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Summary

This dissertation comprises of three independent essays which introduce novel psychologically

inspired process models and examine their implications for individual, collective or market

behavior.

The first essay studies multi-attribute choice as a guided process of search. It puts forward a

theoretical framework which integrates work on search and stopping with partial information

from economics with psychological subjective utility models from the field of judgment and

decision making. The alternatives are searched in order of decreasing estimated utility, until

the expected cost of search exceeds the relevant benefits; The essay presents the results of

a performance comparison of three well-studied multi-attribute choice models, (i) the multi-

attribute linear utility, (ii) the equal weighting of alternatives and (iii) a single attribute

heuristic on twelve real world datasets. It explains the role of the preference ranking and the

estimation error of the models in their performance across real-world environments.

The second essay reports the results of two experiments designed to understand how people

revise their judgments of factual questions after being exposed to the opinion and confidence

levels of others. It introduces a tree model of judgment revision which is directly derived from

the empirical observations. The model demonstrates how opinions in a group of interacting

people can converge or polarize over repeated interactions. Two major attractors of opinion

are identified (i) the expert effect induced by the presence of a highly confident individual

in the group and (ii) the majority effect caused by a critical mass of people sharing similar

opinions. Additional simulations show the existence of a tipping point at which one attractor

will dominate the other, driving collective opinion in a given direction.
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The third essay, studies collective behavior in markets for search products. It is assumed

that decision makers with diverse yet correlated preferences decide sequentially which among

numerous alternatives to choose. The decision makers consider the alternatives in order of

decreasing popularity and choose the first alternative with utility higher than a certain satis-

ficing threshold. The popularity order is updated after each individual choice. The presented

framework illustrates that such markets are characterized by rich-get-richer dynamics which

lead to inequality in the market-share distribution and unpredictability in regard to the fi-

nal outcome. The satisficing threshold employed by the decision makers and the preference

diversity in the decision maker population determine the strength of these effects.

Keywords : search, process models, heuristics, social influence.
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Zusammenfassung

Diese Dissertation umfasst drei voneinander unabhängige Artikel. In diesen werden neue

Prozessmodelle vorgestellt, die von der entscheidungspsychologischen Forschung inspiriert

wurden. Sie liefern weiterführende Erkenntnisse zu individuellem Verhalten, Märkten und

kollektivem Verhalten.

Im ersten Artikel werden Entscheidungsprozesse mit mehreren Entscheidungsmerkmalen (sog.

multi-attribute choices) als gesteuerte Suchprozesse modelliert. Zunächst wird ein theo-

retischer Rahmen vorgestellt, in dem ökonomische Modelle Entscheidungen mit Suche mit

Modellen des subjektiven Nutzens aus dem Bereich der psychologischen Forschung zum

Urteilen und Entscheiden integriert wird. In den so modellierten Entscheidungsprozessen

wird angenommen, dass Individuen ihre Entscheidungsalternativen nach deren abnehmenden

Nutzen ordnen und dann so lange durchsuchen, bis die erwarteten Suchkosten höher als die

entsprechenden Gewinne sind. Anschlieend wird die Güte dreier multi attribute - Entschei-

dungsmodelle an zwölf realen Datensätzen überprüft. Diese Modelle sind (i) ein multi-

attribute-Modell, dass einen linear absteigenden Nutzen der attributes annimmt (ii) ein

Modell, welches gleichen Nutzen für alle attributes annimmt und schlielich (iii) eine Heuris-

tik, die allein ein attribute verwendet. Die Rolle von Präferenzreihenfolgen sowie die des

Schätzfehlers aller drei Modelle werden anschlieend diskutiert.

Im zweiten Artikel werden die Ergebnisse zweier Experimente vorgestellt, in denen unter-

sucht wurde, wie Personen ihre Urteile verändern, wenn sie den Urteilen und dem der Kon-

fidenzniveau anderer Personen ausgesetzt sind. Ein Baummodell wird eingeführt, welches

abbildet, wie Urteile aufgrund solcher Informationen revidiert werden. Dieses Modell basiert
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auf den Ergebnissen der beiden Experimente: Indem soziale Informationen berücksichtigt

werden, kann es zeigen, wie Urteile in einer Gruppe interagierender Personen zusammen-

laufen bzw. polarisieren, wenn diese wiederholt miteinander interagieren. Es werden zwei

Faktoren identifiziert, die Urteile Einzelner beeinflussen: i) die Rolle von Experten sehr

konfidenter Personen in einer Gruppe und ii) die Rolle von Mehrheiten, das heißt, einer kri-

tischen Anzahl anderer, die jeweils die gleiche Meinung haben. In zusätzlichen Simulationen

wird gezeigt, an welchen Kipppunkten ein Faktor den anderen jeweils dominiert und dann

die kollektiven Urteile in eine bestimmte Richtung lenkt.

Im dritten Artikel wird kollektives Verhalten in Märkten für kulturelle Produkte untersucht.

Es wird angenommen, dass Personen mit unterschiedlichen, aber miteinander korrelierten,

Präferenzen sequentiell entscheiden, welche von vielen Optionen sie wählen. Personen ordnen

die Optionen entsprechend ihrer Popularität an und entscheiden sich dann für diejenige, die

einen Nutzen hat, der über einer bestimmten ausreichend guten Schwelle liegt. Nach jeder

individuellen Entscheidung wird die Rangfolge revidiert. Innerhalb dieses einfachen Rah-

mens wird demonstriert, dass solche Märkte durch eine sogenannte rich get richer-Dynamik

charakterisiert sind. Diese führt zu Ungleichheiten in den Marktanteilen und ungewissen

finanziellen Erlösen. Die Stärke solcher Effekte wird durch die Vielfalt der Präferenzen auf

dem Markt sowie den Nutzen-Schwellenwert einzelner Personen bestimmt.

Schlagwrter: Suche, Prozessmodelle, Faustregeln, sozialer Einfluss
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Chapter 1

Introduction

Although psychology is the science of behavior par excellence, it has had so far only a modest

contribution to the study of aggregate behavior. In the past, neighboring disciplines such

as economics, sociology, and more recently physics, have advanced the conceptualization of

aggregate behavior, yet in most cases with little regard to the psychological plausibility of

the models advanced to describe individual agents. Herbert Simon (1998) wittingly exposes

this paradox in an essay on the relation of psychology and economics. Simon points out that

if psychology is the science of human behavior, and economics the science that deals with

behavior in the marketplace, then economics appears to be a branch of psychology. The

same remark can be made for other social sciences such as sociology and political science.

The phenomena that they study are the product of human behavior. However, there are

only limited cases in which human psychological processes are directly invoked to explain

or predict aggregate level observations. In fact, today most models of economic and social

phenomena are still based on descriptions of individual agents that do not correspond to the

state-of-the-art models studied by psychologists.

Instead of psychological theories, the most expansive model of individual behavior in the

social sciences in the second half of the 20th century has been rational choice theory, which in

most of its expressions postulates that decision makers are utility maximizers with herculean

1



Introduction 2

computational capacities. The development of rational choice theory has been primarily

driven by the internal coherence of its assumptions rather than by correspondance to actual

behavior observed in real-world environments. Thus, other than the motivational element,

expressed in the concept of utility, the theory as practiced by social scientists, has little

psychological content. Besides, there is a striking schism between theoretical rational choice

models and empirical practice. The original theories are in many cases replaced by naive

statistical models, which are used to explain or to predict aggregate behavioral measures.

Yet these models do not describe any actual processes and have little structural connections

to the theory itself (Papandreou, 1958; Shmueli, 2010).

Forming accurate beliefs about the economy and the social world is vital for both individuals

and organizations. Thus, it is not surprising that social scientists regularly advise govern-

ments and firms. Although rational choice theory provides a structured modeling framework,

in most cases models of this type have limited correspondence to actual real world problems.

Further, while it is true that statistical models agnostic to the exact cognitive or social pro-

cesses can be directly applied to derive reasonable predictions about individual or aggregate

behavior, such models do not provide true insights into the processes that link micro to

macro-behaviors. Understanding these processes is a key factor in order to intervene ef-

ficiently in a system and improve its possible outcomes. By capitalizing on psychological

methods and theories, we can design models which are based on sound micro-foundations

at the level of the individual agents and explicitly take into account the processes that lead

from individual to aggregate behavior.

1.1 Stories of convergence

Over the last decades two new fields of research, behavioral economics and computational

social science, have developed independently of each other and have opened the way for a new

conceptualization of the relation between individual and aggregate level behavior. Behavioral

economics has departed from rational choice theory seeking psychological foundations for
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economic behavior. Computational social science, in contrast, has its origins in agent-based

models with minimal assumptions about individual behavior (Schelling, 1978). Today, it

offers a host of new methodological possibilities for integrating psychology with the social

sciences.

1.1.1 Behavioral economics

Already in the 1950s, Ward Edwards (1954) and his associates started to investigate ex-

perimentally the cognitive processes related to decisions in choice contexts such as those

described in economics. Across several instances, Edwards found that actual human behav-

ior did not correspond to the assumptions put forward by rational choice theory (e.g. Phillips

and Edwards, 1966). At the same time, Herbert Simon (1955; 1956) sought an alternative

more realistic conceptual framework to define human rationality. He advanced the view that

people are boundedly rational and their cognitive strategies are adapted to the structure

of the environment within which they act. Simon’s approach has been further pursued in

organization science (Cyert and March, 1963) and psychology (Gigerenzer and Todd, 1999),

yet as a heterodox alternative alongside the mainstream rational choice theory. The work

of Edwards, Simon, and their collaborators has also paved the way for the development of

behavioral economics.

The beginning of behavioral economics is mostly associated with the work of the psychol-

ogists Amos Tversky, who was a student of Edwards, and Daniel Kahenmann in the early

70s (Heukelom, 2009). Kanhmann and Tversky systematically exposed cases where decision

makers violated the norms of rational choice theory. In addition, they postulated psycho-

logical alternatives to economic models. For example, they advanced prospect theory as an

alternative to expected utility theory to describe how people make decisions in choice prob-

lems under risk (Kahneman and Tversky, 1979). At approximately the same time, economists

added experiments to their methodological repertoire. By now there have been several suc-

cessful cases where psychological theories have been applied directly to theoretical scenarios
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developed within the rational choice framework. Erev and Roth (1998), as an example, have

successfully used learning models developed by psychologists (e.g. Estes, 1950) to predict

choices in strategic games.

In another line of research, psychological models and findings have been employed to directly

explain behavior at the aggregate level in groups, markets, or the economy as a whole. Be-

nartzi and Thaler (1995), for example, used a myopic version of cumulative prospect theory

(Tversky and Kahneman, 1992) to explain the equity premium puzzle in financial markets.1

Further, experimental methods have been employed to examine whether psychological find-

ings persist in market settings and how the structure of incentives in the environment inter-

acts with human psychological pre-dispositions. Camerer (1987), for instance, investigated

whether biases in probability judgments matter in market settings and found that they per-

sist, although significantly reduced, in comparison to those observed outside of markets. Fehr

and Gächter (2002), showed that when the members of a group of people invest individually

in a mutually beneficial common good, many of them are willing to incur a non-negligible

cost in order to punish free-riders. At the aggregate level, this “altruistic punishment” allows

the group to maintain high levels of investment in the common good.

1.1.2 Computational social science

The use of computers and the internet has revolutionized the way in which we can study the

relation between individual and aggregate behavior. Already in the 1970s, social scientists

started to develop agent-based models to simulate complex social systems. Programming

offered a precise language to represent individual behavior and the structure of the envi-

ronment. In contrast to the colossal computational capacities of rational choice theory, the

behavioral assumptions in this tradition of research are minimalistic. By and large, indi-

vidual behavior is described by simple rules of thumb. However, there have been instances

of modellers who have designed artificial agents that behave according to an actual psycho-

1The puzzle refers to the fact that stocks have in the long run a much higher return than bonds.
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logical theory (Arthur, 1993; Spiliopoulos, 2013). Moveover, psychologists have collaborated

with complex systems theorists in a quest to develop models of collective behavior with more

realistic behavioral foundations (Galam and Moscovici, 1991; Lewenstein et al., 1992).

Recently, new computational tools, such as the possibility to run large-scale experiments

(Salganik et al., 2006; Bond et al., 2012), and the availability of big datasets and theoretical

developments such as network theory (see Lazer et al., 2009) have opened new research

avenues at the intersection between psychology and the social sciences. For example, it is

now possible to conduct controlled large-scale experiments over the internet and to collect

precise behavioral data that can be used to reconstruct the link from the micro to the macro-

level (Salganik et al., 2006). Further, using big datasets makes it possible to analyze how

human behavior propagates from one individual to another in large social networks (Cacioppo

et al., 2009; Fowler and Christakis, 2010).

It is now clear that social systems are characterized by peculiarities such as tipping points

and latent behaviors that cannot be captured by rational choice models or naive statistical

models. Nevertheless, the methods available to behavioral and social scientists today make it

possible to uncover cognitive and social influence processes and to simulate collective behavior

using computers.

1.2 Overview of models presented in this dissertation

In line with recent developments in behavioral economics and computational social science,

this thesis pioneers an integrationist approach and seeks to reduce the conceptual distance

between psychology and the social sciences. In the three papers included in this dissertation, I

present novel psychologically inspired process models of individual behavior and examine their

implications for aggregate behavior. These models leverage the potential of psychological

methods and theories.

The work presented in chapter two departs from two milestone models of rational choice
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theory and integrates them using psychological linear estimation models. One the one hand,

one-shot multi-attribute utility theory has been studied theoretically and empirically in man-

agement, marketing science and psychology. It the state-of-the-art model of choice in static

environments. On the other hand, optimal stopping theory has been developed theoretically

in statistics and economics. Further, human behavior in scenarios such as those described

by the theory has been investigated in economics, psychology and marketing. We show that

when human beliefs about the utility of alternatives can be represented as psychological linear

models, the search problem has an intuitive and psychologically plausible solution that can

be expressed in terms of sequential cost-benefit analysis. In our framework, the description

of the environment is very similar to that of the probit and ordered probit-models which are

widely used in econometrics. Thus, in future, the models we propose can be directly pitted

against their naive statistical counterparts.

The model presented in chapter three brings together the experimental approach of social

psychology with the modeling approach used within the field of complex systems. Previously,

models of opinion formation have been based on simple behavioral assumptions in regard to

belief revision without empirically testing them. In contrast, we conducted two controlled

experiments and derived a process model directly from experimental observations. We com-

bined cognitive and agent based modeling to describe the individual level processes and to

track the behavior in the entire population. At the cognitive level, we designed a decision tree

representing how people revise their opinion and confidence when exposed to the opinions

of other individuals. Then, we scaled up the model to the aggregate level by allowing social

interaction between the agents. This model clarifies the role of confidence in the formation

of public opinion and can be used to investigate the impact of experts in shaping the public

opinion.

Finally, the model presented in chapter four brings together the modeling approaches ad-

vanced in chapter two and three to investigate the markets for cultural products. We pos-

tulated a simple cognitive mechanism according to which decision makers search and choose

alternatives. We assumed that decision makers with diverse yet correlated preferences search



Introduction 7

the alternatives in the order of popularity and stop after meeting an alternative with a util-

ity higher than a satisficing threshold. The model can capture market-share inequality, final

outcome unpredictability and the weak correlation between the quality and the popularity

of the alternatives observed in markets for cultural products. In addition, it reproduces

the predictable failure-unpredictable success pattern observed in real world cultural product

markets and a recent large-scale experiment.

All three models provide examples of interdisciplinary work between psychology and the

social sciences. I hope that the projects presented in this thesis will provide to historians of

the future an account for the divide between psychology and the social sciences and more

importantly will exemplify strategies to move beyond it.
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Chapter 2

Multi-attribute utility models as

cognitive search engines

Pantelis P. Analytis, Amit Kothiyal and Konstantinos Katsikopoulos

Chapter Abstract

In optimal stopping problems, decision makers are assumed to search randomly to learn the

utility of alternatives; in contrast, in one-shot multi-attribute utility optimization, decision

makers are assumed to have perfect knowledge of utilities. We point out that these two

contexts represent the boundaries of a continuum, of which the middle remains uncharted:

How should people search intelligently when they possess imperfect information about the

alternatives? We assume that decision makers first estimate the utility of each available

alternative and then search the alternatives in order of their estimated utility until expected

benefits are outweighed by search costs. We considered three well-known models for estimat-

ing utility: (i) a linear multi-attribute model, (ii) equal weighting of attributes, and (iii) a

single-attribute heuristic. We used 12 real-world decision problems, ranging from consumer

choice to industrial experimentation, to measure the performance of the three models. The

full model (i) performed best on average but its simplifications (ii and iii) also had regions of

superior performance. We explain the results by analyzing the impact of the models utility

order and estimation error.1

1The authors would like to thank Alexia Delfino, Juliane Kämmer, Hrvoje Stojic, Peter Todd and Jack

11
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2.1 Introduction

Do the following thought experiment: You are the human resources manager of a company

and you are assigned the task of hiring a new employee. After advertising the position,

you receive several dozen applications from candidates listing their skills and credentials

(e.g. grade point average, work experience, programming skills). You can determine each

candidate’s potential only after inviting him or her for an interview. Let us assume that you

can interview candidates sequentially and that you can decide to stop interviewing and hire

a candidate after each interview. Crucially, making the effort to interview another candidate

is costly. What is the best way to organize the interview process? First, you need to decide

the order in which you will be inviting candidates. Then, after each interview you need to

decide whether to make an offer to one of the interviewed candidates, thus stopping your

search. The first problem is an ordering problem and the second a stopping problem.2

Clearly, if you could perfectly estimate the potential of the candidates on the basis of their

credentials you could with certainty invite the best one for an interview. Then your dilemma

would be reduced to a single choice, which has been extensively studied across the behavioral

sciences (e.g. Keeney and Raiffa, 1993). On the other hand, if the credentials were not at all

informative, you would have to invite people at random, and your problem would reduce to an

optimal stopping problem. Such models have been developed formally in statistics (DeGroot,

1970) and economics (Stigler, 1961; Lippman and McCall, 1976) and human behavior in

them has been tested empirically in psychology (Rapoport and Tversky, 1966; Lee, 2006),

economics (Schotter and Braunstein, 1981; Hey, 1987; Sonnemans, 1998) and marketing

(Zwick et al., 2003). Intuitively, most everyday decision-making problems lie between these

two extreme cases; in reality, the attributes of the alternatives can be used to predict their

utility but only imperfectly. There often remains some amount of uncertainty that cannot

Willis for their remarks on earlier versions of the paper and the members of the ABC group for their feedback
during internal presentations. The authors would also like to thank Anita Todd for editing the manuscript.

2The essay has been published under the same title in Judgment and Decision Making in September 2014.
PPA conceived the idea. PPA, AK and KK developed the theory. PPA analyzed the data. PPA, AK and
KK wrote the paper.
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be explained by the attributes.

There has been some work on ordered search: In a seminal paper, Weitzman (1979) put

forward a general model for ordering alternatives and terminating search in search problems

with recall, where decision makers initially have partial information about the alternatives

but learn their true utility after paying a search cost. Although Weitzman’s results readily

generalize to scenarios with multi-attribute alternatives, only a recent study by Dzyabura

(2013) considered explicitly how sequential search can be guided by a multi-attribute utility

model. Earlier, Roberts and Lattin (1991) presented a model of consideration set formation

in which the decision makers include alternatives in their consideration set guided by a

compensatory multi-attribute utility model. In essence, Roberts and Lattin’s model can be

seen as an ordered search model, in which the number of alternatives that will be searched

has to be decided once and for all before any search is performed.3 However, the authors

did not connect their results to search theory. Further, Moorthy et al. (1997) employed

Weitzman’s model to derive predictions about the length of search in consumer choice. They

further specified the original model and assumed that decision makers are uncertain about a

brand’s utility. The consumer beliefs in their model are probabilistic, and more experienced

consumers are better at differentiating brands in terms of utility. Moorthy et al. tested their

predictions on data from the car market. Last, in economics, several papers started from the

assumption that agents search the alternatives in an externally imposed (Arbatskaya, 2007)

or subjectively defined (Bagwell and Ramey, 1994; Armstrong et al., 2009) order and studied

the aggregate market behavior.

