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Zusammenfassung

Die Untersuchung kausaler Zusammenhénge in komplexen dynamischen Systemen spielt in der
Wissenschaft eine immer wichtigere Rolle. Ziel dieses aktuellen, interdisziplindren Forschungs-
bereiches ist ein grundlegendes, tiefes Versténdnis der vorherrschenden Prozesse und deren
Wechselwirkungen in solchen Systemen. Anwendungen stammen dabei aus Bereichen wie der
Klimaforschung, der globalen 6konomischen Systeme, des menschlichen Herzkreislaufsystems
und der neurophysiologischen Prozesse im Gehirn. Die Untersuchung von Zeitreihen aus diesen
Gebieten mithilfe moderner Kopplungsanalysemethoden liefert dabei Moglichkeiten zur Model-
lierung der betreffenden Systeme und somit bessere Vorhersagemethoden und fortgeschrittene
Interpretationsmoglichkeiten der Ergebnisse. So wurden in letzter Zeit unter anderem bekannte
und neu gefundene Zusammenhénge zwischen Prozessen des Klimasystems, z.B. zwischen der
El Nino Southern Oscillation (ENSO) und dem indischen Monsun, sowie kurzfristige kardiovas-
kuldre Regulationen mithilfe solcher Methoden erfolgreich genauer untersucht und interpretiert.
Bei der Anwendung von Kopplungsanalysemethoden fiir Zeitreihen ist es jedoch wichtig, zwi-
schen dem alltdglichen Kausalitdtsbegriff und dem Begriff der Kopplung zu unterscheiden. In
den letzten Jahren wurde eine Fiille von Werkzeugen entwickelt, die oft auf dem Prinzip der
Granger-Kausalitéit oder anderen abgeschwichten Versionen einer Kausalitdtsdefinition beru-
hen.

Unter den oben genannten Systemen ist besonders das menschliche Herz-Kreislauf-System,
dessen komplexes Verhalten durch viele sich iberlagernde Regulierungsmechanismen bestimmt
wird, ein aktuelles Forschungsgebiet. Ein wichtiges Teilgebiet umfasst dabei den Bereich der In-
teraktionen zwischen Schlag-zu-Schlag-Intervallen und dem Blutdruck, die einerseits zumindest
teilweise bekannt sind, andererseits aber bis heute noch kontrovers diskutiert werden.

In der vorliegenden Arbeit werden zunéchst einige existierende Kopplungsmafse mit ihren je-
weiligen Anwendungsgebieten vorgestellt. Eine Gemeinsamkeit dieser Mafe liegt in der Voraus-
setzung stationérer Zeitreihen, um die Anwendbarkeit zu gewédhrleisten. Daher wird im Verlauf
der Dissertation eine Moglichkeit zur Erweiterung solcher Mafse vorgestellt, die eine Kopplungs-
analyse mit einer sehr hohen Zeitauflésung und somit auch die Untersuchung nichtstationéarer,
transienter Ereignisse ermdglicht.

Die Erweiterung basiert auf der Verwendung von Ensembles von Messreihen und der Schét-
zung der jeweiligen Mafe iiber das Ensemble anstatt iiber die Zeit. Dies ermdglicht eine Zeitauf-
16sung bei der Analyse in der Grofsenordnung der Abtastrate des urspriinglichen Signals, die
nur von der Art der verwendeten Kopplungsmafse abhéngt.

Die Ensemble-Erweiterung wird auf verschiedene Kopplungsmafse angewandt, die bereits er-



folgreich unter schwierigeren Bedingungen wie starkem Rauschen oder kurzen Messreihen ver-
wendet wurden. Zum Vergleich werden zwei einfachere Kopplungsmafse herangezogen. Zunéchst
werden die Methoden ausfiihrlich an verschiedenen theoretischen Modellen und unter verschie-
denen Bedingungen getestet. Anschlieffend erfolgt eine zeitaufgeloste Kopplungsanalyse kardio-
vaskulérer Zeitreihen, die wiahrend transienter Ereignisse aufgenommen wurden. Die Ergebnisse
dieser Analyse bestédtigen zum einen aktuelle Studienresultate, liefern aber auch neue Erkennt-
nisse, die es in Zukunft ermoéglichen kénnen, Modelle des Herz-Kreislauf-Systems zu erweitern
und zu verbessern. Auf diesen Modellen basierende, bessere Vorhersagemethoden kénnen an-
schliefsend neue Diagnoseverfahren und Behandlungsmethoden kardiovaskulédrer Erkrankungen

erlauben und somit einen wichtigen Beitrag zur Gesundheitserhaltung des Menschen liefern.



Summary

The analysis of causal relationships in complex dynamic systems plays a more and more impor-
tant role in various scientific fields. The aim of this current, interdisciplinary field of research
is a fundamental, deep understanding of predominant processes and their interactions in such
systems. Frequent applications stem from fields like climate research, global economics systems,
the human cardiovascular system, and neurophysiological processes in the brain. The study of
time series originating from these areas using modern coupling analysis tools allows the mod-
elling of the respective systems and thus better prediction methods and advanced interpretation
possibilities for the results. Recently, coupling measures have been used to analyse and inter-
pret, among others, known and newly found connections between climate system processes like
the El Nino Southern Oscillation (ENSO) and the Indian monsoon, and short-term cardiovas-
cular regulations. When applying such measures it is important to distinguish between the
common concept of causality and the term of coupling. During the last years, a plethora of
coupling measures has been developed, often based on the Granger causality principle or on
other attenuated forms of common causality definitions.

Among the systems mentioned above, especially the cardiovascular system, whose complex
behaviour is determined through many overlapping regulatory processes, is an ongoing research
topic. An important section of this field comprises the interactions between the beat-to-beat
intervals and the blood pressure, which on the one hand are at least known partially and on
the other hand are controversially discussed.

In this work, initially some existing coupling measures and their fields of application are
introduced. One trait these measures have in common is the requirement of stationary time
series to ensure their applicability. Therefore, in the course of this thesis a possibility to extend
these measures is presented, which allows a coupling analysis with a high temporal resolution
and thus also the analysis of transient, nonstationary events.

The extension is based on the use of ensembles of time series and the calculation of the
respective measures across these ensembles instead of across time. This allows for a temporal
resolution of the same order of magnitude as the sampling rate in the original signal. The
resolution only depends on the kind of coupling analysis method employed.

