taken over completely from the DD-HMC
program. The third factor, det QS, is determined stochastically along the lines of
section 3.7. We shall now derive explicit expressions for the molecular dynamics
forces corresponding to the symmetric factorization of the O(a) improved Wilson
Dirac operator, with one important caveat. Namely, although we pursue the sym-
metric preconditioning of the Dirac operator, all the expressions we give will still
be written as functions of the full Dirac operator Q. The reason for this is that we
already had a very efficient solver for the full Dirac operator available from the
DD-HMC program and we wanted to use it in our implementation of MP-HMC.
Developing a special deflated solver for QS or even its further preconditioned
factors would be an extremely tedious task and may not lead to better algorithm
efficiency than the one we propose here4.

We consider two flavors of dynamical quarks, therefore the even-odd precon-

4To the knowledge of the author, this issue has not yet been addressed in existing publications
and it would be an interesting topic for further investigations related to solver studies and the
performance of HMC simulations in general.
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ditioned determinant that we want to evaluate reads

det QQ† = det Q2
ee det Q2

oo det(QSQ†
S). (4.13)

Using the identity 3.51, the determinant of the symmetrically preconditioned
Hermitian Dirac operator can be expressed via the pseudofermion field φe which
only lives the even lattice sites only

det(QSQ†
S) =

∫
[Dφe][Dφ†

e ]e
−SPF, (4.14)

where the corresponding pseudofermion action reads

SPF = (Q−1
S φe, Q−1

S φe)

= (Q̂−1Qeeφe, Q̂−1Qeeφe). (4.15)

In order to compute the force corresponding to this effective action, we need to
compute its variation with respect to the change of the gauge field

δSPF = φ†
e δ{Q†−1

S Q−1
S }φe

= φ†
e

[
δ{Q†−1

S }Q−1
S + Q†−1

S δ{Q−1
S }

]
φe. (4.16)

The inverse of the asymmetrically and symmetrically even-odd preconditioned
Dirac operator can be expressed via the inverse of the full Dirac operator

{Q̂−1} = PeQ−1Pe, (4.17)

{Q−1
S } = PeQ−1QeePe. (4.18)

Here Pe represents the projection operator to the even points of the pseudofermion
field and full derivation of the above identities can be found in appendix 2. We
obtain further the variation of Q−1

S as the function of the variation of the full Her-
mitian Dirac operator Q:

δ{Q−1
S } = δ{PeQ−1QeePe}

= Peδ{Q−1Qee}Pe

= Pe[δ{Q−1}Qee + Q−1δ{Qee}]Pe

= Pe[−Q−1δ{Q}Q−1Qee + Q−1δ{Qee}]Pe (4.19)

δ{Q†−1
S } = [δ{Q−1

S }]†

= Pe[−QeeQ−1δ{Q}Q−1 + δ{Qee}Q−1]Pe. (4.20)
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In the previous derivation we have used that Q and Qee are both Hermitian op-
erators, as well as the identity

δ{O−1} = −O−1δ{O}O−1. (4.21)

The equation 4.16 can now be rewritten as

δSp f = φ†
e
[
Pe

(
−QeeQ−1δ{Q}Q−1 + δ{Qee}Q−1

)
PeQ−1QeePe

+ PeQeeQ−1Pe

(
−Q−1δ{Q}Q−1Qee + Q−1δ{Qee}

)
Pe
]
φe. (4.22)

In order to simplify the previous expression, we introduce the auxiliary variables

X = Q−1PeQ−1QeePeφe = Q−1PeQ−1Qeeφe

Y = Q−1QeePeφe = Q−1Qeeφe, (4.23)

and thus obtain

δSPF = −Y†δ{Q}X + φ†
e Peδ{Qee}X + H.c. (4.24)

If we now separate the contributions of the hopping and diagonal terms, the pre-
vious expression reads

δSPF = −
(

Y†
[

0 δ{Qeo}
δ{Qoe} 0

]
X + H.c.

)
−

(
Z†

[
δ{Qee} 0

0 δ{Qoo}

]
X + H.c.

)
= δSW + δSSW (4.25)

where X and Y are those defined in equation 4.23 and Z can be obtained from Y
and the original pseudofermion field

Z =

[
Ye − φe

Yo

]
= Y − Φ, Φ =

[
φe
0

]
. (4.26)

The first part of equation 4.25 corresponds to the hopping action that is equal
to the unimproved Wilson fermion action, therefore the force coming from this
variation will in the following be called Wilson force and denoted with the index
“W”. The second term is the contribution of the Sheikholeslami-Wohlert term
and its associated fermion force will be denoted with the index “SW”. In order
to obtain the explicit expression for the Wilson force, we go back to equation 4.5
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Figure 4.2: Diagrams of the contributions to FSW
μ . The illustration is taken from

Ref. [80].

and write down the variation of the hopping term of the action

δ{Qoe + Qeo}xx′ = −γ5

3

∑
μ=0

1
2
{δUμ(x)(1 − γμ)δx+μ̂,x′ + δU†

μ(x)(1 + γμ)δx−μ̂,x′ }.

(4.27)

Using the definition of the molecular dynamics force 3.42 and the identity

Y†QX = Tr{QX ⊗ Y†}, (4.28)

we finally obtain the expression for the Wilson contribution to the fermionic force:

FW
μ (x-even) =

1
2

Tr
{

γ5(1 − γμ)Yo(x + μ̂)⊗ X†
e (x)

+ γ5(1 − γμ)Xo(x + μ̂)⊗ Y†
e (x))

}
FW

μ (x-odd) =
1
2

Tr
{

γ5(1 − γμ)Ye(x + μ̂)⊗ X†
o (x)

+ γ5(1 − γμ)Xe(x + μ̂)⊗ Y†
o (x))

}
, (4.29)

where ⊗ stands for the direct product in color space. Similarly, FSW
μ is obtained

from the second term in equation 4.25

FSW
μ (x) = ( diagrams in Figure 4.2 ) (4.30)

where the black squares denote the insertion obtained from the variation of equa-
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tion 4.4

(�)x =
icSW

4
Tr

{
γ5σμνX(x)⊗ Z†(x) + γ5σμνZ(x)⊗ X†(x)

}
(4.31)

The part of the determinant that involves only Qee and Qoo does not need a
stochastic estimation and can be computed exactly. Its contribution to the ef-
fective action is often denoted as the determinant contribution

(det Qee det Qoo)
2 = e−Sdet , (4.32)

Sdet = −2(ln det Qee + ln det Qoo) (4.33)

and its variation reads:

δSdet = −2 δ{ln eTr ln Qee + ln eTr ln Qoo} (4.34)

= −2Tr{Q−1
ee δQee + Q−1

oo δQoo}. (4.35)

Consequently, the corresponding contribution to the fermion force is called the
determinant force. The force Fdet

μ has two parts, originating from the even and the
odd points, due to the symmetrical even-odd preconditioning, and it equals

Fdet
μ (x) = ( diagrams in Figure 4.3 ) (4.36)

where the black triangles in Figure 4.3 denote the following insertions depending
on the parity of the point where the insertion is calculated

(�)x =
icSW

2

{
Tr[iσμνQ−1

ee (x)] x-even,
Tr[iσμνQ−1

oo (x)] x-odd.
(4.37)

The preceding discussion of the fermion forces does not yet include any of the
preconditioning methods that separate infrared and ultraviolet contributions to
the Dirac determinant, such as domain decomposition or Hasenbusch precondi-
tioning. If one were to apply the expressions for the Wilson and Sheikholeslami-
Wohlert force (equations 4.29 and 4.30) directly in the MP-HMC algorithm, mov-
ing towards the physical quark masses and small lattice spacings becomes un-
feasible with the current computational resources (cf. Figure 3.2). Therefore, we
proceed immediately to the computation of the forces that correspond to the mass
preconditioned algorithm.

Hasenbusch preconditioning

The Hasenbusch preconditioning procedure is outlined in 3.8.3 and it can be ap-
plied in QCD simulations in many ways. In MP-HMC code we apply the Hasen-
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Figure 4.3: Diagrams of the contributions to Fdet
μ . The illustration is taken from

Ref. [80].

busch trick to the Schur complement from the symmetric even-odd precondition-
ing

det[QSQ†
S] = det[WW†]det[(W−1QS)(W−1QS)

†]. (4.38)

The alternative would be to apply it to the full Hermitian Dirac matrix Q, or
the asymmetrically preconditioned operator Q̂. Preconditioning Q is obviously
less effective then our choice of preconditioning QS, since QS is supported only
in even points and its inversion is therefore much cheaper. On the other hand,
the gain from applying mass preconditioning on top of symmetric or asymmetric
even-odd preconditioning is not yet fully understood. Our motivation to start
from the symmetric even-odd Dirac operator is based on the experience of the
authors of [81], who found that applying the symmetric operator gives roughly
30% speed-up of the even-odd preconditioned HMC algorithm with respect to
its asymmetric version. If a matrix W is chosen properly, the evaluation of the
RHS of the equation 4.38 can have smaller computational costs than the direct
evaluation of the LHS. The determinant could be split up in a more general way,
into an arbitrary number of factors.

det[QSQ†
S] =det[W0W†

0 ]det[(W−1
0 W1)(W−1

0 W1)
†]

. . . det[(W−1
NPF−1QS)(W−1

NPF−1QS)
†]. (4.39)

For the evaluation of the above expression we need to introduce the additional
pseudofermion field for each determinant appearing on the right hand side, there-
fore the counting of the terms goes up to NPF. The corresponding effective fermion
action reads

Se f f
F = −Trln(W0)− Trln(W−1

0 W1)− · · · − Trln(W−1
NPF−1QS) (4.40)
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The number of the pseudofermion fields is believed to add to the stability of the
algorithm, but their number has to be balanced with respect to the total cost of
the simulation with more pseudofermion pairs. For most of our runs, having
three to five pseudofermion fields was the optimal choice (cf. section 4.3.3). In
the following we discuss the special case with two pseudofermions defined in eq.
4.38. The generalization to more pseudofermions follows the same strategy and
it is outlined in Appendix 4.

Let us denote the pseudofermion field used for the evaluation of the deter-
minant of the preconditioning matrix W with φ1 and the pseudofermion field
needed for the evaluation of the preconditioned symmetrical Hermitian Dirac
operator with φ2. We can then estimate the determinant of interest as follows

det Q†
SQS ∝

∫
[Dφ†

1 ][Dφ1][Dφ†
2 ][Dφ2]e

−∑2
i=1 SPFi (4.41)

SPF1 = φ†
1(WW†)−1 φ1 (4.42)

SPF2 = φ†
2([W

−1QS][W−1QS]
†)−1 φ2 (4.43)

The identity 4.38 holds for an arbitrary invertible matrix W. In order to achieve a
gain in the performance of the HMC algorithm by applying the Hasenbusch trick,
the matrix W should be chosen such that it has a smaller condition number than
QS. There are different ways in which one can make this choice and relate W to
the operator that we want to precondition, namely QS. A standard and simplest
choice would be to define it as

W = QS + ρ, (4.44)

where ρ is real and positive. Let us first compute the variation of the second part
of the pseudofermion action (equation 4.43), and later come back to its first part
(equation 4.42)

δSPF2 = φ†
2δ{W†Q†−1

S Q−1
S W}φ2. (4.45)

After a few algebraic manipulations, we obtain

δSPF2 = φ†
2
[
(1 + ρQ†−1

S )ρδ{Q−1
S }+ H.c.

]
φ2. (4.46)

With the help of equation 4.17 and 4.19 the inverse Q−1
S and its variation become

functions of Q−1 and this inverse can be computed with the efficient deflated
solver from DD-HMC. Similarly to the single pseudofermion case, we can further
simplify the expression

δSPF2 = φ†
2
[
(1 + ρPeQeeQ−1Pe)ρPe(−Q−1δ{Q}Q−1Qee + Q−1δ{Qee})Pe + H.c.

]
φ2
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by introducing auxiliary spinor variables

X = ρQ−1Pe(1 + ρPeQ−1QeePe)Peφ2 = ρQ−1Pe(1 + ρPeQ−1Qee)φ2

Y = Q−1QeePeφ2 = Q−1Qeeφ2. (4.47)

Keeping in mind the modified definition of the auxiliary variable X, we obtain
the expression for the variation equivalent to the one in equation 4.24. We again
separate the contributions of the hopping and diagonal terms, and obtain

δSPF2 = −
(

Y†
[

0 δ{Qeo}
δ{Qoe} 0

]
X + Z†

[
δ{Qee} 0

0 δ{Qoo}

]
X
)
+ H.c., (4.48)

where X and Y are those from equation 4.47 and Z is again obtained from Y,
keeping in mind that φ2, as well as φe in the previous section, is defined only on
even points

Z =

[
Ye − φ2

Yo

]
= Y − Φ, Φ =

[
φ2
0

]
. (4.49)

The variation of the first part of the pseudofermion action also requires some
more modifications with respect to the single pseudofermion case. Therefore, we
write here all steps of its derivation

δSPF1 = φ†
1δ{W†−1W−1}φ1

= φ†
1{W†−1δ{W−1}+ H.c.}φ1

= φ†
1{{W−1}†δ{PeQ̃−1QeePe}+ H.c.}φ1

= φ†
1
[
{PeQ̃−1QeePe}†Peδ{Q̃−1Qee}Pe + H.c

]
φ1

= φ†
1e
[
{PeQ̃−1Qee}†(−Q̃−1δ{Q̃}Q̃−1Qee + Q̃−1δQee) + H.c.

]
φ1e

= φ†
1e
[
QeeQ̃−1†Pe(−Q̃−1δ{Q̃}Q̃−1Qee + Q̃−1δQee) + H.c.

]
φ1e (4.50)

The formula we used for inverse W−1 is derived in appendix 3, where the con-
struction of the auxiliary operator Q̃ is also explained. In order to write this vari-
ation in the form of equation 4.48, let us first note that the variables X and Y can
be defined in the same way as in the case of a single pseudofermion, the only
difference being that Q−1 is replaced by Q̃−1

X = ρQ̃−1PeQ−1Qeeφ1e

Y = Q̃−1Qeeφ1e. (4.51)

In order to get the form of variable Z, let us write once more the equation 4.50
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with the X and Y variables inserted

δSPF1 = −(X†
[

0 δ{Qeo}
δ{Qoe} 0

]
Y + X†

[
δ{(1 + ρ)Qee} 0

0 δ{Qoo}

]
Y (4.52)

+ X†
[

δ{Qee} 0
0 0

]
φ1e) + H.c. (4.53)

One can easily see that the new definition of Z is

Z =

[
(1 + ρ)Ye − φ2

Yo

]
. (4.54)

Having derived the expressions for X,Y and Z, we can proceed to compute the
separate contributions to the force corresponding to each part of the fermion
action. This is done in a fashion similar to what was done for a single pseud-
ofermion case.
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4.2.2 HMC stability and safety measures
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Figure 4.4: Histories of the energy violation ΔH, together with the maximum and
average forces F2 and F1, for each force update, plotted as a function of
the trajectory number. Values obtained with the DD-HMC algorithm
are shown to the left and the integration step-sizes for the two forces
relate as Δt2 : Δt1 = 1 : 6. The values for MP-HMC are shown in the
two right panels and the corresponding ratio of the integration steps
is Δt1 : Δt2 = 1 : 10. The lattice size is 48 × 243 and κsea = 0.13625,
corresponding to the pion mass 450MeV. In all the above plots, neither
the replay trick in DD-HMC nor the force cut in MP-HMC was applied.
The author has published this figure previously in [74].

HMC simulations of QCD with Wilson fermions suffer from occasional large
forces during the MD trajectories. The reason for this is the potentially unsta-
ble numerical integration of the equations of motion in the MD procedure. The
instability manifests through a large value of the force magnitude on a single
link, sometimes even of order O(104), and the integrators become unstable at
that point in the MD trajectory. Normally, large energy violation at the end of
the trajectory (ΔH) then leads to the rejection of the new field configuration. The
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way to avoid these instabilities is to make the integration step size exceedingly
small that makes the simulation very expensive. In Figure 4.4 we show the en-
ergy violations in a typical DD- and MP-HMC simulation (without any safety
measure applied), together with the maximum and average forces in both algo-
rithms. We see that large magnitudes of the IR force (F2) occasionally appear in
both algorithms. For the particular choice of the quark mass and the lattice spac-
ing illustrated in Figure 4.4, despite the occasional bumps in the energy violation,
the simulation still gives a correct distribution. On the other hand, going e.g. to
smaller lattice spacings requires additional measures of precaution. In the DD-
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Figure 4.5: Average plaquette (left panel) and the theoretical acceptance (right
panel) for different values of the cut parameter c on the 48 × 243 lat-
tice and κsea = 0.13625, corresponding to the pion mass 450MeV. The
dashed blue line in the left panel denotes the average plaquette with
no cut of the forces introduced which corresponds to the value of the
cut parameter c → ∞. In the right panel we plot the theoretical ac-
ceptance Pth

acc = min{1, e−ΔH}, which is a good estimate of the real
acceptance on a small number of configurations (Ncf < 100).