In this paper we show that when the decision makers’ preferences can be described by a

linear utility model, the problems introduced by Weitzman have an intuitive and psycho-

logically plausible solution. Returning to our example, we will analytically show that the

optimal policy is to follow the estimated utility order prescribed by your subjective utility

3This was the case in the first search models that were introduced in economics (e.g. Stigler, 1961). Those
models were later called fixed-sample-size models. Morgan and Manning (1985) discussed in detail the points
of divergence between fixed-sample-size models and sequential sampling models, in which the decision maker
can stop search at any search step.
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model; then stop when the expected return from seeing one more candidate for the job turns

negative. In essence, the utility models play the role of cognitive search engines, generating

the order in which alternatives are examined. We formally develop this approach and apply

it to three models that have been studied extensively in the field of judgment and decision

making: (i) multi-attribute linear utility, (ii) equal weighting of attributes and (iii) a single-

attribute heuristic. The simpler models (ii) and (iii) have been shown to perform well under

some conditions (e.g. scarce information available for calibrating models) in one-shot choice

problems (Barron, 1987; Gigerenzer et al., 1999; Fasolo et al., 2007; Katsikopoulos, 2011).

We then compare the performance of the models in 12 real-world environments ranging from

consumer choice to industrial experimentation and examine how the models’ expected utility

order and estimation error influence their performance and length of search.

Conceptually, our approach illustrates that optimal stopping problems assuming random

search and one-shot choice problems are the boundary cases of an ordered search problem

with imperfect information. It provides a formal framework within which the assumptions

made by ordered search models, such as those proposed by Bagwell and Ramey (1994),

Moorthy et al. (1997) and Armstrong et al. (2009), can be further clarified. In practice,

our approach extends discrete choice models by specifying the exact search process. It is a

plausible alternative to Roberts and Lattin’s (1991) theory of consideration set formation and

it further advances our understanding of decision-making in environments with rank-ordered

alternatives.

In what follows, as in the model presented by Weitzman (1979), we focus on a scenario in

which decision makers learn the exact utility of an alternative after sampling it and can

always choose alternatives that they have sampled in the past. In Section 2 we develop a

formal framework of optimal ordering and stopping. In Section 3 we test three models in

12 real-world environments ranging from consumer choice to industrial experimentation and

examine the ordering and estimation error components of the models. In Section 4 we discuss

the possibility of connecting our findings to other work, assess the conceptual implications of

our approach, and finally discuss the limitations and possible extensions of our framework.
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2.2 The theoretical framework

2.2.1 The environment

There are n alternatives A1, ..., An. Each alternative Ai, i ∈ {1, ..., n} is associated with a

vector of attributes ai = (ai1, ..., aik) and a utility ui of choosing it. The uis are unknown

but the ais are known to the decision maker. The decision maker estimates ui by f(ai). We

assume that the estimation errors, εi, such that ui = f(ai)+ εi, are iid Gaussian with mean μ

and standard deviation σ. We call this equation the decision maker’s subjective model. For

each alternative, the decision maker can only learn the utility ui by sampling the alternative

and paying a cost c. To choose an alternative, the decision maker can sample as many items

as desired. If the decision maker searches for k items, the cost to be paid is kc and the

decision maker will choose out of these k the alternative with the highest utility.

2.2.2 The optimal strategy

Let S denote the set of alternatives already searched and S̄ denote the set of alternatives not

searched yet. That is,

S ∪ S̄ = {A1, ..., An}, S ∩ S̄ = ∅

The decision maker’s problem is to determine the search order and the stopping rule. Let

the variable y denote the maximum utility that the decision maker can obtain from the

alternatives in S, y = maxAkSuk, where Ak belongs to S. If the decision maker sampled just

one more item Ak before stopping search then the subjective expected gain (i.e. the increase

in utility minus cost) is (probabilities and expectations below are based on the decision

maker’s subjective model):

R(Ak) = P (uk > y) × E(uk − y − c|uk > y) − P (uk ≤ y) × c

= P (uk > y) × E(uk − y|uk > y) − c. (2.1)



Multi-attribute utility models as cognitive search engines 16

It is intuitive that the decision maker should keep on sampling as long as there exists an

alternative Ak ∈ S̄ such that its subjective expected gain R(Ak) > 0 [if all R(Ak) < 0,

search should be stopped]. Given this, the decision maker should sample the alternative Ak

that achieves the maximum subjective gain R(Ak). It turns out that to maximize R(Ak), it

suffices to select the alternative with the highest f(ai) (for a proof, see Appendix 1):

Result 1. If for two alternatives Ai, Aj ∈ S̄, f(ai) > f(aj) then R(Ai) > R(Aj).

This result says that if the decision maker decides to sample one more item before terminating

the search, then the choice should be the one that has maximum unconditional expectation

E(ui) = f(ai). This suggests the following policy:

Selection rule: Order the alternatives based on their unconditional expectation. Select the

items for sampling in this order.

Stopping rule: If at any stage subjective expected gain is negative, terminate the search.

Note that the stopping rule can be applied only if the standard deviation of the estima-

tion error σ is estimated. On the other hand, for the selection rule to be applied, only

the parameters of the multi-attribute function f(ai) need to be estimated. For σ = 0 the

decision-making problem reduces to a single choice. For c = 0 the decision maker searches

all the alternatives. Note that for c = 0 and when there are only two alternatives the model

reduces to the probit model.4 If σ = ∞, P (ui > y) is equal to 0.5.

2.2.3 Subjective models

In our framework, the order of the alternatives Ai is based on their subjective utility f(ai).

Thus, the decision maker’s eventual success depends upon the multi-attribute utility function

4Then, for two alternatives Ai and Aj the probability that the alternative Ai will be chosen can be written

as Φ(
f(ai)−f(aj)√

(2)σ
)
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he or she uses to estimate utilities and generate an order of the alternatives. We present three

psychologically plausible and widely used multi-attribute utility functions:

1. Multi-attribute linear utility (MLU): f((ai1 , ..., aim)) =
∑

j βjaij

MLU is one of the cornerstone models in research on multi-attribute decision making (Keeney

and Raiffa, 1993). It is also the model used to derive consumer preferences in conjoint analysis

surveys in marketing. MLU is the equivalent of multi-linear regression, which has been widely

studied as a model of inductive inference in multi-cue learning (Hammond et al., 1964).

2. Equal-weighted linear utility (EW): f((ai1 , ..., aim)) =
∑

j aij , where all the attributes

ai1 , ..., aim are normalized and brought to the same scale.

EW is a special case of MLU where all decision weights βjs are equal. It was originally

proposed as an alternative to multi-linear regression by Dawes and Corrigan (1974).

3. Single-attribute utility (SA): f((ai1 , ..., aim)) = aij , where aij has the highest ecological

validity among {ai1 , ..., aim} as expressed by Kendall’s tau non-parametric correlation.

Versions of the SA model have been studied by Hogarth and Karelaia (2005a). The SA model

is akin to the lexicographic heuristic (Payne et al., 1993; Kohli and Jedidi, 2007) and the take-

the-best heuristic (Gigerenzer and Goldstein, 1996; Katsikopoulos et al., 2010). However, SA

resolves ties between alternatives by choosing at random, whereas the lexicographic heuristic

and take-the-best examine additional attributes.

Note that the three presented models can also be seen as cardinal estimation models, where

the criterion value corresponds to the utility. Davis-Stober et al. (2010b) have pointed out

that the notation of utility and estimation models can be used interchangeably.

2.2.4 An example

We illustrate how the different components of equation 1 play out with a concrete example

(see Figure 2.1). Consider a scenario where a decision maker is searching in an online store to

buy a single album of an up-and-coming music band she just heard about on the radio. The

band has produced three albums so far. The decision maker can learn the exact utility of an

album by listening to its songs. Her subjective beliefs are described by the SA model. As
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Figure 2.1: An example of the decision-making process. There are three alternatives available in the market
represented by the points K, L and M on the plot. The average rating ai (x axis) maps to the subjective
utility (y axis) of the alternatives for the decision maker but with some error. As represented by the straight
line, the decision maker believes that the expected utility of the alternatives can be estimated by ui = 0.3∗ai
where ai is the average rating. As represented by the bell-shaped curves, the decision maker believes that the
estimation error εi of her model is iid Gaussian with mean μ = 0 and standard deviation σ = 0.5. The inset
table shows the expected utility (EU) and realized utility (RU) of the alternatives. The decision maker will
first sample the alternative with the highest attribute value and then at each step decide whether to sample
the next alternative. For c = 0.05, for example, the decision maker will sample the alternatives K and L and
choose the alternative L.

represented by the straight line in Figure 2.1, the decision maker believes that the expected

utility of an alternative can be estimated by ui = 0.3 ∗ ai, where ai is the average rating

of the album by other users of the site. As represented by the bell-shaped curves, she

believes that the estimation error εi of her model is iid Gaussian with mean μ = 0 and

standard deviation σ = 0.5. The decision maker first samples album K, which has the

highest expected utility. She finds out that the utility of album K is 1.87, which is slightly

less than its expected utility. Then she has to decide whether it is worthwhile to examine the

album L. Following equation 1 the expected returns from sampling album L can be written

as P (uL > uK)×E(uL−uK |uL > uK)−c. P (uL > uK) = 0.33, E(uL−uK |uL > uK) = 0.329
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and their the product equals 0.109.5 Thus, the decision maker will examine the second album

if the cost of search is lower than 0.109; otherwise she will stop search, choose album K, and

never learn the actual utility of album L. Let us assume that the cost is 0.05. Then, the

decision maker samples album L. She finds out that the utility of L for her is 2.27, which is

higher than her expectation and the utility of album K. Thus, L replaces K as the sampled

album with the highest utility (y in equation 1). Now the returns from sampling album

M can be written P (uM > uL) × E(uM − uL|uM > uL) − c. P (uM > uL) = 0.003 and

E(uM − uL|uM > uL) = 0.152. The product of these two parts equals 0.0005. Thus the

overall return is negative and the decision maker will stop search after sampling album L and

choose it. She will never learn the realized utility of album M.

2.3 Results

We applied the three models to study guided search in real-world problems. We examined

the performance of the models in 12 data sets ranging from consumer choice to industrial

experimentation. All the datasets included a variable with positive and more-is-better va-

lence, which we treated as the utility. All the attribute values were normalized to a 0-1 scale

to implement the EW model. When a correlation between an attribute and the criterion

value in the test data set was positive, we converted the lowest attribute value to 0 and the

highest to 1. When a correlation was found to be negative we converted the highest attribute

value to 0 and the lowest to 1. We used ordinary least squares to calibrate the parameters

βj of the three models. For each of the models, we estimated the standard deviation of the

error component σ using the standard error of the corresponding linear regression model

σ̂ =

√∑T
t=0(y−ŷ)2

T
where T is the number of alternatives in the training set and ŷ the estimate

of the linear regression model with parameters βj.

5Note that σ = 0.5 appears in both of these two terms. If the decision maker believed σ = 1 the
P (uL > uK) would increase to 0.413 and E(uL − uK |uL > uK) to 0.723 and the total benefits would be
0.299, almost three times higher than in the case where σ = 0.5.



Multi-attribute utility models as cognitive search engines 20

2.3.1 Real world environments

Environment No. A No. a R2 |max(ρuai)| |ρuai | |ρaiaj|
Beer aroma* 23 7 0.39 0.35 0.23 0.43
Cheese taste 30 3 0.65 0.76 0.67 0.65

CPU efficiency* 209 6 0.87 0.86 0.64 0.51
F. lamp lifetime* 14 3 0.57 0.33 0.24 0.41

Machine productivity 40 5 0.56 0.71 0.21 0.07
Octane quality 82 4 0.91 0.87 0.63 0.51

Olive oil quality 16 4 0.65 0.51 0.36 0.15
Potato taste 32 4 0.35 0.35 0.28 0.11

Red wine quality* 1599 11 0.36 0.48 0.19 0.2
Seed yield 30 3 0.70 0.81 0.36 0.18

Tea quality 64 5 0.39 0.43 0.21 0.21
White wine quality* 4898 11 0.28 0.44 0.15 0.17

Table 2.1: The environment names refer to the variable that was assumed to be the utility in that environ-
ment. Asterisks indicate that the source data set was composed of several alternatives that were available
in the market at the point of data collection. All the remaining data sets represent the results of controlled
experiments. No. A refers to the number of alternatives and No. a to the number of attributes. The notation
|max(ρuai

)| indicates the strongest Pearson correlation between the utility variable and the attributes, |ρuai
|

the mean Pearson correlation between the utility and the attributes, and |ρaiaj | the mean intercorrelation
between the attributes. CPU stands for central processing unit and f. lamp for fluorescent lamp.

The 12 datasets analyzed are freely available from online databanks. We provide an addi-

tional reference list of the publications in which the datasets were originally reported in the

supplementary material. As reported in Table 2.1, the datasets are characterized by a diverse

number of attributes, alternatives, and intercorrelations between the attributes. We normal-

ized the utility variable, setting the utility of the alternative with the lowest value equal to

0 and that with the highest value equal to 1. This transformation was necessary in order to

achieve comparability across the datasets. The remaining variables are the attributes that

were used to predict the alternatives’ utility. In a few cases we excluded variables that were

not suitable as attributes in a choice problem. In the white wine quality and the red wine

quality environments we reduced the number of alternatives to 200 by choosing once at ran-

dom from the initial dataset. This transformation was implemented to generate a plausible

decision-making ecology. The ecological characteristics of the resulting environments were

very similar to those of the complete environments reported in Table 2.1.6 We used the same

6for red wine quality : R2 = 0.3 , |max(ρuai)| = 0.43, |ρuai
| = 0.16, |ρaiaj | = 0.20 ; for white wine quality
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Average performance
Cost MLU EW SA
1/23 0.606 0.594 0.561
1/24 0.715 0.696 0.681
1/25 0.783 0.775 0.761
1/26 0.824 0.822 0.816
1/27 0.857 0.851 0.856
1/28 0.885 0.878 0.881
1/29 0.902 0.899 0.901

1/210 0.912 0.912 0.911

Table 2.2: The average performance of the models across the 12 environments in 8 cost conditions. Multi-
attribute linear utility (MLU) performed best but as the cost decreased performance differences with equal-
weighted linear utility (EW) and single-attribute utility (SA) attenuated.

subset of 200 alternatives consistently in all the analyses reported in this paper.

2.3.2 Performance

The performance of a model depends (1) on the order it generates, which determines how

quickly it discovers high quality alternatives, and (2) on the estimated standard deviation of

the error component σ̂, which influences the subjective probability that the utility of the next

alternative to be sampled will be higher than the utility of the best alternative discovered

up to that point. Clearly, when σ̂ increases, the subjective probability and consequently the

expected returns from further search also increase. Finally, the model performance depends

(3) on the cost of search in the environment. Factor 3 is an environmental factor, while

factors 1 and 2 reflect how well a model captures the properties of the environment.

At first, we manipulated the cost of search and pitted the models against each other in eight

different cost conditions. For the purposes of our simulation we adapted the technique of

cross-validation to a search problem. We fixed the parameters βj and σ corresponding to

each model in half of the data set (training set) and evaluated the performance of the models

in the remaining half (test set). This process was repeated 10.000 times in total. For each

repetition the alternatives that were part of the training and test sets were drawn at random

from the entire data set. As a result, the maximum utility, which could be achieved by all

:R2 = 0.35, |max(ρuai)| = 0.48, |ρuai
| = 0.16, |ρaiaj | = 0.19
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models in each of the repetitions, differed slightly depending on the utilities of the alternatives

that were part of the training and test sets. The models first sampled the alternative that

they estimated to have the highest expected utility. Then each model decided according to

equation 1 whether to proceed to search the alternative with the second highest expected

utility, then the third, and so forth. When a model stopped search, the alternative with the

highest utility among the alternatives searched up to that point was chosen. The measure

of performance was the average utility achieved by a model in 10.000 repetitions. In real

life, this corresponds to the average performance of 10.000 decision makers, with randomly

sampled experiences, who all followed the optimal policy. This measure can also be seen as

an approximation of the expected payoff for a single decision maker.

Average results from the 12 environments for all eight cost conditions are presented in Table

2.2 and the results from each of the 12 environments individually are presented in Figure

2.2. The best performing model was MLU. The performance differences were largest for high

search costs and they gradually attenuated as the costs decreased. Clearly, a high cost implies

that the models are likely to search only a few alternatives at the beginning of the order, and

the models may have different orders. As the costs decrease, all the models search further

down the expected utility line and are more likely to discover the high-quality alternatives

in the environment. As a result, the performance differences diminish.

There is much variability in performance in individual environments, where in several cases

the simpler models outperformed MLU for the entire cost range. For example, EW performed

best for most of the cost conditions in the beer aroma, cheese taste, CPU efficiency, olive

oil quality, and potato taste environments, while SA performed best in the red wine quality,

tea quality, and octane quality environments. Thus, although MLU performed better on

average, it clearly outperformed the simpler models only in the remaining four environments.

The better performance of MLU at the aggregate level was mainly driven by its superior

performance in the white wine quality environment. As stressed earlier, the model-specific

factors that may influence the models’ performance are on the one hand the order generated

by each model and on the other hand the estimated standard deviation. In the rest of the

Results section we decouple the roles of these two factors.
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Figure 2.2: The average utility achieved by the subjective utility models as a function of search cost.
Overall, multi-attribute linear utility (MLU) performed best, but equal-weighted linear utility (EW) and
single-attribute utility (SA) also had regions of superior performance. The difference between the models
gets smaller as the cost of search decreases. CPU stands for central processing unit and f. lamp for fluorescent
lamp.
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2.3.3 Impact of search order on performance and search length

To disentangle the impact of the search order from that of the estimated standard deviation

of the error component σ̂, we first examined the average return to search (as measured by

the average utility of the best searched alternative), achieved by each multi-attribute utility

model, for all possible search lengths k, without implementing any search cost. Moreover,

we compared these results to random search, which corresponds to the assumption made in

most optimal-stopping studies. As we did for the full task, we cross-validated the models on

half of the data points and we repeated our simulations 10.000 times.

As shown in Figure 2.3, the largest difference between the subjective models and random

search is found in environments with high R2 of the best fitting linear regression. In the

environments with the highest R2, such as CPU efficiency and octane quality, the best solution

was almost always located in one of the first search trials by all the multi-attribute models.

In contrast, in environments with low R2 such as beer aroma, potato taste, and fluorescent

lamp lifetime, the margin is smaller and in some cases random search performed almost as

well as the multi-attribute models.

In all environments there is a close correspondence between the average return to search as a

function of the search length and the performance of the model in the full task, as depicted

in Figure 2.2. For most costs, the model with the highest average return to search is also

the best performing model in the full task. In four of the five environments in which EW

performed best in the full task (beer aroma, cheese taste, CPU efficiency, potato taste) it

also performed best for most of the search lengths. Similarly, in the three environments

where SA performed best in the full task (red wine quality, tea quality and octane quality)

it also performed as well as or better than the other two models for most search lengths in

the search task. Overall, there are a few cases, such as the tea quality environment, where

different models lead to best performance for different search lengths k.

Note that the factors that influence the performance of a model directly influence the length

of search, as observed in Figure 2.4. According to the theory presented in section 2.2, the
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utility of the best alternative secured so far, y, and the probability P (uk > y), that the

utility uk of the next alternative down the expected utility line Ak will be higher than y

should be inversely related. This suggests that models that place high-utility alternatives

earlier in the search order will be characterized by lower returns to search and should, ceteris

paribus, search less. Indeed, this is what we observe in Figures 2.3 and 2.4. However, to fully

understand the performance and search length of the models we also need to come to grips

with the role played by the standard deviation of the error component σ. The next section

delves into that exactly.
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Figure 2.3: The average utility of the best explored alternative after a search of length k. In environments
with a high R2, such as central processing unit (CPU) efficiency and octane quality, the best alternatives are
located early in the search and the differences between these strategies and random search are the largest. In
most cases there is a close correspondence between model performance in the full task and model performance
in mere search; contrast with Figure 2.2. MLU stands for multi-attribute linear utility, EW for equal-weighted
linear utility, and SA for single-attribute utility.
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2.3.4 The role of the standard deviation σ

The second factor that has an impact on the performance of the model and the length of search

is the standard deviation of the error component σ. To assure good performance the models’

error component should correspond to the unexplained uncertainty in the environment. For

estimated σ̂ = 0 the model would deem that the first alternative is also the best one. For

σ̂ = ∞ the model would calculate P (uk > y) = 0.5 (following equation 1). However, both

these models would be unadaptive in environments in which the uncertainty that cannot be

explained by f(ai) is moderate. A lower standard deviation of the error component σ̂ implies

a decrease in the subjective probability P (uk > y) and a decrease in the expected returns

from finding a better alternative E(uk − y|uk > y). Thus, ceteris paribus, it should lead to

a shorter search.

