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Abstract
The objective comparison of approximate versioned set reconciliation algo-

rithms is challenging. Each algorithm’s behaviour can be tuned for a given
use case, e.g. low bandwidth or computational overhead, using different sets
of parameters. Changes of these parameters, however, often also influence the
algorithm’s accuracy in recognising differences between participating sets and
thus hinder objective comparisons based on the same level of accuracy.

We develop a method to fairly compare approximate set reconciliation
algorithms by enforcing a fixed accuracy and deriving accuracy-influencing
parameters accordingly. We show this method’s universal applicability by
adopting two trivial hash-based algorithms as well as set reconciliation with
Bloom filters and Merkle trees. Compared to previous research on Merkle trees,
we propose to use dynamic hash sizes to align the transfer overhead with the
desired accuracy and create a new Merkle tree reconciliation algorithm with an
adjustable accuracy target. An extensive evaluation of each algorithm under
this accuracy model verifies its feasibility and ranks these four algorithms.

Our results allow to easily choose an efficient algorithm for practical set
reconciliation tasks based on the required level of accuracy. Our way to find
configuration parameters for different, yet equally accurate, algorithms can
also be adopted to other set reconciliation algorithms and allows to rate their
respective performance in an objective manner. The resultant new approximate
Merkle tree reconciliation broadens the applicability of Merkle trees and sheds
some new light on its effectiveness.

Distributed Systems, Set Reconciliation, Approximate Algorithms, Accuracy
Models, Merkle Tree, Bloom Filter, Synchronisation, Replication





Zusammenfassung
Mit aktuell vorhandenen Mitteln ist es schwierig, objektiv approximative Al-
gorithmen zum Mengenabgleich gegenüberzustellen und zu vergleichen. Jeder
Algorithmus kann durch unterschiedliche Wahl seiner jeweiligen Parameter an
ein gegebenes Szenario angepasst werden und so zum Beispiel Bandbreiten-
oder CPU-optimiert werden. Änderungen an den Parametern gehen jedoch
meistens auch mit Änderungen an der Genauigkeit bei der Erkennung von
Differenzen in den teilnehmenden Mengen einher und behindern somit objektive
Vergleiche, die auf derselben Genauigkeit basieren.

In dieser Arbeit wird eine Methodik entwickelt, die einen fairen Vergleich von
approximativen Algorithmen zum Mengenabgleich erlaubt. Dabei wird eine feste
Zielgenauigkeit definiert und im Weiteren alle die Genauigkeit beeinflussenden
Parameter entsprechend gesetzt. Diese Methode ist universell genug, um für
eine breite Masse an Algorithmen eingesetzt zu werden. In der Arbeit wird sie
auf zwei triviale hashbasierte Algorithmen, einem basierend auf Bloom Filtern
und einem basierend auf Merkle Trees angewandt, um dies zu untermauern. Im
Vergleich zu vorherigen Arbeiten zu Merkle Trees wird vorgeschlagen, die Größe
der Hashsummen dynamisch im Baum zu wählen und so den Bandbreitenbedarf
an die gewünschte Zielgenauigkeit anzupassen. Dabei entsteht eine neue Variante
des Mengenabgleichs mit Merkle Trees, bei der sich erstmalig die Genauigkeit
konfigurieren lässt. Eine umfassende Evaluation eines jeden der vier unter dem
Genauigkeitsmodell angepassten Algorithmen bestätigt die Anwendbarkeit der
entwickelten Methodik und nimmt eine Neubewertung dieser Algorithmen vor.

Die vorliegenden Ergebnisse erlauben die Auswahl eines effizienten Algorith-
mus für unterschiedliche praktische Szenarien basierend auf einer gewünschten
Zielgenauigkeit. Die präsentierte Methodik zur Bestimmung passender Parame-
ter, um für unterschiedliche Algorithmen die gleiche Genauigkeit zu erreichen,
kann auch auf weitere Algorithmen zum Mengenabgleich angewandt werden
und erlaubt eine objektive, allgemeingültige Einordnung ihrer Leistung unter
verschiedenen Metriken. Der in der Arbeit entstandene neue approximative
Mengenabgleich mit Merkle Trees erweitert die Anwendbarkeit von Merkle
Trees und wirft ein neues Licht auf dessen Effektivität.

Verteilte Systeme, Mengenabgleich, Approximative Algorithmen, Genauig-
keitsmodelle, Merkle Tree, Bloom Filter, Synchronisation, Replikation
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Chapter 1

Motivation & Outline

Set reconciliation is a common tool for distributed systems with replicated data
that may diverge over time. This includes diverse examples such as resource
discovery and failure detection [33, 37, 85, 69], content delivery and mobile
data [11, 80], cryptocurrency block updates [18, 84, 65, 66], and data replicated
inside cloud providers’ architectures [22, 12]. Amazon [22] and Azure [12], for
example, use loosely synchronised replicas and further copies may exist at the
users’ (partly disconnected) devices. Eventually, these need to be synchronised,
e.g. by a periodic anti-entropy protocol, where differences are identified by a set
reconciliation algorithm. Commonly, approximate algorithms based on Bloom
filters [3, 26, 36] or Merkle trees [52, 10] are used to reduce the computational
complexity or the transfer costs compared to an exact algorithm.

Despite the variety of approximate set reconciliation methods proposed in
literature, these algorithms have not been compared well in practice. This is
partly due to different parameters having diverse effects on both the algorithms’
costs and the resulting accuracy, making approximate algorithms difficult to
compare in general. Existing comparisons commonly fix the transfer costs (per
item), i.e. data structure sizes, and compare the accuracy of the algorithms [11,
56]. Some also design their algorithm to a fixed accuracy [36] or manually find
appropriate parameters to compare with equally accurate algorithms [26]. To
the best of our knowledge, none offers a generic way of comparing the costs of
equally accurate approximate set reconciliation algorithms, although starting
from a defined accuracy is better suited for distributed systems with reliability
service-level agreements.

Furthermore, approximate algorithms such as Merkle tree set reconcilia-
tion [10] may not offer much to tune their accuracy. In this case, only the hash
sizes may be changed but due to the adaptiveness of the algorithm, the effects
on the accuracy highly depend on the application scenario. For distributed
systems with fixed reliability, however, we require algorithms that support
defining a fixed accuracy and adapt and tune accuracy-influencing parameters
to the current application scenario. A generic accuracy model that allows this
also enables a fair comparison of equally accurate algorithms, as desired.

1



1.1 Goal and Approach

In an extension and refinement of the ideas and techniques of [45], we present
a generic accuracy model for approximate set reconciliation algorithms that
allows them to set and follow a given accuracy target. We apply this model
to four well-known approximate set reconciliation algorithms, i.e. two simple
hash-based approaches, one based on Bloom filters, and one on Merkle trees, by
deriving accuracy-influencing parameters from a common upper failure bound.

While the data structures of the simple hash-based and the Bloom filter
algorithms already contain some accuracy-influencing parameters and—for the
latter—previous work was already done to reduce them to just one parameter [27,
56], these need to be applied to a generic set reconciliation embedding under
our accuracy model. By applying this model to Merkle tree set reconciliation,
however, we also create a new approximate set reconciliation algorithm with
adjustable accuracy that adapts to the data it represents just like the Merkle
reconciliation itself. For this, we propose to use dynamic hash sizes for each
node of the tree to align the transfer overhead with the desired accuracy.

For each of the four algorithms, we show how to apply our accuracy model
and derive accuracy-influencing parameters, analyse the resulting algorithm
theoretically, and evaluate it in various application scenarios based on an
embedding into the replica repair service of the Scalaris [74, 73] key-value
store. This shows the feasibility of the accuracy model and compares the four
algorithms in a fair manner as part of a versioned set reconciliation. Both
the analysis and the evaluation are focussed on the accuracy and the volume
of data to be transferred with an additional discussion on the latency where
necessary, i.e. for the multi-round Merkle tree reconciliation. Techniques to
reduce the computational or maintenance overhead are not in the focus of this
work but can be applied orthogonally.

Our results show that our accuracy model can be easily applied to a broad
set of set reconciliation algorithms. The presented way of finding parameters to
create equally accurate algorithms may be adopted to even more approximate
set reconciliation algorithms and makes their accuracy adjustable. This allows
an assessment of the performance of these algorithms under the same level of
accuracy and thus allows users to choose an efficient algorithm for practical
set reconciliation tasks with reliability constraints. Additionally, resultant new
approximate set reconciliation algorithms with adjustable accuracy, such as our
new approximate Merkle tree reconciliation, broaden the applicability of the
original algorithm and shed some new light on their effectiveness.

1.2 Contributions

• We present a method to fairly compare approximate set reconciliation
algorithms (Section 2.5) by enforcing a fixed accuracy in terms of the
expected failure rate.

2 Chapter 1. Motivation & Outline



• We apply this method to four different approximate set reconciliation
algorithms and deduce each algorithm’s accuracy-influencing parameters
accordingly (Chapters 5 to 7).

• We develop a new approximate variant of a Merkle tree based set reconcil-
iation algorithm [14] with adjustable accuracy by applying our accuracy
model. This algorithm reduces transfer costs by dynamically adopting
Merkle hash lengths (Chapter 8). Additionally, costs of bucketing items
in leaf nodes are mitigated which makes it beneficial in more scenarios.

• We evaluate the four different set reconciliation algorithms in terms of
their bandwidth usage, accuracy, and scalability (Sections 5.6, 6.6, 7.7
and 8.7). For reference, the naïve but exact algorithm for set reconciliation
as well as an approach using rsync are presented and evaluated the same
way (Chapter 4).

• We provide a comparative evaluation of the four approximate set recon-
ciliations and rsync that identifies which algorithms are most suitable for
which situations (Chapter 9). Our optimised Merkle reconciliation is not
only more efficient for very low differences (as expected), compared to
the approximate trivial reconciliation, but also has lower transfer costs
for differences up to 50%. It is thus also suitable for situations where
Merkle trees have been deemed inefficient in the past [14].

1.3 Outline
Chapter 2 gives a brief introduction into the set reconciliation problem and
introduces the accuracy model we employ. Chapter 3 describes our evaluation
method of embedding the set reconciliation algorithms into a generic replica
repair service. It also presents the experiments we use and the metrics we collect.
Chapter 4 puts our approximate set reconciliation methods in perspective by
describing and evaluating the naïve and exact set reconciliation as well as
rsync-based approaches using different parameters.

Chapters 5 to 8 present four approximate set reconciliation methods: trivial,
SHash, Bloom filter, and Merkle tree. For each of these, we present the
protocol and data structures of the basic algorithm, the deduction of accuracy-
influencing parameters according to the accuracy metric of Section 2.5, the
resulting accuracy, related work (where applicable), and an empirical evaluation.
A comparative evaluation of these algorithms is provided in Chapter 9 which
identifies the most suitable algorithm for each of the different scenarios. Finally,
Chapter 10 concludes with a short summary of this work and its results.

Chapter 1. Motivation & Outline 3
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Chapter 2

Introduction

2.1 Definitions & Theory

The reconciliation of data stored at different nodes is a common problem in
distributed systems and is formalised as follows:

Definition 1 (Set Reconciliation). Considering a pair of nodes A and B, each
with a set of items SA and SB (and nA := |SA|, nB := |SB|); find ∆A := SB \ SA at
A and ∆B := SA \ SB at B with minimal cost.

Cost may be defined as any combination of (a) communication cost, i.e.
number of transferred bits, (b) computational cost, or (c) time complexity, i.e.
the number of (causally dependent) message rounds. Minsky and Trachtenberg
[53] choose to minimise communication cost which we target as well.

A similar definition [55, 60] lets both nodes determine the set union SA ∪ SB

but is equivalent to the definition above due to the following equalities:

SA ∪ SB = SA ∪ (SB \ SA) SA ∪ SB = SB ∪ (SA \ SB)

SB \ SA = (SA ∪ SB) \ SA SA \ SB = (SA ∪ SB) \ SB

A more restricted variation of the above is the one-way set reconciliation [41]
which only determines the set difference at one node.

i Set Reconciliation falls into the general problem of data synchronisation
which establishes consistency among multiple copies of some (set of) data.

We extend the classic set reconciliation from above with a more relevant
and broader definition of a versioned set reconciliation which assumes that
items are mutable and finds the newest versions of all of them. Thus, in
the versioned set reconciliation, each item i is associated with an immutable,
globally unique identifier key ik and an item-specific version iv—along with
further data such as the item’s value. Item keys may be naturally given by an
item’s name, an attribute, or a hash of the item’s contents, or can be given
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artificially, e.g. a storage address, a UUID, or a random number. Versions can
be timestamps or any other sort of logical version number with a total order
under ≤v. For practical purposes and some of the algorithms, we also assume
that keys are totally ordered under an arbitrary order ≤k, e.g. by using the
natural order of their integer representation. Further on, we use the common
≤ as the context will make clear whether keys or versions are compared.

Definition 2 (Versioned Set Reconciliation). Consider a pair of nodes A and
B, each with a set of items SA and SB where each item is associated with a key
ik and a version iv. Find items that are outdated or missing on A, i.e. ∆A, and
B, i.e. ∆B, at A and B, respectively, with minimal cost.

Definition 3 (Missing Items). Versioned items missing on node A (similarly
B) are given by MisA := SB \v SA := {i ∈ SB : ∄j ∈ SA : ik = jk}.

Definition 4 (Outdated/Newer Items). Versioned items outdated on node A
(similarly B) are given by OldA := {i ∈ SA : ∃j ∈ SB : ik = jk ∧ jv > iv}.
Conversely, newer-versioned items on node B are given by New B := {i ∈ SB :
∃j ∈ SA : ik = jk ∧ iv > jv}.

We further define the set differences ∆A := MisA∪New B, ∆B := MisB∪New A,
∆ := ∆A ∪∆B, SA∆ := MisB ∪ New A ∪ OldA, and SB∆ := MisA ∪ New B ∪ OldB.
Additionally, we define the total number of items (irrespective of their version) as
n := |SA∪MisA| = |SB∪MisB| and the relative difference among them as δ := |∆|/n
(commonly expressed in %). We will also use the expression of a key k ∈ X
equivalently to an item with key k being in X, i.e. k ∈ X ⇔ ∃i ∈ X : ik = k.

Definition 5 (Approximate Versioned Set Reconciliation). A versioned set
reconciliation which finds ∆′

A and ∆′
B instead of ∆A and ∆B and allows these

sets to be different from ∆A or ∆B, respectively, with a failure probability
P (∆′

A ̸= ∆A ∨∆′
B ̸= ∆B) is called an approximate versioned set reconciliation.

Similarly, Old ′
A, Old

′
B, New

′
A, New

′
B, and ∆′ are defined as the recognised

difference sets of their counterparts. Algorithms for the approximate versioned
set reconciliation may thus show any or both of the following error types:

(a) unrecognised items of ∆: items which are different on both nodes or
non-existing on one of them but were not identified as such (∆ \∆′), and

(b) redundantly transferred items : items which were sent to a node although
the newest version of the item is already there (∆′

A \∆A and ∆′
B \∆B).

We will use these errors to define an algorithm-independent accuracy model
for a fair comparison of approximate versioned set reconciliation algorithms in
Section 2.5.

6 Chapter 2. Introduction



Z In this work, we consider different algorithms and protocols for their use
in the approximate versioned set reconciliation problem aiming at minimal
communication cost. We find this problem most useful in practical set
reconciliation tasks (ref. Section 2.2).

Note that in contrast to our definition of the approximate set reconciliation
which is commonly used and based on [60, 36, 26, 10], diverging definitions
exist, depending on the requirements. Chen et al. [17], for example, define a
robust set reconciliation where elements are considered equal if their difference
is small, e.g. the distance of points in the d-dimensional Euclidean space. This
can be used to tolerate different (lossy) compression schemes of images or to
tolerate rounding errors in floating-point computations.

2.1.1 Asymptotic Lower Bound

Information-theoretic bounds on the communication costs for the (exact and
non-versioned) set reconciliation problem with items of size b ≥ log2(|SA ∪ SB|)
bits have been identified by Minsky et al. [55] who revised their previously
erroneous version from [53]. Based on the fact that A needs to discern |∆A|
b-bit items from the 2b − |SA| = 2b − |SA ∩ SB| − |∆B| items it may be missing
and similarly for B, the lower bound Ĉ∞ in bits with no bound on the number
of communication rounds and assuming constant |∆| = |∆A|+ |∆B| is given as:

Ĉ∞ ≥ log2

(︄(︃
2b − |SA|
|∆A|

)︃
·
(︃
2b − |SB|
|∆B|

)︃
⏞ ⏟⏟ ⏞

= (2
b−|SA∩SB|−|∆A|

|∆B| )≥ (2
b−|SA∩SB|−|∆A|−|∆B|

|∆B| )= (2
b−|SA|−|∆A|

|∆B| )

)︄
(2.1)

≥ log2

(︃
2b − |SA|
|∆|

)︃
from

(︃
n

j

)︃
·
(︃
n− j

k

)︃
≥
(︃

n

j + k

)︃
≥ log2

(︃
2b−1

|∆|

)︃
when 2b ≥ 2 · |SA| or 2b ≥ 2 · |SB|

(analogously from eq. (2.1) down with |SB|)

≥ log2

(︃
2b−1

|∆|

)︃|∆|
= |∆| · (b− 1− log2 |∆|)

⪆ |∆| · b− |∆| · log2 |∆| (2.2)

Note that the latter bounds are not necessarily close to the first one. Nev-
ertheless, since b ≥ log2 n constant, a lower bound complexity class of the
exact—versioned or non-versioned—set reconciliation problem is thus given as

O(|∆| · log n) (2.3)

A lower bound for the approximate set reconciliation problem may be derived
from the minimum number of bits required to approximately represent a set as
discussed below.
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Lower Bound for Approximate Set Representation

For a representation of a set with n elements and a false positive probability of
a single item check that is bound by ϵ, Broder and Mitzenmacher [8] prove the
following lower bound (shown in Figure 2.1):

n · log2 (1/ϵ) bits (2.4)
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Figure 2.1: Theoretical lower bound for approximate set representation
(eq. (2.4)) for variable n and selected ϵ (left) and vice versa (right).

Such an optimal approximate representation of a static set of n elements
with a false positive probability of 1/2j can, for example, be achieved by using a
perfect hash table that stores n hashes of j bits each.

Although the argumentation of [8] only covers false positives, it can be easily
extended to include false negatives, too. In this case, fewer items are accepted
by a set representation but the resulting lower bound of eq. (2.4) still holds as
long as the probability of any failure is bound by ϵ.

Lower Bound for Approximate (Versioned) Set Reconciliation

When approximate set representation algorithms are used for approximate
(versioned) set reconciliation protocols, their size should ideally not depend on
the original sets SA and SB but on the differences ∆A and ∆B instead.

A lower bound for the approximate set reconciliation problem using set
representation algorithms is clearly established if B sends ∆B to A and A sends
∆A to B. Afterwards, A and B each determine the items to send by querying
items from SA \v ∆A in ∆B and SB \v ∆B in ∆A, respectively. Since only item
keys need to be sent in ∆A and ∆B, the following argumentation applies to both
the versioned and the non-versioned approximate set reconciliation.

If both set representations have a failure probability ϵ′ of a single query,
the overall failure probability P (∆′

A ̸= ∆A ∨∆′
B ̸= ∆B) of the approximate set

8 Chapter 2. Introduction
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Figure 2.2: Theoretical lower bound for approximate set reconciliation (eq. (2.5))
for 200 000 = q =: |SA \v ∆A|+ |SB \v ∆B|.

reconciliation can be calculated using the success probability for |SA \v ∆A| and
|SB \v ∆B| query operations, respectively, assuming independence:

P (∆′
A ̸= ∆A ∨∆′

B ̸= ∆B) = 1−

all queries at A successful⏟ ⏞⏞ ⏟
(1− ϵ′)|SA \v ∆A| ·

all queries at B successful⏟ ⏞⏞ ⏟
(1− ϵ′)|SB \v ∆B|

= 1− (1− ϵ′)|SA \v ∆A|+|SB \v ∆B| =: 1− (1− ϵ′)q

Therefore, in order to fulfil P (∆′
A ̸= ∆A ∨ ∆′

B ̸= ∆B) ≤ ϵ, we have to use
ϵ′ ≤ 1− q

√
1− ϵ. We establish the following lower bound in bits from eq. (2.4):

|∆A| · log2
1

ϵ′
+ |∆B| · log2

1

ϵ′
= |∆| · log2

(︃
1

1− q
√
1− ϵ

)︃
(2.5)

This function is shown in Figure 2.2 for different |∆| and fixed ϵ (left), and
different ϵ with fixed |∆| (right). Furthermore, with the help of the following
two Lemmas, we will show that this is in O (|∆| · log (n/ϵ)) (Theorem 2.1.3).

Lemma 2.1.1. ln(1− ϵ) ≤ k · ln
(︂
1− ϵ

k

)︂
for ϵ ∈ R, 0 < ϵ < 1, 1 ≤ k ∈ N

Proof. For k = 1, this inequality follows immediately. For all other values of k,
we use the following inequality from [79] for −1 < x ≤ 0:

x

2
· 2 + x

1 + x
≤ ln(1 + x) ≤ 2x

2 + x
(2.6)

By inserting x1 := −ϵ and x2 := −ϵ/k, we show the following equation and thus
prove this lemma.
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eq. (2.6) for x=−ϵ⏟ ⏞⏞ ⏟
ln(1− ϵ) ≤ −2ϵ

2− ϵ

?

≤

eq. (2.6) for x=−ϵ/k⏟ ⏞⏞ ⏟
k ·

(︄
− ϵ

k

2
·
2− ϵ

k

1− ϵ
k

)︄
≤ k · ln

(︂
1− ϵ

k

)︂
⇔ − 2ϵ

2− ϵ
≤ − ϵ

2
·
2− ϵ

k

1− ϵ
k

⇔ −4 ·
(︂
1− ϵ

k

)︂
≤ −

(︂
2− ϵ

k

)︂
· (2− ϵ)

⇔ −4 + 4ϵ

k
≤ −4 + 2ϵ+

2ϵ

k
− ϵ2

k

⇔ 0 ≤ 2− 2

k
− ϵ

k
⇐ 0 ≤ 2k − 3 ≤ 2k − 2− ϵ

⇐ 3/2 ≤ k

Lemma 2.1.2. log2

(︃
1

1− k
√
1− ϵ

)︃
≤ log2

k

ϵ
for ϵ ∈ R, 0 < ϵ < 1, 1 ≤ k ∈ N

Proof. The following transformations will prove this Lemma:

log2

(︃
1

1− k
√
1− ϵ

)︃
?

≤ log2
k

ϵ

⇔ 1

1− k
√
1− ϵ

≤ k

ϵ

⇔ k
√
1− ϵ ≤ 1− ϵ

k

⇔ 1− ϵ ≤
(︂
1− ϵ

k

)︂k
⇔ ln(1− ϵ) ≤ k · ln

(︂
1− ϵ

k

)︂
(see Lemma 2.1.1)

Theorem 2.1.3. The lower bound of the communication costs of the approxi-
mate (versioned) set reconciliation problem with n := |SA ∪MisA| from above is
in O (|∆| · log (n/ϵ))n→∞, ϵ→0 bits.

Proof. This follows immediately from eq. (2.5), Lemma 2.1.2, and with q :=
|SA \v ∆A|+ |SB \v ∆B| ≤ |SA|+ |SB| ≤ 2n:

|∆| · log2
(︃

1

1− q
√
1− ϵ

)︃
≤ |∆| · log2

q

ϵ
∈ O

(︂
|∆| · log n

ϵ

)︂
(for n→∞, ϵ→0)
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2.1.2 Error Correction Codes vs. Set Reconciliation

As the following examples show, under certain conditions, set reconciliation
algorithms can be used for error correcting codes and vice versa—these two
fields are thus closely related. Intuitively, in the set reconciliation problem, if
node A is given error-correction data it may re-create node B’s set using this
data and its own (differing) set. Similarly, data sent during the reconciliation
of two copies of a file (represented as an ordered set of blocks) can be seen as
an error-correcting code for the file.

Despite their similarities, however, Karpovsky et al. [41] point out a subtle
but important difference between the definition of error correction and (set)
reconciliation. In the error correction problem, it is assumed that one host has
an uncorrupted version and the other host has a corrupted version of the data
and both nodes know which one has which. In the reconciliation problem, any
node may have missing data and the transfer direction of item updates is not
only unknown but may also be different per item, not per node.

Using Set Reconciliation for Error Correction Codes

Mitzenmacher and Varghese [59] use invertible Bloom lookup tables (IBLT)
introduced by Goodrich and Mitzenmacher [34] to create a fast error correction
code for large data under the assumption that errors are mutation errors and
the sequence order remains intact. With their approach, they effectively provide
a general reduction from error correcting codes to set reconciliation. When
node B sends node A a message, additional set reconciliation information is sent.
Node A reconciles the received message with the IBLT, extracts all erroneous
entries, and reconstructs the original message. Although this approach is not
space-optimal and the expected overhead is roughly a factor of 6 over the
optimal amount—which is still small compared to the items’ data sent later—,
its advantage is the simplicity and encoding/decoding speed. This also makes
it useful for smaller messages when computational efficiency is of importance.

Using Error Correction Codes for Set Reconciliation

Minsky et al. [55] describe the general idea behind the use of different error
correcting codes in literature in order to solve the set reconciliation problem.
Basically, a set S ⊂ U (with a common universal set U) can be represented
by a length |U| bitstring that has a 1 at location i if and only if the i-th
element of U (under some arbitrary ordering) is present in S. They reference
to literature where this was exploited with different error correction codes [64,
1, 41] and point out that, unfortunately, the computational complexity for
traditional error correcting codes depends exponentially on the representation
sizes of an element of S. They also show that their set reconciliation protocol
based on characteristic polynomials can essentially be seen as a variation of a
Reed-Solomon code which transmits the redundancy information.

Chapter 2. Introduction 11



2.1.3 Straggler Identification vs. Set Reconciliation

Eppstein and Goodrich [25] develop invertible Bloom filters to solve the straggler
identification problem, i.e. given a universe U = {x1, x2, . . . , xn} of unique
positive identifiers representable with O(log n) bits and an upper bound d < n;
design an indexing structure for a set S ⊆ U using o(n) bits which efficiently
supports (a) adding new elements, (b) removing existing ones, and (c) listing all
elements of S if |S| ≤ d. Only a few set reconciliation methods support listing
items and are thus suitable. On the other hand, a solution to the straggler
identification problem that tolerates false deletions, i.e. removing items from
the index which are not in S, can be used for set reconciliation. It can be
applied just like the invertible Bloom filters presented here: one node inserts
its items into the index and sends it to the other node which removes its items
and lists the remaining ones.

Further algorithms from the straggler identification domain that may be
used for set reconciliation include those of Ganguly and Majumder [30] and
Cormode and Muthukrishnan [19].

2.1.4 Open Problems

Mitzenmacher and Varghese [60] consider the general field of object reconcilia-
tion and its relation to set difference, coding, and rumour spreading. For the
2-node set reconciliation, they present upper bounds for computation, commu-
nication and time complexity based on existing algorithms, i.e. characteristic
polynomials [55] and invertible Bloom filters [26]. They describe interesting
extensions where these algorithms can be used or generalised, e.g. for sequence
reconciliation and coding schemes, and present open problems in these fields.

While 2-node graphs seem well studied, extensions for reconciling multiple
nodes are not. It is, for example, an open problem whether there is an object
reconciliation method for general graphs that is more efficient in computation,
communication, and/or time than a push/pull approach with 2-party set recon-
ciliations. Further open problems include other types of objects to reconcile, e.g.
sets of sets, “approximate” reconciliation where replica nodes must not contain
every object but only a single representative of an object class, or dynamic
reconciliation where objects of the network graph change over time.

2.2 Set Reconciliation Applications

The set reconciliation problem typically arises in systems where poor or un-
predictable network, storage, or node availability is tackled by temporarily
sacrificing consistency. In these systems, efficient algorithms are particularly
useful to reduce the maintenance traffic’s bandwidth and use it for the system’s
main purpose. Set reconciliation can, however, also be useful in several other
fields. This section gives a brief overview of some of the interesting applications.
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2.2.1 Set Representation

Since the algorithms presented below and in related work are optimised and
adapted variants of common set representation algorithms—an integral part
of any set reconciliation algorithm—, the applicability of the accuracy model
introduced in Section 2.5 and the algorithms themselves grows beyond set
reconciliation alone. They can generally be applied to any application that
requires an efficient representation of a set of items.

Typical uses outside the context of set reconciliation have been provided
by Broder and Mitzenmacher [8] and Tarkoma et al. [78] who present several
applications of Bloom filters as a form of set representation. These applications
are, however, not necessarily specific to Bloom filters. They range from utilisa-
tions as dictionaries improving memory efficiency or lookup speed over network
traffic optimisations in databases, web caches, or peer-to-peer lookups up to
resource and packet routing as well as system monitoring and flow detection.

2.2.2 Network Applications

Gossip Protocols

The problem of reconciling data stored at different nodes arises naturally in
the context of gossip protocols [53] where nodes periodically exchange data
items with each other. While gossiping aggregates may be useful to obtain
estimates of global properties with high confidence and low overhead, e.g. for
load balancing [44], their content is usually small and can be sent directly.
However, when larger sets of data are sent, e.g. when distributing USENET
postings [39], bibliographic databases [33], or a a list of hosts participating in
a system [33, 37, 85], set reconciliation may be useful to reduce the message
sizes [53]. Similar results are needed when bandwidth is scarce, e.g. when
disseminating data, configuration parameters, or new programming instructions
in sensor networks [49].

Content Delivery

Byers et al. [11] apply set reconciliation using Bloom filters to determine those
parts of a distributed, erasure-encoded (large) file that are missing on one peer
and offered by another. This way, peers can collaborate during downloads by
receiving packets from the source as well as other peers to increase the overall
download rate.

Set Intersection

Similarly to finding the set union via the set difference, set reconciliation can
also be used to find the set intersection of two nodes. Reynolds and Vahdat
[70], for example, use this approach with Bloom filters to perform keyword
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searches in their P2P system. They need the set intersection to answer queries
for documents with two keywords if different peers are responsible for them.

De-duplication

By determining the set intersection, we can also use set reconciliation techniques
for de-duplication tasks such as the one described by Li et al. [48]. They
approximate the similarity of two sets, i.e. the size of their intersection, with
Bloom filter techniques from [8] in order to estimate the usefulness of running
a full de-duplication protocol between the two sets. Bloom filters are also
often used in order to detect duplicates in local scenarios [89, 71] but the same
techniques work in a distributed system, too, and are not limited to Bloom
filters either.

2.2.3 Cryptocurrencies

Cryptocurrencies based on blockchain technology such as Bitcoin [62] and
Ethereum [87] need to publish newly created blocks with successfully added
transactions in their network. Driven by (a) the immanent need for fast
block updates, (b) an increasing number of transactions per block due to
techniques like Segregated Witness [50] or increasing block sizes, and (c) given
the fact that each transaction may be present in multiple miners’ memory pools,
optimisations using set reconciliation techniques were discussed. The focus was
on reducing the size of the block updates and thus the transmission time.

Similarly to our SHash algorithm (ref. Chapter 6), Compact Blocks [18] use
shortened transaction hashes (48 bits instead of 256) in their block updates.
The receiving node may then be able to reconstruct the block from its memory
pool or may need a second phase asking for the remaining transactions. Overall,
this reconciliation requires up to 3 round trips.

In addition to using only 64-bit transaction hashes, Bitcoin Xtreme Thin-
blocks [84] use Bloom filters of the transactions in the memory pool of the
node lacking one block behind. The receiving node then responds with the
block’s header, all hashes of transactions in the block and any transaction in
the block but not in the Bloom filter. The block can then be reconstructed
with high probability or, alternatively, a second phase will request all missing
transactions by their hashes. This typically shrinks block update messages to
anything between 1/40 and 1/100 of a regular block update message. Compared to
Compact Blocks, however, message sizes may increase, but Xtreme Thinblocks,
on the other hand, only require a maximum of two round trips.

Compared to the previous two approaches, Ozisik et al. [65, 66] devise
Graphene which is able to reduce block update message sizes even further
by keeping the maximum of two round trips. Similarly, they use Graphene
to optimise status report messages which they propose to quickly identify
malicious miners and eclipse attacks and to quantify the risk of a double-spend
attack within minutes instead of hours. The sender of a new block creates
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both an invertible Bloom lookup table (IBLT) and an (ordinary) Bloom filter
(BF) from the transaction IDs in the block. On the receiver, BF is used to
filter out block-unrelated transactions from its memory pool and create an
own IBLT from the remaining ones. Then, the set reconciliation algorithm by
Eppstein et al. [26] (also ref. Section 2.3.6) is used to identify any transaction
IDs missing on the receiver which it requests in a subsequent phase. Compared
to Xtreme Thinblocks, the Bloom filters only contain IDs of transactions in the
block and can thus be smaller, also the block’s (shortened) transaction IDs are
not sent. Compared to Compact Blocks, Graphene encodes block updates with
75 % fewer bytes. However, without an implicit assumption on the ordering of
transactions inside a block, in the worst case, an additional cost of n · log2(n)
bits is required to send the order along.

2.2.4 Miscellaneous Applications

Car-to-Car Communication

Yu and Bai [88] apply set reconciliation to message exchanges in vehicular
P2P systems consisting of multiple cars connected via dedicated short range
communication. P2P applications envisioned by the automotive industry
include location-based service, music and video sharing as well as diagnostic and
prognostic information collaboration. Coarse-granularity sketches first estimate
each partner’s contribution and allow a prioritisation of communication partners
and tasks. Fine-granularity summaries with set reconciliation algorithms such
as Bloom filters allow membership tests to avoid redundant transfers. This
way, the throughput may be improved by around 25% which is particularly
important in such a challenging scenario, i.e. short link durations of 20–40 s as
well as frequent wireless link breakages.

Security in Body Sensors

Ali and Khan [2] use set reconciliation with characteristic polynomials [55]
to implement a common key agreement protocol among wireless body area
sensors and a personal server for encryption. They use electrocardiogram (EKG)
feature sets and let the personal server—a powerful sensor node—broadcast
some parts of this set’s characteristic polynomial (as a set of evaluation points
and values at these points). The receivers then determine the common set of
these features and use it to agree on a common key.

2.3 Typical Set Reconciliation Algorithms
The most common data structures used for approximate set reconciliation in re-
search and applications are (a) Bloom filters [3] and their variants which were, for
instance, deployed in Tribler [68] and OceanStore [46], and (b) Merkle trees [52]
which were implemented by Dynamo [22], Cassandra [63], and DHash [14],
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for example. We therefore dedicate separate chapters to these two algorithms
(Chapters 7 and 8), present a detailed analysis of them, and show how to apply
the accuracy model of Section 2.5. Individual related work regarding these
two data structures is presented there (Sections 7.6 and 8.6, respectively) and
includes some of the variants and alternatives proposed in literature. However,
two Bloom filter variants which have been especially tailored for and have been
analysed as part of set reconciliation algorithms, i.e. counting Bloom filters
and invertible Bloom filters, are shown in this section further below.

Despite the popularity of Bloom filters and Merkle trees, versioned set
reconciliation has not been explicitly described in literature. To the best of
our knowledge, only Lin and Levis [49] explicitly consider versioned data in
their set reconciliation algorithm for sensor networks. Their data structure,
however, assumes a fully covered—and thus small—key space where the only
thing that is used during the reconciliation is the version numbers with implicit
assumptions on the according keys. It evades the problem of finding matching
items and is not as generic as our definition of a versioned set reconciliation
where the key space may be arbitrarily large. Alternatively, if we think of a
(compound) item as a set on its own consisting of a key, a version, and some
payload, we could try algorithms for the reconciliation of sets of sets such as
the one proposed by Mitzenmacher and Morgan [57] using IBLTs of IBLTsa .
However, as with other standard set reconciliation algorithms without explicit
support for versions, it would try to update new items with old content since it
merely identifies the existence of a difference, not the direction of the transfer
needed to bring both nodes up to date.

Orthogonally to the two-party set reconciliations that we focus on in this
work, proposals were made on adapting common set reconciliation algorithms
to multi-party reconciliations where more than two parties want to identify
their set difference collectively. Mitzenmacher and Pagh [58] extend IBLTs to
r-ary reconciliations by changing the sum fields, e.g. keySum and keyHashSum,
to work on a finite field Fr so that only if the same entry is added r times it
will cancel out. Similarly, due to the different combinations of nodes having or
not having an item, the lookup and list operations are adapted for recovering
items which were added t times, for 2 ≤ t < r, i.e. by checking for matching
values in the sum and hashSum fields based on the countb . Similarly, Boral and
Mitzenmacher [4] extend set reconciliation with characteristic polynomials (ref.
Section 2.3.3) to r parties. Both extensions lead to reduced communications
costs in terms of message size and number of messages compared to r − 1
two-party set reconciliations.

While set reconciliation can be solved in many different ways, there are a few
algorithms considered optimal under the information-theoretic communication

aFor an extensive description of invertible Bloom lookup tables (IBLTs), see Section 2.3.6.
bFor simplicity of the presentation, here, we assume computations over a field Fr while,

actually, Mitzenmacher and Pagh [58] perform computations over Fp with p ≥ r and p prime
and compensate for the missing p− r parties by adding one of the IBLTs p− r + 1 times
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cost complexity of eq. (2.5). We will describe these and other interesting set
reconciliation algorithms in the following sections. Note, however, that the
complexity class may hide (large) constant factors which may not make these
algorithms optimal under a specific use case (see [40], for example). Also,
practical considerations like required CPU power or implementation complexity
were hindering the adoption of some of these in favour of less optimal but
simpler solutions. We will go into detail in the individual sections.

2.3.1 Elementary Symmetric Polynomials

For the special case where SA ⊂ SB, Minsky and Trachtenberg [53] describe
a near-optimal set reconciliation algorithm based on elementary symmetric
polynomials which was later picked up by Eppstein and Goodrich [25] for the
straggler identification problem. The i-th elementary symmetric polynomial
σi(x1, x2, . . . , xn) is the sum of all possible products of i terms of the input, i.e.:

σ0(x1, x2, . . . , xn) := 1

σ1(x1, x2, . . . , xn) =x1 + x2 + . . .+ xn

σ2(x1, x2, . . . , xn) =x1x2 + . . .+ x1xn + x2x3 + . . .+ x2xn + . . .+ xn−1xn

σ3(x1, x2, . . . , xn) =x1x2x3 + x1x2x4 + . . .+ xn−2xn−1xn

. . .

