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Abstract

We study linear complementarity problems depending on parameters in the right-hand side
and (or) in the matrix. For the case that all elements of the right-hand side are independent
parameters we give a new proof for the equivalence of three different important local properties
of the corresponding solution set map in a neighbourhood of an element of its graph. For one-
and multiparametric problems this equivalence does not hold and the corresponding graph
may have a rather complicate structure. But we are able to show that for a generic class of
linear complementarity problems depending linearly on only one real parameter the situation
is much more easier.

1 Introduction

Linear complementarity problems with parameters in the right-hand side and in the matrix have
been extensively studied by many authors (e.g. [1], [3], [5], [9], [17], [21]). Further interesting
papers concerning more general problems contain essential consequences also for the special case
of parametric linear complementarity problems (cf. [4], [15], [16], [18], [23], [24], [25]).

In our paper we consider parametric linear complementarity problems of the form

Po(N) Compute all z € R” satisfying ¢(A) + K(A)z >0, z >0, 2’'(¢(A\) + K(A\)z) = 0,

for which generally both the vector ¢ € R™ and the (n x n)-matrix K depend on a parameter vector
A € R Concerning the kind of the parameter dependence we consider two cases, denoted by Ag
and Aj:

Ag: q(:): R — R™ and K(-):R?— R™™" are locally Lipschitz.

Ay q(t) = ¢ +tig' + ...+ t49% and K is constant.

In the case that we assume A; we denote the parameter vector by t and the corresponding para-
metric linear complementarity problem by Py (t).

Only few results will be devoted to the general problem Py(A) under assumption Ag. Our particular
interest concerns its special cases

Por(g, A) Compute all z € R” satisfying ¢+ K(A)z >0, z >0, '(¢+ K(\)z) =0,

where all components of q together with the components of A are independent parameters, Pg2(q)
with q as parameter, Pys(¢, K) with q and K as parameters and the one-dimensional special case

Pll(t) Of 7?1 (t)

P11() Compute all # € R" satisfying (¢° +t¢') + Kz >0, 2 >0, 2'(¢° + t¢* + Kz) = 0.
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Let us denote the set of all solutions x of Py(A) (P1(t), Por(gq, A), ...) for the corresponding para-
meter value by U(A) (¥(t), ¥(g, A),...).

In section 2 of our paper we summarize some essentially known global results on the solution
set maps of the considered parametric problems and give certain supplements concerning their
polyhedral structure. Motivated by a recent equivalence statement of Dontchev and Rockafellar
[4] concerning three different local properties of the solution set map of a more general class
of parameter-depending problems (lower semicontinuity, pseudo-Lipschitz continuity and strong
regularity) we present in section 3 for problem Pg; (g, A) another proof which gives a better insight
into the situation. Especially, it will be clear, for which reason lower semicontinuity around a given
point of the graph of the solution set map does not hold, if this map is not strongly regular at this
point.

Counterexamples in the case of problem P11(t) show, that in general lower semicontinuity around
a given point of the graph and strong regularity at this point are not equivalent. In section 4 we
show that generically the graph of the solution set map of P11(¢) has a much more easier structure
as in the general case and that only six types of solutions may appear.

Throughout the whole paper we use the symbols ”gph” for the graph of a set-valued map, ”sgn”
for the sign of a real number, ”rg” for the rank of a matrix, ”dim” for the dimension, ”lin” for
the linear hull, ”int” for the interior, ”bd” for the boundary and ”ri” for the relative interior of a
convex set. The symbol B stands for the closed unit ball in R”.

2 Some global results on the solution set map
In the following theorem we summarize some known properties (cf. [3], [24]) of the solution set
map ¥ of Py(A) and Py (t), respectively.

Theorem 2.1 1. For the problem Py(N) the map ¥ is closed (i.e., for each sequence {\"},
converging to any \°, and each sequence {x”} with ¥ € W(\), converging to any x°, we

have z° € W(A\?)).

2. For the problem Py(t) the map U is polyhedral (i.e., its graph is a union of a finite number
of conver polyhedra).

3. For the problem Pi(t) the map U is locally upper Lipschitz with a uniform modulus (i.e.,
there is a constant ¢ > 0 and for each t° € R there exists a neighbourhood V of t° such that
for allt € V we have ¥(t) CW(t°) +c ||t —t" || B.

Obviously, Statement 3 of Theorem 2.1 has the following consequences.

Corollary 2.1 For the problem Pi(t) the sets Qp = {t / ¥(t) is bounded} as well as Q. =
{t / ¥(t) =0} are open.

The following statements on the cardinality | ¥(q) | of the set of solutions of problem Pga(q) have
been proven in [19] and [25].

Theorem 2.2 For the problem Pya(q) it holds:
1. |¥(q) |> 1V¥q € R" <= K is a Q-matriz (for the definition cf. [19]).
2. | ¥(q) |< oo Vq € R" <= K is a N-matriz (i.e., all its principal subminors are nonzero).
3. | ¥(q) |=1Vq € R" <= K is a P-matriz (i.e., all its principal subminors are positive).

Remark 2.1 If the matriz K belongs to the class of Q-matrices (N-matrices, P-matrices, resp.)
then for the problem Py (t) we have | W(t) [> 1Vt € RY (| ¥(t) |[< ooVt € R, | U(t) |= 1Vt € RY
resp. ). Bul the reverse statements are not true in general.



For any A € R? the set P(A\) = {z € R* / K(A)z + ¢(\) > 0, = > 0} is a convex polyhedron
associated with the problem Py(A). For any pair (I,J) of index sets I, J C {1,...,n} let be

PIT() = {e € PO/ (K(Nz +9(N)i =0, i€, 2;=0, j€J},
PIIN) = {e e PPTON) J(KNx 4+ ¢(\)i >0,i€1, 2; >0, j€J},
ALY = I e R PII(N) £0) and AN = {xe RY/ P (V) £ 0},

where I = {1,...,n}\ I. Further let be § := {(I,J)/IUJ = {1,...,n}}. For the special case that
J = I we write shortly P{(X), PI(\), P1, AL, AT instead of PLI(N), PLE(N), PLE ALL ALL
Moreover, we introduce the set A = {\ € R*/¥()\) # 0}, the matrix V (I, J; ) formed by the rows
of —K(A) with the indices i € I and the rows of the (n x n)-unit matrix with the indices j € J
and the vector p(I, J; A) formed correspondingly by the components ¢;(A), i € I and n— | I | zero
components otherwise.

The following two theorems summarize and supplement corresponding results contained in [1], [3]
and [25]. The proof of the first one is obvious.