Average search length
Cost MLU EW SA
1/23 1.74 1.58 1.74
1/24 2.23 2.28 2.45
1/25 2.81 2.83 3.21
1/26 3.70 3.62 4.47
1/27 4.88 5.39 5.58
1/28 6.11 7.24 6.72
1/29 7.34 8.85 8.08

1/210 8.66 10.45 9.54

Table 2.3: The average length of search (number of alternatives sampled k) across environments for the
three models for different costs of search. The equal-weighted linear utility (EW) and single-attribute utility
(SA) models search more alternatives, on average, than multi-attribute linear utility (MLU). The differences
in the length of search are more pronounced for low costs.

Within models, the estimated standard deviation of the error component σ̂ in our simulations

is inversely related to the accuracy of the estimates of the model in the training set in which

the model was fitted. Consequently, in most cases a good ordering should be accompanied

by a relatively low error component and in tandem they lead to a reduced length of search.

Note, however, that there could be a discrepancy between the accuracy of the estimates of a

model and the average returns to search. Remember that only the best alternative discovered

so far counts for the decision maker in the search task.
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Between models, the MLU tends to capture a larger proportion of the uncertainty in ai

(¯̂σmlu = 0.166) and usually has a slightly lower estimated standard deviation σ̂ than EW and

SA (¯̂σew = 0.191 and ¯̂σsa = 0.191). As reported in Figure 2.4, only in the olive oil quality and

potato taste environments was a heuristic model (EW) found to have an estimated standard

deviation of the error component lower than the full model (MLU).
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Figure 2.4: On the upper left side we present the average standard deviation of the error component of each
of the models in that environment. The length of search is moderated by the best alternative discovered so far
and the estimated deviation of the error component of the models. On average, multi-attribute linear utility
(MLU) searches less than the equal-weighted linear utility (EW) and single-attribute utility (SA) models but
there is some variability across environments.
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As seen in Figures 2.2-4, the models that achieve higher average returns to search (Figure

2.3), search less (Figure 2.4, Table 2.3 for average results) and score better on the full task

(Figure 2.2). The differences in the estimated standard deviation of the models σ̂ are in

most environments marginal. In half of the environments they correspond to performance

differences in the average returns to search. This suggests that the error components of the

models are sufficiently well calibrated to the unexplained uncertainty in the environment.

There are a few cases where a different estimated standard deviation σ̂ might lead the models

to markedly different performance. For example, in the CPU efficiency environment the EW

and MLU have similar returns to search. MLU has a much lower estimated standard deviation

σ̂, searches less than EW, and performs worse in the full task. This indicates that MLU may

occasionally miss a very good alternative and it could benefit from searching more.

2.3.5 Paired-comparison results

So far, we have discussed how different properties of the search models influence their per-

formance and we have looked at specific environments to understand how these factors play

out in practice. We have illustrated that the most crucial factor is the search order in which

the models sample the alternatives, although this has to be accompanied by a well-calibrated

estimated standard deviation of the error component σ̂. But is there a way to predict which

strategy is most likely to be successful in a given environment? The conditions under which

different linear or heuristic models perform well in choice and inference contexts have been

thoroughly investigated (for a review see Katsikopoulos, 2011). Few studies generalize beyond

binary choice to choice between several alternatives or among the entire data set; however,

most of the existing literature has focused on binary choices. To answer our question we

attempt to shed light on the connections between the novel task we presented and the well-

studied paired-comparison task.

Thus, we examined whether there is a correspondence in performance between the binary

choice and the search task. We compared the performance of the three models in the binary
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choice task. As before, we fixed the parameters corresponding to each model in half of the

dataset and evaluated their performance in all possible binary choice tasks in the remaining

half. The process was repeated in total 10.000 times.

Subjective models
Environment MLU EW SA

Beer aroma 0.48 0.49 0.47
Cheese taste 0.79 0.79 0.76

CPU efficiency 0.83 0.85 0.80
F. lamp lifetime 0.67 0.54 0.55

Machine productivity 0.64 0.55 0.63
Octane quality 0.86 0.72 0.79

Olive oil quality 0.72 0.71 0.58
Potato taste 0.63 0.64 0.57

Red wine quality 0.63 0.60 0.63
Seed yield 0.78 0.64 0.77

Tea quality 0.69 0.62 0.63
White wine quality 0.65 0.60 0.66
Mean performance 0.70 0.65 0.65

Table 2.4: Accuracy of the three models on binary choices. Fifty percent of the dataset was used as a
training set and all the possible pairs of the test set were used to evaluate the models. Multi-attribute linear
utility (MLU) performed best, on average, followed by single-attribute utility (SA) and equal-weighted linear
utility (EW) . MLU performed best in seven environments EW in four and SA in one.

As seen in Table 2.4, on average, MLU performed best, followed by SA and then EW. In

the individual environments, the performance of the models varied significantly. There were

four environments in which EW performed best and one in which SA did. In general, the

performance in the binary choice task is a good proxy of performance in the full search task.

The model that performed best in the paired-comparison task also performed best in 7 of the

12 environments in the search task for cost equal to 1/23. The discrepancies observed can

be attributed to the fact that in the full search task, the alternatives that are searched early

on contribute disproportionally to the success of a model. In contrast, in binary choices all

possible single choices in the data set contribute equally to the performance of the model.

Hence, it is possible that the model that performs best in the search task does not maintain

that superior performance in the binary choice task, and vice versa.
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2.4 Discussion

2.4.1 Conceptual implications of our framework

Deterministic optimization and search models: A possible compromise

In optimization problems, widely studied in economics, decision makers can determine the

alternative that maximizes their utility. This vision of decision making contrasts with search

models in which the decision makers sample alternatives at random and stop search after

encountering a good enough alterative (e.g. Simon, 1955; Chow et al., 1971; Caplin et al.,

2011). Random sampling may lead to violations of the revealed preference principle and

unpredictability in regard to the choices of individual decision makers. Ordered search models

provide a possible compromise between these two approaches. Decision makers have a well-

defined utility function before the search starts. However, as long as there is some uncertainty

about the exact utility of the alternatives, it may pay to sample some of them to learn their

utility. In our model, the initial preferences guide the search process but are also subject

to revision when the true utility of the sampled alternatives is revealed. For an external

observer, such as a firm or a market analyst, ordered search is more predictable, at the level

of an individual decision maker, than random search. In ordered search, if the model of the

decision maker and the actual utility of the alternatives are known, the external observer

could also predict the final decisions made, as well as the preference reversals that would

occur along the way.

Evaluating the hypotheses of ordered search models

Employing our framework, we can examine the conditions under which the assumptions

postulated in previous ordered search models hold true. Bagwell and Ramey (1994) suggested

that decision makers may use a simple rule of thumb and first consider buying products from
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firms that advertise more.7 This corresponds to an SA model where the amount of advertising

is the most informative cue. This, indeed, is plausible in some cases. However, the SA model

implies that when more informative attributes are available, the amount of advertisement

may be completely ignored as an attribute. Armstrong et al. (2009) assumed that consumers

search products according to an abstract attribute called prominence and suggested that

firms might be willing to invest to achieve prominence and improve their search order. Our

framework allows us to estimate the exact impact of an intervention in the attributes of a

product in terms of the firm’s prominence in the market. Finally, Moorthy et al. (1997)

suggested that the expectation of the utility of a brand’s products is normally distributed.

In addition, they suggested that more experienced consumers are better able to differentiate

between products. These assumptions are both in line with our framework.

2.4.2 Applied implications of our framework

Sequential search and consideration set formation

Our modeling approach suggests that only the alternatives that have been sampled by the

decision makers stand a chance of being selected. Similarly, several marketing scientists have

advanced choice models in which the decision makers first restrict their attention to a subset

of the alternative set — commonly called the consideration set. The decision makers then

examine the alternatives of this subset more closely and finally choose one of the alternatives

in it (e.g. Wright and Barbour, 1977; Shocker et al., 1991; Gilbride and Allenby, 2004; Moe,

2006). Such models have often been found to outperform, in fitting and prediction, discrete

choice models in which the decision makers are assumed to consider all the alternatives

(e.g. Gilbride and Allenby, 2004). Our approach shares some of its assumptions with a

popular model of consideration set formation put forward by Roberts and Lattin (1991). In

their model, decision makers, whose pay-off function is described by a compensatory multi-

attribute utility model with an additional error term, decide which alternatives to include in

7A similar argument for the role of advertisement in the domain of choice has been made by Goldstein
and Gigerenzer (2002)



Multi-attribute utility models as cognitive search engines 34

their consideration set. Similar to our approach, the decision makers examine the alternatives

in the order of decreasing expected utilities predicted by their utility model, paying a fixed

cost for every new alternative they place in their consideration set. In contrast to our model,

the decision makers do not learn the exact utility of the alternatives immediately after paying

the cost. Instead, they learn all the utilities of the alternatives in the consideration set right

before they choose among them. Our model can be seen as the sequential search counterpart

to Roberts and Lattin theory of consideration set formation. Inversely, Roberts and Lattin’s

model can also be understood as an ordered search model in which the search length has to

be decided at the outset. The exact domain of application of sequential search and fixed-

sample-size models of consideration-set formation may depend on the exact characteristics

of the decision making context and it should be the subject of further empirical investigation

in the future.

Parallels to online ranking schemes

There are clear-cut parallels between the search approach we present here and the methods

used by commercial search engines and recommendation systems to pre-rank the alterna-

tives for Internet users. Such ranking schemes implement a valence function that maps the

attributes of the alternatives to the relevance or utility for the user (Burges et al., 2005;

Hüllermeier et al., 2008; Yaman et al., 2011). The valence functions underlying the rank-

ing schemes are trained with clickstream decision data or other information that can reveal

the preferences of the user (Sarwar et al., 2000). Then, similar to what our theory sug-

gests, the ranking schemes present the alternatives in decreasing order of relevance or util-

ity. This approach is implemented without invoking a formal decision-making theory that

predicts how decision makers will choose on the basis of the presented rank order. If the

goal of the ranking-scheme engineers is to increase the utility derived by the users, a for-

mal decision-making theory, such as search theory, might further inform the development of

ranking-schemes as well as the techniques used to train their valence functions. Indeed, there

have been recent papers in machine learning about why the design of ranking techniques can
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benefit from taking into account how people actually decide in rank-ordered environments

(Agichtein et al., 2006; Chapelle et al., 2009). We take a step in that direction and illustrate

the role of cost of search and the uncertainty in the environment in the search process.

2.4.3 Connections to prescriptive and descriptive decision making

From choice to search

For the paired-comparison problem, where the task is to choose one of two alternatives, the

accuracy of heuristics such as EW and SA has been analyzed and compared to that of the full

linear model in numerous studies. Until now, a thread of the existing literature in judgment

and decision making has examined binary choices in environments with binary or contin-

uous attributes without making any assumptions about the mapping from an alternative’s

attributes to its utility (e.g. Katsikopoulos et al., 2010) or when the mapping is character-

ized by noise (Hogarth and Karelaia, 2005a, 2006; Rieskamp and Otto, 2006; Davis-Stober

et al., 2010a,b). A second thread of the literature has focused on environments with binary

or continuous attributes, where a mapping between the attributes and the utility exists but

decision makers have imprecise knowledge about the attribute weights (Johnson and Payne,

1985; Martignon and Hoffrage, 2002; Hogarth and Karelaia, 2005b; Baucells et al., 2008;

Katsikopoulos, 2013).

Given the observed correspondence in choice task and search task results, the findings of

the first thread of studies in binary choice tasks may also generalize to the search task.

Overall, these studies have found that there are no large performance differences between

the heuristics and the full model and that heuristics can outperform the full model under

the appropriate conditions. Both EW and SA fare especially well in out-of-sample prediction

(Einhorn and Hogarth, 1975; Hogarth and Karelaia, 2005b; Katsikopoulos et al., 2010). The

SA model tends to perform well when a simply or cumulatively dominating alternative is

present (Baucells et al., 2008; Şimşek, 2013; Katsikopoulos et al., 2014), or when there exist

high correlations between the single attribute and all other attributes (Hogarth and Karelaia,
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2005a; Davis-Stober et al., 2010a). EW tends to perform well when the variability in cue

validities is small or when there are high intercorrelations between all the attributes (Einhorn

and Hogarth, 1975; Wainer, 1976). In the environments that we studied we also found support

for some of these findings. For example in the four environments, in which EW performed

best in binary choice the difference between |max(ρuai)| and |ρuai | was small.

Although our first results suggest a relation between the search task and the choice task,

additional research is required in the future to establish this relation and to identify the

conditions under which differences in the relative performance of models in the two tasks are

to be expected. A further follow-up to our study would be to examine when decision makers

choose a certain strategy (Bröder, 2003) and how the decision makers learn to act adaptively

and to select a strategy that performs well in a given environment (e.g. Rieskamp and Otto,

2006).

Psychological plausibility of the stopping rule

So far we have shown that the proposed stopping policy is optimal. But is it psychologically

plausible? When sampling from a known distribution with or without recall an optimally

acting decision maker should always stop right after encountering an alternative with a value

higher than the optimal threshold. Several variations of such optimal threshold problems

have been studied extensively in psychology and economics. We have identified five stud-

ies reporting results on experiments in which subjects sampled from a known distribution

with recall (Rapoport and Tversky, 1970; Schotter and Braunstein, 1981; Hey, 1987; Kogut,

1990; Sonnemans, 1998). In sum, a moderate proportion of the participants in these stud-

ies behaved in a manner consistent with the optimal stopping rule. Common discrepancies

from the optimal strategy included stopping too early and exercising recall. Nonetheless, the

researchers found that the average performance of the participants was near optimal. Hey

(1982) and Sonnemans (1998) reported that many subjects used heuristic strategies that ap-

peared consistent with the optimal rule and led to near optimal performance. In the stopping

policy we have presented, the decision maker should at every search step reevaluate the re-
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turns from sampling the next alternative in line. This task may appear demanding in relation

to the optimal threshold rule. However, it has the same structure as a simplified version of

the signal-detection problem (Green and Swets, 1966) — a task in which humans are known

to perform fairly well. Thus, we believe that the stopping policy could be psychologically

plausible as such or it could be well approximated by clever heuristic algorithms. Clearly,

the human behavior in the task has to be investigated experimentally in the near future.

Alternative search algorithms

We showed that under the homoscedasticity assumption embedded in many linear models

and the subjective linear utility models outlined in this paper, the intuitive policy of searching

the alternatives in the order of their subjective expected utility is optimal. In addition, in

this special case our policy coincides with another simple algorithm called directed cognition,

which has been proposed by Gabaix et al. (2006). This algorithm searches myopically, as

if the next step of the search process was also the last one. When the assumption of the

homogeneously distributed error component ε does not hold, the behavior suggested by our

ordering policy diverges from Weitzman’s (1979) optimal solution and from Gabaix et al.’s

(2006) directed cognition algorithm. Gabaix et al. (2006) showed that even in simple cases

of indexable problems like those discussed by Weitzman (1979) and Gittins et al. (1989), the

decision makers are unlikely to follow the optimal algorithm and instead decide in line with

the directed cognition algorithm. In the future, as in Gabaix et al. (2006), one could examine

experimental scenarios in which the behavior prescribed by the three discussed algorithms

diverges to evaluate their psychological plausibility in different decision-making environments.

2.4.4 Extensions and limitations

The current model could be extended to scenarios with different search costs for different

alternatives or when the decision maker can choose more than one alternative. In addition,

it is possible to account for contexts where new alternatives become available at a later
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point in time. The decision maker can construct a search order for the new alternatives and

consider if it is worthwhile to sample some of them, examining first the alternative with the

highest expected utility.

In our model we have assumed that decision makers have direct and free access to the

attributes all at once. We did not discuss cases where the decision makers have to pay a search

cost to learn additional attributes before moving forward to examine further alternatives. A

model of this kind with random sampling is presented by Lim et al. (2006) and has been

investigated empirically by Bearden and Connolly (2007). Further, as in search problems,

we have assumed that the decision maker learns the exact utility of an alternative after

paying a search cost and examining it. However, there are many dynamic decision-making

contexts where the cost is internally defined as an opportunity cost when consuming an

inferior alternative (Nelson, 1970). In these environments information acquisition can be

inherently noisy and decision makers may want to sample the alternatives repeatedly. Such

decision-making contexts are commonly referred to as multi-armed bandits. In fact, when

we change the costly sampling assumption to repeated sampling, in which the final pay-

off is the sum of the experienced utilities, our framework turns into a multi-armed bandit

with contextual information. This type of bandit framework has been receiving increasing

attention in recent years in machine learning (Pavlidis et al., 2008; Li et al., 2010).

So far we have postulated that decision makers have stable preferences and an accurate

error estimate of their model throughout the entire search process. This strong assumption

may hold precisely or it may approximate the truth in many decision-making environments,

especially when decision makers have long experience testing alternatives. However, in some

environments decision makers may not know the utility weights but rather learn them along

the way as they examine new alternatives. This approach has been followed by Dzyabura

(2013), who assumed that decision makers update the estimates of the weights and the

search order after each new alternative they examine. Clearly, when decision makers learn

their preferences the ordering and stopping rules derived in our paper are not guaranteed to

be optimal. A fully rational policy would have to anticipate the future evolution of decision
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makers’ preferences and then build any beliefs about preference change into the search and

stopping rules. Even in simplified scenarios this approach is known to be computationally

intractable. In similar preference-learning problems encountered in machine learning, greedy

heuristics are implemented instead to balance preference learning and exploitation (Brochu

et al., 2007, 2010). Another approach would be to compare, for any given search length,

the performance of alternative, optimal in some respect, active learning algorithms (Fedorov,

1972; Sugiyama and Nakajima, 2009).

2.4.5 Conclusion

In two recent publications Luan et al. (2011; 2014) stressed the need to integrate decision-

making theories in psychology and illustrate how apparently disparate models share common

conceptual ground. In the same vein, we argued that choice and search problems, which

until now have been studied separately, are the boundary cases of a broader decision-making

problem. We showed how three choice models that have been extensively studied in the

field of judgment and decision making can guide the search for good alternatives and we

formulated their corresponding optimal stopping rule. Then, we compared the performance

of the models in 12 real-world environments ranging from consumer choice to industrial

experimentation and illustrated how each models’ expected utility ordering and estimation

error influence its’ performance and length of search. As in previous model comparisons, in

one-shot choice problems we found that heuristic linear models performed on average close

to a multi-attribute linear utility model. Moreover, in individual environments the heuristic

models often outperformed the full model. To further understand when such results are to

be expected we examined the relationship between the search problem and the well-studied

binary choice problem. We found that in most cases the models that performed well on the

binary choice task also did so in the search task. This suggests that previous findings on the

ecological rationality of choice and inference strategies are also relevant to the search task.

Finally, we discussed the connections of our model to the existing literature and suggested

possible paths for future research.
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2.6 Appendix 1: Proof of result 1

First notice that for any alternative Ak

R(Ak) = P (uk > y) × E(uk − y|uk > y) − c =

∫ ∞

y

(u− y)dFK(u) − c

=

∫ ∞

0

udFK(u) − c

For alternative Ai and Aj let α = f(ai) − f(aj). Assuming α > 0, we will show that

R(Ai) > R(Aj). The distribution of Ai is the same as the distribution of Aj + α; that is,

Fi(u) = Fj(u− α) ∀u ∈ �.

R(Ai) + c =

∫ ∞

0

udFi(u) =

∫ ∞

0

udFj(u− α)

=

∫ ∞

−α

(α + v)dFj(v) (by change of variable v = u + α)

=

∫ 0

−α

(α + v)dFj(v) +

∫ ∞

0

(α + v)dFj(v) >

∫ ∞

0

(α + v)dFj(v)

>

∫ ∞

0

vdFj(v) = R(Aj) + c

Q.E.D
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Social influence and the collective

dynamics of opinion formation
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Chapter Abstract

Social influence is the process by which individuals adapt their opinion, revise their beliefs,

or change their behavior as a result of social interactions with other people. In our strongly

interconnected society, social influence plays a prominent role in many self-organized phe-

nomena such as herding in cultural markets, the spread of ideas and innovations, and the

amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain

poorly understood, and existing physics-based models lack systematic empirical validation.