HMC it was possible to turn on the so called replay trick and repeat with a smaller
step size the trajectory where the instability would occur [68]. In MP-HMC we
include a different safety measure, proposed in [82]. Namely, we regularize the
MD force with the following modification

FR
i (U) =

∂Si

∂U
× R(δt|∂Si

∂U
|/c) (4.55)

where Si represents the action corresponding to the regulated force Fi and c is the
cutoff parameter that can be set in the input file of MP-HMC. Our choice of the
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cutoff function reads

R(x) =

⎧⎨⎩
1 at x < 1/2

1
x (1 − 1

2 e−(2x−1)) at x ≥ 1/2.
(4.56)

The regularized force FR(U) depends only on U, therefore reversibility is guar-
anteed and thus the detailed balance is fulfilled. With an adequate choice of the
cutoff parameter c as well as other algorithm parameters, the modification (eq.
4.56) has no effect on the acceptance rate. On the other hand, it allows the tra-
jectory where the instability occurs to come to an end in a situation where the
program without this safety measure would possibly crash. This modification
is constructed such that the algorithm satisfies the detailed balance. We illus-
trate in Figure 4.5 that the plaquette average remains correct when varying the
cut parameter c (left panel). What depends on the cut parameter c is the overall
acceptance rate (right panel of Figure 4.5). If c is chosen to be small (c ≤ 0.1),
then a significant amount of links gets modified by the cut and this makes the
acceptance drop below 50%. Within the errorbars (which get large due to the de-
creased acceptance), the average plaquette still agrees with the plaquette with no
introduced cut.

Let us note here that, as long as the reversibility of the MD integration is not
compromised, the above mentioned instabilities do not invalidate the algorithm
of choice. On the other hand, they may affect the efficiency of the simulation (the
acceptance rate is lowered, cf. Figure 4.5). This is true in general, but in all our
runs we have chosen the value c = 5.0 which modifies links in small fraction
of trajectories and does not affect the acceptance at all - only the trajectories for
which the integrator would be inaccurate in any case are modified.

4.3 Performance

In this section we test the speed and the scaling of our implementation of the
mass preconditioned HMC algorithm. We then confront MP-HMC to DD-HMC
in two realistic simulation parameter sets with intermediate quark masses and
relatively large lattice sizes. Finally, we give a summary of the long chains of
large scale simulations performed with the MP-HMC program package.

4.3.1 Timings and scaling of the MP-HMC package

A good part of the motivation for developing the MP-HMC package was to apply
it in the runs with a large number of processors. For optimal usage of the avail-
able computational resources, a good scaling of the code is required. We check
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Figure 4.6: Inverse time needed for a single trajectory in MP-HMC versus the
number of processors used. The trajectory length in all our runs is set
to be 2 molecular dynamics units. The lattice size for the given test is
128× 643, denoted as O7 in Table 4.3. The chosen set of run parameters
corresponds to the pion mass of the 270MeV and the lattice spacing in
physical units of 0.05fm. The measured time is given in units of time
per trajectory for 1 Rack (4096 cores) on the supercomputer JUGENE
(Jülicher BlueGeneP).
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the scaling of the code on one of our most difficult sets of parameters (O7 lattice,
see Table 4.3). The result is shown in figure 4.6 and we observe here a very good,
almost linear scaling of the code for the values of processors up to sixteen thou-
sand. The costs of various computations during the MD trajectory are broken
down in Table 4.1. The largest fraction of time during the MD trajectory is spent
in the computation of fermion forces (cf. Table 4.1).
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Time/traj 4261.5s
F3 31%
F2 26%
F1 38%

∑ Fi 95%
accept-reject 0.5%

other 4%

Table 4.1: Distribution of the total time of a single MP-HMC trajectory into dif-
ferent types of computation. The first two contributions contain inver-
sions, therefore the largest fraction of time is spent here. The shown
timings correspond to the O7 lattice (cf. Table 4.3) which was simu-
lated with NPF = 3 pseudofermions and the computation of their forces
uses up the most of the simulation time. F3 denotes the force of the sea
quark, and F2 and F1 are the preconditioning forces.

4.3.2 Comparison of DD-HMC and MP-HMC

As we have already noted in Ref. [74], comparison between algorithms is in gen-
eral a tedious task. The number of parameters that have to be set in modern lattice
QCD simulations can go into the dozens. The optimal values of these parameters
depend on each other and therefore it is virtually impossible to find the mini-
mum at which each algorithm performs best and then make a true comparison.
In particular, the performance is determined by the autocorrelation times of the
observables of interest, whose measurements require runs with high statistics.

Domain decomposed and mass preconditioned HMC algorithms have been
compared in [62], however, new to our study is the use of the deflated solver in
both algorithms. The first comparison of the MP-HMC with the DD-HMC al-
gorithm is done on the D5 lattice of size 48 × 243 with the corresponding lattice
spacing of a ≈ 0.07fm and the pion mass of mπ ≈ 400MeV. The summary of
these results is shown in Table 4.2 and it is based on the results published in Ref.
[74]. After the presented test with two pseudofermions (NPF = 2) proved success-
ful, we also implemented the mass preconditioner with one more pseudofermion
pair. The NPF = 3 case turned out to be even more advantageous for the sim-
ulation of large lattices with small quark masses, moving closer to the physical
point.

In the simulation at the pion mass of 270MeV (O7 lattice, 128 × 643) for the lat-
tice spacing of only a ≈ 0.05fm after suitable tuning of the mass preconditioning,
the gain of MP-HMC over DD-HMC is roughly 4 times, again in the sense that
MP-HMC produces the same error 4 times faster on the measured observable UP
using the same number of CPUs. A part of this gain was achieved by replacing
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time(64Core h.)/R UP τint(UP)× R Ntraj Pacc
DD-HMC (D5) 0.56 1.65106(10) 10(5) 840 89%
MP HMC (D5) 0.43 1.65127(10) 10(4) 432 85%
DD-HMC (O7) 1112 1.719094(15) 14(6) 1250 84.8%
MP HMC (O7) 279.5 1.719104(5) 7(2) 1960 82.9%

Table 4.2: Comparison of the mass preconditioned version of the HMC algorithm
with DD-HMC. Both simulations are done for the improved Wilson the-
ory with two degenerate fermion flavors. The size of the lattice D5 is
48 × 243, lattice spacing a ≈ 0.07fm and the pion mass mπ ≈ 400MeV.
The block size in DD-HMC is 62x122, while in the case of MP-HMC,
the preconditioning pseudofermion mass is m1 ≈ 8.5msea. Here R rep-
resents the fraction of active links in the algorithm, R = 0.37 for DD-
HMC and R = 1 for MP-HMC. The size of the lattice O7 is 128 × 643,
lattice spacing a ≈ 0.05fm and the pion mass mπ ≈ 270 MeV. The block
size in DD-HMC is 84, while in the MP case, the preconditioning pseud-
ofermion masses (NPF = 3) are m2 ≈ 2.5msea, m1 ≈ 27.1msea. R = 0.36
for DD-HMC and R = 1 for MP-HMC.

the standard leapfrog integration scheme by the Omelyan integrator discussed in
section 3.5.2. Apart from the fact that the new algorithm is faster and stable, an
important advantage is that in the runs with the new implementation, we are able
to use several times as many processors than was possible with DD-HMC, due
to the constrains discussed in section 4.1. Hence, with our algorithmic and im-
plementation choices, we have gained additional flexibility to exploit the power
of today’s massive parallel computers in order to get the statistics needed for
attacking interesting physics problems in a significantly shorter period of time.

4.3.3 Large scale simulations with MP-HMC

We have seen so far that MP-HMC is a very efficient code for simulating im-
proved Wilson fermions. As already mentioned, this is largely due to the highly
efficient deflated solver from DD-HMC. The additional improvements and larger
freedom in the choice of preconditioning parameters allow us to obtain the same
acceptance with a smaller number of integration steps in the molecular dynamics
trajectory of a fixed length, than needed in DD-HMC. On top of this, the MP-
HMC has looser constraints over the maximal number of processors that can be
used in the simulation. Also, in DD-HMC, only a fraction of links is updated
during a MD trajectory, while in MP-HMC all links are updated, which manifests
through smaller autocorrelation times. All this makes MP-HMC favorable for
simulations with the quark masses towards the physical point, where the lattice
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id L/a β κ mπ[MeV] mπ L
A5 32 5.2 0.13594 330 4.0
G8 64 5.3 0.13642 192 4.1
N6 48 5.5 0.13667 340 4.0
O7 64 5.5 0.13671 270 4.2

Table 4.3: Overview of the ensembles generated with MP-HMC. We give the la-
bel, the spatial extent of the lattice, β = 6/g2

0, the hopping parameter
κ of the sea quarks, the mass of the sea pion mπ and the product mπ L,
which has to be larger than or equal to 4 to avoid finite volume effects.
All lattices have the dimension T × L3 with T = 2L.

sizes need to be large to keep finite volume effects under control.
The summary of all our simulations performed with MP-HMC is given in Ta-

bles 4.3 and 4.4. Table 4.3 contains the general parameter sets that characterize a
simulation point in a physical phase space and are independent from the simu-
lation algorithm (lattice size, bare gauge coupling, hopping parameter of the sea
quarks), as well as the estimated pion mass. The length of the MD trajectory is set
to τ = 2.0 in all MP-HMC runs. The integration step numbers Ni = 1 . . . NNPF are
set to the values given in Table 4.4. Beside these HMC parameters, we also give
in Table 4.4 the number of processors, the total number of MD units that has been
simulated and the achieved acceptance rate in each of these runs. The successful
production of the ensembles given above for Nf = 2 improved Wilson fermions
was a crucial ingredient for obtaining the final result of the strange quark mass
and Lambda parameter in Nf = 2 QCD, which will be presented in chapter 7.

id N0 N1 N2 N3 N4 N5 Nproc acc. rate MDU
A5 2 9 1 32 - - 512 0.92 2860
G8 18 1 1 1 1 23 16384 0.80 1100
N6 2 9 1 16 - - 2048 0.84 4000
O7 2 9 1 16 - - 16384 0.83 4000

Table 4.4: Overview of the HMC parameters, the number of processors used in
the simulations, the achieved acceptance and the total number of MDU
in the produced ensembles. The number of pseudofermion pairs used
in the simulation vary from NPF = 3 to NPF = 5 and we give here the
number of integration steps for each of them.
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The standard continuum formulation of quantum field theories takes place in
infinite volume. We have seen in Chapter 2 how the corresponding discretized
theory can be formulated on the lattice introducing (anti-)periodic boundary con-
ditions in space and time. An alternative approach would be to define QCD in
a finite volume and choose the boundary conditions convenient for both pertur-
bative calculations and preferably inexpensive MC simulations. The Schrödinger
functional (SF) boundary conditions, which will be discussed in the following,
provide this amenity. The Schrödinger representation of quantum field theory
was considered to be non-renormalizable, until the existence of the Schrödinger
picture in renormalizable quantum field theories was proven by Symanzik [83].
The studies of the scale transformations in asymptotically free theories with bound-
aries by Wolff [84, 85] lead to the idea of utilizing finite-size scaling method to
compute the running coupling in a lattice regularized theory[22]. After the com-
putation of the coupling in the pure gauge theory has been completed, the same
method was used by the ALPHA collaboration to compute the running coupling
and mass in Nf = 2, as well as the running coupling in Nf = 4 theory [19–21]. In
this chapter we outline the importance of non-perturbative renormalization and
then proceed to the lattice formulation of the SF which is applied throughout this
work. The SF formulation is advantageous in various applications that will not
be covered here, such as the Heavy quark effective theory, Chirally rotated SF
etc. For reviews on the Scrhödinger functional renormalization scheme and its
applications see for example [86–89].

5.1 Non-perturbative renormalization

As it was outlined in chapter 1, QCD is theory described in terms of few param-
eters, namely the strong coupling constant αs and the masses of the quarks. Like
all other coupling constants in the Standard Model, αs also depends on the energy
transfer μ in the interaction process. At energy scales of μ ≈ 10GeV or higher, the
perturbative method for the determination of the coupling constant of the theory
still works well. When addressing lower energy scales, e.g. μ ≈ 1GeV, the QCD
coupling constant becomes so large that perturbation theory becomes unreliable.
Obviously, this brings us to the need for non-perturbative methods that would
allow us to deal with the large values of αs and to work out the predictions of
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QCD in this situation. Before making the predictions for experimental observ-
ables, the coupling, masses and fields have to be renormalized. In order to per-
form a completely non-perturbative study of QCD, the renormalization also has
to be performed non-perturbatively. To achieve a determination of the QCD pa-
rameters in one non-perturbatively well-defined renormalization scheme at large
scales (μ � 10 GeV - in order to connect to the perturbation theory results in a
controlled manner), several other criteria have to be fulfilled. First, the scale μ has
to be remote from the lattice cutoff a−1 to avoid large discretization errors and to
be able to extrapolate to the continuum limit. Another requirement for some part
of the simulations is to keep the box size L large compared to the relevant corre-
lation length in the system, in this case the confinement scale and the mass of the
lightest physical state (mass of the pion, mπ). These requirements summarized
give the following hierarchy of scales

L � 1
mπ

∼ 1
0.14GeV

� 1
μ
∼ 1

10GeV
� a. (5.1)

The scales from the above inequalities would have to be well-separated in the
lattice QCD simulations. There are several strategies for non-perturbative renor-
malization and most of them assume that the mentioned relevant physical scales
can all be accommodated on a single lattice. The size of that lattice should be
sufficiently small for the required calculations to be performed using numerical
simulations with currently available computational resources. If this is the case,
then the energy range where the low energy (non-perturbative) scheme can be
matched to perturbation theory is rather narrow and, in this approach, system-
atic errors are not easy to control.

This difficulty can be overcome [22] by simulating a sequence of lattices where
any single lattice covers only a limited range of energy scales, but through the use
of the finite-volume renormalization scheme it is possible to match subsequent
lattices. In this way, in a few steps one is able to reach the energies high enough to
compare with perturbation theory, with complete control over systematic errors.
The technique for achieving this is the finite size scaling in combination with the
Schrödinger functional renormalization scheme and we will directly proceed to
the definition of the later in the discretized theory.

5.2 SF Renormalization Scheme

The Schrodinger functional is the Euclidean propagation kernel of a field config-
uration C at time x0 = 0 to some other configuration C′ at time x0 = T. In the
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Figure 5.1: Illustration of the Schrödinger functional (SF) space-time manifold.
The time direction is finite imposing Dirichlet boundary conditions on
the boundary and all three spatial directions have periodic boundary
conditions. In case that the matter fields are included, the periodicity
in the spacial direction holds up to the phase angle θ (see eq. 5.5).

lattice formulation of the theory, it corresponds to the partition function

Z[C, C′] =
∫

D[ψ̄]D[ψ]D[U]e−S[ψ̄,ψ,U], (5.2)

defined on a four dimensional Euclidean hypercubic lattice of volume T × L3,
xμ = anμ, nk = 0, . . . , L − 1, n0 = 0, 1, . . . , T, with a lattice spacing a and with the
following conditions on matter and gauge fields.

1. In the spatial directions, periodic boundary conditions are imposed on the
gluon fields

Uk(x + Lk̂/a) = Uk(x). (5.3)

On the other hand, the periodicity of quark fields in spatial directions is
generalized and they are defined to be periodic up to a phase factor

ψ(x + Lk̂/a) = eiθk ψ(x), (5.4)

ψ(x + Lk̂/a) = e−iθk ψ(x). (5.5)

2. At time x0 = 0 and x0 = T the fields are required to satisfy Dirichlet bound-
ary conditions. In the following applications, they are chosen to be homo-
geneous, except for the spatial components of the vector potentials Ak that
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correspond to the classical (chromoelectric) gauge potentials C and C′. The
spatial gauge links on the boundaries then take values

Uk(x) =

⎧⎨⎩
eaCk(x) at x = 0,

eaC′
k(x) at x = T.

(5.6)

The fermion fields on the boundary are fixed to some externally given fermion
fields ρ(x), ρ′(x) and their conjugates, according to

P+ψ(x)|x0=0 = ρ(x), P−ψ(x)|x0=T = ρ′(x), (5.7)

ψ(x)P−|x0=0 = ρ(x), ψ(x)P+|x0=T = ρ′(x), (5.8)

with P± being the projection operators P± = (1 ± γ0)/2.

The described choice of the boundary conditions type defines the space-time
manifold of a four dimensional cylinder. The illustration of the Schrödinger func-
tional geometry is given in Figure 5.1.

Let us for a while consider SU(3) gauge theory, and a gauge action as a function
of the gauge fields A. The smooth classical gauge fields C and C′ take values in
su(3) algebra and they effect an absolute minimum of the action SG[A]. Namely, if
C and C′ are small, a unique (up to gauge transformation Ω, defined for all lattice
points x in the SF cylinder and its boundary) classical solution of the equations of
motion Bμ(x) should exist, such that

SG[B] < SG[A], ∀A 	= BΩ. (5.9)

The field B which satisfies eq. (5.9) is called the induced background field. The
boundary field B, as a unique configuration of minimal action dominates the
functional integral in the weak coupling regime. Therefore, we can expand the
Schrödinger functional effective action (free energy) around the background field
B

Γ[B] ≡ − ln Z[C, C′] =
1
g2

0
Γ0[B] + Γ1[B] + g2

0Γ2[B] + . . . , (5.10)

Γ0[B] ≡ g2
0S[B]. (5.11)

The above series expansion of the effective action is regulated by a lattice cutoff
a and, as it has already been discussed many times, the finiteness of the lattice
spacing a always introduces discretization errors. In principle, the choice of the
boundary fields C and C′ is arbitrary, but a specific one could be used to reduce
the lattice artifacts for the observable of interest. In the following we continue the
above discussion for the pure gauge and introduce the Schrödinger functional
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formulation of the running coupling.

