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Abstract

The reasons for the sudden complete failure of a material specimen stressed by external forces
are often long-termed, gradual microscopic material changes. The formation of microscopic
cracks or voids, for instance, are included in such material changes. In comparison to the
expansion of the specimen, the number and the increasingly small size of the microscopic
material changes lead to a high level of detail which makes the accurate simulation of such
damage processes simply impossible. Therefore, reliance is placed on so-called effective models
when performing a simulation. These effective models sufficiently mirror the macroscopic
behavior of the specimen without, however, considering each microscopic material change.

The dissertation at hand deals with the rigorous derivation of such effective models used to
describe damage processes. For different rate-independent damage processes in linear elastic
material these effective models are derived as the asymptotic limit of microscopic models. The
starting point is represented by a unidirectional microstructure evolution model which is based
on a family of ordered admissible microstructures. Each microstructure of that family possesses
the same intrinsic length scale ε > 0. To derive an effective model, the limit passage ε → 0
is performed with the help of techniques of the two-scale convergence. For this purpose, a
microstructure-regularizing term, which can be understood as a discrete gradient for piecewise
constant functions, is needed to identify the limit model. The microstructure of the effective
model is given pointwisely by a so-called unit cell problem which separates the microscopic
scale from the macroscopic scale.

Based on these homogenization results for unidirectional microstructure evolution models, an
effective model for a brutal damage process is provided. Here, the microstructure consists of
only two phases, namely undamaged material which comprises inclusions of damaged material
with various sizes and shapes. The size of the inclusions is scaled by ε > 0 and the unidirectional
microstructure evolution prevents that, for fixed ε > 0, the inclusions shrink for progressing
time. According to the unit cell problem, the material of the limit model is then given as a
mixture of damaged and undamaged material. In a specific material point of the limit model,
that unit cell problem does not only define the mixture ratio but also the exact geometrical
mixture distribution.

Then, as a generalization, brutal damage processes are investigated, which allow the modeling
of voids instead of inclusions of damaged material. This means that these considered micro-
scopic defects do not contain any material. Despite the lack of stiffness on the set of all voids,
the applicability of the provided homogenization theory is guaranteed by appropriate contin-
uation operators. By virtue of the unit cell problem, the effective model describes a material
free from voids. Compared to the ε-models, the missing defects in the limit model are taken
into account due to the lower stiffness of the effective material.

Last but not least, for an evolution process describing the growth of microscopic cracks, a

macroscopic crack-free model can be derived. In correspondence to the brutal damage model

for voids, the effective model describes a crack-free material. In this case, in every material

point of the limit model, the unit cell problem models a cracked unit cell. This crack geometry

is uniquely determined and varies from point to point.
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Zusammenfassung

Die Ursachen für das plötzliche totale Versagen einer durch äußere Kräfte beanspruchten Ma-
terialprobe sind häufig langfristige, schleichende mikroskopische Materialveränderungen. Zu
solchen Materialveränderungen gehören zum Beispiel die Bildung von mikroskopischen Ris-
sen oder Hohlräumen. Die Anzahl und die verschwindend geringe Größe der mikroskopischen
Materialveränderungen im Vergleich zur Ausdehnung der Probe führen zu einem immensen De-
tailgrad, der die realitätsgetreue numerische Simulation solcher Schädigungsprozesse schlicht
unmöglich macht. Daher verlässt man sich bei der Simulation auf sogenannte effektive Model-
le. Diese effektiven Modelle spiegeln das makroskopische Verhalten der Probe hinreichend gut
wider, ohne allerdings jede mikroskopische Materialveränderung zu berücksichtigen.

Die vorliegende Dissertation beschäftigt sich mit der rigorosen Herleitung solcher effektiven
Modelle zur Beschreibung von Schädigungsprozessen. Diese effektiven Modelle werden für
verschiedene raten-unabhängige Schädigungsmodelle linear elastischer Materialien hergeleitet.
Den Ausgangspunkt stellt dabei ein unidirektionales Mikrostrukturevolutionsmodell dar, des-
sen Fundament eine Familie geordneter zulässiger Mikrostrukturen bildet. Jede Mikrostruktur
dieser Familie besitzt die gleiche intrinsische Längenskala ε > 0. Zur Herleitung eines effektiven
Modells wird der Grenzübergang ε → 0 mittels Techniken aus der Theorie der Zwei-Skalen-
Konvergenz durchgeführt. Um das Grenzmodell zu identifizieren, bedarf es eines mikrostruktur-
regularisierenden Terms, welcher als diskreter Gradient für stückweise konstante Funktionen
aufgefasst werden kann. Die Mikrostruktur des effektiven Modells ist punktweise durch ein
sogenanntes Einheitszellenproblem gegeben, welches die Mikro- von der Makroskala trennt.

Ausgehend vom Homogenisierungsresultat für die unidirektionale Mikrostrukturevolution wird
ein effektives Modell für einen Zwei-Phasen-Schädungsprozess hergeleitet. In diesem Fall setzt
sich die Mikrostruktur aus lediglich zwei Phasen zusammen, und zwar aus ungeschädigtem
Material, welches Inklusionen geschädigten Materials verschiedener Form und Größe enthält.
Die Größe der Inklusionen wird mit ε > 0 skaliert und die unidirektionale Mikrostrukturevolu-
tion verhindert, dass bei fixiertem ε > 0 die Inklusionen für fortlaufende Zeit schrumpfen. Das
Material des Grenzmodells ist dann in jedem Punkt als Mischung von ungeschädigtem und
geschädigtem Material durch das Einheitszellenproblem gegeben. Dabei liefert das Einheits-
zellenproblem nicht nur das Mischungsverhältnis sondern auch die genaue geometrische Mi-
schungsverteilung, die dem effektiven Material des jeweiligen Materialpunktes zugrunde liegt.

Als eine Verallgemeinerung werden anschließend Zwei-Phasen-Schädigungsprozesse betrachtet,
die statt (der Inklusionen aus) geschädigtem Material echte Defekte zulassen, d.h. echte mikro-
skopische Hohlräume, die keinerlei Material enthalten. Trotz der nicht vorhandenen Steifigkeit
auf der Menge aller Hohlräume wird mittels geeigneter Fortsetzungsoperatoren die Anwendbar-
keit der Homogenisierungstheorie sichergestellt. Vermöge des Einheitszellenproblems beschreibt
das Grenzmodell ein defektfreies Material. Den im Vergleich zu den ε-Modelle fehlenden De-
fekten wird durch die geringere Steifigkeit des effektiven Materials Rechnung getragen.

Abschließend wird ein effektives Modell für die Evolution mikroskopischer Risse hergeleitet.

In Analogie zum Zwei-Phasen-Schädigungsmodell für Defekte beschreibt das Grenzmodell ein

rissfreies Material, welches in jedem Punkt durch das Einheitszellenproblem definiert ist. Dieses

Einheitszellenproblem modelliert in jedem Punkt des effektiven Modells eine gerissene Einheits-

zelle, wobei die Rissgeometrie eindeutig bestimmt ist und von Punkt zu Punkt variiert.
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Notation and conventions

General notation
•N := set of natural numbers

•Z := set of integers

•R := set of real numbers

•Rd×d
sym := {ξ ∈ Rd×d | ξ = ξT} for d ∈ N

•0 := (0, 0, . . . , 0︸ ︷︷ ︸
k-components

), where k ∈ N depends on and follows from the context

•1 := (1, 1, . . . , 1︸ ︷︷ ︸
k-components

), where k ∈ N depends on and follows from the context

•O := zero element of the set Linsym(Rd×d
sym;Rd×d

sym). The latter contains all

linear, symmetric, and continuous mappings C : Rd×d
sym → Rd×d

sym.

Functional analysis

For d ∈ N let O denote an element of the Lebesgue-σ-algebra LLeb(Rd). Moreover, let
Γ ⊂ ∂O with µd−1(Γ) > 0, where µd−1 : LLeb(Rd−1) → [0,∞] denotes the Lebesgue
measure. Finally, let p ∈ [1,∞).

•1O : Rd → {0, 1}, where 1O(x) = 1 if x ∈ O and 1O(x) = 0 if x ∈ Rd\O

•Lp(O) :=
{
v : O → R

∣∣∣ v is measurable and
∫
O
|v(x)|pdx <∞

}
•L∞(O) :=

{
v : O → R

∣∣∣ v is measurable, ∃C > 0 such that |v| ≤ C a.e. on O
}

•M(O) := L∞(O; Linsym(Rd×d
sym;Rd×d

sym))
•KεΛ(O) := functions being piecewise constant w.r.t. the lattice εΛ; see (2.5)

•W1,p(O) :=
{
v ∈ Lp(O)

∣∣∣ the weak derivative ∇v is an element of Lp(O)d
}

•H1(O) := W1,2(O)
•H1

Γ(O) :=
{
v ∈ H1(O)

∣∣∣ the trace v|Γ satisfies v|Γ = 0
}

•BVD := functions of bounded total dissipation; see Definition 5.3

• (·)ex :
{

Lp(O)→ Lp(Rd),
v 7→ vex,

where vex :=
{
v on O,
0 otherwise.

• 〈·, ·〉 : Q∗×Q → R dual pairing of the Banach space Q and its dual space Q∗

(Note that the specific choice of Q depends on the context.)
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Definition of sets

In the following for d ∈ N the symbols A and A′ denote subsets of Rd.

•BR(x) :=
{
x′ ∈ Rd

∣∣∣ |x−x′|d < R
}

for x ∈ Rd and R > 0

• int(A) :=
{
x ∈ A

∣∣∣∃R > 0 such that BR(x) ⊂ A
}

• dist(A,A′) := inf
{
|x−x′|d

∣∣∣x ∈ A and x′ ∈ A′
}

• cl(A) :=
{
x ∈ Rd

∣∣∣ dist(x,A) = 0
}

• ∂A := cl(A)\int(A)
• neigh∆(A) :=

{
x ∈ Rd

∣∣∣∃x′ ∈ A such that x ∈ cl(B∆(x′))
}

for ∆ > 0

• Im(T ) :=
{
x ∈ Rk

∣∣∣ ∃x′ ∈ A such that T (x′) = x
}

for k ∈ N and T : A→ Rk

Conventions

Usage of the term damage variable

In the present work, damage of a body represented by a set Ω ∈ LLeb(Rd) initiating
at time 0 and progressing until a given time T > 0 is captured by a vector valued
variable z : [0, T ]×Ω → Rm; the so-called damage variable. Since it is convenient to
introduce most of the terms involving the evolution models for a variable z : Ω → Rm

(also referred to as the damage variable) being independent of t ∈ [0, T ], there will be
some inconsistency in the use of the term damage variable.

The relation v ≤ w for v, w : Ω→ Rm

For v = (v1, v2, . . . , vm)T , w = (w1, w2, . . . , wm)T : Ω→ Rm the relation v ≤ w is defined
as follows:

v ≤ w
def⇐⇒ vj(x) ≤ wj(x) for every x ∈ Ω and all j ∈ {1, 2, . . . ,m}.

In the case v, w ∈ L1(Ω)m the term for every is replaced by for almost every.

Neglecting the restriction of functions to shorten notation

For O,O′ ∈ LLeb(Rd) with O′ ⊂ O and v ∈ L1(O) the term
∫
O′ v(x)dx has to be

understood as
∫
O′ v

′(x)dx, where v′ := v|O′ ∈ L1(O′). For w ∈ Lp(O) with p ∈ [1,∞],
this “implies” in particular the notation∥∥∥w∥∥∥

Lp(O′)
not.:=

∥∥∥w|O′∥∥∥Lp(O′)
.
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1 Introduction

Damage, in the sense of a decreasing durability or functionality, appears in almost every
object of our everyday life. In most of the cases its beginning is not noticeable, but in the
worst case scenario damage might result in catastrophic failure. Depending on the use of
a particular structure, damage progression may cause danger for life or economic losses.
Hence, there is a great interest in understanding such processes. The aim of scientific
investigations is the reliable prediction of damage progression in a given structure . Due
to such predictions, the design, functionality, or material of a specific structure can be
optimized to increase its lifetime or to decrease the amount of used resources for its
construction.

Depending on the material of a structure and its scope of use, damage can be the result
of various effects, e.g., external loadings applied on the structure, temperature changes,
chemical reactions, or phase separation. In general, damage results from a combination of
multiple of these effects, which indicates the complexity of modeling damage realistically.
Many damage processes have in common that they start by initiating microscopic cracks
or voids. This occurs on very small scales compared to the expansion of the structure
under consideration. For example, in concrete or rocks typical defects have a size of
1−10cm, whereas in metals, alloys, or ceramics the microscopic defect size varies between
1µm and 10µm. The growth of these defects, with respect to time, causes a decrease of
the durability of the considered structure which might result in its total failure after a
certain time. Thus, describing such a process realistically means that all involved effects
need to be modeled on all appearing scales. In general, this is much too complex to be
able to derive reasonable results by an appropriate effort. Therefore, most models in the
theory of damage focus on partial aspects of a damage process.

To indicate the complexity of the damage theory, let us list some of the available results
in the literature. The foundation of nowadays continuum damage mechanics has been
built in [32, 33, 34] and [65], where the authors model the creep fracture of metals with
the help of an internal variable. In [22], the idea of modeling microscopic interactions by
including the gradient of this internal variable is presented. In the context of modeling
crack propagation, [25] introduces the Griffith criterion to decide whether or not a crack
propagates under given forces.

In the framework of continuum damage mechanics the dependence of macroscopic mod-
els on the internal damage variable is phenomenologically motivated, in most of the
cases. Such models are considered in the following references: Concerning the existence
of solutions, [55, 61] present results for rate-independent damage processes of nonlinear
elastic materials in the small strain setting. In general, these solutions are not continu-
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1 Introduction

ous with respect to time. For this reason, a novel formulation for such rate-independent
damage models is introduced in [44], which provides a better description of the behavior
of solutions at jumps. At jump points of a solution, this formulation determines the in-
terplay of viscous and rate-independent effects. In the complete damage case [5, 53] yield
existence of solutions for elastic and viscoelastic materials and small strains, whereas
[58] is devoted to the finite-strain setting.

In [28], a phasefield model of Cahn–Hilliard type is coupled with a rate-dependent dam-
age model and its main result provides existence of solutions in the small strain setting.
This result is improved in [29, 30] by allowing also the elastic energy to depend on the
phasefield variable and by enabling the consideration of logarithmic chemical energy
densities.

In the context of modeling the propagation of a single crack in a bulk, [38, 40] depict
the derivation of Griffith formulas for linear elastic materials. Moreover, [41] presents a
rigorously derived Griffith formula for geometrical nonlinear elastic models in the qua-
sistatic setting. Based on energy minimization, the authors of [15] provide an existence
result for the quasistatic crack propagation in brittle materials. Considering the rate-
independent evolution of such a crack, [42] compares solutions based on a local energy
release rate criterion with those based on such a global stability condition. It turns out
that the solutions based on the global stability condition tend to jump earlier than those
based on the local energy release rate criterion.

As already mentioned above, in most of the cases the dependence of macroscopic damage
or crack models on the internal variable is phenomenologically motivated. To improve
such relations, the asymptotic behavior of such microscopic relations is investigated
rigorously. In the case of static periodically distributed cracks and defects, explicit for-
mulas for the effective bulk and surface energy densities are derived in [19]. In [66],
these formulas are supplemented by homogenization results for different scalings of the
microscopic surface energy and the succeeding work [67] improves these results by incor-
porating the non-interpenetration constraint. Among other things, the very recent paper
[12] presents a homogenization result for static periodically distributed cracks satisfying
the non-interpenetration constraint with the help of the unfolding technique. In view of
rigorously motivated macroscopic models, the series [20, 21, 24] establishes a model for a
quasistatic brittle damage process. There, the damage evolution of a two-phase system
is considered where the growing phase models damaged material. The effective material
of the macroscopic model is a mixture of the two phases and is determined with the help
of the so-called G-convergence; see [68].

Concerning numerical simulations, the works below take place in the context of macro-
scopic damage evolution models. In [35, 36, 37], a two-scale evolution model is treated
numerically. There, the evolution of ellipsoidal inclusions of damaged material is modeled
on the microscopic scale, whereas the macroscopic quantities are obtained by averaging
the microscopic ones. In contrast to this approach, in [16] a macroscopic model describ-
ing crack propagation is presented. There, the constitutive relation for the evolution
model is based on a homogenization result for static periodically distributed cracks.

4



1.1 Outline of this thesis

The thesis at hand contributes to the topic of rigorously deriving effective models by
investigating the asymptotic behavior of microscopic damage progression and crack prop-
agation models. In contrast to the macroscopic descriptions used for numerical simula-
tions mentioned above, the here presented effective constitutive relations are rigorously
derived from microscopic damage evolution models. To our knowledge, in the context
of evolution models for damage there are no results which are rigorously derived and
provide such an explicit structure in the literature so far. Here, we exploit Γ-convergence
and unfolding techniques to derive effective damage models for the growth of microscopic
defects or voids as well as effective crack models in the rate-independent setting.

1.1 Outline of this thesis

In the context of presenting the outline of this thesis, we emphasize each chapter’s con-
nection to our main results and highlight the challenges faced in each chapter. A rough
overview reads as follows: The Chapters 2–5 provide the notation and the tools to verify
the homogenization of a unidirectional microstructure evolution model in Chapter 6.
In the Chapters 7–9 this homogenization result is exploited to some extend and partly
extended to derive effective models for different types of damage phenomena. In detail
the outline of this thesis reads as follows:

We start by introducing the basic notation concerning the modeling of damage processes
for linear elastic materials in Chapter 2. Section 2.1 is devoted to the theory of linear
elastic materials, where the deformation of a body Ω is captured by the displacement
field u : [0, T ]×Ω→ Rd. In Section 2.2, the family of admissible microstructures building
the foundation of all homogenization results in this thesis is introduced. For modeling
damage we choose the framework of continuum damage mechanics which is based on a
so-called damage variable z : [0, T ]×Ω→ [0, 1]m; see Section 2.4. In the case of modeling
brutal damage the damage set represents a geometrical description for microstructures
and is defined in Section 2.5. Based on this geometrical description, Section 2.6 intro-
duces the notation of the microscopic damage models considered in Chapters 7–8 and
stresses some technicalities occurring there.

The main part of the asymptotic analysis of this thesis is done with respect to the
theory of two-scale convergence developed by G. Nguetseng in [63]. For this reason
Chapter 3 is devoted to the notations, the definitions, and the results concerning two-
scale convergence. In this paper we use the so-called unfolding technique introduced in
[11], which is a dual formulation of the two-scale convergence theory. With the exception
of Section 3.4 all presented results are well known and can be found in [62], for instance.
However, Section 3.4 deals with sequences of admissible microstructures in the sense of
Section 2.2. There, for a suitable chosen sequence of admissible microstructures, a two-
scale limit microstructure is determined with respect to the strong two-scale convergence
in L1. Note that although the two-scale convergence theory was introduced to gain
homogenization results for periodic problems, it is possible to apply this theory in our
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1 Introduction

particular non-periodic case, too.

To exploit the asymptotic analysis of Section 3.4 for the microscopic models of the Chap-
ters 6–9, we introduce a microstructure regularization in Chapter 4. The first challenge
to face when regularizing any problem is the choice of the “right” regularization. On the
one hand, we regularize our microscopic models to control the asymptotic behavior of
the considered microstructures. On the other hand, however, one might lose interesting
effects in the limit model if the regularization is too strong. Here, we are able to present
a regularization theory that allows us to keep our explicit description of microstructure
in the limit without losing its variety; for more details see also Section 7.4.

This microstructure regularization is based on a regularization theory concerning piece-
wise constant functions defined on lattices. In Section 4.1, a discrete gradient for piece-
wise constant functions is introduced, which possesses the following property: For a
sequences of piecewise constant functions defined on finer and finer lattices, which addi-
tionally have uniformly bounded discrete gradients, there exists a Sobolev function and
a subsequence such that the subsequence converges strongly to this Sobolev function in
Lp. Moreover, the subsequence of discrete gradients converges weakly to the gradient of
the limit Sobolev function in Lp. By introducing this discrete gradient as a regulariza-
tion term to the microscopic models of the Chapters 6–9, their microstructures show the
asymptotic behavior investigated in Section 3.4. Furthermore, this regularization takes
microscopic interactions into account.

The construction of the discrete gradient is inspired by the regularization theory for
so-called broken Sobolev spaces in [8]. There, the authors introduce two terms – a
discrete gradient and a regularization term. The regularization term extracts those
sequences of broken Sobolev functions that converge to a classical Sobolev function,
whereas the discrete gradient of such sequences converges to the gradient of the classical
Sobolev function. While adapting this theory with respect to our needs, we succeeded
in combining the beneficial properties of the discrete gradient and the penalty term of
[8] in only one term, namely, our discrete gradient for piecewise constant functions.

In preparation for formulating the models homogenization is performed for, Chapter 5
is devoted to the energetic formulation of rate-independent systems. This general the-
ory covers a variety of physical phenomena, e.g., linearized elastoplasticity ([27, 62]),
finite-strain elastoplasticity ([50, 51]), phase transformations in shape-memory alloys
([47, 59]), models in ferromagnetism ([17]), delamination problems ([45, 57]), and crack
models ([42, 43]). Section 5.2 focuses on the main notations concerning the energetic
formulation consisting of a stability condition (S) as well as an energy balance (E) and
states the existence of solutions in the here considered case. Moreover, a sufficient
condition guaranteeing the rate independence of a system modeled by the energetic for-
mulation is discussed. Later, the variable underlying the energetic formulation will be
the tuple (u, z) : [0, T ]×Ω → Rd×[0, 1]m consisting of the displacement field and the
damage variable.

In Chapter 6, for a family of unidirectional microstructure evolution models, homog-
enization is performed rigorously. This homogenization result forms the basis for the
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1.1 Outline of this thesis

rigorously derived effective damage models of the Chapters 7–9. The microscopic models
of Section 6.1, which are characterized by the intrinsic length scale (denoted by ε > 0)
of their microstructure, are set up in an energetic formulation (Sε) and (Eε). For fixed
ε > 0, these microscopic models allow for a unidirectional microstructure evolution
with respect to the family of admissible microstructures introduced in Section 2.2. The
microstructure evolution is captured by an internal variable zε : [0, T ]×Ω → [0, 1]m,
whereas the deformation is modeled by the displacement field uε : [0, T ]×Ω → Rd.
To provide enough regularity with respect to the microstructure, the discrete gradient
of Chapter 4 is incorporated in these models. However, observe that for fixed ε > 0
existence of solutions is guaranteed with or without penalty term.

The homogenized models obtained by performing the limit passage ε→ 0 are formulated
in the subsequent sections. Section 6.2 presents a two-scale limit model defined on Ω×Y ,
where Y denotes the so-called unit cell “capturing” the microscopic behavior of the
sequence of microscopic solutions. In contrast to this, in Section 6.3 a one-scale model
is formulated on Ω again, which is proven to be equivalent to the two-scale model in the
following sense: From any solution of one of these two models a solution of the other one
can be constructed. This equivalence is based on a unit cell problem depending on the
limit internal variable z0 : [0, T ]×Ω→ [0, 1]m. Moreover, this unit cell problem yields an
explicit representation for the microstructure of the one-scale limit model. Due to our
regularization in the microscopic models, the effective microstructure preserves certain
properties of the microscopic ones. In the context of modeling damage, this preservation
will be explained in more detail.

In the Sections 6.4 and 6.5, the rigorous verification of the two-scale limit model of Sec-
tion 6.2 is performed. This is done within the framework of evolutionary Γ-convergence
introduced in [56], which relies on the verification of the so-called mutual recovery condi-
tion. The mutual recovery condition requires the construction of certain mutual recovery
sequences ensuring that the limit of a sequence of microscopic solutions satisfies a sta-
bility condition (S0). Here, the crucial part of constructing a mutual recovery sequence
is the provision of the component which is responsible for the internal variable. In par-
ticular, this component has to be constructed such that it respects the irreversibility
constraint posed on damage evolution. This is done in Section 6.4 by extending the
ideas from [61] to the discrete case. In this context, the explicit structure of the dis-
crete gradient for piecewise constant functions is heavily exploited to verify the mutual
recovery condition.

Once the stability of the limit of the sequence of microscopic solutions is ensured, we
perform the limit passage ε → 0 for the microscopic models rigorously. This is done
in Section 6.5. For this purpose, a generalized Helly selection principal, similar to that
of [56], is exploited to ensure that there exists a subsequence of (ε)ε>0 such that for
any t ∈ [0, T ] the subsequence of microscopic solutions converges to the solution of the
two-scale model.

After establishing the homogenization result for the unidirectional microstructure evo-
lution in Chapter 6, the Chapters 7–9 exploit and extend this result to derive effective
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models for different types of damage.

Chapter 7 presents effective models for an irreversible damage evolution, where damage
progression is caused by the growth of microscopic inclusions of damaged material, i.e.,
the inclusions have a significantly lower stiffness than the surrounding material. The
growth of the inclusions is modeled by a time dependent, vector valued damage vari-
able zε : [0, T ]×Ω → [0, 1]m, where its m-components enable the modeling of various
anisotropic inclusions’ geometries; see Subsection 7.1.2 for some examples that are cap-
tured by our approach. Moreover, each component of the vector valued damage variable
might be “equipped” with its own fracture toughness. This contributes to the discus-
sion of how to include anisotropic damage behavior into macroscopic damage models.
In Remark 7.5, the importance of carefully modeling the dissipated energy is stressed.

For a chosen family of admissible microscopic inclusions’ geometries, the effective models
of Section 7.2 and 7.3 are obtained by the homogenization result of Chapter 6. The
effective material of the limit one-scale model in Section 7.3 is given by a unit cell
problem depending on the limit damage variable z0 : [0, T ]×Ω → [0, 1]m. In this way,
the effective material is a mixture of damaged and undamaged material whose actual
distribution for a given time t ∈ [0, T ] and at a certain point x ∈ Ω is prescribed by the
damage variable’s value z0(t, x). Observe that any value z0(t, x) ∈ [0, 1]m is associated
to a specific element of the family of admissible geometries chosen for the microscopic
models. In this sense, the limit models are based on the same inclusions’ geometries as
the microscopic ones.

In Section 7.4, our effective one-scale model is compared with the damage model of [24].
There, the authors proved existence of solutions for an effective damage model based
on microstructures consisting only of damaged and undamaged material. Since this is
done without any microstructure regularization, in [24], arbitrary mixtures of these two
phases are allowed. In contrast to our homogenization result, their effective material
in every point is described by a unit cell problem for which the ratio of damaged and
undamaged material is known, but where their actual geometrical distribution is not
prescribed.

In Chapter 8, the results of the previous chapter, obtained for inclusions of damaged
material, are extended to the case of modeling microscopic voids. For this purpose, in
the microscopic model the damage variable zε : [0, T ]×Ω→ [0, 1]m is associated to a non-
periodically perforated, time dependent domain modeling the linear elastic body under
consideration; see Subsection 8.1.1. Due to this time dependence, the state space of the
displacement field varies with respect to time which causes difficulties when identifying
the limit state space, for instance. To solve this problem, a continuation operator is
introduced which, in dependence on the damage variable associated to the perforated
domain, extends every displacement field to the fixed domain Ω, again. Although the
microscopic voids might vary dramatically with respect to their size and shape, for the
sequence (uε, zε)ε>0 of microscopic solutions we succeeded in constructing an extension
such that (uε)ε>0 is uniformly bounded in H1. Observe that this uniform bound holds,
although for ε → 0 the number of microscopic voids tends to infinity, whereas their
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1.1 Outline of this thesis

diameter converges to zero. Moreover, this continuation theory enables us to ensure
uniform coercivity on the whole set Ω for the microscopic energy functionals.

Since the microscopic models introduced in Subsection 8.1.3 deal with time dependent,
non-periodically perforated domains, Subsection 8.1.2 addresses the modeling of external
forces on such domains. The discussion on the potential defects’ geometries that are
captured by our approach is done in Subsection 8.1.4. In contrast to Chapter 7, where
inclusions of weak material are allowed to emerge in areas of undamaged material, we
here need to assume preexisting voids in general. That generally means that the theory
of Chapter 8 does not allow for hole initiation. In other words, even the state zε ≡ 1
modeling undamaged material is associated to an already perforated domain, where
the preexisting microscopic voids grow with respect to time. Only in a specific scalar
case (with respect to the damage variable) we are able to model hole initiation; see
Remark 8.3 and Example 8.11.

By modifying the homogenization theory of Chapter 6 carefully, we are able to derive
an effective two-scale model which is presented in Section 8.2. This two-scale model is
formulated on Ω×Y . However, due to our homogenization approach, the microscopic
voids of the microscopic models are “shifted” to the second scale, i.e., for almost every
x ∈ Ω the set {x}×Y contains a subset of zero stiffness whose shape and size at time
t ∈ [0, T ] is uniquely described by the value z0(t, x) of the limit damage variable. Since
the perforated domains considered in the microscopic models require the assumption
of an additional zero Neumann boundary condition on the boundary of each void, the
limit external loading is affected by the microscopic scale, too. This is different to the
previous homogenization results, where the limit external loading is only affected by the
macroscopic scale.

Assuming the term of the external loading depending on the microscopic scale to be zero
in the effective two-scale model, we are able to formulate an equivalent one-scale model;
see Section 8.3. As in the previous homogenization results this effective one-scale model
is based on a unit cell problem. In dependence on the limit damage variable’s value
z0(t, x) at (t, x) ∈ [0, T ]×Ω the unit cell problem has to be solved with respect to a unit
cell Y occupied by the initially chosen material, which contains a void whose size and
shape is uniquely given by z0(t, x). According to our continuation theory we are able to
show that this effective material possesses positive stiffness at any time t ∈ [0, T ] and in
almost every point x ∈ Ω.

Chapter 9 is devoted to the modeling of cracks. More precise, in Section 9.1 we introduce
microscopic models allowing for the propagation of various microscopic cracks. For this
purpose, the damage variable zε(t) : Ω→ [0, 1]m is associated to a set Cε(zε(t)) consisting
of various small hypersurfaces modeling microscopic cracks. Since the body Ω at time
t ∈ [0, T ] contains the cracks Cε(zε(t)), the displacement field uε(t) : Ω→ Rd might have
a jump on Cε(zε(t)). According to this relation, the displacement field depends on the
damage variable. Similar to Chapter 8, we do not allow for crack initiation, i.e., the
initial configuration is given by a body containing preexisting cracks.

By performing the limit passage ε → 0, we provide an effective two-scale model which
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is formulated in Section 9.2. For passing ε to zero rigorously, a compactness result
is presented in Subsection 9.1.1. This result enables us to identify the two-scale limit
functions of sequences (uε(t))ε>0 of displacement fields uε(t) : Ω→ Rd having jumps on
the non-periodic set Cε(zε(t)). In this way, the compactness result motivates the choice
of the two-scale limit function space in Section 9.2. To derive the effective model of
Section 9.2 rigorously, for any function of the two-scale limit function space a mutual
recovery sequence (ũε, z̃ε)ε>0 needs to be constructed. The construction of (z̃ε)ε>0 can
be done as in the Chapters 6–8. When constructing (ũε)ε>0, it needs to be ensured that
ũε only jumps on the prescribed set Cε(z̃ε). This is done in Subsection 9.1.2.

Similar to the result of Chapter 8, the limit external loading of the two-scale effective
model is affected by the microscopic scale, too. Hence, only by assuming the term of the
external loading depending on the microscopic scale to be zero, we are able to present
an equivalent one-scale model; see Section 9.3. According to the homogenization theory
of Chapter 6, the effective material is described by a unit cell problem. Although the
unit cell in x ∈ Ω at time t ∈ [0, T ] contains a crack whose size is related to the damage
variable’s value z0(t, x), the effective material of the one-scale model is free from cracks.

Finally, this thesis concludes with Chapter 10 which provides an outlook on tasks that
seem to be interesting for future works.
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2 Mechanical background and notation

2.1 Linear elasticity

This section introduces the notation from the continuum mechanics of solids to describe
the quasistatic evolution of a linear elastic body. For this purpose, all appearing terms
are assumed to be as smooth as necessary and for the derivation of the individual rela-
tions we refer to [9].

In this thesis we deal with evolution processes of solids, whose initial shape is represented
by a domain Ω ⊂ Rd – the so-called reference configuration. Hence, at the beginning of
the evolution Ω is the subset of Rd which is occupied by material. The main assumptions
on the set Ω, which are assumed to hold in the whole thesis, are the following:

The set Ω ⊂ Rd is assumed to be open, connected, bounded, and

has a locally Lipschitz boundary ∂Ω; see Definition 2.1 below.
(2.1)

Definition 2.1 (Locally Lipschitz boundary). A bounded set O ⊂ Rd has a locally
Lipschitz boundary, if for each point x ∈ ∂O there exists a neighborhood Nx such that
Nx ∩ ∂Ω is the graph of a Lipschitz continuous function.

In the case of a linear elastic body its material properties are described by a symmetric,
positive definite tensor C̃ : Ω → Linsym(Rd×d

sym;Rd×d
sym) of fourth order. To describe the

deformation of the material occupying the body Ω with respect to time, the so-called
displacement field u : [0, T ]×Ω → Rd is introduced such that the vector u(t, x) ∈ Rd

Figure 2.1: The displacement field u : [0, T ]×Ω→ Rd.
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denotes the displacement of the reference configuration’s point x ∈ Ω at time t ∈ [0, T ];
see Figure 2.1. Thus, a local measure of the strain induced by the displacement field u
is given by the Green-St.Venant strain tensor

E(u) := 1
2

(
∇u+(∇u)T + (∇u)T∇u

)
.

In the small strain setting the displacement field’s gradient is assumed to be small such
that the quadratic term (∇u)T∇u is negligible. In this case the linearized stain tensor

e(u) := 1
2

(
∇u+(∇u)T

)
(2.2)

is a sufficiently good approximation of E(u). Now, we are in the position to formulate the
quasi static evolution of a linear elastic body, which is fixed on a part ΓDir of its boundary
∂Ω. This quasi static setting requires the external loadings `Ω : [0, T ]×Ω → Rd and
`ΓN : [0, T ]×ΓN → Rd, ΓN := ∂Ω\ΓDir, to be slowly varying with respect to time. Thus,
the linear elastic, quasi static deformation of a body Ω is described by the displacement
field u : [0, T ]×Ω→ Rd satisfying for all t ∈ [0, T ] the following equations of equilibrium:

−div(C̃e(u(t))) = `Ω(t) on Ω,
u(t) = 0 on ΓDir,

(C̃e(u(t)))nΓN = `ΓN(t) on ΓN,

(2.3)

where nΓN : ΓN → Rd denotes the outward unit normal vector on ΓN.

Remark 2.2. Observe that for the sake of shorten the notation, from now on we are
always going to assume that the displacement field takes the value zero on ΓDir. To intro-
duce a time dependent boundary value g : [0, T ]×ΓDir → Rd one might use the splitting
û = u+ĝ. Here, ĝ : [0, T ]×Ω→ Rd denotes a suitable extension of g : [0, T ]×ΓDir → Rd

chosen as smooth as necessary. Applying this splitting to the results obtained in this
thesis, they still hold true for the time dependent boundary value g : [0, T ]×ΓDir → Rd;
see also Remark 8.8.

2.2 Microstructure

In this thesis, microstructure is understood as the heterogeneity of the material occu-
pied body Ω. In other words, the term microstructure refers to the actual shape of
the material properties’ describing fourth order tensor C̃ ∈ M(Ω). This heterogeneity
either arises from one material in different phases or from several materials appearing in
different phases. In the following our assumptions on the microstructure are introduced.

In experiments, it is observed that microstructures often have an intrinsic length scale.
Descriptively this length scale is related to the smallest homogeneous set of material
being part of the microstructure. All models showing up such an intrinsic length scale
are termed as microscopic models in the following. According to the huge variety of
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2.2 Microstructure

Figure 2.2: KεΛ(Ω) prohibits its elements to take different values on A and B.

heterogeneity appearing in nature, modeling of microstructure in this general setting is
hopeless and some approximation is needed. One very common kind of such an approx-
imative microstructure is the periodic one. Here, the intrinsic length scale, denoted by
ε > 0, is associated to the size of cells ε(λ+Y ) occupying the bounded open domain
Ω ⊂ R

d, where for an arbitrary basis {b1, b2, . . . , bd} of Rd

Y :=
{

y ∈ R
d | y =

d∑
i=1

kibi, ki ∈ [0, 1)
}

, (μd(Y ) = 1)

denotes the so-called unit cell, which in this thesis is assumed to have volume 1. More-
over, λ is an element of the periodic lattice

Λ :=
{

λ ∈ R
d | λ =

d∑
i=1

kibi, ki ∈ Z

}
.

In the periodic case, all cells with ε(λ+Y )∩Ω �= ∅ contain the same specific distribution
of the appearing materials and their phases. That means, in this case the material tensor
C̃

per
ε ∈ M(Ω) is based on a tensor CY ∈ M(Y ) given on the unit cell Y , i.e., for almost

every x ∈ Ω it holds
C̃

per
ε (x) := C

per
Y (x

ε
). (2.4)

Here, Cper
Y ∈ M(Rd) denotes the periodic extension of the tensor CY ∈ M(Y ). In the

context of damage models we are going to consider microstructure evolution according
to an internal variable; see (2.8). This evolution is considered with respect to a given
family of admissible microstructures gained by generalizing the periodic ansatz in the
following way: For m ∈ N let Ĉ : [0, 1]m → M(Y ) be given and define the set of
piecewise constant functions KεΛ(Ω; [0, 1]m) by

KεΛ(Ω) := {v ∈ L1(Ω) | ∃ ṽ ∈ KεΛ(Rd) : ṽ|Ω = v}, (2.5)

where

KεΛ(Rd) := {ṽ ∈ L1(Rd) | ∀ λ ∈ Λ : ṽ|ε(λ+Y ) ≡ const}.
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Ĉ consists of two constant
tensors C1 and C2

Cε(zε) for zε ∈ KεΛ(Ω; [0, 1])
with zε �≡ const

C
per
ε := Cε(1)

Figure 2.3: Comparison of a specific (d = 2, m = 1) admissible microstructures in the
sense of (2.6) with the periodic case.

Then for zε ∈ KεΛ(Ω; [0, 1]m) an element C̃ε = Cε(zε) ∈ M(Ω) of the family of admissible
microstructures for almost every x ∈ Ω is defined by

C̃ε(x) = Cε(zε)(x) :=
(
Ĉ(zε(x))

)per
(x

ε
), (2.6)

where for ẑ ∈ [0, 1]m the term (Ĉ(ẑ))per ∈ M(Rd) again denotes the periodic extension
of Ĉ(ẑ) ∈ M(Y ). Since zε ∈ KεΛ(Ω; [0, 1]m) may vary from one cell to another, this
definition allows for non-periodic coefficients. Later, these non-periodic coefficients are
used to model various distributions of material defects, where the size and the shape of
a particular defect in a cell ε(λ+Y ) ⊂ Ω is encoded in the value zελ := zε|ε(λ+Y ).

Remark 2.3. Note that for fixed ε > 0 the set KεΛ(Ω; [0, 1]m) is finite dimensional.
Hence, the strong and weak topology are the same and for z, (zδ)δ>0 ⊂ KεΛ(Ω; [0, 1]m) the
convergence zδ → z in KεΛ(Ω; [0, 1]m) is understood as the convergence of the sequences
of parameters (zελ

δ )δ>0, with zελ
δ :≡ zδ|ε(λ+Y )∩Ω, to the parameters zελ :≡ z|ε(λ+Y )∩Ω for

all cells with ε(λ+Y )∩Ω �= ∅. Note that zδ → z in KεΛ(Ω; [0, 1]m) is equivalent to zδ → z
in Lq(Ω)m for any q ∈ [1, ∞).

2.3 Homogenization

Roughly spoken, in the classical homogenization theory one deals with a family of pa-
rameter dependent problems and the aim is the derivation of an effective problem being
independent of this parameter but capturing the family’s properties in a sufficiently
good way. In our case the parameter denotes the intrinsic length scale of a linear elastic
solid and, naturally, its size is very small compared to the size of the considered body
Ω. Together with the possibly complicated shape of the microstructure this leads, for
instance, to problems in the numerical investigation of such microstructures. Therefore,
the derivation of an effective description being independent of the intrinsic length scale
is a meaningful task.
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As an example we are now considering the static deformation of a linear elastic body Ω
with periodic material coefficients Cper

ε (·) = Cper
Y ( ·

ε
) ∈ M(Ω) (see (2.4)), i.e., we would

like to apply the theory of homogenization to the family (P (ε))ε>0 of elliptic boundary
value problems P (ε) given as follows:

For ε > 0 let uε ∈ H1
ΓDir

(Ω)d denote the weak solution of


−div(Cper

ε e(uε)) = `Ω on Ω,
uε = 0 on ΓDir,

(Cper
ε e(uε))nΓN = `ΓN on ΓN,

P (ε)

where nΓN : ΓN → Rd denotes the outward unit normal vector on ΓN. Regarding the
classical homogenization considering periodic coefficients, a rigorous result is gained via
the two-scale convergence introduced by G. Nguetseng in [63]. This result states that if
CY ∈ M(Y ) (see (2.4)) is uniformly positive definite and if uε ∈ H1

ΓDir
(Ω)d is the weak

solution of P (ε), then there exists a function u0 ∈ H1
ΓDir

(Ω)d such that uε ⇀ u0 in H1
ΓDir

(Ω)d,
Cper
ε e(uε) ⇀ Ccon

eff e(u0) in L2(Ω)d×d
(2.7)

and u0 ∈ H1
ΓDir

(Ω)d is the weak solution of P (0), which is obtained from P (ε) by replacing
the periodic tensor Cper

ε (·) = Cper
Y ( ·

ε
) by the constant tensor Ccon

eff ∈ Linsym(Rd×d
sym;Rd×d

sym)
defined via the so-called unit cell problem: For every ξ ∈ Rd×d

sym

〈Ccon
eff ξ, ξ〉 := min

{ ∫
Y
〈CY (y)(ξ + ey(v)(y)), ξ + ey(v)(y)〉d×ddy

}
.

Here, the minimum is taken with respect to all functions v ∈ H1
per(cl(Y ))d having zero

average on Y , i.e.,
∫
Y v(y)dy = 0. In this case, homogenization results in an effective

problem P (0) modeling the elastic deformation of a body Ω consisting of homogeneously
distributed material model by C̃con

eff ∈ M(Ω), where C̃con
eff :≡ Ccon

eff on Ω. Therefore, the
effective model P (0) possesses no intrinsic length scale, but according to (2.7) it acts as
a good approximation of P (ε) for ε > 0 sufficiently small.

As already mentioned in Section 2.2, in this thesis we deal with microstructure evolu-
tion modeled by the time-wise behavior of an internal variable. This means that for a
specific intrinsic length scale ε > 0 we are going to consider non-periodic microstruc-
tures modeled by Cε(zε(t)) ∈ M(Ω) (see (2.6)), where zε(t) ∈ KεΛ(Ω; [0, 1]m) denotes
the internal variable that may evolve in time. In this case, homogenization of a family
of problems involving such microstructures is understood as the investigation of their
asymptotic behavior for ε tending to zero. Here, the term homogenization is justified by
the fact that the effective model is ε-independent and preserves the characteristic of the
ε-dependent microstructure (see Section 6.2, for instance), although it will turn out that
the effective material tensor is not constant and hence does not model a homogeneous
material.
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2.4 Modeling of damage

Mechanical models describing damage processes in solids go back to the work by L.M.
Kachanov ([32, 33, 34]) and Yu.N. Rabotnov ([65]). There, in the context of creep dam-
age of metals the authors provided the basis for the large branch of modern continuum
damage mechanics. The basic idea for these models translated in our setting can be
summarized as follows: Every point of the solid has a certain stiffness, which serves as
an indicator for the damage state of the respective point. High stiffness is interpreted as
the presence of a small amount of damaged material, whereas low stiffness is associated
with highly progressed damage. In continuum damage mechanics, a damage variable
z : [0, T ]×Ω → [0, 1]m is introduced that on the macroscopic level represents this local
damage state. Moreover, constitutive relations

C̃(t) = C(z(t)) (2.8)

are postulated that describe the dependence of the material constants on these damage
variables and enter the equations of equilibrium; see (2.3). In the scalar case the damage
variable takes values between 0 and 1, where the value 1 is related to completely undam-
aged material whereas the value 0 models the maximal amount of damage. Generally,
the actual relation between the damage variable’s value and the material depends on
the specific model being under investigation; see Chapter 7 and 8, for instance.

However, in any case we are going to consider a unidirectional damage evolution, i.e., if
a point x ∈ Ω has taken a certain amount of damage at the time t ∈ [0, T ] this damage
state must not decrease for ongoing time. For this purpose, we assume the material
tensor C(·) of (2.8) to be monotone increasing with respect to the damage variable, i.e.:

For all z1, z2 : Ω→ [0, 1]m with z1 ≥ z2 and every

ξ ∈ Rd×d
sym it holds 〈C(z1)ξ, ξ〉d×d ≥ 〈C(z2)ξ, ξ〉d×d.

(2.9)

Therefore, forcing the damage variable z : [0, T ]×Ω → [0, 1]m to be monotone decreas-
ing with respect to time guarantees that the damage evolution is unidirectional. This
assumption on the monotonicity of the damage variable must be ensured by the evolu-
tion law which is chosen to describe its temporal behavior; see Example 2.4 below, for
instance.

This approach leads to damage models of phase-field type with the damage variable as
the phase field variable. The full damage evolution model consists of the macroscopic
momentum balance (2.3) with C̃(t) = C(z(t)) that is coupled with a suitable evolution
law for the damage variable. As an example for the type of evolution laws we have in
mind, we are now going to consider the following flow rule in the case of a scalar damage
variable.

Example 2.4 (Flow rule for a scalar damage variable). Let z : [0, T ]×Ω→ [0, 1] denote
a scalar damage variable. Then, for a positive definite tensor C ∈ Linsym(Rd×d

sym;Rd×d
sym)

and a given δ > 0 we assume the constitutive relation (2.8) to be given by the phe-
nomenologically motivated ansatz C(z(t)) := (z(t)+δ)C. For κ > 0, β ≥ 0, and
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∆pz(t) := div(|∇z(t)|p−2∇z(t)) the evolution law modeling the time-wise behavior of
the damage variable we have in mind reads as follows:

0 ∈ −κ+βż(t) + ∂subI(−∞,0](ż(t))
+ 1

2〈Ce(u(t)), e(u(t))〉d×d −∆pz(t) + ∂subI[0,∞)(z(t)) on Ω,
0 = 〈∇z(t), n∂Ω〉d on ∂Ω,

(2.10)

Here, n∂Ω : ∂Ω → Rd denotes the outward unit normal vector on ∂Ω and the indicator
function I(−∞,0] : R → {0,∞} of the interval (−∞, 0] and its associated subdifferential
∂subI(−∞,0] : R→ LLeb(R) are given by:

I(−∞,0](v) :=
{

0 if v ≤ 0,
∞ if v > 0,

and ∂subI(−∞,0](v) :=


{0} if v < 0,
[0,∞) if v = 0,
∅ if v > 0.

Moreover, it is I[0,∞)(v) := I(−∞,0](−v) and it holds ∂subI[0,∞)(v) = −∂subI(−∞,0](−v).
The so-called flow rule (2.10) is chosen such that the subdifferential ∂subI(−∞,0](ż(t)) ac-
counts for the irreversibility of the damage evolution, since it forces the damage variable
to be a monotonously decreasing function with respect to time. Therefore, for a suitable
chosen initial condition z0 with z0 ≤ 1 on Ω, the damage variable z : [0, T ]×Ω → [0, 1]
with z(0) = z0 cannot exceed the value 1 at any time. Moreover, the second subdif-
ferential ∂I[0,∞)(z(t)) entering (2.10) prevents the damage variable from taking negative
values, such that altogether z(t) ∈ [0, 1] for any t ∈ [0, T ]. Finally, the damage gradient
∇z(t) is incorporated to model microscopic interactions. Due to its benefits in numerical
simulations, the damage gradient was used first in [22]. Also many engineering works
take advantage of the damage gradient; see [4, 26], for instance.

In the following we are going to consider only the rate-independent case, i.e., we set
β = 0. By introducing the energy functional E : [0, T ]×H1

ΓDir
(Ω)d×W1,p(Ω; [0, 1]) → R

and the dissipation potential R : W1,p(Ω; [0, 1])→ [0,∞] via

E(t, u, z) := 1
2(z+δ)〈Ce(u), e(u)〉d×d + 1

p
|∇z|p + I[0,∞)(z)− 〈`(t), u〉

and

R(v) :=


∫

Ω
κ|v(x)|dx if v ≤ 0,

∞ otherwise

the weak formulation of the coupled system (2.3) and (2.10) is given by{
0 = DuE(t, u(t), z(t)) in (H1

ΓDir
(Ω)d)∗,

0 ∈ DzE(t, u(t), z(t)) + ∂subR(ż(t)) in (W1,p(Ω; [0, 1]))∗.
(2.11)

In specific cases this subdifferential formulation of a rate-independent process is equiva-
lent to the so-called energetic formulation which is the framework rate-independent evo-
lution processes of this thesis are modeled in; see Chapter 5. In general, this energetic
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2 Mechanical background and notation

formulation represents a proper generalization of the subdifferential formulation (2.11);
see [47, 52, 60]. For taking various types of microstructures into account, the here
considered constitutive relation of the damage variable and the material tensor will be
replaced by more complicated ones in the following.

2.5 Damage set for brutal damage models

Brutal damage models are widely used in the modeling brittle solids like concrete; see
[20, 21, 35, 36, 37], for instance. Here, the term brutal emphasizes the occurrence
of a sharp interface between damaged and undamaged material. For simplicity, the
damaged as well as the undamaged material are assumed to consist of only one phase,
i.e., for a given damage variable z : Ω → [0, 1]m the material tensor CD(z) ∈ M(Ω) is
a piecewise constant function on Ω, taking either the value Cstrong ∈ Linsym(Rd×d

sym;Rd×d
sym)

or Cweak ∈ Linsym(Rd×d
sym;Rd×d

sym). These tensors are chosen such that for all ξ ∈ Rd×d
sym it

holds
0 ≤ 〈Cweakξ, ξ〉d×d ≤ 〈Cstrongξ, ξ〉d×d.

As indicated by the subscript strong, the material associated to the tensor Cstrong repre-
sents undamaged material, whereas Cweak models damaged material. According to this
assumption the subset of damaged material ΩD(z) ⊂ Ω is given by

ΩD(z) := {x ∈ Ω | C̃(z)(x) = Cweak} (2.12)

and is referred to as the damage set in the following. By writing CD(z) ∈M(Ω) as

CD(z) = 1Ω\ΩD(z)Cstrong + 1ΩD(z)Cweak (2.13)

the fact that the damage evolution is unidirectional (see (2.9)) results in the following
monotonicity constraint on the damage set:

For all z1, z2 : Ω→ [0, 1]m with z1 ≥ z2 it holds ΩD(z1) ⊂ ΩD(z2). (2.14)

Remark 2.5 (Modeling of voids, i.e., Cweak ≡ O). As already mentioned in Section 2.4
for a given damage variable z : Ω → [0, 1]m the linear elastic deformation of the body
Ω with respect to the material tensor CD(z) ∈ M(Ω) is considered; see (2.13). Since
Chapter 8 examines damage processes which model the growth of microscopic voids, we
are going to assume Cweak ≡ O. However, in this case the damage set ΩD(z) (see (2.12))
contains no material such that actually we are interested in the linear elastic deformation
of the body Ω\ΩD(z) with respect to the material tensor Cstrong ∈ M(Ω\ΩD(z)). Hence,
it is reasonable to assume that for all z : Ω → [0, 1]m the set Ω\ΩD(z) is connected.
Since the linear elastic deformation of such a body Ω\ΩD(z) is modeled by the boundary
value problem (2.3), we need to ensure that for all damage variables z : Ω → [0, 1]m
it holds cl(ΩD(z)) ∩ ∂Ω = ∅. Otherwise the assumptions on the boundary value of the
displacement field are not well defined.
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2.6 Microscopic damage models

2.6 Microscopic damage models

This section is in preparation for the homogenization results presented in the Chapters 7
and 8. There, homogenization is performed for a family of microscopic brutal damage
models whose underlying microstructures are similar to the non-periodic ones introduced
in (2.6). However, to take the technicalities mentioned in Remark 2.5 into account, we
have to modify the microstructure defining tensors of Section 2.2. For this purpose, we
introduce the subsets

Λ−ε := {λ ∈ Λ : ε(λ+cl(Y )) ⊂ Ω} and Λ+
ε := {λ ∈ Λ : ε(λ+Y ) ∩ Ω 6= ∅} (2.15)

of Λ. Thus, the cells intersecting Ω are given by ε(λ+Y ) for λ ∈ Λ+
ε , whereas cells

ε(λ+Y ) with λ ∈ Λ−ε are completely contained in Ω. The sets Ω+
ε and Ω−ε unifying all

these cells are defined via
Ω±ε :=

⋃
λ∈Λ±ε

ε(λ+Y ). (2.16)

Note that assumption (2.1) implies

lim
ε→0

(
µd(Ω+

ε \Ω) + µd(Ω\Ω−ε )
)

= 0. (2.17)

In particular this condition is crucial when introducing the two-scale convergence with
the help of the so-called periodic unfolding operator (see [62] Section 2).

Like in Section 2.2 an admissible microstructure is based on a given tensor valued map-
ping ĈD : [0, 1]m → L∞(Y ; {Cstrong,Cweak}). Here, we already incorporated the fact that

we are interested in brutal damage models, i.e., ĈD(ẑ) for ẑ ∈ [0, 1]m takes either the
value Cstrong or Cweak. Similar to (2.6) for a given damage variable zε ∈ KεΛ(Ω; [0, 1]m)
the microstructure determining tensor CD

ε (zε) is defined by

CD
ε (zε)(x) :=


(
ĈD(zε(x))

)
(x
ε
) if x ∈ Ω−ε ,

Cstrong if x ∈ Ω\Ω−ε .
(2.18)

In comparison to (2.6) this description only differs on the set Ω\Ω−ε . However, as we
will see in Remark 2.7 below, this slight modification ensures that the boundary value
assumptions on the microscopic displacement fields are well defined independently of the
choice of the tensor Cweak.

With the help of the damage set introduced in Section 2.5 we now replace the analytical
description (2.18) of admissible microstructures by a geometrical one. This geometrical
description simplifies the illustration and might be the more natural way of understand-
ing microstructure. For this purpose, let LLeb(Y ) denote the Lebesgue-σ-algebra of the
set Y and introduce the set valued function L : [0, 1]m → LLeb(Y ) for ẑ ∈ [0, 1]m by
L(ẑ) := {y ∈ Y | ĈD(ẑ)(y) = Cweak} such that ĈD : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) for
almost every y ∈ Y reads as follows:

ĈD(ẑ)(y) = 1Y \L(ẑ)(y)Cstrong + 1L(ẑ)(y)Cweak. (2.19)
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2 Mechanical background and notation

Moreover, following (2.12) for zελ :≡ zε|ε(λ+Y ), where λ ∈ Λ−ε , we find

ΩD
ε (zε) =

⋃
λ∈Λ−ε

ε
(
λ+ L(zελ)

)
. (2.20)

Example 2.6. For gaining a microstructure consisting of balls of different size, the map-
ping L : [0, 1]→ LLeb(Y ) is defined by L(ẑ) := Br(ẑ)(yc), where yc ∈ int(Y ) is the center
of the ball Br(ẑ)(yc) with radius r(ẑ). Moreover, R > 0 needs to be chosen such that
BR(yc) ⊂ Y . If r : [0, 1]→ [0, R] is a non-increasing function, then condition (2.21) be-
low is satisfied, i.e., r(ẑ) := (1−ẑ)R, for instance. Thus, for a suitable zε ∈ KεΛ(Ω; [0, 1])
the damage set ΩD

ε (zε) is given by the union of the red balls of the center illustration in
Figure 2.2.

According to the identity (2.20) all admissible geometries of damage sets are determined
by the image of the function L : [0, 1]m → LLeb(Y ). Combining this description with
the monotonicity condition (2.14) shows that L : [0, 1]m → LLeb(Y ) has to be a non-
increasing function in the sense of set inclusions, i.e.:

For all ẑ1 < ẑ2 ∈ [0, 1]m the set inclusion L(ẑ2) ⊂ L(ẑ1) holds. (2.21)

Since the given tensor valued mapping ĈD : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) is uniquely
characterized by the set valued function L : [0, 1]m → LLeb(Y ), for zε ∈ KεΛ(Ω; [0, 1]m)
the tensor CD

ε (zε) ∈M(Ω) describing an admissible microstructure reads as follows:

CD
ε (zε) := 1Ω\ΩD

ε (zε)Cstrong + 1ΩD
ε (zε)Cweak

Remark 2.7. (a) According to (2.20) for a given damage variable zε ∈ KεΛ(Ω; [0, 1]m)
the damage set ΩD

ε (zε) only depends on zε|ε(λ+Y ) for λ ∈ Λ−ε . In other words, two damage
variables being elements of KεΛ(Ω; [0, 1]m) and differing only on Ω \Ω−ε lead to the same
damage set and the subset Ω \ Ω−ε of Ω never contains any damaged material for every
ε > 0 and any damage variable.

Analogously the tensor CD
ε (zε) takes the constant value Cstrong on the set Ω\Ω−ε indepen-

dently of zε ∈ KεΛ(Ω; [0, 1]m), such that two functions z1, z2 ∈ KεΛ(Ω; [0, 1]m) satisfying
z1|Ω−ε = z2|Ω−ε yield the same microstructure.

(b) In the case of modeling voids, i.e., Cweak ≡ O, Remark 2.5 asks for

dist(L(0), ∂Y ) > 0

to guarantee that Ω\ΩD
ε (zε) for all zε ∈ KεΛ(Ω; [0, 1]m) is connected. By recalling

ΩD
ε (zε) ⊂ Ω−ε , this assumption obviously implies cl(ΩD

ε (zε)) ∩ ∂Ω = ∅ for any dam-
age variable zε ∈ KεΛ(Ω; [0, 1]m). Therefore, the elliptic boundary value problem (2.3)
with C̃ := CD

ε (zε) is well defined for all zε ∈ KεΛ(Ω; [0, 1]m) and independently of the
choice of Cweak.
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3 Two-scale convergence

All homogenization results presented in this thesis rely on the two-scale convergence
developed by Nguetseng in [63]. For this purpose, this chapter introduces everything
needed concerning the notation and the theory of folding/unfolding and two-scale conver-
gence but does not claim completeness. For further details we recommend to [2, 11, 13].

