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Abstract

Integrated access to information that is spread over multiple, distributed, and het-
erogeneous sources is an important problem in many scientific and commercial domains.
Typically there are many ways to obtain answers to a global query, using data from differ-
ent sources in different combinations, but in general, it is prohibitively expensive to obtain
all answers. While much work has been done on query processing and choosing plans un-
der cost criteria, very little is known about the important problem of incorporating the
information quality aspect into query planning.

In this paper we describe a framework for multidatabase query processing that fully
includes the quality of information in many facets, such as completeness, timeliness, accu-
racy, etc. We seamlessly include information quality into a multidatabase query processor
based on a view-rewriting mechanism. We model information quality at different lev-
els: First, we perform a quality-driven source selection and continue only with the best
sources. Second, we compute query-dependent information quality of the view definitions
that describe the content of sources. Finally we determine the overall quality of plan
alternatives by aggregating these information quality scores to find a set of high-quality
query-answering plans.

1 Introduction

Integrated access to information that is spread over multiple, distributed and heterogeneous
sources is an important problem in many scientific disciplines. For instance, a current list of
molecular biology information systems (MBIS) enumerates more than 400 entries [Inf98] of
publicly available data sources. These are frequently overlapping, replicated, or disjoint both
in the type of data they store, as in the actual objects they contain: a particular gene of
the human X chromosome is described in different facets in multiple sources: phenotype and
related diseases in a source for human genes [McK94], location information in a source for
X chromosome specific data [LWG™98] or in a source for the entire human genome [LCPL9S],
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known mutations in mutation databases, sequences in the sequence databases [SMS'98] or
from the sequencing institute directly etc. All these databases store data of varying quality.
Considering for instance accuracy, one source might present only unprocessed, raw results
while another source might offer confirmed results. Considering timeliness, one source pro-
vides results that are years old (but possibly still important) while another is continuously
updated.

Providing an integrated, homogeneous and comprehensive access mechanism in such a
framework is considered as one of the “most pressing problems” in genome research today
[Rob95]. From the computer science point of view, it is tackled by techniques such as federated
databases [SL90] or mediator-based data integration systems [Wie92]. In our work we focus
on virtual, tightly integrated, structured integration systems for mainly two reasons:

e We believe that only tight federations, i.e., federations that have one single, non-
redundant and homogeneous schema, offer a sufficient degree of abstraction and comfort
for an average user. We do not consider the process of creating this integrated schema
(see for instance [BLN86]), but proceed in a top-down fashion: assuming the existence
of a global schema, we describe the content of data sources with respect to this schema
in form of rules.

e We deploy a virtual integration process since data in molecular biology is produced very
rapidly, and access to the most actual data is often crucial.

In this setting, it is the task of a mediator to automatically decompose, translate and dis-
tribute queries against the global schema into queries against physical data sources.

Unfortunately, there usually are many ways to answer a global query, using data from
different sources in different combinations. For instance, there are numerous sources that
hold mapping information of the human X chromosome [LLRC98]. Each of these sources
is potentially interesting for a global query requiring such data, but executing all possible
combinations is infeasible. The mediator, therefore, must choose between logically equivalent
sources. Naturally, this selection should regard the quality of the data, comprising criteria
such as timeliness, completeness, accuracy etc. Considering information quality (IQ) during
query processing is very important in a scientific and especially statistical context for several
reasons: First, there are simply too many relevant sources with varying 1Q, so selecting the
“best” is essential. The goodness of a plan depends primarily on the expected quality of the
results and not on pure technical criteria such as response time. Poor IQ can have considerable
social and economic impact [WS96]. For example, missing year 2000 compliance is just one
example of many others. Second, scientific databases are very sensitive regarding timeliness
and accuracy of data; results become outdated quickly, and the intrinsic fuzziness of many
experimental techniques leads to data of varying quality, depending on the quality standards
of a particular data source. Finally, the result of the integration process is directly influenced
by data quality. A large company has reported, that up to 60% of the information integrated
to their data warehouse was unusable due to the poor quality of the input data [Orr98].

In this paper we describe our approach to a tight integration of classical query planning,
which tries to find correct combinations of source queries for a given global query, with
the assessment and consideration of information quality for source selection. We extend
an existing framework for query planning [Les98] which is based on rules that define the
semantic relationship between queries. We found this level of granularity very helpful since
many I1Q criteria cannot be assigned to an entire source. For instance, one source might



be very up-to-date in the integration of X chromosome data and only occasionally include
Y chromosome data. Timeliness of this source cannot be described with one value, but is
naturally assigned to different queries against the source. Another example is a source which
offers two different interfaces, one using a simple WWW interface, the other being a direct
SQL channel. Logical query planning process must consider that the SQL interface can
probably answer more complex queries than the WWW interface - but the two ways of access
probably differ also in the average response time, the required amount of parsing, update
frequency, etc.

Our method therefore distinguishes between source-specific, query-specific and attribute-
specific quality criteria (see Section 3). We extend the existing planning algorithm with
two steps: First we reduce the overall number of sources in a pre-processing phase. This is
reasonable since it is often the case that certain sources are ‘worse’ than others in all criteria.
We however ensure not to lose any source that is unique in some aspect, i.e., the only source
storing a certain attribute value. Filtering sources is important since our planning algorithm
has time-complexity which is worst-case exponential in the number of correspondences and
hence roughly in the number of sources. Second, we rank all plans by evaluating query-specific
and attribute-specific IQ scores following the join-structure of a plan. We eventually execute
plans by decreasing quality until a stop criterion is reached: either the 10% best plans or
until a total quality threshold is reached.