Minsky and Trachtenberg use the following convolution property to create
Algorithm 1 for 1 ≤ |∆| ≤ |SA|/2 with three messages transferring O(|∆| · b) bits
in total with b being an element’s size in bits:

σk(SB) =
∑︂
0≤i≤k

σi(SA) · σk−i(∆) (2.7)

At first, |∆| is determined, then for 1 ≤ i ≤ |∆|, node A reads σi(SB) and
computes σi(SA) and σi(∆) iteratively. Finally, the following equation is solved
providing all elements x ∈ ∆:

∏︂
x∈∆

(z − x) =

|∆|∑︂
i=0

(−1)i · σi(∆) · z|∆|−i = 0 (2.8)

To minimise communication complexity, all these operations are performed
over a finite field Fp for some prime p > 2b. This leads to at most |∆| ·b+(b+ϕ)
bits during communication with ϕ ∈ R, 1 ≤ ϕ ≤ |∆| depending on p which is
clearly in O(|∆| · b). There are, however, two bottlenecks with Algorithm 1: the
computation of the elementary symmetric polynomials and finding the roots at
the end. The former can be amortised during element additions but the latter
factorisation still has an expected time of O(|∆|1.83 · log p) [53].

Alternatively, Minsky and Trachtenberg present a divide-and-conquer algo-

Chapter 2. Introduction 17



Algorithm 1 Subset reconciliation with elementary symmetric polynomials [53]
function ESPolySyncA ▷ executed on node A

Receive |SB| ▷ from node B
|∆| ← |SB| − |SA|
Send(|∆|) ▷ to node A
Receive σi(SB) ∀ 1 ≤ i ≤ |∆| ▷ one message from B
Calculate σi(SA) ∀ 1 ≤ i ≤ |∆|
Calculate σi(∆) ∀ 1 ≤ i ≤ |∆| ▷ eq. (2.7)
Determine all x ∈ ∆ ▷ by solving eq. (2.8)
return ∆

end function

rithm only using Algorithm 1 for |∆| = 1 in the recursion step which provides
lower computational complexity but higher communication complexity.

2.3.2 Hash-based Divide-and-Conquer

For the more general case of arbitrary differences between the sets SA and
SB, Minsky and Trachtenberg [53] adapt their divide-and-conquer algorithm
omitting the elementary symmetric polynomials and using a hash function to
determine whether sets are equal (Algorithm 2).

Algorithm 2 Divide-and-conquer set reconciliation from [53]
function DivideAndConquerA(SA,b) ▷ on node A, set SA, b-bit elements

if |SA| = 0 then
Receive missing elements from B

else if |SB| = 0 then
Send SA to B ▷ missing elements on node B

else if hash(SA) = hash(SB) then
return

else
SA,1 ← {x ∈ SA : x[b] = 0} ▷ b’th bit is 0
SA,2 ← {x ∈ SA : x[b] = 1} ▷ b’th bit is 1
DivideAndConquerA(SA,1, b− 1)
DivideAndConquerA(SA,2, b− 1)

end if
end function

Although Minsky and Trachtenberg do not argue about the failure probability
of their algorithm, with an appropriately large hash size h, this may be negligible.
During this reconciliation, |∆| · b · (4h+ 1) bits are transferred which is clearly
in the optimal communication complexity class O(|∆| · b) for exact algorithms
but may be too high for practical purposes. The trivial exact algorithm, for
example, transfers |SB| · b bits and thus Algorithm 2 is only more effective if
h < 1/4 · (|SB|/|∆| − 1). For |SB| = 100 000 and |∆| = 2000 (2% differences),
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h must be smaller than or equal to 12 bits for which the failure probability
is not negligible. Algorithm 2 is thus only suitable for very low |∆| such as
|∆| = 200⇒ h ≤ 124 or |∆| = 20⇒ h ≤ 1249 in this case.

Further improvements may be gained by splitting the actual sets based on
their median rather than the address space. This variation requires at most
2 · (|∆| · log2 |SB|+ 1) · (b+ h+ 2) + |∆| · b bits to be sent when node B is the
active partner, i.e. the one from which the median is taken. Please refer to [53]
for further details.

2.3.3 Characteristic Polynomials with an Upper Bound
on |∆|

Minsky et al. [55] present an almost optimal set reconciliation algorithm based
on characteristic polynomials. They represent a set S = {x1, x2, . . . , xn} with
the following characteristic polynomial χS(Z):

χS(Z) := (Z − x1) · (Z − x2) · . . . · (Z − xn)

Here, the set’s elements xi, i.e. b-bit strings, are mapped to some field Fq for
q ≥ 2b. However, since this representation contains all the original information,
it is not cheaper to transmit χS instead of transmitting the set itself. Minsky
et al. therefore use the ratio between two sets’ characteristic polynomials:

χSA(Z)

χSB(Z)
=

χSA∩SB(Z) · χSA\SB(Z)

χSA∩SB(Z) · χSB\SA(Z)
=

χSA\SB(Z)

χSB\SA(Z)
(2.9)

To allow both nodes A and B to compute this fraction efficiently, the polynomials
are evaluated at a set of evaluation points which are used to interpolate the
resulting rational function. The degree of this function—and thus the number of
evaluation points required for interpolation—depends on the differences between
the nodes, i.e. SA \ SB and SB \ SA. Algorithm 3 shows the set reconciliation
protocol for a known upper bound |∆|up ≥ |∆| = |SA \ SB|+ |SB \ SA|.

The existence and uniqueness (up to equivalence) of the interpolated and
recovered rational function χSA\SB (Z)/χSB\SA (Z) under |∆|up evaluation points is
proven in [55] and therefore both SA \ SB and SB \ SA can be recovered. For
practical purposes, however, q is set so that q ≥ 2b + |∆|up in order to prevent
complications with 0-valued characteristic polynomials of evaluation points
from SA or SB. This costs at most one extra bit per item.

Minsky et al. [55] determine the communication complexity of Algorithm 3
as (|∆|up + 1) · (b+ 1)− 1 bits which is in the optimal O(|∆| · b) bits for exact
algorithms if |∆|up is close to |∆| (and known a priori). The computational
complexity is composed of O(|SA| · |∆|up) evaluations of the characteristic
polynomial at node A and the O(|∆|3up) cost for each of the interpolation
and root finding steps. This—as well as the complex mathematics behind
Algorithm 3—may make it unsuitable for some applications.
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Algorithm 3 Set reconciliation with characteristic polynomials [55]
function CpiA ▷ on node A with pre-defined set of |∆|up evaluation points

Receive values χSB(Z) of |∆|up evaluation points Z ▷ from node B
Compute values χSA (Z)/χSB (Z) at these points ▷ eq. (2.9)
Interpolate and recover the coefficients of χSA\SB (Z)/χSB\SA (Z)

Factor χSA\SB(Z) and χSB\SA(Z)
return SA \ SB and SB \ SA

end function

2.3.4 Characteristic Polynomials with Unknown |∆|

In cases where an upper bound |∆|up ≥ |∆| is not known, Minsky et al.
[55] extend Algorithm 3 by running it with increasing values of |∆|up until
a sufficiently large value is found. Determining whether a value of |∆|up is
sufficient, however, requires a probabilistic check in order to be efficient. Here,
the equality of the recovered rational functions is tested by comparing them at
(additional) random evaluation points. In this case, the failure probability of
two different such functions agreeing on the value of a randomly selected point
is bound by ρ = |∆|/|E| where E is the subset of Fq from which the evaluation
points are chosen.

In order to minimise communication complexity in terms of bits, the values
of χSB(Z) can be received individually. A recomputes the interpolated rational
function g(Z) every time a new value is not confirmed by the last function.
g(Z) is accepted as equal to χSA\SB (Z)/χSB\SA (Z) when k evaluation points in a row
are confirmed. To achieve a failure probability of ϵ, no more than

k =

⌈︃
logρ

ϵ

|∆|

⌉︃
=

⌈︄
log2

ϵ
|∆|

log2
|∆|
|E|

⌉︄
(2.10)

extra evaluation points are needed. With this k and by using a pseudo-
random number generator and sending its seed instead of sending all random
evaluation points individually, the communication complexity is bound by
(b+2)·(|∆|+k)+b bits in a total of |∆|+k rounds. The computational complexity,
however, further increases to O(|∆|4) due to the repeated interpolation step.

Minsky et al. also describe a variant with a reduced number of ⌈logc(|∆|+
k)⌉ communication rounds by sending c extra evaluation points per round.
This variant increases the communication complexity roughly by factor c to
(b+ 1) · c · (|∆|+ k) + b+ ⌈logc(|∆|+ k)⌉. On the other hand, for fixed c, the
computational complexity is reduced to O((|∆|+ k)3).

Minsky and Trachtenberg [54] also propose another variant of their algorithm
which reduces the computational complexity by applying a divide-and-conquer
approach as above. They use a fixed recovery bound |∆|up and recursively
execute their set reconciliation algorithm on p partitions until the reconciliation
is successful. Higher computational costs for large |∆|up are thus avoided
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at the cost of having a higher (worst-case) communication complexity of
Θ(|∆| · b2 · p/log p) in at most 1 + p · ⌈b · logp 2⌉ · |∆|/|∆|up message rounds. For
fixed k, the computational complexity is reduced to Θ(|∆| · |∆|2up · b2 · p/log p).

2.3.5 Counting Bloom Filters

Counting Bloom filters [27] are an extension to (standard) Bloom filters (ref.
Chapter 7) by having a field of m small integer counters instead of bits.
Additionally to the support for item insertions, this also allows deletions and
thus a lightweight maintenance during database changes. Also, counting Bloom
filters can be subtracted from one another which enables Guo and Li [36]
to present a nearly optimal approximate set reconciliation protocol where m
mostly depends on the set difference alone (see the comments below).

Data Structure

In a counting Bloom filter CBF, initially, all counters are 0 and items are added
by incrementing k counters by 1 using k independent and uniformly distributed
hash functions gi∈{0,1,...,k−1} (ref. Figure 2.3). Similarly, membership queries
for an item x check that all the counters at gi(x) are non-zero. If any of them
is 0 then x /∈ CBF, otherwise x ∈ CBF with a false-positive probability FP—for
a single membership query. Since this is the same behaviour as the standard
Bloom filter, all of its theory and mathematical analysis applies to counting
Bloom filters, too (see Section 7.2 for more details).

. . .

i1
g0(i1) g1(i1)

g2(i1)
i2

i3

0

1

1

2

0 0 2 0 0 0 3 0 0 0 2 0 0 1

m

Figure 2.3: Counting Bloom filter example for items i1, i2, and i3 with k = 3.

Unlike standard Bloom filters, items already encoded in CBF can be removed
by decrementing their k positions by 1. If, however, items are removed which
are not in CBF, counters may decrement to 0 and thus introduce false negatives.
Analogously, for the set reconciliation problem, Guo and Li [36] define a minus
operation of two equally-sized counting Bloom filters with the same hash
functions by using the cell-wise subtraction of the counters.

The result of CBF(SA) − CBF(SB) =: CBF(∆)′ represents an approximation
of the counting Bloom filter for ∆, i.e. CBF(∆), which both nodes may use
to check whether their items are in the difference. Since common items zero
each other out in the subtraction, the CBF(∆)′ may equivalently be written
as CBF(SA \ SB) − CBF(SB \ SA). This CBF(∆)′, however, may now have false
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negatives during membership queries—additionally to false positives. These
were created from zero-valued outlier cells in the subtraction which originated
from different members of the counting Bloom filters rather than common ones,
i.e. non-zero cells in both CBF(SA \ SB) and CBF(SB \ SA) which are zero in
CBF(∆)′.

Set Reconciliation Protocol

During the set reconciliation protocol by Guo and Li [36] (Algorithm 4), nodes
A and B create CBF(SA) and CBF(SB), respectively, and send it to the other node.
A and B then determine CBF(∆)′ := CBF(SA)− CBF(SB) and check for all their
members whether they are in this filter. For this protocol, Guo and Li analyse
the expected number of the resulting false negatives as well as false positives
separately (outlined below) and set an upper limit of 1 each to determine
appropriate parameters for their counting Bloom filters. For simplicity in the
formulae, let d1 := |SA\SB| and d2 := |SB\SA| be the number of unique elements
in SA and SB, respectively, and define d := d1 + d2 = |∆|.

Algorithm 4 Counting Bloom filter set reconciliation [36]
function CBFSyncA ▷ on node A (analogously on B)

Estimate d1 := |SA \ SB|, d2 := |SB \ SA| ▷ via a separate protocol
Receive |SB| ▷ from node B
Compute CBF(SA)
Send(CBF(SA)) ▷ to node B
Receive CBF(SB) ▷ from node B
Compute CBF(∆)′ := CBF(SA)− CBF(SB)
return {x ∈ SA : x ∈ CBF(∆)′} ▷ ≈ SA \ SB

end function

False Negatives

False negatives can only occur from elements in SA \ SB or SA \ SB and for any
outlier cell in CBF(∆)′ where both cells in CBF(SA \ SB) and CBF(SB \ SA) are
non-zero. The number of non-zero cells in a (counting) Bloom filter of a set
with dx∈{1,2} items can be derived from eq. (7.1) (page 91) and is given as:

nz (dx) := m ·
(︂
1− (1− 1/m)k·dx⏞ ⏟⏟ ⏞

probability that any
given bit remains 0

)︂

Guo and Li [36] further determine the expected number of outlier cells o in
CBF(∆)′ with an upper bound at d1 = d2 = d/2:

o := m ·
min(d1,d2)·k∑︂

j=1

(︃
k · d1
j

)︃
·
(︃
k · d2
j

)︃
· (1−

1/m)k·d

(m− 1)2j
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With these, they give the total number of expected false negatives as the
following symmetric function which is also maximised at d1 = d2 = d/2.

fn := d1 ·

(︄
1−

(︂
1− o

nz (d1)⏞ ⏟⏟ ⏞
non-zero cell of SA\SB becoming an outlier cell

)︂k)︄
+ d2 ·

(︄
1−

(︂
1− o

nz (d2)⏞ ⏟⏟ ⏞
non-zero cell of SB\SA becoming an outlier cell

)︂k)︄
(2.11)

False Positives

Similarly, the probability FP of a false positive during a single membership
query in CBF(∆)′ can be given based on the probability that any given cell is
zero [36]:

FP :=

(︄
1− (1− 1/m)k·d⏞ ⏟⏟ ⏞

cell in CBF(∆) is 0

− o

m⏞⏟⏟⏞
outlier cell

)︄k

An upper bound is established if no outlier cells exist and a lower bound
exists by maximising the number of outlier cells, i.e. at d1 = d2 = d/2. With
|SA| − d1 = |SB| − d2 common items, the total number of false positives is thus
given as:

fp := (|SA| − d1) · FP = (|SB| − d2) · FP (2.12)

Estimating d1 and d2

In order to limit the number of false negatives and/or false positives by setting
appropriate parameters m and k, the set reconciliation protocol outlined in
Algorithm 4 requires estimates of d1 := |SA \SB| and d2 := |SB \SA|. Guo and Li
[36] use counting Bloom filters for this step, too, and compare the theoretical
number of zero-valued cells m · (1 − 1/m)k·dx + o with the actual number of
zero-valued cells. Furthermore, they use the ratio r of the number of cells
with positive values to the number of cells with negative values in CBF(∆)′ to
distinguish d2 = d/(1+r) from d1 = d − d/(1+r). They determine that 6d cells
are sufficient for an accurate estimation but do not describe a full protocol
without a known bound on d. A recursive protocol doubling an estimate of d
and observing the convergence of the resulting estimates of d1 and d2 seems
possible and requires O(log d) rounds.

Comments & Summary

Although Guo and Li [36] claim that the communication cost of their protocol
is in O(d) when limiting the number of false negatives fn and false positives fp
to no more than one (eqs. (2.11) and (2.12)), they do not prove their claim and
it is unclear whether it is actually in a higher complexity class. Additionally,
while fn from eq. (2.11) only depends on m, k, d1, and d2, fp from eq. (2.12)
also depends on the number of common objects |SA| − d1 = |SB| − d2 and thus
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on the total number of items in the sets, i.e. n. This dependency is a result
of performing membership queries in CBF(∆)′ and cannot be avoided with
counting Bloom filters. Even if only the number of false negatives is limited
by one, false positives would still create redundant item transfers and thus
ultimately add to the communication cost. In this case they are added to the
costs of the item transfers, not the set reconciliation itself.

The empirical evaluation by Guo and Li shows that a set reconciliation using
counting Bloom filters may be more cost-efficient than using standard Bloom
filters for low set differences. However, it seems that they set up both Bloom
filter variants with a fixed k = 3 which may not be the optimal k for achieving
the lowest costs for either Bloom filter (m and k both determine the failure
probabilities and costs as shown in Figure 7.3, page 91). Finding this optimal
k for counting Bloom filters, though, remains an open problem and it might as
well be based on n, too. Thus further improvements for counting Bloom filters
seem possible but the presented empirical comparison is unfair and needs to be
re-evaluated due to the different influences of k in each algorithm.

Overall, a counting Bloom filter allows easier maintenance compared to a
standard Bloom filter by offering the ability to remove existing items. Used
alone, it also offers the same false positives probability. The use of subtract-
ing one counting Bloom filter from another to get an approximation of the
counting Bloom filter on the differences and embed this into a set reconciliation
protocol is compelling. It does, however, also introduce false negatives and the
communication cost for keeping a fixed accuracy still depends on both d and n,
with an unknown complexity class.

2.3.6 Invertible Bloom Filters

Invertible Bloom filters [26, 34, 25] are an extension to counting Bloom filters
and add additional fields for the sum of keys and values, e.g. using XOR.
They can be subtracted cell-wise from one another just like counting Bloom
filters but, in contrast, allow the extraction of the original keys or key-value
pairs from the added fields. Invertible Bloom filters were first introduced by
Eppstein and Goodrich [25] and later extensively studied as a data structure
by Goodrich and Mitzenmacher [34] and as a means for set reconciliation by
Eppstein et al. [26]. Below, we will focus on the pristine invertible Bloom filter
IBF—as used in [26]—and only briefly discuss the extensions and challenges of
using an invertible Bloom lookup table IBLT [34]. It will be an interesting field
for future work to see whether the IBLT is a more efficient data structure for
solving the approximate versioned set reconciliation problem.

Data Structure

Invertible Bloom filters (IBF) consist of an array of m cells, each with multiple
fields and all initialised with 0: count stores the number of elements in this
cell, keySum stores the XOR of all keys in this cell, and keyHashSum stores the
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XOR of all hashes of these keys to reduce the likelihood of decoding errors. In
addition, an invertible Bloom lookup table IBLT adds two more fields to store
the XOR of all values in a cell (valueSum) and to store the XOR of all hashes of
these values (valueHashSum). Figure 2.4 shows an example for both an IBF
and an IBLT.

1 2 . . . m

i1 (k = 1, v = 11)

g0(i1) g1(i1)

g2(i1)

i2 (k = 2, v = 12)
i3 (k = 3, v = 13)

0 1 0 0 2 0 0 0 3 0 0 0 2 0 0 1count

0 1 0 0 3 0 0 0 6 0 0 0 5 0 0 3keySum

0 6 0 0 13 0 0 0 21 0 0 0 15 0 0 8keyHashSum∗

0 11 0 0 23 0 0 0 36 0 0 0 25 0 0 13valueSum

0 16 0 0 33 0 0 0 51 0 0 0 35 0 0 18valueHashSum∗

IBF

IBLT

Figure 2.4: Invertible Bloom filter (IBF) / lookup table (IBLT) example for
items i1, i2, and i3 with k = 3 hash functions.
(∗optional fields for extraneous key deletions and removal of non-inserted values for a key)

An item i is added by hashing it to k cells using k independent, uniformly
distributed hash functions gi∈{0,1,...,k−1} just like (counting) Bloom filters. The
hash sum fields use two more—separate—hash functions Gk and Gv for the keys
and values, respectively. Then, in each of those cells: increase count by one,
add key ik to keySum, add Gk(ik) to keyHashSum, add value iv to valueSum,
and add Gv(iv) to valueHashSum. Membership queries would work just like for
counting Bloom filters by checking that all the counts in cells gi(x) are non-
zero. If any of them is 0 then x /∈ IBF, otherwise x ∈ IBF with a false-positive
probability FP—for a single membership query (ref. Section 7.2). Analogously
to counting Bloom filters, items may also be removed or whole IBFs may be
subtracted from one another at the cost of introducing the possibility of false
negatives during membership queries.

The true power of the invertible Bloom filter, however, comes from the
possibility to list contained items which will be described in detail in the
context of the set reconciliation protocol below. To briefly sum up: it is an
iterative procedure that is based on retrieving keys (and values) from “pure”
cells, i.e. cells which represent only a single item. In the presence of multiple
insertions and/or false deletionsc, though, we cannot simply assume a pure cell
if the count field is 1. Therefore, we also verify pure cells via the keyHashSum
field (also valueHashSum for IBLT).

cPlease note that with the set reconciliation protocol described here, false deletions, i.e.
removing an item from a cell which did not contain that item, may occur but, assuming a
node knows its own items and does not re-insert existing once, multiple insertions will not.
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Set Reconciliation Protocol

Set reconciliation with invertible Bloom filters has been proposed by Eppstein
et al. [26] and works in three steps: (1) encode, (2) subtract, and (3) decode.
During encode, first assume that for a given SA and SB, an oracle returns the
size of the set difference |∆| as ∆exp (see Estimating |∆|, page 28). Then
both nodes A and B create an IBF of size m = α ·∆exp cells with α ≥ 1 using
the same size and hash functions. On node A (analogously on node B), after
receiving IBFB, we create IBFA−B by subtracting each cell’s fields cell by cell.
This eliminates common items from the resulting IBF so that the final decode
phase may determine SB \ SA and SA \ SB on both nodes.

This Decode method is a specialized variant of the ListEntries method
of an IBF which identifies both set differences based on the sign of the count
field as a result of the subtract phase. As outlined above, it is based on
iteratively decoding pure cells, where here a pure cell must satisfy two conditions:
(a) count must be 1 or −1 (false deletion in a cell with count = 0), and
(b) Gk(keySum) = keyHashSum. For each pure cell, we extract the key of the
original item and add it to the appropriate difference set. Additionally, we
remove it from all other cells it belongs to, allowing them to become pure
cells, as well. Decoding continues until no further pure cells remain. At this
point, if all cells have been cleared, then all items in the differences between SA

and SB have been decoded. Otherwise some items remain encoded and there
is not enough information to decode them. The full procedure is given by
Algorithm 5.

Algorithm 5 IbfDecode [26] (non-optimised pseudo-code)
function IbfDecode(IBFA, IBFB, SA \ SB, SB \ SA) ▷ adds to set differences

IBFA−B ← IBFA − IBFB ▷ create diff-IBF via cell-wise subtraction

while ∃j ∈ {1, 2, . . . ,m} : IBFA−B[j].IsPure do ▷ any pure cell left?
ik ← IBFA−B[j].keySum
c← IBFA−B[j].count
if c > 0 then ▷ determine difference set

(SA \ SB).Add(ik)
else

(SB \ SA).Add(ik)
end if
IBFA−B.Delete(ik, c) ▷ may create new pure cells

end while

if ∀j ∈ {1, 2, . . . ,m} : IBFA−B[j].IsEmpty then ▷ remaining IBFA−B empty?
return SUCCESS

else
return FAIL ▷ decoding incomplete

end if
end function
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Please note that this algorithm only shows the approximate non-versioned
set reconciliation. To make this algorithm solve the approximate versioned set
reconciliation problem, you may add id-version pairs to both IBFs (at the cost
of items with different versions being counted twice for ∆exp) and use a second
phase to determine which of the decoded items belong to ∆A and which to ∆B,
just like our algorithms described in the chapters below. Alternatively, an IBLT
may be used with the version as the item’s value. If we omit the valueHashSum
field, during the subtract step as well as any other item delete operation during
decode, we may add special handling for making the count field 0 with an
ik that matches the keyHashSum field. In that case, the resulting valueSum
from IBFA−B would actually indicate which node has the newer version and
we would reset this cell. Delete operations from other keys with differing
versions, however, will falsify the information in the value field. We will leave
the discussion and evaluation of this algorithm—including effects on failure
probabilities or cost comparisons between these two variants and our variants
below—up for future work.

Decoding errors

Eppstein et al. [26] find that decoding an IBF with m = α ·∆exp and α = k+1,
at most ∆exp elements in the symmetric difference, and at least Ω(k · log∆exp)
bits in each keyHashSum field will succeed with probability at least O(∆−k

exp).
They also indicate that, in practice, α < 2 suffices and refer to further results
from [34] where they draw the connection to finding the 2-core of random
hypergraphs.

In particular, for listing the contents of an IBLT without any hash sums,
Goodrich and Mitzenmacher [34] give this theorem:

Theorem 2.3.1. As long as m is chosen so that m > (ck + ϵ) · t for some
ϵ > 0 and ck from eq. (2.13), listing the entries of an IBLT fails with probability
O(t−k+2) whenever n ≤ t.

c−1
k = sup

{︂
γ : 0 < γ < 1;∀x ∈ (0, 1), 1− e−k·γ·xk−1

< x
}︂

(2.13)

From this, ck ≤ k can be derived easily by looking at γ = 1/k. More specifically,
though, ck grows much more slowly with k as indicated by Table 2.1 which
shows the numerical values of ck for 3 ≤ k ≤ 7.

Table 2.1: Thresholds for finding the 2-core in random hyper-
graphs, rounded to four decimal places [34].

k 3 4 5 6 7

ck 1.222 1.295 1.425 1.570 1.721

By adding a keyHashSum for allowing extraneous deletions (required for the
set reconciliation algorithm), we must make sure (with high probability) not to
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mark an impure cell to be pure because that would fail IbfDecode. Hence the
requirement on having at least Ω(k · log∆exp) bits in each keyHashSum field.

Estimating |∆| - The Strata Estimator

A crucial part of the set reconciliation algorithm with invertible Bloom filters is
to get a proper estimate ∆exp of the difference set size |∆|, even if |∆| is much
smaller than n. Eppstein et al. [26] present the Strata Estimator based on a
size estimation algorithm by Flajolet and Martin [29] using a hierarchy of IBFs.

At first, the universe of potential set elements U is divided into L = log2(|U|)
partitions P0, P1, . . . , PL−1 so that Pi covers 1/2i+1 of U, e.g. by assigning each
element i to the partition corresponding to the number of trailing zeros in
Hz(i) using some hash function Hz. Then, L IBFs are created representing
the elements of the set (SA or SB) that fall into the appropriate partition. The
structure containing these IBFs is called the Strata Estimator SESA and SESB ,
respectively. Please note that by using a hash function Hz for partitioning
the set, we also effectively reduce the skew among the partitions that may be
caused by non-uniformly distributed data in the set.

Assuming node A sent SESA , node B will use its own estimator to decode the
set difference size using Algorithm 6. Starting at stratum L and progressing
down to 0, it will subtract A’s IBF from its own and try to decode the resulting
IBF. If this succeeds, it will add the number of decoded elements to the set
difference counter. If it doesn’t succeed at index idx , we will return the current
set difference counter scaled by 2idx+1.

Algorithm 6 StrataEstimatorDecode [26]
function SEDecode(SESA , SESB) ▷ returns set difference size estimate

count← 0
for idx ← L,L− 1, . . . , 0 do

IBFB−A,idx ← SESB [idx ]− SESA [idx ]
if IBFB−A,idx does not decode then

return count · 2idx+1

end if
count← count + number of elements in IBFB−A,idx

end for
return count

end function

Eppstein et al. [26] propose to use 80 cells and 4 hash functions in each IBF
of their Strata Estimator and scaling this by a factor of 1.39 to ensure that the
resulting estimate of ∆exp is greater or equal to ∆exp 99.9 % of the time, based
on an empirical evaluation. They claim that, with these settings, this is the
only estimator that is accurate at very small set differences and able to handle
differences of up to 232 items at the same time. However, they also say that, in
practice, they would build a composite estimator that eliminates higher strata
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and replacing them by the MinWise estimator [6, 7] since that is more accurate
for larger differences.

Please note the theoretical analysis of the Strata Estimator [26] leads to
the following bounds in the accuracy of the estimation: For some constants
0 < ϵ, γ < 1, and by using C cells with k hash functions for the IBFs where C
and k only depend on ϵ and γ, the Strata Estimator estimates the size of the
set difference within a factor of (1± γ) of |∆| with probability of at least 1− ϵ.

Comments & Summary

Invertible Bloom filters (IBF) extend the original Bloom filter data structure
even more than the Counting Bloom filters above. With these extensions it
is also possible to recover the contents stored within (with high probability).
Since this capability remains even after subtracting two IBFs from one another,
IBFs become particularly useful for solving the set reconciliation problem in
space that is proportional to the size of the sets’ difference (number of cells
in the IBF, but also used to determine the number of bits in the hash sums)
multiplied by the logarithm of the key space (entries in keySum). Moreover,
IBFs do not only provide the set difference ∆, but the specific mappings to
SA \ SB and SB \ SA. Please also note that the definition of a failed decoding is
very restrictive in saying that it failed if any (few) number of items were not
decoded. In the approximate set reconciliation problem we may tolerate a few
non-decoded items and rely on them being fixed in a subsequent execution of a
set reconciliation service (see Chapter 3 below).

Since the set difference size is needed for tuning the IBF correctly, Eppstein
et al. [26] also propose a set difference estimation algorithm using a hierarchical
IBF structure, the Strata Estimator. It works with size proportional to the
logarithm of the key space to get an estimate within a factor of (1 ± γ) of
|∆|. To ensure that this estimate is always greater than or equal to the true
value—and therefore allow a successful set reconciliation—, a correction factor
of 1.39 is applied, based on empirical results for an accuracy of 99%.

Similarly, for the set reconciliation itself, we need to correct this again by
a factor of at least ck to successfully decode the difference with probability
O(|∆|−k+2). Problems may arise with the O notation which may hide certain
things away, e.g. (constant) factors, that we need to be aware of when aiming
for some specific accuracy target. We can see this in the evaluation of the space
overhead in [26] where the accuracy target is fixed at 99 % and the overhead to
achieve it varies greatly from ck.
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2.4 Estimating the Set Difference Size

Although estimation algorithms for the size |∆| of the difference of two (remote)
sets SA and SB are not in the focus of this work, several of the presented
algorithms as well as all of our approximate set reconciliation algorithms below
do require an estimate of |∆| or δ to meet their accuracy targets or select
optimal data structure sizes. Therefore, in this section, we will give a brief
overview of some of the algorithms in that space.

The simplest way of estimating |∆| with low communication overhead is
to take a random sample of constant size from one set, e.g. SA, and search
for those in the other set (SB). However, this will not include the difference
from elements in SB that are not in SA and, additionally, this may become very
inaccurate for low δ.

Min-wise sketches [7] extend the random sampling technique by calculating
the resemblence of two sets SA and SB, r(SA, SB) := |SA∩SB|/ |SA∪SB|, using k
independent random permutation functions π1, π2, . . . , πk : U ↦→ U. With
min(πi(S)) := min({πi(s) : s ∈ S}) being the minimum value of all mapped
values of elements in S under πi, a Min-wise sketch MS contains the k values
min(π1(S)),min(π2(S)), . . . ,min(πk(S)). We now calculate MSA as well as MSB

and, based on the results of [6], we know that r(MSA ,MSB) is an unbiased
estimate of r(SA, SB). Therefore, if MSA and MSB have m matching cells, we
estimate r(SA, SB) ≈ r = m/k and derive the set difference fromd :

|∆| = |SA ∪ SB| − |SA ∩ SB| =
|SA ∪ SB| − |SA ∩ SB|
|SA ∪ SB|+ |SA ∩ SB|

· (|SA ∪ SB|+ |SA ∩ SB|)

=

|SA∪SB|−|SA∩SB|
|SA∪SB|

|SA∪SB|+|SA∩SB|
|SA∪SB|

· (|SA|+ |SB|) =
1− r(SA, SB)

1 + r(SA, SB)
· (|SA|+ |SB|)

⇒ |∆| ≈ 1− r

1 + r
(|SA|+ |SB|)

However, while Min-wise sketches may work sufficiently well for large δ, they
may easily become very inaccurate for smaller δ or too small values of k.

Similarly to Min-wise sketches, Cormode et al. [21] describe a method to
estimate set sizes using a Dynamic Inverse Sampling technique that is based on
a hierarchy of sums and counts and a small collision detection structure. Since
it supports both insertions and deletions, one node could add all its elements
while the other nodes deletes its elements from the data structure. We can
then derive an approximate set difference size from this result. Queries on such
a data structure of size O(1/ϵ2 · log 1/γ) can be answered with additive error less
than ϵ with probability at least 1 − γ. Further sketch-based approaches are
described by, for example, Cormode and Muthukrishnan [20] and Schweller
et al. [75].

dSA ∪ SB = ∅ can be identified from MSA and MSB and immediately leads to ∆ = ∅.
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Feigenbaum et al. [28] interpret incoming streams of data items as functions
and present a method for approximating the function difference. Their data
structure contains log 1/γ/ϵ2 counters of values at most |U| · n, as well as master
seeds with the same (asymptotic) space complexity. By using algebraic compu-
tations over finite fields, they achieve an approximation ∆exp which is within a
factor of (1± ϵ) of |∆| with probability of at least 1− γ. This data structure
can actually also be viewed as a sketch but outperforms Min-wise sketches
when approximating the symmetric difference for two sets with small δ.

Similar space complexity as well as approximation error properties are
achieved by the Strata Estimator by Eppstein et al. [26] which uses invertible
Bloom filters instead of algebraic computations over fields. It is described in
detail in Section 2.3.6.

Further uses of Bloom filter variants for estimating the size of the symmetric
difference between two sets are presented by Guo and Li [36] and Broder
and Mitzenmacher [8]. Guo and Li [36] compare the theoretical number of
zero-valued cells in a (small) counting Bloom filter of the difference with the
actual number of zeros. Additionally, by looking at the ratio of positive to
negative cells, they are able to estimate |SA \SB| and |SB \SA| (ref. Section 2.3.5
for details). Based on empirical results, Guo and Li [36] claim a (fairly) exact
estimation even for small differences.

Broder and Mitzenmacher [8] present a method to use two sets’ (ordinary)
Bloom filters and their inner product, i.e. bitwise AND, to estimate the size
of the intersection of the two sets. Let ZA and ZB denote the number of zero
bits in the Bloom filters of SA and SB, respectively; also let ZAB be the number
of zero bits in the inner product of BF(SA) and BF(SB). Then, |SA ∩ SB| can be
derived from

1

m
·
(︃
1− 1

m

)︃−k·|SA∩SB|
≈ ZA + ZB − ZAB

ZA · ZA
.

With |SA ∩ SB|, we can further derive |∆| from |∆| = |SA|+ |SB| − 2 · |SA ∩ SB|.
Unfortunately, Broder and Mitzenmacher [8] did not further analyse how good
this approximation is. Papapetrou et al. [67] extend on this mechanism and
provide theoretical bounds for estimating set cardinalities of not just Bloom
filter intersections but also Bloom filter unions.

Irrespective of which algorithm has been used to estimate the size of the
difference between two sets, throughout the rest of this work, we will use an
estimation as our expected set difference and formalise it as follows.

Definition 6 (Expected Set Difference). Let ∆exp ≈ |∆| be the expected set
difference for our set reconciliation algorithms, based on the estimated size of
the set difference between SA and SB. Similarly, let δexp ≈ δ := |∆|/n be the
expected relative set difference.
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2.5 An Accuracy Model for Fair Comparisons of
Approximate Set Reconciliation Algorithms

Approximate set reconciliation algorithms can be compared in many different
ways depending on the requirements, e.g. low time complexity/latency [35] or
low communication costs [22, 63, 14], or—to some extend—both [84, 66]. We
set a fixed upper bound on the algorithms’ accuracy in terms of the number of
expected failures and evaluate the algorithms’ transfer costs since we believe that
algorithms with lower transfer overhead may especially be useful in distributed
systems with low available bandwidth. Optimisations for the construction or
maintenance of the individual data structures of our algorithms are out of this
work’s focus but can be applied orthogonally (ref. Sections 7.6 and 8.6).

2.5.1 Accuracy

Recall that an approximate versioned set reconciliation identifies ∆′
A and ∆′

B
instead of ∆A and ∆B with some failure probability P (∆′

A ̸= ∆A ∨∆′
B ̸= ∆B). To

allow a fair comparison between different algorithms with different parameters,
we refine the accuracy metric of [45] based on the expected number of errors
instead. Compared to using the failure probability above, we thus also take the
cardinalities of the differences into account and give bigger weight to outcomes
with the same probability but more than one error.

Definition 7 (Failure Rate). Let X be a discrete random variable with values
according to the number of errors xi of an approximate versioned set reconcilia-
tion and the appropriate probabilities pi according to the chosen algorithm. Let
the failure rate fr be the expected number of errors E[X] per set reconciliation
attempt:

fr := E[X] =
∑︂
i

xi · pi (2.14)

i Linearity of Expected Values

For two—not necessarily independent—random variables X and Y , the
following holds true:

E[a ·X + b · Y ] = a · E[X] + b · E[Y ]

We will make heavy use of this property in the calculations further below.

Note that, in contrast to using a metric relative to the number of items, we
decided to define the failure rate per set reconciliation attempt instead. This
does not only allow comparisons with exact set reconciliation algorithms but
also allows a system configuration independent of the number of items and
thus getting arbitrarily close towards exact set reconciliation.
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Using a Close Upper Bound FR on the Failure Rate

Z For each approximate set reconciliation algorithm, we develop models
to deduce individual accuracy-influencing parameters from a given upper
bound FR > 0 on the algorithms’ failure rate fr such that

fr ≤ FR and fr ≈ FR

Therefore, we try to find parameters where fr is closest to FR.

In the search for parameters to meet fr ≤ FR—we will generally use the
term fulfil FR below—, we may be bound to certain restrictions the parameters
pose such as bit sizes being integral. Additionally, the algorithms’ effective
accuracy in the current system state may not be known before executing it, e.g.
in cases where the accuracy depends on the actual differences between the two
nodes. In this case, we make worst-case assumptions in order to always fulfil
FR. Overall, we may end up with a more accurate algorithm than anticipated
and fr ⪉ FR which usually implies higher communication costs. The individual
algorithms’ chapters will include a detailed discussion of these differences and
will try to mitigate them as much as possible.

Note that most of the algorithms discussed in this work only have a single
accuracy-influencing parameter. The search for a parameter set bringing the
failure rate closest to FR in algorithms with multiple accuracy-influencing
parameters, however, is more complex. Also, there may be multiple parameter
instances with the same accuracy in which case other constraints, e.g. lowest
communication costs, lowest computational cost, or lowest time complexity,
can be used to select among them. Bloom filters, for example, have two
accuracy-influencing parameters but one of them has been optimised for minimal
communication cost in literature and thus only one remains. Optima for Bloom
filter extensions such as counting Bloom filters or invertible Bloom filters which
both retain the same two parameters are not known yet.