3.1 Folding and periodic unfolding operator

This section provides the basic definitions and notations needed to introduce two-scale
convergence. Two-scale convergence is linked to a suitable two-scale embedding of the
one-scale space Lp(Ω) into the two-scale space Lp(Rd×Y ). Such an embedding is called
periodic unfolding operator. Roughly spoken, by unfolding a one-scale function its
“macroscopic behavior” is shifted to one scale, whereas its “microscopic behavior” is
shifted to a second scale. This decomposition is based on the periodic lattice Λ, the unit
cell Y introduced in Section 2.2, and the following mappings:

[·]Λ : Rd → Λ, {·}Y : Rd → Y, and x = [x]Λ + {x}Y for all x ∈ Rd.

For λ ∈ Λ and x ∈ λ+Y ⊂ Rd it holds [x]Λ = λ and {x}Y ∈ Y is determined by
{x}Y = x−[x]Λ. Moreover, for ε > 0 and x ∈ Rd we have the following decomposition:

x = Nε(x) + εVε(x), with Nε(x) = ε
[
x

ε

]
Λ

and Vε(x) =
{
x

ε

}
Y
, (3.1)

Figure 3.1: The mappings [·]Λ : Rd → Λ and {·}Y : Rd → Y .
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3 Two-scale convergence

where Nε(x) = ελ denotes the vertex ελ ∈ εΛ of the cell ε(λ+Y ) = Nε(x)+εY that
contains x, and Vε(x) is the microscopic part of x in Y . Following the lines in [69], for
Y := Rd/Λ denoting the periodicity cell we introduce the mappings Jε and Kε as follows:

Jε :
{

Rd → Rd×Y ,
x 7→ (Nε(x),Vε(x)), Kε :

{
Rd×Y → Rd,
(x, y) 7→ Nε(x) + εy,

where in the last sum y ∈ Y is identified with y ∈ Y ⊂ Rd. Now we are in the position
to define the periodic unfolding operator which was introduced first in [11].

Definition 3.1 (Unfolding operator (see [11])). Let ε > 0 and p ∈ [1,∞]. Then the
periodic unfolding operator Tε is defined via

Tε : Lp(Ω)→ Lp(Rd×Y ); v 7→ vex ◦ Kε.

For all p, q, r ∈ [1,∞] with 1
p

+ 1
q

= 1
r

the periodic unfolding operator fulfills the following
product rule:

If v1 ∈ Lp(Ω) and v2 ∈ Lq(Ω), then Tε(v1v2) = (Tεv1)(Tεv2) ∈ Lr(Rd×Y ).

Observe that for any function v ∈ Lp(Ω) the support of Tεv ∈ Lp(Rd×Y ) is contained in
the closure of the set [Ω×Y ]ε := K−1

ε (Ω) = {(x, y)|Kε(x, y) ∈ Ω} which is no subset of
Ω×Y . Before introducing the two-scale convergence based on the unfolding operator, a
folding operator is defined, which turns out to be the adjoint of the unfolding operator.
For details see [62].

Definition 3.2 (Folding operator (see [62])). Let ε > 0, let p ∈ [1,∞), and let the
projection Pε : Lp(Rd×Y ) → KεΛ(Rd; Lp(Y )) to piecewise constant functions in the x-
component be given by

PεV (x, y) := −
∫
Nε(x)+εY

V (x̂, y)dx̂,

where −
∫
A g(a)da := 1

µd(A)
∫
A g(a)da denotes the average of a function g over the set A

with µd(A) > 0. Then the folding operator F (p)
ε is defined via:

F (p)
ε : Lp(Rd×Y )→ Lp(Ω); V 7→

[(
Pε(1[Ω×Y ]εV )

)
◦ Jε

]∣∣∣
Ω
.

Note that due to the product 1[Ω×Y ]εV ∈ Lp(Rd×Y ), the folded function F (p)
ε V ∈ Lp(Ω)

only depends on V |[Ω×Y ]ε , which fits to the observation that for v ∈ Lp(Ω) the support of
the unfolded function Tεv ∈ Lp(Rd×Y ) is contained in [Ω×Y ]ε. Moreover, the properties
Pε1[Ω×Y ]ε = 1[Ω×Y ]ε and supp(1[Ω×Y ]ε ◦ Jε) = cl(Ω) ensure that the support of the
function in the square brackets is contained in cl(Ω). The following proposition lists
basic properties of the periodic unfolding operator and the folding operator which can
be proven by decomposing Rd into ∪λ∈Λε(λ+Y ).

Proposition 3.3 (Properties of the unfolding and folding operator (see [62])). Let ε > 0
and p ∈ (1,∞). Then the periodic unfolding operator Tε : Lp(Ω) → Lp(Rd×Y ) and the
folding operator F (p)

ε : Lp(Rd×Y )→ Lp(Ω) have the following properties:
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3.2 Strong and weak two-scale convergence

(a) ‖Tεv‖Lp(Rd×Y ) = ‖v‖Lp(Ω) and supp(Tεv) ⊂ cl([Ω×Y ]ε) for all v ∈ Lp(Ω).

(b) ‖F (p)
ε V ‖Lp(Ω) ≤ ‖V ‖Lp(Rd×Y ) for all V ∈ Lp(Rd×Y ).

(c) Let p′ := p
p−1 . Then F (p′)

ε is the adjoint of Tε, i.e., F (p′)
ε = (Tε)′.

(d) F (p)
ε ◦ Tε = idLp(Ω) and (Tε ◦ F (p)

ε )2 = Tε ◦ F (p)
ε = 1[Ω×Y ]εPε.

3.2 Strong and weak two-scale convergence

Following the lines in [62], we will now use the periodic unfolding operator to introduce
the kind of two-scale convergence, which is used here; the strong and weak two-scale
convergence, respectively. Moreover, we state the main results, i.e., Proposition 3.5 and
Corollary 3.6, concerning the two-scale convergence needed in the following.

Definition 3.4 (Strong and weak two-scale convergence (see [62])). Let p ∈ [1,∞).

(a) A sequence (vε)ε>0 ⊂ Lp(Ω) converges strongly two-scale to a function V ∈Lp(Ω×Y )
in Lp(Ω×Y ) (notation: vε

s→ V in Lp(Ω×Y )), if Tεvε → V ex in Lp(Rd×Y ).

(b) A sequence (vε)ε>0 ⊂ Lp(Ω) converges weakly two-scale to a function V ∈ Lp(Ω×Y )
in Lp(Ω×Y ) (notation: vε

w
⇀ V in Lp(Ω×Y )), if Tεvε ⇀ V ex in Lp(Rd×Y ).

For all ε > 0 the support of the function Tεvε ∈ Lp(Rd×Y ) is contained in the set
cl([Ω×Y ]ε) ⊂ cl(Ω+

ε )×Y ; see (2.16). This inclusion results in the fact that the sup-
port of a possible accumulation point V ∈ Lp(Rd×Y ) of the sequence (Tεvε)ε>0 has to
be in cl(Ω)×Y , since µd(Ω+

ε \Ω) → 0. According to µd(∂Ω) = 0 the function spaces
Lp(Ω×Y ) and Lp(cl(Ω)×Y ) coincide and hence every accumulation point of (Tεvε)ε>0
can be uniquely identified with an element of Lp(Ω×Y ). However, be aware of the ne-
cessity of determining two-scale convergence with respect to the space Lp(Rd×Y ) and
not with respect to Lp(Ω×Y ). We refer to [62], where in Example 2.3 it is shown that
convergence in Lp(Ω×Y ) is not sufficient.

Exploiting Proposition 3.3(c), an equivalent description of the weak two-scale conver-
gence for p ∈ (1,∞) and p′ := p

p−1 reads as follows:

vε
w
⇀ V in Lp(Ω×Y ) ⇔

∫
Ω
vεF (p′)

ε Wdx ε→0−→
∫

Ω×Y
VWdydx ∀W ∈ Lp′(Rd×Y ).

Since the one-scale function F (p′)
ε W only depends on W |[Ω×Y ]ε it is sufficient to check

this convergence only for all W ∈ Lp′(cl(Ω+
ε0)×Y ), where ε0 > 0 is chosen arbitrarily but

fixed.

Observe that according to Definition 3.4 for any two-scale convergent sequence all prop-
erties known for the Lp-topology are transmitted to the sequence of unfolded functions.
Proposition 2.4 in [62] yields a detailed summary of these properties. For the convenience
of the reader we state here only those properties used in the following.
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3 Two-scale convergence

Proposition 3.5 (Properties of strong and weak-two-scale convergence (see [62])). Let
p ∈ (1,∞) and set p′ := p

p−1 . If V0 ∈ Lp(Ω×Y ), W0 ∈ Lp′(Ω×Y ), and M0 ∈ L1(Ω×Y )
are given, then for (vε)ε>0 ⊂ Lp(Ω) and (wε)ε>0 ⊂ Lp′(Ω) the following conditions hold.

(a) If vε
w
⇀ V0 in Lp(Ω×Y ) and if wε

s→ W0 in Lp′(Ω×Y ), then for ε → 0 it holds
〈vε, wε〉L2(Ω) → 〈V0,W0〉L2(Ω×Y ).

(b) If vε → v0 in Lp(Ω), then vε
s→ Ev0 in Lp(Ω×Y ), where E : Lp(Ω) → Lp(Ω×Y )

for v ∈ Lp(Ω) and almost every (x, y) ∈ Ω×Y is defined via Ev(x, y) := v(x).

(c) If vε
s→ V0 in Lp(Ω×Y ) and if (mε)ε>0 is a bounded sequence of L∞(Ω) such that

Tεmε(x, y) → M0(x, y) for almost every (x, y) ∈ Ω×Y , then mεvε
s→ M0V0 in

Lp(Ω×Y ).

(d) For all V ∈ Lp(Ω×Y ) there exists a sequence (vε)ε>0 ⊂ Lp(Ω) such that vε
s→ V in

Lp(Ω×Y ); vε := Fε(V ex), for instance.

The following corollary extends Proposition 3.5(c) to a special case appearing when
applying the two-scale theory to the microscopic models of Chapter 6, 7, and 8.

Corollary 3.6. For p ∈ (1,∞) let (vε)ε>0 ⊂ Lp(Ω) and V0 ∈ Lp(Ω×Y ) be given such that
vε

s→ V0 in Lp(Ω×Y ). If (mε)ε>0 is a bounded sequence in L∞(Ω) satisfying mε
s→ M0

in L1(Ω×Y ) for some function M0 ∈ L1(Ω×Y ), then mεvε
s→M0V0 in Lp(Ω×Y ).

Proof. Note that due to the assumptions there exists a subsequence of (ε)ε>0 for which
Proposition 3.5(c) yields the desired result. Now, the validity for the whole sequence
(ε)ε>0 is proven by the following contradiction argument. Assume that the whole se-
quence (mεvε)ε>0 does not converge strongly two-scale to M0V0 in Lp(Ω×Y ). Then
there exists a constant C > 0 and a subsequence (ε′)ε′>0 of (ε)ε>0 such that for all
ε′ > 0 it holds ‖Tε′(mε′vε′) − (M0V0)ex‖Lp(Rd×Y ) ≥ C. However, there exists a further
subsequence (ε′′)ε′′>0 of (ε′)ε′>0 fulfilling all assumptions of Proposition 3.5(c). Hence,
mε′′vε′′

s→ M0V0 in Lp(Ω×Y ) which is a contradiction to the fact that for all ε′′ > 0 it
holds ‖Tε′′(mε′′vε′′)− (M0V0)ex‖Lp(Rd×Y ) ≥ C.

In Chapter 6 we are going to prove Γ-convergence results with respect to the weak two-
scale topology. There, the following integral identity for v ∈ L1(Ω), which is proven by
decomposing Rd into cells ∪λ∈Λε(λ+Y ), will be central.∫

Ω
v(x)dx =

∫
Rd×Y

Tεv(x, y)dydx. (3.2)

3.3 Two-scale convergence in Sobolev spaces

This section is dedicated to two-scale convergence results for bounded sequences of
Sobolev functions. In particular, for p ∈ (1,∞) and Y := Rd/Λ the function space

W1,p
av (Y) =

{
v ∈W1,p

per(cl(Y ))
∣∣∣∣ ∫
Y
v(y)dy = 0

}
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3.4 Two-scale limit identification of sequences of non-periodic coefficients

is crucial for describing two-scale convergence of sequences of gradients. Thus, the
function space Lp(Ω; W1,p

av (Y)) is introduced, which is the space of two-scale functions
V ∈ Lp(Ω×Y ) = Lp(Ω; Lp(Y )), having the same traces on opposite faces of Y and
satisfying (i) ∇yV ∈ Lp(Ω×Y )d in the sense of distributions and (ii)

∫
Y V (x, y)dy = 0

for almost every x ∈ Ω. This two-scale function space is equipped with the norm
‖V ‖Lp(Ω;W1,p

av (Y)) := ‖∇yV ‖Lp(Ω×Y )d . The following compactness result will be exploited
for sequences of displacement fields.

Proposition 3.7 (Compactness result). For p ∈ (1,∞) let (vε)ε>0 be a bounded sequence
in W1,p(Ω). Then there exists a subsequence of (ε)ε>0 (not relabeled) and functions
v0 ∈W1,p(Ω) and V1 ∈ Lp(Ω; W1,p

av (Y)) such that:

vε ⇀ v0 in W1,p(Ω),
vε

s→ Ev0 in Lp(Ω×Y ),
∇vε w

⇀ ∇xEv0+∇yV1 in Lp(Ω×Y )d,

where Ev0(x, y) := v0(x) for almost every (x, y) ∈ Ω×Y .

For a proof we refer to Theorem 3.1.4 in [64]. The following density result enables us to
construct the so-called mutual recovery sequence for the displacement fields considered
in Chapter 6.

Proposition 3.8 (Density result). For p ∈ (1,∞) and p′ := p
p−1 let w0 ∈ W1,p

0 (Ω)
and W1 ∈ Lp(Ω; W1,p

av (Y)) be given. Moreover, let Ew0 ∈ W1,p(Ω×Y ) for almost every
(x, y) ∈ Ω×Y be defined via Ew0(x, y) := w0(x). If wε ∈W1,p

0 (Ω) for ε > 0 denotes the
solution of the elliptic problem∫

Ω
(wε −F (p)

ε (Ew0)ex)ϕ+ 〈∇wε −F (p)
ε (∇xEw0+∇yW1)ex,∇ϕ〉ddx = 0 ∀ϕ ∈W1,p′

0 (Ω),

then the sequence of solutions (wε)ε>0 ⊂W1,p
0 (Ω) fulfills

wε ⇀ w0 in W1,p
0 (Ω),

wε
s→ Ew0 in Lp(Ω×Y ),

∇wε
s→ ∇xEw0+∇yW1 in Lp(Ω×Y )d.

For a proof we refer to Proposition 2.10 in [62].

3.4 Two-scale limit identification of sequences of
non-periodic coefficients

In preparation for the limit passage of the microscopic models of Section 6.1 to the effec-
tive models introduced in Section 6.2 and 6.3, we are now going to investigate the asymp-
totic behavior of sequences of admissible microstructures in the sense of Section 2.2; see

25



3 Two-scale convergence

(2.6). In detail, for p ∈ (1,∞) we identify the two-scale limit of (Cε(zε))ε>0 when con-
sidering a sequence (zε)ε>0 satisfying zε ∈ KεΛ(Ω; [0, 1]m) (see (2.5)) and zε → z0 in
Lp(Ω)m for some function z0 ∈ Lp(Ω; [0, 1]m). These are reasonable assumptions in the
context of the models considered in Section 6.1. For a given Ĉ ∈ L∞([0, 1]m;M(Y )) and
a function zε ∈ KεΛ(Ω; [0, 1]m) we recall that the tensor Cε(zε) ∈ M(Ω) for x ∈ Ω is
defined by

Cε(zε)(x) := Ĉ(zε(x))({x
ε
}Y ). (3.3)

Theorem 3.9 (Two-scale limit of (Cε(zε))ε>0). Assume that for Ĉ : L∞([0, 1]m;M(Y ))
and any measurable function z : Rd → [0, 1]m the mapping

Ĉ(z(·))(·) : Rd×Y → Linsym(Rd×d
sym;Rd×d

sym))

is measurable on Rd×Y . Moreover, let Ĉ : [0, 1]m → M(Y ) be continuous with respect
to the strong L1-topology, i.e., for any sequence (ẑδ)δ>0 ⊂ [0, 1]m satisfying limδ→0 ẑδ = ẑ
in Rm for some ẑ ∈ [0, 1]m we have

lim
δ→0
‖Ĉ(ẑδ)− Ĉ(ẑ)‖L1(Y ;Linsym(Rd×dsym ;Rd×dsym )) = 0.

If (zε)ε>0 denotes a sequence of functions satisfying zε ∈ KεΛ(Ω; [0, 1]m) (see (2.5)) and
zε → z0 in L1(Ω)m for some function z0 ∈ L1(Ω; [0, 1])m, then

Cε(zε) s→ C0(z0) in L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)),

where Cε(zε) is defined by (3.3) and C0(z0) for almost every (x, y) ∈ Ω×Y is given by

C0(z0)(x, y) := Ĉ(z0(x))(y). (3.4)

Remark 3.10. Observe that for CĈ := ‖Ĉ‖L∞([0,1]m;M(Y )), for any zε ∈ KεΛ(Ω; [0, 1]m),
and some z0 ∈ L1(Ω)m we have ‖Cε(zε)‖M(Ω) ≤ CĈ and ‖C0(z0)‖M(Ω×Y ) ≤ CĈ according
to the definitions of the tensors Cε(zε) and C0(z0); see (3.3) and (3.4).

Proof. Let the sequence (zε)ε>0 be given such that zε ∈ KεΛ(Ω; [0, 1]m) and zε → z0
in L1(Ω)m for some function z0 ∈ L1(Ω; [0, 1])m. We start by rewriting the two-scale
function TεCε(zε) ∈M(Rd×Y ) to gain a preferably simple description to work with.

The case x ∈ Rd\cl(Ω): For fixed x ∈ Rd\cl(Ω) due to (2.17) there exists ε0 > 0 such
that x ∈ Rd\Ω+

ε for all ε ∈ (0, ε0). Hence, TεCε(zε)(x, ·) ≡ 0 on Y for all ε ∈ (0, ε0) (see
Definition 3.1). Moreover, the extension Cex

0 (z0) trivially fulfills Cex
0 (z0)(x, ·) ≡ 0 for all

x ∈ Rd\cl(Ω) by definition. Altogether this shows for all x ∈ Rd\cl(Ω)

TεCε(zε)(x, ·)→ Cex
0 (z0)(x, ·) in L1(Y ; Linsym(Rd×d

sym;Rd×d
sym)). (3.5)

The case x ∈ Ω: Let x ∈ Ω be fixed. Since Ω is assumed to be open due to (2.17) there
exists ε0 > 0 such that x ∈ Ω−ε for all ε ∈ (0, ε0). Note that for (x, y) ∈ Ω−ε ×Y we have

(i) zε(x) = zε(Nε(x)), (ii) Nε(Nε(x) + εy) = Nε(x), and (iii) {Nε(x)+εy
ε
}Y = y. Keeping
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3.4 Two-scale limit identification of sequences of non-periodic coefficients

these observations in mind when applying Tε to the tensor Cε(zε) given by (3.3) results
in

TεCε(zε)(x, y) = Ĉ(zε(x))(y) for all (x, y) ∈ Ω−ε ×Y. (3.6)

According to zε → z0 in L1(Ω)m there exists a subsequence (ε′)ε′>0 of (ε)ε>0 such that

zε′(x)→ z0(x) for almost every x ∈ Ω. (3.7)

Now, the continuity of Ĉ together with condition (3.7) enables us to pass to the limit in
relation (3.6) (at least for the subsequence (ε′)ε′>0 of (ε)ε>0), i.e., for almost every x ∈ Ω
we have

Tε′Cε′(zε′)(x, ·)→ Ĉ(z0(x))(·) (3.4)= C0(z0)(x, ·) in L1(Y ; Linsym(Rd×d
sym;Rd×d

sym)). (3.8)

Define fε′ : Rd → [0,∞) by fε′(x) := ‖Tε′Cε′(zε′)(x, ·)−Cex
0 (z0)(x, ·)‖L1(Y ;Linsym(Rd×dsym ;Rd×dsym )).

Then, by combining (3.5) and (3.8) and exploiting µd(∂Ω) = 0 (see (2.1)) we finally
showed

fε′ → 0 almost every in Rd.

Note that due to Ĉ ∈ L∞([0, 1]m;M(Y )) the sequence (fε′)ε′>0 is uniformly bounded
(see Remark 3.10) and that the support of fε′ : Rd → [0,∞) is contained in Ω+

ε0 for all
ε′ ∈ (0, ε0). Hence, the theorem of dominated convergence yields

lim
ε′→0
‖fε′‖L1(Rd) = lim

ε′→0

∫
Rd
|fε′(x)|dx = 0,

which proves
Cε′(zε′) s→ C0(z0) in L1(Ω×Y ; Linsym(Rd×d

sym;Rd×d
sym)).

By an analog contradiction argument as applied in the proof of Corollary 3.6 we are
able to show that this convergence holds for the whole sequence (ε)ε>0 and the proof is
finished.
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4 Discrete gradients of piecewise
constant functions

In this chapter a discrete gradient for piecewise constant function is introduced and
its essential properties are stated. This discrete gradient for functions being piecewise
constant on a given lattice is constructed in such a way that only an overall constant
function has gradient zero. Furthermore, an in some sense bounded sequence of those
piecewise constant functions (where the spacing of the lattices tends to zero) converges
to a limit belonging to a Sobolev space W1,p; p ∈ (1,∞). Roughly spoken, we want
to introduce a penalty term, extracting those sequences of BV-functions that converge
strongly in Lp to a Sobolev function, such that the discrete gradient of these sequences
converge weakly in Lp to the gradient of this Sobolev function. Note that although the
piecewise constant functions in the Chapters 7, 8, and 9 will play the role of a damage
variable in the sense of Section 2.6, the here presented calculus first of all stands on
its own concerning the notation and, probably more important, it is not restricted to
damage models in its application.

4.1 Definition and motivation

The construction of the discrete gradient is inspired by the so-called lifting operator
RBO introduced in [8]. There, the authors present a regularization term for so-called
broken Sobolev functions defined on partitions of Ω consisting of disjoint, polyhedral
elements. For such a decomposition of Ω the broken Sobolev space contains all functions
v ∈ L1(Ω), whose restriction to any of these polyhedral elements is a classical Sobolev
function. Then, for a sequence (vε)ε>0 of broken Sobolev functions defined on finer and
finer polyhedral partitions with a uniformly bounded regularization term, there exists a
classical Sobolev function v0 ∈ W1,p(Ω) and a subsequence (ε′)ε′>0 of (ε)ε>0 such that
vε′ → v0 in Lp(Ω)d. Moreover, the associated sequence (RBOvε′)ε′>0 of lifted functions
converges weakly to ∇v0 in Lp(Ω)d.
The reasons why this regularization approach is not in agreement with our requirements
are the following: First of all, the lifting operator of [8] does not serve as a penalty
term in the sense that a somehow bounded sequence of lifted broken Sobolev functions
has a limit which is a classical Sobolev function. For this reason in [8] a penalty term
being independent of the lifting operator is introduced. Furthermore, the lifting operator
applied to a non-constant function might be zero as well; see Example 4.3 and 4.4. To
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4 Discrete gradients of piecewise constant functions

combine the beneficial properties of the lifting operator and the penalty term of [8] we
are now going to construct a discrete gradient for piecewise constant functions.

To avoid difficulties with cells ε(λ+Y ) intersecting the given set Ω but being not com-
pletely contained in it (ε(λ+Y ) 6⊂ Ω) the discrete gradient of a function z ∈ KεΛ(Ω)m
is going to be defined on the set Ω+

ε ; see (2.16). For the subsets Λ+
ε and Λ−ε of Λ given

by (2.15), an continuation operator Vε : KεΛ(Ω)m → KεΛ(Ω+
ε )m extending a piecewise

constant function z ∈ KεΛ(Ω)m for every λ ∈ Λ+
ε \Λ−ε on ε(λ+Y )\Ω constantly by the

(constant) value of z on ε(λ+Y ) ∩ Ω is introduced as follows:

For z ∈ KεΛ(Ω)m the function Vεz ∈ KεΛ(Ω+
ε )m for every

λ ∈ Λ+
ε and zελ :≡ z|ε(λ+Y )∩Ω is defined via Vεz|ε(λ+Y ) :≡ zελ.

(4.1)

We now define discrete gradients for such functions. Roughly spoken, the discrete gradi-
ent of a function z ∈ KεΛ(Ω)m on a cell ε(λ+Y ) ⊂ Ω+

ε is given by the sum of all finite dif-
ferences of the values z|ε(λ+Y ) and z|ε(λ±bi+Y ), where z|ε(λ±bi+Y ) for i = 1, 2, . . . , d denotes
the value of z on the “neighboring” cell ε(λ±bi+Y ). Hence, for fixed i ∈ {1, 2, . . . , d}
two finite differences are considered on ε(λ+Y ) forcing the discrete gradient to be a
piecewise constant function with respect to the finer lattice ε

2Λ. Observe that εΛ ⊂ ε
2Λ

by the definition of Λ. The precise definition of the discrete gradient is given in the
following definition.

Definition 4.1 (Discrete gradient). For Vε : KεΛ(Ω)m → KεΛ(Ω+
ε )m given by (4.1)

let R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d be defined via R ε
2
z := ∑d

i=1 R̃
(i)
ε
2

(Vεz), where for

i = 1, 2, . . . , d the mapping R̃
(i)
ε
2

: KεΛ(Ω+
ε )m → K ε

2 Λ(Ω+
ε )m×d for z ∈ KεΛ(Ω+

ε )m reads as

follows:

R̃
(i)
ε
2

(z)(x) :=


1

ε|bi|

(
z(x+ ε

2bi)− z(x− ε
2bi)

)
⊗ ni if x+ ε

2bi ∈ Ω+
ε and x− ε

2bi ∈ Ω+
ε ,

0 otherwise,

with ni ∈ Rd given by

ni ∈ {b1, . . . , bi−1, bi+1, . . . , bd}⊥, |ni|d = 1, and 〈ni, bi〉d > 0. (4.2)

Then the function R ε
2
z ∈ K ε

2 Λ(Ω+
ε )m×d is called discrete gradient of z ∈ KεΛ(Ω)m.

Remark 4.2. Note that for z ∈ KεΛ(Ω)m and z := Vεz ∈ KεΛ(Ω+
ε )m according to the

relation (4.2) the discrete gradient R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d for the given basis

{b1, b2, . . . , bd} fulfills (R ε
2
z)bi = (R̃(i)

ε
2

(z))bi ∈ Rm for any i ∈ {1, 2, . . . , d}.

(
R̃

(i)
ε
2

(z)(x)
)
bi =


1

ε|bi|

(
z(x+ ε

2bi)− z(x− ε
2bi)

)
if x+ ε

2bi ∈ Ω+
ε and x− ε

2bi ∈ Ω+
ε ,

0 otherwise.
(4.3)

This property is exploited several times when proving the compactness result Theorem 4.5
and the approximation result Theorem 4.9 below.
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4.1 Definition and motivation

To point out the differences between the discrete gradient R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d
defined in Definition 4.1 and the lifting operator of by A. Buffa and C. Ortner in [8]
we introduce the following notation: Let the so-called broken Sobolev space be denoted
by W1,p

εΛ (Ω) := {v ∈ L1(Ω) | v|ε(λ+Y )∩Ω ∈ W1,p(ε(λ+Y ) ∩ Ω) for all λ ∈ Λ} and let

SjεΛ(Ω) be the set of all piecewise polynomial functions (in the same sense as KεΛ(Ω))
with a degree less than or equal to j ∈ N. Then for Γεint := Ω∩⋃λ∈Λ ε(λ+∂Y ) the lifting
operator RBO

ε,j : W1,p
εΛ (Ω)m → SjεΛ(Ω)m×d introduced in [8] is defined by the relation∫

Ω

〈
RBO
ε,j v(x), φ(x)

〉
m×d

dx = −
∫

Γεint

〈
[[v(s)]], {{φ(s)}}

〉
m×d

ds ∀φ ∈ SjεΛ(Ω)m×d, (4.4)

with

[[v(s)]] := v+(s)⊗ n+ + v−(s)⊗ n− and {{φ(s)}} := 1
2(φ+(s) + φ−(s)), (4.5)

where v±, φ± are the traces of v, φ, and n± denotes the respective outward normal of
length 1. Observe that KεΛ(Rd)m ⊂W1,p

εΛ (Rd)m. Then in the case j = 0 the relation (4.4)
leads to the following explicit expression of the lifting operator for piecewise constant
functions:

RBO
ε,0 :


KεΛ(Rd)m → KεΛ(Rd)m×d,

z 7→
d∑
i=1

1
2ε|bi| {z(·+εbi)− z(·−εbi)} ⊗ ni.

(4.6)

Here, we replaced Ω by Rd such that we do not have to care about what is happening
in cells ε(λ+Y ) intersecting the boundary ∂Ω. Observe that for z ∈ KεΛ(Rd)m the
function RBO

ε,0 z is piecewise constant with respect to the lattice εΛ, while R ε
2
z is piecewise

constant on the finer lattice ε
2Λ. According to (4.6), the value of the discrete gradient

(RBO
ε,0 z(x))k,l (k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}) for i = 1, 2, . . . , d is defined by the

values of the function v in the “next” (z(x+εbi)) and in the “previous” (z(x−εbi))
cell, but is independent of the value of the “actual” cell (z(x)). With the help of the
description (4.6) the following examples show that the lifting operator RBO

ε,0 is missing
desirable properties of a discrete gradient for piecewise constant functions.

Example 4.3. Considering a periodic and piecewise constant function z ∈ KεΛ(Rd)
satisfying z(x+εbi) = z(x−εbi) and z(x) 6= z(x+εbi) for every i ∈ {1, . . . , d} and x ∈ Rd

we obtain RBO
ε,0 z ≡ 0 although z 6≡ const.

Example 4.4. For d = 1, x ∈ R, and k ∈ Z let the sequence (zε)ε>0 of piecewise
constant functions zε ∈ KεpΛ(R) be defined via

zε(x) :=


2 if x ∈ εp[2k, 2k + 1),
−2 if x ∈ −εp[(2|k|+ 1), 2|k|),

0 if x ∈ εp[(2|k|+ 1), 2|k|).
(4.7)

Then zε is periodic on [−∞, 0) as well as [0,∞] and the sequence (zε)ε>0 converges weakly
in Lploc(R) to the Heaviside function H defined by H(x) = 1 if x ≥ 0 and H(x) = 0 if
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4 Discrete gradients of piecewise constant functions

x < 0. However, observe that H does not belong to W1,p
loc(R). According to the definition

of the lifting operator we have |RBO
ε,0 zε(x)| = 1

ε
for x ∈ [0, εp) and RBO

ε,0 zε ≡ 0 otherwise.
This gives ‖RBO

ε,0 zε‖Lp(R) = 1 for all ε > 0 which shows that this lifting operator is not
the right penalty term in the sense mentioned in the beginning of this section. There is
another comment on that in the following section, when explaining the strategy of the
proof of Theorem 4.5.

As opposed to this, the discrete gradient defined in Definition 4.1 evaluated for zε from
(4.7) gives us |R ε

2
zε(x)| = 4

ε
for x < εp

2 and |R ε
2
zε(x)| = 2

ε
otherwise, which leads to

‖R ε
2
zε‖pLp(Ω) ≥ µd(Ω)(2

ε
)p for any bounded subset Ω of R. This shows that this term

along (zε)ε>0 is unbounded which correlates with the fact that this sequence does not
have a limit belonging to W1,p

loc(R). This indicates that the Lp-norm of the discrete
gradient defined in Definition 4.1 is suitable as a penalty term filtering out sequences of
piecewise constant functions converging to elements of W1,p(Ω)m. This is stated in the
following section.

4.2 Compactness result for piecewise constant functions

The following compactness result states that the Lp-norm of the discrete gradient R ε
2

serves as a penalty term extracting those sequences of piecewise constant functions con-
verging strongly in Lp to a Sobolev function such that the sequence of discrete gradients
converges weakly to the gradient of the limit function.

Theorem 4.5 (Compactness result). Let R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d be given by
Definition 4.1. Then for p ∈ (1,∞) and every sequence (zε)ε>0 of functions satisfying
zε ∈ KεΛ(Ω)m for all ε > 0 and

sup
ε>0

(
‖zε‖Lp(Ω)m + ‖R ε

2
zε‖Lp(Ω+

ε )m×d
)
≤ C <∞ (4.8)

there exists a function z0 ∈W1,p(Ω)m and a subsequence of (ε)ε>0 (not relabeled) with

zε → z0 in Lq(Ω)m and R ε
2
zε|Ω ⇀ ∇z0 in Lp(Ω)m×d,

where 1 ≤ q < p∗ and p∗ denotes the Sobolev conjugate of p.

Our Theorem 4.5 is a modification of Theorem 5.2 from [8]. There, condition (4.8)
is formulated with a penalty term

∫
Γεint

ε1−p|[[zε(s)]]|pm×dds instead of our regularization

term ‖R ε
2
zε‖Lp(Ω+

ε )m×d . The authors of [8] end up with a similar convergence result with

respect to their discrete gradient RBO
ε,0 . However, due to their procedure a regularized

(ε-dependent) model based on functionals depending on piecewise constant functions has
to contain two ingredients to arrive at a limit model described by functionals depending
solely on Sobolev functions. First, the penalty term

∫
Γεint

ε1−p|[[zε(s)]]|pm×dds forcing the

sequence (zε)ε>0 of piecewise constant functions to converge to a Sobolev function, and
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4.2 Compactness result for piecewise constant functions

second, the lifted function RBO
ε,0 zε to find a gradient in the limit. Thereby a further issue

arises, namely, the identification and interpretation of the penalty term after passing
to the limit. Clearly, due to our replacement this problem is solved. Since the proof
of our Theorem 4.5 is based on that of Theorem 5.2 from [8] we need the estimate of
Lemma 4.6 and the identity of Lemma 4.7 to adapt the proof from [8].

Lemma 4.6. For z ∈ KεΛ(Ω)m let Dz be the measure representing its distributional
derivative and let |Dz|(Ω) denote the total variation of Dz. Then, there exist constants
C1 > 0 and C2 > 0 such that for any p ∈ [1,∞) and for every ε > 0 it holds

|Dz|(Ω) ≤ C1

(∫
Γεint

ε1−p|[[z(s)]]|pm×dds
) 1
p

≤ C1C2‖R ε
2
z‖Lp(Ω+

ε )m×d ,

where Γεint := Ω ∩ ⋃λ∈Λ ε(λ+∂Y ) and [[·]] is defined in (4.5).

Proof. The proof of the first inequality is a straight forward generalization of Theo-
rem 3.26 from [48] to the case of p 6= 2 and can be found in [8, Lemma 2] as a brief
sketch, for example.

The second inequality results from the special structure of the discrete gradient. For a
better understanding the calculations are split up such that the left hand side of every
estimate is the same (starting point) and the only changes are on the right hand side.
First of all (4.9) below is valid since every face of the cell ε(λ+Y ) is taken twice when
summing up on the right hand side:∫

Γεint

ε1−p|[[z(s)]]|pm×dds = 1
2

∑
λ∈Λ+

ε

∫
ε(λ+∂Y )

ε1−p|[[zex(s)]]|pm×d1Ω(s)ds (4.9)

Since the integrand of the right hand side contains the characteristic function 1Ω, the
function z ∈ KεΛ(Ω)m can be replaced by any extension z ∈ Lp(Ω+

ε ) satisfying z|Ω = z.
We choose z := (Vεz) ∈ KεΛ(Ω+

ε )m; see (4.1). Since R ε
2
z is a piecewise constant function

with respect to the lattice ε
2Λ we now artificially insert this finer lattice to the right

hand side of (4.9) by decomposing every cell ε(λ+Y ) ⊂ Ω+
ε into 2d equal parts in the

following way: For fixed λ ∈ Λ+
ε there are 2d elements λ1, λ2, . . . , λ2d of Λ such that

ε(λ+Y ) =
2d⋃
j=1

ε
2(λj+Y ). (4.10)

Actually, on the right hand side of (4.11) below the domain of integration has increased
in comparison to the right hand side of (4.9). However, since z ∈ KεΛ(Ω+

ε )m is constant
on every cell ε(λ+Y ) ⊂ Ω+

ε we have [[z(s)]] = 0 for s ∈ ε
2(λj+∂Y )\ε(λ+∂Y ) and every

j = 1, 2, . . . , 2d. That is why the following equality is valid, since only zeros are added:

∫
Γεint

ε1−p|[[z(s)]]|pm×dds = 1
2

∑
λ∈Λ+

ε

2d∑
j=1

ε1−p
∫
ε
2 (λj+∂Y )

|[[z(s)]]|pm×d1Ω(s)ds. (4.11)
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4 Discrete gradients of piecewise constant functions

To keep the following calculations as clear as possible, without loss of generality we are
now going to assume |bi| = 1 for all i ∈ {1, 2, . . . , d}. Roughly spoken, we now first
of all increase the domain of integration on the right hand side of (4.11) by replacing
1Ω by 1cl(Ω+

ε ). Then we calculate the integral by splitting ε
2(λj+∂Y ) into its 2d faces

of ε
2(λj+Y ), afterwards. For s ∈ ∂Ω+

ε the jump term [[z(s)]] is not well-defined since
supp(z) ⊂ cl(Ω+

ε ). That is why we set [[z(·)]] := 0 on ∂Ω+
ε . Since the integrand is constant

on every face, integrating results in the product of this constant value and ( ε2)d−1, which
is just the volume of one face. Moreover, the jump term of z is replaced by its definition
(see (4.5)), where z+ = z( ε2λj), z

− = z( ε2(λj+bi)), and n+ = −n− = ni are used for one
face of ε

2(λj+Y ) as well as z+ = z( ε2λj), z
− = z( ε2(λj−bi)), and n+ = −n− = −ni for

the opposite one. Applying all these changes to the right hand side of (4.11) yields

∫
Γεint

ε1−p|[[z(s)]]|pm×dds ≤ 1
2

2d∑
j=1,
λ∈Λ+

ε

ε1−p
d∑
i=1

( ε2)d−1
∣∣∣∣[z( ε2λj)− z( ε2(λj+bi)

)]
⊗ni

∣∣∣∣p
m×d

δ
(λ)
i,j

(4.12)

+ ( ε2)d−1
∣∣∣∣[z( ε2(λj−bi)

)
− z

(
ε
2λj

)]
⊗ni

∣∣∣∣p
m×d

δ̃
(λ)
i,j ,

where

δ
(λ)
i,j :=

{
0 if ε

2(λj+bi) 6∈ Ω+
ε ,

1 otherwise,
δ̃

(λ)
i,j :=

{
0 if ε

2(λj−bi) 6∈ Ω+
ε ,

1 otherwise.

As already mentioned, in line (4.11) there are added a lot of zeros in comparison to
(4.9), which results in the following: For fixed λ ∈ Λ+

ε and λj chosen as in (4.10) we
have ε

2λj ∈ ε(λ+Y ) for all j = 1, . . . , 2d. Moreover, for any i ∈ {1, . . . , d} and all
j ∈ {1, . . . , 2d} we either we have ε

2(λj+bi) ∈ ε(λ+Y ) or ε
2(λj−bi) ∈ ε(λ+Y ), which

either gives us z( ε2(λj+bi)) = z( ε2λj) or results in z( ε2(λj−bi)) = z( ε2λj). Thus, always
one of the terms on the right hand side of (4.12) is zero and the other can be replaced

in the following way (δ̂
(λ)
i,j := δ

(λ)
i,j δ̃

(λ)
i,j ):

∫
Γεint

ε1−p|[[z(s)]]|pm×dds ≤
2d∑
j=1,
λ∈Λ+

ε

εd

2d

d∑
i=1

∣∣∣∣1ε
[
z
(
ε
2(λj−bi)

)
−z

(
ε
2(λj+bi)

)]
⊗ni

∣∣∣∣p
m×d

δ̂
(λ)
i,j . (4.13)

The next step is interchanging the sum
∑d
i=1 and the matrix norm | · |m×d on the right

hand side of (4.13). Therefore, we set f
λj
ε (bi) := 1

ε
[z( ε2(λj−bi))−z( ε2(λj+bi))] to shorten

notation and observe that for all i, k = 1, . . . , d according to the relation (4.2) of the

vectors ni and bk we have (fλjε (bi) ⊗ ni)bk = f
λj
ε (bi)δik (see also Remark 4.2). The

interchange is based on the following trivial calculation:

d∑
i,k=1

∣∣∣∣(fλjε (bi)⊗ ni
)
bk

∣∣∣∣p
m

=
d∑

i,k=1

∣∣∣∣fλjε (bi)δik
∣∣∣∣p
m

=
d∑

k=1

∣∣∣∣fλjε (bk)
∣∣∣∣p
m

=
d∑

k=1

∣∣∣∣ d∑
i=1

(fλjε (bi)δik)
∣∣∣∣p
m

=
d∑

k=1

∣∣∣∣( d∑
i=1

(fλjε (bi)⊗ ni)
)
bk

∣∣∣∣p
m

(4.14)
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4.2 Compactness result for piecewise constant functions

For A ∈ Rm×d and the basis {b1, . . . , bd} of Rd let | · |{b1,...,bd} denote the matrix norm
defined by |A|p{b1,...,bd} := ∑d

k=1 |Abk|pm. Then the interchange is performed as follows:

d∑
i=1

∣∣∣∣fλjε (bi)⊗ ni
∣∣∣∣p
m×d
≤ C

d∑
i=1

∣∣∣∣fλjε (bi)⊗ ni
∣∣∣∣p
{b1,...,bd}

= C
d∑

i,k=1

∣∣∣∣(fλjε (bi)⊗ ni
)
bk

∣∣∣∣p
m

(4.14)= C
d∑

k=1

∣∣∣∣( d∑
i=1

(fλjε (bi)⊗ ni)
)
bk

∣∣∣∣p
m

= C

∣∣∣∣ d∑
i=1

(fλjε (bi)⊗ ni)
∣∣∣∣p
{b1,...,bd}

≤ ĈC
∣∣∣∣ d∑
i=1

fλjε (bi)⊗ ni
∣∣∣∣p
m×d

,

where we exploited the norm equivalence in dimension md two times. For Cp
2 := ĈC

this estimate turns the right hand side of (4.13) into

∫
Γεint

ε1−p|[[z(s)]]|pm×dds ≤ Cp
2

2d∑
j=1,
λ∈Λ+

ε

εd

2d

∣∣∣∣∣
d∑
i=1

1
ε

[
z
(
ε
2(λj−bi)

)
− z

(
ε
2(λj+bi)

)]
⊗ ni

∣∣∣∣∣
p

m×d
δ̂

(λ)
i,j .

Replacing εd

2d by the integral over ε
2(λj+Y ) we finally end up with∫

Γεint

ε1−p|[[z(s)]]|pm×dds

≤ Cp
2

2d∑
j=1,
λ∈Λ+

ε

∫
ε
2 (λj+Y )

∣∣∣∣∣
d∑
i=1

1
ε

[
z
(
ε
2(λj−bi)

)
− z

(
ε
2(λj+bi)

)]
⊗ ni

∣∣∣∣∣
p

m×d
δ̂

(λ)
i,j dx

= Cp
2

2d∑
j=1,
λ∈Λ+

ε

∫
ε
2 (λj+Y )

∣∣∣∣∣
d∑
i=1

δ̂
(λ)
i,j

1
ε

[
z
(
x− ε

2bi
)
− z

(
x+ ε

2bi
)]
⊗ ni

∣∣∣∣∣
p

m×d
dx

= Cp
2

∥∥∥∥ d∑
i=1

R̃
(i)
ε
2

(z)
∥∥∥∥p

Lp(Ω+
ε )m×d

,

where we used z(·± ε
2bi) ≡ z( ε2λj±

ε
2bi) on ε

2(λj+Y ) ⊂ Ω+
ε , which is valid for all functions

belonging to KεΛ(Ω+
ε )m due to their special structure. Replacing z by Vεz concludes the

proof.

Since for z ∈ KεΛ(Ω)m ⊂W1,p
εΛ (Ω) the proof of compactness Theorem 5.2 in [8] relies on

the definition of RBO
ε,0 z ∈ K ε

2 Λ(Ω)m×d by the identity (4.4) the next lemma states that

the discrete gradient R ε
2
z ∈ K ε

2 Λ(Ω+
ε )m×d of z fulfills a similar relation.

Lemma 4.7. Let R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d be given by Definition 4.1. Then for

ε > 0, for all z ∈ KεΛ(Ω)m, and every ϕ ∈ KεΛ(Ω−ε )m×d it holds∫
Ω

〈
R ε

2
z(x), ϕex(x)

〉
m×d

dx = −
∫

Γεint

〈
[[z(s)]], {{ϕex(s)}}

〉
m×d

ds, (4.15)

where Γεint := Ω ∩ ⋃λ∈Λ ε(λ+∂Y ) and [[·]] as well as {{·}} are defined in (4.5).
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4 Discrete gradients of piecewise constant functions

Remark 4.8. Observe that obviously RBO
ε,0 z ∈ K ε

2 Λ(Ω)m×d satisfies relation (4.15) for

all test-functions ϕ ∈ KεΛ(Ω−ε )m×d and hence this relation does not uniquely define
the discrete gradient R ε

2
: KεΛ(Ω)m → K ε

2 Λ(Ω+
ε )m×d in contrast to the lifting operator

RBO
ε,0 : W1,p

εΛ (Ω)m → S0
εΛ(Ω)m×d defined by (4.4).

Proof. We start with rearranging the right hand side of (4.15). Since we are only testing
with functions ϕ ∈ KεΛ(Ω−ε )m×d, analogously to the proof of Lemma 4.6 the function
z ∈ KεΛ(Ω)m can be replaced by the extension z := (Vεz) ∈ KεΛ(Ω+

ε )m.

Let λ ∈ Λ and s ∈ ε(λ+∂Y ). Then {{ϕex(s)}} 6= 0 implies s ∈ Γεint, which is why
the domain of integration can be increased to ∪λ∈Λε(λ+∂Y ). Therefore, z ∈ KεΛ(Ω+

ε )m
needs to be replaced by its extension zex ∈ KεΛ(Rd)m extending it with 0 to Rd. Note
that according to {{ϕex(s)}} ≡ 0 for s ∈ ∂Ω+

ε the additional jump [[zex(s)]] 6= 0 does not
play any role in the following calculations. On the right hand side of (4.16) below, every
face of a cell ε(λ+Y ) is taken twice when summing up which is why this is an equality:∫

Γεint

〈
[[z(s)]], {{ϕex(s)}}

〉
m×d

ds = 1
2

∑
λ∈Λ

∫
ε(λ+∂Y )

〈
[[zex(s)]], {{ϕex(s)}}

〉
m×d

ds. (4.16)

Analog to the proof of Lemma 4.6 we calculate the integral which gives the factor
εd−1. Note that we again assume |bi| = 1 for all i ∈ {1, 2, . . . , d}. Furthermore, for
fixed λ ∈ Λ the jump term of zex and the mean value term of ϕex are replaced by(
zex(ελ)− zex(ε(λ+bi))

)
⊗ni and 1

2

(
ϕex(ελ) +ϕex(ε(λ+bi))

)
for one face of ε(λ+Y ) and

by
(
zex(ελ)−zex(ε(λ−bi))

)
⊗ (−ni) and 1

2

(
ϕex(ελ)+ϕex(ε(λ−bi))

)
for the opposite one:∫

Γεint

〈
[[z(s)]], {{ϕex(s)}}

〉
m×d

ds

= 1
2

∑
λ∈Λ

εd−1
d∑
i=1

[〈(
zex(ελ)−zex(ε(λ+bi))

)
⊗ni, 1

2

(
ϕex(ελ)+ϕex(ε(λ+bi))

)〉
m×d

+
〈(
zex(ε(λ−bi))−zex(ελ)

)
⊗ni, 1

2

(
ϕex(ε(λ−bi))+ϕex(ελ)

)〉
m×d

]
. (4.17)

Now, the sums are interchanged and the translation λ∗ = λ−bi is applied to line (4.17)
for every i = 1, . . . , d, such that we end up with∫

Γεint

〈
[[z(s)]], {{ϕex(s)}}

〉
m×d

ds

= εd−1

2

d∑
i=1

∑
λ∈Λ

〈(
zex(ελ)− zex(ε(λ+bi))

)
⊗ ni, ϕex(ελ) + ϕex(ε(λ+bi))

〉
m×d

. (4.18)

For rearranging the left hand side of (4.15) we introduce Ybi = {y ∈ Y | y−1
2bi ∈ Y }

(Y = [0, 1)d ⇒ Ye1 = [1
2 , 1)×[0, 1)d−1) and f (i)

ε (x) := 1
ε

(
z(x+ ε

2bi) − z(x− ε
2bi)

)
⊗ ni for

z := Vε(z) ∈ KεΛ(Ω+
ε )m to shorten notation. Then due to Definition 4.1 it holds∫

Ω

〈
R ε

2
z(x), ϕex(x)

〉
m×d

dx =
∑
λ∈Λ−ε

∫
ε(λ+Y )

d∑
i=1

〈
f (i)
ε (x), ϕ(ελ)

〉
m×d

dx, (4.19)
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4.2 Compactness result for piecewise constant functions

where for λ ∈ Λ−ε we already used ϕ ≡ ϕ(ελ) on ε(λ+Y ). Observing that

f (i)
ε (x) =


1
ε

(
z(ε(λ+bi))− z(ελ)

)
⊗ ni if x ∈ ε(λ+Ybi),

1
ε

(
z(ελ)− z(ε(λ−bi))

)
⊗ ni if x ∈ ε(λ+Y \Ybi)

we are able to reformulate the right hand side of (4.19) by interchanging integration and
summation in the following way:∫

Ω

〈
R ε

2
z(x), ϕex(x)

〉
m×d

dx

=
∑
λ∈Λ−ε

d∑
i=1

(∫
ε(λ+Ybi )

〈
f (i)
ε (x), ϕ(ελ)

〉
m×d

dx+
∫
ε(λ+Y \Ybi )

〈
f (i)
ε (x), ϕ(ελ)

〉
m×d

dx
)

=
∑
λ∈Λ−ε

d∑
i=1

[
1
2ε
d
〈

1
ε

(
z(ε(λ+bi))− z(ελ)

)
⊗ ni, ϕ(ελ)

〉
m×d

(4.20a)

+ 1
2ε
d
〈

1
ε

(
z(ελ)− z(ε(λ−bi))

)
⊗ ni, ϕ(ελ)

〉
m×d

]
. (4.20b)

Here, we already used that the function f (i)
ε is constant on the domain of integration.

Since ϕex(ελ) = 0 for all λ ∈ Λ\Λ−ε , the first sum in (4.20) can be replaced by the sum
of λ ∈ Λ. Afterwards, again the sums are interchanged and the translation λ∗ = λ−bi is
applied to line (4.20b) for every i = 1, . . . , d, such that we end up with∫

Ω

〈
R ε

2
z(x), ϕex(x)

〉
m×d

dx

= εd−1

2

d∑
i=1

∑
λ∈Λ

〈(
zex(ε(λ+bi))− zex(ελ)

)
⊗ ni, ϕex(ελ) + ϕex(ε(λ+bi))

〉
m×d

. (4.21)

Comparing (4.21) and (4.18) we find that (4.15) is valid.

Now we are in the position to prove Theorem 4.5.

Proof of Theorem 4.5. Here, we mainly follow the steps of the proof of Theorem 5.2
of [8] and explain the main differences. As already mentioned in [8] the distributional
derivative Dv of a broken Sobolev function v ∈W1,p

εΛ (Ω)m is given by

〈Dv, ψ〉 =
∫

Ω
〈∇v, ψ〉m×ddx−

∫
Γεint

〈[[v]], ψ〉m×dds ∀ψ ∈ C∞c (Ω)m×d. (4.22)

This identity can be seen by using integration by parts on each cell ε(λ+Y ).
Now, let (zε)ε>0 be given satisfying zε ∈ KεΛ(Ω)m for all ε > 0 and condition (4.8) of
Theorem 4.5. Since Lp is reflexive (p ∈ (1,∞)), there exists a subsequence and limit
elements z0 ∈ Lp(Ω)m, Z0 ∈ Lp(Ω)m×d such that zε′ ⇀ z0 in Lp(Ω)m and R ε′

2
zε′|Ω ⇀ Z0 in

Lp(Ω)m×d for some subsequence (ε′)ε′>0 of (ε)ε>0. The aim is to show that z0 ∈W1,p(Ω)m
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4 Discrete gradients of piecewise constant functions

with Dz0 = Z0. Using (4.22) for zε ∈ KεΛ(Ω)m we find with ψ ∈ C∞c (Ω)m×d arbitrary
but fixed

〈Dzε, ψ〉 = −
∫

Γεint

〈[[zε]], ψ〉m×dds. (4.23)

Choosing ε0 > 0 so small such that supp(ψ) ⊂ cl(Ω−ε0) we are able to find a sequence
(ϕε)(0<ε<ε0) with ϕε ∈ KεΛ(Ω−ε )m×d such that ‖ψ−ϕex

ε ‖L∞(Ω)m×d → 0 for ε → 0. By
adding and subtracting ϕex

ε we find with (4.23)

〈Dzε, ψ〉

=−
∫

Γεint

〈[[zε]], {{ψ−ϕex
ε }}〉m×dds−

∫
Γεint

〈[[zε]], {{ϕex
ε }}〉m×dds

=−
∫

Γεint

〈[[zε]], {{ψ−ϕex
ε }}〉m×dds+

∫
Ω
〈R ε

2
zε, ϕ

ex
ε 〉m×ddx

=−
∫

Γεint

〈[[zε]], {{ψ−ϕex
ε }}〉m×dds+

∫
Ω
〈R ε

2
zε, ϕ

ex
ε −ψ〉m×ddx+

∫
Ω
〈R ε

2
zε, ψ〉m×ddx, (4.24)

where we applied Lemma 4.7 in the third line. As we will see below, the first two terms
of (4.24) are bounded by C‖ψ−ϕex

ε ‖L∞(Ω)m×d and hence tend to 0 as ε→ 0. Therefore,
since R ε′

2
zε′|Ω ⇀ Z0 in Lp(Ω)m×d, we end up with

lim
ε′→0
〈Dzε′ , ψ〉 =

∫
Ω
〈Z0, ψ〉m×dds ∀ψ ∈ C∞c (Ω)m×d. (4.25)

To show the boundedness of the first two terms of (4.24) we use Hölder’s inequality to
conclude with Lemma 4.6∣∣∣∣− ∫

Γεint

〈[[zε]], {{ψ−ϕex
ε }}〉m×dds

∣∣∣∣ ≤ ‖[[zε]]‖Lp(Γεint)m×d‖{{ψ−ϕ
ex
ε }}‖Lp′ (Γεint)m×d

≤ ε
p−1
p ‖R ε

2
zε‖Lp(Ω+

ε )m×d‖ψ−ϕ
ex
ε ‖L∞(Ω)m×dµd−1(Γεint)

1
p′

≤ ‖R ε
2
zε‖Lp(Ω+

ε )m×d‖ψ−ϕ
ex
ε ‖L∞(Ω)m×d(µd(Ω+

ε )d)
1
p′

and ∣∣∣∣ ∫
Ω
〈R ε

2
zε, ϕ

ex
ε −ψ〉m×ddx

∣∣∣∣ ≤ ‖R ε
2
zε‖Lp(Ω+

ε )m×d‖ϕ
ex
ε −ψ‖Lp′ (Ω)m×d

≤ ‖R ε
2
zε‖Lp(Ω+

ε )m×d‖ϕ
ex
ε −ψ‖L∞(Ω)m×dµd(Ω)

1
p′ .

Here, we already used µd−1(Γεint) ≤ µd(Ω)dε−1, which is valid since µd−1(Γεint) is bounded
by the product of the number of cells contained in Ω+

ε , which is µd(Ω+
ε )ε−d, and the

volume of the part of Γεint contained in one cell, which is dεd−1. Thus, the assumed
uniform bound of the term ‖R ε

2
zε‖Lp(Ω+

ε )m×d yields the result.

On the other hand using the definition of the distributional derivative of the function
zε′ ∈ KεΛ(Ω)m together with zε′ ⇀ z0 in Lp(Ω)m, we have for all ψ ∈ C∞c (Ω)m×d

lim
ε′→0
〈Dzε′ , ψ〉 = lim

ε′→0
−
∫

Ω
〈zε′ , divψ〉mdx = −

∫
Ω
〈z0, divψ〉mdx. (4.26)
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4.3 Recovery sequence of piecewise constant functions for the space W1,p

Combining (4.25) and (4.26) we obtain∫
Ω
〈Z0, ψ〉m×ddx = −

∫
Ω
〈z0, divψ〉mdx ∀ψ ∈ C∞c (Ω)m×d,

which gives us z0 ∈W1,p(Ω)m and Dz0 = Z0.

Finally, we use the fact that zε′
∗
⇀ z0 in BV(Ω)m implies zε′ → z0 in L1(Ω)m in order

to conclude zε′ → z0 in Lq(Ω)m for every q ∈ [1, p∗). Thereby we use the following
interpolation inequality obtained by Hölder’s inequality for every ζ ∈ (0, 1):

‖zε−z0‖Lq(Ω)m ≤ ‖zε−z0‖1−ζ
Lp∗ (Ω)m‖zε−z0‖ζL1(Ω)m ,

and the term ‖zε−z0‖Lp∗ (Ω)m is bounded due to the following Sobolev-Poincare inequality
proved in Theorem 4.1 of [8] and Lemma 4.6:

‖zε‖Lp∗ (Ω)m ≤ CS

(
‖zε‖L1(Ω)m +

( ∫
Γεint

ε1−p|[[zε(s)]]|pm×dds
) 1
p
)
.

Thus, the proof of Theorem 4.5 is concluded.

4.3 Recovery sequence of piecewise constant functions
for the Sobolev space W1,p

In this section for an arbitrary Sobolev function a strongly in Lp converging sequence of
piecewise constant functions with a lattice spacing tending to zero is constructed. This
construction is done such that the associated sequence of discrete gradients converges
strongly in Lp to the gradient of the Sobolev function.

Theorem 4.9 (Approximation result). Let R ε
2

: KεΛ(Ω)m → K ε
2 Λ(Ω+

ε )m×d be given by
Definition 4.1. Then for every function z0 ∈ W1,p(Ω)m there exists a sequence (zε)ε>0
satisfying zε ∈ KεΛ(Ω)m and

lim
ε→0

(
‖z0−zε‖Lp(Ω)m + ‖(∇z0)ex−R ε

2
zε‖Lp(Ω+

ε )m×d
)

= 0. (4.27)

Remark 4.10. Observe that Theorem 4.9 implies R ε
2
zε|Ω → ∇z0 in Lp(Ω)m×d due to

the trivial inequality ‖∇z0−R ε
2
zε‖Lp(Ω)m×d ≤ ‖(∇z0)ex−R ε

2
zε‖Lp(Ω+

ε )m×d .