Related work. Database interoperability and data integration for molecular biology data-
bases is addressed in a number of projects. For instance, OPM [CKM*98], P/FDM [KDGY6]
or bioKleisli [DOTW97] are multidatabase query languages that were developed especially
for this purpose. In these loosely coupled systems the database administrator can define in-
tegrated views which simulate a global schema. However, our planning mechanism is strictly
more powerful than views (see Section 2). The TAMBIS project [BBB*98] uses a formal
ontology for the integration of semantically heterogeneous data sources, but until now little
is known about their query planning and source selection methods.

Our logical planning method uses a local-as-view approach ([Ul197]) similar to the Infor-
mation Manifold ([LRO96]) or InfoMaster ([DG97]). However, our notion of query correspon-
dence assertions is an extension to the ideas of these projects in that it combines local-as-view
with global-as-view modeling. In [Les98], we presented an improved algorithm for the query
planning problem in this framework. However, the pure planning is not the focus of this
paper, but the interleaving of logical planning with quality considerations.

There is much research showing the importance of information quality for businesses and
users [WS96, Red98], many techniques have been proposed to improve and maintain quality of
individual information sources [Wan98], However, none of the mentioned integration projects
considers information quality in any way. With the exception of TAMBIS, users must always
specify exactly which sources shall be used for the different relations or classes of their queries.
Quality-driven source selection and plan selection is not possible in these systems.

Several research projects such as the GIOSS system [GGMT94] or the Information Mani-
fold [FKL97] focussed on the problem of source selection for text based information systems.
However, selection is typically confined to criteria used in information retrieval systems using
word-counting measures or to traditional DBMS criteria such as response time.
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Figure 1: Integration architecture: Source contents described with set of QCAs

Structure of this paper. In this work we describe a framework for a quality-driven query
processor. We shortly describe the logical query processing in Section 2. Section 3 formally
introduces information quality as a set of properties together with methods to determine their
values. In Section 4 we then show how IQ plays a decisive role in query processing and leads
to better final results. We conclude in Section 5 and give a brief outlook to future work.

2 Logical Planning of Queries

Our framework is based on a declarative approach to query processing in heterogeneous
environments. For space limitations we describe the framework only very briefly. Details can
be found in [Les99, Les98].

Our system refines the generic wrapper - mediator architecture described in [Wie92] (see
Figure 1). It uses the relational data model inside the mediator. We assume that each
data source is wrapped by a source-specific module. The task of this wrapper is to offer a
relational export schema and query interface, hiding the particular data model, access path,
and interface technology. Wrappers are used by mediators which integrate the data from
different wrappers.

Example. We will use the following example throughout the paper, demonstarting the
flavor of our approach. The example contains various simplifications, such as object names
as global keys or equivalence of attribute units, domain and structure. For space limitations
we refrain from using real-life information systems but describe some fictitious sources with
fictitious IQ scores. We describe a global mediator storing data about genes. Our global
schema is given in Table 1. The mediator considers 5 different sources, shortly described in
Table 2. Using these sources, we answer a user query for all genes of the X chromosome
together with their related diseases, sequence, origin, and annotations (Section 4).

To answer queries and to select sources, a mediator must know the content of each source
with respect to its own schema. This knowledge is encoded in sets of query correspondence
assertions (QCAs), that are set-oriented equations between relations of a source and relations
of the mediator’s global schema. QCAs are specified by a human administrator and form the



gene(Gn,Di) Gene relation storing gene names and related diseases.
sequence(Gn,Se,Or,An) | Sequence relation storing the nucleotide sequence of genes, to-
gether with origin and annotation.

EST(En,Ch,Po,P1,P2) | EST relation storing EST name, chromosome and position on
the chromosome, together with two primer sequences.
genecluster(Gn,En) Relates genes to EST clusters.

Table 1: Global schema of the mediator.

S1  Source 1 stores sequences which it copies infrequently from other sites, sometimes
introducing parsing errors.

SS9 Source 2 also copies sequence data from other sites, also infrequently updated, but
uses more sites and is hence more complete.

Ss  Source 3 is the WWW server of a research institute which does its own sequencing.
Sequence data is hence highly up-to-date, but only few annotations are provided.
Furthermore, the server is frequently unavailable.

Sy Source 4 is a renowned commercial provider of EST data. Provides two interfaces:
www is a WWW server. Use is free, but connection is slow and only the chromosome
location is retrievable. direct is a fast SQL connection through which clients can
retrieve all attributes, but there is a charge per query. Primer sequences are available
for 95% of their ESTs, positions on the chromosome for only 60%.

S5 Source b is a directly accessible relational database which stores mapping and sequence
data for genes. The schema is different than our global schema. The mediator uses
two queries: one relates genes and sequences, the other relates genes to their EST
clusters.

Table 2: Information sources with brief descriptions. For their interface relations as exposed
by a wrapper see Table 3.

basis for the semantic reasoning process performed inside the mediator. They only capture
the logical properties of sources; quality properties are defined in the next section. A QCA
has the general form:

M@ + Sivj +— WQ

where the mediator query M@ denotes a set of relations forming a conjunctive query that
specifies which data of the global schema are represented by the source. S;.v; is an arbitrary
view name, with the name of the source as prefix. The wrapper query W@ denotes the
corresponding query against the export schema of the source. Both queries M@ and WQ
must be conjunctive [AHV95], and the view must be safe in both directions, i.e., variables in
the view must appear in both queries. A QCA asserts that the tuples obtained by executing
W@, projected to the variables in S;.v;, contain only intensionally correct value combinations
for the appearances of the attributes of S;.v; in M Q.