Related Work

Guo and Li [36] use a similar approach as above and calculate the expected
number of errors in both error cases, i.e. false negatives and false positives.
They argue to set a fixed upper accuracy limit for each of them at 1 and would
thus achieve an overall accuracy of 2. However, they do not state how to
(algebraicly) derive accuracy-influencing parameters from these bounds and
also assume the number of hash functions k is a fixed parameter. Hence, they
would need to find optimal values for the two parameters k and m with a given
bound on the accuracy, e.g. via sampling the parameters.

Similarly to Definition 5 (page 6), Eppstein et al. [26] use a failure probability
of P (∆′

A ̸= ∆A ∨∆′
B ̸= ∆B) to describe their algorithm’s accuracy. They state

that their invertible Bloom filter with k hash functions and C = (k + 1) · |∆|
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cells achieves a failure probability of O(|∆|−k). Closer bounds with lower C
are given by Goodrich and Mitzenmacher [34]. However, although they also
design an estimation algorithm for the value of |∆|, they do not use it to derive
optimal values of k (and thus C) based on an accuracy constraint as we do.
Nevertheless, Eppstein et al. show empirical results of the average accuracy for
different values of |∆| and k based on 1 000 samples.

In contrast to [26], Byers et al. [10] define the accuracy of their one-way
approximate set reconciliation algorithm as the probability that a given element
in ∆A is identified by node B after node A sent its approximate reconciliation
tree (ART) to B. In the analysis of ART, however, they are only concerned
with keeping the accuracy constant, i.e. solving the set reconciliation with high
probability, and only analyse the exact accuracy empirically based on 1 000
samples.

2.5.2 Asymptotic Lower Bound under FR

Recall the optimal approximate set reconciliation algorithm depicted in Sec-
tion 2.1.1 using a perfect oracle so that node A knows ∆A and sends it to B and,
similarly, node B sends ∆B to A. A and B then query their items from SA \v ∆A

and SB \v ∆B in approximate set representations of ∆B and ∆A. A single such
query can be represented by a random variable Y returning a single error at
probability ϵ′. Note that there is no more than one error per query in this
algorithm and therefore E[Y ] = 1 · ϵ′. By further using the linearity of the
expected value, the failure rate of the whole set reconciliation with a total of
q = |SA \v ∆A|+ |SB \v ∆B| queries can thus be given as:

fr = E[q · Y ] = q · E[Y ] = q · ϵ′ (2.15)

From fr ≤ FR and for all practical cases where q > FR, we further derive
ϵ′ ≤ FR/q and thus establish the following lower bound in bits from eq. (2.4):

|∆A| · log2
1

ϵ′
+ |∆B| · log2

1

ϵ′
= |∆| · log2

q

FR
(2.16)

This function is shown in Figure 2.5 for variable q with fixed |∆| and selected
values of FR (left), and variable FR with fixed |∆| and selected values of
q (right). Please refer to Figure 2.1 (page 8) for the third combination with
variable |∆| and fixed ϵ = FR/q. Please also note that, as shown by Theorem 2.5.1
below, this is in O (|∆| · log (n/FR)).

Theorem 2.5.1. The lower bound of the communication costs of the approx-
imate (versioned) set reconciliation problem with fr ≤ FR, q > FR, and
n := |SA ∪MisA| from above is in O (|∆| · log (n/FR))n→∞, FR→0 bits.

Proof. This follows immediately from eq. (2.16) and q ≤ |SA|+ |SB| ≤ 2n.
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Figure 2.5: Theoretical lower bound for approximate set reconciliation under
FR (eq. (2.16)) for |∆| = 10 000 and variable q (left) or variable FR (right).

2.5.3 Item Distribution with Hash Functions

Most of the approximate set reconciliation algorithms use hash functions
to either verify success, e.g. rsync [81] and hash-based divide-and-conquer
by Minsky and Trachtenberg [53], or as part of their data structures, e.g.
Bloom filters and their variants [3, 78], Merkle trees [52, 10], and algorithms
sending lists of hashes like our trivial and SHash reconciliation in Chapters 5
and 6. A hash function maps items from a set U to a set of indices I with
(usually) |U| ≫ |I|. Both use cases require hash functions which distribute
items uniformly in I. Similarly, since we want to derive accuracy-influencing
parameters from the bound FR, we need to calculate failure probabilities and
will thus also assume uniform hash functions in the analysis below.

Commonly, cryptographic hash functions such as MD5 [72] and SHA-1 [24]
are used since, in their attempt of making it difficult for an adversary to find
a hash collision, they already distribute items uniformly enough for practical
inputs [9, 38]. However, even stronger cryptographic hash functions like the
extensions of the Secure Hash Standard in [76, 77] do not guarantee a uniform
hash distribution.

Universal hash functions [13] provide stronger guarantees for hash collision
probabilities, e.g. that the hash values of any two items x, y ∈ U collide only
with probability O(1/|I|). This is achieved by using not only a single hash
function but instead a class of hash functions and selecting one at random for
each input, i.e. a set of items to hash. We could even switch to a different hash
function from this class if the chosen one turns out to perform poorlye .

eAlthough using a different, random hash function on each input is working well with the
presented algorithms, this technique may hinder some maintenance optimisations where the
hashed data structure is kept over time while elements are added (and deleted). Changing
the hash function would then require a full re-hash of all items on both nodes.
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By using strongly universal hash functions, i.e. with k-wise independent hash
functions [86], we also get the property of uniformly distributed hash values
in I. However, while universal hash functions provide guarantees under any
circumstance, we do find that cryptographic hash functions perform well enough
for most practical use cases as in Sections 5.6, 6.6, 7.7 and 8.7 and chapter 9
and do not use this technique.

36 Chapter 2. Introduction



Chapter 3

Evaluation Method

Among the many applications of set reconciliation algorithms presented in
Section 2.2, we chose to evaluate our protocols in a replica repair setting. The
embedding of our protocols into a generic replica repair service is described
in Section 3.1 followed by a few implementation details in Section 3.2. The
parameters for which we analyse this setting, i.e. the evaluation scenarios, are
defined in Section 3.3 and we conclude by introducing the metrics we collect
and a brief explanation of the plots we use (Section 3.4).

In general, the evaluation is split into several chapters, one for each set
reconciliation protocol which is individually described and evaluated (Chapters 4
to 8) and a comparative evaluation in Chapter 9.

3.1 Replica Repair Service

Assume that each node is responsible for a range of items whose keys reside in
some interval, e.g. IA for node A, and that items are replicated among different
nodes each covering an arbitrary interval. These intervals may overlap in which
case an item is replicated to all responsible nodes.

In its simplest form, a replica repair service synchronises two nodes’ item
sets in a common synchronisation interval by identifying the most up-to-date
items at either node based on the items’ keys and versions. We use the set
reconciliation methods presented below and embed these algorithms into a
generic replica repair service which is mostly opaque to the reconciliation
algorithms. This service is based on a pairwise data synchronisation and shown
in Figure 3.1. For each synchronisation request, request-specific services are
created on demand to allow multiple parallel instances, e.g. with different
replica nodes.

Upon a synchronisation request on node A, A first sends its own interval IA
of keys it covers to another node B responsible for (some) replicas of items at
A. B then determines the common synchronisation interval IAB of keys both
nodes should cover. This concludes the handshake and starts the reconciliation
protocol specific to the selected algorithm using all items in this interval.
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Figure 3.1: Replica repair service with an arbitrary set reconciliation protocol.

Such a protocol typically consists of two phases (ref. Chapters 4 to 8): (1)
identifying the differences themselves and (2) identifying which items to send
in the next step, i.e. ∆′

B and ∆′
A.

In the final resolve step, A and B push the recognised differences ∆′
B and

∆′
A to the other node, respectively. Any items in ∆′

A \ ∆A and ∆′
B \ ∆B for

which a different item exists at A and B is sent back in a feedback message,
respectively. Redundant item transfers originate from (a) sending a common
item or (b) sending an older item—instead of the newer one—for which the
feedback ensures that the item is updated nonetheless, however at the cost of
one unnecessary item transfer. Because of the resolved difference, we also add
these items to the set of recognised differences ∆′ in the evaluation metrics.

Note that we use the push-only approach for resolving items since we are
able to create ‘pull requests’ more efficiently inside our reconciliation algorithms
than by simply sending a list of keys to request. Also note that items are only
overwritten with newer versions of their replicas during the resolve step so that
parallel synchronisation instances always improve the stored set of items.

Instead of simply pushing full item contents to the other node during the two
resolve processes, item transfer costs could be optimised by using delta-transfer
algorithms such as rsync [81] which efficiently handle cases of minor content
changes in files. Optimising file transfers, however, is out of the focus of this
work. For rsync as an alternative set reconciliation method, though, please
refer to Chapter 4.
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3.2 Implementation with Erlang and Scalaris

The set reconciliation algorithms presented in Chapters 5 to 8 are all imple-
mented with Erlang 18.2.3 and evaluated inside the replica repair service of the
distributed transactional key-value store Scalaris 0.9+ (git hash d14f8e96d5).
Scalaris [74, 73] uses MD5 hashes [72] to create 128 bit item keys from item
names and thus ik ∈ [0, 2128) in our evaluation. Version numbers are arbitrary
integers which are increased by 1 for each item change. An item’s data is an
arbitrary term and further metadata such as locks ensure consistency during
changes. Both are not used in the evaluation of the set reconciliation algorithms.

i Scalaris uses symmetric replication [31] to spread replicas of items in
the key space. Node ranges are pairwise disjoint and keys of replicated
items are mapped to some other point in the key space thus effectively
splitting it into r symmetric segments with r being the replication factor.
Therefore, before running set reconciliation algorithms, replicated keys need
to be mapped into a common key space—where node ranges are allowed to
overlap—in order to match one another.

The naïve set reconciliation protocol as well as the one using rsync (Chapter 4)
are comparative examples and are implemented separately in Erlang without
the full stack of Scalaris (ref. Appendix A.1, page 161). In case of rsync, our
code is a simple wrapper to call the rsync binary with the evaluation setup
outlined below.

3.3 Evaluation Scenarios and Experiments

Set reconciliation methods are used in a diverse set of applications for various
different systems and environments. We aim at covering these by evaluating
the algorithms in a variety of different scenarios. Note that despite the concrete
setting inside a replica repair service, these scenarios are generic to any task
that reconciles key-version sets (with subsequent value transfer).

In the versioned set reconciliation problem, items are associated with keys
and versions. Item keys which originate from naturally given identifiers such as
names are typically prone to a skewed item distribution. Item keys originating
from hashes are practically uniformly distributed. In our scenarios, we cover
these cases by two different item key distributions (kdist) using (a) binomially
distributed keys with B(n, p = 0.2) (databin 0.2) or (b) uniformly distributed
keys (datarand). Note however, that by applying a hash function to all item
keys we can always convert any key distribution to a uniform one, assuming
a perfectly random hash function. Some algorithms even require uniformly
distributed keys and perform the hashing themselves, others show different
effects when applied to differently distributed data. We analyse both cases and
raise awareness that a uniform distribution can always be established.
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Similarly to the key distribution, the failure distribution (fdist) can be
modelled in different ways and we present two examples: uniformly distributed
failures (fail rand) and binomially distributed failures (fail bin0.2

). Note that by
re-hashing the items’ keys, the failure distribution also transforms to a uniform
distribution.

The failure type (ftype) indicates whether items are outdated or missing.
We always evaluate both types separately and note that in mixed scenarios the
evaluation metrics below will show a similar mix of the appropriate separately
evaluated metrics.

As defined in Section 2.1, the total number of different item keys is n :=
|SA ∪ MisA| = |SB ∪ MisB| and the relative number of actual differences is
δ := |∆|/n (expressed in %). δ is approximated by an (assumed) set difference
estimation algorithm that reports the expected difference size δexp. This δexp
can be set to δ which implies a (fairly) exact estimation which recent approaches
claim (ref. Section 2.4). It can also be any other (incorrect) value in order to
evaluate the algorithms’ sensitivity to wrong estimates.

The whole set of configuration parameters defining a scenario is summarised
by Table 3.1.

Table 3.1: Configuration parameters defining a scenario.

n number of item keys
kdist item key distribution (datarand or databin 0.2)

δ relative number of differences (0–100%)
δexp expected relative number of differences (0–100% or δ)

ftype item failure type (outdated or missing)
fdist failure distribution (fail rand or fail bin0.2

)

Based on these scenario definitions, we present five types of experiments,
each for the outdated and missing failure types:

(a) scenarios with different values of δexp = δ and uniformly distributed
keys (datarand , fail rand , n = 100 000)

(b) scenarios with different values of δ and uniformly distributed keys
but a wrong estimate of δexp ̸= δ (datarand , fail rand , n = 100 000)

(c) scenarios with different data and failure distributions (uniform vs.
binomial distribution, δexp = δ ∈ (0, 10]%, n = 100 000)

(d) scenarios with different item numbers n and uniformly distributed
keys (δexp = δ = 3%, datarand , fail rand)

(e) scenarios with different accuracy targets FR and uniformly dis-
tributed keys (n = 100 000, δexp = δ = 3%, datarand , fail rand)
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3.3.1 Simulation Setup

For each scenario with the configuration parameters from Table 3.1, we set up
a (pair-wise) reconciliation of two nodes’ item sets. We create a database with
n items with keys distributed in the address space of a node using kdist. The
items’ (32-bit) version numbers are uniformly distributed in the range [1, 220).
Then, for a relative total difference δ, failure items are drawn among the data
items based on fdist. Based on ftype, each failure item is either removed
or its version is decreased by a random number in [1, 512) on one of the two
nodes uniformly at random. The resulting databases are then distributed to
the nodes and the simulation starts with the protocol from Section 3.1 and a
selected set reconciliation method.

3.4 Evaluation Metrics
Each of the scenarios defined above is set up 1 000 times differently due to
the given random distributions. During the evaluation, we will show the
averages and the standard deviation of the following metrics related to the set
reconciliation protocol and collected by the simulation:

|∆| missed: the (absolute) number of false negatives, i.e. unreconciled
items which were wrongly identified as not being in the
set difference

Red.: the (absolute) number of redundantly transferred data
items (false positives), i.e. pushing an item identified as
missing when it is not or pushing an outdated or equal
version to the receiving node

Transfer costs: the costs of the two different phases of the set reconcil-
iation algorithm (without handshake or resolve) in KiB
based on zlib-compressed messages

Note that from a practical perspective, redundantly transferred items are
not “real” errors and only cause additional costs. These costs—in terms of
transferred bytes, computational overhead, or time complexity—depend on
the actual items and their sizes and the transfer algorithm used in the two
resolve steps. Also, the effect of these increased costs varies and may become
problematic in bandwidth-limited systems, for example. We thus present false
positives as errors but separate them from the false negatives.

3.4.1 Plots

The plots we use in our evaluation condense a lot of information from the actual
scenarios used and the metrics collected. Figures 3.2 and 3.3 show examples
for experiment types (a) to (e) (Section 3.3). Each of these plots is composed
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of sub-plots in a matrix of the three metrics (one per row) and the two failure
types (one per column). A common x-axis is shown at the bottom, error bars
denote the standard deviation and may be cut off if too high.

In the plots for experiment types (a), (b), (d) and (e) (Figure 3.2), transfer
costs of phase 1 are shown as darker colour bars with lighter colour bars stacked
on top being phase 2 costs. The x-axis either shows different values of δ or n.
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Figure 3.2: Example plot of experiment types (a), (b), (d) and (e) with
descriptions added (avg = average, stddev = standard deviation).

For experiment type (c) (different data and failure distributions), the relative
metrics of a given algorithm compared to the datarand , fail rand scenario are
shown, i.e. Figure 3.3 shows the differences to Figure 3.2. Here, transfer costs
show the differences of the total transfer costs, i.e. the differences of the sums
of the two phases.
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Figure 3.3: Example plot of experiment type (c) showing different data and
failure distributions compared to datarand , fail rand .
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Chapter 4

Naïve and Rsync Reconciliation

To put things into perspective, we take a brief look at how the naïve approach
as well as rsync [81]—regardless of being exact and quasi-exact algorithms,
respectively—perform in a similar scenario. We simulate the first phase of the
reconciliation, i.e. sending the key-version list from node B to node A, excluding
the overhead of signalling B which items to push back to A—thus only A is
aware of the differences. These (missing) phase 2 costs are similar to the trivial
reconciliation below and are thus negligible (ref. Section 5.6).

4.1 Protocol

Figure 4.1 sketches the protocol used by the naïve algorithm and rsync. Al-
though not being included in the following discussions and evaluation, phase 2
is added here for completeness.

A B
näıve: SB

rsync protocol: SB with SA

CKidx (∆′
A)
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Figure 4.1: Naïve and rsync reconciliation protocol.

The naïve approach sends a zlib-compressed key-version list of SB in phase 1.
Rsync is actually not a data structure sent over in one message but an own
protocol running in O(1) rounds. It has an efficient delta-transfer algorithm
used for synchronising two files on different hosts over limited bandwidth
connections. To reconcile the two item sets at nodes A and B with rsync, we
create two files fA and fB with all key-version pairs at node A and B, respectively.
Rsync’s delta-transfer algorithm is then used to re-construct fB at node A which
can thus determine ∆′

B.
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4.2 Algorithm Details
While there is not much to describe for the naïve approach, there are some
optimisations in the rsync version used for evaluation not described in detail
in [81] or [82]. Unfortunately, the official rsync websitea does not describe the
current protocol version either, so the following description is partly based on
the source code of version 3.1.1 (protocol version 31).

If two nodes A and B have two similar files fA and fB, respectively, the rsync
delta-transfer algorithm allows an efficient transfer of a file on one node to the
other node, e.g. fB to A. Thereby, only pieces of fB which are different and not
found in fA plus a small amount of checksums are sent. The basic algorithm
works as follows [82]:

1. fA is split into non-overlapping blocks of (fixed) size s bytes
(default in rsync 3.1.1: s =

⌈︂√︁
|fA| · 1/8

⌉︂
· 8 with file size |fA| in bytes)

2. for each block, two checksums are calculated at node A: (a) a weak “rolling”
checksum (32 bit) and (b) a strong checksum (128 bit)

3. node A sends these checksums to node B

4. B searches fB for blocks of size s at any offset with the same weak and
strong checksum as one of the blocks of fA

5. B sends instructions for A to re-construct fB using either references to
blocks of fA or sending literal data from fB (for non-matching blocks)

Herein, the rolling checksum must have the property that it is very cheap to
calculate the checksum of bytes x2 . . . xi+1 given the checksum of bytes x1 . . . xi

as well as x1 and xi+1. It is based on Adler-32. The strong checksum was
originally defined as MD4 but since protocol version 30, MD5 is used.

4.2.1 Improvements in Later Versions

Protocol version 14 changed the fixed strong checksum size from 128 to 16 bits
with huge savings in step 3. It was made dynamic in protocol version 27 where
two phases were introduced. In the first phase, the strong checksum’s actual
size schksum_bits varies between 16 and 128 bits based on the file size |fA|
and the block size s. In rsync 3.1.1 (protocol version 31), it is given as:

schksum_bits =
⌈︁
(10 + 2 · log2(|fA|)− log2(s) + 1− 32) · 1/8

⌉︁
· 8 (4.1)

Step 5 then also sends a full strong checksum (128 bit) of the whole file fB. If
this checksum does not match after re-constructing fB at node A then the whole
process is repeated in a second phase using 128 bits for the strong checksum of
step 2. If it still does not match afterwards, the whole file is sent.

ahttps://rsync.samba.org/ (retrieved 22 April 2016)
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4.3 Evaluation
Similarly to the other algorithms below, for each scenario, we create (binary)
files for the two nodes by concatenating a 128 bit key and a 32 bit integer version
number ∈ [1, 220) for each of the appropriate node’s items and select a node
with an outdated/missing item at random. (ref. Listing A.1 on page 161).

Phase 1 costs of the naïve approach are equal to the size of the zlib-
compressed version of the key-version file. For rsync, we synchronise the
key-version files using rsync -B<s> -Iz –no-W –stats with different block
sizes s in bytes (parameter -B). Parameter -I synchronises the two (key-version)
files independently of their size and time; –no-W forces the use of the delta-
transfer algorithm for local files, too. The other parameters enable compression
(-z)—especially useful for the re-construction instructions sent from B to A—
and some more statistics (–stats). Algorithms given as rsyncs present default
rsync synchronisations with block size s. Additionally, we provide rsyncs,cs128
using a patched rsync that always uses strong checksums of 128 bit size for
comparison with our algorithms below which do not use similar optimisations.

4.3.1 General Analysis for Different δ

n = 100 000
datarand

δ = variable
fail rand

The number of bytes transferred during these synchronisations
(the sum of the sent and received bytes) is shown in Figures 4.2
and 4.3 together with the naïve algorithm. The naïve algo-
rithm’s transfer costs are as expected. In the outdated scenarios,
this is roughly n · (128 + 32) bits due to the low compression
rate of random data. The communication cost of the missing scenarios varies
with the number of items on each node since higher values of δ lead to fewer
items on each node and in turn fewer items to transmit.
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Figure 4.2: Naïve and rsync reconciliation costs with small δ.
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Rsync, however, transfers two checksums per block and only transmits
a block’s data if it is not found on the other node. Therefore, there is a
constant cost of transmitting all checksums and an increasing cost for the block
mismatches. Eventually, this is more expensive than the naïve file transfer.
Depending on the number of block mismatches, one of these two costs dominates
the other and determines whether smaller or larger block sizes are beneficial.

Without further knowledge of the failure distribution, the number of block
mismatches cannot be accurately estimated. With a preceding re-hash and re-
sorting step of the items’ keys, however, a uniform (key and) failure distribution
can be established but since rsync actually benefits from skewed, non-uniform
distributions (ref. Section 4.3.2), this step may be disadvantageous.

The default block size for a file with n · (128 + 32) = 2 000 000 bytes
is 1 408 bytes and although this makes the δ = 0% case very cheap, it is
disadvantageous for any other δ and thus not shown here. A block size of
64 bytes seems to be a good trade-off for the 0% < δ ≤ 10% scenario with
uniformly distributed keys and failures (Figure 4.2) and is reasonably good for
larger δ, too (Figure 4.3). For this block size, we also present the results of an
unoptimised rsync with full, i.e. 128 bit, strong block checksums where sending
the checksums is considerably more expensive.

Figure 4.2 also shows the benefits of the two phases introduced into rsync
protocol version 27 for the average case: With a blocksize of s = 64, there are
31 250 blocks and sending 32+128 bits for each of them would yield a constant
overhead of 610KiB. Instead, only 32+16 bits are sent which results in only
183KiB total checksum size. However, there are cases when rsync has to fall
back to the full 128 bit strong block checksum in a second phase which causes
the increased values of the standard deviation in the plots.
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Figure 4.3: Naïve and rsync reconciliation costs with high δ.

48 Chapter 4. Naïve and Rsync Reconciliation



4.3.2 Data and Failure Distribution Sensitivity

Note that the actual transfer costs of rsync depend on the failure distribution.
The more failures cluster inside the blocks of size s, the less literal data tokens
need to be transmitted. Therefore, the uniform distribution presented here is
rsync’s worst case scenario. Please also note that (at least) in the outdated
scenario, rsync cannot gain from the file-wide search for matching blocks due to
our quasi-random data (keys and versions). In the missing scenario, rsync may
find a matching block if there is only one error at the beginning of the block.

4.3.3 Scalability with the System Size n

n = variable
datarand

δ = 3%
fail rand

Figure 4.4 shows how the naïve and rsync reconciliation pro-
tocols perform when the data size n is increased. Compared to
the uncompressed n · (128+ 32) bits, the naïve algorithm shows
a slight increase in compression rate but otherwise progresses
as expected. Similarly, rsync progresses linearly for any fixed
block size s, a 128 bit hash sum each in the worst case, and a number of roughly
δ = 3% of the blocks being different and thus transmitted in the datarand and
fail rand scenario.
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Chapter 5

Trivial Reconciliation

In this chapter we introduce a trivial approximate set reconciliation protocol
based on the naïve protocol of sending the full key-version list. Furthermore,
we apply our accuracy model and derive appropriate parameters to bind the
trivial reconciliation’s number of expected failures by a fixed value of FR.

5.1 Protocol
The trivial reconciliation protocol is depicted in Figure 5.1. Node B first creates
a list of compressed keys and version numbers of its items, sorts them and
packs them into a delta-encodeda compressed key-value structure CKV which is
detailed below (ref. Section 5.2). CKV is then transmitted to node A together
with the used parameters. A checks whether its data items are present in
CKV and which items are newer or older. In this first phase, ∆′

B and Old ′
A are

known to A which pushes ∆′
B to B. Mis ′A is identified by all unmatched keys in

CKV. In phase 2, we thus pack the indices of Old ′
A and Mis ′A inside CKV into a

delta-encoded CKidx binary and send it to B. B translates them back into keys
and resolves the remaining ∆′

A. The delta-encoding as well as the use of indices
instead of the keys themselves potentially reduces the number of bits and allows
a better compression. This is due to larger similarities inside CKV and CKidx
depending on the data and failure distribution, respectively.

A B

bk, CKV(SB), δexp , |dupes|

CKidx (∆′
A)

resolve
∆′

B

resolve
∆′

A

p
h
as
e

1
p
h
as
e

2

Figure 5.1: Trivial reconciliation protocol.

ahttp://en.wikipedia.org/wiki/Delta_encoding (retrieved 10 August 2016)
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5.2 CKV Data Structure Details
In order to create the compressed key-value structure CKV (Algorithm 7), item
keys are first compressed by hashing them to bk bits, e.g. by using the bk
least significant bits of an MD5 hash, and thus distributing them uniformly
in [0, 2bk). We then sort these entries by their hashed keys, add items with
non-unique hashes to ∆′

A (ref. Section 5.3), and remove them from the list
which is then split into a hash list and version list with elements at the same
position belonging to each other. The hash list is further compressed using
delta-encoding; the version list concatenates all 32-bit version numbers.

Algorithm 7 CKV creation
function CKV(Entries)

for all i ∈ Entries do ▷ hash all items’ keys
ih ← MD5(ik, bk) ▷ use the bk least significant bits of an MD5 hash

end for
Sort(Entries) ▷ sort by item hashes ih
∆′

A ← RemoveDupes(Entries) ▷ remove non-unique ih, add them to ∆′
A

hashes ← [], versions ← [] ▷ create two empty lists
for all i ∈ Entries do ▷ split Entries into two separate lists

hashes.Append(ih)
versions.Append(iv)

end for
HBin ← DeltaEncode(hashes, bk) ▷ apply the Delta-Encoding from below
VBin ← Concatenate(versions) ▷ concatenate all 32 bit version numbers
return {HBin,VBin} ▷ a tuple of the compressed hashes and the versions

end function

5.2.1 Delta-Encoding

By using delta-encoding, we do not transmit the list of sorted hashes, i.e.
integers, themselves but encode the differences between two consecutive hashes
and send this list instead. This provides two advantages: (a) the number of
bits needed to encode the difference may be lower than the original hash size
and (b) the differences may be more alike. Both allow a better compression.

Assuming a sorted list of integers kj ∈ [0, 2bk) ⊂ N, j ∈ {1, 2, . . . , x}, stan-
dard delta-encoding transmits k1, (k2−k1), . . . , (kx−kx−1). Since we remove any
duplicates (and thus kj < kj+1), we instead transmit k1, (k2−k1− 1), . . . , (kk−
kk−1 − 1) for further potential savings. We determine the maximum max diff

among these and pack each number into bd := ⌈log2(max diff + 1)⌉ ≤
⌈︁
log2(2

bk)
⌉︁

bits of the transmitted binary. A prefix of ⌈log2(bk)⌉ bits adds bd and allows
the receiving node to decode the binary analogously with its knowledge of bk.

The following listings show two examples using Erlang pseudo-code where
[1,2,...] denotes a list of integers and «a:b,c:d,...» denotes a bitstring
encoding integer a using b bits, c using d bits etc., both in the given order.
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DeltaEncode([3,7,11,15,18,20,23,27,36,44,47], 32) % bk = 32
%Input : -- Max: 47 => bd = 6 => 72 bits
%Delta : 3,4,4,4,3,2,3,4,9,8,3 -- Max: 9 => bd = 4 => 50 bits
%Delta ’: 3,3,3,3,2,1,2,3,8,7,2 -- Max: 8 => bd = 4 => 50 bits
«4:6 ,3:4 ,3:4 ,3:4 ,3:4 ,2:4 ,1:4 ,2:4 ,3:4 ,8:4 ,7:4 ,2:4»

DeltaEncode([2,8,11,12,16,19,20,21,22,30,32], 16) % bk = 16
%Input : -- Max: 32 => bd = 6 => 71 bits
%Delta : 2,6,3,1,4,3,1,1,1,8,2 -- Max: 8 => bd = 4 => 49 bits
%Delta ’: 2,5,2,0,3,2,0,0,0,7,1 -- Max: 7 => bd = 3 => 38 bits
«3:5 ,2:3 ,5:3 ,2:3 ,0:3 ,3:3 ,2:3 ,0:3 ,0:3 ,0:3 ,7:3 ,1:3»

5.3 Using CKV for Set Reconciliation
During the reconciliation, each of the nA keys of node A is hashed the same way
as those in CKV and then compared with each of the nB bk-bit hashes in CKV
(see Algorithm 8). If a match is found, the items’ versions are compared and
the item is added to the appropriate difference set, i.e. ∆′

A or ∆′
B. Items with

identical versions are ignored. If no match is found, i ∈ SA must be in MisB
and is added to ∆′

B. At the end, after checking all items of SA, all unmatched
hashes in CKV are added to ∆′

A and requested in phase 2 (ref. Section 5.3.2).

Algorithm 8 Trivial reconciliation at node A
function TrivialSync(SA, CKV, bk) ▷ after receiving bk and CKV (SB) from B
{HBin,VBin} ← CKV ▷ a tuple of the compressed hashes and the versions
hashes ← DeltaDecode(HBin, bk) ▷ revert the Delta-Encoding from above
versions ← Split(VBin) ▷ retrieve individual 32 bit version numbers
for all i ∈ SA do ▷ hash all items’ keys

ih ← MD5(ik, bk) ▷ use the bk least significant bits of an MD5 hash
end for
∆′

B ← RemoveDupes(SA) ▷ remove non-unique ih, add them to ∆′
B

for all i ∈ SA do ▷ for all remaining items of SA
if idx = hashes.Find(ih) then ▷ find index of ih in hashes

if versions[idx ] > iv then ▷ newer item on B
∆′

A.Append(ih) ▷ request the item behind this hash from B
else if versions[idx ] < iv then ▷ newer item on A

∆′
B.Append(i) ▷ send this item to B

end if
hashes.Remove(idx ), versions.Remove(idx )

else ▷ not present in hashes, i.e. not found in CKV
∆′

B.Append(i) ▷ send this item to B
end if

end for
∆′

A.AppendAll(hashes) ▷ request all items from unmatched hashes
end function
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5.3.1 Implications of Hash Collisions

It may happen that different items from SB collide, i.e. they have the same
hash although their keys differ. Also, items from SA may collide with each
other and with items from SB. Overall, |SA ∪MisA| = |SB ∪MisB| = n keys may
collide. For each hash collision among items whose (different) keys are hashed
to the same value h, i.e. with keys from Xh := {ik ∈ SA ∪ SB : ih = h} if there
is more than one key, node A needs to request Xh,B := {i ∈ SB : ik ∈ Xh} and
needs to send Xh,A := {i ∈ SA : ik ∈ Xh} in order to identify all items of ∆.
This follows from the worst-case scenario that Xh,B ⊆ MisA and Xh,A ⊆ MisB.

During the reconciliation, however, we cannot distinguish all possible cases
and thus cause the following errors (summarised by Table 5.1):

• a single collision of x ∈ SA with y ∈ SB, i.e. Xxh
= {xk, yk}, yk ̸= xk,

|Xxh,A| = |Xxh,B| = 1: We cannot distinguish this case from a valid match
with x ∈ SB and thus assume that x ∈ SB. Therefore, we fail to recognise
two items if xv = yv and one item if xv ̸= yv. Note that this case only
results from x ∈ MisB and y ∈ MisA.

• multiple collisions in Xh with at least two items from SA or from SB: Keys
in Xh originate from either common items or actual differences. Hence A
requests Xh,B and sends Xh,A. If all of them are common items, though,
2 · |Xh| items are redundantly transferred. For any outdated/newer
item in Xh,B and Xh,A, either the old or the new item is sent and the
opposite is requested (each is present in one of the sets!). The two
messages from resolving the outdated one (including the feedback message;
ref. Section 3.1) are redundant and thus the same bound applies. Missing
items do not cause any overhead.

The total number of errors is thus bound by twice the number of keys with
non-unique hashes (among the n unique keys). Also, this is the closest bound
we can give without assuming further knowledge on the failure distribution.

Table 5.1: Trivial reconciliation errors for hash value h with collision set Xh.

Failure Case Result

Xh = {xk ∈ MisB, yk ∈ MisA}, xv = yv two unrecognised items of ∆
Xh = {xk ∈ MisB, yk ∈ MisA}, xv ̸= yv one unrecognised item of ∆
|Xh,A| ≥ 2 or |Xh,B| ≥ 2 none to 2·|Xh| redundant transfers
↪→ if only outdated/newer, common 2 · |Xh| redundant transfers

Note that Algorithm 8 above realises the behaviour for the multiple collisions
case by removing all items in SB with non-unique hashes from CKV and adding
them to ∆′

A. Since then, items of SA with the same collision are not found in
CKV, they are sent to B as desired. Similarly, all items in SA with non-unique
hashes are added to ∆′

B and not checked against CKV. Therefore, any item in
CKV with the same collision is unmatched and added to ∆′

A.

54 Chapter 5. Trivial Reconciliation



5.3.2 Phase 2 Details – CKidx
In phase 2, all items in ∆′

A are requested from B using their (sorted) po-
sitions in the CKV structure and applying delta-encoding as presented by
Algorithm 9. The resulting CKidx is not only small but also allows further
(zlib) compression. Let the maximum difference be max diff , then CKidx only
requires s := ⌈log2(max diff + 1)⌉ ≤ ⌈log2(n′

B)⌉ ≤ ⌈log2(nB)⌉ bits per index—
with n′

B being the number of hashes encoded in CKV—and a prefix of size
t := ⌈log2(⌈log2(n′

B)⌉+ 1)⌉ bits to encode s so that B can decode CKidx again.

Algorithm 9 CKidx creation
function CKidx (hashes, ∆′

A) ▷ hashes from CKV, ∆′
A with item hashes

n′
B ← hashes.Size( ), indices ← [] ▷ start with an empty index list

for idx ← 0, 1, . . . , n′
B − 1 do ▷ traverse hashes in order

if hashes[idx ] ∈ ∆′
A then ▷ lookup hash at index idx

indices.Append(idx ) ▷ add the index to the end
end if

end for
return DeltaEncode(indices, ⌈log2(n′

B)⌉) ▷ see Section 5.2.1
end function

5.4 Parameter Deduction from FR

Although the trivial set reconciliation protocol consists of two phases, only the
first one is approximate and we derive an appropriate bk so that it fulfils FR.

5.4.1 Phase 1

Since version comparisons are exact as long as items are correctly matched with
their counterparts, errors are only caused by hash collisions and the expected
number of errors is bound by 2 ·E[non-unique hashes] (ref. Section 5.3.1). The
expected number of non-unique hashes can be determined using its linearity
and the expectation of each of the n item keys’ hashes being non-uniqueb

assuming uniformly distributed hashes of n = |SA ∪MisA| unique keys:

E[non-unique hashes] = n ·
(︂
1−

(︁
1−

probability that two given hashes collide⏟⏞⏞⏟
1/2bk

)︁n−1⏞ ⏟⏟ ⏞
probability of a given hash colliding with at least one of the n− 1 others

=E[a given hash is not unique]

)︂
(5.1)

With this, we calculate an appropriate bk so that for the trivial algorithm’s
failure rate frt the accuracy bound frt ≤ FR holds:

bNote that the n random variables that each originate from a given item key’s hash being
non-unique are not independent but this is not required for the linearity of the expected
value (ref. Section 2.5.1).
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frt ≤ 2 · E[non-unique hashes] = 2 · n ·
(︁
1− (1− 1/2bk)n−1)︁ ≤ FR (5.2)

⇐ FR

2n
≥ 1− (1− 1/2bk)n−1

⇔ 1− 1/2bk ≥
n−1

√︃
1− FR

2n

⇔ 2bk ≥ 1

1− n−1
√︂

1− FR
2n

⇔ bk ≥ log2
1

1− n−1
√︂

1− FR
2n

(5.3)

An Upper Bound on the Number of Unique Keys

In order to calculate an appropriate bk from eq. (5.3), we need the number of
different keys n and approximate an ñ ⪆ n using a known δexp ⪆ δ. If δexp is
unknown, we can use the pessimistic assumption of δexp = 100% (= 1.0). Here,
the outdated scenario constitutes a best case due to nA = nB =: nOld . In the
missing scenario, however, nMis ≥ nY ∈{A,B} can be calculated from nA and nB

assuming that the differences δ are distributed to the two nodes using some
factor α ∈ [0, 1] ⊂ R:

nA = nMis · (1− δ · α) ⇔ nMis · δ · α = nMis − nA

nB = nMis · (1− δ · (1− α)) ⇔ nMis · δ − nMis · δ · α = nMis − nB

⇔ nMis · δ − (nMis − nA) = nMis − nB

⇔ nMis · δ − 2nMis = −nA − nB)

⇔ nMis =
nA + nB

2− δ

With δexp ≈ δ and accounting for integral n and imprecise δexp , we use:

ñ := max

(︃⌈︃
nA + nB

2− δexp

⌉︃
, |nA − nB|⏞ ⏟⏟ ⏞

minimum differences

)︃
≈ ⌈nMis⌉ = ⌈max (nMis , nOld)⌉ ≥ n (5.4)

Phase 1 Formulae Wrap-Up

Finally, we calculate an appropriate bk to fulfil FR from eq. (5.3) using the
lowest suitable integral value for bk with ñ from eq. (5.4) above:

bk :=

⎡⎢⎢⎢log2 1

1− ñ−1
√︂

1− FR
2ñ

⎤⎥⎥⎥ (5.5)
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i Floating Point Precision Calculating bk

Since z := FR/2ñ is near 0, there is a problem in the floating point represen-
tation of 1− z and

ñ−1√
1− z. Instead of implementing eq. (5.5) as given,

for z < 10−8, we use the fifth-order Taylor series expansion of 1− x
√
1− z,

x := n− 1 at z = 0 which eliminates the need for the incriminating terms:

1− x
√
1− z ≈ z · 1

x
+ z2 · x− 1

2x2
+ z3 · 2x

2 − 3x+ 1

6x3

+ z4 · 6x
3 − 11x2 + 6x− 1

24x4

+ z5 · 24x
4 − 50x3 + 35x2 − 10x+ 1

120x5
+ O(z6) (5.5a)

Similarly, an upper bound on the failure rate can be given from eq. (5.2)
which is bound by FR with this bk:

frt ≤ 2 · n ·
(︁
1− (1− 1/2bk)n−1)︁ ⪅ 2 · ñ ·

(︂
1− (1− 1/2bk)ñ−1

)︂
⏞ ⏟⏟ ⏞

=: fr ′t

≤ FR (5.6)

i Floating Point Precision Calculating fr ′t

For high bk, the calculation of fr ′t suffers similar problems with floating
point numbers near 1 as eq. (5.5) above. We use the same Taylor series
expansion (eq. (5.5a)) but with x := 1/(ñ−1) and z := 1/2bk to circumvent
them.

