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Zusammenfassung

Die Untersuchung kausaler Zusammenhänge in komplexen dynamischen Systemen spielt in der
Wissenschaft eine immer wichtigere Rolle. Ziel dieses aktuellen, interdisziplinären Forschungs-
bereiches ist ein grundlegendes, tiefes Verständnis der vorherrschenden Prozesse und deren
Wechselwirkungen in solchen Systemen. Anwendungen stammen dabei aus Bereichen wie der
Klimaforschung, der globalen ökonomischen Systeme, des menschlichen Herzkreislaufsystems
und der neurophysiologischen Prozesse im Gehirn. Die Untersuchung von Zeitreihen aus diesen
Gebieten mithilfe moderner Kopplungsanalysemethoden liefert dabei Möglichkeiten zur Model-
lierung der betreffenden Systeme und somit bessere Vorhersagemethoden und fortgeschrittene
Interpretationsmöglichkeiten der Ergebnisse. So wurden in letzter Zeit unter anderem bekannte
und neu gefundene Zusammenhänge zwischen Prozessen des Klimasystems, z.B. zwischen der
El Niño Southern Oscillation (ENSO) und dem indischen Monsun, sowie kurzfristige kardiovas-
kuläre Regulationen mithilfe solcher Methoden erfolgreich genauer untersucht und interpretiert.
Bei der Anwendung von Kopplungsanalysemethoden für Zeitreihen ist es jedoch wichtig, zwi-
schen dem alltäglichen Kausalitätsbegriff und dem Begriff der Kopplung zu unterscheiden. In
den letzten Jahren wurde eine Fülle von Werkzeugen entwickelt, die oft auf dem Prinzip der
Granger-Kausalität oder anderen abgeschwächten Versionen einer Kausalitätsdefinition beru-
hen.

Unter den oben genannten Systemen ist besonders das menschliche Herz-Kreislauf-System,
dessen komplexes Verhalten durch viele sich überlagernde Regulierungsmechanismen bestimmt
wird, ein aktuelles Forschungsgebiet. Ein wichtiges Teilgebiet umfasst dabei den Bereich der In-
teraktionen zwischen Schlag-zu-Schlag-Intervallen und dem Blutdruck, die einerseits zumindest
teilweise bekannt sind, andererseits aber bis heute noch kontrovers diskutiert werden.

In der vorliegenden Arbeit werden zunächst einige existierende Kopplungsmaße mit ihren je-
weiligen Anwendungsgebieten vorgestellt. Eine Gemeinsamkeit dieser Maße liegt in der Voraus-
setzung stationärer Zeitreihen, um die Anwendbarkeit zu gewährleisten. Daher wird im Verlauf
der Dissertation eine Möglichkeit zur Erweiterung solcher Maße vorgestellt, die eine Kopplungs-
analyse mit einer sehr hohen Zeitauflösung und somit auch die Untersuchung nichtstationärer,
transienter Ereignisse ermöglicht.

Die Erweiterung basiert auf der Verwendung von Ensembles von Messreihen und der Schät-
zung der jeweiligen Maße über das Ensemble anstatt über die Zeit. Dies ermöglicht eine Zeitauf-
lösung bei der Analyse in der Größenordnung der Abtastrate des ursprünglichen Signals, die
nur von der Art der verwendeten Kopplungsmaße abhängt.

Die Ensemble-Erweiterung wird auf verschiedene Kopplungsmaße angewandt, die bereits er-



folgreich unter schwierigeren Bedingungen wie starkem Rauschen oder kurzen Messreihen ver-
wendet wurden. Zum Vergleich werden zwei einfachere Kopplungsmaße herangezogen. Zunächst
werden die Methoden ausführlich an verschiedenen theoretischen Modellen und unter verschie-
denen Bedingungen getestet. Anschließend erfolgt eine zeitaufgelöste Kopplungsanalyse kardio-
vaskulärer Zeitreihen, die während transienter Ereignisse aufgenommen wurden. Die Ergebnisse
dieser Analyse bestätigen zum einen aktuelle Studienresultate, liefern aber auch neue Erkennt-
nisse, die es in Zukunft ermöglichen können, Modelle des Herz-Kreislauf-Systems zu erweitern
und zu verbessern. Auf diesen Modellen basierende, bessere Vorhersagemethoden können an-
schließend neue Diagnoseverfahren und Behandlungsmethoden kardiovaskulärer Erkrankungen
erlauben und somit einen wichtigen Beitrag zur Gesundheitserhaltung des Menschen liefern.



Summary

The analysis of causal relationships in complex dynamic systems plays a more and more impor-
tant role in various scientific fields. The aim of this current, interdisciplinary field of research
is a fundamental, deep understanding of predominant processes and their interactions in such
systems. Frequent applications stem from fields like climate research, global economics systems,
the human cardiovascular system, and neurophysiological processes in the brain. The study of
time series originating from these areas using modern coupling analysis tools allows the mod-
elling of the respective systems and thus better prediction methods and advanced interpretation
possibilities for the results. Recently, coupling measures have been used to analyse and inter-
pret, among others, known and newly found connections between climate system processes like
the El Niño Southern Oscillation (ENSO) and the Indian monsoon, and short-term cardiovas-
cular regulations. When applying such measures it is important to distinguish between the
common concept of causality and the term of coupling. During the last years, a plethora of
coupling measures has been developed, often based on the Granger causality principle or on
other attenuated forms of common causality definitions.

Among the systems mentioned above, especially the cardiovascular system, whose complex
behaviour is determined through many overlapping regulatory processes, is an ongoing research
topic. An important section of this field comprises the interactions between the beat-to-beat
intervals and the blood pressure, which on the one hand are at least known partially and on
the other hand are controversially discussed.

In this work, initially some existing coupling measures and their fields of application are
introduced. One trait these measures have in common is the requirement of stationary time
series to ensure their applicability. Therefore, in the course of this thesis a possibility to extend
these measures is presented, which allows a coupling analysis with a high temporal resolution
and thus also the analysis of transient, nonstationary events.

The extension is based on the use of ensembles of time series and the calculation of the
respective measures across these ensembles instead of across time. This allows for a temporal
resolution of the same order of magnitude as the sampling rate in the original signal. The
resolution only depends on the kind of coupling analysis method employed.

The ensemble extension is applied to different coupling measures already successfully em-
ployed under difficult circumstances like high noise levels or short time series. For comparison,
two simpler coupling measures are used. To begin with, the regarded tools are tested on vari-
ous theoretical models and under different conditions. This is followed by a coupling analysis
of cardiovascular time series recorded during transient events. The results on the one hand



confirm topical study outcomes and on the other hand deliver new insights, which will allow to
extend and improve cardiovascular system models in the future. Prediction methods based on
these models will then be able to provide new diagnostic techniques and treatment procedures
for cardiovascular diseases, thus contributing to health preservation in humans.
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1 Introduction

A lot of people throughout the world suffer from cardiovascular diseases, which are the num-
ber one cause of death worldwide [WHO10]. Their treatment causes enormous costs for the
public health care system [HTK+11] and is not always successful. These are among the main
reasons why the study of the human cardiovascular system plays such a big role in the field of
medical science, which can look back on a history of over one hundred years. The compara-
tively new branch of Cardiovascular Physics [WKDB07], which combines methods from linear
and nonlinear data analysis and modelling with medical background knowledge, has brought
forth a lot of new interesting insights and tools to help in understanding the interactions of
the cardiovascular system and thus predicting diseases, assessing risks and providing new clin-
ical parameters [CFB+93, DB92, HKvdL+94, MWH+02, SAL+89]. The development of non-
invasive measurements like the electrocardiogram (ECG) [Ein03], the echocardiogram [Bak70],
the magneto-resonance tomography [NVF02] and blood pressure recording using a sphygmo-
manometer [Mil51], in the last century, allows for a far easier way to get data without greatly
impeding the subjects. Today, the most often applied technique is measuring the ECG, because
of the simple measurement setup and its cost efficiency. It is characterised by a unique waveform
depicting the P-wave (atrial excitation) followed by the QRS-complex (fast depolarisation) with
the distinctive R-peak, and the T-wave (ventricular repolarisation)[Lev10]. From the ECG, vari-
ables like the beat-to-beat intervals (BBI) or their inverse, the heart rate, the heart’s electrical
axis in the frontal plane and the electrical activity of the atria and the ventricles can be derived.
Just relying on the ECG, it is already possible to diagnose abnormal rhythms caused by damage
of the tissue, which carries the electrical signals, or non-cardiac conditions [VSK04] like heart
blocks [Lew20], myocardial infarction [GFPK84], hypertrophy [Kli97], electrolyte abnormalities
[Sur95], pulmonary embolism [UBP+01], and hypothermia [GBEC95]. Another measurement is
the beat-to-beat blood pressure recording, whose most important development stations encom-
pass among others the hydraulic function of the cardiovascular system [Har28], the realisation
that respiration causes blood pressure fluctuations [Hal33, Lud45], and the discovery of rhyth-
mic blood pressure fluctuations, the so-called Mayer waves [May76]. Blood pressure is usually
described by the two variables of systolic and diastolic blood pressure, i.e. the maximum (con-
traction of the left ventricle) and the minimum (permanent pressure without heart activity)
value of the blood pressure curve during a beat-to-beat interval, respectively. The introduction
of non-invasive measurement methods [Mil51, Pen73] has rendered the blood pressure to be one
of the most important signals in the evaluation of physiological questions. Today a continuous
measurement with only low restrictions for the subjects is possible using portable devices. Pre-
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1 Introduction

vious studies have shown that the blood pressure signal shows large variations during the day
and even during longer periods like days, months, or seasons [MFG+83, MMB+06, SCB+98]
providing important clinical parameters [MOP+01, MOR+95, MPB+07]. Relationships be-
tween cardiovascular conditions [KOA+05, STF+99] and organ damage related to hypertension
[FST97, MPH+01] have been found via cross-sectional and longitudinal studies. Other param-
eters like the stroke volume (SV), the volume of blood pumped from one ventricle of the heart
per beat, and the cardiac output (CO), the blood volume pumped by the heart per minute,
are usually either measured using invasive methods or by an echocardiogram [Lev10]. However,
based on the blood pressure measurement and knowledge about the cardiovascular system, it
is also possible to estimate parameters like SV or CO on a beat-to-beat basis. The SV can
for example be computed by integrating the aortic flow waveform per beat, which in turn is
estimated from the arterial pressure signal using a nonlinear model [JIO+99, WJSS93]. The
CO can then be simply calculated as the product of heart rate and the SV values.

The aforementioned development of non-invasive tools to measure physiological signals, e.g.
the ECG and the blood pressure, has led to an enormous amount of data recorded under var-
ious conditions. The challenge now lies in analysing the data, thus trying to understand the
underlying mechanisms and their interactions amongst each other, and in the end extracting
meaningful parameters usable for diagnostics and risk stratification. For example, heart rate
(HRV) and blood pressure variability (BPV) parameters have helped understanding the nervous
control mechanisms of the cardiovascular system [AGU+81, LV76, Say73, Tas96]. However, the
many open questions lead to an undamped interest in analysing the data and developing new
sophisticated methods. Due to the complex structure with its many control loops and the strong
dependence on internal as well as external conditions, the cardiovascular system exhibits a com-
plicated spatio-temporal behaviour. Thus, a lot of fruitful ideas have been contributed by the
field of chaos theory and nonlinear dynamics during the last decades [KSA+04, Lom00, Mal98,
MWM+02, PFM+07, SDHK05, SRAK99, VKK+95, VKK+96, WMBK07]. In order to gain a
deeper insight into the actual mechanisms purely descriptive linear or nonlinear parameters are
not sufficient, mathematical models are needed. Using these it is possible to describe the indi-
vidual components and their interactions under various conditions, for example during diseases,
and finally to draw conclusions about the reality [CT02]. Usually, there are two approaches.
The first one uses differential [CB96, Gro59, KST+05, Kuu04, OPK+00, Ott97, ZGB+07] or
difference equations [DKS87, RK95] based on principles of physics, mathematics and, in this
case, incorporating knowledge of physiology about couplings between e.g. heart rate, blood
pressure, and respiration. The second one employs tools from time series analysis and system
identification to model the measured data via autoregressive (AR) models and thus infer mech-
anisms independent of a priori knowledge [BCB+94, CMT+97, MW97, PBR+00, PLG+86]. A
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problem with this approach lies in the potentially large number of possible parameters, which
might interfere with a physiological interpretation. Also, as most natural processes, the cardio-
vascular system exhibits highly nonlinear behaviour, impairing the use of linear methods and
models without further effort. For this reason, several extensions for nonlinear AR-models to
describe HRV and BPV have been proposed in the last years, e.g. bilinear [AJI+02], functional
coefficient [BBSK02], nonlinear additive AR-models without (NAAR) [WMB+06] and with ex-
ternal input (NAARX) [Rie09, RSM+08], and AR-models with conditional heteroscedasticity
[KHI03].

For the models to help us in understanding the underlying mechanisms, we need to identify the
interactions between the single variables using no or only little a priori knowledge. Therefore,
a plethora of coupling measures to allow for identifying a complex system’s coupling structure,
including coupling strength, direction, and occurring time lags, has been developed over the
years.