For instance, the following simple QCA describes the content of Sy:

sequence(Gn,Se,Or,An) < S1.v1(Gn,Se,Or,An) < seq(Gn,Se,Or,An)

Global relations can appear in many QCAs. The extension of a global relation is defined
as the union over all wrapper relations that partly overlap. For instance, the global extension



of sequence would be the union over the extension of seq in sources Sy, S5 and S3. Describing
S5 requires two QCAs, one for each of the two queries used by the mediator:

gene(Gn,Di), sequence(Gn,Se,-,An) + S5.v1(Gn,Di,Se,An)
+ genes(GID,Gn,Di), genepart(GID,PID), part(PID,Se,An);
gene(Gn,-),genecluster(Gn,En), EST(En,Ch,--,-) + S5.v2(Gn,En,Ch,P1,P2)
+ clustering(Gn,En,CID), cluster(CID,Ch), primers(En,P1,P2);

See Table 3 for the list of QCAs that describe the content of the different sources in our
example.

S1: QCA; sequence(Gn, Se, Or, An) < S1.v1(Gn, Se, Or, An) < seq(Gn, Se, Or, An)

(
So: QCA, sequence(Gn, Se, Or, An) < S2.v1(Gn, Se, Or, An) + seq(Gn, Se, Or, An)

S3: QCA; sequence(Gn, Se, Or, An) < S3.v1(Gn, Se, Or, An) <+ seq(Gn, Se, Or, An)

Sy: QCA, EST(En, Ch, -, -, -) + S4.v1(En, Ch) + www(En, Ch)
QCA; EST(En, Ch, Po, P1, P2) < S4.v2(En, Ch, Po, P1, P2) « direct(En, Ch, Po, P1, P2)

S5 QCAg; gene(Gn, Di), sequence(Gn, Se, -, An) < S5.v1(Gn, Di, Se, An)
+ genes(GID, Gn, De), genepart(GID, PID, -), part(PID, Se, An)
QCA; gene(Gn, -), genecluster(Gn, En), EST(En, Ch, -, -, -) <= S5.v2(Gn, En, Ch, P1, P2)
+ clustering(Gn, En, Cl), cluster(Cl, Ch), primers(En, P1, P2)

Table 3: QCAs describing the semantics of the seven possible wrapper queries.

For a given user query against the mediator schema, the mediator tries to find combina-
tions of QCAs (plans) that are semantically contained [ASUT9] in the user query. We call
such a plan correct. In Section 4.2 we will briefly describe an algorithm which finds all correct
plans. Note that results obtained by executing different plans (there can be more than one)
will be different if they address different sources. The complete answer to a user query with
respect to the given QCAs is the union over the answers of all correct plans.

However, there can be prohibitively many correct plans. Consider a query asking for the
sequence of a specific gene. The mediator detects that S5 can be used for the gene part of
the query and S, So and S3 for the sequence-part. This already sums up to three different
plans. Suppose there are two more sources storing genes, the number of correct plans would
increase to nine. However, if the user is, for instance, particularly interested in complete
annotation, plans using S3 are not very promising; if highly up-to-date data is required, Sy
could probably be ignored. In the following sections we will show how we integrate logical
planning and information quality.

Note that our query planning is fundamentally different from classical query optimization
for relational DBMS: our planning finds plans that are correct and that possibly generate dif-
ferent results, while optimization considers different plans to execute a given query, producing
the same result.

3 Information Quality and Integrated Scientific Databases

There is no common or agreed definition or measure for information quality or the quality of
an information source, apart from such general notions as “fitness for use” [Jur74, TB98]. In
this section we define information quality (IQ) as a set of quality criteria. An information



source or a query plan achieves certain scores in each of these criteria. We aggregate the
scores to determine a total I1Q score using them to rank the sources and plans. Based on this
ranking we execute only the best plans with the best sources disregarding the rest. Several
questions arise: Which 1Q criteria define information quality, how can we measure quality,
and how do we evaluate the measured scores?

To answer the first question, Wang and Strong have empirically identified fifteen 1Q cri-
teria regarded by data consumers as the most important. They classified these into “intrinsic
quality”, “accessibility, “contextual quality”, and “representational quality” as shown in Ta-
ble 4 [WS96]. Their framework has already been used effectively in industry and government.
In the following chapter we adapt this set of criteria to the scope of molecular biology infor-
mation systems.

‘ IQ Category ‘ IQ Dimensions
Intrinsic 1Q Accuracy, Objectivity, Believability, Reputation
Accessibility 1Q Access, Security
Contextual 1Q Relevancy, Value-Added, Timeliness, Completeness, Amount of data

Representational Interpretability, Understandability, Concise representation, Consistent
1Q representation

Table 4: IQ Categories and Dimension by Wang and Strong

3.1 IQ Criteria for the Integration of Information Sources

As already mentioned in the introduction, it is not always sufficient to assign quality mea-
surements to entire sources. Since our planning process already uses queries as the basic level
of correspondence, it is natural to assign 1Q scores to QCAs. Furthermore, assessments can
even apply only to certain attributes. For instance, we described S3 as having relatively few
annotations attached to the sequences they store. In such cases, we need to define specifically
that the completeness of the annotation attribute in this QCA is not very high. We therefore
distinguish three classes of quality assignment, which are each treated differently:

e Source-specific criteria determine the overall quality of an information source. Criteria
of this category apply to all information of the source, independently from how it is
obtained. Criteria scores of this class stay unchanged as long as the source itself does
not dramatically change.

e QCA-specific criteria determine quality aspects of specific queries that are computable
by a source. Using this finer granularity, we can e.g. model different prices for different
queries. For instance, Sy charges a fee for queries as defined through QCA5 but not for
queries using QCA,.

e User query-specific criteria assess the quality of an information source in terms of an-
swering a specific user query. Hence the scores for these criteria can only be determined
at “query time”. For example, we calculate the appropriateness of a QCA for a query
and punish such QCAs that deliver unnecessary attributes. We also allow to discern
between the importance of single attributes of a user query (see completeness).