5.4.2 Overall Costs

The costs of both CKV and CKidx without delta-encoding or zlib-compression
can be easily derived from the calculations above. The total cost Ct of the
trivial algorithm in bits where these techniques are applied, however, cannot
be given in the general case and we thus establish an upper bound without
delta-encoding or zlib-compression as:

Ct ≤
⃓⃓⃓⃓
CKV(SB)

⃓⃓⃓⃓
⏞ ⏟⏟ ⏞
≤nB ·(bk+32)

+

⃓⃓⃓⃓
CKidx (∆′

A)

⃓⃓⃓⃓
⏞ ⏟⏟ ⏞

≤ |∆′
A|·s+ t

⪅ |∆|·⌈log2 n⌉+ t

∈ O
(︃
n · log ñ

FR
+ |∆| · log n

)︃
(for n,ñ,|∆|→∞, FR→0)

(5.7)

Note that due to ñ ≤ 2n (worst-case in the outdated scenario with δexp = 100%
in eq. (5.4)) and also ñ ≤ n · (1 + δexp) (easy to prove from eq. (5.4) with
nY ∈{A,B} ≤ n) ñ can be replaced by n or n · (1 + δexp) inside the O notation.
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Proving the Communication Complexity

From Lemma 2.1.2 (page 10) follows that bk ≤ log2
ñ− 1
FR/2ñ

and therefore:

CKV(SB) ≤ nB · (bk + 32) ≤ n · (bk + 32) ≤ n ·

(︄
log2

ñ− 1
FR
2ñ

+ 32

)︄

≤ n ·
(︃
log2

3ñ

FR
+ 32

)︃
∈ O

(︃
n · log ñ

FR

)︃
(for n,ñ→∞, FR→0)

(5.8)

Finally, eq. (5.7) follows with the bound on CKidx as indicated above:

CKidx ≤ |∆′
A| · s+ t = |∆′

A| · ⌈log2(max diff + 1)⌉+ ⌈log2(⌈log2(n′
B)⌉+ 1)⌉

≤ |∆′|⏞⏟⏟⏞
≈|∆|

·⌈log2 n⌉+ ⌈log2(⌈log2 n⌉+ 1)⌉ ∈ O (|∆| · log n)
(for n,|∆|→∞)

(5.9)

5.5 Effective Worst-Case Accuracy

Since bk from eq. (5.5) must be integral and fulfil FR, it is rounded up to the
nearest integer which—compared to the theoretical (non-integral) optimum—
may make the trivial algorithm more expensive and more accurate than required.
With this bk, however, we do achieve the highest possible accuracy below FR.
The following two sections discuss the resulting differences and evaluate them
for three different values of FR, i.e. 10, 0.1, and 0.001, by showing the actual
bk as well as the resulting worst-case failure rate fr ′t (eq. (5.6)) based on the
information the algorithm has, i.e. nA, nB, δexp and FR.

5.5.1 Outdated Items Scenario

Table 5.2 shows the actual values of bk and fr ′t for different parameters in the
outdated scenario and verifies that the trivial reconciliation algorithm may
be more accurate than the configured FR. The differences vary greatly and
depend on how far fr ′t would be from FR for the next larger bk. From the
values presented here and the arguments below, we conclude that the trivial
reconciliation is up to twice as accurate as intended. Please note, however, that
the ñ from eq. (5.4) used for the calculation of both bk as well as fr ′t assumes
the worst-case, i.e. all differences being missing items, and is thus too large for
the outdated scenario. The actual observed failure rate may thus be even lower
(ref. Section 5.6).

Figure 5.2 shows the effective failure rates as well as their overall minimum,
maximum, and averages for different n = nA = nB, δexp and FR in the outdated
scenario. The plot shows a repetitive pattern with fluctuations of the fr ′t values
within an interval of roughly [FR/2,FR]. Although ñ also influences the accuracy
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Table 5.2: Trivial bit size bk (eq. (5.5)) and effective worst-case failure rate
fr ′t (eq. (5.6)) in the outdated scenario with n = nA = nB = 100 000.

δexp = 1% δexp = 10%

ñ 100 503 100 503 100 503 105 264 105 264 105 264
FR 0.0010000 0.10000 10.000 0.0010000 0.10000 10.000

bk 45 38 31 45 38 32
fr ′t 0.0005742 0.07349 9.407 0.0006298 0.08062 5.160
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Figure 5.2: Trivial fr ′t in the outdated scenario for different FR, n, and δexp .

directly (eq. (5.6)), the main reason for the variation in fr ′t and a peak-to-peak
amplitude of roughly FR/2 is the ceiling of bk (eq. (5.5)) where one additional
bit roughly halves the failure ratec. After a peak at ñ1, fr ′t increases with ñ
towards FR until roughly

√
2 · ñ1 where bk grows againd . These peak values

are not reached in every such iteration which is most likely due to floating
point inaccuracies. Regarding the influence of δexp , we note that since it only
influences ñ, it shifts the values along the x-axis.

Figure 5.2 also shows that the maximum may be slightly above FR and
the minimum slightly below FR/2 which should both not happen. These are
apparently caused by further floating point inaccuracies which are not the result
of the Taylor series expansion of eq. (5.5a). We tolerate these deviations but

cThis follows from using the first Taylor term of eq. (5.5a), i.e. z/x, for eq. (5.6) with
x := 1/(ñ−1) and z := 1/2bk vs. z := 1/2bk+1.

dThis follows similarly by using the first Taylor term of eq. (5.5a), i.e. z/x, for eq. (5.5)
with x := ñ− 1 ≈ ñ and z := FR/2ñ that leads to z/x ≈ FR/(2ñ2) vs. x :=

√
2 · ñ− 1 ≈

√
2 · ñ

and z := FR/(2·
√
2·ñ) that leads to z/x ≈ FR/(4ñ2) and thus a log2 x/z that increases by 1.
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note that we may reduce some by always selecting the highest integer greater
than the calculated value of bk instead of ceiling it in eq. (5.5).

5.5.2 Missing Items Scenario

Table 5.3 and Figure 5.3 show the results in the missing scenario for n = 100 000
similar to the evaluation below, i.e. δ = δexp failure items are distributed equally
among the two nodes (vs. a uniform distribution in the evaluation). Therefore,
instead of ñ, nA = nB varies with δexp and thus ñ = n which results in δexp not
influencing bk or fr ′t . Other than that, this scenario does not show any different
results than the outdated scenario in Section 5.5.1 above.

Table 5.3: Trivial bit size bk (eq. (5.5)) and effective worst-case failure rate fr ′t
(eq. (5.6)) in the missing scenario with n = 100 000 and nA = nB accordingly.

δexp = 1% δexp = 10%

nA,B 99 500 99 500 99 500 95 000 95 000 95 000
ñ 100 000 100 000 100 000 100 000 100 000 100 000
FR 0.0010000 0.10000 10.000 0.0010000 0.10000 10.000

bk 45 38 31 45 38 31
fr ′t 0.0005684 0.07276 9.313 0.0005684 0.07276 9.313
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Figure 5.3: Trivial fr ′t in the missing scenario for different FR and n.
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5.6 Evaluation
Based on the configured failure rate FR, the trivial reconciliation algorithm
sets appropriate sizes for keys to exchange. The following sections evaluate the
protocol under different aspects, starting with different δ and FR assuming
correct δexp := δ. We then present the effects of incorrect δexp ̸= δ as well as
different data and failure distributions. A scalability analysis for different n
and FR each conclude this evaluation.

5.6.1 General Analysis for Different δ and FR

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

Figures 5.4 and 5.5 show the actual failure rates of redundantly
transferred items and missed differences as well as the transfer
costs in our experimental evaluation for δexp := δ ∈ (0, 10]%
and δ ∈ (0, 100]%, respectively. The average of the sum of the
two failure types in the worst-case scenario should be equal
to—or at least lower than—the configured FR. As shown, this
bound holds. We do, however, observe that the trivial algorithm’s accuracy
may be higher than anticipated, partly because bk needs to be integral (also ref.
Section 5.5) but also due to eq. (5.4) (page 56) assuming the worst-case scenario
of all differences being missing items. Especially in the outdated scenario, this
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Figure 5.4: Trivial reconciliation with small δ and different FR.
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leads to the trivial algorithm overestimating the number of different keys and
thus an increasing accuracy, i.e. a lower failure rate, with increasing δ.

Note that unrecognised items of ∆ are not present in the outdated scenario
since only single collisions may cause them (ref. Section 5.3.1). If present in
the missing scenario, however, the most likely result is only one unrecognised
item of ∆ as opposed to the two items accounted for. Additionally, recall that
any missing item in a collision set with at least two items on any one node does
not lead to a failure. Since the probability of this increases with δ, the number
of redundant item transfers thus lowers in the missing scenario. Similarly,
unrecognised items of ∆ increase with the probability of a single collision.
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Figure 5.5: Trivial reconciliation with high δ and different FR.

Since the number of unique keys ñ is estimated using δexp, bk increases in
steps with δ =: δexp (ref. eq. (5.4), page 56) when this leads to the estimated
ñ increasing above

√
2 · ñ (following the argumentation of Section 5.5.1). In

the outdated scenario, for example, according to eq. (5.4), ñ is 111 112 and
166 667 for δexp = 20% and 80%, respectively. Depending on where bk increased
before, CKV costs (phase 1) thus increase at least once between these steps as is
shown in the outdated scenario of Figure 5.5. Since in the missing scenario,
each node’s number of items decreases with higher δ, there, CKV costs decrease
instead. Regarding CKidx , the delta-encoded indices seem effective and keep
phase 2 costs below 4KiB and 17KiB for δ ≤ 10% and 100%, respectively.
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The given three values of FR all behave similarly here with differences in
the failure rate and costs as expected. While the differences in the costs can
already be estimated to increase logarithmically with FR−1 as expected (ref.
eq. (5.7)), we show this fact in more detail in Section 5.6.5 below.

5.6.2 What if δexp is Wrong?

n = 100 000
datarand

δ = variable
δexp = δ vs. 1 %
fail rand

For the trivial reconciliation protocol, δexp is used to estimate
the (worst-case) number of unique keys ñ in order to set bk.
This worst-case assumes that all differences are missing items
and therefore, in the outdated scenario, where n is static, any
δexp only results in a too high ñ > n: the higher δexp , the higher
the accuracy and the transfer costs, irrespective of how close
δexp is to δ. This effect can be observed in Figure 5.6 which shows the results of
the trivial reconciliation with a perfect approximation of δexp = δ and a wrong
δexp = 1% that violates our assumption of δexp ⪆ δ.
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Figure 5.6: Trivial reconciliation with high δ and different δexp .

In the missing scenario, however, the number of errors increases the more
the actual δ diverges from δexp since frt ≤ FR (eq. (5.6), page 57) does not
hold anymore. Overall, the effects are still very limited even for δexp = 1%
and δ = 100%. Please note, however, that in this case with nA = nB = 50 000,
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ñ is 100 000 for δexp = 100% and 50 252 for δexp = 1% and thus bk is 31 and
29, respectively. The expected failure rate using the real n = 100 000 roughly
quadruples from 9.3 to 37.3 with these bk (ref. eqs. (5.4) to (5.6)).

5.6.3 Data and Failure Distribution Sensitivity

n = 100 000
datarand , bin 0.2

δ = variable
δexp = δ
fail rand , bin0.2

Since the trivial reconciliation protocol encodes items in CKV
using delta-encoding, it could be influenced by the data dis-
tribution. However, we additionally apply zlib compression
which, together, results in only minor deviations due to the
data distribution as shown by Figure 5.7. In fact, a few bytes
may be saved when the compressed keys cluster which results

in up to 0.6 % savings as shown by the blue bars. The failure distribution only
influences the CKidx of phase 2 but these effects are also small to negligible.

  -0.2
  -0.1
  +0.0
  +0.1
  +0.2

|Δ
| m

is
se

d
 

  -0.2
  -0.1
  +0.0
  +0.1
  +0.2

  -0.2
  -0.1
  +0.0
  +0.1
  +0.2

R
ed

.

  -0.2
  -0.1
  +0.0
  +0.1
  +0.2

-0.6 %

-0.4 %

-0.2 %

+0.0 %

+0.2 %

+0.4 %

2
 % 4

 % 6
 % 8

 % 10
 %

T
ra

n
sf

er
 c

o
st

s 
(p

h
as

e 
1+

2)

total δ (outdated items)

datarand   , failbin0.2 
databin0.2 

 , failrand  databin0.2 
 , failbin0.2 

2
 % 4

 % 6
 % 8

 % 10
 %

-0.6 %

-0.4 %

-0.2 %

+0.0 %

+0.2 %

+0.4 %

total δ (missing items)

Figure 5.7: Trivial reconciliation with FR = 0.1 and different data and failure
distributions compared to datarand , fail rand
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5.6.4 Scalability with the System Size n

n = variable
datarand

δ = 3%
δexp = δ
fail rand

Figure 5.8 shows how the trivial reconciliation algorithm per-
forms with smaller and larger numbers of items than the
n = 100 000 from above using a fixed δ = 3% =: δexp . The two
accuracy metrics evolve as expected. Regarding the transfer
costs, we also plot an upper bound of the phase 1 costs of the
O(n) naïve algorithm (n · (128 + 32) bits) for comparison. The
results shown by Figure 5.8 support our theoretical O (n · log n) scalability for
n→∞, |∆| ∈ O(n) and FR constant (ref. eq. (5.7) on page 57).

We also observe that the trivial transfer costs slowly approach the naïve
transfer costs. Eventually, the number of bits needed to distinguish different
items under FR is higher than the number of bits available for the keys. In
that case, however, 128 bit keys may not be sufficient either to allow keys to be
derived from a hash or even to distinguish this many items.
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Figure 5.8: Trivial reconciliation scalability with data size n and different FR.
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5.6.5 Scalability with the Target Failure Rate FR

n = 100 000
datarand

δ = 3%
δexp = δ
fail rand

Figure 5.9 shows how the communication costs and the failures
of the trivial reconciliation evolve with different target failure
rates FR and constant n. While the smaller values for FR
are not representative for counting failures with our simulation
setup of 1 000 random simulations anymore, we can still derive
the costs required for such a level of accuracy. Higher FR,

however, evolve as expected. Regarding the costs, we observe a clear logarithmic
increase with FR−1 as derived from eq. (5.7), page 57, and thus support the
theoretical complexity of O(log(1/FR)) for n and |∆| constant.
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Figure 5.9: Trivial reconciliation scalability with the target failure rate FR
(log10 scale on the x-axis and on the y-axis except for the transfer costs).
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Chapter 6

SHash Reconciliation

By sending a 32-bit version number for each item at node B, the trivial algorithm
creates a big overhead for items which are common between the two nodes.
This is especially prominent if the number of differences is low. Therefore, we
create a new algorithm, SHash, which hashes {key, version} pairs and does
not send the version numbers at first.

6.1 Protocol

Similarly to the trivial reconciliation, at B we apply delta-encoding to a sorted
hash list (ref. Section 5.2.1) but create hashes from the combined key and
version. The result is the SH binary without explicit version numbers which is
sent to A together with a few configuration parameters (Figure 6.1). In this
first phase, SHash identifies S ′

A ⊇ ∆′
B ∪Old ′

A, S
′
A ⊆ SA on A by checking whether

A’s items are present in SH. Additionally, all unmatched hashes from SH are
collected which represent S ′

B ⊇ ∆′
A ∪ Old ′

B, S
′
B ⊆ SB and are sent to B using

the delta-encoded CKidx scheme from Section 5.3.2. Phase 2 then executes a
slightly modified trivial reconciliation, i.e. trivial’, on these sets to identify
separate ∆′

B and ∆′
A. Please note that CKidx (S ′

B) and CKV(S ′
A) overlap in the

keys of outdated items at A or B but they are essential in CKV and we cannot
remove them from CKidx without further information.

b′k, SH(SB),FR, δexp , |dupes|

A B

CKidx (S ′
B)

bk , CKV(S ′
A)

continue
with S′
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Figure 6.1: SHash reconciliation protocol.
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The changes in the trivial’ algorithm compared to the original algorithm
from Chapter 5 are limited to a different representation of the keys to request,
i.e. CK′idx . Since we expect a request for all |∆′

B| items of the items in CKV(S ′
A)

and |S ′
A| ⪆ |∆′

B∪Old ′
A| = |∆′

B|+ |Old ′
A|, it is more efficient to use a simple binary

for the representation of their positions where the bit at position x denotes
whether the item at position x is requested (1) or not (0).

6.2 SH Data Structure Details
In contrast to the CKV structure of the trivial algorithm (ref. Section 5.2), item
hashes are built on the concatenation of an item’s key and version, i.e. «ik,
iv». The rest of the creation of SH, however, is similar (Algorithm 10): each
«ik, iv» is hashed to b′k bits by using the least significant bits of an MD5 hash,
the list of these hashes is sorted, and items with non-unique hashes are removed
and added to phase 2, i.e. S ′

B. Furthermore, the delta-encoding of Section 5.2.1
is applied and the result constitutes the SH binary which, together with the
number of non-unique ih (|dupes| in Figure 6.1), makes nB known to A.

Algorithm 10 SH creation
function SH(Entries)

hashes ← [] ▷ empty list for the hashes
for all i ∈ Entries do ▷ hash all items’ keys and versions

ih ← MD5(«ik, iv», b′k) ▷ use the b′k least significant bits of an MD5 hash
hashes.Append(ih)

end for
Sort(hashes) ▷ sort by item hashes ih
S′
B ← RemoveDupes(hashes) ▷ remove non-unique ih, add to phase 2

return DeltaEncode(hashes, b′k) ▷ Delta-Encoding from Section 5.2.1
end function

6.3 Using SH for Set Reconciliation
Similarly to the trivial reconciliation, each item in SA is hashed the same way as
those in SH and compared with each of the b′k-bit hashes in SH (Algorithm 11).
In contrast, if a match is found the item is assumed to exist on B with the
same version and is thus ignored. If no match is found, the item from SA is
added to S ′

A, i.e. the set of differences phase 2 works on. Please recall that we
do not have any version numbers at hand to decide whether A or B has the
newer version of an item and thus a second phase is necessary. It would not be
required if only missing items occurred and this was known a-priori.

At the end, after all items from SA have been checked, all indices of unmatched
hashes in SH are added to S ′

B in order to be able to identify Mis ′A. In contrast
to the trivial reconciliation, however, unmatched hashes also originate from
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Algorithm 11 SHash reconciliation at node A (Phase 1)
function SHashSync(SA, CKV, b′k) ▷ after receiving b′k and SH (SB) from B

hashes ← DeltaDecode(SH, b′k) ▷ revert the Delta-Encoding from above
for all i ∈ SA do ▷ hash all items’ keys

ih ← MD5(«ik, iv», b′k) ▷ use the b′k least significant bits of an MD5 hash
end for
S′
A ← RemoveDupes(SA) ▷ remove non-unique ih, add them to S′

A
for all i ∈ SA do ▷ for all remaining items of SA

if ¬ hashes.Remove(ih) then ▷ find and remove ih from hashes
S′
A.Append(i) ▷ not present in SH ⇒ put i into phase 2

end if
end for
S′
B.AppendAll(hashes) ▷ request all items from unmatched hashes

end function

outdated items. Some of these could be removed by also checking an item with
version numbers in the vicinity of the item’s version at A but we do not employ
such a technique since this is not universal to all scenarios and only practical
for small version differences.

6.3.1 Phase 2 Details – CKidx and trivial’

After the first phase, node A continues to work with items in S ′
A. Similarly,

upon receiving the CKidx structure (ref. Figure 6.1), node B continues with
items in S ′

B which were encoded in CKidx . This encoding was already described
in the trivial reconciliation and we refer to Section 5.3.2 for details.

Algorithm 12 CK′idx creation
function CK′idx (hashes, ∆

′
B) ▷ hashes from CKV, ∆′

B with item hashes to request
CK′idx ← empty bitstring ▷ start an empty binary
for all ih ∈ hashes do ▷ traverse hashes in order

if ih ∈ ∆′
B then

CK′idx .AddBits(1) ▷ add 1-bit for items to request
else

CK′idx .AddBits(0) ▷ add 0-bit for items to ignore
end if

end for ▷ note: every ih ∈ ∆′
B exists in hashes

return CK′idx .Truncate( ) ▷ remove trailing zero bits, return
end function

With S ′
A on A and S ′

B on B, we execute a trivial’ set reconciliation which only
differs from the trivial set reconciliation by the returned CK′idx which does not
use delta-encoded indices but lets each bit determine whether the item at its
position is requested (1) or not (0) (Algorithm 12). Afterwards, we truncate
trailing 0 bits and obtain CK′idx which will be zlib-compressed during transfer.
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6.3.2 Implications of Hash Collisions

Phase 1

As in the trivial set reconciliation, hashes of different items from SB may collide,
or hashes of different items from SA, or hashes of items which are different
in SA and SB. In contrast, since version numbers are included in the hashes,
overall n∗ := |SA|+ |MisA∪New B∪OldB| = |SA|+ |∆\MisB| hashes may collide,
with every outdated item counting twice: once for each version. For each hash
collision among items whose different «ik, iv» and «jk, jv» are hashed to
the same value h, i.e. from Xh := {i ∈ SA ∪ SB : ih = h} with |Xh| > 1, A
needs to put Xh ∩ SB and Xh ∩ SA into S ′

B and S ′
A for phase 2 on node B and A,

respectively, in order to allow phase 2 to identify all items of ∆. This follows
from the worst-case scenario that Xh ∩ SB ⊆ ∆A and Xh ∩ SA ⊆ ∆B.

With this, phase 1 only creates errors for the overall reconciliation if it fails
to identify items from ∆ or puts a common item of SA ∩ SB into only one
node’s phase 2. Such errors only originate from the following hash collisions
(summarised by Table 6.1 and similar to the trivial algorithm in Section 5.3.1):

• a single collision of x ∈ SA with y ∈ SB, y ≠ x, i.e. Xh = {x, y}: We
cannot distinguish this from a valid match with y = x and thus assume
that x ∈ SB. As a result, we fail to identify an item of ∆ for each i ∈ Xh

that is a missing item. Each outdated/newer item i ∈ Xh for which
its counterpart is in a single collision, too, also becomes an unidentified
item. Otherwise if i is the newer item, only the outdated item remains in
phase 2 and thus becomes a redundant item transfer with the feedback
message eventually updating it (ref. Section 3.1).

• multiple collisions in Xh with at least two items in SA or in SB: Items in
Xh can be common items or actual differences and Xh ∩ SB and Xh ∩ SA

are put into S ′
B and S ′

A, respectively. Therefore, both types go into phase 2
which may have more items to process but does not miss any of them.

Contrary to the trivial reconciliation, the total number of errors caused by the
first phase is thus bound by twice the expected number of single collisions with
one item from SA∆ and SB∆ each and no other collision. Even lower bounds
may be given only with further assumptions on the failure distribution.

Table 6.1: SHash reconciliation errors for hash value h with collision set Xh.

Failure Case Result (after phase 2)

Xh = {x ∈ MisB, y ∈ MisA} two unrecognised items of ∆
Xh = {x ∈ SA, y ∈ SB}, xk = yk, xv ̸= yv one unrecognised item of ∆
Xh = {x ∈ SA, y ∈ SB} other cases up to two failures (unrecognised

items of ∆ or redundant transfers)
|Xh ∩ SA| ≥ 2 or |Xh ∩ SB| ≥ 2 no errors
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Similarly to the trivial reconciliation, we cannot detect the single collision
case but detect multiple collisions on at least one node. If |Xh ∩ SB| ≥ 2, we
remove all items of Xh∩SB from SH and add them to phase 2, i.e. S ′

B. Therefore,
items from SA with the same collision, i.e. Xh ∩ SA, are not found in SH and
added to phase 2, i.e. S ′

A. Analogously, if |Xh∩SA| ≥ 2, all items of Xh∩SA are
added to S ′

A and not matched with SH. Thus, any item in Xh ∩SB is unmatched
and added to S ′

B. Since these sets may also contain common items, phase 2 may
work on more items than the differences alone which makes phase 1 beneficial
only if it removes enough items from SA and SB. Fortunately, b′k influences both
types of collisions similarly and—since single collisions cause failures in the
reconciliation—is set appropriately to fulfil a failure rate FR (see below).

Phase 2

Since the CKV matching of phase 2 is identical to the original trivial set recon-
ciliation, hash collisions in CKV have identical implications (ref. Section 5.3.1).
The only difference is the set they work on and this is influenced by the actual
differences as well as the hash collisions in the SH binary of phase 1.

6.4 Deducing SHash Parameters from FR

SHash reconciliation consists of two phases. Since each of these phases is
approximate, both may cause failures and we need to set individual accuracy
targets for each of them in order to fulfil a global FR. Due to the linearity of
the expected number of failures (ref. Section 2.5.1), we can use FR/2 in each of
the two phases in order to distribute the failure rate equally among them:

FR(p1)⏞ ⏟⏟ ⏞
target failure rate phase 1

:=
FR

2
≥ fr

(︁
pX∈{1,2}

)︁⏞ ⏟⏟ ⏞
actual failure rate phase X

⇒ fr = fr(p1) + fr(p2) ≤ FR (6.1)

This will be the accuracy target of phase 1 at whose end we will calculate its
actual failure rate and use the remaining one for phase 2.

Z Splitting FR

Any process fulfilling FR can be split into x equally accurate (not necessarily
independent) sub-phases, each using the same FR(pX) := FR/x target failure
rate due to its linearity (ref. Section 2.5.1):

actual failure rate of phase i⏟ ⏞⏞ ⏟
fr(pi) ≤

FR

x
=: FR(pX) ∀ 1 ≤ i ≤ x

⇒ fr =
x∑︂

i=1

fr(pi) ≤
x∑︂

i=1

FR(pX) =
x∑︂

i=1

FR

x
= FR (6.2)
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Note that different distribution schemes may be preferred in some scenar-
ios. Finding an optimal algorithm-specific and potentially scenario-dependent
distribution of FR, however, is an interesting problem for future work.

6.4.1 Phase 1

As established in Section 6.3.2, the failure rate frs(p1) of phase 1 of the SHash
algorithm is bound by 2 · E[single collisions] with a “single collision” being a
colliding items set with one item from SA∆ and SB∆ each and no other collision.
Similarly to the trivial reconciliation in Section 5.4.1, we use the linearity of
the expected value with (non-independent) random variables representing one
item’s single collision probability to calculate the expected total number of
single collisions. For this, let nA := |SA|, nA∆ := |SA∆ |, and nB∆ := |SB∆ |:

E[single collisions] = nA∆⏞⏟⏟⏞
items of SA which may collide

·

(︄choices for the colliding item⏟ ⏞⏞ ⏟(︃
nB∆

1

)︃
· 1

2b
′
k⏞⏟⏟⏞

collision with one of the nB∆ items

·

no collision with nB∆ − 1 items⏟ ⏞⏞ ⏟(︃
1− 1

2b
′
k

)︃nB∆−1

·
(︃
1− 1

2b
′
k

)︃nA−1

⏞ ⏟⏟ ⏞
no collision with nA − 1 items⏞ ⏟⏟ ⏞

probability of a “single collision” for a given hash of SA∆ ⊆ SA
=E[“single collision” for a given hash of SA∆ ]

)︄

(6.3)

=
nA∆ · nB∆

2b
′
k

·
(︃
1− 1

2b
′
k

)︃nB∆+nA−2

Please note that E[single collisions] is symmetric in the two nodes since nA =
|SA ∩ SB|+ nA∆ and thus nB∆ + nA = |SA ∩ SB|+ nA∆ + nB∆ .

Lemma 6.4.1. (1 + x)n ≤ 1

1− nx
for x ∈ R,−1 ≤ x ≤ 0 and n ∈ N

Proof (via induction). For n = 0, this inequality follows immediately. For
n = i + 1 > 0, we assume (1 + x)i ≤ 1/(1−ix) from n = i and prove that the
inequality holds:

(1 + x)i ≤ 1

1− ix

⇔ (1 + x) · (1 + x)i ≤ (1 + x) · 1

1− ix
for x ≥ −1

⇔ (1 + x)i+1 ≤ (1 + x) · 1

1− ix

?

≤ 1

1− (i+ 1) · x

⇔ (1 + x) · (1− ix− x)
?

≤ 1− ix for x ≤ 0 ≤ i

⇔ −x2 · (i+ 1)
?

≤ 0 � (for i ≥ 0)
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With the help of Lemma 6.4.1, we calculate an appropriate b′k so that the
failure rate frs(p1) fulfils FR(p1), i.e. frs(p1) ≤ FR(p1):

frs(p1) ≤ 2 · E[single collisions] = 2 · nA∆ · nB∆

2b
′
k

·
(︃
1− 1

2b
′
k

)︃nB∆+nA−2

(6.4)

≤ 2 · nA∆ · nB∆

2b
′
k

· 1

1 +
(nB∆+nA−2)

2
b′
k

≤ FR(p1)

⇐ 2 · nA∆ · nB∆

2b
′
k

· 2b
′
k

2b
′
k + nB∆ + nA − 2

≤ FR(p1)

⇔ 2 · nA∆ · nB∆

FR(p1)
≤ 2b

′
k + nB∆ + nA − 2

⇐ log2

(︃
2 · nA∆ · nB∆

FR(p1)
− nB∆ − nA + 2⏞ ⏟⏟ ⏞
=:x

)︃
≤ b′k if x > 0

In case x ≤ 0, any b′k fulfils eq. (6.4) and we choose the lowest one, i.e. b′k = 1:

⇐ log2

(︃
max

(︃
2 · nA∆ · nB∆

FR(p1)
− nB∆ − nA + 2, 2

)︃)︃
≤ b′k (6.5)

An Upper Bound on the Size of the Collision Sets

In order to determine b′k from eq. (6.5), we need the values of nA, nA∆ , and nB∆ .
While nA is known to B from the initial handshake (ref. Chapter 3), nA∆ and
nB∆ are unknown but can be estimated using δexp . We assume the worst-case
that MisA and MisB are empty and thus nA∆ = nB∆ = n · δ which we estimate
by using the upper bound ñ on the number of unique keys (eq. (5.4), page 56):

ñX∆
:= min

(︃⌈︃
δexp ·max

(︃⌈︃
nA + nB

2− δexp

⌉︃
, |nA − nB|

)︃⌉︃
, nX

)︃
(6.6)

= min (⌈δexp · ñ⌉ , nX) ⪆ min (⌈δ · n⌉ , nX) ≥ nX∆
X ∈ {A, B}

Note that we use the upper bound of at most nX items since ñ uses a different—
and contradicting—worst-case assumption and δexp may be incorrect.

Phase 1 Formulae Wrap-Up

A suitable b′k which fulfils FR can be given from eq. (6.5) using the lowest
possible integral value for b′k with ñA∆ and ñB∆ from eq. (6.6):

b′k :=

⌈︃
log2

(︃
max

(︃
2 · ñA∆ · ñB∆

FR(p1)
− ñB∆ − nA + 2, 2

)︃)︃⌉︃
(6.7)

=

⌈︃
log2

(︃
max

(︃
4 · ñA∆ · ñB∆

FR
− ñB∆ − nA + 2, 2

)︃)︃⌉︃
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An upper bound on the failure rate of phase 1 can be given similarly (ref.
eq. (6.4)) and with this b′k it is bound by FR(p1) as desired:

frs(p1) ≤
nA∆ · nB∆

2b
′
k−1

·
(︃
1− 1

2b
′
k

)︃nB∆+nA−2

⪅
ñA∆ · ñB∆

2b
′
k−1

·
(︃
1− 1

2b
′
k

)︃ñB∆+nA−2

⏞ ⏟⏟ ⏞
=: fr ′s(p1)≤FR(p1)

(6.8)

i Floating Point Precision Calculating fr ′s(p1)

For high b′k, z := 2−b′k is small and there may be problems in the floating
point representation of 1−z although (1−z)x could be suitably represented
for x := ñB∆ + nA − 2. Therefore, we use the ln1p := ln(1 + x) function by
Goldberg [32] (Theorem 4) and calculate the following algebraic equivalent:

(1− z)x = eln(1−z)x = ex·ln(1−z) = ex·ln1p(−z) (6.8a)

6.4.2 Phase 2

Phase 2 consists of two combined parts: (a) sending CKidx and (b) running a
trivial’ reconciliation. Since sending CKidx is an exact step, we use the remaining
failure rate for the identification of the resolve sets with trivial’. Due to the
rounding of b′k in phase 1, though, the actual worst-case failure rate fr ′s(p1)
of phase 1 (eq. (6.8)) may not be as close to FR(p1) as intended. We thus
calculate the remaining failure rate that phase 2 can use based on eq. (6.1):

frs ≤ fr ′s(p1) + frs(p2) ≤ FR ⇔ frs(p2) ≤ FR − fr ′s(p1) =: FR(p2)⏞ ⏟⏟ ⏞
accuracy target of phase 2

(6.9)

Z Splitting FR iteratively

Any process fulfilling FR can be split iteratively into x almost equally
accurate (not necessarily independent) sub-phases using the most of the
available FR. For this, we re-distribute the difference of the target failure
rate FR(pi) and the effective worst-case failure rate fr ′(pi) of sub-phase i
to the next sub-phases based on eq. (6.2). Thus, for i = 1:

fr(p1) ⪅ fr ′(p1) ≤ FR(pi=1)⏞ ⏟⏟ ⏞
target failure rate of phase i

:=
FR

x
fr(prev i=1)⏞ ⏟⏟ ⏞

failure rate of all processes up to i (inclusive)

:= fr ′(p1)

For i > 1, we target all remaining sub-phases at equal failure rates:

FR(pi) :=
FR − fr(prev i−1)

x− i+ 1
fr(prev i) := fr(prev i−1) + fr ′(pi)) (6.10)
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⇒ fr =
x∑︂

j=1

fr(pj) ≤ fr(prev i−1)⏞ ⏟⏟ ⏞
sub-phases 1, . . . , i− 1

+(x− i+ 1) · FR(pi)⏞ ⏟⏟ ⏞
sub-phases i, . . . , x

≤ FR

It is obvious that the resulting overall failure rate fr is bound by FR and
is closer to FR than by using x equally accurate sub-phases with target
failure rates FR/x. Note, however, that we are not able to compensate the
last sub-phase’s difference in its target and effective worst-case failure rate.

i Floating Point Precision Splitting FR iteratively

If FR and fr(prev i−1) differ by several orders of magnitude their floating
point difference in eq. (6.10) may become FR, especially for the first few sub-

phases. Since
FR − fr(prev i−1)

x− i+ 1
≤ FR

x− i+ 1
for all i > 1, however, in these

cases the target failure rate is too high but will eventually be compensated as
fr(prev i) grows towards FR. For fr(prev i) itself, we use Kahan Summation
(ref. Theorem 8 in [32]) which keeps a running compensation of the error
when adding multiple small numbers.

The trivial’ protocol in phase 2 works on items in S ′
A (elements to send in

CKV) and items in S ′
B (elements to match with) in order to identify the resolve

sets. We use S ′
A and S ′

B in the calculation of bk (eqs. (5.4) and (5.5), page 56)
as well as δexp = 100% since they may be distinct, e.g. in the missing scenario.
Note that FR(p2) is set as the target failure rate but the actual worst-case
failure rate fr ′t(S

′
A, S

′
B) of the trivial’ protocol may be lower due to rounding.

6.4.3 Overall Failure Rate

The overall effective worst-case failure rate fr ′s of the SHash reconciliation
protocol may be derived by adding the two effective worst-case failure rates
fr ′s(p1) and fr ′t(S

′
A, S

′
B) due to the linearity of the expected number of failures:

fr ′s := fr ′s(p1) + fr ′t(S
′
A, S

′
B)⏞ ⏟⏟ ⏞

=:fr ′s(p2)

≤ FR (6.11)

Differences between fr ′s and the target failure rate FR are caused by bk and b′k
being integral and will be discussed in Section 6.5 below.

6.4.4 Overall Costs

With the previous considerations, we accumulate the costs Cs of the SHash
reconciliation algorithm and provide upper bounds for the delta-encoded and
zlib-compressed structures that are created in the two phases of the protocol:
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Cs =
⃓⃓⃓
SH(SB)

⃓⃓⃓
+
⃓⃓⃓
CKidx (S ′

B)
⃓⃓⃓
+ Ct′⏞⏟⏟⏞

trivial’

(︂elements to send⏟⏞⏞⏟
S ′
A , |S ′

B|⏞⏟⏟⏞
elements to match with

,FR(p2), δexp = 100%
)︂

=

≤nB·b′k⏟ ⏞⏞ ⏟⃓⃓⃓
SH(SB)

⃓⃓⃓
+

≤ |∆|·⌈log2(nB)⌉+ t
≈ |∆\MisB|·s+ t⏟ ⏞⏞ ⏟⃓⃓⃓
CKidx (S ′

B)
⃓⃓⃓
+

⪅ |∆|·(bk+32)⏟ ⏞⏞ ⏟⃓⃓⃓
CKV(S ′

A)
⃓⃓⃓
+

⪅ |∆|⏟ ⏞⏞ ⏟⃓⃓⃓
CK′idx (∆

′
B)
⃓⃓⃓

(6.12)

∈ O
(︃
n · log ñ∆

FR
+ |∆| · log n · |∆|

FR

)︃
(for n,ñ∆,|∆|→∞, FR→0)

Similarly to Section 5.4.2, inside the O notation, ñ∆ := ⌈δexp · ñ⌉ ≥ ñX∈{A∆,B∆}
(ref. eq. (6.6)) may be replaced by n · δexp ≈ |∆| or even n due to δexp ≤ 100%.