5.3 Renormalized coupling

To overcome the scale problem discussed in section 5.1, we define a non-perturbative
renormalized coupling g2(μ) such that it depends only on one scale. We parametrize
the product of the background field and the lattice size (B × L) with the dimen-
sionless variable η. This corresponds to imposing the scaling 1/L of the strength
of the background field B, which is defined such that it has to satisfy conditions
1. and 2. of section 5.2. The existence of a background field configuration that
fulfills these conditions is demonstrated in Ref. [90]. The authors of [90] also
give the choice of constant Abelian fields which provides us with tolerable lattice
corrections to the effective action for the SU(3) gauge group

Ck =
i
L

⎛⎝φ1 0 0
0 φ2 0
0 0 φ3

⎞⎠ , C′
k =

i
L

⎛⎝φ′
1 0 0

0 φ′
2 0

0 0 φ′
3

⎞⎠ , (5.12)

where

φ1 = η − π

3
, φ′

1 = −φ1 −
4π

3
, (5.13)

φ2 = −1
2

η, φ′
2 = −φ3 +

2π

3
, (5.14)

φ3 = −1
2

η +
π

3
, φ′

3 = −φ2 +
2π

3
. (5.15)

The renormalized coupling in the SF scheme can now be defined as the response
of the system to an infinitesimal variation of this specific one-parameter family of
prescribed constant abelian boundary fields

Γ′ =
∂Γ[B]

∂η
∝

1
g2 . (5.16)

The derivative from eq. 5.16 is defined non-perturbatively and at the same time
it is finite when expressed in terms of a renormalized coupling from some pertur-
bative renormalization scheme (for example ḡMS). Therefore, after normalization
we arrive at the fully non-perturbative definition of the running coupling that
runs only with the system size L

g2(L) =
∂Γ0[B]

∂η

/∂Γ[B]
∂η

. (5.17)
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The argumentation from sections 5.1 - 5.3 has been carried over to the theory with
dynamical fermion degrees of freedom in Ref. [91] and a similar definition of the
renormalized SF coupling is obtained for the full QCD

g2(L) =
∂Γ0[B]

∂η

/∂Γ[B]
∂η

, (5.18)

= k(〈dSg

dη
〉
−1

+ 〈dSeff

dη
〉
−1

). (5.19)

The eq. 5.19 holds since the derivative ∂Γ/∂η is an expectation value of some
combination of the gauge field variables close to the boundaries 〈dS/dη〉. With
this in hand, the numerical calculation of g2 in a Monte Carlo simulation is straight-
forward, and it thereby also complies with the requirements discussed in section
5.1.

5.4 Step scaling function

We have previously defined the SF coupling ḡ(L) such that it depends on a single
renormalization scale L. The way to avoid the compromises needed for perform-
ing the renormalization non-perturbatively on a single lattice (cf. section 5.1) is
to identify the two relevant physical scales in the condition 5.1, namely to set

μ = 1/L. (5.20)

In this way, if one wants to obtain the energy dependence of the SF coupling, one
may as well just vary the size of the finite-volume system. This dependence is
attained by applying a special recursive technique which will be outlined here.
We start by defining a quantity, σ(u, s), which captures the change of the coupling
when the finite box size L is scaled by a factor s

σ(u, s) ≡ g2(sL)|g2(L)=u. (5.21)

This quantity will, in the following, be referred to as the step scaling function(SSF).
The common choice for the scaling factor is s = 2 and from now on we will ac-
commodate the notation σ(u, s = 2) = σ(u). The renormalization group equation
in the continuum (eq. 2.46) indicates that a function that captures this change in
the coupling after rescaling the physical size of the finite box exists. This function
is exactly the SSF and in the case of interest (s = 2) it is obtained as a solution of
a recursive equation

g2(2L) = σ(g2(L)). (5.22)
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The connection of the SSF with the β-function of the renormalization group (eq.
2.47) can be expressed by the following integral

−2 ln(2) =
∫ σ(u)

u

dx√
xβ(

√
x
). (5.23)

Using the asymptotic expansion of the β−function (eq. 2.50) we obtain the ex-
pansion of the step scaling function

σ(u) = u + s0u2 + s1u3 + s2u4 + . . . , (5.24)
s0 = 2b0 ln(2), (5.25)

s1 = [2b0 ln(2)]2 + 2b1 ln(2), (5.26)

s2 = [2b0 ln(2)]3 + 10b0b1[ln(2)]2 + 2b2 ln(2), (5.27)

valid for small values of the coupling u = g2(L). With the definition of the
running coupling in the SF scheme given in the previous section, the SSF can
be easily (and to high precision) calculated on the lattice by numerical simu-
lations. On a finite lattice, the SSF will have an additional dependence on the
lattice resolution a/L and the continuum SSF is obtained by performing the scal-
ing step (L → 2L) at several different resolutions and performing the continuum
extrapolation a/L → 0. This procedure effectively constructs the so-called non-
perturbative renormalization group and, although involved, in contrast to simpler
approaches which typically compromise with the multiple scales handled on sin-
gle lattices, it is more amenable to systematic improvement and error control.
The details of extracting the continuum SSF from the lattice SSF will be discussed
in chapter 6, where we apply the described procedure in the computation of the
running coupling in QCD with Nf = 4 dynamical fermion flavors.

5.5 The O(a) improved Wilson action with SF
boundary conditions

The O(a) improvement of the Wilson action with the gauge and fermion fields
obeying the Schrödinger functional boundary conditions (see sec. 5.2) is obtained
by a procedure similar to the one outlined in section 2.5. Since the time direction
in SF formulation is treated specially, there are additional terms in both the gauge
and the fermion part of the action that ensure that the O(a) terms do not arise
on the boundaries in time direction. Taking all this into consideration, the O(a)

71



5 Schrödinger Functional

improved Wilson gauge action now reads

SW [U] = β ∑
P

w(P)(1 − 1
3

Re TrUP), (5.28)

where UP and β, as in section 2.3, denote the product of the gauge links around
the oriented plaquette P and the bare gauge coupling β = 6/g2

0. The weight
factors for the corresponding plaquettes w(P) (introduced in Ref. [42]) are given
by

w(P) =

⎧⎨⎩
1 UP is the plaquette in the bulk,
ct(g0) UP is the time-like touching x0 = 0 or x0 = T boundary,
1
2 cs(g0) UP is the space-like plaquette at x0 = 0, T.

The proper tuning of the parameters ct(g0) and cs(g0) gives the wanted cancel-
lation of the discretization effects. As well as with the periodic boundary condi-
tions, the O(a) improvement of the Wilson fermion action in SF also requires an
addition of the Sheikholeslami-Wohlert (clover) term (cf. eq. 2.37), which is now
reduced to the bulk of the lattice. We write here the Sheikholeslami-Wohlert term
with an explicit dependence on the lattice spacing a

SSW[U, ψ, ψ] = a5cSW

x0=T−a

∑
x0=a

∑
x

ψ(x)
i
4

σμν F̂μνψ(x). (5.29)

Additionally, in SF it is needed to add more counterterms in order to ensure the
O(a) improvement of the fermion action on the boundaries. We will denote this
contribution to the fermion action as Sb and it is given by

Sb[U, ψ, ψ] =
a4

2 ∑
x
{(c̃s − 1)[(ρ(x)γk(∇∗

k +∇k)ρ(x))− (ρ′(x)γk(∇∗
k +∇k)ρ

′(x))]

+(c̃t − 1)[(ψ(x)(P−∇0 + P+
←−∇∗

0)ψ(x))x0=a

− (ψ(x)(P−∇0 + P+
←−∇∗

0)ψ(x))x0=T−a]}. (5.30)

For the choice of constant boundary fields C, C′ (eq. 5.12), the improvement term
for the space-like plaquettes equals zero. Therefore, the computation of cs is not
needed. Setting the boundary quark fields ρ(x), ρ′(x) to zero[91] has as a con-
sequence that the terms which are multiplied with c̃s also vanish and one is left
only with terms multiplied with ct and c̃t. All that now remains is to tune non-
perturbatively or to determine perturbatively the time-like boundary improve-
ment coefficients for the formulation. We give here the perturbative expressions
for these coefficients. The gauge action improvement coefficient ct has been de-
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termined up to 2-loops [49], while the c̃t has been determined up to 1-loop only,
so far [92]

ct(g0) = 1 + (−0.08900(5) + 0.0191410(1)Nf)g2
0

+ (−0.0294(3) + 0.002(1)Nf + 0.0000(1)N2
f )g4

0 + O(g6
0), (5.31)

c̃t(g0) = 1 − 0.01795(2)g2
0 + O(g4

0). (5.32)

Note that the amount of counterterms needed to cancel O(a) effects also depends
on the specific choice of boundary conditions in SF formulation. For example,
one may define a modified (chirally rotated) boundary conditions in SF, as intro-
duced in [93]. This formulation requires the tuning of an additional dimension
3 boundary counterterm for preserving the chirally rotated boundary conditions
in the interacting theory. The theory we are using is simpler in that sense, since
the number of boundary counterterms that have to be tuned is smaller. On the
other hand, the mentioned alternative formulation of chirally rotated boundary
conditions allows for automatic O(a) improvement. Namely, unlike the stan-
dard SF formulation that we apply, the chirally rotated SF does not require the
Sheikholeslami-Wohlert term or some other bulk O(a) counterterms which are
discussed in chapter 6. Additionally, this alternative formulation allows to per-
form checks of universality of the continuum limit of different observables in both
formulations, which has to be unique.

5.6 Algorithmic challenges with SF formulation

We now move to some technical considerations with regard to incorporating the
Schrödin-ger functional approach defined above into the lattice simulations. For
previous studies of the SF with Nf = 0, 2, 4 flavors, the ALPHA collaboration
performed the simulations using the GHMC1 code. This code was written in the
special high-level programming language TAO suitable for APE (Array Process-
ing Experiment) [94] machines with SIMD (Single Instruction Multiple Data) ar-
chitecture. The APE machines were developed in a joined project of DESY (Ger-
many), INFN (Italy) and University Paris-Sud (France). The runs dedicated to the
determination of the running coupling Nf = 4 massless quark flavors from Ref.
[21, 95] were performed on APEmille and apeNEXT machines. One of the goals
of this work was to improve this computation and determine more precisely the
coupling for Nf = 4 flavors. In order to achieve this, it was necessary to develop a
code which can be run on modern PC clusters and conventional supercomputers,

1GHMC stands for the Generalized Hybrid Monte Carlo algorithm, implemented by the AL-
PHA collaboration in the programming language TAO and used on different APE machines
in the period 1989-2011.
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Figure 5.2: Scaling of the SF-MP-HMC code on a 244 lattice for Nf = 2 flavors
of dynamical fermions. The tests are performed on a cluster of 8 core
Intel machines with two types of processors: X7560 and X5570 (HLRN,
ZiB Berlin). The background field is switched off.

since the development of the APE machines has been stopped and there were no
existing computer resources in the world which could accommodate this compu-
tation.

5.6.1 Program package SF-MP-HMC: stability and scalability

We have developed a new code for Schrödinger functional simulations which is
based on the mass preconditioned [65] Hybrid Monte Carlo algorithm and named
it SF-MP-HMC. This implementation is based on the previously mentioned DD-
HMC code of Martin Lüscher and our new implementation of the mass precon-
ditioned HMC that was discussed in chapter 4. The new SF-MP-HMC code in-
cludes SSE inline-assembly optimization routines and SSE memory prefetch in-
structions, mainly based on the routines from DD-HMC and MP-HMC. The ge-
ometry and routines related to the Sheikholeslami-Wohlert term as well as the
used Conjugate Gradient (CG) solver are taken from the new correlation function
code of the ALPHA Collaboration[96].

For practical reasons, the code is parallelized only in three (spatial) directions.
We first test the scalability of the SF-MP-HMC code starting from the thermalized
Nf = 2 configurations of 244 lattices. This test is done in a setup without the back-
ground field, starting from the configurations and parameter sets obtained in the
GHMC code studies of the quark mass renormalization from the Schroedinger

74



5.6 Algorithmic challenges with SF formulation

 10

 100

 1000

 10000

2 4 8 16 32 64

T
im

e/
T

ra
j. 

[s
]

NProc

X7560(uv)

 100

 1000

 10000

 100000

2 4 8 16 32 64 128 256

T
im

e/
T

ra
j. 

[s
]

NProc

X7560 (uv)
X5570 (ice2)

Figure 5.3: Scaling of the SF-MP-HMC code on a 164 lattice (up) and a 244 lat-
tice(down) for Nf = 4 flavors of dynamical fermions. The tests are
performed on the cluster of 8 core Intel machines with two types of
processors: X7560 and X5570 (HLRN, ZiB Berlin). The background
field given in eq. 5.12 for the computation of the coupling is switched
on.

functional scheme [20]. The result of the test is shown in Figure 5.2. A very
good scaling up to the maximal number of processors for this lattice size can be
observed. The geometry needed for running on 96 processors has a very large
surface to bulk ratio for the local lattices, therefore a more intensive communica-
tion overhead is observed and makes this choice of the number of processors not
suitable for longer runs. Hence, optimal choice of the number of processors for
this lattice size would be 128 or even 144. In Figure 5.3 we show the scaling of
the code on 164 and 244 lattices with Nf = 4 flavors of massless quarks. Good
scalability is also observed in these runs.

The Dirichlet boundary conditions imposed on the fermions in SF induce a fi-
nite gap in the spectrum of the Dirac operator and serve as a natural infrared
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cutoff. Hence, the practical problems of simulating Wilson fermions on the lat-
tice, such as the stability issues discussed in section 4.2.2, do not occur in the
SF simulations we are performing2 here. To illustrate that, we show in Figure
5.4 the history of the energy violation in a long chain of the simulation on a 244

lattice. Spikes similar to those from Figure 4.4 characterizing periodic boundary
conditions with Wilson fermions are not present and the energy violation does
not leave the range ΔH ∈ [−2, 2].

-2.0

0.0

2.0

0 1000 2000 3000 4000 5000

Δ H

Figure 5.4: History of the energy violation ΔH in the SF-MP-HMC run on the 244

lattice(right). The plotted data correspond to roughly 5100 subsequent
HMC trajectories of the length τ = 2.0.

2The smallest eigenvalue for the free Dirac operator in SF, with vanishing boundary conditions,
is λ2

min = (π/2T)2. For the lattice sizes needed in SF simulations of the running coupling (up
to T = L = 24) we are still protected with the discussed mass gap. Once the lattice size L
reaches larger values, problems similar to those for light Wilson quarks on a periodic lattice
may occur.
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We have previously defined the step scaling function in continuum theory. It is
also possible to define the lattice step scaling function that is dependent on the
lattice resolution and equals the continuum SSF up to the cutoff effects. Here
we describe the strategy for the computation of the step scaling function from
lattice simulations in the theory with four dynamical fermion flavors. Due to the
peculiarities in the SF formulation of the O(a) improved Wilson theory, the way
we chose different improvement coefficients has to be discussed. We review here
the running coupling and the Lambda parameter results from Ref. [21, 95] and
discuss the strategy for improving it. In order to achieve better precision than
the authors of [21, 95], it is important to make sure that the quark mass is tuned
to zero accordingly with the aimed improved accuracy. We derive the precision
criteria to be fulfilled such that the only remaining dependence in the coupling is
the one on the system size. After these criteria are fulfilled, we are confident that
the systematic errors are negligible in comparison to the statistical ones and it is
possible to proceed towards the precise computation of the running coupling for
the Nf = 4 approximation of QCD. We then perform a continuum extrapolation
and arrive to the continuum step scaling function. Finally, we give the value of
the Lambda parameter of the theory in units of the system size.

6.1 Lattice step scaling function

To employ lattice simulations for the computation of the step scaling function
(SSF) defined in section 5.4, one defines the discretized step scaling function
Σ(u, L/a), which has an additional dependence on the lattice resolution a/L

Σ(u, L/a) = g2(2L), u = g2(L), (6.1)

with bare coupling g0 fixed, L/a fixed and vanishing quark mass m = 0. Let us
recall that the boundary conditions for the fermions given in eq. 5.7 and 5.8 intro-
duce a gap into the spectrum of the Dirac operator and allow for the Schrödinger
functional lattice simulations to be performed for vanishing quark masses. We
are hence able to supplement the definition of the running coupling by the re-
quirement m = 0. Therefore, the lattice SSF also remains independent of the
quark mass. The lattice SSF gives the continuum SSF as the lattice spacing is sent
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Figure 6.1: A sketch of the recursive finite-size scaling method used in the com-
putation of the SF coupling g at different energy scales μ = 1/L. The
evolution of the coupling with respect to energy is computed in sev-
eral steps, changing μ by a factor of 2 in each of the steps. The steps
of keeping a fixed lattice resolution a and increasing L → 2L (horizon-
tal direction in the figure) are alternated with the steps of keeping the
lattice extension L fixed and decreasing the a (vertical direction). In
this way, the non-perturbative renormalization group (expression 6.3)
is implemented, such that it is not necessary to have large ratios of the
scales and therefore the discretization errors are already kept small for
L/a � 1. Illustration is taken over from [97].
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to zero

σ(u) = lim
a→0

Σ(u, L/a), u = g2(L). (6.2)

In order to determine the function Σ(u, L/a) , the calculation for one rescaling
step has to be performed at several different lattice resolutions, and finally the
extrapolation a/L → 0 is taken. In in figure 6.1 (taken over from Ref. [97]) the
described procedure for computing a sequence of lattice SSF is illustrated. By
repeating the step in which the system size L is increased successively by a factor
of 2, one gains full control over the continuum SSF σ(u). Hence, one is able to
reconstruct the non-perturbative renormalization group

g2(L) → g2(2L) → g2(22L) → · · · → g2(Lmax = 2nL) (6.3)

in n steps, over a wide range of energy scales.
As already mentioned, the chosen SF setup fulfills the requirement of separat-

ing the energy scale relevant for the running μ = 1/L from the lattice spacing a
(see expression 5.1). Therefore, the sizes of the lattices that have to be simulated
are of the order of O(10) and with the computer resources available nowadays it
is easy to simulate these lattices with high precision.