Coupling measures

The analysis of effects from coupling in and between systems is important in data-driven inves-
tigations as practised in many scientific fields. It allows deeper insights into the mechanisms
of interaction emerging among individual smaller subsystems when forming complex systems
as in the human circulatory system or the climate system. In the last century and especially
during the last 20 years the development and application of coupling measures became more
and more important. The correct application of those, requires at least a basic understanding of
the concept of causality. Since there is no binding definition of the term causality, two examples
are given here.
An event A is said to be causal for an event B if,

• when A happens, B also takes place (necessary criterion),

• A happens chronologically before B,

• and, if A does not happen, B cannot occur either (sufficient criterion).

Based on probability theory also the next definition is possible. A causes B, if

• the probability for A to occur is not zero,

• A happens chronologically before B,

• and the probability for B to happen, when A has occurred before, is larger than the
probability of B taking place on its own.
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1 Introduction

Due to the relativity theory, the second point in both definitions implies also a spatial restriction,
which can be neglected for a lot of applications of coupling analyses, however. The utilisation
of these definitions for time series analysis is not readily feasible. Often, some measure of a
priori knowledge is still needed. One attempt of a causality definition for time series analysis
was given by Granger [Gra69]. A process X Granger-causes a process Y , if

• X happens chronologically before Y

• and the error when predicting the future of Y is reduced when taking information from
X into account.

A lot of coupling measures are based on this definition. However, there are also other measures
which employ another definition. A process X influences a process Y , if

• X happens chronologically before Y

• and the processes show similar behaviour.

Of course, these definitions are strongly attenuated versions of the causality definitions above.
Therefore, one has to keep in mind, that usually a found coupling in time series can imply a
causal connection, but cannot be taken as compelling proof. At least not, if not all variables of
a given complex system are known.
While often classic methods like correlation and coherence are used to define connections be-
tween subsystems (compare e.g. [NFP+05, RGAC14] for cortex networks and the cardiovascular
system), today, there are coupling measures originating in different fields comprising Granger
causality, methods based on information theory, phase space measures, symbolic dynamics, and
synchronisation and coordination, which are able to provide more information about coupling
strength and direction. There are several works comparing the different measures and testing
their applicability in different situations stemming from neurophysiological and cardiovascular
systems [Leh11, LIKO07, PF13, SAE+13]. Several models of the cardiovascular system have
been proposed based on the results of combining practical and theoretical a priori knowledge
with insights obtained via coupling analyses [DKS87, PBR+00, PFR+02, SLM01, SLSH01,
SNG+04]. In the next subsections some of the existing coupling measures will be briefly intro-
duced and examples of systems they have been applied to are given.

Granger causality

The classical Granger causality was introduced in [Gra69]. It is based on estimating AR-
models for the data given and checking whether the errors produced by the modelling process
are significantly reduced when incorporating information from a second variable. Over the
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years, several extensions for multivariate data [Gra69, Gew84, GSK+08], later in this work
discussed in more detail, and nonlinear applications have been developed. This includes the
use of NAARX-models [FNC08, Rie09, RSM+08, RSS+10], different embedding techniques
[CRFD04, IOLK08b], the use of radial basis functions [AMS04], and the application of kernel
based methods [MLCS11, MPS08b, MPS08a]. A comparison of different nonlinear extensions
can be found in [HSPVB07, IOLK08a]. The applications range from financial data over car-
diovascular, neurophysiological, and gene regulatory network data to climate time series. To
assess also long-term couplings for example in climate data, in [SM09] an appropriate approach
has been proposed. The spectral version of Granger causality is also known as partial directed
coherence and has mainly been applied measurements of the electrical activity of the brain
(electroencephalogram, EEG) [BS01, SWE+06, WSH+06, WST07].

Information theoretic measures

The methods stemming from the field of information theory are usually based on a form of
mutual information [Sha48]. The first subgroup is the transfer entropy [Sch00b] with several
extensions [LPK07, Ver05]. It has been mostly applied to cardiovascular data. The second
measure, the conditional mutual information [Pal96], bears some similarities with the transfer
entropy and is in some cases equivalent. It has been widely applied to neurophysiological
and cardiovascular data [FP07, FNP11, FNP12, MSM+07, Pal07, PKHv01, PKP+01, PS03,
PSV04, PV07, QCKH11, SB14, SCB14, STB14, Vej08, VP08]. This approach can also be used
on phase time series. An overview about several information theoretic methods can be found in
[HSPVB07]. Recently, a new approach, the so-called momentary information transfer, has been
introduced. It specialises on avoiding spurious couplings by conditioning on certain subgroups
of the data points and on how to identify these. It has been successfully applied to climate and
cardiovascular data [PR11, RHMK12, RHPK12], [9].

Phase space measures

The phase space methods are usually based on mutual prediction using a nearest neighbours ap-
proach and comparing prediction errors when incorporating other variables [QAG00, SSC+96].
Thus, they are also based on identifying causalities in the sense of Granger. There are today sev-
eral refinements of the original measures using e.g. rank statistics, and they have been success-
fully applied to different nonlinear model systems and neurophysiological as well as cardiovascu-
lar data [AGLE99, AK11, CA09, FPN08, LMAV99, NFAP09, QKKG02, SA05, Sch00a, TB03].
A second class in this field consists of recurrence based measures with applications to cli-
mate series and the cardiovascular system [FDD+12, MZW+13, RGM+13, RTKG07, ZRT+11].
Among these measures there is also an approach to identify hidden variables to avoid spurious
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connections [HA10].

Symbolic dynamics

Among other features, their robustness against noise predestines symbolic approaches for a cou-
pling analysis. They are based on the symbolification of the data using different approaches.
The coupling analysis part is usually done by applying another known coupling measure algo-
rithm on the obtained symbol sequences. By choosing the symbol alphabet, word length, and
time lags between consecutive ’letter’ of a word, one can easily adapt the measures to the needs
at hand (e.g. short-term or long-term coupling). Some of the most successful measures are the
symbolic transfer entropy [SL08, SL09a], joint symbolic dynamics [STB+13], and the symbolic
coupling traces [SRM+10, WSR+09], which have all been applied to neurophysiological and
cardiovascular data and have delivered promising results. From these measures, the symbolic
coupling traces are discussed in the next chapter in more detail.

Synchronisation & coordination

Synchronisation [PRK01] is an effect which usually renders the detection of coupling directions
impossible, since in a completely synchronised state two systems cannot be distinguished any-
more. However, using approaches based on synchronisation detection it is possible to perform
a coupling analysis for systems not completely synchronised. One of these approaches is the
so-called evolution map approach [RP01] which has been extensively used on theoretic models
and EEG as well as cardiorespiratory data [BPRP03, CRF+03, MCPR03, MSM+07, RCB+02,
SA05, SB03]. A second tool, the synchrogram [SRKA98], allows for a graphical interpretation
of synchronised states in bivariate systems. It has been mainly used on cardiorespiratory data
[MPR00, RKP+98, RPK+01, SRAK99, SRKA98, SWD+06]. Since this measure is used to de-
tect phase synchronisation, it is not a coupling measure per se, but still has delivered interesting
insights. However, another method based on a similar approach, namely the coordigram [6],
can be used to infer coupling directions. As opposed to the synchronisation, which describes
a phase-based relationship between systems, the coordination describes a time-based connec-
tion (e.g. between the time points of the onsets of respiratory cycles and the heart beats)
and has been shown to play an important role for example in cardiorespiratory mechanisms
[Ras86, Ras87, RH82].

Subject of this thesis

An important issue not yet mentioned lies in the detection of time-variant couplings. Usually,
such an analysis can be easily done using moving window techniques. This reduces the station-

16



arity requirement for the whole time series, to stationarity inside the window. However, the
time scale on which couplings can be identified is strongly limited by the amount of data points
needed to employ a certain coupling measure. Thus, it is nearly impossible to analyse transient
events, which might change the coupling structure for very short periods of time, as compared
to typical time scales on which changes occur in a given system. One way to circumvent this
problem is to make sure the measured data has been recorded with a sufficient sampling rate.
Depending on the data this is not always the case. Additionally, even if there is a sufficient
time resolution, the stationarity requirement is usually not met during transients. How to solve
this problem and how to extend common coupling measures to cope transient changes in the
coupling structure using an ensemble approach, is the main subject of this work. In chapter 2
the ensemble approach will be introduced and explained. Also selected coupling measures will
be presented together with a description on how to extend these measures using said approach.
The following chapters 3, 4, and 5 contains different models to test the new extended coupling
measures, as well as the results of the tests. Also, applications to real world systems are shown.
The results will then be discussed and interpreted in the last chapter 6, where also an outlook
for future applications and developments will be given.
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2 Methods

2 Methods

In this chapter, to overcome the problem of stationarity requirements of many coupling mea-
sures, paired with the wish to be able to analyse time-variant couplings on short time scales
mentioned in the previous chapter, an ensemble approach to enhance existing coupling measures
for a dynamic coupling analysis with a very high temporal solution is introduced and explained.
Several coupling analysis tools working well also for short time series are then described, high-
lighting their strengths and limitations. In this section also the permutation symbolic coupling
traces are introduced for the first time. Finally, all methods presented will be extended by
applying the aforementioned ensemble approach. Thus, in this work the existing applications
of the ensemble idea will be expanded to Granger causality and symbolic dynamics.

2.1 Ensemble approach

The detection of time-variant coupling structures is an important research issue, since many sys-
tems from fields encompassing physics, physiology, neuroscience, chemistry, biology, climate re-
search, economy, etc. display dynamic changes in the system structure. These changes might be
based on internal or external disturbances, like for example shocks or crises in economy [Zan09],
large-scale events (e.g. El Niño or volcanic events) in climate research [MBMK12, RDR+13],
event-related potentials in neuroscience [CTK78], and sleep apnoea in physiology [LB01], or
on inherent transitions between different regimes, like changes of sleep stages [IAICQ07], or
seasons in the climate. Often, the time periods before and after such a transition are analysed
in order to study differences in dynamic behaviour, coupling structure, etc., but the transition
itself is regarded as an undesirable complication. This is because it usually happens on a much
shorter time scale than adequately resolved by the data on hand and generally destroys any
stationarity assumptions. Thus, also a windowed analysis approach would not work.

In order to overcome this problem, methods based on multiple realisations of a given process
have been developed to e.g. detect transient chaos [DLK01, JT94], to denoise transient signals
[ELS+00, SL09b], and also to characterise couplings [ALD06, IOLK08b, KES+04, KTR+08,
LW08, MKWL11, WFL10]. The idea bears resemblance to the ergodic theorem of thermody-
namics [Bir31] where a time average of one particle can be exchanged for a space average of an
ensemble of particles at one time point. So, instead of estimating a given coupling measure over
a time period, the averaging process is conducted across an ensemble of multiple realisations
of the time series in question (see fig. 2.1). The ensemble could either be built by repeatedly
performing a measurement of the same experiment on possibly several subjects, like for ex-
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2.1 Ensemble approach

ample an orthostatic test [BKO+08, BOL+07] (head-up tilt or standing up after lying down
for an elongated period of time), or by using inherent repeating events in a single time series,
like several apnoea (cessation of airflow) during sleep [CRA+14, GRS+11, LB01, PRG+12], [6].
This approach is theoretically applicable to almost all existing coupling measures, of course
keeping in mind the requirements and limitations of the respective methods.
After it has been built, it is important to time rectify the ensemble. This can usually be done
by aligning the individual ensemble members by means of a synchronisation point T0, e.g. the
beginning of the event regarded (see fig. 2.1). Corrections can be done by slightly shifting the
ensemble measures against each other and looking for the shifting parameter where a maxi-
mum correlation can be achieved. Next, the respective coupling measures can be computed
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Figure 2.1: This figure shows the concept of time averages (red box) vs. ensemble averages (blue boxes).
The time point T0 (green line) signifies the synchronisation point at which the ensemble
members are aligned. The other points t1, t2, and t3 just represent possible times at which
the ensemble average is performed.

by substituting the time average by the ensemble average. For the measures described in the
remainder of this chapter, except Granger causality, the results are presented in a graph where
the time lag τ is plotted over the time t. A colour coding represents the coupling strength
and, if applicable, symmetric or diametric behaviour, respectively, while the sign of the time
lag determines the coupling direction (τ < 0 for the first variable driving the second) (see fig.
2.2).
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Figure 2.2: This figure explains how to read the resulting graphs for the bivariate time resolved coupling
measures presented in this work. On the left, a graph shows a result displaying the coupling
strength at the according time lags τ for one time point (here t = 800). This representation
is identical to the one one would receive, when using the classical time average approach.
On the right, the coupling strength for each time lag τ and each time point t is colour coded.
Depending on the coupling measure used, positive (red) and negative (blue) values might
occur, depicting symmetric or diametric behaviour, respectively.