For the domain of Molecular Biology Information Systems we slightly modified the original
set of 1Q criteria by Wang and Strong considering the specific needs of biologists using the
systems and the properties of existing information systems. Criteria that are not applicable
to our area of discourse or data integration model are omitted. Also, we have added the two
criteria which play a particularly important role for MBIS, namely reliability and price, and
have split the accessibility criterion. Table 5 summarizes and categorizes the criteria used.
As usual, we assume independence of the criteria. In the section that follows we give a brief
explanation of each criterion.

Dependency Criterion Brief explanation (for details, see
below)
Source-specific Ease of understanding | User ranking
Reputation User ranking
Reliability Ranking of experimental method
Timeliness Average age of the data
QCA-specific Availability Percentage of time the source is
accessible
Price Monetary price of a query
Represent. Consistency | Wrapper workload
Response Time Average waiting time for response
Accuracy Percentage of objects without errors
Relevancy Percentage of real world objects
represented
User query-specific | Completeness Fullness of the relation
Amount Number of unwanted attributes

Table 5: Classification of Quality Criteria for MBISs

Please note that for such a classification it is not always clear which criterion fits in which
class of Table 5. For instance, if sources charge the same amount of money for each query,
the price criterion should be only source-specific. If, on the other hand, a source provides
data produced by different experimental methods, the reliability criterion should be QCA-
specific. Depending on the application domain and the structure of the available sources, the
classification may vary. Moving a criterion down the list, e.g., from source-specific to QCA-
specific, might increase the number of scores that have to be obtained a-priori; moving it up
loses the possibility to express fine-grained differences. Finally, if the information of a source
can be partitioned into sets with heavily diverging IQ scores, the QCAs of this source can be
split according to this partitioning and each new QCA will be given individual IQ scores.

3.2 Defining and Measuring IQ Criteria

In the following paragraphs we translate the written definition of each criterion from Wang
and Strongt [WS96] to a numerically measurable score or function. We are aware of the
difficulties of numerically expressing certain criteria, but since the absolute 1Q scores are
not important, but rather their relative values, we believe that our approach is reasonable.
Another problem that all projects addressing IQ are facing, is the question of objectivity of
scores. Some of the criteria below cannot be measured, but are highly subjective, such as



source reputation. We suggest user profiles, i.e., sets of IQ scores for all subjective criteria
that are set-up once by each user and then used for all its future queries.

Ease of understanding is the “extent to which data are clear without ambiguity and
easily comprehended.” (all citations from [WS96]) Since the actual information gained from a
source will be in relational form, Ease of understanding in terms of the data will be equal for all
sources. However when data is enhanced with other information of the source, such as exper-
imental method etc., or if a link to the source is added to the response, the understandability
of the source itself will be an issue.

The score for this criterion is a grade from 1 (not understandable) to 10 (very easily
understandable). It could possibly be determined with the help of a questionnaire.

Reputation is the “extent to which data are trusted or highly regarded in terms of their
source.” Reputation is, of course, a very personal criteria. However, we observed that most
biologists actually prefer certain sources over others for reasons that are not always clear.
For instance, people tend to trust data from their own institute more than external data, as
they also tend to prefer well-known sources. Reputation is of course highly subjective, but we
believe that the mediator must take into account the user’s preferences. Again, reputation is

a grade from 1 (bad reputation) to 10 (very good reputation).

Reliability is used to assess the methods that are used inside the source to generate or
to analyze data. Reliability is also a grade between 1 and 10. We use this newly introduced
criterion to discern between results from sources using different experimental methods. For
instance, YAC mapping data has to cope with the high rate of chimerism in many YAC
libraries, which sometimes makes results suspicious. Since many MBIS integrate data from
other sources, we use reliability also to assess the diligence of this process. For instance, a low
reliability score of such a ‘warehouse’ MBIS indicates frequent discrepancies to the original
data.

Timeliness is the “extent to which the age of the data is appropriate for the task at
hand”. In a fast growing area such as molecular biology it is reasonable to use the update-
frequency of data source rather than the average age of the data as criterion. To determine
the timeliness-score we rely on update information provided by the information source.

Availability of an information source is the probability that a feasible query is answered
in a given time range. Availability is a technical measure concerning hardware and software of
the source and the network connection between the mediator and the source. For simplicity,
we assume that a source either delivers its complete response or no response at all. A partial
response, which may occur if the system breaks down during transmission is counted as no
response.

Availability can be measured with the help of statistics derived from previous (calibration-)
queries to the information source. Knowledge of the technical equipment and software of the
information source can help determine availability. It is given as the percentage of time that
the source is accessible.

Price is a new criterion, which we added due to the growing importance of commercial
data providers in many application domains. It is the amount of (real) money a user has to
pay for a query and is given by the provider. We observed that commercial data providers
either charge on a subscription basis for their data set or on a pay-by-query basis. We assume



pay-by-query for our model; if sources have a subscription fee, the score of the price criterion
has to be estimated. The price per query is measured in US dollar.

Representational Consistency is the “extent to which data are always presented in the
same format and are compatible with previous data.” Since we review multiple sources, we
extend this definition to not only compare compatibility with previous data but also with
data of other sources. We assume wrappers to deliver a relational export schema which is
always consistent with the global schema against which we query.

Representational consistency is thus a criterion to measure the work of the wrapper nec-
essary to parse files, transform units and scales or translate identifiers into canonical object
names. We measure representational consistency as the average time consumption for this task.

Response Time is the amount of time between submission of the mediator query MQ
as defined by the QCA and receiving the result. It is measured in seconds. QCA-response
times can be identified using calibration techniques. Note, that we do not perform traditional
cost-based optimization. Response time is one quality criterion among many others.