The ensemble extension is applied to different coupling measures already successfully em-
ployed under difficult circumstances like high noise levels or short time series. For comparison,
two simpler coupling measures are used. To begin with, the regarded tools are tested on vari-
ous theoretical models and under different conditions. This is followed by a coupling analysis

of cardiovascular time series recorded during transient events. The results on the one hand



confirm topical study outcomes and on the other hand deliver new insights, which will allow to
extend and improve cardiovascular system models in the future. Prediction methods based on
these models will then be able to provide new diagnostic techniques and treatment procedures

for cardiovascular diseases, thus contributing to health preservation in humans.
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1 Introduction

A lot of people throughout the world suffer from cardiovascular diseases, which are the num-
ber one cause of death worldwide [WHO10]|. Their treatment causes enormous costs for the
public health care system [HTK'11] and is not always successful. These are among the main
reasons why the study of the human cardiovascular system plays such a big role in the field of
medical science, which can look back on a history of over one hundred years. The compara-
tively new branch of Cardiovascular Physics [WKDBO07]|, which combines methods from linear
and nonlinear data analysis and modelling with medical background knowledge, has brought
forth a lot of new interesting insights and tools to help in understanding the interactions of
the cardiovascular system and thus predicting diseases, assessing risks and providing new clin-
ical parameters [CFB1T93, DB92, HKvdL ™94, MWH™'02, SAL*89]. The development of non-
invasive measurements like the electrocardiogram (ECG) [Ein03], the echocardiogram [Bak70],
the magneto-resonance tomography [NVF02] and blood pressure recording using a sphygmo-
manometer [Mil51], in the last century, allows for a far easier way to get data without greatly
impeding the subjects. Today, the most often applied technique is measuring the ECG, because
of the simple measurement setup and its cost efficiency. It is characterised by a unique waveform
depicting the P-wave (atrial excitation) followed by the QRS-complex (fast depolarisation) with
the distinctive R-peak, and the T-wave (ventricular repolarisation)|Lev10|. From the ECG, vari-
ables like the beat-to-beat intervals (BBI) or their inverse, the heart rate, the heart’s electrical
axis in the frontal plane and the electrical activity of the atria and the ventricles can be derived.
Just relying on the ECG, it is already possible to diagnose abnormal rhythms caused by damage
of the tissue, which carries the electrical signals, or non-cardiac conditions [VSKO04]| like heart
blocks [Lew20]|, myocardial infarction [GFPK84|, hypertrophy [K1i97], electrolyte abnormalities
[Sur95]|, pulmonary embolism [UBP*01|, and hypothermia [GBEC95]. Another measurement is
the beat-to-beat blood pressure recording, whose most important development stations encom-
pass among others the hydraulic function of the cardiovascular system [Har28|, the realisation
that respiration causes blood pressure fluctuations [Hal33, Lud45], and the discovery of rhyth-
mic blood pressure fluctuations, the so-called Mayer waves [May76|. Blood pressure is usually
described by the two variables of systolic and diastolic blood pressure, i.e. the maximum (con-
traction of the left ventricle) and the minimum (permanent pressure without heart activity)
value of the blood pressure curve during a beat-to-beat interval, respectively. The introduction
of non-invasive measurement methods [Mil51, Pen73| has rendered the blood pressure to be one
of the most important signals in the evaluation of physiological questions. Today a continuous

measurement with only low restrictions for the subjects is possible using portable devices. Pre-
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1 Introduction

vious studies have shown that the blood pressure signal shows large variations during the day
and even during longer periods like days, months, or seasons [MFG'83, MMB™*06, SCB198|
providing important clinical parameters [MOPT01, MOR195, MPB*07|. Relationships be-
tween cardiovascular conditions [KOA ™05, STF199] and organ damage related to hypertension
[FST97, MPH'01] have been found via cross-sectional and longitudinal studies. Other param-
eters like the stroke volume (SV), the volume of blood pumped from one ventricle of the heart
per beat, and the cardiac output (CO), the blood volume pumped by the heart per minute,
are usually either measured using invasive methods or by an echocardiogram [Lev10|. However,
based on the blood pressure measurement and knowledge about the cardiovascular system, it
is also possible to estimate parameters like SV or CO on a beat-to-beat basis. The SV can
for example be computed by integrating the aortic flow waveform per beat, which in turn is
estimated from the arterial pressure signal using a nonlinear model [JIOT99, WJSS93]. The
CO can then be simply calculated as the product of heart rate and the SV values.

The aforementioned development of non-invasive tools to measure physiological signals, e.g.
the ECG and the blood pressure, has led to an enormous amount of data recorded under var-
ious conditions. The challenge now lies in analysing the data, thus trying to understand the
underlying mechanisms and their interactions amongst each other, and in the end extracting
meaningful parameters usable for diagnostics and risk stratification. For example, heart rate
(HRV) and blood pressure variability (BPV) parameters have helped understanding the nervous
control mechanisms of the cardiovascular system |[AGUT81, LV76, Say73, Tas96]. However, the
many open questions lead to an undamped interest in analysing the data and developing new
sophisticated methods. Due to the complex structure with its many control loops and the strong
dependence on internal as well as external conditions, the cardiovascular system exhibits a com-
plicated spatio-temporal behaviour. Thus, a lot of fruitful ideas have been contributed by the
field of chaos theory and nonlinear dynamics during the last decades [KSAT04, Lom00, Mal98,
MWMt02, PFM*07, SDHK05, SRAK99, VKK195, VKK*96, WMBKO07|. In order to gain a
deeper insight into the actual mechanisms purely descriptive linear or nonlinear parameters are
not sufficient, mathematical models are needed. Using these it is possible to describe the indi-
vidual components and their interactions under various conditions, for example during diseases,
and finally to draw conclusions about the reality [CT02]. Usually, there are two approaches.
The first one uses differential [CB96, Gro59, KST*05, Kuu04, OPK*00, Ott97, ZGB"07] or
difference equations [DKS87, RK95| based on principles of physics, mathematics and, in this
case, incorporating knowledge of physiology about couplings between e.g. heart rate, blood
pressure, and respiration. The second one employs tools from time series analysis and system
identification to model the measured data via autoregressive (AR) models and thus infer mech-
anisms independent of a priori knowledge [BCB*94, CMT*97, MW97, PBRT00, PLG"86]. A

12



problem with this approach lies in the potentially large number of possible parameters, which
might interfere with a physiological interpretation. Also, as most natural processes, the cardio-
vascular system exhibits highly nonlinear behaviour, impairing the use of linear methods and
models without further effort. For this reason, several extensions for nonlinear AR-models to
describe HRV and BPV have been proposed in the last years, e.g. bilinear [AJIT02], functional
coefficient [BBSK02], nonlinear additive AR-models without (NAAR) [WMB™06] and with ex-
ternal input (NAARX) [Rie09, RSM*08|, and AR-models with conditional heteroscedasticity
|[KHIO3|.

For the models to help us in understanding the underlying mechanisms, we need to identify the
interactions between the single variables using no or only little a priori knowledge. Therefore,
a plethora of coupling measures to allow for identifying a complex system’s coupling structure,
including coupling strength, direction, and occurring time lags, has been developed over the

years.

Coupling measures

The analysis of effects from coupling in and between systems is important in data-driven inves-
tigations as practised in many scientific fields. It allows deeper insights into the mechanisms
of interaction emerging among individual smaller subsystems when forming complex systems
as in the human circulatory system or the climate system. In the last century and especially
during the last 20 years the development and application of coupling measures became more
and more important. The correct application of those, requires at least a basic understanding of
the concept of causality. Since there is no binding definition of the term causality, two examples
are given here.