6.2 Motivation for precise computation of
Nf = 4 running coupling

The value of the strong coupling constant is not directly accessible in the exper-
iment, but it is extracted from the experimental measurements by matching to
perturbation theory (cf. Table 1.1). The quoted value is usually given in the MS
renormalization scheme[15]. Note that αMS is in fact only perturbatively defined.
Therefore, extracting the Λ parameter from the asymptotic region of αMS(μ → ∞)
is a justified procedure at high energies. On the other hand, at a low renormaliza-
tion scale, the truncation of the divergent perturbative series is not justified and
a large theory error occurs in attempts to extract αMS(μ) from the observables.
As already outlined in chapter 1, different PT predictions for the value of the
Lambda parameter in Nf = 5 theory differ in more than one sigma. It is there-
fore advantageous to apply the approach described in section 6.1 for connecting
low and high energies and use the well-defined non-perturbative procedure to
resolve this discrepancy.

Obtaining Λ(5)
MS

with the non-perturbative approach can be achieved in several
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independent steps. These can be summarized in the following formula[98]

Λ(5)
MS
fK

=
1

fKLmax
× Lmax

Lk
Λ(4)

SF Lk ×
Λ(4)

MS

Λ(4)
SF

×
Λ(5)

MS

Λ(4)
MS

. (6.4)

Let us explain briefly each part of this calculation.

1. First factor 1/ fKLmax represents the typical hadronic scale at which we make
contact with physical units, in this case determined by the kaon decay con-
stant. Lmax is typically of the size 0.5fm. The determination of this term
requires continuum extrapolation, therefore a large set of simulations is
needed to perform this extrapolation in a well-controlled manner1.

2. Second factor comes from the intermediate step of connecting low and high
energies and yields the relation between αSF(1/Lmax) and αSF(1/Lk), Lk =

2−kLmax, which is used to obtain Λ(4)
SF Lmax as a function of αSF(1/Lk). Lmax

is obtained fully non-perturbatively and the ΛSF parameter is obtained by
using the three-loop β-function in the SF scheme.

3. Third factor is known exactly, from 1-loop PT Λ(4)
MS

/Λ(4)
SF = 2.9065 [98, 99].

4. Following the strategy for decoupling across the b-threshold from Refs. [100,
101] we would finally obtain Λ(5)

MS
. The expression for this last decoupling

step is currently known to 4-loop in PT. Its estimated contribution to the
uncertainty of the final result is about 2%[98].

This strategy allows for full control over the systematic uncertainties. The con-
tinuation of this chapter will present current progress towards completing the
second term from the above strategy, namely the Lambda parameter for the four
flavor theory, in units of the hadronic scale Lmax. Currently the computation done
in [21] determines this term with the precision of 8%. Our goal was to improve
this precision, in a controlled manner, by roughly a factor of two. In the contin-
uation of this chapter, as well as in chapter 7, we will omit writing the index SF
explicitly. Namely, from now on holds ΛSF ≡ Λ.

6.3 Non-perturbative O(a) improvement coefficients
for Nf = 4 theory

In this work, we use Wilson fermions, which explicitly break chiral symmetry
and this symmetry only emerges in the continuum limit. The systematic errors

1The determination of this term in Nf = 2 theory will be addressed in section 7.2.
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associated with the finiteness of the lattice spacing a may be rather large and must
be studied carefully. As it is already known, the lattice effects can be reduced in
a controlled way by choosing an improved discretization of continuum theory
(see section 2.5). We have seen in section 5.5 how the improvement was achieved
for the Wilson fermion action with SF boundary conditions. In the massless SF
theory, according to Ref. [42], it only remains to improve the local composite
fields in order to achieve a complete cancellation of O(a) effects in the correlation
functions. Like in the previous work of the ALPHA Collaboration [17, 19–21, 102],
the massless scheme is defined by setting the unrenormalized PCAC quark mass2

m(x0) =
1
2(∂0 + ∂∗0) fA(x0) + cAa∂∗0∂0 fP(x0)

2 fP(x0)
(6.5)

at x0 = T/2 to zero

m1 = m(
T
2
) = 0. (6.6)

In the above definition of m(x0), cA denotes the improvement coefficient of the
axial current that is a function of the bare coupling. The coefficient cA is a subject
of both perturbative and non-perturbative determination. In practice, the PCAC
mass can vanish only approximately. The issue of tuning the PCAC mass to zero
will be discussed in section 6.4.1, after we have decided on the exact definition
of m1 that will be used for this tuning, i.e. how we define cA (see section 6.3.1).
Following the notation of Ref.[43], we define the correlation functions fA and fP
from eq. 6.5 as

fA(x0) = −a6 ∑
y,z

1
3
〈Aa

0(x)ρ(y)γ5
1
2

τaρ(z)〉, (6.7)

fP(x0) = −a6 ∑
y,z

1
3
〈Pa(x)ρ(y)γ5

1
2

τaρ(z)〉, (6.8)

where ρ and ρ denote the spatial component of the boundary quark fields3 at
time x0 = 0. The unimproved isovector axial current Aa

μ and the pseudo-scalar

2defined from the partially conserved axial current (PCAC) relation in a continuum:
〈∂μ f a

Aμ(x)Oa〉 = 2m〈 f a
P(x)Oa〉. For more details see [42].

3Note that in eqs. (5.7, 5.8), ρ and ρ′ denote four-vector boundary fields, while here the notation
is changed and ρ′ are ρ spatial components of the boundary fields at the specified boundary
timeslice, in this particular case x0 = 0.
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density Pa are given by

Aa
μ(x) = ψ(x)γμγ5

1
2

τaψ(x), (6.9)

Pa(x) = ψ(x)γ5
1
2

τaψ(x). (6.10)

One could also define the backward instead of forward correlation functions
and they will be denoted by primed quantities

f ′A(T − x0) = +a6 ∑
y,z

1
3
〈Aa

0(x)ρ′(y)γ5
1
2

τaρ′(z)〉, (6.11)

f ′P(T − x0) = −a6 ∑
y,z

1
3
〈Pa(x)ρ′(y)γ5

1
2

τaρ′(z)〉, (6.12)

where ρ′(y), ρ′(y), ρ′(z), ρ′(z) again denote the spatial component of the bound-
ary quark fields, but this time at the x0 = T boundary. The forward and back-
ward correlation functions are related to each other, but they are, in general, not
the same. Namely, under the time reflection the boundary fields C and C′ are
swapped and this is where the difference in the forward and backward quantities
comes from.

6.3.1 Non-perturbative determination of cA

In [21] the perturbation theory result for cA was used, and it is only known to
one loop. We explore in the following several alternative ways to define cA and
determine its effect in the tuning of the mass m1 defined in eq. 6.6. Equation 6.5
can shortly be written as

m(x0) = r(x0) + cAs(x0), (6.13)

where the auxiliary functions r and s are defined through

r(x0) =
1
4(∂0 + ∂∗0) fA(x0)

fP(x0)
, (6.14)

s(x0) =
1
2 a∂∗0∂0 fP(x0)

fP(x0)
. (6.15)

It is also possible to define the PCAC mass by using backward correlation func-
tions (eq. 6.11 and 6.12) and this definition is usually denoted with m′

m′(x0) = r′(x0) + cAs′(x0) (6.16)

82



6.3 Non-perturbative O(a) improvement coefficients for Nf=4 theory

with r′ and s′ equivalent to eq. 6.14 and 6.14 with backward correlation functions
f ′A and f ′P replacing the forward ones. Imposing the condition

m(x0) = m′(x0), (6.17)

would give us the simplest non-perturbative definition of cA

cA = −r(x0)− r′(x0)

s(x0)− s′(x0)
. (6.18)

In Figure 6.2 the value of cA obtained from this definition of cA based on the con-
dition 6.17 imposed at time coordinate x0 = T/2 is denoted as cA NP. Another
way to obtain cA would be to request the following: the time derivatives of
the PCAC mass should be equal to zero at x0. In Figure 6.2 we denote with
cA NP der. fw. the value of cA for different gauge couplings coming from the con-
dition involving the forward correlation functions

∂0m(x0) = 0, (6.19)

or in terms of cA

cA = −r(x0 + a)− r(x0 − a)
s(x0 + a)− s(x0 − a)

. (6.20)

We can impose the condition equivalent to eq. 6.19 on the mass obtained with the
backward correlation functions

∂0m′(x0) = 0, (6.21)

which gives us yet another non-perturbative definition of cA

cA = −r′(x0 + a)− r′(x0 − a)
s′(x0 + a)− s′(x0 − a)

. (6.22)

The cA extracted from condition 6.21 at time x0 = T/2 is denoted as cA NP der. bw.
in the plots in Figure 6.2.

The numerical tests of the three proposed non-perturbative definitions of cA
are performed on L/a = 8 and 12 lattices. The resulting cA dependence on the
bare coupling g2

0 is separately plotted for each lattice size in Figure 6.2. The
previous non-perturbative determinations of cA for the fit of the Nf = 0 [43]
and Nf = 2 [103] are also shown in these plots. The question now is which
of the four ways of determining cA should be used as a firm definition of the
PCAC mass, thereby defining the massless scheme itself? We observe that the
non-perturbative determinations shown in Figure 6.2 are subject to strong cut-

83



6 Running coupling in Nf=4 theory

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

c A

g0
2

cA NP            Nf=4
cA NP der. fw.  Nf=4
cA NP der. bw. Nf=4

Nf=0
Nf=2

1-loop PT

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

c A

g0
2

cA NP            Nf=4
cA NP der. fw.  Nf=4
cA NP der. bw. Nf=4

Nf=0
Nf=2

1-loop PT

Figure 6.2: Different estimations of the improvement coefficient cA. The continual
lines represent the fit of the Nf = 0 and Nf = 2 non-perturbative
determinations of cA from [43] and [103]. The points denoted with
cA NP, cA NP der. fw. and cA NP der. bw. are obtained from the definitions
of cA given in eq. 6.18, 6.20 and 6.22, respectively. The upper panel
shows these determinations for the L/a = 12 lattice size, the panel
the bottom for L/a = 8. The dashed green line represents the 1-loop
result (eq. 6.23) from Ref. [92], which is the determination we decide
to use in the following, due to the strong cutoff effects in the non-
perturbative determinations we performed for Nf = 4 and due to the
fact that with increasing L/a the non-perturbative data approach to
the perturbative curve.

84



6.3 Non-perturbative O(a) improvement coefficients for Nf=4 theory

off effects and when one goes to higher lattice extent, the non-perturbative data
approach to the perturbative curve. We hence conclude that the performed non-
perturbative determination is not any better than using the 1-loop perturbative
result obtained in Ref.[92]

cA = −0.00756(1)g2
0 (6.23)

and we use eq. 6.23 for the numerical simulations that we want to perform. This
function is plotted with a dashed green line in Figure 6.2. It would certainly
be very interesting to see how the 2-loop expansion differs from the 1-loop ex-
pansion, but this would require a rather involved computation that has not been
performed yet.

6.3.2 Other O(a) improvement coefficients in Nf = 4 simulations

We have already discussed in section 5.5 that the O(a) improvement of the Schrödinger
functional requires additional improvement terms on the boundaries. For the
choice of the considered boundary conditions, there are two such coefficients: the
weight of the time-like plaquettes P attached to the boundary w(P) = ct(g0) and
the fermionic improvement coefficient c̃t. The 2-loop expression of ct and the 1-
loop expression for c̃t quoted in equations 5.31 and 5.32 are used to determine
these parameters in our simulations.

Let us now devote a few more words to the determination of the Sheikholeslami-
Wohlert improvement coefficient cSW , which is crucial for the O(a) improvement
of the Wilson fermion action. This coefficient can be determined non-perturbatively
— utilizing similar considerations to those applied in the effort to compute cA
non-perturbatively. Namely, one first introduces an alternative definition of the
quark mass

M(x0, y0) = m(x0)− s(x0)
m(y0)− m′(y0)

s(y0)− s′(y0)
(6.24)

= r(x0) − s(x0)
r(y0)− r′(y0)

s(y0)− s′(y0)
. (6.25)

In the O(a) improved theory that we are considering, this alternative quark mass
definition differs from m only in O(a2) terms. M′(x0, y0) is defined in an analogue
way, but with forward and backward correlation functions interchanged. A con-
dition imposed for the determination of cSW was the vanishing of the following
difference (see Ref. [43])

ΔM(
3
4

T,
1
4

T) = M(
3
4

T,
1
4

T)− M′(
3
4

T,
1
4

T). (6.26)
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Figure 6.3: The running coupling in Nf = 4 obtained from the simulation data in
[21], together with the perturbative determinations of the coupling in
the Schrödinger functional renormalization scheme to 2- and 3-loops.
The originally published data had a mistake in the error analysis. We
plot here the data from ref. [21] with the corrected error bars.

The cA term in the definitions of m and m′ (cf. equations 6.13 and 6.16) is canceled
in the above definition of the mass. Therefore, in spite of the problems we have
experienced in the non-perturbative determination of cA, with a moderate com-
putational effort it is possible to determine cSW non-perturbatively. This determi-
nation is done in Refs. [95, 104] and the resulting interpolation formula is quoted
in Table 2.1, together with the results of similar determinations for different num-
bers of fermion flavors. This interpolating result is used for our simulations that
follow.

6.4 Previous computation of the running coupling in
Nf = 4 Wilson QCD and how to improve it

The running of the QCD coupling in Nf = 4 theory has previously been com-
puted non-perturbatively only within two collaborations. The results for the four
flavors of staggered fermions are published in Ref. [105], whereas the result for
the four flavors of Wilson fermions are published in Refs. [21, 95]. The latter is
the only non-perturbative computation of this quantity that has been performed
so far for the Nf = 4 Wilson QCD. The final result for the Lambda parameter in
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units of the hadronic scale Lmax obtained in Refs. [21, 95] reads4

ln(ΛLmax) = −2.294(153), at g2(Lmax) = 3.45, (6.27)

while the result of the running SF coupling obtained in Refs. [21, 95] is shown
in Figure 6.3. The importance of an even more precise non-perturbative deter-
mination of the Λ parameter in the Nf = 4 theory for the world average of this
quantity has already been discussed in chapter 1. The first important step to-
wards this result is the precise determination of the step scaling function in the
Nf = 4 theory. Our goal is to achieve this step by

• performing a cross-check of the results obtained in [21],

• improving the precision of the previously obtained SSF for roughly a fac-
tor of two, while still maintaining control over the systematic errors and
keeping them negligible.

For the computation of the coupling, the massless SF scheme is achieved by tun-
ing the PCAC mass (defined in section 6.1) to zero. The value of the hopping
parameter κ for which the current quark mass vanishes, κc (critical κ), has to be
tuned explicitly. We could re-use the entire tuning procedure done in [21, 95], but
for the additional ensembles that we add to the following computation we had
to perform this procedure ourselves. The starting hint and some more details of
the PCAC mass tuning are discussed in appendix 5. Nevertheless, we would like
to discuss here one important point regarding the tuning procedure. Namely,
in order to achieve the wanted improvement in precision, and at the same time
maintain control over the systematics resulting from the tuning of the quark mass
to zero, we have to reinvestigate the bounds on the PCAC quark mass m1. The
criterion for defining a massless scheme in [21] was to achieve |m1L| ≤ 0.005 in
the tuning of the quark mass. It is not a priori clear whether this criterion would
suffice with the reduced uncertainty of the SSF that we are aiming at. We will
therefore discuss the derivation of the bound on |m1L| in the following section.