To construct a sequence of piecewise constant functions fulfilling Theorem 4.9 a projector
to piecewise constant functions is introduced.

Definition 4.11 (Projector to piecewise constant functions). Let ε > 0 and p ∈ [1,∞).
The projector Pε : Lp(Rd)→ KεΛ(Rd) to piecewise constant functions is defined via

Pεv(x) := −
∫
Nε(x)+εY

v(x̂)dx̂,

where −
∫
A g(a)da := 1

µd(A)
∫
A g(a)da denotes the average of the function g over the set A

with µd(A) > 0 and Nε : Rd → εΛ is defined by (3.1).
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4 Discrete gradients of piecewise constant functions

Remark 4.12. It holds P 2
ε = Pε and for all v ∈ Lp(Ω) we have

(a) ‖Pεvex‖Lp(ε(λ+Y )) ≤ ‖vex‖Lp(ε(λ+Y )) for all λ ∈ Λ.

(b) (Pεvex)|Ω → v in Lp(Ω) for ε→ 0.

Proof of Theorem 4.9. Choose ∆ > 0 arbitrary but fixed. Then there exists ε0 > 0 such
that for all ε ∈ (0, ε0) we have Ω+

ε ⊂ neigh∆(Ω). Moreover, for given z0 ∈W1,p(Ω)m there
exists an extension z0 ∈W1,p

0 (neigh∆(Ω))m with z0|Ω = z0 according to Theorem A 6.12
in [3]. For ε ∈ (0, ε0) we define zε := (Pεzex

0 )|Ω ∈ KεΛ(Ω)m and prove that the sequence
(zε)ε∈(0,ε0) satisfies (4.27). Note that here the application of Pε has to be understood
component-wise.

1. For proving zε → z0 in Lp(Ω)m we start by decomposing Ω into Ω−ε and Ω\Ω−ε ,
which allows us to exploit (Pεzex

0 )|Ω−ε = (Pεzex
0 )|Ω−ε , since z0|Ω−ε = z0|Ω−ε by definition.

Afterwards we increase the domain of integration and apply the triangle inequality. Then
again the domain of integration is increased and at last condition (a) of Remark 4.12 is
used:

‖z0−Pεzex
0 ‖

p
Lp(Ω)m = ‖z0−Pεzex

0 ‖
p

Lp(Ω−ε )m + ‖z0−Pεzex
0 ‖

p

Lp(Ω\Ω−ε )m

≤ ‖z0−Pεzex
0 ‖

p
Lp(Ω)m + 2p−1‖z0‖pLp(Ω\Ω−ε )m + 2p−1‖Pεzex

0 ‖
p

Lp(Ω+
ε \Ω−ε )m

≤ ‖z0−Pεzex
0 ‖

p
Lp(Ω)m + 2p−1‖z0‖pLp(Ω\Ω−ε )m + 2p−1‖z0‖pLp(Ω+

ε \Ω−ε )m .

According to condition (b) of Remark 4.12 the first term converges to zero for ε → 0.
Since 0 ≤ µd(Ω\Ω−ε ) ≤ µd(Ω+

ε \Ω−ε ) → 0 due to (2.17) the last two terms disappear for
ε→ 0 and zε → z0 in Lp(Ω)m is verified.

2. Since {b1, b2, . . . , bd} is a basis of Rd, proving limε→0 ‖(∇z0)exbi−(R ε
2
zε)bi‖Lp(Ω+

ε )m = 0
for every i ∈ {1, . . . , d} implies the desired result. Thereto, let i ∈ {1, . . . , d} be fixed.
In the following calculations we start by adding and subtracting (Pε(∇z0)ex)bi to apply
the triangle inequality.

‖(∇z0)exbi−(R ε
2
zε)bi‖Lp(Ω+

ε )m

≤ ‖(∇z0)exbi−(Pε(∇z0)ex)bi‖Lp(Ω+
ε )m + ‖(Pε(∇z0)ex)bi−(R ε

2
zε)bi‖Lp(Ω+

ε )m

Then analogously to step 1 the first term tends to zero when ε→ 0. It remains to prove
that the second term converges to zero as well. As mentioned in Remark 4.2 we have
(R ε

2
zε)bi = (R̃(i)

ε
2

(Vεzε))bi on Ω+
ε . Hence, by plugging the identity Vεzε = [Pεzex

0 ]|Ω+
ε

into

(4.3) the second term can be transformed in the following way:

‖(Pε(∇z0)ex)bi−(R ε
2
zε)bi‖pLp(Ω+

ε )m

= ‖(Pε(∇z0)ex)bi−(R̃(i)
ε
2

([Pεzex
0 ]|Ω+

ε
))bi‖pLp(Ω+

ε )m

= ‖(Pε(∇z0)ex)bi−1
ε

(
Pεz

ex
0 (·+ ε

2bi)−Pεz
ex
0 (· − ε

2bi)
)
‖pLp(Aε)m (4.28a)

+ ‖(Pε(∇z0)ex)bi‖pLp(Bε)m , (4.28b)
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4.3 Recovery sequence of piecewise constant functions for the space W1,p

where, Aε := {x ∈ Ω+
ε | (x+ ε

2bi) ∈ Ω+
ε and (x− ε

2bi) ∈ Ω+
ε } and Bε := Ω+

ε \Aε for fixed
i ∈ {1, . . . , d}. Since Bε ⊂ Ω+

ε \Ω−ε , the term in line (4.28b) is bounded. Moreover,

‖(Pε(∇z0)ex)bi‖Lp(Ω+
ε \Ω−ε )m ≤ ‖(∇z0)bi‖Lp(Ω+

ε \Ω−ε )m
ε→0−→ 0,

where again condition (a) of Remark 4.12 and µd(Ω+
ε \Ω−ε ) → 0 for ε → 0 is used.

Hence, it remains to prove that the term of line (4.28a) converges to zero. Therefore,
this term can be estimated by (i) increasing the domain of integration from Aε to Ω+

ε ,
(ii) exploiting condition (a) of Remark 4.12, and (iii) replacing 1

ε
[z0(x+ ε

2bi)−z0(x− ε
2bi)]

by 1
2
∫ 1
−1∇z0(x+ ε

2bit)bidt in the following way:

‖(Pε(∇z0)ex)bi−1
ε

(
Pεz

ex
0 (·+ ε

2bi)−Pεz
ex
0 (· − ε

2bi)
)
‖Lp(Aε)m

≤ ‖(Pε(∇z0)ex)bi−1
ε

(
Pεz

ex
0 (·+ ε

2bi)−Pεz
ex
0 (· − ε

2bi)
)
‖Lp(Ω+

ε )m

≤ ‖(∇z0)bi−1
ε

(
z0(·+ ε

2bi)−z0(· − ε
2bi)

)
‖Lp(Ω+

ε )m

= ‖(∇z0)bi−1
2
∫ 1
−1

(
∇z0(·+ ε

2bit)
)
bidt‖Lp(Ω+

ε )m . (4.29)

Observe that this estimate holds for all parameter ε ∈ (0, ε0) small enough such that
from x ∈ Ω+

ε it follows x+ ε
2bi ∈ neigh∆(Ω) and x− ε

2bi ∈ neigh∆(Ω). By assuming
the function z0 to be an element of the space C∞c (neigh∆(Ω))m, it is easy to prove
that the term in line (4.29) converges to zero. Then, by density, this also holds for
z0 ∈ W1,p

0 (neigh∆(Ω))m which proves that the term in line (4.28a) converges to zero.
This overall shows limε→0 ‖(∇z0)exbi−(R ε

2
zε)bi‖Lp(Ω+

ε )m = 0 for every i ∈ {1, . . . , d} and
the proof is concluded.
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5 Rate-independent systems and their
energetic formulation

In this chapter the energetic formulation for rate-independent systems, introduced in
[47, 59], is presented. Rate-independence means that the system’s reaction on external
loadings is independent of their velocities. The energetic formulation is a functional
based description of rate-independent systems and in contrast to subdiffferential formu-
lations or a description by variational inequalities it does not ask for differentiability
of the underlying functionals and allows for solutions which are not continuous. More-
over, this theoretical framework is suitable for the description of various physical effects
(for instance, plasticity, shape memory effects, or ferroelectric effects) and there already
exists a wide theoretical basis; see [54, 59, 60], for instance. Moreover, in the case of
parameter dependent Problems, methods of the calculus of variations (in particular Γ-
convergence techniques) can by applied; see [56]. In the following sections this theoretical
basis is presented and a sufficient criterion guarantying the system’s rate independence
is discussed.

5.1 Definition of rate-independent systems

In many physical and mechanical systems the interesting time scales are much longer
than the intrinsic time scales. Asymptotically, these systems lead to rate-independent
limit problems. ForQ being a Banach space and denoting the state space with associated
dual space Q∗ the determining attribute of a rate-independent system is the missing of
an own dynamic, which means that it only responds to changes of the external loading
` ∈ C1([t1, t2];Q∗) and the initial value q0 ∈ Q. In fact, introducing the system via an
input-output-operator

H[t1,t2] : Q×C1([t1, t2];Q∗)→ B([t1, t2];Q), (q0, `) 7→ q,

rate-independent systems are characterized by condition (5.1), below. Here, B([t1, t2];Q)
denotes the space of all measurable and bounded functions q̃ : [t1, t2] → Q, which are
defined everywhere on [t1, t2].

Definition 5.1 (Rate-independent system). For ` ∈ C1([t1, t2];Q∗) and t1 < t2 a sys-
tem described by H[t1,t2] is called rate-independent if for all t∗1 < t∗2 and every strictly
monotone re-parametrization θ ∈ C1([t∗1, t∗2]; [t1, t2]) with θ(t∗1) = t1 and θ(t∗2) = t2 the
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5 Rate-independent systems and their energetic formulation

following relation is satisfied:

H[t∗1,t∗2](q0, ` ◦ θ) =
[
H[t1,t2](q0, `)

]
◦ θ. (5.1)

5.2 The energetic formulation and an abstract existence
result

The energetic formulation represents an evolution law for rate-independent systems
which is based on the energy functional and dissipation distance introduced in the fol-
lowing. For the applications we have in mind, the state space Q is the product space
of two weakly closed subspaces U and Z of reflexive Banach spaces. The amount of
the system’s total energy produced by components of U is elastic and non-dissipative,
whereas the dissipative amount of energy in the system is related to the internal variable
being an element of Z.

The system’s stored energy is modeled by an energy functional E : [0, T ]×Q → R∞
(R∞ := R∪{+∞}) depending on the (process) time trough the time dependent loading
` ∈ C1([0, T ];U∗). To model the dissipated energy of the system, a dissipation potential
R : Z×Z → [0,∞] that typically depends only on the internal variable and its velocity
is introduced. The main assumptions on this dissipation potential are given by the
following condition:

For all z ∈ Z the functional R(z, ·) : Z → [0,∞] is convex, lower

semi-continuous, positive 1-homogeneous, and fulfills R(z, 0) = 0.
(5.2)

Note that the positive homogeneity of degree 1 is the crucial condition to ensure the rate
independence of the system given by the energetic formulation defined below. Assuming
R : Z×Z → [0,∞] to satisfy condition (5.1), the dissipated energy of the system is
modeled by the dissipation distance D : Z×Z → [0,∞] defined by

D(z1, z2) := inf
{ ∫ 1

0
R(ẑ(s), ˙̂z(s))ds | ẑ ∈W1,1

z1,z2([0, 1];Z)
}
, (5.3)

where

W1,1
z1,z2([t1, t2];Z) := {ẑ ∈W1,1([t1, t2];Z) such that ẑ(t1) = z1 and ẑ(t2) = z2}. (5.4)

Remark 5.2. In the case of a state independent dissipation potential R : Z → [0,∞]
fulfilling condition (5.2) the dissipation distance D : Z×Z → [0,∞] defined by (5.3)
for all z1, z2 ∈ Z satisfies D(z1, z2) ≥ R(z2−z1) according to Jensen’s inequality. The
opposite inequality results by integrating the dissipation potential along the explicitly given
curve ẑ ∈W1,1

z1,z2([0, 1];Z) defined by ẑ(s) := 1
2(z2−z1)s2 + 1

2(z2−z1)s+ z1. Obviously, it

holds ˙̂z(s) = (z2−z1)s+ 1
2(z2−z1) and

D(z1, z2) ≤
∫ 1

0
R( ˙̂z(s))ds

s=t− 1
2=
∫ 3

2

1
2

R((z2−z1)t)dt = R(z2−z1)
∫ 3

2

1
2

tdt = R(z2−z1),
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5.2 The energetic formulation and an abstract existence result

where in the second last equality the 1-homogeneity of the potential is exploited. All
together this shows that in this case the dissipation distance D : Z×Z → [0,∞] is given
by D(z1, z2) = R(z2−z1).

Based on E : [0, T ]×Q → R∞ and D : Z×Z → [0,∞] we are interested in the so-called
energetic solution of the energetic formulation (S) and (E); see [54].

Definition 5.3 (Energetic solution and the function space BVD([0, T ];Z)). A process
(u, z) : [0, T ] → Q is called energetic solution of the system (Q, E ,D) to the initial
condition (u0, z0) ∈ Q, if (u(0), z(0)) = (u0, z0), if ∂tE(·, u(·), z(·)) ∈ L1((0, T )), if
E(t, u(t), z(t)) < ∞, and if the stability condition (S) and the energy balance (E) are
satisfied for all t ∈ [0, T ].

(S) E(t, u(t), z(t)) ≤ E(t, ũ, z̃) +D(z(t), z̃) for all (ũ, z̃) ∈ Q

(E) E(t, u(t), z(t)) + DissD(z; [0, t]) = E(0, u0, z0) +
∫ t

0
∂sE(s, u(s), z(s))ds

Here, DissD(z, [0, t]) := sup∑N
j=1D(z(tj−1), z(tj)), where for N ∈ N the supremum is

taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, t]. Thus, we set

BVD([0, T ];Z) :=
{
z : [0, T ]→ Z

∣∣∣DissD(z, [0, T ]) <∞
}
.

Observe that by this definition of the energetic solution (u, z) : [0, T ] → Q the initial
values (u0, z0) = (u(0), z(0)) ∈ Q have to be chosen such that they satisfy the stability
condition (S) at t = 0. Introducing the set of stable states S(t̃) at time t̃ ∈ [0, T ] via

S(t̃) := {(u, z) ∈ Q satisfying (S) for t = t̃ and E(t̃, u, z) <∞} (5.5)

the stability condition (S) is equivalently written as (u(t), z(t)) ∈ S(t) for all t ∈ [0, T ].
For E ∈ R let

SubE(t) := {(u, z) ∈ Q | E(t, u, z) ≤ E} (5.6)

denote the energy sublevel. Assuming E : [0, T ]×Q → R∞ and D : Z×Z → [0,∞] to
satisfy the following four conditions, guarantees the existence of an energetic solution as
stated in Theorem 5.5 below ([54] Theorem 3.4).

Compactness of the energy sublevels:

For all t ∈ [0, T ] and every E ∈ R the set SubE(t) is weakly compact. (5.7)

Uniform control of the power: ∃ c0, c1 > 0 ∀ (t̃, u, z) ∈ [0, T ]×Q with E(t̃, u, z)<∞:

E(·, u, z) ∈ C1([0, T ]) and |∂tE(t, u, z)| ≤ c1(c0 + E(t, u, z)) for all t ∈ [0, T ]. (5.8)

Quasi-distance:

∀ z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1=z2

and D(z1, z3) ≤ D(z1, z2) +D(z2, z3).
(5.9)
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5 Rate-independent systems and their energetic formulation

Semi-continuity:

D : Z×Z → [0,∞] is weakly lower semi-continuous. (5.10)

Remark 5.4. Note that these assumptions are solely on the energy functional and the
dissipation distance. However, to guarantee the rate independence of the system (Q, E ,D)
presented by the energetic formulation (S) and (E) we always assume the dissipation
distance D : Z×Z → [0,∞] to be given such that condition (5.1) is satisfied; see also
Proposition 5.6 below.

Theorem 5.5 (Abstract existence result; see Theorem 3.4 of [54]). Assume that U and
Z are weakly closed subsets of reflexive Banach spaces and set Q := U×Z. Let an energy
functional E : [0, T ]×Q → R∞ and a dissipation distance D : Z×Z → [0,∞] be given,
such that (Q, E ,D) satisfies the conditions (5.7)–(5.10). Furthermore, let the following
compatibility conditions hold: For every sequence (tk, uk, zk)k∈N with (uk, zk) ∈ S(tk) (see
(5.5)), tk → t in R and (uk, zk) ⇀ (u, z) in Q we have

∂tE(tk, uk, zk)→ ∂tE(t, u, z), (5.11)

(u, z) ∈ S(t). (5.12)

Then for each (u0, z0) ∈ S(0) there exists an energetic solution (u, z) : [0, T ] → Q for
(Q, E ,D) fulfilling (u(0), z(0)) = (u0, z0).

For a proof we refer to [54]; see Theorem 3.4. By presuming the existence of an energetic
solution of the energetic formulation (S) and (E) the following proposition states the rate
independence of the system (Q, E ,D). In addition, D : Z×Z → [0,∞] satisfies a triangle
inequality.

Proposition 5.6. Assume that the dissipation potential R : Z×Z → [0,∞] fulfills
condition (5.2) and let the dissipation distance D : Z×Z → [0,∞] be defined by (5.3).
If for W : Q → R∞ and ` ∈ C1([0, T ];U∗) the energy functional E : [0, T ]×Q → R∞ is
given via

E(t, u, z) := W (u, z)− 〈`(t), u〉, (5.13)

then the energetic formulation (S) and (E) models a rate-independent system (Q, E ,D)
and for all z1, z2, z3 ∈ Z the dissipation distance satisfies the following conditions:

D(z1, z1) = 0 and D(z1, z3) ≤ D(z1, z2) +D(z2, z3). (5.14)

Proof. 1. We start by proving condition (5.14). Let R : Z×Z → [0,∞] fulfill condi-
tion (5.2) and let D : Z×Z → [0,∞] be defined by (5.3). Furthermore, for arbitrary
z1, z2, z3 ∈ Z let two functions z ∈ W1,1

z1,z2([0, 1];Z) and z′ ∈ W1,1
z2,z3([0, 1];Z) be given

and introduce ẑ ∈W1,1
z1,z3([0, 1];Z) by

ẑ :=
{
z on [0, 1

2 ],
z′ on (1

2 , 1],
(5.15)
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5.2 The energetic formulation and an abstract existence result

where the functions z ∈ W1,1
z1,z2([0, 1

2 ];Z) and z
′ ∈ W1,1

z2,z3([1
2 , 1];Z) are defined by the

relations z := z(2·) and z
′ := z′(2 · −1). Following the calculation below, the triangle

inequality follows by taking the infimum with respect to all tuple of functions (z, z′) of
the space W1,1

z1,z2([0, 1];Z)×W1,1
z2,z3([0, 1];Z). We start with the integral transformations

s = 2t and s = 2t−1 for the first and the second integrand, respectively. The factors
1
2 in the second arguments of the integrands are due to the chain rule. Afterwards, the
positive homogeneity of degree 1 of the dissipation potential R : Z×Z → [0,∞] (see
(5.1)) is exploited and finally the notation (5.15) is used.∫ 1

0
R(z(s), ż(s))ds+

∫ 1

0
R(z′(s), ż′(s))ds=

∫ 1
2

0
R(z(t), ż(t)1

2)2dt+
∫ 1

1
2

R(z′(t), ż′(t)1
2)2dt

=
∫ 1

2

0
R(z(t), ż(t))dt+

∫ 1

1
2

R(z′(t), ż′(t))dt

=
∫ 1

0
R(ẑ(t), ˙̂z(t))dt (5.16)

Taking the infimum with respect to all (z, z′) ∈W1,1
z1,z2([0, 1];Z)×W1,1

z2,z3([0, 1];Z) results
in

D(z1, z2) +D(z2, z3) ≥ D(z1, z3),
since on the right hand side of the identity (5.16) the infimum is taken with respect
to all functions ẑ ∈ W1,1

z1,z3([0, 1];Z), which additionally satisfy ẑ|[0, 12 ] ∈ W1,1
z1,z2([0, 1

2 ];Z)
and ẑ|[ 1

2 ,1] ∈W1,1
z2,z3([1

2 , 1];Z); see (5.15). To show D(z1, z1) = 0, observe that in the case

of z2 = z1 the function ẑ ≡ z1 ∈ W1,1
z1,z1([0, 1];Z) is a minimizer of the right hand side

of (5.3). This observation together with the assumption R(z1, 0) = 0 proves the desired
result.

2. To prove the rate independence of (Q, E ,Z), let T ∗ > 0, θ ∈ C1([0, T ∗]; [0, T ]) and
an energetic solution (u, z) : [0, T ]→ Q be given. By setting u := u ◦ θ, z := z ◦ θ, and
` := `◦θ we have to verify that (u, z) : [0, T ∗]→ Q is an energetic solution of the system
(Q, E ,D), where

E(t, u, z) := W (u, z)− 〈`(t), u〉. (5.17)

This is done by showing that every term of the energetic formulation for the energetic
solution (u, z) : [0, T ] → Q can be replaced by the associated term for the function
(u, z) : [0, T ∗] → Q. Hence, for an arbitrary but fixed t ∈ [0, T ] and t∗ := θ−1(t) it is
sufficient to prove the following three equalities:

E(t, u(t), z(t)) = E(t∗, u(t∗), z(t∗)), (5.18)∫ t

0
〈 ˙̀(s), u(s)〉ds =

∫ t∗

0
〈 ˙̀(s), u(s)〉ds, (5.19)

DissD(z; [0, t]) = DissD(z; [0, t∗]). (5.20)

Note that D(z(t), z̃) = D(z(t∗), z̃) for all z̃ ∈ Z since z(t) = z(t∗) due to the definition.

3. By definition, we have u(t) = u(t∗), z(t) = z(t∗), and `(t) = `(t∗). Hence, the
equality (5.18) is an easy consequence of comparing (5.13) and (5.17).
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5 Rate-independent systems and their energetic formulation

4. According to the chain rule we obtain ˙̀ = ( ˙̀ ◦ θ)θ̇. Keeping this in mind while
applying the transformation s = θ|[0,t∗](s) to the left hand side of (5.19) results in∫ t

0
〈 ˙̀(s), u(s)〉ds =

∫ t∗

0
〈 ˙̀(s)[θ̇|[0,t∗](s)]−1, u(s)〉θ̇|[0,t∗](s)ds =

∫ t∗

0
〈 ˙̀(s), u(s)〉ds. (5.21)

5. To prove (5.20) for N ∈ N let πN := {0 = t0 < t1 < . . . < tN = t} be an arbitrary par-
tition of [0, t]. Furthermore, for the set ZN of arbitrary but fixed values z0, z1, . . . , zN ∈ Z
let W1,1

πN ,ZN
([0, t];Z) denote the subset of all functions ẑ ∈ W1,1([0, t];Z) satisfying

ẑ|[tj−1,tj ] ∈ W1,1
zj−1,zj

([tj−1, tj];Z) for every j = 1, 2, . . . , N . In the following, as an in-

termediate step for π∗N := {t∗j = θ−1(tj) | j = 0, 1, . . . , N} we show

A(πN , ZN) := inf
∫ t

0
R(ẑ(s), ˙̂z(s))ds = inf

∫ t∗

0
R(ẑ′(s), ˙̂z′(s))ds =: B(π∗N , ZN),

where the infimum on the left hand side is taken with respect to all functions ẑ of
W1,1

πN ,ZN
([0, t];Z), whereas the infimum on the right hand side is taken with respect to

all functions ẑ′ ∈ W1,1
π∗N ,ZN

([0, t∗];Z). For an arbitrary but fixed ẑ ∈ W1,1
πN ,ZN

([0, t];Z)
let ẑ := ẑ ◦ θ|[0,t∗] ∈W1,1

π∗N ,ZN
([0, t∗];Z). Then, by exploiting the integral transformation

s = θ|[0,t∗](s) and the positive homogeneity of degree 1 of the dissipation potential
analogously to (5.21) we have∫ t

0
R(ẑ(s), ˙̂z(s))ds =

∫ t∗

0
R(ẑ(s), ˙̂z(s))ds.

Therefore, A(πN , ZN) ≥ B(π∗N , ZN) by taking the infimum with respect to all functions
ẑ ∈ W1,1

πN ,ZN
([0, t];Z). Starting with an arbitrary but fixed ẑ′ ∈ W1,1

π∗N ,ZN
([0, t∗];Z) an

analog treatment yields the opposite inequality A(πN , ZN) ≤ B(π∗N , ZN).
6. Let (u, z) : [0, T ] → Q be an energetic solution of (Q, E ,D) and for N ∈ N let
πN := {0 = t0 < t1 < . . . < tN = t}. Then, for ZN(πN) := {z(tj) | j = 0, 1, . . . , N} by
the same integral transformation argument as used in (5.16) we find

N∑
j=1
D(z(tj−1), z(tj)) = inf

∫ t

0
R(ẑ(s), ˙̂z(s))ds = A(πN , ZN(πN)),

where the infimum is taken with respect to all functions ẑ ∈ W1,1
πN ,ZN (πN )([0, t];Z). Re-

ferring to the definition of the total dissipation, to prove (5.20) we have to verify

A := sup
πN

A(πN , ZN(πN)) = sup
π∗N

B(π∗N , Z∗N(π∗N)) =: B,

where π∗N := {0 = t∗0 < t∗1 < . . . < t∗N = t∗} and Z∗N(π∗N) := {z(t∗j) | j = 0, 1, . . . , N} for
z := z ◦ θ. Let (πN)N∈N be a maximizing sequence of supπN A(πN , ZN(πN)). For fixed
N ∈ N let π∗N be defined as in step 5. Then ZN(πN) = Z∗N(π∗N) and according to step 5
we have

A = lim
N→∞

A(πN , ZN(πN)) step 5= lim
N→∞

B(π∗N , Z∗N(π∗N)) ≤ B.

Starting with a maximizing sequence (π∗N)N∈N of supπ∗N B(π∗N , Z∗N(π∗N)) by an analog
argument we find the opposite inequality and the proof is concluded.
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6 Homogenization of unidirectional
microstructure evolution models

This chapter is about the homogenization of rate-independent microstructure evolution
models via the evolutionary Γ-convergence method introduced in [56]. This homoge-
nization result is in preparation for rigorously establishing effective damage and crack
models, which is done in the Chapters 7–9. For this reason, we here focus on the ho-
mogenization theory and for the comparison of our results with the already existing
(damage) theory we refer to the less abstract setting of the following chapters. All mod-
els introduced in this chapter are set up in the energetic formulation (see Section 5.2)
modeling a linear elastic body with microstructure evolution due to an internal vari-
able. Here, these energetic formulations are based on energy functionals and dissipation
distances satisfying the abstract conditions (5.7)–(5.10) of Chapter 5. Note that (al-
though not mentioned) all considered dissipation distances below are assumed to be
given such that the associated energetic formulation defines a rate-independent process;
see Definition 5.1.

The microstructures of the microscopic models considered in the following section are as-
sumed to be admissible in sense of Section 2.2; see (2.6). These non-periodic microstruc-
tures are characterized via a given tensor valued mapping Ĉ ∈ L∞([0, 1]m;M(Y )) and it
turns out that the microstructures of the microscopic and the effective models are based
on this tensor. Hence, in this chapter Ĉ ∈ L∞([0, 1]m;M(Y )) is assumed to be given
and the crucial assumptions on this tensor valued mapping are the following:

For every measurable function z : Rd → [0, 1]m the mapping

Ĉ(z(·))(·) :

Rd×Y → Linsym(Rd×d
sym;Rd×d

sym))
(x, y) 7→ Ĉ(z(x))(y)

is measurable on Rd×Y. (6.1)

Moreover, the mapping Ĉ : [0, 1]m →M(Y ) is continuous with respect to the strong L1-
topology, i.e., for every sequence (ẑδ)δ>0 ⊂ [0, 1]m satisfying limδ→0 ẑδ = ẑ for ẑ ∈ [0, 1]m
we have

lim
δ→0
‖Ĉ(ẑδ)− Ĉ(ẑ)‖L1(Y ;Linsym(Rd×dsym ;Rd×dsym )) = 0. (6.2)

Finally, there exists a constant α > 0 such that for all y ∈ Y and every ẑ ∈ [0, 1]m

α|ξ|2d×d ≤ 〈Ĉ(ẑ)(y)ξ, ξ〉d×d for all ξ ∈ Rd×d
sym. (6.3)

Observe that α is assumed to be independent of y ∈ Y and ẑ ∈ [0, 1]m, i.e., the inequal-
ity (6.3) has to hold uniformly with respect to y ∈ Y and ẑ ∈ [0, 1]m.
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6 Homogenization of unidirectional microstructure evolution models

6.1 Microscopic model

This section introduces the abstract microscopic microstructure evolution models homog-
enization is performed for in the following. Letting the set Ω denote the domain occu-
pied by linear elastic material its elastic deformation is captured by a displacement field
u ∈ H1

ΓDir
(Ω)d. The assumptions on Ω ⊂ Rd are that of condition (2.1) and ΓDir ⊂ ∂Ω is

closed with µd−1(ΓDir) > 0. Additionally to the displacement field evolution, microstruc-
ture changes are considered due to an internal variable zε : [0, T ]→ KεΛ(Ω; [0, 1]m). Here,
the parameter ε > 0 models the intrinsic length scale of the considered microstructure
as described in Section 2.2. Hence, the state space Qε(Ω) is the following product space:

Qε(Ω) := H1
ΓDir

(Ω)d×KεΛ(Ω; [0, 1]m).

For a given internal variable zε : [0, T ] → KεΛ(Ω; [0, 1]m) and the given tensor valued
mapping Ĉ ∈ L∞([0, 1]m;M(Y )) the actual damage state of the material is captured by
the material tensor Cε(zε(t)) ∈M(Ω) defined via

Cε(zε(t))(x) := Ĉ(zε(t, x))({x
ε
}Y ). (6.4)

Note that the measurability of this superposition is assured by assumption (6.1). Ex-
ploiting the uniform estimate (6.3), Korn’s inequality yields the existence of a constant
Ce > 0 such that for all (u, zε) ∈ Qε(Ω) the following coercivity condition holds:

Ce‖u‖2
H1

ΓDir
(Ω)d ≤ 1

2〈Cε(zε)e(u), e(u)〉L2(Ω)d×d . (6.5)

The continuity result here below is essential for proving existence of solutions.

Lemma 6.1. Let Ĉ ∈ L∞([0, 1]m;M(Y )) satisfy the conditions (6.1) and (6.2). Then
the tensor valued mapping Cε : KεΛ(Ω; [0, 1]m) → M(Ω) defined by (6.4) is continuous
with respect to the strong L1-topology, i.e., for every sequence (zδ)δ>0 ⊂ KεΛ(Ω; [0, 1]m)
satisfying zδ → z in KεΛ(Ω; [0, 1]m) with some z ∈ KεΛ(Ω; [0, 1]m) we have

lim
δ→0
‖Cε(zδ)− Cε(z)‖L1(Ω;Linsym(Rd×dsym ;Rd×dsym )) = 0.

Remark 6.2. We recall that for fixed ε > 0 the space KεΛ(Ω; [0, 1]m) is finite dimen-
sional.

Proof. Since zδ → z in KεΛ(Ω; [0, 1]m) by assumption, for all λ ∈ Λ+
ε we have that

zελδ :≡ zδ|ε(λ+Y )∩Ω → zελ :≡ z|ε(λ+Y )∩Ω in Rm; see Remark 2.3. Hence,

lim
δ→0

sup
λ∈Λ+

ε

‖Ĉ(zελδ )− Ĉ(zελ)‖L1(Y ;Linsym(Rd×dsym ;Rd×dsym )) = 0

according to (6.2). Combining this condition with the calculations below proves the
desired result. In the second line here below, {x

ε
}Y = x

ε
−λ for x ∈ ε(λ+Y ) is exploited
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6.1 Microscopic model

and in line three the transformation y = x
ε
−λ of the integral is performed:

‖Cε(zδ)− Cε(z)‖L1(Ω;Linsym(Rd×dsym ;Rd×dsym ))

=
∑
λ∈Λ+

ε

∫
ε(λ+Y )∩Ω

|Cε(zδ)(x)− Cε(z)(x)|dx

≤
∑
λ∈Λ+

ε

∫
ε(λ+Y )

|Ĉ(zελδ )(x
ε
−λ)− Ĉ(zελ)(x

ε
−λ)|dx

=
∑
λ∈Λ+

ε

εd
∫
Y
|Ĉ(zελδ )(y)− Ĉ(zελ)(y)|dy

≤ µd(Ω+
ε ) sup

λ∈Λ+
ε

‖Ĉ(zελδ )− Ĉ(zελ)‖L1(Y ;Linsym(Rd×dsym ;Rd×dsym )).

Applying the limit δ → 0 to this estimate concludes the proof.

To introduce the energetic formulation of the microscopic model we once choose the
parameter p ∈ (1,∞) and keep it fixed for rest of this chapter, i.e., in the following, any p
refers to this choice. One ingredient of the energetic formulation is the energy functional
Eε : [0, T ]×Qε(Ω)→ R based on the material tensor Cε : KεΛ(Ω; [0, 1]m)→M(Ω).

Eε(t, u, zε) := 1
2〈Cε(zε)e(u), e(u)〉L2(Ω)d×d + ‖R ε

2
zε‖pLp(Ω+

ε )m×d − 〈`(t), u〉 (6.6)

Here, ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) models the external loading consisting of volume and
surface forces.

Remark 6.3. Here, ‖R ε
2
zε‖pLp(Ω+

ε )m×d is a regularization term yielding better convergence

properties when looking for an effective limit model. In fact, due to this regularization
the effective microstructures in Section 6.2 and 6.3 are uniquely described by the limit
internal variable. Moreover, certain aspects of the microstructure described by Cε(zε) are
preserved in the effective models; for more details see Remark 6.6. For a homogenization
result without any microstructure regularization we refer to the papers [20, 21, 24]. The
comparison between our effective microstructure and the more general but less explicit
one of [24] is done in Section 7.4.

Note that this regularization term is neither necessary nor problematic for proving exis-
tence of solutions of the microscopic model, i.e., for ε > 0 fixed. Descriptively, it can
be seen as a local interaction of a material point and its neighborhood. Therefore, the
type of interaction depends on the physical effect described by the internal variable. In
the case of modeling damage (Chapter 7–9) this penalty term prefers the progression of
damage nearby already damaged material and penalizes its appearance in areas of intact
material.

The dissipation of the rate-independent system is modeled by the dissipation distance
Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] given by

Dε(z1, z2) :=
{
D̃ε(z1, z2) if z1 ≥ z2,

∞ otherwise,
(6.7)
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6 Homogenization of unidirectional microstructure evolution models

where D̃ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞) is continuous and (D̃ε)ε>0 is as-
sumed to converge continuously to D̃0 : Lp(Ω; [0, 1]m)×Lp(Ω; [0, 1]m)→ [0,∞), i.e.:

For all (zε, z̃ε)ε>0 and z0, z̃0 ∈ Lp(Ω; [0, 1]m) satisfying zε, z̃ε ∈ KεΛ(Ω; [0, 1]m),
zε → z0 in L1(Ω)m and z̃ε → z̃0 in L1(Ω)m it holds lim

ε→0
D̃ε(zε, z̃ε) = D̃0(z0, z̃0). (6.8)

Remark 6.4. Since the elements of the sequence (zε, z̃ε)ε>0 of condition (6.8) are uni-
formly bounded by 1 on Ω, the assumed convergences actually hold for all q ∈ [1,∞).

Additionally, Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] has to be chosen such that

∀ z1, z2, z3 ∈ KεΛ(Ω; [0, 1]m) : Dε(z1, z2) = 0 ⇔ z1 = z2

and Dε(z1, z3) ≤ Dε(z1, z2) +Dε(z2, z3).
(6.9)

For t ∈ [0, T ] and zε : [0, T ]→ KεΛ(Ω; [0, 1]m) the total dissipation DissDε(zε; [0, t]) reads
as follows:

DissDε(zε; [0, t]) := sup
{ N∑
j=1
Dε(zε(tj−1), zε(tj))

}
,

where for N ∈ N the supremum is taken with respect to all finite partitions πN := {0 =
t0 < t1 < . . . < tN = t} of the interval [0, t]. Note that according to the definition of
Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] the total dissipation is finite if and only if
zε : [0, T ]→ KεΛ(Ω; [0, 1]m) is a (component-wise) non-increasing function.

For given initial values (u0
ε, z

0
ε) ∈ Qε(Ω) the rate-independent microstructure evolution

is modeled by the ε-dependent energetic formulation (Sε) and (Eε), where ε > 0 denotes
the intrinsic length-scale of the microstructure and where the energy functional and the
dissipation distance are chosen as in (6.6) and (6.7), respectively.

Stability condition (Sε) and energy balance (Eε) for all t ∈ [0, T ]:

Eε(t, uε(t), zε(t)) ≤ Eε(t, ũ, z̃) +Dε(zε(t), z̃) for all (ũ, z̃) ∈ Qε(Ω)

Eε(t, uε(t), zε(t)) + DissDε(zε; [0, t]) = Eε(0, u0
ε, z

0
ε)−

∫ t

0
〈 ˙̀(s), uε(s)〉ds

Since ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗), for any energetic solution (uε, zε) : [0, T ] → Qε(Ω)
the right hand side of the energy balance (Eε) is finite for all t ∈ [0, T ]. Therefore,
zε : [0, T ] → KεΛ(Ω; [0, 1]m) is a (component-wise) non-increasing function. Following
the procedure of Section 5.2 for t̃ ∈ [0, T ] by Sε(t̃) the set of stable states is denoted,
i.e.,

Sε(t̃) := {(uε, zε) ∈ Qε(Ω) satisfying (Sε) for t = t̃ and Eε(t̃, uε, zε) <∞}.

For the energetic formulation (Sε) and (Eε) the abstract Theorem 5.5 guarantees the
existence of a solution.
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6.1 Microscopic model

Proposition 6.5 (Existence of solutions). Assume that (6.1), (6.2), and (6.5) hold. For
` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) let the energy functional Eε : [0, T ]×Qε(Ω) → R be defined

via (6.6). Moreover, for a continuous D̃ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞) let
the dissipation distance Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] be defined by (6.7)
and satisfy (6.9).

Then for all (u0
ε, z

0
ε) ∈ Sε(0), there exists an energetic solution (uε, zε) : [0, T ]→ Qε(Ω)

of the rate-independent system (Qε(Ω), Eε,Dε) satisfying (uε(0), zε(0)) = (u0
ε, z

0
ε) and

uε ∈ L∞([0, T ]; H1
ΓDir

(Ω)d),
zε ∈ L∞([0, T ]; KεΛ(Ω; [0, 1]m)) ∩ BVDε([0, T ]; KεΛ(Ω; [0, 1]m)).

Proof. We have to check the conditions (5.7)–(5.12).

(5.7): Due to (6.5) we have for every u ∈ H1
ΓDir

(Ω)d, z ∈ KεΛ(Ω; [0, 1]m), and t ∈ [0, T ]:

Ce‖u‖2
H1

ΓDir
(Ω)d

(6.5)

≤ 1
2〈Cε(z)e(u), e(u)〉L2(Ω)d×d

≤ Eε(t, u, z) + 〈`(t), u〉

≤ Eε(t, u, z) + C`‖u‖H1
ΓDir

(Ω)d , (6.10)

where C` := ‖`‖C1([0,T ];(H1
ΓDir

(Ω)d)∗) < ∞. (Note that since ε > 0 is fixed in the whole

proof, here the index ε for z ∈ KεΛ(Ω; [0, 1]m) is neglected.) By artificially introducing
the product ‖u‖H1

ΓDir
(Ω)d · 1 to the right hand side of (6.10), the application of the scaled

version of Young’s inequality yields

C‖u‖2
H1

ΓDir
(Ω)d ≤ Eε(t, u, z) + Ĉ (6.11)

for some constants C, Ĉ > 0 and a suitable chosen scaling parameter. For a constant
E ∈ R and a sequence (uδ, zδ)δ>0 ⊂ Qε(Ω) belonging to the sublevel set SubE(t) (see
(5.6)) estimate (6.11) yields a uniform upper bound for the sequence (‖uδ‖2

H1
ΓDir

(Ω)d)δ>0.

Hence, due to the reflexivity of H1
ΓDir

(Ω)d there exists u0 ∈ H1
ΓDir

(Ω)d and a subsequence
of (uδ)δ>0 converging weakly to u0 in H1

ΓDir
(Ω)d.

Moreover, (zδ)δ>0 ⊂ KεΛ(Ω; [0, 1]m) is uniformly bounded by assumption. Hence, there
exists a function z0 ∈ KεΛ(Ω; [0, 1]m) and a subsequence of (zδ)δ>0 converging to z0 in
KεΛ(Ω; [0, 1]m); see Remark 2.3. Applying Lemma 6.1 yields the strong convergence of
(Cε(zδ))δ>0 to Cε(z0) in L1(Ω; Linsym(Rd×d

sym;Rd×d
sym)) for this subsequence of (δ)δ>0. By

possibly choosing a further subsequence (δ′)δ′>0 of (δ)δ>0 we have e(uδ′) ⇀ e(u0) in
L2(Ω)d×d and Cε(zδ′)→ Cε(z0) in L1(Ω; Linsym(Rd×d

sym;Rd×d
sym)). For x ∈ Ω, ẑ ∈ [0, 1]m, and

ξ ∈ Rd×d
sym set f(x, ẑ, ξ) := 〈Cε(ẑ)ξ, ξ〉d×d. Then all assumptions of the lower semiconti-

nuity Theorem 3.23 of [14] are fulfilled and it follows

lim inf
δ′→0

∫
Ω
〈Cε(zδ′)e(uδ′), e(uδ′)〉d×ddx ≥

∫
Ω
〈Cε(z0)e(u0), e(u0)〉d×ddx. (6.12)
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6 Homogenization of unidirectional microstructure evolution models

According to Remark 2.3 it holds zδ′ → z0 in Lq(Ω)m for every q ∈ [1,∞). Combining
this convergence with the continuity of the mapping R ε

2
: KεΛ(Ω)m → K ε

2 Λ(Ω+
ε )m×d

(ε > 0 fixed) with respect to the strong Lp-topology results in

lim
δ′→0
‖R ε

2
zδ′‖pLp(Ω+

ε )m×d = ‖R ε
2
z0‖pLp(Ω+

ε )m×d . (6.13)

Trivially, 〈`(t), uδ′〉 → 〈`(t), u0〉 is valid, since uδ′ ⇀ u0 in H1
ΓDir

(Ω)d which together with
(6.12) and (6.13) yields

E ≥ lim inf
δ′→0

Eε(t, uδ′ , zδ′) ≥ Eε(t, u0, z0),

such that the compactness of the energy sublevel sets is proven.

(5.8): Since ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗), we have

|∂tEε(t, u, z)| = |〈 ˙̀(t), u〉| ≤ C`‖u‖H1
ΓDir

(Ω)d ≤ C`
2 (‖u‖2

H1
ΓDir

(Ω)d + 1).

Combining this estimate with inequality (6.11) gives |∂tEε(t, u, z)| ≤ c1(c0 + Eε(t, u, z))
for some constants c0, c1 > 0 such that the uniform control of the power is shown.

(5.9): See assumption (6.9).

(5.10): According to Remark 2.3 the weak and strong topology of KεΛ(Ω; [0, 1]m) are the
same. Hence, condition (5.10) holds, since Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞]
is lower continuous by definition.

(5.11): Since ∂tEε(t, u, z) = −〈 ˙̀(t), u〉, this condition is trivially satisfied.

(5.12): For u ∈ H1
ΓDir

(Ω)d, z ∈ KεΛ(Ω; [0, 1]m), and t ∈ [0, T ] considering (tδ, uδ, zδ)δ>0
with (uδ, zδ) ∈ Sε(tδ), tδ → t, uδ ⇀ u in H1

ΓDir
(Ω)d, and zδ → z in KεΛ(Ω; [0, 1]m) we have

to check that (u, z) ∈ Sε(t). For an arbitrary function z̃ ∈ KεΛ(Ω; [0, 1]m) with z̃ ≤ z
let z̃δ := min{z̃, zδ}. Then z̃δ → z̃ in KεΛ(Ω; [0, 1]m) and ∞ > D̃ε(zδ, z̃δ) → D̃ε(z, z̃) for
δ → 0 due to the assumed continuity of D̃ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞).
Since 〈`(tδ), uδ〉 → 〈`(t), u〉 analogously to the first step of this proof, for all functions
(ũ, z̃) ∈ Qε(Ω) with z̃ ≤ z we find

Eε(t, u, z)
step 1
≤ lim inf

δ→0
Eε(tδ, uδ, zδ)

≤ lim
δ→0

(
Eε(tδ, ũ, z̃δ) + D̃ε(zδ, z̃δ)

)
= Eε(t, ũ, z̃0) + D̃ε(z, z̃).

The second inequality is due to the stability of the sequence (uδ, zδ)δ>0 and in the last
line Lemma 6.1 was exploited. Note that in the case z̃ 6≤ z, due to Dε(z, z̃) = ∞, the
stability condition (S) is trivially satisfied.

Finally, letting (uε, zε) : [0, T ]→ Qε(Ω) be a solution of (Sε) and (Eε) its time regularity
needs to be proven. Since (Eε) is fulfilled for all t ∈ [0, T ] and since its right hand
side is finite we have Eε(t, uε(t), zε(t)) < ∞ and DissDε(zε; [0, T ]) < ∞. Hence, we
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6.2 Two-scale effective model

already have zε ∈ BVDε([0, T ]; KεΛ(Ω; [0, 1]m)). The proof of Theorem 5.5 is based on
a generalized version of Helly’s selection principal implying the piecewise continuity of
zε : [0, T ] → KεΛ(Ω; [0, 1]m). Therefore, it holds zε ∈ L∞([0, T ],KεΛ(Ω; [0, 1]m)). The
estimate Eε(t, uε(t), zε(t)) < ∞ immediately yields uε ∈ L∞([0, T ],H1

ΓDir
(Ω)d) according

to inequality (6.11). Since the proof of the abstract existence result (Theorem 5.5) is
based on interpolants constructed for a time discretization and since all these interpolants
of the energetic solution are measurable in time, the displacement field is measurable,
too. This concludes the proof.

6.2 Two-scale effective model

By investigating the asymptotic behavior of the microscopic models (Sε) and (Eε), the
two-scale model (S0) and (E0) introduced below will turn out to be their rigorous limit for
ε→ 0. For an internal variable z0 ∈W1,p(Ω; [0, 1]m) and the given tensor valued mapping
Ĉ ∈ L∞([0, 1]m;M(Y )), the microstructure is described by the two-scale elasticity tensor
C0(z0) ∈M(Ω×Y ) for almost every (x, y) ∈ Ω×Y defined via

C0(z0)(x, y) := Ĉ(z0(x))(y). (6.14)

Note that the measurability of this superposition is ensured by assumption (6.1). Since
it is the strong two-scale limit of a sequence of microscopic tensors of the previous section
(see Theorem 3.9), this tensor is actually the natural candidate.

Remark 6.6. The constitutive relation (6.14) states that in almost every point x of
Ω there is a unit cell {x}×Y containing the microstructure modeled by the mapping
Ĉ(z0(x)) ∈M({x}×Y ). For a more descriptive illustration of this limit microstructure,
see the less abstract setting of Section 7.2. Observe that the effective microstructure
modeled by C0(z0) ∈M(Ω×Y ) for the given mapping Ĉ ∈ L∞([0, 1]m;M(Y )) is uniquely
described by the limit internal variable z0 ∈W1,p(Ω; [0, 1]m). Without the microstructure
regularization in the microscopic models this would not be the case; see Section 7.4.

The fact that the energetic formulation (Sε) and (Eε) is solely based on functionals
makes this approach well adapted to the theory of Γ-convergence when looking for an
effective limit model. Let Y := Rd/Λ denote the periodicity cell. For a given t ∈ [0, T ]
we are going to apply the theory of Γ-convergence to the sequence (Eε(t, ·, ·))ε>0 of
microscopic energy functionals. For this purpose, we choose the two-scale topology for
the displacement field component uε (see Proposition 3.7) and the topology implied by
Theorem 4.5 for the internal variable zε. Hence, the limit function space Q0 has the
following structure:

Q0 := H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d×W1,p(Ω; [0, 1]m).

For (u0, U1) ∈ H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d we define ẽ(u0, U1) := ex(u0) + ey(U1), where

ex(u0) and ey(U1) denote the linearized strain tensors with respect to the x and y-
variable; see (2.2). Then the stored energy of the system is modeled by the two-scale
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6 Homogenization of unidirectional microstructure evolution models

energy functional E0 : [0, T ]×Q0 → R defined via

E0(t, u0, U1, z0) := 1
2〈C0(z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d + ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉.

The dissipated energy of the effective models is based on the given, continuous map-
ping D̃0 : Lp(Ω; [0, 1]m)×Lp(Ω; [0, 1]m) → [0,∞), see (6.8). Thus, the limit dissipation
distance D0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] is given by

D0(z1, z2) :=
{
D̃0(z1, z2) if z1 ≥ z2,

∞ otherwise

and for t ∈ [0, T ] and a function z0 : [0, T ] → W1,p(Ω; [0, 1]m) the total dissipation
DissD0(z0; [0, t]) is defined by

DissD0(z0; [0, t]) := sup
{ N∑
j=1

D0(z0(tj−1), z0(tj))
}
,

where for N ∈ N the supremum is taken with respect to all finite partitions πN :=
{0 = t0 < t1 < . . . < tN = t} of the interval [0, t]. Finally, for given initial values
(u0

0, U
0
1 , z

0
0) ∈ Q0 the rate-independent microstructure evolution model is given by the

energetic formulation (S0) and (E0):
Stability condition (S0) and energy balance (E0) for all t ∈ [0, T ]:

E0(t, u0(t), U1(t), z0(t)) ≤ E0(t, ũ, Ũ , z̃) + D0(z0(t), z̃) for all (ũ, Ũ , z̃) ∈ Q0

E0(t, u0(t), U1(t), z0(t)) + DissD0(z0; [0, t]) = E0(0, u0
0, U

0
1 , z

0
0)−

∫ t

0
〈 ˙̀(s), u0(s)〉ds

For t̃ ∈ [0, T ] we denote by S0(t̃) the set of stable states, i.e.,

S0(t̃) := {(u0, U1, z0) ∈ Q0 satisfying (S0) for t = t̃ and E0(t̃, u0, U1, z0) <∞}.

Remark 6.7. The existence of a solution of the two-scale model is proven via the con-
vergence result in Section 6.5, where for ε → 0 the convergence of a subsequence of
energetic solutions (uε, zε) : [0, T ] → Qε(Ω) of the microscopic models (Sε) and (Eε) to
a function (u0, U1, z0) : [0, T ] → Q0 satisfying the two-scale energetic formulation (S0)
and (E0) is shown.

6.3 One-scale effective model

In this section we formulate a one-scale model which is equivalent to the two-scale model
of Section 6.2 in the following sense: From any solution of one of those systems a solution
of the other model can be constructed.
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6.3 One-scale effective model

Let the state space Q0(Ω) be given by

Q0(Ω) := H1
ΓDir

(Ω)d×W1,p(Ω; [0, 1]m).

The energy functional is based on a mapping Ceff : W1,p(Ω; [0, 1]m) → M(Ω). The
precise structure of this microstructure describing function is motivated by the following
observation: Let t ∈ [0, T ] and (u0, U1, z0) ∈ S0(t) be given. Then, by assuming the
testfunctions (ũ, z̃) to take the values (u0, z0) in the stability condition (S0) we find that
U1 is the unique solution of

min{I0(z0, u0, U) |U ∈ L2(Ω; H1
av(Y))d}, (6.15)

where

I0(z0, u0, U) :=
∫

Ω×Y
〈Ĉ(z0(x))(y)(ẽ(u0, U)(x, y)), ẽ(u0, U)(x, y)〉d×ddydx.

This motivates the introduction of a tensor C̃eff ∈ L∞([0, 1]m; Linsym(Rd×d
sym;Rd×d

sym)) given
by the following unit cell problem: For ξ ∈ Rd×d

sym, ẑ ∈ [0, 1]m, and the given mapping

Ĉ ∈ L∞([0, 1]m;M(Y )) let

Ceff(ẑ, ξ) := min
v∈H1

av(Y)d
I(ẑ, ξ, v), (6.16a)

I(ẑ, ξ, v) :=
∫
Y

〈
Ĉ(ẑ)(y)

(
ξ + ey(v)(y)

)
, ξ + ey(v)(y)

〉
d×d

dy. (6.16b)

Then Ceff(ẑ, ·) defines the tensor C̃eff(ẑ) as stated in the following proposition.

Proposition 6.8. Let condition (6.3) hold and let Ceff : [0, 1]m×Rd×d
sym → R be defined

by (6.16). Then for ẑ ∈ [0, 1]m there exists a unique solution of (6.16a). Moreover, for
all ẑ ∈ [0, 1]m there exists C̃eff(ẑ) ∈ Linsym(Rd×d

sym,Rd×d
sym) such that

∀ ξ ∈ Rd×d
sym : Ceff(ẑ, ξ) = 〈C̃eff(ẑ)ξ, ξ〉d×d.

Proof. For given ξ ∈ Rd×d
sym and ẑ ∈ [0, 1]m the functional I(ẑ, ξ, ·) : H1

av(Y)d → R is
continuous and strictly convex due to (6.3). Hence, there exists a unique minimizer of
(6.16a) fulfilling the Euler-Lagrange equation

Dv(I(ẑ, ξ, v))[ṽ] = 0 ∀ ṽ ∈ H1
av(Y)d

and according to the Lemma of Lax–Milgram

Lẑ(ξ) := Argmin{I(ẑ, ξ, v) | v ∈ H1
av(Y)d} (6.17)

defines a linear solution operator Lẑ : Rd×d
sym → H1

av(Y). For i, j, k, l ∈ {1, . . . , d} let δij,kl
denote the Kronecker delta. Then for eij ∈ Rd×d

sym given by (eij)kl := 1
2(δij,kl+δji,kl) we

define

C̃effijkl(ẑ) :=
∫
Y

〈
Ĉ(ẑ)(y)

(
eij + ey(Lẑ(eij))(y)

)
, ekl + ey(Lẑ(ekl))(y)

〉
d×d

dy.

57



6 Homogenization of unidirectional microstructure evolution models

First of all we have C̃eff(ẑ) ∈ Linsym(Rd×d
sym,Rd×d

sym) and by

〈C̃eff(ẑ)ξ, ξ〉d×d =
d∑

i,j=1
〈ξ, eij〉d×d

d∑
k,l=1
〈ξ, ekl〉d×d〈C̃effijkl(ẑ)eij, ekl〉d×d

=
∫
Y
〈Ĉ(ẑ)(y)(ξ + ey(Lẑ(ξ))(y)), ξ + ey(Lẑ(ξ))(y)〉d×ddy

we find Ceff(ẑ, ξ) = 〈C̃eff(ẑ)ξ, ξ〉d×d, which concludes the proof.

Proposition 6.8 enables us to introduce Ceff : W1,p(Ω; [0, 1]m) → M(Ω) describing the
microstructure evolution in the energetic formulation below. For ξ ∈ Rd×d

sym, x ∈ Ω,

z0 ∈W1,p(Ω; [0, 1]m), and the given Ĉ ∈ L∞([0, 1]m;M(Y )) the unit cell problem

〈Ceff(z0)(x)ξ, ξ〉d×d := min
v∈H1

av(Y)d

∫
Y
〈Ĉ(z0(x))(y)(ξ+ey(v)(y)), ξ+ey(v)(y)〉d×ddy (6.18)

is well defined. Thus, the one-scale model is based on the one-scale energy functional
E0 : [0, T ]×Q0(Ω)→ R defined in the following way:

E0(t, u0, z0) := 1
2〈Ceff(z0)e(u0), e(u0)〉L2(Ω)d×d + ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉

For the same given, continuous mapping D̃0 : Lp(Ω; [0, 1]m)×Lp(Ω; [0, 1]m) → [0,∞) as
considered in the previous sections (see (6.8)) the dissipated energy of the system is
based on the limit dissipation distance D0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞],
which reads as follows:

D0(z1, z2) :=
{
D̃0(z1, z2) if z1 ≥ z2,

∞ otherwise.

Observe that in contrast to the limit energy functional, due to the regularization with
respect to the damage variable there is no second scale appearing in the limit dissipation
distance. Therefore, (here and in all following limit models) the dissipation distances of
the two-scale and one-scale limit models coincide, i.e., it holds D0(z1, z2) = D0(z1, z2)
for all z1, z2 ∈ W1,p(Ω; [0, 1]m) by definition. For z0 : [0, T ] → W1,p(Ω; [0, 1]m) the total
dissipation DissD0(z0; [0, t]) until the time t ∈ [0, T ] is defined by

DissD0(z0; [0, t]) := sup
{ N∑
j=1
D0(z0(tj−1), z0(tj))

}
,

where for N ∈ N the supremum is taken with respect to all finite partitions πN , with
πN := {0 = t0 < t1 < . . . < tN = t}, of the interval [0, t]. Finally, for given initial
values (u0

0, z
0
0) ∈ Q0(Ω) the energetic formulation (S0) and (E0) of the one-scale rate-

independent system (Q0(Ω), E0,D0) reads as follows:
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6.3 One-scale effective model

Stability condition (S0) and energy balance (E0) for all t ∈ [0, T ]:

E0(t, u0(t), z0(t)) ≤ E0(t, ũ, z̃) +D0(z0(t), z̃) for all (ũ, z̃) ∈ Q0(Ω)

E0(t, u0(t), z0(t)) + DissD0(z0; [0, t]) = E0(0, u0
0, z

0
0)−

∫ t

0
〈 ˙̀(s), u0(s)〉ds

Furthermore, for t̃ ∈ [0, T ] we define the set of stable states S0(t̃) via

S0(t̃) := {(u0, z0) ∈ Q0(Ω) satisfying (S0) for t = t̃ and E0(t̃, u0, z0) <∞}.

The following theorem states the equivalence of the two-scale model introduced in Sec-
tion 6.2 and the here considered one-scale model. For the definition of the in following
appearing two-scale terms we refer to Section 6.2.

Theorem 6.9 (Equivalence of the two-scale and one-scale model). Assume that con-
dition (6.3) holds. For ẑ ∈ [0, 1]m let Lẑ : Rd×d

sym → H1
av(Y)d denote the linear operator

defined by (6.17). Furthermore, let (u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d) and

let z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVD0([0, T ]; W1,p(Ω; [0, 1]m)). Then for initial val-
ues (u0

0, U
0
1 , z

0
0) ∈ S0(0) the following two statements are equivalent:

(a) The function (u0, U1, z0) : [0, T ]→ Q0 with (u0(0), U1(0), z0(0)) = (u0
0, U

0
1 , z

0
0) is a

solution of (S0) and (E0).