The time resolution to be expected with the ensemble extension depends on the coupling
measures used, since the estimations often are done over a short range of time points. The
expected resolution will be given for each measure regarded in this work. To determine the
significance of the results obtained using this approach, a surrogate method would appear to
be ideally suited at a first glance, since we do not have to rely on known methods like random,
Fourier transform, permutation, or twin surrogates [VP08]. Instead, the regarded time series
x(m)(t) and y(m)(t) (m is the ensemble index) can be randomly paired with other members from
the ensemble, e.g. x(m)(t) and y(k)(t), where m �= k. Theoretically, this should break up any
couplings between the time series, thus providing the desired surrogates. However, this only
holds true during stationary phases. Of course, the transient events regarded, display identical
behaviour in the time series. Therefore, any couplings found during the transients would be
deemed not significant, since all surrogates show the same behaviour in this case. Hence, to
test significance in these cases either empirical or quantile (e.g. only values greater than 95%

of the coupling strength values over all time lags τ) tests have to be applied.
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2.2 Classical measures

In this work the applications of the ensemble approach will be extended to Granger causality
and to symbolic dynamics, thus significantly enlarging the set of tools for the analysis of time-
dependent couplings during transient behaviour.

2.2 Classical measures

In this section two well-known measures from time series analysis not inherently associated with
the detection of coupling directions are presented. It is shown how to adapt these measures for
a coupling analysis and how to extend them using the ensemble approach.

2.2.1 Correlation

One of the simplest bivariate coupling measures is based on the so-called Pearson correlation
ρXY [Gal86, Pea95], which was developed to quantify the magnitude of linear interrelation
between two time series x(t) and y(t). It is given by

ρXY =
Cov(x(t), y(t))√
Var(x(t))Var(y(t))

,

where X and Y are the two processes regarded, Cov() and Var() describe the covariance and
the variance, respectively. The value of ρXY lies between ρXY = 1, total positive correlation,
and ρXY = −1, total negative correlation, while ρXY = 0 means no correlation. To infer
information about possible causal structures, a time lag τ between the time series can be
introduced, resulting in the so-called cross-correlation

ρXY (τ) =
Cov(x(t), y(t+ τ))√
Var(x(t))Var(y(t))

.

Depending on for which choice of τ the value |ρXY (τ)| is highest, one can draw conclusions
about the predominant coupling structure (e.g. τ < 0 means Y drives X and vice versa).

2.2.2 Mutual information

Another way to characterise the connection between two random processes X and Y is given by
the so-called mutual information IXY [Sha48]. It describes the difference between the entropy
H(X,Y ) of the joint processes and the sum of the single entropies H(X) and H(Y ) via

IXY = H(X) +H(Y )−H(X,Y ).
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The entropies are computed as

H(X) = −
∫
x
p(x) log p(x)dx

and

H(X,Y ) = −
∫
x

∫
y
p(x, y) log p(x, y)dxdy,

which in the end leads to

IXY = −
∫
x
p(x) log p(x)dx−

∫
y
p(y) log p(y)dy +

∫
x

∫
y
p(x, y) log p(x, y)dxdy

=

∫
x

∫
y
p(x, y) log

p(x, y)

p(x)p(y)
dxdy.

The advantage of this measure compared to the Pearson correlation lies in the ability of the
mutual information to also detect nonlinear dependencies. But, to estimate the probability
distributions in order to compute the necessary entropies, usually a bigger amount of data is
needed.

To transform the simple mutual information into a measure to assess the coupling structure
of two systems, the easiest way is again to introduce a time lag τ between the time series. The
lagged mutual information is given by

IXY (τ) =

∫
p(x(t), y(t+ τ)) log

p(x(t), y(t+ τ))

p(x(t))p(y(t+ τ))
dxdy.

Again the coupling structure can be determined by the value of IXY (τ) and the value of τ

itself. For most practical applications, the probability distribution p can be estimated using a
suitable histogram method. The intgrals would then be replaced by sums.

2.2.3 Ensemble cross-correlation (EXCORR) and ensemble mutual
information (EMI)

The extension of cross-correlation and mutual information using the ensemble approach is pretty
straightforward. The time dependent lagged ensemble cross-correlation is given by

ρ
(m)
XY (t, τ) =

Cov(x(m)(t), y(m)(t+ τ))√
Var(x(m)(t))Var(y(m)(t))

.

In this case t stands for a fixed point in time and m describes the average across the ensemble
instead of over the time t.
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2.3 Granger causality

Analogously, the time dependent lagged mutual information can be determined by

I
(m)
XY (t, τ) =

∑
p(x(m)(t), y(m)(t+ τ)) log

p(x(m)(t), y(m)(t+ τ))

p(x(m)(t))p(y(m)(t+ τ))
.

Again t represents a fixed time point instead of the average over all time points while m depicts
the ensemble average.

Since both of the measures do not rely on any estimation across several time points, the
expected time resolution of the ensemble cross-correlation and the ensemble mutual information
is of the same order as the resolution the data has been recorded with.

2.3 Granger causality

2.3.1 Classical Granger causality

In the year 1963 C. W. J. Granger [Gra63] proposed a method to estimate causal relationships
between two time series. He extended this method later in 1969 [Gra69] which is known today
as Granger causality. The basic principle of this framework is grounded on the assumption, that
a significantly improved prediction of future values of a time series x2(t), if the past of another
time series x1(t) is known additionally to the past of x2(t) itself, (t = 1, . . . , N), indicates a
dynamic influence from the system X1 onto the system X2. Of course, Granger causality and
causality in the common meaning have to be distinguished. Granger causality just tells us
something about predictability. Nonetheless, it is still useful when building descriptive models
and trying to get an idea of the interconnections between smaller subsystems in a bigger complex
system. To upkeep at least the possibility of true causality one has to keep in mind the time
points used for the prediction: using for example values like x1(t+ τ) for the prediction of x2(t)
could well point to Granger causality but surely cannot indicate true causality as the time order
plays a crucial role.

Granger proposed the use of AR-models to represent the time series. This approach is still
often used today. Here, a bivariate AR-process of order Ω will be fitted to the two time series
in question

x
(r)
1 (t) =

Ω∑
τ=1

a
(r)
11 (τ)x1(t− τ) + ε

(r)
1 (t),

x
(r)
2 (t) =

Ω∑
τ=1

a
(r)
22 (τ)x2(t− τ) + ε

(r)
2 (t).

The variables ε(r)1 and ε
(r)
2 describe independent white noise, and a

(r)
11 (τ) and a

(r)
22 (τ) denote the
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coefficients to be estimated using for example a least squares method. The superscript index
(r) denotes the restricted model, i.e. the model using not all available information.

This whole process is then repeated using the information from the second time series

x
(u)
1 (t) =

Ω∑
τ=1

a
(u)
11 (τ)x1(t− τ) +

Ω∑
τ=0,1

a
(u)
21 (τ)x2(t− τ) + ε

(u)
1 (t),

x
(u)
2 (t) =

Ω∑
τ=0,1

a
(u)
12 (τ)x1(t− τ) +

Ω∑
τ=1

a
(u)
22 (τ)x2(t− τ) + ε

(u)
2 (t).

The superscript index (u) describes the unrestricted model using all available variables.
Whether the summation index τ when incorporating the second time series starts at τ = 0

or τ = 1 depends on the data used. On the one hand, to at least maintain the temporal
order between the possible cause and effect one should start with τ = 1. Thus one can assure
that influences from the second series really come from the past. On the other hand, when
measuring data there always is some averaging involved. Depending on the sampling rate and
the time scale on which a potential information transfer might occur one could argue to include
τ = 0. As an example, regard a climate time series of mean monthly temperatures. Processes
influenced by the temperature can easily be assumed to work on time scales of weeks or days.
In this case one should consider also employing the lag τ = 0 values.

To determine the optimum model order Ω before calculating Granger causality, there are sev-
eral possibilities. The most common ones are the Akaike information criterion (AIC) [Aka69]
and the Bayesian information criterion (BIC) [Sch78]. Both functions compare the computa-
tional effort of a given model with its performance according to

AIC(Ω) = log(detΣ) +
2n2

varΩ

N
,

for the Akaike criterion and

BIC(Ω) = log(detΣ) + log(N)
n2
varΩ

N
,

for the Bayesian variant. Here, Σ is the covariance matrix of the residuals ε from the multivariate
regression, nvar is the number of variables used, Ω is the model order, and N is the length of
the data series regarded. The minimum of the AIC and BIC values gives the model order for
the best compromise between cost and efficiency. Which of these methods should be chosen to
determine the best model order depends on several questions [ADP14] like whether the best
prediction (AIC) or finding the correct model (BIC) is more important.

After having fitted the respective AR-models the comparison of the variances of the error
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2.3 Granger causality

terms ε
(r)
1 = x1(t)− x

(r)
1 (t) and ε

(r)
2 = x2(t)− x

(r)
2 (t) with ε

(u)
1 and ε

(u)
2 , respectively, gives the

information about the predominant coupling direction. If, for example, Var(ε(u)2 ) < Var(ε
(r)
2 )

and Var(ε
(u)
1 ) ≈ Var(ε

(r)
1 ) holds true, the influence from the process X1 on the process X2 would

be greater than the other way around. In this case X1 Granger causes X2.
To test the results from Granger’s method for significance the so-called Granger-Sargent (GS)

test [HSPVB07]

GSX1→X2 =

∑
i (ε

(r)
2 )2 −∑

i (ε
(u)
2 )2∑

i (ε
(u)
2 )2

N − (nvar + 1)Ω

Ω
.

can be used. The GS test statistics follow an F -distribution with Ω and N−(nvar+1)Ω degrees
of freedom allowing for an easy determination of the critical values belonging to the desired
significance level.

2.3.2 Conditional Granger causality

The classical Granger causality is only suited for bivariate systems and thus cannot detect
indirect couplings. For example the method could indicate a coupling between subsystems X1

and X2 while in reality both systems are driven by a third one X3. If this third system is known
and can be measured, the classical Granger causality can easily be extended to a multivariate
tool according to [Gew84, ZF09], usually known by the term conditional Granger causality.
Therefore, an AR-model using all available variables is fitted for each variable. Additionally,
another AR-model using all variables but the one (Xk), whose causal influence we are interested
in, is determined. For a system with nvar variables and j, k ∈ {1, . . . , nvar} the equations

x
(r)
kj (t) =

nvar∑
i=1;i �=k

Ω∑
τ=0;1

a
(r)
ij (τ)xi(t− τ) + ε

(r)
kj (t), (2.1)

x
(u)
j (t) =

nvar∑
i=1

Ω∑
τ=0;1

a
(u)
ij (τ)xi(t− τ) + ε

(u)
j (t) (2.2)

let us determine the influence from Xk to Xj conditioned on {Xi; i /∈ {j, k}} via the term

F
(c)
Xk→Xj |{Xi;i/∈{j,k}} = log

Var(ε
(r)
kj )

Var(ε
(u)
j )

.
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Now, if the system Xk would give no new information about the system Xj , the variances of
the error terms should be about equal and thus F

(c)
Xk→Xj |{Xi;i �=j,k} ≈ 0 should hold true and

there actually would not be an influence from Xk to Xj in the sense of Granger causality, even
though the classical method might have found one.

To allow for the detection of nonlinear couplings for at least a subset of all possible cases,
without dramatically increasing the computational effort needed for the estimation of Granger
causality, one can simply add a quadratic term to the AR-model. The resulting equations are

x
(r,q)
kj (t) =

nvar∑
i=1;i �=k

Ω∑
τ=0;1

a
(r)
ij (τ, t)xi(t− τ) + a

(r,q)
ij (τ, t) (xi(t− τ))2 + ε

(r)
kj (t)

and

x
(u,q)
j (t) =

nvar∑
i=1

Ω∑
τ=0;1

a
(u)
ij (τ, t)xi(t− τ) + a

(u,q)
ij (τ, t) (xi(t− τ))2 + ε

(u)
j (t).

The superscript q describes the adding of the quadratic terms. To further decrease the compu-
tational needs, the regarded time lags for the quadratic terms can be restricted to only a few
or even just one value of τ .

2.3.3 Partial Granger causality

One problem remaining with conditional Granger causality is its inability to account for latent
variables, i.e. variables we do not know about. An approach to at least partially account
for such variables is given by the partial Granger causality [GSK+08], an extension to the
conditional Granger causality. The method is based on the assumption that influences of latent
variables can be detected via the prediction errors of the model used, if the latent variables
represent stationary processes. The noise terms ε(r)kj (t) and ε

(u)
j (t) from the models could under

this assumption be decomposed into

ε
(r)
kj (t) = ε

(r),model
kj (t) + ε

(r),latent
kj (t)

and

ε
(u)
j (t) = ε

(u),model
j (t) + ε

(u),latent
j (t).