6.4.1 Tuning criteria for the PCAC mass

In order to estimate the systematic error in the SSF coming from the inexact tun-
ing of the PCAC mass to zero, one needs to determine the dependence of the
lattice SSF on the quark mass m1. The derivative of Σ with respect to z = m1L

4The error on ln(ΛLmax) quoted in ref. [21] does not coincide with the error given in eq. 6.27.
Value quoted in eq. 6.27 is the corrected value, obtained after a mistake in the previously used
error propagation code is removed.
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β ḡ2 am1 ḡ2 am′
1

5.0 3.932 (39) 0.03752 (13) 3.638 (34) 0.00037 (14)

Table 6.1: The renormalized coupling results for two L/a = 8 simulations ob-
tained in Ref. [21] at the same value of the inverse bare coupling β. The
data is used to estimate the numerical derivative in eq. 6.30.

reads

∂g2(2L)
∂z

|g2(L)=u = Φ(a/L)g4(L), z = Lm1. (6.28)

The authors of [19] argue that Φ is a slowly varying function of a/L and give the
estimate of its universal part from perturbation theory

Φ(0) = 0.00957Nf . (6.29)

We perform here an additional non-perturbative estimation of the derivative 6.28.
For that purpose, we use the two sets of L/a = 8 simulations from Ref. [21] and
obtain

∂g2(2L)
∂z

|β=5.0,L/a=8 = Φ(a/L)g4(L) = 0.98(17), z = Lm1, (6.30)

at the highest value of the renormalized coupling that has been considered in Ref.
[21]. The data taken from [21] for the purpose of this estimation are given in Table
6.1. We show the two discussed estimates of Φ(a/L) in Figure 6.4. To be on a
safe side, we take for the new universal estimate of Φ(a/L) the non-perturbative
value

Φ(a/L) = 0.08 at L/a = 8, (6.31)

coming from the upper bound depicted with the dashed blue line in Figure 6.4.
Due to the mentioned weak dependence of Φ on a/L, we use this value in the
following estimations of the limit to |Lm1| for all lattice extents considered.

Coming to the reduction of the statistical error in SSF, let us recall that the typ-
ical statistical precision of the SSF from Monte Carlo simulations reads

Δ(g−2) =
1
g4 Δ(g2). (6.32)

We require the systematic error coming from the mismatch in the tuning of the
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Figure 6.4: Dependence of function Φ(a/L) on g2. At g2 = 0 we have the per-
turbative(continuum) value for s/g4 given in 6.29. The red point at
g2 ≈ 3.9 comes from the non-perturbative estimate in eq. 6.30 at
L/a = 8.

PCAC mass to be at most one third of the statistical error in the SSF

Δsys(g(2L)) ≤ 1
3

g4(L) Δstat(g−2(2L)). (6.33)

Using the non-perturbatively obtained value from eq. 6.31 we estimate the sys-
tematic error to be

Δsys(g(2L)) =
∂g2(2L)

∂z
|z| ≈ 0.08 g4(L) |z|, z = m1a × L

a
. (6.34)

Finally, we obtain the limit on m1L, such that the condition 6.33 is satisfied

|m1a| ≤ a
L
× 1

3
× 1

0.08
× Δstat(g−2(2L)). (6.35)

In Appendix 6, we quote the statistical precision for the latices L/a = 6, 8 from
Ref [21]. We can see that the tuning of the PCAC mass performed in [21] already
satisfies the bound 6.35, even if we were to reduce the statistical error by a factor
of two in the simulations we plan to perform. This facilitates the setting up of new
simulations, since the predefined values of κcr from [21] may be used. The new
parameter sets that we add to the previous study have to be tuned to satisfy the
derived bound from 6.35. Some more details of the additional tuning are given
in Appendix 7. We also show in Tables 3 - 5 of Appendix 6 that, in the final set of
our new simulations, we have reached the precision required by expression 6.35.
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6.5 New result of the running coupling in
Nf = 4 theory

6.5.1 Simulations

We have simulated a wide range of energies from hadronic to high energy scales,
where the matching to perturbation theory is performed. This range is covered
by the choice of inverse bare gauge couplings β ∈ [5.2, 9.45], for which the non-
perturbative estimate of cSW from [104] holds. Since in the previous study of
Nf = 4 runing coupling[21] the lattices L = 4 have proven to have large cutoff
effects, we proceed immediately to simulating (L = T) L = 6, 8 lattices. The
simulations are performed using the SF-MP-HMC package specially developed
for this purpose, whose performance has been discussed in section 5.6.1.

Note that unlike the measurement of the standard lattice observables where
the number of MDUs of O(100 − 1000) suffices for precise estimation of the ob-
servable, the SF coupling is very noisy and requires O(100000) MDU for each
parameter set (β, L/a) in order to obtain an aimed precision of the order of per-
cent. Due to the infrared cutoff that the SF formulation provided and the fact that
our strategy does not need large lattice extents (since finite volume is treated as
an observable), one is still able to achieve the required precision for the parameter
sets of interest.

Obtaining a high precision estimate for the SF coupling from lattices larger than
L = 16 was not possible with the GHMC code used in [21]. We demonstrate here
that simulating L = 24 lattices is a realistic task with the SF-MP-HMC package
and modern computational resources. To this end, we add one simulation point
for the L = 12 lattice, in order to check the cutoff effects of our estimate from L =
6, 8 lattices. To keep the mass effects in the step scaling negligible, the hopping
parameter is tuned such that the PCAC mass fulfills the criteria 6.35. The values
of the renormalized coupling and the PCAC mass measured in the simulations of
lattices L = 6, 8, 12 respectively are given in Tables 6.2, 6.3 and 6.4.

6.5.2 Improved lattice step scaling function

The lattice step scaling function Σ(u, L/a) in the O(a) improved theory is ex-
pected to have lattice effects of order O(a2). This is, however, not entirely true,
although we use the non-perturbatively determined value of cSW . Namely, for the
boundary improvement coefficients that we use to define the SF scheme we have
only perturbative estimates on disposal (see section 6.3). Therefore, the O(a) ef-
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L/a = 6 L/a = 12
β κ ḡ2 am1 ḡ2 am1

5.25 0.138027 2.7487(60) −0.00159(77) 3.591(26) +0.00107(28)
5.55 0.137173 2.3658(57) +0.00151(73) 2.904(17) +0.00091(17)
5.85 0.136443 2.0944(47) +0.00119(68) 2.498(16) +0.00114(28)
6.45 0.135190 1.6983(26) −0.00070(48) 1.9641(76) −0.00089(10)
7.05 0.134123 1.4402(16) +0.00084(42) 1.6124(48) −0.00028(11)
7.65 0.133261 1.2497(12) −0.00122(36) - -
8.25 0.132538 1.1045(09) +0.00025(33) 1.2053(31) −0.000330(64)
8.85 0.131935 0.9900(07) +0.00011(32) - -
9.45 0.131411 0.8987(06) −0.00018(28) 0.9624(17) −0.000587(48)

Table 6.2: The results of the measurements of the renormalized coupling g2 and
the tuned PCAC mass from the simulations of L/a = 6 and L/a = 12
lattices. All runs include 160000MDU or more.

L/a = 8 L/a = 16
β κ ḡ2 am1 ḡ2 am1

5.44 0.137507 2.7265(75) +0.00047(45) 3.532(38) −0.00127(16)
5.88 0.136393 2.2203(64) +0.00037(41) 2.701(27) −0.00121(20)
6.32 0.135433 1.8776(43) +0.00056(26) 2.188(14) −0.00131(14)
6.76 0.134597 1.6294(31) +0.00042(21) 1.855(11) −0.00046(16)
7.2 0.133903 1.4444(23) −0.00014(20) 1.6375(74) −0.00094(12)

7.64 0.133275 1.3046(16) +0.00041(19) 1.4385(57) −0.00069(10)
8.08 0.132736 1.1840(13) +0.00019(17) 1.2906(46) −0.00093(12)
8.52 0.132249 1.0855(11) +0.00036(16) 1.1772(36) −0.00055(11)
8.96 0.131821 1.0013(10) +0.00035(17) 1.0827(31) −0.00053(10)
9.4 0.131442 0.9314(09) +0.00017(24) 0.9982(32) −0.000498(91)

Table 6.3: The results of the measurements of the renormalized coupling g2 and
the tuned PCAC mass from the simulations of L/a = 6 and L/a = 12
lattices. All runs include 160000MDU or more.

L/a = 12 L/a = 24
β κ ḡ2 am1 ḡ2 am1

9.45 0.131397 0.9629(19) −0.000096(82) 1.0415(58) −0.000472(82)

Table 6.4: A single point for the running from L/a = 12 and L/a = 24, performed
in order to check the cutoff effects, which are discussed in section 6.5.4.
Both runs include roughly 140000MDU.
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Figure 6.5: The improved lattice step scaling function Σ(2)(u, L/a) for Nf = 4 the-
ory, obtained by performing a constant fit involving L = 8 data only
(left panel) and the same quantity obtained performing a global fit of
L = 6, 8 data (right panel).

fects are not fully cancelled, but this input from perturbation theory nevertheless
guarantees that O(a) effects in the SSF appear starting at two loop order.

It is additionally very important to take advantage of all possible input from
perturbation theory that could lead to further improvement of the SSF. In this
respect, we exploit the perturbative expansion of the quantity

δ(u, a/L) =
Σ(u, a/L)− σ(u)

σ(u)
= δ1(a/L)u + δ2(a/L)u2 + . . . , (6.36)

with the dependence of the coefficients δ1 and δ2 on Nf known from [106]

δ1(a/L) = δ10(a/L) + δ11(a/L)Nf (6.37)

δ2(a/L) = δ20(a/L) + δ21(a/L)Nf + δ22(a/L)N2
f . (6.38)

The numerical values of these coefficients for the lattice extents of interest are
given in Table 6.5. Following the approach from [107] (also applied in [105] and
[21]), we define the improved version of the lattice SSF which should have smaller
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discretization errors than the original Σ

Σ(2)(u, a/L) =
Σ(u, a/L)

1 + δ1(a/L)u + δ2(a/L)u2 . (6.39)

The cutoff effects of Σ(2)(u, a/L) will start at order a × u4 and additionally all
terms of order am × un, for any m and n ≤ 3 are cancelled. The only remaining
O(a) effects in Σ(2)(u, a/L) (a × u4) have proven to be small for Nf = 2 theory
[19]. We expect the same to be the case in Nf = 4 theory and the improved step
scaling function is then expected to converge to the continuum SSF effectively at
the rate

Σ(2)(u, a/L) = σ(u) + O(a2). (6.40)

Note that this approach of correcting the lattice SSF can be applied irrespective of
whether or not the action is improved.

6.5.3 Continuum limit of the SSF

The standard computation of the SSF, as described in section 6.1, would require
that we tune the inverse bare coupling β such that the renormalized coupling
is fixed to a certain value g2(L) = u and compute the lattice SSF Σ(u, L/a) at
the tuned values of β for a range of u and for different lattice extents L/a. This
procedure is computationally expensive, since each tuning of β produces an ad-
ditional cost. Still, as there was no alternative known, this was the procedure of
choice for many computations of the ALPHA collaboration in the past[17–20]. A
more convenient proposal which reduces the computational cost and tuning pro-
cedure was given in [108]. The authors suggest to perform simulations at several
values of bare coupling at L/a and then perform an interpolation of the running
coupling g2(β, L/a) with a smooth function of β. This procedure has proven to
be successful in both computations of the Nf = 4 running coupling performed
so far [21, 105] and we decide to follow the authors of [21] in their choice of the

L/a δ1 δ2

6 −0.0045 0.0013
8 −0.0028 0.00013
12 −0.0010 0.00003

Table 6.5: Discretization errors of the SSF (eq. 6.36) for Nf = 4 and L/a = 6, 8, 12.
The expansion coefficients are computed from the perturbative results
given in [106].
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u L/a Σ(u, a/L) Σ(2)(u, a/L) u L/a Σ(u, a/L) Σ(2)(u, a/L)
0.9300 4 0.9953(16) 0.9986(16) 1.4435 4 1.6132(43) 1.6127(43)

6 0.9986(17) 1.0018(17) 6 1.6224(41) 1.6286(41)
8 0.9986(31) 1.0007(31) 8 1.6200(50) 1.6252(50)

0.9629 4 1.0332(16) 1.0354(16) 1.6285 4 1.8503(59) 1.8456(58)
6 1.0368(20) 1.0400(20) 6 1.8603(53) 1.8676(53)
8 1.0354(23) 1.0376(23) 8 1.8607(66) 1.8673(66)

1.0000 4 1.0742(18) 1.0774(18) 1.8700 4 2.1700(77) 2.1567(76)
6 1.0801(24) 1.0834(24) 6 2.1833(74) 2.1918(74)
8 1.0775(20) 1.0800(20) 8 2.186(10) 2.195(10)

1.0813 4 1.1686(22) 1.1716(22) 2.2003 4 2.639(13) 2.607(12)
6 1.1763(30) 1.1803(30) 6 2.658(13) 2.668(13)
8 1.1720(25) 1.1750(25) 8 2.660(21) 2.672(21)

1.1787 4 1.2848(24) 1.2874(24) 2.6870 4 3.458(22) 3.374(21)
6 1.2936(32) 1.2982(31) 6 3.466(22) 3.476(22)
8 1.2887(27) 1.2921(27) 8 3.461(35) 3.480(35)

1.2972 4 1.4299(30) 1.4315(30)
6 1.4390(33) 1.4443(33)
8 1.4347(34) 1.4388(34)

Table 6.6: Results for Σ(u, a/L) and Σ(2)(u, a/L) for lattice sizes L/a = 6, 8 and
couplings u. Values at L/a = 4 are taken over from [21] and are only
given just for comparison: they do not enter in our analysis.

interpolation formula motivated by perturbation theory

ḡ2(β, L/a) =
6
β

[
n

∑
m=0

cm,L/a

(
6
β

)m
]−1

. (6.41)

In the above interpolation, no coefficients were fixed to the perturbative values
of any kind. We have checked that the dependence of the final results on the
details of this interpolation (n = 4, 5) is negligible. After the interpolation has
been performed, we compute Σ(u, L/a) for a range of u from small to large cou-
plings, starting from the value u = 0.93 and choosing the remaining couplings
such that the recursion 6.3 is roughly fulfilled. The resulting values for the lattice
SSF Σ(u, L/a) and its improved form Σ(2)(u, a/L), after the above described in-
terpolation has been performed, are given in Table 6.6. The continuum limit of
the SSF is obtained in two different ways
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u σ(u) Δ(σ(u))
0.93 1.0007 0.0031
0.9629 1.0376 0.0023
1.0000 1.0800 0.0021
1.0813 1.1750 0.0025
1.1787 1.2921 0.0027
1.2972 1.4388 0.0034
1.4435 1.6252 0.0050
1.6285 1.8673 0.0066
1.8700 2.1949 0.0103
2.2203 2.6721 0.0208
2.6870 3.4800 0.0353

Table 6.7: Continuum extrapolation of the step scaling function, performing the
constant fit on the L/a data from Table 6.6 (cf. Figure 6.5).

• Global fit. Perform a fit to L/a = 6, 8 data

Σ(2)(u, a/L) = σ(u) + ρu4(a/L)2, (6.42)

with a continuum SSF σ(u) that depends on u and a global parameter ρ
which quantifies the cutoff effects.

• Constant fit. At each coupling u perform a constant fit involving L/a = 8
data only.

The continuum extrapolation of the improved lattice SSF Σ(2)(u, a/L) for the case
when the global fit is performed is plotted in the left panel of Figure 6.5 and the
case with the constant fit of L/a = 8 data is plotted in the right panel of Figure
6.5. Both in Table 6.6 and in Figure 6.5, in addition to L/a = 6, 8, we also give
L/a = 4 data, which is taken over from [21]. The latter is here just to guide the
eye and does not enter any further analysis. We can conclude from Figure 6.5, as
well as from the value of the parameter ρ (cf. eq. 6.42)

ρ = 0.035(52) (6.43)

that the cutoff effects tend to be small. Note that the difference between Σ(2)(u, L/a)
and Σ(u, L/a) in Table 6.6 is small. Also, the results of the L/a = 8 data agree
with the results from a global fit of L/a = 6, 8 within one sigma. Nevertheless,
to be on the safe side and eliminate the cutoff effects of L/a = 6 data fully, in the
following we will only quote as our main result the constant fit of L/a = 8 data
(as it has been done in [21]). In Table 6.7, we give the values of the continuum
extrapolated values for the SSF for the constant fit of L/a = 8. We will come back
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Figure 6.6: The extrapolation of SSF at u = 0.9629 for L = 6, 8 data. This is the
value of the coupling where the L = 12 simulation is performed. The
L = 6, 8 lattices are used in the computation of the SSF and the running
coupling in sections 6.5.3 and 6.5.5 and L/a = 4 point is taken from
[21] just as an illustration of the cutoff effects. The linear fit of L/a = 8
data and the global fit of L/a = 6, 8 data plotted on top of each other.
They both agree with the additional L/a = 12 simulation data within
errorbars. The red point shows the continuum value obtained from
the constant fit of the L/a = 8 data.

to the discussion of the cutoff effects in section 6.5.4.

6.5.4 Cutoff effects

In order to check the cutoff effects of taking only L/a = 6, 8 lattices in the com-
putation of the running coupling, we repeat one horizontal step of Figure 6.5 and
add one more (finer) lattice resolution, corresponding to the L/a = 12 simulation
given in Table 6.4. We can conclude that as a consequence of the careful choice of
the definition of the coupling itself as well as the other details of the discretiza-
tion, the dependence of the SSF on the lattice resolution turns out to be extremely
weak so that the continuum extrapolations (a/L → 0) are already rather safe with
the small lattice extents used in [21], as well as in this study.