(b) The function (u0, z0) : [0, T ] → Q0(Ω) with (u0(0), z0(0)) = (u0
0, z

0
0) is a solution

of (S0) and (E0), and U1(t) := Lz0(t,·)(ex(u0(t))(·)) for all t ∈ [0, T ].

The statement of Theorem 6.9 is a direct consequence of Proposition 6.10 and Corol-
lary 6.11 below.

Proposition 6.10. Assume that (6.3) holds. For ẑ ∈ [0, 1]m let Lẑ : Rd×d
sym → H1

av(Y)d
denote the linear operator defined by (6.17). Then for t ∈ [0, T ], for u0 ∈ H1

ΓDir
(Ω)d, and

for z0 ∈W1,p(Ω; [0, 1]m) the following statements are equivalent:

(a) U1 is the unique solution of (6.15).

(b) U1 = Lz0(·)(ex(u0)(·)).

(c) E0(t, u0, U1, z0) = E0(t, u0, z0).

Proof. For the given (u0, z0) ∈ Q0(Ω) the function U1 ∈ L2(Ω; H1
av(Y))d is the unique

minimizer of (6.15), if and only if the following inequality holds for all testfunctions
Ũ ∈ L2(Ω,H1

av(Y))d.
I0(z0, u0, Ũ) ≥ I0(z0, u0, U1), (6.19)

where I0(z0, u0, ·) : L2(Ω,H1
av(Y))d → R is the continuous functional given by

I0(z0, u0, U) :=
∫

Ω×Y
〈Ĉ(z0(x))(y)(ẽ(u0, U)(x, y)), ẽ(u0, U)(x, y)〉d×ddydx.
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6 Homogenization of unidirectional microstructure evolution models

(b)⇒(a): With Lẑ : Rd×d
sym → H1

av(Y)d defined by (6.17) we show that the function

U1 ∈ L2(Ω,H1
av(Y))d, which is defined by U1(x, y) := Lz0(x)(ex(u0)(x))(y) for almost

every (x, y) ∈ Ω×Y , is also a solution of (6.19). For almost every x ∈ Ω the function
U1(x, ·) ∈ H1

av(Y)d satisfies the following inequality for all ṽ ∈ H1
av(Y)d by definition; see

(6.16b) and (6.17).

I(z0(x), ex(u0)(x), ṽ) ≥ I(z0(x), ex(u0)(x), U1(x, ·)). (6.20)

For arbitrary but fixed (fi, vi) ∈ L2(Ω)×H1
av(Y), i = 1, 2, . . . , d, and almost every x ∈ Ω

we now choose the following specific testfunction ṽ := ∑d
i=1 fi(x)viei ∈ H1

av(Y)d. Here,
the k-th component (ei)k of the vector ei ∈ Rd is defined by (ei)k := δik, where δik
for i, k ∈ {1, 2, . . . , d} denotes the Kronecker delta. By integrating (6.20) over Ω for
Û := (f1v1, . . . , fdvd)T we obtain

I0(z0, u0, Û) ≥ I0(z0, u0, U1). (6.21)

By choosing suitable linear combinations of such testfunctions, we find that (6.21) holds
for any function Û of the linear span of {(f1v1, . . . , fdvd)T | (fi, vi) ∈ L2(Ω)×H1

av(Y), i =
1, . . . , d}. Observe that by basic density properties for Bochner spaces the linear span
of {(f1v1, . . . , fdvd)T | (fi, vi) ∈ L2(Ω)×H1

av(Y), i = 1, . . . , d} is dense in L2(Ω; H1
av(Y))d,

which combined with the continuity of I0(z0, u0, ·) : L2(Ω,H1
av(Y))d → R results in

the fact that (6.21) holds for any function Û ∈ L2(Ω; H1
av(Y))d. Hence, the function

U1 ∈ L2(Ω; H1
av(Y))d solves (6.19) for the given function (u0, z0) ∈ Q0(Ω).

(a)⇒(b): For given (u0, z0) ∈ Q0(Ω) let U1 ∈ L2(Ω; H1
av(Y))n be the unique solution

of (6.19). As already proven in the first step, U1(x, y) := Lz0(x)(∇xu0(x))(y) is also a
solution of (6.19). According to the uniqueness of the minimizer this results in U1 = U1.

(a),(b)⇔(c): Following the trivial transformations below for given (u0, z0) ∈ Q0(Ω) we
find

U1 = Lz0(·)(ex(u0)(·)) ⇔ E0(t, u0, U1, z0) = E0(t, u0, z0).

Indeed, using the definitions of Ceff(z0) ∈M(Ω) and Lz0(x) : Rd×d
sym → H1

av(Y)d we have:

E0(t, u0, z0) = 1
2〈Ceff(z0)ex(u0), ex(u0)〉L2(Ω)d×d + ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉 (6.22a)

= 1
2

∫
Ω
I
(
z0(x), ex(u0)(x),Lz0(x)(ex(u0)(x))

)
dx+ ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉

= 1
2I0
(
z0, u0,Lz0(·)(ex(u0)(·))

)
+ ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉 (6.22b)

= E0(t, u0, U1, z0) (6.22c)

In the case of “⇐” line (6.22c) is equal to line (6.22a) by assumption and the identity
U1 = Lz0(·)(ex(u0)(·)) follows by comparing line (6.22b) and (6.22c). On the other hand
in the case of “⇒” in line (6.22c) U1 = Lz0(·)(ex(u0)(·)) was exploited.

Note that in the case of U1 = Lz0(·)(ex(u0)(·)) the function U1 is the unique minimizer of

(6.15) such that there is no function Û1 6= U1fulfilling E0(t, u0, Û1, z0) = E0(t, u0, z0).
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Corollary 6.11. Assume that (6.3) holds. For ẑ ∈ [0, 1]m let Lẑ : Rd×d
sym → H1

av(Y)d
denote the linear operator defined by (6.17). Then for t ∈ [0, T ] the following statements
are equivalent:

(a) (u0, U1, z0) ∈ S0(t).

(b) U1 = Lz0(·)(ex(u0)(·)) and (u0, z0) ∈ S0(t).

Proof. (a)⇒(b): As already mentioned in the beginning of this section the condition
(u0, U1, z0) ∈ S0(t) implies that U1 ∈ L2(Ω; H1

av(Y))d is the minimizer of (6.15). Hence,
we have U1 = Lz0(·)(ex(u0)(·)) according to Proposition 6.10. Moreover, the following

inequality holds, by taking the minimum over all Ũ ∈ L2(Ω; H1
av(Y))d on the right hand

side of the stability condition (S0).

E0(t, u0, U1, z0) ≤ min
Ũ

E0(t, ũ, Ũ , z̃) + D0(z0, z̃) ∀ (ũ, z̃) ∈ Q0(Ω).

However, for the first two terms of this inequality Proposition 6.10 can be exploited such
that we end up with

E0(t, u0, z0) ≤ E0(t, ũ, z̃) +D0(z0, z̃) ∀ (ũ, z̃) ∈ Q0(Ω).

(b)⇐(a): Due to Proposition 6.10 we have

E0(t, u0, U1, z0) = E0(t, u0, z0) ≤ E0(t, ũ, z̃) +D0(z0, z̃) ∀ (ũ, z̃) ∈ Q0(Ω).

Moreover, it holds E0(t, ũ, z̃) ≤ E0(t, ũ, Ũ , z̃) for all Ũ ∈ L2(Ω; H1
av(Y))d since there is

equality for the unique minimizer Ũ1 = Lz̃(·)(ex(ũ)(·)). This estimate finally gives

E0(t, u0, U1, z0) ≤ E0(t, ũ, Ũ , z̃) + D0(z0, z̃) ∀ (ũ, Ũ , z̃) ∈ Q0,

which implies (u0, U1, z0) ∈ S0(t) and Corollary 6.11 is proven.

6.4 Mutual recovery sequence

This section is in preparation for proving the convergence of the microscopic models
introduced in Section 6.1 to the effective models of Section 6.2 and 6.3. For this purpose,
we are going to apply the evolutionary Γ-convergence method which is presented in [56]
in an abstract setting. There, the authors pointed out that the crucial issue in performing
the limit passage is to guarantee the stability of the limit when starting with a stable
sequence. Hence, one of the main concerns of [56] is the provision of various sufficient
conditions ensuring this stability. Therefore, the existence of a so-called mutual recovery
sequence is requested and we are going to focus on one suitable definition and refer to
[56] for the general theory.
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6 Homogenization of unidirectional microstructure evolution models

The state spaces and functionals underlying the following definitions and theorems are
those introduced in the Sections 6.1 and 6.2. Summarizing, this section contains the
proof that there are subsequences of solutions of the microscopic models (Sε) and (Eε)
which converge to a function satisfying the two-scale stability condition (S0) for all
t ∈ [0, T ]. We start with the following definitions:

Definition 6.12 (Stable sequence with respect to t ∈ [0, T ]). Let the discrete gradi-
ent R ε

2
: KεΛ(Ω; [0, 1]m) → K ε

2 Λ(Ω+
ε )m×d be given by Definition 4.1. Then a sequence

(uε, zε)ε>0 satisfying (uε, zε) ∈ Qε(Ω) for every ε > 0 is called stable sequence with respect
to the time t ∈ [0, T ] if the conditions (a) and (b) hold:

(a) There exists a function (u0, U1, z0) ∈ Q0 such that:

uε ⇀ u0 in H1
ΓDir

(Ω)d, zε → z0 in Lp(Ω)m,
uε

s→ Eu0 in L2(Ω×Y )d, R ε
2
zε|Ω ⇀ ∇z0 in Lp(Ω)m×d,

∇uε w
⇀ ∇xEu0+∇yU1 in L2(Ω×Y )d×d.

(b) (uε, zε) ∈ Sε(t) for every ε > 0.

Definition 6.13 (Mutual recovery condition and mutual recovery sequence). A se-
quences of functionals (Eε,Dε)ε>0 fulfills the mutual recovery condition, if for every func-
tion (ũ0, Ũ1, z̃0) ∈ Q0 and for every stable sequence (uε, zε)ε>0 with respect to t ∈ [0, T ]
the following holds:

There exists a sequence (ũε, z̃ε)ε>0 with (ũε, z̃ε) ∈ Qε(Ω) for all ε > 0 such that

lim sup
ε→0

Dε(zε, z̃ε) ≤ D0(z0, z̃0) (6.23)

as well as

lim sup
ε→0

(
Eε(t, ũε, z̃ε)− Eε(t, uε, zε)

)
≤ E0(t, ũ0, Ũ1, z̃0)− E0(t, u0, U1, z0). (6.24)

Such a sequence (ũε, z̃ε)ε>0 is called mutual recovery sequence.

Remark 6.14. Observe that Definition 6.13 does not ask the mutual recovery sequence
(ũε, z̃ε)ε>0 to converge to (ũ0, Ũ1, z̃0) ∈ Q0 in any sense.

Theorem 6.15 (Mutual recovery sequence). Assume that the conditions (6.1), (6.2),
and (6.5) hold. For ε > 0 and ` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) let Eε : [0, T ]×Qε(Ω) → R

be defined via (6.6) and let Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞] be defined by
(6.7) fulfilling the conditions (6.8) and (6.9). Furthermore, let E0 : [0, T ]×Q0 → R and
D0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] be given as introduced in Section 6.2. If
(uε, zε)ε>0 is a stable sequence with respect to t ∈ [0, T ] with limit (u0, U1, z0) ∈ Q0, then:

(a) For every (ũ0, Ũ1, z̃0) ∈ Q0 there exists a mutual recovery sequence (ũε, z̃ε)ε>0.

(b) (u0, U1, z0) ∈ S0(t).
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6.4 Mutual recovery sequence

The construction of the u-component of the mutual recovery sequence is based on the
two-scale density result concerning Sobolev functions stated in Proposition 3.8. Starting
with a given stable sequence (uε, zε)ε>0 the z-component z̃ε ∈ KεΛ(Ω; [0, 1]m) is explicitly
constructed out of zε ∈ KεΛ(Ω; [0, 1]m) in the proof of the following theorem.

Theorem 6.16 (z-component of the mutual recovery sequence). Let the discrete gradi-
ent R ε

2
: KεΛ(Ω; [0, 1]m)→ K ε

2 Λ(Ω+
ε )m×d be given by Definition 4.1 and let (uε, zε)ε>0 be

a stable sequence with respect to t ∈ [0, T ] with limit (u0, U1, z0) ∈ Q0.

Then for every z̃0 ∈W1,p(Ω; [0, 1])m with z̃0 ≤ z0 there exists a sequence (z̃ε)ε>0 satisfying
z̃ε ∈ KεΛ(Ω; [0, 1]m), z̃ε ≤ zε, z̃ε → z̃0 in Lp(Ω)m, R ε

2
z̃ε|Ω ⇀ ∇z̃0 in Lp(Ω)m×d, and

lim sup
ε→0

(
‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d−‖R ε
2
zε‖pLp(Ω+

ε )m×d

)
≤ ‖∇z̃0‖pLp(Ω)m×d−‖∇z0‖pLp(Ω)m×d . (6.25)

The construction of the z-component of the mutual recovery sequence is based on that
done in [61]. There, the authors constructed a mutual recovery sequence for scalar
Sobolev functions. Here, the main steps of the proof stay the same but due to the
discrete setting on the ε-level and the vectorial case some new technicalities come into
play.

Proof. 1. Let z0, z̃0 ∈W1,p(Ω; [0, 1]m) and (zε)ε>0 be given as assumed in Theorem 6.16.
Choose ∆ > 0 arbitrary but fixed. Then there exists ε0 > 0 such that Ω+

ε ⊂ neigh∆(Ω)
for all ε ∈ (0, ε0). Moreover, there exists an extension z0 ∈ W1,p

0 (neigh∆(Ω); [0, 1]m)
of z̃0 ∈ W1,p(Ω; [0, 1]m) satisfying z0|Ω = z̃0 according to Theorem A 6.12 in [3]. Let
Pε : Lp(Rd)→ KεΛ(Rd) denote the projector to piecewise constant functions introduced
in Definition 4.11. Then zε := (Pε(zex

0 ))|Ω satisfies

lim
ε→0

(
‖z̃0−zε‖Lp(Ω)m + ‖(∇z̃0)ex−R ε

2
zε‖Lp(Ω+

ε )m×d
)

= 0, (6.26)

as shown in the proof of Theorem 4.9. Observe that the application of the projector Pε to
the function zex

0 ∈ Lp(Rd)m has to be understood component-wise. Following the proof
in [61] we introduce the function z̃ε ∈ KεΛ(Ω; [0, 1]m), decomposed for every component
z̃(j)
ε , j ∈ {1, 2, . . . ,m}, in the following way:

z̃(j)
ε (x) :=

 max{0, z(j)
ε (x)−δ(j)

ε } if x ∈ A(j)
ε := Ω−ε \B(j)

ε ,

z(j)
ε (x) if x ∈ B(j)

ε ∪ (Ω\Ω−ε ),

where B(j)
ε := {x ∈ Ω−ε : z(j)

ε (x) < max{0, z(j)
ε (x)−δ(j)

ε }}. For j ∈ {1, 2, . . . ,m} the
positive constant δjε will later be chosen in such a way that δjε → 0 for ε → 0. This
definition immediately results in 0 ≤ z̃ε ≤ zε.

2. Now, we prove that z̃ε → z̃0 in Lp(Ω)m. Since z̃ε → z̃0 in Lp(Ω)m is equivalent to

z̃(j)
ε → z̃

(j)
0 in Lp(Ω) for every j ∈ {1, 2, . . . ,m} we will restrict ourselves to the case

m = 1. Hence, let Aε := A(1)
ε , Bε := B(1)

ε , and δε := δ(1)
ε to shorten notation. According

to |zε(x)−z̃0(x)| ≤ 1, especially on Bε, we find

‖z̃ε−z̃0‖pLp(Ω) ≤ ‖max{0, zε−δε} − z̃0‖pLp(Aε) + µd(Bε). (6.27)
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6 Homogenization of unidirectional microstructure evolution models

Figure 6.1: Decomposition of Ω into the subsets Aε and Bε.

By increasing the domain of integration from Aε to Ω, adding zero (−zε+zε) and ap-
plying the triangle inequality, the first term of (6.27) is bounded by the expression
2p−1‖ max{0, zε−δε} − zε‖p

Lp(Ω) + 2p−1‖zε−z̃0‖p
Lp(Ω). Hence, due to (6.26) the right hand

side of (6.27) converges to zero if the sequence (δε)ε>0 can be chosen such that δε → 0
and μd(Bε) → 0.
3. Choice of δε > 0 such that δε → 0 and μd(Bε) → 0: As before let m = 1. Since z̃0 = z0
on Ω−

ε by definition the identity zε = Pεz̃
ex
0 on Ω−

ε holds. Combining this identity with
the assumption z̃0 ≤ z0 results in zε ≤ Pεz

ex
0 on Ω−

ε . Due to this estimate

Bε ⊂
{
x ∈ Ω−

ε

∣∣∣ zε(x)< max{0, Pεz
ex
0 (x)−δε}

}
⊂

{
x ∈ Ω−

ε

∣∣∣ δε<|Pεz
ex
0 (x)−zε(x)|

}
=: B̂ε

such that Markov’s inequality (M) can be exploited in the following way:

μd(Bε) ≤ μd

(
B̂ε

) (M)
≤ 1

δp
ε

∫
Ω−

ε

|Pεz
ex
0 (x) − zε(x)|pdx.

By choosing δp
ε := ‖Pεz

ex
0 −zε‖Lp(Ω−

ε ) ≤ ‖Pεz
ex
0 −z0‖Lp(Ω) + ‖z0−zε‖Lp(Ω), for instance, the

assumed convergence zε → z0 in Lp(Ω) yields δε → 0 and μd(Bε) → 0 as ε → 0. As
already mentioned in [61], δε > 0 is necessary to apply Markov’s inequality. However, in
the case of δε = 0 the assumed convergence zε → z0 in Lp(Ω) implies (Pεz

ex
0 )|Ω − zε → 0

in Lp(Ω) such that limε→0 μd(B̂ε) = 0 results immediately.

4. To show: lim supε→0

(
‖R ε

2
z̃ε‖p

Lp(Ω+
ε )d−‖R ε

2
zε‖p

Lp(Ω+
ε )d

)
≤ ‖∇z̃0‖p

Lp(Ω)d−‖∇z0‖p
Lp(Ω)d :

Roughly spoken, the fact μd(Bε) → 0 for ε → 0 means that in the case of a sequence
of Sobolev functions (zε ∈ W1,p(Ω)) it is sufficient to prove (6.25) for Aε instead of Ω+

ε

on the left hand side. However, since we are interested in the case of piecewise constant
functions we have to pay some special attention to the region around the interface
Iε = ∂Aε ∩ ∂B+

ε , where B+
ε := Bε ∪ (Ω+

ε \Ω−
ε ). Note that due to the definition of Aε

and Bε there are disjoint subsets ΛAε , ΛBε ⊂ Λ−
ε such that Aε = ⋃

λ∈ΛAε
ε(λ+Y ) and

Bε = ⋃
λ∈ΛBε

ε(λ+Y ). Hence, for ΛB+
ε

:= ΛBε ∪ (Λ+
ε \Λ−

ε ) we have B+
ε = ⋃

λ∈Λ
B+

ε

ε(λ+Y ).

For i ∈ {1, 2, . . . , d} let ni ∈ R
d be given by condition (4.2) and let Fni

(ελ) denote
the face of ε(λ+Y ) orthogonal to ni ∈ R

d which is contained in ε(λ+Y ). Then, the
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6.4 Mutual recovery sequence

Figure 6.2: Here, x(5) and x(6) denote points considered in step 5 and 6, respectively.

interface Iε can be uniquely represented by Iε = ⋃d
i=1

⋃
λ∈S

(i)
ε

cl(Fni
(ελ)), where S(i)

ε ⊂ Λ
is a suitable finite subset and

⋃
λ∈S

(i)
ε

cl(Fni
(ελ)) are all faces of the interface Iε that are

orthogonal to ni ∈ R
d. Observe that |S(i)

ε | ≤ |ΛB+
ε

| since the number of faces in S(i)
ε is

bounded by the number of all cells contained in B+
ε .

Taking the union of all cells

Jε :=
d⋃

i=1

⋃
λ∈S

(i)
ε

ε(λ−1
2bi+Y )

containing the face Fni
(ελ) in the middle (see Figure 6.2) we have Iε ⊂ cl(Jε) and

μd(Jε) ≤
d∑

i=1

∑
λ∈S

(i)
ε

εd =
d∑

i=1
|S(i)

ε |εd ≤
d∑

i=1
|ΛB+

ε
|εd = dμd(B+

ε ). (6.28)

The set Jε has been constructed in such a way that x ∈ Aε\Jε implies x+ ε
2bi ∈ Aε

and x− ε
2bi ∈ Aε and the analog statement is valid on B+

ε \Jε. Hence, by exploiting the
structure of R ε

2
: KεΛ(Ω; [0, 1]m) → K ε

2 Λ(Ω+
ε )m×d given by Definition 4.1 we have

R ε
2
z̃ε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R ε

2
(max{0, zε−δε}) in Aε\Jε,

R ε
2
z̃ε in Jε,

R ε
2
zε in B+

ε \Jε.

(6.29)

Keeping (6.25) in mind, we want to estimate |R ε
2
z̃ε|p from above by terms depending

only on zε and zε. Due to (6.29) we only have to care about the case x ∈ Jε. Therefore,

we consider every component
(
R ε

2
z̃ε(x)

)
bi separately.

5. The case x ∈ Jε\
⋃

λ∈S
(i)
ε

ε(λ−1
2bi+Y ) for i ∈ {1, . . . , d} fixed:

In this case either x+ ε
2bi ∈ Aε and x− ε

2bi ∈ Aε or x+ ε
2bi ∈ B+

ε and x− ε
2bi ∈ B+

ε .
Combining this result with the definition of the function z̃ε ∈ KεΛ(Ω; [0, 1]m) and the
structure of the discrete gradient yields the desired estimate∣∣∣(R ε

2
z̃ε(x)

)
bi

∣∣∣ ≤ max
{∣∣∣(R ε

2
(max{0, zε(x)−δε})

)
bi

∣∣∣, ∣∣∣(R ε
2
zε(x)

)
bi

∣∣∣}. (6.30)
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6 Homogenization of unidirectional microstructure evolution models

6. The case x ∈ ⋃
λ∈S(i)

ε
ε(λ−1

2bi+Y ) for i ∈ {1, . . . , d} fixed:

In this case either x+ ε
2bi ∈ Aε and x− ε

2bi ∈ B+
ε or x+ ε

2bi ∈ B+
ε and x− ε

2bi ∈ Aε
according to the definition of S(i)

ε . Without loss of generality set a := x+ ε
2bi ∈ Aε and

b := x− ε
2bi ∈ B

+
ε . Then due to the definitions of Aε and B+

ε we have

1 ≥ zε(a) ≥ z̃ε(a) = max{0, zε(a)−δε} ≥ 0, (6.31a)

1 ≥ max{0, zε(b)−δε} > z̃ε(b) = zε(b) ≥ 0. (6.31b)

Since b ∈ B+
ε \Bε = Ω+

ε \Ω−ε is possible, in relation (6.31b) and in the following table
every function has to be understood as its extension with respect to the continuation
operator Vε : KεΛ(Ω) → KεΛ(Ω+

ε ) given by (4.1). Keeping this remark in mind the
following estimates are valid.

if z̃ε(a) ≥ z̃ε(b) if z̃ε(a) < z̃ε(b)
|z̃ε(a)−z̃ε(b)| = z̃ε(a)−z̃ε(b) = z̃ε(b)−z̃ε(a)

(6.31a)

≤ zε(a)−z̃ε(b)
(6.31b)
< max{0, zε(b)−δε} − z̃ε(a)

(6.31b)= zε(a)−zε(b)
(6.31a)= max{0, zε(b)−δε} −max{0, zε(a)−δε}

Hence, we also find∣∣∣(R ε
2
z̃ε(x)

)
bi
∣∣∣ ≤ max

{∣∣∣(R ε
2
(max{0, zε(x)−δε})

)
bi
∣∣∣, ∣∣∣(R ε

2
zε(x)

)
bi
∣∣∣}, (6.32)

for all x ∈ ⋃
λ∈S(i)

ε
ε(λ−1

2bi+Y ).

7. Summary of the case x ∈ Jε: Combining (6.30) and (6.32) these inequalities hold for
every x ∈ Jε, which finally results in

|R ε
2
z̃ε|p ≤


|R ε

2
zε|p in Aε\Jε,

|R ε
2
zε|p + |R ε

2
zε|p in Jε,

|R ε
2
zε|p in B+

ε \Jε,
(6.33)

by recalling (6.29), since |max{C1, C2}|p ≤ |C1|p + |C2|p and since

|R ε
2

max{0, zε(x)−δε}| ≤ |R ε
2
(zε(x)−δε)| = |R ε

2
zε(x)|.

Exploiting (6.33) we conclude in the case m = 1 that

lim sup
ε→0

(
‖R ε

2
z̃ε‖pLp(Ω+

ε )d − ‖R ε
2
zε‖pLp(Ω+

ε )d

)
≤ lim sup

ε→0

(∫
Aε\Jε

|R ε
2
zε(x)|p − |R ε

2
zε(x)|pdx

+
∫
B+
ε \Jε
|R ε

2
zε(x)|p − |R ε

2
zε(x)|pdx

+
∫
Jε
|R ε

2
zε(x)|p + |R ε

2
zε(x)|p − |R ε

2
zε(x)|pdx

)
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= lim sup
ε→0

(∫
Aε∪Jε

|R ε
2
zε(x)|pdx−

∫
Aε\Jε

|R ε
2
zε(x)|pdx

)

≤ lim
ε→0

∫
Ω+
ε

|R ε
2
zε(x)|pdx− lim inf

ε→0

∫
Ω
|1Aε\Jε(x)R ε

2
zε(x)|pdx

= ‖∇z̃0‖pLp(Ω)d − ‖∇z0‖pLp(Ω)d ,

where in the second last line the first term converges to ‖∇z̃0‖pLp(Ω)d according to (6.26).
Moreover, weak lower semi-continuity of the norm together with the weak convergence
1Aε\JεR ε

2
zε ⇀ ∇z0 in Lp(Ω)d is exploited for the second one. Note that due to estimate

(6.28) we have 1Aε\Jε → 1Ω in Lq(Ω) for every q ∈ [1,∞), since limε→0 µd(Bε) = 0
implies limε→0 µd(B+

ε ) = 0.

8. The general case m > 1: Up to now, in the case m > 1 it holds (j ∈ {1, 2, . . . ,m})

lim sup
ε→0

(
‖R ε

2
z̃(j)
ε ‖

p

Lp(Ω+
ε )d − ‖R ε

2
v(j)
ε ‖

p

Lp(Ω+
ε )d

)
≤ ‖∇z̃(j)

0 ‖
p
Lp(Ω)d − ‖∇v

(j)
0 ‖

p
Lp(Ω)d

for every component z̃(j)
ε , v(j)

ε , z̃
(j)
0 , v

(j)
0 of the functions z̃ε, zε ∈ KεΛ(Ω; [0, 1]m) and z̃0, z0 ∈

W1,p(Ω; [0, 1])m. Summing up these inequalities for all j = 1, 2, . . . ,m we finally have

lim sup
ε→0

(
‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d − ‖R ε
2
zε‖pLp(Ω+

ε )m×d

)
≤ ‖∇z̃0‖pLp(Ω)m×d − ‖∇z0‖pLp(Ω)m×d .

9. R ε
2
z̃ε|Ω ⇀ ∇z̃0 in Lp(Ω)m×d: According to step 8 Theorem 4.5 can be applied for

the sequence (z̃ε)ε>0. Moreover, due to step 2 the limit-function of Theorem 4.5 is
identified as z̃0 ∈W1,p(Ω; [0, 1]m) which altogether yields R ε

2
z̃ε|Ω ⇀ ∇z̃0 in Lp(Ω)m×d for

a subsequence (not relabeled).

Now, Theorem 6.16 enables us to construct the mutual recovery sequence (ũε, z̃ε)ε>0.

Proof of Theorem 6.15. Part (a): Let (uε, zε)ε>0 be a the stable sequence with respect
to t ∈ [0, T ] converging to the limit (u0, U1, z0) ∈ Q0; see Definition 6.12. Then, for a
given function (ũ0, Ũ1, z̃0) ∈ Q0 we start by constructing the mutual recovery sequence
(ũε, z̃ε)ε>0.

1. First, the z-component z̃ε ∈ KεΛ(Ω; [0, 1]m) is constructed and (6.23) is verified.
Observe that in the case of D0(z0, z̃0) = ∞, the lim sup-inequality (6.23) is trivially
fulfilled for the sequence (z̃ε)ε>0 constructed in the proof of Theorem 4.9. Hence, without
loss of generality we assume z̃0 ≤ z0 from now on. According to Theorem 6.16 there
exists a sequence (z̃ε)ε>0 satisfying z̃ε ∈ KεΛ(Ω; [0, 1]m), z̃ε ≤ zε, z̃ε → z̃0 in Lp(Ω)m,
R ε

2
z̃ε|Ω ⇀ ∇z̃0 in Lp(Ω)m×d, and

lim sup
ε→0

(
‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d − ‖R ε
2
zε‖pLp(Ω+

ε )m×d

)
≤ ‖∇z̃0‖pLp(Ω)m×d − ‖∇z0‖pLp(Ω)m×d .

Recalling assumption (6.8) results in limε→0Dε(zε, z̃ε) = D0(z0, z̃0) and (6.23) is shown.

2. Now the u-component ũε ∈ H1
ΓDir

(Ω)d is constructed. Adopting the notation of
Proposition 3.8 let wε ∈ H1

0(Ω)d be the solution of the elliptic problem stated there with
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6 Homogenization of unidirectional microstructure evolution models

w0 :≡ 0 ∈ H1
0(Ω)d and W1 := Ũ1 ∈ L2(Ω; H1

av(Y))d. Then according to Proposition 3.8
we have wε ⇀ 0 in H1

0(Ω)d, wε s→ 0 in L2(Ω×Y )d, and ∇wε
s→ ∇yŨ1 in L2(Ω×Y )d×d.

Thus, the u-component of the mutual recovery sequence is defined via

ũε := ũ0 + wε.

Using property (b) of Proposition 3.5 and the convergence results for (wε)ε>0 we find

ũε ⇀ ũ0 in H1
ΓDir

(Ω)d,
ũε

s→ Eũ0 in L2(Ω×Y )d,
∇ũε

s→ ∇xEũ0+∇yŨ1 in L2(Ω×Y )d×d.

3. Now we are in the position to prove the lim sup-inequality stated in (6.24). According
to the assumption and step 2 we have uε ⇀ u0 in H1

ΓDir
(Ω)d and ũε ⇀ ũ0 in H1

ΓDir
(Ω)d

which implies
lim
ε→0

(
〈`(t), uε〉 − 〈`(t), ũε〉

)
= 〈`(t), u0〉 − 〈`(t), ũ0〉.

4. Next we prove that

lim sup
ε→0

(
〈Cε(z̃ε)e(ũε), e(ũε)〉L2(Ω)d×d − 〈Cε(zε)e(uε), e(uε)〉L2(Ω)d×d

)
≤ 〈C0(z̃0)ẽ(ũ0, Ũ1), ẽ(ũ0, Ũ1)〉L2(Ω×Y )d×d − 〈C0(z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d . (6.34)

Combining this with the convergence results of step 1 and 3 implies the lim sup-inequality
(6.24). To show relation (6.34) we are going to prove

lim
ε→0
〈Cε(z̃ε)e(ũε), e(ũε)〉L2(Ω)d×d = 〈C0(z̃0)ẽ(ũ0, Ũ1), ẽ(ũ0, Ũ1)〉L2(Ω×Y )d×d (6.35)

and

lim inf
ε→0

〈Cε(zε)e(uε), e(uε)〉L2(Ω)d×d ≥ 〈C0(z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d . (6.36)

Ad (6.35): Since z̃ε → z̃0 in Lp(Ω)m according to Theorem 3.9 we have Cε(z̃ε) s→ C0(z̃0) in
L1(Ω×Y ; Linsym(Rd×d

sym;Rd×d
sym)). Adopting the notation of Corollary 3.6 let mε := Cε(z̃ε),

M0 := C0(z̃0), and vε := e(ũε), V0 := ẽ(ũ0, Ũ1). Then Corollary 3.6 together with
the convergence results for (ũε)ε>0 give wε := Cε(z̃ε)e(ũε) s→ C0(z̃0)ẽ(ũ0, Ũ1) =: W0 in
L2(Ω×Y )d×d. With this, Proposition 3.5(a) yields (6.35).

Ad (6.36): We start with the following integral identity valid according to identity (3.2)
and the product rule for the unfolding operator Tε:

〈Cε(zε)e(uε), e(uε)〉L2(Ω)d×d = 〈TεCε(zε)Tεe(uε), Tεe(uε)〉L2(Rd×Y )d×d . (6.37)

Since zε → z0 in Lp(Ω)m according to Theorem 3.9 we have TεCε(zε) → Cex
0 (z0) in

L1(Rd×Y ; Linsym(Rd×d
sym;Rd×d

sym)). Moreover, due to the definition of two-scale convergence
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it holds Tεe(uε) ⇀ ẽex(u0, U1) in L2(Rd×Y )d×d, which enables us to apply Theorem 3.23
of [14] which yields the following inequality:

lim inf
ε′→0

〈TεCε(zε)Tεe(uε), Tεe(uε)〉L2(Rd×Y )d2 ≥ 〈C
ex
0 (z0)ẽex(u0, U1), ẽex(u0, U1)〉L2(Rd×Y )d2 .

Taking into account that supp(Cex
0 (z0)) ⊂ Ω×Y this inequality together with (6.37)

gives (6.36) and the proof of point (a) in Theorem 6.15 is done.

Part (b) is a consequence of point (a): Let (uε, zε)ε>0 be a stable sequence with respect
to t ∈ [0, T ] converging to the limit (u0, U1, z0) ∈ Q0; see Definition 6.12. Then, for
an arbitrary function (ũ0, Ũ1, z̃0) ∈ Q0 with z̃0 ≤ z0 choose (ũε, z̃ε)ε>0 as constructed
in the steps 1 and 2. Note that in the case z̃0 6≤ z0 according to D0(z̃0, z0) = ∞ the
stability condition (S0) is trivially fulfilled. Due to the stability of (uε, zε) ∈ Qε(Ω) at
time t ∈ [0, T ] we have

0 ≤ Eε(t, ũε, z̃ε) +Dε(zε, z̃ε)− Eε(t, uε, zε).

Applying the limsup with respect to the sequence (ε)ε>0 to the right hand side according
to (6.23) and (6.24) results in

0 ≤ E0(t, ũ0, Ũ1, z̃0) + D0(z0, z̃0)− E0(t, u0, U1, z0),
which is nothing else than the stability condition (S0) of (u0, U1, z0) ∈ Q0 at time
t ∈ [0, T ] for the arbitrarily chosen test-function (ũ0, Ũ1, z̃0) ∈ Q0.

6.5 Convergence result

This section provides the main result of this chapter, saying that the models of the
Sections 6.2 and 6.3 are the limit of the microscopic models introduced in Section 6.1.
However, before that we show that E0 : [0, T ]×Q0 → R is the Γ-limit of the sequence
(Eε)ε>0 of functionals Eε : [0, T ]×Qε(Ω)→ R with respect to our special topology.

Theorem 6.17 (Mosco convergence of (Eε)ε>0 to E0). Let (uε, zε)ε>0 be a sequence
satisfying (uε, zε) ∈ Qε(Ω) for all ε > 0 and

uε ⇀ u0 in H1
ΓDir

(Ω)d, zε → z0 in Lp(Ω)m,
uε

s→ Eu0 in L2(Ω×Y )d, R ε
2
zε|Ω ⇀ ∇z0 in Lp(Ω)m×d,

∇uε w
⇀ ∇xEu0+∇yU1 in L2(Ω×Y )d×d.

Then for every t ∈ [0, T ] it holds lim infε→0 Eε(t, uε, zε) ≥ E0(t, u0, U1, z0). Moreover, for
every function (ũ0, Ũ1, z̃0) ∈ Q0 there exists a sequence (ũε, z̃ε)ε>0 with (ũε, z̃ε) ∈ Qε(Ω)
for every ε > 0, with

ũε ⇀ ũ0 in H1
ΓDir

(Ω)d, z̃ε → z̃0 in Lp(Ω)m,
ũε

s→ Eũ0 in L2(Ω×Y )d, R ε
2
z̃ε|Ω → ∇z̃0 in Lp(Ω)m×d,

∇ũε
s→ ∇xEũ0+∇yŨ1 in L2(Ω×Y )d×d,

and with limε→0 Eε(t, ũε, z̃ε) = E0(t, ũ0, Ũ1, z̃0).
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Observe that here the term Mosco refers to the strong two-scale convergence of the re-
covery sequence’s u-component (ũε,∇ũε)ε>0, and not to the weak convergence of (ũε)ε>0
in H1

ΓDir
(Ω)d.

Proof. Ad lim inf-inequality: Due to the assumptions of Theorem 6.17 we already have
limε→0〈`(t), uε〉 = 〈`(t), u0〉 and lim infε→0 ‖R ε

2
zε‖Lp(Ω)m×d ≥ ‖∇z0‖Lp(Ω)m×d . Moreover,

Theorem 3.9 states TεCε(zε)→ Cex
0 (z0) in L1(Rd×Y ; Linsym(Rd×d

sym;Rd×d
sym)). Thus, we are

in the position to apply Theorem 3.23 of [14] which yields the following inequality:

lim inf
ε→0

〈TεCε(zε)Tεe(uε), Tεe(uε)〉L2(Rd×Y )d2 ≥ 〈C
ex
0 (z0)ẽex(u0, U1), ẽex(u0, U1)〉L2(Rd×Y )d2 .

Altogether we proved lim infε→0 Eε(t, uε, zε) ≥ E0(t, u0, U1, z0) for every t ∈ [0, T ], by
taking the integral identity (3.2) and supp(Cex

0 (z0)) ⊂ Ω×Y into account.

Ad lim(sup)-(in)equality: For a given (ũ0, Ũ1, z̃0) ∈ Q0 choosing ũε ∈ H1
ΓDir

(Ω)d as in
step 2 of the proof of Theorem 6.15 yields the stated convergence results for the sequence
(ũε)ε>0.

According to Theorem 4.9 for z̃0 ∈ W1,p(Ω; [0, 1]m) there exists a sequence (z̃ε)ε>0 such
that z̃ε ∈ KεΛ(Ω; [0, 1]m), z̃ε → z̃0 in Lp(Ω)m, and R ε

2
z̃ε|Ω → ∇z̃0 in Lp(Ω)m×d. Moreover,

condition (4.27) implies

lim
ε→0
‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d = ‖∇z̃0‖pLp(Ω)m×d . (6.38)

Finally, Theorem 3.9 yields Cε(z̃ε) s→ C0(z̃0) in L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)). By adopt-
ing the notation of Corollary 3.6, with mε := Cε(z̃ε), M0 := C0(z̃0), vε := e(ũε), and
V0 := ẽ(ũ0, Ũ1) we have wε := Cε(z̃ε)e(ũε) s→ C0(z̃0)ẽ(ũ0, Ũ1) =: W0 in L2(Ω×Y ). Addi-
tionally exploiting Proposition 3.5(a) results in

lim
ε→0
〈Cε(z̃ε)e(ũε), e(ũε)〉L2(Ω)d×d = 〈C0(z̃0)ẽ(ũ0, Ũ1), ẽ(ũ0, Ũ1)〉L2(Ω×Y )d×d . (6.39)

Combining (6.38), (6.39), and limε→0〈`(t), ũε〉 = 〈`(t), ũ0〉 concludes the proof.

Now we are in the position to state the final result of this section, saying that the
sequence of solutions of the microscopic models (Sε) and (Eε) introduced in Section 6.1
converges to a solution of the effective two-scale model (S0) and (E0) introduced in
Section 6.2.

Theorem 6.18 (Convergence result ensuring the existence of solutions to (S0)&(E0)).
Assume that (6.1), (6.2), and (6.5) hold. For ε > 0 and ` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) let

the energy functional Eε : [0, T ]×Qε(Ω)→ R be defined via (6.6) and let the dissipation
distance Dε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] be defined by (6.7) such that (6.8)
and (6.9) hold. Moreover, let the limit energy functional E0 : [0, T ]×Q0 → R and the
limit dissipation distance D0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞] be given as
introduced in Section 6.2. If for every ε > 0 the function (uε, zε) : [0, T ] → Qε(Ω) is
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an energetic solution of (Sε) and (Eε) with (uε(0), zε(0)) = (u0
ε, z

0
ε) and if there exists a

triple (u0
0, U

0
1 , z

0
0) ∈ Q0 such that the initial values satisfy

u0
ε ⇀ u0

0 in H1
ΓDir

(Ω)d, z0
ε → z0

0 in Lp(Ω)m,
u0
ε

s→ Eu0
0 in L2(Ω×Y )d, R ε

2
z0
ε |Ω → ∇z0

0 in Lp(Ω)m×d,
∇u0

ε
s→ ∇xEu

0
0+∇yU

0
1 in L2(Ω×Y )d×d,

then there exists a function (u0, U1, z0) : [0, T ]→ Q0 with

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d),

z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVD0([0, T ]; W1,p(Ω; [0, 1]m))

and a subsequence of (ε)ε>0 (not relabeled) satisfying for all t ∈ [0, T ]

uε(t) ⇀ u0(t) in H1
ΓDir

(Ω)d, zε(t)→ z0(t) in Lp(Ω)m,
uε(t) s→ Eu0(t) in L2(Ω×Y )d, R ε

2
(zε(t))|Ω → ∇z0(t) in Lp(Ω)m×d,

∇uε(t) s→ ∇xEu0(t)+∇yU1(t) in L2(Ω×Y )d×d.

Furthermore, (u0, U1, z0) : [0, T ] → Q0 is an energetic solution to (S0) and (E0) with
(u0(0), U1(0), z0(0)) = (u0

0, U
0
1 , z

0
0) ∈ S0(0). Additionally, for all t ∈ [0, T ] it holds

lim
ε→0
Eε(t, uε(t), zε(t)) = E0(t, u0(t), U1(t), z0(t)),

lim
ε→0

DissDε(zε; [0, t]) = DissD0(z0; [0, t]).

Proof. 1. Let (uε, zε) : [0, T ] → Qε(Ω) be an energetic solution of (Sε) and (Eε) with
(uε(0), zε(0)) = (u0

ε, z
0
ε). We start by proving a priori estimates. Due to (6.5), for

C` := ‖`‖C1([0,T ];(H1
ΓDir

(Ω)d)∗) < ∞ inequality (6.40) below is obtained and is further

estimated by exploiting the non-negativity of DissDε(zε; [0, t]) in the energy balance (Eε).

Ce‖uε(t)‖2
H1

ΓDir
(Ω)d ≤ Eε(t, uε(t), zε(t)) + C`‖uε(t)‖H1

ΓDir
(Ω)d

(Eε)
≤ Eε(0, u0

ε, z
0
ε)−

∫ t

0
〈 ˙̀(s), uε(s)〉ds+ C`‖uε(t)‖H1

ΓDir
(Ω)d (6.40)

According to the assumptions on (u0
ε, z

0
ε)ε>0 there exists a constant C0 > 0 such that

Eε(0, u0
ε, z

0
ε) ≤ C0 for all ε > 0. Applying the scaled version of Young’s estimate to the

product C`‖uε(t)‖H1
ΓDir

(Ω)d on the right hand side of (6.40) and taking the supremum

with respect to t ∈ [0, T ] on both sides afterwards, yields the uniform estimate

sup
t∈[0,T ]

‖uε(t)‖H1
ΓDir

(Ω)d ≤ c, (6.41)

where c > 0 only depends on C0 > 0, T > 0, and ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗). This
estimate implies that the energy balance’s right hand side is uniformly bounded which
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results in a uniform bound for the total dissipation DissDε(zε; [0, t]) on its left hand
side. Hence, zε : [0, T ]→ KεΛ(Ω; [0, 1]m) is a (component-wise) non-increasing function.
Estimating ‖R ε

2
(zε(t))‖pLp(Ω+

ε )m×d in the same way as in (6.40) gives

sup
ε>0

sup
t∈[0,T ]

‖R ε
2
(zε(t))‖pLp(Ω+

ε )m×d ≤ C0+cC`(T+1),

where we already exploited (6.41). Moreover, ‖zε(t)‖pLp(Ω)m ≤ mµd(Ω) for every ε > 0
and all t ∈ [0, T ] since 0 ≤ zε(t) ≤ 1 by definition. Combining all estimates results in
the following uniform bound of the solution (uε, zε) : [0, T ] → Qε(Ω): There exists a
constant C > 0 depending only on C0 > 0, T > 0, and ` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) such

that for all ε > 0 it holds:

sup
ε>0

sup
t∈[0,T ]

(
‖uε(t)‖H1

ΓDir
(Ω)d + ‖zε(t)‖pLp(Ω)m + ‖R ε

2
(zε(t))‖pLp(Ω+

ε )m×d

)
≤ C. (6.42)

2. Now we are going to construct a function z0 : [0, T ] → W1,p(Ω; [0, 1]m) and choose a
subsequence (ε̃)ε̃>0 of (ε)ε>0 such that for any t ∈ [0, T ] the sequence (zε̃(t))ε̃>0 converges
to z0(t) with respect to the strong L1-topology. Similarly to the proceeding in [49,
Section 3], we start by constructing the function z0 : [0, T ] → W1,p(Ω; [0, 1]m). This
construction is based on the limit of the sequence (Fε)ε>0 of functions Fε : [0, T ] → R
defined via

Fε(t) := ‖zε(t)‖L1
1(Ω)m , (6.43)

where the subscript 1 denotes that the space L1(Ω)m for v ∈ L1(Ω)m is equipped with
the norm ‖v‖L1

1(Ω)m := ∑m
j=1 ‖vj‖L1(Ω). As already mentioned in step 1, Fε : [0, T ] → R

is monotonously decreasing and uniformly bounded by mµd(Ω). Therefore, the Helly
selection principle is applicable saying that there exists a monotonously decreasing func-
tion F0 ∈ BV([0, T ];R) and a subsequence (ε′)ε′>0 of (ε)ε>0 such that for all t ∈ [0, T ] it
holds

Fε′(t) ε′→0−→ F0(t). (6.44)

Let J0 ⊂ [0, T ] be the jump set of F0, which is at most countable since F0 ∈ BV([0, T ];R)
is monotone. Furthermore, let KT ⊂ [0, T ]\J0 be a dense and countable subset and
choose (tn)n∈N such that (tn)n∈N = KT ∪ J0. For arbitrary but fixed n ∈ N according
to the uniform bound (6.42) the assumptions of Theorem 4.5 and Theorem 3.9 for the

sequence (zε′(tn))ε′>0 are satisfied. Hence, there exists a function z
(tn)
0 ∈W1,p(Ω; [0, 1]m)

and a subsequence (ε′′)ε′′>0 of (ε′)ε′>0 satisfying for ε→ 0

zε′′(tn)→ z
(tn)
0 in Lp(Ω)m, (6.45a)

R ε′′
2

(zε′′(tn))|Ω ⇀ ∇z(tn)
0 in Lp(Ω)m×d, (6.45b)

Cε′′(zε′′(tn)) s→ C0(z(tn)
0 ) in L1(Ω×Y ; Linsym(Rd×d

sym;Rd×d
sym)). (6.45c)

Let (z(tn)
0 )n∈N ⊂ W1,p(Ω; [0, 1]m) denote the set of all limit functions. Since (tn)n∈N

is a countable set, by a diagonalization argument we are able to construct a (possibly
different but not relabeled) subsequence (ε′′)ε′′>0 of (ε′)ε′>0 satisfying (6.45) for all n ∈ N.
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Due to (6.45a) for all n ∈ N we have Fε′′(tn) = ‖zε′′(tn)‖L1
1(Ω)m

ε′′→0−→ ‖z(tn)
0 ‖L1

1(Ω)m which

results in F0(tn) = ‖z(tn)
0 ‖L1

1(Ω)m by keeping (6.44) in mind. Moreover, the monotonicity

of zε′′ : [0, T ] → KεΛ(Ω; [0, 1]m) together with (6.45a) results in z
(tl)
0 ≤ z

(tk)
0 for all

tk < tl ∈ KT . According to this relation of z
(tk)
0 and z

(tl)
0 for tk < tl ∈ KT we find

Cm‖z(tk)
0 −z

(tl)
0 ‖L1(Ω)m ≤ ‖z(tk)

0 −z
(tl)
0 ‖L1

1(Ω)m = ‖z(tk)
0 ‖L1

1(Ω)m−‖z
(tl)
0 ‖L1

1(Ω)m = F0(tk)−F0(tl)

which due to the continuity of F0 on [0, T ]\J0 ⊃ KT converges to 0 for tk ↗ tl or tl ↘ tk.
Here, Cm > 0 is the constant resulting from the utilization of the norm equivalence in
dimension m. Hence, the function ζ0 : KT → W1,p(Ω; [0, 1]m) for all tk ∈ KT defined

by ζ0(tk) := z
(tk)
0 is continuous with respect to ‖ · ‖L1(Ω)m . This function enables us to

construct the limit function z0 : [0, T ]→ L1(Ω)m in the following way:

(a) z0(tn) = z
(tn)
0 for all n ∈ N,

(b) z0|[0,T ]\J0 is the continuous extension of ζ0 with respect to ‖ · ‖L1(Ω)m .

Observe that according to J0 ⊂ (tn)n∈N and the density of KT ⊂ [0, T ]\J0 the function
z0 : [0, T ]→ L1(Ω)m is defined everywhere on [0, T ].
3. Now we show that the sequence (zε′′(t))ε′′>0 for all t ∈ [0, T ] converges to the function
z0(t) in the sense of (6.45). Since the monotonicity of zε′′ : [0, T ] → KεΛ(Ω; [0, 1]m) has
to be understood as zε′′(t̃) ≤ zε′′(t) (component-wise) for all t < t̃ ∈ [0, T ] it holds

‖zε′′(t)−zε′′(t̃)‖L1
1(Ω)m = ‖zε′′(t)‖L1

1(Ω)m − ‖zε′′(t̃)‖L1
1(Ω)m

(6.43)= Fε′′(t)−Fε′′(t̃).

Exploiting this relation in the following calculation yields zε′′(t)→ z0(t) in L1(Ω)m. For
t ∈ [0, T ]\(tn)n∈N ⊂ [0, T ]\J0 we choose tm ∈ KT such that t < tm. Then

lim
ε′′→0
‖zε′′(t)−z0(t)‖L1(Ω)m ≤ lim

ε′′→0

(
‖zε′′(t)−zε′′(tm)‖L1(Ω)m + ‖zε′′(tm)−z0(tm)‖L1(Ω)m

)
+ ‖z0(tm)−z0(t)‖L1(Ω)m

(6.45a)

≤ lim
ε′′→0

C−1
m

(
Fε′′(t)−Fε′′(tm)

)
+ ‖z0(tm)−z0(t)‖L1(Ω)m

(6.44)= C−1
m

(
F0(t)−F0(tm)

)
+ ‖z0(tm)−z0(t)‖L1(Ω)m . (6.46)

Since F0 and z0 are continuous on [0, T ]\J0, tm ∈ KT with t < tm can be chosen such that
(6.46) gets arbitrarily small, which proves zε′′(t)→ z0(t) in L1(Ω)m for every t ∈ [0, T ].
On the other hand, according to estimate (6.42) we are able to apply Theorem 4.5 and
Theorem 3.9 again such that for arbitrary but fixed t ∈ [0, T ]\(tn)n∈N there exists a
function z(t) ∈W1,p(Ω; [0, 1]m) and a subsequence (ε′′′)ε′′′>0 of (ε′′)ε′′>0 satisfying

zε′′′(t)→ z(t) in Lp(Ω)m, (6.47a)

R ε′′′
2

(zε′′′(t))|Ω ⇀ ∇z(t) in Lp(Ω)m×d, (6.47b)

Cε′′′(zε′′′(t)) s→ C0(z(t)) in L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)). (6.47c)
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Since t ∈ [0, T ]\(tn)n∈N was chosen arbitrarily and we already proved zε′′(t) → z0(t) in
L1(Ω)m for all t ∈ [0, T ], this convergence result first of all gives z0(t) ∈W1,p(Ω; [0, 1]m)
for every t ∈ [0, T ]. Observe that the validity of this statement for all t ∈ (tn)n∈N is
already guaranteed by (6.45). Secondly, with z(t) = z0(t) the convergence result (6.47) is
valid for all converging subsequences of (ε′′)ε′′>0 such that we conclude that (6.47) holds
for the whole sequence (ε′′)ε′′>0.

Recapitulating all results proven in step 2 and 3 there exists a piecewise continuous,
monotone function z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) and a subsequence of (ε)ε>0 (not
relabeled) such that the following is valid for all t ∈ [0, T ] if ε→ 0:

zε(t)→ z0(t) in Lp(Ω)m, (6.48a)

R ε
2
(zε(t))|Ω ⇀ ∇z0(t) in Lp(Ω)m×d, (6.48b)

Cε(zε(t)) s→ C0(z0(t)) in L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)). (6.48c)

4. Now for every t ∈ [0, T ] we prove the displacement field’s convergence for the same
subsequence constructed in step 2 and 3. For this purpose, let u0 : [0, T ] → H1

ΓDir
(Ω)d

and U1 : [0, T ]→ L2(Ω; H1
av(Y))d be uniquely defined by

u0(t) ∈ Argmin{E0(t, u, z0(t)) |u ∈ H1
ΓDir

(Ω)d}, (6.49a)

U1(t) := Lz0(t)(ex(u0(t))) (see Theorem 6.9), (6.49b)

where z0 : [0, T ]→W1,p(Ω) is the function defined in step 2.

On the other hand for fixed t ∈ [0, T ] we have (uε(t), zε(t)) ∈ Sε(t) by assumption. Due

to (6.42) and Proposition 3.7 there exist (u(t)
0 , U

(t)
1 ) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d and a
subsequence (ε′)ε′>0 of the sequence (ε)ε>0 considered in (6.48) such that

uε′(t) ⇀ u
(t)
0 in H1

ΓDir
(Ω)d,

uε′(t) s→ Eu
(t)
0 in L2(Ω×Y )d,

∇uε′(t) w
⇀ ∇xEu

(t)
0 +∇yU

(t)
1 in L2(Ω×Y )d×d.

Thus, we verified the applicability of Theorem 6.15 which states (u(t)
0 , U

(t)
1 , z0(t)) ∈ S0(t).

Following Corollary 6.11 this is equivalent to

U
(t)
1 = Lz0(t,·)(ex(u(t)

0 )(·)) and (u(t)
0 , z0(t)) ∈ S0(t). (6.50a)

By choosing z̃ = z0(t) in the stability condition (S0) we find

u
(t)
0 ∈ Argmin{E0(t, u, z0(t)) |u ∈ H1

ΓDir
(Ω)d}. (6.50b)

Comparing (6.49) and (6.50) we obtain (u(t)
0 , U

(t)
1 ) = (u0(t), U1(t)). This identification

shows

uε(t) ⇀ u0(t) in H1
ΓDir

(Ω)d, (6.51a)

uε(t) s→ Eu0(t) in L2(Ω×Y )d, (6.51b)

∇uε(t) w
⇀ ∇xEu0(t)+∇yU1(t) in L2(Ω×Y )d×d, (6.51c)
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where the validity for the whole sequence (ε)ε>0 considered in (6.48) is proven via a
contradiction argument similar to that applied in the proof of Corollary 3.6.

Note that in this step we already proved (u0(t), U1(t), z0(t)) ∈ S0(t) for all t ∈ [0, T ],
which includes (u0

0, U
0
1 , z

0
0) ∈ S0(0). Since the pointwise limit of a sequence of measur-

able functions is measurable again, according to the uniform estimate (6.42) we have
(u0, U1) ∈ L∞([0, T ]; H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d).
5. For proving that (u0, U1, z0) : [0, T ]→ Q0 satisfies the energy balance (E0) we pass in
(Eε) to the limit ε → 0. We start with the right hand side. Due to the uniform bound
(6.42) we have |〈 ˙̀(s), uε(s)〉| ≤ C`C for every ε > 0 and all s ∈ [0, T ] such that

lim
ε→0

∫ t

0
〈 ˙̀(s), uε(s)〉ds =

∫ t

0
lim
ε→0
〈 ˙̀(s), uε(s)〉ds =

∫ t

0
〈 ˙̀(s), u0(s)〉ds

by applying the theorem of dominated convergence and making use of uε(s) ⇀ u0(s) in
H1

ΓDir
(Ω)d for all s ∈ [0, t].

For mε := Cε(z0
ε), M0 := C0(z0

0), vε := e(u0
ε), and V0 := ẽ(u0

0, U
0
1 ) applying Corollary 3.6

gives wε := Cε(z0
ε)e(u0

ε)
s→ C0(z0

0)ẽ(u0
0, U

0
1 ) =: W0 in L2(Ω×Y )d×d due to the assump-

tions for the sequences of initial values (z0
ε)ε>0 and (u0

ε)ε>0. Thus, Proposition 3.5(a)
yields

lim
ε→0
〈Cε(z0

ε)e(u0
ε), e(u0

ε)〉L2(Ω)d×d = 〈C0(z0
0)ẽ(u0

0, U
0
1 ), ẽ(u0

0, U
0
1 )〉L2(Ω×Y )d×d ,

which finally results in limε→0 Eε(t, u0
ε, z

0
ε) = E0(t, u0

0, U
0
1 , z

0
0).

6. Left hand side of (Eε): According to the convergence results (6.48) and (6.51) all
assumptions of Theorem 6.17 are fulfilled, such that for all t ∈ [0, T ] we have

lim inf
ε→0

Eε(t, uε(t), zε(t)) ≥ E0(t, u0(t), U1(t), z0(t)). (6.52)

For N ∈ N let πN := {0 = t0 < t1 < . . . < tN = t} be an arbitrary partition of
the interval [0, t]. Then, by exploiting (i) the definition of DissDε(zε; [0, t]), (ii) the
assumption (6.8), and (iii) the convergence result (6.48a) the following estimate holds:

lim inf
ε→0

DissDε(zε; [0, t]) ≥ lim
ε→0

N∑
j=1
Dε(zε(tj−1), zε(tj)) =

N∑
j=1

D0(z0(tj−1), z0(tj)).