Here, we report two controlled experiments showing how participants answering factual ques-

tions revise their initial judgments after being exposed to the opinion and confidence level

of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for

15 different items, we draw an influence map that describes the strength of peer influence

during interactions. A simple process model derived from our observations demonstrates how

opinions in a group of interacting people can converge or split over repeated interactions. In

particular, we identify two major attractors of opinion: (i) the expert effect, induced by the

presence of a highly confident individual in the group, and (ii) the majority effect, caused by

48
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the presence of a critical mass of laypeople sharing similar opinions. Additional simulations

reveal the existence of a tipping point at which one attractor will dominate over the other,

driving collective opinion in a given direction. These findings have implications for under-

standing the mechanisms of public opinion formation and managing conflicting situations in

which self-confident and better informed minorities challenge the views of a large uninformed

majority.12

1The authors are grateful to Gudrun Rauwolf and Tor Nielsen for their inspiring feedbacks and partici-
pation in the work. The authors thank Jack Soll for sharing with us the experimental data from ref. [30],
and two anonymous reviewers for their constructive comments. The authors thank Anita Todd for language
editing.

2This essay has been published under the same title in PLOS ONE in November 2013. MM JEK PPA
HN conceived and analyzed the experiments. MM JEK PPA HN performed the experiments. MM JEK PPA
analyzed the data. MM JEK PPA HN wrote the paper.
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3.1 Introduction

In many social and biological systems, individuals rely on the observation of others to adapt

their behaviors, revise their judgments, or make decisions (Bikhchandani et al., 1992; Ca-

mazine et al., 2001; Moussaid et al., 2009; Couzin et al., 2011). In human populations, the

access to social information has been greatly facilitated by the ongoing growth of communi-

cation technology. In fact, people are constantly exposed to a steady flow of opinions, advice

and judgments of others about political ideas, new technologies, or commercial products (Wu

and Huberman, 2007). When facing the opinions of peers on a given issue, people tend to

filter and integrate the social information they receive and adjust their own beliefs accord-

ingly (Gigerenzer et al., 1999; Yaniv, 2004). At the scale of a group, repeated local influences

among group members may give rise to complex patterns of opinion dynamics such as con-

sensus formation, polarization, or fragmentation (Schelling, 1978; Isenberg, 1986; Galam and

Moscovici, 1991; Mäs et al., 2010). For example, it has been shown that people sharing

similar extreme opinions, such as racial prejudices, tend to strengthen their judgment and

confidence after interacting with one another (Myers and Bishop, 1970). Similar mechanisms

of opinion dynamics can take place in a variety of social contexts, such as within a group of

friends exchanging opinions about their willingness to get vaccinated against influenza (Funk

et al., 2009, 2010). At even larger scales, local influences among friends, family members, or

coworkers often combined with the global effects of mass media constitute a major mech-

anism driving opinion formation during elections, shaping cultural markets (Salganik et al.,

2006), producing amplification or attenuation of risk perceptions (Slovic, 1987; Kasperson

et al., 1988), and shaping public opinion about social issues, such as atomic energy or climate

change (Latane, 1981).

Given the remarkably large scope of social phenomena that are shaped by social influence and

opinion dynamics, it is surprising that the behavioral mechanisms underlying these processes

remain poorly understood. Important issues remain open: How do people adjust their judg-

ment during social interactions? What are the underlying heuristics of opinion adaptation?
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And how do these local influences eventually generate global patterns of opinion change?

Much of the existing modeling work about opinion dynamics has been addressed from a

physics-based point of view, where the basic mechanisms of social influence are derived from

analogies with physical systems, in particular with spin systems (Galam, 1997; Schweitzer and

Ho�lyst, 2000; Sznajd-Weron and Sznajd, 2000; Lorenz, 2007; Castellano et al., 2009). The

wide variety of existing models assumes that individuals hold binary or continuous opinion

values (usually lying between -1 and 1), which are updated over repeated interactions among

neighboring agents. Different models assume different rules of opinion adaptation, such as

imitation (Liggett, 1987), averaging over people with similar opinions (Deffuant et al., 2000;

Hegselmann and Krause, 2002), following the majority (Galam, 2002), or more sophisticated

equations (Sznajd-Weron and Sznajd, 2000; Mäs et al., 2010). Although informative as to

the complex dynamics that can possibly emerge in a collective context, these simulation-

based contributions share a common drawback: the absence of empirical verification of the

models assumptions (Sobkowicz, 2009). Indeed, it is difficult to track and measure how

opinions change under experimental conditions, as these changes depend on many social and

psychological factors such as the personality of the individuals, their confidence level, their

credibility, their social status, or their persuasive power (Latane, 1981). In other disciplines

such as psychology and cognitive science, laboratory experiments have been conducted to

study how people integrate feedback from other individuals to revise their initial answers to

factual questions (Yaniv, 2004; Soll and Larrick, 2009; Lorenz et al., 2011). However, the

findings on local rules of opinion adaptation have not yet been used to study the collective

dynamics of the system, and it remains unclear how social influence plays out in larger scale

social contexts over time (Mason et al., 2007).

The present work draws upon experimental methods inspired by social psychology and the-

oretical concepts of complex systems typical of statistical physics. First, we conducted con-

trolled experiments to describe the micro-level mechanisms of social influence, that is, how

individuals revise their initial beliefs after being exposed to the opinion of another person.

Then, we elaborated an individual-based model of social influence, which served to inves-
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tigate the collective dynamics of the system. In a first experiment (see Section 3.2), 52

participants were instructed to answer a series of 32 general knowledge questions and eval-

uate their confidence level on a scale ranging from 1 (very unsure) to 6 (very sure). This

baseline experiment was used to characterize the initial configuration of the system before

any social influence occurs. In a second experimental session, 59 participants answered 15

questions in the same way but were then exposed to the estimate and confidence level of

another participant (henceforth referred to as “feedback”) and asked to revise their initial

answer. This procedure renders opinion changes traceable, and the effects of social influence

measureable at the individual level. Moreover, changes in confidence were tracked as well, by

asking participants to evaluate their confidence level before and after social influence. Despite

empirical evidence suggesting that changes of opinion and confidence are intimately related

(Lorenz et al., 2011), and theoretical work emphasizing the important role of inflexible, highly

confident agents (Galam and Jacobs, 2007; Martins and Galam, 2013), this aspect of social

influence remains poorly understood. Following the methods of existing experiments, we

deliberately asked neutral, general knowledge questions, which allows capturing the mech-

anisms of opinion adaptation while controlling its emotional impact (Yaniv, 2004; Soll and

Larrick, 2009). By exploring a simple model derived from our observations, we demonstrate

that the collective dynamics of opinion formation in large groups of people are driven by two

major “attractors of opinion”: (i) the presence of a highly confident individual and (ii) the

presence of clusters of low-confidence individuals sharing a similar opinion. In particular, we

show that a critical amount of approximately 15 % of experts is necessary to counteract the

attractive effect of a large majority of lay individuals. As people are embedded in strongly

connected social networks and permanently influence one another, these results constitute a

first step toward a better understanding of the mechanisms of propagation, reinforcement,

or polarization of ideas and attitudes in modern societies.
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3.2 Experiments

3.2.1 Experimental design

The experimental part of the study consisted of two distinct experiments: one without social

influence (Experiment 1) and one with (Experiment 2). In both experiments, participants

entered the laboratory individually and were instructed to answer a series of factual questions

displayed on a computer screen. All participants were näıve to the purpose of our experiments

and received a flat fee of 8 Euro. In Experiment 1, a total of 52 participants (Mage = 27 years,

SD = 9, 50 % females) responded to 32 general knowledge questions, which covered the areas

sports, nature, geography and society/economy (8 per area; for a complete list of items see

Table 3.1). The correct answers to the questions ranged from 100 to 999, which, however,

was not known to the participants. Participants were instructed to respond as accurately as

possible and to indicate their confidence on a 6-point Likert scale (1 very unsure to 6 very

sure) after having given their spontaneous estimate. Questions were displayed one after the

other on the computer screen, and a new question was given only after participants answered

the current one. Participants were only informed about the correct answers to the questions

after the end of the experiment and therefore could not figure out that the true values always

lied in the interval [100 999]. The order of the questions was randomized for each participant.

A correlation test of the accuracy of answers and the order of the questions yielded non-

significant p-values for 90 % of participants with a probability p > 0.05, confirming the

absence of any learning process over experimental rounds. After the end of the experiments,

participants were paid, thanked and released.

In Experiment 1, participants were not exposed to the social influence of others. The 1664

data points (corresponding to 52 participants × 32 questions) were used to characterize the

features of the initial environment, such as the distribution of answers and the analyses of

the confidence levels shown in Figure 3.1, and as a pool of social influence for the second

experiment. The same dataset was used to define the initial condition of the simulations
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presented in Figure 3.5. In Experiment 2, 59 participants (Mage = 33 years, SD = 11, 56 %

females) responded to 15 of the 32 general knowledge questions used in Experiment 1 and

indicated their confidence level. Experiment 2 was conducted under the same conditions as

in Experiment 1 except that participants were informed that they would receive a feedback

from another participant. After each question, the estimate and confidence level of another

randomly selected participant from Experiment 1 were displayed on the computer screen,

and participants were then asked for a revised estimate and corresponding confidence level.

This second dataset made of 59 × 15 = 885 binary interactions was used to study the effects

of social influence, from which we derived the results shown in Figures 3.2, 3.3 and 3.4. The

full list of questions is available in Table 3.1.

Ethics Statement: The present study has been approved by the Ethics Committee of the

Max Planck Institute for Human Development. All participants gave written and informed

consent to the experimental procedure.

3.2.2 Experimental results

We first use the data from the first experiment to characterize the initial configuration of the

system before any social influence occurs, that is, how opinions are initially distributed and

how the accuracy and confidence of the answers are correlated with each other. As shown in

the example in Figure 3.1A, the initial distribution of opinions has a lognormal shape, with

a typical long tail indicating the significant presence of outliers. For each of 32 items we

performed a Kolmogorov-Smirnov normality test of log(Oi), where Oi is the initial opinion

of individual i. The test yielded p-values above .05 for 84 % of the items, indicating that the

null hypothesis cannot be rejected at the 5 % significance level for these items. The remaining

16 % still had reasonably high p-values ( always > 10−3), suggesting that the initial opinions

Oi indeed follow a lognormal distribution.

We also analyzed the correlation between the confidence level of the participants and the
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Figure 3.1: The initial configuration of the system in the absence of social influence. (A) Initial
distribution of opinions for one representative example question (see Figure 3.7 for an overview of
all 32 items). The normalized answer corresponds to the estimate of the participants divided by the
true value (i.e., 660◦C for this question). The red curve shows the best fit of a lognormal distribution.
The green dots at the top indicate the location of estimates associated with high confidence levels
(Ci ≥ 5). One of them constitutes an outlier. (B) Accuracy of participants answers as a function
of their confidence level, as determined from the complete dataset (32 items).

accuracy of their answer (Figure 3.1B). Interestingly, the confidence level is not such a reliable

cue for accuracy (Nickerson, 1998). First, we found no significant correlation between an

individual i’s confidence level Ci and the quality of his or her answer (a correlation test

between Ci and the error Err(Oi) = |1−Oi/T | where T is the true value yielded a coefficient

of .03). Nevertheless, a trend can be highlighted by grouping the data into classes of error

ranges: very good answers (Err(Oi) ≤ 0.1), good answers (0.1 < Err(Oi) ≤ 0.3), bad

answers (0.3 < Err(Oi) ≤ 1) and very bad answers (Err(Oi) ≥ 1). As it can be seen from

Figure 3.1B, only the maximum confidence level Ci = 6 is a relevant indicator of the quality

of the answer, leading to a good or very good estimate in 80 % of the time. By contrast,

lower confidence levels are less informative about accuracy. For instance, the second highest
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confidence value of Ci = 5 has a 39 % chance to correspond to a bad or very bad estimate.

Similarly, a value of Ci = 4 is more likely to accompany a bad or very bad estimate (53 %)

than a good or very good one (47 %). The lowest confidence values Ci = 1 and Ci = 2 do

not differ from each other. Taking the revised estimates of Experiment 2 into account, we

observe that the reliability of high confidence judgments is undermined by social influence

(Lorenz et al., 2011). As shown in Figure 3.2B, the distribution of errors for very confident

individuals (Ci = 5 or 6) becomes more noisy, widespread and clustered around certain values

thus becoming less informative about accuracy after social influence.
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Figure 3.2: Effects of social influence on the wisdom of crowds (A), and the relevance of the
confidence cue (B). The error is the deviation from the true value as a percentage. (A) Before any
social influence occurs, the arithmetic (Arith.) mean is sensitive to single extreme opinions and
does not appear as a relevant aggregating method. The median and geometric (Geo.) mean are
more robust to outliers. When social influence occurs, however, the distributions are skewed to the
right and the three indicators are more likely to generate high error values. (B) In the absence of
social influence (SI), a clear and continuous trend is visible, where individuals with high confidence
(Ci ≥ 5) constitute a good indicator of the quality of the answer. When social influence is injected in
the system, however, the distribution becomes noisier and less predictable. Overall, social influence
generates unpredictability in the observed trends.

To explore the wisdom of crowds, we compared the accuracy of various aggregating methods
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before and after social influence occurred (Figure 3.2A). Our results agree with previous

findings (Salganik et al., 2006; Lorenz et al., 2011). We find that the error distributions tend

to become widespread, now covering a greater proportion of also high error values after social

influence, regardless of the aggregating method.

Next, we focus on how people adjust their opinion after being informed about the opinion

of another individual, which is the aim of Experiment 2. In agreement with previous studies

(Yaniv, 2004; Soll and Larrick, 2009), our results show that two variables have an important

influence on how the individual i revises his or her opinion when exposed to the opinion and

confidence of another participant j: the difference in confidence values ΔCij = Ci − Cj and

the normalized distance between opinions: ΔOij = |Oj −Oi|/Oi , where Oj and Cj represent

the opinion and confidence level of participant j, respectively (Yaniv, 2004).

To provide a visual, quantitative overview of the effects of social influence, we draw an in-

fluence map that illustrates the interplay of these two variables in the process of opinion

adaptation (Figure 3.3). For the sake of simplicity, we distinguish three possible heuristics

(Soll and Larrick, 2009):

1. Keep initial opinion, when individuals do not change their judgment after receiving a

feedback, that is: Ri = Oi, where Ri is the revised opinion of participant i.

2. Make a compromise, when the revised opinion falls in between the initial opinion Oi and

the feedback Oj : min(Oi, Oj) < Ri < max(Oi, Oj).

3. Adopt other opinion, when an individual i adopts the partners opinion: Ri = Oj.

The influence map shows the heuristic that is used by the majority of people as ΔCij and ΔOij

change (Figure 3.3A). Most of the data points (86 % of 885) are found for −3 ≤ ΔCij ≤ 3 and

ΔOij ≤ 1.2 , which cover a large part of the influence map and seem to be reasonable ranges
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Figure 3.3: (A) The influence map extracted from our experimental data and (B) a simplified
representation of it as implemented in the model. The color coding indicates the heuristic that is
used by a majority of people, as a function of the difference in confidence ΔCij = Ci − Cj and the
distance between the normalized opinions ΔOij = |Oj − Oi|/Oi. Positive values of ΔCij indicate
that the focus subject is more confident than the influencing individual (called feedback), whereas
negative values indicate that the focus subject is less confident. White zones in (A) indicate the
absence of sufficient data. Although the majority of people prefer to keep their initial opinion when
they are more confident than their partner (i.e. the blue strategy dominates for ΔCij > 0), a zone
of strong influence is found at an intermediate distance with ΔCij < 0. (C) The decision tree
describing the decision process with three different outcome strategies. The individual first looks
at the distance between opinions ΔOij , then looks at the difference of confidence ΔCij , and finally
chooses a strategy accordingly.

being also encountered in real life situations. At the edge of the map, however, the results are

more uncertain due to the scarcity of available data points. Figure 3.3A shows that the first

and more conservative strategy tends to dominate the two others. In particular, the majority

of people systematically keep their opinion when the value of ΔCij is positive, that is, when

their own confidence exceeds their partners (Soll and Larrick, 2009). However, when their

confidence level is equal or lower than their partners, individuals tend to adapt their opinion

accordingly. Importantly, one can distinguish three zones in the influence map, according

to the distance between estimates ΔOij (Figure 3.3B). First, when both individuals have a

similar opinion (ΔOij < 0.3), individuals tend to keep their initial judgment, irrespective of

their partners confidence. Moreover, they also have a strong tendency to increase their con-
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fidence level (see Figure 3.4A indicating the changes in confidence). Therefore, we interpret

this area of agreement as being a confirmation zone, where feedback tends to simultaneously

reinforce initial opinions and increase an individuals confidence.
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Figure 3.4: The probability of increasing (red), decreasing (blue), or maintaining (green) the confidence level
after social influence. Changes in confidence are indicated according to the opinion distance classes as defined
in the influence map (Figure 3.3): (A) near when ΔOij ≤ 0.3 , (B) intermediate when 0.3 < ΔOij ≤ 1.1
, and (C) far when ΔOij > 1.1 . A tendency to increase confidence is visible in the near and intermediate
zones when participants interact with a more confident subject. Confidence can also decrease in the far zone,
when ΔCij ≥ 4 .

It turns out that feedback has the strongest influence at intermediate levels of disagreement,

when 0.3 < ΔOij < 1.1. In this zone, the “compromise” heuristic is selected by most people

when −3 ≤ ΔCij ≤ 0, and the “adoption” heuristic appears for lower values of ΔCij. We call

this the influence zone, where social influence is strongest. Here, the others opinion differs

sufficiently from the initial opinion to trigger a revision but is still not far enough away to

be completely ignored. In particular, the confidence level of the participants tends to remain

the same after the interaction (Figure 3.4B).

Finally, when the distance between opinions is very large (i.e., ΔOij > 1.1), the strength

of social influence diminishes progressively (Yaniv, 2004). In this zone, people seem to pay

little attention to the judgment of another, presumably assuming that it may be an erroneous
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answer. Nevertheless, the others opinion is not entirely ignored, as the majority of people

still choose the “compromise” heuristic when the partner is markedly more confident (i.e.

ΔCij ≤ −2). Moreover, people who are initially very confident (i.e. Ci ≥ 5) presumably

begin to doubt the accuracy of their judgment and exhibit a high likelihood (of almost 70

%) of reducing their confidence level. Even more remote opinions are likely to be ignored

entirely, but as this situation rarely occurs our data does not warrant a reliable conclusion

here.

3.3 Simulations

3.3.1 The model

Taking these empirical regularities into account, we now elaborate an individual-based model

of opinion adaptation and explore the collective dynamics of opinion change when many peo-

ple influence each other repeatedly. To this end, we first describe the above influence map

by means of a simplified diagram showing the heuristics that are used by most individuals

according to ΔOij and ΔCij (Figure 3.3B). Alternatively, the same diagram can be charac-

terized as a decision tree (Figure 3.3C). The model is defined as follows:

First, an individual notes the distance ΔOij between his or her own and a partners opinion

and classifies it as near, far, or at an intermediate distance. For this, we used two threshold

values of τ1 = 0.3 and τ2 = 1.1 , assuming that the feedback is near when ΔOij < τ1 , far

when ΔOij > τ2 , and at an intermediate distance otherwise. The numerical values of τ1 and

τ2 were determined empirically from the influence map. Second, the individual considers the

difference in confidence values ΔCij to choose among the three heuristics. Again, we define

two threshold values α1 and α2 and assume that the individual decides to “keep own opinion”

if ΔCij ≥ α1, to “adopt other opinion” if ΔCij ≤ α2, and to “make a compromise” otherwise.

The three strategies can be formally defined as Ri = Oi + ω(Oj − Oi), where the parameter

delineates the strength of social influence. Therefore, we have ω = 0 when the individual
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decides to “keep own opinion”, and ω = 1 when the individual decides to “adopt”. When the

individual chooses the “compromise” strategy, that is when 0 > ω > 1, the average weight

value ω̄ as measured from our data equals to ω̄ = 0.4 (SD=0.24) , indicating that people did

not move exactly between their initial estimate and the feedback (which would correspond to

a weight value of 0.5), but exhibited a bias toward their own initial opinion (Soll and Larrick,

2009). Over all our data points, 53 % correspond to the first strategy (ω = 0), 43 % to the

second (0 > ω > 1), and 4 % to the third (ω = 1). The values of α1 and α2 depend on the

distance zone defined before:

• When ΔOij is small, the others opinion constitutes a confirmation of the initial opinion.