Proving the Communication Complexity

The overall communication complexity of eq. (6.12) follows from the communi-
cation complexity of the two phases analysed below, i.e. eqs. (6.13) and (6.16).

Phase 1 From eq. (6.7), it is obvious, that b′k ≤ log2(max(4·ñ2
∆/FR+2, 2)) and

we deduce the communication complexity of SH(SB) as:

|SH(SB)| ∈ O
(︃
n · log

(︃
ñ∆

FR

)︃)︃
(for n,ñ∆→∞, FR→0)

(6.13)

Phase 2 For the first CKidx , we refer to eq. (5.9) of Section 5.4.2 and derive:

|CKidx (S ′
B)| ∈ O (|∆| · log n)

(for n,|∆|→∞)

(with S ′
B ≈ ∆) (6.14)

Similarly, Section 5.4.2 analyses the CKV structure but there are different sets
and parameters here, i.e. |S ′

A| items in CKV (as nB), |∆| different keys (as n),
the upper bound FR(p2) on the failure rate, and δexp = 100%. With ñ ≤ 2∆
in eq. (5.8) (page 58) due to the different n, we derive:

|CKV(S ′
A)| ∈ O

(︃
|∆| · log |∆|

FR(p2)

)︃
(for |∆|→∞, FR(p2)→0)

⊆ O
(︃
|∆| · log |∆|

FR

)︃
(for |∆|→∞, FR→0)

(6.15)

The alternate CK′idx representation requires O(|∆|) bits (for |∆| → ∞) and we
may thus derive the communication complexity of phase 2:

O
(︃
|∆| · log(n) + |∆| · log |∆|

FR
+ |∆|

)︃
(for ñ,|∆|→∞, FR→0)

⊆ O
(︃
|∆| · log n · |∆|

FR

)︃
(for ñ,|∆|→∞, FR→0)

(6.16)
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6.5 Effective Worst-Case Accuracy

Similarly to the trivial reconciliation, b′k in phase 1 and bk in phase 2 must be
integral (ref. eqs. (5.5) and (6.7), pages 56 and 73). Therefore, we cannot get
arbitrarily close to FR but instead choose the closest possible value below. For
FR ∈ {10, 0.1, 0.001} and δexp := δ ∈ {1%, 10%}, the following two sections
show these b′k and bk as well as the resulting effective worst-case failure rates
in both phases, i.e. fr ′s(p1) from eq. (6.8) (page 74) and fr ′s(p2) := fr ′t(S

′
A, S

′
B)

from eq. (5.6) (page 57), based on the information the algorithm has, i.e. nA,
nB, δexp and FR in phase 1 and S ′

A and S ′
B in phase 2. Note, however, that the

observed failure rate in Section 6.6 may be lower than the effective worst-case
failure rate presented here since ñX∈{A∆,B∆} from eq. (6.6) is based on ñ which
uses a contradicting worst-case assumption.

6.5.1 Outdated Items Scenario

Table 6.2 shows the values of the parameters of the SHash reconciliation protocol
in the outdated scenario. The number of bits b′k per item is based on a target
failure rate FR(p1) = FR/2. Since b′k is rounded up to the nearest integer,
however, the effective worst-case failure rate fr ′s(p1) of phase 1 (ref. eq. (6.8))
is different to FR(p1) as shown, i.e. in the worst-case only FR(p1)/2 since adding
one bit to b′k roughly halves the failure rate for large enough b′k. Phase 2 may,
however, re-use these left-overs and sets an appropriate target rate FR(p2).

Table 6.2: SHash bit sizes b′k and bk and effective worst-case failure rates in
the outdated scenario with n = nA = nB = 100 000 and δ = δexp .

δ = 1% δ = 10%

FR 0.0010000 0.10000 10.000 0.0010000 0.10000 10.000
ñ 100 503 100 503 100 503 105 264 105 264 105 264
ñX∈{A∆,B∆} 1 006 1 006 1 006 10 527 10 527 10 527

phase 1

FR(p1) 0.0005000 0.05000 5.000 0.0005000 0.05000 5.000
b′k 32 26 19 39 33 26
fr ′s(p1) 0.0004713 0.03012 3.184 0.0004032 0.02580 3.297

phase 2

|S ′
A,B| 1 000 10 000

FR(p2) 0.0005287 0.06988 6.816 0.0005968 0.07420 6.703
bk 34 27 21 41 34 27
fr ′s(p2) 0.0004654 0.05958 3.811 0.0003638 0.04656 5.961

fr ′s 0.0009367 0.08969 6.995 0.0007669 0.07237 9.258
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In order to determine bk, the trivial’ algorithm in phase 2 needs to know
the sizes of S ′

A and S ′
B at A which it both has. For the examples of Table 6.2,

we assume that phase 1 did not create any errors and therefore, |S ′
A| = |S ′

B| =
|∆′| =: |S ′

A,B|. In contrast, the evaluation in Section 6.6 below uses the real
values of S ′

A and S ′
B. These define bk along with its worst-case effective failure

rate fr ′s(p2). In some of the examples, e.g. FR = 0.1, δ = 1%, phase 2 is able
to compensate the inaccuracy of phase 1 and fr ′s(p2) > FR(p1) which brings
the overall failure rate fr ′s closer to the target rate FR.
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Figure 6.2: SHash fr ′s in the outdated scenario for different n (δ = δexp = 1%).

More broadly, Figure 6.2 shows, how fr ′s behaves for different n. Similarly to
the trivial algorithm alone (ref. Section 5.5) and except for low n with FR = 10
which we discuss below, we observe a repetitive pattern but here in the range of
roughly [2/3 · FR,FR] due to the compensation phase 2 provides. Additionally,
we observe two peaks of fr ′s in each repetition due to the rounding in each of
the two phases. Further values for δ create the same patterns with the same
amplitude and frequency but shifted along the x-axis due to the difference in ñ.
For clarity, δ = 10% has thus been omitted from the plot.

Figure 6.2 also shows some degradation of the effective failure rates for
FR = 10 and low n that we want to draw attention to. In this constellation,
any b′k fulfils FR(p1) (ref. eq. (6.5)) and thus the minimum b′k = 1 is used.
With high probability, all items thus collide and enter phase 2 and SHash
effectively becomes a trivial’ reconciliation. Phase 1 is only able to remove
common items between the nodes if b′k is large enough. Until then, a transition
period shows some intermediate behaviour. Note that this degradation to a
trivial’ reconciliation does not only influence the effective failure rate but also
the communication costs as we will see in Section 6.6 below.
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6.5.2 Missing Items Scenario

Table 6.3 shows the values of the parameters of the SHash protocol in the
the missing scenario with a total number of n = 100 000 unique items. The
δ differences have been distributed equally among the nodes and thus nA,B :=
nA = nB is 99 500 for δ = 1% and 95 000 for δ = 10%. Since the upper bound
on the number of unique keys ñ (eq. (5.4), page 56) accounts for this case,
ñ is equal to n. The size of the collision sets ñX∈{A∆,B∆} follows accordingly
(eq. (6.6), page 73) but, as expected, is too high in this scenario.

Table 6.3: SHash bit sizes b′k and bk and effective worst-case failure rates
in the missing scenario with δ = δexp, n = 100 000, and nA,B := nA = nB

accordingly.

δ = 1%, nA,B = 99 500 δ = 10%, nA,B = 95 000

FR 0.0010000 0.10000 10.000 0.0010000 0.10000 10.000
ñ 100 000 100 000 100 000 100 000 100 000 100 000
ñX∈{A∆,B∆} 1 000 1 000 1 000 10 000 10 000 10 000

phase 1

FR(p1) 0.0005000 0.05000 5.000 0.0005000 0.05000 5.000
b′k 32 26 19 39 32 26
fr ′s(p1) 0.0004657 0.02976 3.149 0.0003638 0.04656 2.976

phase 2

|S ′
A,B| 500 5 000

FR(p2) 0.0005343 0.07024 6.851 0.0006362 0.05344 7.024
bk 32 25 19 39 32 25
fr ′s(p2) 0.0004652 0.05954 3.807 0.0003638 0.04656 5.959

fr ′s 0.0009308 0.08930 6.957 0.0007276 0.09313 8.935

Similarly to the outdated scenario above, differences only arise from the
different values of ñX∈{A∆,B∆} and the different numbers of items participating
in phase 2. The effective worst-case failure probabilities for different n, as
shown by Figure 6.3, thus also exhibit the same pattern as above with minor
deviations in the values. Note that here, the values of δ = 10% have also been
omitted for clarity since they only shift the values along the x-axis.
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6.6 Evaluation
The SHash algorithm tries to improve on the trivial algorithm by only sending
version numbers for different items. Similarly, phase 1 costs depend on n, δexp ,
and FR (ref. eq. (6.12), page 76, and eq. (6.7), page 73). Phase 2, however,
includes both an own CKidx (larger than inside a trivial reconciliation) and a
trivial’ reconciliation of the identified differences. These two phases eventually
cause more overhead than by using the trivial’ reconciliation alone.

Below, we first analyse the protocol’s behaviour with different δ and FR
assuming correct δexp := δ. We then evaluate the effects of an incorrect δexp ̸= δ
as well as different data and failure distributions and conclude with an analysis
of the scalability for varying n and FR.

6.6.1 General Analysis for Different δ and FR

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

For both δ ∈ (0, 10]% and δ ∈ (0, 100]%, shown in Figures 6.4
and 6.5, the actual failure rate, i.e. the sum of the redundantly
transferred items and the missed |∆|, is much lower than the
configured FR despite the effective worst-case failure rate being
closer to FR than a trivial reconciliation alone. This is not
only due to bk and b′k being integral but, as argued above, also
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Figure 6.4: SHash reconciliation with small δ and different FR.
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due to ñX∈{A∆,B∆} using contradicting worst-case assumptions for the number
of unique keys, i.e. only missing items in ∆, and for the size of the collision
sets, i.e. only newer items in ∆, (ref. eq. (6.6)). Although this case never
exists—and thus resources are wasted due to a too high accuracy—we cannot
avoid it without further information on the type of ∆ to expect.

Unidentified ∆ practically never occurs in the outdated scenario due to
its low probability and the only cause being in phase 1 (ref. Section 6.3.2).
Redundant transfers, however, could by caused by any phase. In contrast,
unidentified items of ∆ in the missing scenario may result from either phase
and are more likely but redundant transfers only result from phase 2.
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Figure 6.5: SHash reconciliation with high δ and different FR.

Both phases’ transfer costs grow logarithmically with δ but phase 1 costs grow
much slower towards δ = 100% than those of phase 2 (also ref. Section 6.4.4).
With these values, the upper bounds nA and nB on the size of the collision
sets (eq. (6.6), page 73) limit the growth of ñA∆ and ñB∆ , respectively. Please
note that in the missing scenario, the growth of b′k and bk is compensated
in the transfer costs by the reduced number of items on each of the nodes.
Although discussed in more detail in Section 6.6.5 below, Figures 6.4 and 6.5
also support our theoretical bound on the communication costs complexity
(ref. eq. (6.12), Section 6.4.4) regarding FR indicating that the phase 1 costs
increase logarithmically with FR−1 and so do the total transfer costs.
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SHash Degradation

As already seen in Section 6.5, the SHash reconciliation may degrade to a
trivial’ reconciliation if b′k is not large enough to filter out enough items from
SA and SB. This may happen if δexp or n is low or FR is large as shown by
Figure 6.6 for FR = 10 and δ ≤ 1%. The lower the δ, the lower b′k until the
minimum b′k = 1 is used (ref. eq. (6.5), page 73). To eliminate this degradation,
future work could set a larger lower bound for b′k, e.g. for FR = 10, the b′k
calculated for δ = 2%. This would practically fix phase 1 costs for lower δ
while phase 2 costs still decrease with δ as expected. Note, however, that
despite its improvements, this solution still limits the scalability of the SHash
reconciliation for low δexp or n.
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Figure 6.6: SHash reconciliation with very low δ and different FR.
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6.6.2 What if δexp is Wrong?

n = 100 000
datarand

δ = variable
δexp = δ vs. 1%
fail rand

The SHash reconciliation protocol uses δexp to estimate the
worst-case number of unique keys ñ and derive the worst-
case size of the collision sets ñX∈{A∆,B∆} accordingly (eq. (6.6),
page 73). As detailed above, however, these two use contra-
dicting worst-case assumptions which result in ñX and thus b′k
being too large for a correct δexp = δ but if δexp is wrong, they

will eventually be too small to fulfil FR, as shown by Figure 6.7.
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Figure 6.7: SHash reconciliation with high δ and different δexp .

For δ = 100% in the outdated scenario, n = 100 000 = nX∈{A∆,B∆}, i.e. the
real size of the collision sets of each node. This would result in b′k = 32 and
thus fr(p1) = 4.65 (eq. (6.8), page 74) which is below the target FR(p1) = 5.
With δexp = 1%, however, ñ = 100 503 and ñX∈{A∆,B∆} = 1006 which is much
lower. This results in b′k = 19 and, by using the actual nX∈{A∆,B∆}, yields a
phase 1 effective worst-case failure rate of fr(p1) = 26 049. Since our evaluation
setup, however, distributes differences uniformly at random among the nodes,
the most likely outcome of a single collision is one redundant item transfer (ref.
Section 6.3.2) which causes a much lower observed failure rate in Figure 6.7.

Please also note that phase 2 is not directly affected by δexp since it assumes
100 % differences between S ′

A and S ′
B. It is thus only affected by the additional

items from the multiple collisions cases of phase 1.

84 Chapter 6. SHash Reconciliation



6.6.3 Data and Failure Distribution Sensitivity

n = 100 000
datarand , bin 0.2

δ = variable
δexp = δ
fail rand , bin0.2

Similarly to the trivial algorithm, SHash only shows a minor
sensitivity to different data or failure distributions due to our
encoding schemes and the use of hashes. The differences shown
by Figure 6.8 are very small and do not show a consistent trend
for either variation. They are more likely due to normal varia-
tions in the simulations. The minor deviation that we observed
in the trivial reconciliation when applied to a binomial data distribution (ref.
Section 5.6.3) seems to be mitigated by either the much lower b′k compared to
bk or the use of two phases during the reconciliation.
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6.6.4 Scalability with the System Size n

n = variable
datarand

δ = 3%
δexp = δ
fail rand

Figure 6.9 shows how the SHash algorithm performs with
smaller and larger numbers of items than above and a fixed
δ = 3% =: δexp . Since here we combine the techniques from the
trivial reconciliation, the results are similar, too, and we find
support for the theoretical O (n · log n) scalability for n→∞,
|∆| ∈ O(n) and FR constant (ref. eq. (6.12), page 76).

The observed failure rate seems stable in the outdated scenario but in the
missing scenario, redundant item transfers seem to switch to unrecognised
items of ∆ with the sum of the two slightly decreasing. This may result from
the two contradicting worst-case assumptions for ñX∈{A∆,B∆} which influence
the occurrence of single collisions quadratically (ref. eq. (6.3), page 72).
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Figure 6.9: SHash reconciliation scalability with data size n and different FR.

As discussed above, the SHash algorithm may degrade to the trivial’ rec-
onciliation for low δexp or n or large FR. Here, we observe this degradation
for low n with FR = 10. With increasing n, SHash eventually returns to its
original form. As with the trivial algorithm, however, the transfer costs are
also approaching the naïve transfer costs with the same consequences (please
refer to Section 5.6.4 for details).
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6.6.5 Scalability with the Target Failure Rate FR

n = 100 000
datarand

δ = 3%
δexp = δ
fail rand

Figure 6.10 shows how the communication costs of the SHash
reconciliation evolve with different target failure rates FR and
constant n. The failure rate evolves as expected but please recall
that the results of the lower values of FR are not representative
in our 1 000 random simulations, e.g. if a failure should only
occur only once every 10 000 simulations. For larger FR, again,
we observe the start of the degradation of the SHash algorithm to the trivial’
reconciliation by looking at the costs of the two phases. Other than this
degradation, Figure 6.10 supports the communication costs complexity of
O(log(1/FR)) for n and |∆| constant (ref. eq. (6.12), page 76).
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Figure 6.10: SHash reconciliation scalability with the target failure rate FR
(log10 scale on the x-axis and on the y-axis except for the transfer costs).
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Chapter 7

Bloom Filter Reconciliation

While SHash sends a single hash for each item, a more advanced data structure
may save even more bandwidth. This section elaborates Bloom filters [3] for
the set reconciliation problem. Bloom filters are an efficient probabilistic data
structure for representing sets and have been intensely studied in past and
current research. There are many extensions to the original algorithm as well
as many applications in different systems and algorithms [8, 78].

7.1 Protocol

The set reconciliation protocol with Bloom filters is similar to the SHash
algorithm. Instead of creating a hash list, though, B creates a Bloom filter BF
[3] from the key and version of the items in SB and sends BF to A (Figure 7.1),
along with some metadata. With this BF, A checks whether its data items are
present on B and identifies S ′

A ⊇ ∆′
B ∪Old ′

A, S
′
A ⊆ SA. Since (standard) Bloom

filters can neither be enumerated nor unmatched hashes/bits can be used as in
the SHash protocol, MisA can not be identified. We therefore create another
Bloom filter with the items of SA and send the XOR of this Bloom filter and BF
as Diff-BF(SA) back to B. Analogously, B identifies S ′

B ⊇ ∆′
A ∪Old ′

B, S
′
B ⊆ SB.

BF(SB), k, |SB|,FR, δexp

A B

Diff-BF(SA), |SA|, |S ′
A |
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Figure 7.1: Bloom filter reconciliation protocol.
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Phase 2 operates on S ′
A and S ′

B using the trivial’ reconciliation protocol from
the SHash algorithm (ref. Section 6.1) with a reversed direction, i.e. B sending
CKV instead of A. At the end, ∆′

A and ∆′
B are pushed to A and B, respectively.

7.2 Bloom Filter Details

A Bloom filter [3] is an approximate data structure which encodes n items
(here: {key, version} pairs) into m bits. Initially all bits are set to 0 and
items are added by setting k bits to 1 (ref. Figure 7.2). These k positions
are calculated using k independent and uniformly distributed hash functions
gi∈{0,1,...,k−1} (also see the box below). Membership queries for an item x check
that all the gi(x) bits are set to 1. If any of these bits is 0 then x /∈ BF, otherwise
x ∈ BF with a false-positive probability FP of a single membership query.

. . .

i1
g0(i1) g1(i1)

g2(i1)
i2

i3

0

1

1

2

0 0 1 0 0 0 1 0 0 0 1 0 0 1

m

Figure 7.2: Bloom filter example for items i1, i2, and i3 with k = 3.

i Less Hashing, Same Performance

The computation of k hash functions may be expensive and thus, schemes
such as double hashing [23] have been proposed. The idea is to derive the
k independent and uniformly distributed hash functions gi based on two
hash functions h1 and h2 and gi(x) = h1(x) + i · h2(x) mod m. Dillinger
and Manolios [23] require that h2(x) be non-zero and relatively prime to
m to ensure the uniqueness of the positions and thus a stable FP . In a
later theoretical analysis, Kirsch and Mitzenmacher [42] claim the same
asymptotic behaviour for gi with any h2(x) and m (for n→∞).

Our first implementation using h1 = MD5 and h2 = SHA1 without
restrictions on h2(x) or m, however, revealed a higher FP than given by
eq. (7.1) below. This could be caused by m and k depending on the actual
n in our algorithm (see below) and thus n not being large enough (in
relation to m and k) for the asymptotics to kick in.

Therefore, instead of using double hashing or similar schemes, we hash
the combined x and i and use gi∈{1,2,...,k}(x) := SHA1(x+ i) mod m. We
then reduce the number of actual hash operations by splitting each 160 bit
hash into c := ⌊160/⌈log2(m)⌉⌋ smaller independent and uniformly distributed
hash values and use the first k (unique) hashes in ∪i∈{1,2,...,⌈k/c⌉}split(gi(x)).
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Mullin [61] analyses Bloom filters mathematically and shows how FP is
calculated and how m needs to be set to fulfil FP for a given k:

FP := FP(n,m, k) =

k positions to check⏟ ⏞⏞ ⏟(︂
1− (1− 1/m)k·n⏞ ⏟⏟ ⏞

=:p0, the probability
that any given bit remains 0

)︂k
⇔ m =

1

1− k·n√︁
1− k
√
FP

(7.1)

Two competing forces influence FP when k is increased: (a) p0 decreases with
k and thus 1− p0 increases, and (b) the number of positions to check increases
with k and thus (1− p0)

k decreases for fixed p0 ∈ (0, 1) ⊂ R. Figure 7.3 shows
this correlation and the resulting m and FP(n,m, k) for arbitrary k using fixed
n and a target false positive probability FP t from the examples of Section 7.5.
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Figure 7.3: Bloom filter size m (left axis, red) and the resulting FP(n,m, k)
(right axis, blue) with this m based on eq. (7.1) for different k and fixed
n = 100 000 and FP t = 2.37485 · 10−6.

i Floating Point Precision Calculating FP(n,m, k)

In order to calculate FP(n,m, k) in eq. (7.1) with high precision for large m,
n, or k, we need to avoid problems with floating point numbers near 1. For
this, we use the ln1p := ln(1 + x) function by Goldberg [32] (Theorem 4)
and calculate the following (algebraically equal) equation for FP(n,m, k):

FP(n,m, k) =
(︂
1− (1− 1/m)k·n

)︂k
= e

ln

(︃
1−eln(1−

1/m)k·n
)︃k

= e
k·ln

(︂
1−ek·n·ln(1−1/m)

)︂
= e

k·ln1p
(︂
−ek·n·ln1p(−1/m)

)︂
(7.1a)
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i Floating Point Precision Calculating m

The calculation of m in eq. (7.1) also suffers from the floating point
representation near 1. Since k

√
FP is not too close to 0, however, we

can use z := 1 − k
√
FP and work around the calculation of 1 − k·n√

z by
using the series representation of the root:

1− k·n√
z = 1−

∞∑︂
i=0

lni(z)

i! · (k · n)i
=

∞∑︂
i=1

− lni(z)

i! · (k · n)i
(7.1b)

We evaluate this sum as long as its floating point representation is changing
and thus omit smaller terms. This usually happens early since k ·n is large.

Fan et al. [27] and Mitzenmacher [56] further extend the Bloom filter mathe-
matical analysis and derive the optimal number of hash functions k = ln(2) ·m/n
from FP(n,m, k) ≈

(︁
1 − e−

k·n
m

)︁k. Later, Broder and Mitzenmacher [8] also
show that this k is optimal for the exact formula of FP(n,m, k) (eq. (7.1)) and
that this approximation is very close. Let FPk(n,m) := FP

(︁
n,m, ln(2) · m/n

)︁
be the false positive probability for optimal k. By inserting the optimal k into(︁
1− e−

k·n
m

)︁k, the following estimates can be derived:

FPk(n,m) ≈ 2− ln(2)·m
n ⇔ m ≈ n

ln(2)
· log2

1

FPk(n,m)
(7.2)

⇔ k ≈ log2
1

FPk(n,m)
= − log2(FPk(n,m)) (7.3)

With the parameters from Figure 7.3, we verify an optimal k ≈ 19 and the
lowest m ≈ 2 695 726. Please note, that in practice, k and m need to be integer
parameters of the Bloom filter and we will go into this in the sections below.

i On the false-positive rate of Bloom filters

Although FP(n,m, k) = (1 − (1 − 1/m)k·n)k =: pk (eq. (7.1)) is given in
many publications on Bloom filters, Bose et al. [5] show that for k ≥ 2,
this is only a (strict) lower bound and only a good approximation for large
Bloom filters. They show that

pk < FP(n,m, k) ≤ pk ·

(︄
1 +O

(︄
k

p
·
√︃

lnm− k · ln p
m

)︄)︄
(7.4)

under the condition that k/p ·
√︁

(lnm−2k·ln p)/m ≤ c for some constant c < 1.
We nevertheless continue with eq. (7.1) and the approximations of

eqs. (7.2) and (7.3) since our values of m are large enough (depending on
FR) in order to consider it a good approximation of pk.
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7.3 Set Reconciliation with Bloom filters
As briefly outlined above and pictured in Figure 7.1, upon receiving BF(SB),
node A checks each item x ∈ SA for existence in this Bloom filter. For any
positive result, i.e. x ∈ BF(SB), x is assumed to exist in SB with the same
version and is thus discarded. Any other item x /∈ BF(SB) is put into S ′

A and
enters phase 2. Note that any item x /∈ SB may cause a false positive with
probability FPB which will be detailed below. At the end of these checks, the
set of items for further inspection in phase 2 is reduced to S ′

A ⊇ ∆′
B ∪Old ′

A.
Similarly, A creates a Bloom filter of the items in SA from which B can

identify S ′
B ⊇ ∆′

A ∪Old ′
B so that MisA also enters phase 2. We will use the same

size m and number of hash functions k for both Bloom filters for simplicity
and to allow the following optimisation: instead of transmitting BF(SA) as is,
we XOR it with BF(SB) and transfer this Diff-BF(SA) := BF(SA) XOR BF(SB)
instead. The lower the number of differences, the more bits are shared among
BF(SA) and BF(SB) and the more zero-bits are in Diff-BF(SA) which is thus
easier to compress and leads to reduced communication costs.

Phase 2 then identifies ∆′
B and ∆′

A on nodes A and B using the trivial’ recon-
ciliation from above (ref. Section 6.3.1) and resolves the differences accordingly.

7.3.1 Implications of False Positives in Phase 1

Let BFY := BF(SY ) be the Bloom filter with the items of node Y ∈ {A, B} and
a false positive probability of FPY . Also let the opposite node of Y be Y , i.e.
Y := B if Y = A and vice versa. A false positive during a membership query
on node Y in Bloom filter BFY , i.e. x ∈ BFY although x /∈ SY , may occur for
every x ∈ SY \ SY = MisY ∪ NewY ∪OldY =: SY ∆

, i.e. SA∆ or SB∆ on node A
and B, respectively. In this case, x does not participate in phase 2 on Y and
the following cases may arise for the reconciliation (summarised in Table 7.1):

• In the missing items scenario, x is missing on Y but without x partici-
pating in phase 2, the result is one unrecognised item of ∆.

• In the outdated items scenario, an older or newer item y ∈ Y : yk =
xk, yv ̸= xv exists which may be a false positive in BFY and thus an
unrecognised item of ∆ or may not be a false positive in which case up
to one item is redundantly transferred, i.e. if x is newer than y.

Overall, the total number of errors caused by the first phase is bound by once
the expected number of false positives at either node.

7.3.2 Implications of Hash Collisions in Phase 2

As in the SHash algorithm (ref. Section 6.3.2), the results of hash collisions in
CKV are the same as in the original trivial set reconciliation (ref. Section 5.3.1)
but based on the difference sets phase 1 discovers: Since membership queries
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Table 7.1: Bloom filter reconciliation errors caused by an item x ∈ SY∆
being

a false positive in phase 1, i.e. x ∈ BFY , x /∈ SY .

Failure Case (in phase 1) Result (after phase 2)

x ∈ MisA ∪MisB one unrecognised item of ∆
∃y ∈ SY : yk = xk ∧ y ∈ BFY ∧ yv ̸= xv x, y /∈ phase 2

⇒ one unrecognised item of ∆
∃y ∈ SY : yk = xk ∧ y /∈ BFY ∧ yv < xv only the old y ∈ phase 2

⇒ one redundant item transfer
∃y ∈ SY : yk = xk ∧ y /∈ BFY ∧ yv > xv no errors (the newer y is sent)

in Bloom filters only exhibit false positives, phase 2 does not operate on any
extraneous common items and thus S ′

A ⊆ ∆B ∪ OldA and S ′
B ⊆ ∆A ∪ OldB.

Therefore, redundant item transfers may only occur in the outdated scenario
and due to collisions in the trivial’ reconciliation sending outdated items.

7.4 Deducing Bloom Filter Parameters from FR

Similarly to the SHash algorithm in Chapter 6, Bloom filter reconciliation uses
two approximate phases and we thus need to distribute the available FR. As
above, we aim at using an equal part of FR in each phase by exploiting the
expected value’s linearity and set a target failure rate of FR(p1) := FR/2 (ref.
eq. (6.1), page 71). Phase 2 then determines its own target failure rate based
on the leftovers from the actual worst-case failure rate of phase 1.

7.4.1 Phase 1

Since the failure rate frb(p1) of phase 1 of the Bloom filter reconciliation pro-
tocol is bound by once the expected number of false positives at either node
(ref. Section 7.3.1), and only items from SA∆ and SB∆ may cause them, we
derive the following bound using the linearity of the expected value:

frb(p1) ≤ |SA∆ | ·
failure rate of a single item check in BFB⏟ ⏞⏞ ⏟

1 · FPB⏞ ⏟⏟ ⏞
failure rate of all checks of SA in BFB

+ |SB∆ | ·
failure rate of a single item check in BFA⏟ ⏞⏞ ⏟

1 · FPA⏞ ⏟⏟ ⏞
failure rate of all checks of SB in BFA

(7.5)

An Upper Bound on the Number of False Positive Candidates

An estimate of the sizes nA∆ := |SA∆ | and nB∆ := |SB∆ | has been derived in
Section 6.4.1 (eq. (6.6)) which we use here as well:

ñ∆X
:= min

(︃⌈︃
δexp ·max

(︃⌈︃
nA + nB

2− δexp

⌉︃
, |nA − nB|

)︃⌉︃
, nX

)︃
⪆ n∆X

X ∈ {A, B}

(7.6)
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Deriving a Common m and k for BFA and BFB

In order to support a differencing Bloom filter Diff-BF with XOR-ed bits and
save communication costs during the (compressed) transfer of BF(SA), we need
to use a common m and k for both Bloom filters. These can be derived from
eq. (7.5) using ñA∆ and ñB∆ (eq. (7.6)) and limiting frb(p1) by FR(p1) but this
solution requires finding new optima. For simplicity, however, we use a common
target false positive probability FP t for both Bloom filters, derive individual
mY and kY for BFY and select the most appropriate pair as the common m
and k. Individual FPA and FPB can then be derived accordingly.

frb(p1) ⪅ nA∆ · FPB + nB∆ · FPA ⪅

=:fr ′b(p1)⏟ ⏞⏞ ⏟
ñA∆ · FPB + ñB∆ · FPA ≤ FR(p1) (7.7)

⇐ (ñA∆ + ñB∆) · FP t ≤ FR(p1)

⇐ FP t :=
FR(p1)

ñA∆ + ñB∆
=

FR

2 · (ñA∆ + ñB∆)
(7.8)

With this FP t, the optimal number k of hash functions for both Bloom filters
can be closely approximated using eq. (7.3). Similarly, individual optimal
Bloom filter sizes mY can be approximated using nY and eq. (7.2):

k ≈ − log2(FP t) mY ≈
nY

ln(2)
· log2

1

FP t

(7.9)

i On the need for integral m and k

Regarding the fact that both m and k must be integral, Fan et al. [27]
and Mitzenmacher [56] only consider k and simply choose the highest
integer not greater than the optimal k to reduce computational costs. We
consider both k1 := ⌊− log2(FP t)⌋ and k2 := ⌈− log2(FP t)⌉ and calculate
appropriate mY,i∈{1,2} based on the exact eq. (7.1) and round up to retain
the chosen FP t:

mY,i∈{1,2} :=

⌈︄
1

1− n·ki
√︁

1− ki
√
FP t

⌉︄
(7.10)

From these two pairs, we choose the one that minimises mY and FPY,i :=
FP (nY ,mY,i, ki) from eq. (7.1) and satisfies FPY,i ≤ FP t:
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(kY ,mY ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(k1,mY,1) if mY,1 < mY,2 and FPY,i∈{1,2} ≤ FP t

(k1,mY,1) if mY,1 = mY,2 and FPY,1 < FPY,2 ≤ FP t

(k1,mY,1) if FP t < FPY,2 and FPY,1 < FPY,2

(k1,mY,1) if mY,1 ≤ mY,2 and FP t < FPY,1 = FPY,2

(k2,mY,2) otherwise
(7.11)

In theory, some of these cases, e.g. with FP t < FPY,i, should not arise
but may be possible due to floating point issues. In these cases, we may
overshoot and have a slightly higher failure probability. We do, however,
prefer the lowest error here and phase 2 will compensate the rest.

For each of the two integral pairs (kY ,mY ) (Y ∈ {A, B}), we determine
the individual false positive probabilities FPX,Y := FP(nX ,mY , kY ) (eqs. (7.1)
and (7.1a), page 91) of the Bloom filter checks on node X ∈ {A, B}, X ̸= Y .
By combining these two for each Y , we derive the resulting effective failure
rates fr ′b,Y (p1) (eq. (7.7)) and choose the one that minimises m and fr ′b,Y (p1)
and satisfies fr ′b,Y (p1) ≤ FR(p1):

X :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A if mA < mB and fr ′b,Y ∈{A,B}(p1) ≤ FR(p1)

A if mA = mB and fr ′b,A(p1) < fr ′b,B(p1) ≤ FR(p1)

A if FR(p1) < fr ′b,B(p1) and fr ′b,A(p1) < fr ′b,B(p1)

A if mA ≤ mB and FR(p1) < fr ′b,A(p1) = fr ′b,B(p1)

B otherwise

k := kX m := mX fr ′b(p1) := fr ′b,X(p1) (7.12)

As above, some of these cases should not occur but may be possible due to
floating point issues and will be compensated by phase 2.

Phase 1 Formulae Wrap-Up

Common, integral values of m and k for the target false positive rate FP t :=
FR(p1)/(ñA∆+ñB∆ ) (eq. (7.8)) are determined with the rules above (eqs. (7.10)
to (7.12)). For a simple classification, an estimate may be given by inserting
into eq. (7.9):

k ≈ − log2

(︃
FR(p1)

ñA∆ + ñB∆

)︃
m ≈ max(nA, nB)

ln(2)
· log2

ñA∆ + ñB∆

FR(p1)
(7.13)

From the exact common, integral values of m and k, however, the overall
effective worst-case failure rate may be derived by inserting FP(nX ,m, k)
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from eq. (7.1) (page 91) into eq. (7.7) for the appropriate Bloom filter:

frb(p1) ⪅ nA∆ · FPB + nB∆ · FPA ⪅ ñA∆ · FPB + ñB∆ · FPA =: fr
′
b(p1)

fr ′b(p1) = ñA∆ ·
(︂
1− (1− 1/m)k·nB

)︂k
+ ñB∆ ·

(︂
1− (1− 1/m)k·nA

)︂k
(7.14)

7.4.2 Phase 2

Phase 2 of the Bloom filter reconciliation is identical to the trivial’ protocol
of phase 2 of the SHash reconciliation except for the reversed direction. We
therefore refer to Section 6.4.2 for details of the summary here.

The targeted failure rate of phase 2 depends on the left-over failure rate after
phase 1 (eq. (7.14)) and thus FR(p2) := FR − fr ′b(p1). This also compensates
cases where the failure rate was overshot, i.e. fr ′b(p1) > FR(p1), and makes sure
that the overall reconciliation fulfils FR. The trivial’ algorithm sends a CKV
of S ′

B with an appropriate number of bits bk per item (eq. (5.5), page 56, with
δexp = 100%) and matches them with S ′

A. The resulting effective worst-case
failure rate fr ′b(p2) := fr ′t(S

′
B, S

′
A) may be lower than the target FR(p2).

7.4.3 Overall Failure Rate

Similarly to the SHash reconciliation, the overall effective worst-case failure
rate fr ′b of the Bloom filter reconciliation protocol may be derived by adding the
two effective worst-case failure rates fr ′b(p1) and fr ′b(p2) based on the linearity
of the expected number of failures (differences between fr ′b and FR will be
discussed in Section 7.5 below):

fr ′b := fr ′b(p1) + fr ′b(p2) ≤ FR (7.15)

7.4.4 Overall Costs

With the considerations from above and omitting the savings from delta-
encoding or zlib message compression, we accumulate an upper bound of the
overall Bloom reconciliation communication costs Cb as (with ñ∆ := ñ∆A + ñ∆B):

Cb = m+ |Diff-BF|+ Ct′⏞⏟⏟⏞
trivial’

(︂elements to send⏟⏞⏞⏟
S ′
B , |S ′

A|⏞⏟⏟⏞
elements to match with

,FR(p2), δexp = 100%
)︂

≤ 2m+
⃓⃓⃓
CKV(S ′

B)
⃓⃓⃓

⏞ ⏟⏟ ⏞
⪅ |∆|·(bk+32)

+
⃓⃓⃓
CK′idx (∆

′
A)
⃓⃓⃓

⏞ ⏟⏟ ⏞
⪅ |∆|

∈ O
(︃
n · log ñ∆

FR
+ |∆| · log |∆|

FR

)︃
(for n,ñ∆,|∆|→∞, FR→0)

(7.16)

Similarly to the SHash reconciliation (Section 6.4.4), ñ∆ may be replaced by n
or n · δexp ≈ |∆| inside the O notation which results in O((n+ |∆|) · log(|∆|/FR)).
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Proving the Communication Complexity

The given communication complexity follows from calculating the Bloom filter
size m as well as k (eq. (7.9)) by using FP t from eq. (7.8). Our implementation,
however, uses the exact eq. (7.10) for m but inside O this does not matter and
we continue with the simpler analysis using eq. (7.9):

mY ≈
nY

ln(2)
· log2

2ñ∆

FR
Y ∈ {A, B} (7.17)

It is obvious that this is in O (n · log(ñ∆/FR)) for n, ñ∆ →∞, FR → 0 and the
given overall complexity follows with the Ct′ analysis of Section 6.4.4.

7.5 Effective Worst-Case Accuracy
In contrast to the trivial and SHash reconciliation protocols, the size m of the
Bloom filter is more fine-grained with regards to a targeted failure rate since the
rounding of m influences the whole reconciliation and not each item. We thus
expect the effective worst-case failure rate of phase 1 to closely follow the target
rate. On the other hand, we use a common m and k for both Bloom filters, i.e.
on nodes A and B, and may thus experience differences if two differently-sized
sets are represented.

The following two sections present the actual m, k, and b′k as well as the
resulting effective worst-case failure rates fr ′b(p1), fr

′
b(p2), and fr ′b for examples

with FR being 10, 0.1, or 0.001 and n = 100 000. The given values are based on
the information the algorithm has at the time when parameters are determined,
i.e. nA, nB, δexp and FR in phase 1 and S ′

B and S ′
A in phase 2, and are presented

separately for the two scenarios, i.e. outdated and missing items. As in the
SHash reconciliation, however, note that the observed failure rate in Section 7.7
may be lower than the effective worst-case failure rate presented here since
the same upper bound on the number of false positive candidates ñ∆X∈{A,B}
(eq. (7.6), page 94) is used with effectively contradicting worst-case assumptions
(ref. Section 6.5).