Accuracy is the “extent to which data are correct, reliable and certified free of error.”
For our context this is the percentage of data without data errors such as non-unique keys
or out of range values. Such errors are usually produced during data input. Pierce gives a
survey of counting methods for data errors [Pie98]. We suggest a sampling based method,
where the overall number of errors is estimated using only a small sample. Accuracy is not
to be confused with intrinsic error rates of the experimental method which we capture in
Reliability.

Relevancy is the “extent to which data are applicable and helpful for the task at hand.”
Usually this criterion is regarded as highly user-dependent, since only the user can determine
whether something is relevant or not. This is true for information retrieval type queries, when
no schema is available. Since we use a relational schema against which user queries are posed,
the Relevancy score determines the percentage of real world objects the information source
has stored. Thus, it measures horizontal fitness of a source (see Figure 2).

For comparability and stability, we want to measure relevancy as a percentage, however,
using this unit comes with some difficulties. For example, consider vertical fitness regarding
human genes. One could try to use the absolute number of human genes, but this number is
not yet known. Using the current number of known genes would require a frequent adaptation
of scores. We therefore do not prescribe what number shall be used as the maximum value
and only require that the same value is used for all QCAs of a certain relation.

Completeness is the “extent to which data are of sufficient breadth, depth, and scope for
the task at hand”. We observed that not all attributes of a user query are equally important
for a user. It is quite common to pose queries such as “Give me all genes on Xq23 and their
exact locations - and, if possible, also related phenotypes”. A source that has more data for
the first two attributes is preferable to a source with less data for gene positions, but more
attached phenotypes.

Completeness is an attribute-level criterion directly depending on a user query, it cannot
be assessed in advance. Users specify a weighting together with the query by scoring each
attribute of the desired result with a score between 1 and 100 (very important). Furthermore,
we require that each key (that is used in a join) gets a score of 100 to be compatible with our
logical planner.
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Later on, we shall use this user query weighting together with the attribute-specific com-
pleteness measure in each QCA to calculate completeness scores for each attribute of a QCA
with respect to the user query. Hence, Completeness also measures the horizontal fitness of a
QCA (see Figure 2).

Amount is defined as the “extent to which the quantity or volume of available data is
appropriate”. While a large number of objects in a source is desirable (see relevancy), a too
large number of attributes is undesirable and inappropriate. Consider again the query for
genes on Xq23 and their locations. A source which automatically delivers a large amount of
additional attributes, creates an unnecessary large response which must be dealt with by the
mediator.

We measure Amount of a QCA as the number of unnecessary attributes it contains, i.e.,
attributes not selected in the user query. Thus, amount measures vertical fitness of a source,
as explained in Figure 2.

Gn Se An Gn Se Date An Pos.
100 % 80 % 50 % 100 % 80 % 80 % 80 % 100 %
DMD | CGAT... | musc. dyst. DMD | CGAT... | 1/1/98 musc. dystr. | Xp21
ETX1 null null ETX1 null 10/11/97 null Xp21
F8A | GACT.. null F8A | GACT... | 5/5/98 | Fact. 8-assoc. | Xq28
ZFX | GATT... zink-fing. LYP | ATTG... null lymph. synd. | Xq25

SYNI | TAGC... | 12/3/97 synapsin I Xpl1
ZFX | GATT... | 14/1/98 zink-finger Xp22

(a) horizontally unfit — few genes, (b) horizontally fit — many genes, good annotation; verti-
few annotations; vertically fit — ex- cally unfit — too many attributes
act attribute match

Figure 2: Two Sources for UQ = (Gn, Se, An)

Wang & Strong-criteria omitted. Some criteria can be omitted, mainly due to our use
of the relational model. We assume that the global relational schema models all desired data,
thus all correct answers to the user query are relevant. The same is true for the Value Added
criterion: The value of the response can be derived from the schema before queries are placed.
Concise Representation can again be omitted as a criterion, since we assume a relational global
schema and the response is as concise as the user states this in the user query. Interpretability
is the “extent to which data are in appropriate language and units and the data definitions
are clear.” In our relational model it is the responsibility of the wrapper to resolve any
discrepancies in format, units etc. Thus, this criterion is omitted. Objectivity was omitted
since we assume that all experiments resulting in database entries are performed unbiased.
Access Security is a criterion concerning the security of the users data. However, we solely deal
with read-only type information systems, where no user information is stored. Believability is
merged with the Reputation-criterion to minimize user-interaction with the system.
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4 Finding the Best Sources and Plans

Creating good execution plans for a user query in any DBMS involves a search space of all
plans and a valuation model to compare plans with one another. We propose a three-phase
approach to quality-driven information integration in multidatabases: In the first phase we
reduce computational cost of the second phase by filtering out low quality sources based on
the source-specific criteria, and by continuing with only the best sources. The second phase
uses the QCAs of the remaining sources to generate all correct plans, thus establishing the
search space for the last phase. In that phase we explore the entire search space using the
remaining criteria and choose the best plans for execution. For simplicity we do not apply
a search strategy to combine Phases 2 and 3, rather we materialize and examine the entire
search space. Input to our model is the set of IQ scores for the criteria as described in
Section 3.2. Some of these scores are predetermined while others are functions of the user
query and user preferences. The result is an IQ vector with numerical scores for each criterion
which will be used to rank sources and plans.

In the following sections we describe each step in detail by using an example. We use the
global schema as described in Table 1 and the sources as described in Table 2. The content
of each source with respect to the global schema is described by seven QCAs presented in
Table 3.