Theorem 2.3 For the problem Py(A) it holds:

1. For A e AI’J the set P17 (X) is a closed facet of the conver polyhedron P(\) and for A € Al
the set~PI’J(/\) is the corresponding open facet. For (I', J’) # (I",J") and any X € R? it
holds PT"7' (NN PT"7"(\) =0 and gphPT"7" 0 gphPT"7" = .

2. The sets A, gph¥ and W(\) for any A € R? may be decomposed in the form:
A= U Al = U AT gph ¥ = U gph P = U gph P17
IC{1,...,n} (I,J)eS IC{1,...,n} (I,J)eS

and

vy = | Py = | P

IC{1,...,n} (I1,7)eS

3. If for any A € R? a point * € R™ is an isolated solution of Py()) then x corresponds to a
verter x(1,J;X) :== V=Y, J; X) p(I, J; \) of the convexr polyhedron P()), i.e., there is a pair
(LJ) of index sets I,J C{1,...n} with | I |+ | J |=n such that the system of (in z) linear
equations V (I, J; A) « = p(I,J; A) has a unique solution x(I,J;X) and this solution is also
a solution of Py(N). FEach vertex x(I,J;A) of the convexr polyhedron P(X) depends locally
Lipschitz continuous on the parameter A.

We note that for the problem Py (t) the set gphP is a convex polyhedron and the sets gph P!
respectively gph P17 are closed respectively open facets of gphP.
Now we use the submatrix Ky of K formed by the elements k;; of K with ¢ € [ and j € J.

Theorem 2.4 For the problem Poz(q) and each pair (I,J) € S it holds:
1. The set A7 is a nonempty polyhedral cone and A7 = riAl7.

2. dimP17(q) = dim]sl"](q) =d(I,J) ¥Yq € AT where d(I,J) =| J | —rg(K;z) does not
depend on q.

3. dimALT +d(I, )+ | T+ | J|=2n and dimALY +d(I,J)+ |10 J |=n.
4. dimAY =n<e=J =T ANd(I,])=0 < J=1 A Ky is reqular.

5o dimAl =n—le=a)(J=1 Ad,J)=1) Vb ([INnJ|=1 A d(I,])=0).



Proof: In our proof we apply the ideas already used in the proof of Theorem 5.4.3 of [1]. To prove
Statement 1 we write A"/ and A" in the fom A"/ = {¢ e R* /g= Kz +y, >0, y >0,

xj = 0,j € Jy; = 0,i € [} and AV = {qg € ADIJ§ > 1| € Fty > 1,) € T} Thus,
the set A7 is the image of a closed facet of the polyhedral cone R?I_” under the linear map

which is defined by the matrix (-K,E) and Al the image of the corresponding open facet
of R?I_”. But this implies Statement 1. Because of P17(q) # 0 for all ¢ € ALY it follows

]51"]((]) = riP17(q) and dimﬁl"](q) = dimP!7(q) = dimL}7 = 2n— | I | = J | —=rgB(I,J) =
2 | T = ||~ | 1| =rg(Kp) = n— | J | ~rg(Kps) = | J | —rg(Kps), where
LIJ—{(a:y) ER2”/—A1‘—|—y—0 yi = 0,0 € I, »; = 0,j € J} and B([,J) is the
(nx (] I]+|J|)matrix formed by the columns of -K with the numbers ¢ € I and by the

columns of the (n x n) unit matrix with the numbers j € J . This implies Statement 2 and State-
ment 3, if we use the fact that dimA’? = rg B(I,J) holds. Statements 4 and 5 follow directly
from Statement 3. q.e.d.

As an immediate consequence of Theorem 2.4 we mention the following fact.

Corollary 2.2 For the problem Pya(q) and any ¢ € R™ we have | ¥(q) |= oo <= ¢€ | AL
(I,J)eS*

with 8* == {(I,J) € 8/ d(I,J) > 1}, where for all (I,J) € 8* it holds dim A"’ < n.

For the application in the following sections we give now some additional properties of those
sets A7 corresponding to problem Pgs(q) which have the maximal dimension n. Note that the
number of these sets is not zero, since for I = § and J = {1,...,n} we have A/ = = . All results
follow from the Theorems 2.3 and 2.4 and from generally known facts on basic solutlons in linear
optimization.

Remark 2.2 For each set ALY with the dimension n corresponding to problem Poa(q) it holds

J = I and the corresponding matriz Krr must be regqular (where for the mde:ﬁ set T = 0 this

regularity condition is satisfied per definition). The corresponding set PII( ) = Pl(q) is formed

by a single point, which is a vertexr x(I,q) = ( x*g Z; ) of P1(q), where x;(I,q) = —Kj_Iqu
4

and zp(I,q) = 0. Moreover, it holds A* = { q / Kj_Iqu < 0, g + Kijl_Iqu > 0} and
Al =1{q/K'q <0, ¢t + K Kfj'qr > 0}.

After introducing slack variables y we can write the convex polyhedron P(q) equivalently in the form
P'(¢)={(z,y) R/ — Kz +y=yq, x>0, y >0} and the complementarity slackness condition
can be expressed by x’y=0. The y-part of the vertex ( z((f’g)) ) of the convex polyhedron P’(q),
which corresponds to the verter x(I,q) of P(q) is given by yr = 0 and y; = q7 + KfIKI_Iqu. The
corresponding simplex table to this vertex of P’ (q) with the vectors of basic variables x1 and yy
and the vectors of non-basic variables y; and x5 is given by

yr rr
zr | —Ki} Ki Kir Ko . (1)
yr | KiK' | KK K= Kir | ar+ KK far

This simplex table contains all coefficients which will be obtained if we transform the system of
equations

. —Kip 0 ) (x;) (—KU E)(x,) (q; )
—Ke+y= or . + K =
v=i ( —Kp FE yr —Krir O yr qr



n the equivalent form
( rr ) _ _( ~K5 K K;r ) ( yr ) N ( ~Ki'qr )
yr Kp Kyt KK K- Krp rr ar+ K Krtar

3 Local properties

Besides global properties of the solution set maps of the considered parametric problems studied in
the previous section also local properties are of interest. This means properties of the intersection
of the corresponding graph with a sufficiently small neighbourhood of one of its elements. Because
of the fact that we do not restrict our considerations to the case that the matrix K has only
nonnegative principal subminors, the set of solutions must not be connected or even convex, such
that local properties are not entirely determined by the global ones. Of course, if the set of all
solutions for a fixed value of the parameter is finite, then necessarily each solution must be isolated,
and, on the other hand, if locally the set of solutions is not finite, then this also must hold globally.
But these trivial statements are already almost all relations between local and global properties.
As already done in the paper [4] we are interested to apply the following definitions for general
set-valued maps T' : R — 28" to the solution set maps of our parametric linear complementarity
problems.