7.5.1 Outdated Items Scenario

For the outdated scenario with δ = 1% and δ = 10% differences, Table 7.2
shows the various parameters and failure rates of an exemplary reconciliation
with failures distributed equally among the two nodes and an assumed full
identification of all differences in phase 1. Since m, k, and b′k all need to be
integral and thus do not allow arbitrary precision, target failure rates may
not be reached or may—in rare cases—overshoot due to floating point issues
as described above. Based on δexp, the upper bound on the number of false
positive candidates ñ∆A,B := ñ∆A = ñ∆B is determined (eq. (7.6), page 94) and
together with n and FR(p1), a target false positive rate FP t is set which leads
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to the given integral values of m and k. This FP t is closely matched by the
effective false positive rates FPA = FPB =: FPA,B of the two Bloom filters which
are equal in the outdated scenario due to nA = nB. The differences between
FPA,B and FP t are lower than 0.01% and lead to the effective worst-case failure
rate fr ′b(p1) being very close to the target rate FR(p1) as anticipated.

Table 7.2: Bloom filter size m, hash functions count k and effective worst-case
failure rates in the outdated scenario with n = nA = nB = 100 000 and δ = δexp .

δ = 1% δ = 10%

FR 0.001000 0.1000000 10.00000 0.001000 0.100000 10.00000
ñ∆A,B 1 006 1 006 1 006 10 527 10 527 10 527

phase 1

FR(p1) 0.000500 0.0500000 5.00000 0.000500 0.050000 5.00000
FP t 2.5·10−7 2.5·10−5 2.5·10−3 2.4·10−8 2.4·10−6 2.4·10−4

k 22 15 9 25 19 12
m 3 165 310 2 207 058 1 248 878 3 654 191 2 695 726 1 736 994
FPA,B 2.5·10−7 2.5·10−5 2.5·10−3 2.4·10−8 2.4·10−6 2.4·10−4

fr ′b(p1) 0.000500 0.0499998 4.99999 0.000500 0.050000 4.99999

phase 2

|S ′
A,B| 1 000 10 000

FR(p2) 0.000500 0.0500002 5.00001 0.000500 0.050000 5.00001
bk 34 28 21 41 34 28
fr ′b(p2) 0.000465 0.0297875 3.81097 0.000364 0.046564 2.98019

fr ′b 0.000965 0.0797873 8.81096 0.000864 0.096564 7.98019

Phase 2 thus uses a target failure rate FR(p2) ≈ FR(p1) and exhibits the
usual deviations due to b′k being integral: the effective worst-case failure rate
fr ′b(p2) of phase 2 is at least half of FR(p2) (ref. Section 5.5). The overall
effective worst-case failure rate fr ′b is in the range [3/4 · FR,FR] which is closer
to FR than the trivial or SHash reconciliations above (see Sections 5.5 and 6.5).

These fluctuations of fr ′b can also be seen in Figure 7.4 which provides more
details on its dependency on different n. Since the deviations from FR only
depend on how many items enter phase 2, it exhibits the pattern of the trivial’
reconciliation alone (ref. Section 5.5). This is also why different values of δ
simply shift the function along the x-axis.
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Figure 7.4: Bloom filter fr ′b in the outdated scenario for different FR, n, and
δ = δexp .

7.5.2 Missing Items Scenario

Instead of showing the missing scenario with an equal distribution of failures
to both nodes—which would just reflect the trivial’ reconciliation of phase 2—,
Table 7.3 and Figure 7.5 show a synchronisation between SA and SB where the
δ percent differences are distributed so that node A misses 3/4 of them and node
B the remaining 1/4. Therefore, the number of items in each Bloom filter is
different and—due to the use of a common m and k—we expect some deviation
in the false positive rate of one of them and thus in fr ′b(p1) as well.

In Table 7.3, δ = 1% and δ = 10% are shown with appropriately set nA

and nB. As shown, ñ is estimated correctly but ñ∆A,B := ñ∆A = ñ∆B is too large
compared to the real number of unique items on each node, e.g. 250 on A
with δ = 1%, due to the aforementioned effectively contradicting worst-case
assumptions in the calculation of ñ∆A,B . From these values, a common target
false positive rate FP t is determined (eq. (7.8), page 95) and the optimal values
kX∈{A,B} and mX∈{A,B} are determined for each node.

After selecting the best common m and k to use for both Bloom filters
(eq. (7.12), page 96), the individual false positive rates as well as the effective
worst-case failure rate of phase 1 can be calculated. Since m is the optimal
choice for at least one of the Bloom filters, one of them, i.e. BF(SB) here, has a
false positive rate close to the target rate FP t. Conversely, the other one shows
some deviation which results in fr ′b(p1) not being as close to FR(p1) as with
equally distributed failures, e.g. in the outdated scenario above (see Table 7.2).

The remaining failure rate may be used in phase 2 which operates on
differently-sized sets from the identified differences of phase 1, i.e. S ′

A and S ′
B,
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Table 7.3: Bloom filter size m, hash functions count k and effective worst-case
failure rates in the missing scenario with δ = δexp , n = 100 000, and 3/4 of the
difference missing on node A (nA, nB set accordingly).

δ = 1% δ = 10%

FR 0.001000 0.1000000 10.00000 0.001000 0.100000 10.00000
nA 99 250 99 250 99 250 92 500 92 500 92 500
nB 99 750 99 750 99 750 97 500 97 500 97 500
ñ 100 000 100 000 100 000 100 000 100 000 100 000
ñ∆A,B 1 000 1 000 1 000 10 000 10 000 10 000

phase 1

FR(p1) 0.000500 0.0500000 5.00000 0.000500 0.050000 5.00000
FP t 2.5·10−7 2.5·10−5 2.5·10−3 2.5·10−8 2.5·10−6 2.5·10−4

kA 22 15 9 25 19 12
mA 3 140 336 2 189 254 1 238 305 3 370 168 2 483 771 1 596 830
kB 22 15 9 25 19 12
mB 3 156 157 2 200 283 1 244 543 3 552 339 2 618 028 1 683 146

k 22 15 9 25 19 12
m 3 156 157 2 200 283 1 244 543 3 552 339 2 618 028 1 683 146
FPA 2.3·10−7 2.4·10−5 2.4·10−3 9.9·10−9 1.2·10−6 1.6·10−4

FPB 2.5·10−7 2.5·10−5 2.5·10−3 2.5·10−8 2.5·10−6 2.5·10−4

fr ′b(p1) 0.000482 0.0487169 4.92394 0.000349 0.037479 4.10717

phase 2

|S ′
A,B| |S ′

A| = 250, |S ′
B| = 750 |S ′

A| = 2500, |S ′
B| = 7500

FR(p2) 0.000518 0.0512831 5.07606 0.000651 0.062521 5.89283
bk 32 26 19 39 32 26
fr ′b(p2) 0.000465 0.0297723 3.80726 0.000364 0.046562 2.97971

fr ′b 0.000947 0.0784892 8.73120 0.000713 0.084041 7.08689

which we assume to be correct, here. Although the size of CKV depends on the
number of items in S ′

B only, bk and the effective worst-case failure rate only
depend on the number of unique keys (ref. eqs. (5.5) and (5.6), pages 56 and 57)
and are thus not influenced by the different distribution of δ. Therefore, we
expect the usual fluctuations of the trivial’ protocol as above.

All together, due to the inaccuracies in phase 1, the overall effective worst-
case failure rate here is lower on average than with equally distributed failures
as shown by Figure 7.5 compared to Figure 7.4 above. The higher the δ, the
higher the absolute differences in the item counts and the higher the difference
of the target failure rate and the effective worst-case failure rate of phase 1.
Although we re-use this difference in the target failure rate of phase 2, it can
only compensate so much and—for δ = 10% compared to δ = 1%—we already
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Figure 7.5: Bloom filter fr ′b in the missing scenario for different FR, n, and
δ = δexp with 3/4 of the difference missing on node A.

see a bend in the ascend from the minimum to the maximum value of fr ′b and
some fluctuations in reaching these two extremes. The higher the inequality
in the number of items between the nodes, the more fr ′b will degrade to a
distribution similar to the SHash protocol (ref. Figure 6.3, page 80).

7.6 Related Work

For an extensive overview of research on various Bloom filter variants improving
compression rates, reducing maintenance overhead, or reducing some of their
limitations, please refer to Luo et al. [51] and Tarkoma et al. [78] who extend a
previous survey of Broder and Mitzenmacher [8]. These surveys also discuss
related work with regards to hash function choice and several applications
of the respective Bloom filter variants. To show the basic application of our
accuracy model, however, we used the most-widely spread original BF in the
presented set reconciliation algorithm, also because we focus on accuracy and
network costs and ignore construction time. Nevertheless, our technique to
fairly compare approximate set reconciliation methods by enforcing a fixed
accuracy can be applied to any Bloom filter variant if desired.

Among these variants, Mitzenmacher [56] re-evaluates the theory around
Bloom filters and the selection of appropriate parameters when a compression of
the m bit array is allowed and tunes k for optimal compressed size. In practice,
his Compressed Bloom filters achieve a 5%–15% reduction of transmission
size. The un-compressed size, however, may grow to m = n/FP which may
make it unsuitable in bigger systems. Most other BF variants add support for
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counting or deleting elements which we both do not need to identify missing or
outdated key-value pairs but may be helpful in the maintenance of the Bloom
filter structure. In our case, a Bloom filter which represents a multi-set (for
key and version) would be preferable. Existing approaches like filter banks [15]
or Bloomier filters [16] are, however, not as bandwidth friendly as the original
Bloom filter. Filter banks and Bloomier filters use similar techniques and put
an item into one of several Bloom filters based on the value associated with it.
They are thus only suitable for small value spaces.

Invertible Bloom lookup tables (IBLT) [34] also associate a value with each
key. They were discussed intensively in Section 2.3.6 along with invertible
Bloom filters. Similarly, set reconciliation with counting Bloom filters was
presented in Section 2.3.5 above. Both algorithms seem promising candidates
for approximate set reconciliation but face their individual challenges discussed
in their respective sections.
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7.7 Evaluation
Bloom filter reconciliation uses a single binary of size m and sets k bits per
item to 1. These bits may overlap and thus save bandwidth but also remove the
ability to identify unmatched items from MisA. Therefore, both nodes exchange
Bloom filters with each other which we optimise by sending the second one as
an XOR-ed Diff-BF for efficient compression with low δ.

During Bloom filter member checks, false negatives do not occur, false
positives according to the probability FP . In the overall reconciliation, these
false positives may become either unidentified differences, i.e. for missing items
or if both versions of an item are false positives, or redundant item transfers,
i.e. if the outdated item is sent (ref. Section 7.3.1).

7.7.1 General Analysis for Different δ and FR

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

Figures 7.6 and 7.7 show the results for δ ∈ (0, 10]% and
δ ∈ (0, 100]%, respectively. The total number of errors is
roughly only 1/3 to 1/2 as high as the configured FR which is
partly due to (a) ñ∆X∈{A,B} being too high and thus phase 1
ending up with an—undetectedly—too high accuracy, (b) in
the outdated scenario only half of the false positives leading
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Figure 7.6: Bloom filter reconciliation with small δ and FR.
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to redundant item transfers (ref. Section 7.3.1), and (c) phase 2 not getting
as close to FR(p2) as desired due to bk being integral. Additionally, and with
regards to the different failure types, please recall that phase 2 does not operate
on any extraneous common items and thus, there, any multiple collision in the
missing scenario leads to no errors and in the outdated scenario to redundant
item transfers of twice the number of colliding keys, as accounted for. The more
unlikely case of a single collision only results in failures in the missing scenario
and there, only one unrecognised item of ∆ is most likely (ref. Section 5.3.1).
Therefore, in the missing scenario, there may not be redundant item transfers.
In the outdated scenario, however, unidentified differences only occur if both
versions of an item are false positives in the respective Bloom filters and most
errors are redundant item transfers.
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Figure 7.7: Bloom filter reconciliation with high δ and FR.

The size of the Bloom filter BF in phase 1 depends on n, ñ∆X∈{A,B} , and FR
(ref. eq. (7.13), page 96). It thus increases with δexp in the outdated scenario
and decreases with δ in the missing scenario due to fewer items on the nodes.
The size of the Bloom filter Diff-BF, however, has BF’s size as an upper bound
but its compressibility depends on δ as well. Both sizes sum up to the phase 1
costs but the plots also roughly indicate each of them: |BF| in the phase 1 costs
for δ = 2% and |BF|+ |Diff-BF| for δ = 100%, due to the Bloom filter only
growing logarithmically with ñ∆X∈{A,B} and thus δexp (ref. eq. (7.16), page 97).
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The logarithmic growth of the combined phase 1 costs as well as the overall
costs of phase 1 and 2 can also be seen in the plots, just as an indication of the
logarithmic increase with FR−1 which is detailed in Section 7.7.5 below.

7.7.2 What if δexp is Wrong?

n = 100 000
datarand

δ = variable
δexp = δ vs. 1%
fail rand

In the Bloom filter reconciliation protocol, δexp is used to es-
timate the number of false positives candidates ñ∆X∈{A,B} in
phase 1 on which the false positive probability target FP t de-
pends (eq. (7.8), page 95). If δexp is too high, Bloom filters sizes
will be larger than needed and the resulting FP will be lower
which reduces the number of errors. If δexp is too low, FP will

be higher than needed, Bloom filter sizes will reduce, and more failures will
occur, as shown by Figure 7.8. Phase 2 is not directly affected by δexp except
for items not entering this phase and thus slightly reducing its costs.
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Figure 7.8: Bloom filter reconciliation with high δ and different δexp .

The extend of the increased numbers of failures can be seen by calculating
ñ∆X∈{A,B} (eq. (7.6), page 94): in the outdated scenario, for δ = 100%, δexp = 1%,
ñ∆X

is 1 006 while the real n∆X
is 100 000. Similarly, in the missing scenario,

ñ∆X
= 503 vs. n∆X

= 50 000. Also recall that the number of failures in the
missing scenario is higher than in the outdated scenario because the latter only
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has a redundant item transfer in roughly half of the cases of a false positive
(ref. Section 7.3.2). This was not clearly visible in the section above due to the
influence of phase 2 while phase 1 errors are more prominent here.

7.7.3 Data and Failure Distribution Sensitivity

n = 100 000
datarand , bin 0.2

δ = variable
δexp = δ
fail rand , bin0.2

Due to the hashing, Bloom filters should not be sensitive to
either data or failure distribution. The same applies to phase 2
since it already operates on ∆′ ⊆ ∆ and uses hashing, too (also
ref. Section 5.6.3), which eliminates any effects of a different
data or failure distribution. Figure 7.9 confirms this behaviour
for both the failures as well as the costs.

Regarding the costs, please recall that the Bloom filter size m does not
depend on the data (or failure) distribution assuming perfectly random hash
functions. Diff-BF may, however, allow a better compression if the bits of the
different items cluster. Apparently, though, by using more hash functions than
in the previous algorithms, the bits are spread more uniformly (independent of
the data or failure distribution) and thus do not influence the zlib compression
in the transfer costs.
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Figure 7.9: Bloom filter reconciliation with FR = 0.1 and different data and
failure distributions compared to datarand , fail rand .
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7.7.4 Scalability with the System Size n

n = variable
datarand

δ = 3%
δexp = δ
fail rand

Figure 7.10 shows the results of the Bloom filter reconciliation
with smaller and larger numbers of items than above and a fixed
δ = 3% =: δexp . As expected, the accuracy is unaffected by the
number of items and the transfer costs increase with O(n · log n)
for n → ∞, |∆|, ñ∆ ∈ O(n) and FR constant (ref. eq. (7.16),
page 97). Similarly to the trivial and SHash reconciliations,

Bloom transfer costs keep approaching the naïve transfer costs—which are in
O(n)—with higher n. Please refer to Section 5.6.4 for a discussion of this effect.
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Figure 7.10: Bloom filter reconciliation scalability with data size n and differ-
ent FR.
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7.7.5 Scalability with the Target Failure Rate FR

n = 100 000
datarand

δ = 3%
δexp = δ
fail rand

For fixed n, Figure 7.11 shows how the actual failures and the
communication costs of the Bloom filter reconciliation evolve
with different target failure rates FR. While the number of
failures for lower values of FR is not representative for our
1 000 random simulations, higher values are and the costs are
as well. The results are inconspicuous with regards to the
communication costs complexity of O(log(1/FR)) for n and |∆| constant (ref.
eq. (7.16), page 97) as well as the progression of the redundant item transfers
in the outdated scenario and the unidentified differences in the missing scenario.
With an increased FR, however, we are also able to observe some unidentified
differences in the outdated scenario for which the probability is very low in
both phases of the reconciliation (ref. Section 7.3.1).
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Figure 7.11: Bloom filter reconciliation scalability with the target failure rate
FR (log10 scale on the x-axis and on the y-axis except for the transfer costs).
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Chapter 8

Merkle Tree

In a Merkle tree [52], leaf nodes contain items and are labelled with the hash
of the data they represent. Inner nodes group leaf nodes or other inner nodes
and are labelled with the hash of the labels of their children. This allows an
effective comparison of two distributed data sets with a recursive top-down
algorithm by comparing the labels of these sets’ Merkle trees [10, 14].

8.1 Protocol

In contrast to the algorithms above, Merkle reconciliation is a multi-round
protocol with a dynamic number of rounds (Figure 8.1). At first, node B creates
a Merkle tree of SB and tells A to create one of SA with the same parameters.
The following synchronisation loops over the levels of the Merkle tree, starting
with the root node: A sends the hashes of all relevant nodes in the current level,
i.e. CH(cur lvl), to B which compares them with its own hashes at this level and
returns the results. Any hash mismatch identifies some sort of difference and
determines the tree nodes to continue with in the next iteration of the loop.

v, b,FR, δexp , |SB|

A B

CH(cur lvl)
MaxICA(cur lvl)

ResultFlags

MaxICB(next lvl)

if not
done

if done

if not
done

if done
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Figure 8.1: Merkle tree reconciliation protocol.
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In phase 2, the differing items in the remaining tree nodes are identified
with slightly modified trivial reconciliations, i.e. trivial*, starting at A or B
depending on the difference type which we detail later on. These two trivial*

reconciliations operate on different Merkle tree nodes and run in parallel. They
will eventually identify the items to push.

8.2 Building Merkle Trees
A Merkle tree for reconciliation uses key-version pairs of a node’s items and
puts them into buckets of sizes up to b ≥ 1. Each leaf node represents a single
(potentially empty) bucket. Let v ≥ 2 be the degree of the tree, i.e. the number
of sub-trees of an inner node. We build a Merkle tree over an (uncollapsed)
Patricia Trie [43] similar to Byers et al. [10] but omit the first re-hashing
phase for a pristine Merkle tree (see below). Note that if the data is uniformly
distributed, a pristine Merkle tree is similarly balanced as a Merkle tree with an
initial re-hashing phase. We are thus able to provide a more generic evaluation
of Merkle trees by omitting the re-hashing phase.

Algorithm 13 Merkle tree creation
function BuildMerkle(I, v, b) ▷ consecutive interval I of items

if I.items.size( ) > b then
MT ← NewInnerNode( )
for all I ′ ∈ Split(I, v) do ▷ for v equally long parts of I (sorted)

child ← BuildMerkle(I ′, v, b)
MT .AddChild(child) ▷ add child to the children of node MT

end for
MT .CalcInnerHash( ) ▷ XOR of the children’s hashes

else
MT ← NewLeafNode( )
MT .AddItems(I.items) ▷ add items to the bucket of node MT
sort(MT .bucket) ▷ sort by the items’ keys
MT .CalcLeafHash( ) ▷ SHA-1 of the sorted item list

end if
return MT

end function

The top-down construction of such a Merkle tree is depicted in Algorithm 13.
We start with the interval of keys the Merkle tree is built for and define a
recursive algorithm: as long as the current interval contains more than b items,
split it into v equidistant sub-intervals and build a Merkle (sub-) tree for each of
these as children of the current node using all the items within the sub-interval.
Note that in case of integer keys it is sufficient that the sub-intervals cover
nearly the same number of keys, i.e. ⌊|I|/v⌋ or ⌈|I|/v⌉. If the number of items is
less than or equal to b, a leaf node is created. Finally, the hashes are created
bottom-up: At a leaf node, the bucket is hashed using SHA-1 on the binary
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representation of the ordered list of key-version pairs in the bucket. Inner nodes
XOR the hashes of their children for their own label [10].

Figure 8.2 shows an exemplary Merkle tree which results from data items
with keys k ∈ {5, 10, 21, 26, 69, 74, 85, 101, 106, 122} and version 1 in the syn-
chronisation interval I = (0, 128] with v = 2 and b = 2. We use this example
for node A and omit the labels, i.e. hashes, for now.

A0

A1,1

A2,1

A3,1 A3,2

A2,2

A1,2

A2,3

A3,3 A3,4

A2,4

A3,5 A3,6

0 16 32 48 64 80 96 112 128

Node A

Figure 8.2: Exemplary binary Merkle tree (v = 2, b = 2) of node A.

8.3 Set Reconciliation with Merkle Trees
Before we go through the Merkle synchronisation protocol in detail, please note
that for reasons which will become clear below, we tag each hash from A as
being an inner hash (0) or a leaf hash (1) by adding one bit. For each leaf hash,
we add one more bit to indicate an empty leaf (0) or not (1). In addition to
these status bits, non-empty leaf hashes use Sℓ bits during the synchronisation,
inner hashes use Si bits. Both are constant for all hashes of a tree level but
may vary in different levels. Empty leaves only transmit the two status bits.

8.3.1 Phase 1

Phase 1 of the Merkle synchronisation protocol is depicted in Algorithm 14 and
loops over the levels of the Merkle tree, starting with the root node. Node A
sends its tree nodes’ hashes to node B which compares them with its own hashes
and responds with the 2-bit representations of the result codes of Table 8.1.
Hash mismatches identify nodes with differences and the algorithm continues
into the next Merkle tree level with only these tree nodes’ children until no
further mismatches occur or no tree nodes are left.

Note that some of the result codes’ bit patterns of Table 8.1 are non-unique
but both nodes can distinguish between all cases based on their local information
and the status flags, e.g. bit pattern 11 can be distinguished at A by its own
tree node type. Also note that the combination of an empty leaf node at both
nodes B and A is always a match and thus not a candidate for mismatches.
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Algorithm 14 Basic Merkle tree synchronisation protocol (phase 1)
function MerkleSyncA(MT A) ▷ executed on node A with Merkle tree MT A

SB→A, SA→B,∆
′
A,∆

′
B ← [], MN ← [MT A.root] ▷ MN = current node list

repeat
SendHashes(MN ) ▷ encode & send Merkle tree hashes
BMsg ← receive(result message from B) ▷ wait for msg
for all code ∈ DecodeResponse(BMsg) do ▷ decode result bits

N ← MN .PopFirst( ) ▷ remove and get first element in MN
if code = cont_inner then ▷ continue MerkleSync with all children

MN .AppendAll(N.children) ▷ append all children to the end
else if code = stop_inner then

SA→B.Append(N) ▷ add N to the end
else if code = stop_leaf then

SB→A.Append(N) ▷ add N to the end
else if code = stop_empty_leaf3 or stop_empty_leaf4 then

∆′
B.Append(N.bucket) ▷ add items of N to the end

end if ▷ drop nodes for all other result codes
end for

until MN = []
end function

function MerkleSyncB(MT B) ▷ executed on node B with Merkle tree MT B
SB→A, SA→B,∆

′
A,∆

′
B ← [], MN ← [MT B.root] ▷ MN = current node list

repeat
AMsg ← receive(message from A) ▷ wait for msg
Response ← empty bitstring
for all hashA ∈ DecodeHashes(AMsg) do

N ← MN .PopFirst( ) ▷ remove and get first element in MN
code ← Compare(N , hashA) ▷ determine result code from Table 8.1
if code = cont_inner then ▷ continue MerkleSync with all children

MN .AppendAll(N.children) ▷ append all children to the end
else if code = stop_inner then

SA→B.Append(N) ▷ add N to the end
else if code = stop_leaf then

SB→A.Append(N) ▷ add N to the end
else if code = stop_empty_leaf1 or stop_empty_leaf2 then

∆′
A.Append(N.bucket) ▷ add items of N to the end

end if ▷ drop nodes for all other result codes
Response.AddBits(code)

end for
until MN = []

end function
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Table 8.1: Result codes and resolve sets for the different cases during Merkle
tree node hash comparisons (�= match, �= mismatch).

node type at B node type at A set code bits

� anyB anyB - ok 01
� innerB innerA - cont_inner 00
� non-empty leafA SA→B stop_inner 11
� empty leafA ∆′

A,0 stop_empty_leaf1 11
� non-empty leafB innerA SB→A stop_leaf 10
� non-empty leafA SB→A stop_leaf 10
� empty leafA ∆′

A,0 stop_empty_leaf2 10
� empty leafB innerA ∆′

B,0 stop_empty_leaf3 11
� non-empty leafA ∆′

B,0 stop_empty_leaf4 00

Example Synchronisation

We will now go through phase 1 of an exemplary synchronisation of two nodes
A and B to make things clearer. Let node B have almost the same items as node
A from Figure 8.2, with the following exceptions: item 10 has version 2, item
26 is missing, and there are additional items at 37, 42, and 53. The resulting
Merkle tree and the differences in the items as well as in the Merkle tree hashes
are shown by Figure 8.3.

B0 �
B1,1 �

B2,1 �
B3,1

�
B3,2

�
B2,2 �

B3,3
�

B3,4
�

B1,2

B2,3

B3,5 B3,6

B2,4

B3,7 B3,8

0 16 32 48 64 80 96 112 128

Node B newer on B

missing on A

missing on B

� hash diff.

Figure 8.3: Exemplary binary Merkle tree (v = 2, b = 2) of node B with
differences indicated.

The synchronisation between A and B (Figure 8.4) starts with A sending
its root hash A0 to B. Since A0 ≠ B0 (�) and both are inner nodes, B returns
cont_inner and A sends all hashes from its children, i.e. A1,1, A1,2, to B. Since
A1,2 = B1,2, we assume that the trees below these nodes are equal and do not
require further synchronisation. B thus returns cont_inner for A1,1/B1,1 and
ok for A1,2/B1,2. A continues by sending the A2,1 hash and, for A2,2, the bits
indicating an empty leaf (10). Both are mismatches but A2,2 is an empty leaf
hash which can be directly resolved with items from SB. Thus, any items below
B2,2 are added to ∆′

A and stop_empty_leaf1 is returned, together with the

Chapter 8. Merkle Tree 115



cont_inner for the hash mismatch of A2,1 and B2,1. Finally, A sends A3,1 and
A3,2 which both turn out as non-empty leaf mismatches at B (stop_leaf) and
are added to SB→A on both nodes for the following trivial* reconciliation.
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�
0x93

A1,1
�0xC5

A2,1
�0xC5

A3,1
�0x78

A3,2
�0xBD

A2,2
�0x00

A1,2

0x56

B0

�
0xED

B1,1
�0x32

B2,1
�0x54

B3,1
�0x19

B3,2
�0x4D

B2,2
�0x66

B1,2

0x56

<<
tag

0
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10010011>>
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cont inner

>>

<<
tag

0
0xC5

11000101
tag

0
0x56

01010110>>

<< 00
cont inner

01
ok

>>

<<
tag

0
0xC5

11000101
tag

10>>

<< 00
cont inner

11
stop empty leaf1

>>

<<
tag

11
0x78

01111000
tag

11
0xBD

10111101>>

<< 10
stop leaf

10
stop leaf

>>

Figure 8.4: Merkle tree sync example based on the trees from Figures 8.2
and 8.3 with exemplary hash labels, inner/leaf node tags as described, result
codes from Table 8.1, and fixed hash sizes Sℓ = Si = 8 bit.

8.3.2 Phase 2

After phase 1, both nodes already know some parts of the resolve sets from
empty leaf mismatches, i.e. ∆′

A,0 ⊆ ∆′
A and ∆′

B,0 ⊆ ∆′
B, which are resolved

immediately (ref. Figure 8.1 and Table 8.1, pages 111 and 115). Additionally,
the two sets SA→B and SB→A with non-empty leaves at A and B, respectively,
are known to both nodes from which the rest of ∆′

A and ∆′
B is extracted in

phase 2. The following two parallel trivial* reconciliations are based on the
trivial’ algorithm from Section 6.3.1—a variation of the trivial algorithm of
Chapter 5: we basically spawn a trivial’ reconciliation for each non-empty leaf
node’s bucket and the corresponding items at the other node with additional
changes to improve the efficiency with respect to this multiplicity.

B creates a compressed key-value binary CKV(SB→A)
∗ from the individual

CKV structures of nodes in SB→A (details below) and, analogously, A creates
CKV(SA→B)

∗. Then, each CKV( . . . )∗ is sent to the opposite node. Since A and
B both know both tree node sets, after receiving CKV( . . . )∗, they extract the
original CKV structures, map them to appropriate Merkle tree nodes, and execute
the ordinary trivial reconciliation (Algorithm 8, page 53) in the according key
range. In this first step, ∆′

B,SB→A
⊆ ∆′

B from items in SB→A and ∆′
A,SA→B

⊆ ∆′
A

from items in SA→B may be resolved by the two reconciliations.
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As usual, in the second step of these trivial* reconciliations, on each node, all
unmatched keys as well as keys from newer items from CKV( . . . )∗ are requested
via CK′idx ( . . . )

∗ in order to resolve the remaining ∆′
A,SB→A

⊆ ∆′
A and ∆′

B,SA→B
⊆ ∆′

B
from items of Merkle tree nodes in SB→A and SA→B, respectively.

The CKV( . . . )∗ Data Structure

CKV( . . . )∗ is a tuple of binaries which each combine data from all non-empty
Merkle leaf nodes of node A and B in the sets SA→B and SB→A, respectively. The
creation of CKV( . . . )∗ is shown in Algorithm 15 and described below. The need
for all five of its components will become clear below and from Section 8.4 but
note that by grouping different types of data into separate binaries instead of
using a single one, we bundle similar items and thus allow a better overall zlib
compression of the synchronisation messages.

Algorithm 15 CKV∗ creation for tree nodes in SA→B on A and SB→A on B
function CKV∗(nodes) ▷ at A and B for data in the given Merkle tree nodes

HBin,VBin,BSizeBin,DPrefixBin,DupesBin ← empty bitstring
for all N ∈ nodes do ▷ note: all N are non-empty
{H ,V } ← CKV(N.bucket) ▷ also adds to ∆′

A (Algorithm 7, page 52)
bd ← H .RemovePrefix(H ) ▷ delta-encoding prefix (Section 5.2.1)
HBin.AddBits(H ) ▷ hashes
VBin.AddBits(V ) ▷ versions
BSizeBin.AddBits(|N.bucket | − 1, ⌈log2 b⌉) ▷ bucket sizes, ⌈log2 b⌉ bits
DPrefixBin.AddBits(bd ) ▷ delta-encoding prefixes
DupesBin.AddBits(|∆′

A|, ⌈log2(b+ 1)⌉) ▷ number of non-unique hashes
end for
return {HBin,VBin,BSizeBin,DPrefixBin,DupesBin} ▷ a 5-tuple

end function

The first two components of CKV( . . . )∗, i.e. HBin and VBin, are basically a
concatenation of the CKV components (ref. Section 5.2) of the items in each leaf
nodes’ bucket, i.e. a binary of the delta-encoded hashes and a binary of the
version numbers. We do, however, split off the prefix the delta-encoding uses
to encode the actual number of bits bd used per hash (ref. Section 5.2.1) and
re-package it into a separate binary DPrefixBin. Similarly, we create separate
binaries for the bucket sizes, i.e. BSizeBin, and the number of non-unique
hashes, i.e. DupesBin, which is determined by the CKV creation algorithm.
Additionally, since we operate on non-empty leaves, we encode |N.bucket | − 1
instead and only use ⌈log2(b)⌉ bits each (with Merkle bucket size b). The
number of non-unique hashes, however, still requires ⌈log2(b+ 1)⌉ bits each.

The CK′idx( . . . )
∗ Data Structure

CK′idx ( . . . )
∗ is a single binary that concatenates all CK′idx structures the trivial’

algorithm creates (ref. Section 6.3.1) to request items inside a Merkle leaf
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node’s bucket. Instead of truncating the individual CK′idx , however, we leave
their sizes fixed at b bits to allow decoding the full binary on the other node.
Algorithm 16 shows its creation based on the received CKV( . . . )∗ and a list of
hash lists with the items to request from the individual trivial’ reconciliations.

Algorithm 16 CK′idx
∗ creation for CKV∗ and a list of hash lists to request

function CK′idx
∗(CKV∗, hashes) ▷ CKV∗ from the opposite node, hashes to request

CK′idx
∗ ← empty bitstring ▷ start an empty binary

for all CKV ∈ CKV∗ do
req ← hashes.PopFirst( ) ▷ extract matching hashes to request
CK′idx ← CK′idx (CKV, req) ▷ see Algorithm 12, page 69
CK′idx .EnsureSize(b) ▷ revert truncate, append 0-bits if required
CK′idx

∗.AddBits(CK′idx ) ▷ append all bits to the end
end for
return CK′idx

∗

end function

Trivial* vs. Trivial’ Reconciliation

With the additional information at hand, using trivial* is more efficient in terms
of transfer costs than a single trivial’ reconciliation of all items in phase 2 which
SHash and Bloom use. We benefit from the inherent partitioning into Merkle
tree nodes which results in fewer items that may collide and thus lower bit sizes
bk ∈ O (log (ñ/FR)) (ref. eqs. (5.5) and (5.7), pages 56 and 57) when reconciling
partition by partition. Additionally, by using a trivial* reconciliation for SB→A

and SA→B each instead of a single combined reconciliation, we only pack items
from leaf nodes into CKV( . . . )∗ and thus further reduce transfer costs in the
missing scenario where differences may occur between items in inner and leaf
nodes. Furthermore, it is not required to send interval boundaries since these
are inherent in the Merkle tree.

On the other hand, CKV( . . . )∗ contains additional binaries for the bucket
sizes and the number of duplicates and needs to transmit multiple prefixes for
the delta-encoding. Their contents, however, are likely to be similar which
allows a good compression. Also, we omit sending individual bk parameters
since these may be derived from the bucket size, the number of duplicates and
other local information (see below).

8.3.3 Implications of Hash Collisions

Phase 1

In phase 1, Merkle tree nodes are compared hierarchically using their hashes.
This is done one-by-one and always compares two hashes whose nodes cover
the same key range. In case the hashes are different, some difference must
exist below these nodes since identical items always yield identical hashes.
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Table 8.2: Merkle tree reconciliation errors caused by a hash collision of the
hashes of tree node Ax and Bx.

Scenario Node types Worst-Case Result (after phase 2)

missing leaf-leaf 2b unrecognised items of ∆
inner-inner Ax.items+Bx.items unrecognised items of ∆

outdated leaf-leaf b unrecognised items of ∆
inner-inner Ax.items (= Bx.items) unrecognised items of ∆

If any of these two nodes is a leaf node, all items below the two will be passed
on to phase 2. This includes any common items included in a differing bucket
(if b ≥ 2) or—only in the missing scenario—common items between a leaf node
on one side and an inner node on the other side, e.g. if node A in the example
above also contained an item with key 53 and version 1 in which case A2,2 would
contain the same item as B3,4 but the synchronisation would stop at A2,2/B2,2.
These additional common items in phase 2 increase the communication costs
of phase 2 but do not create any errors in the overall reconciliation yet.

In case two hashes match, however, all items below these tree nodes may
either be identical or not. In the latter case, a hash collision occurred and any
differing item is not present in phase 2 on either node and thus unrecognised.
For two colliding leaf nodesa , in the worst case, 2b items are affected in the
missing scenario and b items in the outdated scenario. Similarly, if two inner
nodes collide, in the worst case, every item beneath each node is affected and
missing in ∆′. Table 8.2 summarises these failure cases.

Phase 2

Since trivial* is basically a multiply executed trivial’ reconciliation, conse-
quences of hash collisions in each CKV data structure are the same as in the
SHash and Bloom algorithms (Sections 6.3.2 and 7.3.2) and thus up to twice
the number of non-unique hashes in each instance (ref. Section 5.3.1). The sets
trivial* works on are based on the Merkle tree nodes phase 1 discovers as being
different. The number of items may thus be larger than the actual number of
differences due to bucketing (parameter b) or smaller due to hash collisions.

8.4 Deducing Merkle Tree Parameters from FR

To fulfil a given FR with the protocol of Figure 8.1 (page 111), we first split
the approximate Merkle reconciliation into two phases, each targeting equal
failure rates. Similarly to the previous algorithms, we thus use FR(p1) := FR/2
for phase 1 (ref. Sections 6.4 and 7.4).

aWe use the term of two Merkle tree nodes colliding equally to the collision of their
respective hashes.
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8.4.1 Phase 1

Recall that phase 1 of the Merkle tree synchronisation protocol consists of a
top-down hash comparison protocol of the Merkle tree nodes among the data
they represent, i.e. SA and SB. These trees have leaf nodes with buckets of up
to b ≥ 1 items each and a degree of v ≥ 2, i.e. v sub-trees per inner node.

During the reconciliation, there are two accuracy-influencing parameters
which are set per tree level: the number of bits to use for hashes of inner
nodes, i.e. Si, and for hashes of leaf nodes, i.e. Sℓ. We will distribute the
available failure rate level by level and derive appropriate Si and Sℓ for the
synchronisation protocol given by Algorithm 14 (page 114). Below, we describe
the individual concepts being used which together make up the overall phase 1
parameter deduction and failure rate calculation.

Distributing FR among all Nodes of a Tree Level

A2,1
FR(lvl)

A2,2
FR(lvl)

FR(p1)

. . . . . .
... fr

(lvl−1)
all

For each tree level lvl ∈ {1, 2, . . .}, assuming all
previous approximate processes have a combined
failure rate fr

(lvl−1)
all , we derive the target failure

rate FR(lvl) of each sub-tree of the current node
list MN (ref. Algorithm 14) from eq. (6.10)
(page 74), given that we need to fulfil FR(p1) in
total:

FR(lvl) :=
FR(p1)− fr

(lvl−1)
all

|MN |
(8.1)

With this simple scheme, we allow each sub-tree to use an equal amount of the
failure rate and require only minimal overhead (see below).