By taking the supremum with respect to all finite partition πN of the interval [0, t] on
the right hand side this inequality yields

lim inf
ε→0

DissDε(zε; [0, t]) ≥ DissD0(z0; [0, t]). (6.53)

Since DissDε(zε; [0, t]) is uniformly bounded with respect to ε > 0 and t ∈ [0, T ], re-
lation (6.53) implies z0 ∈ BVD0([0, T ]; W1,p(Ω; [0, 1]m)). Adding (6.52) and (6.53) and
combing this with the convergence results of step 5 for all t ∈ [0, T ] we have

(E0
l ) ≤ lim inf

ε→0
Eε(t, uε(t), zε(t)) + lim inf

ε→0
DissDε(zε; [0, t]) ≤ lim

ε→0
(Eε

r)
step5= (E0

r ), (6.54)
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6 Homogenization of unidirectional microstructure evolution models

where the index l and r denote the left and right hand side of the respective energy
balance. Due to the stability (u0(t), U1(t), z0(t)) ∈ S0(t) proved in step 4 we immediately
obtain the opposite inequality (E0

l ) ≥ (E0
r ) according to Proposition 2.4 of [56], such

that finally (u0, U1, z0) : [0, T ]→ Q0 satisfies for all t ∈ [0, T ] the energy balance

E0(t, u0(t), U1(t), z0(t))+DissD0(z0; [0, t])=E0(t, u0(0), U1(0), z0(0))−
∫ t

0
〈 ˙̀(s), u0(s)〉ds.

Due to the validity of the energy balance (E0) actually all inequalities in (6.54) are
equalities. This implies that (6.52) and (6.53) also have to be equalities and that their
limits exist. Hence, it holds

lim
ε→0
Eε(t, uε(t), zε(t)) = E0(t, u0(t), U1(t), z0(t)), (6.55)

lim
ε→0

DissDε(zε; [0, t]) = DissD0(z0; [0, t]).

7. So far we verified that (u0(t), U1(t), z0(t)) ∈ Q0 is a solution of (S0) and (E0) and it re-
mains to prove the strong convergence properties. Since weak convergence combined with
norm convergence implies strong convergence (see [3] Exercise 6.6) for the z-component
this proof is done by showing limε→0 ‖R ε

2
(zε(t))‖pLp(Ω)m×d = ‖∇z0(t)‖pLp(Ω)m×d . Therefore,

let aε(t) := 〈Cε(zε(t))e(uε(t)), e(uε(t))〉L2(Ω)d×d and bε(t) := ‖R ε
2
(zε(t))‖pLp(Ω+

ε )m×d and

start by recalling

lim inf
ε→0

aε(t) ≥ 〈C0(z0(t))ẽ(u0(t), U1(t)), ẽ(u0(t), U1(t))〉L2(Ω×Y )d×d =: a(t) (6.56a)

analogously to (6.36) and

lim inf
ε→0

bε(t) ≥ lim inf
ε→0

‖R ε
2
(zε(t))‖pLp(Ω)m×d ≥ ‖∇z0(t)‖pLp(Ω)m×d =: b(t), (6.56b)

since R ε
2
(zε(t))|Ω ⇀ ∇z0(t) in Lp(Ω)m×d was proven in (6.48b). These lim inf-inequalities

together with condition (6.55) yield

a(t)+b(t) ≤ lim inf
ε→0

aε(t) + lim inf
ε→0

bε(t) ≤ lim
ε→0

(aε(t)+bε(t))
(6.55)= a(t)+b(t),

stating that the relations in (6.56a) and (6.56b) actually are all equalities. By assuming
the opposite, finally the existence of the limits limε→0 aε(t) = a(t) and limε→0 bε(t) = b(t)
is shown, which together with (6.56b) results in the desired convergence result; namely
limε→0 ‖R ε

2
(zε(t))‖pLp(Ω)m×d = ‖∇z0(t)‖pLp(Ω)m×d .

8. To prove ∇uε(t) s→ ∇xEu0(t)+∇yU1(t) in L2(Ω×Y )d×d, choose ũε(t) := u0(t)+vε(t),
where vε(t) ∈ H1

0(Ω)d is the solution of the elliptic problem stated in Proposition 3.8
with v0(t) :≡ 0 ∈ H1

0(Ω)d and V1(t) := U1(t) ∈ L2(Ω; H1
av(Y))d. Thus, the proof is based

on estimating the term ‖∇(uε(t)−ũε(t))‖2
L2(Ω)d×d by assumption (6.5) in the following
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6.5 Convergence result

way:

Ce‖∇(uε(t)−ũε(t))‖2
L2(Ω)d×d

≤ 1
2〈Cε(zε(t))e(uε(t)−ũε(t)), e(uε(t)−ũε(t))〉L2(Ω)d×d

= 1
2〈Cε(zε(t))e(uε(t)), e(uε(t))〉L2(Ω)d×d − 1

2〈Cε(zε(t))e(ũε(t)), e(ũε(t))〉L2(Ω)d×d

+ 〈Cε(zε(t))e(ũε(t)), e(ũε(t)−uε(t))〉L2(Ω)d×d

= Eε(t, uε(t), zε(t))− Eε(t, ũε(t), zε(t)) + 〈`(t), uε(t)−ũε(t)〉 (6.57a)

+ 〈Cε(zε(t))e(ũε(t)), e(ũε(t)−uε(t))〉L2(Ω)d×d . (6.57b)

Now we show that limε→0 ‖∇(uε(t)−ũε(t))‖2
L2(Ω)d×d = 0. Observe that

ũε(t) ⇀ u0(t) in H1
ΓDir

(Ω)d, (6.58a)

ũε(t) s→ Eu0(t) in L2(Ω×Y )d, (6.58b)

∇ũε(t) s→ ∇xEu0(t)+∇yU1(t) in L2(Ω×Y )d×d, (6.58c)

due to Proposition 3.8. Then analogously to step 4 of the proof of Theorem 6.15 (see
(6.35)) we have

〈Cε(zε(t))e(ũε(t)), e(ũε(t))〉L2(Ω)d2
ε→0−→〈C0(z0(t))ẽ(u0(t), U1(t)), ẽ(u0(t), U1(t))〉L2(Ω×Y )d2 .

Note that here the function (ũ0, Ũ1, z̃0) of the proof of Theorem 6.15 (see (6.35)) is
replaced by (u0(t), U1(t), z0(t)). Moreover, due to convergence result (6.58a) it holds
limε→0〈`(t), ũε(t)〉 = 〈`(t), u0(t)〉, and limε→0 ‖R ε

2
(zε(t))‖Lp(Ω)m×d = ‖∇z0(t)‖Lp(Ω)m×d

was proved in step 7. Taking all together results in

lim
ε→0
Eε(t, ũε(t), zε(t)) = E0(t, u0(t), U1(t), z0(t)),

which proves that the first two terms of line (6.57a) in the limit (ε→ 0) sum up to zero;
see (6.55). Trivially, according to uε(t) ⇀ u0(t) in H1

ΓDir
(Ω)d and (6.58a) the last term of

line (6.57a) converges to zero, too. Since e(ũε(t)−uε(t)) w
⇀ 0 in L2(Ω×Y )d×d according

to (6.51c) and (6.58c), and Cε(zε(t))e(ũε(t)) s→ C0(z0(t))ẽ(u0(t), U1(t)) in L2(Ω×Y )d×d
analogously to step 4 of the proof of Theorem 6.15, also the L2-scalar product term of
line (6.57b) converges to zero.

Now we conclude the proof by the following estimate, where we start by adding zero to
apply the triangle inequality afterwards.

‖Tε(∇uε(t))− (∇xEu0(t)+∇yU1(t))ex‖L2(Rd×Y )d2

≤‖Tε(∇(uε(t)−ũε(t)))‖L2(Rd×Y )d2 +‖Tε(∇ũε(t))−(∇xEu0(t)+∇yU1(t))ex‖L2(Rd×Y )d2 .

Since limε→0 ‖∇(uε(t)−ũε(t))‖2
L2(Ω)d×d = 0, by exploiting the norm preservation of the

unfolding operator the first term converges to zero. Furthermore, according to (6.58c)
also the last term converges to zero, which concludes the proof.
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7 Effective damage models based on
unidirectional evolution of micro-
scopic inclusions of weak material

Here and in the following chapters the homogenization result of Chapter 6 is exploited
to derive effective models for different types of damage models. In this context the
asymptotic behavior of families of brutal microscopic models are investigated whose un-
derlying microstructures are those of Section 2.6. That means, that the analytical point
of view of Chapter 6, i.e., the microstructure description via Ĉ ∈ L∞([0, 1]m;M(Y )), is
replaced by the geometrical ansatz described in Section 2.6. This procedure includes,
that the assumptions guaranteeing existence of solutions and enabling the derivation
of effective models are made on the damage set, which is based on a given set valued
function L : [0, 1]m → LLeb(Y ). The advantage of this ansatz is the internal variable’s
monotonicity inherited to the stiffness of the considered body; see also Section 2.6. To
apply the homogenization theory presented in Chapter 6 to this geometrical description
of microstructure, we have to guarantee the validity of the crucial assumptions (6.1)–
(6.3). This is assured by the following conditions (7.1) and (7.2) as we will see below. As
already mentioned in Section 2.5 our brutal damage models are based on two positive
definite tensors Cstrong,Cweak ∈ Linsym(Rd×d

sym;Rd×d
sym), i.e., there exists a positive constant

α such that

for all ξ ∈ Rd×d
sym it holds α|ξ|2d×d ≤ 〈Cweakξ, ξ〉d×d ≤ 〈Cstrongξ, ξ〉d×d. (7.1)

The assumptions on the microstructure determining mapping L : [0, 1]m → LLeb(Y ) are
the following:

• L : [0, 1]m → LLeb(Y ) is a non-increasing function; see (2.21). (7.2a)

• For all ẑ ∈ [0, 1]m with ẑ 6= 1 it holds µd(L(ẑ)) > 0. (7.2b)

• For all ẑ ∈ [0, 1]m the set L(ẑ) is a closed subset of cl(Y ). (7.2c)

For any given ẑ ∈ [0, 1]m and every (ẑδ)δ>0 ⊂ [0, 1]m satisfying ẑδ → ẑ in Rm it holds

• µd(L(ẑ)\L(ẑδ)) + µd(L(ẑδ)\L(ẑ))→ 0 for δ → 0 and (7.2d)

• ∀∆ > 0 ∃ δ0 > 0 such that for all δ ∈ (0, δ0) it holds L(ẑδ) ⊂ neigh∆(L(ẑ)). (7.2e)

We will discuss concrete examples for L : [0, 1]m → LLeb(Y ) in Subsection 7.1.2.
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7 Effective damage models for the growth of inclusions of weak material

Figure 7.1: Examples for the mapping L : [0, 1]m → LLeb(Y ) fulfilling condition (7.2d)
but violating (7.2e). (i) Due to the red illustrated subset the indicated
sequence violates (7.2e). (ii) Any element of the sequence (L(ẑδ))δ>0 is given
by the illustrated ball from which a lower dimensional subset is cut off.

Starting with the given set valued function L : [0, 1]m → LLeb(Y ) the tensor valued
mapping ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) building the foundation of Chapter 6,
for all ẑ ∈ [0, 1]m and every y ∈ Y is given by (2.19) in the following way:

ĈIn(ẑ)(y) := 1Y \L(ẑ)(y)Cstrong + 1L(ẑ)(y)Cweak. (7.3)

Here, the superscript In refers to the modeling of the inclusions of weak material in a
bulk of much stronger material. By assuming the relations (7.1) and (7.2) to hold, for
ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) defined by (7.3) the conditions (6.1)–(6.3) will be
verified in the following.

According to (7.1) for Ĉe := α
2 the tensor ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) fulfills

inequality (6.3). The monotonicity constraint (7.2a) is to ensure that the damage evolu-
tion is unidirectional and has to be understood as stated in (2.21). Since microstructure
changes of measure zero do have no effect on the stored energy of the systems considered
in the following, asking for (7.2b) prevents the damage sets from being sets of measure
zero. Due to the integral description of the models below, depending on the choice of the
dissipation distance, violating (7.2b) allows for damage progression without dissipating
energy; see Remark 7.5. Alternatively, one could renounce the condition (7.2b) and take
into account microstructure changes of measure zero in the dissipation distance, but this
is just a question of modeling and does not add any mathematical difficulties. Observe
that since µd(L(1)) = 0 is allowed, there is no need of a small amount of weak material
to initiate damage progression. That means, if we start with a body completely occupied
by strong material, occurrence of weak material takes place once the evolution causes a
decrease of the damage variable.

The continuity assumption (7.2d) implies that ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) is
continuous with respect to the strong L1-topology, which means that it satisfies (6.2).
Hence, condition (7.2d) forces changes of the damage set to be continuous with respect
to changes of its volume.
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The remaining assumptions (7.2c) and (7.2e) together with (7.2a) ensure the validity of
condition (6.1), which is stated in the lemma below. Condition (7.2e) represents some
kind of uniformity assumption on the boundary L(ẑ) with respect to changes of the
parameters ẑ ∈ [0, 1]m; see Figure 7.1 for two examples. According to Chapter 6, condi-
tion (6.1) assures the measurability of the energy densities introduced in the following.
This measurability is noteworthy, since due to Remark 7.2 none of the here considered
energy densities are Carathéodory functions.

Lemma 7.1. Let L : [0, 1]m → LLeb(Y ) satisfy the conditions (7.2a), (7.2c), and (7.2e).
Moreover, let ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) be defined by (7.3). Then, for any
measurable function z : Rd → [0, 1]m the mapping

ĈIn(z(·))(·) :

Rd×Y → {Cstrong,Cweak}
(x, y) 7→ ĈIn(z(x))(y)

is measurable on Rd×Y, (7.4)

i.e., condition (6.1) of Chapter 6 is fulfilled.

Remark 7.2. Let the mapping f : Y×Rd×d
sym×Rm → R be defined by

f(y, ξ, ẑ) := 〈ĈIn(ẑ)(y)ξ, ξ〉d×d =
{
〈Cstrongξ, ξ〉d×d if y ∈ Y \L(ẑ),
〈Cweakξ, ξ〉d×d if y ∈ L(ẑ).

Then for fixed y ∈ Y the mapping f(y, ·, ·) : Rd×d
sym×Rm → R is not continuous on

Rd×d
sym×Rm as for fixed ξ ∈ Rd×d

sym it only takes the values 〈Cstrongξ, ξ〉d×d and 〈Cweakξ, ξ〉d×d.
Hence, f : Y×Rd×d

sym×Rm → R does not satisfy the Carathéodory condition. However, as
follows from the previous lemma, for every measurable function z : Rd → [0, 1]m the map-
ping f̂z : Rd×Y×Rd×d

sym → R with f̂z(x, y, ξ) := 〈ĈIn(z(x))(y)ξ, ξ〉d×d is a Carathéodory

function, since the mapping ξ 7→ f̂z(x, y, ξ) for all (x, y) ∈ Rd×Y is continuous and
since (x, y) 7→ f̂z(x, y, ξ) for any ξ ∈ Rd×d

sym is measurable.

Proof. To verify condition (7.4) let z : Rd → [0, 1]m be an arbitrary but fixed measurable
function. Due to the definition of ĈIn : [0, 1]m → L∞(Y ; {Cstrong,Cweak}) given by

(7.3), the mapping ĈIn(z(·))(·) : Rd×Y → {Cstrong,Cweak} is constant on the two sets
M(z) := ⋃

x∈Rd{x}×L(z(x)) and (Rd×Y )\M(z). Hence, (7.4) is proven by showing that
M(z) is a measurable subset of Rd×Y .

For this purpose, we choose a countable sequence (zδ)(δ>0) of simple functions approxi-
mating the measurable mapping z : Rd → [0, 1]m from below, i.e., zδ(x) ↗ z(x) (com-
ponentwise) for all x ∈ Rd. Here, the term simple function means, that there is a
finite number of disjoint, measurable sets Aδ1, A

δ
2, . . . , A

δ
nδ
⊂ Rd and constant vectors

zδ1, z
δ
2, . . . , z

δ
nδ
∈ [0, 1]m such that

⋃nδ
k=1Ak = Rd and zδ = ∑nδ

k=1 1Aδk
zδk. Thus, we now

consider the sequence (M(zδ))δ>0 of M(z) approximating sets. For δ > 0 the measura-
bility of M(zδ) is a consequence of the fact, that it can be written as a finite union of
measurable sets in the following way:

M(zδ) =
nδ⋃
k=1

( ⋃
x∈Aδ

k

{x}×L(zδ(x))
)

=
nδ⋃
k=1

(
Aδk×L(zδk)

)
.
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7 Effective damage models for the growth of inclusions of weak material

Note that for fixed δ > 0 the measurability of the set L(zδk) for all k ∈ {1, 2, . . . , nδ} is
ensured by assumption (7.2c). Due to the relation zδ ≤ z on Rd and condition (7.2a)
we have M(z) ⊂ M(zδ) for every δ > 0 by definition. Moreover,

⋂
δ>0M(zδ) ⊂ M(z) is

shown by the following contradiction argument:

Let (x∗, y∗) ∈ ⋂δ>0M(zδ) but (x∗, y∗) /∈M(z). Then for all δ > 0

y∗ ∈ L(zδ(x∗)) (7.5)

but

dist(y∗, L(z(x∗))) =: 2∆ > 0 (7.6)

since L(z(x∗)) was assumed to be closed; see (7.2c). Condition (7.6) implies

y∗ /∈ neigh∆(L(z(x∗))). (7.7)

Since zδ(x∗) → z(x∗) by assumption, there exists δ0 > 0 such that for all δ ∈ (0, δ0) it
holds

y∗
(7.5)
∈ L(zδ(x∗))

(7.2e)
⊂ neigh∆(L(z(x∗)))

which is a contradiction to (7.7).

All together we proved M(z) = ⋂
δ>0M(zδ). Since M(z) can be written as the countable

intersection of measurable sets, this shows its measurability and hence condition (7.4)
is verified.

7.1 Inclusions of weak material causing damage
progression

In this section for fixed ε > 0 we start by introducing various microscopic damage models
fitting into the homogenization theory of Chapter 6. These different models are given
by the energetic formulation based on an energy functional and a dissipation distance.
The microstructure is modeled by a function L : [0, 1]m → LLeb(Y ) introduced in (7.2).
Before giving explicit examples for L : [0, 1]m → LLeb(Y ), we formulate the abstract
setting. For a given damage variable zε ∈ KεΛ(Ω; [0, 1]m) the microstructure for almost
every x ∈ Ω is modeled by the tensor

CIn
ε (zε)(x) := 1Ω\ΩD

ε (zε)(x)Cstrong + 1ΩD
ε (zε)(x)Cweak, (7.8)

where the damage set ΩD
ε (zε) for λ ∈ Λ−ε (see (2.15)) and zελ :≡ zε|ε(λ+Y ) according to

(2.20) reads as follows:

ΩD
ε (zε) :=

⋃
λ∈Λ−ε

ε(λ+ L(zελ)). (7.9)
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7.1 Inclusions of weak material causing damage progression

Note that due to assumption (2.1) Korn’s inequality is applicable for the domain Ω
which together with (7.1) for all u ∈ H1

ΓDir
(Ω)d results in

α
2CKorn‖u‖2

H1
ΓDir

(Ω)d ≤ α
2 ‖e(u)‖2

L2(Ω)d×d ≤ 1
2〈C

In
ε (zε)e(u), e(u)〉d×d. (7.10)

Therefore, the coercivity condition (6.5) for the microscopic models considered in this
section is fulfilled.

7.1.1 Energy functional and dissipation potential

Analog to Section 6.1, the state space QIn
ε (Ω) is given by

QIn
ε (Ω) := H1

ΓDir
(Ω)d×KεΛ(Ω; [0, 1]m).

Again we once choose p ∈ (1,∞) and keep it fixed for the rest of this chapter. Then the
stored energy of the system is modeled by the energy functional E In

ε : [0, T ]×QIn
ε (Ω)→ R

defined via

E In
ε (t, u, zε) := 1

2〈C
In
ε (zε)e(u), e(u)〉L2(Ω)d×d + ‖R ε

2
zε‖pLp(Ω+

ε )m×d − 〈`(t), u〉, (7.11)

where ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and e(u) denotes the linearized strain tensor. Observe
that the energy density’s measurability is ensured by Lemma 7.1, and according to
Remark 7.2 it does not satisfy the Carathéodory condition.

Referring to Section 5.2 the modeling of the dissipated energy of the system is based on a
dissipation potential. The choice of this potential specifies the relation of (i) the amount
of dissipated energy of the system from one time step to another and (ii) the behavior
of the damage variable along this time interval. Including the examples considered in
the Subsections 7.1.2 and 7.1.4 below, all investigated potentials fulfill condition (5.2)
and hence ensure the rate independence of the respective system; see Proposition 5.6.
To show the applicability of the homogenization theory of Chapter 6, the associated
dissipation distances are calculated such that condition (6.8) can be verified in the
respective case.

Let an arbitrary mapping L : [0, 1]m → LLeb(Y ) satisfying (7.1) and (7.2) be given. In
this general case the amount of dissipated energy of the system from one time step to
another is assumed to be proportional to the change of the damage variable in this time
interval but with possibly different proportionality factors for every component. This
behavior is modeled by a dissipation potential RIn

ε : KεΛ(Ω; [0, 1]m)→ [0,∞] depending
only on the damage variable’s velocity. Choose q′ ∈ (1,∞) and keep it fixed for the
rest of this chapter, i.e., in the following every q′ refers to this choice. Then, for a given
sequence (κIn

ε )ε>0 ⊂ Lq′(Ω; [0,∞)m) satisfying κIn
ε ⇀ κIn

0 in Lq′(Ω)m for some function
κIn

0 ∈ Lq′(Ω; [0,∞)m) the dissipation potential associated to ε > 0 reads as follows:

RIn
ε (vε) :=


∫

Ω−ε
|〈κIn

ε (x), vε(x)〉m|dx if 0 ≥ vε on Ω,

∞ otherwise.
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7 Effective damage models for the growth of inclusions of weak material

Hence, according to Remark 5.2, DIn
ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] is given

by

DIn
ε (z1, z2) :=


∫

Ω−ε
|〈κIn

ε (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2 on Ω,

∞ otherwise.
(7.12)

Note that here and in the following the dissipation distance depends only on the argu-
ments’ values on the set Ω−ε . This relation is due the fact that the system’s dissipated
energy depends on the evolution of inclusions of weak material, which according to (7.9)
is restricted to the set Ω−ε . Observe that a vector valued damage variable might be
used to model anisotropic inclusions of weak material; see Example 7.4 and 7.6, for in-
stance. On the other hand, the problem underlying the modeling ansatz may show an
anisotropic behavior with respect to changes of the inclusions geometry. In this case,
this anisotropic response to changes of the inclusions geometry can be modeled by the
vector valued fracture toughness κIn

ε ∈ Lq′(Ω; [0,∞)m). Thus, in addition to the possible
anisotropy entering the model due to the inclusions geometries, the system’s reaction on
a single component of the damage variable can be modeled individually.

To indicate the variety of damage caused microstructures captured by this energetic ap-
proach, we are now going to consider several dissipation potentials in dependence of dif-
ferent explicit choices of the microstructure determining function L : [0, 1]m → LLeb(Y )
fulfilling the conditions (7.1) and (7.2). There the focus is placed on associating the
system’s dissipated energy to the changes of the inclusions’ geometries.

7.1.2 Potential inclusions’ geometries

Example 7.3 (Spherical inclusions of weak material). In this case the damage progres-
sion is assumed to cause spherical inclusions of weak material emerging in the center of
cells ε(λ+Y ) ⊂ Ω. To simplify notation for this example, for a given basis {b1, b2, . . . , bd}
of Rd the unit cell is redefined in the following way:

Y :=
{
y ∈ Rd

∣∣∣∣ y =
d∑
i=1

kibi, ki ∈ [−1
2 ,

1
2)
}
.

Let the maximal radius R > 0 be chosen such that cl(BR(0)) ⊂ Y . Then, for m = 1
and ẑ ∈ [0, 1] the microstructure determining function L : [0, 1]→ LLeb(Y ) is defined by

L(ẑ) := (1−ẑ)cl(BR(0)) :=

 {y ∈ Y |
1

(1−ẑ)y ∈ cl(BR(0))} if ẑ ∈ [0, 1),
∅ if ẑ = 1.

Thus, for a suitable damage variable zε ∈ KεΛ(Ω; [0, 1]) the distribution of weak material
is illustrated in the center of Figure 2.2.
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7.1 Inclusions of weak material causing damage progression

Figure 7.2: Left: Spherical inclusions of weak material. Right: Quadrangular inclusions
of weak material.

For d ≥ 2 we consider two different dissipation potentials associating the dissipated
energy to the change of the volume or surface of the damage set.

Rvol
ε (zε, vε) :=

⎧⎪⎨⎪⎩
− d κvol(d)

∫
Ω−

ε

(1−zε(x))d−1vε(x)dx if 0 ≥ vε,

∞ otherwise,

Rsur
ε (zε, vε) :=

⎧⎪⎨⎪⎩
− (d−1)κsur(d)

∫
Ω−

ε

(1−zε(x))d−2vε(x)dx if 0 ≥ vε,

∞ otherwise.

Here, κvol(d) := π
d
2 Rd(Γ(d

2+1))−1 denotes the volume of the d-dimensional ball with

radius R and κsur(d) := 2π
d
2 Rd−1(Γ(d

2))−1 its surface area. Observe that as an illustration
these constants are chosen such that the proportionality factor of dissipated energy
and the change of the volume or surface of the damage set is exactly 1. Without any
difficulties one also might consider x-dependent factors scaling the dissipated energy in
dependence on the damage variable’s value instead of the constants κvol(d) and κsur(d).
The associated dissipation distances are determined by the minimizing problem (5.3). To
receive an explicit description for these distances, for arbitrary z1 ≥ z2 ∈ KεΛ(Ω; [0, 1])
and some arbitrary chosen function z ∈ W1,1

z1,z2([0, 1]; KεΛ(Ω; [0, 1])) (see (5.4)) we calcu-

late the value
∫ 1

0 Rvol
ε (z(s), ż(s))ds. Note that this function has to be non-increasing to

be a possible minimizer of (5.3). Integrating by parts with respect to s yields

−d
∫ 1

0

∫
Ω−

ε

(1−z(s, x))d−1ż(s, x)dxds =
∫

Ω−
ε

(1−z(1, x))d − (1−z(0, x))ddx.

Hence, the term
∫ 1

0 Rvol
ε (z(s), ż(s))ds is independent of the path described by the function

z : [0, 1] → KεΛ(Ω; [0, 1]) and depends only on the boundary values z1 and z2. Since an
analog argument is valid for Rsur

ε , the dissipation distances defined by the minimizing
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7 Effective damage models for the growth of inclusions of weak material

problem (5.3) read as follows:

Dvol
ε (z1, z2) :=


κvol(d)

∫
Ω−ε

(1−z2(x))d − (1−z1(x))ddx if z1 ≥ z2,

∞ otherwise,

Dsur
ε (z1, z2) :=


κsur(d)

∫
Ω−ε

(1−z2(x))d−1 − (1−z1(x))d−1dx if z1 ≥ z2,

∞ otherwise.

Decomposing Ω−ε into small cells ε(λ+Y ), λ ∈ Λ−ε , and exploiting the definition of the
damage set (see (7.9)) the dissipation distances are equivalently written as

Dvol
ε (z1, z2) =

{
µd(ΩD

ε (z2))− µd(ΩD
ε (z1)) if z1 ≥ z2,

∞ otherwise,

Dsur
ε (z1, z2) =

{
µd−1(∂ΩD

ε (z2))− µd−1(∂ΩD
ε (z1)) if z1 ≥ z2,

∞ otherwise,

showing explicitly the desired relation of dissipated energy and changes of the damage
set.

Example 7.4 (Quadrangular inclusions of weak material). For the sake of keeping the
notation as simple as possible, we set d = 2 in this case, but there are no problems when
generalizing this example to some arbitrary dimension. In the following the unit cell Y is
defined as in Example 7.3. Furthermore, the amount of dissipated energy from one time
step to another is assumed to be equal to the volume of strong material undergoing the
damage process (and hence transforming into weak material) during this time interval.

We start with an example of quadrangular inclusions of weak material. For this purpose,
for m = 2 and ẑ ∈ [0, 1]2 we set

Y (ẑ) :=
{
y ∈ R2

∣∣∣∣ y =
2∑
i=1

ẑikibi, ki ∈ [−1
2 ,

1
2)
}
. (7.13)

As already mentioned in the beginning of this chapter, assuming condition (7.2b) to
hold prevents the damage set from being a set of measure zero. Since we are going to
associate the dissipated energy to the volume change of the damage set, microstructure
changes of measure zero will not be captured by the dissipation distance. On the other
hand, by assuming the dissipated energy to be proportional to the surface change of the
damage set one might renounce condition (7.2b).

To ensure the validity of condition (7.2b) we choose a constant ĉ ∈ (0, 1). Thus, the
mapping L : [0, 1]2 → LLeb(Y ) for ẑ ∈ [0, 1]2 is defined via L(ẑ) := cl(Y (1−ĉẑ)). Since
ĉ < 1, every cell ε(λ+Y ) ⊂ Ω contains at least a small amount of weak material at any
time, even for a constant damage variable taking the value 1. Note that the smaller
the difference 1−ĉ > 0 the smaller the amount of initially appearing weak material in
the “undamaged” system. Here, the term undamaged refers to the internal variable and
does not mean that there is no weak material.
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7.1 Inclusions of weak material causing damage progression

Remark 7.5 (Necessity of condition (7.2b)). Let L̂(ẑ) := cl(Y (1−ẑ)) and choose
z(1)
ε :≡ (ẑ1, 1)T ∈ [0, 1]2 for some arbitrary ẑ1 ∈ [0, 1). Since the set ΩD

ε (z(1)
ε ) is (d−1)-

dimensional, there is no difference between the values E In
ε (t, u,1) and E In

ε (t, u, z(1)
ε ) of

stored energy. Therefore, in the case of associating the dissipated energy to the volume
change of the damage set, there neither energy is dissipated when switching from the
“undamaged” state (u,1) to the “damaged” state (u, z(1)

ε ) nor does their stored energy
change.

On the other hand, starting from (u,1) or (u, zε) and considering damage progression
in b2-direction yields dramatically different results. Choose z(2)

ε :≡ (1, ẑ2)T ∈ [0, 1]2 and
z(1,2)
ε :≡ (ẑ1, ẑ2)T ∈ [0, 1]2 for some arbitrary ẑ2 ∈ [0, 1). Then E In

ε (t, u,1) = E In
ε (t, u, z(2)

ε )
but E In

ε (t, u, z(1)
ε ) 6= E In

ε (t, u, z(1,2)
ε ). Moreover, there is no energy dissipated when switch-

ing from (u,1) to (u, z(2)
ε ), but the energy dissipated when switching from (u, z(1)

ε ) to
(u, z(1,2)

ε ) is proportional to µd(ΩD
ε (z(1,2)

ε )) > 0. This investigation indicates the neces-
sity of condition (7.2b) if the relation of dissipated energy and changes of the damage
variable is not chosen carefully.

Letting γ ∈ (0, π) denote the angle between the two basis vectors b1 and b2 (see (7.13))
and setting κ := sin(γ)|b1|2|b2|2, the dissipation potential leading to a proportional
relation of dissipated energy and volume changes of the damage set is defined by

Rqua
ε (z, v) :=


− κ

∫
Ω−ε

(1−ĉz1(x))ĉv2(x) + (1−ĉz2(x))ĉv1(x)dx if 0 ≥ v,

∞ otherwise.

Again, the choice of the constant κ > 0 is motivated by keeping the following as simple as
possible and could be easily replaced by a non-negative function, for instance. Proceeding
analogously to Example 7.3, the associated dissipation distance reads as follows:

Dqua
ε (z(1), z(2)) :=


κ
∫

Ω−ε

1∏
i=0

(1−ĉz(2)
1+i(x))−

1∏
i=0

(1−ĉz(1)
1+i(x))dx if z(1) ≥ z(2),

∞ otherwise.

Again, by decomposing Ω−ε into small cells ε(λ+Y ), λ ∈ Λ−ε , and exploiting the definition
of the damage set (see (7.9)) the following description hold:

Dquad
ε (z(1), z(2)) =

{
µd(ΩD

ε (z(2)))− µd(ΩD
ε (z(1))) if z(1) ≥ z(2),

∞ otherwise.

Obviously, this example can be easily generalized by allowing the quadrangular inclusions
to grow independently in all four directions. Therefore, the number of damage variable’s
components has to be doubled and the potential needs to be adapted.

Example 7.6 (Anisotropic inclusions of weak material). In contrast to Example 7.4
we here allow for more general anisotropic inclusions of weak material. Again we set
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7 Effective damage models for the growth of inclusions of weak material

Figure 7.3: Left: Construction of l̂1, l̂2, . . . , l̂6 ∈ R
d for given angels γ1 ∈ [0, π) and

γ2, γ3, . . . , γ7 ∈ (0, π). Right: Anisotropic inclusions of weak material.

d = 2 and let the unit cell Y be defined as in Example 7.3. Analog to Example 7.4, the
dissipated energy is assumed to be proportional to the volumetric change of the damage
set. To construct the anisotropic inclusions, let m > 2 and for j ∈ {2, 3, . . . , m, m+1}
choose m angles γj ∈ (0, π) with

∑m+1
j=2 γj = 2π. Then, for γ1 ∈ [0, π) let l̂1 ∈ R

2 with

|l̂1|2 = 1 be one of the two vectors satisfying cos(γ1) = 〈l̂1, e1〉2, where e1 := (1, 0)T .
Thus, the vectors l̂2, l̂3, . . . , l̂m ∈ Y of length 1 for j = 2, 3, . . . , m are iteratively given
by

cos
( j∑

k=1
γk

)
= 〈l̂j, e1〉2 and cos(γj) = 〈l̂j, l̂j−1〉2.

For a1, a2, a3 ∈ R
2 let triangle[a1, a2, a3] denote the closed triangle generated by the

vertices a1, a2 and a3. For j = 1, 2, . . . , m choose cj such that lj := cj l̂j is an element of
cl(Y ). Then, for ĉ ∈ (0, 1) we set

L(ẑ) :=
m⋃

j=1
triangle[(1−ĉẑj)lj, (1−ĉẑj+1)lj+1, 0],

where here and in the following ẑm+1 := ẑ1 and lm+1 := l1. Again the here appear-
ing constant ĉ ∈ (0, 1) ensures assumption (7.2b). For κj := 1

2sin(γj+1)|lj|2|lj+1|2 the
dissipation potential modeling the desired behavior reads as follows:

Rtria
ε (z, v) :=

⎧⎪⎪⎨⎪⎪⎩
−

m∑
j=1

κj

∫
Ω−

ε

(1−ĉzj(x))ĉvj+1(x) + (1−ĉzj+1(x))ĉvj(x)dx if 0 ≥ v,

∞ otherwise.

An analog argument as used for Example 7.3 yields the explicit formula

Dtria
ε (z(1), z(2)) :=

⎧⎪⎪⎨⎪⎪⎩
m∑

j=1
κj

∫
Ω−

ε

1∏
i=0

(1−ĉz
(1)
j+i(x)) −

1∏
i=0

(1−ĉz
(2)
j+i(x))dx if z(1) ≥ z(2),

∞ otherwise
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7.1 Inclusions of weak material causing damage progression

for the dissipation distance, which can be reformulated in the following way:

Dtria
ε (z(1), z(2)) =

{
µd(ΩD

ε (z(2)))− µd(ΩD
ε (z(1))) if z(1) ≥ z(2),

∞ otherwise.

Remark 7.7. (a) Observe that from the application point of view the proceeding in
Example 7.3, 7.4, and 7.6 rather would be conversely. Most likely one would like to start
with the relation of the dissipated energy to the increase of the damage set. In this case,
the existence of an underlying dissipation potential fulfilling condition (5.2) needs to be
checked afterwards; see also Subsection 7.1.4.

(b) By considering sequences (zε)ε>0 and (z̃ε)ε>0 of functions zε, z̃ε ∈ KεΛ(Ω; [0, 1]m)
satisfying condition (6.8), the derivation of the limit dissipation distance in Example 7.3,
7.4, and 7.6 is straight forward. Hence, in the following (including the limit models of
Section 7.2 and 7.3) everything is written exemplarily for the case of a general mapping
L : [0, 1]m → LLeb(Y ) satisfying (7.1) and (7.2), where the dissipation distance is given
by relation (7.12).

7.1.3 The microscopic model and existence of solutions

For given initial values (u0
ε, z

0
ε) ∈ QIn

ε (Ω) the rate-independent damage evolution is
modeled by the ε-dependent energetic formulation (SεIn) and (Eε

In), where ε > 0 scales
the size of the damage structure.

Stability condition (SεIn) and energy balance (Eε
In) for all t ∈ [0, T ]:

E In
ε (t, uε(t), zε(t)) ≤ E In

ε (t, ũ, z̃) +DIn
ε (zε(t), z̃) for all (ũ, z̃) ∈ QIn

ε (Ω)

E In
ε (t, uε(t), zε(t)) + DissDIn

ε
(zε; [0, t]) = E In

ε (0, u0
ε, z

0
ε)−

∫ t

0
〈 ˙̀(s), uε(s)〉ds

Here, DissDIn
ε

(zε; [0, t]) := sup∑N
j=1DIn

ε (zε(tj−1), zε(tj)), where for N ∈ N the supremum
is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, T ]. Following Section 5.2 for t̃ ∈ [0, T ] by SIn

ε (t̃) the set of stable states is
denoted.

SIn
ε (t̃) := {(uε, zε) ∈ QIn

ε (Ω) satisfying (SεIn) for t = t̃ and E In
ε (t̃, uε, zε) <∞}.

The following corollary, ensuring the existence of solutions for (SεIn) and (Eε
In), is a direct

consequence of Proposition 6.5.

Corollary 7.8 (Existence of solutions). Assume that the conditions (7.1) and (7.2)
hold. For ` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) let E In

ε : [0, T ]×QIn
ε (Ω) → R be defined via (7.11).

Moreover, for κIn
ε ∈ Lq′(Ω; [0,∞)m) let DIn

ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] be
given by relation (7.12).
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7 Effective damage models for the growth of inclusions of weak material

Then for (u0
ε, z

0
ε) ∈ SIn

ε (0), there exists an energetic solution (uε, zε) : [0, T ] → QIn
ε (Ω)

of the rate-independent system (QIn
ε (Ω), E In

ε ,DIn
ε ) satisfying (uε(0), zε(0)) = (u0

ε, z
0
ε) and

uε ∈ L∞([0, T ],H1
ΓDir

(Ω)d)
zε ∈ L∞([0, T ],KεΛ(Ω; [0, 1]m)) ∩ BVDIn

ε
([0, T ],KεΛ(Ω; [0, 1]m)).

Proof. To apply Proposition 6.5 we need to ensure the validity of the conditions (6.1),
(6.2), (6.5), and (6.9). Due to Lemma 7.1 condition (6.1) holds, and as already sketched
in the beginning of this chapter, assumption (7.2d) implies (6.2). Korn’s inequality
together with assumption (7.1) result in the coercivity condition (6.5); see (7.10). Finally,
condition (6.9) trivially holds for all dissipation distances considered in this section.

7.1.4 Rate independence with respect to another internal variable

Similar to the Examples 7.3, 7.4, and 7.6 this subsection is about ensuring the rate
independence of a specific model given by the energetic formulation. As before, the
rate independence of an energetic formulation is guaranteed by assuming the underlying
dissipation potential to satisfy condition (5.2). However, in contrast to Subsection 7.1.2,
here the starting point is the dissipation distance, modeling the amount of dissipated
energy needed to switch from one damage state to another. Proceeding in this way
seems natural from the modeling point of view. Only after determining the relation of
the dissipated energy to the microstructural changes, the internal variable is chosen. This
choice is preferably done such that the dissipation distance’s structure becomes rather
simple. Thus, in best case scenario the underlying dissipation potential is immediately
evident. In this case the difficulty of finding the underlying potential is replaced by
showing the necessary convergence results for the new internal variable.

Example 7.9. In the following we are going to present an example generalizing Exam-
ple 7.3. Let m = 1 and choose Y as in Example 7.3, i.e.,

Y :=
{
y ∈ Rd

∣∣∣∣ y =
d∑
i=1

kibi, ki ∈ [−1
2 ,

1
2)
}
.

Let L : [0, 1]→ LLeb(Y ) be given by L(ẑ) := (1−ẑ)D, where D ⊂ Y is a closed set which
is starshaped with respect to the center of the cell Y and satisfies 1 ≥ µd(D) > 0. Again,
we want the dissipated energy to be proportional to the volume change of the damage
set ΩD

ε (zε). Hence, the natural candidate for the internal variable is the characteristic
function 1Ω\ΩD

ε (zε), instead of zε. Then, the internal variable’s function space is

XD
εΛ(Ω) := {χ ∈ L∞(Ω; {0, 1}) | ∃ z ∈ KεΛ(Ω; [0, 1]) : χ = 1Ω\ΩD

ε (z)}.

Observe that for two functions z1, z2 ∈ KεΛ(Ω; [0, 1]) satisfying 1Ω\ΩD
ε (z1) = 1Ω\ΩD

ε (z2)
we obtain z1|Ω−ε = z2|Ω−ε but z1 6= z2, in general; see also Remark 2.7. Thus, the
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7.1 Inclusions of weak material causing damage progression

dissipation distance DEx
ε : XD

εΛ(Ω)×XD
εΛ(Ω) → [0,∞] creating proportionality of the

dissipated energy and the increase of the damage set is defined via

DEx
ε (χ1, χ2) :=


∫

Ω
κEx
ε (x)|χ2(x)− χ1(x)|dx if χ1 ≥ χ2,

∞ otherwise,

where (κEx
ε )ε>0 ⊂ L1(Ω; [0,∞)) is assumed to be given such that κEx

ε → κEx
0 in L1(Ω) for

some κEx
0 ∈ L1(Ω; [0,∞)). The underlying dissipation potential REx

ε : XD
εΛ(Ω) → [0,∞]

is obviously given by (see also Remark 5.2)

REx
ε (vε) :=


∫

Ω
κEx
ε (x)|vε(x)|dx if 0 ≥ vε,

∞ otherwise.

Since the damage variable is scalar, for a monotone decreasing χε : [0, T ]→ XD
εΛ(Ω) the

total dissipation simplifies to the following expression (see Definition 5.3):

DissDEx
ε

(χε; [0, t]) =
∫

Ω
κEx
ε (x)|χε(0, x)− χε(t, x)|dx. (7.14)

For modeling the stored energy of the system we want to stay with the functional
defined by (7.11), replacing only the previous internal variable zε ∈ KεΛ(Ω; [0, 1]) by
χε = 1Ω\ΩD

ε (zε) ∈ XD
εΛ(Ω). For this purpose, we introduce Qε : XD

εΛ(Ω) → KεΛ(Ω; [0, 1])
by

Qε(χε) := max{zε ∈ KεΛ(Ω; [0, 1]) |χε = 1Ω\ΩD
ε (zε)} (7.15)

identifying a characteristic function χε ∈ XD
εΛ(Ω) with an element zε of the set of piece-

wise constant functions KεΛ(Ω; [0, 1]). The opposite direction is implemented by the
identification operator Nε : KεΛ(Ω; [0, 1])→ XD

εΛ(Ω) for x ∈ Ω−ε defined by

Nε(zε)(x) := 1Nε(x)+ε(Y \L(zε(x)))(x) (7.16a)

and

Nε(zε)|Ω\Ω−ε :≡ 1. (7.16b)

The operators’ properties are stated the following proposition, which is an immediate
consequence of the operators’ definition.

Proposition 7.10. Let Qε : XD
εΛ(Ω) → KεΛ(Ω; [0, 1]) and Nε : KεΛ(Ω; [0, 1]) → XD

εΛ(Ω)
be defined by (7.15) and (7.16), respectively. Then:

(a) Nε ◦Qε : XD
εΛ(Ω)→ XD

εΛ(Ω) is the identity.

(b) Qε ◦Nε : KεΛ(Ω; [0, 1])→ KεΛ(Ω; [0, 1]) is a projection.

(c) (Qε ◦Nε(z))|Ω−ε = z|Ω−ε for all z ∈ KεΛ(Ω; [0, 1]).
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Remark 7.11. Since m = 1 and L(z) = (1−z)D, for any given element χε ∈ XD
εΛ(Ω)

the value Qε(χε)(x) can be determined explicitly by

Qε(χε)(x) =


1

µd(D) −
∫
Nε(x)+εY

χε(y)dy − 1−µd(D)
µd(D) for all x ∈ Ω−ε ,

1 for x ∈ Ω\Ω−ε .

Referring to (7.11), the energy functional EEx
ε : [0, T ]×H1

ΓDir
(Ω)d×XD

εΛ(Ω)→ R is defined
by

EEx
ε (t, u, χε) := 1

2〈C
Ex
ε (χε)e(u), e(u)〉L2(Ω)d×d + ‖R ε

2
(Qε(χε))‖pLp(Ω+

ε )d − 〈`(t), u〉,

where CEx
ε (χε) for almost every x ∈ Ω is given by

CEx
ε (χε)(x) := χε(x)Cstrong + (1− χε(x))Cweak. (7.17)

Observe that CEx
ε (χε) = CIn

ε (Qε(χε)); see the definition in line (7.8). Finally, for given
initial values (u0

ε, χ
0
ε) ∈ H1

ΓDir
(Ω)d×XD

εΛ(Ω) and by exploiting the description (7.14) the
systems evolution is modeled by the energetic formulation (SεEx) and (Eε

Ex).
Stability condition (SεEx) and energy balance (Eε

Ex) for all t ∈ [0, T ]:

EEx
ε (t, uε(t), χε(t)) ≤ EEx

ε (t, ũ, χ̃) +DEx
ε (χε(t), χ̃) for all (ũ, χ̃) ∈ H1

ΓDir
(Ω)d×XD

εΛ(Ω)

EEx
ε (t, uε(t), χε(t)) +

∫
Ω
κEx
ε |χε(0)− χε(t)|dx = EEx

ε (0, u0
ε, χ

0
ε)−

∫ t

0
〈 ˙̀(s), uε(s))〉ds

In preparation for the limit investigation ε→ 0 of (SεEx) and (Eε
Ex) we need to determine

the limit tensor of (CEx
ε (χε))ε>0 analogously to Theorem 3.9. Thereby, the assumptions

on (χε)ε>0 are motivated by available uniform bounds of the energy functionals.

Proposition 7.12. Let the conditions (7.1) and (7.2) be fulfilled. Moreover, let (χε)ε>0
be a sequence with χε ∈ XD

εΛ(Ω) and Qε(χε) → z0 in Lp(Ω) for some z0 ∈ Lp(Ω; [0, 1]).
Then

χε
∗
⇀ µd(D)z0 + (1−µd(D)) in L∞(Ω),

CEx
ε (χε) s→ CIn

0 (z0) in L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)),

where CEx
ε (χε) is defined by (7.17) and CIn

0 (z0) for all (x, y) ∈ Ω×Y is given by

CIn
0 (z0)(x, y) := ĈIn(z0(x))(y).

Proof. We start by proving χε
∗
⇀ µd(D)z0 + (1−µd(D)) in L∞(Ω). Thereto, let (χε)ε>0

be given such that χε ∈ XD
εΛ(Ω) and Qε(χε)→ z0 in Lp(Ω). Moreover, let ε0 > 0 be fixed,

let ϕ ∈ Kε0Λ(Ω−ε0), and set εk := ε0
2k . By exploiting for all k ∈ N that ϕ ∈ KεkΛ(Ω−ε0)

is piecewise constant (ϕεkλ := ϕex|εk(λ+Y ) for λ ∈ Λ−εk) in (7.18a) here below, using
the explicit formula of Remark 7.11 in (7.18b), and taking advantage of the fact that
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7.2 Two-scale effective damage model for inclusions of weak material

Figure 7.4: Schematic representation of the limit passage of the microscopic one-scale
model of Section 7.1 to the two-scale limit model of Section 7.2, where the
microscopic inclusions are assumed modeled as in Example 7.3.

ϕ ∈ KεkΛ(Ω−
ε0) and Qεk

(χεk
) ∈ KεkΛ(Ω−

ε0) are piecewise constant in (7.18c), we obtain
the following result:∫

Ω
ϕex(x)χεk

(x)dx =
∑

λ∈Λ−
εk

εd
kϕεkλ 1

εd
k

∫
εk(λ+Y )

χεk
(x)dx (7.18a)

=
∑

λ∈Λ−
εk

εd
kϕεkλ

(
μd(D)Qεk

(χεk
)(εkλ) + (1−μd(D))

)
(7.18b)

=
∑

λ∈Λ−
εk

∫
εk(λ+Y )

ϕex(x)
(
μd(D)Qεk

(χεk
)(x) + (1−μd(D))

)
dx (7.18c)

=
∫

Ω
ϕex(x)

(
μd(D)Qεk

(χεk
)(x) + (1−μd(D))

)
dx. (7.18d)

Combining the assumption Qεk
(χεk

) → z0 in Lp(Ω) with (7.18d) for all ϕ ∈ Kε0Λ(Ω−
ε0)

results in

lim
εk→0

∫
Ω

ϕex(x)χεk
(x)dx =

∫
Ω

ϕex(x)
(
μd(D)z0(x) + (1−μd(D))

)
dx.

Since any function v ∈ L1(Ω) can be approximated by a sequence of piecewise constant
functions (ϕε̂)ε̂>0, with ϕε̂ ∈ Kε̂Λ(Ω), and since the sequence (Qε(χε))ε>0 is uniformly
bounded in L∞(Ω), we conclude χε

∗
⇀ μd(D)z0(x) + (1−μd(D)) in L∞(Ω).

Due to C
Ex
ε (χε) = C

In
ε (Qε(χε)), the strong two-scale convergence C

Ex
ε (χε) s→ C

In
0 (z0) in

L1(Ω×Y ; Linsym(Rd×d
sym;Rd×d

sym)) is an immediate consequence of Theorem 3.9.

7.2 Two-scale effective damage model based on the
growth of inclusions of weak material

In this section we formulate the two-scale effective damage model (S0
In) and (E0

In), which
for ε → 0 according to Theorem 6.18 is the limit model of the microscopic models (Sε

In)
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7 Effective damage models for the growth of inclusions of weak material

and (Eε
In). The stored energy of the system (S0

In) and (E0
In) is based on the tensor valued

mapping CIn
0 : W1,p(Ω; [0, 1]m) → L∞(Ω×Y ; {Cstrong,Cweak}), which for almost every

(x, y) ∈ Ω×Y and any z0 ∈W1,p(Ω; [0, 1]m) is defined via

CIn
0 (z0)(x, y) := 1Y \L(z0(x))(y)Cstrong + 1L(z0(x))(y)Cweak.

Remark 7.13. By comparing the tensors CIn
ε (zε) (see (7.8)) and CIn

0 (z0) we observe that
the microstructure is preserved by shifting it to the second scale in the following sense:
Considering a damage variable zε ∈ KεΛ(Ω; [0, 1]m) the damage set of a cell ε(λ+Y ) ⊂ Ω
for zελ := zε|ε(λ+Y ) is given by ε(λ+L(zελ)), whereas in the limit (zε(x) → z0(x) for
almost every x ∈ Ω) in almost every point x ∈ Ω there is a unit cell {x}×Y containing
the damage set L(z0(x)); see also Figure 7.4.

Referring to Section 6.2 the limit function space QIn
0 has the following structure:

QIn
0 := H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d×W1,p(Ω; [0, 1]m),

where Y := Rd/Λ denotes the periodicity cell. For (u0, U1) ∈ H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d

we define ẽ(u0, U1) := ex(u0) + ey(U1). Thus, the stored energy of the two-scale system
is modeled by the functional EIn

0 : [0, T ]×QIn
0 → R defined via

EIn
0 (t, u0, U1, z0) := 1

2〈C
In
0 (z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d + ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉.

Checking condition (6.8) for the sequence of functionals (DIn
ε )ε>0 given by (7.12) results

in a limit dissipation distance DIn
0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] given by

DIn
0 (z1, z2) :=


∫

Ω
|〈κIn

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise,

where κIn
0 ∈ Lq′(Ω; [0,∞)m) is the same function as chosen in the definition of the

microscopic dissipation distance; see (7.12). For given initial values (u0
0, U

0
1 , z

0
0) ∈ QIn

0
the rate-independent damage evolution is modeled by the energetic formulation (S0

In)
and (E0

In).
Stability condition (S0

In) and energy balance (E0
In) for all t ∈ [0, T ]:

EIn
0 (t, u0(t), U1(t), z0(t)) ≤ EIn

0 (t, ũ, Ũ , z̃) + DIn
0 (z0(t), z̃) for all (ũ, Ũ , z̃) ∈ QIn

0

EIn
0 (t, u0(t), U1(t), z0(t)) + DissDIn

0
(z0; [0, t]) = EIn

0 (0, u0
0, U

0
1 , z

0
0)−

∫ t

0
〈 ˙̀(s), u0(s)〉ds

Here, DissDIn
0

(z0; [0, t]) := sup∑N
j=1 DIn

0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum
is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of
the interval [0, T ]. Analog to Remark 6.7, the existence of a solution of the two-scale
damage model is proven by the convergence result of Section 6.5.
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7.3 One-scale effective damage model for inclusions of weak material

Corollary 7.14 (Existence of solutions). Assume that the conditions (7.1) and (7.2)
hold. Let EIn

0 : [0, T ]×QIn
0 → R and DIn

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞] be
defined as described above. Let (u0

0, U
0
1 , z

0
0) ∈ QIn

0 be given such that it is the limit of a
stable sequence (u0

ε, z
0
ε)ε>0 with respect to 0 ∈ [0, T ] in the sense of Definition 6.12. If

∇u0
ε

s→ ∇xEu
0
0 + ∇yU

0
1 in L2(Ω×Y )d×d and R ε

2
z0
ε |Ω → ∇z0

0 in Lp(Ω)m×d, then there

exists an energetic solution (u0, U1, z0) : [0, T ] → QIn
0 of the rate-independent system

(QIn
0 ,EIn

0 ,DIn
0 ) with initial condition (u0

0, U
0
1 , z

0
0) satisfying

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d),

z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVDIn
0

([0, T ]; W1,p(Ω; [0, 1]m)).

Proof. This statement is a direct consequence of Theorem 6.18. Therefore, we need to
verify the theorem’s assumptions (6.1), (6.2), (6.5), (6.8), and (6.9). As we already saw
in the proof of Corollary 7.8 the conditions (7.1) and (7.2) guarantee the validity of (6.1),
(6.2), (6.5), and (6.9). Due to Remark 6.4 it is sufficient to verify condition (6.8) for
some arbitrary q ∈ [1,∞). Choose q := q′

q′−1 such that the convergence claimed in (6.8)

results from the fact that the dual pairing of a weak converging sequence in Lq′(Ω)m and
a strong converging sequence in Lq(Ω)m converges to the dual pairing of their limits.

7.2.1 Two-scale limit energy functional and dissipation distance for
Example 7.9

Referring to Example 7.9 it holds EEx
ε (t, uε, χε) = E In

ε (t, uε, Qε(χε)) for every ε > 0, all
(uε, χε) ∈ H1

ΓDir
(Ω)d×XD

εΛ(Ω), and any t ∈ [0, T ]. Therefore, according to the convergence
result Theorem 6.18 the limit energy functional EEx

0 : [0, T ]×QIn
0 → R is given by

EEx
0 (t, u0, U1, z0) := EIn

0 (t, u0, U1, z0)

for every (u0, U1, z0) ∈ QIn
0 and all t ∈ [0, T ]. Adapting condition (6.8) to the “new”

internal variable and exploiting the convergence result of Proposition 7.12 yields that
the limit dissipation distance DEx

0 : W1,p(Ω; [0, 1])×W1,p(Ω; [0, 1])→ [0,∞] for the limit
function κEx

0 ∈ L1(Ω; [0,∞)) is defined by

DEx
0 (z1, z2) :=

 (1−µd(D))
∫

Ω
κEx

0 (x)|z2(x)− z1(x)|dx if z1 ≥ z2,

∞ otherwise.

7.3 One-scale effective damage model based on the
growth of inclusions of weak material

For the sake of completeness the one-scale model being equivalent to the two-scale model
of Section 7.2 is formulated. Let QIn

0 (Ω) denote the state space defined via

QIn
0 (Ω) := H1

ΓDir
(Ω)d×W1,p(Ω; [0, 1]m).
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7 Effective damage models for the growth of inclusions of weak material

For a given function z0 ∈W1,p(Ω; [0, 1]m) the tensor ĈIn(z0(x)) ∈ L∞(Y ; {Cstrong,Cweak})
for almost every (x, y) ∈ Ω×Y is given by

ĈIn(z0(x)) = 1Y \L(z0(x))(y)Cstrong + 1L(z0(x))(y)Cweak;

see (7.3). Since assumption (7.1) ensures the validity of condition (6.3), Proposition 6.8
yields that for ξ ∈ Rd×d

sym the unit cell problem

〈CIn
eff(z0)(x)ξ, ξ〉d×d := min

v∈H1
av(Y)d

∫
Y
〈ĈIn(z0(x))(y)(ξ+ey(v)(y)), ξ+ey(v)(y)〉d×ddy (7.19)

defines a mapping CIn
eff : W1,p(Ω; [0, 1]m) → M(Ω). Thus, the one-scale model is based

on the one-scale energy functional E In
0 : [0, T ]×QIn

0 (Ω)→ R defined in the following way:

E In
0 (t, u0, z0) := 1

2〈C
In
eff(z0)e(u0), e(u0)〉L2(Ω)d×d + ‖∇z0‖pLp(Ω)m×d − 〈`(t), u0〉.

Furthermore, for the same function κIn
0 ∈ Lq′(Ω; [0,∞)m) as chosen in the definition

of the microscopic dissipation distance given by (7.12), the limit dissipation distance
DIn

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] is given by

DIn
0 (z1, z2) =


∫

Ω
|〈κIn

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.

For given initial values (u0
0, z

0
0) ∈ QIn

0 (Ω) the energetic formulation (S0
In) and (E0

In) of the
rate-independent system (QIn

0 (Ω), E In
0 ,DIn

0 ) reads as follows:

Stability condition (S0
In) and energy balance (E0

In) for all t ∈ [0, T ]:

E In
0 (t, u0(t), z0(t)) ≤ E In

0 (t, ũ, z̃) +DIn
0 (z0(t), z̃) for all (ũ, z̃) ∈ QIn

0 (Ω)

E In
0 (t, u0(t), z0(t)) + DissDIn

0
(z0; [0, t]) = E In

0 (0, u0
0, z

0
0)−

∫ t

0
〈 ˙̀(s), u0(s)〉ds

Here, DissDIn
0

(z0; [0, t]) := sup∑N
j=1DIn

0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum
is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, T ].