Definition 3.1 Let I' be a set-valued map and (u”,v°) € gphU. Then T is called

(*) lower semicontinuous around (u®,v°), if there are neighbourhoods U of u® and V of v® such that
T is lower semicontinuous at every point (u,v) € (UxV)NgphT (i.e., for every sequence {u”}
converging to u there is a sequence {v”} with v¥ € T'(v”) for v sufficiently hight, converging
to v).

(**) pseudo-Lipschitz at (u®,v®) with the constant L > 0, if there are neighbourhoods U of u° and
Voof v° such that T(u')NV CT(u?) + L || ut —u?|| B vul,u? e U.

(***) strongly regular at (u°,v°), if there are neighbourhoods U of u® and V of v¥ such that the
map u— T(w) NV is single-valued and Lipschitz-continuous relative to U.

The following lemma is the main basis to study parametric linear complementarity problems Pg(A)
locally. Suppose that (A, 2%) is any element of the graph of the solution set map ¥ of Pg(A) and
we denote

L= (i) )+ KO0 =0, 22> 0}, =i/ (g% + K02 =0, of = 0)
and I3 ={i/ (¢(\") + K(A\")2%); > 0, ={ = 0}.
Lemma 3.1 For each sufficiently small neighbourhood W of (A\°, 2°) € gph¥ we have

Wngphw=wn |J ghP'=wn UJ gph P17,
IeT(A0%,29) (I,J)eS(A0,29)

where T(A°,2%) :={I /L CIC LUIL}and S(A°,2°) :={(I,J) €S/ L CICLUIL, I3C
JCLLUIs}.

Proof: Statement 2 of Theorem 2.3 implies W N gph¥ O W N U gph P! and W N gph¥ D

IET (X020
W N U gph P17 For each index set I ¢ T(A°, 2% and for each pair (I, J) ¢ S(\°, 2°)
(I,J)eS (A0 ,20)

it holds (A%, 2°) ¢ gph P! and (\°, 2°) ¢ gph P17. Hence, since the set gph PT respectively gph P17
is closed, we get W N gph P! = respectively W N gph P17 = §, if we choose W sufficiently small
(cf. also [23]). q.e.d.



Remark 3.1 For each (A\° 2°) € gphV¥ there is a minimal subsystem Z(\° 2%) = {Py, ..., P}
with k = k(\°, 2%) of the system of conver polyhedra P17 (X\%) for (I,J) € S(A\°,2%) such that

k

Ur-= U PLI(AYY and riP;, NriP, = 0 for iy # iy, Fori=1,... k let be S;(\° 2°) =
i=1 (I,7)€S(A° z°)

{(I,J) € S\, 2% /PLI (A0 2 ) P;}. The sets S;(\°,2%), i = 1,..., k are pairwise disjoint and

for each (I,J) € S(A°,2%)\ U Si(A°, 2%) the convex polyhedron P17 (X\) is a closed facet of at
least one of the convex polyhedm Pi=1,..k.

In the following proposition we summarize some immediate observations with respect to the ap-
plication of Definition 3.1 to parametric linear complementarity problems.

Proposition 3.1 1. For each set-valued map T' we have (% * ) = (xx) = ().

2. For any element (\°, z°) of the graph of the solution set map of problem Po(\) condition (*)
is equivalent with the existence of neighbourhoods U of A° and V ofx satisfying:
(+) For each (/\ z) € (U x V)N gph¥ there is a neighbourhood U of X such that for each
X\ € U and each conver polyhedron P; € Z(/\ Z) there is at least one pair (I,J) € §; (/\ z)
with A € ALY and dimP; < dimP17 ().

3. For the solution set maps of the problems Py1(q, A) as well as P1(t) the conditions (*} and
(**) are equivalent.

4. For any element (A°, 2%} of the graph of the solution set map of problem Py(A) condition
(¥**) is equivalent with the property that there are neighbourhoods U of \° and V of x° such
that the map A — U (A) NV is single-valued and continuous on U.

Proof: Statement 1 follows directly from Definition 3.1 (cf. [4]).

To prove the first direction of Statement 2 we assume that there are neighbourhoods U of A° and
V of 2% having the property (+). Now let (:\, Z) be an arbitrary element of (U x V)Ngph¥, {A"}
any sequence converging to A and P; € Z(:\, Z). Obviously, it holds & € P;. According to (+)
for each v sufficiently hight there exists a pair (I,.J) € Si(\, &) (depending on v) with A\ € A"/
and dimP; < dimP?7(X"). As in the proof of Theorem 3.2.2 in [1] the sequence {z*}, where =
minimizes the Euclidean distance between # and P/(\"), converges to #. But this means that ¥
is lower semicontinuous at (:\, #) and, hence, condition (*) is fulfilled at (A°, z°).

To prove the second direction of Statement 2 let us suppose that there do not exist any neigh-
bourhoods U of A% and V of 2% with the property (+). This means that for each neighbourhoods
U of \Y and V of z° there are an element (:\, z) € (U x V) N gph¥, a sequence {\"} converging
to A and a convex polyhedron P; € Z(:\,i‘) (depending on v) such for all v = 1,2,... it holds
cither X ¢ AT7 YV (I,J) € 8i(\ &) or for all pairs (I,.J) € S, Z) with ¥ € A" we have
dimP; > dimP%7(\"). Hence, there must be an infinite subsequence of the sequence {\*} (for
simplicity we denote it again by {A”}) such that one of the following cases holds true. The first
case 1s that there exists a convex polyhedron P; € Z(:\, ) such that for all pairs (I, J) € SZ'(/N\, z) it
holds AV ¢ A/, Lemma 3.1 and Remark 3.1 imply that for any element (:\, z*) with #* € riP; suf-
ficiently near to & there can not be any sequence {&"} with 2¥ € \I!(/\”) converging to x* such that
W can not be lower semicontinuous at (:\ z*) and, consequently, (*) is not satisfied at (A%, z°).
The second case is that there exists a convex polyhedron P e Z(/\ Z) and a nonempty sys-
tem & C &;(A, Z) such that for v = 1,2, ... it holds § = {(J, J) € S\, &)/ e ALY and
dimPT J(/\”) < dimPT7(}) V(I J) €. For each pair (I,.J) € S let be Q77 = {z/3{e"}, & €
PLI(W), ¥ — z}. This set is obviously convex, contained in P; and can only have a dimension
less or equal to the minimal dimension of the sets PI’J(/\”). To prove this last condition let us sup-
pose the opposite. Then there must be an infinite subsequence of the sequence {A”} (for simplicity