An event A is said to be causal for an event B if,
e when A happens, B also takes place (necessary criterion),
e A happens chronologically before B,
e and, if A does not happen, B cannot occur either (sufficient criterion).
Based on probability theory also the next definition is possible. A causes B, if
e the probability for A to occur is not zero,
e A happens chronologically before B,

e and the probability for B to happen, when A has occurred before, is larger than the
probability of B taking place on its own.

13



1 Introduction

Due to the relativity theory, the second point in both definitions implies also a spatial restriction,
which can be neglected for a lot of applications of coupling analyses, however. The utilisation
of these definitions for time series analysis is not readily feasible. Often, some measure of a
priori knowledge is still needed. One attempt of a causality definition for time series analysis

was given by Granger [Gra69]. A process X Granger-causes a process Y, if
e X happens chronologically before Y

e and the error when predicting the future of Y is reduced when taking information from

X into account.

A lot of coupling measures are based on this definition. However, there are also other measures

which employ another definition. A process X influences a process Y, if
e X happens chronologically before Y
e and the processes show similar behaviour.

Of course, these definitions are strongly attenuated versions of the causality definitions above.
Therefore, one has to keep in mind, that usually a found coupling in time series can imply a
causal connection, but cannot be taken as compelling proof. At least not, if not all variables of
a given complex system are known.

While often classic methods like correlation and coherence are used to define connections be-
tween subsystems (compare e.g. [NFPT05, RGAC14] for cortex networks and the cardiovascular
system), today, there are coupling measures originating in different fields comprising Granger
causality, methods based on information theory, phase space measures, symbolic dynamics, and
synchronisation and coordination, which are able to provide more information about coupling
strength and direction. There are several works comparing the different measures and testing
their applicability in different situations stemming from neurophysiological and cardiovascular
systems [Leh11, LIKOO07, PF13, SAET13|. Several models of the cardiovascular system have
been proposed based on the results of combining practical and theoretical a priori knowledge
with insights obtained via coupling analyses [DKS87, PBR*T00, PFR*02, SLM01, SLSHOI,
SNGT04]. In the next subsections some of the existing coupling measures will be briefly intro-

duced and examples of systems they have been applied to are given.

Granger causality

The classical Granger causality was introduced in [Gra69|. It is based on estimating AR-
models for the data given and checking whether the errors produced by the modelling process

are significantly reduced when incorporating information from a second variable. Over the
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years, several extensions for multivariate data [Gra69, Gew84, GSK08|, later in this work
discussed in more detail, and nonlinear applications have been developed. This includes the
use of NAARX-models [FNC08, Rie09, RSMT08, RSS*10|, different embedding techniques
[CRFDO04, IOLKO08b], the use of radial basis functions [AMS04|, and the application of kernel
based methods [MLCS11, MPS08b, MPS08a|. A comparison of different nonlinear extensions
can be found in [HSPVB07, IOLK08a|. The applications range from financial data over car-
diovascular, neurophysiological, and gene regulatory network data to climate time series. To
assess also long-term couplings for example in climate data, in [SM09| an appropriate approach
has been proposed. The spectral version of Granger causality is also known as partial directed
coherence and has mainly been applied measurements of the electrical activity of the brain
(electroencephalogram, EEG) [BS01, SWET06, WSHT06, WSTO07|.

Information theoretic measures

The methods stemming from the field of information theory are usually based on a form of
mutual information [Sha48|. The first subgroup is the transfer entropy [Sch00b| with several
extensions [LPKO7, Ver05|. It has been mostly applied to cardiovascular data. The second
measure, the conditional mutual information [Pal96|, bears some similarities with the transfer
entropy and is in some cases equivalent. It has been widely applied to neurophysiological
and cardiovascular data [FP07, FNP11, FNP12, MSM™07, Pal07, PKHv01, PKP*01, PS03,
PSV04, PV07, QCKH11, SB14, SCB14, STB14, Vej08, VP08|. This approach can also be used
on phase time series. An overview about several information theoretic methods can be found in
[HSPVBO7]|. Recently, a new approach, the so-called momentary information transfer, has been
introduced. It specialises on avoiding spurious couplings by conditioning on certain subgroups
of the data points and on how to identify these. It has been successfully applied to climate and
cardiovascular data [PR11, RHMK12, RHPK12], [9].

Phase space measures

The phase space methods are usually based on mutual prediction using a nearest neighbours ap-
proach and comparing prediction errors when incorporating other variables [QAG00, SSCT96].
Thus, they are also based on identifying causalities in the sense of Granger. There are today sev-
eral refinements of the original measures using e.g. rank statistics, and they have been success-
fully applied to different nonlinear model systems and neurophysiological as well as cardiovascu-
lar data [AGLE99, AK11, CA09, FPN08, LMAV99, NFAP09, QKKGO02, SA05, Sch00a, TBO03|.
A second class in this field consists of recurrence based measures with applications to cli-
mate series and the cardiovascular system [FDD*12, MZW*13, RGM'13, RTKG07, ZRT"11].

Among these measures there is also an approach to identify hidden variables to avoid spurious
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1 Introduction

connections [HA10].

Symbolic dynamics

Among other features, their robustness against noise predestines symbolic approaches for a cou-
pling analysis. They are based on the symbolification of the data using different approaches.
The coupling analysis part is usually done by applying another known coupling measure algo-
rithm on the obtained symbol sequences. By choosing the symbol alphabet, word length, and
time lags between consecutive ’letter’ of a word, one can easily adapt the measures to the needs
at hand (e.g. short-term or long-term coupling). Some of the most successful measures are the
symbolic transfer entropy [SLO8, SL09al, joint symbolic dynamics [STB*13], and the symbolic
coupling traces [SRM 110, WSR09], which have all been applied to neurophysiological and
cardiovascular data and have delivered promising results. From these measures, the symbolic

coupling traces are discussed in the next chapter in more detail.

Synchronisation & coordination

Synchronisation [PRKO01] is an effect which usually renders the detection of coupling directions
impossible, since in a completely synchronised state two systems cannot be distinguished any-
more. However, using approaches based on synchronisation detection it is possible to perform
a coupling analysis for systems not completely synchronised. One of these approaches is the
so-called evolution map approach [RP01| which has been extensively used on theoretic models
and EEG as well as cardiorespiratory data [BPRP03, CRFT03, MCPR03, MSM*07, RCB*02,
SA05, SB03]. A second tool, the synchrogram [SRKA9S]|, allows for a graphical interpretation
of synchronised states in bivariate systems. It has been mainly used on cardiorespiratory data
[MPRO0O, RKP198, RPK*01, SRAK99, SRKA98, SWD™06|. Since this measure is used to de-
tect phase synchronisation, it is not a coupling measure per se, but still has delivered interesting
insights. However, another method based on a similar approach, namely the coordigram [6],
can be used to infer coupling directions. As opposed to the synchronisation, which describes
a phase-based relationship between systems, the coordination describes a time-based connec-
tion (e.g. between the time points of the onsets of respiratory cycles and the heart beats)
and has been shown to play an important role for example in cardiorespiratory mechanisms

|[Ras86, Ras87, RH82|.