Distributing FR to a Node and its Children

For each sub-tree of the current node list we derive new failure rate targets for
all possible approximate processes it owns based on its overall target failure
rate FR(lvl). We distinguish inner and leaf nodes:

FR(lvl)

A1,1 FR(ilvl )

A2,1

FR(ilvl )

A2,2

FR(ilvl )

Inner Nodes Inner nodes have up to v + 1 approxi-
mate sub-processes: v child trees and the hash compar-
ison of the node itself. We aim at distributing FR(lvl)

equally among these sub-processes and thus use the
following target failure rate for the hash comparison
of an inner node (ref. eq. (6.2), page 71):

FR(ilvl ) =
FR(lvl)

v + 1
(8.2)
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FR(lvl)

A2,2 FR(ℓlvl )

Leaf Nodes Leaf nodes only have one process—the hash
comparison itself—and do not require a further split of the
available failure rate. Therefore, we use the following target
failure rate for each leaf node’s hash comparison:

FR(ℓlvl ) = FR(lvl) (8.3)

Deriving Si and Sℓ from FR(ilvl ) and FR(ℓlvl )

The actual number of bits to use for the hash comparisons, i.e. Si for inner
nodes and Sℓ for leaf nodes, depends on the target failure rates FR(ilvl ) and
FR(ℓlvl ) as well as the number of items affected by a hash collision. We derive
appropriate sizes separately for all inner and leaf nodes of a tree level lvl .

Inner Nodes Since the basic Merkle tree synchronisation protocol of Sec-
tion 8.3.1 does not allow an estimation of the number of failures from two inner
nodes’ hash collision, we would have to assume the worst case that all items are
affected. Instead, we establish a smaller upper bound on the number of affected
items by transmitting the maximum number of items below any nodeb in the
current node list MN . B thus initially sends MaxICB = |SB| and sends updated
values of MaxICB with the result flags. A sends its MaxICA values (initially |SA|)
with the compressed hashes (ref. Figure 8.1, page 111). Since these are just
single values once per tree level, the overhead is negligible.

In the worst case, τ := MaxICA + MaxICB items (on both nodes) are affected
by a hash collision of two inner nodes and we derive an upper bound on the
expected number of failures fr (ilvl ) of two inner nodes’ hash comparison from
the hash collision probability 2−Si and τ . Si can then be selected appropriately
to fulfil FR(ilvl ):

FR(ilvl ) ≥ 1

2Si⏞⏟⏟⏞
hash collision probability

·

affected items (worst case)⏟⏞⏞⏟
τ =: fr ′

(ilvl ) ≥ fr (ilvl ) ⇐ Si :=

⌈︃
log2

τ

FR(ilvl )

⌉︃
(8.4)

Instead of using a common upper bound, we could have also sent individual
MaxIC∗ for each Merkle node but unless the Merkle tree is extremely unbalanced
and τ varies by multiple orders of magnitude (powers of 2), the effect on Si

is limited. The costs of transferring multiple MaxIC∗, however, outweigh the
reductions on some Si.

Leaf Nodes Similarly, the number of affected items due to hash collisions
among leaf nodes can be given as min(τ, 2b) in the worst case. Together with

bNote that although leaf nodes are included in MaxICA and MaxICB, if there is an inner
node in MN , the number of items it represents is always larger than a leaf node’s number of
items or else it would have been a leaf node, too.
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the hash collision probability 2−Sℓ , we derive an upper bound on the expected
number of failures fr (ℓlvl ) and set Sℓ appropriately in order to fulfil FR(ℓlvl ):

FR(ℓlvl ) ≥ 1

2Sℓ⏞⏟⏟⏞
hash collision probability

·

affected items (worst case)⏟ ⏞⏞ ⏟
min(τ, 2b) =: fr ′

(ℓlvl ) ≥ fr (ℓlvl ) ⇐ Sℓ :=

⌈︃
log2

min(τ, 2b)

FR(ℓlvl )

⌉︃
(8.5)

Accuracy Similarly to the trivial reconciliation, due to ceiling Si and Sℓ,
we create more accurate versions of the algorithm than needed. In order to
re-distribute these unused parts of the failure rate (see below), we would ideally
use the exact expected failure rates fr (ilvl ) and fr (ℓlvl ). Since these are unknown,
however, we will instead use the expected effective worst-case failure rates
fr ′

(ilvl ) and fr ′
(ℓlvl ) from which Si and Sℓ were derived, respectively.

Using δexp to Reduce the Bound τ on the Number of Affected Items

So far, we have only been using MaxICA + MaxICB as an upper bound on the
number of affected items but we can get a much lower bound using δexp.
Unfortunately, without further information on the failure distribution, we can
only use δexp to calculate an estimate on the upper bound of the total number
of affected items δ · n, i.e. for the whole reconciliation of SA and SB. This
follows similarly to the SHash algorithm (ref. eq. (6.6), page 73) and thus, for
each tree level, τ may be given as:

τ := min

(︃⌈︃
δexp ·max

(︃⌈︃
nA + nB

2− δexp

⌉︃
, |nA − nB|

)︃⌉︃
, MaxICA + MaxICB

)︃
(8.6)

= min (⌈δexp · ñ⌉ , MaxICA + MaxICB) ⪆ min (⌈δ · n⌉ , MaxICA + MaxICB)

If we assumed a uniform failure distribution—or employed a first re-hashing
phase to create one—, we could use δexp recursively down the tree and use
τ := ⌈δexp · ⌈(MaxICA+MaxICB)/(2−δexp)⌉⌉ instead. However, as shown in Section 8.7.4
below, with regards to the communication costs, uniformly distributed failures
are actually the worst case. We thus stay with τ from eq. (8.6) and note that
the main effect of δexp is restricted to the upper levels of the tree.

Calculating fr
(lvl)
all and Re-Distributing unused FR(lvl)

Until now, we have reserved parts of the available target failure rate FR(lvl)

for approximate hash comparisons as well as for potential approximate sub-
processes. During the synchronisation, however, after sending hashes to node
B, the following situations may be detected exactly or result in sub-processes
being dropped and thus never create failures:
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• Comparing inner and leaf nodes : This is always detected as a mismatch
from the hash tags we add (ref. Section 8.3). Since a leaf node is involved,
however, there are no further sub-processes in phase 1 but some target
failure rate was reserved in case of the inner node being on node A.

• Comparing an empty leaf node with any other node: This is similar to
the previous case and also covered by the hash tags.

• Any hash mismatch: Different hashes must originate from different items
and no failures may be created here. If sub-processes exist, i.e. in case of
inner nodes on both sides, they are executed in the next level.

• Any hash match: The hash match itself may originate from a collision
and is thus an approximate process. Since the sub-trees are assumed
to be identical, there are no further sub-processes. Any reserved target
failure rate, i.e. in case of inner nodes on both sides, remains unused.

All of these cases are distinguishable by both nodes due to each node’s own
Merkle tree node types and the result codes from Table 8.1 (page 115).

The overall used target failure rate in this level can thus be derived from the
number of inner-inner and leaf-leaf hash matches together with their expected
worst-case failure rates fr ′

(ilvl ) and fr ′
(ℓlvl ) (ref. eqs. (8.4) and (8.5)) based on

the maximum number of affected items τ and the chosen values for Si and Sℓ,
respectively. Together, for the next iteration as described above, by using the
linearity of the expected value, the effective worst-case failure rate fr

(lvl)
all of all

approximate processes up to the current tree level is given as (with fr
(0)
all := 0):

fr
(lvl)
all = fr

(lvl−1)
all⏞ ⏟⏟ ⏞

previous levels

+ |matches inner-inner| · fr ′
(ilvl ) + |matches leaf-leaf| · fr ′

(ℓlvl )⏞ ⏟⏟ ⏞
current tree level

(8.7)
With this, any difference between the target failure rates FR(ilvl ) and FR(ℓlvl )

and their effective worst-case failure rates fr ′
(ilvl ) and fr ′

(ℓlvl ), respectively, can
be re-distributed to the next tree level or—in the last one—to the next phase.

The last of these fr
(lvl)
all thus reflects the effective worst-case failure rate

fr ′m(p1) of the whole phase 1 which depends on the distribution of the data
items as well as the distribution of the failures on both nodes:

frm(p1) ⪅ fr ′m(p1) := fr
(last lvl)
all ≤ FR(p1) (8.8)

Further Remarks

Note that during the whole phase 1, it is not necessary to transmit either Sℓ,
Si, FR(ℓlvl ), or FR(ilvl ) between the nodes A and B since both nodes have all the
information from the Merkle tree structure, the compressed hashes or the result
flags, and the MaxICY ∈{A,B} values to calculate all of them themselves.
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8.4.2 Phase 2

As in Sections 6.4.2 and 7.4.2 above, for a second approximate reconciliation
phase, we will re-use any unused failure rate from phase 1. Therefore, in
phase 2, we target an overall failure rate of FR(p2) = FR − fr ′m(p1) and split it
into |SB→A| + |SA→B| almost equally accurate sub-processes trivial sub iteratively
using eq. (6.10) (page 74). This process is outlined below and re-distributes
accuracy based on the effective (worst-case) failure rates of each sub-process
and thus accounts for rounding inefficiencies in each of them.

Node A initiates phase 2 with |SA→B| trivial sub-processes t
(j)
SA→B

for j ∈
{1, 2, ..., |SA→B|}, node B initiates |SB→A| trivial sub-processes t

(k)
SB→A

for k ∈
{1, 2, ..., |SB→A|}. Together, they have to fulfil FR(p2) and thus, according to
eq. (6.10), both trivial sub-processes t

(1)
Y ∈{SA→B,SB→A} start by using FR(t

(1)
Y ) =

FR(p2)/(|SB→A|+ |SA→B|). Then, each sub-process uses its individual MaxICY ∈{A,B}
from the Merkle tree level where the mismatch occurred to calculate the upper
bound ñ on the number of affected items (with δexp = 100% in eq. (5.4),
page 56) and finally bk (eq. (5.5), page 56) for the trivial reconciliation:

• Since SA→B only originates from non-empty leaf nodes at A and inner
nodes at B (ref. Table 8.1, page 115), a trivial sub-process at node A may
have up to ñ := |node.bucket|+ MaxICB different keys to hash.

• If the trivial sub-process from SB→A originates from a non-empty leaf
node at B and an inner node at A, we will continue similarly with ñ :=
|node.bucket|+ MaxICA.

• If the trivial sub-process from SB→A originates from two non-empty leaf
nodes, we will instead use ñ := |node.bucket|+min(MaxICA, b) based on
the maximum number of items a leaf node may have.

Following the iterative splitting of the target failure rate FR(p2) as described
on page 74, each subsequent trivial sub-process t

(2)
Y , t

(3)
Y , . . . then adds its

effective worst-case failure rate fr ′t (ref. eq. (5.6), page 57) to the sum of the
used failure rate and calculates its own target failure rate appropriately. At the
end of phase 2 on both nodes, each node may thus still have some unused failure
rate which could not be re-distributed. We will evaluate this in Section 8.5.

8.4.3 Overall Failure Rate

With the effective worst-case failure rate fr ′m(p1) of phase 1 (ref. eq. (8.8)) and
fr ′m(p2) := fr ′t of phase 2 (ref. Section 8.4.2 above) and by using the linearity of
the expected value, the overall effective worst-case failure rate of the Merkle
tree reconciliation is given as:

fr ′m = fr ′m(p1) + fr ′m(p2) (8.9)
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8.4.4 Example

Table 8.3 exemplifies each tree level’s failure rates and hash sizes for a Merkle
(v = 4, b = 3) reconciliation with n = 100 000 randomly distributed items,
FR = 0.1, and δ = δexp = 10% outdated items. Here, we will look at both the
progression of the different reconciliation parameters with the tree level as well
as the detailed calculations of these values in the exemplary tree level 7.

Table 8.3: Merkle (v = 4, b = 3) reconciliation parameters per tree level with τ
from eq. (8.6) (other parameters from eqs. (8.1) to (8.5) and (8.7)).

lvl |MN | MaxICA,B τ FR(lvl),
FR(ℓlvl )

FR(ilvl ) Si Sℓ fr
(lvl)
all

1 1 100 000 10 527 5.00 · 10−2 1.00 · 10−2 21 7 0
2 4 25 275 10 527 1.25 · 10−2 2.50 · 10−3 23 9 0
3 16 6 393 10 527 3.13 · 10−3 6.25 · 10−4 25 11 0
4 64 1 668 3 336 7.81 · 10−4 1.56 · 10−4 25 13 0
5 256 447 894 1.95 · 10−4 3.91 · 10−5 25 15 0
6 1 024 131 262 4.88 · 10−5 9.77 · 10−6 25 17 7.81 · 10−6

7 4 092 42 84 1.22 · 10−5 2.44 · 10−6 26 19 4.32 · 10−4

8 15 012 17 34 3.30 · 10−6 6.60 · 10−7 26 21 7.69 · 10−3

9 27 788 8 16 1.52 · 10−6 3.04 · 10−7 26 22 2.77 · 10−2

10 6 560 6 12 3.40 · 10−6 6.81 · 10−7 25 21 3.57 · 10−2

11 224 4 8 6.38 · 10−5 1.28 · 10−5 20 17 3.98 · 10−2

12 4 4 8 2.54 · 10−3 5.08 · 10−4 14 12 3.98 · 10−2

13 4 2 4 2.54 · 10−3 5.08 · 10−4 13 11 4.38 · 10−2

There are a total of 24 233 inner and 72 700 leaf nodes. 14 997 leaf nodes are
empty and do not represent data items. For the reconciliation, FR was first split
into the two phases with a target failure rate FR(p1) = 0.05 for phase 1. Its
effective worst-case failure rate, however, was fr ′m(p1) ≈ 0.043754, which leaves
phase 2 with FR(p2) ≈ 0.056247. A total of 9 462 trivial sub-processes were
used (all from SB→A as expected in the outdated scenario where only non-empty
leave hashes may mismatch; ref. Table 8.1, page 115) and showed an effective
worst-case failure rate of fr ′m(p2) ≈ 0.034640. The overall effective worst-case
failure rate of this example is thus fr ′m := fr ′m(p1) + fr ′m(p2) ≈ 0.078394 (ref.
Section 8.5 for a detailed discussion on the deviation from the target FR = 0.1).

Parameter Progression with the Tree Level

In this example, the number of nodes in tree levels 1 to 6 increases with the
degree v = 4 which indicates that all hash comparisons in tree levels 1 to 5 are
mismatches. In contrast, level 7 does not involve 4 096 nodes and therefore,
either the tree is unbalanced or some hashes of level 6 match. Since the hash
mismatches in levels 1 to 5 are exact comparisons, nothing of the available
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target failure rate is used and fr
(lvl)
all remains 0 (ref. eq. (8.7), page 123). Since

then the target failure rate FR(lvl) for each node only depends on the total
number of nodes per tree level (eq. (8.1), page 120), it thus quarters each level.
Its further progression depends on the effective worst-case failure rate of the
hash matches—and thus fr (lvl)all —as well as the number of remaining nodes |MN |
and may thus increase or decrease accordingly. Likewise, Si and Sℓ increase or
decrease with FR(lvl) and the number of affected items. Also, fr (lvl)all progresses
towards FR(p1) as expected.

Parameter Calculations for Tree Level 7

We will now reconstruct the calculations the Merkle tree synchronisation
protocol in tree level 7 which are based on eqs. (8.1) to (8.7) (pages 120 to 123).
At first, FR(7) is determined from eq. (8.1):

FR(7) =
FR(p1)− fr

(6)
all

|MN |
=

0.05− 7.81 · 10−6

4092
= 1.22 · 10−5

FR(ℓ7) = FR(7) follows immediately from eq. (8.3). FR(i7) is calculated from
eq. (8.2) as follows:

FR(i7) =
FR(7)

v + 1
=

1.22 · 10−5

5
= 2.44 · 10−6

Si and Sℓ (eqs. (8.4) and (8.5)) follow with τ from eq. (8.6) which reflects the
maximum number of affected items due to a hash collision:

τ = min (⌈δexp · ñ⌉ , MaxICA + MaxICB) = min (10 527, 42 + 42) = 84

Si =

⌈︃
log2

τ

FR(i7)

⌉︃
=

⌈︃
log2

84

2.44 · 10−6

⌉︃
= ⌈25.03⌉ = 26

Sℓ =

⌈︃
log2

min(τ, 2b)

FR(ℓ7)

⌉︃
=

⌈︃
log2

min(84, 6)

1.22 · 10−5

⌉︃
= ⌈18.91⌉ = 19

With these values of Si and Sℓ, the effective worst-case failure probabilities of
the Merkle tree node hash comparisons are derived from eqs. (8.4) and (8.5):

fr ′
(i7) =

1

2Si
· τ =

1

226
· 84 = 1.25 · 10−6

fr ′
(ℓ7) =

1

2Sℓ
·min(τ, 2b) =

1

219
·min(84, 6) = 1.14 · 10−5

In order to calculate the failure rate of tree level 7 and thus the overall failure
rate fr

(7)
all up until and including this level from eq. (8.7), we need the number of

inner-inner and leaf-leaf hash matches (not shown in Table 8.3). Assuming that
all nodes are inner nodes, we derive the number of inner-inner hash matches
from the number of nodes |MN | in level 8 which should be 4 092 · 4 = 16 368 if
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no match occurred. Since its actual value is 15 012, however, 1 356 nodes are
missing due to 1 356/4 = 339 matches. The overall failure rate of levels 1 to 7
combined can thus be calculated as:

fr
(7)
all = fr

(6)
all + |matches inner-inner| · fr ′

(i7) + |matches leaf-leaf| · fr ′
(ℓ7)

= 7.81 · 10−6 + 339 · 1.25 · 10−6 + 0 · 1.14 · 10−5 = 4.32 · 10−4

8.4.5 Overall Costs

Deriving a generic costs formula for the Merkle tree reconciliation is difficult
since its actual transfer costs heavily depend on the input data, more precisely:
its distribution in the key range as well as the distribution of failures. Here,
we provide a rough sketch of classifying the costs by using a uniform key
distribution, a perfectly-balanced Merkle tree, and assuming that every leaf
node differs so that every tree node’s hash is transferred. It is therefore a
worst-case synchronisation for a best-case tree which is close to any tree with a
uniform key distribution. As we will see from the evaluation in Section 8.7.4
below, other (skewed) key and especially failure distributions actually perform
even better in terms of communication costs due to the synchronisation being
able to skip over whole sub-trees.

In a perfectly-balanced Merkle tree, the depth d is ⌈logv(n/b)⌉ since the bucket
size b reduces the number of leaf nodes and the key range is split recursively into
v sub-intervals. In practice, though, the Merkle tree creation of Algorithm 13
(page 112) is based on fixed sub-interval sizes which do not only lead to buckets
not being completely filled but may also create empty leaf nodes, depending on
the size of v and b. More generally, thus d ∈ O(logv(n/b)), assuming a uniform
item key distribution. Please also note that the total number of tree levels is
given as d+ 1.

If there are no matches in inner tree nodes, fr (lvl)all = 0 for all tree levels
(ref. eq. (8.7)) and the failure rates and signature sizes progress as shown
by Table 8.4. Therefore, since τ = 2 · n/|MN | (an upper bound to eq. (8.6)
for perfectly-balanced trees) and FR(ilvl ) both decrease with the tree level by
a factor of 1/v, the value of Si remains the same throughout all levels (ref.
eq. (8.4)). This effect may also be seen in levels 3 to 6 in the example of
Table 8.3 above where τ and FR(ilvl ) roughly quarter with each level.

Overall, there are at most 1 + v1 + . . . + vd = (vd+1−1)/(v−1)) nodes in the
tree with at most vd leaf nodes and up to (vd+1−1)/(v−1))− vd = (vd−1)/(v−1) inner
nodes. Therefore, the total costs are bound from above by:

vd − 1

v − 1⏞ ⏟⏟ ⏞
total number of inner nodes

·

Si⏟ ⏞⏞ ⏟⌈︃
log2

2n · (v + 1)

FR(p1)

⌉︃
+ vd⏞⏟⏟⏞

leaf nodes at level d+1

·

Sℓ at level d+1⏟ ⏞⏞ ⏟⌈︃
log2

2b · vd

FR(p1)

⌉︃
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Table 8.4: Reconciling a perfectly-balanced Merkle tree with no matching inner
nodes (according to eqs. (8.1) to (8.7), pages 120 to 123).

lvl |MN | τ FR(lvl),
FR(ℓlvl )

FR(ilvl ) Sℓ Si

1 1 2n FR(p1)
FR(p1)

v + 1

⌈︃
log2

2b

FR(p1)

⌉︃ ⌈︃
log2

2n · (v + 1)

FR(p1)

⌉︃
2 v

2n

v

FR(p1)

v

FR(p1)

v · (v + 1)

⌈︃
log2

2b · v
FR(p1)

⌉︃ ⌈︃
log2

2n · (v + 1)

FR(p1)

⌉︃
3 v2

2n

v2
FR(p1)

v2
FR(p1)

v2 · (v + 1)

⌈︃
log2

2b · v2

FR(p1)

⌉︃ ⌈︃
log2

2n · (v + 1)

FR(p1)

⌉︃
...

...
...

...
...

...
...

With d ∈ O(logv(n/b)) from above, we establish the following complexity
class for phase 1:

O
(︃

n

b · v
· log n · v

FR(p1)
+

n

b
· log n

FR(p1)

)︃
(for n→∞, FR(p1)→0)

⊆ O
(︃
n

b
· log n

FR

)︃
(for n→∞, FR→0)

The latter follows from FR(p1) = FR/2 and

n

b · v
· log n · v

FR(p1)
=

1

v⏞⏟⏟⏞
< 1

·
(︃
n

b
· log n

FR(p1)

)︃
+

n

b
· log v

v⏞ ⏟⏟ ⏞
≤ 1

≤ 2 ·
(︃
n

b
· log n

FR(p1)⏞ ⏟⏟ ⏞
> 1

)︃

Since the trivial* reconciliation is an optimisation of the trivial’ algorithm
from the SHash reconciliation, it is bound from above by the communication
costs of trivial’ (ref. Section 6.4.4) and we thus derive the overall Merkle tree
reconciliation communication costs complexity as:

Cm ∈ O
(︃
n

b
· log n

FR
+ |∆| · log |∆|

FR

)︃
(for n,|∆|→∞, FR→0)

(8.10)

Note, however, that although v is not present in this class, it does effect
practical reconciliations where inner nodes may match: Higher v (a) reduces
the depth of the tree and thus avoids multiple transmissions of mismatching
(inner node) hashes of differing key ranges, but (b) makes the tree wider and
thus unnecessarily transfers multiple matching hashes where a previous tree
level could have seen the match with lower v and (c) may introduce more empty
leaf nodes. These trade-offs are further discussed in Section 8.7 below using
the real communication costs from simulations.
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8.4.6 Future Work

The Merkle tree synchronisation protocol presented above applies approximate
hash comparisons with a defined accuracy to the standard, “quasi-exact” 160 bit
Merkle tree synchronisation. The following techniques may further improve the
results in terms of communication costs or number of message rounds. These
were not deployed for the evaluation below and remain for future work.

To further decrease the communication costs at the cost of the number of
message rounds, we could apply the rsync techniques described in Section 4.2.1
where two phases were introduced: a first phase with smaller checksums and
an additional overall strong checksum, and a potential second phase using the
full checksum size if the strong checksum indicates a failure. In the Merkle tree
synchronisation, this could be applied to each tree level using smaller values
for Si and Sl in a first phase and a full 160 bit feedback hash over all matching
hashes. If this feedback hash is equal to the one at node A, we continue as
usual but adjust the failure rate accordingly. If not, this tree level’s hashes
need to be transmitted again using the full Si and Sl. Similarly to rsync, this
could be fine-tuned so that the second phase is only required on occasion but
still, in the worst-case, twice as many message rounds are needed.

Alternatively, a more light-weight version of this technique could only add
the overall hash of the matching hashes and adjust the failure rate accordingly.
The expected savings are considerably lower, especially since Si and Sl only
depend logarithmically on the failure rate (eqs. (8.4) and (8.5), pages 121
and 122). On the other hand, this allows a better adjustment to a given FR.

Regarding the number of message rounds, the example in Table 8.3 above
showed that in the upper tree levels, most comparisons are hash matches and
thus transferred completely. This is most prominent for uniformly distributed
failures but may also be relevant for other failure distributions. Instead of
transmitting all these hashes, we could start at a lower tree level and thus
reduce the number of message rounds (and some communication costs) for high
δ at the cost of an increased overhead for very low δ. By starting at level 7 for
v = 4, for example, we would always transmit 4 096 hashes instead of a single
root hash first. More generally, we could split the original interval into any
number of sub-intervals in any way, build a Merkle tree for each of them, and
start with |MN | > 1 in the first tree level of Algorithm 14 (page 114).
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8.5 Effective Worst-Case Accuracy
In contrast to the reconciliation algorithms above, the Merkle tree synchronisa-
tion heavily depends on the input data, i.e. its distribution in the key space
and the distribution of failures among the data items. In order to analyse
the effective worst-case accuracy, we therefore evaluate the expected number
of failures empirically by using the value the algorithm calculates during the
reconciliation of each of 100 random instances of different set reconciliation
scenarios (reduced from 1 000 due to the vast number of data points) similar to
the evaluation below and the example in Section 8.4.4.

We show the effective worst-case failure rate fr ′m and its compontents fr ′m(p1)
and fr ′m(p2) (ref. eq. (8.9), page 124) of two different Merkle trees with v = 4
and b ∈ {3, 1} to evaluate the influence of the bucket size b and the buckets’ fill
rate. The influence of the data and failure distribution is evaluated with a set
of experiments using a uniform distribution and another set with a binomial
distribution. Other combinations than FR = 0.1 and δ = δexp = 1% presented
here show similar behaviour and are given in Appendix A.2.1 for reference.

Please note that the actual observed failure rates may be lower than fr ′m due
to worst-case assumptions in both phases which may not occur, e.g. assuming
a common τ in phase 1 which is based on MaxICX∈{A,B} (eq. (8.6), page 122) or
assuming distinct items between the leaves for phase 2 (ref. Section 5.5.1).

8.5.1 Uniformly Distributed Item Keys and Failures

The following two sections show the calculated effective worst-case failure
rates fr ′m of the Merkle tree reconciliation with a uniform item key and failure
distribution, i.e. datarand and fail rand .

Outdated Items Scenario

Figure 8.5 shows the failure rates of the Merkle tree reconciliation in different
phases for v = 4, b = 3, as in the example of Section 8.4.4. Most of the overall
fluctuations of fr ′m are caused by phase 1 but also by phase 2 not being able to
compensate much of this underperformance. The latter is due to the buckets
not being completely filled (also see the example of Section 8.4.4) which is in
contrast to the worst-case assumptions of phase 2 regarding the total number of
different keys to hashc, i.e. b items per bucket (ref. Section 8.4.2). The bucket
fill rate itself results from the structure of the Merkle tree which depends on
the tree’s degree v and—due to the fixed interval splitting of an inner node (ref.
Algorithm 13, page 112)—is also influenced by the number of items n.

As opposed to b = 3, phase 2 of the Merkle tree reconciliation with b = 1
(Figure 8.6) is able to almost completely compensate any discrepancies of

cNote that although the Merkle tree reconciliation protocol can detect this deviation
after receiving the CKV( . . . )∗ structures on each node, it cannot account for this in advance
without sending individual item counts for each leaf node.
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Figure 8.5: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m in the
outdated scenario (error bars show the standard deviation).

phase 1. There, all non-empty leaf nodes are full as expected by the trivial*
algorithm and hence fr ′m ≈ FR. Also, with b = 1, the standard deviation of
fr ′m(p1) and fr ′m(p2) is much lower than for b = 3 since higher b cause more
fluctuations in the tree structure and the bucket fill rates due to both lower
trees as well as our fixed interval splits.
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Figure 8.6: Merkle v = 4, b = 1 effective worst-case failure rate fr ′m in the
outdated scenario (error bars show the standard deviation).
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In general, in smaller trees, e.g. due to lower n, minor changes in the keys of
the items create whole new sub-trees and thus cause more jitter than in larger
trees. Large trees also re-use more of their target FR(p1) since, in the deepest
level, any reserved parts of the available target failure rate from what turns out
to be an exact sub-process cannot be re-distributed (ref. Section 8.4.1). The
deeper the tree, the smaller these reserved parts and the sum of these may be
smaller in total as long as there are enough approximate processes.

Missing Items Scenario

The effect of lower b resulting in better use of FR in the outdated scenario is
inverted in the missing scenario as shown by Figures 8.7 and 8.8. The lower b,
the more sub-trees are missing compared to all items being present and thus,
the trees of nodes A and B diverge. In contrast, with higher b, the structure
of the Merkle trees becomes more similar and only the buckets’ fill rates vary.
Therefore, phase 2 of b = 1 hosts more leaf-inner sub-processes than with b = 3
which, in return, contains more leaf-leaf sub-processes.
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Figure 8.7: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m in the
missing scenario (error bars show the standard deviation).

To estimate the number of unique keys to hash in phase 2, every leaf-inner
trivial reconciliation relies on MaxICY ∈{A,B}, i.e. the maximum number of items
below any inner node of its tree level, and may thus be larger than the actual
value or the upper bound in leaf-leaf reconciliations (ref. Section 8.4.2). This
does not only explain the different values of fr ′m for these two bucket sizes but
also explains the differences between the missing scenario and the outdated
scenario above where only leaf-leaf sub-processes are present.
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Compared to the outdated scenario (Figures 8.5 and 8.6), we also observe
higher standard deviations in the overall failure rate fr ′m which is due to (more)
fluctuations in the tree structure when items are missing while the structure of
the Merkle trees with outdated items does not change at all and only depends
on the data distribution.
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Figure 8.8: Merkle v = 4, b = 1 effective worst-case failure rate fr ′m in the
missing scenario (error bars show the standard deviation).

8.5.2 Binomially Distributed Item Keys and Failures

In contrast to the fairly balanced Merkle trees above and a reconciliation that
visits most of the tree nodes, here, we show the effective worst-case failure
rates fr ′m in both phases in a binomially distributed scenario with databin 0.2

and fail bin0.2
, i.e. using B(n, p = 0.2), for v = 4, b = 3.

A binomial data distribution may result in higher bucket fill rates but also
leads to skewed Merkle trees and breaks the assumption that the maximum
number of affected items is equal in all sub-trees which may influence the actual
failure rates as shown by Section 8.7 below. However, the worst-case failure
rates of phase 1—as calculated by the algorithm—are not affected by this since
we do not exchange enough data to recognise this. In contrast, the given failure
rates of phase 2 may be affected since MaxICY ∈{A,B} is used to estimate the
number of different keys to hash (ref. Section 8.4.2) and any discrepancy is
recognised after receiving CKV( . . . )∗ and is thus included in fr ′m(p2).

A binomial failure distribution clusters failures in one region of the tree and
thus, during the reconciliation, more nodes may be dropped early. Therefore,
compared to a uniform failure distribution, there may be fewer approximate
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processes from hash matches in total. It also leads to fewer leaf nodes entering
phase 2 with fewer common items among them, thus bringing phase 2 closer to
its worst-case assumption of δexp = 100% (ref. Section 8.4.2).

Overall, we expect an increased impact of phase 2 which, in the best case,
compensates more of phase 1’s unused FR and, in the worst case, compensates
less, compared to datarand and fail rand above.

Outdated Items Scenario

The outdated binomial scenario of Figure 8.9 shows slightly higher average
values of fr ′m compared to Figure 8.5 and with some n even values close to
FR. The general pattern, however, is dominated by phase 2 while phase 1
failure rates, i.e. fr ′m(p1), are considerably smaller than in the uniform scenario
above. The main reason for this behaviour is the inability to re-distribute any
unused parts of FR from exact sub-processes such as hash mismatches of the
last tree level (ref. Section 8.4.1). These parts are larger than above due to
fewer approximate processes during the reconciliation but are re-distributed to
phase 2 leading to fr ′m ≈ FR in some cases.
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Figure 8.9: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m in the
outdated scenario of databin 0.2 , fail bin0.2

(error bars show the standard deviation).

The pattern of the effective worst-case failure rates of phase 2, i.e. fr ′m(p2), is
caused by the bucket fill rate of the (leaf) nodes participating in phase 2. It fol-
lows the difference of the actual number of items and min(MaxICY ∈{A,B}, b) (ref.
Section 8.4.2). This effect seems to be amplified by fewer nodes participating
(with higher impact) and, in some scenarios, is apparently not compensated by
the overall higher bucket fill rate. As above, the bucket fill rate (also) depends
on n due to our fixed interval splits which leads to the given results.
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Missing Items Scenario

Similar to the uniformly distributed scenarios above, the binomial missing
scenario shown by Figure 8.10 exhibits lower effective worst-case failure rates
than the appropriate outdated scenario. Here, phase 2 also contains nodes from
leaf-inner mismatches and thus discrepancies in MaxICY ∈{A,B} become even
more prominent since this is the main factor to estimate the number of unique
keys to hash. The range of the values of fr ′m(p1) remains similar, though, with
more fluctuations from the differences in the structure of the Merkle trees due
to the missing items.
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Figure 8.10: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m in the
missing scenario of databin 0.2 , fail bin0.2

(error bars show the standard deviation).

8.6 Related Work

The multi-round set reconciliation protocol with Merkle trees efficiently identi-
fies small differences and is used in distributed storage systems like Dynamo [22],
Cassandra [63], and DHash [14]. Until now, however, Merkle trees have only
been optimised with the focus of minimising their construction time and main-
tenance [83] or message rounds [11, 10] while we focus on reducing the transfer
costs. Trutna et al. [83], for example, describe the efficient embedding and
maintenance of a Merkle tree over an existing storage back-end in the SCADS
Distributed Storage Toolkit.

Byers et al. [10] propose two techniques which we omit for a broader evalua-
tion or for simplicity: (a) adding a first randomisation phase, e.g. via re-hashing
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the keys, and (b) using collapsed Patricia Tries. Randomising the keys’ dis-
tribution produces better balanced trees which reduce the tree’s (worst case)
height and thus the number of synchronisation rounds in the reconciliation.
For our evaluations, however, we focus on the amount of transmitted bytes
but please note that the datarand scenario effectively represents a Merkle tree
reconciliation protocol with a first randomisation phase, as opposed to databin 0.2

(ref. Section 8.7.4) which shows the impact of leaving it out. Collapsed Patricia
Tries are mainly beneficial with unbalanced trees, saving memory due to fewer
(inner) nodes. Merkle tree reconciliation over collapsed Patricia Tries, however,
is more complex as additional information would need to be exchanged so
that both nodes know which node to compare with. It is unclear whether this
additional data outweighs the benefits of fewer nodes to exchange.

Additionally to these enhancements, Byers et al. [11, 10] also propose an
approximate reconciliation tree (ART) based on putting the Merkle tree into
two Bloom filters, one for the inner nodes and one for the leaf nodes. During
reconciliation, both are sent in a single round and thus remove the O(logv(n/b))
message round complexity of Merkle tree reconciliation. In contrast to Bloom
reconciliation and as opposed to [47, 45], ART is able to identify MisA due
to the underlying structure of the Merkle tree if we include the range into
the hashd . Compared to Bloom filters, in scenarios with low differences, ART
improves the computational overhead due to fewer lookups. In general, though,
ART can never be more accurate than an equally-sized Bloom filter [10]. This
follows from the observation that the leaf Bloom filter needs to have the same
accuracy as an ordinary Bloom filter in the Bloom reconciliation.

A two-phase approach to set reconciliation which is similar to ours has been
presented by Lin and Levis [49] who use a (hybrid) Merkle tree and Bloom
filter reconciliation protocol in sensor networks. There, too, the first phase
merely detects that a difference exists, i.e. by using a hash tree and Bloom
filters, while the second phase identifies the actual differences similarly to our
trivial reconciliation. They also work with key-version pairs but assume a full
coverage of the key space, i.e. every possible key reflects an actual sensor and
has a version associated with it, and build the hash tree on versions only. Each
of their “summary messages” contains a salt for the hash functionse and a list
of elements, each with start key index, end key index, a summary hash of
the versions in this range, and a Bloom filter of the key-version tuples of all
items in this range (with k = 1 hash function). With this information, their
protocol DIP estimates the probability that an item differs and uses this and
the estimated costs to decide which algorithm to continue with, i.e. searching
further in the tree or trivially reconciling the data.

dNote that with ART, as opposed to Merkle reconciliation, each tree node’s hash is
essentially compared to all tree node hashes of the other node. Therefore, mismatches with
sub-trees of another tree level need to be avoided in order to identify missing sub-trees.

eSalting hash functions may reduce hash collisions or at least avoid the same ones over
and over again in repeated set reconciliation attempts.
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8.7 Evaluation

Reconciliation with Merkle trees aims at low transfer sizes for low δ at the cost
of having multiple message rounds. We aim at further improving transfer costs
by reducing hash sizes according to FR. Two further parameters influence the
costs but not the failure rate: the bucket size b and the degree v of the tree.

8.7.1 Parameter Space Exploration

n = 100 000
datarand

δ = 2%
δexp = δ
fail rand

In order to select appropriate parameters for both v and b for
further evaluations, we present the combined average transfer
costs of both phases during a parameter sweep of v ∈ [2, 16]
and b ∈ [1, 16] in Figure 8.11. Transfer costs are presented as a
heatmap with warmer and brighter colours showing higher costs;
numbers inside each field show the number of communication
messages for the two phases and thus, indirectly, the Merkle tree height.

In general, by increasing v and b, the depth of the Merkle tree—and thus
the number of message rounds—can be reduced at the cost of transferring
more hashes per level and leaf node, respectively. Additional costs may arise
from higher v where more empty leaf nodes are created due to the static
interval splits which are independent of the actual key distribution. Since in
our implementation hash signature sizes mostly increase per level, depending
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Figure 8.11: Merkle reconciliation transfer costs (heatmap) and number of
messages (in white) with FR = 0.1 and different v and b for δexp = δ = 2%.
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on the participating processes and nodes (ref. Table 8.3, page 125), there is a
trade-off between transmitting more hashes at lower sizes or fewer hashes with
bigger sizes in deeper tree levels.

Transfer Costs

Regions with the lowest total cost in Figure 8.11 reside around v ∈ {3, 4} with
b = 2 and b = 1 for the outdated and missing scenarios, respectively, with
slightly lower costs for v = 3 in both scenarios. From there on, higher or lower
values of v or b generally increase transfer costs.