6.5.5 Running coupling

After performing the continuum limit of the SSF at the chosen values of u, we use
a fifth order polynomial to obtain the interpolating estimate of σ(u) at the whole
range of couplings 0 ≤ u ≤ 2.7. As already mentioned, we use for this purpose

96



6.5 New result of the running coupling in Nf=4 theory

0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

u

σ
(u

)/
u

 

 

Nf = 2

Nf = 4

2-loop β -funct. for Nf = 4

3-loop β -funct. for Nf = 4

Figure 6.7: Continuum step scaling function for Nf = 4 theory. The result for
Nf = 2 is given for comparison. Dashed lines are the perturbative
results from integrations with the 2-loop and 3-loop beta function.

the results coming from the constant fit of L/a = 8 data (cf. Table 6.7) and obtain

σ(u) = u + s0u2 + s1u3 − 0.012u4 + 0.012u5, 0 ≤ u ≤ 2.7. (6.44)

The fit of the non-perturbative Nf = 4 data is plotted in Figure 6.7, together with
the non-perturbative result for Nf = 2 theory [19] and the 2- and 3-loop perturba-
tive result for Nf = 4 theory. Coefficients s0 and s1 are universal (cf. eq. 5.25 and
5.26) and obtained from perturbation theory. We notice the agreement we obtain
with the perturbative estimates of the SSF over the whole interval of coupling u.
Namely, our interpolation agrees with the PT result within one sigma, except at
the largest coupling where the difference is slightly larger, but still smaller than
two sigma. Finally, we complete step 2. of the strategy to extract the Lambda
parameter described in section 6.2. Namely, we use the fit function obtained in
6.44 to give the estimate of ln(ΛLmax) in Nf = 4 theory. Starting from the highest
coupling umax = g2(Lmax), chosen such that the associated scale Lmax is in the
hadronic range, we recursively solve the following equation n-times

σ(g2(L/2)) = g2(L). (6.45)
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i ui ln(ΛLmax)
0 3.45 -2.028
1 2.656(19) -2.067(23)
2 2.193(19) -2.079(35)
3 1.871(17) -2.079(42)
4 1.635(14) -2.073(48)
5 1.453(13) -2.065(55)
6 1.309(12) -2.055(61)
7 1.191(11) -2.046(68)
8 1.0934(97) -2.036(74)
9 1.0105(90) -2.027(80)
10 0.9394(83) -2.018(86)

Table 6.8: Values estimated for ln(ΛLmax) for the value of Lmax set with
g2(Lmax) = 3.45. We take our final result from the step i = 9.

In this way, we obtain values for g2(Lmax/2i), i = 1 . . . n , where for a sufficiently
large number of steps, we arrive to the regime where this coupling is perturbative
and it is safe to express Λ in terms of Lmax using the perturbative expansion from
eq. 2.54

(ΛLmax) =2i(b0g2)
− b1

2b2
0 e

− 1
2b0g2 e

−
∫ g

0 dx[ 1
β(x)+

1
b0x3 −

b1
b2
0x
]
. (6.46)

The values for ln(ΛLmax) are given in Table 6.8. We take our final result from the
step i = 9 from Table 6.8

ln(ΛLmax) = −2.027(80). (6.47)

The choice of the step for quoting the final result (i = 9) is taken to be the same
as in Ref. [21]. Note that, taking into account the data obtained in this work, the
choice i = 9 could be considered overconservative since the plateau in ln(ΛLmax)
with our data arrises earlier than in [21]. Therefore, already reading off a final
value from the step i = 5 is a viable choice.

As it was discussed in section 6.2, its still a significant challenge for future work
to perform step 1. of the described strategy which would enable us to quote the
value of the Λ parameter in physical units.

Finally, in Figure 6.8 we show the running coupling in the SF scheme, expressed
in units of Λ. Even at the strongest coupling included in the computation, the ob-
tained non-perturbative result shows the agreement with the perturbation theory
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estimates within one standard deviation. With the results of [21], a 2-sigma effect
at the largest considered value of the SF coupling has been reported, but due to
the error in the error analysis code, the final error estimate in this work is un-
derestimated. Our results agree with the corrected result from [21] within one
sigma. Nevertheless, it is expected that at energies higher than the ones consid-
ered in this study the deviation of the non-perturbatively obtained SF coupling
from the perturbative estimate will appear. For that reason it is very important to
extend this study to lower energies and some interesting proposals for how this
can be done will be discussed in Chapter 8.
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Figure 6.8: The running coupling in Nf = 4 obtained from the simulations sum-
marized in section 6.5.1, employing a procedure described in sec-
tion 6.5.3. The perturbative determinations of the coupling in the
Schrödinger functional renormalization scheme to 2- and 3-loops are
also given.
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7 The strange quark mass and the
Lambda parameter for
Nf = 2 theory

The determination of the Lambda parameter in units of the hadronic scale Lmax
from chapter 6 is an important step towards the final comparison of this param-
eter from the perturbation theory and from the lattice. Nevertheless, the impact
of this determination on the phenomenological applications will be possible only
after the scale of the simulations is set and the quantities in physical units are
attained. Performing the set of large scale simulations at Nf = 4 is a tedious and
lengthy project, predicted to be finished in the next couple of years. Until this
has been achieved, we go one step back and use the running od the coupling and
running of the mass data from ALPHA collaboration [19, 20], in order to perform
a determination of the Lambda parameter of and the strange quark mass for two
flavour QCD. This represents the finalization of a long-term program of the AL-
PHA collaboration of computing these parameters for Nf = 2 theory, using the
Schrödinger functional strategy to overcome the multi-scale problem and keep
the full control over the systematic errors. The results which will be presented
here are obtained with the help of the precise scale determination from an ex-
tensive set of large scale simulations produced with the DD-HMC code and the
MP-HMC code discussed in chapter 4. In the scale setting a physical quantity
used is the kaon decay constant fK. With this scale we achieve a total error of
approx. 2%, employing two different strategies for the chiral extrapolation which
agree within errorbars. First part of this chapter will be dedicated to the im-
proved scale setting and afterwards we move towards giving the physical values
for the RGI values of the strange quark mass and Λ-parameter, in the setup with
two dynamical flavors of light quarks. The results which will be presented here
have already been published in Refs. [24, 109]. Text of sections 7.1 and 7.2 (with
minor modifications to match the notation of Ref. [24]) is fully taken over from
Ref. [109]. Text of the sections 7.3.1 and 7.4.1 as well as all the plots and tables in
this chapter (7) are taken over from Ref. [24].

101



7 The strange quark mass and the Lambda parameter for Nf=2 theory

id L/a β κ κs R0 mπ[MeV] mπ L
A2 32 5.2 0.13565 0.135438(20) 5.485(21) 630 7.7
A3 0.13580 0.135346(20) 5.674(32) 490 6.0
A4 0.13590 0.135285(20) 5.808(34) 380 4.7
A5 0.13594 0.135257(20) 5.900(24) 330 4.0
E4 32 5.3 0.13610 0.135836(17) — 580 6.2
E5 0.13625 0.135777(17) 6.747(59) 440 4.7
F6 48 0.13635 0.135741(17) 6.984(51) 310 5.0
F7 0.13638 0.135730(17) 7.051(43) 270 4.3
N4 48 5.5 0.13650 0.136278(08) 9.32(30) 550 6.5
N5 0.13660 0.136262(08) 9.31(26) 440 5.2
N6 0.13667 0.136250(08) 9.55(11) 340 4.0
O7 64 0.13671 0.136243(08) 9.68(10) 270 4.2

Table 7.1: Overview of the ensembles used in this study. We give the label, the
spatial extent of the lattice, β = 6/g2

0, the hopping parameter κ of the
sea quarks, the hopping parameter κs of the strange quark, the scale
R0 = r0/a, the mass of the sea pion mπ and the product mπ L, which is
always larger or equal than 4. All lattices have dimension T × L3 with
T = 2L.

7.1 Lattice parameters

The following study is based on ensembles generated within the CLS effort, with
the Wilson plaquette gauge action together with Nf = 2 mass-degenerate fla-
vors of O(a) improved Wilson fermions. The simulations are using either M.
Lüscher’s implementation of the DD-HMC algorithm (cf. section 4.1 and [68]),
or our implementation of the MP-HMC algorithm (cf. chapter 4 and [74]). The
list of ensembles used in the analysis is shown in Table 7.1. Lattice spacings are
ranging from 0.05fm to 0.08fm and their precise determination will be presented
in the following section. The ensembles cover a wide range of pion masses going
down to 270MeV, whereas all lattice volumes satisfy the requirement mπ L ≥ 4 to
keep finite volume effects under control.

7.2 Setting the scale from fK

To determine the scale and match to experimental values we have to extrapolate
decay constants to the physical quark masses. For this we use two variants based
on chiral perturbation theory(ChPT). The first one employs SU(3) chiral perturba-
tion theory with a quenched strange quark [110]. The aim here is to minimize the
chiral corrections by keeping the sum (Mlight + Ms) of the light quark mass and
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the strange quark mass approximately fixed. Chiral corrections are expected to
be well behaved, since in this setup all Goldstone bosons have a mass of at most
the physical kaon mass (≈ 500MeV). The second approach uses SU(2) ChPT ex-
panding only in the light quark mass (Mlight = (Mu + Md)/2) [111]. Whereas the
first strategy is most useful for Nf = 2, the second one is equally well applicable
in Nf = 2 theory with a quenched strange quark and in the Nf = 2 + 1 theory,
the only difference being the low energy constants. The difference between the
two strategies in approaching the physical point is illustrated in the left panel of
Figure 7.1.

Let us already at the very beginning point out the distinction we make in nota-
tion of the kaon decay constant in physical units fK and in lattice units FK

FK ≡ a fK . (7.1)

In the setup described in the next two sections we use two quarks with hopping
parameters κ1 = κ2 and two additional quenched quarks with hopping param-
eters κ3 = κ4. From these we build pseudoscalars, pions with mass mπ from
two quarks with κ1 = κ2 = κsea. The kaons we build from quarks with hopping
parameters (κ1, κ3). The physical point is defined by mπ,phys = 134.8MeV and
mK,phys = 494.2MeV, the values in QCD with the electromagnetic interaction be-
ing switched off[112]. The two strategies differ in how κ3 is chosen as a function
of κ1.

In the following computations we have included the effect of the autocorrela-
tions in the error analysis in a very conservative way. The details can be found in
Appendix 7. Let us just mention here that for the estimation of the error we take
into account the tail of the autocorrelation function[50]. Thus, we are convinced
that we have statistical errors fully under control. They are computed following
the procedures detailed in [113, 114].

7.2.1 Partially quenched SU(3) Chiral Perturbation Theory
(Strategy 1)

In this approach we define the strange quark hopping parameter κ3 through the
dimensionless ratio

RK =
m2

K(κ1, κ3)

f 2
K(κ1, κ3)

=
m2

K,phys

f 2
K,phys

, (7.2)

for each value κ1 and the gauge coupling (β), such that the l.h.s. of the equa-
tion remains equal to the constant ratio R = m2

K,phys/ f 2
K,phys. Rather than a fixed
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[!htbp]

Figure 7.1: Left: A sketch of the two approaches for chiral extrapolation to the
physical point. Strategy 1 (dotted line) imposes the condition on the
sum of the strange and light quark mass: Ms + Mlight = const. +
O(M2), where Mlight = (Mu + Md)/2, while the second strategy (full
line) keeps the strange quark mass Ms constant during the extrapola-
tion. Right: the two functions LK and Lπ, see eq. 7.6 and 7.11 respec-
tively, in the interval y1 ∈ [0, yK].

strange quark mass, this corresponds to Ms + Mlight = const. to lowest order in
the expansion in the quark masses and this is expected to give a flat chiral extrap-
olation for fK. The condition 7.2 determines a value of κ3 = h(κ1) as a function
of the sea quark hopping parameter and it can be obtained by interpolation. Af-
ter the dependence of κ3 on κ1 is determined, it remains to extrapolate the decay
constant FK(κ1, h(κ1)) to the physical point, defined by the dimensionless ratio

Rπ =
m2

π(κ1, h(κ1))

f 2
K(κ1, h(κ1))

=
m2

π,phys

f 2
K,phys

. (7.3)
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In the last step we use the prediction of the above functional form coming from
SU(3) ChPT[110]

fK(κ1, h(κ1)) = fK,phys
[
1 + L̄K(y1, yK) + (α4 −

1
4
)(y1 − yπ) + O(y2)

]
, (7.4)

LK(y1, yK) = LK(y1, yK)− LK(yπ, yK), (7.5)

LK = −1
2

y1 log(y1)−
1
8

y1 log(2yK/y1 − 1), (7.6)

where the variables y are defined as

y1 =
m2

π(κ1)

8π2 f 2
K(κ1, h(κ1))

, (7.7)

yK =
m2

K,phys

8π2 f 2
K,phys

= 0.12857 (7.8)

yπ =
m2

π,phys

8π2 f 2
K,phys

= 0.00958. (7.9)

Because of eq. 7.2, we have y3 ≡ m2
K(κ1, h(κ1))/[8π2 f 2

K(κ1, h(κ1))] = 2yK − y1 +
O(y2) and y3 does not appear in eq. 7.4. In the right panel of Figure 7.1 we

Figure 7.2: Chiral extrapolation of the kaon decay constant in lattice units for all
three values of β. Open symbols and dashed lines correspond to strat-
egy 1, while filled symbols and dash-dotted lines represent the out-
come of the strategy 2. The extrapolated results coming from both
strategies agree at the physical point. They are obtained by applying
the global fit for all three values of gauge couplings β, imposing a cut
y1 < 0.1.
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compare the chiral log function LK to the one describing the chiral behavior of fπ,

fπ(κ1) = fπ,phys

[
1 + Lπ(y1)

+ (α4 +
1
2

α5)(y1 − yπ) +O(y2
1)

]
, (7.10)

Lπ(y1) = −y1 log(y1) , (7.11)

Lπ(y1) = Lπ(y1)− Lπ(yπ) . (7.12)

Our condition 7.2 leads to the specific combination of chiral logarithms 7.6, which
has very little curvature and is overall much smaller than Lπ; the suppression of
the light quark mass dependence thus extends also to the NLO chiral logarithms.
This suggests that the chiral extrapolation is much easier than for fπ and was one
of our reasons to select fK to set the scale. Of course, the counter terms αi do not
contribute in Fig. 7.1 (right), but as they are linear in y1, they also introduce no
curvature. At the order in the chiral expansion represented in eq. 7.4, O(y2

1), we
can also replace

y1 → ỹ1 =
m2

π(κ1)

8π2 f 2
π(κ1)

, (7.13)

with the corresponding replacement yπ → ỹπ, which serves us as a check of
the typical size of O(y2) effects. The effect of this change on the example of the
observable r0 fK (see Appendix 7) shows that the cutoff effects are small and jus-
tifies the motivation for dropping the terms such as a2y1 in the chiral expansion
7.4. Since this is the case, we determine the values of the kaon decay constant in
lattice units at the physical point FK,phys by a direct application of

FK(κ1, h(κ1)) = FK,phys

[
1 + LK(y1, yK) + (α4 −

1
4
) (y1 − yπ)

]
. (7.14)

Here the data at the three different β are combined in a global fit with one com-
mon value of α4, but, of course, with different FK,phys for the three different β. The
lattice spacings are then obtained from

a =
FK,phys

fK,phys
. (7.15)

Results are shown in Table 7.2, together with those from our alternative strategy
which will be discussed in the following section.
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Figure 7.3: Detailed comparison of strategy 1, strategy 2 and a linear extrapola-
tion at β = 5.5. The symbols are the same as in Figure 7.2 with the
solid line representing the linear extrapolation of the open symbols.
Note that the slopes given by the low energy parameters are deter-
mined from the global fit to all three β values.