we denote it again by {\*}) such that d = dimQ?’/ > dimP%7/(\) for v = 1,2,.... Thus, there
must be d+1 linearly independent points 2/, [ = 0,1,...,din Q77 each of them limit of a sequence
{2z} with #¥* € PL7(\). Because of our supposition dimP%7(\") < d for each v there must be

d

a normed vector ¢ € R® satisfying > ¢/ (27 — 2*') = 0, v = 1,2,.... The sequence {c’} must
=1

have an (again normed) accumulation point ¢ and we obtain (using an infinite subsequence of the

d
sequence {c¢”} converging to c) the relation > ¢;(2° — z!) = 0 which contradicts our supposition
=1
that the points 2! are linearly independent. Hence, it holds dimQ?/ < dimP%7(\) < dimP; and,
consequently, @Q¥/ C P; for each pair (I,J) € S. Using Lemma 3.1 and Remark 3.1 this relation
implies that in each sufficiently small neighbourhood of & there are elements of the convex polyhe-
dron P; which may not be a limit of any sequence {#} with #” € ¥(A”). But this contradicts (*).
For the problem Py; (¢, A) Statement 3 follows from Theorem 1 of [4]. Now let us prove Statement
3 for the problem Py (t). According to Statement 1 we have only to show (x) = (xx). We as-
sume (*) at any element (t°, 2°) € gphW¥ and choose polyhedral neighbourhoods U/ C U of t° and
V! C V of 2% small enough such that for W = U’ x V/ Lemma 3.1 can be used. Consider the map
Uy defined for t € U’ by ¥y(t) = V' N U PLJ(t), which must be lower semicontinuous
I,J)ES(t0,°

on int U’. The graph of ¥y is a union(of )a ﬁ(nite )number of convex polyhedra. Consider those
edges of these convex polyhedra, which belong to the boundary of the graph but not to the set
bdU' x V'. Because of the lower semicontinuity of Wq all these edges can not be perpendicular to
the parameter space R?. For each such edge we consider its angel to the parameter space R?. If
we now choose L as the maximal absolute value of the tangent of all these angels we find that for
arbitrary t1,t% € U it holds Wo(t') C Wo(t?) + L || t* — t? || B and, hence, condition (**).

The first direction of Statement 4 is trivial, since Lipschitz continuity implies continuity. On the
other hand, Statement 3 of Theorem 2.3 implies that the vector function z(-) is a continuous se-
lection of a finite number of vector functions x(7, J; ), which are locally Lipschitz, and is, thereby,
locally Lipschitz itself. q.e.d.

Unlike the fact that properties (*) and (**) are equivalent for the problem P;(t), the properties
(*) and (***) differ generally. The following three examples of the type Pi11(t) illustrate different
possibilities which may appear although (*) is fulfilled.

Example 1: We define
\Ijl(t) = {l’ S R?I-/t — X —|—2l‘2 Z 0,3t—|—21‘1 + x9 Z 0,1‘1(t — X —1—21‘2) —|—l‘2(3t—|—2l‘1 —|—l‘2) = 0}

(0, =3t), (=t,—t)'} fort <0
{(0,0), (¢,0)'} fort >0
condition (*) but not (***) at the solution (0,0)’ for t=0. Locally (and in this case even globally)
this solution for t=0 is unique but in each neighbourhood of (0,0)’ and for each ¢ # 0 sufficiently
near to zero we have more than one element x (namely exactly two) with (¢, z) € gph¥;.

An easy computation shows Uy (¢) = { such that ¥, satisfies

Example 2: We define

\Ifz(t)z{l‘ERi /—21‘2+2l‘320, 2—14x14+ 2004+ 223>0, =t+1—27 —22 >0,
$1(—2l‘2+21‘3)+l‘2(2t—1—|—l‘1+21‘2+2l‘3)+l‘3(—t+1—l‘1—l‘z) IO}

{(-0.5¢t + 1, —-0.5¢, —0.5¢)"} fort <0
{(£1,0,0) /1 =2t <y <1—t} for0<t<05
that Wy satisfies condition (*) but not (***) at the solution (1,0,0)” for t=0. Locally (and again

An easy computation shows Uy (t) = { such



globally) this solution for t=0 is unique but in each neighbourhood of (1,0,0)’ and for each suffi-
ciently small ¢ > 0 we have an infinite number of points x with (¢,z) € gph¥a. But globally each
connected component of ¥, () having a nonempty intersection with a sufficiently small neighbour-

hood of (1,0,0)” is bounded.

Example 3: We define

\113(t)2{l‘ERi/ 26— 2w9+ 203> 0, =4t + 21+ 209+ 203> 0, —x1 — a9 > 0,
21(2t — 2@2 + 223) + xo(—4 + 21 + 209 + 223) + x3(—21 — x2) = 0}.

An easy computation shows U5(t) = such that also in this

{(0,0,23)" / w3 > —t} fort <0
{ {(0,0,23)" /w3 > 2t} fort>0
case W3 satisfies condition (*) but not (***) at each solution (0,0, z3)" with z3 > 0 for t=0. Here
we have the situation that the intersection of gphW3 with any neighbourhood of an arbitrary ele-
ment (0,0,0, z3) of this graph consists of infinitely many points. But here one component of W5(¢)
having a nonempty intersection with a sufficiently small neighbourhood of a solution (0,0, z3) for
t=0 1s unbounded.

Recently, Dontchev and Rockafellar [4] have shown a general equivalence statement for parametric
variational inequalities over polyhedral convex sets, which we formulate here for problem Pg1(g, A).

Theorem 3.1 For the problem Pyyi(q, A) the properties (*), (¥**) and (***) are equivalent.

Note that this assertion is valid also for the special cases Pya(q) and Pos(q, K) of Poi(g,A). The
essential assumption is only that at least all components of q are independent parameters.
The proof given in [4] is rather abstract and uses a reduction approach, known general properties
of projections and normal as well as piecewise linear maps. However, it 1s not seen immediately,
which requirements of (*) would be violated if (***) does not hold. Moreover, it will not intelligible
why this proof can not be extended, for instance, to the problem P;(t). For this reason we will give
another proof at the end of this section after some preparations. A recent paper of Kummer [14]
is devoted to a corresponding aim, however for the Karush-Kuhn-Tucker conditions for nonlinear
and quadratic optimization problems.
According to the decomposition of the whole index set {1, ..., n} into the disjoint subsets I, I and
K1 Ko Kz
I3 we also decompose K in the form K = Ko1 Koo Kos
K31 Kz» Ks3
The following necessary and sufficient condition for strong regularity is shown in [23] and [3] (if we
use, additionally, Statement 4 of Proposition 3.1.)