Figure 8.11 also shows some interesting patterns of the costs: For any fixed
v, with increasing b, costs first strive towards an optimum where the savings in
phase 1 (smaller trees) outweigh the additional costs of phase 2 (more items
not in ∆) and then degrade again. For a fixed b, though, cost progressions
show some irregularities, with multiple local optima. It seems that our protocol
is more sensitive to v than to b due to the tree construction as outlined above.
Also, since the actual tree structure varies with v, the fill grade among the leaf
nodes—and thus phase 2 costs—may be affected, too.

Message Rounds

Since most of the protocol messages originate from the Merkle tree synchroni-
sation (ref. Section 8.1) and the rest is in O(1), the number of message rounds
may be given as roughly half the number of communication messages (numbers
plotted into the heatmap of Figure 8.11), depending on the processes and the
parallelism in phase 2 (ref. Section 8.1). This also reflects the Merkle tree height
and, from the averages of 1 000 simulations as shown, we can confirm that both
v and b reduce the height as expected. However, similarly to the transfer costs
above, the interval-based construction of our Merkle tree dampens the height
reduction of the two parameters. Also, since the height is in O(logv(n/b)) (ref.
Section 8.4.5), the biggest improvements between v and v + 1 or b and b+ 1
exist with low b and v and, in general, the influence of v is bigger than the
influence of b.

Different FR and δ

Other values of δ and FR do not seem to influence the region of parameters
optimal with regards to transfer costs and are presented in Appendix A.2.2.
Further details may also be extracted from the experiments below which shed
some more light on the individual costs of the two phases and the actual failure
rates of selected values of v and b.
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8.7.2 General Analysis for Different δ and FR

Parameters v and b revisited

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

Figure 8.12 shows Merkle tree reconciliations with a fixed bucket
size b = 2 and selected degrees v which extend the details
compared to the parameter sweep above. In the simulations
shown, the actual average failure rate is below the set FR
in most cases but exposes an increased standard deviation
that originates from hash collisions where whole sub-trees are
wrongly identified as being equal. The missing scenario for v = 2, δ = 8% even
includes a case of a hash collision of the root hash which causes nothing to be
reconciled. These events, however, are to be expected from the Merkle tree
reconciliation. For the given values of δ, minimal transfer costs are achieved
with v = 4. The smaller δ, the more v = 3 is achieving similar transfer costs but
with more message rounds as shown above. For even lower δ, Figure A.12 in
Appendix A.2.3 is showing that this trend persists. The larger δ, the more v = 8
becomes competitive since the additional costs for more—and in particular
empty—leave nodes in the tree of phase 1 are compensated by phase 2 having
fewer buckets completely filled and thus fewer items being transferred. This
becomes more prominent in the missing scenario. For δ → 100%, please refer
to Figure A.13 in Appendix A.2.3 but we will also evaluate higher δ below.
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Figure 8.12: Merkle reconciliation for small δ, fixed b = 2 but varying v.
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Figure 8.13: Merkle reconciliation for small δ, fixed v = 4 but varying b.

In contrast to above, we now fix v to the transfer-cost optimum v = 4 and
vary the bucket size b, i.e. the maximum number of elements per leaf node, as
shown by Figure 8.13. Higher b lead to smaller Merkle trees and reduced phase 1
costs (and message rounds) in all scenarios shown. The trivial* reconciliations
of phase 2, though, need to handle more items per leaf node at a higher cost.
In the missing scenario, any b > 1 increases the overall transfer costs although
the savings in phase 1 are similar to the outdated scenario. In contrast to the
outdated scenario, however, if items are missing with b = 1 and are matched
with an empty leaf node, we may directly resolve them without phase 2. This
explains the overall lower phase 2 costs. Thus, the higher b, the fewer of these
cases exist and the more phase 2 costs become similar to the outdated scenario.
In the outdated scenario itself, b = 2 achieves the lowest overall transfer costs.
Further values of δ are presented in Figures A.14 and A.15 in Appendix A.2.3
and confirm that this is also optimal for δ < 2% and δ > 10% with an exception
for very high δ > 40% in the outdated scenario. There, phase 2 costs can
not be reduced much with higher b since (almost) all items are already being
transferred.

Z For all evaluations below, we will continue with v = 4, b = 2 which seems
to be the best compromise from the experiments above.
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Different target failure rates FR

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

The influence of different values of FR on a Merkle reconciliation
with v = 4 and b = 2 for typical δ ∈ (0, 10]% and higher
δ ∈ (0, 100]% is shown in Figures 8.14 and 8.15, respectively,
focussing on an overview of the costs and the progression with δ.
Phase 1 as well as phase 2 costs increase logarithmically with
FR−1 as predicted by eq. (8.10) (page 128) and indicated in
the plots for any fixed δ (note the constant increase of costs with FR−1; more
details in Section 8.7.6 below). Also, except for a few hash collisions causing
outliers with an impact based on the tree level of the collision, the accuracy is
relatively stable, too, and below FR as expectedf . This is due to our worst-case
assumptions accounting for bigger-impact hash collisions that are compensated
on average by other scenarios.
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Figure 8.14: Merkle reconciliation (v = 4, b = 2) with small δ and varying FR.

To indicate the savings achieved by using an approximate Merkle reconcilia-
tion over the original one, Figure 8.16 compares the costs of the values of FR
from above and the costs if instead full 160 bit hashes were used in both phases
(merkles160). As shown, the 160 -bit Merkle reconciliation is roughly 5 times as

f Please recall that hash collisions influence costs and accuracy similarly as shown and
note that different relative sizes of the error bars only originate from different scales.
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Figure 8.15: Merkle reconciliation (v = 4, b = 2) with high δ and varying FR.

expensive as our approximate Merkle tree with FR = 0.001. We could leverage
this in a real system by reconciling more often using the approximate version
but still having lower costs and shorter reaction times to failures.
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Figure 8.16: Approximate vs. original Merkle reconciliation (v = 4, b = 2).
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8.7.3 What if δexp is Wrong?

n = 100 000
datarand

δ = variable
δexp = δ vs. 1 %
fail rand

In the Merkle tree reconciliation protocol, δexp is used to re-
duce the bound τ on the number of items affected by a hash
collision (ref. Section 8.4.1). Since we cannot assume a uniform
distribution of the failures though, this only reduces τ for the
upper levels of the tree (ref. Table 8.3, page 125). With δexp
being lower than δ, as shown by Figure 8.17, the upper tree
levels will use too few bits compared to what is necessary for FR. The chance
of hash collisions increases and if they happen, fr (lvl)all is lower than the actual
value which causes further signature sizes to be too low. The biggest impact,
however, is in the first tree levels and we expect minor cost savings as shown
due to those tree levels only containing a small portion of the total number
of tree nodes. As the difference between δexp and δ grows, so do the actual
failure rates which eventually become larger than the set FR. Similarly, if δexp
is higher than δ, costs marginally increase and failure rates decrease. Please
refer to Appendix A.2.4 for further values of δ.
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Figure 8.17: Merkle reconciliation with high δ and different δexp .
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8.7.4 Data and Failure Distribution Sensitivity

n = 100 000
datarand , bin 0.2

δ = variable
δexp = δ
fail rand , bin0.2

In Section 8.5.2 above, we already saw the effects of a skewed
data and failure distribution. Here, we will show the detailed
differences of each individual distribution as well and present
the results of our simulations including costs and observed
failure rates. Since Merkle reconciliation skips over sub-trees
with matching hashes, a transfer costs sensitivity to skewed

failure distributions is expected. Figure 8.18 shows these differences (with
slightly differently-plotted accuracy metrics than usual to which we will come
below) and, consequently, presents up to 90% lower transfer costs for the
binomial failure distribution.
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Figure 8.18: Merkle reconciliation with FR = 10 and different data and failure
distributions compared to datarand , fail rand (v = 4, b = 2).

A skewed data distribution influences the structure of the Merkle trees and
in particular its height but since we re-distribute any unused FR, the costs
of this in the reconciliation are negligible. In fact, we observe a roughly 5%
reduction of the costs that is caused by phase 1 being cheaper—while phase 2
is slightly more expensive—despite the violation of our assumption of equal
number of items in each sub-tree of a level for τ (ref. Section 8.4). The changes
in the costs of the two phases both originate from the binomial data distribution
leading to higher bucket fill rates as discussed in Section 8.5.2.
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As for the accuracy, Section 8.5.2 argued that we may observe reduced failure
rates due to the broken uniformity assumption for τ which is why we account
for more items being affected by a hash collision than actually present in some
sub-trees. Although we did already choose FR = 10 for the evaluation here
in order to be able to actually see any changesg , Figure 8.18 does not show a
general trend for the accuracy and the fluctuations are more likely caused by
outliers. Also note that all observed failure rates (unidentified differences plus
redundantly transferred items) are below the target FR.

Message Rounds

Although not in the focus of this thesis, we will briefly discuss the data and
failure distribution’s influence on the number of message rounds in addition
to the discussion in Section 8.7.1 above. From there, please recall that the
number of communication messages as logged by our simulations and given
in Figure 8.19 is roughly double the number of message rounds and—except
for 2 and 4 messages from phase 2 in the outdated and missing scenarios,
respectively—is based on the tree height and reconciliation path in the Merkle
tree. The influence of the reconciliation path may be seen from different values
of δ for a fixed data distribution. With a uniform data and failure distribution,
for example, lower δ cause slightly fewer messages being sent on average since
the failures may not actually be present in the lowest tree level, depending on
the interval splits of our construction algorithm (Algorithm 13, page 112).
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Figure 8.19: Message rounds in the Merkle reconciliation with FR = 10 and
different data and failure distributions (v = 4, b = 2).

gPlease also note that we slightly re-arranged the plot compared to the usual data and
failure distribution plots above in order to be able to also see the absolute averages of the
two accuracy metrics in the datarand , failrand scenario from which the others deviate.
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A binomial data distribution is more stable than a uniform data distribution
with regards to the standard deviation and the reconciliation path due to more
items being present in the lowest tree levels. The fact that a binomial data
distribution may lead to deeper trees may not be observed in the outdated
scenario but only in the missing scenario. It seems that only the buckets’ fill
ratio of the lowest tree levels is skewed (0, 1, or 2 items per bucket with b = 2).
In the missing scenario, this may, however, lead to more tree levels remaining
compared to the uniform data distribution.

A change in the failure distribution only influences the reconciliation path in
the outdated scenario and may also influence the tree structure in the missing
scenario. It has a bigger impact on the uniform data distribution since there,
compared to the uniform failure distribution, the possibilities for tree nodes
vanishing from the lowest tree level or not being visited is higher. This effect is
especially prominent in the missing scenario due to the bigger impact of the
failure distribution. With a binomial data distribution, however, we do not
observe any change since, there, a binomial failure distribution only affects
how many buckets go into phase 2 because of the higher bucket fill rates in the
failure region.

Remarks

Note that by adding a first randomisation phase as Byers et al. [10] propose,
we could remove any differences from different data and failure distributions
and effectively achieve the same results as with datarand and fail rand .

146 Chapter 8. Merkle Tree



8.7.5 Scalability with the System Size n

n = variable
datarand

δ = 3%
δexp = δ
fail rand

Figure 8.20 shows the results of the Merkle reconciliation for
v = 4 and b = 2 with smaller and larger numbers of items
than above and a fixed δ. Since we include n into the hash size
calculations (ref. Section 8.4), there should be no changes in the
accuracy for different n. For small n, however, hash collisions
in the first tree levels, i.e. with the biggest impact as shown by
|∆| missed, are more likely to occur in the 1 000 simulations shown. For higher
n, they cause more failures and—to fulfil FR—they thus need to be less likely
and are apparently not caught by our number of simulations. Costs increase
with O(n · log n) for n→∞, |∆| ∈ O(n) and FR, b constant as expected by
eq. (8.10) (page 128) and indicated by a slight relative increase towards the
naïve transfer costsh for n = 4 096 000 compared to n = 4 000. Eventually, the
number of bits needed to distinguish different items under FR is higher than
the number of bits available for the keys. In that case, however, we may need
larger item key hashes to distinguish the items anyway.
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Figure 8.20: Merkle reconciliation (v = 4, b = 2) scalability with data size n
and different FR.

hNote that Merkle reconciliation uses a maximum of 160 bits for its tree hashes as opposed
to the 128 bit hashes used by the algorithms above and the naïve transfer costs as presented
here for comparison.
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8.7.6 Scalability with the Target Failure Rate FR

n = 100 000
datarand

δ = 3%
δexp = δ
fail rand

Figure 8.21 shows how the communication costs of the Merkle
reconciliation (v = 4, b = 2) evolve with different target failure
rates FR and fixed n which extends the observations from the
evaluations above. Regarding the accuracy, we verify that the
target FR holds and that the accuracy is, on average, much
lower than FR due to our worst-case assumptions and, especially,

the inability to make use of δexp in lower levels of the tree, using a common
τ for all nodes of a tree level, or assuming distinct items between the leaves
of phase 2 (also ref. Section 8.5). For FR below a certain threshold, though,
the given values are not representative anymore since the probability of any
failure occurring at all is too low to always be visible in our 1 000 simulations.
The results for the costs, however, are representative in all scenarios and show
a progression with O(log(1/FR)) for n, |∆|, and b constant as expected by
eq. (8.10) (page 128).

0.0001
0.01

1
100

|Δ
| m

is
se

d
 

merklev4, b2

0.0001
0.01
1
100

0.0001
0.01

1
100

R
ed

.

0.0001
0.01
1
100

merklev4, b2

     0

    20

    40

    60

    80

   100

   120

   140

0.0001

0.001
0.01

0.1
1 10 100

T
ra

n
sf

er
 c

o
st

s 
(p

h
as

e 
1+

2)
 in

 K
iB

FR (outdated δ)

merklev4, b2

0.0001

0.001
0.01

0.1
1 10 100

0     

20    

40    

60    

80    

100   

120   

140   

FR (missing δ)

Figure 8.21: Merkle reconciliation (v = 4, b = 2) scalability with the target
failure rate FR (log10 scale on the x-axis and on the y-axis except for the
transfer costs).
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Chapter 9

Comparative Evaluation

Chapters 5 to 8 applied our accuracy model from Section 2.5 to four different
set reconciliation algorithms and individually evaluated their performance
with respect to costs and accuracy in different scenarios, i.e. different δ
and FR, inaccuracies in δexp, different data and failure distributions, and the
scalability in both the system size n and the target failure rate FR. This
chapter aims at comparing these four algorithms altogether and verifying that
the accuracy model’s main goal of offering a method to fairly compare different
set reconciliation algorithms is achieved.

From a theoretical point of view, the complexity of the communication
costs of both phases, as summarised by Table 9.1, is only slightly different.
After considering |∆| ∈ O(n), we may even subsume O (n · log(n/FR)) for all of
them. The following sections will thus evaluate the differences of the empirical
evaluations described above. We will also compare our algorithms with the
unoptimised rsync implementation of Chapter 4 that uses a blocksize of 64 bits
and full 128 bit hashes, i.e. rsync64,cs128, to put the results into perspectivea .

Table 9.1: Communication costs complexity for n, |∆| → ∞, FR → 0.

Rsync O(n) (ref. Section 4.3.3)

Trivial O
(︃
n · log n

FR
+ |∆| · log n

)︃
(ref. eq. (5.7), page 57)

SHash O
(︃
n · log |∆|

FR
+ |∆| · log n · |∆|

FR

)︃
(ref. eq. (6.12), page 76)

Bloom O
(︃
n · log |∆|

FR
+ |∆| · log |∆|

FR

)︃
(ref. eq. (7.16), page 97)

Merkle
(perfectly balanced)

O
(︃
n

b
· log n

FR
+ |∆| · log |∆|

FR

)︃
(ref. eq. (8.10), page 128)

aPlease recall that we could apply rsync’s optimisations to our algorithms as well and
then compare against an ordinary rsync implementation with similar results.
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9.1 General Analysis for Different δ and FR

n = 100 000
datarand

δ = variable
δexp = δ
fail rand

Figures 9.1 and 9.2 show the results for all algorithms with
δ ∈ (0, 10]% and δ ∈ (0, 100]%, respectively, with a common
FR = 10 as their target rateb . For very low δ, we can observe
the degradation of SHash reconciliation costs into a trivial
reconciliation. The failures, however, are considerably reduced
compared to the trivial reconciliation since here, in phase 2,

we wrongly assume δ = 100% and thus choose higher hash sizes based on
the assumption of phase 1 filtering out common items. This also explains the
slightly increased costs compared to the trivial reconciliation alone. Bloom and
Merkle reconciliation do not expose a degradation and thus scale better for
lower δ, even if the proposed SHash degradation fix (ref. page 83) was applied.
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Figure 9.1: Comparison for FR = 10 with small differences 0.2% ≤ δ ≤ 1%.

Only the trivial reconciliation is able to reach the target FR on average and
thus does not waste resources, for both ranges of δ. For the other algorithms,
the worst-case(s) seem to occur more rarely but might have bigger impacts
when present. Since we always account for them, we thus waste resources in

bOther target rates than FR = 10 lead to similar results than the ones given. Plots
showing their results for 2% ≤ δ ≤ 10% are given in Appendix A.3.1. We chose to present
FR = 10 here to show the fluctuations of the Merkle reconciliation in the 1 000 simulations.
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Figure 9.2: Comparison for FR = 10 with differences 2% ≤ δ ≤ 10%.

the average case. Merkle reconciliation has the highest fluctuations (shown by
the standard deviation) due to hash collisions in higher tree levels leading to
many more failures than a single hash collision in a Bloom filter, for example.

Regarding the costs, the lower δ, the higher the advantage of the Merkle
reconciliation over the other algorithms (at the cost of an increased number
of message rounds, ref. Section 8.7). SHash is the cheapest for any δ ⪆ 9%
although the difference to Merkle reconciliation is small (also ref. Figure 9.3 be-
low). Among the O(1)-round algorithms, SHash has the lowest costs, except for
δ < 1% where Bloom filters are better and SHash degrades. For δ ≤ 10%, the
trivial reconciliation costs are always lower than the unoptimised rsync64,cs128
but also always higher than our other approximate set reconciliation algorithms
and 3-5 times more expensive than the cheapest O(1)-round one. The higher
δ, the more blocks are different for any rsync-based algorithm and the more
expensive it is. Eventually, it degrades to sending the whole key-version list plus
all block hashes and is more expensive than the naïve algorithm transferring
only the key-version list which is roughly 2MiB here (also ref. Section 4.3).

For even higher δ—which may be considered an uncommon case—, SHash
remains the cheapest algorithm until the trivial algorithm achieves lower costs
around δ ≈ 50% in the outdated scenario and δ ≈ 70% in the missing scenario
(ref. Figure 9.3). Eventually, depending on the sizes of the payload behind the
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set reconciliation, it may even be cheaper to simply transfer all values. With
more items being different, hash collisions leading to redundant item transfers as
in the trivial reconciliation may actually transmit an item to update/regenerate
and not cause a redundant transfer after all. Therefore, especially in the missing
scenario, failures are reduced with higher δ. For Merkle reconciliation, with
higher δ the worst-case assumption of a common τ for all nodes of a tree level
is closer to the actual presence of failures and may lead to failure rates closer
to the target FR.
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Figure 9.3: Comparison for FR = 10 with high differences 20% ≤ δ ≤ 100%.
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9.2 What if δexp is Wrong?

n = 100 000
datarand

δ = 100%
δexp = δ vs. 1 %
fail rand

A crucial part in each of our approximate algorithms is the
correctness of δexp which we assume based on Section 2.4. To
see the effects of an incorrect δexp, Figure 9.4 presents both
accuracy metrics (with a log10 scale) as well as the transfer costs
(linear scale) of the difference of δexp = 100% versus δexp = 1%
in scenarios with δ = 100% (further values of δ may be found
in the individual evaluations above). Results are given grouped by algorithm
on the x-axis (without rsync since it does not use δexp).
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Figure 9.4: Comparison for correct δexp = 100% vs. too low δexp = 1% for
δ := 100% and each of our four approximate set reconciliation methods.

All of our approximate set reconciliation methods have reduced costs for
lower δexp but also a lower accuracy. Trivial reconciliation is the least affected
one due to ñ only changing from 100 000 to 50 252 (ref. Section 5.6.2) while
SHash’s is most affected with its collision sets’ sizes ñX∈{A∆,B∆} changing from
100 000 to 1 006 (ref. Section 6.6.2) for δexp = 100% and δexp = 1%, respectively.
Although having the same collision sets, Bloom filters retain a higher accuracy
than SHash due to a more sophisticated data structure with more fine-grained
control (number of bits in total vs. number of bits per item). Merkle tree
reconciliation seems even less sensitive to wrong δexp but please recall that
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changes in δexp mostly affect the upper tree levels where hash collisions cause
many errors but are made unlikely. With even more simulations than 1 000,
more collisions may manifest and thus possibly also show a higher average
number of failures. At the same time, however, the savings in the costs
are negligible since the upper tree levels do not have too many hashes (ref.
Section 8.7.3).

9.3 Data and Failure Distribution Sensitivity

n = 100 000
datarand , bin 0.2

δ = 10%
δexp = δ
fail rand , bin0.2

As shown by Figure 9.5, skewed data and failure distributions
only marginally affect the accuracy of our approximate set
reconciliation algorithms, mostly caused by the normal fluctu-
ations due to the randomness of our simulations. At least the
target FR should never be exceeded since we always accounted
for the worst case in the setup of the algorithms.
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Figure 9.5: Influence of different data and failure distributions on each algorithm
relative to datarand , fail rand .

On the other hand, skewed data and failure distributions may have a bigger
effect on the costs as shown for the Merkle tree reconciliation. There, the
structure of the Merkle tree depends on the data distribution resulting in a
roughly 5% decrease of the costs compared to a uniform distribution due to
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higher bucket fill rates and despite an increased tree height (ref. Section 8.7.4,
also for a discussion on the implications on the number of message rounds).
Since skewed failure distributions—as the binomial distribution shown here—
result in failures clustering in certain regions of the tree, more sub-trees with
common items may be skipped during the reconciliation. The fewer the number
of failures, the higher the effect and here, for δ = 10%, costs are reduced by
almost 70 % and 90% for the outdated and missing scenarios, respectively. In
contrast, trivial, SHash, and Bloom filter reconciliations are only marginally
affected due to their hash-based data structure which effectively compensates
for different data or failure distributions.

9.4 Scalability with the System Size n

n = variable
datarand

δ = 3%
δexp = δ
fail rand

Although the communication costs complexity for all our set
reconciliation algorithms is the same, i.e. O (n · log(n/FR)) for
n→∞, FR → 0 (ref. Table 9.1, page 149 with |∆| ∈ O(n)),
Figure 9.6 shows the practical differences of these algorithms
with increasing n but keeping FR and δ constant. Firstly, the
accuracy seems unaffected by increasing n as expected, since
we include n into the hash size calculations. Please note that although missed
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Figure 9.6: Scalability for FR = 10 with data size n (δ = 3%).
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∆ for Merkle reconciliation seems to decrease with n, this is just an artefact
of bigger-impact hash collisions being too unlikely to occur within our 1 000
simulations (also ref. Section 8.7.5).

Regarding the costs, we do see a linear progression from the naïve and
rsync reconciliations (please note the log4 scale on both axes). The costs of
all approximate set reconciliations is increasing towards these and thus has
a steeper slope due to the O (n · log(n)) costs complexity here. Trivial and
Merkle reconciliation exhibit the lowest slope and thus scale better with n
than Bloom filters and SHash who progress more quickly towards the naïve
algorithm. Also note the SHash degradation for low n as discussed in Chapter 6.
Table 9.2 presents a subset of this plot in numbers, i.e. the overall transfer costs
of the outdated scenario, to make this effect more visible. With these numbers
and the factors between different n, we are able to see that trivial scales even
slightly better than the Merkle reconciliation, albeit at a 5-6 times higher costs,
still valid for n = 4096 000. They also reveal a sub-linear increase of costs for
the Merkle reconciliation for n = 4000 vs. n = 16 000 which is, however, only
caused by smaller trees not being as efficient as larger trees caused by—not
only—our interval splits (also ref. Sections 8.5 and 8.7).

Table 9.2: Total transfer costs (in KiB) with data size n (outdated
items with δ = 3%, FR = 10).

n/103 Naïve Trivial SHash Bloom Merklev4,b2

4 ≤ 78.1 19.6 18.6 6.1 3.5
x 4.00 x 4.00 x 4.03 x 1.21 x 4.92 x 3.80

16 ≤ 312.5 79.1 22.6 29.9 13.1
x 4.00 x 4.00 x 4.25 x 3.68 x 4.83 x 4.20

64 ≤ 1250.0 336.2 82.9 144.4 55.1
x 4.00 x 4.00 x 4.18 x 4.50 x 4.85 x 4.27

256 ≤ 5000.0 1404.7 373.6 700.1 235.1
x 4.00 x 4.00 x 4.20 x 4.69 x 4.64 x 4.33

1024 ≤ 20000.0 5894.7 1753.0 3248.1 1019.4
x 4.00 x 4.00 x 4.18 x 4.54 x 4.58 x 4.31

4096 ≤ 80000.0 24625.0 7955.2 14874.3 4388.9
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9.5 Scalability with the Target Failure Rate FR

n = 100 000
datarand

δ = 3%
δexp = δ
fail rand

Similarly to the scalability with the system size n, if keeping n
fixed and looking at the algorithms for FR → 0, all our approx-
imate reconciliation algorithms have the same communication
costs complexity of O (log(1/FR)) (ref. Table 9.1, page 149 with
|∆| ∈ O(n)). The practical differences are shown by Figure 9.7
where we observe Merkle reconciliation costs increasing the
least from FR = 100 towards FR = 0.0001. Bloom filters costs, on the other
hand, increase the most and do not scale well with FR → 0. Except for the
SHash degradation for high FR (and/or low n) as shown, SHash and trivial
costs scale similarly due to similar techniques being used.

Regarding accuracy, we verify that all our approximate set reconciliation
algorithms fulfil the configured target FR with some deviations for low FR in the
trivial reconciliation. Please note, however, that in order to be representative
even for low FR, we would need more than 1 000 simulations. Additionally
to the low FR, this is also algorithm-specific since failures may have different
severity and thus even lower probabilities of occurring each. As a result, the
average (absolute) number of failures—as shown—may get too high or too low
depending on whether failures occur or not.
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Figure 9.7: Scalability with the target failure rate FR (log10 scale on the x-axis
and on the y-axis except for the transfer costs).
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9.6 Applicability and Limitations of our Accu-
racy Model

In the analysis and evaluations above, we have shown that our accuracy model
of enforcing a fixed (and close) upper bound FR on the failure rate (per set
reconciliation; ref. Section 2.5) works well for the given set reconciliation
algorithms and reduces the number of accuracy-influencing parameters to just
one, i.e. FR. This common parameter allows the user to define a scenario-
independent accuracy that an algorithm should obey. It thus allows a fair
comparison of different algorithms as shown above. Without FR, a fair compar-
ison would be difficult since each data point may require different parameters
for the algorithms in order to achieve a similar accuracy. This is especially
true for the evaluation of the scalability in the system size n but also applies
to fixed n where different values of δ may require different parameters.

The scenario-independence of our upper-bound accuracy model, however,
also implies using worst-case assumptions in many cases which lead to the
actual average failure rates being well below FR in various scenarios. This
effect becomes more apparent the more advanced the algorithms and their data
structure become and is most visible in the Merkle tree based set reconciliation
(ref. Figure 9.7 above). For any given scenario, e.g. a specific item or failure
distribution, we may be able to tune the algorithms’ accuracy-influencing
parameters in a way such that the average failure rate fulfils FR, instead. This
would be a fair comparison for a specific scenario, while our approach is more
generic and fair for any scenario. With the scenario-specific tuning, we can
expect reduced costs for otherwise too accurate algorithms as shown above.

We have shown how to apply our accuracy model to four different approxi-
mate set reconciliation algorithms but are certain it can be applied to a greater
set of (approximate) algorithms (ref. Section 2.3) due to its generality. However,
more complex formulae for the calculations of the accuracy as for the counting
Bloom filters (eqs. (2.11) and (2.12), page 23), for example, may hinder a direct
analysis and calculations of optimal parameters. In these cases, we may use
other techniques such as sampling to find accuracy-influencing parameters that
closely fulfil FR.
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Chapter 10

Conclusion

In this thesis, we presented a novel and generic accuracy model for approximate
set reconciliation algorithms that allows a fair comparison. This model accounts
for both types of failures during set reconciliation, i.e. false-negatives (missing
differences) and false-positives (superfluous differences which lead to unnecessary
item transfers when resolved), and enforces an upper bound on these failures.

We have shown our accuracy model’s generality by applying it to four
different approximate set reconciliation algorithms: two simple hash-based
approaches, one based on Bloom filters and one based on Merkle trees. For each
of these algorithms, we derived any accuracy-influencing parameter(s) from a
common failure bound FR and thus reduced the number of accuracy-influencing
parameters to just one which is also easier to handle. By applying our accuracy
model, we also created a new (approximate) variant of a Merkle tree based set
reconciliation algorithm with adjustable accuracy. Since this variant includes a
second phase for reconciling Merkle tree buckets, it also sheds some new light on
the bucketing of items in the Merkle tree’s leaf nodes. Normally, grouping more
than one item there results in increased costs if only a few of them actually
differ. With our implementation, bucketing savings in the Merkle tree do not
only reduce the number of message rounds but may also outweigh the costs of
the second phase.

We analysed and evaluated each of the resulting four algorithms extensively
in terms of their accuracy, bandwidth usage, and scalability to verify the
correctness and usefulness of our accuracy model. As expected, all algorithms
achieve an accuracy within the given bound but may not get too close to this
bound in a specific scenario since we decided to follow this bound even in worst
case scenarios. However, if desired—and more details about the application
scenario of an algorithm, e.g. a failure distribution, are known—we may be
able to adjust our accuracy model and the algorithm to generate a less generic
but more efficient variant.

Regarding the transfer costs, all algorithms are within O (n · log(n/FR)) with
Bloom filter reconciliation even achieving O (n · log(|∆|/FR)) and SHash being
between these two (ref. Table 9.1 on page 149 for more details). In the practical
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evaluation, however, the multi-round Merkle tree reconciliation achieves an order
of magnitude lower transfer costs in low-difference scenarios which eventually
level out with the SHash costs around δ ≈ 10%. Two more results stand
out: (a) as opposed to an ordinary (almost-exact) Merkle tree reconciliation
which was said not to be efficient beyond δ = 5% compared to the naïve
approach [14], our optimised approximate Merkle tree reconciliation has lower
transfer costs for up to δ ≈ 50% differences compared to its counterpart, the
approximate trivial reconciliation, and (b) except for the SHash degradation
for low δ and/or high FR, SHash is more efficient than the more advanced (and
more CPU-intensive) Bloom filter. Further investigations may find a variant
that attenuates the degradation but ultimately, only Bloom filters are able
to efficiently encode each item with less than a few bytes (or even one byte)
each. Figure 10.1 shows a concise summary of which algorithms perform best
depending on different values of δ.

0% 15% 50% 100%δ:

Merkle,
SHash, Bloom SHash, Bloom Trivial

Figure 10.1: Best overall algorithms for different δ based on their empirical
communication costs.
(Please recall that Merkle tree reconciliation uses more round-trips than the others and that
SHash degrades for low n, δ, and/or high FR.)

A final note about the usefulness of having accuracy-limited approximate
set reconciliation algorithms: these (cheap) algorithms may be used at high
frequencies by a set reconciliation service which may also combine them with
exact reconciliations at lower frequencies to achieve quick reactions to failures
at low costs and catch any missing items from the approximate algorithms
at defined intervals. It may however already be sufficient to only execute
the approximate algorithms at higher frequencies. To avoid running into the
same collisions among different executions of the same algorithm, though, each
execution should use a different salt for their hash function which may be added
to all contents before being hashed.

160 Chapter 10. Conclusion



Appendix A

Additional Plots and Code

A.1 Naïve and Rsync Reconciliation

crypto:start().
Random = fun(Min , Max) -> crypto:rand_uniform(Min , Max) end.
Stats =
fun([]) -> {0, 0, 0, 0};

([_|_] = TList) ->
{Len , Sum , Sum2 , Min , Max} =
lists:foldl(fun(E, {L, X1 , X2, Min , Max}) ->

{L + 1, X1 + E, X2 + E * E,
min(E, Min), max(E, Max)}

end , {0, 0, 0, 0, 0}, TList),
% pay attention to possible loss of precision here:
{Sum / Len , math:sqrt((Len * Sum2 - Sum * Sum) / (Len *

Len)), Min , Max}
end.

ToInt = fun(S) -> list_to_integer([X || X <- S, X =/= $,]) end.

KMax = 16#100000000000000000000000000000000. % 128 bits
VMax = 16#100000. VDiffMax = 512. % 20 bits
N = 100000. Deltas = [0,2,4,6,8,10]. Repeats = 100.
{ok , Pat} = re:compile("sent ([0-9,]+) bytes\s+received ([0-9,]

+) bytes\s+[0-9,\.]+ bytes/sec"),

A = lists:ukeysort(2, [{I, Random(0, KMax), Random(1, VMax)}
|| I <- lists:seq(1, N)]), N = length(A).

[spawn(fun() ->
receive {go, Src} -> ok end ,
BName= lists:flatten(io_lib:format("B_∼w∼B",[FType , Delta])),
AName= lists:flatten(io_lib:format("A_∼w∼B",[FType , Delta])),
{Naive , RSDef , RSRest} = lists:unzip3(
[begin

io:format("∼B ", [J]),
{Bin0 , Bin1} = lists:unzip(
[begin

KV1 = <<K:128, V1:32>>,
if
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I >= (Delta * N) div 100 + 1 ->
{KV1 , KV1};

FType =:= upd ->
V2 = max(0, V1 - Random(1, VDiffMax)),
KV2 = <<K:128, V2:32>>,
case Random(0, 2) of 0 -> {KV1 , KV2}; 1 -> {KV2 , KV1}

end;
FType =:= reg ->
KV2 = <<>>,
case Random(0, 2) of 0 -> {KV1 , KV2}; 1 -> {KV2 , KV1}

end
end

end || {I, K, V1} <- A]),
BBin = list_to_binary(Bin1), ABin = list_to_binary(Bin0),
Naive = byte_size(zlib:compress(BBin)),
[RS32 , RS64 , RS128 , RSDef] =
[begin

file:write_file(BName , BBin),
file:write_file(AName , ABin),
RSync = os:cmd("rsync -Iz --no-W " ++ BS ++ " --stats "

++ BName ++ " " ++ AName),
{match , [_, Sent0 , Rcv0]} = re:run(RSync , Pat , [{

capture , all , list}]),
ToInt(Sent0) + ToInt(Rcv0)

end || BS <- ["-B32", "-B64", "-B128", ""]],
{Naive , RSDef , {RS32 , RS64 , RS128}}

end || J <- lists:seq(1, Repeats)]),
{RS32 , RS64 , RS128} = lists:unzip3(RSRest),
Src ! {Delta , FType , Naive , RSDef , RS32 , RS64 , RS128},
file:delete(AName), file:delete(BName)

end) ! {go, self()}
|| Delta <- Deltas , FType <- [upd , reg]], ok.

[receive {Delta , FType , Naive , RSDef , RS32 , RS64 , RS128} ->
io:format("∼n∼w ∼B∼n", [FType , Delta]),
[begin

{ok , File} = file:open(io_lib:format("∼w_∼w_∼3..0B.dat", [
Alg , FType , Delta]), [write]),

io:fwrite(File , "∼p ∼p ∼B ∼B", tuple_to_list(Stats(RC))),
file:close(File)

end || {Alg , RC} <- [{naive , Naive}, {rsync , RSDef}, {
rsync32 , RS32}, {rsync64 , RS64}, {rsync128 , RS128}]]

end || Delta <- Deltas , FType <- [upd , reg]], ok.

Listing A.1: Naïve and rsync simulation script (Erlang 18.0 code).
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A.2 Merkle Tree

A.2.1 Effective Worst-Case Accuracy
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Figure A.1: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, outdated
scenario, δ = 1%, different FR and n (error bars = standard deviation).
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Figure A.2: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, outdated
scenario, δ = 10%, different FR and n (error bars = standard deviation).
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Figure A.3: Merkle v = 4, b = 1 effective worst-case failure rate fr ′m, outdated
scenario, δ = 1%, different FR and n (error bars = standard deviation).
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Figure A.4: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, missing
scenario, δ = 1%, different FR and n (error bars = standard deviation).
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Figure A.5: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, missing
scenario, δ = 10%, different FR and n (error bars = standard deviation).
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Figure A.6: Merkle v = 4, b = 1 effective worst-case failure rate fr ′m, missing
scenario, δ = 1%, different FR and n (error bars = standard deviation).
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Binomially Distributed Item Keys and Failures
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Figure A.7: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, outdated
scenario for different FR and n with a binomial data and failure distribution
(error bars = standard deviation).
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Figure A.8: Merkle v = 4, b = 3 effective worst-case failure rate fr ′m, missing
scenario for different FR and n with a binomial data and failure distribution
(error bars = standard deviation).
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A.2.2 Evaluation

Parameter Space Exploration

Figures A.9 to A.11 show Merkle tree parameter sweeps of v ∈ [2, 16] and
b ∈ [1, 16] with different δ and FR than Figure 8.11 on page 137. As shown,
differences in FR do not seem to change much in neither the relative transfer
costs nor the absolute numbers of message rounds. Different values of δ, however,
do change both metrics but not the region of parameters optimal with regards
to transfer costs, i.e. v ∈ {3, 4} with b = 2 and b = 1 for the outdated and
missing scenarios, respectively.
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Figure A.9: Merkle reconciliation transfer costs (heatmap) and number of
messages (in white) with FR = 10 and different v and b for δexp = δ = 2%.
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Figure A.10: Merkle reconciliation transfer costs (heatmap) and number of
messages (in white) with FR = 0.1 and different v and b for δexp = δ = 0.2%.
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Figure A.11: Merkle reconciliation transfer costs (heatmap) and number of
messages (in white) with FR = 10 and different v and b for δexp = δ = 0.2%.
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A.2.3 General Analysis for Different δ and FR
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Figure A.12: Merkle reconciliation for small δ, fixed b but varying v.
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Figure A.13: Merkle reconciliation for high δ, fixed b but varying v.
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Figure A.14: Merkle reconciliation for small δ, fixed v but varying b.
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Figure A.15: Merkle reconciliation for high δ, fixed v but varying b.
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A.2.4 What if δexp is Wrong?
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Figure A.16: Merkle reconciliation with very small δ and different δexp .
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Figure A.17: Merkle reconciliation with small δ and different δexp .
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A.3 Comparative Evaluation

A.3.1 General Analysis for Different δ and FR
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Figure A.18: Comparison for FR = 0.1 with small δ.
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Figure A.19: Comparison for FR = 0.001 with small δ.
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