7.2.2 SU(2) Chiral Perturbation Theory (Strategy 2)

In this approach, we work at the fixed strange quark mass and perform a chi-
ral extrapolation in the light quark mass (Mlight) using SU(2) chiral perturba-
tion theory[111], also known as heavy meson ChPT. Since we are working with
Wilson fermions, one has to keep fixed the axial Ward identity (PCAC) mass of
the strange quark. We denote average quark masses of flavors r and s as mrs
(r, s = 1, . . . , 4), defined in a similar way as the PCAC mass in eq. 6.5 (cf. Ap-
pendix 7). The bare PCAC masses of the sea and the valence quark are defined
by

m1(κ1) = m12 m3(κ1, κ3) = m34. (7.16)

We now extrapolate in the light quark mass at fixed mass of the strange quark.
Namely, we tune for each sea quark mass the strange quark’s hopping parame-
ter such that the PCAC mass m34 has a prescribed value μ, which is independent
of κ1. In principle, we should keep m34

R fixed, but since the setting of certain
improvement coefficients to zero (see eq. 36 in Appendix 9) cancels the κ1 depen-
dence of the ratio m34

R /m34, then keeping m34 fixed is equally good. This defines
the function κ3 = s(κ1, μ). In practice, we first interpolate the data for m34(κ1, κ3)
in κ3 and then solve

am34(κ1, s(κ1, μ)) = μ (7.17)

for s, where the left hand side is represented by the interpolation formula. To
find the value of μ corresponding to the physical point, we then perform a SU(2)
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extrapolation [115, 116] to the chiral limit defined by condition 7.3. We first ex-
trapolate M2

K = (amK)
2 and FK in y1 to y1 = yπ at fixed value of μ

FK(κ1, s(κ1, μ)) = P(μ)
[
1 − 3

8
[y1 log(y1)− yπ log(yπ)] + αf(μ)(y1 − yπ) + O(M2)

]
M2

K(κ1, s(κ1, μ)) = Q(μ)
[
1 + αm(μ)(y1 − yπ) + O(M2)

]
. (7.18)

These expressions represent the asymptotic expansions for small y1 at fixed μ cor-
rect up to error terms of order y2

1. Let us note here that SU(2) ChPT for kaons does
not take into account kaon loops as opposed to SU(3) ChPT. This corresponds to
the production of two kaons, i.e., states with an energy of around one GeV. From
this point of view SU(2) ChPT is not really worse than ChPT in the pion sec-
tor where |ρ π〉 intermediate states are dropped. From eq. 7.18, Q(μ) and P(μ)
are computable for arbitrary values of μ. The requirement that m2

K/ f 2
K attains its

physical value at the physical light quark mass then defines μs, which at the same
time sets the scale of the simulations

a =
P(μK)

fK
at

Q(μs)

P(μs)2 =
m2

K,phys

f 2
K,phys

. (7.19)

The values of the lattice spacings from this strategy are shown in Table 7.2. Com-
paring to the results of the first strategy, we find a very good agreement as demon-
strated in Figure 7.2. The details of comparing chiral extrapolations with different

Strategy 1 Strategy 2
β 5.2 5.3 5.5 5.2 5.3 5.5

a[fm] 0.0755 0.0658 0.0486 0.0749 0.0651 0.0482
Δstat.a 0.0009 0.0007 0.0004 0.0009 0.0007 0.0004
Δsyst.a 0.0007 0.0007 0.0005 0.0012 0.0010 0.0007

Table 7.2: Lattice spacings from the first strategy obtained by applying SU(3)
ChPT(left, [110]) and from the second strategy, based on SU(2)
ChPT(right, [115, 116]). The first line shows the values of the lattice
spacing in fm from both strategies and the second line shows the statis-
tical error. Δsyst. is the systematic error due to the chiral extrapolation
obtained as a difference between the chiral and the linear fit.

value of the cut on yπ to the linear extrapolation are given in Appendix 7. We take
the central values from the results of strategy 1 with cut ymax

1 = 0.1 as our final
result for the following applications. As a systematic error we take into account
the deviations to the fit following strategy 2 and to a simple linear extrapolation;
for our smallest lattice spacing these different extrapolations are compared more
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closely in Figure 7.3.

7.3 Determination of the Λ parameter

To calibrate the overall energy scale, we take advantage of the non-perturbative
Schrödinger functional scheme discussed in chapter 5. It is again used as an inter-
mediate scheme which connects the low and high energy physics, but this time
for studding the running of the coupling and the quark mass in Nf = 2 Wil-
son theory. The results which will be used in the following determination of the
Lambda parameter and the strange quark mass in this theory use the initial non-
perturbative running data from [19, 20]. We then follow the strategy explained in
section 7.2.2 and fix a large enough value of the coupling ḡ2(L1) which is in the
low-energy region and relates the associated distance, L1, to a non-perturbative,
infinite-volume observable, in our case fK. We defined in this work L1 through
ḡ2(L1) = 4.484. At this value of the coupling we have a large and precisely tuned
set of pairs (L1/a, β). Reanalyzing the data of ref. [19] at this point, we get the
continuum value of

ΛL1 = 0.264(15). (7.20)

What remains to be done is to compute fKL1 in the continuum limit. To this end,
we have to combine the updated data for L1/a of ref. [24] with the decay constant
FK at physical quark masses in the previous section. Since the data points for L1/a
and FK are at different values of β, we need to interpolate L1/a to the values of
the latter. This interpolation is addressed in appendix 7. Finally, the product fKL1
can be extrapolated to the continuum limit. [!htbp]

7.3.1 Continuum value of the Λ parameter

Figure 7.4 shows that in the continuum extrapolation of L1 fK the cut-off effects
are smaller than the statistical uncertainties; the numerical values are given in Ta-
ble 7.4. Indeed, a constant extrapolation gives a χ2/d.o.f. below unity. However,
we use a linear extrapolation, allowing for O(a2) effects hidden by the statistical
fluctuations. In this extrapolation the covariance between the three points from
the interpolation in L1/a is taken into account. For comparison with results in
the literature, we give all results also in units of r0|y1=yπ

. The two combinations
evaluate to

fKL1 = 0.315(8)(2) r0/L1 = 1.252(33) (7.21)

in the continuum limit. The final results come from strategy 1 for the chiral ex-
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7 The strange quark mass and the Lambda parameter for Nf=2 theory

Figure 7.4: Continuum extrapolation of the product of lattice kaon decay constant
fK and matching scale L1, defined with ḡ2(L1) = 4.484. Even though
the data show no cutoff effects, we have used a linear extrapolation
to account for uncertainties from O(a2) effects within the error bars.
The two strategies for the chiral extrapolation of FK = a fK agree well
within the statistical uncertainties.

β FK
5.2 0.0593(7)(6)
5.3 0.0517(6)(6)
5.5 0.0382(4)(3)

Table 7.3: The kaon decay constant at the physical quark mass and the corre-
sponding lattice spacing. The first error is statistical, the second sys-
tematic error due to the chiral extrapolation.
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trapolation of FK, given in Table 7.3. Strategy 2 is used to estimate the systematic

β L1/a L1 fK r0/L1 ms/ fK
5.2 5.367(82) 0.318(6)(3) 1.155(22) 0.530(12)(6)
5.3 6.195(51) 0.320(5)(4) 1.169(15) 0.577(11)(7)
5.5 8.280(80) 0.316(4)(2) 1.213(17) 0.617(11)(5)

cont. 0.315(8)(2) 1.252(33) 0.678(12)(5)

Table 7.4: Values of L1/a, L1 fK, r0/L1 and ms/ fK at the three values of β. For the
latter three, we also give the value extrapolated to the continuum limit.
The running mass in the Schrödinger Functional scheme ms is given at
the renormalization scale L1.

uncertainty; however, it is small compared to the statistical errors and we do not
give it separately. We therefore quote

Λ(2)/ fK = 0.84(6) and r0 Λ(2) = 0.331(22) . (7.22)

Now, as a result of our analysis, the error is dominated by the error on ΛL1 (cf.
eq. 7.20). We translate to the MS scheme using Λ(2)

MS
= 2.382035(3)Λ(2)[90, 99]

and find

Λ(2)
MS

= 310(20)MeV and r0 Λ(2)
MS

= 0.789(52) . (7.23)

7.4 Determination of the strange quark mass

We now proceed to the computation of the strange quark mass. The strategy we
use is the one originally suggested in Ref. [18], which splits up the computation
into several steps, similarly to the strategy applied for the computation of the
Lambda parameter (cf. eq. 6.4). It circumvents the multi-scale problem a direct
approach would face and therefore allows for a good control over the systematic
errors. Earlier results have been presented in Ref. [20], here we improve on them
with a much higher statistical and systematic accuracy.

To briefly summarize the procedure, the renormalized RGI mass Ms is given in
terms of the bare PCAC mass ms by

Ms = ZMms =
M

m(L)
ms(L) =

M
m(L)

ZA

ZP(L)
ms , (7.24)

where the computation of the renormalization constant ZM is split in two steps.
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7 The strange quark mass and the Lambda parameter for Nf=2 theory

The continuum value of the universal first factor M/m has been computed in
[20] for the two flavor theory which we consider here. It does not depend on the
quark flavor or the lattice regularization. For the second factor, updated values
of ZP are given in [24]. Of course, the first factor and ZP have to be evaluated at a
common renormalization scale L. While the authors of [20] used L = Lmax with
ḡ2(Lmax) = 4.61, we choose here L = L1 with ḡ2(L1) = 4.484 as in the previous
section. The first factor in eq. 7.24 is

M/m = 1.308(16) (7.25)

at this scale from a re-evaluation of the data from [20].
For the bare strange quark mass at physical light quark masses ms, the final

ingredient of eq. 7.24, we again follow the two strategies presented in section 7.2.
Of the two, the second holds the strange quark mass fixed as a function of the
light quark mass and is therefore the natural choice for this analysis. We still use
strategy 1 as a cross check to estimate systematic effects from the chiral extrapo-
lation.

Strange quark mass from strategy 2

The hopping parameter of the strange quark κs is a non-trivial function of κ1,
defined in strategy 2 as

κs = s(κ1, μs) , (7.26)

with s(κ1, μ) given in eq. 7.17. Its numerical determination as well as the deter-
mination of μs have been explained in section 7.2.2. The resulting values of κs are
listed in Table 7.1. Expressing Ms in units of fK we eliminate ZA and get

Ms

fK,phys
=

M
m(L)

× 1
ZP(L)

[1 + (b̃A − b̃P)μs]
μs

Fbare
K,phys

, (7.27)

with Fbare
K,phys = FK,phys/ZA. The second factor is O(a) improved, if we neglect, as

before, a tiny correction (bA − bP)amsea (see Appendix 9).

Strange quark mass from strategy 1

Within this strategy, it is most natural to determine the combination Ms + Mlight,
the sum of strange and light quark mass, since this combination is kept fixed at
lowest order in chiral perturbation theory along the trajectory defined by eq. (7.2).
The first order corrections are easily incorporated from [110] such that we arrive
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after renormalization as in eq. (7.27) at

2m13(κ1, h(κ1))

ZP fK(κ1, h(κ1))
=

ms + m̂
fK,phys

[
1 + Lm(y1, yK) + (α4,6 −

1
4
) (y1 − yπ) + O(y2)

]
(7.28)

Lm(y1, yK) =Lm(y1, yK)− Lm(yπ, yK) , α4,6 = 3α4 − 4α6 , (7.29)

Lm(y1, yK) =− (yK − 3
8

y1) log(2yK/y1 − 1)− yK log(y1) , (7.30)

which we can use to extract (Ms + Mlight)/ fK,phys and the combination of low
energy constants α4,6. Removing the contribution of the average light quark mass
Mlight amounts to multiplying by a correction factor Ms = (Ms + Mlight)(1 − ρ),
where ρ is a small number and can therefore be incorporated by its lowest order
chiral perturbation theory estimate

ρ ≡
Mlight

Ms + Mlight
≈ m2

π

2m2
K
= 0.037 . (7.31)

Because of this last approximation, we prefer the determination of Ms from strat-
egy 2 and use the one here just as a consistency check.

7.4.1 Strange quark mass in the continuum limit

For strategy 2, the strange quark mass is already at physical light quark masses by
definition. For strategy 1, the extrapolation follows the same principles as before:
we neglect cut-off effects in the NLO terms of the chiral expansion. The corre-
sponding fit to the data is displayed in Fig. 7.5 on the left, which demonstrates
that this assumption holds well within the statistical accuracy. Also shown for
comparison is a linear extrapolation which agrees within the uncertainties with
the values obtained from the ChPT formulae.

The values of ms/ fK for the two strategies as a function of the lattice spacings
are plotted in Figure 7.5 on the right. Already at finite lattice spacing the two
sets seem to be shifted with respect to another and therefore have parallel con-
tinuum extrapolations which, however, agree within uncertainties. The data fits
well the assumption that only leading cut-off effects are present and we observe
a correction of 8% from our value on the finest lattices. Since we prefer strategy
2 for conceptual reasons, we quote as a final result with statistical and systematic
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7 The strange quark mass and the Lambda parameter for Nf=2 theory

uncertainties

ms/ fK = 0.678(12)(5) , (7.32)
Ms/ fK = 0.887(19)(7) , (7.33)

Ms = 138(3)(1)MeV , (7.34)

where we use M/m = 1.308(16) as quoted before. For reference, we also give the
numbers in the MS scheme. This conversion is the only part of the computation
in which we need to take recourse to perturbation theory, known in this case to
four loops, which differs from the 2- and 3-loop result by only a small amount.
We use the same method as described in Ref. [20], but with the new value of ΛMS
which leads us to mMS(2 GeV)/M = 0.740(12) and

mMS
s (2 GeV) =

Ms

fK

mMS(2 GeV)

M
fK,phys = 102(3)(1)MeV . (7.35)

Here also the statistical uncertainty of ΛMS is included.

Figure 7.5: Left: Chiral extrapolation of the strange quark mass according to strat-
egy 1. The solid line indicates a corresponding linear fit which gives
a value that agrees within uncertainties at the physical point. Right:
Continuum extrapolation of the strange quark mass in units of fK for
the results of the two strategies.
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8 Conclusions and outlook

The aim of this work was to improve the existing determinations of the funda-
mental parameters of two and four flavor QCD. In Nf = 2 theory, we give the
final result for the Lambda parameter and the strange quark mass in physical
units, with a control over all possible sources of systematic errors. In Nf = 4 the-
ory, we have computed the precise value of the Lambda parameter in the units of
Lmax. A prerequisite for obtaining these results was to develop two new effective
program packages, which include various modern algorithmic improvements.

In order to give a final Nf = 2 estimate of the fundamental QCD parameters
in physical units, the continuum and chiral extrapolation had to be performed.
For this to be achieved, a wide range of quark masses, lattice spacings and lattice
volumes, using a single lattice formulation of the theory needed to be simulated.
We have discussed in chapter 4 the practical constraints of the initial algorithm of
choice for CLS consortium, DD-HMC, in completing such a task. The tool derived
from it as the part of this work, MP-HMC program package, has been successfully
used to simulate largest lattice extents and smallest lattice spacings in the CLS
effort. Developing MP-HMC package was crucial for the continuum limit stud-
ies taken in section 7 of this work, but its application has also a broader scope.
Namely, the gauge configurations produced with this code provided a valuable
input for the studies within the heavy quark physics [117–120], finite temperature
studies [121, 122], different scale setting methods [123], etc. Especially the set of
configurations at a = 0.0486fm and mπ = 270MeV is helpful for the estimation
of lattice effects for all mentioned studies involving Nf = 2 dynamical flavors.
Simulating smaller lattice spacings than a = 0.04fm with periodic boundary con-
ditions is not possible with the HMC algorithm, due to its critical slowing down
[50, 124].

The second goal of this thesis was to improve the precision of the Nf = 4 run-
ning coupling computation, previously done in [21]. Starting from MP-HMC
and adjusting for the Schrödinger functional geometry we have developed SF-
MP-HMC package, which also has high flexibility in exploiting modern compu-
tational resources. The scalability of this code is demonstrated in section 5.6.1.
The computation in [21] was done on the apeNEXT machine at DESY Zeuthen
over a period of one year and simulating larger lattices than L/a = 16 was tech-
nically impossible. With the SF-MP-HMC code we were able to obtain roughly
four times more statistics in less then four months on a supercomputer HLRN and
local PC cluster of HU Berlin. By completing a single scaling step from L/a = 12
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to L/a = 24 in chapter 6 (cf. sections 6.5.5 and 6.5.4), we have demonstrated that
with SF-MP-HMC code the simulations of larger lattices are feasible in a short
period of time. It is now a matter of computational resources to perform more of
these simulations and improve the determination of the running coupling even
further.

With the new and more precise determination of the running coupling in chap-
ter 6.5.5 we see a deviation from the perturbation theory predictions that is smaller
than one standard deviation, while the uncertainty of the perturbation theory es-
timate is certainly larger than that. Although one would not expect that pertur-
bation theory gives reliable estimate of the coupling in the low energy regime,
the agreement in this case could be explained by the particular choice of the
renormalization scheme. Namely, for certain definitions of the renormalization
scheme, the results obtained from PT and from non-perturbative methods may
agree up to the low energies and for some renormalization schemes the difference
appears at much higher energy scales. As an example demonstrating the scheme
dependence of the agreement of the perturbative and non-perturbative estimates
of certain quantities, we can look at the non-perturbative studies of the running
of the two multiplicatively renormalizable four-quark operator in several differ-
ent finite volume renormalization schemes done in Ref. [125]. The comparison
of the non-perturbative result with the perturbation theory estimates from [126]
have shown agreement up to the high values of SF coupling in some schemes and
very early deviation from the perturbative result in others. A large spread of nu-
merical values e.g. for the two loop anomalous dimension in [126] for different
SF renormalization schemes has suggested that different schemes show devia-
tion from perturbation theory at different energy scales. There is no way to check
up to which distances is the perturbative expansion in a specific renormalization
scheme valid other than by doing a well controlled non-perturbative calculation.

The finite size scaling method used here for the computation of the running
coupling allows for full control of the systematic errors. On the other hand, the
dedicated sets of simulations have to be done for each pair of couplings used
in the interpolation of continuum SSF and going higher with the SF coupling,
the statistical precision decreases. Requiring certain precision of the computed
SSF sets a limit on how high we can go in the coupling range and at the same
time achieve the aimed precision of the SSF with a reasonable computational cost.
Hence, for extending the range of simulated couplings, a new and less noisy way
to define the coupling would be very welcome. A promising direction for such a
definition might be following the lines of [127] and defining a running coupling
from the gradient flow, as it has recently been studied in [128–130]. According to
[130], the application of this definition of the coupling in SF scheme has proven
to have mild cutoff effects in Nf = 2 and it gives high statistical precision with
a modest numerical effort. Therefore, this is a good candidate for improving the
Nf = 4 computation of the running coupling as well.
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For the computation of the SF running coupling, the simulations in the fi-
nite (small) box were needed, therefore simulating Schrödinger functional was
in principle not a computationally demanding task. If one wants to work with
the mentioned gradient flow coupling, SF simulations with larger lattice extents
become very interesting field to study. Therefore, further implementation opti-
mization of the SF-MP-HMC code and algorithmic improvements become desir-
able. For instance, it would be interesting to check whether the deflated or block
solver would give significant speed up of SF simulations.