Subject of this thesis

An important issue not yet mentioned lies in the detection of time-variant couplings. Usually,

such an analysis can be easily done using moving window techniques. This reduces the station-
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arity requirement for the whole time series, to stationarity inside the window. However, the
time scale on which couplings can be identified is strongly limited by the amount of data points
needed to employ a certain coupling measure. Thus, it is nearly impossible to analyse transient
events, which might change the coupling structure for very short periods of time, as compared
to typical time scales on which changes occur in a given system. One way to circumvent this
problem is to make sure the measured data has been recorded with a sufficient sampling rate.
Depending on the data this is not always the case. Additionally, even if there is a sufficient
time resolution, the stationarity requirement is usually not met during transients. How to solve
this problem and how to extend common coupling measures to cope transient changes in the
coupling structure using an ensemble approach, is the main subject of this work. In chapter 2
the ensemble approach will be introduced and explained. Also selected coupling measures will
be presented together with a description on how to extend these measures using said approach.
The following chapters 3, 4, and 5 contains different models to test the new extended coupling
measures, as well as the results of the tests. Also, applications to real world systems are shown.
The results will then be discussed and interpreted in the last chapter 6, where also an outlook

for future applications and developments will be given.
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2 Methods

In this chapter, to overcome the problem of stationarity requirements of many coupling mea-
sures, paired with the wish to be able to analyse time-variant couplings on short time scales
mentioned in the previous chapter, an ensemble approach to enhance existing coupling measures
for a dynamic coupling analysis with a very high temporal solution is introduced and explained.
Several coupling analysis tools working well also for short time series are then described, high-
lighting their strengths and limitations. In this section also the permutation symbolic coupling
traces are introduced for the first time. Finally, all methods presented will be extended by
applying the aforementioned ensemble approach. Thus, in this work the existing applications

of the ensemble idea will be expanded to Granger causality and symbolic dynamics.

2.1 Ensemble approach

The detection of time-variant coupling structures is an important research issue, since many sys-
tems from fields encompassing physics, physiology, neuroscience, chemistry, biology, climate re-
search, economy, etc. display dynamic changes in the system structure. These changes might be
based on internal or external disturbances, like for example shocks or crises in economy |Zan09],
large-scale events (e.g. El Nifio or volcanic events) in climate research [MBMK12, RDR 13|,
event-related potentials in neuroscience [CTKT78|, and sleep apnoea in physiology [LBO01], or
on inherent transitions between different regimes, like changes of sleep stages [IAICQ07], or
seasons in the climate. Often, the time periods before and after such a transition are analysed
in order to study differences in dynamic behaviour, coupling structure, etc., but the transition
itself is regarded as an undesirable complication. This is because it usually happens on a much
shorter time scale than adequately resolved by the data on hand and generally destroys any
stationarity assumptions. Thus, also a windowed analysis approach would not work.

In order to overcome this problem, methods based on multiple realisations of a given process
have been developed to e.g. detect transient chaos [DLKO01, JT94|, to denoise transient signals
[ELST00, SLO9b|, and also to characterise couplings [ALD06, IOLK08b, KEST04, KTR'08,
LW08, MKWL11, WFL10|. The idea bears resemblance to the ergodic theorem of thermody-
namics [Bir31] where a time average of one particle can be exchanged for a space average of an
ensemble of particles at one time point. So, instead of estimating a given coupling measure over
a time period, the averaging process is conducted across an ensemble of multiple realisations
of the time series in question (see fig. 2.1). The ensemble could either be built by repeatedly

performing a measurement of the same experiment on possibly several subjects, like for ex-
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2.1 Ensemble approach

ample an orthostatic test [BKOT08, BOLT07| (head-up tilt or standing up after lying down
for an elongated period of time), or by using inherent repeating events in a single time series,
like several apnoea (cessation of airflow) during sleep [CRAT14, GRST11, LB01, PRGT12], [6].
This approach is theoretically applicable to almost all existing coupling measures, of course
keeping in mind the requirements and limitations of the respective methods.

After it has been built, it is important to time rectify the ensemble. This can usually be done
by aligning the individual ensemble members by means of a synchronisation point Tp, e.g. the
beginning of the event regarded (see fig. 2.1). Corrections can be done by slightly shifting the
ensemble measures against each other and looking for the shifting parameter where a maxi-

mum correlation can be achieved. Next, the respective coupling measures can be computed

amplitude [a.u.]

time t [samples]

Figure 2.1: This figure shows the concept of time averages (red box) vs. ensemble averages (blue boxes).
The time point Tj (green line) signifies the synchronisation point at which the ensemble
members are aligned. The other points t1, t2, and t3 just represent possible times at which
the ensemble average is performed.

by substituting the time average by the ensemble average. For the measures described in the
remainder of this chapter, except Granger causality, the results are presented in a graph where
the time lag 7 is plotted over the time ¢. A colour coding represents the coupling strength
and, if applicable, symmetric or diametric behaviour, respectively, while the sign of the time
lag determines the coupling direction (7 < 0 for the first variable driving the second) (see fig.
2.2).
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Figure 2.2: This figure explains how to read the resulting graphs for the bivariate time resolved coupling
measures presented in this work. On the left, a graph shows a result displaying the coupling
strength at the according time lags 7 for one time point (here ¢ = 800). This representation
is identical to the one one would receive, when using the classical time average approach.
On the right, the coupling strength for each time lag 7 and each time point ¢ is colour coded.
Depending on the coupling measure used, positive (red) and negative (blue) values might
occur, depicting symmetric or diametric behaviour, respectively.

The time resolution to be expected with the ensemble extension depends on the coupling
measures used, since the estimations often are done over a short range of time points. The
expected resolution will be given for each measure regarded in this work. To determine the
significance of the results obtained using this approach, a surrogate method would appear to
be ideally suited at a first glance, since we do not have to rely on known methods like random,
Fourier transform, permutation, or twin surrogates [VP08|. Instead, the regarded time series
(™) (t) and y"™ (t) (m is the ensemble index) can be randomly paired with other members from
the ensemble, e.g. (™ (t) and y*)(t), where m # k. Theoretically, this should break up any
couplings between the time series, thus providing the desired surrogates. However, this only
holds true during stationary phases. Of course, the transient events regarded, display identical
behaviour in the time series. Therefore, any couplings found during the transients would be
deemed not significant, since all surrogates show the same behaviour in this case. Hence, to
test significance in these cases either empirical or quantile (e.g. only values greater than 95%

of the coupling strength values over all time lags 7) tests have to be applied.
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2.2 Classical measures

In this work the applications of the ensemble approach will be extended to Granger causality
and to symbolic dynamics, thus significantly enlarging the set of tools for the analysis of time-

dependent couplings during transient behaviour.

2.2 Classical measures

In this section two well-known measures from time series analysis not inherently associated with
the detection of coupling directions are presented. It is shown how to adapt these measures for

a coupling analysis and how to extend them using the ensemble approach.