We are now interested in correlations between the two error terms ε
(r)
kj and ε

(u)
j . Therefore, a

variant of the well-known partial correlation is used. Hence, we regard the covariance matrices
Σ
(r)
kj and Σ

(u)
j of the error terms for the restricted and the unrestricted model, respectively,
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when determining the influence of system Xk onto system Xj conditioned on all known systems
{Xi; i /∈ {j, k}}. After eliminating the column and the row in Σ

(u)
j containing the system Xk to

obtain Σ
(u)
kj the covariance matrices are separated into four block matrices, giving

Σ
(r)
kj =

[
Var(ε

(r)
kj ) Cov(ε

(r)
kj ,

{
ε
(r)
ki ; i /∈ {j, k}})

Cov(
{
ε
(r)
ki ; i /∈ {j, k}}, ε(r)kj ) Cov(

{
ε
(r)
ki ; i /∈ {j, k}})

]
=

[
Σ
(r)
kj,11 Σ

(r)
kj,12

Σ
(r)
kj,21 Σ

(r)
kj,22

]

and

Σ
(u)
kj =

[
Var(ε

(u)
j ) Cov(ε

(u)
j ,

{
ε
(u)
i ; i /∈ {j, k}})

Cov(
{
ε
(u)
i ; i /∈ {j, k}}, ε(u)j ) Cov(

{
ε
(u)
i ; i /∈ {j, k}})

]
=

[
Σ
(u)
kj,11 Σ

(u)
kj,12

Σ
(u)
kj,21 Σ

(u)
kj,22

]

Following the partial correlation further yields the corrected variances of the error terms

R
(r)
kj = Σ

(r)
kj,11 − Σ

(r)
kj,12(Σ

(r)
kj,22)

−1Σ
(r)
kj,21

and

R
(u)
kj = Σ

(u)
kj,11 − Σ

(u)
kj,12(Σ

(u)
kj,22)

−1Σ
(u)
kj,21,

with again i, j, k ∈ {1, . . . , nvar} and nvar being the number of variables. Analogous to the
conditional Granger causality, we can then define

F
(p)
Xk→Xj |{Xi;i/∈{j,k}} = log

det
(
R

(r)
kj

)
det

(
R

(u)
kj

) .

Using this measure F
(p)
Xk→Xj |{Xi;i/∈{j,k}} it is now possible to quantify the influence of system

Xk onto Xj conditioned on the remaining known variables {Xi; i /∈ {j, k}} and other latent
variables as long as they stem from stationary processes. The method of partial Granger
causality has proved to be superior to the classical and conditional versions on numerous test
cases and applications to neuronal data [GSK+08].

2.3.4 Ensemble Granger causality (EGC)

The extension of Granger causality for time-dependent analyses during transients using the
ensemble approach further broadens the already vast field of possible applications of this versa-
tile coupling measure. To expand the above presented versions of Granger causality using the
ensemble approach, just the way in which the parameters for AR-models are computed, has to
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be changed. For a system with nvar variables and j, k ∈ {1, . . . , nvar} the equations

x
(r),(m)
kj (t) =

nvar∑
i=1;i �=k

Ω∑
τ=0;1

a
(r),(m)
ij (τ, t)x

(m)
i (t− τ) + ε

(r),(m)
kj (t),

x
(u),(m)
j (t) =

nvar∑
i=1

Ω∑
τ=0;1

a
(u),(m)
ij (τ, t)x

(m)
i (t− τ) + ε

(u),(m)
j (t)

let us determine the influence from Xk to Xj conditioned on {Xi; i /∈ {j, k}}. The only differ-
ences to equations (2.1) and (2.2) lie in the way the regression is performed and the meaning
of the time index t. Here, the estimation of the parameters a(r),(m) and a(u),(m) is carried out
across the ensemble and t means a fixed time point instead of the average over all time points,
i.e. a(r),(m) and a(u),(m) are now time-dependent. The starting value of τ with either τ = 0

or τ = 1 depends on whether internal or external influences are regarded. Since the coupling
direction is identified using only the error terms from the model, the same index as before can
be utilised

F
(c),(m)
Xk→Xj |{Xi;i/∈{j,k}}(t) = log

Var(ε
(r),(m)
kj (t))

Var(ε
(u),(m)
j (t))

,

which is now of course also time dependent.
This approach can also be extended by using the nonlinear terms as presented in subsection

2.3.2. The resulting equations are

x
(r,q),(m)
kj (t) =

nvar∑
i=1;i �=k

Ω∑
τ=0;1

a
(r),(m)
ij (τ, t)x

(m)
i (t− τ) + a

(r,q),(m)
ij (τ, t)

(
x
(m)
i (t− τ)

)2
+ε

(r),(m)
kj (t)

and

x
(u,q),(m)
j (t) =

nvar∑
i=1

Ω∑
τ=0;1

a
(u),(m)
ij (τ, t)x

(m)
i (t− τ) + a

(u,q),(m)
ij (τ, t)

(
x
(m)
i (t− τ)

)2
+ ε

(u),(m)
j (t).

The superscript q describes again the adding of the quadratic terms. The time resolution
achieved by the ensemble Granger causality is of the same level as the choice of the model order
Ω. For the remainder of this work only the ensemble partial Granger causality will be used.
Whenever the talk is about Granger causality from now on, actually this method is meant.
The code for this version of Granger causality for MATLAB (MATLAB and Statistics Toolbox
Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) can be found at
http://tocsy.pik-potsdam.de/coupling.php.
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2.4 Symbolic coupling traces

2.4.1 Classic symbolic coupling traces

The symbolic coupling traces (SCT) were introduced by Wessel et al. [WSR+09] and are an
extension of a bivariate joint symbolic dynamics method [BWH+02] which was developed to
characterise and interpret the complex and highly nonlinear interactions between heart rate
and systolic blood pressure. For both methods a dynamical system represented by two one-
dimensional time series x(t) and y(t) is considered, which are then transformed into coarse
grained symbolic time series sx(t) and sy(t) according to

sz(t) =

{
1, z(t) ≤ z(t+ ϑ)

0, z(t) > z(t+ ϑ).

The time lag ϑ is usually set to ϑ = 1 but can also be chosen as another number of time
steps in order to accommodate a priori knowledge about the time scales on which the couplings
act. These symbol series in turn are used to construct series of words wz(t) where each word
contains l successive symbols (see table 2.1). Because of the binary alphabet in this case, this
gives d = 2l different possibilities of words. Larger values of ϑ work like an averaging process
across the area defined by ϑ and l.

x(t) = . . . 8 6 9 11 12 8 13 5 . . .
y(t) = . . . 7 2 5 3 7 11 10 6 . . .

⇓
sx(t) = . . . 0 1 1 1 0 1 0 . . .
sy(t) = . . . 0 1 0 1 1 0 0 . . .

⇓
wx(t) = . . . 011 111 110 101 010 . . .
wy(t) = . . . 010 101 011 110 100 . . .

Table 2.1: This scheme shows how to transform time series x(t) and y(t) into word sequences wx(t) and
wy(t) with l = 3 via the symbol series sx(t) and sy(t), respectively.

From the word sequences generated in this way for time series x(t) and y(t), a bivariate word
distribution can now be estimated as

Πij = P (wx(t) = Wi, wy(t) = Wj).

Here, Wi and Wj denote certain words out of the whole vocabulary of d = 2l different words
and Πij is the joint probability of words Wi and Wj appearing at the same time t in the word
series wx and wy, estimated over all values of t. To later be able to determine the coupling
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direction and the occurring lags, a time lag τ between the two word sequences wx and wy is
introduced, resulting in the matrix

(Π(τ))ij = P (wx(t) = Wi, wy(t+ τ) = Wj).

One way to characterise this matrix could be to regard the joint Shannon entropy [Sha48]
for each lag τ . However, studies in [WSR+09] showed, that using Shannon entropy does not
clearly reveal the correct time lags. Instead, the results improve a lot, when regarding only the
difference between the occurrences of symmetric (e.g. wx(t) = wy(t+ τ)) and diametric words
(e.g. wx(t) = ’111’ and wy(t+ τ) = ’000’). The symmetric word frequency is represented by

T (τ) = Tr (Π(τ)) =
∑
i=j

(Π(τ))ij (2.3)

and the diametric word frequency by

T̄ (τ) =
∑

i=1,...,d;j=d+1−i

(Π(τ))ij , (2.4)

where Tr (Π(τ)) is the trace of the matrix Π(τ) and d = 2l is the number of the possible different
words. The difference ΔT = T − T̄ has proved to be an effective parameter to identify the
coupling structure of bivariate systems. To assess the significance of the results thus obtained,
an empiric test based on a simulation with bivariate white noise for different signal lengths has
been developed [SRM+10]. For the significance level α = 0.01 the critical values of ΔT are
given as

ΔTcrit(N) = ±2.7005 ·N−0.5179,

where N is the number of data points regarded. Now, the coupling direction can be determined
via the occurring time lags τ where ΔT is significant. The coupling strength is related to |ΔT |
and sgn(ΔT ) tells us whether symmetric or diametric behaviour is dominant. Further insight
into the systems in question might be gained by looking at the results of the SCT when using
the absolute value of the time series as input.

Although the SCT are only a bivariate method, the conclusions drawn by using them are
well suited to build descriptive models of the systems regarded. An extension for three or more
systems is unfeasible, because of the curse of dimensionality [Bel57]. The occupation numbers
in the resulting n-dimensional word distribution matrix for n systems would get too small too
fast.
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2.4.2 Permutation symbolic coupling traces

In 2002 Bandt and Pompe introduced a complexity measure for time series, termed permutation
entropy, which combines concepts from entropy and symbolic dynamics [BP02]. This measure
proved to be simple yet robust while taking the temporal order of the values in a given time series
into account, a point usually neglected by other complexity measures like Shannon [Sha48] or
Kolmogorov-Sinai entropy [KS03]. Permutation entropy essentially measures information based
on the occurrence of permutation patterns built from the ranks of the values in a time series.
In this thesis, the idea by Bandt and Pompe is modified to apply it to the symbolic coupling
traces. Instead of the binary alphabet and the following words sequences, permutation patterns
πj of length l (j = 1, . . . , l!) are used. At first, sections of the time series x(t) and y(t) are
converted into rank sequences rxt and ryt of length l, which in turn are matched with one of
the possible permutation patterns πj (compare eq. (2.5) and fig. 2.3). If we encounter equal
values in one rank sequence, there are different possibilities [8]. Here, the ranks are assigned
according to the temporal order in which the equal values occur.
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Figure 2.3: This figure shows an example of how to build the rank sequences from a given time series
x(t) with ϑ = 1 and l = 3. Below, the different possible permutation patterns are presented.
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2 Methods

x(t), x(t+ ϑ), . . . , x(t+ (l − 1)ϑ) → rxt(1), . . . , rxt(l) → πj

y(t), y(t+ ϑ), . . . , y(t+ (l − 1)ϑ) → ryt(1), . . . , ryt(l) → πj
(2.5)

Following the steps from the SCT, we estimate the probability distribution of the permuta-
tion patterns. To characterise the coupling structure again a time lag τ between the two time
series regarded is introduced. As entropy measures also do not give satisfying results when
characterising the probability distribution matrices, the same approach via the symmetric and
diametric patterns is used and ΔTP = TP − T̄P is defined analogously to the classical SCT
(see equations (2.3) and (2.4)). The subscript P here just refers to the permutation approach.
The difference between the classical and the permutation approach lies in the number of pos-
sible patterns regarded, which is higher in the permutation pattern case. This leads to lower
occupation numbers for each combination, resulting in the best case in fewer falsely positive
recognised coupling lags. Here also, the use of the absolute value of the time series might lead
to further results.

2.4.3 Ensemble symbolic coupling traces (ESCT and PESCT)

In this subsection, the tools of symbolic coupling traces and permutation symbolic coupling
traces will be extended using the ensemble approach. This opens the field of symbolic dynamics
to be employed for coupling analysis of transient and nonstationary events.

Since the ensemble approach for the symbolic coupling traces takes only hold after the word
sequences w

(m)
x (t) and w

(m)
y (t) or r

(m)
xt and r

(m)
yt in the case of the permutation approach have

been built for the whole ensemble (index m), the following steps are the same for both methods
and the sequences w(m) and r(m) are used synonymously.

When estimating the probability distribution of the word occurrences, the histogram is now
computed over the whole ensemble resulting in the time dependent matrix

(
Π(m)(t, τ)

)
ij
= P (w(m)

x (t) = Wi, w
(m)
y (t+ τ) = Wj).

The index m here stands for averaging across the ensemble and t represents a fixed point in
time. In the end, the symmetric and diametric word frequencies are again given by

T (m)(t, τ) = Tr
(
Π(m)(t, τ)

)
=

∑
i=j

(
Π(m)(t, τ)

)
ij
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2.4 Symbolic coupling traces

and

T̄ (m)(t, τ) =
∑

i=1,...,d;j=d+1−i

(
Π(m)(t, τ)

)
ij
.

Via ΔT (m)(t, τ) = T (m)(t, τ) − T̄ (m)(t, τ) the coupling structure can be determined as before.
In this case the same empirical approach to assess the significance of the results should hold
true. The choice of the word length determines the expected time resolution of these two
methods. The code for these two methods for MATLAB (MATLAB and Statistics Toolbox
Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) can be found at
http://tocsy.pik-potsdam.de/coupling.php.
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3 Applications to models

In this chapter, the methods developed in chapter 2 are tested on different theoretical models
to assess their performance potential and their limitations. The huge class of data-driven AR-
models is commonly used to simulate and predict real-world systems. Therefore, the coupling
measures will be applied to multivariate AR-models with unidirectional and feedback coupling.
To test their performance in nonlinear systems, coupled chaotic maps and NAARX-models
will be employed. Additionally, the measures’ robustness against noise, their performance for
smaller amounts of data, and the dependence on coupling strength will be evaluated.

To evaluate the significance of the results delivered by the different methods, two approaches
are chosen. For Granger causality the built-in F-test is used and the obtained values for
F

(p)
Xk→Xj |{Xi;i/∈{j,k}} are multiplied by one (significant) or zero (not significant). For the two

symbolic measures first the empiric test from [SRM+10] is used and additionally, since during
the tests still a lot of spurious couplings were found, only the results with an absolute value
above the (1− α)-quantile are used. That same test is also applied for the correlation and the
mutual information measures.