Theorem 3.2 For the problem Po1(q, \) and each element (¢°, \°, 2%) € gph W condition (***) is
equivalent with

K1 is regular and the Schur-complement N = Kqs — Klel_llKlz 1s a P-matrix. (2)

In the following for each index set I € 7 (¢q° A% ") we consider the Jacobian M of the linear
A()II AEIT ) Obviously, it holds det M =
det Krr. Now we are able to give another equivalent condition for strong stability in problems of
the type Py1(g¢, A), which is already known from [11] for the Karush-Kuhn-Tucker conditions of
nonlinear parametric optimization problems. For this case the assertion of the following theorem
is shown in [10].

system, which describes the set PI(q), namely M; =



Theorem 3.3 For any element (¢°, A% %) € gph¥ condition (***) is equivalent to
sgn det My = const # 0 YIeT(q% N x). (3)

Proof: According to Theorem 3.2 we only have to show, that (2) and (3) are equivalent. Let (2)
be satisfied. Then for I = I; we have det My, = detKp,;, = detK11 # 0. For any index set I with
Ky Knp
Kp, Kpp
known determinant rule for Schur complements (cf. [20]), we have det K1 = det K11 - det N', where
N' =Kpp—Kpy, Kl_ll K1 is a principal submatrix of N having according to (2) a positive deter-
minant. Hence, sgn detM; = sgn det Kj1 = sgn det K1, = const # 0 as required in (3). The other
direction of the proof i1s similar. We only mention the fact that any principal submatrix of N can
be expressed in the form Kpp—Kpp, Kl_llKIlp with an index set I satisfying Iy C I C H1UI». q.ed.

I C I CIUI, wecan write K;; = ( , where I' = IT'\ I;. Moreover, using a

Corollary 3.1 If the solution set map ¥ of Poi(q, ) does not satisfy condition (***) at any
element (¢°, \°, 2°) € gphW then one of the following two cases a) or b) holds true.

Case a) There is an index set I* € T(q°, A%, 2%) satisfying rgKpp+ <| I* |.

Case b) There are two index sets I' 1" € T (¢, \°, 2%} and one index i’ ¢ I' such that I" = I'U{i'}
and it holds sgn detMp = —sgn detMpn # 0.

Proof: This assertion follows by negation of (3) taking into account that the condition in case a)
is only a reformulation of the equation detMy« = 0 and that (if case a) does not come true) the
existence of two different index sets I’ I"” € T(¢", A", 2%) with sgn detMp = —sgn detMpn # 0
implies that there are also two index sets I” and I” and an index 1’ with the properties given in
case b). q.e.d.

Remark 3.2 1. As shown in [[] even parametric nonlinear complementarity problems satisfy-
ing certain differentiability properties can be characterized locally (especially concerning the
property of strong regularity) in the same way as it was done here and in former papers for
linear problems, namely by analyzing its corresponding linearization. Hence, many results
of this section may be used, for instance, to study the Karush-Kuhn-Tucker conditions of
nonlinear (and not only quadratic) optimization problems depending on parameters.

2. According to [3] problem Pyi(q,A) may be written equivalently as a Lipschitz continuous
equation of the form

F(z,A) = KM\z" +2t = ¢, (4)

where 2t = maz(0, z) and 2= = min(0, z) componentwise.

The necessary and sufficient conditions (2), (3) (as well as all other equivalent conditions
of other papers as [3] and [{]) are equivalent with the nondegeneracy of the projection of
the generalized Jacobian m,0F (z,A) (in the sense of Clarke [2]) onto the subspace of the
z-variables. This follows from a result of [8] and from the fact that the vertices of this pro-
gection are closely related to the matrices Kir considered in our paper. As we know from
[12] this nondegeneracy is in general only a sufficient (but not necessary) condition for the
so-called Lipschitz invertibility of systems of the form (4). Only because of a special rank
property of the vertices of the mentioned projection (which has been applied already in [8] for
the Karush-Kuhn-Tucker condition for nonlinear parametric optimization problems described
by C?-functions) this nondegeneracy condition of Clarke is also necessary for Lipschitz in-
vertibility and, hence, equivalent to a necessary and sufficient condition of Kummer [13] for
Lipschitz invertibility of Lipschitz systems and (for the special case of problem Pi(t)) to a
corresponding necessary and sufficient condition of Scholtes [26] for piecewise linear systems.



Proof of Theorem 3.1: Because of Statement 1 of Proposition 3.1 we only have to show
=(* * ¥) = =(x). Consider an arbitrary element (¢°, A% 2%) € gphW¥ and suppose, that (**¥*)
is not satisfied there. Using Corollary 3.1 we have to study now more precisely the two cases a)
and b) described there.

In the following we delete the dependence on the parameter A by fixing A = A° and study the
corresponding problem Pya(q). If we can show, that condition (*) is not satisfied at the point
(¢°, 2°) of the graph of the solution set map of Pga(q), then, obviously, condition (*) is also not
fulfilled at the point (¢, A°, 2%) of the graph of the solution set map of Pg1(q, A).

Consider at first case a). According to our assumptions we have (¢°, z%) € gphP!" and thus
¢" € A" Statements 2 and 3 of Theorem 2.4 applied to I = I* and J = I* implies (I, 1*) > 1
and dimA’" < n. Now we have to distinguish two subcases.

Subcase ay): If ¢° € A" then dimP" (¢°) = d(I*,I*) > 1 and, hence, | ¥(¢°) |= co. But
according to Corollary 2.2 in each neighbourhood U of ¢” there must exist a parameter value q
with | ¥(¢) |< oo and, hence, dimP! (¢) < dimP' (¢°), where because of ¢° € A" we have
T(q° 2% = {I*}, 2(¢4°,2°) = {P,}, P, = P (¢°) and S; = {(I*,I*)}. But according to State-
ment 2 of Proposition 3.1 this contradicts condition (*).