S1 So Ss S4 Ss
QCA, QCA, QCA, QCA, QCA; QCAy QCA,
EoU(grade) 5 7 7 8 6
Rep.(grade) | 5 5 7 8 7
Reli.(grade) | 2 6 4 6 6
Tim.(days) | 30 30 2 1 7
Av.(%) 99 99 60 80 99 95 95
Pr.(USS$) 0 0 0 0 1 0 0
R.C.(sec) 1 1 5 T 2 .7 T
R.T.(sec) 2 2 2 3 1 1 1
Ac.(%) 99.9 99.9 99.8 99.95 99.95 99.95  99.95
Relev.(%) 60 80 90 80 80 60 60

Table 6: IQ Scores s;; of 5 MBISs used in 7 QCAs. Scores are partly inferred from the
informal description in Table 2. Note that completeness and amount are not contained since
they depend on the specific user query.

To find a ranking of the sources in Phase 1 or a ranking of plans in Phase 3 based on
multiple criteria one faces two problems: (i) The range and units of the IQ scores of the
criteria vary, making it necessary to scale the scores. (ii) The importance of the criteria may
vary making it necessary to find a user-specific weighting of the criteria. Several multiple
attribute decision making methods have been proposed to solve these problems [Nau98]. To
find the best sources in the first phase, we use the “Data Envelopment Analysis” method;
to rank the execution plans in the third phase we apply the “Simple Additive Weighting”
method.
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Figure 3: Classifying Sources with Data Envelopment Analysis

4.1 Phase 1: Source Selection

Our logical planning algorithm can potentially generate an exponential number of plans in
the length of the user query and the number of QCAs. Furthermore, finding such plans
is also exponential in the number of QCAs [LMSS95]. Therefore, we thrive to decrease
this number before we start planning. For this purpose, we use the source-specific quality
criteria, thus “weeding out” sources that are qualitatively not as good as others. Our goal
is to find a certain number or percentage of best sources independently of any user-specific
weighting. The mediator performs Phase 1 only once after start-up and does not repeat it
until an information source dramatically changes in a source-specific criterion, or until a new
information source is added to the system.

To evaluate such a large amount of sources in a general, user-independent way, in [NFS98]
we have proposed Data Envelopment Analysis (DEA) developed by Charnes et al. as a
general method to classify a population of observations [CCR78]. The DEA method avoids the
mentioned decision making problems of scaling and user weighting by defining an efficiency
frontier as the convex hull of the unscaled and unweighted vector space of IQQ dimensions.
Figure 3 shows this vector space for two arbitrary 1Q dimensions. Those sources on the
hull are defined as “good”, those below as “non-good”. Consider the non-good source S in
Figure 3. Assuming constant returns to scale, the virtual but realistic source S’ is constructed
as a convex combination of the two neighboring sources on the efficiency frontier. Clearly
source S’ is better than source S, thus S is non-good.

To determine whether a source is on the frontier or below, we solve the following linear
program (LP) once for each information source S, with IQ scores s;;:

maximize I1Q(Sj,) := Y; wi - sij,
subject to  IQ(S;) = Y, w;-s;; <1 forallsourcesj=1,....,n
w; >e>0 fore=1,...,4

The result of each LP is the optimal quality score IQ(S},) of the examined source. The
score for each source is either 1 (on the frontier / good) or below 1 (below the frontier /
non-good). By fine-tuning the e-parameter we can vary the number of good sources to the
desired percentage.

For further planning, we want to completely disregard non-good sources but at the same
time not reduce the global schema. There is a danger of removing a source that has a low
1Q but is the only source providing a certain attribute of the global schema. Thus, the DEA
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process is repeated several times to avoid suppressing a source which exclusively provides a
specific attribute: For each attribute of the global schema we determine those sources that
provide this attribute and the set of good sources among them. In the following two phases
we only consider sources in the union of these sets. In this way, the global schema remains
intact.

Example. Due to the small number of sources in our example this phase only excludes
source S which is dominated by S5. That is, S5 is equal to or better than S; in all criteria.

4.2 Phase 2: Plan Creation

The goal of this phase is to find all combinations of QCAs that together obtain semantically
correct answers to a given user query. Every QCA defines a view on the mediator schema,
and those views, respectively their corresponding wrapper query W@, are the only queries
that are directly executable. We must find combinations of such views that generate correct
tuples. This is equivalent to the problem of answering a query against a relational schema
using only a set of views on the same schema. Levy et al. show that this problem is decidable
for conjunctive queries and conjunctive view definitions [LMSS95]. They show that one has
to test query containment for potentially all combinations of views up to a certain length.
Chandra and Merlin showed that this test is already NP-complete [CM77]. In [Les98] we
described an improved algorithm that exploits the fact that in our framework one of the two
queries for the containment test is fixed (the user query), while the other is combined out of
pre-defined building blocks (the set of QCAs). For space limitations, we here use a simpler
algorithm similar to the one in [LROY6].

Example. Imagine a user query (UQ) asking for all genes of the X chromosome together
with their related diseases, sequence, origin, and annotations. We answer this query by joining
the gene relation with sequence for the attributes origin and annotation. We must also join
gene to EST to ensure the chromosome-condition:

UQ(Gn(100), Di(100), Se(100), Or(30), An(70)) +
gene(Gn, Di), sequence(Gn, Se, Or, An), genecluster(Gn, En), EST(En, Ch,-,-,-),Ch =" X';

The user weightings for each attribute are used to compute the completeness score later
on. First, for each relation of UQ we determine the set of QCAs (bucket) which contain
them in their mediator query M@ (see Table 3). We must also check if the QCAs export all
necessary attributes, i.e., those that are required in UQ:

bucket(gene) = {QCA44} bucket(genecluster) = {QCA;}
bucket(sequence) = {QCA,, QCA3} bucket(EST) {QCA,, QCA;, QCA,}

QCA; does not occur in bucket(gene) because it does not export the required Di attribute;
the same holds for QCAg in bucket(sequence) and attribute Or. QCA; does not appear in
bucket (sequence) since S was deleted from the set of sources in Phase 1.