The model order Ω for the Granger causality is usually also taken as the maximum lag for the
other measures. It is chosen as a compromise between the results of the AIC and the BIC, and
taking a reasonably small value to allow for shorter data series, while still being large enough
to encompass the a priori knowledge about the maximum lags appearing in the models.

3.1 Analysis

3.1.1 AR-models

The first class of models to be analysed is the class of AR-models. These are often employed to
describe certain time-varying processes in different fields like economics, climate, and medicine,
because of certain features AR-models offer. Using AR-models it is possible to choose the
parameters in a way that the spectral density of the model approximates any given continuous
spectral density with arbitrary precision (pp. 148-149 in [KN06]). The consistency of the
parameters of such a model over time is a necessary condition for fitting the parameters by
means of time averaging. However, in this case we are interested in time-dependent parameters.
A time-variant AR-process of order Ω is given by

x(t) =
ω∑

τ=1

a(τ, t)x(t− τ) + ε(t).
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3.1 Analysis

In this univariate case, values of x only depend on the past of x itself and an innovative term
ε, usually in the form of Gaussian white noise charaterised by an expected value of zero and
a certain variance depicting the strength of the influence of the stochastically independent
innovative term. The multivariate version of an AR-process with nvar variables is given by

xj(t) =

nvar∑
i=1

ω∑
τ=1

aij(τ, t)xi(t− τ) + εj(t), j ∈ {1, . . . , nvar} .

The normally distributed εj are independent for each variable.

AR-model with univariate and feedback coupling

To test the methods presented in chapter 2 we regard two different scenarios of AR-models. The
first one consists of five variables displaying univariate (from x4 to x5) and bivariate (feedback
between x1 and x2) coupling as well as a common driver (x3). The coupling structure is time-
dependent, dividing the regarded time span into four epochs with different time lags, coupling
strengths, and influence effects (symmetric or diametric). The standard deviation of the white
noise innovative term ε is σ = 0.01. All model parameters can be found in table 3.1. The
structure is also given in figure 3.3 (a). The realisations has been generated using normally
distributed initial values for the variables and then running the equations for 10000 iterations
from which only the last N = 1000 data points have been used for the analysis. The ensemble
consists of M = 1000 realisations, aligned with the beginnings and endings of each epoch (see
table 3.1). The significance level for this test has been set to α = 0.05 for all methods. The
model order has been determined by the AIC-method (Ω = 10) and the BIC-method suggested
(Ω = 18). According to the strategy of preferring a small model order and taking into account
a priori knowledge, the model order for Granger causality and the maximum lag for the other
method has been set to Ω = 10.

In figure 3.1 the significant results from the five regarded methods for the coupling between x1

and x2 are shown. The coupling structure is correctly identified for all epochs by all measures,
except the ensemble mutual information (see figure 3.1 (e)), although also the other measures
except Granger causality show spurious couplings at some lags and time points as well as some
gaps when the coupling strength is reduced in the fourth epoch. The significant results for the
univariate coupling between x4 and x5 are shown in figure 3.2. Here, Granger causality (figure
3.2 (a)) does not identify the change in the coupling structure in epoch three, because there
is no change in the coupling strength. Although the other measures all identify the correct
structure, the best results are given by the permutation symbolic coupling traces (figure 3.2
(b)).
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epoch 1 epoch 2 epoch 3 epoch 4 epoch 5
t = 1, . . . , 199 t = 200, . . . , 299 t = 300, . . . , 350 t = 351, . . . , 699 t = 700, . . . , 1000

couplings τ aij(τ, t) τ aij(τ, t) τ aij(τ, t) τ aij(τ, t) τ aij(τ, t)

x1 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
x2 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
x3 1 0.4 1 0.4 1 0.4 1 0.4 1 0.4
x4 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
x5 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3

x1 → x2 2 -0.7 5 -0.5 5 -0.5 5 -0.5 5 -0.5
x2 → x1 1 0.7 1 0.7 1 0.7 1 0.7 3 0.6

x3 → x1, x2, x4, x5 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
x4 → x5 3 0.7 3 0.7 2 -0.7 3 0.7 3 0.7

Table 3.1: The table shows the time lags and coupling strength parameters for a time-dependent AR-
model with five variables, displaying univariate and feedback coupling, as well as a common
driver. The model equation for x1 during the fifth epoch is e.g. given by x1(t) = 0.3x1(t −
1) + 0.6x2(t− 3) + 0.3x3(t− 1) + ε1(t).

Since the coupling from x3 to all the other variables in the model is comparatively weak, it
is only correctly identified by Granger causality and the ESCT. Cross-correlation and mutual
information show some additional spurious couplings while the PESCT finds no couplings at all.
The common driver effects (identified couplings between variables that are uncoupled) are only
shown by the cross-correlation. Omitting the x3 from the pool of available data to compute the
coupling structure has no effect on all measures, since ESCT, PESCT, EXCORR, and EMI only
work on a bivariate basis, and Granger causality is corrected via the partial Granger causality
extension.

The full resulting coupling structure for all measures is given in figure 3.3 (b) - (f).
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(e) EMI

Figure 3.1: This figure shows the significant results of the regarded methods for the coupling structure
of the AR-model given in table 3.1. In (a) the red colour depicts the coupling from x1 to
x2, for blue it is vice versa. In (b) - (e) red stands for symmetric coupling and blue for
diametric.
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Figure 3.2: This figure shows the significant results of the regarded methods for the coupling structure
of the AR-model given in table 3.1. In (a) the red colour depicts the coupling from x4 to
x5. In (b) - (e) red stands for symmetric coupling and blue for diametric.
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Figure 3.3: This figure shows the original (a) and the resulting ((b) - (f)) coupling structures from
the regarded methods for the AR-model given in table 3.1. The colours of the arrows
depict symmetric (red) and diametric (blue) coupling. For results from methods not able
to distinguish between these, there are black arrows. The numbers show the occurring time
lags.
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AR-model with multiple lag coupling

The second model is a bivariate AR-process incorporating univariate coupling over multiple time
lags for one variable. The coupling structure is given in figure 3.5 and the model parameters in
table 3.2. The standard deviation of the white noise innovative term ε is σ = 0.01, the length
of the regarded time series is again N = 1000 and M = 1000 realisations have been used. The
significance level has been set to α = 0.05 and the model order has been determined as Ω = 10

via the BIC-method while the AIC-result recommended Ω = 1.

epoch 1 epoch 2 epoch 3
t = 1, . . . , 199 t = 200, . . . , 699 t = 700, . . . , 1000

couplings τ aij(τ, t) τ aij(τ, t) τ aij(τ, t)

x1 1; 2; 3 0.5; -0.3; 0.2 1; 2; 3 0.5; -0.3; 0.2 1; 2; 3 0.5; -0.3; 0.2
x2 1; 2; 3 0.2; 0.5; -0.4 2; 3; 5 0.5; -0.4; 0.2 2; 3; 5 0.5; -0.4; 0.2

x2 → x1 4; 7 0.7; -0.8 4; 7 0.7; -0.8 2; 7 0.7; -0.8

Table 3.2: The table shows the time lags and coupling strength parameters for a time-dependent AR-
model with two variables, displaying univariate coupling across multiple time lags. The model
equation for x1 during the first epoch is e.g. given by x1(t) = 0.5x1(t − 1) − 0.3x1(t − 2) +
0.2x1(t− 3) + 0.7x2(t− 4)− 0.8x2(t− 7) + ε1(t).

Again, all measures except the ensemble mutual information (figure 3.4 (e)) identify the
correct coupling structure during the different epochs. The resulting overall coupling structure
for the second example is shown in figure 3.5 (b) - (f).
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Figure 3.4: This figure shows the significant results of the regarded methods for the coupling structure
of the AR-model given in table 3.2. In (a) the blue colour depicts the coupling from x2 to
x1. In (b) - (e) red represents symmetric coupling and blue diametric coupling.
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Figure 3.5: This figure shows the original (a) and the resulting ((b) - (f)) coupling structures from
the regarded methods for the AR-model given in table 3.2. The colours of the arrows
depict symmetric (red) and diametric (blue) coupling. For results from methods not able
to distinguish between these, there are black arrows. The numbers show the occurring time
lags.

40



3.1 Analysis

3.1.2 Nonlinear models

Typically, most natural processes exhibit nonlinear behaviour like saturation, hysteresis, syn-
chronisation, different regimes, or chaotic behaviour. Take e.g. the climate system or the
baroreflex in the cardiovascular system. In order to check whether the regarded coupling mea-
sures also work for nonlinear systems three different examples are considered.

Linearly coupled logistic maps

The first model is the logistic map, originally derived to describe population dynamics [Ver38].
Consider the fraction x(t) of the current population y(t) and the maximum population ymax.
The time development can, in a simple case, be modeled by taking the reproduction and the
death rate as proportional to the current values of x(t) and 1−x(t) with proportionality factors
areprod and adeath, respectively. With r = areprodadeath one obtains

x(t) = r · x(t− 1) · (1− x(t− 1)).

This model exhibits different dynamic behaviour dependent on the choice of the parameter r.
Here we regard the chaotic case for r = 4.

A system of logistic maps with time-dependent coupling is described by the following equa-
tion.

xj(t) = ajj(τjj , t)·r ·xj(t−τjj)·(1−xj(t−τjj))+

nvar∑
i �=j

aij(τij , t) · xi(t− τij), j ∈ {1, . . . , nvar}

The parameters for the case with linear coupling are given in table 3.3 and the coupling structure
is also represented in figure 3.9 (a). As before, the data used for the analysis consists of N = 1000

data points taken after a transient phase of 9000 data points and M = 1000 realisations.
Significance is set to α = 0.05 and a model order of Ω = 12 for the Granger causality has been
used according to the BIC (AIC suggested Ω = 1). Figure 3.6 shows the resulting significant
coupling structure between the variables x1 and x2. Although there is no coupling between
these two variables in the second epoch, all measures, except Granger causality (figure 3.6 (e)),
show the spurious coupling stemming from the coupling of the third variable x3 to x1 and x2.
However, in this case the coupling at lag τ = 0 indicates a common driver. The lag τ = 1

coupling from x1 to x2 is not detected by any of the methods, except Granger causality. The
coupling structure for x1 and x3 is shown in figure 3.7. The lag τ = 5 driving from x3 to x1 in the
second and third epoch is correctly identified by all methods. However, all methods, except the
mutual information (figure 3.7 (e)), show a spurious coupling at τ = 8. Even the partial Granger
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epoch 1 epoch 2 epoch 3
t = 1, . . . , 199 t = 200, . . . , 699 t = 700, . . . , 1000

couplings τij aij(τij , t) τij aij(τij , t) τij aij(τij , t)

x1 1 0.5 1 0.6 1 0.6
x2 1 0.6 1 0.6 1 0.4
x3 1 1 1 1 1 1

x1 → x2 0 0 0 0 1 0.3
x2 → x1 3 0.5 0 0 0 0
x3 → x1 0 0 5 0.4 1 0.3
x3 → x2 5 0.4 1 0.4 5 0.3

Table 3.3: The table shows the time lags and coupling strength parameters for three logistic maps with
time-dependent coupling. The model equation for x1 during the first epoch is e.g. given by
x1(t) = 0.5 · 4 · x1(t− 1) · (1− x1(t− 1)) + 0.5 · x2(t− 3).

(figure 3.7 (a)) causality shows a weak coupling there. This, of course, stems from the strong
coupling between x2 and x3 (τ = 5) and between x1 and x2 (τ = 3). The connections between
x2 and x3 are depicted in figure 3.8. The correct structure is comparatively well identified
by all measures. The symbolic coupling traces and the permutation symbolic coupling traces
even correctly show the decrease in coupling strength in the third epoch. Granger causality,
however, here shows an increase in the coupling strength. In this case, the increase originates
in the switched on coupling from x1 to x2, while x1 is still strongly driven by x3. The resulting
overall coupling structure for all measures is shown in figure 3.9 (b) - (f).
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(e) EMI

Figure 3.6: This figure shows the significant results of the regarded methods for the coupling structure
of the coupled logistic maps given in table 3.3. In (a) the blue colour depicts the coupling
from x2 to x1, for the red colour it is vice versa. In (b) - (e) red represents symmetric
coupling and blue diametric coupling.
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Figure 3.7: This figure shows the significant results of the regarded methods for the coupling structure
of the coupled logistic maps given in table 3.3. In (a) the blue colour depicts the coupling
from x3 to x1. In (b) - (e) red represents symmetric coupling and blue diametric coupling.
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Figure 3.8: This figure shows the significant results of the regarded methods for the coupling structure
of the coupled logistic maps given in table 3.3. In (a) the blue colour depicts the coupling
from x3 to x2. In (b) - (e) red represents symmetric coupling and blue diametric coupling.
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Figure 3.9: This figure shows the original (a) and the resulting ((b) - (f)) coupling structures from the
regarded methods for the linearly coupled logistic maps given in table 3.3. The colours of the
arrows depict symmetric (red) and diametric (blue) coupling. For results from methods not
able to distinguish between these, there are black arrows. The numbers show the occurring
time lags.
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3.1 Analysis

Nonlinearly coupled logistic maps

The second model in this subsection consists again of logistic maps. This time the coupling
occurs via a quadratic term in the driving variable. The full parameters for the model are given
in table 3.4 while the coupling structure is also depicted in figure 3.11 (a). Again N = 1000 data
points are considered for M = 1000 realisations across to different coupling epochs. The model
order for the Granger causality has been chosen as Ω = 10 as a compromise between Ω = 8

(AIC) and Ω = 23 (BIC) and the significance level has been set to α = 0.1. The higher value
of α here was chosen due to the attenuated sensitivity of the regarded measures for nonlinear
effects. At α = 0.05 the weaker coupling in the second epoch could not be detected by any of the
methods except the ECGC. All regarded methods were able to correctly identify the coupling

epoch 1 epoch 2
t = 1, . . . , 499 t = 500, . . . , 1000

couplings τij aij(τij , t) τij aij(τij , t)

x1 1 1 1 1
x2 1 0.5 1 0.7

x1,τ1 · x1,τ2 → x2 1; 5 0.5 1; 5 0.3

Table 3.4: The table shows the time lags and coupling strength parameters for two logistic maps with
time-dependent coupling. The nonlinear coupling term depends on two different time lags,
denoted here as τ1 and τ2. The model equation for x2 during the first epoch is e.g. given by
x2(t) = 0.5 · 4 · x2(t− 1) · (1− x2(t− 1)) + 0.5 · x1(t− 1) · x1(t− 5).

structure (see figure 3.10), although the EXCORR- (figure 3.10 (d)) and the EMI-measure
(figure 3.10 (e)) show results smeared over several lags and EMI is not able to recognise the
coupling in the second epoch for the chosen significance level. The other three measures (figure
3.10 (a) - (c)) even reflect the correct relation of the coupling strengths for the two epochs. The
results for all methods are summarised in figure 3.11 (b) - (f).