2.2.1 Correlation

One of the simplest bivariate coupling measures is based on the so-called Pearson correlation
pxy |Gal86, Pea95|, which was developed to quantify the magnitude of linear interrelation

between two time series z(¢) and y(t). It is given by

o Covaly)
\/Var(x(t)) Var(y(t))

where X and Y are the two processes regarded, Cov() and Var() describe the covariance and
the variance, respectively. The value of pxy lies between pxy = 1, total positive correlation,
and pxy = —1, total negative correlation, while pxy = 0 means no correlation. To infer
information about possible causal structures, a time lag 7 between the time series can be

introduced, resulting in the so-called cross-correlation

oy () = Cov(z(t),y(t+ 7)) .
\/Var(x(t)) Var(y(t))

Depending on for which choice of 7 the value |pxy(7)| is highest, one can draw conclusions

about the predominant coupling structure (e.g. 7 < 0 means Y drives X and vice versa).

2.2.2 Mutual information

Another way to characterise the connection between two random processes X and Y is given by
the so-called mutual information Ixy [Sha48|. It describes the difference between the entropy
H(X,Y) of the joint processes and the sum of the single entropies H(X) and H(Y) via

Ixy = H(X)+ H(Y) - H(X,Y).
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The entropies are computed as

H(X) = - / p(x) log pla)da

T

and

H(X,Y) = —//p(fcvy) log p(z,y)dzdy,

zJY

which in the end leads to

Ixy = — /x p(z)log p(z)dx — /y p(y) log p(y)dy + /

- e ) log L&Y o
- /x/ﬂ N8 ) P

The advantage of this measure compared to the Pearson correlation lies in the ability of the

/ p(x,y)log p(z, y)dzdy
Y

mutual information to also detect nonlinear dependencies. But, to estimate the probability
distributions in order to compute the necessary entropies, usually a bigger amount of data is
needed.

To transform the simple mutual information into a measure to assess the coupling structure
of two systems, the easiest way is again to introduce a time lag 7 between the time series. The

lagged mutual information is given by

p(z(t),y(t+ 7))

Iy (1) = | plalt), e + 7)) log
p(z()p(y(t+ 7))
Again the coupling structure can be determined by the value of Ixy(7) and the value of 7
itself. For most practical applications, the probability distribution p can be estimated using a

suitable histogram method. The intgrals would then be replaced by sums.

2.2.3 Ensemble cross-correlation (EXCORR) and ensemble mutual
information (EMI)

The extension of cross-correlation and mutual information using the ensemble approach is pretty

straightforward. The time dependent lagged ensemble cross-correlation is given by

Cov(a™ (1), 4™t 4 7))
\/Var(a:(m (t)) Var(y(™)(t))

szny)(tv T) =

In this case t stands for a fixed point in time and m describes the average across the ensemble

instead of over the time ¢.
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2.3 Granger causality

Analogously, the time dependent lagged mutual information can be determined by

p(a™(t),y"™(t + 7))
(™ (E))p(y ™ (t + 7))

I(m Zp M),y ™ (& + 7)) log

Again t represents a fixed time point instead of the average over all time points while m depicts
the ensemble average.

Since both of the measures do not rely on any estimation across several time points, the
expected time resolution of the ensemble cross-correlation and the ensemble mutual information

is of the same order as the resolution the data has been recorded with.

2.3 Granger causality

2.3.1 Classical Granger causality

In the year 1963 C. W. J. Granger |Gra63| proposed a method to estimate causal relationships
between two time series. He extended this method later in 1969 [Gra69] which is known today
as Granger causality. The basic principle of this framework is grounded on the assumption, that
a significantly improved prediction of future values of a time series xo(t), if the past of another
time series x1(t) is known additionally to the past of zo(t) itself, (¢ = 1,...,N), indicates a
dynamic influence from the system X; onto the system Xs. Of course, Granger causality and
causality in the common meaning have to be distinguished. Granger causality just tells us
something about predictability. Nonetheless, it is still useful when building descriptive models
and trying to get an idea of the interconnections between smaller subsystems in a bigger complex
system. To upkeep at least the possibility of true causality one has to keep in mind the time
points used for the prediction: using for example values like x1(t +7) for the prediction of xo(t)
could well point to Granger causality but surely cannot indicate true causality as the time order
plays a crucial role.

Granger proposed the use of AR-models to represent the time series. This approach is still
often used today. Here, a bivariate AR-process of order 2 will be fitted to the two time series

in question
Za T)x( t*7)+€§)(),
_ (r)
2%2 Jza(t —7) + 65 (1).

The variables eg ") and eg ") describe independent white noise, and agl)( ) and aég) (1) denote the
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coefficients to be estimated using for example a least squares method. The superscript index
(r) denotes the restricted model, i.e. the model using not all available information.

This whole process is then repeated using the information from the second time series

Q Q
271 =3 aY Pzt — )+ Y al (Paa(t — 1) + (),
=1 7=0,1
Q Q
20 = 3 aly (Pat— 1)+ > aly) (Paa(t — 1) + (1),
7=0,1 =1

The superscript index (u) describes the unrestricted model using all available variables.

Whether the summation index 7 when incorporating the second time series starts at 7 = 0
or 7 = 1 depends on the data used. On the one hand, to at least maintain the temporal
order between the possible cause and effect one should start with 7 = 1. Thus one can assure
that influences from the second series really come from the past. On the other hand, when
measuring data there always is some averaging involved. Depending on the sampling rate and
the time scale on which a potential information transfer might occur one could argue to include
7 =10. As an example, regard a climate time series of mean monthly temperatures. Processes
influenced by the temperature can easily be assumed to work on time scales of weeks or days.
In this case one should consider also employing the lag 7 = 0 values.

To determine the optimum model order €2 before calculating Granger causality, there are sev-
eral possibilities. The most common ones are the Akaike information criterion (AIC) [Aka69|
and the Bayesian information criterion (BIC) [Sch78|. Both functions compare the computa-

tional effort of a given model with its performance according to

2n2,
AIC(Q) = log(det ) + n%
for the Akaike criterion and
nTZJGTQ
BIC(Q2) = log(det X) + log (V) —%—,

N

for the Bayesian variant. Here, ¥ is the covariance matrix of the residuals € from the multivariate
regression, Myq- 18 the number of variables used, €2 is the model order, and N is the length of
the data series regarded. The minimum of the AIC and BIC values gives the model order for
the best compromise between cost and efficiency. Which of these methods should be chosen to
determine the best model order depends on several questions [ADP14] like whether the best
prediction (AIC) or finding the correct model (BIC) is more important.

After having fitted the respective AR-models the comparison of the variances of the error
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2.3 Granger causality

terms egT) =z1(t) — $§r) (t) and sg) = xo(t) — :Egr) (t) with 5gu) and 5§u), respectively, gives the
information about the predominant coupling direction. If, for example, Var(aéu)) < Var(ag))
and Var(egu)) ~ Var(egr)) holds true, the influence from the process X; on the process Xy would
be greater than the other way around. In this case X; Granger causes Xs.