Last but not least, setting the scale of the dimensionful quantities on the lattice
is a crucial step in delivering QCD predictions relevant for phenomenological
applications. In chapter 7, we set the scale for the Nf = 2 CLS simulations using
kaon decay constant. To control the dependence on the light quark mass, we
apply two different strategies for the chiral extrapolation. This careful procedure
enables us to achieve a total error in the lattice spacing of approx 2%. Finally,
we were able to complete the non-perturbative calculations of the strange quark
mass and the Lambda parameter in two flavor QCD, by giving their values in
physical units with relative error smaller than 7%. Performing such a procedure
for the 2 + 1 + 1 simulations remains a challenge for the following years.
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Appendix A

1 Chiral representation of gamma matrices

The chiral representation for the Dirac matrices, which was used in this work, is
given by

γk =

(
0 −iσk

iσk 0

)
γ4 =

(
0 1
1 0

)
(1)

where k = 1, 2, 3, and σ1,2,3 are the 2 x 2 Pauli matrices and 1 is a 2 x 2 unit matrix,
given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
1 =

(
1 0
0 1

)
. (2)

They satisfy the following relations

{σi, σj} = 2δij [σi, σj] = 2iεijkσk (3)

where εijk is the totally antisymmetric tensor. With these definitions, the Dirac
matrices have properties

γμ = γ†
μ {γμ, γν} = 2δμν. (4)

The γ5 matrix is defined as

γ5 ≡ γ1γ2γ3γ4 ⇒ γ5 =

(
1l 0
0 −1l

)
, (5)

thus satisfying

γ5 = γ†
5 γ2

5 = 1l4x4 {γμ, γ5} = 0. (6)
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2 SU(3) group and su(3) algebra

The Lie algebra of SU(3) group is denoted as su(3). It consists of complex 3 × 3
matrices which fulfill following conditions

X† = −X and TrX = 0. (7)

The exponential series

eX = 1 +
∞

∑
k=1

Xk

k!
(8)

converges to an element of SU(3) group. The representation of su(3) used in this
work is given with the basis

Ta ∈ su(3), a = 1 . . . 8, (9)

such that

Tr{TaTb} = −1
2

δab. (10)

With respect to this basis, the element X ∈ su(3) is represented as

X =
8

∑
a=1

XaTa, (11)

Xa = −2Tr{XTa} ∈ R. (12)

The scalar product on su(3) is given by

(X, Y) =
8

∑
a=1

XaYa = −2Tr{XY}. (13)
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We give in the following some analytical and technical remarks which complete
the description of the algorithmic choices needed for the MP-HMC package de-
velopment.

3 Inverse of QS via Q−1

Using Shur decomposition, we can write the inverse of Q as:

Q−1 =

(
Qee Qeo
Qoe Qoo

)−1

(14)

=

(
1 0

Q−1
oo Qoe 1

)(
Qee − QeoQ−1

oo Qoe 0
0 Qoo

)(
1 −QeoQ−1

oo
0 1

)
. (15)

The inverse of the operator QS = 1 − Q−1
ee QeoQ−1

oo Qoe, can be constructed from
the inverted full hermitean dirac operator

Q = γ5D =

(
Qee Qeo
Qoe Qee

)
, (16)

in the following way

{Q−1
S } = PeQ−1QeePe. (17)

With some modifications, this result can be used to construct the inverse of the
symmetricaly preconditioned operator with a shift in mass: W = QS + ρ. Let us
introduce an auxiliary operator:

Q̃ =

(
Xee Qeo
Qoe Qee

)
, (18)
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where Xee is an arbitrary operator acting in the set of even points only. Using
Shur decomposition, we can write the inverse of Q̃ as

Q̃−1 =

(
Xee Qeo
Qoe Qoo

)−1

(19)

=

(
1 0

Q−1
oo Qoe 1

)(
Xee − QeoQ−1

oo Qoe 0
0 Qoo

)(
1 −QeoQ−1

oo
0 1

)
. (20)

By applying projections to the even points from left and right, we obtain some-
what more general expression than (4.17):

(Xee − QeoQ−1
oo Qoe)

−1 = PeQ̃−1Pe

(21)

(Q−1
ee Xee − Q−1

ee QeoQ−1
oo Qoe)

−1 = PeQ̃−1QeePe

and appropriate choice of:
Xee = (1 + ρ)Xee (22)

gives us exactly the wanted inverse

W−1 = (QS + ρ)−1

= (1 + ρ − Q−1
ee QeoQ−1

oo Qoe)
−1

= PeQ̃−1QeePe. (23)

4 Hasenbusch preconditioning for NPF = 3
pseudofermions

In case NPF = 3 we have:

det Q†
SQS = det{W0W†

0 } det{[W−1
0 W1][W−1

0 W1]
†} det{[W−1

1 W2][W−1
1 W2]

†}
∝

∫
Dφ†

0 Dφ0 Dφ†
1 Dφ1 Dφ†

2 Dφ2e−∑3
i=1 SPFi (24)

SPF0 = φ†
0(W0W†

0 )
−1 φ0

SPF1 = φ†
1([W

−1
0 W1][W−1

0 W1]
†)−1 φ1

SPF2 = φ†
2([W

−1
1 W2][W−1

1 W2]
†)−1 φ2,
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where

W0 = QS + ρ0, (25)
W1 = QS + ρ1, (26)
W2 = QS, ρ0 > ρ1. (27)

The expression for SPF0 is exactly the same as the one of SPF1 in the previous
section, therefore the variation has the same form. Let us compute the variation
of SPF1 :

δSPF1 = φ†
1δ{W†

0 W†−1
1 W−1

1 W0}φ1

= φ†
1δ{(W1 + Δρ)†W†−1

1 W−1
1 (W1 + ΔρW1)}φ1

= φ†
1δ{((1 + ΔρW−1

1 )†(1 + ΔρW−1
1 )}φ1

= φ†
1δ{(1 + ρQ−1

S )†(1 + ρQ−1
S )}φ1

= φ†
1
[
(1 + ρQ−1

S )†δ{(1 + ρQ−1
S )}+ H.c.

]
φ1

= φ†
1
[
(1 + ρQ†−1

S )ρδ{Q−1
S }+ H.c.

]
φ1.

5 Run parameters of the Nf = 2 ensembles produced
with DD- and MP-HMC
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id block Ractive τ N0 N1 N2 acc. rate MD time
A3 84 0.37 2 4 5 125 0.91 8030
A4 84 0.37 2 4 5 150 0.85 8090
E5f 84 0.37 0.5 4 5 22 0.87 16000
E5g 84 0.37 4 4 5 176 0.83 16180
F6 84 0.37 2 4 5 260 0.89 4800
F7a 84 0.37 2 4 5 350 0.84 5600
F7b 84 0.37 2 4 5 350 0.87 4000
N4 82122 0.44 0.5 4 5 24 0.88 3700
N5 82122 0.44 0.5 4 5 24 0.87 3800

Table 1: Parameters of the DD-HMC algorithm for the ensembles used in this the-
sis. We give the HMC block size, the corresponding ratio of active links
Ractive, the trajectory length, the (relative) step sizes of the gauge, block
fermion and global fermion force. This is followed by the measured ac-
ceptance rate and the total statistics after thermalization. The table is
taken over from Ref. [24].

id κ1 κ2 τ N0 N1 N2 N3 acc. rate MD time
A5c 0.135887 0.134250 2 9 1 1 32 0.93 1160
A5d 0.135887 0.134250 2 9 1 1 32 0.92 1700
N6 0.136552 0.133857 2 9 1 1 16 0.84 4000
O7 0.136550 0.135000 2 9 1 2 16 0.83 4000

Table 2: Parameters of the MP-HMC algorithm for the ensembles used in this
thesis. The κi parametrize the preconditioning masses and are followed
by the trajectory length and the (relative) step numbers per trajectory.
Also the acceptance rate and the statistics after thermalization are given.
The table is taken over from Ref. [24].
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6 Limits for the tuning of the PCAC mass

The limits for the tuning of am1 (as discussed in Section 6.4.1)are given in Tables
3-5.

β ḡ2(L) am1(L) Δstatg−2
old(2L) ammax

1 (L) ammax
1 (L)(1-loop)

5.25 2.749 (13) −0.00005 (16) 0.0035 0.0012 0.0009
5.55 2.3507(92) 0.00110 (13) 0.0035 0.0012 0.0009
5.85 2.0865(71) 0.00053 (11) 0.0036 0.0012 0.0009
6.45 1.6948(46) −0.000294(94) 0.0037 0.0013 0.0010
7.05 1.4361(32) 0.000488(78) 0.0033 0.0013 0.0010
7.65 1.2500(24) 0.000437(69) 0.0010 0.0009
8.25 1.1025(18) 0.000435(62) 0.0034 0.0014 0.0010
8.85 0.9908(14) 0.000154(57) 0.0010 0.0009
9.45 0.8975(12) 0.000237(51) 0.0034 0.0012 0.0010

Table 3: Values of ḡ2 and am1 from old L/a = 6 simulations are given. The last
column denotes the required limit on am1 such that the limit given in
section 6.4.1 is fulfilled.

7 Tuning of the κcrit on the new parameter sets

We give in Figure the tuning of the kappa critical ( of 1/κ) as the function of PCAC
quark mass. As a guideline for the starting simulation we use the interpolation
formula given in [95]. This fit is based on the experience of the non-perturbative
cSW determination in [104] and reads

κc = 1/8 + κ
(1)
c g2

0 + 0.000129g4
0 + 0.00747g2

0 − 0.007716g8
0 + 0.002748g1

00, (28)
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β ḡ2(L) am1(L) Δstatg−2
old(2L) ammax

1 (L) ammax
1 (L)(1-loop)

5.0 3.638 (34) 0.00037 (14) 0.0008 0.0005
5.44 2.705 (16) 0.000640(83) 0.0035 0.0009 0.0006
5.88 2.225 (11) 0.000306(66) 0.0054 0.0014 0.0010
6.32 1.8728(77) 0.000288(57) 0.0049 0.0013 0.0010
6.76 1.6319(56) 0.000748(58) 0.0046 0.0012 0.0010
7.2 1.4364(42) 0.000041(44) 0.0008 0.0006
7.64 1.3046(35) 0.000233(40) 0.0045 0.0012 0.0010
8.08 1.1852(29) 0.000069(38) 0.0008 0.0006
8.52 1.0886(24) 0.000328(36) 0.0048 0.0012 0.0010
8.96 1.0034(20) 0.000368(33) 0.0008 0.0007
9.4 0.9308(17) 0.000284(32) 0.0048 0.0013 0.0011

Table 4: Values of ḡ2 and am1 from old L/a = 8 simulations are given. The last
column denotes the required limit on am1 such that the limit given in
section 6.4.1 is fulfilled.

β ḡ2(L) am1(L) Δstatg−2
max(2L) ammax

1 (L)(tree)
5.25 3.635 (46) 0.000929(56) 0.003 0.00052

Table 5: Values of ḡ2 and am1 from the preliminary set of L/a = 12 simulations
are given. The last column denotes the required limit on am1 such that
the limit given in section 6.4.1 is fulfilled.
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7 Tuning of the kappa critical on the new parameter sets

for 0 ≤ g2
0 ≤ 1.2. For each parameter set we perform two more simulations and

obtain the κcrit from the linear interpolation and additionally check if the obtained
κcrit satisfies the bound on the PCAC mass given in section 6.4.1. For the results
presented in Chapter 6 only the β = 9.4 is further used, but we give here the
corresponding procedure for diferent values of the gauge coupling considered.
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Figure 1: Tuning of the kappa critical for L=12 lattices.
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8 Error analysis

8.1 Autocorrelations

The effect of the autocorrelations of the Monte Carlo data has been taken into
account in the error analysis following the procedure from Ref. [113]. In brief,
for all observables F = F(a1, . . . , an), functions of expectation values ai = 〈Ai〉 of
primary observables Ai, we compute an estimator of the autocorrelation function

ΓF(t) = ∑
i,j

fi(�a) f j(�a)〈(Ai(t)− ai)(Aj(0)− aj)〉 (29)

where fi = ∂iF(�a). The argument t indicates the Monte Carlo time. The inte-
grated autocorrelation time is then

τint(F) =
1
2
+

∞

∑
t=1

ΓF(t)
ΓF(0)

. (30)

which then enters the statistical error of the observable σF from N measurements

σ2
F = 2

τint(F)
N

ΓF(0) . (31)

The sum in eq. (30) is normally truncated at a “window” W[114] which balances
the statistical uncertainty due to the limited sample size and the systematic error
coming from neglecting the tail for t > W. The value of W is determined from
the measurement of ρF(t) = ΓF(t)/ΓF(0) alone and for each F separately.

8.2 Autocorrelation function of the SF coupling

For the estimation of the autocorrelations in the computation of the running cou-
pling for each data set analysed in section 6, we apply previously described pro-
cedure. To be on the safe side, instead of taking the standard window defined
with Sτ = 2.0 (according to [113]), we use in our analysis a rather conservative
choice of Sτ = 5.0. The examples of the autocorrelation function for L = 12 and
L = 24 data are shown in Figure 2.
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Figure 2: Autocorrelation function of dSG/dη for the L=12 lattice. The dashed
line gives a window The standard method of ref. [113] gives a window
W = Wl and τint = 0.7, compared to τint = 4.

8.3 Improved error analysis of lattice QCD simulations

Neglecting the tail above W leads — at least on average — to an underestimation
of τint and the statistical error of the observable. It is particularly problematic
in the presence of slow modes of the Monte Carlo transition matrix which only
couple weakly to the observable in question. To account for them, in the analysis
of Nf = 2 data in section 7, we use the method outlined in ref. [50], estimating
their time constants from observables to which the slow modes couple strongly.
Using them, we can then estimate the tails of the autocorrelation functions of the
observables we are interested in and arrive at a more conservative error estimate.

Experience tells us that for small lattice spacing the topological charge is par-
ticularly sensitive to slow modes[50, 131], for which we use the field theoretical
definition after smoothing the field by the Wilson flow[127] integrated up to t0.
Actually, only the square of the charge needs to be considered, because we are
only interested in parity even observables. Unfortunately we are not in the posi-
tion to accurately determine its autocorrelation time for most of our ensembles.
We therefore combine the scaling laws found in pure gauge theory[50] with the
measurement for our high statistics ensembles E5 and arrive at the estimate

τexp(β) = 200
cτ e7(β−5.5)

Ractive
, (32)
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9 Observables used in chapter 7

with cτ = 2 for trajectories of length τ = 0.5 and cτ = 1 for τ = 2 and 4. The
values of Ractive can be found in Table 1 for the DD-HMC algorithm and is equal
to one for the MP-HMC.

An example of the procedure is given in Fig. 3, showing the autocorrelation
function of the kaon decay constant fK on the O7 ensemble. Using the standard
procedure[113, 114], the sum in eq. (30) is truncated at the window Wl from which
we would get τint = 0.7. When the contribution of the tail is included, the im-
proved estimate gives τint = 4, which translates to a more than doubled error
estimate.

Figure 3: Autocorrelation function of fK for the O7 lattice. The line gives our es-
timate for its tail. The standard method of ref. [113] gives a window
W = Wl and τint = 0.7, compared to τint = 4 including the tail contribu-
tion which we add from W = Wu, or more than a factor two in the error
of the observable.

9 Observables used in chapter 7

The computation of our pseudoscalar observables is based on two-point func-
tions of the pseudoscalar density and the time component of the axialvector cur-
rent. At a fixed κsea they are constructed from two valence quarks r and s

f rs
PP(x0) = −a3 ∑

�x
〈Prs(x)Psr(0)〉 (33)

f rs
AP(x0) = −a3 ∑

�x
〈Ars

0 (x)Psr(0)〉 (34)
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with Prs = ψrγ5ψs and Ars
0 = ψrγ0γ5ψs. Using the PCAC relation, average quark

masses of flavors r and s can then be defined as

mrs(x0) =
1
2(∂0 + ∂∗0) fAP(x0) + cAa∂∗0∂0 fPP(x0)

2 fPP(x0)
. (35)

For sufficiently large x0 the mass mrs(x0) will have a plateau over which we
can average. From its value mrs the renormalized quark mass mrs

R is obtained

mrs
R =

ZA(1 + bAamsea + b̃Aamrs)

ZP(1 + bPamsea + b̃Pamrs)
mrs , (36)

with msea = m12. We use one-loop perturbation theory for the improvement
coefficients bA, bP, b̃A and b̃P, noting that they multiply very small terms. At this
order in perturbation theory

bA = bP = 0, (37)

while

b̃A = 1 + 0.06167 g2
0 and b̃P = 1 + 0.06261 g2

0 (38)

computed from the perturbative coefficients of [132]. Here we use the updated
values of the non-perturbatively determined ZA and ZP from [24].
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