Subcase as): If ¢° ¢ A" then ¢° belongs to the relative boundary of A’" and for any neighbour-
hoods U of ¢° and V of 2° there are points § € U N.A!" and (because of the fact that the map pI
is continuous relative to A’") & € V' N PT7(§), for which our argumentation of subcase a;) can be
repeated. B

Now we consider case b). According to our assumptions we have (¢° z°) € gphPI”’II and thus
¢ € A" The condition sgn detMp = —sgn detMpr # 0 is equivalent with the condition
sgn detKpp = —sgn detKpipn # 0. Because of I = I' U {¢'} with ¢ ¢ I’ the matrix Ky p
is formed by Ky refilled by one additional row. Hence, it holds rg(Ky«p) =| I’ |. Applying
Statements 2 and 3 of Theorem 2.4 we get d(I", ') = 0 and dimA" I = n — 1. As in the case a)
we want to distinguish two subcases.

Subcase by): If ¢° € AT then T(q% 2% = {1 1"}, Z(¢°,2% = {P}, P = {2} and
Si(q°, 2% = {(I', "), (1", I"),(I",I')}. Let us consider the simplex tableaus (1°) of the vertex
x(I')t) as well as (17) of the vertex x(I”,t) in the form described in (1). Because of I = I' U {i'}
tableau (17) can be generated from tableau (1) by exactly one pivot step with the element d},,, of
the i’-th row and i’-th column in tableau (1°) as pivot element. This pivot element is located in the
main diagonal of the submatrix KpI,KI_,},KI,p — Kpp. Let us denote the linear functions of q in
the last column in (1°) (which is formed according to Remark 2.2 by the elements of the vectors
~Kpngqr and (¢p + Kpp Kpjqr)) by dig(q) and the corresponding functions in (17) by diy(q).
According to the rules of the pivot technique it holds d},,(¢) = d}, dl);(¢). Using the already
mentioned determinant rule for Schur complements one can show that det Kpnpn = —dL., det Kpp
such that because of sgn detKpipr = —sgn det Kpp necessarily df,;, > 0 follows. According to
Remark 2.2 it holds A7 = {q/ dix(q) >0,i=1,...,n}and A = {q/diy(q) >0, i=1,..,n}
Hence, both sets A" and A" are contained in the same halfspace H; = {g/d.,y(¢) > 0} and
AT belongs to the corresponding hyperspace. But due to Statement 2 of Proposition 3.1 this
contradicts (*). ) )

Subcase bs): If ¢° ¢ AT then ¢° belongs to the relative boundary of AT and for any neigh-
bourhoods U of ¢° and V of 2" there are points § € U N .,ZI{”’II and (because of the fact that the
map PI"I" is continuous relative to AI”’II) zevVn PI”’II((I), for which our argumentation of
subcase b1) can be repeated. q.e.d.

With other words the proof of Theorem 3.1 says: If at an element (¢°, A%, 2°) € gphW¥ condition
(***) is violated, then in each neighbourhood of this element there is another element (§, A%, &) of
this graph, at which the solution set map is not lower semicontinuous. In (¢° A% z°) itself lower
semicontinuity may hold or not. The violation of lower semicontinuity at (¢, A, ) may happen for
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two different reasons. One possibility is that for all sufficiently small neighbourhoods U of ¢ and
V of & there exists a value ¢ € U such that there does not exist any solution x of P(g,A%) in V.
The other possibility is that for all sufficiently small neighbourhoods U of ¢ and V of & there exists
a value ¢ € U such that the number of solutions x of P(g,A%) in V is finite, whereas the number
of solutions of P(§, A%) in V is infinite. Corollary 2.2 shows that this second possibility only leads
to a contradiction to condition (*) if all components of q may be perturbed independently of each
other. This would be not the case, for instance, in the problem Py (t) if d < n.

4 Generic properties of one-parametric linear complemen-
tarity problems

Let us study in this section the one-parametric linear complementarity problem Pi1(¢). The
examples given in the foregoing section show that even for problems of small size the solution
set map of this problem may have a rather complicate structure. As the result of this section we
will see that generically the graph of the solution set map has a very easy structure. We can show
this with help of the results on the problem Pga(¢) given in Theorem 2.4.

Lemma 4.1 There is an open and dense subset Q C R?® such that for all (¢°,q') € Q the set
g=1{q€ R"/q=q¢"+tq', t € R} has the following two properties:

1. For all (I,J) € 8 with dimA!Y =n —1 it holds g € lin ALY,
2. For all (I,J) € 8 with dim AL7 <n —2 it holds g "N ALY = ).

Proof: We show that those values (¢°, '), for which 1 or 2 is violated, is contained in the union
of a finite number of nondegenerated smooth manifold with dimension less or equal to 2n-1.

L. If g C lin A7 with dim AT/ = n — 1, then necessarily it follows that (¢°, ¢') belongs to the
linear subspace lin A"7 x lin AD7 of R?", which has the dimension 2n-2.

2. If gn ALY £ 0 with dim A"/ < n — 2, then also g N lin A7 £ §. According to our as-
sumption on the dimension of A’7 there must are two linear independent vectors a,b € R such
that lin ALY C L"~2 with L""? = {g € R"/a'q = 0, b'q = 0}. This means that the two linear
equations for one variable t, namely a’(¢° + ¢¢*) = 0 and ¥’ (¢° + t¢') = 0 must have a solution.
But this implies that either (¢", ¢') is an element of the linear subspace L"~2 x L"~% which has
the dimension 2n-4, or (¢°, ¢') belongs to the set described by a’q°b'¢* — b'¢%’qt = 0, which is
outside of L"~2 x L"~? a nondegenerated quadratic manifold of dimension 2n-1. q.e.d.

The given proof shows that it suffices to disturb slightly only one of the both vectors ¢° or ¢' to reach
the set Q, if a given pair (¢°, ¢') originally would not belong to Q. Only because of the possibility
that ¢° € L”~? may come true we can not restrict our disturbations on qil (i=0,1; ¢ =1,0).

Using the set Q described in Lemma 4.1 we are now able to prove in the next theorem an essential
generical property (in the sense that this property holds true for all vectors (¢%, ¢*) from an open
and dense subset Q of R?") for the graph of the solution set map ¥ of P11 (t). For a given element
(t,x) € gphW we use here the notation I(¢,z) = {i/(Kx+¢°+t¢'); = 0} and J(¢,z) = {j/x; = 0}.

Theorem 4.1 For all vectors (¢°, ¢*) € Q we have:

1. Each connected component of gph¥ for P11(t) is a crunode-free edge polygon, which may be
etther

a) homeomorphic to the real line or

b) homeomorphic to a circle or

¢) an isolated point of gph¥.