45



3 Applications to models

100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t [samples]

co
up

lin
g 

st
re

ng
th

 [a
.u

.]

(a) ECGC

time t [samples]

la
g

τ 
[s

am
pl

es
]

100 200 300 400 500 600 700 800 900

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9

10 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

co
up

lin
g 

st
re

ng
th

 [a
.u

.]

(b) ESCT

time t [samples]

la
g

τ 
[s

am
pl

es
]

100 200 300 400 500 600 700 800 900

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9

10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

co
up

lin
g 

st
re

ng
th

 [a
.u

.]

(c) PESCT

time t [samples]

la
g

τ 
[s

am
pl

es
]

100 200 300 400 500 600 700 800 900

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9

10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

co
up

lin
g 

st
re

ng
th

 [a
.u

.]

(d) EXCORR

time t [samples]

la
g

τ 
[s

am
pl

es
]

100 200 300 400 500 600 700 800 900

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9

10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

co
up

lin
g 

st
re

ng
th

 [a
.u

.]

(e) EMI

Figure 3.10: This figure shows the significant results of the regarded methods for the coupling structure
of the coupled logistic maps given in table 3.4. In (a) the red colour depicts the coupling
from x1 to x2. In (b) - (e) red represents symmetric coupling and blue diametric coupling.
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Figure 3.11: This figure shows the original (a) and the resulting ((b) - (f)) coupling structures from
the regarded methods for the nonlinearly coupled logistic maps given in table 3.4. The
colours of the arrows depict symmetric (red) and diametric (blue) coupling. For results
from methods not able to distinguish between these, there are black arrows. The numbers
show the occurring time lags.
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3.1 Analysis

NAARX-model

Nonlinear autoregressive additive models are used in a wide field of applications like medicine
[WMB+06], climate research [DBR00], and in theoretical [CT93, VK97] as well as practical
[VK99, VKAK99, VSKM99] nonlinear optics. This model class represents a generalisation of
AR-models, since the way future values of a process X depend on past values can now be
modeled by an arbitrary function f , while the additivity still allows for a separate analysis
of different time delays. Nonlinear effects in AR-models are masked by employing preceding
values. Thus it is difficult to interpret the resulting parameters as effect size because these
rather represent the fitting process. Thus, NAAR-models are easier to interpret than multi-
dimensional models. The time-dependent version of this class of models can be described in
the following way,

x(t) =

ω∑
τ=1

f (x(t− τ), τ, t) + ε(t).

In the same way that AR-models can be extended for the multivariate case, the time-dependent
NAARX-model describes a nonlinear additive autoregressive model with external inputs and is
given by

xj(t) =

nvar∑
i=1

ω∑
τ=1

fij (xi(t− τ), τ, t) + εj(t), j ∈ {1, . . . , nvar} .

Equations (3.1) and (3.2) show the actual model used for testing the coupling analysis meth-
ods.

x1(t) =

{
a11(τ, t)x1(t− τ) + δ(t) + ε1(t), |x2(t− τ)| ≤ 0.25

a11(τ, t)x1(t− τ)− δ(t) + ε1(t), otherwise
(3.1)

x2(t) = 0.25 · ε2(t) (3.2)

So, the second variable, or in this case, the external input is given by an independent Gaussian
process with an expected value of zero and a variance of 0.25. The remaining parameters of
the model are shown in table 3.5 and the coupling structure is represented in figure 3.13 (a).

The model order for the Granger causality analysis has been chosen as Ω = 13 according to
the BIC. The AIC would have suggested Ω = 2. The significance threshold is set to α = 0.05.
Without further preprocessing only the mutual information is able to show the correct coupling
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3 Applications to models

epoch 1 epoch 2
t = 1, . . . , 499 t = 500, . . . , 1000

couplings τ aij(τ, t) δ τ aij(τ, t) δ

x1 1 0.2 - 1 0.2 -
x2 → x1 1 - 0.05 3 - -0.1

Table 3.5: The table shows the time lags and coupling parameters for a NAARX-model with time-
dependent coupling.

structure (see figure 3.12 (e)). When adding the quadratic term in the Granger causality
formalism as described in subsection 2.3.4, Granger causality also finds the right coupling
direction (figure 3.12 (a)). Using the simple extension described in section 2.4, also the symbolic
coupling traces and the permutation symbolic coupling traces reveal correct structures (figure
3.12 (b) and (c)). Instead of using the original time series as input, the entries of the second
variable have been substituted with their absolute values. This of course increases, depending
on the number of variables regarded, the amount of time and effort needed to identify couplings,
but is still simple and has low computational costs. The cross-correlation shows no couplings
at all at the chosen significance level.
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Figure 3.12: This figure shows the significant results of the regarded methods for the coupling structure
of the NAARX-model given in table 3.3. In (a) the blue colour depicts the coupling from
x2 to x1. In (b) - (e) red represents symmetric coupling and blue diametric coupling.
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3.1 Analysis

The resulting coupling structure for all measures, after their individual preprocessings, is
represented in figure 3.13 (b) - (f).
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Figure 3.13: This figure shows the original (a) and the resulting ((b) - (f)) coupling structures from
the regarded methods for the NAARX-model given in table 3.5. The colours of the arrows
depict symmetric (red) and diametric (blue) coupling. For results from methods not able
to distinguish between these, there are black arrows. The numbers show the occurring time
lags.

3.1.3 Influence of ensemble size, coupling strength, and noise

To assess the robustness of the different coupling analysis tools, three different tests are per-
formed on an AR-model with two variables. The model parameters are given in table 3.6.

All measures have been able to identify the correct coupling structure of this model (see
subsection 3.1.1). To assess quality of the results for Granger causality are compared with
a reference result (Granger causality for the system with no added noise and an ensemble
size of M = 1000). The quality parameter is then computed as the percentage of matching
results for each time point. For all other methods the results are checked against a reference
matrix containing the actual couplings at each time point and lag. The quality parameter is
the cross-correlation between the results and the reference matrix. So, in each case, a value
of one represents the best possible outcome. The results of each method have been subject to
a significance test with a significance level of α = 0.05. The first test deals with dependence

of the results on the size of the ensemble. It has been changed starting from M = 10 up to
M = 1000 and the results are shown in figure 3.14. For Granger causality (figure 3.14 (a)) no
meaningful results are obtained for an ensemble size smaller than M = 30 because of the model
order Ω = 10.
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epoch 1 epoch 2 epoch 3
t = 1, . . . , 199 t = 200, . . . , 699 t = 700, . . . , 1000

couplings τ aij(τ, t) τ aij(τ, t) τ aij(τ, t)

x1 1 0.3 1 0.3 1 0.3
x2 1 0.3 1 0.3 1 0.3

x1 → x2 2 -0.7 5 -0.7 5 -0.7
x2 → x1 1 0.7 1 0.7 3 0.7

Table 3.6: The table shows the time lags and coupling strength parameters for a time-dependent AR-
model with two variables, for testing the robustness of the regarded coupling methods. The
model equation for x1 during the first epoch is e.g. given by x1(t) = 0.3x1(t− 1) + 0.7x2(t−
1)ε1(t).

In the second test the influence of the coupling strength is checked. Here, coupling strength is
defined as the ratio of parameters describing dependence of one variable on the second variable
and on the past of the first variable itself (e.g. a21

a11
). The results for this case are shown in

figure 3.15.

To evaluate the methods’ performance under the influence of noise, additive noise with in-
creasing amplitudes is added to the time series. The signal-to-noise-ratio is computed as the
mean amplitude of the signal before adding the noise divided by the variance of the noise. The
results are shown in figure 3.16.
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(e) EMI

Figure 3.14: This figure shows the quality of the results for each of the regarded coupling measures
depending on the ensemble size.
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Figure 3.15: This figure shows the quality of the results for each of the regarded coupling measures
depending on the coupling strength.
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Figure 3.16: This figure shows the quality of the results for each of the regarded coupling measures
depending on the magnitude of additive noise.

3.2 Discussion

In the previous sections the methods of cross-correlation, mutual information, Granger causality,
as well as two approaches of the symbolic coupling traces, all with an ensemble extension to
allow for a time-resolved coupling analysis, have been tested on different theoretical models.
The test on different AR-models showed all of the measures were able to reconstruct the original
coupling structure in a mostly satisfying way. Only the ensemble mutual information showed
some problems, e.g. for lower coupling strengths. Of course, this measure is the one requiring the
biggest amount of data in order to adequately estimate the probability distributions. Another
thing to keep in mind is the bivariate nature of the here regarded methods, except Granger
causality, and thus one has to be careful with possible spurious couplings detected.

The second class of models, the measures were tested on, is characterised by its nonlinear
nature. For systems with a simple additive coupling all methods again perform reasonably
well. But here, even the partial Granger causality showed spurious coupling effects in coupling
direction and coupling strength due to the nonlinear effects (compare figures 3.7 (a) and 3.8
(a), respectively). Again, the clearest results were delivered by Granger causality and the
coupling traces. The coupling employed by the NAARX-model was only correctly identified by
the mutual information. A simple extension to Granger causality and the symbolic methods
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3.2 Discussion

enabled these to also find the correct couplings. So, depending on the behaviour of the system,
the couplings in nonlinear systems might still display linear properties which can be detected
by most coupling measures. Only when the coupling becomes purely nonlinear the methods
fail without further extensions (except the mutual information). However, in most real-world
applications at least partly linear couplings are very probable

The following tests depending on ensemble size, coupling strength, and noise were used to
check the robustness of the measures’ results. With an almost perfect reconstruction of the
coupling direction for ensembles consisting of as little as 30 realisations, Granger causality
gives the best performance here (figure 3.14 (a)). It is followed by the symbolic measures which
reach a correlation of over 0.95 already below an ensemble size of M = 100 (figures 3.14 (b)
and (c)). Cross-correlation and mutual information also reach their peak performance relatively
fast, but with much reduced quality (compare figures 3.14 (d) and (e)).

When regarding the dependence on coupling strength the best results in terms of sensitivity
are obtained by the cross-correlation and the mutual information (figures 3.15 (d) and (e)).
They are followed by the ensemble symbolic coupling traces and Granger causality (figures
3.15 (b) and (a)). If the coupling strength becomes to large, the two subsystems regarded
essentially cannot be distinguished anymore and any coupling analysis is bound to fail. Here
only the coupling direction identified by Granger causality can still be correctly derived for
higher strength.

The addition of noise to the original signal was the final test performed. The best results here
are obtained again by Granger causality and the two symbolic methods (figures 3.16 (a), (b),
and (c)). Together with the mutual information (figure 3.16 (e)), whose performance in this
case is worse than the other measures already at the beginning, deteriorating effects only occur
for signal-to-noise-ratios below 0.2. Cross-correlation shows a constant reduction of quality
with the rising noise level (figure 3.16 (d)).

In summary, of the measures regarded here the best suited for an ensemble coupling analysis
are the two symbolic measures and Granger causality. All three of them were able to identify the
correct coupling directions and, in most cases, gave an adequate representation of the relative
coupling strengths. Problems occur with nonlinear systems. But in some cases, these problems
can be avoided by using e.g. a nonlinear model as the basis of Granger causality, or by using
the absolute value of the regarded normalised time series. The first case, of course, may lead
to larger amount of data needed to estimate the model parameters.

Due to its multivariate approach the ensemble partial Granger causality was the method
best suited to exclude spurious couplings. But still the bivariate measures have a right to exist.
One just has to be more careful when interpreting the results and look for example if certain
lags could be explained by adding up lags from the other variables of the system. Of the two
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3 Applications to models

symbolic approaches, the permutation ensemble symbolic coupling traces are better qualified
to avoid spurious couplings because of the finer coarse-graining. Of course the same also leads
to a lower sensitivity when looking at lower coupling strengths.