According to our observations, α = −5 and α = −6. Additionally, the confidence level

Ci is increased by one point if ΔCij ≤ −4. As indicated by Figure 3.4A, Ci is also

increased by one point with a probability p = 0.5 when −4 ≤ ΔCij ≤ 0, and remains

the same otherwise.

• When ΔOij is intermediate, the feedback has a significant influence on the subjects

opinion. In this case, we set α1 = 0 and α2 = −3. The data shows that the confidence

level is changed only if ΔCij ≤ −3 (Figure 3.4B). In this case, Ci increases with

probability p = 0.5, and remains the same otherwise.

• When ΔOij is large, the thresholds are set to α1 = −2 and α2 = −6. This time,

the confidence level decreases by one point when ΔCij ≥ 4, and remains the same

otherwise.

Here, all the parameter values were directly extracted from the observations (Figure 3.3B

and Figure 3.4).
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3.3.2 Collective dynamics results

Having characterized the effects of social influence at the individual level, we now scale up

to the collective level and study how repeated influences among many people play out at the

population scale. Because the macroscopic features of the system are only visible when a

large number of people interact many times, it would be extremely difficult to investigate

this under laboratory conditions. Therefore, we conducted a series of numerical simulations

of the above model to investigate the collective dynamics of the system.

The initial conditions of our simulations correspond to the exact starting configurations ob-

served in our experiments (i.e., the precise opinion and confidence values of all 52 participants

observed in the first experiment; also see Valori et al., 2012). In each simulation round, the

52 individuals are randomly grouped into pairs, and both individuals in a pair update their

opinions according to the opinion of the other person, as predicted by our model. Thus,

each individual is both a source and the target of social influence. We performed N = 300

rounds of simulated interactions, where N has been chosen large enough to ensure that the

system has reached a stationary state. Here, we make the assumption that the decision tree

that has been extracted from our experiment remains the same over repeated interactions.

This assumption is reasonable to the extent that the outcome of the decision tree (i.e. the

strategy that is chosen) depends on the confidence level of the individual, which is expected

to change as people receive new feedback. In such a way, the strategies that will be selected

by individuals are connected to the individual history of past interactions.

Figure 3.5 shows the dynamics observed for three representative examples of simulations.

Although a certain level of opinion fragmentation still remains, a majority of individuals

converge toward a similar opinion. As shown by the arrow maps in Figure 3.5, the first

rounds of the simulation exhibit important movements of opinions among low-confidence

individuals (as indicated by the large horizontal arrows for confidence lower than 3), without

increase of confidence (as shown in Figure 3.8). After a certain number of rounds, however,

a tipping point occurs at which a critical proportion of people meet up in the same region
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Figure 3.5: Three representative examples of the collective dynamics observed in the computer simulations.
For each example, the initial opinion map is shown on the left-hand side (experimental data), and the final
opinion map after N=300 rounds of simulations on the right-hand side. The opinion maps represent the
proportion of individuals with a given opinion (x-axis) and a given confidence level (y-axis). As in Figure
3.1, the normalized opinion is the actual opinion divided by the true value. The correct answer is represented
by the red dashed lines (corresponding to a value of 1). Outliers with normalized opinion greater than 2 are
not shown. The arrow maps represent the average movements over both opinion and confidence dimensions
during simulations. Examples 1, 2, and 3 correspond to the questions What is the length of the river Oder in
kilometers? , How many inhabitants has the East Frisian island Wangerooge?, and How many gold medals
were awarded during the Olympics in China in 2008?, respectively. The final convergence point may be
determined by a dense cluster of low confidence individuals, as illustrated by Example 2 (majority effect), or
by a few very confident individuals as in Example 3 (expert effect).

of the opinion space. This creates a subsequent increase of confidence in this zone, which

in turn becomes even more attractive to others. This results in a positive reinforcement

loop, leading to a stationary state in which the majority of people end up sharing a similar

opinion. This amplification process is also marked by a sharp transition of the systems global



Social influence and the collective dynamics of opinion formation 64

confidence level (Figure 3.8), which is a typical signature of phase transitions in complex

systems (Camazine et al., 2001).

An intriguing finding of our simulations is that the collective opinion does not converge

toward the average value of initial opinions (a correlation test yields a nonsignificant effect

with a coefficient c = −.05). The correlation between the convergence point and the median

value of the initial opinions is significant (p = .03) but the relatively moderate correlation

coefficient c = 0.46 suggests that this relation remains weak. Likewise, the system does

not systematically converge toward or away from the true value (nonsignificant effect with a

coefficient c = .11). Instead, the simulations exhibit complex collective dynamics in which

the combined effect of various elements can drive the group in one direction or another.

In agreement with previous works (Salganik et al., 2006), the collective outcome appears

to be poorly predictable and strongly dependent on the initial conditions (Schelling, 1978).

Nevertheless, we identified two major attractors of opinions that exert an important social

influence over the group:

1. The first attractor is the presence of a critical mass of uncertain individuals who happen

to share a similar opinion. In fact, when such a cluster of individuals is initially present

in the system — either by chance or because individuals share a common bias — the

rest of the crowd tends to converge toward it, as illustrated by Figure 3.5-Example2.

This majority effect is typical of conformity experiments that have been conducted in

the past (Asch, 1955), where a large number of people sharing the same opinion have

a strong social influence on others.

2. The second attractor is the presence of one or a few highly confident individuals, as

illustrated by Figure 3.5-Example3. The origin of this expert effect is twofold: First,

very confident individuals exert strong persuasive power, as shown by the influence map.

Second, unconfident people tend to increase their own confidence after interacting with

a very confident person, creating a basin of attraction around that persons opinion

(Couzin et al., 2005; Dyer et al., 2009).
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Figure 3.6: Which attractor dominates when the majority effect and the expert effect apply simultaneously?
(A) The evolution of collective opinion when varying the relative proportion of experts pexp, holding an opinion
Oexp and a high confidence level Cexp=6, and the proportion of people in the majority group pmaj holding an
opinion Omaj and a low confidence level randomly chosen in the interval Cmaj=[1 3]. Here, the number of
neutral individuals is fixed to pNeut=0. (B) Phase diagram showing the parameter space where the majority
or the expert effects applies, when increasing the proportion of neutral individuals pNeut holding a random
opinion and a low confidence level randomly chosen in the interval Cuni=[1 3]. The schematic regions
delimited by black or white dashed lines show the zones where the collective opinion converges toward
the majority or the expert opinion, respectively. In the transition zone, the collective opinion converges
somewhere between Oexp and Omaj . In some rare cases, the crowd splits into two groups or more.

Our simulations show that the majority effect and the expert effect are not systematically

beneficial to the group, as both attractors could possibly drive the group away from the

truth (Figure 3.5-Example 2). What happens in the case of conflicting interests, when the

expert and the majority effects apply simultaneously and disagree with each other (Figure

3.5-Example 3)? To investigate this issue, we conducted another series of simulations in

which a cluster of low-confidence individuals sharing the same opinion Omaj, is facing a

minority of high-confidence experts holding another opinion Oexp. As shown by Figure 3.6A,

the majority effect overcomes the expert effect when the proportion of experts pExp is lower

than a certain threshold value located around 10 %. However, as pExp increases from 10
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%, to 20 % a transition occurs and the convergence point shifts from the majority to the

experts opinion. Remarkably, this transition point remains stable even when a proportion

pNeut of neutral individuals (defined as people with random opinions and a low confidence

level) are present in the system (Figure 3.6B). As pNeut increases above 70 %, however, noise

gradually starts to dominate, leading the expert and the majority effects to vanish. The

tipping point occurring at a proportion of around 15 % of experts appears to be a robust

prediction, not only because it resists to a large amount of system noise (Figure 3.6B), but

also because a previous theoretical study using a completely different approach also reached

a similar conclusion (Xie et al., 2011).

3.4 Discussion

In this work, we have provided experimental measurements and quantitative descriptions

of the effects of social influence — a key element in the formation of public opinions. Our

approach consisted of three steps: using controlled experiments to measure the effects of

social influence at the scale of the individual, deriving a simple process model of opinion

adaptation, and scaling up from individual behavior to collective dynamics by means of

computer simulations.

The first result of our experiment is that participants exhibited a significant bias toward their

own initial opinion rather than equally weighting all social information they were exposed to

(Yaniv, 2004; Soll and Larrick, 2009). This bias is visible from the influence map shown in

Figure 3.3, where the blue color corresponding to “keep initial opinion” is dominant and the

red one corresponding to “adopt the other opinion” is rare. As shown in Figure 3.3B, the same

trend has been transferred to the model. Moreover, even when the “compromise” strategy is

chosen, individuals still give a stronger weight to their own initial opinion, which has also been

implemented in the model. Therefore, contradictory feedback is typically underestimated

— if not completely ignored — but opinions corroborating ones initial opinion trigger an

increase in confidence. This observation is consistent with the so-called confirmation bias,
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namely, the tendency of people to pay more attention to information confirming their initial

beliefs than information they disagree with (Nickerson, 1998; Baron, 2000). This result is

also in line with early experiments showing that opinions tend to get reinforced by group

discussions that involve people who initially share a similar judgment (Myers and Bishop,

1970). Likewise, the fact that individuals holding completely different beliefs exert very little

influence on each other is consistent with the idea of “bounded confidence” — a modeling

concept suggesting that social influence is negligible when opinions are initially too distant

(Hegselmann and Krause, 2002; Lorenz, 2007). The presence of these elements confirms that

our experimental design has indeed captured the fundamental mechanisms of social influence,

and that factual questions can be used, to some extent, to study the fundamental features

of opinion dynamics (Lorenz et al., 2011). In the future, an important challenge will be to

evaluate how the influence map is shaped when emotions and subjective beliefs are more

relevant (e.g. by using items about political opinions or beliefs that elicit strong convictions

or emotions). Besides, another important follow-up study that should be conducted in the

near future is the verification of our assumption that the decision tree observed at the first

round of interaction remains identical over repeated interactions.

Scaling up from individual to collective behavior was achieved by means of computer simu-

lations in line with existing approaches in the field of self-organization and complex systems

(Schelling, 1978; Camazine et al., 2001; Castellano et al., 2009). Our simulations allowed us

to unravel the precise mechanisms of opinion dynamics in large groups of people, which would

have been practically impossible to characterize under laboratory conditions. In particular,

an important ingredient underlying the collective dynamics but lacking in previous mod-

eling approaches is the specific interplay between opinion changes and confidence changes.

First, confidence serves as a sort of system memory. In fact, over simulation rounds, indi-

viduals are less easily influenced by others because their confidence level gradually increases

as they receive new feedback. Therefore, simulated individuals do not constantly change

their opinion but progressively converge toward a stable value in a realistic manner. Second,

the increase of confidence supports the emergence of basins of attraction during collective
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opinion dynamics by boosting the attractive power of individuals sharing a similar opinion

(Lorenz et al., 2011). This process often turns out to be detrimental to the group, because

the local amount of confidence may grow artificially in a given region of the opinion space,

which provides false cues to others and triggers a snowball effect that may drive the group

in an erroneous direction. Interestingly, judgments of high confidence are good indicators of

accuracy before social influence occurs, but no longer after people have been exposed to the

opinion of others. It is remarkable that even a mild influence has a significant impact on

the reliability of high confidence cues, as shown in Figure 3.2B. The main problem induced

by social influence is that people tend to become more confident after noticing that other

people have similar opinions. Therefore, high confidence is an indicator of accuracy when

judgments are independent but becomes an indicator of consensus when social influence takes

place (Koriat, 2012; Hertwig, 2012).

Our simulation results also identified two elements that can cause such amplification loops:

the expert effect — induced by the presence of a highly confident individual, and the majority

effect — induced by a critical mass of low-confidence individuals sharing similar opinions.

Moreover, the presence of a significant number of neutral individuals holding a random opin-

ion and a low confidence level around these two attractive forces tends to increase the unpre-

dictability of the final outcome (Salganik et al., 2006). Therefore, neutral individuals make

the crowd less vulnerable to the influence of opinion attractors, and thus less predictable.

By contrast, recent studies on animal groups have shown that the presence of uninformed

individuals in fish schools acts in favor of the numerical majority, at the expense of very

opinionated individuals (Couzin et al., 2011).

Our simulations constitute a valuable tool that allows (i) unravelling the underlying mecha-

nisms of the system, (ii) forecasting future trends of opinion change, and (iii) driving further

experimental research and data collection. Nevertheless, it is important to note that the out-

come of our simulations requires empirical validation in the future. This could be addressed,

for instance, by means of empirical observations over the Web, where one would measure

peoples opinion about a social issue over blogs and discussion forums and evaluate how the
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collective opinion changes over time (Wu and Huberman, 2004; Lazer et al., 2009). Alterna-

tively, an online experimental approach such as the one elaborated by Salganik et al. seems

well suited to the study of opinion dynamics under controlled conditions (Salganik et al.,

2006). By quantifying the balance of power between the expert effect, the majority effect,

and neutral individuals, our research can inform applications regarding the management of

situations in which a small opinionated minority challenges a large population of uninformed

individuals. For example, the model could help doctors convince a population of laypeople to

adopt certain disease prevention methods or reversely prevent extremist groups from taking

control of a large group of people.
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3.6 Appendix: Supplementary material
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Figure 3.7: The distribution of answers for all 32 questions used in the first experiment (Experiment1, see
Materials and Methods). The numbers on the upper right corner correspond to the question id, as indicated
in the list of questions provided in the table in the Appendix 2. Question id = 27 has been used for illustrative
purpose in the main text (Figure 3.1A). The normalized answer is the estimate of the participants divided by
the true value. The black dashed lines indicate the correct answer (normalized value = 1). The red and green
dashed lines indicate the mean and the median values of the distribution, respectively. The mean values lying
farther than 3 are not indicated.
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Figure 3.8: Three representative examples showing the evolution of participants confidence over simulation
rounds. Examples 1, 2 and 3 correspond to those shown in Figure 3.4 in the main text. The average global
confidence is computed by taking the mean value of confidence for all 52 participants. After a few rounds
of simulation, a sharp transition occurs toward high confidence levels, attesting for the opinion amplification
process.
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3.7 Appendix 2: Materials

Id Question Answer

1 What is the length of the river Oder in kilometers? 866

2 What is the height of the Fernsehturm in Berlin? 368

3 What is the height of Uluru (Ayers Rock) in Australia (in meters, ASL)? 863

4 How deep is the Baltic Sea at its deepest point (in meters)? 459

5 How long is the boarder between Germany and Switzerland (in km)? 316

6 What is the population density in inhabitants per square kilometer(2009)? 229

7 What is the distance between Berlin and London? (in kilometers)? 910

8 How many inhabitants has the East Frisian island Wangerooge (retrieved

2010)?

919

9 How many members has the German Bundestag according to the law (without

overhang seats; in 2012)?

598

10 How many universities are there in Germany (in 2010/2011) 106

11 How many active nuclear power stations are there in Europe (retrieved 2011)? 196

12 How many countries take part in the general assembly of the United Nations

as active members?

193

13 How many assaults per 100.000 inhabitants were officially registered in Ger-

many in 2007?

618

14 What is the monthly amount of basic security benefits for full-aged, single job

seekers (Hartz IV, in 2012)?

364

15 What is the monthly amount of child benefit in Germany for the first child (in

2012)?

184

16 How much does an iPad2 with 16GB cost (RRP)? 479

17 How many gold medals where awarded during the Olympics in China in 2008? 302

18 What is the world record in high jump for men (in centimeters)? 245
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19 How long was the track for running events in a stadium in the Ancient Olympic

Games (in meters)?

192

20 What is the maximum speed ever reached during a Formula One race (Grand

Prix; in km/h)?

370

21 What is the world record in ski jumping of men (in meters)? 247

22 How long is the longest tee in golf so far (in meters)? 471

23 How many sportmen have taken part in the first modern Olympic Games in

Athens in 1896?

241

24 How many kilograms has a sumo wrestler to weight at least for being admitted

as heavyweight?

115

25 What is the speed of sound in the air (MSL)? 343

26 How many bones does an adult human have? 206

27 What is the melting temperature of aluminium (in degrees Celsius)? 660

28 How many degrees Fahrenheit are 100 degrees Celsius? 212

29 How many earthquakes with value more than 6 on the Richter scale happen

in an average year worldwide?

150

30 How many calories does a liter of Coca Cola contain (kcal)? 420

31 How many earth(days) has a year in the Mars? 687

32 How many times larger is the diameter of the sun compared to the diameter

of the earth?

109

Table 3.1: The 32 general knowledge questions used in our experiments.
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Instructions-Experiment 1

Welcome! In the study Quantitative estimates we investigate human decision-making. In

what follows you will be shown 32 estimation tasks and you are asked to provide your

quantitative estimates.We would like to ask to answer all the estimation tasks

spontaneously and truthfully without any external help (e.g lexica or the internet).

You will not be evaluated according to the correctness of your estimates. As a result, if you

use other sources of information, you will only harm the quality of the results of this study.

The correct answers will be presented to you at the end of the experiment.

All the answers will be evaluated anonymously and without relation to your personal

information. The study will last approximately 40 minutes. You will receive 8 Euros for

your participation. In case you terminate the experiment too early we will not compensate

you.

Instructions-Experiment 2

Welcome! In the study Quantitative estimates we investigate human decision-making. In

what follows you will be shown 30 estimation tasks and you are asked to provide your

quantitative estimates. We would like to ask to answer all the estimation tasks

spontaneously and truthfully without any external help (e.g lexica or the internet).

Each task has two parts. In the first part you will be asked to provide a first spontaneous

estimate. In the second part you will receive information about the estimates of another

participant or a group of participants on the same task and you will be asked once more to

provide your estimates.

You will not be evaluated according to the correctness of your estimates. As a result, if you

use other sources of information, you will only harm the quality of the results of this study.

The correct answers will be presented to you at the end of the experiment.

All the answers will be evaluated anonymously and without relation to your personal

information. The study will last approximately 40 minutes. You will receive 8 Euros for

your participation. In case you terminate the experiment too early we will not compensate

you.



Social influence and the collective dynamics of opinion formation 79

Figure 3.9: Screenshot of the first experiment. The participants answered 32 general knowledge questions
and reported their confidence and the experienced difficulty of the questions.
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Figure 3.10: Screenshot of the second stage of the second experiment. After giving their first answer
and reporting their confidence the participants were exposed to the answer and confidence level of another
participant and were asked to revise their initial estimate.
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Chapter Abstract

Markets for cultural products are characterized by highly skewed popularity distributions.

In addition, it is notoriously hard to predict the success of specific cultural products. We

show that both these emerging properties of the markets can be captured in a parsimonious

model of social interaction in which agents with diverse yet correlated preferences search

the alternatives in order of popularity and choose the first alternative with utility higher

than a certain satisficing threshold. The model goes beyond existing accounts of the market

dynamics in that (i) it suggests a novel and psychological mechanism — sequential ordered

search — by which social influence plays out (ii) and it allows us to study the welfare

properties of the market in multi-alternative environments. In agent-based simulations we

systematically varied the diversity of preferences in the agent population and the satisficing

threshold employed by the agents and examined the implications for the market dynamics.

We found that searching by popularity leads to an increase in inequality and unpredictability

81
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in the market compared to cases in which agents have perfect knowledge of the alternatives or

search among them at random. Further, we found that in some cases diversity of preferences

in the agent population leads to an increase in the aggregate welfare enjoyed by the agents

in the market.
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4.1 Introduction

In markets for cultural products such as books, music recordings, movies or scientific articles,

a great number of alternatives compete for consumer attention. Consumers tend to consider

only a small subset of the products available in the market and eventually buy only a few

of the alternatives from those they carefully considered. There are two well-documented

empirical observations about these markets. First, they are characterized by highly skewed

popularity distributions — a few “hit” products conquer a large market share, while many

more attract only a few consumers (Merton, 1968; Mitzenmacher, 2004; Newman, 2005).