Corollary 7.15 (Existence of solutions). Assume that the conditions (7.1) and (7.2)
hold. Let E In

0 : [0, T ]×QIn
0 (Ω) → R and DIn

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞]
be defined as described above. Let (u0

0, U
0
1 , z

0
0) ∈ QIn

0 be given such that it is the limit
of a stable sequence (u0

ε, z
0
ε)ε>0 with respect to 0 ∈ [0, T ] in the sense of Definition 6.12.

If ∇u0
ε

s→ ∇xEu
0
0 +∇yU

0
1 in L2(Ω×Y )d×d and R ε

2
z0
ε |Ω → ∇z0

0 in Lp(Ω)m×d, then there

exists an energetic solution (u0, z0) : [0, T ] → QIn
0 (Ω) of the rate-independent system

(QIn
0 (Ω), E In

0 ,DIn
0 ) with initial condition (u0

0, z
0
0) satisfying

u0 ∈ L∞([0, T ]; H1
ΓDir

(Ω)d),
z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVDIn

0
([0, T ]; W1,p(Ω; [0, 1]m)).
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7.4 Discussion of the results

Proof. Subject to the assumptions of Corollary 7.15 there exists an energetic solution
(u0, U1, z0) : [0, T ] → QIn

0 of the rate-independent system (QIn
0 ,EIn

0 ,DIn
0 ) with initial

condition (u0
0, U

0
1 , z

0
0); see Corollary 7.14. Since condition (7.1) implies (6.3), Theo-

rem 6.9 states the existence of an energetic solution (u0, z0) : [0, T ] → QIn
0 (Ω) of the

rate-independent system (QIn
0 (Ω), E In

0 ,DIn
0 ) with initial condition (u0

0, z
0
0) and the proof

is concluded.

7.4 Discussion of the results

Summarizing the results of this chapter, we are able to provide existence of solutions
for effective models modeling rate-independent damage progression caused by inclusions
of weak material. These effective models allow for various inclusions’ geometries and
present a constitutive relation of the limit damage variable and the effective material
tensor, which is uniquely described by the unit cell problem (7.19) (one scale effective
model). Due to the asymptotic analysis of Chapter 6, this constitutive relation is rig-
orously derived from the modeling of microscopic inclusions of weak material in a bulk
of undamaged material. Comparing this homogenization result with the damage model
of [24] shows that there has to be some kind of microstructure regularization in the
microscopic models to obtain this unique relation of the limit damage variable and the
effective material tensor, as we will see below.

In [24] the authors prove existence of solutions for the so-called energy minimization
problem which is based on the following energy functional:

EGL(t,C(t), u(t), z(t)) := 1
2〈C(t)e(u(t)), e(u(t))〉L2(Ω)d×d + k‖z(t)‖L1(Ω) − 〈`(t), u(t)〉.

Here, the first term accounts for the stored elastic energy of the system, the second
term models the dissipated energy in dependence on the change of the damage variable,
and the last term denotes the energy caused by the external loadings. Comparing this
functional with the model of Section 7.3 reveals that this energy functional lacks any
regularization with respect to the damage variable. Moreover, here the material tensor
C occurs as a variable, i.e., there is no constitutive relation determining C(t, x) uniquely
in dependence on the damage variable’s value z(t, x).
Now, the function (C, u, z) : [0, T ]×Ω → Linsym(Rd×d

sym;Rd×d
sym)×Rd×[0, 1] is a solution of

the energy minimization problem if the following three conditions are fulfilled:

1. (C, z) : [0, T ]×Ω → Linsym(Rd×d
sym;Rd×d

sym)×[0, 1] is monotonically decreasing as a func-
tion of t ∈ [0, T ].
2. For all t ∈ [0, T ] the function u(t) ∈ H1

0(Ω)d is a solution of −div(C(t)e(u(t))) = `(t)
in Ω and the following energy balance holds

EGL(t,C(t), u(t), z(t)) = EGL(0,C(0), u(0), z(0))−
∫ t

0
〈 ˙̀(s), u(s)〉ds.

97



7 Effective damage models for the growth of inclusions of weak material

3. For every t ∈ [0, T ] and for all admissible (C̃, ũ, z̃) we have

EGL(t,C(t), u(t), z(t)) ≤ EGL(t, C̃, ũ, z̃)

and there exists a sequence (χn)n∈N of characteristic functions χn : [0, T ]×Ω → {0, 1}
which are monotonically decreasing with respect to time such that it holds χn(t) ∗

⇀ z(t),

χn(t)Cstrong+(1−χn(t))Cweak
G→ C(t).

Here, the sets supp(χn) and supp(1−χn) might be interpreted as microscopic distribu-
tions of undamaged and damaged material leading to the effective energy minimization
problem. Since besides condition 3 there are no further assumptions on the characteris-
tic functions χn, in contrast to our microscopic models (see Section 7.1.4, for instance)
this model allows for arbitrary distributions of damaged and undamaged material.

However, as a result of this generality and the lack of a microstructure regularization
there is no relation determining the material tensor C(t) uniquely in dependence on the
damage variable z(t). In fact, for every t ∈ [0, T ] and any point x ∈ Ω the material tensor
C(t, x) is an element of the so-called G-closure of the two constant tensors Cstrong and
Cweak with the volume fraction z(t, x). That means that the material tensor C(t, x) is
given by a unit cell problem similar to (7.19), where the set Y \L(z(t, x)) of undamaged
material could be any subset of Y with the volume fraction z(t, x) ∈ [0, 1], i.e., the
geometry of L(z(t, x)) is not prescribed. This shows that if one is interested in improving
the constitutive relation between the damage variable and the effective material tensor,
some kind of microstructure regularization is needed.

The aim of future tasks is the exploitation of the here presented results for numerical
simulations of the damage progression in complex structures. In this context the effective
models provide a large degree of freedom with respect to the choice of the inclusions’ ge-
ometry. Moreover, the effective models separate the microscopic and macroscopic scale.
By phenomenologically motivating the macroscopic quantities, similar models possess-
ing separated scales have been investigated in the engineering community already; see
[35, 36, 37], for instance. There, the authors provide numerical results for a two-scale
damage model allowing the evolution of microscopic ellipsoidal inclusions of weak ma-
terial. However, in contrast to the here presented rigorously derived effective models
there the considered homogenized quantities are obtained by averaging corresponding
microscopic ones. Moreover, in [35, 36, 37] no regularization with respect to the dam-
age variable is considered which should result in a different limit model; see also the
discussion on the model of [24] above. Due to the here presented rigorous derivation
of the effective models presented in Section 7.2 and 7.3 it would be interesting to see if
numerical simulations of these models yield better results compared to those presented
in [35, 36, 37].
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8 Effective damage models based on
the unidirectional evolution of
microscopic defects

As in the previous chapter, we are here going to investigate the asymptotic behavior of
a family of brutal microscopic models. The main difference to Chapter 7 is that here
damage progression does not increase the amount of damaged material but enlarges the
size of preexisting defects, which are modeled by holes in the set being associated to the
considered body. Analytically, this is modeled by setting the tensor modeling the weak
material in Chapter 7 to zero. As already discussed in Section 2.5 (see Remark 2.5) this
causes some technicalities forcing us to adapt the previous chapter’s assumptions made
on the microstructure determining mapping L : [0, 1]m → LLeb(Y ). Since Cweak = O,
the positive definiteness is now assumed on Cstrong ∈ Linsym(Rd×d

sym;Rd×d
sym), only, i.e., there

exists a positive constant α such that

for all ξ ∈ Rd×d
sym it holds α|ξ|2d×d ≤ 〈Cstrongξ, ξ〉d×d. (8.1)

The mapping L : [0, 1]m → LLeb(Y ) is adapted by the following assumptions:

• L : [0, 1]m → LLeb(Y ) is a non-increasing function; see (2.21). (8.2a)

• For all ẑ ∈ [0, 1]m it holds µd(L(ẑ)) > 0. (8.2b)

• For all ẑ ∈ [0, 1]m the set L(ẑ) is a closed subset of Y. (8.2c)

• For all ẑ ∈ [0, 1]m the set L(ẑ) has a locally Lipschitz boundary

∂L(ẑ) (see Definition 2.1) and it holds dist(L(0), ∂Y ) > 0. (8.2d)

For any given ẑ ∈ [0, 1]m and every (ẑδ)δ>0 ⊂ [0, 1]m satisfying ẑδ → ẑ in Rm it holds

• µd(L(ẑ)\L(ẑδ)) + µd(L(ẑδ)\L(ẑ))→ 0 for δ → 0 and (8.2e)

• ∀∆ > 0∃ δ0 > 0 such that for all δ ∈ (0, δ0) it holds L(ẑδ) ⊂ neigh∆(L(ẑ)). (8.2f)

There exist bi-Lipschitz transformations (Tẑ)ẑ∈[0,1]m , Tẑ : Y → Rd, such that

• sup
ẑ∈[0,1]m

(
‖∇Tẑ‖L∞(Y )d×d + ‖∇T−1

ẑ ‖L∞(Im(Tẑ))d×d
)

=: CT <∞. (8.2g)

• For all ẑ ∈ [0, 1]m it holds Im(Tẑ|L(ẑ)) = L(0) as well as Y ⊂ Im(Tẑ). (8.2h)

• For any given ẑ ∈ [0, 1]m and for every (ẑδ)δ>0 ⊂ [0, 1]m

with ẑδ → ẑ in Rm it holds Tẑδ → Tẑ pointwise in Y. (8.2i)
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8 Effective damage models based on the growth of microscopic defects

Observe that we do not assume Im(Tẑ) = Y , which simplifies the construction of the
transformations (Tẑ)ẑ∈[0,1]m in the specific cases considered in Subsection 8.1.4. More-
over, condition (8.2i) asks for some continuity of the family (Tẑ)ẑ∈[0,1]m with respect to
ẑ ∈ [0, 1]m. However, note that normally these transformations are constructed such
that (8.2i) is automatically fulfilled, as we will see in Subsection 8.1.4.

Following Chapter 7 for the given function L : [0, 1]m → LLeb(Y ) the tensor valued
mapping ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}) for ẑ ∈ [0, 1]m and every y ∈ Y is introduced
via

ĈH(ẑ)(y) := 1Y \L(ẑ)(y)Cstrong. (8.3)

Since the “material” tensor Cweak is set to zero in this chapter, the superscript H refers
to the modeling of holes. As in the previous chapter, (8.1) and (8.2) ensure the crucial
conditions (6.1) and (6.2) of the homogenization theory presented in Chapter 6 made
on the tensor valued mapping ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}) to hold. Among
other things the additional assumptions (8.2d), (8.2g), and (8.2h) in comparison to
Chapter 7 are made to prove a uniform coercivity condition for the microscopic models
introduced in Section 8.1. In preparation for this coercivity condition the existence of
an extension operator is stated in Lemma 8.2 below. However, before that, we note
that the additional assumption (8.2d) together with (8.2e) do not imply (8.2f). This is
shown by the example illustrated in Figure 7.1(i). Moreover, we are going to show that
the conditions (8.2a), (8.2e), (8.2g), and (8.2h) imply assumption (8.2b), if additionally
µd(L(0)) > 0 is assumed.

Proposition 8.1. Let L : [0, 1]m → LLeb(Y ) be given, satisfying (8.2a), (8.2e), (8.2g),
and (8.2h). If additionally it holds µd(L(0)) > 0, then condition (8.2b) is fulfilled.

Proof. The statement is proven via a contradiction argument. For this purpose, we start
with some a priori estimates. Due to (8.2g) there exist positive constants C1 and C2
such that

sup
ẑ∈[0,1]m

‖det(∇Tẑ)‖L∞(Y ) ≤ C1 and sup
ẑ∈[0,1]m

‖det(∇T−1
ẑ )‖L∞(Im(Tẑ)) ≤ C2. (8.4)

Moreover, since for all ẑ ∈ [0, 1]m the mapping Tẑ : Y → Rd is assumed to be a bi-
Lipschitz transformation, for almost every x ∈ Im(Tẑ) we have

|det(∇T−1
ẑ (x))det(∇Tẑ(T−1

ẑ (x)))| = 1.

Combining this equality with the a priori estimates given by (8.4) for any ẑ ∈ [0, 1]m
and almost every x ∈ Im(Tẑ) results in

C1|det(∇T−1
ẑ (x))| ≥ 1. (8.5)

Now we are going to produce a contradiction by assuming that µd(L(1)) = 0. Choose
(ẑδ)δ>0 ⊂ [0, 1]m with ẑδ ↗ 1 in Rm. Then, µd(L(ẑδ)) = µd(L(ẑδ)\L(1))→ 0 according
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to (8.2e). On the other hand, by applying the transformation Tẑδ |L(ẑδ) : L(ẑδ) → L(0)
for fixed δ > 0 to the integral

∫
L(ẑδ) 1dy, we finally end up with

µd(L(ẑδ)) =
∫
L(ẑδ)

1dy (8.2h)=
∫
L(0)
|det(∇T−1

ẑδ
(x))|dx

(8.5)

≥ 1
C1
µd(L(0)) > 0.

Since the left hand side converges to 0 for δ → 0, this estimate is a contradiction to
µd(L(0)) > 0 and hence the assumption µd(L(1)) = 0 was wrong. Hence, µd(L(1)) > 0
has to hold, which implies the validity of condition (8.2b) by keeping assumption (8.2a)
in mind.

Lemma 8.2. Assume that L : [0, 1]m → LLeb(Y ) satisfies the conditions (8.2d), (8.2g),
and (8.2h). Then for every ẑ ∈ [0, 1]m there exists a linear strong 1-extension operator
Xẑ : H1(Y \L(ẑ))d → H1(Y )d and there exists a constant CX > 0 being independent of
ẑ ∈ [0, 1]m such that for all vẑ ∈ H1(Y \L(ẑ))d it holds

‖Xẑ(vẑ)‖L2(Y )d ≤ CX‖vẑ‖L2(Y \L(ẑ))d and ‖∇Xẑ(vẑ)‖L2(Y )d×d ≤ CX‖∇vẑ‖L2(Y \L(ẑ))d×d .

Proof. For fixed ẑ ∈ [0, 1]m the continuation operator Xẑ : H1(Y \L(ẑ))d → H1(Y )d
is constructed as follows: First a given function vẑ ∈ H1(Y \L(ẑ))d is transformed to
the domain Im(Tẑ)\L(0). Then, this transformed function is extended across the hole
L(0) and afterwards it is rescaled again. This construction is based on the existence
of a strong 1-extension operator X0 : H1(Y \L(0))d → H1(Y )d, which is ensured by
assumption (8.2d); see Theorem 5.24 in [1], for instance. Hence, there exists some
constant CX0 > 0 such that for all w ∈ H1(Y \L(0))d the inequalities

‖X0(w)‖L2(Y )d ≤ CX0‖w‖L2(Y \L(0))d , (8.6a)

‖∇X0(w)‖L2(Y )d×d ≤ CX0‖∇w‖L2(Y \L(0))d×d (8.6b)

hold. Let ẑ ∈ [0, 1]m be arbitrary but fixed and observe that due to assumption (8.2h) we
have Y \L(0) ⊂ Im(Tẑ)\L(0). For ŵẑ,0 ∈ H1(Im(Tẑ)\L(0))d the continuation operator
X0 : H1(Y \L(0))d → H1(Y )d enables us to construct a strong 1-extension operator
X̂0,ẑ : H1(Im(Tẑ)\L(0))d → H1(Im(Tẑ))d via

X̂0,ẑ(ŵẑ,0) =
{
X0(ŵẑ,0|Y \L(0)) on Y,

ŵẑ,0 on Im(Tẑ)\Y.
(8.7)

Observe that by this definition for all functions ŵẑ,0 ∈ H1(Im(Tẑ)\L(0))d it holds

X̂0,ẑ(ŵẑ,0)|Im(Tẑ)\L(0) = ŵẑ,0 and ‖X̂0,ẑ(ŵẑ,0)‖H1(Im(Tẑ))d ≤ (CX0+1)‖ŵẑ,0‖H1(Im(Tẑ)\L(0))d ,
where CX0 > 0 is the constant of (8.6b), which is independent of ẑ ∈ [0, 1]m. Introduc-
ing the transformations

Tẑ :
{

H1(Im(Tẑ))d → H1(Y )d,
w̃ẑ 7→ w̃ẑ ◦ Tẑ

and Tẑ :
{

H1(Y \L(ẑ))d → H1(Im(Tẑ)\L(0))d,
vẑ 7→ vẑ ◦ T−1

ẑ |Im(Tẑ)\L(0)
(8.8)
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8 Effective damage models based on the growth of microscopic defects

the desired operator Xẑ : H1(Y \L(ẑ))d → H1(Y )d is given by

Xẑ(vẑ) := Tẑ(X̂0,ẑ(Tẑ(vẑ))). (8.9)

By definition for all vẑ ∈ H1(Y \L(ẑ))d we have Xẑ(vẑ)|Y \L(ẑ) = vẑ. To prove the inequal-
ities stated in Lemma 8.2, observe that estimating ‖Xẑ(vẑ)‖L2(Y )d and ‖∇Xẑ(vẑ)‖L2(Y )d×d

is done in a similar way, which is why we focus on the more complicated latter term.
For this purpose, we start by decomposing Y into the disjoint sets Im(T−1

ẑ |Y ) and
Y \Im(T−1

ẑ |Y ) such that

‖∇Xẑ(vẑ)‖2
L2(Y )d×d = ‖∇Xẑ(vẑ)‖2

L2(Im(T−1
ẑ |Y ))d×d + ‖∇Xẑ(vẑ)‖2

L2(Y \Im(T−1
ẑ |Y ))d×d .

Note that Im(T−1
ẑ |Y ) ⊃ Im(T−1

ẑ |L(0)) = L(ẑ) yields Xẑ(vẑ)|Y \Im(T−1
ẑ |Y ) = vẑ|Y \Im(T−1

ẑ |Y ),

which immediately gives

‖∇Xẑ(vẑ)‖2
L2(Y \Im(T−1

ẑ |Y ))d×d ≤ ‖∇vẑ‖
2
L2(Y \L(ẑ))d×d .

Hence, it is sufficient to prove the existence of CX > 1 (being independent of ẑ ∈ [0, 1]m)
such that for all vẑ ∈ H1(Y \L(ẑ))d it holds

‖∇Xẑ(vẑ)‖2
L2(Im(T−1

ẑ |Y ))d×d ≤ (C2
X−1)‖∇vẑ‖2

L2(Y \L(ẑ))d×d .

The proof of this inequality is performed in calculation (8.11) below. There the following
inequality being valid for any ẑ ∈ [0, 1]m and almost every y ∈ Y is required:

C2|det(∇Tẑ(y))| ≥ 1. (8.10)

This estimate can be proven analogously to (8.5). In calculation (8.11) below, at the
beginning of every line the respectively exploited relation is indicated. Additionally, in
line (8.11b) the non-negative integrand of line (8.11a) is increased by multiplying it with
the left hand side of (8.10). Moreover, the chain-rule is applied in the lines (8.11a) and
(8.11d). Finally, we substitute Tẑ(y) by x in line (8.11c) and do the opposite substitution
in line (8.11e). Taking all these mentioned transformations into account, for an arbitrary
but fixed chosen vẑ ∈ H1(Y \L(ẑ))d it holds∥∥∥∇Xẑ(vẑ)∥∥∥2

L2(Im(T−1
ẑ |Y ))d×d

=
∫

Im(T−1
ẑ |Y )

∣∣∣∇[X̂0,ẑ(Tẑ(vẑ))
]
(Tẑ(y))∇Tẑ(y)

∣∣∣2
d×d

dy (8.11a)

(8.2g)

≤ C2
TC2

∫
Im(T−1

ẑ |Y )

∣∣∣∇[X̂0,ẑ(Tẑ(vẑ))
]
(Tẑ(y))

∣∣∣2
d×d
|det(∇Tẑ(y))|dy (8.11b)

(8.7)= C2
TC2

∫
Y

∣∣∣∇[X0(Tẑ(vẑ))
]
(x)
∣∣∣2
d×d

dx (8.11c)

(8.6b)

≤ C2
X0C

2
TC2

∫
Y \L(0)

∣∣∣∇[Tẑ(vẑ)](x)
∣∣∣2
d×d

dx
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= C3

∫
Y \L(0)

∣∣∣∇vẑ(T−1
ẑ |Rd\L(0)(x))∇T−1

ẑ |Rd\L(0)(x)
∣∣∣2
d×d

dx (8.11d)

(8.2g)

≤ C2
TC3

∫
Y \L(0)

∣∣∣∇vẑ(T−1
ẑ |Rd\L(0)(x))

∣∣∣2
d×d

dx

= C2
TC3

∫
Im(T−1

ẑ |Y \L(0))

∣∣∣∇vẑ(y)
∣∣∣2
d×d
|det(∇Tẑ(y))|dy (8.11e)

(8.4)

≤ C1C
2
TC3

∫
Im(T−1

ẑ |Y \L(0))

∣∣∣∇vẑ(y)
∣∣∣2
d×d

dy = C1C
2
TC3

∥∥∥∇vẑ∥∥∥2

L2(Im(T−1
ẑ |Y \L(0)))d×d

,

where C3 := C2
X0C

2
TC2. Recalling Im(T−1

ẑ |L(0)) = L(ẑ) and setting C2
X := C1C

2
TC3+1,

calculation (8.11) yields the desired estimate

‖∇Xẑ(vẑ)‖2
L2(Im(T−1

ẑ |Y ))d×d ≤ (C2
X−1)‖∇vẑ‖2

L2(Y \L(ẑ))d×d .

and the proof is concluded.

Remark 8.3. Observe that for m = 1 in the particular case described below, the state-
ment of Lemma 8.2 stays valid, if one neglects the assumption (8.2g) and if one assumes
the conditions (8.2b) and (8.2h) to hold only for ẑ ∈ [0, 1). Since this setting allow for
µd(L(1)) = 0, in this particular case hole initiation can be modeled.

Let g : [0, 1] → [1,∞] be strictly monotone with g(0) = 1, g(ẑ) < ∞ for ẑ ∈ [0, 1), and
limẑ↗1 g(ẑ) =∞. Then, the transformations (Tẑ)ẑ∈[0,1] with Tẑ(y) = g(ẑ)y and T1(y) = y
correspond to the family of scaled sets (L(ẑ))ẑ∈[0,1], which are given by L(ẑ) := 1

g(ẑ)L(0)
for ẑ ∈ [0, 1) and L(1) := ∅. Since H1(Y \L(1))d = H1(Y )d, there is no need of an
extension in the case ẑ = 1, i.e., for v1 ∈ H1(Y \L(1))d = H1(Y )d we define

X1(v1) := v1. (8.12)

Moreover, for any ẑ∗ ∈ [0, 1) it holds

sup
ẑ∈[0,ẑ∗]

(
‖∇Tẑ‖L∞(Y )d×d + ‖∇T−1

ẑ ‖L∞(Im(Tẑ))d×d
)

=: CT (ẑ∗) <∞, (8.13)

where the constant CT (ẑ∗) depends on the value ẑ∗ ∈ [0, 1). To prove Lemma 8.2 un-
der these modified assumptions, we proceed as before. The first and only changes con-
cern the calculation (8.11) and look like follows: For ẑ ∈ [0, 1) we find ∇Tẑ ≡ g(ẑ)Id.
To substitute Tẑ(y) by x, line (8.11a) is multiplied by 1 = gd−2(ẑ)g2−d(ẑ) which to-
gether with the term g2(ẑ) coming from the chain rule (∇Tẑ ≡ g(ẑ)Id) leads to a
factor gd(ẑ)g2−d(ẑ) = |det(∇Tẑ)|g2−d(ẑ). After the integral transformation there is a
factor g2−d(ẑ) and as before inequality (8.6b) is exploited. Applying the chain rule in
line (8.11d) (∇T−1

ẑ ≡ g−1(ẑ)Id) causes an additional term g−2(ẑ) which altogether leads
to a factor g−d(ẑ). Substituting x by Tẑ(y) in line (8.11e) yields |det(∇Tẑ)| = gd(ẑ)
which cancels out the factor g−d(ẑ). In this way calculation (8.11) is established by
exploiting only the estimate (8.6b). Therefore, in this case Lemma 8.2 holds for the
constant CX0 > 0 of the inequalities (8.6), without assuming the uniform estimate (8.2g)
to hold and by claiming (8.2b) and (8.2h) only for ẑ ∈ [0, 1).
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8 Effective damage models based on the growth of microscopic defects

By assuming (8.1) and (8.2) to hold, for ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}) we are now
going to verify the crucial conditions (6.1) and (6.2) of Chapter 6. Since the statement of
Lemma 7.1 is independent of the value of Cweak, it is applicable for the here considered
ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}), too. Hence, for all measurable z : Rd → [0, 1]m
the mapping ĈH(z(·))(·) : Rd×Y → {Cstrong,O} is measurable on Rd×Y and assump-
tion (6.1) of Chapter 6 is fulfilled. Analog to Chapter 7, condition (8.2e) implies that
ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}) is continuous with respect to the strong L1-topology
such that (6.2) is established as well.

In contrast to the previous chapter, for an arbitrary ẑ ∈ [0, 1]m the tensor ĈH(ẑ) takes
the value zero on the set L(ẑ) and hence condition (6.3) obviously cannot be satisfied
uniformly in y ∈ Y ⊃ L(ẑ). Taking a closer look to the theory presented in Chapter 6,
we find that assumption (6.3) was made to ensure the unique solvability of the unit cell
problem being the basis of the one-scale modeled formulated in Section 6.3. For this
reason we refer to Section 8.3 for a sufficient condition replacing (6.3) and enabling the
formulation of an equivalent one-scale model in this particular case.

8.1 Damage progression caused by microscopic defects

In this section the microscopic models describing damage progression by increasing the
size of preexisting defects, which are modeled by holes in the displacement field’s refer-
ence configuration, are introduced.

8.1.1 Displacement field’s reference configuration

As already mentioned in the beginning of this chapter, the main difference to Chapter 7
is that the material tensor Cweak is set to zero. This banal appearing assumption leads to
the fact that for a given damage variable zε : [0, T ] → KεΛ(Ω; [0, 1]m) the displacement
field’s reference configuration is given by the t- and ε-dependent set

Ω\ΩD
ε (zε(t)) = Ω\

⋃
λ∈Λ−ε

ε(λ+ L(zελ(t))),

where zελ(t) :≡ zε(t)|ε(λ+Y ) for every λ ∈ Λ−ε ; see (2.15). Note that up to now the dis-
placement field’s reference configuration of the considered models was given by the time-
and micro-scale-independent set Ω, such that there was no need to comment on this.
Since for a given damage variable zε : [0, T ] → KεΛ(Ω; [0, 1]m) the displacement field at
time t ∈ [0, T ] is technically a function defined on Ω\ΩD

ε (zε(t)), its state space actually
depends on the damage variable. Recalling the evolutionary models of Chapter 6 and 7,
both the displacement field and the damage variable, are unknowns. Hence, assuming
the damage variable zε : [0, T ]→ KεΛ(Ω; [0, 1]m) to be a priori known for the considered
time interval [0, T ] is not realistic.
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8.1 Damage progression caused by the growth of microscopic defects

Figure 8.1: Left: Perforated domain Ω\ΩD
ε (zε) of positive stiffness depending on zε.

Right: Artificial body described by the zε-independent domain Ω, but con-
taining the red subsets of zero stiffness.

To overcome this inconsistency of the displacement field’s state space we are going to
investigate the damage progression of an artificial body whose reference configuration
is given by the t- and ε-independent set Ω. Here, artificial refers to the fact that this
body allows for “material” with zero stiffness. Therefore, for zε ∈ KεΛ(Ω; [0, 1]m) the
“material” distribution of this artificial body for almost every x ∈ Ω is given by

C
H
ε (zε)(x) := 1Ω\ΩD

ε (zε)(x)Cstrong.

The introduction of this artificial body now allows us to choose H1
ΓDir

(Ω)d as the dis-
placement field’s state space, again. However, since for zε ∈ KεΛ(Ω; [0, 1]m) there is
zero stiffness on the set ΩD

ε (zε), there is no physical sense of the displacement field’s
value on that part of Ω. For this reason, for zε ∈ KεΛ(Ω; [0, 1]m) the displacement field
u ∈ H1

ΓDir
(Ω)d is assumed to satisfy the constraint, that u|ΩD

ε (zε) is uniquely described
by u|Ω\ΩD

ε (zε). In other words, the evolution only affects the displacement field on the
set of positive stiffness and its physically senseless values are defined by the constraint
described above. Observe that the displacement field’s physically senseless values are cut
off by the material tensor anyway. Modeling this constraint is enabled by the following
corollary stating the existence of an extension operator that is uniformly bounded with
respect to zε ∈ KεΛ(Ω; [0, 1]m) and ε > 0.

Theorem 8.4. Let L : [0, 1]m → LLeb(Y ) fulfill (8.2d). Moreover, assume that there
exist bi-Lipschitz transformations (Tẑ)ẑ∈[0,1]m, Tẑ : Y → R

d, satisfying (8.2g) and (8.2h).

Then for all ε > 0 and any zε ∈ KεΛ(Ω; [0, 1]m) there exists a strong 1-extension operator
Xε,zε : H1

ΓDir
(Ω\ΩD

ε (zε))d → H1
ΓDir

(Ω)d, i.e., for all uzε ∈ H1
ΓDir

(Ω\ΩD
ε (zε))d it holds

‖Xε,zεuzε‖L2(Ω)d ≤ CX ‖uzε‖L2(Ω\ΩD
ε (zε))d , (8.14a)

‖∇(Xε,zεuzε)‖L2(Ω)d×d ≤ CX ‖∇uzε‖L2(Ω\ΩD
ε (zε))d×d , (8.14b)

where the constant CX > 0 is the same as in Lemma 8.2. Therefore, CX > 0 is indepen-
dent of ε > 0 and zε ∈ KεΛ(Ω; [0, 1]m).
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8 Effective damage models based on the growth of microscopic defects

Remark 8.5. Later, for a given damage variable zε : [0, T ]→ KεΛ(Ω; [0, 1]m) the stored
energy at time t ∈ [0, T ] of the evolution model of Subsection 8.1.3 below is only finite if
the displacement field u(t) ∈ H1

ΓDir
(Ω)d satisfies

u(t) = Xε,zε(t)(u(t)|Ω\ΩD
ε (zε(t))). (8.15)

Therefore, all displacement fields violating this constraint are not physically plausible.
In this way, for all u(t) ∈ H1

ΓDir
(Ω)d fulfilling (8.15) the function u(t)|ΩD

ε (zε(t)) is uniquely
defined by u(t)|Ω\ΩD

ε (zε(t)).

The construction of Xε,zε : H1
ΓDir

(Ω\ΩD
ε (zε))d → H1

ΓDir
(Ω)d being performed in the follow-

ing proof relies on the separated estimates for the function’s and the gradient’s L2-norm
stated in Lemma 8.2. Thus, we are able to verify the ε and zε independence of CX , which
is crucial for applying the homogenization theory of Chapter 6. Moreover, by replacing
∇ by e := 1

2(∇+∇T ) in the proof of Lemma 8.2 and Theorem 8.4, estimate (8.14b) holds
true for the symmetric part of the gradient, too. In this case the proofs are exactly the
same.

Proof of Theorem 8.4. Let ε > 0 and zε ∈ KεΛ(Ω; [0, 1]m) be given. Then the continua-
tion operator Xε,zε : H1

ΓDir
(Ω\ΩD

ε (zε))d → H1
ΓDir

(Ω)d is constructed with the help of the
following two scaling operators

T̂ελ :
{
ε(λ+Y )→ Y ,

x 7→ Vε(x) (see (3.1))
and T̂−1

ελ :
{
Y → ε(λ+Y ),
y 7→ ε(λ+y).

Introducing the operators

T̂ελ :

H1(Y )d → H1(ε(λ+Y ))d,
v̂ 7→ v̂ ◦ T̂ελ

and T̂ẑελ :

H1(ε(λ+Y \L(ẑ)))d → H1(Y \L(ẑ))d,
u 7→ u ◦ T̂−1

ελ |Y \L(ẑ)

for zε ∈ KεΛ(Ω; [0, 1]m) the strong 1-extension operator Xε,zε : H1(Ω\ΩD
ε (zε))d → H1(Ω)d

is given by
Xε,zε(u)(x) := T̂Nε(x)(Xzε(x)(T̂zε(x)

Nε(x)(u(x)))), (8.16)

where for ẑ ∈ [0, 1]m the strong 1-extension operator Xẑ : H1(Y \L(ẑ))d → H1(Y )d is
that of Lemma 8.2. By decomposing Ω into small cells ε(λ+Y ) ∩ Ω 6= ∅, with this
definition the inequalities (8.14) are proven in the same way as performed in the proof
of Lemma 8.2. While estimating ‖Xε,zε(u)‖L2(Ω)d and ‖∇Xε,zε(u)‖L2(Ω)d×d analogously

to (8.11), according to ∇T̂ελ = ε−1Id and ∇T̂−1
ελ = εId in this case no estimates have

to be applied in the whole calculation (except of that stated in Lemma 8.2); see also
Remark 8.3. Since the chain rule is applied twice in calculation (8.11), the appearing
terms (ε−1Id) and (εId) cancel out. To substitute T̂ελ(x) by y one inserts the factor
1 = ( ε

ε
)d = εd|det(∇T̂ελ)|. The remaining factor after performing this transformation

then cancels out by applying the opposite substitution. Therefore, the inequalities of
Lemma 8.2 are the only estimates coming into play, explaining that (8.14) holds for the
same constant CX .
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8.1 Damage progression caused by the growth of microscopic defects

Remark 8.6. As already stated in Proposition 8.1 the assumptions (8.2a), (8.2d), (8.2g),
and (8.2h) prohibit hole initiation in the microscopic damage model. That means for all
ε > 0 and any time t ∈ [0, T ] in every cell ε(λ+Y ) ⊂ Ω there is a hole containing the
set ε(λ+L(1)) at least. Hence, the body associated to the undamaged state with respect
to the damage variable (zε ≡ 1 on Ω) is already perforated by periodically distributed
holes εL(1). However, observe that at least in the case described in Remark 8.3 hole
initiation is allowed, i.e., in this particular case (m = 1) Theorem 8.4 is valid without
assuming the uniform estimate (8.2g) to hold and by claiming (8.2b) and (8.2h) only
for ẑ ∈ [0, 1).

8.1.2 External loading

This subsection addresses to the choice of the external loading for a specific microscopic
model. For this purpose, let ε > 0 be chosen arbitrarily but fixed. Thinking of the
artificial body defined by the reference configuration Ω and the tensor valued mapping
CH
ε : KεΛ(Ω; [0, 1]m) → L∞(Ω; {Cstrong,O}), one might model the external loading by

a function ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗), as it is done in the Chapters 6 and 7. Since
the displacement field’s state space is given by H1

ΓDir
(Ω)d, this choice would cause no

mathematical issues. On the other hand, such an external loading is also applied to
regions of Ω with zero stiffness, which in general is not a physically plausible behavior.
However, due to the constraint (8.15), for a given damage variable zε ∈ KεΛ(Ω; [0, 1]m)
and ` ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) for all t ∈ [0, T ] we find

〈`(t), u〉 :=
〈
`(t),Xε,zε

(
u|Ω\ΩD

ε (zε)

)〉
=
〈
X ∗ε,zε(`(t)), u|Ω\ΩD

ε (zε)

〉
Ω\ΩD

ε (zε)
.

Here, at any time t ∈ [0, T ] the term X ∗ε,zε(`(t)) ∈ (H1(Ω\ΩD
ε (zε))d)∗ models a physically

reasonable external loading for the body associated to the set Ω\ΩD
ε (zε) of positive

stiffness, where X ∗ε,zε : (H1(Ω)d)∗ → (H1(Ω\ΩD
ε (zε))d)∗ denotes the adjoint operator of

Xε,zε : H1(Ω\ΩD
ε (zε))d → H1(Ω)d; see Theorem 8.4. The disadvantage of modeling the

external loading in this way is that X ∗ε,zε : (H1(Ω)d)∗ → (H1(Ω\ΩD
ε (zε))d)∗ is not explicitly

given. At time t ∈ [0, T ] for ` ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and a given zε ∈ KεΛ(Ω; [0, 1]m)
the actual force on the body associated to the set Ω\ΩD

ε (zε) of positive stiffness is defined
by the non-explicit term X ∗ε,zε(`(t)).
Another way of introducing an external loading ``0,`1zε ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) for the

body associated to the set Ω\ΩD
ε (zε) of positive stiffness is the following: Let the function

(`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) be given. Then, for a given zε ∈ KεΛ(Ω; [0, 1]m)
the external loading ``0,`1zε ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) on the body associated to Ω\ΩD

ε (zε)
for all u ∈ H1

ΓDir
(Ω)d and every t ∈ [0, T ] is defined by

〈``0,`1zε (t), u〉 := 〈1Ω\ΩD
ε (zε)`0(t), u〉L2(Ω)d + 〈1Ω\ΩD

ε (zε)`1(t),∇u〉L2(Ω)d×d . (8.17)

The advantage of introducing the external loading in this way is its explicit structure,
which enables us to investigate the external loading’s asymptotic behavior for ε → 0;
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8 Effective damage models based on the growth of microscopic defects

see Lemma 8.7 below. For this reason, from now we use (8.17) to model the external
loading for the microscopic models introduced in the following subsection.

Lemma 8.7. Let u0 ∈ H1
ΓDir

(Ω)d, (uε)ε>0 ⊂ H1
ΓDir

(Ω)d, (zε)ε>0 with zε ∈ KεΛ(Ω; [0, 1]m),
and z0 ∈ W1,p(Ω; [0, 1]m) be given. Moreover, for (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d)
let ``0,`1zε ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) be defined by (8.17). If uε

s→ Eu0 in L2(Ω×Y )d, if

∇uε w
⇀ ∇xEu0 +∇yU1 in L2(Ω×Y )d×d, and if zε → z0 in Lp(Ω)m, then

lim
ε→0
〈``0,`1zε (t), uε〉 = 〈``0,`1z0 (t), (u0, U1)〉,

where ``0,`1z0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d)∗) for all t ∈ [0, T ] is given by

〈``0,`1z0 (t), (u0, U1)〉:=〈h(z0)`0(t), u0〉L2(Ω)d+〈H(z0)`1(t),∇xEu0+∇yU1〉L2(Ω×Y )d×d (8.18)

for (h(z0), H(z0)) ∈ L1(Ω)×L1(Ω×Y ), which for almost every (x, y) ∈ Ω×Y are defined
by h(z0)(x) :=

∫
Y 1Y \L(z0(x))(ỹ)dỹ and H(z0)(x, y) := 1Y \L(z0(x))(y).

Proof. Let u0 ∈ H1
ΓDir

(Ω)d, let (uε)ε>0 ⊂ H1
ΓDir

(Ω)d, let (zε)ε>0 with zε ∈ KεΛ(Ω; [0, 1]m),
and let z0 ∈ W1,p(Ω; [0, 1]m) be given, such that uε

s→ Eu0 in L2(Ω×Y )d, such that
∇uε w

⇀ ∇xEu0 + ∇yU1 in L2(Ω×Y )d×d, and such that zε → z0 in Lp(Ω)m. Applying
Theorem 3.9 to the sequence (CH

ε (zε))ε>0 implies 1Ω\ΩD
ε (zε)

s→ H(z0) in L1(Ω×Y ); see
(8.19) and (8.30). Thus, Lemma 8.7 is proven by the following calculation.

lim
ε→0
〈``0,`1zε (t), uε〉

(8.17)= lim
ε→0

(
〈1Ω\ΩD

ε (zε)`0(t), uε〉L2(Ω)d + 〈1Ω\ΩD
ε (zε)`1(t),∇uε〉L2(Ω)d×d

)
(3.2)= lim

ε→0

(
〈Tε(1Ω\ΩD

ε (zε)`0(t)), Tεuε〉L2(Rd×Y )d + 〈Tε(1Ω\ΩD
ε (zε)`1(t)), Tε∇uε〉L2(Rd×Y )d×d

)
Cor. 3.6= 〈h(z0)`0(t), u0〉L2(Ω)d + 〈H(z0)`1(t),∇xEu0+∇yU1〉L2(Ω×Y )d×d ,

where in the last line we already exploited that the first two-scale limit of the second
last line is constant with respect to y ∈ Y .

Remark 8.8. If one needs to model time dependent Dirichlet data on ΓDir, following
Remark 2.2 uε is replaced by uε+ĝ(t), where ĝ : [0, T ]×Ω → Rd describes the desired
boundary value on ΓDir. Among other things, the additional term

〈1Ω\ΩD
ε (zε)`0(t), ĝ(t)〉L2(Ω)d + 〈1Ω\ΩD

ε (zε)`1(t),∇ĝ(t)〉L2(Ω)d×d

enters the microscopic energy functional in line (8.20) below. Performing the limit pas-
sage ε→ 0, the term 〈h(z0)`0(t), ĝ(t)〉L2(Ω)d + 〈h(z0)`1(t),∇ĝ(t)〉L2(Ω)d×d results from the
time dependent Dirichlet data in the limit. According to the perforated domains con-
sidered in the microscopic models, here the scaling factor h(z0) depending on the actual
damage state shows up.
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8.1 Damage progression caused by the growth of microscopic defects

8.1.3 Energy functional, dissipation distance, the microscopic
model, and existence of solutions

Due to the introduction of the artificial body in Subsection 8.1.1 the state space QH
ε (Ω)

can be chosen as

QH
ε (Ω) := H1

ΓDir
(Ω)d×KεΛ(Ω; [0, 1]m).

Let zε ∈ KεΛ(Ω; [0, 1]m). For the microstructure being modeled by the tensor

CH
ε (zε) := 1Ω\ΩD

ε (zε)Cstrong, (8.19)

the energy functional EH
ε : [0, T ]×QH

ε (Ω)→ R∞ := R∪ {∞} is defined as follows: First,
we once choose p ∈ (1,∞) and keep it fixed for the rest of this chapter. Then, the
functional ẼH

ε : [0, T ]×QH
ε (Ω)→ R is introduced by

ẼH
ε (t, u, zε) := 1

2〈C
H
ε (zε)e(u), e(u)〉L2(Ω)d×d + ‖R ε

2
zε‖pLp(Ω+

ε )m×d − 〈`
`0,`1
zε (t), u〉,

where the external loading ``0,`1zε ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) for a given tuple of functions
(`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) is defined by (8.17). Thus, we are in the position
to define the energy functional EH

ε : [0, T ]×QH
ε (Ω)→ R∞ via

EH
ε (t, u, zε) :=

{
ẼH
ε (t, u, zε) if u = Xε,zε(u|Ω\ΩD

ε (zε)) (see (8.15)),

∞ otherwise.
(8.20)

Observe that setting the energy’s value to infinity for all displacement fields violating
the constraint (8.15) excludes physically non-plausible values; see also Remark 8.5. To
apply the homogenization theory of Chapter 6, the coercivity condition (6.5) needs to
be established. By exploiting Korn’s inequality, applying Theorem 8.4 afterwards (see
also Remark 8.5), and keeping assumption (8.1) in mind, the following estimate holds
for all zε ∈ KεΛ(Ω; [0, 1]m) and every u ∈ H1

ΓDir
(Ω)d with u = Xε,zε(u|Ω\ΩD

ε (zε)).
α
2C
−2
X CKorn‖u‖2

H1
ΓDir

(Ω)d ≤ α
2C
−2
X ‖e(u)‖2

L2(Ω)d×d ≤ α
2 ‖e(u)‖2

L2(Ω\ΩD
ε (zε))d×d

≤ 1
2〈C

H
ε (zε)e(u), e(u)〉L2(Ω)d×d (8.21)

Therefore, the energy functional is coercive by definition; see (8.20). As already com-
mented on in Subsection 7.1.1 the dissipation potential (and thus the dissipation dis-
tance) specifies the relation of dissipated energy and changes of the damage variable.
Therefore, its choice largely depends on the behavior one wants to model. Here, we
consider the prototypical choice of Subsection 7.1.1; see (7.12). For this purpose, we
choose q′ ∈ (1,∞) and keep it fixed for the rest of this chapter. Then, for a given
sequence (κH

ε )ε>0 ⊂ Lq′(Ω; [0,∞)m) satisfying κH
ε ⇀ κH

0 in Lq′(Ω)m for some function
κH

0 ∈ Lq′(Ω; [0,∞)m) the dissipation distance associated to ε > 0 reads as follows:

DH
ε (z1, z2) =


∫

Ω−ε
|〈κH

ε (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.
(8.22)
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8 Effective damage models based on the growth of microscopic defects

For given initial values (u0
ε, z

0
ε) ∈ QH

ε (Ω) satisfying the constraint u0
ε = Xε,z0

ε
(u0

ε|Ω\ΩD
ε (z0

ε))
for all ε > 0, the rate-independent damage evolution is modeled by the ε-dependent
energetic formulation (SεH) and (Eε

H), where ε > 0 scales the size of the appearing holes.

Stability condition (SεH) and energy balance (Eε
H) for all t ∈ [0, T ]:

EH
ε (t, uε(t), zε(t)) ≤ EH

ε (t, ũ, z̃) +DH
ε (zε(t), z̃) for all (ũ, z̃) ∈ QH

ε (Ω)

EH
ε (t, uε(t), zε(t)) + DissDH

ε
(zε; [0, t]) = EH

ε (0, u0
ε, z

0
ε)−

∫ t

0
〈 ˙̀`0,`1zε(s)(s), uε(s)〉ds

Here, DissDH
ε

(zε; [0, t]) := sup∑N
j=1DH

ε (zε(tj−1), zε(tj)), where for N ∈ N the supremum
is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, T ]. For t̃ ∈ [0, T ]

SH
ε (t̃) := {(uε, zε) ∈ QH

ε (Ω) satisfying (SεH) for t = t̃ and EH
ε (t̃, uε, zε) <∞}

denotes the set of stable states. The following corollary states the existence of solutions
for (SεH) and (Eε

H) and is proven analogously to Proposition 6.5.

Corollary 8.9 (Existence of solutions). Assume that the conditions (8.1) and (8.2)
hold. For (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) let ``0,`1zε ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) be

defined by (8.17). Moreover, let EH
ε : [0, T ]×QH

ε (Ω) → R∞ be defined via (8.20) and
for κH

ε ∈ Lq′(Ω; [0,∞)m) let DH
ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞] be given by

(8.22).

Then for (u0
ε, z

0
ε) ∈ SH

ε (0), there exists an energetic solution (uε, zε) : [0, T ]→ QH
ε (Ω) of

the rate-independent system (QH
ε (Ω), EH

ε ,DH
ε ) satisfying (uε(0), zε(0)) = (u0

ε, z
0
ε) and

uε ∈ L∞([0, T ],H1
ΓDir

(Ω)d),
zε ∈ L∞([0, T ],KεΛ(Ω; [0, 1]m)) ∩ BVDH

ε
([0, T ],KεΛ(Ω; [0, 1]m)).

Proof. Referring to the proof of Corollary 7.8 the assumptions (6.1), (6.2), (6.5), and
(6.9) of Proposition 6.5 are fulfilled. Therefore, the proof of Corollary 8.9 is com-
pletely analog to that of Proposition 6.5. The only point that remains to be shown
is that the energy sublevel sets are weakly compact, i.e.: For u0 ∈ H1

ΓDir
(Ω)d, for

z0 ∈ KεΛ(Ω; [0, 1]m), and for a sequence (uδ, zδ)δ>0 in QH
ε (Ω) belonging to the sublevel

set SubE(t) (see (5.6)) with uδ ⇀ u0 in H1
ΓDir

(Ω)d and zδ → z0 in KεΛ(Ω; [0, 1]m) we need
to verify u0 = Xε,z0(u0|Ω\ΩD

ε (z0)). Otherwise, EH
ε (t, u0, z0) = ∞ by definition and hence

(u0, z0) /∈ SubE(t).
To show u0 = Xε,z0(u0|Ω\ΩD

ε (z0)) on ΩD
ε (z0) ⊂ Ω−ε , observe that for all δ > 0 we have

uδ = Xε,zδ(uδ|Ω\ΩD
ε (zδ)) due to the assumption (uδ, zδ) ∈ SubE(t). By estimating the

difference of u0 and Xε,z0(u0|Ω\ΩD
ε (z0)) on Ω−ε with the help of the triangle inequality we

obtain∥∥∥u0−Xε,z0(u0|Ω\ΩD
ε (z0))

∥∥∥
L2(Ω−ε )d

≤
∥∥∥u0−uδ

∥∥∥
L2(Ω)d

+
∥∥∥Xε,zδ((uδ−u0)|Ω\ΩD

ε (zδ)

)∥∥∥
L2(Ω)d

+Rzδ

≤
∥∥∥u0−uδ

∥∥∥
L2(Ω)d

+ CX
∥∥∥uδ−u0

∥∥∥
L2(Ω\ΩD

ε (zδ))d
+Rzδ .
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8.1 Damage progression caused by the growth of microscopic defects

Hence, it is sufficient to show that Rzδ := ‖Xε,zδ(u0|Ω\ΩD
ε (zδ))−Xε,z0(u0|Ω\ΩD

ε (z0))‖L2(Ω−ε )d
converges to zero for δ → 0. Recalling the construction of the strong 1-extension oper-
ator Xε,zε : H1(Ω\ΩD

ε (zε))d → H1(Ω)d (see (8.16)), by decomposing Ω−ε into small cells
ε(λ+Y ), for fixed λ ∈ Λ−ε we have to show

X
ẑ

(λ)
δ

(v(λ)|
Y \L(ẑ(λ)

δ
))→ Xẑ(λ)

0
(v(λ)|

Y \L(ẑ(λ)
0 )) in L2(Y )d, (8.23)

where ẑ
(λ)
δ :≡ zδ|ε(λ+Y ), ẑ

(λ)
0 :≡ z0|ε(λ+Y ), and v(λ) := u0(ε(λ+·)). Observe that for any

ẑ ∈ [0, 1]m it holds v(λ)|Y \L(ẑ) = u0|ε(λ+Y \L(ẑ))(ε(λ+·)). Since for all ẑ ∈ [0, 1]m and every

v ∈ H1(Y )d it holds Xẑ(v|Y \L(ẑ)) = Tẑ(X̂0,ẑ(Tẑ(v|Y \L(ẑ)))) (see (8.9)) the convergence in
(8.23) results, if for ẑ0 ∈ [0, 1], for (ẑδ)δ>0 ⊂ [0, 1]m with ẑδ → ẑ0 in Rm, and for all
w ∈ H1(Rd)d the following convergences hold true.

(
Tẑδ(v|Y \L(ẑδ))

)ex δ→0−→
(
Tẑ0(v|Y \L(ẑ0))

)ex
in L2(Rd)d, (8.24a)(

X̂0,ẑδ(w|Im(Tẑδ )\L(0))
)ex δ→0−→

(
X̂0,ẑ0(w|Im(Tẑ0 )\L(0))

)ex
in L2(Rd)d, (8.24b)

Tẑδ(w|Im(Tẑδ )) δ→0−→ Tẑ0(w|Im(Tẑ0 )) in L2(Y )d. (8.24c)

Observe that the convergences in (8.24a) and (8.24c) are proven with similar arguments
and that (8.24b) is trivially fulfilled for the strong L2-topology; see (8.7). Therefore, we
focus on proving (8.24c). For this purpose, for w ∈ H1(Rd)d choose (wn)n∈N ⊂ C∞c (Rd)d
such that wn → w in H1(Rd)d. Then, according to assumption (8.2i) for any fixed n ∈ N
it holds Tẑδ(wn|Im(Tẑδ ))→ Tẑ0(wn|Im(Tẑ0 )) pointwise in Y for δ → 0. Hence, the theorem
of dominated convergence yields for every fixed n ∈ N

lim
δ→0

∥∥∥Tẑδ(wn|Im(Tẑδ ))−Tẑ0(wn|Im(Tẑ0 ))
∥∥∥

L2(Y )d
= 0. (8.25)

For an arbitrary but fixed ∆ > 0 we now choose n∆ ∈ N such that

‖w − wn∆‖L2(Rd)d ≤ ∆
3
√
C2
. (8.26)

According to the convergence result of line (8.25) there exits δn∆ > 0 such that for
all δ ∈ (0, δn∆) it holds ‖Tẑδ(wn∆|Im(Tẑδ )) − Tẑ0(wn∆|Im(Tẑ0 ))‖L2(Y )d ≤ ∆

3 . Keeping this
estimate in mind, by triangle inequality we find∥∥∥Tẑδ(w|Im(Tẑδ ))−Tẑ0(w|Im(Tẑ0 ))

∥∥∥
L2(Y )d

≤
∥∥∥Tẑδ

(
(w − wn∆)|Im(Tẑδ )

)∥∥∥
L2(Y )d

+ ∆
3 +

∥∥∥Tẑ0

(
(wn∆ − w)|Im(Tẑ0 )

)∥∥∥
L2(Y )d

. (8.27)

Now, we are going to show that the first and the last term of (8.27) can be estimated
by ∆

3 . These estimates are verified by the following calculation, where the non-negative
integrand of the second line is increased by the left hand side of (8.10). Finally, in
line (8.28b) the integral transformation with respect to the substitution Tẑδ(y) = x is
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performed.

∥∥∥Tẑδ

(
(w − wn∆)|Im(Tẑδ )

)∥∥∥2

L2(Y )d

=
∫
Y

∣∣∣w|Im(Tẑδ )(Tẑδ(y))− wn∆|Im(Tẑδ )(Tẑδ(y))
∣∣∣2
d
dy

(8.10)

≤ C2

∫
Y

∣∣∣w|Im(Tẑδ )(Tẑδ(y))− wn∆|Im(Tẑδ )(Tẑδ(y))
∣∣∣2
d
|det(∇Tẑδ(y))|dy (8.28a)

= C2

∫
Im(Tẑδ )

∣∣∣w|Im(Tẑδ )(x)− wn∆|Im(Tẑδ )(x)
∣∣∣2
d
dx (8.28b)

≤ C2

∥∥∥w − wn∆

∥∥∥2

L2(Rd)d

(8.26)

≤
(

∆
3

)2
(8.28c)

Observe that the same calculation holds true for the last term of line (8.27) such that
for the arbitrary chosen ∆ > 0 we showed∥∥∥Tẑδ(w|Im(Tẑδ ))−Tẑ0(w|Im(Tẑ0 ))

∥∥∥
L2(Y )d

≤ ∆

by combining (8.27) and (8.28c). Thus, the convergences of (8.24) are verified and
altogether, by showing u0 = Xε,z0(u0|Ω\ΩD

ε (z0)), we proved the weak compactness of the
energy sublevel sets.

Remark 8.10. Note that the statement of Corollary 8.9 also holds true in the case of
modeling hole initiation as described in Remark 8.3, i.e., condition (8.2g) does not hold
and the assumptions (8.2b), (8.2h), and (8.2i) are only claimed for ẑ ∈ [0, 1). Since
Remark 8.6 states that the crucial coercivity condition (8.21) is valid in this case too,
there is no problem in this regard. By keeping the following observations in mind, the
proof of the weak compactness of the energy sublevels is analog to that of the proof of
Corollary 8.9. When estimating

∥∥∥u0−Xε,z0(u0|Ω\ΩD
ε (z0))

∥∥∥2

L2(Ω−ε )d
=

∑
λ∈Λ−ε

∥∥∥u0−Xε,z0(u0|Ω\ΩD
ε (z0))

∥∥∥2

L2(ε(λ+Y ))d
,

we find that for z
(λ)
0 = 1, where z

(λ)
0 :≡ z0|ε(λ+Y ) for λ ∈ Λ−ε , we already have that

‖u0−Xε,z0(u0|Ω\ΩD
ε (z0))‖2

L2(ε(λ+Y ))d = 0 according to (8.12). For this reason without loss

of generality we assume that z
(λ)
0 ≤ C < 1 for all λ ∈ Λ−ε . Then, we proceed as in

the proof of Corollary 8.9, i.e., for ẑ0 ≤ C < 1, for (ẑδ)δ>0 ⊂ [0, 1] with ẑδ → ẑ0 in
R, for v ∈ H1(Y )d, and for w ∈ H1(Rd)d we need to verify (8.24). This verification
is done in the same manner as before, but observe that in line (8.28a) we exploited
that estimate (8.10) holds for all ẑ ∈ [0, 1], which in this case is not available up to
now. According to Remark 8.3 for ẑ∗ ∈ (C, 1) the uniform estimate (8.13), implying the
desired estimate (8.10) for all ẑ ∈ [0, ẑ∗], is available. Due to the convergence ẑδ → ẑ0
in R there exists δ0 > 0 such that for all δ ∈ (0, δ0) it holds ẑδ ∈ [0, ẑ∗], which ensures
that for δ ∈ (0, δ0) we can apply estimate (8.10) in line (8.28a).
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8.1 Damage progression caused by the growth of microscopic defects

8.1.4 Verification of this chapter’s additional assumptions made on
L : [0, 1]m → LLeb(Y ) for specific choices

In this subsection we are going to verify the in comparison to Chapter 7 additional
assumptions made on the microstructure determining function L : [0, 1]m → LLeb(Y )
for the specific choices made in Subsection 7.1.2. For this purpose, in the respective
case we start by modifying the mapping L : [0, 1]m → LLeb(Y ) to ensure that assump-
tion (8.2d) holds. Afterwards, the transformations (Tẑ)ẑ∈[0,1]m are constructed such that
condition (8.2h) is fulfilled and finally assumption (8.2g) is verified for this construction.
As one can easily see, all constructed transformations (Tẑ)ẑ∈[0,1]m automatically satisfy
condition (8.2i).

Example 8.11 (Spherical holes). Coming back to Example 7.3 we now assume the
damage progression to cause the growth of spherical holes emerging in the center of cells
ε(λ+Y ) ⊂ Ω. For this purpose, we adopt the notation of Example 7.3, i.e.,

Y :=
{
y ∈ Rd

∣∣∣∣ y =
d∑
i=1

kibi, ki ∈ [−1
2 ,

1
2)
}

and for m = 1 and ẑ ∈ [0, 1] the mapping L : [0, 1]→ LLeb(Y ) is defined by

L(ẑ) := (1−ẑ)cl(BR(0)) :=

 {y ∈ Y |
1

(1−ẑ)y ∈ cl(BR(0))} if ẑ ∈ [0, 1),
∅ if ẑ = 1.

According to (8.2c) the set L(0) = cl(BR(0)) is assumed to be contained in the non-closed
set Y with the same center. Hence, condition (8.2d) is trivially fulfilled. The simplest
choice of the bi-Lipschitz transformations (Tẑ)ẑ∈[0,1] is the following: For ẑ ∈ [0, 1] let
Tẑ : Y → Rd be defined by

Tẑ(y) :=


1

(1−ẑ)y if ẑ ∈ [0, 1),
y if ẑ = 1.