In the end, which coupling measure to use, strongly depends on the system to analyse.
However, the ensemble symbolic coupling traces are a good first choice requiring only small
amounts of data, while giving information about the actual time lags present, about the relative
coupling strengths, and about the effects of the influences (symmetric or diametric).
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4 Application to data measured during an
orthostatic test

In this chapter applications to measured data from a real-world system and the corresponding
results are presented, discussed and interpreted. The data stems from measurements of the
cardiovascular system. In the cardiovascular system, transient behaviour occurs very often.
These events may occur either due to the adaptive behaviour of the system throughout changes
of states (e.g. orthostatic tests or change of sleep stages) or due to the recovery of the system
after a severe disturbance (e.g., apnoea or arousals during sleep). These transient regime
shifts contain important information about the underlying processes involved and the relations
between state variables such as heart rate and blood pressure. In this section data from two
studies will be analysed. The measured data encompasses an orthostatic test and thus belongs
to the first group of adaptive behaviour. The data was taken from different subjects who
performed the test once.

4.1 Analysis

The data set (see table 4.1) consists of 346 measurements on 195 female and 151 male subjects
with ages ranging from 10 to 88 years (45.5 ± 16.1 years for the women and 44.2 ± 16.4 years
for the men) stemming from a study in [BKO+08]. All subjects were measured in a supine
position followed by an orthostatic test (in this case, simply getting up). After the test the
measurement continued for a while in a standing position. The recorded variables comprise
beat-to-beat-intervals, systolic and diastolic blood pressure, stroke volume (amount of blood
pumped in one heart beat), and cardiac output (amount of blood pumped per minute; product
of heart rate and stroke volume). The time of the orthostatic test was also marked in the
files. For the analysis the ensembles have been built by aligning the measurements with the
beginning of the orthostatic tests (t = 0) and regarding a hundred BBIs before and after the
event, respectively. The averaged and normalised time series showing the typical behaviour
(compare [NR07]) of the six regarded variables during the test are depicted in figure 4.1.

Due to the bigger amount of noise present in the measured data and the limited ensemble
size, the significance level for the coupling analysis has been set to α = 0.2. For α = 0.05 no
discernable structures have been present in the results. The model order has been chosen as
Ω = 10 following the BIC (AIC suggested Ω = 4). Figure 4.2 exemplarily shows the results for
the coupling analysis between BBI and SBP.
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4 Application to data measured during an orthostatic test

younger (age ≤ 40) older (age > 40) total
female 84 111 195
male 74 77 151

Table 4.1: The table shows the number of available measurements with gender and age groups for the
orthostatic test.
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Figure 4.1: This figure shows an example of the behaviour of the cardiovascular variables recorded in
the study from [BKO+08] during an orthostatic test.

The results for all measures except the ESCT and the PESCT (see figure 4.2 (b) and (c))
are difficult to interpret. The stronger coarse graining, i.e the usage of fewer possible patterns,
gives the ESCT an advantage in this case, because the coupling structure is easier discernible
here than for the PESCT. Therefore, the ensemble symbolic coupling traces (see figure 4.2 (b)),
showing the most promising results, will be used for the remaining analyses on this data set.
The coupling structure for all variables according to the ESCT results is represented in figure
4.3.

The effect of the orthostatic test on the connection between all variables can be clearly seen
as either a change in the relative coupling strength or the appearance of new significant lags.
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Figure 4.2: This figure shows influences between BBI and SBP before, during, and after an orthostatic
test.

In figure 4.3 (a) a diametric influence from the BBI to the SBP at τ = −2 can be seen, as well
as a symmetric behaviour at τ = 0. With the beginning of the event, the stationary structure
is disrupted and several lags (τ > 0) appear. Around 40 heartbeats after the event the original
structure is mostly restored, showing only some lingering effects. Almost the same behaviour
can be found in figure 4.3 (b), only here the structure is not restored even after the full 100
BBIs regarded. The same holds true for the connection between the BBI and the stroke volume
(figure 4.3 (c)), although here the event causes just a disruption in the structure without new
time lags appearing. In the coupling structure between BBIs and CO no discernible effect of
the orthostatic test can be made out (figure 4.3 (c)). Figure 4.3 (e) shows an almost symmetric
outburst of significant time lags around the event. Otherwise there is only a stationary coupling
at τ = 0. The relationship between SBP and SV and CO is again mostly characterised by a
break in the stationary structure (figures 4.3 (f) and (g)). In figure 4.3 (h) the ESCT show
a reversal of the direction in the symmetric coupling between DBP and SV after the event
(τ = −1 to τ = 1) via a short diametric coupling at τ = 0. The change of the coupling
structure between DBP and CO, and between SV and CO is again mainly characterised by an
increase of the relative coupling strength during the orthostatic test. Next, we want to look for
changes in the coupling structure depending on gender and age. To retain a reasonable ensemble
size the subjects are grouped according to an age below (younger) and above (older) 40 years.
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(c) BBI-SV
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Figure 4.3: This figure shows the resulting coupling structures from the ESCT analysis between the
regarded cardiovascular variables during an orthostatic test.
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4.1 Analysis

Due to the even smaller ensemble size (M ≈ 86) the significance test is omitted this time. The
results are shown in figures 4.4 - 4.7. At a first glance, the reaction on the orthostatic test is
in the main very similar. However, differences between the four groups can be detected in the
relative coupling strengths. Generally, a reduced strength in the older subjects can be seen. The
most prominent differences occur in the effect of the orthostatic test on the connection between
the diastolic blood pressure and the stroke volume in the male and the younger subjects as
compared to the other groups.
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4 Application to data measured during an orthostatic test
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Figure 4.4: This figure shows the ESCT results for the coupling structure between the cardiovascular
variables regarded for the females group.
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Figure 4.5: This figure shows the ESCT results for the coupling structure between the cardiovascular
variables regarded for the males group.
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Figure 4.6: This figure shows the ESCT results for the coupling structure between the cardiovascular
variables regarded for the younger ages group.
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Figure 4.7: This figure shows the ESCT results for the coupling structure between the cardiovascular
variables regarded for the older ages group.
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4 Application to data measured during an orthostatic test

4.2 Discussion

During an orthostatic manoeuvre, the change from a supine to a standing position, blood is
redistributed and the cardiovascular system has to cope with the effects. The blood rushing
into the legs leads to a reduction of central venous pressure and thus to a decrease in stroke
volume and systolic blood pressure. This again results into the activation of several regulative
mechanisms like vasoconstriction, the contraction of arterial and venous blood vessels, a rise of
the heart rate, and the release of certain hormones. The aim of these actions is the increase of
the total peripheral resistance and the available blood volume in order to normalise the blood
pressure levels [HW03].

The coupling analysis of the BBI and blood pressure data recorded during the orthostatic test
(see figure 4.3 (a), (b), and (e)) confirms the predominating picture about cardiovascular short-
term regulation. The significant connections found in the stationary part of the data are from
diastolic to systolic blood pressure (symmetric, τ = 1), depicting the Frank-Starling mechanism
[Lev10, Sta18], the dependence of the ejected blood volume during the systole on the blood
filling of the heart after the previous diastole, and from beat-to-beat intervals to systolic blood
pressure (diametric, τ = −2), illustrating the sympatho-vagal feedback via vasoconstriction
and vasodilation due to respiratory movements [WSR+09]. This depicts an anti-Starling effect,
where an increase in heart rate also leads to an increase in diastolic and systolic blood pressure
and vice versa. With just the regular Starling mechanism, an increase in heart rate would lead
to a decrease in stroke volume, since the filling time of the ventricles would reduced, and thus to
a decrease in blood pressure. This effect, however, seems to be smaller than the influence of the
total peripheral resistance, which is why only the latter effect is observed here. The lag τ = 0

connections between diastolic blood pressure and beat-to-beat intervals (diametric) and between
beat-to-beat intervals and systolic blood pressure (symmetric) represent mechanically induced
arterial pressure fluctuations due to respiratory movement [WSR+09] while the fluctuations in
the coupling strength hint at the respiratory sinus arrhythmia, i.e. the change in heart rate
when breathing in or out.

The coupling structure found in the nonstationary part during the orthostatic manoeuvre
beginning at t = 0 further corroborates the opinions about the short-term regulation. The
growing symmetric influence of blood pressure on the beat-to-beat intervals can be identified
with the sympathetic baroreflex trying to compensate the drop in blood pressure. The gap in
the τ = −2 interaction between beat-to-beat intervals and the systolic blood pressure can be
explained by the attenuated respiratory sinus arrhythmia and the strong dominance of the blood
pressure drop at this time. The fluctuations in the coupling strength show an adapting process
between blood pressure and heart rate, as the minima and maxima in the τ = 0 and τ = 1

region are alternating, indicating the presence of fast vagal and slower sympathetic controls.
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4.2 Discussion

An interesting result is found in the relationship between the diastolic blood pressure and the
stroke volume (figure 4.3 (h)). Before the event the symmetric influence of the DBP on the SV
at τ = −1 again depicts the well-known Frank-Starling law of the heart [Lev10, Sta18], telling
us that the blood volume ejected from the heart during one heart beat depends on the diastolic
pressure during the previous cycle. After an initial decrease in SV, about ten heart beats
after the event, the SV increases slightly (diametric effect at τ = 0) before dropping further.
This temporal rise of SV, which cannot be found in the other variables regarded together with
the τ = 0 lag hints at other variables influencing the SV. One of these is most probably the
contractility, i.e. the intrinsic ability of the heart to contract, which increases e.g. with an
increase in heart rate and sympathetic activation [Lev10]. This effect attenuates the effects
of the drastic fall in diastolic pressure, but only for a short time. While the other variables
regarded here are almost back to normal values after about 40 BBIs following the orthostatic
test, the SV values stay very low. This might be due to a refractory period in the contractility
increasing effects regulated via hormone releases.

An often used model of the cardiovascular system on a beat-to-beat basis, the DeBoer-model,
was introduced in [DKS87]. It is able to quantitatively describe power- and cross-spectra of
heart rate and blood pressure variability, incorporating meachnisms like the baroreflex as well
as respiratory influences. Apart from simulating subjects at rest it is also suited for simulating
data that would be measured after the application of vasoconstricting drugs. A comparison
of the coupling analysis results gotten from the measured data with the DeBoer-model with
a simulated orthostatic test shows, that there are more mechanisms at work than already
incorporated in the model. The drop in systolic blood pressure only leads to a short disruption in
the stationary coupling structure in the model, without the drastic effects on the other variables.
However, the average time of the disruption in the model and the outburst in the measured
data lies in both cases around 30 to 40 heart beats. In the model, after that amount of time
the system is back to the normal state, while the measured data shows longer-lasting effects.
There are already models specialising in the transient behaviour of cardiovascular variables
during an orthostatic test. In [HSKM02] a continuous hemodynamic model is introduced that
already shows promising results at least in the response of the heart rate during head-up-tilt.
Of course, here one has to keep in mind the differences between orthostatic tests performed by
simply standing up (as in the data used in this work) and tests employing a tilt table. The
head-up-tilt in the latter case would show even more drastic results since the attenuating effect
of muscle contraction when standing up falls away.

The analysis of the different groups, showed differences in the coupling structures depending
on gender and age. Mainly because of the smaller ensemble sizes, the differences between
the groups are not significant. Therefore, a purely qualitative interpretation of the differences
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4 Application to data measured during an orthostatic test

will be given here. In general the older group displays a weaker effect in the coupling structure
during the event (compare e.g. figures 4.6-4.7 (a), (b), and (e)). After the orthostatic test event
there are different effects depending on the variables regarded. For the older group there is a
stronger lingering effect in the relationship between systolic and diastolic blood pressure than
in the younger one (figures 4.6-4.7 (e)) and between the stroke volume and the cardiac output
(figures 4.6-4.7 (j)) while the other pairings of variables show a weaker reaction. This hints
at a higher stiffness of the blood vessles with older age and thus at a reduced adaptability to
blood pressure changes. Regarding gender effects, the clearest differences can be found looking
at figures 4.4-4.5 (b) and (h). In the first case, men show a stronger reaction in the symmetric
influence of DBP on BBIs directly following the orthostatic test, while in the second case the
men show a weaker coupling from SV to DBP compared to the other groups.

The weaker reaction following the orthostatic test and the stronger lingering effects for the
older subjects confirm studies reporting a reduced adaptability and variability in cardiovascular
variables for higher ages [BKO+08, BOL+07, BWB+03, KLY+99, OS03]. Studies analysing
the effect of orthostatic tests with regard to gender differences reported a higher frequency
of orthostatic dysfunction in women. However, there are often conflicting results, making
it difficult to formulate conclusive interpretations [BKO+08]. Following the assumption of a
higher chance of orthostatic dysfunction in women, the stronger effect in figures 4.4-4.5 (b) for
men might hint at a better adaptability to drop in blood pressure. Also the weaker coupling
from DBP on SV for the younger group points at faster adaptive mechanism which is lost with
higher age. The similarity between the coupling structures from the older and the female group
also hints at the of vanishing gender differences with higher ages, confirming previous studies
[BWB+03, KLY+99]. A distinction between younger / older female / male groups further
corrobates this finding, although this encompasses a further reduction in ensemble size and
thus gives even less meaningful results.