Second, the success in the market is notoriously hard to predict before a product’s release,

regardless of the tools at the forecasters’ disposal (De Vany, 2004; Goel et al., 2010). Well-

financed blockbusters may eventually fail to find an audience, whereas music albums from

unknown bands may become classics. In the past, different methodologies have been used

to reproduce in a model these two properties of these markets (e.g. Adler, 1985; Chung and

Cox, 1994).1

Recently, a set of groundbreaking experiments conducted by Salganik et al. (2006) indicated

that social information in the form of other people’s choices leads to an increase in inequal-

ity and unpredictability in the market. In addition, the experiments showed that the large

consumption inequalities observed in the markets reflect actual differences in quality, but

only partly so. Salganik et al.’s work demonstrated that previous modelling accounts of the

markets for cultural products were at best incomplete. Further, the experiments hinted to

the rich welfare dynamics of these markets. Clearly, hit alternatives that are eventually con-

sumed by a large part of the population have a great impact on aggregate welfare. Consider

scientific articles or whole research programs that accumulate citations and are followed by

numerous graduate students, while work of higher quality perhaps remains undiscovered. To

design more efficient market mechanisms, it is crucial to understand how the popularity dy-

1The authors would like to thank Perke Jakobs, Mirta Galesic, Russell Golman, Shenghua Luan and
Thomas Stork for their remarks on earlier versions of the paper and the members of the ABC group for their
feedback during internal presentations. The authors would also like to thank Anita Todd for editing the
manuscript.
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namics arise from individual behavior, through which some of the alternatives become hits

while many more remain shrouded in oblivion. How to model the decision processes at the

individual level identifying the role of social information, remains an open question.

The first attempts to model popularity dynamics were based on models of stochastic pro-

cesses that fit market dynamics well, but did not take into account quality differences or

postulate any decision-making processes (e.g. Price, 1976; Chung and Cox, 1994). Later,

models that spelled out the individual decision-making process and social influences brought

new conceptual insights to the field (e.g. Adler, 1985; Banerjee, 1992), but abstracted away

many of the properties of the markets. More recent models, to a large extent inspired by

Salganik et al.’s (2006) experiments, represent significant progress (Borghesi and Bouchaud,

2007; Hendricks et al., 2012; Krumme et al., 2012; Denrell and Le Mens, 2013). However, the

modelers either focused on the specifics of Salganik et al.’s experiments or postulated strict

assumptions to derive precise analytical solutions. This leaves a lot of room for improvement

in terms of (i) the external validity and scope of the model (ii) drawing conclusions about

welfare outcomes in the markets for cultural products.

We adopt and extend a well-established framework of individual decision-making in eco-

nomics, marketing and psychology — sequential search (Simon, 1955a; DeGroot, 1970). The

agents in our model use a simple psychological search rule: They consider the alternatives

in the order of aggregate popularity information. This allowed us to fit important charac-

teristics of cultural goods markets better than previous models did and improve the external

validity. In our model, consumers (agents) sample the alternatives one after another until

they encounter an alternative with quality higher than a satisficing threshold. We relied on

agent-based simulations rather than deriving closed-form analytical solutions. This gave us

the flexibility to explore more representative market scenarios. Scaled up to the market level

the model accounts for the emerging properties of the markets for cultural products. By

varying structural characteristics of the environment — the diversity of preferences in the

agent population and the cost of sampling one alternative — we generated predictions for

the inequality and unpredictability in the market that could be tested against data from the
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field and be used to guide future experimentation. We compared our model against random

search, a well-studied choice model for which optimal solutions exist. For cost of search equal

to zero the two processes are equivalent to the perfect information hypothesis. However, they

strikingly diverge as the costs of search increase. We analyzed the welfare outcomes of the

market and how they depend on parameters of the model. We found a surprising beneficial

effect of moderate amounts of diversity of preferences on the welfare of market participants.

Finally, since it is an agent-based model, the framework is flexible and other psychologi-

cal mechanisms, such as product awareness or network externalities, can be explored in the

future.

4.1.1 Literature review

A number of methodologies have been used to model the markets for cultural products. Some

explicitly attempt to reproduce the macroscopic patterns observed in actual markets, while

other take an abstract approach and attempt to provide general insights into individuals’

decision-making processes and their welfare implications. In what follows we categorize the

literature into three distinct groups. The first consists of models formulated as stochastic

processes that with time produce highly skewed popularity distributions. The first model of

this kind was presented by Yule (1925) to describe the process of speciation in biology. In

the 1950s Simon (1955b) developed a general stochastic process model that could account

for skewed distributions observed in many empirical phenomena in the social and natural

sciences. Price (1976) presented the first model that explicitly attempted to capture the

popularity dynamics of citations of academic publications — a cultural market par excellence.

His model was expressed as a Polya’s Urn, in which the discrete probability of an event

increases every time that the event occurs. This leads to a positive feedback loop that over

time makes some events very likely to occur while other events become very unlikely. Working

along similar lines, Barabási and Albert (1999) developed a well-known model of preferential

attachment. With proper parameterization, their model can account for the inequality in

distribution of hyperlinks among websites on the Internet but more abstractly it can be
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employed to capture any type of popularity dynamics. The last two models capture the

emerging dynamics of the market and the resulting popularity distributions quite accurately.

However, they abstract away the quality differences of the alternatives as well as the decision-

making processes of the individuals participating in the market. The alternatives in these

models are described only in terms of the dynamically acquired popularity. Thus, although

they provide a good summary of the properties of the market on the macro level, they are

insufficient for identifying what aspects on the individual level give rise to the rich-get-richer

dynamics and the market outcomes.

The second group consists of models in which the inequality and unpredictability in the mar-

ket are driven by inherent or socially acquired differences in quality or utility. These models

try to map the important aspects on the individual level that lead to observed market out-

comes. Rosen (1981), for example, used a convex relationship between quality and market

success to explain why small differences in product quality or utility can lead to large differ-

ences in market success. However, accounts based exclusively on quality differences cannot

explain the difficulty of predicting success ex-ante in these markets. A breakthrough in ex-

plaining unpredictability came with incorporating social influences, such as positive network

externalities, into the models: Leibenstein (1950), Adler (1985), Elster (1989) and Brock

and Durlauf (2001) have shown that when agents directly derive utility from coordinating

on the same choices as other agents, unequal and unpredictable consumption distributions

can arise. For example, people might buy a popular book because they will enjoy it even

more due to all the conversations they we will have about it with their friends and colleagues.

Arthur (1989) has shown how a similar principle works on the production side — the more

consumers adopt a certain product early on, even by chance alone, the more resources the

company will have, and the product’s quality will increase. This creates a positive feedback

loop, which further increases the number of consumers. Network externalities certainly play

a role in cultural goods, but they are unlikely to be the whole story. This is exactly what

the recent experiments conducted by Salganik and his collaborators (Salganik et al., 2006;

Salganik and Watts, 2008, 2009) have shown. They found that a different form of social
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influence plays a crucial role — social information in the form of other people’ choices enters

the agent’s decision process and strongly influences inequality and unpredictability in the

market.

Why do we give such weight to Salganik et al.’s (2006) experiments? They designed an artifi-

cial music market called Music Lab with thousands of participants. Even though participants

knew the market was part of a science project, the experiment was very realistic and its design

simulated an actual online market. Participants in the market decided sequentially to listen

to and download any number of 48 songs from relatively unknown bands. In the baseline

condition the participants chose to listen and download songs from a randomly ordered list.

In one social influence condition Salganik et al. introduced social influence by presenting

next to the song the number of times the song was downloaded by other participants. In

another condition, they additionally ordered the songs according to their popularity, as in a

bestseller list. They repeated the experiment with the same initial conditions several times

with new samples of participants each time. This allowed them to measure the inequality and

unpredictability in the emerging market. Given the strength of their experimental design and

its ability to measure preferences without social influence, they have mounted a convincing

case that inequality and unpredictability in the market increase substantially as a result of

the social information available to the market participants.

Salganik et al. (2006) had clear experimental hypotheses, but did not focus on the decision-

making processes of the participants and did not postulate a precise model that would explain

their results. To fill this gap, Borghesi and Bouchaud (2007) and Krumme et al. (2012) de-

veloped models tailored to the design of the experiment. Borghesi and Bouchaud (2007)

constructed a model inspired by the Ising model of ferromagnetism and employed it to repli-

cate the end of simulation results of the Music Lab experiment. In their model, like in some

of the models discussed in the second category, social influence can be seen as a network

externality parameter, which is added to the available public and private information when

the agents choose whether to download a song. By contrast, Krumme et al. (2012) described

the decision to download a Music Lab song as a two-step process. The agents first choose
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whether to sample a song and then whether to download it. In their model, social influence

enters as an availability parameter that controls for the probability that an item will be

sampled given its position on the screen. The models reproduce the popularity dynamics

observed in the Music Lab experiments, but (i) they require further specification in order

to generate predictions for markets with different conditions than in the Music lab experi-

ment and (ii) they do not consider the implications of social interaction for the welfare of

the participants in the market. Krumme et al. provided evidence that social influence is

informational. This leads us to a third group of models that like in the model presented in

Krumme et al. highlight the role of social information in individual decision processes.

In contexts in which decision makers choose sequentially, Banerjee (1992) and Bikhchan-

dani et al. (1992) have shown that the decisions of very few individuals in the beginning of

the decision-making sequence determine whether an alternative will be selected or rejected.

Hendricks et al. (2012) developed a model based on that insight that captures the main char-

acteristics of real-world cultural markets. They populated the market with agents following

a simple search model, where agents have heterogeneous preferences and observe only the

aggregate purchase history. They found that availability of social information in this form

affects the probability that herds will occur, depending on the quality of the products. The

probability that low-quality products will become hits goes to zero, while for high-quality

products the probability that a sub-optimal product becomes a hit is greater than zero. In

our opinion this model comes the closest to representing the crucial aspects of cultural goods

markets. However, the decision to search and then select an alternative is made individually

for each option. In markets swarmed by a great number of alternatives this is very strong

an assumption. In addition Hendricks et al. made several simplifying assumptions to derive

analytical solutions. For example, alternatives in their models can be either low or high

quality and agents know the decision processes of all other agents and update their decisions

in a fully rational way. Imposing these constraints again impedes the external validity of the

model and makes it difficult to generalize results to slightly different but equally interesting

market scenarios. This also limits their analysis of welfare consequences of social influence
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in the market.

4.1.2 Our modeling approach

We sought to develop a simple model of an individual decision-making process with as-

sumptions that reflect human cognitive capacities and the most salient characteristics of the

markets for cultural products. We started with some key observations about the markets:

People can learn the true utility of a product fairly quickly. For example, before a purchase

consumers can listen to a song, watch a movie trailer, skim through a book, or read an

abstract of a scientific article to assess its utility. However, to learn the utility consumers

examine the products one by one and pay a non-negligible cost in terms of time or effort.

For instance, people can read only one abstract at a time and usually pay a cost in time

spent reading and not doing something else. Further, consumers are constrained by their

time or budget to consume only a limited number of these products. Finally, simply because

there are a great number of products in the environment, consumers do not have the time

resources to examine each one before making a choice. Thus, consumers necessarily consider

only a subset of the total number of alternatives available in the environment.2 These ele-

ments of the decision making process can be neatly and formally captured by a sequential

search model (e.g. DeGroot, 1970).3 In our model each agent makes decisions following this

process. Intuitively, such an agent stops searching after encountering a good-enough alter-

native, although better alternatives may remain undiscovered in the market. This can be

expressed in the form of a stopping threshold: The agent continues to sample alternatives

until it encounters one that satisfies this threshold. With certain assumptions satisfied and

when agents make decisions in isolation, optimal solutions can be computed. Importantly,

2These observations lead us to believe that the simultaneous examination of alternatives used in some
previous models (Borghesi and Bouchaud, 2007) is an oversimplification. Similarly, modeling the process
as a choice of a single good (Hendricks et al., 2012) is also oversimplifying since decisions might depend on
alternatives examined previously.

3An early model of this kind was put forward by Simon (1955a) as a boundedly rational alternative
to omniscient utility-maximizing agents. Shortly thereafter, a mathematically rigorous theory of optimal
sequential search behavior was developed in statistics (DeGroot, 1970). The models of sequential search have
been widely applied — for example, exploring the search for jobs (McCall, 1970), lower prices (Telser, 1973)
or new technologies (Muth, 1986).
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there are experimental results showing that individual behavior in such problems can be

approximated by threshold decision strategies (Rapoport and Tversky, 1966; ?; Hey, 1987;

Lee, 2006).

Further, in markets for cultural products social influence shapes the interaction among con-

sumers — in our highly interconnected world agents often possess some information about

the popularity of the alternatives, or their information on available alternative is influenced

by popularity. This is reflected in popularity of “best of” lists for movies, books, songs,

albums and so on. Popularity affects the probability that a person will hear a song on the

radio (Hendricks and Sorensen, 2009); people are more likely to talk about popular products

with their friends; news websites are more likely to report on such products; and in online

stores items are often by default ordered according to their popularity, or consumers can

easily do so. At the cognitive level, popularity could be reflected in the fluency with which

agents process the alternatives in memory (Hertwig et al., 2008).

There are several ways to implement information about popularity in the model. We took the

simplest route by influencing the sampling process rather than directly the choices (Denrell

and Le Mens, 2013); popularity determines the order in which the alternatives are searched.4

As in a bestseller list, the agents start by examining the alternative that has been selected

by most agents and move down to less popular alternatives. Importantly, this is not a

“globally rational” method, where agents would have access to all the decisions of previous

agents and their order of searches. Instead, the agents behave as naive statisticians, not

questioning where their sample comes from (Fiedler and Juslin, 2006) but they still make

rational decisions based on their sample (Denrell and Le Mens, 2007). This approach is

in line with the observations from the Music Lab experiment (Krumme et al., 2012). We

will show that a model based on a population of agents whose decision making is driven by

such a simple model already produces promising results that capture the stylized facts of the

markets.

4A basic assumption of sequential search models is that the decision-makers search the alternatives in a
random fashion (DeGroot, 1970). In our simulations we used this model as a reference frame where agents
are under no social influence.
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Conceptually, our model incorporates many of the notions of existing social influence models

such as sequentiality in choice, threshold rules, and heterogeneity in preferences (e.g. Gra-

novetter and Soong, 1986; Arthur, 1989; Banerjee, 1992; Hendricks et al., 2012) and illustrates

how these can be operationalized in multi-alternative choice environments. However, it goes

beyond these models as it illustrates that a simple cognitive mechanism — limited sequential

search — captures the emerging properties of the market such as skewed popularity distri-

butions, outcome unpredictability and the imperfect relation between perceived quality and

popularity better than previous theoretical accounts. Note that our model is the first that

explicitly lays down two types of sequentiality. Within agent sequentiality, found in search

models (e.g. DeGroot, 1970) and which refers to the agents looking at the alternatives one

after another and stopping once they find a satisficing one and between agent sequentiality

found in informational cascade and herding models (e.g. Banerjee, 1992), which refers to

the agents deciding one after another. Previously, models of social influence have taken into

account only the second.

The remainder of the paper is structured as follows: We present the model in Section 4.2,

where we also provide a basic analysis and discuss the assumptions. In Section 4.3 we present

the results of an agent-based simulation over a broad range of parameters of the model. In

Section 4.4 we discuss the results, present some applications and extensions, and finish with

concluding remarks.
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4.2 The model

4.2.1 The environment

There are N alternatives (or goods) X1, ..., XN in the market, populated by M agents

A1, ..., AM . The alternatives have an objective utility component uo, which is identical for

all the agents, and a subjective component us, which is agent specific. The overall utility of

an alternative u is then a simple sum of these two components u = uo + us. The objective

component uo of each alternative is a draw from an independent and identically distributed

(iid) random variable, normally distributed with mean μ and variance σ2
o . The subjective

component us of each alternative is iid normal with the same mean μ, but with a different

variance σ2
s . The overall utility is then a sum of two draws from iid normal variables, which

itself is an iid normal variable with variance σ2 = σ2
o + σ2

s .

The agents encounter alternatives sequentially and they can learn the utility of an alternative

un only by sampling it and paying a cost c. We refer to c throughout the text as search cost.

The agents can sample as many alternatives as desired, but they can choose only one of the

alternatives they have sampled. An example of sampling behavior could be listening to a

couple of songs or skimming through several books and finally opting for one of them. We

assume that the search cost is constant and that there is no post-sampling uncertainty —

by sampling the alternative the agent learns its true utility. The framework can be easily

extended to cases where the agents can choose more than one alternative or cases where some

uncertainty remains even after sampling.

An agent’s return function can be summarized as,

Rn(u1, u2, ..., un) = max(u1, u2, ...un) − nc (4.1)

Note that the returns depend on the utility of the best alternative discovered so far and the
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search cost. The returns from sampling one more alternative can be formulated as,

R(un, c) = Pr(un > max(u1, u2, ...u(n−1))) × (4.2)

E(un −max(u1, u2, ...u(n−1))|un > max(u1, u2, ...u(n−1))) − c

When viewed on the level of a single agent, this is a classical optimal stopping problem

— examined extensively in statistics and economics (e.g. DeGroot, 1970) — in which after

examining a new alternative the agents decide whether to sample further or to stop search.

Optimal stopping problems with a payoff function defined this way are called stopping prob-

lems with recall.

In studying the effects of social influence on the behavior of agents, it is important to have

baselines against which the effects of search behavior and social influence on the structure

of the market and the welfare outcomes can be measured. In network theory, for example,

the random graph model continues to serve the role of baseline against which other network

structures are compared (e.g. Watts and Strogatz, 1998).5 For this reason, we examine two

types of search scenarios — one in which agents do not have access to popularity information

and one in which they do. We call the first market a random search market (random search

in short), and the second a popularity heuristic market (popularity heuristic in short). When

the cost of search is 0 both these processes converge to the perfect knowledge assumption of

neoclassical models (for a similar experimental comparison see Reutskaja et al., 2011).

4.2.2 Random search

The agents do not have access to any social information and they search the alternatives in

random order. This scenario has been studied extensively and complete theoretical treat-

5This is straightforward to do in our model and simulations, but empirically it is a challenging problem.
One of the important contributions of Music lab experiments by (Salganik et al., 2006) was exactly a successful
measurement of preferences without social influence.
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ments can be found in Chow et al. (1971). An optimal threshold T can be found for which

the return from sampling one more alternative is zero, R(un, c) = 0. A standard result is

that as the cost of sampling increases, the optimal threshold T decreases. Intuitively, for a

high cost, an agent is willing to sample more only if the highest u discovered thus far came

from the lower part of the distribution. Moreover, the return is always positive as long as

the utility of the best sampled alternative is lower than the optimal threshold.

When sampling from a distribution with known variance and mean, the optimal threshold

depends only on the cost of sampling and can be written as T (c). This result holds irrespective

of the total cost of search paid so far or the number of alternatives that remain to be sampled.

The optimal sampling policy for agent i can be formally summarized as:

if uni > Topt(c), stop sampling (4.3)

if uni ≤ Topt(c), continue sampling

The agents A1, ..., AM make their choices sequentially. An agent is chosen randomly without

replacement. The agent then searches through alternatives and chooses one of them. This

process is repeated until all M agents have made their choice and the market outcome is

known. Since agents do not make use of social information we use random search as a

reference frame to evaluate social influence.

4.2.3 Social interaction

Here we describe how, exactly, social information is created in the market. This information

will then be used by agents following the popularity heuristic.

After the first agent, a second or mth agent is chosen to make their choice, again at random

without replacement. Now the agent can observe the choices made by previous agents and

potentially benefit from them. However, the agents cannot observe a detailed history of

choices. Instead they observe the summary information of how many times each alternative
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was chosen.6 In other words, there is a popularity vector P = {P1, ..., PN} that records the

choices of the corresponding alternatives X1, ..., XN and it is updated whenever an agent

makes a choice. Examples of such popularity information would be product sales, number of

song downloads, or number of article citations. Thus, the only point of social interaction is

via the publicly available information on popularity P .

4.2.4 Popularity heuristic

The agents sample the alternatives X1, X2...Xn in decreasing order of popularity P1 > P2 >

... > Pn, where popularity is defined as the number of times that an alternative has been

selected in the past. When there is a tie, the agents choose which one to sample next

at random. Thus popularity heuristic can be seen as a single attribute heuristic, where

popularity is the only cue considered by the agents to order the alternatives (for single

attribute heuristics see Bagwell and Ramey, 1994; Hogarth and Karelaia, 2005). We call the

order in which the alternatives are searched the search path. The order of search is the only

point where social information influences agents that use the popularity heuristic to make

decisions in cultural markets. The agents stop search when they encounter an alternative

with utility higher than a threshold Tpop. The returns from examining one more alternative

can be expressed as in (2). The sampling policy for an agent i is as follows:

if uni > Tpop, stop sampling (4.4)

if uni ≤ Tpop, continue sampling

Although the popularity heuristic is behaviorally intuitive it is not closed-form optimal. A

closed-form optimal solution would require that the agents infer the expected utility and

6This is where our model differs from informational cascade models (Banerjee, 1992; Bikhchandani et al.,
1992) and agrees with more recent social influence models (Borghesi and Bouchaud, 2007; Hendricks et al.,
2012).
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the distributions of utilities for the alternatives available in the market on the basis of the

current popularity information. In addition, a fully rational policy should be based on the

assumption that other individuals are acting in a closed form optimal manner. Such an

approach is computationally intractable for both artificial and human agents. The popularity

heuristic is boundedly rational (Simon, 1955a). In both random search and the popularity

heuristic, the threshold employed by the agents can be seen as a parameter in the model. In

random search one can always tune the parameter to correspond to the optimal behavior.