Recalling Remark 8.3, for bi-Lipschitz transformations (Tẑ)ẑ∈[0,1] chosen like this, we are
able to neglect condition (8.2g) and the assumptions (8.2b) and (8.2h) only have to hold
for ẑ ∈ [0, 1). Therefore, these modified assumptions (8.2) hold for these specific choices
of L : [0, 1]→ LLeb(Y ) and (Tẑ)ẑ∈[0,1].

Example 8.12 (Quadrangular holes). This example is about damage progression caus-
ing quadrangular holes, which is similar to the modeling of quadrangular inclusions of
weak material discussed in Subsection 7.1.2. Recalling the notation of Example 7.4 for
d = m = 2 and ẑ ∈ [0, 1]2 we set

Y (ẑ) :=
{
y ∈ R2

∣∣∣∣ y =
2∑
i=1

ẑikibi, ki ∈ [−1
2 ,

1
2)
}
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Figure 8.2: Notations for Example 8.13
.

and the unit cell Y is defined as in Example 8.11. To ensure the validity of assump-
tion (8.2d) the mapping L : [0, 1]2 → LLeb(Y ) needs to be slightly modified in contrast
to Example 7.4. For this purpose, let ĉ ∈ (0, 1) and set L(ẑ) := cl(Y (ĉ(1−ĉẑ))). To
ensure that condition (8.2h) holds, the bi-Lipschitz transformations need to scale the
component y1 of y ∈ Y with respect to the value of the ẑ1-component of ẑ ∈ [0, 1]2
(analog for the y2-component). One possible choice for (Tẑ)ẑ∈[0,1]2 fulfilling (8.2h) is the
following: For ẑ ∈ [0, 1]2 let Tẑ : Y → R2 be defined via

Tẑ(y) :=
(

1
(1−ĉẑ1)y1,

1
(1−ĉẑ2)y2

)T
.

Calculating

∇Tẑ(y) = diag2×2

(
1

(1−ĉẑ1) ,
1

(1−ĉẑ2)

)
we find ‖∇Tẑ‖L∞(Y )2×2 ≤ 1

(1−ĉ) and ‖∇T−1
ẑ ‖L∞(Im(Tẑ))2×2 ≤ 1 which establishes assump-

tion (8.2g).

Example 8.13 (Anisotropic holes). Here, we enable the model to generate anisotropic
defects in the sense of Example 7.6. For this purpose, let d = 2, m > 2, and for
j ∈ {2, 3, . . . ,m,m+1} choose γj ∈ (0, π) such that

∑m+1
j=2 γj = 2π. Without loss of

generality set γ1 := 0 and construct the elements l1, l2, · · · , lm ∈ cl(Y ) as in Example 7.6.
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Then, for ĉ ∈ (0, 1) we are going to consider the set valued mapping L : [0, 1]m → LLeb(Y )
defined by

L(ẑ) :=
m⋃
j=1

triangle[ĉ(1−ĉẑj)lj, ĉ(1−ĉẑj+1)lj+1,0].

By inserting the factor ĉ ∈ (0, 1), this mapping obviously fulfills condition (8.2d). To
verify the conditions (8.2g) and (8.2h) the bi-Lipschitz transformations (Tẑ)ẑ∈[0,1]m are
constructed as follows: For ỹ ∈ R2 and ẑ ∈ [0, 1]m let ŷ(ỹ, ẑ) ∈ R2 denote the point
indicated in Figure 8.2(i). Thus, for ẑ ∈ [0, 1]m the function Tẑ : Y → R2 maps y ∈ Y
onto a point which is given by the product of the point ŷ(y,0) and the scaling factor
|y|2

|ŷ(y,ẑ)|2 , i.e.,

Tẑ(y) :=


|y|2

|ŷ(y, ẑ)|2
ŷ(y,0) = |ŷ(y,0)|2

|ŷ(y, ẑ)|2
y if

k∑
j=1

γj ≤ γ(y) <
k+1∑
j=1

γj,

0 if y = 0,

where the angle γ(y) ∈ [0, 2π) for y = (y1, y2)T 6= 0 is defined by

γ(y) :=



arctan(y2
y1

) if y1 > 0 and y2 ≥ 0,
π
2 if y1 = 0 and y2 > 0,
arctan(y2

y1
) + π if y1 < 0,

3π
2 if y1 = 0 and y2 < 0,

arctan(y2
y1

) + 2π if y1 > 0 and y2 < 0.

Therefore, for ẑ ∈ [0, 1]m the mapping T−1
ẑ : R2 → Y is given by

T−1
ẑ (ỹ) :=


|ŷ(ỹ, ẑ)|2
|ŷ(ỹ,0)|2

ỹ if
k∑
j=1

γj ≤ γ(ỹ) <
k+1∑
j=1

γj,

0 if ỹ = 0.

Due to the similar structure of Tẑ : Y → R2 and T−1
ẑ : R2 → Y , the verification of the

estimate supẑ∈[0,1]m ‖∇T−1
ẑ ‖L∞(Im(Tẑ))2×2 < ∞ can be done analogously to the proof of

supẑ∈[0,1]m ‖∇Tẑ‖L∞(Y )2×2 <∞ below.

In preparation for specifying the term Tẑ(y) in dependence of y = (y1, y2)T ∈ Y and
ẑ = (ẑ1, ẑ2, . . . , ẑm)T ∈ [0, 1]m, we calculate the area A := µ2(triangle[a1, a2,0]) (see
Figure 8.2(ii)) via

A = |a1|2|a2|2 sin(γya1+γa2
y ) = A1+A2 = |a1|2|y|2 sin(γya1) + |y|2|a2|2 sin(γa2

y ),

which results in the following description for the value |y|2:

|y|2 =
|a1|2|a2|2 sin(γya1+γa2

y )
|a1|2 sin(γya1) + |a2|2 sin(γa2

y ) . (8.29)
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For an arbitrary but fixed 0 6= y ∈ Y there exists a unique k ∈ {1, 2, . . . ,m} such that∑k
j=1 γj ≤ γ(y) < ∑k+1

j=1 γj. Exploiting (8.29) in some simple but lengthy calculation
yields

Tẑ(y) =
(1−ĉẑk)|lk|2 sin

(
γ(y)−

k∑
j=1

γj
)

+ (1−ĉẑk+1)|lk+1|2 sin
( k+1∑
j=1

γj−γ(y)
)

(1−ĉẑk)(1−ĉẑk+1)
[
|lk|2 sin

(
γ(y)−

k∑
j=1

γj
)

+ |lk+1|2 sin
( k+1∑
j=1

γj−γ(y)
)]y

=: f(γ(y), ẑ)y.

To verify condition (8.2g) for y = (y1, y2)T 6= 0 we calculate

∇Tẑ(y) =
(
∂y1f(γ(y), ẑ)y1 + f(γ(y), ẑ) ∂y2f(γ(y), ẑ)y1

∂y2f(γ(y), ẑ)y1 ∂y2f(γ(y), ẑ)y2 + f(γ(y), ẑ)

)

To prove supẑ∈[0,1]m ‖∇Tẑ‖L∞(Y )2×2 < ∞ we apply the quotient rule on the explicit ex-
pression of f(γ(y), ẑ). Therefore, for the numerator f1(γ(y), ẑ) of f(γ(y), ẑ)) and its
denominator f2(γ(y), ẑ) it is sufficient to show that for i, n, l ∈ {1, 2} there exist con-
stants Ci, Ci,l,n, C0 > 0 such that |fi(γ(y), ẑ)| ≤ Ci, |∂yifl(γ(y), ẑ)yn| ≤ Ci,l,n, as well as
|f2(γ(y), ẑ)| ≥ C0 for all 0 6= y ∈ Y and every ẑ ∈ [0, 1]m. Trivially, for i ∈ {1, 2}, for all
0 6= y ∈ Y and every ẑ ∈ [0, 1]m it holds

|fi(γ(y), ẑ)| ≤ max
k∈{1,2,...,m}

(|lk|2+|lk+1|2).

To show |∂yifl(γ(y), ẑ)yn| ≤ Ci,l,n for i, l, n ∈ {1, 2}, for all 0 6= y ∈ Y and every
ẑ ∈ [0, 1]m it is sufficient to prove that

|yi∂yl(sin(γ(y)+C))| = |yi cos(γ(y)+C)∂ylγ(y)| ≤ |yi∂ylγ(y)|

(C ∈ R) is bounded. For this purpose, we calculate the weak derivative ∂ylγ, which
finally yields the following uniform bounds:

|yi∂ylγ(y)| =



∣∣∣ y1y2
y2
1+y2

2

∣∣∣ ≤ 2 if i = l = 1 or i = l = 2,∣∣∣ y2
1

y2
1+y2

2

∣∣∣ ≤ 1 if i = 1 or l = 2,∣∣∣ y2
2

y2
1+y2

2

∣∣∣ ≤ 1 if i = 2 or l = 1.

It remains to be shown that there exists a constant C0 > 0 such that |f2(γ(y), ẑ)| ≥ C0
for all 0 6= y ∈ Y and every ẑ ∈ [0, 1]m. Let γmax := maxk∈{1,2,...,m} γk. Then

|f2(γ(y), ẑ)| ≥ (1−ĉ)2 min
k∈{1,2,...,m}

|lk|2 min
γ̃∈[0,γmax]

(
sin(γ̃) + sin(γmax−γ̃)

)
,

where minγ̃∈[0,γmax](sin(γ̃) + sin(γmax−γ̃)) > 0 since 0 < γmax < π. Thus, the desired
estimates are established and hence it holds supẑ∈[0,1]m ‖∇Tẑ‖L∞(Y )2×2 <∞.
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8.2 Two-scale effective damage model based on
unidirectional defects’ evolution

In this section we formulate the two-scale effective damage model (S0
H) and (E0

H) which
will turn out to be the limit model of (SεH) and (Eε

H) for ε→ 0. Here, damage is described
by the two-scale elasticity tensor CH

0 : W1,p(Ω; [0, 1]m) → L∞(Ω×Y ; {Cstrong,O}) which
for almost every (x, y) ∈ Ω×Y and z0 ∈W1,p(Ω; [0, 1]m) is defined via

CH
0 (z0)(x, y) := 1Y \L(z0(x))(y)Cstrong. (8.30)

As in Section 7.2 this two-scale tensor is motivated by the strong two-scale limit of a
sequence CH

ε (zε) of microscopic tensors; see Theorem 3.9. For Y := R/Λ denoting the
periodicity cell the limit function space QH

0 has the following structure:

QH
0 := H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d×W1,p(Ω; [0, 1]m).

Recalling Lemma 8.7, concerning the asymptotic behavior of the external forces applied
to the microscopic models of Subsection 8.1.3, the external loading for the two-scale
limit model is introduced as follows: For (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) and
z0 ∈W1,p(Ω; [0, 1]m) the external loading ``0,`1z0 ∈ C1([0, T ]; (H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d)∗)
for all t ∈ [0, T ] and (u0, U1) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d is defined by

〈``0,`1z0 (t), (u0, U1)〉:=〈h(z0)`0(t), u0〉L2(Ω)d+〈H(z0)`1(t),∇xEu0+∇yU1〉L2(Ω×Y )d×d . (8.31)

Here, (h(z0), H(z0)) ∈ L1(Ω)×L1(Ω×Y ) for almost every (x, y) ∈ Ω×Y are defined
by h(z0)(x) :=

∫
Y 1Y \L(z0(x))(ỹ)dỹ = µd(Y \L(z0(x))) and H(z0)(x, y) := 1Y \L(z0(x))(y).

Observe that the measurbility of the function h(z0) : Ω→ [0, 1] is ensured by Funbini’s
Theorem; see [3, Theorem A 4.10]. For (u0, U1) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y))d we set
ẽ(u0, U1) := ex(u0) + ey(U1). Thus, the energy functional EH

0 : [0, T ]×QH
0 → R is given

by

EH
0 (t, u0, U1, z0) (8.32)

:= 1
2〈C

H
0 (z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d + ‖∇z0‖pLp(Ω)m×d − 〈`

`0,`1
z0 (t), (u0, U1)〉.

Remark 8.14. Observe that this two-scale limit functional is motivated by investigating
the asymptotic behavior of the microscopic energy functionals (EH

ε )ε>0 with respect to
(zε)ε>0 with zε ∈ KεΛ(Ω; [0, 1]m) and (uε)ε>0 ⊂ H1

ΓDir
(Ω)d with uε = Xε,zε(uε|Ω\ΩD

ε (zε)),
which converge in the following sense: Let (u0, U1, z0) ∈ QH

0 be given such that

uε ⇀ u0 in H1
ΓDir

(Ω)d, zε → z0 in Lp(Ω)m,
uε

s→ Eu0 in L2(Ω×Y )d, R ε
2
zε|Ω ⇀ ∇z0 in Lp(Ω)m×d,

∇uε w
⇀ ∇xEu0+∇yU1 in L2(Ω×Y )d×d.

By improving the assumptions on the transformations (Tẑ)ẑ∈[0,1]m one might force the
limit function U1 ∈ L2(Ω; H1

av(Y))d to satisfy

U1(x, ·) = Xz0(x)(U1(x, ·)|Y \L(z0(x))) for almost every x ∈ Ω. (8.33)
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Here, Xẑ : H1(Y \L(ẑ))d → H1(Y )d (ẑ ∈ [0, 1]m) denotes the strong 1-extension operator

of Lemma 8.2. In this case the limit energy functional EH
0 : [0, T ]×QH

0 → R∞ would be
defined by

EH
0 (t, u0, U1, z0) :=

{
EH

0 (t, u0, U1, z0) if U1 satisfies (8.33),

∞ otherwise.
(8.34)

This would have the advantage that for M(z0) := ⋃
x∈Ω{x}×L(z0(x)) the physically

senseless part U1|M(z0) of the two-scale displacement field is uniquely described by the
part U1|(Ω×Y )\M(z0) given on the set of positive stiffness. Therefore, the energy func-

tional EH
0 : [0, T ]×QH

0 → R∞ is coercive, which is not the case for the functional defined
in line (8.32). However, since these physically senseless values are cut off by the material
tensor CH

0 (z0) and the external loading ``0,`1z0 anyway, we do not continue to pursue this
ansatz in the following.

Since there were no changes in the microscopic dissipation distances in comparison to
those of Chapter 7, for the limit function κH

0 ∈ Lq′(Ω; [0,∞))m (see (8.22)) the limit
dissipation distance DH

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞] of the sequence
(DH

ε )ε>0 is defined via (see Section 7.2)

DH
0 (z1, z2) :=


∫

Ω
|〈κH

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.
(8.35)

For given initial values (u0
0, U

0
1 , z

0
0) ∈ QH

0 the rate-independent damage evolution is
modeled by the energetic formulation (S0

H) and (E0
H).

Stability condition (S0
H) and energy balance (E0

H) for all t ∈ [0, T ]:

EH
0 (t, u0(t), U1(t), z0(t)) ≤ EH

0 (t, ũ, Ũ , z̃) + DH
0 (z0(t), z̃) for all (ũ, Ũ , z̃) ∈ QH

0

EH
0 (t, u0(t), U1(t), z0(t)) + DissDH

0
(z0; [0, t])

= EH
0 (0, u0

0, U
0
1 , z

0
0)−

∫ t

0
〈 ˙̀`0,`1z0(s)(s), (u0(s), U1(s))〉ds

Here, DissDH
0
(z0; [0, t]) := sup∑N

j=1 DH
0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum

is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of
the interval [0, T ]. The following existence result extends Theorem 6.18 to the situation
with voids.

Theorem 8.15 (Existence of solutions). Assume that the conditions (8.1) and (8.2)
hold. Let EH

0 : [0, T ]×QH
0 → R and DH

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞]
be defined as described above. Moreover, let (u0

0, U
0
1 , z

0
0) ∈ QH

0 be given such that it
is the limit of a stable sequence (u0

ε, z
0
ε)ε>0 with respect to 0 ∈ [0, T ] in the sense of

Definition 6.12. If ∇u0
ε

s→ ∇xEu
0
0 + ∇yU

0
1 in L2(Ω×Y )d×d and R ε

2
z0
ε |Ω → ∇z0

0 in
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Lp(Ω)m×d, then there exists an energetic solution (u0, U1, z0) : [0, T ] → QH
0 of the rate-

independent system (QH
0 ,EH

0 ,DH
0 ) with initial condition (u0

0, U
0
1 , z

0
0) satisfying

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d),

z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVDH
0
([0, T ]; W1,p(Ω; [0, 1]m)).

Remark 8.16. For (u0, U1, z0) : [0, T ] → QH
0 being an energetic solution to (S0

H) and
(E0

H) let M c(z0(t)) := (Ω×Y )\M(z0(t)) denote the set of positive stiffness at t ∈ [0, T ]
(M(z0(t)) := ⋃

x∈Ω{x}×L(z0(t, x))). Then due to the zero stiffness on M(z0(t)) any
function (u0, Û1, z0) : [0, T ]→ QH

0 with Û1(t)|Mc(z0(t)) = U1(t)|Mc(z0(t)) for all t ∈ [0, T ] is
an energetic solution of (S0

H) and (E0
H), too.

Proof. To proceed analogously to the proof of Theorem 6.18, observe that all assump-
tions of Theorem 6.18 are satisfied in this case (ignoring the fact that here the mi-
croscopic energy functionals are allowed to take the value ∞); see the proof of Corol-
lary 7.14. Since the proof of Theorem 6.18 exploits the results of Theorem 6.15 and
Theorem 6.17, they have to be modified, too. These adaptations are done in Corol-
lary 8.17 and Corollary 8.18 below. Afterwards, by following the proof of Theorem 6.18,
establishing Theorem 8.15 is straight forward.

Corollary 8.17 (Mutual recovery sequence). Assume that (8.1) and (8.2) hold. For
(`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d), zε ∈ KεΛ(Ω; [0, 1]m), and z0 ∈W1,p(Ω; [0, 1]m) let
``0,`1zε ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) and ``0,`1z0 ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) be defined by (8.17)

and (8.31), respectively. Moreover, let EH
ε : [0, T ]×QH

ε (Ω) → R∞ be defined via (8.20)
and let DH

ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m) → [0,∞] be defined by (8.22). Finally,
let EH

0 : [0, T ]×QH
0 → R and DH

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞] be given
as described above. If (uε, zε)ε>0 is a stable sequence with respect to t̃ ∈ [0, T ] (see
Definition 6.12) with limit (u0, U1, z0) ∈ QH

0 , then:

(a) For every (ũ0, Ũ1, z̃0) ∈ QH
0 there exists a mutual recovery sequence (˜̃uε, z̃ε)ε>0; see

Definition 6.13.

(b) (u0, U1, z0) satisfies the stability condition (S0
H) for t = t̃.

Proof. Part (a): Let (uε, zε)ε>0 be a the stable sequence with respect to t ∈ [0, T ]
converging to the limit (u0, U1, z0) ∈ QH

0 ; see Definition 6.12. Then, for a given function
(ũ0, Ũ1, z̃0) ∈ Q0 we start by constructing the mutual recovery sequence (˜̃uε, z̃ε)ε>0.

1. This first step is completely analog to the proof of Theorem 6.15. Without loss of
generality let z̃0 ≤ z0. Then, according to Theorem 6.16 there exists a sequence (z̃ε)ε>0
satisfying z̃ε ∈ KεΛ(Ω; [0, 1]m), z̃ε ≤ zε, z̃ε → z̃0 in Lp(Ω)m, R ε

2
z̃ε|Ω ⇀ ∇z̃0 in Lp(Ω)m×d,

lim sup
ε→0

(
‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d−‖R ε
2
zε‖pLp(Ω+

ε )m×d

)
≤ ‖∇z̃0‖pLp(Ω)m×d−‖∇z0‖pLp(Ω)m×d , (8.36)

and limε→DH
ε (zε, z̃ε) = DH

0 (z0, z̃0).
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2. Now, the u-component ˜̃uε ∈ H1
ΓDir

(Ω)d of the mutual recovery sequence is constructed.

For the sequence (z̃ε)ε>0 introduced in step 1 the sequence (˜̃uε)ε>0 ⊂ H1
ΓDir

(Ω)d is defined
by ˜̃uε := Xε,z̃ε(ũε|Ω\ΩD

ε (z̃ε)), (8.37)

where (ũε)ε>0 ⊂ H1
ΓDir

(Ω)d is the sequence constructed in the second step of the proof of
Theorem 6.15 and satisfies

ũε ⇀ ũ0 in H1
ΓDir

(Ω)d,
ũε

s→ Eũ0 in L2(Ω×Y )d,
∇ũε

s→ ∇xEũ0+∇yŨ1 in L2(Ω×Y )d×d.

Note that we do not claim, that this convergence result also holds for the sequence
(˜̃uε)ε>0. In fact, whenever the asymptotic behavior of a term involving the function ˜̃uε
is investigated in the following, then by definition this term actually depends on the
product 1Ω\ΩD

ε (z̃ε)
˜̃uε. Since ˜̃uε and ũε coincide on supp(1Ω\ΩD

ε (z̃ε)) = Ω\ΩD
ε (z̃ε), thus the

convergence results for the sequence (ũε)ε>0 can be exploited. The adaptation (8.37) is
only made to ensures EH

ε (t̃, ˜̃uε, z̃ε) < ∞ for all ε > 0, which, for instance, is necessary
to prove the lim sup-inequality (6.24). In fact, every sequence (ũε)ε>0 appearing in the
proofs of Theorem 6.17 and Theorem 6.18 has to be replaced by (˜̃uε)ε>0 to prove the
modified results stated in Theorem 8.15 and Corollary 8.18.

3. According to Lemma 8.7, for the given t̃ ∈ [0, T ] we have

lim
ε→0

(
〈``0,`1zε (t̃), uε〉 − 〈``0,`1z̃ε (t̃), ˜̃uε〉) = 〈``0,`1z0 (t̃), (u0, U1)〉 − 〈``0,`1z̃0 (t̃), (ũ0, Ũ1)〉, (8.38)

where we already exploited, that ˜̃uε and ũε coincide on supp(1Ω\ΩD
ε (z̃ε)) = Ω\ΩD

ε (z̃ε)
which implies 〈``0,`1z̃ε (t̃), ˜̃uε〉 = 〈``0,`1z̃ε (t̃), ũε〉 for all ε > 0; see (8.17).

4. Analog to the fourth step of the proof of Theorem 6.15, we have

lim sup
ε→0

(
〈CH

ε (z̃ε)e(ũε), e(ũε)〉L2(Ω)d×d − 〈CH
ε (zε)e(uε), e(uε)〉L2(Ω)d×d

)
(8.39)

≤ 〈CH
0 (z̃0)ẽ(ũ0, Ũ1), ẽ(ũ0, Ũ1)〉L2(Ω×Y )d×d − 〈CH

0 (z0)ẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y )d×d .

Since the functions ˜̃uε and ũε coincide on the set supp(CH
ε (z̃ε)) = Ω\ΩD

ε (z̃ε) it holds

EH
ε (t̃, ˜̃uε, z̃ε) = 1

2〈C
H
ε (z̃ε)e(ũε), e(ũε)〉L2(Ω)d×d + ‖R ε

2
z̃ε‖pLp(Ω+

ε )m×d − 〈`
`0,`1
z̃ε (t̃), ũε〉,

although EH
ε (t̃, ũε, z̃ε) might be infinite due to the energy functional’s definition; see

(8.20). Combining (8.36), (8.38), and (8.39) we finally end up with

lim sup
ε→0

(
EH
ε (t̃, ˜̃uε, z̃ε)− EH

ε (t̃, uε, zε)
)
≤ EH

0 (t̃, ũ0, Ũ1, z̃0)− EH
0 (t̃, u0, U1, z0)

i.e., (˜̃uε, z̃ε)ε>0 is a mutual recovery sequence; see Definition 6.13

The proof of part (b) is exactly the same as in the proof of Theorem 6.15.
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Corollary 8.18 (“Mosco” convergence of (EH
ε )ε>0 to EH

0 ). Let (uε, zε)ε>0 be a sequence
satisfying (uε, zε) ∈ QH

ε (Ω) for all ε > 0 and

uε ⇀ u0 in H1
ΓDir

(Ω)d, zε → z0 in Lp(Ω)m,
uε

s→ Eu0 in L2(Ω×Y )d, R ε
2
zε|Ω ⇀ ∇z0 in Lp(Ω)m×d,

∇uε w
⇀ ∇xEu0+∇yU1 in L2(Ω×Y )d×d.

Then for every t ∈ [0, T ] it holds lim infε→0 EH
ε (t, uε, zε) ≥ EH

0 (t, u0, U1, z0).

Moreover, for every function (ũ0, Ũ1, z̃0) ∈ QH
0 there exists a sequence (ũε, z̃ε)ε>0 with

(ũε, z̃ε) ∈ QH
ε (Ω) for every ε > 0 such that

ũε ⇀ ũ0 in H1
ΓDir

(Ω)d, z̃ε → z̃0 in Lp(Ω)m,
ũε

s→ Eũ0 in L2(Ω×Y )d, R ε
2
z̃ε|Ω → ∇z̃0 in Lp(Ω)m×d,

∇ũε
s→ ∇xEũ0+∇yŨ1 in L2(Ω×Y )d×d,

and limε→0 EH
ε (t, ˜̃uε, z̃ε) = EH

0 (t, ũ0, Ũ1, z̃0), where ˜̃uε := Xε,z̃ε(ũε|Ω\ΩD
ε (z̃ε)).

Proof. The proof is completely analog to that of Theorem 6.17. However, observe that
to guarantee that Eε(t, ˜̃uε, z̃ε) is finite for all ε > 0, the recovery sequence needs to be
redefined (˜̃uε := Xε,z̃ε(ũε|Ω\ΩD

ε (z̃ε)) ) on the set ΩD
ε (z̃ε) of zero stiffness. Again, we do

not claim that the sequence (˜̃uε)ε>0 ⊂ H1
ΓDir

(Ω)d converges in any sense to the functions

(ũ0, Ũ1) ∈ H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d. That is why, roughly spoken, Corollary 8.18 states

Mosco convergence only on the set of positive stiffness, which is sufficient to prove
Theorem 8.15 analogously to Theorem 6.18.

8.3 One-scale effective damage model based on
unidirectional defects’ evolution

As in the Chapters 6–7 we are able to formulate a one-scale model which is equivalent to
that of Section 8.2. However, in contrast to these previous results this equivalence does
only hold by making some further assumptions. Let the state space QH

0 (Ω) be given by

QH
0 (Ω) := H1

ΓDir
(Ω)d×W1,p(Ω; [0, 1]m).

Recalling the motivation of Section 6.3, the equivalence of the models in Section 6.2
and 6.3 is based on the fact that for given stable state (u0, U1, z0) ∈ S0(t) the func-
tion U1 ∈ L2(Ω; H1

av(Y))d is the unique solution of (6.15). This minimizing prop-
erty of the function U1 ∈ L2(Ω; H1

av(Y))d results from the stability condition (S0) by
choosing (ũ, z̃) = (u0, z0). However, since in the two-scale model of Section 8.2 the
function U1 ∈ L2(Ω; H1

av(Y))d enters the term 〈``0,`1z0 (t), (u0, U1)〉 in the two-scale en-
ergy EH

0 (t, u0, U1, z0), we need to restrict ourselves to the following external loadings:
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8 Effective damage models based on the growth of microscopic defects

For given `0 ∈ C1([0, T ]; L2(Ω)d) and z0 ∈ W1,p(Ω; [0, 1]m) let the external loading
``0z0 ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) for all t ∈ [0, T ] and every u0 ∈ H1

ΓDir
(Ω)d be defined

by
〈``0z0(t), u0〉 := 〈h(z0)`0(t), u0〉L2(Ω)d . (8.40)

Here, h(z0) ∈ L1(Ω) for almost every x ∈ Ω is defined by h(z0)(x) :=
∫
Y 1Y \L(z0(x))(y)dy.

Remark 8.19. Observe that for any function (u0, U1) ∈ H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d it

holds 〈``0z0(t), u0〉 = 〈``0,0z0 (t), (u0, U1)〉; see (8.31). Therefore, in the case `1 ≡ 0 the
external loading ``0,0z0 for the two-scale model of Section 8.2 can be understood as an
element of C1([0, T ]; (H1

ΓDir
(Ω)d)∗).

Analog to Section 6.3, the energy functional is based on CH
eff : W1,p(Ω; [0, 1]m)→M(Ω),

which for ξ ∈ Rd×d
sym, for almost every x ∈ Ω, and for z0 ∈ W1,p(Ω; [0, 1]m) is defined via

the unit cell problem

〈CH
eff(z0)(x)ξ, ξ〉d×d := min

v∈H1
av(Y)d

IH(z0(x), ξ, v). (8.41)

Here, for ẑ ∈ [0, 1]m the functional IH(ẑ, ξ, ·) : H1
av(Y)d → R∞ is introduced via

IH(ẑ, ξ, v) :=
{
ĨH(ẑ, ξ, v) if v = Xẑ(v|Y \L(ẑ)),
∞ otherwise,

where the continuous functional ĨH(ẑ, ξ, ·) : H1
av(Y)d → R for the given tensor valued

mapping ĈH : [0, 1]m → L∞(Y ; {Cstrong,O}) is given by

ĨH(ẑ, ξ, v) :=
∫
Y

〈
ĈH(ẑ)(y)

(
ξ + ey(v)(y)

)
, ξ + ey(v)(y)

〉
d×d

dy.

Since IH(ẑ, ξ, v) is only finite if v ∈ H1
av(Y)d coincides with its continuation Xẑ(v|Y \L(ẑ))

with respect to the strong 1-extension Xẑ : H1(Y \L(ẑ))d → H1(Y )d, according to
Lemma 8.2 the functional IH(ẑ, ξ, ·) : H1

av(Y)d → R∞ is coercive. Hence, showing
that the minimizing problem (8.41) is well defined is done analogously to the proof
of Proposition 6.8. Moreover, this coercivity implies that for almost every x ∈ Ω the
tensor CH

eff(z0)(x) ∈ Linsym(Rd×d
sym;Rd×d

sym) is positive definite independent of the function
z0 ∈W1,p(Ω; [0, 1]m). Thus, we are able to introduce the one-scale limit energy functional
EH

0 : [0, T ]×QH
0 (Ω)→ R via

EH
0 (t, u0, z0) := 1

2〈C
H
eff(z0)e(u0), e(u0)〉L2(Ω×Y )d×d + ‖∇z0‖pLp(Ω)m×d − 〈`

`0
z0(t), u0〉.

For κH
0 ∈ Lq′(Ω; [0,∞)m) denoting the limit function mentioned in the definition of the

microscopic dissipation distance defined in line (8.22), the limit dissipation distance
DH

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] reads as follows:

DH
0 (z1, z2) :=


∫

Ω
|〈κH

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.

122



8.3 One-scale effective damage model for unidirectional defects’ evolution

For given initial values (u0
0, z

0
0) ∈ QH

0 (Ω) the existence of an energetic solution of the
rate-independent system (QH

0 (Ω), EH
0 ,DH

0 ) results from Theorem 8.15 by keeping Corol-
lary 8.21 below in mind.

Stability condition (S0
H) and energy balance (E0

H) for all t ∈ [0, T ]:

EH
0 (t, u0(t), z0(t)) ≤ EH

0 (t, ũ, z̃) +DH
0 (z0(t), z̃) for all (ũ, z̃) ∈ QH

0 (Ω)

EH
0 (t, u0(t), z0)(t)) + DissDH

0
(z0; [0, t]) = EH

0 (0, u0
0, z

0
0)−

∫ t

0
〈 ˙̀`0z0(s)(s), u0(s)〉ds

Here, DissDH
0

(z0; [0, t]) := sup∑N
j=1DH

0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum
is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of
the interval [0, T ]. The following theorem states the equivalence of the here formulated
effective one-scale model and a two-scale model which is a slight modification of the
model presented in Section 8.2. Afterwards, Theorem 8.15 might be combined with
Corollary 8.21 to prove existence of solutions for the model considered in this section.

Theorem 8.20 (Equivalence of the two-scale and one-scale model). Assume that the
conditions (8.1) and (8.2) hold. For ẑ ∈ [0, 1]m let LH

ẑ : Rd×d
sym → H1

av(Y)d denote the
linear operator, which for ξ ∈ Rd×d

sym is defined by

LH
ẑ (ξ) := Argmin{IH(ẑ, ξ, v) | v ∈ H1

av(Y)d}.

For `0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗), for `1 :≡ 0, and for z0 ∈ W1,p(Ω; [0, 1]m) let the

external loadings ``0,0z0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and ``0z0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) be

given by (8.31) and (8.40); see also Remark 8.19. Let (S0
H) and (E0

H) denote the energetic
formulation with respect to the energy functional of (8.34) and the dissipation potential
of (8.35).

Furthermore, let z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m))∩BVDH
0

([0, T ]; W1,p(Ω; [0, 1]m)) and let

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d). Then for (u0

0, U
0
1, z

0
0) satisfying the

stability condition (S0
H) for t = 0 the following two statements are equivalent:

(a) The function (u0, U1, z0) : [0, T ] → QH
0 with (u0(0), U1(0), z0(0)) = (u0

0, U
0
1, z

0
0) is

a solution of (S0
H) and (E0

H).

(b) The function (u0, z0) : [0, T ] → QH
0 (Ω) with (u0(0), z0(0)) = (u0

0, z
0
0) is a solution

of (S0
H) and (E0

H), and U1(t) := LH
z0(t,·)(ex(u0(t))(·)) for all t ∈ [0, T ].

Proof. Let `0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) be given. The assumption `1 :≡ 0 enables us
to gain the following result by choosing (ũ, z̃) = (u0, z0) for the testfunctions in the

stability condition (S0
H): For (u0, U1, z0) ∈ QH

0 satisfying the stability condition (S0
H) at

some time t ∈ [0, T ] the function U1 ∈ L2(Ω; H1
av(Y))d is the unique solution of

min{IH
0 (z0, u0, U) |U ∈ L2(Ω; H1

av(Y))d}. (8.42)
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Here, IH
0 (z0, u0, ·) : L2(Ω; H1

av(Y))d → R∞ is defined by

IH
0 (z0, u0, U) :=

{
ĨH

0 (z0, u0, U) if U satisfies (8.43) below,

∞ otherwise,

where the continuous functional ĨH
0 (z0, u0, ·) : L2(Ω; H1

av(Y))d → R is given by

ĨH
0 (z0, u0, U) := 〈CH

0 (z0)ẽ(u0, U), ẽ(u0, U)〉L2(Ω×Y )d×d .

For Xẑ : H1(Y \L(ẑ))d → H1(Y )d (ẑ ∈ [0, 1]m) denoting the strong 1-extension operator
of Lemma 8.2, condition (8.43) reads as follows:

U(x, ·) = Xz0(x)(U(x, ·)|Y \L(z0(x))) for almost every x ∈ Ω. (8.43)

Observe that for the given (u0, z0) the functional IH
0 (z0, u0, ·) : L2(Ω; H1

av(Y))d → R∞ is
coercive according to Lemma 8.2.

To prove Theorem 8.20 we proceed similar to the proof of Theorem 6.9, which consists of
the proofs of Proposition 6.10 and Corollary 6.11. For all functions Ũ ∈ L2(Ω; H1

av(Y))d
it holds ĨH

0 (z0, u0, Ũ) = IH
0 (z0, u0, Ũz0), where Ũz0 ∈ L2(Ω; H1

av(Y))d for almost every
x ∈ Ω is defined by Ũz0(x, ·) := Xz0(x)(Ũ(x, ·)|Y \L(z0(x))). Therefore, U1 ∈ L2(Ω; H1

av(Y))d
is the unique solution of (8.42), if and only if for all Ũ ∈ L2(Ω; H1

av(Y))d it holds

ĨH
0 (z0, u0, Ũ) ≥ IH

0 (z0, u0, U1), (8.44)

which is relation (6.19) translated to the here considered case. Let U1 ∈ L2(Ω; H1
av(Y))d

for almost every (x, y) ∈ Ω×Y be defined by U1(x, y) := LH
z0(x)(ex(u0)(x))(y). Referring

to relation (6.20) of the proof of Theorem 6.9, for almost every x ∈ Ω and for any
ṽ ∈ H1

av(Y)d it holds

ĨH(z0(x), ex(u0)(x), ṽ) ≥ IH(z0(x), ex(u0)(x), U1(x, ·)),

which is derived analogously to (8.44). Since ĨH
0 (z0, u0, ·) : L2(Ω; H1

av(Y))d → R and
ĨH(z0(x), u0(x), ·) : H1

av(Y)d → R are continuous, the rest of the proof of Theorem 8.20
is completely analog to that of Theorem 6.9.

Corollary 8.21 (Equivalence of the two-scale and one-scale model). Assume that the
conditions (8.1) and (8.2) hold. For ẑ ∈ [0, 1]m let LH

ẑ : Rd×d
sym → H1

av(Y)d denote the
linear operator, which for ξ ∈ Rd×d

sym is defined by

LH
ẑ (ξ) := Argmin{IH(ẑ, ξ, v) | v ∈ H1

av(Y)d}.

For `0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗), for `1 :≡ 0, and for z0 ∈W1,p(Ω; [0, 1]m) let the external

loadings ``0,0z0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and ``0z0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) be defined by
(8.31) and (8.40); see also Remark 8.19.

Furthermore, let z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m))∩BVDH
0

([0, T ]; W1,p(Ω; [0, 1]m)) and let

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d). Then for (u0

0, U
0
1 , z

0
0) satisfying the

stability condition (S0
H) for t = 0 the following two statements hold:
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(a) If (u0, U1, z0) : [0, T ]→ QH
0 with (u0(0), U1(0), z0(0)) = (u0

0, U
0
1 , z

0
0) is a solution of

(S0
H) and (E0

H), then (u0, z0) : [0, T ] → QH
0 (Ω) with (u0(0), z0(0)) = (u0

0, z
0
0) is a

solution of (S0
H) and (E0

H).

(b) If (u0, z0) : [0, T ]→ QH
0 (Ω) with (u0(0), z0(0)) = (u0

0, z
0
0) is a solution of (S0

H) and

(E0
H), then (u0, U1, z0) : [0, T ] → QH

0 with (u0(0), U1(0), z0(0)) = (u0
0, U

0
1, z

0
0) is a

solution of (S0
H) and (E0

H), where U1(t) := LH
z0(t,·)(ex(u0(t))(·)) for all t ∈ [0, T ]

and U
0
1 := U1(0).

Proof. For ẑ ∈ [0, 1]m let Xẑ : H1(Y \L(ẑ))d → H1(Y )d denote the strong 1-extension
operator of Lemma 8.2. Moreover, let (u0, U1, z0) ∈ QH

0 be given such that

U1(x, ·) := Xz0(x)(U1(x, ·)|Y \L(z0(x))) for almost every x ∈ Ω.

Then, by definition for all t ∈ [0, T ] and every function U1 ∈ L2(Ω; H1
av(Y))d which

coincides with U1 on the set (Ω×Y )\M(z0) := ⋃
x∈Ω{x}×Y \L(z0(x)) of positive stiffness,

it holds
EH

0 (t, u0, U1, z0) = EH
0 (t, u0, U1, z0); (8.45)

see (8.32) and (8.34).

(a) If the function (u0, U1, z0) : [0, T ]→ QH
0 with (u0(0), U1(0), z0(0)) = (u0

0, U
0
1 , z

0
0) is a

solution of (S0
H) and (E0

H), then according to (8.45) the function (u0, U1, z0) : [0, T ]→ QH
0

with (u0(0), U1(0), z0(0)) = (u0
0, U

0
1, z

0
0) is a solution of (S0

H) and (E0
H). Here, the initial

value U
0
1 is given by U

0
1 := U1(0), where for all t ∈ [0, T ] the function U1(t) is defined

by
U1(t, x, ·) := Xz0(t,x)(U1(t, x, ·)|Y \L(z0(t,x))) for almost every x ∈ Ω.

Thus, Theorem 8.20 yields the desired result.

(b) For all t ∈ [0, T ] set U1(t) := LH
z0(t,·)(ex(u0(t))(·)). Furthermore, U

0
1 := U1(0).

Then, according to Theorem 8.20 the function (u0, U1, z0) : [0, T ] → QH
0 satisfying

(u0(0), U1(0), z0(0)) = (u0
0, U

0
1, z

0
0) is a solution of (S0

H) and (E0
H). However, due to

(8.45) for all t ∈ [0, T ] it holds EH
0 (t, u0(t), U1(t), z0(t)) = EH

0 ((t, u0(t), U1(t), z0(t)), such
that (u0, U1, z0) : [0, T ]→ QH

0 also is a solution of (S0
H) and (E0

H).

8.4 Discussion of the results

This chapter presents rigorously derived effective models for a linear elastic body which
is damaged by the growth of preexisting microscopic voids. Due to the underlying non-
periodically perforated domains this verification is mathematically challenging and re-
quires a specific extension theory, which suits the admissible microstructures considered
in this thesis.

The changes with respect to the results of Chapter 7 concerning the external loadings
are the following: Since at time t ∈ [0, T ] the external loadings of the microscopic models
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are only applied to the set Ω\ΩD
ε (zε(t)) ⊂ Ω possessing positive stiffness, the external

loadings of the effective models are scaled by factors depending on the limit damage
variable z0(t) ∈ W1,p(Ω; [0, 1]m). Moreover, there is an additional part of the boundary
coming from the microscopic voids. In terms of a strong formulation this means that we
impose a zero Neumann boundary condition for this additional part of the boundary. In
turn, this forces the external loadings of the effective two-scale model to depend on the
second scale, too. Only by assuming the two-scale external loadings to be independent
of this second scale (by setting it to zero) we are able to obtain an equivalent effective
one-scale model.

Due to the asymptotic analysis of Chapter 6 the microscopic voids considered in the
microscopic models of Subsection 8.1.3 are “shifted” to the second scale of the effective
two-scale model presented in Section 8.2. That means, for t ∈ [0, T ] and for almost every
x ∈ Ω the tensor CH

0 (z0(t))(x, ·) is zero on the set {x}×L(z0(t, x)) ⊂ Ω×Y .

However, according to the continuation theory the material tensor CH
eff(z0(t))(x) is pos-

itive definite for all t ∈ [0, T ] and almost every x ∈ Ω, independent of the value z0(t, x)
of the limit damage variable. Hence, the effective one-scale model describes the damage
progression in a linear elastic body represented by the set Ω, i.e., there are no voids
present. Here, the voids of the microscopic models are reflected by the unit cell prob-
lem (8.41) defining the effective material tensor CH

eff(z0(t))(x).
Observe that for a given sequence (zε)ε>0 of damage variables zε : [0, T ]→ KεΛ(Ω; [0, 1]m)
the sequence (Ω\ΩD

ε (zε(t)))ε>0 of perforated sets for any t ∈ [0, T ] satisfies the condition
of strong connectivity ; see [39, Subsection 1.7.1]. This is the crucial assumption of the
homogenization theory for strongly perforated domains in [39]. This theory enables the
derivation of effective descriptions for problems defined on sequences of non-periodically
perforated domains. It is based on the introduction of a mesoscopic scale, which is
small relative to the size of the whole domain but large compared to the microscopic
scale. Due to this mesoscopic scale the effective quantities, like the effective material
tensor in our case, are given by the limit of so-called conductivity tensors introduced
on this mesoscopic scale; see [39, Chapter 5]. Comparing this theory to our approach,
the discrete gradient appearing in the microscopic models in some sense introduces a
third scale – lying between the microscopic and the macroscopic scale – to these models,
too. This discrete gradient prevents the defects’ shapes and sizes from varying in a
uncontrollable manner. In this way we are able to perform the limit passage directly
with respect to the microscopic scale. In contrast to the techniques in [39] this enables
us to avoid the further consideration of a limit passage from the mesoscopic to the
microscopic scale, where the identification of the limit model might be difficult.
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9 Effective models for the evolution of
microscopic cracks

This chapter deals with damage models describing the growth of microscopic cracks along
paths known in advance. To describe these crack paths let C ⊂ Y be a hypersurface
which is the graph of a Lipschitz function. The material under investigation will be
modeled by the positive definite tensor Cstrong ∈ Linsym(Rd×d

sym;Rd×d
sym), i.e., there exists a

positive constant α such that

for all ξ ∈ Rd×d
sym it holds α|ξ|2d×d ≤ 〈Cstrongξ, ξ〉d×d. (9.1)

To model the growth of a crack along the path C ⊂ Y we assume that there exists a
mapping LC : [0, 1]m → LLeb(C) with the following properties:

• LC : [0, 1]m → LLeb(C) is a non-increasing function; see (2.21). (9.2a)

• For all ẑ ∈ [0, 1]m it holds µd−1(LC(ẑ)) > 0. (9.2b)

• For all ẑ ∈ [0, 1]m the set LC(ẑ) is a closed subset of C. (9.2c)

• For all ẑ ∈ [0, 1]m the relative boundary ∂relL
C(ẑ) of the set LC(ẑ) is a locally

Lipschitz domain (see Def. 2.1) and it holds 3η∗ := dist(LC(0), ∂Y ) > 0. (9.2d)

For any given ẑ ∈ [0, 1]m and every (ẑδ)δ>0 ⊂ [0, 1]m satisfying ẑδ → ẑ in Rm it holds

• µd−1(LC(ẑ)\LC(ẑδ)) + µd−1(LC(ẑδ)\LC(ẑ))→ 0 for δ → 0 and (9.2e)

• ∀∆ > 0∃ δ0 > 0 such that for all δ ∈ (0, δ0) it holds LC(ẑδ) ⊂ neigh∆(LC(ẑ)). (9.2f)

Note that for any ∆ > 0 it holds µd(neigh∆(LC(ẑ))) > 0 according to assumption (9.2b).
There exist bi-Lipschitz transformations (TC

ẑ )ẑ∈[0,1]m , TC
ẑ : Y → Y , such that

• sup
ẑ∈[0,1]m

(
‖∇TC

ẑ ‖L∞(Y )d×d + ‖∇(TC
ẑ )−1‖L∞(Y )d×d

)
=: CT <∞. (9.2g)

• For all ẑ ∈ [0, 1]m it holds Im(TC
ẑ |LC(ẑ)) = LC(0) and TC

ẑ |neighη∗ (∂Y )∩Y = id. (9.2h)

• For any ẑ ∈ [0, 1]m and for every (ẑδ)δ>0 ⊂ [0, 1]m with ẑδ → ẑ in Rm

it holds ‖TC
ẑδ
− TC

ẑ ‖W1,∞(Y )d → 0 and ‖(TC
ẑδ

)−1 − (TC
ẑ )−1‖W1,∞(Y )d → 0. (9.2i)

Let Lη : [0, 1]m → LLeb(Y ) for all ẑ ∈ [0, 1]m be defined by Lη(ẑ) := neighη(LC(ẑ)).
Then, we assume that the following condition is satisfied.

For all η ∈ (0, η∗) and every ẑ ∈ [0, 1]m it holds Im(TC
ẑ |Lη(ẑ)) = Lη(0). (9.3)
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9 Effective models for the evolution of microscopic cracks

Observe that for ẑ ∈ [0, 1]m due to (9.2h) and (9.3) the value of TC
ẑ : Y → Y is prescribed

on the set (neighη∗(∂Y ) ∩ Y ) ∪ Lη∗(ẑ), which according to assumption (9.2d) satisfies
dist(neighη∗(∂Y ), Lη∗(ẑ)) = η∗ > 0.

Assuming (9.1), (9.2), and (9.3) to hold, for any η ∈ (0, η∗) the crucial conditions (8.1)
and (8.2) of Chapter 8 are fulfilled for Lη : [0, 1]m → LLeb(Y ). Therefore, the here
considered crack models might be understood as the limits which are formally derived
by letting η tend to zero in the respective damage model of Chapter 8 based on the
mapping Lη : [0, 1]m → LLeb(Y ). For ẑ ∈ [0, 1]m the function space H1(Y \Lη(ẑ))d builds
the foundation for the displacement fields considered in Chapter 8. Hence, by formally
letting η tend to zero, we have to deal with the function space H1(Y \LC(ẑ))d allowing
any function to have a jump on the set LC(ẑ).

9.1 Damage progression caused by microscopic cracks

Similar to the damage set considered in Section 2.6, the set of all microscopic cracks
Cε(zε) ⊂ Ω associated to a given damage variable zε ∈ KεΛ(Ω; [0, 1]m) is defined via

Cε(zε) :=
⋃

λ∈Λ−ε

ε(λ+ LC(zελ)),

where zελ := zε|ε(λ+Y ) for all λ ∈ Λ−ε ; see (2.15). Since the investigated body Ω for a
given damage variable is assumed to contain the microscopic cracks modeled by the set
Cε(zε), the displacement field uε is allowed to jump across this set, i.e., uε is assumed to
be an element of the space H1

ΓDir
(Ω\Cε(zε))d. To keep the state space QC

ε (Ω) independent
of the damage variable zε ∈ KεΛ(Ω; [0, 1]m), we set

QC
ε (Ω) := H1

ΓDir
(Ω\Cε(0))d×KεΛ(Ω; [0, 1]m)

and incorporate the restriction of the displacement field uε to only jump on the subset
Cε(zε) ⊂ Cε(0) in the energy functional. For (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) the
external loading ``0,`1C,ε ∈ C1([0, T ]; (H1

ΓDir
(Ω\Cε(0))d)∗) for all t ∈ [0, T ] is defined by

〈``0,`1C,ε (t), uε〉 := 〈`0(t), uε〉L2(Ω\Cε(0))d + 〈`1(t),∇uε〉L2(Ω\Cε(0))d×d . (9.4)

To introduce the energy functional EC
ε : [0, T ]×QC

ε (Ω) → R∞ := R ∪ {∞} we start
by choosing once p ∈ (1,∞) and keep it fix for the rest of this chapter. Moreover, let
ẼC
ε : [0, T ]×QC

ε (Ω)→ R be given by

ẼC
ε (t, uε, zε) := 1

2〈Cstronge(uε), e(uε)〉L2(Ω\Cε(0))d×d + ‖R ε
2
zε‖pLp(Ω+

ε )m×d − 〈`
`0,`1
C,ε (t), uε〉.

Thus, the energy functional EC
ε : [0, T ]×QC

ε (Ω)→ R∞ is defined by

EC
ε (t, uε, zε) =

{
ẼC
ε (t, uε, zε) if uε ∈ H1

ΓDir
(Ω\Cε(zε))d,

∞ otherwise.
(9.5)
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9.1 Damage progression caused by microscopic cracks

Proposition 9.1 (Uniform Korn inequality for a periodic crack distribution (see [12])).
For all vε ∈ H1

ΓDir
(Ω\Cε(0))d there exists a constant CKorn > 0 independent of ε > 0 such

that

CKorn‖vε‖2
H1(Ω\Cε(0)d ≤ ‖e(vε)‖2

L2(Ω\Cε(0))d×d .

For a proof of this statement we refer to Proposition 4.1 of [12]. Therefore, for any
function uε ∈ H1

ΓDir
(Ω\Cε(zε))d the following uniform coercivity condition holds:

α
2CKorn‖uε‖2

H1
ΓDir

(Ω\Cε(zε))d = α
2CKorn‖uε‖2

H1
ΓDir

(Ω\Cε(0))d ≤ α
2 ‖e(uε)‖2

L2(Ω\Cε(0))d×d

≤ 1
2〈Cstronge(uε), e(uε)〉L2(Ω\Cε(0))d×d . (9.6)

Let q′ ∈ (1,∞) be given and fixed for the rest of this chapter. Moreover, assume that
there exists a sequence (κC

ε )ε>0 ⊂ Lq′(Ω; [0,∞)m) and a function κC
0 ∈ Lq′(Ω; [0,∞)m)

such that it holds κC
ε ⇀ κC

0 in Lq′(Ω)m. Then, the microscopic dissipation distance
DC
ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] reads as follows:

DC
ε (z1, z2) =


∫

Ω−ε
|〈κC

ε (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.
(9.7)

For given initial values z0
ε ∈ KεΛ(Ω; [0, 1]m) and u0

ε ∈ H1
ΓDir

(Ω\Cε(z0
ε))d the growth of

microscopic cracks is modeled by the ε-dependent energetic formulation (SεC) and (Eε
C),

where ε > 0 scales the length of the appearing cracks.

Stability condition (SεC) and energy balance (Eε
C) for all t ∈ [0, T ]:

EC
ε (t, uε(t), zε(t)) ≤ EC

ε (t, ũ, z̃) +DC
ε (zε(t), z̃) for all (ũ, z̃) ∈ QC

ε (Ω)

EC
ε (t, uε(t), zε(t)) + DissDC

ε
(zε; [0, t]) = EC

ε (0, u0
ε, z

0
ε)−

∫ t

0
〈 ˙̀`0,`1C,ε (s), uε(s)〉ds

Here, DissDC
ε
(zε; [0, t]) := sup∑N

j=1DC
ε (zε(tj−1), zε(tj)), where for N ∈ N the supremum

is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, T ]. For t̃ ∈ [0, T ]

SC
ε (t̃) := {(uε, zε) ∈ QC

ε (Ω) satisfying (SεC) for t = t̃ and EC
ε (t̃, uε, zε) <∞}

denotes the set of stable states. Note that by assuming u0
ε ∈ H1

ΓDir
(Ω\Cε(z0

ε))d for the
initial values (u0

ε, z
0
ε) ∈ QC

ε (Ω) the right hand side of the energy balance (Eε
C) is finite.

The following corollary states existence of solutions for the here presented microscopic
models.

Corollary 9.2 (Existence of solutions). Assume that the conditions (9.1) and (9.2)
hold. For (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) let ``0,`1C,ε ∈ C1([0, T ]; (H1

ΓDir
(Ω\Cε(0))d)∗)

be defined by (9.4). Moreover, let EC
ε : [0, T ]×QC

ε (Ω)→ R∞ be defined via (9.5) and for
κC
ε ∈ Lq′(Ω; [0,∞)m) let DC

ε : KεΛ(Ω; [0, 1]m)×KεΛ(Ω; [0, 1]m)→ [0,∞] be given by (9.7).

129



9 Effective models for the evolution of microscopic cracks

Then for (u0
ε, z

0
ε) ∈ SC

ε (0), there exists an energetic solution (uε, zε) : [0, T ]→ QC
ε (Ω) of

the rate-independent system (QC
ε (Ω), EC

ε ,DC
ε ) satisfying (uε(0), zε(0)) = (u0

ε, z
0
ε) and

uε ∈ L∞([0, T ],H1
ΓDir

(Ω\Cε(0))d),
zε ∈ L∞([0, T ],KεΛ(Ω; [0, 1]m)) ∩ BVDC

ε
([0, T ],KεΛ(Ω; [0, 1]m)).

Proof. Analog to the proof of Corollary 8.9, the assumptions (6.1), (6.2), (6.5), and
(6.9) of Proposition 6.5 are fulfilled. Again, the only point that remains to be shown
is the proof of the weak compactness of the energy sublevel sets. In detail, for a limit
function (u0, z0) ∈ H1

ΓDir
(Ω\Cε(0))d×KεΛ(Ω; [0, 1]m) of a sequence (uδ, zδ)δ>0 in QH

ε (Ω)
belonging to SubE(t) (see (5.6)) we have to show u0 ∈ SubE(t), i.e., for the functions
uδ ∈ H1

ΓDir
(Ω\Cε(zδ))d ⊂ H1

ΓDir
(Ω\Cε(0))d we have

uδ → u0 in L2(Ω\Cε(0))d (9.8a)

∇uδ ⇀ ∇u0 in L2(Ω\Cε(0))d×d, (9.8b)

and we need to verify u0 ∈ H1
ΓDir

(Ω\Cε(z0))d. For this purpose, let ϕ ∈ C∞c (Ω\Cε(z0))d×d
be chosen arbitrarily but fixed. Then dist(Cε(z0), supp(ϕ)) > 0. Hence, according to
assumption (9.2f) by choosing δ0 > 0 sufficiently small it holds Cε(zδ) ∩ supp(ϕ) = ∅ for
all δ ∈ (0, δ0). This implies

ϕ ∈ C∞c (Ω\Cε(zδ))d×d for all δ ∈ (0, δ0). (9.9)

Thus, the following calculation is justified.∫
Ω
〈∇u0(x), ϕ(x)〉d×ddx

(9.8b)= lim
δ→0

∫
Ω
〈∇uδ(x), ϕ(x)〉d×ddx

(9.9)= − lim
δ→0

∫
Ω
〈uδ(x), div(ϕ(x))〉ddx

(9.8a)= −
∫

Ω
〈u0(x), div(ϕ(x))〉ddx

Note that in the second equality additionally uδ ∈ H1
ΓDir

(Ω\Cε(zδ))d is exploited for all
δ ∈ (0, δ0). Since the testfunction ϕ ∈ C∞c (Ω\Cε(z0))d×d was chosen arbitrarily, this
calculation shows u0 ∈ H1

ΓDir
(Ω\Cε(z0))d.

9.1.1 Compactness result for sequences of microscopic
displacement fields

To derive effective models by investigating the asymptotic behavior of the microscopic
models presented here, we are going to proceed similar to Chapter 6. There, the two-scale
limit of a sequences of displacement fields belonging to the microscopic models is iden-
tified by Proposition 3.7. According to coercivity condition (9.6), for a sequence (zε)ε>0
of damage variables with zε ∈ KεΛ(Ω; [0, 1]m) and supε>0 ‖R ε

2
zε‖Lp(Ω+

ε )d×d <∞, here we
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9.1 Damage progression caused by microscopic cracks

will have to deal with sequences (uε)ε>0 of displacement fields with uε ∈ H1
ΓDir

(Ω\Cε(zε))d
and supε>0 ‖uε‖H1

ΓDir
(Ω\Cε(zε))d <∞. For this reason the compactness with respect to the

two-scale topology of such sequences is discussed in the following theorem.

Theorem 9.3 (Compactness result). Assume that the conditions (9.1), (9.2), and (9.3)
hold. Let (uε, zε)ε>0 be a sequence with zε ∈ KεΛ(Ω; [0, 1]) and uε ∈ H1(Ω\Cε(zε))d such
that there exists a function z0 ∈ Lp(Ω; [0, 1]m) satisfying zε → z0 in Lp(Ω)m. Moreover,
assume that there exists a constant C > 0 independent of ε > 0 and zε such that

sup
ε>0
‖uε‖H1(Ω\Cε(zε))d ≤ C.

Then there exists a subsequence of (ε)ε>0 (not relabeled) and functions u0 ∈ H1(Ω)d and
U1 ∈ L2(Ω; H1

av(Y\LC(0)))d such that

for almost every x ∈ Ω it holds U1(x, ·) ∈ H1
av(Y\LC(z0(x)))d and (9.10)

uε
s→ Eu0 in L2(Ω×Y )d, (9.11a)

∇uε w
⇀ ∇xEu0 +∇yU1 in L2(Ω×Y )d×d. (9.11b)

The proof of this theorem is an easy consequence of the following lemma.