The application of the ESCT is able to disclose and confirm stationary as well as nonstationary
effects of the orthostatic test onto short-term cardiovascular control. This allows for a more
accurate analysis of the mechanisms involved. Studies on bigger groups, separated by healthy
and sick subjects, BMI, or other factors, will give even deeper insights on the functions and
interactions of cardiovascular variables during such a test.
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5 Application to data measured during sleep
arousals

In this chapter a data set comprising two measurement nights from one subject displaying a
large number of arousals is analysed. This case belongs to the second group of recoveries after
disturbances and the ensemble is built up from several repetitions of one event from one subject.

5.1 Analysis

The data to be analysed (see table 5.1 in this subsection stems from a study [PRG+12], where
27 patients suffering from obstructive sleep apnoea syndrome were measured for two nights.
The measurement comprises an ECG, an electroencephalogram, an electrooculogram, various
respiratory signals, electromyograms from chin and legs, as well as a continuous blood pres-
sure measurement. Sleep stages have been scored according to the standard AASM manual
[IAICQ07]. From the ECG the R-peaks were detected to build the BBI series and systolic
and diastolic blood pressure have been extracted. The other signals have been preprocessed
by determining mean and variance during the BBIs. One of the subjects showed a particularly
high occurrence of arousals during the two nights. The typical characteristics of these arousals
in the regarded cardiovascular variables can be seen in figure 5.1 where the normalised time
series averaged across the ensemble are shown.

gender # of arousals time series length
male 456 201 BBIs (100 before and after the

beginning of the arousal)

Table 5.1: The table shows information about the sleep data measurement.

The arousals have been marked in the BBI series and their beginning (t = 0) has been used
to align the ensemble members. Due to the restricted ensemble size (M = 456) and natural
noise, the significance level has been set to α = 0.2 (as before there was no discernible structure
in the results for α = 0.05) while the model order was chosen as Ω = 10 following the BIC.
The suggested model order according to the AIC was Ω = 6. As in the previous subsection, the
clearest results are given by the ESCT-method. In figure 5.2 the resulting significant coupling
structures according to the ESCT are shown between the variables of BBI, SBP, DBP, as well
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Figure 5.1: This figure shows an example of the typical form of arousals in the BBI-series (a) frequently
occurring in one subject from the study described in [PRG+12] during the measurement
nights. The effect of the arousals in the other variables regarded (b)-(e) is also shown.

as the activity, i.e. the windowed variance during one beat-to-beat interval, of the left leg and
the EEG. The used EEG-channel was the lead from electrode positions O2 (right occipetal
lobe) and A1 (left ear lobe). Again, 100 BBIs before and after the alignment point have been
regarded in the analysis, but for a better representation figures 5.2 (d)-(f) are shown only with
ten BBIs before and after the event.

Here the known stationary structure between BBI, SBP and DBP is disrupted, as in the or-
thostatic test, during the arousal (compare figures 5.2 (a)-(c)). The τ = −2 diametric influence
from the BBI onto the SBP is getting stronger and spreading to larger lags. After about ten
heartbeats the influence changes into symmetric behaviour, before, after about 20 heartbeats,
the original structure is restored. The same effect can be regarded between the BBI and the
DBP series. The coupling between the DBP and the SBP series shows a stationary τ = −1

influence from the DBP to the SBP. The effects of the events show an almost symmetric distri-
bution across several lags (τ < 0 and τ > 0). In the other three figures 5.2 (d)-(f) no coupling
could be discerned before the event. Only during and directly after the event a short occurrence
of significant lags can be seen. At first a diametric influence from the variance of the leg move-
ment onto the beat-to-beat intervals can be seen which is reversed into a symmetric influence
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5.2 Discussion
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(f) Leg-Movement-EEG

Figure 5.2: This figure shows the ESCT coupling structure between the regarded variables during the
arousals frequently occurring in one subject from the study described in [PRG+12] during
the measurement nights.

from the BBI onto the leg movements after three to four heart beats. A similar pattern can
be discerned when looking at the relationship between the BBIs and the variance of the EEG.
Figure 5.2 (f) only shows a short effect from the EEG onto the leg movements.

5.2 Discussion

The results delivered by the ESCT-method for the polysomnographic data with the arousals
at first also confirm the results mentioned above and from [3], [WSR+09] about the short-term
cardiovascular regulation between heart rate and blood pressure. Again the effects originating in
the sympatho-vagal feedback (figure 5.2 (a), diametric τ = −2), the Frank-Starling mechanism
(figure 5.2 (c), symmetric τ = −1), and in the mechanical influence of the respiratory movements
(figure 5.2 (a)-(c), τ = 0) are clearly visible. With the beginning of the arousals at t = 0 the
heart rate increases at first, followed by an increase in the blood pressure (diametric effect in
figures 5.2 (a) and (b)). About five heart beats later the heart rate goes down again while
the blood pressure is still rising (symmetric effect). This corresponds to the baroreflex, which
regulates sympathetic and parasympathetic activity depending on the current blood pressure
and thus influences the heart rate. Via figures 5.2 (d)-(f) further conjectures about the cause
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5 Application to data measured during sleep arousals

of the arousals can be made. Approximately two heart beats before the length of the BBIs
shortens, a rise in the strength of the leg movements and in the brain activity can be seen
(diametric effect). But again, the heart rate goes down before the activity in the leg movements
and the EEG normalises. Figure 5.2 (f) shows that the increased leg movement is triggered
by the rise in the brain activity with a time lag of τ = 1 (symmetric effect). Thus, we can
see that the arousal is triggered in the brain leading first to increased leg movement via motor
activation and then due to sympathetic activation to a rise in heart rate, which again induces
the blood pressure fluctuations.

(a)

arousal onset

respiratory onset

REM deep sleep

(b)

Figure 5.3: In (a) the Coordigram between respiratory and arousal onsets during the different sleep
stages in one subject from the study described in [PRG+12] during the two measurement
nights is shown. The diagram in (b) summarises the information inferred from the coordi-
gram.

Another tool, the so-called coordigram, allowing for a coupling analysis with a very high
temporal resolution was introduced in [6]. It has been used to analyse the relationship between
the heart beats and the onsets of the respiratory cycles. The coordigram’s ability to work with
very few time points allows for an analysis of the differences of the arousals’ effects during
different sleep stages. In this special case not the interrelation between the heart beats and
the onsets of the respiration, but the coordination between the beginnings of the respiratory
cycles and the onsets of the vegetative arousals has been analysed. In [4] it was found, that
the direction of that interrelation is dependent on the sleep stage. During deep sleep the
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5.2 Discussion

arousals seem to control the beginning of the following respiratory movement (figure 5.3). The
time distance between arousal onset and the beginning of the expiration is too long for an
autonomic reaction, suggesting instead a control of the onset of the inspiration. This in turn
would result in a time delay between the onsets of one heart beat. This effect shows similarities
to the trigger effect of single heart beats onto the beginning of the respiratory cycle described in
[Ras87]. This hints at a connection between the cardiac centre and the respiratory generators
in the brain stem. During the rapid-eye-movement (REM) sleep the direction of the interaction
is reversed (figure 5.3). This time the time delay suggests a relation between the onset of the
expiratory phase and the arousal beginning, which might be due to a change of the respiration
generating process. During REM-sleep higher brain regions dominate the respiratory rhythm
[Rem05]. So in this case the former interrelationship is destroyed or overlapped since there
is no connection between the cardiac centre and the higher brain areas. In conclusion, the
coordigram analysis enhances the results gotten via the ESCT.
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6 Conclusion & Outlook

6 Conclusion & Outlook

In this work, a group of well-known and often applied coupling measures has been extended to
allow for a time-resolved coupling analysis with a very high temporal resolution. The extension
is based on the usage of repeated events to build an ensemble over which the regarded measures
are to be estimated. The time resolution to be achieved with this approach is only dependent
on the measures themselves and goes up to a time span comprising only a few time points
of the measured data. This enables us to analyse transient events e.g. in climate, financial,
or cardiovascular time series. The only requirement for the ensemble approach to work is the
repeated occurence of such events, either measured in different subjects or as repetitions in one
subject.

Methods

The tools regarded in this thesis are the ensemble cross correlation (subsection 2.2.3), the en-
semble lagged mutual information (subsection 2.2.3), the ensemble partial Granger causality
(subsection 2.3.4), and the ensemble symbolic coupling traces and permutation symbolic cou-
pling traces (subsection 2.4.3). They were chosen to represent the majority of fields modern
coupling measures stem from, namely classical methods, information theory, model-based tools,
and symbolic dynamics. For each method the basics of how they work as well as the ideas be-
hind have been given and explained before they were extended using the ensemble approach.
The code for the EGC, the PESCT, and the ESCT for MATLAB (MATLAB and Statistics
Toolbox Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) can be
found at http://tocsy.pik-potsdam.de/coupling.php.

Models

All measures introduced and extended in this work have been extensively tested on several
theoretical models to assess their performance on linear (subsection 3.1.1) and nonlinear systems
(subsection 3.1.2), their behaviour in the presence of noise, for different ensemble sizes, and for
different coupling strengths (subsection 3.1.3). The results showed that the SCT methods are
suitable for a lot of applications, due to their model-free approach, their robustness against
noise, and their low requirements in terms of the length of the data series. A drawback of
these methods is their bivariate nature. Another flexible approach is given by the Granger
causality, which can be customised by using models best suited to the data in question. There
are already a lot of extensions [AMS04, CRFD04, HSPVB07, IOLK08a, IOLK08b, FNC08,
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Rie09, RSM+08, RSS+10] allowing for multivariate and nonlinear analyses. But to apply the
most suitable version of Granger causality one has to have some a priori knowledge about the
system at hand. With more data available refined versions of the lagged mutual information
[VP08], [9] are also an option because of their inherent ability to cope with highly nonlinear
systems and couplings. Multivariate extensions exist and usually no further a priori knowledge
about the data is necessary.

Orthostatic test and sleep arousals

In chapters 4 and 5 two examples of transient events in the cardiovascular system have been
analysed. The results show interesting consequences of these events for the regarded variables
and help us to get a deeper insight into the system and the cardiovascular control mechanisms.
The different tests and the application to measured data proved the ESCT method to be an
effective low-cost tool for a first assessment of the existing coupling structure.

In the case of the orthostatic test (chapter 4) it was possible to identify the stationary coupling
structure between BBIs, systolic and diastolic blood pressure, stroke volume, and cardiac output
before the event. The couplings show the sympatho-vagal feedback, the baroreflex, and the
Frank-Starling mechanism while fluctuations in the coupling strengths show for example the
effects of the respiratory sinus arrhythmia. During and after the event the different behaviours
during the nonstationary part can clearly be seen. The results confirm predominant opinions
about the processes during an orthostatic manoeuvre by showing mechanic and hormonal effects
which are usually not visible by employing standard methods. Comparisons by gender and
age were limited by the amount of data available but still go according with the commonly
accepted view of a reduced adaptability with higher ages as shown in stonger lingering effects
of the manoeuvre. Also vanishing gender differences with higher age can be confirmed, with
men showing a higher adaptability at younger ages than women.

The findings for the sleep arousal data (chapter 5) again corroborate existing results for the
stationary couplings and show the known short-term cardiovascular regulation mechanisms.
The nonstationary part allows speculation about the chain of events during the course of the
arousals. Apart from the baroreflex, which regulates sympathetic and parasympathetic activity
depending on the current blood pressure, being clearly visible, we can see the faster motor
activation followed by the sympathetic activation leading to the increases in leg movements
and heart rate. These are triggered in the brain [4]. With the help of the coordigram a reversal
of the connection between arousal beginnings and respiratory onsets in deep sleep as opposed
to REM sleep has been found. This allows further assumptions being drawn about a connection
between the cardiac centre and the respiratory generators [4, 6].

73



6 Conclusion & Outlook

Outlook

Of course, this work is far from exhaustive concerning the field of coupling analyses as there are
many other coupling measures not regarded here. From these especially the ones stemming from
information theory [VP08], [9] show promise at identifying actual causalities via information
transfer, while excluding spurious couplings mediated by other variables present. However, these
usually require very large amounts of data and are thus not always suitable for an ensemble
analysis on real-life data, where the number of available realisations is often limited.

Future work should comprise the extension and testing of other coupling measures to enable
the analysis of transient events in areas where the ESCT and linear Granger causality fail. The
biggest problems lying here in multidimensional nonlinear systems. Furthermore, the ensemble
approach requires the repetition of the events of interest. So, the application to bigger data sets
would offer more flexibility in building the ensembles and thus allow for comparisons depending
on e.g. BMI, subjects with and without certain diseases, and other factors. Also algorithms
for automatic group building could then be employed. However, the ensemble approach is not
always possible to realise. In this case a windowed analysis might still be the method of choice
and tools like the coordigram [6] can offer new and interesting approaches.

In the end, the ensemble coupling analysis methods offer an effective, easily applicable way
to learn a systems reaction under very short but extreme events, allowing for a better under-
standing of the system’s inner structure. This, in turn, can be used to devise new ways to cope
with e.g. financial shocks, climate changes, and cardiovascular diseases, and thus to help to
treat and solve current and future problems from many different fields.
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