In the popularity heuristic, by contrast, no threshold level exists for which optimality is

guaranteed. In the result section we will show that for the same threshold and cost of search

the popularity heuristic outperforms random search. The fact that the heuristic outperforms

an “optimally” derived strategy that can operate in the same environment already indicates

that it is an effective strategy.

In both search rules, when all the alternatives in the market have been searched and no

alternative has utility higher than T , the agent simply selects the alternative with the highest

utility. Further, we assume that the agents can refrain from sampling any alternative when

the cost of search is very high. In that case the agents are satisfied with the status quo

outcome.

4.2.5 Assumptions

Here we make transparent and justify the modeling choices made in the previous section.

First, we have assumed that agents employ a fixed threshold which in random search corre-

sponds to the optimal stopping rule. This is a simplifying assumption, as in real life, people

learn stopping rules gradually from experience in previous realizations of the market. Con-

lisk (2003) has shown how agents in random search problems can gradually converge to the

optimal threshold by following a simple learning process.

Second, we have assumed that the agents can always recall alternatives that they have sam-

pled in the past. This assumption is well suited for the markets of cultural products as the
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agents can in almost all cases find music albums, books or papers that they have listened to,

read, or heard of in the past. Internet marketplaces and search engines have contributed a

great deal to making previously examined cultural products available at any time.

Third, we have assumed that agents use only the popularity information to order the alterna-

tives. In some scenarios this assumption may reflect actual consumer behavior (for example

consider most read lists that are often widely used in online press), but in many cases agents

have access to more information and they can use it to order the alternatives. Our model can

be seen as a boundary case of an ordered search model in which several pieces of information

are processed (e.g. Armstrong et al., 2009; Analytis et al., 2014). This strong assumption

allows us to focus on the interplay between sequentiality in choice and diversity of preference.

Fourth, we assumed that the products do not bear a price tag and that can be consumed

by an infinite number of agents. Indeed, in terms of production, cultural products are

nonrivalrous information goods with a potentially unlimited supply. Clearly, after publishing

a scientific article a great number of scientists can read it without increasing the marginal cost

of production. If a universally best alternative existed, such as for example an outstanding

online course in statistics, everybody would be better off by consuming that alternative

without restricting the supply and increasing the price for other individuals. Most cultural

products are excludable goods; That is, a price can be assigned to them. However, for many

cultural products, for example movies, music albums and books, there tends to be a small

price dispersion and in some cases there is even a predefined price (as in cinema tickets)

for an entire product category. Yet sometimes, they are supplied freely by producer choice,

as for example in the case of YouTube videos, massive online courses, or designer products

distributed under a creative commons license. In the latter case cultural products can be

categorized as pure public goods.

This brings us to the last major assumptions of the model. We have assumed that the

agents have diverse preferences. The research on recommender systems demonstrates that

this is clearly the case in practically all markets for cultural products. In fact, the degree of

diversity in preferences varies in different cultural markets. Note that one could also assume
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variability in the stopping thresholds employed by the agents, but this would have only a

marginal contribution to the results. Finally, we have opted to describe the subjective and

objective utility components with a normal distribution for its neat aggregation properties

and its plausibility.
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4.3 Results

We simulated markets consisting of 1,000 agents that decided sequentially which of 100 alter-

natives to choose. For each market we drew the objective utilities uo of the alternatives from

a normal distribution with mean equal to 0 and variance equal to σ2
o . For each individual

agent in the market we drew the subjective utilities us of the alternatives from a different

normal distribution with mean equal to 0 and variance equal to σ2
s . For all the analyses

reported in the results section we assumed that agents following random search employ the

optimal stopping threshold. Then, we fixed the threshold parameter of the popularity heuris-

tic to correspond to the optimal threshold for random search. We chose that implementation

for two reasons. First, even if we were to test slightly different threshold rules, the main

results of the simulation in terms of the emerging properties of the market would be very

similar. It will soon become clear that the results are primarily driven by the ordering of

the alternatives rather than by the stopping threshold. Second, in this way we can directly

compare the welfare outcomes of the two models at the individual and aggregate level.

We systematically varied three parameters in our simulations. First, we varied the con-

tribution of the objective utility uo and the subjective utility us in the overall utility of

the alternatives available in the market. This was done by setting the objective vari-

ance σ2
o equal to d, where d = {0, 0.1, 0.2, ..., 1} is a diversity vector, and the variance

of the subjective utility for each individual agent σ2
s equal to 1 − d. Second, we varied

the cost of search c that agents have to pay when sampling an alternative. We tested

five possible costs, c = {1/23, 1/24, 1/25, 1/26, 1/27}, which correspond to the thresholds

T = {0.78, 1.15, 1.47, 1.76, 2.03}. In this way we covered a large space of plausible costs

encountered in actual markets for cultural products. When c = 1/23, the cost of searching

one more alternative is a significant proportion of the average utility eventually enjoyed by

the agents, whereas when c = 1/27, the cost of search is negligible. We opted to use the

cost consistently on the x axis rather than the threshold although they can be used inter-

changeably. Note that in the first part of the Result section only the thresholds need to be
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known, whereas for the welfare analyses both the thresholds and the costs of search need to

be known. Finally, we varied the decision-making process — random search or the popularity

heuristic. Overall, this resulted in 11x5 possible market environments for random search and

the popularity heuristic, respectively. To account for randomness in the whole process, we

ran each condition 100 times. In all the analyses conducted, except when we focused on

unpredictability, we generated all the alternatives in the environment anew.

In the following sections we first examine how different search rules determine the emerging

properties of the market, such as the market-share inequality, the outcome unpredictability

and the relation between objective utility and popularity and then we turn to the welfare

analysis. We wrote the code for running the simulation, analysing the results, and produc-

ing the figures in R language (Ihaka and Gentleman, 1996), and it is publicly available at

the website: https://github.com/pantelispa/popularityHeuristic. The exact dynamics of the

original simulation can be reproduced in https://hstojic.shinyapps.io/popularity/. We pro-

grammed the interactive environment with the Shiny application. Note that the application

requires a strong computational system to run properly. In some systems it takes up to a

minute per condition to load the original data of the simulation.

4.3.1 Utility, popularity and inequality

Let us first examine the aggregate behavior implied by each of the search rules. The popu-

larity heuristic markets are characterized by evident rich-get-richer dynamics. The decisions

of the first agents shape the search path that will be followed by agents deciding after them.

Over time the search path tends to stabilize, which implies that the agents examine the al-

ternatives in approximately the same order and tend to choose from the same subset. When

the agents employ a lower threshold they examine a smaller subset of alternatives and swarm

on fewer of them. In contrast, in random search markets for each agent each alternative that

satisfies the threshold stands an equal chance of being selected (1/k, where k is the number of

alternatives crossing the threshold). Thus, a lower threshold implies that more alternatives
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Figure 4.1: Up and botton row: The market share of all 100 alternatives in all 100 repetitions of the
popularity heuristic and random search rule for the conditions with cost of search c = 0.125 and diversity of
preferences d = {0.2, 0.5.0.8}. Middle row: The perfect knowledge condition where both processes converge
for c = 0. The inset plots depict the results from a randomly drawn single run of the simulation. In the
popularity heuristic condition, the objective utility of the alternatives is only weakly related to the obtained
market shares at the end of the simulation. In contrast, in random search the market share is a very accurate
predictor of the utility of the alternatives. We report the Pearson correlation in all the conditions.
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stand an equal chance of being selected. Inversely, a higher threshold means sampling more

broadly but choosing more selectively.

Note that for cost of search 0, both search processes converge to a perfect knowledge market

(Figure 4.1 middle) since the agents sample all the alternatives regardless of the search rule.

Then, a convex relationship between objective utility and market share exists that is espe-

cially pronounced when the subjective utility component is small. Such a market meets the

assumption put forward by Rosen (1981). However, as the cost of search increases (stopping

threshold decreases) the two processes diverge leading to distinct aggregate patterns.

At the end of the simulation under the popularity heuristic, many alternatives with high

objective utility are never sampled or are sampled by very few individuals (see the inset

graphs in Figure 4.1). Clearly, there is a great deal of luck involved at the first few steps

of an emerging market, and having a high objective utility is necessary but not sufficient

for succeeding in the market. Although it is possible to predict failure it is impossible to

predict success. In contrast, the market share captured by the different alternatives increases

gradually as a function of the objective utility component of the alternative in random search

and quite steeply in the perfect knowledge condition. In the popularity heuristic market the

objective utility is only weakly correlated with the obtained market share, while in random

search more alternatives are choosen at least once and the correlation is much stronger.

Like in Salganik et al. (2006), we used the Gini coefficient to measure the inequality. The

coefficient is defined as G =
n∑

i=1

n∑
j=1

| mi−mj | /2n
n∑

k=1

mk. The term mi stands for the market

share of an alternative that is defined as mi = di/
n∑

l=1

dl, where di is the number of times the

alternative was selected so far and dl is the sum of choices made until decision maker l. The re-

sults for all the 110 conditions are shown in Figure 4.2. Lower costs of search (higher stopping

thresholds) imply a lower Gini coefficient for the popularity heuristic, whereas they have the

opposite effect for random search. Note that as the cost of search decreases (stopping thresh-

old increases) the Gini coefficients of the two processes gradually converge to those of the per-

fect knowledge markets, which are G = {1, 0.98, 0.96, 0.93, 0.9, 0.85, 0.8, 0.72, 0.62, 0.46, 0.18}



The collective dynamics of sequential search in markets for cultural products 103

●
●

●

●
●●

●

●

●●
●
●

d = 0.5

●

●

d = 0.5

Popularity heuristic Random search

0.5

0.6

0.7

0.8

0.9

1.0

1 23 1 24 1 25 1 26 1 27 1 23 1 24 1 25 1 26 1 27

Search cost

G
in

i 
c

o
e

ff
ic

ie
n

t

Popularity heuristic Random search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 23 1 24 1 25 1 26 1 27 1 23 1 24 1 25 1 26 1 27

Search cost

D
iv

e
rs

it
y
 o

f 
p

re
fe

re
n

c
e
s

0.2
0.4
0.6
0.8
1.0

Gini

Figure 4.2: Left: the average Gini coefficient in a market with d = 0.5. In the popularity heuristic market
a higher search cost (lower stopping threshold) leads to more inequality in the market. In contrast, in
the random search market it implies a more egalitarian distribution. As the cost of search drops the Gini
coefficient of the two processes converges to that of a perfect knowledge market. Right: the average Gini
coefficient for all 55 popularity heuristic and random search markets.

for diversity of preferences d = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, respectively.

4.3.2 Outcome unpredictability and luck

How accurately could we predict the popularity of the alternatives if we were able to rerun

the entire market with the same initial conditions? To answer this question we generated

10 different distributions of objective utilities, which we refer to as worlds, and simulated

each of these worlds 10 times every time with new agents. In this way we balanced the

variability that could be caused due to the environment — consider a randomly generated

world with an extraordinarily good alternative — ,with the need for additional replications

of the same environment. Following Salganik et al. (2006) we define the unpredictability
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Figure 4.3: Left: The unpredictability in the market as a function of the cost of search when d = 0.5.
For both the popularity heuristic and random search markets, the unpredictability in the market decreases
as a function of cost of search, converging to 0, which corresponds to the perfect knowledge market. The
convergence is much steeper in the popularity heuristic market were for high cost of search the market is
very unpredictable. The variability of the unpredictability coefficient is large in the popularity heuristic
market, whereas it is negligible in the random search market. Right: the unpredictability coefficient for all
55 conditions in the popularity heuristic and random search markets.

related to a specific alternative as vi =
W∑
j=1

W∑
k=j+1

| mij −mik | /
(
W
2

)
, where mij is the market

share of an alternative i, in world j and W is the number of worlds. We then defined the

overall unpredictability in an economy as V =
n∑

i=1

vi/2. Following this formula the results

have an intuitive interpretation that holds for any number of alternatives. Unpredictability 1

corresponds to the case where the entire market share goes to a different alternative in every

single replication (world) of the simulation. Unpredictability 0 corresponds to the case where

the market share is distributed identically in all the replications (worlds) of the simulation.7

7Salganik et al. (2006) and Salganik and Watts (2008, 2009) defined the overall unpredictability as V =
n∑

i=1

vi/S where S is the number of alternatives in the market (in their case, songs). Krumme et al. (2012)

and Borghesi and Bouchaud (2007), who have developed models that can capture the dynamics of the Music
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As depicted in Figure 4.3 both search processes converge towards unpredictability 0 as the

cost of search decreases (threshold increases), which corresponds to a perfect knowledge

market. The popularity heuristic markets are very unpredictable for high costs but become

fairly predictable for low costs. In contrast, the unpredictability reduces at a slow pace in

the random search markets. Similar results are obtained for all values of d. In the popularity

heuristic markets unpredictability as a function of diversity of preferences is bimodal — the

lowest levels of unpredictability are obtained for intermediate levels of d, while it increases

as d goes to 0 and 1. Reasons for higher unpredictability in extremes differ. As d goes to 0,

preferences become correlated and first movers are dictators of the market, but what agent is

the first mover is random from world to world. On the other hand, as d goes to 1, preferences

differ a lot and each world is driven by idiosyncratic agents preferences which are world

specific. In contrast for intermediate levels of uncertainty agents search a bit longer and for

varying lengths down the same search path since their preferences differ to some extent. This

leads to the accumulation of more valuable social information. Different agents eventually

often choose the same objectively better alternatives. Another point worth mentioning is

that while both environments are uncertain, random search markets are predictable in the

long run whereas the popularity heuristic markets are not. The popularity heuristic markets

are non-ergodic, which means that small events have irreversible consequences in the course

of history, whereas the random search markets are ergodic random processes that converge

to approximately the same results for large samples (for more details on non-ergodicity see

Arthur, 1989).

4.3.3 Welfare analysis

In Figure 4.4, we present the average utility obtained in 55 different popularity heuristic

conditions. First, note that in random search the average utility in the market does not

depend on the diversity of preferences in the population but merely on the search cost variable.

Lab experiment also used this formula in their studies. However, according to this formula the maximum
degree of unpredictability depends on the number of alternatives available in the market leading to results
that cannot be compared across studies with a different number of alternatives.
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Figure 4.4: Left: The average gross and net utility of the selected alternative and the average total cost of
search for search cost 1/23. The ribbons represent the variability in 100 repetitions of the simulation. The
average net utility in the market is the highest for intermediate levels of diversity of preferences. Right: the
average net utility and the average total cost of search in the 55 popularity heuristic conditions. The graph
on the left side corresponds to the leftmost columns of the heatmaps on the right side.

As a result, there are only five relevant conditions that are perfectly equivalent, in terms of

average utility and cost of search, with the popularity heuristic conditions with d = 1. When

d = 1 the environment is recreated randomly for each agent. Thus, even though the agents

search according to the popularity order, they essentially behave the same as agents that

search randomly. In these conditions the agents incur the highest average total cost of search

and earn the lowest average net utility from the market. To find out the extent to which the

popularity heuristic outperforms random search in various diversity of preferences conditions,

the reader can simply compare them with the d = 1 condition. Also note that in a perfect

knowledge market (c = 0), the agents always consume the alternative with the highest utility

in the market, which on average has utility u = 2.51.



The collective dynamics of sequential search in markets for cultural products 107

We find that as d decreases, the cost of search steadily declines, as well. When all the agents

have exactly the same preferences, the first agent pays total search cost kc (where k stands

for the number of alternatives sampled until the agent encounters an alternative with utility

higher than T ). All the remaining agents simply imitate the decision made by the first agent

and pay c only once. Following the terminology introduced by Page (2006), the process

is initial outcome dependent. All the agents deterministically follow the choice of the first

individual. The surprising result is that although the average agent in markets with d > 0

incurs a higher average cost of search than the average agent in a market with d = 0, this

loss is outweighed by the benefits of choosing alternatives with higher gross utility. For high

search costs, for example, intermediate levels of d lead to the highest average net utility.

As the cost of search declines, however, the amount of beneficial diversity of preferences

decreases. Consequently, the differences in the average utility among the conditions decline,

as can be seen in the rightmost columns of the net utility heatmap (Figure 4.4). Finally,

because agents tend to follow first agents as d decreases and their preferences become more

correlated, and there is luck in who moves first, a lower d implies more variability in the

average utility in the market. This is illustrated by the ribbons in the left panel of Figure

4.4.

This analysis revealed an unexpected result. Although the costs of search are lowest in

markets with no diversity of preferences, the average net utility is higher in economies with

moderate diversity. What is the process that leads to an increase in the average obtained

utility in the market in such conditions? To gain insight into the process, we examined the

evolution of net utility in the market. We plotted the average net utility enjoyed by the

agents
n∑

i=1

ui/b in sequential blocks of 25 agents for search cost 1/23 (left panel in Figure 4.5).

This analysis reveals that in contrast to a market without diversity where the average utility

remains constant, in markets with some diversity the average utility continues to increase

in the first agent blocks. As discussed above, in a market with no diversity whatsoever,

everybody is satisfied with a decision made by the first individual. Occasionally this turns out

to be an excellent alternative, but more often it is located just off the satisficing threshold. In
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Figure 4.5: The average net utility in the market
l∑

i=1

ui/25 (left panel) and the average total cost of search

l∑
i=1

kic/25 (right panel) where l was set to blocks of 25 agents, for search cost 1/23. When d < 1, the average

net utility in the market tends to increase as more agents make their choices, but with diminishing returns
with each additional agent. The average total cost in the market has the opposite pattern: it decreases with
diminishing returns with each additional agent. The largest increase (decline, respectively) occurs in the very
first agent blocks.

contrast, in markets with some diversity of preferences, alternatives with a higher objective

utility component tend to be gradually pulled toward the beginning of the search order.

Because preferences are not perfectly correlated agents will search a bit further until they

encounter a satisficing alternative. The search path followed by the agents gradually improves

in terms of the encountered objective utilities after the decisions of several first agents.

Consequently, alternatives with higher objective utility components, which in some cases are

even higher than the threshold, tend to conquer the first spots in the search path. Thus, the

agents deciding later in time have a more useful popularity signal, require less search to find

an alternative that satisfies Condition (4), and tend to settle on much better alternatives.
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In essence, some diversity of preferences allows the agents to benefit from the informational

externalities, that are part of the sequential social interaction. By searching and deciding, the

agents unintentionally provide useful information to the individuals deciding after them. The

increase of the average net utility in the economy is observed for all diversity of preferences

conditions, but it is strongest when the cost of search is high (or the satisficing threshold

is low). The reason behind this is clear: With high search cost the agents search relatively

shallowly, leaving a greater potential for further improvement by reordering the alternatives

in the search path.
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4.4 Discussion

Sixto Diaz Rodriguez, a talented folk/rock musician from Detroit for who many thought

destined for great success, released two promising albums at the beginning of the 1970s. To

the disappointment of his producer, his albums sold only a few copies in the United States

and most other countries in the world. However, Rodriguez’s music was an absolute hit

in South Africa, Botswana, Australia and New Zealand. Rodriguez himself was completely

unaware of his superstar status in these countries until he was invited to tour in Australia in

the late 1970s and in South Africa only in 1990s.8 In the absence of counterfactual evidence,

like the different regional markets in the story of Rodriguez, we could quickly conclude that

differences in quality are enough to explain the success or failure in a market. The Music

lab experiment and recent models of social influence have demonstrated that we have to take

into account the social influences that lead to rich-get-richer dynamics in a market. With

these effects exactly the same initial conditions can lead to different end-market outcomes.

Agent-based simulations have the advantage that counterfactual worlds can be created very

cheaply. This way, simulations can generate predictions for environments with conditions

different from the data at hand.