Lemma 9.4. Assume that (9.1), (9.2), and (9.3) hold. For z0 ∈ Lp(Ω; [0, 1]m) let
(uε, zε)ε>0 denote a sequence with zε ∈ KεΛ(Ω; [0, 1]m) and uε ∈ H1(Ω\Cε(zε))d such that
zε → z0 in Lp(Ω)m. Moreover, assume that there exists a constant C > 0 independent
of ε > 0 and zε such that

sup
ε>0
‖uε‖H1(Ω\Cε(zε))d ≤ C.

For any η ∈ (0, η∗) and for ẑ ∈ [0, 1]m set Lη(ẑ) := neighη(LC(ẑ)) and

ΩD
ε,η(zε) :=

⋃
λ∈Λ−ε

ε(λ+ Lη(zελ)),

where zελ := zε|ε(λ+Y ) for all λ ∈ Λ−ε ; see (2.15). Let X η
ε,zε : H1(Ω\ΩD

ε,η(zε))d → H1(Ω)d
denote the continuation operator of Theorem 8.4. If uηε := X η

ε,zε(uε|Ω\ΩD
ε,η(zε)), then there

exists a subsequence of (ε)ε>0 (not relabeled) and (u0, U
η
1 ) ∈ H1(Ω)d×L2(Ω; H1

av(Y))d,
where u0 is independent of η ∈ (0, η∗), such that for ε→ 0 it holds

uηε ⇀ u0 in H1(Ω)d, (9.12a)

uηε
s→ Eu0 in L2(Ω×Y )d, (9.12b)

∇uηε
w
⇀ ∇xEu0 +∇yU

η
1 in L2(Ω×Y )d×d. (9.12c)

Here, the characteristic function Hη(z0) ∈ L∞(Ω×Y ) for almost every (x, y) ∈ Ω×Y
is defined by Hη(z0)(x, y) := 1Y \Lη(z0(x))(y). Furthermore, there exists a η-independent
function U1 ∈ L2(Ω; H1

av(Y\LC(0)))d which satisfies (9.10) and

∇yU
η
1 |supp(Hη(z0)) = ∇yU1|supp(Hη(z0)) almost everywhere. (9.13)
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Proof. 1. According to Theorem 8.4 it holds

sup
ε>0
‖uηε‖H1(Ω)d ≤ sup

ε>0
Cη
X‖uε‖H1(Ω\ΩD

ε,η(zε))d ≤ Cη
XC.

Therefore, due to Proposition 3.7 for fixed η ∈ (0, η∗) there exists a subsequence of (ε)ε>0
(not relabeled) and a function (uη0, Uη

1 ) ∈ H1(Ω)d×L2(Ω; H1
av(Y))d such that

uηε ⇀ uη0 in H1(Ω)d, (9.14a)

uηε
s→ Euη0 in L2(Ω×Y )d, (9.14b)

∇uηε
w
⇀ ∇xEu

η
0 +∇yU

η
1 in L2(Ω×Y )d×d. (9.14c)

Now we show that the limit function uη0 ∈ H1(Ω)d is η-independent. For this purpose,
let 0 < η1 < η2 < η∗ be arbitrary but fixed. Then

uη1
ε = uε on Ω\ΩD

ε,η1(zε), (9.15a)

uη2
ε = uε on Ω\ΩD

ε,η2(zε) ⊂ Ω\ΩD
ε,η1(zε) (9.15b)

by definition and there exist limit functions uη1
0 , u

η2
0 ∈ H1(Ω)d and a subsequence of (ε)ε>0

(possibly different to that mentioned above but again not relabeled) such that uη1
ε ⇀ uη1

0
in H1(Ω)d and uη2

ε ⇀ uη2
0 in H1(Ω)d. To prove the η-independence of uη0 ∈ H1(Ω)d we

show that uη1
0 = uη2

0 almost everywhere on Ω. For this purpose, we estimate the difference
uη1

0 −u
η2
0 on Ω\ΩD

ε,η2(zε) by applying the triangle inequality after subtracting and adding
the function uε.

‖uη1
0 −u

η2
0 ‖L2(Ω\ΩD

ε,η2 (zε))d
(9.15)

≤ ‖uη1
0 −uη1

ε ‖L2(Ω\ΩD
ε,η2 (zε))d + ‖uη2

ε −u
η2
0 ‖L2(Ω\ΩD

ε,η2 (zε))d

≤ ‖uη1
0 −uη1

ε ‖L2(Ω)d + ‖uη2
ε −u

η2
0 ‖L2(Ω)d (9.16)

Due to (9.14a) the terms of the last line converge to zero for ε → 0. Thus, perform-
ing the limit passage ε → 0 in (9.16) with respect to the two-scale topology yields
the desired result as we will see in the calculation below. According to Theorem 3.9
we have 1Ω\ΩD

ε,η(zε)
s→ Hη(z0) in L1(Ω×Y ). The limit of (Tε(uη1

0 −u
η2
0 ))ε′>0 is given by

Proposition 3.5(b) and finally the product converges according to Corollary 3.6.

0 = lim
ε→0
‖uη1

0 −u
η2
0 ‖2

L2(Ω\ΩD
ε,η2 (zε))d

(3.2)= lim
ε→0

∫
Rd×Y

Tε1Ω\ΩD
ε,η2 (zε)(x, y)|Tε(uη1

0 −u
η2
0 )(x, y)|2ddydx

=
∫

Ω×Y
Hη2(z0)(x, y)|E(uη1

0 −u
η2
0 )(x, y)|2ddydx

≥
∫

Ω
µd(Y \Lη

∗(0))|uη1
0 (x)−uη2

0 (x)|2ddx ≥ 0

Independent of the choice of η2 ∈ (0, η∗) for almost every x ∈ Ω we obtain that the
factor

∫
Y H

η2(z0)(x, y)dy ≥ µd(Y \Lη
∗(0)) > 0 is positive. Therefore, the last line of this
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calculation forces the limit functions uη1
0 , u

η2
0 ∈ H1(Ω)d to coincide almost everywhere

on Ω.

2. Now we verify the existence of U1 ∈ L2(Ω; H1
av(Y\LC(0)))d satisfying condition (9.10)

and fulfilling (9.13) for any η ∈ (0, η∗). For this purpose, for 0 < η1 < η2 < η∗

we start by showing ∇yU
η1
1 |supp(Hη2 (z0)) = ∇yU

η2
1 |supp(Hη2 (z0)) almost everywhere. For

an arbitrary but fixed function V ∈ L2(Ω×Y )d×d let (vε)ε>0 ⊂ L2(Ω)d×d be given by
vε := F (2)

ε (V ). Then vε
s→ V in L2(Ω×Y )d×d due to Proposition 3.5(d). By recall-

ing 1Ω\ΩD
ε,η(zε)

s→ Hη(z0) in L1(Ω×Y ), Corollary 3.6 yields 1Ω\ΩD
ε,η(zε)vε

s→ Hη(z0)V in

L2(Ω×Y )d×d. Hence, the weak convergence of (9.14c) for η1 and η2 results in

0 (9.15)=
〈
∇uη1

ε −∇uη2
ε ,1Ω\ΩD

ε,η2 (zε)vε
〉

L2(Ω)d×d
ε→0−→

〈
∇yU

η1
1 −∇yU

η2
1 , Hη2(z0)V

〉
L2(Ω×Y )d×d

.

Therefore, for any V ∈ L2(Ω×Y )d×d it holds 0 = 〈∇yU
η1
1 −∇yU

η2
1 , V 〉L2(supp(Hη2 (z0)))d×d

which implies ∇yU
η1
1 |supp(Hη2 (z0)) = ∇yU

η2
1 |supp(Hη2 (z0)) almost everywhere due to the fun-

damental lemma of calculus of variations. Since this holds true for any 0 < η1 < η2 < η∗,
the function U1 ∈ L2(Ω; H1

av(Y\LC(0)))d, which satisfies the condition (9.10) for al-
most every (x, y) ∈ supp(H0(z0)), can be defined by ∇yU1(x, y) := limη→0∇yU

η
1 (x, y).

Here, for fixed (x, y) ∈ supp(H0(z0)) the limit limη→0∇yU
η
1 (x, y) does exist, since

(x, y) ∈ supp(Hη(z0)) for all η ∈ (0, η0) and η0 > 0 sufficiently small. Hence, ignor-
ing the fact that all considered functions are only defined almost everywhere on Ω×Y ,
the sequence (∇yU

η
1 (x, y))η∈(0,η0) is constant.

Proof of Theorem 9.3. Observe that

L2
η∗(Rd×Y ) := {v ∈ L2(Rd×Y ) | ∃ η̂ ∈ (0, η∗) such that supp(v) ⊂ Rd×Y \Lη̂(0)}

is a dense subset of L2(Rd×Y ). Combining Proposition 3.3(a) with the given a priori
estimate supε>0 ‖uε‖H1(Ω\Cε(zε))d ≤ C we have

‖Tεuε‖2
L2(Rd×Y \LC(0))d + ‖Tε(∇uε)‖2

L2(Rd×Y \LC(0))d×d = ‖uε‖2
H1(Ω\Cε(zε))d ≤ C2.

1. To verify the weak convergences in (9.11), it is sufficient to show that there exist func-
tions u0 ∈ H1(Ω)d and U1 ∈ L2(Ω; H1

av(Y\LC(0)))d with U1(x, ·) ∈ H1
av(Y\LC(z0(x)))d

for almost every x ∈ Ω such that for all (ϕ,Φ) ∈ L2
η∗(Rd×Y )d×L2

η∗(Rd×Y )d×d it holds

〈Tεuε, ϕ〉L2(Rd×Y )d
ε→0−→ 〈(Eu0)ex, ϕ〉L2(Rd×Y )d ,

〈Tε(∇uε),Φ〉L2(Rd×Y )d×d
ε→0−→ 〈(∇xEu0+∇yU1)ex,Φ〉L2(Rd×Y )d×d .

Note that this verification in both cases is done by the same arguments, which is why we
focus on the latter relation. Let Φ ∈ L2

η∗(Rd×Y )d×d be arbitrary but fixed. By definition
there exists η ∈ (0, η∗) such that supp(Φ) ⊂ Rd×Y \Lη(0). Proposition 3.3 allows us to
replace the left hand side in the following way:

〈Tε(∇uε),Φ〉L2(Rd×Y )d×d = 〈∇uε,FεΦ〉L2(Ω)d×d (9.17)
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By the definition of L2
η∗(Rd×Y )d×d we have supp(FεΦ) ⊂ Ω\ΩD

ε,η(0). Furthermore,
according to the assumptions Lemma 9.4 is applicable, yielding the existence of functions
(u0, U

η
1 ) ∈ H1(Ω)d×L2(Ω; H1

av(Y))d and U1 ∈ L2(Ω; H1
av(Y\LC(0)))d satisfying (9.10) and

(9.13) such that uηε := X η
ε,zε(uε|Ω\ΩD

ε,η(zε)) converges in the sense of (9.12). Since the

function uε by definition coincides with uηε on Ω\ΩD
ε,η(zε) ⊃ Ω\ΩD

ε,η(0), condition (9.17)
enables us to do the following replacement to conclude the proof.

lim
ε→0
〈Tε(∇uε),Φ〉L2(Rd×Y )d×d = lim

ε→0
〈Tε(∇uηε),Φ〉L2(Rd×Y )d×d

(9.12c)= 〈(∇xEu0+∇yU
η
1 )ex,Φ〉L2(Rd×Y )d×d

(9.13)= 〈(∇xEu0+∇yU1)ex,Φ〉L2(Rd×Y )d×d

Here, the last equality results from the combination of condition (9.13) with the fact
that supp(Hη(z0)) ⊃ supp(Φ) ∩ Ω×Y .

2. To show the strong convergence of line (9.11a), for some arbitrary but fixed η > 0
and uηε := X η

ε,zε(uε|Ω\ΩD
ε,η(zε)) we exploit the following decomposition.

‖uε − u0‖2
L2(Ω)d = ‖uηε − u0‖2

L2(Ω\ΩD
ε,η(zε))d + ‖uε − u0‖2

L2(ΩD
ε,η(zε))d

By increasing the domain of integration in the first term and by applying Hölder’s
inequality to the second one we obtain

‖uε − u0‖2
L2(Ω)d ≤ ‖uηε − u0‖2

L2(Ω)d +
(
µd(ΩD

ε,η(zε))
) r−2

r ‖uε − u0‖2
Lr(ΩD

ε,η(zε))d

≤ ‖uηε − u0‖2
L2(Ω)d +

(
µd(ΩD

ε,η(zε))
) r−2

r ‖uε − u0‖2
Lr(Ω)d

where for the Sobolev exponent 2∗ := 2d
d−2 the parameter r is an element of the interval

(2, 2∗). Therefore, according to (9.12b) the first term converges to zero and due to the
continuous embedding of H1(Ω\Cε(zε))d into Lr(Ω\Cε(zε))d = Lr(Ω)d the second term

is bounded by (µd(ΩD
ε,η(zε)))

r−2
r C2

Sob(C + ‖u0‖H1(Ω)d)2. Since for fixed η > 0 it holds
µd(ΩD

ε,η(zε))→ 0 for ε→ 0 this concludes the proof; see Proposition 3.5(b).

9.1.2 Recovery sequence for two-scale displacement fields with
jumps

The construction of the displacement field component of the mutual recovery sequence
of Theorem 6.15 as well as the recovery sequence of the Γ-convergence result of The-
orem 6.17 rely on the density result of Proposition 3.8. As we have already seen in
Chapter 8, the implicit dependence of the displacement field on the damage variable
(due to the energy functional of line (9.5)) causes some technicalities when constructing
these recovery sequences. However, in contrast to Chapter 8, here we have to pro-
vide a completely new construction. Referring to Section 6.5, for an arbitrary func-
tion (ũ0, Ũ1, z̃0) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d×W1,p(Ω; [0, 1]m) satisfying for al-

most every x ∈ Ω the condition Ũ1(x, ·) ∈ H1
av(Y\LC(z̃0(x)))d , the recovery sequence
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9.1 Damage progression caused by microscopic cracks

(z̃ε)ε>0 for the damage component will be given by Theorem 4.9. Translated in the here
considered setting, the construction of the displacement field component of the recovery
sequence (ũε)ε>0 has to be done in such a way that it holds

lim
ε→0
〈Cstronge(ũε), e(ũε)〉L2(Ω\Cε(z̃ε))d×d = 〈Cstrongẽ(ũ0, Ũ1), ẽ(ũ0, Ũ1)〉L2(Ω×Y \LC(0))d×d ;

see (6.39). This means that for fixed ε > 0 the set on which the function ũε is allowed to
jump has to be contained in Cε(z̃ε), i.e., ũε ∈ H1

ΓDir
(Ω\Cε(z̃ε))d. In contrast to the con-

struction of Chapter 6, here the displacement field component of the recovery sequences
depends on the already constructed damage component.

Theorem 9.5. Let (z̃ε)ε>0 with z̃ε ∈ KεΛ(Ω; [0, 1]m) be given such that there exists
z̃0 ∈ Lp(Ω; [0, 1]m) with z̃ε → z̃0 in Lp(Ω)m. Moreover, let Ũ1 ∈ L2(Ω; H1

av(Y\LC(0)))d
satisfy Ũ1(x, ·) ∈ H1

av(Y\LC(z̃0(x)))d for almost every x ∈ Ω. Then, for ũ0 ∈ H1
ΓDir

(Ω)d
there exists a sequence (ũε)ε>0 with ũε ∈ H1

ΓDir
(Ω\Cε(z̃ε))d such that

ũε
s→ Eũ0 in L2(Ω×Y )d,

∇ũε
s→ ∇xEũ0+∇yŨ1 in L2(Ω×Y )d×d.

Proof. For i = 1, 2, . . . , d let [Ũ1]i ∈ L2(Ω; H1
av(Y\LC(0))) denote the i-th component

of the function Ũ1 ∈ L2(Ω; H1
av(Y\LC(0)))d. If the function v(i)

ε ∈ H1
0(Ω\Cε(z̃ε)) for

V
(i)

1 := [Ũ1]i ∈ L2(Ω; H1
av(Y\LC(0))) denotes the unique solution of (9.18) below and

if ṽε ∈ H1
0(Ω\Cε(z̃ε))d is defined by [ṽε]i := v(i)

ε , then the sequence (ũε)ε>0 is given by
ũε := ũ0 + ṽε ∈ H1

ΓDir
(Ω\Cε(z̃ε))d. Thus, the statement of Theorem 9.5 is an immediate

consequence of Lemma 9.7 below.

Remark 9.6. Observe that in the case of z̃ε :≡ 0 (for all ε > 0), this result contains
the periodic case, i.e., ũε ∈ H1

ΓDir
(Ω\Cε(0))d and Cε(0) is a periodic set. As a result

this theorem is a proper generalization of the periodic case, which is treated in [10], for
instance.

Lemma 9.7. Let (z̃ε)ε>0 with z̃ε ∈ KεΛ(Ω; [0, 1]m) be given such that there exists a func-
tion z̃0 ∈ Lp(Ω; [0, 1]m) with z̃ε → z̃0 in Lp(Ω)m. Moreover, let V1 ∈ L2(Ω; H1

av(Y\LC(0)))
satisfy V1(x, ·) ∈ H1

av(Y\LC(z̃0(x))) for almost every x ∈ Ω. If vε ∈ H1
0(Ω\Cε(z̃ε)) for

ε > 0 denotes the solution of the elliptic problem∫
Ω
vεϕε + 〈∇vε −F (2)

ε (∇yV1)ex,∇ϕε〉ddx = 0 ∀ϕε ∈ H1
0(Ω\Cε(z̃ε)), (9.18)

where the folding operator F (2)
ε : L2(Rd×Y )d → L2(Ω)d is given by Definition 3.2, then

the sequence of solutions (vε)ε>0 fulfills

vε
s→ 0 in L2(Ω×Y ), (9.19a)

∇vε
s→ ∇yV1 in L2(Ω×Y )d. (9.19b)
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Proof. Choosing ϕε = vε in (9.18), by rearranging its terms we find

‖vε‖H1
0(Ω\Cε(z̃ε)) ≤ ‖F

(2)
ε (∇yV1)ex‖L2(Ω\Cε(0))d ≤ ‖∇yV1‖L2(Ω×Y \LC(0))d , (9.20)

where the last inequality is due to Proposition 3.3(b).

1. We start by investigating the case, where the sequence (z̃ε)ε>0 with z̃ε ∈ KεΛ(Ω; [0, 1]m)
for any ε > 0 is given by z̃ε :≡ 0. Hence, z̃ε → z̃0 :≡ 0 in Lp(Ω)m. Due to
[70] the linear span of C∞c (Ω)×(C∞(Y\LC(0)) ∩ H1(Y\LC(0))) is a dense subset of
L2(Ω; H1(Y\LC(0))). Therefore, according to the a priori estimate (9.20) it is sufficient
to prove (9.19) only for all functions V1 ∈ L2(Ω; H1

av(Y\LC(0)))d ⊂ L2(Ω; H1(Y\LC(0)))
that are given by finite linear combinations of functions W = w0w1, where w0 ∈ C∞c (Ω)
and w1 ∈ C∞(Y\LC(0))∩H1(Y\LC(0))). This enables us to define gε, rε ∈ H1

0(Ω\Cε(0))
for all x ∈ Ω by gε(x) := εV1(x, {x

ε
}Y ) and rε := vε − gε, where vε ∈ H1

0(Ω\Cε(0)) is the
solution of (9.18). Exploiting the definition of the unfolding operator (see Definition 3.1)
and the continuity of V1 we immediately obtain

gε
s→ 0 in L2(Ω×Y ), (9.21a)

∇gε
s→ ∇yV1 in L2(Ω×Y )d. (9.21b)

Now we are going to prove that it holds

‖Tεrε‖2
L2(Rd×Y \LC(0))+‖Tε(∇rε)‖2

L2(Rd×Y \LC(0))d = ‖rε‖2
H1

0(Ω\Cε(0))
ε→0−→ 0,

which together with vε = gε + rε and (9.21) concludes the proof of step 1. For this
purpose we choose ϕε = rε as a testfunction in (9.18) and rearrange its terms in the
calculation below. Moreover, we exploit Proposition 3.3(a) in the last line.∫

Ω
r2
ε + 〈∇rε,∇rε〉ddx

=
∫

Ω
−gεrε + 〈F (2)

ε (∇yV1)ex −∇gε,∇rε〉ddx

≤ ‖gε‖L2(Ω)‖rε‖L2(Ω) + ‖F (2)
ε (∇yV1)ex −∇gε‖L2(Ω)d‖∇rε‖L2(Ω)d

≤
(
‖Tεgε‖L2(Rd×Y ) + ‖∇yV1 − Tε(∇gε)‖L2(Rd×Y )d

)
‖rε‖H1

0(Ω\Cε(0))

Observe that the left hand side of this estimate can be estimated from below by the
term 1

2‖rε‖
2
H1

0(Ω\Cε(0)) and hence the convergence (9.21) yields the desire result.

2. To prove the general case, where (z̃ε)ε>0 with z̃ε ∈ KεΛ(Ω; [0, 1]m) is a given se-
quence such that there exists z̃0 ∈ Lp(Ω; [0, 1]m) with z̃ε → z̃0 in Lp(Ω)m, we start
by proving (9.19) with respect to the weak two-scale topology. For this purpose, let
Ξε,z̃ε : Ω\Cε(z̃ε) → Ω\Cε(0) denote the transformation defined by Ξε,z̃ε|Ω\Ω−ε := id and

Ξε,z̃ε(x) := Nε(x) + εTC
z̃ε(x)({xε}Y ), x ∈ Ω−ε . Here, for ẑ ∈ [0, 1]m the bi-Lipschitz trans-

formation TC
ẑ : Y → Y satisfies the conditions (9.2g), (9.2h), (9.2i), and (9.3). Thus,

Ξ−1
ε,z̃ε : Ω\Cε(0) → Ω\Cε(z̃ε) is given by Ξ−1

ε,z̃ε(x) := Nε(x) + ε(TC
z̃ε(x))−1({x

ε
}Y ), x ∈ Ω−ε ,

and Ξ−1
ε,z̃ε|Ω\Ω−ε := id. By applying this transformation to (9.18) we are going to prove
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(9.19) by exploiting the result of step 1. The function vε ∈ H1
0(Ω\Cε(z̃ε))d is the solution

of (9.18) if and only if vε := vε ◦ Ξ−1
ε,z̃ε ∈ H1

0(Ω\Cε(0)) for all ϕε ∈ H1
0(Ω\Cε(0)) satisfies∫

Ω
|det(∇Ξ−1

ε,z̃ε)|
(
vεϕε +

〈
∇vε(∇Ξ−1

ε,z̃ε)
−1,∇ϕε(∇Ξ−1

ε,z̃ε)
−1
〉
d

)
dx (9.22)

=
∫

Ω
|det(∇Ξ−1

ε,z̃ε)|
〈
F (2)
ε (∇yV1)ex ◦ Ξ−1

ε,z̃ε ,∇ϕε(∇Ξ−1
ε,z̃ε)

−1
〉
d
dx.

For an arbitrary z ∈ Lp(Ω)m let Ξ0,z : ⋃x∈Ω{x}×Y \LC(z(x))→ Ω×Y \LC(0) denote the
transformation, which for (x, y) ∈ Ω×Y is defined by Ξ0,z(x, y) := (x, TC

z(x)(y)). Thus,

the inverse transformation Ξ−1
0,z : Ω×Y \LC(0) → ⋃

x∈Ω{x}×Y \LC(z(x)) for (x, y) ∈
Ω×Y is given by Ξ−1

0,z(x, y) := (x, (TC
z(x))−1(y)). Now we assume that there exist functions

(v̂0, V̂1) ∈ H1
0(Ω)×L2(Ω; H1

av(Y\LC(0))) such that the following convergences hold for a
subsequence of (ε)ε>0 (not relabeled).

vε
w
⇀ v̂0 in L2(Ω×Y ), (9.23a)

∇vε w
⇀ ∇xEv̂0+∇yV̂1 in L2(Ω×Y )d, (9.23b)

(∇Ξ−1
ε,z̃ε)

−1 s→ (∇y[Ξ−1
0,z̃0 ]2)−1 in L2(Ω×Y )d×d, (9.23c)

det(∇Ξ−1
ε,z̃ε)

s→ det(∇y[Ξ−1
0,z̃0 ]2) in L2(Ω×Y ), (9.23d)

F (2)
ε (∇yV1)ex ◦ Ξ−1

ε,z̃ε

s→ ∇yV 1(∇y[Ξ−1
0,z̃0 ]2)−1 in L2(Ω×Y )d, (9.23e)

Here, V 1 := V1 ◦ Ξ−1
0,z̃0 ∈ L2(Ω; H1

av(Y\LC(0))) and [(a, b)]2 := b denotes the second com-
ponent of the tuple (a, b). Exploiting this assumptions we are now going to perform the
limit passage ε→ 0 in (9.22), whereas the convergences of (9.23) are justified by the steps
4–6 below. For arbitrary but fixed testfunctions (ϕ0,Φ1) ∈ H1

0(Ω)×L2(Ω; H1
av(Y\LC(0)))

according to step 1 there exists a sequence (ϕε)ε>0 with ϕε ∈ H1
0(Ω\Cε(0)) such that

ϕε
s→ ϕ0 in L2(Ω×Y ), (9.24a)

∇ϕε
s→ ∇xEϕ0+∇yΦ1 in L2(Ω×Y )d. (9.24b)

By exploiting the convergences (9.23) and (9.24) in relation (9.22) for all testfunctions
(ϕ0,Φ1) ∈ H1

0(Ω)×L2(Ω; H1
av(Y\LC(0))) it holds∫

Ω×Y
|det(∇y[Ξ−1

0,z̃0 ]2)|
(
v̂0ϕ0 (9.25)

+
〈
(∇xEv̂0+∇yV̂1)(∇y[Ξ−1

0,z̃0 ]2)−1, (∇xEϕ0+∇yΦ1)(∇y[Ξ−1
0,z̃0 ]2)−1

〉
d

)
dydx

=
∫

Ω×Y
|det(∇y[Ξ−1

0,z̃0 ]2)|
〈
∇yV 1(∇y[Ξ−1

0,z̃0 ]2)−1, (∇xEϕ0+∇yΦ1)(∇y[Ξ−1
0,z̃0 ]2)−1

〉
d
dydx.

Note that (9.25) is the Euler-Lagrange equation of the following minimizing problem

min{J(v, V ) | (v, V ) ∈ H1
0(Ω)×L2(Ω; H1

av(Y\LC(0)))}, (9.26)

where for σz̃0 := (det(∇y[Ξ−1
0,z̃0 ]2)) 1

2 the functional J : H1
0(Ω)×L2(Ω; H1

av(Y\LC(0)))→ R
is defined by

J(v, V ) := 1
2‖σz̃0v‖

2
L2(Ω) + 1

2‖σz̃0(∇xEv+∇yV−∇yV 1)(∇y[Ξ−1
0,z̃0 ]2)−1‖2

L2(Ω×Y )d .

137



9 Effective models for the evolution of microscopic cracks

Therefore, the function (v̂0, V̂1) is the unique solution of (9.26). On the other hand, the
function (0, V 1) is obviously the minimizer of (9.26) such that we have (v̂0, V̂1) = (0, V 1).
Summarizing step 2, up to now we showed

vε
w
⇀ 0 in L2(Ω×Y ), (9.27a)

∇vε w
⇀ ∇yV 1 in L2(Ω×Y )d. (9.27b)

To verify (9.19) with respect to the weak two-scale topology, we exemplarily prove
(9.19b). According to the uniform bound (9.20) it if sufficient (see Proposition 3.3 and
Section 3.2) to show for all Ψ ∈ C∞c (Rd×Y )d that it holds

lim
ε→0

∫
Ω
〈∇vε,F (2)

ε Ψ〉ddx =
∫

Ω×Y
〈∇yV1,Ψ〉ddydx. (9.28)

For this purpose, we start by applying the transformation Ξ−1
ε,z̃ε : Ω\Cε(0) → Ω\Cε(z̃ε)

to the left hand side of (9.28). Afterwards, we exploit the convergence results (9.23c),
(9.23d), and (9.27b) as well as that due to the continuity of Ψ, assumption (9.2i), and
Proposition 3.3(b) we have F (2)

ε Ψ ◦ Ξ−1
ε,z̃ε

s→ Ψ ◦ Ξ−1
0,z̃0 in L2(Ω×Y )d. Finally, we apply

the transformation Ξ0,z̃0 : ⋃x∈Ω{x}×Y \LC(z̃0(x))→ Ω×Y \LC(0).

lim
ε→0

∫
Ω
〈∇xvε,F (2)

ε Ψ〉ddx = lim
ε→0

∫
Ω
|det(∇xΞ−1

ε,z̃ε)|〈∇xvε(∇xΞ−1
ε,z̃ε)

−1,F (2)
ε Ψ ◦ Ξ−1

ε,z̃ε〉ddx

=
∫

Ω×Y
|det(∇y[Ξ−1

0,z̃0 ]2)|〈∇yV 1(∇y[Ξ−1
0,z̃0 ]2)−1,Ψ ◦ Ξ−1

0,z̃0〉ddydx

=
∫

Ω×Y
〈∇yV1,Ψ〉ddydx.

3. We recall that up to now we know that the convergence of (9.19) holds with re-
spect to the weak two-scale topology. According to (9.20) for all ε > 0 we have
‖Tε∇vε‖L2(R×Y )d = ‖∇vε‖L2(Ω)d ≤ ‖∇yV1‖L2(Ω×Y )d which combined with the inequality
lim infε→0 ‖Tε∇vε‖L2(R×Y )d ≥ ‖∇yV1‖L2(Ω×Y )d resulting from the weak convergence yields
limε→0 ‖Tε∇vε‖L2(R×Y )d = ‖∇yV1‖L2(Ω×Y )d . Since weak convergence combined with con-
vergence of the norms gives strong convergence, this verifies (9.19b). Thus, (9.19a) is an
easy consequence of choosing ϕε = vε ∈ H1

0(Ω\Cε(z̃ε)) as the testfunction in (9.18) and
exploiting the convergence (9.19b).

4. Now we are going to show that there exists (v̂0, V̂1) ∈ H1
0(Ω)×L2(Ω; H1

av(Y\LC(0)))
and a subsequence of (ε)ε>0 such that (9.23a) and (9.23b) hold. For this purpose, we
apply the transformation Ξε,z̃ε : Ω\Cε(z̃ε) → Ω\Cε(0) to the norm ‖vε‖2

H1
0(Ω\Cε(0)) in the

following way.

‖vε‖2
H1

0(Ω\Cε(0)) =
∫

Ω
|vε|2 + |∇xvε|2ddx

=
∫

Ω
|det(∇xΞε,z̃ε)|(|vε|2 + |∇xvε(∇xΞε,z̃ε)−1|2d)dx

≤ C‖vε‖2
H1

0(Ω\Cε(z̃ε))
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Here, vε = vε ◦Ξε,z̃ε ∈ H1
0(Ω\Cε(z̃ε)) and in the last line we exploited assumption (9.2g).

Hence, according to the a priori estimate (9.20) the norm ‖vε‖H1
0(Ω\Cε(0)) is uniformly

bounded and Theorem 9.3 states that there exists a subsequence of (ε)ε>0 and a func-
tion (v̂0, V̂1) ∈ H1

0(Ω)×L2(Ω; H1
av(Y\LC(0))) such that (9.23a) and (9.23b) hold for this

subsequence.

5. Since the transformation Ξ−1
ε,z̃ε : Ω\Cε(0) → Ω\Cε(z̃ε) for every x ∈ Ω−ε is defined

by Ξ−1
ε,z̃ε(x) := Nε(x) + ε(TC

z̃ε(x))−1({x
ε
}Y ), we have ∇Ξ−1

ε,z̃ε(x) = ∇(TC
z̃ε(x))−1({x

ε
}Y ).

Exploiting that the given function z̃ε ∈ KεΛ(Ω; [0, 1]m) is piecewise constant, for all
(x, y) ∈ Ω−ε ×Y it holds Tε(∇Ξ−1

ε,z̃ε)(x, y) = ∇y(TC
z̃ε(x))−1(y). Therefore, due to assump-

tion (9.2i) for almost every (x, y) ∈ Ω−ε ×Y we find

lim
ε→0
Tε(∇Ξ−1

ε,z̃ε)(x, y) = ∇y(TC
z̃0(x))−1(y). (9.29)

Since [Ξ−1
0,z̃0 ]2 : Y \LC(0) for (x, y) ∈ Ω×Y → ⋃

x∈Ω{x}×Y \LC(z̃0(x)) is defined by
[Ξ−1

0,z̃0 ]2(x, y) = (TC
z̃0(x))−1(y), combining (9.29) and (9.2g) yields the convergence (9.23c).

The convergence (9.23d) is an immediate consequence of (9.23c).

6. To show F (2)
ε (∇yV1)ex ◦ Ξ−1

ε,z̃ε

s→ (∇yV 1)(∇y[Ξ−1
0,z̃0 ]2)−1 in L2(Ω×Y )d we start by

exploiting Proposition 3.3(d) to obtain

Tε(F (2)
ε (∇yV1)ex ◦ Ξ−1

ε,z̃ε) = (1[Ω×Y ]ε ◦ Ξ̃−1
0,z̃ε)Pε(∇yV1 ◦ Ξ̃−1

0,z̃ε)
ex,

where the transformation Ξ̃−1
0,z̃ε : (Rd×Y )\Im(Tε1Cε(0)) → (Rd×Y )\Im(Tε1Cε(z̃ε)) is de-

fined by Ξ̃−1
0,z̃ε|(Rd\Ω−ε )×Y := id and Ξ̃−1

0,z̃ε|Ω−ε ×Y := Ξ−1
0,z̃ε |Ω−ε ×Y . This description enables us

to simplify the proof of (9.23e) in the following way: Since 1[Ω×Y ]ε ◦ Ξ̃−1
0,z̃ε → 1Ω×Y in

L1(Rd×Y ) and since 1[Ω×Y ]ε ◦ Ξ̃−1
0,z̃ε ≤ 1, for Vε := V1 ◦ Ξ̃−1

0,z̃ε it is sufficient to verify

Pε(∇yV1 ◦ Ξ̃−1
0,z̃ε)

ex = Pε(∇ỹVε)ex((∇ỹ[Ξ̃−1
0,z̃ε ]2)−1)ex → (∇yV 1)ex((∇y[Ξ−1

0,z̃0 ]2)−1)ex

with respect to the strong topology of L2(Rd×Y )d. Due to assumption (9.2i) it holds
limε→0 ‖(∇y[Ξ̃−1

0,z̃ε ]2)−1−(∇y[Ξ−1
0,z̃0 ]2)−1‖L∞(Ω×Y )d×d = 0 such that Pε(∇ỹVε)ex → (∇yV 1)ex

in L2(Rd×Y )d remains to be shown. Observe that for a sequence (Wε)ε>0 ⊂ L2(Rd×Y )d
and a function W0 ∈ L2(Rd×Y )d with Wε → W0 in L2(Rd×Y )d it holds Pε(Wε)→ W0 in
L2(Rd×Y )d. Therefore, if we can guarantee ∇ỹVε → ∇yV 1 in L2(Ω×Y )d we immediately
obtain Pε(∇ỹVε)ex → (∇yV 1)ex in L2(Rd×Y )d.

To prove ∇ỹVε → ∇yV 1 in L2(Ω×Y )d, we exploit the description Vε = V 1 ◦Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε ,

which according to the chain rule results in

∇ỹVε =
(
∇yV 1 ◦ Ξ0,z̃0 ◦ Ξ̃−1

0,z̃ε

)(
∇y[Ξ0,z̃0 ]2 ◦ Ξ̃−1

0,z̃ε

)(
∇y[Ξ̃−1

0,z̃ε ]2
)
.

Due to assumption (9.2i) for ε→ 0 it holds

(∇y[Ξ0,z̃0 ]2) ◦ Ξ̃−1
0,z̃ε(∇y[Ξ̃−1

0,z̃ε ]2)→ (∇y[Ξ0,z̃0 ]2) ◦ Ξ−1
0,z̃0(∇y[Ξ−1

0,z̃0 ]2) = id in L∞(Ω×Y )d×d.

Summarizing step 6, up to now the proof of convergence (9.23e) is reduced to the ver-
ification of ∇yV 1 ◦ Ξ0,z̃0 ◦ Ξ̃−1

0,z̃ε → ∇yV 1 in L2(Ω×Y )d. To verify this convergence, we
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9 Effective models for the evolution of microscopic cracks

recall that according to [70] the linear span of C∞c (Ω)×(C∞(Y\LC(0)) ∩ H1(Y\LC(0)))
is a dense subset of the function space L2(Ω; H1(Y\LC(0))). Therefore, for the function
V 1 ∈ L2(Ω; H1

av(Y\LC(0))) ⊂ L2(Ω; H1(Y\LC(0))) there exists a sequence (V n)n∈N in
this subset such that ∇yV n → ∇yV 1 in L2(Ω×Y )d.
By applying the transformations Ξ−1

0,z̃0 : Ω×Y \LC(0) → ⋃
x∈Ω{x}×Y \LC(z̃0(x)) and

Ξ̃0,z̃ε : (Rd×Y )\Im(Tε1Cε(z̃ε)) → (Rd×Y )\Im(Tε1Cε(0)) to the integral of the left hand
side of (9.30) below, due to assumption (9.2g) there exists a constant C > 0 such that
the estimate (9.30) holds for all n ∈ N and every ε > 0. Here, C is independent of ε > 0.

‖(∇yV 1 −∇yV n) ◦ Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε‖

2
L2(Ω×Y )d ≤ C2‖∇yV 1 −∇yV n‖2

L2(Ω×Y )d (9.30)

For an arbitrary but fixed ∆ > 0 we now choose n∆ ∈ N such that

‖∇yV 1 −∇yV n∆‖L2(Ω×Y )d ≤ ∆
3C . (9.31)

Thus, we are able to estimate ‖∇yV 1 ◦ Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε −∇yV 1‖L2(Ω×Y )d as follows.

‖∇yV 1 ◦ Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε −∇yV 1‖L2(Ω×Y )d ≤ ‖(∇y −∇yV n∆) ◦ Ξ0,z̃0 ◦ Ξ̃−1

0,z̃ε‖
2
L2(Ω×Y )d

+ ‖∇yV n∆ ◦ Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε −∇yV n∆‖L2(Ω×Y )d

+ ‖∇yV n∆ −∇yV 1‖L2(Ω×Y )d (9.32)

According to the continuity of ∇yV n∆ and assumption (9.2i) there exists ε0 > 0 such

that for all ε ∈ (0, ε0) it holds ‖∇yV n∆ ◦Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε −∇yV n∆‖L2(Ω×Y )d ≤ ∆

3 . Combining
this result with the estimates (9.30), (9.31), and (9.32) we end up with

‖∇yV 1 ◦ Ξ0,z̃0 ◦ Ξ̃−1
0,z̃ε −∇yV 1‖L2(Ω×Y )d ≤ ∆

3 + ∆
3 + ∆

3C < ∆.

Since this holds true for all ∆ > 0, the convergence (9.23e) is verified and the proof is
concluded.

9.2 Two-scale effective damage model based on
unidirectional crack evolution

In this section we formulate the two-scale effective crack model (S0
C) and (E0

C) derived by
performing the limit passage ε→ 0 in (SεC) and (Eε

C) rigorously. For Y := R/Λ denoting
the periodicity cell, the limit function space QC

0 has the following structure:

QC
0 := H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d×W1,p(Ω; [0, 1]m).

For given (`0, `1) ∈ C1([0, T ]; L2(Ω)d×L2(Ω)d×d) the definition of the external loading
``0,`1C,0 ∈ C1([0, T ]; (H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d)∗) is motivated by the compactness
result of Theorem 9.3. For all t ∈ [0, T ] and (u0, U1) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d
it reads as follows:

〈``0,`1C,0 (t), (u0, U1)〉 := 〈`0(t), u0〉L2(Ω)d + 〈E`1(t),∇xEu0+∇yU1〉L2(Ω×Y \LC(0))d×d . (9.33)
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9.2 Two-scale effective damage model for unidirectional crack evolution

Here, the two-scale function E`1(t) ∈ L2(Ω×Y )d×d for almost every (x, y) ∈ Ω×Y is
defined by E`1(t)(x, y) := `1(t)(x). For (u0, U1) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d we

set ẽ(u0, U1) := ex(u0) + ey(U1). Thus, the functional ẼC
0 : [0, T ]×QC

0 → R building the
foundation of the limit energy functional is given by

ẼC
0 (t, u0, U1, z0)
:= 1

2〈Cstrongẽ(u0, U1), ẽ(u0, U1)〉L2(Ω×Y \LC(0))d×d + ‖∇z0‖pLp(Ω)m×d − 〈`
`0,`1
C,0 (t), (u0, U1)〉

and the two-scale energy functional EC
0 : [0, T ]×QH

0 → R∞ reads as follows:

EC
0 (t, u0, U1, z0) :=

{
ẼC

0 (t, u0, U1, z0) if U1 satisfies (9.34) below,

∞ otherwise,

U1(x, ·) ∈ H1
av(Y\LC(z0(x))) for almost every x ∈ Ω. (9.34)

For the limit function κC
0 ∈ Lq′(Ω; [0,∞))m (see (9.7)) the limit dissipation distance

DC
0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] of the sequence (DC

ε )ε>0 is defined via

DC
0 (z1, z2) :=


∫

Ω
|〈κC

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.

For given initial values (u0
0, U

0
1 , z

0
0) ∈ QC

0 , where U0
1 is assumed to satisfy (9.34) with re-

spect to z0
0 , the rate-independent crack evolution is modeled by the energetic formulation

(S0
C) and (E0

C).
Stability condition (S0

C) and energy balance (E0
C) for all t ∈ [0, T ]:

EC
0 (t, u0(t), U1(t), z0(t)) ≤ EC

0 (t, ũ, Ũ , z̃) + DC
0 (z0(t), z̃) for all (ũ, Ũ , z̃) ∈ QC

0

EC
0 (t, u0(t), U1(t), z0(t)) + DissDC

0
(z0; [0, t])

= EC
0 (0, u0

0, U
0
1 , z

0
0)−

∫ t

0
〈 ˙̀`0,`1C,0 (s), (u0(s), U1(s))〉ds

Here, DissDC
0
(z0; [0, t]) := sup∑N

j=1 DC
0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum

is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of
the interval [0, T ]. The following existence result extends Theorem 6.18 to the situation
with cracks.

Theorem 9.8 (Existence of solutions). Assume that (9.1), (9.2), and (9.3) hold. Let
EC

0 : [0, T ]×QC
0 → R∞ and DC

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m) → [0,∞] be defined
as described above. Moreover, let (u0

0, U
0
1 , z

0
0) ∈ QC

0 be given such that it is the limit of
a stable sequence (u0

ε, z
0
ε)ε>0 with respect to 0 ∈ [0, T ] in the sense of Definition 6.12

(Obviously, the sequence (u0
ε)ε>0 with u0

ε ∈ H1
ΓDir

(Ω\Cε(zε))d 6⊂ H1
ΓDir

(Ω)d is not assumed

to converge weakly to u0
0 in H1

ΓDir
(Ω)d; see Definition 6.12). If ∇u0

ε
s→ ∇xEu

0
0 + ∇yU

0
1
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9 Effective models for the evolution of microscopic cracks

in L2(Ω×Y )d×d and R ε
2
z0
ε |Ω → ∇z0

0 in Lp(Ω)m×d, then there exists an energetic solu-

tion (u0, U1, z0) : [0, T ] → QC
0 of the rate-independent system (QC

0 ,EC
0 ,DC

0 ) with initial
condition (u0

0, U
0
1 , z

0
0) satisfying

(u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y\LC(0)))d),

z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVDC
0
([0, T ]; W1,p(Ω; [0, 1]m)).

Proof. The proof of this theorem is completely analog to that of Theorem 6.18. However,
observe that whenever Proposition 3.7 or Proposition 3.8 is exploited in the proofs of
the Theorems 6.15, 6.17, or 6.18, here it is replaced by Theorem 9.3 or Theorem 9.5,
respectively. Thus, establishing Theorem 9.8 is straight forward.

9.3 One-scale effective damage model based on
unidirectional crack evolution

Similar to Chapter 8, by choosing `1 :≡ 0 in (9.33), we are able to formulate a one-scale
model which is equivalent to that of Section 9.2. Let the state space QC

0 (Ω) be given by

QC
0 (Ω) := H1

ΓDir
(Ω)d×W1,p(Ω; [0, 1]m).

The energy functional is based on a mapping CC
eff : W1,p(Ω; [0, 1]m)→M(Ω), which for

ξ ∈ Rd×d
sym, for almost every x ∈ Ω, and for z0 ∈ W1,p(Ω; [0, 1]m) is defined via the unit

cell problem

〈CC
eff(z0)(x)ξ, ξ〉d×d := min

{
IC(z0(x), ξ, v)

∣∣∣ v ∈ H1
av(Y\LC(0))d

}
. (9.35)

Here, for ẑ ∈ [0, 1]m the functional IC(ẑ, ξ, ·) : H1
av(Y\LC(0))d → R∞ is given by

IC(ẑ, ξ, v) :=
{
ĨC(ẑ, ξ, v) if v ∈ H1

av(Y\LC(ẑ))d,
∞ otherwise,

where the continuous functional ĨC(ẑ, ξ, ·) : H1
av(Y\LC(0))d → R is given by

ĨC(ẑ, ξ, v) :=
∫
Y \LC(0)

〈
Cstrong

(
ξ + ey(v)(y)

)
, ξ + ey(v)(y)

〉
d×d

dy.

Note that (9.35) alternatively might be expressed by the much shorter relation

〈CC
eff(z0)(x)ξ, ξ〉d×d = min

{
ĨC(z0(x), ξ, v)

∣∣∣ v ∈ H1
av(Y\LC(z0(x)))d

}
.

However, since we are going to refer to the notation of Chapter 8, we have to introduce
the functionals IC(ẑ, ξ, ·) and ĨC(ẑ, ξ, ·). For given functions `0 ∈ C1([0, T ]; L2(Ω)d) and
z0 ∈ W1,p(Ω; [0, 1]m), here the external loading ``0C,0 ∈ C1([0, T ]; (H1

ΓDir
(Ω)d)∗) for all

t ∈ [0, T ] and every u0 ∈ H1
ΓDir

(Ω)d is modeled by

〈``0C,0(t), u0〉 := 〈`0(t), u0〉L2(Ω)d . (9.36)
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Note that in the case of `1 :≡ 0 the mapping ``0,0C,0 of (9.33) can be understood as
an element of C1([0, T ]; (H1

ΓDir
(Ω)d)∗), too. Now, the one-scale limit energy functional

EC
0 : [0, T ]×QC

0 (Ω)→ R is defined via

EC
0 (t, u0, z0) := 1

2〈C
C
eff(z0)e(u0), e(u0)〉L2(Ω×Y )d×d + ‖∇z0‖pLp(Ω)m×d − 〈`

`0
C,0(t), u0〉.

For κC
0 ∈ Lq′(Ω; [0,∞)m) denoting the limit function mentioned in the definition of

the microscopic dissipation distance defined in line (9.7), the limit dissipation distance
DC

0 : W1,p(Ω; [0, 1]m)×W1,p(Ω; [0, 1]m)→ [0,∞] reads as follows:

DC
0 (z1, z2) :=


∫

Ω
|〈κH

0 (x), z2(x)− z1(x)〉m|dx if z1 ≥ z2,

∞ otherwise.

For given initial values (u0
0, z

0
0) ∈ QC

0 (Ω) the existence of an energetic solution of the
rate-independent system (QC

0 (Ω), EC
0 ,DC

0 ) is implied by combining Theorem 9.8 with
Theorem 9.9 below.

Stability condition (S0
C) and energy balance (E0

C) for all t ∈ [0, T ]:

EC
0 (t, u0(t), z0(t)) ≤ EC

0 (t, ũ, z̃) +DC
0 (z0(t), z̃) for all (ũ, z̃) ∈ QH

0 (Ω)

EC
0 (t, u0(t), z0)(t)) + DissDC

0
(z0; [0, t]) = EC

0 (0, u0
0, z

0
0)−

∫ t

0
〈 ˙̀`0C,0(s), u0(s)〉ds

Here, DissDC
0
(z0; [0, t]) := sup∑N

j=1DC
0 (z0(tj−1), z0(tj)), where for N ∈ N the supremum

is taken with respect to all finite partitions πN := {0 = t0 < t1 < . . . < tN = t} of the
interval [0, T ].

Theorem 9.9 (Equivalence of the two-scale and one-scale model). Assume that the
conditions (9.1), (9.2), and (9.3) hold. For ẑ ∈ [0, 1]m let LC

ẑ : Rd×d
sym → H1

av(Y\LC(ẑ))d
denote the linear operator, which for ξ ∈ Rd×d

sym is defined by

LC
ẑ (ξ) := Argmin

{
〈Cstrong(ξ + ey(v)), ξ + ey(v)〉L2(Y \LC(ẑ))d×d

∣∣∣ v ∈ H1
av(Y\LC(ẑ))d

}
.

For `0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and `1 :≡ 0 let ``0,0C,0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) and

``0C,0 ∈ C1([0, T ]; (H1
ΓDir

(Ω)d)∗) be given by (9.33) and (9.36).

Furthermore, let z0 ∈ L∞([0, T ]; W1,p(Ω; [0, 1]m)) ∩ BVDC
0
([0, T ]; W1,p(Ω; [0, 1]m)) and

let (u0, U1) ∈ L∞([0, T ]; H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y\LC(0)))d) satisfying for all t ∈ [0, T ]

and almost every x ∈ Ω the condition U1(t, x, ·) ∈ H1
av(Y\LC(z0(t, x)))d. Then for

(u0
0, U

0
1 , z

0
0) satisfying the stability condition (S0

C) for t = 0 the following two statements
are equivalent:

(a) The function (u0, U1, z0) : [0, T ]→ QC
0 with (u0(0), U1(0), z0(0)) = (u0

0, U
0
1 , z

0
0) is a

solution of (S0
C) and (E0

C).

(b) The function (u0, z0) : [0, T ] → QC
0 (Ω) with (u0(0), z0(0)) = (u0

0, z
0
0) is a solution

of (S0
C) and (E0

C), and U1(t) := LC
z0(t,·)(ex(u0(t))(·)) for all t ∈ [0, T ].
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Proof. By introducing the functional IC
0 (z0, u0, ·) : L2(Ω; H1

av(Y\LC(0)))d → R∞ via

IC
0 (z0, u0, U) :=

{
ĨC

0 (z0, u0, U) if U(x, ·) ∈ H1
av(Y\LC(z0(x)))d for almost all x ∈ Ω,

∞ otherwise,

where the continuous functional ĨC
0 (z0, u0, ·) : L2(Ω; H1

av(Y\LC(0)))d → R is given by

ĨC
0 (z0, u0, U) := 〈Cstrongẽ(u0, U), ẽ(u0, U)〉L2(Ω×Y \LC(0))d×d ,

the proof of this statement is completely analog to that of Theorem 8.20.

9.4 Discussion of the results

This chapter is devoted to the derivation of effective models for the propagation of
microscopic cracks. Observe that the two-scale limit state space QC

0 is defined via
QC

0 := H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y\LC(0)))d×W1,p(Ω; [0, 1]m), i.e., the microscopic cracks

appearing in the energetic formulation (SεC) and (Eε
C) are shifted to the second scale in the

limit. Moreover, similar to Chapter 8 the external loading of the effective two-scale limit
model depends on the microscopic scale. By assuming the term of the external loading
which is responsible for this dependence on the microscopic scale to be zero, we are able
to formulate an equivalent one-scale model. Since QC

0 (Ω) := H1
ΓDir

(Ω)d×W1,p(Ω; [0, 1]m)
is the state space for the effective one-scale model and since cracks are modeled by the
jump set of the displacement field, the considered body Ω contains no cracks at any
time. Hence, (S0

C) and (E0
C) can be understood as a damage model for the linear elastic

body Ω, where the constitutive relation is given by (9.35).

Considering the static case the papers [12, 66] yield homogenization results for periodi-
cally distributed microscopic cracks. In [66] Γ-convergence techniques are used to derive
effective formulas for microscopic bulk and surface energies. There, different scalings
of the microscopic surface energy are investigated. On the other hand, in [12] the un-
folding technique is used to provide effective formulas for periodically distributed closed
and open cracks. Among other things, there for any bounded sequence of displacement
fields with jump sets corresponding to the periodically distributed cracks compactness
is shown. This compactness result is essential for identifying the limit model.

In our case, the microscopic crack propagation models allow for the individual evo-
lution of every microscopic crack. For this reason, in Subsection 9.1.1 the following
compactness result is shown: Due to the result for the periodic case, for a given se-
quence (uε, zε)ε>0 with zε ∈ KεΛ(Ω; [0, 1]m), supε>0 ‖uε‖H1

ΓDir
(Ω\Cε(zε))d < ∞, and a func-

tion z0 ∈ Lp(Ω)m such that zε → z0 in Lp(Ω)m there exists a subsequence of (uε)ε>0
(not relabeled) and a function (u0, U1) ∈ H1

ΓDir
(Ω)d×L2(Ω; H1

av(Y\LC(0)))d such that

uε
s→ Eu0 in L2(Ω×Y )d and ∇uε w

⇀ ∇xEu0+∇yU1 in L2(Ω×Y )d×d. Furthermore, we
showed that U1(x, ·) ∈ H1

av(Y\LC(z0(x)))d for almost every x ∈ Ω. Since the damage
variable z0 ∈W1,p(Ω; [0, 1]m) is intended to describe the crack propagation in the effec-
tive two-scale model, this relation of the jump set of U1 and the function z0 is crucial.
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9.4 Discussion of the results

By assumption (9.3) the proof of this result is traced back to the results available in the
setting of microscopic voids. In our opinion, starting with the assumptions (9.1) and
(9.2) due to condition (9.3) there are no further restrictions on the admissible crack ge-
ometry. However, following the approach of [10] the compactness result might be proven
without assuming condition (9.3) to hold. There, in the case of periodically distributed
cracks compactness of (uε)ε>0 is shown by decomposing every function uε into Q∗ε(uε)
and R∗ε(uε), where Q∗ε(uε) denotes a polynomial interpolant of degree less than or equal
to one and R∗ε(uε) is defined by R∗ε(uε) := uε−Q∗ε(uε). This technique may be extended
to the here required non-periodic case.

The second ingredient for identifying the limit models via Γ-convergence techniques is
the construction of a recovery sequence. In the case of periodically distributed cracks
this is easily done by exploiting density results for the space L2(Ω; H1

av(Y\LC(0))d; see
step 1 of the proof of Lemma 9.7. However, for the individual crack propagation models
we need to improve this result in the following way (see Subsection 9.1.2): For given
functions (ũ0, Ũ1, z̃0) ∈ QC

0 and a sequence (z̃ε)ε>0 with z̃ε ∈ KεΛ(Ω; [0, 1]m) and z̃ε → z̃0
in Lp(Ω)m we have to construct a sequence (ũε)ε>0 with ũε ∈ H1

ΓDir
(Ω\Cε(z̃ε))d, ũε s→ Eũ0

in L2(Ω×Y )d, and ∇ũε
s→ ∇xEũ0 +∇yŨ1 in L2(Ω×Y )d×d. To ensure that for any ε > 0

the jump set of ũε is contained in Cε(z̃ε) the assumptions (9.2g), (9.2h), and (9.2i) have
to be exploited carefully; see the proof of Theorem 9.5.

145





10 Outlook
In this thesis we do not investigate the time-wise regularity of energetic solutions. In
general, energetic solutions do have jumps with respect to time. By assuming for all
t ∈ [0, T ] the energy functional E(t, ·, ·) : Q → R∞ to be strictly convex with respect
to the variable (u, z) ∈ Q = U×Z, the authors of [61] showed continuity of the ener-
getic solution with respect to time. Note that the first term of the microscopic energy
functionals of the Sections 7.1–9.1 is a product of a linear function with respect to the
damage variable and a quadratic function with respect to the displacement field. None
of these microscopic energy functionals are jointly convex with respect to the displace-
ment field and the damage variable. However, considering the scalar case d = m = 1 in
Section 7.3, we find

E In
0 (t, u0, z0) =

∫
Ω

1
2

(
(1−z0)C−1

strong+z0C−1
weak

)−1(
∂
∂x
u0
)2

+
∣∣∣ ∂
∂x
z0

∣∣∣pdx+ 〈`(t), u0〉

as an explicit expression for the effective one-scale limit energy functional. By cal-
culating the second variation D2E In

0 (t, ·, ·) for every t ∈ [0, T ] one easily obtains that
E In

0 : H1
ΓDir

(Ω)×W1,p(Ω; [0, 1]) → R is strictly convex. Hence, the convexity of the ef-
fective one-scale energy functionals of the Sections 6.3–9.3 seems to be worthwhile of
investigation. Since the constitutive relation of the effective material tensor and the
limit damage variable is generally given by a unit cell problem, such an investigation
might involve some kind of shape derivative.

In the context of modeling crack propagation, for most materials it is reasonable to
assume that opposite lips of a fracture cannot interpenetrate at any time. Up to now
the crack models of Chapter 9 do not take this physically reasonable assumption into
account. In the static case of periodically distributed microscopic cracks the models in
[12] and [67] do incorporate a non-interpenetration constraint preventing such a behavior.
There, the jump of the displacement field multiplied with the normal vector of the crack
surface is assumed to be greater than or equal to zero, which is modeled by an additional
surface term entering the energy functional.

Incorporating such a constraint to the microscopic crack propagation models of Sec-
tion 9.1 induces the following challenges: First of all, the asymptotic behavior of the
microscopic constraints has to be investigated to identify the limit constraint entering
the effective models. Observe that although this is already done in [12, 67] for the
static case, here these results need to be generalized to the evolutionary case involving
non-periodic distributions of microscopic cracks.

Secondly, the here presented homogenization technique, based on the evolutionary Γ-
convergence introduced in [56], requires the construction of a mutual recovery sequence
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10 Outlook

(ũε, z̃ε)ε>0. Neglecting the non-interpenetration constraint, in the proof of Theorem 9.5
for a given (z̃ε)ε>0 the displacement component (ũε)ε>0 is constructed such that the jump
set of ũε is contained in the set of microscopic cracks Cε(z̃ε) associated to the damage
variable z̃ε. Now, by adding the non-interpenetration constraint to the microscopic
models, this constraint needs to be respected while constructing the mutual recovery
sequence. Referring to the already very technical proof of Theorem 9.5, this adaptation
seems to be the most challenging part of incorporating a non-interpenetration constraint
into the crack models of Chapter 9.
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