To test the results from Granger’s method for significance the so-called Granger-Sargent (GS)
test [HSPVBO07|

s (4))° = 354 (5)2 N = (uar + 1O
i (652 Q
can be used. The G'S test statistics follow an F-distribution with Q and N — (144, +1)$2 degrees

of freedom allowing for an easy determination of the critical values belonging to the desired

GSX1—>X2 =

significance level.

2.3.2 Conditional Granger causality

The classical Granger causality is only suited for bivariate systems and thus cannot detect
indirect couplings. For example the method could indicate a coupling between subsystems X7
and Xo while in reality both systems are driven by a third one X3. If this third system is known
and can be measured, the classical Granger causality can easily be extended to a multivariate
tool according to [Gew84, ZF09|, usually known by the term conditional Granger causality.
Therefore, an AR-model using all available variables is fitted for each variable. Additionally,

another AR-model using all variables but the one (X} ), whose causal influence we are interested

in, is determined. For a system with n,,, variables and j, k € {1,...,nuq} the equations
Nuvar ( )
5= > Z T)zi(t = 7) + 7 (1), (2.1)
i=1;i1#£k 7=0;1
Nyar £ ( )
Z a;; (T)xi(t —7) + eju (t) (2.2)
i=1 7=0;1

let us determine the influence from X}, to X; conditioned on {Xj;i ¢ {j,k}} via the term

Var(ag) )

Var (6§-U) ) .

(© a
B x| (Xaig i}y = 108
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Now, if the system X} would give no new information about the system X, the variances of
the error terms should be about equal and thus F )(() X Xaigik) 0 should hold true and
there actually would not be an influence from X, to X; in the sense of Granger causality, even
though the classical method might have found one.

To allow for the detection of nonlinear couplings for at least a subset of all possible cases,
without dramatically increasing the computational effort needed for the estimation of Granger

causality, one can simply add a quadratic term to the AR-model. The resulting equations are

Nvar

x,(qu Z Z (1, )z (t — 1) + ag’q) (1,t) (zi(t — 7‘))2 + 6,(;].) (t)
i=1;i#k 7=0;1
and
Nyar )
2 ST al (m it — 1)+ al? (7, 1) (2t — 7)) + € (2).
i=1 7=0;1

The superscript ¢ describes the adding of the quadratic terms. To further decrease the compu-
tational needs, the regarded time lags for the quadratic terms can be restricted to only a few

or even just one value of 7.

2.3.3 Partial Granger causality

One problem remaining with conditional Granger causality is its inability to account for latent
variables, i.e. variables we do not know about. An approach to at least partially account
for such variables is given by the partial Granger causality |[GSK'08], an extension to the
conditional Granger causality. The method is based on the assumption that influences of latent
variables can be detected via the prediction errors of the model used, if the latent variables
represent stationary processes. The noise terms 62 )( t) and e(u)( t) from the models could under
this assumption be decomposed into

r r),model Jaten
e (1) = e (1) 4 e 1)

and

u u),model u),laten
e (1) = elmetel g 4 eddatent gy,

(r) (w)

We are now interested in correlations between the two error terms ¢, ; and ;" Therefore, a
variant of the well-known partial correlation is used. Hence, we regard the covariance matrices

E,(;.) and Zg-u) of the error terms for the restricted and the unrestricted model, respectively,
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2.3 Granger causality

when determining the influence of system X}, onto system X; conditioned on all known systems
{Xi;i ¢ {j,k}}. After eliminating the column and the row in Zgu) containing the system X}, to

obtain E,(;;) the covariance matrices are separated into four block matrices, giving

(r) _ [ Var(e (T)) ‘ Cov( 6k’] {51“ i ¢ {5,k}}) ] [ El(cz,ll ‘ Zky,lZ ]
ki Cov {E(T) i¢ {j,k}} 5 ‘ Cov( {Eki ji ¢ {j,k}} 2123,21 21;2’,22
and

(u U
kj21 | Skj22

_ [ Var(ag-u)) ‘ Cov(e {55“ i¢ {j,k}} ] [ ]11 ‘ E,(;’)m ]
9 Cov({esi g k) | Cov((27:1¢ (7.5))) % )

Following the partial correlation further yields the corrected variances of the error terms

R( )= Zg‘;)ll - 223)12(212?,22) 121(6’;)21
and
(v) _ s (w) (u) (u) 1y (u)
sz; = ij 11 ij 12(ij,22) ZI;}L 21
with again 4,7,k € {1,...,nyer} and nye being the number of variables. Analogous to the

conditional Granger causality, we can then define

det (RY))
F)(?)%X HXie ik} = = log — L
- el det (R,(;;))

. . (p)
Using this measure I’ X X; { X5 (o)} it is now possible to quantify the influence of system
X}, onto X; conditioned on the remaining known variables {X;;i ¢ {j,k}} and other latent
variables as long as they stem from stationary processes. The method of partial Granger
causality has proved to be superior to the classical and conditional versions on numerous test

cases and applications to neuronal data |[GSK™08].

2.3.4 Ensemble Granger causality (EGC)

The extension of Granger causality for time-dependent analyses during transients using the
ensemble approach further broadens the already vast field of possible applications of this versa-
tile coupling measure. To expand the above presented versions of Granger causality using the

ensemble approach, just the way in which the parameters for AR-models are computed, has to
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be changed. For a system with n,,, variables and j, k € {1,...,ny4} the equations
xk] Z Z a; (m)(t )—i—e( r),(m )(t),
i=1517#k 7=0;1
Nuvar Q
(“) Z a(u)’ (m) (t _ 7.) + Eg-u)’(m) (t)
i=1 7=0;1

let us determine the influence from Xj, to X; conditioned on {X;;i ¢ {j,k}}. The only differ-
ences to equations (2.1) and (2.2) lie in the way the regression is performed and the meaning
of the time index ¢. Here, the estimation of the parameters a("(™ and a(*):(™) is carried out
across the ensemble and ¢ means a fixed time point instead of the average over all time points,
ie. a (™ and (M) are now time-dependent. The starting value of 7 with either 7 = 0
or 7 = 1 depends on whether internal or external influences are regarded. Since the coupling
direction is identified using only the error terms from the model, the same index as before can
be utilised

(T b
Var(e
Flom o (t) = log (

X XX {G.k
k= X5 { Xasig {5k} } Var(e
which is now of course also time dependent.
This approach can also be extended by using the nonlinear terms as presented in subsection

2.3.2. The resulting equations are

x](.; Z Z a; (m) (t _ 7_) + al(;:Q)’(m) (7_’ t) (xz(m) (t o 7_)) +€(r)( )(t)
i=1;17#k 7=0;1
and
Nyar S ,
i =30 Y D™ (t = ) + P () (M (1= 7))+ 1),
i=1 7=0;1

The superscript ¢ describes again the adding of the quadratic terms. The time resolution
achieved by the ensemble Granger causality is of the same level as the choice of the model order
Q. For the remainder of this work only the ensemble partial Granger causality will be used.
Whenever the talk is about Granger causality from now on, actually this method is meant.
The code for this version of Granger causality for MATLAB (MATLAB and Statistics Toolbox
Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) can be found at
http://tocsy.pik-potsdam.de/coupling.php.
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2.4 Symbolic coupling traces

2.4 Symbolic coupling traces

2.4.1 Classic symbolic coupling traces

The symbolic coupling traces (SCT) were introduced by Wessel et al. [WSR109| and are an
extension of a bivariate joint symbolic dynamics method [BWHT02] which was developed to
characterise and interpret the complex and highly nonlinear interactions between heart rate
and systolic blood pressure. For both methods a dynamical system represented by two one-
dimensional time series z(¢) and y(¢) is considered, which are then transformed into coarse

grained symbolic time series s, (t) and s, (t) according to

L () < 2(t+9)
5:(t) = { 0, 2(t) > z(t + ).