In a second step we enumerate the cartesian product of all buckets and check for each
combination, (1) if it has no contradictions, for instance contradicting conditions, (2) if it
is semantically contained in UQ, and (3) whether it can be minimized, i.e., whether certain
QCAs are redundant. In our case, all combinations are contained and have no contradictions.
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Furthermore, all double occurrences of QCAs are redundant. We end up with the following
plans, each of them possibly producing a different set of correct tuples for UQ. In Phase 3
we predict the IQ of these results and choose the best plans for execution.

P = QCAg 1 QCAy i QCA, 1 QCA, Py = QCAg =< QCAs =1 QCA, 1 QCA,
Py = QCAg a1 QCAy a1 QCA; 1 QCA;  Ps = QCAg < QCAs 1 QCA, 1 QC A5
P3 - QCAG X QCAQ X QCA7 Pﬁ - QCAG X QCA3 X QCA7

A plan is executed by computing the W Qs that correspond to the M Qs which form the
plan, propagating variables bindings from QCA to QCA as usual. If a W () is executed, the
resulting tuples are temporarily stored in an instance of the mediator schema. For each tuple
of the result one tuple is generated for each occurrence of each relation of M Q). Variables in
M@ that appear in the view head are bound to the corresponding values in the result tuple;
variables that do not appear in the view head are either filled with null or with relationship-
preserving key values that are generated automatically. These keys can never be contained in
the final answer: if the corresponding attributes are requested by a user query, plans that do
not export them, i.e., do not contain them in their S;.v, would not be semantically contained
by the definition of containment. Attributes that have a ’-’ in their position in M () are also
filled with null.

4.3 Phase 3: Plan Selection

Given the set of correct plans, the goal of this phase is to qualitatively rank the plans of
the planning phase and ultimatively to restrict plan execution to some best percent of all
plans, or alternatively, to as many plans as possible or necessary to meet certain cost- or
quality-constraints.

Following the DBMS approach of cost models for query execution plans with a tree-
structure, we define a quality model for the tree-structured plans created in Phase 2. Leaves
represent QCAs that deliver the base data. Those data are subsequently processed within
the inner nodes of the tree, which represent inner join operators performed by the mediator.

Plan selection proceeds in three steps: First the 1Q scores of the QCAs are determined
(3a). The quality model then aggregates these scores along tree paths to gain an overall
quality score at the root of the tree (3b). Finally, this score is used to rank the plans (3c).

Phase 3.a: QCA Quality. An IQ vector of length 8 is attached to each QCA, i.e., one
dimension for each non-source-specific criterion of Table 5. The criterion category specifies
how the scores for the individual criteria are determined:

e (CA-specific criteria have fixed scores for each QCA. Thus they are determined only
once or whenever the the corresponding source undergoes major changes.

e The scores of the user query-specific criteria on the other hand are recalculated for each
user-query U(Q), depending on the set and weighting of attributes specified. Amount is
simply the number of unnecessary attributes, i.e., attributes returned by the QCA but
not specified in the user query. Completeness of a QCA is calculated at attribute level:
The completeness score of each attribute of the QCA is weighted with the importance
specified in the user query (1 — 100). The resulting scores are summed up and divided
by the sum of the user query weights. The result is a weighted average completeness of
the attributes in a QCA.
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(89.35,0,1,1,99.8,28.8,76.06,3)
> QCA,

(94.05,0,1,1,99.85,48,54.86,0) (95,0,.7,1,99.95,60,38,3)

e

QCA, QCA,
(95,0,.7,1,99.95,60,48.2,0) (99,0,1,.2,99.9,80,52.8,0)

Figure 4: Merging IQ vectors in join nodes in plan P;

The general 1Q vector for QCAs is (abbreviated):

IQ(QCA;) = (si5,--.,8i11)
= (Av,Pr,RC,RT, Ac, Rel, Com(UQ), Am(UQ))

Example. We determine the following IQ vectors for the QCAs participating in plans P;
through Ps. The first six scores are taken from Table 6, the remaining two scores are calculated
using the user query UQ.

IQ(QCA,) = (99,0,1,.2,99.9,80,52.8,0)  IQ(QCA;) = (99,1,.2,.1,99.95, 80, 20, 4)
IQ(QCA;) = (60,0, .5,.2,99.8,90, 49, 0) IQ(QCAg) = (95,0,.7,1,99.95, 60, 48.2, 0)
IQ(QCA,) = (80,0,.7,3,99.95,80,20,1)  IQ(QCA,) = (95,0,.7,1,99.95, 60, 38, 3)

Up to this point, each leaf node of each plan-tree is assigned an 1Q vector. However, we have
no total IQ vector for the plans. These scores are obtained through the plan quality model.

Phase 3.b: Plan Quality. Corresponding to the idea of cost models for DBMSs, we
propose a quality model to calculate the total IQ score of a plan. Since we only consider
join-operators, a plan is a binary tree with QCAs as leaves and join operators as inner nodes.
The IQ vector for an inner node is recursively calculated according to Equation (1) as a
combination of the IQ vectors of its left and right child nodes [ and r.

IQ(Ivar) =TIQ(1) > IQ(r) := (515 >< Sp5, ..., Sp12 D Sp12) (1)

The p<-operator (or “merge function”) is resolved according to Table 7. Figure 4 shows
the plan tree for P; = QCAg < QCA5 <1 QCA, with its aggregated 1Q vectors.

Since all merge functions in Table 7 are both commutative and associative, a change of
the join execution order within a plan has no effect on its IQ score. This is desirable, since
the quality perceived by the user is that of the query result and not the quality of how this
result is obtained (the plan). Thus, unlike planning in traditional DBMSs, we do not have
to consider the execution order of the joins within the plan. Also, we do not consider the
execution time of joins performed by the mediator since we assume, that execution time is
dominated by the response times of the sources.
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(A9}

Criterion ‘ Merge function “o” | Brief explanation ‘

Availability 815 Sr5 Probability that both sites are accessible.