Agents in our simulations followed a sequential search process (Simon, 1955a; DeGroot, 1970),

a model with extensive applications in economics and decent experimental support (Rapoport

and Tversky, 1970; Hey, 1987). We chose this model because it maps important character-

istics of cultural markets better than the models used in all previous studies. This includes

sequentiality both within agents and between agents, costly sampling and focusing on only

a subset of alternatives due to the huge volume of the market. We introduced social infor-

mation into the model through a popularity heuristic, whereby agents examined alternatives

according to aggregate popularity information. Aggregate popularity information is a signal

used widely in real life cultural markets — number of citations and book bestseller-lists be-

ing prime examples. Importantly, recent findings that popularity information influences the

8The story of Rodriguez was portrayed in documentary film ”Searching for Sugar Man” which eventually
earned the Oscar as the best documentary film.
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sampling process rather than the decision process are in line with the usage of popularity

information in our model (Krumme et al., 2012; Denrell and Le Mens, 2013). We used agent-

based simulations to scale up from individual agents to the market outcomes. Our results

might not have the generality of analytical solutions, but we did not have to simplify the

model or commit to strict assumptions about our agents knowledge or information-processing

capabilities, which allowed us to maintain a good match to cultural markets.

4.4.1 Luck and dynamics of success in cultural markets

Stochastic process models suggest that the success of an alternative in the market is a matter

of pure luck or merely early arrival in the market (Price, 1976). Differences in quality

are completely inconsequential with respect to success. In contrast, in models in which

agents have full knowledge about utilities, the eventual market shares of the alternatives

are completely determined by utilities (Rosen, 1981). Salganik et al.’s (2006) experiments

indicated that both quality and luck play a role. Our model pins down an exact cumulative

advantage mechanism by which quality (objective utility) and luck play out. Success in the

market depends on both the utility of an alternative and the decisions of a few influential

decision makers in the market. In our model, conquering one of the first positions in the search

order confers a significant advantage. Alternatives with a high objective utility component

stand a better chance of reaching these positions, which through social interactions may

attract many more consumers over time. Hendricks et al. (2012) reached the same result with

their model, but we show that it holds in much richer setting with within agent sequentiality.

This setting led us to some novel insights on the inner workings of the market. For example,

in our model the decision makers unavoidably remain unaware of the existence of many

high-quality alternatives — the alternatives that will be pulled to the first position of the

popularity list are only a subset of all the high quality alternatives and it is probable that the

alternative with the highest objective utility is not among them. This provides a rationale for

firms competing to place their products along the consumers’ search paths (e.g. Armstrong

et al., 2009; Bagwell and Ramey, 1994). A more important benefit of using this setting was
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that it allowed us to analyze welfare outcomes for the market, which we discuss in details in

the following section.

4.4.2 Exploration, imitation and diversity

Search models exemplify the trade-off between exploiting the best alternative found thus far

and further exploring with the hope of identifying better ones (March, 1991). Exploration

is based on trial and error and entails a high cost for individual decision makers. Thus, in

sequential decision-making environments self-interested decision makers are often better off

by imitating the choices of individuals who have already incurred the costs of exploration. As

an example, consider our model in the conditions with no diversity of preferences. Although

imitation makes sense at the individual level, it deprives the group from additional informa-

tion that could have been collected by individual explorers (Rogers, 1988). This is why in

eusocial species such as bees and ants, in which individuals have evolved to maximize the

fitness of the entire group, the members of the group occasionally explore new alternatives

for hive locations or better paths to reach food sources.9 Information cascade and herding

models, developed by economists portray the shortcomings of imitation and social influence

and stress the potential losses of collective welfare (e.g. Bikhchandani et al., 1992). In con-

trast, social learning studies tend to focus on the effectiveness of imitation strategies at the

individual level (e.g. Laland, 2004; Richerson and Boyd, 2008; Rendell et al., 2010). Depend-

ing on the quality of feedback, and the pay-off structure in the environment, imitation can

lead to either passable or very good results at the aggregate level.

Even in environments where agents are self-interested there are mechanisms that can keep

imitation forces in check and reap some of the benefits of the independent collection of

information. For example, under different sets of conditions a natural equilibrium evolves

between explorers (or producers) and the imitators (or scroungers) (Conlisk, 1980; Rogers,

1988; Kameda and Nakanishi, 2002). Further, in some search environments, barriers to

9Their algorithms are so effective that they have been emulated in operations research to derive solutions
to combinatorial optimization problems (Dorigo and Gambardella, 1997; Karaboga and Basturk, 2007)
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communication in the form of a sparser communication network among agents turn out to

be beneficial at the collective level. They encourage individuals to explore more, supplying

in this way useful information to the group (Lazer and Friedman, 2007; Mason et al., 2008;

Fang et al., 2010). We believe that the interplay between diversity and costly sequential

search provides another such example. Because preferences differ and agents can find out the

quality of alternatives, they sample some alternatives rather than unconditionally imitating

the choice of agents deciding earlier. The popularity information influences the order of

search, but crucially agents still sample some alternatives, which ensures that some new

information is stored in their choices. Over time this behavior improves the search path and

increases the welfare of the collective (see Figure 4.5). Note, however, that too much diversity

makes the signals less informative since preferences become completely uncorrelated, which

then leads to a decrease in the aggregate welfare.

Similar counter-intuitive beneficial effects of diverse preferences have been shown in an earlier

sequential model of social learning (Goeree et al., 2006) and a recent publication on the

dynamics of the academic reviewing process (Park et al., 2014). In line with our account,

in these models diversity incentivizes agents to use individual information providing in this

way useful information to the group. In all these three examples diversity can be seen

as a beneficial hurdle to communication that helps to internalize the strong informational

externalities. This mechanism is distinct from alternative accounts for the bebeficial role of

diversity in groups that are based on complementarities in the problem solving capacities of

the agents in a group (Clearwater et al., 1991; Hong and Page, 2004), or complementarities in

the information possessed by diverse members of a group (Conradt et al., 2013; Davis-Stober

et al., 2014).

Overall, in our study socially informed search led to an improvement in the overall welfare

as compared to random search. As illustrated in Figure 4.1, random search generates much

more useful information, but it does not allow an individual agent to save any costs. Thus,

an agent would prefer to be in a market of random searchers, but would choose using the

popularity heuristic. In our model lower costs of search drastically changed the performance
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of the popularity heuristic, led to much better aggregate welfare outcomes and lessened the

extent to which diversity can be beneficial for the collective.

4.4.3 Revisiting the Music lab experiment

The Music Lab illustrated how history can be rerun in the lab (Salganik et al., 2006). The

authors conducted the experiment with clearly stated hypotheses, but without specifying

a precise individual decision-making model beforehand. They suggested that agent-based

models could complement their research and generate predictions for other possible conditions

of the experiment — a different number of alternatives, or an evolving market (Salganik and

Watts, 2009). As already discussed in the Introduction, two computational models have

attempted to capture the decision-making processes of the participants in the experiment

(Borghesi and Bouchaud, 2007; Krumme et al., 2012). Fitting the parameters of the models

to the data they can reproduce the findings of the experiment.10 Although inspired by

Salganik et al.’s (2006) experiments, our model was not designed to reproduce its exact

dynamics. Instead it was conceived to generate novel insights about the role of social influence

stemming from a well-founded theoretical framework and to highlight the welfare side of the

Music Lab market which was not studied in the experiments or in the follow-up modeling

attempts. Yet, our model generates clear-cut hypotheses about the direction of change of all

the main measures of the Music Lab experiments. Thus, it could serve as a guide for future

experimentation or the collection of field data. For example, our model would predict that

when the number of alternatives increases the inequality and unpredictability in the market

should also increase. Similarly, it would predict more inequality and unpredictability in

markets in which the agents have more homogeneous preferences. In the future we believe that

a more constrained experimental design, in which the number of alternatives to be selected

is pre-specified, would further help to uncover the individual decision-making processes.

10Note that we could fix several parameters of the model, such as the number of alternatives selected
by each agent, the diversity and the satisficing threshold in order to reproduce as closely as possible the
aggregate dynamics.
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4.4.4 Managing social influence

Creators, producers and other individual actors in the markets for cultural products are

primarily interested in maximizing their own benefits from the market. In contrast, the

designers of online cultural marketplaces (such as Amazon), or public organizations might be

primarily interested in maximizing the welfare of the entire agent population. To this end,

the designers may attempt to manage social influence by channeling information selectively to

the agents in the decision-making sequence. An early example of large-scale social influence

management is provided by the work of Wu and Huberman (2008) who examined the social

network Twitter and studied the impact of different post ordering algorithms on the total

number of clicks. How should the social influence be structured if the goal is to maximize

the sum of the utilities of the participants in the market? Our model reveals that agents

deciding early on in the sequence have a large impact on the average utility in the economy. In

addition, agents who act independently of each other supply more information to the agents

deciding after them. Hence, a possible approach would be to give to n agents in the beginning

of the sequence the task of randomly exploring the alternatives. Then, the remaining agents

would follow the search path shaped by those first agents. Such a tentative analysis could

be easily conducted within the current framework or its extensions in the future.

4.4.5 Improving the external validity

Hitherto, we have opted for a minimal and psychologically plausible process model that

is still able to capture the stylized facts of the markets for cultural products. Clearly, in

many actual markets the agents decision-making processes are psychologically richer than

our account. For example, how would social influence play out if agents had access to

further information such as the average rating from other users in addition to the popularity

information?11 Similarly, how would awareness or recognition of some alternatives (e.g.

Narayana and Markin, 1975; Goldstein and Gigerenzer, 2002; Fleder and Hosanagar, 2009)

11Characteristically, Netflix implements a ranking algorithm that combines popularity with other non-social
information to order the alternatives for its users.



The collective dynamics of sequential search in markets for cultural products 116

change an individual’s search and choice strategy and as a result the collective behavior? Or,

how would the collective patterns change if agents accessed information locally from their

group of friends and acquaintances (Pachur et al., 2005) rather than globally from a general

bestseller list? Our model provides a framework within which such psychological insights

and their implications for aggregate welfare could be studied in the future. Extensions

of the model could take into account other sources of information, friendship networks or

product awareness. Such extensions would also be crucial for further understanding and

then managing social influence in real-world marketplaces.

4.4.6 Concluding remarks

To understand most real-world phenomena, like the initial failure and the eventual triumph

of Sixto Diaz Rodriguez, it does not suffice to have an accurate model of individual behavior

that disregards social interaction. We also need to understand how social influence alters

individual behavior and leads to collective macroscopic patterns. The study of collective

behavior has been gaining momentum over the last few decades. New methodological pos-

sibilities such as the accessibility of big data (e.g. Wu and Huberman, 2007; Bentley et al.,

2014), the possibility to conduct large-scale experiments over the Internet (e.g. Salganik

et al., 2006), the rise of agent-based simulations (e.g. Schelling, 1978), or the coupling of

experimentation with simulation methods (e.g. Moussäıd et al., 2013) have contributed to its

development (also see Goldstone and Janssen, 2005; Goldstone and Gureckis, 2009).

In this paper we developed a parsimonious process model of collective behavior based on

a psychologically plausible process model of individual decision-making that can capture

the stylized facts observed in the markets for cultural products. We manipulated diversity

of preferences and search costs and derived predictions about the expected inequality and

unpredictability in the market, as well as the welfare of the participants in them, for the

entire parametric space. The model can inform the decisions of many of the stakeholders

participating in the markets: producers, for instance, betting on which music albums will
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succeed and figuring out how to distribute the risk among them or marketeers planning to

launch a campaign for a product that has not been selling well. It could be a tool in the hands

of policy makers who need to design and justify scholarship schemes to support promising

yet unknown artists. Moreover, it gives insights on how the markets could be designed to

improve the average welfare for the consumers acting in them. Finally, the model can be used

to generate new hypotheses for future large-scale studies such as the Music Lab experiment

and it provides a framework within which additional psychological processes that determine

the market dynamics might be investigated in the future.
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Chapter 5

General discussion

Making sense of patterns of collective behavior and predicting aggregate behavioral measures

is essential for acting effectively in economic and social contexts. By definition, psychology

is the science of behavior, yet until today there have been relatively few occasions where

psychological theories have been employed to understand aggregate behavioral phenomena.

However, things are changing. Recent scientific developments such as the rise of behavioral

economics and computational social science have transformed the way in which we understand

the ties between individual and aggregate behavior. Scientists trained in psychology can now

better than ever leverage the comparative advantages of psychological process models to

tackle problems of aggregate behavior encountered in the social sciences.

In the three projects presented in this dissertation, I have advanced novel process models

and examined their implications for individual and aggregate behavior. In chapter two, I

introduced a psychological search and stopping theory of choice that integrates two mile-

stone models of rational choice: one-shot multi-attribute utility theory and optimal stopping

theory. In chapter three, I presented the results from two experiments designed to study how

people revise their opinions when they are exposed to the opinion and confidence of another

individual. Then, on the basis of these experimental observations, I delineated a decision

tree that describes individual behavior under social influence. The model was scaled-up from
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the individual to the aggregate level by way of an agent-based simulation. Finally, in chapter

four, I presented a psychologically plausible model of choice under social influence which, at

the aggregate level, can reproduce a series of phenomena observed in the markets for cul-

tural products. The models introduced in this thesis yield new insights in regard to the link

between micro and macro-behavior. In addition, they can be seen as case-studies of interdis-

ciplinary work bridging psychology and the social sciences. In what follows, I examine some

of the general implications of the models at the applied, conceptual, and methodological

level.

5.1 Integrating cognitive and agent-based models

Computational methods are already broadly used in simulating cognition and social systems.

This methodological common ground can be capitalized to directly ground models of com-

plex social systems on psychological models. The latter are the rudimentary building blocks

for theories of collective behavior. Cognitive modeling on the one hand, and agent-based

modeling on the other, allows for a seamless integration of the cognitive and social influence

processes in contexts with repeated local or global social interaction. Rational choice models,

by contrast, are based on strong rationality assumptions that restrict their potential to cap-

ture actual psychological processes. Further, naive statistical models can capture processes

only indirectly by specifying proxy variables that relate to the underlying processes.

In chapters three and four, I pioneered this bottom-up approach by presenting models that

detailed how people modify their behavior when they are exposed to information about

the beliefs and choices of other individuals. In the opinion dynamics model presented in

chapter three, this information was acquired locally by way of one-to-one interactions between

the agents. In the popularity heuristic model presented in chapter four, information from

individual decisions was, as in a bestseller list, added to a common informational pool to

which all the decision makers had access. Both these models illustrated how psychological

behaviors, such as the concurrent revision of opinion and confidence and popularity-driven
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search can lead to collective behavioral patterns such as opinion segregation or convergence

in large groups and final outcome unpredictability in markets.

5.2 Psychological process models and prediction

Prediction is one of the main currencies by which the worth of models can be assessed. To

start with, models can be compared to each other on the basis of the testable predictive

hypotheses they generate. Further, models can be pitted against each other on the basis

of the behavioral predictions they produce at the individual level.1 Let us examine the

predictive potential of the studies included in this dissertation.

First, the search and stopping theory introduced in chapter two can be directly compared

to the probit framework largely in use in econometrics (see McFadden, 1980). Note that the

environments postulated by our theory and by the probit model are essentially identical. In

fact, when the cost of search equals zero and when there are only two the alternatives in the

environment our approach converges to the probit model while for more than two alternatives

it converges to the ordered probit model. Our model reveals that a non-negligible cost of

search drastically increases the probability that alternatives in the first positions of the con-

structed order will be chosen while it radically decreases the chances that alternatives in lower

positions in the order will be selected. Therefore, we expect that our ordered search models

will clearly outperform probit and ordered probit models especially in real world choice envi-

ronments with considerable costs of search. Moreover, our ordered search approach generates

more behavioral predictions than the rational choice models it integrates. Our models predict

the exact sequence in which alternatives should be examined and the eventual choice. One-

shot multi-attribute utility models predict only the final choice. Optimal stopping theory

predicts only the sequential stopping decisions. Further, in most scenarios it is impossible

for optimal stopping models to predict the selected alternative ex-ante because alternatives

1Psychological process models produce rich behavioral predictions. For some interesting cases see Gigeren-
zer et al’s (1991) probabilistic mental models and (2010) and Pleskac and Busemeyer’s (2010) dynamic signal
detection theory.
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are sampled at random.

The opinion formation model presented in chapter three generates results about (i) the prob-

ability of convergence, polarization or fragmentation of opinions in large groups of people, (ii)

the quality of the overall opinion before and after the convergence process (iii) the influence

exerted by experts and naive majorities to the overall opinion of the group. Note that the

model is one of the first to explicitly take into account the variable of relative confidence and

to provide predictions in environments where individuals with different degrees of confidence

influence each other. Thus, it can produce several new hypotheses that can be tested against

data from the field and it can be applied in situations in which experts attempt to influence

the public opinion.

Finally, the popularity heuristic model presented in chapter four generates several results

about the markets of cultural products as a function of two variables — the diversity of taste in

the population and the stopping thresholds characterizing the agents. The model can be used

to estimate (i) the amount of market share inequality (ii) the outcome unpredictability and

(iii) the imperfect correlation between quality and popularity. In addition, it reproduces the

predictable failure but unpredictable success pattern characterizing these markets. Note that

models assuming perfect knowledge can produce only end-state market-share distributions

(result i). Further, models based on stochastic processes can dynamically reproduce the

unpredictability and the end-state distributions (results i and ii), yet they do not take into

account quality differences. By contrast, our framework can be used to derive hypotheses

about any of these measures that could be tested in future large-scale studies such as in

the music lab experiment. Moreover, at the purely behavioral level our model generates

predictions about the exact search and stopping behavior of individual agents.

The projects included in this thesis demonstrate that psychological process models generate

rich behavioral predictions at the individual level and produce comparatively more novel

hypotheses about aggregate behavior than their as-if competitors. In the future, these pre-

dictions can guide the collection of data in the lab and in the field.
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5.3 The value of simplicity and applicability

The theoretical analysis of chapter two revealed a surprising conceptual result. Two well-

studied theories of rational choice, one-shot multi-attribute utility theory and optimal stop-

ping theory, can be conceived as boundary cases of a generalized ordered search model in

which individuals use a psychological estimation model to guide their search for good al-

ternatives. In the past these two boundary cases have been studied independently of each

other leading to very different conclusions about consumer behavior in markets. Moreover,

in our framework the search and stopping problem has an intuitive optimal solution which

can be expressed in terms of sequential cost-benefit analysis. Weitzman (1979), who was the

first to work on this type of problem, discussed optimality within a dynamic programming

framework. Weitzman’s work is theoretically important, however, his algorithm cannot be

readily conveyed or applied to real world scenarios. This might be one of the reasons why

Roberts and Lattin (1991), who developed a model of consideration set formation based on

the notion of ordered search, failed to notice the connections between their work and search

models. By formalizing the ordered search problem in terms of plausible psychological mod-

els we made it sufficiently intuitive and we exposed the continuum between multi-attribute

choice and optimal stopping models assuming random search. As process models are often

easier to work and to communicate with they can become instruments for theory integration

(for another example see Luan et al., 2011).

5.4 Correspondence rather than coherence

As the focus of psychological process models is correspondence to real world behavior rather

than the internal coherence of the model, they spare us from committing type three errors,

namely, finding the right answer to the wrong question. Statisticians and later economists

have studied extensively optimal stopping problems with random search. Different versions

of these problems have been explored by modifying some of the initial assumptions (e.g.
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Rothschild, 1974; Conlisk, 2003). The ordered search models presented in chapter two and

four indicate that in real world environments optimal stopping problems with random search

are rarely encountered. Usually people have some additional information that they can use

to guide their search. Thus, rather than sampling from a known utility distribution, people

need to learn the relationship between the utility and the attributes. In fact, psychologists

have already extensively investigated scenarios in which people learn linear or non-linear

multivariate functions (e.g. Busemeyer et al., 1997). In the future, this knowledge can be

directly transfered to the study of ordered search problems.

5.5 Concluding remarks

Psychology is the science that most diligently investigates the behavior of the most crucial

factor in the study of social phenomena — the human agent. Therefore, it is the most

appropriate discipline to ground and test the micro-foundations for the study of aggregate

behavior. Precise theories are necessary in order to systematize the acquired psychological

knowledge and to communicate it efficiently to neighboring disciplines. In this thesis I have

presented three examples of psychological models that can be used to investigate problems of

individual and aggregate behavior which have been explored so far in the social sciences (for

more work in that direction see Mason et al., 2008; Goldstone and Gureckis, 2009; Denrell and

Le Mens, 2013). I have argued that psychological models have several advantages over their

as-if and statistical competitors. Such models produce richer predictive hypotheses, are more

relevant to real world problems and are easier to convey and to work with. Undoubtedly, the

future of the behavioral and social sciences will become increasingly interdisciplinary. This

thesis signified another step in that direction and stressed the crucial role that psychology

can play.
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