The time lag ¢ is usually set to ¥ = 1 but can also be chosen as another number of time
steps in order to accommodate a priori knowledge about the time scales on which the couplings
act. These symbol series in turn are used to construct series of words w,(t) where each word
contains [ successive symbols (see table 2.1). Because of the binary alphabet in this case, this
gives d = 2! different possibilities of words. Larger values of ¥ work like an averaging process

across the area defined by 1 and .

z(t) = 8 6 9 11 12 8 13 5

y(t) = 7 2 5 3 7 11 10 6
\

sp(t) = o 1 1 1 1 0

s,(t) = 0 1 I 1 0
\

w,(t) = ... 011 111 110 101 010

wy(t) = ... 010 101 011 110 100

Table 2.1: This scheme shows how to transform time series z(t) and y(t) into word sequences w,(t) and
wy (t) with { = 3 via the symbol series s,(t) and s, (t), respectively.

From the word sequences generated in this way for time series z(t) and y(t), a bivariate word

distribution can now be estimated as
Hij = P(U}z(t) = Wi,wy(t) = W])

Here, W; and W, denote certain words out of the whole vocabulary of d = 2! different words
and II;; is the joint probability of words W; and W; appearing at the same time ¢ in the word

series w, and w,, estimated over all values of t. To later be able to determine the coupling
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direction and the occurring lags, a time lag 7 between the two word sequences w, and w, is

introduced, resulting in the matrix
(I(7));; = Plwe(t) = Wi, wy(t 4 7) = Wj).

One way to characterise this matrix could be to regard the joint Shannon entropy [Sha48|
for each lag 7. However, studies in [WSRT09] showed, that using Shannon entropy does not
clearly reveal the correct time lags. Instead, the results improve a lot, when regarding only the
difference between the occurrences of symmetric (e.g. wy(t) = wy(t + 7)) and diametric words

(e.g. wy(t) ="111" and wy(t + 7) = ’000’). The symmetric word frequency is represented by

T(r) =Tr((r)) =) (I(r)); (2.3)

1=j

and the diametric word frequency by

I(r) = > (T1(7));» (2.4)

i=1,....dyj=d+1—i

where Tr (II(7)) is the trace of the matrix II(7) and d = 2 is the number of the possible different
words. The difference AT = T — T has proved to be an effective parameter to identify the
coupling structure of bivariate systems. To assess the significance of the results thus obtained,
an empiric test based on a simulation with bivariate white noise for different signal lengths has
been developed [SRM*10|. For the significance level a = 0.01 the critical values of AT are

given as
AT, (N) = £2.7005 - N~0-5179,

where N is the number of data points regarded. Now, the coupling direction can be determined
via the occurring time lags 7 where AT is significant. The coupling strength is related to |AT|
and sgn(AT) tells us whether symmetric or diametric behaviour is dominant. Further insight
into the systems in question might be gained by looking at the results of the SCT when using
the absolute value of the time series as input.

Although the SCT are only a bivariate method, the conclusions drawn by using them are
well suited to build descriptive models of the systems regarded. An extension for three or more
systems is unfeasible, because of the curse of dimensionality [Bel57]. The occupation numbers
in the resulting n-dimensional word distribution matrix for n systems would get too small too
fast.
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2.4 Symbolic coupling traces

2.4.2 Permutation symbolic coupling traces

In 2002 Bandt and Pompe introduced a complexity measure for time series, termed permutation
entropy, which combines concepts from entropy and symbolic dynamics [BP02|. This measure
proved to be simple yet robust while taking the temporal order of the values in a given time series
into account, a point usually neglected by other complexity measures like Shannon [Sha48| or
Kolmogorov-Sinai entropy [KS03|. Permutation entropy essentially measures information based
on the occurrence of permutation patterns built from the ranks of the values in a time series.
In this thesis, the idea by Bandt and Pompe is modified to apply it to the symbolic coupling
traces. Instead of the binary alphabet and the following words sequences, permutation patterns
mj of length [ (j = 1,...,1!) are used. At first, sections of the time series z(t) and y(t) are
converted into rank sequences r,, and 7y, of length [/, which in turn are matched with one of
the possible permutation patterns m; (compare eq. (2.5) and fig. 2.3). If we encounter equal
values in one rank sequence, there are different possibilities [8]. Here, the ranks are assigned

according to the temporal order in which the equal values occur.

x(t) = [6,9,11,12,8,13,5], 1 = 3,0 = 1
14 T T T

(2,1,3)
10 B

/NN

| | | | | |
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

x(t)

w
T
|

rank value
in sequence
N
T

-
T

permutation patterns nj @J=1,....I")

Figure 2.3: This figure shows an example of how to build the rank sequences from a given time series
2(t) with 9 = 1 and | = 3. Below, the different possible permutation patterns are presented.
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(2.5)

Following the steps from the SCT, we estimate the probability distribution of the permuta-
tion patterns. To characterise the coupling structure again a time lag 7 between the two time
series regarded is introduced. As entropy measures also do not give satisfying results when
characterising the probability distribution matrices, the same approach via the symmetric and
diametric patterns is used and ATp = Tp — Tp is defined analogously to the classical SCT
(see equations (2.3) and (2.4)). The subscript P here just refers to the permutation approach.
The difference between the classical and the permutation approach lies in the number of pos-
sible patterns regarded, which is higher in the permutation pattern case. This leads to lower
occupation numbers for each combination, resulting in the best case in fewer falsely positive
recognised coupling lags. Here also, the use of the absolute value of the time series might lead

to further results.

2.4.3 Ensemble symbolic coupling traces (ESCT and PESCT)

In this subsection, the tools of symbolic coupling traces and permutation symbolic coupling
traces will be extended using the ensemble approach. This opens the field of symbolic dynamics
to be employed for coupling analysis of transient and nonstationary events.

Since the ensemble approach for the symbolic coupling traces takes only hold after the word
sequences wi™ (t) and wém) (t) or rgn) and ré:n) in the case of the permutation approach have
been built for the whole ensemble (index m), the following steps are the same for both methods
and the sequences w(™) and (™ are used synonymously.