2. Each element (t,x) € gphW belongs to exactly one of the following six types:
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J(t,x) =0 (strict complementarity) A rgKrr =| 1|, where I = I(t,z).
J(t, ) =0 (strict complementarity) A rgKpy =| 1| -1, where I = I(¢,z).
J

T (t,z) ={i'} A sgn detKpp = sgn detKpipn # 0, where I' = I(t,z), J' =

\N{¢}, I =1, e)\{}, T = J(t, ).

Type 4: I{t,z)NJ(t,z) ={¢'} N sgndetKpp = —sgn detKpnpn # 0, where I', J°, "and J” are
defined as above.

Type 5: I{t,z) N J(t,2) ={{'} A sgndetKpp 0 A sgn detKpipn = 0 (or vice versa), where
again I, J’, I"and J” are defined as above.

Type 6: I{t,z)NJ(t,x) ={i'} A sgn detKpp = sgn det Kpnpr = 0, where again I, J°, "and J”
are defined as above.

3. For almost all values of t only Type 1 occours. Almost all elements (t,x) € gph¥ are of the
types 1 and 2.

Proof: According to Lemma 4.1 for (¢”, ¢*) € Q the line g may intersect only those sets ALY with
dimension n or n-1, where the second case may only accour for a finite number of values t. Hence,
taking Theorem 2.4 and Remark 2.2 into account, the graph of ¥ will be formed by all points (¢, )
satisfying

a) (¢° +tqh) € Al for any index set I € {1,...,n} such that dimA! = n and Kj; is regular and
r=x(l,t) = ( i;g’i; ) with z7(I,t) = —I(I_Il(q? +1q}) and zp(I,t) =0 or

b) (¢" +tq¢') € ALJ for any pair (I,J) € S such that dimAY? =n — 1 and z € P17 (¢° +t¢%).
According to Theorem 2.4 and Remark 2.2 the points (¢,z) € gph¥ satisfying a) are just those
elements of gphW of the type 1 and form, together with their boundary points, a first finite system
of edges of the set gphW¥. These boundary points also must belong to gphW, since this set is closed.
At these boundary points necessarily b) must be satisfied.

For the finite number of values ¢, for which there is a point  such that (¢,z) € gph¥ satisfies
b) we can use Statements 2 and 5 of Theorem 2.4 and Lemma 3.1. According to Statement 5 of
Theorem 2.4 we must study two subcases of case b).

In the subcase by) we have INJ = @ and d(I,J) = 1. Hence, the points (¢, ) € gphW¥ satisfying
b1) are just the elements of gph¥ of the type 2 and form together with their boundary points a
second finite system of edges of the set gphW¥. Also these boundary points must belong to gphW¥
and are in this case just the elements of gphW¥ of the type 5.

In the subcase b2) we have the situation I NJ = {#'} and d(I,J) = 0 such that the set {(¢,z)/z €
P17 +1¢)} is a singleton. Obviously, with the types 3-6 all possibilities for sgn det Ky and
sgn det Kpypv under the assumption I NJ = {i'} are exhausted such that the points (¢, z) € gph¥
satisfying b2) are just the elements of gph¥ of the types 3-6. The points of the types 3 and 4 are
common boundary points of exactly two adjacent edges of the first system, one of them given by
the vertex z(I',t) of the convex polyhedron P(t), the other one by the vertex z(I”,¢). This follows
by Lemma 3.1. Again by Lemma 3.1 we see that the points of the type 5 are the common boundary
points of exactly one edge of the first system and exactly one of the second system. Finally, the
points of the type 6 are isolated points of gphW¥. Both systems of edges together with the isolated
points of type 6 form the whole graph of . This completes the proof. q.e.d.

Remark 4.1 1. For all elements (t,x2) € gphV of the types | and 3-6 the z-part is a vertexr
of the conver polyhedron P(t). For all elements (t,x) € gphW¥ of the type 2 the z-part is an
inner point of an edge of the conver polyhedron P(t).

12



2. For all elements (t,z) € gphV of the type 6 the corresponding vertices (Z,y) of the conver
polyhedron P’(t) with yj = ¢° + {q* + K& are exactly those vertices of P’(t) which actually
satisfy the complementarity condition ¥’y = 0, but for which there does not exist any simpler
tableau of the form (1), i.e., there does not exist any basis solution with the property that for
each 1=1,...,n exactly one of the varibles x; and y; is a basic variable and the other one a
non-basic variable. Under different assumptions on the matriz K such vertices and, hence,
elements (t,x) € gph¥ of the type 6 can not exist (cf. [1]).

3. For an arbitrary element ({,z) € gphV¥ of one of the types 1 or 3-5 consider a corresponding
simplex tableau (1). As in the proof of Theorem 3.1 let us denote the elements of (1) by d;;
and the linear functions of t in the last column of (1) by dio(t). According to Remark 2.2 we
assume d;o(t) >0, i = 1,...,n. With help of the data of (1) we can characterize uniquely the
type of this point as follows:

a) (t,z) is of the type 1 < dio(t) >0, i=1,...,n.

b) (t,z) is of the type 3 <= there is exactly one index i’ € {1,...,n} such that dyx(t) = 0
and it holds d;;0 < 0.

c) (t,) is of the type 4 <= there is exactly one indexr i € {1,...,n} such that dy(t) = 0
and it holds d;;0 > 0.

d) (t,%) is of the type 5 <= there is exactly one index i’ € {1,...,n} such that dyx(t) = 0
and it holds di’i’ =0.

4. The unique open edge of the second class formed by solutions (t,x) € gph¥ of the type 2 with
an element (t,z) € gph¥ of the type 5 (which satisfies d) of Statement 3) as one boundary
point can be constructed with help of the corresponding simplex table (1) to (t,z) as follows:
We put zg; = 0, zp; = dzo({) — d“'/S, 1 75 i/, Ny =8, 0<s <5, zng = 0,2 75 i/, where zg
stands for the vector of basic variables in (1), zn for the vector of non-basic variables and

s = sup{s/dio(f) — d“'/S Z 0, 1 ;é Z/}

5. Concerning the edges of gphV of the second class there are three different cases to distinguish:
Case a) If all elements d;r, i # ¢, are nonpositive then this edge is unbounded (s = o) and
18, hence, the first or last edge of the corresponding edge polygon, to which it belongs.
Otherwise the edge is bounded and must have a second boundary point (t',%’). Let be i €

{i # i’/% = minj:dﬁ»odéif,{)} and § = %. For (¢°,¢') € Q the index i” is uniquely

determined and it holds dj;n # 0. Hence, we can obtain a simplex tableau (1°) to (T, %)

from (1) by one (2 x 2)-pivot step with the (2 x 2)-matrix ( ;l.ili,l j,ili,“ ) as pivol malrir.