Price S16 + Sre Both queries must be payed.

Repr. Consistency max|[s;7, Sy7] Wrapper integrates sources in parallel.

Response Time max|[s;g, Sy Both children are processed in parallel.

Accuracy S19 * Sr9 Probability that left and right side do not con-
tain an error.

Relevancy S110 * Sr10 Probability for join match.

Completeness S111 + Sr11 — Si11 - Sr11 | Probability that either left or right side has
non-null value (operations at attribute level).

Amount S112 + Sr12 All unnecessary attributes must be dealt with.

Table 7: Merge functions for Quality Criteria

Example. The six plans have IQ vectors

IQ(Py) = (71.00,0,1,3,99.75,23.04, 78.06,4) IQ(P,) = (43.32,0,.7,3,99.65, 25.92, 75.94, 4)
IQ(P) = (88.45,1,1,1,99.75,23.04,78.06,7) IQ(Ps) = (53.61,1,.7,1,99.65, 25.92, 75.94, 7)
IQ(Ps) = (89.35,0,1,1,99.80,28.80,76.06,3) IQ(Ps) = (54.50,0,.7,1,99.70, 32.40, 73.94, 3)

Up to this point, the scores are neither scaled nor weighted.

Phase 3.c: Plan Ranking. The previous phase delivers a set of plans with an 1Q vector
for each plan. The scores of the vectors must be scaled, weighted, and compared to find a
total IQ score for each plan and thus define a ranking of the plans. To this end, we use the
Simple Additive Weighting (SAW) method. It is one of the simplest but nevertheless well
perceived decision making methods, in that its ranking results are usually very close to results
of more sophisticated methods [HY81]. The method is comprised of three basic steps: Scale
the scores to make them comparable, apply the user weighting and sum up the scores for each
source.

The IQ scores of the criteria availability, accuracy, relevancy, and completeness are scaled
according to Equation (2), where s;nin and s}nax are the minimum and maximum score respec-
tively in criterion j (see below). The criteria price, representational consistency, response time,
and amount are negative criteria, i.e., the higher the score, the worse the quality. Thus, they
are scaled according to Equation (3). With these scaling functions all scores are in [0, 1], the
best score of any criterion obtains the value 1, and the worst score of any criterion obtains the
value 0. This property assures comparability of scores across different criteria and in different
ranges.

For the weighting step SAW requires a weight-vector W = (wq, ..., wy,) specified by the
user such that Z;":l w; equals 1. The weight-vector reflects the importance of the individual
criteria. It can either be defined by the user, or a default vector can be used. For a plan P,

the overall quality score IQ(F;) is calculated as the weighted sum of Equation (4).

Sij — S;nin S;nax — sij m
Vij = gmax _ Smin (2) Vij = gmax _ Smin (3) IQ(R) = z:l Wj - Vig (4)
J J J J j=

The final IQ score of the plan is in [0, 1] and gives the ranking position of the plan. After
the 1Q scores for all plans have been calculated, we choose and execute the best plans.
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Example. With the indifferent weighting vector W = (%, %, %, %, %, %, %, %) where all criteria

have equal importance, the following IQ scores are obtained (in ranking order):

IQ(Ps) = 7663 IQ(Ps) = .697 IQ(P)) = .5023
IQ(Py) = 4559 IQ(Py) = .4429 IQ(P;) = .3771

A user preferring quick response time at any price, might specify the weighting W =
(%, %, %, %, %, %, %, %) and obtain a ranking of the plans in the order Ps, Ps, P, Ps, Py, Py.
P; is ranked lower than before because it includes QCA, which has a very high response
time. Despite its high price, plan P is ranked higher than before since it has a low response
time. A user preferring high relevancy even if accuracy is low might specify the weighting
W = (%, %, %, %, %, %, %, %) and obtain a ranking of the plans in the order Py, Ps, Py, Pi, Ps,
P,. In this weighting, P; is ranked highest, since it includes ()CA5 which has a high relevancy.

With the exception of the completeness criterion, all merge functions decrease the aggre-
gated IQ scores with each additional QCA. Thus, there is a natural tendency favoring short
plans, i.e., plans consisting of few QCAs. Not only does this reflect the influence of the cri-
teria, it also conforms to intuition: Biologists will probably not be happy to accept results

where the four attributes of the query are generated in four different sources.

5 Conclusion and Outlook

We have proposed a novel method to the well known and important, yet frequently ignored
problem of considering information quality in logical information integration. This problem
has not, to our best knowledge, been adequately addressed before. Our results offer a solution
to the notorious problem of information overload, based on a filtering of important information
based on a rich set of quality criteria. With the help of these criteria quality-driven information
integration identifies high quality plans which produce high quality results. Clearly, the
selection of quality criteria is a subjective task. However, our method is by no way restricted
to the criteria we used in this paper.

We have described merge functions for each criterion which calculate the quality of the
information in a join result. Due to the associativity of these merge-functions, we determine
the quality of the result independently of how this result is created. This freedom will allow
us to include easily binding patterns in the user query and the QCAs, which can potentially
dictate a specific join order. Furthermore, a traditional post-optimization can be performed
to find the best join order of the chosen plans without influencing their quality score.

Future work will also include a tighter cooperation of the plan creation phase and plan
selection phase: Information quality scores can be used in a branch & bound fashion to
dramatically improve planning time. Lifting our current model to a higher level, we plan
not only to calculate the quality of plan results, but also the quality of the union of several
plans to find the best combination of plans to execute. We belive that the same principles of
calculating and merging quality scores apply.
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