When estimating the probability distribution of the word occurrences, the histogram is now
computed over the whole ensemble resulting in the time dependent matrix

(m e, T))ij = P(w{™(t) = Wy, w{™ (¢ + 1) = W;).
The index m here stands for averaging across the ensemble and ¢ represents a fixed point in

time. In the end, the symmetric and diametric word frequencies are again given by

v

7(m) (t,7) = Tr (H(m) (t,T)) = Z (H(m) (t,T))

=7
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and

T = 3 (H<m> (t, T))

i=1,...,dsj=d+1—i g

Via AT (t,7) = T (t,7) — T (t,7) the coupling structure can be determined as before.
In this case the same empirical approach to assess the significance of the results should hold
true. The choice of the word length determines the expected time resolution of these two
methods. The code for these two methods for MATLAB (MATLAB and Statistics Toolbox
Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) can be found at

http://tocsy.pik-potsdam.de/coupling.php.
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3 Applications to models

In this chapter, the methods developed in chapter 2 are tested on different theoretical models
to assess their performance potential and their limitations. The huge class of data-driven AR-
models is commonly used to simulate and predict real-world systems. Therefore, the coupling
measures will be applied to multivariate AR-models with unidirectional and feedback coupling.
To test their performance in nonlinear systems, coupled chaotic maps and NAARX-models
will be employed. Additionally, the measures’ robustness against noise, their performance for
smaller amounts of data, and the dependence on coupling strength will be evaluated.

To evaluate the significance of the results delivered by the different methods, two approaches
are chosen. For Granger causality the built-in F-test is used and the obtained values for
F)(f: XX (k) e multiplied by one (significant) or zero (not significant). For the two
symbolic measures first the empiric test from [SRM™*10] is used and additionally, since during
the tests still a lot of spurious couplings were found, only the results with an absolute value
above the (1 — a)-quantile are used. That same test is also applied for the correlation and the
mutual information measures.

The model order €2 for the Granger causality is usually also taken as the maximum lag for the
other measures. It is chosen as a compromise between the results of the AIC and the BIC, and
taking a reasonably small value to allow for shorter data series, while still being large enough

to encompass the a priori knowledge about the maximum lags appearing in the models.

3.1 Analysis

3.1.1 AR-models

The first class of models to be analysed is the class of AR-models. These are often employed to
describe certain time-varying processes in different fields like economics, climate, and medicine,
because of certain features AR-models offer. Using AR-models it is possible to choose the
parameters in a way that the spectral density of the model approximates any given continuous
spectral density with arbitrary precision (pp. 148-149 in [KNO06]). The consistency of the
parameters of such a model over time is a necessary condition for fitting the parameters by
means of time averaging. However, in this case we are interested in time-dependent parameters.

A time-variant AR-process of order € is given by

w

2(t) =Y a(r t)a(t —7) + €(t).

T=1
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3.1 Analysis

In this univariate case, values of x only depend on the past of x itself and an innovative term
€, usually in the form of Gaussian white noise charaterised by an expected value of zero and
a certain variance depicting the strength of the influence of the stochastically independent

innovative term. The multivariate version of an AR-process with n,,, variables is given by

Nyar W

acj(t) = Z Zaij(T,t)xi(t — 7') + €j<t), j € {1, R ,nWT} .

i=1 7=1

The normally distributed €; are independent for each variable.

AR-model with univariate and feedback coupling

To test the methods presented in chapter 2 we regard two different scenarios of AR-models. The
first one consists of five variables displaying univariate (from x4 to z5) and bivariate (feedback
between x1 and x9) coupling as well as a common driver (x3). The coupling structure is time-
dependent, dividing the regarded time span into four epochs with different time lags, coupling
strengths, and influence effects (symmetric or diametric). The standard deviation of the white
noise innovative term € is ¢ = 0.01. All model parameters can be found in table 3.1. The
structure is also given in figure 3.3 (a). The realisations has been generated using normally
distributed initial values for the variables and then running the equations for 10000 iterations
from which only the last N = 1000 data points have been used for the analysis. The ensemble
consists of M = 1000 realisations, aligned with the beginnings and endings of each epoch (see
table 3.1). The significance level for this test has been set to o = 0.05 for all methods. The
model order has been determined by the AIC-method (€2 = 10) and the BIC-method suggested
(€ = 18). According to the strategy of preferring a small model order and taking into account
a priori knowledge, the model order for Granger causality and the maximum lag for the other
method has been set to 2 = 10.

In figure 3.1 the significant results from the five regarded methods for the coupling between x;
and z9 are shown. The coupling structure is correctly identified for all epochs by all measures,
except the ensemble mutual information (see figure 3.1 (e)), although also the other measures
except Granger causality show spurious couplings at some lags and time points as well as some
gaps when the coupling strength is reduced in the fourth epoch. The significant results for the
univariate coupling between x4 and x5 are shown in figure 3.2. Here, Granger causality (figure
3.2 (a)) does not identify the change in the coupling structure in epoch three, because there
is no change in the coupling strength. Although the other measures all identify the correct

structure, the best results are given by the permutation symbolic coupling traces (figure 3.2

(b))-
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3 Applications to models

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5
t=1,...,199 ¢=200,...,299 t=300,...,350 ¢=351,...,699 ¢=700,...,1000

couplings T a;j(T,t) T a;j(T,t) T a;j(T,t) T a;j(T,t) T aij(T,t)
1 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
9 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
T3 1 0.4 1 0.4 1 0.4 1 0.4 1 0.4
T4 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
s 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
T1 — T2 2 -0.7 5 -0.5 ) -0.5 5 -0.5 5 -0.5
To — T 1 0.7 1 0.7 1 0.7 1 0.7 3 0.6
T3 — X1, X2, T4, T5 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3
T4 — Ty 3 0.7 3 0.7 2 -0.7 3 0.7 3 0.7

Table 3.1: The table shows the time lags and coupling strength parameters for a time-dependent AR-
model with five variables, displaying univariate and feedback coupling, as well as a common
driver. The model equation for x; during the fifth epoch is e.g. given by z1(t) = 0.3z (t —
1) =+ 061’2(t — 3) + 03%3@ — ].) + 61(t).

Since the coupling from x3 to all the other variables in the model is comparatively weak, it
is only correctly identified by Granger causality and the ESCT. Cross-correlation and mutual
information show some additional spurious couplings while the PESCT finds no couplings at all.
The common driver effects (identified couplings between variables that are uncoupled) are only
shown by the cross-correlation. Omitting the x3 from the pool of available data to compute the
coupling structure has no effect on all measures, since ESCT, PESCT, EXCORR, and EMI only
work on a bivariate basis, and Granger causality is corrected via the partial Granger causality
extension.

The full resulting coupling structure for all measures is given in figure 3.3 (b) - (f).
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3.1 Analysis
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Figure 3.1: This figure shows the significant results of the regarded methods for the coupling structure
of the AR-model given in table 3.1. In (a) the red colour depicts the coupling from z; to
X9, for blue it is vice versa. In (b) - (e) red stands for symmetric coupling and blue for
diametric.
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3 Applications to models
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Figure 3.2: This figure shows the significant results of the regarded methods for the coupling structure
of the AR-model given in table 3.1. In (a) the red colour depicts the coupling from x4 to
x5. In (b) - (e) red stands for symmetric coupling and blue f