Because of dyryy = 0, dinyr > 0 and djn # 0 this matriz is regular, if (¢°,¢*) € Q. The index
set I, which corresponds to (1°), is formed by I, i’ and i” in the following way. First we put
I* =T\ {#} if ¢ €1 respectively I* = I U{i'} otherwise. Analoguesly, we set I' = I* \ {i"}
if " € I respectively I' = I* U{i"} otherwise. The corresponding matriz Ky will always be
reqular. With respect to sufficiently small neighbourhoods W of (t,z) and W’ of (¢',z') the
following two possibilities b) and ¢) may appear.

Case b} If djjin < 0 then sgn det Kip = sgn det Kpp and for t <1 the intersection of W with
gph¥ consists of all points (t,x(1,t)) and is empty for ¢ > 1 and the intersection of W’ with
gphW¥ is empty fort <t and consists fort >t of all points (t,x(I',t)) (or vice versa).

Case ¢) If dyyn > 0 then sgn det K = —sgn detKpp and fort < t the intersection of W
with gph¥ consists of all points (t,z(I,t)) and is empty for t >t and the intersection of W’
with gph¥ is empty for t >t and consists for t <t of all points (¢,x(I',t)) (or vice versa).
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6. At all elements (t,xz) € gphW of the types 1 and 3 condition (***) is satisfied, whereas at all
other types 2 and {-6 even condition (*} is not fulfilled.

7. With respect to an open and dense subset of the (n x n)-dimensional Euclidean space of all
elements k;; the matriz K is an N-matriz. Hence, for the problem P11(t) only the types 1, 3
and 4 remains generic, if we permit to disturb beside the vectors q° and ¢ also the elements
of the matriz K.

8. If all principal minors of the matriz K are nonnegative, then the types 4 and 6 as well as the
case c¢) described in Statement 5 can not appear, the graph of the solution set map of P11(t)
consists of exactly one edge polygon and is always homeomorphic to the real line (cf. [1]). If
the matriz K is even a P-matriz, then also the types 2 and § can not appear, all elements
(t,x) € gph¥ satisfy (***) and gph¥ is formed only by edges of the first class.

In the following theorem we characterize the local structure of the graph of the solution set map
¥ of P11(¢) for the six different types given above. We use the notations I'; I” and x(I,t) as in
Theorem 4.1.

Theorem 4.2 Let be (t,%) € gph¥ and W a sufficiently small neighbourhood of (¢, z).

1. If( z) is of the type 1 then we have W N gph¥ = {(t,z) € W [/ = = z(I,t)}, where

t,z).

2. If (t, %) is of the type 2 then we have W N gph¥ = {(t,z) € W /t =, x € PL(t)}, where
=1(t, 7).

3. If ({, ) is of the type 3 then we have WNgph¥ = {(t,z) e W [t <1, v = z(I',4)}U{(t,z) €

W/t>t a=z(I" 1)} or Wngph¥® = {(t,z) e W [t >1, e = (I, 4)}U{t,z) e W /1 <
t, x =x(I",t)}. Fort=1t it holds (I',t) = x(I"1).

& |

—

4. If (t, ) is of the type 4 then we have WNgph¥ = {(t,z) e W /t <&, z = z(I',)}U{(t,z) €
W /t<t,e=x(I",t)} or WNgph¥ = {(t,x) e W [/t >1, e = (', 1) }U{(t,z) e W /t >
t, x =x(I",t)}. Fort=1t it holds (I',t) = x(I"1).

5. If (t, ) is of the type 5 then we have W Ngph¥ = {(t,z) e W [t <1, x = (I, 1) }U{(t,z) €
W/t=t, z € PU{{)} or WNgph¥ ={(t,z) eW [/t >t = ==2(I' )} U{(t, x)EW/t:
t,ze P ({{)} or WNgphV = {(t,z) e W /t <t z=z(I" 1)} U{(t,z) EW/t_f T €
PU(@)} or Wngph¥ = {(t,z) e W /t>1, e =2(I", 1)} U{t,e) e W /t=1, x € PT'(1)}.

6. If (t,z) is of the type 6 then we have W N gphV¥ = {(¢,z)}.

Proof: The proof follows by Theorem 4.1 and Remark 4.1. q.e.d.
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The following picture illustrates the given six types of solutions and the possible situations con-
cerning the structure of the graph of the solution set map. In this example this graph has fore
connected components, namely two isolated points, one edge polygon which is homeomorphic to
the real line and one edge polygon which is homeomorphic to a circle. Moreover, there are three
edges of the second class, one of them corresponds to case a) described in Statement 5 of Remark
4.1, one to case b) and one to case c).

2b

A

Generic properties of the Karush-Kuhn-Tucker conditions for one-parametric quadratic optimiza-
tion problems are the common subject of Section 4 of our paper with the papers [7] of Jongen et
al and [6] of Henn et al. For the special case of one-parametric linear optimization problems we
refer also to the relevant paper [22] of Patewa. The results are partially similar but not identical
because of the following essential differences in the assumptions. Firstly, in the papers [7] and [6]
the dependence on the parameter t is assumed to be more general (of the type C? respectively C),
whereas we restrict our considerations to the case that only the vector q depends on t and this
dependence is linear. This point is connected with the second difference, namely with the fact, that
our notion ”generic” is based only on small pertubations of the problem in the finite dimensional
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space R2" of the data ¢° and ¢ with the corresponding topology, whereas in [7] and [6] small per-
turbations of all underlying functions in the strong C3-topology respectively strong C'-topology
are allowed. Finally, an exact comparison of the three papers would require, on the one hand, to
include the Lagrange multipliers and their dependence on the parameter into the considerations
of [7] and [6] and, on the other hand, to include all aspects of [7] which are only relevant for the
Karush-Kuhn-Tucker conditions of an optimization problem into our considerations.

Remember that in [7] five types of (generalized) critical points of one-parametric nonlinear opti-
mization problems described by C3-functions have been identified to be generic, whereas the paper
[6] shows that in the corresponding special case of quadratic respectively linear optimization only
the types 1, 2 and 5 respectively 1 and 5 from [7] remain generic.

Taking into consideration all differences between the approaches in [7] and in our Section 4 men-
tioned above, we can see, that the types 1 of both papers are identical and that the two subcases
of type 2 of [7] correspond to our types 3 and 4. Type 3 of [7] has some common properties as our
type 2 but both are not identical . Finally, type 5 of [7] is related to our types 2 and 5 but is not
identical. All other types of both papers differ essentially of each other.
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